surveillance/0000755000176200001440000000000014712423472012754 5ustar liggesuserssurveillance/tests/0000755000176200001440000000000014711772516014123 5ustar liggesuserssurveillance/tests/tinytest.R0000644000176200001440000000152014711720672016123 0ustar liggesusers### "lazy" transition from "testthat" to "tinytest" ### Copyright (C) 2020-2022 Sebastian Meyer if (!requireNamespace("tinytest", quietly = TRUE) || packageVersion("tinytest") < "1.2.4") { message("this test suite requires package 'tinytest' (>= 1.2.4)") q("no") } ## provide simple replacement for test_that() expectation bundles ## WARNING: this wrapper doesn't print test results, not even failures! test_that <- function (desc, code) { eval(substitute(code), new.env(parent = parent.frame())) invisible() } ## show warnings as they appear options(warn = 1) ## use verbose = 1 to print_status() only after each test file, ## not after each expression (verbose = 2), ## and omit ANSI escapes for a cleaner log tinytest::test_package("surveillance", testdir = "testthat", verbose = 1, color = FALSE) surveillance/tests/testthat/0000755000176200001440000000000014711772516015763 5ustar liggesuserssurveillance/tests/testthat/test-farringtonFlexible.R0000644000176200001440000003621114662137762022715 0ustar liggesusersdata("salmonella.agona") # sts object lala <- paste(salmonella.agona$start[1],salmonella.agona$start[2],"1",sep=" ") firstMonday <- as.POSIXlt(lala, format = "%Y %W %u") salm.ts <- salmonella.agona$observed dates <- as.Date(firstMonday) + 7 * 0:(length(salm.ts) - 1) start=c(salmonella.agona$start[1],salmonella.agona$start[2]) salm <- new("sts",epoch = as.numeric(dates), start = start, freq = 52, observed = salm.ts, epochAsDate = TRUE) ### ## WEIGHTS FUNCTION ### test_that("gamma = 1 if everything below the threshold",{ s <- rep(0,10) weightsThreshold <- 0 weights <- algo.farrington.assign.weights(s,weightsThreshold) expect_equal(weights,rep(1,10)) }) test_that(" A case that was checked by hand",{ s <- rep(2,10) s[1:5] <- 0 weightsThreshold <- 0 weights <- algo.farrington.assign.weights(s,weightsThreshold) expect_equal(weights[1:5],rep(1.6,5)) expect_equal(weights[6:10],rep(0.4,5)) }) ### ## RESIDUALS FUNCTION ### test_that(" residuals should be zero",{ x <- rpois(10,1) y <- exp(x) model <- glm(y~x,family = quasipoisson(link="log")) phi <- max(summary(model)$dispersion,1) s <- anscombe.residuals(model,phi) expect_equal(as.numeric(s),rep(0,10)) }) test_that(" residuals should not be zero",{ x <- rpois(1000,1) y <- exp(x)+runif(1) model <- glm(y~x,family = quasipoisson(link="log")) phi <- max(summary(model)$dispersion,1) s <- anscombe.residuals(model,phi) expect_true(mean(s)>0) }) ### ## FORMULA FUNCTION ### test_that("We get the right formula",{ expect_identical(surveillance:::formulaGLM(populationOffset=FALSE,timeBool=TRUE,factorsBool=FALSE), "response ~ 1+wtime") expect_identical(surveillance:::formulaGLM(populationOffset=FALSE,timeBool=FALSE,factorsBool=FALSE), "response ~ 1") expect_identical(surveillance:::formulaGLM(populationOffset=TRUE,timeBool=TRUE,factorsBool=FALSE), "response ~ 1+wtime+offset(log(population))") expect_identical(surveillance:::formulaGLM(populationOffset=TRUE,timeBool=TRUE,factorsBool=TRUE), "response ~ 1+wtime+offset(log(population))+seasgroups") }) ### ## REFERENCE TIME POINTS FUNCTION ### test_that("We get the expected timepoints with weekly data",{ # Case with weekly data with dates dayToConsider <- as.Date("2013-06-06") b <- 3 freq <- 52 epochAsDate <- TRUE epochStr <- "week" lala <- surveillance:::algo.farrington.referencetimepoints(dayToConsider,b=b,freq=freq,epochAsDate,epochStr) # Do we get the same day as dayToConsider? expect_equal(as.numeric(format(lala, "%w")),rep(4,4)) # Actually for this example I know the dates one should get expect_equal(sort(lala),sort(c(as.Date("2010-06-03"),as.Date("2013-06-06"),as.Date("2012-06-07"),as.Date("2011-06-09")))) }) test_that("We get the expected timepoints with monthly data",{ dayToConsider <- 48 b <- 3 freq <- 12 epochAsDate <- FALSE epochStr <- "month" lala <- surveillance:::algo.farrington.referencetimepoints(dayToConsider,b=b,freq=freq,epochAsDate,epochStr) expect_equal(lala,c(48,36,24,12)) }) test_that("We get an error when going too many years back",{ dayToConsider <- 48 b <- 3 freq <- 12 epochAsDate <- FALSE epochStr <- "month" expect_true(any(surveillance:::algo.farrington.referencetimepoints(dayToConsider,b=8,freq=freq,epochAsDate,epochStr) < 1)) # apply code control1 <- list(range=250,noPeriods=10,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=10,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="muan",alpha=0.05,glmWarnings=FALSE) expect_error(farringtonFlexible(salm,control=control1),"Some reference") }) ### ## FIT GLM FUNCTION ### # Case with convergence control<- list(range=250,noPeriods=10,populationOffset=TRUE, fitFun="algo.farrington.fitGLM.flexible", b=40,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="muan",alpha=0.05,glmWarnings=FALSE) response=salm@observed[1:120] dataGLM <- data.frame(response=response,wtime=1:120, population=runif(120)*100, seasgroups=as.factor(rep(1:12,10))) arguments <- list(dataGLM=dataGLM, timeTrend=TRUE, populationOffset=TRUE, factorsBool=TRUE,reweight=TRUE, weightsThreshold=0.5,glmWarnings=control$glmWarnings, control=control) model <- do.call(surveillance:::algo.farrington.fitGLM.flexible, args=arguments) test_that("The fit glm function gives the right class of output",{ expect_inherits(model, "glm") }) test_that("The fit glm function gives as many coefficients as expected",{ expect_equal(dim(summary(model)$coefficients)[1], length(levels(dataGLM$seasgroups))-1+1+1) }) test_that("wtime, response, phi and weights were added to the model",{ expect_false(is.null(model$phi)) expect_false(is.null(model$wtime)) expect_false(is.null(model$response)) expect_false(is.null(model$population)) expect_false(is.null(model$weights)) }) test_that("reweighting was done",{ expect_true(all(model$weights!=1)) }) test_that("there are no weights if very high threshold",{ arguments$reweight <- TRUE arguments$weightsThreshold <- 100000 model <- do.call(surveillance:::algo.farrington.fitGLM.flexible, args=arguments) expect_true(all(model$weights==1)) }) test_that("there is not a too small overdispersion",{ expect_true(model$phi>=1) }) ### ## BLOCKS FUNCTION ### referenceTimePoints <- c(as.Date("2010-06-03"),as.Date("2013-06-06"),as.Date("2012-06-07"),as.Date("2011-06-09")) firstDay <- as.Date("1990-06-07") vectorOfDates <- dates <- as.Date(firstDay) + 7 * 0:1300 freq <- 52 dayToConsider <- as.Date("2013-06-06") b <- 3 w <- 3 epochAsDate <- TRUE # p=1 p <- 1 lala <- surveillance:::blocks(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p,epochAsDate) test_that("the reference window has the right length",{ expect_equal(length(vectorOfDates[is.na(lala)==FALSE&lala==p]),w+1+b*(2*w+1)) # p>1 p <- 8 lala <- surveillance:::blocks(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p,epochAsDate) # reference windows expect_equal(length(vectorOfDates[is.na(lala)==FALSE&lala==p]),w+1+b*(2*w+1)) }) lili <- as.factor(lala[is.na(lala)==FALSE]) test_that("there are as many levels as expected",{ expect_equal(length(levels(lili)),p) }) p <- 8 lala <- surveillance:::blocks(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p,epochAsDate) lili <- as.factor(lala[is.na(lala)==FALSE]) lolo <- lili[lili!=p] test_that("periods of roughly the same length each year",{ expect_equal(as.numeric(abs(diff(table(lolo))[1:(p-2)])<=b),rep(1,(p-2))) }) ### ## THRESHOLD FUNCTION FARRINGTON ### predFit <- 5 predSeFit <- 0.2 wtime <- 380 skewness.transform <- "2/88" alpha <- 0.05 y <- 8 method <- "delta" phi <- 1 test_that("the function recognizes wrong exponents",{ expect_error(surveillance:::algo.farrington.threshold.farrington( predFit, predSeFit, phi, skewness.transform, alpha, y, method ), "proper exponent") }) test_that("some results we know are found",{ skewness.transform <- "none" lala <- surveillance:::algo.farrington.threshold.farrington( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) # Should always be ok lala <- as.numeric(lala) expect_true(lala[3]<=1&lala[1]>=0) expect_true(lala[2]>lala[1]) expect_true(lala[1]>=0) # Here we know the results expect_equal(as.numeric(lala), c(1.3073128, 8.6926872, 0.0907246, 0.8124165), tolerance = 1e-6, scale = 1) # Here we calculated some examples skewness.transform <- "1/2" lala <- surveillance:::algo.farrington.threshold.farrington( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) expect_equal(as.numeric(lala), c(1.9891097, 9.3744842, 0.1189986, 0.6857951), tolerance = 1e-6, scale = 1) skewness.transform <- "2/3" lala <- surveillance:::algo.farrington.threshold.farrington( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) expect_equal(as.numeric(lala), c(1.8084477, 9.1154825, 0.1094727, 0.7289546), tolerance = 1e-6, scale = 1) }) ### ## THRESHOLD FUNCTION NOUFAILY ### predFit <- log(5) predSeFit <- log(2) wtime <- 380 skewness.transform <- "none" alpha <- 0.05 y <- 11 phi <- 1.5 method <- "muan" lala <- surveillance:::algo.farrington.threshold.noufaily( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) test_that("some results we know are found",{ # Should always be ok lala <- as.numeric(lala) expect_true(lala[3]<=1&lala[1]>=0) expect_true(lala[2]>lala[1]) expect_true(lala[1]>=0) # Here we calculated some examples expect_equal(as.numeric(lala), c(8.0000000, 24.0000000, 0.8597797, 0.4193982), tolerance = 1e-6, scale = 1) phi <- 1.0 method <- "muan" lala <- surveillance:::algo.farrington.threshold.noufaily( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) expect_equal(as.numeric(lala), c(9.0000000, 22.0000000, 0.9093099, 0.4605347), tolerance = 1e-6, scale = 1) phi <- 1.5 method <- "nbPlugin" lala <- surveillance:::algo.farrington.threshold.noufaily( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) expect_equal(as.numeric(lala), c(1.00000000, 10.00000000, 0.03763657, 1.11918153), tolerance = 1e-6, scale = 1) phi <- 1.0 method <- "nbPlugin" lala <- surveillance:::algo.farrington.threshold.noufaily( predFit, predSeFit, phi, skewness.transform, alpha, y, method ) expect_equal(as.numeric(lala), c(2.00000000, 9.00000000, 0.01369527, 1.27061541), tolerance = 1e-6, scale = 1) }) ### ## DATA GLM FUNCTION ### b <- 3 freq <- 52 dayToConsider <- as.Date("2013-05-30") epochAsDate <- TRUE epochStr <- "week" firstDay <- as.Date("1990-06-07") vectorOfDates <- dates <- as.Date(firstDay) + 7 * 0:1300 w <- 3 noPeriods <- 10 observed <- rnorm(1301)+runif(1301)+30 population <- rnorm(1301)+10 verbose <- FALSE pastWeeksNotIncluded <- w k <- 1200 lala <- surveillance:::algo.farrington.data.glm(dayToConsider, b, freq, epochAsDate,epochStr, vectorOfDates,w,noPeriods, observed,population, verbose,pastWeeksNotIncluded,k) test_that("the output is a data.frame",{ expect_inherits(lala, "data.frame") }) test_that("the data frame contains all variables",{ expect_identical(names(lala), c("response", "wtime","population","seasgroups","vectorOfDates")) }) test_that("the time variable is ok with diff 1",{ expect_equal(diff(lala$wtime), rep(1,length(lala$wtime)-1)) }) test_that("the factor variable has the right number of levels",{ expect_equal(nlevels(lala$seasgroups), noPeriods) }) observed[1150] <- NA lala <- surveillance:::algo.farrington.data.glm(dayToConsider, b, freq, epochAsDate,epochStr, vectorOfDates,w,noPeriods, observed,population, verbose,pastWeeksNotIncluded,k) test_that("the data frame has the right dimensions",{ expect_equal(dim(lala),c(156,5)) }) ### ## GLM FUNCTION ### dataGLM <- lala timeTrend <- TRUE populationOffset <- TRUE factorsBool <- TRUE reweight <- TRUE weightsThreshold <- 1 pThresholdTrend <- 1 b <- 3 noPeriods <- 10 typePred <- "link" fitFun <- "algo.farrington.fitGLM.flexible" glmWarnings <- FALSE epochAsDate <- TRUE dayToConsider <- as.Date("2013-05-30") diffDates <- 7 populationNow <- 10 test_that("the output has the needed variables",{ finalModel <- surveillance:::algo.farrington.glm(dataGLM,timeTrend,populationOffset,factorsBool, reweight,weightsThreshold,pThresholdTrend,b, noPeriods,typePred,fitFun,glmWarnings,epochAsDate, dayToConsider,diffDates,populationNow,verbose=FALSE) expect_identical(names(finalModel), c("pred","doTrend","coeffTime","phi")) }) test_that("no time trend in no time trend",{ pThresholdTrend <- 1 b <- 2 finalModel <- surveillance:::algo.farrington.glm(dataGLM,timeTrend,populationOffset,factorsBool, reweight,weightsThreshold,pThresholdTrend,b, noPeriods,typePred,fitFun,glmWarnings,epochAsDate, dayToConsider,diffDates,populationNow,verbose=FALSE) expect_false(finalModel$doTrend) }) ### ## ALARMS ### test <- farringtonFlexible(salm,control=list(thresholdMethod="nbPlugin",alpha=0.1)) test_that("there are only alarms when expected",{ # No alarm when observed is 0 expect_true(sum(test@alarm[test@observed==0])==0) # No alarm when the observed counts are UNDER the threshold expect_true(sum(observed(test)>upperbound(test),na.rm=TRUE)==sum(test@alarm==TRUE)) }) ### ## NO CONVERGENCE ### timeSeries <- rep(0,698) timeSeries[696] <- 1 algoControl <- list(noPeriods=10,alpha = 0.01,verbose = F, b=5,w=4,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod='nbPlugin',limit54 = c(4,5), range = (length(timeSeries) - 1):length(timeSeries), glmWarnings = FALSE) seriesSTSObject <- new('sts', observed = timeSeries, epoch = as.numeric(seq(as.Date('2001-01-01'),length.out=length(timeSeries), by='1 week')), epochAsDate = TRUE) test_that("The code does not produce any error",{ # It is ok if the code does not produce any error expect_warning(farringtonFlexible(seriesSTSObject, control = algoControl)) }) ### ## NA ### timeSeries <- rnorm(698)*10+runif(698)*100+30 algoControl <- list(noPeriods=10,alpha = 0.01,verbose = F, b=5,w=4,weightsThreshold=2.58,pastWeeksNotIncluded=NULL, pThresholdTrend=1,thresholdMethod='nbPlugin',limit54 = c(4,5), range = (length(timeSeries) - 1):length(timeSeries), glmWarnings = FALSE) seriesSTSObject <- sts(timeSeries, epoch = seq(as.Date('2001-01-01'), length.out=length(timeSeries), by='1 week')) test_that("The code does not produce any error",{ farringtonFlexible(seriesSTSObject, control = algoControl) results1 <- farringtonFlexible(seriesSTSObject, control = algoControl) expect_inherits(results1, "sts") seriesSTSObject@observed[680:690] <- NA results2 <- farringtonFlexible(seriesSTSObject, control = algoControl) expect_inherits(results2, "sts") }) ### ## multivariate example with populationOffset ### msts <- sts(cbind(series1 = timeSeries, series2 = timeSeries), population = c(1,2)*10000) algoControl$populationOffset <- TRUE out <- farringtonFlexible(msts, control = algoControl) test_that("population offsets of multivariate sts are handled correctly", { ## resulting upperbounds must be the same as different offsets just rescale the intercept expect_equal(out@upperbound[,1], out@upperbound[,2]) }) ## failed in surveillance <= 1.19.1 (used series 1 offset for both fits) surveillance/tests/testthat/test-twinstim_misc.R0000644000176200001440000000331614711767031021753 0ustar liggesusers## miscellaneous regression tests for twinstim() data("imdepi") load(system.file("shapes", "districtsD.RData", package = "surveillance"), verbose = TRUE) ## let some districts have no population imdepi0 <- update(imdepi, stgrid = within(imdepi$stgrid, popdensity[startsWith(as.character(tile), "01")] <- 0)) stopifnot(# verify update-method identical(names(imdepi0$stgrid), names(imdepi$stgrid)), identical(names(imdepi0$events), names(imdepi$events)), with(imdepi0$events@data, all.equal(startsWith(as.character(tile), "01"), popdensity == 0)), identical(marks(imdepi0), marks(imdepi)) ) ## automatic start value is robust against -Inf offset tools::assertWarning(# infinite logLik fit0 <- twinstim(endemic = ~offset(log(popdensity)) + I(start/365), data = imdepi0, model = TRUE, optim.args = list(fixed = TRUE), verbose = FALSE) ) ## beta0 was initialized at Inf in surveillance <= 1.22.1 stopifnot(is.finite(coef(fit0)), is.character(fit0$converged), is.infinite(logLik(fit0))) # because of events in 0-pop tiles ## endemic intensity is 0 in unpopulated districts hGrid <- intensity.twinstim(fit0, "space", tiles = districtsD)$hGrid districts_h0 <- names(which(hGrid == 0)) stopifnot(length(districts_h0) > 0, startsWith(districts_h0, "01")) ## intensityplot works for an endemic-only model fit_end <- twinstim(endemic = ~1, data = imdepi, model = TRUE, optim.args = list(fixed = TRUE), verbose = FALSE) intensityplot(fit_end, "total", "space", tiles = districtsD) -> .plotobj ## produced an error in surveillance <= 1.22.1: ## unable to find an inherited method for function 'coordinates' for signature '"NULL"' surveillance/tests/testthat/test-toLatex.sts.R0000644000176200001440000000620514662137762021321 0ustar liggesusersdata("ha.sts") data("salmonella.agona") test_that("toLatex accepts basic input and returns Latex", { control <- list( noPeriods=10,populationBool=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="new",alpha=0.01 ) result <- ha.sts result@alarm[,7] <- TRUE result@upperbound[,7] <- 1 laTex <- toLatex(result, subset=(280:290), table.placement="h", size = "scriptsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE) laTex3 <- toLatex(result, subset=(280:290), alarmPrefix = "aaaa", alarmSuffix = "bbbb", table.placement="h", size = "scriptsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE) expect_true(grepl("aaaa", paste(as.character(laTex3), collapse = ' '))) expect_true(grepl("bbbb", paste(as.character(laTex3), collapse = ' '))) expect_inherits(laTex, "Latex") expect_inherits(laTex3, "Latex") }) test_that("caption is incorporated", { testCaption <- "Please print my caption" latex <- toLatex(ha.sts, caption = testCaption) expect_true(grepl(testCaption, paste(as.character(latex), collapse = ' '))) }) test_that("label is incorporated", { testLabel <- "Please print my label" latex <- toLatex(ha.sts, label = testLabel) expect_true(grepl(testLabel, paste(as.character(latex), collapse = ' '))) }) test_that("ubColumnLabel is incorporated", { testUBLabel <- "Upperbound" latex <- toLatex(ha.sts, ubColumnLabel = testUBLabel) expect_true(grepl(testUBLabel, paste(as.character(latex), collapse = ' '))) }) test_that("one can override the default table column labels", { columnLabels <- c("Jahr", "Woche", "chwi1", "UB", "frkr2", "UB", "lich3", "UB", "mahe4", "UB", "mitt5", "UB", "neuk6", "UB", "pank7", "UB", "rein8", "UB", "span9", "UB", "zehl10", "UB", "scho11", "UB", "trko12", "UB") latex <- toLatex(ha.sts, columnLabels = columnLabels) expect_true(all( sapply(columnLabels, function(l) grepl(l, paste(as.character(latex), collapse = ' ')) , USE.NAMES = FALSE) )) }) test_that("toLatex works with output from farringtonFlexible()", { # Create the corresponding sts object from the old disProg object salm <- disProg2sts(salmonella.agona) # Farrington with old options control1 <- list(range=(260:312), noPeriods=1,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=1, pastWeeksNotIncluded=3, pThresholdTrend=0.05,trend=TRUE, thresholdMethod="delta",alpha=0.1) salm1 <- farringtonFlexible(salm,control=control1) expect_inherits(toLatex(salm1), "Latex") }) test_that("toLatex stops if 'subset' is not applicable", { expect_error(toLatex(ha.sts, subset=(-5:290))) expect_error(toLatex(ha.sts, subset=(1:10000))) expect_error(toLatex(ha.sts, subset=(10000:100000))) }) surveillance/tests/testthat/test-hhh4+derivatives.R0000644000176200001440000001570214406045141022230 0ustar liggesusers### Fixed effects hhh4() model fit and involved analytical derivatives data("measlesWeserEms") measlesModel <- list( end = list(f = addSeason2formula(~1 + t, S=1, period=52), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1 + log(pop), weights = W_powerlaw(maxlag = 5, normalize = TRUE)), family = "NegBin1", data = list(pop = population(measlesWeserEms)) ) measlesFit <- hhh4(stsObj = measlesWeserEms, control = measlesModel) test_that("estimates and standard errors are reproducible", { ## dput(coef(measlesFit, se = TRUE)) orig <- structure( c(-0.499636482022272, 0.551345030080107, 0.96093157194767, -0.153585641356373, 0.00333284018297979, 1.01500011496702, -0.588738943313705, 5.52782609236691, 1.81915612994789, 0.121781347106564, 1.27401298230559, 0.453889365025671, 0.281013375484401, 0.00459840327748742, 0.210642721317572, 0.191921649336323, 1.87984346848385, 0.265016986696184), .Dim = c(9L, 2L), .Dimnames = list(c("ar.1", "ne.1", "ne.log(pop)", "end.1", "end.t", "end.sin(2 * pi * t/52)", "end.cos(2 * pi * t/52)", "neweights.d", "overdisp"), c("Estimate", "Std. Error")) ) expect_equal(coef(measlesFit, se = TRUE), orig, tolerance = 1e-6) # increased for Solaris Sparc ## tolerance determined empirically by an R build with --disable-long-double }) test_that("neighbourhood weights array yields the same results", { What <- getNEweights(measlesFit) ## put that in an array for time-varying weights in hhh4 ## (they are not actually varying here) Warray <- array(What, dim = c(dim(What),nrow(measlesWeserEms)), dimnames = c(dimnames(What), list(NULL))) measlesFit_Warray <- update(measlesFit, ne = list(weights = Warray), use.estimates = FALSE) ## NOTE: variance estimates are different because of fixed powerlaw expect_equal(measlesFit_Warray, measlesFit, ignore = c("control", "coefficients", "se", "cov", "dim")) expect_equal(coef(measlesFit_Warray), coef(measlesFit)[names(coef(measlesFit_Warray))], tolerance = 1e-6) # triggered by 64-bit win-builder }) test_that("score vector and Fisher info agree with numerical approximations", if (requireNamespace("numDeriv")) { test <- function (neweights) { Wname <- deparse(substitute(neweights)) measlesModel$ne$weights <- neweights capture.output( # hide reports as we use a different tolerance pencomp <- hhh4(measlesWeserEms, measlesModel, check.analyticals = "numDeriv")$pen ) expect_equal(pencomp$score$analytic, pencomp$score$numeric, tolerance = .Machine$double.eps^0.5, info = Wname) expect_equal(pencomp$fisher$analytic, pencomp$fisher$numeric, tolerance = .Machine$double.eps^0.25, info = Wname) } test(W_powerlaw(maxlag = 5, normalize = FALSE, log = FALSE)) ## normalized PL with maxlag < max(nbmat) failed in surveillance < 1.9.0: test(W_powerlaw(maxlag = 3, normalize = TRUE, log = TRUE)) ## check unconstrained weights test(W_np(maxlag = 5, truncate = TRUE, normalize = FALSE)) test(W_np(maxlag = 3, truncate = FALSE, normalize = TRUE)) ## test two-component formulations (AR within NE) measlesModel$ar <- list(f = ~ -1) test(W_powerlaw(maxlag = 3, normalize = TRUE, log = TRUE, from0 = TRUE)) test(W_np(maxlag = 1, truncate = FALSE, normalize = FALSE, from0 = TRUE)) test(W_np(maxlag = 3, truncate = TRUE, normalize = TRUE, from0 = TRUE)) }) test_that("alternative optimizers give equivalent results", { ctrl_nlm <- list(method = "nlm", check.analyticals = TRUE) expect_equal( update(measlesFit, optimizer = list(regression = ctrl_nlm), use.estimates = FALSE), measlesFit, tolerance = 1e-5, ignore = "control" ) ctrl_BFGS <- list(method = "BFGS", reltol = 1e-12) expect_equal( update(measlesFit, optimizer = list(regression = ctrl_BFGS), use.estimates = FALSE), measlesFit, tolerance = 1e-5, ignore = "control" ) }) test_that("automatic and manual normalization are equivalent", { ## check for equivalent functions for (type in c("powerlaw", "np")) { W_type <- get(paste0("W_", type), mode = "function") w0 <- W_type(maxlag = 3, normalize = TRUE) w1 <- surveillance:::scaleNEweights.list( W_type(maxlag = 3, normalize = FALSE), normalize = TRUE) pars <- w0$initial nbmat <- neighbourhood(measlesWeserEms) expect_equal(w1$w(pars, nbmat), w0$w(pars, nbmat)) ## for the power law, dw and d2w are length 1 lists in w1 but not in w0 unlistIfPL <- if (type == "powerlaw") function (x) x[[1L]] else identity expect_equal(unlistIfPL(w1$dw(pars, nbmat)), w0$dw(pars, nbmat)) expect_equal(unlistIfPL(w1$d2w(pars, nbmat)), w0$d2w(pars, nbmat)) ## microbenchmark::microbenchmark(w1$d2w(pars, nbmat), w0$d2w(pars, nbmat)) ## -> type-specific implementations of normalized derivatives are faster } ## check for equivalent fits (rather redundant) measlesFit2 <- hhh4( stsObj = measlesWeserEms, control = modifyList(measlesModel, list( ne = list( weights = W_powerlaw(maxlag = 5, normalize = FALSE), normalize = TRUE # -> use scaleNEweights.list() ))) ) expect_equal(measlesFit, measlesFit2, ignore = "control", tolerance = 1e-6) # increased to pass on 32-bit Windows }) measlesWeserEms2 <- measlesWeserEms neighbourhood(measlesWeserEms2) <- neighbourhood(measlesWeserEms2) + 1L test_that("W_powerlaw(..., from0 = TRUE) equals manual approach", { measlesModel2 <- modifyList(measlesModel, list( ar = list(f = ~ -1), ne = list(weights = W_powerlaw(maxlag = 5, from0 = TRUE)) )) measlesFit2 <- hhh4(measlesWeserEms, measlesModel2) ## manual approach measlesModel2_manual <- modifyList(measlesModel2, list( ne = list(weights = W_powerlaw(maxlag = 5 + 1)) )) measlesFit2_manual <- hhh4(measlesWeserEms2, measlesModel2_manual) expect_equal(measlesFit2, measlesFit2_manual, ignore = c("control", "stsObj")) }) test_that("W_np(..., from0 = TRUE) equals manual approach", { measlesModel2 <- modifyList(measlesModel, list( ar = list(f = ~ -1), ne = list(weights = W_np(maxlag = 2, from0 = TRUE)) )) measlesFit2 <- hhh4(measlesWeserEms, measlesModel2) ## manual approach measlesModel2_manual <- modifyList(measlesModel2, list( ne = list(weights = W_np(maxlag = 2 + 1)) )) measlesFit2_manual <- hhh4(measlesWeserEms2, measlesModel2_manual) expect_equal(measlesFit2, measlesFit2_manual, ignore = c("control", "stsObj")) }) surveillance/tests/testthat/test-twinstim_score.R0000644000176200001440000000525713746767713022157 0ustar liggesusers### Likelihood and score function of twinstim() ## Note: derivatives of interaction functions are tested in separate files ## we thus use the relatively fast Gaussian kernel here data("imdepi") model <- twinstim( endemic = addSeason2formula(~offset(log(popdensity)), S = 1, period = 365, timevar = "start"), epidemic = ~type, siaf = siaf.gaussian(), tiaf = tiaf.step(2), data = imdepi, optim.args = NULL, verbose = FALSE ) theta <- c("h.(Intercept)" = -20, "h.sin(2 * pi * start/365)" = 0.2, "h.cos(2 * pi * start/365)" = 0.3, "e.(Intercept)" = -10, "e.typeC" = -0.9, "e.siaf.1" = 2, "e.tiaf.1" = -1) test_that("likelihood is still the same", { expect_equal(model$ll(theta), -9579.65468598488) }) test_that("score vector agrees with numerical approximation", { numsc <- if (surveillance.options("allExamples") && requireNamespace("numDeriv")) { numDeriv::grad(func = model$ll, x = theta) } else { # for faster --as-cran tests c(-321.766081898055, -17.0779781937451, -37.1712258869585, -21.4444934196989, -5.43080160401029, -15.085241575699, -20.1708323190602) } expect_equal(model$sc(theta), numsc) }) ## Note: twinstim() uses an estimate of the _expected_ Fisher information, ## which does not necessarily agree with the negative Hessian of the ll ## (it does asymptotically **at the MLE**) ## numfi <- -numDeriv::hessian(func = model$ll, x = theta) ## anafi <- model$fi(theta) test_that("one-parameter power law agrees with more general implementation", { m0 <- update.default(model, siaf = siaf.powerlaw(), tiaf = NULL, subset = time < 30) m1 <- update.default(m0, siaf = siaf.powerlaw1(sigma = exp(2))) expect_equal(m0$ll(theta), m1$ll(c(head(theta, -2), -1))) expect_equal(m0$sc(theta)[-6], m1$sc(c(head(theta, -2), -1))) }) ### now check with identity link for the epidemic predictor model2 <- update.default(model, siaf = NULL, tiaf = NULL, epidemic = ~1, epilink = "log") model2i <- update.default(model2, epilink = "identity") theta2 <- theta2i <- theta[1:4] theta2i["e.(Intercept)"] <- exp(theta2["e.(Intercept)"]) test_that("likelihoods with log-link and identity link are the same", { expect_equal(model2i$ll(theta2i), model2$ll(theta2)) }) test_that("identity link score vector agrees with numerical approximation", { numsc <- if (surveillance.options("allExamples") && requireNamespace("numDeriv")) { numDeriv::grad(func = model2i$ll, x = theta2i) } else { # for faster --as-cran tests c(-679.706275919901, -91.0659401491325, -114.082117122738, -1532144485.45524) } expect_equal(model2i$sc(theta2i), numsc) }) surveillance/tests/testthat/test-hhh4_NA.R0000644000176200001440000000544114263475321020274 0ustar liggesusers### fitting hhh4() models to time series with missing values data("influMen") fluMen <- disProg2sts(influMen) ## set some observations to NA set.seed(3) is.na(fluMen@observed) <- sample(length(fluMen@observed), 100) ## compare endemic-only model against NegBin-GLM form <- addSeason2formula(f = ~ -1 + fe(1, which = c(TRUE, TRUE)), S = c(3, 1)) fitHHH <- hhh4(fluMen, list(end = list(f=form), family = "NegBin1", subset = 1:nrow(fluMen))) fitGLM <- MASS::glm.nb( formula = observed ~ -1 + unit + sin(2*pi*t/52):unit + cos(2*pi*t/52):unit + I(sin(4*pi*t/52)*unitI) + I(cos(4*pi*t/52)*unitI) + I(sin(6*pi*t/52)*unitI) + I(cos(6*pi*t/52)*unitI), data = transform(tidy.sts(fluMen), t = epoch - 1, unitI = unit == "influenza")) expect_equal(logLik(fitHHH), logLik(fitGLM)) expect_equal(fitted(fitHHH)[!terms(fitHHH)$isNA], unname(fitted(fitGLM))) expect_equivalent(coef(fitHHH)[["overdisp"]], 1/fitGLM$theta) idxhhh <- c(1:2, 7:10, 3:6) expect_equivalent(head(fitHHH$coefficients, -1), fitGLM$coefficients[idxhhh]) expect_equivalent(head(fitHHH$se, -1), summary(fitGLM)$coefficients[idxhhh, 2], tolerance = 0.01) ### compare AR-only model against NegBin-GLM ## meningococcal counts are strictly positive so plain AR works men <- fluMen[,"meningococcus"] fitHHH_AR <- hhh4(men, list(end = list(f = ~-1), family = "NegBin1", ar = list(f = addSeason2formula(~1)))) fitGLM_AR <- MASS::glm.nb( formula = addSeason2formula(observed ~ 1 + offset(log(Ylag))), data = transform(tidy.sts(men), t = epoch - 1, Ylag = c(NA, head(observed, -1)))) expect_equal(logLik(fitHHH_AR), logLik(fitGLM_AR)) expect_equal(fitted(fitHHH_AR)[!terms(fitHHH_AR)$isNA[fitHHH_AR$control$subset,,drop=FALSE]], unname(fitted(fitGLM_AR))) expect_equivalent(coef(fitHHH_AR)[["overdisp"]], 1/fitGLM_AR$theta) expect_equivalent(head(fitHHH_AR$coefficients, -1), fitGLM_AR$coefficients) expect_equivalent(head(fitHHH_AR$se, -1), summary(fitGLM_AR)$coefficients[, 2], tolerance = 0.05) ### compare NE-only model against NegBin-GLM (where NE is actually AR as above) expect_warning( fitHHH_NE <- hhh4(men, list(end = list(f = ~-1), family = "NegBin1", ne = list(f = addSeason2formula(~1), weights = diag(1)))) , "requires a multivariate") expect_equivalent(fitHHH_AR, fitHHH_NE, ignore = c("control", "lags")) expect_equal(meanHHH(fitHHH_AR$coefficients, terms(fitHHH_AR))$epi.own, meanHHH(fitHHH_NE$coefficients, terms(fitHHH_NE))$epi.neighbours) if (dev.capabilities("capture")[[1L]]) { # e.g. not in tinytest as that uses pdf plot(fitHHH_AR, legend = FALSE, col = c(8,8,8)); plotARfit <- dev.capture() plot(fitHHH_NE, legend = FALSE, col = c(8,8,8)); plotNEfit <- dev.capture() expect_identical(plotARfit, plotNEfit) } surveillance/tests/testthat/test-plapply.R0000644000176200001440000000036613746767713020563 0ustar liggesuserstest_that("plapply() results are reproducible", { res1 <- plapply(c(1, 1), rnorm, .parallel = 2, .seed = 1, .verbose = FALSE) res2 <- plapply(c(1, 1), rnorm, .parallel = 2, .seed = 1, .verbose = FALSE) expect_identical(res1, res2) }) surveillance/tests/testthat/test-hhh4_weights.R0000644000176200001440000000225013746767713021461 0ustar liggesusers### Neighbourhood weights in hhh4() observed <- cbind(c(1,2,4), c(1,2,4)) test_that("AR-only and NE-only fit agree in toy scenario", { counts <- sts(observed) m1 <- hhh4(counts, control = list( end = list(f = ~ -1), family = "Poisson", ar = list(f = ~1))) expect_equivalent(coef(m1, idx2Exp=TRUE), 2) ## same fit via NE (because units have identical counts) m2 <- hhh4(counts, control = list( end = list(f = ~ -1), family = "Poisson", ne = list(f = ~1, weights = matrix(c(0,1,1,0), 2, 2)))) m1$control <- m2$control <- m1$lags <- m2$lags <- NULL expect_equivalent(m1, m2) }) test_that("time-varying NE weights align with time index of mu", { W <- matrix(c(0,1,1,0), 2, 2) Wt <- array(c(W, W, 0*W), c(dim(W), 3)) # w_jit = 0 for t=3 off <- surveillance:::weightedSumNE(observed, Wt, lag = 1) expect_true(all(is.na(off[1L,]))) expect_identical(off[3L,], c(0, 0)) # NE sum is zero at t=3 ## failed in surveillance <= 1.18.0, where w_ji(t-1) * y_j(t-1) ## was calculated, whereas w_jit * y_j(t-1) was used for simulation, ## the latter being the desired behaviour (same time index as covariates) }) surveillance/tests/testthat/test-algo.glrnb.R0000644000176200001440000000435414315341765021114 0ustar liggesusers## Simulation parameters S <- 1 ; t <- 1:120 ; m <- length(t) beta <- c(1.5,0.6,0.6) omega <- 2*pi/52 #log mu_{0,t} alpha <- 0.2 base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t) #Generate example data with changepoint and tau=tau tau <- 100 kappa <- 0.4 mu0 <- exp(base) mu1 <- exp(base + kappa) ## Generate counts set.seed(42) x <- rnbinom(length(t),mu=mu0*(exp(kappa)^(t>=tau)),size=1/alpha) suppressWarnings( s.ts <- create.disProg(week=t, observed=x, state=(t>=tau)) )#, "deprecatedWarning") # class needs R >= 4.0.0 ## Define control object cntrl1 <- list(range=t,c.ARL=5, mu0=mu0, alpha=alpha, change="intercept", ret="value", dir="inc") ## Run algorithm glr.ts1 <- algo.glrnb(s.ts, control=cntrl1) ## Correct upperbound (rounded) ## dput(signif(c(glr.ts1$upperbound), 7)) correctUpperbound <- c( 0.0933664, 0, 0.001387989, 0.4392282, 1.239898, 2.983766, 1.954988, 1.722341, 1.586777, 0.7331938, 0.9337575, 0.7903225, 1.104522, 1.425098, 1.24129, 1.633672, 2.033343, 1.788079, 1.397671, 0.9081794, 0.797097, 0.7270934, 0.5248943, 0.3093548, 0.2622768, 0.2301054, 0.1595651, 0.1484989, 0.06889605, 0.1504776, 0.04138495, 0.02219845, 0.0231524, 0.009575689, 0.1504776, 0.5827537, 0.0357062, 0.005011513, 0, 1.390972, 0.3167743, 0.5717088, 0.1053871, 0.003442552, 0.0005934715, 0, 0, 0.05509335, 0.1375619, 0.2449853, 0.6840703, 0.5427538, 0.05675776, 0.06656547, 0.09036596, 0.209314, 0.1392091, 0.03494786, 0.026216, 0.277202, 0.01762547, 0, 0, 0, 3.564077, 1.41019, 0.290548, 0.3740241, 0.4269062, 0.1296794, 0.1298662, 0.6322042, 0.2115204, 0.107457, 0.9366399, 0.1379007, 0.1509654, 0.03392803, 0.005775552, 0, 0, 0, 0, 0, 0.001143512, 0.001637927, 1.021689, 1.965804, 1.83044, 1.017412, 0.3033473, 0.1689957, 0.4051742, 0.1247774, 0.1460143, 0.03590031, 0.9459381, 0.4189531, 0.2637725, 0.03925406, 0.01374443, 0.2283519, 2.535301, 1.406133, 1.692899, 2.021258, 2.951635, 4.25683, 4.77543, 3.90064, 3.646361, 3.680106, 4.236502, 5.522696, 0.1221651, 0.4054735, 0.6761779, 0.8039129, 0.3913383, 0.1261521) test_that("upperbound equals pre-computed value", expect_equal(c(glr.ts1$upperbound), correctUpperbound, tolerance=1e-6)) surveillance/tests/testthat/test-nbOrder.R0000644000176200001440000000213214615164167020454 0ustar liggesusers## generate random adjacency matrix ## radjmat <- function (n) { ## adjmat <- matrix(0L, n, n, dimnames=list(letters[1:n],letters[1:n])) ## adjmat[lower.tri(adjmat)] <- sample(0:1, n*(n-1)/2, replace=TRUE) ## adjmat + t(adjmat) ## } ## set.seed(3); adjmat <- radjmat(5) adjmat <- structure( c(0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L), .Dim = c(5L, 5L), .Dimnames = rep.int(list(c("a", "b", "c", "d", "e")), 2L) ) ## validated matrix of neighbourhood orders nbmat <- structure( c(0L, 2L, 1L, 3L, 2L, 2L, 0L, 1L, 1L, 2L, 1L, 1L, 0L, 2L, 1L, 3L, 1L, 2L, 0L, 1L, 2L, 2L, 1L, 1L, 0L), .Dim = c(5L, 5L), .Dimnames = rep.int(list(c("a", "b", "c", "d", "e")), 2L) ) test_that("nbOrder() returns the validated matrix", { expect_identical(nbOrder(adjmat), nbmat) }) test_that("zetaweights(.,maxlag=1,normalize=FALSE) is inverse of nbOrder", { expect_identical(zetaweights(nbmat, maxlag=1, normalize=FALSE), 1*adjmat) }) surveillance/tests/testthat/test-bodaDelay.R0000644000176200001440000001513614662137762020760 0ustar liggesusers### ## Checking the provided reporting triangle ### data('salmAllOnset') # Control slot for the proposed algorithm with D=10 correction rangeTest <- 410:412 alpha <- 0.05 controlDelay <- list(range = rangeTest, b = 4, w = 3, pastAberrations = TRUE, mc.munu=10, mc.y=10, verbose = FALSE,populationOffset=FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=TRUE) test_that("The absence of reporting triangle throws an error",{ data("salmNewport") expect_error(bodaDelay(salmNewport, controlDelay),"You have to") }) test_that("The function spots incorrect reporting triangles",{ stsFake <- salmAllOnset stsFake@control$reportingTriangle$n <- head(stsFake@control$reportingTriangle$n,n=10) expect_error(bodaDelay(stsFake, controlDelay),"The reporting triangle number") stsFake <- salmAllOnset stsFake@control$reportingTriangle$n[1,] <- stsFake@control$reportingTriangle$n[1,]/2 expect_error(bodaDelay(stsFake, controlDelay),"The reporting triangle is wrong") }) ### ## Data glm function ### epochAsDate <- TRUE epochStr <- "week" freq <- 52 b <- controlDelay$b w <- controlDelay$w populationOffset <- controlDelay$populationOffset noPeriods <- controlDelay$noPeriods verbose <- controlDelay$verbose reportingTriangle <- salmAllOnset@control$reportingTriangle timeTrend <- controlDelay$trend alpha <- controlDelay$alpha populationOffset <- controlDelay$populationOffset factorsBool <- controlDelay$factorsBool pastAberrations <- controlDelay$pastAberrations glmWarnings <- controlDelay$glmWarnings delay <- controlDelay$delay k <- controlDelay$k verbose <- controlDelay$verbose pastWeeksNotIncluded <- controlDelay$pastWeeksNotIncluded mc.munu <- controlDelay$mc.munu mc.y <- controlDelay$mc.y vectorOfDates <- as.Date(salmAllOnset@epoch, origin="1970-01-01") dayToConsider <- vectorOfDates[rangeTest[1]] observed <- salmAllOnset@observed population <- salmAllOnset@populationFrac dataGLM <- surveillance:::bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) delay <- FALSE dataGLMNoDelay <- surveillance:::bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) test_that("the output is a data.frame",{ expect_inherits(dataGLM, "data.frame") expect_inherits(dataGLMNoDelay, "data.frame") }) test_that("the data frame contains all variables",{ expect_identical(names(dataGLM), c("response", "wtime","population","seasgroups","vectorOfDates","delay")) expect_identical(names(dataGLMNoDelay), c("response", "wtime","population","seasgroups","vectorOfDates")) }) test_that("the variables have the right class",{ expect_inherits(dataGLM$response, "numeric") expect_inherits(dataGLM$wtime, "numeric") expect_inherits(dataGLM$population, "numeric") expect_inherits(dataGLM$seasgroups, "factor") expect_inherits(dataGLM$vectorOfDates, "Date") expect_inherits(dataGLM$delay, "numeric") expect_inherits(dataGLMNoDelay$response, "numeric") expect_inherits(dataGLMNoDelay$wtime, "numeric") expect_inherits(dataGLMNoDelay$population, "numeric") expect_inherits(dataGLMNoDelay$seasgroups, "factor") expect_inherits(dataGLMNoDelay$vectorOfDates, "Date") }) test_that("the time variable is ok with diff 1",{ delayWtime <- as.numeric(levels(as.factor(dataGLM$wtime))) expect_equal(diff(delayWtime), rep(1,length(delayWtime)-1)) expect_equal(diff(dataGLMNoDelay$wtime), rep(1,length(dataGLMNoDelay$wtime)-1)) }) test_that("the factor variable has the right number of levels",{ expect_equal(nlevels(dataGLM$seasgroups), noPeriods) expect_equal(nlevels(dataGLMNoDelay$seasgroups), noPeriods) }) ### ## Fit glm function ### argumentsGLM <- list(dataGLM=dataGLM,reportingTriangle=reportingTriangle, timeTrend=timeTrend,alpha=alpha, populationOffset=populationOffset, factorsBool=TRUE,pastAberrations=FALSE, glmWarnings=glmWarnings, verbose=verbose,delay=delay,k=k,control=controlDelay) if(surveillance.options("allExamples") && require("INLA")) { # needs to be attached argumentsGLM$inferenceMethod <- "INLA" model <- do.call(surveillance:::bodaDelay.fitGLM, args=argumentsGLM) test_that("the fitGLM function gives the right class of output",{ expect_inherits(model, "inla") }) } argumentsGLM$inferenceMethod <- "asym" model <- do.call(surveillance:::bodaDelay.fitGLM, args=argumentsGLM) test_that("the fitGLM function gives the right class of output",{ expect_inherits(model, "negbin") }) ### ## formula function ### test_that("We get the right formula",{ expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE), "response ~ 1+wtime") expect_identical(surveillance:::formulaGLMDelay(timeBool=FALSE,factorsBool=FALSE), "response ~ 1") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE), "response ~ 1+wtime") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=TRUE), "response ~ 1+wtime+as.factor(seasgroups)") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=TRUE,delay=TRUE), "response ~ 1+wtime+as.factor(seasgroups)+as.factor(delay)") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE,outbreak=TRUE), "response ~ 1+wtime+f(outbreakOrNot,model='linear', prec.linear = 1)") }) surveillance/tests/testthat/test-tiafs.R0000644000176200001440000000501313751221007020153 0ustar liggesusers### Temporal interaction functions for twinstim() test_that("Step kernel of a single type agrees with numerical approximations", { steptiaf <- tiaf.step(c(7,20), maxRange=25, nTypes=1) logvals <- log(c(1.2,0.2)) ##curve(steptiaf$g(x, logvals), 0, 30, n=301) ## check G Gana <- steptiaf$G(0:30, logvals) Gnum <- sapply(0:30, function (upper) { integrate(steptiaf$g, 0, upper, logvals, rel.tol=1e-8)$value }) expect_equal(Gana, Gnum, tolerance = 1e-8) ## check deriv if (requireNamespace("maxLik", quietly = TRUE)) { checkderiv <- maxLik::compareDerivatives( f = function(pars, x) steptiaf$g(x, pars), grad = function(pars, x) steptiaf$deriv(x, pars), t0 = logvals, x = c(0.5,2,5,7,10,15,20,25,30), print = FALSE) expect_true(checkderiv$maxRelDiffGrad < 1e-8) } ## check Deriv for (paridx in seq_along(logvals)) expect_equal( steptiaf$Deriv(0:30, logvals)[,paridx], sapply(0:30, function (upper) integrate(function(...) steptiaf$deriv(...)[,paridx], 0, upper, logvals, rel.tol=1e-6)$value), tolerance = 1e-6, label = paste0("steptiaf$Deriv()[,",paridx,"]"), expected.label = "integrate() approximation" ) }) test_that("Step kernel with maxRange>max(eps.t) is equivalent to maxRange=Inf", { data("imdepi", package="surveillance") imdfit_steptiafInf <- twinstim( endemic = ~offset(log(popdensity)) + I(start/365 - 3.5), epidemic = ~1, siaf = siaf.constant(), tiaf = tiaf.step(c(7,20), maxRange=Inf), data = imdepi, optim.args = NULL, verbose = FALSE) maxepst <- max(imdepi$events$eps.t) imdfit_steptiaf30 <- update.default( ## update() might call an update.list-method registered by another ## package, e.g., gdata (2.18.0) implicitly loaded in other tests imdfit_steptiafInf, tiaf = tiaf.step(c(7,20), maxRange=maxepst+0.1)) coefs <- c(-20, -0.05, -15, -0.5, 0.2, -1) expect_identical(imdfit_steptiafInf$ll(coefs), imdfit_steptiaf30$ll(coefs)) expect_identical(imdfit_steptiafInf$sc(coefs), imdfit_steptiaf30$sc(coefs)) }) surveillance/tests/testthat/test-siafs.R0000644000176200001440000001337314711772516020177 0ustar liggesusers### Spatial interaction functions for twinstim() myexpectation <- function (siaf, intrfr, intrderivr, pargrid, type = 1, ...) { ## check analytical intrfr specification against numerical approximation if (!missing(intrfr)) apply(pargrid, 1, function (pars) expect_silent(capture.output( polyCub::checkintrfr(intrfr, siaf$f, pars, type, center=c(0,0), rs=c(1,2,5,10,20,50)) ))) ## also check intrfr for deriv if (!missing(intrderivr)) for (paridx in seq_along(intrderivr)) apply(pargrid, 1, function (pars) expect_silent(capture.output( polyCub::checkintrfr(intrderivr[[paridx]], function (...) siaf$deriv(...)[,paridx], pars, type, center=c(0,0), rs=c(1,2,5,10,20,50)) ))) ## check deriv, F, Deriv against numerical approximations suppressMessages( checksiafres <- surveillance:::checksiaf(siaf, pargrid, type, ...) ) for (i in which(!sapply(checksiafres, is.null))) expect_true(unique(attr(checksiafres[[i]], "all.equal")), info = names(checksiafres)[i]) } ### test all pre-defined spatial interaction functions test_that("Gaussian 'F.adaptive' implementation agrees with numerical approximation", myexpectation(siaf.gaussian(F.adaptive=0.05), # Deriv uses polyCub.SV pargrid=as.matrix(log(c(0.5, 1, 3))), tolerance=0.01, method="midpoint", dimyx=150)) test_that("Gaussian iso-C-implementation agrees with numerical approximation", myexpectation(siaf.gaussian(F.adaptive=FALSE, F.method="iso"), pargrid=as.matrix(log(c(0.5, 1, 3))), tolerance=0.0005, method="SV", nGQ=25)) test_that("Exponential implementation agrees with numerical approximation", myexpectation(siaf.exponential(engine = "R"), surveillance:::intrfr.exponential, list(surveillance:::intrfr.exponential.dlogsigma), pargrid=as.matrix(log(c(0.1, 1, 2))), tolerance=0.0005, method="SV", nGQ=25)) test_that("Power-law implementation agrees with numerical approximation", myexpectation(siaf.powerlaw(engine = "R"), surveillance:::intrfr.powerlaw, list(surveillance:::intrfr.powerlaw.dlogsigma, surveillance:::intrfr.powerlaw.dlogd), pargrid=cbind(0.5,log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=13)) test_that("1-parameter power-law agrees with numerical approximations", myexpectation(siaf.powerlaw1(sigma = exp(0.5)), pargrid=as.matrix(log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=13)) test_that("Lagged power-law implementation agrees with numeric results", myexpectation(siaf.powerlawL(engine = "R"), surveillance:::intrfr.powerlawL, list(surveillance:::intrfr.powerlawL.dlogsigma, surveillance:::intrfr.powerlawL.dlogd), pargrid=cbind(-0.5,log(c(0.1,1,2))), tolerance=0.01, method="midpoint", dimyx=150)) test_that("Student implementation agrees with numerical approximation", myexpectation(siaf.student(engine = "R"), surveillance:::intrfr.student, list(surveillance:::intrfr.student.dlogsigma, surveillance:::intrfr.student.dlogd), pargrid=cbind(0.5,log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=5)) test_that("Step kernel implementation agrees with numerical approximation", myexpectation(siaf.step(c(0.1,0.5,1)), pargrid=-t(c(0.5,0.1,0.2)), tolerance=0.01, method="midpoint", dimyx=150)) ## ## plot the polygon on which F and Deriv are tested (to choose parameters) ## showsiaf <- function (siaf, pars) { ## plotpolyf(LETTERR, siaf$f, pars, print.args=list(split=c(1,1,2,1), more=TRUE)) ## plotpolyf(LETTERR, function (...) siaf$deriv(...)[,1], pars, print.args=list(split=c(2,1,2,1))) ## } ## showsiaf(siaf.student(), c(0.5,-0.5)) ### test new C-implementations of F and Deriv functions expect_equal_CnR <- function (siafgen, pargrid) { polydomain <- surveillance:::LETTERR siafR <- siafgen(engine = "R") siafC <- siafgen(engine = "C") ## check F resF <- apply(pargrid, 1, function (pars) c(C = siafC$F(polydomain, , pars), R = siafR$F(polydomain, , pars))) expect_equal(resF["C",], resF["R",], info = "C-version of F (current) vs. R-version of F (target)") ## check Deriv resDeriv <- apply(pargrid, 1, function (pars) c(siafC$Deriv(polydomain, , pars), siafR$Deriv(polydomain, , pars))) p <- siafR$npars expect_equal(resDeriv[seq_len(p),], resDeriv[p+seq_len(p),], info = "C-version of Deriv (current) vs. R-version of Deriv (target)") } test_that("siaf.exponential() engines agree", { expect_equal_CnR(siafgen = siaf.exponential, pargrid = matrix(log(c(0.1,1,2)))) }) test_that("siaf.powerlaw() engines agree", { expect_equal_CnR(siafgen = siaf.powerlaw, pargrid = cbind(0.5,log(c(0.1,1,2)))) }) test_that("siaf.student() engines agree", { expect_equal_CnR(siafgen = siaf.student, pargrid = cbind(0.5,log(c(0.1,1,2)))) }) test_that("siaf.powerlawL() engines agree", { expect_equal_CnR(siafgen = siaf.powerlawL, pargrid = cbind(-0.5,log(c(0.1,1,2)))) }) surveillance/tests/testthat/test-determineSources.R0000644000176200001440000000116314013521730022365 0ustar liggesusersdata("imdepi") test_that("determineSources() yields same result as old implementation", { sources0 <- surveillance:::determineSources.epidataCS(imdepi, method = "R") expect_identical(sources0, imdepi$events$.sources) sources1 <- surveillance:::determineSources( imdepi$events$time, imdepi$events$eps.t, coordinates(imdepi$events), imdepi$events$eps.s, imdepi$events$type, imdepi$qmatrix ) expect_identical(sources1, imdepi$events$.sources) sources2 <- surveillance:::determineSources.epidataCS(imdepi, method = "C") expect_identical(sources2, imdepi$events$.sources) }) surveillance/tests/testthat/test-sts.R0000644000176200001440000001276214676756252017715 0ustar liggesuserstest_that("\"sts\" prototype is a valid object", expect_true(validObject(new("sts")))) mysts <- sts(1:10, frequency = 4, start = c(1959, 2)) test_that("conversion from \"ts\" to \"sts\" works as expected", { myts <- ts(1:10, frequency = 4, start = c(1959, 2)) expect_identical(as(myts, "sts"), mysts) ## this failed in surveillance 1.11.0 due to a wrong "start" calculation }) test_that("if missing(observed), initialize-method copies slots", { mysts_updated <- initialize(mysts, epoch = 2:11) expect_identical(mysts_updated@epoch, 2:11) mysts_updated@epoch <- mysts@epoch expect_identical(mysts_updated, mysts) ## construct stsBP from existing "sts" object mystsBP <- new("stsBP", mysts, ci = array(NA_real_, c(10,1,2)), lambda = array(NA_real_, c(10,1,1))) expect_identical(as(mystsBP, "sts"), mysts) }) test_that("different initializations of \"stsBP\" work as expected", { mystsBP <- new("stsBP", observed = 1:10, freq = 4, start = c(1959, 2), ci = array(NA_real_, c(10,1,2)), lambda = array(NA_real_, c(10,1,0))) expect_identical(mystsBP, as(mysts, "stsBP")) }) test_that("different initializations of \"stsNC\" work as expected", { mystsNC <- new("stsNC", observed = 1:10, freq = 4, start = c(1959, 2), pi = array(NA_real_, c(10,1,2)), SR = array(NA_real_, c(10,0,0))) expect_identical(mystsNC, as(mysts, "stsNC")) }) test_that("sts(..., population) sets the populationFrac slot", { ## for sts() construction, "population" is an alias for "populationFrac" ## (the internal slot name), introduced in the space-time JSS paper sts1 <- sts(cbind(1:3, 11:13), population = c(10, 20)) sts2 <- sts(cbind(1:3, 11:13), populationFrac = c(10, 20)) expect_identical(sts1, sts2) }) test_that("\"sts\" conversion to a (tidy) data frame works consistently", { ## univariate sts mystsdata <- as.data.frame(mysts, as.Date = FALSE) expect_identical(tidy.sts(mysts)[names(mystsdata)], mystsdata) ## multivariate sts data("momo") momo3tidy_uv <- tidy.sts(momo[,3]) momo3tidy_mv <- subset(tidy.sts(momo), unit == levels(unit)[3]) momo3tidy_mv$unit <- momo3tidy_mv$unit[drop=TRUE] row.names(momo3tidy_mv) <- NULL expect_identical(momo3tidy_uv, momo3tidy_mv) }) test_that("we can subset epochs of an \"sts\" object", { expect_identical(mysts[TRUE,TRUE], mysts) expect_identical(start(mysts[2,]), c(1959, 3)) ## negative and 0 indices produced wrong "start" in surveillance <= 1.16.2 expect_identical(mysts[-1,], mysts[2:10,]) expect_identical(start(mysts[0,]), start(mysts)) }) test_that("colnames need to be identical (only for multivariate data)", { slots_dn <- c("observed", "state", "alarm", "upperbound", "populationFrac") ## ignore colnames mismatch for univariate time series sts_args_1 <- lapply(setNames(nm = slots_dn), function (slot) matrix(0, 1, 1, dimnames = list(NULL, slot))) sts_args_1$neighbourhood <- matrix(0, 1, 1, dimnames = list("a", "a")) expect_silent(do.call(sts, sts_args_1)) ## multivariate time series with inconsistent column order are invalid sts_args_2 <- list( observed = matrix(0, 1, 2, dimnames = list(NULL, c("r1", "r2"))) ) sts_args_2[slots_dn[-1]] <- list(sts_args_2$observed[,2:1,drop=FALSE]) sts_args_2$neighbourhood <- matrix(0, 2, 2, dimnames = rep(list(c("r2", "r1")), 2)) expect_error(do.call(sts, sts_args_2), "colnames") # new in surveillance > 1.17.1 ## column names can be missing for other slots expect_silent(do.call(sts, c(sts_args_2[1], lapply(sts_args_2[-1], unname)))) }) test_that("epoch() finds Monday of 'start' week (ISO)", { mydate <- as.Date("2020-01-27") expect_identical(strftime(mydate, "%u"), "1") # Monday start <- unlist(isoWeekYear(mydate), use.names = FALSE) expect_equivalent(start, c(2020, 5)) # ISO week 5 expect_identical(strftime(mydate, "%W"), "04") # UK week 4 mysts <- sts(1:3, start = start) expect_equal(epoch(mysts, as.Date = TRUE)[1], mydate) ## failed in surveillance 1.18.0, where epoch(x, as.Date=TRUE) ## used %W to interpret the 'start' week, so here returned "2020-02-03" }) test_that("expected error message is produced", { expect_error(sts(1:3, map = 1:3), "must inherit from") }) test_that("\"sf\" input gets transformed to \"SpatialPolygons\"", if (requireNamespace("sf")) { data("measlesWeserEms") sts_from_sp <- sts(observed(measlesWeserEms), map = measlesWeserEms@map) ## convert the map to "sf" and retry sts() construction based on that map_sf <- sf::st_as_sf(measlesWeserEms@map) expect_inherits(map_sf, "sf") sts_from_sf <- sts(observed(measlesWeserEms), map = map_sf) expect_inherits(sts_from_sf@map, "SpatialPolygonsDataFrame") ## it is checked that the map covers all regions expect_error(sts(observed(measlesWeserEms), map = map_sf[1:3,]), "incomplete") ## test equivalence of map slots attr_from_sp <- attributes(sts_from_sp@map) attr_from_sf <- attributes(sts_from_sf@map) nms <- c("bbox", "proj4string", "data", "class") # ignoring "plotOrder" expect_identical(attr_from_sp[nms], attr_from_sp[nms]) ## sub-polygons get reordered in sf conversion, so only test area area_from_sp <- surveillance:::areaSpatialPolygons(sts_from_sp@map, byid=TRUE) area_from_sf <- surveillance:::areaSpatialPolygons(sts_from_sf@map, byid=TRUE) expect_equal(area_from_sp, area_from_sf) }) surveillance/tests/testthat/test-createLambda.R0000644000176200001440000000554314615162374021434 0ustar liggesusersdata("measlesWeserEms") ## a simple endemic model measlesFit0 <- hhh4(measlesWeserEms, list( end = list(f = addSeason2formula(~1), offset = population(measlesWeserEms)), family = "NegBin1" )) test_that("endemic-only model has zero-valued Lambda matrix", { res <- getMaxEV_season(measlesFit0) expect_equal(res$maxEV.const, 0) zeromat <- matrix(0, measlesFit0$nUnit, measlesFit0$nUnit) expect_equal(res$Lambda.const, zeromat) expect_equal(surveillance:::createLambda(measlesFit0)(2), zeromat) }) ## + AR component measlesFit1 <- update(measlesFit0, ar = list(f = addSeason2formula(~1))) test_that("autoregressive model has a diagonal Lambda matrix", { res <- getMaxEV_season(measlesFit1) expect_equal(res$Lambda.const, diag(res$maxEV.const, measlesFit1$nUnit)) expect_equal(surveillance:::createLambda(measlesFit1)(2), diag(res$maxEV.season[2], measlesFit1$nUnit)) }) ## + NE component measlesFit2 <- update(measlesFit1, ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1)) # symmetric measlesFit3 <- update(measlesFit2, ne = list(normalize = TRUE)) # asymmetric test_that("getMaxEV() and getMaxEV_season() agree", { expect_equal(getMaxEV_season(measlesFit2)$maxEV.season, getMaxEV(measlesFit2)[seq_len(measlesWeserEms@freq)]) expect_equal(getMaxEV_season(measlesFit3)$maxEV.season, getMaxEV(measlesFit3)[seq_len(measlesWeserEms@freq)]) }) ## AR within NE + unit-specific epidemic covariate measlesFit4 <- update(measlesFit0, ne = list(f = ~pop, weights = (neighbourhood(measlesWeserEms)+1)^-2, normalize = TRUE), data = list(pop = population(measlesWeserEms))) ## calculate "nu + Lambda Y_{t-1}" and compare to fitted(object) check_createLambda <- function (object) { mname <- deparse(substitute(object)) model <- terms(object) means <- meanHHH(object$coefficients, model, subset = seq_len(model$nTime)) expect_equal(means$mean[model$subset,,drop=FALSE], fitted(object), expected.label = paste0("fitted(", mname, ")")) Lambda <- surveillance:::createLambda(object) if (any(object$lags != 1, na.rm = TRUE)) stop("check not implemented for lags != 1") meansByLambda <- t(vapply( X = object$control$subset, FUN = function(t) means$endemic[t,] + Lambda(t) %*% model$response[t-1,], FUN.VALUE = numeric(object$nUnit), USE.NAMES = FALSE)) expect_equal(meansByLambda, unname(fitted(object)), expected.label = paste0("fitted(", mname, ")")) } test_that("multivariate formulation using Lambda agrees with fitted values", { check_createLambda(measlesFit0) check_createLambda(measlesFit1) check_createLambda(measlesFit2) check_createLambda(measlesFit3) # failed in surveillance < 1.13.1 check_createLambda(measlesFit4) # failed in surveillance < 1.13.1 }) surveillance/tests/testthat/test-formatDate.R0000644000176200001440000000471114711720672021150 0ustar liggesusersd2 <- as.Date(c("2001-01-01","2002-05-01")) test_that("Formatting date vectors with ISO8601 and UK conventions", expect_identical(formatDate(d2, "W%V-%G / W%W-%Y / %d-%m-%Y"), c("W01-2001 / W01-2001 / 01-01-2001", "W18-2002 / W17-2002 / 01-05-2002"))) test_that("Formatting quarters", { expect_identical(formatDate(d2,"%Q"), c("1","2")) expect_identical(formatDate(d2,"%q"), c("1","31")) expect_identical(as.character(d2 - as.numeric(formatDate(d2,"%q")) + 1), c("2001-01-01","2002-04-01")) }) test_that("Formatting date vectors with roman letters for quarters", expect_identical(formatDate(d2,"%G\n%OQ"), c("2001\nI","2002\nII"))) #Some checks for the atChange dates <- seq(as.Date("2007-01-01"),as.Date("2013-01-01"),by="1 week") #Format with conversion string x <- as.numeric(formatDate(dates,"%m")) xm1 <- as.numeric(formatDate(dates[1]-7,"%m")) #At change test_that("atChange function works for %m", expect_identical( atChange(x,xm1), c(1L, 6L, 10L, 14L, 19L, 23L, 27L, 32L, 36L, 40L, 45L, 49L, 54L, 58L, 62L, 67L, 71L, 75L, 80L, 84L, 88L, 93L, 97L, 101L, 106L, 110L, 114L, 119L, 123L, 127L, 132L, 136L, 141L, 145L, 149L, 154L, 158L, 162L, 166L, 171L, 175L, 180L, 184L, 188L, 193L, 197L, 201L, 206L, 210L, 215L, 219L, 223L, 227L, 232L, 236L, 240L, 245L, 249L, 254L, 258L, 262L, 267L, 271L, 275L, 280L, 284L, 288L, 293L, 297L, 301L, 306L, 310L))) #Test every second change function test_that("at2ndChange function works for %m", expect_identical( at2ndChange(x,xm1), c(1L, 10L, 19L, 27L, 36L, 45L, 54L, 62L, 71L, 80L, 88L, 97L, 106L, 114L, 123L, 132L, 141L, 149L, 158L, 166L, 175L, 184L, 193L, 201L, 210L, 219L, 227L, 236L, 245L, 254L, 262L, 271L, 280L, 288L, 297L, 306L))) #### Year formatting x <- as.numeric(formatDate(dates,"%Y")) xm1 <- as.numeric(formatDate(dates[1]-7,"%Y")) test_that("atMedian function works for %Y", expect_identical( atMedian(x,xm1), c(26L, 79L, 131L, 183L, 235L, 287L))) test_that("at2ndChange function works for %Y", expect_equal( dates[at2ndChange(x,xm1)], # possibly integer-valued (r87284) as.Date(c("2007-01-01","2009-01-05","2011-01-03")))) #Does the following look as expected? (hard to check with testthat) #data("rotaBB") #plot(rotaBB, xaxis.tickFreq=list("%Y"=atChange), xaxis.labelFreq=list("%Y"=at2ndChange),xaxis.labelFormat="%Y",xlab="time (months)") surveillance/tests/testthat/test-hhh4_ARasNE.R0000644000176200001440000000221313746767713021057 0ustar liggesusers### Validate AR hhh4 via NE with identity W data("measlesWeserEms") ## fit with AR component as usual vaccdata <- matrix(measlesWeserEms@map$vacc2.2004, byrow = TRUE, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms)) measlesModel <- list( ar = list(f = addSeason2formula(~1 + vacc2, S=2, period=52)), end = list(f = addSeason2formula(~1, S=1, period=52), offset = population(measlesWeserEms)), family = "NegBin1", data = list(vacc2 = vaccdata)) measlesFit <- hhh4(measlesWeserEms, measlesModel) ## now use an identity matrix as W in the NE component instead of AR measlesFit2 <- suppressWarnings( update(measlesFit, ar = list(f = ~-1), ne = list(f = measlesModel$ar$f, weights = diag(ncol(measlesWeserEms))), use.estimates = FALSE) ) ## compare fits test_that("AR-hhh4 agrees with using identity W in NE", { expect_equivalent(coef(measlesFit2), coef(measlesFit)) expect_equivalent(measlesFit2$cov, measlesFit$cov) expect_equal(logLik(measlesFit2), logLik(measlesFit)) expect_equal(fitted(measlesFit2), fitted(measlesFit)) }) surveillance/tests/testthat/test-hhh4_offsets.R0000644000176200001440000000403013751215235021435 0ustar liggesusers### hhh4() with epidemic offsets ## select two adjacent regions data("measlesWeserEms") expect_message( measles2 <- measlesWeserEms[,c("03457","03454")], "could invalidate" ) expect_equivalent(neighbourhood(measles2), matrix(c(0,1,1,0), 2, 2)) ## AR model fit1 <- hhh4(measles2, list(ar = list(f = ~1))) ##plot(fit1, units=NULL) ## use estimated exp(lambda) as offset -> new lambda should be 0, equal fit o1 <- exp(fit1$coefficients[["ar.1"]]) fit1o <- hhh4(measles2, list( ar = list(f = ~1, offset = matrix(o1, nrow(measles2), ncol(measles2))) )) test_that("model with AR offset is fitted correctly", { expect_equal(fit1o$coefficients[["ar.1"]], 0) expect_equal(fitted(fit1o), fitted(fit1)) }) ## same test with an AR+NE model fit2 <- hhh4(measles2, list(ar = list(f = ~1), ne = list(f = ~1))) ##plot(fit2, units=NULL) o2_ar <- exp(fit2$coefficients[["ar.1"]]) o2_ne <- exp(fit2$coefficients[["ne.1"]]) fit2o <- hhh4(measles2, list( ar = list(f = ~1, offset = matrix(o2_ar, nrow(measles2), ncol(measles2))), ne = list(f = ~1, offset = matrix(o2_ne, nrow(measles2), ncol(measles2))) )) test_that("model with AR+NE offsets is fitted correctly", { expect_equal(fit2o$coefficients[["ar.1"]], 0, scale = 1) # use abs. diff expect_equal(fit2o$coefficients[["ne.1"]], 0, scale = 1, tolerance = 1e-6) # for ATLAS/MKL/OpenBLAS expect_equal(fitted(fit2o), fitted(fit2)) }) ## createLambda() and thus maxEV was wrong in surveillance <= 1.16.1 test_that("Lambda matrix incorporates epidemic offsets", { expect_equal(getMaxEV(fit1o)[1], getMaxEV(fit1)[1]) expect_equal(getMaxEV(fit2o)[1], getMaxEV(fit2)[1]) }) ## simulate.hhh4() was wrong in surveillance <= 1.16.1 test_that("simulation accounts for epidemic offsets", { ## check the relative difference in the total number of cases obs <- fitted(fit2o) sim <- simulate(fit2o, seed = 1, y.start = observed(measles2)[1,], subset = fit2o$control$subset, simplify = TRUE) expect_true(abs(sum(sim)/sum(obs)-1) < 0.5) }) surveillance/tests/testthat/test-hhh4_NegBinGrouped.R0000644000176200001440000001374114402454111022455 0ustar liggesusers### hhh4() model with shared overdispersion parameters ## use a small subset of districts from the fluBYBW data data("fluBYBW") fluBWsub <- fluBYBW[, substr(colnames(fluBYBW), 1, 2) %in% "81"] ## stsplot_space(fluBWsub, labels = TRUE) ## set "neighbourhood" to order of adjacency + 1 neighbourhood(fluBWsub) <- nbOrder(neighbourhood(fluBWsub)) + 1L ## a crazy model base fluModel <- list( end = list(f = addSeason2formula(~0 + ri(type="iid"))), ne = list(f = ~0 + fe(1, unitSpecific = TRUE), weights = W_powerlaw(maxlag = 3)), start = list(random = rep.int(0, ncol(fluBWsub))) ) if (FALSE) { # check derivatives fluDeriv <- hhh4(stsObj = fluBWsub, control = c(fluModel, list(family = "NegBinM")), check.analyticals = TRUE) ana <- fluDeriv$pen$fisher$analytic num <- fluDeriv$pen$fisher$numeric equal <- mapply(function (...) isTRUE(all.equal.numeric(...)), ana, num, tolerance = 1e-4) dim(equal) <- dim(ana) Matrix::image(Matrix::Matrix(equal)) } ## fit a model with unit-specific overdispersion parameters using "NegBinM", ## equal to family = factor(colnames(fluBWsub), levels=colnames(fluBWsub)) fluFitM <- hhh4(stsObj = fluBWsub, control = c(fluModel, list( family = "NegBinM"))) test_that("\"NegBinM\" fit is invariant to the ordering of the overdispersion parameters", { fluFitM_reordered <- hhh4(stsObj = fluBWsub, control = c(fluModel, list( family = factor(colnames(fluBWsub), levels=rev(colnames(fluBWsub)))))) expect_equal(fluFitM_reordered$loglikelihood, fluFitM$loglikelihood) expect_equal(fluFitM_reordered$margll, fluFitM$margll) expect_equal(fluFitM_reordered$coefficients[names(fluFitM$coefficients)], fluFitM$coefficients) }) test_that("random intercepts can be extracted", { ris <- ranef(fluFitM, intercept = TRUE) expect_equal(dimnames(ris), list(colnames(fluBWsub), "end.ri(iid)")) ## compute endemic predictor at t = 0 (i.e., subset = 1) end.exppred.t0 <- meanHHH(theta = fluFitM$coefficients, model = terms(fluFitM), subset = 1)$end.exppred expect_equal(exp(ris + fluFitM$coefficients["end.cos(2 * pi * t/52)"]), t(end.exppred.t0), check.attributes = FALSE) }) ## fit a model with shared overdispersion parameters fluFitShared <- hhh4(stsObj = fluBWsub, control = c(fluModel, list( family = factor(substr(colnames(fluBWsub), 3, 3) == "1", levels = c(TRUE, FALSE), labels = c("region1", "elsewhere"))))) test_that("estimates with shared overdispersion are reproducible", { ## dput(coef(fluFitShared, se = TRUE)) orig <- structure( c(0.0172448275799737, -2.29936227176632, -0.311391919170833, 0.0173369590386396, 0.242634649538434, -0.73402605050834, -0.0411427686831543, -0.917845995715638, -0.324146451650439, -0.252506337389155, 0.153202205413176, -0.857813219848051, -1.00758863915022, 2.01735387997105, 2.38047570484809, -4.38317074697181, 2.46949727973784, 0.549903756338196, 1.12432744953686, 0.647372578569298, 0.21388842588635, -0.437822769909503, 0.255185408180267, 0.92949604237045, -1.09633602928844, 0.298117843865811, -0.68452091605681, 0.23456335139387, 0.162259631408099, 0.209619606465627, -0.10216429396362, -0.629658878921399, 0.114133112372732, 0.823887580788133, 0.12141926111051, 0.113879127629599, 0.109816278251024, 0.221038616887962, 0.115707006557826, 0.187260599970159, 0.121830940397345, 0.172070355414403, 0.157444513096506, 0.254811666726125, 0.268571254537371, 0.215202234247305, 0.212970632033808, 0.262762514629277, 0.205440489731246, 0.0567461846032841, 0.154168532075271, 0.320248263514015, 0.309517737483193, 0.366585194306804, 0.370748971125027, 0.304859567470968, 0.397763842736319, 0.357894067104384, 0.380956131344983, 0.344676554711052, 0.37300484854814, 0.378382126329053, 0.342270280546076, 0.359489843015429), .Dim = c(32L, 2L), .Dimnames = list( c("ne.1.8115", "ne.1.8135", "ne.1.8117", "ne.1.8116", "ne.1.8111", "ne.1.8121", "ne.1.8118", "ne.1.8136", "ne.1.8119", "ne.1.8125", "ne.1.8127", "ne.1.8126", "ne.1.8128", "end.sin(2 * pi * t/52)", "end.cos(2 * pi * t/52)", "end.ri(iid)", "neweights.d", "overdisp.region1", "overdisp.elsewhere", "end.ri(iid).8115", "end.ri(iid).8135", "end.ri(iid).8117", "end.ri(iid).8116", "end.ri(iid).8111", "end.ri(iid).8121", "end.ri(iid).8118", "end.ri(iid).8136", "end.ri(iid).8119", "end.ri(iid).8125", "end.ri(iid).8127", "end.ri(iid).8126", "end.ri(iid).8128"), c("Estimate", "Std. Error")) ) expect_equal(coef(fluFitShared, se = TRUE), orig) }) test_that("calibrationTest.oneStepAhead() works and \"final\" is equivalent to fit", { mysubset <- tail(fluFitShared$control$subset, 16) osa_final <- oneStepAhead(fluFitShared, tp = mysubset[1L]-1L, type = "final", verbose = FALSE) idx <- 3:5 # ignore "method" and "data.name" in calibrationTest() output expect_equal(calibrationTest(osa_final, which = "dss")[idx], calibrationTest(fluFitShared, which = "dss", subset = mysubset)[idx]) }) test_that("simulation correctly uses shared overdispersion parameters", { fluSimShared <- simulate(fluFitShared, seed = 1) ## simulate from the NegBinM model using the estimates from the shared fit psiShared <- coeflist(fluFitShared)$fixed$overdisp psiByUnit <- psiShared[fluFitShared$control$family] names(psiByUnit) <- paste0("overdisp.", names(fluFitShared$control$family)) coefsM <- c(coef(fluFitShared), psiByUnit)[names(coef(fluFitM))] fluSimSharedM <- simulate(fluFitM, seed = 1, coefs = coefsM) expect_identical(observed(fluSimShared), observed(fluSimSharedM)) ## fails for surveillance 1.12.2 }) surveillance/tests/testthat/test-calibration.R0000644000176200001440000000320713746767713021366 0ustar liggesusers### Calibration tests for Poisson or NegBin predictions mu <- c(0.1, 1, 3, 6, pi, 100) size1 <- 0.5 size2 <- c(0.1, 0.1, 10, 10, 100, 100) ##set.seed(2); y <- rnbinom(length(mu), mu = mu, size = size1) y <- c(0, 0, 2, 14, 5, 63) zExpected <- rbind( dss = c(P = 6.07760977730636, NB1 = -0.468561113465647, NB2 = 2.81071829075294), logs = c(P = 5.95533908528874, NB1 = 0.403872251419915, NB2 = 2.77090543018323), rps = c(P = 4.45647234878906, NB1 = -0.437254253267393, NB2 = 2.57223607389215) ) delta <- 1e-4 #sqrt(.Machine$double.eps) for (score in rownames(zExpected)) { .zExpected <- zExpected[score, , drop = TRUE] ## if package "gsl" is not available, rps_EV is less accurate tol_equal <- if (score == "rps" && !requireNamespace("gsl", quietly = TRUE)) 1e-4 else .Machine$double.eps^0.5 test_that(paste0("still the same z-statistics with ", score), { ## Poisson predictions zP <- calibrationTest(y, mu, which = score, tolerance = delta)$statistic expect_equal(zP, .zExpected["P"], check.attributes = FALSE, tolerance = tol_equal) ## NegBin predictions with common size parameter zNB1 <- calibrationTest(y, mu, size1, which = score, tolerance = delta)$statistic expect_equal(zNB1, .zExpected["NB1"], check.attributes = FALSE, tolerance = tol_equal) ## NegBin predictions with varying size parameter zNB2 <- calibrationTest(y, mu, size2, which = score, tolerance = delta)$statistic expect_equal(zNB2, .zExpected["NB2"], check.attributes = FALSE, tolerance = tol_equal) }) } surveillance/tests/testthat/test-earsC.R0000644000176200001440000000457114662137762020132 0ustar liggesuserstest_that("earsC returns a sts object", { #Sim data and convert to sts object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) stsObj = disProg2sts( disProgObj) res1 <- earsC(stsObj, control = list(range = 20:208, method = "C1")) res2 <- earsC(stsObj, control = list(range = 20:208, method = "C2", alpha = 0.05)) res3 <- earsC(stsObj, control = list(range = 20:208, method = "C3", sigma = 0.5)) expect_inherits(res1, "sts") expect_inherits(res2, "sts") expect_inherits(res3, "sts") data("salmNewport") in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) expect_inherits(surv, "sts") expect_true(max(surv@upperbound[1:4] - c(3.278854, 3.278854, 3.436517, 3.855617)) < 0.000001) }) test_that("earsC returns error messages",{ data("salmNewport") salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = length(salmNewportGermany), method = "C1", alpha = 0.05, baseline = 2) expect_error(earsC(salmNewportGermany, control = control), "Minimum baseline to use is 3.") control <- list(range = length(salmNewportGermany), method = "C1", alpha = 0.05, minSigma = - 2) expect_error(earsC(salmNewportGermany, control = control), "The minimum sigma parameter") in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) control <- list(range = in2011, method = "C1", alpha = 0.05, baseline = 1500) expect_error(earsC(salmNewportGermany, control = control), "The vector of observed is too short!") }) test_that("The range is well defined",{ data("salmNewport") salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = length(salmNewportGermany), method = "C1", alpha = 0.05, baseline = 2) surv <- earsC(salmNewportGermany, control = list(method = "C1", baseline = 10)) expect_equal(length(surv@upperbound), length(salmNewportGermany@observed) - 10) }) surveillance/MD50000644000176200001440000005631514712423472013276 0ustar liggesusers46550b3bf6eedef25bd76bc91fca9396 *DESCRIPTION ad99202d33c83b26faf2ddff7b952cfd *NAMESPACE 19c97dfe38852670ab726499658ebd0e *NEWS.md 714c0450fd35687cba5d41464580e7d0 *R/AllClass.R d76605772dc0dfd3b4239f4357664825 *R/AllGeneric.R f3624431582d5bcaffb1374bc2f72557 *R/LRCUSUM.runlength.R 1065db91ac3baac952efb2b67eb9e0aa *R/addSeason2formula.R aa76ffe9106f413caeca6e046077b167 *R/algo_bayes.R 5ccfda9d59370beb819079be1a71d400 *R/algo_call.R df5365682b9ce64fe2f628bfe5cf2848 *R/algo_cdc.R 1501b12a6cbcc82f72983006f2491f4b *R/algo_cusum.R 00e9fda1abdcafa7a6b1e9ce1ee7a8f2 *R/algo_farrington.R 1e69afc8a2822e14df2d8d92d83dfd5b *R/algo_glrnb.R 94230463643b06384deed43ef3e9a0bc *R/algo_hmm.R e41d32428002e89cd00597b240b23216 *R/algo_outbreakP.R 561fd8f3a059d0a24642d3358917e6c7 *R/algo_rki.R 8341a4cdd77a8f34813f1e8c3c3060a1 *R/algo_rogerson.R bd567f935d2c3ea68895d8025fcade94 *R/backprojNP.R 2c0abfde347171457356259f3445cd95 *R/boda.R 0daebffe999df5d5b280d5fd7937a65b *R/bodaDelay.R b7cde54c917c298070d08e71f98fb7b7 *R/calibration.R 3d1e63fc9377ca0384c7e8ebc0588387 *R/calibration_null.R c7556995d625f8f4273b6d7b804f0fab *R/catCUSUM.R 51e2a7edc231c5b7c09d1e042733e7af *R/checkDerivatives.R d9b04a88446501b386e9131b52de7daf *R/clapply.R 7c0f9e2b072fcfcdad9a641c6d2646ff *R/disProg.R 2cda62ca72be813a74d7e8716a57a7eb *R/earsC.R 3072861cbd9e9b69b158e4f7737d6eed *R/epidata.R a2690576fcdd6f36bbf06ebb6fc4254c *R/epidataCS.R 415fdaff2d22a76eaf973b2cdacdcadc *R/epidataCS_aggregate.R 035d098db7083790a8d5fad3a85b7f5c *R/epidataCS_animate.R c9eda3568bccc2526aea14bbc7f668b4 *R/epidataCS_methods.R 1cacbde157a0b8bdf2ce11c61b92d2be *R/epidataCS_plot.R 491998f588913def16fb23a3f5901586 *R/epidata_animate.R b3b8371ed2efd7f6c8c7cfc83bad012e *R/epidata_plot.R f850f75151375aca1038356a78167bae *R/fanplot.R 4bbff8fdb1f4bb4f3c0c3c77923cbc8a *R/farringtonFlexible.R dc25e670264995ba857dd2d1252c1686 *R/formatPval.R 3b2b41811955b4d807ee2bf331fee0c0 *R/functionTable.R 5a3f8544baa9fb720619f9e67977dd59 *R/gd.R 399b72fce1537556f8b88fa3207718d7 *R/glm_epidataCS.R c943c1aa26803747980b9ec8bb14ae79 *R/graphs.R 3fce7ba1440c82058c4b5e9ca8c3be07 *R/hcl.colors.R 5ac8db2408240fb3f9c1ad696774e2c5 *R/hhh4.R 9870cd9332a62a0bb8bbe51b4efc08e7 *R/hhh4_W.R d4067f22f0eb59ec31478489612fe5f3 *R/hhh4_W_np.R 2143521731299c86cbf6e35242d0428f *R/hhh4_W_powerlaw.R 52f4635978f1b412a7f8b7df6391a8eb *R/hhh4_amplitudeShift.R a4a1c015ab01b0584709a6a47d420752 *R/hhh4_calibration.R 9c5e11a3c46c30d61b4f15580eb054f2 *R/hhh4_methods.R 4f2691e773bd2f9200944a7f8f44bd21 *R/hhh4_oneStepAhead.R 00a3dc4e31ada6eb546e9004cc7cce43 *R/hhh4_plot.R f427ace7c118b0891b2392b1424fd6ce *R/hhh4_simulate.R c90d90273baea9e9e7cef1ed6ab84ba2 *R/hhh4_simulate_plot.R c6cf6d45c8c0984848b5406f4d72a62c *R/hhh4_simulate_scores.R 6048188022d59e99502d095aadb7bfdd *R/intersectPolyCircle.R 264aee3c6902ee22e5ebb0e1f75647c7 *R/isoWeekYear.R f3c8f40f53f76718e60b4e1362212d92 *R/knox.R 3270bc41969ab64fd4b5f0ec8ba3cb1e *R/ks.plot.unif.R 8e4130b973673e0bd225aee8d1f3ad2a *R/linelist2sts.R 1bd1d40e721c7ff2e8b12784cd618b12 *R/magic.dim.R 6c6ae43c0ca87d3c8de9456c7b527cc2 *R/makeControl.R fdef58b2077783d39c05cd74e306477e *R/nowcast.R e04b36ec09f6becd4c368b8f32da56ad *R/options.R 7cebe7dde9b1a3356996faa56d80630e *R/pairedbinCUSUM.R 0af0bbbb4a1709fe4d5a84b3b21a8e42 *R/permutationTest.R 38af5d6e1a2d93d5b20e2a8fe95ce8c9 *R/pit.R d889846110caef5ca462711c3feff29a *R/plapply.R a2d3b157dba1df89498a7058291aabc2 *R/plot.survRes.R c65fe2d78a51bad4f4b6a7861d944a26 *R/scores.R d76738240acf75767e17440185a3503a *R/sim_background.R 6afde3cf790bed8521960bea4f209b54 *R/sim_pointSource.R 9dcd70a562a9cb1bc9f5e0776c91c2d6 *R/spatial_tools.R 6571f294cec62ced49dce0d11b377d94 *R/stK.R 3d02709e13a3775595b87d2ca37073b7 *R/stcd.R 978658889f7ee97a8c8cf1b3e589129c *R/sts.R 3ce95812013fcaa124c580e7aa3b0a16 *R/stsBP.R bcc44552f7c75e73241562acb98e92d7 *R/stsNC.R 08e4d5d1280117596e43d2629346ef55 *R/stsNClist_animate.R be7b375474846e8c95b5d44da35ed8ee *R/sts_animate.R b5359ada15b3bc5f992669d5c279e287 *R/sts_coerce.R 377d2961e55639b29b3f95254b67681c *R/sts_creation.R 106e464a6419ebf6a41c6d916022eecb *R/sts_ggplot.R 2b15c48701398199464b51f78a6f8079 *R/sts_observation.R e3fc5471a0507efecbd96b6abf8d69b3 *R/sts_toLatex.R 2bfb735fc8d1e21d7d0b3d21fe8c73ba *R/stsplot_space.R c96004646311b81211ba0d81f7637764 *R/stsplot_spacetime.R 19ad745d61cea5be5952f637b1d8260a *R/stsplot_time.R 800b11aeac754cb920addce281e8bf92 *R/sysdata.rda 8100c99b8be621bb8ded3676d3497588 *R/twinSIR.R 9cd440d2e69d7a3dd92cfe1ac5a58f95 *R/twinSIR_helper.R 18e2690b86ac849b22d954c1236fee8c *R/twinSIR_intensity.R 51ae5e9e26c62b52a73c18f4c8dc9540 *R/twinSIR_methods.R 6c7f98ef764380dcae74499a7275bffe *R/twinSIR_profile.R d3e0803224911b205d5b194b43d101f1 *R/twinSIR_simulation.R bd210e1d61eda15817a3a87d13ee2f8a *R/twinstim.R 7f1551908dcd640aedd5bed3f07f4c56 *R/twinstim_epitest.R dcaff6522c1616e3c6eb7acb31b1e395 *R/twinstim_helper.R 40738afb1993a458b104f3c1b774a2c9 *R/twinstim_iafplot.R 95b35cad1bd43dc60f99e56a94f302da *R/twinstim_intensity.R 556db9cf3be1468904adbbf39b900e0b *R/twinstim_methods.R 2d592797153da77b7ff26eef71c47ca5 *R/twinstim_siaf.R a536d26a521389ad87b7ff4b83f94e45 *R/twinstim_siaf_exponential.R f7d983596a61c27d75507ef840fa459f *R/twinstim_siaf_gaussian.R f5df6f9cb6cb12747d7aee4af9e0b966 *R/twinstim_siaf_polyCub_iso.R e0db3f82715cf32858b62d338a98f4b5 *R/twinstim_siaf_powerlaw.R e9e70ea17571ad1ce867a7222e4474c6 *R/twinstim_siaf_powerlaw1.R a636e37149f70b7fa0901be557dd0237 *R/twinstim_siaf_powerlawL.R 02f5edebe054f387d8338a0719b71952 *R/twinstim_siaf_step.R 03f7bff1a73f0fae5af8e3bf059d85e8 *R/twinstim_siaf_student.R faacb6177c3aa9f7e30e3f607bb45d4c *R/twinstim_simulation.R 719a694d264e4e4ce6b52f0fdde7f9e8 *R/twinstim_step.R 20e77210362149a51e0b1ab2ea9ba9d4 *R/twinstim_tiaf.R 3bbb7aff389e653fe8a471dd7ebc02b7 *R/twinstim_tiaf_exponential.R 7a57a31e1fd0dd4f9be1322e8950dc41 *R/twinstim_tiaf_step.R 66c8f5943e735ed454540387ec0567fc *R/untie.R d8c7d51a6043e8ce9ac1f495cf18b408 *R/wrap_univariate.R 0f64757b2a75d1301da3ae8b0e0a2f5e *R/zzz.R 81fac08f71f34c59d33918655b5d5448 *README.md 79946de145a74530bb11dc62377907a2 *build/partial.rdb 43e27a2b96c351034288ce877698709b *build/vignette.rds 39cd4adbe3c05e3bed5a29e962a30724 *data/MMRcoverageDE.RData bc57ed2de6c59d625e8ff1dc4bcc534d *data/abattoir.RData 8f11226dce910b95b8ef780e1e087340 *data/campyDE.RData a5d19dc926e0079295e7bbb807b71183 *data/deleval.RData 74396784d70b77ce6f94f6895118168f *data/fluBYBW.RData 7f00d8ec6194adc54678c9ad5aa684a4 *data/fooepidata.RData 154bd5f0caec21664a3b42caf7990582 *data/h1_nrwrp.RData 731c70fffa23b3683391557f47000132 *data/ha.RData f13e5e8fff2b55cb8df0169792c821eb *data/ha.sts.RData 836e9f6eb2993c4dbf7f4b975d78eb35 *data/hagelloch.RData d86889b540c46c9b9ea2b42e5dfd3bcc *data/hepatitisA.RData 2aa9e24781d83436f2daaf4db6b788b5 *data/husO104Hosp.RData 21ee61986db098e9710044f7d4e070dd *data/imdepi.RData 73d0974a388e8c0c76d62d296fbe4118 *data/imdepifit.RData 3723c7f472e9782de2011d7885218586 *data/influMen.RData d7e124e76fd06d35ac3de97cfb3ca0d8 *data/k1.RData 1173ed2c8b616486e274967c6a97ce8f *data/m1.RData f4ae714001625bb89963fe0e4e2e9a77 *data/m2.RData b21b89d9b8dab8750e93f944fc30cac1 *data/m3.RData ec915cd8e2ce14bfd9a8de11bdba92ad *data/m4.RData 728cf151f5516831158588b57d194cd9 *data/m5.RData b1313db9d37f054c5185cea5fc215ca0 *data/measles.weser.RData 9b38f5dd970f407ef6eb0197c9f428f8 *data/measlesDE.RData ee301860324a41505ad334d75bbeec9c *data/measlesWeserEms.RData 6e88fa261848741a2927e8a0208c176c *data/meningo.age.RData 32eef47d250194f5decca9c2e78126ae *data/momo.RData 0c08f2d5d556db1d91f1c6a3d3125d70 *data/n1.RData 029fff2b44242b6fc032dd4abb839207 *data/n2.RData 9b33e305674dc2bd24e465592a88e4e1 *data/q1_nrwh.RData f19779c068198733db7f1c95cecc19db *data/q2.RData 8f41ddc82674072f51517b573007112f *data/rotaBB.RData 66338d480d9d6f7541d6b7f5690f1c94 *data/s1.RData 08135e0c5091d08becc0ceb7bb3bb3c4 *data/s2.RData a24280cb563d545fa1f547b5c0959962 *data/s3.RData e6867f5f8b49d82d5d56a6ba21bc79bc *data/salmAllOnset.RData 7090e08b0233c23ad3f7e77f9375ac4a *data/salmHospitalized.RData 177f82cfd139402fd4c68014c65faf46 *data/salmNewport.RData ebc818bb58803591f7ade0b04d956926 *data/salmonella.agona.RData f976fafb219fc04b750e0e4117ba054c *data/shadar.RData c68d5433a3091d766465ac1990b4f697 *data/stsNewport.RData 0d0f6d7c9afd53dbda231000d5c46f31 *demo/00Index a4a9a220801c351ce74430472fc19214 *demo/biosurvbook.R 25bc46f41ddbf2085d3caf0f15c0907c *demo/cost.R 7d1d442f26f72377b7d25f8edc67472f *demo/fluBYBW.R 78bec1f9c129db1bad4fdf06cefb436d *demo/v77i11.R d5aba8730e290193725a19f8fbe5a8af *inst/CITATION 8d9979fc071c6da83979388bf68c2e0f *inst/THANKS 8c1cd745f2001217d3121dd175df5b41 *inst/doc/glrnb.R a8bd52794a60119c5229bd518401f026 *inst/doc/glrnb.Rnw 63ebc5e2ef05f9a6a25cd8123c2a0c20 *inst/doc/glrnb.pdf 4fbf2e2c1109b2b0c55f7eaa20f1acac *inst/doc/hhh4.R 10ccef1b63fa78cc21b1daa14ceb5dce *inst/doc/hhh4.Rnw b3ea6525eb12fe3bd568c769bb2d59ea *inst/doc/hhh4.pdf 69ef0ded5d76b8db5cf9d263140cc054 *inst/doc/hhh4_spacetime.R 8daf57d04052795803ae2b8ff1cc53f9 *inst/doc/hhh4_spacetime.Rnw 24fc95b92c6965d4f24db0ece694d46e *inst/doc/hhh4_spacetime.pdf 4edb89d834b59b5211938ee0ff3fe99d *inst/doc/monitoringCounts-cache/boda.RData bdc19a2321ee2e240ffd30b14a651291 *inst/doc/monitoringCounts-cache/boda.covars.RData 9b73583a5d7a84a28bcf69929cb7dc97 *inst/doc/monitoringCounts-cache/pMC.RData ff930addd050724319372eb0a51ca2c6 *inst/doc/monitoringCounts-cache/pMarkovChain.RData eb3fcf8975f94ef6e4b3653ddb798f38 *inst/doc/monitoringCounts.R 1fcbf4ffe9c5302b8e2dcf57b58dc907 *inst/doc/monitoringCounts.Rnw 825a1dfb69a0567171514b34c5b236ac *inst/doc/monitoringCounts.pdf d7d2e50792f1583414bcffe9a622a994 *inst/doc/surveillance.R bff9750e9d387de68cbaefe357a101ee *inst/doc/surveillance.Rnw f89344356a30f869f1e85973ed1cc790 *inst/doc/surveillance.pdf fe0cf08a224669c084910c5c19f6ff4a *inst/doc/twinSIR.R 076701f6ce0f86827255115b326737ff *inst/doc/twinSIR.Rnw 6e7aafe696733f29ca2a637da7f9cab6 *inst/doc/twinSIR.pdf b5e043a28fa5d1cc94706c5f55765d1d *inst/doc/twinstim.R a1fd04d6f9c3a000959f8fa4d87d8dd3 *inst/doc/twinstim.Rnw 2466d55a6b242577fa34990df23b5ffb *inst/doc/twinstim.pdf 01e880f0dcb85b78a1c2be29862d464f *inst/extdata/counts_flu_BYBW.txt 7368155ea8525f22a4039c99101fa209 *inst/extdata/neighbourhood_BYBW.txt 57facd5cc2cdaadf18538e6742158b88 *inst/extdata/population_2001-12-31_BYBW.txt 3cfa159d1f9810e948068fb7831fdc2c *inst/extdata/salmonella.agona.txt 6eb9544879e01cf717999ddf45b1b6b3 *inst/jags/bhpm.bugs 61faaa303d7c5e4e88278dc1026f1463 *inst/shapes/berlin.dbf 6d61b4a4e2ba0197aed611390250f5a8 *inst/shapes/berlin.sbn 4215c8c5fc9aa22fa9277267cbe20746 *inst/shapes/berlin.sbx 57a46753e569f12f8aa48540429444d4 *inst/shapes/berlin.shp 2a29a0fdf04dc5a01a3614ef1096f7e5 *inst/shapes/berlin.shx 34b31cd3345ec052d3dd8b4f0e82aa3b *inst/shapes/districtsD.RData 6e4abed45fcaef523f040b03d3858379 *man/LRCUSUM.runlength.Rd da3bc824858d6e87e0431999212fd5b9 *man/MMRcoverageDE.Rd 4cf4eca7a105c2e9462693e77a0eabf0 *man/R0.Rd 25fd70e18a4f1434c357a9c520cff779 *man/abattoir.Rd 2848385412e408f9e1bed525e6e11e97 *man/addFormattedXAxis.Rd e6547bc50ce28d932f9db601a9846cea *man/addSeason2formula.Rd 3d6c91a49a2ee75dcd4003e547a5e01e *man/aggregate.disProg.Rd 88a75c42b99a537c63e7e4a904560c12 *man/algo.bayes.Rd c6d8c06962807df078f2610e30be6fac *man/algo.call.Rd 21e356c395062ea8b4680663acb3fd5e *man/algo.cdc.Rd 4d7ead0bcf51bafaac8d95d8dce3bfc6 *man/algo.compare.Rd f4e54c0a5665fcaaa21ddd7191a77730 *man/algo.cusum.Rd 8a858af053dc2baaa411eb0e3adb2f56 *man/algo.farrington.Rd 9d7091778536dc215943a515a13e6ca4 *man/algo.farrington.assign.weights.Rd a425e6259e93e705320dd7203c6b2c8a *man/algo.farrington.fitGLM.Rd 42330483bdabf154785e328c45399519 *man/algo.farrington.threshold.Rd 166b3ab4810f58756f079ed2cc27236c *man/algo.glrnb.Rd 1cde4bc0ba34c511b862efcfbbdd54c8 *man/algo.hmm.Rd afec17a55519c9d1865eea79bac7d8b3 *man/algo.outbreakP.Rd 1c14da8f510127817dfea1b516fb9645 *man/algo.quality.Rd ae800f35519230fb2bf6b87fefe4c935 *man/algo.rki.Rd da4008df52c951adc80a2917c5065470 *man/algo.rogerson.Rd f4f6d4df5bf74c1f371a618c27760603 *man/algo.summary.Rd eeaee3c5d0e839ef8d6ef83358ffc575 *man/all.equal.Rd e67c69a89d7f343368d411318ea15e3f *man/animate.Rd be9d8cc195a341668ec03bde2fb07aab *man/anscombe.residuals.Rd 785860fc36b43605c8b250287cd51081 *man/arlCusum.Rd 112f2a6868796cc325dc5936b7e54f2b *man/backprojNP.Rd 09fb22575940aa22c3c155be4ea1ffc8 *man/bestCombination.Rd 8b2506aa938e634217c4d171396dcd8e *man/boda.Rd 34aca392a3e132baae90358085d742e9 *man/bodaDelay.Rd 0874769b413334054106966019cf51b9 *man/calibration.Rd 6c8fe51d1a8a2ddd0928e86c9cf91134 *man/campyDE.Rd 5c37a6af7f6839bc0f7fbbe458f2a9df *man/categoricalCUSUM.Rd b0ba22ae8444a11148025d4b488041fd *man/checkResidualProcess.Rd 5d88a6b64a591a16ff7ae3bb6d0640d9 *man/clapply.Rd 27ef79270ab1c247cc00247a25d96b65 *man/coeflist.Rd 0d3f61114df4d38dec498ada9c340ee8 *man/create.disProg.Rd 7992038b0381a299a5df980c93f233ed *man/deleval.Rd 85b22040cc414551c8c0e6f26e398540 *man/disProg2sts.Rd 92e64494efcbbdc583d23a95669268c7 *man/discpoly.Rd 005611262faab7a58d4ff35a50bdcc1b *man/earsC.Rd 44f7244f29502b462cb0c30f63cf8bdd *man/epidata.Rd ab1a2fcfb47f9b8fa12bb0d6c20f5ff9 *man/epidataCS.Rd 62dde94782a69028552ade17a8d5959a *man/epidataCS_aggregate.Rd a1e9ecc63b73b39b2a172fdf08bb9436 *man/epidataCS_animate.Rd 0ff2c126e9c41509f69d9dd9acecb79c *man/epidataCS_permute.Rd 16a16d51862013acf7da59f65ae8e947 *man/epidataCS_plot.Rd a0f9cef66a8af934d310060a8334355c *man/epidataCS_update.Rd a659ea8198fa6e1c7647d93eda15ef0f *man/epidata_animate.Rd 36024c712cad9831fbad480990582fa0 *man/epidata_intersperse.Rd 7f561161b773aa45f18e830e134562d0 *man/epidata_plot.Rd d2b4122305af3b0f63e2ae4054678422 *man/epidata_summary.Rd f660b9a5c95cb8dccef722142b27d61c *man/estimateGLRNbHook.Rd ebd996999531f5af119ee0372e72dee6 *man/fanplot.Rd 1806b147944ac8015f06d955e937c0c0 *man/farringtonFlexible.Rd 08907427c5e4283cebd965c020e5c314 *man/find.kh.Rd 3c3d71c027b25bd7e483d9a1d67bc46b *man/findH.Rd 02198b044625da79eea751c4ee82481f *man/findK.Rd 10c98a5836dafefcfa281c5bc8805d1d *man/fluBYBW.Rd 35959432528cea29d91c98631f48a5ce *man/formatDate.Rd c5abd4fb24364663f13b98295ac4c169 *man/formatPval.Rd bbc2674f910b27a89531cb996da4bd83 *man/glm_epidataCS.Rd 7498665ff8c9513a7abcedbf98fa8c6e *man/ha.Rd 6a15d58f4e360cf8b7512fed272538ef *man/hagelloch.Rd 8066e0538b9ee18e9b2931bdfaa84719 *man/hcl.colors.Rd df8ae71c501c77230898bb3a496a6f76 *man/hepatitisA.Rd a69be99a1c55db58e652d1a08e269f68 *man/hhh4.Rd e44d60201913dcc48c28b9524f774ae2 *man/hhh4_W.Rd f9e8e43bedfa2dfeb84960c46eb1d3f9 *man/hhh4_W_utils.Rd fdca3cebc9604fb81337f01f95814376 *man/hhh4_formula.Rd 1c15fda9ab678d54eabd76c0805c3e15 *man/hhh4_internals.Rd bef2369c3597691d97210fe8c37117ca *man/hhh4_methods.Rd 8ed0a9a1083acb254edc7be4b680839e *man/hhh4_plot.Rd 8fb1b58e0b6fd421b429b03ef7e57dc2 *man/hhh4_predict.Rd 14c9a722630e56f7156dd067e4adbb87 *man/hhh4_simulate.Rd 37e8818db7bc3b3eb7bc989df91cabb9 *man/hhh4_simulate_plot.Rd 279abc77faba3b31df25d62e691693e7 *man/hhh4_simulate_scores.Rd 9fdd6665743621e00be4955c28ae8c0f *man/hhh4_update.Rd 5fab8c95ce67a4cd36d06b4a2d34dac1 *man/hhh4_validation.Rd 8f810db3c775c085ade43c8819330eb8 *man/husO104Hosp.Rd dbe20f7f5daaeda91ffa1a822933d449 *man/imdepi.Rd 2f597f96aa1050dba2efe69345aa9964 *man/imdepifit.Rd cbcb402db5a05ba7912ef585a1c379ee *man/influMen.Rd df35457995a21853415e9af9e3ada813 *man/intensityplot.Rd f71531b2e29ad4331156482341abcb0c *man/intersectPolyCircle.Rd 309e45227b48d8fe47a5339a9a280fb3 *man/isoWeekYear.Rd 6a27ac87b9798b91960c71a0aab9e0a0 *man/knox.Rd b86fed4ba97df16a1f23d8e45ea34084 *man/ks.plot.unif.Rd 28469449a266a08f0d2c12d103debb03 *man/layout.labels.Rd 9624bee6d800b64b6738f9c907adfd67 *man/linelist2sts.Rd 56461eb215036b9860aa8f8a869361dc *man/m1.Rd e831ef76471e187bb7a545b785e2ddc6 *man/macros/linkSPclass.Rd a63d24fd9d091edd1b287d6318ddc918 *man/magic.dim.Rd 7ff994cd72c4c171386f667d9614d091 *man/makeControl.Rd cc5b26350902fbcfb6adba326a4f8512 *man/marks.Rd 2dfac57188f4b900e2a097cc99e0b8e5 *man/measles.weser.Rd 07ae1224b6941931d59c94539f6ca70d *man/measlesDE.Rd 2633da37e263db5a56aefad428afb163 *man/meningo.age.Rd 28cb9cf72c308d3b67fd9660f522d036 *man/momo.Rd a7eb27ba88b0d787664f03cf93b46661 *man/multiplicity.Rd dbf787f778527ecad92a7fb8f13b51c3 *man/multiplicity.Spatial.Rd 8e3c9cf6bf6f6e5a79ddb661903bd5c0 *man/nbOrder.Rd c546dcfa16b431af18b4b12808d9ac90 *man/nowcast.Rd 3367f17188c53417fc8be93395655c9f *man/pairedbinCUSUM.Rd 08a2768c9fbba01ce6220ef68878a650 *man/permutationTest.Rd 4811ad6bf8795ac03660e55fbbadf561 *man/pit.Rd 11b744e8ea5343fa92699dc3fdca883a *man/plapply.Rd 6aa6a9c1e79b08b2c47947bf7ed60b6e *man/plot.disProg.Rd 8485f24d1e08b929a3980bac6ccf55e7 *man/plot.survRes.Rd 314c502ba6061317abc0a2158e1cdc8e *man/poly2adjmat.Rd 917f484c70a09db6f15e3e5601c1dcdc *man/polyAtBorder.Rd 8fcfd9d601274b15b0a2f2caa71b218c *man/primeFactors.Rd 747966188aa39b5600347f2d98d32aae *man/print.algoQV.Rd 172a18b1405eeafce04a8e024987d8a3 *man/ranef.Rd d59b1e1cf16c546297f9f7b343fc94aa *man/refvalIdxByDate.Rd 92f2406fd4e5054765f773c694681498 *man/residualsCT.Rd f87d6315417eb610b0a2370fde5b8948 *man/rotaBB.Rd 7831a80a59e3bc6a8e91a79beede0e02 *man/runifdisc.Rd 5bc5af2aef6148d7e3c5631801705cc5 *man/salmAllOnset.Rd 8d5deabc638605b78688609decf7cf60 *man/salmHospitalized.Rd 6ebf921cba93f6832306a0af216a0485 *man/salmNewport.Rd 09bdb85975b2901c87eda5332c9c46a4 *man/salmonella.agona.Rd e1a425cd33ad772bbcd5b0f6cbc1ce76 *man/scores.Rd 795a1501a06e8798c76833ef753a4b0f *man/shadar.Rd 3f86a87aab44010f50546dc7ace60219 *man/sim.pointSource.Rd c62234e5033cff7bdccf3f1932f0219d *man/sim.seasonalNoise.Rd 299c4f5619ff961bffb3f805be930428 *man/stK.Rd bb60b62230fdc91b7f6ad6a09d9bfc02 *man/stcd.Rd e47a0c6ba3c994b77b1c6303dff9b9da *man/sts-class.Rd 873204f207dfb51caaa746ee2bd10fdc *man/stsAggregate.Rd 92bc8b486c1551513c683d3134e55fb3 *man/stsBP-class.Rd afc6185f42991ce2230cc226587d207b *man/stsNC-class.Rd f656722930a11c5dcbb28a5632441a9f *man/stsNClist_animate.Rd b6cfcb941de1178fbdc7b60a2c4d44e4 *man/stsNewport.Rd 819cbd32ad7b842a2f9c560c4d1737ee *man/stsSlots.Rd 504b93c80659a30e9764d799c5710970 *man/stsXtrct.Rd c921e5e6b872539cf7d2acfe54d1ce32 *man/sts_animate.Rd b9d74adc5b1197257a5ee1717d3af17a *man/sts_creation.Rd e8d1c444c945d4b4dfdad7af59cacece *man/sts_ggplot.Rd 1fafa879eeb6b5dfde50318d58533448 *man/sts_observation.Rd 277db00331b427793d46109b7c7badfe *man/sts_tidy.Rd 7d3778864eba4b8dfead80fc72e5fe88 *man/stsplot.Rd f5afba56d5d1951ad86503d61a4938d5 *man/stsplot_space.Rd 6e2d02c5b288fcc722774526b9e5cecd *man/stsplot_spacetime.Rd 2df58853eb8c7541658ea08ffc6d3f0f *man/stsplot_time.Rd 39953747b837cd38fdac24775e42a0b8 *man/surveillance-defunct.Rd a9ac13f7d2c1a7a962945bb990e85186 *man/surveillance-package.Rd 4c686d4834a9c759e3ba459465903539 *man/surveillance.options.Rd 00c4e716e5a597c0a7ce4c90f9ebc7ce *man/toLatex.sts.Rd 2e6829e75c6185f3c1283dfd792cc2e6 *man/twinSIR.Rd 7a7c977c0e0b512e2c30b096d05377de *man/twinSIR_cox.Rd a60c1b1d277524ad5f92e8ff879b0be8 *man/twinSIR_exData.Rd d2759f1a4bd57ceda4a84e0cad4ad59a *man/twinSIR_intensityplot.Rd ac127bfd7a894989c7f62ca19f19a713 *man/twinSIR_methods.Rd 465865dfa7ef7034cd01ab5ec249d478 *man/twinSIR_profile.Rd 8017dd3bb26d9f9334fa5b652eeb1086 *man/twinSIR_simulation.Rd 46fdd593d911051068d92f12a9f904d7 *man/twinstim.Rd 531829345e57c115bc97be792b0fc450 *man/twinstim_epitest.Rd eaeec4e023c8537132ac1cf2225e5b07 *man/twinstim_iaf.Rd 64af818d69a2d1b67801af21f612d705 *man/twinstim_iafplot.Rd ff9039608be5f6d3460f01410ff49654 *man/twinstim_intensity.Rd 3e59d1c908180389f867dd1fb9d01507 *man/twinstim_methods.Rd 30954d87702654fac94fb92a7170e848 *man/twinstim_plot.Rd deccdbc7fadc8a8ab8f543917de0df87 *man/twinstim_profile.Rd b855e3b6b307ac0933aa0e1f4e473944 *man/twinstim_siaf.Rd c625195f02f957511cfe5a8d6cef950a *man/twinstim_siaf_simulatePC.Rd ddc826352d29634e3f42a6ad5ce65ba1 *man/twinstim_simEndemicEvents.Rd d452f5191a2f34e6b852ee771b362e32 *man/twinstim_simulation.Rd 779060593a223d40c3081cc5ce97d401 *man/twinstim_step.Rd 3977925a2d40feb47561093bd350f57b *man/twinstim_tiaf.Rd c69279fdb57e6373842394a5b4cde78c *man/twinstim_update.Rd 975a536efd321e30e81b66a17c395843 *man/unionSpatialPolygons.Rd 75faa38e6248352866b32184ea0258c6 *man/untie.Rd 1e0120a66f2f6d29accf4d672087655e *man/wrap.algo.Rd 382c0cb7667e12641bbe5fd11a082880 *man/zetaweights.Rd 4eeba24cb5cec8c4b28546a4ff199740 *src/backproj.c 074aaf163539f167d02a7fa13d838cdd *src/determineSources.c 8cb88012bd1970963dbc3d0cd913149c *src/init.c e5e7a5ed1f118b381777c489145b23ee *src/ks.c 802bdb04b6805c49b6da438a26bb2432 *src/stcd-assuncaocorrea.cc 5a2196ac3bbf315e7b9849e60e9f7c05 *src/stcd-assuncaocorrea.h 3d1171c9914421b2b318485b2ff5d001 *src/surveillance.c 978f19dcf1b11af13798fd9097a93a66 *src/twinstim_siaf_polyCub_iso.c 1086b93e93ee5d1fd3cccd0ce5d19c66 *tests/testthat/test-algo.glrnb.R 16816a3e512ff01e54ebec77b9091f12 *tests/testthat/test-bodaDelay.R 80e3e4ed5012169b68e69f0c1a57bceb *tests/testthat/test-calibration.R 2af7bb18b631aea749921aaef1a49b22 *tests/testthat/test-createLambda.R 5494bdb98b2b8171f9696f0f89499318 *tests/testthat/test-determineSources.R 6915925e4c0e31cb735ba69ccea08675 *tests/testthat/test-earsC.R c9f667d3ac5a5802ecd075c3d7f012dc *tests/testthat/test-farringtonFlexible.R 3e3131a05d11671b0646ce18d78274e2 *tests/testthat/test-formatDate.R 2ccc1cb821b5873d767d9060bb992e13 *tests/testthat/test-hhh4+derivatives.R 45c55df2b6fd0384f33172fef63c1fa3 *tests/testthat/test-hhh4_ARasNE.R 8d09bf25a69f34992cd25b19b7e0191c *tests/testthat/test-hhh4_NA.R 3bea03f070e2c7d7e7c21cc0c029b810 *tests/testthat/test-hhh4_NegBinGrouped.R e1051ecf1cbb778d01df69c6b00ac283 *tests/testthat/test-hhh4_offsets.R 747445546c91691be896c2f56069596b *tests/testthat/test-hhh4_weights.R 14104b54a1c8e721aa670259b7771443 *tests/testthat/test-nbOrder.R cf09694c1c9a7d6d0bcdf548155a574a *tests/testthat/test-plapply.R 0055b1718bcd140c9dc66857d0dc8ce0 *tests/testthat/test-siafs.R 0de989a1e8c346944905b25e084f5c65 *tests/testthat/test-sts.R fe2feecf7c827ef7404801c1a22aae61 *tests/testthat/test-tiafs.R b34b386fc3caec8bf7e447323d7bc7e3 *tests/testthat/test-toLatex.sts.R 027d4ae2664d16ff4c700621d6e0b426 *tests/testthat/test-twinstim_misc.R b0b804273cc346be4f2e0e39b41eb225 *tests/testthat/test-twinstim_score.R 5f4d25042175e6466a1b2a1bc506735c *tests/tinytest.R 1e180c1407de463249f1781966dbb0c2 *vignettes/figures/HMM.pdf f644c45ae5ac87148ebbe0e2e442e683 *vignettes/figures/fPeriods.R dc50a37266806e02fd125387466cb827 *vignettes/figures/fPeriods2.pdf d2c01090c5b6ed5b2c28a10dca0684ec *vignettes/figures/fPeriods3.pdf a8bd52794a60119c5229bd518401f026 *vignettes/glrnb.Rnw 96cc4acacf3d57d8ec0338709aea5b27 *vignettes/hhh4-cache.RData 10ccef1b63fa78cc21b1daa14ceb5dce *vignettes/hhh4.Rnw 71a631c17142aaba9f6efe3c2a848215 *vignettes/hhh4_spacetime-cache.RData 8daf57d04052795803ae2b8ff1cc53f9 *vignettes/hhh4_spacetime.Rnw 4edb89d834b59b5211938ee0ff3fe99d *vignettes/monitoringCounts-cache/boda.RData bdc19a2321ee2e240ffd30b14a651291 *vignettes/monitoringCounts-cache/boda.covars.RData 9b73583a5d7a84a28bcf69929cb7dc97 *vignettes/monitoringCounts-cache/pMC.RData ff930addd050724319372eb0a51ca2c6 *vignettes/monitoringCounts-cache/pMarkovChain.RData 1fcbf4ffe9c5302b8e2dcf57b58dc907 *vignettes/monitoringCounts.Rnw a9ab2abc6a6ffb5673d71b1315e1f357 *vignettes/monitoringCounts.bib 1ca796c40368da6cce6f4411b8b2cc04 *vignettes/references.bib 262547eb2d830b485312fc5b0e96e545 *vignettes/surveillance-cache.RData bff9750e9d387de68cbaefe357a101ee *vignettes/surveillance.Rnw 01099bf54aeaf8a031440283443e994a *vignettes/twinSIR-cache.RData 076701f6ce0f86827255115b326737ff *vignettes/twinSIR.Rnw a0200179a7c9c1d1047950e776fd9084 *vignettes/twinstim-cache.RData a1fd04d6f9c3a000959f8fa4d87d8dd3 *vignettes/twinstim.Rnw surveillance/R/0000755000176200001440000000000014712176025013154 5ustar liggesuserssurveillance/R/twinstim_tiaf_exponential.R0000644000176200001440000000506014426171115020564 0ustar liggesusers################################################################################ ### Exponential temporal interaction function g(t) = exp(-alpha*t) ### ### Copyright (C) 2009-2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## nTypes: determines the number of parameters of the Exponential kernel. ## In a multitype epidemic, the different types may share ## the same temporal interaction function (type-invariant), in which case ## nTypes=1. Otherwise nTypes should equal the number of event types of the ## epidemic, in which case every type has its own alpha. tiaf.exponential <- function (nTypes = 1, validpars = NULL) { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) ## function definitions for nTypes = 1 (length(alpha) == 1) g <- function (t, alpha, types) { exp(-alpha*t) } G <- function (t, alpha, types) { if (alpha==0) t else -exp(-alpha*t)/alpha } deriv <- function (t, alpha, types) { as.matrix( -t*exp(-alpha*t) ) } Deriv <- function (t, alpha, types) { as.matrix( if (alpha==0) -t^2/2 else (t+1/alpha)*exp(-alpha*t)/alpha ) } ## adaptions for nTypes > 1 if (nTypes > 1) { ## time points vector t, length(types) = length(t) body(g) <- as.call(append(as.list(body(g)), quote(alpha <- alpha[types]), after=1)) body(G) <- quote({ alpha <- alpha[types] ifelse (alpha==0, t, -exp(-alpha*t)/alpha) }) body(deriv) <- quote({ L <- length(t) deriv <- matrix(0, L, length(alpha)) alpha <- alpha[types] deriv[cbind(1:L,types)] <- -t*exp(-alpha*t) deriv }) body(Deriv) <- quote({ L <- length(t) Deriv <- matrix(0, L, length(alpha)) alpha <- alpha[types] Deriv[cbind(1:L,types)] <- ifelse(alpha==0, -t^2/2, (t+1/alpha)*exp(-alpha*t)/alpha) Deriv }) } ## functions only need the base environment environment(g) <- environment(G) <- environment(deriv) <- environment(Deriv) <- baseenv() ## return the kernel specification list(g=g, G=G, deriv=deriv, Deriv=Deriv, npars=nTypes, validpars=validpars) } surveillance/R/twinSIR_simulation.R0000644000176200001440000006426314430705133017110 0ustar liggesusers################################################################################ ### Simulate from a "twinSIR" model as described in Hoehle (2009) ### ### Copyright (C) 2009 Michael Hoehle, 2009,2012,2014,2019,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## Apart from simulation of SIR data, it is possible to simulate ## - SI: infPeriod = function(ids) rep(Inf, length(ids) ## - SIS: remPeriod = function(ids) rep(0, length(ids) ## - SIRS: remPeriod in (0;Inf) ## ## One can even simulate from a Cox model with the following settings: ## + no removal (i.e. infPeriod = function(ids) rep(Inf, length(ids)) ## + no epidemic component (i.e. no alpha, no f, no w). simEpidata <- function (formula, data, id.col, I0.col, coords.cols, subset, beta, h0, f = list(), w = list(), alpha, infPeriod, remPeriod = function(ids) rep(Inf, length(ids)), end = Inf, trace = FALSE, .allocate = NULL) { stopifnot(inherits(formula, "formula"), is.data.frame(data)) cl <- match.call() ####################### ### Check arguments ### ####################### ### Build up model.frame mfnames <- c("", "formula", "data", "subset") mf <- cl[match(mfnames, names(cl), nomatch = 0L)] if (!"subset" %in% names(mf)) { # subset can be missing ## need explicit argument to avoid partial matching with coords.cols mf["subset"] <- list(NULL) } mf$na.action <- as.name("na.fail") mf$drop.unused.levels <- FALSE mf$xlev <- list() ## additional columns for the model frame if (inherits(data, "epidata")) { id.col <- "id" I0.col <- "atRiskY" # but we need !atRiskY (will be considered below) coords.cols <- names(data)[attr(data, "coords.cols")] if(length(formula) == 2L) { # i.e. no response specified formula[3L] <- formula[2L] formula[[2L]] <- quote(cbind(start, stop)) } } else { for(colarg in c("id.col", "I0.col", "coords.cols")) { colidx <- get(colarg, inherits = FALSE) if (is.numeric(colidx)) { tmp <- names(data)[colidx] if (anyNA(tmp)) { stop("'", colarg, " = ", deparse(cl[[colarg]]), "': ", "column index must be in [1; ", ncol(data), "=ncol(data)]") } assign(colarg, tmp, inherits = FALSE) } } } mf$I0 <- if (is.null(I0.col)) { substitute(rep(0, N), list(N=nrow(data))) } else as.name(I0.col) mf$id <- as.name(id.col) for(coords.col in coords.cols) { mf[[coords.col]] <- as.name(coords.col) } special <- c("cox") Terms <- terms(formula, specials = special, data = data, keep.order = TRUE, simplify = FALSE) mf$formula <- Terms mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) ### Convert id to a factor (also removing unused levels if it was a factor) mf[["(id)"]] <- factor(mf[["(id)"]]) ids <- levels(mf[["(id)"]]) nObs <- length(ids) if (nObs == 0L) { stop("nothing to do: no individuals in 'data'") } idsInteger <- seq_len(nObs) ### Check start/stop consistency (response) .startstop <- model.response(mf) if (NCOL(.startstop) != 2L || !is.numeric(.startstop)) { stop("the lhs of 'formula' must be a numeric matrix with two columns ", "like 'cbind(start, stop)'") } timeIntervals <- unique(.startstop) timeIntervals <- timeIntervals[order(timeIntervals[,1L]), , drop = FALSE] nBlocks <- nrow(timeIntervals) if (any(timeIntervals[,2L] <= timeIntervals[,1L])) { stop("stop times must be greater than start times") } if (any(timeIntervals[-1L,1L] != timeIntervals[-nBlocks,2L])) { stop("inconsistent start/stop times: time intervals not consecutive") } ### Check .allocate if (is.null(.allocate)) { .allocate <- max(500, ceiling(nBlocks/100)*100) } else { if (!isScalar(.allocate) || .allocate < nBlocks) { stop("'.allocate' must be >= ", nBlocks) } } ### Check that all blocks are complete (all id's present) .blockidx <- match(.startstop[,1L], timeIntervals[,1L]) if (any(table(.blockidx) != nObs)) { stop("all time intervals must be present for all id's") } ### Define a vector containing the time points where covariates change # unique 'start' time points (=> includes beginning of observation period) externalChangePoints <- as.vector(timeIntervals[,1L]) ### SORT THE MODEL.FRAME BY BLOCK AND ID !!! mf <- mf[order(.blockidx, mf[["(id)"]]),] ### Extract the coordinates coords <- as.matrix(mf[idsInteger, tail(1:ncol(mf),length(coords.cols))]) colnames(coords) <- coords.cols rownames(coords) <- ids ### Extract the endemic part Z of the design matrix (no intercept) des <- read.design(mf, Terms) Z <- des$Z nPredCox <- ncol(Z) # number of endemic (cox) predictor terms ### Only include basic endemic variables in the event history output basicCoxNames <- rownames(attr(Terms,"factors"))[attr(Terms,"specials")$cox] basicVarNames <- sub("cox\\(([^)]+)\\)", "\\1", basicCoxNames) nBasicVars <- length(basicCoxNames) # this is necessary if some variables in 'formula' do not have main effects extraBasicVars <- as.matrix(mf[setdiff(basicCoxNames, colnames(Z))]) ### Build up 3-dim array [id x time x var] of endemic terms coxArray <- array(cbind(Z, extraBasicVars), dim = c(nObs, nBlocks, ncol(Z) + ncol(extraBasicVars)), dimnames = list(ids, NULL, c(colnames(Z), colnames(extraBasicVars)))) idxPredVars <- seq_len(nPredCox) idxBasicVars <- match(basicCoxNames, dimnames(coxArray)[[3]]) ### Check simulation parameters ## endemic (cox) part if (nPredCox > 0L) { if(missing(beta) || length(beta) != nPredCox || !is.numeric(beta)) { stop(gettextf(paste("'beta', a numeric vector of length %d", "(number of endemic terms), must be specified"), nPredCox)) } } else { beta <- numeric(0L) } ## epidemic part nPredEpi <- length(f) + length(w) if (nPredEpi > 0L) { ## check f if (length(f) > 0L) { if (ncol(coords) == 0L) { stop("need coordinates for distance-based epidemic covariates 'f'") } if (!is.list(f) || is.null(names(f)) || any(!sapply(f, is.function))) { stop("'f' must be a named list of functions") } distmat <- as.matrix(dist(coords, method = "euclidean")) } ## check w if (length(w) > 0L) { if (!is.list(w) || is.null(names(w)) || any(!sapply(w, is.function))) { stop("'w' must be a named list of functions") } wijlist <- compute_wijlist(w = w, data = mf[idsInteger, ]) } ## check alpha (coefficients for all of f and w) if (missing(alpha) || !is.numeric(alpha) || is.null(names(alpha))) { stop(gettextf(paste("'alpha', a named numeric vector of length %d", "(number of epidemic terms), must be specified"), nPredEpi)) } alpha <- alpha[c(names(f), names(w))] if (anyNA(alpha)) { stop("'alpha' is incomplete for 'f' or 'w'") } stopifnot(alpha >= 0) } else { alpha <- numeric(0L) } ### Parse the generator function for the infectious periods if (missing(infPeriod)) { stop("argument 'infPeriod' is missing (with no default)") } infPeriod <- match.fun(infPeriod) ### Parse the generator function for the removal periods remPeriod <- match.fun(remPeriod) ### Parse the log baseline function h0spec <- paste("'h0' must be a single number or a list of functions", "\"exact\" and \"upper\"") if (missing(h0)) { stop(h0spec) } if (is.list(h0)) { if (!all(is.function(h0[["exact"]]), is.function(h0[["upper"]]))) { stop(h0spec) } if (!inherits(h0$upper, "stepfun")) { stop("function 'h0$upper' must be a 'stepfun'") } h0ChangePoints <- knots(h0$upper) } else if (isScalar(h0)) { h0func <- as.function(c(alist(t=), list(h0)), envir = .GlobalEnv) h0 <- list(exact = h0func, upper = h0func) h0ChangePoints <- numeric(0L) } else { stop(h0spec) } if (!isScalar(h0$exact(0))) { stop("'h0$exact' must return a scalar") } ### Define function which decides if to reject a proposal during simulation exactEqualsUpper <- identical(h0$exact, h0$upper) mustReject <- if (exactEqualsUpper) { function () FALSE } else { function () lambdaStar/lambdaStarMax < runif(1) } ### Check simulation ending time if (!isScalar(end) || end <= 0) { stop("'end' must be a single positive numeric value") } ################### ### Preparation ### ################### ### Initialize set of infected and susceptible individuals infected <- which( mf[idsInteger,"(I0)"] == as.numeric(!inherits(data, "epidata")) ) # in case of "epidata", mf$(I0) equals data$atRiskY => infected = I0==0 susceptibles <- which(! idsInteger %in% infected) ### Initialize tables of planned R-events and S-events Revents <- if (length(infected) > 0) { cbind(infected, infPeriod(ids[infected])) } else { matrix(numeric(0), ncol = 2) } Sevents <- matrix(numeric(0), ncol = 2) ### Small hook to subsequently update the (time depending) Cox predictor ### based on the current time (ct) during the simulation loop if (nPredCox > 0L) { coxUpdate <- expression( predCox <- as.matrix( coxArray[,which(externalChangePoints == ct),idxPredVars] ) %*% beta ) } else { predCox <- numeric(nObs) # zeros } ### 'lambdaCalc' is the main expression for the calculation of the intensity ### values IMMEDIATELY AFTER the current time 'ct'. ### It will be evaluated during the while-loop below. lambdaCalc <- expression( # Endemic Cox predictor (no h0 here!) of susceptibles predCoxS <- predCox[susceptibles], # Epidemic component of susceptibles lambdaEpidemic <- numeric(length(susceptibles)), # zeros if (nPredEpi > 0L && length(infected) > 0L) { fCovars <- if (length(f) > 0L) { u <- distmat[,infected, drop = FALSE] vapply(X = f, FUN = function (B) rowSums(B(u)), FUN.VALUE = numeric(nObs), USE.NAMES = FALSE) } else NULL wCovars <- if (length(w) > 0L) { vapply(X = wijlist, FUN = function (wij) { rowSums(wij[, infected, drop = FALSE]) }, FUN.VALUE = numeric(nobs), USE.NAMES = FALSE) } else NULL epiCovars <- cbind(fCovars, wCovars, deparse.level=0) # epiCovars is a matrix [nObs x nPredEpi] also used by updateNextEvent if (length(susceptibles) > 0L) { lambdaEpidemic <- epiCovars[susceptibles,,drop=FALSE] %*% alpha } }, # Combined intensity lambdaS <- lambdaEpidemic + exp(h0$exact(ct) + predCoxS), # Ground intensity (sum of all lambdaS's) lambdaStar <- sum(lambdaS), # Upper bound on ground intensity lambdaStarMax <- if (exactEqualsUpper) { lambdaStar } else { sum(lambdaEpidemic) + sum(exp(h0$upper(ct) + predCoxS)) } ) # the following initializations are for R CMD check only ("visible binding") lambdaS <- numeric(length(susceptibles)) lambdaStarMax <- lambdaStar <- numeric(1L) # At current time (ct) we have: # lambdaS is a _vector of length the current number of susceptibles_ # containing the intensity of infection for each susceptible individual. # lambdaStar is the overall infection rate. # lambdaStarMax is the upper bound for lambdaStar regarding baseline. # 'susceptible' and 'infected' are the corresponding sets of individuals # immediately AFTER the last event # in theory, if a covariate changes in point t, then the intensity changes # at t+0 only. intensities are left-continuous functions. time interval of # constant intensity is (start;stop]. but in the implementation we need at # time ct the value of the log-baseline at ct+0, especially for # ct %in% h0ChangePoints, thus h0$upper should be a stepfun with right=FALSE ### Create a history object alongside the simulation epiCovars0 <- matrix(0, nrow = nObs, ncol = nPredEpi, dimnames = list(NULL, c(names(f), names(w)))) basicVars0 <- matrix(0, nrow = nObs, ncol = nBasicVars, dimnames = list(NULL, basicVarNames)) emptyEvent <- cbind(BLOCK = 0, id = idsInteger, start = 0, stop = 0, atRiskY = 0, event = 0, Revent = 0, coords, basicVars0, epiCovars0) # WARNING: if you change the column order, you have to adjust the # hard coded column indexes everywhere below, also in getModel.simEpidata ! .epiIdx <- tail(seq_len(ncol(emptyEvent)), nPredEpi) .basicIdx <- 7L + ncol(coords) + seq_len(nBasicVars) .nrowsEvHist <- .allocate * nObs # initial size of the event history evHist <- matrix(NA_real_, nrow = .nrowsEvHist, ncol = ncol(emptyEvent), dimnames = list(NULL, colnames(emptyEvent))) ## Hook - create new event and populate it with appropriate covariates updateNextEvent <- expression( nextEvent <- emptyEvent, # populate epidemic covariates if (nPredEpi > 0L && length(infected) > 0L) { nextEvent[,.epiIdx] <- epiCovars # was calculated in lambdaCalc }, # Which time is currently appropriate in (time varying) covariates tIdx <- match(TRUE, c(externalChangePoints,Inf) > ct) - 1L, if (nBasicVars > 0L) { nextEvent[,.basicIdx] <- coxArray[,tIdx,idxBasicVars] }, # At-risk indicator if (length(susceptibles) > 0) { nextEvent[susceptibles,5L] <- 1 }, # Block index nextEvent[,1L] <- rep.int(block, nObs), # Start time nextEvent[,3L] <- rep.int(ct, nObs) ) ## Hook function to add the event to the history addNextEvent <- expression( nextEvent[,4L] <- rep.int(ct, nObs), # stop time if (block*nObs > .nrowsEvHist) { # enlarge evHist if not big enough if (trace > 0L) { cat("Enlarging the event history @ block", block, "...\n") } evHist <- rbind(evHist, matrix(NA_real_, nrow = .allocate * nObs, ncol = ncol(emptyEvent)) ) .nrowsEvHist <- .nrowsEvHist + .allocate * nObs }, evHistIdx <- idsInteger + nObs * (block-1), # = seq.int(from = 1 + nObs*(block-1), to = nObs*block) evHist[evHistIdx,] <- nextEvent, block <- block + 1 ) ####################################################################### ### MAIN PART: sequential simulation of infection and removal times ### ####################################################################### ### Some indicators ct <- timeIntervals[1L,1L] # = externalChangePoints[1] # current time block <- 1 pointRejected <- FALSE loopCounter <- 0L trace <- as.integer(trace) hadNumericalProblemsInf <- hadNumericalProblems0 <- FALSE eventTimes <- numeric(0) ### Update (time depending) endemic covariates (if there are any) if (nPredCox > 0L) { eval(coxUpdate) } ### Let's rock 'n roll repeat { loopCounter <- loopCounter + 1L if (trace > 0L && loopCounter %% trace == 0L) { cat(loopCounter, "@t =", ct, ":\t|S| =", length(susceptibles), " |I| =", length(infected), "\trejected?", pointRejected, "\n") } if (!pointRejected) { ## Compute current conditional intensity eval(lambdaCalc) ## Update event history (uses epiCovars from lambdaCalc) eval(updateNextEvent) } pointRejected <- FALSE ## Determine time of next external change point changePoints <- c(externalChangePoints, h0ChangePoints, Revents[,2], Sevents[,2]) .isPendingChangePoint <- changePoints > ct nextChangePoint <- if (any(.isPendingChangePoint)) { min(changePoints[.isPendingChangePoint]) } else Inf ## Simulate waiting time for the subsequent infection T <- tryCatch(rexp(1, rate = lambdaStarMax), warning = function(w) { if (!is.na(lambdaStarMax) && lambdaStarMax < 1) { # rate was to small for rexp if (length(susceptibles) > 0L) { assign("hadNumericalProblems0", TRUE, inherits = TRUE) } if (nextChangePoint == Inf) NULL else Inf } else { # rate was to big for rexp 0 # since R-2.7.0 rexp(1, Inf) returns 0 with no warning! } }) ## Stop if lambdaStarMax too small AND no more changes in rate if (is.null(T)) { ct <- end eval(addNextEvent) break } ## Stop if lambdaStarMax too big meaning T == 0 (=> concurrent events) if (T == 0) { hadNumericalProblemsInf <- TRUE break } ## Stop at all costs if end of simulation time [0; end) has been reached if (isTRUE(min(ct+T, nextChangePoint) >= end)) { # ">=" because we don't want an event at "end" ct <- end eval(addNextEvent) break } if (ct + T > nextChangePoint) { ## Simulated time point is beyond the next time of intensity change ## (removal or covariate or upper baseline change point) ct <- nextChangePoint if (nPredCox > 0L && ct %in% externalChangePoints) { # update endemic covariates eval(coxUpdate) } if (.Reventidx <- match(ct, Revents[,2L], nomatch = 0L)) { # removal (I->R), thus update set of infected remover <- Revents[.Reventidx,1L] .remPeriod <- remPeriod(ids[remover]) Sevents <- rbind(Sevents, c(remover, ct + .remPeriod)) infected <- infected[-match(remover, infected)] nextEvent[remover,7L] <- 1 } if (.Seventidx <- match(ct, Sevents[,2L], nomatch = 0L)) { # this will also be TRUE if above .remPeriod == 0 (SIS-like with pseudo-R-event) # re-susceptibility (R->S), thus update set of susceptibles resusceptible <- Sevents[.Seventidx,1L] susceptibles <- c(susceptibles, resusceptible) } # update event history eval(addNextEvent) } else { ## Simulated time point lies within the thinning period ## => rejection sampling step ct <- ct + T if (length(h0ChangePoints) > 0L) {# i.e. if non-constant baseline # Update intensities for rejection probability at new ct eval(lambdaCalc) } if (mustReject()) { pointRejected <- TRUE next } # At this point, we have an actual event! => # Sample the individual who becomes infected with probabilities # according to the intensity proportions victimSindex <- sample(length(susceptibles), 1L, prob = lambdaS/lambdaStar) victim <- susceptibles[victimSindex] eventTimes <- c(eventTimes, ct) Revents <- rbind(Revents, c(victim, ct + infPeriod(ids[victim]))) susceptibles <- susceptibles[-victimSindex] infected <- c(infected, victim) # Add to history nextEvent[victim,6L] <- 1 eval(addNextEvent) } } ############## ### Return ### ############## if (hadNumericalProblemsInf) { warning("simulation ended due to an infinite overall infection rate") } if (hadNumericalProblems0) { warning("occasionally, the overall infection rate was numerically ", "equal to 0 although there were individuals at risk") } if (trace > 0L) { cat("Converting the event history into a data.frame (\"epidata\") ...\n") } epi <- as.data.frame(evHist[seq_len(nObs*(block-1)),,drop=FALSE]) epi$id <- factor(ids[epi$id], levels = ids) rownames(epi) <- NULL attr(epi, "eventTimes") <- eventTimes attr(epi, "timeRange") <- c(timeIntervals[1L,1L], ct) attr(epi, "coords.cols") <- 7L + seq_len(ncol(coords)) attr(epi, "f") <- f attr(epi, "w") <- w attr(epi, "config") <- list(h0 = h0$exact, beta = beta, alpha = alpha) attr(epi, "call") <- cl attr(epi, "terms") <- Terms class(epi) <- c("simEpidata", "epidata", "data.frame") if (trace > 0L) { cat("Done.\n") } return(epi) } ### We define no plot-method for simEpidata (as a wrapper for intensityPlot), ### because we want plot(simEpidataObject) to use the inherited method plot.epidata ### which shows the evolution of the numbers of individuals in states S, I, and R ################################################################################ # A 'simulate' method for objects of class "twinSIR". ################################################################################ simulate.twinSIR <- function (object, nsim = 1, seed = 1, infPeriod = NULL, remPeriod = NULL, end = diff(range(object$intervals)), trace = FALSE, .allocate = NULL, data = object$data, ...) { theta <- coef(object) px <- ncol(object$model$X) pz <- ncol(object$model$Z) nh0 <- attr(object$terms, "intercept") * length(object$nEvents) f <- object$model$f # contains only the f's used in the model formula w <- object$model$w # contains only the w's used in the model formula if (any(missingf <- !names(f) %in% colnames(object$model$X))) { stop("simulation requires distance functions 'f', missing for: ", paste(colnames(object$model$X)[missingf], collapse=", ")) } if (any(missingw <- !names(w) %in% colnames(object$model$X))) { stop("simulation requires functions 'w', missing for: ", paste(colnames(object$model$X)[missingw], collapse=", ")) } formulaLHS <- "cbind(start, stop)" formulaRHS <- paste(c(as.integer(nh0 > 0), # endemic intercept? names(theta)[px+nh0+seq_len(pz-nh0)]), collapse = " + ") formula <- formula(paste(formulaLHS, formulaRHS, sep="~"), env = environment(formula(object))) h0 <- if (nh0 == 0L) { if (pz == 0L) { -Inf # no endemic component at all (exp(-Inf) == 0) } else { 0 # endemic covariates act on 0-log-baseline hazard } } else { .h0 <- stepfun(x = object$intervals[1:nh0], y = c(0,theta[px+seq_len(nh0)]), right = FALSE) list(exact = .h0, upper = .h0) } if (!inherits(data, "epidata")) { stop("invalid 'data' argument: use function 'twinSIR' with ", "'keep.data = TRUE'") } if (is.null(infPeriod) || is.null(remPeriod)) { s <- summary(data) eventsByID <- s$byID if (is.null(infPeriod)) { infPeriod <- if (s$type == "SI") { function (ids) rep.int(Inf, length(ids)) } else { # SIR, SIRS or SIS eventsByID$infPeriod <- eventsByID$time.R - eventsByID$time.I meanInfPeriodByID <- if (s$type %in% c("SIRS", "SIS")) { c(tapply(eventsByID$infPeriod, list(eventsByID$id), mean, na.rm = TRUE, simplify = TRUE)) } else { structure(eventsByID$infPeriod, names = eventsByID$id) } meanInfPeriod <- mean(meanInfPeriodByID, na.rm = TRUE) if (is.na(meanInfPeriod)) { stop("'infPeriod = NULL' invalid: ", "no infection periods observed") } function (ids) { infPeriods <- meanInfPeriodByID # named vector infPeriods[is.na(infPeriods)] <- meanInfPeriod infPeriods[ids] } } } if (is.null(remPeriod)) { remPeriod <- if (s$type == "SIRS") { eventsByID$remPeriod <- eventsByID$time.S - eventsByID$time.R meanRemPeriodByID <- c(tapply(eventsByID$remPeriod, list(eventsByID$id), mean, na.rm = TRUE, simplify = TRUE)) meanRemPeriod <- mean(meanRemPeriodByID, na.rm = TRUE) function (ids) { remPeriods <- meanRemPeriodByID # named vector remPeriods[is.na(remPeriods)] <- meanRemPeriod remPeriods[ids] } } else if (s$type == "SIS") { function (ids) rep.int(0, length(ids)) } else { # SIR or SI function (ids) rep.int(Inf, length(ids)) } } } set.seed(seed) res <- replicate(nsim, simEpidata(formula, data = data, beta = theta[px + nh0 + seq_len(pz-nh0)], h0 = h0, f = f, w = w, alpha = theta[seq_len(px)], infPeriod = infPeriod, remPeriod = remPeriod, end = end, trace = trace, .allocate = .allocate), simplify = FALSE ) if (nsim == 1L) res[[1L]] else res } surveillance/R/algo_rogerson.R0000644000176200001440000004030314615162374016143 0ustar liggesusers################################################### ### chunk number 1: ################################################### ################################################################### # Average Run Lengths for CUSUMs using Markov Chain approach # # based on the program of Hawkins, D. M. (1992) # "Evaluation of Average Run Lengths of Cumulative Sum Charts # for an Arbitrary Data Distribution" # Communications in Statistics--Simulation. 21(4) 1001-1020. #--------------------------------------------------------------- # # for discrete distributions (i.e. Pois, Bin) # and upward CUSUMS (increasing rate,probability) # # Parameters: # h - decision interval h # k - reference value k # distr - "poisson" or "binomial" # theta - distribution parameter for cdf distr, e.g. lambda for ppois, p for pbinomial # W - winsorizing value W (for robust CUSUM) # to get a nonrobust CUSUM set W > k+h # digits - k and h are rounded to digits decimal places # ... - further arguments for distribution # i.e. number of trials n for binomial (defaults to n=1) # # Returns: # ARL - one-sided ARL of the regular (no-head-start) CUSUM ################################################################### arlCusum <- function(h=10, k=3, theta=2.4, distr=c("poisson","binomial"), W=NULL,digits=1,...){ h <- round(h,digits) k <- round(k,digits) #cat("h",h,"k",k,"\n") distr <- match.arg(distr,c("poisson","binomial")) ############## # cdf of a binomial variate with fixed sample size pbinomial <- function(x,p,n=1){ pbinom(x,size=n,prob=p) } ######## distribution <- switch(distr, "poisson" = ppois, "binomial" = pbinomial ) #no winsorization if(is.null(W)) W <- ceiling(h+k+1) # common denominator of h and k denrat <- commonDenom(h,k,digits=digits) #cat("h =",h,"k =",k,"denrat",denrat,"\n") # check parameters for feasibility if(h <=0) stop("Nonpositive decision interval\n") if(W <= k) stop("Winsorization value less than reference value\n") K <- as.integer(k*denrat+0.5) N <- as.integer(denrat) M <- as.integer(h*denrat -0.5) w <- as.integer(W*denrat+0.5) deviat <- abs(K-k*denrat)+abs(M-h*denrat+1)+abs(w-W*denrat) if(deviat > .01) stop("h, k or W not a multiple of 1/denrat\n") # determine probabilities x <- seq(((-M-1)+K)/N,(M+K)/N,by=(1/denrat)) probs <- distribution(x, theta,...) # Winsorization (any observation exceeding some threshold value W is replaced by W # CUSUM is then: S_n = max{0, S_n-1 + min(X_n,W) - k} probs[x>=W] <- 1 #construct transition matrix transition <- matrix(NA,M+1,M+1) transition[1,1] <- probs[(M+2)] #Pr(X <= k) transition[-1,1] <- probs[(M+2)-(1:M)] #Pr(X <= -j+ k) ,j=1,2,...,h-1 transition[1,-1] <- probs[(M+2)+(1:M)]- probs[(M+2)+(1:M)-1] #Pr(X = j+ k) , j=1,2,...,h-1 idx <-rep((M+2):((M+2)+M-1),M)-rep(0:(M-1),each=M) transition[-1,-1] <- matrix(probs[idx]-probs[idx-1],nrow=M,ncol=M,byrow=TRUE) #print(transition) # I - transition matrix R IminusR <- diag(1,M+1) - transition #Solve might work poorly in some cases res <- try(solve(IminusR)%*%rep(1,M+1),silent=TRUE) # res <- try(qr.solve(IminusR)%*%rep(1,M+1),silent=TRUE) if(inherits(res, "try-error")){ warning("I-R singular\n") return(NA) } ARL <- res[1] #FIRARL - one-sided ARL of the FIR CUSUM with head start 0.5h FIRARL <- res[(M+1)/2+1] return(list(ARL=ARL,FIR.ARL=FIRARL)) } ################################################################# # find smallest common denominator of x and y, # i.e find an integer N so that x=X/N and y=Y/N (with X,Y integer) ################################################################# commonDenom <- function(x,y,digits=1){ x <- round(x,digits) y <- round(y,digits) which.max( ( round((x+y)*1:(10^digits),digits)%%1 == 0 ) # (x+y)*N is integer & ( round(x*1:(10^digits),digits)%%1 == 0 ) # x*N is integer & ( round(y*1:(10^digits),digits)%%1 == 0 ) ) # y*N is integer } ################################################### ### chunk number 2: ################################################### ################################################################# # find reference value k for a Poisson /Binomial CUSUM # designed to detect a change from theta0 to theta1 # # digits - k is rounded to digits decimal places if roundK=TRUE # ... - extra arguments for distribution, # i.e number of trials n for binomial, set to 1 if not specified ################################################################## findK <- function(theta0,theta1,distr=c("poisson","binomial"),roundK=FALSE,digits=1,...){ n <- list(...)$n if(is.null(n)) n <- 1 distr <- match.arg(distr,c("poisson","binomial")) k <- switch(distr, "poisson" = (theta1 - theta0)/(log(theta1)-log(theta0)), "binomial" = -n*(log(1-theta1)-log(1-theta0))/(log(theta1*(1-theta0))-log(theta0*(1-theta1))) ) # for discrete data the # Cusum values are of form integer - integer multiple of k # so there is a limited set of possible values of h (and ARL) if(roundK){ # add/subtract 0.05 to k so that k isn't an integer or a multiple of 0.5 # when rounded (then the Markov Chain has more states) if(round(k,digits=digits)%%1 == 0.5 | round(k,digits=digits)%%1 == 0){ round.k <- ((k-floor(k))*10^digits)%%1 #print(roundK) if(round.k < .5 ) k <- k+0.5*10^(-digits) else k <- k-0.5*10^(-digits) } k <- round(k,digits=digits) } return(k) } ################################################### ### chunk number 3: ################################################### ################################################################## # function to find the decision limit h so that the # average run length for a Poisson/Binomial CUSUM with in-control # parameter theta0 is (approx.) ARL0 # # Params: # ARL0 - desired in-control ARL # theta0 - in-control parameter # s - change to detect (in stdev) # rel.tol - (relative) tolerance (if attainable) # roundK - should k be rounded up to digits decimal place (avoiding integers, multiples of 0.5) # digits - h is rounded to digits decimal places # distr - "poisson" or "binomial" # ... - further arguments for distribution (i.e number of trials n for "binomial") # # Returns: # vector c(theta0, h, k, ARL, rel.tol) ################################################################# findH <- function(ARL0,theta0,s=1, rel.tol=0.03,roundK=TRUE,distr=c("poisson","binomial"),digits=1,FIR=FALSE,...){ distr <- match.arg(distr,c("poisson","binomial")) #FIR-ARL or zero-start ARL? fir.arl <- ifelse(FIR,2,1) theta1 <- getTheta1(theta0,s=s,distr=distr) k <- findK(theta0,theta1,roundK=roundK,distr=distr,digits=digits,...) # compute ARL for two (arbitrary) points (h1, h2) h1 <- min(12,4*k) arl1 <- arlCusum(h=h1,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- 1 #ensure h1 and arl1 are not too small (-> log. interpolation is better) while(arl1 < 100){ h1 <- 2*h1 arl1 <- arlCusum(h=h1,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 } h2 <- h1*2^(sign(ARL0-arl1)) arl2 <- arlCusum(h=h2,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 # determine h (that leads to an ARL of ARL0) using logarithmic interpolation h.hat <- round(logInterpolation(ARL0,h1,h2,arl1,arl2),digits) # what's the actual ARL for h arl <- arlCusum(h=h.hat,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 relTol <- abs((arl-ARL0)/ARL0) #cat("theta0:", theta0,"k:", k,"h:", h.hat,"ARL:",arl,"relTol:", relTol,"\n") i<-0 signs <- sign(ARL0-arl) convergence <- relTol < rel.tol if(convergence){ # print(nEval) return(c("theta0"=theta0,"h"=h.hat,"k"=k,"ARL"=arl,"rel.tol"=relTol)) } # find hLow so that the target ARL0 is in interval c(ARL(hLow), ARL(h.hat)) denrat <- 1/commonDenom(1,k,digits=digits) steps <- denrat #max(0.1,denrat) # cat("denrat",denrat,"steps",steps,"\n") hLow <- round(h.hat+signs*steps,digits) arlLow <- arlCusum(h=hLow,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 relTol.Low <- abs((arlLow-ARL0)/ARL0) if(relTol.Low < rel.tol){ # print(nEval) return(c("theta0"=theta0,"h"=hLow,"k"=k,"ARL"=arlLow,"rel.tol"=relTol.Low)) } while(sign(ARL0-arl)*sign(ARL0-arlLow)>0){ # cat("steps:",nEval,"\n") h.hat <- hLow arl <-arlLow relTol <- relTol.Low signs <- sign(ARL0-arl) hLow <- round(h.hat+signs*steps,digits) arlLow <- arlCusum(h=hLow,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 relTol.Low <- abs((arlLow-ARL0)/ARL0) if(relTol.Low < rel.tol){ # print(nEval) return(c("theta0"=theta0,"h"=hLow,"k"=k,"ARL"=arlLow,"rel.tol"=relTol.Low)) } # cat("hLow:", hLow,"ARL:",arlLow,"relTol:",relTol.Low,"\n") } # cat("hLow:", hLow,"ARL:",arlLow,"relTol:",relTol.Low,"\n") # return the ARL which is at least the target ARL0 if(sign(ARL0-arlLow)<0){ h.hat <- hLow arl <- arlLow relTol <- relTol.Low } #print(nEval) return(c("theta0"=theta0,"h"=h.hat,"k"=k,"ARL"=arl,"rel.tol"=relTol)) } ################################################################## # find h for various values theta0 # # Params: # theta0 - vector of in control parameter # ARL0 - desired in-control ARL # # Returns: # matrix with columns c(theta0, h, k, ARL, rel.Tol) ################################################################## hValues <- function(theta0,ARL0,rel.tol=0.02,s=1,roundK=TRUE,digits=1,distr=c("poisson","binomial"),FIR=FALSE,...){ distr <- match.arg(distr,c("poisson","binomial")) n <- list(...)$n hVals <- t(sapply(theta0,findH,ARL0=ARL0,rel.tol=rel.tol,s=s,roundK=roundK,digits=digits,distr=distr,FIR=FIR,...)) res <- list(hValues=hVals,ARL0=ARL0,s=s,rel.tol=rel.tol,distribution=distr,firARL=FIR) res$n <- n return(res) } ################################################################## # get decision interval h and reference value k for CUSUM with # in-control parameter theta using a "table" of h values # # theta - in-control parameter # hValues - matrix with columns c(theta, h) ################################################################## getHK <- function(theta,hValues){ one<- function(theta){ theta.diff <- abs(hValues[,1]-theta) idx <- which.min(theta.diff) hk <- hValues[idx,2:3] if(theta.diff[idx] > 0.05) warning("table doesn't contain h value for theta = ",theta,"\n") return(hk) } t(sapply(theta,one)) } ################################################################# # get out-of-control parameter theta1 # # X ~ Po(lambda0): theta1 = lambda0 + s*sqrt(lambda0) # theta1 corresponds to a s*stdev increase in mean # # X ~Bin(n,pi) # H0: Odds of failure =pi/(1-pi) vs H1: Odds = s*pi/(1-pi) # prob of failure under H1 is then pi1 = s*pi0/(1+(s-1)*pi0) ################################################################# getTheta1 <- function(theta0,s=1,distr=c("poisson","binomial")){ distr <- match.arg(distr,c("poisson","binomial")) theta1 <- switch(distr, "poisson" = theta0 + s*sqrt(theta0), "binomial" = s*theta0/(1-theta0+s*theta0) ) return(theta1) } ################################################################# # logarithmic interpolation, i.e. linear interpolation of ln(f(x)) # in points (x0,ln(f0)), (x1,ln(f1)) # # (ln(f)-ln(f0))/(ln(f1)-ln(f0)) = (x-x0)/(x1-x0) # # returns: x # # to find decision limit h for given ARL0 set x = h, f(h) = ARL0(h,k) # and solve equation for x ################################################################# logInterpolation <- function(f,x0,x1,f0,f1){ x0 + ((x1-x0)*(log(f)-log(f0)))/(log(f1)-log(f0)) } ################################################### ### chunk number 4: ################################################### # control - list with # range - vector of indices in the observed matrix to monitor # theta0t - matrix with in-control parameter, needs to be specified # ARL0 - desired average run length for each one of the univariate CUSUMs # s - change to detect # hValues - matrix with decision intervals for theta0_t # reset - if TRUE, the CUSUM is reset to zero after an alarm # nt - time varying sample sizes (for Binomial), # matrix of same dimension as theta0t algo.rogerson <- function(disProgObj, control=list(range=range, theta0t=NULL, ARL0=NULL, s=NULL, hValues=NULL, distribution=c("poisson","binomial"), nt=NULL, FIR=FALSE,limit=NULL, digits=1)){ if (is.null(control$s)) { stop("Error: the s value is not specified") } if (is.null(control$hValues)) { stop("Error: the hValues are not specified") } # if (is.null(control$ARL0)) { stop("Error: no ARL0 value specified") } #Default value is poisson control$distribution <- match.arg(control$distribution,c("poisson","binomial")) if(is.null(control$FIR)){ control$FIR <- FALSE } if(is.null(control$limit)) control$limit <- -1 if(is.null(control$digits)) control$digits <- 1 x <- as.matrix(disProgObj$observed[control$range,]) if (is.null(control$theta0t)) { stop("Error: no theta0t vector specified") } else { theta0t <- as.matrix(control$theta0t) } #theta0 <- colMeans(theta0t) #size = length of process size <- nrow(x) nAreas <- ncol(theta0t) theta0 <- rep(mean(theta0t),nAreas) #check dimensions of x, theta0t if(size !=nrow(theta0t) | (ncol(x)%%nAreas)!=0) stop("wrong dimensions\n") reps <- ncol(x)/nAreas #time-varying size n for Binomial nt<-control$nt if(control$distribution=="binomial"){ if(is.null(nt)) nt <- matrix(rep(control$n,size),ncol=1) else nt<-as.matrix(nt) } theta1 <- getTheta1(theta0,s=control$s,distr=control$distribution) theta1t <- getTheta1(theta0t,s=control$s,distr=control$distribution) hk <- getHK(theta0,hValues=control$hValues) k <- hk[,"k"] h <- hk[,"h"] #cat("k =",k,"h =",h,"\n") if(control$FIR){ control$limit <- 0.5 fir <- h/2 } else { fir <- 0 } #cat("fir",fir,"\n") # initialize the necessary vectors # start with cusum[1] = 0 cusum <- matrix(0,nrow=(size+1), ncol=nAreas*reps) cusum[1,] <- fir alarm <- matrix(data = 0, nrow = (size+1), ncol = nAreas*reps) upperbound <- matrix(0,nrow=(size+1),ncol=reps) #CUSUM as in Rogerson (2004) for(t in 1:size){ #choose k_t based upon theta_0t and theta_1t hkt <- getHK(theta0t[t,],hValues=control$hValues) #kt <- hkt[,"k"] kt <- findK(theta0t[t,],theta1t[t,],distr=control$distribution,roundK=TRUE, digits=control$digits, n=if(control$distribution=="binomial") nt[t,]) #for given k_t (theta0t) and ARL_0 choose h_t ht <- hkt[,"h"] ct <- h/ht # compute cumulative sums of observations x corrected with the # reference value kt, scaled by factor ct # cusum[t+1,]<- pmax(0, cusum[t,] + ct*(x[t,]-kt)) # reset CUSUM to zero if an alarm is given at time t if((control$limit >= 0) & any(alarm[t,]==1)){ cusum.t <- cusum[t,] cusum.t[alarm[t,]==1] <- pmin(cusum[t,], control$limit*h)[alarm[t,]==1] cusum[t+1,]<- pmax(0, cusum.t + ct*(x[t,]-kt)) } else { cusum[t+1,]<- pmax(0, cusum[t,] + ct*(x[t,]-kt)) } # give alarm if the cusum is larger than h alarm[t+1,] <- cusum[t+1,] >= h # in case speed is premium then one might want to comment this line if((control$limit >= 0) & any(alarm[t,]==1)) { upperbound[t+1,] <- ceiling( (h-cusum.t)/ct + kt) } else { upperbound[t+1,] <- ceiling( (h-cusum[t,])/ct + kt) } #Ensure upperbound is positive (this should always be the case) if (upperbound[t+1,] < 0) { upperbound[t+1,] <- 0} } # discard cusum[1] and alarm[1] cusum <- as.matrix(cusum[-1,]) alarm <- as.matrix(alarm[-1,]) upperbound <- as.matrix(upperbound[-1,]) #Add name and data name to control object. control$name <- paste("CUSUM Rogerson:",control$distribution) control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=c(control,list(h=h))) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/formatPval.R0000644000176200001440000000141613117532200015401 0ustar liggesusers################################################################################ ### Yet another P-value formatter, using R's format.pval() ### ### Copyright (C) 2013,2015,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ formatPval <- function (pv, eps = 1e-4, scientific = FALSE, ...) { format1 <- function (p) format.pval(p, digits = if (p < 10*eps) 1 else 2, eps = eps, nsmall = 2, scientific = scientific, ...) vapply(X = pv, FUN = format1, FUN.VALUE = "", USE.NAMES = TRUE) } surveillance/R/twinstim_step.R0000644000176200001440000001412114426171115016204 0ustar liggesusers################################################################################ ### Functions and methods to make step() work for twinstim objects ### (restricted to one component at a time) ### ### Copyright (C) 2013 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### To make step() work, we are dealing with modified twinstim objects: ### object$formula is replaced by the result of terms(object), which selects only ### one of the two components! The original full formula specification is ### retained in the new "formulae" component. ### We let this special class inherit from "twinstim" such that, e.g., ### extractAIC.twinstim is used for its objects. However, this is tricky since ### the classes are actually incompatible in the formula specification. Only ### methods which don't use the $formula part work, but this constraint holds ### for what is needed to run step(), if we define some additional specific ### methods for this class. twinstim_stependemic <- twinstim_stepepidemic <- function (object) { stepClass <- grep("twinstim_step", sys.call()[[1L]], value=TRUE) ##<- since sys.call()[[1L]] may also be surveillance:::... if (identical(class(object), "twinstim")) { component <- sub("twinstim_step", "", stepClass) object$formulae <- object$formula object$formula <- object$formulae[[component]] class(object) <- c(stepClass, "twinstim") } else if (!inherits(object, stepClass)) stop("unintended use") object } ## In the first step() loop, object$call$formula is set to terms(object). Since ## there is no "formula" argument to twinstim(), we must remove it from the call ## before update()ing. We also have to convert object$formula to the complete ## formula specification (a named list) and remove the original one ($formulae). .step2twinstim <- function (object) { ##if (identical(class(object), "twinstim")) return(object) component <- sub("^twinstim_step", "", class(object)[1]) stopifnot(component %in% c("endemic", "epidemic")) object$call$formula <- NULL object$formula <- modifyList( object$formulae, setNames(list(formula(object$formula)), component) ) object$formulae <- NULL class(object) <- "twinstim" object } ### special update- and terms-methods for use through stepComponent() below update.twinstim_stependemic <- function (object, endemic, ..., evaluate = TRUE) { object <- .step2twinstim(object) res <- NextMethod("update") # use update.twinstim() ## we need to keep the special class such that step() will keep invoking ## the special update- and terms-methods on the result stepClass <- sub("update.", "", .Method, fixed=TRUE) ##<- or: .Class[1L], or: grep("step", class(object), value=TRUE) if (evaluate) { do.call(stepClass, alist(res)) } else { as.call(list(call(":::", as.name("surveillance"), as.name(stepClass)), res)) ## the call will only be evaluated within stats:::drop1.default() or ## stats:::add1.default, where the "stepClass" constructor function ## (twinstim_stependemic or twinstim_stepepidemic) is not visible; ## we thus have to use ":::". } } update.twinstim_stepepidemic <- function (object, epidemic, ..., evaluate = TRUE) {} body(update.twinstim_stepepidemic) <- body(update.twinstim_stependemic) terms.twinstim_stependemic <- terms.twinstim_stepepidemic <- function (x, ...) terms(x$formula) ### Function to perform AIC-based model selection (component-specific) ### This is essentially a wrapper around stats::step() stepComponent <- function (object, component = c("endemic", "epidemic"), scope = list(upper=object$formula[[component]]), direction = "both", trace = 2, verbose = FALSE, ...) { component <- match.arg(component) ## Convert to special twinstim class where $formula is the component formula object_step <- do.call(paste0("twinstim_step", component), alist(object)) ## silent optimizations if (trace <= 2) object_step$call$optim.args$control$trace <- object_step$optim.args$control$trace <- 0 object_step$call$verbose <- verbose ## Run the selection procedure res <- step(object_step, scope = scope, direction = direction, trace = trace, ...) ## Restore original trace and verbose arguments if (trace <= 2) { res$call$optim.args$control <- object$call$optim.args$control res$optim.args$control <- object$optim.args$control } res$call$verbose <- object$call$verbose ## Convert back to original class .step2twinstim(res) } ### add1.default and drop1.default work without problems through the above ### implementation of stepComponent() using the tricky twinstim classes, ### where object$formula is replaced by the requested component's formula. ### However, for stand-alone use of add1 and drop1, we need specialised methods. add1.twinstim <- drop1.twinstim <- function (object, scope, component = c("endemic", "epidemic"), trace = 2, ...) { component <- match.arg(component) ## Convert to special twinstim class where $formula is the component formula object <- do.call(paste0("twinstim_step", component), alist(object)) ## Call the default method (unfortunately not exported from stats) ## Note that the next method chosen is "unchanged if the class of the ## dispatching argument is changed" (see ?NextMethod) ## (the "component" argument will be part of "..." and passed further on to ## extractAIC.twinstim() where it is unused) NextMethod(trace=trace) } add1.twinstim_stependemic <- drop1.twinstim_stependemic <- function (object, scope, ...) NextMethod(component="endemic") add1.twinstim_stepepidemic <- drop1.twinstim_stepepidemic <- function (object, scope, ...) NextMethod(component="epidemic") surveillance/R/twinstim_siaf_powerlawL.R0000644000176200001440000001705714615162374020231 0ustar liggesusers################################################################################ ### _L_agged power-law kernel f(s) = (||s||/sigma)^-d for ||s|| >= sigma, else 1 ### Similar to the density of the Pareto distribution (but value 1 for < sigma) ### ### Copyright (C) 2013-2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ siaf.powerlawL <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## helper expression, note: logpars=c(logscale=logsigma, logd=logd) tmp <- expression( logsigma <- logpars[[1L]], # used "[[" to drop names logd <- logpars[[2L]], sigma <- exp(logsigma), d <- exp(logd) ) ## spatial kernel f <- function (s, logpars, types = NULL) {} body(f) <- as.call(c(as.name("{"), tmp, expression( sLength <- sqrt(.rowSums(s^2, L <- length(s)/2, 2L)), fvals <- rep.int(1, L), inPLrange <- which(sLength > sigma), fvals[inPLrange] <- (sLength[inPLrange]/sigma)^-d, fvals ))) environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.powerlawL", engine = engine) ## fast integration of f over a circular domain Fcircle <- function (r, logpars, type = NULL) {} body(Fcircle) <- as.call(c(as.name("{"), tmp, expression( ## trivial case: radius of integration domain < sigma (=> constant f) if (r <= sigma) return(pi * r^2), ## otherwise, if r > sigma, integration via f^-1 fofr <- (r/sigma)^-d, basevolume <- pi * r^2 * fofr, # cylinder volume up to height f(r) intfinvsq <- sigma^2 * if (d == 2) -d*log(sigma/r) else { d/(d-2) * (1 - (sigma/r)^(d-2)) }, basevolume + pi * intfinvsq ) )) environment(Fcircle) <- baseenv() ## derivative of f wrt logpars ## CAVE: the derivative of f wrt logsigma is mathematically NaN at x=sigma ## this non-differentiability at the threshold causes false convergence ## warnings by nlminb but is otherwise not relevant (could use slow and ## robust Nelder-Mead instead) deriv <- function (s, logpars, types = NULL) {} body(deriv) <- as.call(c(as.name("{"), tmp, expression( sLength <- sqrt(.rowSums(s^2, L <- length(s)/2, 2L)), derivlogsigma <- derivlogd <- numeric(L), inPLrange <- which(sLength > sigma), fPL <- (sLength[inPLrange]/sigma)^-d, derivlogsigma[inPLrange] <- d * fPL, derivlogd[inPLrange] <- fPL * log(fPL), cbind(derivlogsigma, derivlogd) ))) environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso( intrfr_names = c("intrfr.powerlawL.dlogsigma", "intrfr.powerlawL.dlogd"), engine = engine) ## simulate from the lagged power law (within a maximum distance 'ub') ##simulate <- siaf.simulatePC(intrfr.powerlawL) # <- generic simulator ##environment(simulate) <- getNamespace("surveillance") ## faster implementation taking advantage of the constant component: simulate <- function (n, logpars, type, ub) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) ## Sampling via polar coordinates and inversion method ## random angle theta <- runif(n, 0, 2*pi) ## sampling radius r ## trivial case u < sigma: p(r) \propto r on [0;u] if (ub < sigma) { r <- ub * sqrt(runif(n)) # inversion sampling ## now rotate each point by a random angle to cover all directions return(r * cbind(cos(theta), sin(theta))) } ## case u >= sigma: p(r) \propto r if r sample component unir <- runif(n) <= mass1 / (mass1 + mass2) ## samples from the uniform short-range component: n1 <- sum(unir) r1 <- sigma * sqrt(runif(n1)) # similar to the case u < sigma ## samples from power-law component: p2(r) \propto r^(-d+1) on [sigma;u] ## For d>2 only, we could use VGAM::rpareto(n,sigma,d-2), d=1 is trivial n2 <- n - n1 r2 <- if (d==1) runif(n2, sigma, ub) else { # inversion sampling P2inv <- if (d == 2) { function (z) ub^z * sigma^(1-z) } else { function (z) (z*ub^(2-d) + (1-z)*sigma^(2-d))^(1/(2-d)) } P2inv(runif(n2)) } ## put samples from both components together r <- c(r1, r2) ## now rotate each point by a random angle to cover all directions r * cbind(cos(theta), sin(theta)) } environment(simulate) <- getNamespace("stats") ## return the kernel specification list(f=f, F=F, Fcircle=Fcircle, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=2L, validpars=validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.powerlawL <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) pl <- which(R > sigma) upper <- R upper[pl] <- sigma res <- upper^2 / 2 # integral over x*constant part xplint <- if (d == 2) log(R[pl]/sigma) else (R[pl]^(2-d)-sigma^(2-d))/(2-d) res[pl] <- res[pl] + sigma^d * xplint res } ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) intrfr.powerlawL.dlogsigma <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) pl <- which(R > sigma) res <- numeric(length(R)) xplint <- if (d == 2) log(R[pl]/sigma) else (R[pl]^(2-d)-sigma^(2-d))/(2-d) res[pl] <- d * sigma^d * xplint res } ## local({ # validation via numerical integration -> tests/testthat/test-siafs.R ## p <- function (r, sigma, d) ## r * siaf.powerlawL()$deriv(cbind(r,0), log(c(sigma,d)))[,1L] ## Pnum <- function (r, sigma, d) sapply(r, function (.r) { ## integrate(p, 0, .r, sigma=sigma, d=d, rel.tol=1e-8)$value ## }) ## r <- c(1,2,5,10,20,50,100) ## dev.null <- sapply(c(1,2,1.6), function(d) stopifnot(isTRUE( ## all.equal(intrfr.powerlawL.dlogsigma(r, log(c(3, d))), Pnum(r, 3, d))))) ## }) ## integrate x * (df(x)/dlogd) from 0 to R (vectorized) intrfr.powerlawL.dlogd <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) pl <- which(R > sigma) res <- numeric(length(R)) res[pl] <- if (d == 2) -(sigma*log(R[pl]/sigma))^2 else (sigma^d * R[pl]^(2-d) * (d-2)*d*log(R[pl]/sigma) - d*(sigma^2 - R[pl]^(2-d)*sigma^d)) / (d-2)^2 res } surveillance/R/twinstim_tiaf_step.R0000644000176200001440000001252714426171115017217 0ustar liggesusers################################################################################ ### Step function implementation for temporal interaction ### ### Copyright (C) 2014 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ tiaf.step <- function (knots, maxRange = Inf, nTypes = 1, validpars = NULL) { knots <- sort(unique(as.vector(knots,mode="numeric"))) stopifnot(knots > 0, is.finite(knots), isScalar(maxRange), maxRange > knots) nknots <- length(knots) # = number of parameters (per type) knotsmax <- c(knots, maxRange) nknotsmax <- nknots + 1L allknots <- c(0, knots, maxRange) nallknots <- length(allknots) allknotsInf <- unique(c(allknots, Inf)) # ensure Inf as last element stopifnot(isScalar(nTypes <- as.integer(nTypes)), nTypes > 0L) npars <- nknots * nTypes .parintwidths <- rep.int(c(diff.default(knotsmax)), nTypes) .parintwidths[is.infinite(.parintwidths)] <- -1 ##<- in case maxRange=Inf, last interval width will always be multiplied by ## 0 and should give 0, but Inf would produce NaN, so we just set it to -1 ## the step function is right-continuous, intervals are [a,b) g <- if (nTypes > 1) { heights <- function (logvals) { # get matrix of type-specific heights dim(logvals) <- c(nknots, nTypes) rbind(1, exp(logvals), 0, deparse.level=0) } function (t, logvals, types) heights(logvals)[(types-1)*nallknots + .bincode(t, allknotsInf, right=FALSE)] } else { function (t, logvals, types = NULL) c(1,exp(logvals),0)[.bincode(t, allknotsInf, right=FALSE)] } G <- if (nTypes > 1) { typeheights <- function (logvals, type) # vector of type-specific heights c(1, exp(logvals[(type-1)*nknots+seq_len(nknots)])) as.function(c(alist(t=, logvals=, types=), substitute({ mapply(function (t, type) { knots2t <- c(0, pmin.int(knots, t), TMAX) sum(typeheights(logvals, type) * diff.default(knots2t)) }, t, types, SIMPLIFY=TRUE, USE.NAMES=FALSE) }, list(TMAX = if (is.finite(maxRange)) quote(min(t,maxRange)) else quote(t))))) } else { ## function (t, logvals, types = NULL) { ## vapply(t, function (t) { ## knots2t <- c(0, pmin.int(knots, t), min(t, maxRange)) ## sum(c(1,exp(logvals)) * diff.default(knots2t)) ## }, 0, USE.NAMES=FALSE) # vapply is faster than sapply ## } as.function(c(alist(t=, logvals=, types = NULL), substitute({ ##omtk <- outer(t, knots, pmin.int), bare-bone implementation: omtk <- pmin.int(rep.int(knots, rep.int(L <- length(t), nknots)), t) dim(omtk) <- c(L, nknots) .colSums(apply(cbind(0, omtk, TMAX, deparse.level=0), 1L, diff.default) * c(1,exp(logvals)), nknotsmax, L) }, list(TMAX = if (is.finite(maxRange)) quote(pmin.int(t,maxRange)) else quote(t))))) } ## the derivative is simply the height corresponding to (t, type) and is 0 ## outside this interval/type deriv <- function (t, logvals, types) { whichvals <- .bincode(t, knotsmax, right=FALSE) fixedheight <- is.na(whichvals) ##<- intervals number 1 and 'nallknots' don't correspond to parameters whichvals <- whichvals + (types-1)*nknots # select type parameter whichvals[fixedheight] <- 0 ## we do a bare-bone implementation of relevant parts of ## deriv <- outer(whichvals, seq_len(npars), "==") * rep(exp(logvals), each=L) repL <- rep.int(L <- length(t), npars) Y <- rep.int(seq_len(npars), repL) # column index Z <- rep.int(exp(logvals), repL) # value ##<- 6x faster than rep(..., each=L) res <- (Y == whichvals) * Z dim(res) <- c(L, npars) res } ## only tiny modification necessary for nTypes == 1 if (nTypes == 1) { body(deriv)[[grep("types", body(deriv))]] <- NULL formals(deriv)["types"] <- list(NULL) } Deriv <- deriv body(Deriv) <- as.call(append(as.list(body(Deriv)), expression( partwidth <- t - knots[whichvals] ), after=2L)) body(Deriv)[[grep("whichvals[fixedheight]", body(Deriv), fixed=TRUE)]] <- quote(whichvals[fixedheight] <- partwidth[fixedheight] <- 0) body(Deriv) <- as.call(append(as.list(body(Deriv)), expression( W <- rep.int(.parintwidths, repL) ), after=grep("Z <-", body(Deriv)))) body(Deriv)[[grep("res <-", body(Deriv))]] <- if (nTypes == 1) { quote(res <- ((Y < whichvals | t >= maxRange) * W + (Y == whichvals) * partwidth) * Z) } else { quote(res <- ((Y > (types-1)*nknots & (Y < whichvals | t >= maxRange)) * W + (Y == whichvals) * partwidth) * Z) } ## Done res <- list(g = g, G = G, deriv = deriv, Deriv = Deriv, ## FIXME: simulate = simulate, npars = npars, validpars = validpars) attr(res, "knots") <- knots attr(res, "maxRange") <- maxRange res } surveillance/R/functionTable.R0000644000176200001440000000711513122025572016072 0ustar liggesusers################################################################################ ### Categorize functions and methods for a specific class ### (this is an internal utility function used in some of the package vignettes) ### ### Copyright (C) 2014-2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ functionTable <- function (class, functions = list(), format = "\\texttt", format.nongenerics = "\\textit", horizontal = FALSE) { ## categorization of known generic functions KNOWNGENERICS <- list( Display = c("print", "summary", "xtable", "plot", "animate", "as.stepfun", "intensityplot"), Subset = c("[", "head", "tail", "subset"), Extract = c("nobs", "marks", "coef", "fixef", "ranef", "vcov", "confint", "coeflist", "logLik", "AIC", "extractAIC", "profile", "residuals", "terms", "formula", "R0"), Modify = c("update", "untie", "add1", "drop1"), Convert = c("as.epidata"), Other = c("predict", "simulate", "pit", "scores", "calibrationTest") ) if (is.null(names(functions))) # put all functions in category "Other" functions <- list(Other = unlist(functions, use.names=FALSE)) ## union known generics with specified functions categoryNames <- union(names(KNOWNGENERICS), names(functions)) knowngenerics <- mapply( FUN = union, setNames(KNOWNGENERICS[categoryNames], categoryNames), functions[categoryNames], SIMPLIFY = FALSE, USE.NAMES = TRUE) ## get registered methods and associated generics allmethods <- methods(class = class) allgenerics <- attr(allmethods, "info")$generic genericsList <- lapply(X = knowngenerics, FUN = intersect, allgenerics) genericsList$Other <- c(genericsList$Other, setdiff(allgenerics, unlist(genericsList, use.names=FALSE))) ## all extra 'functions' are not generic or without a method for 'class' nongenericsList <- lapply(X = functions, FUN = function (fnames) { res <- setdiff(fnames, allgenerics) ## note: we do not check if these functions actually exist() if (length(res)) paste0(format.nongenerics, "{", res, "}") else res }) ## merge generics and non-generics functionList <- mapply(FUN = c, genericsList, nongenericsList[names(genericsList)], SIMPLIFY = FALSE, USE.NAMES = TRUE) ## transform list into a matrix by filling with empty cells categoryLengths <- lengths(functionList, use.names = FALSE) nrows <- max(categoryLengths) functionTable <- if (horizontal) { as.matrix(vapply(X = functionList[categoryLengths > 0L], FUN = function (x) paste0(format, "{", x, "}", collapse = ", "), FUN.VALUE = character(1L), USE.NAMES = TRUE)) } else { vapply(X = functionList[categoryLengths > 0L], FUN = function (x) c(paste0(format, "{", x, "}"), rep.int(NA_character_, nrows-length(x))), FUN.VALUE = character(nrows), USE.NAMES = TRUE) } ## done functionTable #xtable::xtable(functionTable, ...) } surveillance/R/hhh4_amplitudeShift.R0000644000176200001440000000452313627533641017205 0ustar liggesusers## convert between sin/cos and amplitude/shift formulation ################################################### # y = gamma*sin(omega*t)+delta*cos(omega*t) # = A*sin(omega*t + phi) # with Amplitude A= sqrt(gamma^2+delta^2) # and shift phi= arctan(delta/gamma) ################################################# sinCos2amplitudeShift <- function(params){ # number of sin+cos terms lengthParams <- length(params) if(lengthParams %% 2 != 0) stop("wrong number of params") index.sin <- seq(1,lengthParams,by=2) one <- function(i=1){ coef.sin <- params[i] coef.cos <- params[i+1] amplitude <- sqrt(coef.cos^2+coef.sin^2) shift <- atan2(coef.cos, coef.sin) return(c(amplitude,shift)) } return(c(sapply(index.sin,one))) } amplitudeShift2sinCos <- function(params){ lengthParams <- length(params) if (lengthParams %% 2 != 0) stop("wrong number of params") index.A <- seq(1, lengthParams, by = 2) one <- function(i = 1) { coef.A <- params[i] coef.shift <- params[i + 1] coef.cos <- -coef.A*tan(coef.shift)/sqrt(1+tan(coef.shift)^2) coef.sin <- -coef.A/sqrt(1+tan(coef.shift)^2) return(c(coef.sin,coef.cos)) } return(c(sapply(index.A, one))) } ############################################## # y = gamma*sin(omega*t)+delta*cos(omega*t) # g(gamma,delta) = [sqrt(gamma^2+delta^2), arctan(delta/gamma) ]' # compute jacobian (dg_i(x)/dx_j)_ij ############################################# jacobianAmplitudeShift <- function(params){ # number of sin+cos terms lengthParams <- length(params) if(lengthParams %% 2 != 0) stop("wrong number of params") index.sin <- seq(1,lengthParams,by=2) # function to compute jacobian of the transformation sinCos2AmplitudeShift() one <- function(i=1){ coef.sin <- params[i] coef.cos <- params[i+1] dAmplitude.dcoef.sin <- coef.sin/sqrt(coef.cos^2+coef.sin^2) dAmplitude.dcoef.cos <- coef.cos/sqrt(coef.cos^2+coef.sin^2) dShift.dcoef.sin <- - coef.cos/(coef.cos^2+coef.sin^2) dShift.dcoef.cos <- coef.sin/(coef.cos^2+coef.sin^2) return(c(dAmplitude.dcoef.sin,dShift.dcoef.sin,dAmplitude.dcoef.cos,dShift.dcoef.cos)) } jacobi<-sapply(index.sin,one) res <- matrix(0,nrow=lengthParams,ncol=lengthParams) j<-0 for (i in index.sin){ j<-j+1 res[i:(i+1),i:(i+1)] <- jacobi[,j] } return(res) } surveillance/R/epidata.R0000644000176200001440000010535714615162374014725 0ustar liggesusers################################################################################ ### Data structure "epidata" representing the SIR event history of a fixed ### geo-referenced population (e.g., farms, households) for twinSIR() analysis ### ### Copyright (C) 2008-2010, 2012, 2014-2018, 2020 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## CAVE: ## - we assume fixed coordinates (this is important since time-varying ## coordinates would result in more sophisticated and time consuming ## calculations of distance matrices) ! ## - in the first block (start = t0) all id's must be present (for coordinates) ## - those id's with atRiskY(t0) = 0 are taken as initially infectious ## - SIS epidemics are possible, but must be given as SIRS with pseudo R-events, ## i.e. individuals will be removed and become susceptible directly afterwards ################################################################################ ## Convert a simple data.frame with one row per individual and with columns for ## the times of becoming exposed/infectious/removed ## to the long "epidata" event history start/stop format. ## tE.col and tR.col can be missing corresponding to SIR, SEI, or SI data. ## NA's in time variables mean that the respective event has not yet occurred. ## Time-varying covariates are not supported by this converter. ################################################################################ as.epidata.data.frame <- function (data, t0, tE.col, tI.col, tR.col, id.col, coords.cols, f = list(), w = list(), D = dist, max.time = NULL, keep.cols = TRUE, ...) { if (missing(t0)) { return(NextMethod("as.epidata")) # as.epidata.default } ## drop individuals that have already been removed prior to t0 ## since they would otherwise be considered as initially infective ## (atRiskY = 0 in first time block) and never be removed if (!missing(tR.col)) { alreadyRemoved <- !is.na(data[[tR.col]]) & data[[tR.col]] <= t0 if (any(alreadyRemoved)) { data <- data[!alreadyRemoved,] message("Note: dropped rows with tR <= t0 (", paste0(which(alreadyRemoved), collapse = ", "), ")") } } ## parse max.time if (is.null(max.time) || is.na(max.time)) { # max(stop) is at last event max.time <- NA_real_ } else { stopifnot(max.time > t0) } ## parse id column id <- factor(data[[id.col]]) # removes unused levels stopifnot(!anyDuplicated(id), !is.na(id)) N <- nlevels(id) # = nrow(data) ## make time relative to t0 subtract_t0 <- function (x) as.numeric(x - t0) max.time <- subtract_t0(max.time) tI <- subtract_t0(data[[tI.col]]) tE <- if (missing(tE.col)) tI else subtract_t0(data[[tE.col]]) tR <- if (missing(tR.col)) rep.int(NA_real_, N) else subtract_t0(data[[tR.col]]) ## check E-I-R order if (any((is.na(tE) & !(is.na(tI) & is.na(tR))) | (is.na(tI) & !is.na(tR)))) { stop("events cannot be skipped (NA in E/I => NA in I/R)") } if (any(.wrongsequence <- (tE > tI | tI >= tR) %in% TRUE)) { # TRUE | NA = TRUE stop("E-I-R events are in wrong order for the following id's: ", paste0(id[.wrongsequence], collapse = ", ")) } ## ignore events after max.time if (!is.na(max.time)) { is.na(tE) <- tE > max.time is.na(tI) <- tI > max.time is.na(tR) <- tR > max.time } ## vector of stop times stopTimes <- c(tE, tI, tR, max.time) stopTimes <- stopTimes[!is.na(stopTimes) & stopTimes > 0] stopTimes <- sort.int(unique.default(stopTimes), decreasing = FALSE) nBlocks <- length(stopTimes) if (nBlocks == 0L) { stop("nothing happens after 't0'") } ## initialize event history evHist <- data.frame( id = rep.int(id, nBlocks), start = rep.int(c(0,stopTimes[-nBlocks]), rep.int(N, nBlocks)), stop = rep.int(stopTimes, rep.int(N, nBlocks)), atRiskY = NA, event = 0, Revent = 0, # adjusted in the loop below row.names = NULL, check.rows = FALSE, check.names = FALSE) ## indexes of the last rows of the time blocks blockbase <- c(0, seq_len(nBlocks) * N) ## which individuals are at risk in the first (next) block Y <- is.na(tE) | tE > 0 ## Loop over the blocks/stop times to adjust atRiskY, event and Revent for (i in seq_len(nBlocks)) { ct <- stopTimes[i] ## set individual at-risk indicators for the current time block evHist$atRiskY[blockbase[i] + seq_len(N)] <- Y ## individuals who become exposed at the current stop time ## will no longer be at risk in the next block Y[which(tE == ct)] <- FALSE ## process events at this stop time evHist$event[blockbase[i] + which(tI == ct)] <- 1 evHist$Revent[blockbase[i] + which(tR == ct)] <- 1 } ## add additional time-constant covariates extraVarNames <- coords.cols # may be NULL if (isTRUE(keep.cols)) { extraVarNames <- c(extraVarNames, setdiff(names(data), id.col)) } else if (length(keep.cols) > 0L && !identical(FALSE, keep.cols)) { extraVarNames <- c(extraVarNames, names(data[keep.cols])) } extraVarNames <- unique.default(extraVarNames) if (length(extraVarNames) > 0L) { evHist <- data.frame( evHist, data[rep.int(seq_len(N), nBlocks), extraVarNames, drop=FALSE], row.names = NULL, check.names = TRUE, stringsAsFactors = TRUE) } ## Now we can pass the generated event history to the default method ## for the usual consistency checks and the pre-calculation of f covariates as.epidata.default( data = evHist, id.col = "id", start.col = "start", stop.col = "stop", atRiskY.col = "atRiskY", event.col = "event", Revent.col = "Revent", coords.cols = coords.cols, f = f, w = w, D = D, .latent = !missing(tE.col)) } ################################################################################ # DEFAULT CONVERTER, which requires a start/stop event history data.frame # It performs consistency checks, and pre-calculates the distance-based # epidemic covariates from f. ################################################################################ as.epidata.default <- function(data, id.col, start.col, stop.col, atRiskY.col, event.col, Revent.col, coords.cols, f = list(), w = list(), D = dist, .latent = FALSE, ...) { cl <- match.call() # If necessary, convert 'data' into a data.frame (also converting # column names to syntactically correct names for use in formulae) data <- as.data.frame(data, stringsAsFactors = FALSE) # Use column numbers as indices and check them colargs <- c("id.col", "start.col", "stop.col", "atRiskY.col", "event.col", "Revent.col", "coords.cols") colidxs <- structure(as.list(numeric(length(colargs))), names = colargs) for (colarg in colargs) { colidx <- get(colarg, inherits = FALSE) if (colarg != "coords.cols" && length(colidx) != 1L) { stop("the column specifier '", colarg, "' must be of length 1") } if (is.character(colidx)) { colidx <- match(colidx, colnames(data)) if (anyNA(colidx)) { stop("'", colarg, " = ", deparse(cl[[colarg]]), "': ", "column does not exist in 'data'") } } else if (is.numeric(colidx) && any(colidx<1L | colidx>ncol(data))) { stop("'", colarg, " = ", deparse(cl[[colarg]]), "': ", "column index must be in [1; ", ncol(data), "=ncol(data)]") } colidxs[[colarg]] <- colidx } # Rename main columns to default column names colidxsVec <- unlist(colidxs) colnams <- c("id", "start", "stop", "atRiskY", "event", "Revent") colnames(data)[colidxsVec[1:6]] <- colnams usedReservedName <- any(colnams %in% colnames(data)[-colidxsVec[1:6]]) # REORDER COLUMNS, so that main columns come first (also for make.unique) data <- data[c(colidxsVec, setdiff(seq_len(NCOL(data)), colidxsVec))] # Make columns names unique (necessary if other column with name in colnams) if (usedReservedName) { colnames(data) <- make.unique(colnames(data)) message("Some other columns had reserved names and have been renamed") } # Convert id into a factor (also removing unused levels if it was a factor) data[["id"]] <- factor(data[["id"]]) # Check atRiskY, event and Revent for values other than 0 and 1 for (var in c("atRiskY", "event", "Revent")) { data[[var]] <- as.numeric(data[[var]]) if (any(! data[[var]] %in% c(0,1))) stop("'", var, "' column may only assume values 0 and 1") } # Check consistency of atRiskY and event (event only if at-risk) if (.latent) { warning("support for latent periods is experimental") } else { noRiskButEvent <- data[["atRiskY"]] == 0 & data[["event"]] == 1 if (noRiskButEventRow <- match(TRUE, noRiskButEvent, nomatch = 0)) { stop("inconsistent atRiskY/event indicators in row ", noRiskButEventRow, ": event only if at risk") } } # Check event (infection) times for ties eventTimes <- data[data[["event"]] == 1, "stop"] ReventTimes <- data[data[["Revent"]] == 1, "stop"] duplicatedEventTime <- duplicated(c(eventTimes, ReventTimes)) if (duplicatedEventTimeIdx <- match(TRUE, duplicatedEventTime, nomatch=0)) { stop("non-unique event times: concurrent event/Revent at time ", c(eventTimes, ReventTimes)[duplicatedEventTimeIdx]) } # Check start/stop consistency and add block id histIntervals <- unique(data[c("start", "stop")]) histIntervals <- histIntervals[order(histIntervals[,1L]),] nBlocks <- nrow(histIntervals) if (any(histIntervals[,2L] <= histIntervals[,1L])) { stop("stop times must be greater than start times") } startStopCheck <- histIntervals[-1L,1L] != histIntervals[-nBlocks,2L] if (startStopCheckIdx <- match(TRUE, startStopCheck, nomatch = 0)) { stop("inconsistent start/stop times: time intervals not consecutive ", "at stop time ", histIntervals[startStopCheckIdx,2L]) } if ("BLOCK" %in% colnames(data)) { warning("column name 'BLOCK' is reserved, ", "existing column has been replaced") } data[["BLOCK"]] <- match(data[["start"]], histIntervals[,1L]) # SORT by block/id and create indexes for block borders data <- data[order(data[["BLOCK"]], data[["id"]]),] beginBlock <- match(seq_len(nBlocks), data[["BLOCK"]]) endBlock <- c(beginBlock[-1L]-1L, nrow(data)) # make block column the first column BLOCK.col <- match("BLOCK", colnames(data)) data <- data[c(BLOCK.col, setdiff(seq_along(data), BLOCK.col))] coords.cols <- 1L + 6L + seq_along(colidxs[["coords.cols"]]) # Check consistency of atRiskY and event (not at-risk after event) .checkFunction <- function(eventblock, eventid) { if (eventblock == nBlocks) return(invisible()) rowsOfNextBlock <- beginBlock[eventblock+1L]:endBlock[eventblock+1L] nextBlockData <- data[rowsOfNextBlock, c("id", "atRiskY")] idIdx <- which(nextBlockData[["id"]] == eventid) if (length(idIdx) == 1L && nextBlockData[idIdx, "atRiskY"] == 1) { stop("inconsistent atRiskY/event indicators for id '", eventid, "': should not be at risk immediately after event") } } eventTable <- data[data[["event"]] == 1,] for(k in seq_len(nrow(eventTable))) { .checkFunction(eventTable[k,"BLOCK"], eventTable[k,"id"]) } # Set attributes attr(data, "eventTimes") <- sort(eventTimes) attr(data, "timeRange") <- c(histIntervals[1L,1L],histIntervals[nBlocks,2L]) attr(data, "coords.cols") <- coords.cols # <- must include this info because externally of this function # we don't know how many coords.cols (dimensions) we have attr(data, "f") <- list() # initialize attr(data, "w") <- list() # initialize class(data) <- c("epidata", "data.frame") # Compute epidemic variables update.epidata(data, f = f, w = w, D = D) } update.epidata <- function (object, f = list(), w = list(), D = dist, ...) { oldclass <- class(object) class(object) <- "data.frame" # avoid use of [.epidata ## block indexes and first block beginBlock <- which(!duplicated(object[["BLOCK"]], nmax = object[["BLOCK"]][nrow(object)])) endBlock <- c(beginBlock[-1L]-1L, nrow(object)) firstDataBlock <- object[seq_len(endBlock[1L]), ] ## check f and calculate distance matrix if (length(f) > 0L) { if (!is.list(f) || is.null(names(f)) || any(!sapply(f, is.function))) { stop("'f' must be a named list of functions") } lapply(X = f, FUN = function (B) { if (!isTRUE(all.equal(c(5L,2L), dim(B(matrix(0, 5, 2)))))) stop("'f'unctions must retain the dimensions of their input") }) if (any(names(f) %in% names(object))) { warning("'f' components replace existing columns of the same name") } ## reset / initialize columns for distance-based epidemic weights object[names(f)] <- 0 ## keep functions as attribute attr(object, "f")[names(f)] <- f ## check / compute distance matrix distmat <- if (is.function(D)) { if (length(coords.cols <- attr(object, "coords.cols")) == 0L) { stop("need coordinates to calculate the distance matrix") } coords <- as.matrix(firstDataBlock[coords.cols], rownames.force = FALSE) rownames(coords) <- as.character(firstDataBlock[["id"]]) as.matrix(D(coords)) } else { # a numeric matrix (or "Matrix") if (length(dn <- dimnames(D)) != 2L) { stop("if not a function, 'D' must be a matrix-like object") } if (!all(firstDataBlock[["id"]] %in% dn[[1L]], firstDataBlock[["id"]] %in% dn[[2L]])) { stop("'dimnames(D)' must contain the individuals' IDs") } D } } ## check covariate-based epidemic weights if (length(w) > 0L) { if (!is.list(w) || is.null(names(w)) || any(!sapply(w, is.function))) { stop("'w' must be a named list of functions") } if (any(names(w) %in% names(object))) { warning("'w' components replace existing columns of the same name") } ## reset / initialize columns for covariate-based epidemic weights object[names(w)] <- 0 ## keep functions as attribute attr(object, "w")[names(w)] <- w ## compute wij matrix for each of w wijlist <- compute_wijlist(w = w, data = firstDataBlock) } ## Compute sum of epidemic covariates over infectious individuals if (length(f) + length(w) > 0L) { infectiousIDs <- firstDataBlock[firstDataBlock[["atRiskY"]] == 0, "id"] ##<- this is a factor variable for(i in seq_along(beginBlock)) { blockidx <- beginBlock[i]:endBlock[i] blockdata <- object[blockidx,] blockIDs <- blockdata[["id"]] if (length(infectiousIDs) > 0L) { if (length(f) > 0L) { u <- distmat[as.character(blockIDs), as.character(infectiousIDs), drop = FALSE] # index by factor levels object[blockidx,names(f)] <- vapply( X = f, FUN = function (B) Matrix::rowSums(B(u)), FUN.VALUE = numeric(length(blockIDs)), USE.NAMES = FALSE) } if (length(w) > 0L) { object[blockidx,names(w)] <- vapply( X = wijlist, FUN = function (wij) { ## actually don't have to care about the diagonal: ## i at risk => sum does not include it ## i infectious => atRiskY = 0 (ignored in twinSIR) rowSums(wij[as.character(blockIDs), as.character(infectiousIDs), drop = FALSE]) # index by factor levels }, FUN.VALUE = numeric(length(blockIDs)), USE.NAMES = FALSE) } } ## update the set of infectious individuals for the next block recoveredID <- blockIDs[blockdata[["Revent"]] == 1] infectedID <- blockIDs[blockdata[["event"]] == 1] if (length(recoveredID) > 0L) { infectiousIDs <- infectiousIDs[infectiousIDs != recoveredID] } else if (length(infectedID) > 0L) { infectiousIDs[length(infectiousIDs)+1L] <- infectedID } } } ## restore "epidata" class class(object) <- oldclass return(object) } compute_wijlist <- function (w, data) { ## for each function in 'w', determine the variable on which it acts; ## this is derived from the name of the first formal argument, which ## must be of the form "varname.i" wvars <- vapply(X = w, FUN = function (wFUN) { varname.i <- names(formals(wFUN))[[1L]] substr(varname.i, 1, nchar(varname.i)-2L) }, FUN.VALUE = "", USE.NAMES = TRUE) if (any(wvarNotFound <- !wvars %in% names(data))) { stop("'w' function refers to unknown variables: ", paste0(names(w)[wvarNotFound], collapse=", ")) } ## compute weight matrices w_ij for each of w mapply( FUN = function (wFUN, wVAR, ids) { wij <- outer(X = wVAR, Y = wVAR, FUN = wFUN) dimnames(wij) <- list(ids, ids) wij }, wFUN = w, wVAR = data[wvars], MoreArgs = list(ids = as.character(data[["id"]])), SIMPLIFY = FALSE, USE.NAMES = TRUE ) } ################################################################################ # EXTRACTION OPERATOR FOR 'EPIDATA' OBJECTS # Indexing with "[" would be possible (inheriting from data.frame). # But using any column index would remove attributes (row indexes would not). # Thus, we define an own method to retain and adjust the attributes when # selecting a subset of blocks of the 'epidata'. # Selecting a subset of columns will remove class "epidata" (resulting in a # simple data.frame) ################################################################################ "[.epidata" <- function(x, i, j, drop) { # use data.frame method first xx <- NextMethod("[") # then return its result as pure data.frame or assure valid 'epidata' # if a subset of columns has been selected and attributes have been removed if (NCOL(xx) != ncol(x) || any(names(xx) != names(x))) { if (inherits(xx, "data.frame")) { # xx could be a vector class(xx) <- "data.frame" # remove class 'epidata' } message("Note: converted class \"epidata\" to simple \"", class(xx), "\"") return(xx) } # else there is no effective column selection (e.g. j=TRUE) if (nrow(xx) == 0) { message("Note: no rows selected, dropped class \"epidata\"") class(xx) <- "data.frame" return(xx[TRUE]) # removes attributes } invalidEpidata <- FALSE blocksizesx <- table(x[["BLOCK"]]) blocksizesxx <- table(xx[["BLOCK"]]) blocksOK <- identical(c(blocksizesxx), c(blocksizesx[names(blocksizesxx)])) if (is.numeric(i) && any(diff(na.omit(i)) < 0)) { # epidata should remain ordered by time warning("dropped class \"epidata\": reordering rows is not permitted") invalidEpidata <- TRUE } else if (!blocksOK) { # blocks should not be cut, epidemic covariates might become invalid warning("dropped class \"epidata\": subsetting blocks not allowed") invalidEpidata <- TRUE } else if (any(diff(as.numeric(names(blocksizesxx))) != 1)) { # blocks can only be selected consecutively warning("dropped class \"epidata\": ", "only consecutive blocks may be selected") invalidEpidata <- TRUE } if (invalidEpidata) { class(xx) <- "data.frame" xx[TRUE] # removes attributes } else { # # adjust block index so that it starts at 1 # firstBlockNumber <- as.numeric(names(blocksizesxx)[1]) # if (firstBlockNumber > 1) { # xx[["BLOCK"]] <- xx[["BLOCK"]] - (firstBlockNumber-1) # } # Restore or adjust attributes tmin <- xx[["start"]][1] tmax <- xx[["stop"]][nrow(xx)] oldEventTimes <- attr(x, "eventTimes") attr(xx, "eventTimes") <- if (blocksOK) { oldEventTimes[oldEventTimes > tmin & oldEventTimes <= tmax] } else { xx[["stop"]][xx[["event"]] == 1] } attr(xx, "timeRange") <- c(tmin, tmax) attr(xx, "coords.cols") <- attr(x, "coords.cols") attr(xx, "f") <- attr(x, "f") xx } } ################################################################################ # INSERT BLOCKS FOR EXTRA STOP TIMES IN 'EPIDATA' OBJECTS ################################################################################ intersperse <- function (epidata, stoptimes, verbose = FALSE) { # Check arguments if (!inherits(epidata, "epidata")) { stop("'epidata' must inherit from class \"epidata\"") } if (!is.vector(stoptimes, mode = "numeric")) { stop("'stoptimes' must be a numeric vector") } # Identify new 'stoptimes' sortedEpiStop <- sort(unique(epidata$stop)) extraStoptimes <- stoptimes[! stoptimes %in% sortedEpiStop] # Return original 'epidata' if nothing to do if (length(extraStoptimes) == 0) { # message("nothing done: no new stop times") return(epidata) } # # Retain attributes of 'epidata' # .attributes <- attributes(epidata) # .attributes <- .attributes[match(c("eventTimes", "timeRange", # "coords.cols", "f", "config", "call", "terms"), names(.attributes), # nomatch = 0)] # Check new 'stoptimes' timeRange <- attr(epidata, "timeRange") inside <- extraStoptimes > timeRange[1] & extraStoptimes < timeRange[2] if (any(!inside)) { extraStoptimes <- extraStoptimes[inside] warning("ignored extra 'stoptimes' outside the observation period") } # Impute blocks for extraStoptimes oldclass <- class(epidata) class(epidata) <- "data.frame" # Avoid use of [.epidata (not necessary here) blocksize <- sum(epidata$BLOCK == 1) nInsert <- length(extraStoptimes) lastRow <- nrow(epidata) epidata <- rbind(epidata, epidata[rep.int(NA_integer_, nInsert * blocksize),], deparse.level = 0) # add NA rows, to be replaced below if (verbose) pb <- txtProgressBar(min=0, max=nInsert, initial=0, style=3) for(i in seq_len(nInsert)) { extraStop <- extraStoptimes[i] nextStoptime <- sortedEpiStop[match(TRUE, sortedEpiStop > extraStop)] # Find the block (row indexes) into which the extraStop falls rowsMatchedBlock <- which(epidata$stop == nextStoptime) # Split this block up into 2 parts # later part equals original block with start time = extraStop newBlock <- epidata[rowsMatchedBlock,] newBlock$start <- extraStop # earlier part has stop time = extraStop and no events at this time point epidata[rowsMatchedBlock, "stop"] <- extraStop epidata[rowsMatchedBlock, "event"] <- 0 epidata[rowsMatchedBlock, "Revent"] <- 0 # write the new block to epidata (reorder rows later) epidata[lastRow + seq_along(rowsMatchedBlock),] <- newBlock lastRow <- lastRow + length(rowsMatchedBlock) if (verbose) setTxtProgressBar(pb, i) } if (verbose) close(pb) # Adjust BLOCK column sortedEpiStop <- sort(c(sortedEpiStop, extraStoptimes)) epidata$BLOCK <- match(epidata$stop, sortedEpiStop) # Reorder rows by time and id epidata <- epidata[order(epidata$BLOCK, epidata$id), ] row.names(epidata) <- NULL class(epidata) <- oldclass return(epidata) } ################################################################################ # SUMMARY FUNCTION FOR EPIDATA OBJECTS # the epidemic is summarized by the following returned components: # - type: one of "SIR", "SI", "SIRS", "SIS" # - size: number of initially susceptible individuals, which became infected # - initiallyInfected: vector (factor) of initially infected individuals # - neverInfected: vector (factor) of never (during the observation period) # infected individuals # - coordinates: matrix with the coordinates of the individuals (rownames=id's) # - byID: data.frame with time points of events by id (columns time.I, time.R # and optionally time.S) # - counters: data.frame representing the evolution of the epidemic ################################################################################ summary.epidata <- function (object, ...) { class(object) <- "data.frame" # avoid use of [.epidata (not necessary here) # extract coordinates and initially infected individuals idlevels <- levels(object[["id"]]) N <- length(idlevels) firstDataBlock <- object[object$BLOCK == min(object$BLOCK),] coordinates <- as.matrix(firstDataBlock[attr(object, "coords.cols")]) rownames(coordinates) <- as.character(firstDataBlock[["id"]]) initiallyInfected <- firstDataBlock$id[firstDataBlock$atRiskY == 0] m <- length(initiallyInfected) n <- N - m ### summary 1: event table with columns id, time and type (of event, S/I/R) # Extract time points of the S events for each id StimesID <- by(object[c("atRiskY", "stop")], object["id"], function(x) { SeventIdx <- which(diff(x[["atRiskY"]]) == 1) x[["stop"]][SeventIdx] }, simplify=TRUE) names(StimesID) <- paste0(names(StimesID), ":") StimesVec <- c(unlist(StimesID, use.names = TRUE)) # c() if by() returned an array .Sids <- sub("(.+):.*", "\\1", names(StimesVec)) Stimes <- data.frame(id = factor(.Sids, levels = idlevels), stop = StimesVec, type = rep("S", length(StimesVec)), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) # Extract time points of the I and R events for each id Itimes <- object[object$event == 1, c("id", "stop")] Itimes[["type"]] <- rep("I", nrow(Itimes)) Rtimes <- object[object$Revent == 1, c("id", "stop")] Rtimes[["type"]] <- rep("R", nrow(Rtimes)) # Combine the three event types into one data.frame eventTable <- rbind(Rtimes, Stimes, Itimes) # need this order for the counters below in the case of SIS: # pseudo-R-event occurs infinitesimally before S names(eventTable)[2L] <- "time" eventTable <- eventTable[order(eventTable[["id"]], eventTable[["time"]]), ] eventTable[["type"]] <- factor(eventTable[["type"]], levels=c("S","I","R")) rownames(eventTable) <- NULL ### summary 2: type and size of the epidemic resusceptibility <- length(StimesVec) > 0 epitype <- if (resusceptibility) { Rtimes_notLast <- Rtimes[-which.max(Rtimes[,2]),] onlyPseudoR <- length(setdiff(Rtimes_notLast[,2], Stimes[,2])) == 0 if (onlyPseudoR) "SIS" else "SIRS" } else { if (nrow(Rtimes) > 0) "SIR" else "SI" } isEverInfected <- idlevels %in% initiallyInfected | idlevels %in% unique(eventTable$id[eventTable$type == "I"]) isNeverInfected <- !isEverInfected size <- n - sum(isNeverInfected) # everInfected <- factor(idlevels[isEverInfected], levels = idlevels) neverInfected <- factor(idlevels[isNeverInfected], levels = idlevels) ### summary 3: eventTable by id in wide form byID_everInfected <- if (nrow(eventTable) == 0) { data.frame(id = factor(character(0), levels = idlevels), time.I = numeric(0), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) } else if (!resusceptibility) { .res <- reshape(eventTable, direction = "wide", timevar = "type", idvar = "id") attr(.res, "reshapeWide") <- NULL if ("time.I" %in% names(.res)) { .res[c("id", "time.I", "time.R")] # ensure natural order } else { # degenerate case: only R (and S) events in data cbind(.res[1L], "time.I" = NA_real_, .res[-1L]) } } else { eventTable3 <- if (m > 0) { # workaround for initially infected rbind(data.frame(id = initiallyInfected, time = NA_real_, type = "I", row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE), eventTable) } else eventTable rowsPerId <- table(eventTable3[["id"]]) modulo3 <- rowsPerId %% 3 ## if this is 1, we need to append NAs for R and S events ## if 2, only append NA for the final S (occurs for SIRS, not SIS) rest1 <- modulo3 == 1 rest12 <- modulo3 >= 1 missingR <- data.frame(id = names(rowsPerId)[rest1], time = rep(NA_real_, sum(rest1)), type = rep("R", sum(rest1)), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) missingS <- data.frame(id = names(rowsPerId)[rest12], time = rep(NA_real_, sum(rest12)), type = rep("S", sum(rest12)), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) eventTable3 <- rbind(eventTable3, missingR, missingS) eventTable3 <- eventTable3[order(eventTable3[["id"]]),] .res <- data.frame( eventTable3[eventTable3$type == "I", c("id", "time")], eventTable3[eventTable3$type == "R", "time", drop = FALSE], eventTable3[eventTable3$type == "S", "time", drop = FALSE], row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE ) names(.res) <- c("id", paste("time", c("I", "R", "S"), sep=".")) .res } byID_neverInfected <- data.frame(id = neverInfected, time.I = rep(NA_real_, n-size), time.R = rep(NA_real_, n-size), time.S = rep(NA_real_, n-size), row.names = NULL, check.names = FALSE) byID_all <- rbind(byID_everInfected, byID_neverInfected[names(byID_everInfected)]) byID <- byID_all[order(byID_all[["id"]]),] rownames(byID) <- NULL ### summary 4: upgrade eventTable with ### evolution of numbers of susceptibles, infectious and removed counters <- eventTable[order(eventTable[["time"]]),c("time", "type", "id")] init <- data.frame(time = attr(object, "timeRange")[1L], type = factor(NA_character_, levels(counters$type)), id = factor(NA_character_, levels(counters$id)), nSusceptible = n, nInfectious = m, nRemoved = 0L) cumulatedReSusceptibility <- cumsum(counters[["type"]] == "S") cumulatedInfections <- cumsum(counters[["type"]] == "I") cumulatedRemovals <- cumsum(counters[["type"]] == "R") counters[["nSusceptible"]] <- init[["nSusceptible"]] - cumulatedInfections + cumulatedReSusceptibility counters[["nInfectious"]] <- init[["nInfectious"]] + cumulatedInfections - cumulatedRemovals counters[["nRemoved"]] <- init[["nRemoved"]] + cumulatedRemovals - cumulatedReSusceptibility counters <- rbind(init, counters) rownames(counters) <- NULL ### return the components in a list res <- list(type = epitype, size = n - sum(isNeverInfected), initiallyInfected = initiallyInfected, neverInfected = neverInfected, coordinates = coordinates, byID = byID, counters = counters) class(res) <- "summary.epidata" attr(res, "eventTimes") <- attr(object, "eventTimes") attr(res, "timeRange") <- attr(object, "timeRange") res } ################################################################################ # PRINT METHOD FOR 'EPIDATA' OBJECTS ################################################################################ print.epidata <- function (x, ...) { cat("\nHistory of an epidemic\n") cat("Number of individuals:", nlevels(x[["id"]]), "\n") cat("Time range:", paste(attr(x, "timeRange"), collapse = " -- "), "\n") cat("Number of infections:", length(attr(x, "eventTimes")), "\n\n") print.data.frame(x, ...) cat("\n") invisible(x) } ################################################################################ # PRINT METHOD FOR THE SUMMARY OF 'EPIDATA' OBJECTS ################################################################################ print.summary.epidata <- function(x, ...) { cat("\nAN", x$type, "EPIDEMIC\n") cat(" Time range:", paste(attr(x, "timeRange"), collapse = " -- "), "\n") cat(" Number of individuals:", nlevels(x$initiallyInfected), "\n") cat(" ", length(x$initiallyInfected), "initially infected individuals") if (length(x$initiallyInfected) > 0) { cat(":\n ") str(as.character(x$initiallyInfected), give.head = FALSE, vec.len = 100, strict.width = "wrap", indent.str = " ") } else cat("\n") cat(" ", length(x$neverInfected), "never infected individuals") if (length(x$neverInfected) > 0) { cat(":\n ") str(as.character(x$neverInfected), give.head = FALSE, vec.len = 100, strict.width = "wrap", indent.str = " ") } else cat("\n") cat(" Size of the epidemic:", x$size, "\n") if (x$type %in% c("SIRS", "SIS")) { cat(" Number of infections:", length(attr(x, "eventTimes")), "\n") } dimc <- dim(x$counters) cat("\n$ counters ('data.frame',", dimc[1L], "x", dimc[2L], "):", "evolution of the epidemic:\n") counters2print <- if (dimc[1] > 6L) { tmp <- format.data.frame(x$counters[c(1:3,1,dimc[1]-(1:0)),], na.encode = FALSE) tmp[4,] <- c("[....]", "", "", "", "", "") rownames(tmp)[4] <- "" as.matrix(tmp) } else { x$counters } print(counters2print, quote = FALSE, right = TRUE, na.print = "") cat("\n") invisible(x) } surveillance/R/hhh4_plot.R0000644000176200001440000010573014667617354015214 0ustar liggesusers################################################################################ ### Plot method(s) for fitted "hhh4" models ### ### Copyright (C) 2010-2012 Michaela Paul, 2012-2023 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ plot.hhh4 <- function (x, type = c("fitted", "season", "maxEV", "maps", "ri", "neweights"), ...) { stopifnot(x$convergence) cl <- sys.call() # not match.call() because plotHHH4_season() has no 'x' ## remove the type argument from the call if (is.null(names(cl)) && nargs() > 1L) { # unnamed call plot(x, type) cl[[3L]] <- NULL # remove the second argument } else { cl$type <- NULL } cl[[1L]] <- as.name(paste("plotHHH4", match.arg(type), sep="_")) eval(cl, envir = parent.frame()) } ### ### Time series of fitted component means and observed counts for selected units ### plotHHH4_fitted <- function (x, units = 1, names = NULL, col = c("grey85", "blue", "orange"), pch = 19, pt.cex = 0.6, pt.col = 1, par.settings = list(), legend = TRUE, legend.args = list(), legend.observed = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL, ...) { stopifnot(inherits(x, "hhh4")) if (total) { units <- "Overall" # only used as a label } else if (is.null(units)) { units <- seq_len(x$nUnit) } if (!is.null(names)) stopifnot(length(units) == length(names)) if (isTRUE(decompose)) decompose <- colnames(x$stsObj) ## get decomposed mean => no need to compute it in each plotHHH4_fitted1() if (is.null(meanHHH)) { meanHHH <- if (is.null(decompose)) { meanHHH(x$coefficients, terms(x)) } else { decompose.hhh4(x) } } ## check color vector col <- if (is.null(decompose) && length(col) == 4) { ## compatibility with surveillance < 1.10-0 pt.col <- col[4L] rev(col[-4L]) } else { plotHHH4_fitted_check_col_decompose(col, decompose) } ## setup graphical parameters if (is.list(par.settings)) { par.defaults <- list(mfrow = sort(n2mfrow(length(units))), mar = c(4,4,2,0.5)+.1, las = 1) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } ## legend options if (is.logical(legend)) legend <- which(legend) if (!is.list(legend.args)) { if (length(legend) > 0) warning("ignored 'legend' since 'legend.args' is not a list") legend <- integer(0L) } if (length(legend) > 0) { legendidx <- 1L + c( if (legend.observed && !is.na(pch)) 0L, if (is.null(decompose)) { which(c("ne","ar","end") %in% componentsHHH4(x)) } else seq_along(col)) default.args <- list( x="topright", col=c(pt.col,rev(col))[legendidx], lwd=6, lty=c(NA,rep.int(1,length(col)))[legendidx], pch=c(pch,rep.int(NA,length(col)))[legendidx], pt.cex=pt.cex, pt.lwd=1, bty="n", inset=0.02, legend=if (is.null(decompose)) { c("observed","spatiotemporal","autoregressive","endemic")[legendidx] } else c("observed", rev(decompose), "endemic")[legendidx] ) legend.args <- modifyList(default.args, legend.args) } ## plot fitted values region by region meanHHHunits <- vector(mode="list", length=length(units)) names(meanHHHunits) <- if (is.character(units)) units else colnames(x$stsObj)[units] for(i in seq_along(units)) { meanHHHunits[[i]] <- plotHHH4_fitted1(x, unit=units[i], main=names[i], col=col, pch=pch, pt.cex=pt.cex, pt.col=pt.col, decompose=decompose, total=total, meanHHH=meanHHH, ...) if (i %in% legend) do.call("legend", args=legend.args) } invisible(meanHHHunits) } plotHHH4_fitted_check_col_decompose <- function (col, decompose) { if (is.null(decompose)) { stopifnot(length(col) == 3L) } else { nUnit <- length(decompose) if (length(col) == nUnit) { col <- c("grey85", col) # first color is for "endemic" } else if (length(col) != 1L + nUnit) { warning("'col' should be of length ", 1L + nUnit) col <- c(col[1L], rep_len(col[-1L], nUnit)) } } col } ### plot estimated component means for a single region plotHHH4_fitted1 <- function(x, unit=1, main=NULL, col=c("grey85", "blue", "orange"), pch=19, pt.cex=0.6, pt.col=1, border=col, start=x$stsObj@start, end=NULL, xaxis=NULL, xlim=NULL, ylim=NULL, xlab="", ylab="No. infected", hide0s=FALSE, decompose=NULL, total=FALSE, meanHHH=NULL) { stopifnot(inherits(x, "hhh4")) stsObj <- x$stsObj if (!total && is.character(unit) && is.na(unit <- match(.unit <- unit, colnames(stsObj)))) stop("region '", .unit, "' does not exist") if (is.null(main)) main <- if (total) "Overall" else colnames(stsObj)[unit] if (isTRUE(decompose)) decompose <- colnames(stsObj) ## get observed counts obs <- if (total) rowSums(observed(stsObj)) else observed(stsObj)[,unit] ## time range for plotting start0 <- yearepoch2point(stsObj@start, stsObj@freq, toleft=TRUE) start <- yearepoch2point(start, stsObj@freq) tp <- start0 + seq_along(obs)/stsObj@freq # all observation time points if (start < start0 || start > tp[length(tp)]) stop("'start' is not within the time range of 'x$stsObj'") end <- if(is.null(end)) tp[length(tp)] else yearepoch2point(end,stsObj@freq) stopifnot(start < end) tpInRange <- which(tp >= start & tp <= end) # plot only those tpInSubset <- intersect(x$control$subset, tpInRange) # fitted time points ## use time indexes as x-values for use of addFormattedXAxis() if (is.list(xaxis) || identical(xaxis, NA)) { tp <- seq_along(obs) start <- tpInRange[1L] end <- tpInRange[length(tpInRange)] } ## get fitted component means if (is.null(meanHHH)) { meanHHH <- if (is.null(decompose)) { meanHHH(x$coefficients, terms(x)) } else { decompose.hhh4(x) } } meanHHHunit <- if (is.null(decompose)) { if (total) { sapply(meanHHH, rowSums) } else { sapply(meanHHH, "[", i=TRUE, j=unit) } } else { if (!setequal(decompose, dimnames(meanHHH)[[3L]][-1L])) stop("'decompose' must be (a permutation of) the fitted units") if (total) { apply(meanHHH[,,c("endemic",decompose)], c(1L, 3L), sum) } else { meanHHH[,unit,c("endemic",decompose)] } } stopifnot(is.matrix(meanHHHunit), !is.null(colnames(meanHHHunit)), nrow(meanHHHunit) == length(x$control$subset)) meanHHHunit <- meanHHHunit[x$control$subset %in% tpInRange,,drop=FALSE] ## check color vector col <- if (is.null(decompose) && length(col) == 4L) { ## compatibility with surveillance < 1.10-0 pt.col <- col[4L] rev(col[-4L]) } else { plotHHH4_fitted_check_col_decompose(col, decompose) } ## establish basic plot window if (is.null(ylim)) ylim <- c(0, max(obs[tpInRange],na.rm=TRUE)) plot(c(start,end), ylim, xlim=xlim, xlab=xlab, ylab=ylab, type="n", xaxt = if (is.list(xaxis)) "n" else par("xaxt")) if (is.list(xaxis)) do.call(addFormattedXAxis, c(list(x = stsObj), xaxis)) title(main=main, line=0.5) ## draw polygons if (is.null(decompose)) { non0 <- which(c("end", "ar", "ne") %in% componentsHHH4(x)) plotComponentPolygons( x = tp[tpInSubset], y = meanHHHunit[,c("endemic", "epi.own", "epi.neighbours")[non0],drop=FALSE], col = col[non0], border = border[non0], add = TRUE) } else { non0 <- apply(X = meanHHHunit > 0, MARGIN = 2L, FUN = any) plotComponentPolygons(x = tp[tpInSubset], y = meanHHHunit[, non0, drop = FALSE], col = col[non0], border = border[non0], add = TRUE) } ## add observed counts within [start;end] ptidx <- if (hide0s) intersect(tpInRange, which(obs > 0)) else tpInRange points(tp[ptidx], obs[ptidx], col=pt.col, pch=pch, cex=pt.cex) ## invisibly return the fitted component means for the selected region invisible(meanHHHunit) } ### function which does the actual plotting of the polygons plotComponentPolygons <- function (x, y, col = 1:6, border = col, add = FALSE) { if (!is.vector(x, mode = "numeric") || length(x) == 0 || is.unsorted(x, strictly = TRUE)) stop("'x' must be a strictly increasing sequence of time points") stopifnot(is.numeric(y), # y >= 0 nrow(y <- as.matrix(y)) == (nTime <- length(x))) yc <- if ((nPoly <- ncol(y)) > 1L) { apply(X = y, MARGIN = 1L, FUN = function(comps) if (anyNA(comps)) `is.na<-`(comps) else cumsum(comps)) # nPoly x nTime } else t(y) if (!add) { ## establish basic plot window plot(range(x), c(0, max(yc[nPoly,], na.rm = TRUE)), type = "n") } ## recycle graphical parameters col <- rep_len(col, nPoly) border <- rep_len(border, nPoly) ## draw 0-anchored polygons (piecewise if y contains missing values) draw1 <- function (x, y, col, border) { if (!is.na(nextNA <- match(NA_real_, y))) { if (nextNA < length(y)) { remainder <- (nextNA+1L):length(y) draw1(x[remainder], y[remainder], col, border) } if (nextNA == 1L) return(invisible()) x <- x[seq_len(nextNA-1L)] y <- y[seq_len(nextNA-1L)] } ## cat("drawing from x =", paste0(range(x), collapse=" to "), "\n") polygon(c(x[1L], x, x[length(x)]), y = c(0, y, 0), col = col, border = border) } for (poly in nPoly:1) { draw1(x, yc[poly, ], col[poly], border[poly]) } } ### ### Maps of the fitted mean components averaged over time ### plotHHH4_maps <- function (x, which = c("mean", "endemic", "epi.own", "epi.neighbours"), prop = FALSE, main = which, zmax = NULL, col.regions = NULL, labels = FALSE, sp.layout = NULL, ..., map = x$stsObj@map, ## aspect = mapasp(map), # currently hard-coded meanHHH = NULL) { stopifnot(inherits(x, "hhh4")) which <- match.arg(which, several.ok = TRUE) if (is.null(col.regions)) col.regions <- .hcl.colors(10) ## extract district-specific mean components if (is.null(meanHHH)) { meanHHH <- meanHHH(x$coefficients, terms(x)) } ## select relevant components and convert to an array meanHHH <- simplify2array( meanHHH[c("mean", "endemic", "epi.own", "epi.neighbours")], higher = TRUE) ## convert to proportions if (prop) { meanHHH[,,-1L] <- meanHHH[,,-1L,drop=FALSE] / c(meanHHH[,,1L]) } ## select only 'which' components meanHHH <- meanHHH[,,which,drop=FALSE] ## check map map <- as(map, "SpatialPolygonsDataFrame") if (!all(dimnames(meanHHH)[[2L]] %in% row.names(map))) { stop("'row.names(map)' do not cover all fitted districts") } ## average over time comps <- as.data.frame(colMeans(meanHHH, dims = 1)) ## attach to map data map@data <- cbind(map@data, comps[row.names(map),,drop=FALSE]) ## color key range if (is.null(zmax)) { zmax <- if (prop) { ceiling(10*sapply(comps, max))/10 } else ceiling(sapply(comps, max)) ## sub-components should have the same color range .idxsub <- setdiff(seq_along(zmax), match("mean", names(zmax))) zmax[.idxsub] <- suppressWarnings(max(zmax[.idxsub])) } ## add sp.layout item for district labels if (!is.null(layout.labels <- layout.labels(map, labels))) { sp.layout <- c(sp.layout, list(layout.labels)) } ## produce maps grobs <- mapply( FUN = function (zcol, main, zmax) if (is.na(zmax)) { # automatic color breaks over range of values spplot(map, zcol = zcol, main = main, cuts = length(col.regions) - 1L, col.regions = col.regions, sp.layout = sp.layout, aspect = mapasp(map), ...) } else { # breakpoints from 0 to zmax spplot(map, zcol = zcol, main = main, at = seq(0, zmax, length.out = length(col.regions) + 1L), col.regions = col.regions, sp.layout = sp.layout, aspect = mapasp(map), ...) }, zcol = names(comps), main = main, zmax = zmax, SIMPLIFY = FALSE, USE.NAMES = FALSE) if (length(grobs) == 1L) { grobs[[1L]] } else { mfrow <- sort(n2mfrow(length(grobs))) gridExtra::grid.arrange(grobs = grobs, nrow = mfrow[1L], ncol = mfrow[2L]) } } ### ### Map of estimated random intercepts of a specific component ### plotHHH4_ri <- function (x, component, exp = FALSE, at = list(n = 10), col.regions = cm.colors(100), colorkey = TRUE, labels = FALSE, sp.layout = NULL, ## aspect = mapasp(map), # currently hard-coded gpar.missing = list(col="darkgrey", lty=2, lwd=2), ...) { stopifnot(inherits(x, "hhh4")) ranefmatrix <- ranef.hhh4(x, tomatrix=TRUE) if (is.null(ranefmatrix)) stop("model has no random effects") stopifnot(length(component) == 1L) if (is.na(comp <- pmatch(component, colnames(ranefmatrix)))) stop("'component' must (partially) match one of ", paste(dQuote(colnames(ranefmatrix)), collapse=", ")) map <- as(x$stsObj@map, "SpatialPolygonsDataFrame") if (length(map) == 0L) stop("'x$stsObj' has no map") map$ranef <- ranefmatrix[,comp][row.names(map)] if (is.list(at)) { if (is.null(at[["n"]])) at$n <- 10 if (is.null(at[["range"]])) { at$range <- c(-1, 1) * max(abs(map$ranef), na.rm = TRUE) # 0-centered } else if (exp) { # custom range given on exp-scale stopifnot(at$range > 0) at$range <- log(at$range) } at <- seq(at$range[1L], at$range[2L], length.out = at$n) ## include max value (levelplot uses right-open intervals) at[length(at)] <- at[length(at)] + sqrt(.Machine$double.eps) } else { stopifnot(is.numeric(at), length(at) > 2) if (exp) { # custom breaks given on exp-scale stopifnot(at > 0) at <- log(at) } } rng <- range(map$ranef, na.rm = TRUE) if (rng[1] < at[1] | rng[2] >= at[length(at)]) { if (exp) rng <- exp(rng) warning(paste0( sprintf("color breaks ('at') do not span range of data (%.3g,%.3g)", rng[1], rng[2]), if (exp) " (exp-scale)")) } if (isTRUE(colorkey)) colorkey <- list() if (exp && is.list(colorkey) && is.null(colorkey[["labels"]])) { ## use exp-scale axis labels if (is.null(nint <- colorkey[["tick.number"]])) nint <- 7 lab <- if (requireNamespace("scales", quietly = TRUE)) { scales::log_breaks(n = nint)(exp(at)) } else { axisTicks(log10(exp(range(at))), log = TRUE, nint = nint) } ## workaround colorkey labeling bug in lattice (see https://github.com/deepayan/lattice/pull/22) lab <- lab[log(lab) > at[1]] colorkey$labels <- list(at = log(lab), labels = lab) } if (is.list(gpar.missing) && anyNA(map$ranef)) { sp.layout <- c(sp.layout, c(list("sp.polygons", map[is.na(map$ranef),]), gpar.missing)) } if (!is.null(layout.labels <- layout.labels(map, labels))) { sp.layout <- c(sp.layout, list(layout.labels)) } spplot(map[!is.na(map$ranef),], zcol = "ranef", sp.layout = sp.layout, col.regions = col.regions, at = at, colorkey = colorkey, aspect = mapasp(map), ...) } ### ### Plot the course of the dominant eigenvalue of one or several hhh4-fits ### plotHHH4_maxEV <- function (..., matplot.args = list(), refline.args = list(), legend.args = list()) { objnams <- unlist(lapply(match.call(expand.dots=FALSE)$..., deparse)) objects <- getHHH4list(..., .names = objnams) ## get time points epoch <- attr(objects, "epoch") start <- attr(objects, "start") freq <- attr(objects, "freq") start0 <- yearepoch2point(start, freq, toleft=TRUE) tp <- start0 + seq_along(epoch) / freq ## compute course of dominant eigenvalue for all models maxEV <- sapply(objects, getMaxEV, simplify=TRUE, USE.NAMES=TRUE) ## line style matplot.args <- modifyList( list(type="l", col=c(1,2,6,3), lty=c(1,3,2,4), lwd=1.7, cex=1, pch=NULL, xlab="", ylab="dominant eigenvalue", ylim=c(0,max(2,maxEV))), matplot.args) ## main plot do.call("matplot", c(list(x=tp, y=maxEV), matplot.args)) ## add reference line if (is.list(refline.args)) do.call("abline", modifyList(list(h=1, lty=3, col="grey"), refline.args)) ## add legend if (missing(legend.args) && length(objects) == 1) legend.args <- NULL # omit legend if (is.list(legend.args)) { legend.args <- modifyList( c(list(x="topright", inset=0.02, legend=names(objects), bty="n"), matplot.args[c("col", "lwd", "lty", "pch")], with(matplot.args, list(pt.cex=cex, text.col=col))), legend.args) do.call("legend", legend.args) } ## done invisible(maxEV) } getMaxEV <- function (x) { stopifnot(inherits(x, "hhh4")) Lambda <- createLambda(x) if (identical(type <- attr(Lambda, "type"), "zero")) { rep.int(0, nrow(x$stsObj)) } else { diagonal <- identical(type, "diagonal") vapply(X = seq_len(nrow(x$stsObj)), FUN = function (t) maxEV(Lambda(t), symmetric = FALSE, diagonal = diagonal), FUN.VALUE = 0, USE.NAMES = FALSE) } } ## generate a function that computes the Lambda_t matrix createLambda <- function (object) { nTime <- nrow(object$stsObj) nUnit <- object$nUnit if (identical(componentsHHH4(object), "end")) { # no epidemic components zeromat <- matrix(0, nUnit, nUnit) Lambda <- function (t) zeromat attr(Lambda, "type") <- "zero" return(Lambda) } exppreds <- get_exppreds_with_offsets(object) W <- getNEweights(object) Wt <- if (is.null(W)) { NULL } else if (is.matrix(W)) { function (t) W } else { function (t) W[,,t] } type <- NULL Lambda <- if (is.null(Wt)) { # no neighbourhood component type <- "diagonal" function (t) { stopifnot(isScalar(t) && t > 0 && t <= nTime) diag(exppreds$ar[t,], nUnit, nUnit) } } else { function (t) { stopifnot(isScalar(t) && t > 0 && t <= nTime) Lambda <- exppreds$ne[t,] * t(Wt(t)) diag(Lambda) <- diag(Lambda) + exppreds$ar[t,] Lambda } } attr(Lambda, "type") <- type Lambda } ## extract exppreds multiplied with offsets ## note: theta = coef(object) would also work since psi is not involved here get_exppreds_with_offsets <- function (object, subset = seq_len(nrow(object$stsObj)), theta = object$coefficients) { means <- meanHHH(theta, terms(object), subset = subset) res <- sapply(X = c("ar", "ne", "end"), FUN = function (comp) { exppred <- means[[paste0(comp, ".exppred")]] offset <- object$control[[comp]]$offset if (length(offset) > 1) offset <- offset[subset,,drop=FALSE] exppred * offset }, simplify = FALSE, USE.NAMES = TRUE) res } ## determine the dominant eigenvalue of the Lambda matrix maxEV <- function (Lambda, symmetric = isSymmetric.matrix(Lambda), diagonal = FALSE) { maxEV <- if (diagonal) { max(Lambda) # faster than max(diag(Lambda)) } else { eigen(Lambda, symmetric = symmetric, only.values = TRUE)$values[1L] } ## dominant eigenvalue may be complex if (is.complex(maxEV)) { if (Im(maxEV) == 0) { # if other eigenvalues are complex Re(maxEV) } else { warning("dominant eigenvalue is complex, using its absolute value") abs(maxEV) } } else { maxEV } } ### ### Plot estimated seasonality (sine-cosine terms) of one or several hhh4-fits ### either as multiplicative effect on the 'components' (intercept=FALSE) ### or with intercept=TRUE, which only makes sense if there are no further ### non-centered covariates and offsets. ### plotHHH4_season <- function (..., components = NULL, intercept = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = "", main = NULL, par.settings = list(), matplot.args = list(), legend = NULL, legend.args = list(), refline.args = list(), unit = 1, period = NULL) # for harmonics with period > freq { objnams <- unlist(lapply(match.call(expand.dots=FALSE)$..., deparse)) objects <- getHHH4list(..., .names = objnams) freq <- attr(objects, "freq") if (is.null(period)) period <- freq components <- if (is.null(components)) { intersect(c("end", "ar", "ne"), unique(unlist( lapply(objects, componentsHHH4), use.names = FALSE))) } else { match.arg(components, choices = c("ar", "ne", "end", "maxEV"), several.ok = TRUE) } ## x-axis if (is.null(xlab)) xlab <- if (freq==52) "week" else if (freq==12) "month" else "time" ## auxiliary function for an argument list "x" with named "defaults" list withDefaults <- function(x, defaults) { if (is.null(x)) defaults else if (is.list(x)) { if (is.null(names(x))) { # x must be complete stopifnot(length(x) == length(defaults)) setNames(x, names(defaults)) } else modifyList(defaults, x) # x might be a subset of parameters } else if (is.atomic(x)) { setNames(rep(list(x), length(defaults)), names(defaults)) } else stop("'", deparse(substitute(x)), "' is not suitably specified") } ## component-specific arguments ylim <- withDefaults(ylim, list(ar=NULL, ne=NULL, end=NULL, maxEV=NULL)) ylab <- withDefaults(ylab, list(ar=expression(hat(lambda)), ne=expression(hat(phi)), end=expression(hat(nu)), maxEV="dominant eigenvalue")) main <- withDefaults(main, list(ar="autoregressive component", ne="spatiotemporal component", end="endemic component", maxEV="dominant eigenvalue")) anyMain <- any(unlist(lapply(main, nchar), recursive=FALSE, use.names=FALSE) > 0) ## basic graphical settings if (is.list(par.settings)) { par.defaults <- list(mfrow=sort(n2mfrow(length(components))), mar=c(4,5,if(anyMain) 2 else 1,1)+.1, las=1) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } ## line style matplot.args <- modifyList(list(type="l", col=c(1,2,6,3), lty=c(1,3,2,4), lwd=1.7, cex=1, pch=NULL), matplot.args) ## legend options if (is.null(legend)) legend <- length(objects) > 1 if (is.logical(legend)) legend <- which(legend) if (!is.list(legend.args)) { if (length(legend) > 0) warning("ignored 'legend' since 'legend.args' is not a list") legend <- integer(0L) } if (length(legend) > 0) { default.args <- c( list(x="topright", inset=0.02, legend=names(objects), bty="n"), matplot.args[c("col", "lwd", "lty", "pch")], with(matplot.args, list(pt.cex=cex, text.col=col)) ) legend.args <- modifyList(default.args, legend.args) } ## plot seasonality in individual model components seasons <- list() for(comp in setdiff(components, "maxEV")){ s2 <- lapply(objects, getSeason, component = comp, unit = unit, period = period) seasons[[comp]] <- exp(vapply(s2, FUN = if (intercept) { function (intseas) do.call("+", intseas) } else { function (intseas) intseas$season # disregard intercept }, FUN.VALUE = numeric(period), USE.NAMES = TRUE)) do.call("matplot", # x defaults to 1:period c(list(seasons[[comp]], xlim=xlim, ylim=ylim[[comp]], xlab=xlab, ylab=ylab[[comp]], main=main[[comp]]), matplot.args)) if (is.list(refline.args) && !intercept && any(seasons[[comp]] != 1)) do.call("abline", modifyList(list(h=1, lty=3, col="grey"), refline.args)) if (match(comp, components) %in% legend) do.call("legend", legend.args) } ## plot seasonality of dominant eigenvalue if ("maxEV" %in% components) { seasons[["maxEV"]] <- vapply(objects, FUN = function (obj) { getMaxEV_season(obj, period = period)$maxEV.season }, FUN.VALUE = numeric(period), USE.NAMES = TRUE) do.call("matplot", c(list(seasons[["maxEV"]], xlim=xlim, ylim=if (is.null(ylim[["maxEV"]])) c(0,max(2,seasons[["maxEV"]])) else ylim[["maxEV"]], xlab=xlab, ylab=ylab[["maxEV"]], main=main[["maxEV"]]), matplot.args)) if (is.list(refline.args)) do.call("abline", modifyList(list(h=1, lty=3, col="grey"), refline.args)) if (4 %in% legend) do.call("legend", legend.args) } ## invisibly return the data that has been plotted invisible(seasons) } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # get estimated intercept and seasonal pattern in the different components # CAVE: other covariates and offsets are ignored #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ getSeason <- function(x, component = c("end", "ar", "ne"), unit = 1, period = x$stsObj@freq) { component <- match.arg(component) startseason <- getSeasonStart(x) if (is.character(unit)) unit <- match(unit, colnames(x$stsObj)) ## return -Inf is component is not in the model (-> exp(-Inf) = 0) if (!component %in% componentsHHH4(x)) return(list(intercept=-Inf, season=rep.int(-Inf, period))) ## get the intercept est <- fixef.hhh4(x, reparamPsi=FALSE) intercept <- unname(est[grep(paste0("^", component, "\\.(1|ri)"), names(est))]) if (length(intercept) == 0) { intercept <- 0 # no intercept (not standard) } else if (length(intercept) > 1) { # unit-specific intercepts if (length(intercept) != ncol(x$stsObj)) stop(component,"-component has incomplete unit-specific intercepts") intercept <- intercept[unit] if (is.na(intercept)) stop("the specified 'unit' does not exist") } ## get seasonality terms (relying on sin(2*pi*t/52)-kind coefficient names) coefSinCos <- est[grep(paste0("^",component, "\\.(sin|cos)\\("), names(est))] if (unitspecific <- length(grep(").", names(coefSinCos), fixed=TRUE))) { if (unitspecific < length(coefSinCos)) stop("cannot handle partially unit-specific seasonality") coefSinCos <- coefSinCos[grep(paste0(").",colnames(x$stsObj)[unit]), names(coefSinCos), fixed=TRUE)] ## drop .unitname-suffix since non-syntactic (cannot reformulate()) names(coefSinCos) <- sub("\\)\\..+$", ")", names(coefSinCos)) } if (length(coefSinCos)==0) return(list(intercept=intercept, season=rep.int(0,period))) fSinCos <- reformulate( sub(paste0("^",component,"\\."), "", names(coefSinCos)), intercept=FALSE) mmSinCos <- model.matrix(fSinCos, data=data.frame(t=startseason-1 + seq_len(period))) ## Done list(intercept=intercept, season=as.vector(mmSinCos %*% coefSinCos)) } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # compute dominant eigenvalue of Lambda_t # CAVE: no support for Lambda_it #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ getMaxEV_season <- function (x, period = frequency(x$stsObj)) { stopifnot(inherits(x, "hhh4")) nUnits <- x$nUnit components <- componentsHHH4(x) ## CAVE: this function ignores epidemic covariates/offsets ## and unit-specific seasonality if (nUnits > 1L && any(c("ar", "ne") %in% components)) { compOK <- vapply(x$control[c("ar","ne")], FUN = function (comp) { terms <- terms(x)$terms epiterms <- terms[,terms["offsetComp",] %in% seq_len(2L),drop=FALSE] identical(as.numeric(comp$offset), 1) && length(all.vars(removeTimeFromFormula(comp$f))) == 0L && all(!unlist(epiterms["unitSpecific",])) }, FUN.VALUE = TRUE, USE.NAMES = FALSE) if (any(!compOK)) warning("epidemic components have (unit-specific) ", "covariates/offsets not accounted for;\n", " use getMaxEV() or plotHHH4_maxEV()") } ## global intercepts and seasonality s2.lambda <- getSeason(x, "ar") s2.phi <- getSeason(x, "ne") ## unit-specific intercepts ris <- ranef.hhh4(x, tomatrix=TRUE) ri.lambda <- ris[,pmatch("ar.ri", colnames(ris), nomatch=0L),drop=TRUE] if (length(ri.lambda) == 0L) ri.lambda <- rep.int(0, nUnits) ri.phi <- ris[,pmatch("ne.ri", colnames(ris), nomatch=0L),drop=TRUE] if (length(ri.phi) == 0L) ri.phi <- rep.int(0, nUnits) ## get neighbourhood weights as a function of time W <- getNEweights(x) # NULL, matrix or 3-dim array if (!is.null(W) && !is.matrix(W)) stop("neighbourhood weights are time-varying; ", # and thus probably changing within or across seasons "use getMaxEV() or plotHHH4_maxEV()") ## create the Lambda_t matrix createLambda <- function (t) { Lambda <- if ("ne" %in% components) { exp(s2.phi$intercept + ri.phi + if(t==0) 0 else s2.phi$season[t]) * t(W) } else matrix(0, nUnits, nUnits) if ("ar" %in% components) { diag(Lambda) <- diag(Lambda) + exp(s2.lambda$intercept + ri.lambda + if(t==0) 0 else s2.lambda$season[t]) } Lambda } ## do this for t in 0:period diagonal <- !("ne" %in% components) .maxEV <- function (t) { maxEV(createLambda(t), symmetric = FALSE, diagonal = diagonal) } maxEV.const <- .maxEV(0) maxEV.season <- if (all(c(s2.phi$season, s2.lambda$season) %in% c(-Inf, 0))) { rep.int(maxEV.const, period) } else { vapply(X = seq_len(period), FUN = .maxEV, FUN.VALUE = 0, USE.NAMES = FALSE) } ## Done list(maxEV.season = maxEV.season, maxEV.const = maxEV.const, Lambda.const = createLambda(0)) } ## Determine the time point t of the start of a season in a hhh4() fit. ## If \code{object$stsObj@start[2] == 1}, it simply equals ## \code{object$control$data$t[1]}. Otherwise, the \code{stsObj} time series ## starts within a year (at sample \code{s}, say) and the beginning of ## the next season is ## \code{object$control$data$t[1] + object$stsObj@freq - s + 1}. getSeasonStart <- function (object) { if ((startsample <- object$stsObj@start[2]) == 1) { object$control$data$t[1L] } else { object$control$data$t[1L] + object$stsObj@freq-startsample + 1 } } ### ### plot neighbourhood weight as a function of distance (neighbourhood order) ### plotHHH4_neweights <- function (x, plotter = boxplot, ..., exclude = 0, maxlag = Inf) { plotter <- match.fun(plotter) ## orders of neighbourhood (o_ji) nbmat <- neighbourhood(x$stsObj) if (all(nbmat %in% 0:1)) { message("'neighbourhood(x$stsObj)' is binary; ", "computing neighbourhood orders ...") nbmat <- nbOrder(nbmat, maxlag=maxlag) } ## extract (estimated) weight matrix (w_ji) W <- getNEweights(x) if (is.null(W)) { # if no spatio-temporal component in the model W <- nbmat W[] <- 0 } ## draw the boxplot Distance <- factor(nbmat, exclude = exclude) notexcluded <- which(!is.na(Distance)) Distance <- Distance[notexcluded] Weight <- W[notexcluded] plotter(Weight ~ Distance, ...) } ### ### auxiliary functions ### yearepoch2point <- function (yearepoch, frequency, toleft=FALSE) yearepoch[1L] + (yearepoch[2L] - toleft) / frequency getHHH4list <- function (..., .names = NA_character_) { objects <- list(...) if (length(objects) == 1L && is.list(objects[[1L]]) && inherits(objects[[1L]][[1L]], "hhh4")) { ## ... is a single list of fits objects <- objects[[1L]] if (is.null(names(objects))) names(objects) <- seq_along(objects) } else { names(objects) <- if (is.null(names(objects))) .names else { ifelse(nzchar(names(objects)), names(objects), .names) } } if (!all(sapply(objects, inherits, what="hhh4"))) stop("'...' must consist of hhh4()-fits only") ## check common epoch, start and frequency and append them as attributes epoch <- unique(t(sapply(objects, function(x) x$stsObj@epoch))) if (nrow(epoch) > 1) stop("supplied hhh4-models obey different 'epoch's") attr(objects, "epoch") <- drop(epoch) start <- unique(t(sapply(objects, function(x) x$stsObj@start))) if (nrow(start) > 1) stop("supplied hhh4-models obey different start times") attr(objects, "start") <- drop(start) freq <- unique(sapply(objects, function(x) x$stsObj@freq)) if (length(freq)>1) stop("supplied hhh4-models obey different frequencies") attr(objects, "freq") <- freq ## done return(objects) } surveillance/R/makeControl.R0000644000176200001440000000210013346465003015545 0ustar liggesusers################################################################################ ### Convenient construction of a list of control arguments for "hhh4" models ### ### Copyright (C) 2014-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ makeControl <- function (f = list(~1), S = list(0, 0, 1), period = 52, offset = 1, ...) { ## set model components control <- mapply(function (f, S, period, offset) { f <- addSeason2formula(f = f, S = S, period = period) list(f = f, offset = offset) }, f, S, period, offset, SIMPLIFY = FALSE, USE.NAMES = FALSE) names(control) <- c("ar", "ne", "end") ## default: negative-binomial distribution with common overdispersion control$family <- "NegBin1" ## customization via ... arguments modifyList(control, list(...)) } surveillance/R/isoWeekYear.R0000644000176200001440000000544113430566615015536 0ustar liggesusers###################################################################### # Extract numerical ISO week and year from a Date object # # Details: # This now simply wraps strftime(x, "%V") and strftime(x, "%G"), # supported on Windows since R 3.1.0. Thus, a handmade implementation # of isoWeekYear as in surveillance <= 1.16.2 is no longer necessary. # # Parameters: # Y -- year or a Date/POSIXt object # M -- month (only used if Y is the year) # D -- day (only used if Y is the year) # # Returns: # numeric ISO year and week of the date ###################################################################### isoWeekYear <- function(Y, M, D) { if (!inherits(Y, c("Date", "POSIXt"))) Y <- strptime(paste(Y,M,D,sep="-"),"%Y-%m-%d") Wn <- as.numeric(strftime(Y, "%V")) Yn <- as.numeric(strftime(Y, "%G")) return(list(ISOYear = Yn, ISOWeek = Wn)) } ###################################################################### # An extension of format.Date with additional formatting strings # - "%Q" / "%OQ" for the quarter (1-4 / I-IV) the month belongs to # - "%q" days within quarter # If these formats are not used, base format() is called. # # Params: # x - An object of type Date to be converted. # format - A character string. ###################################################################### #Small helper function - vectorized gsub, but disregarding names of x gsub2 <- function(pattern, replacement, x) { len <- length(x) mapply(FUN = gsub, pattern = rep_len(as.character(pattern), len), replacement = rep_len(as.character(replacement), len), x = x, MoreArgs = list(fixed = TRUE), SIMPLIFY = TRUE, USE.NAMES = FALSE) } formatDate <- function(x, format) { ##Anything to do? if (!grepl("%Q|%OQ|%q", format)) { #nope return(format(x,format)) } ##Replicate string formatStr <- rep_len(format,length(x)) ##If days within quarter requested (this is kind of slow) if (grepl("%q",format)) { ##Loop over vectors of dates dateOfQuarter <- sapply(x, function(date) { ##Month number in quarter modQ <- (as.numeric(format(date,"%m"))-1) %% 3 dateInMonth <- seq(date,length.out=2,by=paste0("-",modQ," month"))[2] ##Move to first of month return(dateInMonth - as.numeric(format(dateInMonth,"%d")) + 1) }) dayInQuarter <- as.numeric(x - dateOfQuarter) + 1 formatStr <- gsub2("%q",as.character(dayInQuarter),formatStr) } if (grepl("%Q|%OQ",format)) { Q <- (as.numeric(format(x,"%m"))-1) %/% 3 + 1 #quarter formatStr <- gsub2("%Q",as.character(Q),formatStr) formatStr <- gsub2("%OQ",as.roman(Q),formatStr) } ##The rest of the formatting - works normally as defined by strptime res <- character(length(x)) for (i in 1:length(x)) res[i] <- format(x[i],formatStr[i]) return(res) } surveillance/R/magic.dim.R0000644000176200001440000000705114615162374015136 0ustar liggesusers###################################################################### # Compute a suitable layout for plotting ###################################################################### magic.dim <- function(k){ if(k==1) return(c(1,1)) #factorize k factors <- primeFactors(k) #find the best factorization of k into two factors res <- bestCombination(factors) #if k is a prime or the difference between the two factors of k is too large #rather use the roots of the next square number greater than k if(diff(res) >5){ #up is root of the smallest square number >= k up <- ceiling(sqrt(k)) #low is root of the biggest square number < k low <- up -1 # e.g. k=11 is a prime, the next square number is 16 so up=4 and low=3 # low^2 = 9 < 11 is naturally too small, up^2=16 > 11 so c(4,4) is a solution # but low*up = 3*4 = 12 > 11 is also adequate and a better solution if((k - low^2) < up) res <- c(low,up) else res <- c(up,up) } return(sort(res)) } ###################################################################### # Compute the prime number factorization of an integer ###################################################################### primeFactors <- function(x){ if(x %in% 1:3) return(x) factors<- numeric(0) i<-1 #start with i=2 and divide x by i (as often as possible) then try division by i+1 #until all factors are found, i.e. x=1 while(i < x){ i <- i+1 while((x %% i)==0){ # each time a new factor i is found, save it and proceed with x = x/i # e.g. k=20: 2 is a factor of x=20, continue with x = 10 = 20/2 # 2 is a factor of x=10, continue with x = 5 = 10/2 # 3 and 4 are no factors of x = 5 # 5 is a factor of x = 5, continue with x = 1 # result: 20 = c(2, 2, 5) factors <- c(factors, i) x <- x/i } } return(factors) } ###################################################################### # Given a prime number factorization of a number, e.g. 36 # yields x=c(2,2,3,3) # and partition x into two groups, such that the product of the numbers # in group one is as similar as possible to the product # of the numbers of group two. This is useful in magic.dim # # Params: # x - the prime number factorization # # Returns: # c(prod(set1),prod(set2)) ###################################################################### bestCombination <- function(x) { #Compute the power set of 0:1^length(x), i.e. a binary indicator for #variable stating whether to include it in set 1 or not. combos <- as.matrix(expand.grid(rep(list(c(FALSE,TRUE)), length(x)), KEEP.OUT.ATTRS = FALSE)) ## more efficient version, if ever needed: ## ncomb <- 2^length(x) ## combos <- vapply( ## X = seq_along(x), ## FUN = function(i) rep_len(rep(c(FALSE,TRUE), each = 2^(i-1)), ncomb), ## FUN.VALUE = logical(ncomb), ## USE.NAMES = FALSE) #Small helper function, given a vector of length(x) stating whether #to include an element in set1 or not, compute the product #of set1 and set2=x\backslash set1 #set1: all those for which include is TRUE, set2: all those for which #include is FALSE setsize <- function(include) c(prod(x[include]), prod(x[!include])) #Compute the product of set1 and set2 for each possible combination sizes <- apply(combos,MARGIN=1,FUN=setsize) #Calculate the combination, where x is as close to y as possible bestConfig <- combos[which.min(abs(diff(sizes))),] #Return this setsize of this configuration return(setsize(bestConfig)) } surveillance/R/LRCUSUM.runlength.R0000644000176200001440000001253314615162374016446 0ustar liggesusers###################################################################### # Compute log likelihood ratio for a univariate or multivariate # categorical distribution # # Params: # outcomes - a data frame with all possible configuration for the (c-1) # variables not being the reference category. # mu - expectation under which LLR under pi is computed # mu0 - null model. A vector of length (k-1) # mu1 - alternative model. A vector of length (k-1) ###################################################################### LLR.fun <- function(outcomes, mu, mu0, mu1, dfun, ...) { #Compute likelihood ratios. Both univariate and the multivariate #values are computed llr.res <- t(apply(outcomes,1, function(y) { llr <- dfun(y, mu=mu1, log=TRUE,...) - dfun(y, mu=mu0, log=TRUE, ...) p <- dfun(y, mu=mu, ...) return(c(llr=llr,p=p)) })) res <- cbind(outcomes,llr.res) colnames(res) <- c(paste("y",1:ncol(outcomes),sep=""),"llr","p") return(res) } ###################################################################### # Function to compute all possible outcomes for the categorical time # series. This is needed for the LLR computations # # Parameters: # km1 - Dimension of the problem (k-1) # n - number of items arranged (i.e. number of experiments). Integer # # Returns: # matrix of size (number of configs) \times km1 # containing all possible states ###################################################################### outcomeFunStandard <- function(k,n) { #Compute all possible likelihood ratios and their probability under mu #Note: Currently all states are investigated. This might be way too #much work as defacto many states have an occurrence prob near 0!! outcomes <- as.matrix(expand.grid(rep(list(0:n), k), KEEP.OUT.ATTRS=FALSE)) #Take only valid outcomes (might reduce drastically the number of cells) outcomes <- outcomes[rowSums(outcomes) <= n,,drop=FALSE] return(outcomes) } ###################################################################### # Compute run length for CUSUM based on Markov representation of the # Likelihood ratio based CUSUM # # Parameters: # mu - (k-1 \times T) matrix with true proportions, i.e. equal to mu0 or mu1 if one wants to compute e.g. ARL_0 or ARL_1 # mu0 - (k-1 \times T) matrix with in-control proportions # mu1 - (k-1 \times T) matrix with out-of-control proportion # n - vector of length T containing the total number of experiments for each time point # h- The threshold h which is used for the CUSUM # g - The number of levels to cut the state space into, i.e. M on foil 12 ###################################################################### LRCUSUM.runlength <- function(mu,mu0,mu1,h,dfun, n, g=5,outcomeFun=NULL,...) { #Semantic checks if ( ((ncol(mu) != ncol(mu0)) | (ncol(mu0) != ncol(mu1))) | ((nrow(mu) != nrow(mu0)) | (nrow(mu0) != nrow(mu1)))) { stop("Error: dimensions of mu, mu0 and mu1 have to match") } if (missing(h)) { stop("No threshold specified!") } #If no specific way for computing the outcomes is given #use the standard way. if (is.null(outcomeFun)) { outcomeFun <- outcomeFunStandard } #Discretize number of possible states of the CUSUM S <- c(-Inf,seq(0,h,length.out=g)) names <- c(levels(cut(1,S,right=TRUE)),">=h") #Time variable t <- 1:ncol(mu) #Dimension of the problem (k-1) km1 <- nrow(mu) #Create transition matrix for CUSUM control chart P <- array(0, dim=c(length(t),g+1,g+1),dimnames=list(t,names,names)) #Once in the absorbing state stay there! P[,g+1,g+1] <- 1 #Loop over all P[t,,] and compute probabilities for (i in seq_along(t)) { if (length(t) > 1) cat("Looking at t =", i, "/", length(t), "\n") #Determine all possible outcomes outcomes <- outcomeFun(km1,n[i]) #Compute all possible likelihood ratios and their probability under mu llr <- LLR.fun(outcomes,mu=mu[,i],mu0=mu0[,i],mu1=mu1[,i],dfun=dfun,size=n[i],...) #Exact CDF of the LLR for this time F <- stepfun(sort(llr[,"llr"]),c(0,cumsum(llr[order(llr[,"llr"]),"p"]))) #Compute probability going from c <= S_{t-1} < d to a <= S_{t} < b for (j in 1:g) { #from index for (k in 1:g) { #to index a <- S[k] ; b <- S[k+1] ; c <- S[j] ; d <- S[j+1] ; m <- (c+d)/2 #From zero to new state if (j == 1) { P[i,j,k] <- F(b) - F(a) } else { #Rieman integral assuming as in Brook & Evans (1972) that S at midpoint #P[i,j,k] <- F(b-m) - F(a-m) #Slightly better approximation by Hawkins (1992), which uses Simpson's rule P[i,j,k] <- (F(b-c) + 4*F(b-m) + F(b-d) - F(a-c) - 4*F(a-m) - F(a-d))/6 } } } #Whatever is missing goes to >h category (take care of rounding errors) P[i,-(g+1),(g+1)] <- pmax(0,1-apply(P[i,-(g+1),-(g+1)],1,sum)) } #Use matrix to compute RL distribution Ppower <- P[1,,] alarmUntilTime <- numeric(ncol(mu0)) alarmUntilTime[1] <- Ppower[1,ncol(P)] for (time in t[-1]) { #from 2 to length of t Ppower <- Ppower %*% P[time,,] alarmUntilTime[time] <- Ppower[1,ncol(P)] } pRL <- c(alarmUntilTime[1],diff(alarmUntilTime)) mom <- NA #If the Markov chain is homogeneous then compute ARL by inverting if (length(t) == 1) { R <- P[,1:g,1:g] I <- diag(nrow=g) mom <- rowSums(solve(I-R)) } return(list(P=P,pmf=pRL,cdf=alarmUntilTime,arl=mom[1])) } surveillance/R/twinstim_siaf_exponential.R0000644000176200001440000000603013612577730020572 0ustar liggesusers################################################################################ ### Exponential kernel f(s) = exp(-||s||/sigma) ### ### Copyright (C) 2020 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ siaf.exponential <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## spatial kernel f <- function (s, logsigma, types = NULL) { sigma <- exp(logsigma) sLength <- sqrt(.rowSums(s^2, nrow(s), 2L)) exp(-sLength/sigma) } environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.exponential", engine = engine) ## fast integration of f over a circular domain Fcircle <- function (r, logsigma, type = NULL) { sigma <- exp(logsigma) fofr <- exp(-r/sigma) ## f(r) approaches 0, r=Inf is used in R0(,trimmed=F) if (fofr == 0) return(2*pi*sigma^2) ## calculate cylinder volume up to height f(r) basevolume <- pi * r^2 * fofr ## integration via f^-1 Ifinvsq <- function (z) sigma^2 * z * ((log(z)-1)^2 + 1) ##intfinvsq <- Ifinvsq(fof0) - Ifinvsq(fofr) # fof0 = 1 intfinvsq <- 2*sigma^2 - Ifinvsq(fofr) basevolume + pi * intfinvsq } environment(Fcircle) <- baseenv() ## derivative of f wrt logsigma deriv <- function (s, logsigma, types = NULL) { sigma <- exp(logsigma) sLength <- sqrt(.rowSums(s^2, nrow(s), 2L)) z <- sLength/sigma matrix(z * exp(-z)) } environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso(intrfr_names = "intrfr.exponential.dlogsigma", engine = engine) ## simulation from the kernel (via polar coordinates) simulate <- siaf.simulatePC(intrfr.exponential) environment(simulate) <- getNamespace("surveillance") ## return the kernel specification list(f = f, F = F, Fcircle = Fcircle, deriv = deriv, Deriv = Deriv, simulate = simulate, npars = 1L, validpars = validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.exponential <- function (R, logsigma, types = NULL) { sigma <- exp(logsigma) sigma * (sigma - (R+sigma)*exp(-R/sigma)) } ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) ## Note: df(x)/dlogsigma = x * exp(-(x/sigma)-logsigma) intrfr.exponential.dlogsigma <- function (R, logsigma, types = NULL) { sigma <- exp(logsigma) 2*sigma^2 - ((R+sigma)^2 + sigma^2)*exp(-R/sigma) } surveillance/R/epidata_plot.R0000644000176200001440000001552014426171115015744 0ustar liggesusers################################################################################ ### The plot-method for "epidata" (via plot.summary.epidata) shows the evolution ### of the numbers of susceptible, infectious and recovered individuals. ### The extra function "stateplot" shows the event history of one individual. ### ### Copyright (C) 2008-2009, 2013-2014 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ plot.epidata <- function(x, ...) { sx <- summary(x) plot.summary.epidata(sx, ...) } plot.summary.epidata <- function (x, lty = c(2,1,3), lwd = 2, col = c("#1B9E77", "#D95F02", "#7570B3"), col.hor = col, col.vert = col, xlab = "Time", ylab = "Number of individuals", xlim = NULL, ylim = NULL, legend.opts = list(), do.axis4 = NULL, panel.first = grid(), rug.opts = list(), which.rug = c("infections", "removals", "susceptibility", "all"), ...) { counters <- x[["counters"]] type <- x[["type"]] n <- counters[1L,"nSusceptible"] m <- counters[1L,"nInfectious"] N <- n + m times <- counters[-1L,"time"] if (missing(lty)) { lty <- c(2, 1, 3 * (type %in% c("SIR","SIRS"))) } recycle3 <- function (xnam) assign(xnam, rep(get(xnam), length.out = 3), inherits = TRUE) for(varname in c("lty", "lwd", "col", "col.hor", "col.vert")) recycle3(varname) if (is.null(xlim)) { xlim <- attr(x, "timeRange") if (xlim[2] == Inf) xlim[2] <- times[length(times)] } if (is.null(ylim)) ylim <- c(0, max( (lty[1] > 0) * {if (type %in% c("SIRS", "SIS")) N else n}, (lty[2] > 0) * max(counters$nInfectious), (lty[3] > 0) * max(counters$nRemoved) )) # basic plotting frame plot(xlim, ylim, type = "n", xlab = xlab, ylab = ylab, panel.first = panel.first, ...) abline(h = c(0, N), col = "grey") # for real xlim in lines.stepfun (see 'dr' adjustment in plot.stepfun code) fakexlim <- c(1,2) * (xlim[2] + 2*xlim[1])/3 - c(0,xlim[1]) # this isn't nice, a user argument 'dr' in plot.stepfun would be appreciated # add #Susceptibles if (all(counters$nSusceptible == n)) { lines(x = xlim, y = c(n,n), lty = lty[1], lwd = lwd[1], col = col.hor[1], ...) } else { lines(stepfun(times, counters$nSusceptible), xlim = fakexlim, lty = lty[1], lwd = lwd[1], col.hor = col.hor[1], col.vert = col.vert[1], do.points = FALSE, ...) } # add #Infected if (all(counters$nInfectious == m)) { lines(x = xlim, y = c(m,m), lty = lty[2], lwd = lwd[2], col = col.hor[2], ...) } else { lines(stepfun(times, counters$nInfectious), xlim = fakexlim, lty = lty[2], lwd = lwd[2], col.hor = col.hor[2], col.vert = col.vert[2], do.points = FALSE, ...) } # add #Removed if (all(counters$nRemoved == 0)) { lines(x = xlim, y = c(0,0), lty = lty[3], lwd = lwd[3], col = col.hor[3], ...) } else { lines(stepfun(times, counters$nRemoved), xlim = fakexlim, lty = lty[3], lwd = lwd[3], col.hor = col.hor[3], col.vert = col.vert[3], do.points = FALSE, ...) } # add special annotations if (is.null(do.axis4)) do.axis4 <- type == "SIR" if (do.axis4) { finalvalues <- counters[nrow(counters), c("nSusceptible", "nRemoved")] axis(4, at = finalvalues[lty[c(1,3)] > 0], font = 2, ...) } if (is.list(rug.opts)) { if (is.null(rug.opts$ticksize)) rug.opts$ticksize <- 0.02 if (is.null(rug.opts$quiet)) rug.opts$quiet <- TRUE which.rug <- match.arg(which.rug) if (is.null(rug.opts$col)) rug.opts$col <- switch(which.rug, all = 1, infections = col.hor[2], removals = col.hor[3], susceptibility = col.hor[1]) rugLocations <- switch(which.rug, all = times, infections = attr(x, "eventTimes"), removals = counters$time[counters$type == "R"], susceptibility = counters$time[counters$type == "S"] ) if (length(rugLocations) > 0) { do.call(rug, c(list(x = rugLocations), rug.opts)) } } if (is.list(legend.opts)) { legend.opts <- modifyList( list(x = "topright", bty = "n", inset = c(0,0.02), legend = c("susceptible", "infectious", "removed")[lty>0], lty = lty[lty>0], lwd = lwd[lty>0], col = col.hor[lty>0]), legend.opts) do.call(legend, legend.opts) } invisible(as.matrix( counters[c("time", "nSusceptible", "nInfectious", "nRemoved")] )) } ################################################################################ # PLOT THE STATE CHANGES OF ONE INDIVIDUAL OF "epidata" # ... will be passed to the plot function (stepfun or curve), # e.g. add, xlim, ylim, main, xlab, ylab, ... ################################################################################ stateplot <- function(x, id, ...) { sx <- getSummary(x, class = "epidata") .id <- as.character(id) if (length(.id) != 1) { stop ("'id' must have length 1") } initiallyInfected <- sx[["initiallyInfected"]] if (! .id %in% levels(initiallyInfected)) { stop ("invalid 'id', does not exist in 'x'") } isInitiallyInfected <- .id %in% initiallyInfected counters <- sx[["counters"]] states <- levels(counters[["type"]]) path <- counters[which(counters$id == .id), c("time", "type")] # remove pseudo-R-events, which come before S-event directSevents <- which(duplicated(path[["time"]])) path_noPseudoR <- if (length(directSevents)) { path[-(directSevents-1), ] } else { path } pathfunc <- if (nrow(path_noPseudoR) > 0) { stepfun( x = path_noPseudoR[["time"]], y = c(1+isInitiallyInfected, unclass(path_noPseudoR[["type"]])), right = FALSE ) } else { function(t) rep(1+isInitiallyInfected, length(t)) } # plot it dotargs <- list(...) nms <- names(dotargs) if(! "xlab" %in% nms) dotargs$xlab <- "time" if(! "ylab" %in% nms) dotargs$ylab <- "state" if(! "main" %in% nms) dotargs$main <- "" if(! "xlim" %in% nms) dotargs$xlim <- attr(sx, "timeRange") if(! "xaxs" %in% nms) dotargs$xaxs <- "i" if(! "do.points" %in% nms && inherits(pathfunc, "stepfun")) { dotargs$do.points <- FALSE } do.call("plot", args = c(list(x = pathfunc, yaxt = "n"), dotargs)) axis(2, at = seq_along(states), labels = states) invisible(pathfunc) } surveillance/R/knox.R0000644000176200001440000001243314426171115014256 0ustar liggesusers################################################################################ ### Knox test for space-time interaction ### ### Copyright (C) 2015-2016 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ knox <- function (dt, ds, eps.t, eps.s, simulate.p.value = TRUE, B = 999, ...) { stopifnot(length(dt) == length(ds)) if (isSymmetric.matrix(dt) || isSymmetric.matrix(ds)) warning("symmetric input matrix detected; use 'lower.tri'?") ## logical vectors indicating which pairs are close in time and space closeInTime <- if (is.logical(dt)) { dt } else { stopifnot(is.numeric(dt), isScalar(eps.t)) dt <= eps.t } closeInSpace <- if (is.logical(ds)) { ds } else { stopifnot(is.numeric(ds), isScalar(eps.s)) ds <= eps.s } ## manually build the contingency table (table() with factor() is too slow) .lab <- c("close", "not close") knoxtab <- array( tabulate(4L - closeInTime - 2L*closeInSpace, nbins = 4L), dim = c(2L, 2L), dimnames = list( dt = if (is.logical(dt)) .lab else paste(c("<=", " >"), eps.t), ds = if (is.logical(ds)) .lab else paste(c("<=", " >"), eps.s) )) class(knoxtab) <- "table" ## expected number of close pairs in the absence of spatio-temporal interaction npairs <- sum(knoxtab) expected <- sum(knoxtab[1L,]) / npairs * sum(knoxtab[,1L]) ##<- this order of terms avoids integer overflow ## test statistic is the number of spatio-temporally close pairs METHOD <- "Knox test" STATISTIC <- knoxtab[1L] ## determine statistical significance pval_Poisson <- ppois(STATISTIC, expected, lower.tail = FALSE) PVAL <- if (simulate.p.value) { # Monte Carlo permutation approach stopifnot(isScalar(B)) B <- as.integer(B) METHOD <- paste(METHOD, "with simulated p-value") PARAMETER <- setNames(B, "B") permstats <- plapply(X = integer(B), FUN = function (...) sum(closeInSpace & closeInTime[sample.int(npairs)]), ...) structure(mean(c(STATISTIC, permstats, recursive = TRUE) >= STATISTIC), Poisson = pval_Poisson) } else { METHOD <- paste(METHOD, "with Poisson approximation") PARAMETER <- setNames(expected, "lambda") pval_Poisson } ## return test results structure( list(method = METHOD, data.name = paste("dt =", deparse(substitute(dt)), "and ds =", deparse(substitute(ds))), statistic = setNames(STATISTIC, "number of close pairs"), parameter = PARAMETER, p.value = PVAL, alternative = "greater", null.value = setNames(expected, "number"), permstats = if (simulate.p.value) { unlist(permstats, recursive = FALSE, use.names = FALSE) }, table = knoxtab), class = c("knox", "htest") ) } print.knox <- function (x, ...) { ## first print by the default method for class "htest" NextMethod("print") ## then also output the contingency table cat("contingency table:\n") print(x$table) cat("\n") invisible(x) } plot.knox <- function (x, ...) { if (is.null(permstats <- x[["permstats"]])) { stop("this plot-method is for a permutation-based Knox test") } defaultArgs <- list( permstats = permstats, xmarks = setNames(c(x[["null.value"]], x[["statistic"]]), c("expected", "observed")), xlab = "number of close pairs" ) do.call("permtestplot", modifyList(defaultArgs, list(...))) } xtable.knox <- function (x, caption = NULL, label = NULL, align = paste0("r|rr", if (!is.null(sumlabel)) "|r"), digits = 0, display = NULL, ..., sumlabel = "$\\sum$") { tab <- x$table if (!is.null(sumlabel)) { FUN <- setNames(list(sum), sumlabel) tab <- addmargins(tab, FUN = FUN, quiet = TRUE) } xtable(tab, caption = caption, label = label, align = align, digits = digits, display = display, ...) } toLatex.knox <- function (object, dnn = names(dimnames(object$table)), hline.after = NULL, sanitize.text.function = NULL, ...) { xtab <- xtable(object, ...) if (is.null(hline.after)) hline.after <- unique(c(-1,0,2,nrow(xtab))) if (is.null(sanitize.text.function)) sanitize.text.function <- function (x) gsub("<=", "$\\le$", gsub(">", "$>$", x, fixed = TRUE), fixed = TRUE) res <- toLatex.xtable(xtab, hline.after = hline.after, sanitize.text.function = sanitize.text.function, ...) if (is.null(dnn)) { res } else { stopifnot(length(dnn) == 2) headeridx <- grep("&", res, fixed = TRUE)[1L] res[headeridx] <- paste0(dnn[1L], res[headeridx]) res <- append(res, paste0(" & \\multicolumn{2}{|c|}{", dnn[2L], "} & \\\\"), after = headeridx - 1L) class(res) <- "Latex" res } } surveillance/R/algo_rki.R0000644000176200001440000001036714662137762015106 0ustar liggesusers### R code from vignette source 'Rnw/algo_rki.Rnw' ### Encoding: ISO8859-1 ################################################### ### code chunk number 1: algo_rki.Rnw:96-214 ################################################### # Implementation of the Robert-Koch Institute (RKI) surveillance system. # The system evaluates specified timepoints and gives alarm if it recognizes # an outbreak for this timepoint. # # Features: # Choice between the different RKI sub-systems (difference in reference values). algo.rkiLatestTimepoint <- function(disProgObj, timePoint = NULL, control = list(b = 2, w = 4, actY = FALSE)){ observed <- disProgObj$observed freq <- disProgObj$freq # If there is no value in timePoint, then take the last value in observed if(is.null(timePoint)){ timePoint = length(observed) } # check if the vector observed includes all necessary data. if((timePoint-(control$b*freq)-control$w) < 1){ stop("The vector of observed is too short!") } # Extract the reference values from the historic time series basevec <- c() # if actY == TRUE use also the values of the year of timepoint if(control$actY){ basevec <- observed[(timePoint - control$w):(timePoint - 1)] } # check if you need more referencevalues of the past if(control$b >= 1){ for(i in 1:control$b){ basevec <- c(basevec, observed[(timePoint-(i*freq)-control$w):(timePoint-(i*freq)+control$w)]) } } # compute the mean. mu <- mean(basevec) if(mu > 20){ # use the normal distribution. # comupte the standard deviation. sigma <- sqrt(var(basevec)) # compute the upper limit of the 95% CI. upCi <- mu + 2 * sigma } else{ # use the poisson distribution. # take the upper limit of the 95% CI from the table CIdata.txt. #data("CIdata", envir=environment()) # only local assignment -> SM: however, should not use data() here #CIdata <- read.table(system.file("data", "CIdata.txt", package="surveillance"), header=TRUE) #SM: still better: use R/sysdata.rda (internal datasets being lazy-loaded into the namespace environment) # for the table-lookup mu must be rounded down. mu <- floor(mu) # we need the third column in the row mu + 1 upCi <- CIdata[mu + 1, 3] } # give alarm if the actual value is larger than the upper limit. alarm <- observed[timePoint] > upCi result <- list(alarm=alarm, upperbound=upCi) class(result) = "survRes" # for surveillance system result return(result) } # 'algo.rki' calls 'algo.bayesLatestTimepoint' for data points given by range. algo.rki <- function(disProgObj, control = list(range = range, b = 2, w = 4, actY = FALSE)){ # Set the default values if not yet set if(is.null(control$b)){ # value from rki 3 control$b <- 2 } if(is.null(control$w)){ # value from rki 3 control$w <- 4 } if(is.null(control$actY)){ # value from rki 3 control$actY <- FALSE } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) count <- 1 for(i in control$range){ #hoehle Debug: #print(i) # call algo.rki1LatestTimepoint result <- algo.rkiLatestTimepoint(disProgObj, i, control = control) # store the results in the right order alarm[count] <- result$alarm upperbound[count] <- result$upperbound count <- count + 1 } #Add name and data name to control object. control$name <- paste("rki(",control$w,",",control$w*control$actY,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control) class(result) = "survRes" # for surveillance system result return(result) } algo.rki1 <- function(disProgObj, control = list(range = range)) { algo.rki(disProgObj, control = list(range = control$range, b = 0, w = 6, actY = TRUE)) } algo.rki2 <- function(disProgObj, control = list(range = range)){ algo.rki(disProgObj, control = list(range = control$range, b = 1, w = 6, actY = TRUE)) } algo.rki3 <- function(disProgObj, control = list(range = range)){ algo.rki(disProgObj, control = list(range = control$range, b = 2, w = 4, actY = FALSE)) } surveillance/R/algo_farrington.R0000644000176200001440000004747614662137762016505 0ustar liggesusers### R code from vignette source 'Rnw/algo_farrington.Rnw' ### Encoding: ISO8859-1 ################################################### ### code chunk number 1: algo_farrington.Rnw:25-35 ################################################### anscombe.residuals <- function(m,phi) { y <- m$y mu <- fitted.values(m) #Compute raw Anscombe residuals a <- 3/2*(y^(2/3) * mu^(-1/6) - mu^(1/2)) #Compute standardized residuals a <- a/sqrt(phi * (1-hatvalues(m))) return(a) } ################################################################################ # WEIGHTS FUNCTION ################################################################################ algo.farrington.assign.weights <- function(s,weightsThreshold=1) { #s_i^(-2) for s_iweightsThreshold) )) omega <- numeric(length(s)) omega[s>weightsThreshold] <- gamma*(s[s>weightsThreshold]^(-2)) omega[s<=weightsThreshold] <- gamma return(omega) } ################################################### ### code chunk number 3: algo_farrington.Rnw:136-305 ################################################### algo.farrington.fitGLM <- function(response,wtime,timeTrend=TRUE,reweight=TRUE,...) { #Model formula depends on whether to include a time trend or not. theModel <- as.formula(ifelse(timeTrend, "response~1+wtime","response~1")) #Fit it -- this is slow. An improvement would be to use glm.fit here. model <- glm(theModel, family = quasipoisson(link="log")) #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { cat("Warning: No convergence with timeTrend -- trying without.\n") #Set model to one without time trend theModel <- as.formula("response~1") model <- glm(response ~ 1, family = quasipoisson(link="log")) } if (!model$converged) { cat("Warning: No convergence in this case.\n") print(cbind(response,wtime)) return(NULL) } } #Overdispersion parameter phi phi <- max(summary(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s) model <- glm(theModel,family=quasipoisson(link="log"),weights=omega) #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary(model)$dispersion,1) } # end of refit. #Add wtime, response and phi to the model model$phi <- phi model$wtime <- wtime model$response <- response #Done return(model) } ###################################################################### # The algo.farrington.fitGLM function in a version using glm.fit # which is faster than the call using "glm. # This saves lots of overhead and increases speed. # # Author: Mikko Virtanen (@thl.fi) with minor modifications by Michael Hoehle # Date: 9 June 2010 # # Note: Not all glm results may work on the output. But for the # necessary ones for the algo.farrington procedure work. ###################################################################### algo.farrington.fitGLM.fast <- function(response,wtime,timeTrend=TRUE,reweight=TRUE, ...) { #Create design matrix and formula needed for the terms object #Results depends on whether to include a time trend or not. if (timeTrend) { design<-cbind(intercept=1,wtime=wtime) Formula<-response~wtime } else { design<-matrix(1,nrow=length(wtime),dimnames=list(NULL,c("intercept"))) Formula<-response~1 } #Fit it using glm.fit which is faster than calling "glm" model <- glm.fit(design,response, family = quasipoisson(link = "log")) #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { cat("Warning: No convergence with timeTrend -- trying without.\n") #Drop time from design matrix design <- design[,1,drop=FALSE] #Refit model <- glm.fit(design,response, family = quasipoisson(link = "log")) Formula<-response~1 } #No convergence and no time trend. That's not good. } #Fix class of output to glm/lm object in order for anscombe.residuals to work #Note though: not all glm methods may work for the result class(model) <- c("glm","lm") #Overdispersion parameter phi phi <- max(summary.glm(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s) model <- glm.fit(design,response, family = quasipoisson(link = "log"), weights = omega) #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary.glm(model)$dispersion,1) } # end of refit. model$phi <- phi model$wtime <- wtime model$response <- response model$terms <- terms(Formula) # cheating a bit, all methods for glm may not work class(model)<-c("algo.farrington.glm","glm","lm") # 23/10/2012 (SM): # added "lm" class to avoid warnings # from predict.lm about fake object #Done return(model) } ###################################################################### # Experimental function to include a population offset in the # farrington procedure based on algo.farrington.fitGLM # Alternative: include populationOffset argument in the two other # fit functions, but I suspect use of this is not so common # # Parameters: # takes an additional "population" parameter ###################################################################### algo.farrington.fitGLM.populationOffset <- function(response,wtime,population,timeTrend=TRUE,reweight=TRUE,...) { #Model formula depends on whether to include a time trend or not. theModel <- as.formula(ifelse(timeTrend, "response~offset(log(population)) + 1 + wtime","response~offset(log(population)) + 1")) #Fit it -- this is slow. An improvement would be to use glm.fit here. model <- glm(theModel, family = quasipoisson(link="log")) #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { model <- glm(response ~ 1, family = quasipoisson(link="log")) cat("Warning: No convergence with timeTrend -- trying without.\n") } if (!model$converged) { cat("Warning: No convergence in this case.\n") print(cbind(response,wtime)) return(NULL) } } #Overdispersion parameter phi phi <- max(summary(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s) model <- glm(theModel,family=quasipoisson(link="log"),weights=omega) #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary(model)$dispersion,1) } # end of refit. #Add wtime, response and phi to the model model$phi <- phi model$wtime <- wtime model$response <- response model$population <- population #Done return(model) } ################################################### ### code chunk number 4: algo_farrington.Rnw:344-370 ################################################### algo.farrington.threshold <- function(pred,phi,alpha=0.01,skewness.transform="none",y) { #Fetch mu0 and var(mu0) from the prediction object mu0 <- pred$fit tau <- phi + (pred$se.fit^2)/mu0 #Standard deviation of prediction, i.e. sqrt(var(h(Y_0)-h(\mu_0))) switch(skewness.transform, "none" = { se <- sqrt(mu0*tau); exponent <- 1}, "1/2" = { se <- sqrt(1/4*tau); exponent <- 1/2}, "2/3" = { se <- sqrt(4/9*mu0^(1/3)*tau); exponent <- 2/3}, { stop("No proper exponent in algo.farrington.threshold.")}) #Note that lu can contain NA's if e.g. (-1.47)^(3/2) lu <- sort((mu0^exponent + c(-1,1)*qnorm(1-alpha/2)*se)^(1/exponent),na.last=FALSE) #Ensure that lower bound is non-negative lu[1] <- max(0,lu[1],na.rm=TRUE) #Compute quantiles of the predictive distribution based on the #normal approximation on the transformed scale q <- pnorm( y^(exponent) , mean=mu0^exponent, sd=se) m <- qnorm(0.5, mean=mu0^exponent, sd=se)^(1/exponent) #Return lower and upper bounds return(c(lu,q=q,m=m)) } ################################################### ### code chunk number 5: algo_farrington.Rnw:412-451 ################################################### ###################################################################### # Compute indices of reference value using Date class # # Params: # t0 - Date object describing the time point # b - Number of years to go back in time # w - Half width of window to include reference values for # epochStr - "1 month", "1 week" or "1 day" # epochs - Vector containing the epoch value of the sts/disProg object # # Details: # Using the Date class the reference values are formed as follows: # Starting from d0 go i, i in 1,...,b years back in time. # # Returns: # a vector of indices in epochs which match ###################################################################### refvalIdxByDate <- function(t0, b, w, epochStr, epochs) { refDays <- NULL refPoints <- seq( t0, length.out=b+1, by="-1 year")[-1] #Loop over all b-lagged points and append appropriate w-lagged points for (j in 1:length(refPoints)) { refPointWindow <- c(rev(seq(refPoints[j], length.out=w+1, by=paste("-",epochStr,sep=""))), seq(refPoints[j], length.out=w+1, by=epochStr)[-1]) refDays <- append(refDays,refPointWindow) } if (epochStr == "1 week") { #What weekday is t0 (0=Sunday, 1=Monday, ...) epochWeekDay <- as.numeric(format(t0,"%w")) #How many days to go forward to obtain the next "epochWeekDay", i.e. (d0 - d) mod 7 dx.forward <- (epochWeekDay - as.numeric(format(refDays,"%w"))) %% 7 #How many days to go backward to obtain the next "epochWeekDay", i.e. (d - d0) mod 7 dx.backward <- (as.numeric(format(refDays,"%w")) - epochWeekDay) %% 7 #What is shorter - go forward or go backward? #By convention: always go to the closest weekday as t0 refDays <- refDays + ifelse(dx.forward < dx.backward, dx.forward, -dx.backward) } if (epochStr == "1 month") { #What day of the month is t0 (it is assumed that all epochs have the same value here) epochDay <- as.numeric(format(t0,"%d")) #By convention: go back in time to closest 1st of month refDays <- refDays - (as.numeric(format(refDays, "%d")) - epochDay) } #Find the index of these reference values wtime <- match(as.numeric(refDays), epochs) return(wtime) } ################################################### ### code chunk number 6: algo_farrington.Rnw:571-769 ################################################### algo.farrington <- function(disProgObj, control=list( range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE, plot=FALSE, alpha=0.05, trend=TRUE, limit54=c(5,4), powertrans="2/3", fitFun="algo.farrington.fitGLM.fast") ) { #Fetch observed observed <- disProgObj$observed freq <- disProgObj$freq epochStr <- switch( as.character(freq), "12" = "1 month","52" = "1 week","365" = "1 day") #Fetch population (if it exists) if (!is.null(disProgObj$populationFrac)) { population <- disProgObj$populationFrac } else { population <- rep(1,length(observed)) } ###################################################################### # Initialize and check control options ###################################################################### defaultControl <- eval(formals()$control) control <- modifyList(defaultControl, control, keep.null = TRUE) if (is.null(control$range)) { control$range <- (freq*control$b - control$w):length(observed) } control$fitFun <- match.arg(control$fitFun, c("algo.farrington.fitGLM.fast", "algo.farrington.fitGLM", "algo.farrington.fitGLM.populationOffset")) #Use special Date class mechanism to find reference months/weeks/days if (is.null(disProgObj[["epochAsDate",exact=TRUE]])) { epochAsDate <- FALSE } else { epochAsDate <- disProgObj[["epochAsDate",exact=TRUE]] } #check options if (!((control$limit54[1] >= 0) & (control$limit54[2] > 0))) { stop("The limit54 arguments are out of bounds: cases >= 0 and period > 0.") } #Check control$range is within bounds. if (any((control$range < 1) | (control$range > length(disProgObj$observed)))) { stop("Range values are out of bounds (has to be within 1..",length(disProgObj$observed)," for the present data).") } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) trend <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) # predictive distribution pd <- matrix(data = 0, nrow = length(control$range), ncol = 2) # Define objects n <- control$b*(2*control$w+1) # 2: Fit of the initial model and first estimation of mean and dispersion # parameter for (k in control$range) { # transform the observed vector in the way # that the timepoint to be evaluated is at last position #shortObserved <- observed[1:(maxRange - k + 1)] if (control$verbose) { cat("k=",k,"\n")} #Find index of all epochs, which are to be used as reference values #i.e. with index k-w,..,k+w #in the years (current year)-1,...,(current year)-b if (!epochAsDate) { wtimeAll <- NULL for (i in control$b:1){ wtimeAll <- append(wtimeAll,seq(k-freq*i-control$w,k-freq*i+control$w,by=1)) } #Select them as reference values - but only those who exist wtime <- wtimeAll[wtimeAll>0] if (length(wtimeAll) != length(wtime)) { warning("@ range= ",k,": With current b and w then ",length(wtimeAll) - length(wtime),"/",length(wtimeAll), " reference values did not exist (index<1).") } } else { #Alternative approach using Dates t0 <- as.Date(disProgObj$week[k], origin="1970-01-01") wtimeAll <- refvalIdxByDate( t0=t0, b=control$b, w=control$w, epochStr=epochStr, epochs=disProgObj$week) #Select them as reference values (but only those not being NA!) wtime <- wtimeAll[!is.na(wtimeAll)] #Throw warning if necessary if (length(wtimeAll) != length(wtime)) { warning("@ range= ",k,": With current b and w then ",length(wtimeAll) - length(wtime),"/",length(wtimeAll), " reference values did not exist (index<1).") } } #Extract values from indices response <- observed[wtime] pop <- population[wtime] if (control$verbose) { print(response)} ###################################################################### #Fit the model with overdispersion -- the initial fit ###################################################################### #New feature: fitFun can now be the fast function for fitting the GLM model <- do.call(control$fitFun, args=list(response=response,wtime=wtime,population=pop,timeTrend=control$trend,reweight=control$reweight)) #Stupid check to pass on NULL values from the algo.farrington.fitGLM proc. if (is.null(model)) return(model) ###################################################################### #Time trend # #Check whether to include time trend, to do this we need to check whether #1) wtime is significant at the 95lvl #2) the predicted value is not larger than any observed value #3) the historical data span at least 3 years. doTrend <- control$trend #Bug discovered by Julia Kammerer and Sabrina Heckl: Only investigate trend if it actually was part of the GLM #if (control$trend) { if ("wtime" %in% names(coef(model))){ #is the p-value for the trend significant (0.05) level p <- summary.glm(model)$coefficients["wtime",4] significant <- (p < 0.05) #prediction for time k mu0Hat <- predict.glm(model,data.frame(wtime=c(k),population=population[k]),type="response") #have to use at least three years of data to allow for a trend atLeastThreeYears <- (control$b>=3) #no horrible predictions noExtrapolation <- mu0Hat <= max(response) #All 3 criteria have to be met in order to include the trend. Otherwise #it is removed. Only necessary to check this if a trend is requested. if (!(atLeastThreeYears && significant && noExtrapolation)) { doTrend <- FALSE model <- do.call(control$fitFun, args=list(response=response,wtime=wtime,population=pop,timeTrend=FALSE,reweight=control$reweight)) } } else { doTrend <- FALSE } #done with time trend ###################################################################### ###################################################################### # Calculate prediction & confidence interval # ###################################################################### #Predict value - note that the se is the mean CI #and not the prediction error of a single observation pred <- predict.glm(model,data.frame(wtime=c(k),population=population[k]),dispersion=model$phi, type="response",se.fit=TRUE) #Calculate lower and upper threshold lu <- algo.farrington.threshold(pred,model$phi,skewness.transform=control$powertrans,alpha=control$alpha, observed[k]) ###################################################################### # If requested show a plot of the fit. ###################################################################### if (control$plot) { #Compute all predictions data <- data.frame(wtime=seq(min(wtime),k,length.out=1000)) preds <- predict(model,data,type="response",dispersion=model$phi) #Show a plot of the model fit. plot(c(wtime, k), c(response,observed[k]),ylim=range(c(observed[data$wtime],lu)),,xlab="time",ylab="No. infected",main=paste("Prediction at time t=",k," with b=",control$b,",w=",control$w,sep=""),pch=c(rep(1,length(wtime)),16)) #Add the prediction lines(data$wtime,preds,col=1,pch=2) #Add the thresholds to the plot lines(rep(k,2),lu[1:2],col=3,lty=2) } ###################################################################### #Postprocessing steps ###################################################################### #Compute exceedance score unless less than 5 reports during last 4 weeks. #Changed in version 0.9-7 - current week is included now enoughCases <- (sum(observed[(k-control$limit54[2]+1):k])>=control$limit54[1]) #18 May 2006: Bug/unexpected feature found by Y. Le Strat. #the okHistory variable meant to protect against zero count problems, #but instead it resulted in exceedance score == 0 for low counts. #Now removed to be concordant with the Farrington 1996 paper. X <- ifelse(enoughCases,(observed[k] - pred$fit) / (lu[2] - pred$fit),0) #Do we have an alarm -- i.e. is observation beyond CI?? #upperbound only relevant if we can have an alarm (enoughCases) trend[k-min(control$range)+1] <- doTrend alarm[k-min(control$range)+1] <- (X>1) upperbound[k-min(control$range)+1] <- ifelse(enoughCases,lu[2],0) #Compute bounds of the predictive pd[k-min(control$range)+1,] <- lu[c(3,4)] }#done looping over all time points #Add name and data name to control object. control$name <- paste("farrington(",control$w,",",0,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) #Add information about predictive distribution control$pd <- pd # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, trend=trend, disProgObj=disProgObj, control=control) class(result) <- "survRes" #Done return(result) } surveillance/R/hhh4_calibration.R0000644000176200001440000000330614426171115016500 0ustar liggesusers################################################################################ ### calibrationTest() for "hhh4" fits ### ### Copyright (C) 2015,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ calibrationTest.hhh4 <- function (x, subset = x$control$subset, units = seq_len(x$nUnit), ...) { ## perform the calibration test in the specified subset res <- calibrationTest.default( x = x$stsObj@observed[subset, units, drop = FALSE], mu = x$fitted.values[match(subset, x$control$subset), units, drop = FALSE], size = psi2size.hhh4(x, subset, units), ...) ## change "data.name" to be the name of the supplied model res$data.name <- deparse(substitute(x)) res } calibrationTest.oneStepAhead <- function (x, units = NULL, ...) { ## perform the calibration test res <- if (is.null(units)) { calibrationTest.default( x = x$observed, mu = x$pred, size = psi2size.oneStepAhead(x), ...) } else { calibrationTest.default( x = x$observed[, units, drop = FALSE], mu = x$pred[, units, drop = FALSE], size = psi2size.oneStepAhead(x)[, units, drop = FALSE], ...) } ## change "data.name" to be the name of the supplied "oneStepAhead" object res$data.name <- deparse(substitute(x)) res } surveillance/R/epidataCS_plot.R0000644000176200001440000003476514615162374016215 0ustar liggesusers################################################################################ ### plot-method for "epidataCS" objects ### ### Copyright (C) 2009-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ plot.epidataCS <- function (x, aggregate = c("time", "space"), subset, by = type, ...) { aggregate <- match.arg(aggregate) FUN <- paste("epidataCSplot", aggregate, sep = "_") do.call(FUN, args = list(x = quote(x), subset = substitute(subset), by = substitute(by), ...)) } ### plot.epidataCS(x, aggregate = "time") -> number of cases over time ## in case t0.Date is specified, hist.Date() is used and breaks must set in ... (e.g. "months") epidataCSplot_time <- function (x, subset, by = type, t0.Date = NULL, breaks = "stgrid", freq = TRUE, col = rainbow(nTypes), cumulative = list(), add = FALSE, mar = NULL, xlim = NULL, ylim = NULL, xlab = "Time", ylab = NULL, main = NULL, panel.first = abline(h=axTicks(2), lty=2, col="grey"), legend.types = list(), ...) { timeRange <- with(x$stgrid, c(start[1L], stop[length(stop)])) ## subset event marks eventMarks <- if (missing(subset)) { marks.epidataCS(x, coords = FALSE) } else { do.call(base::subset, list( x = quote(marks.epidataCS(x, coords = FALSE)), subset = substitute(subset) )) } if (nrow(eventMarks) == 0L) stop("no events left after 'subset'") ## extract the data to plot by <- substitute(by) eventTimesTypes <- eventMarks[c("time", "type")] eventTimesTypes$type <- if (is.null(by)) { # disregard event types factor("all") } else { # stratification of counts (default is to stack bars by event type) as.factor(eval(by, envir = eventMarks)) } typeNames <- levels(eventTimesTypes$type) nTypes <- length(typeNames) if (!freq && nTypes > 1L) warning("a stacked barplot of multiple event types only makes sense for 'freq=TRUE'") ## default breaks at stop times of stgrid if (identical(breaks, "stgrid")) { breaks <- c(timeRange[1L], unique.default(x$stgrid$stop)) if (any(eventTimesTypes$time < timeRange[1L])) { message("Note: ignoring events of the prehistory (before \"stgrid\")") eventTimesTypes <- base::subset(eventTimesTypes, time >= timeRange[1L]) if (nrow(eventTimesTypes) == 0L) stop("no events left to plot") } } ## calculate cumulative numbers if requested if (is.list(cumulative)) { csums <- tapply(eventTimesTypes$time, eventTimesTypes["type"], function (t) cumsum(table(t)), simplify=FALSE) if (!is.null(cumulative[["offset"]])) { stopifnot(is.vector(cumulative$offset, mode="numeric"), length(cumulative$offset) == nTypes) csums <- mapply(FUN="+", csums, cumulative$offset, SIMPLIFY=FALSE, USE.NAMES=TRUE) } if (is.null(cumulative[["axis"]])) cumulative[["axis"]] <- TRUE } eventTimesTypes$type <- as.integer(eventTimesTypes$type) typesEffective <- sort(unique(eventTimesTypes$type)) col <- rep_len(col, nTypes) if (!is.null(t0.Date)) { stopifnot(length(t0.Date) == 1L) t0.Date <- as.Date(t0.Date) t0 <- timeRange[1L] if (is.numeric(breaks) && length(breaks) > 1L) # transform to Date breaks <- t0.Date + (breaks - t0) if (is.null(xlim)) xlim <- t0.Date + (timeRange - t0) if (missing(xlab) && is.character(breaks)) xlab <- paste0("Time (", breaks, ")") eventTimesTypes$time <- t0.Date + as.integer(eventTimesTypes$time - t0) ## we need integer dates here because otherwise, if the last event ## occurs on the last day of a month, year, etc. (depending on ## 'breaks') with a fractional date (e.g. as.Date("2009-12-31") + 0.5), ## then the automatic 'breaks' (e.g., breaks = "months") will not cover ## the data (in the example, it will only reach until ## as.Date("2009-12-31")). The following would fail: ## data("imdepi"); plot(imdepi, t0.Date = "2002-01-15", breaks = "months") } gethistdata <- function (breaks, types = seq_len(nTypes)) { times <- eventTimesTypes$time[eventTimesTypes$type %in% types] if (is.null(t0.Date)) { hist(times, breaks=breaks, plot=FALSE, warn.unused=FALSE, ...) } else { hist(times, breaks=breaks, plot=FALSE, ...) ## warn.unused=FALSE is hard-coded in hist.Date } } histdata <- gethistdata(breaks=breaks) if (!is.null(t0.Date)) { ## hist.Date() drops the Date class, but we need it for later re-use class(histdata$breaks) <- "Date" } ## establish the basic plot window if (!add) { if (is.null(xlim)) xlim <- timeRange if (is.null(ylim)) { ylim <- range(0, histdata[[if (freq) "counts" else "density"]]) } if (is.null(ylab)) { ylab <- if (freq) "Number of cases" else "Density of cases" } if (is.null(mar)) { mar <- par("mar") if (is.list(cumulative) && cumulative$axis) mar[4L] <- mar[2L] } opar <- par(mar = mar); on.exit(par(opar)) plot(x=xlim, y=ylim, xlab=xlab, ylab=ylab, main=main, type="n", bty="n") force(panel.first) } ## plot histogram (over all types) suppressWarnings( # about wrong AREAS if breaks are non-equidistant plot(histdata, freq = freq, add = TRUE, col = col[typesEffective[1L]], ...) ) if (!add) # doesn't work as expected when adding to plot with cumulative axis box() # because white filling of bars might overdraw the initial box ## add type-specific sub-histograms for (typeIdx in seq_along(typesEffective)[-1L]) { .histdata <- gethistdata( breaks = histdata$breaks, # have to use same breaks types = typesEffective[typeIdx:length(typesEffective)] ) suppressWarnings( # about wrong AREAS if breaks are non-equidistant plot(.histdata, freq = freq, add = TRUE, col = col[typesEffective[typeIdx]], ...) ) } ## optionally add cumulative number of cases if (is.list(cumulative)) { aT2 <- axTicks(2) div <- length(aT2) - 1L darken <- function (col, f = 0.6) apply(X = col2rgb(col, alpha = TRUE), MARGIN = 2L, FUN = function (x) rgb(f*x[1L], f*x[2L], f*x[3L], x[4L], maxColorValue = 255)) cumulative <- modifyList( list(maxat = ceiling(max(unlist(csums))/div)*div, col = darken(col), lwd = 3, axis = TRUE, lab = "Cumulative number of cases"), cumulative) csum2y <- function (x) x / cumulative$maxat * aT2[length(aT2)] for (typeIdx in typesEffective) { .times <- as.numeric(names(csums[[typeIdx]])) lines(if (is.null(t0.Date)) .times else t0.Date + .times - t0, csum2y(csums[[typeIdx]]), lwd=cumulative$lwd, col=cumulative$col[typeIdx]) } if (cumulative$axis) { axis(4, at=aT2, labels=aT2/aT2[length(aT2)]*cumulative$maxat) mtext(cumulative$lab, side=4, line=3, las=0) } } ## optionally add legend if (is.list(legend.types) && length(typesEffective) > 1) { legend.types <- modifyList( list(x="topleft", legend=typeNames[typesEffective], title=deparse(by, nlines = 1), fill=col[typesEffective]), legend.types) do.call("legend", legend.types) } invisible(histdata) } ### plot.epidataCS(x, aggregate = "space") -> spatial point pattern epidataCSplot_space <- function (x, subset, by = type, tiles = x$W, pop = NULL, cex.fun = sqrt, points.args = list(), add = FALSE, legend.types = list(), legend.counts = list(), sp.layout = NULL, ...) { ## extract the points to plot events <- if (missing(subset)) { x$events } else { # calls sp:::subset.Spatial eval(substitute(base::subset(x$events, subset=.subset), list(.subset=substitute(subset)))) } ## should the plot distinguish between different event types? by <- substitute(by) events@data$type <- if (is.null(by)) { # disregard event types factor("all") } else { # default is to distinguish points by event type as.factor(eval(by, envir = events@data)) } typeNames <- levels(events$type) nTypes <- length(typeNames) eventCoordsTypes <- data.frame( coordinates(events), type = as.integer(events$type), row.names = NULL, check.rows = FALSE, check.names = FALSE) ## count events by location and type eventCoordsTypesCounts <- if (is.null(pop)) { countunique(eventCoordsTypes) } else { ## work with "SpatialPolygons" -> spplot() events$COUNT <- multiplicity(eventCoordsTypes) events[!duplicated(eventCoordsTypes), c("type", "COUNT")] } pointCounts <- eventCoordsTypesCounts$COUNT countsLegend <- unique(round(10^(do.call("seq", c( as.list(log10(range(pointCounts))), list(length.out=5) ))))) typesEffective <- sort(unique(eventCoordsTypesCounts$type)) ## point style colTypes <- list(...)[["colTypes"]] # backwards compatibility for < 1.8 if (is.null(colTypes)) { colTypes <- rainbow(nTypes) } else warning("argument 'colTypes' is deprecated; ", "use 'points.args$col' instead") points.args <- modifyList(list(pch=1, col=colTypes, lwd=1, cex=0.5), points.args) styleArgs <- c("pch", "col", "lwd") points.args[styleArgs] <- lapply(points.args[styleArgs], rep_len, length.out=nTypes) ## select style parameters according to the events' types points.args_pointwise <- points.args points.args_pointwise[styleArgs] <- lapply( points.args_pointwise[styleArgs], "[", eventCoordsTypesCounts$type) points.args_pointwise$cex <- points.args_pointwise$cex * cex.fun(pointCounts) ## plot ## Note: "epidataCS" always works with projected coords, ## so we can set asp/aspect and thus avoid sp::is.projected() if (is.null(pop)) { ## classical plotting system if (!add) plot(tiles, asp = 1, ...) do.call("points", c(alist(x=eventCoordsTypesCounts[,1:2,drop=FALSE]), points.args_pointwise)) ## optionally add legends if (is.list(legend.types) && length(typesEffective) > 1) { legend.types <- modifyList( list(x="topright", legend=typeNames[typesEffective], title=deparse(by, nlines = 1), #pt.cex=points.args$cex, # better use par("cex") pch=points.args$pch[typesEffective], col=points.args$col[typesEffective], pt.lwd=points.args$lwd[typesEffective]), legend.types) do.call("legend", legend.types) } if (is.list(legend.counts) && any(pointCounts > 1)) { if (!is.null(legend.counts[["counts"]])) { countsLegend <- as.vector(legend.counts[["counts"]], mode="integer") legend.counts[["counts"]] <- NULL } legend.counts <- modifyList( list(x="bottomright", bty="n", legend=countsLegend, pt.cex=points.args$cex * cex.fun(countsLegend), pch=points.args$pch[1L], col=if(length(unique(points.args$col)) == 1L) points.args$col[1L] else 1, pt.lwd=points.args$lwd[1L]), legend.counts) do.call("legend", legend.counts) } invisible() } else { if (!is(tiles, "SpatialPolygonsDataFrame")) { stop("'pop' requires 'tiles' to be a \"SpatialPolygonsDataFrame\"") } ## grid plotting system -> spplot() layout.points <- c(list("sp.points", eventCoordsTypesCounts), points.args_pointwise) ## optional legend definitions legend.types <- if (is.list(legend.types) && length(typesEffective) > 1) { legend.types <- modifyList( list(corner = c(1, 1), # "topright" title = deparse(by, nlines = 1), cex.title = 1, border = TRUE, points = list( pch = points.args$pch[typesEffective], col = points.args$col[typesEffective], lwd = points.args$lwd[typesEffective] ), text = list(typeNames[typesEffective])), legend.types ) corner.types <- legend.types$corner legend.types$corner <- NULL list(inside = list(fun = lattice::draw.key(legend.types), corner = corner.types)) } legend.counts <- if (is.list(legend.counts) && any(pointCounts > 1)) { if (!is.null(legend.counts[["counts"]])) { countsLegend <- as.vector(legend.counts[["counts"]], mode="integer") legend.counts[["counts"]] <- NULL } legend.counts <- modifyList( list(corner = c(1,0), # "bottomright" points = list( cex = points.args$cex * cex.fun(countsLegend), pch = points.args$pch[1L], col = if(length(unique(points.args$col)) == 1L) points.args$col[1L] else 1, lwd = points.args$lwd[1L] ), text = list(as.character(countsLegend)), padding.text=2, between=0), legend.counts ) corner.counts <- legend.counts$corner legend.counts$corner <- NULL list(inside = list(fun = lattice::draw.key(legend.counts), corner = corner.counts)) } ## create the plot spplot(obj = tiles, zcol = pop, aspect = "iso", sp.layout = c(list(layout.points), sp.layout), legend = c(legend.types, legend.counts), ...) } } surveillance/R/twinstim_simulation.R0000644000176200001440000015264114676774654017457 0ustar liggesusers################################################################################ ### Simulate a point pattern according to a spatio-temporal intensity model of ### class "twinstim". The function basically uses Ogata's modified thinning ### algorithm (cf. Daley & Vere-Jones, 2003, Algorithm 7.5.V.). ### ### Copyright (C) 2010-2018,2021 Sebastian Meyer ### (except where otherwise noted) ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### CAVE: ### - the type of contrasts for factor variables has to be set through options("contrasts") ### - if epidemic-only process (!hash), we actually don't need stgrid, but we ### want to have valid epidataCS at the end, which requires stgrid ## model.frame() evaluates '...' with 'data' utils::globalVariables(c("BLOCK", "tile", "area")) simEpidataCS <- function (endemic, epidemic, siaf, tiaf, qmatrix, rmarks, events, stgrid, tiles, beta0, beta, gamma, siafpars, tiafpars, epilink = "log", t0 = stgrid$start[1], T = tail(stgrid$stop,1), nEvents = 1e5, control.siaf = list(F=list(), Deriv=list()), W = NULL, trace = 5, nCircle2Poly = 32, gmax = NULL, .allocate = 500, .skipChecks = FALSE, .onlyEvents = FALSE) { ptm <- proc.time()[[3]] cl <- match.call() ####################### ### Check arguments ### (this takes many lines of code ...) ####################### cat("\nChecking the supplied arguments ...\n") ### Some simple input checks if (missing(endemic)) endemic <- ~ 0 else stopifnot(inherits(endemic, "formula")) if (missing(epidemic)) epidemic <- ~ 0 else stopifnot(inherits(epidemic, "formula")) if (length(trace) != 1L) stop("'trace' must be a single integer or logical value") trace <- as.integer(trace) if (!isScalar(nCircle2Poly)) stop("'nCircle2Poly' must be scalar") nCircle2Poly <- as.integer(nCircle2Poly) if (!isScalar(.allocate)) stop("'.allocate' must be scalar") .allocate <- as.integer(.allocate) .skipChecks <- as.logical(.skipChecks) .onlyEvents <- as.logical(.onlyEvents) ### Check qmatrix if (missing(qmatrix)) qmatrix <- diag(1) nTypes <- nrow(qmatrix) if (is.null(typeNames <- rownames(qmatrix))) { if (nTypes > length(LETTERS)) stop("'qmatrix' needs dimnames") typeNames <- LETTERS[seq_len(nTypes)] } qmatrix <- checkQ(qmatrix, typeNames) qSumTypes <- rowSums(qmatrix) # how many types can be triggered by each type ### Check other "epidataCS" components (events, stgrid, tiles, and W) if (!missing(events) && !is.null(events)) { events <- events[!names(events) %in% reservedColsNames_events] if (!.skipChecks) { cat("Checking 'events':\n") events <- check_events(events, dropTypes = FALSE) # epscols are obligatory in 'check_events', which is also appropriate here } ## check event types events@data$type <- factor(events@data$type, levels=typeNames) if (any(.typeIsNA <- is.na(events@data$type))) { warning("ignored some 'events' of unknown type") events <- events[!.typeIsNA,] } } if (!.skipChecks) { cat("Checking 'stgrid':\n") stgrid <- check_stgrid(stgrid[grep("^BLOCK$", names(stgrid), invert=TRUE)]) } if (!is.null(W)) { W <- check_W(W) # does as(W, "SpatialPolygons") } if (!.skipChecks) { cat("Checking 'tiles' ...\n") ## we always check 'tiles', but quietly in the simulate-method } tileLevels <- levels(stgrid$tile) tiles <- check_tiles(tiles, tileLevels, areas.stgrid = stgrid[["area"]][seq_along(tileLevels)], W = W, keep.data = FALSE) if (is.null(W)) { cat("Building 'W' as the union of 'tiles' ...\n") W <- unionSpatialPolygons(tiles) } ## empty CRS to avoid costly intermediate CRS checks (and rgdal warnings) if (!missing(events) && !is.null(events)) stopifnot(identicalCRS(tiles, events)) tiles@proj4string <- events@proj4string <- new("CRS") ## Transform W to class "owin" Wowin <- SpP2owin(W) maxExtentOfW <- diameter.owin(Wowin) ### Check parameters beta0 <- if (missing(beta0)) numeric(0L) else as.vector(beta0, mode="numeric") beta <- if (missing(beta)) numeric(0L) else as.vector(beta, mode="numeric") gamma <- if (missing(gamma)) numeric(0L) else as.vector(gamma, mode="numeric") siafpars <- if (missing(siafpars)) numeric(0L) else as.vector(siafpars, mode="numeric") tiafpars <- if (missing(tiafpars)) numeric(0L) else as.vector(tiafpars, mode="numeric") nbeta0 <- length(beta0) if (nbeta0 > 1L && nbeta0 != nTypes) { stop("'beta0' must have length 0, 1, or 'nrow(qmatrix)'") } p <- length(beta) q <- length(gamma) nsiafpars <- length(siafpars) ntiafpars <- length(tiafpars) hase <- q > 0L hassiafpars <- nsiafpars > 0L hastiafpars <- ntiafpars > 0L if (!hase && (hassiafpars | hastiafpars)) { stop("'siafpars' and 'tiafpars' require 'gamma'") } ### Check time range if (is.null(t0)) t0 <- eval(formals()$t0) if (is.null(T)) T <- eval(formals()$T) if (!isScalar(t0) || !isScalar(T)) { stop("endpoints 't0' and 'T' must be single numbers") } if (T <= t0) { stop("'T' must be greater than 't0'") } stopifnot(t0 >= stgrid$start[1], T <= tail(stgrid$stop,1)) ### Subset stgrid to include actual time range only # BLOCK in stgrid such that start time is equal to or just before t0 block_t0 <- stgrid$BLOCK[match(TRUE, c(stgrid$start,Inf) > t0) - 1L] # BLOCK in stgrid such that stop time is equal to or just after T block_T <- stgrid$BLOCK[match(TRUE, stgrid$stop >= T)] stgrid <- stgrid[stgrid$BLOCK>=block_t0 & stgrid$BLOCK<=block_T,,drop=FALSE] stgrid$start[stgrid$BLOCK == block_t0] <- t0 stgrid$stop[stgrid$BLOCK == block_T] <- T # matrix of BLOCKS and start times (used later) blockstarts <- with(stgrid, cbind(block_t0:block_T, start[match(block_t0:block_T, BLOCK)], deparse.level = 0L) ) ### Check mark-generating function # eps.t and eps.s are also unpredictable marks (generated by rmarks) unpredMarks <- unique(c("eps.t", "eps.s", if (hase) { setdiff(all.vars(epidemic), c("type", names(stgrid))) })) rmarks <- match.fun(rmarks) sampleCoordinate <- coordinates(spsample(tiles, n=1L, type="random")) sampleMarks <- rmarks(t0, sampleCoordinate) # should be a one-row data.frame if (!is.data.frame(sampleMarks) || nrow(sampleMarks) != 1L) { stop("'rmarks' must return a one-row data.frame of marks") } markNames <- names(sampleMarks) if (.idx <- match(FALSE, unpredMarks %in% markNames, nomatch=0L)) { stop("the unpredictable mark '", unpredMarks[.idx], "' is not returned by 'rmarks'") } if (!all(sapply(sampleMarks[unpredMarks], function(x) inherits(x, c("integer","numeric","logical","factor"), which=FALSE)))) warning("'rmarks' should return \"numeric\", \"logical\", or", " \"factor\" ('epidemic') variables only") ### Check prehistory of the process Nout <- 0L if (!missing(events) && !is.null(events)) { .stillInfective <- with(events@data, time <= t0 & time + eps.t > t0) Nout <- sum(.stillInfective) events <- if (Nout > 0L) { events[.stillInfective,] } else { .eventstxt <- if (.skipChecks) "data$events" else "events" # for simulate.twinstim cat("(no events from '", .eventstxt, "' were considered as prehistory)\n", sep="") NULL } } ## separate coordinates and data if (Nout > 0L) { check_tiles_events(tiles, events) eventCoords <- coordinates(events) rownames(eventCoords) <- NULL # to avoid duplicates ("" for new events) # which disturb the final SpatialPointsDataFrame() eventData <- events@data ## check presence of unpredictable marks if (length(.idx <- which(!unpredMarks %in% names(eventData)))) { stop("missing unpredictable marks in 'events': ", paste0("\"", unpredMarks[.idx], "\"", collapse=", ")) } ## check type of unpredictable marks for (um in unpredMarks) { if (!identical(class(sampleMarks[[um]]), class(eventData[[um]]))) stop("the class of the unpredictable mark '", um, "' in the 'events' prehistory ", "is not identical to the class returned by 'rmarks'") } ## add marks which are not in the prehistory but simulated by 'rmarks' if (length(.add2events <- setdiff(markNames, names(eventData)))) { eventData <- cbind(eventData, sampleMarks[.add2events]) is.na(eventData[.add2events]) <- TRUE } eventData <- eventData[c("time", "tile", "type", markNames)] } else { ## empty prehistory eventCoords <- matrix(0, nrow=0L, ncol=2L) eventData <- data.frame( time = numeric(0L), tile = factor(character(0L), levels=tileLevels), type = factor(character(0L), levels=typeNames), check.rows = FALSE, check.names = FALSE ) eventData <- cbind(eventData, sampleMarks[0L,]) } ## helper function to attach covariates from 'stgrid' to events attachstgridvars <- function (eventData, stgridvars) { if (length(stgridvars) == 0L) return(eventData) gridcellsOfEvents <- integer(nrow(eventData)) for (i in seq_along(gridcellsOfEvents)) { gridcellsOfEvents[i] <- gridcellOfEvent(eventData[i,"time"], eventData[i,"tile"], stgrid) } cbind(eventData, stgrid[gridcellsOfEvents, stgridvars, drop=FALSE]) } ### Build epidemic model matrix epidemic <- terms(epidemic, data = eventData, keep.order = TRUE) if (!is.null(attr(epidemic, "offset"))) { warning("offsets are not implemented for the 'epidemic' component") } # helper function taking eventData and returning the epidemic model.matrix buildmme <- function (eventData) { # which variables do we have to copy from stgrid? stgridCopyCols <- match(all.vars(epidemic), names(stgrid), nomatch = 0L) eventData <- attachstgridvars(eventData, stgridCopyCols) mfe <- model.frame(epidemic, data = eventData, na.action = na.fail, drop.unused.levels = FALSE) model.matrix(epidemic, mfe) } mme <- buildmme(eventData) if (ncol(mme) != q) { cat(ncol(mme), "epidemic model terms:\t", paste(colnames(mme), collapse=" "), "\n") stop("length of 'gamma' (", q, ") does not match the 'epidemic' specification (", ncol(mme), ")") } ## (inverse) link function for the epidemic linear predictor of event marks epilink <- match.arg(epilink, choices = c("log", "identity")) epilinkinv <- switch(epilink, "log" = exp, "identity" = identity) ### Build endemic model matrix endemic <- terms(endemic, data = stgrid, keep.order = TRUE) # check if we have an endemic component at all hasOffset <- !is.null(attr(endemic, "offset")) hash <- (nbeta0 + p + hasOffset) > 0L if (!hash) { if (!hase) { stop("nothing to do: neither endemic nor epidemic parameters were specified") # actually, the process might be endemic offset-only, which I don't care about ATM } if (Nout == 0L) { stop("missing 'events' prehistory (no endemic component)") } } # remove (1|type) specification typeSpecificEndemicIntercept <- "1 | type" %in% attr(endemic, "term.labels") || nbeta0 > 1 if (typeSpecificEndemicIntercept) { endemic <- update.formula(endemic, ~ . - (1|type)) # this drops the terms attributes endemic <- terms(endemic, data = stgrid, keep.order = TRUE) if (nbeta0 <= 1L) { stop("for type-specific endemic intercepts, 'beta0' must be longer than 1") } } # ensure that we have correct contrasts in the endemic component attr(endemic, "intercept") <- as.integer(nbeta0 > 0L) # helper function taking eventData (with time and tile columns) # and returning the endemic model.matrix buildmmh <- function (eventData) { # if 'pi' appears in 'endemic' we don't care, and if a true covariate is # missing, model.frame will throw an error # which variables do we have to copy from stgrid? stgridCopyCols <- match(all.vars(endemic), names(stgrid), nomatch = 0L) # attaching covariates from 'stgrid' to events eventData <- attachstgridvars(eventData, stgridCopyCols) # construct model matrix mfhEvents <- model.frame(endemic, data = eventData, na.action = na.fail, drop.unused.levels = FALSE) mmhEvents <- model.matrix(endemic, mfhEvents) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhEvents <- mmhEvents[,-1,drop=FALSE] structure(mmhEvents, offset = model.offset(mfhEvents)) } # actually, we don't need the endemic model matrix for the prehistory events at all # this is just to test consistence with 'beta' and for the names of 'beta' mmh <- buildmmh(eventData[0L,]) if (ncol(mmh) != p) { stop("length of 'beta' (", p, ") does not match the 'endemic' specification (", ncol(mmh), ")") } ### Build endemic model matrix on stgrid mfhGrid <- model.frame(endemic, data = stgrid, na.action = na.fail, drop.unused.levels = FALSE, BLOCK = BLOCK, tile = tile, ds = area) # we don't actually need 'tile' in mfhGrid; this is only for easier identification when debugging mmhGrid <- model.matrix(endemic, mfhGrid) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhGrid <- mmhGrid[,-1,drop=FALSE] # Extract endemic model components offsetGrid <- model.offset(mfhGrid) gridBlocks <- mfhGrid[["(BLOCK)"]] ds <- mfhGrid[["(ds)"]] ### Parse interaction functions if (hase) { ## Check interaction functions siaf <- do.call(".parseiaf", args = alist(siaf, "siaf", verbose=trace>0)) constantsiaf <- attr(siaf, "constant") if (siaf$npars != nsiafpars) { stop("length of 'siafpars' (", nsiafpars, ") does not match the 'siaf' specification (", siaf$npars, ")") } tiaf <- do.call(".parseiaf", args = alist(tiaf, "tiaf", verbose=trace>0)) constanttiaf <- attr(tiaf, "constant") if (constanttiaf) gmax <- 1L if (tiaf$npars != ntiafpars) { stop("length of 'tiafpars' (", ntiafpars, ") does not match the 'tiaf' specification (", tiaf$npars, ")") } ## Check control.siaf if (constantsiaf) control.siaf <- NULL else { stopifnot(is.null(control.siaf) || is.list(control.siaf)) } ## Define function that integrates the two-dimensional 'siaf' function ## over the influence regions of the events if (!constantsiaf && !is.null(siaf$Fcircle) && !is.null(siaf$effRange)) { ## pre-compute effective range of the 'siaf' (USED BY .siafInt) effRangeTypes <- rep_len(siaf$effRange(siafpars), nTypes) } .siafInt <- .siafIntFUN(siaf = siaf, noCircularIR = FALSE) # not certain beforehand .siafInt.args <- c(list(siafpars), control.siaf$F) ## Check gmax if (is.null(gmax)) { gmax <- max(tiaf$g(rep.int(0,nTypes), tiafpars, 1:nTypes)) cat("assuming gmax =", gmax, "\n") } else if (!isScalar(gmax)) { stop("'gmax' must be scalar") } } else { if (!missing(siaf) && !is.null(siaf)) warning("'siaf' can only be modelled in conjunction with an 'epidemic' process") if (!missing(tiaf) && !is.null(tiaf)) warning("'tiaf' can only be modelled in conjunction with an 'epidemic' process") siaf <- tiaf <- NULL control.siaf <- NULL } ### print some information on the upcoming simulation txtPrehistory <- if (Nout == 0L) "no prehistory" else paste(Nout, ngettext(Nout, "event", "events"), "in the prehistory") cat("\nSimulating a", if (length(unpredMarks) > 2L) "marked", "spatio-temporal point pattern with", "\n\t-", nTypes, ngettext(nTypes, "event type", "event types"), "\n\t-", txtPrehistory) coefs <- c( if (nbeta0 > 1L) { setNames(beta0, paste0("h.type",typeNames)) } else if (nbeta0 == 1L) setNames(beta0, "h.(Intercept)"), if (p > 0L) setNames(beta, paste("h",colnames(mmh),sep=".")), if (hase) setNames(gamma, paste("e",colnames(mme),sep=".")), if (hassiafpars) setNames(siafpars, paste("e.siaf",1:nsiafpars,sep=".")), if (hastiafpars) setNames(tiafpars, paste("e.tiaf",1:ntiafpars,sep=".")) ) cat("\n\t-", length(coefs), "coefficients:\n\n") print(coefs) ########################################## ### CIF of the temporal ground process ### ########################################## ### calculate integral of endemic component over W (= union of tiles) ### and over types for all time blocks in stgrid hIntWK <- if (hash) { dsexpeta <- local({ eta <- drop(mmhGrid %*% beta) # =0 if p = 0 if (!is.null(offsetGrid)) eta <- offsetGrid + eta ds * exp(unname(eta)) }) fact <- if (nbeta0 > 1L) sum(exp(beta0)) else if (nbeta0 == 1L) nTypes*exp(unname(beta0)) else nTypes fact * c(tapply(dsexpeta, gridBlocks, sum)) } else setNames(numeric(nrow(blockstarts)), blockstarts[,1]) # zeroes #<- is a named vector with names referencing BLOCK in stgrid ### helper function evaluating the epidemic terms of the ground intensity ### for a specific set of events (the lambdag function uses eTerms) eTermsCalc <- function (eventData, eventCoords) { # extract some marks from the eventData (USED INSIDE .siafInt() BELOW!) eventTypes <- as.integer(eventData$type) eps.s <- eventData$eps.s # distance to the border (required for siafInt below, and for epidataCS) bdist <- bdist(eventCoords, Wowin) # spatial influence regions of the events influenceRegion <- if (nrow(eventCoords) > 0L) .influenceRegions( events = SpatialPointsDataFrame( coords = eventCoords, data = data.frame(eps.s = eps.s, .bdist = bdist), match.ID = FALSE ), W = Wowin, npoly = nCircle2Poly, maxExtent = maxExtentOfW, clipper = "polyclip" ) else list() # epidemic terms if (!hase) { return(list(matrix(NA_real_, length(influenceRegion), 3L), bdist, influenceRegion)) } # epidemic model matrix (will be multiplied with gamma) mme <- buildmme(eventData) # integrate the two-dimensional 'siaf' function over the influence region siafInts <- if (length(influenceRegion) == 0L) numeric(0L) else { environment(.siafInt) <- environment() do.call(".siafInt", .siafInt.args) } # Matrix of terms in the epidemic component eTerms <- cbind( qSum = qSumTypes[eventTypes], expeta = epilinkinv(drop(mme %*% gamma)), siafInt = siafInts ) # Return list(eTerms, bdist, influenceRegion) } ### function calculating the (upper bound) intensity of the ground process ### it relies on several objects for the epidemic component which are updated alongside simulation # t will be one of the break points in stgrid or an event time lambdagVec <- function (t, upper=FALSE) { ## endemic part hIntWKt <- hIntWK[[as.character(tBLOCK)]] ## epidemic part ejIntWt <- if (!hase || length(infectives) == 0L) numeric(0L) else { eTerms <- eTerms[infectives,,drop=FALSE] gTerm <- if (upper) { rep.int(gmax, length(infectives)) } else { times <- eventMatrix[infectives,"time"] types <- eventMatrix[infectives,"type"] tiaf$g(t-times, tiafpars, types) } # ejIntWt only for infectives, others have 0 setNames(apply(cbind(eTerms,gTerm), 1, prod), infectives) } c("0"=hIntWKt, ejIntWt) # endemic component has index "0" ! } ### helper function calculating the integral of lambdag from oldct to ct ### during simulation; it depends on the current values of the simulation add2Lambdag <- if (!hase || constanttiaf) { function () lambdagUpper * (ct-oldct) } else function () { # old endemic ground intensity * passed time hIntWKInt_oldct_ct <- lambdaghe[1L] * (ct-oldct) # integrated epidemic ground intensities of infectives (from oldct) ejIntWInt_oldct_ct <- if (length(infectives) == 0L) numeric(0L) else { eTermsProd <- apply(eTerms[infectives,,drop=FALSE], 1, prod) # integral of \id_{(0;eps.t]}(t-t_j) g(t-t_j \vert \kappa_j) from oldct to ct, for j in infectives # we can ignore the indicator because t-t_j is not >eps.t if t in [oldct;ct], because recoveries are change points times <- eventMatrix[infectives,"time"] types <- eventMatrix[infectives,"type"] gInt_0_ct <- tiaf$G(ct -times, tiafpars, types) gInt_0_oldct <- tiaf$G(oldct-times, tiafpars, types) gInt_oldct_ct <- gInt_0_ct - gInt_0_oldct eTermsProd * gInt_oldct_ct } sum(hIntWKInt_oldct_ct, ejIntWInt_oldct_ct) } ################## ### Simulation ### ################## ### Initialise values for simulation loop # all necessary components for an epidataCS object will be build along the simulation # let's start with the events of the prehistory tmp <- eTermsCalc(eventData, eventCoords) eTerms <- tmp[[1]]; rownames(eTerms) <- NULL bdists <- tmp[[2]] influenceRegions <- tmp[[3]] sources <- rep.int(list(integer(0L)), Nout) # Transform eventData into a matrix, which is faster with rbind # (factors will be recreated at the end of simulation) # simulated events will be subsequently appended to this matrix eventMatrix <- if (Nout == 0L) { matrix(numeric(0L), nrow=0L, ncol=ncol(eventData), dimnames=list(NULL, names(eventData))) } else { sapply(eventData, as.numeric, simplify = TRUE) # prehistory } if (Nout == 1L) eventMatrix <- t(eventMatrix) # we will also know about the source of infection and corresponding BLOCK in stgrid navec <- rep.int(NA_real_, Nout) eventMatrix <- cbind(eventMatrix, source = navec, lambda.h = navec, lambda.e = navec, Lambdag = navec, BLOCK = navec) # row indices of currently infective individuals infectives <- seq_len(Nout) # maximum total number of events (including prehistory) maxEvents <- Nout + nEvents # change points of lambdag stgridbreaks <- blockstarts[-1,2] Rtimes <- setNames(eventMatrix[,"time"]+eventMatrix[,"eps.t"], infectives) # name indexes row of eventMatrix # index of next event (row in eventMatrix) j <- Nout + 1L # allocation of large objects for faster filling-in of new events allocated <- Nout ncolEventMatrix <- ncol(eventMatrix) newAllocation <- expression({ eventMatrix <- rbind(eventMatrix, matrix(NA_real_, nrow = .allocate, ncol = ncolEventMatrix)) eventCoords <- rbind(eventCoords, matrix(NA_real_, nrow = .allocate, ncol = 2L)) eTerms <- rbind(eTerms, matrix(NA_real_, nrow = .allocate, ncol = 3L)) bdists <- c(bdists, rep.int(NA_real_,.allocate)) influenceRegions <- c(influenceRegions, vector(.allocate, mode="list")) sources <- c(sources, vector(.allocate, mode="list")) allocated <- allocated + .allocate }) # current time point ct <- t0 # current value of the cumulative intensity function of the ground process Lambdag <- 0 # last point rejected? pointRejected <- FALSE # did we have numerical problems simulating from Exp(lambdagUpper) in the current loop? hadNumericalProblems0 <- FALSE # index of the current loop loopCounter <- 0L ### Let's Rock 'n' Roll if (trace > 0L) { cat("\nSimulation path (starting from t=", t0, "):\n---\n", sep="") } else { cat("\nSimulating (starting from t=", t0, ") ...\n", sep="") } while(j <= maxEvents && ct < T && (hash || length(infectives) > 0L)) { loopCounter <- loopCounter + 1L if (trace > 0L && loopCounter %% trace == 0L) { cat(loopCounter, "@t =", ct, ":\t#simulated events =", j-1L-Nout, "\t#currently infective =", length(infectives), if (hase && !constanttiaf) paste("\tlast rejected?", pointRejected), "\n") flush.console() # affects Windows only } # check if we need to allocate larger matrices if (j > allocated) { eval(newAllocation) } if (!pointRejected) # what we have to do in the usual case { # we need the time block of stgrid corresponding to the new covariates, # i.e. search BLOCK such that t in [start; stop) tBLOCK <- blockstarts[findInterval(ct, blockstarts[,2]), 1] # Compute new infection intensity (upper bound) lambdaghe <- lambdagVec(ct, upper=TRUE) lambdagUpper <- sum(lambdaghe) # Determine time of next external change point changePoints <- c(nextblock = if (length(stgridbreaks) > 0L) stgridbreaks[1L], Rtimes) nextChangePoint <- if (length(changePoints) > 0L) { changePoints[which.min(changePoints)] # don't use min() because need names } else Inf } pointRejected <- FALSE ## Simulate waiting time for the subsequent infection if (is.na(lambdagUpper)) { warning("simulation stopped due to undefined intensity") break } if (lambdagUpper < 0) { warning("simulation stopped due to negative overall intensity") break } Delta <- if (lambdagUpper == 0) Inf else tryCatch( rexp(1, rate = lambdagUpper), warning = function (w) { # rate was too small (for R >= 2.7.0, # rexp(1, Inf) returns 0 without warning) assign("hadNumericalProblems0", TRUE, inherits = TRUE) Inf }) # Stop if lambdaStarMax too big meaning Delta == 0 (=> concurrent events) if (Delta == 0) { warning("simulation stopped due to infinite overall intensity") break } # Stop at all costs if end of simulation time [t0; T) has been reached if (isTRUE(min(ct+Delta, nextChangePoint) >= T)) { # ">=" because we don't want an event at "end" break } oldct <- ct if (ct + Delta > nextChangePoint) { ## Simulated time point is beyond the next time of intensity change (removal or endemic covariates) ct <- unname(nextChangePoint) # update cumulative intensity of the ground processes up to time ct, # i.e. add integral of lambdag from oldct to ct Lambdag <- Lambdag + add2Lambdag() # is this change point due to next time block in stgrid? if (names(nextChangePoint) == "nextblock") { stgridbreaks <- stgridbreaks[-1] } else { # i.e. change point due to recovery recoverer <- names(nextChangePoint) # update set of infectives infectives <- setdiff(infectives, recoverer) # remove recovery time from Rtimes .Rtimesidx <- match(recoverer, names(Rtimes)) Rtimes <- Rtimes[-.Rtimesidx] } } else { ## Simulated time point lies within the thinning period ct <- ct + Delta # rejection sampling if non-constant temporal interaction kernel g if (hase && !constanttiaf) { # Calculate actual ground intensity for rejection probability at new ct lambdaghe <- lambdagVec(ct, upper=FALSE) lambdag <- sum(lambdaghe) # rejection sampling step if (lambdag/lambdagUpper < runif(1)) { pointRejected <- TRUE next } } # At this point, we have an actual event! # update cumulative intensity of the ground processes up to time ct, # i.e. add integral of lambdag from oldct to ct Lambdag <- Lambdag + add2Lambdag() # note that lambdaghe[1L] did not change by the above update in case of !constanttiaf, # which is expected by add2Lambdag (which requires the value of lambdag.h(oldct)) # Where did the event come from: imported case or infection? .eventSource <- as.integer(sample(names(lambdaghe), 1L, prob=lambdaghe)) # We now sample type and location if (.eventSource == 0L) { # i.e. endemic source of infection .eventType <- sample(typeNames, 1L, prob=if (nbeta0 > 1L) exp(beta0)) stgrididx <- which(gridBlocks == tBLOCK) .eventTile <- sample(stgrid$tile[stgrididx], 1L, prob=dsexpeta[stgrididx]) # this is a factor ## spsample doesn't guarantee that the sample will consist of ## exactly n points. if no point is sampled (very unlikely ## though), there would be an error ntries <- 1L .nsample <- 1L while( inherits(eventLocationSP <- try( spsample(tiles[as.character(.eventTile),], n=.nsample, type="random"), silent = TRUE), "try-error")) { .nsample <- 10L # this also circumvents a bug in sp 1.0-0 # (missing drop=FALSE in sample.Spatial()) if (ntries >= 1000) { stop("'sp::spsample()' didn't succeed in sampling a ", "point from tile \"", as.character(.eventTile), "\"") } ntries <- ntries + 1L } .eventLocation <- coordinates(eventLocationSP)[1L,,drop=FALSE] } else { # i.e. source is one of the currently infective individuals sourceType <- eventMatrix[.eventSource,"type"] sourceCoords <- eventCoords[.eventSource,,drop=FALSE] sourceIR <- influenceRegions[[.eventSource]] sourceEpss <- eventMatrix[.eventSource,"eps.s"] .upperRange <- min(sourceEpss, maxExtentOfW) .eventType <- sample(typeNames[qmatrix[sourceType,]], 1L) .eventTypeCode <- match(.eventType, typeNames) eventInsideIR <- FALSE ntries <- 0L while(!eventInsideIR) { if (ntries >= 1000) { stop("event location sampled by siaf$simulate() was", " rejected 1000 times (not in influence region)") } ntries <- ntries + 1L eventLocationIR <- siaf$simulate(1L, siafpars, .eventTypeCode, .upperRange) eventInsideIR <- inside.owin(eventLocationIR[,1], eventLocationIR[,2], sourceIR) } .eventLocation <- sourceCoords + eventLocationIR whichTile <- over(SpatialPoints(.eventLocation), tiles) if (is.na(whichTile)) { warning("event generated at (", paste(.eventLocation, collapse=","), ") not in 'tiles'") stop("'tiles' must cover all of 'W'") } .eventTile <- factor(row.names(tiles)[whichTile], levels = tileLevels) } .eventType <- factor(.eventType, levels=typeNames) # sample marks at this time and location .eventMarks <- rmarks(ct, .eventLocation) # gather event information .eventData <- data.frame(time=ct, tile=.eventTile, type=.eventType, .eventMarks, check.rows = FALSE, check.names = FALSE) # determine potential sources of infection (for epidataCS and lambda) .sources <- infectives[eventMatrix[infectives,"type"] %in% which(qmatrix[,.eventType])] if (length(.sources) > 0L) { .sdiffs <- .eventLocation[rep.int(1L,length(.sources)),,drop=FALSE] - eventCoords[.sources,,drop=FALSE] .sources <- .sources[sqrt(.rowSums(.sdiffs^2, length(.sources), 2L)) <= eventMatrix[.sources,"eps.s"]] } # calculate actual intensity at this time, location and type .mmhEvent <- buildmmh(.eventData) .etaEvent <- .mmhEvent %*% beta if (!is.null(.offsetEvent <- attr(.mmhEvent, "offset"))) .etaEvent <- .etaEvent + .offsetEvent if (nbeta0 == 1L) { .etaEvent <- .etaEvent + beta0 } else if (nbeta0 > 1L) { .etaEvent <- .etaEvent + beta0[.eventType] } .lambdah <- exp(.etaEvent) .lambdae <- if (hase && length(.sources) > 0L) { .sdiffs <- .eventLocation[rep.int(1L,length(.sources)),,drop=FALSE] - eventCoords[.sources,,drop=FALSE] .fSources <- siaf$f(.sdiffs, siafpars, eventMatrix[.sources,"type"]) .gSources <- tiaf$g(ct - eventMatrix[.sources,"time"], tiafpars, eventMatrix[.sources,"type"]) sum(eTerms[.sources,"expeta"] * .fSources * .gSources) } else 0 # calculate terms of the epidemic component e_j(t,s) of the new infective tmp <- eTermsCalc(.eventData, .eventLocation) # Update objects eventMatrix[j,] <- c(ct, as.numeric(.eventTile), as.numeric(.eventType), sapply(.eventMarks, as.numeric), .eventSource, .lambdah, .lambdae, Lambdag, tBLOCK) eventCoords[j,] <- .eventLocation eTerms[j,] <- tmp[[1]] bdists[j] <- tmp[[2]] influenceRegions[[j]] <- tmp[[3]][[1]] sources[[j]] <- .sources # Update set of infectives and recovery times infectives <- c(infectives, j) Rtimes <- c(Rtimes, setNames(ct + .eventMarks[["eps.t"]], j)) # Increment next event iterator j <- j + 1L } } if (trace > 0L) cat("---\n") ### update T if simulation ended preterm if (j > maxEvents || (!hash && length(infectives) == 0L)) { T <- ct # clip stgrid to effective time range of simulation stgrid <- subset(stgrid, start <= T) if (j > maxEvents) { cat("Maximum number of events (nEvents=", nEvents, ") reached @t = ", T, "\n", sep="") } else { # epidemic-only model cat("Simulation has ended preterm (no more infectives)", "@t =", T, "with", j-1L-Nout, "simulated events.\n") } } else { # ct >= T or ct+Delta >= T cat("Simulation has ended @t =", T, "with", j-1L-Nout, "simulated events.\n") } ############## ### Return ### ############## ### Throw warning in case of numerical difficulties if (hadNumericalProblems0) { warning("occasionally, the overall infection rate was numerically equal to 0") } ### throw an error if no events have been simulated ## because SpatialPoints[DataFrame]() does not allow the empty set, try: ## SpatialPoints(coords = matrix(numeric(0), 0, 2), bbox=bbox(W)) if (j-1L == Nout) { stop("no events have been simulated") } ### transform eventMatrix back into a data.frame with original factor variables cat("\nPreparing simulated events for \"epidataCS\" ...\n") preEventData <- eventData # drop unused entries (due to large pre-allocation) from objects seqAlongEvents <- seq_len(j-1L) eventData <- as.data.frame(eventMatrix[seqAlongEvents,,drop=FALSE]) # rebuild factor variables for (idx in which(sapply(preEventData, is.factor))) { origlevels <- levels(preEventData[[idx]]) eventData[[idx]] <- factor(eventData[[idx]], levels=seq_along(origlevels), labels=origlevels) } # transform integer columns to integer eventData[c("source","BLOCK")] <- lapply(eventData[c("source","BLOCK")], as.integer) ### Append additional columns for an epidataCS object # add endemic covariates at events stgrididx <- apply(eventData[c("BLOCK","tile")], 1, function (x) { ret <- with(stgrid, which(BLOCK==as.integer(x[1L]) & tile==x[2L])) if (length(ret) == 0L) NA_integer_ else ret #<- events of the prehistory have missing BLOCKs, thus return NA }) stgridIgnoreCols <- match(c("BLOCK", setdiff(obligColsNames_stgrid, "start")), names(stgrid)) eventData <- cbind(eventData, stgrid[stgrididx, -stgridIgnoreCols, drop = FALSE]) rownames(eventData) <- seqAlongEvents # add hidden columns eventData$.obsInfLength <- with(eventData, pmin(T-time, eps.t)) eventData$.sources <- sources[seqAlongEvents] eventData$.bdist <- bdists[seqAlongEvents] eventData$.influenceRegion <- influenceRegions[seqAlongEvents] attr(eventData$.influenceRegion, "nCircle2Poly") <- nCircle2Poly attr(eventData$.influenceRegion, "clipper") <- "polyclip" ### Construct "epidataCS" object events <- SpatialPointsDataFrame( coords = eventCoords[seqAlongEvents,,drop=FALSE], data = eventData, proj4string = W@proj4string, match.ID = FALSE #, bbox = bbox(W)) # the bbox of SpatialPoints is defined as the actual # bbox of the points and is also updated every time # when subsetting the SpatialPoints object # -> useless to specify it as the bbox of W ) if (.onlyEvents) { cat("Done.\n") attr(events, "timeRange") <- c(t0, T) attr(events, "runtime") <- proc.time()[[3]] - ptm return(events) } epi <- list(events=events, stgrid=stgrid, W=W, qmatrix=qmatrix) ### Return object of class "simEpidataCS" cat("Done.\n") # append configuration of the model epi$bbox <- bbox(W) epi$timeRange <- c(t0, T) epi$formula <- list( endemic = if (typeSpecificEndemicIntercept) { update.formula(formula(endemic), ~ (1|type) + .) # re-add to the formula } else formula(endemic), epidemic = formula(epidemic), siaf = siaf, tiaf = tiaf ) if (epilink != "log") # set as attribute only if non-standard link function attr(epi$formula$epidemic, "link") <- epilink # coefficients as a numeric vector to be compatible with twinstim-methods epi$coefficients <- coefs #list(beta0=beta0, beta=beta, gamma=gamma, # siafpars=siafpars, tiafpars=tiafpars) epi$npars <- c(nbeta0=nbeta0, p=p, q=q, nsiafpars=nsiafpars, ntiafpars=ntiafpars) epi$control.siaf <- control.siaf # for R0.simEpidataCS epi$call <- cl epi$runtime <- proc.time()[[3]] - ptm class(epi) <- c("simEpidataCS", "epidataCS") return(epi) } ############################################################################# ### much more efficient simulation for endemic-only models ### where intensities are piecewise constant and independent from the history ############################################################################# ## auxiliary function to calculate the endemic intensity by spatio-temporal cell ## from the model environment of a "twinstim" fit .hGrid <- function (modelenv) { .beta0 <- rep_len(if (modelenv$nbeta0==0L) 0 else modelenv$beta0, modelenv$nTypes) hGrid <- sum(exp(.beta0)) * eval(modelenv$hGridExpr, envir = modelenv) blockstartstop <- modelenv$histIntervals[ match(modelenv$gridBlocks, modelenv$histIntervals$BLOCK), ] data.frame(blockstartstop, tile = modelenv$gridTiles, hGrid = hGrid, hInt = hGrid * modelenv$ds * modelenv$dt, row.names = NULL, check.rows = FALSE, check.names = FALSE) } ## simulate events from the endemic component of a "twinstim" fit ## this simulates pure (s,t,k) data with the only extra column being "tile" simEndemicEvents <- function (object, tiles) { ## check arguments stopifnot(inherits(object, "twinstim")) if (is.null(modelenv <- environment(object))) stop("no model environment -- re-fit or update() with 'model=TRUE'") tileLevels <- levels(modelenv$gridTiles) tiles <- check_tiles(tiles, levels = tileLevels, areas.stgrid = modelenv$ds[seq_along(tileLevels)], keep.data = FALSE) ## calculate endemic intensity by spatio-temporal cell lambdaGrid <- .hGrid(modelenv) ## simulate number of events by cell nGrid <- rpois(n = nrow(lambdaGrid), lambda = lambdaGrid[["hInt"]]) nTotal <- sum(nGrid) ## sample time points tps <- mapply( FUN = runif, n = nGrid, min = lambdaGrid[["start"]], max = lambdaGrid[["stop"]], SIMPLIFY = FALSE, USE.NAMES = FALSE ) ## sample types beta0 <- coeflist.default(coef(object), object$npars)[["nbeta0"]] nTypes <- nrow(object$qmatrix) types <- if (nTypes == 1L) { rep.int(1L, nTotal) } else { sample.int(n = nTypes, size = nTotal, replace = TRUE, prob = if (length(beta0) > 1L) exp(beta0)) } ## put event times, tiles, and types in a data frame events <- data.frame( ##lambdaGrid[rep.int(seq_len(nrow(lambdaGrid)), nGrid), c("tile", "BLOCK")], time = unlist(tps, recursive = FALSE, use.names = FALSE), tile = rep.int(lambdaGrid[["tile"]], nGrid), type = factor(types, levels = seq_len(nTypes), labels = rownames(object$qmatrix)), row.names = NULL, check.rows = FALSE, check.names = FALSE ) ## empty CRS to avoid spending 3/4 of this function's runtime in rebuild_CRS() proj4string <- tiles@proj4string tiles@proj4string <- new("CRS") ## sample coordinates from tiles nByTile <- tapply(X = nGrid, INDEX = lambdaGrid["tile"], FUN = sum) xyByTile <- sapply( X = names(nByTile), FUN = function (tile) { n <- nByTile[tile] if (n > 0L) coordinates(spsample(x = tiles[tile,], n = n, type = "random", iter = 10)) ## else NULL }, simplify = FALSE, USE.NAMES = TRUE ) ## set coordinates of events events <- SpatialPointsDataFrame( coords = do.call("rbind", xyByTile), data = events[order(events$tile),], proj4string = proj4string, match.ID = FALSE) ## order by time events <- events[order(events$time),] row.names(events) <- seq_along(events) events } #################################################### ### some twinstim-methods for "simEpidataCS" objects #################################################### ### wrapper for R0.twinstim R0.simEpidataCS <- function (object, trimmed = TRUE, ...) { R0.twinstim(object, newevents=object$events@data, trimmed = trimmed, ...) } ### wrapper for intensityplot.twinstim as.twinstim.simEpidataCS <- function (x) { m <- do.call("twinstim", c( formula(x), list(data = quote(x), control.siaf = x$control.siaf, optim.args = list(par=coef(x), fixed=TRUE), model = TRUE, cumCIF = FALSE, verbose = FALSE) )) components2copy <- setdiff(names(m), names(x)) for (comp in components2copy) x[[comp]] <- m[[comp]] environment(x) <- environment(m) class(x) <- c("simEpidataCS", "epidataCS", "twinstim") x } intensityplot.simEpidataCS <- function (x, ...) { if (is.null(environment(x))) { objname <- deparse(substitute(x)) message("Setting up the model environment ...") x <- as.twinstim.simEpidataCS(x) try({ assign(objname, x, envir=parent.frame()) message("Note: added model environment to '", objname, "' for future use.") }, silent=TRUE) } intensityplot.twinstim(x, ...) } ### the residual process Lambda_g(t) is stored with the simulated events residuals.simEpidataCS <- function (object, ...) { setNames(object$events$Lambdag, row.names(object$events))[!is.na(object$events$Lambdag)] } ################################################################################ # A 'simulate' method for objects of class "twinstim". ################################################################################ ### FIXME: actually stgrid's of simulations might have different time ranges ### when nEvents is active -> atm, simplify ignores this .rmarks <- function (data, t0, T) { observedMarks <- subset(marks.epidataCS(data, coords = FALSE), subset = time > t0 & time <= T) if (nrow(observedMarks) == 0L) { message("Note: 'data' does not contain any events during ('t0';'T'],\n", " 'rmarks' thus samples marks from all of 'data$events'") observedMarks <- marks.epidataCS(data, coords = FALSE) } observedMarks <- observedMarks[match("eps.t", names(observedMarks)):ncol(observedMarks)] rm(list = "data", inherits = FALSE) # to save memory (environment is kept) function (t, s, n = 1L) { as.data.frame(lapply(observedMarks, function (x) sample(na.omit(x), size = n, replace = TRUE)), optional = TRUE) } } simulate.twinstim <- function (object, nsim = 1, seed = NULL, data, tiles, newcoef = NULL, rmarks = NULL, t0 = NULL, T = NULL, nEvents = 1e5, control.siaf = object$control.siaf, W = data$W, trace = FALSE, nCircle2Poly = NULL, gmax = NULL, .allocate = 500, simplify = TRUE, ...) { ptm <- proc.time()[[3]] cl <- match.call() ### Determine seed (this part is copied from stats:::simulate.lm with ### Copyright (C) 1995-2012 The R Core Team) if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) if (is.null(seed)) RNGstate <- get(".Random.seed", envir = .GlobalEnv) else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) } ### Few checks stopifnot(inherits(object, "twinstim"), inherits(data, "epidataCS")) stopifnot(isScalar(nsim), nsim > 0) nsim <- as.integer(nsim) if (is.null(t0)) t0 <- object$timeRange[1] if (is.null(T)) T <- object$timeRange[2] if (is.null(nCircle2Poly)) nCircle2Poly <- attr(data$events$.influenceRegion, "nCircle2Poly") ### Retrieve arguments for simulation endemic <- formula(object)$endemic epidemic <- formula(object)$epidemic # we don't need any reference to the original formula environment environment(endemic) <- environment(epidemic) <- .GlobalEnv if (is.null(rmarks)) rmarks <- .rmarks(data, t0 = t0, T = T) theta <- coef(object) if (!is.null(newcoef)) { newcoef <- check_twinstim_start(newcoef) newcoef <- newcoef[names(newcoef) %in% names(theta)] theta[names(newcoef)] <- newcoef } thetalist <- coeflist.default(theta, object$npars) ### Run the simulation(s) # establish call simcall <- call("simEpidataCS", endemic=endemic, epidemic=epidemic, siaf=quote(formula(object)$siaf), tiaf=quote(formula(object)$tiaf), qmatrix=quote(object$qmatrix), rmarks=quote(rmarks), events=quote(data$events), stgrid=quote(data$stgrid), tiles=quote(tiles), beta0=thetalist[[1L]], beta=thetalist[[2L]], gamma=thetalist[[3L]], siafpars=thetalist[[4L]], tiafpars=thetalist[[5L]], epilink = .epilink(object), t0=t0, T=T, nEvents=nEvents, control.siaf=control.siaf, W=quote(W), trace=trace, nCircle2Poly=nCircle2Poly, gmax=gmax, .allocate=.allocate, .skipChecks=TRUE, .onlyEvents=FALSE) # First simulation if (nsim > 1L) { cat("\nTime at beginning of simulation:", as.character(Sys.time()), "\n") cat("Simulation 1 /", nsim, "...\n") cat("-------------------------------------------------------------------------------\n") } res <- eval(simcall) if (nsim > 1L) { cat("\n-------------------------------------------------------------------------------\n") cat("Runtime of first simulation:", res$runtime, "seconds\n") cat("Estimated finishing time:", as.character(Sys.time() + (nsim-1) * res$runtime), "\n\n") # set up list of simulations res <- if (simplify) { with(res, list( eventsList=c(structure(events, timeRange = timeRange, runtime = runtime), vector(nsim-1L, mode="list")), stgrid=stgrid, W=W, qmatrix=qmatrix, bbox=bbox, formula=formula, coefficients=coefficients, npars=npars, control.siaf=control.siaf, call=call )) } else { c(list(res), vector(nsim-1L, mode="list")) } # force garbage collection gc() # run the remaining simulations simcall$.onlyEvents <- simplify for (i in 2:nsim) { cat("Simulation", sprintf(paste0("%",nchar(nsim),"i"), i), "/", nsim, "...") capture.output(resi <- eval(simcall)) .nEvents <- if (simplify) sum(!is.na(resi$source)) else { sum(!is.na(resi$events$source)) } .T <- if (simplify) attr(resi,"timeRange")[2] else resi$timeRange[2] cat("\tsimulated", .nEvents, "events", if (nEvents == .nEvents) "(reached maximum)", "up to time", .T, "\n") if (simplify) res$eventsList[[i]] <- resi else res[[i]] <- resi } cat("\nDone (", as.character(Sys.time()), ").\n", sep="") } attr(res, "call") <- cl attr(res, "seed") <- RNGstate attr(res, "runtime") <- proc.time()[[3]] - ptm class(res) <- if (nsim == 1L) { c("simEpidataCS", "epidataCS") } else { attr(res, "simplified") <- simplify c("simEpidataCSlist") } res } ### print method for lists of simulated epidemics print.simEpidataCSlist <- function (x, ...) { cat("\nCall:\n") print.default(attr(x, "call")) simplified <- attr(x, "simplified") nsim <- if (simplified) length(x$eventsList) else length(x) cat("\n") cat(if (simplified) "Simplified list" else "List", "of", nsim, "simulated epidemics of class \"simEpidataCS\" (not printed)\n\n") invisible(x) } "[[.simEpidataCSlist" <- function (x, i) { simplified <- attr(x, "simplified") if (simplified) { x <- unclass(x) x$eventsList <- x$eventsList[[i]] names(x)[names(x) == "eventsList"] <- "events" x <- append(x, list(timeRange = attr(x$events, "timeRange")), after=5L) x$runtime <- attr(x$events, "runtime") attr(x$events, "timeRange") <- attr(x$events, "runtime") <- NULL class(x) <- c("simEpidataCS", "epidataCS") x } else NextMethod("[[") } plot.simEpidataCSlist <- function (x, which = NULL, mfrow = n2mfrow(length(which)), main = paste("Simulated epidemic", which), aggregate = c("time", "space"), subset, ...) { simplified <- attr(x, "simplified") nsim <- if (simplified) length(x$eventsList) else length(x) if (is.null(which)) { which <- seq_len(nsim) if (nsim > 4) which <- sample(which, 4L) } opar <- par(mfrow = mfrow); on.exit(par(opar)) main <- rep_len(main, length(which)) for (i in seq_along(which)) { do.call("plot", args=list(x=quote(x[[which[i]]]), aggregate=aggregate, subset=substitute(subset), main = main[i], ...)) } } surveillance/R/sts_ggplot.R0000644000176200001440000000366214026737231015473 0ustar liggesusers################################################################################ ### Plot a surveillance time series ("sts") object using ggplot2 ### ### Copyright (C) 2018,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ autoplot.sts <- function (object, population = FALSE, units = NULL, as.one = FALSE, scales = "fixed", width = NULL, ...) { stopifnot(is(object, "sts")) data <- tidy.sts(object) if (all(is.na(data$date))) stop("could not derive date index via 'epoch(object, as.Date=TRUE)';", "\n attach dates using 'epoch(object) <- DATE_OBJECT' first") ## sensible default width for weekly/daily data if (is.null(width)) { if (object@freq == 52) width <- 7 if (object@freq == 365) width <- 1 } ## select subset of units to plot if (!is.null(units)) { ## ensure that 'units' are labels, not indices units <- unname(setNames(nm = levels(data$unit))[units]) data <- data[data$unit %in% units, , drop=FALSE] } ## scale counts by population if (doInc <- isScalar(population) || isTRUE(population)) data$observed <- data$observed / (data$population / population) p <- ggplot2::ggplot( data = data, mapping = ggplot2::aes_(x = ~date, y = ~observed, group = ~unit), environment = parent.frame() ) if (as.one) { p <- p + ggplot2::geom_line(ggplot2::aes_(colour = ~unit)) } else { p <- p + ggplot2::geom_col(width = width) + ggplot2::facet_wrap(~unit, scales = scales, drop = TRUE) } p + ggplot2::labs(x = "Time", y = if(doInc) "Incidence" else "No. infected") } surveillance/R/earsC.R0000644000176200001440000001566214662137762014357 0ustar liggesusers# \|||/ # (o o) # ,~~~ooO~~(_)~~~~~~~~~, # | EARS | # | surveillance | # | methods | # | C1, C2 and C3 | # '~~~~~~~~~~~~~~ooO~~~' # |__|__| # || || # ooO Ooo ###################################################################### # Implementation of the EARS surveillance methods. ###################################################################### # DESCRIPTION ###################################################################### # Given a time series of disease counts per month/week/day # this function determines whether there was an outbreak at given time points: # it deduces for each time point an expected value from past values, # it defines an upperbound based on this value and on the variability # of past values # and then it compares the observed value with the upperbound. # If the observed value is greater than the upperbound # then an alert is flagged. # Three methods are implemented. # They do not use the same amount of past data # and are expected to have different specificity and sensibility # from C1 to C3 # the amount of past data used increases, # so does the sensibility # but the specificity decreases. ###################################################################### # PARAMETERS ###################################################################### # range : range of timepoints over which the function will look for # outbreaks. # method : which of the three EARS methods C1, C2 and C3 should be used. # ###################################################################### # INPUT ###################################################################### # A R object of class sts ###################################################################### # OUTPUT ###################################################################### # The same R object of class sts with slot alarm and upperbound filled # by the function ###################################################################### earsC <- function(sts, control = list(range = NULL, method = "C1", baseline = 7, minSigma = 0, alpha = 0.001)) { ###################################################################### #Handle I/O ###################################################################### #If list elements are empty fill them! if (is.null(control[["baseline", exact = TRUE]])) { control$baseline <- 7 } if (is.null(control[["minSigma", exact = TRUE]])) { control$minSigma <- 0 } baseline <- control$baseline minSigma <- control$minSigma if(minSigma < 0) { stop("The minimum sigma parameter (minSigma) needs to be positive") } if (baseline < 3) { stop("Minimum baseline to use is 3.") } # Method if (is.null(control[["method", exact = TRUE]])) { control$method <- "C1" } # Extracting the method method <- match.arg( control$method, c("C1","C2","C3"),several.ok=FALSE) # Range # By default it will take all possible weeks # which is not the same depending on the method if (is.null(control[["range",exact=TRUE]])) { if (method == "C1"){ control$range <- seq(from=baseline+1, to=dim(sts@observed)[1],by=1) } if (method == "C2"){ control$range <- seq(from=baseline+3, to=dim(sts@observed)[1],by=1) } if (method == "C3"){ control$range <- seq(from=baseline+5, to=dim(sts@observed)[1],by=1) } } # zAlpha if (is.null(control[["alpha",exact=TRUE]])) { # C1 and C2: Risk of 1st type error of 10-3 # This corresponds to an Z(1-zAlpha) of about 3 if (method %in% c("C1","C2")) { control$alpha = 0.001 } # C3: Risk of 1st type error of 0.025 # This corresponds to an Z(1-zAlpha) of about 2 if (method=="C3") { control$alpha = 0.025 } } # Calculating the threshold zAlpha zAlpha <- qnorm((1-control$alpha)) #Deduce necessary amount of data from method maxLag <- switch(method, C1 = baseline, C2 = baseline+2, C3 = baseline+4) # Order range in case it was not given in the right order control$range = sort(control$range) ###################################################################### #Loop over all columns in the sts object #Call the right EARS function depending on the method chosen (1, 2 or 3) ##################################################################### for (j in 1:ncol(sts)) { # check if the vector observed includes all necessary data: maxLag values. if((control$range[1] - maxLag) < 1) { stop("The vector of observed is too short!") } ###################################################################### # Method C1 or C2 ###################################################################### if(method == "C1"){ # construct the matrix for calculations ndx <- as.vector(outer(control$range, baseline:1, FUN = "-")) refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline) sts@upperbound[control$range, j] <- apply(refVals,1, mean) + zAlpha * pmax(apply(refVals, 1, sd), minSigma) } if (method == "C2") { # construct the matrix for calculations ndx <- as.vector(outer(control$range, (baseline + 2):3, FUN = "-")) refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline) sts@upperbound[control$range, j] <- apply(refVals,1, mean) + zAlpha * pmax(apply(refVals, 1, sd), minSigma) } if (method == "C3") { # refVals <- NULL rangeC2 = ((min(control$range) - 2):max(control$range)) ##HB replacing loop: ndx <- as.vector(outer(rangeC2, (baseline + 2):3, FUN = "-")) refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline) ##HB using argument 'minSigma' to avoid dividing by zero, huge zscores: C2 <- (observed(sts)[rangeC2, j] - apply(refVals, 1, mean))/ pmax(apply(refVals, 1, sd), minSigma) partUpperboundLag2 <- pmax(rep(0, length.out = length(C2) - 2), C2[1:(length(C2) - 2)] - 1) partUpperboundLag1 <- pmax(rep(0, length.out = length(C2) - 2), C2[2:(length(C2) - 1)] - 1) ##HB using argument 'minSigma' to avoid alerting threshold that is zero or too small sts@upperbound[control$range, j] <- observed(sts)[control$range, j] + pmax(apply(as.matrix(refVals[3:length(C2), ]),1, sd),minSigma) * (zAlpha - (partUpperboundLag2 + partUpperboundLag1)) sts@upperbound[control$range, j] = pmax(rep(0, length(control$range)), sts@upperbound[control$range, j]) } } #Copy administrative information control$name <- paste("EARS_", method, sep = "") control$data <- paste(deparse(substitute(sts))) sts@control <- control sts@alarm[control$range, ] <- matrix(observed(sts)[control$range, ] > upperbound(sts)[control$range, ]) return(sts[control$range, ]) } surveillance/R/twinstim_methods.R0000644000176200001440000010051614676774654016730 0ustar liggesusers################################################################################ ### Methods for objects of class "twinstim", specifically: ### vcov, logLik, print, summary, plot, R0, residuals, update, terms, all.equal ### ### Copyright (C) 2009-2019,2022 Sebastian Meyer ### (except where otherwise noted) ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## extract the link function used for the epidemic predictor (default: log-link) .epilink <- function (x) { link <- attr(x$formula$epidemic, "link") if (is.null(link)) "log" else link } ### don't need a specific coef-method (identical to stats:::coef.default) ## coef.twinstim <- function (object, ...) ## { ## object$coefficients ## } ## list coefficients by component coeflist.twinstim <- coeflist.simEpidataCS <- function (x, ...) { coeflist <- coeflist.default(x$coefficients, x$npars) ## rename elements and union "nbeta0" and "p" as "endemic" coeflist <- c(list(c(coeflist[[1L]], coeflist[[2L]])), coeflist[-(1:2)]) names(coeflist) <- c("endemic", "epidemic", "siaf", "tiaf") coeflist } ## asymptotic variance-covariance matrix (inverse of expected fisher information) vcov.twinstim <- function (object, ...) { if (!is.null(object[["fisherinfo"]])) { solve(object$fisherinfo) } else if (!is.null(object[["fisherinfo.observed"]])) { solve(object$fisherinfo.observed) } else { stop("Fisher information not available; use, e.g., -optimHess()") } } ## Extract log-likelihood of the model (which also enables the use of AIC()) logLik.twinstim <- function (object, ...) { r <- object$loglik attr(r, "df") <- length(coef(object)) attr(r, "nobs") <- nobs(object) class(r) <- "logLik" r } ## Also define an extractAIC-method to make step() work extractAIC.twinstim <- function (fit, scale, k = 2, ...) { loglik <- logLik(fit) edf <- attr(loglik, "df") penalty <- k * edf c(edf = edf, AIC = -2 * c(loglik) + penalty) } ## Number of events (excluding the prehistory) nobs.twinstim <- function (object, ...) length(object$fitted) ## print-method print.twinstim <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n") print.default(x$call) cat("\nCoefficients:\n") print.default(format(coef(x), digits=digits), print.gap = 2, quote = FALSE) cat("\nLog-likelihood: ", format(logLik(x), digits=digits), "\n", sep = "") if (!isTRUE(x$converged)) { cat("\nWARNING: OPTIMIZATION ROUTINE DID NOT CONVERGE!", paste0("(",x$converged,")"), "\n") } cat("\n") invisible(x) } summary.twinstim <- function (object, test.iaf = FALSE, correlation = FALSE, symbolic.cor = FALSE, runtime = FALSE, ...) { ans <- unclass(object)[c("call", "converged", if (runtime) "counts")] npars <- object$npars nbeta0 <- npars[1]; p <- npars[2]; nbeta <- nbeta0 + p q <- npars[3] nNotIaf <- nbeta + q niafpars <- npars[4] + npars[5] est <- coef(object) ans$cov <- tryCatch(vcov(object), error = function (e) { warning(e) matrix(NA_real_, length(est), length(est)) }) se <- sqrt(diag(ans$cov)) zval <- est/se pval <- 2 * pnorm(abs(zval), lower.tail = FALSE) coefficients <- cbind(est, se, zval, pval) dimnames(coefficients) <- list(names(est), c("Estimate", "Std. Error", "z value", "Pr(>|z|)")) ans$coefficients.beta <- coefficients[seq_len(nbeta),,drop=FALSE] ans$coefficients.gamma <- structure( coefficients[nbeta+seq_len(q),,drop=FALSE], link = .epilink(object) ) ans$coefficients.iaf <- coefficients[nNotIaf+seq_len(niafpars),,drop=FALSE] if (!test.iaf) { ## usually, siaf and tiaf parameters are strictly positive, ## or parametrized on the logscale. In this case the usual wald test ## with H0: para=0 is invalid or meaningless. is.na(ans$coefficients.iaf[,3:4]) <- TRUE } # estimated parameter correlation if (correlation) { ans$correlation <- cov2cor(ans$cov) ans$symbolic.cor <- symbolic.cor } ans$loglik <- logLik(object) ans$aic <- AIC(object) if (runtime) { ans$runtime <- object$runtime } class(ans) <- "summary.twinstim" ans } ## additional methods to make confint.default work for summary.twinstim vcov.summary.twinstim <- function (object, ...) object$cov coef.summary.twinstim <- function (object, ...) with(object, { coeftab <- rbind(coefficients.beta, coefficients.gamma, coefficients.iaf) structure(coeftab[,1], names=rownames(coeftab)) }) ## print-method for summary.twinstim print.summary.twinstim <- function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) { nbeta <- nrow(x$coefficients.beta) # = nbeta0 + p q <- nrow(x$coefficients.gamma) niafpars <- nrow(x$coefficients.iaf) cat("\nCall:\n") print.default(x$call) if (nbeta > 0L) { cat("\nCoefficients of the endemic component:\n") printCoefmat(x$coefficients.beta, digits = digits, signif.stars = signif.stars, signif.legend = (q==0L) && signif.stars, ...) } else cat("\nNo coefficients in the endemic component.\n") if (q + niafpars > 0L) { cat("\nCoefficients of the epidemic component", if (attr(x$coefficients.gamma, "link") != "log") paste0(" (LINK FUNCTION: ", attr(x$coefficients.gamma, "link"), ")"), ":\n", sep = "") printCoefmat(rbind(x$coefficients.gamma, x$coefficients.iaf), digits = digits, signif.stars = signif.stars, ...) } else cat("\nNo epidemic component.\n") cat("\nAIC: ", format(x$aic, digits=max(4, digits+1))) cat("\nLog-likelihood:", format(x$loglik, digits = digits)) runtime <- x$runtime if (!is.null(runtime)) { cat("\nNumber of log-likelihood evaluations:", x$counts[1L]) cat("\nNumber of score function evaluations:", x$counts[2L]) cores <- attr(runtime, "cores") elapsed <- if (length(runtime) == 1L) { # surveillance < 1.6-0 runtime } else { runtime[["elapsed"]] } cat("\nRuntime", if (!is.null(cores) && cores > 1) paste0(" (", cores, " cores)"), ": ", format(elapsed, digits = max(4, digits+1)), " seconds", sep = "") } cat("\n") correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1L) { cat("\nCorrelation of Coefficients:\n") if (is.logical(symbolic.cor) && symbolic.cor) { correl <- symnum(correl, abbr.colnames = NULL) correlcodes <- attr(correl, "legend") attr(correl, "legend") <- NULL print(correl) cat("---\nCorr. codes: ", correlcodes, "\n", sep="") } else { correl <- format(round(correl, 2), nsmall = 2) correl[!lower.tri(correl)] <- "" colnames(correl) <- substr(colnames(correl), 1, 5) print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } if (!isTRUE(x$converged)) { cat("\nWARNING: OPTIMIZATION ROUTINE DID NOT CONVERGE!", paste0("(",x$converged,")"), "\n") } cat("\n") invisible(x) } ### 'cat's the summary in LaTeX code toLatex.summary.twinstim <- function ( object, digits = max(3, getOption("digits") - 3), eps.Pvalue = 1e-4, align = "lrrrr", booktabs = getOption("xtable.booktabs", FALSE), withAIC = FALSE, ...) { ret <- capture.output({ cat("\\begin{tabular}{", align, "}\n", if (booktabs) "\\toprule" else "\\hline", "\n", sep="") cat(" & Estimate & Std. Error & $z$ value & $P(|Z|>|z|)$ \\\\\n", if (!booktabs) "\\hline\n", sep="") tabh <- object$coefficients.beta tabe <- rbind(object$coefficients.gamma, object$coefficients.iaf) for (tabname in c("tabh", "tabe")) { tab <- get(tabname) if (nrow(tab) > 0L) { rownames(tab) <- gsub(" ", "", rownames(tab)) tab_char <- capture.output( printCoefmat(tab, digits=digits, signif.stars=FALSE, eps.Pvalue = eps.Pvalue, na.print="NA") )[-1] ## remove extra space (since used as column sep in read.table) tab_char <- sub("< ", "<", tab_char, fixed=TRUE) # small p-values ## replace scientific notation by corresponding LaTeX code tab_char <- sub("( xtable.summary.twinstim must be exported } formals(xtable.twinstim) <- formals(xtable.summary.twinstim) ### Plot method for twinstim (wrapper for iafplot and intensityplot) plot.twinstim <- function (x, which, ...) { cl <- match.call() which <- match.arg(which, choices = c(eval(formals(intensityplot.twinstim)$which), eval(formals(iafplot)$which))) FUN <- if (which %in% eval(formals(intensityplot.twinstim)$which)) "intensityplot" else "iafplot" cl[[1]] <- as.name(FUN) if (FUN == "iafplot") names(cl)[names(cl) == "x"] <- "object" eval(cl, envir = parent.frame()) } ### Calculates the basic reproduction number R0 for individuals ### with marks given in 'newevents' R0.twinstim <- function (object, newevents, trimmed = TRUE, newcoef = NULL, ...) { ## check for epidemic component npars <- object$npars if (npars["q"] == 0L) { message("no epidemic component in model, returning 0-vector") if (missing(newevents)) return(object$R0) else { return(structure(rep.int(0, nrow(newevents)), names = rownames(newevents))) } } ## update object for use of new parameters if (!is.null(newcoef)) { object <- update.twinstim(object, optim.args = list(par=newcoef, fixed=TRUE), cumCIF = FALSE, cores = 1L, verbose = FALSE) } ## extract model information t0 <- object$timeRange[1L] T <- object$timeRange[2L] typeNames <- rownames(object$qmatrix) nTypes <- length(typeNames) types <- seq_len(nTypes) form <- formula(object) siaf <- form$siaf tiaf <- form$tiaf coefs <- coef(object) tiafpars <- coefs[sum(npars[1:4]) + seq_len(npars["ntiafpars"])] siafpars <- coefs[sum(npars[1:3]) + seq_len(npars["nsiafpars"])] if (missing(newevents)) { ## if no newevents are supplied, use original events if (trimmed) { # already calculated by 'twinstim' return(object$R0) } else { # untrimmed version (spatio-temporal integral over R+ x R^2) ## extract relevant data from model environment if (is.null(modelenv <- environment(object))) { stop("need model environment for untrimmed R0 of fitted events\n", " -- re-fit or update() with 'model=TRUE'") } eventTypes <- modelenv$eventTypes eps.t <- modelenv$eps.t eps.s <- modelenv$eps.s gammapred <- modelenv$gammapred names(gammapred) <- names(object$R0) # for names of the result } } else { # use newevents stopifnot(is.data.frame(newevents)) eps.t <- newevents[["eps.t"]] eps.s <- newevents[["eps.s"]] if (is.null(eps.s) || is.null(eps.t)) { stop("missing \"eps.s\" or \"eps.t\" columns in 'newevents'") } if (is.null(newevents[["type"]])) { if (nTypes == 1) { newevents$type <- factor(rep.int(typeNames, nrow(newevents)), levels = typeNames) } else { stop("missing event \"type\" column in 'newevents'") } } else { newevents$type <- factor(newevents$type, levels = typeNames) if (anyNA(newevents$type)) { stop("unknown event type in 'newevents'; must be one of: ", paste0("\"", typeNames, "\"", collapse = ", ")) } } ## subset newevents to timeRange if (trimmed) { eventTimes <- newevents[["time"]] if (is.null(eventTimes)) { stop("missing event \"time\" column in 'newevents'") } .N <- nrow(newevents) newevents <- subset(newevents, time + eps.t > t0 & time <= T) if (nrow(newevents) < .N) { message("subsetted 'newevents' to only include events infectious ", "during 'object$timeRange'") } } ## calculate gammapred for newevents epidemic <- terms(form$epidemic, data = newevents, keep.order = TRUE) mfe <- model.frame(epidemic, data = newevents, na.action = na.pass, drop.unused.levels = FALSE, xlev = object$xlevels$epidemic) # sync factor levels mme <- model.matrix(epidemic, mfe) gamma <- coefs[sum(npars[1:2]) + seq_len(npars["q"])] if (ncol(mme) != length(gamma)) { stop("epidemic model matrix has the wrong number of columns ", "(check the variable types in 'newevents' (factors, etc))") } gammapred <- drop(mme %*% gamma) # identity link if (.epilink(object) == "log") gammapred <- exp(gammapred) names(gammapred) <- rownames(newevents) ## now, convert types of newevents to integer codes eventTypes <- as.integer(newevents$type) } ## qSum qSumTypes <- rowSums(object$qmatrix) qSum <- unname(qSumTypes[eventTypes]) ## calculate remaining factors of the R0 formula, i.e. siafInt and tiafInt if (trimmed) { # trimmed R0 for newevents ## integral of g over the observed infectious periods .tiafInt <- .tiafIntFUN() gIntUpper <- pmin(T - eventTimes, eps.t) gIntLower <- pmax(0, t0 - eventTimes) tiafInt <- .tiafInt(tiafpars, from=gIntLower, to=gIntUpper, type=eventTypes, G=tiaf$G) ## integral of f over the influenceRegion bdist <- newevents[[".bdist"]] influenceRegion <- newevents[[".influenceRegion"]] if (is.null(influenceRegion)) { stop("missing \".influenceRegion\" component in 'newevents'") } noCircularIR <- if (is.null(bdist)) FALSE else all(eps.s > bdist) if (attr(siaf, "constant")) { iRareas <- sapply(influenceRegion, area.owin) ## will be used by .siafInt() } else if (! (is.null(siaf$Fcircle) || (is.null(siaf$effRange) && noCircularIR))) { if (is.null(bdist)) { stop("missing \".bdist\" component in 'newevents'") } } .siafInt <- .siafIntFUN(siaf, noCircularIR=noCircularIR) .siafInt.args <- c(alist(siafpars), object$control.siaf$F) siafInt <- do.call(".siafInt", .siafInt.args) } else { # untrimmed R0 for original events or newevents ## integrals of interaction functions for all combinations of type and ## eps.s/eps.t in newevents typeTcombis <- expand.grid(type=types, eps.t=unique(eps.t), KEEP.OUT.ATTRS=FALSE) typeTcombis$gInt <- with(typeTcombis, tiaf$G(eps.t, tiafpars, type)) - tiaf$G(rep.int(0,nTypes), tiafpars, types)[typeTcombis$type] Fcircle <- getFcircle(siaf, object$control.siaf$F) typeScombis <- expand.grid(type=types, eps.s=unique(eps.s), KEEP.OUT.ATTRS=FALSE) typeScombis$fInt <- apply(typeScombis, MARGIN=1, FUN=function (type_eps.s) { type <- type_eps.s[1L] eps.s <- type_eps.s[2L] Fcircle(eps.s, siafpars, type) }) ## match combinations to rows of original events or 'newevents' eventscombiidxS <- match(paste(eventTypes,eps.s,sep="."), with(typeScombis,paste(type,eps.s,sep="."))) eventscombiidxT <- match(paste(eventTypes,eps.t,sep="."), with(typeTcombis,paste(type,eps.t,sep="."))) siafInt <- typeScombis$fInt[eventscombiidxS] tiafInt <- typeTcombis$gInt[eventscombiidxT] if (any(is.infinite(eps.t) & !is.finite(tiafInt), is.infinite(eps.s) & !is.finite(siafInt))) { message("infinite interaction ranges yield non-finite R0 values ", "because 'trimmed = FALSE'") } } ## return R0 values R0s <- qSum * gammapred * siafInt * tiafInt R0s } ## calculate simple R0 (over circular domain, without epidemic covariates, ## for type-invariant siaf/tiaf) simpleR0 <- function (object, eta = coef(object)[["e.(Intercept)"]], eps.s = NULL, eps.t = NULL, newcoef = NULL) { stopifnot(inherits(object, c("twinstim", "simEpidataCS"))) if (object$npars[["q"]] == 0L) return(0) if (any(rowSums(object$qmatrix) != 1)) warning("'simpleR0' is not correct for type-specific epidemic models") if (!is.null(newcoef)) { # use alternative coefficients object$coefficients <- newcoef } coeflist <- coeflist(object) siaf <- object$formula$siaf tiaf <- object$formula$tiaf ## default radii of interaction if (is.null(eps.s)) { eps.s <- attr(siaf, "eps") if (length(eps.s) > 1L) stop("found non-unique 'eps.s'; please set one") } else stopifnot(isScalar(eps.s)) if (is.null(eps.t)) { eps.t <- attr(tiaf, "eps") if (length(eps.t) > 1L) stop("found non-unique 'eps.t'; please set one") } else stopifnot(isScalar(eps.t)) ## integral of siaf over a disc of radius eps.s Fcircle <- getFcircle(siaf, object$control.siaf$F) siafInt <- unname(Fcircle(eps.s, coeflist$siaf)) ## integral of tiaf over a period of length eps.t tiafInt <- unname(tiaf$G(eps.t, coeflist$tiaf) - tiaf$G(0, coeflist$tiaf)) ## calculate basic R0 (if (.epilink(object) == "log") exp(eta) else eta) * siafInt * tiafInt } ### Extract the "residual process" (cf. Ogata, 1988) of a twinstim, i.e. the ### fitted cumulative intensity of the ground process at the event times. ### "generalized residuals similar to those discussed in Cox and Snell (1968)" residuals.twinstim <- function (object, ...) { res <- object$tau if (is.null(res)) { if (is.null(modelenv <- environment(object))) { stop("residuals not available; re-fit the model with 'cumCIF = TRUE'") } else { message("'", substitute(object), "' was fit with disabled 'cumCIF'", " -> calculate it now ...") res <- with(modelenv, LambdagEvents(cumCIF.pb = interactive())) try({ objname <- deparse(substitute(object)) object$tau <- res assign(objname, object, envir = parent.frame()) message("Note: added the 'tau' component to object '", objname, "' for future use.") }, silent = TRUE) } } return(res) } ###################################################################### # Function to compute estimated and profile likelihood based # confidence intervals. Heavy computations might be necessary! # #Params: # fitted - output from a fit with twinstim # profile - list with 4D vector as entries - format: # c(index, lower, upper, grid size) # where index is the index in the coef vector # lower and upper are the parameter limits (can be NA) # grid size is the grid size of the equally spaced grid # between lower and upper (can be 0) # alpha - (1-alpha)% profile likelihood CIs are computed. # If alpha <= 0 then no CIs are computed # control - control object to use for optim in the profile loglik computations # # Returns: # list with profile loglikelihood evaluations on the grid # and highest likelihood and wald confidence intervals ###################################################################### profile.twinstim <- function (fitted, profile, alpha = 0.05, control = list(fnscale = -1, maxit = 100, trace = 1), do.ltildeprofile=FALSE, ...) { warning("the profile likelihood implementation is experimental") ## the implementation below is not well tested, simply uses optim (ignoring ## optimizer settings from the original fit), and does not store the complete ## set of coefficients ## Check that input is ok profile <- as.list(profile) if (length(profile) == 0L) { stop("nothing to do") } lapply(profile, function(one) { if (length(one) != 4L) { stop("each profile entry has to be of form ", "'c(index, lower, upper, grid size)'") }}) if (is.null(fitted[["functions"]])) { stop("'fitted' must contain the component 'functions' -- fit using the option model=TRUE") } ## Control of the optim procedure if (is.null(control[["fnscale",exact=TRUE]])) { control$fnscale <- -1 } if (is.null(control[["maxit",exact=TRUE]])) { control$maxit <- 100 } if (is.null(control[["trace",exact=TRUE]])) { control$trace <- 1 } ## Estimated normalized likelihood function ltildeestim <- function(thetai,i) { theta <- theta.ml theta[i] <- thetai fitted$functions$ll(theta) - loglik.theta.ml } ## Profile normalized likelihood function ltildeprofile <- function(thetai,i) { #cat("Investigating theta[",i,"] = ",thetai,"\n") emptyTheta <- rep(0, length(theta.ml)) # Likelihood l(theta_{-i}) = l(theta_i, theta_i) ltildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai #cat("Investigating theta = ",theta,"\n") res <- fitted$functions$ll(theta) - loglik.theta.ml #cat("Current ltildethetaminusi value: ",res,"\n") return(res) } # Score function of all params except thetaminusi stildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai res <- fitted$functions$sc(theta)[-i] #cat("Current stildethetaminusi value: ",res,"\n") return(res) } # Call optim -- currently not adapted to arguments of control arguments # used in the fit resOthers <- tryCatch( optim(par=theta.ml[-i], fn = ltildethetaminusi, gr = stildethetaminusi, method = "BFGS", control = control), error = function(e) list(value=NA)) resOthers$value } ## Initialize theta.ml <- coef(fitted) loglik.theta.ml <- c(logLik(fitted)) se <- sqrt(diag(vcov(fitted))) resProfile <- list() ## Perform profile computations for all requested parameters cat("Evaluating the profile logliks on a grid...\n") for (i in 1:length(profile)) { cat("i= ",i,"/",length(profile),"\n") #Index of the parameter in the theta vector idx <- profile[[i]][1] #If no borders are given use those from wald intervals (unconstrained) if (is.na(profile[[i]][2])) profile[[i]][2] <- theta.ml[idx] - 3*se[idx] if (is.na(profile[[i]][3])) profile[[i]][3] <- theta.ml[idx] + 3*se[idx] #Evaluate profile loglik on a grid (if requested) if (profile[[i]][4] > 0) { thetai.grid <- seq(profile[[i]][2],profile[[i]][3],length.out=profile[[i]][4]) resProfile[[i]] <- matrix(NA, nrow = length(thetai.grid), ncol = 4L, dimnames = list(NULL, c("grid","profile","estimated","wald"))) #Loop over all gridpoints for (j in 1:length(thetai.grid)) { cat("\tj= ",j,"/",length(thetai.grid),"\n") resProfile[[i]][j,] <- c(thetai.grid[j], #Do we need to compute ltildeprofile (can be quite time consuming) if (do.ltildeprofile) ltildeprofile(thetai.grid[j],idx) else NA_real_, ltildeestim(thetai.grid[j],idx), - 1/2*(1/se[idx]^2)*(thetai.grid[j] - theta.ml[idx])^2) } } } names(resProfile) <- names(theta.ml)[sapply(profile, function(x) x[1L])] ############################### ## Profile likelihood intervals ############################### # Not done, yet ciProfile <- NULL ####Done, return return(list(lp=resProfile, ci.hl=ciProfile, profileObj=profile)) } ### update-method for the twinstim-class ## stats::update.default would also work but is not adapted to the specific ## structure of twinstim: optim.args (use modifyList), two formulae, model, ... update.twinstim <- function (object, endemic, epidemic, control.siaf, optim.args, model, ..., use.estimates = TRUE, evaluate = TRUE) { call <- object$call thiscall <- match.call(expand.dots=FALSE) extras <- thiscall$... if (!missing(model)) { call$model <- model ## Special case: update model component ONLY if (evaluate && all(names(thiscall)[-1] %in% c("object", "model", "evaluate"))) { return(.update.twinstim.model(object, model)) } } ## Why we no longer use call$endemic but update object$formula$endemic: ## call$endemic would be an unevaluated expression eventually receiving the ## parent.frame() as environment, cp.: ##(function(e) {ecall <- match.call()$e; eval(call("environment", ecall))})(~1+start) ## This could cause large files if the fitted model is saved. ## Furthermore, call$endemic could refer to some object containing ## the formula, which is no longer visible. call$endemic <- if (missing(endemic)) object$formula$endemic else update.formula(object$formula$endemic, endemic) call$epidemic <- if (missing(epidemic)) object$formula$epidemic else update.formula(object$formula$epidemic, epidemic) ## Note: update.formula uses terms.formula(...,simplify=TRUE), but ## the principle order of terms is retained. Offsets will be moved to ## the end and a missing intercept will be denoted by a final -1. if (!missing(control.siaf)) { if (is.null(control.siaf)) { call$control.siaf <- NULL # remove from call, i.e., use defaults } else { call$control.siaf <- object$control.siaf # =NULL if constantsiaf call$control.siaf[names(control.siaf)] <- control.siaf } } call["optim.args"] <- if (missing(optim.args)) object["optim.args"] else { list( # use list() to enable optim.args=NULL if (is.list(optim.args)) { modifyList(object$optim.args, optim.args) } else optim.args # = NULL ) } ## Set initial values (will be appropriately subsetted and/or extended with ## zeroes inside twinstim()) call$start <- if (missing(optim.args) || (!is.null(optim.args) && !"par" %in% names(optim.args))) { ## old optim.args$par probably doesn't match updated model, ## thus we set it as "start"-argument call$optim.args$par <- NULL if (use.estimates) coef(object) else object$optim.args$par } else NULL if ("start" %in% names(extras)) { newstart <- check_twinstim_start(eval.parent(extras$start)) call$start[names(newstart)] <- newstart extras$start <- NULL } ## Handle remaining 'extras' as in stats::update.default ## Copyright (C) 1995-2020 The R Core Team if(length(extras)) { existing <- !is.na(match(names(extras), names(call))) ## do these individually to allow NULL to remove entries. for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if(any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if(evaluate) eval(call, parent.frame()) else call } .update.twinstim.model <- function (object, model) { call <- object$call call$model <- model if (model) { # add model environment call$start <- coef(object) call$optim.args$fixed <- TRUE call$cumCIF <- FALSE call$verbose <- FALSE ## evaluate in the environment calling update.twinstim() message("Setting up the model environment ...") objectWithModel <- eval(call, parent.frame(2L)) ## add the model "functions" and environment object$functions <- objectWithModel$functions environment(object) <- environment(objectWithModel) } else { # remove model environment object["functions"] <- list(NULL) environment(object) <- NULL } object$call$model <- model object } ## a terms-method is required for stepComponent() terms.twinstim <- function (x, component=c("endemic", "epidemic"), ...) { component <- match.arg(component) terms.formula(x$formula[[component]], keep.order=TRUE) } ## compare two twinstim fits ignoring at least the "runtime" and the "call" ## just like all.equal.hhh4() all.equal.twinstim <- function (target, current, ..., ignore = NULL) { if (!inherits(target, "twinstim")) return("'target' is not a \"twinstim\" object") if (!inherits(current, "twinstim")) return("'current' is not a \"twinstim\" object") ignore <- unique.default(c(ignore, "runtime", "call")) target[ignore] <- current[ignore] <- list(NULL) ## also ignore siaf.step() cache ("cachem" is time-dependent) drop_cache <- function (siaf) { isStepFun <- !is.null(knots <- attr(siaf, "knots")) && !is.null(maxRange <- attr(siaf, "maxRange")) if (isStepFun) { structure(list(), knots = knots, maxRange = maxRange) } else siaf } target$formula$siaf <- drop_cache(target$formula$siaf) current$formula$siaf <- drop_cache(current$formula$siaf) NextMethod("all.equal") } surveillance/R/hhh4_W_powerlaw.R0000644000176200001440000001272714426171115016346 0ustar liggesusers################################################################################ ### Parametric power-law specification for neighbourhood weights in hhh4() ### ### Copyright (C) 2012-2016,2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Construct weight matrix wji according to the Zeta-distribution with respect ### to the orders of neighbourhood (in nbmat, as e.g. obtained from nbOrder()), ### optionally fulfilling rowSums(wji) = 1 ## As a formula (for j != i, otherwise wji = 0): ## wji = pzeta(oji; d, maxlag) / sum_k pzeta(ojk; d, maxlag) ## Here, oji = oij is the order of nb of i and j, ## and pzeta(o; d, m) = o^-d / sum_{r=1}^m r^-d is the Zeta-distribution ## on 1:m (also called Zipf's law). ## Special cases: maxlag >= max(nbmat) yields the weights ## wji = oji^-d / sum_k ojk^-d ## and maxlag=1 yields the classical weights wji=1/nj. zetaweights <- function (nbmat, d = 1, maxlag = max(nbmat), normalize = FALSE) { ## raw (non-normalized) zeta-distribution on 1:maxlag zeta <- c(0, seq_len(maxlag)^-d) # first 0 is for lag 0 (i.e., diag(nbmat)) ## replace order by zetaweight of that order wji <- zeta[nbmat + 1L] # results in vector wji[is.na(wji)] <- 0 # for lags > maxlag ## set dim and names dim(wji) <- dim(nbmat) dimnames(wji) <- dimnames(nbmat) if (normalize) normalizeW(wji) else wji } ### powerlaw weights ## in the non-truncated case, i.e. maxlag = max(nbmat), ## the raw powerlaw weights are defined as w_ji = o_ji^-d, o_ji >= 1 ## and with (row-)normalization we have w_ji = o_ji^-d / sum_k o_jk^-d ## from0 = TRUE results in a power-law for o_ji >= 0: w(o) = (o + 1)^-d W_powerlaw <- function (maxlag, normalize = TRUE, log = FALSE, initial = if (log) 0 else 1, from0 = FALSE) { if (missing(maxlag)) { stop("'maxlag' must be specified (e.g. maximum neighbourhood order)") ## specifying 'maxlag' in zetaweights is actually optional since it has ## the default value max(nbmat). however, repeatedly asking for this ## maximum would be really inefficient. } else { stopifnot(isScalar(maxlag), maxlag >= 2 - from0) if (from0) maxlag <- maxlag + 1L } stopifnot(isScalar(initial)) ## main function which returns the weight matrix weights.call <- call("zetaweights", if (from0) quote(nbmat + 1L) else quote(nbmat), quote(d), maxlag, normalize) weights <- as.function(c(alist(d=, nbmat=, ...=), call("{", weights.call)), envir=getNamespace("surveillance")) if (log) { # the parameter d is interpreted on log-scale ## we prepend the necessary conversion d <- exp(d) body(weights) <- as.call(append(as.list(body(weights)), quote(d <- exp(d)), after=1)) } ## construct derivatives with respect to "d" (or log(d), respectively) dweights <- d2weights <- as.function(c(alist(d=, nbmat=, ...=), quote({})), envir=getNamespace("surveillance")) weights.call[[5L]] <- FALSE # normalize separately header <- c( if (log) quote(d <- exp(d)), # such that d is again on original scale substitute(Wraw <- weights.call, list(weights.call=weights.call)), if (normalize) expression( nUnits <- nrow(Wraw), norm <- .rowSums(Wraw, nUnits, nUnits) ), expression( # Wraw == 0 means o = 0 (diagonal) or o > maxlag => deriv = 0 is.na(Wraw) <- Wraw == 0, # set to NA since we will take the log logo <- -log(Wraw)/d # = log(nbmat) with NA's at Wraw == 0 ), if (normalize) quote(W <- Wraw / norm) else quote(W <- Wraw) ) footer <- expression(deriv[is.na(deriv)] <- 0, deriv) ## first derivative tmp1 <- expression( ## in surveillance < 1.9-0, 'norm' and 'tmpnorm' were based on 'nbmat', ## which is incorrect for the truncated case maxlag < max(nbmat) tmpnorm <- .rowSums(Wraw * -logo, nUnits, nUnits, na.rm=TRUE) / norm, tmp1 <- logo + tmpnorm ) deriv1 <- if (normalize) { expression(deriv <- W * -tmp1) } else expression(deriv <- W * -logo) body(dweights) <- as.call(c(as.name("{"), header, if (normalize) tmp1, deriv1, if (log) expression(deriv <- deriv * d), # this is the non-log d footer )) ## second derivative body(d2weights) <- as.call(c(as.name("{"), header, if (normalize) { c(tmp1, expression( tmp2 <- .rowSums(Wraw * logo^2, nUnits, nUnits, na.rm=TRUE) / norm - tmpnorm^2, deriv <- W * (tmp1^2 - tmp2) )) } else expression(deriv <- W * logo^2), if (log) c( do.call("substitute", list(deriv1[[1L]], list(deriv=as.name("deriv1")))), expression(deriv <- deriv * d^2 + deriv1 * d) # this is the non-log d ), footer )) ## return list of functions list(w=weights, dw=dweights, d2w=d2weights, initial=initial) } surveillance/R/AllClass.R0000644000176200001440000001135514657431510015003 0ustar liggesusers# ------------- class sts ---------------------------------------- .sts <- setClass( "sts", slots = c( epoch = "numeric", # this slot was called "week" in surveillance < 1.3 freq = "numeric", start = "numeric", observed = "matrix", state = "matrix", alarm = "matrix", upperbound = "matrix", neighbourhood = "matrix", populationFrac = "matrix", map = "SpatialPolygons", control = "list", ## New slots added in version 1.1-2 to handle proportion time series: epochAsDate = "logical", multinomialTS = "logical" ), prototype = list( start = c(2000, 1), freq = 52, # historical defaults epochAsDate = FALSE, multinomialTS = FALSE ), validity = function (object) { dimObserved <- dim(object@observed) namesObserved <- colnames(object@observed) errors <- c( if (!isScalar(object@freq) || object@freq <= 0) "'freq' must be a single positive number", if (length(object@start) != 2) "'start' must be of length two: (year, week/month/idx)", if (!is.numeric(object@observed)) "'observed' must be a numeric matrix", ## check consistency of slot dimensions wrt dim(observed): if (length(object@epoch) != dimObserved[1L]) "'epoch' must be of length 'nrow(observed)'", if (!identical(dim(object@state), dimObserved)) "'state' must have the same dimensions as 'observed'", if (!identical(dim(object@alarm), dimObserved)) "'alarm' must have the same dimensions as 'observed'", if (!identical(dim(object@upperbound), dimObserved)) "'upperbound' must have the same dimensions as 'observed'", if (!identical(dim(object@neighbourhood), dimObserved[c(2L,2L)])) "'neighbourhood' must be a square matrix of size 'ncol(observed)'", if (!identical(dim(object@populationFrac), dimObserved)) "'populationFrac' must have the same dimensions as 'observed'", ## disallow NULL colnames in *multivariate* "sts" objects if (dimObserved[2L] > 1 && is.null(namesObserved)) "units must be named (set 'colnames(observed)')", ## FIXME: should we generally disallow NULL colnames? ## NOTE: aggregate(by="unit") previously (<= 1.15.0) had no colnames ## if a map is provided, it must cover all colnames(observed): if (length(object@map) > 0 && # i.e., not the empty prototype !all(namesObserved %in% row.names(object@map))) paste("'map' is incomplete.", " Ensure that 'all(colnames(observed) %in% row.names(map))'.", sep = "\n"), ## check booleans if (length(object@epochAsDate) != 1 || is.na(object@epochAsDate)) "'epochAsDate' must be either TRUE or FALSE", ## FIXME: we should enforce epoch[1L] to correspond to start ## if (!object@epochAsDate && object@epoch[1L] != 1) ## "'epoch' must be an integer sequence starting at 1", if (length(object@multinomialTS) != 1 || is.na(object@multinomialTS)) "'multinomialTS' must be either TRUE or FALSE" ) ## detect mismatch in column names between different slots if (dimObserved[2L] > 1 && !is.null(namesObserved)) { slots_dn <- c("state", "alarm", "upperbound", "populationFrac", "neighbourhood") errors_dn <- lapply(slots_dn, function (name) { cn <- colnames(slot(object, name)) if (!is.null(cn) && !identical(cn, namesObserved)) paste0("'colnames(", name, ")' differ from 'colnames(observed)'") }) errors <- c(errors, unlist(errors_dn)) } if (length(errors) > 0) errors else TRUE } ) ###################################################################### # Definition of the stsBP class for backprojections. ###################################################################### setClass("stsBP", slots = list( ci = "array", lambda = "array" ), contains = "sts") ###################################################################### # Definition of the stsNC class for nowcasts. ###################################################################### setClass("stsNC", slots = list( reportingTriangle = "matrix", predPMF = "list", pi = "array", truth = "sts", delayCDF = "list", SR = "array" ), contains = "sts") surveillance/R/twinstim_siaf_powerlaw.R0000644000176200001440000001312614426171115020077 0ustar liggesusers################################################################################ ### Power-law kernel f(s) = (||s||+sigma)^-d ### This is the pure kernel of the Lomax density (the density requires d>1, but ### for the siaf specification we only want d to be positive) ### ### Copyright (C) 2013-2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ siaf.powerlaw <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## helper expression, note: logpars=c(logscale=logsigma, logd=logd) tmp <- expression( logsigma <- logpars[[1L]], # used "[[" to drop names logd <- logpars[[2L]], sigma <- exp(logsigma), d <- exp(logd) ) ## spatial kernel f <- function (s, logpars, types = NULL) {} body(f) <- as.call(c(as.name("{"), tmp, expression(sLength <- sqrt(.rowSums(s^2, nrow(s), 2L))), expression((sLength+sigma)^-d) )) environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.powerlaw", engine = engine) ## fast integration of f over a circular domain Fcircle <- function (r, logpars, type = NULL) {} body(Fcircle) <- as.call(c(as.name("{"), tmp, expression( fofr <- (r+sigma)^-d, fof0 <- sigma^-d, ## calculate cylinder volume up to height f(r) basevolume <- if (is.infinite(r)) 0 else pi * r^2 * fofr, ## r=Inf is used in R0(,trimmed=F), Fcircle(Inf) is finite if d>2 Ifinvsq <- function (z) { if (d == 1) { -1/z - 2*sigma*log(z) + sigma^2*z } else if (d == 2) { log(z) - 4*sigma*sqrt(z) + sigma^2*z } else { z^(1-2/d) * d / (d-2) - z^(1-1/d) * 2*sigma*d/(d-1) + sigma^2*z } }, intfinvsq <- Ifinvsq(fof0) - Ifinvsq(fofr), basevolume + pi * intfinvsq ) )) environment(Fcircle) <- baseenv() ## derivative of f wrt logpars deriv <- function (s, logpars, types = NULL) {} body(deriv) <- as.call(c(as.name("{"), tmp, expression( sLength <- sqrt(.rowSums(s^2, nrow(s), 2L)), rsigma <- sLength + sigma, rsigmad <- rsigma^d, derivlogsigma <- -d*sigma / rsigmad / rsigma, derivlogd <- -d*log(rsigma) / rsigmad, cbind(derivlogsigma, derivlogd) ) )) environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso( intrfr_names = c("intrfr.powerlaw.dlogsigma", "intrfr.powerlaw.dlogd"), engine = engine) ## Simulation function (via polar coordinates) simulate <- siaf.simulatePC(intrfr.powerlaw) ## if (!is.finite(ub)) normconst <- { ## ## for sampling on [0;Inf] the density is only proper if d > 2 ## if (d <= 2) stop("improper density for d<=2, 'ub' must be finite") ## 1/(sigma^(d-2) * (d-2)*(d-1)) # = intrfr.powerlaw(Inf) ## } environment(simulate) <- getNamespace("surveillance") ## return the kernel specification list(f=f, F=F, Fcircle=Fcircle, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=2L, validpars=validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.powerlaw <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { R - sigma * log(R/sigma + 1) } else if (d == 2) { log(R/sigma + 1) - R/(R+sigma) } else { (R*(R+sigma)^(1-d) - ((R+sigma)^(2-d) - sigma^(2-d))/(2-d)) / (1-d) } } ## local({ # validation via numerical integration -> tests/testthat/test-siafs.R ## p <- function (r, sigma, d) r * (r+sigma)^-d ## Pnum <- function (r, sigma, d) sapply(r, function (.r) { ## integrate(p, 0, .r, sigma=sigma, d=d)$value ## }) ## r <- c(1,2,5,10,20,50,100) ## dev.null <- sapply(c(1,2,1.6), function(d) stopifnot(isTRUE( ## all.equal(intrfr.powerlaw(r, log(c(3, d))), Pnum(r, 3, d))))) ## }) ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) intrfr.powerlaw.dlogsigma <- function (R, logpars, types = NULL) { pars <- exp(logpars) -prod(pars) * intrfr.powerlaw(R, log(pars+c(0,1)), types) } ## integrate x * (df(x)/dlogd) from 0 to R (vectorized) ## (thanks to Maple 17) -> validated in tests/testthat/test-siafs.R intrfr.powerlaw.dlogd <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { sigma * logpars[[1L]] * (1-logpars[[1L]]/2) - log(R+sigma) * (R+sigma) + sigma/2 * log(R+sigma)^2 + R } else if (d == 2) { (-log(R+sigma) * ((R+sigma)*log(R+sigma) + 2*sigma) + (R+sigma)*logpars[[1L]]*(logpars[[1L]]+2) + 2*R) / (R+sigma) } else { (sigma^(2-d) * (logpars[[1L]]*(-d^2 + 3*d - 2) - 2*d + 3) + (R+sigma)^(1-d) * (log(R+sigma)*(d-1)*(d-2) * (R*(d-1) + sigma) + R*(d^2+1) + 2*d*(sigma-R) - 3*sigma) ) * d / (d-1)^2 / (d-2)^2 } } surveillance/R/twinstim_tiaf.R0000644000176200001440000000336414615162374016172 0ustar liggesusers################################################################################ ### Temporal interaction functions for twinstim's epidemic component. ### Specific implementations are in separate files (e.g.: exponential, step). ### ### Copyright (C) 2009-2014 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ##################### ### "Constructor" ### ##################### tiaf <- function (g, G, deriv, Deriv, npars, validpars = NULL) { npars <- as.integer(npars) if (length(npars) != 1 || npars < 0L) { stop("'tiaf'/'npars' must be a single nonnegative number") } haspars <- npars > 0L g <- .checknargs3(g, "tiaf$g") G <- .checknargs3(G, "tiaf$G") if (!haspars || missing(deriv)) deriv <- NULL if (!haspars || missing(Deriv)) Deriv <- NULL if (!is.null(deriv)) deriv <- .checknargs3(deriv, "tiaf$deriv") if (!is.null(Deriv)) Deriv <- .checknargs3(Deriv, "tiaf$Deriv") validpars <- if (!haspars || is.null(validpars)) NULL else match.fun(validpars) list(g = g, G = G, deriv = deriv, Deriv = Deriv, npars = npars, validpars = validpars) } ################################# ### Constant temporal interaction ################################# tiaf.constant <- function () { res <- list( g = as.function(alist(t=, pars=, types=, rep.int(1, length(t))), envir = .GlobalEnv), G = as.function(alist(t=, pars=, types=, t), envir = .GlobalEnv), npars = 0L ) attr(res, "constant") <- TRUE res } surveillance/R/twinstim_siaf_step.R0000644000176200001440000001167014615162374017223 0ustar liggesusers################################################################################ ### twinstim's spatial interaction function as a step function ### ### Copyright (C) 2014,2018,2022 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ siaf.step <- function (knots, maxRange = Inf, nTypes = 1, validpars = NULL) { knots <- sort(unique(as.vector(knots,mode="numeric"))) stopifnot(knots > 0, is.finite(knots), isScalar(maxRange), maxRange > knots) nknots <- length(knots) # = number of parameters (per type) allknots <- c(0, knots, unique(c(maxRange,Inf))) allknotsPos <- c(0,knots,maxRange) # pos. domain, =allknots if maxRange=Inf nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") npars <- nknots * nTypes ## ## auxiliary function to get the type-specific values (heights) from logvals ## logvals4type <- function (logvals, type) ## logvals[(type-1)*nknots + seq_len(nknots)] ## auxiliary function calculating the areas of the "rings" of the ## two-dimensional step function intersected with a polydomain. ## Returns a numeric vector of length ## length(allknotsPos)-1 == nknots+1 (i.e. not appending the area of the ## 0-height ring from maxRange to Inf in case maxRange < Inf) .ringAreas <- function (polydomain, npoly = 256) { polyvertices <- vertices(polydomain) polyarea <- area.owin(polydomain) bdist <- bdist(cbind(0,0), polydomain) ## distance to farthest vertex (-> later steps not relevant) R <- sqrt(max(polyvertices[["x"]]^2 + polyvertices[["y"]]^2)) sliceAreas <- vapply(X = allknotsPos[-1L], FUN = function (r) { if (r <= bdist) pi * r^2 else if (r >= R) polyarea else area.owin(intersectPolyCircle.owin(polydomain,c(0,0),r,npoly=npoly)) }, FUN.VALUE = 0, USE.NAMES = FALSE) diff.default(c(0,sliceAreas)) } ## since this is the most cumbersome task, use memoization (result does not ## depend on the parameters being optimized, but on influenceRegions only) ringAreas <- if (requireNamespace("memoise")) { memoise::memoise(.ringAreas) } else { warning("siaf.step() is much slower without memoisation", immediate.=TRUE) .ringAreas } f <- function (s, logvals, types = NULL) { sLength <- sqrt(.rowSums(s^2, length(s)/2, 2L)) ## step function is right-continuous, intervals are [a,b) c(1, exp(logvals), 0)[.bincode(sLength, allknots, right=FALSE)] } F <- function (polydomain, f, logvals, type = NULL, npoly = 256) { ## sum of the volumes of the intersections of "rings" with 'polydomain' sum(c(1, exp(logvals)) * ringAreas(polydomain, npoly=npoly)) } Fcircle <- function (r, logvals, type = NULL) { # exact integration on disc ## this is just the sum of the "ring" volumes sum(c(1, exp(logvals)) * pi * diff(pmin.int(allknotsPos, r)^2)) } deriv <- function (s, logvals, types = NULL) { sLength <- sqrt(.rowSums(s^2, L <- length(s)/2, 2L)) whichvals <- .bincode(sLength, allknots, right=FALSE) - 1L ## NOTE: sLength >= maxRange => whichvals > nknots (=> f=0) ## we do a bare-bone implementation of relevant parts of ## deriv <- outer(whichvals, seq_len(nknots), "==") Y <- rep.int(seq_len(nknots), rep.int(L,nknots)) # column index Z <- rep.int(exp(logvals), rep.int(L,nknots)) # value ##<- 6x faster than rep(..., each=L) #X <- rep.int(whichvals, nknots) deriv <- (Y == whichvals) * Z dim(deriv) <- c(L, nknots) deriv } Deriv <- function (polydomain, deriv, logvals, type = NULL, npoly = 256) { ringAreas <- ringAreas(polydomain, npoly=npoly) exp(logvals) * ringAreas[-1L] } simulate <- function (n, logvals, type = NULL, ub) { upper <- min(maxRange, ub) knots2upper <- c(knots[knots < upper], upper) heights <- c(1,exp(logvals))[seq_along(knots2upper)] ## first, sample the "rings" of the points rings <- sample.int(length(heights), size=n, replace=TRUE, prob=heights*diff.default(c(0,knots2upper^2))) ## sample points from these rings runifdisc(n, knots2upper[rings], c(0,knots2upper)[rings]) } ## Done structure(list(f = f, F = F, Fcircle = Fcircle, deriv = deriv, Deriv = Deriv, simulate = simulate, npars = npars, validpars = validpars), "knots" = knots, "maxRange" = maxRange) } surveillance/R/options.R0000644000176200001440000001046214662137762015006 0ustar liggesusers################################################################################ ### Set up .Options for "surveillance". ### Inspired by the options management in the R package "spatstat" (1.29-0) ### by Adrian Baddeley and Rolf Turner (2012). ### ### Copyright (C) 2012,2023 Sebastian Meyer, 2014 Michael Hoehle ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ .Options <- new.env() ## the "gpclib" option is obsolete and no longer documented .Options$gpclib <- list( default = FALSE, # no gpclib due to license restrictions check = function(x) { if (!is.logical(x) || length(x) != 1L) return(FALSE) if (x) { .Deprecated(msg = paste("Option", dQuote("gpclib"), "is obsolete.")) if (!requireNamespace("gpclib")) { warning("cannot use ", sQuote("gpclib"), call. = FALSE) return(FALSE) } } TRUE }, valid = "a single logical value" ) ## mainly a maintainer-level switch driven by _R_SURVEILLANCE_ALL_EXAMPLES_ .Options$allExamples <- list( default = TRUE, # maybe disabled by .onAttach() check = function(x) is.logical(x) && length(x) == 1L, valid = "a single logical value" ) #Tick sizes of sts xaxis relative to par()$tcl .Options$stsTickFactors <- list( default = c("%d"=0.33,"%W"=0.33,"%V"=0.33,"%m"=1,"%Q"=1.25,"%Y"=1.5,"%G"=1.5), check = function(x) is.vector(x, mode="numeric") && !is.null(names(x)), valid = "a named vector of relative tick sizes" ) #Colors for the prediction intervals in nowcast plots .Options$colors <- list( default = c(nowSymbol="springgreen4",piBars="orange"), check = function(x) is.character(x), valid = "a vector of color names" ) ## Function to activate the defaults reset.surveillance.options <- function () { opts <- sapply(ls(.Options, all.names=TRUE), function (option) { .Options[[option]]$value <- .Options[[option]]$default }, simplify=FALSE, USE.NAMES=TRUE) invisible(opts) } ## Internal function to query options get.surveillance.options <- function (x, drop = TRUE) { opts <- lapply(.Options, "[[", "value") if (drop && !missing(x) && length(x) == 1L) opts[[x]] else opts[x] } ## Exported function to modify and query options surveillance.options <- function (...) { knownOptions <- ls(.Options, all.names=TRUE) called <- list(...) if (length(called) == 0) return(get.surveillance.options()) if (is.null(names(called)) && length(called)==1) { x <- called[[1]] if (is.null(x)) return(get.surveillance.options()) if (is.list(x)) called <- x } if (is.null(names(called))) # case: surveillance.options("par1","par2",...) { ischar <- unlist(lapply(called, is.character)) if(all(ischar)) { choices <- unlist(called) ok <- choices %in% knownOptions if(!all(ok)) stop("unrecognised option(s): ", called[!ok]) return(get.surveillance.options(choices)) } else { wrong <- called[!ischar] offending <- unlist(lapply(wrong, deparse, nlines=1, control="delayPromises")) offending <- paste(offending, collapse=",") stop("unrecognised mode of argument(s) [", offending, "]:", "\n should be character string or name=value pair") } } else { # case: surveillance.options(name=value, name2=value2, ...) assignto <- names(called) if (!all(nzchar(assignto))) stop("options must all be identified by name=value") recog <- assignto %in% knownOptions if(!all(recog)) stop("unrecognised option(s): ", assignto[!recog]) ## validate and assign new values oldopts <- get.surveillance.options(assignto, drop=FALSE) for(i in seq_along(assignto)) { nama <- assignto[i] valo <- called[[i]] entry <- .Options[[nama]] if (!entry$check(valo)) stop("option ", dQuote(nama), " should be ", entry$valid) .Options[[nama]]$value <- valo } ## done invisible(oldopts) } } surveillance/R/calibration.R0000644000176200001440000000473714426171115015576 0ustar liggesusers################################################################################ ### Calibration tests for count data based on proper scoring rules ### Reference: Wei and Held (2014), Test, 23, 787-805 ### ### Copyright (C) 2015,2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## perform a calibration test given observations x ## with Poisson (size = NULL) or NegBin predictions calibrationTest.default <- function (x, mu, size = NULL, which = c("dss", "logs", "rps"), tolerance = 1e-4, method = 2, ...) { stopifnot(x >= 0, mu > 0, is.null(size) || all(size > 0)) ## calculate scores which <- match.arg(which) score <- do.call(which, args = alist(x = x, mu = mu, size = size)) ## calculate z-statistic z <- calibrationZ(score, mu, size, which, tolerance, method) ## calculate two-sided p-value p <- 2 * pnorm(-abs(z)) ## construct an object of class "htest" res <- list( method = paste0("Calibration Test for Count Data (based on ", toupper(which), ")"), data.name = deparse(substitute(x)), statistic = c("z" = z), parameter = c("n" = length(x)), p.value = p ) class(res) <- "htest" res } ## compute the calibration z-statistic given the computed scores calibrationZ <- function (score, mu, size = NULL, which = c("dss", "logs", "rps"), tolerance = 1e-4, method = 2) { stopifnot(method %in% 1:2) ## expectation and variance of score for given predictive distribution EV <- score_EV(mu, size, tolerance, which) ## calculate the z-statistic z <- do.call(paste0("zScore", method), args = alist(score, EV[[1L]], EV[[2L]])) z } ## compute the calibration z-statistic and p-value ## from a set of scores and their null expectations and variances zScore1 <- function (score, E0, V0) { n <- length(score) ## emean <- mean(E0) ## varmean <- sum(V0) / n^2 ## (mean(score) - emean) / sqrt(varmean) sum(score - E0) / sqrt(sum(V0)) } ## alternative z-statistic Z* zScore2 <- function (score, E0, V0) { n <- length(score) sum((score - E0) / sqrt(V0)) / sqrt(n) } surveillance/R/sim_background.R0000644000176200001440000000414010662666102016265 0ustar liggesusers################################################### ### chunk number 1: ################################################### # 'sim.seasonalNoise' generates a cyclic model of a poisson distribution # as background data for a simulated timevector. # # Parameters: # A - amplitude (range of sinus), default = 1 # alpha - parameter to move along the y-axis # (negative values not allowed) # d.h alpha > = A, default = 1, # beta - regression coefficient, default = 0 # season - factor to create seasonal moves # (moves the curve along the x-axis), default = 0 # length - number of weeks to model # frequency - factor to determine the oscillation-frequency, default = 1 # state - if a state chain is given, it is weighted by the parameter K # and influences mu # K - weight for outbreaks sim.seasonalNoise <- function(A = 1, alpha = 1, beta = 0, phi = 0, length, frequency = 1, state = NULL, K = 0){ t <- 1:length # constant factor to transform weeks to the appropriate pi-value. omega <- 2 * pi/ 52 # season moves the sin along the x-axis. if(is.null(state)){ # no state chain mu <- exp(A * sin( frequency * omega * (t + phi)) + alpha + beta * t) } else{ # encounter the state chain mu <- exp(A * sin( frequency * omega * (t + phi)) + alpha + beta * t + K * state) } # create the noise as random numbers of the Poisson distribution # with parameter mu seasonalBackground <- rpois(length, mu) # get random numbers result <- list(seasonalBackground = seasonalBackground, t = t, mu = mu, A = A, alpha = alpha, beta = beta, phi = phi, length = length, frequency = frequency, K = K) class(result) = "seasonNoise" return(result) } surveillance/R/graphs.R0000644000176200001440000000514414426171115014564 0ustar liggesusers################################################################################ ### Functions concerning graphs: neighbourhood order, adjacency matrix ### ### Copyright (C) 2009-2013,2017,2023 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Determine the matrix of neighbourhood orders ### given the binary matrix of first-order neighbours. nbOrder <- function (neighbourhood, maxlag = Inf) { stopifnot(isScalar(maxlag), maxlag > 0) checkNeighbourhood(neighbourhood) neighbourhood <- neighbourhood == 1 # convert to binary matrix nregions <- nrow(neighbourhood) maxlag <- as.integer(min(maxlag, nregions-1)) # upper bound of nb order if (maxlag == 1L) { storage.mode(neighbourhood) <- "integer" return(neighbourhood) } ## list of indexes of first-order neighbours by region ##first <- apply(neighbourhood, 1L, which, simplify = FALSE) # R >= 4.1.0 first <- lapply(seq_len(nregions), function (i) which(neighbourhood[i,])) ## Side note: fast method to determine neighbours _up to_ specific order: ## crossprod(neighbourhood) > 0 # up to second order neighbours (+set diag to 0) ## (neighbourhood %*% neighbourhood %*% neighbourhood) > 0 # up to order 3 ## and so on... ## now find recursive neighbours for each region nbmat <- `diag<-`(neighbourhood, NA) # skip self in which() below for (i in seq_len(nregions)) { # slightly faster than [l]apply() variants nblags <- as.integer(nbmat[i,]) lag <- 1L while (lag < maxlag) { nbs <- which(nblags == lag) nbs2 <- unlist(first[nbs]) new <- intersect(nbs2, which(nblags == 0)) if (length(new)) { lag <- lag + 1L nblags[new] <- lag } else break } nbmat[i,] <- nblags } diag(nbmat) <- 0L ## Done nbmat } ### Derive adjacency structure from a SpatialPolygons object ### Working horse: spdep::poly2nb poly2adjmat <- function (SpP, ..., zero.policy = TRUE) { if (!requireNamespace("spdep")) stop("package ", sQuote("spdep"), " is required to derive adjacencies from SpatialPolygons") nb <- spdep::poly2nb(SpP, ...) adjmat <- spdep::nb2mat(nb, style="B", zero.policy=zero.policy) attr(adjmat, "call") <- NULL colnames(adjmat) <- rownames(adjmat) adjmat } surveillance/R/twinstim.R0000644000176200001440000016715114615162374015174 0ustar liggesusers################################################################################ ### Maximum Likelihood inference for the two-component spatio-temporal intensity ### model described in Meyer et al (2012), DOI: 10.1111/j.1541-0420.2011.01684.x ### ### Copyright (C) 2009-2019,2024 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## model.frame() evaluates 'subset' and '...' with 'data' utils::globalVariables(c("tile", "type", "BLOCK", ".obsInfLength", ".bdist", "area")) twinstim <- function ( endemic, epidemic, siaf, tiaf, qmatrix = data$qmatrix, data, subset, t0 = data$stgrid$start[1], T = tail(data$stgrid$stop,1), na.action = na.fail, start = NULL, partial = FALSE, epilink = "log", control.siaf = list(F=list(), Deriv=list()), optim.args = list(), finetune = FALSE, model = FALSE, cumCIF = FALSE, cumCIF.pb = interactive(), cores = 1, verbose = TRUE ) { #################### ### Preparations ### #################### ptm <- proc.time() cl <- match.call() partial <- as.logical(partial) finetune <- if (partial) FALSE else as.logical(finetune) ## (inverse) link function for the epidemic linear predictor of event marks epilink <- match.arg(epilink, choices = c("log", "identity")) epilinkinv <- switch(epilink, "log" = exp, "identity" = identity) ## Clean the model environment when exiting the function if (model) on.exit(suppressWarnings(rm(cl, cumCIF, cumCIF.pb, data, doHessian, eventsData, finetune, neghess, fisherinfo, fit, fixed, functions, globalEndemicIntercept, inmfe, initpars, ll, negll, loglik, msgConvergence, msgNotConverged, mfe, mfhEvents, mfhGrid, model, my.na.action, na.action, namesOptimUser, namesOptimArgs, nlminbControl, nlminbRes, nlmObjective, nlmControl, nlmRes, nmRes, optim.args, optimArgs, control.siaf, optimMethod, optimRes, optimRes1, optimValid, origenv.endemic, origenv.epidemic, partial, partialloglik, ptm, qmatrix, res, negsc, score, start, subset, tmpexpr, typeSpecificEndemicIntercept, useScore, verbose, whichfixed, inherits = FALSE))) ## also set fixed[st]iafpars to FALSE (for free posteriori evaluations, and ## to be defined for score function evaluation with optim.args=NULL) on.exit(fixedsiafpars <- fixedtiafpars <- FALSE, add = TRUE) ### Verify that 'data' inherits from "epidataCS" if (!inherits(data, "epidataCS")) { stop("'data' must inherit from class \"epidataCS\"") } ### Check time range if (!isScalar(t0) || !isScalar(T)) { stop("endpoints 't0' and 'T' must be single numbers") } if (T <= t0) { stop("'T' must be greater than 't0'") } if (!t0 %in% data$stgrid$start) { justBeforet0 <- match(TRUE, data$stgrid$start > t0) - 1L # if 't0' is beyond the time range covered by 'data$stgrid' if (is.na(justBeforet0)) justBeforet0 <- length(data$stgrid$start) # t0 was too big if (justBeforet0 == 0L) justBeforet0 <- 1L # t0 was too small t0 <- data$stgrid$start[justBeforet0] warning("replaced 't0' by the value ", t0, " (must be a 'start' time of 'data$stgrid')") } if (!T %in% data$stgrid$stop) { justAfterT <- match(TRUE, data$stgrid$stop > T) # if 'T' is beyond the time range covered by 'data$stgrid' if (is.na(justAfterT)) justAfterT <- length(data$stgrid$stop) # T was too big T <- data$stgrid$stop[justAfterT] warning("replaced 'T' by the value ", T, " (must be a 'stop' time of 'data$stgrid')") } ### Subset events eventsData <- if (missing(subset)) data$events@data else { do.call("subset.data.frame", args = list( x = quote(data$events@data), subset = cl$subset, drop = FALSE )) } ############################################################# ### Build up a model.frame for both components separately ### ############################################################# ########################## ### epidemic component ### ########################## ### Parse epidemic formula if (missing(epidemic)) { origenv.epidemic <- parent.frame() epidemic <- ~ 0 } else { origenv.epidemic <- environment(epidemic) environment(epidemic) <- environment() ## such that t0 and T are found in the subset expression below } epidemic <- terms(epidemic, data = eventsData, keep.order = TRUE) if (!is.null(attr(epidemic, "offset"))) { warning("offsets are not implemented for the 'epidemic' component") } ### Generate model frame # na.action mod such that for simulated epidataCS, where events of the # prehistory have missing 'BLOCK' indexes, those NA's do not matter. # ok because actually, 'eventBlocks' are only used in the partial likelihood # and there only eventBlocks[includes] is used (i.e. no prehistory events) my.na.action <- function (object, ...) { prehistevents <- row.names(object)[object[["(time)"]] <= t0] if (length(prehistevents) == 0L) return(na.action(object, ...)) origprehistblocks <- object[prehistevents, "(BLOCK)"] # all NA object[prehistevents, "(BLOCK)"] <- 0L # temporary set non-NA xx <- na.action(object, ...) xx[match(prehistevents,row.names(xx),nomatch=0L), "(BLOCK)"] <- origprehistblocks[prehistevents %in% row.names(xx)] xx } mfe <- model.frame(epidemic, data = eventsData, subset = time + eps.t > t0 & time <= T, # here we can have some additional rows (individuals) compared to mfhEvents, which is established below! # Namely those with time in (t0-eps.t; t0], i.e. still infective individuals, which are part of the prehistory of the process na.action = my.na.action, # since R 2.10.0 patched also works with epidemic = ~1 and na.action=na.fail (see PR#14066) drop.unused.levels = FALSE, time = time, tile = tile, type = type, eps.t = eps.t, eps.s = eps.s, BLOCK = BLOCK, obsInfLength = .obsInfLength, bdist = .bdist) ### Extract essential information from model frame # 'inmfe' indexes rows of data$events@data and is necessary for subsetting # influenceRegion (list incompatible with model.frame) and coordinates. # Note: model.frame() takes row.names from data inmfe <- which(row.names(data$events@data) %in% row.names(mfe)) N <- length(inmfe) # mfe also contains events of the prehistory eventTimes <- mfe[["(time)"]] # I don't use model.extract since it returns named vectors # Indicate events after t0, which are actually part of the process # (events in (-Inf;t0] only contribute in sum over infected individuals) includes <- which(eventTimes > t0) # this indexes mfe! Nin <- length(includes) if (Nin == 0L) { stop("none of the ", nrow(data$events@data), " supplied ", "events is in the model (check 'subset', 't0' and 'T')") } eventBlocks <- mfe[["(BLOCK)"]] # only necessary for partial log-likelihood eventTypes <- factor(mfe[["(type)"]]) # drop unused levels typeNames <- levels(eventTypes) nTypes <- length(typeNames) if (verbose && nTypes > 1L) cat("marked point pattern of", nTypes, "types\n") qmatrix <- checkQ(qmatrix, typeNames) # we only need the integer codes for the calculations eventTypes <- as.integer(eventTypes) # coords are needed for intensityplot(), so even for endemic-only models eventCoords <- coordinates(data$events)[inmfe,,drop=FALSE] ### Generate model matrix mme <- model.matrix(epidemic, mfe) xlevels_epidemic <- .getXlevels(epidemic, mfe) q <- ncol(mme) hase <- q > 0L ### Extract further model components (only if q > 0) if (hase) { eps.t <- mfe[["(eps.t)"]] removalTimes <- eventTimes + eps.t eps.s <- mfe[["(eps.s)"]] bdist <- mfe[["(bdist)"]] gIntUpper <- mfe[["(obsInfLength)"]] gIntLower <- pmax(0, t0-eventTimes) influenceRegion <- data$events@data$.influenceRegion[inmfe] iRareas <- vapply(X = influenceRegion, FUN = attr, which = "area", FUN.VALUE = 0, USE.NAMES = FALSE) eventSources <- if (N == nobs(data) && identical(qmatrix, data$qmatrix)) { data$events@data$.sources } else { # re-determine because subsetting has invalidated row indexes if (verbose) cat("updating list of potential sources ...\n") determineSources(eventTimes = eventTimes, eps.t = eps.t, eventCoords = eventCoords, eps.s = eps.s, eventTypes = eventTypes, qmatrix = qmatrix) } ## calculate sum_{k=1}^K q_{kappa_j,k} for all j = 1:N qSum <- unname(rowSums(qmatrix)[eventTypes]) # N-vector } else if (verbose) { message("no epidemic component in model") } ### Drop "terms" and restore original formula environment epidemic <- formula(epidemic) if (epilink != "log") # set as attribute only if non-standard link function attr(epidemic, "link") <- epilink environment(epidemic) <- origenv.epidemic ## We keep the original formula environment since it will be used to ## evaluate the modified twinstim-call in drop1/add1 (with default ## enclos=baseenv()), and cl$data should be visible from there. ## Alternatively, we could set it to parent.frame(). ######################### ### endemic component ### ######################### ### Parse endemic formula if (missing(endemic)) { origenv.endemic <- parent.frame() endemic <- ~ 0 } else { origenv.endemic <- environment(endemic) environment(endemic) <- environment() ## such that t0 and T are found in the subset expressions below } endemic <- terms(endemic, data = data$stgrid, keep.order = TRUE) ## check for type-specific endemic intercept and remove it from the formula ## (will be handled separately) typeSpecificEndemicIntercept <- "1 | type" %in% attr(endemic, "term.labels") if (typeSpecificEndemicIntercept) { endemic <- update.formula(endemic, ~ . - (1|type)) # this drops the terms attributes endemic <- terms(endemic, data = data$stgrid, keep.order = TRUE) } globalEndemicIntercept <- if (typeSpecificEndemicIntercept) { attr(endemic, "intercept") <- 1L # we need this to ensure that we have correct contrasts FALSE } else attr(endemic, "intercept") == 1L nbeta0 <- globalEndemicIntercept + typeSpecificEndemicIntercept * nTypes ### Generate endemic model frame and model matrix on event data mfhEvents <- model.frame(endemic, data = eventsData[row.names(mfe),], subset = time>t0 & time<=T, na.action = na.fail, # since R 2.10.0 patched also works with # endemic = ~1 (see PR#14066) drop.unused.levels = FALSE) mmhEvents <- model.matrix(endemic, mfhEvents) xlevels_endemic <- .getXlevels(endemic, mfhEvents) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhEvents <- mmhEvents[,-1,drop=FALSE] #stopifnot(nrow(mmhEvents) == Nin) p <- ncol(mmhEvents) hash <- (nbeta0+p) > 0L ### Generate model frame and model matrix on grid data (only if p > 0) if (hash) { offsetEvents <- model.offset(mfhEvents) mfhGrid <- model.frame(endemic, data = data$stgrid, subset = start >= t0 & stop <= T, na.action = na.fail, # since R 2.10.0 patched also works with # endemic = ~1 (see PR#14066) drop.unused.levels = FALSE, BLOCK=BLOCK, tile=tile, dt=stop-start, ds=area) # 'tile' is redundant here for fitting but useful # for debugging & necessary for intensityplots gridBlocks <- mfhGrid[["(BLOCK)"]] histIntervals <- data$stgrid[!duplicated.default( data$stgrid$BLOCK, nmax = data$stgrid$BLOCK[length(data$stgrid$BLOCK)] ), c("BLOCK", "start", "stop")] # sorted row.names(histIntervals) <- NULL histIntervals <- histIntervals[histIntervals$start >= t0 & histIntervals$stop <= T,] gridTiles <- mfhGrid[["(tile)"]] # only needed for intensityplot mmhGrid <- model.matrix(endemic, mfhGrid) nGrid <- nrow(mmhGrid) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhGrid <- mmhGrid[,-1,drop=FALSE] # Extract endemic model components offsetGrid <- model.offset(mfhGrid) dt <- mfhGrid[["(dt)"]] ds <- mfhGrid[["(ds)"]] ## expression to calculate the endemic part on the grid -> .hIntTW() if (p > 0L) { hGridExpr <- quote(drop(mmhGrid %*% beta)) if (!is.null(offsetGrid)) hGridExpr <- call("+", quote(offsetGrid), hGridExpr) } else { hGridExpr <- if (is.null(offsetGrid)) quote(numeric(nGrid)) else quote(offsetGrid) } hGridExpr <- call("exp", hGridExpr) ## expression to calculate the endemic part for the events -> .hEvents() hEventsExpr <- if (p > 0L) { quote(drop(mmhEvents %*% beta)) } else { quote(numeric(Nin)) } if (nbeta0 == 1L) { # global intercept hEventsExpr <- call("+", quote(beta0), hEventsExpr) } else if (nbeta0 > 1L) { # type-specific intercept hEventsExpr <- call("+", quote(beta0[eventTypes[includes]]), hEventsExpr) } if (!is.null(offsetEvents)) hEventsExpr <- call("+", quote(offsetEvents), hEventsExpr) hEventsExpr <- call("exp", hEventsExpr) } else if (verbose) message("no endemic component in model") ### Drop "terms" and restore original formula environment endemic <- if (typeSpecificEndemicIntercept) { ## re-add it to the endemic formula update.formula(formula(endemic), ~ (1|type) + .) } else formula(endemic) environment(endemic) <- origenv.endemic ## We keep the original formula environment since it will be used to ## evaluate the modified twinstim-call in drop1/add1 (with default ## enclos=baseenv()), and cl$data should be visible from there. ## Alternatively, we could set it to parent.frame(). ### Stop if model is degenerate if (!hash) { if (hase) { if (nEventsWithoutSources <- sum(lengths(eventSources[includes]) == 0)) stop("found ", nEventsWithoutSources, " events without .sources ", "(impossible in a purely epidemic model)") } else { stop("nothing to do: neither endemic nor epidemic parts were specified") } } ############################# ### Interaction functions ### ############################# if (hase) { ## Check interaction functions siaf <- do.call(".parseiaf", args = alist(siaf, "siaf", eps.s, verbose)) constantsiaf <- attr(siaf, "constant") nsiafpars <- siaf$npars tiaf <- do.call(".parseiaf", args = alist(tiaf, "tiaf", eps.t, verbose)) constanttiaf <- attr(tiaf, "constant") ntiafpars <- tiaf$npars ## Check control.siaf if (constantsiaf) { control.siaf <- NULL } else if (is.list(control.siaf)) { if (!is.null(control.siaf$F)) stopifnot(is.list(control.siaf$F)) if (!is.null(control.siaf$Deriv)) stopifnot(is.list(control.siaf$Deriv)) } else if (!is.null(control.siaf)) { stop("'control.siaf' must be a list or NULL") } ## should we compute siafInt in parallel? useParallel <- cores > 1L && requireNamespace("parallel") ## but do not parallelize for a memoised siaf.step (becomes slower) if (useParallel && !is.null(attr(siaf, "knots")) && !is.null(attr(siaf, "maxRange")) && requireNamespace("memoise", quietly = TRUE) && memoise::is.memoised(environment(siaf$f)$ringAreas)) { cores <- 1L useParallel <- FALSE } ## Define function that integrates the 'tiaf' function .tiafInt <- .tiafIntFUN() ## Define function that integrates the two-dimensional 'siaf' function ## over the influence regions of the events ..siafInt <- if (is.null(control.siaf[["siafInt"]])) { .siafInt <- .siafIntFUN(siaf = siaf, noCircularIR = all(eps.s > bdist), parallel = useParallel) ## Memoisation of .siafInt if (!constantsiaf && requireNamespace("memoise")) { memoise::memoise(.siafInt) ## => speed-up optimization since 'nlminb' evaluates the loglik and ## score for the same set of parameters at the end of each iteration } else { if (!constantsiaf && verbose) message("Continuing without memoisation of 'siaf$f' cubature ...") .siafInt } } else { ## predefined cubature results in epitest(..., fixed = TRUE), ## where siafInt is identical during all permutations (only permuted) stopifnot(is.vector(control.siaf[["siafInt"]], mode = "numeric"), length(control.siaf[["siafInt"]]) == N) local({ env <- new.env(hash = FALSE, parent = .GlobalEnv) env$siafInt <- control.siaf[["siafInt"]] as.function(alist(siafpars=, ...=, siafInt), envir = env) }) } .siafInt.args <- c(alist(siafpars), control.siaf$F) } else { if (!missing(siaf) && !is.null(siaf)) warning("'siaf' can only be modelled in conjunction with an 'epidemic' process") if (!missing(tiaf) && !is.null(tiaf)) warning("'tiaf' can only be modelled in conjunction with an 'epidemic' process") siaf <- tiaf <- NULL nsiafpars <- ntiafpars <- 0L control.siaf <- NULL } hassiafpars <- nsiafpars > 0L hastiafpars <- ntiafpars > 0L ## Can we calculate the score function? useScore <- if (partial) FALSE else if (hase) { (!hassiafpars | !is.null(siaf$deriv)) & (!hastiafpars | (!is.null(tiaf$deriv)) & !is.null(tiaf$Deriv)) } else TRUE ## Define function that applies siaf$Deriv on all events (integrate the ## two-dimensional siaf$deriv function) if (useScore && hassiafpars) { .siafDeriv <- mapplyFUN( c(alist(siaf$Deriv, influenceRegion, type=eventTypes), list(MoreArgs=quote(list(siaf$deriv, siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), ##<- we explicitly quote() the ...-part instead of simply including ## it in the above alist() - only to make checkUsage() happy ## depending on nsiafpars, mapply() will return an N-vector ## or a nsiafpars x N matrix => transform to N x nsiafpars: after = quote(if (is.matrix(res)) t(res) else as.matrix(res)), parallel = useParallel) .siafDeriv.args <- c(alist(siafpars), control.siaf$Deriv) } ############################################################################ ### Log-likelihood function, score function, expected Fisher information ### ############################################################################ ### Total number of parameters (= length of 'theta') npars <- nbeta0 + p + q + nsiafpars + ntiafpars # REMINDER: # theta - parameter vector c(beta0, beta, gamma, siafpars, tiafpars), where # beta0 - endemic intercept (maybe type-specific) # beta - other parameters of the endemic component exp(offset + eta_h(t,s)) # gamma - coefficients of the epidemic predictor # siafpars- parameters of the epidemic spatial interaction function # tiafpars- parameters of the epidemic temporal interaction function # mmh[Events/Grid] - model matrix related to beta, i.e the endemic component, # either for events only or for the whole spatio-temporal grid # offset[Events/Grid] - offset vector related to the endemic component (can be NULL), # either for events only or for the whole spatio-temporal grid # dt, ds - columns of the spatio-temporal grid (dt = stop-start, ds = area) # mme - model matrix related to gamma in the epidemic component # siaf, tiaf - spatial/temporal interaction function (NULL, list or numeric) # eventTimes, eventCoords, eventSources, gIntLower, gIntUpper, influenceRegion - # columns of the events data frame if (hash) { ### Calculates the endemic component (for i in includes -> Nin-vector) ### h(t_i,s_i,kappa_i) = exp(offset_i + beta_{0,kappa_i} + eta_h(t_i,s_i)) .hEvents <- function (beta0, beta) {} body(.hEvents) <- hEventsExpr ### Integral of the endemic component over [0;uppert] x W .hIntTW <- function (beta, score = NULL, #matrix(1,nrow(mmhGrid),1L) uppert = NULL) {} body(.hIntTW) <- as.call(c(as.name("{"), expression( subtimeidx <- if (!is.null(uppert)) { # && isScalar(uppert) && t0 <= uppert && uppert < T if (uppert == t0) return(0) # actually never happens # since uppert %in% eventTimes[includes] > t0 idx <- match(TRUE, histIntervals$stop >= uppert) firstBlockBeyondUpper <- histIntervals$BLOCK[idx] newdt <- uppert - histIntervals$start[idx] dt[gridBlocks == firstBlockBeyondUpper] <- newdt which(gridBlocks <= firstBlockBeyondUpper) } else NULL ), substitute(hGrid <- hGridExpr, list(hGridExpr=hGridExpr)), expression(sumterms <- hGrid * ds * dt), expression(if (is.null(score)) { if (is.null(subtimeidx)) sum(sumterms) else sum(sumterms[subtimeidx]) } else { if (is.null(subtimeidx)) .colSums(score * sumterms, nGrid, ncol(score)) else .colSums((score * sumterms)[subtimeidx,,drop=FALSE], length(subtimeidx), ncol(score)) }) )) } if (hase) { ### Calculates the epidemic component for all events .eEvents <- function (gammapred, siafpars, tiafpars, ncolsRes = 1L, score = matrix(1,N,ncolsRes), f = siaf$f, g = tiaf$g) # second line arguments are for score functions with defaults for loglik { e <- vapply(X = includes, FUN = function (i) { sources <- eventSources[[i]] nsources <- length(sources) if (nsources == 0L) numeric(ncolsRes) else { scoresources <- score[sources,,drop=FALSE] predsources <- gammapred[sources] repi <- rep.int(i, nsources) sdiff <- eventCoords[repi,,drop=FALSE] - eventCoords[sources,,drop=FALSE] fsources <- f(sdiff, siafpars, eventTypes[sources]) tdiff <- eventTimes[repi] - eventTimes[sources] gsources <- g(tdiff, tiafpars, eventTypes[sources]) # if(length(predsources) != NROW(fsources) || NROW(fsources) != NROW(gsources)) browser() .colSums(scoresources * predsources * fsources * gsources, nsources, ncolsRes) } }, FUN.VALUE = numeric(ncolsRes), USE.NAMES = FALSE) ## return a vector if ncolsRes=1, otherwise a matrix (Nin x ncolsRes) if (ncolsRes == 1L) e else t(e) } } ### Calculates the two components of the integrated intensity function ### over [0;uppert] x W x K heIntTWK <- function (beta0, beta, gammapred, siafpars, tiafpars, uppert = NULL) {} body(heIntTWK) <- as.call(c(as.name("{"), if (hash) { # endemic component expression( hIntTW <- .hIntTW(beta, uppert = uppert), .beta0 <- rep_len(if (nbeta0==0L) 0 else beta0, nTypes), fact <- sum(exp(.beta0)), hInt <- fact * hIntTW ) } else { expression(hInt <- 0) }, if (hase) { # epidemic component c(expression(siafInt <- do.call("..siafInt", .siafInt.args)),#N-vector if (useParallel) expression( # print "try-catch"ed errors if (any(.nonfinitesiafint <- !is.finite(siafInt))) stop("invalid result of 'siaf$F' for 'siafpars=c(", paste(signif(siafpars, getOption("digits")), collapse=", "), ")':\n", paste(unique(siafInt[.nonfinitesiafint]), sep="\n"), call.=FALSE) ), expression( if (!is.null(uppert)) { # && isScalar(uppert) && t0 <= uppert && uppert < T gIntUpper <- pmin(uppert-eventTimes, eps.t) subtimeidx <- eventTimes < uppert tiafIntSub <- .tiafInt(tiafpars, from = gIntLower[subtimeidx], to = gIntUpper[subtimeidx], type = eventTypes[subtimeidx]) eInt <- sum(qSum[subtimeidx] * gammapred[subtimeidx] * siafInt[subtimeidx] * tiafIntSub) } else { tiafInt <- .tiafInt(tiafpars) eInt <- sum(qSum * gammapred * siafInt * tiafInt) } ) ) } else expression(eInt <- 0), expression(c(hInt, eInt)) )) ### Calculates the log-likelihood loglik <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # dN part of the log-likelihood hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) } else 0 lambdaEvents <- hEvents + eEvents # Nin-vector llEvents <- sum(log(lambdaEvents)) # * llEvents is -Inf in case of 0-intensity at any event time # * If epilinkinv is 'identity', lambdaEvents < 0 if eEvents < -hEvents, # and llEvents is NaN with a warning (intensity must be positive) if (is.nan(llEvents)) # nlminb() does not like NA function values llEvents <- -Inf # lambda integral of the log-likelihood heInt <- heIntTWK(beta0, beta, gammapred, siafpars, tiafpars) # !hase => missing(gammapred), but lazy evaluation omits an error in this case because heIntTWK doesn't ask for gammapred llInt <- sum(heInt) # Return the log-likelihood ll <- llEvents - llInt ll } ### Calculates the score vector score <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) lambdaEvents <- hEvents + eEvents # Nin-vector siafInt <- do.call("..siafInt", .siafInt.args) # N-vector tiafInt <- .tiafInt(tiafpars) # N-vector } # score vector for beta hScore <- if (hash) { score_beta0 <- if (nbeta0 == 1L) local({ # global intercept sEvents <- if (hase) { hEvents / lambdaEvents } else rep.int(1, Nin) sEventsSum <- sum(sEvents) sInt <- nTypes*exp(beta0) * .hIntTW(beta) sEventsSum - unname(sInt) }) else if (nbeta0 > 1L) local({ # type-specific intercepts ind <- sapply(seq_len(nTypes), function (type) eventTypes[includes] == type, simplify=TRUE, USE.NAMES=FALSE) # logical Nin x nTypes matrix sEvents <- if (hase) { ind * hEvents / lambdaEvents } else ind sEventsSum <- .colSums(sEvents, Nin, nTypes) sInt <- exp(beta0) * .hIntTW(beta) sEventsSum - unname(sInt) }) else numeric(0L) # i.e. nbeta0 == 0L score_beta <- if (p > 0L) local({ sEvents <- if (hase) { mmhEvents * hEvents / lambdaEvents } else mmhEvents sEventsSum <- .colSums(sEvents, Nin, p) fact <- if (nbeta0 > 1L) sum(exp(beta0)) else if (nbeta0 == 1L) nTypes*exp(beta0) else nTypes sInt <- fact * .hIntTW(beta, mmhGrid) sEventsSum - sInt }) else numeric(0L) c(score_beta0, score_beta) } else numeric(0L) # score vector for gamma, siafpars and tiafpars eScore <- if (hase) { score_gamma <- local({ nom <- .eEvents(switch(epilink, "log" = gammapred, "identity" = rep.int(1, N)), siafpars, tiafpars, ncolsRes=q, score=mme) # Nin-vector if q=1 sEventsSum <- .colSums(nom / lambdaEvents, Nin, q) # |-> dotted version also works for vector-arguments dgammapred <- switch(epilink, "log" = mme * gammapred, "identity" = mme) sInt <- .colSums(dgammapred * (qSum * siafInt * tiafInt), N, q) sEventsSum - sInt }) score_siafpars <- if (hassiafpars && !fixedsiafpars) local({ nom <- .eEvents(gammapred, siafpars, tiafpars, ncolsRes=nsiafpars, f=siaf$deriv) sEventsSum <- .colSums(nom / lambdaEvents, Nin, nsiafpars) derivInt <- do.call(".siafDeriv", .siafDeriv.args) # N x nsiafpars matrix ## if useParallel, derivInt may contain "try-catch"ed errors ## in which case we receive a one-column character or list matrix if (!is.numeric(derivInt)) # we can throw a helpful error message stop("invalid result of 'siaf$Deriv' for 'siafpars=c(", paste(signif(siafpars, getOption("digits")), collapse=", "), ")':\n", paste(unique(derivInt[sapply(derivInt, is.character)]), sep="\n"), call.=FALSE) sInt <- .colSums(derivInt * (qSum * gammapred * tiafInt), N, nsiafpars) sEventsSum - sInt }) else numeric(nsiafpars) # if 'fixedsiafpars', this part is unused score_tiafpars <- if (hastiafpars && !fixedtiafpars) local({ nom <- .eEvents(gammapred, siafpars, tiafpars, ncolsRes=ntiafpars, g=tiaf$deriv) sEventsSum <- .colSums(nom / lambdaEvents, Nin, ntiafpars) derivIntUpper <- tiaf$Deriv(gIntUpper, tiafpars, eventTypes) derivIntLower <- tiaf$Deriv(gIntLower, tiafpars, eventTypes) derivInt <- derivIntUpper - derivIntLower # N x ntiafpars matrix sInt <- .colSums(derivInt * (qSum * gammapred * siafInt), N, ntiafpars) sEventsSum - sInt }) else numeric(ntiafpars) # if 'fixedtiafpars', this part is unused c(score_gamma, score_siafpars, score_tiafpars) } else numeric(0L) # return the score vector scorevec <- c(hScore, eScore) scorevec } ### Estimates the expected Fisher information matrix ### by the "optional variation process" (Martinussen & Scheike, p. 64), ### or see Rathbun (1996, equation (4.7)) fisherinfo <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # only events (intdN) part of the score function needed zeromatrix <- matrix(0, Nin, 0) if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) lambdaEvents <- hEvents + eEvents # Nin-vector } # for beta hScoreEvents <- if (hash) { scoreEvents_beta0 <- if (nbeta0 > 1L) local({ # type-specific intercepts ind <- sapply(seq_len(nTypes), function (type) eventTypes[includes] == type, simplify=TRUE, USE.NAMES=FALSE) # logical Nin x nTypes matrix if (hase) { ind * hEvents / lambdaEvents } else ind }) else if (nbeta0 == 1L) { # global intercept if (hase) { hEvents / lambdaEvents } else matrix(1, Nin, 1L) } else zeromatrix scoreEvents_beta <- if (p > 0L) { if (hase) { mmhEvents * hEvents / lambdaEvents } else mmhEvents # Nin x p matrix } else zeromatrix unname(cbind(scoreEvents_beta0, scoreEvents_beta, deparse.level=0)) } else zeromatrix # for gamma, siafpars and tiafpars eScoreEvents <- if (hase) { scoreEvents_gamma_nom <- .eEvents(switch(epilink, "log" = gammapred, "identity" = rep.int(1, N)), siafpars, tiafpars, ncolsRes = q, score = mme) # Ninxq matrix scoreEvents_siafpars_nom <- if (hassiafpars) { .eEvents(gammapred, siafpars, tiafpars, ncolsRes = nsiafpars, f = siaf$deriv) # Ninxnsiafpars matrix } else zeromatrix scoreEvents_tiafpars_nom <- if (hastiafpars) { .eEvents(gammapred, siafpars, tiafpars, ncolsRes = ntiafpars, g = tiaf$deriv) # Ninxntiafpars matrix } else zeromatrix eScoreEvents_nom <- cbind(scoreEvents_gamma_nom, scoreEvents_siafpars_nom, scoreEvents_tiafpars_nom, deparse.level=0) eScoreEvents_nom / lambdaEvents } else zeromatrix scoreEvents <- cbind(hScoreEvents, eScoreEvents, deparse.level=0) ## Build the optional variation process (Martinussen & Scheike, p64) ## info <- matrix(0, nrow = npars, ncol = npars, ## dimnames = list(names(theta), names(theta))) ## for (i in 1:Nin) info <- info + crossprod(scoreEvents[i,,drop=FALSE]) ## oh dear, this is nothing else but t(scoreEvents) %*% scoreEvents crossprod(scoreEvents) } ### Calculates the partial log-likelihood for continuous space ### (Diggle et al., 2009) partialloglik <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # calculate the observed intensities hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) } else 0 lambdaEvents <- hEvents + eEvents # Nin-vector # calculate integral of lambda(t_i, s, kappa) over at-risk set = (observation region x types) hInts <- if (hash) { # endemic component hGrid <- eval(hGridExpr) # integral over W and types for each time block in mfhGrid fact <- if (nbeta0 > 1L) sum(exp(beta0)) else if (nbeta0 == 1L) nTypes*exp(beta0) else nTypes hInt_blocks <- fact * tapply(hGrid*ds, gridBlocks, sum, simplify=TRUE) .idx <- match(eventBlocks[includes], names(hInt_blocks)) unname(hInt_blocks[.idx]) # Nin-vector } else 0 eInts <- if (hase) { # epidemic component siafInt <- do.call("..siafInt", .siafInt.args) # N-vector gs <- gammapred * siafInt # N-vector sapply(includes, function (i) { timeSources <- determineSources1(i, eventTimes, removalTimes, 0, Inf, NULL) nSources <- length(timeSources) if (nSources == 0L) 0 else { repi <- rep.int(i, nSources) tdiff <- eventTimes[repi] - eventTimes[timeSources] gsources <- tiaf$g(tdiff, tiafpars, eventTypes[timeSources]) sum(qSum[timeSources] * gs[timeSources] * gsources) } }, simplify=TRUE, USE.NAMES=FALSE) # Nin-vector } else 0 lambdaEventsIntW <- hInts + eInts # Nin-vector # Calculate and return the partial log-likelihood p <- lambdaEvents / lambdaEventsIntW # Nin-vector pll <- sum(log(p)) pll } ################################ ### Prepare for optimization ### ################################ ll <- if (partial) partialloglik else loglik functions <- list(ll = ll, sc = if (useScore) score else NULL, fi = if (useScore) fisherinfo else NULL) ### Include check for validity of siafpars and tiafpars ('validpars') in ll if (!is.null(siaf$validpars)) { body(ll) <- as.call(append(as.list(body(ll)), as.list(expression( if (hassiafpars && !siaf$validpars(siafpars)) { if (!isTRUE(optimArgs$control$trace == 0)) # default: NULL cat("(invalid 'siafpars' in loglik)\n") return(-Inf) } )), after = grep("^siafpars <-", body(ll)))) } if (!is.null(tiaf$validpars)) { body(ll) <- as.call(append(as.list(body(ll)), as.list(expression( if (hastiafpars && !tiaf$validpars(tiafpars)) { if (!isTRUE(optimArgs$control$trace == 0)) # default: NULL cat("(invalid 'tiafpars' in loglik)\n") return(-Inf) } )), after = grep("^tiafpars <-", body(ll)))) } ### Check that optim.args is a list or NULL if (is.null(optim.args)) { # no optimisation requested setting <- functions on.exit(rm(setting), add = TRUE) # Append model information setting$npars <- c(nbeta0 = nbeta0, p = p, q = q, nsiafpars = nsiafpars, ntiafpars = ntiafpars) setting$qmatrix <- qmatrix # -> information about nTypes and typeNames setting$formula <- list(endemic = endemic, epidemic = epidemic, siaf = siaf, tiaf = tiaf) # Return settings setting$call <- cl environment(setting) <- environment() if (verbose) message("optimization skipped", " (returning functions in data environment)") return(setting) } else if (!is.list(optim.args)) stop("'optim.args' must be a list or NULL") ### Check initial value for theta initpars <- rep(0, npars) names(initpars) <- c( if (nbeta0 > 1L) { paste0("h.type",typeNames) } else if (nbeta0 == 1L) "h.(Intercept)", if (p > 0L) paste("h", colnames(mmhEvents), sep = "."), if (hase) paste("e", colnames(mme), sep = "."), if (hassiafpars) paste("e.siaf", seq_len(nsiafpars), sep="."), if (hastiafpars) paste("e.tiaf", seq_len(ntiafpars), sep=".") ) ## some naive defaults if (nbeta0 > 0) initpars[seq_len(nbeta0)] <- crudebeta0( nEvents = Nin, offset.mean = if (is.null(offsetGrid)) 0 else weighted.mean(offsetGrid, replace(ds, !is.finite(offsetGrid), 0)), W.area = sum(ds[gridBlocks==histIntervals[1,"BLOCK"]]), period = T-t0, nTypes = nTypes ) if (hase && "e.(Intercept)" %in% names(initpars) && epilink == "log") initpars["e.(Intercept)"] <- -9 # suitable value depends on [st]iafInt if (hassiafpars && identical(body(siaf$f)[[2L]], quote(sds <- exp(pars)))) { ## "detect" siaf.gaussian => use 10% of bbox diameter as initial sd initpars[paste0("e.siaf.", seq_len(nsiafpars))] <- round(log(0.1*sqrt(sum(apply(bbox(data$W), 1L, diff.default)^2)))) } ## manual par-specification overrides these defaults if (!is.null(optim.args[["par"]])) { if (!is.vector(optim.args$par, mode="numeric")) { stop("'optim.args$par' must be a numeric vector") } if (length(optim.args$par) != npars) { stop(gettextf(paste("'optim.args$par' (%d) does not have the same", "length as the number of unknown parameters (%d)"), length(optim.args$par), npars)) } initpars[] <- optim.args$par } ## values in "start" overwrite defaults and optim.args$par if (!is.null(start)) { start <- check_twinstim_start(start) start <- start[names(start) %in% names(initpars)] initpars[names(start)] <- start } ## warn if initial intercept is negative when the identity link is used if (epilink == "identity" && "e.(Intercept)" %in% names(initpars) && initpars["e.(Intercept)"] < 0) warning("identity link and negative start value for \"e.(Intercept)\"") ## check that start values are finite if (any(!is.finite(initpars))) { print(initpars[!is.finite(initpars)]) stop("initial parameter values must be finite; set 'start'", call. = FALSE) } ## update optim.args$par optim.args$par <- initpars ### Fixed parameters during optimization fixed <- optim.args[["fixed"]] optim.args[["fixed"]] <- NULL whichfixed <- if (is.null(fixed)) { integer(0L) } else if (isTRUE(fixed)) { seq_len(npars) } else { stopifnot(is.vector(fixed)) if (is.numeric(fixed)) { stopifnot(fixed %in% seq_len(npars)) fixed } else if (is.character(fixed)) { ## we silently ignore names of non-existent parameters intersect(fixed, names(initpars)) } else if (is.logical(fixed)) { stopifnot(length(fixed) == npars) which(fixed) } else { stop("'optim.args$fixed' must be a numeric, character or logical vector") } } fixed <- setNames(logical(npars), names(initpars)) # FALSE fixed[whichfixed] <- TRUE fixedsiafpars <- hassiafpars && all(fixed[paste("e.siaf", 1:nsiafpars, sep=".")]) fixedtiafpars <- hastiafpars && all(fixed[paste("e.tiaf", 1:ntiafpars, sep=".")]) ### Define negative log-likelihood (score, hessian) for minimization ### as a function of the non-fixed parameters negll <- ll body(negll)[[length(body(negll))]] <- call("-", body(negll)[[length(body(negll))]]) negsc <- if (useScore) { negsc <- score body(negsc)[[length(body(negsc))]] <- call("-", body(negsc)[[length(body(negsc))]]) negsc } else NULL neghess <- if (useScore) fisherinfo else NULL if (any(fixed)) { ## modify negll, negsc and neghess for subvector optimization optim.args$par <- initpars[!fixed] if (verbose) { if (all(fixed)) { cat("\nno numerical likelihood optimization, all parameters fixed:\n") } else cat("\nfixed parameters during optimization:\n") print(initpars[fixed]) } tmpexpr <- expression( initpars[!fixed] <- theta, theta <- initpars ) body(negll) <- as.call(append(as.list(body(negll)), as.list(tmpexpr), 1)) if (useScore) { body(negsc) <- as.call(append(as.list(body(negsc)), as.list(tmpexpr), 1)) body(neghess) <- as.call(append(as.list(body(neghess)), as.list(tmpexpr), 1)) # return non-fixed sub-vector / sub-matrix only body(negsc)[[length(body(negsc))]] <- call("[", body(negsc)[[length(body(negsc))]], quote(!fixed)) body(neghess)[[length(body(neghess))]] <- call("[", body(neghess)[[length(body(neghess))]], quote(!fixed), quote(!fixed), drop=FALSE) } ## if siafpars or tiafpars are fixed, pre-evaluate integrals if (fixedsiafpars) { if (verbose) cat("pre-evaluating 'siaf' integrals with fixed parameters ...\n") if (!"memoise" %in% loadedNamespaces()) cat("WARNING: Memoization of siaf integration not available!\n", " Repeated integrations with same parameters ", "are redundant and slow!\n", " Really consider installing package \"memoise\"!\n", sep="") siafInt <- local({ siafpars <- initpars[paste("e.siaf", 1:nsiafpars, sep=".")] do.call("..siafInt", .siafInt.args) # memoise()d }) } if (fixedtiafpars) { if (verbose) cat("pre-evaluating 'tiaf' integrals with fixed parameters ...\n") tiafInt <- .tiafInt(initpars[paste("e.tiaf", 1:ntiafpars, sep=".")]) ## re-define .tiafInt such that it just returns the pre-evaluated ## integrals if called with the default arguments .tiafInt.orig <- .tiafInt body(.tiafInt) <- expression( if (nargs() == 1L) tiafInt else .tiafInt.orig(tiafpars, from, to, type, G) ) ## restore the original function at the end on.exit({ .tiafInt <- .tiafInt.orig rm(.tiafInt.orig) }, add=TRUE) } } if (any(!fixed)) { #################### ### Optimization ### #################### ## Configure the optim procedure (check optim.args) # default arguments optimArgs <- list(par = NULL, # replaced by optim.args$par below fn = quote(negll), gr = quote(negsc), method = if (partial) "Nelder-Mead" else "nlminb", lower = -Inf, upper = Inf, control = list(), hessian = TRUE) # user arguments namesOptimArgs <- names(optimArgs) namesOptimUser <- names(optim.args) optimValid <- namesOptimUser %in% namesOptimArgs optimArgs[namesOptimUser[optimValid]] <- optim.args[optimValid] if (any(!optimValid)) { warning("unknown names in optim.args: ", paste(namesOptimUser[!optimValid], collapse = ", "), immediate. = TRUE) } doHessian <- optimArgs$hessian optimMethod <- optimArgs$method ## Call 'optim', 'nlminb', or 'nlm' with the above arguments if (verbose) { cat("\nminimizing the negative", if (partial) "partial", "log-likelihood", "using", if (optimMethod %in% c("nlm", "nlminb")) paste0("'",optimMethod,"()'") else { paste0("'optim()'s \"", optimMethod, "\"") }, "...\n") cat("initial parameters:\n") print(optimArgs$par) } optimRes1 <- if (optimMethod == "nlminb") { nlminbControl <- control2nlminb(optimArgs$control, defaults = list(trace=1L, rel.tol=1e-6)) ## sqrt(.Machine$double.eps) is the default reltol used in optim, ## which usually equals about 1.49e-08. ## The default rel.tol of nlminb (1e-10) seems too small ## (nlminb often does not finish despite no "relevant" change in loglik). ## I therefore use 1e-6, which is also the default in package nlme ## (see 'lmeControl'). if (nlminbControl$trace > 0L) { cat("negative log-likelihood and parameters ") if (nlminbControl$trace == 1L) cat("in each iteration") else { cat("every", nlminbControl$trace, "iterations") } cat(":\n") } nlminbRes <- nlminb(start = optimArgs$par, objective = negll, gradient = negsc, hessian = if (doHessian) neghess else NULL, control = nlminbControl, lower = optimArgs$lower, upper = optimArgs$upper) nlminbRes$value <- -nlminbRes$objective nlminbRes$counts <- nlminbRes$evaluations nlminbRes } else if (optimMethod == "nlm") { nlmObjective <- function (theta) { value <- negll(theta) grad <- negsc(theta) #hess <- neghess(theta) structure(value, gradient = grad)#, hessian = hess) } nlmControl <- optimArgs$control if (is.null(nlmControl[["print.level"]])) { nlmControl$print.level <- min(nlmControl$trace, 2L) } nlmControl$trace <- nlmControl$REPORT <- NULL if (is.null(nlmControl[["iterlim"]])) { nlmControl$iterlim <- nlmControl$maxit } nlmControl$maxit <- NULL nlmControl$check.analyticals <- FALSE ##<- we use the negative _expected_ Fisher information as the Hessian, ## which is of course different from the true Hessian (=neg. obs. Fisher info) nlmRes <- do.call("nlm", c(alist(f = nlmObjective, p = optimArgs$par, hessian = doHessian), nlmControl)) names(nlmRes)[names(nlmRes) == "estimate"] <- "par" nlmRes$value <- -nlmRes$minimum nlmRes$counts <- rep.int(nlmRes$iterations, 2L) nlmRes$convergence <- if (nlmRes$code %in% 1:2) 0L else nlmRes$code nlmRes } else { # use optim() optimArgs$control <- modifyList(list(trace=1L, REPORT=1L), optimArgs$control) if (finetune) optimArgs$hessian <- FALSE res <- do.call("optim", optimArgs) res$value <- -res$value res } ## Optional fine-tuning of ML estimates by robust Nelder-Mead optimRes <- if (finetune) { if (verbose) { cat("\nMLE from first optimization:\n") print(optimRes1$par) cat("loglik(MLE) =", optimRes1$value, "\n") cat("\nfine-tuning MLE using Nelder-Mead optimization ...\n") } optimArgs$par <- optimRes1$par optimArgs$method <- "Nelder-Mead" optimArgs$hessian <- doHessian optimArgs$control <- modifyList(list(trace=1L), optimArgs$control) nmRes <- do.call("optim", optimArgs) nmRes$value <- -nmRes$value nmRes$counts[2L] <- 0L # 0 gradient evaluations (replace NA for addition below) nmRes } else optimRes1 ## Convergence message msgConvergence <- if (finetune || optimMethod != "nlminb") { paste("code", optimRes$convergence) } else optimRes$message if (optimRes$convergence != 0) { msgNotConverged <- paste0("optimization routine did not converge (", msgConvergence, ")") warning(msgNotConverged) if (verbose) { cat("\nWARNING: ", msgNotConverged, "!\n", sep="") if ((finetune || optimMethod != "nlminb") && !is.null(optimRes$message) && nzchar(optimRes$message)) { cat("MESSAGE: \"", optimRes$message, "\"\n", sep="") } if (hase && useScore && !constantsiaf && grepl("false", msgNotConverged)) { cat("SOLUTION: increase the precision of 'siaf$Deriv' (and 'siaf$F')\n") if (optimMethod == "nlminb") { cat(" or nlminb's false convergence tolerance 'xf.tol'\n") } } } } if (verbose) { cat("\n", if (finetune) "final ", "MLE:\n", sep = "") print(optimRes$par) cat("loglik(MLE) =", optimRes$value, "\n") } } ############## ### Return ### ############## ### Set up list object to be returned fit <- list( coefficients = if (any(fixed)) { if (all(fixed)) initpars else unlist(modifyList(as.list(initpars), as.list(optimRes$par))) } else optimRes$par, loglik = structure(if (all(fixed)) ll(initpars) else optimRes$value, partial = partial), counts = if (all(fixed)) c("function"=1L, "gradient"=0L) else { optimRes1$counts + if (finetune) optimRes$counts else c(0L, 0L) }, converged = if (all(fixed) || (optimRes$convergence == 0)) TRUE else msgConvergence ) ## fix convergence status if (isTRUE(fit$converged) && !is.finite(fit$loglik)) fit$converged <- warning("non-finite log-likelihood") ### Add Fisher information matrices # estimation of the expected Fisher information matrix fit["fisherinfo"] <- list( if (useScore) structure( fisherinfo(fit$coefficients), dimnames = list(names(initpars), names(initpars)) ) ) # If requested, add observed fisher info (= negative hessian at maximum) fit["fisherinfo.observed"] <- list( if (any(!fixed) && !is.null(optimRes$hessian)) optimRes$hessian ## no "-" here because we optimized the negative log-likelihood ) ### Add fitted intensity values and integrated intensities at events # final coefficients theta <- fit$coefficients beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # final siaf and tiaf integrals over influence regions / periods # and final gammapred (also used by intensity.twinstim) if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector if (!fixedsiafpars) siafInt <- do.call("..siafInt", .siafInt.args) if (!fixedtiafpars) tiafInt <- .tiafInt(tiafpars) } # fitted intensities hEvents <- if (hash) .hEvents(unname(beta0), beta) else rep.int(0, Nin) eEvents <- if (hase) { .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) } else rep.int(0, Nin) fit$fitted <- hEvents + eEvents # = lambdaEvents # Nin-vector fit$fittedComponents <- cbind(h = hEvents, e = eEvents) rm(hEvents, eEvents) # calculate cumulative ground intensities at event times # Note: this function is also used by residuals.twinstim LambdagEvents <- function (cores = 1L, cumCIF.pb = interactive()) { if (cores != 1L) cumCIF.pb <- FALSE if (cumCIF.pb) pb <- txtProgressBar(min=0, max=Nin, initial=0, style=3) heIntEvents <- if (cores == 1L) { sapply(seq_len(Nin), function (i) { if (cumCIF.pb) setTxtProgressBar(pb, i) heIntTWK(beta0, beta, gammapred, siafpars, tiafpars, eventTimes[includes[i]]) }, simplify=TRUE, USE.NAMES=FALSE) } else { # cannot use progress bar simplify2array(parallel::mclapply( X=eventTimes[includes], FUN=heIntTWK, beta0=beta0, beta=beta, gammapred=gammapred, siafpars=siafpars,tiafpars=tiafpars, mc.preschedule=TRUE, mc.cores=cores ), higher=FALSE) } if (cumCIF.pb) close(pb) setNames(.colSums(heIntEvents, 2L, Nin), rownames(mmhEvents)) } fit["tau"] <- list( if (cumCIF) { if (verbose) cat("\nCalculating fitted cumulative intensities at events ...\n") LambdagEvents(cores, cumCIF.pb) }) # calculate observed R0's: mu_j = spatio-temporal integral of e_j(t,s) over # the observation domain (t0;T] x W (not whole R+ x R^2) fit$R0 <- if (hase) qSum * gammapred * siafInt * tiafInt else rep.int(0, N) names(fit$R0) <- row.names(mfe) ### Append model information fit$npars <- c(nbeta0 = nbeta0, p = p, q = q, nsiafpars = nsiafpars, ntiafpars = ntiafpars) fit$qmatrix <- qmatrix # -> information about nTypes and typeNames fit$bbox <- bbox(data$W) # for completeness and for iafplot fit$timeRange <- c(t0, T) # for simulate.twinstim's defaults fit$formula <- list(endemic = endemic, epidemic = epidemic, siaf = siaf, tiaf = tiaf) fit["xlevels"] <- list( if (length(xlevels_endemic) + length(xlevels_epidemic) > 0) { list(endemic = xlevels_endemic, epidemic = xlevels_epidemic) } else NULL) fit["control.siaf"] <- list(control.siaf) # might be NULL ### Append optimizer configuration optim.args$par <- initpars # reset to also include fixed coefficients if (any(fixed)) optim.args$fixed <- names(initpars)[fixed] # restore fit$optim.args <- optim.args fit["functions"] <- list( if (model) { environment(fit) <- environment() functions }) ### Return object of class "twinstim" if (verbose) cat("\nDone.\n") fit$call <- cl fit$runtime <- structure(proc.time() - ptm, cores=cores) class(fit) <- "twinstim" return(fit) } surveillance/R/untie.R0000644000176200001440000002047314426171115014426 0ustar liggesusers################################################################################ ### Spatial and temporal tie-breaking of events ### ### Copyright (C) 2012-2014,2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## epidataCS-method ## makes use of untie.default (in time) and untie.matrix (in space) untie.epidataCS <- function (x, amount = list(t=NULL, s=NULL), minsep = list(t=0, s=0), direction = "left", keep.sources = FALSE, ..., verbose = FALSE) { stopifnot(is.list(amount), !is.null(names(amount)), is.list(minsep), !is.null(names(minsep))) minsep <- modifyList(list(t=0, s=0), minsep) do.spatial <- pmatch("s", names(amount), nomatch=0L) > 0L do.temporal <- pmatch("t", names(amount), nomatch=0L) > 0L if (!do.spatial && !do.temporal) { stop("no amounts specified, nothing to do") } ## Generate new events data frame events <- marks.epidataCS(x, coords=FALSE) newcoords <- if (do.spatial) { # untie spatial coordinates untie.matrix(coordinates(x$events), amount$s, minsep$s, constraint=x$W, ...) } else coordinates(x$events) if (do.temporal) { # untie event times ## by default, we shift event times (non-symmetrically) to the left such ## that the shifted versions potentially stay in the same BLOCK of ## endemic covariates (the CIF is left-continuous). events$time <- untie.default(events$time, amount$t, minsep$t, direction=direction, sort=TRUE, ...) ## FIXME: Does sort=TRUE always make sense? ## maybe only sort in untie.default if amount < minsep? } ## Generate epidataCS object with new events coordinates(events) <- newcoords # -> SpatialPointsDataFrame #proj4string(events) <- proj4string(x$W) # "proj4string<-" might change the # string e.g. add +towgs84=0,0,0,0,0,0,0 events@proj4string <- x$W@proj4string npoly <- attr(x$events$.influenceRegion, "nCircle2Poly") clipper <- attr(x$events$.influenceRegion, "clipper") if (is.null(clipper)) # epidataCS < 1.8-1 clipper <- "polyclip" res <- as.epidataCS(events=events, stgrid=x$stgrid[,-1L], W=x$W, qmatrix=x$qmatrix, nCircle2Poly=npoly, clipper=clipper, verbose=verbose) if (keep.sources) { res$events$.sources <- x$events$.sources } if (do.temporal) { prehistevents <- function (x) row.names(x$events@data)[x$events$time <= x$stgrid$start[1L]] if (!setequal(prehistevents(x), prehistevents(res))) warning("temporal jittering has changed the set of prehistory events") } ## Done res } ## untie event times by uniform jittering untie.default <- function (x, amount = NULL, minsep = 0, direction = c("symmetric", "left", "right"), sort = NULL, giveup = 1000, ...) { stopifnot(is.numeric(x), is.vector(x)) distx <- dist(x) isPosDist <- distx > 0 if (all(isPosDist)) return(x) # no ties direction <- match.arg(direction) if (is.null(sort)) # sort if x was sorted sort <- identical(order(x, decreasing=FALSE), seq_along(x)) if (any(isPosDist)) { minsepx <- min(distx[isPosDist]) # smallest positive distance amount.bound <- if (direction=="symmetric") minsepx/2 else minsepx if (is.null(amount)) { amount <- amount.bound } else if (sort && abs(amount) > amount.bound) { warning("'amount' should not be greater than ", if (direction=="symmetric") "half of ", "the minimum separation (", format(amount.bound), ")") } } else if (is.null(amount)) { stop("default 'amount' does not work with completely tied 'x'") } shiftFUN <- switch(direction, symmetric = function (x) x + runif(length(x), -amount, amount), right = function (x) x + runif(length(x), 0, amount), left = function (x) x - runif(length(x), 0, amount)) res <- .untie(x, shiftFUN, minsep) if (sort) base::sort(res) else res } ## untie spatial coordinates by moving them by vectors drawn uniformly from a ## disc of radius 'amount', optionally respecting a region (constraint) ## inside which the jittered points should be located (of course, the initial ## points must also obey this constraint), and a minimum separation 'minsep' untie.matrix <- function (x, amount = NULL, minsep = 0, constraint = NULL, giveup = 1000, ...) { stopifnot(is.numeric(x), is.matrix(x)) dimx <- dim(x) if (dimx[2L] <= 1L) { untie.default(c(x), amount, minsep, giveup=giveup) } else if (dimx[2L] > 2L) { stop("spatial tie-breaking is only implemented for 2D coordinates") } if (is.null(amount)) { distx <- dist(x) isPosDist <- distx > 0 ## take half of smallest distance, which guarantees that new points ## will be closer to previously tied points than to others if (any(isPosDist)) amount <- min(distx[isPosDist]) / 2 else stop("default 'amount' does not work with a single location only") } if (!is.null(constraint)) { stopifnot(inherits(constraint, "SpatialPolygons")) constraint@proj4string <- new("CRS") outOfConstraint <- function (x) { is.na(over(SpatialPoints(x), constraint)) } if (any(outOfConstraint(x))) stop("some points of the matrix 'x' don't respect the 'constraint'") } else outOfConstraint <- NULL shiftFUN <- function (x) x + runifdisc(nrow(x), amount) .untie(x, shiftFUN, minsep, outOfConstraint, giveup=giveup) } ## workhorse for both vector and matrix 'x' .untie <- function (x, shiftFUN, minsep = 0, outOfConstraintFUN = NULL, giveup = 1000) { x <- res <- as.matrix(x) move <- rep.int(TRUE, nrow(x)) # initially move _all_ points ntry <- 0L updateMoveExpr <- .updateMoveExpr(minsep>0, is.function(outOfConstraintFUN)) while((nleft <- sum(move)) > 0L && ntry < giveup) { res[move,] <- shiftFUN(x[move,,drop=FALSE]) ## determine for the moved points if they are too close to another point ## or fall out of constraint -> try again eval(updateMoveExpr) ntry <- ntry + 1L } if (ntry >= giveup) warning("could not obey 'constraint' and/or 'minsep' for some points") if (ncol(res) == 1) res[,1] else res } ## check if points with index 'idx' are too close (< minsep) to any other points ## (this function could probably be made more efficient, especially for ## length(idx) << nrow(pts), since we actually don't need all pairwise distances ## calculated by dist() but only those related to the idx-points) .tooClose <- function (pts, idx, minsep) { distpts <- as.matrix(dist(pts)) diag(distpts) <- Inf rowSums(distpts[idx,,drop=FALSE] < minsep) > 0 } ## generate expression which updates logical vector 'move' (points left to move) .updateMoveExpr <- function(doClose = FALSE, doConstraint = FALSE) { if (!doClose && !doConstraint) return(expression(move[move] <- FALSE)) exprClose <- expression(movedTooClose <- .tooClose(res, move, minsep)) exprConstraint <- if (doClose) { # only need to check those not too close expression( movedOutOfConstraint <- rep.int(FALSE, nleft), if (any(!movedTooClose)) movedOutOfConstraint[!movedTooClose] <- outOfConstraintFUN(res[move,,drop=FALSE][!movedTooClose,,drop=FALSE]) ) } else { expression( movedOutOfConstraint <- outOfConstraintFUN(res[move,,drop=FALSE]) ) } c(if (doClose) exprClose, if (doConstraint) exprConstraint, switch(doClose + 2*doConstraint, expression(move[move] <- movedTooClose), expression(move[move] <- movedOutOfConstraint), expression(move[move] <- movedTooClose | movedOutOfConstraint) ) ) } surveillance/R/nowcast.R0000644000176200001440000014050214615164167014765 0ustar liggesusers###################################################################### # Function to perform nowcast at a specific day "now" using a procedure # which takes truncation of the available observations into # account. The full documentation is available in the nowcast.Rd file. # # Author: Michael Hoehle # # Parameters: # now - a Date object representing today # when - a vector of Date objects representing the days to do the forecast for. # A requirement is that for all elements in when are smaller or equal # than "now". # data - the Database containing columns dEventCol and dReportCol, which # contain the date of the event and of when the report arrives in # the database. # dEventCol - name of column in data containing time of event occurrence # dReportCol - name of column in data containing time of reprt arrival # method - which method to use # D - maximum delay to consider # m - moving window for delay estimation # control - a list containing the following arguments # * gd.prior.kappa - prior for delay is symmetric Dirichlet # with concentration parameter gd.prior.kappa # # Note: As predictions are done simultaneously the entire vector of observations # is casted. Then the subset specified in "when" is returned. # # Returns: # stsNC object with reporting triangle, delay estimate and prediction interval in the appropriate slots. # # Todo: # * yt.support to N.tInf support in nowcast?? # * bayes.notrunc and bayes.notrunc.bnb could become one code segment # * Enable user to provide reporting triangle directly. # * Function should work for weekly and monthly data as well ###################################################################### nowcast <- function(now, when, data, dEventCol="dHospital", dReportCol="dReport", method=c("bayes.notrunc","bayes.notrunc.bnb","lawless","bayes.trunc","unif","bayes.trunc.ddcp"), aggregate.by="1 day", D=15, m=NULL, m.interpretation=c("hoehle_anderheiden2014", "lawless1994"), control=list( dRange=NULL,alpha=0.05,nSamples=1e3, N.tInf.prior=c("poisgamma","pois","unif"), N.tInf.max=300, gd.prior.kappa=0.1, ddcp=list(ddChangepoint=NULL, cp_order=c("zero","one"), Wextra=NULL, logLambda=c("iidLogGa","tps","rw1","rw2"), responseDistr=c("poisson", "negbin"), mcmc=c(burnin=2500,sample=10000,thin=1, adapt=1000, store.samples=FALSE)), score=FALSE,predPMF=FALSE)) { #Check if the runjags package is available (required for bayes.trunc.ddcp to work! if ("bayes.trunc.ddcp" %in% method) { if (!requireNamespace("runjags",quietly=TRUE)) { stop("The \"bayes.trunc.ddcp\" method requires the runjags package to be installed, which is available from CRAN.") } } if ((!inherits(now,"Date")) | (length(now)>1)) { stop("The parameter 'now' has to be a single Date.") } #Check if all when_i<= now if (!all(when<=now)) { stop("Assertion when <= now failed.") } #Check that specified methods are all valid method <- match.arg(method,c("bayes.notrunc","bayes.notrunc.bnb","lawless","bayes.trunc","unif","bayes.trunc.ddcp"),several.ok=TRUE) ###################################################################### # Time aggregation. Make sure it's a valid aggregational level and # move all dates to the "first" of this level. # @hoehle: Should work for day, weeks and month. Quarter and year not atm. ###################################################################### aggregate.by <- match.arg(aggregate.by,c("1 day","1 week", "1 month"),several.ok=FALSE) epochInPeriodStr <- switch(aggregate.by, "1 day"="1","1 week"="%u", "1 month"="%d") if (aggregate.by != "1 day") { warning("Moving dates to first of each epoch.") #Move dates back to first of each epoch unit for (colName in c(dEventCol, dReportCol)) { data[,colName] <- data[,colName] - as.numeric(format(data[,colName],epochInPeriodStr)) + 1 } #Check now and when if (!all( format( c(now,when),epochInPeriodStr) == 1)) { stop("The variables 'now' and 'when' needs to be at the first of each epoch") } } #Choose the correct difference function if (aggregate.by == "1 day") { timeDelay <- function(d1,d2) {as.numeric(d2-d1)} } if (aggregate.by == "1 week") { timeDelay <- function(d1,d2) { floor(as.numeric(difftime(d2,d1,units="weeks"))) } #Count the number of full weeks } if (aggregate.by == "1 month") { timeDelay <- function(d1,d2) { #Helper function from http://stackoverflow.com/questions/1995933/number-of-months-between-two-dates monnb <- function(d) { lt <- as.POSIXlt(as.Date(d, origin="1900-01-01")) lt$year*12 + lt$mon } monnb(d2) - monnb(d1) #count the number of full months } } ## Check the value of the m interpretation m.interpretation <- match.arg(m.interpretation, c("hoehle_anderheiden2014", "lawless1994")) if (!is.null(m) & (method == "lawless") & (m.interpretation != "lawless1994")) { warning("Selected method is Lawless (1994), but the interpretation of m is a horizontal cut in the reporting triangle (as in Hoehle and an der Heiden (2014)) and not as in Lawless (1994).") } if (!is.null(m) & (method != "lawless") & (m.interpretation == "lawless1994")) { stop("The selected nowcasting method only works with m.interpretation = 'hoehle_anderheiden2014'") } ###################################################################### #If there is a specification of dateRange set dMin and dMax accordingly #Otherwise use as limits the range of the data ###################################################################### if (is.null(control[["dRange",exact=TRUE]])) { dMin <- min(data[,dEventCol],na.rm=TRUE) dMax <- max(data[,dEventCol],na.rm=TRUE) } else { dMin <- control$dRange[1] dMax <- control$dRange[length(control$dRange)] } #@hoehle - check that dRange is proper if (!all( format( c(dMin, dMax), epochInPeriodStr) == 1)) { stop("The variables in dRange needs to be at the first of each epoch.") } dateRange <- seq(dMin, dMax, by=aggregate.by) ###################################################################### # Additional manipulation of the control arguments ###################################################################### #Check if alpha is specified if (is.null(control[["alpha",exact=TRUE]])) { control$alpha <- 0.05 } if (is.null(control[["N.tInf.prior",exact=TRUE]])) { control$N.tInf.prior <- "unif" } if (is.null(control[["N.tInf.max",exact=TRUE]])) { control$N.tInf.max <- 300 } if (is.null(control[["gd.prior.kappa",exact=TRUE]])) { control$gd.prior.kappa <- 0.1 } if (is.null(control[["nSamples",exact=TRUE]])) { control$nSamples <- 1e3 } if (is.null(control[["score",exact=TRUE]])) { control$score <- FALSE } #Checking for the bayes.trunc.ddcp procedure. If so make sure params are set up. if ("bayes.trunc.ddcp" %in% method) { #If no parameters at all set to defaults. if (is.null(control[["ddcp",exact=TRUE]])) { control$ddcp <- list(ddChangepoint=NULL, cp_order="zero", Wextra=NULL, logLambda=c("iidLogGa","tps","rw1","rw2"), tau.gamma=1, response.distr=c("poisson"), mcmc=c(burnin=2500, sample=10000, thin=1, adapt=1000, store.samples=FALSE)) } #Check form of logLambda if (is.null(control[["ddcp",exact=TRUE]][["logLambda",exact=TRUE]])) { control[["ddcp"]] <- modifyList(control[["ddcp",exact=TRUE]], list(logLambda="iidLogGa")) } else { control[["ddcp"]]$logLambda <- match.arg(control[["ddcp"]][["logLambda"]],c("iidLogGa","tps","rw1","rw2")) } #Check breakpoint to use in case of bayes.trunc.ddcp (delay distribution with breakpoint) if (is.null(control[["ddcp"]][["ddChangepoint"]]) || !inherits(control[["ddcp"]][["ddChangepoint"]], "Date")) { stop("Please specify a Date object as changepoint in control$ddChangepoint.") } if (any(control[["ddcp"]][["ddChangepoint"]] > now)) { warning("Some of the elements in ddChangepoint are beyond 'now'. This might be problematic!") } ##Check cp_order variable if (!is.null(control[["ddcp",exact=TRUE]][["cp_order",exact=TRUE]])) { control[["ddcp"]]$cp_order <- match.arg(control[["ddcp"]][["cp_order"]],c("zero","one")) } else { control[["ddcp"]]$cp_order <- "zero" } ##Check Wextra argument if (!is.null(control[["ddcp",exact=TRUE]][["Wextra",exact=TRUE]])) { if (!is.array(control[["ddcp",exact=TRUE]][["Wextra",exact=TRUE]])) { stop("Wextra is not an array.") } } #Make this an accessible variable ddChangepoint <- control$ddcp$ddChangepoint Wextra <- control$ddcp$Wextra ncol_Wextra <- if (is.null(Wextra)) 0 else ncol(Wextra) colnames_Wextra <- if (is.null(Wextra)) NULL else colnames(Wextra) cp_order <- control$ddcp$cp_order #Response distribution in the model if (is.null(control[["ddcp",exact=TRUE]][["response.distr",exact=TRUE]])) { control[["ddcp"]]$response.distr <- "poisson" } else { stopifnot(control[["ddcp",exact=TRUE]][["response.distr",exact=TRUE]] %in% c("poisson", "negbin")) } #Precision parameter for gamma coefficients for hazard delay distribution if (is.null(control[["ddcp",exact=TRUE]][["tau.gamma",exact=TRUE]])) { control[["ddcp"]]$tau.gamma <- 1 } #Prior for eta ~ [eta.mu, eta.prec] if (is.null(control[["ddcp",exact=TRUE]][["eta.mu",exact=TRUE]])) { control[["ddcp"]]$eta.mu <- rep(0,length(ddChangepoint) + ncol_Wextra) } else { if (length(control[["ddcp"]]$eta.mu) != length(ddChangepoint) + ncol_Wextra) { stop("length of eta.mu is different from the number of change points in 'ddChangepoint'.") } } if (is.null(control[["ddcp",exact=TRUE]][["eta.prec",exact=TRUE]])) { if (length(ddChangepoint) == 1) { control[["ddcp"]]$eta.prec <- 1 } else { control[["ddcp"]]$eta.prec <- diag(rep(1, length(ddChangepoint))) } } else { #Custom option if (length(ddChangepoint) == 1) { if (length(control[["ddcp"]]$eta.prec) != 1) { stop("length of eta.prec is different from the number of change points in 'ddChangepoint'.") } else { if (!( (nrow(control[["ddcp"]]$eta.prec) == (ncol(control[["ddcp"]]$eta.prec))) & (nrow(control[["ddcp"]]$eta.prec) == length(ddChangepoint)))) { stop(paste0("dimension ", dim(control[["ddcp"]]$eta.prec), " of eta.prec is different from the number of change points in 'ddChangepoint' (",length(ddChangepoint),".")) } } } } #Check MCMC options if (is.null(control[["ddcp",exact=TRUE]][["responseDistr",exact=TRUE]])) { control[["ddcp"]][["responseDistr"]] <- "poisson" } else { # Check that it's a valid response distribution stopifnot(control[["ddcp"]][["responseDistr"]] %in% c("negbin","poisson")) } #Check MCMC options if (is.null(control[["ddcp",exact=TRUE]][["mcmc",exact=TRUE]])) { control[["ddcp"]][["mcmc"]] <- c(burnin=2500,sample=10000,thin=1, adapt=1000, store.samples=FALSE) } else { if (!all(c("burnin","sample","thin", "adapt", "store.samples") %in% names(control[["ddcp",exact=TRUE]][["mcmc",exact=TRUE]]))) { stop("mcmc option list needs names 'burnin', 'sample', 'thin', 'adapt' and 'store.samples'.") } } #done with options for bayes.trunc.ddcp } ###################################################################### # Do preprocessing of the data ###################################################################### hasNADates <- is.na(data[,dEventCol]) | is.na(data[,dReportCol]) data <- data[!hasNADates,] message(paste0("Removed ",sum(hasNADates), " records due to NA dates.")) #Create a column containing the reporting delay using the timeDelay #function data$delay <- timeDelay(data[,dEventCol],data[,dReportCol]) #Handle delays longer than D. #@hoehle - handle that the unit might not just be days #notThereButDThere <- (data[,dReportCol] > now) & ((data[,dEventCol]) + D <= now) notThereButDThere <- (timeDelay(data[,dReportCol],now) < 0) & (timeDelay(data[,dEventCol],now) >= D) if (sum(notThereButDThere,na.rm=TRUE)) { warning(paste(sum(notThereButDThere,na.rm=TRUE), " observations > \"now\" due to a delay >D. If delay cut to D they would be there."),sep="") } #Which observations are available at time s #@hoehle: data.sub <- data[ na2FALSE(data[,dReportCol] <= now),] data.sub <- data[ na2FALSE(timeDelay(data[,dReportCol],now) >= 0),] if (nrow(data.sub)==0) { stop(paste("No data available at now=",now,"\n")) } #Create an sts object containing the observed number of counts until s sts <- linelist2sts(data.sub,dEventCol,aggregate.by=aggregate.by,dRange=dateRange) sts <- as(sts,"stsNC") #Create an extra object containing the "truth" based on data sts.truth <- linelist2sts(data, dEventCol, aggregate.by=aggregate.by, dRange=dateRange) #List of scores to calculate. Can become an argument later on scores <- c("logS","RPS","dist.median","outside.ci") #Initialize scoring rule results - to be saved in control slot -- dirty SR <- array(0,dim=c(nrow(sts),length(method),length(scores))) #List for storing the predictive PMFs. if (is.null(control[["predPMF",exact=TRUE]])) { control$predPMF <- FALSE } #Prepare a list of different estimated of the delay CDF delayCDF <- list() ###################################################################### # Done manipulating the control list with default arguments ###################################################################### sts@control <- control #Save truth sts@truth <- sts.truth #Reserve space for returning the predictive PMFs sts@predPMF <- list() ###################################################################### # Consistency checks ###################################################################### #Check if support of N.tInf is large enough if (2*control$N.tInf.max < max(observed(sts),na.rm=TRUE)) { warning("N.tInf.max appears too small. Largest observed value is more than 50% of N.tInf.max, which -- in case this number is extrapolated -- might cause problems.\n") } #Create a vector representing the support of N.tInf N.tInf.support <- 0:control$N.tInf.max #====================================================================== #====================================================================== # Build reporting triangle and derived parameters for delay #====================================================================== #====================================================================== cat("Building reporting triangle...\n") #Time origin t_0 t0 <- min(dateRange) #Sequence from time origin until now (per day??) t02s <- seq(t0, now,by=aggregate.by) #Maximum time index T <- length(t02s)-1 #Check if the maximum delay is longer than the available time series if (D>T) { stop("D>T. Cannot estimate the long delays.") } #How many observations to take for estimating the delay distribution if (is.null(m)) { m <- T } if (m<1) { stop("Assertion m>=1 not fulfilled.") } #Define the observation triangle n <- matrix(NA,nrow=T+1, ncol=T+1, dimnames=list(as.character(t02s), NULL)) #Loop over time points. (more efficient than delay and then t) for (t in 0:T) { #Extract all reports happening at time (index) t. #@hoehle: data.att <- data.sub[na2FALSE(data.sub[,dEventCol] == t02s[t+1]), ] data.att <- data.sub[na2FALSE(timeDelay(data.sub[,dEventCol], t02s[t+1])) == 0, ] #Loop over all delays for (x in 0:(T-t)) { #Count number with specific delay n[t+1,x+1] <- sum(data.att[,"delay"] == x) } } cat("No. cases: ",sum(n,na.rm=TRUE),"\n") #Handle delays longer than D #@hoehle: Not done! Just fix them to have delay D. # browser() nLongDelay <- apply(n[,(D+1)+seq_len(T-D), drop=FALSE],1,sum,na.rm=TRUE) if (any(nLongDelay>0)) { warning(paste(sum(nLongDelay)," cases with a delay longer than D=",D," days forced to have a delay of D days.\n",sep="")) n <- n[,1:(D+1)] n[,(D+1)] <- n[,(D+1)] + nLongDelay } else { #No problems. Just extract up to D+1 n <- n[,1:(D+1)] } #Calculate n.x and N.x as in (2.7) and (2.8) and Fig.2 of Lawless (1994) #Note the different moving window definition as in the Lawless article. n.x <- rep(0,times=D+1) N.x <- rep(0,times=D+1) ##Compute n.x and N.x for (x in 0:D) { ##Define time of occurrence sliding window index set (see documentation) if (m.interpretation == "hoehle_anderheiden2014") { toc_index_set <- max(0,T-m):(T-x) } else { #hoehle: Lawless definition is max(0,T-m-x) toc_index_set <- max(0,T-m-x):(T-x) } ## Count for (t in toc_index_set) { #cat("x=",x,"\tt=",t,":\n") n.x[x+1] <- n.x[x+1] + n[t+1,x+1] for (y in 0:x) { #cat("x=",x,"\tt=",t,"\ty=",y,":\n") N.x[x+1] <- N.x[x+1] + n[t+1,y+1] } } } cat("No. cases within moving window: ",sum(n.x,na.rm=TRUE),"\n") #Available observations at time T, definition of N(t;T) on p.17. N.tT <- sapply(0:T, function(t) sum(n[t+1, 0:min(D+1,(T-t)+1)])) #Truth - already in another object. Delete?? N.tInf <- table( factor(as.character(data[,dEventCol]),levels=as.character(t02s))) #Store results of the reporting triangle in the control slot together with additional #attributes for fast access of, e.g., summaries or defining variables. reportingTriangle <- n attr(reportingTriangle, "n.x") <- n.x attr(reportingTriangle, "N.x") <- N.x attr(reportingTriangle, "N.tT") <- N.tT attr(reportingTriangle, "N.tInf") <- N.tInf attr(reportingTriangle, "T") <- T attr(reportingTriangle, "D") <- D attr(reportingTriangle, "t02s") <- t02s sts@reportingTriangle <- reportingTriangle #====================================================================== # Calculations are jointly for all t values. #====================================================================== #List of casts each containing a table 0..N.tInf.max with the PMF Ps <- list() #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # Lawless (1994) method without adjustment for overdispersion # #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ("lawless" %in% method) { #Hazard function estimates, i.e. g-function estimate as in (2.9) #of Lawless (1994). NAs are set to zero (consequences??) g.hat <- ifelse( !is.na(n.x/N.x), n.x/N.x, 0) #Force g.hat(0)=1 as stated just below (2.1) g.hat[1] <- 1 #Check how the estimated CDF looks #F <- NULL ; for (d in 0:D) { i <- d+seq_len(D-d) ; F[d+1] <- prod(1-g.hat[i+1]) } #plot(0:D,F) #Compute weights Wt.hat as in eqn. (2.13) of Lawless (1994). Use T1=Inf. #Note: Wt.hat estimates F_t(T-t). T1 <- Inf What.t <- sapply(0:T, function(t) { if (t 0) { CDF <- c(0,ltruncpnorm(N.tInf.support, mean=Nhat.tT1[i], sd=sqrt(Vhat.Zt[i]),at=N.tT[i])) PMFs[,i] <- diff(CDF) } else { PMFs[,i] <- (N.tInf.support == Nhat.tT1[i])*1 } } Ps[["lawless"]] <- PMFs } #end lawless procedure #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # Bayesian method (simple model, clever sampling -> no MCMC) # #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Part jointly for both bayes and bayes.notrunc if (("bayes.trunc" %in% method) | ("bayes.notrunc" %in% method)) { cat("bayes prep...\n") ###################################################################### # Prior of N(t,\infty) ###################################################################### N.tInf.prior <- control$N.tInf.prior #Extract prior parameters from prior choice if (N.tInf.prior == "pois") { lambda <- attr(N.tInf.prior,"lambda",exact=TRUE) } else { if (N.tInf.prior == "poisgamma") { #Find size parameters such that mean variance is as target. var.prior <- function(size.prior) { mean.prior + mean.prior^2/size.prior } #If mean & var specified if (all(c("mean.lambda","var.lambda") %in% names(attributes(N.tInf.prior)))) { mean.prior <- attr(N.tInf.prior,"mean.lambda",exact=TRUE) var.prior.target <- attr(N.tInf.prior,"var.lambda",exact=TRUE) size.prior <- uniroot( function(size.prior) { var.prior(size.prior) - var.prior.target},interval=c(1e-12,50))$root #Check result cat("(E,V) of prior for lambda = (",paste(c(mean.prior,var.prior(size.prior)),collapse=","),")\n") } else { stop("mean.lambda and var.lambda not part of prior specification") } } else { if (N.tInf.prior == "unif") { N.tInf.prior.max <- attr(N.tInf.prior,"N.tInf.prior.max",exact=TRUE) } else { #No option applied stop("Not a valid prior!") } } } ###################################################################### # Define function to generate PMF for max(0,T-D),..,T by sampling. # # Parameters: # alpha.star, beta.star - vector containing the posterior GD params ###################################################################### pmfBySampling <- function(alpha.star, beta.star) { #Sample from posterior distribution, i.e. sample from the reverse distribution #and reverse result p.sample <- rgd(control$nSamples,alpha.star,beta.star)[,(length(alpha.star)+1):1] #All the time points where extrapolation is to be done tSet <- max(0,(T-D)):T ###################################################################### # Procedure to generate nowcasts of all time points up to T-D,...,T. # This is based on the posterior samples available in p.sample. # Current code adds up the PMF tables instead of a pure sample based # procedure and also prevents PMF=0 better than tabulating the samples. ###################################################################### N.tT1.pred <- array(NA, dim=c(dim(p.sample)[1],control$N.tInf.max+1,dim(p.sample)[2]),dimnames=list(NULL,seq_len(control$N.tInf.max+1)-1L,tSet)) for (j in 1:control$nSamples) { #Extract delay PMF from sample p <- p.sample[j,] #Proportion reported up to x, x=0,..,T F <- c(rep(1,T-D),rev(cumsum(p))) #Guard against numerical instability: ensure that not larger than 1. F <- ifelse(F>1,1,F) #Loop over all time points to nowcast for (i in 1:length(tSet)) { t <- tSet[i] N.tT1.pred[j,,i] <- switch(N.tInf.prior, "poisgamma"=dpost.bnb(N.tT[t+1],sumpd=F[t+1],mu=mean.prior,size=size.prior,N.tInf.max=control$N.tInf.max)) } } #Average the PMFs as in Step (2) of the algorithm PMF <- apply(N.tT1.pred,MARGIN=c(2,3),mean) #Add part, where no prediction needs to be done if (T-D>0) { #Empty PMFs determined <- matrix(0,nrow=control$N.tInf.max+1,ncol=T-D-1+1) #Add "1" entry at the observed for (t in 0:(T-D-1)) { determined[N.tT[t+1]+1,t+1] <- 1 } PMF <- cbind(determined,PMF) } return(PMF) } #done definition of pmfBySampling } if ("bayes.trunc" %in% method) { cat("bayes.trunc...\n") ###################################################################### #Prior of reporting delay as parameters of generalized Dirichlet prior ###################################################################### #Define symmetric dirichlet as prior, just as in the other case alpha.prior <- rep(control$gd.prior.kappa, D) beta.prior <- rep(0,D) beta.prior[D] <- control$gd.prior.kappa for (i in (D-1):1) { beta.prior[i] <- alpha.prior[i+1] + beta.prior[i+1] } ###################################################################### # Posterior section ###################################################################### #Deduce posterior distribution of delay distribution, i.e. it is again #a generalized Dirichlet alpha <- beta <- rep(NA,D) for (d in 0:(D-1)) { alpha[d+1] <- n.x[D-d+1] ##Note: +1 coz index 1 is delay 0. beta[d+1] <- N.x[D-d+1] - n.x[D-d+1] } #Check if there are any points without data and warn about it. if (any(alpha + beta == 0)) { warning("The delays ",paste(D-which(alpha+beta==0)-1,collapse=",")," have no observations. Results might be instable and depend all on prior.") } #Add up. Note: Delay zero (i.e. element D+1) is ignored as this is #not modelled explicitly by the GD distribution (sum to 1 constraints) alpha.star <- alpha.prior + alpha beta.star <- beta.prior + beta #Compute the expectation of the GD distribution and store this as the delay delayCDF[["bayes.trunc"]] <- cumsum(rev(Egd(alpha.star,beta.star))) #Save result Ps[["bayes.trunc"]] <- pmfBySampling(alpha.star, beta.star) } # end "bayes.trunc" %in% method #====================================================================== # Bayesian version which ignores truncation #====================================================================== if ("bayes.notrunc" %in% method) { cat("bayes.notrunc...\n") ###################################################################### # Prior section ###################################################################### alpha.prior <- rep(control$gd.prior.kappa, D) #symmetric dirichlet beta.prior <- rep(0,D) beta.prior[D] <- control$gd.prior.kappa for (i in (D-1):1) { beta.prior[i] <- alpha.prior[i+1] + beta.prior[i+1] } ###################################################################### # Posterior section ###################################################################### #Deduce posterior distribution of delay distribution, i.e. it is again #a generalized Dirichlet alpha <- beta <- rep(NA,D) for (d in 0:(D-1)) { alpha[d+1] <- n.x[D-d+1] beta[d+1] <- sum(n.x[D - (d+1):D + 1]) } #Check if there are any points without data and warn about it. if (any(alpha + beta == 0)) { warning("The delays ",paste(D-which(alpha+beta==0)-1,collapse=",")," have no observations. Results might be instable and depend all on prior.") } #Posterior parameters. alpha.star <- alpha.prior + alpha beta.star <- beta.prior + beta #Check that its a ordinary Dirichlet for (i in (D-1):1) { if (!all.equal(beta.star[i], alpha.star[i+1] + beta.star[i+1])) { warning("Posterior at i=",i," is not an ordinary Dirichlet as it's supposed to be.") } } #Save resulting delay distribution delayCDF[["bayes.notrunc"]] <- cumsum(rev(Egd(alpha.star,beta.star))) Ps[["bayes.notrunc"]] <- pmfBySampling(alpha.star,beta.star) } # end bayes.notrunc ###################################################################### # Unadjusted procedure using beta negative binomial. ToDo: # integrate code with other Bayesian procedures ###################################################################### if ("bayes.notrunc.bnb" %in% method) { cat("bayes.notrunc.bnb...\n") ###################################################################### # Prior section (same as for all methods) ###################################################################### alpha.prior <- rep(control$gd.prior.kappa, D) #symmetric dirichlet beta.prior <- rep(0,D) beta.prior[D] <- control$gd.prior.kappa for (i in (D-1):1) { beta.prior[i] <- alpha.prior[i+1] + beta.prior[i+1] } ###################################################################### # Posterior section ###################################################################### #Deduce posterior distribution of delay distribution, i.e. it is again #an ordinary Dirichlet alpha <- beta <- rep(NA,D) for (d in 0:(D-1)) { alpha[d+1] <- n.x[D-d+1] beta[d+1] <- sum(n.x[D - (d+1):D + 1]) } #Check if there are any points without data and warn about it. if (any(alpha + beta == 0)) { warning("The delays ",paste(D-which(alpha+beta==0)-1,collapse=",")," have no observations. Results might be instable and depend all on prior.") } #Posterior parameters. alpha.star <- alpha.prior + alpha beta.star <- beta.prior + beta #Check that its a ordinary Dirichlet for (i in (D-1):1) { if (!all.equal(beta.star[i], alpha.star[i+1] + beta.star[i+1])) { warning("Posterior at i=",i," is not an ordinary Dirichlet as it's supposed to be.") } } #Save resulting delay distribution (i.e. no truncation adjustment) delayCDF[["bayes.notrunc"]] <- cumsum(rev(Egd(alpha.star,beta.star))) #Allocate PMF to return PMF <- matrix(0,nrow=control$N.tInf.max+1,ncol=length(max(0,(T-D)):T)) #Concentration parameter vector of the ordinary Dirichlet distribution #Note. alpha.star vector is reversed (shortest delay last). alpha <- rev(c(alpha.star,beta.star[length(beta.star)])) #consistency check if (!all.equal(rev(Egd(alpha.star,beta.star)),alpha/sum(alpha))) { stop("Problem. GD and Dirichlet do not correspond...") } tSet <- max(0,(T-D)):T for (i in 1:length(tSet)) { t <- tSet[i] alpha.i <- cumsum(alpha)[T-t+1] beta.i <- sum(alpha) - alpha.i if (T-t==D) { PMF[,i] <- ifelse( N.tInf.support == N.tT[t+1], 1, 0) } else { #Calculate PMF knowing the q ~ Beta( , ) by the aggregation #property. #Note: Vector N.tT starts at time zero, i.e. time T corresponds to T+1 PMF[,i] <- dbnb( N.tInf.support - N.tT[t+1],n=N.tT[t+1]+1, alpha=alpha.i, beta=beta.i) } } #done looping over all time points #Add part, where no prediction needs to be done if (T-D>0) { #Empty PMFs determined <- matrix(0,nrow=control$N.tInf.max+1,ncol=T-D-1+1) #Add "1" entry at the observed for (t in 0:(T-D-1)) { determined[N.tT[t+1]+1,t+1] <- 1 } PMF <- cbind(determined,PMF) } Ps[["bayes.notrunc.bnb"]] <- PMF } # end bayes.notrunc.bnb ###################################################################### # Fully Bayes version with MCMC ###################################################################### if ("bayes.trunc.ddcp" %in% method) { #Allocate result PMF <- matrix( 0,ncol=(T+1),nrow=control$N.tInf.max+1) #Fix seed value of JAGS RNG for each chain n.chains <- 3 init <- lapply(1:n.chains,function(i) { list(.RNG.name="base::Mersenne-Twister",.RNG.seed=i*10) }) #Make design matrix for a quadratic TPS spline in time makeTPSDesign <- function(T,degree=2) { nbeta=degree + 1 X <- matrix(NA,ncol=nbeta, nrow=T+1) for (t in 0:T) { #Form a centered time covariate t.centered <- t - T/2 for(pow in 0:degree) { X[t+1,pow+1]<- t.centered^(pow) } } #Make the knot points evenly spaced between 0,T not including these points knots <- seq(0,T,length=min(round(T/6)+2,22)) knots <- knots[-c(1,length(knots))] #Remove knots which are beyond T-maxDelay/2 knots <- knots[knots <= T-D/2] knots <- knots - T/2 nknots <- length(knots) #Penalty as REs - setup design matrix Z <- matrix(NA,nrow=T+1,ncol=length(knots)) for (t in 0:T){ t.center <- t - T/2 for(k in 1:nknots){ Z[t+1,k]<- pmax((t.center-knots[k]),0)^degree } } return(list(X=X,Z=Z,knots=knots,nknots=nknots,nbeta=nbeta)) } tps <- makeTPSDesign(T=T,degree=2) ##browser() #Design matrix for logistic discrete time hazard model containing #changepoints. Could be extended s.t. the user provides W. W <- array(NA, dim=c(T+1, length(ddChangepoint) + ncol_Wextra, D+1), dimnames=list(as.character(t02s), c(as.character(ddChangepoint),colnames_Wextra),paste("delay",0:D,sep=""))) for (t in 0:T) { for (i in 1:length(ddChangepoint)) { # Shape design matrix for change-points if (cp_order == "zero") { W[t+1, i, ] <- as.numeric( (t02s[t+1] + 0:D) >= ddChangepoint[i]) } else if (cp_order == "one") { W[t+1, i, ] <- pmax(0, as.numeric( (t02s[t+1] + 0:D) - ddChangepoint[i])) } } # Add additional effects as part of the design matrix if (ncol_Wextra > 0) { W[t + 1, length(ddChangepoint) + 1:ncol(Wextra), ] <- Wextra[t+1,, ] } } #Priors. Uniform on the delays D.prime <- round( D/2-0.4)+1 p.prior <- rep(1/(D.prime+1), D.prime+1) mu.gamma <- qlogis( p.prior[1]) for (d in 1:(D.prime-1)) { mu.gamma <- c(mu.gamma, qlogis( p.prior[d+1] / (1-sum(p.prior[1:d])))) } tau.gamma <- rep(control$ddcp$tau.gamma,times=D.prime) #Prepare data for JAGS jagsData <- list(#Data rT=n,T=T+1,m=m+1,maxDelay=D, #Time dependent logistic discrete hazard model W=W, eta.mu=control$ddcp$eta.mu, eta.prec=control$ddcp$eta.prec, mu.gamma=mu.gamma, tau.gamma=tau.gamma, #Epidemic curve alpha.lambda=2500/3000,beta.lambda=50/3000, #Spline related stuff X=tps$X,Z=tps$Z,nknots=tps$nknots,beta.mu=rep(0,tps$nbeta),beta.prec=1e-6*diag(tps$nbeta) ) #Select appropriate model (one of: "tps","rw2","iid", "rw" as specified in the options) logLambda.method <- control$ddcp$logLambda responseDistr<- control$ddcp$responseDistr ### browser() #Load the BUGS specification of the Bayesian hierarchical Poisson model bugsModel <- readLines(file.path(path.package('surveillance'), 'jags',"bhpm.bugs")) # Load local file #bugsModel <- readLines(file.path("bhpm.bugs")) bugsModel <- gsub(paste("#<",logLambda.method,">",sep=""),"",bugsModel) bugsModel <- gsub(paste("#<",responseDistr,">",sep=""),"",bugsModel) ##browser() #Problem when eta is scalar (TODO: Improve the solution.) if (length(ddChangepoint) == 1) { #Make eta ~ dnorm( , ) instead of eta ~ dmnorm bugsModel <- gsub("(^[ ]*eta ~ )(dmnorm)","\\1dnorm",bugsModel) #Use eta[1] instead of eta for matrix multiplication bugsModel <- gsub("(eta)(.*%\\*%)","eta\\[1\\]\\2",bugsModel) } #cat(paste(bugsModel,collapse="\n")) bugsFile <- tempfile(pattern = "nowcast-") writeLines(bugsModel, bugsFile) ##browser() ## if (FALSE) { ## #Try to compile the model with ordinary rjags to see if there are any problems ## #before doing 3 chains parallelized using runjags. ## model <- jags.model(bugsFile, ## data = jagsData, ## init=init, #Fix seed value of JAGS as well ## n.chains = n.chains, n.adapt = 100) ## list.samplers(model) ## coda.samples(model,variable.names='logLambda',n.iter=100) ## } ###################################################################### # runjags way -- ToDo: parametrize using control options! ###################################################################### runjagsMethod <- 'rjparallel' #'rjags' monitor <- c('gamma','eta','logLambda','NtInf', ifelse(control$ddcp$responseDistr == "negbin", "r", NA)) samples.rj <- runjags::run.jags(bugsFile,#bugsModel, monitor = monitor, data=jagsData, n.chains=3, inits = init, burnin = control$ddcp$mcmc["burnin"], sample = control$ddcp$mcmc["sample"], thin = control$ddcp$mcmc["thin"], adapt = control$ddcp$mcmc["adapt"], summarise = FALSE, method=runjagsMethod) #Extract posterior median of discrete survival time delay distribution model parameters dt.surv.samples <- coda::as.mcmc.list(samples.rj, vars = c('gamma','^eta')) post.median <- dt.surv.pm <- apply( as.matrix(dt.surv.samples), 2, median) #Posterior median of the lambda's lambda.post <- exp(apply( as.matrix(coda::as.mcmc.list(samples.rj, vars = c('^logLambda'))), 2, quantile, prob=c(0.025,0.5,0.975))) #Extract posterior median of model parameters gamma.red <- post.median[grep("gamma",names(post.median))] eta <- matrix(post.median[grep("^eta",names(post.median))]) rownames(eta) <- colnames(W) #Map from reduced set to full set gamma <- gamma.red[round( (0:(D-1))/2 - 0.4) + 1] #browser() #Compute the resulting PMF from the model. Possibly put this in a separate function. pmf <- matrix(NA, nrow=nrow(W), ncol=D+1, dimnames=list(as.character(t02s), paste("delay", 0:D, sep=""))) #Determine PMF for (t in 1:length(t02s)) { if (as.character(t02s[t]) %in% rownames(W)) { lin.pred <- ( gamma + t(eta) %*% W[t,,0:D]) pmf[t,] <- haz2pmf(c(plogis(lin.pred),1)) } } #Store result as CDF delayCDF[["bayes.trunc.ddcp"]] <- t(apply(pmf, 1, cumsum)) # Convert to coda compatible output. samples <- coda::as.mcmc.list(samples.rj) # Store model as attribute if(control$ddcp$logLambda != "tps") tps <- NULL # Configure list with model output and store is as an attribute. list_return <- list(post.median=dt.surv.pm,W=W,lambda.post=lambda.post,tps=tps, gamma=gamma, eta=eta) if (control[["ddcp",exact=TRUE]][["mcmc",exact=TRUE]][["store.samples", exact=TRUE]]) { list_return <- modifyList(list_return, list(mcmc_samples = samples)) } attr(delayCDF[["bayes.trunc.ddcp"]],"model") <- list_return # Extract PMFs for (t in 0:T) { #Extract samples related to this time point vals <- as.matrix(samples[,paste("NtInf[",t+1,"]",sep="")]) #PMF PMF[,t+1] <- prop.table(table(factor(vals,levels=0:control$N.tInf.max))) } Ps[["bayes.trunc.ddcp"]] <- PMF } #====================================================================== #A really bad forecast -- the uniform #====================================================================== if ("unif" %in% method) { #Allocate result PMF <- matrix( 0,ncol=(T+1),nrow=control$N.tInf.max+1) #Loop over all time points to nowcast and put U(N.tT[t],Nmax) for (t in 0:T) { #How many values are there in N.tT .. Nmax noVals <- max(0,control$N.tInf.max - N.tT[t+1]) + 1 #PMF at t is 0,...0 (N.tT-1 times), 1/noVals,...,1/noVals PMF[,t+1] <- c(rep(0,N.tT[t+1]),rep(1/noVals,times=noVals)) } Ps[["unif"]] <- PMF } ###################################################################### #Loop over all time points in the vector "when". Only these are #returned. ###################################################################### idxt <- which(dateRange %in% when) for (i in idxt) { #Save PMFs if that is requested if (control$predPMF) { res <- list() for (j in 1:length(method)) { res[[method[j]]] <- Ps[[method[j]]][,i] } sts@predPMF[[as.character(dateRange[i])]] <- res } #Evaluate scoring rules, if requested if (control$score) { #Infer the true value ytinf <- observed(sts.truth)[i,] #Evaluate all scores for all predictive distributions for (i.P in 1:length(method)) { for (i.score in 1:length(scores)) { #cat("i=",i," i.P=",i.P," (",method[i.P],") i.score=",i.score,"\n") SR[i,i.P,i.score] <- do.call(scores[i.score],args=list(P=Ps[[method[i.P]]][,i],y=ytinf,alpha=control$alpha)) } } } #end if control$score #Add first nowcast & ci to stsNC slots sts@upperbound[i,] <- median(N.tInf.support[which.max( cumsum(Ps[[method[1]]][,i])>0.5)]) sts@pi[i,,] <- N.tInf.support[c(which.max(cumsum(Ps[[method[1]]][,i]) > control$alpha/2),which.max(cumsum(Ps[[method[1]]][,i]) > 1-control$alpha/2))] dimnames(sts@pi) <- list(as.character(dateRange),NULL,paste( c(control$alpha/2*100,(1-control$alpha/2)*100),"%",sep="")) } #end of loop over time points #Add scoring rule to output if (control$score) { dimnames(SR) <- list(as.character(dateRange),method,scores) sts@SR <- SR } ###################################################################### #Other arguments to save in control object ###################################################################### sts@control$N.tInf.support <- N.tInf.support sts@control$method <- sts@control$name <- method #Store variables relevant for the nowcast sts@control$D <- D sts@control$m <- m sts@control$now <- now sts@control$when <- when sts@control$timeDelay <- timeDelay #Store delayCDF object sts@delayCDF <- delayCDF #For backwards compatibility -- change this in the future TODODODODODO! sts@control$yt.support <- sts@control$N.tInf.support sts@control$y.prior.max <- sts@control$N.tInf.max ##Store the call options theCall <- list(now=now,when=when,data=data,dEventCol=dEventCol,dReportCol=dReportCol,method=method,aggregate.by=aggregate.by,D=D, m=m) sts@control$call <- theCall ##Done return(sts) } ###################################################################### # Helper functions ###################################################################### #Helper function na2FALSE <- function(x) {x[is.na(x)] <- FALSE ; return(x) } ###################################################################### # Logarithmic score # # Parameters: # P - predictive distribution, given as a vector containing the PMF # with support 0,...,N.prior.max # y - the actual observation. Can be a vector. # # Returns: # -log P(y). If y outside 0,..,N.prior.max then -Inf. ###################################################################### logS <- function(P, y, ...) { return(ifelse( y>=0 & y<=length(P)-1, -log(P[y+1]), -Inf)) } ###################################################################### # Ranked probability score # # Parameters: # P - predictive distribution, given as a vector containing the PMF # with support 0,...,N.prior.max # y - the actual observation. Can be a vector. # # Returns: # -log P(y). If y outside 0,..,N.prior.max then -Inf. ###################################################################### RPS <- function(P,y, ...) { N.support <- 0:(length(P)-1) sum( (cumsum(P) - (y <= N.support))^2) } #Some other scoring rules which are not proper. dist.median <- function(P,y, ...) { point.estimate <- which.max(cumsum(P)>=0.5) - 1 return(abs(point.estimate - y)) } #0/1 indicator of observed value outside equal tailed (1-alpha/2) CI outside.ci <- function(P,y,alpha) { N.support <- 0:(length(P)-1) ci <- N.support[c(which.max(cumsum(P) > alpha/2),which.max(cumsum(P) > 1-alpha/2))] ifelse( y>=ci[1] & y<=ci[2], 0, 1) } ###################################################################### # Helper functions for sampling the predictive distribution ###################################################################### #Unnormalized in Binomial-Negative-Binomial Hierarchy. Should work for vectors of N.tInf! #Only kernel parts for N.tInf need to be taken into account dpost.bnb.unorm <- function(N.tInf, N.tT, sumpd, mu, size) { dbinom(N.tT, size=N.tInf, prob=sumpd)*dnbinom(N.tInf, mu=mu,size=size) #Direct implementation - appears to be less stable... #ifelse(N.tInf >= N.tT, # exp(lgamma(N.tInf+size)-lgamma(N.tInf-N.tT+1) + N.tInf*log( (1-sumpd)*(mu/(mu+size)))),0) #Compare the 2 ## foo.a <- dbinom(N.tT, size=N.tInf, prob=sumpd)*dnbinom(N.tInf, mu=mu,size=size) ## foo.b <- ifelse(N.tInf >= N.tT, #& N.tInf <= size, ## exp(lgamma(N.tInf+size)-lgamma(N.tInf-N.tT+1) + N.tInf*log( (1-sumpd)*(mu/(mu+size)))),0) ## plot(foo.a/sum(foo.a)) ## points(foo.b/sum(foo.b),col="red") } #Sample in binomial-negative-binomial hierarchy rpost.bnb <- function(n=1, N.tT, sumpd, mu,size, N.tInf.max=1e4) { p <- dpost.bnb.unorm(0:N.tInf.max,N.tT=N.tT,sumpd=sumpd, mu=mu,size=size) #Set NA values to zero (why would they be NA?) #if (is.na(sum(p))) { warning("rpost.bnb: sum is NA") ; browser(p)} #Normalize the distribution - safe this for time reasons #p <- p/sum(p) #Sample sample(0:N.tInf.max, size=n, replace=TRUE, prob=p) } #PMF for the predictive distribution in binomial-negative-binomial hierarchy. #Returns entire vector for 0:N.tInf.max dpost.bnb <- function(N.tT, sumpd, mu,size, N.tInf.max=1e4) { p <- dpost.bnb.unorm(0:N.tInf.max,N.tT=N.tT,sumpd=sumpd, mu=mu,size=size) #Set NA values to zero (why would they be NA?) #if (is.na(sum(p))) { warning("rpost.bnb: sum is NA") ; browser(p)} #Normalize the distribution - safe this for time reasons return(p/sum(p)) } ###################################################################### # PMF of the beta-negatative binomial distribution # See Teerapabolarn (2008) # # Parameters: # k - where to evaluate. can be a vector. # # Returns: # PMF. ###################################################################### dbnb <- function(k,n,alpha,beta) { #Check if k's outside the support are requested. neg <- k<0 k[neg] <- 0 #Calculate the density of the beta-negbin. See Teerapabolarn (2008) num <- lgamma(n+alpha)+lgamma(k+beta)+lgamma(n+k)+lgamma(alpha+beta) den <- lgamma(n+k+alpha+beta)+lgamma(n)+lgamma(k+1)+lgamma(alpha)+lgamma(beta) res <- exp(num-den) res[neg] <- 0 return( res) } ###################################################################### # Convert discrete time hazard function on 0,...,Dmax to a probability # mass function. # # Parameters: # haz - vector with entries for (0,...,Dmax) # Returns: # vector with PMF on 0,...,Dmax. ###################################################################### haz2pmf <- function(haz) { PMF <- 0*haz for (i in 0:(length(haz)-1)) { PMF[i+1] <- haz[i+1] * (1-sum(PMF[seq(i)])) } return(PMF) } surveillance/R/stsplot_time.R0000644000176200001440000003736414615162374016046 0ustar liggesusers################################################################################ ### Time series plot for sts-objects ### ### Copyright (C) 2007-2014 Michael Hoehle, 2013-2016,2021-2022 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ###################################################################### # stsplot_time() sets the scene and calls either stsplot_time_as1() # or stsplot_time1() for each unit ###################################################################### stsplot_time <- function(x, units = NULL, as.one = FALSE, same.scale = TRUE, par.list = list(), ...) { observed <- x@observed if (is.null(units)) # plot all units units <- seq_len(ncol(observed)) nUnits <- length(units) #graphical parameters if (is.list(par.list)) { if (nUnits > 1 && !as.one) { par.list <- modifyList( #default: reduced margins and mfrow panels list(mar = c(5,4,1,1), mfrow = magic.dim(nUnits)), par.list) } else { par.list$mfrow <- NULL #no mf formatting.. } if (length(par.list) > 0) { oldpar <- par(par.list) on.exit(par(oldpar)) } } if (nUnits == 1L) { # a single time-series plot stsplot_time1(x = x, k = units, ...) } else { # multiple time series if (as.one) { # all time series in one plot stsplot_time_as1(x, units = units, ...) } else { # each time series in a separate plot args <- list(...) if(same.scale) { # compute suitable ylim if not specified if (is.null(args[["ylim"]])) { ymax <- if (x@multinomialTS) { max(0, pmax(observed,x@upperbound,na.rm=TRUE)/x@populationFrac, na.rm=TRUE) } else { max(observed,x@upperbound,na.rm=TRUE) } args$ylim <- c(-1/20*ymax, ymax) } } else { args$ylim <- NULL } #plot areas for (k in units) { argsK <- modifyList(args, list(x=x, k=k, main="", legend.opts=NULL), keep.null = TRUE) do.call("stsplot_time1",args=argsK) title(main=if (is.character(k)) k else colnames(observed)[k], line=-1) } } } invisible() } ## a simple matplot of observed counts from all/selected units, with a legend stsplot_time_as1 <- function (x, units = NULL, type = "l", lty = 1:5, lwd = 1, col = 1:6, epochsAsDate = x@epochAsDate, xaxis.tickFreq = list("%Q"=atChange), xaxis.labelFreq = xaxis.tickFreq, xaxis.labelFormat = "%G\n\n%OQ", xlab = "time", ylab = "No. infected", legend.opts = list(), ...) { observed <- x@observed if (x@multinomialTS) { observed <- ifelse(x@populationFrac != 0, observed/x@populationFrac, 0) } if (!is.null(units)) observed <- observed[, units, drop = FALSE] ## basic plot opar <- par(bty = "n", xaxt = "n") # a formatted time axis is added below matplot(observed, type = type, lty = lty, lwd = lwd, col = col, xlab = xlab, ylab = ylab, ...) par(opar) ## add time axis xaxis.line <- !epochsAsDate || grepl("\n", xaxis.labelFormat) addFormattedXAxis(x = x, epochsAsDate = epochsAsDate, xaxis.tickFreq = xaxis.tickFreq, xaxis.labelFreq = xaxis.labelFreq, xaxis.labelFormat = xaxis.labelFormat) # line = 1 ## add legend if (is.list(legend.opts)) { legend.opts <- modifyList( list(x = "top", legend = colnames(observed), lty = lty, lwd = lwd, col = col, ncol = magic.dim(ncol(observed))[2L], bty = "n"), legend.opts) do.call("legend", legend.opts) } invisible() } ### work-horse which produces a single time series plot with formatted x-axis stsplot_time1 <- function( x, k=1, ylim=NULL, axes=TRUE, xaxis.tickFreq=list("%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="%G\n\n%OQ", epochsAsDate=x@epochAsDate, xlab="time", ylab="No. infected", main=NULL, type="s", lty=c(1,1,2), col=c(NA,1,4), lwd=c(1,1,1), outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), legend.opts=list(), dx.upperbound=0L, hookFunc=function(){}, .hookFuncInheritance=function() {}, ...) { stopifnot(length(k) == 1, is.character(k) || k != 0) #Extract slots -- depending on the algorithms: x@control$range observed <- x@observed[,k] state <- x@state[,k] alarm <- x@alarm[,k] upperbound <- x@upperbound[,k] population <- x@populationFrac[,k] binaryTS <- x@multinomialTS #Control what axis style is used xaxis.dates <- !is.null(xaxis.labelFormat) if (binaryTS) { observed <- ifelse(population!=0,observed/population,0) upperbound <- ifelse(population!=0,upperbound/population,0) if (ylab == "No. infected") { ylab <- "Proportion infected" } } ##### Handle the NULL arguments ###################################### if (is.null(main) && length(method <- x@control$name)) { #a surveillance algorithm has been run action <- switch(class(x), "sts" = "surveillance", "stsNC" = "nowcasting","stsBP" = "backprojection") main <- paste0(action, " using ", method) } #if ylim is not specified, give it a default value if(is.null(ylim)){ ymax <- max(c(observed,upperbound),na.rm=TRUE) ylim <- c(-1/20*ymax, ymax) } # left/right help for constructing the columns dx.observed <- 0.5 upperboundx <- (1:length(upperbound)) - (dx.observed - dx.upperbound) #Generate the matrices to plot (values,last value) xstuff <- cbind(c(upperboundx,length(observed) + min(1-(dx.observed - dx.upperbound),0.5))) ystuff <-cbind(c(upperbound,upperbound[length(observed) ])) #Plot the results if (length(lty) < 3) lty[3] <- 0 # blank upperbound matplot(x=xstuff,y=ystuff,xlab=xlab,ylab=ylab,main=main,ylim=ylim,axes = !(xaxis.dates),type=type,lty=lty[-c(1:2)],col=col[-c(1:2)],lwd=lwd[-c(1:2)],...) #This draws the polygons containing the number of counts (sep. by NA) i <- rep(1:length(observed),each=5) dx <- rep(dx.observed * c(-1,-1,1,1,NA), times=length(observed)) x.points <- i + dx y.points <- as.vector(t(cbind(0, observed, observed, 0, NA))) polygon(x.points,y.points,col=col[1],border=col[2],lwd=lwd[1],lty=lty[1]) #Draw upper bound once more in case the polygons are filled if (!is.na(col[1])) { lines(x=xstuff,y=ystuff,type=type,lty=lty[-c(1:2)],col=col[-c(1:2)],lwd=lwd[-c(1:2)],...) } #Draw alarm symbols alarmIdx <- which(alarm == 1) if (length(alarmIdx)>0) { matpoints( alarmIdx, rep(-1/40*ylim[2],length(alarmIdx)), pch=alarm.symbol$pch, col=alarm.symbol$col, cex= alarm.symbol$cex, lwd=alarm.symbol$lwd) } #Draw outbreak symbols stateIdx <- which(state == 1) if (length(stateIdx)>0) { matpoints( stateIdx, rep(-1/20*ylim[2],length(stateIdx)), pch=outbreak.symbol$pch, col=outbreak.symbol$col,cex = outbreak.symbol$cex,lwd=outbreak.symbol$lwd) } #Label x-axis if(xaxis.dates & axes) { addFormattedXAxis(x = x, epochsAsDate = epochsAsDate, xaxis.tickFreq = xaxis.tickFreq, xaxis.labelFreq = xaxis.labelFreq, xaxis.labelFormat = xaxis.labelFormat, ...) } #Label y-axis if (axes) { axis( side=2 ,...) } hasupper <- any(upperbound > 0, na.rm = TRUE) included <- c(observed = TRUE, upperbound = hasupper, outbreaks = length(stateIdx) > 0, alarms = hasupper || length(alarmIdx) > 0) doLegend <- if (missing(legend.opts)) { sum(included) > 1 } else { is.list(legend.opts) } if(doLegend) { ## FIXME: use method-specific default upperbound label? ## ublegend <- if (identical(x@control[["ret"]], "value") && ## startsWith(x@control$name, "glr")) ## "GLR statistic" else "Threshold" if (!is.na(col[1])) { # filled polygons ltyObs <- NA pchObs <- 22 fillObs <- col[1] } else { ltyObs <- lty[1] pchObs <- NA fillObs <- NA } legend.opts <- modifyList( list(x = "top", lty = c(ltyObs,lty[3],NA,NA)[included], lwd = c(lwd[1],lwd[3],outbreak.symbol$lwd,alarm.symbol$lwd)[included], col = c(col[2],col[3],outbreak.symbol$col,alarm.symbol$col)[included], pch = c(pchObs,NA, outbreak.symbol$pch,alarm.symbol$pch)[included], pt.bg = c(fillObs,NA,NA,NA)[included], legend = c("Infected", "Threshold", "Outbreak", "Alarm")[included]), legend.opts) #Make the legend do.call("legend",legend.opts) } #Call hook function for user customized action using the current environment environment(hookFunc) <- environment() hookFunc() #Extra hook functions for inheritance plotting (see e.g. plot function of stsNC objects) environment(.hookFuncInheritance) <- environment() .hookFuncInheritance() invisible() } ############## ### alarm plot ############## stsplot_alarm <- function( x, lvl=rep(1,ncol(x)), xaxis.tickFreq=list("%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="%G\n\n%OQ", epochsAsDate=x@epochAsDate, xlab="time", ylab="", main=NULL, outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), # unused alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), cex.yaxis=1, ...) { if (is.null(main) && length(method <- x@control$name)) { #a surveillance algorithm has been run action <- switch(class(x), "sts" = "surveillance", "stsNC" = "nowcasting","stsBP" = "backprojection") main <- paste0(action, " using ", method) } #Control what axis style is used xaxis.dates <- !is.null(xaxis.labelFormat) #Initialize plot plot(x=c(0.5,nrow(x)+0.5),y=c(0.5,ncol(x)),xlab=xlab,ylab=ylab,main=main,axes=FALSE,type="n",...) #Label of x-axis if(xaxis.dates){ addFormattedXAxis(x = x, epochsAsDate = epochsAsDate, xaxis.tickFreq = xaxis.tickFreq, xaxis.labelFreq = xaxis.labelFreq, xaxis.labelFormat = xaxis.labelFormat, ...) } axis( side=2, at=1:ncol(x),cex.axis=cex.yaxis, labels=colnames(x),las=2) #Draw all alarms for (i in 1:nrow(x)) { idx <- (1:ncol(x))[x@alarm[i,] > 0] for (j in idx) { points(i,j,pch=alarm.symbol$pch,col=alarm.symbol$col[lvl[j]],cex=alarm.symbol$cex,lwd=alarm.symbol$lwd) } } #Draw lines separating the levels m <- c(-0.5,cumsum(as.numeric(table(lvl)))) sapply(m, function(i) lines(c(0.5,nrow(x@alarm)+0.5),c(i+0.5,i+0.5),lwd=2)) invisible() } ##################################### ### Utilities to set up the time axis ##################################### #Every unit change atChange <- function(x,xm1) { which(diff(c(xm1,x)) != 0) } #Median index of factor atMedian <- function(x,xm1) { as.integer(tapply(seq_along(x), INDEX=x, quantile, probs=0.5, type=3)) } #Only every second unit change at2ndChange <- function(x,xm1) { idxAtChange <- atChange(x,xm1) idxAtChange[seq(idxAtChange) %% 2 == 1] } #Helper function to format the x-axis of the time series addFormattedXAxis <- function(x, epochsAsDate = FALSE, xaxis.tickFreq = list("%Q"=atChange), xaxis.labelFreq = xaxis.tickFreq, xaxis.labelFormat = "%G\n\n%OQ", ...) { #Old style if there are no Date objects if (!epochsAsDate) { #Declare commonly used variables. nTime <- nrow(x) startyear <- x@start[1] firstweek <- x@start[2] if (x@freq ==52) { #Weekly epochs are the most supported # At which indices to put the "at" tick label. This will # be exactly those week numbers where the new quarter begins: 1, 14, 27 and 40 + i*52. # Note that week number and index is not the same due to the "firstweek" argument weeks <- seq_len(nTime) + (firstweek-1) noYears <- ceiling(max(weeks)/52) quarterStarts <- rep( (0:(noYears))*52, each=4) + rep( c(1,14,27,40), noYears+1) weeks <- subset(weeks, !is.na(match(weeks,quarterStarts))) weekIdx <- weeks - (firstweek-1) # get the right year for each week year <- weeks %/% 52 + startyear # function to define the quarter order quarterFunc <- function(i) { switch(i+1,"I","II","III","IV") } #nicer:as.roman, but changes class. # get the right number and order of quarter labels quarter <- sapply( (weeks-1) %/% 13 %% 4, quarterFunc) #Computed axis labels -- add quarters (this is the old style) labels.week <- paste(year,"\n\n",quarter,sep="") #Make the line. Use lwd.ticks to get full line but no marks. axis( side=1,labels=FALSE,at=c(1,nTime),lwd.ticks=0,line=1,...) axis( at=weekIdx[which(quarter != "I")] , labels=labels.week[which(quarter != "I")] , side=1, line = 1 ,...) #Bigger tick marks at the first quarter (i.e. change of the year) at <- weekIdx[which(quarter == "I")] axis( at=at, labels=rep(NA,length(at)), side=1, line = 1 ,tcl=2*par("tcl")) } else { ##other frequency (not really supported) #A label at each unit myat.unit <- seq(firstweek,length.out=nTime) # get the right year order month <- (myat.unit-1) %% x@freq + 1 year <- (myat.unit - 1) %/% x@freq + startyear #construct the computed axis labels -- add quarters if xaxis.units is requested mylabels.unit <- paste(year,"\n\n", (myat.unit-1) %% x@freq + 1,sep="") #Add axis axis( at=seq_len(nTime), labels=NA, side=1, line = 1, ...) axis( at=seq_len(nTime)[month==1], labels=mylabels.unit[month==1] , side=1, line = 1 ,...) #Bigger tick marks at the first unit at <- seq_len(nTime)[(myat.unit - 1) %% x@freq == 0] axis( at=at, labels=rep(NA,length(at)), side=1, line = 1 ,tcl=2*par("tcl")) } } else { ################################################################ #epochAsDate -- experimental functionality to handle ISO 8601 ################################################################ dates <- epoch(x, as.Date = TRUE) #make one which has one extra element at beginning with same spacing datesOneBefore <- c(dates[1]-(dates[2]-dates[1]),dates) #Make the line. Use lwd.ticks to get full line but no marks. axis( side=1,labels=FALSE,at=c(1,length(dates)),lwd.ticks=0,...) ###Make the ticks (depending on the selected level).### tcl <- par("tcl") tickFactors <- surveillance.options("stsTickFactors") #Loop over all pairs in the xaxis.tickFreq list for (i in seq_along(xaxis.tickFreq)) { format <- names(xaxis.tickFreq)[i] xm1x <- as.numeric(formatDate(datesOneBefore,format)) idx <- xaxis.tickFreq[[i]](x=xm1x[-1],xm1=xm1x[1]) #Find tick size by table lookup tclFactor <- tickFactors[pmatch(format, names(tickFactors))] if (is.na(tclFactor)) { warning("no \"tcl\" factor found for \"", format ,"\" -> setting it to 1") tclFactor <- 1 } axis(1,at=idx, labels=NA,tcl=tclFactor*tcl,...) } ###Make the labels (depending on the selected level)### if (!is.null(xaxis.labelFormat)) { labelIdx <- NULL for (i in seq_along(xaxis.labelFreq)) { format <- names(xaxis.labelFreq)[i] xm1x <- as.numeric(formatDate(datesOneBefore,format)) labelIdx <- c(labelIdx,xaxis.labelFreq[[i]](x=xm1x[-1],xm1=xm1x[1])) } #Format labels (if any) for the requested subset if (length(labelIdx)>0) { labels <- rep(NA,nrow(x)) labels[labelIdx] <- formatDate(dates[labelIdx],xaxis.labelFormat) axis(1,at=1:nrow(x), labels=labels,tick=FALSE,...) } } }#end epochAsDate #Done invisible() } surveillance/R/plapply.R0000644000176200001440000001070313621207062014753 0ustar liggesusers################################################################################ ### Parallelized lapply (wrapping around mclapply and parLapply) ### taking care of the random seed and printing progress information ### ### Copyright (C) 2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ plapply <- function (X, FUN, ..., .parallel = 1, .seed = NULL, .verbose = TRUE) { if (!(useCluster <- inherits(.parallel, "cluster"))) { stopifnot(length(.parallel) == 1L, is.vector(.parallel, "numeric"), .parallel >= 1) .parallel <- as.vector(.parallel, mode = "integer") if (.Platform$OS.type == "windows" && .parallel > 1L) { useCluster <- TRUE .parallel <- parallel::makeCluster(.parallel) on.exit(parallel::stopCluster(.parallel)) } } FUN <- match.fun(FUN) .FUN <- if (useCluster || is.primitive(FUN)) { FUN # no support for reporting to the master || add.on.exit } else { # be verbose on.exit of FUN verboseExpr <- if (isTRUE(.verbose)) { ## progress bar or dots if (.parallel == 1L && interactive()) { env <- new.env(hash = FALSE, parent = environment(FUN)) environment(FUN) <- env # where the progress bar lives env$pb <- txtProgressBar(min = 0, max = length(X), initial = 0, style = 3) on.exit(close(env$pb), add = TRUE) quote(setTxtProgressBar(pb, pb$getVal() + 1L)) } else { on.exit(cat("\n"), add = TRUE) quote(cat(".")) } } else if (is.call(.verbose) || is.expression(.verbose)) { ## custom call or expression .verbose } else if (is.character(.verbose)) { ## custom progress symbol on.exit(cat("\n"), add = TRUE) substitute(cat(.verbose)) } # else NULL (no output) ## add on.exit(verboseExpr) to body(FUN) do.call(add.on.exit, list(FUN, verboseExpr)) } ## set random seed for reproducibility if (!is.null(.seed)) { if (useCluster) { parallel::clusterSetRNGStream(cl = .parallel, iseed = .seed) } else { if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) { set.seed(NULL) # initialize } .orig.seed <- get(".Random.seed", envir = .GlobalEnv) on.exit(assign(".Random.seed", .orig.seed, envir = .GlobalEnv), add = TRUE) if (.parallel == 1L) { set.seed(seed = .seed) } else { stopifnot(requireNamespace("parallel", quietly = TRUE)) ## Note @ R 3.1.3: this loading of package "parallel" ## before set.seed() is crucial; otherwise, the first run of ## plapply() would not be reproducible !!! set.seed(seed = .seed, kind = "L'Ecuyer-CMRG") parallel::mc.reset.stream() } } } ## rock'n'roll if (useCluster) { parallel::parLapply(cl = .parallel, X = X, fun = .FUN, ...) } else if (.parallel == 1L) { lapply(X = X, FUN = .FUN, ...) } else { # use forking parallel::mclapply(X = X, FUN = .FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE, mc.silent = FALSE, mc.cores = .parallel) } } ## add an on.exit() statement at the beginning of a function add.on.exit <- function (FUN, expr) { FUN <- match.fun(FUN) if (is.null(expr <- substitute(expr))) { return(FUN) } if (is.primitive(FUN)) { # body(FUN) is NULL stop("not implemented for primitive functions") } onexitexpr <- substitute(on.exit(expr)) obody <- body(FUN) body(FUN) <- if (is.call(obody) && identical(as.name("{"), obody[[1L]])) { ## body(FUN) is a braced expression (usual case) ## and we insert on.exit(expr) directly after "{" as.call(append(x = as.list(obody), values = onexitexpr, after = 1L)) } else { ## body(FUN) is a symbol or a single call like UseMethod("print") as.call(c(as.name("{"), onexitexpr, obody)) } FUN } surveillance/R/glm_epidataCS.R0000644000176200001440000000472314426171115015776 0ustar liggesusers################################################################################ ### Formulation of an endemic-only twinstim as a Poisson-GLM with response the ### number of events per space-time cell of stgrid and offset log(dt*ds) ### ### Copyright (C) 2013-2014,2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ utils::globalVariables("area") # in glm(), the 'offset' is evaluated in 'data' glm_epidataCS <- function (formula, data, ...) { if (missing(formula)) { covariates <- c("start", setdiff(names(data$stgrid), c( reservedColsNames_stgrid, obligColsNames_stgrid))) formula <- as.formula(paste0("~", paste0(covariates, collapse=" + "))) } ## for a type-specific model, we really have to set up the full ## "stkappagrid", i.e. with nBlocks*nTiles*nTypes rows typeSpecificModel <- "type" %in% all.vars(formula) typeNames <- levels(data$events@data$type) nTypes <- length(typeNames) ## aggregated number of events in each cell of the stgrid ## (prehistory events have a missing BLOCK and are thus ignored) if (typeSpecificModel) { .stgrid <- do.call("rbind", lapply(typeNames, function (type) { cbind(data$stgrid, type=type, deparse.level=0) })) eventsByCell <- c(table(with(data$events@data, { interaction(tile, BLOCK, type, drop=FALSE, sep=".", lex.order=FALSE) }))) .stgrid$nEvents <- eventsByCell[paste( .stgrid$tile, .stgrid$BLOCK, .stgrid$type, sep=".")] } else { .stgrid <- data$stgrid eventsByCell <- c(table(with(data$events@data, { interaction(tile, BLOCK, drop=FALSE, sep=".", lex.order=FALSE) }))) .stgrid$nEvents <- eventsByCell[paste( .stgrid$tile, .stgrid$BLOCK, sep=".")] } .stgrid$nEvents[is.na(.stgrid$nEvents)] <- 0L ##stopifnot(sum(.stgrid$nEvents) == sum(!is.na(data$events$BLOCK))) ## Fit corresponding Poisson-GLM environment(formula) <- environment() # to see typeSpecificModel and nTypes glm(update.formula(formula, nEvents ~ .), family = poisson(link="log"), data = .stgrid, offset = log((if(typeSpecificModel) 1 else nTypes)*(stop-start)*area), ...) } surveillance/R/addSeason2formula.R0000644000176200001440000000362214667315714016664 0ustar liggesusers################################################################################ ### Conveniently add sine-cosine terms to a model formula ### ### Copyright (C) 2010 Michaela Paul, 2013-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## for S = 1, 'sin(2*pi * t/period) + cos(2*pi * t/period)' is added to 'f' addSeason2formula <- function ( f = ~1, # formula to enhance S = 1, # number of sine/cosine pairs period = 52, # periodicity of the sinusoidal wave timevar = "t" # name of the time variable ){ ## check arguments stopifnot(inherits(f, "formula"), is.vector(S, mode = "numeric"), S >= 0, isScalar(period)) ## return unchanged formula if S = 0 if (max(S) == 0) { environment(f) <- .GlobalEnv # as documented return(f) } ## character representation of old formula ftext <- paste0(deparse(f), collapse = "") ## add sine-cosine terms if (length(S) == 1L) { for (i in seq_len(S)) { ftext <- paste0(ftext, " + sin(", 2*i, "*pi*", timevar, "/", period, ")", " + cos(", 2*i, "*pi*", timevar, "/", period, ")") } } else { ## unit-specific seasonality for hhh4() via the special fe() function for (i in seq_len(max(S))) { which <- paste0(i <= S, collapse = ",") ftext <- paste0(ftext, " + fe(sin(",2*i,"*pi*",timevar,"/",period,"), which=c(",which,"))", " + fe(cos(",2*i,"*pi*",timevar,"/",period,"), which=c(",which,"))") } } ## convert back to a formula as.formula(ftext, env = .GlobalEnv) } surveillance/R/sts_animate.R0000644000176200001440000001420014426171115015600 0ustar liggesusers################################################################################ ### Animated map (and time series chart) of an sts-object (or matrix of counts) ### ### Copyright (C) 2013-2016,2018,2020 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Corresponding to the S3-generic function animate(), ### we define a method for the S4-class "sts" and omit the recommended ### setGeneric("animate"); setMethod("animate", "sts", animate.sts) ### [see Section "Methods for S3 Generic Functions" in help("Methods")] animate.sts <- function (object, tps = NULL, cumulative = FALSE, population = NULL, at = 10, ..., timeplot = list(pos = 1, size = 0.3, fill = TRUE), sleep = 0.5, verbose = interactive(), draw = TRUE) { if (draw && dev.interactive()) message("Advice: use facilities of the \"animation\" package, e.g.,\n", " saveHTML() to view the animation in a web browser.") if (is.null(tps)) tps <- seq_len(nrow(object)) if (!is.null(population)) { # get population matrix population <- parse_population_argument(population, object) } ## determine color breaks (checkat() is defined in stsplot_space.R) at <- checkat(at, data=.rangeOfDataToPlot(object, tps, cumulative, population), counts=is.null(population)) ## style of the additional temporal plot if (is.list(timeplot)) { timeplot <- modifyList(eval(formals()$timeplot), timeplot) if (!is.null(timeplot[["height"]])) { # surveillance <= 1.18.0 timeplot$pos <- 1 timeplot$size <- timeplot$height timeplot$height <- NULL } stopifnot(timeplot$pos %in% 1:4, timeplot$size > 0, timeplot$size < 1) ## disentangle arguments not for stsplot_timeSimple() timeplot_pos <- timeplot$pos timeplot_size <- timeplot$size timeplot_fill <- timeplot$fill timeplot$pos <- timeplot$size <- timeplot$fill <- NULL } if (verbose) pb <- txtProgressBar(min=0, max=length(tps), initial=0, style=3) grobs <- vector(mode = "list", length = length(tps)) for(i in seq_along(tps)) { cti <- if (cumulative) seq_len(i) else i ls <- stsplot_space(object, tps=tps[cti], population=population, at=at, ...) if (is.list(timeplot) && requireNamespace("gridExtra")) { stopifnot(packageVersion("gridExtra") >= "2.0.0") lt <- do.call("stsplot_timeSimple", c( list(x=object, tps=tps, highlight=cti), timeplot)) if (!isTRUE(timeplot_fill)) { # see ?trellis.object lt$aspect.fill <- FALSE lt$aspect.ratio <- ls$aspect.ratio * if (timeplot_pos %in% c(1,3)) timeplot_size / (1-timeplot_size) else (1-timeplot_size) / timeplot_size } grobs[[i]] <- switch(timeplot_pos, gridExtra::arrangeGrob(ls, lt, heights=c(1-timeplot_size, timeplot_size)), gridExtra::arrangeGrob(lt, ls, widths=c(timeplot_size, 1-timeplot_size)), gridExtra::arrangeGrob(lt, ls, heights=c(timeplot_size, 1-timeplot_size)), gridExtra::arrangeGrob(ls, lt, widths=c(1-timeplot_size, timeplot_size))) if (draw) { grid::grid.newpage() grid::grid.draw(grobs[[i]]) } } else { grobs[[i]] <- ls if (draw) print(ls) } if (verbose) setTxtProgressBar(pb, i) if (dev.interactive()) Sys.sleep(sleep) } if (verbose) close(pb) invisible(grobs) } ### additional time plot below the map stsplot_timeSimple <- function (x, tps = NULL, highlight = integer(0), inactive = list(col="gray", lwd=2), active = list(col=1, lwd=4), as.Date = x@epochAsDate, ...) { observed <- if (inherits(x, "sts")) observed(x) else x if (is.null(tps)) { tps <- seq_len(nrow(observed)) } else { observed <- observed[tps,,drop=FALSE] } epoch <- if (inherits(x, "sts")) epoch(x, as.Date = as.Date)[tps] else tps if (anyNA(observed)) warning("ignoring NA counts in time series plot") ## build highlight-specific style vectors (col, lwd, ...) stopifnot(is.list(inactive), is.list(active)) stylepars <- intersect(names(inactive), names(active)) styleargs <- sapply(stylepars, function (argname) { res <- rep.int(inactive[[argname]], length(tps)) res[highlight] <- active[[argname]] res }, simplify=FALSE, USE.NAMES=TRUE) par_no_top_padding <- list( layout.heights = list(top.padding = 0, main.key.padding = 0, key.axis.padding = 0) ) xyplot.args <- modifyList( c(list(x = rowSums(observed, na.rm = TRUE) ~ epoch, type = "h", grid = "h", ylab = "", xlab = "", ylim = c(0, NA), scales = list(x = list(tck = c(1, 0))), par.settings = par_no_top_padding), styleargs), list(...)) do.call(lattice::xyplot, xyplot.args) } ### determine data range for automatic color breaks 'at' .rangeOfDataToPlot <- function (object, tps, cumulative = FALSE, population = NULL) { observed <- if (inherits(object, "sts")) observed(object) else object observed <- observed[tps,,drop=FALSE] if (!is.null(population)) { # compute (cumulative) incidence observed <- if (cumulative) { observed / rep(population[tps[1L],], each = nrow(observed)) } else { observed / population[tps,,drop=FALSE] } } range(if (cumulative) c(observed[1L,], colSums(observed)) else observed, na.rm = TRUE) } surveillance/R/epidataCS_animate.R0000644000176200001440000001516614426171115016640 0ustar liggesusers################################################################################ ### animate-method for "epidataCS" objects ### It respects the ani.options() "interval" and "nmax" of the animation ### package, and it is advisable to use it within saveHTML() or similar ### ### Copyright (C) 2009-2014 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## three types: ## time.spacing=NULL: sequential snapshots at all event times ## time.spacing=scalar: snapshots with given time step (and timer) ## time.spacing=NA: time step is determined such that "nmax" snapshots result animate.epidataCS <- function (object, interval = c(0,Inf), time.spacing = NULL, nmax = NULL, sleep = NULL, legend.opts = list(), timer.opts = list(), pch = 15:18, col.current = "red", col.I = "#C16E41", col.R = "#B3B3B3", col.influence = NULL, main = NULL, verbose = interactive(), ...) { stopifnot(is.numeric(interval), length(interval) == 2L) with.animation <- requireNamespace("animation", quietly = TRUE) if (is.null(sleep)) { sleep <- if (with.animation) animation::ani.options("interval") else 0.1 ## we cannot set this as default function argument, because we don't ## want to depend on package "animation" (surveillance only suggests it) } if (is.null(nmax)) { nmax <- if (with.animation) animation::ani.options("nmax") else Inf } s <- summary(object) removalTimes <- s$eventTimes + object$events$eps.t eventCoordsTypes <- cbind(s$eventCoords, type = s$eventTypes) pch <- rep_len(pch, s$nTypes) typeNames <- names(s$typeTable) multitype <- length(typeNames) > 1L # set default legend options doLegend <- if (is.list(legend.opts)) { if (is.null(legend.opts[["x"]])) legend.opts$x <- "topright" if (is.null(legend.opts$title)) legend.opts$title <- if (multitype) "type" else "state" if (is.null(legend.opts$legend)) { legend.opts$legend <- if (multitype) typeNames else c("infectious", if (!is.na(col.R)) "removed") } if (is.null(legend.opts$col)) { legend.opts$col <- if (multitype) col.current else c(col.I, if (!is.na(col.R)) col.R) } if (is.null(legend.opts$pch)) legend.opts$pch <- pch TRUE } else FALSE # set default timer options doTimer <- if (is.list(timer.opts)) { if (is.null(timer.opts[["x"]])) timer.opts$x <- "bottomright" if (is.null(timer.opts$title)) timer.opts$title <- "time" if (is.null(timer.opts$box.lty)) timer.opts$box.lty <- 0 if (is.null(timer.opts$adj)) timer.opts$adj <- c(0.5,0.5) if (is.null(timer.opts$inset)) timer.opts$inset <- 0.01 if (is.null(timer.opts$bg)) timer.opts$bg <- "white" TRUE } else FALSE # wrapper for 'points' with specific 'cex' for multiplicity multpoints <- function (tableCoordsTypes, col) { tableMult <- countunique(tableCoordsTypes) points(tableMult[,1:2,drop=FALSE], pch = pch[tableMult[,"type"]], col = col, cex = sqrt(1.5*tableMult[,"COUNT"]/pi) * par("cex")) } # functions returning if events are in status I or R at time t I <- function (t) s$eventTimes <= t & removalTimes >= t R <- function (t) removalTimes < t sequential <- is.null(time.spacing) # plot observed infections sequentially if (!sequential) stopifnot(length(time.spacing) == 1L) timeGrid <- if (sequential) unique(s$eventTimes) else { start <- max(s$timeRange[1], interval[1]) end <- min(interval[2], s$timeRange[2], max(removalTimes) + if (is.na(time.spacing)) 0 else time.spacing) if (is.na(time.spacing)) { if (!is.finite(nmax)) { stop("with 'time.spacing=NA', 'nmax' must be finite") } seq(from = start, to = end, length.out = nmax) } else { tps <- seq(from = start, to = end, by = time.spacing) if (length(tps) > nmax) { message("Generating only the first ", sQuote(if (with.animation) "ani.options(\"nmax\")" else "nmax"), " (=", nmax, ") snapshots") head(tps, nmax) } else tps } } .info <- format.info(timeGrid) timerformat <- paste0("%", .info[1], ".", .info[2], "f") # animate loopIndex <- if (!sequential) timeGrid else { idxs <- which(s$eventTimes >= interval[1] & s$eventTimes <= interval[2]) if (length(idxs) > nmax) { message("Generating only the first ", sQuote(if (with.animation) "ani.options(\"nmax\")" else "nmax"), " (=", nmax, ") events") head(idxs, nmax) } else idxs } told <- -Inf if (verbose) pb <- txtProgressBar(min=0, max=max(loopIndex), initial=0, style=3) for(it in loopIndex) { t <- if (sequential) s$eventTimes[it] else it infectious <- I(t) removed <- R(t) plot(object$W, asp = 1, ...) # hard-coded 'asp' avoids sp -> sf title(main = main) if (doLegend) do.call(legend, legend.opts) if (doTimer) { ttxt <- sprintf(timerformat, t) do.call(legend, c(list(legend = ttxt), timer.opts)) } if (!is.null(col.influence)) { iRids <- which(infectious) if (sequential) setdiff(iRids, it) for(j in iRids) { iR <- shift.owin(object$events@data$.influenceRegion[[j]], s$eventCoords[j,]) plot(iR, add = TRUE, col = col.influence, border = NA) } } rTable <- eventCoordsTypes[removed,,drop=FALSE] if (nrow(rTable) > 0L) multpoints(rTable, col = col.R) iTable <- eventCoordsTypes[infectious,,drop=FALSE] if (nrow(iTable) > 0L) multpoints(iTable, col = col.I) infectiousNew <- if (sequential) it else infectious & !I(told) iTableNew <- eventCoordsTypes[infectiousNew,,drop=FALSE] if (nrow(iTableNew) > 0L) multpoints(iTableNew, col = col.current) told <- t if (verbose) setTxtProgressBar(pb, it) if (dev.interactive()) Sys.sleep(sleep) } if (verbose) close(pb) ## if (dev.interactive()) ## message("Note: use facilities of the \"animation\" package, e.g.,\n", ## " saveHTML() to view the animation in a web browser.") invisible(NULL) } surveillance/R/bodaDelay.R0000644000176200001440000006164014662137762015203 0ustar liggesusers# ____________________________ # |\_________________________/|\ # || || \ # || bodaDelay || \ # || || | # || || | # || || | # || || | # || || | # || || / # ||_________________________|| / # |/_________________________\|/ # __\_________________/__/|_ # |_______________________|/ ) # ________________________ (__ # /oooo oooo oooo oooo /| _ )_ # /ooooooooooooooooooooooo/ / (_)_(_) # /ooooooooooooooooooooooo/ / (o o) #/C=_____________________/_/ ==\o/== # Author: M.Salmon ################################################################################ # CONTENTS ################################################################################ # # MAIN FUNCTION # Function that manages input and output. # # FIT GLM FUNCTION # Function that fits a GLM. # # THRESHOLD FUNCTION # Function that calculates the threshold. # # DATA GLM FUNCTION # Function that prepares data for the GLM. # # FORMULA FUNCTION # Function that writes the formula for the GLM. ################################################################################ # END OF CONTENTS ################################################################################ ################################################################################ # MAIN FUNCTION ################################################################################ bodaDelay <- function(sts, control = list(range = NULL, b = 5, w = 3, mc.munu=100, mc.y=10, pastAberrations = TRUE, verbose = FALSE, alpha = 0.05, trend = TRUE, limit54=c(5,4), inferenceMethod=c("asym","INLA"), quantileMethod=c("MC","MM"), noPeriods = 1, pastWeeksNotIncluded = NULL, delay = FALSE)) { ###################################################################### # Use special Date class mechanism to find reference months/weeks/days ###################################################################### if (is.null( sts@epochAsDate)) { epochAsDate <- FALSE } else { epochAsDate <- sts@epochAsDate } ###################################################################### # Fetch observed and population ###################################################################### # Fetch observed observed <- observed(sts) freq <- sts@freq if (epochAsDate) { epochStr <- switch( as.character(freq), "12" = "month","52" = "week", "365" = "day") } else { epochStr <- "none" } # Fetch population (if it exists) if (!is.null(population(sts))) { population <- population(sts) } else { population <- rep(1,length(observed)) } ###################################################################### # Fix missing control options ###################################################################### if (is.null(control[["b",exact=TRUE]])) { control$b = 5 } if (is.null(control[["w", exact = TRUE]])) { control$w = 3 } if (is.null(control[["range", exact=TRUE]])) { control$range <- (freq*(control$b)+control$w +1):dim(observed)[1] } if (is.null(control[["pastAberrations",exact=TRUE]])) {control$pastAberrations=TRUE} if (is.null(control[["verbose",exact=TRUE]])) {control$verbose=FALSE} if (is.null(control[["alpha",exact=TRUE]])) {control$alpha=0.05} if (is.null(control[["trend",exact=TRUE]])) {control$trend=TRUE} # No alarm is sounded # if fewer than cases = 5 reports were received in the past period = 4 # weeks. limit54=c(cases,period) is a vector allowing the user to change # these numbers if (is.null(control[["limit54",exact=TRUE]])) {control$limit54=c(5,4)} if (is.null(control[["noPeriods",exact=TRUE]])){control$noPeriods=1} # Use factors in the model? Depends on noPeriods, no input from the user. if (control$noPeriods!=1) { control$factorsBool=TRUE } else { control$factorsBool=FALSE } # How many past weeks not to take into account? if (is.null(control[["pastWeeksNotIncluded",exact=TRUE]])){ control$pastWeeksNotIncluded=control$w } # Correct for delays? if (is.null(control[["delay",exact=TRUE]])) { control$delay = FALSE } # Reporting triangle here? if (control$delay) { if (is.null( sts@control$reportingTriangle$n)) {stop("You have to provide a reporting triangle in control of the sts-object")} if (!(length(apply(sts@control$reportingTriangle$n,1,sum,na.rm=TRUE))==length(sts@observed))) {stop("The reporting triangle number of lines is not the length of the observed slot.")} if (!(sum(apply(sts@control$reportingTriangle$n,1,sum,na.rm=TRUE)==sts@observed)==length(sts@observed))) {stop("The reporting triangle is wrong: not all cases are in the reporting triangle.")} } # setting for monte carlo integration if(is.null(control[["mc.munu",exact=TRUE]])){ control$mc.munu <- 100 } if(is.null(control[["mc.y",exact=TRUE]])){ control$mc.y <- 10 } ###################################################################### # Check options ###################################################################### if (!((control$limit54[1] >= 0) && (control$limit54[2] > 0))) { stop("The limit54 arguments are out of bounds: cases >= 0 and period > 0.") } # inference method if(is.null(control[["inferenceMethod",exact=TRUE]])){ control$inferenceMethod <- "asym" } else { control$inferenceMethod <- match.arg(control$inferenceMethod, c("asym","INLA")) } if(is.null(control[["quantileMethod",exact=TRUE]])){ control$quantileMethod <- "MC" } else { control$quantileMethod <- match.arg(control$quantileMethod, c("MC","MM")) } #Check if the INLA package is available. if (control$inferenceMethod=="INLA"){ if (!requireNamespace("INLA", quietly = TRUE)) { stop("The bodaDelay function requires the INLA package to be installed.\n", " The package is not available on CRAN, but can be easily obtained\n", " from .\n", " Alternatively, set inferenceMethod to \"asym\".") } } # Define objects n <- control$b*(2*control$w+1) # loop over columns of sts #Vector of dates if (epochAsDate){ vectorOfDates <- as.Date(sts@epoch, origin="1970-01-01") } else { vectorOfDates <- seq_len(length(observed)) } # Parameters b <- control$b w <- control$w noPeriods <- control$noPeriods verbose <- control$verbose reportingTriangle <- sts@control$reportingTriangle timeTrend <- control$trend alpha <- control$alpha factorsBool <- control$factorsBool pastAberrations <- control$pastAberrations glmWarnings <- control$glmWarnings delay <- control$delay k <- control$k verbose <- control$verbose pastWeeksNotIncluded <- control$pastWeeksNotIncluded mc.munu <- control$mc.munu mc.y <- control$mc.y # Loop over control$range for (k in control$range) { ###################################################################### # Prepare data for the glm ###################################################################### dayToConsider <- vectorOfDates[k] diffDates <- diff(vectorOfDates) delay <- control$delay dataGLM <- bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) ###################################################################### # Fit the model ###################################################################### argumentsGLM <- list(dataGLM=dataGLM,reportingTriangle=reportingTriangle, timeTrend=timeTrend,alpha=alpha, factorsBool=factorsBool,pastAberrations=pastAberrations, glmWarnings=glmWarnings, verbose=verbose,delay=delay, inferenceMethod=control$inferenceMethod) model <- do.call(bodaDelay.fitGLM, args=argumentsGLM) if(is.null(model)){ sts@upperbound[k] <- NA sts@alarm[k] <- NA } else{ ###################################################################### # Calculate the threshold ###################################################################### quantileMethod <- control$quantileMethod argumentsThreshold <- list(model,alpha=alpha,dataGLM=dataGLM,reportingTriangle, delay=delay,k=k,control=control,mc.munu=mc.munu,mc.y=mc.y, inferenceMethod=control$inferenceMethod, quantileMethod=quantileMethod) threshold <- do.call(bodaDelay.threshold,argumentsThreshold) ###################################################################### # Output results if enough cases ###################################################################### sts@upperbound[k] <- threshold enoughCases <- (sum(observed[(k-control$limit54[2]+1):k]) >=control$limit54[1]) sts@alarm[k] <- FALSE if (is.na(threshold)){sts@alarm[k] <- NA} else { if (sts@observed[k]>sts@upperbound[k]) {sts@alarm[k] <- TRUE} } if(!enoughCases){ sts@upperbound[k] <- NA sts@alarm[k] <- NA } } } #done looping over all time points return(sts[control$range,]) } ################################################################################ # END OF MAIN FUNCTION ################################################################################ ################################################################################ # FIT GLM FUNCTION ################################################################################ bodaDelay.fitGLM <- function(dataGLM,reportingTriangle,alpha, timeTrend,factorsBool,delay,pastAberrations, glmWarnings,verbose,inferenceMethod,...) { # Model formula depends on whether to include a time trend or not. theModel <- formulaGLMDelay(timeBool=timeTrend,factorsBool,delay,outbreak=FALSE) if(inferenceMethod=="INLA"){ E <- max(0,mean(dataGLM$response, na.rm=TRUE)) link=1 model <- INLA::inla(as.formula(theModel),data=dataGLM, family='nbinomial',E=E, control.predictor=list(compute=TRUE,link=link), control.compute=list(cpo=TRUE,config=TRUE), control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10), control.family = list(hyper = list(theta = list(prior = "normal", param = c(0, 0.001))))) if (pastAberrations){ # if we have failures => recompute those manually #if (sum(model$cpo$failure,na.rm=TRUE)!=0){ # model <- inla.cpo(model) #} # Calculate the mid p-value vpit <- model$cpo$pit vcpo <- model$cpo$cpo midpvalue <- vpit - 0.5*vcpo # Detect the point with a high mid p-value # outbreakOrNot <- midpvalue #outbreakOrNot[midpvalue <= (1-alpha)] <- 0 outbreakOrNot <- ifelse(midpvalue > (1-alpha), 1, 0) outbreakOrNot[is.na(outbreakOrNot)] <- 0# FALSE outbreakOrNot[is.na(dataGLM$response)] <- 0#FALSE # Only recompute the model if it will bring something! if (sum(outbreakOrNot)>0){ dataGLM <- cbind(dataGLM,outbreakOrNot) theModel <- formulaGLMDelay(timeBool=timeTrend,factorsBool,delay,outbreak=TRUE) model <- INLA::inla(as.formula(theModel),data=dataGLM, family='nbinomial',E=E, control.predictor=list(compute=TRUE,link=link), control.compute=list(cpo=FALSE,config=TRUE), control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10), control.family = list(hyper = list(theta = list(prior = "normal", param = c(0, 0.001))))) # if we have failures => recompute those manually # if (sum(model$cpo$failure,na.rm=TRUE)!=0){model <- inla.cpo(model)} vpit <- model$cpo$pit vcpo <- model$cpo$cpo midpvalue <- vpit - 0.5*vcpo } } } if (inferenceMethod=="asym"){ model <- MASS::glm.nb(as.formula(theModel),data=dataGLM) if(!model$converged){ return(NULL) } } return(model) } ################################################################################ # END OF FIT GLM FUNCTION ################################################################################ ################################################################################ # THRESHOLD FUNCTION ################################################################################ bodaDelay.threshold <- function(model, mc.munu,mc.y,alpha, delay,k,control,dataGLM,reportingTriangle, inferenceMethod,quantileMethod...) { quantileMethod <- control$quantileMethod if (inferenceMethod=="INLA"){ E <- max(0,mean(dataGLM$response, na.rm=TRUE)) # Sample from the posterior jointSample <- INLA::inla.posterior.sample(mc.munu,model, intern = TRUE) # take variation in size hyperprior into account by also sampling from it theta <- t(sapply(jointSample, function(x) x$hyperpar)) if (delay){ mu_Tt <- numeric(mc.munu) N_Tt <- numeric(mc.munu*mc.y) # Maximal delay + 1 Dmax0 <- ncol(as.matrix(reportingTriangle$n)) # The sum has to be up to min(D,T-t). This is how we find the right indices. loopLimit <- min(Dmax0,which(is.na(as.matrix(reportingTriangle$n)[k,]))-1,na.rm=TRUE) # Find the mu_td and sum for (d in 1:loopLimit) { if(sum(dataGLM$response[dataGLM$delay==d],na.rm=TRUE)!=0){ mu_Tt <- mu_Tt + exp(t(sapply(jointSample, function(x) x$latent[[nrow(dataGLM)-Dmax0+d]]))) } } # with no delay this is similar to boda. } else { mu_Tt <- exp(t(sapply(jointSample, function(x) x$latent[[nrow(dataGLM)]]))) } } if (inferenceMethod=="asym"){ E <- 1 # Sample from the posterior set.seed(1) # take variation in size hyperprior into account by also sampling from it theta <- rnorm(n=mc.munu,mean=summary(model)$theta,sd=summary(model)$SE.theta) if (delay){ # Maximal delay + 1 Dmax0 <- ncol(as.matrix(reportingTriangle$n)) mu_Tt <- numeric(mc.munu) newData <- tail(dataGLM,n=Dmax0) P=predict(model,type="link",se.fit=TRUE, newdata=newData) # The sum has to be up to min(D,T-t). This is how we find the right indices. loopLimit <- min(Dmax0,which(is.na(as.matrix(reportingTriangle$n)[k,]))-1,na.rm=TRUE) # Find the mu_td and sum for (d in 1:loopLimit) { if(sum(dataGLM$response[dataGLM$delay==d],na.rm=TRUE)!=0){ mu_Tt <- mu_Tt + exp(rnorm(n=mc.munu,mean=P$fit[d],sd=P$se.fit[d])) } } # with no delay this is similar to boda. } else { newData <- tail(dataGLM,n=1) P=try(predict(model,type="link",se.fit=TRUE, newdata=newData),silent=TRUE) if (inherits(P, "try-error")){P<- NA return(NA)} set.seed(1) mu_Tt <- exp(rnorm(n=mc.munu,mean=P$fit,sd=P$se.fit)) } } # can only use positive theta (mu_Tt is positive anyway) mu_Tt <- mu_Tt[theta>0] theta <- theta[theta>0] if(quantileMethod=="MC"){ N_Tt <- rnbinom(n=mc.y*mc.munu,size=theta,mu=E*mu_Tt) qi <- quantile(N_Tt, probs=(1-alpha), type=3, na.rm=TRUE) } if(quantileMethod=="MM"){ minBracket <- qnbinom(p=(1-alpha), mu=E*min(mu_Tt), size=max(theta)) maxBracket <- qnbinom(p=(1-alpha), mu=E*max(mu_Tt), size=min(theta)) qi <- qmix(p=(1-alpha), mu=E*mu_Tt, size=theta, bracket=c(minBracket, maxBracket)) } return(as.numeric(qi)) } ################################################################################ # END OF THRESHOLD GLM FUNCTION ################################################################################ ################################################################################ # DATA GLM FUNCTION ################################################################################ bodaDelay.data.glm <- function(dayToConsider, b, freq, epochAsDate,epochStr, vectorOfDates,w,noPeriods, observed,population, verbose,pastWeeksNotIncluded,reportingTriangle,delay){ # Identify reference time points # Same date but with one year, two year, etc, lag # b+1 because we need to have the current week in the vector referenceTimePoints <- algo.farrington.referencetimepoints(dayToConsider,b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr ) if (!all(referenceTimePoints %in% vectorOfDates)) { ## previously only checked min(referenceTimePoints) warning("Some reference time points did not exist; ", "decrease 'b' or postpone 'range'.") } # Create the blocks for the noPeriods between windows (including windows) # If noPeriods=1 this is a way of identifying windows, actually. blocks <- blocks(referenceTimePoints,vectorOfDates,epochStr,dayToConsider, b,w,noPeriods,epochAsDate) # Here add option for not taking the X past weeks into account # to avoid adaptation of the model to emerging outbreaks blocksID <- blocks # Extract values for the timepoints of interest only blockIndexes <- which(is.na(blocksID)==FALSE) # Time # if epochAsDate make sure wtime has a 1 increment if (epochAsDate){ wtime <- (as.numeric(vectorOfDates[blockIndexes])- as.numeric(vectorOfDates[blockIndexes][1]))/as.numeric(diff(vectorOfDates))[1] } else { wtime <- as.numeric(vectorOfDates[blockIndexes]) } # Factors seasgroups <- as.factor(blocks[blockIndexes]) # Observed response <- as.numeric(observed[blockIndexes]) response[length(response)] <- NA # Population pop <- population[blockIndexes] if (verbose) { print(response)} # If the delays are not to be taken into account it is like farringtonFlexible if (!delay) { dataGLM <- data.frame(response=response,wtime=wtime,population=pop, seasgroups=seasgroups,vectorOfDates=vectorOfDates[blockIndexes]) dataGLM$response[(nrow(dataGLM)-pastWeeksNotIncluded):nrow(dataGLM)] <- NA } # If the delays are to be taken into account we need a bigger dataframe else { # Delays delays <- as.factor(0:(dim(reportingTriangle$n)[2]-1)) # Take the subset of the reporting triangle corresponding to the timepoints used for fitting the model reportingTriangleGLM <- reportingTriangle$n[rownames(reportingTriangle$n) %in% as.character(vectorOfDates[blockIndexes]),] # All vectors of data will be this long: each entry will correspond to one t and one d lengthGLM <- dim(reportingTriangleGLM)[2]*dim(reportingTriangleGLM)[1] # Create the vectors for storing data responseGLM <- numeric(lengthGLM) wtimeGLM <- numeric(lengthGLM) seasgroupsGLM <- numeric(lengthGLM) popGLM <- numeric(lengthGLM) vectorOfDatesGLM <- numeric(lengthGLM) delaysGLM <- numeric(lengthGLM) # Fill them D by D D <- dim(reportingTriangleGLM)[2] for (i in (1:dim(reportingTriangleGLM)[1])){ vectorOfDatesGLM[((i-1)*D+1):(i*D)] <- rep(vectorOfDates[blockIndexes][i],D) wtimeGLM[((i-1)*D+1):(i*D)] <- rep(wtime[i],D) popGLM[((i-1)*D+1):(i*D)] <- rep(pop[i],D) seasgroupsGLM[((i-1)*D+1):(i*D)] <- rep(seasgroups[i],D) responseGLM[((i-1)*D+1):(i*D)] <- reportingTriangleGLM[i,] delaysGLM[((i-1)*D+1):(i*D)] <- 0:(D-1) } responseGLM[((i-1)*D+1):(i*D)] <- rep (NA, D) responseGLM[(length(responseGLM)-pastWeeksNotIncluded*D):length(responseGLM)] <- NA dataGLM <- data.frame(response=responseGLM,wtime=wtimeGLM,population=popGLM, seasgroups=as.factor(seasgroupsGLM),vectorOfDates=as.Date(vectorOfDatesGLM,origin="1970-01-01"),delay=delaysGLM) } return(as.data.frame(dataGLM)) } ################################################################################ # END OF DATA GLM FUNCTION ################################################################################ ################################################################################ # FORMULA FUNCTION ################################################################################ # Function for writing the good formula depending on timeTrend, # and factorsBool formulaGLMDelay <- function(timeBool=TRUE,factorsBool=FALSE,delay=FALSE,outbreak=FALSE){ # Description # Args: # populationOffset: --- # Returns: # Vector of X # Smallest formula formulaString <- "response ~ 1" # With time trend? if (timeBool){ formulaString <- paste(formulaString,"+wtime",sep ="")} # With factors? if(factorsBool){ formulaString <- paste(formulaString,"+as.factor(seasgroups)",sep ="")} # # With delays? if(delay){ formulaString <- paste(formulaString,"+as.factor(delay)",sep ="")} if(outbreak){ formulaString <- paste(formulaString,"+f(outbreakOrNot,model='linear', prec.linear = 1)",sep ="")} # Return formula as a string return(formulaString) } ################################################################################ # END OF FORMULA FUNCTION ################################################################################ ###################################################################### # CDF of the negbin mixture with different means and sizes ###################################################################### pmix <- function(y, mu, size) { PN <- pnbinom(y, mu=mu, size=size) lala <- 1/sum(!is.na(PN))*sum(PN, na.rm=TRUE) return(lala) } ###################################################################### # END OF CDF of the negbin mixture with different means and sizes ###################################################################### ###################################################################### # Find the root(s) of a 1D function using the bisection method # # Params: # f - the function to minimize or the first derivate of the function to optim # reltol - relative tolerance epsilon ###################################################################### bisection <- function(f, bracket) { ##Boolean for convergence convergence <- FALSE ##Loop until converged while (!convergence) { #Half the interval (problem with ints: what uneven number?) x <- ceiling(mean(bracket)) ##Direct hit? -> stop if (isTRUE(all.equal(f(x),0))) break ##Choose the interval, containing the root bracket <- if (f(bracket[1])*f(x) <= 0) c(bracket[1],x) else c(x,bracket[2]) ##Have we obtained convergence? convergence <- (bracket[1]+1) == bracket[2] } #Return the value of x^{n+1} return(ceiling(mean(bracket))) } ###################################################################### # END OF BISECTION FUNCTION ###################################################################### ###################################################################### ##Find the p-quantile of the mixture distribution using bisectioning ## ## Parameters: ## p - the q_p quantile is found ## mu - mean vector ## size - size param ## bracket - vector length two, s.t. qmix(bracket[1] < 1-alpha and ## qmix(bracket[2]) > 1-alpha. Exception: if bracket[1]=0 ## then qmix(bracket[1] > 1-alpha is ok. ###################################################################### qmix <- function(p, mu, size, bracket=c(0,mu*100)) { target <- function(y) { pmix(y=y,mu=mu,size=size) - p } if (target(bracket[1]) * target(bracket[2]) > 0) { if ((bracket[1] == 0) & (target(bracket[1]) > 0)) return(0) stop("Not a good bracket.") } bisection(target, bracket=bracket) } surveillance/R/stsplot_spacetime.R0000644000176200001440000001311214426171115017034 0ustar liggesusers################################################################################ ### Old implementation of (animated) maps of an sts-object ### ### Copyright (C) 2007-2013 Michael Hoehle, 2016 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ stsplot_spacetime <- function( x, type, legend=NULL, opts.col=NULL, labels=TRUE, wait.ms=250, cex.lab=0.7, verbose=FALSE, dev.printer=NULL, ...) { #Extract the mappoly if (length(x@map) == 0) stop("The sts object has an empty map.") map <- x@map maplim <- list(x=bbox(map)[1,],y=bbox(map)[2,]) #Check colnames, otherwise no need to continue if (is.null(colnames(x@observed))) stop("The sts observed slot does not have any colnames to match with the shapefile.") #Check for legend options if (is.null(legend)) { legend <- list(dx=0.4,dy=0.04,x=maplim$x[1],y=maplim$y[1],once=TRUE) } #Extract the data o <- x@observed alarm <- x@alarm #Formula is of type "observed ~ 1|unit" (i.e. no time) aggregate <- type[[3]][[3]] == "unit" if (aggregate) { .Deprecated("stsplot_space") o <- t(as.matrix(apply(o,MARGIN=2,sum))) alarm <- t(as.matrix(apply(alarm,MARGIN=2,sum)))>0 } else { .Deprecated("animate") } #Number of time points maxt <- dim(o)[1] #Process dev.printer options if (is.list(dev.printer)) { dev.printer <- modifyList( list(device = png, extension = ".png", width = 640, height = 480, name = "Rplot"), dev.printer) #filename format (padding with zeroes) fnfmt <- paste0("%s-%0", nchar(maxt), "i%s") } #Get color vector opts.col_default <- list(ncolors=length(o), use.color=TRUE) gyr <- do.call(".hcl.colors", if (is.list(opts.col)) modifyList(opts.col_default, opts.col) else opts.col_default) theCut <- cut(o, length(gyr)) #Cut into specified number of colors o.cut <- matrix(as.numeric(theCut),nrow=nrow(o),ncol=ncol(o)) o.col <- matrix(gyr[o.cut],ncol=ncol(o.cut)) o.col[is.na(o.col)] <- gray(1) dimnames(o.col) <- dimnames(o) #Sort the o according to the names in the map region.id <- row.names(map) o.col.id <- dimnames(o.col)[[2]] #Make the columns of o as in the map object o.col <- o.col[,pmatch(region.id,o.col.id),drop=FALSE] alarm.col <- alarm[,pmatch(region.id,o.col.id),drop=FALSE] #Screen processing screen.matrix <- matrix(c(0,1,0,1,0,1,0.8,1),2,4,byrow=TRUE) split.screen(screen.matrix) #Loop over all time slices for (t in 1:maxt) { #Status information if (verbose) { cat(paste("Processing slice",t,"of",maxt,"\n")) } #Clean screen (title area) screen(n=2) par(bg=gray(1)) erase.screen() par(bg="transparent") #Plot the map on screen 1 screen(n=1) plot(map,col=o.col[t,],xlab="",ylab="",...) #Indicate alarms as shaded overlays if (length(alarmIdx <- which(alarm.col[t,] > 0))) { plot(map[alarmIdx,], density=15, add=TRUE) } if (labels) #getSpPPolygonsLabptSlots is deprecated. Use coordinates method insteas text(coordinates(map), labels=as.character(region.id), cex.lab=cex.lab) if (!aggregate) { title(paste(t,"/",maxt,sep="")) } #In case a legend is requested if (is.list(legend) && !(legend$once & t>1) | (t==1)) { add.legend(legend, maplim, list(col=gyr, min=min(o), max=max(o), trans=identity)) } #Is writing to files requested? if (is.list(dev.printer)) { #Create filename fileName <- sprintf(fnfmt, dev.printer$name, t, dev.printer$extension) cat("Creating ",fileName,"\n") #Save the current device using dev.print if (inherits(try( dev.print(dev.printer$device, file=fileName, width=dev.printer$width, height=dev.printer$height) ), "try-error")) { warning("disabling dev.print()", immediate. = TRUE) dev.printer <- NULL } } wait(wait.ms) } close.screen(all.screens = TRUE) } ####################### ### auxiliary functions ####################### ### wait a specific amount of milliseconds (via "while" and "proc.time") wait <- function (wait.ms) # number of milliseconds to wait { #Initialize start.time <- proc.time()[3]*1000 ellapsed <- proc.time()[3]*1000 - start.time #Loop as long as required. while (ellapsed < wait.ms) { ellapsed <- proc.time()[3]*1000 - start.time } } ### add the color key add.legend <- function(legend, maplim, theColors) { #Preproc dy <- diff(maplim$y) * legend$dy dx <- diff(maplim$x) * legend$dx #Add legend -- i.e. a slider xlu <- xlo <- legend$x xru <- xro <- xlu + dx yru <- ylu <- legend$y yro <- ylo <- yru + dy step <- (xru - xlu)/length(theColors$col) for (i in 0:(length(theColors$col) - 1)) { polygon(c(xlo + step * i, xlo + step * (i + 1), xlu + step * (i + 1), xlu + step * i), c(ylo, yro, yru, ylu), col = theColors$col[i + 1], border = theColors$col[i + 1]) } #Write info about min and max on the slider. black <- grey(0) lines(c(xlo, xro, xru, xlu, xlo), c(ylo, yro, yru, ylu, ylo), col = black) #Transformation function for data values, e.g., exp or identity trans <- theColors$trans text(xlu, ylu - 0.5*dy, formatC(trans(theColors$min)), cex = 1, col = black,adj=c(0,1)) text(xru, yru - 0.5*dy, formatC(trans(theColors$max)), cex = 1, col = black,adj=c(1,1)) } surveillance/R/hhh4_methods.R0000644000176200001440000005533314667325216015675 0ustar liggesusers################################################################################ ### Standard methods for "hhh4" fits ### ### Copyright (C) 2010-2012 Michaela Paul, 2012-2024 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## NOTE: we also apply print.hhh4 in print.summary.hhh4() print.hhh4 <- function (x, digits = max(3, getOption("digits")-3), ...) { if (!x$convergence) { cat('Results are not reliable! Try different starting values.\n') return(invisible(x)) } if (!is.null(x$call)) { cat("\nCall: \n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") } if (x$dim["random"] > 0) { cat('Random effects:\n') .printREmat(if (is.null(x$REmat)) .getREmat(x) else x$REmat, digits = digits) cat("\nFixed effects:\n") } else if (x$dim["fixed"] > 0) { cat("Coefficients:\n") } if (x$dim["fixed"] > 0) { print.default( format(if (is.null(x$fixef)) fixef.hhh4(x, ...) else x$fixef, digits=digits), quote = FALSE, print.gap = 2) } else cat("No coefficients\n") cat("\n") invisible(x) } ## get estimated covariance matrix of random effects .getREmat <- function (object) { ## return NULL if model has no random effects if (is.null(REmat <- object$Sigma)) return(NULL) ## hhh4()$Sigma is named since r791 only -> derive names from Sigma.orig if (is.null(dimnames(REmat))) dimnames(REmat) <- rep.int( list(sub("^sd\\.", "", names(object$Sigma.orig)[seq_len(nrow(REmat))])), 2L) attr(REmat, "correlation") <- cov2cor(REmat) attr(REmat, "sd") <- sqrt(diag(REmat)) REmat } .printREmat <- function (REmat, digits = 4) { V <- format(diag(REmat), digits=digits) corr <- format(attr(REmat, "correlation"), digits=digits) corr[upper.tri(corr,diag=TRUE)] <- "" V.corr <- cbind(V, corr, deparse.level=0) colnames(V.corr) <- c("Var", "Corr", rep.int("", ncol(corr)-1L)) print.default(V.corr, quote=FALSE) } summary.hhh4 <- function (object, maxEV = FALSE, ...) { ## do not summarize results in case of non-convergence if (!object$convergence) { cat('Results are not reliable! Try different starting values.\n') return(invisible(object)) } ret <- c(object[c("call", "convergence", "dim", "loglikelihood", "margll", "lags", "nObs", "nTime", "nUnit")], list(fixef = fixef.hhh4(object, se=TRUE, ...), ranef = ranef.hhh4(object, ...), REmat = .getREmat(object), AIC = AIC(object), BIC = BIC(object), maxEV_range = if (maxEV) unique(range(getMaxEV(object))))) class(ret) <- "summary.hhh4" return(ret) } print.summary.hhh4 <- function (x, digits = max(3, getOption("digits")-3), ...) { ## x$convergence is always TRUE if we have a summary print.hhh4(x, digits = digits) # also works for summary.hhh4-objects if (!is.null(x$maxEV_range)) cat("Epidemic dominant eigenvalue: ", paste(sprintf("%.2f", x$maxEV_range), collapse = " -- "), "\n\n") if(x$dim["random"]==0){ ## format(x$AIC,digits=4) would often yield no decimal digits (big AIC) cat('Log-likelihood: ',round(x$loglikelihood,digits=digits-2),'\n') cat('AIC: ',round(x$AIC,digits=digits-2),'\n') cat('BIC: ',round(x$BIC,digits=digits-2),'\n\n') } else { cat('Penalized log-likelihood: ',round(x$loglikelihood,digits=digits-2),'\n') cat('Marginal log-likelihood: ',round(x$margll,digits=digits-2),'\n\n') } cat('Number of units: ', x$nUnit, '\n') cat('Number of time points: ', x$nTime, '\n') if ((nOmit <- x$nTime * x$nUnit - x$nObs) > 0) cat(" (", nOmit, " observations excluded due to missingness)\n", sep = "") if (!is.null(x$lags)) { # only available since surveillance 1.8-0 if (!is.na(x$lags["ar"]) && x$lags["ar"] != 1) cat("Non-default autoregressive lag: ", x$lags[["ar"]], "\n") if (!is.na(x$lags["ne"]) && x$lags["ne"] != 1) cat("Non-default neighbor-driven lag: ", x$lags[["ne"]], "\n") } cat("\n") invisible(x) } terms.hhh4 <- function (x, ...) { if (is.null(x$terms)) interpretControl(x$control,x$stsObj) else x$terms } nobs.hhh4 <- function (object, ...) { if (object$convergence) object$nObs else NA_real_ } logLik.hhh4 <- function(object, ...) { val <- if (object$convergence) object$loglikelihood else { warning("algorithm did not converge") NA_real_ } attr(val, "df") <- if (object$dim["random"]) NA_integer_ else object$dim[["fixed"]] # use "[[" to drop the name attr(val, "nobs") <- nobs(object) class(val) <- "logLik" val } coef.hhh4 <- function(object, se=FALSE, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, ...) { if (identical(object$control$family, "Poisson")) reparamPsi <- FALSE coefs <- object$coefficients coefnames <- names(coefs) idx <- getCoefIdxRenamed(coefnames, reparamPsi, idx2Exp, amplitudeShift, warn=!se) ## transform and rename if (length(idx$Psi)) { coefs[idx$Psi] <- exp(-coefs[idx$Psi]) # -log(overdisp) -> overdisp coefnames[idx$Psi] <- names(idx$Psi) } if (length(idx$toExp)) { coefs[idx$toExp] <- exp(coefs[idx$toExp]) coefnames[idx$toExp] <- names(idx$toExp) } if (length(idx$AS)) { coefs[idx$AS] <- sinCos2amplitudeShift(coefs[idx$AS]) coefnames[idx$AS] <- names(idx$AS) } ## set new names names(coefs) <- coefnames if (se) { cov <- vcov.hhh4(object, reparamPsi=reparamPsi, idx2Exp=idx2Exp, amplitudeShift=amplitudeShift) cbind("Estimate"=coefs, "Std. Error"=sqrt(diag(cov))) } else coefs } vcov.hhh4 <- function (object, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, ...) { if (identical(object$control$family, "Poisson")) reparamPsi <- FALSE idx <- getCoefIdxRenamed(names(object$coefficients), reparamPsi, idx2Exp, amplitudeShift, warn=FALSE) newcoefs <- coef.hhh4(object, se=FALSE, reparamPsi=reparamPsi, idx2Exp=idx2Exp, amplitudeShift=amplitudeShift) ## Use multivariate Delta rule => D %*% vcov %*% t(D), D: Jacobian. ## For idx2Exp and reparamPsi, we only transform coefficients independently, ## i.e. D is diagonal (with elements 'd') d <- rep.int(1, length(newcoefs)) if (length(idx$Psi)) # h = exp(-psi), h' = -exp(-psi) d[idx$Psi] <- -newcoefs[idx$Psi] if (length(idx$toExp)) # h = exp(coef), h' = exp(coef) d[idx$toExp] <- newcoefs[idx$toExp] ## For the amplitude/shift-transformation, D is non-diagonal vcov <- if (length(idx$AS)) { D <- diag(d, length(d)) D[idx$AS,idx$AS] <- jacobianAmplitudeShift(newcoefs[idx$AS]) D %*% object$cov %*% t(D) } else t(t(object$cov*d)*d) # 30 times faster than via matrix products dimnames(vcov) <- list(names(newcoefs), names(newcoefs)) vcov } getCoefIdxRenamed <- function (coefnames, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, warn=TRUE) { ## indexes of overdispersion parameters idxPsi <- if (reparamPsi) { idxPsi <- grep("-log(overdisp", coefnames, fixed=TRUE) ## change labels from "-log(overdisp.xxx)" to "overdisp.xxx" names(idxPsi) <- substr(coefnames[idxPsi], start=6, stop=nchar(coefnames[idxPsi])-1L) if (length(idxPsi) == 0L) { # backward compatibility (internal psi coef # was named "overdisp" prior to r406) idxPsi <- grep("^overdisp", coefnames) names(idxPsi) <- coefnames[idxPsi] } idxPsi } else NULL ## indexes of *pairs* of sine-cosine coefficients idxAS <- if (amplitudeShift) { idx_sin <- grep(".sin(", coefnames, fixed=TRUE) idx_cos <- match(sub(".sin(", ".cos(", coefnames[idx_sin], fixed=TRUE), coefnames) if (anyNA(idx_cos)) stop("failed to detect sine-cosine pairs") idxAS <- c(rbind(idx_sin, idx_cos)) # pairwise coefficients names(idxAS) <- sub(".sin", ".A", coefnames[idxAS], fixed=TRUE) names(idxAS) <- sub(".cos", ".s", names(idxAS), fixed=TRUE) idxAS } else NULL ## indexes of coefficients to exp()-transform if (isTRUE(idx2Exp)) { idxLogCovar <- grep(".log(", coefnames, fixed = TRUE) idx2Exp <- setdiff(seq_along(coefnames), c(idxLogCovar, idxPsi, idxAS)) } else if (length(idx2Exp)) { stopifnot(is.vector(idx2Exp, mode = "numeric")) ## index sets must be disjoint if (length(idxOverlap <- intersect(c(idxPsi, idxAS), idx2Exp))) { if (warn) warning("following 'idx2Exp' were ignored due to overlap: ", paste(idxOverlap, collapse=", ")) idx2Exp <- setdiff(idx2Exp, idxOverlap) } } if (length(idx2Exp)) names(idx2Exp) <- paste0("exp(", coefnames[idx2Exp], ")") ## done list(Psi=idxPsi, AS=idxAS, toExp=idx2Exp) } fixef.hhh4 <- function (object,...) { if (object$dim[1L] > 0) { head(coef.hhh4(object, ...), object$dim[1L]) } else NULL } ranef.hhh4 <- function (object, tomatrix = FALSE, intercept = FALSE, ...) { if (object$dim[2L] > 0){ ranefvec <- tail(coef.hhh4(object, ...), object$dim[2L]) } else return(NULL) if (intercept) tomatrix <- TRUE if (!tomatrix) return(ranefvec) ## transform to a nUnits x c matrix (c %in% 1:3) model <- terms(object) idxRE <- model$indexRE idxs <- unique(idxRE) mat <- vapply(X = idxs, FUN = function (idx) { RE <- ranefvec[idxRE==idx] Z <- model$terms["Z.intercept",][[idx]] "%m%" <- get(model$terms["mult",][[idx]]) c(Z %m% RE) }, FUN.VALUE = numeric(model$nUnits), USE.NAMES = FALSE) dimnames(mat) <- list( colnames(model$response), model$namesFE[match(idxs, model$indexFE)] ) if (intercept) { FE <- object$coefficients[colnames(mat)] mat <- t(t(mat) + FE) } return(mat) } ## adaption of stats::confint.default authored by the R Core Team confint.hhh4 <- function (object, parm, level = 0.95, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, ...) { cf <- coef.hhh4(object, se=TRUE, reparamPsi=reparamPsi, idx2Exp=idx2Exp, amplitudeShift=amplitudeShift, ...) ## CAVE: random intercepts have no names (all "") if (missing(parm)) parm <- seq_len(nrow(cf)) pnames <- if (is.numeric(parm)) rownames(cf)[parm] else parm a <- (1 - level)/2 a <- c(a, 1 - a) pct <- paste(format(100*a, trim=TRUE, scientific=FALSE, digits=3), "%") fac <- qnorm(a) ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(pnames, pct)) ses <- cf[parm,2] ci[] <- cf[parm,1] + ses %o% fac ci } ## mean predictions for a subset of 1:nrow(object$stsObj) predict.hhh4 <- function(object, newSubset = object$control$subset, type = "response", ...) { if (type == "response" && all((m <- match(newSubset, object$control$subset, nomatch=0L)) > 0)) { ## we can extract fitted means from object object$fitted.values[m,,drop=FALSE] } else { ## means for time points not fitted (not part of object$control$subset) predicted <- meanHHH(object$coefficients, terms(object), subset=newSubset) if (type=="response") predicted$mean else { type <- match.arg(type, names(predicted)) predicted[[type]] } } } ### refit hhh4-model ## ...: arguments modifying the original control list ## S: a named list to adjust the number of harmonics of the three components ## subset.upper: refit on a subset of the data up to that time point ## use.estimates: use fitted parameters as new start values update.hhh4 <- function (object, ..., S = NULL, subset.upper = NULL, use.estimates = object$convergence, evaluate = TRUE) { control <- object$control ## first modify the control list according to the components in ... extras <- list(...) control <- modifyList(control, extras) ## adjust start values control$start <- if (use.estimates) { # use parameter estimates hhh4coef2start(object) } else local({ # re-use previous 'start' specification ## for pre-1.8-2 "hhh4" objects, ## object$control$start is not necessarily a complete list: template <- eval(formals(hhh4)$control$start) template[] <- object$control$start[names(template)] template }) ## and update according to an extra 'start' argument if (!is.null(extras[["start"]])) { if (!is.list(extras$start) || is.null(names(extras$start))) { stop("'start' must be a named list, see 'help(\"hhh4\")'") } control$start[] <- mapply( FUN = function (now, extra) { if (is.null(names(extra))) { extra } else { # can retain non-extra values now[names(extra)] <- extra now } }, control$start, extras$start[names(control$start)], SIMPLIFY = FALSE, USE.NAMES = FALSE ) } ## update initial values of parametric weight function if (use.estimates && length(coefW <- coefW(object)) && ! "weights" %in% names(extras$ne)) { # only if function is unchanged control$ne$weights$initial <- coefW } ## adjust seasonality if (!is.null(S)) { stopifnot(is.list(S), !is.null(names(S)), names(S) %in% c("ar", "ne", "end")) control[names(S)] <- mapply(function (name, comp, S) { comp$f <- addSeason2formula( if (isInModel(comp$f, name)) removeSeasonFromFormula(comp$f) else { warning("newly enabled \"", name, "\" component; ", "you might want to tweak its offset etc.", call. = FALSE) ~1 }, period = object$stsObj@freq, S = S) comp }, names(S), control[names(S)], S, SIMPLIFY=FALSE, USE.NAMES=FALSE) } ## use a different time range of the data (only changing the end) ## Note: surveillance < 1.15.0 disallowed subset.upper > max(control$subset) if (isScalar(subset.upper)) { if (subset.upper < control$subset[1L]) stop("'subset.upper' is smaller than the lower bound of 'subset'") control$subset <- control$subset[1L]:subset.upper } ## fit the updated model or just return the modified control list if (evaluate) { hhh4(stsObj = object$stsObj, control = control) } else { control } } ## remove sine-cosine terms from a formula ## f: usually a model "formula", but can generally be of any class for which ## terms() and formula() apply removeSeasonFromFormula <- function (f) { fterms <- terms(f, keep.order = TRUE) ## search sine-cosine terms of the forms "sin(..." and "fe(sin(..." idxSinCos <- grep("^(fe\\()?(sin|cos)\\(", attr(fterms, "term.labels")) formula(if (length(idxSinCos)) fterms[-idxSinCos] else f) } ## remove all temporal terms from a formula removeTimeFromFormula <- function (f, timevar = "t") { fterms <- terms(f, keep.order = TRUE) containsTime <- vapply(attr(fterms, "variables")[-1L], FUN = function (x) timevar %in% all.vars(x), FUN.VALUE = TRUE, USE.NAMES = FALSE) formula(if (any(containsTime)) fterms[!containsTime] else f) } ## convert fitted parameters to a list suitable for control$start hhh4coef2start <- function (fit) { res <- list(fixed = fit$coefficients[seq_len(fit$dim[1L])], random = fit$coefficients[fit$dim[1L]+seq_len(fit$dim[2L])], sd.corr = fit$Sigma.orig) if (any(!nzchar(names(res$random)))) { # no names pre 1.8-2 names(res$random) <- NULL } res } ## extract coefficients in a list coeflist.hhh4 <- function (x, ...) { ## determine number of parameters by parameter group model <- terms(x) dim.fe.group <- unlist(model$terms["dim.fe",], recursive = FALSE, use.names = FALSE) dim.re.group <- unlist(model$terms["dim.re",], recursive = FALSE, use.names = FALSE) nFERE <- lapply(X = list(fe = dim.fe.group, re = dim.re.group), FUN = function (dims) { nParByComp <- tapply( X = dims, INDEX = factor( unlist(model$terms["offsetComp",], recursive = FALSE, use.names = FALSE), levels = 1:3, labels = c("ar", "ne", "end")), FUN = sum, simplify = TRUE) nParByComp[is.na(nParByComp)] <- 0 # component not in model nParByComp }) ## extract coefficients in a list (by parameter group) coefs <- coef.hhh4(x, se = FALSE, ...) list(fixed = coeflist.default(coefs[seq_len(x$dim[1L])], c(nFERE$fe, "neweights" = model$nd, "overdisp" = model$nOverdisp)), random = coeflist.default(coefs[x$dim[1L] + seq_len(x$dim[2L])], nFERE$re), sd.corr = x$Sigma.orig) } ## extract estimated overdispersion in dnbinom() parametrization (and as matrix) psi2size.hhh4 <- function (object, subset = object$control$subset, units = NULL) { size <- sizeHHH(object$coefficients, terms(object), subset = subset) if (!is.null(size) && !is.null(units)) { if (is.null(subset)) { warning("ignoring 'units' (not compatible with 'subset = NULL')") size } else { size[, units, drop = FALSE] } } else { size } } ## character vector of model components that are "inModel" componentsHHH4 <- function (object) names(which(sapply(object$control[c("ar", "ne", "end")], "[[", "inModel"))) ## deviance residuals residuals.hhh4 <- function (object, type = c("deviance", "pearson", "response"), ...) { type <- match.arg(type) obs <- observed(object$stsObj)[object$control$subset,,drop=FALSE] fit <- fitted(object) if (type == "response") return(obs - fit) ## deviance = sign(y - mean) * sqrt(2 * (distr(y) - distr(mean))) ## pearson = (y - mean)/sqrt(variance) family <- if (identical(object$control$family, "Poisson")) { poisson() } else { size <- if (identical(object$control$family, "NegBin1")) { psi2size.hhh4(object, subset = NULL) } else { psi2size.hhh4(object) # CAVE: a matrix -> non-standard "size" } negative.binomial(size) } switch(type, deviance = { di2 <- family$dev.resids(y=obs, mu=fit, wt=1) sign(obs-fit) * sqrt(pmax.int(di2, 0)) }, pearson = { (obs - fit) / sqrt(family$variance(fit)) }) } ## extract the formulae of the three log-linear predictors formula.hhh4 <- function (x, ...) { lapply(x$control[c("ar", "ne", "end")], "[[", "f") } ## decompose the fitted mean of a "hhh4" model returning an array ## with dimensions (t, i, j), where the first j index is "endemic" decompose.hhh4 <- function (x, coefs = x$coefficients, ...) { ## get three major components from meanHHH() function meancomps <- meanHHH(coefs, terms(x)) ## this contains c("endemic", "epi.own", "epi.neighbours") ## but we really want the mean by neighbour neArray <- c(meancomps$ne.exppred) * neOffsetArray(x, coefW(coefs)) ##<- ne.exppred is (t, i) and recycled for (t, i, j) stopifnot(all.equal(rowSums(neArray, dims = 2), meancomps$epi.neighbours, check.attributes = FALSE)) ## add autoregressive part to neArray diagidx <- cbind(c(row(meancomps$epi.own)), c(col(meancomps$epi.own)), c(col(meancomps$epi.own))) ## usually: neArray[diagidx] == 0 neArray[diagidx] <- neArray[diagidx] + meancomps$epi.own ## add endemic component to the array res <- array(c(meancomps$endemic, neArray), dim = dim(neArray) + c(0, 0, 1), dimnames = with(dimnames(neArray), list(t=t, i=i, j=c("endemic",j)))) stopifnot(all.equal(rowSums(res, dims = 2), meancomps$mean, check.attributes = FALSE)) res } ## get the w_{ji} Y_{j,t-1} values from a hhh4() fit ## (i.e., before summing the neighbourhood component over j) ## in an array with dimensions (t, i, j) neOffsetArray <- function (object, pars = coefW(object), subset = object$control$subset) { ## initialize array ordered as (j, t, i) for apply() below res <- array(data = 0, dim = c(object$nUnit, length(subset), object$nUnit), dimnames = list( "j" = colnames(object$stsObj), "t" = rownames(object$stsObj)[subset], "i" = colnames(object$stsObj))) ## calculate array values if the fit has an NE component if ("ne" %in% componentsHHH4(object)) { W <- getNEweights(object, pars = pars) Y <- observed(object$stsObj) tm1 <- subset - object$control$ne$lag is.na(tm1) <- tm1 <= 0 tYtm1 <- t(Y[tm1,,drop=FALSE]) res[] <- apply(W, 2L, function (wi) tYtm1 * wi) offset <- object$control$ne$offset res <- if (length(offset) > 1L) { offset <- offset[subset,,drop=FALSE] res * rep(offset, each = object$nUnit) } else { res * offset } ## stopifnot(all.equal( ## colSums(res), # sum over j ## terms(object)$offset$ne(pars)[subset,,drop=FALSE], ## check.attributes = FALSE)) } ## permute dimensions as (t, i, j) aperm(res, perm = c(2L, 3L, 1L), resize = TRUE) } ## compare two hhh4 fits ignoring at least the "runtime" and "call" elements all.equal.hhh4 <- function (target, current, ..., ignore = NULL) { if (!inherits(target, "hhh4")) return("'target' is not a \"hhh4\" object") if (!inherits(current, "hhh4")) return("'current' is not a \"hhh4\" object") ignore <- unique.default(c(ignore, "runtime", "call")) target[ignore] <- current[ignore] <- list(NULL) NextMethod("all.equal") } surveillance/R/checkDerivatives.R0000644000176200001440000000446514426171115016570 0ustar liggesusers################################################################################ ### Simple wrapper around functionality of the numDeriv and maxLik packages ### to check the score vector and the Fisher information matrix ### CAVE: the return values of both wrappers are not unified ### ### Copyright (C) 2012, 2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ checkDerivatives.numDeriv <- function(ll, score, fisher, par, method="Richardson", method.args=list(), ...) { cat("Checking analytical score vector using numDeriv::grad() ...\n") nsc <- numDeriv::grad(ll, par, method = method, method.args = method.args, ...) asc <- score(par, ...) print(all.equal(asc, nsc, check.attributes=FALSE)) cat("Checking analytical Fisher information matrix using numDeriv::hessian() ...\n") if (length(par) > 50) cat("NOTE: this might take several minutes considering length(par) =", length(par), "\n") nfi <- -numDeriv::hessian(ll, par, method = "Richardson", method.args = method.args, ...) afi <- fisher(par, ...) print(all.equal(afi, nfi, check.attributes=FALSE)) invisible(list(score = list(analytic=asc, numeric=nsc), fisher = list(analytic=afi, numeric=nfi))) } checkDerivatives.maxLik <- function(ll, score, fisher, par, eps=1e-6, print=FALSE, ...) { cat("Checking analytical score and Fisher using maxLik::compareDerivatives() ...\n") res <- maxLik::compareDerivatives( f=ll, grad=score, hess=function (par, ...) -fisher(par, ...), t0=par, eps=eps, print=print, ...) cat("Comparison of score vectors:\n") print(all.equal(res$compareGrad$analytic, drop(res$compareGrad$numeric), check.attributes=FALSE)) cat("Comparison of Fisher information matrices:\n") print(all.equal(res$compareHessian$analytic, drop(res$compareHessian$numeric), check.attributes=FALSE)) invisible(res) } surveillance/R/backprojNP.R0000644000176200001440000003217114662137762015345 0ustar liggesusers###################################################################### # Implementation of the backprojection method as described in # Becker et al. (1991), Stats in Med, 10, 1527-1542. The method # was originally developed for the back-projection of AIDS incidence # but it is equally useful for analysing the epidemic curve in outbreak # situations of a disease with long incubation time, e.g. in order # to illustrate the effect of intervention measures. # # See backprojNP.Rd for the remaining details. ###################################################################### ###################################################################### # Helper function: Replace NaN or is.infinite values with zero. # Good against division by zero problems. # # Parameters: # x - a vector of type double ###################################################################### naninf2zero <- function(x) {x[is.nan(x) | is.infinite(x)] <- 0 ; return(x)} ###################################################################### # Single step of the EMS algorithm by Becker et al (1991). This function # is called by backprojNP. # # Parameters: # lambda.old - vector of length T containing the current rates # Y - vector of length T containing the observed values # dincu - probability mass function of the incubation time. I.e. # a function to be evaluated at integer numbers # pincu - cumulative mass function of the incubation time, i.e. an # object of type function. Needs to in sync with dincu. # k - smoothing parameter of the EMS algo, # needs to be an even number # # Returns: # ###################################################################### em.step.becker <- function(lambda.old, Y, dincu, pincu, k, incu.pmf, eq3a.method=c("R","C")) { #k needs to be divisible by two if (k %% 2 != 0) stop("k needs to be even.") #which method to use eq3a.method <- match.arg(eq3a.method,c("R","C")) #Initialize T <- length(Y) #Define new parameters phi.new <- lambda.new <- 0*lambda.old if (eq3a.method=="R") { #EM step. Problem that some of the sums can be zero if the incubation #distribution has zeroes at d=0,1,2 for (t in 1:T) { #Calculate sum as in equation (3a) of Becker (1991) sum3a <- 0 for (d in 0:(T-t)) { sum3a <- sum3a + Y[t+d] * naninf2zero(dincu(d) / sum(sapply(1:(t+d),function(i) lambda.old[i]*dincu(t+d-i)))) } phi.new[t] <- naninf2zero(lambda.old[t]/pincu(T-t)) * sum3a } } else { phi.new <- .Call(C_eq3a, lambda.old = as.numeric(lambda.old), Y = as.numeric(Y), incu.pmf = as.numeric(incu.pmf)) } #Smoothing step if (k>0) { w <- choose(k,0:k)/2^k for (t in 1:T) { i.sub <- t+(0:k)-k/2 goodIdx <- i.sub %in% 1:T w.sub <- w[goodIdx]/sum(w[goodIdx]) lambda.new[t] <- sum(w.sub * phi.new[i.sub[goodIdx]]) } } else { #no smoothing lambda.new <- phi.new } #Done. return(lambda=lambda.new) } ###################################################################### # STS compatible function to call the non-parametric back-projection # method of Becker et al (1991) for time aggregated data. # # Parameters: # sts - sts object with the observed incidence as "observed" slot # incu.pmf - incubation time pmf as a vector with index 0,..,d_max. Please # note that the support includes zero! # k - smoothing parameter for the EMS algorithm # eps - relative convergence criteration # iter.max - max number of iterations # verbose - boolean, if TRUE provide extra output when running the method # lambda0 - start value for lambda, default: uniform # hookFun - hook function to call after each EMS step, a function # of type hookFun=function(stsj,...) # # Returns: # sts object with upperbound set to the backprojected lambda. ###################################################################### backprojNP.fit <- function(sts, incu.pmf,k=2,eps=1e-5,iter.max=250,verbose=FALSE,lambda0=NULL,eq3a.method=c("R","C"),hookFun=function(stsbp) {}, ...) { #Determine method eq3a.method <- match.arg(eq3a.method, c("R","C")) #Define object to return lambda.hat <- matrix(NA,ncol=ncol(sts),nrow=nrow(sts)) #Loop over all series for (j in 1:ncol(sts)) { #Inform (if requested) what series we are looking at if ((ncol(sts)>1) & verbose) { cat("Backprojecting series no. ",j,"\n") } #Extract incidence time series Y <- observed(sts)[,j] #If default behaviour for lambda0 is desired if (is.null(lambda0)) { lambda0j <- rep(sum(Y)/length(Y),length(Y)) } else { lambda0j <- lambda0[,j] } #Create incubation time distribution vectors for the j'th series inc.pmf <- as.numeric(incu.pmf[,j]) inc.cdf <- cumsum(inc.pmf) #Create wrapper functions for the PMF and CDF based on the vector. #These function will be used in the R version of eq3a. #ToDo: The function uses the global variable inc.pmf which #definitely is dirty coding. How to define this function #in an environment where inc.pmf is present? dincu <- function(x) { notInSupport <- x<0 | x>=length(inc.pmf) #Give index -1 to invalid queries x[notInSupport] <- -1 return(c(0,inc.pmf)[x+2]) } #Cumulative distribution function. Uses global var "inc.cdf" pincu <- function(x) { x[x<0] <- -1 x[x>=length(inc.cdf)] <- length(inc.cdf)-1 return(c(0,inc.cdf)[x+2]) } #Iteration counter and convergence indicator i <- 0 stop <- FALSE lambda <- lambda0j #Loop until stop while (!stop) { #Add to counter i <- i+1 lambda.i <- lambda #Perform one step lambda <- em.step.becker(lambda.old=lambda.i,Y=Y,dincu=dincu,pincu=pincu,k=k, incu.pmf=inc.pmf, eq3a.method=eq3a.method) #check stop #In original paper the expression to do so appears funny since #- and + deviations cancel. More realistic: #criterion <- abs(sum(res$lambda) - sum(lambda.i))/sum(lambda.i) criterion <- sqrt(sum((lambda- lambda.i)^2))/sqrt(sum(lambda.i^2)) if (verbose) { cat("Convergence criterion @ iteration i=",i,": ", criterion,"\n") } #Check whether to stop stop <- criterion < eps | (i>iter.max) #Call hook function stsj <- sts[,j] upperbound(stsj) <- matrix(lambda,ncol=1) hookFun(stsj, ...) } #Done lambda.hat[,j] <- lambda } #Create new object with return put in the lambda slot bp.sts <- as(sts,"stsBP") bp.sts@upperbound <- lambda.hat bp.sts@control <- list(k=k,eps=eps,iter=i) return(bp.sts) } ###################################################################### # EMS back-projection method including bootstrap based confidence # intervals. The theory is indirectly given in Becker and Marschner (1993), # Biometrika, 80(1):165-178 and more specifically in Yip et al, 2011, # Communications in Statistics -- Simulation and Computation, # 37(2):425-433. # # Parameters: # # sts - sts object with the observed incidence as "observed" slot # incu.pmf - incubation time pmf as a vector with index 0,..,d_max. Please # note that the support includes zero! # k - smoothing parameter for the EMS algorithm # eps - relative convergence criteration. If a vector of length two # then the first argument is used for the k=0 initial fit and # the second element for all EMS fits # # iter.max - max number of iterations. Can be a vector of length two. # Similar use as in eps. # verbose - boolean, if TRUE provide extra output when running the method # lambda0 - start value for lambda, default: uniform # hookFun - hook function to call after each EMS step, a function # of type hookFun=function(Y,lambda,...) # B - number of bootstrap replicates. If B=-1 then no bootstrap CIs # are calculated. # # Returns: # sts object with upperbound set to the backprojected lambda. ###################################################################### backprojNP <- function(sts, incu.pmf,control=list(k=2,eps=rep(0.005,2),iter.max=rep(250,2),Tmark=nrow(sts),B=-1,alpha=0.05,verbose=FALSE,lambda0=NULL,eq3a.method=c("R","C"),hookFun=function(stsbp) {}),...) { #Check if backprojection is to be done multivariate time series case. if (ncol(sts)>1) { warning("Multivariate time series: Backprojection uses same eps for the individual time series.") } #Check if incu.pmf vector fits the dimension of the sts object. If not #either replicate it or throw an error. if (is.matrix(incu.pmf)) { if (!ncol(incu.pmf) == ncol(sts)) { stop("Dimensions of sts object and incu.pmf don't match.") } } else { if (ncol(sts)>1) { warning("Backprojection uses same incubation time distribution for the individual time series.") } incu.pmf <- matrix(incu.pmf,ncol=ncol(sts),dimnames=list(NULL,colnames(sts))) } #Fill control object as appropriate and in sync with the default value if (is.null(control[["k",exact=TRUE]])) { control$k <- 2 } if (is.null(control[["eps",exact=TRUE]])) { control$eps <- rep(0.005,2) } if (is.null(control[["iter.max",exact=TRUE]])) { control$iter.max <- rep(250,2) } if (is.null(control[["Tmark",exact=TRUE]])) { control$Tmark <- nrow(sts) } if (is.null(control[["B",exact=TRUE]])) { control$B <- -1 } if (is.null(control[["alpha",exact=TRUE]])) { control$alpha <- 0.05 } if (is.null(control[["verbose",exact=TRUE]])) { control$verbose <- FALSE } if (is.null(control[["lambda0",exact=TRUE]])) { control$lambda0 <- NULL } #Which method to use for computing eq3a if (is.null(control[["eq3a.method",exact=TRUE]])) { control$eq3a.method <- "R" } else { control$eq3a.method <- match.arg(control$eq3a.method,c("R","C")) } #Hook function definition if (is.null(control[["hookFun",exact=TRUE]])) { control$hookFun <- function(Y,lambda,...) {} } #If the eps and iter.max arguments are too short, make them length 2. if (length(control$eps)==1) control$eps <- rep(control$eps,2) if (length(control$iter.max)==1) control$iter.max <- rep(control$iter.max,2) #Compute the estimate to report (i.e. use 2nd component of the args) if (control$verbose) { cat("Back-projecting with k=",control$k," to get lambda estimate.\n") } stsk <- backprojNP.fit(sts, incu.pmf=incu.pmf,k=control$k,eps=control$eps[2],iter.max=control$iter.max[2],verbose=control$verbose,lambda0=control$lambda0,hookFun=control$hookFun,eq3a.method=control$eq3a.method) #Fix control slot stsk@control <- control #If no bootstrap to do return object right away as stsBP object. if (control$B<=0) { if (control$verbose) { cat("No bootstrap CIs calculated as requested.\n") } stsk <- as(stsk,"stsBP") return(stsk) } #Call back-project function without smoothing, i.e. with k=0. if (control$verbose) { cat("Back-projecting with k=",0," to get lambda estimate for parametric bootstrap.\n") } sts0 <- backprojNP.fit(sts, incu.pmf=incu.pmf,k=0,eps=control$eps[1],iter.max=control$iter.max[1],verbose=control$verbose,lambda0=control$lambda0,hookFun=control$hookFun, eq3a.method=control$eq3a.method) ########################################################################### #Create bootstrap samples and loop for each sample while storing the result ########################################################################### sts.boot <- sts0 #Define object to return lambda <- array(NA,dim=c(nrow(sts),ncol(sts),control$B)) #Define PMF of incubation time which does safe handling of values #outside the support of the incubation time. dincu <- function(x,i) { notInSupport <- x<0 | x>=length(incu.pmf[,i]) #Give index -1 to invalid queries x[notInSupport] <- -1 return(c(0,incu.pmf[,i])[x+2]) } #Loop in order to create the sample for (b in 1:control$B) { if (control$verbose) { cat("Bootstrap sample ",b,"/",control$B,"\n") } #Compute convolution for the mean of the observations mu <- matrix(0, nrow=nrow(sts0), ncol=ncol(sts0)) #Perform the convolution for each series for (i in 1:ncol(sts)) { for (t in 1:nrow(mu)) { for (s in 0:(t-1)) { mu[t,i] <- mu[t,i] + upperbound(sts0)[t-s,i] * dincu(s,i) } } } #Create new observations in the observed slot. observed(sts.boot) <- matrix(rpois(prod(dim(sts.boot)),lambda=mu),ncol=ncol(sts0)) #Run the backprojection on the bootstrap sample. Use original result #as starting value. sts.boot <- backprojNP.fit(sts.boot, incu.pmf=incu.pmf,k=control$k,eps=control$eps[2],iter.max=control$iter.max[2],verbose=control$verbose,lambda0=upperbound(stsk),hookFun=control$hookFun, eq3a.method=control$eq3a.method) #Extract the result of the b'th backprojection lambda[,,b] <- upperbound(sts.boot) } #Compute an equal tailed (1-alpha)*100% confidence intervals based on the #bootstrap samples. The dimension is (ci.low,ci.high) x time x series ci <- apply(lambda,MARGIN=c(1,2), quantile, probs=c(control$alpha/2,1-control$alpha/2)) #Convert output to stsBP object and add information to the extra slots stsk <- as(stsk,"stsBP") #Add extra slots stsk@ci <- ci stsk@lambda <- lambda stsk@control <- control #Done return(stsk) } surveillance/R/permutationTest.R0000644000176200001440000000331514426171115016505 0ustar liggesusers################################################################################ ### Permutation test to compare the means of paired samples ### ### Copyright (C) 2011-2012 Michaela Paul, 2013-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ permutationTest <- function(score1, score2, nPermutation = 9999, plot = FALSE, verbose = FALSE) { stopifnot((nTime <- length(score1)) == length(score2), !is.na(score1), !is.na(score2)) meanScore1 <- mean(score1) meanScore2 <- mean(score2) diffObserved <- meanScore1 - meanScore2 diffMean <- replicate(nPermutation, { sel <- rbinom(nTime, size=1, prob=0.5) g1 <- (sum(score1[sel==0]) + sum(score2[sel==1]))/nTime g2 <- (sum(score1[sel==1]) + sum(score2[sel==0]))/nTime g1 - g2 }) if (isTRUE(plot)) plot <- list() if (is.list(plot)) { do.call("permtestplot", args = modifyList( list(permstats = diffMean, xmarks = c("observed" = diffObserved), xlab = "Difference between means", ylab = "Density", main = ""), plot)) } pVal <- (1+sum(abs(diffMean)>=abs(diffObserved))) / (nPermutation+1) pTtest <- t.test(score1, score2, paired=TRUE)$p.value if (verbose) cat("mean difference =", diffObserved, "\tp(permutation) =", pVal, "\tp(paired t-test) =", pTtest, "\n") list(diffObs=diffObserved, pVal.permut=pVal, pVal.t=pTtest) } surveillance/R/hhh4_simulate_scores.R0000644000176200001440000000472314426171115017416 0ustar liggesusers################################################################################ ### Compute scores based on simulations from fitted hhh4() models ### ### Copyright (C) 2013-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## logarithmic score ## CAVE: will be infinite if none of "sims" yields "x" logs_sims <- function (sims, x) .logs(px = mean(sims == x)) ## Dawid-Sebastiani score ## CAVE: undefined if all simulations have the same value (i.e., no variance) dss_sims <- function (sims, x) { if ((varsims <- var(sims)) == 0) { # FIXME: What to do in that case? warning("DSS undefined for zero variance of prediction: all(sims==", sims[1L], "), x=", x) NA_real_ # if (x==sims[1L]) -Inf else Inf } else { .dss(meanP = mean(sims), varP = varsims, x = x) } } ## ranked probability score rps_sims <- function (sims, x) { .rps(P = ecdf(sims), x = x, kmax = ceiling(mean(sims) + 40*sd(sims))) ## Two alternatives via the expectation-based definition of the RPS: ## method = "means": equivalent to ecdf approach but slower ## method = "means.MC": faster than ecdf but with approximation error ## simdiffs <- switch(method, ## "means.MC" = diff(sims), ## "means" = outer(sims, sims, "-")) ## mean(abs(sims - x)) - mean(abs(simdiffs)) / 2 } ## scores-method for simulations from a hhh4 fit scores.hhh4sims <- function (x, which = "rps", units = NULL, ..., drop = TRUE) { observed <- observed(attr(x, "stsObserved")) scoreFUNs <- mget(paste0(which, "_sims"), envir = getNamespace("surveillance"), inherits = FALSE) names(scoreFUNs) <- which if (!is.null(units)) { observed <- observed[, units, drop = FALSE] x <- x[, units, , drop = FALSE] } counts <- array(c(observed, x), dim = dim(x) + c(0L, 0L, 1L)) res <- lapply(X = scoreFUNs, FUN = function (scoreFUN) apply(counts, 1:2, function (y) scoreFUN(y[-1L], y[1L]))) res <- simplify2array(res, higher = TRUE) if (drop) drop(res) else res } ## scores-method for simulations from a bunch of hhh4 fits scores.hhh4simslist <- function (x, ...) lapply(X = x, FUN = scores.hhh4sims, ...) surveillance/R/zzz.R0000644000176200001440000000241614663300304014131 0ustar liggesusers####################################### ### Hook functions for package start-up ####################################### .onLoad <- function (libname, pkgname) { ## initialize options reset.surveillance.options() } .onAttach <- function (libname, pkgname) { VERSION <- packageVersion(pkgname, lib.loc=libname) packageStartupMessage("This is ", pkgname, " ", VERSION, "; ", "see ", sQuote(paste0("package?", pkgname)), " or\n", "https://surveillance.R-Forge.R-project.org/", " for an overview.") if (!interactive()) { # particularly for R CMD check ## skip long examples, unless: allExamples <- nzchar(Sys.getenv("_R_SURVEILLANCE_ALL_EXAMPLES_")) .Options$allExamples$value <- allExamples } } ########################### ### Little helper functions ########################### ### Determines multiplicities in a matrix (or data frame) ### and returns unique rows with appended column of counts ### using spatstat.geom's multiplicity methods countunique <- function (x) unique(cbind(x, COUNT = multiplicity(x))) ### Checks if an R object is scalar, i.e., a numeric vector of length 1 isScalar <- function (x) length(x) == 1L && is.vector(x, mode = "numeric") surveillance/R/twinstim_helper.R0000644000176200001440000003713714661422402016523 0ustar liggesusers################################################################################ ### Internal helper functions for "twinstim" ### ### Copyright (C) 2009-2016,2018,2021,2024 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Determines indexes of potential sources of infection ## determine potential sources of the i'th event ## all arguments but i and qmatrix are nEvents-vectors ## -> determine potential sources for eventTimes[i], eventsTypes[i] with ## distances distvec_j = ||s_i - s_j|| determineSources1 <- function (i, eventTimes, removalTimes, distvec, eps.s, eventTypes = NULL, qmatrix) { tp <- eventTimes[i] infectivity <- (eventTimes < tp) & (removalTimes >= tp) #<- eventTimes= t)) ## lidx <- length(idx) ## if (lidx == 0L) NA_integer_ else if (lidx == 1L) idx else { ## stop("'stgrid' has overlapping spatio-temporal grid cells") ## } ## ~5x faster alternative assuming a full BLOCK x tile grid, which is ## sorted by BLOCK and tile (tile varying first), specifically there must be ## all levels(stgrid$tile) in every BLOCK in that order; ## this structure is guaranteed by check_stgrid() if (t <= stgrid$start[1L]) return(NA_integer_) # prehistory event blockstart <- match(TRUE, stgrid$stop >= t) # NA if t is beyond idx <- blockstart + match(tilename, levels(stgrid$tile)) - 1L return(idx) } ## Crude estimate for a start value of the endemic intercept ## assuming the model only had a single-cell endemic component ## (rate of homogeneous Poisson process scaled for the offset) crudebeta0 <- function (nEvents, offset.mean, W.area, period, nTypes) { ## nEvents = exp(offset + beta0) * W.area * period * nTypes log(nEvents/W.area/period/nTypes) - offset.mean } ### Really internal helper function, which constructs the function that ### integrates the two-dimensional 'siaf' function over the influence regions of ### the events. The only argument of the returned function is 'siafpars'. ### The returned function is defined in the callers environment, where the ### variables used in the function are available (inside twinstim() or ### simEpidataCS()). .siafIntFUN <- function (siaf, noCircularIR, #= all(eps.s>bdist) = all(sapply(influenceRegion, function(x) # is.null(attr(x,"radius")))) parallel = FALSE ){ ## the following variables are unused here, because the environment of ## FUN will be set to the parent.frame(), where the variables exist ## they are only included to avoid the notes in R CMD check iRareas <- influenceRegion <- eventTypes <- eps.s <- bdist <- effRanges <- NULL ## define the siaf integration function depending on the siaf specification FUN <- if (attr(siaf, "constant")) { if (exists("iRareas", where=parent.frame(), mode="numeric")) { ## in twinstim(), 'iRareas' are pre-defined to save ## computation time (data are fixed during fitting) function (siafpars) iRareas } else { function (siafpars) vapply(X = influenceRegion, FUN = attr, which = "area", FUN.VALUE = 0, USE.NAMES = FALSE) } } else if (is.null(siaf$Fcircle) || # if siaf$Fcircle not available (is.null(siaf$effRange) && noCircularIR)) { ## Numerically integrate 'siaf' over each influence region mapplyFUN( c(alist(siaf$F, influenceRegion, type=eventTypes), list(MoreArgs=quote(list(siaf$f, siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), ##<- we explicitly quote() the ...-part instead of simply including ## it in the above alist() - only to make checkUsage() happy parallel = parallel) } else if (is.null(siaf$effRange)) # use Fcircle but only delta-trick { mapplyFUN( c(alist(function (iR, type, eps, bdisti, siafpars, ...) if (eps <= bdisti) # influence region completely inside W siaf$Fcircle(eps, siafpars, type) else # numerically integrate over influence region siaf$F(iR, siaf$f, siafpars, type, ...) , influenceRegion, eventTypes, eps.s, bdist), list(MoreArgs=quote(list(siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), parallel = parallel) } else { # fast Fcircle integration considering the delta-trick AND effRange .ret <- mapplyFUN( c(alist(function (iR, type, eps, bdisti, effRange, siafpars, ...) if (eps <= bdisti) # influence region completely inside W siaf$Fcircle(eps, siafpars, type) else if (effRange <= bdisti) # effective region inside W siaf$Fcircle(bdisti, siafpars, type) else # numerically integrate over influence region siaf$F(iR, siaf$f, siafpars, type, ...) , influenceRegion, eventTypes, eps.s, bdist, effRanges), list(MoreArgs=quote(list(siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), ## before: compute computationally effective range of the 'siaf' ## for the current 'siafpars' for each event (type): before = expression( effRangeTypes <- rep_len(siaf$effRange(siafpars), nTypes), effRanges <- effRangeTypes[eventTypes] # N-vector ), parallel = parallel) if (exists("effRangeTypes", where=parent.frame(), mode="numeric")) { ## in simEpidataCS effRangeTypes is pre-calculated outside siafInt to ## save computation time ('siafpars' is constant during simulation) body(.ret)[[grep("^effRangeTypes <-", body(.ret))]] <- NULL } .ret } ## set the environment of the siafInt function to the callers environment ## (i.e. inside twinstim() or simEpidataCS()) ## where the variables used in the function are defined environment(FUN) <- parent.frame() FUN } ### Helper function, which constructs the function that integrates the 'tiaf'. ### The returned function is defined in the callers environment, where the ### variables used in the function are available (inside twinstim() or ### simEpidataCS()). .tiafIntFUN <- function () { ## the following variables are unused here, because the environment of ## FUN will be set to the parent.frame(), where the variables exist ## they are only included to avoid the notes in R CMD check gIntLower <- gIntUpper <- eventTypes <- tiaf <- NULL ## from, to and type may be vectors of compatible lengths FUN <- function(tiafpars, from = gIntLower, to = gIntUpper, type = eventTypes, G = tiaf$G) { tiafIntUpper <- G(to, tiafpars, type) tiafIntLower <- G(from, tiafpars, type) tiafIntUpper - tiafIntLower } ## set the environment of the tiafInt function to the callers environment ## (i.e. inside twinstim() or simEpidataCS()) ## where the default argument values are defined environment(FUN) <- parent.frame() FUN } ### rename control arguments with optim names to have names compatible with nlminb control2nlminb <- function (control, defaults) { renamelist <- cbind(optim = c("maxit", "REPORT", "abstol", "reltol"), nlminb = c("iter.max", "trace", "abs.tol", "rel.tol")) for (i in which(renamelist[,"optim"] %in% names(control))) { fromname <- renamelist[i, "optim"] toname <- renamelist[i, "nlminb"] if (is.null(control[[toname]])) { control[[toname]] <- control[[fromname]] } control[[fromname]] <- NULL } defaults[names(control)] <- control defaults } ### Helper for iaf-checks: ### Checks if FUN has three arguments (s/t, pars, type) and ### eventually adds the last two .checknargs3 <- function (FUN, name) { FUN <- match.fun(FUN) NARGS <- length(formals(FUN)) if (NARGS == 0L) { stop("the function '", name, "' must accept at least one argument") } else if (NARGS == 1L) { formals(FUN) <- c(formals(FUN), alist(pars=, types=)) } else if (NARGS == 2L) { formals(FUN) <- c(formals(FUN), alist(types=)) } FUN } ### Internal wrapper used in twinstim() and simEpidataCS() to evaluate the siaf ### and tiaf arguments. If successful, returns checked interaction function. .parseiaf <- function (iaf, type, eps = NULL, verbose = TRUE) { type <- match.arg(type, choices=c("siaf", "tiaf"), several.ok=FALSE) res <- if (missing(iaf) || is.null(iaf)) { if (verbose) { message("assuming constant ", switch(type, siaf="spatial", tiaf="temporal"), " interaction '", type, ".constant()'") } do.call(paste(type, "constant", sep="."), args=alist()) } else if (is.list(iaf)) { ret <- do.call(type, args = iaf) ## keep special attributes attr(ret, "knots") <- attr(iaf, "knots") attr(ret, "maxRange") <- attr(iaf, "maxRange") attr(ret, "Boundary.knots") <- attr(iaf, "Boundary.knots") attr(ret, "constant") <- attr(iaf, "constant") ret } else if (is.vector(iaf, mode = "numeric")) { do.call(paste(type,"step",sep="."), args = list(knots = iaf)) } else { stop("'", as.character(substitute(iaf)), "' must be NULL (or missing), a list (-> continuous ", "function), or numeric (-> knots of step function)") } ## indicate if this is a constant iaf attr(res, "constant") <- isTRUE(attr(res, "constant")) ## attach unique interaction ranges if (!is.null(eps)) { # in simEpidataCS() eps is not known beforehand attr(res, "eps") <- sort(unique(eps)) } return(res) } ### Construct a call/function for mapply or parallel::mcmapply, respectively ## args: alist() of arguments for mapply() ## before,after: expressions to be prepended/appended to the function body, ## where "res" will be the result of mapply() mapplyCall <- function (args, cores = 1L) { parallel <- is.name(cores) || cores > 1L mapplyFUN <- if (parallel) quote(parallel::mcmapply) else quote(mapply) parallelArgs <- list(mc.preschedule=TRUE, mc.cores=cores) as.call(c(mapplyFUN, args, if (parallel) parallelArgs)) } mapplyFUN <- function (args, before = list(), after = list(), parallel = TRUE) { FUN <- as.function(alist(siafpars=, ...=, NULL), envir=parent.frame()) body(FUN) <- mapplyCall(args, if (parallel) quote(cores) else 1L) if (length(after) + length(before) > 0) { body(FUN) <- as.call(c( list(as.name("{")), before, if (length(after)) call("<-", as.name("res"), body(FUN)) else body(FUN), after)) } FUN } ### parse the list or vector of start values check_twinstim_start <- function (start) { if (is.null(start)) { return(start) } else if (is.list(start)) { # convert allowed list specification to vector stopifnot(names(start) %in% c("endemic", "epidemic", "h", "e", "siaf", "tiaf", "e.siaf", "e.tiaf")) names(start)[names(start) == "endemic"] <- "h" names(start)[names(start) == "epidemic"] <- "e" names(start)[names(start) == "siaf"] <- "e.siaf" names(start)[names(start) == "tiaf"] <- "e.tiaf" start <- unlist(start, recursive=FALSE, use.names=TRUE) } if (!is.vector(start, mode="numeric") || is.null(names(start))) stop("parameter values must be named and numeric") return(start) } surveillance/R/scores.R0000644000176200001440000001517614175102531014601 0ustar liggesusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Scoring rules as discussed in: ### Predictive model assessment for count data ### Czado, C., Gneiting, T. & Held, L. (2009) ### Biometrics 65:1254-1261 ### ### Copyright (C) 2010-2012 Michaela Paul ### Copyright (C) 2014-2015, 2017-2019, 2022 Sebastian Meyer ################################################################################ ## logarithmic score ## logs(P,x) = -log(P(X=x)) .logs <- function (px) -log(px) logs <- function (x, mu, size=NULL) { if (is.null(size)) { - dpois(x, lambda=mu, log=TRUE) } else { - dnbinom(x, mu=mu, size=size, log=TRUE) } } ## squared error score ## ses(P,x) = (x-mu_p)^2 ses <- function (x, mu, size=NULL) { (x-mu)^2 } ## normalized squared error score (IMPROPER) ## nses(P,x) = ((x-mu_p)/sigma_p)^2 nses <- function (x, mu, size=NULL) { sigma2 <- if (is.null(size)) mu else mu * (1 + mu/size) ((x-mu)^2) / sigma2 } ## Dawid-Sebastiani score ## dss(P,x) = ((x-mu_p)/sigma_p)^2 + 2*log(sigma_p) .dss <- function (meanP, varP, x) (x-meanP)^2 / varP + log(varP) dss <- function (x, mu, size=NULL) .dss(meanP = mu, varP = if (is.null(size)) mu else mu * (1 + mu/size), x = x) ## ranked probability score ## rps(P,x) = sum_0^Kmax {P(X<=k) - 1(x<=k)}^2 ## for a single prediction (general formulation) .rps <- function (P, ..., x, kmax, kmin = 0, tolerance = sqrt(.Machine$double.eps)) { ## compute P(X<=k) k <- kmin:kmax Pk <- P(k, ...) ## check precision if ((1 - Pk[length(Pk)])^2 > tolerance) warning("finite sum approximation error larger than tolerance=", format(tolerance)) ## compute the RPS sum((Pk - (x <= k))^2) } ## for a single Poisson prediction rps_1P <- function (x, mu, k=40, tolerance=sqrt(.Machine$double.eps)) { ## return NA for non-convergent fits (where mu=NA) if (is.na(x) || is.na(mu)) return(NA_real_) ## finite sum truncation at mean + k*sd, but not before x kmax <- max(x, ceiling(mu + k*sqrt(mu))) ## skip low k for large mu kmin <- if (mu > k^2) floor(mu - k*sqrt(mu)) else 0 ## compute the RPS .rps(P = ppois, lambda = mu, x = x, kmax = kmax, kmin = kmin, tolerance = tolerance) } ## for a single NegBin prediction rps_1NB <- function (x, mu, size, k=40, tolerance=sqrt(.Machine$double.eps)) { ## return NA for non-convergent fits (where mu=NA) if (anyNA(c(x, mu, size))) return(NA_real_) ## finite sum truncation at mean + k*sd, but not before x sigma2 <- mu * (1 + mu/size) kmax <- max(x, ceiling(mu + k*sqrt(sigma2))) ## skip low k for large mu kmin <- max(0, floor(mu - k*sqrt(sigma2))) ## protect against wide NegBin (excessive memory consumption) if (kmax - kmin > 1e8) { warning("quasi-continuous NegBin distribution (too wide); returning NA") return(NA_real_) } ## compute the RPS .rps(P = pnbinom, mu = mu, size = size, x = x, kmax = kmax, kmin = kmin, tolerance = tolerance) } ## vectorized version rps <- function (x, mu, size=NULL, k=40, tolerance=sqrt(.Machine$double.eps)) { res <- if (is.null(size)) { mapply(rps_1P, x=x, mu=mu, MoreArgs=list(k=k, tolerance=tolerance), SIMPLIFY=TRUE, USE.NAMES=FALSE) } else { mapply(rps_1NB, x=x, mu=mu, size=size, MoreArgs=list(k=k, tolerance=tolerance), SIMPLIFY=TRUE, USE.NAMES=FALSE) } attributes(res) <- attributes(x) # set dim and dimnames res } ### apply a set of scoring rules at once scores.default <- function(x, mu, size = NULL, which = c("logs", "rps", "dss", "ses"), sign = FALSE, ...) { stopifnot(is.na(mu) | mu >= 0) if (!is.null(size)) stopifnot(is.na(size) | size > 0) ## compute individual scores (these have the same dimensions as x) scorelist <- lapply(X = setNames(nm = which), FUN = do.call, args = alist(x = x, mu = mu, size = size), envir = environment()) ## append sign of x-mu if (sign) scorelist <- c(scorelist, list("sign" = sign(x-mu))) ## gather scores in an array simplify2array(scorelist, higher = TRUE) } ### apply scoring rules to a set of oneStepAhead() forecasts scores.oneStepAhead <- function (x, which = c("logs","rps","dss","ses"), units = NULL, sign = FALSE, individual = FALSE, reverse = FALSE, ...) { y <- x$observed # observed counts during the prediction window mu <- x$pred # predicted counts (same dim as y) ## transform overdispersion to dnbinom() parameterization size <- psi2size.oneStepAhead(x) # -> NULL or full dim(y) matrix ## select units if (!is.null(units)) { y <- y[,units,drop=FALSE] mu <- mu[,units,drop=FALSE] size <- size[,units,drop=FALSE] # works with size = NULL } nUnits <- ncol(y) if (nUnits == 1L) individual <- TRUE # no need to apply rowMeans() below result <- scores.default(x = y, mu = mu, size = size, which = which, sign = sign) ## reverse order of the time points (historically) if (reverse) { result <- result[nrow(result):1L,,,drop=FALSE] } ## average over units if requested if (individual) { drop(result) } else { apply(X=result, MARGIN=3L, FUN=rowMeans) ## this gives a nrow(y) x (5L+sign) matrix (or a vector in case nrow(y)=1) } } ## calculate scores with respect to fitted values scores.hhh4 <- function (x, which = c("logs","rps","dss","ses"), subset = x$control$subset, units = seq_len(x$nUnit), sign = FALSE, ...) { ## slow implementation via "fake" oneStepAhead(): ##fitted <- oneStepAhead(x, tp = subset[1L] - 1L, type = "final", ## keep.estimates = FALSE, verbose = FALSE) ##scores.oneStepAhead(fitted, which = which, units = units, sign = sign, ## individual = TRUE, reverse = FALSE) result <- scores.default( x = x$stsObj@observed[subset, units, drop = FALSE], mu = x$fitted.values[match(subset, x$control$subset), units, drop = FALSE], size = psi2size.hhh4(x, subset, units), which = which, sign = sign) rownames(result) <- subset drop(result) } surveillance/R/boda.R0000644000176200001440000002537114662137762014225 0ustar liggesusers###################################################################### # An implementation of the Bayesian Outbreak Detection Algorithm (BODA) # described in Manitz and H{\"o}hle (2013), Biometrical Journal. # # Note: The algorithm requires the non-CRAN package INLA to run. # You can easily install this package as described at # https://www.r-inla.org/download-install # # # Author: # The initial code was written by J. Manitz, which was then later # adapted and modified for integration into the package by M. Hoehle. # Contributions by M. Salmon and S. Meyer. # # Date: # Code continuously developed during 2010-2014 # # Changes: # MS@2015-02-18 # fixed problem that the posterior was drawn from the respective marginals # instead of the joint distribution. # MH@2014-02-05 # changed tcltk progress bar to text based one and modified code, # use S4 sts object (no wrapping wanted) and changed to new INLA # function name for calculating the transformed marginal. ###################################################################### boda <- function(sts, control=list(range=NULL, X=NULL, trend=FALSE, season=FALSE, prior=c('iid','rw1','rw2'), alpha=0.05, mc.munu=100, mc.y=10, verbose=FALSE, samplingMethod=c('joint','marginals'), quantileMethod=c("MC","MM"))) { #Check if the INLA package is available. if (!requireNamespace("INLA", quietly = TRUE)) { stop("The boda function requires the INLA package to be installed.\n", " The package is not available on CRAN, but can be easily obtained\n", " from .") } #Stop if the sts object is multivariate if (ncol(sts)>1) { stop("boda currently only handles univariate sts objects.") } # quantileMethod parameter if(is.null(control[["quantileMethod",exact=TRUE]])){ control$quantileMethod <- "MC" } else { control$quantileMethod <- match.arg(control$quantileMethod, c("MC","MM")) } # extract data observed <- as.vector(observed(sts)) state <- as.vector(sts@state) time <- 1:length(observed) # clean model data from given outbreaks -- this is now part of the modelling # observed[which(state==1)] <- NA ### define range # missing range if(is.null(control[["range",exact=TRUE]])){ warning('No range given. Range is defined as time from second period until end of time series.') control$range <- (sts@freq+1):length(observed) } # check that range is subset of time series indices if(!all(control$range %in% time)){ stop("Evaluation period 'range' has to be vector of time series indices.") } #set order of range control$range <- sort(control$range) ### show extra output from INLA if(is.null(control[["verbose",exact=TRUE]])) { control$verbose <- FALSE } ### setting for different models if(is.null(control[["trend",exact=TRUE]])){ control$trend <- FALSE } if(is.null(control[["season",exact=TRUE]])){ control$season <- FALSE } if(!is.logical(control$trend)||!is.logical(control$season)){ stop('trend and season are logical parameters.') } ### Prior prior <- match.arg(control$prior, c('iid','rw1','rw2')) if(is.vector(control$X)){ control$X <- as.matrix(control$X,ncol=1) } # sampling method for the parameters samplingMethod <- match.arg(control$samplingMethod, c('joint','marginals')) # setting for threshold calculation if(is.null(control[["alpha",exact=TRUE]])){ control$alpha <- 0.05 } if(control$alpha <= 0 | control$alpha >= 1){ stop("The significance level 'alpha' has to be a probability, and thus has to be between 0 and 1.") } # setting for monte carlo integration if(is.null(control[["mc.munu",exact=TRUE]])){ control$mc.munu <- 100 } if(is.null(control[["mc.y",exact=TRUE]])){ control$mc.y <- 10 } if(!control$mc.munu>0 || control$mc.munu!=round(control$mc.munu,0) || !control$mc.y>0 || control$mc.y!=round(control$mc.y,0)){ stop('Number of Monte Carlo trials has to be an integer larger than zero') } ### set model formula and data modelformula <- paste("observed ~ f(time, model='",prior,"', cyclic=FALSE)", sep="") dat <- data.frame(observed=observed, time=time) # outbreak id if(sum(state)>0){ modelformula <- paste(modelformula, "+ f(state, model='linear')", sep="") dat <- data.frame(dat, state=state) } # trend if(control$trend){ modelformula <- paste(modelformula, "+ f(timeT, model='linear')", sep="") dat <- data.frame(dat, timeT=time) } # season if(control$season){ modelformula <- paste(modelformula, "+ f(timeS, model='seasonal', season.length=",sts@freq,")", sep="") dat <- data.frame(dat, timeS=time) } # covariables X.formula <- NULL if(!is.null(control$X)){ if(nrow(control$X)!=length(observed)){ stop("Argument for covariates 'X' has to have the same length like the time series") } for(i in 1:ncol(control$X)){ X.formula <- (paste(X.formula ,'+', colnames(control$X)[i])) } modelformula <- paste(modelformula, X.formula, sep="") dat <- data.frame(dat, control$X) } modelformula <- as.formula(modelformula) ##### sequential steps ##### #If there is more than one time point in range, then setup a progress bar #(now text based. Alternative: tcltk based) useProgressBar <- length(control$range)>1 if (useProgressBar) { pb <- txtProgressBar(min=min(control$range), max=max(control$range), initial=0, style=if (interactive()) 3 else 1) } #Allocate vector of thresholds xi <- rep(NA,length(observed)) #Loop over all time points in 'range' for(i in control$range){ # prepare data frame dati <- dat[1:i,] dati$observed[i] <- NA #current value to be predicted dati$state[i] <- 0 #current state to be predicted # fit model and calculate quantile using INLA & MC sampling # browser() xi[i] <- bodaFit(dat=dati, samplingMethod=samplingMethod, modelformula=modelformula, alpha=control$alpha, mc.munu=control$mc.munu, mc.y=control$mc.y, quantileMethod=control$quantileMethod, verbose=control$verbose) # update progress bar if (useProgressBar) setTxtProgressBar(pb, i) } # close progress bar if (useProgressBar) close(pb) # compare observed with threshold an trigger alarm: FALSE=no alarm sts@alarm[,1] <- observed > xi sts@upperbound[,1] <- xi control$name <- paste('boda(prior=',prior,')',sep='') sts@control <- control # return result as an sts object return(sts[control$range,]) } ####################################################################### # Helper function for fitting the Bayesian GAM using INLA and computing # the (1-alpha)*100% quantile for the posterior predictive of y[T1] # # Parameters: # dat - data.frame containing the data # modelformula - formula to use for fitting the model with inla # prior - what type of prior for the spline c('iid','rw1','rw2') # alpha - quantile to compute in the predictive posterior # mc.munu - no. of Monte Carlo samples for the mu/size param in the NegBin # mc.y - no. of samples for y. # # Returns: # (1-alpha)*100% quantile for the posterior predictive of y[T1] ###################################################################### bodaFit <- function(dat, modelformula, alpha, mc.munu, mc.y, samplingMethod, quantileMethod, verbose = FALSE) { # set time point T1 <- nrow(dat) # workaround scoping issue with 'E' in recent versions of INLA environment(modelformula) <- environment() ### fit model link <- 1 E <- mean(dat$observed, na.rm=TRUE) # FIXME: is this really needed? model <- INLA::inla(modelformula, data=dat, family='nbinomial', E=E, verbose=verbose, control.predictor=list(compute=TRUE,link=link), control.compute=c(list(cpo=FALSE,config=TRUE), if (packageVersion("INLA") >= "21.07.10") list(return.marginals.predictor=TRUE)), control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10)) if(is.null(model)){ # probably no longer happens in recent versions of INLA warning("NULL result from INLA at t = ", T1) return(NA_real_) } if(samplingMethod=='marginals'){ # draw sample from marginal posteriori of muT1 & etaT1 to determine predictive # quantile by sampling. marg <- model$marginals.fitted.values[[T1]] mT1 <- try(INLA::inla.rmarginal(n=mc.munu,marg), silent=TRUE) if(inherits(mT1,'try-error')){ warning("degenerate marginal posterior at t = ", T1) return(NA_real_) } # take variation in size hyperprior into account by also sampling from it mtheta <- model$internal.marginals.hyperpar[[1]] theta <- exp(INLA::inla.rmarginal(n=mc.munu,mtheta)) } if (samplingMethod=='joint'){ # Sample from the posterior ## CAVE: 'model' is not reproducible if num.threads != "1:1" (INLA 22.05.07), ## so there is no point in making the sampling step reproducible ##inla.seed <- as.integer(runif(1) * .Machine$integer.max) jointSample <- INLA::inla.posterior.sample( n = mc.munu, result = model, intern = TRUE, # seed = inla.seed skew.corr = FALSE) # added with default TRUE in INLA 19.10.30, needs sn # take variation in size hyperprior into account by also sampling from it theta <- exp(t(sapply(jointSample, function(x) x$hyperpar[[1]]))) mT1 <- exp(t(sapply(jointSample, function(x) x$latent[[T1]]))) } valid <- mT1 >= 0 & theta > 0 if (any(!valid)) { ## a range of (-4.7e-55, 5.8e-52) was seen for mT1 from inla.rmarginal() ## which produced an error (-> NA) in previous versions of INLA warning("degenerate posterior sampling at t = ", T1) return(NA_real_) ## mT1 <- mT1[valid] ## theta <- theta[valid] } if(quantileMethod=="MC"){ #Draw (mc.munu \times mc.y) responses. Would be nice, if we could #determine the quantile of the predictive posterior in more direct form yT1 <- unlist(mapply(rnbinom, size = theta, mu = E*mT1, MoreArgs = list(n = mc.y), SIMPLIFY = FALSE)) qi <- quantile(yT1, probs=(1-alpha), type=3, na.rm=TRUE) } if(quantileMethod=="MM"){ minBracket <- qnbinom(p=(1-alpha), mu=E*min(mT1), size=max(theta)) maxBracket <- qnbinom(p=(1-alpha), mu=E*max(mT1), size=min(theta)) qi <- qmix(p=(1-alpha), mu=E*mT1, size=theta, bracket=c(minBracket, maxBracket)) } return(qi) } #done bodaFit surveillance/R/twinSIR_profile.R0000644000176200001440000002367514615162374016377 0ustar liggesusers################################################################################ ### profile-method for class "twinSIR" to calculate the profile log-likelihood ### (normalized) as well as profile likelihood based confidence intervals ### ### Copyright (C) 2009 Michael Hoehle, 2014 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ###################################################################### # Function to compute likelihood based confidence interval, basically # the two solutions to # f(\theta) = l(\theta)-l(\hat{theta)) + 1/2 dchisq(1-alpha,df=1)=0 # are found. # # # Parameters: # logliktilde - normalized likelihood function(theta, ...) # theta.hat - the MLE # lower - search interval [lower,theta.hat] for f=0 # upper - search interval [theta.hat,upper] for f=0 # alpha - confidence level (see Equation 2.6 in Pawitan (2003) # ... - additional arguments passed to function logliktilde ###################################################################### likelihood.ci <- function (logliktilde, theta.hat, lower, upper, alpha = 0.05, ...) { # Highest Likelihood interval -- target function f <- function(theta, ...) { logliktilde(theta, ...) + 1/2*qchisq(1-alpha, df=1) } # Compute upper and lower boundary numerically hl.lower <- uniroot(f, interval = c(lower, theta.hat), ...)$root hl.upper <- uniroot(f, interval = c(theta.hat, upper), ...)$root return(c(hl.lower,hl.upper)) } ###################################################################### # Function to compute estimated and profile likelihood based # confidence intervals. Heavy computations might be necessary! # #Params: # fitted - output from a fit with twinSIR # profile - list with 4D vector as entries - format: # c(index, lower, upper, grid size) # where index is the index in the coef vector # lower and upper are the parameter limits (can be NA) # grid size is the grid size of the equally spaced grid # between lower and upper (can be 0) # alpha - (1-alpha)% profile likelihood CIs are computed. # If alpha <= 0 then no CIs are computed # control - control object to use for optim in the profile loglik computations # # Returns: # list with profile loglikelihood evaluations on the grid # and highest likelihood and wald confidence intervals ###################################################################### profile.twinSIR <- function (fitted, profile, alpha = 0.05, control = list(fnscale = -1, factr = 1e1, maxit = 100), ...) { ## Check that input is ok profile <- as.list(profile) if (length(profile) == 0L) { stop("nothing to do") } lapply(profile, function(one) { if (length(one) != 4L) { stop("each profile entry has to be of form ", "'c(index, lower, upper, grid size)'") }}) if (is.null(fitted[["model"]])) { stop("'fitted' must contain the model component") } px <- ncol(fitted$model$X) pz <- ncol(fitted$model$Z) ## Control of the optim procedure if (is.null(control[["fnscale",exact=TRUE]])) { control$fnscale <- -1 } if (is.null(control[["factr",exact=TRUE]])) { control$factr <- 1e1 } if (is.null(control[["maxit",exact=TRUE]])) { control$maxit <- 100 } ## Estimated normalized likelihood function ltildeestim <- function(thetai,i) { theta <- theta.ml theta[i] <- thetai with(fitted$model, .loglik(theta, X=X, Z=Z, survs=survs, weights=weights)) - loglik.theta.ml } ## Profile normalized likelihood function ltildeprofile <- function(thetai,i) { emptyTheta <- rep(0, length(theta.ml)) # Likelihood l(theta_{-i}) = l(theta_i, theta_i) ltildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai with(fitted$model, .loglik(theta, X=X, Z=Z, survs=survs, weights=weights)) - loglik.theta.ml } # Score function of all params except thetaminusi stildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai with(fitted$model, .score(theta, X=X, Z=Z, survs=survs, weights=weights))[-i] } # Call optim using L-BFGS-B. For harder constrains we need constr.Optim lower <- if (fitted$method == "L-BFGS-B") { c(rep(0,px),rep(-Inf,pz))[-i] } else { -Inf } upper <- if (fitted$method == "L-BFGS-B") { c(rep(Inf,px),rep(Inf,pz))[-i] } else { Inf } resOthers <- tryCatch(with(fitted$model, optim(theta.ml[-i], fn = ltildethetaminusi, gr = stildethetaminusi, method = fitted$method, control = control, lower = lower, upper = upper)), warning = function(w) print(w), error = function(e) list(value=NA)) resOthers$value } ## Initialize theta.ml <- coef(fitted) loglik.theta.ml <- c(logLik(fitted)) se <- sqrt(diag(vcov(fitted))) resProfile <- list() ## Perform profile computations for all requested parameters cat("Evaluating the profile log-likelihood on a grid ...\n") for (i in 1:length(profile)) { cat("i= ",i,"/",length(profile),"\n") #Index of the parameter in the theta vector idx <- profile[[i]][1] #If no borders are given use those from wald intervals (unconstrained) if (is.na(profile[[i]][2])) profile[[i]][2] <- theta.ml[idx] - 3*se[idx] if (is.na(profile[[i]][3])) profile[[i]][3] <- theta.ml[idx] + 3*se[idx] #Evaluate profile loglik on a grid (if requested) if (profile[[i]][4] > 0) { thetai.grid <- seq(profile[[i]][2],profile[[i]][3],length.out=profile[[i]][4]) resProfile[[i]] <- matrix(NA, nrow = length(thetai.grid), ncol = 4L, dimnames = list(NULL, c("grid","profile","estimated","wald"))) for (j in 1:length(thetai.grid)) { cat("\tj= ",j,"/",length(thetai.grid),"\n") resProfile[[i]][j,] <- c(thetai.grid[j], ltildeprofile(thetai.grid[j],idx), ltildeestim(thetai.grid[j],idx), #9 June 2009: Bug discovered by L. Held. as part of paper revision. C.f. Pawitan p.63 - 1/2*(1/se[idx]^2)*(thetai.grid[j] - theta.ml[idx])^2) } } } #9 June 2009. This did not work. # names(resProfile) <- names(theta.ml)[sapply(profile, function(x) x[4L]) > 0] names(resProfile) <- names(theta.ml)[sapply(profile, function(x) x[1L])] ## Profile likelihood intervals ciProfile <- matrix(NA, nrow = length(profile), ncol = 6L, dimnames = list(NULL, c("idx","hl.low","hl.up","wald.low","wald.up","mle"))) ciProfile[,"idx"] <- sapply(profile, "[", 1L) ciProfile[,"mle"] <- theta.ml[ciProfile[,"idx"]] rownames(ciProfile) <- names(theta.ml)[ciProfile[,"idx"]] if (alpha > 0) { cat("Computing profile likelihood-based confidence intervals ...\n") lower <- if (fitted$method == "L-BFGS-B") { c(rep(0,px),rep(-Inf,pz)) } else { -Inf } for (i in seq_along(profile)) { cat(i,"/", length(profile),"\n") #Index of the parameter in the theta vector idx <- profile[[i]][1] #Compute highest likelihood intervals ci.hl <- tryCatch( likelihood.ci(ltildeprofile, theta.hat = theta.ml[idx], lower = max(lower[idx], theta.ml[idx]-5*se[idx]), upper = theta.ml[idx]+5*se[idx], alpha = alpha, i = idx), warning = function(w) print(w), error = function(e) rep(NA,2)) #Wald intervals based on expected fisher information ci.wald <- theta.ml[idx] + c(-1,1) * qnorm(1-alpha/2) * se[idx] ciProfile[i,2:5] <- c(ci.hl, ci.wald) } } res <- list(lp=resProfile, ci.hl=ciProfile, profileObj=profile) class(res) <- "profile.twinSIR" return(res) } ###################################################################### ## Plot the result of the profiler ## Parameters: ## x - the result of calling profile() on a "twinSIR" object ## which - names of selected parameters, NULL meaning all available ## conf.level - level for the horizontal line for -qchisq(,df=1)/2 ## legend - logical indicating whether to add a legend to the plot, ## or numeric vector of indexes of plots where to add the legend ###################################################################### plot.profile.twinSIR <- function(x, which = NULL, conf.level = 0.95, xlab = which, ylab = "normalized log-likelihood", legend = TRUE, par.settings = list(), ...) { ## extract relevant components of 'x' lp <- x$lp[!vapply(X=x$lp, FUN=is.null, FUN.VALUE=FALSE, USE.NAMES=FALSE)] mle <- x$ci.hl[,"mle"] ## check arguments which <- if (is.null(which)) { names(lp) } else { match.arg(which, names(lp), several.ok = TRUE) } xlab <- rep_len(xlab, length(which)) if (is.logical(legend)) legend <- which(legend) if (is.list(par.settings)) { par.defaults <- list(mfrow = sort(n2mfrow(length(which))), mar = c(5,5,1,1)+.1, las = 1) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } ## loop over parameters for (i in seq_along(which)) { coefname <- which[i] matplot(lp[[coefname]][,1L], lp[[coefname]][,-1L], type = "l", col = 1:3, lty = 1:3, xlab = xlab[i], ylab = ylab) if (i %in% legend) { legend(x = "bottomright", legend = c("profile","estimated","Wald"), col = 1:3, lty = 1:3) } ## some lines which help interpretation segments(x0=mle[coefname], y0=par("usr")[3L], y1=0, lty=2, col="darkgray") abline(h=-1/2*qchisq(conf.level, df=1), lty=2, col="darkgray") } } surveillance/R/hcl.colors.R0000644000176200001440000000205314024100031015321 0ustar liggesusers################################################################################ ### Generate a color palette via the colorspace package ### ### Copyright (C) 2007 Michael Hoehle, 2012-2014,2017,2019,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ .hcl.colors <- function (ncolors=100, use.color=TRUE) { GYR <- if (requireNamespace("colorspace", quietly=TRUE)) { ## the Zeil-ice colors colorspace::heat_hcl(ncolors, h=c(0,120), c.=if (use.color) c(90,30) else c(0,0), l=c(50,90), power=c(0.75, 1.2)) } else if (use.color) { grDevices::hcl.colors(n = ncolors, palette = "Heat 2") ## this is the same as colorspace::heat_hcl(ncolors) } else { grey.colors(ncolors) } return(rev(GYR)) } surveillance/R/sts_observation.R0000644000176200001440000000226614662137762016542 0ustar liggesusers################################################################################ ### Function for creating an "sts" object with a given observation date ### ### Copyright (C) 2014-2015 Maelle Salmon ################################################################################ sts_observation <- function(sts,dateObservation,cut=TRUE) { # The sts object we shall return stsSub <- sts # Index of the observation date line1 <- which(epoch(sts)==dateObservation) # Maximal delay D <- dim(stsSub@control$reportingTriangle$n)[2]-1 # Number of dates theEnd <- dim(stsSub@control$reportingTriangle$n)[1] # Nothing observed after the observation date (I am a genius) stsSub@control$reportingTriangle$n[(line1+1):theEnd,] <- NA stsSub@observed[(line1+1):theEnd] <- 0 # Not everything observed before the observation date for (i in 1:D){ stsSub@control$reportingTriangle$n[line1+1-i,(i+1):(D+1)] <- NA stsSub@observed[line1+1-i] <- sum(stsSub@control$reportingTriangle$n[line1+1-i,],na.rm=T) } stsSub@control$reportingTriangle$n <- stsSub@control$reportingTriangle$n[1:line1,] # Return the new sts object if (cut){return(stsSub[1:line1])} else{return(stsSub)} } surveillance/R/epidata_animate.R0000644000176200001440000001361714426171115016411 0ustar liggesusers################################################################################ ### Two types of spatio-temporal animations of "epidata" are supported: ### - sequential plots regardless of time between events (i.e. only ordering) ### - chronological animation with timer ### ### Copyright (C) 2008-2009, 2012, 2014, 2019 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ animate.epidata <- function (object, ...) { s <- summary(object) animate.summary.epidata(s, ...) } animate.summary.epidata <- function (object, main = "An animation of the epidemic", pch = 19, col = c(3, 2, gray(0.6)), time.spacing = NULL, sleep = quote(5/.nTimes), legend.opts = list(), timer.opts = list(), end = NULL, generate.snapshots = NULL, ...) { counters <- object[["counters"]] # remove pseudo-R-events, which come before S-event directSevents <- which(duplicated(counters[["time"]])) counters_noPseudoR <- if (length(directSevents)) { counters[-(directSevents-1), ] } else { counters } # remove initial row and keep essential columns eventTable <- counters_noPseudoR[-1, c("time", "type", "id")] eventTable[["type"]] <- unclass(eventTable[["type"]]) # get integer codes .nTimes <- nrow(eventTable) # extract initial individual information (id, at-risk, coordinates) coords <- object[["coordinates"]] d <- ncol(coords) if (d > 2L) { stop("spatial plotting in more than two dimensions is not implemented") } else if (d == 1L) { coords <- cbind(coords, 0) } else if (d == 0L) { stop ("'object' does not contain any defined coordinates") } # plot the initial state pch <- rep(pch, length.out = 3) col <- rep(col, length.out = 3) isInitiallyInfected <- rownames(coords) %in% object[["initiallyInfected"]] plot(coords, pch = ifelse(isInitiallyInfected, pch[2L], pch[1L]), col = ifelse(isInitiallyInfected, col[2L], col[1L]), main = main, ...) if (is.list(legend.opts)) { if (is.null(legend.opts[["x",exact=TRUE]])) legend.opts$x <- "topright" if (is.null(legend.opts$legend)) legend.opts$legend <- c("susceptible", "infectious", "removed") if (is.null(legend.opts$col)) legend.opts$col <- col if (is.null(legend.opts$pch)) legend.opts$pch <- pch do.call(legend, legend.opts) } # animate the epidemic by iteratively re-drawing points at the coordinates sleep <- eval(sleep) if (is.null(time.spacing)) { # plot events sequentially for(i in seq_len(.nTimes)) { if (dev.interactive()) Sys.sleep(sleep) tmp <- eventTable[i,] # c(time, type, id) points(coords[as.character(tmp[["id"]]),,drop=FALSE], pch = pch[tmp[["type"]]], col = col[tmp[["type"]]]) } } else { # plot events chronologically if (is.null(end)) end <- eventTable[.nTimes, "time"] + time.spacing timeGrid <- seq(from = time.spacing, to = end, by = time.spacing) timeWidth <- nchar(timeGrid[length(timeGrid)]) timeDigits <- if (grepl(".", as.character(time.spacing), fixed = TRUE)) { nchar(strsplit(as.character(time.spacing), split = ".", fixed = TRUE)[[1L]][2L]) } else 0 form <- paste("%", timeWidth, ".", timeDigits, "f", sep = "") if (is.list(timer.opts)) { if (is.null(timer.opts[["x",exact=TRUE]])) timer.opts$x <- "bottomright" if (is.null(timer.opts$title)) timer.opts$title <- "time" if (is.null(timer.opts$box.lty)) timer.opts$box.lty <- 0 if (is.null(timer.opts$adj)) timer.opts$adj <- c(0.5,0.5) if (is.null(timer.opts$inset)) timer.opts$inset <- 0.01 if (is.null(timer.opts$bg)) timer.opts$bg <- "white" do.call(legend, c(list(legend = sprintf(form, 0)), timer.opts)) } oldtp <- tp <- attr(object, "timeRange")[1L] i <- 1L # to be used in the file argument in dev.print if (is.vector(generate.snapshots, mode="character") && length(generate.snapshots) == 1L && requireNamespace("animation")) { img.name <- generate.snapshots ani.dev <- animation::ani.options("ani.dev") if (is.character(ani.dev)) ani.dev <- get(ani.dev) imgdir <- animation::ani.options("imgdir") imgtype <- animation::ani.options("ani.type") generate.snapshots <- list( device = ani.dev, file = quote(file.path(imgdir, paste0(img.name,i,".",imgtype))), width = animation::ani.options("ani.width"), height = animation::ani.options("ani.height") ) } if (is.list(generate.snapshots)) { do.call(dev.print, generate.snapshots) } for(i in 1L+seq_along(timeGrid)) { tp <- timeGrid[i-1L] if (dev.interactive()) Sys.sleep(sleep) timeIndex <- which(eventTable[["time"]] > oldtp & eventTable[["time"]] <= tp) if (length(timeIndex) > 0L) { tmp <- eventTable[timeIndex,] # c(time, type, id) points(coords[as.character(tmp[["id"]]),,drop=FALSE], pch = pch[tmp[["type"]]], col = col[tmp[["type"]]]) } if (is.list(timer.opts)) { do.call(legend, c(list(legend = sprintf(form,tp)), timer.opts)) } oldtp <- tp if (is.list(generate.snapshots)) { do.call(dev.print, generate.snapshots) } } } invisible(NULL) } surveillance/R/sts_toLatex.R0000644000176200001440000001142112672242502015604 0ustar liggesusers################################################################################ ### toLatex-method for "sts" objects ### ### Copyright (C) 2014 Dirk Schumacher, 2014 Maelle Salmon ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ toLatex.sts <- function(object, caption = "",label=" ", columnLabels = NULL, subset = NULL, alarmPrefix = "\\textbf{\\textcolor{red}{", alarmSuffix = "}}", ubColumnLabel = "UB", ...) { # Args: # object: A single sts object; must not be NULL or empty. # caption: A caption for the table. Default is the empty string. # label: A label for the table. Default is the empty string. # columnLabels: A list of labels for each column of the resulting table. # subset: A range of values which should be displayed. If Null, then all # data in the sts objects will be displayed. Else only a subset of # data. Therefore range needs to be a numerical vector of indexes # from 1 to length(@observed). # alarmPrefix: A latex compatible prefix string wrapped around a table cell # iff there is an alarm;i.e. alarm = TRUE # alarmSuffix: A latex compatible suffix string wrapped around a table cell # iff there is an alarm;i.e. alarm[i,j] = TRUE # ubColumnLabel: The label of the upper bound column; default is "UB". # ...: Variable arguments passed to toLatex.xtable # Returns: # An object of class Latex # Error Handling isEmpty <- function(o) is.null(o) if (isEmpty(object)) stop("object must not be null or NA.") if (is.list(object)) stop("supplying a list of sts has been removed from the api. Sorry.") if (!isS4(object) || !is(object, "sts")) stop("object must be of type sts from the surveillance package.") if (!is.character(caption)) stop("caption must be a character.") if (!isEmpty(labels) && length(labels) != length(object)) stop("number of labels differ from the number of sts objects.") # derive default values tableLabels <- colnames(object@observed) if (!is.null(columnLabels) && length(columnLabels) != ncol(object@observed) * 2 + 2) { stop("the number of labels must match the number of columns in the resulting table; i.e. 2 * columns of sts + 2.") } tableCaption <- caption tableLabel <- label vectorOfDates <- epoch(object, as.Date = TRUE) yearColumn <- Map(function(d)isoWeekYear(d)$ISOYear, vectorOfDates) if (object@freq == 12 ) monthColumn <- Map(function(d) as.POSIXlt(d)$mon, vectorOfDates) if (object@freq == 52 ) weekColumn <- Map(function(d)isoWeekYear(d)$ISOWeek, vectorOfDates) dataTable <- data.frame(unlist(yearColumn)) colnames(dataTable) <- "year" if (object@freq == 12 ) { dataTable$month <- unlist(monthColumn) } if (object@freq == 52 ) { dataTable$week <- unlist(weekColumn) } if (object@freq == 365 ) { dataTable$day <- unlist(vectorOfDates) dataTable <- dataTable[c(2)] } noCols <- ncol(dataTable) j <- 1 + noCols tableLabelsWithUB <- c() # I know it is imperative - shame on me for (k in 1:(ncol(object@observed))) { upperbounds <- round(object@upperbound[,k], 2) observedValues <- object@observed[,k] alarms <- object@alarm[,k] ubCol <- c() for (l in 1:length(upperbounds)) { if (is.na(upperbounds[l])) { ubCol <- c(ubCol, NA) } else { ubCol <- c(ubCol, upperbounds[l]) if (!is.na(alarms[l]) && alarms[l]) { observedValues[l] <- paste0(alarmPrefix, observedValues[l], alarmSuffix) } } } dataTable[,(j)] <- observedValues dataTable[,(j + 1)] <- ubCol tableLabelsWithUB <- c(tableLabelsWithUB, tableLabels[k]) tableLabelsWithUB <- c(tableLabelsWithUB, ubColumnLabel) j <- j + 2 } # remove rows which should not be displayed if (is.null(subset)) subset <- 1:nrow(dataTable) else if (min(subset) < 1 || max(subset) > nrow(dataTable)) stop("'subset' must be a subset of 1:nrow(observed), i.e., 1:", nrow(dataTable)) dataTable <- dataTable[subset,] # prepare everything for xtable newColNames <- c(colnames(dataTable)[1:noCols], tableLabelsWithUB) if (!is.null(columnLabels)) { colnames(dataTable) <- columnLabels } else { colnames(dataTable) <- newColNames } xDataTable <- xtable(dataTable, label = tableLabel, caption = tableCaption, digits = c(0)) toLatex(xDataTable, ...) } setMethod("toLatex", "sts", toLatex.sts) surveillance/R/sim_pointSource.R0000644000176200001440000000423214615162374016466 0ustar liggesusers################################################### ### chunk number 1: ################################################### # Programme to simulate epidemies which were # introduced by point sources. # The basis of this proagramme is a combination of # a Hidden Markov Model (to get random dates # for outbreaks) and a simple Model to simulate # the epidemy. # # Parameters: # r - probability to get a new epidemy at time i if there was one # at time i-1 # p - probability to get no new epidemy at time i if there was none # at time i-1 # length - number of timesteps to visit # # Parameters for the background: # A - Amplitude, default = 1. # alpha - Incidence, default = 1. # beta - time dependent regression coefficient, default = 0. # phi - weeks of seaonal move, default = 0. # frequency - frequency of the sinus, default = 1. # state - a eventually given markov chain, # which defines the status at this time (outbreak or not) # K - additional weight for an outbreak sim.pointSource <- function(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K){ if(is.null(state)){ # create a markov-chain state <- matrix(data = 0, ncol = 1, nrow = length) state[1] <- 0 #hoehle - fix: rbinom(1,1,0.5) # always begin with a zero # create the transition matrix transitionMatrix <- matrix(data = c(p, (1-r),(1-p), r), nrow = 2, ncol = 2) if(length(state) > 1){ # just do it if there is a preceding value for (i in 2:length){ # check the matrix for the correct line and take the right # probability. The last value of state is the newest. state[i] <- rbinom(1,1,transitionMatrix[state[i-1] + 1, 2]) } } } # go sure to have the right length as parameter length <- length(state) observed <-sim.seasonalNoise(A, alpha, beta, phi, length, frequency, state, K)$seasonalBackground result <- list(observed = observed, state = state, A = A, alpha = alpha, beta = beta, K = K, p = p, r = r, freq=52, start=c(2001,1)) class(result) = "disProg" # for disease progress return(result) } surveillance/R/twinstim_intensity.R0000644000176200001440000003051514426171115017264 0ustar liggesusers################################################################################ ### Plot the temporal or spatial evolution of the estimated intensity ### ### Copyright (C) 2012-2015, 2022 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ intensity.twinstim <- function (x, aggregate = c("time", "space"), types = 1:nrow(x$qmatrix), tiles, tiles.idcol = NULL) { modelenv <- environment(x) ## check arguments if (is.null(modelenv)) stop("'x' is missing the model environment\n", " -- re-fit or update() with 'model=TRUE'") aggregate <- match.arg(aggregate) stopifnot(is.vector(types, mode="numeric"), types %in% seq_len(modelenv$nTypes), !anyDuplicated(types)) ## remove (big) x object from current evaluation environment qmatrix <- x$qmatrix # not part of modelenv force(types) # evaluate types before rm(x) rm(x) # don't need this anymore ##thisenv <- environment() ##parent.env(thisenv) <- modelenv # objects of modelenv become visible ## Instead of the above, we do cheap and nasty model unpacking! ## safer than the parent.env<- hack (R manual: "extremely dangerous"), and ## cleaner than running code inside with(modelenv,...) since assignments ## then would take place in modelenv, which would produce garbage t0 <- modelenv$t0 T <- modelenv$T histIntervals <- modelenv$histIntervals eventTimes <- modelenv$eventTimes eventCoords <- modelenv$eventCoords eventTypes <- modelenv$eventTypes removalTimes <- modelenv$removalTimes gridTiles <- modelenv$gridTiles gridBlocks <- modelenv$gridBlocks ds <- modelenv$ds tiaf <- modelenv$tiaf tiafpars <- modelenv$tiafpars eps.s <- modelenv$eps.s siaf <- modelenv$siaf siafpars <- modelenv$siafpars ## endemic component on the spatial or temporal grid hInt <- if (modelenv$hash) { eta <- drop(modelenv$mmhGrid %*% modelenv$beta) if (!is.null(modelenv$offsetGrid)) eta <- modelenv$offsetGrid + eta expeta <- exp(unname(eta)) .beta0 <- rep_len(if (modelenv$nbeta0==0L) 0 else modelenv$beta0, modelenv$nTypes) fact <- sum(exp(.beta0[types])) if (aggregate == "time") { # int over W and types by BLOCK fact * c(tapply(expeta * modelenv$ds, gridBlocks, sum, simplify = TRUE)) } else { # int over T and types by tile fact * c(tapply(expeta * modelenv$dt, gridTiles, sum, simplify = TRUE)) } } else { ## the endemic intensity is 0 ## but a non-endemic "twinstim" holds no information on 'stgrid': ## 'gridBlocks' and 'gridTiles', respectively, are undefined NULL } ## endemic component as a function of time or location hIntFUN <- if (modelenv$hash) { if (aggregate == "time") { function (tp) { stopifnot(isScalar(tp)) if (tp == t0) { hInt[1L] } else { starts <- histIntervals$start idx <- match(TRUE, c(starts,T) >= tp) - 1L if (identical(idx, 0L)) { # tp <= t0 NA_real_ } else { # idx is NA if tp > T block <- histIntervals$BLOCK[idx] hInt[as.character(block)] } } } } else { if (!is.null(tiles.idcol)) { stopifnot(is(tiles, "SpatialPolygonsDataFrame")) row.names(tiles) <- tiles@data[[tiles.idcol]] } tileLevels <- levels(gridTiles) tiles <- check_tiles(tiles, tileLevels, areas.stgrid = ds[seq_along(tileLevels)], keep.data = FALSE) # drop data for over-method tilesIDs <- row.names(tiles) # = sapply(tiles@polygons, slot, "ID") function (xy) { # works with a whole coordinate matrix points <- SpatialPoints(xy, proj4string=tiles@proj4string) polygonidxOfPoints <- over(points, tiles) tilesOfPoints <- tilesIDs[polygonidxOfPoints] hInt[tilesOfPoints] # index by name } } } else function (...) 0 ## epidemic component eInt <- if (modelenv$hase) { qSum_types <- rowSums(qmatrix[,types,drop=FALSE])[eventTypes] fact <- qSum_types * modelenv$gammapred if (aggregate == "time") { # as a function of time (int over W & types) factS <- fact * modelenv$siafInt function (tp) { stopifnot(isScalar(tp)) tdiff <- tp - eventTimes infectivity <- qSum_types > 0 & (tdiff > 0) & (removalTimes >= tp) if (any(infectivity)) { gsources <- tiaf$g(tdiff[infectivity], tiafpars, eventTypes[infectivity]) intWj <- factS[infectivity] * gsources sum(intWj) } else 0 } } else { # as a function of location (int over time and types) factT <- fact * modelenv$tiafInt nEvents <- nrow(eventCoords) function (xy) { stopifnot(is.vector(xy, mode="numeric"), length(xy) == 2L) point <- matrix(xy, nrow=nEvents, ncol=2L, byrow=TRUE) sdiff <- point - eventCoords proximity <- qSum_types > 0 & .rowSums(sdiff^2, nEvents, 2L) <= eps.s^2 if (any(proximity)) { fsources <- siaf$f(sdiff[proximity,,drop=FALSE], siafpars, eventTypes[proximity]) intTj <- factT[proximity] * fsources sum(intTj) } else 0 } } } else function (...) 0 ## return component functions list(hGrid = hInt, hFUN = hIntFUN, eFUN = eInt, aggregate = aggregate, types = types) } intensityplot.twinstim <- function (x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate, types, tiles, tiles.idcol, # arguments of intensity.twinstim; # defaults are set below plot = TRUE, add = FALSE, tgrid = 101, rug.opts = list(), sgrid = 128, polygons.args = list(), points.args = list(), cex.fun = sqrt, ...) { which <- match.arg(which) ## set up desired intensities cl <- match.call() cl <- cl[c(1L, match(names(formals(intensity.twinstim)), names(cl), 0L))] cl[[1]] <- as.name("intensity.twinstim") components <- eval(cl, envir = parent.frame()) aggregate <- components$aggregate types <- components$types ## define function to plot FUN <- function (tmp) {} names(formals(FUN)) <- if (aggregate == "time") "times" else "coords" body1 <- if (aggregate == "time") expression( hGrid <- vapply(times, components$hFUN, 0, USE.NAMES=FALSE), eGrid <- vapply(times, components$eFUN, 0, USE.NAMES=FALSE) ) else expression( hGrid <- unname(components$hFUN(coords)), # takes whole coord matrix eGrid <- apply(coords, 1, components$eFUN) ) body2 <- switch(which, "epidemic proportion" = expression(eGrid / (hGrid + eGrid)), "endemic proportion" = expression(hGrid / (hGrid + eGrid)), "total intensity" = expression(hGrid + eGrid)) body(FUN) <- as.call(c(as.name("{"), c(body1, body2))) if (!plot) return(FUN) ## plot the FUN modelenv <- environment(x) dotargs <- list(...) nms <- names(dotargs) if (aggregate == "time") { ## set up grid of x-values (time points where 'which' will be evaluated) tgrid <- if (isScalar(tgrid)) { seq(modelenv$t0, modelenv$T, length.out=tgrid) } else { stopifnot(is.vector(tgrid, mode="numeric")) sort(tgrid) } ## calculate 'which' on tgrid yvals <- FUN(tgrid) ## plot it if(! "xlab" %in% nms) dotargs$xlab <- "time" if(! "ylab" %in% nms) dotargs$ylab <- which if(! "type" %in% nms) dotargs$type <- "l" if(! "ylim" %in% nms) dotargs$ylim <- { if (which == "total intensity") c(0,max(yvals)) else c(0,1) } do.call(if (add) "lines" else "plot", args=c(alist(x=tgrid, y=yvals), dotargs)) if (is.list(rug.opts)) { if (is.null(rug.opts$ticksize)) rug.opts$ticksize <- 0.02 if (is.null(rug.opts$quiet)) rug.opts$quiet <- TRUE eventTimes.types <- modelenv$eventTimes[modelenv$eventTypes %in% types] do.call("rug", args = c(alist(x=eventTimes.types), rug.opts)) } invisible(FUN) } else { tiles <- as(tiles, "SpatialPolygons") # remove potential data for over() ## set up grid of coordinates where 'which' will be evaluated if (isScalar(sgrid)) { sgrid <- makeGrid(tiles, n = sgrid) } sgrid <- as(sgrid, "SpatialPixels") ## only select grid points inside W (tiles) sgridTileIdx <- over(sgrid, tiles) sgrid <- sgrid[!is.na(sgridTileIdx),] ## calculate 'which' on sgrid yvals <- FUN(coordinates(sgrid)) sgridy <- SpatialPixelsDataFrame(sgrid, data=data.frame(yvals=yvals), proj4string=tiles@proj4string) ## define sp.layout lobjs <- list() if (is.list(polygons.args)) { nms.polygons <- names(polygons.args) if(! "col" %in% nms.polygons) polygons.args$col <- "darkgrey" lobjs <- c(lobjs, list(c(list("sp.polygons", tiles, first=FALSE), polygons.args))) } if (is.list(points.args)) { eventCoords.types <- modelenv$eventCoords[modelenv$eventTypes %in% types,,drop=FALSE] ## eventCoords as Spatial object with duplicates counted and removed eventCoords.types <- SpatialPoints(eventCoords.types, proj4string = tiles@proj4string, bbox = tiles@bbox) eventCoords.types <- SpatialPointsDataFrame(eventCoords.types, data.frame(mult = multiplicity.Spatial(eventCoords.types))) eventCoords.types <- eventCoords.types[!duplicated(coordinates(eventCoords.types)),] points.args <- modifyList(list(pch=1, cex=0.5), points.args) pointcex <- cex.fun(eventCoords.types$mult) pointcex <- pointcex * points.args$cex points.args$cex <- NULL lobjs <- c(lobjs, list(c(list("sp.points", eventCoords.types, first=FALSE, cex=pointcex), points.args))) } if ("sp.layout" %in% nms) { if (!is.list(dotargs$sp.layout[[1]])) { # let sp.layout be a list of lists dotargs$sp.layout <- list(dotargs$sp.layout) } lobjs <- c(lobjs, dotargs$sp.layout) dotargs$sp.layout <- NULL } ## plotit if (add) message("'add'ing is not possible with 'aggregate=\"space\"'") if (! "xlim" %in% nms) dotargs$xlim <- bbox(tiles)[1,] if (! "ylim" %in% nms) dotargs$ylim <- bbox(tiles)[2,] if (! "aspect" %in% nms) dotargs$aspect <- "iso" # always projected if (! "scales" %in% nms) dotargs$scales <- list(draw = TRUE) do.call("spplot", args=c(alist(sgridy, zcol="yvals", sp.layout=lobjs, checkEmptyRC=FALSE), dotargs)) } } ## set default arguments for intensityplot.twinstim from intensity.twinstim formals(intensityplot.twinstim)[names(formals(intensity.twinstim))] <- formals(intensity.twinstim) surveillance/R/ks.plot.unif.R0000644000176200001440000001063614244757706015652 0ustar liggesusers################# # Plot the empirical distribution function of a sample from U(0,1) # together with a confidence band of the corresponding K-S-test. # # Copyright (C) 2012 Michael Hoehle and Sebastian Meyer # # This file is part of the R package "surveillance", # free software under the terms of the GNU General Public License, version 2, # a copy of which is available at https://www.R-project.org/Licenses/. # # Parts of the 'ks.plot.unif' code are taken from R's ks.test.R source file # with Copyright (C) 1995-2022 The R Core Team # under GPL-2 (or later). # # # Parameters: # U - numeric vector containing the sample (NA's are silently removed) # conf.level - confindence level for the K-S-test, # can also be a vector of multiple levels # exact - see ks.test # col.conf - colour of the confidence band # col.ref - colour of the reference line ################# ks.plot.unif <- function (U, conf.level = 0.95, exact = NULL, col.conf = "gray", col.ref = "gray", xlab = expression(u[(i)]), ylab = "Cumulative distribution") { stopifnot(is.vector(U, mode="numeric")) U <- U[!is.na(U)] n <- length(U) if(n < 1L) stop("empty sample") TIES <- FALSE if (anyDuplicated(U)) { warning("ties should not be present for the Kolmogorov-Smirnov test") TIES <- TRUE } if (is.null(exact)) exact <- (n < 100) && !TIES ## Helper function to invert the K-S test. The function ## pKolmogorov2x is the CDF of the Kolmogorov test statistic (x). f <- if (exact) { function (x, p) { PVAL <- 1 - .Call(C_pKolmogorov2x, x, n) PVAL - p } } else { function (x, p) { PVAL <- if (x == 0) 1 else 1 - .Call(C_pKS2, sqrt(n) * x, tol = 1e-6) PVAL - p } } ## Test inversion Dconf <- sapply(conf.level, function (level) { uniroot(f, lower=0, upper=1, p=1-level)$root }) ## Small helper function to draw a line myabline <- function (a, b, x.grid = seq(0,1,length.out=101), ...) { lines(x.grid, a + b * x.grid, ...) } ## Figure 10 in Ogata (1988) plot(c(0,1), c(0,1), type="n", xlab=xlab, ylab=ylab) myabline(a=0, b=1, col=col.ref, lwd=2) rug(U) lines(ecdf(U), verticals=TRUE, do.points=FALSE) sapply(Dconf, function (D) { myabline(a=D, b=1, col=col.conf, lty=2) myabline(a=-D, b=1, col=col.conf, lty=2) }) #legend(x="topleft", col=col.conf, lty=2, # legend=paste(100*conf.level,"% KS error bounds", sep="")) invisible() } ###################################################################### # Check the residual process of fitted twinstim or twinSIR # using ks.plot.unif on 1-exp(-diff(tau)) # and a scatterplot of u_i vs. u_{i+1} to inspect serial correlation # # Parameters: # object - a fitted twinSIR or twinstim model # # Draws the ECDF of the transformed residuals together with backtransformed # 95% Kolmogorov-Smirnov error bounds. ###################################################################### checkResidualProcess <- function (object, plot = 1:2, mfrow = c(1,length(plot)), ...) { stopifnot(inherits(object, c("twinSIR", "twinstim", "simEpidataCS"))) ## check plot argument if (is.logical(plot)) plot <- which(rep(plot, length.out = 2)) else { stopifnot(is.vector(plot, mode="numeric"), plot %in% 1:2) } ## extract residual process tau <- do.call("residuals", args = list(substitute(object)), envir = parent.frame()) ## Transform to uniform variable Y <- diff(c(0,tau)) U <- 1 - exp(-Y) ## Calculate KS test ks <- ks.test(U, "punif", alternative = "two.sided", exact = match.call()[["exact"]]) ## return value ret <- list(tau=tau, U=U, ks=ks) ## 2 types of plots plotcalls <- alist( ## Investigate uniform distribution of U ks.plot.unif(U, ...), ## Investigate serial correlation between U_t and U_{t+1} which ## corresponds to Figure 11 in Ogata (1988) plot(tail(U,n=-1), head(U,n=-1), xlab=expression(u[i]), ylab=expression(u[i+1])) ) ## eval selected plot calls if (length(plot) > 0L) { opar <- par(mfrow = mfrow); on.exit(par(opar)) for (i in plot) eval(plotcalls[[i]]) invisible(ret) } else { ret } } surveillance/R/algo_cdc.R0000644000176200001440000000677214615162374015052 0ustar liggesusers################################################### ### chunk number 1: ################################################### # Implementation of the CDC surveillance system. # The system evaluates specified timepoints and gives alarm if it recognizes # an outbreak for this timepoint. # algo.cdcLatestTimepoint <- function(disProgObj, timePoint = NULL, control = list(b = 5, m = 1, alpha=0.025)){ observed <- disProgObj$observed freq <- disProgObj$freq # If there is no value in timePoint, then take the last value in observed if(is.null(timePoint)){ timePoint = length(observed) } # check if the vector observed includes all necessary data. if((timePoint-(control$b*freq)-control$m*4) < 1){ stop("The vector of observed is too short!") } ###################################################################### #Find which weeks to take -- hoehle 27.3.2007 - fixed bug taking #things in the wrong time order (more recent values) ###################################################################### midx <- seq(-control$m*4-3,control$m*4) yidx <- ((-control$b):(-1))*freq baseidx <- sort(rep(yidx,each=length(midx)) + midx) months <- rep(1:((2*control$m+1)*control$b),each=4) basevec <- as.integer(by(observed[timePoint + baseidx ],months,sum)) # Create a normal distribution based upper confidence interval # (we will use the prediction interval described in # Farrington & Andrew (2003)) upCi <- mean(basevec)+qnorm(1-control$alpha/2)*sd(basevec)*sqrt(1+1/length(basevec)) #Counts for the current month yt0 <- sum(observed[timePoint:(timePoint-3)]) # Alarm if the actual value is larger than the upper limit. alarm <- yt0 > upCi # Save aggregated score for later visualisation. aggr <- yt0 result <- list(alarm=alarm, upperbound=upCi,aggr=aggr) class(result) = "survRes" # for surveillance system result return(result) } # 'algo.cdc' calls 'algo.bayesLatestTimepoint' for data points given by range. algo.cdc <- function(disProgObj, control = list(range = range, b=5, m=1, alpha=0.025)){ if(disProgObj$freq != 52) { stop("algo.cdc only works for weekly data.") } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) aggr <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) #Set control options (standard CDC options) if (is.null(control$range)) { control$range <- (disProgObj$freq*control$b - control$m):length(disProgObj$observed) } if (is.null(control$b)) {control$b=5} if (is.null(control$m)) {control$m=1} #bug fixed if (is.null(control$alpha)) {control$alpha=0.025} count <- 1 for(i in control$range){ # call algo.cdcLatestTimepoint result <- algo.cdcLatestTimepoint(disProgObj, i,control=control) # store the results in the right order alarm[count] <- result$alarm aggr[count] <- result$aggr upperbound[count] <- result$upperbound count <- count + 1 } #Add name and data name to control object. control$name <- paste("cdc(",control$m*4,"*,",0,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # Return the vectors- # as a special feature CDC objects contain an "aggr" identifier # containing the aggregated counts for each week. result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control, aggr=aggr) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/hhh4_W_np.R0000644000176200001440000001562314426171115015121 0ustar liggesusers################################################################################ ### Non-parametric specification of neighbourhood weights in hhh4() ### ### Copyright (C) 2014,2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### non-parametric estimation of weight function, i.e., provide each ### neighbourhood order (including 0 if from0=TRUE) up to 'maxlag' with its ### own (unconstrained) weight. For identifiability: ### - lowest order is fixed to weight=1 ### - usually maxlag < max(nborder) (since only few pairs with highest orders), ### and 'truncate' indicates if there should be zero weight for orders above ### 'maxlag' (default), or the same as for order 'maxlag' ### Thus, if from0, the parameters refer to lags 1:maxlag, otherwise 2:maxlag W_np <- function (maxlag, truncate = TRUE, normalize = TRUE, initial = log(zetaweights(2:(maxlag+from0))), from0 = FALSE, to0 = truncate) # 'to0' has been renamed to 'truncate' { if (missing(maxlag)) { stop("'maxlag' must be specified (usually < max. neighbourhood order)") } else { stopifnot(isScalar(maxlag), maxlag >= 2 - from0) # at least one parameter } stopifnot(is.vector(initial, mode = "numeric"), length(initial) == maxlag + from0 - 1) if (!missing(to0)) { .Deprecated(msg = "argument 'to0' has been renamed; use 'truncate'") truncate <- to0 } ## auxiliary expression used in 'dw' and 'd2w' below indicatormatrixExpr <- if (truncate) { quote(nbmat==nbOrder) } else { if (from0) { # maxlag = npars quote(if(nbOrder==npars) nbmat>=nbOrder else nbmat==nbOrder) } else { # maxlag = 1 + npars quote(if(nbOrder==1L+npars) nbmat>=nbOrder else nbmat==nbOrder) } } ## weights as a function of parameters and a matrix of neighbourhood orders w <- function (logweights, nbmat, ...) {} body(w) <- substitute( { weights <- exp(logweights) # values for orders (2-from0):maxlag npars <- length(weights) W <- .WEIGHTS[1L+nbmat] # substituted depending on 'from0' ## repeat last coefficient for higher orders without separate estimate W[is.na(W)] <- .HOWEIGHT # substituted depending on 'truncate' dim(W) <- dimW <- dim(nbmat) # nUnits x nUnits dimnames(W) <- dimnames(nbmat) .RETVAL # substituted depending on 'normalize' }, list( .WEIGHTS = if (from0) quote(c(1, weights)) else quote(c(0, 1, weights)), .HOWEIGHT = if (truncate) 0 else quote(weights[npars]), .RETVAL = if (normalize) quote(W / (norm <- .rowSums(W, dimW[1L], dimW[2L]))) else quote(W) )) ## version of w with assignment of its return value (for use in normalized ## versions of dw and d2w) .w <- w body(.w)[[length(body(.w))]] <- substitute(Wnorm <- x, list(x=body(.w)[[length(body(.w))]])) ## derivative of w(logweights) -> a list of matrices (one for each param.) if (normalize) { dw <- .w ## append code to calculate first derivatives body(dw) <- as.call(c(as.list(body(dw)), eval(substitute( expression( FUN <- function (nbOrder, weight) { ind <- .INDICATORMATRIX (ind - Wnorm*.rowSums(ind,dimW[1L],dimW[2L])) * weight/norm }, mapply(FUN, .LAGS, weights, SIMPLIFY=FALSE, USE.NAMES=FALSE) ), list(.INDICATORMATRIX = indicatormatrixExpr, .LAGS = if (from0) quote(seq_len(npars)) else quote(1L + seq_len(npars))) )))) } else { dw <- function (logweights, nbmat, ...) {} body(dw) <- substitute( { weights <- exp(logweights) npars <- length(weights) FUN <- function (nbOrder, weight) weight * (.INDICATORMATRIX) mapply(FUN, .LAGS, weights, SIMPLIFY=FALSE, USE.NAMES=FALSE) }, list(.INDICATORMATRIX = indicatormatrixExpr, .LAGS = if (from0) quote(seq_len(npars)) else quote(1L + seq_len(npars)))) } ## result of d2w must be a list of matrices of length npars*(npars+1L)/2L if (normalize) { d2w <- .w body(d2w) <- as.call(c(as.list(body(d2w)), eval(substitute( expression( seqnpars <- seq_len(npars), inds <- lapply(.LAGS, function (nbOrder) { ind <- .INDICATORMATRIX indrs <- .rowSums(ind, dimW[1L], dimW[2L]) list(indterm = ind - Wnorm * indrs, indrs = indrs) }), k <- rep.int(seqnpars, npars), # row index l <- rep.int(seqnpars, rep.int(npars,npars)), # column index ##<- 12x faster than expand.grid(seqnpars,seqnpars) lowertri <- k >= l, ##<- and 2.5x faster than ##kl <- which(lower.tri(matrix(,npars,npars), diag=TRUE), arr.ind=TRUE) norm2 <- norm^2, mapply(function (k, l) weights[k] / norm2 * if (k==l) { inds[[k]][[1L]] * (norm - 2*weights[k]*inds[[k]][[2L]]) } else { -weights[l] * (inds[[k]][[1L]] * inds[[l]][[2L]] + inds[[l]][[1L]] * inds[[k]][[2L]]) }, k[lowertri], l[lowertri], # inds[k[lowertri]], inds[l[lowertri]], SIMPLIFY=FALSE, USE.NAMES=FALSE) ), list(.INDICATORMATRIX = indicatormatrixExpr, .LAGS = if (from0) quote(seqnpars) else quote(1L + seqnpars)) )))) } else { # for k=k', second derivative = first derivative, otherwise 0 d2w <- dw if (length(initial) > 1) { ## add assignment for the return value of dw body(d2w)[[length(body(d2w))]] <- substitute(dW <- x, list(x=body(d2w)[[length(body(d2w))]])) ## append code to generate the list of second derivatives body(d2w) <- as.call(c(as.list(body(d2w)), expression( d2wlength <- (npars^2+npars)/2, ## indices of diagonal elements in x[lower.tri(x,diag=TRUE)] d2wdiag <- c(1L,1L+cumsum(seq.int(npars,2L))), d2wlist <- rep.int(list(0*nbmat), d2wlength), d2wlist[d2wdiag] <- dW, d2wlist ))) } } ## Done environment(w) <- environment(dw) <- environment(d2w) <- .GlobalEnv list(w = w, dw = dw, d2w = d2w, initial = initial) } surveillance/R/intersectPolyCircle.R0000644000176200001440000000265314517030246017270 0ustar liggesusers################################################################################ ### Compute the intersection of a circular domain with a polygonal domain of ### various classes (currently: "owin" or "SpatialPolygons") ### ### Copyright (C) 2009-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ intersectPolyCircle.owin <- function (object, center, radius, npoly = 32, ...) { circle <- disc(radius = radius, centre = center, npoly = npoly) res <- intersect.owin(circle, object) # order does not affect runtime ## ensure "polygonal" type (because of rescue.rectangle in intersect.owin) as.polygonal(res) } intersectPolyCircle.SpatialPolygons <- function (object, center, radius, npoly = 32, ...) { .Defunct() ## FIXME: could implement and wrap a method for sf polygons ##intersectPolyCircle.sfc(sf::st_as_sfc(object), center, radius, npoly, ...) } ## intersectPolyCircle.sfc <- function (object, center, radius, npoly = 32, ...) ## { ## ## FIXME: assert polygonal object ## circle <- discpoly(center, radius, npoly = npoly, class = "sfg") # or sfc? ## sf::st_intersection(object, circle) ## } surveillance/R/twinSIR_methods.R0000644000176200001440000002270314615162374016371 0ustar liggesusers################################################################################ ### Methods for "twinSIR" fits, specifically: ### - vcov: enabling the use of function confint to calculate Wald ### confidence intervals for the parameter estimates. ### - logLik: enables the use of function AIC ### - AIC, extractAIC: compute AIC or OSAIC depending on argument 'one.sided' ### - print, summary, print.summary, plot (intensityPlot), ... ### ### Copyright (C) 2009-2014 Sebastian Meyer, contributions by Michael Hoehle ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### don't need a specific coef-method (identical to stats:::coef.default) ## coef.twinSIR <- function (object, ...) ## { ## object$coefficients ## } # asymptotic variance-covariance matrix (inverse of fisher information matrix) vcov.twinSIR <- function (object, ...) { solve(object$fisherinfo) } logLik.twinSIR <- function (object, ...) { r <- object$loglik attr(r, "df") <- length(coef(object)) class(r) <- "logLik" r } # Note: pz is determined by scanning the names of coef(object), # thus the 'model' component is not necessary # See the Hughes and King (2003) paper for details .OSAICpenalty <- function (twinSIRobject, k = 2, nsim = 1e3) { theta <- coef(twinSIRobject) npar <- length(theta) pz <- length(grep("cox\\([^)]+\\)", names(theta), ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE, invert = FALSE)) px <- npar - pz # number of constrained (non-negative) parameters penalty <- if (px == 0L) { k * pz # default AIC penalty (with k = 2) } else if (px == 1L) { k * (pz + 0.5) } else if (px == 2L) { Sigma <- vcov(twinSIRobject) # parameter covariance matrix rho <- cov2cor(Sigma[1:2,1:2])[1,2] as <- acos(rho)/2/pi w <- c(as, 0.5, 0.5-as) k * sum(w * (pz + 0:2)) # = k * sum(w * (npar - px + 0:2)) } else { # px > 2 message("Computing OSAIC weights for ", px, " epidemic covariates based on ", nsim, " simulations ...") W <- vcov(twinSIRobject)[1:px,1:px] w.sim <- w.chibarsq.sim(p=px, W=W, N=nsim) #c.f. (12) in Hughes & King (2003), r_i=px, m=0:px, ki=npar #as npar=pz+px, we have that npar-px = pz, hence the sum is k * sum(w.sim * (pz + 0:px)) } attr(penalty, "exact") <- px <= 2 penalty } AIC.twinSIR <- function (object, ..., k = 2, one.sided = NULL, nsim = 1e3) { AIC.default <- match.call() AIC.default$one.sided <- NULL AIC.default$nsim <- NULL AIC.default[[1]] <- call(":::", as.name("stats"), as.name("AIC.default")) ## I don't see any easy way of using AIC.default while avoiding ":::". ## NextMethod() does not fit due to extra arguments one.sided & nsim. ## Could maybe unclass "object" and all objects in "..." and then use AIC() if (is.null(one.sided)) { one.sided <- object$method == "L-BFGS-B" } if (one.sided) { penalty <- .OSAICpenalty(object, k = k, nsim = nsim) edf <- length(coef(object)) AIC.default$k <- penalty/edf } res <- eval(AIC.default, parent.frame()) attr(res, "type") <- if (one.sided) "One-sided AIC" else "Standard AIC" attr(res, "exact") <- if (one.sided) attr(penalty, "exact") else TRUE res } extractAIC.twinSIR <- function (fit, scale = 0, k = 2, one.sided = NULL, nsim = 1e3, ...) { if (is.null(one.sided)) { one.sided <- fit$method == "L-BFGS-B" } loglik <- logLik(fit) edf <- attr(loglik, "df") penalty <- if (one.sided) { .OSAICpenalty(fit, k = k, nsim = nsim) # one-sided AIC } else { k * edf # default AIC } res <- c(edf = edf, AIC = -2 * c(loglik) + penalty) attr(res, "type") <- if (one.sided) "One-sided AIC" else "Standard AIC" attr(res, "exact") <- if (one.sided) attr(penalty, "exact") else TRUE res } print.twinSIR <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n") print.default(x$call) cat("\nCoefficients:\n") print.default(format(coef(x), digits=digits), print.gap = 2, quote = FALSE) cat("\nLog-likelihood: ", format(logLik(x), digits=digits), "\n", sep = "") if (!x$converged) { cat("\nWARNING: OPTIMIZATION DID NOT CONVERGE!\n") } cat("\n") invisible(x) } summary.twinSIR <- function (object, correlation = FALSE, symbolic.cor = FALSE, ...) { ans <- object[c("call", "converged", "counts", "intervals", "nEvents")] ans$cov <- vcov(object) est <- coef(object) se <- sqrt(diag(ans$cov)) zval <- est/se pval <- 2 * pnorm(abs(zval), lower.tail = FALSE) ans$coefficients <- cbind(est, se, zval, pval) dimnames(ans$coefficients) <- list(names(est), c("Estimate", "Std. Error", "z value", "Pr(>|z|)")) if (correlation) { ans$correlation <- cov2cor(ans$cov) ans$symbolic.cor <- symbolic.cor } ans$loglik <- logLik(object) aic <- extractAIC(object, ...) ans$aic <- as.vector(aic[2L]) # remove 'edf' element attributes(ans$aic) <- attributes(aic)[c("type", "exact")] class(ans) <- "summary.twinSIR" ans } print.summary.twinSIR <- function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) { cat("\nCall:\n") print.default(x$call) cat("\nCoefficients:\n") coefs <- x$coefficients printCoefmat(coefs, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) nEvents <- x$nEvents nh0 <- length(nEvents) if (nh0 < 2L) { cat("\nTotal number of infections: ", nEvents, "\n") } else { cat("\nBaseline intervals:\n") intervals <- character(nh0) for(i in seq_len(nh0)) { intervals[i] <- paste("(", paste(format(x$intervals[c(i,i+1L)],trim=TRUE), collapse=";"), "]", sep = "") } names(intervals) <- paste("logbaseline", seq_len(nh0), sep=".") print.default(rbind("Time interval" = intervals, "Number of events" = nEvents), quote = FALSE, print.gap = 2) } cat("\n", attr(x$aic, "type"), ": ", format(x$aic, digits=max(4, digits+1)), if (!attr(x$aic, "exact")) "\t(simulated penalty weights)" else "", sep = "") cat("\nLog-likelihood:", format(x$loglik, digits = digits)) cat("\nNumber of log-likelihood evaluations:", x$counts[1], "\n") correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1L) { cat("\nCorrelation of Coefficients:\n") if (is.logical(symbolic.cor) && symbolic.cor) { correl <- symnum(correl, abbr.colnames = NULL) correlcodes <- attr(correl, "legend") attr(correl, "legend") <- NULL print(correl) cat("---\nCorr. codes: ", correlcodes, "\n", sep="") } else { correl <- format(round(correl, 2), nsmall = 2, digits = digits) correl[!lower.tri(correl)] <- "" print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } if (!x$converged) { cat("\nWARNING: OPTIMIZATION DID NOT CONVERGE!\n") } cat("\n") invisible(x) } ### Plot method for twinSIR (wrapper for intensityplot) plot.twinSIR <- function (x, which, ...) # defaults for 'which' are set below { cl <- match.call() cl[[1]] <- as.name("intensityplot") eval(cl, envir = parent.frame()) } formals(plot.twinSIR)$which <- formals(intensityplot.twinSIR)$which ###################################################################### # Extract the "residual process" (cf. Ogata, 1988), i.e. the # fitted cumulative intensity at the event times. # -> "generalized residuals similar to those discussed in Cox and Snell (1968)" ###################################################################### residuals.twinSIR <- function(object, ...) { #Extract event and stop-times eventTimes <- attr(object$model$survs,"eventTimes") sortedStop <- sort(unique(object$model$survs[,"stop"])) eventTimesIdx <- match(eventTimes, sortedStop) #Dimensions and zero vector (in case we need it) nTimes <- nrow(object$model$X) zerovec <- numeric(nTimes) # Extract the fitted model params px <- ncol(object$model$X) pz <- ncol(object$model$Z) theta <- coef(object) alpha <- theta[seq_len(px)] beta <- theta[px+seq_len(pz)] # Initialize e, h and thus lambda if (px > 0) { e <- as.vector(object$model$X %*% as.matrix(alpha)) } else { e <- zerovec } if (pz > 0) { h <- as.vector(exp(object$model$Z %*% as.matrix(beta))) } else { h <- zerovec } lambda <- (e + h) #Determine blocks BLOCK <- as.numeric(factor(object$model$survs$start)) # lambda_i integrals, i.e. integral of \lambda_i until t for each individual dt <- object$model$survs[,"stop"] - object$model$survs[,"start"] #Easier - no individual summations as they are all summed anyhow afterwards intlambda <- tapply(object$model$weights * lambda* dt, BLOCK, sum) #Compute cumulative intensities (Ogata (1988): "residual process") tau <- cumsum(intlambda)[eventTimesIdx] tau } surveillance/R/linelist2sts.R0000644000176200001440000000536614662137762015761 0ustar liggesusers###################################################################### # Takes a data frame with dates of individual # cases and create an aggregated sts time series object for these # data with aggregation occurring at the desired scale. # # Parameters: # linelist - a data frame containing individual case information, one per line # dateCol - a character string denoting the column name in case containing # the relevant date variable to aggregate # aggregate.by - aggregation block length given as a string compatible with # seq.Date -- see \link{seq.Date} for further details. # # Author: Michael Hoehle # Date LaMo: 04 Jan 2014 ###################################################################### linelist2sts <- function(linelist,dateCol,aggregate.by=c("1 day", "1 week", "7 day", "1 week", "1 month", "3 month", "1 year"),dRange=NULL, epochInPeriodStr=switch(aggregate.by, "1 day"="1","1 week"="%u", "1 month"="%d","3 month"="%q","1 year"="%j"), startYearFormat=switch(aggregate.by,"1 day"="%Y","7 day"="%G","1 week"="%G","1 month"="%Y","3 month"="%Y","1 year"="%Y"), startEpochFormat=switch(aggregate.by,"1 day"="%j","7 day"="%V","1 week"="%V","1 month"="%m","3 month"="%Q","1 year"="1") ) { ##Check aggregate.by argument aggregate.by <- match.arg(aggregate.by, c("1 day", "1 week", "7 day", "1 week", "1 month", "3 month", "1 year")) #If no dRange let it be the range of the dateCol if (is.null(dRange)) { dRange <- range(linelist[,dateCol],na.rm=TRUE) } if (aggregate.by != "1 day") { ##Move dates back to first of each epoch unit dRange <- dRange - as.numeric(formatDate(dRange,epochInPeriodStr)) + 1 } #Add exactly one time step to dRange to ensure that cut #contains the last level as well. We use 'seq' to ensure #that even weeks/days with no data are present in the factor. maxDate <- seq(max(dRange),length.out=2,by=aggregate.by)[-1] dates <- seq(min(dRange), maxDate, by=aggregate.by) #Make a table containing the specific number of cases. Note that this #needs to occur using a cut statement lvl <- cut(linelist[,dateCol], breaks=dates,right=FALSE) observed <- table(lvl) epoch <- as.Date(names(observed)) #Translate "by" to freq string freq <- switch(aggregate.by,"1 day"=365,"7 day"=52,"1 week"=52,"1 month"=12,"3 month"=4,"1 year"=1) startYear <- as.numeric(formatDate(min(dates),startYearFormat)) startEpoch <- as.numeric(formatDate(min(dates),startEpochFormat)) observed <- matrix(observed,ncol=1) #Create S4 object sts <- new("sts",epoch=as.numeric(epoch),observed=observed, alarm=0*observed, epochAsDate=TRUE,freq=freq,start=c(startYear,startEpoch)) #Return return(sts) } surveillance/R/wrap_univariate.R0000644000176200001440000001334214615164167016510 0ustar liggesusers############################################################################## # This function is a wrapper for univariate surveillance algorithms # using the old disProg and survRes object # # An sts object is given and a pre specified algorithms is ran # by successively creating a disProg object for each region, # running the algo and then assign the slots of the resulting survRes # object to an sts object. ################################################################################### ###Apply other algorithms by wrapping up a suitable package. #Wrapper function to call algo.farrington for each time series in an sts object wrap.algo <- function(sts, algo, control, control.hook=function(k, control) return(control), verbose=TRUE,...) { chkDots(...) stopifnot(is.vector(control[["range"]], mode = "numeric")) #Number of time series nAreas <- ncol(sts@observed) #Set old alarms and upperbounds to NA sts@alarm[] <- NA sts@upperbound[] <- NA_real_ #Loop over all regions for (k in 1:nAreas) { if (verbose && nAreas > 1) { cat("Running ",algo," on area ",k," out of ",nAreas,"\n") } ##Create an old S3 disProg object disProg.k <- sts2disProg(sts[,k]) #Use the univariate algorithm (possibly preprocess control object) kcontrol <- control.hook(k, control) survRes.k <- do.call(algo,args = list(disProg.k, control=kcontrol)) #Transfer results to the S4 object if (!is.null(survRes.k)) { sts@alarm[control$range,k] <- survRes.k$alarm sts@upperbound[control$range,k] <- survRes.k$upperbound } } #Control object needs only to be set once sts@control <- survRes.k$control #Fix invalid data name (= deparse(disProg.k) from last iteration) sts@control$data <- "sts" #Set correct theta0t matrix for all sts@control$theta0t <- control$theta0t #Reduce sts object to only those observations in range sts <- sts[control$range, ] return(sts) } #Farrington wrapper farrington <- function(sts, control=list(range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE, alpha=0.05),...) { wrap.algo(sts,algo="algo.farrington",control=control,...) } #Bayes wrapper (this can be implemented more efficiently) bayes <- function(sts, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05),...) { if (sts@epochAsDate) { warning("algo.bayes currently can't handle Date entries. Computing reference values based on freq") } wrap.algo(sts,algo="algo.bayes",control=control) } #RKI wrapper rki <- function(sts, control = list(range = range, b = 2, w = 4, actY = FALSE),...) { if (sts@epochAsDate) { warning("algo.rki currently can't handle Date entries. Computing reference values based on freq") } wrap.algo(sts,algo="algo.rki",control=control,...) } #outbreakP wrapper outbreakP <- function(sts, control=list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5),...) { wrap.algo(sts,algo="algo.outbreakP",control=control,...) } #HMM wrapper hmm <- function(sts, control=list(range=NULL, noStates=2, trend=TRUE, noHarmonics=1,covEffectEqual=FALSE),...) { if (sts@epochAsDate) { warning("algo.hmm currently can't handle Date entries. Computing reference values based on freq") } wrap.algo(sts,algo="algo.hmm",control=control,...) } #Cusum wrapper cusum <- function(sts, control = list(range=range, k=1.04, h=2.26, m=NULL, trans="standard",alpha=NULL),...) { wrap.algo(sts,algo="algo.cusum",control=control,...) } #GLRpois wrapper glrpois <- function(sts, control = list(range=range,c.ARL=5, S=1, beta=NULL, Mtilde=1, M=-1, change="intercept",theta=NULL),...) { wrap.algo(sts,algo="algo.glrpois",control=control,...) } #GLRnb wrapper glrnb <- function(sts, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL,dir=c("inc","dec"), ret=c("cases","value")), ...) { wrap.algo(sts,algo="algo.glrnb",control=control,...) } #### this code definitely needs some more documentation -- wrap.algo atm is # 100% without docu #Rogerson wrapper # theta0t now has to be a matrix #library(surveillance) #data("ha") #rogerson(disProg2sts(ha),control=list(range=200:290,ARL0=100,s=1,theta0t=matrix(1,nrow=91,ncol=12))) rogerson <- function(sts, control = list(range=range, theta0t=NULL, ARL0=NULL, s=NULL, hValues=NULL, distribution=c("poisson","binomial"), nt=NULL, FIR=FALSE,limit=NULL, digits=1),...) { if (sts@epochAsDate) { warning("algo.rogerson currently can't handle Date entries. Computing reference values based on freq") } #Hook function to find right theta0t vector control.hook = function(k,control) { #Extract values relevant for the k'th component control$theta0t <- control$theta0t[,k] if (is.null(control[["nt",exact=TRUE]])) { control$nt <- sts@populationFrac[control$range,k] } else { if (!all.equal(sts@populationFrac[control$range,k],control$nt[,k])) { warning("Warning: nt slot of control specified, but specified population differs.") } else { control$nt <- control$nt[,k] } } #If no hValues given then compute them if (is.null(control[["hValues",exact=TRUE]])) { #This code does not appear to work once n is big. # control$hValues <- hValues(theta0 = unique(control$theta0t), ARL0=control$ARL0, s=control$s , distr = control$distribution, n=mean(control$nt))$hValues control$hValues <- hValues(theta0 = unique(control$theta0t), ARL0=control$ARL0, s=control$s , distr = control$distribution)$hValues } return(control) } #WrapIt wrap.algo(sts,algo="algo.rogerson",control=control,control.hook=control.hook,...) } surveillance/R/stsNC.R0000644000176200001440000002456014615162374014344 0ustar liggesusers###################################################################### # initialize-method for "stsNC" objects ###################################################################### init.stsNC <- function(.Object, ..., reportingTriangle, predPMF, pi, truth, delayCDF, SR) { .Object <- callNextMethod() # use initialize,sts-method ## initialize defaults for extra stsNC-slots or check supplied values dimObserved <- dim(.Object@observed) if (missing(pi)) { .Object@pi <- array(NA_integer_, dim = c(dimObserved, 2L)) } else { dimPI <- dim(.Object@pi) if (length(dimPI) != 3 || any(dimPI != c(dimObserved, 2L))) stop("dim(pi) = (", paste0(dimPI, collapse=","), ")") } if (missing(SR)) { .Object@SR <- array(NA_real_, dim = c(nrow(.Object@observed),0L,0L)) } else { stopifnot(length(dim(.Object@SR)) == 3) } if (missing(truth)) .Object@truth <- as(.Object, "sts") return(.Object) } setMethod("initialize", "stsNC", init.stsNC) ###################################################################### # Special coerce method to account for consistent dimensions ###################################################################### setAs(from = "sts", to = "stsNC", function (from) { new("stsNC", from, pi = array(NA_real_, dim = c(dim(from@observed), 2L)), truth = from, SR = array(NA_real_, dim = c(nrow(from@observed), 0L, 0L))) }) ###################################################################### # plot-method for the "stsNC" class, which starts by # using the inherited method, but with some additional plotting # put into the .hookFunSpecial function. # # Parameters: # same as the for the plot method of sts objects. ###################################################################### setMethod(f="plot", signature=signature(x="stsNC", y="missing"), function (x, type = observed ~ time | unit, ...) { ## if special type "delay" (only applies for stsNC objects) if (type == "delay") { stsNC_plotDelay(x, ...) return(invisible()) } ## environment of hook function will be set to evaluation ## environment of stsplot_time1() and only then be called legend.opts <- lty <- lwd <- "accommodate tools:::.check_code_usage_in_package()" #Hook function specifically for nowcasting objects. nowcastPlotHook <- function() { #Define some colors for the plotting as well as some plot symbols color <- surveillance.options("colors") pchList <- c(nowSymbol=10) #Prolong line of last observation (this should go into the plot function idx <- nrow(x) - which.max(!is.na(rev(upperbound(x)))) + 1 #Continue line from plot - use same style as stsplot_time1 lines( idx+c(-0.5,0.5), rep(upperbound(x)[idx,],2),col=col[3],lwd=lwd[3],lty=lty[3]) #Add the prediction intervals as bars (where not NA). Conf level #is found in x@control$alpha idxt <- which(apply(x@pi[1:nrow(x),1,],1,function(x) all(!is.na(x)))) for (i in idxt) { lines( i+c(-0.3,0.3), rep(x@pi[i,,1],2),lty=1,col=color["piBars"]) lines( i+c(-0.3,0.3), rep(x@pi[i,,2],2),lty=1,col=color["piBars"]) lines( rep(i,each=2), x@pi[i,,],lty=2,col=color["piBars"]) } #Extract now date and date range of the plotting startDate <- epoch(x)[1] #Add "now" symbol on x-axis. Plotting now takes possible temporal aggregation into account. #points(x@control$now-startDate+1,0,pch=pchList["nowSymbol"],col=color["nowSymbol"],cex=1.5) points(x@control$timeDelay(startDate,x@control$now)+1,0,pch=pchList["nowSymbol"],col=color["nowSymbol"],cex=1.5) #Add this to the legend if (!is.null(legend.opts)) { legend(x="topright",c("Now"),pch=pchList["nowSymbol"],col=color["nowSymbol"],bg="white") } return(invisible()) } callNextMethod(x=x, type=type, ..., .hookFuncInheritance=nowcastPlotHook) }) ###################################### ## For plotting the delay distribution ###################################### ###################################################################### # Find a quantile of a discrete random variable with support on # 0,...,D and which has a PMF given by the vector prob. We # define the q quantile as \min_{x} F(x) \geq q. # # Parameters: # prob - vector on 0,..,D containing the PMF # q - quantile to compute ###################################################################### pmfQuantile <- function(prob,q=0.5) { which.max(cumsum(prob) >= q)-1 } ###################################################################### ## Show empirical and, if available, model based median of delay ## distribution as a function of occurrence time t. ## ## Parameters: ## nc - nowcast object ## rT.truth - reporting triangle as it would be at the end. Typically ## this is taken directly from the nc object. ## dates - vector of dates where to show the result ## w - half-width of moving window ## modelQuantiles - which model quantiles to show ###################################################################### stsNC_plotDelay <- function(nc, rT.truth=NULL, dates=NULL, w=1, modelQuantiles=0.5, epochUnit=NULL) { ##Extract reporting triangle from the nc object if (is.null(rT.truth)) { rT.truth <- reportingTriangle(nc) } ##Which dates to plot if (is.null(dates)) { dates <- epoch(nc) } ##Determine the appropriate unit of the delay if (is.null(epochUnit)) { epochUnit <- switch( as.character(nc@freq), "12" = "months", "%m" = "months", "52" = "weeks", "%V"="weeks", "%j"="days", "365" = "days") } ##Determine max delay from reporting triangle. D <- nc@control$D res <- matrix(NA, nrow=length(dates), ncol=D+1) ##which data variables are actually in rT.truth isThere <- !is.na(sapply(dates, function(date) pmatch(as.character(date),rownames(rT.truth)))) idx <- which(isThere) ##Loop over all time points. for (i in (w+min(idx)):(max(idx)-w)) { now <- dates[i] the_idx <- pmatch(as.character(now),rownames(rT.truth)) subset <- rT.truth[the_idx + c(-w:w),,drop=FALSE] res[i,] <- colSums(subset,na.rm=TRUE) / sum(subset,na.rm=TRUE) } ##A slightly modified function to determine quantiles, which can ##handle NAs (if there is no case at all) quantile <- function(q) { apply(res, 1, function(x) { if (all(is.na(x))) return(NA) else return(which.max(cumsum(x) >= q) - 1) }) } ##Find 10%, 50% and 90% quantiles quants <- sapply(c(0.1,0.5,0.9), quantile) ##Make a plot (use plot.Dates instead of matplot) plot(dates, quants[,2],xlab="Time of occurrence",ylab=paste0("Delay (",epochUnit,")"),ylim=c(0,15),col=1,lty=c(1),lwd=4,type="n") idxFirstTruncObs <- which(dates == (nc@control$now - D)) idxNow <- which(dates == nc@control$now) polygon( dates[c(idxFirstTruncObs,idxFirstTruncObs,idxNow,idxNow)], c(-1e99,1e99,1e99,-1e99), col=rgb(0.95,0.95,0.95),lwd=0.001) text( dates[round(mean(c(idxNow,idxFirstTruncObs)))], D, "right truncated\n observations",adj=c(0.5,0.5)) lines(dates, quants[,2],col=1,lty=c(1),lwd=4) matlines(dates, quants[,c(1,3)],type="l",col=1,lty=c(2,3),lwd=c(1,1)) legend_str <- c(expression(q[0.1](T)),expression(q[0.5](T)),expression(q[0.9](T))) legend_lty <- c(2,1,3) legend_col <- c(1,1,1) legend_lwd <- c(1,4,1) ##Which dates have been analysed in the nowcasts dates2show <- attr(reportingTriangle(nc),"t02s") ##Loop over all model based estimates model_CDF <- delayCDF(nc) if (length(model_CDF) > 0) { for (methodIdx in seq_len(length(model_CDF))) { ##browser() ##Fetch CDF from model (can be a vector or a matrix) theCDF <- delayCDF(nc)[[names(model_CDF)[methodIdx]]] if (!is.matrix(theCDF)) { theCDF <- matrix(theCDF, ncol=length(theCDF),nrow=length(dates2show),byrow=TRUE) } cdf <- cbind(0,theCDF) pmf <- t(apply(cdf,1,diff)) ##Determine model quantiles quants.model <- matrix(NA, nrow=length(dates2show),ncol=length(modelQuantiles),dimnames=list(as.character(dates2show),modelQuantiles)) for (t in 1:length(dates2show)) { quants.model[t,] <- sapply(modelQuantiles, function(q) pmfQuantile( pmf[t,],q=q)) } ##Make sure the NAs in the beginning agree i <- 1 while (all(is.na(quants[i,]))) {quants.model[i,] <- NA ; i <- i + 1} legend_str <- c(legend_str,substitute(q[0.5]^methodName(T),list(methodName=names(model_CDF)[methodIdx]))) legend_lty <- c(legend_lty,3+methodIdx) legend_col <- c(legend_col,"gray") legend_lwd <- c(legend_lwd,2) ##only estimates up to 'now' are to be shown and which are within ##the moving window of m time points show <- (nc@control$now - dates2show <= nc@control$m) matlines(dates2show[show], quants.model[show,], col=tail(legend_col,n=1),lwd=ifelse(modelQuantiles==0.5,tail(legend_lwd,n=1),1),lty=ifelse(modelQuantiles==0.5,tail(legend_lty,n=1),2)) } ##Show lines for breakpoints (if available from the model) if ("bayes.trunc.ddcp" %in% names(model_CDF)) { ddcp.model <- attr(model_CDF[["bayes.trunc.ddcp"]], "model") changePoints <- as.Date(colnames(ddcp.model$W)) ## hoehle: changed, if ddcp.model contains weekend effects, these give NA dates. changePoints <- changePoints[!is.na(changePoints)] for (i in 1:length(changePoints)) { axis(1,at=changePoints[i], changePoints[i], las=1, cex.axis=0.7,line=-2.5) lines( rep(changePoints[i],2),c(0,1e99),lty=2) } } } ##Make a legend ##c(expression(q[0.1](T)),expression(q[0.5](T)),expression(q[0.9](T)),expression(q[0.5]^"ddcp"(T))) legend(x="bottomleft",legend_str,lty=legend_lty,col=legend_col,lwd=legend_lwd) ##Add title if (!is.null(nc)) { title(nc@control$now) } ##Done invisible() } surveillance/R/twinstim_siaf_powerlaw1.R0000644000176200001440000000574614426171115020171 0ustar liggesusers################################################################################ ### 1-parameter power-law kernel f(s) = (1 + ||s||)^-d, i.e., sigma = 1 ### ### Copyright (C) 2019 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ siaf.powerlaw1 <- function (nTypes = 1, validpars = NULL, sigma = 1) { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) stopifnot(isScalar(sigma), sigma > 0) SIAF <- siaf.powerlaw(nTypes) # we can reuse some functions from there ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## spatial kernel f <- function (s, logd, types = NULL, sigma = 1) { d <- exp(logd) sLength <- sqrt(.rowSums(s^2, nrow(s), 2L)) (sLength + sigma)^-d } ## set desired sigma as default value formals(f)$sigma <- sigma environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- function (polydomain, f, logd, type = NULL, logsigma = 0, ...) { logpars <- c(logsigma, logd) siaf_polyCub_iso(polydomain$bdry, "intrfr.powerlaw", logpars, list(...)) } formals(F)$logsigma <- log(sigma) environment(F) <- getNamespace("surveillance") ## fast integration of f over a circular domain Fcircle <- SIAF$Fcircle # hack original two-parameter version ... body(Fcircle)[2:4] <- NULL names(formals(Fcircle))[2] <- "logd" formals(Fcircle)$sigma <- sigma ## derivative of f wrt logpars deriv <- function (s, logd, types = NULL, sigma = 1) { d <- exp(logd) sLength <- sqrt(.rowSums(s^2, nrow(s), 2L)) tmp <- -d*log(sLength + sigma) matrix(tmp * exp(tmp)) } formals(deriv)$sigma <- sigma environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- function (polydomain, deriv, logd, type = NULL, logsigma = 0, ...) { logpars <- c(logsigma, logd) siaf_polyCub_iso(polydomain$bdry, "intrfr.powerlaw.dlogd", logpars, list(...)) } formals(Deriv)$logsigma <- log(sigma) environment(Deriv) <- getNamespace("surveillance") ## Simulation function (via polar coordinates) simulate <- SIAF$simulate # hack original two-parameter version ... names(formals(simulate))[2] <- "logd" formals(simulate)$logsigma <- log(sigma) body(simulate) <- as.call( append(as.list(body(simulate)), quote(siafpars <- c(logsigma, logd)), after = 1) ) ## return the kernel specification list(f = f, F = F, Fcircle = Fcircle, deriv = deriv, Deriv = Deriv, simulate = simulate, npars = 1L, validpars = validpars) } surveillance/R/epidataCS.R0000644000176200001440000005333314615162374015147 0ustar liggesusers################################################################################ ### Data structure for CONTINUOUS SPATIO-temporal infectious disease case data ### and a spatio-temporal grid of endemic covariates ### ### Copyright (C) 2009-2018,2021,2024 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ###################################################################### # MAIN GENERATOR FUNCTION FOR epidataCS OBJECTS # PARAMS: # events: SpatialPointsDataFrame of cases with obligatory columns # time: time point of event # tile: reference to spatial unit (tile) in stgrid, where the event is located # type: optional type of event (-> marked twinstim). will be converted to a factor variable. # eps.t: maximal temporal influence radius (e.g. length of infectious period, time to culling, etc.), may be Inf # eps.s: maximal spatial influence radius (e.g. 100 [km]), may be Inf # The remaining columns are further marks of the event, e.g. sex, age of infected person (-> epidemic covariates) # The column names ".obsInfLength", ".bdist", ".influenceRegion", and ".sources" are reserved. # ".obsInfLength": observed length of the infectious period (being part [0,T]) # ".bdist": minimal distance of the event locations to the boundary # ".influenceRegion": object of class "owin", the intersection of W with b(s,eps.s), with origin at s # ".sources": potential sources of infection # stgrid: data.frame with obligatory columns # tile: ID of spatial unit (e.g. id of municipality) # start, stop: temporal interval # area: area of the spatial unit (tile) # The remaining columns are endemic covariates. # The column name "BLOCK" is reserved (indexing the time intervals of stgrid). # W: SpatialPolygons. Observation region. Must have same proj4string as events. # qmatrix: square indicator matrix (0/1 or TRUE/FALSE) for possible transmission between the event types. will be internally converted to logical. Defaults to an independent spread of the event types. # nCircle2Poly: accuracy (number of edges) of the polygonal approximation of a circle # T: end of observation period (=last stop time). Must be specified if only the # start but not the stop times are supplied in stgrid (-> auto-generation of stop-times). # clipper: engine to use for computing polygon intersections. ###################################################################### obligColsNames_events <- c("time", "tile", "type", "eps.t", "eps.s") obligColsNames_stgrid <- c("start", "stop", "tile", "area") dotNames_events <- c(".obsInfLength", ".sources", ".bdist", ".influenceRegion") reservedColsNames_events <- c(dotNames_events, "BLOCK", "start") reservedColsNames_stgrid <- c("BLOCK") as.epidataCS <- function (events, stgrid, W, qmatrix = diag(nTypes), nCircle2Poly = 32, T = NULL, clipper = "polyclip", verbose = interactive()) { clipper <- match.arg(clipper) # Check and SORT events if (verbose) cat("\nChecking 'events':\n") events <- check_events(events, verbose = verbose) # Check and SORT stgrid if (verbose) cat("Checking 'stgrid':\n") tiles <- NULL # FIXME: add argument to as.epidataCS stgrid <- if (missing(stgrid) && inherits(tiles, "SpatialPolygons")) { if (verbose) cat("\t(missing, using time-constant 'tiles' grid)\n") check_stgrid(tiles2stgrid(tiles, start=0, T=T), verbose = FALSE) } else { check_stgrid(stgrid, T, verbose = verbose) } T <- tail(stgrid$stop, 1L) # Check class of W and consistency of area if (verbose) cat("Checking 'W' ...\n") W <- check_W(W, area.other = sum(stgrid[["area"]][seq_len(nlevels(stgrid$tile))]), other = "stgrid") stopifnot(identicalCRS(W, events)) # Check qmatrix if (verbose) cat("Checking 'qmatrix' ...\n") typeNames <- levels(events$type) nTypes <- length(typeNames) # default value of qmatrix depends on nTypes qmatrix <- checkQ(qmatrix, typeNames) # Check nCircle2Poly stopifnot(isScalar(nCircle2Poly)) nCircle2Poly <- as.integer(nCircle2Poly) # Small helper function converting event index to (time, tile, type) string eventidx2string <- function (eventIdx) { with(events@data, paste(c("time", "tile", "type"), "=", c(time[eventIdx], dQuote(tile[eventIdx]), dQuote(type[eventIdx])), collapse = ", ")) } # Check that all events are part of W if (verbose) cat("Checking if all events are part of 'W' ...\n") WIdxOfEvents <- over(events, W) if (eventNotInWidx <- match(NA, WIdxOfEvents, nomatch = 0L)) { stop("the event at (", eventidx2string(eventNotInWidx), ") is not ", "inside 'W'") } # Attach spatio-temporal grid data to events events@data <- merge_stgrid(events@data, stgrid, verbose = verbose) # Calculate observed infection length for log-likelihood events$.obsInfLength <- pmin(T - events$time, events$eps.t) # Determine potential source events (infective individuals) of each event if (verbose) cat("Determining potential event sources ...\n") events$.sources <- determineSources( eventTimes = events$time, eps.t = events$eps.t, eventCoords = coordinates(events), eps.s = events$eps.s, eventTypes = events$type, qmatrix = qmatrix) # Calculate minimal distance of event locations from the polygonal boundary if (verbose) cat("Calculating the events' distances to the boundary ...\n") Wowin <- SpP2owin(W) events$.bdist <- bdist(coordinates(events), Wowin) # Construct spatial influence regions around events if (verbose) cat("Constructing spatial influence regions around events ...\n") events$.influenceRegion <- .influenceRegions(events, Wowin, nCircle2Poly, clipper=clipper) # Return components in a list of class "epidataCS" res <- list(events = events, stgrid = stgrid, W = W, qmatrix = qmatrix) class(res) <- "epidataCS" if (verbose) cat("Done.\n\n") return(res) } ###################################################################### # HELPER FUNCTIONS FOR as.epidataCS ###################################################################### ### CHECK FUNCTION FOR events ARGUMENT IN as.epidataCS check_events <- function (events, dropTypes = TRUE, verbose = TRUE) { # Check class and spatial dimensions stopifnot(inherits(events, "SpatialPointsDataFrame")) if (ncol(events@coords) != 2L) { stop("only two spatial dimensions are supported") } # check suitability of Euclidean geometry if (identical(FALSE, is.projected(events))) { # is.projected may return NA warning("\"epidataCS\" expects planar coordinates; see 'spTransform'") } # Check existence of type column if (verbose) cat("\tChecking 'type' column ... ") events$type <- if ("type" %in% names(events)) { if (dropTypes) factor(events$type) else as.factor(events$type) } else { if (verbose) cat("Setting 'type' to 1 for all events.") factor(rep.int(1L,nrow(events@coords))) } if (verbose) cat("\n") # Check obligatory columns obligColsIdx <- match(obligColsNames_events, names(events), nomatch = NA_integer_) if (any(obligColsMissing <- is.na(obligColsIdx))) { stop("missing obligatory columns in 'events@data': ", paste(obligColsNames_events[obligColsMissing], collapse = ", ")) } # Check other columns on reserved names reservedColsIdx <- na.omit(match(reservedColsNames_events, names(events), nomatch=NA_integer_)) if (length(reservedColsIdx) > 0L) { warning("in 'events@data', the existing columns with reserved names (", paste0("'", names(events)[reservedColsIdx], "'", collapse=", "), ") have been replaced") events@data <- events@data[-reservedColsIdx] } # Check that influence radii are numeric and positive (also not NA) if (verbose) cat("\tChecking 'eps.t' and 'eps.s' columns ...\n") with(events@data, stopifnot(is.numeric(eps.t), eps.t > 0, is.numeric(eps.s), eps.s > 0)) # Transform time into a numeric variable if (verbose) cat("\tConverting event time into a numeric variable ...\n") events$time <- as.numeric(events$time) stopifnot(!is.na(events$time)) # Check event times for ties if (verbose) cat("\tChecking event times for ties ...\n") timeIsDuplicated <- duplicated(events$time) if (any(timeIsDuplicated)) { duplicatedTimes <- sort.int(unique(events$time[timeIsDuplicated])) warning("detected concurrent events at ", length(duplicatedTimes), " time point", if (length(duplicatedTimes) > 1L) "s", ": ", paste(head(duplicatedTimes, 6L), collapse = ", "), if (length(duplicatedTimes) > 6L) ", ...") } # Sort events chronologically if (verbose) cat("\tSorting events ...\n") events <- events[order(events$time),] # First obligatory columns then remainders (epidemic covariates) obligColsIdx <- match(obligColsNames_events, names(events@data)) covarColsIdx <- setdiff(seq_along(events@data), obligColsIdx) events@data <- events@data[c(obligColsIdx, covarColsIdx)] events@coords.nrs <- numeric(0L) # forget index of coordinate columns # Done. return(events) } ### CHECK FUNCTION FOR stgrid ARGUMENT IN as.epidataCS check_stgrid <- function (stgrid, T, verbose = TRUE, warn = TRUE) { # Check class stopifnot(inherits(stgrid, "data.frame")) # Check obligatory columns autostop <- FALSE if (is.null(stgrid[["stop"]])) { if (is.null(T)) stop("'T' must be specified for auto-generation ", "of 'stop' column in 'stgrid'") stopifnot(isScalar(T)) autostop <- TRUE stgrid$stop <- NA_real_ } obligColsIdx <- match(obligColsNames_stgrid, names(stgrid), nomatch = NA_integer_) if (any(obligColsMissing <- is.na(obligColsIdx))) { stop("missing obligatory columns in 'stgrid': ", paste(obligColsNames_stgrid[obligColsMissing], collapse = ", ")) } # Check other columns on reserved names if (warn && length(reservedCols <- intersect(reservedColsNames_stgrid, names(stgrid)))) { warning("replacing existing columns in 'stgrid' which have reserved names: ", paste0("'", reservedCols, "'", collapse=", ")) } # Transform tile into a factor variable # (also removing unused levels if it was a factor) if (verbose) cat("\tConverting 'tile' into a factor variable ...\n") stgrid$tile <- factor(stgrid$tile) # Transform start times and area into numeric variables stgrid$start <- as.numeric(stgrid$start) stgrid$area <- as.numeric(stgrid$area) # Check stop times stgrid$stop <- if (autostop) { # auto-generate stop times from start times and T if (verbose) cat("\tAuto-generating 'stop' column ...\n") starts <- sort(unique(stgrid$start)) if (T <= starts[length(starts)]) { stop("'T' must be larger than the last 'start' time in 'stgrid'") } stops <- c(starts[-1], T) stops[match(stgrid$start, starts)] } else { as.numeric(stgrid$stop) } # chronological data.frame of unique periods histIntervals <- unique(stgrid[c("start", "stop")]) histIntervals <- histIntervals[order(histIntervals[,1L]),] nBlocks <- nrow(histIntervals) if (!autostop) { # Check start/stop consistency if (verbose) cat("\tChecking start/stop consistency ...\n") if (any(histIntervals[,2L] <= histIntervals[,1L])) { stop("stop times must be greater than start times") } startStopCheck <- histIntervals[-1L,1L] != histIntervals[-nBlocks,2L] if (startStopCheckIdx <- match(TRUE, startStopCheck, nomatch = 0)) { stop("inconsistent start/stop times: time intervals not consecutive ", "at stop time ", histIntervals[startStopCheckIdx,2L]) } } # Add BLOCK id stgrid$BLOCK <- match(stgrid$start, histIntervals[,1L]) # Check that we have a full BLOCK x tile grid if (verbose) cat("\tChecking if the grid is complete ...\n") blocksizes <- table(stgrid$BLOCK) tiletable <- table(stgrid$tile) if (length(unique(blocksizes)) > 1L || length(unique(tiletable)) > 1L) { stop("'stgrid' is not a full grid") } # First column BLOCK, then obligCols, then remainders (endemic covariates) if (verbose) cat("\tSorting the grid by time and tile ...\n") BLOCKcolIdx <- match("BLOCK", names(stgrid)) obligColsIdx <- match(obligColsNames_stgrid, names(stgrid)) covarColsIdx <- setdiff(seq_along(stgrid), c(BLOCKcolIdx, obligColsIdx)) stgrid <- stgrid[c(BLOCKcolIdx, obligColsIdx, covarColsIdx)] # Sort by BLOCK and tile stgrid <- stgrid[order(stgrid$BLOCK, stgrid$tile),] # # Get row indexes of the blocks' first/last rows # beginBlock <- match(seq_len(nBlocks), stgrid[["BLOCK"]]) # endBlock <- c(beginBlock[-1L]-1L, nrow(stgrid)) # Done. return(stgrid) } ### MERGE stgrid DATA INTO events@data ## Note: 'events' below refers to the data slot merge_stgrid <- function (events, stgrid, verbose = TRUE) { # Some basic quantities nEvents <- nrow(events) timeRange <- with(stgrid, c(start[1], stop[length(stop)])) # Are events covered by stgrid? if (verbose) { cat("Checking if all events are covered by 'stgrid' ...\n") ## surveillance > 1.16.0: prehistory events are allowed => BLOCK is NA if (events$time[1L] <= timeRange[1L]) { cat(" Note: ", sum(events$time <= timeRange[1L]), " prehistory events (time <= ", timeRange[1L], ")\n", sep = "") } } if (events$time[nEvents] > timeRange[2L]) { stop("found ", sum(events$time > timeRange[2L]), " events beyond 'stgrid' (time > ", timeRange[2L], ")") } # Are all events$tile references really part of the stgrid? .events.tile <- factor(events$tile, levels = levels(stgrid$tile)) if (missingSCellIdx <- match(NA, .events.tile, nomatch = 0L)) { stop("the 'events$tile' entry \"", events$tile[missingSCellIdx], "\"", " is not a valid level of 'stgrid$tile'") } events$tile <- .events.tile # Map events to corresponding grid cells ## FIXME: could use plapply() but then also need a .parallel argument if (verbose) cat("Mapping events to 'stgrid' cells ...\n") withPB <- verbose && interactive() gridcellsOfEvents <- integer(nEvents) if (withPB) pb <- txtProgressBar(min=0, max=nEvents, initial=0, style=3) for (i in seq_len(nEvents)) { gridcellsOfEvents[i] <- gridcellOfEvent(events$time[i], events$tile[i], stgrid) if (withPB) setTxtProgressBar(pb, i) } if (withPB) close(pb) # Attach endemic covariates from stgrid to events if (verbose) cat("Attaching endemic covariates from 'stgrid' to 'events' ...\n") endemicVars <- setdiff(names(stgrid), c(reservedColsNames_stgrid, obligColsNames_stgrid)) copyCols <- c("BLOCK", "start", endemicVars) if (length(replaceCols <- intersect(copyCols, names(events)))) { warning("replacing existing columns in 'events' data with ", "variables from 'stgrid': ", paste0("'", replaceCols, "'", collapse=", ")) events[replaceCols] <- NULL # ensure endemic vars are _appended_ } events <- cbind(events, stgrid[gridcellsOfEvents, copyCols]) return(events) } ### CHECK FUNCTION FOR W ARGUMENT IN as.epidataCS check_W <- function (W, area.other = NULL, other, tolerance = 0.001) { W <- as(W, "SpatialPolygons") # i.e. drop data if a SpatialPolygonsDataFrame if (!is.null(area.other) && area.other > 0) { check_W_area(W, area.other, other, tolerance) } return(W) } check_W_area <- function (W, area.other, other, tolerance = 0.001) { area.W <- areaSpatialPolygons(W) if (!isTRUE(all.equal.numeric(area.other, area.W, tolerance = tolerance, check.attributes = FALSE))) warning("area of 'W' (", area.W, ") differs from ", "total tile area in '", other, "' (", area.other, ")") } ### CHECK FUNCTION FOR tiles ARGUMENT IN simEpidataCS() check_tiles <- function (tiles, levels, events = NULL, areas.stgrid = NULL, W = NULL, keep.data = FALSE, tolerance = 0.05) { stopifnot(inherits(tiles, "SpatialPolygons"), is.vector(levels, mode="character")) tileIDs <- row.names(tiles) ## check completeness of tiles if (!identical(tileIDs, levels)) { if (any(missingtiles <- !levels %in% tileIDs)) stop(sum(missingtiles), " regions are missing in 'tiles', ", "check 'row.names(tiles)'") ## order tiles by levels and drop any extra tiles tiles <- tiles[levels, ] } ## drop data (also for suitable over-method in check_tiles_events) .tiles <- as(tiles, "SpatialPolygons") ## check tile specification of events and identical projection if (!is.null(events)) { check_tiles_events(.tiles, events) } ## check areas areas.tiles <- areaSpatialPolygons(tiles, byid = TRUE) if (!is.null(areas.stgrid)) { check_tiles_areas(areas.tiles, areas.stgrid, tolerance=tolerance) } if (!is.null(W)) { stopifnot(identicalCRS(tiles, W)) check_W_area(W, area.other=sum(areas.tiles), other="tiles", tolerance=tolerance) } ## done if (keep.data) tiles else .tiles } check_tiles_events <- function (tiles, events) { tiles <- as(tiles, "SpatialPolygons") # remove potential data for over() stopifnot(inherits(events, "SpatialPointsDataFrame"), identicalCRS(tiles, events)) tileIDs <- row.names(tiles) eventIDs <- row.names(events) ## get polygon ID's of events (via overlay) eventtiles <- tileIDs[over(events, tiles)] if (length(which_not_in_tiles <- which(is.na(eventtiles)))) warning("some of 'events' are not within 'tiles': ", paste0("\"", eventIDs[which_not_in_tiles], "\"", collapse=", ")) if (!is.null(events@data[["tile"]])) { which_disagree <- setdiff( which(eventtiles != as.character(events$tile)), which_not_in_tiles) if (length(which_disagree)) message("'over(events, tiles)' disagrees with 'events$tile' for events ", paste0("\"", eventIDs[which_disagree], "\"", collapse=", ")) } invisible() } check_tiles_areas <- function (areas.tiles, areas.stgrid, tolerance = 0.05) { areas_all_equal <- all.equal.numeric(areas.stgrid, areas.tiles, tolerance = tolerance, check.attributes = FALSE) if (!isTRUE(areas_all_equal)) warning("tile areas in 'stgrid' differ from areas of 'tiles': ", areas_all_equal) } ### CONSTRUCT SPATIAL INFLUENCE REGIONS AROUND EVENTS # An influenceRegion is an object of class "owin" with origin # at the event (over which we have to integrate by a cubature rule) # An attribute "area" gives the area of the influenceRegion. # If it is actually a circular influence region, then there is an attribute # "radius" denoting the radius of the influence region. # Argument 'W' can be of class "owin" (preferred) or "SpatialPolygons" .influenceRegions <- function (events, W, npoly, maxExtent = NULL, clipper = "polyclip") { Wowin <- if (inherits(W, "owin")) W else SpP2owin(W) if (is.null(maxExtent)) maxExtent <- diameter.owin(Wowin) doIntersection <- switch( clipper, # which package to use for polygon intersection "polyclip" = function (center, eps) intersectPolyCircle.owin(Wowin, center, eps, npoly), ## "rgeos" = function (center, eps) SpP2owin( ## intersectPolyCircle.SpatialPolygons( ## as(W, "SpatialPolygons"), center, eps, npoly)), stop("unsupported polygon clipping engine: '", clipper, "'") ) eventCoords <- coordinates(events) ## FIXME: could use plapply() but then also need a .parallel argument res <- mapply( function (x, y, eps, bdist) { center <- c(x,y) ## if eps is very large, the influence region is the whole region of W iR <- shift.owin( if (eps > maxExtent) Wowin else doIntersection(center, eps), -center) ## if iR is actually a circle of radius eps, attach eps as attribute attr(iR, "area") <- if (eps <= bdist) { attr(iR, "radius") <- eps pi * eps^2 } else area.owin(iR) iR }, eventCoords[,1], eventCoords[,2], events$eps.s, events$.bdist, SIMPLIFY = FALSE, USE.NAMES = FALSE) attr(res, "nCircle2Poly") <- npoly attr(res, "clipper") <- clipper res } ### CREATE stgrid TEMPLATE FROM tiles tiles2stgrid <- function (tiles, start, T) { start <- sort.int(unique.default(start)) stgrid <- expand.grid(tile = row.names(tiles), start = start, KEEP.OUT.ATTRS = FALSE, stringsAsFactors = TRUE) cbind(stgrid, stop = rep(c(start[-1L], T), each = length(tiles)), area = rep(areaSpatialPolygons(tiles, byid = TRUE), length(start))) } surveillance/R/hhh4_W.R0000644000176200001440000002477114430705133014426 0ustar liggesusers################################################################################ ### Helper functions for neighbourhood weight matrices in hhh4() ### ### Copyright (C) 2012-2016,2020,2022 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ checkNeighbourhood <- function (neighbourhood) { ## setValidity() in sts.R only guarantees correct 'dim' and 'dimnames' ## we also assert numeric or logical matrix with non-NA entries stopifnot(is.matrix(neighbourhood), nrow(neighbourhood) == ncol(neighbourhood), is.numeric(neighbourhood) | is.logical(neighbourhood), is.finite(neighbourhood)) invisible(TRUE) } ### calculate the weighted sum of counts of adjacent (or all other) regions ### i.e. the nTime x nUnit matrix with elements (ti): sum_j w_jit * y_j(t-lag) ## W is either a nUnits x nUnits matrix of time-constant weights w_ji ## or a nUnits x nUnits x nTime array of time-varying weights w_jit ## Note that a missing value in any unit at t-lag gives NA at t, ## even if w_jit = 0 for that unit (e.g., if own past is missing) weightedSumNE <- function (observed, weights, lag) { dimY <- dim(observed) nTime <- dimY[1L] nUnits <- dimY[2L] if (length(dim(weights)) == 2L) { # fast track for time-constant weights rbind(matrix(NA_real_, lag, nUnits), observed[seq_len(nTime-lag),,drop=FALSE] %*% weights) } else { tYlagged <- t(observed[seq_len(nTime-lag),,drop=FALSE]) apply(weights[,,(lag+1L):nTime,drop=FALSE], 2L, function (wi) ## wi and tYlagged are matrices of size nUnits x (nTime-lag) c(rep(NA_real_, lag), .colSums(tYlagged * wi, nUnits, nTime-lag))) } } ### normalize weight matrix such that each row sums to 1 (at each time point) normalizeW <- function (W) { dimW <- dim(W) if (length(dimW) == 2L) { W / .rowSums(W, dimW[1L], dimW[2L]) } else { # time-varying weights res <- apply(W, 3L, normalizeW) dim(res) <- dimW res } } ### scale and/or normalize a weight matrix/array scaleNEweights.default <- function (weights, scale = NULL, normalize = FALSE) { if (!is.null(scale)) weights <- scale * weights if (normalize) weights <- normalizeW(weights) weights } ## update parametric weights functions w, dw, d2w scaleNEweights.list <- function (weights, scale = NULL, normalize = FALSE) { if (is.null(scale) && !normalize) return(weights) if (normalize) { dprod <- function (u, v, du, dv) du * v + u * dv dfrac <- function (u, v, du, dv) (du * v - u * dv) / v^2 w <- function (...) scaleNEweights.default(weights$w(...), scale, TRUE) dw <- function (...) { W <- scaleNEweights.default(weights$w(...), scale) dW <- clapply(X = weights$dw(...), # matrix or list thereof FUN = scaleNEweights.default, scale = scale) # always returns a list dimW <- dim(W) normW <- .rowSums(W, dimW[1L], dimW[2L]) normdW <- lapply(X = dW, FUN = .rowSums, m = dimW[1L], n = dimW[2L]) mapply(FUN = dfrac, du = dW, dv = normdW, MoreArgs = list(u = W, v = normW), SIMPLIFY = FALSE, USE.NAMES = FALSE) } ## for d2w() we need all the stuff from dw() -> substitute d2w <- as.function(c(alist(...=), substitute({ dWnorm <- DWBODY d2W <- clapply(X = weights$d2w(...), # matrix or list thereof FUN = scaleNEweights.default, scale = scale) # always returns a list normd2W <- lapply(X = d2W, FUN = .rowSums, m = dimW[1L], n = dimW[2L]) ## order of d2w is upper triangle BY ROW dimd <- length(dW) ri <- rep.int(seq_len(dimd), rep.int(dimd, dimd)) # row index ci <- rep.int(seq_len(dimd), dimd) # column index uppertri <- ci >= ri mapply(FUN = function (k, l, d2W, normd2W) { dfrac(dW[[k]], normW, d2W, normdW[[l]]) - dprod(W/normW, normdW[[k]]/normW, dWnorm[[l]], dfrac(normdW[[k]], normW, normd2W, normdW[[l]])) }, k = ri[uppertri], l = ci[uppertri], d2W = d2W, normd2W = normd2W, SIMPLIFY = FALSE, USE.NAMES = FALSE) }, list(DWBODY = body(dw))))) } else { w <- function (...) scaleNEweights.default(weights$w(...), scale) dw <- function (...) clapply(X = weights$dw(...), FUN = scaleNEweights.default, scale = scale) d2w <- function (...) clapply(X = weights$d2w(...), FUN = scaleNEweights.default, scale = scale) } ## return list with updated functions list(w = w, dw = dw, d2w = d2w, initial = weights$initial) } ################################## ### check ne$weights specification ################################## ### checks for a fixed matrix/array checkWeightsArray <- function (W, nUnits, nTime, name = deparse(substitute(W)), check0diag = FALSE, islands = FALSE) { if (!is.array(W) || !(length(dim(W)) %in% 2:3)) stop("'", name, "' must return a matrix or 3-dim array") if (any(dim(W)[1:2] != nUnits) || isTRUE(dim(W)[3] != nTime)) stop("'", name, "' must conform to dimensions ", nUnits, " x ", nUnits, " (x ", nTime, ")") if (anyNA(W)) { if (islands) # normalization of parametric weights yields division by 0 warning("neighbourhood structure contains islands") stop("missing values in '", name, "' are not allowed") } if (check0diag) { diags <- if (is.matrix(W)) diag(W) else apply(W, 3, diag) if (any(diags != 0)) warning("'", name, "' has nonzeros on the diagonal", if (!is.matrix(W)) "s") } } ### check parametric weights specification consisting of a list of: ## - three functions: w, dw, and d2w ## - a vector of initial parameter values checkWeightsFUN <- function (object) { fnames <- paste0(c("","d","d2"), "w") if (any(!sapply(object[fnames], is.function))) stop("parametric weights require functions ", paste0("'", fnames, "'", collapse=", ")) if (any(!sapply(object[fnames], function(FUN) length(formals(FUN)) >= 3L))) stop("parametric weights functions must accept (not necessarily use)", "\n at least 3 arguments (parameter vector, ", "neighbourhood order matrix, data)") if (!is.vector(object$initial, mode="numeric") || length(object$initial) == 0L) stop("parametric weights require initial parameter values") TRUE } ### entry function for checks in hhh4() checkWeights <- function (weights, nUnits, nTime, nbmat, data, # only used for parametric weights check0diag = FALSE) { name <- deparse(substitute(weights)) # "control$ne$weights" ## check specification testweights <- if (is.array(weights)) weights else { if (is.list(weights) && checkWeightsFUN(weights) && checkNeighbourhood(nbmat)) { if (all(nbmat %in% 0:1)) warning("'", deparse(substitute(nbmat)), "' is binary (should contain", " general neighbourhood orders)") weights$w(weights$initial, nbmat, data) } else { stop("'", name, "' must be a matrix/array or a list of functions") } } ## apply matrix/array checks if (is.list(weights)) { # parametric weights if (length(dim(testweights)) > 2L) warning("time-varying parametric weights are not fully supported") checkWeightsArray(testweights, nUnits, nTime, name = paste0(name, "$w"), check0diag = check0diag, islands = any(.rowSums(nbmat, nUnits, nUnits) == 0)) dim.d <- length(weights$initial) dw <- weights$dw(weights$initial, nbmat, data) d2w <- weights$d2w(weights$initial, nbmat, data) if (dim.d == 1L && !is.list(dw) && !is.list(d2w)) { checkWeightsArray(dw, nUnits, nTime, name=paste0(name, "$dw")) checkWeightsArray(d2w, nUnits, nTime, name=paste0(name, "$d2w")) } else { if (!is.list(dw) || length(dw) != dim.d) stop("'", name, "$dw' must return a list (of matrices/arrays)", " of length ", dim.d) if (!is.list(d2w) || length(d2w) != dim.d*(dim.d+1)/2) stop("'", name, "$d2w' must return a list (of matrices/arrays)", " of length ", dim.d*(dim.d+1)/2) lapply(dw, checkWeightsArray, nUnits, nTime, name=paste0(name, "$dw[[i]]")) lapply(d2w, checkWeightsArray, nUnits, nTime, name=paste0(name, "$d2w[[i]]")) } } else checkWeightsArray(testweights, nUnits, nTime, name = name, check0diag = check0diag) ## Done invisible(TRUE) } ############################################# ### Utility functions for fitted hhh4-objects ############################################# ### extract the (final) weight matrix/array from a fitted hhh4 object getNEweights <- function (object, pars = coefW(object), scale = ne$scale, normalize = ne$normalize) { ne <- object$control$ne weights <- if (is.list(ne$weights)) { # parametric weights nd <- length(ne$weights$initial) if (length(pars) != nd) stop("'pars' must be of length ", nd) ne$weights$w(pars, neighbourhood(object$stsObj), object$control$data) } else { # NULL or fixed weight structure ne$weights } if (is.null(normalize)) normalize <- FALSE # backward compatibility < 1.9-0 scaleNEweights.default(weights, scale, normalize) } ### extract parameters of neighbourhood weights from hhh4-object or coef vector coefW <- function (object) { coefs <- if (inherits(object, "hhh4")) object$coefficients else object coefW <- coefs[grep("^neweights", names(coefs))] names(coefW) <- sub("^neweights\\.", "", names(coefW)) coefW } surveillance/R/twinstim_siaf_gaussian.R0000644000176200001440000002045114426171115020050 0ustar liggesusers################################################################################ ### Gaussian spatial interaction function for twinstim's epidemic component ### ### Copyright (C) 2009-2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## nTypes: determines the number of parameters=(log-)standard deviations of the ## Gaussian kernel. In a multitype epidemic, the different types may share the ## same spatial interaction function (type-invariant), in which case nTypes=1. ## Otherwise nTypes should equal the number of event types of the epidemic, in ## which case every type has its own variance parameter. ## logsd: logical indicating if the gaussian kernel should be reparametrized ## such that the log-standard deviation is the parameter in question. This ## avoids constrained optimisation (L-BFGS-B) or the use of 'validpars'. ## density: logical. If TRUE, the isotropic Gaussian density (on R^2) will not ## be scaled to have maximum value of 1 at the mean c(0,0). ## effRangeMult: determines the effective range for numerical integration in ## terms of multiples of the parameter, i.e. with effRangeMult=6 numerical ## integration only considers the 6-sigma area around the event instead of the ## whole observation region W. ## validpars: If logsd = FALSE, you should either use ## constrained optimisation (L-BFGS-B) or set 'validpars' to function (pars) ## pars > 0. siaf.gaussian <- function (nTypes = 1, logsd = TRUE, density = FALSE, F.adaptive = FALSE, F.method = "iso", effRangeMult = 6, validpars = NULL) { if (!logsd || density) .Deprecated(msg = "non-default parametrizations of siaf.gaussian() are deprecated") nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) if (isScalar(F.adaptive)) { adapt <- F.adaptive F.adaptive <- TRUE } else adapt <- 0.1 if (F.adaptive && !missing(F.method)) warning("ignoring 'F.method' since 'F.adaptive=TRUE' (adaptive midpoint cubature)") f <- function (s, pars, types) {} # coordinate matrix s, length(types) = 1 or nrow(s) F <- if (F.adaptive) { as.function(c(alist(polydomain=, f=, pars=, type=), list(adapt=adapt), quote({}))) } else if (F.method == "iso") { if (!logsd || density) stop("only the default parametrization is implemented for 'F.method=\"iso\"'") if (nTypes > 1L) stop("only the single-type kernel is implemented for 'F.method=\"iso\"'") siaf_F_polyCub_iso(intrfr_name = "intrfr.gaussian", engine = "C") } else { formals(siaf.fallback.F)$method <- F.method siaf.fallback.F } Fcircle <- function (r, pars, type) {} # single radius and type effRange <- function (pars) {} deriv <- function (s, pars, types) {} # coordinate matrix s, length(types) = 1 or nrow(s) Deriv <- if (F.adaptive || F.method != "iso") { function (polydomain, deriv, pars, type, nGQ = 20L) {} # single "owin" and type } else { siaf_Deriv_polyCub_iso(intrfr_names = "intrfr.gaussian.dlogsigma", engine = "C") } simulate <- function (n, pars, type, ub) {} # n=size of the sample, # type=single type, # ub=upperbound (unused here) ## if there is only one type, we set the default type(s) argument to 1 ## (it is actually unused inside the functions) if (nTypes == 1L) { formals(f)$types <- formals(F)$type <- formals(Fcircle)$type <- formals(deriv)$types <- formals(Deriv)$type <- formals(simulate)$type <- 1L } # helper expressions tmp1 <- if (logsd) expression(sds <- exp(pars)) else expression(sds <- pars) tmp1.1 <- if (nTypes==1L) expression(sd <- sds) else expression(sd <- sds[type]) tmp2 <- c( expression(sLengthSquared <- .rowSums(s^2, L <- nrow(s), 2L)), if (nTypes == 1L) expression(sdss <- sds) else expression( types <- rep_len(types, L), sdss <- sds[types] ) ) # spatial interaction function body(f) <- as.call(c(as.name("{"), tmp1, tmp2, expression(fvals <- exp(-sLengthSquared/2/sdss^2)), if (density) expression(fvals / (2*pi*sdss^2)) else expression(fvals) )) environment(f) <- baseenv() # numerically integrate f over a polygonal domain if (F.adaptive) { body(F) <- as.call(c(as.name("{"), tmp1, tmp1.1, expression( eps <- adapt * sd, intf <- polyCub.midpoint(polydomain, f, pars, type, eps=eps), intf ) )) environment(F) <- getNamespace("surveillance") } # calculate the integral of f over a circular domain around 0 body(Fcircle) <- as.call(c(as.name("{"), tmp1, tmp1.1, expression(val <- pchisq((r/sd)^2, 2)), # cf. Abramowitz&Stegun formula 26.3.24 if (!density) expression(val <- val * 2*pi*sd^2), expression(val) )) environment(Fcircle) <- getNamespace("stats") # effective integration range of f as a function of sd if (isScalar(effRangeMult)) { body(effRange) <- as.call(c(as.name("{"), tmp1, substitute(effRangeMult*sds) )) environment(effRange) <- baseenv() } else effRange <- NULL # derivative of f wrt pars derivexpr <- if (logsd) { # derive f wrt psi=log(sd) !! if (density) { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) / pi/sdss^2 * (frac-1)) } else { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) * 2*frac) } } else { # derive f wrt sd !! if (density) { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) / pi/sdss^3 * (frac-1)) } else { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) * 2*frac/sdss) } } derivexpr <- do.call("substitute", args=list(expr=derivexpr, env=list(colidx=if (nTypes==1L) 1L else quote(types)))) body(deriv) <- as.call(c(as.name("{"), tmp1, tmp2, expression( deriv <- matrix(0, L, length(pars)), frac <- sLengthSquared/2/sdss^2 ), derivexpr, expression(deriv) )) environment(deriv) <- baseenv() # integrate 'deriv' over a polygonal domain if (F.adaptive || F.method != "iso") { body(Deriv) <- as.call(c(as.name("{"), ## Determine a = argmax(abs(deriv(c(x,0)))) if (density) { # maximum absolute value is at 0 expression(a <- 0) } else { c(tmp1, tmp1.1, expression( xrange <- polydomain$xrange, # polydomain is a "owin" a <- min(max(abs(xrange)), sqrt(2)*sd), # maximum absolute value if (sum(xrange) < 0) a <- -a # is more of the domain left of 0? )) }, if (nTypes == 1L) { expression(deriv.type <- function (s) deriv(s, pars, 1L)[,1L,drop=TRUE]) } else { # d f(s|type_i) / d sigma_{type_j} is 0 for i != j expression(deriv.type <- function (s) deriv(s, pars, type)[,type,drop=TRUE]) }, expression(int <- polyCub.SV(polydomain, deriv.type, nGQ=nGQ, alpha=a)), if (nTypes == 1L) expression(int) else expression( res <- numeric(length(pars)), # zeros res[type] <- int, res ) )) environment(Deriv) <- getNamespace("surveillance") } ## sampler (does not obey the 'ub' argument!!) body(simulate) <- as.call(c(as.name("{"), tmp1, tmp1.1, expression(matrix(rnorm(2*n, mean=0, sd=sd), nrow=n, ncol=2L)) )) environment(simulate) <- getNamespace("stats") ## return the kernel specification list(f=f, F=F, Fcircle=Fcircle, effRange=effRange, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=nTypes, validpars=validpars) } surveillance/R/pairedbinCUSUM.R0000644000176200001440000002060314615164167016060 0ustar liggesusers###################################################################### # Compute ARL for paired binary CUSUM charts as introduced in Steiner, # Cook and Farefwell, 1999, Monitoring paired binary surgical outcomes, # Stats in Med, 18, 69-86. # # This code is an R implementation of Matlab code provided by # Stefan H. Steiner, University of Waterloo, Canada. # # Params: # p - vector giving the probability of the four different possibilities # c((death=0,near-miss=0),(death=1,near-miss=0), # (death=0,near-miss=1),(death=1,near-miss=1)) # w1, w2 - w1 and w2 are the sample weights vectors for the two CUSUMs. # (see (2)). We have w1 is equal to deaths # (according to paper it being 2 would be more realistic) # h1, h2 - decision barriers for the individual cusums (see (3)) # h11,h22 - joint decision barriers (see (3)) # sparse - use Matrix package ###################################################################### pairedbinCUSUM.runlength <- function(p,w1,w2,h1,h2,h11,h22, sparse=FALSE) { #Size of the sparse matrix -- assumption h1>h11 and h2>h22 mw <- h1*h22+(h2-h22)*h11 cat("g =",mw+3,"\n") #build transition matrix; look at current state as an ordered pair (x1,x2) #the size of the matrix is determined by h1, h2, and h11 and h22 #Look at all 3 possible absorbing conditions transm <- matrix(0, mw+3, mw+3) #the last row/column is the absorbing state, I_{3\times 3} block #Is this ever used?? transm[mw+1,mw+1] <- 1 transm[mw+2,mw+2] <- 1 transm[mw+3,mw+3] <- 1 #go over each row and fill in the transition probabilities for (i in 1:mw) { # cat(i," out of ", mw,"\n") #find the corresponding state if (i>h1*h22) { temp <- floor((i-h1*h22-1)/h11) x1 <- i-h1*h22-1-temp*h11 x2 <- temp+h22 } else { x2 <- floor((i-1)/h1) x1 <- i-x2*h1-1 } #go over the four different weight combinations for (j in 1:2) { for (k in 1:2) { x1n <- x1+w1[j+2*(k-1)] #death chart x2n <- x2+w2[k] #look at all possible combinations of weights #we can't go below zero if (x1n<0) { x1n <- 0 } if (x2n<0) { x2n <- 0 } newcond=0 #try to figure out what condition index the new CUSUM values correspond to if (x1n>=h1) { newcond <- mw+1 #absorbing state on x1 } else { if (x2n>=h2) { newcond <- mw+2 #absorbing state on x2 } else { if ((x1n>=h11)&(x2n>=h22)) { #only register this if other two conditions are not satisfied newcond <- mw+3 } } } if (newcond==0) { #transition is not to an absorbing state #translate legal ordered pair to state number if (x2n h1, S[t+1,2] > h2) if ((S[t+1,1] > h11) & (S[t+1,2] > h22)) { alarm <- c(TRUE,TRUE) } # alarm <- (S[t+1,1] > h1) | (S[t+1,2] > h2) | # ((S[t+1,1] > h11) & (S[t+1,2] > h22)) #If one or both of the CUSUMs produced an alarm then stop if ((sum(alarm)>0) | (t==nrow(x))) { stopped <- TRUE} } return(list(N=t,val=S[-1,],alarm=alarm)) } ###################################################################### # STS wrapper for the Paired binary CUSUM method. This follows in # style the categoricalCUSUM method. ###################################################################### pairedbinCUSUM <- function(stsObj, control = list(range=NULL,theta0,theta1,h1,h2,h11,h22)) { # Set the default values if not yet set if(is.null(control[["range"]])) { control$range <- 1:nrow(observed(stsObj)) } else { # subset stsObj stsObj <- stsObj[control[["range"]], ] } if(is.null(control[["theta0"]])) { stop("no specification of in-control parameters theta0") } if(is.null(control[["theta1"]])) { stop("no specification of out-of-control parameters theta1") } if(is.null(control[["h1"]])) { stop("no specification of primary threshold h1 for first series") } if(is.null(control[["h2"]])) { stop("no specification of primary threshold h2 for 2nd series") } if(is.null(control[["h11"]])) { stop("no specification of secondary limit h11 for 1st series") } if(is.null(control[["h22"]])) { stop("no specification of secondary limit h11 for 2nd series") } #Extract the important parts from the arguments y <- stsObj@observed nTime <- nrow(y) theta0 <- control[["theta0"]] theta1 <- control[["theta1"]] h1 <- control[["h1"]] h2 <- control[["h2"]] h11 <- control[["h11"]] h22 <- control[["h22"]] #Semantic checks. if (ncol(y) != 2) { stop("the number of columns in the sts object needs to be two") } #Reserve space for the results. Contrary to the categorical CUSUM #method, each ROW represents a series. alarm <- matrix(data = FALSE, nrow = nTime, ncol = 2) upperbound <- matrix(data = 0, nrow = nTime, ncol = 2) #Setup counters for the progress doneidx <- 0 N <- 1 noofalarms <- 0 ####################################################### #Loop as long as we are not through the entire sequence ####################################################### while (doneidx < nTime) { #Run paired binary CUSUM until the next alarm res <- pairedbinCUSUM.LLRcompute(x=y, theta0=theta0, theta1=theta1, h1=h1, h2=h2, h11=h11, h22=h22) #In case an alarm found log this and reset the chart at res$N+1 if (res$N < nrow(y)) { #Put appropriate value in upperbound upperbound[1:res$N + doneidx,] <- res$val[1:res$N,] alarm[res$N + doneidx,] <- res$alarm #Chop & get ready for next round y <- y[-(1:res$N),,drop=FALSE] # theta0 <- pi0[,-(1:res$N),drop=FALSE] # theta1 <- pi1[,-(1:res$N),drop=FALSE] # n <- n[-(1:res$N)] #Add to the number of alarms noofalarms <- noofalarms + 1 } doneidx <- doneidx + res$N } #Add upperbound-statistic of last segment, where no alarm is reached upperbound[(doneidx-res$N+1):nrow(upperbound),] <- res$val # Add name and data name to control object control$name <- "pairedbinCUSUM" control$data <- NULL #not supported anymore #write results to stsObj stsObj@alarm <- alarm stsObj@upperbound <- upperbound stsObj@control <- control #Ensure dimnames in the new object stsObj <- fix.dimnames(stsObj) #Done return(stsObj) } surveillance/R/sts_creation.R0000644000176200001440000000625714662137762016017 0ustar liggesusers################################################################################ ### Simulate count time series with outbreaks (following Noufaily et al, 2012) ### ### Copyright (C) 2014-2015 Maelle Salmon ################################################################################ sts_creation <- function(theta,beta,gamma1,gamma2,m,overdispersion,dates, sizesOutbreak,datesOutbreak,delayMax,alpha, densityDelay) { lengthT <- length(dates) # Baseline observed <- rep(NA,lengthT) upperbound <- rep(NA,lengthT) state <- logical(length=lengthT) for (t in 1:lengthT) { if (m==0){season=0} if (m==1){season=gamma1*cos(2*pi*t/52)+ gamma2*sin(2*pi*t/52)} if (m==2){season=gamma1*cos(2*pi*t/52)+ gamma2*sin(2*pi*t/52)+gamma1*cos(4*pi*t/52)+ gamma2*sin(4*pi*t/52)} mu <- exp(theta + beta*t + season) observed[t] <- rnbinom(mu=mu,size=overdispersion,n=1) upperbound[t] <- qnbinom(mu=mu,size=overdispersion,p=(1-alpha)) } # Outbreaks nOutbreaks <- length(sizesOutbreak) if (nOutbreaks>1){ dens <- lognormDiscrete(Dmax=20,logmu=0,sigma=0.5) for (i in 1:nOutbreaks){ tOutbreak <- which(dates==datesOutbreak[i]) numberOfCases <- rpois(n=1,lambda=sizesOutbreak[i]*(mu*(1+mu/overdispersion))) cases <- rep(0,length(dens)) if (numberOfCases!=0){ for (case in 1:numberOfCases){ t <- sample(x=1:length(dens),size=1,prob=dens) cases[t] <- cases[t] + 1 } } cases <- cases[cases>0] if(sum(cases)>0){ observed[tOutbreak:(tOutbreak+length(cases)-1)] <- observed[tOutbreak:(tOutbreak+length(cases)-1)] + cases state[tOutbreak:(tOutbreak+length(cases)-1)] <- TRUE } } } observed <- observed[1:lengthT] # Reporting triangle if (!is.null(densityDelay)){ # use density delay n <- matrix(0, lengthT, delayMax + 1,dimnames=list(as.character(dates),NULL)) for (t in 1:lengthT){ if(observed[t]!=0){ for (case in 1:observed[t]){ delay <- sample(x=0:delayMax,size=1,prob=densityDelay) if (delay > delayMax) {delay <- delayMax} n[t, delay + 1] <- n[t, delay + 1] + 1 } } } } else{ # Using a poisson as for the outbreaks because it looks good n <- matrix(0, lengthT, D + 1,dimnames=list(as.character(dates),NULL)) for (t in 1:lengthT){ if(observed[t]!=0){ for (case in 1:observed[t]){ delay <- rpois(n=1, lambda=1.5) if (delay > D) {delay <- D} n[t, delay + 1] <- n[t, delay + 1] + 1 } } } } # Create the sts start <- unlist(isoWeekYear(dates[1]), use.names = FALSE) newSts <- new("sts", epoch = as.numeric(dates), start = start, upperbound = as.matrix(upperbound), freq = 52, observed = observed, state = as.matrix(state), epochAsDate = TRUE) newSts@control$reportingTriangle$n <- n return(newSts) } ## FUNCTION FOR DISCRETIZING THE LOG NORM DISTRIBUTION lognormDiscrete <- function(Dmax=20,logmu=0,sigma=0.5){ Fd <- plnorm(0:Dmax, meanlog = logmu, sdlog = sigma) FdDmax <- plnorm(Dmax, meanlog = logmu, sdlog = sigma) #Normalize prob <- diff(Fd)/FdDmax return(prob) } surveillance/R/epidataCS_aggregate.R0000644000176200001440000001736114430705133017145 0ustar liggesusers################################################################################ ### Convert "epidataCS" to the (aggregated) classes "epidata" or "sts" ### ### Copyright (C) 2009-2016,2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ###################################### ### Transform "epidataCS" to "epidata" ###################################### ## CAVE: this only generates a SIS epidemic, i.e. atRiskY is set to 1 ## immediately after recovery ## length of infectious period is taken from epidataCS$events$eps.t ## fcols are not generated here. these must be generated by a second call to ## twinSIR's as.epidata with desired f. (for safety) ## tileCentroids is a coordinate matrix whose row names are the tile levels as.epidata.epidataCS <- function (data, tileCentroids, eps = 0.001, ...) { if (!requireNamespace("intervals")) stop("conversion from ", dQuote("epidataCS"), " to ", dQuote("epidata"), " requires the ", sQuote("intervals"), " package") ### generate twinSIR's epidata object from stgrid (no events) centroidIdx <- match(levels(data$stgrid$tile), rownames(tileCentroids), nomatch = NA_integer_) if (anyNA(centroidIdx)) { stop("some levels of 'data$stgrid$tile' are not available from 'tileCentroids'") } centroids <- tileCentroids[centroidIdx,] if (any(c("xCent", "yCent") %in% names(data$stgrid))) { stop("'data$stgrid' already has columns \"xCent\" and \"yCent\"") } stgrid <- cbind(data$stgrid, atRiskY = 1L, event = 0L, Revent = 0L, xCent = centroids[,1], yCent = centroids[,2] # relies on ordering of stgrid by first BLOCK, then tile ) names(stgrid)[names(stgrid)=="tile"] <- "id" timeRange <- with(stgrid, c(start[1], stop[length(stop)])) ### now determine "events" with respect to the tiles # individual data indItimes <- data$events$time if (anyDuplicated(indItimes)) stop("'data$events' has concurrent event times") indRtimes <- indItimes + data$events$eps.t indInts <- intervals::Intervals(cbind(indItimes, indRtimes, deparse.level = 0L)) indTiles <- data$events$tile # tile data tileRows <- tapply(seq_along(indTiles), indTiles, c, simplify = FALSE) tileInts <- lapply(tileRows, function (rows) { if (length(rows)==0L) { matrix(0,0,2) } else if (length(rows)==1L) { as.matrix(indInts[rows]) } else as.matrix(intervals::reduce(indInts[rows])) }) tileNames <- rep.int(names(tileInts), sapply(tileInts, nrow)) tileItimes <- unlist(lapply(tileInts, function(ints) ints[,1]), use.names=FALSE) tileRtimes <- unlist(lapply(tileInts, function(ints) ints[,2]), use.names=FALSE) # there are possibly Rtimes which equal Itimes of other individuals # => break ties by considering Rtime shortly before Itime (arbitrary choice) while(length(dup <- which(tileRtimes %in% tileItimes)) > 0L) { tileRtimes[dup] <- tileRtimes[dup] - eps } # now there could be duplicated Rtimes... grml (choose another 'eps' in this case) if (anyDuplicated(tileRtimes)) { stop("breaking ties introduced duplicated Rtimes") } ### add additional stop times to stgrid for tile infections and recoveries requiredStopTimes <- sort(c(tileItimes,tileRtimes[tileRtimes timeRange[1]] # omit prehistory class(stgrid) <- c("epidata", "data.frame") attr(stgrid, "timeRange") <- timeRange cat("Inserting extra stop times in 'stgrid' (this might take a while) ... ") evHist <- intersperse(stgrid, requiredStopTimes, verbose=interactive()) # CAVE: this resets the BLOCK index class(evHist) <- "data.frame" ### <- THIS IS THE MOST TIME-CONSUMING PART OF THIS FUNCTION !!! cat("Done.\n") ### set event, Revent and atRiskY indicators tileNamesCodes <- match(tileNames, levels(evHist$id)) # event indicator (currently in evHist event==0 everywhere) idxItimes <- match(tileItimes, evHist$stop) - 1L + tileNamesCodes evHist$event[idxItimes] <- 1L # Revent indicator (currently in evHist Revent==0 everywhere) idxRtimes <- match(tileRtimes, evHist$stop) - 1L + tileNamesCodes # (may contain NA's if Revent after last stop) evHist$Revent[idxRtimes] <- 1L # atRiskY indicator .atRiskY <- rep.int(1L, nrow(evHist)) nTiles <- nlevels(evHist$id) nBlocks <- tail(evHist$BLOCK, 1) stopTimes <- unique(evHist$stop) # has length nBlocks for (i in seq_along(tileItimes)) { .Itime <- tileItimes[i] .Rtime <- tileRtimes[i] if (.Rtime <= timeRange[1L]) next # prehistory infection and removal .tileCode <- tileNamesCodes[i] idxsTileInEpi <- seq(.tileCode, by=nTiles, length.out=nBlocks) first0block <- if (.Itime < stopTimes[1L]) 1L else match(.Itime, stopTimes) + 1L last0block <- if (.Rtime > stopTimes[nBlocks]) nBlocks else match(.Rtime, stopTimes) .atRiskY[idxsTileInEpi[first0block:last0block]] <- 0L } evHist$atRiskY <- .atRiskY ### Return final epidata object of twinSIR-type cat("Generating final \"epidata\" object for use with twinSIR ... ") epi <- as.epidata(evHist[-grep("BLOCK", names(evHist))], id.col="id", start.col="start", stop.col="stop", atRiskY.col="atRiskY", event.col="event", Revent.col="Revent", coords.cols=c("xCent","yCent") ) cat("Done.\n") epi } #################################################################### ### Transform "epidataCS" to "sts" by aggregation of cases on stgrid #################################################################### epidataCS2sts <- function (object, freq, start, neighbourhood, tiles = NULL, popcol.stgrid = NULL, popdensity = TRUE) { stopifnot(inherits(object, "epidataCS")) tileLevels <- levels(object$stgrid$tile) if (!is.null(tiles)) { stopifnot(inherits(tiles, "SpatialPolygons"), tileLevels %in% row.names(tiles)) tiles <- tiles[tileLevels,] } ## prepare sts components blocks <- unique(object$stgrid$BLOCK) # epidataCS is sorted eventsByCell <- with(object$events@data, table(BLOCK=factor(BLOCK, levels=blocks), tile)) if (missing(neighbourhood)) { # auto-detect neighbourhood from tiles if (is.null(tiles)) stop("'tiles' is required for auto-generation of 'neighbourhood'") neighbourhood <- poly2adjmat(tiles, zero.policy=TRUE) if (nIslands <- sum(rowSums(neighbourhood) == 0)) message("Note: auto-generated neighbourhood matrix contains ", nIslands, ngettext(nIslands, " island", " islands")) } populationFrac <- if (is.null(popcol.stgrid)) NULL else { stopifnot(is.vector(popcol.stgrid), length(popcol.stgrid) == 1) popByCell <- object$stgrid[[popcol.stgrid]] if (popdensity) popByCell <- popByCell * object$stgrid[["area"]] totalpop <- sum(popByCell[seq_along(tileLevels)]) matrix(popByCell/totalpop, nrow=length(blocks), ncol=length(tileLevels), byrow=TRUE, dimnames=dimnames(eventsByCell)) } ## initialize sts object (sts() constructor discards NULL slots) sts(frequency=freq, start=start, # epoch=seq_along(blocks) [default] ##do not set epoch=blocks as blocks[1] could be >1 (from simulation) observed=unclass(eventsByCell), neighbourhood=neighbourhood, populationFrac=populationFrac, map=tiles) } surveillance/R/algo_outbreakP.R0000644000176200001440000001274313607336043016244 0ustar liggesusers###################################################################### # Workhorse computing the OutbreakP statistic. # Alarm statistic at end time n is returned. # # Author: # Michael Hoehle # # R port of the Java code by Marianne Frisen & Linus Schioler from # the CASE project. See https://smisvn.smi.se/case/ # # For a manual on how to use the method see also # http://www.hgu.gu.se/item.aspx?id=16857 # # Date: # 25 May 2010 # # Parameters: # x -- the series with the counts # # Returns: # value of the alarm statistic at the end of the series x. ###################################################################### calc.outbreakP.statistic <- function(x) { #Length of the monitored series n <- length(x) #Index problem when converting java arrays to R arrays x <- c(0,x) #Initialization (not all parts might be needed) leftl <- numeric(n+1) y <- numeric(n+1) yhat <- numeric(n+1) sumwy <- numeric(n+1) sumwys <- numeric(n+1) sumw <- numeric(n+1) w <- numeric(n+1) meanl <- numeric(n+1) xbar <- 0 meanl[1] = -Inf leftl[1] = 0 for (i in 1:n) { #Initialize yhat[i+1] <- x[i+1] sumwy[i+1] <- x[i+1] sumw[i+1] <- 1 meanl[i+1] <- x[i+1] leftl[i+1] <- i #Calculate mean (this is a sequential formula to calculate mean(x[1:i])) xbar=xbar+(x[i+1]-xbar)/i #Create plateaus while (meanl[i+1] <= meanl[ (leftl[i+1] - 1) + 1]) { #merge sets sumwy[i+1] = sumwy[i+1] + sumwy[(leftl[i+1] - 1)+1] sumw[i+1] = sumw[i+1] + sumw[(leftl[i+1] - 1)+1] meanl[i+1] = sumwy[i+1] / sumw[i+1] leftl[i+1] = leftl[(leftl[i+1] - 1)+1] } #calculate yhat for (j in leftl[i+1]:i) { yhat[j+1] = meanl[i+1] } } #Compute the statistic in case of a Poisson distribution alarm.stat <- 1 for (j in seq_len(n)) { #Ensure 0/0 = 1 so we don't get NaNs div <- ifelse(yhat[j+1]==0 & xbar==0, 1, yhat[j+1]/xbar) alarm.stat <- alarm.stat * (div)^x[j+1] } return(alarm.stat) ## The above might cause NaN's in case of large numbers. ## logalarm <- 0 ## for (j in 1:n) { ## #Eqn (5) in Frisen et al paper in log form. However: it is undefined ## #if \hat{\mu}^D(t) == 0 (it is a division by zero). ## #We fix 0/0 = 1 ## if (xbar != 0) { ## if (yhat[j+1] != 0) { #if \hat{\mu}^{C1} == 0 then ## logalarm = logalarm + x[j+1] * (log(yhat[j+1]) - log(xbar)) ## } ## } else { ## if (yhat[j+1] != 0) { ## stop("Division by zero in Eqn (5) of Frisen paper!") ## } ## } ## } ## #Done, return the value ## return(exp(logalarm)) } ###################################################################### # The detection function in S3 style ###################################################################### algo.outbreakP <- function(disProgObj, control = list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5)) { #Set threshold to some fixed value, i.e. 100 if(is.null(control[["k",exact=TRUE]])) control$k <- 100 #Set largest observed value to try as upperbound when numerically searching #for NNBA in case ret = "cases" if(is.null(control[["maxUpperboundCases",exact=TRUE]])) control$maxUpperboundCases <- 1e5 #Which value to return in upperbound? control$ret <- match.arg(control$ret, c("value","cases")) #Initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) observed <- disProgObj$observed #Store results count <- 1 for(i in control$range) { statistic <- calc.outbreakP.statistic( observed[seq_len(i)] ) # store the results in the right order alarm[count] <- statistic > control$k #Find NNBA or just return value of the test statistic (faster) if (control$ret == "cases") { #If length is 1 no alarm can be given unless k<1 if (i<=1) { upperbound[count] <- ifelse(control$k>=1, NA, 0) } else { if (is.nan(statistic)) { #if no decent statistic was computed. upperbound[count] <- NA } else { #Go up or down delta <- ifelse(alarm[count], -1, 1) #Initialize observedi <- observed[i] foundNNBA <- FALSE #Loop with modified last observation until alarm is caused (dx=1) #or until NO alarm is caused anymore (dx=-1) while ( ((delta == -1 & observedi > 0) | (delta == 1 & observedi < control$maxUpperboundCases)) & (!foundNNBA)) { observedi <- observedi + delta newObserved <- c(observed[seq_len(i-1)],observedi) statistic <- calc.outbreakP.statistic( newObserved ) if (is.nan(statistic)) { #statistic produced a numeric overflow. observedi <- control$maxUpperboundCases } else { foundNNBA <- (statistic > control$k) == ifelse(alarm[count],FALSE,TRUE) } } upperbound[count] <- ifelse( foundNNBA, observedi + ifelse(alarm[count],1,0), NA) } } } else { upperbound[count] <- statistic } #Advance time index count <- count + 1 } #Add name and data name to control object. control$name <- paste("outbreakP(",control$k,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/twinstim_siaf_polyCub_iso.R0000644000176200001440000001022414013521730020514 0ustar liggesusers################################################################################ ### C-Level Cubature of "siaf" over Polygonal Domains using 'polyCub_iso' ### ### Copyright (C) 2017,2020,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### construct a call using either .polyCub.iso or its C-version .call.polyCub.iso <- function (intrfr_name, engine = "C") { if (engine == "C") { call("siaf_polyCub_iso", quote(polydomain$bdry), intrfr_name, quote(siafpars), quote(list(...))) } else { call(".polyCub.iso", quote(polydomain$bdry), as.name(intrfr_name), quote(siafpars), center = c(0,0), control = quote(list(...))) } } ## construct siaf$F function siaf_F_polyCub_iso <- function (intrfr_name, engine = "C") { F <- function (polydomain, f, siafpars, type, ...) {} body(F) <- .call.polyCub.iso(intrfr_name, engine) environment(F) <- getNamespace("surveillance") return(F) } ## construct siaf$Deriv function siaf_Deriv_polyCub_iso <- function (intrfr_names, engine = "C") { Deriv <- function (polydomain, deriv, siafpars, type, ...) {} res_names <- paste0("res", seq_along(intrfr_names)) calls <- mapply( FUN = function (intrfr_name, res_name) call("<-", as.name(res_name), .call.polyCub.iso(intrfr_name, engine)), intrfr_name = intrfr_names, res_name = res_names, SIMPLIFY = FALSE, USE.NAMES = FALSE ) result <- as.call(c(as.name("c"), lapply(res_names, as.name))) body(Deriv) <- as.call(c(as.name("{"), calls, result)) environment(Deriv) <- getNamespace("surveillance") return(Deriv) } ## 'polys' is a list of polygons in the form of owin$bdry ## 'intrfr_name' identifies the function used in the integrand ## 'pars' is a vector of parameters for "intrfr" siaf_polyCub_iso <- function (polys, intrfr_name, pars, control = list()) { ## default control arguments for polyCub_iso / Rdqags ## similar to args(stats::integrate) control <- modifyList( list(subdivisions = 100L, rel.tol = .Machine$double.eps^0.25, stop.on.error = TRUE), control) if (is.null(control[["abs.tol"]])) control$abs.tol <- control$rel.tol ## integrate over each polygon ints <- lapply(X = polys, FUN = siaf_polyCub1_iso, intrfr_code = INTRFR_CODE[intrfr_name], pars = pars, subdivisions = control$subdivisions, rel.tol = control$rel.tol, abs.tol = control$abs.tol, stop.on.error = control$stop.on.error) sum(unlist(ints, recursive = FALSE, use.names = FALSE)) } ## 'xypoly' is a list(x, y) of vertex coordinates (open) siaf_polyCub1_iso <- function (xypoly, intrfr_code, pars, subdivisions = 100L, rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol, stop.on.error = TRUE) { if (length(xypoly[["y"]]) != (L <- length(xypoly[["x"]]))) stop("xypoly$x and xypoly$y must have equal length") .C(C_siaf_polyCub1_iso, as.double(xypoly$x), as.double(xypoly$y), as.integer(L), as.integer(intrfr_code), as.double(pars), as.integer(subdivisions), as.double(abs.tol), as.double(rel.tol), as.integer(stop.on.error), value = double(1L), abserr = double(1L), neval = integer(1L) )$value } ## integer codes are used to select the corresponding C-routine, ## see ../src/twinstim_siaf_polyCub_iso.c INTRFR_CODE <- c( "intrfr.powerlaw" = 10L, "intrfr.powerlaw.dlogsigma" = 11L, "intrfr.powerlaw.dlogd" = 12L, "intrfr.student" = 20L, "intrfr.student.dlogsigma" = 21L, "intrfr.student.dlogd" = 22L, "intrfr.powerlawL" = 30L, "intrfr.powerlawL.dlogsigma" = 31L, "intrfr.powerlawL.dlogd" = 32L, "intrfr.gaussian" = 40L, "intrfr.gaussian.dlogsigma" = 41L, "intrfr.exponential" = 50L, "intrfr.exponential.dlogsigma" = 51L ) surveillance/R/clapply.R0000644000176200001440000000126513117527513014747 0ustar liggesusers################################################################################ ### Conditional lapply ### ### Copyright (C) 2012,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ### clapply uses lapply if X is a list and otherwise applies FUN directly to X. ### The result is always a list (of length 1 in the latter case). clapply <- function (X, FUN, ...) { if (is.list(X)) lapply(X, FUN, ...) else list(FUN(X, ...)) } surveillance/R/algo_call.R0000644000176200001440000001511014615164167015220 0ustar liggesusers################################################### ### chunk number 1: ################################################### # 'algo.quality' calculates quality values # like specificity, sensitivity for a surveillance method # # Parameters: # survResObj: object of class survRes, which includes the state chain and # the computed alarm chain ###################################################################### ## Hot fix function fixing two issues in the algo.quality function. ## ## Author: Michael Hoehle ## Date: 2015-11-24 ## ## 1) The function does not work if state or alarms are coded as TRUE/FALSE ## instead of 0/1. ## 2) algo.quality doesn't work for sts objects. ## ## The function now branches on the appropriate thing to do depending on ## what class the argument is. This is not necessarily very good object ## oriented programming, but it works for now. ###################################################################### algo.quality <- function (sts, penalty = 20) { if (inherits(sts, "survRes")) { state <- sts$disProgObj$state[sts$control$range] * 1 alarm <- sts$alarm * 1 } else { if (inherits(sts, "sts")) { if (ncol(sts) > 1) { stop("Function only works for univariate objects.") } state <- sts@state*1 alarm <- alarms(sts)*1 } else { stop(paste0("Class ",class(sts)," not supported!")) } } state <- factor(state, levels = c(0, 1)) alarm <- factor(alarm, levels = c(0, 1)) confusionTable <- table(state, alarm) sens = confusionTable[2, 2]/(confusionTable[2, 2] + confusionTable[2, 1]) spec = confusionTable[1, 1]/(confusionTable[1, 2] + confusionTable[1, 1]) TP = confusionTable[2, 2] FN = confusionTable[2, 1] TN = confusionTable[1, 1] FP = confusionTable[1, 2] dist = sqrt(((1 - spec) - 0)^2 + (sens - 1)^2) if (!(is.element(1, state))) { lag = 0 } else { lag <- c() outbegins <- c() varA <- which(state == 1) outbegins <- c(outbegins, varA[1]) if (length(varA) > 1) { varB <- diff(varA) outbegins <- c(outbegins, varA[which(varB != 1) + 1]) } count <- 1 for (i in outbegins) { if (count < length(outbegins)) { pos <- match(1, alarm[i:min(i + penalty, (outbegins[count + 1] - 1))]) if (is.na(pos)) { lag <- c(lag, penalty) } else { lag <- c(lag, pos - 1) } } else { pos <- match(1, alarm[i:min(i + penalty, length(alarm))]) if (is.na(pos)) { lag <- c(lag, penalty) } else { lag <- c(lag, pos - 1) } } count <- count + 1 } lag <- mean(lag) } result <- list(TP = TP, FP = FP, TN = TN, FN = FN, sens = sens, spec = spec, dist = dist, mlag = lag) class(result) <- "algoQV" return(result) } ################################################### ### chunk number 2: ################################################### print.algoQV <- function(x,...) { qualityValues <- c("TP", "FP", "TN", "FN", "Sens", "Spec", "dist", "mlag" ) class(x) <- "list" result <- t(as.matrix(x)) #Give the result matrix names dimnames(result)[[2]] <- qualityValues #Print to screen print(result) invisible() } ################################################### ### chunk number 3: ################################################### xtable.algoQV <- function(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, ...) { n <- names(x) x <- matrix(x,nrow=1) dimnames(x)[[2]] <- n xtable(x,caption, label, align, digits, display, ...) } ################################################### ### chunk number 4: ################################################### # 'algo.call' calls the defined surveillance algorithms for # a specified observed vector. # # Parameter # disProgObj: object of class survRes, which includes the state chain, the observed # control: specifies which surveillance systems should be used with their parameters. # The parameter funcName and range must be specified where funcName must be # the appropriate function (without 'algo.') # range (in control): positions in observed which should be computed algo.call <- function(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki", range = range, b = 2, w = 4, actY = TRUE), list(funcName = "rki", range = range, b = 2, w = 5, actY = TRUE) ) ) { #Function to apply one algorithm to the disProgObj onecall <- function(i) { do.call(paste0("algo.", control[[i]]$funcName), alist(disProgObj = disProgObj, control = control[[i]])) } #Apply each algorithm in the control list to the disProgObj survResults <- lapply(seq_along(control), onecall) #Create some fancy naming.. names(survResults) <- lapply(survResults,function(survObj) {survObj$control$name}) #Done return(survResults) } ################################################### ### chunk number 5: ################################################### algo.compare <- function(survResList){ return(t(sapply(survResList,algo.quality))) } ################################################### ### chunk number 6: ################################################### algo.summary <- function(compMatrices){ # check if the input is large enough for summing if(length(compMatrices) < 1){ stop("It's an empty list !") } if(length(compMatrices) == 1){ return(compMatrices[[1]]) } #Stupid conversion... compMatrices <- lapply(compMatrices,function(one) { n <- dimnames(one) one <- matrix(as.numeric(one),nrow=dim(one)[[1]]) dimnames(one) <- n return(one) }) # Compute the whole result wholeResult = compMatrices[[1]] lag = matrix(0,length(compMatrices),length(wholeResult[,1])) lag[1,] = wholeResult[,8] for(i in 2:length(compMatrices)){ wholeResult = wholeResult + compMatrices[[i]] lag[i,] = compMatrices[[i]][,8] } # Sens (TP) wholeResult[,5] = wholeResult[,1]/(wholeResult[,1]+wholeResult[,4]) # Spec (TN/(TN+FP)) wholeResult[,6] = wholeResult[,3]/(wholeResult[,2]+wholeResult[,3]) # dist wholeResult[,7] = sqrt((wholeResult[,6]-1)^2 + (wholeResult[,5]-1)^2) # median(lag) for(i in 1:length(wholeResult[,1])){ wholeResult[i,8] = mean(lag[,i]) } #class(wholeResult) <- "compMatrix" # comparison matrix return(wholeResult) } surveillance/R/stcd.R0000644000176200001440000000411114013521730014220 0ustar liggesusers###################################################################### # Shiryaev-Roberts based spatio-temporal cluster detection based # on the work in Assuncao & Correa (2009). The implementation # is based on C++ code was originally written by Marcos Oliveira Prates, UFMG, # Brazil and provided by Thais Correa, UFMG, Brazil during her research # stay in Munich. This stay was financially supported by the Munich # Center of Health Sciences. # # # Parameters: # x - vector containing spatial x coordinate of the events # y - vector containing spatial y coordinate of the events # t - vector containing the time points of the events # radius - is the radius of the cluster # epsilon - is the relative change of event-intensity within the cluster # to detect # areaA - area of the observation region A (single number) # areaAcapBk - area of A \ B(s_k,\rho) for all k=1,\ldots,n (vector) # vector of areas A\B(s_k,\rho) for k=1,\ldots,n # threshold - threshold limit for the alarm and should be equal # to the desired ARL # cusum -- boolean if TRUE then CUSUM otherwise Shiryaev-Roberts ###################################################################### stcd <- function(x, y,t,radius,epsilon,areaA, areaAcapBk, threshold,cusum=FALSE) { #check that the vectors x,y,t are of the same length. n <- length(x) if ((length(y) != n) | (length(t) != n)) { stop("Vectors x,y,t not of same size.") } if (!all(diff(order(t)) == 1)) { stop("The vector of time points needs to be ascending in time. No ties allowed.") } res <- .C(C_SRspacetime, x=as.double(x), y=as.double(y), t=as.double(t), n=as.integer(n), radius=as.double(radius), epsilon=as.double(epsilon), areaA=as.double(areaA),areaAcapBk=as.double(areaAcapBk),cusum=as.integer(cusum), threshold=as.double(threshold),R=as.double(numeric(n)),idxFA=as.integer(-1),idxCC=as.integer(-1)) #Indexing differences between C and R res$idxFA <- res$idxFA+1 res$idxCC <- res$idxCC+1 #Missing: compute which indices are part of the cluster. #--> Thais R-code return(list(R=res$R,idxFA=res$idxFA,idxCC=res$idxCC)) } surveillance/R/hhh4.R0000644000176200001440000023502114615162374014141 0ustar liggesusers################################################################################ ### Endemic-epidemic modelling for univariate or multivariate ### time series of infectious disease counts (data class "sts") ### ### Copyright (C) 2010-2012 Michaela Paul, 2012-2016,2019-2023 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## Error message issued in loglik, score and fisher functions upon NA parameters ADVICEONERROR <- "\n Try different starting values, more iterations, or another optimizer.\n" ### Main function to be called by the user hhh4 <- function (stsObj, control = list( ar = list(f = ~ -1, # a formula "exp(x'lamba)*y_t-lag" (ToDo: matrix) offset = 1, # multiplicative offset lag = 1), # autoregression on y_i,t-lag ne = list(f = ~ -1, # a formula "exp(x'phi) * sum_j w_ji * y_j,t-lag" offset = 1, # multiplicative offset lag = 1, # regression on y_j,t-lag weights = neighbourhood(stsObj) == 1, # weights w_ji scale = NULL, # such that w_ji = scale * weights normalize = FALSE), # w_ji -> w_ji / rowSums(w_ji), after scaling end = list(f = ~ 1, # a formula "exp(x'nu) * n_it" offset = 1), # optional multiplicative offset e_it family = c("Poisson", "NegBin1", "NegBinM"), # or a factor of length nUnit subset = 2:nrow(stsObj), # epidemic components require Y_{t-lag} optimizer = list(stop = list(tol = 1e-5, niter = 100), # control arguments regression = list(method = "nlminb"), # for optimization variance = list(method = "nlminb")), # <- or "Nelder-Mead" verbose = FALSE, # level of reporting during optimization start = list(fixed = NULL, # list of start values, replacing initial random = NULL, # values from fe() and ri() in 'f'ormulae sd.corr = NULL), data = list(t = stsObj@epoch - min(stsObj@epoch)), # named list of covariates keep.terms = FALSE # whether to keep interpretControl(control, stsObj) ), check.analyticals = FALSE) { ptm <- proc.time() ## Convert old disProg class to new sts class if (inherits(stsObj, "disProg")) { stsObj <- disProg2sts(stsObj) } else { stopifnot(inherits(stsObj, "sts")) } ## check control and set default values (for missing arguments) control <- setControl(control, stsObj) ## get model terms model <- interpretControl(control, stsObj) dimFixedEffects <- model$nFE + model$nd + model$nOverdisp dimRandomEffects <- model$nRE ## starting values #* -> better default values possible theta.start <- model$initialTheta Sigma.start <- model$initialSigma ## check if initial values are valid ## CAVE: there might be NA's in mu if there are missing values in Y mu <- meanHHH(theta.start, model, total.only=TRUE) if(any(mu==0, na.rm=TRUE) || any(is.infinite(mu))) stop("some mean is degenerate (0 or Inf) at initial values") ## check score vector and fisher information at starting values check.analyticals <- if (isTRUE(check.analyticals)) { if (length(theta.start) > 50) "maxLik" else "numDeriv" } else if (is.character(check.analyticals)) { match.arg(check.analyticals, c("numDeriv", "maxLik"), several.ok=TRUE) } else NULL if (length(check.analyticals) > 0L) { resCheck <- checkAnalyticals(model, theta.start, Sigma.start, methods=check.analyticals) return(resCheck) } ## maximize loglikelihood (penalized and marginal) myoptim <- fitHHH(theta=theta.start,sd.corr=Sigma.start, model=model, cntrl.stop = control$optimizer$stop, cntrl.regression = control$optimizer$regression, cntrl.variance = control$optimizer$variance, verbose=control$verbose) ## extract parameter estimates convergence <- myoptim$convergence == 0 thetahat <- myoptim$theta if (dimRandomEffects>0) { Sigma.orig <- myoptim$sd.corr Sigma.trans <- getSigmai(head(Sigma.orig,model$nVar), tail(Sigma.orig,model$nCorr), model$nVar) dimnames(Sigma.trans) <- rep.int(list(sub("^sd\\.", "", names(Sigma.orig)[seq_len(model$nVar)])), 2L) } else { Sigma.orig <- Sigma.trans <- NULL } ## compute covariance matrices of regression and variance parameters cov <- try(solve(myoptim$fisher), silent=TRUE) Sigma.cov <- if(dimRandomEffects>0) try(solve(myoptim$fisherVar), silent=TRUE) ## check for degenerate fisher info if(inherits(cov, "try-error")){ # fisher info is singular if (control$verbose) cat("WARNING: Final Fisher information matrix is singular!\n") convergence <- FALSE } else if(any(!is.finite(diag(cov))) || any(diag(cov)<0)){ if (control$verbose) cat("WARNING: non-finite or negative covariance of regression parameters!\n") convergence <- FALSE } if (!convergence) { if (control$verbose) { cat("Penalized loglikelihood =", myoptim$loglik, "\n") thetastring <- paste(round(thetahat,2), collapse=", ") thetastring <- strwrap(thetastring, exdent=10, prefix="\n", initial="") cat("theta = (", thetastring, ")\n") } warning("Results are not reliable!", if (any(splitParams(thetahat, model)$overdisp > 10)) { # FALSE for Poisson "\n Overdispersion parameter close to zero; maybe try a Poisson model.\n" } else ADVICEONERROR) } ## gather results in a list -> "hhh4" object result <- list(coefficients=thetahat, se=if (convergence) sqrt(diag(cov)), cov=cov, Sigma=Sigma.trans, # estimated covariance matrix of ri's Sigma.orig=Sigma.orig, # variance parameters on original scale Sigma.cov=Sigma.cov, # covariance matrix of Sigma.orig call=match.call(), dim=c(fixed=dimFixedEffects,random=dimRandomEffects), loglikelihood=myoptim$loglik, margll=myoptim$margll, convergence=convergence, fitted.values=meanHHH(thetahat, model, total.only=TRUE), control=control, terms=if(control$keep.terms) model else NULL, stsObj=stsObj, lags=sapply(control[c("ar","ne")], function (comp) if (comp$inModel) comp$lag else NA_integer_), nObs=sum(!model$isNA[control$subset,]), nTime=length(model$subset), nUnit=ncol(stsObj), ## CAVE: nTime is not nrow(stsObj) as usual! runtime=proc.time()-ptm) if (!convergence) { ## add (singular) Fisher information for further investigation result[c("fisher","fisherVar")] <- myoptim[c("fisher","fisherVar")] } class(result) <- "hhh4" return(result) } ## set default values for model specifications in control setControl <- function (control, stsObj) { stopifnot(is.list(control)) nTime <- nrow(stsObj) nUnit <- ncol(stsObj) if(nTime <= 2) stop("too few observations") ## arguments in 'control' override any corresponding default arguments defaultControl <- eval(formals(hhh4)$control) environment(defaultControl$ar$f) <- environment(defaultControl$ne$f) <- environment(defaultControl$end$f) <- .GlobalEnv control <- modifyList(defaultControl, control, keep.null = TRUE) ## check that component specifications are list objects for (comp in c("ar", "ne", "end")) { if(!is.list(control[[comp]])) stop("'control$", comp, "' must be a list") } ## check lags in "ar" and "ne" components for (comp in c("ar", "ne")) { if (!isScalar(control[[comp]]$lag) || control[[comp]]$lag < (comp=="ar")) stop("'control$", comp, "$lag' must be a ", if (comp=="ar") "positive" else "non-negative", " integer") control[[comp]]$lag <- as.integer(control[[comp]]$lag) } ### check AutoRegressive component if (control$ar$isMatrix <- is.matrix(control$ar$f)) { ## this form is not implemented -> will stop() in interpretControl() if (any(dim(control$ar$f) != nUnit)) stop("'control$ar$f' must be a square matrix of size ", nUnit) if (is.null(control$ar$weights)) { # use identity matrix control$ar$weights <- diag(nrow=nUnit) } else if (!is.matrix(control$ar$weights) || any(dim(control$ar$weights) != nUnit)) { stop("'control$ar$weights' must be a square matrix of size ", nUnit) } control$ar$inModel <- TRUE } else if (inherits(control$ar$f, "formula")) { if (!is.null(control$ar$weights)) { warning("argument 'control$ar$weights' is not used") control$ar$weights <- NULL } # check if formula is valid control$ar$inModel <- isInModel(control$ar$f) } else { stop("'control$ar$f' must be either a formula or a matrix") } ### check NEighbourhood component if (!inherits(control$ne$f, "formula")) stop("'control$ne$f' must be a formula") control$ne$inModel <- isInModel(control$ne$f) if (control$ne$inModel) { if (nUnit == 1) warning("\"ne\" component requires a multivariate 'stsObj'") ## if ar$f is a matrix it includes neighbouring units => no "ne" component if (control$ar$isMatrix) stop("there must not be an extra \"ne\" component ", "if 'control$ar$f' is a matrix") ## check ne$weights specification checkWeights(control$ne$weights, nUnit, nTime, neighbourhood(stsObj), control$data, check0diag = control$ar$inModel) ## check optional scaling of weights if (!is.null(control$ne$scale)) { stopifnot(is.numeric(control$ne$scale)) if (is.vector(control$ne$scale)) { stopifnot(length(control$ne$scale) == 1L || length(control$ne$scale) %% nUnit == 0, !is.na(control$ne$scale)) } else { checkWeightsArray(control$ne$scale, nUnit, nTime) } } } else { control$ne[c("weights", "scale", "normalize")] <- list(NULL, NULL, FALSE) } ### check ENDemic component if (!inherits(control$end$f, "formula")) stop("'control$end$f' must be a formula") control$end$inModel <- isInModel(control$end$f) ### check offsets for (comp in c("ar", "ne", "end")) { if (is.matrix(control[[comp]]$offset) && is.numeric(control[[comp]]$offset)){ if (!identical(dim(control[[comp]]$offset), dim(stsObj))) stop("'control$",comp,"$offset' must be a numeric matrix of size ", nTime, "x", nUnit) if (anyNA(control[[comp]]$offset)) stop("'control$",comp,"$offset' must not contain NA values") } else if (!identical(as.numeric(control[[comp]]$offset), 1)) { stop("'control$",comp,"$offset' must either be 1 or a numeric ", nTime, "x", nUnit, " matrix") } } ### stop if no component is included in the model if (length(comps <- componentsHHH4(list(control=control))) == 0L) stop("none of the components 'ar', 'ne', 'end' is included in the model") ### check remaining components of the control list if (is.factor(control$family)) { stopifnot(length(control$family) == nUnit) ## guard against misuse as family = factor("Poisson"), e.g., if taken ## from a data.frame of control options with "stringsAsFactors" if (nUnit == 1 && as.character(control$family) %in% defaultControl$family) { control$family <- as.character(control$family) warning("'family = factor(\"", control$family, "\")' is interpreted ", "as 'family = \"", control$family, "\"'") } else { control$family <- droplevels(control$family) names(control$family) <- colnames(stsObj) } } else { control$family <- match.arg(control$family, defaultControl$family) } if (!is.vector(control$subset, mode="numeric") || !all(control$subset %in% seq_len(nTime))) stop("'control$subset' must be %in% 1:", nTime) lags <- c(ar = control$ar$lag, ne = control$ne$lag) maxlag <- suppressWarnings(max(lags[names(lags) %in% comps])) # could be -Inf if (control$subset[1L] <= maxlag) { warning("'control$subset' should be > ", maxlag, " due to epidemic lags") } if (!is.list(control$optimizer) || any(! sapply(c("stop", "regression", "variance"), function(x) is.list(control$optimizer[[x]])))) stop("'control$optimizer' must be a list of lists") control$verbose <- as.integer(control$verbose) if (length(control$verbose) != 1L || control$verbose < 0) stop("'control$verbose' must be a logical or non-negative numeric value") stopifnot(is.list(control$start)) control$start <- local({ defaultControl$start[] <- control$start[names(defaultControl$start)] defaultControl$start }) if (!all(vapply(X = control$start, FUN = function(x) is.null(x) || is.vector(x, mode="numeric"), FUN.VALUE = TRUE, USE.NAMES = FALSE))) stop("'control$start' must be a list of numeric start values") stopifnot(length(control$keep.terms) == 1L, is.logical(control$keep.terms)) ## Done return(control) } # check whether or not one of the three components is included in the model isInModel <- function(formula, name=deparse(substitute(formula))) { term <- terms.formula(formula) if(attr(term,"response") > 0) stop(name, " cannot contain a response") attr(term, "intercept") + length(attr(term, "term.labels")) > 0 } # used to incorporate covariates and unit-specific effects fe <- function(x, # covariate unitSpecific = FALSE, # TRUE means which = rep.int(TRUE, nUnits) which=NULL, # NULL = overall, vector with booleans = unit-specific initial=NULL) # vector of initial values for parameters { stsObj <- get("stsObj", envir=parent.frame(1), inherits=TRUE) #checkFormula() nTime <- nrow(stsObj) nUnits <- ncol(stsObj) if(!is.numeric(x)){ stop("Covariate \'",deparse(substitute(x)),"\' is not numeric\n") } lengthX <- length(x) if(lengthX == 1){ terms <- matrix(x, nTime, nUnits, byrow=FALSE) mult <- "*" } else if(lengthX == nTime){ terms <- matrix(x, nTime, nUnits, byrow=FALSE) mult <- "*" } else if(lengthX == nTime*nUnits){ if(!is.matrix(x)){ stop("Covariate \'",deparse(substitute(x)),"\' is not a matrix\n") } # check dimensions of covariate if((ncol(x) != nUnits) | (nrow(x) != nTime)){ stop("Dimension of covariate \'",deparse(substitute(x)),"\' is not suitably specified\n") } terms <- x mult <- "*" } else { stop("Covariate \'",deparse(substitute(x)),"\' is not suitably specified\n") } intercept <- all(terms==1) # overall or unit-specific effect? unitSpecific <- unitSpecific || !is.null(which) if (unitSpecific) { if (is.null(which)) { which <- rep.int(TRUE, nUnits) } else { stopifnot(is.vector(which, mode="logical"), length(which) == nUnits) } terms[,!which] <- 0 } # get dimension of parameter dim.fe <- if (unitSpecific) sum(which) else 1 # check length of initial values + set default values if (is.null(initial)) { initial <- rep.int(0,dim.fe) } else if (length(initial) != dim.fe) { stop("initial values for '",deparse(substitute(x)),"' must be of length ",dim.fe) } name <- deparse(substitute(x)) if (unitSpecific) name <- paste(name, colnames(stsObj)[which], sep=".") result <- list(terms=terms, name=name, Z.intercept=NULL, which=which, dim.fe=dim.fe, initial.fe=initial, dim.re=0, dim.var=0, initial.var=NULL, initial.re=NULL, intercept=intercept, unitSpecific=unitSpecific, random=FALSE, corr=FALSE, mult=mult ) return(result) } # random intercepts ri <- function(type=c("iid","car"), corr=c("none","all"), initial.fe=0, initial.var=-.5, initial.re=NULL) { stsObj <- get("stsObj", envir=parent.frame(1), inherits=TRUE) #checkFormula() if (ncol(stsObj) == 1) stop("random intercepts require a multivariate 'stsObj'") type <- match.arg(type) corr <- match.arg(corr) corr <- switch(corr, "none"=FALSE, "all"=TRUE) if(type=="iid"){ Z <- 1 dim.re <- ncol(stsObj) mult <- "*" } else if(type=="car"){ # construct penalty matrix K K <- neighbourhood(stsObj) checkNeighbourhood(K) K <- K == 1 # indicate first-order neighbours ne <- colSums(K) # number of first-order neighbours K <- -1*K diag(K) <- ne dimK <- nrow(K) # check rank of the nhood, only connected neighbourhoods are allowed if(qr(K)$rank != dimK-1) stop("neighbourhood matrix contains islands") # singular-value decomposition of K svdK <- svd(K) # just use the positive eigenvalues of K in descending order # for a the factorisation of the penalty matrix K = LL' L <- svdK$u[,-dimK] %*% diag(sqrt(svdK$d[-dimK])) #* only use non-zero eigenvalues # Z = L(L'L)^-1, which can't be simplified to Z=(L')^-1 as L is not square Z <- L %*% solve(t(L)%*%L) dim.re <- dimK - 1L mult <- "%*%" } # check length of initial values + set default values stopifnot(length(initial.fe) == 1, length(initial.var) == 1) if (is.null(initial.re)) { initial.re <- rnorm(dim.re,0,sd=sqrt(0.001)) } else if (length(initial.re) != dim.re) { stop("'initial.re' must be of length ", dim.re) } result <- list(terms=1, name=paste("ri(",type,")",sep=""), Z.intercept=Z, which=NULL, dim.fe=1, initial.fe=initial.fe, dim.re=dim.re, dim.var=1, initial.var=initial.var, initial.re=initial.re, intercept=TRUE, unitSpecific=FALSE, random=TRUE, corr=corr, mult=mult ) return(result) } ### check specification of formula ## f: one of the component formulae (ar$f, ne$f, or end$f) ## component: 1, 2, or 3, corresponding to the ar/ne/end component, respectively ## data: the data-argument of hhh4() ## stsObj: the stsObj is not used directly in checkFormula, but in fe() and ri() checkFormula <- function(f, component, data, stsObj) { term <- terms.formula(f, specials=c("fe","ri")) # check if there is an overall intercept intercept.all <- attr(term, "intercept") == 1 # list of variables in the component vars <- as.list(attr(term,"variables"))[-1] # first element is "list" nVars <- length(vars) if (nVars > 0 && any(attr(term, "order") > 1)) warning("interaction terms are not implemented") # begin with intercept res <- if (intercept.all) { c(fe(1), list(offsetComp=component)) } else { if (nVars==0) stop("formula ", deparse(substitute(f)), " contains no variables") NULL } # find out fixed effects without "fe()" specification # (only if there are variables in addition to an intercept "1") fe.raw <- setdiff(seq_len(nVars), unlist(attr(term, "specials"))) # evaluate covariates for(i in fe.raw) res <- cbind(res, c( eval(substitute(fe(x), list(x=vars[[i]])), envir=data), list(offsetComp=component) )) # fixed effects for(i in attr(term, "specials")$fe) res <- cbind(res, c( eval(vars[[i]], envir=data), list(offsetComp=component) )) res <- cbind(res, deparse.level=0) # ensure res has matrix dimensions # random intercepts RI <- attr(term, "specials")$ri if (sum(unlist(res["intercept",])) + length(RI) > 1) stop("There can only be one intercept in the formula ", deparse(substitute(f))) for(i in RI) res <- cbind(res, c( eval(vars[[i]], envir=data), list(offsetComp=component) )) return(res) } ## Create function (pars, type = "response") which ## returns the weighted sum of time-lagged counts of neighbours ## (or its derivates, if type = "gradient" or type = "hessian"). ## For type="response", this is a nTime x nUnits matrix (like Y), ## otherwise a list of such matrices, ## which for the gradient has length length(pars) and ## length(pars)*(length(pars)+1)/2 for the hessian. ## If neweights=NULL (i.e. no NE component in model), the result is always 0. ## offset is a multiplicative offset for \phi_{it}, e.g., the population. ## scale is a nUnit-vector or a nUnit x nUnit matrix scaling neweights. neOffsetFUN <- function (Y, neweights, scale, normalize, nbmat, data, lag = 1, offset = 1) { if (is.null(neweights)) { # no neighbourhood component as.function(alist(...=, 0), envir=.GlobalEnv) ## dimY <- dim(Y) ## as.function(c(alist(...=), ## substitute(matrix(0, r, c), list(r=dimY[1], c=dimY[2]))), ## envir=.GlobalEnv) } else if (is.list(neweights)) { # parametric weights wFUN <- scaleNEweights.list(neweights, scale, normalize) function (pars, type = "response") { name <- switch(type, response="w", gradient="dw", hessian="d2w") weights <- wFUN[[name]](pars, nbmat, data) ## gradient and hessian are lists if length(pars$d) > 1L ## but can be single matrices/arrays if == 1 => _c_onditional lapply res <- clapply(weights, function (W) offset * weightedSumNE(Y, W, lag)) ##<- clapply always returns a list (possibly of length 1) if (type=="response") res[[1L]] else res } } else { # fixed (known) weight structure (0-length pars) weights <- scaleNEweights.default(neweights, scale, normalize) env <- new.env(hash = FALSE, parent = emptyenv()) # small -> no hash env$initoffset <- offset * weightedSumNE(Y, weights, lag) as.function(c(alist(...=), quote(initoffset)), envir=env) } } # interpret and check the specifications of each component # control must contain all arguments, i.e. setControl was used interpretControl <- function (control, stsObj) { nTime <- nrow(stsObj) nUnits <- ncol(stsObj) Y <- observed(stsObj) ########################################################################## ## get the model specifications for each of the three components ########################################################################## ar <- control$ar ne <- control$ne end <- control$end ## for backwards compatibility with surveillance < 1.8-0, where the ar and ne ## components of the control object did not have an offset if (is.null(ar$offset)) ar$offset <- 1 if (is.null(ne$offset)) ne$offset <- 1 ## for backward compatibility with surveillance < 1.9-0 if (is.null(ne$normalize)) ne$normalize <- FALSE ## create list of offsets of the three components Ym1 <- rbind(matrix(NA_integer_, ar$lag, nUnits), head(Y, nTime-ar$lag)) Ym1.ne <- neOffsetFUN(Y, ne$weights, ne$scale, ne$normalize, neighbourhood(stsObj), control$data, ne$lag, ne$offset) offsets <- list(ar=ar$offset*Ym1, ne=Ym1.ne, end=end$offset) ## -> offset$ne is a function of the parameter vector 'd', which returns a ## nTime x nUnits matrix -- or 0 (scalar) if there is no NE component ## -> offset$end might just be 1 (scalar) ## Initial parameter vector 'd' of the neighbourhood weight function initial.d <- if (is.list(ne$weights)) ne$weights$initial else numeric(0L) dim.d <- length(initial.d) names.d <- if (dim.d == 0L) character(0L) else { paste0("neweights.", if (is.null(names(initial.d))) { if (dim.d==1L) "d" else paste0("d", seq_len(dim.d)) } else names(initial.d)) } ## determine all NA's isNA <- is.na(Y) if (ar$inModel) isNA <- isNA | is.na(offsets[[1L]]) if (ne$inModel) isNA <- isNA | is.na(offsets[[2L]](initial.d)) ## get terms for all components all.term <- NULL if(ar$isMatrix) stop("matrix-form of 'control$ar$f' is not implemented") if(ar$inModel) # ar$f is a formula all.term <- cbind(all.term, checkFormula(ar$f, 1, control$data, stsObj)) if(ne$inModel) all.term <- cbind(all.term, checkFormula(ne$f, 2, control$data, stsObj)) if(end$inModel) all.term <- cbind(all.term, checkFormula(end$f,3, control$data, stsObj)) dim.fe <- sum(unlist(all.term["dim.fe",])) dim.re.group <- unlist(all.term["dim.re",], use.names=FALSE) dim.re <- sum(dim.re.group) dim.var <- sum(unlist(all.term["dim.var",])) dim.corr <- sum(unlist(all.term["corr",])) if(dim.corr>0){ if(dim.var!=dim.corr) stop("Use corr=\'all\' or corr=\'none\' ") dim.corr <- switch(dim.corr,0,1,3) } # the vector with dims of the random effects must be equal if they are correlated if(length(unique(dim.re.group[dim.re.group>0]))!=1 & dim.corr>0){ stop("Correlated effects must have same penalty") } n <- c("ar","ne","end")[unlist(all.term["offsetComp",])] names.fe <- names.var <- names.re <- character(0L) for(i in seq_along(n)){ .name <- all.term["name",i][[1]] names.fe <- c(names.fe, paste(n[i], .name, sep=".")) if(all.term["random",i][[1]]) { names.var <- c(names.var, paste("sd", n[i], .name, sep=".")) names.re <- c(names.re, paste(n[i], .name, if (.name == "ri(iid)") { colnames(stsObj) } else { seq_len(all.term["dim.re",i][[1]]) }, sep = ".")) } } index.fe <- rep(1:ncol(all.term), times=unlist(all.term["dim.fe",])) index.re <- rep(1:ncol(all.term), times=unlist(all.term["dim.re",])) # poisson or negbin model if(identical(control$family, "Poisson")){ ddistr <- function(y,mu,size){ dpois(y, lambda=mu, log=TRUE) } dim.overdisp <- 0L index.overdisp <- names.overdisp <- NULL } else { # NegBin ddistr <- function(y,mu,size){ dnbinom(y, mu=mu, size=size, log=TRUE) } ## version that can handle size = Inf (i.e. the Poisson special case): ## ddistr <- function (y,mu,size) { ## poisidx <- is.infinite(size) ## res <- y ## res[poisidx] <- dpois(y[poisidx], lambda=mu[poisidx], log=TRUE) ## res[!poisidx] <- dnbinom(y[!poisidx], mu=mu[!poisidx], ## size=size[!poisidx], log=TRUE) ## res ## } index.overdisp <- if (is.factor(control$family)) { control$family } else if (control$family == "NegBinM") { factor(colnames(stsObj), levels = colnames(stsObj)) ## do not sort levels (for consistency with unitSpecific effects) } else { # "NegBin1" factor(character(nUnits)) } names(index.overdisp) <- colnames(stsObj) dim.overdisp <- nlevels(index.overdisp) names.overdisp <- if (dim.overdisp == 1L) { "-log(overdisp)" } else { paste0("-log(", paste("overdisp", levels(index.overdisp), sep = "."), ")") } } environment(ddistr) <- getNamespace("stats") # function is self-contained # parameter start values from fe() and ri() calls via checkFormula() initial <- list( fixed = c(unlist(all.term["initial.fe",]), initial.d, rep.int(2, dim.overdisp)), random = as.numeric(unlist(all.term["initial.re",])), # NULL -> numeric(0) sd.corr = c(unlist(all.term["initial.var",]), rep.int(0, dim.corr)) ) # set names of parameter vectors names(initial$fixed) <- c(names.fe, names.d, names.overdisp) names(initial$random) <- names.re names(initial$sd.corr) <- c(names.var, head(paste("corr",1:3,sep="."), dim.corr)) # modify initial values according to the supplied 'start' values initial[] <- mapply( FUN = function (initial, start, name) { if (is.null(start)) return(initial) if (is.null(names(initial)) || is.null(names(start))) { if (length(start) == length(initial)) { initial[] <- start } else { stop("initial values in 'control$start$", name, "' must be of length ", length(initial)) } } else { ## we match by name and silently ignore additional start values start <- start[names(start) %in% names(initial)] initial[names(start)] <- start } return(initial) }, initial, control$start[names(initial)], names(initial), SIMPLIFY = FALSE, USE.NAMES = FALSE ) # Done result <- list(response = Y, terms = all.term, nTime = nTime, nUnits = nUnits, nFE = dim.fe, nd = dim.d, nOverdisp = dim.overdisp, nRE = dim.re, rankRE = dim.re.group, nVar = dim.var, nCorr = dim.corr, nSigma = dim.var+dim.corr, nGroups = ncol(all.term), namesFE = names.fe, indexFE = index.fe, indexRE = index.re, initialTheta = c(initial$fixed, initial$random), initialSigma = initial$sd.corr, offset = offsets, family = ddistr, indexPsi = index.overdisp, subset = control$subset, isNA = isNA ) return(result) } splitParams <- function(theta, model){ fixed <- theta[seq_len(model$nFE)] d <- theta[model$nFE + seq_len(model$nd)] overdisp <- theta[model$nFE + model$nd + seq_len(model$nOverdisp)] random <- theta[seq.int(to=length(theta), length.out=model$nRE)] list(fixed=fixed, random=random, overdisp=overdisp, d=d) } ### compute predictor meanHHH <- function(theta, model, subset=model$subset, total.only=FALSE) { ## unpack theta pars <- splitParams(theta, model) fixed <- pars$fixed random <- pars$random ## unpack model term <- model$terms offsets <- model$offset offsets[[2L]] <- offsets[[2L]](pars$d) # evaluate at current parameter value nGroups <- model$nGroups comp <- unlist(term["offsetComp",]) idxFE <- model$indexFE idxRE <- model$indexRE toMatrix <- function (x, r=model$nTime, c=model$nUnits) matrix(x, r, c, byrow=TRUE) unitNames <- dimnames(model$response)[[2L]] setColnames <- if (is.null(unitNames)) identity else function(x) "dimnames<-"(x, list(NULL, unitNames)) ## go through groups of parameters and compute predictor of each component, ## i.e. lambda_it, phi_it, nu_it, EXCLUDING the multiplicative offset terms, ## as well as the resulting component mean (=exppred * offset) computePartMean <- function (component) { pred <- nullMatrix <- toMatrix(0) if(!any(comp==component)) { # component not in model -> return 0-matrix zeroes <- setColnames(pred[subset,,drop=FALSE]) return(list(exppred = zeroes, mean = zeroes)) } for(i in seq_len(nGroups)[comp==component]){ fe <- fixed[idxFE==i] if(term["unitSpecific",i][[1]]){ fe <- nullMatrix which <- term["which",i][[1]] fe[,which] <- toMatrix(fixed[idxFE==i],c=sum(which)) } if(term["random",i][[1]]){ re <- random[idxRE==i] "%m%" <- get(term["mult",i][[1]]) Z.re <- toMatrix(term["Z.intercept",i][[1]] %m% re) } else { Z.re <- 0 } X <- term["terms",i][[1]] pred <- pred + X*fe + Z.re } exppred <- setColnames(exp(pred[subset,,drop=FALSE])) offset <- offsets[[component]] if (length(offset) > 1) offset <- offset[subset,,drop=FALSE] ##<- no subsetting if offset is scalar (time- and unit-independent) list(exppred = exppred, mean = exppred * offset) } ## compute component means ar <- computePartMean(1) ne <- computePartMean(2) end <- computePartMean(3) ## Done epidemic <- ar$mean + ne$mean endemic <- end$mean if (total.only) epidemic + endemic else list(mean=epidemic+endemic, epidemic=epidemic, endemic=endemic, epi.own=ar$mean, epi.neighbours=ne$mean, ar.exppred=ar$exppred, ne.exppred=ne$exppred, end.exppred=end$exppred) } ### compute dispersion in dnbinom (mu, size) parametrization sizeHHH <- function (theta, model, subset = model$subset) { if (model$nOverdisp == 0L) # Poisson case return(NULL) ## extract dispersion in dnbinom() parametrization pars <- splitParams(theta, model) size <- exp(pars$overdisp) # = 1/psi, pars$overdisp = -log(psi) ## return either a vector or a time x unit matrix of dispersion parameters if (is.null(subset)) { unname(size) # no longer is "-log(overdisp)" } else { matrix(data = size[model$indexPsi], nrow = length(subset), ncol = model$nUnits, byrow = TRUE, dimnames = list(NULL, names(model$indexPsi))) } } ## auxiliary function used in penScore and penFisher ## it sums colSums(x) within the groups defined by f (of length ncol(x)) ## and returns these sums in the order of levels(f) .colSumsGrouped <- function (x, f, na.rm = TRUE) { nlev <- nlevels(f) if (nlev == 1L) { # all columns belong to the same group ("NegBin1") sum(x, na.rm = na.rm) } else { dimx <- dim(x) colsums <- .colSums(x, dimx[1L], dimx[2L], na.rm = na.rm) if (nlev == dimx[2L]) { # each column separately ("NegBinM" or factor) colsums[order(f)] # for NegBinM, order(f)==1:nlev, not in general } else { # sum colsums within groups unlist(lapply( X = split.default(colsums, f, drop = FALSE), FUN = sum ), recursive = FALSE, use.names = FALSE) } } } ############################################ penLogLik <- function(theta, sd.corr, model, attributes=FALSE) { if(anyNA(theta)) stop("NAs in regression parameters.", ADVICEONERROR) ## unpack model subset <- model$subset Y <- model$response[subset,,drop=FALSE] dimPsi <- model$nOverdisp dimRE <- model$nRE ## unpack random effects if (dimRE > 0) { pars <- splitParams(theta, model) randomEffects <- pars$random sd <- head(sd.corr, model$nVar) corr <- tail(sd.corr, model$nCorr) dimBlock <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, model$nVar, dimBlock) } ############################################################ ## evaluate dispersion psi <- sizeHHH(theta, model, subset = if (dimPsi > 1L) subset) # else scalar or NULL #psi might be numerically equal to 0 or Inf in which cases dnbinom (in meanHHH) #would return NaN (with a warning). The case size=Inf rarely happens and #corresponds to a Poisson distribution. Currently this case is not handled #in order to have the usual non-degenerate case operate faster. #For size=0, log(dnbinom) equals -Inf for positive x or if (x=0 and mu=0), and #zero if x=0 and mu>0 and mu0, which is always true), we have that sum(ll.units) = -Inf, hence: if (any(psi == 0)) return(-Inf) ## evaluate mean mu <- meanHHH(theta, model, total.only=TRUE) # if, numerically, mu=Inf, log(dnbinom) or log(dpois) both equal -Inf, hence: #if (any(is.infinite(mu))) return(-Inf) # however, since mu=Inf does not produce warnings below and this is a rare # case, it is faster to not include this conditional expression ## penalization term for random effects lpen <- if (dimRE==0) 0 else { # there are random effects ##-.5*(t(randomEffects)%*%Sigma.inv%*%randomEffects) ## the following implementation takes ~85% less computing time ! -0.5 * c(crossprod(randomEffects, Sigma.inv) %*% randomEffects) } ## log-likelihood ll.units <- .colSums(model$family(Y,mu,psi), length(subset), model$nUnits, na.rm=TRUE) ## penalized log-likelihood ll <- sum(ll.units) + lpen ## Done if (attributes) { attr(ll, "loglik") <- ll.units attr(ll, "logpen") <- lpen } ll } penScore <- function(theta, sd.corr, model) { if(anyNA(theta)) stop("NAs in regression parameters.", ADVICEONERROR) ## unpack model subset <- model$subset Y <- model$response[subset,,drop=FALSE] isNA <- model$isNA[subset,,drop=FALSE] dimPsi <- model$nOverdisp dimRE <- model$nRE term <- model$terms nGroups <- model$nGroups dimd <- model$nd ## unpack parameters pars <- splitParams(theta, model) if (dimRE > 0) { randomEffects <- pars$random sd <- head(sd.corr, model$nVar) corr <- tail(sd.corr, model$nCorr) dimBlock <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, model$nVar, dimBlock) } ## evaluate dispersion psi <- sizeHHH(theta, model, subset = if (dimPsi > 1L) subset) # else scalar or NULL ## evaluate mean mu <- meanHHH(theta, model) meanTotal <- mu$mean ############################################################ ## helper function for derivatives derivHHH.factor <- if(dimPsi > 0L){ # NegBin psiPlusMu <- psi + meanTotal # also used below for calculation of grPsi psiYpsiMu <- (psi+Y) / psiPlusMu Y/meanTotal - psiYpsiMu } else { # Poisson Y/meanTotal - 1 } derivHHH <- function (dmu) derivHHH.factor * dmu ## go through groups of parameters and compute the gradient of each component computeGrad <- function(mean.comp){ grad.fe <- numeric(0L) grad.re <- numeric(0L) for(i in seq_len(nGroups)){ comp <- term["offsetComp",i][[1]] Xit<- term["terms",i][[1]] # either 1 or a matrix with values if(is.matrix(Xit)){ Xit <- Xit[subset,,drop=FALSE] } dTheta <- derivHHH(mean.comp[[comp]]*Xit) dTheta[isNA] <- 0 # dTheta must not contain NA's (set NA's to 0) if(term["unitSpecific",i][[1]]){ which <- term["which",i][[1]] dimi <- sum(which) if(dimi < model$nUnits) dTheta <- dTheta[,which,drop=FALSE] dTheta <- .colSums(dTheta, length(subset), dimi) grad.fe <- c(grad.fe,dTheta) } else if(term["random",i][[1]]){ Z <- term["Z.intercept",i][[1]] "%m%" <- get(term["mult",i][[1]]) dRTheta <- .colSums(dTheta %m% Z, length(subset), term["dim.re",i][[1]]) grad.re <- c(grad.re, dRTheta) grad.fe <- c(grad.fe, sum(dTheta)) } else{ grad.fe <- c(grad.fe, sum(dTheta)) } } list(fe=grad.fe, re=grad.re) } gradients <- computeGrad(mu[c("epi.own","epi.neighbours","endemic")]) ## gradient for parameter vector of the neighbourhood weights grd <- if (dimd > 0L) { dneOffset <- model$offset[[2L]](pars$d, type="gradient") ##<- this is always a list (of length dimd) of matrices onescore.d <- function (dneoff) { dmudd <- mu$ne.exppred * dneoff[subset,,drop=FALSE] grd.terms <- derivHHH(dmudd) sum(grd.terms, na.rm=TRUE) } unlist(clapply(dneOffset, onescore.d), recursive=FALSE, use.names=FALSE) } else numeric(0L) ## gradient for overdispersion parameter psi grPsi <- if(dimPsi > 0L){ dPsiMat <- psi * (digamma(Y+psi) - digamma(psi) + log(psi) + 1 - log(psiPlusMu) - psiYpsiMu) .colSumsGrouped(dPsiMat, model$indexPsi) } else numeric(0L) ## add penalty to random effects gradient s.pen <- if(dimRE > 0) c(Sigma.inv %*% randomEffects) else numeric(0L) if(length(gradients$re) != length(s.pen)) stop("oops... lengths of s(b) and Sigma.inv %*% b do not match") grRandom <- c(gradients$re - s.pen) ## Done res <- c(gradients$fe, grd, grPsi, grRandom) res } penFisher <- function(theta, sd.corr, model, attributes=FALSE) { if(anyNA(theta)) stop("NAs in regression parameters.", ADVICEONERROR) ## unpack model subset <- model$subset Y <- model$response[subset,,drop=FALSE] isNA <- model$isNA[subset,,drop=FALSE] dimPsi <- model$nOverdisp dimRE <- model$nRE term <- model$terms nGroups <- model$nGroups dimd <- model$nd dimFE <- model$nFE idxFE <- model$indexFE idxRE <- model$indexRE indexPsi <- model$indexPsi ## unpack parameters pars <- splitParams(theta, model) if (dimRE > 0) { randomEffects <- pars$random sd <- head(sd.corr, model$nVar) corr <- tail(sd.corr, model$nCorr) dimBlock <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, model$nVar, dimBlock) } ## evaluate dispersion psi <- sizeHHH(theta, model, subset = if (dimPsi > 1L) subset) # else scalar or NULL ## evaluate mean mu <- meanHHH(theta, model) meanTotal <- mu$mean ############################################################ ## helper functions for derivatives: if (dimPsi > 0L) { # negbin psiPlusY <- psi + Y psiPlusMu <- psi + meanTotal psiPlusMu2 <- psiPlusMu^2 psiYpsiMu <- psiPlusY / psiPlusMu psiYpsiMu2 <- psiPlusY / psiPlusMu2 deriv2HHH.fac1 <- psiYpsiMu2 - Y / (meanTotal^2) deriv2HHH.fac2 <- Y / meanTotal - psiYpsiMu ## psi-related derivatives dThetadPsi.fac <- psi * (psiYpsiMu2 - 1/psiPlusMu) dThetadPsi <- function(dTheta){ dThetadPsi.fac * dTheta } dPsiMat <- psi * (digamma(psiPlusY) - digamma(psi) + log(psi) + 1 - log(psiPlusMu) - psiYpsiMu) # as in penScore() dPsidPsiMat <- psi^2 * ( trigamma(psiPlusY) - trigamma(psi) + 1/psi - 1/psiPlusMu - (meanTotal-Y)/psiPlusMu2) + dPsiMat } else { # poisson deriv2HHH.fac1 <- -Y / (meanTotal^2) deriv2HHH.fac2 <- Y / meanTotal - 1 } deriv2HHH <- function(dTheta_l, dTheta_k, dTheta_lk){ dTheta_l * dTheta_k * deriv2HHH.fac1 + dTheta_lk * deriv2HHH.fac2 } ## go through groups of parameters and compute the hessian of each component computeFisher <- function(mean.comp){ # initialize hessian hessian.FE.FE <- matrix(0,dimFE,dimFE) hessian.FE.RE <- matrix(0,dimFE,dimRE) hessian.RE.RE <- matrix(0,dimRE,dimRE) hessian.FE.Psi <- matrix(0,dimFE,dimPsi) hessian.Psi.RE <- matrix(0,dimPsi,dimPsi+dimRE) # CAVE: contains PsiPsi and PsiRE hessian.FE.d <- matrix(0,dimFE,dimd) hessian.d.d <- matrix(0,dimd,dimd) hessian.d.Psi <- matrix(0,dimd,dimPsi) hessian.d.RE <- matrix(0,dimd,dimRE) ## derivatives wrt neighbourhood weight parameters d if (dimd > 0L) { phi.doff <- function (dneoff) { mu$ne.exppred * dneoff[subset,,drop=FALSE] } ## for type %in% c("gradient", "hessian"), model$offset[[2L]] always ## returns a list of matrices. It has length(pars$d) elements for the ## gradient and length(pars$d)*(length(pars$d)+1)/2 for the hessian. dneOffset <- model$offset[[2L]](pars$d, type="gradient") dmudd <- lapply(dneOffset, phi.doff) d2neOffset <- model$offset[[2L]](pars$d, type="hessian") d2mudddd <- lapply(d2neOffset, phi.doff) ## d l(theta,x) /dd dd (fill only upper triangle, BY ROW) ij <- 0L for (i in seq_len(dimd)) { for (j in i:dimd) { ij <- ij + 1L #= dimd*(i-1) + j - (i-1)*i/2 # for j >= i ## d2mudddd contains upper triangle by row (=lowertri by column) d2ij <- deriv2HHH(dmudd[[i]], dmudd[[j]], d2mudddd[[ij]]) hessian.d.d[i,j] <- sum(d2ij, na.rm=TRUE) } } } if (dimPsi > 0L) { ## d l(theta,x) /dpsi dpsi dPsidPsi <- .colSumsGrouped(dPsidPsiMat, indexPsi) hessian.Psi.RE[,seq_len(dimPsi)] <- if (dimPsi == 1L) { dPsidPsi } else { diag(dPsidPsi) } ## d l(theta) / dd dpsi for (i in seq_len(dimd)) { # will not be run if dimd==0 ## dPsi.i <- colSums(dThetadPsi(dmudd[[i]]),na.rm=TRUE) ## hessian.d.Psi[i,] <- if(dimPsi==1L) sum(dPsi.i) else dPsi.i[order(indexPsi)] hessian.d.Psi[i,] <- .colSumsGrouped(dThetadPsi(dmudd[[i]]), indexPsi) } } ## i.fixed <- function(){ if(random.j){ Z.j <- term["Z.intercept",j][[1]] "%mj%" <- get(term["mult",j][[1]]) hessian.FE.RE[idxFE==i,idxRE==j] <<- colSums(didj %mj% Z.j) ##<- didj must not contain NA's (all NA's set to 0) dIJ <- sum(didj,na.rm=TRUE) # fixed on 24/09/2012 } else if(unitSpecific.j){ dIJ <- colSums(didj,na.rm=TRUE)[ which.j ] } else { dIJ <- sum(didj,na.rm=TRUE) } hessian.FE.FE[idxFE==i,idxFE==j] <<- dIJ } ## i.unit <- function(){ if(random.j){ Z.j <- term["Z.intercept",j][[1]] "%mj%" <- get(term["mult",j][[1]]) dIJ <- colSums(didj %mj% Z.j) # didj must not contain NA's (all NA's set to 0) hessian.FE.RE[idxFE==i,idxRE==j] <<- diag(dIJ)[ which.i, ] # FIXME: does not work if type="car" dIJ <- dIJ[ which.i ] # added which.i subsetting in r432 } else if(unitSpecific.j){ dIJ <- diag(colSums(didj))[ which.i, which.j ] } else { dIJ <- colSums(didj)[ which.i ] } hessian.FE.FE[idxFE==i,idxFE==j] <<- dIJ } ## i.random <- function(){ if(random.j){ Z.j <- term["Z.intercept",j][[1]] "%mj%" <- get(term["mult",j][[1]]) hessian.FE.RE[idxFE==i,idxRE==j] <<- colSums(didj %mj% Z.j) if (j != i) # otherwise redundant (duplicate) hessian.FE.RE[idxFE==j,idxRE==i] <<- colSums(didj %m% Z.i) if(length(Z.j)==1 & length(Z.i)==1){ # both iid Z <- Z.i*Z.j hessian.RE.RE[which(idxRE==i),idxRE==j] <<- diag(colSums( didj %m% Z)) } else if(length(Z.j)==1 & length(Z.i)>1){ #* Z.j <- diag(nrow=model$nUnits) for(k in seq_len(ncol(Z.j))){ Z <- Z.i*Z.j[,k] hessian.RE.RE[idxRE==i,which(idxRE==j)[k]] <<- colSums( didj %m% Z) } } else if(length(Z.j)>1 & length(Z.i)==1){ #* Z.i <- diag(nrow=model$nUnits) for(k in seq_len(ncol(Z.i))){ Z <- Z.i[,k]*Z.j hessian.RE.RE[which(idxRE==i)[k],idxRE==j] <<- colSums( didj %mj% Z) } } else { # both CAR for(k in seq_len(ncol(Z.j))){ Z <- Z.i*Z.j[,k] hessian.RE.RE[which(idxRE==i)[k],idxRE==j] <<- colSums( didj %m% Z) } } dIJ <- sum(didj) } else if(unitSpecific.j){ dIJ <- colSums(didj %m% Z.i) hessian.FE.RE[idxFE==j,idxRE==i] <<- diag(dIJ)[ which.j, ] dIJ <- dIJ[ which.j ] } else { hessian.FE.RE[idxFE==j,idxRE==i] <<- colSums(didj %m% Z.i) dIJ <- sum(didj) } hessian.FE.FE[idxFE==i,idxFE==j] <<- dIJ } ##---------------------------------------------- for(i in seq_len(nGroups)){ #go through rows of hessian # parameter group belongs to which components comp.i <- term["offsetComp",i][[1]] # get covariate value Xit <- term["terms",i][[1]] # either 1 or a matrix with values if(is.matrix(Xit)){ Xit <- Xit[subset,,drop=FALSE] } m.Xit <- mean.comp[[comp.i]] * Xit random.i <- term["random",i][[1]] unitSpecific.i <- term["unitSpecific",i][[1]] ## fill psi-related entries and select fillHess function if (random.i) { Z.i <- term["Z.intercept",i][[1]] # Z.i and %m% (of i) determined here "%m%" <- get(term["mult",i][[1]]) # will also be used in j's for loop fillHess <- i.random if (dimPsi > 0L) { dThetadPsiMat <- dThetadPsi(m.Xit) hessian.FE.Psi[idxFE==i,] <- .colSumsGrouped(dThetadPsiMat, indexPsi) dThetadPsi.i <- .colSums(dThetadPsiMat %m% Z.i, length(subset), term["dim.re",i][[1]], na.rm=TRUE) if (dimPsi==1L) { hessian.Psi.RE[,dimPsi + which(idxRE==i)] <- dThetadPsi.i } else { hessian.Psi.RE[cbind(indexPsi,dimPsi + which(idxRE==i))] <- dThetadPsi.i ## FIXME: does not work with type="car" } } } else if (unitSpecific.i) { which.i <- term["which",i][[1]] fillHess <- i.unit if (dimPsi > 0L) { dThetadPsi.i <- .colSums(dThetadPsi(m.Xit), length(subset), model$nUnits, na.rm=TRUE) if (dimPsi==1L) { hessian.FE.Psi[idxFE==i,] <- dThetadPsi.i[which.i] } else { hessian.FE.Psi[cbind(which(idxFE==i),indexPsi[which.i])] <- dThetadPsi.i[which.i] } } } else { fillHess <- i.fixed if (dimPsi > 0L) { ## dPsi <- colSums(dThetadPsi(m.Xit),na.rm=TRUE) ## hessian.FE.Psi[idxFE==i,] <- if (dimPsi==1L) sum(dPsi) else dPsi[order(indexPsi)] hessian.FE.Psi[idxFE==i,] <- .colSumsGrouped(dThetadPsi(m.Xit), indexPsi) } } ## fill pars$d-related entries for (j in seq_len(dimd)) { # will not be run if dimd==0 didd <- deriv2HHH(dTheta_l = m.Xit, dTheta_k = dmudd[[j]], dTheta_lk = if (comp.i == 2) dmudd[[j]] * Xit else 0) didd[isNA] <- 0 hessian.FE.d[idxFE==i,j] <- if (unitSpecific.i) { colSums(didd,na.rm=TRUE)[which.i] } else sum(didd) if (random.i) hessian.d.RE[j,idxRE==i] <- colSums(didd %m% Z.i) } ## fill other (non-psi, non-d) entries (only upper triangle, j >= i!) for(j in i:nGroups){ comp.j <- term["offsetComp",j][[1]] Xjt <- term["terms",j][[1]] # either 1 or a matrix with values if(is.matrix(Xjt)){ Xjt <- Xjt[subset,,drop=FALSE] } # if param i and j do not belong to the same component, d(i)d(j)=0 m.Xit.Xjt <- if (comp.i != comp.j) 0 else m.Xit * Xjt didj <- deriv2HHH(dTheta_l = m.Xit, dTheta_k = mean.comp[[comp.j]]*Xjt, dTheta_lk = m.Xit.Xjt) didj[isNA]<-0 random.j <- term["random",j][[1]] unitSpecific.j <- term["unitSpecific",j][[1]] which.j <- term["which",j][[1]] fillHess() } } ######################################################### ## fill lower triangle of hessians and combine them ######################################################## hessian <- rbind(cbind(hessian.FE.FE,hessian.FE.d,hessian.FE.Psi,hessian.FE.RE), cbind(matrix(0,dimd,dimFE),hessian.d.d,hessian.d.Psi,hessian.d.RE), cbind(matrix(0,dimPsi,dimFE+dimd),hessian.Psi.RE), cbind(matrix(0,dimRE,dimFE+dimd+dimPsi),hessian.RE.RE)) hessian[lower.tri(hessian)] <- 0 # CAR blocks in hessian.RE.RE were fully filled diagHessian <- diag(hessian) fisher <- -(hessian + t(hessian)) diag(fisher) <- -diagHessian return(fisher) } fisher <- computeFisher(mu[c("epi.own","epi.neighbours","endemic")]) ## add penalty for random effects pen <- matrix(0, length(theta), length(theta)) Fpen <- if(dimRE > 0){ thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) pen[thetaIdxRE,thetaIdxRE] <- Sigma.inv fisher + pen } else fisher ## Done if(attributes){ attr(Fpen, "fisher") <- fisher attr(Fpen, "pen") <- pen } Fpen } ################################################# sqrtOf1pr2 <- function(r){ sqrt(1+r^2) } getSigmai <- function(sd, # vector of length dim with log-stdev's correlation, # vector of length dim with correlation # parameters, 0-length if uncorrelated dim ){ if(dim==0) return(NULL) Sigma.i <- if (length(correlation) == 0L) diag(exp(2*sd), dim) else { D <- diag(exp(sd), dim) L <- diag(nrow=dim) L[2,1:2] <- c(correlation[1],1)/sqrtOf1pr2(correlation[1]) if (dim==3) { L[3,] <- c(correlation[2:3],1)/sqrtOf1pr2(correlation[2]) L[3,2:3] <- L[3,2:3]/sqrtOf1pr2(correlation[3]) } D %*% tcrossprod(L) %*% D # ~75% quicker than D %*% L %*% t(L) %*% D } return(Sigma.i) } getSigmaiInv <- function(sd, # vector of length dim with log-stdev's correlation, # vector of length dim with correlation # parameters, 0-length if uncorrelated dim ){ if(dim==0) return(NULL) Sigma.i.inv <- if (length(correlation) == 0L) diag(exp(-2*sd), dim) else { r <- correlation Dinv <- diag(exp(-sd), dim) L <- diag(nrow=dim) L[2,1:2] <- c(-r[1],sqrtOf1pr2(r[1])) if(dim==3){ L[3,1] <- r[1]*r[3]-r[2]*sqrtOf1pr2(r[3]) L[3,2] <- -L[2,2]*r[3] L[3,3] <- sqrtOf1pr2(r[2])*sqrtOf1pr2(r[3]) } Dinv %*% crossprod(L) %*% Dinv # ~75% quicker than Dinv %*% t(L) %*% L %*% Dinv } return(Sigma.i.inv) } #* allow blockdiagonal matrix blockdiag(A,B), with A=kronecker product, B=diagonal matrix? getSigmaInv <- function(sd, correlation, dimSigma, dimBlocks, SigmaInvi=NULL){ if(is.null(SigmaInvi)){ SigmaInvi <- getSigmaiInv(sd,correlation,dimSigma) } if(length(unique(dimBlocks))==1){ # kronecker product formulation possible kronecker(SigmaInvi,diag(nrow=dimBlocks[1])) # the result is a symmetric matrix if SigmaInvi is symmetric } else { # kronecker product not possible -> correlation=0 diag(rep.int(diag(SigmaInvi),dimBlocks)) } } getSigma <- function(sd, correlation, dimSigma, dimBlocks, Sigmai=NULL){ if(is.null(Sigmai)){ Sigmai <- getSigmai(sd,correlation,dimSigma) } if(length(unique(dimBlocks))==1){ # kronecker product formulation possible kronecker(Sigmai,diag(nrow=dimBlocks[1])) # the result is a symmetric matrix if Sigmai is symmetric } else { # kronecker product not possible -> correlation=0 diag(rep.int(diag(Sigmai),dimBlocks)) } } ## Approximate marginal likelihood for variance components ## Parameter and model unpacking at the beginning (up to the ###...-line) is ## identical in marScore() and marFisher() marLogLik <- function(sd.corr, theta, model, fisher.unpen=NULL, verbose=FALSE){ dimSigma <- model$nSigma if(dimSigma == 0){ return(-Inf) } if(anyNA(sd.corr)) stop("NAs in variance parameters.", ADVICEONERROR) dimVar <- model$nVar dimCorr <- model$nCorr sd <- head(sd.corr,dimVar) corr <- tail(sd.corr,dimCorr) pars <- splitParams(theta,model) randomEffects <- pars$random dimRE <- model$nRE dimBlocks <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, dimVar, dimBlocks) # if not given, calculate unpenalized part of fisher info if(is.null(fisher.unpen)){ fisher.unpen <- attr(penFisher(theta, sd.corr, model,attributes=TRUE), "fisher") } # add penalty to fisher fisher <- fisher.unpen thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) fisher[thetaIdxRE,thetaIdxRE] <- fisher[thetaIdxRE,thetaIdxRE] + Sigma.inv ############################################################ # penalized part of likelihood # compute -0.5*log(|Sigma|) - 0.5*RE' %*% Sigma.inv %*% RE # where -0.5*log(|Sigma|) = -dim(RE_i)*[Sum(sd_i) -0.5*log(1+corr_i^2)] ##lpen <- -0.5*(t(randomEffects)%*%Sigma.inv%*%randomEffects) ## the following implementation takes ~85% less computing time ! lpen <- -0.5 * c(crossprod(randomEffects, Sigma.inv) %*% randomEffects) loglik.pen <- sum(-dimBlocks*sd) + lpen if(dimCorr >0){ loglik.pen <- loglik.pen + 0.5*dimBlocks[1]*sum(log(1+corr^2)) } ## approximate marginal likelihood logdetfisher <- determinant(fisher,logarithm=TRUE)$modulus lmarg <- loglik.pen -0.5*c(logdetfisher) return(lmarg) } marScore <- function(sd.corr, theta, model, fisher.unpen=NULL, verbose=FALSE){ dimSigma <- model$nSigma if(dimSigma == 0){ return(numeric(0L)) } if(anyNA(sd.corr)) stop("NAs in variance parameters.", ADVICEONERROR) dimVar <- model$nVar dimCorr <- model$nCorr sd <- head(sd.corr,dimVar) corr <- tail(sd.corr,dimCorr) pars <- splitParams(theta,model) randomEffects <- pars$random dimRE <- model$nRE dimBlocks <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, dimVar, dimBlocks) # if not given, calculate unpenalized part of fisher info if(is.null(fisher.unpen)){ fisher.unpen <- attr(penFisher(theta, sd.corr, model,attributes=TRUE), "fisher") } # add penalty to fisher fisher <- fisher.unpen thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) fisher[thetaIdxRE,thetaIdxRE] <- fisher[thetaIdxRE,thetaIdxRE] + Sigma.inv # inverse of penalized fisher info F.inv <- try(solve(fisher),silent=TRUE) if(inherits(F.inv,"try-error")){ if(verbose) cat(" WARNING (in marScore): penalized Fisher is singular!\n") #return(rep.int(0,dimSigma)) ## continuing with the generalized inverse often works, otherwise we would ## have to stop() here, because nlminb() cannot deal with NA's F.inv <- ginv(fisher) } F.inv.RE <- F.inv[thetaIdxRE,thetaIdxRE] ############################################################ ## compute marginal score and fisher for each variance component # initialize score and fisher info marg.score <- rep.int(NA_real_,dimSigma) ## specify functions for derivatives deriv1 <- switch(dimVar, dSigma1, dSigma2, dSigma3) d1Sigma <- deriv1(sd, corr) Sigmai.inv <- getSigmaiInv(sd, corr, dimVar) # derivation of log determinant # -.5*tr(Sigma^-1 %*% dSigma/ds) = -R (for sd.i) # = R*corr.i/(corr.i^2+1) (for corr.i) d1logDet <- c(-dimBlocks,dimBlocks[1]*corr/(corr^2+1)) # go through all variance parameters for(i in seq_len(dimSigma)){ dSi <- -Sigmai.inv %*% d1Sigma[,,i] %*% Sigmai.inv # CAVE: sign dS.i <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=dSi) #dlpen.i <- -0.5* t(randomEffects) %*% dS.i %*% randomEffects # ~85% faster implementation using crossprod() avoiding "slow" t(): dlpen.i <- -0.5 * c(crossprod(randomEffects, dS.i) %*% randomEffects) #tr.d1logDetF <- sum(diag(F.inv.RE %*% dS.i)) tr.d1logDetF <- sum(F.inv.RE * dS.i) # since dS.i is symmetric #<- needs 1/100 (!) of the computation time of sum(diag(F.inv.RE %*% dS.i)) marg.score[i] <- d1logDet[i] + dlpen.i - 0.5 * tr.d1logDetF } return(marg.score) } marFisher <- function(sd.corr, theta, model, fisher.unpen=NULL, verbose=FALSE){ dimSigma <- model$nSigma if(dimSigma == 0){ return(matrix(numeric(0L),0L,0L)) } if(anyNA(sd.corr)) stop("NAs in variance parameters.", ADVICEONERROR) dimVar <- model$nVar dimCorr <- model$nCorr sd <- head(sd.corr,dimVar) corr <- tail(sd.corr,dimCorr) pars <- splitParams(theta,model) randomEffects <- pars$random dimRE <- model$nRE dimBlocks <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, dimVar, dimBlocks) # if not given, calculate unpenalized part of fisher info if(is.null(fisher.unpen)){ fisher.unpen <- attr(penFisher(theta, sd.corr, model,attributes=TRUE), "fisher") } # add penalty to fisher fisher <- fisher.unpen thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) fisher[thetaIdxRE,thetaIdxRE] <- fisher[thetaIdxRE,thetaIdxRE] + Sigma.inv # inverse of penalized fisher info F.inv <- try(solve(fisher),silent=TRUE) if(inherits(F.inv,"try-error")){ if(verbose) cat(" WARNING (in marFisher): penalized Fisher is singular!\n") #return(matrix(Inf,dimSigma,dimSigma)) ## continuing with the generalized inverse often works, otherwise we would ## have to stop() here, because nlminb() cannot deal with NA's F.inv <- ginv(fisher) } F.inv.RE <- F.inv[thetaIdxRE,thetaIdxRE] ## declare F.inv.RE as a symmetric matrix? ##F.inv.RE <- new("dsyMatrix", Dim = dim(F.inv.RE), x = c(F.inv.RE)) ## -> no, F.inv.RE %*% dS.i becomes actually slower (dS.i is a "sparseMatrix") ############################################################ marg.hesse <- matrix(NA_real_,dimSigma,dimSigma) ## specify functions for derivatives deriv1 <- switch(dimVar,dSigma1, dSigma2, dSigma3) deriv2 <- switch(dimVar,d2Sigma1, d2Sigma2, d2Sigma3) d1Sigma <- deriv1(sd, corr) d2Sigma <- deriv2(sd, corr, d1Sigma) Sigmai.inv <- getSigmaiInv(sd, corr, dimVar) # 2nd derivatives of log determinant d2logDet <- diag(c(rep.int(0,dimVar),-dimBlocks[1]*(corr^2-1)/(corr^2+1)^2),dimSigma) # function to convert dS.i and dS.j matrices to sparse matrix objects dS2sparse <- if (dimCorr > 0) function (x) { forceSymmetric(as(x, "sparseMatrix")) # dS.i & dS.j are symmetric } else function (x) { #as(x, "diagonalMatrix") new("ddiMatrix", Dim = dim(x), diag = "N", x = diag(x)) } # go through all variance parameters for(i in seq_len(dimSigma)){ # compute first derivative of the penalized Fisher info (-> of Sigma^-1) # with respect to the i-th element of Sigma (= kronecker prod. of Sigmai and identity matrix) # Harville Ch15, Eq. 8.15: (d/d i)S^-1 = - S^-1 * (d/d i) S * S^-1 SigmaiInv.d1i <- Sigmai.inv %*% d1Sigma[,,i] dSi <- -SigmaiInv.d1i %*% Sigmai.inv dS.i <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=dSi) dS.i <- dS2sparse(dS.i) # compute second derivatives for(j in i:dimSigma){ # compute (d/d j) S^-1 SigmaiInv.d1j <- Sigmai.inv %*% d1Sigma[,,j] dSj <- -SigmaiInv.d1j %*% Sigmai.inv dS.j <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=dSj) dS.j <- dS2sparse(dS.j) # compute (d/di dj) S^-1 #dS.ij <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks, # Sigmai=d2Sigma[[i]][,,j]) # compute second derivatives of Sigma^-1 (Harville Ch15, Eq 9.2) d2S <- (- Sigmai.inv %*% d2Sigma[[i]][,,j] + SigmaiInv.d1i %*% SigmaiInv.d1j + SigmaiInv.d1j %*% SigmaiInv.d1i) %*% Sigmai.inv dSij <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=d2S) #d2lpen.i <- -0.5* t(randomEffects) %*% dSij %*% randomEffects # ~85% faster implementation using crossprod() avoiding "slow" t(): d2lpen.i <- -0.5 * c(crossprod(randomEffects, dSij) %*% randomEffects) # compute second derivative of log-determinant of penFisher mpart1 <- dS.j %*% F.inv.RE # 3 times as fast as the other way round mpart2 <- dS.i %*% F.inv.RE mpart <- mpart1 %*% mpart2 ## speed-ups: - tr(F.inv.RE %*% dSij) simply equals sum(F.inv.RE * dSij) ## - accelerate matrix product by sparse matrices dS.i and dS.j ## - use cyclic permutation of trace: ## tr(F.inv.RE %*% dS.j %*% F.inv.RE %*% dS.i) = ## tr(dS.j %*% F.inv.RE %*% dS.i %*% F.inv.RE) tr.d2logDetF <- -sum(Matrix::diag(mpart)) + sum(F.inv.RE * dSij) marg.hesse[i,j] <- marg.hesse[j,i] <- d2logDet[i,j] + d2lpen.i - 0.5 * tr.d2logDetF } } marg.Fisher <- as.matrix(-marg.hesse) return(marg.Fisher) } ## first and second derivatives of the covariance matrix dSigma1 <- function(sd,corr){ derivs <- array(2*exp(2*sd), c(1,1,1)) return(derivs) } #d1: result of dSigma1 d2Sigma1 <- function(sd,corr,d1){ return(list(dsd1=2*d1)) } dSigma2 <- function(sd,corr){ derivs <- array(0,c(2,2,3)) dSigma <- diag(2*exp(2*sd)) if(length(corr)>0){ dSigma[1,2] <- dSigma[2,1] <- exp(sum(sd[1:2]))*corr[1]/sqrtOf1pr2(corr[1]) # derivative of corr_1 derivs[2,1,3] <- derivs[1,2,3] <- exp(sum(sd[1:2]))/(sqrtOf1pr2(corr[1])^3) } derivs[,,1:2] <- dSigma # derivative of sd_1 derivs[2,2,1] <- 0 # derivative of sd_2 derivs[1,1,2] <- 0 return(derivs) } d2Sigma2 <- function(sd,corr, d1){ derivs <- array(0,c(2,2,3)) result <- list(dsd1=d1, dsd2=derivs, dcorr1=derivs) result$dsd1[1,1,1] <- 2*d1[1,1,1] result$dsd1[2,2,2] <- 0 result$dsd2[,,2:3]<- d1[,,2:3] result$dsd2[2,2,2] <- 2*d1[2,2,2] if(length(corr)>0){ result$dcorr1[2,1,3] <- result$dcorr1[1,2,3] <- -(3*corr[1]*exp(sum(sd[1:2])))/(sqrtOf1pr2(corr[1])^5) } return(result) } dSigma3 <- function(sd,corr){ derivs <- array(0,c(3,3,6)) dSigma <- diag(2*exp(2*sd)) # if(length(corr)>0){ dSigma[1,2] <- dSigma[2,1] <- exp(sum(sd[1:2]))*corr[1]/sqrtOf1pr2(corr[1]) # dSigma[1,3] <- dSigma[3,1] <- exp(sum(sd[c(1,3)]))*corr[2]/sqrtOf1pr2(corr[2]) # dSigma[2,3] <- dSigma[3,2] <- exp(sum(sd[c(2,3)]))*(corr[1]*corr[2]*sqrtOf1pr2(corr[3])+corr[3])/prod(sqrtOf1pr2(corr[1:3]))# # derivative of corr_1 derivs[2,1,4] <- derivs[1,2,4] <- exp(sum(sd[1:2]))/(sqrtOf1pr2(corr[1])^3) derivs[3,2,4] <- derivs[2,3,4] <-(exp(sum(sd[2:3]))*(corr[2]*sqrtOf1pr2(corr[3])-prod(corr[c(1,3)])))/ (prod(sqrtOf1pr2(corr[2:3]))*(sqrtOf1pr2(corr[1])^3))# # derivative of corr_2 derivs[3,1,5] <- derivs[1,3,5] <- exp(sum(sd[c(3,1)]))/(sqrtOf1pr2(corr[2])^3)# derivs[3,2,5] <- derivs[2,3,5] <- (exp(sum(sd[2:3]))*(corr[1]*sqrtOf1pr2(corr[3])-prod(corr[c(2,3)])))/ (prod(sqrtOf1pr2(corr[c(1,3)]))*(sqrtOf1pr2(corr[2])^3)) # # derivative of corr_3 derivs[3,2,6] <- derivs[2,3,6] <- exp(sum(sd[2:3]))/ (prod(sqrtOf1pr2(corr[c(1,2)]))*(sqrtOf1pr2(corr[3])^3)) } derivs[,,1:3] <- dSigma # derivative of sd_1 derivs[2:3,2:3,1] <- 0 # derivative of sd_2 derivs[1,c(1,3),2] <- derivs[3,c(1,3),2] <- 0 # derivative of sd_3 derivs[1:2,1:2,3] <- 0 return(derivs) } d2Sigma3 <- function(sd,corr, d1) { derivs <- array(0,c(3,3,6)) result <- list(dsd1=d1, dsd2=derivs, dsd3=derivs, dcorr1=derivs, dcorr2=derivs, dcorr3=derivs) result$dsd1[1,1,1] <- 2*d1[1,1,1] result$dsd1[2,2:3,2] <- result$dsd1[3,2,2] <- 0 result$dsd1[2:3,2:3,3] <- 0 # result$dsd2[,,2]<- d1[,,2] result$dsd2[2,2,2] <- 2*d1[2,2,2] result$dsd2[3,2,3] <- result$dsd2[2,3,3] <- d1[3,2,3]# result$dsd3[,,3]<- d1[,,3] result$dsd3[3,3,3] <- 2*d1[3,3,3]# if (length(corr)>0) { result$dsd1[2:3,2:3,4] <- 0 result$dsd1[2:3,2:3,5] <- 0 result$dsd1[,,6] <- 0 result$dsd2[,,c(4,6)] <- d1[,,c(4,6)] result$dsd2[3,2,5] <- result$dsd2[2,3,5] <- d1[3,2,5] result$dsd3[3,2,4] <- result$dsd3[2,3,4] <- d1[3,2,4] result$dsd3[,,c(5,6)] <- d1[,,c(5,6)] # derivative of corr_1 result$dcorr1[2,1,4] <- result$dcorr1[1,2,4] <- -(exp(sum(sd[1:2]))*3*corr[1])/(sqrtOf1pr2(corr[1])^5) # result$dcorr1[3,2,4] <- result$dcorr1[2,3,4] <- -(exp(sum(sd[2:3]))*(corr[1]*(3*corr[2]*sqrtOf1pr2(corr[3])-2*prod(corr[c(1,3)])) + corr[3]) )/ (prod(sqrtOf1pr2(corr[2:3]))*(sqrtOf1pr2(corr[1])^5)) # result$dcorr1[3,2,5] <- result$dcorr1[2,3,5] <- (exp(sum(sd[2:3]))*(sqrtOf1pr2(corr[3])+prod(corr[1:3])))/ (prod(sqrtOf1pr2(corr[c(1,2)])^3)*sqrtOf1pr2(corr[3])) result$dcorr1[3,2,6] <- result$dcorr1[2,3,6] <- -(exp(sum(sd[2:3]))*corr[1])/ (prod(sqrtOf1pr2(corr[c(1,3)])^3)*sqrtOf1pr2(corr[2])) # derivative of corr_2 result$dcorr2[3,1,5] <- result$dcorr2[1,3,5] <- -(exp(sum(sd[c(3,1)]))*3*corr[2])/(sqrtOf1pr2(corr[2])^5) result$dcorr2[3,2,5] <- result$dcorr2[2,3,5] <- -(exp(sum(sd[2:3]))*(corr[2]*(3*corr[1]*sqrtOf1pr2(corr[3])-2*prod(corr[c(2,3)])) + corr[3]) )/ (prod(sqrtOf1pr2(corr[c(1,3)]))*(sqrtOf1pr2(corr[2])^5)) result$dcorr2[3,2,6] <- result$dcorr2[2,3,6] <- -exp(sum(sd[2:3]))*corr[2] / # SM @ 14/05/13: formula fixed, marFisher() # and hhh4()$Sigma.cov[5,6] are now correct (prod(sqrtOf1pr2(corr[c(2,3)])^3)*sqrtOf1pr2(corr[1])) # derivative of corr_3 result$dcorr3[3,2,6] <- result$dcorr3[2,3,6] <- -(exp(sum(sd[2:3]))*3*corr[3])/ (prod(sqrtOf1pr2(corr[c(1,2)]))*sqrtOf1pr2(corr[3])^5) } return(result) } ### Various optimizers updateParams_nlminb <- function (start, ll, sc, fi, ..., control) { lower <- control[["lower"]]; control$lower <- NULL upper <- control[["upper"]]; control$upper <- NULL scale <- control[["scale"]]; control$scale <- NULL negll <- function (x, ...) -ll(x, ...) negsc <- function (x, ...) -sc(x, ...) ## run the optimization res <- nlminb(start, negll, gradient=negsc, hessian=fi, ..., scale=scale, control=control, lower=lower, upper=upper) if (any(is.finite(c(lower, upper)))) checkParBounds(res$par, lower, upper) ## Done list(par=res$par, ll=-res$objective, rel.tol=getRelDiff(res$par, start), convergence=res$convergence, message=res$message) } updateParams_nlm <- function (start, ll, sc, fi, ..., control) { ## objective function negllscfi <- function (x, ...) { negloglik <- -ll(x, ...) attr(negloglik, "gradient") <- -sc(x, ...) attr(negloglik, "hessian") <- fi(x, ...) negloglik } ## run the optimization res <- do.call("nlm", args=c(alist(p=start, f=negllscfi, ...), control)) ## Done list(par=setNames(res$estimate, names(start)), ll=-res$minimum, rel.tol=getRelDiff(res$estimate, start), convergence=as.numeric(res$code>2), message=res$message) ## nlm returns convergence status in $code, 1-2 indicate convergence, ## 3-5 indicate non-convergence } updateParams_optim <- function (start, ll, sc, fi, ..., control) { ## Note: "fi" is not used in optim method <- control[["method"]]; control$method <- NULL lower <- control[["lower"]]; control$lower <- NULL upper <- control[["upper"]]; control$upper <- NULL res <- optim(start, ll, sc, ..., # Note: control$fnscale is negative method=method, lower=lower, upper=upper, control=control) if (any(is.finite(c(lower, upper)))) checkParBounds(res$par, lower, upper) ## Done list(par=res$par, ll=res$value, rel.tol=getRelDiff(res$par, start), convergence=res$convergence, message=res$message) } ## Calculate relative parameter change criterion. ## We use a weaker criterion than the maximum relative parameter change ## max(abs(sd.corr.new/sd.corr - 1)) getRelDiff <- function (final, start) max(abs(final - start)) / max(abs(start)) checkParBounds <- function (par, lower, upper) { if (is.null(names(par))) names(par) <- seq_along(par) if (any(atl <- par <= lower)) cat(" WARNING: parameters reached lower bounds:", paste(names(par)[atl], par[atl], sep="=", collapse=", "), "\n") if (any(atu <- par >= upper)) cat(" WARNING: parameters reached upper bounds:", paste(names(par)[atu], par[atu], sep="=", collapse=", "), "\n") } ## default control arguments for updates defaultOptimControl <- function (method = "nlminb", lower = -Inf, upper = Inf, iter.max = NULL, verbose = 0) { if (is.null(iter.max)) iter.max <- 20 + 480*(method=="Nelder-Mead") lowVerbose <- verbose %in% 0:2 luOptimMethod <- method %in% c("Brent", "L-BFGS-B") defaults.nlminb <- list(iter.max=iter.max, scale=1, lower=lower, upper=upper, trace=if(lowVerbose) c(0,0,5)[verbose+1] else 1) defaults.nlm <- list(iterlim=iter.max, check.analyticals=FALSE, print.level=if(lowVerbose) c(0,0,1)[verbose+1] else 2) defaults.optim <- list(maxit=iter.max, fnscale=-1, trace=max(0,verbose-1), lower=if (luOptimMethod) lower else -Inf, upper=if (luOptimMethod) upper else Inf) switch(method, "nlm" = defaults.nlm, "nlminb" = defaults.nlminb, defaults.optim) } setOptimControl <- function (method, control, ...) { defaults <- defaultOptimControl(method, ...) cntrl <- modifyList(defaults, control) ## ensure fnscale < 0 (optim performs minimization) if (!is.null(cntrl$fnscale)) { # i.e., using optim() cntrl$method <- method # append method to control list if (cntrl$fnscale > 0) cntrl$fnscale <- -cntrl$fnscale } cntrl } ## fitHHH is the main workhorse where the iterative optimization is performed fitHHH <- function(theta, sd.corr, model, cntrl.stop=list(tol=1e-5, niter=100), cntrl.regression=list(method="nlminb"), cntrl.variance=list(method="nlminb"), verbose=0, shrinkage=FALSE) { dimFE.d.O <- model$nFE + model$nd + model$nOverdisp dimRE <- model$nRE getUpdater <- function (cntrl, start, ...) { method <- cntrl$method; cntrl$method <- NULL if (length(start) == 1 && method == "Nelder-Mead") { method <- "Brent" message("Switched optimizer from \"Nelder-Mead\" to \"Brent\"", " (dim(", deparse(substitute(start)), ")=1)") } list(paste("updateParams", if (method %in% c("nlminb", "nlm")) method else "optim", sep="_"), control = setOptimControl(method, cntrl, ...)) } ## ## artificial lower bound on intercepts of epidemic components ## reg.lower <- rep.int(-Inf, length(theta)) ## reg.lower[grep("^(ar|ne)\\.(1|ri)", model$namesFE)] <- -20 ## set optimizer for regression parameters updateRegressionControl <- getUpdater(cntrl.regression, theta, ## lower=reg.lower, iter.max=if(dimRE==0) 100, verbose=verbose+(dimRE==0)) updateRegression <- function (theta, sd.corr) do.call(updateRegressionControl[[1]], alist(theta, penLogLik, penScore, penFisher, sd.corr=sd.corr, model=model, control=updateRegressionControl[[2]])) ## set optimizer for variance parameters updateVarianceControl <- getUpdater(cntrl.variance, sd.corr, lower=-5, upper=5, verbose=verbose) updateVariance <- function (sd.corr, theta, fisher.unpen) do.call(updateVarianceControl[[1]], alist(sd.corr, marLogLik, marScore, marFisher, theta=theta, model=model, fisher.unpen=fisher.unpen, verbose=verbose>1, control=updateVarianceControl[[2]])) ## Let's go if (verbose>0) { if (verbose > 1) utils::timestamp() cat(if (dimRE == 0) "Optimization of regression parameters" else "Iterative optimization of regression & variance parameters", "\n", sep = "") } if (dimRE == 0) { # optimization of regression coefficients only parReg <- updateRegression(theta, sd.corr) theta <- parReg$par if ((convergence <- parReg$convergence) != 0 && !is.null(parReg$message)) cat("! Non-convergence message from optimizer:", parReg$message, "\n") } else { # swing between updateRegression & updateVariance convergence <- 99 i <- 0 while(convergence != 0 && (i < cntrl.stop$niter)){ i <- i+1 if (verbose>0) cat("\n") ## update regression coefficients parReg <- updateRegression(theta, sd.corr) theta <- parReg$par fisher.unpen <- attr(penFisher(theta, sd.corr, model, attributes=TRUE), "fisher") if(verbose>0) cat("Update of regression parameters: ", "max|x_0 - x_1| / max|x_0| =", parReg$rel.tol, "\n") if(parReg$convergence != 0) { if (!is.null(parReg$message)) cat("! Non-convergence message from optimizer:", parReg$message, "\n") cat("Update of regression coefficients in iteration ", i, " unreliable\n") } if(parReg$convergence > 20 && shrinkage){ cat("\n\n***************************************\nshrinkage", 0.1*theta[abs(theta)>10],"\n") theta[abs(theta)>10] <- 0.1*theta[abs(theta)>10] diag(fisher.unpen) <- diag(fisher.unpen)+1e-2 } ## update variance parameters parVar <- updateVariance(sd.corr, theta, fisher.unpen) if(verbose>0) cat("Update of variance parameters: max|x_0 - x_1| / max|x_0| =", parVar$rel.tol, "\n") if(parVar$convergence!=0) { if (!is.null(parVar$message)) cat("! Non-convergence message from optimizer:", parVar$message, "\n") cat("Update of variance parameters in iteration ", i, " unreliable\n") } sd.corr <- parVar$par ## overall convergence ? if( (parReg$rel.tol < cntrl.stop$tol) && (parVar$rel.tol < cntrl.stop$tol) && (parReg$convergence==0) && (parVar$convergence==0) ) convergence <- 0 ## exit loop if no more change in parameters (maybe false convergence) if (parReg$rel.tol == 0 && parVar$rel.tol == 0) break } } if(verbose > 0) { cat("\n", if (convergence==0) "Optimization converged" else "Optimization DID NOT CONVERGE", "\n", sep = "") if (verbose > 1) utils::timestamp() } ll <- penLogLik(theta, sd.corr, model) fisher <- penFisher(theta, sd.corr, model, attributes = TRUE) dimnames(fisher) <- list(names(theta), names(theta)) margll <- marLogLik(sd.corr, theta, model, attr(fisher, "fisher")) fisher.var <- marFisher(sd.corr, theta, model, attr(fisher, "fisher")) dimnames(fisher.var) <- list(names(sd.corr), names(sd.corr)) list(theta=theta, sd.corr=sd.corr, loglik=ll, margll=margll, fisher=fisher, fisherVar=fisher.var, convergence=convergence, dim=c(fixed=dimFE.d.O,random=dimRE)) } ## check analytical score functions and Fisher information for ## a given model (the result of interpretControl(control, stsObj)) ## and given parameters theta (regression par.) and sd.corr (variance par.). ## This is a wrapper around functionality of the numDeriv and maxLik packages. checkAnalyticals <- function (model, theta = model$initialTheta, sd.corr = model$initialSigma, methods = c("numDeriv","maxLik")) { cat("\nPenalized log-likelihood:\n") resCheckPen <- sapply(methods, function(derivMethod) { if (requireNamespace(derivMethod)) { do.call(paste("checkDerivatives", derivMethod, sep="."), args=alist(penLogLik, penScore, penFisher, theta, sd.corr=sd.corr, model=model)) } }, simplify=FALSE, USE.NAMES=TRUE) if (length(resCheckPen) == 1L) resCheckPen <- resCheckPen[[1L]] resCheckMar <- if (length(sd.corr) == 0L) list() else { cat("\nMarginal log-likelihood:\n") fisher.unpen <- attr(penFisher(theta, sd.corr, model, attributes=TRUE), "fisher") resCheckMar <- sapply(methods, function(derivMethod) { if (requireNamespace(derivMethod)) { do.call(paste("checkDerivatives", derivMethod, sep="."), args=alist(marLogLik, marScore, marFisher, sd.corr, theta=theta, model=model, fisher.unpen=fisher.unpen)) } }, simplify=FALSE, USE.NAMES=TRUE) if (length(resCheckMar) == 1L) resCheckMar[[1L]] else resCheckMar } list(pen = resCheckPen, mar = resCheckMar) } surveillance/R/catCUSUM.R0000644000176200001440000002102014662137762014667 0ustar liggesusers######################################################################### # Categorical CUSUM for y_t \sim M_k(n_t, \pi_t) for t=1,...,tmax # Workhorse function doing the actual computations - no semantic checks # are performed here, we expect "proper" input. # # Params: # y - (k) \times tmax observation matrix for all categories # pi0 - (k) \times tmax in-control prob vector for all categories # pi1 - (k) \times tmax out-of-control prob vector for all categories # dfun - PMF function of the categorical response, i.e. multinomial, binomial, # beta-binom, etc. # n - vector of dim tmax containing the varying sizes # h - decision threshold of the Categorical CUSUM # calc.at - ######################################################################### catcusum.LLRcompute <- function(y, pi0, pi1, h, dfun, n, calc.at=TRUE,...) { #Initialize variables t <- 0 stopped <- FALSE S <- numeric(ncol(y)+1) U <- numeric(ncol(y)+1) ##Check if dfun is the binomial isBinomialPMF <- isTRUE(attr(dfun,which="isBinomialPMF")) #Run the Categorical LR CUSUM while (!stopped) { #Increase time t <- t+1 #Compute log likelihood ratio llr <- dfun(y=y[,t,drop=FALSE], size=n[t], mu=pi1[,t,drop=FALSE], log=TRUE,...) - dfun(y=y[,t,drop=FALSE], size=n[t], mu=pi0[,t,drop=FALSE], log=TRUE, ...) #Add to CUSUM S[t+1] <- max(0,S[t] + llr) #For binomial data it is also possible to compute how many cases it would take #to sound an alarm given the past. if ((nrow(y) == 2) & calc.at) { ##For the binomial PMF it is possible to compute the number needed for an ##alarm exactly if (isBinomialPMF) { ##Calculations in ../maple/numberneededbeforealarm.mw. at <- (h - S[t] - n[t] * ( log(1 - pi1[1,t]) - log(1-pi0[1,t]))) / (log(pi1[1,t]) - log(pi0[1,t]) - log(1-pi1[1,t]) + log(1-pi0[1,t])) U[t+1] = ceiling(max(0,at)) ##Note: U[t+1] Can be higher than corresponding n_t. if (U[t+1]>n[t]) U[t+1] <- NA } else { #Compute the value at by trying all values between 0 and n_t. If #no alarm, then we know the value for an alarm must be larger than y_t if (S[t+1]>h) { ay <- rbind(seq(0,y[1,t],by=1),n[t]-seq(0,y[1,t],by=1)) } else { ay <- rbind(seq(y[1,t],n[t],by=1),n[t]-seq(y[1,t],n[t],by=1)) } llr <- dfun(ay, size=n[t], mu=pi1[,t,drop=FALSE], log=TRUE,...) - dfun(ay, size=n[t], mu=pi0[,t,drop=FALSE], log=TRUE, ...) alarm <- llr > h-S[t] ##Is any a_t==TRUE?, i.e. does a y_t exist or is the set over which to ##take the minimum empty? if (any(alarm)) { U[t+1] <- ay[1,which.max(alarm)] } else { U[t+1] <- NA } } } ##Only run to the first alarm. Then reset. if ((S[t+1] > h) | (t==ncol(y))) { stopped <- TRUE} } ##If no alarm at the end put rl to end (its censored! hoehle: Actually it should be length+1! ##but the chopping is written such that copying occurs until the final index (hence we can't ##just do ncol(pi0)+1 ##Hence, N is more like the last index investigated. if (any(S[-1]>h)) { t <- which.max(S[-1] > h) } else { t <- ncol(pi0) ##Last one } ##Missing: cases needs to be returned! return(list(N=t,val=S[-1],cases=U[-1])) } ###################################################################### ## Wrap function to process sts object by categoricalCUSUM (new S4 ## style). Time varying number of counts is found in slot populationFrac. ## ## Params: ## control - list with the following components ## * range - vector of indices in disProgObj to monitor ## * h - threshold, once CUSUM > h we have an alarm ## * pi0 - (k-1) \times tmax in-control prob vector for all but ref cat ## * pi1 - (k-1) \times tmax out-of-control prob vector for all but ref cat ## * dfun - PMF to use for the computations, dmultinom, dbinom, dBB, etc. ## ... - further parameters to be sent to dfun ###################################################################### categoricalCUSUM <- function(stsObj, control = list(range=NULL,h=5, pi0=NULL, pi1=NULL, dfun=NULL, ret=c("cases","value")),...) { ##Set the default values if not yet set if(is.null(control[["pi0"]])) { stop("no specification of in-control proportion vector pi0") } if(is.null(control[["pi1"]])) { stop("no specification of out-of-control proportion vector pi1") } if(is.null(control[["dfun"]])) { stop("no specification of the distribution to use, e.g. dbinom, dmultinom or similar") } if(is.null(control[["h"]])) control$h <- 5 if(is.null(control[["ret"]])) control$ret <- "value" ##Extract the important parts from the arguments if (is.numeric(control[["range"]])) { range <- control$range } else { stop("the range needs to be an index vector") } stsObj <- stsObj[range,] y <- t(stsObj@observed) pi0 <- control[["pi0"]] pi1 <- control[["pi1"]] dfun <- control[["dfun"]] control$ret <- match.arg(control$ret, c("value","cases")) ##Total number of objects that are investigated. Note this ##can't be deduced from the observed y, because only (c-1) columns ##are reported so using: n <- apply(y, 2, sum) is wrong! ##Assumption: all populationFrac's contain n_t and we can take just one n <- stsObj@populationFrac[,1] ##Semantic checks if ( ((ncol(y) != ncol(pi0)) | (ncol(pi0) != ncol(pi1))) | ((nrow(y) != nrow(pi0)) | (nrow(pi0) != nrow(pi1)))) { stop("dimensions of y, pi0 and pi1 have to match") } if ((control$ret == "cases") & nrow(pi0) != 2) { stop("cases can only be returned in case k=2") } if (length(n) != ncol(y)) { stop("length of n has to be equal to number of columns in y") } ##Check if all n entries are the same if (!all(apply(stsObj@populationFrac,1,function(x) all.equal(as.numeric(x),rev(as.numeric(x)))))) { stop("all entries for n have to be the same in populationFrac") } ##Reserve space for the results ##start with cusum[timePoint -1] = 0, i.e. set cusum[1] = 0 alarm <- matrix(data = FALSE, nrow = length(range), ncol = nrow(y)) upperbound <- matrix(data = 0, nrow = length(range), ncol = nrow(y)) ##Small helper function to be used along the way --> move to other file! either <- function(cond, whenTrue, whenFalse) { if (cond) return(whenTrue) else return(whenFalse) } ##Setup counters for the progress doneidx <- 0 N <- 1 noofalarms <- 0 noOfTimePoints <- length(range) ####################################################### ##Loop as long as we are not through the entire sequence ####################################################### while (doneidx < noOfTimePoints) { ##Run Categorical CUSUM until the next alarm res <- catcusum.LLRcompute(y=y, pi0=pi0, pi1=pi1, n=n, h=control$h, dfun=dfun,calc.at=(control$ret=="cases"),...) ##Note: res$N is the last index investigated in the updated y vector. ##If res$N == ncol(y) no alarm was found in the last segment. ##In case an alarm found put in into the log and reset the chart at res$N+1. if (res$N < ncol(y)) { ##Put appropriate value in upperbound upperbound[1:res$N + doneidx,] <- matrix(rep(either(control$ret == "value", res$val[1:res$N] ,res$cases[1:res$N]),each=ncol(upperbound)),ncol=ncol(upperbound),byrow=TRUE) alarm[res$N + doneidx,] <- TRUE ##Chop & get ready for next round y <- y[,-(1:res$N),drop=FALSE] pi0 <- pi0[,-(1:res$N),drop=FALSE] pi1 <- pi1[,-(1:res$N),drop=FALSE] n <- n[-(1:res$N)] ##Add to the number of alarms noofalarms <- noofalarms + 1 } ##cat("doneidx = ",doneidx, "\t res$N =", res$N,"\n") ##Update index of how far we are in the time series doneidx <- doneidx + res$N } ##Add upperbound-statistic of last segment (note: an alarm might or might be reached here) upperbound[(doneidx-res$N+1):nrow(upperbound),] <- matrix( rep(either(control$ret == "value", res$val, res$cases),each=ncol(upperbound)),ncol=ncol(upperbound),byrow=TRUE) ##Inherit alarms as well (last time point might contain an alarm!) alarm[(doneidx-res$N+1):nrow(upperbound),] <- matrix( rep(res$val > control$h,each=ncol(alarm)), ncol=ncol(alarm),byrow=TRUE) # Add name and data name to control object control$name <- "categoricalCUSUM" control$data <- NULL #not supported anymore #store results in the sts object stsObj@alarm <- alarm stsObj@upperbound <- upperbound stsObj@control <- control #Ensure dimnames in the new object stsObj <- fix.dimnames(stsObj) #Done return(stsObj) } surveillance/R/farringtonFlexible.R0000644000176200001440000007442314662137762017146 0ustar liggesusers# ____________________________ # |\_________________________/|\ # || || \ # || algo.farrington || \ # || new version || | # || || | # || || | # || || | # || || | # || || / # ||_________________________|| / # |/_________________________\|/ # __\_________________/__/|_ # |_______________________|/ ) # ________________________ (__ # /oooo oooo oooo oooo /| _ )_ # /ooooooooooooooooooooooo/ / (_)_(_) # /ooooooooooooooooooooooo/ / (o o) #/C=_____________________/_/ ==\o/== # Contributed to "surveillance" on 2013-06-26 by M. Salmon # Later (>= 2016) bug fixes and maintenance by M. Hoehle and S. Meyer ################################################################################ # CONTENTS ################################################################################ # # MAIN FUNCTION # Function that manages input and output. # # RESIDUALS FUNCTION # Function that calculates Anscombe residuals. # # WEIGHTS FUNCTION # Function that calculates weights based on these residuals. # # FORMULA FUNCTION # Function that writes a formula for the glm using Booleans from control. # # FIT GLM FUNCTION # Function that fits a GLM. If it does not converge this function tries to fit it without time trend. # # THRESHOLD FUNCTION # Function that calculates the lower and upper threshold, the probability of observing a count that is >= observed, and the score. # There are two versions of this function depending on the method chosen. # # BLOCKS FUNCTION # Function that creates the factor variable for the glm. # # DATA GLM FUNCTION # Function that prepares data for the glm # # GLM FUNCTION # Function that calls fit glm, checkst he time trend and calculate the prediction fort he current timepoint. ################################################################################ # END OF CONTENTS ################################################################################ ################################################################################ # MAIN FUNCTION ################################################################################ farringtonFlexible <- function(sts, control = list( range = NULL, # range of time points to be monitored b = 5, # how many years to go back in time? w = 3, # half-window length reweight = TRUE, # reweighting past outbreaks? weightsThreshold = 2.58, # with which threshold? verbose = FALSE, # printing information? glmWarnings = TRUE, # printing warning from glm.fit? alpha = 0.05, # (one-sided) (1-alpha)% prediction interval trend = TRUE, # include a time trend when possible? pThresholdTrend = 0.05, # which pvalue for the time trend is significant? limit54 = c(5,4), # ignore if <5 reports during the past 4 weeks powertrans = "2/3", # power transformation for the data fitFun = "algo.farrington.fitGLM.flexible", # which function to use? populationOffset = FALSE, # use a population offset in the model? noPeriods = 1, # how many periods between windows around reference weeks? pastWeeksNotIncluded = NULL, # how many past weeks not to take into account? thresholdMethod = "delta" # which method for calculating the threshold? )) { ###################################################################### # Use special Date class mechanism to find reference months/weeks/days ###################################################################### epochAsDate <- sts@epochAsDate ###################################################################### # Fetch observed and population ###################################################################### # Fetch observed observed <- observed(sts) freq <- sts@freq if (epochAsDate) { epochStr <- switch( as.character(freq), "12" = "month","52" = "week", "365" = "day") } else { epochStr <- "none" } # Fetch population population <- population(sts) ###################################################################### # Fix missing control options ###################################################################### defaultControl <- eval(formals()$control) control <- modifyList(defaultControl, control, keep.null = TRUE) if (is.null(control$range)) { control$range <- (freq*control$b + control$w + 1):nrow(observed) ## NOTE: this default is different from algo.farrington() } # Use factors in the model? Depends on noPeriods, no input from the user. control$factorsBool <- control$noPeriods != 1 # How many past weeks not to take into account? if (is.null(control$pastWeeksNotIncluded)) { control$pastWeeksNotIncluded <- control$w } # there is only one fitFun at the moment control$fitFun <- match.arg(control$fitFun, c("algo.farrington.fitGLM.flexible")) # extract the threshold method thresholdMethod <- match.arg(control$thresholdMethod, c("delta", "nbPlugin", "muan")) # Adapt the argument for the glm function control$typePred <- switch(thresholdMethod, "delta" = "response", "nbPlugin" = "link", "muan" = "link") # Which threshold function? control$thresholdFunction <- switch(thresholdMethod, "delta" = "algo.farrington.threshold.farrington", "nbPlugin" = "algo.farrington.threshold.noufaily", "muan" = "algo.farrington.threshold.noufaily") # check options if (!((control$limit54[1] >= 0) && (control$limit54[2] > 0))) { stop("The limit54 arguments are out of bounds: cases >= 0 and period > 0.") } ###################################################################### # Initialize the necessary vectors ###################################################################### score <- trend <- pvalue <- expected <- mu0Vector <- phiVector <- trendVector <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) # Define objects n <- control$b*(2*control$w+1) # loop over columns of sts for (j in 1:ncol(sts)) { #Vector of dates if (epochAsDate) { vectorOfDates <- as.Date(sts@epoch, origin="1970-01-01") } else { vectorOfDates <- seq_len(length(observed[,j])) } # Loop over control$range for (k in control$range) { ###################################################################### # Prepare data for the glm ###################################################################### dayToConsider <- vectorOfDates[k] diffDates <- diff(vectorOfDates) dataGLM <- algo.farrington.data.glm(dayToConsider=dayToConsider, b=control$b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=control$w, noPeriods=control$noPeriods, observed=observed[,j],population=population[,j], verbose=control$verbose, pastWeeksNotIncluded=control$pastWeeksNotIncluded,k) ###################################################################### # Fit the model ###################################################################### finalModel <- algo.farrington.glm(dataGLM,timeTrend=control$trend,populationOffset=control$populationOffset, factorsBool=control$factorsBool,reweight=control$reweight, weightsThreshold=control$weightsThreshold, pThresholdTrend=control$pThresholdTrend,b=control$b, noPeriods=control$noPeriods,typePred=control$typePred, fitFun=control$fitFun,glmWarnings=control$glmWarnings, epochAsDate=epochAsDate,dayToConsider=dayToConsider, diffDates=diffDates,populationNow=population[k,j],k, verbose=control$verbose) if (is.null(finalModel)) { #Do we have an alarm -- i.e. is observation beyond CI?? #upperbound only relevant if we can have an alarm (enoughCases) sts@alarm[k,j] <- NA sts@upperbound[k,j] <- NA mu0Vector[(k-min(control$range)+1),j] <- NA # Get overdispersion phiVector[(k-min(control$range)+1),j] <- NA # Get score score[(k-min(control$range)+1),j] <- NA #Compute bounds of the predictive pvalue[(k-min(control$range)+1),j] <- NA # Time trend trendVector[(k-min(control$range)+1),j] <- NA trend[(k-min(control$range)+1),j] <- NA warning(paste("The model could not converge with nor without time trend at timepoint ", k," so no result can be given for timepoint ", k,".\n")) } else { pred <- finalModel$pred doTrend <- finalModel$doTrend coeffTime <- finalModel$coeffTime ###################################################################### # Calculate lower and upper threshold ###################################################################### argumentsThreshold <- list(predFit=pred$fit,predSeFit=pred$se.fit, phi=finalModel$phi, skewness.transform=control$powertrans, alpha=control$alpha, y=observed[k,j], method=control$thresholdMethod ) lu <- do.call(control$thresholdFunction, args=argumentsThreshold) ###################################################################### # Postprocessing steps & output ###################################################################### #Compute exceedance score unless less than 5 reports during last 4 weeks. #Changed in version 0.9-7 - current week is included now enoughCases <- (sum(observed[(k-control$limit54[2]+1):k,j]) >=control$limit54[1]) #18 May 2006: Bug/unexpected feature found by Y. Le Strat. #the okHistory variable meant to protect against zero count problems, #but instead it resulted in exceedance score == 0 for low counts. #Now removed to be concordant with the Farrington 1996 paper. X <- ifelse(enoughCases,lu$score,NA) #Do we have an alarm -- i.e. is observation beyond CI?? #upperbound only relevant if we can have an alarm (enoughCases) sts@alarm[k,j] <- !is.na(X) && (X>1) && observed[k,j]!=0 sts@upperbound[k,j] <- ifelse(enoughCases,lu$upper,NA) # Possible bug alarm although upperbound <- 0? # Calculate expected value from glm if (is.na(lu$upper)==FALSE) { if ( control$typePred=="response"){ expected[(k-min(control$range)+1),j] <- ifelse(enoughCases,pred$fit,NA) } else{ expected[(k-min(control$range)+1),j] <- ifelse(enoughCases,exp(pred$fit),NA) } } else { expected[(k-min(control$range)+1),j] <- NA } # Calculate mean of the negbin distribution of the observation # Use linear predictor mean and sd eta0 <- pred$fit seEta0 <- pred$se.fit # deduce the quantile for mu0 from eta0 which is normally distributed if (control$thresholdMethod=='nbPlugin'){ mu0Vector[(k-min(control$range)+1),j] <- exp(eta0) } else { mu0Vector[(k-min(control$range)+1),j] <- exp(qnorm(1-control$alpha, mean=eta0, sd=seEta0)) } # Get overdispersion phiVector[(k-min(control$range)+1),j] <- finalModel$phi # Get score score[(k-min(control$range)+1),j] <- lu$score #Compute bounds of the predictive pvalue[(k-min(control$range)+1),j] <- lu$prob # Time trend if(doTrend) { trendVector[(k-min(control$range)+1),j] <- coeffTime trend[(k-min(control$range)+1),j] <- 1 } else { trendVector[(k-min(control$range)+1),j] <- NA } } }#done looping over all time points } #end of loop over cols in sts sts@control$score <- score sts@control$pvalue <- pvalue sts@control$expected <- expected sts@control$mu0Vector <- mu0Vector sts@control$phiVector <- phiVector sts@control$trendVector <- trendVector sts@control$trend <- trend #Done return(sts[control$range,]) } ################################################################################ # END OF MAIN FUNCTION ################################################################################ ################################################################################ # REFERENCE TIME POINTS FUNCTION ################################################################################ algo.farrington.referencetimepoints <- function(dayToConsider,b=control$b,freq=freq,epochAsDate,epochStr){ if (epochAsDate) { referenceTimePoints <- as.Date(seq(as.Date(dayToConsider, origin="1970-01-01"), length.out=(b+1), by="-1 year")) } else { referenceTimePoints <- seq(dayToConsider, length.out=(b+1), by=-freq) } if (epochStr == "week") { # get the date of the Mondays/Tuesdays/etc so that it compares to # the reference data # (Mondays for Mondays for instance) # Vectors of same days near the date (usually the same week) # dayToGet dayToGet <- as.numeric(format(dayToConsider, "%w")) actualDay <- as.numeric(format(referenceTimePoints, "%w")) referenceTimePointsA <- referenceTimePoints - (actualDay - dayToGet) # Find the other "same day", which is either before or after referenceTimePoints referenceTimePointsB <- referenceTimePointsA + ifelse(referenceTimePointsA>referenceTimePoints,-7,7) # For each year choose the closest Monday/Tuesday/etc # The order of referenceTimePoints is NOT important AB <- cbind(referenceTimePointsA,referenceTimePointsB) ABnumeric <- cbind(as.numeric(referenceTimePointsA),as.numeric(referenceTimePointsB)) distMatrix <- abs(ABnumeric-as.numeric(referenceTimePoints)) idx <- (distMatrix[,1]>distMatrix[,2])+1 referenceTimePoints <- as.Date(AB[cbind(1:dim(AB)[1],idx)],origin="1970-01-01") } return(referenceTimePoints) } ################################################################################ # END OF REFERENCE TIME POINTS FUNCTION ################################################################################ ################################################################################ # RESIDUALS FUNCTION # anscombe.residuals(m,phi) # is defined in algo_farrington.R ################################################################################ ################################################################################ # WEIGHTS FUNCTION # algo.farrington.assign.weights(s,weightsThreshold) # is defined in algo_farrington.R ################################################################################ ################################################################################ # FORMULA FUNCTION ################################################################################ # Function for writing the good formula depending on timeTrend, # populationOffset and factorsBool formulaGLM <- function(populationOffset=FALSE,timeBool=TRUE,factorsBool=FALSE){ # Description # Args: # populationOffset: --- # Returns: # Vector of X # Smallest formula formulaString <- "response ~ 1" # With time trend? if (timeBool){ formulaString <- paste(formulaString,"+wtime",sep ="")} # With population offset? if(populationOffset){ formulaString <- paste(formulaString,"+offset(log(population))",sep ="")} # With factors? if(factorsBool){ formulaString <- paste(formulaString,"+seasgroups",sep ="")} # Return formula as a string return(formulaString) } ################################################################################ # END OF FORMULA FUNCTION ################################################################################ ################################################################################ # FIT GLM FUNCTION ################################################################################ algo.farrington.fitGLM.flexible <- function(dataGLM, timeTrend,populationOffset,factorsBool,reweight,weightsThreshold,glmWarnings,verbose,control,...) { # Model formula depends on whether to include a time trend or not. theModel <- formulaGLM(populationOffset,timeBool=timeTrend,factorsBool) # Fit it -- this is slow. An improvement would be to use glm.fit here. # This would change the syntax, however. if (glmWarnings) { model <- glm(formula(theModel),data=dataGLM,family = quasipoisson(link="log")) } else { model <- suppressWarnings(glm(formula(theModel),data=dataGLM,family = quasipoisson(link="log"))) } #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { theModel <- formulaGLM(populationOffset,timeBool=F,factorsBool) if (glmWarnings) { model <- glm(as.formula(theModel), data=dataGLM, family = quasipoisson(link="log")) } else { model <- suppressWarnings(glm(as.formula(theModel), data=dataGLM, family = quasipoisson(link="log"))) } if (verbose) {cat("Warning: No convergence with timeTrend -- trying without.\n")} } if (!model$converged) { if (verbose) {cat("Warning: No convergence in this case.\n")} if (verbose) {print(dataGLM[,c("response","wtime"),exact=TRUE])} return(NULL) } } #Overdispersion parameter phi phi <- max(summary(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s,weightsThreshold) if (glmWarnings) { model <- glm(as.formula(theModel),data=dataGLM, family=quasipoisson(link="log"), weights=omega) } else { model <- suppressWarnings(glm(as.formula(theModel),data=dataGLM, family=quasipoisson(link="log"), weights=omega)) } #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary(model)$dispersion,1) } # end of refit. #Add wtime, response and phi to the model model$phi <- phi model$wtime <- dataGLM$wtime model$response <- dataGLM$response model$population <- dataGLM$population if (reweight) { model$weights <- omega } else{ model$weights <- model$weights } #Done return(model) } ################################################################################ # END OF FIT GLM FUNCTION ################################################################################ ################################################################################ # THRESHOLD FUNCTION FARRINGTON ################################################################################ algo.farrington.threshold.farrington <- function(predFit,predSeFit,phi, skewness.transform, alpha,y,method){ #Fetch mu0 and var(mu0) from the prediction object mu0 <- predFit tau <- phi + (predSeFit^2)/mu0 #Standard deviation of prediction, i.e. sqrt(var(h(Y_0)-h(\mu_0))) switch(skewness.transform, "none" = { se <- sqrt(mu0*tau); exponent <- 1}, "1/2" = { se <- sqrt(1/4*tau); exponent <- 1/2}, "2/3" = { se <- sqrt(4/9*mu0^(1/3)*tau); exponent <- 2/3}, { stop("No proper exponent in algo.farrington.threshold.")}) #Note that lu can contain NA's if e.g. (-1.47)^(3/2) lu <- sort((mu0^exponent + c(-1,1)*qnorm(1-alpha)*se)^(1/exponent), na.last=FALSE) #Ensure that lower bound is non-negative lu[1] <- max(0,lu[1],na.rm=TRUE) # probability associated to the observed value as quantile # hoehle 2018-09-12: fixed p-value bug detected by Lore Merdrignac q <- pnorm( y^(exponent), mean=mu0^exponent, sd=se,lower.tail=FALSE) # calculate score x <- ifelse(is.na(lu[2])==FALSE,(y - predFit) / (lu[2] - predFit),NA) return(list(lower=lu[1],upper=lu[2],prob=q,score=x)) } ################################################################################ # END OF THRESHOLD FUNCTION FARRINGTON ################################################################################ ################################################################################ # THRESHOLD FUNCTION NOUFAILY ################################################################################ algo.farrington.threshold.noufaily <- function(predFit,predSeFit,phi, skewness.transform, alpha,y,method){ # method of Angela Noufaily with modifications # Use linear predictor mean and sd eta0 <- predFit seEta0 <- predSeFit # deduce the quantile for mu0 from eta0 which is normally distributed if (method=='nbPlugin'){ mu0Quantile <- exp(eta0) } else { mu0Quantile <- exp(qnorm(1-alpha, mean=eta0, sd=seEta0)) } if (mu0Quantile==Inf){ lu <- c(NA,NA) q <- NA # else is when the method is "muan" } else{ # Two cases depending on phi value if (phi>1){ lu<-c(qnbinom(alpha,mu0Quantile/(phi-1),1/phi), qnbinom(1-alpha,mu0Quantile/(phi-1),1/phi)) } else { lu<-c(qpois(alpha,mu0Quantile),qpois(1-alpha,mu0Quantile)) } # cannot be negative lu[1]=max(0,lu[1]) # probability associated to the observed value as quantile if (phi!=1){ q <- pnbinom(q= y-1 ,size=mu0Quantile/(phi-1),prob=1/phi,lower.tail=FALSE) } else{ q <- ppois(y-1,mu0Quantile,lower.tail=FALSE) } } # calculate score x <- ifelse(is.na(lu[2])==FALSE,(y - predFit) / (lu[2] - predFit),NA) return(list(lower=lu[1],upper=lu[2],prob=q,score=x)) } ################################################################################ # END OF THRESHOLD FUNCTION NOUFAILY ################################################################################ ################################################################################ # BLOCKS FUNCTION ################################################################################ blocks <- function(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p, epochAsDate) { ## INPUT # freq: are we dealing with daily/weekly/monthly data? # b: how many years to go back in time # w: half window length around the reference timepoints # p: number of noPeriods one wants the year to be split into ## VECTOR OF ABSOLUTE NUMBERS # Very useful to write the code! vectorOfAbsoluteNumbers <- seq_len(length(vectorOfDates)) # logical vector indicating where the referenceTimePoints # are in the vectorOfDates referenceTimePointsOrNot <- vectorOfDates %in% referenceTimePoints ## VECTOR OF FACTORS vectorOfFactors <- rep(NA_real_,length(vectorOfDates)) ## SETTING THE FACTORS # Current week if (epochAsDate==FALSE){ now <- which(vectorOfDates==dayToConsider) } else { now <- which(vectorOfDates==as.Date(dayToConsider)) } vectorOfFactors[(now-w):now] <- p # Reference weeks referenceWeeks <- rev(as.numeric( vectorOfAbsoluteNumbers[referenceTimePointsOrNot])) for (i in 1:b) { # reference week refWeek <- referenceWeeks[i+1] vectorOfFactors[(refWeek-w):(refWeek+w)] <- p # The rest is only useful if ones want factors, otherwise only have # reference timepoints like in the old algo.farrington if (p!=1){ # Number of time points to be shared between vectors period <- referenceWeeks[i] - 2 * w - 1 - refWeek # Check that p is not too big if (period < (p-(2*w+1))){stop('Number of factors too big!')} # Look for the length of blocks lengthOfBlocks <- period %/% (p-1) rest <- period %% (p-1) vectorLengthOfBlocks <- rep(lengthOfBlocks,p-1) # share the rest of the Euclidean division among the first blocks add <- seq_len(rest) vectorLengthOfBlocks[add] <- vectorLengthOfBlocks[add]+1 # slight transformation necessary for the upcoming code with cumsum vectorLengthOfBlocks <- c(0,vectorLengthOfBlocks) # fill the vector for (j in 1:(p-1)) { vectorOfFactors[(refWeek+w+1+cumsum(vectorLengthOfBlocks)[j]): (refWeek+w+1+cumsum(vectorLengthOfBlocks)[j+1]-1)]<-j } } } ## DONE! return(vectorOfFactors) #indent } ################################################################################ # END OF BLOCKS FUNCTION ################################################################################ ################################################################################ # DATA GLM FUNCTION ################################################################################ algo.farrington.data.glm <- function(dayToConsider, b, freq, epochAsDate,epochStr, vectorOfDates,w,noPeriods, observed,population, verbose,pastWeeksNotIncluded,k){ # Identify reference time points # Same date but with one year, two year, etc, lag # b+1 because we need to have the current week in the vector referenceTimePoints <- algo.farrington.referencetimepoints(dayToConsider,b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr ) if (!all(referenceTimePoints %in% vectorOfDates)) { ## previously only checked min(referenceTimePoints) stop("Some reference time points did not exist; ", "decrease 'b' or postpone 'range'.") } if (verbose) { cat("k=", k,"\n")} # Create the blocks for the noPeriods between windows (including windows) # If noPeriods=1 this is a way of identifying windows, actually. blocks <- blocks(referenceTimePoints,vectorOfDates,epochStr,dayToConsider, b,w,noPeriods,epochAsDate) # Here add option for not taking the X past weeks into account # to avoid adaptation of the model to emerging outbreaks blocksID <- blocks blocksID[(k-pastWeeksNotIncluded):k] <- NA # Extract values for the timepoints of interest only blockIndexes <- which(is.na(blocksID)==FALSE) # Time # if epochAsDate make sure wtime has a 1 increment if (epochAsDate){ wtime <- (as.numeric(vectorOfDates[blockIndexes])- as.numeric(vectorOfDates[blockIndexes][1]))/as.numeric(diff(vectorOfDates))[1] } else { wtime <- as.numeric(vectorOfDates[blockIndexes]) } # Factors seasgroups <- as.factor(blocks[blockIndexes]) # Observed response <- observed[blockIndexes] # Population pop <- population[blockIndexes] if (verbose) { print(response)} dataGLM <- data.frame(response=response,wtime=wtime,population=pop, seasgroups=seasgroups,vectorOfDates=vectorOfDates[blockIndexes]) dataGLM <- dataGLM[is.na(dataGLM$response)==FALSE,] return(dataGLM) } ################################################################################ # END OF DATA GLM FUNCTION ################################################################################ ################################################################################ # GLM FUNCTION ################################################################################ algo.farrington.glm <- function(dataGLM,timeTrend,populationOffset,factorsBool, reweight,weightsThreshold,pThresholdTrend,b, noPeriods,typePred,fitFun,glmWarnings,epochAsDate, dayToConsider,diffDates,populationNow,k,verbose) { arguments <- list(dataGLM=dataGLM, timeTrend=timeTrend, populationOffset=populationOffset, factorsBool=factorsBool,reweight=reweight, weightsThreshold=weightsThreshold,glmWarnings=glmWarnings, verbose=verbose,control=control) model <- do.call(fitFun, args=arguments) #Stupid check to pass on NULL values from the algo.farrington.fitGLM proc. if (is.null(model)) return(model) ###################################################################### #Time trend ###################################################################### #Check whether to include time trend, to do this we need to check whether #1) wtime is significant at the 95lvl #2) the predicted value is not larger than any observed value #3) the historical data span at least 3 years. doTrend <- NULL # if model converged with time trend if ("wtime" %in% names(coef(model))){ # get the prediction for k if(epochAsDate){ wtime=(as.numeric(dayToConsider)-as.numeric(dataGLM$vectorOfDates[1]))/as.numeric(diffDates)[1] } else { wtime <- c(k) } pred <- predict.glm(model,newdata=data.frame(wtime=wtime, population=populationNow, seasgroups=factor(noPeriods), dispersion=model$phi),se.fit=TRUE,type="response") # check if three criterion ok #is the p-value for the trend significant (0.05) level significant <- (summary.glm(model)$coefficients["wtime",4] < pThresholdTrend) #have to use at least three years of data to allow for a trend atLeastThreeYears <- (b>=3) #no horrible predictions noExtrapolation <- (pred$fit <= max(dataGLM$response,na.rm=T)) #All 3 criteria have to be met in order to include the trend. Otherwise #it is removed. Only necessary to check this if a trend is requested. doTrend <- (atLeastThreeYears && significant && noExtrapolation) # if not then refit if (doTrend==FALSE) { arguments$timeTrend=FALSE model <- do.call(fitFun, args=arguments) } } else { doTrend <- FALSE } #done with time trend ###################################################################### ###################################################################### # Calculate prediction # ###################################################################### #Predict value if(epochAsDate){ wtime=(as.numeric(dayToConsider)-as.numeric(dataGLM$vectorOfDates[1]))/as.numeric(diffDates)[1] } else { wtime <- c(k) } pred <- predict.glm(model,newdata=data.frame(wtime=wtime, population=populationNow, seasgroups=factor(noPeriods), dispersion=model$phi),se.fit=TRUE,type=typePred) coeffTime=ifelse(doTrend,summary.glm(model)$coefficients["wtime",1],NA) finalModel <- list (pred,doTrend,coeffTime,model$phi) names(finalModel) <- c("pred","doTrend","coeffTime","phi") return(finalModel) } ################################################################################ # END OF GLM FUNCTION ################################################################################ surveillance/R/twinSIR_intensity.R0000644000176200001440000003024214405667703016754 0ustar liggesusers################################################################################ # Authors: Sebastian Meyer, with contributions by Michael Hoehle # Date: 02 June 2009, modified 25 Mar 2011, 27 Jun 2012 # # This file contains functions related to calculating and plotting intensities. ################################################################################ ################################################################################ # Calculate the two components of the intensity lambda(t|H_t) for each row # of the event history. # Be aware that the function assumes atRiskY == 1 in all rows! # # ARGS: # theta - parameter vector c(alpha,beta), where # beta also contains the baseline coefficients in the first place # X - covariate matrix related to alpha, i.e. the epidemic component # Z - covariate matrix related to beta, i.e. the Cox-like endemic component # # RETURNS: a numeric matrix with two columns e and h and nrow(X)==nrow(Z) rows ################################################################################ .eh <- function(theta, X, Z) { # Extracting params from theta dimX <- dim(X) nRows <- dimX[1] # = nrow(Z) px <- dimX[2] pz <- ncol(Z) alpha <- theta[seq_len(px)] beta <- theta[px + seq_len(pz)] # Calculate the epidemic component e(t|H_t) and the endemic component h(t) e <- if (px > 0L) drop(X %*% alpha) else numeric(nRows) h <- if (pz > 0L) drop(exp(Z %*% beta)) else numeric(nRows) # Return the two components of the infection intensity related to the # rows of the event history in a two column matrix eh <- cbind(e = e, h = h) return(eh) } ################################################################################ # Cumulative hazard function # # \Lambda(t) = \int_{timeRange[1]}^t \lambda(s) ds, # # where \lambda(s) = \sum_{i=1}^n \lambda_i(s) # # Be aware that the function assumes atRiskY == 1 for all rows of X/Z/survs !!! # # ARGS: # t - scalar time point until we want to integrate, must be non-negative # theta - parameter vector c(alpha,beta), where # beta also contains the baseline coefficients in the first place # X - covariate matrix related to alpha, i.e. the epidemic component # Z - covariate matrix related to beta, i.e. the Cox-like endemic component # survs - data.frame with columns id, start, stop, event; "timeRange" attribute # weights - vector of length nrow(X) indicating the number of individuals # with the same covariates. weights are allowed to change over time. # Note: it is assumed that none of the individuals covered by # "weights" can have an actual event, if so they need to have their # own row # # RETURNS: value of the cumulative hazard function at time t ################################################################################ if (FALSE) { # unused Lambda <- function(t, theta, X, Z, survs, weights) { timeRange <- attr(survs, "timeRange") eh <- if (!isScalar(t) || t < timeRange[1L]) { stop("invalid argument 't': must be a scalar >= ", timeRange[1L], " (beginning of observation period)") } else if (t == timeRange[1L]) { return(0) } else if (t < timeRange[2L]) { # We have to extract the relevant intervals sortedStop <- sort(unique(survs$stop)) # Find first stop time beyond t idx <- match(TRUE, sortedStop >= t) firstBeyondt <- sortedStop[idx] includeSurvsRow <- survs$stop <= firstBeyondt # If t between start and stop of an interval we need to chop... if (firstBeyondt != t) { survs$stop[survs$stop == firstBeyondt] <- t } # Extract relevant parts survs <- survs[includeSurvsRow,] weights <- weights[includeSurvsRow] .eh(theta, X[includeSurvsRow,], Z[includeSurvsRow,]) } else { # if t >= attr(survs, "timeRange")[2], we take all rows .eh(theta, X, Z) } lambda <- rowSums(eh) dt <- survs$stop - survs$start intlambda <- sum(weights * lambda * dt) # no individual sums as in loglik return(intlambda) } } ################################################################################ # Function to plot the path of the infection intensity or the proportions of # the endemic or epidemic component, either on an individual basis or related # to the total intensity at each event (=infection) time. # The function works with objects of class "simEpidata" # as well as with objects of class "twinSIR". ################################################################################ # 'model' is the result of getModel(x) # if x is of class "twinSIR": theta = (alpha, beta) = (alpha, (h0coefs, betarest)) # if x is of class "simEpidata": theta = (alpha, 1, betarest) # per default, the function uses the fitted or true parameters, respectively intensityplot_twinSIR <- function(model, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = TRUE, theta = NULL, plot = TRUE, add = FALSE, rug.opts = list(), ...) { which <- match.arg(which) ## model components survs <- model$survs start <- attr(survs, "timeRange")[1L] end <- attr(survs, "timeRange")[2L] timeIntervals <- unique(survs[c("start", "stop")]) timepoints <- unique(c(timeIntervals$stop, end)) # need 'end' here, because model does only contain rows with atRiskY == 1, # otherwise would terminate in advance if all individuals have been infected nTimes <- length(timepoints) idlevels <- levels(survs$id) ## helper function for use with by() intensity <- function(iddata, what) { # 'iddata' will be a subset of survs, 'what' will be "wlambda" or "we" y <- numeric(nTimes) # zeroes y[match(iddata$stop, timepoints)] <- iddata[[what]] y } ## Calculate epidemic (e) and endemic (h) component in each row of the model eh <- do.call(".eh", args = c(list(theta = theta), model[c("X", "Z")])) ## Calculate individual _total intensity_ paths lambda <- rowSums(eh) survs$wlambda <- as.vector(model$weights * lambda) ## put individual intensity paths into a matrix [nTimes x n] wlambdaID <- by(data = survs, INDICES = survs["id"], FUN = intensity, what = "wlambda", simplify = FALSE) # initially infectious individuals (without re-infection) don't appear in # survs, since they are never atRiskY => wlambdaID[[i]] is NULL for such an # individual i but should be a 0-vector of length nTimes initiallyInfected <- names(which(vapply(wlambdaID, is.null, TRUE))) #if (length(initiallyInfected) > 0L) # not necessary wlambdaID[initiallyInfected] <- rep(list(numeric(nTimes)), length(initiallyInfected)) wlambdaIDmatrix <- as.matrix(as.data.frame(c(wlambdaID), optional = TRUE)) ## alternative way but slower: ## wlambdaIDmatrix <- matrix(0, nrow = nTimes, ncol = length(idlevels), ## dimnames = list(NULL, idlevels)) ## for (ID in idlevels) { ## iddata <- survs[survs$id == ID,] ## wlambdaIDmatrix[match(iddata$stop, timepoints), ID] <- iddata$wlambda ## } if (which != "total intensity") { ## Calculate individual _epidemic intensity_ paths survs$we <- { px <- ncol(model$X) if (px == 0L) { stop("nothing to do, model does not contain both components") } as.vector(model$weights * eh[,1]) } ## put individual epidemic intensity paths into a matrix [nTimes x n] weID <- by(data = survs, INDICES = list(id = survs$id), FUN = intensity, what = "we", simplify = FALSE) # we have to replace NULL entries by numeric(nTimes) (cf. wlambdaID) weID[initiallyInfected] <- rep(list(numeric(nTimes)), length(initiallyInfected)) weIDmatrix <- as.matrix(as.data.frame(c(weID), optional = TRUE)) ## alternative code which is slower: ## weIDmatrix <- matrix(0, nrow = nTimes, ncol = length(idlevels), ## dimnames = list(NULL, idlevels)) ## for (ID in idlevels) { ## iddata <- survs[survs$id == ID,] ## weIDmatrix[match(iddata$stop, timepoints), ID] <- iddata$we ## } } ## Generate matrix with data for 'matplot' ydata2plot <- if (which == "total intensity") { if (aggregate) { rowSums(wlambdaIDmatrix) } else { wlambdaIDmatrix } } else { # calculate epidemic proportion if (aggregate) { rowSums(weIDmatrix) / rowSums(wlambdaIDmatrix) } else { weIDmatrix / wlambdaIDmatrix } } if (which == "endemic proportion") { ydata2plot <- 1 - ydata2plot } ydata2plot <- as.matrix(ydata2plot) colnames(ydata2plot) <- if (aggregate) which else idlevels if (which != "total intensity") { # there may be NAs in data2plot where the total intensity equals 0 # => when calculating proportions we get 0 / 0 = NA # we redefine those values to 0. (0-intensity => 0-proportion) ydata2plot[is.na(ydata2plot)] <- 0 } # prepend time (x) column data2plot <- cbind(stop = timepoints, ydata2plot) # if the epidemic is SIRS or SIS (re-susceptibility), there may be time # blocks during the observation period, where no individual is susceptible: # Problem: those time blocks are not included in the model component, # which only contains rows with atRiskY == 1 # Solution: fill the missing time periods with 0 intensity (or proportion) innerStart <- timeIntervals[-1L, "start"] innerStop <- timeIntervals[-nrow(timeIntervals), "stop"] noSusceptiblesStopTimes <- innerStart[innerStop != innerStart] if (length(noSusceptiblesStopTimes) > 0L) { data2plot <- rbind(data2plot, cbind(noSusceptiblesStopTimes, matrix(0, nrow = length(noSusceptiblesStopTimes), ncol = ncol(ydata2plot)) ) ) data2plot <- data2plot[order(data2plot[,1L]),] } ## Plot and return data if (plot) { dotargs <- list(...) nms <- names(dotargs) if(! "xlab" %in% nms) dotargs$xlab <- "time" if(! "ylab" %in% nms) dotargs$ylab <- which if(! "lty" %in% nms) dotargs$lty <- 1 do.call("matplot", args = c(list(x = c(start, data2plot[,1L]), y = rbind(data2plot[1L, -1L, drop = FALSE], data2plot[ , -1L, drop = FALSE]), type = "S", add = add), dotargs)) if (is.list(rug.opts)) { if (is.null(rug.opts$ticksize)) rug.opts$ticksize <- 0.02 if (is.null(rug.opts$quiet)) rug.opts$quiet <- TRUE do.call("rug", args = c(list(x = attr(survs, "eventTimes")), rug.opts)) } invisible(data2plot) } else { data2plot } } ### intensityplot-methods for objects of classes "twinSIR" and "simEpidata" intensityplot.twinSIR <- function (x, theta = NULL, ...) # formals updated below { cl <- match.call() cl[[1]] <- as.name("intensityplot_twinSIR") names(cl)[names(cl) == "x"] <- "model" cl$model <- quote(getModel(x)) if (is.null(theta)) { cl$theta <- quote(coef(x)) } eval(cl) } intensityplot.simEpidata <- function (x, theta = NULL, ...) # formals updated below { cl <- match.call() cl[[1]] <- as.name("intensityplot_twinSIR") names(cl)[names(cl) == "x"] <- "model" cl$model <- quote(getModel(x)) if (is.null(theta)) { config <- attr(x, "config") cl$theta <- quote(c(config$alpha, 1, config$beta)) # 1 is for true h0 } ## guess and warn about non-constant h0 (a flag in config would be better) if (any(names(formals(config$h0)) %in% all.vars(body(config$h0)))) message("Note: the (true) baseline hazard is only evaluated", " at the beginning of the time intervals") eval(cl) } formals(intensityplot.twinSIR) <- formals(intensityplot.simEpidata) <- c(alist(x=), formals(intensityplot_twinSIR)[-1]) surveillance/R/algo_bayes.R0000644000176200001440000000755112600466365015417 0ustar liggesusers################################################### ### chunk number 1: ################################################### # Implementation of the Bayes system. # The system evaluates specified timepoints and gives alarm if it recognizes # an outbreak for this timepoint. # # Features: # Choice between different Bayes sub-systems (difference in reference values). algo.bayesLatestTimepoint <- function(disProgObj, timePoint = NULL, control = list(b = 0, w = 6, actY = TRUE, alpha=0.05)){ observed <- disProgObj$observed freq <- disProgObj$freq # If there is no value in timePoint, then take the last value in observed if(is.null(timePoint)){ timePoint = length(observed) } #If no level specified. # check if the vector observed includes all necessary data. if((timePoint-(control$b*freq)-control$w) < 1){ stop("The vector of observed is too short!") } # construct the reference values basevec <- c() # if actY == TRUE use also the values of the year of timepoint if(control$actY){ basevec <- observed[(timePoint - control$w):(timePoint - 1)] } # check if you need more referencevalues of the past if(control$b >= 1){ for(i in 1:control$b){ basevec <- c(basevec, observed[(timePoint-(i*freq)-control$w):(timePoint-(i*freq)+control$w)]) } } # get the parameter for the negative binomial distribution # Modification on 13 July 2009 after comment by C. W. Ryan on NAs in the # time series sumBasevec <- sum(basevec, na.rm=TRUE) lengthBasevec <- sum(!is.na(basevec)) # compute the upper limit of a one sided (1-alpha)*100% prediction interval. upPI <- qnbinom(1-control$alpha, sumBasevec + 1/2, (lengthBasevec)/(lengthBasevec + 1)) # give alarm if the actual value is larger than the upper limit. alarm <- observed[timePoint] > upPI result <- list(alarm=alarm, upperbound=upPI, disProgObj=disProgObj) class(result) = "survRes" # for surveillance system result return(result) } # 'algo.bayes' calls 'algo.bayesLatestTimepoint' for data points given by range. algo.bayes <- function(disProgObj, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05)){ # Set the default values if not yet set if(is.null(control$b)){ # value from bayes 1 control$b <- 0 } if(is.null(control$w)){ # value from bayes 1 control$w <- 6 } if(is.null(control$alpha)){ # value from bayes 1 control$alpha <- 0.05 } if(is.null(control$actY)){ # value from bayes 1 control$actY <- TRUE } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) count <- 1 for(i in control$range){ # call algo.bayesLatestTimepoint result <- algo.bayesLatestTimepoint(disProgObj, i, control = control) # store the results in the right order alarm[count] <- result$alarm upperbound[count] <- result$upperbound count <- count + 1 } #Add name and data name to control object. control$name <- paste("bayes(",control$w,",",control$w*control$actY,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control) class(result) = "survRes" # for surveillance system result return(result) } algo.bayes1 <- function(disProgObj, control = list(range = range)){ algo.bayes(disProgObj, control = list(range = control$range, b = 0, w = 6, actY = TRUE,alpha=0.05)) } algo.bayes2 <- function(disProgObj, control = list(range = range)){ algo.bayes(disProgObj, control = list(range = control$range, b = 1, w = 6, actY = TRUE,alpha=0.05)) } algo.bayes3 <- function(disProgObj, control = list(range = range)){ algo.bayes(disProgObj, control = list(range = control$range, b = 2, w = 4, actY = FALSE,alpha=0.05)) } surveillance/R/algo_hmm.R0000644000176200001440000001146014615162374015070 0ustar liggesusers################################################### ### chunk number 1: ################################################### algo.hmm <- function(disProgObj, control = list(range=range, Mtilde=-1, noStates=2, trend=TRUE, noHarmonics=1,covEffectEqual=FALSE, saveHMMs = FALSE, extraMSMargs=list() )){ # check if the msm package is available if (!requireNamespace("msm")) { stop("the HMM method requires package ", sQuote("msm")) } # Set the default values if not yet set if(is.null(control$Mtilde)){ control$Mtilde <- -1 } if(is.null(control$noStates)){ control$noStates <- 2 } if(is.null(control$trend)){ control$trend <- TRUE } if(is.null(control$noHarmonics)){ control$noHarmonics <- 1 } if(is.null(control$covEffectEqual)){ control$covEffectEqual <- FALSE } if(is.null(control$saveHMMs)){ control$saveHMMs <- FALSE } if(is.null(control$extraMSMargs)){ control$extraMSMargs <- list() } #Stop if not enough for estimation if(min(control$range) < 2) { stop("Error: Too few values as reference values") } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) control$hmms <- list() ############################################## #Repeat for each time point to monitor on-line ############################################## for (i in 1:length(control$range)) { #Function is so slow some sort of performance indicator is usually necessary cat(paste("i=",i," (out of ",length(control$range),")\n",sep="")) #Initialize observations for each round -- can be done sequentally first <- ifelse(control$Mtilde== -1, 1, max(control$range[i]-control$Mtilde+1,1)) t <- first:control$range[i] observed <- disProgObj$observed[t] #Init data counts <- data.frame(observed, t) names(counts) <- c("observed","t") #Initialize formula formulaStr <- ifelse(control$trend, "~ 1 + t ", "~ 1 ") #Create formula and add harmonics as covariates -- this could be done recursively? for (j in seq_len(control$noHarmonics)) { counts[,paste("cos",j,"t",sep="")] <- cos(2*j*pi*(t-1)/disProgObj$freq) counts[,paste("sin",j,"t",sep="")] <- sin(2*j*pi*(t-1)/disProgObj$freq) formulaStr <- paste(formulaStr,"+ cos",j,"t + sin",j,"t ",sep="") } #Obtain crude inits q <- quantile(observed,seq(0,1,length.out=control$noStates+1)) lvl <- cut(observed,breaks=q,include.lowest=TRUE) crudeMean <- as.numeric(tapply(observed, lvl, mean)) hcovariates <- list() hmodel <- list() for (j in seq_len(control$noStates)) { hcovariates[[j]] <- as.formula(formulaStr) val <- crudeMean[j] #Substitution necessary, as hmmPois does lazy evaluation of rate argument hmodel[[j]] <- eval(substitute(msm::hmmPois(rate=val),list(val=crudeMean[j]))) } #Any constraints on the parameters of the covariates for the different states hconstraint <- list() if (control$covEffectEqual) { hconstraint <- list(t=rep(1,control$noStates)) for (j in seq_len(control$noHarmonics)) { hconstraint[[paste("sin",j,"t",sep="")]] <- rep(1,control$noStates) hconstraint[[paste("cos",j,"t",sep="")]] <- rep(1,control$noStates) } } #Prepare object for msm fitting msm.args <- list(formula = observed ~ t, data = counts, #HMM with "noStates" states having equal initial values qmatrix = matrix(1/control$noStates,control$noStates,control$noStates), #y|x \sim Po( \mu[t] ) with some initial values hmodel = hmodel, #Models for \log \mu_t^1 and \log \mu_t^2 hcovariates = hcovariates, #Force the effects of the trend and harmonics to be equal for all states hconstraint=hconstraint) #Add additional msm arguments msm.args <- modifyList(msm.args, control$extraMSMargs) # fit the HMM hmm <- do.call(what=msm::msm, args=msm.args) #In case the model fits should be saved. if (control$saveHMMs) { control$hmms[[i]] <- hmm } #If most probable state of current time point (i.e. last obs) equals the #highest state then do alarm # print(observed) # print(matrix(viterbi.msm(hmm)$fitted,ncol=1)) alarm[i] <- msm::viterbi.msm(hmm)$fitted[length(t)] == control$noStates #Upperbound does not have any meaning -- compute posterior probability! upperbound[i] <- 0 } #Add name and data name to control object. control$name <- paste("hmm:", control$trans) control$data <- paste(deparse(substitute(disProgObj))) #no need for hmm object -- control$hmm <- hmm # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/twinstim_iafplot.R0000644000176200001440000003063714426171115016701 0ustar liggesusers################################################################################ ### Plot estimated interaction kernel (siaf/tiaf) as a function of distance ### ### Copyright (C) 2012-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ iafplot <- function (object, which = c("siaf", "tiaf"), types = NULL, scaled = c("intercept", "standardized", "no"), truncated = FALSE, log = "", conf.type = if (length(pars) > 1) "MC" else "parbounds", conf.level = 0.95, conf.B = 999, xgrid = 101, col.estimate = rainbow(length(types)), col.conf = col.estimate, alpha.B = 0.15, lwd = c(3,1), lty = c(1,2), verticals = FALSE, do.points = FALSE, add = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, legend = !add && (length(types) > 1), ...) { if (isTRUE(verticals)) verticals <- list() if (isTRUE(do.points)) do.points <- list() if (add) log <- paste0("", if (par("xlog")) "x", if (par("ylog")) "y") scaled <- if (is.logical(scaled)) { # surveillance < 1.9-0 if (scaled) "intercept" else "no" } else { match.arg(scaled) } coefs <- coef(object) epiloglink <- .epilink(object) == "log" typeNames <- rownames(object$qmatrix) nTypes <- length(typeNames) ## interaction function which <- match.arg(which) IAFobj <- object$formula[[which]] if (is.null(IAFobj)) stop("the model has no epidemic component") IAF <- IAFobj[[if (which=="siaf") "f" else "g"]] if (which == "siaf") { # needs to be a function of distance IAF <- as.function( c(alist(x=, ...=), quote(f(cbind(x, 0), ...))), envir = list2env(list(f = IAF), parent = environment(IAF)) ) } isStepFun <- !is.null(knots <- attr(IAFobj, "knots")) && !is.null(maxRange <- attr(IAFobj, "maxRange")) ## interaction range if (isScalar(truncated)) { eps <- truncated truncated <- TRUE } else { eps <- attr(IAFobj, "eps") } if (is.null(eps)) { # cannot take eps into account (pre 1.8-0 behaviour) eps <- NA_real_ } else if (length(eps) > 1L && truncated) { message("no truncation due to heterogeneous interaction ranges, see \"rug\"") } epsIsFixed <- length(eps) == 1L && is.finite(eps) ## scaled interaction function if (scaled == "intercept") { idxgamma0 <- match("e.(Intercept)", names(coefs), nomatch = 0L) if (idxgamma0 == 0L) { message("no scaling due to missing epidemic intercept") scaled <- "no" } } else { # we do not use gamma0 -> 0-length selection idxgamma0 <- 0L } SCALE <- switch(scaled, "intercept" = if (epiloglink) quote(exp(gamma0)) else quote(gamma0), "standardized" = quote(1/IAF(0, iafpars, types)), "no" = 1 ) FUN <- function (x, iafpars, types, gamma0) { scale <- eval(SCALE) vals <- scale * IAF(x, iafpars, types) } ## truncate at eps if (truncated && epsIsFixed) { body(FUN) <- as.call(c(as.list(body(FUN)), expression( vals[x > eps] <- 0, vals ))) } ## if (loglog) { ## body(FUN)[[length(body(FUN))]] <- ## call("log", body(FUN)[[length(body(FUN))]]) ## } ## extract parameters gamma0 <- coefs[idxgamma0] idxiafpars <- grep(paste0("^e\\.",which), names(coefs)) iafpars <- coefs[idxiafpars] ## concatenate parameters idxpars <- c(idxgamma0, idxiafpars) pars <- c(gamma0, iafpars) ## type of confidence band force(conf.type) # per default depends on 'pars' if (length(pars) == 0 || is.null(conf.type) || is.na(conf.type)) { conf.type <- "none" } conf.type <- match.arg(conf.type, choices = c("parbounds", "bootstrap", "MC", "none")) if (conf.type == "bootstrap") conf.type <- "MC" # "bootstrap" was used <1.8 if (conf.type == "parbounds" && length(pars) > 1) { warning("'conf.type=\"parbounds\"' is only valid for a single parameter") } ## grid of x-values (t or ||s||) on which FUN will be evaluated if (is.null(xlim)) { xmax <- if (add) { xmax <- par("usr")[2] / (if (par("xaxs")=="r") 1.04 else 1) if (par("xlog")) 10^xmax else xmax } else { if (epsIsFixed) { eps } else if (isStepFun && maxRange < Inf) { maxRange } else if (which == "siaf") { sqrt(sum((object$bbox[,"max"] - object$bbox[,"min"])^2)) } else { diff(object$timeRange) } } xlim <- c(0.5*grepl("x", log), xmax) } xgrid <- if (isStepFun) { c(if (grepl("x", log)) { if (xlim[1L] < knots[1L]) xlim[1L] else NULL } else 0, knots[knots 1L && truncated) rug(eps) } ## store evaluated interaction function in a matrix (will be returned) typeNamesSel <- typeNames[types] res <- matrix(NA_real_, length(xgrid), 1L+length(types), dimnames = list(NULL, c("x", typeNamesSel))) res[,1L] <- xgrid for (i in seq_along(types)) { ## select parameters on which to evaluate iaf parSample <- switch(conf.type, parbounds = { cis <- confint(object, idxpars, level=conf.level) ## all combinations of parameter bounds do.call("expand.grid", as.data.frame(t(cis))) }, MC = { # Monte-Carlo confidence interval ## sample parameters from their asymptotic multivariate normal dist. rbind(pars, mvrnorm(conf.B, mu=pars, Sigma=vcov(object)[idxpars,idxpars,drop=FALSE]), deparse.level=0) }) ## add confidence limits if (!is.null(parSample)) { fvalsSample <- apply(parSample, 1, if (scaled == "intercept") { function (pars) FUN(xgrid, pars[-1L], types[i], pars[1L]) } else { function (pars) FUN(xgrid, pars, types[i]) }) if (length(xgrid) == 1L) # e.g., single-step function fvalsSample <- t(fvalsSample) # convert to matrix form lowerupper <- if (conf.type == "parbounds") { t(apply(fvalsSample, 1, range)) } else { # Monte-Carlo sample of parameter values if (is.na(conf.level)) { stopifnot(alpha.B >= 0, alpha.B <= 1) .col <- col2rgb(col.conf[i], alpha=TRUE)[,1] .col["alpha"] <- round(alpha.B*.col["alpha"]) .col <- do.call("rgb", args=c(as.list(.col), maxColorValue = 255)) matlines(x=xgrid, y=fvalsSample, type="l", lty=lty[2], col=.col, lwd=lwd[2]) # returns NULL } else { t(apply(fvalsSample, 1, quantile, probs=c(0,conf.level) + (1-conf.level)/2)) } } if (!is.null(lowerupper)) { attr(res, if(length(types)==1) "CI" else paste0("CI.",typeNamesSel[i])) <- lowerupper if (isStepFun) { segments(rep.int(xgrid,2L), lowerupper, rep.int(c(xgrid[-1L], min(maxRange, xlim[2L])), 2L), lowerupper, lty=lty[2], col=col.conf[i], lwd=lwd[2]) ##points(rep.int(xgrid,2L), lowerupper, pch=16, col=col.conf[i]) } else { matlines(x=xgrid, y=lowerupper, type="l", lty=lty[2], col=col.conf[i], lwd=lwd[2]) } } } ## add point estimate res[,1L+i] <- FUN(xgrid, iafpars, types[i], gamma0) if (isStepFun) { segments(xgrid, res[,1L+i], c(xgrid[-1L], min(maxRange, xlim[2L])), res[,1L+i], lty = lty[1], col = col.estimate[i], lwd = lwd[1]) ## add points if (is.list(do.points)) { pointStyle <- modifyList(list(pch=16, col=col.estimate[i]), do.points) do.call("points", c(list(xgrid, res[,1L+i]), pointStyle)) } ## add vertical connections: if (is.list(verticals)) { verticalStyle <- modifyList( list(lty = 3, col = col.estimate[i], lwd = lwd[1L]), verticals) do.call("segments", c( list(xgrid[-1L], res[-length(xgrid),1L+i], xgrid[-1L], res[-1L,1L+i]), verticalStyle)) } if (maxRange <= xlim[2L]) { ## add horizontal=0 afterwards segments(maxRange, 0, xlim[2L], 0, lty = lty[1], col = col.estimate[i], lwd = lwd[1]) if (is.list(verticals)) do.call("segments", c( list(maxRange, res[length(xgrid),1L+i], maxRange, 0), verticalStyle)) if (is.list(do.points)) do.call("points", c(list(maxRange, 0), pointStyle)) } } else { lines(x = xgrid, y = res[,1L+i], lty = lty[1], col = col.estimate[i], lwd = lwd[1]) } } ## add legend if (isTRUE(legend) || is.list(legend)) { default.legend <- list(x = "topright", legend = typeNamesSel, col = col.estimate, lty = lty[1], lwd = lwd[1], bty = "n", cex = 0.9, title="type") legend.args <- if (is.list(legend)) { modifyList(default.legend, legend) } else default.legend do.call("legend", legend.args) } ## Invisibly return interaction function evaluated on xgrid (by type) invisible(res) } surveillance/R/sysdata.rda0000644000176200001440000002375014026445515015324 0ustar liggesusersý7zXZi"Þ6!ÏXÌàˆ¸'©])TW"änRÊŸ’ÙFí •ˆX ™è²#QùÅd[ZfFdOŽ~Ú’äÎ.äe“Ð$“/|¾Ö¹úë<‚07qÂKÜœ—éÌ©nÕ,š,äm?¤TKùD´Ÿâ¼åU0¼NOêpÖ1HæüÉšsÏÿQY]½ß\Á¬fÁÕ… žk?ÿôÀm¥; ·•M4H'hN­agí¬¢ì!7¶}å[÷ݼݫË!ãß÷hˆ(`'è>ò:¥uÉðG«x¸Ð¯9¨”#Ñ#qÊ2shI°Ê¡¿qÕÐcUû `’×#ªÐÐЬnt Ãï!iYO¬S„7ô?áb-åI¢ÙíW¿P–:Š› Ò 1—IÊÖ!i}b âTR˜|òeXn« ©#»û@DK˜»P †›wkNÊÔ'>‹ÍðÓMˆAÓfSÏï6]BÛ®âZ†Âohó%U•B±rÖ¢ö©”-Ojg{d3ºu1êð¾R˰OVGÀ6Àǧ êS»§î\C£ôiù“Òn–d‡I%Ú?W•ðóÈe uP?ÀÛ¸£†e7äâÖôÈàƒ*£zøØ8û]ÂÜÂ/y£œŽÒƒQ«møfµ]>;bgâ89 9fœJe\uû'Éù–KÍi\Êô‚LÒòÇ$QUdú—Š«.ÓìD-²† £Æ7ì‡l¬¿kuij»úʼ܎ d÷1#Ük½‘ü¢šöª½Ò^u#›1kà{¶ß ˆ?’Úá&—‰·Uéìs!Ï/sq1¾e»< ¨$ •U亱ˆ"€–}ÔS¾ ‰¶î%_íŸÜbð÷&á !}ݰªI¤ ËF»Á®Ä@Ûˆ(#j€ÂR ´ž,0ôy—Á¸ìV– ?ƒ«§ïôÏ‘æ[þü·– 5{‰ÓQ@•.dõÕ{Éð5´@QWÖ9¥ÈÓ´ºäÑ-edÛðæÒ‰W: Ç»þ6^­Q•xUâ6<§6çÞØ=³Ú¼®L>-¦ü¡¹àÞ¿ <„V^Ò¸`Ueñј&àà&‚¿vh9h{5®}‹Ú¬ÐJ U‰){à°*õq'!fÕµþÒ1ëP @™|Ö«j;âñ”•4—hea5W˜˜Åð ƒ'F_Ï-re—âøž0Ec¼Î—^ûߨŽèFÇ~žJ˜j6­UºËˆ1“A7œŸ¤-gŸIASBDÔÁ¸¨ØMÌ'î&†þ!Gª­Êp÷ÿƤÞq'ŸkŒ˜¡û‡{9•’µM••ÛApÊb»C)å­‘YNbÄog–\À6PŒÂZËßî ~cöQ)%½”4þ‘[·XœÈúß© rK` xßÓ0…àÞ†FBI™(Ûï‚@­’nGtZ¿$wxc= /šÁx:G•ÝÛ"X¢9ωÙÀÈßQJ¦§ßž,Þqå¾]zïuõƒ·ÚŸqIä ¶Õ]JÀõ…¦˜¤Ü‰1¯Õz=×gžE-±ÕÁÖìQ6Xµ­Ý»j·?ÃcLŠV‡³sCÌWÕ/—'tù¿iªïîq™• ÝÊå±cİ–a]¡F2•jd¿¸"—(ÒWðµþ`†:·è3Sªf´ lߺØ8´âÛ’æ)³]Šö…¦6 ‰g¿ëK¥iX¾«.\Yn¤ß³Çh‚…ámÐÕ>,ì kGþ“YÑÿbl‹tRáÁmvg» Ô·†9èÉÝo½gÅÄ3—›+4¢Ÿ¨ƒ³%²8è׻8²·ñ˜e…]ãB…'ÊÔ ÆÓ}D=Ž?“7²H³$‚dè]»t¨xVĪXÞ’r OãÕÐ’myåøùîåç«·Þc@¼˜Òi‘ÅÌ,©$JnÒ²:†—©Ï:Ýe¤ëxaf} Ö­Ô“¹ ¨QkãYuý9¼OÀ¡í…¡šn\·mÀ̶éá@g±Pú_ –S&–„r ñQ‰«šˆ¸BÐ벪óÓBÝ-¯± êÌØT7^J°?éæ:ñ‘0#B׊)¥æuW{¼ýM:à¼Úìš1ºR/›§ë ©‡7ÈïŠÜ SDÔ§ù#ðGn~‚GùL_E*ó#ÁºiéBû¿v=Ar²]ïF~Ùjˆ#`"!aEx²…ÚøÜ ÿJj²(·ÃÇ×Þÿ¥Ãô^ë©7rWÌðŠVöC‚aÒç&"èUÃÄÒ'[äCˆW¶Ô·WzùJ,šÜE2nÿª.¾×ªM¥X_GUúmya Û£ <8Î>êà!¡…aHtÌ’ò³>‰<×ßD¼kab8YœÁ–¢4&Sùø”¥±ÐM’ôˆ¡œB·T4Ï¿æM#\¼\y_tDè:êÀIh"0™ƒfk7SÀ\TåÔ}0)ÕÅ©¯“< ˜>†Âî £å…LYŠŽü@ëZ§¤ºòî1ñ<õÐ: 5šÇÿ= w1äI¡_ðQ÷åþÙÖ´Ö-¥«]ý\‹%?ÏK!_{YbÚ¹¡È]„ 7ìY<7âÃŒ©€gøx,±*Vƒ¯oܰ(©/¬2Gë Ž éØçeJ"0¡qõæ&úKÏJílΊ$“ ÇÖaÇ´‰Ò.V¸sûž+‰!µÎå©ÙÄ%'Žp 9ÀŸ‚,XÈÔóì}ŠÓÄÇÙ5&Ç88 ÷c&"Š,· bó2 âÃÀ hÓdÜS«“¿>Qk;Ëd”ÆssY’–Na3µ;Ž©ìè©Ä|Ž41ûw8C¯_LFì2d¾ãÝš^ç¬e¥ÙÑŽ`³ôLÞ³$^J¬%1Ы4?¬¶É€-Š˜‚!iËÂ><‹?Ê0=¦ÂZ¿k“cÕQ™Ô¹Šž^ax©mdqýá°ØD‘ÈFµõ mŸZL¬ÔÀEÆ_Ë.à‰†{&q(Þ\Ç×Ìq¼¸Öž ÀfØí;7×FÊïŤI'‹¨.¨e>ª;mTÚ\*]îdjP߸ÂÍùh#¼c1¨"­wÄqÀÓuâ[gÉ,¨õ„Eüï1ŽDg’¬Êä(VѰj)Ó W&:àÚl± ±­"F©-ú‚®Hn o©?UÞÊc8+R¬†ËM°ïúÁà>î4øÖSkl­¡`Wî.«öçjäÑ—êïàn«øAi9»)æCu—Ýk±Ý¼k_Yù8Oe‰ñãòeK £§îh‚Z/ååuyÐ2ç±÷< §®x zMžüll4<+Ý¥ý]ò' "©rjžË×$hnÅ^†fƒßþÿ&]d«5nþ™XÇV™mo†á'µÚ†ÔrKýCFêg–u)®wåžµ40Æêð˜òyÃUzÞ€C*æ N þÿÒ¾oMQö*êÒÏ}¹çºsMW^TD šL-,غƒøLA¢Òë8…¬NaµŒWW Dp<í¤©»®Ô,1†e p¯è$D³ ³O=ý]滲¨b<2‡¼½BÁ\g;À)ràÚñ„U¹ † à3!üß+@&òã«MÂVø×ó" §MmünØØŠ OÍT“hѾޮç9h€•Œ¦è8°ô>Ì`¢Þu½· }½Žï9ID_\þ·äŒN²`]š.ô$—²ýR¥4ÄTÿãÆ%ÓÑ,°>2”nä%¨¨µ° êm>£Ç„aa`\çþXÀž=À=€\Þ‰ 0D,žµë`ãÔ]žXº õž5½¡Ì[ *6¸ D|/–ä>\ äû­æM\iÇ…]îƒÚ¹H¥úµTÜšà m|…”Ï4µl“Aê·GÞUô‘˜?¨ /R÷F$Ÿ6ÅeòÒ§^~=<ý…®”ÅVº˜$ÙÆG‹Ë=PªïÛñL_ïŒs£ rÔ—ð\G¸ëª‘„ÉÝZo Ü=Ѳ£- _\âD뾤Ù0ËIŒñTFpSCš¯ÝŒA‡Ã$ÎyÅF-a8 hëæÊ[‹H}€£tÁ¹rÒ¼àá_ÛŽP­5àò†ß&˜ßRódàØí¶Õ Ìú–}Ý‹6 ªÊ ¼p.­§ÿ©Oåug³8qlj6±žŽhD¹ÊºE±1 –ìÕ…E Ú)ÙCȾþ`pèQ¿­i¤u³/8·@g¼VGäžëá›É$ÙHSœé ›~ ¼6Ô³—Zb]ð¿qì.‹8üø,‘•Q¸:ãd’ š»~ç(/ÏE%ò¸qàœ‹„)úSºç58J!”-<'ÊG‘AªŸv@ÓÃVk9n‘~‰?õ°ÞÆ­d*B¥mTòª"=H†rYWn;ˆ§{Œ¬LE @›ä¿ãøî@аUV}ù ±öS|+Šå™6\ŽÁXE:,"!RЇf_žõ}ôÙ¿mÄ0è1N7 °ö/Ä/XÅèûâ:þJ]ͱ§Ì‡š’*,VZI 1$iF‡j„¢¹Åzª+Ó²,c×LÙ7iÔŸÙ»ŒgÓ+|F¡ù)S ÔA%§oå‡vÜ<÷=ÌEQ GÝGH%Æï•ž_öæbÓªb¯œhõªå}Zú WUɯÐòî_}!ζáFp Ô<¦opq9ñXœ¨•aù<²àïR§ 4± øùcå_5”è2‰º Å™£­”UM¥Ž塀ßE·ÔDêûž¦ÜUÐ#¿ %ëðñ`!˜Bc"9jr"ÿ:·[nJV ý×i;†ÙÒýWÌx Px §³tò£N¢j.Rf¼1Ý‹ª.<¸8ySþœÚoß5Hû‰úÚ„ÆxŠ ½êW§1[Á,*ªnr±É÷ä2~pºÌ«º)á¥ØRuº–£V“€ ªšIP;û¢¨§æ9ÆÚ)TQÁ†Id!7Š…a>§µq…!éæ·ÙàÄÿý»<5tö yí‚>‘öü=';³G/ÈÇêîɯ.æn9öGL7é4Ž-‹1ªªë‚z¶/ÎÈ54¥üŠ««ßØ—’_ºu6÷|¨ ¤ÔömOFìò}¢Àè¦Hq>í™A SÙq‹±/•jáH§½ò–H°´£?¹²|=ùx:E%pr ãe‹Œ×‹7ö´$$Þ0vCè'–PùòiƒÿßrùA´ónéÈ"£(™Õ¡ Q évu¾ â˜ö_1ð 8©5™\3€B–š“ýû{Ù $¯¸n5L<Èmî×¥QßG1Ì«L\7½'± OGS+~}¢áÂ#fþôÐ"êŠf_FB¸©xŸi©Á‚܃²‡öf*fÂ0ëÃàÚƒœiD?e2†89ïr :«£Ï4æàÄj6ç4”LàôÀ—'p;¡¬–ÉeO™‹Îà] #é±ñqbÇŠ%KùÊ"v5ådt:t‘tè(û¹Ýó<ë3ìÍØZ9‘šy\½ÇœèÁ…¦ƒñT{Žß¦ðUh;|Þcâ$-©À8vdtie¼oó½óù! œEJ bº™ðóyåZÞ4px3ejüÁƒÿà ¸Ý7ß«½‡y!ª<±t8\)÷A6ý yœŸEÅ ¡­Ý„zµî6” Nöåa³Oé]ª6!æ¼ÜÐâ€êÒ°’§°[ÓóúXÕ ôwÏH_¤‘1#[ÃX¾µXÊ!÷Áö"pZzÐþSÅwäæxÖ5ýL5®¢.œº¥"±ò´Ñ”®7aÚ¯[v}²q²æþ-ÈÎ?µ;*} S‡‹ m„ûÔ^:Á]³Î˜åRÃUÍ;cç![Òk£øÈ–×A`ËÉ Öƒ16‹ ŒàÌ4î¡©.X|cî(ëI‚ruþè#’5{´ ”¨š÷zè Êð˜ì…íc_'¯&9–ILãZgX±\˪Á®âFmmŒ½v‘ÎñÈ¡é8*YJ¥»©µªöØV•5ÞªD® x´:Üns£ñý±6°Š¬ ?O²Ú=&šhþT¼9û$Èsð^¾9¾VdDͰY†b‹Æ>“›¹’=ÁÄç~s€ÆRG6kdãÆµ3û}d¡{µë­³ šÓn棼Ü¢ e<ø…p—ÔNoÂû­Ñ_Ž&‹ô•Â=?_¢”ûŒ'"ÇĈò­Â(…3J×íߪUùitË‘Ý]·Ú‹#>7K%\4aèôàÕb?œÔ3‡Ø˜¹Ò0OR£—-³í-ðñ3NóÂs+Ó“Rž6Šî” ¥fÈ<ºNwì¡êë»Nò#ÂíÉ !±»ú•²šõ^×)h¡FwxâA³L£V8ÔôÎ…·wþý…ŽCX‘ã°}Á•<ÌOÝâè/U õÕù4%:ÊQÞøuQUªÚd€\™ªÇµjI„QNyÆP‚þ$Éìk×2–çÞ‚:S~IY®f€cŠ(†Çl×%Û—=KЩ†”)õMz³oó#´{ZØâ¸h©’ V7ì½9vÓÄ;¢ êß,d1ióϪ‡W’²Rdr]EC¬¨ENÒ’ì‡_›žãáð¹r3t$`+]ÃÓÛóôeÚzÀªGÍ:0`§ÙlVË®&è¢Ôºc@^îBôkµàPã’=/_Þ#“ö‚X¨W’­vº|—‰ Gk}Ó­¼ù1í¨M¡­Ü<²Î%loV—­*ƒíò¡ñÜۆ¢“:9Ö¦Ðc-žìÑ=æ•Jr-gí—| -—y™¤#¬S'Ü2Ÿñk¨KÞ’l+¬—èpˆ8¥tøbfØöʱóÝ_ï-š(<щÉe+täµ–vÿÞ'U¨ê—W*/æxÈýÌ› \Ðæ]p•~gÞ‘µ r·é<€ðȲšþæb€9 ÑŒG²ûøÑ.)È'%>$"GÆF·Äa²åIsdƒÕ¹‹™Tw•?ˆ$LÅÈ'€CÙÄòÛpsGðï1I{i·/@{|U¤êuÜg Ád¹_ëzŸ+µ€¡gíÈðõy? ÊÊe§„jTYs¢^ªçH]ÆÊ뺕r} G$9Ž|›”%(p:(dŦc)_(õÐö&%ãöÓxu¿cå´‚ølŸøhÿ7³¯HÐåâ‹þ!0“0‰DykŸӞÜÔDmUü+¾â@5{Ø î,ÀcÈÈ:ªƒ kð£-PîVã²ùÞ™ê—rÐB橉ƒF{ÊçNÙræÕzüŒuâ=ˆø”óM.Ôª†=€ÛA®@fJEª)êŠ,ÓMnÖ›=SPGmtÃH·èhŠ ÛÃ= { “¤€úðPsš¡ Ñt.ã4âP…ÃÚw©µï~—s—zˆ¶º)Þ'dƒrî$AJ­‚®wu™Q;ìÈçÜ©U)Zñ>’'Ÿ’*`?)Æ:O‹myûn׿„ËmزLV¦Ñäº7’éÓ¹Lû¼IS‡O ¼áH» þî1°[‡7&%¾ÉfMVYå¿åÜX~ýÉt‘Ð'U*ëñ'"·”·µ›_†ÃõmM;º+á’V“8-Ý52pÖ]Óžv í¹á'0Ú¿°&l-þÎN·ªbkÐfv`ñÒ§Ž€ ÃNM*¸3‰ŠéVo(-—TyM‡Á6 l˜§%Ǩn©z(ep!¶s0…/YE‡ñƒàw/NâÒÓLnÇW³£•”‹”+*Û–V¨ ñáhþש±ºU4I×|[«íöPKZ;ø™IT×8Kë,¿­4!س+Û¢yØù Μ…K”ׯùÅÂZ¡NÙ“Nw³ë èNì [CÜÞ‹ -¼ÅaP„ë6äZÆ»„1Ò9óÒ>K ©¼â+ÑËùYR N‡Å ÿbüÄ?ñöÃH;™NËf( ŒR_Ž~9ïDkÒDtC³é P/]°cŽ÷k‰DJh·:Ú£Ñ×dR+2za,Ñg#6ÂOÅ`kž ÎÏ,ä5¬‚CÂe…aâìüèøÒ:ÝÆõà°Yäþ÷Êè … +mNQæj¯šÈcçü@NCs:¯”û]dÏñ&ÝO½ò §ƒÊ;~Û´ÐýF „mg—B•“Ôj?"ÝéÇ.Þ®–$hƒ­SS•Á´Î‰yÝùX”’¡®¢Ê¬22……,(35‘µtýµœÊ‚>ð¢×ÄlºææŸC¼©ß,üÄ}CÜ„æä†Á¶ùÆéàÄõ«Ò’nÞ1 ¤?&¿°ÞB"¨}ô×,òÉóbe„Ô†N©‰ÆÏ¸ÇÖ†7M¦@bðŠ|nÙ Në;€f^åè>•£ EïÇÃøÉ7Ǩ%虲¯¾Bÿ‚n¼î®·ÂÆ×UZ6,ÈÂÞ#Yˆ6ö¦·G½ìàѰÄÊEDñ¿=„ñÉJST豄¢"æ’\`aèï»iûpË“¯«QµÞå0¦'óåC]–@رÁ~§Æ4Þ§¨PÅ ç2q Žuio1c]±ÿÄïå÷x^_‚pgÏñ›˜YeÃ"´6×µ†S]üâ¶Eç0jò™ f½Ý7e!¦JÉ;UYóN Áñi&"x‡Ì:œç¹îÏnòK¢>–lo/ÚÑB)T ²ˆ0/reSò vÓNhA5ÄcÇ@°éììÔ‘‡È“ÞÖ^QQYwç9÷bñÜçHV[n,f­²sIìðeZvsÖ?ÉVà†9GöóG¬˜Ö}Ëw¿J¸à|f´ÒhP³eþ†hñð¤ˆ#[¨VEá d1éÇZØÞë8‡W‡Fg×ËßU–Û2Õ?isƶø›JÁ<ÅÍK(%…9ébÉý’†ôÈ +§o™ø±ðËÊhÖíôéóަÃ_°ÃÃz7^y{Fw_ÍG¼þ)\Žc§ S’½Û«³U^!]@“Ò·òòa_Ã’"¼­³.2yŽ)õwNÂO§ã®9€sƆ†3¿ÿ³Œ!Is(åÚ–|r p¨·à:˜Nœ^Þù8nâ뜭Þ¿WÐ:³ü«è ÓgD>õ¢ÇwWÜNßýmcÐ’*W>jzƒC/Òýia’ajT  ? MñEaè$5‹Lû6é´°z'›°ï–DÝá‘ZÌ|w  š«Ü9·In}!F¯Sì\B1nŠž%$€î‘dmPbJ[~pQ¢ÎÖ–V›GÿÔìe˜UL·™{¡ÑÿÜáúÍé‰ZU'ìØÀ9›inW›øØ›÷ù!ò‘¶'زJJ4ÛYþŒn7¬Ð—.Bj;ýÂç´½8ŽJÞ©cÓÝÑM*û4}Å ˜ÜçaóMž$$«ì£ñÓäü2E®uªmQhBÛáÂgæË hbÓ‚æ {\@æ|RD Í÷”AI6O¿õŽ…¹2|9ÉjžÎ"¨Îß|*ç*ã[Â)PågÊnéIQE‹ô:ú— m-(ãÕ†~œúlvPÀ :¢µoq‹`³ñ%¸ªE¡Ï¬RÐ` ëÉÝ‹š¢n×Îê„”Í'›ýNÆyQ~¿èÜ“³>àÝèLÌûŵX0Aí‡"ï¶çbt#ÄwÊþDæ(m`äö¬‘tOe? —=‡ÑŠh~ÕÇ Jú3˜­—e_< 1 ñ´­õ™”¬QÈÑM|ü¼­SF5mÆàÓ’BÑèW¸ÙA{8çíÕ@…=q’˜ï]æLûŸ’è~â<Ú”è¾ÇNkÀá÷–}Œ‘Q¼%e±™°pæÒ¿9À'‚š†lË/{øyÍ¥4[Ò<¨çûöKrãÏÁ‡Y^ÔÉ*\C„tÃù4í-bˆi#YœATà£K Gø¤-4ì`m `ÿo+kµ)Ç€^,âÎAhÇ5ÉÆÿªnÞ—;µ5<…g_é‡õ° è'¯eHbÓ*~Bft;A‰ï";„gé_mŠôèƒPèJº«P(j)>¶µY+NH—@ܽSYLÞ›eS?2%õxìä3„2ΔùÇš ~sAË€GðŽ’£E&µÝ"5·“Í©%T›êoàâÊÏ+*ç–Ö’øµ›„sÒªrk¶O©b6‘äxOOÎf†“kÄÅs j•‰Fåóô©°z7JpþLK‚* Òd‡<“;ŒÛàÿ§!ÛÉNðT‘NOA@ª‡EÕN†c©´£NI¸FXÕ­‘gcŒ\°Ôªkݨ㼾u´…D)ž.K¨U^è—è@R¸JüžÊËÍ)̪“˜ï?c¼¤‡X›¹\µûÍMÿ<ÒˆV«½â¢­ñ{¿D•QDÖÆ±Æn¦7 `<`WAiï+›üÇzabõ‰æÍÿ ð’^†‚Ãî`åù!|96þv²4å[û³vÑN ‚ï±ò0œÊU‚„;Æ,øaXŠlìÛ NŽgZWT´î¡Ý_Öø~Äâ’œ;lc<l<ÓÔ¶# Uл¾/ {•(:ùQCÅP“‚”2)/¦Ûøân^ ›<í‘CÎÜÍþ5GMÊÉÍY<¸IéŸj<ÂÅoñæ˜P¦nÑÕYËj¦y}á϶¡YDÊnZ*ªW2›`Cð¯9?/á|›Ë"¯Æàiá’éߘÓp3ádÅ(htFÆ5#©×øn|²i;ÊXü®>Ü9õµÎ~Fr„1c¨Ó0ÖÖŒðQ›1bã¨hVM°ŒÈX÷wÜþ“h|Ó©E¢(‰ZN^½‹— ¨M&›¯ ý‡lµý-ê)l=…>ó£+ûÂózúÚ{[ÔIn òªñ#«¬k'­LaŠº†ÅöÝ¥)ž÷%[²!Úçä éj?lŒ6!ÛÁîÕ'l‹Ú|Ë/¥Ÿ¬J³¼CN{?Ný•Ðá›Æ*€ËÎ^ÞM´>F˜Ì_üFü7Àæa ù‘²˜ò-àÐËÔFVmG‹$|ôå#æqG;SòòÑ.µÇ¾‰dw?³8iáÇ¡‡@ÅÉ™Fÿ\Êðëß2øg‰fÆgŸú.øl‡e8)m]*uj†Ñ¼ÇÎüÜ^j¹{AðEÂmL.îiq–¤H>‡£3ÂIìÊ5÷ï’dpúÃ;(2 TþG#zôðSà¾B u¨Ð9õrÔAý&ޏ»ZòÀàð‰ò#A® h0È?ïÆßÅ—²ÑÙM·dtTÆÍ‡ä" ÜÔ^;?!Á½"ÿy¹Ë"¥×ÞÎZI ñËMÓ/-¥¥¼R–yBÚ{Št)Ú±“l¥Í38•ÜУSX×°›Tàï,11âîξ»bIϊ׈맆qñ,ñ̼?€O.m«G2°È¸=`ܧ%šÎ%k}Àdóγ=ꓼ$±î‰ªãnŠÎ*õ3!ÜîÈY)¥fÀTUÆž¶{.F‡.Ùz„˜‰jwN3_57´jwX V Œ¤ÿ‘à+W‰EEðæÕ„)´Íª_ˆÍð½Sžm7næ^ú—NvÏŠè¢Zˉ8®®d‹“mReS…·ß%šB‹Nîúqøî|ˆä|[Qosè\˜ÜËܨNzz*w›Œ^ 1b× õâçiUÄÇ[#“]^ØeÞžÒK®,O}œ Ï¿qÍñeò¾Â‹GÒ*ZÇc4ùùm€âŸÞeXÑj¼wB÷®ÅI£¥'°£ã´‹€=ׇ]äJÖEû8ÿ}=–8m]Ü€X¦Ú' ­2¯¬‰›2Ág ²{á3GÛS†œµE{.ó– ½½âãtùÜW‹UÅG Á6«/m#ý½1:l×2á t¶‚èáÉ0€¯ð’$üã/a r}èé‘1ÿ±R÷œ»õM'ŠVÃ3„ùÚ’3u ŠÊBzÛûpa´‹2“y‘îÚi4Dª^SLeÚXÉTa’˜¾ŠjÀ¦ß›2Êß…2ÔOTÖC¥ëûŒD6dŠþ‚ç™°ìƒy|Þå_ô¥™³µzÝ÷"yiXé‡àŽ‘ÉYÿ›­0™prM¤;A88d×F÷Ãr½Œ³9¤²¾´Ÿ¼kMª5?„.s ˆ3lA^F}>¼ÛY`˜#ùûètv°‹>H•Úí>ƒuñáî¢Ð²Ïp²ï:•*ÎpŒ)s9†wÅÔÇÓÛ§bŒHDl~²§³¥Z»_À‘Ë£ g/!i—ë¿fm¢6¾lä³d§lh™eX|ª'VÙ›Ö‹ ´]]ŸÑã0y/ºNŠÅæI–ä~ÞPžÁ -ÁO¹‘gßm>0 ‹YZsurveillance/R/twinstim_epitest.R0000644000176200001440000002627214426171115016720 0ustar liggesusers################################################################################ ### Monte Carlo Permutation Test for Space-Time Interaction in "twinstim" ### ### Copyright (C) 2015-2016,2018,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ epitest <- function (model, data, tiles, method = "time", B = 199, eps.s = NULL, eps.t = NULL, fixed = NULL, verbose = TRUE, compress = FALSE, ...) { ## check input stopifnot(inherits(model, "twinstim"), inherits(data, "epidataCS"), model$converged, isScalar(B), B >= 1) B <- as.integer(B) method <- match.arg(method, choices = c("LRT", "simulate", "time", "space")) # eval(formals(permute.epidataCS)$what) if (model$npars["q"] == 0L) { stop("no epidemic component in 'model'") } if (.epilink(model) == "log") { warning("boundary issues with epidemic log-link; ", "refit with epilink=\"identity\"", immediate. = TRUE) } if (isTRUE(fixed)) { fixed <- setdiff(grep("^e\\.", names(coef(model)), value = TRUE), "e.(Intercept)") } else { stopifnot(is.null(fixed) || is.character(fixed)) } t0 <- model$timeRange[1L] # will not permute events before t0 T <- model$timeRange[2L] ## auxiliary function to compute the LRT statistic lrt <- function (m0, m1) { l0 <- m0$loglik l1 <- m1$loglik c(l0 = l0, l1 = l1, D = 2 * (l1 - l0), converged = isTRUE(m1$converged) && isTRUE(m0$converged)) } ## observed test statistic m0 <- update.twinstim(model, data = data, epidemic = ~0, siaf = NULL, tiaf = NULL, control.siaf = NULL, model = method == "simulate", cumCIF = FALSE, cores = 1, verbose = FALSE, optim.args = list(fixed = fixed, control = list(trace = 0))) if (!isTRUE(m0$converged)) { stop("endemic-only model did not converge") } LRT <- lrt(m0 = m0, m1 = model) STATISTIC_D <- structure(LRT["D"], l0 = LRT[["l0"]], l1 = LRT[["l1"]]) STATISTIC_R0 <- c("simpleR0" = simpleR0(model, eps.s = eps.s, eps.t = eps.t)) ## LRT p-value (CAVE: invalid for the default log-link models) DF <- length(coef(model)) - length(coef(m0)) # number of epidemic parameters PVAL_LRT <- pchisq(as.vector(STATISTIC_D), # drop attributes df = DF, lower.tail = FALSE) ## result template res <- list( method = "Likelihood Ratio Test for Space-Time Interaction", data.name = paste0(deparse(substitute(data)), "\ntwinstim: ", deparse(substitute(model))), statistic = STATISTIC_D, parameter = c("df" = DF), p.value = PVAL_LRT ) class(res) <- c("epitest", "htest") if (method == "LRT") { ## we are done return(res) } ## otherwise: determine the null distribution via permutation or simulation res$method <- if (method == "simulate") { paste("Test for Space-Time Interaction (based on", B, "endemic simulations)") } else { "Monte Carlo Permutation Test for Space-Time Interaction" } if (model$npars["q"] > 1L) { warning("epidemic covariate effects might not be identifiable for null data", immediate. = TRUE) } if (!is.finite(STATISTIC_R0)) { warning("observed 'simpleR0' test statistic is infinite; ", "maybe specify 'eps.*'", # or use D-based p.value ... immediate. = TRUE) } ## define a function which generates data under the null generateNullData <- if (method == "simulate") { if (missing(tiles)) stop("'tiles' is required for 'method = \"simulate\"'") rmarks <- .rmarks(data, t0 = t0, T = T) function() { events <- simEndemicEvents(m0, tiles = tiles) events@data <- cbind(events@data, rmarks(n = length(events))) as.epidataCS(events = events, stgrid = data$stgrid[,-1L], W = data$W, qmatrix = data$qmatrix, nCircle2Poly = attr(data$events$.influenceRegion, "nCircle2Poly"), clipper = "polyclip", verbose = FALSE) } } else { function() permute.epidataCS(data, what = method, keep = time <= t0) } ## interpret 'verbose' level .verbose <- if (is.numeric(verbose)) { if (verbose >= 2) { ## create '.verbose' expression to print test statistics on the fly ## (will be ignored by plapply() if parallelized using clusters) stats2string <- function (lrt, simpleR0) paste0(c(names(lrt)[1:3], "simpleR0"), " = ", sprintf(paste0("%4.", c(0,0,1,2), "f"), c(lrt[1:3], simpleR0)), collapse = " | ") cat("Endemic/Epidemic log-likelihoods, LRT statistic, and simple R0:\n", stats2string(LRT, STATISTIC_R0), "\n", "\nRunning B = ", B, if (method == "simulate") " endemic simulations" else paste0(" permutations of ", method), " ...\n", sep = "") substitute({ cat(STATS2STRING) if (!lrt["converged"]) { msg <- c(m0 = m0$converged, m1 = m1$converged) msg <- msg[msg != "TRUE"] cat(" | WARNING (", paste0(names(msg), collapse = " and "), "): ", paste0(unique(msg), collapse = " and "), sep = "") } cat("\n") }, list(STATS2STRING = body(stats2string))) } else { verbose <- verbose == 1 } } else verbose siafInt <- NULL if (method != "simulate") { ## if siafpars are fixed, determine siafInt for use in all permutations siafpars <- coeflist(model)$siaf if (length(siafpars) > 0L && all(names(siafpars) %in% fixed) && is.null(siafInt <- environment(model)$siafInt)) { if (!identical(FALSE, verbose)) cat("pre-evaluating 'siaf' integrals with fixed parameters ...\n") setup <- update.twinstim(model, data = data, optim.args = NULL, verbose = FALSE) assign("siafpars", siafpars, envir = environment(setup)) siafInt <- with(environment(setup), do.call("..siafInt", .siafInt.args)) } } ## define the function to be replicated B times: ## permute/simulate data, update epidemic model, compute endemic-only model, ## and compute test statistics permfits1 <- function (...) { ## depends on 'data', 'model', 'lrt', 'eps.s', 'eps.t', and 'fixed' .permdata <- generateNullData() .siafInt <- if (!is.null(siafInt)) { siafInt[match(row.names(.permdata$events), row.names(data$events))] } # else NULL ## sink(paste0("/tmp/trace_", Sys.getpid()), append = TRUE) m1 <- update.twinstim(model, data = .permdata, control.siaf = list(siafInt = .siafInt), model = FALSE, cumCIF = FALSE, cores = 1, verbose = FALSE, optim.args = list(fixed = fixed, control = list(trace = is.numeric(verbose) && verbose >= 3))) ## sink() m0 <- update.twinstim(m1, epidemic = ~0, siaf = NULL, tiaf = NULL, control.siaf = NULL, optim.args = list(control = list(trace = 0))) lrt <- lrt(m0, m1) simpleR0 <- simpleR0(m1, eps.s = eps.s, eps.t = eps.t) if (isTRUE(compress)) { # save memory m0[c("fitted", "fittedComponents", "R0")] <- m1[c("fitted", "fittedComponents", "R0")] <- list(NULL) } list(m0 = m0, m1 = m1, stats = c(lrt[1:3], simpleR0 = simpleR0, lrt["converged"])) } ## rock'n'roll (the computationally intensive part) permfits <- plapply(X = integer(B), FUN = permfits1, .verbose = .verbose, ...) ## if parallelized using forking with insufficient memory available, ## part of the replications in 'permfits' may be left unassigned (NULL) permIsNull <- vapply(X = permfits, FUN = is.null, FUN.VALUE = logical(1L), USE.NAMES = FALSE) if (npermIsNull <- sum(permIsNull)) { warning(npermIsNull, "/", B, " replications did not return (insufficient memory?)") permfits <- permfits[!permIsNull] } ## extract the statistics permstats <- as.data.frame(t(vapply( X = permfits, FUN = "[[", "stats", FUN.VALUE = numeric(5L), USE.NAMES = TRUE ))) permstats$converged <- as.logical(permstats$converged) ## compute permutation-based p-value PVAL_D <- mean(c(STATISTIC_D, permstats[permstats$converged, "D"]) >= STATISTIC_D) PVAL_R0 <- mean(c(STATISTIC_R0, permstats[permstats$converged, "simpleR0"]) >= STATISTIC_R0) ## set results res$statistic <- structure(STATISTIC_R0, "D" = unname(STATISTIC_D)) res$parameter <- c("B" = sum(permstats$converged)) res$p.value <- structure(PVAL_R0, "D-based" = PVAL_D, "LRT" = PVAL_LRT) res$permfits <- permfits res$permstats <- permstats res } coef.epitest <- function (object, which = c("m1", "m0"), ...) { which <- match.arg(which) permcoefs <- vapply(X = object$permfits, FUN = function (x) coef(x[[which]]), FUN.VALUE = coef(object$permfits[[1L]][[which]]), USE.NAMES = TRUE) t(permcoefs) } plot.epitest <- function (x, teststat = c("simpleR0", "D"), ...) { teststat <- match.arg(teststat) defaultArgs <- switch(teststat, "simpleR0" = list( permstats = x$permstats$simpleR0, xmarks = setNames(x$statistic, "observed"), xlab = expression("Simple " * R[0]) ), "D" = list( permstats = x$permstats$D, xmarks = setNames(attr(x$statistic, "D"), "observed"), xlab = expression(D == 2 %.% log(L[full]/L[endemic])) ) ) args <- modifyList(defaultArgs, list(...)) if (is.null(args[["permstats"]])) stop("nothing to plot (no 'permstats' available)") do.call("permtestplot", args) } ## auxiliary function also used by plot.knox(), permutationTest(), ... permtestplot <- function (permstats, xmarks = NULL, xlab = "test statistic", ...) { defaultArgs <- list( data = permstats, xlab = xlab, col = "lavender", main = "Monte Carlo permutation test for space-time interaction", xlim = extendrange(c(permstats, xmarks)) ) do.call("truehist", modifyList(defaultArgs, list(...), keep.null = TRUE)) if (!is.null(xmarks)) { abline(v = xmarks, lwd = 2) axis(3, at = xmarks, labels = names(xmarks), # if NULL the value is used tick = FALSE, line = -1, font = 2) } invisible(NULL) } surveillance/R/hhh4_oneStepAhead.R0000644000176200001440000002527214201042047016547 0ustar liggesusers################################################################################ ### Compute one-step-ahead predictions at a series of time points ### ### Copyright (C) 2011-2012 Michaela Paul, 2012-2018,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ oneStepAhead <- function(result, # hhh4-object (i.e. a hhh4 model fit) tp, # scalar: one-step-ahead predictions for time # points (tp+1):nrow(stsObj), or tp=c(from, to) type = c("rolling", "first", "final"), which.start = c("current", "final"), #if type="rolling" keep.estimates = FALSE, verbose = type != "final", # verbose-1 is used # for sequentially refitted hhh4 models cores = 1) # if which.start="final", the predictions # can be computed in parallel { stopifnot(inherits(result, "hhh4")) type <- match.arg(type) if (type == "rolling" && !is.list(which.start)) { ## new in surveillance 1.10-0: if 'which.start' is a list, it is ## directly used as the 'start' argument for hhh4() in all time steps which.start <- match.arg(which.start) if (cores > 1 && which.start == "current") stop("no parallelization for 'type=\"rolling\"' ", "if 'which.start=\"current\"'") } ## get model terms model <- result[["terms"]] if (is.null(model)) model <- result$terms <- terms(result) nTime <- model$nTime # = nrow(result$stsObj) nUnits <- model$nUnits # = ncol(result$stsObj) dimPsi <- model$nOverdisp withPsi <- dimPsi > 0L psiIdx <- model$nFE + model$nd + seq_len(dimPsi) ## check that tp is within the time period of the data stopifnot(length(tp) %in% 1:2, tp >= 0) tpRange <- c(model$subset[1L], nTime-1L) # supported range if (any(tp > tpRange[2L]) || (type != "final" && any(tp < tpRange[1L]))) { stop("the time range defined by 'tp' must be a subset of ", tpRange[1L], ":", tpRange[2L]) } if (length(tp) == 1) { tp <- c(tp, max(model$subset)-1L) # historical default if (tp[1L] > tp[2L]) # probably unintended stop("'tp' larger than the default upper limit (", tp[2L], ")") } tps <- tp[1L]:tp[2L] # this function actually works if tp[1] > tp[2] ntps <- length(tps) observed <- model$response[tps+1,,drop=FALSE] rownames(observed) <- tps+1 ## adjust verbosity for model refitting verbose <- as.integer(verbose) result$control$verbose <- max(0, verbose - (ntps>1)) if (type != "rolling" && verbose > 1L) verbose <- 1L do_pb <- verbose == 1L && interactive() ## initial fit fit <- if (type == "first") { if (verbose) cat("\nRefitting model at first time point t =", tps[1L], "...\n") update.hhh4(result, subset.upper = tps[1L], use.estimates = TRUE, keep.terms = TRUE) # need "model" -> $terms } else result if (!fit$convergence) stop("initial fit did not converge") ## result templates (named and filled with NA's) pred <- matrix(NA_real_, nrow=ntps, ncol=nUnits, dimnames=list(tps+1, colnames(observed))) if (withPsi) psi <- matrix(NA_real_, nrow=ntps, ncol=dimPsi, dimnames=list(tps, names(model$initialTheta)[psiIdx])) if (keep.estimates) { coefficients <- matrix(NA_real_, nrow=ntps, ncol=length(model$initialTheta), dimnames=list(tps, names(model$initialTheta))) Sigma.orig <- matrix(NA_real_, nrow=ntps, ncol=model$nSigma, dimnames=list(tps, names(result$Sigma.orig))) logliks <- matrix(NA_real_, nrow=ntps, ncol=2L, dimnames=list(tps, c("loglikelihood", "margll"))) } ## extract predictions and stuff for specific tp from fit getPreds <- function (fit, tp) { coefs <- unname(fit$coefficients) c(list(pred = as.vector( meanHHH(coefs, fit$terms, subset=tp+1L, total.only=TRUE))), if (withPsi) list(psi = coefs[psiIdx]), if (keep.estimates) list( coefficients=coefs, Sigma.orig=unname(fit$Sigma.orig), logliks=c(fit$loglikelihood, fit$margll)) ) } ## compute the predictions and save ## pred, psi, coefficients, Sigma.orig, and logliks if (cores > 1L) { ## return value template (unnamed NA vectors) resTemplate <- lapply(getPreds(fit, tps[1L]), "is.na<-", TRUE) ## run parallel res <- parallel::mclapply(tps, function (tp) { if (verbose) cat("One-step-ahead prediction @ t =", tp, "...\n") if (type == "rolling") { # update fit fit <- update.hhh4(result, subset.upper=tp, use.estimates=TRUE, start=if (is.list(which.start)) which.start, verbose=FALSE, # chaotic in parallel keep.terms=TRUE) # need "model" -> $terms if (!fit$convergence) { cat("WARNING: No convergence @ t =", tp, "!\n") return(resTemplate) } } getPreds(fit, tp) }, mc.preschedule=TRUE, mc.cores=cores) ## gather results .extractFromList <- function (what) t(vapply(res, "[[", resTemplate[[what]], what, USE.NAMES=FALSE)) pred[] <- .extractFromList("pred") if (withPsi) psi[] <- .extractFromList("psi") if (keep.estimates) { coefficients[] <- .extractFromList("coefficients") Sigma.orig[] <- .extractFromList("Sigma.orig") logliks[] <- .extractFromList("logliks") } } else { ## sequential one-step ahead predictions if (do_pb) pb <- txtProgressBar(min=0, max=ntps, initial=0, style=3) for(i in seq_along(tps)) { if (do_pb) setTxtProgressBar(pb, i) else if (verbose) { cat("One-step-ahead prediction @ t =", tps[i], "...\n") } if (type == "rolling") { # update fit fit.old <- fit # backup start <- if (is.list(which.start)) { which.start } else if (which.start == "current") hhh4coef2start(fit) ## else NULL fit <- update.hhh4(result, subset.upper=tps[i], start=start, # takes precedence use.estimates=TRUE, keep.terms=TRUE) # need "model" -> $terms if (!fit$convergence) { if (do_pb) cat("\n") cat("WARNING: No convergence @ t =", tps[i], "!\n") ## FIXME: do a grid search ? fit <- fit.old next } } res <- getPreds(fit, tps[i]) ## gather results pred[i,] <- res$pred if (withPsi) psi[i,] <- res$psi if (keep.estimates) { coefficients[i,] <- res$coefficients Sigma.orig[i,] <- res$Sigma.orig logliks[i,] <- res$logliks } } if (do_pb) close(pb) } ## with shared overdispersion parameters we need to expand psi to ncol(pred) if (dimPsi > 1L && dimPsi != nUnits) { psi <- psi[,model$indexPsi,drop=FALSE] } ## done res <- c(list(pred = pred, observed = observed, psi = if (withPsi) psi else NULL, allConverged = all(!is.na(pred))), if (keep.estimates) list(coefficients = coefficients, Sigma.orig = Sigma.orig, logliks = logliks) ) class(res) <- "oneStepAhead" res } ## extract estimated overdispersion in dnbinom() parametrization, as full matrix psi2size.oneStepAhead <- function (object) { if (is.null(object$psi)) # Poisson model return(NULL) size <- exp(object$psi) # a matrix with 1 or nUnit columns ## ensure that we always have a full 'size' matrix with nUnit columns dimpred <- dim(object$pred) if (ncol(size) != dimpred[2L]) { # => ncol(size)=1, unit-independent psi size <- rep.int(size, dimpred[2L]) dim(size) <- dimpred } dimnames(size) <- list(rownames(object$psi), colnames(object$pred)) size } ## quantiles of the one-step-ahead forecasts quantile.oneStepAhead <- function (x, probs = c(2.5, 10, 50, 90, 97.5)/100, ...) { stopifnot(is.vector(probs, mode = "numeric"), probs >= 0, probs <= 1, (np <- length(probs)) > 0) names(probs) <- paste(format(100*probs, trim=TRUE, scientific=FALSE, digits=3), "%") size <- psi2size.oneStepAhead(x) qs <- if (is.null(size)) { vapply(X = probs, FUN = qpois, FUN.VALUE = x$pred, lambda = x$pred) } else { vapply(X = probs, FUN = qnbinom, FUN.VALUE = x$pred, mu = x$pred, size = size) } ## one tp, one unit -> qs is a vector of length np ## otherwise, 'qs' has dimensions ntps x nUnit x np ## if nUnit==1, we return an ntps x np matrix, otherwise an array if (is.vector(qs)) { qs <- t(qs) rownames(qs) <- rownames(x$pred) qs } else if (dim(qs)[2L] == 1L) { matrix(qs, dim(qs)[1L], dim(qs)[3L], dimnames = dimnames(qs)[c(1L,3L)]) } else qs } ## confidence intervals for one-step-ahead predictions confint.oneStepAhead <- function (object, parm, level = 0.95, ...) { quantile.oneStepAhead(object, (1+c(-1,1)*level)/2, ...) } ## simple plot of one-step-ahead forecasts plot.oneStepAhead <- function (x, unit = 1, probs = 1:99/100, start = NULL, means.args = NULL, ...) { stopifnot(length(unit) == 1, length(probs) > 1) ## select unit obs <- x$observed[,unit] ms <- x$pred[,unit] qs <- quantile.oneStepAhead(x, probs = probs) if (!is.matrix(qs)) # multi-unit predictions qs <- matrix(qs[,unit,], dim(qs)[1L], dim(qs)[3L], dimnames = dimnames(qs)[c(1L,3L)]) ## produce fanplot if (is.null(start)) start <- as.integer(rownames(qs)[1L]) fanplot(quantiles = qs, probs = probs, means = ms, observed = obs, start = start, means.args = means.args, ...) } surveillance/R/twinSIR.R0000644000176200001440000005243314615115350014641 0ustar liggesusers################################################################################ ### Function 'twinSIR' performs (penalized) maximum likelihood inference ### for the Hoehle (2009) model. Now with REML estimation of smoothing ### parameter lambda. ### ### Copyright (C) 2008-2009 Michael Hoehle ### Copyright (C) 2008-2009,2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## ATTENTION: the .loglik and .score functions assume atRiskY == 1 data ###################################################################### # Log-Likelihood function # # PARAMS: # theta - parameter vector c(alpha,beta), where # beta also contains the baseline coefficients in the first place # X - covariate matrix related to alpha, i.e. the epidemic component # Z - covariate matrix related to beta, i.e. the Cox-like endemic component # survs - data.frame with columns id, start, stop and event # weights - vector of length nrow(X) indicating the number of individuals # with the same covariates. weights are allowed to change over time. # Note: it is assumed that none of the individuals covered by # "weights" can have an actual event, if so they need to have their # own row ###################################################################### .loglik <- function(theta, X, Z, survs, weights) { # Calculate epidemic (e) and endemic (h) component of the infection intensity eh <- .eh(theta, X, Z) # Calculate infection intensity assuming atRiskY == 1 for all rows lambdaNoY <- rowSums(eh) # dN Part of the loglik isEvent <- survs$event == 1 events <- which(isEvent) intdN <- numeric(length(isEvent)) # zeros intdN[events] <- weights[events] * log(lambdaNoY[events]) # here one might have got -Inf values in case of 0-intensity at an event time # lambda integral of the log-likelihood dt <- survs$stop - survs$start intlambda <- weights * lambdaNoY * dt # Return the log-likelihood loglik <- sum( intdN - intlambda ) return(loglik) } ###################################################################### # Penalized log-likelihood function # Additional Params: # lambda.smooth - smoothing parameter # K - penalty matrix on the beta component ###################################################################### .ploglik <- function(theta, X, Z, survs, weights, lambda.smooth, K) { loglik <- .loglik(theta, X, Z, survs, weights) if (lambda.smooth == 0) { return(loglik) } # Add penalty term and return the penalized log-likelihood beta <- theta[ncol(X) + seq_len(ncol(Z))] penalty <- lambda.smooth/2 * drop(t(beta) %*% K %*% beta) return(loglik - penalty) } ###################################################################### # Score function # Params: see .loglik ###################################################################### .score <- function(theta, X, Z, survs, weights) { dimX <- dim(X) nRows <- dimX[1] px <- dimX[2] pz <- ncol(Z) isEvent <- survs$event == 1 # event indicator for the dN integral events <- which(isEvent) dt <- survs$stop - survs$start # for the dt integral # Calculate epidemic (e) and endemic (h) component of the infection intensity eh <- .eh(theta, X, Z) h <- eh[,2,drop=TRUE] # Calculate infection intensity at event times lambdaEvents <- rowSums(eh[events,,drop=FALSE]) score <- if (px > 0L) { wX <- X * weights part1intdN <- matrix(0, nrow = nRows, ncol = px, dimnames = dimnames(X)) part1intdN[events,] <- wX[events,] / lambdaEvents part1intlambda <- wX * dt colSums(part1intdN - part1intlambda) } else NULL if (pz > 0L) { wZh <- Z * (h * weights) part2intdN <- matrix(0, nrow = nRows, ncol = pz, dimnames = dimnames(Z)) part2intdN[events,] <- wZh[events,] / lambdaEvents part2intlambda <- wZh * dt part2 <- colSums(part2intdN - part2intlambda) score <- c(score, part2) } return(score) } ###################################################################### # Penalized Score function # Additional Params: see .ploglik ###################################################################### .pscore <- function(theta, X, Z, survs, weights, lambda.smooth, K, ...) { score <- .score(theta, X, Z, survs, weights) if (lambda.smooth == 0) { return(score) } # Add penalty term and return the penalized Score function beta <- theta[ncol(X) + seq_len(ncol(Z))] penalty <- c(rep.int(0, ncol(X)), lambda.smooth * K %*% beta) return(score - penalty) } ###################################################################### # Fisher information matrix function # Params: see .loglik ###################################################################### .fisherinfo <- function(theta, X, Z, survs, weights) { px <- ncol(X) pz <- ncol(Z) isEvent <- survs$event == 1 # event indicator events <- which(isEvent) # Fisher matrix calculation only incorporates data at event times! Xevents <- X[events,,drop = FALSE] Zevents <- Z[events,,drop = FALSE] # Calculate epidemic (e) and endemic (h) component of the infection intensity eh <- .eh(theta, Xevents, Zevents) h <- eh[,2,drop=TRUE] # Calculate infection intensity lambda <- rowSums(eh) # calculate intdN of d/dtheta log(lambda_i(t)) for all individuals with events wpl <- weights[events] / lambda dloglambda <- if (px > 0L) Xevents * wpl else NULL if (pz > 0L) { dloglambda <- cbind(dloglambda, Zevents * (h * wpl)) } # Build the optional variation process (Martinussen & Scheike, p64) fisherinfo <- matrix(0, nrow=px+pz, ncol=px+pz) for (i in seq_len(nrow(dloglambda))) { x <- dloglambda[i,,drop=FALSE] # single-ROW matrix fisherinfo <- fisherinfo + crossprod(x) # t(x) %*% x } return(fisherinfo) } ###################################################################### # Fisher information matrix function # Additional Params: see .ploglik ###################################################################### .pfisherinfo <- function(theta, X, Z, survs, weights, lambda.smooth, K) { fisherinfo <- .fisherinfo(theta, X, Z, survs, weights) if (lambda.smooth == 0) { return(fisherinfo) } # Add penalty term and return the penalized Fisher information matrix penalty <- matrix(0, ncol=ncol(fisherinfo), nrow=nrow(fisherinfo)) zIndex <- ncol(X) + seq_len(ncol(Z)) penalty[zIndex,zIndex] <- lambda.smooth * K return(fisherinfo + penalty) } ###################################################################### # Marginal likelihood of the log(smoothing) parameter as given # by a Laplace approximation c.f. Kneib & Fahrmeir (2006), p.9. # or Cai et al (2002) # # Params: # log.lambda.smooth - log parametrization to ensure positive value of # lambda.smooth # theta - fixed regression parameters # X - design matrix of additive part # Z - design matrix of multiplicative part # survs - the data.frame containing the data in survs format # weights - for weighting individual entries # K - smoother matrix # # Returns: # value of lmarg ###################################################################### .lmarg.lambda <- function(log.lambda.smooth, theta, X, Z, survs, weights, K) { #Contribution of the penalized likelihood loglik <- .ploglik(theta, X, Z, survs, weights, exp(log.lambda.smooth), K) #Laplace approximation using TP representation H <- .pfisherinfo(theta, X, Z, survs, weights, exp(log.lambda.smooth), K) beta <- theta[ncol(X) + seq_len(ncol(Z))] #[Q]: Extract baseline terms from model and translate into #TP-spline setting, i.e. a B-spline of 0th order is assumed baselineIdx <- grep("cox\\(logbaseline.*\\)",dimnames(Z)[[2]]) b <- diff(beta[baselineIdx]) laplace <- 1/2*(length(b)-1)*log.lambda.smooth - 1/2*log(det(H)) return(loglik + laplace) } ###################################################################### # Model fitter. Prepares everything and uses optim's (L-)BFGS(-B) to # maximize the (penalized) log-likelihood. ###################################################################### twinSIR <- function (formula, data, weights, subset, knots = NULL, nIntervals = 1, lambda.smooth = 0, penalty = 1, optim.args = list(), model = TRUE, keep.data = FALSE) { cl <- match.call() ## Verify that 'data' inherits from "epidata" data <- eval(cl$data, parent.frame()) if (!inherits(data, "epidata")) { stop("'data' must inherit from class \"epidata\"") } ## Extract the time range of the epidemic timeRange <- attr(data, "timeRange") minTime <- timeRange[1L] maxTime <- timeRange[2L] # ## NOTE: modification of 'data' has no effect with the current evaluation # ## of model.frame in the parent.frame() as the original 'data' will # ## be used. # ## Impute blocks for 'knots', which are not existing stop times # if (is.vector(knots, mode = "numeric")) { # insideKnot <- (knots > minTime) & (knots < maxTime) # if (any(!insideKnot)) { # warning("only 'knots' inside the observation period are considered") # } # knots <- sort(knots[insideKnot]) # data <- intersperse(data, knots) # } ############################ ### Build up model.frame ### (this is derived from the coxph function) ############################ mfnames <- c("", "formula", "data", "weights", "subset") mf <- cl[match(mfnames, names(cl), nomatch = 0L)] mf$id <- as.name("id") mf$atRiskY <- as.name("atRiskY") mf$subset <- if (is.null(mf$subset)) { call("==", mf$atRiskY, 1) } else { call("&", mf$subset, call("==", mf$atRiskY, 1)) } if(length(formula) == 2L) { # i.e. no response specified formula[3L] <- formula[2L] formula[[2L]] <- quote(cbind(start, stop, event)) } mf$na.action <- as.name("na.fail") special <- c("cox") Terms <- terms(formula, specials = special, data = data, keep.order = FALSE) mf$formula <- Terms mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) ########################################################### ### Check arguments and extract components of the model ### ########################################################### ## Extract and check 'weights' weights <- model.extract(mf, "weights") if (is.null(weights)) { weights <- rep(1, nrow(mf)) names(weights) <- attr(mf, "row.names") } else { if (!is.vector(weights, mode="numeric")) { stop("'weights' must be a numeric vector") } if (any(weights < 0)) { stop("negative 'weights' not allowed") } } ## Extract the response response <- model.response(mf) survs <- data.frame(id = model.extract(mf, "id"), start = response[,1L], stop = response[,2L], event = response[,3L], check.names = FALSE, stringsAsFactors = FALSE) attr(survs, "eventTimes") <- survs$stop[survs$event == 1] ##<- equals attr(data, "eventTimes") if missing(subset) attr(survs, "timeRange") <- timeRange ## Check that we have events if (length(attr(survs, "eventTimes")) == 0) warning("no events in data", if (!missing(subset)) " (subject to 'subset')") ## Check specified baseline intervals if (is.null(knots) && isScalar(nIntervals)) { knots <- if (nIntervals == 1) { numeric(0) } else if (nIntervals > 1) { quantile(attr(survs, "eventTimes"), probs = seq(from=0, to=1, length.out=nIntervals+1)[-c(1,nIntervals+1)], type = 1, names = FALSE) } else { stop("'nIntervals' must be a single number >= 1") } } else if (is.vector(knots, mode = "numeric")) { isInsideKnot <- (knots > minTime) & (knots < maxTime) if (any(!isInsideKnot)) { warning("only 'knots' inside the observation period are considered") knots <- knots[isInsideKnot] } isStopKnot <- knots %in% unique(survs$stop) if (any(!isStopKnot)) { stop("'knots' must be a subset of 'unique(data$stop[data$atRiskY==1])'", if (!missing(subset)) ",\n where 'data' is subject to 'subset'") } knots <- sort(knots) } else { stop("'knots' (a numeric vector) or 'nIntervals' (a single number) ", "must be specified") } intervals <- c(minTime, knots, maxTime) nIntervals <- length(intervals) - 1L message( sprintf(ngettext(nIntervals, "Initialized %d log-baseline interval: ", "Initialized %d log-baseline intervals: "), nIntervals), paste(format(intervals, trim = TRUE), collapse=" ") ) ## Extract the two parts of the design matrix: ## Z contains the Cox part, X contains the epidemic part, there's no intercept des <- read.design(mf, Terms) X <- des$X; px <- ncol(X) Z <- des$Z ## Add variables for the piecewise constant baseline to Z (if requested) if (nIntervals == 1L) { nEvents <- length(attr(survs, "eventTimes")) if (attr(Terms, "intercept") == 1) Z <- cbind("cox(logbaseline)" = 1, Z) } else { # we have more than one baseline interval/parameter intervalIndices <- findInterval(survs$start, intervals, rightmost.closed = FALSE) intervalNumbers <- seq_len(nIntervals) baselineVars <- sapply(intervalNumbers, function(i) intervalIndices == i) dimnames(baselineVars) <- list(NULL, paste("cox(logbaseline.", intervalNumbers, ")", sep="")) Z <- cbind(baselineVars, Z) nEvents <- as.vector(table(factor(intervalIndices[survs$event == 1], levels = seq_len(nIntervals)))) } pz <- ncol(Z) ## Check that we have at least one parameter if (pz == 0L && px == 0L) { stop("nothing to do: neither a baseline nor covariates have been specified") } ## Check lambda.smooth if (!isScalar(lambda.smooth)) { stop("'lambda.smooth' must be scalar") } if (lambda.smooth != 0 && pz == 0L) { lambda.smooth <- 0 message("Note: 'lambda.smooth' was set to 0, because there was no endemic ", "component in the formula.") } ## Setup penalty matrix if (isScalar(penalty)) { K <- matrix(0, ncol = pz, nrow = pz) if (lambda.smooth != 0 && nIntervals > 1L) { # do we have equidistant knots? knotSpacings <- diff(intervals) #equidistant <- all(sapply(knotSpacings[-1], function(x) isTRUE(all.equal(x,knotSpacings[1])))) equidistant <- isTRUE(all.equal(diff(knotSpacings), rep.int(0,nIntervals-1))) if (equidistant) { # K = D'D only works for equidistant knots # difference matrix of order 'penalty' D <- diff(diag(nIntervals), differences=penalty) K[intervalNumbers,intervalNumbers] <- crossprod(D) # t(D) %*% D } else { # special weighting scheme for the non-equidistant case if (penalty != 1) { stop("ATM, non-equidistant knots only work for 1st order penalty") } #Use Fahrmeir & Lang (2001), p.206 invdelta <- 1/diff(intervals) * mean(diff(intervals)) #Use Fahrmeir & Lang (2001), p.206 for (i in seq_len(nIntervals)) { idx2 <- cbind(j=c(-1,1) + i, deltaidx=i+c(-1,0),fac=c(-1,-1)) idx2 <- idx2[idx2[,"j"] > 0 & idx2[,"j"] <= nIntervals,,drop=FALSE] #Off diagonal elements K[i, idx2[,"j"]] <- invdelta[idx2[,"deltaidx"]] * idx2[,"fac"] #Diagonal element K[i, i] <- sum(invdelta[idx2[,"deltaidx"]]) } message("Note: non-equidistant knots. Using penalization matrix ", "correcting for distance between knots.\n") # print(K) # browser() } } } else if (is.matrix(penalty) && ncol(penalty) == pz && nrow(penalty) == pz) { K <- penalty } else { stop("'penalty' must either be a single number or a square matrix of ", "dimension ", pz, "x", pz, ", fitting the number of unknown ", "parameters in the endemic component (baseline and covariates)") } ## Check that optim.args is a list if (!is.list(optim.args)) { stop("'optim.args' must be a list") } ## Check start value for theta if (!is.null(optim.args[["par"]])) { if (!is.vector(optim.args$par, mode="numeric")) { stop("'optim.args$par' must be a numeric vector or NULL") } if (length(optim.args$par) != px + pz) { stop(gettextf(paste("'optim.args$par' (%d) does not have the same length", "as the number of unknown parameters (%d + %d = %d)"), length(optim.args$par), px, pz, px + pz)) } } else { optim.args$par <- c(rep.int(1, px), rep.int(0, pz)) } message("Initial parameter vector: ", paste(format(optim.args$par, trim=TRUE), collapse=" ")) ## Set names for theta names(optim.args$par) <- c(colnames(X), colnames(Z)) #################### ### Optimization ### #################### ## Configuring the optim procedure (check optim.args) optimControl <- list(trace = 1, fnscale = -1, maxit = 300, factr = 1e7) optimControl[names(optim.args[["control"]])] <- optim.args[["control"]] optim.args$control <- optimControl optimArgs <- list(par = optim.args$par, fn = .ploglik, gr = .pscore, X = X, Z = Z, survs = survs, weights = weights, lambda.smooth = lambda.smooth, K = K, method = "L-BFGS-B", lower = c(rep(0,px), rep(-Inf,pz)), upper = rep(Inf,px+pz), control = list(), hessian = FALSE) namesOptimArgs <- names(optimArgs) namesOptimUser <- names(optim.args) optimValid <- namesOptimUser %in% namesOptimArgs optimArgs[namesOptimUser[optimValid]] <- optim.args[optimValid] if (any(!optimValid)) warning("unknown names in optim.args: ", paste(namesOptimUser[!optimValid], collapse = ", ")) if (! "method" %in% namesOptimUser && px == 0L) { optimArgs$method <- "BFGS" } if (optimArgs$method != "L-BFGS-B") { optimArgs$lower <- -Inf optimArgs$upper <- Inf } #Fit model using fixed smoothing parameter or use mixed model #representation to estimate lambda.smooth using marginal likelihood if (lambda.smooth == -1) { if (isScalar(penalty) && penalty == 1) { ################################################################### ##TODO: Need to check for B-spline (?). Move options into ctrl obj ################################################################### #Iterative procedure where we change between optimizing regression #parameters given fixed smoothing parameter and optimizing the #smoothing parameter given fixed regression parameters (Gauss-Seidel) #procedure. The tuning parameters (5) could go into the control object. lambda.smooth <- 5 reltol <- 1e-2 maxit <- 25 #Parameters for keeping track of the iterations lambda.smoothOld <- 1e99 iter <- 0 #Loop until relative convergence or max-iteration reached while ((abs(lambda.smooth-lambda.smoothOld)/lambda.smoothOld > reltol) & (iter < maxit)) { #Iteration begins iter <- iter + 1 if (optimControl$trace > 0) { cat("==> Iteration ",iter," of Gauss-Seidel maximization. lambda.smooth = ",lambda.smooth,"\n") } #Step 1 - maximize (alpha,beta) with fixed lambda optimArgs$lambda.smooth <- lambda.smooth optimRes <- do.call("optim", optimArgs) theta <- optimRes$par optimArgs$par <- theta #better start value the next time #Step 2 - maximize log(lambda) with fixed (alpha,beta) optimLambda <- optim(log(lambda.smooth), .lmarg.lambda, control=list(fnscale=-1,trace=1),method="BFGS", theta=theta, X=X, Z=Z, survs=survs, weights=weights, K=K) lambda.smoothOld <- lambda.smooth lambda.smooth <- exp(optimLambda$par) } #Done, update optimArgs with new smoothing parameter optimArgs$lambda.smooth <- lambda.smooth } else { stop("REML estimation using TP-splines only works for 1st order differences.") } } ## Call optim with the arguments above (including the news smoothing param) optimRes <- do.call("optim", optimArgs) ############## ### Return ### ############## ## Set up list object to be returned fit <- list(coefficients = optimRes$par, lambda.smooth = lambda.smooth, loglik = optimRes$value, counts = optimRes$counts, converged = (optimRes$convergence == 0)) ## If requested, add observed fisher info (= negative hessian at maximum) if (!is.null(optimRes$hessian)) { fit$fisherinfo.observed <- -optimRes$hessian } ## Add own (exact) fisher info computation fit$fisherinfo <- .pfisherinfo(theta = fit$coefficients, X = X, Z = Z, survs = survs, weights = weights, lambda.smooth = lambda.smooth, K = K) ## Add 'method' fit$method <- optimArgs$method ## Append further information fit$intervals <- intervals fit$nEvents <- nEvents if (model) { fit$model <- list( survs = survs, X = X, Z = Z, weights = weights, lambda.smooth = lambda.smooth, K = K, f = attr(data, "f")[match(colnames(X), names(attr(data, "f")), nomatch=0)], w = attr(data, "w")[match(colnames(X), names(attr(data, "w")), nomatch=0)] ) } if (keep.data) { fit$data <- data } fit$call <- cl fit$formula <- formula(Terms) fit$terms <- Terms ## Return object of class "twinSIR" class(fit) <- "twinSIR" return(fit) } surveillance/R/spatial_tools.R0000644000176200001440000002633214614123513016155 0ustar liggesusers################################################################################ ### Auxiliary functions for operations on spatial data ### ### Copyright (C) 2009-2015,2018,2021-2024 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Polygonal Approximation of a Disc/Circle discpoly <- function (center, radius, npoly = 64, class = c("Polygon", "owin", "gpc.poly"), ## FIXME: should add polygonal "sfg" (or "sfc"?) hole = FALSE) { class <- match.arg(class) if (class == "owin") { # use spatstat.geom::disc res <- disc(radius=radius, centre=center, mask=FALSE, npoly=npoly) if (hole) { res$bdry[[1]]$x <- rev(res$bdry[[1]]$x) res$bdry[[1]]$y <- rev(res$bdry[[1]]$y) res$bdry[[1]]$hole <- TRUE } return(res) } ## do it myself for the "Polygon" and "gpc.poly" classes stopifnot(radius > 0, isScalar(npoly), npoly > 2) theta <- seq(2*pi, 0, length.out = npoly+1)[-(npoly+1)] # for clockwise order if (hole) theta <- rev(theta) # for anticlockwise order x <- center[1] + radius * cos(theta) y <- center[2] + radius * sin(theta) switch(class, "Polygon" = Polygon(cbind(c(x,x[1]),c(y,y[1])), hole=hole), "gpc.poly" = { pts <- list(list(x=x, y=y, hole=hole)) if (isClass("gpc.poly")) { #|| requireNamespace("gpclib") new("gpc.poly", pts = pts) } else { warning("formal class \"gpc.poly\" not available") pts } } ) } ### Wrapper for polyclip or sf::st_union unionSpatialPolygons <- function (SpP, method = c("sf", "polyclip"), ...) { if (identical(method, "gpclib") || identical(method, "rgeos")) { .Deprecated(msg = sprintf("method = \"%s\" is retired; using default", method)) method <- NULL } method <- match.arg(method) W <- switch( method, "sf" = { sf::as_Spatial(sf::st_union(sf::st_as_sfc(SpP), ...), IDs = "1") # as in rgeos::gUnaryUnion() before }, "polyclip" = { tiles_xylist <- xylist(SpP, reverse=FALSE) W_xylist <- polyclip::polyclip(tiles_xylist, tiles_xylist, "union", fillA = "nonzero", fillB = "nonzero", ...) ## FIXME: polyclip() seems to return owin-type vertex order? W_Polygons <- Polygons( lapply(W_xylist, function(p) Polygon(cbind(p$x,p$y)[c(1L,length(p$x):1L),])), ID="1") SpatialPolygons(list(W_Polygons)) } ) ## ensure that W has exactly the same proj4string as SpP W@proj4string <- SpP@proj4string W } ### internal implementation of as(W, "owin") from polyCub ### to avoid upgrade problems with polyCub <= 0.7.1 referring to old spatstat ### and to avoid calling as(W, "owin") from maptools (depends on load order) SpP2owin <- function (W, ...) owin(poly = xylist(W), ...) ### Compute distance from points to a polygonal boundary ## since spatstat 1.56-0, bdist.points() interfaces C-code via ## spatstat.utils:::distppllmin, which is faster than nncross.ppp() bdist <- function (xy, poly) # poly is a polygonal "owin" { bdist.points(ppp(x = xy[,1L], y = xy[,2L], window = poly, check = FALSE)) } ## Example: bdist(coordinates(imdepi$events), as(imdepi$W, "owin")) ### sample n points uniformly on a disc with radius r runifdisc <- function (n, r = 1, buffer = 0) { stopifnot(buffer <= r) rangle <- runif(n, 0, 2*pi) rdist <- r * sqrt(runif(n, (buffer/r)^2, 1)) rdist * cbind(cos(rangle), sin(rangle)) } ### Count number of instances at the same location of a SpatialPoints object ## NOTE: the default multiplicity-method has been integrated into the spatstat ## package which we import multiplicity.Spatial <- function (x) multiplicity(coordinates(x)) ### determines which polygons of a SpatialPolygons object are at the border, ### i.e. have coordinates in common with the spatial union of all polygons polyAtBorder <- function (SpP, snap = sqrt(.Machine$double.eps), method = "sf", ...) { SpP <- as(SpP, "SpatialPolygons") W <- unionSpatialPolygons(SpP, method = method, ...) if (length(W@polygons) > 1) warning("unionSpatialPolygons() produced >1 Polygons-components") Wcoords <- unique(do.call("rbind", lapply(W@polygons[[1]]@Polygons, coordinates))) atBorder <- sapply(SpP@polygons, function (x) { coords <- unique(do.call("rbind", lapply(x@Polygons, coordinates))) res <- FALSE for (i in seq_len(nrow(coords))) { if (any(spDistsN1(Wcoords, coords[i,], longlat=FALSE) < snap)) { res <- TRUE break } } res }) names(atBorder) <- row.names(SpP) atBorder } ### sp.layout items for spplot() ## draw labels for Spatial* objects layout.labels <- function (obj, labels = TRUE, plot = FALSE) { stopifnot(inherits(obj, "Spatial")) ## get region labels getLabels <- function (labels) { if (isTRUE(labels)) { row.names(obj) } else if (length(labels) == 1L && (is.numeric(labels) | is.character(labels))) { if (!"data" %in% slotNames(obj)) stop("no data slot to select labels from") obj@data[[labels]] } else labels } ## convert labels argument to a list labels.args <- if (is.list(labels)) { labels } else if (!is.null(labels) && !identical(labels, FALSE)) { list(labels = getLabels(labels)) } else { # labels = FALSE or labels = NULL return(NULL) } ## set default coordinates for panel.text() and parse labels labels.args <- modifyList(list(x = coordinates(obj), labels = TRUE), labels.args) labels.args$labels <- getLabels(labels.args$labels) if (plot) { ## plot labels in the traditional graphics system do.call("text", labels.args) } else { ## return layout item for use by spplot() c("panel.text", labels.args) } } ## draw a scalebar with labels layout.scalebar <- function (obj, corner = c(0.05, 0.95), scale = 1, labels = c(0, scale), height = 0.05, pos = 3, ..., plot = FALSE) { stopifnot(inherits(obj, "Spatial")) BB <- bbox(obj) force(labels) # the default should use the original 'scale' value in km if (isFALSE(is.projected(obj, warn = TRUE))) { ## 'obj' has longlat coordinates, 'scale' is interpreted in kilometres scale <- .scale2longlat(t(rowMeans(BB)), scale) } offset <- BB[, 1L] + corner * apply(BB, 1L, diff.default) textfun <- if (plot) "text" else "panel.text" lis <- list( list("SpatialPolygonsRescale", layout.scale.bar(height = height), offset = offset, scale = scale, fill = c(NA, 1), plot.grid = !plot), list(textfun, x = offset[1L], y = offset[2L], labels = labels[1L], pos = pos, ...), list(textfun, x = offset[1L] + scale[1L], y = offset[2L], labels = labels[2L], pos = pos, ...) ) if (plot) { for (li in lis) eval(do.call("call", li)) } else { lis } } .scale2longlat <- function (focusLL, distKM) { ## .destPoint() is copied from the "raster" package by Robert J. Hijmans ## 'p' is a longlat coordinate matrix, 'd' is a vector of distances in metres .destPoint <- function (p, d, b=90, r=6378137) { toRad <- pi/180 lon1 <- p[, 1] * toRad lat1 <- p[, 2] * toRad b <- b * toRad lat2 <- asin(sin(lat1) * cos(d/r) + cos(lat1) * sin(d/r) * cos(b)) lon2 <- lon1 + atan2(sin(b) * sin(d/r) * cos(lat1), cos(d/r) - sin(lat1) * sin(lat2)) lon2 <- (lon2 + pi)%%(2 * pi) - pi cbind(lon2, lat2)/toRad } rightLL <- .destPoint(focusLL, distKM * 1000) rightLL[,1L] - focusLL[,1L] } ## internal wrapper for sp::is.projected to catch its sf dependence is.projected <- function (obj, warn = FALSE) { res <- tryCatch(sp::is.projected(obj), packageNotFoundError = identity) ## should no longer be needed as the sp version has kept the no-sf fallback: if (inherits(res, "packageNotFoundError")) { ## fallback: grep for longlat in (deprecated) Proj.4 representation p4s <- as.character(obj@proj4string@projargs) res <- if (is.na(p4s) || !nzchar(p4s)) NA else !grepl("longlat", p4s, fixed = TRUE) } if (is.na(res) && warn) warning("could not determine projection status") res } ## internal replacement for sp::mapasp using the above is.projected wrapper mapasp <- function (data) { if (isFALSE(is.projected(data))) { bb <- bbox(data) xlim <- bb[1L,] ylim <- bb[2L,] (diff(ylim)/diff(xlim)) / cos((mean(ylim) * pi)/180) } else "iso" } ### determine the total area of a SpatialPolygons object areaSpatialPolygons <- function (obj, byid = FALSE) { ## if (requireNamespace("rgeos", quietly = TRUE)) { ## rgeos::gArea(obj, byid = byid) ## } else { areas <- vapply( X = obj@polygons, FUN = function (p) sum( vapply(X = p@Polygons, FUN = function (x) (1-2*x@hole) * x@area, FUN.VALUE = 0, USE.NAMES = FALSE) ), FUN.VALUE = 0, USE.NAMES = FALSE ) if (byid) setNames(areas, row.names(obj)) else sum(areas) ## } } ### build a SpatialGrid of approx. 'n' square cells covering 'bbox(obj)' ## replacement for maptools::Sobj_SpatialGrid() makeGrid <- function (obj, n = 128) { bb <- bbox(obj) xlim <- bb[1L,] ylim <- bb[2L,] xr <- xlim[[2L]] - xlim[[1L]] yr <- ylim[[2L]] - ylim[[1L]] asp <- if (lscape <- xr > yr) xr/yr else yr/xr n1 <- ceiling(sqrt(n*asp)) n2 <- ceiling(n1/asp) size <- (if (lscape) xr else yr) / n1 offset <- bb[,1L] + size/2 grd <- GridTopology(offset, c(size, size), if (lscape) c(n1, n2) else c(n2, n1)) SpatialGrid(grd, proj4string = obj@proj4string) } if (FALSE) { ## alternative that usually does not produce square cells, ## but has the same extent as bbox(obj), ## similar to sf::st_make_grid(obj, n = magic.dim(.)); ## this would produce different spatial intensity plots than before makeGrid <- function (obj, n = 128) { bb <- bbox(obj) xlim <- bb[1L,] ylim <- bb[2L,] xr <- xlim[[2L]] - xlim[[1L]] yr <- ylim[[2L]] - ylim[[1L]] if (length(n) == 1) { n <- magic.dim(n) if (xr > yr) n <- rev(n) } else stopifnot(length(n) == 2) size <- c(xr, yr)/n offset <- bb[, 1L] + size/2 grd <- GridTopology(offset, size, n) SpatialGrid(grd, proj4string = obj@proj4string) } } surveillance/R/stsNClist_animate.R0000644000176200001440000002276514615162374016743 0ustar liggesusers###################################################################### # Function to plot a sequence of nowcasts. Can be wrapped with the # animation package to produce PDF or Web animations # # Parameters: # linelist_truth - data.frame containing the linelist of cases/reports # dEventCol - name of the column containing the time of event (as Date) # dReportCol - name of the column containing the time of report receipt (as Date) # aggregate.by - aggregation level (see function linelist2sts) # nowcasts - a list of nowcasts (if NULL then they are generated on the fly - Note: This is currently not implemented!) # method - which method to animate. Has to be part of the individual nowcast objects in 'nowcasts' # control - control object for controlling how the plotting is done ###################################################################### animate_nowcasts <- function(nowcasts,linelist_truth, method="bayes.trunc.ddcp", control=list(dRange=NULL,anim.dRange=NULL, plot.dRange=NULL,consistent=FALSE,sys.sleep=1,ylim=NULL,cex.names=0.7,col=c("violetred3","#2171B5","orange","blue","black","greenyellow")),showLambda=TRUE) { ##Extract the dEventCol and dReportCol from the nowcasts dEventCol <- nowcasts[[1]]@control$call$dEventCol dReportCol <- nowcasts[[1]]@control$call$dReportCol aggregate.by <- nowcasts[[1]]@control$call$aggregate.by ##Boolean indicator for those having information on dEventCol validVarInfo <- !is.na(linelist_truth[,dEventCol]) ##Show info about what is being illustrated message(paste("Total of ",nrow(linelist_truth)," cases in linelist_truth.\nIllustring reporting for ",sum(!is.na(linelist_truth[,dEventCol]))," cases with information on \"",dEventCol,"\"\n",sep="")) ##Reduce linelist_truth to those who have the appropriate information linelist_truth <- linelist_truth[validVarInfo,] ######################################### ## Check and set default control options ######################################### if (is.null(control[["dRange",exact=TRUE]])) { range <- range(c(linelist_truth[,dEventCol],linelist_truth[,dReportCol]),na.rm=TRUE) } else { range <- control$dRange } range.dates <- seq(range[1],range[2],by=aggregate.by) #plot.dRange if (is.null(control[["plot.dRange",exact=TRUE]])) { control$plot.dRange <- range(range) } #anim.dRange if (is.null(control[["anim.dRange",exact=TRUE]])) { control$anim.dRange <- control$dRange } #sys.sleep if (is.null(control[["sys.sleep",exact=TRUE]])) control$sys.sleep <- 1 if (is.null(control[["cex.names",exact=TRUE]])) control$cex.names <- 1 if (is.null(control[["col",exact=TRUE]])) control$col <- c("violetred3","#2171B5","orange","blue","black","springgreen4") if (is.null(control[["showLambda",exact=TRUE]])) control$showLambda <- TRUE ##Check that a list of nowcasts is available if (is.null(nowcasts)) { stop("not implemented!") } ##################### # Preprocessing block ##################### #Create an sts object with the true number of cases.. sts <- linelist2sts(linelist_truth,dEventCol,aggregate.by=aggregate.by,dRange=range) #Index of the time points in the plot.dRange plot.dates.idx <- as.numeric(control$plot.dRange - range[1] + 1) #Index of the animate dates anim.dates <- seq(control$anim.dRange[1],control$anim.dRange[2],by="1 day") idxSet <- pmatch(anim.dates,range.dates) ##Find ylim if (is.null(control[["ylim",exact=TRUE]])) { ymax <- max(observed(sts),upperbound(sts),na.rm=TRUE) ymax <- max(ymax,unlist(lapply(nowcasts, function(nc) max(c(observed(nc),upperbound(nc),predint(nc)),na.rm=TRUE)))) control$ylim <- c(0,ymax) } ##====================== ## Loop over all dates ##====================== ##Loop over all days. always show what we know for (i in idxSet) { ##fix this #Set "today" curDate <- as.Date(range.dates[i]) message("Animating ",as.character(curDate),"...") #Choose all reports available until this "today" linelist_truth.avail <- linelist_truth[ linelist_truth[,dReportCol] <= curDate,] #If consistency checking is requested remove all entries which #are "beyond" today if (!is.null(control$consistent)) { linelist_truth.avail <- linelist_truth.avail[ linelist_truth.avail[,dEventCol] <= curDate,] } ##Check that date exists in nowcast list. sts.nowcast <- nowcasts[[as.character(curDate)]] if (is.null(sts.nowcast)) { stop("Date: ",as.character(curDate)," not available in nowcasts.") } ##Check that method exists in nowcast object if (!(method %in% nowcasts[[as.character(curDate)]]@control$method)) { stop("Method ",method," not in nowcasts!") } ##Extract the used safePredictLag control$safePredictLag <- sts.nowcast@control$now - max(sts.nowcast@control$when) ##Fill upperbound and CI slots with output of that method (not pretty code: ToDo Improve!!) N.tInf.support <- sts.nowcast@control$N.tInf.support Ps <- sts.nowcast@predPMF when <- sts.nowcast@control$when dateRange <- epoch(sts.nowcast) idxt <- which(dateRange %in% when) alpha <- sts.nowcast@control$alpha ##Loop over all time points for (i in idxt) { predPMF <- Ps[[as.character(dateRange[i])]][[method]] sts.nowcast@upperbound[i,] <- median(N.tInf.support[which.max( cumsum(predPMF)>0.5)]) sts.nowcast@pi[i,,] <- N.tInf.support[c(which.max(cumsum(predPMF) >= alpha/2),which.max(cumsum(predPMF) >= 1-alpha/2))] } dimnames(sts.nowcast@pi) <- list(as.character(dateRange),NULL,paste( c(alpha/2*100,(1-alpha/2)*100),"%",sep="")) #Done upperbound(sts.nowcast)[-idxt] <- NA #All events which (in an ideal world) would be available now linelist_truth.now <- linelist_truth[ linelist_truth[,dEventCol] <= curDate,] sts.now <- linelist2sts(linelist_truth.now,dEventCol,aggregate.by=aggregate.by,dRange=c(range[1],curDate))#range) ##Percentage of possible observations which are available sum(observed(sts.nowcast)) sum(upperbound(sts.nowcast)) message(sprintf("(%.0f%% of total cases in linelist_truth reported)\n",sum(observed(sts.nowcast))/sum(observed(sts.now))*100)) ##Show the true number of counts observed(sts) <- matrix(0,nrow=nrow(sts),ncol=1) upperbound(sts) <- matrix(0,nrow=nrow(sts),ncol=1) observed(sts)[1:nrow(sts.now),] <- observed(sts.now) upperbound(sts)[1:nrow(sts.now),] <- upperbound(sts.now) ##Plot the true number of counts as sts object plot(sts,legend=NULL,dx.upperbound=0,main="",lwd=c(1,1,3),ylab="No. Cases",ylim=control$ylim,lty=c(1,1,1),axes=FALSE,xlab="",col=c(control$col[c(1,1)],NULL), xlim=plot.dates.idx,xaxs="i") ####################start to change. Use proper customizable arguments ### plot the nowcast using the S4 method and then add the other ### stuff on top of it... ##Add the nowcast plot(sts.nowcast,dx.upperbound=0,axes=FALSE,col=control$col[c(2,2,3)],lty=c(1,1,1),legend=NULL,add=TRUE,lwd=c(3,3,3),xlim=plot.dates.idx,xaxs="i") ##Last proper index idx <- nrow(sts.nowcast) - which.max(!is.na(rev(upperbound(sts.nowcast)))) + 1 ##Continue line from plot lines( idx+c(-0.5,0.5), rep(upperbound(sts.nowcast)[idx,],2),lty=1,col=control$col[3],lwd=3) ##Add CIs from the nowcast for (i in 1:nrow(sts.nowcast)) { lines( i+c(-0.3,0.3), rep(sts.nowcast@pi[i,,1],2),lty=1,col=control$col[3]) lines( i+c(-0.3,0.3), rep(sts.nowcast@pi[i,,2],2),lty=1,col=control$col[3]) lines( rep(i,each=2), sts.nowcast@pi[i,,],lty=2,col=control$col[3]) } ##Add lambda_t if it exists. if (method == "bayes.trunc.ddcp" && control$showLambda) { lambda <- attr(delayCDF(sts.nowcast)[["bayes.trunc.ddcp"]],"model")$lambda showIdx <- seq(ncol(lambda) - control$safePredictLag) ##matlines( showIdx,t(lambda)[showIdx,],col="gray",lwd=c(1,2,1),lty=c(2,1,2)) ##If m parameter is used then also only show the polynomial up to m times back. if (!is.null(sts.nowcast@control$call$m)) { showIdx <- seq(ncol(lambda) - sts.nowcast@control$call$m, ncol(lambda) - control$safePredictLag, by=1) } matlines( showIdx, t(lambda)[showIdx,],col="gray",lwd=c(1,2,1),lty=c(2,1,2)) } ##Add axis information axis(2) ##Add extra line parts on x-axis axis(1,at=0:1e3,tick=TRUE,lwd.ticks=0,labels=rep("",1e3+1)) axis(1,at=0:1e3,tick=TRUE,lwd.ticks=1,tcl=-0.2,labels=rep("",1e3+1)) ##Highlight the mondays is.monday <- format(range.dates,"%w") == 1 axis(1,at=(1:length(range.dates))[is.monday],labels=format(range.dates[is.monday],"%a %d %b"),las=2,cex.axis=control$cex.names) ##Show month breaks dom <- as.numeric(format(range.dates,"%d")) axis(1,at=which(dom==1),labels=rep("",sum(dom==1)),tcl=-0.8,lwd=0,lwd.ticks=1) ####################stop to change ##Extra text <- c("Events up to \"now\"","Reports received by \"now\"",paste("Nowcasts by ",method,sep=""), if (method=="bayes.trunc.ddcp") expression(lambda[t]*" of bayes.trunc.ddcp") else NULL) col <- c(control$col[1:3], if (method=="bayes.trunc.ddcp") "gray" else NULL) legend(x="topright",text,col=col, lwd=3,lty=1) ##Add now symbol points(curDate-range[1]+1,0,pch=10,col=control$col[6],cex=1.5) ##Add nowcast symbol points(curDate-range[1]+1-control$safePredictLag,0,pch=9,col=control$col[3],cex=1.5) ##Add this to the legend legend(x="right",c("Now","Nowcast horizon"),pch=c(10,9),col=control$col[c(6,3)],pt.cex=1.5) ##Pause Sys.sleep(control$sys.sleep) } invisible() } surveillance/R/twinSIR_helper.R0000644000176200001440000002134014662137762016206 0ustar liggesusers################################################################################ ### Auxiliary functions for twinSIR() ### and to compute one-sided AIC by simulation (in twinSIR_methods.R) ### ### Copyright (C) 2009-2014 Sebastian Meyer, contributions by Michael Hoehle ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ################################################################################ # The cox function is used in model formulae to indicate/capture the variables # which go into the cox part/endemic component of the model. # Also, with this "cox variables" it is possible to build up interactions # as usual: cox(var1):cox(var2)... (as if cox(...) was a normal variable) ################################################################################ cox <- function (x) { x } ################################################################################ # read.design extracts the two parts X and Z of the design matrix. # Z contains the endemic part (consisting of the cox(.) terms), # X contains the epidemic part (the rest). # The automatic intercept variable is excluded from these matrices! # # ARGS: # m - a model.frame # Terms - terms for this model.frame (used to extract the model.matrix from m) # RETURNS: # list of matrices X and Z. # If there is no variable in one part of the model the corresponding matrix has # 0 columns, e.g. ncol(Z) = 0, if there is no endemic (Cox) part. # NOTE: # This function is inspired from the timereg package by T. Scheike (available # under GPL2). See http://staff.pubhealth.ku.dk/~ts/timereg.html for details. # The function has been improved/modified to fit our purposes. ################################################################################ read.design <- function (m, Terms) { attr(Terms, "intercept") <- 1 # we will remove the intercept later on # we need this to ensure that we have a reference category # in case of factors (correct contrasts) XZ <- model.matrix(Terms, m) Zterms <- grep("cox\\([^)]+\\)", colnames(XZ), ignore.case = FALSE, perl = FALSE, value = FALSE, fixed = FALSE, useBytes = FALSE, invert = FALSE) # timereg 1.0-9 way: pattern="^cox[(][A-z0-9._]*[)]" with perl=TRUE X <- XZ[, -c(1L, Zterms), drop = FALSE] Z <- XZ[, Zterms, drop = FALSE] ud <- list(X = X, Z = Z) return(ud) } ## Alternative way to do the same thing as read.design. ## This approach is similar to that of coxph, but most often some milliseconds ## slower. # read.design <- function (m, Terms) # { # attr(Terms, "intercept") <- 1 # we will remove the intercept later on # # we need this to ensure that we have a reference category # # in case of factors (right contrasts) # nCoxTerms <- length(attr(Terms, "specials")[["cox"]]) # if (nCoxTerms > 0) { # dropX <- untangle.specials(Terms, "cox", order=1:3)$terms # } # if (length(dropX) > 0) { # X <- model.matrix(Terms[-dropX], m) # by subscripting a Terms object, # Z <- model.matrix(Terms[dropX], m) # one always gets an intercept term # Z <- Z[, -1, drop = FALSE] # } else { # X <- model.matrix(Terms, m) # Z <- X[, NULL, drop = FALSE] # } # X <- X[, -1, drop = FALSE] # # ud <- list(X = X, Z = Z) # return(ud) # } ################################################################################ # Little helper function which returns either summary(object) or simply object, # if it is already a summary. The function also verifies the 'class'. ################################################################################ getSummary <- function (object, class) { summaryClass <- paste("summary", class, sep=".") if (inherits(object, class)) { summary(object) } else if (inherits(object, summaryClass)) { object } else { stop("'object' must inherit from class \"", summaryClass, "\" or \"", class, "\"") } } ################################################################################ ############################## OSAIC function ################################## ################################################################################ # Two functions: # Ztilde.chibarsq <- function(Z,p,Winv,tR,s=1) # w.chibarsq.sim <- function(p, W, N=1e4) # # Both functions are only used internally, no need for documentation # they are used in function .OSAICpenalty (twinSIR_methods.R) ################################################################################ ########################################################################## # This function computes Ztilde # for one Z as specified in Simulation 3, Silvapulle & Sen (2005), p. 79. # See also p. 37 for the quadprog link. # # Params: # Z - px1 matrix or vector with specific Z value # p - dimension of the problem, where theta is restricted to R^{+p} # Winv - inverse of covariance matrix of Z # tR - transpose of constraint matrix R\theta \geq 0. In all cases equal to # diag(p), but to save time we deliver it to the function every time # s - rescale objective function (division by s) # # Returns: # Ztilde, the point at which (Z-\theta)' W^{-1} (Z-\theta) is the # minimum over \theta \geq 0. ########################################################################## Ztilde.chibarsq <- function(Z,p,Winv,tR,s=1) { #The solve.QP function minimizes #-d^T b + 1/2 b^T D b subject to the constraints A^T b >= b_0. #Thus using p. 37 we have d = t(Winv) %*% Z. d <- crossprod(Winv, Z) #Note: Winv and d can become quiet large (or small), but since the solution is #invariant to the scaling of the function being minimized, we can equivalently #call solve.QP using D/s and d/s (e.g., s=mean(D)) to avoid the error #"constraints are inconsistent, no solution!" theta <- quadprog::solve.QP(Dmat = Winv/s, dvec = d/s, Amat = tR, bvec = rep.int(0,p), meq = 0)$solution return(sum(theta > 0)) } ###################################################################### # Compute OSAIC by simulation weights as described in Silvapulle & Sen # (2005), Simulation 3, p.79. # # Params: # p - dimension of the problem, theta is constrained to R^{+p} # W - covariance matrix of the chibarsq distribution # N - number of simulations to use # # Returns: # vector of length p+1 containing the weights w_i, i=0, \ldots, p, # computed by Monte Carlo simulation ###################################################################### w.chibarsq.sim <- function(p, W, N=1e4) { #Draw Z's from multivariate normal distribution with covariance #matrix W Z <- mvrnorm(N, rep.int(0,p), W) if (is.vector(Z)) Z <- t(Z) # case N==1 #inverse of W Winv <- solve(W) #For each simulation calculate Ztilde sims <- apply(X=Z, MARGIN=1, FUN=Ztilde.chibarsq, p=p, Winv=Winv, tR=diag(p), s=mean(Winv)) w <- table(factor(sims, levels=0:p)) / N return(w) } ################################################################################ # The helper 'getModel.simEpidata' extracts the model of an object of class # "simEpidata" similar to the function 'twinSIR' with model = TRUE, # i.e. a list with components survs, X, Z and weights, where atRiskY == 1. # The log-baseline h0 is evaluated at start times of intervals only. # This function is used in function 'intensityPlot'. ################################################################################ getModel.simEpidata <- function (object, ...) { class(object) <- "data.frame" # avoid use of [.epidata (not necessary here) config <- attr(object, "config") alpha <- config$alpha beta <- config$beta atRiskY1 <- object$atRiskY == 1 simepi1 <- object[atRiskY1,] survs <- simepi1[c("id", "start", "stop", "event")] attr(survs, "eventTimes") <- attr(object, "eventTimes") attr(survs, "timeRange") <- attr(object, "timeRange") X <- as.matrix(simepi1[tail(1:ncol(simepi1), length(alpha))]) logbaseline <- sapply(survs$start, FUN = config$h0, simplify = TRUE) Terms <- attr(object, "terms") Z <- read.design(model.frame(Terms, simepi1), Terms)$Z Z <- cbind("cox(logbaseline)" = logbaseline, Z) model <- list(survs = survs, X = X, Z = Z, weights = rep.int(1,nrow(survs))) return(model) } ### Similar auxiliary method extracting the model component ### of a fitted 'twinSIR' getModel.twinSIR <- function (object, ...) { if (is.null(model <- object[["model"]])) { stop("'", deparse(substitute(object)), "' does not contain the 'model' ", "component (use 'model = TRUE' when calling 'twinSIR')") } return(model) } surveillance/R/algo_cusum.R0000644000176200001440000002060314402172334015431 0ustar liggesusers################################################### ### chunk number 1: ################################################### algo.cusum <- function(disProgObj, control = list(range=range, k=1.04, h=2.26, m=NULL, trans="standard",alpha=NULL)){ # Set the default values if not yet set if(is.null(control$k)) control$k <- 1.04 if(is.null(control$h)) control$h <- 2.26 if(is.null(control$trans)) control$trans <- "standard" if(is.null(control$alpha)) control$alpha <- 0.1 alpha <- control$alpha observed <- disProgObj$observed timePoint <- control$range[1] # Estimate m (the expected number of cases), i.e. parameter lambda of a # poisson distribution based on time points 1:t-1 if(is.null(control$m)) { m <- mean(observed[1:(timePoint-1)]) } else if (is.numeric(control$m)) { m <- control$m } else if (control$m == "glm") { #Fit a glm to the first observations training <- 1:(timePoint-1) #Set the time index t <- disProgObj$start[2] + training - 1 #Set the observations x <- observed[training] #Set period p <- disProgObj$freq df <- data.frame(x=x,t=t) control$m.glm<- glm(x ~ 1 + cos(2*pi/p*t) + sin(2*pi/p*t) ,family=poisson(),data=df) #predict the values in range t.new <- disProgObj$start[2] + control$range - 1 m <- predict(control$m.glm,newdata=data.frame(t=t.new),type="response") } #No transformation #standObs <- observed[control$range] x <- observed[control$range] standObs <- switch(control$trans, # compute standardized variables z3 (proposed by Rossi) "rossi" = (x - 3*m + 2*sqrt(x*m))/(2*sqrt(m)), # compute standardized variables z1 (based on asympotic normality) "standard" = (x - m)/sqrt(m), # anscombe residuals "anscombe" = 3/2*(x^(2/3)-m^(2/3))/m^(1/6), # anscombe residuals as in pierce schafer based on 2nd order approx of E(X) "anscombe2nd" = (x^(2/3)-(m^(2/3)-m^(-1/3)/9))/(2/3*m^(1/6)), # compute Pearson residuals for NegBin "pearsonNegBin" = (x - m)/sqrt(m+alpha*m^2), # anscombe residuals for NegBin "anscombeNegBin" = anscombeNB(x,mu=m,alpha=alpha), # don't do anything "none" = x, stop("invalid 'trans'formation") ) # initialize the necessary vectors # start with cusum[timePoint -1] = 0, i.e. set cusum[1] = 0 cusum <- matrix(0,nrow=(length(control$range)+1), ncol=1) alarm <- matrix(data = 0, nrow = (length(control$range)+1), ncol = 1) for (t in 1:length(control$range)){ # compute cumulated sums of standardized observations corrected with the # reference value k for all time points in range cusum[t+1]<- max(0, cusum[t]+(standObs[t]-control$k)) # give alarm if the cusum is larger than the decision boundary h alarm[t+1] <- cusum[t+1] >= control$h } #Backtransform h <- control$h k <- control$k Ctm1 <- cusum[1:length(control$range)] upperbound <- switch(control$trans, # standardized variables z3 (proposed by Rossi) "rossi" = 2*h*m^(1/2)+2*k*m^(1/2)-2*Ctm1*m^(1/2)+5*m-2*(4*m^2+2*m^(3/2)*h+2*m^(3/2)*k-2*m^(3/2)*Ctm1)^(1/2), # standardized variables z1 (based on asympotic normality) "standard" = ceiling(sqrt(m)*(h+k-Ctm1)+ m), # anscombe residuals "anscombe" = ifelse( ((2/3)*m^(1/6)*(h+k-Ctm1)+m^(2/3))<0, 0, (2/3*m^(1/6)*(h+k-Ctm1)+m^(2/3))^(3/2) ), # anscombe residuals ? "anscombe2nd" = ifelse( ((2/3)*m^(1/6)*(h+k-Ctm1)+(m^(2/3)-m^(1/3)/9))<0, 0, (2/3*m^(1/6)*(h+k-Ctm1)+(m^(2/3)-m^(1/3)/9))^(3/2) ), # Pearson residuals for NegBin "pearsonNegBin" = sqrt(m+alpha*m^2)*(h+k-Ctm1)+ m, # anscombe residuals for NegBin ? "anscombeNegBin" = h-cusum[-1], # don't do anything "none" = h-cusum[-1] ) # ensure upper bound is positive and not NaN upperbound[is.na(upperbound)] <- 0 upperbound[upperbound < 0] <- 0 # discard cusum[1] and alarm[1] cusum <- cusum[-1] alarm <- alarm[-1] #Add name and data name to control object. control$name <- paste("cusum:", control$trans) control$data <- paste(deparse(substitute(disProgObj))) control$m <- m # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control, cusum=cusum) class(result) = "survRes" # for surveillance system result return(result) } ################################################### ### chunk number 2: ################################################### ###################################################################### # Program to test the transformation of NegBin variables # using the transformation similar to Anscombe residuals ###################################################################### ##################################################################### # function to evaluate hypgeom_2F1(1/3,2/3, 5/3, x) # "exact" values for x = -(0:10) and linear interpolation for x = -(10:100) #################################################################### hypgeom2F1special <- function(x) { #Return the z (the approximation grid), which is closest to x idx <- which.min(abs(surveillance.gvar.z-x)) if(x >= -10) return(surveillance.gvar.hyp[idx]) else{ # find out interval that contains x if((x-surveillance.gvar.z[idx]) < 0){ idxLow <- idx +1 idxUp <- idx } else { idxLow <- idx idxUp <- idx -1 } #linear interpolation: f(x)=f(x0)+(f(x1)-f(x0))/1*(x-x0) return(surveillance.gvar.hyp[idxLow]+(surveillance.gvar.hyp[idxUp]-surveillance.gvar.hyp[idxLow])*(x-surveillance.gvar.z[idxLow])) } } ##################################################################### # compute anscombe residuals for Y ~ NegBin(mu, alpha) using hypgeom2F1 function # E(Y)= \mu, Var(Y) = \mu + \alpha*\mu^2 ################################################################# anscombeNB <- function(y,mu,alpha=0.1) { hypgeom.mu <- 3/2*mu^(2/3)*hypgeom2F1special(-alpha*mu) one <- function(y){ up <- 3/2*y^(2/3) * hypgeom2F1special(-alpha*y) - hypgeom.mu down <- (mu+alpha*mu^2)^(1/6) return(up/down) } return(sapply(y,one)) } ################################################### ### chunk number 3: ################################################### ###################################################################### # Given a specification of the average run length in the (a)cceptance # and (r)ejected setting determine the k and h values in a standard # normal setting. # # Description: # Functions from the spc package are used in a simple univariate # root finding problem. # # Params: # ARLa - average run length in acceptance setting (i.e. number before # false alarm # ARLw - average run length in rejection state (i.e. number before # an increase is detected (i.e. detection delay) # method - optim method to use, see ?optim # # Returns: # list( k - reference value, h - decision interval) ###################################################################### find.kh <- function(ARLa=500,ARLr=7,sided="one",method="BFGS",verbose=FALSE) { if (!requireNamespace("spc")) stop("find.kh() requires package ", sQuote("spc")) #Small helper function which is to be minimized fun <- function(k) { if (k>0) { #Compute decision interval h <- spc::xcusum.crit(L0=ARLa,k=k,r=50,sided=sided) #Check if xcusum.crit managed to find a solution if (is.nan(h)) stop("spc::xcusum.crit was not able to find a h corresponding to ", "ARLa=",ARLa," and k=",k) if (h > 0) { #Compute ARLr given the above computed h arlr <- spc::xcusum.arl(k,h,mu=2*k,r=50,sided=sided) #Deviation from the requested ARLr if (verbose) { cat("k=",k," score = ",(arlr-ARLr)^2,"\n") } return( (arlr-ARLr)^2 ) } else { return(1e99) } } else { return( 1e99) } } k <- optim(1,fun,method=method)$par return(list(k=k,h=spc::xcusum.crit(L0=ARLa,k=k,r=50,sided=sided))) } surveillance/R/fanplot.R0000644000176200001440000000717714145043265014755 0ustar liggesusers################################################################################ ### Wrapper function for fanplot::fan() ### ### Copyright (C) 2017-2018,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ fanplot <- function (quantiles, probs, means = NULL, observed = NULL, start = 1, fan.args = list(), means.args = list(), observed.args = list(), key.args = NULL, xlim = NULL, ylim = NULL, log = "", xlab = "Time", ylab = "No. infected", add = FALSE, ...) { if (!requireNamespace("fanplot", quietly = TRUE)) stop("package ", sQuote("fanplot"), " is missing; ", "do 'install.packages(\"fanplot\")'") stopifnot(is.matrix(quantiles), length(probs) == ncol(quantiles), is.null(means) || length(means) == nrow(quantiles), is.null(observed) || length(observed) == nrow(quantiles), isScalar(start)) ## axis range ylog <- grepl("y", log) if (is.null(xlim)) xlim <- c(1 - 0.5, nrow(quantiles) + 0.5) + (start-1) if (is.null(ylim)) { ylim <- range(quantiles, observed, na.rm = TRUE) if (!ylog && ylim[1L] > 0) { ylim[1L] <- 0 } } ## graphical parameters stopifnot(is.list(fan.args)) fan.args <- modifyList( list(data = t(quantiles), data.type = "values", probs = probs, start = start, fan.col = heat.colors, ln = NULL), fan.args, keep.null = TRUE) ## initialize empty plot if (!add) plot.default(xlim, ylim, type = "n", log = log, xlab = xlab, ylab = ylab, ...) ## add fan do.call(fanplot::fan, fan.args) ## add point predictions if (!is.null(means) && is.list(means.args)) { means.args <- modifyList( list(x = seq_along(means) + (start-1), y = means, type = "l", lwd = 2, col = "white"), means.args) do.call("lines", means.args) } ## add observed time series if (!is.null(observed) && is.list(observed.args)) { observed.args <- modifyList( list(x = seq_along(observed) + (start-1), y = observed, type = "b", lwd = 2), observed.args) do.call("lines", observed.args) } ## add color key if (is.list(key.args)) { defaultyrange <- local({ if (ylog) ylim <- log(ylim) {if (ylog) exp else identity}(c(ylim[1L] + mean(ylim), ylim[2L])) }) key.args <- modifyList( list(start = xlim[2L] - 1, ylim = defaultyrange, data.type = "values", style = "boxfan", probs = fan.args$probs, fan.col = fan.args$fan.col, ln = NULL, space = 0.9, rlab = quantile(fan.args$probs, names = FALSE, type = 1)), key.args) ## convert ylim to data yvals <- if (ylog) { exp(seq.int(from = log(key.args$ylim[1L]), to = log(key.args$ylim[2L]), length.out = length(fan.args$probs))) } else { seq.int(from = key.args$ylim[1L], to = key.args$ylim[2L], length.out = length(fan.args$probs)) } key.args$data <- matrix(yvals) key.args$ylim <- NULL tryCatch(do.call(fanplot::fan, key.args), error = function (e) warning("color key could not be drawn, probably due to non-standard 'probs'", call. = FALSE)) } invisible(NULL) } surveillance/R/disProg.R0000644000176200001440000001061014200426174014677 0ustar liggesusers################################################### ### chunk number 1: ################################################### create.disProg <- function(week, observed, state, start=c(2001,1), freq=52, neighbourhood=NULL, populationFrac=NULL,epochAsDate=FALSE){ ## issue a deprecation warning if not internally called if (!isTRUE(packageName(parent.frame()) == .packageName)) .Deprecated("sts") namesObs <-colnames(observed) # check whether observed contains only numbers stopifnot(is.numeric(observed)) #univariate timeseries ? if(is.vector(observed)){ observed <- matrix(observed,ncol=1) namesObs <- "observed" } else { # ensure we have a matrix observed <- as.matrix(observed) } if(missing(state)){ state <- 0*observed } else if(is.vector(state)){ state <- matrix(state,ncol=1) } else { state <- as.matrix(state) } #check number of columns of observed and state nAreas <- ncol(observed) nObs <- nrow(observed) if(ncol(state) != nAreas){ #if there is only one state-vector for more than one area, repeat it if(ncol(state)==1) { state <- matrix(rep(state,nAreas),ncol=nAreas,byrow=FALSE) } else { stop("wrong dimensions of 'observed' and 'state'") } } #check neighbourhood matrix # neighbourhood can be a matrix or an array of dimension c(nAreas,nAreas, nrow(observed)) if(!is.null(neighbourhood) ) { dimNhood <- dim(neighbourhood) if(!(length(dimNhood) %in% 2:3) || any(dimNhood[1:2] != nAreas) || (length(dimNhood)==3 && dimNhood[3] != nrow(observed))) { stop('wrong dimensions of neighbourhood matrix') } } else { # no neighbourhood specified neighbourhood <- matrix(NA,nrow=nAreas,ncol=nAreas) } if(is.null(populationFrac)) { populationFrac <- matrix(1/nAreas,nrow=nObs,ncol=nAreas) } else { # make sure populationFrac is a matrix populationFrac <- as.matrix(populationFrac) # check dimensions if(nrow(populationFrac)!= nObs | ncol(populationFrac)!= nAreas) stop("dimensions of 'populationFrac' and 'observed' do not match") # check whether populationFrac contains only numbers if(!is.numeric(populationFrac)) stop("'populationFrac' must be a numeric matrix") } #labels for observed and state if(is.null(namesObs)){ namesObs <- paste0("observed",1:nAreas) } colnames(observed) <- namesObs colnames(state) <- namesObs res <- list("week"=week, "observed"=observed, "state"=state, "start"=start, "freq"=freq, "neighbourhood"=neighbourhood, "populationFrac"=populationFrac,"epochAsDate"=epochAsDate) class(res) <- "disProg" return(res) } print.disProg <- function(x, ...) { cat( "-- An object of class disProg -- \n" ) cat( "freq:\t\t", x$freq,"\n" ) cat( "start:\t\t", x$start,"\n" ) cat( "dim(observed):\t", dim(x$observed), "\n\n") n <- 1 cat("Head of observed:\n") print(head(x$observed,n)) #cat("\nhead of neighbourhood:\n") #print( head(x$neighbourhood,n)) } ################################################### ### chunk number 3: ################################################### aggregate.disProg <- function(x,...){ #aggregate observed counts observed <- apply(x$observed,MARGIN=1,sum) #aggregate states state <- apply(x$state,MARGIN=1,sum) state[state > 1] <- 1 #create univariate disProg object x <- create.disProg(week=x$week, observed=observed, state=state, freq=x$freq,start=x$start) return(x) } ################################################### ### chunk number 4: ################################################### ## legacy code removed in surveillance 1.20.0 ## now plotting via syntax transformation to stsplot_time(disProg2sts(x)) plot.disProg <- function(x, title = "", xaxis.years = TRUE, startyear = x$start[1], firstweek = x$start[2], as.one = TRUE, same.scale = TRUE, ...) { cl <- match.call() cl[[1]] <- quote(surveillance::stsplot_time) stopifnot(!missing(x)) cl$x <- substitute(surveillance::disProg2sts(x)) names(cl)[names(cl) == "title"] <- "main" if (!xaxis.years) cl["xaxis.labelFormat"] <- list(NULL) cl$xaxis.years <- NULL if (length(ignored <- intersect(c("startyear", "firstweek", "quarters"), names(cl)))) { warning("ignored legacy argument(s): ", paste0(ignored, collapse = ", ")) cl[ignored] <- NULL } if (missing(as.one)) cl$as.one <- TRUE # stsplot_time has different default eval.parent(cl) } surveillance/R/AllGeneric.R0000644000176200001440000001676514676756252015342 0ustar liggesusers ### Define some functions to be S3 generic animate <- function (object, ...) UseMethod("animate") R0 <- function (object, ...) UseMethod("R0") as.epidata <- function (data, ...) UseMethod("as.epidata") intensityplot <- function (x, ...) UseMethod("intensityplot") untie <- function (x, amount, ...) UseMethod("untie") intersectPolyCircle <- function (object, center, radius, ...) UseMethod("intersectPolyCircle") calibrationTest <- function (x, ...) UseMethod("calibrationTest") scores <- function (x, ...) { if (identical(class(x), "list")) { ## backward compatibility with surveillance < 1.10-0 scores.oneStepAhead(x, ...) } else { UseMethod("scores") } } pit <- function (x, ...) UseMethod("pit") ## internal function with methods for "twinSIR" and "simEpidata" getModel <- function (object, ...) UseMethod("getModel") ## list coefficients by component coeflist <- function (x, ...) UseMethod("coeflist") coeflist.default <- function (x, npars, ...) { if (is.null(groupnames <- names(npars))) { stop("'npars' must be named") } f <- factor(rep.int(groupnames, npars), levels = groupnames) split.default(x = x, f = f, drop = FALSE) } ### Declare some existing R functions (which we import) to be S4-generic. ### This is not strictly necessary, but considered better programming style, and ### it avoids messages noting the creation of the generics during package build ### and installation, see the section "Basic Use" in help("setGeneric"). setGeneric("plot") setGeneric("aggregate") setGeneric("toLatex") ## data frame-like methods defined in sts.R setGeneric("dim") setGeneric("dimnames") ## "ts"-like methods setGeneric("frequency") setGeneric("start") ###################################################################### # Conversion to and from sts objects ###################################################################### #setGeneric("as.sts") setGeneric("as.data.frame") ###################################################################### # Accessing and replacing slots of the "sts" class ###################################################################### #epoch slot setGeneric("epoch", function(x, as.Date=x@epochAsDate) standardGeneric("epoch")) setMethod("epoch", "sts", function(x, as.Date=x@epochAsDate) { if (!as.Date) { # return numeric vector x@epoch } else { # convert to Date format if (x@epochAsDate) { as.Date(x@epoch, origin = "1970-01-01") } else if (x@freq == 12) { # use the first day of every month as.Date(strptime(paste(year(x), epochInYear(x), 1, sep = "-"), format = "%Y-%m-%d")) } else if (x@freq %in% c(26, 52)) { # use Mondays ## be consistent with epochInYear(): 'start' means *ISO* year and week! ## Unfortunately, %G and %V are not supported for input via strptime(): ## firstMonday <- strptime(x = paste0(x@start[1L], "-W", x@start[2L], "-1"), ## format = "%G-W%V-%u") # WRONG, gives today ## so we run a naive search for the Monday of the 'start' week startweek <- x@start[2L] if (x@freq == 26) startweek <- 2*startweek - 1 candidates <- seq.Date(as.Date(paste0(x@start[1L]-1L, "-12-29")), as.Date(paste0(x@start[1L], "-12-28")), by = 1L) firstMonday <- candidates[match(sprintf("%i-W%02i", x@start[1L], startweek), strftime(candidates, "%G-W%V"))] seq.Date(from = firstMonday, by = (52/x@freq) * 7L, length.out = nrow(x)) } else if (x@freq == 365) { # use day of the year (incorrect in leap years) as.Date(strptime(paste0(year(x), "-D", epochInYear(x)), format = "%Y-D%j")) } else { stop("date conversion only implemented for daily, (bi-)weekly and monthly data") } } }) setGeneric("epoch<-", function(x, value) standardGeneric("epoch<-")) setReplaceMethod("epoch", "sts", function(x, value) { if (length(value) != nrow(x@observed)) stop("'epoch' must be of length 'nrow(observed)'") if (inherits(value, "Date")) { value <- as.integer(value) x@epochAsDate <- TRUE } x@epoch <- value x }) # observed slot setGeneric("observed", function(x) standardGeneric("observed")) setMethod("observed", "sts", function(x) { return(x@observed) }) setGeneric("observed<-", function(x, value) standardGeneric("observed<-")) setReplaceMethod("observed", "sts", function(x, value) { x@observed <- value x }) # alarms slot setGeneric("alarms", function(x) standardGeneric("alarms")) setMethod("alarms", "sts", function(x) { return(x@alarm) }) setGeneric("alarms<-", function(x, value) standardGeneric("alarms<-")) setReplaceMethod("alarms", "sts", function(x, value) { x@alarm <- value x }) # upperbound slot setGeneric("upperbound", function(x) standardGeneric("upperbound")) setMethod("upperbound", "sts", function(x) { return(x@upperbound) }) setGeneric("upperbound<-", function(x, value) standardGeneric("upperbound<-")) setReplaceMethod("upperbound", "sts", function(x, value) { x@upperbound <- value x }) # population slot (actually its populationFrac) setGeneric("population", function(x) standardGeneric("population")) setMethod("population", "sts", function(x) { return(x@populationFrac) }) setGeneric("population<-", function(x, value) standardGeneric("population<-")) setReplaceMethod("population", "sts", function(x, value) { x@populationFrac <- value x }) ##control slot setGeneric("control", function(x) standardGeneric("control")) setMethod("control", "sts", function(x) { return(x@control) }) setGeneric("control<-", function(x, value) standardGeneric("control<-")) setReplaceMethod("control", "sts", function(x, value) { x@control <- value x }) ###multinomial Time series slot ##control slot setGeneric("multinomialTS", function(x) standardGeneric("multinomialTS")) setMethod("multinomialTS", "sts", function(x) { return(x@multinomialTS) }) setGeneric("multinomialTS<-", function(x, value) standardGeneric("multinomialTS<-")) setReplaceMethod("multinomialTS", "sts", function(x, value) { x@multinomialTS <- value x }) ### neighbourhood matrix slot setGeneric("neighbourhood", function(x) standardGeneric("neighbourhood")) setMethod("neighbourhood", "sts", function(x) { return(x@neighbourhood) }) setGeneric("neighbourhood<-", function(x, value) standardGeneric("neighbourhood<-")) setReplaceMethod("neighbourhood", "sts", function(x, value) { x@neighbourhood <- value x }) ###################################################################### # Miscellaneous access methods ###################################################################### setGeneric("epochInYear", function(x, ...) standardGeneric("epochInYear")) setGeneric("year", function(x, ...) standardGeneric("year")) ###################################################################### # For stsNC class ###################################################################### ### access function for repotringTriangle slot setGeneric("reportingTriangle", function(x) standardGeneric("reportingTriangle")) setMethod("reportingTriangle", "stsNC", function(x) { return(x@reportingTriangle) }) ### access function for delayCDF slot setGeneric("delayCDF", function(x) standardGeneric("delayCDF")) setMethod("delayCDF", "stsNC", function(x) { return(x@delayCDF) }) ### access function for SR slot setGeneric("score", function(x) standardGeneric("score")) setMethod("score", "stsNC", function(x) { return(x@SR) }) ### access function for prediction interval slot setGeneric("predint", function(x) standardGeneric("predint")) setMethod("predint", "stsNC", function(x) { return(x@pi) }) surveillance/R/hhh4_simulate.R0000644000176200001440000002674314676774654016076 0ustar liggesusers################################################################################ ### Simulate from a HHH4 model ### ### Copyright (C) 2012 Michaela Paul, 2013-2016,2018,2021 Sebastian Meyer ### (except where otherwise noted) ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Simulate-method for hhh4-objects simulate.hhh4 <- function (object, # result from a call to hhh4 nsim=1, # number of replicates to simulate seed=NULL, y.start=NULL, # initial counts for epidemic components subset=1:nrow(object$stsObj), coefs=coef(object), # coefficients used for simulation components=c("ar","ne","end"), # which comp to include simplify=nsim>1, # counts array only (no full sts) ...) { ## Determine seed (this part is copied from stats:::simulate.lm with ## Copyright (C) 1995-2012 The R Core Team) if(!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) # initialize the RNG if necessary if(is.null(seed)) RNGstate <- get(".Random.seed", envir = .GlobalEnv) else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) } ## END seed cl <- match.call() theta <- if (missing(coefs)) coefs else checkCoefs(object, coefs) stopifnot(subset >= 1, subset <= nrow(object$stsObj)) ## lags lag.ar <- object$control$ar$lag lag.ne <- object$control$ne$lag maxlag <- max(lag.ar, lag.ne) ## initial counts nUnits <- object$nUnit if (is.null(y.start)) { # set starting value to mean observed (in subset!) y.means <- ceiling(colMeans(observed(object$stsObj)[subset,,drop=FALSE])) y.start <- matrix(y.means, maxlag, nUnits, byrow=TRUE) } else { if (is.vector(y.start)) y.start <- t(y.start) if (ncol(y.start) != nUnits) stop(sQuote("y.start"), " must have nUnits=", nUnits, " columns") if (nrow(y.start) < maxlag) stop("need 'y.start' values for lag=", maxlag, " initial time points") } ## store model terms in the hhh4 object because we request them repeatedly ## (within get_exppreds_with_offsets() and directly afterwards) ## CAVE: for an ri()-model, building the terms affects the .Random.seed, ## so doing that twice would yield different simulations than pre-1.16.2 if (is.null(object$terms)) object$terms <- terms(object) ## get fitted exppreds nu_it, phi_it, lambda_it (incl. offsets, t in subset) exppreds <- get_exppreds_with_offsets(object, subset = subset, theta = theta) ## extract overdispersion parameters (simHHH4 assumes psi->0 means Poisson) model <- terms(object) psi <- splitParams(theta,model)$overdisp if (length(psi) > 1) # "NegBinM" or shared overdispersion parameters psi <- psi[model$indexPsi] ## weight matrix/array of the ne component neweights <- getNEweights(object, coefW(theta)) ## set predictor to zero if not included ('components' argument) stopifnot(length(components) > 0, components %in% c("ar", "ne", "end")) getComp <- function (comp) { exppred <- exppreds[[comp]] if (comp %in% components) exppred else "[<-"(exppred, value = 0) } ar <- getComp("ar") ne <- getComp("ne") end <- getComp("end") ## simulate simcall <- quote( simHHH4(ar, ne, end, psi, neweights, y.start, lag.ar, lag.ne) ) if (!simplify) { ## result template res0 <- object$stsObj[subset,] setObserved <- function (observed) { res0@observed[] <- observed res0 } simcall <- call("setObserved", simcall) } res <- if (nsim==1 && !simplify) eval(simcall) else replicate(nsim, eval(simcall), simplify=if (simplify) "array" else FALSE) if (simplify) { dimnames(res)[1:2] <- list(subset, colnames(model$response)) attr(res, "initial") <- y.start attr(res, "stsObserved") <- object$stsObj[subset,] class(res) <- "hhh4sims" } ## Done attr(res, "call") <- cl attr(res, "seed") <- RNGstate res } ### Internal auxiliary function, which performs the actual simulation simHHH4 <- function(ar, # lambda_it (nTime x nUnits matrix) ne, # phi_it (nTime x nUnits matrix) end, # nu_it (nTime x nUnits matrix, offset included) psi, # overdisp param(s) or numeric(0) (psi->0 = Poisson) neW, # weight matrix/array for neighbourhood component start, # starting counts (vector of length nUnits, or # matrix with nUnits columns if lag > 1) lag.ar = 1, lag.ne = lag.ar ) { nTime <- nrow(end) nUnits <- ncol(end) ## check and invert psi since rnbinom() uses different parametrization size <- if (length(psi) == 0 || isTRUE(all.equal(psi, 0, check.attributes=FALSE))) { NULL # Poisson } else { if (!length(psi) %in% c(1, nUnits)) stop("'length(psi)' must be ", paste(unique(c(1, nUnits)), collapse = " or "), " (number of units)") 1/psi } ## simulate from Poisson or NegBin model rdistr <- if (is.null(size)) { rpois } else { ## unit-specific 'mean's and variance = mean + psi*mean^2 ## where 'size'=1/psi and length(psi) == 1 or length(mean) function(n, mean) rnbinom(n, mu = mean, size = size) } ## if only endemic component -> simulate independently if (all(ar + ne == 0)) { if (!is.null(size)) size <- matrix(size, nTime, nUnits, byrow = TRUE) return(matrix(rdistr(length(end), end), nTime, nUnits)) } ## weighted sum of counts of other (neighbouring) regions ## params: y - vector with (lagged) counts of regions ## W - nUnits x nUnits adjacency/weight matrix (0=no neighbour) wSumNE <- if (is.null(neW) || all(neW == 0)) { # includes the case nUnits==1 function (y, W) numeric(nUnits) } else function (y, W) .colSums(W * y, nUnits, nUnits) ## initialize matrices for means mu_i,t and simulated data y_i,t mu <- y <- matrix(0, nTime, nUnits) y <- rbind(start, y) nStart <- nrow(y) - nrow(mu) # usually just 1 for lag=1 ## simulate timeDependentWeights <- length(dim(neW)) == 3 if (!timeDependentWeights) neWt <- neW for(t in seq_len(nTime)){ if (timeDependentWeights) neWt <- neW[,,t] ## mean mu_i,t = lambda*y_i,t-1 + phi*sum_j wji*y_j,t-1 + nu_i,t mu[t,] <- ar[t,] * y[nStart+t-lag.ar,] + ne[t,] * wSumNE(y[nStart+t-lag.ne,], neWt) + end[t,] ## Sample from Poisson/NegBin with that mean y[nStart+t,] <- rdistr(nUnits, mu[t,]) } ## return simulated data without initial counts y[-seq_len(nStart),,drop=FALSE] } ### check compatibility of a user-specified coefficient vector with model checkCoefs <- function (object, coefs, reparamPsi=TRUE) { theta <- coef(object, reparamPsi=reparamPsi) if (length(coefs) != length(theta)) stop(sQuote("coefs"), " must be of length ", length(theta)) names(coefs) <- names(theta) coefs } ### subset simulations and keep attributes in sync "[.hhh4sims" <- function (x, i, j, ..., drop = FALSE) { xx <- NextMethod("[", drop = drop) if (nargs() == 2L) # x[i] call -> hhh4sims class is lost return(xx) ## otherwise we were subsetting the array and attributes are lost attributes(xx) <- c(attributes(xx), attributes(x)[c("initial", "stsObserved", "class")]) subset_hhh4sims_attributes(xx, i, j) } subset_hhh4sims_attributes <- function (x, i, j) { if (!missing(i)) attr(x, "stsObserved") <- attr(x, "stsObserved")[i,] if (!missing(j)) { attr(x, "stsObserved") <- suppressMessages(attr(x, "stsObserved")[, j]) is.na(attr(x, "stsObserved")@neighbourhood) <- TRUE attr(x, "initial") <- attr(x, "initial")[, j, drop = FALSE] } x } ### aggregate predictions over time and/or (groups of) units aggregate.hhh4sims <- function (x, units = TRUE, time = FALSE, ..., drop = FALSE) { ax <- attributes(x) if (time) { ## sum counts over the whole simulation period res <- colSums(x) ## -> a nUnits x nsim matrix -> will no longer be "hhh4sims" if (isTRUE(units)) { # sum over all units res <- colSums(res) # now a vector of length nsim } else if (!identical(FALSE, units)) { # sum over groups of units stopifnot(length(units) == dim(x)[2]) res <- t(rowSumsBy.matrix(t(res), units)) } } else { if (isTRUE(units)) { # sum over all units res <- apply(X = x, MARGIN = c(1L, 3L), FUN = sum) if (!drop) { ## restore unit dimension conforming to "hhh4sims" class dim(res) <- replace(ax$dim, 2L, 1L) dimnames(res) <- replace(ax$dimnames, 2L, list(NULL)) ## restore attributes attr(res, "initial") <- as.matrix(rowSums(ax$initial)) attr(res, "stsObserved") <- aggregate(ax$stsObserved, by = "unit") class(res) <- "hhh4sims" } } else if (!identical(FALSE, units)) { # sum over groups of units stopifnot(length(units) == dim(x)[2]) groupnames <- names(split.default(seq_along(units), units)) res <- apply(X = x, MARGIN = 3L, FUN = rowSumsBy.matrix, by = units) dim(res) <- replace(ax$dim, 2L, length(groupnames)) dimnames(res) <- replace(ax$dimnames, 2L, list(groupnames)) if (!drop) { ## restore attributes attr(res, "initial") <- rowSumsBy.matrix(ax$initial, units) attr(res, "stsObserved") <- rowSumsBy.sts(ax$stsObserved, units) class(res) <- "hhh4sims" } } else { return(x) } } ## done res } rowSumsBy.matrix <- function (x, by, na.rm = FALSE) { dn <- dim(x) res <- vapply(X = split.default(x = seq_len(dn[2L]), f = by), FUN = function (idxg) .rowSums(x[, idxg, drop = FALSE], dn[1L], length(idxg), na.rm = na.rm), FUN.VALUE = numeric(dn[1L]), USE.NAMES = TRUE) if (dn[1L] == 1L) t(res) else res } rowSumsBy.sts <- function (x, by, na.rm = FALSE) { ## map, neighbourhood, upperbound, control get lost by aggregation of units .sts(epoch = x@epoch, freq = x@freq, start = x@start, observed = rowSumsBy.matrix(x@observed, by, na.rm), state = rowSumsBy.matrix(x@state, by, na.rm) > 0, alarm = rowSumsBy.matrix(x@alarm, by, na.rm) > 0, populationFrac = rowSumsBy.matrix(x@populationFrac, by, na.rm), epochAsDate = x@epochAsDate, multinomialTS = x@multinomialTS) } surveillance/R/epidataCS_methods.R0000644000176200001440000003604314676774414016704 0ustar liggesusers################################################################################ ### Standard S3-methods for "epidataCS" objects, which represent ### CONTINUOUS SPATIO-temporal infectious disease case data ### ### Copyright (C) 2009-2015,2017-2019,2024 Sebastian Meyer ### (except where otherwise noted) ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Number of events (including prehistory) nobs.epidataCS <- function (object, ...) length(object$events) ### UPDATE # all arguments but 'object' are optional, the ... argument is unused update.epidataCS <- function (object, eps.t, eps.s, qmatrix, nCircle2Poly, stgrid, ...) { nEvents <- nobs(object) # Update spatio-temporal grid data if (!missing(stgrid)) { oldT <- tail(object$stgrid$stop, 1L) if (inherits(stgrid, "SpatialPolygons")) stgrid <- tiles2stgrid(stgrid, start = 0, T = oldT) stgrid <- check_stgrid(stgrid, T = oldT, verbose = FALSE, warn = FALSE) ## cannot update tiles because events are linked to these stopifnot(identical(levels(stgrid$tile), levels(object$stgrid$tile))) nTiles <- nlevels(object$stgrid$tile) if ((oldA <- sum(head(object$stgrid$area, nTiles))) != (newA <- sum(head( stgrid$area, nTiles)))) warning("total tile area has changed: ", paste(oldA, "->", newA)) ## merge new spatio-temporal grid data into events@data object$events@data <- cbind( merge_stgrid(marks(object, coords = FALSE), stgrid, # possibly with dropped/added endemic vars verbose = FALSE), object$events@data[dotNames_events] ) object$stgrid <- stgrid } # Check and update eps.t if (!missing(eps.t)) { stopifnot(is.numeric(eps.t), eps.t > 0) object$events$eps.t <- eps.t } # Initialise indicator of which influenceRegions to update ir2update <- logical(nEvents) # all FALSE # Check and update eps.s if (!missing(eps.s)) { stopifnot(is.numeric(eps.s), eps.s > 0) oldeps.s <- object$events$eps.s object$events$eps.s <- eps.s ir2update <- oldeps.s != object$events$eps.s } # Check nCircle2Poly nCircle2Poly <- if (missing(nCircle2Poly)) { attr(object$events$.influenceRegion, "nCircle2Poly") } else { stopifnot(isScalar(nCircle2Poly)) ir2update <- rep.int(TRUE, nEvents) as.integer(nCircle2Poly) } # Update influenceRegions of events if (any(ir2update)) { clipper <- attr(object$events$.influenceRegion, "clipper") if (is.null(clipper)) # epidataCS < 1.8-1 clipper <- "polyclip" object$events$.influenceRegion[ir2update] <- .influenceRegions(object$events[ir2update,], object$W, nCircle2Poly, clipper = clipper) attr(object$events$.influenceRegion, "nCircle2Poly") <- nCircle2Poly } # Check qmatrix if (!missing(qmatrix)) object$qmatrix <- checkQ(qmatrix, levels(object$events$type)) # Update length of infection time, i.e. length = min(T-time, eps.t) if (!missing(eps.t) || !missing(stgrid)) { ..T <- tail(object$stgrid$stop, 1L) object$events$.obsInfLength <- with(object$events@data, pmin(..T - time, eps.t)) } # Update .sources if (!missing(eps.t) || !missing(eps.s) || !missing(qmatrix)) { object$events$.sources <- determineSources.epidataCS(object) } # Done update. return(object) } ### subsetting epidataCS, i.e. select only part of the events, ### but retain stgrid and W. If any event types disappear due to subsetting, ### these types will be dropped from the factor levels and from qmatrix "[.epidataCS" <- function (x, i, j, ..., drop = TRUE) { ## rescue attributes of .influenceRegion (dropped when indexing) iRattr <- attributes(x$events$.influenceRegion) ## apply [,SpatialPointsDataFrame-method (where "drop" is ignored) cl <- sys.call() cl[[1]] <- as.name("[") cl[[2]] <- substitute(x$events) x$events <- eval(cl, envir=parent.frame()) ## assure valid epidataCS after subsetting if (!missing(j)) { # only epidemic covariates may be selected endemicVars <- setdiff(names(x$stgrid), c( reservedColsNames_stgrid, obligColsNames_stgrid)) if (!all(c(reservedColsNames_events, obligColsNames_events, endemicVars) %in% names(x$events))) { stop("only epidemic covariates may be removed from 'events'") } } if (!missing(i)) { ## update .sources x$events$.sources <- determineSources.epidataCS(x) if (drop) { ## update type levels and qmatrix (a type could have disappeared) x$events$type <- x$events$type[drop=TRUE] typeNames <- levels(x$events$type) if (!identical(rownames(x$qmatrix), typeNames)) { message("Note: dropped type(s) ", paste0("\"", setdiff(rownames(x$qmatrix), typeNames), "\"", collapse = ", ")) x$qmatrix <- checkQ(x$qmatrix, typeNames) } } } ## restore attributes of .influenceRegion attributes(x$events$.influenceRegion) <- iRattr ## done return(x) } ## The subset method for "epidataCS" objects is adapted from ## base::subset.data.frame ## Copyright (C) 1995-2023 The R Core Team ## [replaced 'x' by 'x$events@data' when evaluating 'subset' and 'select'] subset.epidataCS <- function (x, subset, select, drop = TRUE, ...) { chkDots(...) if (missing(subset)) r <- TRUE else { e <- substitute(subset) r <- eval(e, x$events@data, parent.frame()) # HERE IS A MOD if (!is.logical(r)) stop("'subset' must evaluate to logical") r <- r & !is.na(r) } if (missing(select)) vars <- TRUE else { nl <- as.list(seq_along(x$events@data)) # HERE IS A MOD names(nl) <- names(x$events@data) # HERE IS A MOD vars <- eval(substitute(select), nl, parent.frame()) } x[r, vars, drop = drop] # this calls the [.epidataCS-method from above } ## Subset an "epidataCS" object via head() and tail() using [.epidataCS ## Code adapted from earlier versions of the matrix-specific methods ## Copyright (C) 1995-2012 The R Core Team ## [amended stopifnot(), replaced nrow() by nobs(), omitted 'addrownums'] head.epidataCS <- function (x, n = 6L, ...) { stopifnot(isScalar(n)) n <- if (n < 0L) max(nobs(x) + n, 0L) else min(n, nobs(x)) x[seq_len(n), , drop = FALSE] } tail.epidataCS <- function (x, n = 6L, ...) { stopifnot(isScalar(n)) nrx <- nobs(x) n <- if (n < 0L) max(nrx + n, 0L) else min(n, nrx) x[seq.int(to = nrx, length.out = n), , drop = FALSE] } ### extract marks of the events (actually also including time and tile) idxNonMarks <- function (x) { endemicCovars <- setdiff(names(x$stgrid), c( reservedColsNames_stgrid, obligColsNames_stgrid)) match(c(reservedColsNames_events, endemicCovars), names(x$events@data)) } marks.epidataCS <- function (x, coords = TRUE, ...) { if (coords) { # append coords (cp. as.data.frame.SpatialPointsDataFrame) data.frame(x$events@data[-idxNonMarks(x)], x$events@coords) } else { # return marks without coordinates x$events@data[-idxNonMarks(x)] } } ## extract the events point pattern as.SpatialPointsDataFrame.epidataCS <- function (from) { stopifnot(inherits(from, "epidataCS")) events <- from$events events@data <- marks.epidataCS(from, coords = FALSE) events } setOldClass("epidataCS") setAs(from = "epidataCS", to = "SpatialPointsDataFrame", def = as.SpatialPointsDataFrame.epidataCS) ### permute event times and/or locations holding remaining columns fixed permute.epidataCS <- function (x, what = c("time", "space"), keep) { stopifnot(inherits(x, "epidataCS")) what <- match.arg(what) ## permutation index perm <- if (missing(keep)) { sample.int(nobs.epidataCS(x)) } else { # some events should not be relabeled keep <- eval(substitute(keep), envir = x$events@data, enclos = parent.frame()) stopifnot(is.logical(keep), !is.na(keep)) which2permute <- which(!keep) howmany2permute <- length(which2permute) if (howmany2permute < 2L) { message("Note: data unchanged ('keep' all)") return(x) } perm <- seq_len(nobs.epidataCS(x)) perm[which2permute] <- which2permute[sample.int(howmany2permute)] perm } ## rescue attributes of .influenceRegion (dropped when indexing) iRattr <- attributes(x$events@data$.influenceRegion) ## permute time points and/or locations PERMVARS <- if (what == "time") { c("time", "BLOCK", "start", ".obsInfLength") } else { x$events@coords <- x$events@coords[perm,,drop=FALSE] c("tile", ".bdist", ".influenceRegion") } x$events@data[PERMVARS] <- x$events@data[perm, PERMVARS] ## re-sort on time if necessary if (what == "time") { x$events <- x$events[order(x$events@data$time), ] } ## .sources and endemic variables need an update x$events@data$.sources <- determineSources.epidataCS(x) ENDVARS <- setdiff(names(x$stgrid), c(reservedColsNames_stgrid, obligColsNames_stgrid)) gridcellsOfEvents <- match( do.call("paste", c(x$events@data[c("BLOCK", "tile")], sep = "\r")), do.call("paste", c(x$stgrid[c("BLOCK", "tile")], sep = "\r")) ) x$events@data[ENDVARS] <- x$stgrid[gridcellsOfEvents, ENDVARS] ## restore attributes of .influenceRegion attributes(x$events@data$.influenceRegion) <- iRattr ## done x } ### printing methods print.epidataCS <- function (x, n = 6L, digits = getOption("digits"), ...) { print_epidataCS_header( timeRange = c(x$stgrid$start[1L], x$stgrid$stop[nrow(x$stgrid)]), bbox = bbox(x$W), nBlocks = length(unique(x$stgrid$BLOCK)), nTiles = nlevels(x$stgrid$tile), digits = digits ) cat("Types of events: ") str(levels(x$events$type), give.attr = FALSE, give.head = FALSE, width = getOption("width") - 17L) cat("Overall number of events:", nEvents <- nobs(x)) if (npre <- sum(x$events$time <= x$stgrid$start[1L])) cat(" (prehistory: ", npre, ")", sep = "") cat("\n\n") visibleCols <- grep("^\\..+", names(x$events@data), invert = TRUE) if (nEvents == 0L) { # not handled by [,SpatialPointsDataFrame-method # and thus actually not supported by "epidataCS" ## display header only print(data.frame(coordinates = character(0L), x$events@data[visibleCols])) } else { ## 2014-03-24: since sp 1.0-15, print.SpatialPointsDataFrame() ## appropriately passes its "digits" argument to print.data.frame() print(head.matrix(x$events[visibleCols], n = n), digits = digits, ...) if (n < nEvents) cat("[....]\n") } invisible(x) } print_epidataCS_header <- function (timeRange, bbox, nBlocks, nTiles, digits = getOption("digits")) { bboxtxt <- paste( apply(bbox, 1, function (int) paste0( "[", paste(format(int, trim=TRUE, digits=digits), collapse=", "), "]" )), collapse = " x ") cat("Observation period:", paste(format(timeRange, trim=TRUE, digits=digits), collapse = " - "), "\n") cat("Observation window (bounding box):", bboxtxt, "\n") cat("Spatio-temporal grid (not shown):", nBlocks, ngettext(nBlocks, "time block,", "time blocks"), "x", nTiles, ngettext(nTiles, "tile", "tiles"), "\n") } ### SUMMARY # the epidemic is summarized by the following returned components: # timeRange, nEvents, eventTimes, eventCoords, nSources, as well as # - tile/typetable: number of events per tile/type # - counter: number of infective individuals as stepfun summary.epidataCS <- function (object, ...) { res <- list( timeRange = with(object$stgrid, c(start[1], stop[length(stop)])), bbox = bbox(object$W), nBlocks = length(unique(object$stgrid$BLOCK)), nEvents = nobs(object), nTypes = nlevels(object$events$type), eventTimes = object$events$time, eventCoords = coordinates(object$events), eventTypes = object$events$type, eventRanges = object$events@data[c("eps.t", "eps.s")], eventMarks = marks.epidataCS(object), tileTable = c(table(object$events$tile)), typeTable = c(table(object$events$type)), counter = as.stepfun.epidataCS(object), nSources = lengths(object$events$.sources, use.names = FALSE) ) class(res) <- "summary.epidataCS" res } print.summary.epidataCS <- function (x, ...) { print_epidataCS_header(timeRange = x$timeRange, bbox = x$bbox, nBlocks = x$nBlocks, nTiles = length(x$tileTable)) cat("Overall number of events: ", x$nEvents, " (", if (x$nTypes==1) "single type" else paste(x$nTypes, "types"), if (npre <- sum(x$eventTimes <= x$timeRange[1L])) paste(", prehistory:", npre), ")\n", sep = "") cat("\nSummary of event marks and number of potential sources:\n") print(summary(cbind(x$eventMarks, "|.sources|"=x$nSources)), ...) invisible(x) } as.stepfun.epidataCS <- function (x, ...) { eventTimes <- x$events$time removalTimes <- eventTimes + x$events$eps.t tps <- sort(unique(c(eventTimes, removalTimes[is.finite(removalTimes)]))) nInfectious <- sapply(tps, function(t) sum(eventTimes <= t & removalTimes > t)) stepfun(tps, c(0,nInfectious), right = TRUE) # no ties, 'tps' is unique } ################################################### ### Distances from potential (eps.s, eps.t) sources ################################################### getSourceDists <- function (object, dimension = c("space", "time")) { dimension <- match.arg(dimension) ## extract required info from "epidataCS"-object distmat <- as.matrix(dist( if (dimension == "space") { coordinates(object$events) } else object$events$time )) .sources <- object$events$.sources ## number of sources nsources <- lengths(.sources, use.names = FALSE) hasSources <- nsources > 0 cnsources <- c(0, cumsum(nsources)) ## generate vector of distances of events to their potential sources sourcedists <- numeric(sum(nsources)) for (i in which(hasSources)) { .sourcesi <- .sources[[i]] .sourcedists <- distmat[i, .sourcesi] .idx <- cnsources[i] + seq_len(nsources[i]) sourcedists[.idx] <- .sourcedists names(sourcedists)[.idx] <- paste(i, .sourcesi, sep="<-") } ## Done sourcedists } surveillance/R/algo_glrnb.R0000644000176200001440000003144114615162374015414 0ustar liggesusers###################################################################### # # Implementation of GLR and ordinary Poisson/NegBin CUSUM # -- documentation converted to Rd format. # # Author: Michael Hoehle (with contributions by Valentin Wimmer) # Date: 8 Jan 2008 # History # - 2016-01-17 added ret="cases" for glr using the NegBin distribution ###################################################################### algo.glrnb <- function(disProgObj, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept", theta=NULL,dir=c("inc","dec"), ret=c("cases","value"),xMax=1e4)) { #Small helper function either <- function(cond, whenTrue, whenFalse) { if (cond) return(whenTrue) else return(whenFalse) } # Set the default values if not yet set if(is.null(control[["c.ARL",exact=TRUE]])) control$c.ARL <- 5 if(is.null(control[["change",exact=TRUE]])) control$change <- "intercept" if(is.null(control[["Mtilde",exact=TRUE]])) control$Mtilde <- 1 if(is.null(control[["M",exact=TRUE]])) control$M <- -1 if(is.null(control[["dir",exact=TRUE]])) control$dir <- "inc" if(is.null(control[["ret",exact=TRUE]])) control$ret <- "value" if(is.null(control[["xMax",exact=TRUE]])) control$xMax <- 1e4 if(!is.null(control[["theta",exact=TRUE]])) { if(control[["theta",exact=TRUE]] == 1) { stop("Error: theta has to be larger than 1!") } } ##Set alpha to null as default. Not necessary, coz it would be taken from ##glrnb output. ##if(is.null(control[["alpha",exact=TRUE]])) control$alpha <- 0 #GLM (only filled if estimated) m <- NULL ################################################ #Extract the important parts from the arguments ################################################ observed <- disProgObj$observed #range is fixed, but t is modified as we iterate the cusum t <- control$range ; range <- control$range control$mu0Model <- NULL control$dir <- match.arg(control$dir, c("inc","dec")) dir <- ifelse(control$dir=="inc",1,-1) control$ret <- match.arg(control$ret, c("value","cases")) ret <- pmatch(control$ret,c("value","cases")) mod <- list() # Estimate m (the expected number of cases), i.e. parameter lambda of a # poisson distribution based on time points 1:t-1 if (is.null(control[["mu0",exact=TRUE]]) | is.list(control[["mu0",exact=TRUE]])) { #Initialize if (is.null(control[["mu0",exact=TRUE]])) control$mu0 <- list() if (is.null(control[["mu0",exact=TRUE]][["S"]])) control$mu0$S <- 1 if (is.null(control[["mu0",exact=TRUE]][["trend"]])) control$mu0$trend <- FALSE if (is.null(control[["mu0",exact=TRUE]][["refit"]])) control$mu0$refit <- FALSE control$mu0Model <- control$mu0 #Estimate using a hook function (lazy evaluation) control$mu0 <- estimateGLRNbHook()$pred mod[[1]] <- estimateGLRNbHook()$mod # if it is necessary to estimate alpha. Note: glm.nb uses a different # parametrization of the negative binomial distribution, i.e. the # variance is 'mu + mu^2/size' (?dnbinom). # Hence the correct alpha is 1/theta. But now it's the same every time. if(is.null(control[["alpha",exact=TRUE]])) control$alpha <- 1/mod[[1]]$theta } #The counts x <- observed[control$range] mu0 <- control$mu0 #Reserve space for the results # start with cusum[timePoint -1] = 0, i.e. set cusum[1] = 0 alarm <- matrix(data = 0, nrow = length(t), ncol = 1) upperbound <- matrix(data = 0, nrow = length(t), ncol = 1) #Setup counters for the progress doneidx <- 0 N <- 1 xm10 <- 0 noofalarms <- 0 noOfTimePoints <- length(t) #Loop as long as we are not through the sequence while (doneidx < noOfTimePoints) { # cat("Doneidx === ",doneidx,"\n") # Call the C-interface -- this should depend on the type if (control$change == "intercept") { #Generalized likehood ratio vs. ordinary CUSUM if (is.null(control[["theta",exact=TRUE]])) { if (control$alpha == 0) { #poisson if (control$M > 0 ){ # window limited res <- .C(C_glr_cusum_window,as.integer(x),as.double(mu0),length(x),as.integer(control$M),as.integer(control$Mtilde),as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(dir),as.integer(ret)) } else { # standard, not window limited res <- .C(C_glr_cusum,as.integer(x),as.double(mu0),length(x),as.integer(control$Mtilde),as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(dir),as.integer(ret)) } } else { #negbin. This is directly the window limited version, does M=-1 work here? res <- .C(C_glr_nb_window,x=as.integer(x),mu0=as.double(mu0),alpha=as.double(control$alpha),lx=length(x),Mtilde=as.integer(control$Mtilde),M=as.integer(control$M),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),dir=as.integer(dir)) ##hoehle - 2016-01-17. Try out calculating upper bound in terms of cases if (control$ret == "cases") { ##Warn that this might be slow. message("Return of cases is for the GLR detector based on the negative binomial distribution is currently\n only implemented brute force and hence might be very slow!") ### browser() myx <- x res$cases <- rep(0,length(res$val)) for (pos in seq_len(min(length(x),res$N))) { myx <- x gotAlarm <- (res$N <= pos) #already got an alarm at the position? direction <- ifelse(gotAlarm, -1, 1) #go up or down? alarmChange <- FALSE #have we succeeded in changing x such that the alarm status changed? #Loop over values until one is such that an alarm at (or before!) the time point is given while (!alarmChange & (myx[pos] <= control$xMax) & (myx[pos] >=1)) { myx[pos] <- myx[pos] + direction ##cat("pos=",pos,"x=",myx[pos],"\n") tmpRes <- .C(C_glr_nb_window,x=as.integer(myx),mu0=as.double(mu0),alpha=as.double(control$alpha),lx=length(myx),Mtilde=as.integer(control$Mtilde),M=as.integer(control$M),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(myx))),dir=as.integer(dir)) if (!gotAlarm & (tmpRes$N <= pos)) { alarmChange <- TRUE ; res$cases[pos] <- myx[pos]} if (gotAlarm & (tmpRes$N > pos)) { alarmChange <- TRUE ; res$cases[pos] <- myx[pos] + 1} } if (!alarmChange) { res$cases[pos] <- ifelse(gotAlarm,NA,1e99) } #didn't find alarm before control$xMax } } ##end new 2016 addition to calculate 'cases' for negbin glrnb } } else { ###################### !is.null(control$theta), i.e. ordinary CUSUM if (control$alpha == 0) { #poisson res <- .C(C_lr_cusum,x=as.integer(x),mu0=as.double(mu0),lx=length(x),as.double(control$theta),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(ret)) } else { #negbin res <- .C(C_lr_cusum_nb,x=as.integer(x),mu0=as.double(mu0),alpha=as.double(control$alpha),lx=length(x),as.double(control$theta),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(ret)) } } } else { ################### Epidemic chart ####################### if (control$change == "epi") { if (control$alpha == 0) { #pois res <- .C(C_glr_epi_window,as.integer(x),as.double(mu0),length(x),as.integer(control$Mtilde),as.integer(control$M),as.double(xm10),as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x)))) } else { res <- .C(C_glr_nbgeneral_window,as.integer(x),as.double(mu0),alpha=as.double(control$alpha),lx=length(x),Mtilde=as.integer(control$Mtilde),M=as.integer(control$M),xm10=as.double(xm10),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),dir=as.integer(dir)) } } } ##In case an alarm found log this and reset the chart at res$N+1 if (res$N <= length(x)) { #Put appropriate value in upperbound upperbound[1:res$N + doneidx] <- either(ret == 1, res$val[1:res$N] ,res$cases[1:res$N]) alarm[res$N + doneidx] <- TRUE #Chop & get ready for next round xm10 <- x[res$N] #put start value x_0 to last value x <- x[-(1:res$N)] ; t <- t[-(1:res$N)] #If no refitting is to be done things are easy if (!is.list(control$mu0Model) || (control$mu0Model$refit == FALSE)) { mu0 <- mu0[-(1:res$N)] } else { #Update the range (how to change back??) range <- range[-(1:res$N)] mu0 <- estimateGLRNbHook()$pred mod[[noofalarms+2]] <- estimateGLRNbHook()$mod control$mu0[(doneidx + res$N + 1):length(control$mu0)] <- mu0 #Note: No updating of alpha is currently done. } noofalarms <- noofalarms + 1 } doneidx <- doneidx + res$N } #fix of the problem that no upperbound-statistic is returned after #last alarm upperbound[(doneidx-res$N+1):nrow(upperbound)] <- either(ret == 1, res$val, res$cases) #fix of the problem that no upperbound-statistic is returned #in case of no alarm if (noofalarms == 0) { upperbound <- either(ret==1, res$val, res$cases) } # ensure upper bound is positive and not NaN upperbound[is.na(upperbound)] <- 0 upperbound[upperbound < 0] <- 0 # Add name and data name to control object algoName <- either(control$alpha == 0, "glrpois:", "glrnb:") control$name <- paste(algoName, control$change) control$data <- paste(deparse(substitute(disProgObj))) control$m <- m control$mu0Model$fitted <- mod # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control) class(result) = "survRes" # for surveillance system result return(result) } ##################################################################### ### Function to estimate a Poisson or glm.nb model on the fly - to be ### called within the algo.glrnb function. Experts can customize this ### function. ##################################################################### estimateGLRNbHook <- function() { #Fetch control object from parent control <- parent.frame()$control #The period p <- parent.frame()$disProgObj$freq #Current range to perform surveillance on range <- parent.frame()$range #Define phase1 & phase2 data set (phase2= the rest) train <- 1:(range[1]-1) test <- range #Perform an estimation based on all observations before timePoint #Event better - don't do this at all in the algorithm - force #user to do it himself - coz its a model selection problem data <- data.frame(y=parent.frame()$disProgObj$observed[train],t=train) #Build the model equation formula <- "y ~ 1 " if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") } for (s in seq_len(control$mu0Model$S)) { formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="") } ##hoehle - 2016-01-16 -- problematic: a full model was fitted, but ##this implied a different alpha. Changed now such that a glm ##is fitted having the specified alpha (i.e. theta) fixed. ##Determine appropriate fitter function if (is.null(control[["alpha",exact=TRUE]])) { ##Fit while also estimating alpha (if possible!) m <- eval(substitute(glm.nb(form,data=data),list(form=as.formula(formula)))) } else { ##Fit the Poisson GLM if (control$alpha == 0) { message(paste0("glrnb: Fitting Poisson model because alpha == 0")) m <- eval(substitute(glm(form,family=poisson(),data=data),list(form=as.formula(formula)))) } else { message(paste0("glrnb: Fitting glm.nb model with alpha=",control$alpha)) m <- eval(substitute(glm(form,family=negative.binomial(theta=1/control$alpha),data=data),list(form=as.formula(formula)))) } } #Predict mu_{0,t} pred <- as.numeric(predict(m,newdata=data.frame(t=range),type="response")) return(list(mod=m,pred=pred)) } ###################################################################### # simple wrapper for the Poisson case ###################################################################### algo.glrpois <- function(disProgObj, control = list(range=range,c.ARL=5, mu0=NULL, Mtilde=1, M=-1, change="intercept", theta=NULL,dir=c("inc","dec"), ret=c("cases","value"),xMax=1e4)) { if (is.null(control$alpha)) { control$alpha <- 0 } else if (control$alpha != 0) { stop("algo.glrpois has to operate with control$alpha = 0") } algo.glrnb(disProgObj, control) } surveillance/R/pit.R0000644000176200001440000001174114523166474014106 0ustar liggesusers################################################################################ ### Non-randomized version of the PIT histogram as discussed in: ### Predictive model assessment for count data ### Czado, C., Gneiting, T. & Held, L. (2009) ### Biometrics 65:1254-1261 ### ### Copyright (C) 2010-2012 Michaela Paul, 2013-2015,2017,2019,2023 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## x - observed count data ## pdistr - predictive CDF or a list of such predictive CDF's, ## one for each data point x. If evaluated at x=-1 it must return 0 ## J - number of bins ## ... - additional arguments for pdistr(), recycled to the length of x. ## Ignored if pdistr is a list. ## plot - a list of arguments for plot.histogram (otherwise no plot is produced) pit.default <- function (x, pdistr, J=10, relative=TRUE, ..., plot = list()) { PxPxm1 <- pitPxPxm1(x, pdistr, ...) Px <- PxPxm1[1L,] Pxm1 <- PxPxm1[2L,] if (any(Px == Pxm1)) { ## This means the predictive probability of an observed x is zero. ## Our predictive model is really bad if that happens. warning("predictive distribution has 0 probability for observed 'x'") } breaks <- (0:J)/J ## calculate \bar{F}(u) for scalar u Fbar1 <- function (u, Px, Pxm1) { F_u <- punif(u, Pxm1, Px) # also works for Pxm1 == Px => F_u = u >= Pxm1 mean(F_u) } Fbar_seq <- vapply(X = breaks, FUN = Fbar1, FUN.VALUE = 0, Px = Px, Pxm1 = Pxm1, USE.NAMES = FALSE) scale <- if (relative) J else 1 f_j <- scale * diff.default(Fbar_seq) res <- list(breaks = breaks, counts = rep(NA_integer_, J), density = f_j, mids = breaks[-(J+1)] + 1/J/2, xname = "PIT", equidist = TRUE) class(res) <- c("pit", "histogram") if (is.list(plot)) do.call("plot", c(list(x = res), plot)) else res } pitPxPxm1 <- function (x, pdistr, ...) { if (is.list(pdistr)) { # list of functions, not necessarily vectorized stopifnot(length(pdistr) == length(x)) vapply(X = seq_along(x), FUN = function (i) { stopifnot(isTRUE( all.equal.numeric(0, pdistr[[i]](-1), check.attributes = FALSE) )) c(pdistr[[i]](x[i]), pdistr[[i]](x[i]-1)) }, FUN.VALUE = c(0,0), USE.NAMES = FALSE) # 2 x length(x) } else { # pdistr is (the name of) a function pdistr <- match.fun(pdistr) if (nargs() == 2L) { # no dots, same pdistr for every data point # and assumed to be vectorized stopifnot(isTRUE(all.equal.numeric(0, pdistr(-1)))) rbind(pdistr(x), pdistr(x-1), deparse.level = 0) } else { # ... arguments for pdistr, recycled to the length of x # pdistr is called by mapply, so no need to be vectorized stopifnot(isTRUE(all.equal.numeric( 0, do.call("pdistr", c(list(-1), lapply(list(...), "[", 1L))), check.attributes = FALSE))) rbind(mapply(pdistr, x, ..., SIMPLIFY = TRUE, USE.NAMES = FALSE), mapply(pdistr, x-1, ..., SIMPLIFY = TRUE, USE.NAMES = FALSE), deparse.level = 0) } } } ## plot the PIT histogram plot.pit <- function (x, main = "", ylab = NULL, freq = FALSE, ...) { if (freq) warning("'freq' is ignored") # we have no counts relative <- isTRUE(all.equal(1, sum(x$density))) if (is.null(ylab)) ylab <- if (relative) "Relative Frequency" else "Density" ## call plot.histogram NextMethod("plot", main = main, ylab = ylab, freq = FALSE, ...) ## add reference line abline(h = if (relative) 1/length(x$mids) else 1, lty = 2, col = "grey") invisible(x) } ## a convenient wrapper for Poisson and NegBin predictions .pit <- function (x, mu, size = NULL, ...) { if (is.null(size)) { pit.default(x = x, pdistr = "ppois", lambda = mu, ...) } else { pit.default(x = x, pdistr = "pnbinom", mu = mu, size = size, ...) } } ## pit-methods for oneStepAhead() predictions and "hhh4" fits ## (similar to the scores-methods) pit.oneStepAhead <- function (x, units = NULL, ...) { if (is.null(units)) { .pit(x = x$observed, mu = x$pred, size = psi2size.oneStepAhead(x), ...) } else { .pit(x = x$observed[, units, drop = FALSE], mu = x$pred[, units, drop = FALSE], size = psi2size.oneStepAhead(x)[, units, drop = FALSE], ...) } } pit.hhh4 <- function (x, subset = x$control$subset, units = seq_len(x$nUnit), ...) { .pit(x = x$stsObj@observed[subset, units, drop = FALSE], mu = x$fitted.values[match(subset, x$control$subset), units, drop = FALSE], size = psi2size.hhh4(x, subset, units), ...) } surveillance/R/hhh4_simulate_plot.R0000644000176200001440000003310314426171115017070 0ustar liggesusers################################################################################ ### Plots for an array "hhh4sims" of simulated counts from an "hhh4" model, ### or a list thereof as produced by different "hhh4" models (same period!) ### ### Copyright (C) 2013-2018,2020-2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ plot.hhh4sims <- function (x, ...) { ## use the object name of x x <- eval(substitute(as.hhh4simslist(x)), envir = parent.frame()) plot.hhh4simslist(x, ...) } ## class for a list of "hhh4sims" arrays from different models ## (over the same period with same initial values) hhh4simslist <- function (x, initial, stsObserved) { ## drop attributes from every single hhh4sims object for (i in seq_along(x)) attr(x[[i]], "class") <- attr(x[[i]], "initial") <- attr(x[[i]], "stsObserved") <- NULL ## set as list attributes attr(x, "initial") <- initial attr(x, "stsObserved") <- stsObserved class(x) <- "hhh4simslist" x } ## converter functions as.hhh4simslist <- function (x, ...) UseMethod("as.hhh4simslist") as.hhh4simslist.hhh4sims <- function (x, ...) { ## we do not use x here, but construct a list() from the sys.call() ## such that as.hhh4simslist(name1 = model1, name2 = model2) works cl <- sys.call() cl[[1L]] <- as.name("list") xx <- eval(cl, envir = parent.frame()) objnames <- as.character(cl)[-1L] if (is.null(names(xx))) { names(xx) <- objnames } else { names(xx)[names(xx) == ""] <- objnames[names(xx) == ""] } as.hhh4simslist.list(xx) } as.hhh4simslist.list <- function (x, ...) { ## verify class lapply(X = x, FUN = function (Xi) if (!inherits(Xi, "hhh4sims")) stop(sQuote("x"), " is not a list of ", dQuote("hhh4sims"))) hhh4simslist(x, initial = attr(x[[1L]], "initial"), stsObserved = attr(x[[1L]], "stsObserved")) } as.hhh4simslist.hhh4simslist <- function (x, ...) x ## 'x[i]': select models (elements of the list) ## 'x[i,j,]': subset simulations while keeping attributes in sync "[.hhh4simslist" <- function (x, i, j, ..., drop = FALSE) { ## case 1: select models if (nargs() == 2L) { ## select elements of the list xx <- NextMethod("[") ## restore class attributes xx <- hhh4simslist(xx, initial = attr(x, "initial"), stsObserved = attr(x, "stsObserved")) return(xx) } ## case 2: subset simulations, i.e., index individual arrays cl <- sys.call() cl[[1L]] <- as.name("[") cl[[2L]] <- quote(x) cl$drop <- drop subseti <- as.function(c(alist(x=), cl), envir = parent.frame()) x[] <- lapply(X = unclass(x), subseti) # unclass to use default [[ subset_hhh4sims_attributes(x, i, j) } ## select a specific "hhh4sims" from the list of simulations ## (the inverse of as.hhh4simslist.hhh4sims(xx)) "[[.hhh4simslist" <- function (x, i) { xx <- NextMethod("[[") a <- attributes(xx) attributes(xx) <- c(a[c("dim", "dimnames")], attributes(x)[c("initial", "stsObserved")], list(class = "hhh4sims"), a[c("call", "seed")]) xx } ## aggregate predictions over time and/or (groups of) units aggregate.hhh4simslist <- function (x, units = TRUE, time = FALSE, ..., drop = FALSE) { if (drop || time) { # unclass(x) to use default "[["-method in lapply lapply(X = unclass(x), FUN = aggregate.hhh4sims, units = units, time = time, ..., drop = TRUE) } else { as.hhh4simslist.list( lapply(X = x, FUN = aggregate.hhh4sims, units = units, time = time, ..., drop = FALSE) ) } } #################### ### plot methods ### #################### check_groups <- function (groups, units) { if (is.null(groups)) { factor(rep.int("overall", length(units))) } else if (isTRUE(groups)) { factor(units, levels = units) } else { stopifnot(length(groups) == length(units)) as.factor(groups) } } plot.hhh4simslist <- function (x, type = c("size", "time", "fan"), ..., groups = NULL, par.settings = list()) { FUN <- paste("plotHHH4sims", match.arg(type), sep = "_") groups <- check_groups(groups, colnames(attr(x, "stsObserved"), do.NULL=FALSE)) ngroups <- nlevels(groups) if (is.list(par.settings)) { par.defaults <- list(mar = c(4,4,2,0.5)+.1, las = 1) if (ngroups > 1) par.defaults$mfrow <- sort(n2mfrow(ngroups)) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } if (ngroups == 1) { do.call(FUN, list(quote(x), ...)) } else { # stratified plots by groups of units invisible(lapply( X = setNames(nm = levels(groups)), FUN = function (group) { x_group <- x[, which(group == groups) , ] # [-method has drop=F do.call(FUN, list(quote(x_group), ..., main = group)) })) } } ### simulated final size distribution as boxplots aggregated over all units plotHHH4sims_size <- function (x, horizontal = TRUE, trafo = NULL, observed = TRUE, names = base::names(x), ...) { x <- as.hhh4simslist(x) if (horizontal) { names <- rev(names) x <- rev(x) } if (is.null(trafo)) #trafo <- scales::identity_trans() trafo <- list(name = "identity", transform = identity) if (isTRUE(observed)) observed <- list() nsims <- do.call("cbind", # no simplify2array() as we need a matrix even for nsim=1 lapply(X = unclass(x), # simply use the default "[["-method FUN = colSums, dims = 2L) # sum over 1:2 (time x unit) ) nsimstrafo <- trafo$transform(nsims) ## default boxplot arguments fslab <- "size" if (trafo$name != "identity") fslab <- paste0(fslab, " (", trafo$name, "-scale)") defaultArgs <- list(ylab=fslab, yaxt="n", las=1, cex.axis=1, border=1) if (horizontal) names(defaultArgs) <- sub("^y", "x", names(defaultArgs)) ## defaultArgs$mai <- par("mai") ## defaultArgs$mai[2] <- max(strwidth(boxplot.args$names, units="inches", ## cex=boxplot.args$cex.axis)) ## if (trafo$name != "identity") { ## ## ?bxp: 'yaxs' and 'ylim' are used 'along the boxplot' ## defaultArgs <- c(defaultArgs, ## list(ylim=c(0,max(nsimstrafo)*1.05), yaxs="i")) ## } ## generate boxplots boxplot.args <- modifyList(defaultArgs, list(...)) boxplot.args$horizontal <- horizontal boxplot.args$names <- names do.call("boxplot", c(list(x=nsimstrafo), boxplot.args)) ## add means if (horizontal) { points(x=colMeans(nsimstrafo), y=1:ncol(nsimstrafo), pch=8, col=boxplot.args$border) } else points(colMeans(nsimstrafo), pch=8, col=boxplot.args$border) ## add axis aty <- pretty(nsims, n=par("lab")[2-horizontal]) ##aty <- checkat(list(n=par("lab")[2], trafo=trafo), nsims) # linear on sqrt-scale axis(2-horizontal, at=trafo$transform(aty), labels=aty, las=boxplot.args$las) ## add line showing observed size if (is.list(observed)) { nObs <- sum(observed(attr(x, "stsObserved"))) observed <- modifyList( list(col = 1, lty = 2, lwd = 2, labels = nObs, font = 2, las = boxplot.args$las, mgp = if (horizontal) c(3, 0.4, 0)), observed) observed_line <- c( setNames(list(trafo$transform(nObs)), if (horizontal) "v" else "h"), observed[c("col", "lty", "lwd")]) do.call("abline", observed_line) if (!is.null(observed[["labels"]])) do.call("axis", c( list(side = 2-horizontal, at = trafo$transform(nObs)), observed)) } ## numeric summary mysummary <- function(x) c(mean=mean(x), quantile(x, probs=c(0.025, 0.5, 0.975))) nsum <- t(apply(nsims, 2, mysummary)) invisible(nsum) } ### Plot mean time series of the simulated counts plotHHH4sims_time <- function ( x, average = mean, individual = length(x) == 1, conf.level = if (individual) 0.95 else NULL, #score = "rps", matplot.args = list(), initial.args = list(), legend = length(x) > 1, xlim = NULL, ylim = NULL, add = FALSE, ...) { x <- as.hhh4simslist(x) nModels <- length(x) ytInit <- rowSums(attr(x, "initial")) stsObserved <- attr(x, "stsObserved") ytObs <- rowSums(observed(stsObserved)) ytSim <- aggregate.hhh4simslist(x, units = TRUE, time = FALSE, drop = TRUE) average <- match.fun(average) ytMeans <- vapply( X = ytSim, FUN = function (x) apply(x, 1, average), FUN.VALUE = numeric(length(ytObs)), USE.NAMES = TRUE) ## axis range if (is.null(xlim) && is.list(initial.args)) xlim <- c(1 - length(ytInit) - 0.5, length(ytObs) + 0.5) if (is.null(ylim)) ylim <- c(0, max(ytObs, if (individual) unlist(ytSim, recursive = FALSE, use.names = FALSE) else ytMeans, na.rm = TRUE)) ## graphical parameters stopifnot(is.list(matplot.args)) matplot.args <- modifyList( list(y = ytMeans, type = "b", lty = 1, lwd = 3, pch = 20, col = rainbow(nModels)), matplot.args) col <- rep_len(matplot.args$col, nModels) ## observed time series data during simulation period if (!add) plot(stsObserved, type = observed ~ time, xlim = xlim, ylim = ylim, ...) ## add initial counts if (is.list(initial.args)) { initial.args <- modifyList( list(x = seq(to = 0, by = 1, length.out = length(ytInit)), y = ytInit, type = "h", lwd = 5), initial.args) do.call("lines", initial.args) } ## add counts of individual simulation runs if (individual) { for (i in seq_len(nModels)) matlines(ytSim[[i]], lty=1, col=adjustcolor(col[i], alpha.f=0.1)) col <- ifelse(colSums(col2rgb(col)) == 0, "grey", adjustcolor(col, transform=diag(c(.5, .5, .5, 1)))) } ## add means (or medians) matplot.args[["col"]] <- col do.call("matlines", matplot.args) ## add CIs if (isScalar(conf.level)) { alpha2 <- (1-conf.level)/2 ytQuant <- lapply(ytSim, function (sims) t(apply(sims, 1, quantile, probs=c(alpha2, 1-alpha2)))) matlines(sapply(ytQuant, "[", TRUE, 1L), col=col, lwd=matplot.args$lwd, lty=2) matlines(sapply(ytQuant, "[", TRUE, 2L), col=col, lwd=matplot.args$lwd, lty=2) } ## add scores ## if (length(score)==1) { ## scorestime <- simplify2array( ## simscores(x, by="time", scores=score, plot=FALSE), ## higher=FALSE) ## matlines(scales::rescale(scorestime, to=ylim), ## lty=2, lwd=1, col=col) ## } ## add legend if (!identical(FALSE, legend)) { xnames <- if (is.vector(legend, mode = "character")) { if (length(legend) != length(x)) warning("'length(legend)' should be ", length(x)) legend } else { names(x) } legendArgs <- list(x="topright", legend=xnames, bty="n", col=col, lwd=matplot.args$lwd, lty=matplot.args$lty) if (is.list(legend)) legendArgs <- modifyList(legendArgs, legend) do.call("legend", legendArgs) } ## Done ret <- cbind(observed = ytObs, ytMeans) ## if (length(score) == 1) ## attr(ret, score) <- scorestime invisible(ret) } ### Better for a single model: "fanplot" plotHHH4sims_fan <- function (x, which = 1, fan.args = list(), observed.args = list(), initial.args = list(), means.args = NULL, key.args = NULL, xlim = NULL, ylim = NULL, add = FALSE, xaxis = list(), ...) { x <- as.hhh4simslist(x)[[which]] ytInit <- rowSums(attr(x, "initial")) stsObserved <- attr(x, "stsObserved") ytObs <- rowSums(observed(stsObserved)) ytSim <- aggregate.hhh4sims(x, units = TRUE, time = FALSE, drop = TRUE) ## graphical parameters if (is.null(xlim) && is.list(initial.args)) xlim <- c(1 - length(ytInit) - 0.5, length(ytObs) + 0.5) stopifnot(is.list(fan.args)) fan.args <- modifyList( list(probs = seq.int(0.01, 0.99, 0.01)), fan.args, keep.null = TRUE) ## compute the quantiles quantiles <- t(apply(ytSim, 1, quantile, probs = fan.args$probs)) ## create (or add) the fanplot fanplot(quantiles = quantiles, probs = fan.args$probs, means = rowMeans(ytSim), observed = ytObs, fan.args = fan.args, means.args = means.args, observed.args = observed.args, key.args = key.args, xlim = xlim, ylim = ylim, add = add, xaxt = if (is.list(xaxis)) "n" else "s", ...) ## add initial counts if (is.list(initial.args)) { initial.args <- modifyList( list(x = seq(to = 0, by = 1, length.out = length(ytInit)), y = ytInit, type = "p", pch = 19), initial.args) do.call("lines", initial.args) } ## add time axis if (is.list(xaxis)) { xaxis <- modifyList(list(epochsAsDate = TRUE), xaxis) do.call("addFormattedXAxis", c(list(x = stsObserved), xaxis)) } invisible(NULL) } surveillance/R/stK.R0000644000176200001440000001515114426171115014040 0ustar liggesusers################################################################################ ### Space-time K-function analysis of "epidataCS" objects ### along the lines of Diggle et al (1995): ### "Second-order analysis of space-time clustering" (Stat Methods Med Res) ### ### Copyright (C) 2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## call K-function methods in package "splancs" stKcall <- function (which = c("stkhat", "stsecal", "stmctest"), object, eps.s, eps.t, ...) { stopifnot(inherits(object, "epidataCS")) ## get the function which <- match.arg(which) FUN <- get(which, mode = "function", envir = getNamespace("splancs")) ## default arguments commonArgs <- list( pts = coordinates(object$events), times = object$events$time, poly = NULL, tlimits = summary(object)$timeRange, s = eps.s, tm = eps.t ) args <- modifyList(commonArgs, list(...)) if (is.null(args$poly)) { # use coordinates of first polygon if (length(object$W) > 1L || length(object$W@polygons[[1]]@Polygons) > 1L) stop("package \"splancs\" does not support multi-'poly'gons") args$poly <- coordinates(object$W@polygons[[1L]]@Polygons[[1L]]) } if (which == "stmctest" && is.null(args[["nsim"]])) { args$nsim <- 199L } ## unfortunately, argument names are not consistent across functions if (which == "stsecal") names(args)[names(args) == "tlimits"] <- "tlim" if (which == "stmctest") names(args)[names(args) == "tm"] <- "tt" ## call the selected splancs function do.call(FUN, args) } ## Monte-Carlo test for space-time interaction stKtest <- function (object, eps.s = NULL, eps.t = NULL, B = 199, cores = 1, seed = NULL, poly = object$W) { stopifnot(inherits(object, "epidataCS"), isScalar(cores), cores > 0, isScalar(B), B > 0) cores <- as.integer(cores) B <- as.integer(B) ## naive default grids if (is.null(eps.s)) eps.s <- seq(0, min(object$events$eps.s, apply(bbox(object$W), 1, diff)/2), length.out = 10) if (is.null(eps.t)) eps.t <- seq(0, min(object$events$eps.t, tail(object$stgrid$stop,1L)/2), length.out = 10) ## extract coordinates of the polygon polycoordslist <- xylist(poly) if (length(polycoordslist) > 1L) { stop("package \"splancs\" does not support multi-'poly'gons") } Wcoords <- as.matrix(as.data.frame(polycoordslist[[1L]])) ## calculate K-function stK <- stKcall("stkhat", object = object, eps.s = eps.s, eps.t = eps.t, poly = Wcoords) ## calculate standard error seD <- stKcall("stsecal", object = object, eps.s = eps.s, eps.t = eps.t, poly = Wcoords) ## perform Monte Carlo permutation test (parallelized) permt <- plapply( X = diff(round(seq(from = 0, to = B, length.out = cores + 1L))), FUN = function (nsim) { stKcall("stmctest", object = object, eps.s = eps.s, eps.t = eps.t, poly = Wcoords, nsim = nsim, quiet = TRUE)[["t"]] }, .parallel = cores, .seed = seed, .verbose = FALSE ) mctest <- list( "t0" = sum(stK$kst - outer(stK$ks, stK$kt)), "t" = unlist(permt, recursive = FALSE, use.names = FALSE) ) PVAL <- mean(c(mctest[["t0"]], mctest[["t"]]) >= mctest[["t0"]]) ## return test results structure( list(method = "Diggle et al (1995) K-function test for space-time clustering", data.name = deparse(substitute(object)), statistic = setNames(mctest$t0, "U"), # sum of residuals parameter = setNames(B, "B"), p.value = PVAL, pts = coordinates(object$events), stK = stK, seD = seD, mctest = mctest), class = c("stKtest", "htest") ) } ## diagnostic plots related to space-time K-function analysis ## inspired by splancs::stdiagn authored by Barry Rowlingson and Peter Diggle plot.stKtest <- function (x, which = c("D", "R", "MC"), args.D = list(), args.D0 = args.D, args.R = list(), args.MC = list(), mfrow = sort(n2mfrow(length(which))), ...) { stkh <- x$stK stse <- x$seD stmc <- x$mctest if (identical(which, "stdiagn")) { splancs::stdiagn(pts = x$pts, stkh = stkh, stse = stse, stmc = stmc) return(invisible()) } which <- match.arg(which, several.ok = TRUE) stopifnot(is.list(args.D), is.list(args.D0), is.list(args.R), is.list(args.MC)) ## K_0(s,t) = K(s) * K(t) K0 <- outer(stkh$ks, stkh$kt) ## D(s,t) = K(s,t) - K_0(s,t) st.D <- stkh$kst - K0 if (!is.null(mfrow)) { omfrow <- par(mfrow = mfrow) on.exit(par(omfrow)) } ## D plots Dzero <- which[which %in% c("D", "D0")] == "D0" whichDzero <- match(Dzero, c(FALSE, TRUE)) omar <- par(mar = if (is.null(args.D[["mar"]])) c(2,2,par("mar")[3L],1) else args.D[["mar"]]) mapply( FUN = function (z, Dzero, args) { defaultArgs <- list( x = stkh$s, y = stkh$t, z = z, main = if (Dzero) "Excess risk" else "D plot", xlab = "Distance", ylab = "Time lag", zlab = "", ticktype = "detailed", shade = 0.5, col = "lavender", theta = -30, phi = 15, expand = 0.5 ) do.call("persp", modifyList(defaultArgs, args)) }, z = list(st.D, st.D/K0)[whichDzero], Dzero = Dzero, args = list(args.D, args.D0)[whichDzero], SIMPLIFY = FALSE, USE.NAMES = FALSE ) par(omar) ## Residual plot if ("R" %in% which) { st.R <- st.D/stse defaultArgs.R <- list( x = K0, y = st.R, panel.first = quote(abline(h = c(-2,0,2), lty = c(2,1,2))), xlab = "K(s)K(t)", ylab = "R", main = "Standardized residuals", ylim = range(0, st.R, finite = TRUE) ) do.call("plot.default", modifyList(defaultArgs.R, args.R)) } ## MC permutation test plot if ("MC" %in% which) { defaultArgs.MC <- list( permstats = stmc$t, xmarks = setNames(stmc$t0, "observed"), main = "MC permutation test" ) do.call("permtestplot", modifyList(defaultArgs.MC, args.MC)) } invisible() } surveillance/R/stsBP.R0000644000176200001440000000361214662137762014345 0ustar liggesusers###################################################################### # initialize-method for "stsBP" objects ###################################################################### fix.dimnamesBP <- function (x) { dimnames(x@ci) <- dimnames(x@lambda) <- c(dimnames(x@observed), list(NULL)) x } init.stsBP <- function(.Object, ..., ci, lambda) { .Object <- callNextMethod() # use initialize,sts-method ## NOTE: we cannot have a validity check for the dimensions of ci and lambda ## in the class definition of "stsBP" since we could not easily get ## new("stsBP") to be a valid object. Thus, we will directly check here. ## check/set extra stsBP-slots dimObserved <- dim(.Object@observed) if (missing(ci)) { .Object@ci <- array(NA_real_, dim = c(dimObserved, 2L)) } else { dimCI <- dim(.Object@ci) if (length(dimCI) != 3 || any(dimCI != c(dimObserved, 2L))) stop("dim(ci) = (", paste0(dimCI, collapse=","), ")") } if (missing(lambda)) { .Object@lambda <- array(NA_real_, dim = c(dimObserved, 0L)) } else { dimLambda <- dim(.Object@lambda) if (length(dimLambda) != 3 || !identical(dimLambda[1:2], dimObserved)) stop("dim(lambda) = (", paste0(dimLambda, collapse=","), ")") } ## fix dimnames of extra stsBP-slots .Object <- fix.dimnamesBP(.Object) return(.Object) } setMethod("initialize", "stsBP", init.stsBP) ###################################################################### # Special coerce method to account for consistent dimensions ###################################################################### setAs(from = "sts", to = "stsBP", function (from) { res <- new("stsBP", from, ci = array(NA_real_, dim = c(dim(from@observed), 2L)), lambda = array(NA_real_, dim = c(dim(from@observed), 0L))) fix.dimnamesBP(res) }) surveillance/R/sts_coerce.R0000644000176200001440000001160014026677433015435 0ustar liggesusers################################################################################ ### Conversion between "ts" and "sts", and from "sts" to "data.frame" ### ### Copyright (C) 2014 Michael Hoehle, 2015-2017,2019-2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Convert a simple "ts" object to an "sts" object setAs(from = "ts", to = "sts", def = function (from) { ## Extract frequency and start from the "ts" object freq <- frequency(from) start <- start(from) if (length(start) == 1) stop("could not convert time series start() to (year, index) form") ## Remove "tsp" attribute and "ts"/"mts" class tsp(from) <- NULL ## Create the sts object .sts(observed = from, start = start, freq = freq) }) ### Convert an "sts" object to a simple "ts" object as.ts.sts <- function (x, ...) { ts(data = x@observed, start = x@start, frequency = x@freq) } setAs(from = "sts", to = "ts", def = function (from) as.ts.sts(from)) ### Convert an "sts" object to an eXtensible Time Series "xts" as.xts.sts <- function (x, order.by = epoch(x, as.Date = TRUE), ...) { if (!missing(order.by) || x@freq %in% c(52, 365)) { xts::xts(x = x@observed, order.by = order.by, ...) } else { ## frequencies 4 and 12 are nicely handled by the as.xts.ts method xts::as.xts(as.ts.sts(x), ...) } } ### Convert an "sts" object to a data frame suitable for regression as.data.frame.sts <- function(x, row.names = NULL, optional = FALSE, # from the generic tidy = FALSE, as.Date = x@epochAsDate, ...) { if (tidy) return(tidy.sts(x, ...)) #Convert object to data frame and give names res <- data.frame("observed" = x@observed, "epoch" = epoch(x, as.Date = as.Date), "state" = x@state, "alarm" = x@alarm, "upperbound" = x@upperbound, "population" = x@populationFrac, check.names = FALSE) names(res) <- if (ncol(x) > 1) { ## names from data.frame() above should already be as intended namesObs <- colnames(x@observed, do.NULL = FALSE, prefix = "observed") c(paste0("observed.", namesObs), "epoch", paste0("state.", namesObs), paste0("alarm.", namesObs), paste0("upperbound.", namesObs), paste0("population.", namesObs)) } else { c("observed", "epoch", "state", "alarm", "upperbound", "population") } #Find out how many epochs there are each year res$freq <- if (x@epochAsDate && x@freq %in% c(52, 365)) { year <- strftime(epoch(x), if (x@freq == 52) "%G" else "%Y") epochStr <- switch(as.character(x@freq), "52" = "%V", "365" = "%j") maxEpoch <- vapply(X = unique(year), FUN = function (Y) { dummyDates <- as.Date(paste0(Y, "-12-", 26:31)) max(as.numeric(strftime(dummyDates, epochStr))) }, FUN.VALUE = 0, USE.NAMES = TRUE) maxEpoch[year] } else { # just replicate the fixed frequency x@freq } #Add a column denoting the epoch fraction within the current year res$epochInPeriod <- epochInYear(x) / res$freq return(res) } setMethod("as.data.frame", signature(x = "sts"), as.data.frame.sts) ### convert an "sts" object to a "data.frame" in long (tidy) format tidy.sts <- function (x, ...) { unitNames <- colnames(x, do.NULL = FALSE, prefix = "observed") v.names <- c("observed", "state", "alarm", "upperbound", "population") stswide <- as.data.frame(x, tidy = FALSE, as.Date = FALSE) ## nrow(stswide) = nrow(x), i.e., one row per epoch stswide$year <- year(x) stswide$epochInYear <- epochInYear(x) stswide$date <- tryCatch( epoch(x, as.Date = TRUE), # only works for particular values of x@freq error = function (e) as.Date(NA) ) if ((nUnit <- ncol(x)) == 1L) { stslong <- data.frame(stswide, "unit" = factor(unitNames), check.names = FALSE) } else { ## we have observed/population/... columns for each unit varying <- sapply(X = v.names, FUN = paste, unitNames, sep = ".", simplify = FALSE, USE.NAMES = TRUE) stslong <- reshape( data = stswide, direction = "long", varying = varying, v.names = v.names, timevar = "unit", times = unitNames, idvar = "epoch") stslong$unit <- factor(stslong$unit, levels = unitNames) attr(stslong, "reshapeLong") <- NULL } row.names(stslong) <- NULL ## reorder variables (ordering from above differs depending on nUnit) stslong[c("epoch", "unit", "year", "freq", "epochInYear", "epochInPeriod", "date", v.names)] } surveillance/R/gd.R0000644000176200001440000000463114662137762013706 0ustar liggesusers###################################################################### # This file contains utility functions for the generalized Dirichlet # distribution described in the article by T.-T. Wong et al. (1998), # Generalized Dirichlet distribution in Bayesian analysis. Applied # Mathematics and Computation, volume 97, pp 165-181. # # This includes: # rgd - sample from the generalized Dirichlet distribution # Egd - expectation of the generalized Dirichlet distribution # # Author: Michael Hoehle # Date: LaMo Apr 2014. ###################################################################### ###################################################################### # Sample from the generalized dirichlet distribution, i.e. # (X_1,...,X_{k+1})' ~ GD(alpha,beta) # This is the algorithm described by Wong (1998), p. 174. # # Parameters: # alpha - vector of length k # beta - vector of length k # # Note: The alpha and beta vectors are for the first k categories. # The element in k+1 is automatically given as 1-sum_{i=1}^k X_i. ###################################################################### rgd <- function(n,alpha,beta) { #Check that alpha and beta are of the same length. if (length(alpha) != length(beta)) { stop("alpha and beta not of same length") } if (!all(alpha>0) | !all(beta>0)) { stop("Assumptiom alpha>0 and beta>0 is violated.") } #Prepare result and sample the first step as in Wong (1998), p.174 res <- matrix(NA,nrow=n,ncol=length(alpha)+1) res[,1] <- rbeta(n,alpha[1],beta[1]) sum <- res[,1] for (j in 2:(length(alpha))) { xj <- rbeta(n, alpha[j], beta[j]) #Adjust for previous samples res[,j] <- xj * (1-sum) sum <- sum + res[,j] } #Last cell is fixed. res[,length(alpha)+1] <- 1-sum return(res) } ###################################################################### #Compute analytically the expectation of a GD(alpha,beta) distributed #variable using the expression of Wong (1998). # # Parameters: # alpha - vector of alpha parameters of the distribution # beta - vector of beta parameters of the distribution # # Returns: # Expectation vector of the GD(alpha,betra) distribution ###################################################################### Egd <- function(alpha, beta) { mu <- alpha/(alpha+beta) mean <- NULL for (j in 1:length(mu)) { mean[j] <- mu[j] * prod(1-mu[seq_len(j-1)]) } return(c(mean,prod(1-mu))) } surveillance/R/stsplot_space.R0000644000176200001440000002003014430705133016150 0ustar liggesusers################################################################################ ### Snapshot map (spplot) of an sts-object or matrix of counts ### ### Copyright (C) 2013-2014,2016,2017,2020,2021 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## x: "sts" or (simulated) matrix of counts ## tps: one or more time points. The unit-specific _sum_ of time points "tps" is ## plotted. tps=NULL means cumulation over all time points in x. ## at: number of levels for the grouped counts or specific break points to ## use, or list(n, data, trafo) passed to getPrettyIntervals(), ## where data and trafo are optional. ## CAVE: intervals are closed on the left and open to the right. ## From panel.levelplot: zcol[z >= at[i] & z < at[i + 1]] <- i ## i.e. at=0:1 will have NA (=also white) for counts=1, thus we have to ## ensure max(at) > max(counts) stsplot_space <- function (x, tps = NULL, map = x@map, population = NULL, main = NULL, labels = FALSE, ..., # placed here to support passing 'col' at = 10, col.regions = NULL, colorkey = list(space="bottom", labels=list(at=at)), total.args = NULL, gpar.missing = list(col="darkgrey", lty=2, lwd=2), sp.layout = NULL, ## aspect = mapasp(map), # currently hard-coded xlim = bbox(map)[1, ], ylim = bbox(map)[2, ]) { counts <- if (inherits(x, "sts")) observed(x) else x if (is.null(tps)) tps <- seq_len(nrow(counts)) if (length(map) == 0L) stop("no map") if (is.null(colnames(counts))) stop("need 'colnames(x)' (to be matched against 'row.names(map)')") if (!all(colnames(counts) %in% row.names(map))) stop("incomplete 'map'; ensure that 'all(colnames(x) %in% row.names(map))'") ## compute data to plot ncases <- getCumCounts(counts, tps) total <- sum(ncases) if (!is.null(population)) { # divide counts by region-specific population population <- parse_population_argument(population, x) # pop matrix populationByRegion <- population[tps[1L],] # pop at first time point ncases <- ncases / populationByRegion # (cumulative) incidence by region total <- total / sum(populationByRegion) } ## add ncases to map@data map <- as(map, "SpatialPolygonsDataFrame") map$ncases <- NA_real_ map$ncases[match(colnames(counts),row.names(map))] <- ncases ## default main title if (is.null(main) && inherits(x, "sts")) main <- stsTimeRange2text(x, tps) ## check/determine color break points 'at' at <- checkat(at, ncases, counts = is.null(population)) ## default color palette if (is.null(col.regions)) { separate0 <- is.null(population) && at[1] == 0 && at[2] <= 1 col.regions <- c(if (separate0) "white", .hcl.colors(length(at)-1-separate0)) } ## colorkey settings if (!missing(colorkey) && is.list(colorkey)) colorkey <- modifyList(eval(formals()$colorkey), colorkey) ## automatic additions to sp.layout (region labels and total) if (is.list(gpar.missing) && anyNA(map$ncases)) { layout.missing <- c(list("sp.polygons", obj=map[is.na(map$ncases),]), gpar.missing) sp.layout <- c(sp.layout, list(layout.missing)) } if (!is.null(layout.labels <- layout.labels(map, labels))) { sp.layout <- c(sp.layout, list(layout.labels)) } if (is.list(total.args)) { total.args <- modifyList(list(label="Overall: ", x=1, y=0), total.args) if (is.null(total.args$just)) total.args$just <- with (total.args, if (all(c(x,y) %in% 0:1)) { c(c("left", "right")[1+x], c("bottom","top")[1+y]) } else "center") total.args$label <- paste0(total.args$label, round(total,1)) layout.total <- c(grid::grid.text, total.args) ## "grid.text" wouldn't work since package "sp" doesn't import it sp.layout <- c(sp.layout, list(layout.total)) } ## generate the spplot() args <- list(quote(map[!is.na(map$ncases),]), "ncases", main=main, col.regions=col.regions, at=at, colorkey=colorkey, sp.layout=sp.layout, aspect=mapasp(map), xlim=xlim, ylim=ylim, quote(...)) do.call("spplot", args) } ####################################################### ### Auxiliary functions for the "sts" snapshot function ####################################################### ## sum of counts by unit over time points "tps" ## the resulting vector has no names getCumCounts <- function (counts, tps) { ntps <- length(tps) if (ntps == 1) { counts[tps,] } else { .colSums(counts[tps,,drop=FALSE], ntps, ncol(counts)) } } parse_population_argument <- function (population, x) { if (is.matrix(population)) { if (!identical(dim(population), dim(x))) stop("'dim(population)' does not match the data dimensions") } else if (isScalar(population)) { # a unit, e.g., per 1000 inhabitants if (!inherits(x, "sts")) stop("'", deparse(substitute(x)), "' is no \"sts\" object; ", "population numbers must be supplied") population <- population(x) / population } else { # region-specific population numbers (as in surveillance <= 1.12.2) stopifnot(is.vector(population, mode = "numeric")) if (length(population) != ncol(x)) stop("'length(population)' does not match the number of data columns") population <- rep(population, each = nrow(x)) dim(population) <- dim(x) } population } checkat <- function (at, data, counts = TRUE) { # for non-transformed "data" if (isScalar(at)) at <- list(n=at) if (is.list(at)) { at <- modifyList(list(n=10, data=data, counts=counts), at) do.call("getPrettyIntervals", at) } else { # manual breaks stopifnot(is.vector(at, mode = "numeric"), !anyNA(at)) at <- sort(at) r <- range(data, na.rm = TRUE) c(if (r[1L] < at[1L]) 0, at, if (r[2L] >= at[length(at)]) { ## round up max to 1 significant digit (including 0.1 to 0.2) .decs <- 10^floor(log10(r[2L])) ceiling(r[2L]/.decs + sqrt(.Machine$double.eps))*.decs }) } } getPrettyIntervals <- function (n, data, trafo=NULL, counts=TRUE, ...) { maxcount <- max(data, na.rm=TRUE) if (counts && maxcount < n) { # no aggregation of counts necessary at <- 0:ceiling(maxcount+sqrt(.Machine$double.eps)) # max(at) > maxcount } else { at <- if (is.null(trafo)) { # equivalent to trafo=scales::sqrt_trans() pretty(sqrt(data), n=n+1, ...)^2 } else { scales::trans_breaks(trafo$trans, trafo$inv, n=n+1, ...)(data) } ## { # alternative: quantile-based scale (esp. for incidence plots) ## quantile(data, probs=seq(0,1,length.out=n+1), na.rm=TRUE) ## } if (counts && at[1] == 0 && at[2] > 1) # we want 0 counts separately ("white") at <- sort(c(1, at)) if (at[length(at)] == maxcount) # ensure max(at) > max(data) at[length(at)] <- at[length(at)] + if (counts) 1 else 0.001*diff(range(at)) } at } stsTime2text <- function (stsObj, tps=TRUE, fmt=NULL) { if (is.null(fmt)) fmt <- switch(as.character(stsObj@freq), "1" = "%i", "52" = "%i-W%02i", "%i/%i") sprintf(fmt, year(stsObj)[tps], epochInYear(stsObj)[tps]) } stsTimeRange2text <- function (stsObj, tps, fmt=NULL, sep=" to ") { tpsRangeYW <- stsTime2text(stsObj, tps=range(tps), fmt=fmt) paste0(unique(tpsRangeYW), collapse=sep) } surveillance/R/plot.survRes.R0000644000176200001440000000247214200437000015713 0ustar liggesusers## legacy code removed in surveillance 1.20.0 ## now plotting via stsplot_time() plot.survRes <- function(x, method = x$control$name, disease = x$control$data, xaxis.years = TRUE, startyear = 2001, firstweek = 1, same.scale = TRUE, ..., main = paste0("Analysis of ", disease, " using ", method)) { stopifnot(is.vector(x$control$range, mode = "numeric")) stsObjRange <- disProg2sts(x[["disProgObj"]])[x$control$range,] stsObjRange@alarm[] <- x[["alarm"]] stsObjRange@upperbound[] <- x[["upperbound"]] if (length(ignored <- c("startyear", "firstweek")[c(!missing(startyear), !missing(firstweek))])) warning("ignored legacy argument(s): ", paste0(ignored, collapse = ", ")) ## see plot(sts.cdc) in vignette("surveillance") or demo("cost") hookFunc <- if (is.null(x$aggr)) function() NULL else { stsObjRange@control$aggr <- x$aggr upperboundx <- NULL # make codetools::checkUsage() happy function() points(upperboundx, x@control$aggr) } if (xaxis.years) { stsplot_time(stsObjRange, same.scale = same.scale, ..., main = main, hookFunc = hookFunc) } else { stsplot_time(stsObjRange, same.scale = same.scale, ..., main = main, hookFunc = hookFunc, xaxis.labelFormat = NULL) } } surveillance/R/twinstim_siaf.R0000644000176200001440000003205414711772516016171 0ustar liggesusers################################################################################ ### Spatial interaction functions for twinstim's epidemic component. ### Specific implementations are in separate files (e.g.: Gaussian, power law). ### ### Copyright (C) 2009-2015,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ##################### ### "Constructor" ### ##################### siaf <- function (f, F, Fcircle, effRange, deriv, Deriv, simulate, npars, validpars = NULL) { npars <- as.integer(npars) if (length(npars) != 1 || npars < 0L) { stop("'siaf$npars' must be a single nonnegative number") } f <- .checknargs3(f, "siaf$f") F <- if (missing(F) || is.null(F)) siaf.fallback.F else { F <- match.fun(F) if (length(formals(F)) < 4L) stop("siaf$F() must accept >=4 arguments ", "(polydomain, f, pars, type)") F } haspars <- npars > 0L if (!haspars || missing(deriv)) deriv <- NULL if (!is.null(deriv)) deriv <- .checknargs3(deriv, "siaf$deriv") if (missing(effRange)) effRange <- NULL if (missing(Fcircle) || is.null(Fcircle)) { Fcircle <- NULL if (!is.null(effRange)) { message("'siaf$effRange' only works in conjunction with 'siaf$Fcircle'") effRange <- NULL } } if (!is.null(Fcircle)) Fcircle <- .checknargs3(Fcircle, "siaf$Fcircle") if (!is.null(effRange)) { effRange <- match.fun(effRange) if (length(formals(effRange)) < 1L) { stop("the 'siaf$effRange' function must accept a parameter vector") } } Deriv <- if (is.null(deriv)) NULL else if (missing(Deriv) || is.null(Deriv)) siaf.fallback.Deriv else { Deriv <- match.fun(Deriv) if (length(formals(Deriv)) < 4L) stop("siaf$Deriv() must accept >=4 arguments ", "(polydomain, deriv, pars, type)") Deriv } ## Check if simulation function has proper format if (missing(simulate)) simulate <- NULL if (!is.null(simulate)) { simulate <- .checknargs3(simulate, "siaf$simulate") if (length(formals(simulate)) == 3L) formals(simulate) <- c(formals(simulate), alist(ub=)) } ## Check if the validpars are of correct form validpars <- if (!haspars || is.null(validpars)) NULL else match.fun(validpars) ## Done, return result. list(f = f, F = F, Fcircle = Fcircle, effRange = effRange, deriv = deriv, Deriv = Deriv, simulate = simulate, npars = npars, validpars = validpars) } ########################################## ### Constant spatial interaction/dispersal ########################################## siaf.constant <- function () { res <- list( ## use explicit quote()ing to prevent notes from codetools::checkUsage f = as.function(c(alist(s=, pars=NULL, types=NULL), quote(rep.int(1, length(s)/2))), ##<- nrow() would take extra time in standardGeneric() envir = .GlobalEnv), ## integration over polydomains (F) is handled specially in twinstim Fcircle = as.function(c(alist(r=, pars=NULL, type=NULL), quote(pi*r^2)), envir = .GlobalEnv), simulate = as.function(c(alist(n=, pars=NULL, type=NULL, ub=), quote(runifdisc(n, ub))), envir = getNamespace("surveillance")), npars = 0L ) attr(res, "constant") <- TRUE res } ########################################## ### Naive defaults for the siaf primitives ########################################## ## numerical integration of f over a polygonal domain (single "owin" and type) siaf.fallback.F <- function (polydomain, f, pars, type, method = "SV", ...) { if (identical(method,"SV")) { polyCub.SV(polyregion = polydomain, f = f, pars, type, alpha = 0, ...) # since max at origin } else { polyCub(polyregion = polydomain, f = f, method = method, pars, type, ...) } } ## numerical integration of f over a circular domain getFcircle <- function (siaf, control.F = list()) { if (is.null(siaf$Fcircle)) { function (r, pars, type) { disc <- discpoly(c(0,0), r, npoly = 64, class = "owin") do.call(siaf$F, c(alist(disc, siaf$f, pars, type), control.F)) } } else { siaf$Fcircle } } ## numerical integration of deriv over a polygonal domain siaf.fallback.Deriv <- function (polydomain, deriv, pars, type, method = "SV", ...) { deriv1 <- function (s, paridx) deriv(s, pars, type)[,paridx,drop=TRUE] intderiv1 <- function (paridx) polyCub(polyregion = polydomain, f = deriv1, method = method, paridx = paridx, ...) vapply(X = seq_along(pars), FUN = intderiv1, FUN.VALUE = 0, USE.NAMES = FALSE) } #################################### ### Simulation via polar coordinates (used, e.g., for siaf.powerlaw) #################################### ## Simulate from an isotropic spatial interaction function ## f_{2D}(s) \propto f(||s||), ||s|| <= ub. ## within a maximum distance 'ub' via polar coordinates and the inverse ## transformation method: ## p_{2D}(r,theta) = r * f_{2D}(x,y) \propto r*f(r) ## => angle theta ~ U(0,2*pi) and sample r according to r*f(r) siaf.simulatePC <- function (intrfr) # e.g., intrfr.powerlaw { as.function(c(alist(n=, siafpars=, type=, ub=), substitute({ ## Note: in simEpidataCS, simulation is always bounded to eps.s and to ## the largest extend of W, thus, 'ub' is finite stopifnot(is.finite(ub)) ## Normalizing constant of r*f(r) on [0;ub] normconst <- intrfr(ub, siafpars, type) ## => cumulative distribution function CDF <- function (q) intrfr(q, siafpars, type) / normconst ## For inversion sampling, we need the quantile function CDF^-1 ## However, this is not available in closed form, so we use uniroot ## (which requires a finite upper bound) QF <- function (p) uniroot(function(q) CDF(q)-p, lower=0, upper=ub)$root ## Now sample r as QF(U), where U ~ U(0,1) r <- vapply(X=runif(n), FUN=QF, FUN.VALUE=0, USE.NAMES=FALSE) ## Check simulation of r via kernel estimate: ## plot(density(r, from=0, to=ub)); curve(p(x)/normconst,add=TRUE,col=2) ## now rotate each point by a random angle to cover all directions theta <- runif(n, 0, 2*pi) r * cbind(cos(theta), sin(theta)) })), envir=parent.frame()) } ################################################ ### Check F, Fcircle, deriv, Deriv, and simulate ################################################ checksiaf <- function (siaf, pargrid, type = 1, tolerance = 1e-5, method = "SV", ...) { stopifnot(is.list(siaf), is.numeric(pargrid), !is.na(pargrid), length(pargrid) > 0) pargrid <- as.matrix(pargrid) stopifnot(siaf$npars == ncol(pargrid)) ## Check 'F' if (!is.null(siaf$F)) { message("'F' vs. cubature using method = \"", method, "\" ... ", appendLF=FALSE) comp.F <- checksiaf.F(siaf$F, siaf$f, pargrid, type=type, method=method, ...) message(attr(comp.F, "all.equal") <- all.equal(comp.F[,1], comp.F[,2], check.attributes=FALSE, tolerance=tolerance)) } ## Check 'Fcircle' if (!is.null(siaf$Fcircle)) { message("'Fcircle' vs. cubature using method = \"", method, "\" ... ", appendLF=FALSE) comp.Fcircle <- checksiaf.Fcircle(siaf$Fcircle, siaf$f, pargrid, type=type, method=method, ...) message(attr(comp.Fcircle, "all.equal") <- all.equal(comp.Fcircle[,1], comp.Fcircle[,2], check.attributes=FALSE, tolerance=tolerance)) } ## Check 'deriv' if (!is.null(siaf$deriv)) { message("'deriv' vs. numerical derivative ... ", appendLF=FALSE) if (requireNamespace("maxLik", quietly=TRUE)) { maxRelDiffs.deriv <- checksiaf.deriv(siaf$deriv, siaf$f, pargrid, type=type) message(attr(maxRelDiffs.deriv, "all.equal") <- if (any(maxRelDiffs.deriv > tolerance)) paste("maxRelDiff =", max(maxRelDiffs.deriv)) else TRUE) } else message("Failed: need package", sQuote("maxLik")) } ## Check 'Deriv' if (!is.null(siaf$Deriv)) { message("'Deriv' vs. cubature using method = \"", method, "\" ... ", appendLF=FALSE) comp.Deriv <- checksiaf.Deriv(siaf$Deriv, siaf$deriv, pargrid, type=type, method=method, ...) if (siaf$npars > 1) message() #= LF attr(comp.Deriv, "all.equal") <- sapply(seq_len(siaf$npars), function (j) { if (siaf$npars > 1) message("\tsiaf parameter ", j, ": ", appendLF=FALSE) ae <- all.equal(comp.Deriv[,j], comp.Deriv[,siaf$npars+j], check.attributes=FALSE, tolerance=tolerance) message(ae) ae }) } ## Check 'simulate' if (interactive() && !is.null(siaf$simulate)) { message("Simulating ... ", appendLF=FALSE) checksiaf.simulate(siaf$simulate, siaf$f, pargrid[1,], type=type) message("(-> check the plot)") } ## invisibly return check results invisible(mget(c("comp.F", "comp.Fcircle", "maxRelDiffs.deriv", "comp.Deriv"), ifnotfound=list(NULL), inherits=FALSE)) } checksiaf.F <- function (F, f, pargrid, type=1, method="SV", ...) { res <- t(apply(pargrid, 1, function (pars) { given <- F(LETTERR, f, pars, type) num <- siaf.fallback.F(polydomain = LETTERR, f = f, pars = pars, type = type, method = method, ...) c(given, num) })) colnames(res) <- c("F", method) res } checksiaf.Fcircle <- function (Fcircle, f, pargrid, type=1, rs=c(1,5,10,50,100), method="SV", ...) { pargrid <- pargrid[rep(1:nrow(pargrid), each=length(rs)),,drop=FALSE] rpargrid <- cbind(rs, pargrid, deparse.level=0) res <- t(apply(rpargrid, 1, function (x) { disc <- discpoly(c(0,0), x[1L], npoly = 128, class = "owin") c(ana = Fcircle(x[1L], x[-1L], type), num = siaf.fallback.F(polydomain = disc, f = f, pars = x[-1L], type = type, method = method, ...)) })) res } checksiaf.deriv <- function (deriv, f, pargrid, type=1, rmax=100) { rgrid <- seq(-rmax,rmax,length.out=21) / sqrt(2) rgrid <- rgrid[rgrid != 0] # some siafs are always 1 at (0,0) (deriv=0) sgrid <- cbind(rgrid, rgrid) apply(pargrid, 1, function (pars) { maxLik::compareDerivatives(f, deriv, t0=pars, s=sgrid, print=FALSE)$maxRelDiffGrad ## Note: numDeriv::grad() would only allow one location s at a time }) } checksiaf.Deriv <- function (Deriv, deriv, pargrid, type=1, method="SV", ...) { res <- t(apply(pargrid, 1, function (pars) { given <- Deriv(LETTERR, deriv, pars, type) num <- siaf.fallback.Deriv(polydomain = LETTERR, deriv = deriv, pars = pars, type = type, method = method, ...) c(given, num) })) paridxs <- seq_len(ncol(pargrid)) colnames(res) <- c(paste("Deriv",paridxs,sep="."), paste(method,paridxs,sep=".")) res } checksiaf.simulate <- function (simulate, f, pars, type=1, B=3000, ub=10, plot=interactive()) { ## Simulate B points on the disc with radius 'ub' simpoints <- simulate(B, pars, type=type, ub=ub) if (plot) { ## Graphical check in 2D opar <- par(mfrow=c(2,1), mar=c(4,3,2,1)); on.exit(par(opar)) plot(as.im.function(function(x,y,...) f(cbind(x,y), pars, type), W=discpoly(c(0,0), ub, class="owin")), axes=TRUE, main="Simulation from the spatial kernel") points(simpoints, cex=0.2) kdens <- kde2d(simpoints[,1], simpoints[,2], n=100) contour(kdens, add=TRUE, col=2, lwd=2, labcex=1.5, vfont=c("sans serif", "bold")) ##x11(); image(kdens, add=TRUE) ## Graphical check of distance distribution truehist(sqrt(rowSums(simpoints^2)), xlab="Distance") rfr <- function (r) r*f(cbind(r,0), pars, type) rfrnorm <- integrate(rfr, 0, ub)$value do.call("curve", list(quote(rfr(x)/rfrnorm), add=TRUE, col=2, lwd=2)) ##<- use do.call-construct to prevent codetools::checkUsage from noting "x" } ## invisibly return simulated points invisible(simpoints) } surveillance/R/calibration_null.R0000644000176200001440000001555314426171115016626 0ustar liggesusers################################################################################ ### Expectation and variance of proper scoring rules for Poisson and NegBin ### Reference: Wei and Held (2014), Test, 23, 787-805 ### ### Copyright (C) 2013-2014 Wei Wei, 2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ## wrapper function calling the necessary "EV" function for the selected score score_EV <- function (mu, size = NULL, tolerance = 1e-4, which = c("dss", "logs", "rps")) { which <- match.arg(which) if (which == "dss") return(dss_EV(mu, size)) ## for "logs" and "rps", the EV function only works with a single prediction ## -> apply to each mu (size) res <- if (is.null(size)) { # Poisson vapply(X = mu, FUN = paste0(which, "_EV_1P"), FUN.VALUE = c(E = 0, V = 0), tolerance = tolerance, USE.NAMES = FALSE) } else { # NegBin mapply(FUN = paste0(which, "_EV_1NB"), mu = mu, size = size, MoreArgs = list(tolerance = tolerance), SIMPLIFY = TRUE, USE.NAMES = FALSE) } ## 'res' has dimension 2 x length(mu) list(E = res[1L,], V = res[2L,]) } ########################## ### Dawid-Sebastiani Score ########################## dss_EV <- function (mu, size = NULL) { sigma2 <- if (is.null(size)) mu else mu * (1 + mu/size) E <- 1 + log(sigma2) V <- if (is.null(size)) { 2 + 1/sigma2 } else { 2 + 6/size + 1/sigma2 } list(E = E, V = V) } ##################### ### Logarithmic Score ##################### ## for a single Poisson prediction logs_EV_1P <- function (mu, tolerance = 1e-4) # tolerance is in absolute value { ## use the same kmax for expectation and variance -> shared computations ## K2 is always a bit larger than K1, so we use K2 kmax <- if (mu^3 < tolerance/.Machine$double.eps/2) { ## we can calculate K2 from Theorem 1 (b) qpois(1 - tolerance/(mu^3 + 6*mu^2 + 7*mu + 1), lambda = mu) + 3 } else { # very high quantile (e.g., 1 - 1e-16) would yield Inf mu + 10 * sqrt(mu) } kseq <- seq_len(kmax) ## compute values required by both E and V fseq <- dpois(kseq, lambda = mu) logfactseq <- lfactorial(kseq) ## expectation E <- if (mu > tolerance^(-1/4)) { # fast version for "large" mu ## approximation error is of order 1/mu^4 0.5 + 0.5*log(2*pi*mu) - 1/12/mu - 1/24/mu^2 - 19/360/mu^3 } else { ##kmax1 <- qpois(1 - tolerance/(mu^2 + 3*mu + 1), lambda = mu) + 2 seqq1 <- fseq * logfactseq mu * (1-log(mu)) + sum(seqq1) } ## variance (does it converge to 0.5 as mu -> Inf ?) seqq2 <- (logfactseq - kseq * log(mu))^2 * fseq V <- sum(seqq2) - (E - mu)^2 c(E = E, V = V) } ## for a single NegBin prediction logs_EV_1NB <- function (mu, size, tolerance = 1e-4) { ## TODO: replace simple kmax by formulae from the paper kmax <- qnbinom(1-tolerance/10, mu = mu, size = size) + 5 kseq <- 0:kmax ## compute values required by both E and V fseq <- dnbinom(kseq, mu = mu, size = size) lgammaseq <- lbeta(kseq + 1L, size) + log(kseq + size) ## expectation seqq1 <- lgammaseq * fseq E <- sum(seqq1) - size*log(size) - mu*log(mu) + (mu+size)*log(mu+size) ## variance con2 <- E - size * log(1 + mu/size) seqq2 <- (lgammaseq + kseq * log(1 + size/mu))^2 * fseq V <- sum(seqq2) - con2^2 ## check against formulation in the paper (Equation 11): ## con2paper <- E + size*log(size) - size*log(size+mu) - lgamma(size) ## seqq2paper <- (-lgamma(kseq+size) + lgamma(kseq+1L) + kseq*log(1+size/mu))^2 * fseq ## Vpaper <- sum(seqq2paper) - con2paper^2 ## => V and Vpaper are only identical for kmax -> Inf c(E = E, V = V) } ############################ ### Ranked Probability Score ############################ ## for a single Poisson prediction rps_EV_1P <- function (mu, tolerance = 1e-4) # tolerance is in absolute value { ## expectation if (requireNamespace("gsl", quietly = TRUE)) { ## faster and more accurate implementation (works for larger mu) E <- mu * gsl::bessel_I0_scaled(2*mu, give=FALSE, strict=TRUE) + mu * gsl::bessel_I1_scaled(2*mu, give=FALSE, strict=TRUE) } else { E <- mu * besselI(2*mu, 0, expon.scaled = TRUE) + mu * besselI(2*mu, 1, expon.scaled = TRUE) if (identical(E, 0)) { ## R's besselI() works fine for mu <= 50000 (on my .Machine) ## but returns 0 (buffer overflow) for larger arguments warning("'mu' is too large for besselI(), install package \"gsl\"") return(c(E = NA_real_, V = NA_real_)) } } ## variance kmax <- max(qpois(1 - tolerance/(10*mu^2 + mu), lambda = mu) + 2, 8) # cf. Theorem 2 (a) kseq <- 0:kmax fseq <- dpois(kseq, lambda = mu) Fseq <- cumsum(fseq) # = ppois(kseq, lambda = mu) psiseq <- (kseq - mu) * (2*Fseq - 1) + 2*mu * fseq seqq <- psiseq^2 * fseq V <- sum(seqq) - 4 * E^2 c(E = E, V = V) } ## for a single NegBin prediction rps_EV_1NB <- function (mu, size, tolerance = 1e-4) { ## determine kmax for Var0(RPS), which is always > kmax for E0(RPS), ## cf. Theorem 2 (c), here corrected (1-) and simplified l5 <- (mu + 1)^2 + 1 kmax2 <- max(qnbinom(1-tolerance/l5, mu = mu*(1+2/size), size = size+2) + 2, 8) ## the other listed terms seem to be always smaller than the first one: ## qnbinom(1-tolerance/l5, mu = mu, size = size) ## qnbinom(1-tolerance/l5, mu = mu*(1+1/size), size = size+1) + 1 kseq2 <- 0:kmax2 fseq2 <- dnbinom(kseq2, mu = mu, size = size) Fseq2 <- cumsum(fseq2) # = pnbinom(kseq2, mu = mu, size = size) ## expectation ghgz_part <- mu * (1 + mu/size) ghgz <- 4 * ghgz_part / size E <- if (ghgz < 1 && requireNamespace("gsl", quietly = TRUE)) { ghgz_part * gsl::hyperg_2F1(1+size, 0.5, 2, -ghgz, give = FALSE, strict = TRUE) } else { kmax1 <- max(qnbinom(1-tolerance/mu, mu = mu*(1+1/size), size = size+1) + 1, 8) # cf. Theorem 2 (b) kseq1 <- seq_len(kmax1) seqq1 <- vapply( X = kseq1, # we could use kmax2 (> kmax1) also here FUN = function (i) fseq2[i+1L] * sum((i:1) * fseq2[seq_len(i)]), FUN.VALUE = 0, USE.NAMES = FALSE) sum(seqq1) } ## variance psiseq <- kseq2 * (2 * Fseq2 - 1) + mu * (1 - 2 * pnbinom(kseq2 - 1, mu = mu + mu/size, size = size + 1)) seqq <- psiseq^2 * fseq2 V <- sum(seqq) - 4 * E^2 c(E = E, V = V) } surveillance/R/twinstim_siaf_student.R0000644000176200001440000000745114426171115017731 0ustar liggesusers################################################################################ ### Student (t) kernel f(s) = (||s||^2+sigma^2)^-d ### This is a reparametrization of the t-kernel; For d=1, this is the kernel of ### the Cauchy density with scale sigma; in Geostatistics, a correlation ### function of this kind is known as the Cauchy model. ### ### Copyright (C) 2013-2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ siaf.student <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## helper expression, note: logpars=c(logscale=logsigma, logd=logd) tmp <- expression( logsigma <- logpars[[1L]], # used "[[" to drop names logd <- logpars[[2L]], sigma <- exp(logsigma), d <- exp(logd) ) ## spatial kernel f <- function (s, logpars, types = NULL) {} body(f) <- as.call(c(as.name("{"), tmp, expression(s2 <- .rowSums(s^2, nrow(s), 2L)), expression((s2+sigma^2)^-d) )) environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.student", engine = engine) ## fast integration of f over a circular domain ## is not relevant for this heavy-tail kernel since we don't use ## 'effRange', and usually eps.s=Inf ##Fcircle <- function (r, logpars, type = NULL) {} ## derivative of f wrt logpars deriv <- f body(deriv)[[length(body(deriv))]] <- # assignment for return value of f substitute(fvals <- x, list(x=body(deriv)[[length(body(deriv))]])) body(deriv) <- as.call(c(as.list(body(deriv)), expression( derivlogsigma <- -2*d*sigma^2 * fvals / (s2+sigma^2), derivlogd <- log(fvals) * fvals, cbind(derivlogsigma, derivlogd, deparse.level = 0) ))) environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso( intrfr_names = c("intrfr.student.dlogsigma", "intrfr.student.dlogd"), engine = engine) ## simulation from the kernel (via polar coordinates) simulate <- siaf.simulatePC(intrfr.student) environment(simulate) <- getNamespace("surveillance") ## return the kernel specification list(f=f, F=F, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=2L, validpars=validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.student <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { log(R^2+sigma^2) / 2 - log(sigma) } else { ( (R^2+sigma^2)^(-d+1) - (sigma^2)^(-d+1) ) / (2-2*d) } } ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) intrfr.student.dlogsigma <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) sigma^2 * ( (R^2+sigma^2)^-d - sigma^(-2*d) ) } ## integrate x * (df(x)/dlogd) from 0 to R (vectorized) intrfr.student.dlogd <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { log(sigma)^2 - log(R^2+sigma^2)^2 / 4 } else { # thanks to Maple 17 primitive <- function (x) { x2ps2 <- x^2 + sigma^2 (d*(d-1)*log(x2ps2) + d) / (2*(d-1)^2 * (x2ps2)^(d-1)) } primitive(R) - primitive(0) } } surveillance/R/sts.R0000644000176200001440000004724214712176025014121 0ustar liggesusers################################################################################ ### Initialization and other basic methods for the S4 class "sts" ### ### Copyright (C) 2007-2014 Michael Hoehle ### Copyright (C) 2012-2019,2021,2023,2024 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ###################################################################### # initialize-method -- see ../man/sts-class.Rd for class information ###################################################################### #Ensure that all matrix slots have the same dimnames, which are #always taken from the observed matrix fix.dimnames <- function(x) { dn <- dimnames(x@observed) #Make sure all arrays have the same dimnames dimnames(x@alarm) <- dimnames(x@state) <- dimnames(x@upperbound) <- dimnames(x@populationFrac) <- dn #Special for neighbourhood dimnames(x@neighbourhood) <- dn[c(2L,2L)] return(x) } ## a user-level constructor function, ## which calls the standard generator function .sts(), ## which calls initialize() on the "sts" prototype - see init.sts() below ## NOTE: using sts() is the preferred approach since surveillance 1.10-0 ## NOTE: NULL arguments are ignored => default slot values sts <- function (observed, start = c(2000, 1), frequency = 52, # prototype values epoch = NULL, # defaults to 1:nrow(observed), can be Date population = NULL, # an alias for "populationFrac" map = NULL, # allow sf input for the map slot ...) # further named arguments representing "sts" slots { slots <- list(observed = observed, start = start, freq = frequency, epoch = epoch, map = map, ...) if (!is.null(population)) { if ("populationFrac" %in% names(slots)) warning("'population' takes precedence over 'populationFrac'") slots$populationFrac <- population } # else "populationFrac" is a possible element of ... if (inherits(epoch, "Date")) { ## FIXME: guess missing start value similar to linelist2sts ## if (missing(start) && frequency == 52) ## slots$start <- unlist(isoWeekYear(epoch[1L]), use.names = FALSE) slots$epoch <- as.integer(epoch) slots$epochAsDate <- TRUE } if (inherits(map, "sf")) { if (!requireNamespace("sf", quietly = TRUE)) { stop("'map' is of class \"sf\" but package 'sf' is not installed.\n", " Alternatively, use a map of class \"SpatialPolygons\" (from 'sp').") } ## allow "sf" input and transform it to "SpatialPolygons*" slots$map <- sf::as_Spatial(map) } else if (!is.null(map) && !inherits(map, "SpatialPolygons")) { stop("'map' must inherit from \"sf\" or \"SpatialPolygons\"") } ## call the standard generator function with explicitly set slots isNULL <- vapply(X = slots, FUN = is.null, FUN.VALUE = FALSE, USE.NAMES = FALSE) do.call(.sts, slots[!isNULL]) } ## initialize-method called by new("sts", ...), ## the long-standing default way of creating "sts" objects. ## For backward-compatibility, we keep this customized initialize-method, ## although it would be cleaner to put things into the generator function ## and use the default initialize-method. init.sts <- function(.Object, ..., # also for slots of classes extending "sts" observed, # use copy constructor if missing(observed) ## the following default arguments depend on dim(observed) epoch = seq_len(nTime), state = matrix(FALSE, nTime, nUnit), alarm = matrix(NA, nTime, nUnit), upperbound = matrix(NA_real_, nTime, nUnit), neighbourhood = matrix(NA, nUnit, nUnit), populationFrac = matrix(1/nUnit, nTime, nUnit), ## FIXME: change default to a matrix of NA_real_ ? ## the map slot needs special treatment (see below) map = .Object@map # old/prototype value ## the remaining slots have useful prototype values ## and are handled as part of ... ##start = c(2000, 1), freq = 52, ##epochAsDate = FALSE, multinomialTS = FALSE, ##control = .Object@control ) { if (nargs() < 2) # nothing to do return(.Object) if (missing(observed)) { # use default initialize-method ## such that, e.g., initialize(stsObj, map=newMap) will set a new map ## and copy other slots from stsObj instead of (re-)setting to defaults, ## as well as to support new("stsBP", stsObj, ci=ci, lambda=lambda). ## CAVE: automatic dimension correction of matrix slots is not done. .Object <- callNextMethod() ## Drawback: .Object@map has been forced to "SpatialPolygons" if (!missing(map)) # restore the supplied map .Object@map <- map ## If missing(map), .Object@map = as(stsObj@map, "SpatialPolygons"), ## i.e., data will be lost => map=stsObj@map must be passed explicitly .Object <- fix.dimnames(.Object) return(.Object) } ## Ensure matrix form (auto-conversion is useful for single time series) observed <- as.matrix(observed) nUnit <- ncol(observed) nTime <- nrow(observed) state <- as.matrix(state) alarm <- as.matrix(alarm) upperbound <- as.matrix(upperbound) ## clear rownames and set colnames for the matrix of observed counts if (is.null(namesObs <- colnames(observed))){ namesObs <- paste0("observed", seq_len(nUnit)) } dimnames(observed) <- list(NULL, namesObs) ## if there is only one state-vector for more than one area, repeat it if (nUnit > 1 && ncol(state) == 1 && length(state) == nTime) { state <- rep.int(state, nUnit) dim(state) <- c(nTime, nUnit) } ## time-constant population fractions can be provided as a single vector if (is.vector(populationFrac, mode = "numeric")) { if (length(populationFrac) != nUnit) stop("population vector has length ", length(populationFrac), " but ", nUnit, " units are 'observed'", call. = FALSE) populationFrac <- matrix(populationFrac, nTime, nUnit, byrow=TRUE) } ## we need to set the map manually since the initialize,ANY-method called ## next would coerce a "SpatialPolygonsDataFrame" to "SpatialPolygons" if (!missing(map)) .Object@map <- map ## set all other slots (including for classes extending this class) ## using the default initialize-method .Object <- callNextMethod(.Object, ..., observed=observed, epoch=epoch, state=state, alarm=alarm, upperbound=upperbound, neighbourhood=neighbourhood, populationFrac=populationFrac) ## this also checks validObject(.Object) ## for nUnit > 1, it will catch if any column names differ from namesObs ## use dimnames(observed) for all matrix slots (could be unnamed) .Object <- fix.dimnames(.Object) return(.Object) } setMethod("initialize", "sts", init.sts) ########################################################################### # Conversion between old "disProg" and new "sts" classes ########################################################################### ## transform a "disProg" object to the new "sts" class disProg2sts <- function(disProgObj, map=NULL) { disProgObj$map <- map ## NOTE: we cannot trust disProgObj$week to be a valid "epoch" specification, ## e.g., the week in data("ha") refers to the week number _within_ a year. ## CAVE: in "disProg" objects, several elements may be missing or NULL, ## and there could be further elements not matching any "sts" slot, ## e.g., in "disProg" objects generated by sim.pointSource() validElements <- names(disProgObj) %in% slotNames("sts") & !vapply(X=disProgObj, FUN=is.null, FUN.VALUE=FALSE, USE.NAMES=FALSE) ## initialize an "sts" object using the valid "disProg" elements stsObj <- do.call(.sts, disProgObj[validElements]) return(stsObj) } ## The reverse action sts2disProg <- function(sts) { disProgObj <- list( # no need for create.disProg() checks, sts is formal week=sts@epoch, observed=sts@observed, state=sts@state, start=sts@start, freq=sts@freq, neighbourhood=sts@neighbourhood, populationFrac=sts@populationFrac, epochAsDate=sts@epochAsDate ) class(disProgObj) <- "disProg" #For survRes: alarm=sts@alarm, upperbound=sts@upperbound) return(disProgObj) } ########################################################################### #Method to aggregate over all units, either the time series is aggregated #so a new sampling frequency of nfreq units per time slot is obtained. #The other alternative is to aggregate all units. # # Note: The function is not 100% consistent with what the generic # aggregate does. # # Warning: In case the aggregation is by unit the upperbound slot is set # to NA. Furthermore the MAP object is left as.is, but # the object cannot be plotted anymore. # # Params: # by - a string being either "time" or "unit" # nfreq - new sampling frequency if by=="time". If "all" then all # time instances are summed. ########################################################################### aggregate.sts <- function(x, by="time", nfreq="all", ...) { by <- match.arg(by, choices = c("time", "unit")) #Aggregate time if (by == "time") { if (nfreq == "all") { howmany <- dim(x@observed)[1] } else if (nfreq == x@freq) { # nothing to do return(x) } else { # nfreq != x@freq howmany <- x@freq / nfreq if (howmany - ceiling(howmany) != 0) stop("nfreq has to be a multiple of x@freq.") } n <- dim(x@observed)[1] m <- ceiling(n/howmany) new <- rep(1:m,each=howmany)[1:n] x@freq <- ifelse(nfreq == "all", howmany, nfreq) x@epoch <- 1:m x@observed <- as.matrix(aggregate(x@observed,by=list(new),sum)[,-1]) x@state <- as.matrix(aggregate(x@state,by=list(new),sum)[,-1])>0 x@alarm <- as.matrix(aggregate(x@alarm,by=list(new),sum)[,-1]) # number of alarms x@upperbound <- as.matrix(aggregate(x@upperbound,by=list(new),sum)[,-1]) ## summing population (fractions) over time had_fractions <- !x@multinomialTS && all(rowSums(x@populationFrac) == 1) x@populationFrac <- as.matrix(aggregate(x@populationFrac,by=list(new),sum)[,-1]) if (isTRUE(had_fractions)) { # population fractions need to be recomputed x@populationFrac <- x@populationFrac / rowSums(x@populationFrac) } } #Aggregate units if (by == "unit") { #Aggregate units x@observed <- as.matrix(rowSums(x@observed)) x@state <- as.matrix(rowSums(x@state))>0 x@alarm <- as.matrix(rowSums(x@alarm))>0 # contrary to counting for by="time"! #There is no clever way to aggregate the upperbounds x@upperbound <- matrix(NA_real_,ncol=ncol(x@alarm),nrow=nrow(x@alarm)) x@populationFrac <- as.matrix(rowSums(x@populationFrac)) x@neighbourhood <- matrix(NA, 1, 1) # consistent with default for new("sts") ## we have lost colnames colnames(x@observed) <- "overall" x <- fix.dimnames(x) ## drop the map (set to empty prototype) x@map <- new(getSlots("sts")[["map"]]) } #validObject(x) #just a check return(x) } setMethod("aggregate", signature(x="sts"), aggregate.sts) ##################################################################### # Miscellaneous access methods #################################################################### setMethod("dim", "sts", function (x) dim(x@observed)) setMethod("dimnames", "sts", function (x) dimnames(x@observed)) setMethod("frequency", "sts", function (x, ...) x@freq) setMethod("start", "sts", function (x, ...) x@start) ## ## time() method to extract fractional year index (not really needed) ## setMethod("time", "sts", function (x, ...) { ## tsp1 <- x@start[1L] + (x@start[2L] - 1)/x@freq ## seq.int(tsp1, by = 1/x@freq, length.out = length(x@epoch)) ## }) ## Extract which observation within year we have ## (this could have been named "cycle", for consistency with "ts") setMethod("epochInYear", "sts", function(x,...) { if (x@epochAsDate && x@freq %in% c(12, 52, 365)) { epochStr <- switch(as.character(x@freq), "12" = "%m", "52" = "%V", "365" = "%j") as.numeric(strftime(epoch(x), epochStr)) } else { index <- if (x@epochAsDate) { # non-standard frequency seq_along(x@epoch) } else x@epoch # should always be 1:nrow(x) actually (index-1 + x@start[2]-1) %% x@freq + 1 } }) #Extract the corresponding year for each observation setMethod("year", "sts", function(x,...) { if (x@epochAsDate) { as.numeric(strftime(epoch(x), if (x@freq == 52) "%G" else "%Y")) } else { ((x@epoch-1 + x@start[2]-1) + (x@freq*x@start[1])) %/% x@freq } }) ##################################################################### #[-method for truncating the time series and/or selecting units ##################################################################### setMethod("[", "sts", function(x, i, j, ..., drop = FALSE) { nTimeOriginal <- nrow(x@observed) if (missing(i)) { # set default value i <- seq_len(nTimeOriginal) } else if (anyNA(i)) { stop("missing row index values are not supported") } else if (is.logical(i)) { # convert to integer index i <- which(rep_len(i, nTimeOriginal)) } else if (is.character(i)) { stop("character row indices are not supported") } else if (any(i < 0)) { # convert to (positive) indices if (any(i > 0)) stop("only 0's may be mixed with negative subscripts") i <- setdiff(seq_len(nTimeOriginal), -i) } else if (any(i0 <- i == 0)) { # drop 0's (for the diff check below) i <- i[!i0] } ## if(missing(j)) j <- seq_len(ncol(x@observed)) # redundant if (!missing(j) && anyNA(j)) stop("missing column index values are not supported") ## FIXME: should probably warn about duplicated column indices ## check if i is a regular integer sequence (not invalidating freq) if (any(diff(i) != 1)) warning("irregular row index could invalidate \"freq\"") x@epoch <- x@epoch[i] x@observed <- x@observed[i,j,drop=FALSE] x@state <- x@state[i,j,drop=FALSE] x@alarm <- x@alarm[i,j,drop=FALSE] recompute_fractions <- !missing(j) && !x@multinomialTS && all(rowSums(x@populationFrac) == 1) x@populationFrac <- x@populationFrac[i,j,drop=FALSE] if (isTRUE(recompute_fractions)) { x@populationFrac <- x@populationFrac / rowSums(x@populationFrac) } x@upperbound <- x@upperbound[i,j,drop=FALSE] #Neighbourhood matrix if (ncol(x@observed) != ncol(x@neighbourhood) && # selected units !all(x@neighbourhood %in% c(NA,0,1))) { # no adjacency matrix message("Note: selection of units could invalidate the 'neighbourhood'") ## e.g., if 'neighbourhood' specifies neighbourhood orders } x@neighbourhood <- x@neighbourhood[j,j,drop=FALSE] #Fix the "start" and "epoch" entries (if necessary) if (any(i != 0) && i[1] != 1) { #Note: This code does not work if we have week 53s! i.min <- min(i) # in regular use, this should actually be i[1] new.sampleNo <- x@start[2] + i.min - 1 start.year <- x@start[1] + (new.sampleNo - 1) %/% x@freq start.sampleNo <- (new.sampleNo - 1) %% x@freq + 1 x@start <- c(start.year, start.sampleNo) if (!x@epochAsDate) { ## we also have to update epoch since it is relative to start ## and actually it should always equal 1:nrow(observed) x@epoch <- x@epoch - i.min + 1L } ## if (x@epochAsDate && x@freq == 52) { ## ## FIXME: should we derive start from the first date? ## ISO <- isoWeekYear(as.Date(x@epoch[1], origin = "1970-01-01")) ## x@start <- c(ISO$ISOYear, ISO$ISOWeek) ## } } ## Note: We do not automatically subset the map according to j, since ## identical(row.names(map), colnames(observed)) ## is not a property of the sts-class; Unmonitored regions are allowed. ## The map can also be empty (prototype value). if (drop && !missing(j)) { if (!is.character(j)) stop("'drop = TRUE' requires character-type column indices") if (length(x@map)) x@map <- x@map[j,] else warning("nothing to drop; object has no map") } #Done return(x) }) ######################################################################### ## Plot method ... the type argument specifies what type of plot to make ## ## plot as multivariate time series: type = observed ~ time | unit ## plot as map object aggregated over time: type = observed ~ 1 | unit ## new map implementation via: type = observed ~ unit ## the specific plot functions are in separate files (stsplot_*.R) ######################################################################## plot.sts <- function (x, type = observed ~ time | unit, ...) { # catch new implementation of time-aggregate map plot if (isTRUE(all.equal(observed ~ unit, type))) return(stsplot_space(x, ...)) #Valid formula? valid <- lapply(as.list(type[[3]]), function(i) is.na(pmatch(i,c("1","unit","|","time","*","+")))) valid <- all(!unlist(valid)) obsOk <- (type[[2]] == "observed") alarmOk <- (type[[2]] == "alarm") if (!valid || !(obsOk | alarmOk)) stop("Not a valid plot type") #Parse the formula, i.e. extract components map <- (length(type[[3]])==3) && (type[[3]][[1]] == "|") && (type[[3]][[2]] == "1") time <- pmatch("time",type[[3]]) > 0 #All-in-one if type=time+unit -> no, use argument "as.one" for stsplot_time #as.one <- all(!is.na(pmatch(c("time","unit"),type[[3]] ))) && is.na(pmatch("|",type[[3]])) #No unit dimension? justTime <- type[[3]] == "time" #space-time plots if (map) { stsplot_spacetime(x, type, ...) return(invisible()) } #time plots if (time) { if (obsOk) { #In case observed ~ time, the units are aggregated stsplot_time(if(justTime) aggregate(x,by="unit") else x, ...) return(invisible()) } if (alarmOk) { stsplot_alarm(x, ...) return(invisible()) } } } setMethod("plot", signature(x="sts", y="missing"), plot.sts) ## define how "sts" objects get printed setMethod( "show", "sts", function( object ){ cat( "-- An object of class ", class(object), " -- \n", sep = "" ) if (!object@epochAsDate) { cat( "freq:\t\t", object@freq,"\n" ) } else { epochStr <- switch( as.character(object@freq), "12" = "%m","52" = "%V","365" = "%j") cat( "freq:\t\t", paste(object@freq," with strptime format string ",epochStr,"\n",sep="")) } if (!object@epochAsDate) { cat( "start:\t\t",object@start,"\n" ) } else { cat( "start:\t\t",paste(epoch(object)[1]),"\n" ) } cat( "dim(observed):\t", dim(object@observed), "\n\n") n <- 1 cat("Head of observed:\n") print(head(object@observed,n)) if (npoly <- length(object@map)) { cat("\nmap:", npoly, "Polygons, ") ## no longer print SpatialPolygons as this may load heavy sf (for is.projected) ## print(modifyList(summary(object@map), list(data=NULL))) # no data summary if (inherits(object@map, "SpatialPolygonsDataFrame")) { cat(ncol(object@map), "variables") cat("\nHead of map@data:\n") print(head(object@map@data, n)) } else cat("without data\n") } if (ncol(object@observed) > 1 && !all(is.na(object@neighbourhood))) { cat("\nHead of neighbourhood:\n") print( head(object@neighbourhood,n)) } } ) surveillance/demo/0000755000176200001440000000000014712411614013673 5ustar liggesuserssurveillance/demo/fluBYBW.R0000644000176200001440000001773014531325151015277 0ustar liggesusers################################################################################ ### Demo of hhh4() modelling of influenza in Southern Germany - data("fluBYBW") ### based on ### ### Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random ### effects model for multivariate time series of infectious disease counts. ### Statistics in Medicine, 30, 1118-1136. ### ### RUNNING THE WHOLE SCRIPT TAKES ~20 MINUTES! ### ### Copyright (C) 2009-2012 Michaela Paul, 2012-2013,2016-2019 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ library("surveillance") ## Reproducibility set.seed(1) # affects initial values for ri() terms options(digits = 5) # avoid machine-specific output ## Weekly counts of influenza in 140 districts of Bavaria and Baden-Wuerttemberg data("fluBYBW") # data corrected in surveillance 1.6-0 # -> minor differences to original results in the paper ################################################## # Fit the models from the Paul & Held (2011) paper ################################################## ## generate formula for temporal and seasonal trends f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S=3, period=52) ## settings for the optimizer opt <- list(stop = list(tol=1e-5, niter=200), regression = list(method="nlminb"), variance = list(method="nlminb")) ## models # A0 cntrl_A0 <- list(ar = list(f = ~ -1), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose = 1) summary(res_A0 <- hhh4(fluBYBW,cntrl_A0)) # B0 cntrl_B0 <- list(ar = list(f = ~ 1), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_B0 <- hhh4(fluBYBW,cntrl_B0) # C0 cntrl_C0 <- list(ar = list(f = ~ -1 + ri(type="iid", corr="all")), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_C0 <- hhh4(fluBYBW,cntrl_C0) #A1 # weight matrix w_ji = 1/(No. neighbors of j) if j ~ i, and 0 otherwise wji <- neighbourhood(fluBYBW)/rowSums(neighbourhood(fluBYBW)) cntrl_A1 <- list(ar = list(f = ~ -1), ne = list(f = ~ 1, weights = wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_A1 <- hhh4(fluBYBW,cntrl_A1) # B1 cntrl_B1 <- list(ar = list(f = ~ 1), ne = list(f = ~ 1, weights = wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_B1 <- hhh4(fluBYBW,cntrl_B1) # C1 cntrl_C1 <- list(ar = list(f = ~ -1 + ri(type="iid", corr="all")), ne = list(f = ~ 1, weights = wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_C1 <- hhh4(fluBYBW,cntrl_C1) #A2 cntrl_A2 <- list(ar = list(f = ~ -1), ne = list(f = ~ -1 + ri(type="iid",corr="all"), weights=wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_A2 <- hhh4(fluBYBW,cntrl_A2) # B2 cntrl_B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid",corr="all"), weights =wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_B2 <- hhh4(fluBYBW,cntrl_B2) # C2 cntrl_C2 <- list(ar = list(f = ~ -1 + ri(type="iid", corr="all")), ne = list(f = ~ -1 + ri(type="iid",corr="all"), weights =wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1, start=list(fixed=fixef(res_B0),random=c(rep(0,140), ranef(res_B0)), sd.corr=c(-.5,res_B0$Sigma.orig,0))) res_C2 <- hhh4(fluBYBW,cntrl_C2) # D cntrl_D <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid"), weights = wji), end = list(f =addSeason2formula(f = ~ -1 + ri(type="car") + I((t-208)/100), S=3, period=52), offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_D <- hhh4(fluBYBW,cntrl_D) ########################################################### ## Exemplary summary of model B2 ## (compare with Paul & Held, 2011, Table III and Figure 5) ########################################################### summary(res_B2, idx2Exp = 1:2, maxEV = TRUE) ## Note: as of surveillance 1.6-0, results differ slightly from the paper ## (see penalized log-likelihood), because a superfluous row of zeros ## has been removed from the fluBYBW data .idx <- c(113, 111, 46, 77) plot(res_B2, units = .idx, names = fluBYBW@map@data[.idx, "name"], legend = 2, legend.args = list(x = "topleft"), legend.observed = TRUE) ###################################################################### # Compare the predictive performance of the models by computing # one-step-ahead predictions to be assessed by proper scoring rules ###################################################################### ## do 1-step ahead predictions for the last two years tp <- nrow(fluBYBW)-2*52 verbose <- interactive() ## for this demo: only calculate pseudo-predictions based on the final fit ## to avoid the time-consuming sequential refitting at each step. TYPE <- "final" ## use "rolling" for true one-step-ahead predictions => TAKES ~8 HOURS! val_A0 <- oneStepAhead(res_A0, tp=tp, type=TYPE, verbose=verbose) val_B0 <- oneStepAhead(res_B0, tp=tp, type=TYPE, verbose=verbose) val_C0 <- oneStepAhead(res_C0, tp=tp, type=TYPE, verbose=verbose) val_A1 <- oneStepAhead(res_A1, tp=tp, type=TYPE, verbose=verbose) val_B1 <- oneStepAhead(res_B1, tp=tp, type=TYPE, verbose=verbose) val_C1 <- oneStepAhead(res_C1, tp=tp, type=TYPE, verbose=verbose) val_A2 <- oneStepAhead(res_A2, tp=tp, type=TYPE, verbose=verbose) val_B2 <- oneStepAhead(res_B2, tp=tp, type=TYPE, verbose=verbose) val_C2 <- oneStepAhead(res_C2, tp=tp, type=TYPE, verbose=verbose) val_D <- oneStepAhead(res_D, tp=tp, type=TYPE, verbose=verbose) ## compute scores vals <- ls(pattern="val_") nam <- substring(vals,first=5,last=6) whichScores <- c("logs", "rps", "ses") scores_i <- vector(mode="list", length=length(vals)) meanScores <- NULL for(i in seq_along(vals)){ sc <- scores(get(vals[i]), which=whichScores, individual=TRUE, reverse=TRUE) ## reverse=TRUE => same permutation test results as in surveillance < 1.16.0 scores_i[[i]] <- sc meanScores <- rbind(meanScores,colMeans(sc, dims=2)) } names(scores_i) <- nam rownames(meanScores) <- nam print(meanScores) ## Note that the above use of "final" fitted values instead of "rolling" ## one-step-ahead predictions leads to different mean scores than reported ## in Paul & Held (2011, Table IV). ## assess statistical significance of score differences compareWithBest <- function(best, whichModels, nPermut=9999, seed=1234){ set.seed(seed) pVals <- NULL for(score in seq_along(whichScores)){ p <- c() for(model in whichModels){ p <- c(p, if(model==best) NA else permutationTest(scores_i[[model]][,,score],scores_i[[best]][,,score], plot=interactive(),nPermutation=nPermut, verbose=TRUE)$pVal.permut) } pVals <- cbind(pVals,p) } return(pVals) } pVals_flu <- compareWithBest(best=9, whichModels=1:10, nPermut=999, # reduced for this demo seed=2059710987) rownames(pVals_flu) <- nam colnames(pVals_flu) <- whichScores print(pVals_flu) surveillance/demo/00Index0000644000176200001440000000116514662137762015045 0ustar liggesuserscost Code from the first paper about the R package surveillance (Hoehle, 2007, Comput Stat) illustrating some methods for aberration detection biosurvbook Code from the book chapter on Danish mortality monitoring (Hoehle and Mazick, 2010) fluBYBW Code from Paul and Held (2011, Stat Med) to illustrate hhh4() model fitting and predictive model assessement with proper scoring rules: an application to weekly influenza counts in Southern Germany v77i11 Replication code from Meyer et al. (2017, JSS), illustrating the spatio-temporal endemic-epidemic modelling frameworks 'twinstim', 'twinSIR', and 'hhh4' surveillance/demo/biosurvbook.R0000644000176200001440000002137514662137762016407 0ustar liggesusers###################################################################### # Demo of the code used in the book chapter # Hoehle, M. and A. Mazick, A. (2010) Aberration detection in R # illustrated by Danish mortality monitoring, Book chapter in # T. Kass-Hout and X. Zhang (Eds.) Biosurveillance: A Health Protection # Priority, CRC Press. # # The data read by csv files in the chapter are found as data("momo") # in the package. Courtesy to Statens Serum Institut for making # the mortality data public. # # Author: Michael Hoehle # Date: 13 Oct 2009 ###################################################################### #Load surveillance package library("surveillance") #Load Danish mortality data (see book chapter for CSV reading") data("momo") #Create a plot of the data as in Figure. 1 of the book chapter. #Note: The year is determined by the ISO week, not the date plot(momo[year(momo)>=2000,],ylab="No. of deaths",par.list=list(mar=c(4,2.2,2,1),cex.axis=1.5), type=observed ~ time | unit, col=c(gray(0.3),NA,NA),xaxis.tickFreq=list("%G"=atChange),xaxis.labelFormat="%G",xlab="time (weeks)") par(mfrow=c(1,2),mar=c(4,4,2,1)) plot(momo,ylab="No. of deaths",xlab="time (weeks)",legend.opts=NULL, type=observed ~ time,col=c(gray(0.3),NA,NA),xaxis.tickFreq=list("%G"=atChange,"%m"=atChange),xaxis.labelFreq=list("%G"=atChange),xaxis.labelFormat="%G") plot(momo[,"[0,1)"],xlab="time (weeks)",ylab="No. of deaths",legend.opts=NULL,col=c(gray(0.3),NA,NA),xaxis.tickFreq=list("%G"=atChange,"%m"=atChange),xaxis.labelFreq=list("%G"=atChange),xaxis.labelFormat="%G") par(mfrow=c(1,1)) #Monitoring starts in week 40, 2007 phase2 <- which(epoch(momo) >= "2007-10-01") s.far <- farrington(momo[,"[0,1)"], control=list(range=phase2,alpha=0.01,b=5,w=4,powertrans="none")) cntrlFar <- s.far@control upper.ptnone <-s.far@upperbound cntrlFar$powertrans <- "2/3" upper.pt23 <- farrington(momo[,"[0,1)"],control=cntrlFar)@upperbound cntrlFar$powertrans <- "1/2" upper.pt12 <- farrington(momo[,"[0,1)"],control=cntrlFar)@upperbound ## plot(s.far,ylab="No. of deaths",xlab="time (weeks)",main="") ymax <- max(s.far@upperbound, upper.pt12, upper.pt23)*1.2 #par(mar=c(4,4,1,1)) plot(s.far,legend.opts=NULL,ylab="No. of deaths",main="",xlab="time (weeks)",ylim=c(0,ymax),col=c("darkgray",NA,gray(0.3)),lty=c(1,1,1),lwd=c(1,1,2),dx.upperbound=0,alarm.symbol=list(pch=24,col=1, cex=1)) lines(c(1:nrow(s.far)-0.5,nrow(s.far)+0.5),c(upper.pt12,upper.pt12[nrow(s.far)]),type="s",col="darkgray",lwd=2,lty=2) lines(c(1:nrow(s.far)-0.5,nrow(s.far)+0.5),c(upper.pt23,upper.pt23[nrow(s.far)]),type="s",col=gray(0.1),lwd=2,lty=3) legend(x="topright",c("none","1/2","2/3"),col=c(gray(0.3),"darkgray",gray(0.1)),lwd=2,lty=1:3,horiz=TRUE) #legend(x="topright",c("none","1/2","2/3",expression(hat(mu)[t[0]])),col=c(gray(0.3),"darkgray",gray(0.1),1),lwd=c(2,2,2,3),lty=c(1:3,1),horiz=TRUE) #Median of predictive distribution lines(c(1:nrow(s.far)-0.5,nrow(s.far)+0.5),c(s.far@control$pd[,2],s.far@control$pd[nrow(s.far),2]),type="s",col=1,lwd=3) text(nrow(s.far)+2,tail(observed(s.far),n=1),expression(hat(mu)[t[0]])) alarmDates <- epoch(s.far)[alarms(s.far) == 1] par(mar=c(4,4,2,2)) surv2 <- s.far surv2@observed <- 0*surv2@observed surv2@upperbound <- 0*surv2@observed plot(surv2,ylim=c(-0.05,1),ylab="Quantile",xlab="time (weeks)",legend.opts=NULL,main="",dx.upperbound=0,alarm.symbol=list(pch=24,col=1, cex=1)) lines(surv2@control$pd[,1], type="S") lines( c(1,nrow(surv2)+0.), rep( 1-s.far@control$alpha/2, 2),lty=2,col=1) s.far.all <- farrington(momo, control=list(range=phase2,alpha=0.01,b=5,w=4)) ## s.far.all <- farrington(momo, control=list(range=phase2,alpha=0.01,b=5,w=4)) ## plot(s.far.all,type = alarm ~ time,xlab="time (weeks)") par(mar=c(4,4,1,1)) plot(s.far.all,type = alarm ~ time,xlab="time (weeks)",main="",alarm.symbol=list(pch=24,col=1, cex=1.5),lvl=rep(1,nrow(s.far.all))) ####################################################################### #Negative binomial GLM modelling using the population size as covariate ####################################################################### phase1 <- which(year(momo) == 2002 & epochInYear(momo) == 40):(phase2[1]-1) momo.df <- as.data.frame(momo) m <- MASS::glm.nb( `observed.[75,85)` ~ 1 + epoch + sin(2*pi*epochInPeriod) + cos(2*pi*epochInPeriod) + `population.[75,85)`, data=momo.df[phase1,]) mu0 <- predict(m, newdata=momo.df[phase2,],type="response") ci <- confint(m) kappa <- 1.2 s.nb <- glrnb(momo[,"[75,85)"], control=list(range=phase2,alpha=1/m$theta,mu0=mu0,c.ARL=4.75,theta=log(kappa),ret="cases")) alarmDates <- epoch(s.nb)[alarms(s.nb) == 1] plot(s.nb,dx.upperbound=0,legend.opts=NULL,ylab="No. of deaths",main="",ylim=c(0,max(observed(s.nb))*1.1),xlab="time (weeks)",col=c("darkgray",NA,1),lwd=c(1,1,2),lty=c(1,1,1),alarm.symbol=list(pch=24,col=1, cex=1)) lines(mu0,lwd=2,col=1,lty=2) lines(exp(log(mu0) + log(kappa)),col=1,lty=3,lwd=3) legend(x=20,y=100,c(expression(mu[0,t]),expression(mu[1,t]),"NNBA"),col=c(1,1,1),lty=c(2,3,1),horiz=TRUE,bg="white",lwd=c(2,3,2)) set.seed(123) ###################################################################### # P(N_c <= 51|\tau=\infty) computation ###################################################################### #Number of simulations to perform. In book chapter this number is #1000, but for the sake of a speedy illustration this is drastically #reduced in this demonstration nSims <- 10 #1000 ###################################################################### # Simulate one run-length by first generating data from the negative # binomial model and then applying the LR NegBin CUSUM to it ###################################################################### simone.TAleq65 <- function(sts, g) { observed(sts)[phase2,] <- rnbinom(length(mu0), mu=mu0, size=m$theta) one <- glrnb(sts, control=modifyList(control(s.nb), list(c.ARL=g))) return(any(alarms(one) > 0)) } #Determine run-length using 1000 Monte Carlo samples g.grid <- seq(1,8,by=0.5) pMC <- sapply(g.grid, function(g) { mean(replicate(nSims, simone.TAleq65(momo[,"[75,85)"],g))) }) #Density for comparison in the negative binomial distribution dY <- function(y,mu,log=FALSE, alpha, ...) { dnbinom(y, mu=mu, size=1/alpha, log=log) } #nMax <- max(which( dY(0:1e4, mu=max(mu0),alpha=1/m$theta) >= 1e-20)) - 1 pMarkovChain <- sapply( g.grid, function(g) { TA <- LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=g, dfun = dY, n=rep(600,length(mu0)), alpha=1/m$theta) return(tail(TA$cdf,n=1)) }) par(mar=c(4,4,2,2)) matplot(g.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 65 * "|" * tau * "=" * infinity)),xlab="g",col=1) prob <- 0.1 lines(range(g.grid),rep(prob,2),lty=3,lwd=2) axis(2,at=prob,las=1,cex.axis=0.7) legend(x="topright",c("Monte Carlo","Markov chain"), lty=1:2,col=1) m.01 <- MASS::glm.nb( `observed.[0,1)` ~ 1 + epoch + `population.[0,1)`+ sin(2*pi*epochInPeriod) + cos(2*pi*epochInPeriod), data=momo.df[phase1,]) mu0 <- predict(m.01, newdata=momo.df[phase2,],type="response") #Correct for past outbreaks #omega <- algo.farrington.assign.weights(residuals(m.01, type="deviance")) #m.01.refit <- glm.nb( `observed.[0,1)` ~ 1 + epoch + `population.[0,1)`+ sin(2*pi*epochInPeriod) + cos(2*pi*epochInPeriod), data=momo.df[phase1,],weights=omega) #mu0.refit <- predict(m.01.refit, newdata=momo.df[phase2,],type="response") #Results from the previous Farrington method mu0.far <- control(s.far)$pd[,2] ###################################################################### # Simulate one run-length by first generating data from the negative # binomial model and then applying the LR NegBin CUSUM to it ###################################################################### simone.TAleq65.far <- function(sts, alpha, mu0, size) { observed(sts)[phase2,] <- rnbinom(length(mu0), mu=mu0, size=size) res <- farrington(sts, control=modifyList(control(s.far), list(alpha=alpha))) return(any(as.logical(alarms(res)))) } #Determine run-length using 1000 Monte Carlo samples res.far <- replicate(nSims, simone.TAleq65.far(momo[,"[0,1)"],alpha=0.01,mu0=mu0.far,size=m.01$theta)) (pTA65.far <- mean(res.far)) #Run CUSUM kappa <- 1.2 s.nb.01 <- glrnb(momo[,"[0,1)"], control=list(range=phase2,alpha=1/m.01$theta,mu0=mu0.far,c.ARL=2.1,theta=log(kappa),ret="cases")) alarmDates <- epoch(s.nb.01)[alarms(s.nb.01) == 1] mu1 <- kappa*mu0.far #Show as usual plot(s.nb.01,dx.upperbound=0,legend.opts=NULL,ylab="No. of deaths",main="",xlab="time (weeks)",col=c("darkgray",NA,1),lwd=c(1,1,1),lty=c(1,1,1),ylim=c(0,max(s.nb.01@upperbound))*1.15,alarm.symbol=list(pch=24,col=1, cex=1)) lines(1:(nrow(s.far)+1)-0.5, c(mu0.far,tail(mu0.far,n=1)),lwd=3,col=1,lty=1,type="s") lines(1:(nrow(s.far)+1)-0.5, c(mu1,tail(mu1,n=1)),col=1,lty=3,lwd=3,type="s") legend(x="topright",c(expression(mu[0,t]),expression(mu[1,t]),"NNBA"),col=c(1,1,1),lty=c(1,3,1),horiz=TRUE,bg="white",lwd=c(3,3,1)) surveillance/demo/cost.R0000644000176200001440000001534314662137762015011 0ustar liggesusers## need a writable figs/ directory to save selected figures OUTDIR <- if (interactive()) tempdir() else "." stopifnot(dir.create(file.path(OUTDIR, "figs"))) ################################################### ### chunk number 1: ################################################### library("surveillance") options(width=70) options("prompt"="R> ") set.seed(1234) opendevice <- function(horizontal=TRUE,width=7,height=4,...) { #Do it for postscript instead -- who uses postscript these days?? args <- list(...) args$file <- file.path(OUTDIR, sub("\\.pdf$",".eps",args$file)) args$width <- width args$height <- height args$horizontal <- FALSE do.call("postscript",args) par(mar=c(4,4,2,2)) } ################################################### ### chunk number 3: ################################################### opendevice(file="figs/002.pdf") data("ha") plot(aggregate(ha),main="Hepatitis A in Berlin 2001-2006") dev.off() ################################################### ### chunk number 4: ################################################### sps <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) ################################################### ### chunk number 5: ################################################### opendevice(file="figs/003.pdf") plot(sps,xaxis.years=FALSE,legend.opts=list(x="topleft")) dev.off() ################################################### ### chunk number 7: ################################################### ha.b662 <- algo.bayes(aggregate(ha), control = list(range = 209:290, b = 2, w = 6, alpha = 0.01)) opendevice(file="figs/hab662.pdf") plot(ha.b662, firstweek=1, startyear = 2005,legend.opts=list(x="topleft",horiz=TRUE)) dev.off() ################################################### ### chunk number 9: ################################################### cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01) sps.cdc <- algo.cdc(sps, control = cntrl) sps.farrington <- algo.farrington(sps, control = cntrl) ################################################### ### chunk number 10: ################################################### opendevice(file="figs/farringtoncdc.pdf") par(mfcol = c(1, 2),cex=0.8) plot(sps.cdc, legend = NULL, xaxis.years=FALSE) plot(sps.farrington, legend = NULL, xaxis.years=FALSE) dev.off() ################################################### ### chunk number 12: ################################################### opendevice(file="figs/hacusum.pdf") kh <- find.kh(ARLa=500,ARLr=7) ha.cusum <- algo.cusum(aggregate(ha),control=list(k=kh$k,h=kh$h,m="glm",trans="rossi",range=209:290)) plot(ha.cusum,startyear=2005,legend.opts=list(x=30,y=5.5)) dev.off() #Extract coefficients beta <- coef(ha.cusum$control$m.glm) ################################################### ### chunk number 13: ################################################### print(algo.quality(ha.b662)) ################################################### ### chunk number 14: ################################################### #This chunk contains stuff the reader should not see, but which is necessary #for the visual block to work. control = list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), # list(funcName = "cdc",alpha=0.05,b=2,m=1), # list(funcName = "farrington",alpha=0.05,b=0,w=6), list(funcName = "farrington",alpha=0.05,b=1,w=6), list(funcName = "farrington",alpha=0.05,b=2,w=4)) control <- lapply(control,function(ctrl) {ctrl$range <- 300:400;return(ctrl)}) #Update range in each - cyclic continuation data("k1") range = (2*4*52) + 1:length(k1$observed) aparv.control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Auxiliary function to enlarge data enlargeData <- function(disProgObj, range = 1:156, times = 1){ disProgObj$observed <- c(rep(disProgObj$observed[range], times), disProgObj$observed) disProgObj$state <- c(rep(disProgObj$state[range], times), disProgObj$state) return(disProgObj) } #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { data(list=name) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one surv.one <- function(outbrk) { algo.compare(algo.call(outbrk,control=aparv.control)) } ################################################### ### chunk number 16: ALGOSUMMARY ################################################### res <- algo.summary(lapply(outbrks,surv.one)) ################################################### ### chunk number 17: ################################################### print(res,digits=3) ################################################### ### chunk number 18: eval=FALSE ################################################### ## setClass( "sts", representation(week = "numeric", ## freq = "numeric", ## start = "numeric", ## observed = "matrix", ## state = "matrix", ## alarm = "matrix", ## upperbound = "matrix", ## neighbourhood= "matrix", ## populationFrac= "matrix", ## map = "SpatialPolygonsDataFrame", ## control = "list")) ## ################################################### ### chunk number 20: ################################################### ## import shapefile as "SpatialPolygonsDataFrame" shp <- system.file("shapes/berlin.shp",package="surveillance") if (requireNamespace("maptools")) { # archived on 2023-10-16 map <- maptools::readShapePoly(shp, IDvar = "SNAME") } else { # replacement code map <- sf::as_Spatial(sf::st_read(shp, stringsAsFactors = TRUE, quiet = TRUE)) row.names(map) <- as.character(map$SNAME) } ## convert to "sts" class ha.sts <- disProg2sts(ha, map = map) ## or simply load the prepared object from the package: data("ha.sts") opendevice(file="figs/ha-1unit.pdf",width=7,height=7) par(mar=c(0,0,0,0)) plot(ha.sts,type=observed ~ 1 | unit) dev.off() ################################################### ### chunk number 22: ################################################### opendevice(file="figs/ha-timeunit.pdf",width=7,height=5) ha4 <- aggregate(ha.sts[,c("pank","mitt","frkr","scho","chwi","neuk")],nfreq=13) ha4.cusum <- cusum(ha4,control=list(k=1.5,h=1.75,m="glm",trans="rossi",range=52:73)) #ha4.b332 <- bayes(ha4,control=list(range=52:73,b=2,w=3,alpha=0.01/6)) plot(ha4.cusum,type=observed ~ time | unit) dev.off() surveillance/demo/v77i11.R0000644000176200001440000004342514531323206014762 0ustar liggesusers################################################################################ ### Replication code from Meyer et al. (2017, JSS), ### illustrating the spatio-temporal endemic-epidemic modelling frameworks ### 'twinstim', 'twinSIR', and 'hhh4'. The full reference is: ### ### Meyer, Held, and Hoehle (2017): ### Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance. ### Journal of Statistical Software, 77(11), 1-55. ### https://doi.org/10.18637/jss.v077.i11 ### ### Changes to the original replication script are marked with a "##M" comment. ### ### Copyright (C) 2017-2019 Sebastian Meyer, Leonhard Held, Michael Hoehle ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ##M use old RNGversion to reproduce published simulation results in Section 3.4 RNGversion("3.3.3") # sampling has changed in R 3.6.0 ##M reduce printed precision for less machine-specific output options(digits = 5) ################################################################################ ## Section 3: Spatio-temporal point pattern of infective events ################################################################################ library("surveillance") # you should also have installed the suggested packages ## 3.2. Data structure: 'epidataCS' data("imdepi", package = "surveillance") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords = FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units = km) ) stgrid <- imdepi$stgrid[,-1] load(system.file("shapes", "districtsD.RData", package = "surveillance")) imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, qmatrix = diag(2), nCircle2Poly = 16) summary(events) .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits = 3) rbind(.stgrid.excerpt[1:3, ], "..." = "...", .stgrid.excerpt[4:6, ]) imdepi summary(imdepi) par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") ## axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) ## animation::saveHTML( ## animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), ## nmax = Inf, interval = 0.2, loop = FALSE, ## title = "Animation of the first year of type B events") eventDists <- dist(coordinates(imdepi$events)) (minsep <- min(eventDists[eventDists > 0])) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD) par(las = 1, lab = c(7, 7, 7), mar = c(5, 5, 1, 1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) ## 3.3. Modeling and inference (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) summary(imdfit_endemic) imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, siaf = siaf.gaussian(F.adaptive = TRUE), ##M set F.adaptive=TRUE for replication with surveillance >= 1.15.0 start = c("e.(Intercept)" = -12.5, "e.siaf.1" = 2.75), control.siaf = list(F = list(adapt = 0.25), Deriv = list(nGQ = 13)), cores = 2 * (.Platform$OS.type == "unix"), model = TRUE) print(xtable(imdfit_Gaussian, caption = "Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label = "tab:imdfit_Gaussian"), sanitize.text.function = NULL, sanitize.colnames.function = NULL, sanitize.rownames.function = function(x) paste0("\\code{", x, "}")) R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) imdfit_powerlaw <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.powerlaw(), control.siaf = NULL, start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) imdfit_step4 <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100), control.siaf = NULL, start = c("e.(Intercept)" = -10, setNames(-2:-5, paste0("e.siaf.", 1:4)))) par(mar = c(5, 5, 1, 1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim = c(0, 42), ylim = c(0, 5e-5), lty = c(1, 3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_powerlaw, "siaf", add = TRUE, col.estimate = 4, lty = c(2, 3)) plot(imdfit_step4, "siaf", add = TRUE, col.estimate = 3, lty = c(4, 3)) legend("topright", legend = c("Power law", "Step (df = 4)", "Gaussian"), col = c(4, 3, 2), lty = c(2, 4, 1), lwd = 3, bty = "n") AIC(imdfit_endemic, imdfit_Gaussian, imdfit_powerlaw, imdfit_step4) ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model par(mar = c(5, 5, 1, 1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate = "time", which = "endemic proportion", plot = FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate = "time", which = "total", tgrid = 501, lwd = 2, xlab = "Time [days]", ylab = "Intensity") curve(intensity_endprop(x) * intensity_total(x), add = TRUE, col = 2, lwd = 2, n = 501) ## curve(intensity_endprop(x), add = TRUE, col = 2, lty = 2, n = 501) text(2500, 0.36, labels = "total", col = 1, pos = 2, font = 2) text(2500, 0.08, labels = "endemic", col = 2, pos = 2, font = 2) ## meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which = "epidemic proportion"), ## 50, 2450, subdivisions = 2000, rel.tol = 1e-3)$value / 2400 for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate = "space", which = "epidemic proportion", types = .type, tiles = districtsD, sgrid = 5000, col.regions = grey(seq(1,0,length.out = 10)), at = seq(0,1,by = 0.1))) grid::grid.text("Epidemic proportion", x = 1, rot = 90, vjust = -1) } par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) ## 3.4. Simulation imdsims <- simulate(imdfit_powerlaw, nsim = 30, seed = 1, t0 = 1826, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) table(imdsims[[1]]$events$source > 0, exclude = NULL) .t0 <- imdsims[[1]]$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5, 5, 1, 1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") for (i in seq_along(imdsims$eventsList)) plot(imdsims[[i]], add = TRUE, legend.types = FALSE, col = adjustcolor(c("indianred", "darkblue"), alpha.f = 0.5), ##M no need for scales::alpha() subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) ################################################################################ ## Section 4: SIR event history of a fixed population ################################################################################ library("surveillance") # you should also have installed the suggested packages ## 4.2. Data structure: 'epidata' data("hagelloch", package = "surveillance") head(hagelloch.df, n = 5) hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) head(hagelloch, n = 5) par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") ## 4.3. Modeling and inference hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) summary(hagellochFit) ##M Note: OSAIC is 1244.9 (with quadprog <= 1.5-7) or 1244.8 (with 1.5-8) exp(confint(hagellochFit, parm = "cox(logbaseline)")) prof <- profile(hagellochFit, list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) prof$ci.hl plot(prof) par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) set.seed(1) AIC(hagellochFit, hagellochFit_fstep) ##M Note: OSAIC values slightly changed (abs. diff. < 0.2) with quadprog 1.5-8 ################################################################################ ## Section 5. Areal time series of counts ################################################################################ library("surveillance") # you should also have installed the suggested packages ## 5.2. Data structure: 'sts' ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms", package = "surveillance") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac weserems_nbOrder <- nbOrder(poly2adjmat(map), maxlag = 10) measlesWeserEms <- sts(observed = counts, start = c(2001, 1), frequency = 52, neighbourhood = weserems_nbOrder, map = map, population = populationFrac) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) ## animation::saveHTML( ## animate(measlesWeserEms, tps = 1:52, total.args = list()), ## title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", ## ani.width = 500, ani.height = 600) ## ## to perform the following analysis using biweekly aggregated measles counts: ## measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) ## 5.3. Modeling and inference measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) plot(measlesFit_basic, type = "season", components = "end", main = "") confint(measlesFit_basic, parm = "overdisp") AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) districts2plot <- which(colSums(observed(measlesWeserEms)) > 20) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE) Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { updatecomp <- function (comp, option) switch(option, "unchanged" = list(), "Soffset" = list(offset = comp$offset * Sprop), "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) update(measlesFit_basic, end = updatecomp(measlesFit_basic$control$end, options[1]), ar = updatecomp(measlesFit_basic$control$ar, options[2]), data = list(Sprop = Sprop)) }) aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), envir = as.environment(measlesFits_vacc)) aics_vacc[order(aics_vacc[, "AIC"]), ] measlesFit_vacc <- measlesFits_vacc[["Scovar|unchanged"]] coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) library("lattice") trellis.par.set("reference.line", list(lwd = 3, col="gray")) trellis.par.set("fontsize", list(text = 14)) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar = c(3.6, 4, 2.2, 2), mgp = c(2.1, 0.8, 0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col = colPL, xlab = "Adjacency order", ylab = "Non-normalized weight", type = "b", lwd = 2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm = "neweights.d"))), type = "l", lty = 2, col = colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm = "neweights.d"))) lines(ogrid, c(1, w2[1], 0, 0, 0), type = "b", pch = 19, lwd = 2) arrows(x0 = 2, y0 = w2[2], y1 = w2[3], length = 0.1, angle = 90, code = 3, lty = 2) legend("topright", col = c(colPL, 1), pch = c(1, 19), lwd = 2, bty = "n", inset = 0.1, y.intersp = 1.5, legend = c("Power-law model", "Second-order model")) }) AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) stopifnot(ranef(measlesFit_ri) > -1.6, ranef(measlesFit_ri) < 1.6) for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, col.regions = rev(cm.colors(100)), labels = list(cex = 0.6), at = seq(-1.6, 1.6, length.out = 15))) } plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE) plot(measlesFit_ri, type = "maps", prop = TRUE, labels = list(font = 2, cex = 0.6)) tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2], ], check.attributes = FALSE)) stopifnot(all.equal( ##M identical() fails on some systems measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE, reverse = TRUE) ##M for replication with surveillance >= 1.16.0 t(sapply(measlesScores1, colMeans, dims = 2)) measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "rolling", which.start = "final", cores = 2 * (.Platform$OS.type == "unix")) measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE, reverse = TRUE) ##M for replication with surveillance >= 1.16.0 t(sapply(measlesScores2, colMeans, dims = 2)) set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score])) calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5, 4.5, 3, 1)) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) ## 5.4. Simulation (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) summary(colSums(measlesSim, dims = 2)) par(las = 1, mar = c(5, 5, 1, 1)) plot(measlesSim, "time", ylim = c(0, 100)) surveillance/vignettes/0000755000176200001440000000000014712411614014757 5ustar liggesuserssurveillance/vignettes/hhh4_spacetime.Rnw0000644000176200001440000015676714667617354020404 0ustar liggesusers%\VignetteIndexEntry{hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, lattice, gsl, colorspace, gridExtra, scales, fanplot, hhh4contacts} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/hhh4_spacetime-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ \documentclass[nojss,nofooter,article]{jss} \usepackage[utf8]{inputenc} % Rnw is ASCII, but auto-generated bib file isn't % (specification is redundant in LaTeX >= 2018-04-01) \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to spatio-temporal \code{hhh4} models implemented in the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~5]{meyer.etal2014} -- which is the suggested reference if you use the \code{hhh4} implementation in your own work.}}\\[1cm] \code{hhh4}: Endemic-epidemic modeling\\of areal count time series} \Plaintitle{hhh4: Endemic-epidemic modeling of areal count time series} \Shorttitle{Endemic-epidemic modeling of areal count time series} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure %% knitr uses \subfloat, which subcaption only provides since v1.3 (2019/08/31) \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbb{I}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of area-level time series of counts using the endemic-epidemic multivariate time-series model ``\code{hhh4}'' described in, e.g., \citet[Section~3]{meyer.held2013}. See \code{vignette("hhh4")} for a more general introduction to \code{hhh4} models, including the univariate and non-spatial bivariate case. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("twinSIR")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002. } \Keywords{% areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration} \begin{document} <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("hhh4_spacetime-cache.RData")) if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE) @ \section[Model class]{Model class: \code{hhh4}} \label{sec:hhh4:methods} An endemic-epidemic multivariate time-series model for infectious disease counts $Y_{it}$ from units $i=1,\dotsc,I$ during periods $t=1,\dotsc,T$ was proposed by \citet{held-etal-2005} and was later extended in a series of papers \citep{paul-etal-2008,paul-held-2011,held.paul2012,meyer.held2013}. In its most general formulation, this so-called ``\code{hhh4}'' model assumes that, conditional on past observations, $Y_{it}$ has a negative binomial distribution with mean \begin{equation} \label{eqn:hhh4} \mu_{it} = e_{it} \, \nu_{it} + \lambda_{it} \, Y_{i,t-1} + \phi_{it} \sum_{j \ne i} w_{ji} \, Y_{j,t-1} \end{equation} and overdispersion parameter $\psi_i > 0$ such that the conditional variance of $Y_{it}$ is $\mu_{it} (1+\psi_i \mu_{it})$. Shared overdispersion parameters, e.g., $\psi_i\equiv\psi$, are supported as well as replacing the negative binomial by a Poisson distribution, which corresponds to the limit $\psi_i\equiv 0$. Similar to the point process models in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, the mean~\eqref{eqn:hhh4} decomposes additively into endemic and epidemic components. The endemic mean is usually modeled proportional to an offset of expected counts~$e_{it}$. In spatial applications of the multivariate \code{hhh4} model as in this paper, the ``unit''~$i$ refers to a geographical region and we typically use (the fraction of) the population living in region~$i$ as the endemic offset. The observation-driven epidemic component splits up into autoregressive effects, i.e., reproduction of the disease within region~$i$, and neighborhood effects, i.e., transmission from other regions~$j$. Overall, Equation~\ref{eqn:hhh4} becomes a rich regression model by allowing for log-linear predictors in all three components: \begin{align} \label{eqn:hhh4:predictors} \log(\nu_{it}) &= \alpha_i^{(\nu)} + {\bm{\beta}^{(\nu)}}^\top \bm{z}^{(\nu)}_{it} \:, \\ \log(\lambda_{it}) &= \alpha_i^{(\lambda)} + {\bm{\beta}^{(\lambda)}}^\top \bm{z}^{(\lambda)}_{it} \:, \\ \log(\phi_{it}) &= \alpha_i^{(\phi)} + {\bm{\beta}^{(\phi)}}^\top \bm{z}^{(\phi)}_{it} \:. \end{align} %% The superscripts in brackets distinguish the component-specific parameters. The intercepts of these predictors can be assumed identical across units, unit-specific, or random (and possibly correlated). %\citep{paul-held-2011} The regression terms often involve sine-cosine effects of time to reflect seasonally varying incidence, %\citep{held.paul2012} but may, e.g., also capture heterogeneous vaccination coverage \citep{herzog-etal-2010}. Data on infections imported from outside the study region may enter the endemic component \citep{geilhufe.etal2012}, which generally accounts for cases not directly linked to other observed cases, e.g., due to edge effects. For a single time series of counts $Y_t$, \code{hhh4} can be regarded as an extension of \code{glm.nb} from package \CRANpkg{MASS} \citep{R:MASS} to account for autoregression. See the \code{vignette("hhh4")} for examples of modeling univariate and bivariate count time series using \code{hhh4}. With multiple regions, spatio-temporal dependence is adopted by the third component in Equation~\ref{eqn:hhh4} with weights $w_{ji}$ reflecting the flow of infections from region $j$ to region $i$. These transmission weights may be informed by movement network data \citep{paul-etal-2008,geilhufe.etal2012}, but may also be estimated parametrically. A suitable choice to reflect epidemiological coupling between regions \citep[Chapter~7]{Keeling.Rohani2008} is a power-law distance decay $w_{ji} = o_{ji}^{-d}$ defined in terms of the adjacency order~$o_{ji}$ in the neighborhood graph of the regions \citep{meyer.held2013}. %% For instance, a second-order neighbor~$j$ of a region~$i$ ($o_{ji} = 2$) is a %% region adjacent to a first-order neighbor of $i$, but not itself directly %% adjacent to $i$. Note that we usually normalize the transmission weights such that $\sum_i w_{ji} = 1$, i.e., the $Y_{j,t-1}$ cases are distributed among the regions proportionally to the $j$th row vector of the weight matrix $(w_{ji})$. Likelihood inference for the above multivariate time-series model has been established by \citet{paul-held-2011} with extensions for parametric neighborhood weights by \citet{meyer.held2013}. Supplied with the analytical score function and Fisher information, the function \code{hhh4} by default uses the quasi-Newton algorithm available through the \proglang{R} function \code{nlminb} to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. Computation of the marginal Fisher information is accelerated using the \CRANpkg{Matrix} package \citep{R:Matrix}. \section[Data structure]{Data structure: \class{sts}} \label{sec:hhh4:data} <>= ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac @ In public health surveillance, routine reports of infections to public health authorities give rise to spatio-temporal data, which are usually made available in the form of aggregated counts by region and period. The Robert Koch Institute (RKI) in Germany, for example, maintains a database of cases of notifiable diseases, which can be queried via the \emph{SurvStat@RKI} online service (\url{https://survstat.rki.de}). To exemplify area-level \code{hhh4} models in the remainder of this manuscript, we use weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002, downloaded from \emph{SurvStat@RKI} (as of Annual Report 2005). These data are contained in \pkg{surveillance} as \code{data("measlesWeserEms")} -- an object of the \proglang{S}4-class \class{sts} (``surveillance time series'') used for data input in \code{hhh4} models and briefly introduced below. See \citet{hoehle-mazick-2010} and \citet{salmon.etal2014} for more detailed descriptions of this class, which is also used for the prospective aberration detection facilities of the \pkg{surveillance} package. The epidemic modeling of multivariate count time series essentially involves three data matrices: a $T \times I$ matrix of the observed counts, a corresponding matrix with potentially time-varying population numbers (or fractions), and an $I \times I$ neighborhood matrix quantifying the coupling between the $I$ units. In our example, the latter consists of the adjacency orders~$o_{ji}$ between the districts. A map of the districts in the form of a \code{SpatialPolygons} object (defined by the \CRANpkg{sp} package of \citealp{R:sp}) can be used to derive the matrix of adjacency orders automatically using the functions \code{poly2adjmat} and \code{nbOrder}, where the former wraps functionality of package \CRANpkg{spdep} \citep{R:spdep}: <>= weserems_adjmat <- poly2adjmat(map) weserems_nbOrder <- nbOrder(weserems_adjmat) @ <>= weserems_nbOrder <- measlesWeserEms@neighbourhood @ Visual inspection of the adjacencies identified by \code{poly2adjmat} is recommended, e.g., via labelling each district with the number of its neighbors, i.e., \code{rowSums(weserems_adjmat)}. If adjacencies are not detected, this is probably due to sliver polygons. In that case either increase the \code{snap} tolerance in \code{poly2adjmat} or use \CRANpkg{rmapshaper} \citep{R:rmapshaper} to simplify and snap adjacent polygons in advance. Given the aforementioned ingredients, the \class{sts} object \code{measlesWeserEms} has been constructed as follows: <>= measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) @ Here, \code{start} and \code{frequency} have the same meaning as for classical time-series objects of class \class{ts}, i.e., (year, sample number) of the first observation and the number of observations per year. Note that \code{data("measlesWeserEms")} constitutes a corrected version of \code{data("measles.weser")} originally analyzed by \citet[Section~3.2]{held-etal-2005}. Differences are documented on the associated help page. We can visualize such \class{sts} data in four ways: individual time series, overall time series, map of accumulated counts by district, or animated maps. For instance, the two plots in Figure~\ref{fig:measlesWeserEms} have been generated by the following code: <>= par(mar = c(5,5,1,1)) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) @ The overall time-series plot in Figure~\ref{fig:measlesWeserEms-1} reveals strong seasonality in the data with slightly different patterns in the two years. The spatial plot in Figure~\ref{fig:measlesWeserEms-2} is a tweaked \code{spplot} (package \CRANpkg{sp}) with colors from \CRANpkg{colorspace} \citep{R:colorspace} using $\sqrt{}$-equidistant cut points. The default plot \code{type} is \code{observed ~ time | unit} and displays the district-specific time series. Here we show the output of the equivalent \code{autoplot}-method (Figure~\ref{fig:measlesWeserEms15}), which is based on and requires \CRANpkg{ggplot2} \citep{R:ggplot2}: <0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="htb">>= if (require("ggplot2")) { autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) } else plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) @ The districts \Sexpr{paste0(paste0(row.names(measlesWeserEms@map), " (", measlesWeserEms@map[["GEN"]], ")")[colSums(observed(measlesWeserEms)) == 0], collapse = " and ")} without any reported cases are excluded in Figure~\ref{fig:measlesWeserEms15}. Obviously, the districts have been affected by measles to a very heterogeneous extent during these two years. An animation of the data can be easily produced as well. We recommend to use converters of the \CRANpkg{animation} package \citep{R:animation}, e.g., to watch the series of plots in a web browser. The following code will generate weekly disease maps during the year 2001 with the respective total number of cases shown in a legend and -- if package \CRANpkg{gridExtra} \citep{R:gridExtra} is available -- an evolving time-series plot at the bottom: <>= animation::saveHTML( animate(measlesWeserEms, tps = 1:52, total.args = list()), title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", ani.width = 500, ani.height = 600) @ <>= ## to perform the following analysis using biweekly aggregated measles counts: measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) @ \pagebreak \section{Modeling and inference} \label{sec:hhh4:fit} For multivariate surveillance time series of counts such as the \code{measlesWeserEms} data, the function \code{hhh4} fits models of the form~\eqref{eqn:hhh4} via (penalized) maximum likelihood. We start by modeling the measles counts in the Weser-Ems region by a slightly simplified version of the original negative binomial model used by \citet{held-etal-2005}. Instead of district-specific intercepts $\alpha_i^{(\nu)}$ in the endemic component, we first assume a common intercept $\alpha^{(\nu)}$ in order to not be forced to exclude the two districts without any reported cases of measles. After the estimation and illustration of this basic model, we will discuss the following sequential extensions: covariates (district-specific vaccination coverage), estimated transmission weights, and random effects to eventually account for unobserved heterogeneity of the districts. %epidemic seasonality, biweekly aggregation \subsection{Basic model} Our initial model has the following mean structure: \begin{align} \mu_{it} &= e_i \, \nu_t + \lambda \, Y_{i,t-1} + \phi \sum_{j \ne i} w_{ji} Y_{j,t-1}\:,\label{eqn:hhh4:basic}\\ \log(\nu_t) &= \alpha^{(\nu)} + \beta_t t + \gamma \sin(\omega t) + \delta \cos(\omega t)\:. \label{eqn:hhh4:basic:end} \end{align} To account for temporal variation of disease incidence, the endemic log-linear predictor $\nu_t$ incorporates an overall trend and a sinusoidal wave of frequency $\omega=2\pi/52$. As a basic district-specific measure of disease incidence, the population fraction $e_i$ is included as a multiplicative offset. The epidemic parameters $\lambda = \exp(\alpha^{(\lambda)})$ and $\phi = \exp(\alpha^{(\phi)})$ are assumed homogeneous across districts and constant over time. Furthermore, we define $w_{ji} = \ind(j \sim i) = \ind(o_{ji} = 1)$ for the time being, which means that the epidemic can only arrive from directly adjacent districts. This \class{hhh4} model transforms into the following list of \code{control} arguments: <>= measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = frequency(measlesWeserEms)), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") @ The formulae of the three predictors $\log\nu_t$, $\log\lambda$ and $\log\phi$ are specified as element \code{f} of the \code{end}, \code{ar}, and \code{ne} lists, respectively. For the endemic formula we use the convenient function \code{addSeason2formula} to generate the sine-cosine terms, and we take the multiplicative \code{offset} of population fractions $e_i$ from the \code{measlesWeserEms} object. The autoregressive part only consists of the intercept $\alpha^{(\lambda)}$, whereas the neighborhood component specifies the intercept $\alpha^{(\phi)}$ and also the matrix of transmission \code{weights} $(w_{ji})$ to use -- here a simple indicator of first-order adjacency. The chosen \code{family} corresponds to a negative binomial model with a common overdispersion parameter $\psi$ for all districts. Alternatives are \code{"Poisson"}, \code{"NegBinM"} ($\psi_i$), or a factor determining which groups of districts share a common overdispersion parameter. Together with the data, the complete list of control arguments is then fed into the \code{hhh4} function to estimate the model: <>= measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) @ The fitted model is summarized below: <>= summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) @ The \code{idx2Exp} argument of the \code{summary} method requests the estimates for $\lambda$, $\phi$, $\alpha^{(\nu)}$ and $\exp(\beta_t)$ instead of their respective internal log-values. For instance, \code{exp(end.t)} represents the seasonality-adjusted factor by which the basic endemic incidence increases per week. The \code{amplitudeShift} argument transforms the internal coefficients $\gamma$ and $\delta$ of the sine-cosine terms to the amplitude $A$ and phase shift $\varphi$ of the corresponding sinusoidal wave $A \sin(\omega t + \varphi)$ in $\log\nu_t$ \citep{paul-etal-2008}. The resulting multiplicative effect of seasonality on $\nu_t$ is shown in Figure~\ref{fig:measlesFit_basic_endseason} produced by: <>= plot(measlesFit_basic, type = "season", components = "end", main = "") @ The epidemic potential of the process as determined by the parameters $\lambda$ and $\phi$ is best investigated by a combined measure: the dominant eigenvalue (\code{maxEV}) of the matrix $\bm{\Lambda}$ %$\Lambda_t$, %such that $\bm{\mu}_t = \bm{\nu}_t + \bm{\Lambda} \bm{Y}_{t-1}$ which has the entries $(\Lambda)_{ii} = \lambda$ %$(\Lambda_t)_{ii} = \lambda_{it}$ on the diagonal and $(\Lambda)_{ij} = \phi w_{ji}$ %$(\Lambda_t)_{ij} = \phi_{it} w_{ji}$ for $j\ne i$ \citep{paul-etal-2008}. If the dominant eigenvalue is smaller than 1, it can be interpreted as the epidemic proportion of disease incidence. In the above model, the estimate is \Sexpr{round(100*getMaxEV(measlesFit_basic)[1])}\%. Another way to judge the relative importance of the three model components is via a plot of the fitted mean components along with the observed counts. Figure~\ref{fig:measlesFitted_basic} shows this for the five districts with more than 50 cases as well as for the sum over all districts: <>= districts2plot <- which(colSums(observed(measlesWeserEms)) > 50) par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE, par.settings = NULL, legend = 1) plot(measlesFit_basic, type = "fitted", total = TRUE, hide0s = TRUE, par.settings = NULL, legend = FALSE) -> fitted_components @ We can see from the plots that the largest portion of the fitted mean indeed results from the within-district autoregressive component with very little contribution of cases from adjacent districts and a rather small endemic incidence. The \code{plot} method invisibly returns the component values in a list of matrices (one by unit). In the above code, we have assigned the result from plotting the overall fit (via \code{total = TRUE}) to the object \code{fitted_components}. Here we show the values for the weeks 20 to 22 (corresponding to the weeks 21 to 23 of the measles time series): <<>>= fitted_components$Overall[20:22,] @ The first column of this matrix refers to the fitted mean (epidemic + endemic). The four following columns refer to the epidemic (own + neighbours), endemic, autoregressive (``own''), and neighbourhood components of the mean. The last three columns refer to the point estimates of $\lambda$, $\phi$, and $\nu_t$, respectively. These values allow us to calculate the (time-averaged) proportions of the mean explained by the different components: <<>>= colSums(fitted_components$Overall)[3:5] / sum(fitted_components$Overall[,1]) @ Note that the ``epidemic proportion'' obtained here (\Sexpr{round(100*sum(fitted_components$Overall[,2]) / sum(fitted_components$Overall[,1]))}\%) is a function of the observed time series (so could be called ``empirical''), whereas the dominant eigenvalue calculated further above is a theoretical property derived from the autoregressive parameters alone. Finally, the \code{overdisp} parameter from the model summary and its 95\% confidence interval <<>>= confint(measlesFit_basic, parm = "overdisp") @ suggest that a negative binomial distribution with overdispersion is more adequate than a Poisson model corresponding to $\psi = 0$. We can underpin this finding by an AIC comparison, taking advantage of the convenient \code{update} method for \class{hhh4} fits: <>= AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) @ Other plot \code{type}s and methods for fitted \class{hhh4} models as listed in Table~\ref{tab:methods:hhh4} will be applied in the course of the following model extensions. <>= print(xtable( surveillance:::functionTable("hhh4", functions=list( Extract="getNEweights", Other="oneStepAhead" )), caption="Generic and \\textit{non-generic} functions applicable to \\class{hhh4} objects.", label="tab:methods:hhh4"), include.rownames = FALSE) @ \enlargethispage{\baselineskip} \subsection{Covariates} The \class{hhh4} model framework allows for covariate effects on the endemic or epidemic contributions to disease incidence. Covariates may vary over both regions and time and thus obey the same $T \times I$ matrix structure as the observed counts. For infectious disease models, the regional vaccination coverage is an important example of such a covariate, since it reflects the (remaining) susceptible population. In a thorough analysis of measles occurrence in the German federal states, \citet{herzog-etal-2010} found vaccination coverage to be associated with outbreak size. We follow their approach of using the district-specific proportion $1-v_i$ of unvaccinated children just starting school as a proxy for the susceptible population. As $v_i$ we use the proportion of children vaccinated with at least one dose among the ones presenting their vaccination card at school entry in district $i$ in the year 2004.\footnote{% First year with data for all districts; more recent data is available from the public health department of Lower Saxony (\url{https://www.nlga.niedersachsen.de/impfreport/}).} %% Note: districts are more heterogeneous in 2004 than in later years. %% Data is based on abecedarians in 2004, i.e.\ born in 1998, recommended to %% be twice vaccinated against Measles by the end of year 2000. This time-constant covariate needs to be transformed to the common matrix structure for incorporation in \code{hhh4}: <>= Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) @ There are several ways to account for the susceptible proportion in our model, among which the simplest is to update the endemic population offset $e_i$ by multiplication with $(1-v_i)$. \citet{herzog-etal-2010} found that the susceptible proportion is best added as a covariate in the autoregressive component in the form \[ \lambda_i \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)} + \beta_s \log(1-v_i)\big) \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)}\big) \, (1-v_i)^{\beta_s} \, Y_{i,t-1} \] according to the mass action principle \citep{Keeling.Rohani2008}. A higher proportion of susceptibles in district $i$ is expected to boost the generation of new infections, i.e., $\beta_s > 0$. Alternatively, this effect could be assumed as an offset, i.e., $\beta_s \equiv 1$. To choose between endemic and/or autoregressive effects, and multiplicative offset vs.\ covariate modeling, we perform AIC-based model selection. First, we set up a grid of possible component updates: <>= Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) @ Then we update the initial model \code{measlesFit_basic} according to each row of \code{SmodelGrid}: <>= measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { updatecomp <- function (comp, option) switch(option, "unchanged" = list(), "Soffset" = list(offset = comp$offset * Sprop), "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) update(measlesFit_basic, end = updatecomp(measlesFit_basic$control$end, options[1]), ar = updatecomp(measlesFit_basic$control$ar, options[2]), data = list(Sprop = Sprop)) }) @ The resulting object \code{measlesFits_vacc} is a list of \Sexpr{nrow(SmodelGrid)} \class{hhh4} fits, which are named according to the corresponding \code{Soptions} used for the endemic and autoregressive components. We construct a call of the function \code{AIC} taking all list elements as arguments: <>= aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), envir = as.environment(measlesFits_vacc)) @ <<>>= aics_vacc[order(aics_vacc[, "AIC"]), ] @ <>= if (AIC(measlesFits_vacc[["Scovar|unchanged"]]) > min(aics_vacc[,"AIC"])) stop("`Scovar|unchanged` is not the AIC-minimal vaccination model") @ Hence, AIC increases if the susceptible proportion is only added to the autoregressive component, but we see a remarkable improvement when adding it to the endemic component. The best model is obtained by leaving the autoregressive component unchanged ($\lambda$) and adding the term $\beta_s \log(1-v_i)$ to the endemic predictor in Equation~\ref{eqn:hhh4:basic:end}. <>= measlesFit_vacc <- update(measlesFit_basic, end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))), data = list(Sprop = Sprop)) coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] @ The estimated exponent $\hat{\beta}_s$ is both clearly positive and different from the offset assumption. In other words, if a district's fraction of susceptibles is doubled, the endemic measles incidence is estimated to multiply by $2^{\hat{\beta}_s}$: <<>>= 2^cbind("Estimate" = coef(measlesFit_vacc), confint(measlesFit_vacc))["end.log(Sprop)",] @ \subsection{Spatial interaction} Up to now, the model assumed that the epidemic can only arrive from directly adjacent districts ($w_{ji} = \ind(j\sim i)$), and that all districts have the same ability $\phi$ to import cases from neighboring regions. Given that humans travel further and preferably to metropolitan areas, both assumptions seem overly simplistic and should be tuned toward a ``gravity'' model for human interaction. First, to reflect commuter-driven spread %\citep[Section~6.3.3.1]{Keeling.Rohani2008} in our model, we scale the district's susceptibility with respect to its population fraction by multiplying $\phi$ with $e_i^{\beta_{pop}}$: <>= measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) @ As in a similar analyses of influenza \citep{geilhufe.etal2012,meyer.held2013}, we find strong evidence for such an agglomeration effect: AIC decreases from \Sexpr{round(AIC(measlesFit_vacc))} to \Sexpr{round(AIC(measlesFit_nepop))} and the estimated exponent $\hat{\beta}_{pop}$ is <<>>= cbind("Estimate" = coef(measlesFit_nepop), confint(measlesFit_nepop))["ne.log(pop)",] @ Second, to account for long-range transmission of cases, \citet{meyer.held2013} proposed to estimate the weights $w_{ji}$ as a function of the adjacency order $o_{ji}$ between the districts. For instance, a power-law model assumes the form $w_{ji} = o_{ji}^{-d}$, for $j\ne i$ and $w_{jj}=0$, where the decay parameter $d$ is to be estimated. Normalization to $w_{ji} / \sum_k w_{jk}$ is recommended and applied by default when choosing \code{W_powerlaw} as weights in the neighborhood component: <>= measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) @ The argument \code{maxlag} sets an upper bound for spatial interaction in terms of adjacency order. Here we set no limit since \code{max(neighbourhood(measlesWeserEms))} is \Sexpr{max(neighbourhood(measlesWeserEms))}. The decay parameter $d$ is estimated to be <<>>= cbind("Estimate" = coef(measlesFit_powerlaw), confint(measlesFit_powerlaw))["neweights.d",] @ which represents a strong decay of spatial interaction for higher-order neighbors. As an alternative to the parametric power law, unconstrained weights up to \code{maxlag} can be estimated by using \code{W_np} instead of \code{W_powerlaw}. For instance, \code{W_np(maxlag = 2)} corresponds to a second-order model, i.e., \mbox{$w_{ji} = 1 \cdot \ind(o_{ji} = 1) + e^{\omega_2} \cdot \ind(o_{ji} = 2)$}, which is also row-normalized by default: <>= measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) @ Figure~\ref{fig:measlesFit_neweights-2} shows both the power-law model $o^{-\hat{d}}$ and the second-order model. %, where $e^{\hat{\omega}_2}$ is Alternatively, the plot \code{type = "neweights"} for \class{hhh4} fits can produce a \code{stripplot} \citep{R:lattice} of $w_{ji}$ against $o_{ji}$ as shown in Figure~\ref{fig:measlesFit_neweights-1} for the power-law model: <>= library("lattice") trellis.par.set("reference.line", list(lwd=3, col="gray")) trellis.par.set("fontsize", list(text=14)) set.seed(20200303) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL, xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm="neweights.d"))), type="l", lty=2, col=colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm="neweights.d"))) lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2) arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2) legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5, legend=c("Power-law model", "Second-order model")) }) @ Note that only horizontal jitter is added in this case. Because of normalization, the weight $w_{ji}$ for transmission from district $j$ to district $i$ is determined not only by the districts' neighborhood $o_{ji}$ but also by the total amount of neighborhood of district $j$ in the form of $\sum_{k\ne j} o_{jk}^{-d}$, which causes some variation of the weights for a specific order of adjacency. The function \code{getNEweights} can be used to extract the estimated weight matrix $(w_{ji})$. An AIC comparison of the different models for the transmission weights yields: <<>>= AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) @ AIC improves when accounting for transmission from higher-order neighbors by a power law or a second-order model. In spite of the latter resulting in a slightly better fit, we will use the power-law model as a basis for further model extensions since the stand-alone second-order effect is not always identifiable in more complex models and is scientifically implausible. \subsection{Random effects} \citet{paul-held-2011} introduced random effects for \class{hhh4} models, which are useful if the districts exhibit heterogeneous incidence levels not explained by observed covariates, and especially if the number of districts is large. For infectious disease surveillance data, a typical example of unobserved heterogeneity is underreporting. Our measles data even contain two districts without any reported cases, while the district with the smallest population (03402, SK Emden) had the second-largest number of cases reported and the highest overall incidence (see Figures~\ref{fig:measlesWeserEms-2} and~\ref{fig:measlesWeserEms15}). Hence, allowing for district-specific intercepts in the endemic or epidemic components is expected to improve the model fit. For independent random effects $\alpha_i^{(\nu)} \stackrel{iid}{\sim} \N(\alpha^{(\nu)}, \sigma_\nu^2)$, $\alpha_i^{(\lambda)} \stackrel{iid}{\sim} \N(\alpha^{(\lambda)}, \sigma_\lambda^2)$, and $\alpha_i^{(\phi)} \stackrel{iid}{\sim} \N(\alpha^{(\phi)}, \sigma_\phi^2)$ in all three components, we update the corresponding formulae as follows: <>= measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) @ <>= summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The summary now contains an extra section with the estimated variance components $\sigma_\lambda^2$, $\sigma_\phi^2$, and $\sigma_\nu^2$. We did not assume correlation between the three random effects, but this is possible by specifying \code{ri(corr = "all")} in the component formulae. The implementation also supports a conditional autoregressive formulation for spatially correlated intercepts via \code{ri(type = "car")}. The estimated district-specific deviations $\alpha_i^{(\cdot)} - \alpha^{(\cdot)}$ can be extracted by the \code{ranef}-method: <<>>= head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) @ The \code{exp}-transformed deviations correspond to district-specific multiplicative effects on the model components, which can be visualized via the plot \code{type = "ri"} as follows (Figure~\ref{fig:measlesFit_ri_map}): % exp=TRUE plot has nicer (usually more) axis ticks if 'scales' is available <>= for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, exp = TRUE, labels = list(cex = 0.6))) } @ For the autoregressive component in Figure~\ref{fig:measlesFit_ri_map-1}, we see a pronounced heterogeneity between the three western districts in pink and the remaining districts. These three districts have been affected by large local outbreaks and are also the ones with the highest overall numbers of cases. In contrast, the city of Oldenburg (03403) is estimated with a relatively low autoregressive coefficient: $\lambda_i = \exp(\alpha_i^{(\lambda)})$ can be extracted using the \code{intercept} argument as <<>>= exp(ranef(measlesFit_ri, intercept = TRUE)["03403", "ar.ri(iid)"]) @ However, this district seems to import more cases from other districts than explained by its population (Figure~\ref{fig:measlesFit_ri_map-2}). In Figure~\ref{fig:measlesFit_ri_map-3}, the two districts without any reported measles cases (03401 and 03405) appear in cyan, which means that they exhibit a relatively low endemic incidence after adjusting for the population and susceptible proportion. Such districts could be suspected of a larger amount of underreporting. We plot the new model fit (Figure~\ref{fig:measlesFitted_ri}) for comparison with the initial fit shown in Figure~\ref{fig:measlesFitted_basic}: <>= par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1) plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE, par.settings = NULL, legend = 1) plot(measlesFit_ri, type = "fitted", total = TRUE, hide0s = TRUE, par.settings = NULL, legend = FALSE) @ For some of these districts, a great amount of cases is now explained via transmission from neighboring regions while others are mainly influenced by the local autoregression. The decomposition of the estimated mean by district can also be seen from the related plot \code{type = "maps"} (Figure~\ref{fig:measlesFitted_maps}): <>= plot(measlesFit_ri, type = "maps", which = c("epi.own", "epi.neighbours", "endemic"), prop = TRUE, labels = list(cex = 0.6)) @ The extra flexibility of the random effects model comes at a price. First, the runtime of the estimation increases considerably from \Sexpr{round(measlesFit_powerlaw[["runtime"]]["elapsed"], 1)} seconds for the previous power-law model \code{measlesFit_powerlaw} to \Sexpr{round(measlesFit_ri[["runtime"]]["elapsed"], 1)} seconds with random effects. Furthermore, we no longer obtain AIC values, since random effects invalidate simple AIC-based model comparisons. For quantitative comparisons of model performance we have to resort to more sophisticated techniques presented in the next section. \subsection{Predictive model assessment} \citet{paul-held-2011} suggest to evaluate one-step-ahead forecasts from competing models using proper scoring rules for count data \citep{czado-etal-2009}. These scores measure the discrepancy between the predictive distribution $P$ from a fitted model and the later observed value $y$. A well-known example is the squared error score (``ses'') $(y-\mu_P)^2$, which is usually averaged over a set of forecasts to obtain the mean squared error. The Dawid-Sebastiani score (``dss'') additionally evaluates sharpness. The logarithmic score (``logs'') and the ranked probability score (``rps'') assess the whole predictive distribution with respect to calibration and sharpness. Lower scores correspond to better predictions. In the \class{hhh4} framework, predictive model assessment is made available by the functions \code{oneStepAhead}, \code{scores}, \code{pit}, and \code{calibrationTest}. We will use the second quarter of 2002 as the test period, and compare the basic model, the power-law model, and the random effects model. First, we use the \code{"final"} fits on the complete time series to compute the predictions, which then simply correspond to the fitted values during the test period: <>= tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") @ <>= stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2],], check.attributes = FALSE)) @ Note that in this case, the log-score for a model's prediction in district $i$ in week $t$ equals the associated negative log-likelihood contribution. Comparing the mean scores from different models is thus essentially a goodness-of-fit assessment: <>= stopifnot(all.equal( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) @ <>= SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores1, colMeans, dims = 2)) @ All scoring rules claim that the random effects model gives the best fit during the second quarter of 2002. Now we turn to true one-week-ahead predictions of \code{type = "rolling"}, which means that we always refit the model up to week $t$ to get predictions for week $t+1$: <>= measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "rolling", which.start = "final") @ Figure~\ref{fig:measlesPreds2_plot} shows \CRANpkg{fanplot}s \citep{R:fanplot} of the sequential one-week-ahead forecasts from the random effects models for the same districts as in Figure~\ref{fig:measlesFitted_ri}: <>= par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1)) for (unit in names(districts2plot)) plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit, key.args = if (unit == tail(names(districts2plot),1)) list()) @ The \code{plot}-method for \class{oneStepAhead} predictions is based on the associated \code{quantile}-method (a \code{confint}-method is also available). Note that the sum of these negative binomial distributed forecasts over all districts is not negative binomial distributed. The package \CRANpkg{distr} \citep{ruckdeschel.kohl2014} could be used to approximate the distribution of the aggregated one-step-ahead forecasts (not shown here). Looking at the average scores of these forecasts over all weeks and districts, the most parsimonious initial model \code{measlesFit_basic} actually turns out best: <>= measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores2, colMeans, dims = 2)) @ Statistical significance of the differences in mean scores can be investigated by a \code{permutationTest} for paired data or a paired $t$-test: <>= set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score], nPermutation = 999)) @ Hence, there is no clear evidence for a difference between the basic and the random effects model with regard to predictive performance during the test period. Whether predictions of a particular model are well calibrated can be formally investigated by \code{calibrationTest}s for count data as recently proposed by \citet{wei.held2013}. For example: <>= calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ Thus, there is no evidence of miscalibrated predictions from the random effects model. \citet{czado-etal-2009} describe an alternative informal approach to assess calibration: probability integral transform (PIT) histograms for count data (Figure~\ref{fig:measlesPreds2_pit}). <>= par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1), las = 1) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) @ Under the hypothesis of calibration, i.e., $y_{it} \sim P_{it}$ for all predictive distributions $P_{it}$ in the test period, the PIT histogram is uniform. Underdispersed predictions lead to U-shaped histograms, and bias causes skewness. In this aggregate view of the predictions over all districts and weeks of the test period, predictive performance is comparable between the models, and there is no evidence of badly dispersed predictions. However, the right-hand decay in all histograms suggests that all models tend to predict higher counts than observed. This is most likely related to the seasonal shift between the years 2001 and 2002. In 2001, the peak of the epidemic was in the second quarter, while it already occurred in the first quarter in 2002 (cp.\ Figure~\ref{fig:measlesWeserEms-1}). \subsection{Further modeling options} In the previous sections we extended our model for measles in the Weser-Ems region with respect to spatial variation of the counts and their interaction. Temporal variation was only accounted for in the endemic component, which included a long-term trend and a sinusoidal wave on the log-scale. \citet{held.paul2012} suggest to also allow seasonal variation of the epidemic force by adding a superposition of $S$ harmonic waves of fundamental frequency~$\omega$, $\sum_{s=1}^S \left\{ \gamma_s \sin(s\,\omega t) + \delta_s \cos(s\,\omega t) \right\}$, to the log-linear predictors of the autoregressive and/or neighborhood component -- just like for $\log\nu_t$ in Equation~\ref{eqn:hhh4:basic:end} with $S=1$. However, given only two years of measles surveillance and the apparent shift of seasonality with regard to the start of the outbreak in 2002 compared to 2001, more complex seasonal models are likely to overfit the data. Concerning the coding in \proglang{R}, sine-cosine terms can be added to the epidemic components without difficulties by again using the convenient function \code{addSeason2formula}. Updating a previous model for different numbers of harmonics is even simpler, since the \code{update}-method has a corresponding argument \code{S}. The plots of \code{type = "season"} and \code{type = "maxEV"} for \class{hhh4} fits can visualize the estimated component seasonality. Performing model selection and interpreting seasonality or other covariate effects across \emph{three} different model components may become quite complicated. Power-law weights actually enable a more parsimonious model formulation, where the autoregressive and neighbourhood components are merged into a single epidemic component: \begin{equation} \mu_{it} = e_{it} \, \nu_{it} + \phi_{it} \sum_{j} (o_{ji} + 1)^{-d} \, Y_{j,t-1} \:. \end{equation} With only two predictors left, model selection and interpretation is simpler, and model extensions are more straightforward, for example stratification by age group \citep{meyer.held2015} as mentioned further below. To fit such a two-component model, the autoregressive component has to be excluded (\code{ar = list(f = ~ -1)}) and power-law weights have to be modified to start from adjacency order~0 (via \code{W_powerlaw(..., from0 = TRUE)}). <>= ## a simplified model which includes the autoregression in the power law measlesFit_powerlaw2 <- update(measlesFit_powerlaw, ar = list(f = ~ -1), ne = list(weights = W_powerlaw(maxlag = 5, from0 = TRUE))) AIC(measlesFit_powerlaw, measlesFit_powerlaw2) ## simpler is really worse; probably needs random effects @ All of our models for the measles surveillance data incorporated an epidemic effect of the counts from the local district and its neighbors. Without further notice, we thereby assumed a lag equal to the observation interval of one week. However, the generation time of measles is around 10 days, which is why \citet{herzog-etal-2010} aggregated their weekly measles surveillance data into biweekly intervals. We can perform a sensitivity analysis by running the whole code of the current section based on \code{aggregate(measlesWeserEms, nfreq = 26)}. Doing so, the parameter estimates of the various models retain their order of magnitude and conclusions remain the same. However, with the number of time points halved, the complex random effects model would not always be identifiable when calculating one-week-ahead predictions during the test period. %% basic model: same epidemic parameters and dominant eigenvalue (0.78), same overdispersion (1.94) %% vaccination: the exponent $\beta_s$ for the susceptible proportion in the %% extended model \code{"Scovar|unchanged"} is closer to 1 (1.24), which is why %% \code{"Soffset|unchanged"} is selected by AIC. %% random effects: less variance, but similar pattern We have shown several options to account for the spatio-temporal dynamics of infectious disease spread. However, for directly transmitted human diseases, the social phenomenon of ``like seeks like'' results in contact patterns between subgroups of a population, which extend the pure distance decay of interaction. Especially for school children, social contacts are highly age-dependent. A useful epidemic model should therefore be additionally stratified by age group and take the inherent contact structure into account. How this extension can be incorporated in the spatio-temporal endemic-epidemic modeling framework \class{hhh4} has recently been investigated by \citet{meyer.held2015}. The associated \CRANpkg{hhh4contacts} package \citep{R:hhh4contacts} contains a demo script to exemplify this modeling approach with surveillance data on norovirus gastroenteritis and an age-structured contact matrix. \section{Simulation} \label{sec:hhh4:simulation} Simulation from fitted \class{hhh4} models is enabled by an associated \code{simulate}-method. Compared to the point process models described in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, simulation is less complex since it essentially consists of sequential calls of \code{rnbinom} (or \code{rpois}). At each time point $t$, the mean $\mu_{it}$ is determined by plugging in the parameter estimates and the counts $Y_{i,t-1}$ simulated at the previous time point. In addition to a model fit, we thus need to specify an initial vector of counts \code{y.start}. As an example, we simulate 100 realizations of the evolution of measles during the year 2002 based on the fitted random effects model and the counts of the last week of the year 2001 in the 17 districts: <>= (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) @ The simulated counts are returned as a $52\times 17\times 100$ array instead of a list of 100 \class{sts} objects. We can, e.g., look at the final size distribution of the simulations: <<>>= summary(colSums(measlesSim, dims = 2)) @ A few large outbreaks have been simulated, but the mean size is below the observed number of \code{sum(observed(measlesWeserEms)[53:104, ])} $= \Sexpr{sum(observed(measlesWeserEms)[53:104,])}$ cases in the year 2002. Using the \code{plot}-method associated with such \code{hhh4} simulations, Figure~\ref{fig:measlesSim_plot_time} shows the weekly number of observed cases compared to the long-term forecast via a fan chart: <>= plot(measlesSim, "fan", means.args = list(), key.args = list()) @ We refer to \code{help("simulate.hhh4")} and \code{help("plot.hhh4sims")} for further examples. \pagebreak[2] %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages knitr::write_bib( # produces UTF-8 c("MASS", "Matrix", "colorspace", "gridExtra", "lattice", "sp", "fanplot", "hhh4contacts"), file = "hhh4_spacetime-R.bib", tweak = FALSE, prefix = "R:") @ \bibliography{references,hhh4_spacetime-R} <>= save(aics_vacc, measlesPreds2, file = "hhh4_spacetime-cache.RData") @ \end{document} surveillance/vignettes/surveillance.Rnw0000644000176200001440000005522714712367340020164 0ustar liggesusers%\VignetteIndexEntry{Getting started with outbreak detection} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \newcommand{\pkg}[1]{{\bfseries #1}} \newcommand{\surveillance}{\pkg{surveillance}} \usepackage{hyperref} \hypersetup{ pdfauthor = {Michael H\"ohle and Andrea Riebler and Michaela Paul}, pdftitle = {Getting started with outbreak detection}, pdfsubject = {R package 'surveillance'} } \title{Getting started with outbreak detection} \author{ Michael H{\"o}hle\thanks{Author of correspondence: Department of Statistics, University of Munich, Ludwigstr.\ 33, 80539 M{\"u}nchen, Germany, Email: \texttt{hoehle@stat.uni-muenchen.de}} , Andrea Riebler and Michaela Paul\\ Department of Statistics\\ University of Munich\\ Germany } \date{17 November 2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} %Put all in another directory \SweaveOpts{prefix.string=plots/surveillance, width=9, height=4.5} \setkeys{Gin}{width=1\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################################### #Do we need to compute or can we just fetch results ###################################################################### CACHEFILE <- "surveillance-cache.RData" compute <- !file.exists(CACHEFILE) message("Doing computations: ", compute) if(!compute) load(CACHEFILE) @ \begin{document} \fbox{\vbox{\small \noindent\textbf{Disclaimer}: This vignette reflects package state at version 0.9-7 and is hence somewhat outdated. New functionality has been added to the package: this includes various endemic-epidemic modelling frameworks for surveillance data (\texttt{hhh4}, \texttt{twinSIR}, and \texttt{twinstim}), as well as more outbreak detection methods (\texttt{glrnb}, \texttt{boda}, and \texttt{farringtonFlexible}). These new features are described in detail in \citet{meyer.etal2014} and \citet{salmon.etal2014}, respectively. %and corresponding vignettes are included in the package; %see \texttt{vignette(package = "surveillance")} for an overview. Note in particular that use of the new \texttt{S4} class \texttt{sts} instead of \texttt{disProg} is encouraged to encapsulate time series data. }} {\let\newpage\relax\maketitle} \begin{abstract} \noindent This document gives an introduction to the \textsf{R} package \surveillance\ containing tools for outbreak detection in routinely collected surveillance data. The package contains an implementation of the procedures described by~\citet{stroup89}, \citet{farrington96} and the system used at the Robert Koch Institute, Germany. For evaluation purposes, the package contains example data sets and functionality to generate surveillance data by simulation. To compare the algorithms, benchmark numbers like sensitivity, specificity, and detection delay can be computed for a set of time series. Being an open-source package it should be easy to integrate new algorithms; as an example of this process, a simple Bayesian surveillance algorithm is described, implemented and evaluated.\\ \noindent{\bf Keywords:} infectious disease, monitoring, aberrations, outbreak, time series of counts. \end{abstract} \newpage \section{Introduction}\label{sec:intro} Public health authorities have in an attempt to meet the threats of infectious diseases to society created comprehensive mechanisms for the collection of disease data. As a consequence, the abundance of data has demanded the development of automated algorithms for the detection of abnormalities. Typically, such an algorithm monitors a univariate time series of counts using a combination of heuristic methods and statistical modelling. Prominent examples of surveillance algorithms are the work by~\citet{stroup89} and~\citet{farrington96}. A comprehensive survey of outbreak detection methods can be found in~\citep{farrington2003}. The R-package \texttt{surveillance} was written with the aim of providing a test-bench for surveillance algorithms. From the Comprehensive R Archive Network (CRAN) the package can be downloaded together with its source code. It allows users to test new algorithms and compare their results with those of standard surveillance methods. A few real world outbreak datasets are included together with mechanisms for simulating surveillance data. With the package at hand, comparisons like the one described by~\citet{hutwagner2005} should be easy to conduct. The purpose of this document is to illustrate the basic functionality of the package with R-code examples. Section~\ref{sec:data} contains a description of the data format used to store surveillance data, mentions the built-in datasets and illustrates how to create new datasets by simulation. Section~\ref{sec:algo} contains a short description of how to use the surveillance algorithms and illustrate the results. Further information on the individual functions can be found on the corresponding help pages of the package. \section{Surveillance Data}\label{sec:data} Denote by $\{y_t\>;t=1,\ldots,n\}$ the time series of counts representing the surveillance data. Because such data typically are collected on a weekly basis, we shall also use the alternative notation $\{y_{i:j}\}$ with $j=\{1,\ldots,52\}$ being the week number in year $i=\{-b,\ldots,-1,0\}$. That way the years are indexed such that most current year has index zero. For evaluation of the outbreak detection algorithms it is also possible for each week to store -- if known -- whether there was an outbreak that week. The resulting multivariate series $\{(y_t,x_t)\>; t=1,\ldots,n\}$ is in \texttt{surveillance} given by an object of class \texttt{disProg} (disease progress), which is basically a \texttt{list} containing two vectors: the observed number of counts and a boolean vector \texttt{state} indicating whether there was an outbreak that week. A number of time series are contained in the package (see \texttt{data(package="surveillance")}), mainly originating from the SurvStat@RKI database at \url{https://survstat.rki.de/} maintained by the Robert Koch Institute, Germany~\citep{survstat}. For example the object \texttt{k1} describes cryptosporidiosis surveillance data for the German federal state Baden-W\"{u}rttemberg 2001-2005. The peak in 2001 is due to an outbreak of cryptosporidiosis among a group of army soldiers in a boot camp~\citep{bulletin3901}. <>= data(k1) plot(k1, main = "Cryptosporidiosis in BW 2001-2005") @ For evaluation purposes it is also of interest to generate surveillance data using simulation. The package contains functionality to generate surveillance data containing point-source like outbreaks, for example with a Salmonella serovar. The model is a Hidden Markov Model (HMM) where a binary state $X_t, t=1,\ldots,n$, denotes whether there was an outbreak and $Y_t$ is the number of observed counts, see Figure~\ref{fig:hmm}. \begin{figure}[htb] \centering \includegraphics[width=.75\textwidth]{figures/HMM} \caption{The Hidden Markov Model} \label{fig:hmm} \end{figure} The state $X_t$ is a homogeneous Markov chain with transition matrix \begin{center} \begin{tabular}{c|cc} $X_t\backslash X_{t+1}$ & 0 & 1\\ \hline $0$ & $p$ & $1 - p$ \\ $1$ & $1 - r$ & $r$ \end{tabular} \end{center} Hence $1-p$ is the probability to switch to an outbreak state and $1-r$ is the probability that $X_t=1$ is followed by $X_{t+1}=1$. Furthermore, the observation $Y_t$ is Poisson-distributed with log-link mean depending on a seasonal effect and time trend, i.e.\ \[ \log \mu_t = A \cdot \sin \, (\omega \cdot (t + \varphi)) + \alpha + \beta t. \] In case of an outbreak $(X_t=1)$ the mean increases with a value of $K$, altogether \begin{equation}\label{eq:hmm} Y_t \sim \operatorname{Po}(\mu_t + K \cdot X_t). \end{equation} The model in (\ref{eq:hmm}) corresponds to a single-source, common-vehicle outbreak, where the length of an outbreak is controlled by the transition probability $r$. The daily numbers of outbreak-cases are simply independently Poisson distributed with mean $K$. A physiologically better motivated alternative could be to operate with a stochastic incubation time (e.g.\ log-normal or gamma distributed) for each individual exposed to the source, which results in a temporal diffusion of the peak. The advantage of (\ref{eq:hmm}) is that estimation can be done by a generalized linear model (GLM) using $X_t$ as covariate and that it allows for an easy definition of a correctly identified outbreak: each $X_t=1$ has to be identified. More advanced setups would require more involved definitions of an outbreak, e.g.\ as a connected series of time instances, where the number of outbreak cases is greater than zero. Care is then required in defining what a correctly identified outbreak for time-wise overlapping outbreaks means. In \surveillance\ the function \verb+sim.pointSource+ is used to simulate such a point-source epidemic; the result is an object of class \verb+disProg+. \label{ex:sts} <<>>= set.seed(1234) sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) @ <>= plot(sts) @ \section{Surveillance Algorithms}\label{sec:algo} Surveillance data often exhibit strong seasonality, therefore most surveillance algorithms only use a set of so called \emph{reference values} as basis for drawing conclusions. Let $y_{0:t}$ be the number of cases of the current week (denoted week $t$ in year $0$), $b$ the number of years to go back in time and $w$ the number of weeks around $t$ to include from those previous years. For the year zero we use $w_0$ as the number of previous weeks to include -- typically $w_0=w$. Altogether the set of reference values is thus defined to be \[ R(w,w_0,b) = \left(\bigcup\limits_{i=1}^b\bigcup\limits_{j=\,-w}^w y_{-i:t+j}\right) \cup \left(\bigcup_{k=-w_0}^{-1} y_{0:t+k}\right) \] Note that the number of cases of the current week is not part of $R(w,w_0,b)$. A surveillance algorithm is a procedure using the reference values to create a prediction $\hat{y}_{0:t}$ for the current week. This prediction is then compared with the observed $y_{0:t}$: if the observed number of cases is much higher than the predicted number, the current week is flagged for further investigations. In order to do surveillance for time $0:t$ an important concern is the choice of $b$ and $w$. Values as far back as time $-b:t-w$ contribute to $R(w,w_0,b)$ and thus have to exist in the observed time series. Currently, we have implemented four different type of algorithms in \surveillance. The Centers for Disease Control and Prevention (CDC) method~\citep{stroup89}, the Communicable Disease Surveillance Centre (CDSC) method~\citep{farrington96}, the method used at the Robert Koch Institute (RKI), Germany~\citep{altmann2003}, and a Bayesian approach documented in~\citet{riebler2004}. A detailed description of each method is beyond the scope of this note, but to give an idea of the framework the Bayesian approach developed in~\citet{riebler2004} is presented: Within a Bayesian framework, quantiles of the predictive posterior distribution are used as a measure for defining alarm thresholds. The model assumes that the reference values are identically and independently Poisson distributed with parameter $\lambda$ and a Gamma-distribution is used as Prior distribution for $\lambda$. The reference values are defined to be $R_{\text{Bayes}}= R(w,w_0,b) = \{y_1, \ldots, y_{n}\}$ and $y_{0:t}$ is the value we are trying to predict. Thus, $\lambda \sim \text{Ga}(\alpha, \beta)$ and $y_i|\lambda \sim \text{Po}(\lambda)$, $i = 1,\ldots,{n}$. Standard derivations show that the posterior distribution is \begin{equation*} \lambda|y_1, \ldots, y_{n} \sim \text{Ga}(\alpha + \sum_{i=1}^{n} y_i, \beta + n). \end{equation*} Computing the predictive distribution \begin{equation*} f(y_{0:t}|y_1,\ldots,y_{n}) = \int\limits^\infty_0{f(y_{0:t}|\lambda)\, f(\lambda|y_1,\ldots,y_{n})}\, d\lambda \end{equation*} we get the Poisson-Gamma-distribution \begin{equation*} y_{0:t}|y_1,\ldots,y_{n} \sim \text{PoGa}(\alpha + \sum_{i=1}^{n} y_i, \beta + n), \end{equation*} which is a generalization of the negative Binomial distribution, i.e.\ \[ y_{0:t}|y_1,\ldots,y_{n} \sim \text{NegBin}(\alpha + \sum_{i=1}^{n} y_i, \tfrac{\beta + n}{\beta + n + 1}). \] Using the Jeffrey's Prior $\text{Ga}(\tfrac{1}{2}, 0)$ as non-informative Prior distribution for $\lambda$ the parameters of the negative Binomial distribution are \begin{align*} \alpha + \sum_{i=1}^{n} y_i &= \frac{1}{2} + \sum_{y_{i:j} \in R_{\text{Bayes}}}\!\! y_{i:j} \quad % \intertext{and} \quad\text{and}\quad \frac{\beta + n}{\beta + n + 1} = \frac{|R_{\text{Bayes}}|}{|R_{\text{Bayes}}| + 1}. \end{align*} Using a quantile-parameter $\alpha$, the smallest value $y_\alpha$ is computed, so that \begin{equation*} P(y \leq y_\alpha) \geq 1-\alpha. \end{equation*} Now \begin{equation*} A_{0:t} = I(y_{0:t} \geq y_\alpha), \end{equation*} i.e. if $y_{0:t}\geq y_\alpha$ the current week is flagged as an alarm. As an example, the \verb+Bayes1+ method uses the last six weeks as reference values, i.e.\ $R(w,w_0,b)=(6,6,0)$, and is applied to the \texttt{k1} dataset with $\alpha=0.01$ as follows. <>= k1.b660 <- algo.bayes(k1, control = list(range = 27:192, b = 0, w = 6, alpha = 0.01)) plot(k1.b660, disease = "k1") @ Several extensions of this simple Bayesian approach are imaginable, for example the inane over-dispersion of the data could be modeled by using a negative-binomial distribution, time trends and mechanisms to correct for past outbreaks could be integrated, but all at the cost of non-standard inference for the predictive distribution. Here simulation based methods like Markov Chain Monte Carlo or heuristic approximations have to be used to obtain the required alarm thresholds. In general, the \verb+surveillance+ package makes it easy to add additional algorithms -- also those not based on reference values -- by using the existing implementations as starting point. The following call uses the CDC and Farrington procedure on the simulated time series \verb+sts+ from page~\pageref{ex:sts}. Note that the CDC procedure operates with four-week aggregated data -- to better compare the upper bound value, the aggregated number of counts for each week are shown as circles in the plot. <>= cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) sts.cdc <- algo.cdc(sts, control = cntrl) sts.farrington <- algo.farrington(sts, control = cntrl) @ <>= if (compute) { <> } @ <>= par(mfcol=c(1,2)) plot(sts.cdc, legend.opts=NULL) plot(sts.farrington, legend.opts=NULL) @ Typically, one is interested in evaluating the performance of the various surveillance algorithms. An easy way is to look at the sensitivity and specificity of the procedure -- a correct identification of an outbreak is defined as follows: if the algorithm raises an alarm for time $t$, i.e.\ $A_t=1$ and $X_t=1$ we have a correct classification, if $A_t=1$ and $X_t=0$ we have a false-positive, etc. In case of more involved outbreak models, where an outbreak lasts for more than one week, a correct identification could be if at least one of the outbreak weeks is correctly identified, see e.g.\ \citet{hutwagner2005}. To compute various performance scores the function \verb+algo.quality+ can be used on a \verb+survRes+ object. <<>>= print(algo.quality(k1.b660)) @ This computes the number of false positives, true negatives, false negatives, the sensitivity and the specificity. Furthermore, \texttt{dist} is defined as \[ \sqrt{(Spec-1)^2 + (Sens - 1)^2}, \] that is the distance to the optimal point $(1,1)$, which serves as a heuristic way of combining sensitivity and specificity into a single score. Of course, weighted versions are also imaginable. Finally, \texttt{lag} is the average number of weeks between the first of a consecutive number of $X_t=1$'s (i.e.\ an outbreak) and the first alarm raised by the algorithm. To compare the results of several algorithms on a single time series we declare a list of control objects -- each containing the name and settings of the algorithm we want to apply to the data. <>= control <- list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), list(funcName = "cdc", alpha=0.05), list(funcName = "farrington", alpha=0.05) ) control <- lapply(control, function(ctrl) { ctrl$range <- 300:400; return(ctrl) }) @ % In the above, \texttt{rki1}, \texttt{rki2} and \texttt{rki3} are three methods with reference values $R_\text{rki1}(6,6,0)$, $R_\text{rki2}(6,6,1)$ and $R_\text{rki3}(4,0,2)$, all called with $\alpha=0.05$. The \texttt{bayes*} methods use the Bayesian algorithm with the same setup of reference values. The CDC method is special since it operates on aggregated four-week blocks. To make everything comparable, a common $\alpha=0.05$ level is used for all algorithms. All algorithms in \texttt{control} are applied to \texttt{sts} using: <>= algo.compare(algo.call(sts, control = control)) @ <>= if (compute) { acall <- algo.call(sts, control = control) } print(algo.compare(acall), digits = 3) @ A test on a set of time series can be done as follows. Firstly, a list containing 10 simulated time series is created. Secondly, all the algorithms specified in the \texttt{control} object are applied to each series. Finally the results for the 10 series are combined in one result matrix. <>= #Create 10 series ten <- lapply(1:10,function(x) { sim.pointSource(p = 0.975, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)}) @ <>= #Do surveillance on all 10, get results as list ten.surv <- lapply(ten,function(ts) { algo.compare(algo.call(ts,control=control)) }) @ <>= if (compute) { <> } @ <>= #Average results algo.summary(ten.surv) @ <>= print(algo.summary(ten.surv), digits = 3) @ A similar procedure can be applied when evaluating the 14 surveillance series drawn from SurvStat@RKI~\citep{survstat}. A problem is however, that the series after conversion to 52 weeks/year are of length 209 weeks. This is insufficient to apply e.g.\ the CDC algorithm. To conduct the comparison on as large a dataset as possible the following trick is used: The function \texttt{enlargeData} replicates the requested \texttt{range} and inserts it before the original data, after which the evaluation can be done on all 209 values. <>= #Update range in each - cyclic continuation range = (2*4*52) + 1:length(k1$observed) control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Auxiliary function to enlarge data enlargeData <- function(disProgObj, range = 1:156, times = 1){ disProgObj$observed <- c(rep(disProgObj$observed[range], times), disProgObj$observed) disProgObj$state <- c(rep(disProgObj$state[range], times), disProgObj$state) return(disProgObj) } #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { data(list=name) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one one.survstat.surv <- function(outbrk) { algo.compare(algo.call(outbrk,control=control)) } @ <>= algo.summary(lapply(outbrks,one.survstat.surv)) @ <>= if (compute) { res.survstat <- algo.summary(lapply(outbrks,one.survstat.surv)) } print(res.survstat, digits=3) @ In both this study and the earlier simulation study the Bayesian approach seems to do quite well. However, the extent of the comparisons do not make allowance for any more supported statements. Consult the work of~\citet{riebler2004} for a more thorough comparison using simulation studies. <>= if (compute) { # save computed results save(list=c("sts.cdc","sts.farrington","acall","res.survstat", "ten.surv"), file=CACHEFILE) tools::resaveRdaFiles(CACHEFILE) } @ \section{Discussion and Future Work} Many extensions and additions are imaginable to improve the package. For now, the package is intended as an academic tool providing a test-bench for integrating new surveillance algorithms. Because all algorithms are implemented in R, performance has not been an issue. Especially the current implementation of the Farrington Procedure is rather slow and would benefit from an optimization possible with fragments written in C. One important improvement would be to provide more involved mechanisms for the simulation of epidemics. In particular it would be interesting to include multi-day outbreaks originating from single-source exposure, but with delay due to varying incubation time~\citep{hutwagner2005} or SEIR-like epidemics~\citep{andersson2000}. However, defining what is meant by a correct outbreak identification, especially in the case of overlapping outbreaks, creates new challenges which have to be met. \section{Acknowledgements} We are grateful to K.\ Stark and D.\ Altmann, RKI, Germany, for discussions and information on the surveillance methods used by the RKI. Our thanks to C.\ Lang, University of Munich, for his work on the R--implementation and M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial work on gathering the outbreak data from SurvStat@RKI. The research was conducted with financial support from the Collaborative Research Centre SFB 386 funded by the German research foundation (DFG). \bibliography{references} \end{document} surveillance/vignettes/surveillance-cache.RData0000644000176200001440000002227514176017575021455 0ustar liggesusers‹í] ììn»@0ê±¢4¦SËãÍnÌö¹oÖ¿ŸÓËø=Ø·Õ^‘>¬] q±"Öôqt9†–fJ2¿ýPžIª÷_E¾Vh:­Ùéôñæ'—®ÉóûøÃyéüôùõ­í•úT´¯©çÑIª±‹*l¶f§ÓvmkÚïìóÑþ¢ëÏö»}t~úxº½lÍ•NÏÖìòi›­¹ú‘]O.Í>/W½¹úIŒ.¿¬¤¾W}-•ýT)”§ñæRé2¥—)r )“§â婸†•DzT˜Î߀Ê+C¥Ñ6²yÔ5Ïcˆ%<*/3]š*CŽ:CF^Y*,Í(ƒ`´EQgº-t˜n§"£Þ²Œ:Ë1´4£^t{h-ÅH“"DÛB0âévŒ0»­ÌúÓé2”ðXõ§Ï/OÕY‘y*_CF˜ÎÓ²›QÂc”Ë<'³n²Äíbö »}ÌqÄÌǬ?}\©ýQ9~˜u§ë/Ëh§eÓ}J×î7Ú7£LÿÊ2Ú*ÃJ—%DÛÆì?‚‘Ý&¦oèºJ1|M'yJ+²Úà 1ÛNÇ1Ç{̰¯‚àw<ŽcèóѾ¥Ó™ç§ý/èwi\#F{ét™Ì²i_Ñu¤ûƒË÷ÌöùØ×Oi}T©º”ÖC(÷?ATÎ ² iLå£ë"OTÎ7 (݈¨ìW¦oeç­j\°ëÆ?̾ 5ícú|Ìë‡=È0Ê£ûB¨ìW:®!#ž9/0£ûˆî/úQ9®Ù¾§Â¥÷fe¿#ÿ\ÿGŒú <«ö‡(°?00ê/ÄÝgàë÷çû»®À~çUöLB½ó"Jßó>¯ÒfVžþŪ vaék>÷­v®h~ð±¥`…K™QyQ)6t`d<P&JÐÊ#å…ÅGÆ ‹Œ 3Å'„&DR¯Sý3¸_(eÈ„E&Ða^g:0˜ÄÑÙ¢â"‡0JK`×'<&4ž®Ù ":¾kÜ ¾å~,£»ä(G’¹¤˜‘Ò†”¶¤˜“bAŠ%)¤ßxÖ¤ØbKJ;RÚ“bGJRìIq ¥#)Ž¥î,uaY# ž)Τä¹’âFŠ;)BRÇ3»Z!n@´±­ÀV`nÂN¡OXÿò1#ýÊ!G¸ÐؾÃ4Œ §Ç^hxB.öt8"”ºeCK¤X™Êq7®ÅÐÁƒ#ã ¨¢^Ôp ›7(¦¼<™ï¬†4ˆ7̷좣߄ÿtÒ¶¶g~üËñ÷À¿°?Ç.q0µ5eÙLcÈfâÄ1‰læ·ºººL óWCÆ“i­®æbŠézŠch%õWº¤Œ«8¿W·ÿÿ)#[ÃþÂL-fj ÌÔ2ý‹™ZÌÔfj1S[Ï€ßäaÔgàñX5°?DýQ™Ú_ìïºÂ¿…©­ £~9û#ƒ…ùØ%ËÁÕác-0[Ôô÷´¦éÿuàßÓŸ øØêòƒâxX.Íõ%&×—–⾨äÒì/`ÿ)¯ÈÅ÷ýS^¶¶¾LæúbVR>œË¿ÿ”¯«þ©.?^[_,S~Æ|,æc ÌÇ2ý‹ùXÌÇæc1[Ï€ß×aÔgàñX5°?DýQùØ_ìïºæc1KüÇøX`XP®°i>– ªàc­æKÌÇÖxSã_ƒ_ý;úßé øX*'ȋђæ£V“€¥ù”nCi+J[SÚ‚Ò–¦kIiJ³òsh>Ëæª­ÙåÑùéóêSZ]B­,&¾¦šíw:žö?]o#1šö/Ý>úxÍN§3P·äÐl¿³m®ãØýöÙõfkqýCùó±˜%0Ëô/æc1K˜Å|l=~_‡QŸÇcÕÀþöFýæc °¿ë ˜­U>¶ùØzÏDzG,Ç÷±å£uÃâR,au}£°Ð‘‘ñÕÝÁ¸AõZÑü£këëvÆÿ_†ðÏìφt­8ú•‹dkšîGç±é86-ÇE'²i½êjv¹âè@q´Ÿ8š–KW×ßâúíwº¾t;¸ü*©$¥M«{>qýÎ>›öÕgiq4l û Óµ˜®%0]Ëô/¦k1]K˜®Åtm=~‡QŸÇcÕÀþöFý¦k °¿ë ˜®Åt-ñ£k%ÜÎXBº¶cºöïw;þ5À?·u…Ÿ@×rѶlŒMŸ±¿ÒÔgiš†ã¢ÿÄ}EË¥ÅÑ„’Ò´\_iJøuæO×ôù¸èrqôjuéÓÚꮯ «KŸÿS]BÿbºÓµ¦k™þÅt-¦k Óµ˜®­gÀÏõxÔ2C+ø)X~RZ{ôÎ(°´ZÖ=pŠ9Xx3µ ÆlâÕ »Þ¾0ŽÇ¬ =Ç\1 ¬4VD š ö“ÎôSÖ˜uÌí´œÖ™É5/ §´†¯öˆX½Ñ{F8…¦,z\üýyyb ¸N{6­øÁ pîýiã`ûëàœ- —OÓ7í×·#y„ánprÔ?Û­S88J-^0ê18Yó&'ƒ“ål¢Ÿ8iµß»EÞ \#žH]èâž‘în!² @¸©ï†UQà.¿ò|G_ÁïN,4’Oc÷w“÷ÓƒO]1îJvïFo;Î[¾Ïè¤à BÛ… ;~ÓWEÃæ—}3ÁÅÈYüÀ~¼ý©!FÓÀÚ t‹ìM}°|Ÿõ|xa6˜›ØCy2´=ßyâ±Ûz`úúŠÙ"‡`µñéú„÷Ðz·ùIŽÀè#ký*ŒGZpsà0Š-žÈ;2 ÚNTŽ˜ã†š1^‘`x„ï<¹E:´Ø½u{Ì¢Ð"㦦:`ðøðÇbð½Îy¬6‡Ÿºt58Ìê~8 ] :9Þ:à¼ç;¸4L/l1ý58¥,ìÕåC!¸¨ü/Þï” ¸–øwÿóð+ƧíîÑ÷^;"æ 1׳­¯o·ìÏúfGÂØ¹ý_æ‚ðeîòÀfdìÈq%\x)šíöŒ—¥îôÀ­Oqûü ~à4Óg—£à,8•DNH³“§&wÎÜÞù?pF³MLqgžñTÇ Áõ™ÆzÏ-Ás€ªœ¯„oGÊDö¡cjöº@pºqR'%:Ëø·^)s„w–¬šë/¡óÛKÏnN×f+\WÇË0Å<½½=\²›æø¶ .R±ù~w½|3ó O‚åEÛ¯Þsãçá«dÁÌwú󫞃€Ǧ—f)ëæ€ññÚï­“¾Ÿ³»æ­‰w2‹ÇcºÓµ¦k™þÅt-¦k Óµ˜®­gÀÏoõx[JwdÕ¨ó;±4]ž=«,͵?¬+^Ÿ•Ÿ­¹> cXÇþàŒ«?èüôŸïì@ˆ¶‹ÊXá JKú]KV~ú<ôŸ mÏÒ–”¶bå·¦4Ý_ö,›®_;–¦ÇݯV,mÎÒìvÑõ×§4»ßØýò>йfek¼‚^‰Ñ·oÜ/\ñoÙnüÿð m]Aü‚ˆšžÔ®_ß´Í4ø”¼¾€ÆÆ ¯NÊÅ‚¶ÆÍ„5Ö¹` ®¤ãq:Zª:„.Öt£F—#—YŽ„VE›¼PËL0²Mã½ F‚½†n¯–‚QÑþ.©…k¡uŸáí?ŸèÆÂmñ|Áèû‰­«ÔÀø¼ÝLù;ÀycU&1çߤ|˜UjÛÈD,ãgg—½z&‚Σ.xœ.Óò€ñó¢7à}Lv}$tç+i‹› æ3ÀDõþQ¹oÀdÚ„¿þÐ'Ï/ô>»­ÀŒÆ¯=)g“o6¯•U¡2+E¥2ÅØJìz§2rè¼ñ ZQØ1AoÀô°³šéð®É¨ðû·©ÁHÔ$Å£Â¯ß 3–)¢Âˇ\wÜÖ!ãߺu…òãE¾Œþ–a¾%]·œ·De›<*p¾{Ý ”~ëÄŠ4yt-dV|Ï'—ÑÕµ1“ Pá Óâ˜n+ЫÂåsSÒ·¢)Ë,°»´¥O±J Z‰òƾœ—²Ù =ÎWèFŒˆAù“Ž]œß¡ÜoZ6*'f¢ü;{ÿzµd*Ø<©£A¢<Ê$¿®‘fotÝøú–£bÑi畚[о]QÖY¦ÇÐeséûú7Ï£‡9sì¿ÏñF³œ³FG5PG9±kìWÎDOl4.žÉAg#ìãvŒC•VìÈÈMByÜ·ôœò"´õœÞ6D7G¬üÔ£õjôtª“çgn@›KÜt­ï÷EÏS6DJk£Ü^Þ>™ ŠPgjºG2Ê]9ÅóÚ«è®m"’>ûm_>¹Í—uèÞ9“É[z– =êóôAèñ©¯Š¾]. Â¢kF΃ÜIÿ›Ÿ¶hUêÿìeßg Â'Á·. =Í-i<¥k*Ú1ûÑ~x J×4ýð2©1:°ké~›˜tŒßÿcCc}”q'¯ÈæK ºé˜Ü5s™'ºé¤Ýïƒç7´mÚۈߡ“VRwüÛ£û®}ë®ì‡®ÆŒÙ7©‹-zÙañâý_¬Ñ¾¹öÉ#†EªoÞžÕÙ= e©§¥FJi¡³Kúo_ØZ€ž ^Ÿ(D/>6¼`§{¥ëêÍ»=]{võعÛPú­Ìœ5ÉÐcíݯΠA'ݾ|IòÝ…*$N×-œŒrw¦]Vh‹òžO 5WÝÊ·œ³Àaº¯”u^nÏHôj€âÔ„ä>èth‰w\‰z©5×Àühš×Ú·ðÅø(ÿàÇß­–¬C/ûeÝXdŒ²œÓúÓ]O½6{Û¬‹è–Ô¥µæ-³Ðú™ªy-&œB·×ÿÁçØîÙɦYÞA&ÅßyäQ‚î·‰0_S‚²lïšžž®~f”™øº®ºøëŸNùèîë‡z=ûÎFyQ“¾ÄÝGŸúÜ–¹¸}•÷-x1ä8»Îú<Ø· xžÖÄ%EEyu²ã’AÁCoyɼ٠´>ÌÇþ•=¨œî¾¨½áDP=*35c¡2¨«^¹ôûdoÐ8¶ëÂî™KAóË‹«\ÐZX¤p'Ð~{ÜzÀú ÐjrkåŽI{A{EŠI‡æ óŠW ì¿šÍI]ìQPn;væúg·Ün@33íÊÏ—ë’c ÝäéöK[SAk…Þµnß Ø÷é¸^á ~eì! µÃ Æ¿i­š*å[Ë™Êç@“¯eR•‹AÑóéb¯ y •b/È:Òogf¿ìf ¼¸!™)º½7èá.Ía=Ð×ÛûÛmT@ŸÓ^…É:ø¢ÏíOt]¥£Š_õŒàÒ½Ýù:?ÂǽÙ?ªcG?-ôF;8ÌjWT¨™4jFÓ8T¸üïIßPAìͽuPÑ ÷-íTޢיǾ¼n‚^Ÿ½²×ukOôÒQfÓIßMèá>ìÑ- Q¿Íª÷WÐëôM*AÅŽÙ7;”d¡Ï¹¥ìžl¯¦a¹ê á¨}îÌö0(~ª×ºƒÁŠ÷í— Ú†*ª_,º*{ûN–´ÔþgÔw{P"o^’° Ô¦fm:i–MÞn¹tHÐjœ¦s´¥–›Î‰ÚÕå3_‚Vó´ÍÓ_mí ë "†‚á7@W_ûóÙ ëà×qÅhÖø@˜`ÉÐy¢z-±‡.¼84L7*t¼&ÞÜÒ"´ã b†ÛƒÖ¥›ÊéŸJ éްKúôµ #Lo´eù«ëÂ7/…FG:mRõµù½Éú­Ö©Â¯j¼‰Ö ¥×d®îN# Ö¸|Øý:f:yÿ+úr±áx m„¾¶ñ™Û }&Š„?­Dïêž<·}:*n=îmÖž¨XØrÇÓwèM¡ÛŒ˜N¨(0ðšÐ½+‰*Eü¸^¯Éß/£¥7F’‹Ý·_}Ó5¬t=_|ÅÊÚÁ1ƒªºÙ“Mˆ‹¬Xô× &z`t‚5ýC8xÐðȸòÄñTŒùƒë64–cÙïKyËÃRƒ#ªh˜„ E*Xí™DÎ/O—7 ºì ™›°c,Db¨­~ø£DæUÄY°âDŽYký77%T+Ó(.2¾MiƒJïá©[¨XªÜʵ?e»SúwJƒh>×ñåÚ‡J÷?Z®{PñAT¾JGSùºSéݨü«7Sz"¥ý)Ý›Òåk\!meÇPzI¹Ž¢Ê ×/סÔù"©ø£¢õ¡óEæ–itÚçVLÃò§¦©a‡}¾èƘQú†ŸE™RA(z»ÊÙð[öóÐÁŠÝ9ªç+ò#S[Íÿ€ ]† Qvš ežÇYnÚ‚ 2IËÅ¢‚KÃwå÷@¥*è;z•úÙïM¸*ÈK;TØk *4i· 9ïz›Z¬zl3z2*Š:« G7NºqyÊw[våDÊ;x6^õútOn‘Ê&ûßÑ“1CÇé¢ü]뜜վCÓ½·î½ -ç‘ÿ*leÊæ•Û¨¤T Ü:¥±­@­,Ù£Š©„âEÆŽ|DôÀÒ˳ôJP£ò)ÿ†«€YK)ÿ®tÈ­"äߥ"ŽÉÄGVÌY2ñƒ#Ã+f¥èxz”J=“ŠxªA|B|›²]ðNnÕ‡;¹Ù|JÚ?N˜Öß®.Ì^¶E ùÑw{ƒQœI,SÛ¥ßnžpŸ6ó ssß»A» ZQ™¾Bè0o‰nV¾#Ø5zkø ¼®øwÙ7:'Ý­;¤ÁsüÆÝÁ³ïOÒþ%^ omg·€&à5ý–Œå8!Ów˜gô襤Q¯€ðó5»`ç|£6%:ærµ]ŸÇ`sXÿ\VWËø?ZÛ‚yæ5ïkqd¿x+å¯sƒ-Ÿzð AÐåQãkËÏÿ‹qóSäs$@X‡~Ï&âÅ–x±%[2ý‹[âÅ–[âÅ–õ øù £>Ǫý! ì Œú ü¾ø×û»®€[ÖúNnx±e=_lÉÁŒÅ–Uoã6¹tüª&$ÞÆM:>!žcÿ6ѵ%ôZŒŠµ%«M$ù‹[xã6‘òðÆmUk¼q…z¼q›È²¥ÒeÌEÕu»­;£vïnë u°­›ÖÎ y/åGÐ,hüqK][höÜöÌÞÜThþè›™Ô—40êŸÚ[#i?ï“}Ó~ÃIà^'šÜ]ü䕽?œþº?ÞœÆ_^ÑÓÚßø96†;–5Ó®-ö|]6µ³{øOç¾þÚ·s¥â¥¡Í‚„ ú€Ù¬üÑF†–Ú£T‹d@ð_8±÷B0sÛ©sÌiJ™îÜÚ ÌŒß•h\€63(žváùï‹vg\mþ·hõÁYs íäµv-ÒÁtä…#» ýA ¼Üøóœ—ÐzÊèŽMÇC -=!/¡ù‹Íׂ̜ΔÉüS«ø ã¡r*ûÖiÐz<^÷r4¿¾^704O=þ´ì4÷ÞÈ’êÂwË×½µG§¼õ‹µ°–!&\•<)¾Ù‘• ªhqgA˜¨l盦Øjö›îhª+§ï>°ŒÓÿ*ëít:ßkªÑÎ=äR¥Ac~qOõC£@ÿ]¼UÆÂƒÐR=L½ƒâB°xf÷ýÄ1ØÝ#”&ú†C»ãW/ûY‰Ý_€yâ"´Ý6Ì›Ïÿ|¾Úš<¸¨èf“úµ\ö0ø'Ã?\?ñÌ2_Ë夭ADÞ±.y›A×zF‹Ð¦` ü y›À¬¹b†É̾жEÀL“é; ­â¾ ›@›«c"Û¥€YÛ†³>4˜m’…kûä*ƒ•K”ó̆2ж½cxßâ80OÑn¹¥u,X„*{=Ø>Ì÷}s¢0Ì_f8œp™Oô×å3Át©ßÒ’y>`„ÝÞ}Ú zë=Nßmè :»>*ŒY³šuéX4Å´¯§߈» Zt7¢æZN9ªfÛAsƒ$«N ÙÛËŸ‚úô3O÷5úR“k oëöïÞÖ­®Wx¥^iTY¼Ò¯4"¼Ò¯4ªg¨¯÷:¥Àã±j`ˆû£þ¿+û5Àþ®+à•Fx[7â?¶Ò¨V¶u«\}ôó·uû»?[)v3·òUOx7¼‹ÞÅ ïâ†wqû¸á]ÜDwqû›¿Ä\·o«H’OˆŒ-Û (ßÐJºª7è{’ÚñÒŒ°G~Žü\å3áŒp#Á‡päçÈÁq®š„Ùm‘èÉ©¦6AˆÉ_¨ÐqpÚ …J»—ñ»ãszqæ/ØßíE¢Þ~îãYOrâê›RVÞÑ û²{æñœõ_-šþÃñ“Yébüñ³mzéõé·!\i<Þ€ŽµÝO›¹¸Â2ä‘g„¥9²ñ!DÕ33Ü‹å÷áˆ'~R¸Nf.±ö3kæaÛ¯J穎CΙ‹eD•3=±g¶½»ÌApÍ\l»|Sø•\éD%êØÆ3Wg.ÙZ ó8â Ž0W~)ް#Ì5s1ÃÌ™¨'#Ü›#܃– þÕ Ë°âëff:WñçþÙñ…K±©Â.ø½ •ébìvy¢6Aü½ËŠƒ »¬:·WØ–¥‡pÚù[’/oå·«°WVïü5µ¡W:ž¹jÕ ÿ’™‹ Ää/ì®ytý3$qùA‡B׺¤HžkÛ Ý®Œã<ߟº ž?ü¨ÏUßê¿1ÂãñÒ½’ç-=ZàÐéâ?=_MmÐù+“ñÌõÓî¹ä$ˆo@T}erÝñ8Â\OˆÒå3g® F¸'G8H‚p #܃ã¼\ïã¸â™õd?í–_IÎè 9£Çi?fÝÈK–—Ô>/ɮ¾3¤ìÎüÅ÷–fTa®-‹à´ÙùÅÚ¥–÷óÊò¼ó´[û®²~‰Agg×VÚñÅ“ãrÞVØÙ s\VpæÏÔ×ý†©ö…Œc7•¦ïªôW¶\Á ½ã•ùC ²¶Wsìe?$s¦?î©1þ¬U&Wù?Ì4µmó¹ÒñÌU㙋ë-8×}3O ŽåšÝ˜a®û)®ûæ±Ì'Á`ŽpŽü=9òsœ—«-’<W=s•ý-¤½·+ì'å©Â~ÁJ—ÿ5AC²ò »íJOë;¶Ò^ó~·]œv™ÙíÒÎã >Ï^þ®™w~Vy½Â>ß2µÂþ‹eÐ>a•ì]™¿Ìî\™Ÿe¯ìn¤¿Õ *ÓÇœ¾|Îj7WyD%~ÎÓ¢W:ž¹jÕ W=s½&hü[ìÌÅšIÄ•Wíü¬™žxnšé|e $œ ªŸ=³/û3zHz|Mm|ÏUGO‹’¼Wªî›{IÞsqÝß1ÃG}˜³×Ó×ý3Â3g.®'YG®6²ÃåWÒM÷—ÇúÒ%Ÿ•ÎÎÏN¯®Íâú~ààÙùÅØ¯Ù鬧Õ<»;{>îß\Ù¾¥EŒø¬WaŸK½¼óʼÊüÞ™q›…þ•éùzÚÁþ!ÜvY{UÚGš8Ï ©xG¢õ«m››1Á3W½YÏEÔàX®'AæLÑ#žk 3ÂÏ|Ö“#ž¨¥0ÛWurÏEbò‹[¿Å¶Å®ÿb­d}¥Wz@sÎtqë·Ø¶¸õ_°W¢*'ñß[ ¸ÒÙþ©mÏ\µ7s%ÿ¿<Ôxsurveillance/vignettes/monitoringCounts.bib0000644000176200001440000004147614004512307021025 0ustar liggesusers@Article{newport2011, author = {C Bayer and H Bernard and R Prager and W Rabsch and P Hiller and B Malorny and B Pfefferkorn and C Frank and A de Jong and I Friesema and {others}}, title = {An Outbreak of Salmonella Newport Associated with Mung Bean Sprouts in Germany and the Netherlands, October to November 2011}, journal = {Eurosurveillance}, year = {2014}, volume = {19}, number = {1}, doi = {10.2807/1560-7917.es2014.19.1.20665}, } @Article{becker_marschner93, author = {N. G. Becker and I. C. Marschner}, title = {A Method for Estimating the Age-Specific Relative Risk of {HIV} Infection from {AIDS} Incidence Data}, journal = {Biometrika}, year = {1993}, volume = {80}, number = {1}, doi = {10.1093/biomet/80.1.165}, } @ARTICLE{hoehle-heiden, author = {{H{\"o}hle}, Michael and an der Heiden, Matthias}, title = {{B}ayesian {N}owcasting during the {STEC} {O104:H4} {O}utbreak in {G}ermany, 2011}, journal = {Biometrics}, volume = {70}, number = {4}, issn = {1541-0420}, doi = {10.1111/biom.12194}, pages = {993--1002}, year = {2014}, } @Article{bernard_etal2014, author = {H. Bernard and D. Werber and M. H{\"o}hle}, title = {Estimating the Under-Reporting of Norovirus Illness in {G}ermany Utilizing Enhanced Awareness of Diarrhoea during a Large Outbreak of {S}higa Toxin-Producing {E. Coli O104:H4} in 2011}, journal = {BMC Infectious Diseases}, year = {2014}, volume = {14}, number = {1}, pages = {1--6}, doi = {10.1186/1471-2334-14-116}, } @Book{sp2, title = {Applied Spatial Data Analysis With \proglang{R}}, edition = {2nd}, publisher = {Springer-Verlag}, year = {2013}, author = {Roger S. Bivand and Edzer Pebesma and Virgilio Gomez-Rubio}, doi = {10.1007/978-1-4614-7618-4}, } @Article{brook_evans1972, author = {D. Brook and D. A. Evans}, title = {An Approach to the Probability Distribution of Cusum Run Length}, journal = {Biometrika}, year = {1972}, volume = {59}, pages = {539--549}, number = {3}, doi = {10.1093/biomet/59.3.539}, } @Article{buckeridge2007, author = {David L. Buckeridge}, title = {Outbreak Detection through Automated Surveillance: A Review of the Determinants of Detection}, journal = {Journal of Biomedical Informatics}, year = {2007}, volume = {40}, pages = {370--379}, number = {4}, } @Article{chen1978, author = {Rina Chen}, title = {A Surveillance System for Congenital Malformations}, journal = {Journal of the American Statistical Association}, year = {1978}, volume = {73}, pages = {323-327}, number = {362}, doi = {10.2307/2286660}, } @Manual{epiestim, title = {\pkg{EpiEstim}: A Package to Estimate Time Varying Reproduction Numbers from Epidemic Curves}, author = {Anne Cori}, year = {2013}, note = {\proglang{R} package version 1.1-2}, url = {https://CRAN.R-project.org/package=EpiEstim}, } @Manual{datatable2013, title = {\pkg{data.table}: Extension of \pkg{data.frame} for Fast Indexing, Fast Ordered Joins, Fast Assignment, Fast Grouping and List Columns}, author = {M Dowle and A Srinivasan and T Short and S Lianoglou}, year = {2015}, note = {\proglang{R} package version 1.9.6}, url = {https://CRAN.R-project.org/package=data.table}, } @Article{sim:sim3197, author = {Ronald D. Fricker and Benjamin L. Hegler and David A. Dunfee}, title = {Comparing Syndromic Surveillance Detection Methods: EARS' versus a CUSUM-Based Methodology}, journal = {Statistics in Medicine}, year = {2008}, volume = {27}, pages = {3407--3429}, number = {17}, doi = {10.1002/sim.3197}, } @Book{frisen2008financial, title = {Financial Surveillance}, publisher = {John Wiley \& Sons}, year = {2008}, author = {Marianne Fris{\'e}n}, } @Article{fri2009, author = {Marianne Fris{\'e}n and Eva Andersson}, title = {Semiparametric Surveillance of Monotonic Changes}, journal = {Sequential Analysis}, year = {2009}, volume = {28}, pages = {434-454}, number = {4}, doi = {10.1080/07474940903238029}, } @Article{frisen_etal2009, author = {M. Fris{\'e}n and E. Andersson and L. Schi{\"o}ler}, title = {Robust Outbreak Surveillance of Epidemics in Sweden}, journal = {Statistics in Medicine}, year = {2009}, volume = {28}, pages = {476-493}, doi = {10.1002/sim.3483}, } @InCollection{hoehle2010, author = {Michael H\"{o}hle}, title = {Online Change-Point Detection in Categorical Time Series}, booktitle = {Statistical Modelling and Regression Structures}, publisher = {Physica-Verlag HD}, year = {2010}, editor = {Thomas Kneib and Gerhard Tutz}, pages = {377-397}, } @Article{held_etal2006, author = {L. Held and M. Hofmann and M. H{\"o}hle and V. Schmid}, title = {A Two Component Model for Counts of Infectious Diseases}, journal = {Biostatistics}, year = {2006}, volume = {7}, pages = {422--437}, doi = {10.1093/biostatistics/kxj016}, } @Article{hulth_etal2010, author = {A. Hulth and N. Andrews and S. Ethelberg and J. Dreesman and D. Faensen and W. {van Pelt} and J. Schnitzler}, title = {Practical Usage of Computer-Supported Outbreak Detection in Five European Countries}, journal = {Eurosurveillance}, year = {2010}, volume = {15}, number = {36}, } @Article{outbreaker, author = {Thibaut Jombart and Anne Cori and Xavier Didelot and Simon Cauchemez and Christophe Fraser and Neil Ferguson}, title = {Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data}, journal = {PLoS Computional Biology}, year = {2014}, volume = {10}, pages = {e1003457}, number = {1}, doi = {10.1371/journal.pcbi.1003457}, } @Manual{spc, title = {\pkg{spc}: Statistical Process Control -- Collection of Some Useful Functions}, author = {Sven Knoth}, year = {2016}, note = {\proglang{R} package version 0.5.3}, url = {https://CRAN.R-project.org/package=spc}, } @Manual{satscan, title = {\pkg{SaTScan}: Software for the Spatial, Temporal and Space-Time Scan Statistics}, author = {Martin Kulldorff}, address = {Boston}, year = {1997}, url = {https://www.satscan.org/}, } @Article{lawless1987, author = {Jerald F Lawless}, title = {Negative Binomial and Mixed Poisson Regression}, journal = {Canadian Journal of Statistics}, year = {1987}, volume = {15}, pages = {209--225}, number = {3}, publisher = {John Wiley \& Sons}, doi = {10.2307/3314912}, } @InProceedings{sweave, author = {Friedrich Leisch}, title = {\texttt{Sweave} and Beyond: Computations on Text Documents}, booktitle = {Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria}, year = {2003}, editor = {Kurt Hornik and Friedrich Leisch and Achim Zeileis}, note = {{ISSN 1609-395X}}, url = {https://www.R-project.org/conferences/DSC-2003/Proceedings/}, } @Manual{tscount, title = {\pkg{tscount}: Analysis of Count Time Series}, author = {Tobias Liboschik and Roland Fried and Konstantinos Fokianos and Philipp Probst}, year = {2015}, note = {\proglang{R} package version 1.0.0}, url = {https://CRAN.R-project.org/package=tscount}, } @article{liboschik_tscount_2015, title = {{tscount}: An R Package for Analysis of Count Time Series Following Generalized Linear Models}, volume = {06/15}, doi = {10.17877/DE290R-7239}, language = {en}, journal = {TU Dortmund, SFB 823 Discussion Paper}, author = {Liboschik, Tobias and Fokianos, Konstantinos and Fried, Roland}, year = {2015} } @Article{lucas1982fast, author = {James M Lucas and Ronald B Crosier}, title = {Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM a Head Start}, journal = {Technometrics}, year = {1982}, volume = {24}, pages = {199--205}, number = {3}, doi = {10.2307/1268679}, } @Article{radio, author = {Peng Luo and Timothy A DeVol and Julia L Sharp}, title = {CUSUM Analyses of Time-Interval Data for Online Radiation Monitoring}, journal = {Health Physics}, year = {2012}, volume = {102}, pages = {637--645}, number = {6}, publisher = {LWW}, doi = {10.1097/hp.0b013e3182430106}, } @Article{manitz2013, author = {Juliane Manitz and Michael H\"{o}hle}, title = {Bayesian Outbreak Detection Algorithm for Monitoring Reported Cases of Campylobacteriosis in Germany}, journal = {Biometrical Journal}, year = {2013}, volume = {55}, pages = {509--526}, number = {4}, issn = {1521-4036}, doi = {10.1002/bimj.201200141}, } @Manual{ssas, title = {Microsoft SQL Server Analysis Services, Version~2012}, author = {{Microsoft Corp.}}, year = {2012}, url = {https://www.microsoft.com/}, } @Manual{ssrs, title = {Microsoft SQL Server Reporting Services, Version~2012}, author = {{Microsoft Corp.}}, year = {2012}, url = {https://www.microsoft.com/}, } @Article{noufaily2012, author = {A. Noufaily and D. G. Enki and P. Farrington and P. Garthwaite and N. Andrews and A. Charlett}, title = {An Improved Algorithm for Outbreak Detection in Multiple Surveillance Systems}, journal = {Statistics in Medicine}, year = {2012}, volume = {32}, pages = {1206--1222}, number = {7}, doi = {10.1002/sim.5595}, } @Article{sp1, author = {Edzer J. Pebesma and Roger S. Bivand}, title = {Classes and Methods for Spatial Data in \proglang{R}}, journal = {\proglang{R} News}, year = {2005}, volume = {5}, pages = {9--13}, number = {2}, url = {https://CRAN.R-project.org/doc/Rnews/}, } @Article{pierce_schafer86, author = {D. A. Pierce and D. W. Schafer}, title = {Residuals in Generalized Linear Models}, journal = {Journal of the American Statistical Association}, year = {1986}, volume = {81}, pages = {977-986}, number = {396}, doi = {10.2307/2289071}, } @Article{reynolds2000, author = {{Reynolds, Jr.}, Marion R. and Zachary G. Stoumbos}, title = {A General Approach to Modeling CUSUM Charts for a Proportion}, journal = {IIE Transactions}, year = {2000}, volume = {32}, pages = {515-535}, number = {6}, language = {English}, publisher = {Kluwer Academic Publishers}, doi = {10.1080/07408170008963928}, } @Article{rigby2005, author = {R. A. Rigby and D. M. Stasinopoulos}, title = {Generalized Additive Models for Location, Scale and Shape}, journal = {Journal of the Royal Statistical Society C}, year = {2005}, volume = {54}, pages = {507--554}, number = {3}, doi = {10.1111/j.1467-9876.2005.00510.x}, } @Manual{rodbc2013, title = {\pkg{RODBC}: ODBC Database Access}, author = {Brian Ripley and Michael Lapsley}, year = {2016}, note = {\proglang{R} package version 1.3-13}, url = {https://CRAN.R-project.org/package=RODBC}, } @Article{rogerson_yamada2004, author = {P. A. Rogerson and I. Yamada}, title = {Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts}, journal = {Morbidity and Mortality Weekly Report}, year = {2004}, volume = {53}, pages = {79--85}, doi = {10.1037/e307182005-016}, } @Article{rossi_etal99, author = {G. Rossi and L. Lampugnani and M. Marchi}, title = {An Approximate {CUSUM} Procedure for Surveillance of Health Events}, journal = {Statistics in Medicine}, year = {1999}, volume = {18}, pages = {2111--2122}, doi = {10.1002/(sici)1097-0258(19990830)18:16<2111::aid-sim171>3.0.co;2-q}, } @Article{inla, title = {Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations}, author = {H. Rue and S. Martino and N. Chopin}, journal = {Journal of the Royal Statistical Society B}, year = {2009}, volume = {71}, number = {2}, pages = {319--392}, doi = {10.1111/j.1467-9868.2008.00700.x} } @Manual{xts, title = {\pkg{xts}: eXtensible Time Series}, author = {Jeffrey A. Ryan and Joshua M. Ulrich}, year = {2014}, note = {\proglang{R} package version 0.9-7}, url = {https://CRAN.R-project.org/package=xts}, } @Article{dirk, author = {M. Salmon and D. Schumacher and H. Burmann and C. Frank and H. Claus and M. H{\"o}hle}, title = {A {S}ystem for {A}utomated {O}utbreak {D}etection of {C}ommunicable {D}iseases in {G}ermany}, year = {2016}, volume = {21}, number = {13}, doi = {10.2807/1560-7917.ES.2016.21.13.30180}, } @Article{maelle, author = {M. Salmon and D. Schumacher and K. Stark and M. H{\"o}hle}, title = {{B}ayesian Outbreak Detection in the Presence of Reporting Delays}, journal = {Biometrical Journal}, year = {2015}, volume = {57}, number = {6}, pages = {1051--1067}, doi = {10.1002/bimj.201400159}, } @Article{accident, author = {Anna Schuh and Jaime A. Camelio and William H. Woodall}, title = {Control Charts for Accident Frequency: a Motivation for Real-Time Occupational Safety Monitoring}, journal = {International Journal of Injury Control and Safety Promotion}, year = {2014}, volume = {21}, number = {2}, pages = {154--162}, doi = {10.1080/17457300.2013.792285}, } @Article{qcc, author = {Luca Scrucca}, title = {\pkg{qcc}: An \proglang{R} Package for Quality Control Charting and Statistical Process Control}, journal = {\proglang{R} News}, year = {2004}, volume = {4}, number = {1}, pages = {11--17}, url = {https://CRAN.R-project.org/doc/Rnews/}, } @Article{shmueli2010, author = {Galit Shmueli and Howard Burkom}, title = {Statistical Challenges Facing Early Outbreak Detection in Biosurveillance}, journal = {Technometrics}, year = {2010}, volume = {52}, pages = {39-51}, number = {1}, doi = {10.1198/tech.2010.06134}, } @Article{sonesson2003, author = {Christian Sonesson and David Bock}, title = {A Review and Discussion of Prospective Statistical Surveillance in Public Health}, journal = {Journal of the Royal Statistical Society A}, year = {2003}, volume = {166}, pages = {5--21}, number = {1}, doi = {10.1111/1467-985x.00256}, } @Article{stasjss, author = {D. Mikis Stasinopoulos and Robert A. Rigby}, title = {Generalized Additive Models for Location Scale and Shape (GAMLSS) in \proglang{R}}, journal = {Journal of Statistical Software}, year = {2007}, volume = {23}, pages = {1--46}, number = {7}, doi = {10.18637/jss.v023.i07}, } @Article{steiner1999, author = {S. H. Steiner and R. J. Cook and V. T. Farewell}, title = {Monitoring Paired Binary Surgical Outcomes Using Cumulative Sum Charts}, journal = {Statistics in Medicine}, year = {1999}, volume = {18}, pages = {69--86}, doi = {10.1002/(sici)1097-0258(19990115)18:1<69::aid-sim966>3.0.co;2-l}, } @Manual{outbreaktools, title = {\pkg{OutbreakTools}: Basic Tools for the Analysis of Disease Outbreaks}, author = {{The Hackout Team}}, year = {2016}, note = {\proglang{R} package version 0.1-14}, url = {https://CRAN.R-project.org/package=OutbreakTools}, } @Article{unkel2012, author = {Steffen Unkel and C. Paddy Farrington and Paul H. Garthwaite and Chris Robertson and Nick Andrews}, title = {Statistical Methods for the Prospective Detection of Infectious Disease Outbreaks: A Review}, journal = {Journal of the Royal Statistical Society A}, year = {2012}, volume = {175}, pages = {49--82}, number = {1}, doi = {10.1111/j.1467-985x.2011.00714.x}, } @Manual{testthat2013, title = {\pkg{testthat}: Unit Testing for \proglang{R}}, author = {Hadley Wickham}, year = {2016}, note = {\proglang{R} package version 1.0.2}, url = {https://CRAN.R-project.org/package=testthat}, } @InCollection{knitr, booktitle = {Implementing Reproducible Computational Research}, editor = {Victoria Stodden and Friedrich Leisch and Roger D. Peng}, title = {\pkg{knitr}: A Comprehensive Tool for Reproducible Research in \proglang{R}}, author = {Yihui Xie}, publisher = {Chapman and Hall/CRC}, year = {2014}, } @Article{zoo, author = {Achim Zeileis and Gabor Grothendieck}, title = {\pkg{zoo}: S3 Infrastructure for Regular and Irregular Time Series}, journal = {Journal of Statistical Software}, year = {2005}, volume = {14}, pages = {1--27}, number = {6}, doi = {10.18637/jss.v014.i06}, } @Article{strucchange, author = {Achim Zeileis and Friedrich Leisch and Kurt Hornik and Christian Kleiber}, title = {\pkg{strucchange}: An \proglang{R} Package for Testing for Structural Change in Linear Regression Models}, journal = {Journal of Statistical Software}, year = {2002}, volume = {7}, pages = {1--38}, number = {2}, doi = {10.18637/jss.v007.i02}, } @Manual{mglm, title = {\pkg{MGLM}: Multivariate Response Generalized Linear Models}, author = {Yiwen Zhang and Hua Zhou}, year = {2016}, note = {\proglang{R} package version 0.0.7}, url = {https://CRAN.R-project.org/package=MGLM}, } surveillance/vignettes/hhh4.Rnw0000644000176200001440000010310014667617354016317 0ustar liggesusers%\VignetteIndexEntry{hhh4: An endemic-epidemic modelling framework for infectious disease counts} %\VignetteDepends{surveillance, Matrix} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{graphicx} \usepackage{color} \usepackage{natbib} \usepackage{lmodern} \usepackage{bm} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} \setcounter{secnumdepth}{1} \newcommand{\Po}{\operatorname{Po}} \newcommand{\NegBin}{\operatorname{NegBin}} \newcommand{\N}{\mathcal{N}} \newcommand{\pkg}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\surveillance}{\pkg{surveillance}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\hhh}{\texttt{hhh4}} \newcommand{\R}{\textsf{R}} \newcommand{\sts}{\texttt{sts}} \newcommand{\example}[1]{\subsubsection*{Example: #1}} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Michaela Paul and Sebastian Meyer}, pdftitle = {'hhh4': An endemic-epidemic modelling framework for infectious disease counts}, pdfsubject = {R package 'surveillance'} } \newcommand{\email}[1]{\href{mailto:#1}{\normalfont\texttt{#1}}} \title{\code{hhh4}: An endemic-epidemic modelling framework for infectious disease counts} \author{ Michaela Paul and Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de} (new affiliation)}\\ Epidemiology, Biostatistics and Prevention Institute\\ University of Zurich, Zurich, Switzerland } \date{8 February 2016} %%% Sweave \usepackage{Sweave} \SweaveOpts{prefix.string=plots/hhh4, keep.source=T, strip.white=true} \definecolor{Sinput}{rgb}{0,0,0.56} \DefineVerbatimEnvironment{Sinput}{Verbatim}{formatcom={\color{Sinput}},fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontshape=sl,fontsize=\footnotesize} %%% Initial R code <>= library("surveillance") options(width=75) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################### ## Do we need to compute or can we just fetch results? ###################################################### compute <- !file.exists("hhh4-cache.RData") message("Doing computations: ", compute) if(!compute) load("hhh4-cache.RData") @ \begin{document} \maketitle \begin{abstract} \noindent The \R\ package \surveillance\ provides tools for the visualization, modelling and monitoring of epidemic phenomena. This vignette is concerned with the \hhh\ modelling framework for univariate and multivariate time series of infectious disease counts proposed by \citet{held-etal-2005}, and further extended by \citet{paul-etal-2008}, \citet{paul-held-2011}, \citet{held.paul2012}, and \citet{meyer.held2013}. The implementation is illustrated using several built-in surveillance data sets. The special case of \emph{spatio-temporal} \hhh\ models is also covered in \citet[Section~5]{meyer.etal2014}, which is available as the extra \verb+vignette("hhh4_spacetime")+. \end{abstract} \section{Introduction}\label{sec:intro} To meet the threats of infectious diseases, many countries have established surveillance systems for the reporting of various infectious diseases. The systematic and standardized reporting at a national and regional level aims to recognize all outbreaks quickly, even when aberrant cases are dispersed in space. Traditionally, notification data, i.e.\ counts of cases confirmed according to a specific definition and reported daily, weekly or monthly on a regional or national level, are used for surveillance purposes. The \R-package \surveillance\ provides functionality for the retrospective modelling and prospective aberration detection in the resulting surveillance time series. Overviews of the outbreak detection functionality of \surveillance\ are given by \citet{hoehle-mazick-2010} and \citet{salmon.etal2014}. This document illustrates the functionality of the function \hhh\ for the modelling of univariate and multivariate time series of infectious disease counts. It is part of the \surveillance\ package as of version 1.3. The remainder of this vignette unfolds as follows: Section~\ref{sec:data} introduces the S4 class data structure used to store surveillance time series data within the package. Access and visualization methods are outlined by means of built-in data sets. In Section~\ref{sec:model}, the statistical modelling approach by \citet{held-etal-2005} and further model extensions are described. After the general function call and arguments are shown, the detailed usage of \hhh\ is demonstrated in Section~\ref{sec:hhh} using data introduced in Section~\ref{sec:data}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Surveillance data}\label{sec:data} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Denote by $\{y_{it}; i=1,\ldots,I,t=1,\ldots,T\}$ the multivariate time series of disease counts for a specific partition of gender, age and location. Here, $T$ denotes the length of the time series and $I$ denotes the number of units (e.g\ geographical regions or age groups) being monitored. Such data are represented using objects of the S4 class \sts\ (surveillance time series). \subsection[The sts data class]{The \sts\ data class} The \sts\ class contains the $T\times I$ matrix of counts $y_{it}$ in a slot \code{observed}. An integer slot \code{epoch} denotes the time index $1\leq t \leq T$ of each row in \code{observed}. The number of observations per year, e.g.\ 52 for weekly or 12 for monthly data, is denoted by \code{freq}. Furthermore, \code{start} denotes a vector of length two containing the start of the time series as \code{c(year, epoch)}. For spatially stratified time series, the slot \code{neighbourhood} denotes an $I \times I$ adjacency matrix with elements 1 if two regions are neighbors and 0 otherwise. For map visualizations, the slot \code{map} links the multivariate time series to geographical regions stored in a \code{"SpatialPolygons"} object (package \pkg{sp}). Additionally, the slot \code{populationFrac} contains a $T\times I$ matrix representing population fractions in unit $i$ at time $t$. The \sts\ data class is also described in \citet[Section~2.1]{hoehle-mazick-2010}, \citet[Section~1.1]{salmon.etal2014}, \citet[Section~5.2]{meyer.etal2014}, and on the associated help page \code{help("sts")}. \subsection{Some example data sets} The package \surveillance\ contains a number of time series in the \code{data} directory. Most data sets originate from the SurvStat@RKI database\footnote{\url{https://survstat.rki.de}}, maintained by the Robert Koch Institute (RKI) in Germany. Selected data sets will be analyzed in Section~\ref{sec:hhh} and are introduced in the following. Note that many of the built-in datasets are stored in the S3 class data structure \mbox{\code{disProg}} used in ancient versions of the \surveillance\ package (until 2006). They can be easily converted into the new S4 \sts\ data structure using the function \code{disProg2sts}. The resulting \sts\ object can be accessed similar as standard \code{matrix} objects and allows easy temporal and spatial aggregation as will be shown in the remainder of this section. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza and meningococcal disease, Germany, 2001--2006} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, the weekly number of influenza and meningococcal disease cases in Germany is considered. <>= # load data data("influMen") # convert to sts class and print basic information about the time series print(fluMen <- disProg2sts(influMen)) @ The univariate time series of meningococcal disease counts can be obtained with <>= meningo <- fluMen[, "meningococcus"] dim(meningo) @ The \code{plot} function provides ways to visualize the multivariate time series in time, space and space-time, as controlled by the \code{type} argument: \setkeys{Gin}{width=1\textwidth} <>= plot(fluMen, type = observed ~ time | unit, # type of plot (default) same.scale = FALSE, # unit-specific ylim? col = "grey") # color of bars @ See \code{help("stsplot")} for a detailed description of the plot routines. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza, Southern Germany, 2001--2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The spatio-temporal spread of influenza in the 140 Kreise (districts) of Bavaria and Baden-W\"urttemberg is analyzed using the weekly number of cases reported to the RKI~\citep{survstat-fluByBw} in the years 2001--2008. An \sts\ object containing the data is created as follows: <>= # read in observed number of cases flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt", package = "surveillance"), check.names = FALSE)) @ \begin{center} \setkeys{Gin}{width=.5\textwidth} <>= # read in 0/1 adjacency matrix (1 if regions share a common border) nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt", package = "surveillance"), check.names = FALSE)) library("Matrix") print(image(Matrix(nhood))) @ \end{center} <>= # read in population fractions popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt", package = "surveillance"), header = TRUE)$popFrac # create sts object flu <- sts(flu.counts, start = c(2001, 1), frequency = 52, population = popfracs, neighbourhood = nhood) @ These data are already included as \code{data("fluBYBW")} in \surveillance. In addition to the \sts\ object created above, \code{fluBYBW} contains a map of the administrative districts of Bavaria and Baden-W\"urttemberg. This works by specifying a \code{"SpatialPolygons"} representation of the districts as an extra argument \code{map} in the above \sts\ call. Such a \code{"SpatialPolygons"} object can be obtained from, e.g, an external shapefile using the \pkg{sf} functions \code{st\_read} followed by \code{as\_Spatial}. A map enables plots and animations of the cumulative number of cases by region. For instance, a disease incidence map of the year 2001 can be obtained as follows: \setkeys{Gin}{width=.5\textwidth} \begin{center} <>= data("fluBYBW") plot(fluBYBW[year(fluBYBW) == 2001, ], # select year 2001 type = observed ~ unit, # total counts by region population = fluBYBW@map$X31_12_01 / 100000, # per 100000 inhabitants colorkey = list(title = "Incidence [per 100'000 inhabitants]")) @ \end{center} <>= # consistency check local({ fluBYBW@map <- flu@map stopifnot(all.equal(fluBYBW, flu)) }) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Measles, Germany, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The following data set contains the weekly number of measles cases in the 16 German federal states, in the years 2005--2007. These data have been analyzed by \citet{herzog-etal-2010} after aggregation into bi-weekly periods. <>= data("measlesDE") measles2w <- aggregate(measlesDE, nfreq = 26) @ \setkeys{Gin}{width=.75\textwidth} \begin{center} <>= plot(measles2w, type = observed ~ time, # aggregate counts over all units main = "Bi-weekly number of measles cases in Germany") @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Model formulation}\label{sec:model} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Retrospective surveillance aims to identify outbreaks and (spatio-)temporal patterns through statistical modelling. Motivated by a branching process with immigration, \citet{held-etal-2005} suggest the following model for the analysis of univariate time series of infectious disease counts $\{y_{t}; t=1,\ldots,T\}$. The counts are assumed to be Poisson distributed with conditional mean \begin{align*} \mu_{t} = \lambda y_{t-1}+ \nu_{t}, \quad(\lambda,\nu_{t}>0) \end{align*} where $\lambda$ and $\nu_t$ are unknown quantities. The mean incidence is decomposed additively into two components: an epidemic or \emph{autoregressive} component $\lambda y_{t-1}$, and an \emph{endemic} component $\nu_t$. The former should be able to capture occasional outbreaks whereas the latter explains a baseline rate of cases with stable temporal pattern. \citet{held-etal-2005} suggest the following parametric model for the endemic component: \begin{align}\label{eq:nu_t} \log(\nu_t) =\alpha + \beta t + \left\{\sum_{s=1}^S \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)\right\}, \end{align} where $\alpha$ is an intercept, $\beta$ is a trend parameter, and the terms in curly brackets are used to model seasonal variation. Here, $\gamma_s$ and $\delta_s$ are unknown parameters, $S$ denotes the number of harmonics to include, and $\omega_s=2\pi s/$\code{freq} are Fourier frequencies (e.g.\ \code{freq = 52} for weekly data). For ease of interpretation, the seasonal terms in \eqref{eq:nu_t} can be written equivalently as \begin{align*} \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)= A_s \sin(\omega_s t +\varphi_s) \end{align*} with amplitude $A_s=\sqrt{\gamma_s^2+\delta_s^2}$ describing the magnitude, and phase difference $\tan(\varphi_s)=\delta_s/\gamma_s$ describing the onset of the sine wave. To account for overdispersion, the Poisson model may be replaced by a negative binomial model. Then, the conditional mean $\mu_t$ remains the same but the conditional variance increases to $\mu_t (1+\mu_t \psi)$ with additional unknown overdispersion parameter $\psi>0$. The model is extended to multivariate time series $\{y_{it}\}$ in \citet{held-etal-2005} and \citet{paul-etal-2008} by including an additional \emph{neighbor-driven} component, where past cases in other (neighboring) units also enter as explanatory covariates. The conditional mean $\mu_{it}$ is then given by \begin{align} \label{eq:mu_it} \mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{t}, \end{align} where the unknown parameter $\phi$ quantifies the influence of other units $j$ on unit $i$, $w_{ji}$ are weights reflecting between-unit transmission and $e_{it}$ corresponds to an offset (such as population fractions at time $t$ in region $i$). A simple choice for the weights is $w_{ji}=1$ if units $j$ and $i$ are adjacent and 0 otherwise. See \citet{paul-etal-2008} for a discussion of alternative weights, and \citet{meyer.held2013} for how to estimate these weights in the spatial setting using a parametric power-law formulation based on the order of adjacency. When analyzing a specific disease observed in, say, multiple regions or several pathogens (such as influenza and meningococcal disease), the assumption of equal incidence levels or disease transmission across units is questionable. To address such heterogeneity, the unknown quantities $\lambda$, $\phi$, and $\nu_t$ in \eqref{eq:mu_it} may also depend on unit $i$. This can be done via \begin{itemize} \item unit-specific fixed parameters, e.g.\ $\log(\lambda_i)=\alpha_i$ \citep{paul-etal-2008}; \item unit-specific random effects, e.g\ $\log(\lambda_i)=\alpha_0 +a_i$, $a_i \stackrel{\text{iid}}{\sim} \N(0,\sigma^2_\lambda)$ \citep{paul-held-2011}; \item linking parameters with known (possibly time-varying) explanatory variables, e.g.\ $\log(\lambda_i)=\alpha_0 +x_i\alpha_1$ with region-specific vaccination coverage $x_i$ \citep{herzog-etal-2010}. \end{itemize} In general, the parameters of all three model components may depend on both time and unit. A call to \hhh\ fits a Poisson or negative binomial model with conditional mean \begin{align*} \mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{it} \end{align*} to a (multivariate) time series of counts. Here, the three unknown quantities are modelled as log-linear predictors \begin{align} \log(\lambda_{it}) &= \alpha_0 + a_i +\bm{u}_{it}^\top \bm{\alpha} \tag{\code{ar}}\\ \log(\phi_{it}) &= \beta_0 + b_i +\bm{x}_{it}^\top \bm{\beta} \tag{\code{ne}}\\ \log(\nu_{it}) &= \gamma_0 + c_i +\bm{z}_{it}^\top \bm{\gamma}\tag{\code{end}} \end{align} where $\alpha_0,\beta_0,\gamma_0$ are intercepts, $\bm{\alpha},\bm{\beta},\bm{\gamma}$ are vectors of unknown parameters corresponding to covariate vectors $\bm{u}_{it},\bm{x}_{it},\bm{z}_{it}$, and $a_i,b_i,c_i$ are random effects. For instance, model~\eqref{eq:nu_t} with $S=1$ seasonal terms may be represented as $\bm{z}_{it}=(t,\sin(2\pi/\code{freq}\;t),\cos(2\pi/\code{freq}\;t))^\top$. The stacked vector of all random effects is assumed to follow a normal distribution with mean $\bm{0}$ and covariance matrix $\bm{\Sigma}$. In applications, each of the components \code{ar}, \code{ne}, and \code{end} may be omitted in parts or as a whole. If the model does not contain random effects, standard likelihood inference can be performed. Otherwise, inference is based on penalized quasi-likelihood as described in detail in \citet{paul-held-2011}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Function call and control settings}\label{sec:hhh} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The estimation procedure is called with <>= hhh4(sts, control) @ where \code{sts} denotes a (multivariate) surveillance time series and the model is specified in the argument \code{control} in consistency with other algorithms in \surveillance. The \code{control} setting is a list of the following arguments (here with default values): <>= control = list( ar = list(f = ~ -1, # formula for log(lambda_it) offset = 1), # optional multiplicative offset ne = list(f = ~ -1, # formula for log(phi_it) offset = 1, # optional multiplicative offset weights = neighbourhood(stsObj) == 1), # (w_ji) matrix end = list(f = ~ 1, # formula for log(nu_it) offset = 1), # optional multiplicative offset e_it family = "Poisson", # Poisson or NegBin model subset = 2:nrow(stsObj), # subset of observations to be used optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules regression = list(method = "nlminb"), # for penLogLik variance = list(method = "nlminb")), # for marLogLik verbose = FALSE, # level of progress reporting start = list(fixed = NULL, # list with initial values for fixed, random = NULL, # random, and sd.corr = NULL), # variance parameters data = list(t = epoch(stsObj)-1),# named list of covariates keep.terms = FALSE # whether to keep the model terms ) @ The first three arguments \code{ar}, \code{ne}, and \code{end} specify the model components using \code{formula} objects. By default, the counts $y_{it}$ are assumed to be Poisson distributed, but a negative binomial model can be chosen by setting \mbox{\code{family = "NegBin1"}}. By default, both the penalized and marginal log-likelihoods are maximized using the quasi-Newton algorithm available via the \R\ function \code{nlminb}. The methods from \code{optim} may also be used, e.g., \mbox{\code{optimizer = list(variance = list(method="Nelder-Mead")}} is a useful alternative for maximization of the marginal log-likelihood with respect to the variance parameters. Initial values for the fixed, random, and variance parameters can be specified in the \code{start} argument. If the model contains covariates, these have to be provided in the \code{data} argument. If a covariate does not vary across units, it may be given as a vector of length $T$. Otherwise, covariate values must be given in a matrix of size $T \times I$. In the following, the functionality of \hhh\ is demonstrated using the data sets introduced in Section~\ref{sec:data} and previously analyzed in \citet{paul-etal-2008}, \citet{paul-held-2011} and \citet{herzog-etal-2010}. Selected results are reproduced. For a thorough discussion we refer to these papers. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Univariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, consider the univariate time series of meningococcal infections in Germany, 01/2001--52/2006 \citep[cf.][Table~1]{paul-etal-2008}. A Poisson model without autoregression and $S=1$ seasonal term is specified as follows: <>= # specify a formula object for the endemic component ( f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52) ) # fit the Poisson model result0 <- hhh4(meningo, control = list(end = list(f = f_S1), family = "Poisson")) summary(result0) @ To fit the corresponding negative binomial model, we can use the convenient \code{update} method: <>= result1 <- update(result0, family = "NegBin1") @ Note that the \code{update} method by default uses the parameter estimates from the original model as start values when fitting the updated model; see \code{help("update.hhh4")} for details. We can calculate Akaike's Information Criterion for the two models to check whether accounting for overdispersion is useful for these data: <<>>= AIC(result0, result1) @ Due to the default control settings with \verb|ar = list(f = ~ -1)|, the autoregressive component has been omitted in the above models. It can be included by the following model update: <>= # fit an autoregressive model result2 <- update(result1, ar = list(f = ~ 1)) @ To extract only the ML estimates and standard errors instead of a full model \code{summary}, the \code{coef} method can be used: <<>>= coef(result2, se = TRUE, # also return standard errors amplitudeShift = TRUE, # transform sine/cosine coefficients # to amplitude/shift parameters idx2Exp = TRUE) # exponentiate remaining parameters @ Here, \code{exp(ar.1)} is the autoregressive coefficient $\lambda$ and can be interpreted as the epidemic proportion of disease incidence \citep{held.paul2012}. Note that the above transformation arguments \code{amplitudeShift} and \code{idx2Exp} can also be used in the \code{summary} method. Many other standard methods are implemented for \code{"hhh4"} fits, see, e.g., \code{help("confint.hhh4")}. A plot of the fitted model components can be easily obtained: \begin{center} <>= plot(result2) @ \end{center} See the comprehensive \code{help("plot.hhh4")} for further options. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Bivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Now, the weekly numbers of both meningococcal disease (\textsc{MEN}) and influenza (\textsc{FLU}) cases are analyzed to investigate whether influenza infections predispose meningococcal disease \citep[cf.][Table~2]{paul-etal-2008}. This requires disease-specific parameters which are specified in the formula object with \code{fe(\ldots)}. In the following, a negative binomial model with mean \begin{align*} \binom{\mu_{\text{men},t}} {\mu_{\text{flu},t}}= \begin{pmatrix} \lambda_\text{men} & \phi \\ 0 & \lambda_\text{flu} \\ \end{pmatrix} \binom{\text{\sc men}_{t-1}}{\text{\sc flu}_{t-1}} + \binom{\nu_{\text{men},t}}{\nu_{\text{flu},t}}\,, \end{align*} where the endemic component includes $S=3$ seasonal terms for the \textsc{FLU} data and $S=1$ seasonal terms for the \textsc{MEN} data is considered. Here, $\phi$ quantifies the influence of past influenza cases on the meningococcal disease incidence. This model corresponds to the second model of Table~2 in \citet{paul-etal-2008} and is fitted as follows: <>= # no "transmission" from meningococcus to influenza neighbourhood(fluMen)["meningococcus","influenza"] <- 0 neighbourhood(fluMen) @ <>= # create formula for endemic component f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE), # disease-specific intercepts S = c(3, 1), # S = 3 for flu, S = 1 for men period = 52) # specify model m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, # phi, only relevant for meningococcus due to weights = neighbourhood(fluMen)), # the weight matrix end = list(f = f.end), family = "NegBinM") # disease-specific overdispersion # fit model result <- hhh4(fluMen, control = m) summary(result, idx2Exp=1:3) @ A plot of the estimated mean components can be obtained as follows: \setkeys{Gin}{width=1\textwidth} \begin{center} <>= plot(result, units = NULL, pch = 20, legend = 2, legend.args = list( legend = c("influenza-driven", "autoregressive", "endemic"))) @ \end{center} Alternatively, use the \code{decompose} argument to show the unit-specific contributions to the fitted mean: \begin{center} <>= plot(result, units = NULL, pch = 20, legend = 2, decompose = TRUE, col = c(7, 4)) @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Multivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% For disease counts observed in a large number of regions, say, (i.e.\ highly multivariate time series of counts) the use of region-specific parameters to account for regional heterogeneity is no longer feasible as estimation and identifiability problems may occur. Here we illustrate two approaches: region-specific random effects and region-specific covariates. For a more detailed illustration of areal \code{hhh4} models, see \verb+vignette("hhh4_spacetime")+, which uses \verb+data("measlesWeserEms")+ as an example. \subsubsection*{Influenza, Southern Germany, 2001--2008} \citet{paul-held-2011} propose a random effects formulation to analyze the weekly number of influenza cases in \Sexpr{ncol(fluBYBW)} districts of Southern Germany. For example, consider a model with random intercepts in the endemic component: $c_i \stackrel{iid}{\sim} \N(0,\sigma^2_\nu), i=1,\ldots,I$. Such effects are specified as: <>= f.end <- ~ -1 + ri(type = "iid", corr = "all") @ The alternative \code{type = "car"} would assume spatially correlated random effects; see \citet{paul-held-2011} for details. The argument \code{corr = "all"} allows for correlation between region-specific random effects in different components, e.g., random incidence levels $c_i$ in the endemic component and random effects $b_i$ in the neighbor-driven component. The following call to \hhh\ fits such a random effects model with linear trend and $S=3$ seasonal terms in the endemic component, a fixed autoregressive parameter $\lambda$, and first-order transmission weights $w_{ji}=\mathbb{I}(j\sim i)$ -- normalized such that $\sum_i w_{ji} = 1$ for all rows $j$ -- to the influenza data \citep[cf.][Table~3, model~B2]{paul-held-2011}. <>= # endemic component: iid random effects, linear trend, S=3 seasonal terms f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) # model specification model.B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid", corr="all"), weights = neighbourhood(fluBYBW), normalize = TRUE), # all(rowSums(weights) == 1) end = list(f = f.end, offset = population(fluBYBW)), family = "NegBin1", verbose = TRUE, optimizer = list(variance = list(method = "Nelder-Mead"))) # default start values for random effects are sampled from a normal set.seed(42) @ <>= if(compute){ result.B2 <- hhh4(fluBYBW, model.B2) s.B2 <- summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) #pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") meanSc.B2 <- colMeans(scores(predfinal.B2)) save(s.B2, meanSc.B2, file="hhh4-cache.RData") } @ <>= # fit the model (takes about 35 seconds) result.B2 <- hhh4(fluBYBW, model.B2) summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) @ <>= s.B2 @ Model choice based on information criteria such as AIC or BIC is well explored and understood for models that correspond to fixed-effects likelihoods. However, in the presence of random effects their use can be problematic. For model selection in time series models, the comparison of successive one-step-ahead forecasts with the actually observed data provides a natural alternative. In this context, \citet{gneiting-raftery-2007} recommend the use of strictly proper scoring rules, such as the logarithmic score (logs) or the ranked probability score (rps). See \citet{czado-etal-2009} and \citet{paul-held-2011} for further details. One-step-ahead predictions for the last 2 years for model B2 could be obtained as follows: <>= pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) @ However, computing ``rolling'' one-step-ahead predictions from a random effects model is computationally expensive, since the model needs to be refitted at every time point. The above call would take approximately 45 minutes! So for the purpose of this vignette, we use the fitted model based on the whole time series to compute all (fake) predictions during the last two years: <>= predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") @ The mean scores (logs and rps) corresponding to this set of predictions can then be computed as follows: <>= colMeans(scores(predfinal.B2, which = c("logs", "rps"))) @ <>= meanSc.B2[c("logs", "rps")] @ Using predictive model assessments, \citet{meyer.held2013} found that power-law transmission weights more appropriately reflect the spread of influenza than the previously used first-order weights (which actually allow the epidemic to spread only to directly adjacent districts within one week). These power-law weights can be constructed by the function \code{W\_powerlaw} and require the \code{neighbourhood} of the \sts\ object to contain adjacency orders. The latter can be easily obtained from the binary adjacency matrix using the function \code{nbOrder}. See the corresponding help pages or \citet[Section~5]{meyer.etal2014} for illustrations. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsubsection*{Measles, German federal states, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= data("MMRcoverageDE") cardVac1 <- MMRcoverageDE[1:16,3:4] adjustVac <- function(cardVac, p=0.5, nrow=1){ card <- cardVac[,1] vac <- cardVac[,2] vacAdj <- vac*card + p*vac*(1-card) return(matrix(vacAdj,nrow=nrow, ncol=length(vacAdj), byrow=TRUE)) } vac0 <- 1 - adjustVac(cardVac1, p=0.5, nrow=frequency(measles2w)*3) colnames(vac0) <- colnames(measles2w) @ As a last example, consider the number of measles cases in the 16 federal states of Germany, in the years 2005--2007. There is considerable regional variation in the incidence pattern which is most likely due to differences in vaccination coverage. In the following, information about vaccination coverage in each state, namely the log proportion of unvaccinated school starters, is included as explanatory variable in a model for the bi-weekly aggregated measles data. See \citet{herzog-etal-2010} for further details. Vaccination coverage levels for the year 2006 are available in the dataset \code{MMRcoverageDE}. This dataset can be used to compute the $\Sexpr{nrow(vac0)}\times \Sexpr{ncol(vac0)}$ matrix \code{vac0} with adjusted proportions of unvaccinated school starters in each state $i$ used by \citet{herzog-etal-2010}. The first few entries of this matrix are shown below: <<>>= vac0[1:2, 1:6] @ We fit a Poisson model, which links the autoregressive parameter with this covariate and contains $S=1$ seasonal term in the endemic component \citep[cf.][Table~3, model~A0]{herzog-etal-2010}: <>= # endemic component: Intercept + sine/cosine terms f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26) # autoregressive component: Intercept + vaccination coverage information model.A0 <- list(ar = list(f = ~ 1 + logVac0), end = list(f = f.end, offset = population(measles2w)), data = list(t = epoch(measles2w), logVac0 = log(vac0))) # fit the model result.A0 <- hhh4(measles2w, model.A0) summary(result.A0, amplitudeShift = TRUE) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As part of the \R~package \surveillance, the function \hhh\ provides a flexible tool for the modelling of multivariate time series of infectious disease counts. The presented count data model is able to account for serial and spatio-temporal correlation, as well as heterogeneity in incidence levels and disease transmission. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{apalike} \renewcommand{\bibfont}{\small} \bibliography{references} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} surveillance/vignettes/glrnb.Rnw0000644000176200001440000005454114405577243016576 0ustar liggesusers%\VignetteIndexEntry{algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Valentin Wimmer and Michael H\"ohle}, pdftitle = {'algo.glrnb': Count data regression charts using the generalized likelihood ratio statistic}, pdfsubject = {R package 'surveillance'} } \title{\texttt{algo.glrnb}: Count data regression charts using the generalized likelihood ratio statistic} \author{ Valentin Wimmer$^{(1,2)}$\thanks{Author of correspondence: \texttt{Valentin.Wimmer@gmx.de}}\; and Michael H\"{o}hle$^{(1,2)}$ \\ (1) Department of Statistics, University of Munich, Germany\\ (2) MC-Health -- Munich Center of Health Sciences } \date{6 June 2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} \SweaveOpts{prefix.string=plots/glrnb} \setkeys{Gin}{width=1\textwidth} \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\footnotesize} \DefineVerbatimEnvironment{Scode}{Verbatim}{fontshape=sl,fontsize=\footnotesize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) ## create directory for plots dir.create("plots", showWarnings=FALSE) @ \begin{document} \maketitle \begin{abstract} \noindent The aim of this document is to show the use of the function \verb+algo.glrnb+ for a type of count data regression chart, the generalized likelihood ratio (GLR) statistic. The function is part of the \textsf{R} package \textbf{surveillance} \citep{hoehle-2007}, which provides outbreak detection algorithms for surveillance data. For an introduction to these monitoring features of the package, see \texttt{vignette("surveillance")}. There one can find information about the data structure of the \verb+disProg+ and \verb+survRes+ objects. Furthermore tools for outbreak detection, such as a Bayesian approach, procedures described by \citet{stroup89}, \citet{farrington96} and the methods used at the Robert Koch Institut, Germany, are explained. The function \verb+algo.glrnb+ is the implementation of the control charts for poisson and negative binomial distributions for monitoring time series of counts described in \citet{hoehle.paul2008}. This document gives an overview of the different features of the function and illustrations of its use are given for simulated and real surveillance data. \\ \noindent{\bf Keywords:} change-point detection, generalized regression charts, poisson and negative binomial distribution, increase and decrease \end{abstract} \section{Introduction}\label{sec:intro} For the monitoring of infectious diseases it is necessary to monitor time series of routinely collected surveillance data. Methods of the statistic process control (SPC) can be used for this purpose. Here it is important, that the methods can handle the special features of surveillance data, e.g.\ seasonality of the disease or the count data nature of the collected data. It is also important, that not only the number of counts of one time point (week, month) are regarded but instead the cases of previous time points are considered, because beside abrupt changes also small constant changes should be detected. CUSUM-methods (function \verb+algo.cusum+), LR-charts or GLR-methods as described by \citet{lai95} and \citet{hoehle.paul2008} can afford this. With the function \verb+algo.glrnb+ these methods can easily applied to surveillance data. A typical assumption for time series of counts is, that the observed counts at each time point follow a Poisson distribution. If overdispersion is likely, the negative binomial distribution provides a better alternative. Both distributions are provided by \verb+algo.glrnb+. In the GLR-scheme, an outbreak can be defined as a change in the intercept. The function \verb+algo.glrnb+ allows the user to specify whether increases or decreases in mean should be regarded. For each time point a GLR-statistic is computed, if this statistic exceeds a threshold value, an alarm is given. The function also provides the possibility to return the number of cases that would have been necessary to produce an alarm. This vignette is organized as follows: First, in Section \ref{sec:prel} the data structure is explained, in Section \ref{sec:glr} a short introduction in the theory of the GLR-charts is given and Section \ref{sec:control} shows the different \verb+control+-settings. % In Section \ref{sec:extensions} some possible extensions are presented. \section{Preliminaries}\label{sec:prel} Consider the situation, where a time series of counts is collected for surveillance purpose. In each interval, usually one week, the number of cases of the interesting disease in an area (country, district) is counted. The resulting time series is denoted by $\{y_t\>;t=1,\ldots,n\}$. Usually the data are collected on line, so that the time point $n$ is the actual time point. Our aim is to decide with the aid of a statistic for each time point $n$ if there is an outbreak at this or any former time point. If an outbreak is detected, the algorithm gives an alarm. Observed time series of counts are saved in a \verb+disProg+ object, a list containing the time series of counts, the number of weeks and a state chain. The state is 1, if e.g. the Robert Koch-Institut declares the week to be part of an outbreak and 0 otherwise. By using the state chain the quality of the surveillance algorithm can be tested. %The 'surveillance'-package provides standard plot routines for the surveillance objects. As an first example the number of cases of salmonella hadar in the years 2001-2006 is examined. \\ \textit{Example 1:} <>= data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") @ The package provides the possibility to simulate surveillance data with the functions \verb+sim.pointSource+, \verb+sim.seasonalNoise+ and \verb+sim.HHH+. See \citet{hoehle-2007} and \texttt{vignette("surveillance")} for further information. \\ \textit{Example 2:} <>= # Simulate data simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) @ <>= plot(simData) @ \section{LR and GLR-charts}\label{sec:glr} Our aim is to detect a significant change in the number of cases. This is done as follows. One assumes, that there is a number of cases that is usual, the in control mean $\mu_0$. The in-control mean is defined in \citet{hoehle.paul2008} to be \begin{equation} \label{mu0} \operatorname{log}(\mu_{0,t})=\beta_0 + \beta_1t + \sum_{s=1}^S(\beta_{2s} \cos(\omega s t) + \beta_{2s+1}\sin(\omega s t)). \end{equation} If an outbreak occurs, the number of cases increases and the situation is out-of control and the algorithm should produce an alarm. The change is assumed to be an additive increase on log scale, \begin{equation} \label{interceptchange} \operatorname{log}(\mu_1)= \operatorname{log}(\mu_0) + \kappa . \end{equation} If $\mu_0$ is unknown one could use a part of the data to estimate it with a generalized linear model (GLM). If $\kappa$ is known, LR-charts can be used, if not, $\kappa$ has to be estimated, which is the GLR-scheme setting. For each time point, the likelihood ratio statistic is computed as follows \begin{equation} \label{cusum} GLR(n)=\max_{1 \leq k \leq n} \sup_{\theta \in \Theta} \left[ \sum_{t=k}^n \log \left\{ \frac{f_{\theta}(y_t)}{f_{\theta_0}(y_t)} \right\} \right] . \end{equation} Now $N=\inf \{n \geq 1 : GLR(n) \geq c_{\gamma} \}$ is the first time point where the GLR-statistic is above a threshold $c_{\gamma}$. For this time point $N$ an alarm is given. If the parameter $\kappa$ and hence $\theta=\kappa$ is known, the maximisation over $\theta$ can be omitted. With the function \verb+algo.glrnb+ one can compute the the GLR-statistic for every time point. If the actual value extends the chosen threshold $c_{\gamma}$, an alarm is given. After every alarm, the algorithm gets reset and the surveillance starts again. The result of a call of \verb+algo.glrnb+ is an object of class \verb+survRes+. This is basically a list of several arguments. The most important one is the \verb+upperbound+ statistic, which is a vector of length $n$ containing the likelihood-ratio-statistic for every time point under surveillance. The \verb+alarm+-vector contains a boolean for every time point whether there was an alarm or not. \\ At this point in the vignette we move more into the applied direction and refer the user to \citet{hoehle.paul2008} for further theoretical details about the GLR procedure. The next example demonstrates the surveillance with the \verb+algo.glrnb+ in a learning by doing type of way. The example should demonstrate primarily the result of the surveillance. More details to the control-options follow in the next section. All control values are set here on default and the first two years are used to find a model for the in-control mean and so surveillance is starting in week 105. A plot of the results can be obtained as follows <>= survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj, col=c(8,NA,4)) @ The default value for $c_{\gamma}$ is 5. The upperbound statistic is above this value several times in the third quarter of 2006 (time points marked by small triangles in the plot). In the next section follow a description of the control-setting for tuning the behavior of the algorithm, e.g.\ one can search not only for increases in mean as shown in the example but also for decreases. \section{Control-settings}\label{sec:control} In this section, the purpose and use of the control settings of the \verb+algo.glrnb+ function are shown and illustrated by the examples from Section \ref{sec:prel}. The control-setting is a list of the following arguments. <>= control=list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL, dir=c("inc","dec"),ret=c("cases","value")) @ \begin{itemize} \item \verb+range+ \\ The \verb+range+ is a vector of consecutive indices for the week numbers in the \verb+disProg+ object for which surveillance should be done. If a model for the in-control parameter $\mu_0$ is known (\verb+mu0+ is not \verb+NULL+), the surveillance can start at time point one. Otherwise it is necessary to estimate the values for \verb+mu0+ with a GLM. Thus, the range should not start at the first time point but instead use the first weeks/months as control-range. (Note: It is important to use enough data for estimating $\mu_0$, but one should be careful that these data are in control) With the following call one uses the first 2 years (104 weeks) for estimating $\mu_0$ and the the years 2003 to 2006 will be on line monitored. <>= control=list(range=105:length(shadar$observed)) algo.glrnb(disProgObj=shadar,control=control) @ \item \verb+alpha+ \\ This is the (known) dispersion parameter $\alpha$ of the negative binomial distribution. If \verb+alpha+=0, modeling corresponds to the Poisson distribution. In this case, the call of \verb+algo.glrnb+ is similar to a call of \verb+algo.glrpois+. If $\alpha$ is known, the value can be specified in the \verb+control+-settings. <>= control=list(range=105:295,alpha=3) algo.glrnb(disProgObj=shadar,control=control) @ If overdispersion is present in the data, but the dispersion parameter $\alpha$ is unknown, an estimation $\hat{\alpha}$ is calculated as part of the in-control model estimation. Use \verb+alpha=NULL+ to get this estimation. The estimated value $\hat{\alpha}$ is saved in the \verb+survRes+-Object in the \verb+control+-list. Use <>= control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha @ to get the estimated dispersion parameter for the salmonella data. \item \verb+mu0+ \\ This vector contains the values for $\mu_0$ for each time point in the \verb+range+. If it has the value \verb+NULL+ the observed values with indices 1 to \verb+range+-1 are used to fit a GLM. If there is no knowledge about the in-control parameter, one can use the values before the range to find an seasonal model as in equation \ref{mu0}. \verb+mu0+ is at the moment a list of three argument: \verb+S+ is the number of harmonics to include in the model, \verb+trend+ is Boolean whether a linear trend $\beta_1t$ should be considered. The default is to use the same model of $\mu_0$ for the whole surveillance. An alternative is, to fit a new model after every detected outbreak. If refitting should be done, choose \verb+refit=TRUE+ in the \verb+mu0+ list. In this case, the observed value from time point 1 to the time point of the last alarm are used for estimating a GLM. Then we get a new model after every alarm. In the following example a model with \verb+S+=2 harmonics and no linear trend is fitted for the Salmonella data. The observed cases from the first two years are used for fitting the GLM. <>= control=list(range=105:295,mu0=list(S=2,trend=FALSE)) algo.glrnb(disProgObj=shadar,control=control) @ <>= control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) @ The predicted values for the in-control mean in the range are shown as a dashed line in the following plot. <>= plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) @ Information about the used model is saved in the \verb+survRes+-object, too. <>= surv$control$mu0Model @ The $\mu_0$ model is fitted by a call of the function \verb+estimateGLRNbHook+, %% Instead of using the standard seasonal negative binomial model from equation \ref{mu0}, one can change the \texttt{R}-code of the function \verb+estimateGLRNbHook+ to get any desired model. which is defined as follows: <>= estimateGLRNbHook @ \iffalse To include own models in the \verb+estimateGLRNbHook+ function, the code of the function has to be changed. In the following code chunk \verb+estimateGLRNbHook+ is modified so that weights are included in the model (here always Poisson, ignoring \verb+alpha+). \begin{small} \begin{verbatim} estimateGLRNbHook <- function() { control <- parent.frame()$control p <- parent.frame()$disProgObj$freq range <- parent.frame()$range train <- 1:(range[1]-1) test <- range #Weights of training data - sliding window also possible weights <- exp(-0.3 * ((max(train)-train)) %/% 12) data <- data.frame(y=parent.frame()$disProgObj$observed[train],t=train) formula <- "y ~ 1 " if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") } for (s in 1:control$mu0Model$S) { formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="") } m <- eval(substitute(glm(form,family=poisson(),data=data,weights=weights), list(form=as.formula(formula)))) return(list(mod=m,pred=as.numeric(predict(m,newdata=data.frame(t=test), type="response")))) } \end{verbatim} \end{small} \fi The fitted model from the call of \verb+estimateGLRNbHook+ is saved. The result of a call of \verb+glm.nb+ is in the standard setting an object of class \verb+negbin+ inheriting from class \verb+glm+. So methods as \verb+summary+, \verb+plot+ of \verb+predict+ can be used on this object. If refitting is done, the list of the used models is saved. Use <>= coef(surv$control$mu0Model$fitted[[1]]) @ to get the estimated values of the first (and in case of \verb+refit=FALSE+ only) model for the parameter vector $\beta$ given in (\ref{mu0}). \item \verb+c.ARL+ \\ This is just the threshold $c_{\gamma}$ for the GLR-test (see equation \ref{cusum}). The smaller the value is chosen, the more likely it is to detect an outbreak but on the other hand false alarms can be produced. <>= control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) @ For a choice of $c_{\gamma}$ we get \Sexpr{table(surv$alarm)[2]} alarms. In the following table the results for different choices of the threshold are shown. <>= num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } @ \begin{center} \begin{tabular}{l|cccccc} \verb+c.ARL+ & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline no. of alarms & \Sexpr{num[1]} & \Sexpr{num[2]} & \Sexpr{num[3]} & \Sexpr{num[4]} & \Sexpr{num[5]} & \Sexpr{num[6]} \end{tabular} \end{center} \item \verb+change+ \\ There are two possibilitys to define an outbreak. The intercept-change is described in Section \ref{sec:glr} and equation \ref{interceptchange}. Use \verb+change="intercept"+ to choose this possibility. The other alternative is the epidemic chart, where an auto-regressive model is used. See \citet{hoehle.paul2008} for details. The plot below reproduces Figure 9 from that paper, using \verb+change="epi"+ in the control settings. Note that in the epidemic chart not every feature of \verb+algo.glrnb+ is available. <>= control=list(range=209:295,c.ARL=5.1,mu0=list(S=1,trend=TRUE), alpha=NULL,M=52,change="epi") surv <- algo.glrnb(shadar, control) plot(surv,col=c(NA,8,4),lty=c(1,0,1),lwd=c(1,1,3),legend.opts=NULL) lines(surv$control$mu0,lty=2,lwd=2,col=2) abline(h=surv$control$c.ARL,lty=2,col=3) legend(1,20,expression(GLR(n),mu[0],c[gamma]), col=c(4,2,3),lty=c(1,2,2),lwd=c(3,2,1)) @ \item \verb+theta+ \\ If the change in intercept in the intercept-charts is known in advance, this value can be passed to the function (see Section \ref{sec:glr}). These LR-charts are faster but can lead to inferior results if a wrong value of \verb+theta+ is used compared to the actual out-of-control value (\citet{hoehle.paul2008}). If an increase of 50 percent in cases is common when there is an outbreak which corresponds to a $\kappa$ of $\log(1.5)=0.405$ in equation \ref{interceptchange} use <>= control=list(range=105:295,theta=0.4) algo.glrnb(disProgObj=shadar,control=control) @ If there is no knowledge about this value (which is the usual situation), it is not necessary to specify \verb+theta+. In the GLR-charts, the value for $\kappa$ is calculated by a maximation of the likelihood. Use the call <>= control=list(range=105:295,theta=NULL) algo.glrnb(disProgObj=shadar,control=control) @ in this situation. \item \verb+ret+ \\ The \verb+upperbound+-statistic of a \verb+survRes+-object is usually filled with the LR- or GLR-statistic of equation \ref{cusum}. A small value means, that the in-control-situation is likely, a big value is a hint for an outbreak. If you choose \verb+ret="value"+, the upperbound slot is filled with the GLR-statistic. These values are plotted then, too. The alternative return value is \verb+"cases"+. In this case, the number of cases at time point $n$ that would have been necessary to produce an alarm are computed. The advantage of this option is the easy interpretation. If the actual number of cases is more extreme than the computed one, an alarm is given. With the following call, this is done for the salmonella data. <>= control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv2, col=c(8,NA,4)) @ Of course, the alarm time points are the same as with \verb+ret="cases"+. \item \verb+dir+ \\ In the surveillance of infectious diseases it is regular to detect an increase in the number of infected persons. This is also the standard setting for \verb+algo.glrnb+. But in other applications it could be of interest to detect a decrease of counts. For this purpose, the \verb+dir+-option is available. If \verb+dir+ is set to \verb+"inc"+, only increases in regard to the in-control mean are taken into account in the likelihood-ratio-statistic. With \verb+dir="dec"+, only decreases are considered. As an example we take the salmonella data again, but know we look at the number of cases that would have been necessary if a decrease should be detected. <>= control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv3, col=c(8,NA,4)) @ The observed number of cases is below the computed threshold several times in 2005 to 2006 and alarms are given. \item \verb+Mtilde+ and \verb+M+ \\ These parameters are necessary for the so called ''window-limited'' GLR scheme. Here the maximation is not performed for all $1 \leq k \leq n$ but instead only for a window $k \in \{n-M,...,n-\tilde{M}+1 \}$ of values. Note that $1 \leq \tilde{M} \leq M$, where the minimum delay $\tilde{M}$ is the minimal required sample size to obtain a sufficient estimate of $\theta_1=(\mu_0,\kappa)$ ~\citep{hoehle.paul2008}. The advantage of using a window of values instead of all values is the faster computation, but in the setup with intercept-charts and $\theta_1=\kappa$ this doesn't bother much and $\tilde{M}=1$ is sufficient. \end{itemize} \section{Discussion} As seen, the function \verb+algo.glrnb+ allows many possibilities for doing surveillance for a time series of counts. In order to achieve fast computations, the function is implemented in C. An important issue in surveillance is the quality of the used algorithms. This can be measured by the sensitivity and the specificity of the result. The aim of our future work is to provide the possibility for computing the quality and in the next step to include a ROC-approach in order to have a more formal framework for the choice of threshold $c_{\gamma}$. %\include{extensions} %\renewcommand{\bibsection}{\section{REFERENCES}} \bibliography{references} \end{document} surveillance/vignettes/monitoringCounts.Rnw0000644000176200001440000031374714712367340021055 0ustar liggesusers%\VignetteIndexEntry{Monitoring count time series in R: Aberration detection in public health surveillance} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, gamlss, MGLM} <>= knitr::opts_chunk$set(fig.path="plots/monitoringCounts-", error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) options(xtable.booktabs = TRUE, xtable.comment = FALSE) @ \documentclass[nojss]{jss} \usepackage{amsmath,bm} \usepackage{booktabs} \usepackage{subcaption} % successor of subfig, which supersedes subfigure \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} \newcommand{\BetaBin}{\operatorname{BetaBin}} \newcommand{\Var}{\operatorname{Var}} \newcommand{\logit}{\operatorname{logit}} \newcommand{\NB}{\operatorname{NB}} %% almost as usual \author{Ma\"elle Salmon\\Robert Koch Institute \And Dirk Schumacher\\Robert Koch Institute \And Michael H\"ohle\\ Stockholm University,\\Robert Koch Institute } \title{ \vspace{-2.2cm} \fbox{\vbox{\normalfont\footnotesize This vignette corresponds to an article published in the\\ \textit{Journal of Statistical Software} 2016;\textbf{70}(10):1--35. \doi{10.18637/jss.v070.i10}.}}\\[1cm] Monitoring Count Time Series in \proglang{R}: Aberration Detection in Public Health Surveillance} %% for pretty printing and a nice hypersummary also set: \Plainauthor{Ma\"elle Salmon, Dirk Schumacher, Michael H\"ohle} %% comma-separated \Plaintitle{Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance} % without formatting \Shorttitle{\pkg{surveillance}: Aberration detection in \proglang{R}} %% a short title (if necessary) %% an abstract and keywords \Abstract{ Public health surveillance aims at lessening disease burden by, e.g., timely recognizing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective, this implies the use of appropriate methods for monitoring time series of aggregated case reports. This paper presents the tools for such automatic aberration detection offered by the \textsf{R} package \pkg{surveillance}. We introduce the functionalities for the visualization, modeling and monitoring of surveillance time series. With respect to modeling we focus on univariate time series modeling based on generalized linear models (GLMs), multivariate GLMs, generalized additive models and generalized additive models for location, shape and scale. Applications of such modeling include illustrating implementational improvements and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or by treating it in a Bayesian context. Furthermore, we look at categorical time series and address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With respect to monitoring we consider detectors based on either a Shewhart-like single timepoint comparison between the observed count and the predictive distribution or by likelihood-ratio based cumulative sum methods. Finally, we illustrate how \pkg{surveillance} can support aberration detection in practice by integrating it into the monitoring workflow of a public health institution. Altogether, the present article shows how well \pkg{surveillance} can support automatic aberration detection in a public health surveillance context. } \Keywords{\proglang{R}, \texttt{surveillance}, outbreak detection, statistical process control} \Plainkeywords{R, surveillance, outbreak detection, statistical process control} %% without formatting %% at least one keyword must be supplied \Address{ Ma\"{e}lle Salmon, Dirk Schumacher\\ Department for Infectious Diseases Epidemiology\\ Robert Koch Institut Berlin\\ Seestrasse 10\\ 13353 Berlin, Germany\\ E-mail: \email{maelle.salmon@yahoo.se}, \email{mail@dirk-schumacher.net}\\ URL: \url{https://masalmon.eu/}\\ \phantom{URL: }\url{https://dirk-schumacher.net/}\\ Michael H\"{o}hle\\ Department of Mathematics\\ Stockholm University\\ Kr\"{a}ftriket\\ 106 91 Stockholm, Sweden\\ E-mail: \email{hoehle@math.su.se}\\ URL: \url{https://staff.math.su.se/hoehle/} } \begin{document} \maketitle \section{Introduction} \label{sec:0} Nowadays, the fight against infectious diseases does not only require treating patients and setting up measures for prevention but also demands the timely recognition of emerging outbreaks in order to avoid their expansion. Along these lines, health institutions such as hospitals and public health authorities collect and store information about health events -- typically represented as individual case reports containing clinical information, and subject to specific case definitions. Analysing these data is crucial. It enables situational awareness in general and the timely detection of aberrant counts in particular, empowering the prevention of additional disease cases through early interventions. For any specific aggregation of characteristics of events, such as over-the-counter sales of pain medication, new cases of foot-and-mouth disease among cattle, or adults becoming sick with hepatitis C in Germany, data can be represented as time series of counts with days, weeks, months or years as time units of the aggregation. Abnormally high or low values at a given time point can reveal critical issues such as an outbreak of the disease or a malfunction of data transmission. Thus, identifying aberrations in the collected data is decisive, for human as well as for animal health. In this paper we present the \proglang{R} package \pkg{surveillance} which is available from the Comprehensive \proglang{R} Archive Network (CRAN) at \url{https://CRAN.R-project.org/package=surveillance}. It implements a range of methods for aberration detection in time series of counts and proportions. Statistical algorithms provide an objective and reproducible analysis of the data and allow the automation of time-consuming aspects of the monitoring process. In the recent years, a variety of such tools has flourished in the literature. Reviews of methods for aberration detection in time series of counts can be found in~\citet{Buckeridge2007}~and~\citet{Unkel2012}. However, the great variety of statistical algorithms for aberration detection can be a hurdle to practitioners wishing to find a suitable method for their data. It is our experience that ready-to-use and understandable implementation and the possibility to use the methods in a routine and automatic fashion are the criteria most important to the epidemiologists. The package offers an open-source implementation of state-of-the-art methods for the prospective detection of outbreaks in count data time series with established methods, as well as the visualization of the analysed time series. With the package, the practitioner can introduce statistical surveillance into routine practice without too much difficulty. As far as we know, the package is now used in several public health institutions in Europe: at the National Public Health Institute of Finland, at the Swedish Institute for Communicable Disease Control, at the French National Reference Centre for Salmonella, and at the Robert Koch Institute (RKI) in Berlin. The use of \pkg{surveillance} at the RKI shall be the focus of this paper. The package also provides many other functions serving epidemic modeling purposes. Such susceptible-infectious-recovered based models and their extensions towards regression based approaches are documented in other works~\citep{held-etal-2005,held_etal2006,meyer.etal2011,meyer.etal2014}. The present paper is designed as an extension of two previous articles about the \pkg{surveillance} package published as~\citet{hoehle-2007} and~\citet{hoehle-mazick-2010}. On the one hand, the paper aims at giving an overview of the new features added to the package since the publication of the two former papers. On the other hand it intends to illustrate how well the \pkg{surveillance} package can support routine practical disease surveillance by presenting the current surveillance system of infectious diseases at the RKI. This paper is structured as follows. Section~\ref{sec:1} gives an introduction to the data structure used in the package for representing and visualizing univariate or multivariate time series. Furthermore, the structure and use of aberration detection algorithms are explained. Section~\ref{sec:2} leads the reader through different surveillance methods available in the package. Section~\ref{sec:3} describes the integration of such methods in a complete surveillance system as currently in use at the RKI. Finally, a discussion rounds off the work. \section{Getting to know the basics of the package} <>= ## create directories for plots and cache dir.create("plots", showWarnings=FALSE) dir.create("monitoringCounts-cache", showWarnings=FALSE) ## load packages library('surveillance') library('gamlss') @ \label{sec:1} The package provides a central S4 data class \code{sts} to capture multivariate or univariate time series. All further methods use objects of this class as an input. Therefore we first describe the \code{sts} class and then show the typical usage of a function for aberration detection, including visualization. All monitoring methods of the package conform to the same syntax. \subsection{How to store time series and related information} In \pkg{surveillance}, time series of counts and related information are encoded in a specific S4-class called \code{sts} (\textit{surveillance time series}) that represents possibly multivariate time series of counts. Denote the counts as $\left( y_{it} ; i = 1, \ldots,m, t = 1, \ldots, n \right)$, where $n$ is the length of the time series and $m$ is the number of entities, e.g., geographical regions, hospitals or age groups, being monitored. An example which we shall look at in more details is a time series representing the weekly counts of cases of infection with \textit{Salmonella Newport} in all 16 federal states of Germany from 2004 to 2013 with $n=525$ weeks and $m=16$ geographical units. Infections with \textit{Salmonella Newport}, a subtype of \textit{Salmonella}, can trigger gastroenteritis, prompting the seek of medical care. Infections with \textit{Salmonella} are notifiable in Germany since 2001 with data being forwarded to the RKI by federal states health authorities on behalf of the local health authorities. \subsubsection[Slots of the class sts]{Slots of the class \texttt{sts}} The key slots of the \code{sts} class are those describing the observed counts and the corresponding time periods of the aggregation. The observed counts $\left(y_{it}\right)$ are stored in the $n \times m$ matrix \code{observed}. A number of other slots characterize time. First, \code{epoch} denotes the corresponding time period of the aggregation. If the Boolean \code{epochAsDate} is \code{TRUE}, \code{epoch} is the numeric representation of \code{Date} objects corresponding to each observation in \code{observed}. If the Boolean \code{epochAsDate} is \code{FALSE}, \code{epoch} is the time index $1 \leq t \leq n$ of each of these observations. Then, \code{freq} is the number of observations per year: 365 for daily data, 52 for weekly data and 12 for monthly data. Finally, \code{start} is a vector representing the origin of the time series with two values that are the year and the epoch within that year for the first observation of the time series -- \code{c(2014, 1)} for a weekly time series starting on the first week of 2014 for instance. Other slots enable the storage of additional information. Known aberrations are recorded in the Boolean slot \code{state} of the same dimensions as \code{observed} with \code{TRUE} indicating an outbreak and \code{FALSE} indicating the absence of any known aberration. The monitored population in each of the units is stored in slot \code{populationFrac}, which gives either proportions or numbers. The geography of the zone under surveillance is accessible through slot \code{map} which is an object of class \code{SpatialPolygonsDataFrame}~\citep{sp1,sp2} providing a shape of the $m$ areas which are monitored and slot \code{neighbourhood}, which is a symmetric matrix of Booleans size $m^2$ stating the neighborhood matrix. Slot \code{map} is pertinent when units are geographical units, whereas \code{neighbourhood} could be useful in any case, e.g., for storing a contact matrix between age groups for modeling purposes. Finally, if monitoring has been performed on the data, the information on its control arguments and its results are stored in \code{control}, \code{upperbound} and \code{alarm} presented in Section~\ref{sec:howto}. \subsubsection[Creation of an object of class sts]{Creation of an object of class \texttt{sts}} The creation of an \code{sts} object is straightforward, requiring a call of the constructor function \code{sts} together with the slots to be assigned as arguments. The input of data from external files is one possibility for getting the counts as it is described in \citet{hoehle-mazick-2010}. To exemplify the process we shall use weekly counts of \textit{Salmonella Newport} in Germany loaded using \code{data("salmNewport")}. Alternatively, one can use coercion methods to convert between the \texttt{ts} class and the \texttt{sts} class. Note that this only converts the content of the slot \texttt{observed}, that is, <>= data("salmNewport") @ <>= all.equal(observed(salmNewport), observed(as(as(salmNewport, "ts"), "sts"))) @ <>= stopifnot( <> ) @ Using the \texttt{ts} class as intermediate step also allows the conversion between other time series classes, e.g., from packages \pkg{zoo}~\citep{zoo} or \pkg{xts}~\citep{xts}. <>= # This code is the one used for the Salmon et al. (2016) JSS article. # Using this code all examples from the article can be reproduced. # computeALL is FALSE to avoid the computationally intensive parts # of the code (simulations to find a threshold value for categoricalCUSUM, # INLA-driven BODA) but one can set it to TRUE to have it run. computeALL <- FALSE @ <>= # Define plot parameters cex.text <- 1.7 line.lwd <- 2 plotOpts <- local({ #Add lines using grid by a hook function. Use NULL to align with tick marks hookFunc <- function() { grid(NA,NULL,lwd=1) } cex.axis <- cex.text cex.main <- cex.text cex.lab <- cex.text cex.leg <- cex.text stsPlotCol <- c("mediumblue","mediumblue","red2") alarm.symbol <- list(pch=17, col="red2", cex=2,lwd=3) #Define list with arguments to use with do.call("legend", legOpts) legOpts <- list(x="topleft",legend=c(expression(U[t])),bty="n",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) #How should the par of each plot look? par.list <- list(mar=c(6,5,5,5),family="Times") #Do this once y.max <- 0 list(col=stsPlotCol,ylim=c(0,y.max), main='',lwd=c(1,line.lwd,line.lwd), dx.upperbound=0, #otherwise the upperbound line is put 0.5 off cex.lab=cex.lab, cex.axis=cex.axis, cex.main=cex.main, ylab="No. of reports", xlab="Time (weeks)",lty=c(1,1,1), legend.opts=legOpts,alarm.symbol=alarm.symbol, xaxis.tickFreq=list("%V"=atChange,"%m"=atChange,"%G"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y", par.list=par.list,hookFunc=hookFunc) }) @ \begin{figure} \centering <>= y.max <- max(aggregate(salmNewport,by="unit")@observed,na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport,legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts2$par.list <- list(mar=c(6,5,0,5),family="Times") plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ \caption{Weekly number of cases of S. Newport in Germany, 2004-2013.} \label{fig:Newport} \end{figure} \subsubsection[Basic manipulation of objects of the class sts]{Basic manipulation of objects of the class \texttt{sts}} This time series above is represented as a multivariate \code{sts} object whose dimensions correspond to the 16 German federal states. Values are weekly counts so \code{freq = 52}. Weeks are indexed by \code{Date} here (\code{epochAsDate = TRUE}). One can thus for instance get the weekday of the date by calling \code{weekdays(epoch(salmNewport))} (all Mondays here). Furthermore, one can use the function \code{format} (and the package specific platform independent version \code{dateFormat}) to obtain \code{strftime} compatible formatting of the epochs. Another advantage of using \code{Date} objects is that the plot functions have been re-written for better management of ticks and labelling of the x-axis based on \code{strftime} compatible conversion specifications. For example, to get ticks at all weeks corresponding to the first week in a month as well as all weeks corresponding to the first in a year while placing labels consisting of the year at the median index per year (Figure~\ref{fig:Newport}): <>= plot(salmNewport, type = observed ~ time, xaxis.tickFreq = list("%m" = atChange, "%G" = atChange), xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y") @ The helper functions \code{atChange} and \code{atMedian} are documented in \code{help("addFormattedXAxis")}. % and the respective tick lengths are controlled by the \pkg{surveillance}-specific % option \code{surveillance.options("stsTickFactors")}. Actually \code{sts} objects can be plotted using different options: \code{type = observed ~ time} produces the time series for whole Germany as shown in Figure~\ref{fig:Newport}, whereas \code{type = observed ~ time | unit} (the default) is a panelled graph with each panel representing the time series of counts of a federal state as seen in Figure~\ref{fig:unit}. \begin{figure} \subfloat[]{ <>= y.max <- max(observed(salmNewport[,2]),observed(salmNewport[,3]),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,2],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ } \subfloat[]{ <>= plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,3],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ } \caption{Weekly count of S. Newport in the German federal states (a) Bavaria and (b) Berlin.} \label{fig:unit} \end{figure} <>= plot(salmNewport, units = 2:3) @ Once created one can use typical subset operations on a \code{sts} object: for instance \code{salmNewport[} \code{1:10, "Berlin"]} is a new \code{sts} object with weekly counts for Berlin during the 10 first weeks of the initial dataset; \code{salmNewport[isoWeekYear(epoch(salmNewport))\$ISOYear<=2010,]} uses the \code{surveillance}'s \code{isoWeekYear()} function to get a \code{sts} object with weekly counts for all federal states up to 2010. Moreover, one can take advantage of the \proglang{R} function \code{aggregate()}. For instance, \code{aggregate(salmNewport,by="unit")} returns a \code{sts} object representing weekly counts of \textit{Salmonella Newport} in Germany as a whole, whereas \code{aggregate(salmNewport, by = "time")} corresponds to the total count of cases in each federal state over the whole period. \subsection{How to use aberration detection algorithms} \label{sec:howto} Monitoring algorithms of the package operate on objects of the class \code{sts} as described below. \subsubsection{Statistical framework for aberration detection} We introduce the framework for aberration detection on an univariate time series of counts $\left\{y_t,\> t=1,2,\ldots\right\}$. Surveillance aims at detecting an \textit{aberration}, that is to say, an important change in the process occurring at an unknown time $\tau$. This change can be a step increase of the counts of cases or a more gradual change~\citep{Sonesson2003}. Based on the possibility of such a change, for each time $t$ we want to differentiate between the two states \textit{in-control} and \textit{out-of-control}. At any timepoint $t_0\geq 1$, the available information -- i.e., past counts -- is defined as $\bm{y}_{t_0} = \left\{ y_t\>;\> t\leq t_0\right\}$. Detection is based on a statistic $r(\cdot)$ with resulting alarm time $T_A = \min\left\{ t_0\geq 1 : r(\bm{y}_{t_0}) > g\right\}$ where $g$ is a known threshold. Functions for aberration detection thus use past data to estimate $r(\bm{y}_{t_0})$, and compare it to the threshold $g$ above which the current count can be considered suspicious and thus \textit{out-of-control}. Threshold values and alarm Booleans for each timepoint of the monitored range are saved in the slots \code{upperbound} and \code{alarm} (of the same dimensions as \code{observed}), respectively, while the parameters of the algorithm %used for computing the threshold values and alarm Booleans are stored in the slot \code{control}. \subsubsection{Aberration detection in the package} To perform such a monitoring of the counts of cases, one has to choose one of the surveillance algorithms of the package -- this choice will be the topic of Section~\ref{sec:using}. Then, one must indicate which part of the time series or \code{range} has to be monitored -- for instance the current year. Lastly, one needs to specify the parameters specific to the algorithm. \subsubsection{Example with the EARS C1 method} We will illustrate the basic principle by using the \code{earsC}~function~that implements the EARS (Early Aberration Detection System) methods of the CDC as described in~\citet{SIM:SIM3197}. This algorithm is especially convenient in situations when little historic information is available. It offers three variants called C1, C2 and C3. Here we shall expand on C1 for which the baseline are the 7 timepoints before the assessed timepoint $t_0$, that is to say $\left(y_{t_0-7},\ldots,y_{t_0-1}\right)$. The expected value is the mean of the baseline. The method is based on a statistic called $C_{t_0}$ defined as $C_{t_0}= \frac{(y_{t_0}-\bar{y}_{t_0})}{s_{t_0}}$, where $$\bar{y}_{t_0}= \frac{1}{7} \cdot\sum_{i=t_0-7}^{t_0-1} y_i \textnormal{ and } s_{t_0}^2= \frac{1}{7-1} \cdot\sum_{i=t_0-7}^{t_0-1} \left(y_i - \bar{y}_{t_0}\right)^2 \,.$$ Under the null hypothesis of no outbreak, it is assumed that $C_{t_0} \stackrel{H_0}{\sim} {N}(0,1)$. The upperbound $U_{t_0}$ is found by assuming that $y_t$ is normal, estimating parameters by plug-in and then taking the $(1-\alpha)$-th quantile of this distribution, i.e. $U_{t_0}= \bar{y}_{t_0} + z_{1-\alpha}s_{t_0}$, where $z_{1-\alpha}$ is the $(1-\alpha)$-quantile of the standard normal distribution. An alarm is raised if $y_{t_0} > U_{t_0}$. The output of the algorithm is a \code{sts} object that contains subsets of slots \code{observed}, \code{population} and \code{state} defined by the range of timepoints specified in the input -- \textit{e.g} the last 20 timepoints of the time series, and with the slots \code{upperbound} and \code{alarm} filled by the output of the algorithm. Information relative to the \code{range} of data to be monitored and to the parameters of the algorithm, such as \code{alpha} for \code{earsC}, has to be formulated in the slot \code{control}. This information is also stored in the slot \code{control} of the returned \code{sts} object for later inspection. <>= in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) plot(surv) @ \begin{figure} \centering <>= y.max <- max(observed(surv),upperbound(surv),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=surv,ylim=c(0,y.max)),keep.null=TRUE)) @ \caption{Weekly reports of S. Newport in Germany in 2011 monitored by the EARS C1 method. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms that are the timepoints where the observed number of counts is higher than the upperbound.} \label{fig:NewportEARS} \end{figure} The \code{sts} object is easily visualized using the function \code{plot} as depicted in Figure~\ref{fig:NewportEARS}, which shows the upperbound as a solid line and the alarms -- timepoints where the upperbound has been exceeded -- as triangles. The four last alarms correspond to a known outbreak in 2011 due to sprouts~\citep{Newport2011}. One sees that the upperbound right after the outbreak is affected by the outbreak: it is very high, so that a smaller outbreak would not be detected. The EARS methods C1, C2 and C3 are simple in that they only use information from the very recent past. This is appropriate when data has only been collected for a short time or when one expects the count to be fairly constant. However, data from the less recent past often encompass relevant information about e.g., seasonality and time trend, that one should take into account when estimating the expected count and the associated threshold. For instance, ignoring an increasing time trend could decrease sensitivity. Inversely, overlooking an annual surge in counts during the summer could decrease specificity. Therefore, it is advisable to use detection methods whose underlying models incorporate essential characteristics of time series of disease count data such as overdispersion, seasonality, time trend and presence of past outbreaks in the records~\citep{Unkel2012,Shmueli2010}. Moreover, the EARS methods do not compute a proper prediction interval for the current count. Sounder statistical methods will be reviewed in the next section. \section[Using surveillance in selected contexts]{Using \pkg{surveillance} in selected contexts} \label{sec:using} \label{sec:2} More than a dozen algorithms for aberration detection are implemented in the package. Among those, this section presents a set of representative algorithms, which are already in routine application at several public health institutions or which we think have the potential to become so. First we describe the Farrington method introduced by~\citet{farrington96} together with the improvements proposed by~\citet{Noufaily2012}. As a Bayesian counterpart to these methods we present the BODA method published by~\citet{Manitz2013} which allows the easy integration of covariates. All these methods perform one-timepoint detection in that they detect aberrations only when the count at the currently monitored timepoint is above the threshold. Hence, no accumulation of evidence takes place. As an extension, we introduce an implementation of the negative binomial cumulative sum (CUSUM) of~\citet{hoehle.paul2008} that allows the detection of sustained shifts by accumulating evidence over several timepoints. Finally, we present a method suitable for categorical data described in~\citet{hoehle2010} that is also based on cumulative sums. \subsection{One size fits them all for count data} Two implementations of the Farrington method, which is currently \textit{the} method of choice at European public health institutes \citep{hulth_etal2010}, exist in the package. First, the original method as described in \citet{farrington96} is implemented as the function \code{farrington}. Its use was already described in \citet{hoehle-mazick-2010}. Now, the newly implemented function \code{farringtonFlexible} supports the use of this \textit{original method} as well as of the \textit{improved method} built on suggestions made by~\citet{Noufaily2012} for improving the specificity without reducing the sensitivity. In the function \code{farringtonFlexible} one can choose to use the original method or the improved method by specification of appropriate \code{control} arguments. Which variant of the algorithm is to be used is determined by the contents of the \code{control} slot. In the example below, \code{con.farrington} corresponds to the use of the original method and \code{con.noufaily} indicates the options for the improved method. <>= con.farrington <- list( range = in2011, noPeriods = 1, b = 4, w = 3, weightsThreshold = 1, pastWeeksNotIncluded = 3, pThresholdTrend = 0.05, thresholdMethod = "delta" ) con.noufaily <- list( range = in2011, noPeriods = 10, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin" ) @ <>= con.farrington$limit54 <- con.noufaily$limit54 <- c(0,50) # for the figure @ In both cases the steps of the algorithm are the same. In a first step, an overdispersed Poisson generalized linear model with log link is fitted to the reference data $\bm{y}_{t_0} \subseteq \left\{ y_t\>;\> t\leq t_0\right\}$, where $\E(y_t)=\mu_t$ with $\log \mu_t = \alpha + \beta t$ and $\Var(y_t)=\phi\cdot\mu_t$ and where $\phi\geq1$ is ensured. The original method took seasonality into account by using a subset of the available data as reference data for fitting the GLM: \code{w} timepoints centred around the timepoint located $1,2,\ldots,b$ years before $t_0$, amounting to a total $b \cdot (2w+1)$ reference values. However, it was shown in~\citet{Noufaily2012} that the algorithm performs better when using more historical data. In order to do do so without disregarding seasonality, the authors introduced a zero order spline with 11 knots, which can be conveniently represented as a 10-level factor. We have extended this idea in our implementation so that one can choose an arbitrary number of periods in each year. Thus, $\log \mu_t = \alpha + \beta t +\gamma_{c(t)}$ where $\gamma_{c(t)}$ are the coefficients of a zero order spline with $\mathtt{noPeriods}+1$ knots, which can be conveniently represented as a $\mathtt{noPeriods}$-level factor that reflects seasonality. Here, $c(t)$ is a function indicating in which season or period of the year $t$ belongs to. The algorithm uses \code{w}, \code{b} and \texttt{noPeriods} to deduce the length of periods so they have the same length up to rounding. An exception is the reference window centred around $t_0$. Figure~\ref{fig:fPlot} shows a minimal example, where each character corresponds to a different period. Note that setting $\mathtt{noPeriods} = 1$ corresponds to using the original method with only a subset of the data: there is only one period defined per year, the reference window around $t_0$ and other timepoints are not included in the model. \begin{figure} \subfloat[$\texttt{noPeriods}=2$]{ \includegraphics[width=0.45\textwidth]{figures/fPeriods2.pdf} } \qquad \subfloat[$\texttt{noPeriods}=3$]{ \includegraphics[width=0.45\textwidth]{figures/fPeriods3.pdf} } \caption{Construction of the noPeriods-level factor to account for seasonality, depending on the value of the half-window size $w$ and of the freq of the data. Here the number of years to go back in the past $b$ is 2. Each level of the factor variable corresponds to a period delimited by ticks and is denoted by a character. The windows around $t_0$ are respectively of size $2w+1$,~$2w+1$ and $w+1$. The segments between them are divided into the other periods so that they have the same length up to rounding.} \label{fig:fPlot} \end{figure} Moreover, it was shown in \citet{Noufaily2012} that it is better to exclude the last 26 weeks before $t_0$ from the baseline in order to avoid reducing sensitivity when an outbreak has started recently before $t_0$. In the \code{farringtonFlexible} function, one controls this by specifying \code{pastWeeksNotIncluded}, which is the number of last timepoints before $t_0$ that are not to be used. The (historical) default is to use \code{pastWeeksNotIncluded = w}. Lastly, in the new implementation a population offset can be included in the GLM by setting \code{populationBool} to \code{TRUE} and supplying the possibly time-varying population size in the \code{population} slot of the \code{sts} object, but this will not be discussed further here. In a second step, the expected number of counts $\mu_{t_0}$ is predicted for the current timepoint $t_0$ using this GLM. An upperbound $U_{t_0}$ is calculated based on this predicted value and its variance. The two versions of the algorithm make different assumptions for this calculation. The original method assumes that a transformation of the prediction error $g\left(y_{t_0}-\hat{\mu}_{t_0}\right)$ is normally distributed, for instance when using the identity transformation $g(x)=x$ one obtains $$y_{t_0} - \hat{\mu}_0 \sim \mathcal{N}(0,\Var(y_{t_0}-\hat{\mu}_0)) \,.$$ The upperbound of the prediction interval is then calculated based on this distribution. First we have that $$ \Var(y_{t_0}-\hat{\mu}_{t_0}) = \Var(\hat{y}_{t_0}) + \Var(\hat{\mu}_{t_0})=\phi\mu_0+\Var(\hat{\mu}_{t_0}) $$ with $\Var(\hat{y}_{t_0})$ being the variance of an observation and $\Var(\hat{\mu}_{t_0})$ being the variance of the estimate. The threshold, defined as the upperbound of a one-sided $(1-\alpha)\cdot 100\%$ prediction interval, is then $$U_{t_0} = \hat{\mu}_0 + z_{1-\alpha}\sqrt{\widehat{\Var}(y_{t_0}-\hat{\mu}_{t_0})} \,.$$ This method can be used by setting the control option \code{thresholdMethod} equal to "\code{delta}". However, a weakness of this procedure is the normality assumption itself, so that an alternative was presented in \citet{Noufaily2012} and implemented as \code{thresholdMethod="Noufaily"}. The central assumption of this approach is that $y_{t_0} \sim \NB\left(\mu_{t_0},\nu\right)$, with $\mu_{t_0}$ the mean of the distribution and $\nu=\frac{\mu_{t_0}}{\phi-1}$ its overdispersion parameter. In this parameterization, we still have $\E(y_t)=\mu_t$ and $\Var(y_t)=\phi\cdot\mu_t$ with $\phi>1$ -- otherwise a Poisson distribution is assumed for the observed count. The threshold is defined as a quantile of the negative binomial distribution with plug-in estimates $\hat{\mu}_{t_0}$ and $\hat{\phi}$. Note that this disregards the estimation uncertainty in $\hat{\mu}_{t_0}$ and $\hat{\phi}$. As a consequence, the method "\code{muan}" (\textit{mu} for $\mu$ and \textit{an} for asymptotic normal) tries to solve the problem by using the asymptotic normal distribution of $(\hat{\alpha},\hat{\beta})$ to derive the upper $(1-\alpha)\cdot 100\%$ quantile of the asymptotic normal distribution of $\hat{\mu}_{t_0}=\hat{\alpha}+\hat{\beta}t_0$. Note that this does not reflect all estimation uncertainty because it disregards the estimation uncertainty of $\hat{\phi}$. Note also that for time series where the variance of the estimator is large, the upperbound also ends up being very large. Thus, the method "\code{nbPlugin}" seems to provide information that is easier to interpret by epidemiologists but with "\code{muan}" being more statistically correct. In a last step, the observed count $y_{t_0}$ is compared to the upperbound $U_{t_0}$ and an alarm is raised if $y_{t_0} > U_{t_0}$. In both cases the fitting of the GLM involves three important steps. First, the algorithm performs an optional power-transformation for skewness correction and variance stabilisation, depending on the value of the parameter \code{powertrans} in the \code{control} slot. Then, the significance of the time trend is checked. The time trend is included only when significant at a chosen level \code{pThresholdTrend}, when there are more than three years reference data and if no overextrapolation occurs because of the time trend. Lastly, past outbreaks are reweighted based on their Anscombe residuals. In \code{farringtonFlexible} the limit for reweighting past counts, \code{weightsThreshold}, can be specified by the user. If the Anscombe residual of a count is higher than \code{weightsThreshold} it is reweighted accordingly in a second fitting of the GLM. \citet{farrington96} used a value of $1$ whereas \citet{Noufaily2012} advise a value of $2.56$ so that the reweighting procedure is less drastic, because it also shrinks the variance of the observations. The original method is widely used in public health surveillance~\citep{hulth_etal2010}. The reason for its success is primarily that it does not need to be fine-tuned for each specific pathogen. It is hence easy to implement it for scanning data for many different pathogens. Furthermore, it does tackle classical issues of surveillance data: overdispersion, presence of past outbreaks that are reweighted, seasonality that is taken into account differently in the two methods. An example of use of the function is shown in Figure~\ref{fig:newportFar} with the code below. <<>>= salm.farrington <- farringtonFlexible(salmNewportGermany, con.farrington) salm.noufaily <- farringtonFlexible(salmNewportGermany, con.noufaily) @ <>= par(mfrow = c(1,2)) plot(salm.farrington) plot(salm.noufaily) @ \begin{figure} \subfloat[]{ <>= y.max <- max(observed(salm.farrington),upperbound(salm.farrington),observed(salm.noufaily),upperbound(salm.noufaily),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salm.farrington,ylim=c(0,y.max)))) @ } \subfloat[]{ <>= do.call("plot",modifyList(plotOpts,list(x=salm.noufaily,ylim=c(0,y.max)))) @ } \caption{S. Newport in Germany in 2011 monitored by (a) the original method and (b) the improved method. For the figure we turned off the option that the threshold is only computed if there were more than 5 cases during the 4 last timepoints including $t_0$. One gets less alarms with the most recent method and still does not miss the outbreak in the summer. Simulations on more time series support the use of the improved method instead of the original method.} \label{fig:newportFar} \end{figure} % With our implementation of the improvements presented in \citet{Noufaily2012} we hope that the method with time can replace the original method in routine use. The RKI system described in Section~\ref{sec:RKI} already uses this improved method. \subsubsection{Similar methods in the package} The package also contains further methods based on a subset of the historical data: \code{bayes}, \code{rki} and \code{cdc}. See Table~\ref{table:ref} for the corresponding references. Here, \code{bayes} uses a simple conjugate prior-posterior approach and computes the parameters of a negative binomial distribution based on past values. The procedure \code{rki} makes either the assumption of a normal or a Poisson distribution based on the mean of past counts. Finally, \code{cdc} aggregates weekly data into 4-week-counts and computes a normal distribution based upper confidence interval. None of these methods offer the inclusion of a linear trend, down-weighting of past outbreaks or power transformation of the data. Although these methods are nice to have at hand, we recommend using the improved method implemented in the function \code{farringtonFlexible} because it is rather fast and makes use of more historical data than the other methods. \subsection{A Bayesian refinement} The \code{farringtonFlexible} function described previously was a first indication that the \textit{monitoring} of surveillance time series requires a good \textit{modeling} of the time series before assessing aberrations. Generalized linear models (GLMs) and generalized additive models (GAMs) are well-established and powerful modeling frameworks for handling the count data nature and trends of time series in a regression context. The \code{boda} procedure~\citep{Manitz2013} continues this line of thinking by extending the simple GLMs used in the \code{farrington} and \code{farringtonFlexible} procedures to a fully fledged Bayesian GAM allowing for penalized splines, e.g., to describe trends and seasonality, while simultaneously adjusting for previous outbreaks or concurrent processes influencing the case counts. A particular advantage of the Bayesian approach is that it constitutes a seamless framework for performing both estimation and subsequent prediction: the uncertainty in parameter estimation is directly carried forward to the predictive posterior distribution. No asymptotic normal approximations nor plug-in inference is needed. For fast approximate Bayesian inference we use the \pkg{INLA} \proglang{R} package~\citep{INLA} to fit the Bayesian GAM. Still, monitoring with \code{boda} is substantially slower than using the Farrington procedures. Furthermore, detailed regression modeling is only meaningful if the time series is known to be subject to external influences on which information is available. Hence, the typical use at a public health institution would be the detailed analysis of a few selected time series, e.g., critical ones or those with known trend character. As an example, \citet{Manitz2013} studied the influence of absolute humidity on the occurrence of weekly reported campylobacter cases in Germany. \begin{figure} \centering <>= # Load data and create \code{sts}-object data("campyDE") cam.sts <- sts(epoch=campyDE$date, observed=campyDE$case, state=campyDE$state) par(las=1) # Plot y.max <- max(observed(cam.sts),upperbound(cam.sts),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=cam.sts,ylab="",legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts3$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts3) par(las=0) #mtext(side=2,text="No. of reports", # las=0,line=3, cex=cex.text,family="Times") par(family="Times") text(-20, 2600, "No. of\n reports", pos = 3, xpd = T,cex=cex.text) text(510, 2900, "Absolute humidity", pos = 3, xpd = T,cex=cex.text) text(510, 2550, expression(paste("[",g/m^3,"]", sep='')), pos = 3, xpd = T,cex=cex.text) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2500,by=500),labels=seq(0,50,by=10),las=1,cex.lab=cex.text, cex=cex.text,cex.axis=cex.text,pos=length(epoch(cam.sts))+20) #mtext(side=4,text=expression(paste("Absolute humidity [ ",g/m^3,"]", sep='')), # las=0,line=1, cex=cex.text,family="Times") @ \caption{Weekly number of reported campylobacteriosis cases in Germany 2002-2011 as vertical bars. In addition, the corresponding mean absolute humidity time series is shown as a white curve.} \label{fig:campyDE} \end{figure} <>= data("campyDE") cam.sts <- sts(epoch = campyDE$date, observed = campyDE$case, state = campyDE$state) plot(cam.sts, col = "mediumblue") lines(campyDE$hum * 50, col = "white", lwd = 2) axis(4, at = seq(0, 2500, by = 500), labels = seq(0, 50, by = 10)) @ The corresponding plot of the weekly time series is shown in Figure~\ref{fig:campyDE}. We observe a strong association between humidity and case numbers - an association which is stronger than with, e.g., temperature or relative humidity. As noted in \citet{Manitz2013} the excess in cases in 2007 is thus partly explained by the high atmospheric humidity. Furthermore, an increase in case numbers during the 2011 STEC O104:H4 outbreak is observed, which is explained by increased awareness and testing of many gastroenteritits pathogens during that period. The hypothesis is thus that there is no actual increased disease activity~\citep{bernard_etal2014}. Unfortunately, the German reporting system only records positive test results without keeping track of the number of actual tests performed -- otherwise this would have been a natural adjustment variable. Altogether, the series contains several artefacts which appear prudent to address when monitoring the campylobacteriosis series. The GAM in \code{boda} is based on the negative binomial distribution with time-varying expectation and time constant overdispersion parameter, i.e., \begin{align*} y_t &\sim \operatorname{NB}(\mu_t,\nu) \end{align*} with $\mu_{t}$ the mean of the distribution and $\nu$ the dispersion parameter~\citep{lawless1987}. Hence, we have $\E(y_t)=\mu_t$ and $\Var(y_t)=\mu_t\cdot(1+\mu_t/\nu)$. The linear predictor is given by \begin{align*} \log(\mu_t) &= \alpha_{0t} + \beta t + \gamma_t + \bm{x}_t^\top \bm{\delta} + \xi z_t, \quad t=1,\ldots,t_0. \end{align*} Here, the time-varying intercept $\alpha_{0t}$ is described by a penalized spline (e.g., first or second order random walk) and $\gamma_t$ denotes a periodic penalized spline (as implemented in \code{INLA}) with period equal to the periodicity of the data. Furthermore, $\beta$ characterizes the effect of a possible linear trend (on the log-scale) and $\xi$ is the effect of previous outbreaks. Typically, $z_t$ is a zero-one process denoting if there was an outbreak in week $t$, but more involved adaptive and non-binary forms are imaginable. Finally, $\bm{x}_t$ denotes a vector of possibly time-varying covariates, which influence the expected number of cases. Data from timepoints $1,\ldots,t_0-1$ are now used to determine the posterior distribution of all model parameters and subsequently the posterior predictive distribution of $y_{t_0}$ is computed. If the actual observed value of $y_{t_0}$ is above the $(1-\alpha)\cdot 100\%$ quantile of the predictive posterior distribution an alarm is flagged for $t_0$. Below we illustrate the use of \code{boda} to monitor the campylobacteriosis time series from 2007. In the first case we include in the model for $\log\left(\mu_t\right)$ penalized splines for trend and seasonality and a simple linear trend. <>= library("INLA") rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01")) control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE, season = TRUE, prior = "iid", alpha = 0.025, mc.munu = 10000, mc.y = 1000, samplingMethod = "marginals") boda <- boda(cam.sts, control = control.boda) @ <>= if (computeALL) { ##hoehle 2018-07-18: changed code to use NICELOOKINGboda, but that's iid. Reason: ##The option 'rw1' currently crashes INLA. <> save(list = c("boda", "control.boda", "rangeBoda"), file = "monitoringCounts-cache/boda.RData") } else { load("monitoringCounts-cache/boda.RData") } @ In the second case we instead use only penalized and linear trend components, and, furthermore, include as covariates lags 1--4 of the absolute humidity as well as zero-one indicators for $t_0$ belonging to the last two weeks (\code{christmas}) or first two weeks (\code{newyears}) of the year, respectively. These covariates shall account for systematically changed reporting behavior at the turn of the year (c.f.\ Figure~\ref{fig:campyDE}). Finally, \code{O104period} is an indicator variable on whether the reporting week belongs to the W21--W30 2011 period of increased awareness during the O104:H4 STEC outbreak. No additional correction for past outbreaks is made. <>= covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum", "newyears", "christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X = campyDE[, covarNames], season = FALSE)) boda.covars <- boda(cam.sts, control = control.boda2) @ <>= if (computeALL) { <> save(list = c("boda.covars", "covarNames", "control.boda2"), file = "monitoringCounts-cache/boda.covars.RData") } else { load("monitoringCounts-cache/boda.covars.RData") } @ We plot \code{boda.covars} in Figure~\ref{fig:b} and compare the alarms of the two \code{boda} calls with \code{farrington}, \code{farringtonFlexible} and \code{bayes} in Figure~\ref{fig:alarmplot} (plot \code{type = alarm ~ time}). \fbox{\vbox{ Note (2018-07-19): We currently have to use the argument \code{prior = "iid"} in both calls of the \code{boda} function, because the procedure crashes when using recent versions of \pkg{INLA} (\code{>= 17.06.20}) with argument \code{prior = "rw1"}. %(the original results were produced using version 0.0-1458166556, %and version 0.0-1485844051 from 2017-01-31 also works) This means results in this vignette deviate from the results reported in the JSS paper -- in particular we do not get any alarms when using the \code{boda} procedure with covariates. We are looking into the problem. }} Note here that the \code{bayes} procedure is not really useful as the adjustment for seasonality only works poorly. Moreover, we think that this method produces many false alarms for this time series because it disregards the increasing time trend in number of reported cases. Furthermore, it becomes clear that the improved Farrington procedure acts similar to the original procedure, but the improved reweighting and trend inclusion produces fewer alarms. The \code{boda} method is to be seen as a step towards more Bayesian thinking in aberration detection. However, besides its time demands for a detailed modeling, the speed of the procedure is also prohibitive as regards routine application. As a response~\citet{Maelle} introduce a method which has two advantages: it allows to adjust outbreak detection for reporting delays and includes an approximate inference method much faster than the INLA inference method. However, its linear predictor is more in the style of~\citet{Noufaily2012} not allowing for additional covariates or penalized options for the intercept. \begin{figure} \centering <>= y.max <- max(observed(boda.covars),upperbound(boda.covars),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=boda.covars,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ <>= plot(boda.covars) @ \caption{Weekly reports of Campylobacter in Germany in 2007-2011 monitored by the boda method with covariates. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms, \textit{i.e.}, timepoints where the observed number of counts is higher than the upperbound.} \label{fig:b} \end{figure} <>= control.far <- list(range=rangeBoda,b=4,w=5,alpha=0.025*2) far <- farrington(cam.sts,control=control.far) #Both farringtonFlexible and algo.bayes uses a one-sided interval just as boda. control.far2 <-modifyList(control.far,list(alpha=0.025)) farflex <- farringtonFlexible(cam.sts,control=control.far2) bayes <- suppressWarnings(bayes(cam.sts,control=control.far2)) @ <>= # Small helper function to combine several equally long univariate sts objects combineSTS <- function(stsList) { epoch <- as.numeric(epoch(stsList[[1]])) observed <- NULL alarm <- NULL for (i in 1:length(stsList)) { observed <- cbind(observed,observed(stsList[[i]])) alarm <- cbind(alarm,alarms(stsList[[i]])) } colnames(observed) <- colnames(alarm) <- names(stsList) res <- sts(epoch=as.numeric(epoch), epochAsDate=TRUE, observed=observed, alarm=alarm) return(res) } @ \begin{figure} \centering <>= # Make an artificial object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") @ \caption{Alarmplot showing the alarms for the campylobacteriosis time series for four different algorithms.} \label{fig:alarmplot} \end{figure} \subsection{Beyond one-timepoint detection} GLMs as used in the Farrington method are suitable for the purpose of aberration detection since they allow a regression approach for adjusting counts for known phenomena such as trend or seasonality in surveillance data. Nevertheless, the Farrington method only performs one-timepoint detection. In some contexts it can be more relevant to detect sustained shifts early, e.g., an outbreak could be characterized at first by counts slightly higher than usual in subsequent weeks without each weekly count being flagged by one-timepoint detection methods. Control charts inspired by statistical process control (SPC) e.g., cumulative sums would allow the detection of sustained shifts. Yet they were not tailored to the specific characteristics of surveillance data such as overdispersion or seasonality. The method presented in \citet{hoehle.paul2008} conducts a synthesis of both worlds, i.e., traditional surveillance methods and SPC. The method is implemented in the package as the function \code{glrnb}, whose use is explained here. \subsubsection{Definition of the control chart} For the control chart, two distributions are defined, one for each of the two states \textit{in-control} and \textit{out-of-control}, whose likelihoods are compared at each time step. The \textit{in-control} distribution $f_{\bm{\theta}_0}(y_t|\bm{z}_t)$ with the covariates $\bm{z}_t$ is estimated by a GLM of the Poisson or negative binomial family with a log link, depending on the overdispersion of the data. In this context, the standard model for the \textit{in-control} mean is $$\log \mu_{0,t}=\beta_0+\beta_1t+\sum_{s=1}^S\left[\beta_{2s}\cos \left(\frac{2\pi s t}{\mathtt{Period}}\right)+\beta_{2s+1}\sin \left(\frac{2\pi s t}{\mathtt{Period}}\right)\right] $$ where $S$ is the number of harmonic waves to use and \texttt{Period} is the period of the data as indicated in the \code{control} slot, for instance 52 for weekly data. However, more flexible linear predictors, e.g., containing splines, concurrent covariates or an offset could be used on the right hand-side of the equation. The GLM could therefore be made very similar to the one used by~\citet{Noufaily2012}, with reweighting of past outbreaks and various criteria for including the time trend. The parameters of the \textit{in-control} and \textit{out-of-control} models are respectively given by $\bm{\theta}_0$ and $\bm{\theta}_1$. The \textit{out-of-control} mean is defined as a function of the \textit{in-control} mean, either with a multiplicative shift (additive on the log-scale) whose size $\kappa$ can be given as an input or reestimated at each timepoint $t>1$, $\mu_{1,t}=\mu_{0,t}\cdot \exp(\kappa)$, or with an unknown autoregressive component as in \citet{held-etal-2005}, $\mu_{1,t}=\mu_{0,t}+\lambda y_{t-1}$ with unknown $\lambda>0$. In \code{glrnb}, timepoints are divided into two intervals: phase 1 and phase 2. The \textit{in-control} mean and overdispersion are estimated with a GLM fitted on phase 1 data, whereas surveillance operates on phase 2 data. When $\lambda$ is fixed, one uses a likelihood-ratio (LR) and defines the stopping time for alarm as $$N=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}_1}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\},$$ where $\mathtt{c.ARL}$ is the threshold of the CUSUM. When $\lambda$ is unknown and with the autoregressive component one has to use a generalized likelihood ratio (GLR) with the following stopping rule to estimate them on the fly at each time point so that $$N_G=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \sup_{\bm{\theta} \in \bm{\Theta}} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\} \,.$$ Thus, one does not make any hypothesis about the specific value of the change to detect, but this GLR is more computationally intensive than the LR. \subsubsection{Practical use} For using \code{glrnb} one has two choices to make. First, one has to choose an \textit{in-control} model that will be fitted on phase 1 data. One can either provide the predictions for the vector of \textit{in-control} means \code{mu0} and the overdispersion parameter \code{alpha} by relying on an external fit, or use the built-in GLM estimator, that will use all data before the beginning of the surveillance range to fit a GLM with the number of harmonics \code{S} and a time trend if \code{trend} is \code{TRUE}. The choice of the exact \textit{in-control} model depends on the data under surveillance. Performing model selection is a compulsory step in practical applications. Then, one needs to tune the surveillance function itself, for one of the two possible change forms, \code{intercept}~or~\code{epi}.~One~can choose either to set \code{theta} to a given value and thus perform LR instead of GLR. The value of \code{theta} has to be adapted to the specific context in which the algorithm is applied: how big are shifts one wants to detect optimally? Is it better not to specify any and use GLR instead? The threshold \texttt{c.ARL} also has to be specified by the user. As explained in \citet{hoehle-mazick-2010} one can compute the threshold for a desired run-length in control through direct Monte Carlo simulation or a Markov chain approximation. Lastly, as mentioned in \citet{hoehle.paul2008}, a window-limited approach of surveillance, instead of looking at all the timepoints until the first observation, can make computation faster. Here we apply \code{glrnb} to the time series of report counts of \textit{Salmonella Newport} in Germany by assuming a known multiplicative shift of factor $2$ and by using the built-in estimator to fit an \textit{in-control} model with one harmonic for seasonality and a trend. This model will be refitted after each alarm, but first we use data from the years before 2011 as reference or \code{phase1}, and the data from 2011 as data to be monitored or \code{phase2}. The threshold \texttt{c.ARL} was chosen to be 4 as we found with the same approach as \citet{hoehle-mazick-2010} that it made the probability of a false alarm within one year smaller than 0.1. Figure~\ref{fig:glrnb}~shows the results of this monitoring. <>= phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011) phase2 <- in2011 control <- list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases", mu0 = list(S = 1, trend = TRUE, refit = FALSE)) salmGlrnb <- glrnb(salmNewportGermany, control = control) @ \begin{figure} \centering <>= y.max <- max(observed(salmGlrnb),upperbound(salmGlrnb),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salmGlrnb,ylim=c(0,y.max)))) @ \caption{S. Newport in Germany in 2011 monitored by the \texttt{glrnb} function.} \label{fig:glrnb} \end{figure} The implementation of \code{glrnb} on individual time series was already thoroughly explained in \citet{hoehle-mazick-2010}. Our objective in the present document is rather to provide practical tips for the implementation of this function on huge amounts of data in public health surveillance applications. Issues of computational speed become very significant in such a context. Our proposal to reduce the computational burden incurred by this algorithm is to compute the \textit{in-control} model for each time series (pathogen, subtype, subtype in a given location, etc.) only once a year and to use this estimation for the computation of a threshold for each time series. An idea to avoid starting with an initial value of zero in the CUSUM is to use either $\left(\frac{1}{2}\right)\cdot\mathtt{c.ARL}$ as a starting value (fast initial response CUSUM as presented in~\citet{lucas1982fast}) or to let surveillance run with the new \textit{in-control} model during a buffer period and use the resulting CUSUM as an initial value. One could also choose the maximum of these two possible starting values as a starting value. During the buffer period alarms would be generated with the old model. Lastly, using GLR is much more computationally intensive than using LR, whereas LR performs reasonably well on shifts different from the one indicated by \code{theta} as seen in the simulation studies of~\citet{hoehle.paul2008}. Our advice would therefore be to use LR with a reasonable predefined \code{theta}. The amount of historical data used each year to update the model, the length of the buffer period and the value of \code{theta} have to be fixed for each specific application, e.g., using simulations and/or discussion with experts. \subsubsection{Similar methods in the package} The algorithm \code{glrPois} is the same function as \code{glrnb} but for Poisson distributed data. Other CUSUM methods for count data are found in the package: \code{cusum} and \code{rogerson}. Both methods are discussed and compared to \code{glrnb} in \citet{hoehle.paul2008}. The package also includes a semi-parametric method \code{outbreakP} that aims at detecting changes from a constant level to a monotonically increasing incidence, for instance the beginning of the influenza season. See Table~\ref{table:ref} for the corresponding references. \subsection{A method for monitoring categorical data} All monitoring methods presented up to now have been methods for analysing count data. Nevertheless, in public health surveillance one also encounters categorical time series which are time series where the response variable obtains one of $k\geq2$ different categories (nominal or ordinal). When $k=2$ the time series is binary, for instance representing a specific outcome in cases such as hospitalization, death or a positive result to some diagnostic test. One can also think of applications with $k>2$ if one studies, e.g., the age groups of the cases in the context of monitoring a vaccination program: vaccination targeted at children could induce a shift towards older cases which one wants to detect as quickly as possible -- this will be explained thoroughly with an example. The developments of prospective surveillance methods for such categorical time series were up to recently limited to CUSUM-based approaches for binary data such as those explained in~\citet{Chen1978},~\citet{Reynolds2000} and~\citet{rogerson_yamada2004}. Other than being only suitable for binary data these methods have the drawback of not handling overdispersion. A method improving on these two limitations while casting the problem into a more comprehending GLM regression framework for categorical data was presented in~\citet{hoehle2010}. It is implemented as the function \code{categoricalCUSUM}. The way \code{categoricalCUSUM} operates is very similar to what \code{glrnb} does with fixed \textit{out-of-control} parameter. First, the parameters in a multivariate GLM for the \textit{in-control} distribution are estimated from the historical data. Then the \textit{out-of-control} distribution is defined by a given change in the parameters of this GLM, e.g., an intercept change, as explained later. Lastly, prospective monitoring is performed on current data using a likelihood ratio detector which compares the likelihood of the response under the \textit{in-control} and \textit{out-of-control} distributions. \subsubsection{Categorical CUSUM for binomial models} The challenge when performing these steps with categorical data from surveillance systems is finding an appropriate model. Binary GLMs as presented in Chapter~6 of \citet{Fahrmeir.etal2013} could be a solution but they do not tackle well the inherent overdispersion in the binomial time series. Of course one could choose a quasi family but these are not proper statistical distributions making many issues such as prediction complicated. A better alternative is offered by the use of \textit{generalized additive models for location, scale and shape} \citep[GAMLSS,][]{Rigby2005}, that support distributions such as the beta-binomial distribution, suitable for overdispersed binary data. With GAMLSS one can model the dependency of the mean -- \textit{location} -- upon explanatory variables but the regression modeling is also extended to other parameters of the distribution, e.g., scale. Moreover any modelled parameter can be put under surveillance, be it the mean (as in the example later developed) or the time trend in the linear predictor of the mean. This very flexible modeling framework is implemented in \proglang{R} through the \pkg{gamlss} package~\citep{StasJSS}. As an example we consider the time series of the weekly number of hospitalized cases among all \textit{Salmonella} cases in Germany in Jan 2004--Jan 2014, depicted in Figure~\ref{fig:cat1}. We use 2004--2012 data to estimate the \textit{in-control} parameters and then perform surveillance on the data from 2013 and early 2014. We start by preprocessing the data. <>= data("salmHospitalized") isoWeekYearData <- isoWeekYear(epoch(salmHospitalized)) dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013) data2013 <- which(isoWeekYearData$ISOYear == 2013) dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014 & isoWeekYearData$ISOWeek <= 4) phase1 <- dataBefore2013 phase2 <- c(data2013, dataEarly2014) salmHospitalized.df <- cbind(as.data.frame(salmHospitalized), weekNumber = isoWeekYearData$ISOWeek) names(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound", "n", "freq", "epochInPeriod", "weekNumber") @ We assume that the number of hospitalized cases follows a beta-binomial distribution, i.e., $ y_t \sim \BetaBin(n_t,\pi_t,\sigma_t)$ with $n_t$ the total number of reported cases at time $t$, $\pi_t$ the proportion of these cases that were hospitalized and $\sigma$ the dispersion parameter. In this parametrization, $$E(y_t)=n_t \pi_t,\quad \text{and}$$ $$\Var(y_t)=n_t \pi_t(1-\pi_t)\left( 1 + \frac{\sigma(n_t-1)}{\sigma+1} \right) \,.$$ We choose to model the expectation $n_t \pi_t$ using a beta-binomial model with a logit-link which is a special case of a GAMLSS, i.e., $$\logit(\pi_t)=\bm{z}_t^\top\bm{\beta}$$ where $\bm{z}_t$ is a vector of possibly time-varying covariates and $\bm{\beta}$ a vector of covariate effects in our example. \begin{figure} \centering <>= y.max <- max(observed(salmHospitalized)/population(salmHospitalized),upperbound(salmHospitalized)/population(salmHospitalized),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmHospitalized,legend.opts=NULL,ylab="",ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange,"%m"=atChange) plotOpts2$par.list <- list(mar=c(6,5,5,5),family="Times",las=1) do.call("plot",plotOpts2) lines(salmHospitalized@populationFrac/4000,col="grey80",lwd=2) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2000,by=500)/4000,labels=as.character(seq(0,2000,by=500)),las=1, cex=2,cex.axis=1.5,pos=length(observed(salmHospitalized))+20) par(family="Times") text(-20, 0.6, "Proportion", pos = 3, xpd = T,cex=cex.text) text(520, 0.6, "Total number of \n reported cases", pos = 3, xpd = T,cex=cex.text) @ \caption{Weekly proportion of Salmonella cases that were hospitalized in Germany 2004-2014. In addition the corresponding number of reported cases is shown as a light curve.} \label{fig:cat1} \end{figure} The proportion of hospitalized cases varies throughout the year as seen in Figure~\ref{fig:cat1}. One observes that in the summer the proportion of hospitalized cases is smaller than in other seasons. However, over the holidays in December the proportion of hospitalized cases increases. Note that the number of non-hospitalized cases drops while the number of hospitalized cases remains constant (data not shown): this might be explained by the fact that cases that are not serious enough to go to the hospital are not seen by general practitioners because sick workers do not need a sick note during the holidays. Therefore, the \textit{in-control} model should contain these elements, as well as the fact that there is an increasing trend of the proportion because GPs prescribe less and less stool diagnoses so that more diagnoses are done on hospitalized cases. We choose a model with an intercept, a time trend, two harmonic terms and a factor variable for the first two weeks of each year. The variable \code{epochInPeriod} takes into account the fact that not all years have 52 weeks. <>= vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber") m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod) + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod) + I(weekNumber == 1) + I(weekNumber == 2), sigma.formula =~ 1, family = BB(sigma.link = "log"), data = salmHospitalized.df[phase1, vars]) @ The change we aim to detect is defined by a multiplicative change of odds, from $\frac{\pi_t^0}{(1-\pi_t^0)}$ to $R\cdot\frac{\pi_t^0}{(1-\pi_t^0)}$ with $R>0$, similar to what was done in~\citet{Steiner1999} for the logistic regression model. This is equivalent to an additive change of the log-odds, $$\logit(\pi_t^1)=\logit(\pi_t^0)+\log R$$ with $\pi_t^0$ being the \textit{in-control} proportion and $\pi_t^1$ the \textit{out-of-control} distribution. The likelihood ratio based CUSUM statistic is now defined as $$C_{t_0}=\max_{1\leq t \leq {t_0}}\left( \sum_{s=t}^{t_0} \log \left( \frac{f(y_s;\bm{z}_s,\bm{\theta}_1)}{f(y_s;\bm{z}_s,\bm{\theta}_0)} \right) \right)$$ with $\bm{\theta}_0$ and $\bm{\theta}_1$ being the vector in- and \textit{out-of-control} parameters, respectively. Given a threshold \code{h}, an alarm is sounded at the first time when $C_{t_0}>\mathtt{h}$. We set the parameters of the \code{categoricalCUSUM} to optimally detect a doubling of the odds in 2013 and 2014, i.e., $R=2$. Furthermore, we for now set the threshold of the CUSUM at $h=2$. We use the GAMLSS to predict the mean of the \textit{in-control} and \textit{out-of-control} distributions and store them into matrices with two columns among which the second one represents the reference category. <>= R <- 2 h <- 2 pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars], type = "response") pi1 <- plogis(qlogis(pi0) + log(R)) pi0m <- rbind(pi0, 1 - pi0) pi1m <- rbind(pi1, 1 - pi1) @ Note that the \code{categoricalCUSUM} function is constructed to operate on the observed slot of \code{sts}-objects which have as columns the number of cases in each category at each timepoint, \textit{i.e.}, each row of the observed slot contains the elements $(y_{t1},...,y_{tk})$. <>= populationHosp <- unname(cbind( population(salmHospitalized), population(salmHospitalized))) observedHosp <- cbind( "Yes" = as.vector(observed(salmHospitalized)), "No" = as.vector(population(salmHospitalized) - observed(salmHospitalized))) salmHospitalized.multi <- sts( frequency = 52, start = c(2004, 1), epoch = epoch(salmHospitalized), observed = observedHosp, population = populationHosp, multinomialTS = TRUE) @ Furthermore, one needs to define a wrapper for the distribution function in order to have an argument named \code{"mu"} in the function. <>= dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { dBB(if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log) } @ After these preliminary steps, the monitoring can be performed. <>= controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM( salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coefficients)) @ The results can be seen in Figure~\ref{fig:catDouble}(a). With the given settings, there are alarms at week 16 in 2004 and at week 3 in 2004. The one in 2014 corresponds to the usual peak of the beginning of the year, which was larger than expected this year, maybe because the weekdays of the holidays were particularly worker-friendly so that sick notes were even less needed. The value for the threshold \code{h} can be determined following the procedures presented in \citet{hoehle-mazick-2010} for count data, and as in the code exhibited below. Two methods can be used for determining the probability of a false alarm within a pre-specified number of steps for a given value of the threshold \code{h}: a Monte Carlo method relying on, e.g., 1000 simulations and a Markov Chain approximation of the CUSUM. The former is much more computationally intensive than the latter: with the code below, the Monte Carlo method needed approximately 300 times more time than the Markov Chain method. Since both results are close we recommend the Markov Chain approximation for practical use. The Monte Carlo method works by sampling observed values from the estimated distribution and performing monitoring with \code{categoricalCUSUM} on this \code{sts} object. As observed values are estimated from the \textit{in-control} distribution every alarm thus obtained is a false alarm so that the simulations allow to estimate the probability of a false alarm when monitoring \textit{in-control} data over the timepoints of \code{phase2}. The Markov Chain approximation introduced by \citet{brook_evans1972} is implemented as \code{LRCUSUM.runlength} which is already used for \code{glrnb}. Results from both methods can be seen in Figure~\ref{fig:catDouble}(b). We chose a value of 2 for \code{h} so that the probability of a false alarm within the 56 timepoints of \code{phase2} is less than $0.1$. One first has to set the values of the threshold to be investigated and to prepare the function used for simulation, that draws observed values from the \textit{in-control} distribution and performs monitoring on the corresponding time series, then indicating if there was at least one alarm. Then 1000 simulations were performed with a fixed seed value for the sake of reproducibility. Afterwards, we tested the Markov Chain approximation using the function \code{LRCUSUM.runlength} over the same grid of values for the threshold. <<>>= h.grid <- seq(1, 10, by = 0.5) @ <>= simone <- function(sts, h) { y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE], bd = population(sts)[phase2, ], sigma = exp(m.bbin$sigma.coefficients), fast = TRUE) observed(sts)[phase2, ] <- cbind(y, population(sts)[phase2, 1] - y) one.surv <- categoricalCUSUM( sts, control = modifyList(controlCat, list(h = h)), sigma = exp(m.bbin$sigma.coefficients)) return(any(alarms(one.surv)[, 1])) } set.seed(123) nSims <- 1000 pMC <- sapply(h.grid, function(h) { mean(replicate(nSims, simone(salmHospitalized.multi, h))) }) pMarkovChain <- sapply(h.grid, function(h) { TA <- LRCUSUM.runlength(mu = pi0m[1,,drop = FALSE], mu0 = pi0m[1,,drop = FALSE], mu1 = pi1m[1,,drop = FALSE], n = population(salmHospitalized.multi)[phase2, ], h = h, dfun = dBB.cusum, sigma = exp(m.bbin$sigma.coef)) return(tail(TA$cdf, n = 1)) }) @ <>= if (computeALL) { <> save(pMC, file = "monitoringCounts-cache/pMC.RData") save(pMarkovChain, file = "monitoringCounts-cache/pMarkovChain.RData") } else { load("monitoringCounts-cache/pMC.RData") load("monitoringCounts-cache/pMarkovChain.RData") } @ \begin{figure} \subfloat[]{ <>= y.max <- max(observed(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),upperbound(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=salmHospitalizedCat[,1],ylab="Proportion",ylim=c(0,y.max))) plotOpts3$legend.opts <- list(x="top",bty="n",legend=c(expression(U[t])),lty=1,lwd=line.lwd,col=plotOpts$alarm.symbol$col,horiz=TRUE,cex=cex.text) do.call("plot",plotOpts3) @ <>= plot(salmHospitalizedCat[,1]) @ } \subfloat[]{ <>= par(mar=c(6,5,5,5),family="Times") matplot(h.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 56 * "|" * tau * "=" * infinity)),xlab="Threshold h",col=1,cex.axis=cex.text,cex.lab=cex.text) prob <- 0.1 lines(range(h.grid),rep(prob,2),lty=5,lwd=2) par(family="Times") legend(4,0.08,c("Monte Carlo","Markov chain"), lty=1:2,col=1,cex=cex.text,bty="n") @ <>= matplot(h.grid, cbind(pMC, pMarkovChain), type="l", lty=1:2, col=1) abline(h=0.1, lty=5) legend("center", c("Monte Carlo","Markov chain"), lty=1:2, bty="n") @ } \caption{(a) Results of the monitoring with categorical CUSUM of the proportion of Salmonella cases that were hospitalized in Germany in Jan 2013 - Jan 2014. (b) Probability of a false alarm within the 56 timepoints of the monitoring as a function of the threshold $h$.} \label{fig:catDouble} \end{figure} The procedure for using the function for multicategorical variables follows the same steps (as illustrated later). Moreover, one could expand the approach to utilize the multiple regression possibilities offered by GAMLSS. Here we chose to try to detect a change in the mean of the distribution of counts but as GAMLSS provides more general regression tools than GLM we could also aim at detecting a change in the time trend included in the model for the mean. \subsubsection{Categorical CUSUM for multinomial models} In order to illustrate the use of \code{categoricalCUSUM} for more than two classes we analyse the monthly number of rotavirus cases in the federal state Brandenburg during 2002-2013 and which are stratified into the five age-groups 00-04, 05-09, 10-14, 15-69, 70+ years. In 2006 two rotavirus vaccines were introduced, which are administered in children at the age of 4--6 months. Since then, coverage of these vaccination has steadily increased and interest is to detect possible age-shifts in the distribution of cases. <>= data("rotaBB") plot(rotaBB) @ \begin{figure} \centering <>= par(mar=c(5.1,20.1,4.1,0),family="Times") plot(rotaBB,xlab="Time (months)",ylab="", col="mediumblue",cex=cex.text,cex.lab=cex.text,cex.axis=cex.text,cex.main=cex.text, xaxis.tickFreq=list("%G"=atChange), xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") par(las=0,family="Times") mtext("Proportion of reported cases", side=2, line=19, cex=1) @ \caption{Monthly proportions in five age-groups for the reported rotavirus cases in Brandenburg, Germany, \Sexpr{paste(format(range(epoch(rotaBB)),"%Y"),collapse="-")}.} \label{fig:vac} \end{figure} From Figure~\ref{fig:vac} we observe a shift in proportion away from the very young. However, interpreting the proportions only makes sense in combination with the absolute numbers. In these plots (not shown) it becomes clear that the absolute numbers in the 0--4 year old have decreased since 2009. However, in the 70+ group a small increase is observed with 2013 by far being the strongest season so far. Hence, our interest is in prospectively detecting a possible age-shift. Since the vaccine was recommended for routine vaccination in Brandenburg in 2009 we choose to start the monitoring at that time point. We do so by fitting a multinomial logit-model containing a trend as well as one harmonic wave and use the age group 0--4 years as reference category, to the data from the years 2002-2008. Different \proglang{R} packages implement such type of modeling, but we shall use the \pkg{MGLM} package~\citep{MGLM}, because it also offers the fitting of extended multinomial regression models allowing for extra dispersion. <<>>= rotaBB.df <- as.data.frame(rotaBB) X <- with(rotaBB.df, cbind(intercept = 1, epoch, sin1 = sin(2 * pi * epochInPeriod), cos1 = cos(2 * pi * epochInPeriod))) phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 library("MGLM") ## MGLMreg automatically takes the last class as ref so we reorder order <- c(2:5, 1); reorder <- c(5, 1:4) m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ], dist = "MN") @ As described in \citet{hoehle2010} we can try to detect a specific shift in the intercept coefficients of the model. For example, a multiplicative shift of factor 2 in the example below, in the odds of each of the four age categories against the reference category is modelled by changing the intercept value of each category. Based on this, the \textit{in-control} and \textit{out-of-control} proportions are easily computed using the \code{predict} function for \code{MGLMreg} objects. <<>>= m1 <- m0 m1@coefficients[1, ] <- m0@coefficients[1, ] + log(2) pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder]) pi1 <- t(predict(m1, newdata = X[phase2, ])[, reorder]) @ For applying the \code{categoricalCUSUM} function one needs to define a compatible wrapper function for the multinomial as in the binomial example. With $\bm{\pi}^0$ and $\bm{\pi}^1$ in place one only needs to define a wrapper function, which defines the PMF of the sampling distribution -- in this case the multinomial -- in a \code{categoricalCUSUM} compatible way. <>= dfun <- function(y, size, mu, log = FALSE) { dmultinom(x = y, size = size, prob = mu, log = log) } h <- 2 # threshold for the CUSUM statistic control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, pi1 = pi1, ret = "value", dfun = dfun) surv <- categoricalCUSUM(rotaBB,control=control) @ <>= alarmDates <- epoch(surv)[which(alarms(surv)[,1])] format(alarmDates,"%b %Y") @ <>= #Number of MC samples nSamples <- 1e4 #Do MC simone.stop <- function(sts, control) { phase2Times <- seq(nrow(sts))[phase2] #Generate new phase2 data from the fitted in control model y <- sapply(1:length(phase2Times), function(i) { rmultinom(n=1, prob=pi0[,i],size=population(sts)[phase2Times[i],1]) }) observed(sts)[phase2Times,] <- t(y) one.surv <- categoricalCUSUM(sts, control=control) #compute P(S<=length(phase2)) return(any(alarms(one.surv)[,1]>0)) } set.seed(1233) rlMN <- replicate(nSamples, simone.stop(rotaBB, control=control)) mean(rlMN) # 0.5002 @ The resulting CUSUM statistic $C_t$ as a function of time is shown in Figure~\ref{fig:ct}(a). The first time an aberration is detected is July 2009. Using 10000 Monte Carlo simulations we estimate that with the chosen threshold $h=2$ the probability for a false alarm within the 60 time points of \code{phase2} is 0.02. As the above example shows, the LR based categorical CUSUM is rather flexible in handling any type of multivariate GLM modeling to specify the \textit{in-control} and \textit{out-of-control} proportions. However, it requires a direction of the change to be specified -- for which detection is optimal. One sensitive part of such monitoring is the fit of the multinomial distribution to a multivariate time series of proportions, which usually exhibit extra dispersion when compared to the multinomial. For example comparing the AIC between the multinomial logit-model and a Dirichlet-multinomial model with $\alpha_{ti} = \exp(\bm{x}_t^\top\bm{\beta})$~\citep{MGLM} shows that overdispersion is present. The Dirichlet distribution is the multicategorical equivalent of the beta-binomial distribution. We exemplify its use in the code below. <<>>= m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ], dist = "DM") c(m0@AIC, m0.dm@AIC) @ Hence, the above estimated false alarm probability might be too low for the actual monitoring problem, because the variation in the time series is larger than implied by the multinomial. Hence, it appears prudent to repeat the analysis using the more flexible Dirichlet-multinomial model. This is straightforward with \code{categoricalCUSUM} once the \textit{out-of-control} proportions are specified in terms of the model. Such a specification is, however, hampered by the fact that the two models use different parametrizations. For performing monitoring in this new setting we first need to calculate the $\alpha$'s of the multinomial-Dirichlet for the \textit{in-control} and \textit{out-of-control} distributions. <<>>= ## Change intercept in the first class (for DM all 5 classes are modeled) delta <- 2 m1.dm <- m0.dm m1.dm@coefficients[1, ] <- m0.dm@coefficients[1, ] + c(-delta, rep(delta/4, 4)) alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients) dfun <- function(y, size, mu, log = FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) dLog else exp(dLog) } h <- 2 control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = t(alpha0), pi1 = t(alpha1), ret = "value", dfun = dfun) surv.dm <- categoricalCUSUM(rotaBB, control = control) @ <>= matplot(alpha0/rowSums(alpha0),type="l",lwd=3,lty=1,ylim=c(0,1)) matlines(alpha1/rowSums(alpha1),type="l",lwd=1,lty=2) @ \begin{figure} \subfloat[]{ <>= surv@observed[,1] <- 0 surv@multinomialTS <- FALSE surv.dm@observed[,1] <- 0 surv.dm@multinomialTS <- FALSE y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=surv[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=plotOpts$alarm.symbol$col,horiz=TRUE,cex=cex.text) do.call("plot",plotOpts3) abline(h=h, lwd=2, col="darkgrey") par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ } \subfloat[]{ <>= plotOpts3$x <- surv.dm[,1] do.call("plot",plotOpts3) abline(h=h, lwd=2, col="darkgrey") par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ } \caption{Categorical CUSUM statistic $C_t$. Once $C_t>\Sexpr{h}$ an alarm is sounded and the statistic is reset. In (a) surveillance uses the multinomial distribution and in (b) surveillance uses the Dirichlet-multinomial distribution.} \label{fig:ct} \end{figure} <>= par(mfrow = c(1,2)) surv@multinomialTS <- surv.dm@multinomialTS <- FALSE # trick plot method ... plot(surv[,1], col=c(NA,NA,4), ylab = expression(C[t]), ylim = c(0,33), xaxis.tickFreq=list("%Y"=atChange, "%m"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y") abline(h=h, lwd=2, col="darkgrey") plot(surv.dm[,1], col=c(NA,NA,4), ylab = expression(C[t]), ylim = c(0,33), xaxis.tickFreq=list("%Y"=atChange, "%m"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y") abline(h=h, lwd=2, col="darkgrey") @ The resulting CUSUM statistic $C_t$ using the Dirichlet multinomial distribution is shown in Figure~\ref{fig:ct}(b). We notice a rather similar behavior even though the shift-type specified by this model is slightly different than in the model of Figure~\ref{fig:ct}(a). \subsubsection{Categorical data in routine surveillance} The multidimensionality of data available in public health surveillance creates many opportunities for the analysis of categorical time series, for example: sex ratio of cases of a given disease, age group distribution, regions sending data, etc. If one is interested in monitoring with respect to a categorical variable, a choice has to be made between monitoring each time series individually, for instance a time series of \textit{Salmonella} cases for each age group, or monitoring the distribution of cases with respect to that factor jointly \textit{via} \code{categoricalCUSUM}. A downside of the latter solution is that one has to specify the change parameter \code{R} in advance, which can be quite a hurdle if one has no pre-conceived idea of what could happen for, say, the age shift after the introduction of a vaccine. Alternatively, one could employ an ensemble of monitors or monitor an aggregate. However, more straightforward applications could be found in the (binomial) surveillance of positive diagnostics given laboratory test data and not only data about confirmed cases. An alternative would be to apply \code{farringtonFlexible} while using the number of tests as \code{populationOffset}. \subsubsection{Similar methods in the package} The package also offers another CUSUM method suitable for binary data, \code{pairedbinCUSUM} that implements the method introduced by~\citet{Steiner1999}, which does not, however, take overdispersion into account as well as \code{glrnb}. The algorithm \code{rogerson} also supports the analysis of binomial data. See Table~\ref{table:ref} for the corresponding references. \subsection{Other algorithms implemented in the package} We conclude this description of surveillance methods by giving an overview of all algorithms implemented in the package in Table~\ref{table:ref}. Please see the cited articles or the package manual for more information about each method. Criteria for choosing a method in practice are numerous. First one needs to ponder on the amount of historical data at hand -- for instance the EARS methods only need data for the last timepoints whereas the Farrington methods use data up to $b$ years in the past. Then one should consider the amount of past data used by the algorithm -- historical reference methods use only a subset of the past data, namely the timepoints located around the same timepoint in the past years, whereas other methods use all past data included in the reference data. This can be a criterion of choice since one can prefer using all available data. It is also important to decide whether one wants to detect one-timepoint aberration or more prolonged shifts. And lastly, an important criterion is how much work needs to be done for finetuning the algorithm for each specific time series. The package on the one hand provides the means for analysing nearly all type of surveillance data and on the other hand makes the comparison of algorithms possible. This is useful in practical applications when those algorithms are implemented into routine use, which will be the topic of Section~\ref{sec:routine}. \begin{table}[t!] \centering \begin{tabular}{lp{11cm}} \toprule Function & References \\ \midrule \code{bayes} & \citet{riebler2004} \\ \code{boda} & \citet{Manitz2013} \\ \code{bodaDelay} & \citet{Maelle} \\ \code{categoricalCUSUM} & \citet{hoehle2010}\\ \code{cdc} & \citet{stroup89,farrington2003} \\ \code{cusum} & \citet{rossi_etal99,pierce_schafer86} \\ \code{earsC} & \citet{SIM:SIM3197} \\ \code{farrington} & \citet{farrington96} \\ \code{farringtonFlexible} & \citet{farrington96,Noufaily2012} \\ \code{glrnb} & \citet{hoehle.paul2008} \\ \code{glrpois} & \citet{hoehle.paul2008} \\ \code{outbreakP} & \citet{frisen_etal2009,fri2009} \\ \code{pairedbinCUSUM} & \citet{Steiner1999} \\ \code{rki} & Not available -- unpublished \\ \code{rogerson} & \citet{rogerson_yamada2004} \\ \bottomrule \end{tabular} \caption{Algorithms for aberration detection implemented in \pkg{surveillance}.} \label{table:ref} \end{table} \section[Implementing surveillance in routine monitoring]{Implementing \pkg{surveillance} in routine monitoring} \label{sec:routine} \label{sec:3} Combining \pkg{surveillance} with other \proglang{R} packages and programs is easy, allowing the integration of the aberration detection into a comprehensive surveillance system to be used in routine practice. In our opinion, such a surveillance system has to at least support the following process: loading data from local databases, analysing them within \pkg{surveillance} and sending the results of this analysis to the end-user who is typically an epidemiologist in charge of the specific pathogen. This section exemplifies the integration of the package into a whole analysis stack, first through the introduction of a simple workflow from data query to a \code{Sweave}~\citep{sweave} or \pkg{knitr}~\citep{knitr} report of signals, and secondly through the presentation of the more elaborate system in use at the German Robert Koch Institute. \subsection{A simple surveillance system} Suppose you have a database with surveillance time series but little resources to build a surveillance system encompassing all the above stages. Using \proglang{R} and \code{Sweave} or \code{knitr} for \LaTeX~you can still set up a simple surveillance analysis without having to do everything by hand. You only need to import the data into \proglang{R} and create \code{sts} objects for each time series of interest as explained thoroughly in~\citet{hoehle-mazick-2010}. Then, calling a surveillance algorithm, say \code{farringtonFlexible}, with an appropriate \code{control} argument gives an \code{sts} object with upperbounds and alarms over \code{control$range}. To define the range automatically one could use the \proglang{R} function \code{Sys.Date()} to get today's date. These steps can be introduced as a code chunk in a \code{Sweave} or \code{knitr} code that will translate it into a report that you can send to the epidemiologists in charge of the respective pathogen whose cases are monitored. Below is an example of a short code segment showing the analysis of the \textit{S. Newport} weekly counts in the German federal states Baden-W\"{u}rttemberg and North Rhine-Westphalia using the improved method implemented in \code{farringtonFlexible}. The package provides a \code{toLatex} method for \code{sts} objects that produces a table of the observed counts and upperbound values for each unit; alarms are highlighted by default. The result is shown in Table~\ref{tableResults}. <<>>= today <- which(epoch(salmNewport) == as.Date("2013-12-23")) rangeAnalysis <- (today - 4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013) algoParameters <- list(range = rangeAnalysis, noPeriods = 10, populationBool = FALSE, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin", alpha = 0.05, limit54 = c(0, 50)) results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control = algoParameters) @ <>= start <- isoWeekYear(epoch(salmNewport)[min(rangeAnalysis)]) end <- isoWeekYear(epoch(salmNewport)[max(rangeAnalysis)]) caption <- paste0("Results of the analysis of reported S. Newport ", "counts in two German federal states for the weeks ", start$ISOYear, "-W", start$ISOWeek, " to ", end$ISOYear, "-W", end$ISOWeek, ". Bold red counts indicate weeks with alarms.") toLatex(results, caption = caption, label = "tableResults", ubColumnLabel = "Threshold", include.rownames = FALSE, sanitize.text.function = identity) @ The advantage of this approach is that it can be made automatic. The downside of such a system is that the report is not interactive, for instance one cannot click on the cases and get the linelist. Nevertheless, this is a workable solution in many cases -- especially when human and financial resources are narrow. In the next section, we present a more advanced surveillance system built on the package. \subsection{Automatic detection of outbreaks at the Robert Koch Institute} \label{sec:RKI} The package \pkg{surveillance} was used as a core building block for designing and implementing the automated outbreak detection system at the RKI in Germany~\citep{Dirk}. The text below describes the system as it was in early 2014. Due to the Infection Protection Act (IfSG) the RKI daily receives over 1,000 notifiable disease reports. The system analyses about half a million time series per day to identify possible aberrations in the reported number of cases. Structurally, it consists of two components: an analytical process written in \proglang{R} that daily monitors the data and a reporting component that compiles and communicates the results to the epidemiologists. The analysis task in the described version of the system relied on \pkg{surveillance} and three other \proglang{R} packages, namely \pkg{data.table}, \pkg{RODBC} and \pkg{testthat} as described in the following. The data-backend is an OLAP-system~\citep{SSAS} and relational databases, which are queried using \pkg{RODBC}~\citep{rodbc2013}. The case reports are then rapidly aggregated into univariate time series using \pkg{data.table}~\citep{datatable2013}. To each time series we apply the \code{farringtonFlexible} algorithm on univariate \code{sts} objects and store the analysis results in another SQL-database. We make intensive use of \pkg{testthat}~\citep{testthat2013} for automatic testing of the component. Although \proglang{R} is not the typical language to write bigger software components for production, choosing \proglang{R} in combination with \pkg{surveillance} enabled us to quickly develop the analysis workflow. We can hence report positive experience using \proglang{R} also for larger software components in production. The reporting component was realized using Microsoft Reporting Services~\citep{SSRS}, because this technology is widely used within the RKI. It allows quick development of reports and works well with existing Microsoft Office tools, which the end-user, the epidemiologist, is used to. For example, one major requirement by the epidemiologists was to have the results compiled as Excel documents. Moreover, pathogen-specific reports are automatically sent once a week by email to epidemiologists in charge of the respective pathogen. Having state-of-the-art detection methods already implemented in \pkg{surveillance} helped us to focus on other challenges during development, such as bringing the system in the organization's workflow and finding ways to efficiently and effectively analyse about half a million of time series per day. In addition, major developments in the \proglang{R} component can be shared with the community and are thus available to other public health institutes as well. \section{Discussion} \label{sec:4} The \proglang{R} package \pkg{surveillance} was initially created as an implementational framework for the development and the evaluation of outbreak detection algorithms in routine collected public health surveillance data. Throughout the years it has more and more also become a tool for the use of surveillance in routine practice. The presented description aimed at showing the potential of the package for aberration detection. Other functions offered by the package for modeling~\citep{meyer.etal2014}, nowcasting~\citep{hoehle-heiden} or back-projection of incidence cases~\citep{becker_marschner93} are documented elsewhere and contribute to widening the scope of possible analysis in infectious disease epidemiology when using \pkg{surveillance}. Future areas of interest for the package are, e.g., to better take into account the multivariate and hierarchical structure of the data streams analysed. Another important topic is the adjustment for reporting delays when performing the surveillance~\citep{Maelle}. The package can be obtained from CRAN and resources for learning its use are listed in the documentation section of the project (\url{https://surveillance.R-Forge.R-project.org/}). As all \proglang{R} packages, \pkg{surveillance} is distributed with a manual describing each function with corresponding examples. The manual, the present article and two previous ones~\citep{hoehle-2007, hoehle-mazick-2010} form a good basis for getting started with the package. The data and analysis of the present manuscript are accessible as the vignette \texttt{"monitoringCounts.Rnw"} in the package. Since all functionality is available just at the cost of learning \proglang{R} we hope that parts of the package can be useful in health facilities around the world. Even though the package is tailored for surveillance in public health contexts, properties such as overdispersion, low counts, presence of past outbreaks, apply to a wide range of count and categorical time series in other surveillance contexts such as financial surveillance~\citep{frisen2008financial}, occupational safety monitoring~\citep{accident} or environmental surveillance~\citep{Radio}. Other \proglang{R} packages can be worth of interest to \pkg{surveillance} users. Statistical process control is offered by two other packages, \pkg{spc}~\citep{spc} and \pkg{qcc}~\citep{qcc}. The package \pkg{strucchange} allows detecting structural changes in general parametric models including GLMs~\citep{strucchange}, while the package \pkg{tscount} provides methods for regression and (retrospective) intervention analysis for count time series based on GLMs~\citep{tscount, liboschik_tscount_2015} . For epidemic modelling and outbreaks, packages such as \pkg{EpiEstim}~\citep{EpiEstim}, \pkg{outbreaker}~\citep{outbreaker} and \pkg{OutbreakTools}~\citep{OutbreakTools} offer good functionalities for investigating outbreaks that may for instance have been detected through to the use of \pkg{surveillance}. They are listed on the website of the \textit{R Epidemics Consortium} (\url{https://www.repidemicsconsortium.org/}) that was initiated for compiling information about \proglang{R} tools useful for infectious diseases epidemiology. Another software of interest for aberration detection is \pkg{SaTScan}~\citep{SaTScan} which allows the detection of spatial, temporal and space-time clusters of events -- note that it is not a \proglang{R} package. Code contributions to the package are very welcome as well as feedback and suggestions for improving the package. \section*{Acknowledgments} The authors would like to express their gratitude to all contributors to the package, in particular Juliane Manitz, University of G\"{o}ttingen, Germany, for her work on the \texttt{boda} code, and Angela Noufaily, The Open University, Milton Keynes, UK, for providing us with the code used in her article that we extended for \texttt{farringtonFlexible}. The work of M. Salmon was financed by a PhD grant of the RKI. \bibliography{monitoringCounts,references} \end{document} surveillance/vignettes/twinSIR-cache.RData0000644000176200001440000000324512674766245020322 0ustar liggesusers‹­–yTSG‡‡$@Q,⊶ -E°€ƒ– Ö‚¶¬H @¢a1€á(•TÑ⪂;Ä­´ŠXæ¹àÑ£‚[\"*–@ƒ t’¼—ãé_}ç$3wî¹÷7o¾I‚¼ƒ]Ì‚Í4@§1Ž» þ2 ÀÒ âøhèÖ¸4k], Yâ–7Zì¬ä'«azÎÊ’²+áÏ.3äËþ8·Vз4¤ÃÜ:±÷›0¸ëïËçÙy@YyiÞù6ø sJVÖ9 ܸkûˆk|¸÷à?i»já¾æð$³fO˜ýÅmÁ–žép¿ÄeÝd4<@ Le™18ýjxxiìl‰G#ËÇ:×­’z¬c½8ù| ®[Ÿ‡°Ôå4"X¤Í€CÚ‡ êÐHµ uê†ß 6];ˆ”¤_ô~ý”£ówK :ô¶ÁOÅSó©õ¨õÉ|d~º¡}}4²^cªþX¢ó…±¸a룵þB˜8$Ž•ˆû$j`¬t±$’1b!Ÿì›jñŠ¢H“•˜$Œå%EQ~†„'âë× ‘å4ú†\ÜV ¬XÎA…ÚEm’á2·›qëò!÷‡Pë|•Áᵇ+RUÎEEm0|Ñö ²òêê6¨.ÂHÞæ¾€®,Èow‹ëî—Àè”–æCŒ`(`d‡.`Ï‚B™o•Êf \=VÑMx E'N^qwh€q®!ÎOœKaI¨Ñsä‰íQgÚº§bT‰ƒý4|„å‹* FVÑË÷ÐÁ¯ÕZdŸ~=}PõðÜ <ïq«_ ¶[^{GgÔ1G$ÛPO©ª¯#Õß9ÿÏO/ÂHÀ.4މћª(tJËÝÇ~&F‘½[#¾ÃÄøF:Ï#;¾´Á·LJX»^~¹ë1 ,fq1q·ÚxúĉÛjð‘÷\\xëéq ñ}P3·©lÉT€pJÌ× ºî×:ª×›w÷‰Ý-ê c;÷å`—£z5Ýš½ë­áÐE%·R^»$ÉIHuÌ¥7YP—-3ò$Î3ÉáNw0@ƒmSÆE`TcU|Õ˜z©•gæÂ<÷»¼ae;õôé[dßC#«¿6HdŒH„ŒPY—J×£§ºi$‚ I:’ë[²¤.¾ U“ó¨ùzd‡ ëkÒtãT~ÙA‚©'ëí#ë§éy¤ }œSúÐÿÏå{üSð[é’èi‘3 =—w`¶ð"7Å‹©oánÇ7r³;KaHõ¥€éÛ_ÂÜV¾*æü8(Þ“zï˜b/Üq•Kû~àGȽû,&ŸCƒ¹>Çú¼†âáaÒ9Ãï- ñG6Cû1ùÈfüW½Vº9ä(ä§]ÈI/¡”c+9ºµÛóŽÓTgÜôX¼³ú@å×îƒÚÃÿò÷Ýk }µ_ÔeH^*oã´úCdítJˆ*À8Rè$‘†ù®—D¬úðmFŠx‰ÔÛ¤‡‘áNIaÜÒ…A¤Á%^¼oŒ surveillance/vignettes/references.bib0000644000176200001440000003577014665321144017577 0ustar liggesusers@Unpublished{altmann2003, author = {D. Altmann}, title = {The surveillance system of the {Robert Koch Institute}, {Germany}}, note = {Personal communication}, year = {2003}, } @Book{andersson2000, title = {Stochastic Epidemic Models and their Statistical Analysis}, publisher = {Springer-Verlag}, year = {2000}, author = {H. Andersson and T. Britton}, volume = {151}, series = {Springer Lectures Notes in Statistics}, } @Article{czado-etal-2009, author = {Claudia Czado and Tilmann Gneiting and Leonhard Held}, title = {Predictive model assessment for count data}, journal = {Biometrics}, year = {2009}, volume = {65}, number = {4}, pages = {1254--1261}, doi = {10.1111/j.1541-0420.2009.01191.x}, } @Book{Daley.Vere-Jones2003, title = {An Introduction to the Theory of Point Processes}, publisher = {Springer-Verlag}, year = {2003}, author = {Daley, Daryl J. and Vere-Jones, David}, editor = {Gani, Joseph M. and Heyde, Christopher C. and Kurtz, Thomas G.}, volume = {I: Elementary Theory and Methods}, series = {Probability and its Applications}, address = {New York}, edition = {2nd}, isbn = {0-387-95541-0}, } @Book{Fahrmeir.etal2013, title = {Regression: Models, Methods and Applications}, publisher = {Springer-Verlag}, year = {2013}, author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian Marx}, isbn = {978-3-642-34332-2}, doi = {10.1007/978-3-642-34333-9}, } @Article{farrington96, author = {C. P. Farrington and N. J. Andrews and A. D. Beale and M. A. Catchpole}, title = {A statistical algorithm for the early detection of outbreaks of infectious disease}, journal = {Journal of the Royal Statistical Society. Series A (Statistics in Society)}, year = {1996}, volume = {159}, pages = {547--563}, } @InCollection{farrington2003, author = {Paddy Farrington and Nick Andrews}, title = {Outbreak Detection: Application to Infectious Disease Surveillance}, booktitle = {Monitoring the Health of Populations}, publisher = {Oxford University Press}, year = {2003}, editor = {Ron Brookmeyer and Donna F. Stroup}, chapter = {8}, pages = {203--231}, } @Article{geilhufe.etal2012, author = {Marc Geilhufe and Leonhard Held and Stein Olav Skr{\o}vseth and Gunnar S. Simonsen and Fred Godtliebsen}, title = {Power law approximations of movement network data for modeling infectious disease spread}, journal = {Biometrical Journal}, year = {2014}, volume = {56}, number = {3}, pages = {363--382}, doi = {10.1002/bimj.201200262}, } @Article{gneiting-raftery-2007, author = {Tilmann Gneiting and Adrian E. Raftery}, title = {Strictly proper scoring rules, prediction, and estimation}, journal = {Journal of the American Statistical Association}, year = {2007}, volume = {102}, number = {477}, pages = {359--378}, doi = {10.1198/016214506000001437}, } @Article{held-etal-2005, author = {Leonhard Held and Michael H{\"o}hle and Mathias Hofmann}, title = {A statistical framework for the analysis of multivariate infectious disease surveillance counts}, journal = {Statistical Modelling}, year = {2005}, volume = {5}, number = {3}, pages = {187--199}, doi = {10.1191/1471082X05st098oa}, } @Article{held.paul2012, author = {Held, Leonhard and Paul, Michaela}, title = {Modeling seasonality in space-time infectious disease surveillance data}, journal = {Biometrical Journal}, year = {2012}, volume = {54}, number = {6}, pages = {824--843}, doi = {10.1002/bimj.201200037}, } @Article{herzog-etal-2010, author = {Herzog, S. A. and Paul, M. and Held, L.}, title = {Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in {German} surveillance data}, journal = {Epidemiology and Infection}, year = {2011}, volume = {139}, number = {4}, pages = {505--515}, doi = {10.1017/S0950268810001664}, } @Article{hoehle-2007, author = {H{\"o}hle, M.}, title = {\texttt{surveillance}: {A}n \textsf{R} package for the monitoring of infectious diseases}, journal = {Computational Statistics}, year = {2007}, volume = {22}, number = {4}, pages = {571--582}, doi = {10.1007/s00180-007-0074-8}, } @Article{hoehle2009, author = {Michael H{\"o}hle}, title = {Additive-multiplicative regression models for spatio-temporal epidemics}, journal = {Biometrical Journal}, year = {2009}, volume = {51}, number = {6}, pages = {961--978}, doi = {10.1002/bimj.200900050}, } @Article{hoehle.anderheiden2014, author = {Michael H{\"o}hle and Matthias {an der Heiden}}, title = {{Bayesian} nowcasting during the {STEC} {O104:H4} outbreak in {Germany}, 2011}, journal = {Biometrics}, year = {2014}, volume = {70}, number = {4}, pages = {993--1002}, doi = {10.1111/biom.12194}, } @InCollection{hoehle-mazick-2010, author = {H{\"o}hle, M. and Mazick, A.}, title = {Aberration detection in \textsf{R} illustrated by {Danish} mortality monitoring}, booktitle = {Biosurveillance: Methods and Case Studies}, publisher = {Chapman \& Hall/CRC}, year = {2010}, editor = {Kass-Hout, T. and Zhang, X.}, chapter = {12}, pages = {215--238}, } @Article{hoehle.paul2008, author = {Michael H{\"o}hle and Michaela Paul}, title = {Count data regression charts for the monitoring of surveillance time series}, journal = {Computational Statistics and Data Analysis}, year = {2008}, volume = {52}, number = {9}, pages = {4357--4368}, doi = {10.1016/j.csda.2008.02.015}, } @Article{hughes.king2003, author = {Anthony W. Hughes and Maxwell L. King}, title = {Model selection using {AIC} in the presence of one-sided information}, journal = {Journal of Statistical Planning and Inference}, year = {2003}, volume = {115}, number = {2}, pages = {397--411}, doi = {10.1016/S0378-3758(02)00159-3}, } @Article{hutwagner2005, author = {L. Hutwagner and T. Browne and G.M Seeman and A.T. Fleischhauer}, title = {Comparing aberration detection methods with simulated data}, journal = {Emerging Infectious Diseases}, year = {2005}, volume = {11}, pages = {314--316}, doi = {10.3201/eid1102.040587}, } @Article{bulletin3901, author = {{Robert Koch-Institut}}, title = {{G}ruppenerkrankung in {B}aden-{W}{\"u}rttemberg: {V}erdacht auf {K}ryptosporidiose}, journal = {Epidemiologisches Bulletin}, volume = {39}, year = {2001}, pages = {298--299}, } @Book{Keeling.Rohani2008, title = {Modeling Infectious Diseases in Humans and Animals}, publisher = {Princeton University Press}, year = {2008}, author = {Matt J. Keeling and Pejman Rohani}, } @Misc{survstat, author = {{Robert Koch-Institut}}, title = {{SurvStat@RKI}}, howpublished = {\url{https://survstat.rki.de/}}, year = {2004}, note = {Date of query: September 2004}, } @Misc{survstat-fluByBw, author = {{Robert Koch-Institut}}, title = {{SurvStat@RKI}}, howpublished = {\url{https://survstat.rki.de/}}, year = {2009}, note = {Accessed March 2009}, } @Article{lai95, author = {T. L. Lai}, title = {Sequential changepoint detection in quality control and dynamical systems}, journal = {Journal of the Royal Statistical Society. Series B (Methodological)}, year = {1995}, volume = {57}, number = {4}, pages = {613--658}, } @Article{manitz.hoehle2013, author = {Juliane Manitz and Michael H{\"o}hle}, title = {Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in {Germany}}, journal = {Biometrical Journal}, year = {2013}, volume = {55}, number = {4}, pages = {509--526}, doi = {10.1002/bimj.201200141}, } @Book{Martinussen.Scheike2006, title = {Dynamic Regression Models for Survival Data}, publisher = {Springer-Verlag}, year = {2006}, author = {Martinussen, Torben and Scheike, Thomas H.}, series = {Statistics for Biology and Health}, } @Article{meyer.etal2011, author = {Sebastian Meyer and Johannes Elias and Michael H{\"o}hle}, title = {A space-time conditional intensity model for invasive meningococcal disease occurrence}, journal = {Biometrics}, year = {2012}, volume = {68}, number = {2}, pages = {607--616}, doi = {10.1111/j.1541-0420.2011.01684.x}, } @Article{meyer.held2015, author = {Sebastian Meyer and Leonhard Held}, title = {Incorporating social contact data in spatio-temporal models for infectious disease spread}, journal = {Biostatistics}, year = {2017}, volume = {18}, number = {2}, pages = {338--351}, doi = {10.1093/biostatistics/kxw051}, } @Article{meyer.held2013, author = {Sebastian Meyer and Leonhard Held}, title = {Power-law models for infectious disease spread}, journal = {Annals of Applied Statistics}, year = {2014}, volume = {8}, number = {3}, pages = {1612--1639}, doi = {10.1214/14-AOAS743}, } @Article{meyer.etal2014, author = {Sebastian Meyer and Leonhard Held and Michael H{\"o}hle}, title = {Spatio-temporal analysis of epidemic phenomena using the \textsf{R} package \texttt{surveillance}}, journal = {Journal of Statistical Software}, year = {2017}, volume = {77}, number = {11}, pages = {1--55}, doi = {10.18637/jss.v077.i11}, } @Article{meyer.etal2015, author = {Sebastian Meyer and Ingeborg Warnke and Wulf R{\"o}ssler and Leonhard Held}, title = {Model-based testing for space-time interaction using point processes: {A}n application to psychiatric hospital admissions in an urban area}, journal = {Spatial and Spatio-temporal Epidemiology}, year = {2016}, volume = {17}, pages = {15--25}, doi = {10.1016/j.sste.2016.03.002}, } @Article{neal.roberts2004, author = {Neal, P. J. and Roberts, G. O.}, title = {Statistical inference and model selection for the 1861~{Hagelloch} measles epidemic}, journal = {Biostatistics}, year = {2004}, volume = {5}, number = {2}, pages = {249--261}, doi = {10.1093/biostatistics/5.2.249}, } @Article{ogata1988, author = {Yosihiko Ogata}, title = {Statistical models for earthquake occurrences and residual analysis for point processes}, journal = {Journal of the American Statistical Association}, year = {1988}, volume = {83}, number = {401}, pages = {9--27}, } @Article{paul-held-2011, author = {Michaela Paul and Leonhard Held}, title = {Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts}, journal = {Statistics in Medicine}, year = {2011}, volume = {30}, number = {10}, pages = {1118--1136}, doi = {10.1002/sim.4177}, } @Article{paul-etal-2008, author = {Michaela Paul and Leonhard Held and Andr{\'e} Michael Toschke}, title = {Multivariate modelling of infectious disease surveillance data}, journal = {Statistics in Medicine}, year = {2008}, volume = {27}, number = {29}, pages = {6250--6267}, doi = {10.1002/sim.3440}, } @MastersThesis{riebler2004, author = {A. Riebler}, title = {{Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten}}, school = {Department of Statistics, University of Munich}, year = {2004}, type = {Bachelor's thesis}, } @Article{salmon.etal2014, author = {Ma{\"e}lle Salmon and Dirk Schumacher and Michael H{\"o}hle}, title = {Monitoring count time series in \textsf{R}: {A}berration detection in public health surveillance}, journal = {Journal of Statistical Software}, year = {2016}, volume = {70}, number = {10}, pages = {1--35}, doi = {10.18637/jss.v070.i10}, } @Book{Silvapulle.Sen2005, title = {Constrained Statistical Inference: Order, Inequality, and Shape Constraints}, publisher = {Wiley}, year = {2005}, author = {Silvapulle, Mervyn J. and Sen, Pranab Kumar}, series = {Wiley Series in Probability and Statistics}, isbn = {0-471-20827-2}, doi = {10.1002/9781118165614}, } @Article{stroup89, author = {D.F. Stroup and G.D. Williamson and J.L. Herndon and J.M. Karon}, title = {Detection of aberrations in the occurrence of notifiable diseases surveillance data}, journal = {Statistics in Medicine}, year = {1989}, volume = {8}, pages = {323--329}, doi = {10.1002/sim.4780080312}, } @Article{wei.held2013, author = {Wei, Wei and Held, Leonhard}, title = {Calibration tests for count data}, journal = {Test}, year = {2014}, volume = {23}, number = {4}, pages = {787--805}, doi = {10.1007/s11749-014-0380-8}, } @Article{ruckdeschel.kohl2014, author = {Peter Ruckdeschel and Matthias Kohl}, title = {General purpose convolution algorithm in {S4} classes by means of {FFT}}, journal = {Journal of Statistical Software}, year = {2014}, volume = {59}, number = {4}, pages = {1--25}, doi = {10.18637/jss.v059.i04}, } @Article{meyer2019, author = {Sebastian Meyer}, title = {\texttt{polyCub}: An \textsf{R} package for integration over polygons}, journal = {Journal of Open Source Software}, year = {2019}, volume = {4}, number = {34}, pages = {1056}, doi = {10.21105/joss.01056}, } @Manual{R:rmapshaper, title = {\texttt{rmapshaper}: Client for 'mapshaper' for 'Geospatial' Operations}, author = {Andy Teucher and Kenton Russell}, year = {2020}, url = {https://CRAN.R-project.org/package=rmapshaper}, } @Book{R:ggplot2, author = {Hadley Wickham}, title = {ggplot2: Elegant Graphics for Data Analysis}, publisher = {Springer-Verlag}, address = {New York}, year = {2016}, isbn = {978-3-319-24277-4}, url = {https://ggplot2.tidyverse.org}, } @Book{R:spatstat, title = {Spatial Point Patterns: Methodology and Applications with {R}}, author = {Adrian Baddeley and Ege Rubak and Rolf Turner}, year = {2015}, publisher = {Chapman and Hall/CRC}, address = {London}, isbn = {978-1-4822-1020-0}, } @Manual{R:quadprog, title = {\texttt{quadprog}: Functions to Solve Quadratic Programming Problems}, author = {Berwin A. Turlach and Andreas Weingessel}, year = {2019}, url = {https://CRAN.R-project.org/package=quadprog}, } @Article{R:animation, title = {\texttt{animation}: An R Package for Creating Animations and Demonstrating Statistical Methods}, author = {Yihui Xie}, journal = {Journal of Statistical Software}, year = {2013}, volume = {53}, number = {1}, pages = {1--27}, doi = {10.18637/jss.v053.i01}, } @Article{R:spdep, author = {Roger Bivand}, title = {R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data}, journal = {Geographical Analysis}, year = {2022}, volume = {54}, number = {3}, pages = {488--518}, doi = {10.1111/gean.12319}, } surveillance/vignettes/figures/0000755000176200001440000000000014712411614016423 5ustar liggesuserssurveillance/vignettes/figures/fPeriods2.pdf0000644000176200001440000000341114712367654020770 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20241105111040) /ModDate (D:20241105111040) /Title (R Graphics Output) /Producer (R 4.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Page /Parent 3 0 R /Contents 6 0 R /Resources 4 0 R >> endobj 6 0 obj << /Length 552 /Filter /FlateDecode >> stream xœÝVMÓ@ ½Ï¯ð±=`lÏ÷‘•©‡ÕFâ°Ú]ÄŠ"í ‰ŸÊßÁ3IšI© ÉqMò¿÷@HÔ_<¹råör„Ïðð>|4%Â/sÿ_ ÁÁ¨”áJüdD03dL'pII„r‚ïwÆEÁ@ÀÙa²p2!Æ…ˆ$Š#¦ øÎÐà+Èvòí}ØF•z?âêd}Í”­ÅàÔé"äüÞ©W'ë”ÊRN0ÀF20z©Š6¨â<Àx[2Þ=ŽM‚#n9?I^„(ÖeûVT²Go'Ñ7¢’3Æ4‰^„(f”ÔŠ:_ ƺCº©Z·¶y‡ÙO#n7'•ÇsÄgkÕn5Üfž´ñâ2âÙâúÅœCþ^ÿM74ÍWóöƒ²¡{±çî®—Û”Ð庬a'¸ßu{°vßNÇýtó¾+zÿщ%…KF*²û¹‡îé’ÙÓÄì1[ÌJ (¹RiFÕ¤þá*Ú+±±}sÍö:ÕÕ¡˜¨²ÂÖg ¹áþ^n[H©¡>.§Æ8Ïøe95y´ÔPË©¥¹¸¡>/§²ÍåˆÛÖNB6¶{½}ÁÑcvÛ*ÄÉ–£}S‰¸Ia[„x>+Š$zX ‘лµEý ‹µHƒ/­˜¿„Yôt_¹ïVì•­LÉ’¤ÌÑFgÊÈ}Ú¶ï˛ΒJ7_#ßÎÿ‰¼Þùa¿ê?endstream endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 /MediaBox [0 0 504 216] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> >> endobj 7 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F7 /BaseFont /Times-Roman /Encoding 7 0 R >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /Name /F11 /BaseFont /Symbol >> endobj xref 0 10 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000000915 00000 n 0000000998 00000 n 0000000212 00000 n 0000000292 00000 n 0000001090 00000 n 0000001347 00000 n 0000001445 00000 n trailer << /Size 10 /Info 1 0 R /Root 2 0 R >> startxref 1523 %%EOF surveillance/vignettes/figures/fPeriods.R0000755000176200001440000000455414712367340020342 0ustar liggesusers#!/usr/bin/env Rscript # Create plots for fig:fPlot in vignette("monitoringCounts") # Author: Ma"elle Salmon # Code removed from vignette to drop ggplot2 dependency library(ggplot2) # for rectangles widthRectangles <- 10 # dimensions for the ticks heightTick <- 4 xTicks <- c(15,67,119) yTicksStart <- rep(0,3) yTicksEnd <- rep(0,3) yTicksEnd2 <- rep(-5,3) textTicks <- c("t-2*p","t-p","t[0]") xBigTicks <- c(xTicks[1:2]-widthRectangles/2,xTicks[1:2]+widthRectangles/2,xTicks[3]-widthRectangles/2,xTicks[3]) yTicksBigEnd <- rep(0,6) yTicksBigStart <- rep(heightTick,6) # to draw the horizontal line vectorDates <- rep(0,150) dates <- seq(1:150) data <- data.frame(dates,vectorDates) xPeriods <- c(15,67,117,15+26,67+26) p <- ggplot() + # white theme_void() + geom_segment(aes(x = 0, y = -20, xend = 200, yend = 10), linewidth = 2, arrow = arrow(length = unit(0.5, "cm")), colour ='white') + # time arrow geom_segment(aes(x = 0, y = 0, xend = 150, yend = 0), linewidth = 1, arrow = arrow(length = unit(0.5, "cm"))) + # ticks geom_segment(aes(x = xTicks, y = yTicksEnd2, xend = xTicks, yend = yTicksStart ), arrow = arrow(length = unit(0.3, "cm")), linewidth = 1) + # big ticks geom_segment(aes(x = xBigTicks, y = yTicksBigStart, xend = xBigTicks, yend = yTicksBigEnd*2), linewidth = 1) + # time label annotate("text", label = "Time", x = 170, y = 0, size = 8, colour = "black", family="serif") + # ticks labels annotate('text',label=c("t[0]-2 %.% freq","t[0]-freq","t[0]"),x = xTicks, y = yTicksEnd - 10, size = 8,family="serif",parse=T) ## noPeriods = 2 pdf("fPeriods2.pdf", width = 7, height = 3, colormodel = "gray") p + # periods labels annotate('text',label=c("A","A","A","B","B"),x = xPeriods, y = rep(6,5), size = 8,family="serif",parse=T) dev.off() ## noPeriods = 3 yTicksBigEnd2 <- rep(0,4) yTicksBigStart2 <- rep(heightTick,4) newX <- c(xTicks[1:2]+widthRectangles/2+52-widthRectangles,xTicks[1:2]+52/2) xPeriods <- c(15,67,117,15+16,67+16,15+35,67+35) pdf("fPeriods3.pdf", width = 7, height = 3, colormodel = "gray") p + geom_segment(aes(x = newX, y = yTicksBigStart2, xend = newX, yend = yTicksBigEnd2), linewidth = 1) + # periods labels annotate('text',label=c("A","A","A","B","B","C","C"),x = xPeriods, y = rep(6,7), size = 8,family="serif",parse=T) dev.off() surveillance/vignettes/figures/HMM.pdf0000644000176200001440000001420414712367654017556 0ustar liggesusers%PDF-1.4 %ÐÔÅØ 4 0 obj << /Length 39 /Filter /FlateDecode >> stream xÚ+ä2T0BC]Cs]3 K…ä\.}Ï\C—|®@.m/¿ endstream endobj 3 0 obj << /Type /Page /Contents 4 0 R /Resources 2 0 R /MediaBox [0 0 254 77] /Parent 5 0 R >> endobj 1 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./tmp-pdfcrop-28554-stdin.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 6 0 R /BBox [0 0 595 842] /Resources << /ProcSet [ /PDF /Text ] /Font << /R11 7 0 R/R9 8 0 R/R7 9 0 R>> >> /Length 1054 /Filter /FlateDecode >> stream xœ¥W»Ž$7 Ìû+:ôK‹¤ž0 8³g†£5l7\äßwI-QêÁ=æ°A¯Ø%Ul•4wG¼»úן¯×-QIŽyÿosûO«D { !‘Óýjè2qØY“‹ûBC'ó¾nÌêIíµK™rœ³Ç¸§Þ".PÙÇt=ù%}?øbÔ{L?Wÿºý»]°¬¶ j î×ëþÃËöý¯i/T¢D¿¿ü½’p-‚JåJ/×íï~{zF)ª¬¾üŒ™eNs¨33Iv.ïÏL^KF¶¿0…Ÿ˜¢ ,uÆ/Û/ç¢@¬òŽÈP(+RLÀñàE_ôŠd } Tæô1ž[äPhÌú ‚©ð¨` ¬æ#Á›%¾ÉQ¨ ߨ¯Üè+>:Ò¸èk‘.xç©ÈÐOTñÁø©¯Hl¸ñ^X(ñœ>ƶúiòØü®ž˜¾VÁ@XÍG‚7Kx@_‘DRîèËå‹åÕ&¯j:fœ¨ Žc)»B£~÷ôÌ1QN|þ×Qòf‡4:GeÝékðB>¨O½½CŠ I¬CŠ1å9»M= 4umrß²[{Œ~ ¬à#Á›úhz¸oÉŸlüø³ýùqc‰1N{QˆÑÚRªÁ_-œÇ®øi„{bq.ƒ-þªjãêß^±9'Â,;Í }Ü)ª€fªF‚˜K¢ F1ÆÕÂ" aU÷ çUŒ7d%^>Ýê€ Æ7¿ÞfN}a\éèHGh@!<3ô±-~uF‚¡Þ ˜úŽ" aU÷ çU<ä¾ )ó§ô=›/%¥Ï›oðž¸Ü"õy­W/^΢÷ ¤0Î’50 (TÕá Xïˆ7¨Ë&Ì0Ѳ°‰À6“.¨‰ét3°ÐU¥½¬W¦è # tÎWTíWùH9×ì ãºT,¢ßAå“z®jè±\3Ý .› úÍ}y8+®õ”Ùæ½ï˜®æ äñgI=e­ÌëÔ§.,1Î(®{;¶š»DŠ¡öJp/V90’Z˜ê7-R9Û/–v»sõq½ƒ_ÂÏœÀ+_5r••/ãž(aåk˜|櫱V¾Ú§¸õ{¿ð5k“°ðayÜt1¾†Q>ñµ˜Ï ß- íóhrL¾c«§…Oq¡ZÈ€õDvÜή[Ð;ïW!îu endstream endobj 6 0 obj << /Producer (GPL Ghostscript 9.55.0) /CreationDate (D:20241105111039+01'00') /ModDate (D:20241105111039+01'00') /Creator (dvips\(k\) 2024.1 \(TeX Live 2024\) Copyright 2024 Radical Eye Software) /Title (HMM.dvi) >> endobj 7 0 obj << /BaseFont /ISYWPX+LMMathItalic7-Regular /FontDescriptor 10 0 R /Type /Font /FirstChar 110 /LastChar 110 /Widths [ 706] /Encoding /WinAnsiEncoding /Subtype /Type1 >> endobj 8 0 obj << /BaseFont /ZRBLWS+LMRoman7-Regular /FontDescriptor 11 0 R /Type /Font /FirstChar 49 /LastChar 51 /Widths [ 569 569 569] /Encoding /WinAnsiEncoding /Subtype /Type1 >> endobj 9 0 obj << /BaseFont /EENAQQ+LMMathItalic10-Regular /FontDescriptor 12 0 R /Type /Font /FirstChar 58 /LastChar 89 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 828 581] /Encoding 13 0 R /Subtype /Type1 >> endobj 10 0 obj << /Type /FontDescriptor /FontName /ISYWPX+LMMathItalic7-Regular /FontBBox [ 0 -10 658 441] /Flags 131104 /Ascent 441 /CapHeight 441 /Descent -10 /ItalicAngle 0 /StemV 98 /MissingWidth 280 /XHeight 441 /CharSet (/n) /FontFile3 14 0 R >> endobj 11 0 obj << /Type /FontDescriptor /FontName /ZRBLWS+LMRoman7-Regular /FontBBox [ 0 -20 514 664] /Flags 65568 /Ascent 664 /CapHeight 664 /Descent -20 /ItalicAngle 0 /StemV 77 /MissingWidth 280 /CharSet (/one/three/two) /FontFile3 15 0 R >> endobj 12 0 obj << /Type /FontDescriptor /FontName /EENAQQ+LMMathItalic10-Regular /FontBBox [ 0 0 851 683] /Flags 65540 /Ascent 683 /CapHeight 683 /Descent 0 /ItalicAngle 0 /StemV 127 /MissingWidth 280 /CharSet (/X/Y/period) /FontFile3 16 0 R >> endobj 13 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 58/period] >> endobj 14 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 446 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6× JM/ÍI,ɨüfü!ÃôC–¹»ñ§Ú_Önæn–?4…¾' ~ãÿ-ÀÀÌÈžSéœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡ÁšzX]†"ÈÀÀÀ˜ÇÀàÏÀÄÈÈrøû¾ÿL‡ —ÿ_ÎøÃürïUæŸjß•EgÔuwÔvµ6´Ë•X'$%ws”µÏ\°hÂŒ¹;䧯Úòµû0Ç»9aÁɹr-&u't—äÔ•”¦Õu·qÔÍìî›ÙÓ·l’ܬcóölêæX:©´ ¢)­¥@¾Ô0û·H{]kQw‡déÜÆÙsgϘ2An”ɫ',XøTb≠',š¶¥wòŠ-Ë7ïÚ­›ãhOD…ÂoæêDù†üö¦î*ްíYûÞoÿ.7Kޝ|þç©S§/˜Ï¶œë2·KH>g7÷òž¾ž¾é=fLš8‡gmoïš ˜Ø;£‡‡—¨·" endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 599 >> stream xœcd`ab`ddôñ ÊÏMÌ3× JM/ÍI, ªüfü!ÃôC–¹»üÇ´Ÿ:¬Ý<ÌÝ<,~ìú!ø=ÿ»3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡; Æg```642f`bf{…ÁacØ÷5|ÿ™, º×ÿX²¾{ýòr¡ï“îˆ ïø‘+¶>•]½{ÆùûØ—uöäËyût%usŸHg_Ü}¶ûÐrŽ?“سºëÔåRÓÙ¾»õ³BMzðýÍ×ëO}}ôuçæ½ß½D3Ù:Jê›[íºk»9~û°}y±nùñ]W]8ÙýŠã;¯âÕß"¿ÌMô#¶µM]¼bÎú¹-ëÂåV]:¿pW7Çûý¶V&¾nÙéò¿[756uwvçKþ0`ƒØW¾úâwæïŠË¿³:´‚ñÁ§gß|cþ1í»£h÷M™}Ù¸ñZ÷ Ž[Ç~3ÿf6 µÎ\X±rÕüEËW”/Èé•[·ý´ Ý;N•š$ÖÆæÈg¥æwFvuvv·uqt7v6ÔNéž#íæáP…ßÎiÉÆÓŽ%Êï궦{ÇêâE9ùùUIºŸý¾ó~—ýâ½_ùüγ¾çM2Ÿm=×-n9.–|În½½=}½“z'­^Áó|bï¦þžþIý“û'ñð20%Êÿª endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 722 >> stream xœm‘ËOqÇw[0jQbcu»&ôA‰ÐÄ4*±j (>¢–åQ¶Ðú@ÚÒÚ²ììn[è°µ) å©h¼i¢§ê‰øxð`<™`"ùÑìŒ/søÎLæûùŽ•H0Ç]×jõ¶îk6½©Çpª¦ª¹Ó8dÒ[vZÇ·ã[G$[G¥ÅïÅ‹¥ —‚¼äC±«õ@† ôp?&Åñ;ý#æ§¥ÇØm#O×ÔÔVU‰µŽlw’ Õd“ÞÐg¶[ûzH=ÕA6Uk«Éf»(ö'ÌÙÞÙ­7u‘æ.R×ÙF¶¶\nn!¯4ßl½Õr²úÿÖþU1 “¶Ý­Ç°:¬«Ø…ÂJðR|ß@ËŠmé'‹E|/Rieb üÄUv‚w½”è“jýó/T¾4ŸÏ­å |’¤eqw/ &¢ :y#Èn°? Ó“Œ&Ê,N€F½n¿O8+4¨Î¡ûÁ$DfÓoBêcaV–ðÝþ˜=a-o×=`÷Æ YˆŒ E5¨LXŒ‚=d˜@P}ïöƒ‘6ÚÍøâeora™‡Eâ%¼¢_€,’€LÌÂÆÇš8˜‡™é™Dò'ÂTß~lþð(ø®Žqµ—ñ1à’yâ"P%?é9PO& ­QlK.ñà‹µÊ©`È?HÑ0@ôB7ß·KçðƘðd~bØej„'BF wðêÜ[ˆ¥b‰‹`„PIÿÁR爐‹òYD¬ á Kó^ Õ@„3A§[ÇÐç™Ã/Ž¥4¢1t.]eâ>pÀ0p.Í0à “ÑÕðóUtLN³üT±hM•J-,,¯¬‡Õñ·<“)¶qeƒMüë¦éÞ+óÖEY­•³æó¹\žP e·ãñ$êÏîÉ–ʉ²î‘|/È˳,ÇóQn&ÅN³rù»Âql„åN¾Ã~*UVš endstream endobj 2 0 obj << /XObject << /Im1 1 0 R >> /ProcSet [ /PDF ] >> endobj 5 0 obj << /Type /Pages /Count 1 /Kids [3 0 R] >> endobj 17 0 obj << /Type /Catalog /Pages 5 0 R >> endobj 18 0 obj << /Producer (pdfTeX-1.40.26) /Creator (TeX) /CreationDate (D:20241105111039+01'00') /ModDate (D:20241105111039+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.26 (TeX Live 2024) kpathsea version 6.4.0) >> endobj xref 0 19 0000000000 65535 f 0000000236 00000 n 0000005307 00000 n 0000000133 00000 n 0000000015 00000 n 0000005372 00000 n 0000001593 00000 n 0000001825 00000 n 0000002008 00000 n 0000002192 00000 n 0000002430 00000 n 0000002683 00000 n 0000002929 00000 n 0000003175 00000 n 0000003270 00000 n 0000003806 00000 n 0000004495 00000 n 0000005429 00000 n 0000005479 00000 n trailer << /Size 19 /Root 17 0 R /Info 18 0 R /ID [<8C9B5105EA3B0AC29708975D8F78EE8B> <8C9B5105EA3B0AC29708975D8F78EE8B>] >> startxref 5740 %%EOF surveillance/vignettes/figures/fPeriods3.pdf0000644000176200001440000000346014712367654020775 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20241105111040) /ModDate (D:20241105111040) /Title (R Graphics Output) /Producer (R 4.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Page /Parent 3 0 R /Contents 6 0 R /Resources 4 0 R >> endobj 6 0 obj << /Length 591 /Filter /FlateDecode >> stream xœÝVMoÛ0 ½ëWð˜ƉÔ÷q¶v(j`‡¢·¥ÃЦ@‹û©û;£dÇ’½`µ}ì!¶_Â÷%Rt@ðÏêº~@£ÖýÅi›oL>ß^Žð žɳ†/Ê"ø­nï@Ãw¥á DJQ!~U̘F†Ø(¤¬=R„G€e£×@Éb4pR³e}@Í‚F/øFéÁ—‘Lõí}Èj "Æ{t“q%S2½§YÈø»'*N.”/tÌK9ÁIOè¸(/ŠÓåLÎ|ø5ëQðhu<ãF‘¢Fïªä,D°,Ûµ¢œ:SEϸå”0Ä*: Lȱµ.Œd‡dS¥n=lóô“«gÜnNÌcÄ'k•n5Üf¥ñB 9ãÉâúÅŒ!ÿ®ÿªšæ‡zÿYØÐÝ›±»Ë¥Ç&F´©ìIØ nwÝŒƒÝÏÓqÝA}ê²Þ+:!§àSÎHDv¿öÐ=Ì™ýaªÌ“Á$Tœ UO¨’Ô\Yz%4¶ï.Ù^¦Úr(*•Wغ„>5Ü?Ëm3)6ÔûåÔ¦¿,§F‡F7Ôãrjn.j¨ÏË©dRqÛºÂJCðÆ¶ 'Goc_Pp˜ì¶ Q4y´o*å‘ä·Õˆ5MÏÁŠ"± c htvm‘XÞa¡ið‹´`Z.˜t$6Ñ6*nUŒ”Ë7*žÃ×fAÄ$ò¦aWÖñaEÝdÌ“ÞHæÈùLo#GŸ&sMD®ÖtŒL„¸‘LÜ¿]+ùã ç¼Ùt‘|=ý;öv?ê/©ìendstream endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 /MediaBox [0 0 504 216] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> >> endobj 7 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F7 /BaseFont /Times-Roman /Encoding 7 0 R >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /Name /F11 /BaseFont /Symbol >> endobj xref 0 10 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000000954 00000 n 0000001037 00000 n 0000000212 00000 n 0000000292 00000 n 0000001129 00000 n 0000001386 00000 n 0000001484 00000 n trailer << /Size 10 /Info 1 0 R /Root 2 0 R >> startxref 1562 %%EOF surveillance/vignettes/monitoringCounts-cache/0000755000176200001440000000000014615104657021411 5ustar liggesuserssurveillance/vignettes/monitoringCounts-cache/pMC.RData0000644000176200001440000000025414330454336023002 0ustar liggesusers‹ r‰0æŠàb```f`abb`f2XCCÜt-€"@# 'HA¯3âbaûCž&8všÛïý¼Íuᩃö[þ‚§í7$ù^ú¸òýr.Û‚Å×¹ì§÷úß·N‰²Ÿ½ôqð÷s7í§6²©ÜÕ—¶ok×fâñÜeßRõÐ}Hµ}Åä’=Yu¿ìK ü (?j”f þQUxÓsurveillance/vignettes/monitoringCounts-cache/boda.RData0000644000176200001440000000617214615104657023241 0ustar liggesusers‹íšw|ÕÇçNÙÙvž{ÇF D% bEv–d «›Ýu7A±Š‚d“ÒûSìúlØË³÷þ°aWìXyßÙ{É^ûèÇ÷ÇÎçóåìÌÜ™¹÷Üs~wN˜‰c'íÚgRÃ0,öù×á§á~ظ Ã6ÙQ†m`í)ñÒ¡¬¿äwR¡d?úƒYÜ~˜w£Øð·ž791>EÚªâý{mÓ7œˆ—LÝ356Tf·OöT–ÍV+¯ŒVDbñòH(zØ¡+5̽Ÿ“½ŸwÇßÐÇàxþKàSø~4Œa\<Œ ‡ „ua#ض‡]aì ûÂÁp¥p2$a:Ì„Ù0æA+tÃUp=Ü÷ÀCð<¯ÁÛð!,…ïàÃN¿‡÷ƒ5a=ض†a8ìcá˜GÁd(ƒT™p\ih„v¸ þ 7Áp< OÃKð&¼ŸÀWðƒaŒÀÑ#‚0Ö asØv‘@ ŒØ‚ÃáX(“€ qÌ€ àR¨ƒè‚+a!Ü wÃð8<¯Â[ð|ßÂφQHüö…5€(- [Á»Á ì Ipœå@žçÂ…P 0À5p#ü î…Gà)xÞ€wácø¾7 \`Œt`¹6l›Á¶°3a#GÃ8dÎÈc` D §ÂÙp>\µÐ p\·À]ðüž…W`1¼ŸÁ7ð“aŒ²€Dµ: ‚aK؆BìûÁ8Ž2qTRp:œs  ê¡ 2p5Ü·Ã"xž„àux>‚/`,7Œ¢›EkÁú°)l;ÁØö†D/:B@NÅaœ³àb¨&è€ËáZ¸î„ûü/"ÿ‹Èÿ"ò¿hIŽ`ãSRáä´0ùlŠf˜ä‹ÍXlrØÂ¿9i1'–·OLYúÖwbñƒELY¦§yÀ¼XøÁÁç6¹ïàg‡Üpˆ#q™'_»ŒÍ%\úï'rÛ!OäB€1¼ß´sˆ7‡ØtÈu›œvðC~Ùä¦lÆå 6}°¹‡ÝWúMž+âWqÞfl6so‘ý1‰‹œµðµEÎXôÕ$žMîo¢–ÚdáC _XÄŸþX\çÏó ¯]| —ü ‡\rÞ%'äJ HÆK¿ôÁEO]4Äå®sˆc›qÐZ‡xrÈUß;hŠM<;hßm¯}µÑ<_)4ÔBÃæÞ"OLôËD[MtÁDKMï<¹hSæ·2oä–E’šÞ8È‹¶¶÷<üo¡ÍöKú·MÞÐ; G.±`àÛ9 æ\|ï’.kƒ‹6È•zí0Ÿ1ê ‹6ºb{ó…Ol4Î&Ï,îc£Cö ý| 5¹Ÿ"^lÆìp‹\3Ñ9“\7™sÓúh±XøÎâz‹õÆd½0ÉËë?ùj¡mÖuÚzã³éO€¶òÂå˜Kλä“K.ºè{ Ò'—g¸øÄ¥?.:`~觃OÏǬ1í°ŽÙhÃh¡çÊAlæÝF;lòÆb=1Ñ“ù´X‡ì·´ï³sÂØ­cuÌ™ÜÇ¢‰6˜ä‚¹Lÿ¶¼øœ¡çÎ$¶,¯ë¤íÍkNÍ+ v‚¬iA|[€† I¬7AüDß\b1ÈZDW‚ø4ˆ®ºÞ¦m×ÝboÒ¶{sÙWö¥ßÝ»i›é#vŽ¿FÚ/Û,÷_Kž?YÛùsýüÁÚ¶Ëñ:m›äx‹Œ·y‚—q4Êñú}ÅÎÒ6-ý˜-××ÈsZd~äºÚ…bÅß5Õbåùiñ_Úß—ùK‹?ªÔ¶JúS-÷©¿Ö¼¬mÝRyŽßßÇÅ–Ê8N“þ LÒ¶ãEm»d\]3µíÞ_ìAbÅßÝÃÅn+íe3Ò¿Ìr>#ç‹•~tHœ¶Éñ–±Ò9ß*qÕ"¶©Böbe~›Še\þ¼Èó꯿LÖö‚´MËøZÄ/ âïZßo~|/+ýLû÷ë'ûÒï´ô·z‚¶s;䏸·FæµVŽÏ“þ×Êýd\õÏËxî”ñ·jÛ.û:ኻîëç…\ßý¤Xéo÷L±¢ ÝC´Í-Vâ û±âÿnÑN™ßùâŸéÿ|‰÷6É×ÖY=ûíÏWËdm}h”yi~׋nÕŠßfËüTçÄg£Ü·ö“žík$nk¤iozQŽõuðXm«–ÊqÑÅ´ø«VÆ=OÆ['û Ò®AüØ(ãk•|œ/y×!~ì}ëºEÛùóƒØ·ÅŽ»½ØÚfäyÉïÌ:r~šÜWúÛY,ϯ–þøù,ñÐVÜóxÓbm[DW}ÿ6Ý&ãòóAî× ùU+×ÍY¨m•œo^Üóú:?ÎE¯j‹•ùNO+×§e>}½«–çWK|¥%Òr}­Œgžø§Nú× zë뜿.úùÝ.÷ï=ê’óÝ»ˆýÌH~g投ûg¶”vi»@ƹ@ž›‘<íþL¬ô³óy¾Äo›Ä_»72ŽVég˲/úÚ*ë]‹¡íŠykè?\¢íEµ­Òíþ¨W’ÕbáHÙT^I’SãñR]jf¯O4Ô*ž¸Ê§ýÇÝ蟈'*£¡ŠH<6.*ñߎF/ÕcÏÛ¼ÍÛ¼ÍÛ¼Íۼ͵ÔÛ‘UJôòå`0N/‹Çüÿ7rÎ$¢ñŠƒ“¥á¤t(·=eJü4ý’Ó[çWl¹ýé›HÆOšªHFbe½ö‹Ó¡dYjŽÁ³åþ¼$JÑÈ\ÙÖ˜‰‡æ´s¡’“Ceá—™©„8Rú·öòœ{ 84Á»\(:a…Ÿ¼fë,ÿw7úõÉ%ñXE2Î;µé9¸Ÿ±â#H¨çM•÷Wü¾@åµñ^R«ÃÀ=ïÿjm þRëõ’Âj=Xx_WÂF°1 †M`SØ ¨ƒÔ@ý ¶êGµ l ÛuŸÚ¨ËÕŽ°SŠºDí CaP‡«P#aõÚö€ÑÞG¦°'ìc€z^í Ô™j nPûõ¨:¨CÔx8† pL&VQߨúI ÔÛê(8Žêu'ÀdÁà…\Q("Ae@§"@}¬NæJ•C âÀÔªS€P€¢ŽU•@Ý«Nâ_M‡Óá  ®WgÁÙ0ÃÈÖ ê8΃Yp>P‡©Ù@]©.„‹ÀûðˆºI] Ô{ª ª! 5P ÔjÔCP+ï¬f (SÔ}ª æC;t@'tA7d`\—õ¥º®‚«:Oy©] ×ÁB¸n€á&¸n[ºNÝnèÚîêJuÜ ÷À"¸îƒûáxÐÈ~0¦ê\õ(êpõ)P7«ÏiV_À—ð| ßÀ·ð,ƒïáø~‚Ÿ)P˵ šJ°dZ@nz4’ÿ¦÷QùoHÁêIÈJŸ[÷øÝCã"ïÏ{Ù¸G7e·f¿øþ9¾ìêýªb¿ÇzQŽÀFb¡h*ç„9~ŒÑã[îgx¡oHFâÉÝéÄ6¹Šì_50«vr0Š!¾z‡|•£Ép¬Tv©p(ù§²÷ÿõ¿9SC¾ž–— )¯ŒUúë»ÓýÒ;*ODYPƇ+¦Æý÷?¥2«ˆDÃ=ŽºÓ¼ÿ¾Hù}²½^ÿ‹eÀJU¬Júû¥*Yt#Ñh(V^Å"ÐO!ÙøõJP_ ò+‘_ ò+ÁÿÕJàéÖ _ã þTýþ­Ždû±WVDóâiäÅ3/žyñìU<ÿ †Íï’µ¨Ã_¶1 Ö"¾µ:!‡úŸßúÌͪG%F&DDÇDE¨#»wûSïϧü|>éx ·Yï8®€[à>ø ¼2Y}|¸>>Xߘ[à¼@]Z€o@'Ð ƒÁÆ‚d0ÌY`)ÈëÁ°ÇÁip”‚;àW𠼿Ëd ÐïÕ€ °Àø‚ )h ‚AWÐ CA4HÀT0 ¤ƒ…`X¾ÛÁ^pü΂Ëà&¸ž€—àƒLÖÝP3P8ƒ: 4˜ ÛÐôa`8À$h8$T0d‚% ¬›Á.°§Àp ÜA9x>Éd0€š³´‘=p> >hZL»F]@oð¢&q£ñ` ˜ Ò@XVƒ`ØÁPn€»à1xÞËdYcÀdo\ Ø'à ü­qsÐtðœÆý@(ˆ±`4˜RÀ°,+ÁZPv‚}à(8 ΃«  <OÁkðQ& ”8J` `ì€+ðõ@h ڃΠà‰‘ Œ“Á 0dƒe`ض‚ÀAP ~—Àuð xžƒw R& ÒðÍ S` ð A3Ð| àèA}À§ƒbÀ(0L³AXrAØv€"pÀÿƒàÿAðÿ øÐý¯†nLh|xܨpø³Èb†Qà^ða9ÆWŸ”Ã&résJ¾Rsù[¦1rÌ)¹(Å<»È1JŒ¹¾¯Ä8+áJÌ#⌠vRa¬U¸7|A…þ«0OtàÛJø©|A÷ #ývJÌ7%榾®€O+16Jø—¾©À8(p_JÄú À9¬ßðsóWÀû Ü›¶—Ã/äèˆ9"‡ÏÊ1ÖrøŒ}1ŸEœ_D ”K 6É1†rŒ…óOø#Ç甘ÏJØS~­ÂêÀ—”oø >¯‚OêÀWt‚Øý¢ß:èƒ ñT…¢Â5tð9%æ±sD‰X«Ä|RÂW{%bŠóY‰X£À¸+¤vè«1OÄX ˆ¡rÄp%l/‡Ÿˆˆ_"b«ˆ¸ "–ŠÒûðE9æ”ø†Ù ¾%‡“ŠÒ}Àäh«®‡ñ—#6+.kþVÀotïTˆã:ˆG*Ìu<'t0¶:ðyÌ9Æ^¿PáÙ BlÖ¯è ^+aO%æ¨qQ¸¢ì…1Q Æ)àgrœG8¤°Ð\_Ž+â|æ‹÷¬Äyäð5qN„¯‹°¹(Ýâ£Ï9ÆNŽÏËñ¼ñ¼á7r©ÿðW9b›¼P£¥ûS ?:h«¿Pá5|^RÁUˆïºˆQºè“ ×PaLTè q@öÕAüTbL”Òã9¡ÄœVâ9¦@¬Sâ¨x®±•ñA»+;ð9ž'"â{ÊñRÜÖŒýg›àÞåý5sNÄyäh#"6ˆðñæo¹4?“4¶1·äR;<'’ ðÌÑEÌÓÃÜÑÅ3Mc«‡¢‡˜¤‡ç.ÆCñM…¹¨‹gµ.âŠ.ÆTqU%ٟבæb­±]‰¸ ƒX­Ä3H!½.-„àŸ Äm9b„Ï9bŽÏwQü*fÈGDi–2Q2þiÁ¢‹&Ñê¨p ‘ÌDÓN†0"3þS=mèñ×¼ùO+-iI$²+páÂ… .\¸üH‹]l´þju¢'½þÿ·QGªã°æõùj„ á¿Ý.ÿäÿvþC‘G?166<.4&1z°v3DKÜ?_1½@—é4¦¿Õ茇LïÖèôÎìøÓ™¬ý`¦W1½”ibº7Ó34:sFgùitöB¦½X¿†iôbv¬].ëo¾•Fç±ã¼ë½’gåL?cïg°ã»ìX«Y?óZ3ý”]g-Óν¬šF/eã°ô•F/9ËúË®¿0—ÝǦٸd>üJkÇû;f÷7—Ó6> Y»œÍ¬½vœYÿhÏÇú—ñ‘iÖŸO˜fÿÌYicÖNk¯ƒLOû²_Yiì>ˆõ£ ë»Î"Ö¥ýÙx9jôrÖß\6¹o˜Þ£Ñ+Ùë+ÙuòØ}ç'0½•if—üá¬ÝQ¦ó˜fïç²þ-cýZÂλxë_#vÌæßb?ÖÿHv?lže³ûÏbã’©ö¹¹2¦Ù¸,dã›3G£ÓY»ôí_gtfšK³×­ÿ±y«™ÉL3»e±û˶`×Äô3vl±þ.b¯/ÃÆåvÌæï2v½åÌßV°vylÞæ³ë®bﯩÉÞ/c¯ë3Íî#Ó'X»;½’ÍÏ•ìü¹ìó+˜®`×[ÊìÿǼbýÌf:Gk'vžvž›/ÛÍeã2»ó—ãÍÚ§'3ÍâV¯t6>éÌilže°ùž¾™ifÏl^eš2Íâe–Ö^ÙëÌ_³ÙüÓúOŽB£³ñ[ÌæÝR柹!L³ëä²ûÌ»É4ëÇ*6.ktØq‘F¯nÆŽ3}éýÏüTsY¼ÐÆYí?K.ׯ=6¿iýÿ,ÓÚcb÷Åì™cÌîŸÝçÖn&{†öó¬¿ ;³vl^.`þøÇó‚³öù”ÁΓÁú™ÁÆ-ƒÍ× v_ Ø}e±óæ°qÎfçÍaÏ…±ìum¿4ÏŸ¤Ï§QåQ>—u¶½±¯F¯gño#›¿]5ú{­fýÚ g¬«X{M˜ù‡] fiôjÖnuÛ/ß_ÉæU^WÎeñg¹6α¸µ8™iöüÒÚ)‡=ï²™ÿe±ûͲ×èy,nÎ×¼þŸZ’T: K’¸a11ƒ5›"™ü—W” sÅ¿½Ú¿Ý ÃØ˜ØÄHuBDLtÛ8u˜vuÔü™æÞ¹æšk®¹æšk®¿Öÿ©Õ‘ ` Œ£æ¿0ŒãöMÂD0 $É>ïA„É` ˜ °_R@*˜°ofìÓé‹GØ sÁ<0¤t€L²AÀ>T¾€µ,Ø ËÀr°ä‚• äìç„Õ` (Øo ëÀz°`?(H_RÛ Áf°`¿)lÛÁ°ì»Á2Í—Úöì¿…}ûKá8Ãà8 ŽÉ>aL(Ø7 ?²Ï_º°ONƒŸÁpœçÁp\%à2À¾]¸ ®R€ý¹pÜ”}þ’Pnƒ;à€ý¹pÜÀCð+xì…ßÀSPš…çàx ^×à x °¿Þƒ |ŸBP© ƒ¢ ùÂ’( }¡þ/J_ª‚ÿ‹zš «\ŠxMúv¶¨Ÿôù¡ Ê£êÁ²‹ŸG’éòîSª»“ÙákmÊ÷Ö'ûí˺_û|Ïe\ºÜìoºäe¸“õ†.ú†[·‘E¯çÄ&]Èzlµ‚qónQm…íIË~ûÉVwzÁe÷²Ï žylÕ~277”]D^d7¯ÙŒÝuuRíùäPúüµ_‡;ä¼D|?©-9oWöÚ[wyœûî¶Þzò˜nPñ¢°€<Ôí÷÷ö#¹õû°K¹y÷þ®úÆÑ¯ÈÇçXóŽÇ-(à]îJãË&äþÚsöŠv£É+ôBëàó»È/«hÂÖô™ä׿`!ÍúH>›í ŠÆ‡QÀÑÆbôé\òÏM(Ú7î ùŸ­¬¿û2Ž?ÚÏ K zd<÷úaòîßwcÛÂpª³ûDHri¹—ÅË ¯ çš«¾tÕ–Ü\L;¹—Hv?¼\ÕªA9åfwZ5à#9¸wªQî&rÜubŠm©'Ù´›hÏÂäx¨wŠH"{£ëõ¯’ã'ßu»F–ß”ôô{]ªöâýaý¼Éd1±Á¸6%T›hV‡T²<ÿM]·‰¤û»£ÉÉ,ç´ïþ[HÖfÏ}rô"³SM–¿9j-Vôkv›ª]µ¡Û dAÓŒ÷_#¯Zï;4ð."ß;é6Ïÿ„qŸT÷»&ÇÈ¿[¨™wàTòÛcÑ{^Oòªp¸z°µŠ|eOòê9 &ÏÇÂÛ¬ ·à‘Ê£>ä©ôjtx²=yÞ2±Vè!—‰·öµéCn:ñ:ë¶,'§ÊT3·H3²nò~ùÅ㘄ë^u™¶l§•ï)q$ûº©¿E}K6ñ-"{¾YKN}ýÞ³ùIr¸ÑQ<1†lúôlQÔ ”̧>Ûo}ºY)®n8VŸÌ‚"ÆËü^PÍgÛC ³ ÈÊ`ý Cëfd1øI¯›w¨¦CªµWÁ}ªµÒ²dè·ÕÈaÓ -žÙ‘eHH‹9×:é…–ÃR6:QSëïÛu„LÎ&ÿ6 vXpè«Sädü´Ì„Ì^ð\ÙŠl>Áï /Rí­×›×ÞKößΰ­¾/™œtdž3MúKx^u§ rùiû¨e6¶ä2/êU³w¿‘ó=)ñÉKɱGd”׬ŸÈcœ}i/….ù ¶ÞAî{doç•ÿBcG͘rs6y,-¾6jT}ªsþÙós­7osû·×;P€ÙLƒ®t•¼#O•(gÞ&¿Ê¤íç“ßí;a*»3äÿmaÌ&Cò~¼§âûOÈkôó´ï_"ÏÐês{F‘Ûùîc¶t&7UjèïÈcä/G£¦='·"“˜4³!dðÂpõý†äš·ÞµQ›lrS†>PÛ‹œ=§÷½2&’¬»a¼‰lŠÆÞ=kJ6Gw³káN6¥ß®åP‡,Þû¾j™¤Gæñ9áQ=É"}ʳҮÈj_enÑŒl{*bM§õ‰¬W“×’¥mRZÿ%d¼j³Ý¸Í†d¶µÁÚS™qdž^gFê232Y¼e’ÙxCª1kti;û ¤¯wÙ¯]=òœô2fòmòsò÷¸<~yÏYØ×êùõ•w›¼žü’ƒï¹Ît!Ï n¹y/$·SòÚUBîw·]ýÎq*y\y»´„\,jœ:Ö®&9o}èW?c.¹Û÷‹5~’J.7Fê¶S}"Ç©í3–w#ë^ίÏ<^BµÊí¿ñí2·nôºþô{d;îHPa]²2¼~Á²l4Y'EN›õ=™œÚÜ2sû|ªµßÿtáÞÎT㤟s=“-T+pБ?n×ïbËË©ÆaçËr‰ÌŽ úð`Y6Yþòzo·µd:ÞfÔ¤ ͨæ·f=gN&ÓÉ?V—W¦RMºð2·Ák²šYÜmê59Ú3xn››deûéÌ‹O½ÉÞRgÔΠáäxzºx­Ú@rzzq¦ŸCr2qÜZÝ—œgE4;Ñ{ ¹çhì¾MM®åÆKîÏ'§ö¹NO¸G®²C®¤4'Ÿ#1ÁZu"¿S ¯ùm&ßþ+·™M#ÿŒ£ótëÔ$¿XÃ7kv%¿ãSS­§RÀ³S*÷Þ'ß‚ÒV‰‰]É˧>ms|Óð\·ùyïÖ}PÛºœ¼ëuxnJÞk|¾ûØ4ž|’¿y—ëAÞ‰×wÇÆ’Ïš›À!?“G—_¬F;u!ÛÊzë?ë·ê}Wg’Ç¡ËÃd߯ {ãüÕç2ÉþitHYM r1?˜˜ì<š¾©;£¸9ÄÅžß¿º9ü:fÁ õÈÖxbùoÄËà3]Ö}CVúö¦ŠŽÈ~fYÐàî9Üî“°6%‹ì‹üæô~±j–êÍ›ÝfÙ6õ½~mÌ3²x±{­0i$ÙÜÑ(Ü@¼êêøêxÛæd7ÞÁôYǽdת|Wè»—d·ß©< ±=YÍkh:Ùè Õ–…n ëDµú˜•¤M&§Î'[^[A¶+ÇÅ×I=J.Ã.Ù|û‘ìÞËMÇã¹ä–ÙÐúÌ ÄýC›'u&¿Ô^›wÉ O ‹ÕËn’Ódß¶ä7u±Ç¡ÎýÉoÐÌŒaûúSÓ¢æ'Ÿ“×äâfã?Î$_Ç–·’‘äù!ƆäãÞ5¥Fýòì¥8›î’Eþ]ÓÊÛ<ÞJ¾ßô´°ÁEò;±o°WúIò¸µå¨ß ‘ܳç=›îy…ÜUA‚NA·H^¼qc¹Ï_p¯›I(y~ùgÇÜÏw{Íw!‡Êû‡¾{…xgW£½Á…%äÔe{Ô¸}-È®IljÄÑÛd)Vvd­ 댦]~L““õÌ'ßt zBök£Ã8›H3Ôk=v¥sÒö$³»£'m4†jY£’3!ë\¡ÿ&'#²HÜt°ôÙ$½±Øhüë†Éë„a£É*§µåÖÇÉtïh Pí½N'ÔK&ûIªnŽ®dy¹NÚZ¿b²k»¦2ïC ™Ý¼a8¢ß²h3ª0Ô³ ÏË1ǯ#[ï^¥Ý/’]BÑâ>ž'Èqè·üfÈiû©9cܰ>˜°áÐ̤äæSÚ{âö'ä¼jþÝ<oò¹zÓ(Õ*“¼m 1§”Üξ‰ž{xy¾4ý4ß{/y§^ ñÈÚB>^ëûq#ïq¶ý³ÓÆ×ñ€%ëä«ÉײíÚ%ä¿øjݲìäIÁFSN·QåÅvËÈûòÔuwŸÍ#Ÿ“? LU’¯U¨,´Uªj9²ãûKäX¢·´xà>rÕWÌQ­"§õ7lk†< >}ÚW9Ž\G†ìPÞÊ%§©Nç…¼!ûŠúǺïú@οŎòëºV§¶x¼?I–½"^9:‘ù 3æ¤$µiÿŽß;" ãLh¡;Ù˜5X?ÐÀœ,Æ?oàrQ—Œ¯èŸv?w’ô>êhÓƒLƒ‹s.ªÈ"%-$åt™´®o<½d8™ï·\{ùíl2M¶‰¾k]LµÎy]@6[ÓöŠtªýíÜÀŸŽ­CZ½Ö«“…ÇwßϘÿš¬/vÕ21—\=ª$çÞ«mN%^"'³#]ÜG}‹wÝ»¯õÑ4ûênÛÈ¥ÓõŸ› $×ÐEý ;“ÇùFG&èM"÷‘Λ[«ß’‹þ-ãç/o‘{Ÿz©£;#Îü<ÿЯ!D>ù{ªUQÀÃ?OÏ¿A^®ïÎ ÂúØï„åÄîESÈwã€çŽ~ ¯ƒ^^ªô#ä{ׯª(¤’üô3û9F–o\ý¤” ÃÉ{öÁ9ëÛPêÞ¶z/ÈÓbtoE y9Ï™ÿéM#òl0©Æ£ rݶþ ³¹šîr2rB²þHrûPœÑâEòð(zcð”ültZø­$·–¶é;JßÇêO³6¶ÃsýH®ÎŽØ»äWÂçÅ«Éÿåó9îVOÉ·iõÄ3gÆ÷ë²Ü`“Uä»cʰ…,ÈïЯF‡së_pR¦É‘íäÓ¹ìÑ™ëäv®IJ­c*òœÕ0ÂzÇrKï$–Ó‹<;LºJ®aS ZØ‘ÜÍ-'ø“ƒGØØßÉÉöLë3{Cú“}Þ¹Ö?ö —6i/(\ÉážMËÖ±doZ¶dí<=2;wþu¯^¯È°¾ùRe%™ëǾ~Ò$™ w•ü}Ôª™ßVwý¤WT3à×ÿÍîdqòCÐúŠ{dßàc‚ÙÞ ²èñþÀƒš¯ÈTV~±Ú–ÍdQtfÈb£…dår»s\ê[Ä9ãŒaid´å·4£Våd²×A~ì¦/™ï «¾o=ÙîhÐoÙI²¶Ú)¼‘9™–Y„ÍšHŽ‹wœVÑvª»öžqâöÔîm\§’Sš·^IµTw«øq¹™·Î·6#Y=,ŽÇm"ç =ÜûZIu:Ç,œsÕ9U[¸}ª¶pûTmáöùßn§ª-Ü>U[¸}ª¶pûTmù ûèÿùû \¸páÂ… —*)¿ÉH¾,’­Ž ×VÒS±u"ý}†%FýqðÅQÝ/ŽêýéH7:|ôØpu\¼¶B`ذ¸ˆø„(µöýNþ~õbÃã"¤"ÌÚšz_ËÓ¬NPû ‰C¯¾.73ÚGÛÛêlÉS4 Tò¼1A@*AÝH¥É¥Ÿ¡"д­€T¾ J^·RIöö R‰õŽ@*Þ t]€T »J÷=A/ •Øî¤RÝý@0 ßA@ BAJµKE‡€¡@*†ƒ@*µ¢A ˆ#TnQƒFÑ@*U?ŒãT¢{"˜’@2˜ ¦€©@*MžRÁt }õu&J‚ÏR ö¹`˜Ò@:È €TÒ> dƒ •<_ƒ%@*ý½ ,+@.X ò@>J‡¯k@J›¯ëÁ •ÿl…`3Ø¤ÒæÛÀv°ì»ÀnðØö©Ôû> •2?‚C@*QÇÀqP ¤å?à$JŸ?ƒ3à,8΃ à"¸¤ÿù2JÄ_×@)JÁß7Á-Pnƒ;à •‚¿îƒà!ø<Tjý7ð”ƒgà9x^‚Wà5xÞ©”ú{ðT€à“LSy²’EüGê†ÊBÆKMòR“¼Ô$/5ùO¥&Eø¿ÿ«kÊ÷ŠFšÒ·"ü_¬©)W+ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ØŒÅ@i½ ]Ziÿ–Äøó߬ŸR{ ŽŒ¦ÖVŽ ó‰JŒNÔVkÆáXö·a¼:*62"zhÇð„a1ÚŽLTG'DD†ñªjTx\hL¼¶OŠèÏK·¿-š,Oø»BÉÕâãF…GDFª£ÃØ)þ©d²~XÌ(u\ÈuÑúGgª³úÍ>’íXçÏoÈø£•?Zù£•?Zygþ+EüWŠø¯ñ_)â¿RÄ¥ˆÿJÿ•"þ+EüWŠø¯ñ_)â¿RÄ¥ˆÿJ¯âÌó <¿Àó <¿Àó <¿Àó <¿Àó <¿Àó <¿Àó <¿Àó U$¿ðwyž_àùž_àùž_àùž_àùž_àùž_àùž_àùž_àù^Å™çx~çx~çx~çx~çx~çx~çx~çxg.’pûTmáö©ÚÂíSµ…Û§j ·Ïÿ†p;Umáö©ÚÂíSµ…Û§Ê ¯â\……ûOÕnŸª-Ü>U[¸}ª¶pûüo·SÕnŸª-Ü>U[¸}ª¶ð*Î\¸páÂ…Ëÿ¤T*ÎT¬Š…›-¥¼N3¯ÓÌë4ó:ͼ˜$/&É‹Iò:ÍU´Nó‹)½ÿj©eVöøÿÏ1¡šsurveillance/vignettes/twinSIR.Rnw0000644000176200001440000006131514430704663017022 0ustar liggesusers%\VignetteIndexEntry{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, quadprog} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinSIR-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinSIR} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~4]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinSIR} implementation in your own work.}}\\[1cm] \code{twinSIR}: Individual-level epidemic modeling for a fixed population with known distances} \Plaintitle{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} \Shorttitle{Modeling epidemics in a fixed population with known distances} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure %% knitr uses \subfloat, which subcaption only provides since v1.3 (2019/08/31) \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbb{I}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of individual-level surveillance data for a fixed population, of which the complete SIR event history is assumed to be known. Typical applications for the multivariate, temporal point process model ``\code{twinSIR}'' of \citet{hoehle2009} include the spread of infectious livestock diseases across farms, household models for childhood diseases, and epidemics across networks. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, and visualization for a particularly well-documented measles outbreak among children of the isolated German village Hagelloch in 1861. %% Due to the many similarities with the spatio-temporal point process model %% ``\code{twinstim}'' described and illustrated in \code{vignette("twinstim")}, %% we condense the \code{twinSIR} treatment accordingly. } \Keywords{% individual-level surveillance data, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, branching process with immigration} \begin{document} <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinSIR-cache.RData")) if (!COMPUTE) load("twinSIR-cache.RData", verbose = TRUE) @ \section[Model class]{Model class: \code{twinSIR}} \label{sec:twinSIR:methods} The spatio-temporal point process regression model ``\code{twinstim}'' (\citealp{meyer.etal2011}, illustrated in \code{vignette("twinstim")}) is indexed in a continuous spatial domain, i.e., the set of possible event locations %(the susceptible ``population'') consists of the whole observation region and is thus infinite. In contrast, if infections can only occur at a known discrete set of sites, such as for livestock diseases among farms, the conditional intensity function (CIF) of the underlying point process formally becomes $\lambda_i(t)$. It characterizes the instantaneous rate of infection of individual $i$ at time $t$, given the sets $S(t)$ and $I(t)$ of susceptible and infectious individuals, respectively (just before time $t$). %In a similar regression view as in \code{vignette("twinstim")}, \citet{hoehle2009} proposed the following endemic-epidemic multivariate temporal point process model (``\code{twinSIR}''): \begin{equation} \label{eqn:twinSIR} \lambda_i(t) = \lambda_0(t) \, \nu_i(t) + \sum_{j \in I(t)} \left\{ f(d_{ij}) + \bm{w}_{ij}^\top \bm{\alpha}^{(w)} \right\} \:, %\qquad \text{if } i \in S(t)\:, \end{equation} if $i \in S(t)$, i.e., if individual $i$ is currently susceptible, and $\lambda_i(t) = 0$ otherwise. The rate decomposes into two components. The first, endemic component consists of a Cox proportional hazards formulation containing a semi-parametric baseline hazard $\lambda_0(t)$ and a log-linear predictor $\nu_i(t)=\exp\left( \bm{z}_i(t)^\top \bm{\beta} \right)$ of covariates modeling infection from external sources. Furthermore, an additive epidemic component captures transmission from the set $I(t)$ of currently infectious individuals. The force of infection of individual $i$ depends on the distance $d_{ij}$ to each infective source $j \in I(t)$ through a distance kernel \begin{equation} \label{eqn:twinSIR:f} f(u) = \sum_{m=1}^M \alpha_m^{(f)} B_m(u) \: \geq 0 \:, \end{equation} which is represented by a linear combination of non-negative basis functions $B_m$ with the $\alpha_m^{(f)}$'s being the respective coefficients. For instance, $f$ could be modeled by a B-spline \citep[Section~8.1]{Fahrmeir.etal2013}, and $d_{ij}$ could refer to the Euclidean distance $\norm{\bm{s}_i - \bm{s}_j}$ between the individuals' locations $\bm{s}_i$ and $\bm{s}_j$, or to the geodesic distance between the nodes $i$ and $j$ in a network. The distance-based force of infection is modified additively by a linear predictor of covariates $\bm{w}_{ij}$ describing the interaction of individuals $i$ and~$j$ further. Hence, the whole epidemic component of Equation~\ref{eqn:twinSIR} can be written as a single linear predictor $\bm{x}_i(t)^\top \bm{\alpha}$ by interchanging the summation order to \begin{equation} \label{eqn:twinSIR:x} \sum_{m=1}^M \alpha^{(f)}_m \sum_{j \in I(t)} B_m(d_{ij}) + \sum_{k=1}^K \alpha^{(w)}_k \sum_{j \in I(t)} w_{ijk} = \bm{x}_i(t)^\top \bm{\alpha} \:, \end{equation} such that $\bm{x}_i(t)$ comprises all epidemic terms summed over $j\in I(t)$. Note that the use of additive covariates $\bm{w}_{ij}$ on top of the distance kernel in \eqref{eqn:twinSIR} is different from \code{twinstim}'s multiplicative approach. One advantage of the additive approach is that the subsequent linear decomposition of the distance kernel allows one to gather all parts of the epidemic component in a single linear predictor. Hence, the above model represents a CIF extension of what in the context of survival analysis is known as an additive-multiplicative hazard model~\citep{Martinussen.Scheike2006}. As a consequence, the \code{twinSIR} model could in principle be fitted with the \CRANpkg{timereg} package, which yields estimates for the cumulative hazards. However, \citet{hoehle2009} chooses a more direct inferential approach: To ensure that the CIF $\lambda_i(t)$ is non-negative, all covariates are encoded such that the components of $\bm{w}_{ij}$ are non-negative. Additionally, the parameter vector $\bm{\alpha}$ is constrained to be non-negative. Subsequent parameter inference is then based on the resulting constrained penalized likelihood which gives directly interpretable estimates of $\bm{\alpha}$. Future work could investigate the potential of a multiplicative approach for the epidemic component in \code{twinSIR}. \section[Data structure]{Data structure: \class{epidata}} \label{sec:twinSIR:data} New SIR-type event data typically arrive in the form of a simple data frame with one row per individual and sequential event time points as columns. For the 1861 Hagelloch measles epidemic, which has previously been analyzed by, e.g., \citet{neal.roberts2004}, such a data set of the 188 affected children is contained in the \pkg{surveillance} package: <>= data("hagelloch") head(hagelloch.df, n = 5) @ The \code{help("hagelloch")} contains a description of all columns. Here we concentrate on the event columns \code{PRO} (appearance of prodromes), \code{ERU} (eruption), and \code{DEAD} (day of death if during the outbreak). We take the day on which the index case developed first symptoms, 30 October 1861 (\code{min(hagelloch.df$PRO)}), as the start of the epidemic, i.e., we condition on this case being initially infectious. % t0 = 1861-10-31 00:00:00 As for \code{twinstim}, the property of point processes that concurrent events have zero probability requires special treatment. Ties are due to the interval censoring of the data to a daily basis -- we broke these ties by adding random jitter to the event times within the given days. The resulting columns \code{tPRO}, \code{tERU}, and \code{tDEAD} are relative to the defined start time. Following \citet{neal.roberts2004}, we assume that each child becomes infectious (S~$\rightarrow$~I event at time \code{tI}) one day before the appearance of prodromes, and is removed from the epidemic (I~$\rightarrow$~R event at time \code{tR}) three days after the appearance of rash or at the time of death, whichever comes first. For further processing of the data, we convert \code{hagelloch.df} to the standardized \class{epidata} structure for \code{twinSIR}. This is done by the converter function \code{as.epidata}, which also checks consistency and optionally pre-calculates the epidemic terms $\bm{x}_i(t)$ of Equation~\ref{eqn:twinSIR:x} to be incorporated in a \code{twinSIR} model. The following call generates the \class{epidata} object \code{hagelloch}: <>= hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) @ The coordinates (\code{x.loc}, \code{y.loc}) correspond to the location of the household the child lives in and are measured in meters. Note that \class{twinSIR} allows for tied locations of individuals, but assumes the relevant spatial location to be fixed during the entire observation period. By default, the Euclidean distance between the given coordinates will be used. Alternatively, \code{as.epidata} also accepts a pre-computed distance matrix via its argument \code{D} without requiring spatial coordinates. The argument \code{f} lists distance-dependent basis functions $B_m$ for which the epidemic terms $\sum_{j\in I(t)} B_m(d_{ij})$ shall be generated. Here, \code{household} ($x_{i,H}(t)$) and \code{nothousehold} ($x_{i,\bar{H}}(t)$) count for each child the number of currently infective children in its household and outside its household, respectively. Similar to \citet{neal.roberts2004}, we also calculate the covariate-based epidemic terms \code{c1} ($x_{i,c1}(t)$) and \code{c2} ($x_{i,c2}(t)$) % from $w_{ijk} = \ind(\code{CL}_i = k, \code{CL}_j = \code{CL}_i)$ counting the number of currently infective classmates. Note from the corresponding definitions of $w_{ij1}$ and $w_{ij2}$ in \code{w} that \code{c1} is always zero for children of the second class and \code{c2} is always zero for children of the first class. For pre-school children, both variables equal zero over the whole period. By the last argument \code{keep.cols}, we choose to only keep the covariates \code{SEX}, \code{AGE}, and school \code{CL}ass from \code{hagelloch.df}. The first few rows of the generated \class{epidata} object are shown below: <>= head(hagelloch, n = 5) @ The \class{epidata} structure inherits from counting processes as implemented by the \class{Surv} class of package \CRANpkg{survival} and also used in \CRANpkg{timereg}. Specifically, the observation period is split up into consecutive time intervals (\code{start}; \code{stop}] of constant conditional intensities. As the CIF $\lambda_i(t)$ of Equation~\eqref{eqn:twinSIR} only changes at time points, where the set of infectious individuals $I(t)$ or some endemic covariate in $\nu_i(t)$ change, those occurrences define the break points of the time intervals. Altogether, the \code{hagelloch} event history consists of \Sexpr{nrow(hagelloch)/nlevels(hagelloch$id)} time \code{BLOCK}s of \Sexpr{nlevels(hagelloch[["id"]])} rows, where each row describes the state of individual \code{id} during the corresponding time interval. The susceptibility status and the I- and R-events are captured by the columns \code{atRiskY}, \code{event} and \code{Revent}, respectively. The \code{atRiskY} column indicates if the individual is at risk of becoming infected in the current interval. The event columns indicate, which individual was infected or removed at the \code{stop} time. Note that at most one entry in the \code{event} and \code{Revent} columns is 1, all others are 0. Apart from being the input format for \code{twinSIR} models, the \class{epidata} class has several associated methods (Table~\ref{tab:methods:epidata}), which are similar in spirit to the methods described for \class{epidataCS}. <>= print(xtable( surveillance:::functionTable("epidata", list(Display = c("stateplot"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidata} objects.", label="tab:methods:epidata"), include.rownames = FALSE) @ For example, Figure~\ref{fig:hagelloch_plot} illustrates the course of the Hagelloch measles epidemic by counting processes for the number of susceptible, infectious and removed children, respectively. Figure~\ref{fig:hagelloch_households} shows the locations of the households. An \code{animate}d map can also be produced to view the households' states over time and a simple \code{stateplot} shows the changes for a selected unit. <>= par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") @ <>= par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") @ \section{Modeling and inference} \label{sec:twinSIR:fit} \subsection{Basic example} To illustrate the flexibility of \code{twinSIR} we will analyze the Hagelloch data using class room and household indicators similar to \citet{neal.roberts2004}. We include an additional endemic background rate $\exp(\beta_0)$, which allows for multiple outbreaks triggered by external sources. Consequently, we do not need to ignore the child that got infected about one month after the end of the main epidemic (see the last event mark in Figure~\ref{fig:hagelloch_plot}). % ATM, there is no way to fit a twinSIR without an endemic component. Altogether, the CIF for a child $i$ is modeled as \begin{equation} \label{eqn:twinSIR:hagelloch} \lambda_i(t) = Y_i(t) \cdot \left[ \exp(\beta_0) + \alpha_H x_{i,H}(t) + \alpha_{c1} x_{i,c1}(t) + \alpha_{c2} x_{i,c2}(t) + \alpha_{\bar{H}} x_{i,\bar{H}}(t) \right] \:, \end{equation} where $Y_i(t) = \ind(i \in S(t))$ is the at-risk indicator. By counting the number of infectious classmates separately for both school classes as described in the previous section, we allow for class-specific effects $\alpha_{c1}$ and $\alpha_{c2}$ on the force of infection. The model is estimated by maximum likelihood \citep{hoehle2009} using the call <>= hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) @ and the fit is summarized below: <>= set.seed(1) summary(hagellochFit) @ <>= ## drop leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The results show, e.g., a \Sexpr{sprintf("%.4f",coef(hagellochFit)["c1"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["c2"])} $=$ \Sexpr{format(coef(hagellochFit)["c1"]/coef(hagellochFit)["c2"])} times higher transmission between individuals in the 1st class than in the 2nd class. Furthermore, an infectious housemate adds \Sexpr{sprintf("%.4f",coef(hagellochFit)["household"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["nothousehold"])} $=$ \Sexpr{format(coef(hagellochFit)["household"]/coef(hagellochFit)["nothousehold"])} times as much infection pressure as infectious children outside the household. The endemic background rate of infection in a population with no current measles cases is estimated to be $\exp(\hat{\beta}_0) = \exp(\Sexpr{format(coef(hagellochFit)["cox(logbaseline)"])}) = \Sexpr{format(exp(coef(hagellochFit)["cox(logbaseline)"]))}$. An associated Wald confidence interval (CI) based on the asymptotic normality of the maximum likelihood estimator (MLE) can be obtained by \code{exp}-transforming the \code{confint} for $\beta_0$: <>= exp(confint(hagellochFit, parm = "cox(logbaseline)")) @ Note that Wald confidence intervals for the epidemic parameters $\bm{\alpha}$ are to be treated carefully, because their construction does not take the restricted parameter space into account. For more adequate statistical inference, the behavior of the log-likelihood near the MLE can be investigated using the \code{profile}-method for \class{twinSIR} objects. For instance, to evaluate the normalized profile log-likelihood of $\alpha_{c1}$ and $\alpha_{c2}$ on an equidistant grid of 25 points within the corresponding 95\% Wald CIs, we do: <>= prof <- profile(hagellochFit, list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) @ The profiling result contains 95\% highest likelihood based CIs for the parameters, as well as the Wald CIs for comparison: <<>>= prof$ci.hl @ The entire functional form of the normalized profile log-likelihood on the requested grid as stored in \code{prof$lp} can be visualized by: <>= plot(prof) @ The above model summary also reports the one-sided AIC~\citep{hughes.king2003}, which can be used for model selection under positivity constraints on $\bm{\alpha}$ as described in \citet{hoehle2009}. The involved parameter penalty is determined by Monte Carlo simulation, which is why we did \code{set.seed} before the \code{summary} call. The algorithm is described in \citet[p.~79, Simulation 3]{Silvapulle.Sen2005} and involves quadratic programming using package \CRANpkg{quadprog} \citep{R:quadprog}. If there are less than three constrained parameters in a \code{twinSIR} model, the penalty is computed analytically. \subsection{Model diagnostics} <>= print(xtable( surveillance:::functionTable("twinSIR", functions=list(Display = c("checkResidualProcess"))), caption="Generic and \\textit{non-generic} functions for \\class{twinSIR}. There are no specific \\code{coef} or \\code{confint} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinSIR"), include.rownames = FALSE) @ Table~\ref{tab:methods:twinSIR} lists all methods for the \class{twinSIR} class. For example, to investigate how the conditional intensity function decomposes into endemic and epidemic components over time, we produce Figure~\ref{fig:hagellochFit_plot-1} by: <>= par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) @ Note that the last infection was necessarily caused by the endemic component since there were no more infectious children in the observed population which could have triggered the new case. We can also inspect temporal Cox-Snell-like \code{residuals} of the fitted point process using the function \code{checkResidualProcess} as for the spatio-temporal point process models in \code{vignette("twinstim")}. The resulting Figure~\ref{fig:hagellochFit_plot-2} reveals some deficiencies of the model in describing the waiting times between events, which might be related to the assumption of fixed infection periods. <>= knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) @ To illustrate AIC-based model selection, we may consider a more flexible model for local spread using a step function for the distance kernel $f(u)$ in Equation \ref{eqn:twinSIR:f}. An updated model with <>= .allknots <- c(0, knots, "\\infty") cat(paste0("$B_{", seq_along(fstep), "} = ", "I_{", ifelse(seq_along(fstep)==1,"(","["), .allknots[-length(.allknots)], ";", .allknots[-1], ")}(u)$", collapse = ", ")) @ can be fitted as follows: <>= <> hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) @ <>= set.seed(1) AIC(hagellochFit, hagellochFit_fstep) @ Hence the simpler model with just a \code{nothousehold} component instead of the more flexible distance-based step function is preferred. \section{Simulation} \label{sec:twinSIR:simulation} Simulation from fitted \code{twinSIR} models is described in detail in~\citet[Section~4]{hoehle2009}. The implementation is made available by an appropriate \code{simulate}-method for class \class{twinSIR}. We skip the illustration here and refer to \code{help("simulate.twinSIR")}. %-------------- % BIBLIOGRAPHY %-------------- \bibliography{references} <>= save(prof, file = "twinSIR-cache.RData") @ \end{document} surveillance/vignettes/.install_extras0000644000176200001440000000003014614655020020007 0ustar liggesusersmonitoringCounts-cache$ surveillance/vignettes/hhh4_spacetime-cache.RData0000644000176200001440000001433012676602723021635 0ustar liggesusers‹í[y8•m·ßæYQ†dÊ ™Së)Q†(4!D™EÒ@¤R)Ò[ŠB2ÏCÂ6O•Ù6mó˜)óÒñ¾/Žœs®ïý¾s¾3]Öû·Ö½î{ÝÓz®g=¿ëÚÚÊzÔzÔ †CBLŠ!&YRI‰—~ˆ0¤ª%¤2²8ïpÎÉèüy †„éŽ ýïÄùCV‘k½¾}=ò`VäÏx¯ M©¶‡6ï=…ƒêà[=»}öÁ·]½ßŽ© ªæs¦æ¶ˆ¶X®îYÁ(|ÞGæ7C=™òªó¼0|MÄ(h¢ÊÝ^?¾‘öÊ-¼‡ž…C¾pÒE„8-°3žê‡+Ö£ð-8ø°ð5¨õH;JTÕÆBY&Õ»¡‰ïÀ í¾mPû-tJïÔÎ ½g€ Û.;@6„œIh¤‹9ªcÉÑÆÐ0# E«†C$RûŸPçš+®×ˆ[ð4’©Šï?A­šjL~jUE¨« /AÝEiÀ/| žgàº:†™\B*ôs‹nå;( ­ßUâÈÎvA é6¿n Cht0nY¦ ã”WU¾sž?ªÂ/5ZQjÍ—PdsUäY†dœÂ—kWA¾ï³oÅÊÂPbÚòõ ç(œ¾ÈcÌ…òå]éáóÖ2±À~(Û›ça¦ ¥1Co†RZÖ­å+ äÙ~Á™«PÚíqœÕòßËiø¹AËY¬Ð 4S:²; BÓ„V£\zôZïì þóQ¡ Ü4T7*‰Í«„†·É—/§~¤mß÷¼!À;$oz’iãhO³Yð±ÙÄ#:Ê€z Ñ]•˜Š|?†yD×3¬j ññ©Oyd`26)„ç¢5 µûm¦&n³úÐÀ¸Ì ±… {èR=._KÁ]§¹e»F`’ÞХ߃Ûû†‰€ •¨§F5 yw:î®`À··Èn3?½® ÷ºê`bÂÏå>¦ ºÑ =…9Ýc1œÁWa;!îvÚ«ë „ÁØÜ髹ì0PòœuFê4t5¼ð7v§@OOjìAD’Ô¨èìÆ¢)@~šì¢C¼—Ü5ÝÆlD=—DÜ3^Œ˜o} âÒG›½:/~ܶˆ°÷™É}9[Ù—ª#;}àfÖjm$Ä%7¦«ð»4çòÄ/+íaQ‘GÉù8€¸“Þ>¾Ëј÷î¨üè ø;,E½Þl€¿tâs‡g)4Þ‹}ËZxv9®(µ\•Œ[5\ ê˜ÅŽÈ¡¨sàÊïÊ)†úÎí£D¡Îo¿`ƒš*àuÈšèÞêŸEŽÊÏ/B>.b®x> ÄTÌ4# ¼¹/C£*µ™.lƒ€7;K×]7[øìEOq‘޹Ušö9·N°A÷É÷­ºEQÐU*.ÉÕpZ6qÌ…V€Žj½0%{e¨7%’ÝÇ”­»C/¥U„B½Æ—c9-/›Q!çNá`ÄÞ}8¹J¸ŠüRÏsÓ"aÉ‹N"3ĨQX[yX‘ 4¶¿¨¸È¹²«‚âÖóî)å´ÉÆƤž &––óýßbà{Þ±¬~3ˆÔõÞ¹ý'›`¡w ½­OF>¹a*íÃ5!sñüðQ¿ˆ&Àä;"Ž3n}w·ª 9è¢ PÙJCA+ã'nž²»ŸµÁ.Jž÷—ÎÕ¹‡õoÂŽ—ß[z>ÏÇû‹.íãâêLJGøìHJ®ó2 æ¦U›§² ß=¾ó7fô}+dâD1ö·Â{]D„®×´î›ƒÙ Û·'®ø"a•¹ ‡'Ñ&Ž©Þìé DÑw¿´˜j?,´<9–EˆZŦ˜„ `$B!fÒ·ú9Ì&ÏíT‚š˜dÛ(/¨Ö~¡oüè Tt˜ZWÒCã]kGõf3¨ J›ÞÊU¡:\4 ˆ†7”Ç<ªêð…6)PßÃ)-4êoò]û¸wé>çꇥ& Úñ[¹…ìsøÔi¼­½@ *4ÂN-Ýk)s…Í·,(LäuË…bübO®ku ê\;Bwy/å¡Nr] ÔUç?ÿà“<ÑÛ$áó¡2z1[(ÞÊ^f3 e…„º.YžËyhüÒ>iE=" ƒáE³.ÿé2(è7±ÿ¬nEÜïÒwx ÷^u\=}غ—#‰‰…ÕïïÈåêwdX×…r©ËJݱRjaÿè»\µHK¯j2«šìª&·¢Éˆ­j⫚ζgU“\Õ¤VµÕ9dVç‘]^ ÃJq ¶GRL|­!±ÖسÖ\kH­1¤ÖZ@jm©µ¤~ ½ÖYkÈ®5äÖÒbkµ+–ø³¤ù³JÁü7 ZAì2nþÕc¿â·¬ŸQ®³ÿÉóý_•¿ºõ÷»’ëÞÿÞsZßÿïÍ+´‚”ÿ¾ýúW¿·.ãr^¯|ý!±e_F®eýu$¸.Þ_[îÿ9A|˸²ß=˸r~”ëpó:\é‡Y×oÅÆþ‰ëy^‘ÿªçp5/0¿âj»Ä2b]ÏúqÿYY‰ÿÏ’¿úœ¢uø·Îùïõÿõ{û½!ÿ‰ùwKŠßÛ7J‘ÿÑR„7R®ZË1½í@*UŒztíbœÅ+ܗ볚ۮñãú¦I‹RLqýˆÆîon`rßÉ}ޏ‡§ÆµÑ’ßËkˆ2  ×w0€1Éï)®×—þŽ=®O,|Ǥ"/®wÁ³\®œø?H¢¿™ RÿcIñ+;E¿ËÒæ‚ “©½‰…ƒ­ÐŸgˆ¡þs+û þ¹<Šty©­ý*Gicì`jï´j“Ø:X,«´F––J6ÖKÁgýþEúsÝhm¬M_6µU4752ùsúuÜW,ýh…ëuˆLŒŒÛÇNá-AöµÙ*˜ÒS•d´b¬†zÓ£t J|à=M0¤M±7eM@ÿƒøþD~H ±8xÛ;$\%/öç\Âè FÒ³e_T$BXt„ÈÓ ¼~Z³°˜̤´˜ &Ì9SqDZJ¦ ÷…*D¯™h¥°‡€°M\Ú1ݽ0¦ÐÜ­êóÎ'4¯\ ³¾òŠ&èÏ9¦lõEzã(xÞ*øCFK*”Wº¬Cº÷OÇ@öCHj),În¾gf=F[ŠùxA׎xÆÄ$ð%TŸ¥Æzu åvôêB7Úª¦÷ÕúíË¢òw{@Oú!²ô1Uè:xîÓq1~˜¨µÒá×È€NåîX­DÜ Ó&aõ šº©ïO œ^ÙIê…è¾ cM‡ŽFµ‘X ô«ÚØ’›PAÏ郄›ïÍ ³øN|„ Œ‘‘ùvˆz³Ú¢>‹C—Îå›™™áÐ)vðæ”Á!Š\5¢îˆ©»BÔÏl 1ᱪ\ÕÑ|ê‘nm Z¬}Ý·}¹ÒN"†ø=%%ßFä!MN©ªtÄ;ÔlPrD‘¸²ÔS@œÁ”®µT#†Q_êqÕ0ñ€9ã²}ŒiZnoh‚Ñ­‡k¨ÊaòÑa¶4î µª0¢‡;%Yuì4|u½{¼£ˆ†ÍÕËp¬‘0pë¢Ù°<3ôßàx³³ƒÞ[焦È ‡ƒÒ]Z^:½ùê”aÙÃŽß'C·Hô×xH½o†69ë@º\ᦩoôtá§œ¼×À °uAYâ& ‹¶p(m ÿ8X«•A*( *——§ö‡ÄË,ã)¡ÎŽ`“ß ˆ-)/Á@ÜÑ‘ èwÒù ²ýÞ^|“±a4¨õµN¦B~/yÀwæÝÇn¯i|$†s+ÄE Š©Z"·¤@Ámuó2¦ÓPB/v¶Cù ft±¾%¢áí!ªfCçT7Q\ˆ¼yˆ wÁ`È ¸äÉ)X ¡IÜk°‘$ùyqE!¢¯ÀwÏ aQS§'óÚå•:˜ò61‡ÕK!ê™#iÆ"‰Ød¶ÑˆÜ',oö=Âä²Vˆ=†É²È ÞöxõùtL „J·¶ðÄo‡7lDþ8;H‰<~ó'oD0½9¢vBÉÏy¦‚8"ó㈣˃”ö€=2¿ CÂÑQ¿Už€D QÊ9H~zr¾:é„Û¿±¢5i€½*ÅÒ‡ .búSƒòO¨Îзûä&•·9î&Lþ8ºú³Fj:‚èÚ`haöëÅY ÔÛpv£(ZÙ=Ž’Â04¢°+”Õªzúw:Ú©ÃìY9?_óE˜ ãú,[ _‚'︿փ´ä„Æ óû ù…çþÃ|D¤Lžb«ýjŠru}o ugÑé}jHrzfiïv–>Ï }oGãíN@JÞx]´÷vèsÚñn—$‡çI+6AR7/+'=Äy‹²œTîÞ¨*ÿ·W•×:Ù ¸þ1Ù ¸–qƒàúK²Apýºž ‚ëóo\ÿ_J:\ÇÝ9¼Ø +®CEåUŠZ®M@ñeF?Ž ¼ùÁ€ž®)[Þ¸°ÑפPFb‡¿…ëˆõ‘„ë—¸ä*ˆkcwÖÝíˆk}HséÂü8ŽPI$²M`×–Y¥£’ªŽk;{åC¿Apýó ®8õŒ•vñÉ´{ÇNƒ[fqûÉ`D¶XLÚúiCxCßv6Qxóý¾ÇžC)ðöâ\Î÷xÓû,:亄¸x„šKCˆ /_µÜ¾øõ晟ºðÒùº‹ÒQ"Ì:}åp b™ÿ:0þ5a³‹¿ß8†˜Ø\ka¸ŠØ»¹ÜæO#ŽnÞëÖµ‰ˆF-¢tÞë–]&+µAtû•ŽŠîHE¤§8lk°ŸqU{퓪Ÿ30£QØi‹j~2ÌÊm0ÇÝ8&5øÆÈ„‘¦+C{;~¤Ló 4³Fk…ö‘RÚÊ>hV –ûø ð7Ò¬FDÍ ‰çEããŒPWªû|ì„ ÔhÇÔGáñXr!=ÔØI°ÈS²Á@ªóÙôÔ½Vu€º,;õâØL¨Ê“Äð©WÂ糞’]ÔP­ÏÁØ :Þq% ½PVÌåa$d-Û…ÒÝK…E–£ZqP|ǹÙo tšƒ4õ„ A…sïûÈœ¢sòfsµ”v{HÁ»^5‰†¤½N6w!Ζ›ËŽš’´hZÏCü]Ô¶ 5E]ÚA%±|û5D|¶BäέƒÑ,/!ÜÛq? Â)-Jo·ƒÐ¾ý³”uðæVâ‚ W‡æçäOCÉÔV41[ùìì¼.ÖíðÕ¶´øès·ñ\ƒì cŒCº’íãO9ŒÕ»%cS>3¼ßõù $¤ñ°D»›A-…›T~duîÖ,‡,&V’×íæBnl'¢’†¿$Æäð J±³±GòDÙ±ž÷\§Ó¢ˆ¯YMˆŸy²©‚ a~ŒGÔš"Œ0k¨¸‚…[£ ³Óx˜‹Á©ß¤gƒiŽ‘…é•Â*‘ôáÛ¯î„^Ù`ßçŽ@¯Z»® Ðïê`s¡šf7ŸòF Âàõ:ÂÑ+òÐkxòiFl4£®x,|ygÍ3†‡ŽŠ\ýžNhxöˆ)‹ß^.Ì\Éawñ´Ê¨QhÊýØ|áÔl¥1ŠÊG[t ' <)ˆdçWŒ´ß]ÄPë$ö‚81:“7…Œs!ŸÓYÇÜÑVág¯-^Õ ¡‰ž[Ò»ýPæ]™´áÓhköí—ç93 ºâ5C‹qD6:ÊÈÜÊŒønbÉ÷P°£-áN£òjôP'<â Õ‚[JwûwÂg¬ ”ÕS¨f|Yç펇O†„E@©À‘‡òP*ÏDŒë=EJFR@>k'í‡SÒ§KЫæ<8â/¿iml~ŸóÒœYn¬Àï«g ÅÞ>Z¼„Ès­º¬\ör/i$ðë¤B[›Å”š6ä^¸%q?QpV-u¤>JP†]iRv@ÑħGÅZœ=D5ä~ òø¹I÷˜pAí[NWjøP£OÒxºRxÛ²¬ç³Ðî3eW´ÉºÑ.s©={%‘èî!O”môÕïÈÂSñßßoI|mÇ8‡º7ˆ".“Ç4´¸!ħ~öˆm'â’8'õPû:âN®ÿA4Ž6³ÕÔ•@[6¿¹ ¯ŒöU¦>ž~ ½bî4:AO|š‹e|ÞA㇓>3ãÊ4&» Åp—¦)Ï hÄqo…~ǧ¬ò)hô«½=żêOÞÍÚœ uɪnóPS;-œ'Õqþ¤âšìðñè™^ÇíWaö0ú¥ÃÀÙíQ†\0}èFÙ§z˜ŽåVÓ„©Ž+&ÞoãaòÒ‹òK݆hû”Ð3'o„åâœsßœ‡ˆÏ±d’‡"ªôw·¢¿-åý=ïw¢­îˆHÎ:é'soïƒiÆnûrü¡Èbêõw:è£ôæSOÂ(hÑØ‘šb§ iº fBÌŠúÜÑMP³àïå³V®@ßµ¯ž>Ï AÇÊb#táeØÙÆVx¢ª±©3Æ…ª¢¦‹Ž)&GßN¿$F±Ð‡Ä=ª6vÉ(Ã:\ãìä'8-Ø;þ>d«±'"5-•÷p»6””œžÙØÖ‰ ÷––lÊèó×˸ ðz«´áÇGÿ‚²—üxá‰Ðhf²Rãâ iñPêv8J¹Y¥6k.”Æûº„Ó×@{,WëâÅC¨PßäšB°Ô®É;Rv4 ½T;³óàçsP¹è§3ù,¨Þª”uæôYåFÐxÿ‡£XôEŸ~ ¢®l½›_ëÿ-e¾¾ë%íJ£” ÷ü>Ö{%ä¢óS.*lA¯".Øt>ÑDuÊ[Ƶ¢T†Ê=c“`hªoÑõ'‰2' ­6‹¸¨Ë4ïŠUüiT¹ûKdy9e<9Ôµ,}2¤oÊîv½„š§­·Î›ž‹ò`ï‡?Î_DåóžŒ~Mm³¾.ÕÓA ¿>ȯl‡°`¹…Õ¿JÀƒßïÏ-ó1€—ž2q¾/O¡²S1žNAuo|cm»­¡\ha:ã„+|;1.¯Êgn™¾¿\rÔR¼9>8³Îw“*ËÃM­¹ßãî¸uAʳqY)ŸæßÚù×±l¨ ¾ÊFuiYuG¯ò嵋ÝQÍ¡Ikc§Bm-ïöÑ lcZñ¡æØ|.*‘Ÿó@xïT©±4ܵœMþW#S¡ô—üBEŸ—åÍž„ªÓâ•7é@Q­ËŒoÉó!,…hlI(c¤ù#ú_¥Ú¤‡j‹ Rj£ZÅßÂó´Ð«å¹Q}ŠQ{hÇÔzîÏFFíP5—™”ª‹ÊÝX¼Íí¡v¿^I…¯ ÜR½ÐX:ÿ Ê<úGnJ#ù³NÌEMÞõÇ»[dQÕêÆ=Ö¶vP˜év[sÁ-Tµæ—UzðeÊß²6áß µ¼\¸M^ÞÄ€cþ½Zç“,Ñ _¡áäZMV,v½°y¨ÈEG¾…ÊU !oI„Fx¸3ʤ¼Ê¼×¥¡6‹ùµª~|(­L·cñ(v {Ãht5¥…ž¢:wJ¯ËüìÆ~¼ÓŒjB¸ÔF”r¨Ô®]N ýÇüºÞ× ªß¨y¯`èAvú¿Qר|Q·ùìe”£’0ÊÚú2TŽí8!*Ú²öN´\EÅí²uÝÉ(Az]´ÿ"E”ʉ°h´0†È°ñG3‹nÁÁYÎS)(:3iÁÂõP×äê§þý=ÊV BöA–í¼z=[T­’W¡:RžžÙ]^w "‹Ë/Ïé?³Èyšâ2xvº¾Æ'`1ªnÛ°êQ&ú´òiþŸïáuEâ{µ%*ºìB†!*?b#ÇO|ƒ?¿ÓÜþ|žÔ¦»2’ä϶Ÿ»(ŸÆ©wåmÒ@×–'­Qëó3®Í"½U8,P)<·²äK¸¦W"PåóšP«@:J1NvŠôØ9Ž:RU(û–ÄÚ?]‚¼_·KܨÆÍ޳ÿÏ.”–᯵=Ue]*°Ÿ#ÊCÐk m˜Ù§6F,,‚$KŸ¸€%K!µQíÕ¥`. •¥oÒ"­à¾‰áad¦±NJ¡‡–@éÇ®6ƒÔ”\65-¾Ysl•JwBl·£âzx«¹œjù ÊÉ‘e*𼂨ÍGâÓ‹!¯áayØü_ ÆNõZþýðçp¢«òîC¼¼S÷# r¼«Ø7ê2Qç¼Ðêô˜ã»Ñ'7âäJ‚J¬*P–ß;û9EÅæ7N§™ý ïп°­Ð"S|×d™JN²¸{®ãgÔ·I®"í Š¸µýNü©wPs]¶ö4Ä°v“J× <)³î;*,ô÷q[Š>ºl?ÐÝ-úI›¨gx­•.·Ú¬w¸NÜV=®iý;¤$8¨+ÿ…Jó ýªoÚ¡J[>h;ÎAÕ¾3ÖÜwÝoer©éàË™œ#Óî>†Z­Ëù%¡¨§+'ï‡z÷}µ÷ß ¢]e:šj!ËŸ8/2åx9ÝšòüdD¥ï3gx wçï?£z š—œIœ¢ß¥kNÙz¼EßÜwÒŸÍóƒúNƒzö*Tü>)¡ªèOôqÆo¿Ñ£~€e齞{DŸ#!»ýÆÕYÀÙê[> ³á3,•Ö‰ƒ<ËØ¸Xe=Hª™^é|ÍÊw4 h{|!Ó>vuÞUW”?Ù³MøÓT“jF3Ñd£¦£wõØ)¨Æ¦€Õù5Mož¸Ú®5ž<,G­¢AØS‹Ý_XsQܧ+aý rRKÑÁׇÑéŒÛÎK;Ô¡Ü+wnpb,DZ?Þmtû.j¶Bv]í„|F޵í›e.­,HÐF-“e/Ø­VFÍqF„ü’-¡6ð¥pè ¡>—Á`ãa¦³ð0Ql Ó9x˜ÍÀÁnF¬5—ÉÀ/Sø()<'tÅL:AöX˜Âû¦Õ€—=…Ï<…¯Šƒ•ÅÁê„bT…× '‘|°¾9lÒ8kÒJð0>J:»@¥¯|3ñ;ÅÀªŠN²ÆÃø)):AØdà«Â§ÂSEÇ[Ó¹Ø)éø¤qðÛ ¯oigÃREÇ3HÇ O,[€¢ìà­ñŽ£ŠKá­)¬ ŒXl,ÌÀSÅÀoÔi[Ç&…ß8X¤Í[i,|³ð+aau"Ê%!;¸)EiÀ×~£¦(l8,'Øj`à©b <_$,|Š™xk6!ixA°°%%b_$$±¾Ùø)Ùxù°ðÛ “ã0ðbcà0ðû “ã‰ece/¢ »=²ñ‚`r‰ßc™øJc’tB –àË ›”''„( NðáàUÅ$VyØo‡7%â8î¾â8‡kLFâC‰>¨¢‘8¿þaÍÉÈõ u'âqpŠ/Eà‡NÀ)¬ÿa=ŠX¼ƒMŠ8?x>‡ÚqœÄ3žO:a=C­Š8ŸþÛq?„õì‡úq{.A'xÿ|\Ãzñ¸ðygò>Ô¶ˆëSÿ©^uAô@êe¨{Çñúê_Äù'臋ÕɰFüÔÐÀi…¡–¬q”æÿf<â¼’¢£‡PÈssðâ{ƒh¢õþ@ù„W'+Ž|ïÇÿ?ÑCùˆ@$=NÍA£ÛÜ”Aõ_‹XÜ’RÂI¶ÿÍCÇæü¾ö.Iº†ê‚¹®ÔèÇb“íw-íèàæ6ĹÀ›'tæ Ž7õž,ëŽvópvã»òÜø[=<Ïñ¹;H»98{Œ«6ŒG ¬øî¼Á kßkà¢çPà– ¡ƒ`èbÍbw‡3)³…CÓÁ¡¢»Ã®ÅkíDO9óÄO :º9xœ@•>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinstim-', fig.width = 8, fig.height = 4, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## add a chunk option "strip.white.output" to remove leading and trailing white ## space (empty lines) from output chunks ('strip.white' has no effect) local({ default_output_hook <- knitr::knit_hooks$get("output") knitr::knit_hooks$set(output = function (x, options) { if (isTRUE(options[["strip.white.output"]])) { x <- sub("[[:space:]]+$", "\n", # set a single trailing \n sub("^[[:space:]]+", "", x)) # remove leading space } default_output_hook(x, options) }) }) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ \documentclass[nojss,nofooter,article]{jss} \usepackage[utf8]{inputenc} % Rnw is ASCII, but auto-generated bib file isn't % (specification is redundant in LaTeX >= 2018-04-01) \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinstim} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~3]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinstim} implementation in your own work.}}\\[1cm] \code{twinstim}: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Plaintitle{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Shorttitle{Endemic-epidemic modeling of spatio-temporal point patterns} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure %% knitr uses \subfloat, which subcaption only provides since v1.3 (2019/08/31) \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbb{I}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of \emph{point-referenced} surveillance data using the endemic-epidemic point process model ``\code{twinstim}'' proposed by \citet{meyer.etal2011} and extended in \citet{meyer.held2013}. %% (For other types of surveillance data, see %% \code{vignette("twinSIR")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for time-stamped geo-referenced case reports of invasive meningococcal disease (IMD) caused by the two most common bacterial finetypes of meningococci in Germany, 2002--2008. } \Keywords{% spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, spatial interaction function, branching process with immigration} \begin{document} <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) @ \section[Model class]{Model class: \code{twinstim}} \label{sec:twinstim:methods} Infective events occur at specific points in continuous space and time, which gives rise to a spatio-temporal point pattern $\{(\bm{s}_i,t_i): i = 1,\dotsc,n\}$ from a region~$\bm{W}$ observed during a period~$(0,T]$. The locations~$\bm{s}_i$ and time points~$t_i$ of the $n$~events can be regarded as a realization of a self-exciting spatio-temporal point process, which can be characterized by its conditional intensity function (CIF, also termed intensity process) $\lambda(\bm{s},t)$. It represents the instantaneous event rate at location~$\bm{s}$ at time point~$t$ given all past events, and is often more verbosely denoted by~$\lambda^*$ or by explicit conditioning on the ``history''~$\mathcal{H}_t$ of the process. \citet[Chapter~7]{Daley.Vere-Jones2003} provide a rigorous mathematical definition of this concept, which is key to likelihood analysis and simulation of ``evolutionary'' point processes. \citet{meyer.etal2011} formulated the model class ``\code{twinstim}'' -- a \emph{two}-component \emph{s}patio-\emph{t}emporal \emph{i}ntensity \emph{m}odel -- by a superposition of an endemic and an epidemic component: \begin{equation} \label{eqn:twinstim} \lambda(\bm{s},t) = \nu_{[\bm{s}][t]} + \sum_{j \in I(\bm{s},t)} \eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j) \:. \end{equation} This model constitutes a branching process with immigration. Part of the event rate is due to the first, endemic component, which reflects sporadic events caused by unobserved sources of infection. This background rate of new events is modeled by a log-linear predictor $\nu_{[\bm{s}][t]}$ incorporating regional and/or time-varying characteristics. Here, the space-time index $[\bm{s}][t]$ refers to the region covering $\bm{s}$ during the period containing $t$ and thus spans a whole spatio-temporal grid on which the involved covariates are measured, e.g., district $\times$ month. We will later see that the endemic component therefore simply equals an inhomogeneous Poisson process for the event counts by cell of that grid. The second, observation-driven epidemic component adds ``infection pressure'' from the set \begin{equation*} I(\bm{s},t) = \big\{ j : t_j < t \:\wedge\: t-t_j \le \tau_j \:\wedge\: \norm{\bm{s}-\bm{s}_j} \le \delta_j \big\} \end{equation*} of past events and hence makes the process ``self-exciting''. During its infectious period of length~$\tau_j$ and within its spatial interaction radius~$\delta_j$, the model assumes each event~$j$ to trigger further events, which are called offspring, secondary cases, or aftershocks, depending on the application. The triggering rate (or force of infection) is proportional to a log-linear predictor~$\eta_j$ associated with event-specific characteristics (``marks'') $\bm{m}_j$, which are usually attached to the point pattern of events. The decay of infection pressure with increasing spatial and temporal distance from the infective event is modeled by parametric interaction functions~$f$ and~$g$, respectively. A simple assumption for the time course of infectivity is $g(t) = 1$. Alternatives include exponential decay, a step function, or empirically derived functions such as Omori's law for aftershock intervals. With regard to spatial interaction, a Gaussian kernel $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$ could be chosen. However, in modeling the spread of human infectious diseases on larger scales, a heavy-tailed power-law kernel $f(x) = (x+\sigma)^{-d}$ was found to perform better \citep{meyer.held2013}. The (possibly infinite) upper bounds~$\tau_j$ and~$\delta_j$ provide a way of modeling event-specific interaction ranges. However, since these need to be pre-specified, a common assumption is $\tau_j \equiv \tau$ and $\delta_j \equiv \delta$, where the infectious period~$\tau$ and the spatial interaction radius~$\delta$ are determined by subject-matter considerations. \subsection{Model-based effective reproduction numbers} Similar to the simple SIR model \citep[see, e.g.,][Section 2.1]{Keeling.Rohani2008}, the above point process model~\eqref{eqn:twinstim} features a reproduction number derived from its branching process interpretation. As soon as an event occurs (individual becomes infected), it triggers offspring (secondary cases) around its origin $(\bm{s}_j, t_j)$ according to an inhomogeneous Poisson process with rate $\eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j)$. Since this triggering process is independent of the event's parentage and of other events, the expected number $\mu_j$ of events triggered by event $j$ can be obtained by integrating the triggering rate over the observed interaction domain: \begin{equation} \label{eqn:R0:twinstim} \mu_j = \eta_j \cdot \left[ \int_0^{\min(T-t_j,\tau_j)} g(t) \,dt \right] \cdot \left[ \int_{\bm{R}_j} f(\norm{\bm{s}}) \,d\bm{s} \right] \:, \end{equation} where \begin{equation} \label{eqn:twinstim:IR} \bm{R}_j = (b(\bm{s}_j,\delta_j) \cap \bm{W}) - \bm{s}_j \end{equation} is event $j$'s influence region centered at $\bm{s}_j$, and $b(\bm{s}_j, \delta_j)$ denotes the disc centered at $\bm{s}_j$ with radius $\delta_j$. Note that the above model-based reproduction number $\mu_j$ is event-specific since it depends on event marks through $\eta_j$, on the interaction ranges $\delta_j$ and $\tau_j$, as well as on the event location $\bm{s}_j$ and time point $t_j$. If the model assumes unique interaction ranges $\delta$ and $\tau$, a single reference number of secondary cases can be extrapolated from Equation~\ref{eqn:R0:twinstim} by imputing an unbounded domain $\bm{W} = \IR^2$ and $T = \infty$ \citep{meyer.etal2015}. Equation~\ref{eqn:R0:twinstim} can also be motivated by looking at a spatio-temporal version of the simple SIR model wrapped into the \class{twinstim} class~\eqref{eqn:twinstim}. This means: no endemic component, homogeneous force of infection ($\eta_j \equiv \beta$), homogeneous mixing in space ($f(x) = 1$, $\delta_j \equiv \infty$), and exponential decay of infectivity over time ($g(t) = e^{-\alpha t}$, $\tau_j \equiv \infty$). Then, for $T \rightarrow \infty$, \begin{equation*} \mu = \beta \cdot \left[ \int_0^\infty e^{-\alpha t} \,dt \right] \cdot \left[ \int_{\bm{W}-\bm{s}_j} 1 \,d\bm{s} \right] = \beta \cdot \abs{\bm{W}} / \alpha \:, \end{equation*} which corresponds to the basic reproduction number known from the simple SIR model by interpreting $\abs{\bm{W}}$ as the population size, $\beta$ as the transmission rate and $\alpha$ as the removal rate. If $\mu < 1$, the process is sub-critical, i.e., its eventual extinction is almost sure. However, it is crucial to understand that in a full model with an endemic component, new infections may always occur via ``immigration''. Hence, reproduction numbers in \class{twinstim} are adjusted for infections occurring independently of previous infections. This also means that a misspecified endemic component may distort model-based reproduction numbers \citep{meyer.etal2015}. Furthermore, under-reporting and implemented control measures imply that the estimates are to be thought of as \emph{effective} reproduction numbers. \subsection{Likelihood inference} The log-likelihood of the point process model~\eqref{eqn:twinstim} is a function of all parameters in the log-linear predictors $\nu_{[\bm{s}][t]}$ and $\eta_j$ and in the interaction functions $f$ and $g$. It has the form %% \begin{equation} \label{eqn:twinstim:marked:loglik} %% l(\bm{\theta}) = \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i,k_i) \right] - %% \sum_{k\in\mathcal{K}} \int_0^T \int_{\bm{W}} \lambda(\bm{s},t,k) \dif\bm{s} %% \dif t \:, %% \end{equation} \begin{equation} \label{eqn:twinstim:loglik} \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i) \right] - \int_0^T \int_{\bm{W}} \lambda(\bm{s},t) \dif\bm{s} \dif t \:. \end{equation} %\citep[Proposition~7.3.III]{Daley.Vere-Jones2003} To estimate the model parameters, we maximize the above log-likelihood numerically using the quasi-Newton algorithm available through the \proglang{R}~function \code{nlminb}. We thereby employ the analytical score function and an approximation of the expected Fisher information worked out by \citet[Web Appendices A and B]{meyer.etal2011}. The space-time integral in the log-likelihood \eqref{eqn:twinstim:loglik} poses no difficulties for the endemic component of $\lambda(\bm{s},t)$, since $\nu_{[\bm{s}][t]}$ is defined on a spatio-temporal grid. However, integration of the epidemic component involves two-dimensional integrals $\int_{\bm{R}_i} f(\norm{\bm{s}}) \dif\bm{s}$ over the influence regions~$\bm{R}_i$, which are represented by polygons (as is~$\bm{W}$). Similar integrals appear in the score function, where $f(\norm{\bm{s}})$ is replaced by partial derivatives with respect to kernel parameters. Calculation of these integrals is trivial for (piecewise) constant~$f$, but otherwise requires numerical integration. The \proglang{R}~package \CRANpkg{polyCub} \citep{meyer2019} offers various cubature methods for polygonal domains. % For Gaussian~$f$, we apply a midpoint rule with $\sigma$-adaptive bandwidth % %% combined with an analytical formula via the $\chi^2$ distribution % %% if the $6\sigma$-circle around $\bm{s}_i$ is contained in $\bm{R}_i$. % and use product Gauss cubature \citep{sommariva.vianello2007} % to approximate the integrals in the score function. % For the recently implemented power-law kernels, Of particular relevance for \code{twinstim} is the \code{polyCub.iso} method, which takes advantage of the assumed isotropy of spatial interaction such that numerical integration remains in only one dimension \citep[Supplement~B, Section~2]{meyer.held2013}. We \CRANpkg{memoise} \citep{R:memoise} the cubature function during log-likelihood maximization to avoid integration for unchanged parameters of~$f$. \subsection{Special cases: Single-component models} If the \emph{epidemic} component is omitted in Equation~\ref{eqn:twinstim}, the point process model becomes equivalent to a Poisson regression model for aggregated counts. This provides a link to ecological regression approaches in general and to the count data model \code{hhh4} illustrated in \code{vignette("hhh4")} and \code{vignette("hhh4\_spacetime")}. To see this, recall that the endemic component $\nu_{[\bm{s}][t]}$ is piecewise constant on the spatio-temporal grid with cells $([\bm{s}],[t])$. Hence the log-likelihood~\eqref{eqn:twinstim:loglik} of an endemic-only \code{twinstim} simplifies to a sum over all these cells, \begin{equation*} \sum_{[\bm{s}],[t]} \left\{ Y_{[\bm{s}][t]} \log\nu_{[\bm{s}][t]} - \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]} \right\} \:, \end{equation*} where $Y_{[\bm{s}][t]}$ is the aggregated number of events observed in cell $([\bm{s}],[t])$, and $\abs{[\bm{s}]}$ and $\abs{[t]}$ denote cell area and length, respectively. Except for an additive constant, the above log-likelihood is equivalently obtained from the Poisson model $Y_{[\bm{s}][t]} \sim \Po( \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]})$. This relation offers a means of code validation using the established \code{glm} function to fit an endemic-only \code{twinstim} model -- see the examples in \code{help("glm_epidataCS")}. %% The \code{help("glm_epidataCS")} also shows how to fit %% an equivalent endemic-only \code{hhh4} model. If, in contrast, the \emph{endemic} component is omitted, all events are necessarily triggered by other observed events. For such a model to be identifiable, a prehistory of events must exist to trigger the first event, and interaction typically needs to be unbounded such that each event can actually be linked to potential source events. \subsection[Extension: Event types]{Extension: \code{twinstim} with event types} To model the example data on invasive meningococcal disease in the remainder of this section, we actually need to use an extended version $\lambda(\bm{s},t,k)$ of Equation~\ref{eqn:twinstim}, which accounts for different event types~$k$ with own transmission dynamics. This introduces a further dimension in the point process, and the second log-likelihood component in Equation~\ref{eqn:twinstim:loglik} accordingly splits into a sum over all event types. We refer to \citet[Sections~2.4 and~3]{meyer.etal2011} for the technical details of this type-specific \code{twinstim} class. The basic idea is that the meningococcal finetypes share the same endemic pattern (e.g., seasonality), while infections of different finetypes are not associated via transmission. This means that the force of infection is restricted to previously infected individuals with the same bacterial finetype~$k$, i.e., the epidemic sum in Equation~\ref{eqn:twinstim} is over the set $I(\bm{s},t,k) = I(\bm{s},t) \cap \{j: k_j = k\}$. The implementation has limited support for type-dependent interaction functions $f_{k_j}$ and $g_{k_j}$ (not further considered here). \section[Data structure]{Data structure: \class{epidataCS}} \label{sec:twinstim:data} <>= ## extract components from imdepi to reconstruct data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units=km) ) stgrid <- imdepi$stgrid[,-1] @ <>= load(system.file("shapes", "districtsD.RData", package = "surveillance")) @ The first step toward fitting a \code{twinstim} is to turn the relevant data into an object of the dedicated class \class{epidataCS}.\footnote{ The suffix ``CS'' indicates that the data-generating point process is indexed in continuous space. } The primary ingredients of this class are a spatio-temporal point pattern (\code{events}) and its underlying observation region (\code{W}). An additional spatio-temporal grid (\code{stgrid}) holds (time-varying) area-level covariates for the endemic regression part. We exemplify this data class by the \class{epidataCS} object for the \Sexpr{nobs(imdepi)} cases of invasive meningococcal disease in Germany originally analyzed by \citet{meyer.etal2011}. It is already contained in the \pkg{surveillance} package as \code{data("imdepi")} and has been constructed as follows: <>= imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, qmatrix = diag(2), nCircle2Poly = 16) @ The function \code{as.epidataCS} checks the consistency of the three data ingredients described in detail below. It also pre-computes auxiliary variables for model fitting, e.g., the individual influence regions~\eqref{eqn:twinstim:IR}, which are intersections of the observation region with discs %of radius \code{eps.s} centered at the event location approximated by polygons with \code{nCircle2Poly = 16} edges. The intersections are computed using functionality of the package \CRANpkg{polyclip} \citep{R:polyclip}. For multitype epidemics as in our example, the additional indicator matrix \code{qmatrix} specifies transmissibility across event types. An identity matrix corresponds to an independent spread of the event types, i.e., cases of one type can not produce cases of another type. \subsection{Data ingredients} The core \code{events} data must be provided in the form of a \class{SpatialPointsDataFrame} as defined by the package \CRANpkg{sp} \citep{R:sp}: <>= summary(events) @ <>= oopt <- options(width=100) ## hack to reduce the 'print.gap' in the data summary but not for the bbox ## Note: sp >= 2.0-0 loads 'sf' for summary(events), but has a fallback, ## see https://github.com/r-spatial/evolution/issues/10 local({ print.summary.Spatial <- sp:::print.summary.Spatial environment(print.summary.Spatial) <- environment() print.table <- function (x, ..., print.gap = 0) { base::print.table(x, ..., print.gap = print.gap) } print.summary.Spatial(summary(events)) }) options(oopt) @ The associated event coordinates are residence postcode centroids, projected in the \emph{European Terrestrial Reference System 1989} (in kilometer units) to enable Euclidean geometry. See the \code{spTransform}-methods for how to project latitude and longitude coordinates into a planar coordinate reference system (CRS). The data frame associated with these spatial coordinates ($\bm{s}_i$) contains a number of required variables and additional event marks (in the notation of Section~\ref{sec:twinstim:methods}: $\{(t_i,[\bm{s}_i],k_i,\tau_i,\delta_i,\bm{m}_i): i = 1,\dotsc,n\}$). For the IMD data, the event \code{time} is measured in days since the beginning of the observation period 2002--2008 and is subject to a tie-breaking procedure (described later). The \code{tile} column refers to the region of the spatio-temporal grid where the event occurred and here contains the official key of the administrative district of the patient's residence. There are two \code{type}s of events labeled as \code{"B"} and \code{"C"}, which refer to the serogroups of the two meningococcal finetypes \emph{B:P1.7-2,4:F1-5} and \emph{C:P1.5,2:F3-3} contained in the data. The \code{eps.t} and \code{eps.s} columns specify upper limits for temporal and spatial interaction, respectively. Here, the infectious period is assumed to last a maximum of 30 days and spatial interaction is limited to a 200 km radius for all cases. The latter has numerical advantages for a Gaussian interaction function $f$ with a relatively small standard deviation. For a power-law kernel, however, this restriction will be dropped to enable occasional long-range transmission. The last two data attributes displayed in the above \code{event} summary are covariates from the case reports: the gender and age group of the patient. For the observation region \code{W}, we use a polygon representation of Germany's boundary. Since the observation region defines the integration domain in the point process log-likelihood~\eqref{eqn:twinstim:loglik}, the more detailed the polygons of \code{W} are the longer it will take to fit a \code{twinstim}. It is thus advisable to sacrifice some shape details for speed by reducing the polygon complexity. In \proglang{R} this can be achieved via, e.g., \code{ms_simplify} from the \CRANpkg{rmapshaper} package \citep{R:rmapshaper}, or \code{simplify.owin} from \CRANpkg{spatstat.geom} \citep{R:spatstat}. % \code{thinnedSpatialPoly} in package \CRANpkg{maptools}, % will retire % which implements the Douglas-Peucker reduction method. The \pkg{surveillance} package already contains a simplified representation of Germany's boundaries: <>= <> @ This file contains both the \class{SpatialPolygonsDataFrame} \code{districtsD} of Germany's \Sexpr{length(districtsD)} administrative districts as at January 1, 2009, as well as their union \code{stateD}. %obtained by the call \code{rgeos::gUnaryUnion(districtsD)} \citep{R:rgeos}. These boundaries are projected in the same CRS as the \code{events} data. The \code{stgrid} input for the endemic model component is a data frame with (time-varying) area-level covariates, e.g., socio-economic or ecological characteristics. In our example: <>= .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) @ Numeric (\code{start},\code{stop}] columns index the time periods and the factor variable \code{tile} identifies the regions of the grid. Note that the given time intervals (here: months) also define the resolution of possible time trends and seasonality of the piecewise constant endemic intensity. We choose monthly intervals to reduce package size and computational cost compared to the weekly resolution originally used by \citet{meyer.etal2011} and \citet{meyer.held2013}. The above \code{stgrid} data frame thus consists of 7 (years) times 12 (months) blocks of \Sexpr{nlevels(stgrid[["tile"]])} (districts) rows each. The \code{area} column gives the area of the respective \code{tile} in square kilometers (compatible with the CRS used for \code{events} and \code{W}). A geographic representation of the regions in \code{stgrid} is not required for model estimation, and is thus not part of the \class{epidataCS} class. %It is, however, necessary for plots of the fitted intensity and for %simulation from the estimated model. In our example, the area-level data only consists of the population density \code{popdensity}, whereas \citet{meyer.etal2011} additionally incorporated (lagged) weekly influenza counts by district as a time-dependent covariate. %% In another application, \citet{meyer.etal2015} used a large number of socio-economic %% characteristics to model psychiatric hospital admissions. \pagebreak \subsection{Data handling and visualization} The generated \class{epidataCS} object \code{imdepi} is a simple list of the checked ingredients <>= cat(paste0('\\code{', names(imdepi), '}', collapse = ", "), ".", sep = "") @ Several methods for data handling and visualization are available for such objects as listed in Table~\ref{tab:methods:epidataCS} and briefly presented in the remainder of this section. <>= print(xtable( surveillance:::functionTable( class = "epidataCS", functions = list( Convert = c("epidataCS2sts"), Extract = c("getSourceDists"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidataCS} objects.", label="tab:methods:epidataCS" ), include.rownames = FALSE) @ Printing an \class{epidataCS} object presents some metadata and the first \Sexpr{formals(surveillance:::print.epidataCS)[["n"]]} events by default: <>= imdepi @ During conversion to \class{epidataCS}, the last three columns \code{BLOCK} (time interval index), \code{start} and \code{popdensity} have been merged from the checked \code{stgrid} to the \code{events} data frame. The event marks including time and location can be extracted in a standard data frame by \code{marks(imdepi)} -- inspired by package \CRANpkg{spatstat} -- and this is summarized by \code{summary(imdepi)}. <>= (simdepi <- summary(imdepi)) @ The number of potential sources of infection per event (denoted \texttt{|.sources|} in the above output) is additionally summarized. It is determined by the events' maximum ranges of interaction \code{eps.t} and \code{eps.s}. The event-specific set of potential sources is stored in the (hidden) list \code{imdepi$events$.sources} (events are referenced by row index), and the event-specific numbers of potential sources are stored in the summarized object as \code{simdepi$nSources}. A simple plot of the number of infectives as a function of time (Figure~\ref{fig:imdepi_stepfun}) %determined by the event times and infectious periods can be obtained by the step function converter: <>= par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") #axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) @ \pagebreak[1] The \code{plot}-method for \class{epidataCS} offers aggregation of the events over time or space: <>= par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) @ \pagebreak[1] The time-series plot (Figure~\ref{fig:imdepi_plot-1}) shows the monthly aggregated number of cases by finetype in a stacked histogram as well as each type's cumulative number over time. The spatial plot (Figure~\ref{fig:imdepi_plot-2}) shows the observation window \code{W} with the locations of all cases (by type), where the areas of the points are proportional to the number of cases at the respective location. Additional shading by the population is possible and exemplified in \code{help("plot.epidataCS")}. %The above static plots do not capture the space-time dynamics of epidemic spread. An animation may provide additional insight and can be produced by the corresponding \code{animate}-method. For instance, to look at the first year of the B-type in a weekly sequence of snapshots in a web browser (using facilities of the \CRANpkg{animation} package of \citealp{R:animation}): <>= animation::saveHTML( animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B") @ Selecting events from \class{epidataCS} as for the animation above is enabled by the \code{[}- and \code{subset}-methods, which return a new \class{epidataCS} object containing only the selected \code{events}. A limited data sampling resolution may lead to tied event times or locations, which are in conflict with a continuous spatio-temporal point process model. For instance, a temporal residual analysis would suggest model deficiencies \citep[Figure 4]{meyer.etal2011}, and a power-law kernel for spatial interaction may diverge if there are events with zero distance to potential source events \citep{meyer.held2013}. The function \code{untie} breaks ties by random shifts. This has already been applied to the event \emph{times} in the provided \code{imdepi} data by subtracting a U$(0,1)$-distributed random number from the original dates. The event \emph{coordinates} in the IMD data are subject to interval censoring at the level of Germany's postcode regions. A possible replacement for the given centroids would thus be a random location within the corresponding postcode area. Lacking a suitable shapefile, \citet{meyer.held2013} shifted all locations by a random vector with length up to half the observed minimum spatial separation: <>= eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) @ Note that random tie-breaking requires sensitivity analyses as discussed by \citet{meyer.held2013}, but these are skipped here for the sake of brevity. The \code{update}-method is useful to change the values of the maximum interaction ranges \code{eps.t} and \code{eps.s}, since it takes care of the necessary updates of the hidden auxiliary variables in an \class{epidataCS} object. For unbounded spatial interaction: <>= imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) @ Last but not least, \class{epidataCS} can be aggregated to \class{epidata} (from \code{vignette("twinSIR")}) or \class{sts} (from \code{vignette("hhh4_spacetime")}). The method \code{as.epidata.epidataCS} aggregates events by region (\code{tile}), and the function \code{epidataCS2sts} yields counts by region and time interval. The latter could be analyzed by an areal time-series model such as \code{hhh4} (see \code{vignette("hhh4\_spacetime")}). We can also use \class{sts} visualizations, e.g.\ (Figure~\ref{fig:imdsts_plot}): <>= imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD, neighbourhood = NULL) # skip adjacency matrix (needs spdep) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) @ \section{Modeling and inference} \label{sec:twinstim:fit} Having prepared the data as an object of class \class{epidataCS}, the function \code{twinstim} can be used to perform likelihood inference for conditional intensity models of the form~\eqref{eqn:twinstim}. The main arguments for \code{twinstim} are the formulae of the \code{endemic} and \code{epidemic} linear predictors ($\nu_{[\bm{s}][t]} = \exp$(\code{endemic}) and $\eta_j = \exp$(\code{epidemic})), and the spatial and temporal interaction functions \code{siaf} ($f$) and \code{tiaf} ($g$), respectively. Both formulae are parsed internally using the standard \code{model.frame} toolbox from package \pkg{stats} and thus can handle factor variables and interaction terms. While the \code{endemic} linear predictor incorporates %time-dependent and/or area-level covariates from \code{stgrid}, %% and in the disease mapping context usually contains at least the population density as a multiplicative offset, i.e., %% \code{endemic = ~offset(log(popdensity))}. There can be additional effects of time, %% which are functions of the variable \code{start} from \code{stgrid}, %% or effects of, e.g., socio-demographic and ecological variables. the \code{epidemic} formula may use both \code{stgrid} variables and event marks to be associated with the force of infection. %% For instance, \code{epidemic = ~log(popdensity) + type} corresponds to %% $\eta_j = \rho_{[\bm{s}_j]}^{\gamma_{\rho}} \exp(\gamma_0 + \gamma_C \ind(k_j=C))$, %% which models different infectivity of the event types, and scales %% with population density (a grid-based covariate) to reflect higher %% contact rates and thus infectivity in more densely populated regions. For the interaction functions, several alternatives are predefined as listed in Table~\ref{tab:iafs}. They are applicable out-of-the-box and illustrated as part of the following modeling exercise for the IMD data. Own interaction functions can also be implemented following the structure described in \code{help("siaf")} and \code{help("tiaf")}, respectively. <>= twinstim_iafs <- suppressWarnings( cbind("Spatial (\\code{siaf.*})" = ls(pattern="^siaf\\.", pos="package:surveillance"), "Temporal (\\code{tiaf.*})" = ls(pattern="^tiaf\\.", pos="package:surveillance")) ) twinstim_iafs <- apply(twinstim_iafs, 2, function (x) { is.na(x) <- duplicated(x) x }) print(xtable(substring(twinstim_iafs, 6), label="tab:iafs", caption="Predefined spatial and temporal interaction functions."), include.rownames=FALSE, sanitize.text.function=function(x) paste0("\\code{", x, "}"), sanitize.colnames.function=identity, sanitize.rownames.function=identity) @ \subsection{Basic example} To illustrate statistical inference with \code{twinstim}, we will estimate several models for the simplified and ``untied'' IMD data presented in Section~\ref{sec:twinstim:data}. In the endemic component, we include the district-specific population density as a multiplicative offset, a (centered) time trend, and a sinusoidal wave of frequency $2\pi/365$ to capture seasonality, where the \code{start} variable from \code{stgrid} measures time: <>= (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) @ See \citet[Section~2.2]{held.paul2012} for how such sine/cosine terms reflect seasonality. Because of the aforementioned integrations in the log-likelihood~\eqref{eqn:twinstim:loglik}, it is advisable to first fit an endemic-only model to obtain reasonable start values for more complex epidemic models: <>= imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) @ We exclude the single case with unknown age group from this analysis since we will later estimate an effect of the age group on the force of infection. Many of the standard functions to access model fits in \proglang{R} are also implemented for \class{twinstim} fits (see Table~\ref{tab:methods:twinstim}). For example, we can produce the usual model summary: <>= summary(imdfit_endemic) @ Because of the aforementioned equivalence of the endemic component with a Poisson regression model, the coefficients can be interpreted as log rate ratios in the usual way. For instance, the endemic rate is estimated to decrease by \code{1 - exp(coef(imdfit_endemic)[2])} $=$ \Sexpr{round(100*(1-exp(coef(imdfit_endemic)[2])),1)}\% per year. Coefficient correlations can be retrieved via the argument \code{correlation = TRUE} in the \code{summary} call just like for \code{summary.glm}, or via \code{cov2cor(vcov(imdfit_endemic))}. <>= print(xtable( surveillance:::functionTable( class = "twinstim", functions = list( Display = c("iafplot", "checkResidualProcess"), Extract = c("intensity.twinstim", "simpleR0"), Modify = c("stepComponent"), Other = c("epitest"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{twinstim} objects. Note that there is no need for specific \\code{coef}, \\code{confint}, \\code{AIC} or \\code{BIC} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinstim" ), include.rownames = FALSE) @ We now update the endemic model to take additional spatio-temporal dependence between events into account. Infectivity shall depend on the meningococcal finetype and the age group of the patient, and is assumed to be constant over time (default), $g(t)=\ind_{(0,30]}(t)$, with a Gaussian distance-decay $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$. This model was originally selected by \citet{meyer.etal2011} and can be fitted as follows: <>= imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix")) @ On Unix-alikes, the numerical integrations of $f(\norm{\bm{s}})$ in the log-likelihood and $\frac{\partial f(\norm{\bm{s}})}{\partial \log\sigma}$ in the score function (note that $\sigma$ is estimated on the log-scale) can be performed in parallel via %the ``multicore'' functions \code{mclapply} \textit{et al.}\ from the base package \pkg{parallel}, here with \code{cores = 2} processes. Table~\ref{tab:imdfit_Gaussian} shows the output of \code{twinstim}'s \code{xtable} method \citep{R:xtable} applied to the above model fit, providing a table of estimated rate ratios for the endemic and epidemic effects. The alternative \code{toLatex} method simply translates the \code{summary} table of coefficients to \LaTeX\ without \code{exp}-transformation. On the subject-matter level, we can conclude from Table~\ref{tab:imdfit_Gaussian} that the meningococcal finetype of serogroup~C is less than half as infectious as the B-type, and that patients in the age group 3 to 18 years are estimated to cause twice as many secondary infections as infants aged 0 to 2 years. <>= print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) @ \subsection{Model-based effective reproduction numbers} The event-specific reproduction numbers~\eqref{eqn:R0:twinstim} can be extracted from fitted \class{twinstim} objects via the \code{R0} method. For the above IMD model, we obtain the following mean numbers of secondary infections by finetype: <<>>= R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) @ Confidence intervals %for the estimated reproduction numbers $\hat\mu_j$ can be obtained via Monte Carlo simulation, where Equation~\ref{eqn:R0:twinstim} is repeatedly evaluated with parameters sampled from the asymptotic multivariate normal distribution of the maximum likelihood estimate. For this purpose, the \code{R0}-method takes an argument \code{newcoef}, which is exemplified in \code{help("R0")}. %% Note that except for (piecewise) constant $f$, computing confidence intervals for %% $\hat\mu_j$ takes a considerable amount of time since the integrals over the %% polygons $\bm{R}_j$ have to be solved numerically for each new set of parameters. \subsection{Interaction functions} <>= imdfit_exponential <- update(imdfit_Gaussian, siaf = siaf.exponential()) @ <>= imdfit_powerlaw <- update(imdfit_Gaussian, siaf = siaf.powerlaw(), data = imdepi_untied_infeps, start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) @ <>= imdfit_step4 <- update(imdfit_Gaussian, siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100)) @ <>= save(imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4, file = "twinstim-cache.RData", compress = "xz") @ Figure~\ref{fig:imdfit_siafs} shows several estimated spatial interaction functions, which can be plotted by, e.g., \code{plot(imdfit_Gaussian, "siaf")}. <>= par(mar = c(5,5,1,1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_exponential, "siaf", add=TRUE, col.estimate=5, lty = c(5,3)) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Exponential", "Gaussian", "Step (df=4)"), col=c(4,5,2,3), lty=c(2,5,1,4), lwd=3, bty="n") @ The estimated standard deviation $\hat\sigma$ of the Gaussian kernel is: <<>>= exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) @ \citet{meyer.held2013} found that a power-law decay of spatial interaction more appropriately describes the spread of human infectious diseases. A power-law kernel concentrates on short-range interaction, but also exhibits a heavier tail reflecting occasional transmission over large distances. %This result is supported by the power-law distribution of short-time human %travel \citep{brockmann.etal2006}, which is an important driver of epidemic spread. To estimate the power law $f(x) = (x+\sigma)^{-d}$, we use the prepared \code{eps.s = Inf} version of the \class{epidataCS} object, and update the model as follows: <>= <> @ To reduce the runtime of this example, we specified convenient \code{start} values for some parameters. The estimated parameters $(\hat\sigma, \hat d)$ are: <<>>= exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) @ Sometimes $\sigma$ is difficult to estimate, and also in this example, its confidence interval is relatively large. The one-parameter version \code{siaf.powerlaw1} can be used to estimate a power-law decay with fixed $\sigma = 1$. A more common option is the exponential kernel $f(x) = \exp(-x/\sigma)$: <>= <> @ Table~\ref{tab:iafs} also lists the step function kernel as an alternative, which is particularly useful for two reasons. First, it is a more flexible approach since it estimates interaction between the given knots without assuming an overall functional form. Second, the spatial integrals in the log-likelihood can be computed analytically for the step function kernel, which therefore offers a quick estimate of spatial interaction. We update the Gaussian model to use four steps at log-equidistant knots up to an interaction range of 100 km: <>= <> @ Figure~\ref{fig:imdfit_siafs} suggests that the estimated step function is in line with the power law. Note that suitable knots for the step function could also be derived from quantiles of the observed distances between events and their potential source events, e.g.: <<>>= quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) @ For the temporal interaction function $g(t)$, model updates and plots are similarly possible, e.g., using \code{update(imdfit_Gaussian, tiaf = tiaf.exponential())}. However, the events in the IMD data are too rare to infer the time-course of infectivity with confidence. <>= local({ nSources <- sapply(levels(imdepi$events$type), function (.type) { mean(summary(subset(imdepi_untied_infeps, type==.type))$nSources) }) structure( paste("Specifically, there are only", paste0(round(nSources,1), " (", names(nSources), ")", collapse=" and "), "cases on average within the preceding 30 days", "(potential sources of infection)."), class="Latex") }) @ \subsection{Model selection} <>= AIC(imdfit_endemic, imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4) @ Akaike's Information Criterion (AIC) suggests superiority of the power-law vs.\ the exponential, Gaussian, and endemic-only models. The more flexible step function yields the best AIC value, but its shape strongly depends on the chosen knots and is not guaranteed to be monotonically decreasing. The function \code{stepComponent} -- a wrapper around the \code{step} function from \pkg{stats} -- can be used to perform AIC-based stepwise selection within a given model component. <>= ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model @ \subsection{Model diagnostics} The element \code{"fittedComponents"} of a \class{twinstim} object contains the endemic and epidemic values of the estimated intensity at each event occurrence. However, plots of the conditional intensity (and its components) as a function of location or time provide more insight into the fitted process. Evaluation of \code{intensity.twinstim} requires the model environment to be stored with the fit. By default, \code{model = FALSE} in \code{twinstim}, but if the data are still available, the model environment can also be added afterwards using the convenient \code{update} method: <>= imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) @ Figure~\ref{fig:imdfit_powerlaw_intensityplot_time} shows an \code{intensityplot} of the fitted ``ground'' intensity $\sum_{k=1}^2 \int_{\bm{W}} \hat\lambda(\bm{s},t,k) \dif \bm{s}$: %aggregated over both event types: <>= intensityplot(imdfit_powerlaw, which = "total", aggregate = "time", types = 1:2) @ <>= par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) #curve(intensity_endprop(x), add=TRUE, col=2, lty=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) @ %% Note that this represents a realization of a stochastic process, since it %% depends on the occurred events. The estimated endemic intensity component has also been added to the plot. It exhibits strong seasonality and a slow negative trend. The proportion of the endemic intensity is rather constant along time since no major outbreaks occurred. This proportion can be visualized separately by specifying \code{which = "endemic proportion"} in the above call. <>= meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which="epidemic proportion"), 50, 2450, subdivisions=2000, rel.tol=1e-3)$value / 2400 @ Spatial \code{intensityplot}s as in Figure~\ref{fig:imdfit_powerlaw_intensityplot_space} can be produced via \code{aggregate = "space"} and require a geographic representation of \code{stgrid}. The epidemic proportion is naturally high around clusters of cases and even more so if the population density is low. %% The function \code{epitest} offers a model-based global test for epidemicity, %% while \code{knox} and \code{stKtest} implement related classical approaches %% \citep{meyer.etal2015}. <>= for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, # scales=list(draw=TRUE), # default (sp>=2 uses 'sf', with a fallback) xlab="x [km]", ylab="y [km]", at=seq(0,1,by=0.1), col.regions=rev(hcl.colors(10,"Reds")), colorkey=list(title="Epidemic proportion"))) } @ Another diagnostic tool is the function \code{checkResidualProcess} (Figure~\ref{fig:imdfit_checkResidualProcess}), which transforms the temporal ``residual process'' in such a way that it exhibits a uniform distribution and lacks serial correlation if the fitted model describes the true CIF well \citep[see][Section~3.3]{ogata1988}. % more recent work: \citet{clements.etal2011} <>= par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) @ \section{Simulation} \label{sec:twinstim:simulation} %% Simulations from the fitted model are also useful to investigate the %% goodness of fit. To identify regions with unexpected IMD dynamics, \citet{meyer.etal2011} compared the observed numbers of cases by district to the respective 2.5\% and 97.5\% quantiles of 100 simulations from the selected model. Furthermore, simulations allow us to investigate the stochastic volatility of the endemic-epidemic process, to obtain probabilistic forecasts, and to perform parametric bootstrap of the spatio-temporal point pattern. The simulation algorithm we apply is described in \citet[Section 4]{meyer.etal2011}. It requires a geographic representation of the \code{stgrid}, as well as functionality for sampling locations from the spatial kernel $f_2(\bm{s}) := f(\norm{\bm{s}})$. This is implemented for all predefined spatial interaction functions listed in Table~\ref{tab:iafs}. %For instance for the %power-law kernel, we pass via polar coordinates (with density then proportional %to $rf(r)$) %, a function also involved in the efficient cubature of % %$f_2(\bm{s})$ via Green's theorem) %and the inverse transformation method with numerical root finding for the %quantiles. Event marks are by default sampled from their respective empirical distribution in the original data. %but a customized generator can be supplied as argument \code{rmarks}. The following code runs \emph{a single} simulation over the last year based on the estimated power-law model: <>= imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) @ This yields an object of the class \class{simEpidataCS}, which extends \class{epidataCS}. It carries additional components from the generating model to enable an \code{R0}-method and \code{intensityplot}s for simulated data. %All methods for \class{epidataCS} are applicable. %% The result is simplified in that only the \code{events} instead of a full %% \class{epidataCS} object are retained from every run to save memory and %% computation time. All other components, which do not vary between simulations, %% e.g., the \code{stgrid}, are only stored from the first run. %% There is a \code{[[}-method for such \class{simEpidataCSlist}s in order to %% extract single simulations as full \class{simEpidataCS} objects from the %% simplified structure. %Extracting a single simulation (e.g., \code{imdsims[[1]]}) Figure~\ref{fig:imdsim_plot} shows the cumulative number of cases from the simulation appended to the first six years of data. <>= .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = adjustcolor(c("indianred", "darkblue"), alpha.f = 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) @ %% Because we have started simulation at time \code{t0 = 0}, %% no events from \code{data} have been used as the prehistory, i.e., %% the first simulated event is necessarily driven by the endemic model component. A special feature of such simulated epidemics is that the source of each event is known: <>= table(imdsim$events$source > 0, exclude = NULL) @ The stored \code{source} value is 0 for endemic events, \code{NA} for events of the prehistory but still infective at \code{t0}, and otherwise corresponds to the row index of the infective source. %% Averaged over all 30 simulations, the proportion of events triggered by %% previous events is %% Sexpr{mean(sapply(imdsims$eventsList, function(x) mean(x$source > 0, na.rm = TRUE)))}. %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages knitr::write_bib( # produces UTF-8 c("memoise", "sp", "polyclip", "xtable"), file = "twinstim-R.bib", tweak = FALSE, prefix = "R:") @ \bibliography{references,twinstim-R} \end{document} surveillance/vignettes/twinstim-cache.RData0000644000176200001440000031605414176021011020614 0ustar liggesusersý7zXZi"Þ6!ÏXÌâÂVïþ])TW"änRÊŸ’Ù$¦g;ïX†(äék/¾œÚ$3”é¾g¯ž=\`xE…–eˆ"šäëé!ˆ_:çñ($š?†á+æ§äüå®FH)P˜3\íÿMÖê57Ø¡HuÔÀ—)• åªôlizâÃÂúèëTÒGCÙ¶…н®è÷¡I³ZR#6sß<ÚŒ~J9t{’=9»¸oGÊ ‘Ú$Âà‘Љ±YÏR‘`ääq_‰'Ò,Ú|[sƒ2͸]T@ë þ4¹z)åÃqš³²*5ê÷Óÿ½ ˆÙ‚ q|²½Ÿ[Û€-HJôj"Ç´¥iy^2(§?J´ä€)WY’±fy…–~²påÇßÌcV÷É£rúÀå©Îx'¿gAñêűڔ¬cvÚØ/Y1ëAкրü<…D{›æ.õµ ÷“Ä»­CÁæÐÖV©ƒz{¿'Šðµâ]&uùè@âÒçáPÊ·†/‚mð:qxLÕ€Õâùª±Á¼Œ·›Gj&}ñhÓQÍ»Í QÜ7;M¿âت¿S¸q×Ïìj”Pè£t•· sUw³û¾˜j_ÒjW™’<¯ÿú¤‘ïâ0ºLœ2–ÏæàL9ßWÁÒÛÿ>§®'}4Z¾ÜöþÔ-‘ 6¢Víˆ9EB°­‹i€Â/;eÞïè!ûp]Å©¬¯¶Êz"ý¿Ê•¯Xÿ`í(Yá<4£»P VO†¼4ÅH¨6õq~Ô¸™G×(›a%D<=@©å”-¨dßN} jô°2ÅÝýû¯œð Ÿ×÷_ Ãè@i:aHZÉô%½IöP„(òèkÄí¿ WÖ–ˆC“ôfÜìÑ« @ù¸ðŠÅe ~yú§U…1³±L®³~|ª=ýuJ§@$'ïu•Ö„»pHˆöøz¦­R•V{ඈŠIèK&¬'ᘡò9€îmzÖ-ZÒkPЖÝ"¶îAÎ"®÷Ñ%în»xˆ2:˜¿8KeLB”I%\Æ`0p—•J¯ûT£xäŒÓÍP±ÍÁ§šß¶ÌS’ÔiTÜÂKAݳ¸y}d¶ØZ¬þãU9C2‹Ï)¼X>„’½A¦¥,R¯[ª üÆúk~ ‡Yª¤õ(€Ïd"±TêõóŠD ;Šót´—,©ñú¨8"¨AoAõÔ0Pß„ûE¾N>ê—¦Ê6^*½‡<Êr(þqõÓ %À'8ªÙw½IÑùAò’>Ù y±KQœVý+¤14O…xC[“ñpŒÒi4èŠý€ù@Üû¯öRÁ˜1¸¼€FIš îbÅ}++o¾Ñ–Š9ueQwíç¹ãÁZ¥ó;}4þ(”&¼©ˆô]Sà_ þÉËokèbÿê7¸Ïÿße/€JçFu%»ùÊ9‡k‹b 5žcøÎCBèºn ¸WÇKÌF|Z ôùÓ÷îï8k=T’3èÃûõý¾o ­¤Š/Ã4ÓøÞ]Þ©óKˆ¯eí,¤]*Î;wÌŒHåw8ÐeڙحÚL¢ÅÌí“?!«dy%ˆóª<â}Ó¨C³«™7z™;fCjSÝ)sÕMdv}¶F+ þ´aõÜÿ<¶° q6¢±Ò(šêÝ31Ì÷K7ùx™ Õמ¤•·œì·@û,‰V—Mê˜Jƒ£èC>Ó³ão·øq‡“Úa´’ÜÁs›Íú¬¹¢¯´C3áhÿYÛ"Ý$Œi’Êç§‚†P´VÆÛyÍÀz±”Â}WÝ‚Ñ@vùK,[àñËñFúGŠhíô8Ǿ¸Ø€ F0šæºM°­r= â¹úÞ€—[¥Û²·ÕEmW¢+'Q]¼}‰&*¼†eÍêšU`ب[·ñžéŸò’¥¬|£a0`–Q…]½¬0Ò0¹\ †ð_M f úÊ0…Ú롱š ýÅøýƒöžg™OnÙsb0³hnv{½ˆo²õ#~¢™=b5±;¶›¸¥j3å>§å æü¬<¾g!ðH• Åú†1ãxŠ"=‘èDuü &óÈa®=×ÔäZê}H&¶aù•‡µ}VÖ"™PÈTÏ/¶æ ´]Ï=‡ ò6³ÿÆj†8ÕV†‡|ÒªôºHÿr7 6º9¸è¦#ýGKÆãì &@.´‘TŠ1óÙ&A¦°ÛR`+±g¿–é'€ÈÜ7:¼zœ²(~|åÿ­MÓ‹ÅÑs_å¸W6#ò·1TâµT¯qî3³>¾K¨´áfkŠZäüOF±He<ÏG|³&*)ðß?H¨ì>a¯üc6­B,äJ* J•ø?!réøòxoÉû÷2ÆÐù…~ÀZnxw}ZìÚƒTrɸ> ¾%MÀÀì@ƒ…B=Ê”‡­ªo´Œ e˜ò)*å±IbAôܹ{jÁ×Z£À¢)‰¤¬6ΙfÊÀŽÌ­Ë<‘oÑ´¤qš˜&Z†µf2YÓ›ªž@>%Ê7_ædï^ÇZ¡¤ˆÉ…ÊNI£ Ä( Þ'EFEš Îή8K¨žA{Äx´Y³};d³èÆ•åª÷“Z”œÉÅh€µ‡îkî,ïƒt®QƆÔ7¸‹kj`øP§ÎÃð=UŠ«³‡ 6›ýXŠE)ÃõZæŽûÊǶWg.±<ÿÏbÿQÆ‘ÎÚŒîÛhX ƒÂ}†Ù„€A$}…úFÞ*¹t´adYç.š©â ­-·µŸÎð‰ñz©b .&_щSrö;¤ªao³Ï™<ñ‹š?l® "Çký«agð ¦.œÄ¨ŸV³Nß|éw­TîhEhëËÏùwóËÙ*þ]ÓÐéšXêšò›^úÊHLßÂÑ(ÖDuã£>¹‰/cZ”FàØíöbFq~™U??Üè˜^ú=›à cóÓë~),ÿÂñ 3;[—Óu,‚Û»5z9ZRüo"œžö‹ܼ{ÆÁ “_1>Õÿ²â]Mò59¹ƒ¸Ð! ÔÓ6ص'À_LYþzã5˜`F »$¿‘îlXG5\ßÈz½„¦+DµîP]´kÊõžÔ$ÞkrË?3‡t*‹m@Á®ËFxQšvÁœx¬—Ì>Óºªj|òOù_Ìì& ^NÓIz¹h!´~%™À·ÍMCàƒhjÐýmâ\Ä/Þ¥a[—z3 ©ìLšõQºd½å.‰ØÔº¹F‘ãr(†¦o½ð9ªø©^ý… nÃt±64É•ûºª/¡4€´Ù¤Y;ê’»‡ú4°64Ý©„±Ë›Ø%Tm›ŸvÇâ•0n¦^wÍû½˜°Œ·=Á?ŠÚ/3Œî´€x$:±mB:˜æTS:<Æ;ëµgtEB ýàv5ÔmóK{$ÜÛ±t&‡©T¨Ì~:P,ˆRšS’«m´ƒ¸UrÒ—Ôíe1:"~]¬F¦£÷wÎå!ªÀ‘#’€g\ýFuò0ÂY¢L¥z§t}sYüDפc Ñk"ßÃzC  kã&°R´¿ŒŽ]%K/ÍáÍ50X‹?AhúÞ0Bð•C)]ß„¼jwÅòé(ø4RGPÖå!,ásihÕ›%À.æph­#Àî€aè '²´_ÞÓÄšÛðÔ.F.â~\?¤ù=tõI0øè=Êhÿ•½˜§àÎÚHØsAëE>É xäço  B|ì¨ô·<ÿ™«ê7‘nŠQµÍ“ÀŠ  °jHDþ¬k|“- 5*5¥Ç+_+©Àù_"R2ä]æá"·&êT;êÚþ:´ì |[9+fer|—¿û ¡ŸMÂæ7œ (1¹‚ôÒNâîw åR·£}ñIHêÍóÛ’·_ľéNöĨ„YwjxãÍä#ÁnÑõZ÷Õ “Aÿf¢] iäÏ? ù ó—ÈÇüviÕ°3½çU'.þá û®J6Ö=÷i9}¦Ó‹Ë¦hLÈë zÀib”Ö$;ª†BÍþÿ.ws†Dþ12“*âÔÌøË ÂWxÙ½æÃÛÉXq×ë¸(ž‡È¾Ä)ÍšV?<8âéÕ@ºæ¸á¡d-#ß˶)‰n}&Eè M!£SNûGô[o?ªÿ%,êVœåR­žßL #´î Ï•Ìáõ¢°Ì5®®l¸¢ùzß½%繉«¯=?AŠWïOÛàÞ5×/S´¡ ¹­xÁø2Ä\̹@L'L"Èa”¿+vâevÊc,³µŽ1¬ÚŠ™d·sožÛh§êšÅÆypÃs÷o:ÜĈÏϯÆýçA2·ÒóOUu²õ}Ï, bfKÉ̇˜vLà¶› ”¥Ý\“Ö€ÆR´¦ææJ´~‹ ºˆtÎk¯üMK65(Æ8àw3þ¿'T@¹ÙXÐ/ ngÊâŽgíiN ­Ù§®?>\B¬eE0@Êãu®Oå÷Œ’¿ç•Æ|^q¦äE'&d•¶–¦8_À=Ö]L|SSô?d°_–E¥\û„ª%–Â×[:XæádÉ/Ì™tƒâVñìî%ØrZ,Is0øsR{¹]õúˆ¥ýv°¬v;•·èþ’’%$qŒ¹|e8²{<“f/¶ ”'þ3" (0Ìà[+7R¶.·¹0˜æ4Žàùº~P°ÂÑÿ˧í¬3!ÝvK2,´ƒŠé&äÛ‚h†‚®ÞÏŒ™¤ FoÍㇿa jÇeÕ0e‰d8(¡2Ø{,¡ ±Ò)ç ~Gv*”u£s™€>åĬpY·”æ^ŽùŸÏüm‚-†ˆò_ÎZǰŒL_¯ÛréD ·V´Fñè¶g¦çGþ™²ÑêP¡â‹A†Ãxñ!ê ×|T ‚¯~¤#c‰×‘™òmPäZ°È Ïnþ91¥†ãC­Ôö’cã9»L ˆ!{íˉøóqÛþøk8z(3V€!q§ä¨Â"h|pp„¬®„ Ê}^…¦¶á¸÷y"Ûz§ª;œ$d9XdÔ‘ËÕ©ß=üÛÓõ%[=Þ¨úʘ ug˜@¿”]ÌöœÌ˜~ ŠcÊÀÜc~lsªƒ¨•ƒ¡¯%è´ýñ?üÏq¦É®³é\Öd5F.³ô'á‡å¡$NëÖuܸÄÔá€&½F{g>òîø¼PJÅwüŸ&Ø/ŒünLìmáóç¬ç——Óëxß¡ôJö¡ ÁŒã­Éãa»Ü<“ûÂê56ô sc‚*|`SÈ.sÜÏÙÝ‚çʳ«°ÛÀ7)x·ÿwž†­¥›B¶.äAÛè9 &*¯ª#“^wL8'jee"‚UæSŽ‘ñ`~ $êbB‘©Os¦×X)!øgÔ¨=¹ÔY:Àñ…3Ý‹8Žœ:}TH_\Ó¶R$Fé:>د„|#~YØ=Â0Ú]°Va?ˆ4WÑí&ñuÜçõntp-;õ×1I$v1oîQKžvãK@ÉãèF–èøÜ¹¤Ï‚× H…Ïϼ¥9Úô5”O®=q÷mlð—¡©cÛ™³¦oìéóÎçïé{¸°ZÎôód¨{Íoaÿ"™/ Ž•DÞ¸a©m³ó“ºëÿ¨Ï4쎪±z _›É*<õc”z¿ÈíÁ‡·Up”ÖîÏ9v{ŽeÏŸ#¢çwäÁ{鯬HQ¯Ê.¹ÁÖžo°ÂrÑ”ºUÕ1]àY9UÓo¨EHHz¥î>ÝȤ$Þé=A#ö¬áô»Úö /韼ÜösfË )îõÑ×T{  χÁÕðM’õl¢ÂpZ½¢x"E3% yyªï¸R!Ó Èê4<ÅcÀv½|ù÷ƨ,†¦ÀÓòJÑÁú®…Œî¡A-¾™]±ÏðáҬȊ“Ôÿxêüì·EkX;mI-åÉ“J ¶y¢Ê)£õÚì`—L ¨³?·Nµ¸Yøq\UUî$n.öoTObÓËå!þ«ì®Æ™ß¦ïXF"“Iµá<*fSOj`ŠÆ4Üïx3WÜNáqÉ/ì–ÌҺ➽W¹Z0NHÑî4ëŽO4­@!$¾rËÙó1¶C×ÎH§<l¨Xzü¦•ʧ8àšÿKÿxgêîåán¨Ê”~_’áÂ"X±L^U¬0“ù¸qYkäÓìL>ÛÐIu¬ôL.Q°ùôedÇ·æg¼TP{·!:r%nt\ }·q~|crþÉ:(cBÍrcÌåÈ#³ø!Yji;À8K•@.ì|¡íKI÷ö¾l¾eìà'ŒÎþçoÎÊÁìÀJyŽ,œŒGr²µ;´°I JíGH¯¹3þ0¯ÁÆø¤Ë.ÌÞ$Ÿ¼‹GJBŠ]öE0vår`ä¬ÿ¦R3¤eƒè'éE¯=Muø÷2òpçsÐGÍ2|AÀ!)Îw¯AðúX*Ý(áZÒ‡¨$ûêEC/ŠÁÊI9¼›ÆT}—xÃþ5X¦H–õ÷Qt¹Á>%@t§áUסK»¾RÚ2Pµf£+\í­Ó”ð[Zü"YZ•óÒA”P¢&$ŒõE:»ßœF%À~÷¸™}yZÕ:übîW̼aAMóëç¶ryH/‘‡'#sŸ¡Í+SÞL³ÙýÅÊzuÛó³rÌõ§/€Î¼·ækì÷Ú}ñ(fE—´{ñþ)õÎ~ĮŨ,ý1úŒêˆÞH‚ÊÜ饅‚øÒ‹½±¦«Å§£\é}pæôxÁ±3þZ'Ëâã„g#_a”ÑÑ)÷£Åx.ªÜþÍRR”ÖèPcú»–¡Á§È¬ÛˆÄhEQBR” ¹×[mãAw­Yè!Ö’¸wÄ»^=½RûëìÚ^ª³Gù\ããÈ<ºŒ0Ñ"ЦÂt,»Î+úÇúu­—„i*C:‚áñP?S&ô&¯iJÕ>ùwíÂ]Ú)¤e¾“O„Åð½¹­;B¨A: oºß¸d€R3`|Ê^ í`'Ê­ÆQ6šÁ('Ãø»üJ3?mȇi Å1hf;Ût`ÂQ‚•%…îp¥¯§ò£—¦ºOÇÍ`M*!Y=W8v¹èŒº£½+*©p„GõŸÛxåy¢}3L·/lŸÝéj8/_Í…NÜó‹û‹d¨r«®|¡ÍÝ\ƒé$(A4cýîÈâ`q£*%ö åsðA•ã6®€ö5뇖CÛSÙ?|’D>Š>VȤÍáß,n)+ÅÁý¡‚â!&xQylÍŒsUñ²ôÉËtA~f¾üûø¹}ÿh ƘïR{kÈ *Ô¦ÔÉSb„FˆÚ ¡²òN»ê'¤_§ðRI-¸502`sÏ’Ãr9³:ý›Ämøützÿ?ïÊû][Ú ‡ àÁ¬æ\¼”Š!‰.¨Ø#™Üà9vÞ¬ÈG/·|ŠòÎYP$LUuý@û{βI¥õ¯Ul¶<íýþjŸy¨ *yÙ†Çèî²Ëh‘)÷Nz_·î¨Ñƒ ðFBHZû¯¼§œ¸"—„s„¶ÒÀæ±ô|b5ÌgמÒÔÃÓåGޏOøjž¬×´‚è¢È…‚hHr Ë_Ó¿/ƒ÷ÞÇd(౯„3ƒ9ô>“Zu-.Ú·¦ÎÓ¤IP{yP_p…5ÍÔ ö¬“'ü×)Iì¼à¡(µ•=pÃØš•f€ç.£¦^Çבˆ°ß–O¨ê½ì"&æee JF»ùfá@íŒØ†@ŽÊ€€Ï¬âƒQIKÚ8–I5$‹Ç‰]HáNÅ}?×Vá;âÖŸ8Œ ˆ \…v!yEÈæ7ù`?ñZ«|¿Ú7ÐÇL&¿<‹é<—;©L )}»WéHÉŽ*ˆC°ížÌ²@Ïæ½!K.ØŠü8žQ6‰_¨Rµ²*¿¬›~¹ûÃÎ4Â{;LÎü÷pòô•¿koYÐ`VZßÈCRªÕ¤í†ð4µâìpP¦Yö™k8ú¬F‘ÈJ}áÉûo_/n=õ%*Ë‘½ü¼&Cu íÄ‹ŠóÙ! ‡%êSŠŽ%žÏÙo)Wsò2ÇÒ=÷+Ò»ÐYbPÍX(b6› ¥C—Ò(ß§5}õÉ\ˆÖ6›Ö˜„ë}sJê¥X‡Yi޼GU ±ê hŠÅÂKXÄ«ß26\àÔÈÈqt.éó^¥ñêEÏ0,±ÉÓRTGÈóåÛù®Æ³õÿ*$‚}Ûè¥òæLZÖo`~~íyœÇbÙ‘öŠ´£ÒAûT%X‚³ôûj®¨–]ÌŽ×ãT[îzÿM{Hãƒd÷`…' Ç\³:¥§ðöiÔê{TZ·ŽçŽÅê7 ùš=2#ÒÙ­è÷-šd¦‡Í”xßY8#'êÉ!yÖšrñBkJkÚÆ~ì9Ä_Ör|ÄùZƒi4Ö=Ø] úÎÙ*]Y‰“¾(ÖÔ¿”p{CGó  ܤåpÄP 97ºHù)rÖœ^'ª´IÈ!o`? ½S×mTÃóp\Gë0x.dÄau,i£š+}ú¾´"Ðb¬k¤×bÞ[k¼¢Åëìéi¥côØð> ü›eùÔó¬{È–ß1_+ÓGASß=|Žfù{ƒ‘Á´©4CÐÿßÕ(Dh½„gtÕ§ÆžÙ¨y–ˆÎJ’æ åûU0ö¦Úâ·î¬‰vÖ(¼'³? ³Sç¹:/Î.bO]Œ ‡ãzi 3˜æëÏU[ãpß`P£r ¿VŠß›A1øA8§ñ™bSbŸ¿wò€ d¥ (¼/.ˆô MÚV'Õ†KHžÍÔïâfáö#z]º´@€þ £rŠíЫâ‰ëÂ¥8—Iýðo®ß“SŠÀuYÚr@Ym½FÙ=ÑÿYç5üöI/LëOŸÄ0U¡ ×X:~9Æ %\ø}æ U\CDëûÑm¢ëmk±°‰åíá Ù'¯°›@" J„ÅCˆ“¹õþ3ª/ƒÖsy…6Îßj®,t¦™Þ.t[ÐÛ£Ù¤*V– þ’Å?è·´‡‡Öþ_t®ÀUóªŒ/wr’"ò«[õÎç7GUe`LÇ:3ÉèÅQf[WË&)ƒóz Cm€ Þ«~9jxZ9Í!ó9œ+ƒlVõI–ã^£Œ¯ë¨ÀN³Ãdz[ÿÛ4ï’tüZžøz4i9ðƒa\ä»´¶…O§ø‰}®S:³ˆÔ  2¦÷ƒ|¹±€©- SÇâØq?Œx`™!¦s_˜ ÿF/BúnïõÄoÜ.Ó ' CÞ(ïC˜”ÆÝh^%ÿÌVCã*"Ì·ìb8~i‘§±ãŸŠAEú<Át-Rÿò‹öUòS‰Z xÆÊ8yÔï()Ý`Šh ÔÃw­k‘2`Q‚aûÜ­ñÑSÛýͬã xšUõ„'_¿Š{S ƒYâ…S0šÒ<Œ~¹Ò:”'S",‹€-–2:ƒ­h‚©KžÅº‡Çqòszß嬥vЀ¥_Þ?qÉFÍô.rco©^4ûn þªNm”eúÃÈ D’b—ÍÏx˜>>{©Ž!4ué,{Xi‚®ü_ó¿K<á5&|G—Ö/ŸoîàùÒ4šî‰™n>_ÕØ]¦ýÑMë1ÑÂöA@ž~Q¡#lóÇýþKR-Þeòxì9œ¼µåýw: &Ç© )p0¥¤àPpšŒ¿Û!§j9˜Eðó ¡üB7¥zJþW-îä§à(†rlƒÑ•]ŇþÒ2…(Íô‰1è×Sé)߀¹V:`fM7UÒû;rÝm]>Ç) vë~”FŠÞá{+\}ßv¼%æbàÖygcC¹-{˜ÀF”#{m¿å/?n1ë½`[Ò‰%±În“”å ü3tø¬Ms¨NϱBOô®Ñf/ƒ4›¯ÀÍ©%üÅI-z?Ðަ<ób{ärì´ÝìS§òv—…ƒŸcâœÀÒ5LÆïm®;{®õs âZ•¿÷Ë!â~l7ãÏʽ©¡t ¸s7ø””ÚPªÃ0®op71.Ibõ¯] ܤÛèž0§à:–G©U#…‚–HcÌ|.½®ÿ;,.ÉÚéÃW+ý íÉã.€««·0èäu¾ÁHšž#é£èÑ®aШ5Ô¢ò«xÝ4¯‹³a°âW0üRqÀj°‰½¦ÿC»¿ªÕ¸¥& ‡ M ›j2™·rX*þù;«-©ŒËþ†çM’„Qzÿ&¶¬{#¸a&\)zúMiŸJø™ë˜¼49^FFO¾‡~·› +Ô¦¿ãYÌH6=¢eÁ‡o©-ø=Øè^äÁ›Eœ¢ ³h²¾x‘x•Þ0‹ÒOîTÔè‹b¸ ¦:0`|dÝéÀKjƒXçålCJ<® }ÊçÊ´L±»¿^Àntr•‚GŠ¡áæ sÄ¥ÛȨlO$Iå2Dƒ7qš—¹i ê`^ÍKD©3`_BzýNÁ»%cV~`9y))5f`<œ³Á˜q±2Ž#Ž+ÛÒIc*z§h³‰¡ã™¤\7Á^î ò;XÀö·èâáä2‚*ý°û«Ìh$=ï[T„-ž³ ö6WVZѼˆx"ƒŸšGcgöM§pS¡ýæÃ“Ø7ñèR¢CGêÏçAk"+Û‰  á½ö~¦ 2Myåä NΫÚã’DÍ.‘8žÁÇÃïvn$øáÈ3ˆ¡¶:!”1",7R 3ùê1§ÇJ%ð8`d+YE¬Í>±›?¢/éÀß…@‘ÆÑV¦î¹,©5Ç¿Ì×´šø€é«¸rKuÜjxøm¬HæŠ(½*ÖzÌRx]%&Š–m¾ˆ "ÅÏ%yÛÊmùù™ôÔ¦‹òîØaÂµÝ b¡í×þüòµ‰˜“:ÆbË|9rÛ÷Ôò<®â*²Îñ=>¹ª fu’HsÃM]~“šÆu¾¯_¹#nÇ&C­§ÛJRXÈJbÏ^*a1{·÷˜Œ£H`œža¾¹JÛÃØØ_Žœ;EqbôÐ(žäÛþ>ü[ ®l½k!‚ã¦MÜÉ­ØÜèi“!0Ó "[åÄç»î1ˆÔW&N  ßËÆÅ&òµ™¡[Í'kê¼þ®Û.=þƒ…X,Ž’»"|¦Îxáþ™Ö¨ÞT6]U£Õ´ó‡öu‚½Jþ.£‘î/âldÞ8ä¢ —ñdg¢cµ…é5WAì_Xô€„ÎOëhg?ŸéÞ•”…}SmÙªZâû£Aô¤ÆÍ³¾’O{ºD𓛥)sû2[<“PãtTŸ"ÉJ¨ Ò‹ð¿Nó¾ÄÿgÂß*c©bÍ·Ô!ŽmwèèáÂäTgðgrH¤løøöʇ÷HU¨ë«]ÐcgÒhÉý.#”öž6œîðòÒ¡ÔÖ=Ðç„ÂaVeöá°’ïéÑ?o·Ww‹uq ‡N:=ùu–ê]ÅhG ¿²­žbLF! Ñì‚€ j§’ZwºƒÚ…y ?ž5¥hX§kõ—}Œ·Ö‘uúãà)³ÿérŒû®TX[hzõ¦f”àXÙü Gó¼¥ÄUÙBˆ1‘š'iö„?8e‰gXÍ`4±¤|oöFËÁ?ž¯Xÿc¸8kVÎ_¹!ç@ž—XùC¥Ÿ³±Òrêž`´ñä`R«Ñxø<ÛK¾·MõXúij>sÖÙ*—ý¤k¹ÐJ/¥j:ò¦tmÉ#sãnI•àØO¶“(jmØôÜãÿTÕ¶šW{úŸÒå¶zÎ=æ’õ§$\Íþص֨=Žý<$ó% ,âáÓªMf,†ÃH]ŠàJ`Òíªç¯ßûƒ¹f¨œ8Ëã–q è3Æxa&9yr«8ĽÕJÔÖÚm·\ç B®tÈ­ †—„~/Gª-b+™ížÿ³14³0þ·@ùvˆwu^ÎV×>¡ôªÀ××ku‰Ž‘dÍÄNŽ—Ñ̸ښ!ááKQŽ ì4ÓÚ±m!„’Vf6);ãÌ£ÄÏ9X2,¾î!ãIvu+‡^‰ÖœÄËu^F9'ç?4 ÀGO” äðøÇ-áz®Tª‘¸°½†PÀ ¥)d•ïÝ/›Žýò©…S•ÎéÑÆ“g«»8TQM$—Å–©¥›SA[Ø¢¹âŠD(á…Lªï$Êá %—æo©ÒYëıhŒ¿R ‹ý| )§B4qO±({Cžè…É6î ‰ïY²µ&›à¢«U>kÂl³p×2‡ ‚\O37&D\aàÖjÛNÖŒú… ·z5Þ3VL¶«T·Ñ-Ø ·£ù²yØ(ÆÙ&-m5¢&%õÇ :Ã㿨Á#›YçÝ?ÍxRžÁ?+Ç àP×@alµHê8®kÎñ¾} ¨Y Ò:ôPP{fœvoö†Z‰ vw\™QtFœÛ2®7uÐì‰PÙ8aX¹»æÒ\³ ¹ì×ùÃvž?º/{^¦xK Ê`p¢WF¯KUF\äúwkâ‡%pãÙAÁ- …þ«¦<Ïñ`qp¢wX½´é£lЩ F]¹ åp—^,`¸mÕ|T2^¾€ŽdM¦öÃwéŸÕ˜cÉä±ó¼±‹f̶ªÄÁM¶ã‹—K”ðmN«Ó–ÁGA’¨XÚ™ªù0!ÂeŒ¾×9èÊ7Bñÿtà€º©²u¦+.Q~0\ËÄ *ÿâ‰& V.àñà6phß+lÂ%OaP=Í>À,œõL¥Sÿ84Lž{R±¹Gn ÝÄHH;öÏañ^ý=sx:„"õƒ o´Xº¿»ÙS£[C*k”mêÍäB¢]1[_xH¨‚ÕÖµ†JÈuPÑ{o‰©ÆÐ%ïÐÆ¯®ùWXœí²³`üÞw^ kËY~ªÃ4 `æòêÊ'»Ü;#Y_¦yKp ­QTaàïy!ZÑ~JPàW®ïôÎr·¸yw×e8=ˆ2>Ð’vvëß]ä»’ ­îꦷèä˜õU†>¥ªŒB6VÖ× ¹¿›êÜ E§Y»šæ*EÖêaæJêÖÃ,Í– '`ÚyÂÄáëþÀɉrŸ+9iw°B?†;ì£<a¿{â@}‹ÐúÌêô×43¸sÊQÝ´ˆRPg@œ¢ŽHŒï¹Qqêï)ì!¥RJu°ø X”d6ž¶Îö›šÇÅ—lfe#DÕ°à~ã^Ñè/Pxé-P§)íÙ/€øS7ñb÷ª·ûJÛi™ 퀵`¯­m‘„2lÂ(DEŠÊä =6(”š×·;-r`y·$ó Á»ÊPšÀ/Þ« oÉÞýw(MÎÊYÃzûcq\ [7ËÕû9ÞbÍn“™1Öñ£lÚœVŬ{løÎ½nAYü¦­ó{îùD S“½²w-Û~TX*ò`i‚ú³ñŸ”ׯW¦.¿¿S1΃(jhý±W‘l@?Í/ÙYLXô¼ý²9ÔÒ x”?Dûe3«Ÿo†› ‘f¥êòXmu ZÞ¡» ¤¦HÖ€’p‡0à %p.F÷Xü¢&jeáÚ9B(<ës3ƒ¥iñ‹¥ìê&êü²LUÓ¯ëd’«N¢‹ES‡ôŒp+ ¯`‚u¨eY¦L);Æ%˜2*²¦Ù´€Èm ü”Q¯˜qFÑÒ$Ꙉð–°>õ½0Î äËÜ´O—iH¨Ëê¼eœ‡Žó°f8X±1ëGiF& E› \Ò58A½t.â"KÜ ®²Ê[§*ZelØíöȆùA¤Å ÌŒ}iÚýîNw|¡Í-ôÏ/z3#—•ÊyÕmÈÃ?•Ûh†Æm. $„‰ýa0ÎîD"W‘ë>«—w;ñ“É6½¶×ç:­øº…eÑB2’-¤•¢aÅt¬¨ü£÷ÜÓ8°Wß”Åâ Aå3Jø4ŸÖ«ÏB¶0ù‚#fÞÆF3A¼G=ôeá“­—οºÝ[”ʈKKã6HÃôg¿†¯áv È(’9Ri3Ønþ~RD~]²³n‹u~s<ÏMvl Ä£Âõ&’¼ËãnÚt[jE®@—8ѧÜù® TÔË)üº/–îÁÕÜ?Í+vYiI­®íCüÔ«†ÀÍDF$)x­voWƒ¨Ü—‘›äö+xü_¤Vµ1 ` ý·`‰±%Ð_Tì}#ÔîêÌEQØ-"[Ñ_þuÀÜkPI­6J,2æÍ ¡ž¢µý¸µ±ªÛ5 ËÿOÖ°Š*Ú¬ßé<†Ú’ $ùÃÒ›GGÏv£wr­Ò'ãT(•^ Íß¹Øt *Y/€ÙÚË‚yæF†SELoŸäuÜ¡e&“Ái }O ÎöÆ[ŒHYQžUl)*Ž2äNl±?ÕŠ•TS8ƺ*¬ÔéHž<1 kVz¢ß¢ñï¿™ÐC†¾Å@øtLOõ´>KúS°?«¯ÅC}§åUâÖq˜döMowò뙜¼ÊA¼—”!—Õsa[úîÆŸª¸¸¼+hškåLT ª¸Ç‚å¦JQ  ÙæÔ¤DèÝUbjÍ¿³À‘ì}f{àÞ­3þ9ôsmE·.fè¡ÊŽÝîèbpQ8¬DÚ"gg‹Œé]PeGàüã…¡õS‡&Ò|y iÍv±‘Bq<¤j²ÿâùy‰A:ÒVß%½©W³Ó,4„4dý1á`îq™KH²é*Ûæ1ŽÙkð°Çš<œhIu ¯‘„â\°V}s/®„.ÊÓ˜ä6"»;¸Kµí} ´N”«‚#K·êÿVýŸ«)Íÿ&jÓL´ŒŒÐ\äÈ÷hwÙ.|å¥våîƒöØœ äkÒ »ù ]\ú™H¿‹$ÇÇwMG©b¦8´MûB-ðÚ¯ÂzÒ ÿ_cLñ™Ôü§´#CŸ?̈ln²‹+|&+µ7¼|[Óþ¤ãè]Ž÷ÿ…V{*Æz¬qºqgº$árŽÕgõ)üÃòϰLÎJUv·NIùÉù M@.ïc [ÆhTÅ0R… ýÇ9žtæ³Mã¼c&!IEh¿”d•Âc¤”3[YMpgg´«Õ…zå. )s+wÀÝ©qˆ4P&ÕLÁmVs[ÿž}nŠÀÆ‹Ïȳ‹ÅeÛO®QQRšö4µ© ^:Ê÷ÌÑ­E†Ò7—®cf…ÎI´¢ߥw¤Ä!¬Ã!ŒÉ ­æF„¹7üzÁ\^£å>ZH†ÂcQw,©i$}CIcûW2s§–H†²AüWÇïʬHeéyŠoûÆ@'Z@¸øËÄÀï†+6qÕ8ÛÍ÷·€öŬk'ýî•ÝJ=Ê[à"F"°ü.Ç7Ù7›´Ò˜¿Dž;¥nÝ®³ À¶“Ésw]÷vézp5jí¡ûÇIŽšWø+w°!¤äp2è²TǬ3Þ¹ÅêKZî×_«cÒWÖþ +eÊ 8žžãø=Q»•P–±£rC;…|Wö,…ààºÐCî’dbçz( OÓfû¤Î ó:VVh&þ»“ôéÔ²­ö§šõU?ÁÛ®4•}ñAçqÍsA›Frq/¦IÝ·›#HxðRpwªÚÍ;Š Õs å¼]­[ÿ3áŒÊÉ1·ñgX‚5ŸÀšhÀÇ‘çú,Àií–yìn<œÙU4L¡·ÈjŒ¶šLøÄÁ0³\<º*±‹\~ðq*`Ü¿Ãôm0DÚB\­Fƒ›AN”mys_#L˜ ¶‚ÿ²^d×#¿OF°«™O:wÝWÙ0á¸Ñ†¼ ½®BVÅ‘h¾Põ³íW)×ï^8¬[,¾r@#\d(9±–Œ¬¼—Š™TÚeä-Ÿot"ØëúÜü mê kÓTÄSoÞ1ɤ²XÊ*ú¼=nŸ¬\×xkcëVz8 `²©Pß;è,÷ß:ýÃÐÊ4ލ8¼òiÒ‡Rgefë)¦ßaÕæOxܦü ä„`b˜Åq;atà—Ke5ô쟀™^øòJ `È+ NœCD+{GÜ<Ï5ÚBHW)Ü¢Þìj™vyT¾u—S‹õcÂç"I9-FA½’qð[Míù®Çõ˜HÝ*Ax]-‹Û~L“ѳ‡¶ÇHþ_«ooí{]„„¬ç/ËTXPÞ–M/Í›o—w3öˆ­ìm0k`.öÝû^…S²„1šf:HFÕ ‡Û ļi÷J›OrÂâH³Fú–yK¢Mnb±žÜ¥íüñ‚c VA}£ÅUW6I?S‚Ãó" ‘<ï%ºædÏ»4™»4zîSn’öB„GÊÄ(•¸Š1:{ôaä ¢jÑe_4†Xm¤ÌÏ]Ò<Êåë ç.ý¿˜8ÂÑdcÝì\…Ø>²Eew~ƒŠ$¨…—ôbŽ„£ÆÏµHb0÷9X¨É9™ŒïE×¾;…†Òx…‰Æü½Ú®£‘˜£¯”_xâ ctO¢`ý齑Ö¡§5FlÜ’ˆ´ ×Ó?²¼AºËÛÎ=/oG¡é*£©È»gD¹iuCIјÙõÐ ¸´Dø ôGÀ— ÇÄöOü§ L7|´ö¶ÉÄK€M²E¶¹=KJ~S™k‹W¼­2ˆŒ[`}Ê™HûØvÙQVö$¸J0ÖŠÀÛå6 ~² #(Yª¶ãOâìúÌ%Í炜6«ÙË1DÜj*M|o õ²5ê¬o¥©Xg¼UøÞE¬0‘_mŽsË aV們ûü»¹Ö‚¿wo¡^Ÿš0ÐÕ):{QÈ4Ï_,lÐ8Œ4€æÍY& ZÐ_ÕØÕH+*;­÷'–^˜Tµªbœ[*ß"ú¯¬fôË_øpƒ`_!˜rnlý’q–0!¯ÑIΨVð”v!+&Y$+ÏÚœ±¦¹™;NGˆÖ¨MœÊÈDBÃÍ.¾†(ÄI*VHr”m‘K^2Š N¼œðvJ…°Ã‘ŠòΚdéܱÉåDðû3Œ¢îâE*Yë+š{®æ/éÇÊ8@¸ÉÇŽoÙP›—Äö$SRÿUÓ& ±h}—Aƒ3µ/nõºMÖdεŒ;õ|e*ºÚ³ƒ@7¼Ûýk?õxç5ü5®mçB¼„;JDuÂ_ÛúS·ûòW’À«¬T¼2;ö5à#b~ù€ òcQן@U±¤¡²`®ç.×âayC¥SI $pGÃëc|›vu ù™Ñ8Á¶éÑ=»çˆ5™^)¡vÓÌW°j¹*Õg÷»™!\Ç1Âiïj;ôfŽÀ(­ŸÍ0ð,…u™õÑU4¹‘ž9ZšƒSse>Ú(kjU¹|7@øÚ?!¶Vn÷ˆËÑÿVó»+—Y(ýÃjo7êÄþä &{Nã–œ%ÌÈX<‰¤žÐÁ"íûºa–™[¿~GW6e^¨O"ýZÉVÈÂ@ÑuÁ_œ©Ó><Éê1#“Ç)ôëÆ›—Äâ•–>¯_E’8¾y.äbÊ1}ÙS´:ø§¦à«‹‰m Øƒwý‡Ç¢U„q8ÃåF‡‡û½ésvAßnÈp?7ªçmt–k*j …Éú)î/v‘Þí3[¾å×aä.pùÚ,£¦“[ì?˜_Ä÷y»1Ð36§¸±h¼™rÅ.2JV*¦ù¬ƒ«¼Mà‰ò©5ãõÙäbùºú5jÿ+V7@è:ï™ UNÀ¹(öK µüüw(È@’uJðÉÍGuÝW~fìN_oå Ò!g¢"çòZŬü>{ñó¹´ûjfïVSØVz6Ë+?s‹² iUìj¶ÖÓ,' ¢ùv@{û¯¸%9ûSßõ€w\B^³w¤v¸ ,°¹'íÜ9EBÌi«‚Øÿ¼~Ö‰jî Â!ô ŸÈq’»*ž†k§ØšìX\±ˆÍÍ?¯~q›ÊzŠ™¿XŒº5¹ÈA+êúÈ%—É[ä¶>‡<rú«‚€Ýx,ެ‘ÀX éÔX-±³:‡ ª¯ Ãªú5hÈŽ!\ìäQE/û¬«Á:E.j‰û‰ôÞ=+…%òì"&¶sžZ¬ƒà7 …‰ÊÜkëá¡AJNÝf‘5¨Fb#]p°t G¯ª=ýv´¤úãó³,8tp2ªA¹’Bd¦Â{ãÝÜ 5 öVŒ”î4Z(aéÔ¶ÂiROûЦÿ5=¤ ¿ævõ­Y3Ce†ÿ2PÙæl©ÃEÍ ‚äÂ4)îÔ½ÓWÚd<ù*SVûiЏƒÊ.ÐÑɲåáü¼”ŸdqS¯@p`õ[‰[\S÷êën?˜JÂÑzžÿþ ^×A´'пÙ.S[§ÜM§¸ÁÖw+9½Ó³b…ÀʳwWÕü¼Ü±kËz?Hzk9N+ àKO¢òV­í;S›ÔèAÒÈ2—‚mÞáꙕ­”è¨Y~ešð÷J¡ÿ™ÒíÍÑš·Û~¢×¦À¢i¢*Í™F‰Å@Ízàø&—9“Š€õWöë_¨êõË3Ô Q¤Çd[ìã˜ÝÝýKg4õ¤vo”:•!VÑF”ÍöžÉÃ.8ÐÈ5–˜GSœ¬ÕÓEÕ,ßt¼%ÓQ‚‚Ÿ¯á—]‡ 6ŽH€æb¬Øéˆ¢b'P3òp\BõK² ÜV­ß\.NP—ƒÊÅ>*ëé2Ò4ÙÄ÷Ü~ úÔ5 {¾C^åì>Ó{¬„¯K ‰0N—úãñëÑ0)ú“ÙPŽ£^#nH²È/CëÝÀ›¦Åö±Äݵ©‹ä‹! MVS9,nÓ ƒ`K˜uäà…‹Ù‰S2SƒñfÄ¿Ò%#k‹yváFÚlnLûG¨¸õßÚÿód¼`‰ußß`–Hèk1d#lN”€Ú›Q'C`' G ˆ5Õ¾ ø…C  d\+Áš¡«©l’‡ßb¯¢ÿÜ| ×'V -¡œCH"Dú7¬j+ºÏé ¹‘¤Èqš"d»ŠD14Øh·r|êϳûÕÙ«êBúº¼îÑrc¡ r#sj>Á­ý¹žðE5¤TÄ·„‰6î{5ÖÖxr° GºØežÚ‘5ò4†kÌocÙ©ç¨L4 ×9®Y$¤„»o@¦äó/ŠíƼ–Ò”ùë¢L¦ ¬7ÛÛéw¥zK&ÞZÌAÔÙJgÓófœRÙ⯺Ⱦ°~¬ñ-$Ë>I¼ÿx‹‚åì’¿!Õy$Îðþ{DZt'#ߥ¬¹3IJ¬¯`a„~ˆº°Áwhz/ÖÞ>ÏVZá[g)ùª¨)¹’%/[º[v¨f:ä­ÇTš¤cÆÅl•˜.麃©­ßÙp4즙pÏH~Y(ÚsF|ÒbQ{¼?«Ñ,£Eyú‹ê{Ô¯YÙˆYvÂOJ ]ŽÂ‡w¹+ÂEÈþɆӶ ¡ô4`n†,™Ž74?Çì­~Π6„¢‰àq¿ôCÿâe?qœfF{…ŠÑŽ)«Í#Ã¥SG-Õ,r¤.„©M|Í—|HE†ÏâMD € qEwÈå2*Žfø{tW¯þþŸîเ§ˆßæçMl)Ü‘)‰°¾!Ñ-jg»„%qÝiƒÌNVïIdbýÕ* Pè.,ßáJ™"N€ŸHDé­T­cüv~`Aí²1Áe–ýªCAVmgHðÇÅÿ9ihšËMŠ·ÞÁåoYy?…‹©¦XF¹ìŸœÍ™I}3¼- :ž‘¨í åzS æ&»VýT¬˜Z±sn¬£ÒNkpÆ2Vcb¯ìïns BÔÞƒ'ùÏ èíiÒê’3þ?3iµ©pÝÂâýNá0 Ñ¿¯(vWÿxm%È´ËÄø°AàéJFŽ{Ž£WGÙ1=qçâ(ä‹‹5€A{ùžYŠF î‰sÕ-V5A³Ý1k¬ÿ5˜ÒÐÂã½.¨¡äÉ—«4rG£ ð¾ð ?m#Š&fïäP 19ÌÂMoi¶Jÿ.µV+¶ Ÿã÷*vAŒÅÌêë©„&øÅÀÆâzÁÙm$ß#‡ÊÐà±§Š»%9oÆ8Ì WydIÂe®ZsœpÕߌbÖΕ"RY‚ê’>I,;§Ù Êm÷i–{Å¡‰mÅ °-öüõ,kéÀUŒßa…¤èA™6|éº8¢DÞ0KÚdÁ'Þ»ë@…û#RïÅ?K¿‚Oº"Õ9Hfÿ*6Жh…2’$ÂT†÷Áq‘šæ§ÉØJ»q ®m´Iv É˨–ÍlâKÍžðÜ´[-³ Ž*±Å¡y~έƒët™ïO"‹¾Cƒ„• p>­ÉV²]R]i¦ë…U\n±ñ’xº“æøH5À;’ôtLß÷T/ô9DAš3_æ¼J0øÆO‘ 9*'’vu$gW`ÜúžÄû>€'M*EkMî±ÐÌ<`îËÏɨ*äŸòÂk$ö8 Ç%ÖcÚWŠÔUï_’Î;Ë<-öäqÛ>mk~(¶Ÿ@Ø‚[!*,ÚÅgÀ`Lø Ÿ.ò4Ò@˸”yEGŒÛKóNô-å4{>R.&¶…¥2&¡¾Ügþÿ²fŽ»r¹’B8ã;s`º4kß'1‚õ&Œ«yEüADÛW5¼Ÿ½-Ài¯»40ÉQáà&œ/»Ä:Ì2sˆ!Ð!6ÜV_Øú:¡b°u/Z‰¸5e(™€…è­Å,.<0R Uª´]SHèñåÿoË…=6þ(+ÊRRrOKúÁ”˜Ø¿ùòñîÅÚ’¯9Ø$@9Ò7É€ò~q©x¶-æÂÙèRÕÔÓû ÂH»Q¾º 3ógÌBÅ­“ÝYÎtü-Ê÷BýžŠ9.b³nZdj­Å…Z‘™waà±0àáà¦Ñk}³LõÆoChVM‰‰mŸ«Â0z]Ôô#ÛcùŠJÊV/|L=.JoniGcùF6×9·‚8RKœ˜V[¹ìá<ì#Ç'3L+Ü·§÷yJªéàù©!o‰ÆgC†PÎâ£o»í€ÏŦc}5*Xïy•,ƒ¼4'ce_œæ~;9Às?5$Õ(âÄlN×]§Ê·óù§»‚.p«Xc`›7;:Fþq *=„¯q᣶ž•úûê öô$½{ð¶¶reFGíùPômIKqt|i—¯=4ëLoBÙ²_°¶¯8ÍÆK⟑ƒàoe¥T®J«ôvô?-94ÆN—j¹8ãéÓÞžÉmî¡ âlg‡Žб‹0M‹¾ò »cLš0È'1_‹RÊL¥ý+æ×š”-åòâ¯izè;ë:R±lf]¢º¼›„¹7Bب šÎý»>1IˆØça–!(\­EôBcA¾¶¶nAQ5¦Ã&Â<ši¡š‘”Î'OP"Æ}¦æÜ ­&}ˆèuB4k­øæíq!n‡ ’HÖfØë½û] Dš^¯`˜‹j ‰÷½V¸lÍû¢zINÏòÒÉëP%²‰{›) …y`Ýüº¢R¡!3†5· À³u¥§-”Þ7©u5AѺ·?!XÕ;u21„%‡AѲG• ¤‘¨-c{‡AÂécûQ#É&U6LÒ@þ½õ–îx¼OàóLŸ“ØŽÇnpý¤î9¼éqKÔ7)“àñV|D y¶1]Hå‚ôÉ#kÞ±šBÚ£¸‰íUÞE¬r%*ÿU"vš†T@dCšwYŽ}âT†¶Ôe8…{Ÿ`®3ªn•ă ~S²¸Içý§fìlŽJÆÁ1Z¬ãˆ0¾¶Æp‡œ$~d8G§Ïjއyݬóà ^Îê^ŸÁxMº:÷q²›*²Ö Õot±ð"_fê fPn=è2øÝ,jn³rÞÇYw8c±cqˆŒ†]×Z‘x%^tZáÒnZ«ªÖßçj“UNÆÕȾª3È$ÇŠÕ¨­5ª #ch¹ŒÚ^Í×µ™¿«_ÞiXäP T±K—¤cœS,Ãeø7Ô‘ÛeΩ•ÝÆõØe 2vðóg¬äÊÞu³¤ß]Ò°1ù‰üç/ä®×|X X[uÏ"*¾\{^áœ>!.©­µæ×›|–^Nž£_˜™ý°}¶„<[Psj‘Ì^ì²Äi–®jƒúï]ëk€Á(.ѳ ½¬—ŠÞÔz-f$Øâ>Ý„M-|Váp8w÷”x+oõ`²ˆ¬íÿÞÎ’‚-v+å- VI˜¬u<ÙQåÃ’ÑVÁöõB@=c½t òï0y¨ÝÏžŠ(º´÷Û§¨ |×8¦ÉÒ{÷¢Ê aÛäÌáô9E’NýC⬠Œ§êe*/… zĦ QÐ8áý.ÐmeþYb:u9-ÔÊ]$~Û3an#§š¥_3hЄéöÇ#÷ºÇ¦‹ïPAãsIUtÛÒQoQG} 3}^Dݪ1ñÙ…¾‹~êqj®¸›¤7îZHä´“Åd¶´Ë ú¤ö½ª\A³Ë‘E˜«áî8)4܃|Ä_å:>¼‹fžwSE4Ûæk°„Y·÷ÄÚEøy2¨|E{ÈQ¬¹~YUi„Ñ+Žï°¢ËÃóN`d,ãší„÷†i¬@Z•Äx ûT!²¶ ‚¶íØÕ÷­z‰ÒyHÕPð3©çÉÿÀu[#7ž9™1©ßÓ½½1ì±é²ÔËJ-R¼Úf«IòÓ¼q" åQð9ÙQîò¢B ýs׿§|V).Ín”%b•ú:7rð™ŸãKô¬©Œ¦Ð”IAZ™Ö5œlrŠ[îö¬,æayKÚåD"2õòÒÏv;´Èl¯úŸ¥fO)VN1áô.êór„z6ÚeúÅÄ0AS˜éfÓ¾6¼ÆB?ÕYµÇ÷PB-ä$]×,>ÉûZYø4[ôT¢Ç¹a|?U©üÐrÞ˜¤ÔÅröã:ÇLÃ/aå¼FMKx$Ãn}hŒ©E#A[q´öè3Wð[uUé ^ZtΚ˜­Åí¹AFRah¾]ÈZäß8fKÒÌ"‰޵òt1G£,I‡æÙA˃Í)2¡÷àˆÒ\¨J—Jñ̃›sh^ ÁçmàsÉ®KxŽÑREÇ“òõê aÎ xßbu¸[騸R5ŠI{ŸRò²}ö¡ª„éø¹t»d~·bÅ3ãkœ"süs©*‹>™Z=· l1ûH‡ôH Âúq°ˆñvzù‚ÿ‰£¤Š±Z—.‡)ìé«\CvkÈÁ1$ô"þx­l—N(%oY«'D¼ ¿°\âmtìÝ)‘9Xӿ‹Æh¥Ój #8¾ùÂéV·‹O6QiûŠ›àÅ«NýA3Î?ÂCœ„ƒlBØ–´†Cõ%ÁdìŸtô²îtÉd5%ªY”]±€×ðÿÌ +JÅñÓC¤Ùë`5à q F$õŽŒQ¨I-æIs;Šìñ ©û.:dÜö©%#ÃpõLÛz÷Z·ÎÎøÆjk"Omýl»ã·®> –_QÇ>1‰¹!¾Ñ-¶0æâ¹2 Ããy˜'ŽT¿äNh“Úy™ÚW‹q~§*äN™nvLí 7ÛÙ„ü(l\Ší¥HÛz›¥‘I´„pÄß¡€ʵpŒ~€¾¿†ë:žEŸ½9Jž †ªÈYŸwô’á7J5–)Ö4ûãÂ3r|.J¶LeA |IP—ÓmÉ®Þý“ú.Ê>©´°¡yH–j«6€G¨îʉ£]¦n‹'*ížÎ+ñ‹ÇÁL'ÄmÌlýŒ¦eóÊCV@a|·›<õ…^“N5·VK2S±À®èèÃê !U0ÿÏb#ŸÓ-îÓ)¼^?'ŒjÑW8ªï…SAí±ÅÆ­Ž›þ¥&&)v¼TÖâ u,w,}¶“­8ÐÀew!þ9?¹ÂK)™sØ}Ž}ïýØÑøŽ£î—O©/{^u}ÖjE•à 3¥ªÝóV>k©)—Y-FÓ xT–ÏxWó(iÖ$Ãóß]»‚® #Þ<øMPbD"YÃLô`ȧÎàI€­5„©c,*¸"_næÚe¶Ìv€‡kwfMõåƒôÂY30N“%À¬ÏÙ~£DŠfËù+–…ÙlKù)Î[›h×XNP‰þâ×GO$*Œ$mHìžT•V˜áKöCj3ÑIbŸç½rhUdöFhó`'€t]y*øº0XÌKh·t+¬¬F½TíûÕÜÍP6¯Êi-h(W›F°d X=ÒÎÔÓÝX¦öäär±äðjs™¢n”M.³zhá:Rèe£«U¨1º ·ç„?b‰eJ  º]ĪðÜ»3ƒ¢"@F„øÔ«– p?¬å³³ÎІRjwíXAÁtRTÏ¥ˆí¡‡¹åÁÕ_YžÑµæ®à 9ᕀЫnSk^·ÏþÖübNj½jŠaZb'þnûf‹x~4B¯Ç‡ÈèYP4Ó2µé&2¢ñ,U«îyòUXoÈ*pxGô+]L„¯~qG,xÅ…iÑr |—¶†=[±ñ¾Ï‚PdZ'5Rî\ÃŽµ!âIƒp×p_¤U*œ£ON!X Ã>àU›î²-œO7H¿„s±Ñ2ز.ÒIRVe2º• ˜‚^T”7d·ŸU6Ý12TÑHâ»–{FUêS²ÕÔâåWkɾP×s&ãÚÍ·?¬{1X¢e´G"Ö€êC}îØ&gʦBÖiÆÞ©£q€ÿ³%yi_=ÄY5åÉË¢óÍ»~[ ž‹ÒªU¬m‡LuÙI½wªjØàY Æ£+“ƒfîp;¤ñ×}ÝæWVJ´ÇÁ‘ã¡ Â)I±fÑ´ðÍó6Ã8}~SÁŒ¸åTk'襨)i@ê¶b¤µ)‰ÅÿÄZ·še,Žšƒ‰âù~fJÅãùRPåë¾zn†ÙÊ1øÉ i£éñLLõ·àœ9jé»/xÎjÈT¼ž°Š¨O½C!}°éÖãyL'=)#a× ÿ¥¸›ÉUH>óúŽêV=½¡î} YìuÈIšå®ƒ™ñ½áæç'ÿÐ 9V iWÝ(¸áJÀò¦)æÙD¯+zjUš ŽªÅV°™"ú×§À$Ç=椽çx ×NÛqãØ›@Ly^%7nJ]Ù ôlu6Kê„<?5gWàe[ã1©s­³ þG5ënìz].Àã÷9g‘ªI$ÆðÚŒ| ™ ˜«†iy‚Î̼ò·ÃŽ|N7öëé[¿˜GBÉaÿò;»ŽÚvsA:WÈQ\À?,˜¯^èÅ Y\O:ì ÁÙÕ…bÿµl.'ë3öLKÉNÒxNÎ ”Vo‘ZB#ξ%Z6UæO³¡Ñ^®}»ÛšIÆt,T Oé"Œs…P!5áä`‰)ÆsªØÆ üiË܃…I«o꾓3£„B  v{£;{¸(‰ä}ÂnèÆæÌÐ5éK«ªÍÛœ•.ÄÚB~PEûbŒÅ´´<9ïú™—Döc!ˆQ׫ ^BK­=.ïöˆAVûnQ"Ch-‰“d¬ 1=°Z!1ˆò˜‡<¹auN¸ ãÚcW¦+If»V-šÝ‹±=Æ%²Ò½æ‡"Qq(t`wå /Ð%?§1XZ«6Œub;&¹´LßÀœÁÀês‚𮇠êK;Ëå³½Œ´ñPi§ôAPˆ ¾y=„¬¯ÍpEPPxгj P•„(ÙÕ~Ñú_*eëÞKŠç@EíÂÄxzZ¡q„TåÓ ¾Ÿ BAÒ GG¦åäÂY”G7)õφŸ˜.iµšZq– k&5U¿ÂÒ>¯6ý›õ‡íî§€ÃéüAŒ,‡™á¼Ç=Kõ¡s¤9Ä¿MZÓõ²L;™ž2ÑÂ䛋m 3B}ÞÄ6j¶ºÜʼ.Ù¶EqB“9Ó2"CÄá¯ízÝÊÆ0•‰2¶Ýl¬ÉvFZ L¹Ô°yÝ«#Z€{h nåÅëK}e‹DØóÁðKN²¬B\ªˆMjÀΓ½ÖèMpÃòkÐ^Õ™çqâî±Q׎–òÄz¸œ§êw}載êT Sùáè°aôD 0¯Q8Znh¡ÛߤHÊX-r„nÍw&’ãS[ÎVüc ­³`/¬‘¦oVÏ¢ðËÀÙ¤*Mœ³€=’I¦ð"+^R‰½î¯cK‘ýžÏy±¦Ô ÁÒ‘DŠ(S)² pÈú ÕÚgФeò5ÓÀ·Zp=Âf­3ð·‘ü­l$d¿_˜Þcñ|Ÿq7Fïö:ýÊ×ѧƒ™5AkjáÓ1‰¦FeÁÐ'Ê}C§¾î3]xspkÂOèÕÇÖ˜À5?LŸˆgJ0c^Žàü0·dBÝãRõ.27 Îù2l—&ò ýòšZ¬“Ô"Nûk¬sM\yØò2;›P-„=Ìdè»7¯·nï‹a(ª¬¹JSÖÌÊ(ç1I¶Õîv<-œÖž‡µå[)Mq& ~´ß.¹§Œè·Á‡wÀÁwê!° ÷xÖjsEsý¢¹Í'ÂË[½}ªHÛÕFbèBvb£\ %ö‰Ž Óbw3oÖÓk?ÐP±ÊüIÿ+ïTÖë¸ï…óm+ž åL±9_Ò‰|ºvë1:.uç Šæð-O2¬òêF£ÉðBýB\­ó,@Üâ¨<°'KïÇÒ4Ô¡Š¡ßa3£¡Þã‰ÒoE¼±ÂC]ò  lŠH«ô¥Àˆ|—ÜVÄ'F/h˜$Õ‘œP´énÐhß.WøzûFÒáo"Èxq¯Q*cÄŽëV¾ž V5|ˆý| –fŒø 3åèd¬ËzlË lDRè<éÏ<¬[Í‘IoÙ?¬k3ÆA’02á¢ôÈù—VŽ÷R,íÈÚkˆ¯¾I{»˜7-æ­Úxò³X˜aWõvàîIÏ&y5 Æ’S‘²]K¡GR¹çŠPÿ…X) ¯ž' UÒE ðËìa<š’§€ÌöV¸˜>¸`‚Ä|^ØÃ jÓ@ ¤ê£QÞ« ’Á1¦GU5üh+¦¾ßñ—9Úܦäoâu!ã Ûd³20b>"Îjg[*4@i´=oY¢x€‚\æ‘î›ÁظÀ6gïNá~à[ ‘ç±=K®ûÜ="‹a…„÷ilïbÐÈG÷aãþ7ñ\¸ïߟ0øÑ1Úg–"´s¼˜‘Ãé9oùÎ`ÓåÈ¿„þô”ÈÀµs¤xxx`µBªmo›‡]1ê4Èì·±"R2$]Ñ«·à‰ÏßvšÐœtCùFþ̳zÕfÓj$‹î¬ÿÎã«JÊ€-É»:± L—Êb‡,e'‚ì€îËzÂáï²+ âä f`íA³¹Þ›—&áf©íì{ã7'|XƘú°ÆèŽçë¢ó¤·ZVK@o{‚æv~þC7ó(lõƒ†×`\˜«È¸LÐ’Èo!'$ÑJo›êH+Oö^Ê©›){/­¿þu)!þ +[bú îØB&T\@Nˆ1°DVI‘%²q#©ÑÞ.ž÷„7Ȉx2WeHÓLÅâÇ#ÓæZjz>½|ËÍI›Líïé¸^ÝýpKàÈòdÁ«WþMÒX¿o8{TÄFxgkÎB –³üM+KŸ? ª¦wKkóœémÇ'pϳ¡Ÿê)'"û_@v?^_„pöÔŸüe¡R½Ç Ô ê½ZMÔëA¡Û¬ŠÊO*¬ønžÏ«b¼›6=tµšÝ{b>h ´ØY2˜³ÐÐ7œ¬$y!ü°á^< þÂÜvîägJ Bvˆ!è—õTÔò"ú¹oŠ6ˆœHz 2âföŠ'N¸5·ñ×Ha+üWð+Ûì/”±‰É›Žij»BÆ™…2JÉ™Œp÷© wkáЉ+#âCí‹Á>t—)ö =›Nµ"Ig¡4¾siSú)*2PL¢šcݤ¨9)s9’©Û3c€»ˆ‘‘/öºª8Y­T{¸n÷,,ôÉV¥­i¦_£$[%;QƉ‘êú¬öÌ@[N3½Xœ«#óiR–Ôë¤oà|ÂzM± ëÄf{¸ß˳F¬Æ^Kˆ+EŠÈc«ú€; È,ãþ§ag+ÆBŦOÝB[ÙWÊàÏíj ¤^üR¼gþy ^רÓ (êp¥¡ÖU›8 ñ;”¯X€ [Eþy;_Oô ÀçÔŒ¿„r¨>Á?ç]Æ#r¶P|¶ŽÌè]ÀPóÆ~-«‹ßd¦ÓÌ5û)½OXŒ0œöÛšÃ00ÙÛøUºƒ—ÀæÎˆ˜‡Aó…$OáfwšwNQ„ä¶q¶89")ñ=ÒŠd )vàŸËY$Ùè¿nq¿²MÃôCŸv³b,ÇM«“½Êh Ïe÷bÿ {͉‰þqü¢°7ŠeÀHâç<Ù£íÐRBÅæáØèa!–ÃÝ!RfJ5TeM?ÖÛ È’ºÑc¡Éß`Ú­ªÉ!&*†ËsžÆ‚—9¼¨Ö‰i ±ú“/ì„—¨+œ¹£fd8mÊȉKÐÞKÿ¹]Ññ”£Õ ¥Ä÷À›@f£±vhŸ¬€AN8–ಬØe:®‘zKE¿‡A "%yÃɸ§rÕíF›zòÖÕ2v—Ô¤¸×Ì;Iìw¸ùìoÜÒõ˜É'¡½#6¸ãi˜ZcÏÔÈèéëTɲ†¶¿2³tl'gÿº°ÿ0èŸÀÐyÀ ˜wÜoï‰Ð+>ˆéÚ3çê$ü¢}Ó¯mªº…=m‹uï½2ÖWØ@÷ë …×mQ×ÍXNM(;óS…‚å7ýV2Ñvq¾B‹íø g7 —ƒÏ‚×*ì½ <`ÈFfã¦1_O¡Ð [¤Ôöñö¤ÆâÂegâÕÉLnq±"èŠdƆE%_ò°€%ÌÑ-üÂI:‘·Ñ&Ò=õ{^»v0%Z¹¤M4xOÏÙޕϦֹøÝµà±å;6—ìA÷—KÉÊúˆ×”ú½PÙ_ nð:%é”ÿÔ KOnH¬iàN¬¥à9‘“åàÛ˜&K7>€Æ$DÚVPgÛÚèO,›­‚Ö¯<Ùdý*Ü¿iAštû9]:PyJ”¼ùjµò&VQI“ßO$œêΈڤy§ÎÊêH(a´3»ái8x¡ÝÄÅÖ”Žõzb_GV¼n}¢ûà0k'¨¯øÐ:HšáÔïKšS°„™]g'ÃÝØ©‹À= qỦ€Óǃ?¢œ¾l–@ö ¿µ7kÃ÷K`.Äy™.R°Ú¥*‘š4%ô»»•Dù.`¦;î½§šò"Îõg›”w! ¡ÜŸ4”œº6ÄP5H=ý¯&Lœ¥á´/øÛ4[#Záéëýg5Ðæ¢YQ.ºû~)j"K–¥«EÀËäQ6är·0¬T©é|ã ßÁ¾ÃyŒ”ê «ªCg.xV·¸“€r'¥Àš}U¯‚aáØeŒZ÷1ˆ–h`*vtÅsæñ-à'¤Y[esêÔõ@òf>7oü±£§‚5„ØiÄ.WB™‹!ãD³>ºÚz-W Ö~8GwÄâüx~%¥‚özW58¢Ÿ½ \îís‚4¨;hª–!f‡_>Æig^d¯}FLkÈÆNduOÿ‡¾©­Ù{"óÙ¼ZšâöÃ^kñ=<sߊYGéviÄEi×H8BOØqOÃÓI[´5&÷Õ{6)v•7´ù5ÔåC‡g$0õæG–—/}S•²va&Ö~çâHC39»¦ú瘂t°g?4,¯²,þ2Þ0dïìW©€¤Ý–Ô~(øÛÄXi0Æ#ÂS¶ë¶RÁmµcÃô›ÌZfÙÓѤú­Rw RaƽG®hOåF]f®U•钘߳i*«Rt¼ÐXðKíçH|Iö¹z½?SL,)IWò·Áä„›–G†×M.³._šôa”Çèù«G2ÄI"WJF—j:‡K“7\.VÍ,˜AËho„ž$\,©†J«ð’ð9Á¹pT@ƒÐ›T§$–³Ý†¬.š³Éüvb7>"ÛÏ¥@LÓ6ÒND, Sš%ǺÞÇ·¶å¡O/‡Ñj\Š*DØ/ØÄ›YªaõqoôC²o)JÙ!Ø qíáÉìh3¤ž v†ÍàùGð{’&ã´ñ–Ìo»u ÛŠÍ’èãc5BF[ÓÈá7­;~˜(×]®¬Û΀ _¸ØÐs;­ ˜mdƒ¶PŒlŸ¬úõ‡Ý+žÑ+­côÈʯáú ’½y@ù"ž¾ Jª'f°"³é‚&×9¢—h½'¦©§^yQÒI·ÎGýÎÕ§Wdr%I©»§TrOÆ–`*àd“­—òÁ†bé·3ÙzÑ“"3ô¸ðqwn&gž(÷žeås¨7u#Öi(ñèë¬gy<#6¸h£O¯Ò}‚Úµ:–^ÜX©º\b†´ŽfJÝ2Se½Ézvûz”¹=ÐØ26N› &cwzd"Õ-{kŽQêALàHù¡Ì82 F :éµÖ޽ØL´œç¢äTxÆ ›—QXáCFÈ Z4µÚ~_‡W¢k7v]Ͷ”¿#õ)µCWxH´šÓ@a•×HÁéyêÁÀÑ;ËU,Íh“yÁÔb†½[%Oä!díbT'Úê‰l>¯ÈøA‘Ö_MKßÇf÷È^ë}Ç{Jî6âöÐŸ×Ø·F#€Fû¢†cFh‰óÏšWýŽfþBßQ÷°£ ¥«¡ÖÉ=à¶é)€hÚr¼VñªF¸/‰ÏÀ骗<îW=FÄ*’|"Kí:J¿~¶GmîÁ„“aß)Ü täcÌñš$Úø²N°W}Sbëž3~G'`»ZY*¦oŽÅ'´JŽÕàÓSöNìˆ>ãA|±‰Âä¿ È¿-V‘‰óÞä(À·ó—H@Ó*ýVÊÈâO.ÀCƒtª­±\Ý}JÍ=ô‚çËNTÀ›Êäɰ=²3¼Öɼ›àqIi÷Û®@BÌ~b~íSw ›SèÁö€¼ò™ ¢•ؼD„JÉþ®W’n6‰w¥çÏ·â‚ÄÅj—FaʙĀ…ßãÔ!‚aI ­éy1¸ý½WW³ù„=ó§rõCÁ =:Ý-Ø.oòÜ“¥Ôf—Y ˆ“0W(Ö1–Y2uØõ­¥EÃúó›²Hçµ<ë‰}ñ»µ}ì–¦É*Fz±tZ"¤³ØÕU‚¢læbúm”_çÅ]óe?ûM/¨`GsȾ¢1Åa2E÷ †ë@¢öäCzONJdi*µóǪڪ,å3€ô]VŠ™õ&9ò ò ©QF0b1‘s`ßѹ¢H{ø‘™ß®°Áïnä_£È|xõ©ÎVa~¼Èþ‰S«š ¢¬p{³Y™²-á÷Q*ËMÙw À|{¹à£\¤|;¨˜£„Y2Sïù/P¢ÚÍMþoÉ˰a…ÐOPNᨂ©”>õù¡åºËù“f ^9Š‚ð¹¿ó+ŽÎ§ö<òZYÙF¦äv€FX+4:ÿwî4óJ á2×eE8Þ§Õ ?®÷ùXy âIÈ‹vå‹«÷GÓK`í×—’k1*™\zç“;ÿOÕÔU´:¦â B¢  šÏ’Õ(W)'qK2±kãxÉ™¦ÿµÈ!~jŠ…„X,­aŽ7>0¯%ÈwHXíÌ…gÁQÕ»¥\Ã1Fn֧̓‘ØjiÆrЉÉû®²Øò)aÃmÄÐʨ këxbáu ?º~Ö]1AX·¼–´2=ˆDT#ò?~Ñžû ÁŸD!ÿLH—0×Uºï[Øh^Õµh?òFŽ~’ÿƒ0o—µæëƒpÆ| ÔûL5ˆ|dâò»G§sm¾áníÜÐ/Û6WˆÜ›ÒÎ~MÒ`ð=åÅ5n쬎ß:+Ð¥_Àé“©Ê’l(m„Óðîzâ[ï"”!h, +7„˜ü¤ÊPnœþyIò|ó$¿Ï®qp­©‘±Ï#&‰UÜ"\¿2 nüW6á£8üèæÎºSиîNµÄ\bEAQ¼šš^–"ÅŒ<mSVBHe‡.b~ɫˣǦÊ>i„î÷cL¯oŠž<×|@„ fÜa&È?ñ1L?úËs¬è§’›ç˜!FafÞÊiU÷Gsœ­Fc±¥3o3ŒÇQw2ÜŽM*c®TȃÒKStk Gç™ðLkÇCÎCjß èTþ¾ƒz…釹‡û2¿-ÿÑXN 5’’ÍKÞpa«o̵7}Ur5c®Íù>Hè$„]Fa’çû–FHX¾ŸpØå |?¥^~nC:(÷V0ÕZ˜ ìÀŠ×ÄæûV™IæE)sºµn¸ŠpÝZ9ö¢ÆŸ@â´™ò›ðÞk”jü)~`W§_OTµ€qʦpݹ­õ.“ô©’9戢àü~¥àuÌ„ ¡k<à ŠÁ_1t؈¦;`„¯¯Å›2¦ú(RÉÏ%GhõÑÑœ•l`D©wÒs§QÆ‚n’åÀ<èñˆ¬Ïkï~†[ OÐ…9Áò=ñfÔ¢÷î9õÙ¨Î*ý×·'5’Þ8ïÒ8Пçp× Õˆ‰’ ´ormìð÷§ÁŽ4ÿ èDŽZèn+[ÞËÎÊmAééÙd¡9é¥W±öŠ4ô¾€y]S3 NÛŽhÑ+è#<ðe­>§ÃßÂ!ê˜Í"÷8×î`^1µÜ’†%ýÑ”ù­Óóâ]tþ—ŠÒ?SîL¶½?GÐq‘oÈ2…<<Þ£D·Š]¦Óm¬Ró$(åË¹áØ *ºüH áü™L‡XzuMsÖÅ ¯ý{–ŸÌ®Ü€ôÄ®®vÏd8§—eŽ:Ò}™Ù7Dê],z§Ó⤨%Îyk´Z;Ã4r‘  Çfr­lž õÿß¹§ÎáKYš´ãO`­wòÙ?"é$›Ïà¿|õ€,q÷¢v¦Ÿ‰/u»O¥;:-$²í×µð¢³)¤´Š“°]"A‹ øúü׌v>‘AÄÓS­œ†tè&tb£ém¿v–·–Ç9Úp3f¬ŠÑ™<³u¬ÓHH%U& >ž<¥J½F oE2}W}Ô;®Mü×>i" í|Kt¿¶,B†wº–%ú‡[Dž“‡¸;N#Þ4ë¡yʆæß‡vÐ!jÈž~3¢¤%5¹=©eÒÖâÅ.R%¿c3ÚóÈG©=Y ÿa±MG¦‚‡ž“ Yî¤9J0â{@ÜÓ•ž·fË.Ñw¼3·ùêÐbš•é^×./›Že–§MCÛF9Øl{ql#AUŠ+Z¦Ì0Øo­¡°šwZÍÃ_Ø91ÍJï ÉÁçÉ…+¯~˜âY€0­§Mqß.–¬?µ^4Ð=¦¾këö÷Ðà9ô×kG•ˆ‚{j†BkŒ3®ÍÄV¸±D Ƕyïù¨Z\.2, g=UT0ô?,iÅõè z0Öû…ðð[é„ÈÖNkÂï’Ï£§^ÎÏlŒüz[LÔÛ‰Üj8¶‘Q°E©®loð ¾W ì²F@¹6v—‹¢ÉayÁeý¥b0÷£ÉâÑZQhñxXiÞ|Œ5oÕË£[ŽšýzGâ’ˆÏcU¼Æ=ãÚq7þlFÁëÇP:Àîs b+L¯eã^‚£f2è¶ŒDl@…†¦VZ­fG”%á˜fM˜ûZâëò$²«þI^ËʼÂûÁ˯#:ØTã»}ê8f.ë¨xÆÓ¨û¨‚IFÂñ- §Šª w}ã—zÀ2àlZdòÙɸëf£#A•üòæ}.³oÃoœÐÜøA)ì¹4aûåJL¡—î9„<[ªœÊ_6»ÎYßî°ÃÓuÀƒP­O­;®öø¬Ì`ñOU¥^Öi“ Æ©kYàÂâ{(Ð5Ö,¾I½’ò¸¸ËØÒ1_3K¨dh%lî(‚ZØÒÁz,ÇŽ‘U†(tî,0N”u ¨³Z!‰¢ø^Ò<¥:µÞ âÂÜuf3Dóbé{-ÜÒö S=”{ßüö4—¸Ê|ëÏÃøÚÆ=˜j/ICZü]·þøÖoáëò•'aUí{d«Kç">¢>‰~åR;¹ÙÉYð“ÕCûσ¿Rþ®‚N[Þãæ º|×ÌîfŠò–Ôvˆ.ÓXÃÂQ `}ØEÂ5ýŒ«ùßÚ5[›}€»†'7¦@g‚îßÀ"ºà ¹öý>VC¯º®èÈÜî# ¯mS€¸ÐI‘o7øþŸ†÷*RuÓÿµÅ¸8 £=‹Ð"'ÿ’ á™({Cœ–ú*ÉáÂïÃc ¥k‡ŽXÕž ›½šÉçnTì» /)_¸KXƒ:Þ 6W?*Ùc±6å î1ÄlVYò¹ù£K–”ú¾-Í&,´Ãå¤q…®{¨:c´H­˜ÎÇtÊc  åߨá‘Í|«¨ïJT,æýS~’DæHT+ä„wÚ_|þñ4¾ª£TæEûž%‹#zص~ua[ºc@3W[ºwaj-«ar´Qu=>yX°e,X[€{ß–‚äèÂ0“1Gø¢ß:Œ(DªcL»S>÷ñáCvÉN0OL·vG žÂ_!ÿœÕÇ'QbÉÎÜâ]P/ôi[qÿ¶+ôú[ÍêI¢gUè)§eb0¬7o®öÓHÜurvSûÒö’ÉŠ¸›]¤PœØ?”Ú í(.€–¤UIÊ<»‡_DÄ$älƒ™m†e”ÅÚkZ803|~tò1zÆ>!˜¹Vè«2”0O<§6Ai3ÆÌá´¼)¡ƒc0!Œñ.ô}Û÷F%DÿW¤;¼Ts°çc”™BƒA§õæ´vcÙCèlEï¿äŸ¿~`з›¸M|à˜<  ‹­²4A©xƒßsn̘ %±œg®yIK”ElãdeQS×þ×XÓ¾e:vvŒÆûêr-ƒÌÙd+z á›ä6˜¤"ƦU pCû±URm­% #«±ìÖš6®§LÔgšPuBªSýˆdžy8y³ ÈW`_QZbWÞü?„•LÿPß½ü²æøðVdªÑ˜ò›ßHH_é"7”Kù:é²€Lq?—ÿÿ¶Q©Ò™Çû©¯­¤3ÔH«ÂÆónùc¨<·™†C¶KÜþBŽâZŒC<ÄL>»1Æ"ÖJ€æHüˆÃc9v'‘¡5ÁÞ) ¨Zž¡â/ U¾í‡Ú°ÍõáaE-.‚ ±ps޳#HZ±“p0EŒ@öËYÛ¿ŽtN0Zrõ&«ŒŽ3ËwKÏ´òx8ªßOL‘V˜1Nò€c8~Ô3=8ݘ“` ƒç  ‡)Ú¼bÀ»1*E{YÅøb‡Ù5ÒYª6»•A G:ÑýH3æ@ÜJ#̇Q€lûjüX”&4Cw”ßq¹B˜i82«ò²õ*@òbEÇ9Ço*æ'[s/H‰’‹Ü?T}CÁù7~•hÔ˜fÙÇý?¡[¡(qÅœ½‹‹ iäàTwYÖ¾é€8ËÍhnÙ¤•¢\lúÝó11E€ÅÀøU>ž©4}ËË="¬Ãß/Eßr¥Ð~æÁšeÿœý´$V‹oø,ßãþ¦^D$²Èé½'O÷@Åhé“ÿ´{³FEF6oo·bÿë-@·.%}ˆ)taìÌj˜;ŽçN’½Ï9á/øö} 0½u) à[ dú5uCÇ7„78tr“khhWN¦_‹ÈM´J¤ß’(EG’aMöȾW«çîpïcKœ­ÉÚÏW¿ÏÂuḗÃÈçV„æ'U™Ic]Àµ]Ë«Ç#k¼N“¸P«õ~÷F^Ð[Î8÷5ޝÀÍÈ?œ5ÈKirZ¿ÎÚ~±…ðÃÓ.š:4 Ñdçk+†…ù¤—ÈÏt^Šˆà_£q=®kštz' ŸþÄAe'e G§0ê¯/g”z@P¶bž[ Z¦˜Ø=–$«ö›°x{­ax{Lo*ÛcSèí#‰ÁeQŽ4D~ÿ€“‹ä÷qjXfNÓŽ’cž‚Êt¼²u¹ìlŸø¦ÐÐ…Y'ëâšÖnö+7òcmõieák« A"oxèækàæ¾7‘9\4v‡E.ËG„¯)H6³¶Ô êßjÑÐü‰Öû…`šM«OrÛ½&ÿ, ûè4wR (ƒ?A«ñ¯BÂD$vG¤µ@žÍæBá~;[L—l½¾æŸÅÌþBFR+ŽTXÏ'Òx$€Q‰Js ÖALr“ ]«?#Ÿ9s/ÇŇ۟É {¢ÔFðx©´ÈÓŽ{‚á÷å¿Þb7)kL¹ËgáM Ûœ:9¥ ÅöÌzoœl›¨«HlϽÀËmŽZ©Æhã‰>”BUÏ·Jsk0^ÏÇcsEÀçÊTU ¢ž)É> > r›€ŠÜ³µÝ2æËé¤yFôs¶Ò‚øæ4?c!ž—(HYqߤÒOI¯‹2†ÂŠ™JD) ÐÅ!l,Aa[˜Kp¸ëË”HÆÃ¢V õ jŶ «ÄW^GŒ9ÃçæN¡R‘¯›—¤„‹Š³ÝËá/À•¸}iÌàŽ{ç) Áí3ô#ÌÔ>ùâôÿðOBÚʸ@ÝÖ‚ƒ´v¬¼c.ÚbÊ(©d«6jÖ~‘U4´‚g"ž¼’¬®b?à òÔ‹“ß$(xÖ ­qJСw‰xŠbÕArOX× SÉò™1‰´Ê¨«Éæb7‚m×A¶Òõ×»!eyõôO5YÔ Ïû±h@ö÷Þ÷«OX÷‚2ÎH¿HéO0Ûî±~'Oò;׿M“ŒÃ2ñ™6M»šÅïTPpKÄbªf1³Ó¼Ä_°ïJ¢TΠÎM{È4Á´ÏnÏÍrWrþqFv,—Ýç¿©äP~7D…/´Fq<0À#]?£CFÝßh®Ïë¾ÍS?*fÈz—kò@röGµ´T%Qbä‹ÒÐ- Ìü¡ËóEtˆ¬WaRéÍ´{«ñÃz*- È›a¥Åtßo8jXV• Ñ3­É½÷„æÁxìL ¬—%XÌÓi~ù‰ÉG–vÎÎ0àž±pÝÒ}‡™Tƒ÷ã `_…÷_ÞS oîíß[}éWûq—ÈjX>”¬ç°ÖzêVø±Ô&ÎI9‡ëCëQû… ;­—â¢o„V÷>|–|LJôüî–#ñÄÙ4¾çí…›'¤Ô;ÎêÞ{ÇÜšœƒ¸¯¼ù@ 9ÊJŸ¾Š›Û9ª‡0V½~½ºEßÿë®vçÂßë¸ïWìQëTþÈ…Éñ9˜æ²)ª3d•{¶ó-|#SCjvñ`Oyn¦œU¸ažeº…VEp&P'œk‚±·bI¯ ÃG ÙãJIÇ4mAÙô€Ó·jzWîºñ˧¶'¨9©Ë«£‚RC Ôš§4f€°ú¥5Dîâz0&ÙÆ»hquîU‘òÐa$‰+еŸCE¢ûYx‘ÚÑ*¶CšD¼¸w¹6âTR¶m¡k™öY ,nÀŸ ΰyZ´/îNßo½Ÿƒyèà Ø-U!ªDÆŠ,|9Aúc¢\yI׎n¹©Ø÷Èh @&¢N!œ§“ÛïìËù‚ž\ÑICAŽ_ôæåÚ7¥JcO‹­| ¡7éŠ'B9ï˜ÙºÒoÊÇ9Çÿ¥àNcêrY¹(ªõd˜bÖ mî,cfòÕeŽ|Á©³ü6{·Žûf9¾_¼Ù[\ *G­ÿ"x±…òtò~*9ËXö|~èh®ÃÃà ãÐ/°¸CÕk["g^ñEÈÙŽ¢Ã#ž—WV7[eQ”µ¸=í1q6Ì`×µ¥%аœå³9u ¬Hëu65¦¢ÏÒôšûk·A’´ü±µX%.¢øö|7¾Ä}®aÂ+ß0r•ÿM½ ô1Ô_|‡ûFSïøÑ–ÞB¿V”6y`rå>ƒ]o¹Ÿ€%óxU¼ïüÏä¾Ï?WzÃ3tèÛˆ„8NökK¹?©)ÎyyÚBÃ-æ hx¯\/:Að^ênÿm„ra‚¿u§ËÀºÀËEñðfâýG¦ ÷Š•$Ÿ£êRþ™×îÖ:™É! CÄrQ†¨P) w~t@–h‰Q2¢Æ{VtärCÁûö¿¸Ì|cBB_1Ö¿e’È!Ùä/):-–Präñ ±gõsYRÜ:hN9x|ú'»ÖÛ¶çTèâG{iªOªÆÈâ âT؇FÃË@ûê¿úØXÿÿZ™zé·6®2¨‚,†ÒF:êÕ™{–!´,™žáÄf/W8+ñÿÝç8i·O×y„«â¥"1³¢ÿ±ç¶;›>ÌÌù`M‰"6BƒõD{>=r:Tžòõp¼kÐŽEà¹í®õÑÊ.èúþ6“Ë+z?W»ý`ôƒv/T6¶¡ÂÛÀžNúœ4hC?Ih»Ä¨;‚ɱ \ô9/ôhš W€^üiW~£ÃëÎùÌZ(E,X–%ï^:®ÅåÝÉæªÝ·>úýoɺ̥^öâ[£í O0Ïãjksr=ؽñ­PÖóãç j9dµä£0ʼn:¾a£ÇhB©nä~ŽÈqÓÒhEîT Ëß¹ßàuœÃ1 G5þp»°…8.¦´ò|Å>fÑ[“6~·#eòK¿ÛôHür­ª¢šûvÅ”ï „×Á‚oq-îXž4³À0»yÒ`Ô—tÇ:qtV£„ýv¬]¹o|,÷^]À@w.r^T2÷ä¦[Bg(®¦¥[ŽÕÌY¿mU£kÛ‰›¡f¯&iN'[dï“6ÈÚù~56%êõ’Ü·~ Y!=TÆp@ÂÐÄF  YgmkÉoôíÀD~°ð·‘ Î`¹*MïûÌ‚A±‡ä·"ØÓîºØE)‡Ü†„˜$w‡(¡š"ƒ4gP¤}—“Z €p6^<˜.0”Vc¨m úbÿŠ$®£k2š¤óá8_Œ—Q,@^ Š„s7OLmUú3D Á‡œÃ!Û¾ûÅŠŠ™È&Á—³Ñ±Ú\ Òe~o ãͲÒKH²½>D¼®ñüþl‰6:'ÿ˜[ÞÎ@0¤t_…`˜G›üUÖo„0¼ôvÞ¿\/çŒZ3!Ó°Áå€èyûy3‹l€0èNé§¾û '+T”-yú‚?l´º ††·´Ä'¡°Õ4ô­àÖ§¥°µa’íexg‡`»Ððp×;™þ¶-ðï·¦+оÏóç×í¸S 08c¢!ˆÏm>upðb-s=’í •\>¿{¿¿Yá‘Tpý/>ò£Ü;|•r ¶ýØ@Hœ¹îªgfv¨b§Ó[3‰õ£+á2gT3³5xcâ=çsw9ŒIÐÏoÛ9ÜÈë;IZ&ÍŒ• '¨lSΑ¥®{r —ä [¯ƒÆ¤_ù’ò¯0¦äù!¿ÆX$þ:ª_Ó‚³;Vw4›ýÙûwHy»N±cSÔU…bn“š x«°³7·›SMàξH±n%D.“Ðwgé÷!ú!&ûy}ÊáèZîühÊ”ÍËq5§ÿe•Pr÷p šÛ¶ýàm½Y‰×'ÙTõ¬=Ê0cŠ9ùÚv—Ða½õØ‹B+ã¬Î1ÿÔ§©†Wã‘ìþ‘7E´ÐÍŠƒËïÌÙ­Ò&1@{° M}¾ýÉÀž£Ü-° ¹ø&sAÃ°ÍÆÊ.ãöµz¸‡¹F«>‰ìÛ4à”441¢ýgu1³1BˆÔƒK,ú½.WÖÊ9¹³¬Ûº>×oyÿN±îͤ#Š7['SÏ1¿ªŒÖÞþ¥ÀÌu/æ–DaøŸbpâ½–¢QE™ ŽÝL5"ãƒúyÈæ9RšìÑ0p²…Ç`Íñ-ÎV),²ŠFÞAˆõÂw_Í«E“V´$xrMç {ùÍ‘_/žÒJµn4ŸW̲ðx„í#µ¶«î[ØàÇ3•µ2÷%Ó1y´p߀(3Ô¯¸ІpÕé¯FxÛ¦zpè©|š[5Téh9:mW=w‘Á§6î“ ÁóÐ]ók†n0Ý}ùéÈ0»;i4‘ CVû­°‚`íÈv†Ú]fŒÆO+Eb2å)žhN©Œÿz'h¢ïQÓ¡~6SÍQͼÒ÷H˜ê(rÆÊ÷cy0„s°J ìƒ}/2€1Sÿ¯$Ä~‚Z–¬5ËœS*%Gmò¦YqÆ&(¤žZÔrB¬rKZXýåŸòòþÜΛ^ ûZ¹‚cpíI•dZ ÇŒíBÏøžÆmNë<ñ-RÆ¢p|ZÍ?@`î6N ñtæC¾Mó—߈3"žTÝ 8ˆŽh"XÀ:û—êóÂwШD°j—Þ’»“/ŒIU‹“_5jü·•üxß´v¯{cV@Ã)Þ‡¸X¡e qLÈ3Mñ\+ý³˜¾‚5øÍºP؃7:±ŠŽŠñŒpj+@pÓqø_N:`¹ë• (PrŸC½â`7S`Ÿæ{¹®,L´ï†“€å çh\c¢›â­‘€UH®õuò+ ÞÓvÝÍФv3sT©¥ @¥gÒBæiÜUAUîN°©jµM¹AT®¦óʇíç77®õj:jŠ¡+YƒnâÆcéWc½?Ð϶ökÐô^vj…+øÏéé}žB; ³nm| [  ªxoWr ×pð££æjÍï@hEp·Ü>N{Ž @hŸÉó’Á׿;‰ZfÍÂ/ùdÿlð¼ÿÏvÊÅœíÓ¢ŸÄÏöÆ/†õm @>dð“»“Ù½ìg?oýu2Ai w±J'Ëð\Æ¡ïµhE7%`Ï<”‰gÙtÇLôr[CÇèö;¤Øû©XîÓž¢W,ý˜ŒQJ»ß{æG[í1¬Rçþ…‹µÀXõP50¤¿ç°ƒZôùêºP{éhߊjLAW{Íiþ@«F•„iörÃqÙ°Xqe9*,FƒžCžvF´¹¿ŸT¸XÁ9½’VÿêF=㯄Æžý8mågÃ\ÞïÞ¸Óe\íÁ6ÕËc@6ájO.ÿ³T¬jb•‹ú<SPrôö¡l'p4ø(žj„lƒYL0(¹l¾¬¦ŽÌÆÁ‹æÅË©Z&hR!¢½ÌµkXƒ±Â1ʤè)6*¾L܈Ìú[t!<–(Å•ôW;pb–SZ¹feìô`Ø›LØ3ÊåŒaŠÒ3РÔÐñü«ZÊ>U>©VÄþ¬î òNNÒf° §v=xBCLóµÉŒtH†»Tvf7Ô"¦÷¯Ôsq¯ˆÝú`¹ Æ7qþЊ—w®[IÊç–§˜h_lç¬Û“ÏÆV±æ†$,ðŽ€­ø/x¤†®‚ÓxkžT@“Ÿœ(+ò¡ ÞFìbA*÷¯ØtüÑ PxÊñüÇøÚ§°¨H ºHçã]ÙQž`’‰Ï—±—Y¤šðG-£"鎒ÞÏ„$¬((¶|çBÝ ò¾RÌ'´wv·3î€Óx zIlðÐÌ ¼å)QNºep*4)#gâ×L®k‰üýrÿè¯ÈšÍ³go>ÈÔ¹z[¼U«ÿÌbûÞ2íO’ìËÌâkˆ!™ Wí¸—sÿïšÁ_JÙ ÜÐjÏôn[æQ ·’è€õ!"WƒlÛÉv©K1ÁÚÌ8ûÖAÆ©€~1)î ]tò¢Ï ȵëî#ÓÛ‘YÂk†"!íWK¿Åúbèÿ£Ò÷gE‡Š*Sû²­¡J‚]d#Á<6(Þ Ùá;€—Ù~Ó 5¡Ð¬gA ëö%ÍǺ:!Ö 8#ÅÌ=¹¢³N¯1˜=iÞŠñoZ\¿ñi°ÿ‹½h‡GŒdiùÒÒ°TqZ›ª’¯NËÞ °Â„r% oþ`[9…„Äžôñaç¿…˜¦ùXœWÞ1¡þVÛaÉíßÀlbûÀx&8l•½1‰yx0 M„¥ž†’ZÁïû|å–}\üÝ pô®¦víÛŠ|£¸äÊ`ÌÜý‹p]sA§ä°±/t?Z^çäšÜäì0ï|^USÖ6ËÀ›£/IÁF¨œdíz¬ÿŸ—äúb9º¨Bi¾Ì]05Ø¿¿6ì Ș)"rã(|p š†òî'ðÜGŠŸ¥¼­á¯þúk=8î¬îÝBØHíQ¥n¢ÀEúMfp¥\9N‹ð80;ר›”›së”ðFøâí„°ãµ’XP•ˆhü;xÈ¡oâVaÁÉ(óWâ•Íó‡"VEˆðÇ¿ƒBý™ÑeJâ¹;§vŽÊ¡ç›ŠôzDc®ù@tˆýaÅv ¹4Ö•Q€Zï÷X-Á@f<¡ 4‰²òÛî¼ë0Ñ:²Ðpuôñ_–ÄV‘}M>„˜÷Q°YƒXÛ‚¦”„î;ê‚_§³;’=ãv\3†1ag8F.JRv‡ƒÔËÙ^¢gR ëäà3ßY‹›Ô ;c£ÁhˆŽW!'ÂÆÂ½ØD$sßç×K½•ÑÛœM¤ çâztåç¦>½Qº}ÀÞ>ï5úµP-p‡^E­ý¿]¡ľl 5¿,=ÎS‰ÙsÐSDú‚ŽKèTRQómÄ ‰£›z}gE ç&KÇ’•M1 rr—^ϳuü]¨ôÐrQ™‹Ñ´iL¹¸LöÆyœ¸¡¡÷©¼¡Uîu®¾Ã1>X+»s{%ÅûŒ>ÅEgà [Áá»nœ…6KõLÚw`²ç<_2¶¨|ÄZ0Ía†´öÑ˯=Ù7Ù‰1·’£kÀì]Ú0½e‘ÎÞÇBCi½«ŸeUtªž©Rãþž'—¨F…AŽ2­#\cŽY×_>lµ´tÇ$«"hË{‘ò¬×ö@5§p¡eß¡ŸþŸç'¸×‚€a[om­N¸A×ý› ¿Ín0HÖîÔ1²ð+±QšÌ ?í-«…UtЦÒ ÙµNDàáÝ»y­¢:JøÙÒé[<»”‘·n§â¤4Îqp]ÛöŒ „¢_ü)u–·h=F†Ô0¿yé†aiq›Tðþ†ÜñdB¼uŒÖ¡öhÝMôû€–ÌŸ5ׯÇ$±ö€Æ02ÆÞÒhÚ€hà¤Ç1Xa$¼àAöì&S—l8?Àv¶ìv‘ZEGµVzŠîÕ‚Í÷Äì÷Î94OBLܦw’ˆŠ–~¦óŸðT\bÍPvT$7߇Îì÷!-$ žú4÷*wsdÊQŒX…Jêà@‰;Ì&¬å³%Ï/Ï{&q]8H¬ò¯û ï)•ºópl(âüI¸=XìÖTÀÜVû5#¬ÿ ‰½ÒVÈÌœdíAGÙ톙’w¢C$Kd…WK°¡RçE¦.Ú|¤3›®-L©a>N\„÷a]²Þk/w\ÆRþíõ7ŽŽú‰?¼wŸæå\¯ƒÛfà(gŸ<ó»r̓´Zè=P¨øŽ7,Ø^ãøÕ%Fk‹ª­ùÙBðí †y1ð¬Bzðë5§ü®[\)ÀŒ}J™ÁèVRÒ FxA(ûÀ‡[÷&"ü"ˆhÎä{7°Ù‡qŠ ^O.7ô]è虋÷÷ 1È-ÇJh¡x—WAߦ¸?¢BgCBÞi´†„.Ãã>iâ½=óýjI[;é]®mØÚŨ\øçk8[ €í¤´È, ÝóÇsÇ’b(9]DPv‚I’L- ÓÜpßQ øY0-Â¥ò̱™¡Ô¶C-½ŽÖCTIܧN»]Ø¿ƒ]Gž!Ã~?\³=9óÆ $§\B?ÆjÐ2M2ö¯íÿ;Žô©ÅüØu*— †ûº­ÛtAçÈ•»°»w;=¡DÿṪ ¿°/ÚèW£ÞcT„—ùBM·îÐùIv]ƒš-EÒá Éõ<-½¥‹DQ‹¼*~>6¼­”ÞBÅãþMtQ¨-Œ:¦B">[”±­Ú`F`þ7è*mmèYo¶À˜ý"Œg¯Å¿ËÏ.N p÷@$ÿÍø ÎÝ›¹Öµ¡öܶ8òMöÑáÆ’êŒ(fc*C´åÑ™šWx'3n`ôéB¢nžµÉÔR©kY:Þ¶q}tÊ[{ä„môy5˜›£x³­=bTÚpºè¼U W])o ®§4¶ b²Å½GÎ J\Ø>9ÊbjÖ'¡ÖÜ Ø¸ð\×l®ç(ºßTáz¾Œ$?X‰‡LR¾÷P‡|ÑÝÖJírÎϵË(0Mêÿñú€‰*ßNÞlÆß‹sq}ú³è õ3Ù”Dooý ^¤ÐÈmûQC§Ôå^ûÉ;gŽGŸ'¿F©Û¥å³:?6rý‰¢ xDˆÉ€¸Á/ÛÓÆìŽm«‹a/ ŒPßObÞU!ÝÒ1¸P¯ q®#ª6æ;J"t:÷ˆ-á‘™ŠÌrŠvu¿¾e§/e⪎@EµŠ[ÇlsÉFÀ…O%ÅÒÕÕÆ1Ô*Øá­åKT'.” X”+áPܯl·Ö›ÅžËÃÄaì=úÓL…|Ì€)‹_Döm%ÆCƒ>4¦urÆ@‡¡~•·1£¤q€/w¡1tô(F’¬‘?Ô€Å*dkÍ#VàJ} -RvI+.R®´¢àzîš bÇ÷å…ÃÉzöÿ Æ´J>r´¨ßìƒ+·5Ê<8¿MtÏU Ä~ 9·ï@ü iòÕît£rîÇþ“^)gár5i%¢\wÝk–À0»ŽÕƒô8ÄñÄRû¼K1W;éÞ Â¤”ÙçZ$qd•Þ4MµÂ"ïü×a“ü5L93ð*z]Ôž´Û}”2å›Â“­GüÉ:Ó‚å–¯Ût¢Kn£0æÌæ9Úk‰h‡ÞÝ&kn} %€¾ç÷²b)3¢²`Ü]=ÛÞzX‹KühëKï•ü{#Wߢô4‰“ti8./÷ÚøätŽñxü}WU&>fÁÑ¿E¡=’wÅìb+œuÂŽé"OBµyï9[‹VÝ×â ¸cÚ£ÊI~ýù Í…SwVÁ·éß°k5>J,gŽ‚ŽŒÄï\”Æ¢„ÙÓîU{¨óª¼Íš]TÍ\8u S”KÒÒObw<¢tÖ†¿UÉl3¦Û±ãÈôM@K"!»+NÞOÀ Ryîó—E9ËcH¯š ŽûË~=J,ç§ âúB?éñ ó© g ‘à¥Q$áÀœ× uòáí fwæ-É÷^4´쫵atÎygž Àß©]¸ËªRVšKÈC>ÙûD#x»hrïâ´¦€¬^TÌÏ¥7Ør’ÂS¿–u`~O~TèNYe›ˆ›“¹È_QTæ|åÌ\^ÕEe§_B=3@L펈NÎtø“D¯ÿm`λ͒_Xd ç#O©lc.y÷A;Ⱦ=_y”z…ŒM—JC<š+|q)C9Þ„oíó˜+>×¢Aoêÿû§p;fKewÏtfúUUq@Éô7Bj L¢·«Udï|ÊùQ.b!A5éŽ è%²£qÂn\ÎÊyÀôðÆrNæùxȶ~DHÛ.g•êA¬ttÐT‹§ñ†Ù½zÖ|Ðõ(&Hwó%€HK™ÆÐYüŽö‰‰¥7î-ȯœÄ9»­õ–ÕuËÓb‹> ~b™è™ë¡–*hÌ„¬ÙIpûú¢}É-Ó‰¬µ'¥/g£ 3mEï·7âGB«öVޤªÓ  ©ØŸrF-¬'ZÒÏdéôSÈ“ªWA”‡_ð@)¢§³­1`Y#˜cOÆ~Þ5#qÓÆë†GÙ®•÷𠸓dRÍÖM){XÜ{¶¯É’Ýé»ýW¿¡I!!1ËiÚëå ä®XuŒ×Œ´ÚH†$¯À?Kzá Ç%;å±±Eb cô+gÒ¡…½lY¨™¶[•ã 6pp¾“Ã5ºùKäØí÷Ý!ØÑ~]NyüöäYLî _Ñê~àêaaŠ„›K¨Xºå~¤£Ÿq†íxF†eÉÜû¿IÓ¾ú` Û &œóÍZnùô›Cßã[kÚ½7‰Î&_±ìfÆß†•ôÈ ~­›öÉâO’5¬Knš˜ð›†Vð£šf…Ÿ9aħڲø­b"ѶˆáX/•óRiiVÆŠÀÍßÖ•œ~ê†u<»«—7ÞÅâ-B«iV¾""ÍŽÉìÝŸv¾z_t±L³pº~¥è¦Úa›‰Ëz¶—vüZm“Ãüõè²J)ÓhV7•@š5Œ^-¯ Íòþù½Y^|nNd âôfvœpWˆ–ÀÍ|J|#ÿ¥)µ:œTéËÆ„ZW=5Ëhš9k-ðø]ˆeñ?ò!óÏG¶wŸºÊ‘‹Û/òIÿ¸cþyжbÔ=‹’pº,›ä–•S&lY\H-€!)˜´Í•œs滯]ò&"œ„õ½Ö>-XdÙžÒÍÆÅzãk)CÚ‚v—ù÷!n)–Äy¼u|T?GÇIÌ·MuyŒ•±èÓáž47žœ¥Àëš1‰ç,¬º™rWrF‰ƒ9ž H’+š#…ÿ¨OÂz$LÏà…Øø]™ØØó-|ã‘LåzÅ!ZîÇÆa÷Nf®"ë8»wÏõ‰«|t^¤Á©R)ÜÇB&È«Oeö–4LrjA³âë¥üëM~0¨ÂY3%©é 'Æ>ªHc¢ yác2²›éǧ'ýlÇ‘lï~ èkÍ' »Œ2`‡ ¯&ÖÓE¯)ï§ö¡…k{[ xaðŠÏhõ½0%4 î':F“y¾ÎovœzÚ$5¾Y-ÓïÆEæˆ'O¯Uºõ L+# :)‚¨kHq÷‡ªBG¶,îÝ,}ÈœJ r*Æ.ÉsMç/ÍòÙso,*í¿cnBL3Ò5µž!÷”#ðoHÏÑä@ŸSÚT3)1Ro—!6&Æçñ>ÚýVûƒi7ÂFz€–Ñ.òÅî$Â`qín: à¤Ebúø­¡i =žÖÄ }O@9C–X½x¼Ö• :š¦Q¾L±ª±Û‚~“[;gíûÐï°Ç@€ssxßCøD+ þÉÿçÿ‘ûì×\‘,ˆ€€â:– :¦Í¾6 Uš\®@©‚cS­£þÃu ±˜Ù ·µ¹ñ´þfËþ–=™öûè>5sünewráiÏ×ÔRÓ€(£JSZ½„”g@Ðf+Ï87÷ñúƒÖ™äéááÐZÌþ$½®K¡õs_¥íÿCZF.ÑŒS˶Ï=õaŠ{úÉ õVŠön'O Ѻ¢÷·t |”kÖQV0…É>Q:XKŸ©B²%Ç—é "aјôašn`ZŸNɽ8¹‰àn|Ru‚µH5e ^}\½Ë²:z=ëÇnWŸÏ‹{`óHvÈ‹î&K‡£é©ARáÛ!»ci•n×+iIˆbûºo^;p‰ðt¼¹-…ƒhÂß}³ìè1w/ÖCÅø‹qO˜/ôÓÔ€Q ¦•Âö?ª0±W—:˜>6âl$ÕõéJ—pEµÄöE¦Ë?1¦º;9• ¦ø ÊS¯ëÕF™q‹ùîË.DJÑ‘3ß\Ó˜4ð™—Ê<ð_¡½år5w·¿£Çä™Q¢AßXsþšËÓòYÓ}˜=5b?õ>½»u•NÖùþ~¤š•Öa­TÂ…ÐÉUhƒA£¯°ø +4¢vi0íÅÅrŒ2ÙËoþs,ŠÅžñ+ן÷I†jµàå/N}dZå2}xø²Þ6Þ:%¸Å0o-ŒÅÂ{¾%¢Ka¥Ý¡Êö¼70•øa¯R˜ÛñÍG÷øÖX2l¢_­ Z«ÜmtHX£GÅû5+H¥¦.*‹—¦Z†,Ù»T[Õû>IáÿjásfPøœyÊös-Cû+Ó=r¼DK˜h¸–an^é¢Å?íÀ™.J‰Ú=-¤'P ІOÌw!¥(@?T:Í·éCßÄÕ;>eª2.ÐOÃmmëÍè&Í}Ææ’”½J#8Ç|im©bªI¹ˆ@^ylõ‰öƼÐî9Ñ@§ªR‰°¶ (¥Í~ÁWºÿx “bú*}Ewy¡fHĦû…ˆþ ê¥ "oc±ª¸ã5Ú‰sr.´¢}ˆŸY<<» =‹_Ì}³êуžF^sváóÉŸZ,’¿^¬|ê0,jæJ–q`›Á¤m$㋜"‰Ü»ó¼oÇ–Ñ…ÛŠæÏ\PÝ#è™[÷W·x:ê’̱V¸³9¸(k™¿J”z%ó“f·ü&Bæ„ù%x=Ü$I«"Ãû„1nÈ)3ý`!†¦Uš­žØ.œ"•}¹*m„Äwç  ëssg¡í?i_†-cZqú.½¸{½HeC+ÈWêë¯>@'0L¢henÂ>³dsü<««›Åñqå»É µ†t‰²WRÞ|ñ‡×MÔÙ”Ö&^Æ@ù €Ë‚7¾¡‚ÿÚ®äT€äö|è¢ø›÷ARˆû3ܦÄF3Õš©˜ƒ³º…à\ÊëÜ ™E¹3RM¿ÛÒ1†Ýݳó|™Ÿ)¡§qO®ZûØG4´½šýe5ÐɸÜ0d¿îôÉGæqÓ]Éî( d3¢Q¨z‰jípX¼®ÿ@E­6?ößè÷gE\¹:p5]¯{Qéçw܃ü¶ÆpcMJLOû 2$HlbWày©mÂn¬pÏÑëÇpÐ@Á d ¨*TJÁ3ž¼rv{T1º.ÔdEf³Ç“ZêrÏìxÁJ²òìžaþ ÀîÚPRÍwA|ûx¥æ¹Ù@· ´õ,–L{|ÏṏlΕ‘êÖ]Þ É!ˆ¡ÀOò!ë?'pp÷Òh3 Ï‘¡Q¨%ŽZ¾ŽWFÊ,LåØT»Õ=Ö–ì·–ööH©ÁŸiH°àbÂŽøÍÄ%J/Óߘ]ü(m®щ—4oµÅÖO+‰r^ ß_©ÅI6ìëý…Ùjt˜òÊú Ïô{žâ09¹îà’/EþPXùÑâ p1ò£‚ÞqÃzݙΌI‰Öÿ÷I (X;A]Û¼a[ÐgIØRø5U|qQ1 HòÑ!–O.Š^"ƒâÐhêæö^ºìŠ4 é ƒU[b£“º:CµsV~yɪ"‘¡1CùÛƒV0È{”ƒðýýf—ÀAQ©;J7îñI¡@-õuBŠ ò%(ªøV(¼M‰R²7˜¸jù¯›k¹j¹Ûš¾M|")dÁÞ:˜]Q]¾½ /¢<ô32\wú¤-‘CQ”~%$¦#(+c8eo.+%”.²´FPÐQèSF´›}®óÛòFžˆ9xwÆÖ<ÄB96¨h0'•„gÅûJþ‰Äš”:QïåŸZõ±ò…ˆ>0£O–ØÓðëè¬RiOr½9уö\~<¿táÑ…- æP÷k>ˆJ–>ÛOá›}ÁŽ'ðËè·mBòŒí³¸Ì'“w˜¨ üuN$@aäš²iŽÉ'¢OÊz}ÞµEäë“_‘»„tý°=íü\Q qJ´¨&Á/PL:‰fÕUÎîk ÇZzÖ Eù¿¤ËŠê@¦{ìßèüÛôÅ¿¸^ÞˆêLbï!i²d“„» y†l_øa‹írK ¥Ôˆ™×胯ã$ú™ø­Ná =?éM k”vy¥ûMöŽgô¥tkqêu†ºey$æ”ÖoPØäIæÛ¤×ÒŒf+çÜ0¶}adÊU? ¢•ˆ¡A)m·'Z7ß$¯kîcèÈúÈ ”Ó©»b¨—â>êÓ+@H«xõéLöõÕG3rukw%ø–ŒUÿ~ù+‡™) íNÒ/z ÔM»s1Ò¿øšAñÖA SA¦×3 • Zíׇ]ИRÙv¤FôERQ7ìfà|¿q¯S¿(ÜeqøÿY‡Ùg9Í’ô]mµ6t0nPܸz)õ.pO²ÖðºŽ.¬qnù…?oCîñTV$àÇôÛq0Ç'äˆÆÓ(±=¤ðMš¿q|*¨`qœ÷E–ÂêÍOç„ufúµ¶{VøòÜ¿¯R üÆp؉&¸;˜`ÄJ¹´W²J`zùrXЬ¾-zVE"PÉÅy–ibò«,ÞM?hxîùSªH Ži¶í ˆ-gŘÒè­«2Å-X¨xGtáÛB [?eÍÅ|I~LAYiÇŽgÙ<ÈX’³ç'ÿMë!Ó´&£ן`ÿV›!H&·§‹€ 3ê»ÂµU|}‘krµÿئ„ž©nÔVPĤMŽ\:hN`¥ŸHŽ$ ÙökVJVeóš•. ¦{a3$ 5ûx£ÁŠÍÏmå¥HϲÆ*ÕCeÁö^ ò¶yAG`dm-ÆÎ4œCÍ{} ……töw9ªIg ²ø8%ˆßäìB6PøXTÑÚ­cÚ…6ªÅ! NS†íëÿa!´v]ÅL`ƒÂ~w¤PO™äßÜF›!—§cÀ:æY¼TÁM~I©iÆW¸Q^e  G · ùc< 4 Ÿ÷‘h? ÊGê߉™ÈYsež#w~‚ÃãY¤S) d0<ö3±‘ :¶¹pÜ̽b¸Žß™}È,^­c¦t¤õMjØiV¸®;8¹8/ÇTßåz€¼ìXwÈÆÃHò w•.ÕSDòó3ZsÔò˜c:·äéÚÌEfu9¤TÄö·ÂE;¥”ÚÍ5ÙÁJà•'n}7E‹ÝKZ{5®lS °ž[ “‘ú$“Bßëé›6èS,èaõæ–«q\ÄöŒGÂb·¾ãX e¨ÅË6Åu3!X€JÝ”Œ½à¯Aáõÿ`³ÓŸ*@;c1>‰‹ÆVBf0w<ñŒ^dmÃÁ_‰Å6¬÷A(cá­¼yR‚þg……÷ ڹߪ5°=ñÝ;×Ãù£l%(C5#‘ŸT±Æ)Ñ!€æ_$Eg[h®ü\p˜±!üjæcÙê4/×ËUœ-hÇq˜í»vù”R~2í Ë/é›±ÔQŽº$ÁÕç=¢ihùÛùgUKfaÍl©¦©xvlNJQÉ6uƶh^;‚³FqëF¯åJbŸÜvã!ÿØ|Ù[€EZðQj·FU#1©¡¬ý…«+-ùUvÊGª·W žðò¼¯¬-øý¬<Á‡iò¦GôôYóŠ’Œr#¤8-}‘žØ1tR°¼ µ-v@óénì Éì™?J n5€|¦›ÐÈ*øÓÒBvsäð{Ð8ÙÑí¯Év ÑÐÎðZ.Ÿ^Ʋ¿sL8ì¬MÑÎÞp3 Oïá.Yñ݇ZÿVÖò¯œÂÅgÍjq@•“ŸËut4áÙ¼@*@²—ÒæÂ Î; 5K1@ QówAÑ]㈠ÄF'ô¤Ò&²ˆp¬È˜T´÷;¾¥‘±C*ð‡¡sd¡û3d5Žc^ µk|=™jydýiw„Iw\/º ";êš*[å[FÓÄzÅ•5"¼GâÝ;_ª1aÊûö­+a½ó ¾ÞA¶¤1l“þxÜ:Áºjë|©Pp牠ÊÈf6V=d¾Žal*#¡ÎjèYŠ£»Lg ¶ƒË]¦´GVËz38ÂbŽɼ9•) ‡uµ :B!Öìøî"p™ãÂmL6;Pq¢¡Vy“~ÍK6´‹–&iU´r)a»~ßè™òyïüeß™][Ñ›kYçy¦`…~0Ñ‚,9‰‹’ˆ=ITÓ}n£«i˜Á(2Ç£Zë·ò©¿·Æ”ZœºÅ½0ÊÍõV²ø†o!·ý«©™ëR¾fŠŽcòÔËzwº¿•o‚®8A&Nã€6:(,¦Pê:djÚíà ãÔò]Þn¿’´ _ŠÁ´$ÌßÁÈF2r`Ö籩Ÿ[‘=AA÷9`ACMõEt“LgªÐ# qÿ{š0Y- sÛ¤¯Ÿ%#*s3BS9ÛšÚ“b•3¬TÞ,7Vö?_!Y„Íá¯À#$fµå2Fa`CF0ÀO„ú2_¬Ä¨.ï íò_òA¤øsÿ+£æ¯Ì6!8j­¼ñgØaÝ2êÑ}š¦bª~¡ ùëI“º<) „ÓÿÖhþž…$Ï”û+òQ t½œxºÆÐ ^x?.0mJоÓd×évAÇ_Vé¦E\ð)Ö éG…Ìä‘"_°p¨½±´·ïº$ƹli¶5˜wv°Z7†·Åõ_¥odQíŒH ØÃǨh38ýãfG Ä,>ˆÀcŽÑ«’ËÎÄ@]°gžpZ’‡’­WêçF&[Üvy±aÖGæ)×]dÐ!¯'Ï¿ûMoÆÅvê´’'Žüª+1@¨4šÖ.ˆ"},®\òg”&$[qS"Wüªrs‚*˜çA^ëL´‹…®å)<éó¶è„¨Ôh[6&Yk3ßY5º#²FÑKÿ+²–äÉ,†mÙ@PídÈ„>•±&íŸÌØa°Ø’Ñ…À Ê,r^µõ©¦Áq‹¯¢TÌʵ‡ùL ¥#$ŽÿD.Fr6c yAeÚ”pÅtøwuT/4¢Zá@˜›6ò4‘ÁY¼ó›’÷¨ÿ‡xM×[4˜ØœA‚…Á}y¾Š!æ[½‹Œ§;>jÕCy<Å×o6©$¥0Ú—ì…‰5çÑÀ³=§„jLR³ëSõø»UóriCÅýP­Ïÿ¬¾svyž$šÆkÉùèþrÔ5O–tô0J&Q¢q‚DµZ±? ÉÇް|2­)ÝuU´&EmêMføRÌÛ|ÛTÍ–vÝ >õŒ‹}á³Ð÷•û¡9AÀú““¡ÒضF À®»>É´vÇ#ŠÛ¶ƒ€iEBB‚”¼Á`qÚ‘nSíÒ=ô—.¡*µ¾ëK8Ôê|ˆí1tã%Çš¶guÂk)€UðUG²°B9kû¢&yæ]b Û¯ i*´6ÿÆ_ùpÙqÂ6dµãq$¹¤Þo6Í®3¿kyF¼·ñ …£«—Dî.ÀÑ(ìÊÆÎ93dŽ,ÌטÓf|é@·!|“Šû˜Ò×–°ŠÜÍcӢР€\3=²q RƒKXWªr«p‹Ñƒï†ŒÖŸF¼ ª$>’ƒÚøK-— ãuïÝQÞ^póGÚä4™ý—ÀÔ_åGúxp†’+ést[¼ £>´žAöÝÍ_)£…:ðÑ™Öǃ#ÎÆüJÏ^ºÙ¿ò™^Þg0ˆâAÿá¸-£.ýÇÊAÈäU°qÖ_2a61W¨ÊýTg'áœ/íïAŒ(vÁ=GŸÙHD˜XYvÁI€cÖ±>ŽÍïÙØ!0âqQ¼¥5ŒßÈJìå6tùŽÆ± ï“,/À‡?h×OšÃ× ¬ "¢ãŠ%¤Ly¾G"cÇã¼´¿_Yµ¡'Y¡ûƒ÷é›èF~p­Ë1A!'}Ï:{¯˜å¤ža°=£º7 o"w¯"b•g ºqqH™‚äSÌNtò(hA^=î_y\'§œ Qˆçœ¾ExGÕÎ.bž,š›¢˜%F _ÙѸŸÒ×n?x¿:ÙGW¼9”e½asüƛտ¯2޶>èœ ¬3#'1y¿8Űò ñÚ5¥I@œwŸ²\#4#Iv$•†5Ë‘ƒ÷?œ æœì.0<Þ÷K3ïÕuZ;öNê/¹]t—ÅBR  ¯›kÃ×PÒþNAÔòÜ3ÿŠ<0€€“g'-ñ'æ‚lÜv‚{m/ôɇ%C7‘ŒäÅB®¢F~˜ºí÷Ú`e{ЬÈiÿ1NǬá·EM“4ô±……K4¹õ{žÚ°mÉ š}UrÐ(˜A:t$Å´9µá»uw´ô}PTRÊ”@k‹ëejDªz®Rõ®ËVC÷g¡"^€/»• ¥87÷İ+ôåÂÜ+"wuV/Z+Y1Ìð&æàd÷j„¥¬8˜C'`]œè¦åõ=r7äEGs{xŽÊ½Èß+QDßy- §»z¡ð˜çRìîô6,Ð)æPw ‰!TõliC{XC„ŒBhˆo'ŽãL pM¯ôg…(»(™A<ôÑ_ÎìÔ!Iäï2Áó‡ cäÅiõy#ÎG¢\^âµt0~cu\£fäFF#ñ?\ΰh«Lºu3^…w‰êšw ’¥(m u`ü^èü¯Ž2Ÿ ÙR„°éïÎØ@¡tòîSÑTϵ÷ƈeM^ëµÓßAI™e-‹_ö‹Ð¦ßœüK|¡Ÿ~Ýógã´Õ"®‹Òüʤþ¬œ×©db' Ó[ªÃ~´Ñ3Ý^©ïfÌξpn@¤ÖT¡¦(,Øž‹v‹1,!Š²ØŠTýÊ{Tî×P–„ŽÙýƒ;E7¹ , Bý¢˜cG^¤o}­@F×dŒù¢H£0×7bOÚŽ$µ_£Ù£ðœ:‡ VåM¨ÓÀ5ޝñ¹ª[¶ØUl(gªÂß,ù±7þ}8 ð?UºD;¹6v$yv‚¸¸ÅÁ¥4î‰ B h•#µkƒí²É.^gJŒ¢'nrmN“_•á’ˆTUW °27²å7•IžQ¹xXªÔ‹náð¸}´»)¾þ)ÎZò8tP•ÁTlhF¬n ¶Ø ì½ÌQÆð® LAÍàJåÏèðjc–òCÆäaÖÚìktß=ZoðG݉WUÐC½ÕÀšù ’Òÿó÷1K²²ô áþâË£2€Ü÷•âåÌ XƒßPK­xëê{íQ•öÍmå KáÇW#<æ aôöëPÇÚ‰¯`‰ãøù' æV®º£˜ú H÷cÁïjå°ŠåúRüCÛj ”B3¥¥ŠÛ&U|„E„žµóÛ©Ö2AmŸ8–éˆ,”Ö—}~ª¹K„—w©7‰õn‡fÛ©ä4Po'VÁ£eWå{Ù¹dilzƒ‚VÖ|"VøbÞA¸3¾aìPígîµøîWƒ;¢§Gfâ‘v§×¨›ãè›J-R  ñĦzÏ»6ª`L»§1oÊy¿hÑ4LËvµË¨èKÛâIvÈ|mÃNrî|Qçn xµ¡÷¾Qâ¦=aµ÷㯥óålŽ «NzÔíÑaR>Av¦ /-­¦TBO¯t¥" ,ÓIJôxZÖ°yquPaœˆc|ª×JšnªwÄ0I@‚•6ÔýîoÎ#MðÚájP–.:²uA ûpŠ>¼1u>ÿ—­<¡8 jD÷.*Û¯4}¯´›z^Ž«Éâù:Œgõ}白ª­üB*…²Ñ:cléÑFØé|òE\$9F3–î‘õ«ºÁ¾%ê&æ¶%ž\°­ Diß[[ á¯+ò%CbçµÄ(š¼ÿNb½HE›‚°uÙQªh~_{C©¬›’:6ÊPSËi?\*àCá%Ýï={wDK€™fO½g GŽª–…{ðÝynÞ«IqRª•ŽÖsÛìâæ¯Ø˜/áÜ3Þx„Kè7B¦Ñuœqÿ@c1ÞmCUkÖåGÓâ—ƒhHäd@1¦át¤VýëŸÚ}»‡ Z{=ÑëXa/n,³¹þ”Äþt7¤­ÿë9ª1m-Œ*ñˆP«Hà¿´0—ÿD2o}oÆUÆ=Hœ¼%U n ¿£ÉnÙy¤ê½ô­þŠÃ ‡e™º;Ž©$”ŽSw[úÕ »Ü6’Ö…&˜› nº_ŠŒ’é¦D\X i-).•4×Çÿ°úÏRÝ”zõˆëì­Y]äd®c¢ iv]7~)»AÛ§„E˜ÞmOÓËB¨EÁŠœr›¾äÓŒk[B"Ý·ŠfLñÀMÿ!.¹ë³þw ë•@š"ׂ/‘ú„Ýc‹È&(£Èä:'š3QÔr›ñùTfràýTËe…ïò=¯¡¦†ŸJÉy!/Žô î×s‡ÆlûR¯Hr¹MD>ˆ‘,î¬9³IÖÊòñ|óŸÁ0”¦+Ó|žV­Ñƒl:nIªUW¨V8¶ýñÉ­Ÿˆƒ´ŽonQ ¹‚¬Ó¨|•ðw€Ypô yoŠ$gQg¯ð’«$â#$õO&¢BþµÄÆ…ZŠ,Û³“D õk’ÛPþ—;ý׎Ï‘¿"1 dr ÓNC5ìRk§;‡à•!½“‹Vc—ušPNXîu—O-tþ@1Qg?Ùa¿r.Ö­èÆˆeÁFÚ°ŽÿÆ8x×´•A1'ð7} „½ñ5â( 9 ”B.tþ:9‰Á),“\cp½ÞîíR«_nC¢eË܆PUÌ+ýÆ<ÜKJHë¼*YJ•ÀvdU"£ÏäKZJÊdi²ßŽP€©mr¶üDþÞD!eš6†û”KGqäêþ%?(B=ëûë,eñ=šnÃZ–Í<„&QÃdÜ1AíJv¹[d×$÷ÖÆüàÔRÎ÷°±—<£ÒמLT_?´ Ø€ëåÇäö½¹8ŽæÞã-«v€¹Ñ¢Tù©´ÁF#£ìÎYDh¾æAØOÞà ¼âîw›\8«%q–Ó¯ 4S£_±ƒˆPûS²m!f»]°œÓ¦Þ^ž¹@¿@9X´•Ysô‘Æë|–_ŸҬ[û„"ã,À»fÔ™" +#Kh³CçVLˆ7–b¡ã•A:ê×KÌÀˆ\ßÎ> ñ¦Õ›>k2 ß0þo£vã••0›°Ã}xñ_äôÆìÙ U‰œ™’¾ªÏbHèK,ˆ¦šDÐØ1X-º½nf±)>ƵÐB%nIEܸ (šOšÇ0a"¼zIùˆ'¦ùÚè+cÚÍvWEêÓ»¡‹‹µ=:5㟠óدs%!`VÍ\ÏéÛ„ÌÆ ëbZ¦u´y²·Ëðjô¬ª¦²„Ò+VžqC}ü¾J${nχL.SôX¡.¾ÍŠê—Ú„›5¼¿T®ü¼ùQk^_ÎÔfXå–}mI›n•ë‹æñ­ô‘ f÷}ú'žçk …*ý÷}3)TB*ËŸÒÈ¡*è?\Kë|õC¾~jÖm`çNù›·f&R® Ë\“¹±ŸVðocóÒºKItÜÁlà®iµr §•üú69æLŸá*üå`&„Úcµâ# ¹I´¢5 ÞÞE:„Ž3‘ꆢDó«*# »X_?ýV‡Îå)–PWŸ\órO½ÆU0b‡»xëjé«t7aãz&Ü5ÐcªghßÜÕUË–ðkLø~’¹‡‡Ûw+‘Ï6n0ÑMÕ!ì¶ŽÈVÙb‹ôNË‘`i.Dj9Ùîúè8½» ©»ª-êø6µ ³—3—R+V-KÆvâú°Sº»½æ—² · Ø9¿{¥;`öå“¡Ý_@VKÉ‚Žx” Æ-Sdz* ¶~äúžÍöÁ…üî6Øá­Æp -|2h¥!óÀoÞÃPw®òÐ䟞£ÓA“eÛÎúÂÇ|qN›M>{¨g¹û2žóœœC$òëÞDljœœÌp|⟵S hcá‹ õ ïÑ=Z=Ç{ R^¶=öVg-•Ô‚WîÓ¨á&Dïü?ÂöÁ‰í >T‰X¶<û\€ëÌZIJ︗\ï]ò>7ŒQbüUI‹=Ú¦FqŠ™–TYA}¥gæVWÖÕÜ¿K&åoÞ”Û«‡îƼJ6ìcÝ3§¡Cóˆftý¢¨SÌÜSäQ…ÁůI™ÙûgAô!UçJ „–ðM™`8É:ª„ˆ4vtÏŽ…RC¢ÊP;”œ¯ØÅ:|õÅšuÇÜ£ àô¡ÙË7ãÙÊ‹?põÜ2ûX7kJCJA–a¥¢nav3eß ³’zòƒeí*-XÁÜùûM³oESð4´ÿð MèÔÏ þ’½"’ú]†]ƒñ œp²"$Û6d¶8¡¿‘‰\.YÖ“îÅè°*Շ׭çïÑr6©àßËy`AX8\úsE•¼vû¤yü”×ÞÖOq…‘E àÈ6“ZÊÜy s<2ᆻ('8j“{=@Ó #¼“·x0Ïe)Ùªˆ6 Y>vBWxÌ~M •-ˆºò[E|ƒ€äçEDwŒ— úè‚4®PfÉ»c„Jò¹Rcò°0‚C÷¥EåYÙ­H[µ‰zÐíTÑØ%EƒàùÆ’H÷ZN™{_Ú÷ͽ´o’h˜Öê„9ày+™+ˆ ⨶* @¬½dݰLÆË.¢þv¹B—}ožVŠL燡­i„m¸ºõÞ!`§qù´ çÙÒæW¤rñý¯Û†æGÎ:=å“ì!ÙÊsèMâ³è[/ kÐù€jp\—fF=Û$TêVFM£èNl¡YÁÄäR}P¦™¯jÎ3o„n™žQ¥ß{ƒlòG×Ö¥4ZÅTO¥x+qóyþ ùõ3&_9[Vv\Q㼟3L‡¥'Ö }VÒ·l³ë*Јfi H#+ÜGeñSySH“ìßàäu+þ¯Ëh(~zÚî(IYuÈÕaôüh<ã8ELsÑZ£sßiÿeš{ÆjÀEý#'S’½ˆ/—ÓAŠ+«Ì·•K§ü¸P6L[œŒáæ¹ß*`ʇ߯šûw¦~ÓÓŠbPãï¿ e{RZŒ94DÎöÙÇ’õ¤-qÏbJÔ["¶‚H»vž–Ç=8à]D–Cù|áʆ§tëNqå»ôÝ×+Ùû‘Å5ÊH¾ÉN ¡z £Ó®Ö¦@ðé_Wýƒw/© ö\›†"N®r£U¾ÔpÔÃØé8ÂÛohR9 íÌH‹_=µƒp(Ë«†<¦sÆbÓi—ÅlÏaló  wP*Vp-Sps s§2™¢\›îï#\.‘OžÜ®¸Ì×îtòN‘Ì3…Þ]iÉÛMí´.6k§Vì|ŸFäÂÏg~T „ÔGb›©œG9[Ù=ü¯Ñé:€ðž1íÄMî5wlèPô™úîuղν~Í £¢kHå÷ì}‹Nllz1ÌN‹”Æ›jW@»Þ.E`fã^"ˆ:§‡6»ú¸G›L€ ÷ÐîØËbµ³LòR¡U )iO¸íç…Ä õ VN–ë·æ:Êc‹™±”C”u"U‘™!>lÑŸ‹À6o5Ôv[9rPÅj1Kú8裡5£4áU¯W>êûåÇÕ…Ó&öÔó»ø¦®’ÊùÑzÆ“ÜN¦g;ꕃñ|wŸ¡òt1ú{Ôî¿®X `Ž Å$,gjÉI/Iqã¸éGЊ0™`9.jP®#³Bû¾>¼È ÕÖ ¼9}W£3ç|šùùO ½Äˆ¶ØJˆŠoÌ`©MwÀH‹ÜVr²;ĉ ¨2(8Þ¿À*G˺Ԅì,Ö¼#°ï‹2â<°1èp¿±Mîžeq+£Š/\¶Êï‡rn„ø`9e¬Ž£ÎˆÃj²kÓ0Ä®A)øÕÔ!Bêp–¶õ¼u®½½Í]ÂÙLmZûA"Û`³ÉœbûJ·’çr±*}•mÆi§ÂM¸n— Y&ä}î*3Kâí&Yc'$+9ù„€JZ½¼%ž¿q‘£/GþÆÖÖ‰$Àì>¦Cr`ñ25v¶Ø(bÏ?Q1UßHŸ¾k¬,W‹ œ?GYèQ¶É<â§¹úIñŎr5¥nˆÅn–ëÍ5”ÌGèÍm~ÔðÌ}RsÚ›ƒ´n0R]¡(QÚMÅÙÚ6~rH«$¾ˆbŸTcÿƒ¸c´ Uògñüú~ê°MîQP”#8ÿ†¢ŽÄ£ö³ÞÔç?ÆÜF è0FuÌÍ5gpÓßQ„F€m3+³bسöÚÿñîðÅў˓ˆÀs„s涹Ûåu"­¡TkAòÝ2ÚrË­‘H¤-¤›U.ýÃ¥Ùt¶Cå˳Y ›‚ÓºÞ[W*+´£[<"°ïf’Ô,f8Kh›t8å LUJ š .ÊôHH`š=~A>£)äWÅ!¸º3³8-ˆV{éû Ý®Š4+K¥¶o3’>•Ñ*\”;žÚi°,]…ÁI(ƒsHxpHÌIœ”—´Ð³+×>V†ªû}2vJÈu:ÃÓþ+ÌG¹>Û"SNa‘ºÔ×)X8·ÿ» QÚÆc5‡"b8fëþÈ2š¦×/7­}ÕvëÓÖݺõúÞZ =ånD]]4ñÍNb®Aî\ö½eŒft7e^ÎRƽ¡"I«aÅV+² ¾èÞd’÷é…‰ä/d %‡)Ç÷ *º´!°²%›P RÞ±±«iUëCì"¯Ý‡ÇÃÌÙf\ùCmè‹ÁM³ ãê?×<-ÿmëç{~ïü&è¦Ë ýFûÌÊ|„mê´[²‘s}¿¢ûkyN Å|Hõã BãƒÞrí3è,ûà™@fç^\‰ ÎðêÊb¥ü(’œ" ÑZ?cÈK²np*ˆˆ ¡^¤ðÍ÷ymöûf$ɲ*u;¢ÈõJ^(›H;ë ÕƒFuö¾X1›må:“Ç7– E°¬dçQ· »ÓÇ•šðÄ‚ÇdÇ;‹/ÈnÆî|Ä3øœîí]Wh-ªÏGÓúc]þ² “£Êé5fé< Ï4´Þ§\­ùü™µßÃW<Ë@‡—x_Ùô¢Ã>1|¬~˜–o-MØ4ÁA`1÷&`K‚³g®4À60ÕºCÅa¢ÍÝ%«o鸚¸o¨íø+Iø›?À&ÃÒzKÐøM‰æ^  ¥Ø©$-á¼Ë:ˆŠ÷‡8±—­mÅý3ãCì ^[ê©8Ä;@fU ‰ŠÖlÕN™H÷ßzßw~}_¸E1Ï…B몿ye)ÂÉâç‰ãc«µ»ì‰*©µšé#F›’Œ1µ†åP‘}&óþŠ…€¼ZرŸæ…D 1bjn µå8çsîM¦ ;Ä5¿TBwªYüAªüݶ Î/)ÜA«á/%˜, …ðŨ‘Wa ¾þ+übd’hÃîêä%-éJ3ÜÉÏn[,œÈú6ü•±9mŠ «~û›ðö É~â0ç_ÓoþÉX«d*çoáüßJ/€ÄvPœtè(ÖÀNKúP\ĕԘÛ#­îãg[îo=‘!å =uD$«’ÆÙ½=!Tà°'Á9ѰdK†m2±ðÂ8–¬ºŒÀÏð\ %K{½Ôu+ÛµÆp yXí=º]Ñ÷à:<9ÕT‰Å ïñq€êØ|ÏÕ$uÜVÍ,+[$A†™¦*Êv¼ãÁú"eq9€#k³ Ûðÿ5?E¿³jøž?þR†Kò=éì~ ÄOªòú_rƒtôC „œv¶Ã¯è#úŒG­œ4 =ó܈Œûü o”½ÊaÖ®Ks}`^µEè1¼§ù•¢ñ¡¥­fû>¬OS@Ú“ø—°÷“V>¶C*KŸÝlF›šCk4ceyìx ®ñæ 3ˆtžÙ­\ä&™J†ÐºƒÎ÷Ú—D¬¥¦sº´öI Hö†Ø6w‚¿Çñ{pF–Þ”'v°ÂR«R ®oëÜs/èë‘Û9¥q‚D;Zôøã¥x ÀæG ^Õbíù ÂØza¿Ó­ôÿ0/Ù¾X)÷V_mMËîÑÞ^9 óq]ŽÃ~Œy7Í9F2„ɬKfùÉ6Ó8‘àHöÄÂHCHïN1ÀÏÂ…¦möoXêŽãWQ_®y›}÷Œ©Ñ £ÏùD ¡[¹Ãè1Äb‚®ê·æœå•¢Ï¶ô (4Iž\ÔÖ¿&Rp w&œ¤itfU±×Gn çˆe|XC‰)¶åûœçrçß0°±+ùq’¡uºò Zç )rÀò’$vJë]w=3QoTtîŸ~ûZHb†ª¯@x–453‹ž›Mò:KÚ'V”Žüt'pãÊ^6á²(0¦ä-¬öþ—;ì Ì_|Rp€YÁ’1ó9½©l&¬äñ4Ñù¢ì$2˜Ò89'ä3爔XÊV*L¼§íA Ú[øH ÝÖà tÝ¿…½1»+X~À.¼°Èz‡Ÿt½k&i´A«a_Íe»7׺j…!ëó þw±ƒ†ÃBÃfÆÍ™8 -w/í07ËR˜¼–)|¦Q/@IyìŠG[ä¡% ñhÊþ¢7Æü@ÇfüÓ;x–ð~z ‹ÿp{B¾uÓ7ä-¯ù7/&41=¤Ú)×tØS‘\ `gÂYè´€_w&ÅH§Ñañ Ï_ av„Ÿ~®,D-~ëÖ#çkCâ¦_߆Õ-‹®ŽÐÀUVžH=ÏÎ~QÀ$½‰]·àxæó—ˆS‚qšFyxѽˆìÞœåì<@/«á‹­BœŽN‘Ê0¯àþvB5ZŒvK,ÐÉZ櫌߸&T¦wÓ,Ö?ûbìî˜o×só}“æª}ÛUäDÒ‹hÚu²QçGãEqˆ4iHsåßÊžBS>¢g?äõTB^R\$‘Iéæi‹D„Ï r03݈eHþfÙhvQ’WÃ=èE2¸ò#kŸ%Úô#ðu楋ÑrXÝd“±äÊ̱‰&¡:‰qð\ìë ­æ¡f~š—l±Ü#9ßø>§ìAZáàã8©w„c˜:€‰†ÞýÚ ‘JvMœcÐ.­p¨)kÑ5/X‰ö¿\f¾1Úz0Ãé*N³s^ýpÄ0‹„ÍòáJ¬…ˆo2OöÜ2ZP;Vg3tæg·tP¾÷…^8é¹Õx×÷ ˜ `q¡ÑFæ„´Ð"è“~5ʸ:OY‘Ž3É/Q5ŒÂOHMŸ–øÖ¦Ó< ¾™ÃÍ»¼-¡Ï,1 ‡!û<|DàË™q>ö_5×ZšjÅwpI*O?Ëeôç:£`Žqܺc·n›Ú¯â}7aûòçtq ËÙq,šyaßþÊhjBÙœ‰¼|WÇÓ=,f<§*×/«ŸO3k§â?ÖÊ ëôî +áut°Ý*LÃ[uõáZN·v$Z’’Âa>Ð]ʘFáô .cÈÊÙŠq¼‡U|ºa;%ýÒ[0#,f‰èJ\”j[ý0/üDuLÁ€— sЂt†«¼åõ ü¨½šé/cf©ÊÂQ©™kc¡¹I!åÎä.jÔøÍº^ϾØ57zÕqkfeHÆdÏIÌzd®”ÿåÃZ¿’*ûÛQàÝqŒðŲöÀN]x×ÕïKnˆÞe)²¶9ÿ‰}!»<®±U]V-úCS¢ ‰gø »)ÉÌ9×¢›•½¥á„}ƒ7*©3ˆ4о×=9&¨(;) òžƒÎST¦`æd]+‰é¬’œqaVù2ƒçhûóTöT}'ð¶ÑÊJ/kj_µ6U1þ˜´mÏIt·š:E¿Ë5Ái3íŸæúEëGrüj 4•>T Ú ¤’Ò¨Eù¿²ÒHK|ÇùŠU±q.ìžåCkI*EZ ÍÚEêxhñÒÌÚ~‰A­ÁZéï3¤Ik{ v9¡÷äÝ–A¾îÁ¸ËYu´ñjT½k›æž•6!çëOM‹¶µL`e‹kƹMŽ\\TN€"ºh)€Î+HFûKk×ýE¡snzi{¢7>UîΤŒ„‰f+ñ’9¶5Z¯|é3†¶M´Þ’ÆŠöbÉxz€œ‹Š/W9…oáòJ¾/¡¶šqßX@‘«’+™ûDoóäh€Óü:¹|ßÞ÷[bÊ_XÓ•H5d¤i™Ï_Ò(­Ïžºª|ù<•‰‰Mú>R&ÿOç5ŒèPÚbEä$°×A‚FwälÛšÖ³t;l ÃíÜ YCežþŸ¯“pâËÊIÒŸ§g¡w¯4m¤¡qѦˆó¬ÃwR{TþÓ·˜¨¨?;áËHz½î#è£Üd|¬Lÿ­—z‚ôkf¥æ’í†dp}´W~Nõ`¨zš ¶²Æ‹[L¬@ªëŸR¢/’Ø2>:¢[®t×ßPAÈÅ…I -Ökƒã8ÐÀËÄ'Ôä`L/b6áŒ\õ'»ÇW±~×Î à­¯g{Q—M¦Ówù™åÄ€2¾íI"ƦA ¼Ü¡þØÇ)-%õ²Î'dz6E¥s…s=W Å3­2pÁÛ߉5B¢æ.‹Ñ}}Åþ]ò+ Á¦-þwÄRuD³ý<ü(†| MŸñSZ/΢[«îLÿßè°•ÏAGR×çd¨âðVçϬK!Cz+{ •]×nÒ8©É—q|”däy@„ü¥À¼ÀÚx†÷N/l"0=Úf~\U$ÄŒQM2“ú;ÚI±,{€«ÜËÄX÷’¹¨¯#X­v$ª¬ÝìÜŸQ½Š†6Úö*>Ó -h>j®H]¢~Üdr{;|âÈ#ãDcƒ’Æ’æ­¡lêK›~µÖ@Qbè=2vË­òyÅ_³ÏÝ0¾É×òPåsŠàFÒD.è[{Á$Âv¢>¼Òª6fJš‡E­£ó ¢9´¾Oˆ WZô4ÐÅl*}á,÷söUª¬f( â•J…¾ˆéKüÔ˜yþ—!6+âÖg¬P½ÂÑ{ …ÇÈÒ늆ץ7·]2I¯,ð¡I5ôy«ŸuV¯¸6’6øPujÏ*î+¬¸uF·u>‹J©ÝÇ^bÔª´ÃÂ'ýmÍpÒ">„Ý®en,]ŒÚk•;Z¯¾îêl^XY¶§‰P@F?A™Mûÿ°oo†ƒµÑùÑ1hÜÄüö‹¾±¯S…gÔAEæ;Ÿsìc‡÷|ç°ùò¶¤MÙ Köm‘Àk‰™Ë 6\(C‡rŸN-õi¬ÁF÷/!"Á®k3F)îj,:CqN¥æä!c-mÇ£äÔ`L%û³9­ÜÂ’Œªa[t¤'f“ðª_!îW²Ý~7ùCëú‚û„Xp%™q¤Ýa"­ø2Ésñ¹.@~yªÏ\¦r3ðï,y»N¶ô˜^Ìofà‰ï£?Œã‹mŽ%¯;¥ û6Wî»ä8}Ù 99·$÷ Âs›SãS] °Ùƒ¼ü»8Äì/g`Ìͨû‚ çPU}xÓÚUî¯óûú´3¦DX Ý7*V$Mñø²ÏÀ±.sÎBêŒÌ MV?tÉ×a§yîE™ˆVÅÒ-Ô­¬;Ðþä“ú:ÄüB„’ôêþÎóSãBø¿RSŽt3"²¾Gú®Ð¨gU/ÿÐÝÊ']“JÆÐ*¿$\+ÒÆÕW†>-Ô‘d)]ú.3À ¬O9ðò’Í*CâW™àuÔ)ä63Þµ¼º†Ý„­Û'¾EõíµÌá Â~È4?'¯u €ŸÜó¦c¶J~'2lð&,õ¡I" ®Œ]ƒàaM¢[ OdÉì³+€'öæpDûnhFö²µa‚‰¤rçÓ|}äõ’Ϥ9伆~Fo÷ k)µ§3ŒS“n+d³r=–v‡…Xà {?­˜A76 ¢ªÒYgªŽþ4°€Ä/"·¸ã*½M"†ïA5ò;yЉYþ¤cX„{"åöA•R û=öHa"³L4‘oi¾9"§>u“ì- .ÌѺl ÿw¢öÛØ£¸³)Î †Îk«ì¶ÿBFžˆZü¶~Ý01%Îë”|SþH1LßL]òaG;ó‡Ö–QaÁðúGÎ Tºš$?=¶ìCX÷²˜çƒœýûSy`$„»”\Å\¦½C‡&^¸¯s˜:® ;ö¡ÄCãÈÇ©TÝáH{ƒç©Kuk97KK‹qýÝOQW$_é6¨CMÃy¯ yìò(œÚÑ"o=ÿïx¯ýªt{ð‰äTÕñ½r-ú¢YÝ8îÀš?à‚¿”•ÒÆ&áÎÞDËQªL„Þµ+¾Ò¼†õ Üþ0ˆD8 `-?®œÖÍâSÿWŸ®çDàæÎ¤A"ýÀ~™°Šý²‘ž=³vªY`ØÂîá@"_>=tM×»X³u‘ (?9 Î)Qˆ S飫Œ6‘R÷„Tü¤YéJëËÎÕœlOfÙ6NÓüößcº?ÌàùtáG´3'hÖS²æÕL¥$×¹ëZ*Ú'ÀìÄ×v„z#íL¡hëæíXCñ[XÄœc¸’¯îè5wFî6¾-Ñ@þñü<ûÆ<Д%ž˜¡µöÓß:ºp–…Ž2ëå¸A¶6Ÿ.³DI”O­èëù…è’{g-71ð‡Ö@-»fÀ`ß8Æ^´ë‚"f ¢Hí´_»\‘H¼8$ ÍPPÓ³³•¦âÐFÚo 3Á!Ú5Š[KÂÙÞ©‰Ù´ ì4õƒ½¸?Žo¡òÕûAíFìÎÓw£&®ÔNdä@볿ܔå(·Ëê,p#¥˜´9¥ˆ ȃAg¾½ÉwÓ‚€'ÂÞoGSÄ8Ý/ˆÍlÒ0_‚Ú7qU¿Ð¤(áâž•5Ÿ½ý©_ šÇ´ :¡¼‚ªÑ+"ËcòPpEûÞ­ÀúŠòYjý¥¥øžº”ÝXœ`\O²HçÛ¬SÉÊû€.½…¿;ç#5PlÂÿnÄ#tï1lÎ6ÜûÓgû9Zã'Pº#±6ù¶Ò­a(™dŠf 9ưÀA—9Ωˆ“‚[Ó tŠ=&‘èBÃᢘjÐp­ªj¢ˆ;ñZ\‹4Áæ«F–g+Eö_z«/‘í^ÁóÕ?:³Ç©ãÜoZà­ÕV 8…Þ½­X—û4™M9½Ýo+¡˜…}êã=˧ɼ®èÆNS²d¯Ÿ`ädÖ€½^”Âß¡‘ä†i”õäÒ¢±=ŽZß!»’Á š sð$!ƒXܱ£Óøƒ™Ð“¶C½[õ;GEôt€ìvë–RµŸhÝh}TÓµøí¾³<švé߀³ZšMÈjìjýÝ}¹o{g+þL±C#ènc70]ó ȾŒsdôÒï&Œj ¡˜nÄÎl¬2ä¼möOtG™MgRãÓ_.ºN…x\>ígã1VÇ/®tª9#ÏüÏþÀîWJÁ.Raø<…šø µbá#êÑJ²ý{R€d¿ŸÀ"¶I´ÅÚ#o6}® ÖÑ¿ðf—+įWL:6 ‘Êʽ©éB>~¨8…‹…8>|rHzy¯*Õ<ÅGmÌ8}-ª¦ŒFê}Â1”‹u1ýjðeÊÝÏ餥àv†u„IoösrÓa¬=ûd«Çyl:8A¦%ÐJ…‘=Ú¾ZâPšáäf^¿í¶ ©&*Ç{0Å]v˜µc[9ò*$ËåµÁg„úO†ËRj¶Êé‡eû¡A¶ÓXˆPD,Ÿ¦ÆhÅ Ól“3“ÿ-'†Ûýs¢Cì‡\É“¬/O½î1™==|]Áf6$¤H¤~\-÷œÈȆMŒ¼y2©Tè·–•mÅ>Ti~Q¥øoûø&Ž}£a®1l¥?rê39žÍxÊÝ ŠU7¨M3 zª ÏA¸K\p*FÏüÙ3“–]=ƒUÓ5G^i¥kT†btVºF‚Pp¯Œ^üÉ?8cùdVzAh‘øD@ÏA Z8¡Þ.BüYŽÑí_ýÞ+RùA•Ÿ~q+µ›ðÞ¹h8<jKOw2P©¯?¡v(w‹Bs$ŸVm<¾î *‘‡3­D¦87[I¿Œ˜8àoŸ?9Ìź ›FþþȵÓÊWYŽ“BFÛ„/¢®”£0—¸à¿¶É? ›²3žQT5X˜&Þ·VôsIá‘2óóÅ*3º<|Öî 9Õqh5¬å>½XùÇí– Ä+xÃ%½Ý¥:Àj xpT.†½™+ã „ÙÁ ŠÉ¸bé(šèœÂK~R‰`«ìÉFT ±PÓŠ ð9›"=ªTÆRòv‹{†él·B=+ïOqśЉy¼YæS'K.hŒ ÁXDVI~<‹Í²5ªÏ¥úý¥nI¯À1dÓˆÓàòÿµé^•²p>nh’~]ÿVNÉ‘üùh.¬­k*™÷{«½êvlÕæÝÊLº"xØypçŽc:W<½tð“ým0˜#'kx¤Žn åM÷êdJ¯àøž…Ù†ÊVÊ×FÉŒ7Jn*žcucˆ5suÖ²2Ï˺S¬ˆ7ÅÞ<)¦k•Wù”·»L"Ïbš)H¦S"Ðî©°Ôœ3EB^ÌÓ²ŠýóŒ¾×Ôlv37/cÐË µ¢pEGÉ¡>E‹ EðWøyã+\bùª²ïÍ8É^̼˜ÂðUFÆJ…Ša?Ô=’ÿ¤Ho*=c=ˆtù›D—¨É…Ô0ùáràq'g=v±oò·˜Íup‰6Ü¢á\cX?$Xj¶ô þAöf)ªƒuÊ`¢rVHÅŠñ¨ÖÕõ †{ót!Í—11õÿƒ°e6Æö`½gûá ºHw‡dÉkÎÒø÷®­ãBË:·ô´ÆlÜnµaóŸtçâË8_IÓgðK²½>Nj_”Dò—62<ç;¥…É£}Š„ùƒa;”8·£ ÍÚT“­æ· …ÒqƒÎ¬ìÓÆcCZò4¨–D:­ôQ÷÷¼/¦ÁWÿü\æÞ´Ã‘'•ɳJG/±l V‡<¸áîûçßÁ9PàÙæ—®Þ,‹?d¶‹]ù‘TÄÔ?æÚÜçÈ HÍ}?ùÇûSX¸³úÁv²Hù7C›„£ëQ¡'fJVéµX¹‘Ò©vWW¿7cEª×š’ãçI„t´X(ìq º?, š’0q_\¨äÅÄ¢‰}z•3Ý9€”[áá@Çð„ÙŒ°2V§#þNtÇÇJF[ä`4ÎÝS‹Ç«\ _ (j‹åˆM‘‚ÕtÊáèŒæ_üúב ÚC`¶—–(¨ Èíÿxòk2ù¸CYžf[³p203ÎûpÑ€XÀ_¶«L^¾íLÜ$['äò“ž•ºXBÿBby?ªðKH,A8W}þ„DT¹jÖmIàƒ›Ëø˜:Êy_%5¯ƒì)§EFÿí›tç·ÕCås½,ë3ß‹ƒµDû[Êv¤tè8º@•ñÚï«y*rÝw•ä‹È€ šŸc…—:wB)xP?¾É+ÆÞ›gÃ3T…R÷øQ€wÐÍRM»ß¦+ lP6NjD×Tiµü¬e!¨ÝQrS¡6…¤ò’èˆE»ÿ¬ù4ï3Ï Fsî#éhìYLýªKSáAl¡†1¬Çÿ㉀V¨Ä×ùœ`–[+ÓÎ|©B›~sXËmûI쉘ÆR‡ ÀgÀ.Ë@üEw¿õï+Ž(“®¢HÓ@š93‘®8xýúñçÿ•±U¶ Ü‹º: ¸ˆõ çXC‚Ià{¸ANÈø°(JÄø˜AilìO‚g´}­©å€ð¨(t r€š9é¨ÀþZ–)Cë¹ùñNQ×ßøŽJ‚š˜bm*@Gl ɃM,DóŠœ~ÜÍrG²˜¢©“3AÙ§[âpüI0åáI—ABmwt‡{<3Ëšmµ£v4žkT—|ѵ¡‡ƒ—¤´$³®¢½ Õ%|LmôðÓlœP}˜ ÉÜfv=‡py“¼K‚wÑH^÷Äv¬P¶TGYÙ6Ü'ŸŽ)|Åo¶ùX¥«»­ýòJ›É €Ô·qUàDcøÄ-m†ŸìÞmv—¦çâ"6oŸzÇ}’á°é G‚Lé %U¹9úƒ_ê<9Óí»YÍh’–7ů3ËŽ®›ßcȳ|Ó.‰ÍU_N_þÀ©Z'mUPù–‘ÓáàKdL‰1LjµÃ*5[PßW3ŽÏL3Kœª0“Déyäµ’ÿ À.c~‚‰ë¦jlD‘N$ŸÁk«S8⫲Ù{K[óÐÉÖr~ ¸¦Ñyp™Ú®-3=T²ry7®öWZ÷÷ ÊHŠŸû¯Ó‰üùç=+X\ò”²5uÖŸÙµilõóЃŠç£¤™ô“èW܃eÛøÃ>±9YZQ›¦iÊ{äNqLXÿ 9sz:š´µ&T{l˜ôX âKËjZ‡?ŒŽ†c´ð17Ÿ—¨¬¸\Yy=ýÏÎÓïÂÔTÅ|˜¦T ì&–ÿ0¯Äc6;R–æWá•-ÿ12ã„ÓÆO¢Òàb4e¯gi³óŸÄÅÕF9œ~ÃýÕC€mËV€K´Ò`”iê1 œË¼`—+PvwP×þJ™ÿ~’ gˆÞJ˜ëÅçœ`ÙP‡Œ×¢h›^)ikú¿µ§]£gé;3ìFÓ;µHÒOD"iéá¤"QÛ;ø|¤ŸZä^©Êwʘ7 :D=ІÂò­q"ëÊg̽êvFâëNÔ¿ü¶c)ß{,@Í<äT¿r±\$C›aF6 ‰›—,ðK 5i(笆+ŽÝ™TÇaòDÞi„ð'µWô‡äI—HäxÐ\9$¬“J}ZE3ÿ²lÞ\Ë#o±ºŒ3¼òÔg‚üä*Àï¹ZÙuYèÝ#€EÀ§Ãªÿ) =~«×´ðÞáNÏ­É—SÜæé0NÄùùøª…+ôôi2da4J '<þŸ¿¨£èy-SD‡]¿Á=¯ÛµÑb„èGПIJ19ÒLNÒA»Ž ×[ôi)CíçŽ(]»0!;¹CfÃM2€µ Y{0÷´¯°‰I“(ú2I7k§çÌwÌ=<ø—cTg®¬tÌò.j>ñU¶©F+–=+gJÏÂgÀ§²ñûŸ­ˆÊÄšï–gŽÚûXüò«eÅ¿ñT–“N|ákœÌ ì«åþ±0¼„b"²Ò·ªQ`èRg…éL°Š‰¨ÒajƉ'Ö¦Äí*Ó>›m\†¼&[oŸ_.»]’Ae ®eZ“R?¼š#Ç>ÓÅû²N>pœº®‚°ŸÏ„‡&¯Ûâó!“%„.]Ö'ª°Yï°îžöI—‰/ù‘eôè?‘xÖžBújQŸ´×9W4‰"á].Àƒ²Ãݾ¬‰ÌÌ’ùÚ…x©¯¤œ +õè#—„¨çÞŠ³ì†^åUj.éI%N6]2®þ“— ÿôœ×õšïko{¢_ÑÜ™}Qõ,Pl×GÓ[(¸” š 1j£“{ö >8cPÈñqƒùç 7*‚C#îÀf”6“ 9Ž{/üƒd¢ª{¦PÁb¿8¢¼a/Èäµ6 ‘» CÓ¸7Þ-0HmßP ÁKÕÜÿùCl{æÚ~½ùVôrÂ÷šYk*yÀò—ìËìF ¿>””§Á¯Ëî .µ²R¦ÿ3":MƒÁ¯CËÈ'—2:d]¼šó»pH8Øß«bEÒÍv1ˆ¹’ø©QõTQ"¾ð®BìRåíï{ ÏaˆbI4·ËŃû+½&Xi ‹ LÓÃ26fßϱ>—\âh†gôŠ˜`l!Ÿm¦Ò}ã%ùÅ2%ÔÍØ6+l¼úu¯c\ûÍѶ7Gç•—‡¥ \cûEë‰ýTPšËbÖµëèÈ¢7&>};3ž˜ró!dºü°åÀ÷CõVSoh†ÊKâTÃÒ†d[‰Ü Ëq‹\ÅØM €0,¶¾Ê;+!õú ÍoÇhcË3'@@º‡@õw*Æ Â,Îýüíª¨§ …’¯ šÿá\Q€0 %üpÊu¿&r“#kÿŒ§Ö£Ñ¿Qµ§Uä‚@êi¯\HœUÜ"„m-RNw¾²´ÅSúË)Ô©²‰»†!©k0…£½güEQ>’iüÏ:‚Ì´E×Þ |"0§L’©Þ™xõ8`Àïh9¼œõy®øg¶R°_¹uŽÀïÓ§ ‹´À#’ŠOÖò„L†ÞgrtÆé‚e{èð`lÐë2•jFÒ]Ahè*Öe“‘|-“s'°Yt'ÖLpJz¯µ ?])}••'ç}•($ƒ®¸›èšD£[Zv6šš¦g7ð/L¨° æ9Vs˜S0`ÝÅ&µãǪ7Ö·wa©Àõß¿ÜÎÊÛ¥ ­,2ó&Y<~´–­þúôŧm•O¨ 6ˆ Šþù¡ç±¼6¶q²7û‰E£º–Åߌ:•où©V"8I«[6;¦Q5¸¢P°O9$·4Œ®‡Q$åç}„öéxɯ6FòÜ{H«}{ X¢¹>•Øø3ìßeöF&Ì.ÊwsÊf~Éèó…v…Œ5égåŸÍÃ<®4*aû×))v<>*(˜ÖZÁSeô·Ýp xÒ|ûQûFr]$¿6µ£šM]ø>Çd7ÞK9æCýãN6ê ?†ÆÞ²ó–‘^r#¯fDpÚ<.ÒPF2U‰ø°,–eæ‘Á¸æ`c¢½ˆ&ë¥å³çÂ:¤¤f"¬Ðó3|¡²Ù’BîþÆæ‘Þ×8ã÷TC›BÆ„K|k°èóôóÏÍp#˜7¸ÑÃÏgwÔi(Ôì²@8‡±7Á/‡—ž@N¼Õ¼@ùñ^Šøj5ÙÐű €X‡üW˜å±™w¹¸ÚÜ£sïÓ|#•o§rM•]Ю $gU~lµo”MPmn6Oxù@ýb©nDÎÂU“`€¶¼¹éà¬V(¨¦»óP6Ö`]a’jáèôUÔI.ðÁgàT¾oX˜ñqTã {FJ–A™‰û¤J±î½erSüä;e5Gx"\“ßã,&eEÈIo뢛®Õ´l|ÒÒ£‰…DÈAèR«*Œ…_f>9Ú !› —Xüoë ¬?)¡m*¢1_2(vØŒ=þØwœ¼@²¹[Ñ‘¯îï©k¤õ%UçŸì˜ ÃhÝ.¬ÂÍÕê» 4ZÚ kvøAôßäqg™Ñ}߯|G½Xõ¹¤«„4û.‹%ûåŽb+$H+Rö£ZÑsoºœ˜¥Öцќ*±à$6ÈyÚ*ĸ¢+ÜϰIX¬JPòþìûÊ]:Å{‘lQ@ÑÕ;\¯¤Ü¢&‚U¤§Y~º½×õê?EÒ1¥€•íÛ‹º+SÕJC$‚²p9¥q¼“Y‡épÖ§¨c4dk¶³„·þ;ƒ*0­8ÅL¤›Ì Âla2ëÈ…àö‘v2Ñ(¡EÔ3*†(á“á·=•MŒ s–mb¼QÄE'¡NS6ÓņÂýÚ4À^Ð@ê!Õ¢„UK˜›…YEL˜¡Ã3/eHU Æ7¯äWº‰“CPÔÑU¨#Iµ-øÄå%)rü­iR²U+pzp§\›ªþÉ;dÚ¶ð†Íyþ*þÎ#’ÈÇ9az(¡qB*¸uÛ·ü@0Œœy¶5 ˜}|O0ö‘–´m¸à8»QíU%£‹u‹V„‚ü=¸šoÆ‹sjÅ'Éã7m¿˜²J‚n´ëÇg„m(Ïíấü¦{øSÄ,Le¥º©kÈIH Ì‘øÿ$v¢É?ìî«Èz Ô_›ë¾¿Ð”)ø"Bö”©¤ƒ%Å(Î"Év-ÑÀÜb’äàù+Ä}Zf¾)øžÊéÉ8§Ú+«¹óK84~w¡†n²|gÒRrй–>Û¿²ÅáÞIZ?§)†vÖSJ ¡´GªµkÀ S­žß“%?—³úeÜxô÷ËÚÇPEtµ÷!ô2îÎgmo™¨f2Õš0sóÁóÙ"ïqu8F„³Þ®sï~4_b—תj:›+ßG›eœŸ£üjÚE=ýEF-lš„Àzø¹;ÑÝNæ”@5¾òÛ(Zˆ¦£þtºIŽÏZ€X·s¹Ñ–b‰Hk¿:$¡ÉbO`*Ÿ‡BÞ£Û3xu¯Õt{»‡ÇW£Tc6Œ1pÕ+¿€tëÁÓ^,ŠÊž¶9ö•¶Ñâm~«¡íu4ãZ’~êÇé0y;¦/Ù-ºµKôÄðš›´ÎMf†é³ Pî·_‹ÞãÇÑ 8Y+©Mo1;Î’ÝS˜#eˆ60/f’dÕã^ý¦mN=Ì“jºþˆåݦ#|",\ε¥Ú´™€Gj²ôP•;‰õ¡ƒÜkQQ>x«c XJj©Öwþ>)ûœ×\º`‡ $UÈxN§­¥‹;­— ¼ž²ãuKSO†}<úµM?Ò5œLµüySl ÊgÉ t”àž´?G¦À…¾‡ª¯V”쇳WárS2l€‹ý¬ÔÕÞžþ* U‹Ëêí–±µ2;…Æä–¡‘®eDv»šzh{ûäéh\*ú{#X¨ši¹Y{OŽ2^k°`+â£pÕ+ùÓ~²4ÉÒB”l©ì‡ˆºñz—·ž'´#æ`f¿/Êô£>Y”:4„§”P¤é¨ˆÁÍÉOH8Ôð ÂÏ”ô‘sZœw-Eà–• „*U„šÛ¹~ŸÓ¢Ö,hGi åßÊh™¾mD4¬²‹ ÿ÷ù2þääÖ(ý Ú*‡k×Ç(³f}¹¸tÏ lÏ V»Â1@+¬”Uðl™ûÉ&»¦áÙÈg¤ûM<þ1â\‹â–ÔT4åK!&J¹·~ð[ N×uI¼áÕG?È©¾@šßœ²7ׯîZZ—D­½„ÖìÉ3 3!à”~hNq‡\í~ìD޽)›yžŸrH¨ŒnÔ%4òz×èzJRÆ>p H¾rŸÒn: ÄϺñîÄÙRvèÏ,ŒÈþäÙá*¶Eè °5˜WûÅÈIÈ;&Za[<ƒ¬^‚†So£¥ ;ÜÄÕþÖ÷»t¯yí Ë|÷ž¹¬`0aµ‘P4 $Š]zO/¸6É£_Îr³{§ùÒ²TíÏ7*êÙùÛ"E.«<÷:îÆœš*‹°åû9ó£ú`„%Sg£ +Nc&GÀvÐò v`ÅYx €éZ6Õ?@!PhÄ\UQ$ûåÅùÂ7ó‘lh’=Eß[;iÎ*ÇҘÿÖ-ˆ¹ &º^­ 0ø:+³/É›è4î¾Qhw…YS¦€i­Ü\öð”*¿Y#ÙY`ùÈ^¨Žt>ãë«uT–j“HÕ¦«Kä‡"0÷~ÅžÅí Xt–žäfû…Wè)vÄw:9 NªT0ñŠ­&¤šÏë^Õ2Q®Ù§¯Aò«Åøâ¼¢×"R¡ÿÌë#˜çú…ïÊ6Q'c‚V<8³uøÓcõe€‹¸Aãø†~©tl94 \q÷Q¾lñUåÉ¡a ³?}¸›ÆäÖ1[­ñ['ô˜õydTùûÙâk8„¼×f+H™ûûˆ¨ÑPrGäjnä*I<$ G‡ÖMc4‹S7l·(„PðË"κÑ”¨ª“Ë)–ÅTYLÔâ|Ä¥€í.Ííòe„)Xê&·iáp𦅠™'Vr–° Q!Å€*×GÞ0þXŽî¡Ÿ Ñ´tú›ݧҒYÏ*J:“Â-¢¼<¢Øw‹yC«™“îOR‰ÙôúTê Ûº»ôTZí“ýE ^ê°rø*Ä´`4êsÊ…†9Ê…ŒÙ¶d Ÿ(ë&êlX.Õ ~¼{ÃY‰Q‹SÝp¡Ñ‘pdŸaNw>ÀX6‰¤¾¯šŒÃ´#òz­udB%ÀÎoDZD!®¾Ë'7íwëÜPÌè ÒÿŽÀm;#nóÿTÖ^%+ª÷й³}ȵ4Z7[‚ óäÇÃ¥ŸQ¡¡§JÖ;AÐý6×0!?å‹¢[~p2›M<ï(–F1ñ=ÿžçF:Ég]¼ÓKœõ¿nôA÷¨u¶ÇBMX<ðt|©T‡Í´Ð¿üލ#ÞãYØFš{ZpeÊÓK(*[cM3ß4„悼Ã7rA-›)×GËP€ßM¥²ÿLèLÓxè_K<[f,~OŽNžŒ/KºöV‰+t ×Ó^¤þ‹e&U€?Ѱòÿ+½¥_|ŧøx#ÿZ `À)+&Ä¢Wn´1øtÑưï·g {el´Ê%P0±¿€rx…ïíͬ5H*²C¾ÿ©{A¡ËÅëë> 0†رØÆ.ž<8z¡Ÿæ^IÃòD%ÉÜXr[†¬—½A‚xÙÖ_tÎ"⨅}ȃd¶ü¡Œâ[‚ÞÚýB“¦É-–^Tµ žÐáïŽôåbB­Vö¯å”d²F9ð‘ð³Z[²nÍ­Ø6ÇÍý|Íêw¶&Nãõ+G³Ì'Ò¥4;S==„a‡ Ïm/#õ¸÷6ÿ°ŒäõAÞ p½öâxn»"4H„_Â$J@ ÉÁœ¼$UBK6í* ÛÀËœ^h4åC”ç”JS\ßs¥Ru±ÃïýÏáµ›Ø2 ÏKÞRµ.æ±Z÷žú¬`v°Ÿ© …? ËÁÁí/—õûüí\í! ÿY¿%ÄwDoiÌѶ‹/ãpO k«|ÊùÕÁS­ùÚœÖѼ՘}¾²E ZtòÞ½Ìö>=Å,S_Ì2ûÌÐ?>/Èú[¤ñ…q·Åó6økÐÑäS¡¤¡žNº¨#\<²P™Þ¨'ƒQ«I¨9ð¼ ²â" úØi(Óœ¸?¨;µ—Þeáò³ðÕä à6û‰žªœTñ¨Ù‚©©rR5k›¼îdö\~óò4a–L5wm¥ò¶|j.ŽD±PèWÉåÚ¡•Š‘iõ³¥ZƒMÓ¯ez2 ~ó±|o¸–hõw€`)ü}S~0"´ñI‰ñ ÒêzÄÈFsq P·¤ü‡É€é© KTûx(€Se–d4«·Í«7¼F:­ãi:–q¾Ã$«4€$–T𢩃Î:ÞÅІ!ÞôQHN²>nòÉVEÙ»„fôI"îD— Y©¾nƒ®³n´Í³çpñ<{{¶Ö5K!S´Ó±V~䈩©ÑôêfÝÃU1¯÷;¹ûkmÜèF…]­ªò€ G†Y@wDÝvN•wù1îäÙÁRúÚ±Ö ¥ÅudÑÖɯl?=Ä /÷«¨ªš‚æ›ñp¢â7“Ň E ”Y8–t6ÆÉYéØ ÐSë­GúÒ“Ž œâŠbÛªçGý4Zæ¸ñNž÷üw®» ìïžé{Jz„ÝÈfÃÞæúßS}™`h|}ëçå‘ ‹ÝàhLÎ9@ÒîÉÍ-ZWŠ Þš‹#Ou¼x*ÉP’[8²ŽQOZÝÙèkm ö•òÂ)•gUóгâ1»þ8ù³Mšâø1± +ÅçÞ»·au£5©:Š3m6Çì+‚6TeÂUE“ì€(HüHØ1ææ[q0\VeÊý[M{è}YµûÈvyШãA>3LÈ„{kSWd¼ÐfGE6·‰:î°Úo"mŒfgy—as9Æ‚ôb$øKÂ_{˜V\ˆÄÚWWÆMÿKâøf¶¯}B¯Hö0iûÝQ[ í§Üè‹ûÓéCÔíÉ‹`9–À”š\ï÷«IzÀ4{$ëÁwï'[•‘ ãËbV /@Çä ©:TfÚš…wÊdè’eª ô³­Û‹ÍÍhå/–I¢xÇQ¶Õ\`ÿÞ–Åc0Å ?Ë¢ Ñá-‹®!Úmµ,|mbt7U|ÍGÅ ã Ds‡”01@¨æ|¨(ªô_·ÔiZ0ÇIN»­Å.|Pƒû+=_‰îbVJ*WƒÜ;¸P/7œ«õŠaÓ;Nüúë+‘tókyGù5Jœ´ÞVv2½`‹&‡²ƒÇm±3ŸÑë ^#òÈT¨™¬î^²£ÉL^q Ço3ÉoZ8K-†!òûغ¬i7â®@uÚ}ULd([5Óae¤E>1±º_b:Ñæ‹¿jÕÐõ÷¨0 Ã]>ÚÙ6U£f4Ño´YžŽÔ'Ø…å?ò*Çç´+a™Wõ®¥‰”ø³”C†(‰ñ2ÕBš®CÈ%>Q_÷ïr)h[^|awDwG<ìuëM=QI5œBªÉ¨¤uœdy{nrEÌ÷G4ï€äÖψÆßë"–‹&kй€ù—mMbº¶=Öa’øaï#&¼T$<Ø;P?Rj¿r× 4QqîÉaÇ÷l»Ñ2_ÓÍu²ónÓ74·+"/ 3s1Ì£V"õ2äÜÊ7~c€…öP†õ¹ÂÂiþAäLð”›UFõcÍnR`¨„/ml¤“:Bæ·³ÉÌ=uóÜãAóoÃó‘¬b»Í3Ø  ìThIƒE×Ú[ÿvXÊÓì‡ÜÈH-èCÅkRèâÅa%\ÞWCéäHªûêÌUiy³ë,ñÂ]NývlÖº¢Ô»syÝÙÕ ý Éás¦ÍÀ„ÜÎÀQ)ßÑK©‡/ÆéÍÀ:­:¼îEyÃavfâWbþ©Í†ªÞ4¹( hYû…*Ö¾¢#Qs™]~zRxŸ2ª¹.O”¼:)kÆ<©ìž®§„fS\¼WôÚÛeI#&kø…ThÕÍP^bXi¦ÞÆчT˧`ïðê® ¼–/’èõlíoT›ªÞµ·0=d¹ÔÖë¾ÿБ]ƒùü×þÌVBÞü‚—`áJ;*,ƒHŠ€vþ…¸`•f”Ïîßí]½…ȹÅ*hwÿ9NhþW,ùú§©×o´Ö\Çšeî[,pä¡ûPíQOîCÓöN(tmŒ “Å)– H/O<Ÿˆ"flíð8¢ºªku€¹¨•4«~Ø7ßã'5wkû©m[ë ®’zØHü(ýXõ½w³›é…ÊÆÉBÅ?£9xLúùðgeüñÞfV«ã–Qñ»Ô%$‰© %"šâ\µSrÓ J²’e)HLýˆäèä"€¨ÛæR)´Î/¿å“›×›œúšºÂуçû¢Â}Qs„¦V¹£·v C0}¼@NýPhù3;i¤7à÷Lœ ñ±ÙWã}7¾$ó¦^×™kÌÇôy\ŸGbò+šý—ó`iütÉ@tIVÕ¨]NêÚU|7ÞkÚ1ET7 M°0f î•,Þ~xƒ&ËìUþg“G»‹‘KìÙñ˜X4gwóh=¢øˆºfríMAÉRÚþ¸?c4qÇóš7¸Ƭ’ÃNŠN¦ÈÇó´Qkxbg÷\²ü„Öå5°ÇŽÌ3 |ã6~—]e­îÇhö³Š¡q½ô;‹øù+?žµ2¯˜å–zx¼ÜÒØ¯’#ÿðq½ ù{ý(t~Ýí\øGº¿¶'^˜ ­¨nˆ4ÔGA ¿žˆëä­€ÕußÜXv"ËOyÚxšMt®0A*ú¿íç7àž˜âµ^=¾½ÐÚïLô\JQZ~vÕæ±Ú}¾•e‘ý„Ç#ãˆÀ³-ìÓœgýþêS²åòÃù„àVÊðøÈr}Ïqg¥XøÄ_fÜ£à#Çãº:q>.PËÖcÍ•Góç½ØzÐêÀ '$DÓJY”S|l’Aí´3Šõ D 'ƒ:’B« æ‰Ì®zÆ Þ1s63|Q0Wóæº½<‹ „”ª’ßïí*™9¢ýDPæ²Ü@»6†O‡N!9 ¼ƒ ¤µÖû}¤!\œMe˜kò(YðYâð•a Ò¥úJ®Èk¶&ÊW´P¡Ÿgù?Žÿ½˜^¡’zâØýu< î]Œ²rXMð‹L\Qçôõ]Z„øTá̰´²åØßz-t íϸ“”ÌbØ ¯T¬¬P'DOS;ÜØŠ•«45’Òã‚u¹*B¢~ )Þ-æü#SáhJ6rT"ìË¢<uû†­‰Œe×ÿ ©47{b™þ\mÐÌŠ-½™|²çœ½É¾ —/à¤Ü>,VQŸmÓˆÄYÀdâ'êSu§¯ ‘Í<4–¼ß`¯¸µzB´—j]ÀÉ¿7„Qyç^æ&Û]¡H^£Ù ªx¯¯!Ö­9=†ö'M B7Õß—¯s¬<'ÁåTCesýÁæ _Àå +»¿HÔª7@‘ÑCÔ|lðFÑýzìדÐ6CË&Z2Í„@ڳƟnU“ê#Ð=Z2"3T ¡“•³&]=ʨç…öó¤_æl(<ØÍ»{¹Ò"L|[ t½àà2ûeÇìóW›$öc¢ÍzÑpèâ[]™4rWÕ8ªÀïfýKµ\A‘Úçí(¾›%UØâyù×DÃK$û]‹Üæ¸gí(ð*»¼pžQk²{GzÌÍÞïuñÅ$c€ý୮ɧR!Ο!B=ƒ` Tµš¨wZȶ@í"„bÁ²LQ F1`R /ã…ÓËk,F‹¿×»Z ›Æ1ˆˆ"ªÓ ¦Hi&k=Y˜J7ß»q@¡7lâRçå⊣ =ǯúœ+L×—1˜H"ç i–B>tën¿ƒ$a‚ü”kê¶þhÍî$ëõi%·iHƒÇI;Ð*Iµ?°s7Ç}Œ¶É_g[/}ó}Üö¯e»ðæŠ2=fŸŽ`ßÃ"JHŸ*«X‡êNÙ!Ç…¥q’Ìo‡ÓØÐ¦´ìƒÔ l«û®ûžo`¤S>].A‘Ù{÷êtïU46X)¼Ü¿P¤N/(S±ù¸3¸-Z0½µ¯Þ^üÈHSVAÅψ#N[±è]†ÉË©}»{üe[úŒÈ„(•Úön“ÕèøÊ”~›&„L~%lSñ‡õ+Q U©èÉeûÉ{`¿¤ œ‡=ö²,•¯RõûOI 8ßäm§ÌzwJ9?Z nÎŽ[Vͦ€–EBÈ_¯õÃG$ÊhÆIŠò C+…ãÕ©Ÿïk ÒêÕ‚<À«+‰?ûë¯kŸ¢/~)R‹WQ|ÜŽîç( Wð\(gÓEž¡|Z=K "ð+4¶$L-Ñkwާ¯¾´A–1ÑcÒ–¿²“I{²f¦õ^&v«jw5à–°µöÖ¢>ƒü[§-O®‰ih ÈžW¢¾zÄ‘Ò@=NÑŠÐh3gô]x“íÁ*›gˆ™ø#s ‹c-Ó5±gö´Š@j(ãÃüZüü(¾M&º.IþæÛgŠŒ¯“Ÿ¸È1{ âRH>¨âà«Rô²hT—R`§4Ó±ƒá²Ï3Ä”3Ÿ¾áºY„ÓªÔø[§S] ™õñ~t¾‚Ÿ•åo‘¦ÿ0¢\/Ø6š)ó+¼ôK®b¡zÓLm¿%QA±´òE¸Îê—ç)ÕSa-Ã%©'8ÂˆŠ´«›g ÒfbÆn9à6eÊø_±x?eÿ_vn=’æÁ ?¼¬ÞoèÀ¬­©”Z,ns2uËŽÒYT, ‹²öïT´#ï³Hd5ZkâPþZùƒªÙ·W¼¥>K}M0ECÐŽühYj§êÙ¸+¡¯sê_¢Òv(5¼\,­ÃïAi©EäT"ºÙß·¾ðE$"«,‡X5eÔÂj$¹¹G{3J¨‘ 7Ex°ñPû%b7sҠ쓦 KÀ¸ÑÍì0Y*˜FÑÛÜ)ÓaÀz{ýˆcˆ”’¿VÉÎ*×Ò8Ò™ù“®9ý,{báøòÜ«µFlG€1öÒ1¯NŸô=?Ìë¥ÀôÈ_ZHÊ8­ŽXJZø"m0b쉺ü„aä³T Ã?;TÉÉ­¨—/f¢Ú~x‚¯ ïyɵ|g½yÏjŒL©Òéf‰£ÖR„=|ŒÔüþÃ`çV–—`W¼N‹é+ÆèlÔT¼µkš%ö¥ *ø3æ!àÀÅ´bWƒšÖ¶¢`{¼ÍLjäf_hk# BCVˆ®

yŠ%Aqô‚Eê<i„—æ;vƒÓC@l—ÿ§  âþÿ±$;~¬.¾…¬/Õ,fø÷.¡)©'"Ÿ.@íÏ-žòÚéQèu"&ýp.I¡…V€BÂM÷œjJ} çJŸ± ´|¤o~‘P\h\C û·(±Ãì 'x¹$ÍPrïÑ£eã,ÂÊn½²doÀëßð}ÔþÌd[m°ÕXi7‰K羟+¡ü‚˜$™ì§ íòIÖa´dTÓŒ0DsÎ?ßžž¿ìë ºŸfTuLÒ„Ú䪦gР²SEàÈmØáƒb‰Ö›Ïbæi·^öÚ8üч;ÙÀ>ÅaY=sçâŠRóàõ…L?¢ÿ²zá—ܪgƒÏІGi¹ûeÑPÊù’º†”&‰± ‹’à–þ;`ÁX…µFw%uIÁ^ü»óZ[?ä+âÂ~ÜLkÙ –»ŸFÖWj¶Ò‰‘ëïdK}ضöpÅ^û*a…ŠÉÚÜØ—ì"•hîÑr4‚â1•=Oóvx¨!ö5ÉWàÂ… ¼ÏãÀº$(ž-_³ÀýmE†×צ„Ðùœ³ì› oa%í©hAhWÍkìE2tÍAR(1È•ÄmeŸ¹r•Ü»x(0“ô› áá„￸b¶®DáJnGULÝwïÃæyÏÓha\^pŠ ÔÍ‹?“nÐDsÐíhnÛÁ\Eî“…¤O™ÇTÏ*¦Ý@¦STÞ @0‡›€¤/ÆÚ/$ç³uLà|3Ÿïü½¢¢ßßœ¾ .Qæ}§üPðÕœì 4m©󉈣÷e{”GJ²·è}6ÉöÏŒ@Ïó¢ÂX»#2’âŽLŽ«ù;•¯Ÿqç ‰æ=ò“é"÷PÑâÊ>^z…Z½–zùµ”ꬫ›šYXFøÁAýòrCW ûYv¤·r_&q•¤1ÿ@«ô[2²Bn)ÜOÀ¸Äò,:PHßùàx;Yê{•†_Ë…ZèÀM´¬,‰Ø7°½…otùýz—Ü}ÞOIï¨@­‚ٽκ?LEX­Œƒ‘,£³$K·z1Yˆš§aÊ➆b‰×ë´µ­ÀNÒÕý'¸0s æ’`9ö„ƒeP ]»+Ÿ¾Œ"mïGc,­Í“&¤žGÕ²#¨üûŸö Ë)Ü¢É Êk ¡8µ'×%¶RA_ÎDæ c ]üÔ[òÎgEéHz¢ZF¤”Ò¼ºp…Á¤f*œæ§UõVý³ÅÚ±å™\ëR£¸êÞl¡ý*¶+µ² !o7ƒ9KáO ÛÝ`êºvÿ\qªÕý¢Å¬ÍíQt™Ðo²œ f Ð:µ}j¥¹ %m¹Éâ€çÉ+y¼~€¦²]xat”c˜ÞYng©ßØ}ÀŽŸ;>G®EêÎr¹BðÛBµI,[âúÎó!Žû9Ê-î¹Jë!Ø­LÝ •ï£âÀìÈø!¸VOòàAL]†f¸¶p˜ÜݾZü¥ÌZíQ–ÌÏ1ÓÒð±œßžT– И?¯:ÉùÌ@Y+…ömg˜¨‚‚Epj‡¶É‹Êï[Ô›ÌÉÄò›f^Õêâ·g¼Òs'’œ‘׎4 C×s©v{ BFÅÆàÀOgHp„¨\ñ–®Ì"rÆÂ+ÀaßÒå¶]fo–‚²?aç¶(¥’Ü7(“°­Fžb±­Ÿß¬0Î#cþ•¹ qêÞóÇÎ{ê .¨…ýj `ã™ k0L²‹\Ÿa9;Þ¹k±,+ž¶rÞ©!“­[ÐÛ´ù—£zhú`÷wáEÜ\òÒïzÓȆefµlOþa_—÷µ”Õnyew?Ž7«©GU¶ŠŸõ½CøX¡Qß;d'|Á¦·÷§bu Ãw¸LìLh€»>çSö@ûÉ~ƒ’Èn_|È çeë‹ÿ¡³C 5ŒØávák3H­Þ°ÑÏèä±lF u¨d„ú¤:±ªEæÖà­Ýbùj1Ì.´o] ÁO<%èþâ]ü\¹¦Ü)Y»Ko•Y›áÔ ÆæÖh^[BQ†°àKÇQåV{zW—,Qu`ÇÇoßί™yƒé…~w}}|UÒIÇ!À°“–•šd%À}âè6¬äÔ¡ø‚&l¹Nuà`øã˜›Ò×*Øfé"yVnžcRÒ$B&ÆÉ-}ùE.úéøƒ.î O\È.¢ºà¹%ás7pÖæ•ƒr”Fzu ¯rîºE²ñžv>Õ8¬ÿ©­Bº.\1o@”‰‘!+šHO¶5»þû¿'O-¿ƒÑÎÁü¼# cô¾yáÕ´Šï2\€ðÇÚŸ­{I”ƒŒÚsBRò«â¾°êk§•Dh2JùúéRÔfÓ­q–1Ç\@$±.È:ø–®q ÔèÖþã;Ó<ì¶KjÂTÒ­ÝQ­Õ‡r6#ê:oäÿ¡6yÀ¹qdíÃÚ¾*Ž•MØùÚòèámjüíaæ'˜UxµÿCj`#{­`„†ãT8!²ïŒæ%Þ{2ÇóŸãÁ:;i:XD-g×ð èìeÓ¯,˜ÜÌ=ý¨+L>H€ ƒqq½Ž×çEiªê×á¢Þ›^ œ ï¿Îî æ¶\3ïãù£˜IääìxJÂh™ySòýÎãauêÖ<¹2EÊ% ÷îøº¿Í‰ Ãdl &BƒgÐôLIøÿŸêii€ýõ5Û½Ùºç& ¼`*âh$rúMyÀÉÍÜŸ7¶ ì_-s~ ÂíCúå»O2Ä_uéÔ…•„ШwŠoa+!™7ž«‚–ó*NLjtZSî… ™NOØŽ| ϵ4²\õb‰f,U«ôý:(úâô š!³‚›øá…¨?¡¹„WL~£¹æBzR‚ÿ–‰¿4½7Š÷§Mÿ¼¸›­Žúh‘{ü]xÜÞo“5ñåªxûY@,~u¥Ž‡üü‚[¬Aö{è]—”bé«×Ð*Ë¿+ y»³z Öd–pÝLÉa×…3˜È˜ *ûØDè?Z ìÆÑš›ñÓ ßð=w ºooP®Qã`U7r/ã<©üAKþÖʳ7Û úÿérÁJ?‰SEhÜð— iˆn6t§õˆ‹E)p¶¹[£{ê~¨Nl&²7=Q'“ÞbæV¾ÂÕÀy»ÕÑhÔAègr—ЈPªé7õÔøŒ@ýG?ý–¯ŸÊÖÐâWeIô%í’]:D†²^ƒ"M¶³Aà]‰lYlyBJ˜¤¼½Vñvÿ¶ôL ]“!ÌéõR¦Nö1ŸÁ´ÝOaO,$úûÍ0Ô§éppãÜ?tí»–ß b6KÛK1<Ò  ò2©´JRL³Ëù-1é|ÜbŠóäH ¯½ýOV¢LšÕr@TáÃ#ß&ꉓ½wx~bVÓ¥Y™ÄÒ91w±ëZXסÉÚÞ‹L7IÊŠ7¸ß$hjñôëHiÒ´î¶Oœþ’ð–硼ü ­‘“·ÕhcNmµzÎ#"Å¡t ÇZî ä¢˜g±‹™Å‰²-É…ó*E¨’ÌR——Wå¡7Ì^lÜBÚ„—ßp‰’nÂRÉäK½B5^öÀ €¯“Ç_á8οÌ–D…:QM< á¾öñ†}ÍW2à˜€™:•¥ºÌ}´Š.ªÏllî•bÞˆSUXë¸k,Cüu)=áælZjŽæg<.¾Âr¿ç@"„ë8ö“Ó#¼˜Ó’'›³-D±œþøä[ˆ€å$CÄâÁ[IžN¿Qºž€~®‡¸„02¨›ÇmU°ìæ;q8‰Û‹PMµO=™vÍ£gÿ ¡M^ͦª9€3Ç [Ç>ȺÀõ.pM?Û¡tùÛ°©ïóÞüBšúŸq¦Ÿ¼SH;õ÷*kÄY"3(PP]zã#ÝíPÚa²ˆÙ(Ar¢l9ÆÁ”Vj‘SáoCÍ¢X¶Ÿ%è •   >¶éÊÝ3°’ø[Àu«<øË¢ÏùTÿ¯ºÝlª ÜC+ˆÐ=ü9Ý1g¶ÇÅ>Óð^Ô"mL/V¬°ôi]Á*:è*ùø§;"Mß±Oå#AÎO}]Áñ"¾­þ€ÃÈÚ!Þk«kÜ ÖzêÌ%ÐßBîÙ|ôÓH°+ý_>û—ÅTÑ;¥Í&ëœú…ןq7 µ…Â-(Ph[àÐ\TX,”Þ¹@¼cqñ?ŒcféÙ2I°©Ç!v"T±„?r?†7 Xß×ÍuvÉß—ï,¦%Ü 0²u CJÀ@ƒ#ê·ž<È8 - åëMÒÐ'%ë¡®2|f¹d«Õãšg_hwñ‡¦ÜïC5ÏÒr!E¬X¸Ìˆ.¬bb9ÀÊæ ;Ü\`¶©¿ƒØ¾]~=Ö)s ¡ŠDa@¢½õT— Ð|þŒD?P.(¿n´l8¥CɆ’±aÇõ¿Læ$ÖT3g†š½t†µ*ÿ€,’o:àÉÎW~Ë }g€¡Ÿ˜á1…¨³¶f?þY½Ú5œEÛÏ œŒˆ Ñíû‘’ø\¦µâºD…øYC•úÙ$á¯ÅprE©ÄSÖ¾Â]ÈãðûЫä\‰íØPÿÛî[R“¥ñ±Ê±¶uYŽÒó|éG×:Ö¹ ÝWkO±éäÀ -ÿÎÅ/±àöÕ"}¿e+h~ëñÑ›:eh9M59 ÇÁý   á”sV%ÏÉ}1ñÙúϰí!âPÙ(¬#|áÑöùëßs`{ÅÀ•ú7¾Ëˆ7ùßq*ŽåéQ-µÑ¥§Ð£žì?¡²Úl$t* ûÅa@šÚ'ü6jçRûp7‘ËæŠ+ ^Nºk6Î{<«Y”F-`ý áhûzò¹îèOÅnâáɶ+Î~]¢ØÕ‚e©ô©3AI÷-ì•y  vdSÒ‹ˆî›M™Š5Á!¾BéòöIÔ>Z+ΨŸlüúH°©ÍÅS üx  ×qRsÉ«YlµÏü ÿ’üÊO0ã¶øÃ‘µÔÿÞ'–Ä%<¾Ëº šùÕ 5ÇøCœ^´öÑ׺ ãÛzì`~õ4°W;N«†üA:q6+ìøze<Ä“ËÍsOåÆV;éO´UÍüÖyÝ¿RpÄêZß<Ïé5Û÷EØ×ž‘!µ°@B1ùÊY«ŽÈ¤Ú$®”5¼C²²- 7?ƒ‡VWó)`ÖTU¹â•l{TJ5:ìŠqß+½u˜jx<Lj’8Þžçü;I{L°ï5}ï±Æ@þõä¿[q³/)¬f »J[ÐÜð´õÒZëù[š(ëþä²°ìƒBÁ#±C ɰÆäÔŒ¼6Ù8´¥ÔOÌ[üìð⊠ף²"î5ôÞAYkÐ,A<Ÿ_¾ƒdJU Kâ‡É1W‡Ï!l{Üû•4´jèÖÆýa¢Ái(`û/“û°×ÐHk7`ÏÇVC$ƒ#ÁÄ qœfƒŒ!Ü)‘ïçùâ_?) RarGºrçðYCC}r—ªiÛ½Æ Z·W…eIdµ>c GÖ âUƒ'”6^ËíÌ¡+çú<‚I`÷XÆø(g`PþµÔ;áã8Ô´*2ƒ'Tq'(¬1 Ó°gWÝÞþL ¦t‹¢›‚(·j<äâ×út+f·ÉY׸·ÁÒŠv”å$ê#†íÛ㱊٬>5µ…rKgöêað‚Š1ý4 T¤ 9PjcZ†™†5~•ó‘í»:މŒ8Ælã‹Iw+y9¸¨ 5:Z½:f°üÏêM>g ¢r—g¨²&î[$Ž]è\‹'{*¤É î]?‡‘©Óû€.EÈ€g½«ìf˜…9WS¥ ;ªÚÁ››ÙbŽ{ÒUæ‡}že÷Eÿ·õ“ø Å!ÊzÔG%?¤A9$îH{,Ö¢\ÒO ýÿSª÷T ÐpÎ^êd´e è&üƒ{[oÕÑ*mXª‘oÉ?n?•:¼ËµU}¸„ ¿|`rq((#šín¼¨ç&ç®zžB]ø>PÁ·ªÍávB&øM‡Sùh?g˜w=/yz¯z$,ön[‘. óÓÙÊ6’¹Q —Þ¢þ£þå”ÖE@gu &KãøÎm„É“#­ÐѸ¡áy³©•Ú^k¥íFz33µmÏð£‡6<{3ŽG:ô*›È‰Ó­N5¨¸ÞS…O¢©nòøŠKˆÎq FZ<•¤”*!cïÍ …¾rýËÃÌÚ$X¤à‚èÂ+J€ëü=ðC²gçöЮx›é™\¢QNZB‹¢wy›ö«¤I#ç͉ARap ÃÊÔw8à©Ï6íÉD>•){ïÒù ;lå)Pm\89šoðI 7ê vÁùʟׂú¨8L0#>ª5ЏH­»ƒî<{(1çS÷hWËÇûŸ]s/•IfNˆ{Ud°m=|mä°‡†‡Î£å£!2ÌìB¢eÝ;è;-ÕöÇÀ£F¢Yú–Ô*¬[›Ë$A5ã¨'/°JQ€…ÿv¡Pâ¹bµFp¶WÃÎîSVšM‹0õPŒéÐDuÜäï>~ i 7ã ÃÿÂMÏ a™m>–þEÈäÈ$%u·~(L´·àOéËîþ³‹®Vøhæ¦F][kñëú }±ü§*3‡Ðð} 7n³ÐÇéTŧY«Ð³IZFšåÓ¼¦ñ×¼@gÏ­¿‘®Èß°—Ô¹¡ÁZ¡Y3…÷#²Vö1\‰iQöL)`<È7[·Ÿ|Ét·¾5à„?,@þ®à,]‘=»•?I ;@Çɬ0G¤ñÛþ‡-1¯å¼ö€®Ã+Ñå³Úwò!6†C¡ˆIi«„§Úˆ¬¯ƒžÛ4¯Ñóų`$AëVá3vÅ¢Ó_ûWZ…×¶=:4¹wCÈóÕnp¾s`g4”æœ~Ñ‹¬1Ãæ…Ã{%ÝC½ád2ŒoAÊg÷õUàÁe{ ÃËu¢K&Xà‚4Z¤òZ§èì> QA’u†ÞñÕ_b‰æ:À˜Á«L&Ù¸¯—YÕXÍéXAÚµÛ Qf0gi UZÎØŠ_]ó ’r~ô/ú$¦CgçPDRyÞˆÎÿ‹í1ÁFBTz¥›Ðô²&»_ìK‘_^0}sòC[&¬g”TåÏÿŸk‹¤ð6§rî0l”2×\>:Qß¶¶›…‡²ß‹c£»+ôï;pëËŒn¬Ðd'ljÌÕ)ÛÌ¢ŒæS5úÑ*ß=R•âR28OK€ˆ[ˆg ³¹r¹$ÉúÉ©ãÍM‰Ó³"’æº}”R»‡]Y$òbŽö*cšÌ$S ùqV˜À#ñ&#X`ÈÁF—žˆ­ªb5¦š©Ì#½Ú¼Ó‹*€"æÔ0k»pöwÉ}hz$ 5åD×{¬Œù™¸,ÌäO²#‹…¾åPÎâg Þ@΢]žÖ#ÁǰãNoï$¾ØFðfQ|u”©iéÅxã Ñ™kœ…Ò^Ùjü›z£ ÌýÁRQߟM+x2„“˜ÝN©ªÆA¤j0ì10¯ÿýŠ%!¦«3¥.FÅv¥f2,ϸxëN[os§ V†TÛÏúJ ˜®ãké$ª½½²2†±Õº)Bë‡;èü^£ûÍ#Íùdð'¹²gî‰ió©Ä'í!íÌös<e˜M.z¸ŸÚÖ¯œ}iŸ~i$igŒÙšõ²Üé sw_™Fž©Às(÷)™#+êèð2MiX1¤ì­‘á!øÎ0¨†¡wg¿D ö€ê}ððDEòVòÈÚµB¿è¾Ì ZÈ^»ÑŽš&‰ã§z ï€šìÐqOØô:¡à{xY­â|L®fé«Ü•xæ;‡j‰?YVç¯c)_ŽÒj9–(îð…Måq,+©7‘Ð÷ÐWÿŒXF·' ¿<¹{ÑÔ¾Ö›0ØrKÌ:E»erדÆGÇì5ÞrÊíL¯G—jŽŽÍ:/w"v.)}g;5Éù•)‡úVm6Õ{M%ÂwžWlèSvÍñË8åvKAù@°!‹VøôW»¦9‰2N`HÎr‹c©!*ʺ65“öàb›“_ƒ‹g¥½~àÒèš ùþW![9P:ÁИEÏú;6xlà[¶Fj8½½þ@%ÉÐZá—ìÜÓŽ’ÆÒÅ{2”8˜Rqn–;´úݵ3. $™ÏS€°ˆÏoÅWãÑØ€æÇ—­6àêN§“ÜA]âÙЧ…y•è‡dCþ‰;‹W(C3<þcoC!üïQ„ΓÖHføÜmM­Õ˜ѯ>Ú|óAû1Pt’40¾×YÌ`õÊ9ÿÀÁ1ŸüCHÝâ;D¦oêÆc‡RoWÖªâ_v4’‚7fv\¿Dm9ºŸAê½5mñ˜¹[~•õš×2ä¯Gú·ËN i ù¨%ÙPš_J£!Z”ó­÷ͬ2ÛƧÿågŒÁ1ÒÃ[ù©–á*ñ°¤óI‰EçgZS(Ó…D6ÃüS9hÚ:U_G:ÓÔ§+&‡jïº$(ÙÏÆGãI*¾-ryYKd¶«“3XÓ)®xAA°‘ÒPóaÛ|¡ªŠê€À¨ø ›‰; 'uï[“Á¡¤ àÀ›íš"o11ã‘ɦÍh¼¦¾ f˜©›1»ˆdŽA 8ïd9ÌõŸOuÉ›R¢i5ÅKxÐÉ1’¿§g>K*N9 8²º î< A"­Ö(dš/¸Œ¢U/OQîœ0¿íû(Þsf¥€C×2³‘«a}Ä<‡£b(øâºDòˆ…žö ù™ÓSæƒwpÆëÞ©¦rù‡|  fŸâ5š·Ã‘1r»‰:^¹’öòveh²YØ•¦ÙX«9L$ëð&ÞÊV~Èiøë†U—Nuæ^m_v¯Q^&X¿xl4e#Šr„wlÐX×Ô ®_\,6V+SSNU•2Ò§;ç,9GֹЖë1³§&9hÉ`´õ–kœkieäÀµõݤHÌáª$Ï¥ä©xû@¤íWÓº=œßùÇÜÆR+Ïjð=_+Óh”ÛÞ¸[¿Ô…Ðcú˜ï½Hö-Y¾sæÉ"X%}v4¨†«‚´«>Mpw :L¹RŽQçv…ÏsšÝWž3øÍcV•áV·rŠ+‡F,´ÔkÎ1ë3ùsž˜ÓÂÁ‘"`ïKÞ ¶1Ÿ2úWœ5uïÂF@ ÎÀ!Ö¡¸½!´äš&t¹¶ƒ-Ø_C5„²EÕ(½Õ/«jžÂíÄäžÑé’и¾ »À´œñÙy²ŠÝ‹k; ’}z4—•Êç;¡“©I=BB'ï1ºrJÉm§×]Hƨ Šâ›WP™Èl¿Žù=Ä“f/xmîžxéƒNÿXÆO'È-¹V(p æLg"¿…pG<(u–½ÿ§ãdÜÜ«c\Ú‹Ê…÷QUˆ«µ™Óó/~KG½C ¸Ö̳rôø[ºçFJ~}¬.»h¬@wvu$ØãöDÍÔºêò\PÔíqD)ßá¶?†±¥ûtí“ÉÒ¬­ZI»\pU ú¼rͪB¯7qJ<4¨ÏaXè¾ô]—j²þÕî‡EhX:i¹¹¢áo½DæVT¶'+6;†’cŒQÓúì¸ißi°£zLŠcQÃm8OkEúìý D4ÙL¨r|S/ž6N¦+æÏG4@ÉC §`Ïaö»Ùënn>u7-âKä¬=Ò¾­;+Gï^óÕ>F΋|£–’o`°ÿ,R|4ÉtÀƪú¸I*š±¢@n6ü äG”'çŸ+#··àc$í80ÈZŒ ÒŸ¥ªëQœÀæaÀŽ)ÍØ¿rÏ=ýŒq¼®íäDŸ¿=ÄXŠ»˜.^d{,žÙ²Þ …löjím 6ÉH—Y2ÖéžÒX†ƒx"ÈW¬njÐ`à–þ lˆÐ¦Í¦•hÉ5丫Ïçôúz§Ü»JŸ¹n)¨ N%µCa–U1½ª`ìn«eè„^ݺK |Jh¦Nܳz·ªY pûOüª;\¿÷RdZs’%ViG¯KLÔt@¦ü·×àÌÕ^@ÒÂ*w‚쀃ÛrŒ9˜ìû€q46 Kˆ§ËE¶…=t^±ºõó%\|VÈöäâ™c|M–ñ®þ¤Íж 7ô…ÿZ{=BNç¾±/D÷qf=‡sLÁQHÆ~ÔX~ýH–¨™(]ñ`]&·$5Êòá7ô'w߀bÐÊš2“O<}mdXȶ÷¸ã½xÓ _Ñð(º>”ìu>0ñd´Á xÙ•0 Ì »Ëi^ÅóðÄ9Ãu^È.ûã!LéE‡ð6å²N?b¥HX†Ù}hó¿*àÆY|NÍà‡H[DÎzºA>èDJp* ëi\´„§ µ]r 9Þ@nÙÑÎýî?±äöxç¡„ÓYåŽT<ß”gc\å^½ÂÇ—hØäÒ/*Uƒï)9Phc¶üàãâ'{*vãÄ„©fžq¾r3ÏšƒQ~õƒnøL(r}³¯úwP¯Gø¦\åøá úåzÛFÀÄ…M—8¦ àbu7ê¸iô¶Õ|ÞÀqqo"›™ÍxP@•gIwÃCc½…1cžÅŸ&hK|×¹!Åg}RåAΟˆÉADï|$ðxÕ„RK€È+ØÎ:8qíL +p}ß:ôîä¾ñ ›ù.Ù„GGV;c‚›²R;O¦f¨6ax?G«¢}¨$Œõ‹'ÂÐ݉wEëR$R¯¨¯lm‰Ë¡ F œLd„Ÿ÷àµJCþ9øYãêc4B131»›¬CVS†÷íY—¾Êº3ÿ|-FŸþNŠúîv=!rhHß°()ƒÉÅCn‚Ód=¼l ä¿‘zþh,IF|ÔÎÑ1àߣä¤D¾Z\_¤+<7Õ%é-÷Iy}dˆ~4¸ò´µgĵØ@³ës€Q‘eTÆ^ íÀõÌ¿@|£éH®?v±_¤{ꩵdÑ„œ!Š ˜‘÷4¦” ÿ8.MÌèÐ’î`Bñ G›>øÂƒ‹b|΀ò[\Ñ®|¦é'…<›Œ³›=R¾ԳĿ[}P#~áÀç6j(õãéMN:š7‡pÂð2ôä¿þÊ æ©ÏøòVÍËËΤ+¤78u=Ë—‡Õ´sMÏ/ë’> 6ݧ¬Ð¯ÅsîY£e¼}' {øgyS¤zu[®|‹@úüðC&^Òªa¯q„:äýgjf»r%òè_R|ÞÕäÝ™GþÚî~èÀCܼÏêÚ3Þ:þ“QìëuVaÇ7+]¹E¼ª{I/@äßut…cßûœßÉLdb¿V˜çƒþw ³FžÄØ9ÂÍgEúí‚U‚¡ G´$ãô¼vŠþº=k@߀u›ýj¼‚µä±zkë<áÓµmçSÈ™ââÑ–ª–‘¯o?fnüü·ÂZárGðRwÏéÍ*Þ¥ZÞ{¿¢KÜ|#çüÓG>ÃøÈwe{oË·Yˆ…]|‡xWðûµ?le Ü“°J+Ë߸êB 8ÜúA½We‰{+›*€<ÿVXíM}?< ,'lïr[ù#fþ«¨\ŸIŸJ¤3ƒ!ÑFˆqå´²vø–së¥NÅaWå ¾öUÀvÆ>EÁÚd¾{e}9‘¯0[j4-o§;nl3 DÍL7’f¡ƒ œ™þ™øUEëD°9¶›ŠVÄe’DÜ ]$#ŠÔ‘±»t3Ë Áõ꯸ƒíç/o…ަý·'œóÜöI¦ÒqÙ!Ú´&Û©Éí³¸>"Ùl KÖö6Š–q•tÎØÈRÒqçdC1æ0ÑMJ¶/™'vš¦:»³²¬5šÝqÆÜöA£s±‘tñu¤]ØyoHóâí,ç8ö [xIRb3îŒQ–Ò$3k6ŒèEHî†%Äçfï;cXǹíi-$¼ƒÃ_'™ýãìw1õ&*ú“í+ä¬O´1 R€ÑIªÜjE_’‡ƒïrŒ‚мpa JâÆ¦•=¹'èû¶îÖ5ÛpggšÌŒ‡!”ÏõG‹nXïôGPÿ5ÃÙ à7¤“o¥œ¢%v~LhÌ‘Ø0TF0<Òî¿»J&5u.Êì•ú¡³°ÊðphL@~PÉ¢“‹åq,Œ%†u ÀÎÓ™áŠÈ`¾ó¹EŒELÁý?^ž”“À#À ;ß;•+±EÝÅŽ1ET®¶8šc©@R°+Èèé…¼›¤—MdD_Mú·*ðòw„ŸÙå¬ok©¿‘Ãm²«ZÑU¤fó1ÉÿÒy%(«+^ öFï/R"VG‹~=t¯ f&p"̨—„€’I/γsË'Tn ¤T‚zÏf¯wU€E‹U³I8?Wc…cué{cÀ±§…GÁ±Ã¸âø0(U[ÔtÌgãõ÷øÅ*œ}{6q­Ÿs¦E"†Ì'í×™6ê‰ó_ÙvmÙHH‚ÖC–;ÈÞßúùZ?w¼Âë³wqì3[vM}Bc î–J A+ŠC±Æ–cy"WLÄ6SL¿e{òÉH„"B»,ð ƒeXwÏ}ÔåRÞeK{pš~QNqm{ü_½£± ¡Ñ÷Id{a77Óéj“‹£¡ZÍîãØæ1Ëø¹ƒ¥a¶|ÕÝ6¶É†te1BÆ0†N…¦ÐJ¢ù~Ú-ÀÂMÒB°e5uð"ŽïA­åaûËã %öÌþ–×xÿ9)dð™ +8{^çcK1¬ÚÙÖX_/}â­ëÔÁŽ) Ùq†¼;õ£ˆ«¹hÎiæíÓVh%J¥lóW` HÃL„9ØP†7‹qgÅ­ŒÍ°V@ð7–=™P0ŠÌè’¶Waâ ÓÔ€$¦*#U2;Ò‘Fºø§‰òZÆa'œµ8tåÍ"›B˜ÄgËýíYð¶}¶t[’ŸKÖÅYø@ÍÏÂG.öøè{Z_:0…™fZ'vÇä=m¯ÒãÆFQ ëÄ‚ñ¶*1ŸUÏaŒmc" ÝzG¥‹˜Ü‡úï,šJЙ ÝäGþ¨yéìQSJuFút; É×Ά;“fáKÜ@÷Ÿé€Ö3ÛÏp e” ™‡¡ë#³Ò`“È<²¸á瑘>;^;ú¼£ P•˜Ìè¡’%™¹ß£/IòˆS¼ ÿ^{ïɸ\|C”7ÉÉöà‡@Ç<y»)åùrWáC—BÆÞSÎÏÄk”½Ð4²¸ÊÉQü-x§=×€±°p8‹¦\ÎP¯ÃôaïĤ•Ã*pКaì7”u^©‰³†èu®Û® õÉfsœÌ@'‹lvoU“O`µKtcÄ,OíÍÞÀW!w˜gŽeU¨Dåz³J°[ÄïaTýŽ–hÚ ÂÚæìNþÐEcO°Æ<ë9?á)OåkÏ»Ã3³ ˜«eæ”è_²jS2^v‹â愈¾E¸ƒ]ê×É9ŽÌdzÏcT²÷˜·æóêk° , LýEŽ@¾X·Ú© ÛUm['‹ÑÕý?<´, '\ç¡íS·tò¹wö?è7½)„ùk8‡áBS¦A_ª*9t|êå~;¦;1ó;XXÑúÏ 6^õQƒ “ÃôÈü]HŠ&Õ!1} # ‹ “þö]®Çrs/•‹S]@ÁmýYr¾£Þƒñv8 œªMr¤D¾Æ“­nZ–±úW‘Èß ópçQ¶¿l1Ø¢óºæÀ¬S<ŒdvŸq¤™j¼Ð†ˆ€}/•ÿ¤¬¸Êw›_§A³…!üŽôØÆk<Ðù§Šc*üÊ õŽ6`cV±íDS©ÍÖ[.ãc‹÷MbZå–1 ƒ e·ìœ -y¹‡v¬öcKBé“vU'èGŽ©Qˆ‰¶Dµ1Ïj•~™¡§"\n‚( !l™·§·Ù«Ÿ@ûÊ5†Ö´›Xƒ ˆéD73-hã¾NИÂsè6Úx3½ÈÛÞ« D^ˆ—|ªAxõN¢ZÑÂz›}lÛ/© ²¿¤¹B7’u±¤Ùa¾P˜ÁÛ,”®½Ùiª·Ã@_T†y+výš]™vŸ' Ð0†Ë73%Éî™)ìßÖ>W©4>La°,à/j™ú} ÜOsî]KN]ýa!8þômÞ§$ºÕfžˆ°m¥\–|>¤E'~,vË.@"ë²_Íœ *ërLýÇA¢=GÙnÍéŽ!:6hµ»6KKùÆvÇjï{ >Ù0c!U•Œo=:ŸGmöÂÆ¢'žê¡ËàpÚ*•ŠÀ%©~ ,âù8Ç3ÃQ–Á8~±œŽêe$ëCäêËéªB»&);@óµm¦›" û\€u­ôz5 œá%Ð\'“¯¯_„‘æŸqf·lòvÁŒš]OÁG09lXùÌW"Œã޲}ù¤¯{’†¦hØ!*Ó|Hò´ù¢Ýë±'d7ÄU&’‚oRd`8y2u—óÿh;ÏØI^GKpŒF÷‚>µ¤€O6ú½­¸€¾E‚CHãa¥¬Ô6Rü¤Yéó@éŒåœÎúnJw˜µSéÖ(xÖ±&hªüž¦d:W ^"7óÃ@ÔÙ?ZÄÁù2~ø˜ÙÈRuV¯ÖûD¤.}¿­÷:U`ŒJ~̤5è!§üz@<˜Ìs@y·Ÿµ0¢Å¼|¥;y“”åÒÝì›*#U‘*e}4®NÞAçXÍFT''s»„á߆À¥ Œ¿2Üá´‹§$‰Ÿà$–m¬08ê»nZ׉µ×¿,½¡™TØõòÈX.ƒÖ/ÞTç ÁÊW5¾pE~M?AFC:Í\Lù´h‹ðürž#Š<«¦…ù´`·ÓåȰ !µ SàqTdJSª¼Éþó˜&²Ç½ƒº45;^ÍO… Wåm8‡8 ‹œ§»R¾&ƒ™ÄA¼€+ø3ƽRjˆ³Ôé­Pþ˜ëO B‘z›“ÃJØäÉôNISê„Á ¤e›DmñØ,@¥¿Oÿ¨žæfW£ñe=A´Å©_åf–›‘1 í’ 6 ”Âyeéö94%âHÖïOƒ†`"ÝhÕ¬ì_Ш¡p#µ„ذÿîœ^”`ÂÚÚú¾˜Q”‹Òhyc©Þ+óNò±º*lYûxò‘ÔÊgé ñÌh׳AÆ‹Úö™ãgC’ñé<˜unó.z—ÁºRZ1Vј²e°fÊ&Ûíº'7¢ø)Nqôæ±+.©1@åX¦šp²¼¤E¯+pÇŸ8×ô Å`»"å)u¾î‡AýD¡ÍèßÒý bo³Â3«J¾éüsMôú®Ñ¦±HNà^w]ö{?þîÒ(ù†|.&…îI³é©Ò|U)çCf^Æ0)µŒéÓ%@e ³Î¿9îØôޡ׋û3Ä){ OË½Š±à ‰ƒrK¤Ìs³'Iø¯®@1þINÙ ¹ÃÖèjǾ˜¤áˆÀ®¡ú²îRæÝ6UHç ù‚q¥‡‰ö#J}‹¯³CµG²Å|ðõ¨¼ÃBÈP=}gg¡Xj$âO*Ö¼‚8Ã’¥ÿ‰ÏÀ )bP"›"H-0: ÑÍ~N~Þ0ð´Sde²ËÊ|%(düÁÈÀÈ ‚È©=HáarÇï´ë58Ñäáú?¢G£ÐQ!µ´]êv,†jXj¿1>”ô…Z"KJ¦ï!þY¦¨¼Ì{cFyH@b–³@ÝYGß¶X^Ù“¼™IŽW:,{{¥œÐ#Uè˜S€a¬¥{EïA ÚXðÑß1”\ø†mJ#Põ¦·F¼!—O.uLø,áaplöÅV´”g“ÍÁ¸~!y”2NÖ“†‚4™ÿÌØÒM\fÞm¾'S¤¹«¥«ƒ‚ááÚ±ñ3.tK§%S,òùOm÷sî]b/Ê3Oq°z!ß½ÀsR5 Íë°ÝUY*ê…m‡aOÚÈ‘Ø`Âv‰¢”)fsªg`LGw¥ˆpÆÑ½7Á¼º1Šó•ÔUCaÆ:  ¶Ÿ£Ç›ßÏãÿÎ;?9FIÉ®Bœ<çhNm"Å0ý×®LÒ¼ŠŠöeÞ«;£g…¯àì3ä“*<‘Wo•ó¼ hó¼ B‰—ضû¥adë/Bx”n¸©†…‡Õ­F™üŠƒÂ½UHwEyŸÀÄ¿0Ü›>öÂßX 1E™1äO±×¶±b ¥8†;ˆ%A…¿U˜«.}Õ¬)]°´Ú‘¦¸bdnÿŒc;´Ø¬ÇÄÿÆ©€>ÓWšö5ŒÓ+,º_}Ç1UÞM-¥‚²«ñh‚3]k_3%D9ùÝÃq¹©iÎÇKPÉNu|è³x“!­÷ÿê«ÙQì9ø[Ø›GGgûv(ºJYú›sÛ¬%Gä ~êþõ܆‚ÜœAQAÅþi˜„ò&ÔøP‹u 7ÖËtü‹58¬¤âQÉhèÖÙcöXÐ¥ry˜®wŸAû}2’È?uꎹ Cš²^Ãï4½s]ÛŸ Hø— ‡õ‘Ë> DÛ“üó×,E¤r’ öLŒªd›1t°ù1½+2èW¼v¤ÑÇÁ{¯‘u×ü˜\/–Ÿ\'C®¸Ëޝ ›;Õù3¤Gjx¦$™–Ž~Ê¿à)nд2¯äãh˜®Š=B°É%.•M¡XRQ—Õð6vÝ>cl ­7YpFÞª³»ýÿ¸ `_ʨ+c¤|—~Ä<ÐJ’¡·‰¬ Y‘IžsÂ8 Z®öwìÄÓp)¼†¡„cÚ ×oËø¦ÀdÞÔ ¡“¸/J£Âõp!dd¯"¹ónûVïêÝò7ͯ¸3ÂÂo>—™C‹gRâÕÆM.2”1Q¬0³5°A¢>&“àäŠÙâû4,©ëâÆ7µ¤jŸ£yBe¡bÊÒ'bÈ{ä‚i\h»> fÊÃY]e.ÉÖÿÈÇó 1hˆà­ÙÆ©Žî¸þb:ÿ^<øÂÄ®ñKž–Qp´!EÁ¨ÇÁ,J>%-t†Â4öb÷ÔŽ¤Ö…3ý& ÔòíELÁ%}…M®c±ÖÇ9±i¨þ›—Jn¬Ûz̯—¸«Ø¦_ë.Råûñ½P7ÏrèàÃ¥DA¦‘’ó馭>_U)ÃÑ…x,u~Ïe2_‹'DZ™\.™’^'­8zÎyÊÎL:áÂï{Äþñe›·¿ÚÛn€ÁhØ2Ç¥mÜ\M€³’‰ ëZÙàLÛœ¤êò8MšËUlMÕ¨ô=¿¬ûb¡‰÷Ãm`kÕ æ½dÁ_lž™Ã+"ܰ¨ÕˆœÈئBj.•ÆêGk¢J—±U-½¯ÈŠè!|Pƒò­ô. …1#ÀW\§òçm;dsj=R&±% êdŠ­ÐƒN_´ÚŽ9>A%¦à\ †~Îù¡¥—ö:vh‡0PxÕ}7 9 ù7ˆ¬<]U^$™tµt¾ÜéVZ˜ó5¢:À ÕHU_b³á[>æ·®%³>ómŒW%λ2_ù?O=ù…‚]?q­Ýȧ‚` +·…à˜méU³³BlDfü’¦l×k“0(3 …)Iôâ¨k¨ÈjáÓªps, \ÿö·Ï®T9K]#妞†ð÷"µøßðBÙ•ÉààÊiÀ>+哸SyónRšÿ ë¯=µ#GÜè1«Cê‡yqÄÕ“í_aèk˜ Ö´¦7+iµÿIôºñÉUwYb!Âm›„¡òú#¿1–;Þw#yWUǦt$ó`ZQ¦ëʸ³×רR ?F»½L»SÀÞt»âÒÃô ( åë‰võ!2bJûÍ9øùŸ 3Gabv‡³`Òõ¬Ñ§.W¿é-3£Þ(}^·jûñLPÊ¡¦¤øÌLPlN¨}!hcMu~RëÎ@ Ó‰‘aõÀpz“Fr½½B.NS9U7$N™4‡{ÑÈw$&g;“‘±e»8ò,Z„{®@ˆÀîh‡˜b?s?›È‚»š]²%ê" ËÀ×ΪïTQ{\ i fHM³OŒ•Rý…‹[ü<Åq¸nÉÚHð£š&ú§BVššó {X*.¥ -JýþŸyr§¦JÙ.&V:UåR¦Æ㊠.ïW3)Qaz„ºAuìÿ—WMh;(3àEÕêåôÀu#©]vÖ$‹+’k,šÍ8Áâm¦¤1ý¿¾Kh*Š,¾Ÿ 2³u`{nhQám¿ÉΗ¤J[¡ŒlO¸¾ü·=‰:]Çmܳˆ¬…*¨Ý4΀²ƒ¯CDå:ÂÊË´òººJù´ÁGØg}|Â(êà EW…zöòôiº!µêQT„9·<“1=}«® ˆ&N : ßm=ÿxåT ·„ ë¨ ¨w¨€ü¦%/Uí+¡ÑÎp,«ª-i}p”Äž˜›¯UƒçæTàFc‚’öÂ)—Q¯uoSb~—s2*4¿“¿iO“!®ë¹§È1Û k›‚ÌJØt† ´]ðì•ü+_nÅÕƒŒûáóÉoüwo çÚ¥×ÓgÛºÁpŸofÚaoLcK®1ç`®Üš”^P!ÉÒU|é\ ïâ2-ŒŒ(ëzäk²8rNµsi.› }ËÎtò“Â6kÇ0·¸¹Xë(¹ygˆÿÝò^ˆV{ã«å ˜.AP&—3`a3Y¬ÈZÄt#ŠAÂ÷gÑ Žÿù íÀŠ›¹ÉÄwû42Ú glÜ©Ë_*¾rëpÊד8 +þGÝ:k´cçCâô µÓÉ‹u÷Mz&é€"ýâNtfmÜŒ»S{ýV;fµ©_>•¤`˜,nÓó»ÍfÄG±T½õ§]ñÊH .­!J7«ÈûY ¾.Ù_ÈœüÆ…Öy'¹®HF kµÅRÒ1NèEô¦‹ J/K«|•«ìâBšôGñ6°…ɵɸšI€Rp9÷Ÿø‘ˆýGú»JexË;÷bS–0u!ø¥ÐE¥JW±ZÔN·Vmü©…t6v ¯ñ÷Jô ¹ÌÏZ=ôÅd©|Ý|FƘ>”j´‰c¿„ù*öRP/$ šow£3#´0WIf9Z¤ØFE‰N?cóФnjB*Oé O. ýÅøÚÝÎW”Š ?°k“¢Œ4¾Í™_` •öÛ¯ß$óÛDG¢§™oÁ_âQng U–è>Ò'*œ·N Ì6ŸÚš°à=PVZUlfƒ©ÅWYѦ—/é6F8qÖž’…%*´æíɘ[fÛ1cãAú-âKw:R8÷K“óq1U ’æFÄPêº ŠÉñ]LYNìˆòÚ1­˜{»“ÖÑÕŠ«Ù%éGðtz¤˜Z×÷Ë>Œ,o’—ýZðé°RY8’LF\µáÃaކ:‘ï˜ü©P ƒ–”"ÔíÏ´í5îQ¬Afw¶ü {kùã¡É…"m¦¥Ú åÉ)?oW;šý~Ë.ÀÖ”Z áeÈ"œ@jD¤í퟽år°l× f„žÚ b!pjŽQ©ô^3"ÐÞSò½<Ö{ótÚôÔt—h¸ ždÔ5–å%V¿~{SvLN®_9ƒC%ýgB½Yå)Ç.Ô×ÿ‘|§oöqVÏ>*ndÝiÀ^á÷‘ŠhŸCªÕJ° W™G½‘Ø&Ö±ÏèBŒ©Ê‹"î7èëÍ Ô"Õ÷9Ùz¥D`S}}Ôň¨µ8α—¾í$ÚUÂÞm—A­Œ*ký Yùœ` WË@¼¹0êÙpÔÂä;˜èx¥•¿/m¨6hsíZŠ{h~†AÃJÇB¦E²€õƒê)”{ªýv“ÏÈŽãK«Í°SzFÌ–´Ã -¶Íã½›Ù#õd‚‡ ”ú0áG²} ¹iïâ›<=ŒyãuqÇgBä:5»öß½ñ#Š-V3õ³æTL؆ »Qy/Rl‘¸¶xí€)ø¦^˜Ò›ŸT‰šTžÄj¡v]‡}ôI¤ÆãÈ*É[ÐåfÐc9iÝÚŽŠ …H†|ÍW:žp›^ÝpІøt€üg¨´<«ùzv22¶–—h{š‚¥yLÌ å§õö7–¤Ï”1Ù(«sÚ~~#ÿ¬FæpÕmØ;aN®KˆôZ8}¡)ÌD— ]0›S$0Ï13—®¢\qÉÉèç×ȼïÕñB^•YÜéÒÃÐ̬ۊ»7âÃÑkÑÅæŸѪ‘¡ ¸M¡vQîáh¡æ@œ7Þ»¤vNq õ[ž*œIÚ\kt£g~ÉD)‚|U"®è¼s ð1/š•µú÷´oÇ(Ðk¾ïç)¿Å/‹S{ÅÇÎ1$1xJaîpo󮀓 ÃûÐ’Ô¨è×›¤ª%'?²UÐa¡à«JUvË–Š(\!ÞÎK%/áŠãÍgïËEÁQÅeêxO÷cm3>+wxµMXí⎶í4`í9‡e$ƒFž•ÂU<ÁÊÞœùë‡é>¤ïúsæuy ®YbË…Cøý| n<ÆV°%÷\f.Wu1?ë0‡+'¢ÿvâ×ù‚“1-ý¥ÙpÔ²+o}„n/½ºtã.¬dÑM/‹˜O=4£ãÐa²úÁÆãH”(¶}Ï;¯YÏp_ßY!7ÅÓg#²9\Æ7€Bd4×·Æ«Müƒ^gÝZ:¸_ùH ŒQ+¡*“Œ/W’SÖhán1ÜÑ?åhs[“Ï]ãM¡E˜5s"…[Ó/ìΞª¬¿çÿpO/£[AÞvÇ bg+w $r qË^a¯ÿyðømÊ-.H†qnNÐXMƒ~æzå¿´¼ï ›„~ˆ¬Ò‘wøU]H"+òäe0º’/½²z.†n’Ý|tP„ÆÔ“q[I••1q¥Á‡tÅQ ù²S¤V„F­„3i[ÃÉž“ ”áDá ¤C ‘kÑå£Î&§­äØsªÅ’°^«÷þã|[xwTk˜lo·D¤Ý¼ÞˆüN»ñÏמŽ&A}¢jþŽçÛÀÁ׳„)1(£rsÕ⨑¶¥¡ðÁ :<±¼ó5œ†×bK†8*Êùˆ¸cý­1æƒxvïš³J.âZ¤…nD®“][€Ì9½Š^¾{Í*IϬin5+¯¹`À$¶3Ȉ¢.¤¯½¯ ¡9lýñó }ÌëH5¾ŸR©gÎÐ/5ä£# >ÁAŸ¼øßK¿νÕ;àÓ‘ÙÁ¹zU$¡ëãšFîñÌm¦Òq‡ ?ò>±HåD@ Xù³Àm¦¡/0Ê,¾…uÌÈòã™ð™~\(¨0+¢êÀi½oA")ŸF7))‘#8“&ÜÍ_ŠŒC€èâßÞ^Ysuò2¥ã€ ÙEÜ|¸³-ÄYa-Ë8ò÷”íŽÂÝj™–6çÑl4“˱ŽsÚtˆ9þŽË˜ñ GãP{²XÊÖðzç°zßêPà„Ã@ºìó0ÐQƒ_réù7A[íÁ™êëØ‹²)õ40OX™:á¢"‚¨ï? Ý(ëÉ&Ðè›ã²C+`(dô¡ˆñoÔn:Q ¡ðA­È(r¦;ÌÁ½ ”ŠQ‹¼.ãÈ®ñPµm?Ë`.{½«uÊ"¿é®† ¶Yþ$í›?ËóÄü¬¾G¶U!Ðr“,!'âÚl5/”ZÐÍ Á‹^Å™ã0I9X×q–/ï¡Ð“L†õ¦Òœ?}{AfVéž‹ ™wÅ`õá$ñ²B€õl7©(…« w­ŠÆ(û¶Å„ç(‡Dax>cq»…Jo4ýðþH%™;£¯ÎïDs='˜õ>ëœœŠ©F’ÅnöSŽ¥‚O— |,N}kÖ$/Êçu';M^ݸ̘„ß<|z‚‹—U³Õ}A5 ÇØ/¸.¨‚#‰±­PowyAÞû†¡šµÿ-˜:ß“Cf/)(Ìæv3§µwÈ“Øæ§RC†ÂŒ5 ÀÖEJjh>Ó#EO¹ì»sÌÇp6Ññ-E:¹ìÂöû12q_Q.NÊU¼Z¬˜`˜5²¦,û¹ËSCe/1æ÷ èERDžã&+ÄþJÖÃi"°uë××ù8ëÏ>΋EÍÆ¬w;Œ?Ù¡å:ವ±ÐSR Ù¸ò¯aò|%¼®piÄGÒ«ó™Á8(¤‚|¿R°&ÒÿiŒ—<¾¿4œWÖºRß.¿Ôr¯úq]ì%ÇǸî»!4Gî÷›uÊTâUgH½Åa÷ yΦ4çšßÒ;h_?, ‰Ü†|‘?¢÷X\¯—‰á=Ô ±;yœEB#óŽæŠëS=RD»*¯TFý^E“÷«O /çº!Í?pê!üéGÎxjÙþV×·áÞéFš†{ymƒñK<Áã2ú Óõ©§Þ[ìö`§‰£°Õ8ë¹näý<Á³0Ré7™á‰ |šÄÌ*Ìëáý›‚)¦±âô¿›L¾¢»ú KD‰ç£ÇA›k; (Ê5®f«| -ähŽ‹Ì÷§ ¶‡õÐ4ؘœ_äyµÓO;ÿ§©s7¹è ì×rešâVÏóR}88¡÷¥+wº*}-Ql.·8éb8snHšC˜­&`˜‘é”Ô ·¹ˆÇTî !Kã¼úßà Aކ©q?(‡þt êwð; ,ÚÚÅFëc& GœOT×1c‘¶“C‰6ÑãÞbI¥ûi„è{“I3d~ù`€¶Ö‰ðŒ_b¹Û*Ùmê4cÍ‘iQ—’—/€ª“Ny¥ûkÈ&Þp(Àú§¯É¼È™4”ÎcP«§Ä9ªÏX˜’cBÜŒûQw®6‹ìò7mÚO9d¾Idt]áh]ÆX…Ý© þÇìÃ#ßQ,wm¸FÏ…þP2RâÏÀH,å[ó{qhXJ´Ð-ndØh¥H²JÁYuIÃ:-ðÁ®{òm­?…[™ð‘QC9Å“—LPR…(ˆWôP©­C,9,½L,i9ΞÝ..lQÕ!šÅIc¥þ·‚„K²ö èÏ·åF’]¿¯öS v«ÚTV¿ûâ±aÞ³èRØ›%ÚhNW“0üï®ÇÍ&V°(Än’\»ÖÀz— *â]ÖÒ­þm6E°ìs÷bY2`Êí­dø'2ºe§¾Ò"×/ë4ý*Qû†w0~ˆ „\Et§»±Çµñ´tá|Ca‚g”ΗîùF#×d8<Ÿ^ý?…pQÆ ‘þKŽþßÙÃB•4Ùé†ù—n94Œúy R(:ˆoΗØn”R½8Žr‹É`*•‡ÙEs€Ù‘û%ÁÀmäØÏ@(ì»ÜŸpÆÑ5Zü?í– e§¨#Y¿YgÛÜRw…æsï÷;Xq¹sÇìˆcê{FYo烈›0S Hhfá(1â‹Álñ¸í*R¹qûëAÖÙ’ÎfÖˆ›êÌh¡Y,—–„çñŽŠñ&À‘ þL«ä¼ÍSÂuÆUÐ%M`>gÃàýdU>õ 9†Ü‘KÓyøÄzÄÿ—Å"E ŒoNmÜ&)çFÑÏýˆ}Ë›hÇÛÎKnÅ»ßuVêÂhHÓT.ÿöñ`âæôuìtâ^4/c+(øÍ‰ò’šc©ê@qSR êÁ |ìl?–ŠÁðŠg¡TÜ[© Í4hCØÕÜróí Î [©â‚\îš¾çìþÃ÷]Éd߸e½†Èæø˜žXàEŸ 2ȧW!F¿Jô2€™ïwØÍÚÄW™V¶Þal'öŠ#Yt%ôòÅvó916jÝUª…Ž_·ì±©l†k‰èæ ·´ÀaQ—ê?ãLS –º kïÖÔÙ< µE™Åvõåú½JÊ7ýœöEˆdÍ(Œ¼Æ§Ðˆ¹œ…„'MŒ*â ø+#jç'@GfQ2Sª)´@s uþÇXgÐ9Â[“†î2][{ iWØ®¸ ^zGÙé{¦9}sá‹ •óÃÜÎrÞÖX¸SjUÓç7žýì×ÔÈ^@Û}-†Dõò¸2 ©c~J{äZt/®³ž(Üñ’ïþ­®9Ë TßÀ¥ç—cÄÓÉ&}Ói󽵿߽Êû¬,"]V–'­¶+ ö±”·}½+6ª&ôÑ·ëmÊeõ‚ñ䊈Û½ÙwƒxµyÌt´¿.8Áô³bZUPˆ΄`>¦>m2‹9¯ÓàmH‡‡CÈL6“r^Â_UÏÜ‚x"< õüÊ,JØK6U‰%/Œ§lŒ×°Ô®7\´~é‡Cg#‹‚{_›K  F•@—¬B|Óã†0Uq ë>Ò˜x&J –w,™ÉP¨ý)~v9«àù cÿ³”zV´ûÅ6ähiMÓ¥q@2ñ÷v:²¾¥Ái¸rý5Í„äN *ª] J…XW$]Í:xÒ}j;—1ôË×{¸Hó„Æe `cÓB^k³Wß^ ˜rYµ/©ÒvÙÆÁò°)­ß÷®cÝX}¯*i(”%N+Gq·,m‡ün\˜M¢®¿ø¿´16xÇ@ß¾(£¤sBJSúQ(p4Wsü¾±¶!ßú«DUC§B¥Éf{èß&Ÿf2œ¾¹¹Bwwr\¥qW/_q ¤öQÁ m‹”&ð]h 0Ã^¾@™˜±³åf³€±58Q÷¨üëôuí3ŽÅI•è}È.<‡|ÙªÒ [½|™›: »~Wóë•™Zmh í9ùÙ)Y¸AÃ2uå2”íFÏ@!‘g ‡¾|Ziâäù«¬)ë¾ËÂTƒéÐUáÅy¡1À)‰˜ôÝÇ„‹ÿ‚9¨/Ï¥zå>Qª.ŸE²Î«ð›•0k´Åë»”¸{žÉÈþê‰êÁ£nÒCH\€ÜÕõÆ,ædXÞÆé«ïÞ0¤ý“)s¦©ŠªÝøƒFÒjÖÙ9ÿ_ør›lyÁ/.çû¨wrã%áÅ/|¼ïß°|];&λ |”­– >¡Û ?C•iß6ªÏ)¢SÌÙùõ¿†ÍkÕ¢ýCˆòEYyŠ4êáV¶›ãHeµ½sš–f`Kì×§…U씆™4EpªÂæk˜È•’?ÂS%‡Dít÷¹ tÿ-ì鳃BÇfj98ˆoV-VSª'2Ü¿'_"n —Ïc{$‚ìcž–3QÖÇz£x]ÁMóÕRËsœ˜Ñw Žk"Ý—Õö Ú ›$i¥­ ŠÄÀíÈmð­ýßý}Oü¯ñï!óv«ºZR.ŸîÝø¹¢ÚÔEµH×C´í°Àø‘{LCÊRP¸­å<¸H–Î%Ñ^<S;³KÑòƒ‡{±Ä›ÉdÎCf÷Ukô‘eQÔhسœ×“)°‡´“þ‘TtHä>ÖÁvÂÝx@†îÄÈ[”ôwouæM?5>°#üsónÏA¶û¹N@(Üâ¡.”bKûSþßÁ¹”ojm¼FËÈÕ7 vXx4cÓåòF‚ A9õuL¬XH•Ž’U¾ŸQrÅÕJžôª#£l5\þ#v8Ê©h •[Ü%Ьpù¡NQIó\õ{†‡@^¸™e<ù´°é#,1´Ð|Ðu`áÀniÏÔòN9…Ð|}ÀCí0ZëìŽAtˆ‘³fc{œgŨ”™Œ‚wF#YüÂrÓ‡Oc×$­­Ô_·ÓßÎY­VeÕª”=7 ]vhô=;ãÓäZšÇ"ÏG€r£/õ ƒ«‡@;AøG㪠†XjÙ”»hmôäi€%š½³ÿÚþd‰r°+•}ÿì‰ñ+i¨¤¹WïjßæÛ Êriå°fi|‰ Ö¬”½AkÔçË5"õ.<*cèDs!¤ö>öŒ"¸:NøjH±Ö©&·ì°¾B½YWw"¹Jñ1ÖÊÏŒÙH%1‘(âCÔr¤94¹ìcœ$ÁÛ; +¡Hš;œ‰%EµQ‰Âkðv?À"ŸÍ»¼š”|-[hÞw@2 ûêÜÆ©Íw§Sˆ“öÊÌyq,{5[/0žh2óbœî^’‹I 3û´ÛgÚШx ”y QÑgš® w dx ¿7‹Á½FÓo‡ÆÚš^SÈ„|P(d×l€ü?Ãä2¡ÝÊ‘g[ÜUÚZ×åé×i?']\9õ.Å ñ5 i †àŸêfO´èf9Mb¨©4CTûŸq”‡£7¬é’²å&¿7-zQXKÕ/{lº^Ú'të0 Ô9ËrË&ýE\Q[÷‡¶5þ¤Wù–Ò§Å;|Î[€×YvU·ìAA•mYñw·×'l‰5Ú¸®Q1ts¶ôÊÙs‹Û-¿½ü 9¶9ÞÎZñ[—ñ2<6h! ¤}“ƒ9f•£ãó…3ƒ…£"Ñák|¢¯þ:~-@,è‚ý‹ˆ+bqòƒ_£}X݈\Îï÷ëˆ *§›£I¼>OÝ›¹Î°¬^kÉV=}Oþ´Á'– H9÷ÅçœãðÚÂvÍåofge¨ï§;)ä§uLYºßqŸÚ“ád­>އ¿×¸àPç,k»g{J½nQòOÐ}°xYfŽþÉ]Nw©×y2ùÎδ‹q^qá“Ìïo![·ÊÊžŒ ‹‘³$’’ á®Nägj)¡»úçˆTxˈ/Œjwx cøjQƒçwø Ñ‚²2"yJ ®æ¤ó€ç»öà®@ÜùmfÊ(ãùB+xµ)Xߡؠ-£ Q~ ’‡—xoï“swO¿ì}/˜UE§hÀ‰ e²IûŠ…êÂÿ0c+‰çR„¿q^2À…àö§ü¼¯èÕÁ+-I¤­ê(LhrFìMàú{‰ýo¤Ï‘{ŽÁU´ME58ž&Ú ª±M¾sBd5\çËKo éŠCàÓ," ÎØû¹RxÕµ„¬ áiv#U~`² è¥Ä ×6ƒËE˜5ÇØÆÛ»ùc-ö;ïŸi¬1»ã(ˆ>øÝ8ÍÜÐÈP`ÕˆÇÆ‚¯çÙà‰q.K㯟çìÊŠ‘3ü4P£x¥÷»3£= 1Ë3Ä}†¿¯AáY–^Ҩ͙pçÂ'Q Ózbê«Ú¡ÞánLÐUÛe&U,µwFO5ò…íea+@‚í'«u8d§cžmŸ€ãÉÎè—Huqwi¨Œ9CYœ£0¸gõÀ®äîȳ„íAîØ”XeYòx–, _Âb6Ý1Ò4I^Ÿøb¬öþ(œ)À£ œ6MOvTæÝYu0øñû>ƒnÉÏÒÅr)⟫0[È;þ’:"œm¯h³¥\ïEi2ÜÓ‘,ØÚ•Ð>Îxÿ¸òlUíºQ0,j0âl„Ü¢Y2 Œ¿ÈI }Á!£¯è2–³‹ä^úÑüz e|Ø›KÖ®§y£r@7Çði×ÛöŒÍo*Á’]ÅÏÛU½ÿ]*îŠ$st..7 Ó8N­²Eu®ÎÐÝ¿ì|ЖÓÚ‹5?m士L-gø­¦'‹êKLVÙH¬1¥:ð^eÑ1öˆã̹÷×Ëäæ„Ûáå¶ZîôS¦’Vo`âûîwÐHŠß¬UhïøXl¼Js!X¬oµ»ã´%V. UeôÖëno¼÷¡˜œÒÏ­\Œ'HßlÀG¦Dä8ùöI#Ì(1›x®ƒ^Î¥\giÐ*Ü)섌¼¨ÖÊüÎ0C0㱜y…|‡ghw_<-WF!ú!ÔG Ä`BÔ7c+&÷Ú¿?VaHO,‰µ ®V¶3C'ñXÌ,ÔzïI4t`ÝÅ.Šù ÊcÄ¢€/ÞÐ¥6£å ïáøøï! Ž.ªç-…ädÃòñþT&¬öŸö§—„ßúD},©Ùü‹!!ÿ¿íy` `1uä”õ‰]‚(ÞÆ“5„’â *nTæç’þo^S d6}*}^ëTûº¹{\ë²9<‘j×MÕ³zè½aÄÍŽ¼¡C–½¶×ý[ I3ï' m­¤ÇO¸`¬i¬ ÷¶”ÜŠ_Í•ìÍyÐH±Uâ?ý¤`1~¡ü_…Ñ&öùÙjœcúx7Fc.ÆÕ)lo/îçã˜Ã £H€'LÞàÉérRf½…z F4åFàó{¬j|¶I„©)ax޵g`_¾ŠgO”nó.ÃfÿO‰jkŽd[¸µ•ɽ^/ÊðÚ±>^K üMm H‡| ûT”Y7Ø{Üñ>§ÑüÌ:ßaqº('–À»òùÖ¹JäàãD4lQ‘xª~®X˜[0¹£€†ÀŸâ<õh¤!f“X›nŽ2mpm½åð;Ã÷öÛÂØ@¶‹ç’ _løÞ •÷NHõ¨Õ@³‡:¯S/Šë¥€-Áiæª|)gîÜ?Läj•–>”ؽ –I"ÝaDyU4¹¿f¯_õÞçîM³ªbÍé)WÖ0Çöά¦*Ó¾D'ë…äCâC¹tK³ŒZ ÓŠDWK–Ù<ÈY7 L|J+²Ê¥á}'U•!ÌúNÞÇ7¨Ö@Ugx—°À;}pò–!<Õ-¡œWA1w ÑéÞ,ºþ¤Ãês ÖÂdÁ¡»ª¾^ZV’®%™ìQA^6UÑú¸.PÝ(_¯+ÄÍKm£„ÍÞzu%™j\}âb»•ãgÿøù¯Íº2•{¯98ØVÀžžéß]Œ1gÊi¢ü §ð•ñÄfJ¨kÕ ®ÕTnçÚ£·C–ž³úb†ðè—+Œ[KÝÔ?_‚câJü»¢¬”ô4<¼…É9ˆ³Mr¿~” Ö£Î^¡Gdo࣪ZÞ¶ÁM14lã|öœï>Vúºk˜˜Fˆq 3µñ-»c7 _D+WÌÓÒåɤ‡¿+õX V„aìÔ%¿^fêBO¯ìÏž¨`{rF¼o­r¼äS./»2±“~iVНí”ÐÎÀ C`òpÄù})Ä~¹¼úúûçÁTK™ù­IµùñH<>Á¥®2Ë+7£šØÝ¾›¸KAʧGæ¾ ÙÖVœk×y(“¡Ä‹i\Õ¿`îÃ`õ\g9÷ãKÒGÍw×–Âó±ë†ßìEŸ¬v8ÇÆÁ¦*¦WÊ´«€?þ£ÔzÍH–%FÃdý¢ù”*~)0R†ãøErøâË¡=j|], î¶0 >_N‚| üý·ø·ÄÓ ¬ä~¿ªMw¼µ´Š²â JøúÝÀmaÎkØÇ÷¾t›ƒÀÉÅ8ë88zÎjÉVùËv®ƒÊ"´IÿCþ”vÞ׉'ý*Êó›¦a|ʾ™íZõ:!]5mG àk"Û‘„ÈjŒ—§h*>›©ÛàVT[¬!C‹­2A‹Z‘@ì¼U¤Z ÿÕi¤·õû¨ý:ê(a-SñÕ#Ê*'EEoméJß“2þë-’æäI¤†V!¾±³Xî+±‹æaÿ1`ÍhàW t23f¥,3ã'c* ÔžÜŽàk‘@´z–7s˜ûzó¾ù´ï¯Ì’UáÞëpdc<âžy¯Éí‚pšÜ—™âeÏÓV4ówŸÀó!‚ø¼Gùd0Œ·»±œ²áÆ€Ò@6éŒá@Ù  ÿ¥bc4 µÅ»7Û‹µpöD,éc:ç‹é‚ä_~vLê…ýPg¡zîµ­0¬1†7ûx]«%0 Ô¸M–'‹?-Pû9†É[´0‹ ÎÊæ‘›Ô.`Móð=5ÆÍ˜Ùh“ã“…Æü®èwéjýKZéDØb„«˜ï:»Q ûŽ<+ÍwÇeO•kLŸå_Š“k¤®›ÌšKÝs ‰£\»|áÚï‹–ÃÚ,ý²y$Ïò@@Nî"éh#6¿îLÏo—©Vð{(ƒcº´¬%³|uË·wü Òàeè«øö˜7Zâ’Äœ©UýH|äõ᥆¸âlØ/ ¹¶ßePPã厘 <>›ásð–TrŠÙáÞÔ4b7©V÷ ›ë™EÊ*œG™r^(_ëÆ`€´iå^q‡ÙZ"?ûX²ÎÜ„ÐyÍò“@´á`¬ÎÕ¡CsD¹`b·KÍÖÜ÷3Ü®™üit:lV«ø<3zêB|¨Bu¨Û=1ø›`¥\Áà eéòj2@‡¨ £²×_þoý«ÒnËgÄ€Á˜þóÖëåÞW—Q~þÓOrQß@³(;mþ¸LH+q®«ŒÚ¸Ü<ÝUŸÆ¼óazJà·™x­[8“êëvMÏDÃßÔLFQ„ o¬Ð»õ@@/"í À¯® i¿–ÄcjsÛÿaÑ`xs¿½Ì­G·ÍqA³‘²?­ëÒ)ß°‚䌢iAþWà•ÿmèJŠZê×ööƒátH0\x6”Šò†±hIeã@´½ž‡b[„™19z!Év(ýB™ø éȃªŸq³} i½7Ñ1sqsU¢¬æîÀÐi1*ú«‘º¬51¨O ž¨lw8z®ÎÅ…ÿ“ª£)äe –{±WåYTçR.§›¤Ð6zuøw®dà—ºoçPùDÔè?k|î£Ø“`¯ ÏõZóÉP]% ïÂ,1•d|L •ÖzÏuÏ>z­"Ä>þ Á§ƒy ¹LZðÈ´îHzK›ð>$чjí1Cú¤)ùKEwHíåZ€Â ^ïaü(§»·_¿CÛ´Ü:çn‰NÔU ¿ôo•Sÿþ¯:_º‘sÁ§Bâw·¼œøýH•Ì­2¿^½KþL9¼íve ,– ÷Lýk> ø.|* Ó¾ÈÎÓå »Ÿœó¡‹ Ç*DÅÑ6žcgàÁ¥R?JÝëßìäªzEBäRðA7JšüËVçÉÔœ]~=Âz“6âÍ«³Æ³i-¨Wrfõá˜î›E’BïÔ„ü0Ü—ˆ‰UY E8ú4ŽÀÚ3˜Á¼U‹ëÝ£³µ›§@áù†ïfê—ø1vé¸ Oú<ÆØ »jb\ÓWÍÝgº% ž†W`ÏiУT¨Ùc‘™’sÇ–ŒQ^cíÓWúY ‘Ô7—üoŒqC?|›‡m¢¤k eQ4ù ¯Q„cRuØŸàqX,)Rû‘aép=)Å8Ÿ§1 whý:4~Ü&Ü–£¬´Ì&JV¿®Ãò»Nƒ?šÙÝ2Ë Ð3Ì ?ðIœx4Â=@RR¥.ÄVÊûmif]©C Ê¢ÒôE²ŒùJ¨[_h+=Žõ¦À•©R}¼LéÇ´ ’ä‰Ñ§ýt`S#„‘"Ç/×!%•ë§O0GDóã¨ï«ƒÅ»yùÖ ›kL»€ }¨ô‡Ÿö¹+o¾¶:‚Õ&&izª;tæ%Å]#v,Ù N_¢Çâôpv œ<ž¾"ÿ¯<>ø³71$ײezQ¢üaÚ‘ãÕê«2¾øl?álüÑ•mž{ÆôCÉßo¿[BØ)³8¢k¦vŽó"¢Ç¨±R–åØ7t¶ßúímNaù¶gòKâ¹èPrM¿Wâ"ærI%ÞÀµ±ë϶žö\¬$\GÒÊ…DÕ(¡j„íjGæª÷ßžÈêÑF«éóœ¥:À½àÚßDNØ~³õùÀ”RëâÍå°<ê-°ÃGh@­×0‡7œJÂú¹òü“ÇÂf6¨½òÖ´xÛýËðŒÉþNù¸»¤,Z‚¨7º°þ-i•?v)œ/ë|’?ºÖo£j³¤¿¿á.)|ˆUþA|Œ¥ÔÌ¡×Èö¨4}À£pjO_§l~M<6Ž/ ˆ¸á&-~’Â>0 ‹YZsurveillance/data/0000755000176200001440000000000014006051226013653 5ustar liggesuserssurveillance/data/shadar.RData0000644000176200001440000000224012625315364016043 0ustar liggesusers‹íÚ‡eÀñ÷I ŒRµjÕP1TT·Rµ¢âB\u›6¡”¦$)¸q/÷¸÷Þ{ï½÷Þ{ïþ.¹7Øçò~âpïçóíÓ»wÜ{—{®ïåÓIÍ-£´ 0ÆDL¤ZL¤Š_«#üc¢ý‰}s‰d"kLÕ`¶úa •Ê-Œ×²Ð}¼Ö~›x½½‘ÂÂÅ~fA‹b1xãÖbq,%Q‡¥°4–A=–ÅrX1 AVÀP¬ˆ8¼¹5b% ÇÊX«bVÃHŒÂh¬Ž1‹5°&ÖÂÚXëb=¬ 0MØac4cŒÇ¦Ø ›c¶À–Ø [cLĶ˜„í°=vÀŽØ -Ø»`Wì†Ý±öÄ^H mH"…ÉhGÒØSЉ©èBݘ>W“C=˜ŽØûb?ìp ÂLŒCp(Ãá8Gâ(cp,fá8ÌÆp"NÂÉ8§â4œŽ3p&ÎÂÙ8çâ<ÌÅù¸â"\ŒKp).Ãå¸Wâ*\kp-®Ãõ¸7â&ÜŒ[p+nÃí¸wâ.Ü{p/îÃýxâ!<ŒGð(ÃãxOâ)Ãçø_â+|oð-¾Ã÷ø?â'üŒ_ð+~Ãïøâ/ü0ó‹©/üò_È!ÿ…üò_È!ÿ…üò_È!ÿÅ{nÿBþ ù/ä¿ÿBþ ù/ä¿ÿBþ ù/ä¿ÿBþ ù/ä¿ÿBþK ä¿ÿBþ ù/ä¿Ä‹Ï¦ˆwœaã¼³¤4Õù±FÅ~¬õ£ñc½£ª}Ô±ßF£¢ß.0Zµ?ªêãjÛÖ7úqL…vz>1ÕÞžŸ¯VE[ßàèW¯Ú×ôÞ¶¥t~ŽëdëKíLïvÎþêó²E÷ÌÃÑ/ÐN§¯ãx¥ë¥?zÕN_g½_ߟ®û,ª¶+Ýêºêëë*ñ£Žú ý××u¿ªù®gƒÚÖíó-Õë¨óAÏo¨õ}àª×ÇwÍOmÛ¢¯“-®Ï)ðQû+Wšêß‘¿ú<\yäÊóÀ¶ë¾°Q?ÏU=o£ê]ór7ºŽã¨<×íœÏ¡JÇuå·½žñòíÏ=‡FõÓy¡óζ•?À¸ž•î³JŸ‹ÞÖÅ9Žëï‹£Ÿ>Ž>ß@~ ÷£}®ÄÕþíþFG½g¤Çú1¦úÕÙöz¬J¦½Wïõ-²àÕ¯W“št%¦¦¼W‰ÁÅv…¥b´Ø¦ð*Ø?ÓšKe§§’£Š•Å5š KX–°„%,a Ëÿ,Þ,2ß”]˜Uyû] ±¾¹|"ŸòWa VbzÕÆ0†1Œa cÃÆòѽ+¬¯¼ÿx¦ ¶ma;Ò4·¹Ì¥¯ÓúØïÒ¢¦ðï…Õ3R©)öû6û]šíPXÒù»RéöŽÖLO¶#“±-ugº{:ùt¦k|6ÑfÇœœMMûÏÙ¼žI[g"ggbý’éÜÄl¦Ý?Ãyÿ0ÂúÝE"surveillance/data/momo.RData0000644000176200001440000002102612376633551015557 0ustar liggesusersBZh91AY&SY)9ꃤ‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà#À@éPâ€}€ T¥7ÅŠ>€€ * X €zð$((  jbž˜Q=¤M„j~ ¦§èMªl!Šm˜F¦õF“Ôò4FOSji¦&&L&M2dÄÄôÑM©è4Ó&SÔÛS&š14É€Ðdž˜ÿ*ªSÀ¦C@i“F@5M0šhÕ=G¨Í ~¦ z€Ðh€ÓCÔ6§¦£ÔÙG”ÛT=&ž§êž‘ú£@ =1L‡¤Õ=54òjm•˜ 4@SA  €ÐÓõ$¤¦Jh1¨ F€2š4ÈÓ@š 4da`##@@шú EP§è„O6‰1MªŸ“&Ôi3ISjiú¦›SG¨Ú™4P44õhSMê4ÐPOP44¡¦F†‡”6£M4õÐú¨©’=½"¢a24Ú)µ0Ôɉ¡å4ª4L@=FLM1=FÔhhôz¡ú 4ÐC@‰éd2b6¡‰ê&™OP ƒÔhõ>´AA•œÝžr9(XœÞwC'§ÖL}»OËÃäMtçg¨)U×Ú].vLý ˜ŒÑIËjõÓ;-¶ë}Âãr¹ÝIÞç~Šš£Ñ_f­k|Äd†‹K)¨—×l6?†ßw¿áqyÎRs·?AGMåóÖØZ+Y|u:Í|ÎÇïÚî7{îÉæsºSs©î÷†ý§©«­õÙ[\¬\Çu½à~Ü^?'—5ÏéuzýŽÜ÷wÁûÑRSSÔUz+kìlí•Ý­\ÀÍÎv¹î·w¿ACE㥦ò*¨óyý•ÕöË;[uwW‹}·Ìªšª¿Memwª¿×acì²³´µ¶·¸Wsuwx±mïµuòö A`ÄØìv;Oþ_;?Õ¿‡å|¯ûìúßsÝËE²ÔD&³vl9oœ&í×-Î.»kÖn¶¸[©P›(RXÂ[:mk*„üUéÍͶJ9»ÈKÂÒur]c—uŸ·é¿nôët6‰©eV,²ËP«‹\5k¦5ÃKÛ¨/m‹­Óá¶;°wwißפÜè2§H*²¥Œèݳ-¼·Z¬Ø-ÝÍ»X5ÒìØU’§Zš¢iV²í¹¶®Ù»rÙÒË.lÞŽ9yš‰·"ÎFI±,¬e'K.Ù7lÚêÚÙV^Z“W¥âlNZ•l«($¢TªM¹eêç$¬àØ2Ûbní­ˆËÜÅ—…Ù½©+¢ò+¥‘ÎÙ¬é ’"bõä>I“$“/eŽ‘:¬°ì¯8Ýæ¢ó¯Îrâ^–6Ãe¨å±R%±n^•fÍ–['üܹ50ñ¹mÆ Krƪª47s]Ng8Ùg,¼¶WbÛ»¯HTâÜ´–ò͈èÎVæöÕɶT‰®³™Ås:·zÛÙtz'hç€ìJD “ÅÓ€L Lf!IËX#Zç/¨M\DÖ6É»nKwvªå“–Ãy[ÕÓ¶ôtç:¹x¢%ÌtjÍj<"Tx’Ñõ“!  =ª8Ýœëõ®VUêÜÙÕÏEâ¯GM¼ÛnÚˆ Q ™¢È¥2V (#ä(A”eÉ,!˜Š‹ÕX{»±Ž6ÀxØë¢F$B$BD5©"˜ •*$-z/hE`$"pT R`%4‹Òá<*PX9^ÆL«yó¸ J†#*Ò/gDF*2ZFŠL¢úŠE BVŠÎJ¯#hHÍ <Ë9Ç:ÄŸQi=æŒñ¨ÂP”Eó8½T•d51[éY48@Âc¸Lò` Ra ®pžs«BF MI*Fv3ȉïg¼ÐšHÈ3|\®Ö!Z'tª©rI›°@ Š@Ó±lR`d»ŽK ÂŽtœàe*× ¼Ná5XÕmXªAä¨F"NÚ¼A„!‚fTÆWjù£ èTEØ–Ÿ+ÃR¤7/_Ý2 2£EJ/Tg¼¯2¡X ¬¬‚Sa  ^û÷€RT±„Æ”+₤uª¥V&8ˆNÀ"T _dÁ+Xa€:a4(PI÷–•¢1‰× 1x@… W@þÍ?QäôðóQ&‚f®¸ –_^) #–(Ì;Fo›Ì_C¥ð5ZDZ¾ýpMUfxÛ…(N0 <B±£ÐðÆRÈ0ƒ!ƒí݆BŽ úúð>ÀÂÇ{¾¾h`@±`mŠŒ­€J8mGÃªà€…”˜kÙK wífƒ{Îãý«1þï@=’–dQáÆ³x+…ßGµÇ¿E¥gzŒ!)Òñ–×à~5¬Òƒ±5KvûI¤ÒÀœýÕ¼øÂúIu$ß/°[~%…MÒJu9‡Ï02„ŠIƒ’ÖO\µ[TÑS‰MUÆk°Ã¶Ñ7ì²[ŒúBª`A’ÕPæÎAq)aA(QJ²ëÌ&XFHp´Ä7‘P ¥¬ª(†4ä’6â䡼åÑ p€6Ä…..º}[ë’áZÖÆå¬,JC1¶Ø¸O¦O —æ'û’q¨,""Ñî*¨“‡Z3ÀSœŒ X&qøë"³®´‘c¼°£šÜ%‚8w¾!·Ô QÂa‹dÆNGD@Ä@CL4B ™Ô"@ˆ æÕT×Ë za{èX¡#tâ]#Âi±é³8æ;ÂÆ­ k0†=Å =#ŽÖBh‘¬$$‰0¼Ð¥¤‚î(TB˜ë…4Q€ ThY(Ù:M“Jqízæ …å1ÀÒ$±D3SH¤€ËBAJCÍnI Ä&bj£IâN@Âè†I¡(ïØba²Éž»…(\Θ³R ƒ 9Gž ‰£ `MÇD’ÎhD‚‰ wØn’† ZG,|.ŠPå8º´1&¤$VBЃ¡'§İâÙDÃ)/fWMˆÖÓQ±Û?ò…ÖNQ`9‰<’JÉgœ,-¦ð­"û/#æˆs×~‰¨!Bë”2¬J4 äŽ,àªLéêŸ.–˜3³€9 BÕeá–ªÍЀ‚íý'ìôß+—ðÒu?¶Ž—¯ý{ú1ïæì¼nIÑs}†úÜ3Sõ-<Ù§£î6`·Ý/=ÿnÎÕ¯ŸD„Ëkcžr“yÖ¿þn}ì% —ƒÂÞ×oCÊqnÙŽøÞ; ÆXÀ "ÊlÏ®˜ƒP‘P.ªhU.´=¨*ûÿqþûµ4ãžOÈ æ½!¸Æ}{H" ^aÃmÄ×HÑ,”sƒ„ NH” â:è߇â%EcWò~WÙ¡Ú¢\ù˜nhÎ$øp™z_Df%£*¯yMÿ9@ùrÄÒéçÞsÒ’à¦܆(N:Võ”ФŠ"^õ˜eÖ%¶¯§€›®r% É§P&bc!Œ .V.ú§¢ìv£P¢0G|·èúŽ]v«=ªcj`Mzxc$ð-h–f†#R d1pŸŒçÖ¬DQH2KÛòÅ+9Ax]PY]rx‰íÑšSççÙÏþ+Óˆ¡ q* NÏ]#$F˜ò¢ŒÓ¢KöÎ•Ž´v)ô NÈ·±†ìÉ:'¬èXfgÍÐd:ŒSÅÚ”ª: ¦¤ô Ëy[,ÕŸ%•¢ƒa ÍLSSìÓ¾'·ò‰32ßfQŽœ¡¥,ëÇUä‚ ò¦yfŸB߬ÒKNuY¶¥WÓBZ'í†#”‡%;ê¹¶ýeuM}SÜ€"âyç.œ¢’¡E!‹¡1>x)Bp”ÏǼCR×uÁ>'›yúX9ÃP«~‡Íòªæin¼1«=­Wu’ákäW¬XÉ©­Z“$߯M{X«ÅÛ³MIWÇV’î´aVä V˜·éq£S®Û4žH 6„¬¬ƒÏ­¥ÜWæïñ?E ü;»ãÌaöÒcŽœ˜Âª v¢8h­ÙÞ6TST¶ Ô• {$I¥©ij\جÉ|RÓi£SWm\²€Sl76„={®0cŽ‘l¥¥YQ6oÍmxÌǼê3þ)˜.Bã¸EÉ,Û20f%6½øL§0ÉPYy–L:Ç)ŒÌÎW×y0@[w¯ø×qÇÛišhL]Bí?ÀŽ’©z0è Æ@7 Ä×Dz•m£i‹-ÒUØ¿ªéâÐáÙ§^â°Þ ýkïb†V/íëp×§TÎÕowY8 ãÆÊd’.OG5?R¥ìz9óÙ`~I hÍ¢£qÔ«pøÚÔÅ'7#\\8ƒ÷º"$™gn.$^ì¿¿CUh ÃNЯ Èh!2xþr%cRŠ{|8L¥`ø4o«Ì{[ιäÐçÝérÇÆrÿ'mWûáæåæçí?º;Jãj©Æ¾$ËsvÍÃvÎ FÏ'ÒÜoG&¦;7§^ïï/%É[g,æüq‡!üÜRSH££óÃKsÜþ8Ä5Z+›^:è·P&Riõë~Ól- ¡1ÀŽÕèy¹”‘TüUöëè•mÆ+ªûû5zðùü›$å0ž¿‚¡ÚÙCo̧“óÖǤ7{ÎèZÙ¹ÃsÞ)²­d¹¨Žr¥Ù)Ò¿q8ð÷“ýÑj|$«æÙ~¯Ð'’NÂÆ« ëV`§b})¯VñsŒææ$¤ò‡D+Û“/ ßgÉZQcèò¼›²÷ :öfSó*øU-Žªræ@8q„QýÄŽºÞÝC¥w¹ž]áoo<×½ë;*¿ÃØJ;ð>p¤œYªkü¶ŸÃÛÚDWœõR€ƒ¹Óí›kœIË}{LVù)}^ÿ“;sÊñ6µÁM:È™Gò™3½ {Ÿ£ŠÁläñºVÛ pr—6\.uòX—s,R³ç1câ âØãéÓ¯²>ìü_ª#±H„öà3å³ÐCOàÄõG_í¹×ùW°Ý¿ÔJ’>E:¦ŒÂ,F|2ê‹û¸<¶ÿ l¶ :꟣Cù¾Yέz7¼ÏjöA¡àç{2¯p»h>âÔH<¶c_Ò$ƒ›ƒÿÝa‘¾N:>ÏÙ#싆vè›Ìþƒ6Å”·û½?q§ åfÜW žw¨`‡ès¿õSE¶¦ÔÓÈ÷žäð­ÅBé-í,Ú-4 ‹>„ó¯ö1ÍÓ@:Qž¸÷ø¾?ø%ÏWÐÃñèb¯Wž½ÒIªüÇ¥¥6ø-—õŠH̪Çò¡:—þá½³ÊMµ9g¹@|5Ú§#{_š2ˆmæ)$Ã+‹.N, Ê *ôI²ŒNÁæÍ4¾n¯@Í)ŽÏ¿‡a jXÜU"Q%ŸLl¶nî)L ªÞmêïÒÓíc§í¸r/‘ýp«Ý•YˆWéhDìÖ\.EU– »¯ß¶¼%j=ôeC™„QtGˆ:ª‹@Œ²‹I&>ýE¢SߢÐS(KJ£þ¢ÒSž‹E1ò”ZW«û- (µÑZþ¨–•1÷š-!côtZHÇÊÑh=ê‹M*”ú|§ÄôßEýÓQb‹ÝK¿Pg@]¢söeMªûµ”dP$$Y€×’‹âd½?_Œ¢Ò‹Ñ%üb_·¡E¥þ½¯ÔQô4^¢‹Q~j-Þ4]Ô_¼ö_2KB_ K:üõ’‹î;¨¼íá†ÍA•Aâ<¨#6PnÖ È ù2_+¯ÇQoZ’ôuþe”_ýÓßÉtÖ‹à5öTZQ|É/š×ÜI|eCÝè´Òˆõ?‡ÝövHˆë\”D•%L®Ïl‰ÙÙZ“%F0œYmeJÉ2q%b šÌ©2áhÂ|V4°G’]4 ib¿…í´ ypΤë,HTÊÂHD‚HfI'UaTò0c a£Á« £E«I<Û’ñÔ»°c by1i€Æ(Î)<‹É¡<||u]Ì¢éëÉi^_.•TxøéTt±E‚XDñÂð󴤯 m–$±NØ*4%µQ5hKJKŽ4‰g:?±ˆvÄ,y "_âÅTví¡QÛ] +·mk<Ò^%Ï;Ênº´sÎs²xLEÜ1Ý®œq¤[¦ øãSVÅ-–˜%œç=)¹œýy-Img ¢ö¤¸ÕKŽtVõÇÒ’ÕK¶»vÒtLIví —nÚ7磌Z˜ð%‚\õÚ>D–sœùÒ’ÑqÇÖôð½‘.ÜïM쵬’EHª1 hR1¦˜!o1¹²lœõÕËÒ%œû.8î‡qz™/—%ò¼<> Ãȧ{Á/D²K—ŽoOö’ÐKˉQã㢛ÓGŽ„¹çE7‡<ñµ ªÏ]`Ô:õû"YÏA:sœïñüò\};ÔnœóϪÜ[£ìkÚ$ú¢_å’òù|¾_>Adºï5ÁV ÔˆÕ0¬Êç?ei+ -Û±•K õÀUf5×@ ik—uàß¿aRÂGÛ°‚¼âååÝ»8ãã…‘d[·nN©8mÀFš`‰)¦š`ƒkmyÜF1”Œl®œƒi[K…{û«ž½"ÜX, ‚ß½iK@–ÒÞ½zp'üh Bß¿zõ,+„°¶õêh„ i˜„òÈŒc€ŒhJùÀŒ^><óÜ»©Ð—<ì6«ž8Últö»väi°–;˜#Ájª FQ*lßGû>š¨*€¶Ë2NÓ´í:ò`×] ™USL'FpÖFTŒ ¯Võ¾Dœª1°X¯]u×:¾a——w(J@G˪@ªªiz€G=jªš~Õ‹ ñA©™B@F1È1¹s!_’íÁÇ”`Ü_ ÎÓNB†SM4Î †1ãÆu8€Œi˜^KRªi±8ºàG ®ºª¡NP»]už_Á÷"^]•¡//—žwyЖs¥^ýò<ó±=È—9™•‹Ö‚>—R½ÜŒììë òp#9. v†…χ™Ù1’<–Ã]®´æfg{lØ 4¼0GŸ§/—¹‹GqeÑÑãQ PçkÜpèçΰÖì~¡^Žvw‰²$AshÖk/^°.øÏÕâÍ%µaÂʟ¡×™—²äÑ·ïååÙ¡ À££ÝkeœÕêë¯7$ol RY–çð0XDoÈíÐØÅ°Î¯'Ú­’‡ƒ››lK[p8×+ºÙÎú&$ú@Šé]aP¡y` ç:1.ýaÜŠàg‚-´Øtôò›ˆqàkvÀŽÏ_<âoÇ™“#áM‚¾>[ä·æ£e²ÏÏÈ5üd´†~ObùPF~&¿¼—;IÌjlv8±l¢›PGK%¬‘ÙÉ,dÒÅan;ÐGYµÉØI¥¡¡ª´ «[­Á‚t2p`˜»zU†]3!|ŒmÛ‚r).yçÓœé<²\g;GÚ’Á.8Îv¯§Û·¦ˆÜ‚0#Oòï9¯O´ÏÝó\fß7Òð¸—úýßSþþGÕÅ‹¢êÞ,¸]©Nñk¦Çiòi£ãª¿¨œ”/9OÕá˜~åT•ûˆ&<H¶&y••Û+™än÷<]gÍüçåÔì6::?sÉ×ì^*““ÉE}Ä[­˜âMN¬ã\*™Y³èx÷߯ÙÀÜt{^ªZYïÕf˲-MOôåõs¢çžyßz—<ñ³eÆujuë×®ûŸä%œç=3uOfKŽ8ßwÑçž8ét¸ã›qî$¼ s´ûé.ݹçÏtóÁ.Ý»vèß·mV¾ïÏn·¸ã9ÝoRÎs´mæ%Çþ q¼oâKžyç¢túb]»víÐt;y‰vÙ=Œ—nyÚ>|—nÜó½sÏ;cüĹãd{Ù.yãÑçqÇnÏü’ó¦äƒïn\‚¤ °#tŒcc“(Z> #Ào‚5Fugu€U]cððððÚ—‡•ód¾nK·<ïGqÆÔºûb\óÎõ7½.Ül†Ï½çžyéSžxã`yî3©Þ¶KŒçr·g9ÎðoœçezÒ^ªKž6“Ž=êKžzEÓþĽ̌cЩCêA Zä#$ JFDO žÄví¤Ž8é'FÄqÆ’3º7øÒ[Æ$q½-íKÕÄ\ó¡óÜMds΄sÎô~rKi°G8ÙLÎ$g; Ÿ%¹ó¤ŽyîUݱó¥ORKïd»w ¹Û¶ªz14ÀiÐDcÒÜ·0žÀ¹naÎs²}©,ç®ÕuïÐ;ûûõ§‡ KÐ%ÇÏt³%ø\qªqÇ~Éï$ºõëµ9Ï]Uׯ]n½{ûöW˜—^ýbùr]zê½"YÎs¼g=u«$³×U~4–zõعÎsë|õÖ=Yë¬|±,ç9Ýg=u޽ú ½Yë×zë×ÞIg;¯ƒ%ÇÏD—9Õg9ÎÔë׿Zïóý×Xõdºõëµ=A,ç9ޙ΋=ú„%éÎ}à–sÜÎs­yijO˜%ýâ\ñÆãî\qïÒ\óÒ¹ãHä—:Î ,çA.½tNâ]ýú’ïÅ|1.½u‹Öç‘Er6íípÌ1{‘¢Spä7nÀ°m?ø»’)„IÏTsurveillance/data/n1.RData0000644000176200001440000000051210636320360015107 0ustar liggesusers‹íVÍJÃ@žý ÖJµ¨ñ ˆÐ³Å»=ôäI<õ$D»Š -fƒ¯ã3õM|qf3K6K‚’^÷ƒ/;óe33û“ûùb:\ @‚Ô¤BSK|€ñ.é«+uD2r„Ü@òšm]}é4ÉùǬsÿ Ù¡‹»(Çò©‚˜çlOÈ“(W¶eÞ¿q=‚9ái/‘{PÕ>åÑïÜ“ÎìŒãHÖh§PŸÕšûìóëƒ(¾`;Ü‹ØïÍ¡{²ß¢‡P-š¯KEºÏÖ§¡¾a¬®QGqDDíëî Zÿææ»rúŽ [‚ú‘˜Ý6|9ûš;§î7¿Ãl•¿‹Æ\uâ`ýhMñi–~’-óÒ°£Ÿ ó¼(Ê8äÓ[n}Hê³î_fùjïŠõ š?Ä_”8"¸ surveillance/data/m2.RData0000644000176200001440000000030310636320360015105 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<׈Y$ ļ@|‘ah/y€Xˆ…€Xˆ¥€Xz 5 F,àcºyiÈûC‹£`Œ:P}Äèà…Âgr˜ïæ Ê%”Ö!k^bnj1!Àn ‚9ò“ŠS‹ÊRS`ŠŠKKR¡–´¢ÔB$‰¢t#“s‹aF@‚ì)™ÅEùé@æ?3/ô´¸ surveillance/data/q1_nrwh.RData0000644000176200001440000000040710636320360016153 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'f/4ŒÏ+*Ï```É1/_dÀ¬PšÊi‡²Ù F‚iV$šl5DŽ *Æ„„™¡fÂÔ0b± V-±æ‘¢—*ÇÁq?#”f£—ùèê)q/µ,^@qò#ËÀ: ˆ §Áv耈/Ú€p†*= FÁ(£`ÈP}Äèà…Âgr˜ïæ Ê{”&"k^bnj1¤ÁÇäÈO*N-*KM)*.I,I…rXÒŠR ‘$ŠJÐLÎI,† ª·ÁMє̕üt ó½†w½ surveillance/data/h1_nrwrp.RData0000644000176200001440000000043510636320360016335 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'æÈ0ŒÏ+*/*```I1/_d@Fì€ cãcÓËŒÆfEÓ‹ÎF6ƒìˆ™ÐÄÕ1¢éA¶ƒM6w2"™É€ÆÆÄŠá’GWË„f'­º½Øâ›:B=>ð± ™ž.˜ÑÔ˱ sCí…Å7T-’{¹ ¦†šaÏÇ€š—FÁ(£`Xûƒ“àúˆÑÁ …Ïä0ßÌA„J‘5/17µÈ`7  Çü¤âÔ¢²Ô˜¢â’Ä’T(‡%­(µI¢¨ÝÈäœÄb˜‘ :$Èž’YP”Ÿdþa ¸ýo¾ surveillance/data/n2.RData0000644000176200001440000000047210636320360015115 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<ψY$ ļ@|" ü À„$>Ѐ ˆ%ÑʉÐÇÈ@Ø pÁ"F ¿óVÂÀÄ @ µ“ˆ@ÝLPsXÊg`@øMÉ­èq†®V‡:f$145¬HläðdA3ªB q†€ìÔ€êåAgƒÚÁ eƒìáFò‡’>˜^f¨Ý0÷3"©g@2–fͤàc€ä¥Q0 FÁ( +°ÿ€J‚@õ£ƒ ŸÉa¾ ˜ƒH'(­CÖ¼ÄÜÔb C€\I‚9ò“ŠS‹ÊRS`ŠŠKKR¡–´¢ÔB$‰¢t#“s‹aF‚êa {Jfq@Q~:ù„ö½œ•¸ surveillance/data/q2.RData0000644000176200001440000000030010636320360015106 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H¼ÐˆY$ ļ@|‘apF$„¡®g`F·Œ‚Q€ð1 ¾¼4hýâèQ0 FÁ($P}Äèà…Âgr˜ïæ ÊW”Ö!k^bnj1!Àn ‚9ò“ŠS‹ÊRS`ŠŠKKR¡–´¢ÔB$‰¢t#“s‹aF‚ÚQ Aö”Ì•üt ó;Џ surveillance/data/measles.weser.RData0000644000176200001440000000311210716603245017352 0ustar liggesusers‹í]ÛoU?s¶7nmA¼à PÀíÌìÌ,ŠT©A ‚J¹ˆ.íÐ6¶,îxlâÀ”S/A‰bÔG$˜øà«O>ßHŒú¤1ý>vη§Ó™v™m·lý~Éß73gÎ9³ùè¾®^saïB!„²Ñ2aƒ„ !Ú€.ñsÅa¿¸éŒ_ô B¤î€•͸8X*(p‡›{MA™ V‚‹€‹ƒýZmÀvàRà2 Ö»x'ð.àÝÀ{€+€÷ïÞ|ø p%ð!àÃÀUÀÕÀ5ÀG€×××>ÜÜÜ|˜vM ´ t0 Ü |øp ðiàV`'ðà³ÀmÀ.àsÀnàvààóÀÀ]À€»{€{=Àû€û/_¾<ì¾ < | ø:0<ìö}àqà@éüH8ÞMx“BDà9Äs‹ç ÏsIßku¼Ôó[¿†ÃÞj<Á²jœAÅ÷ŒQ¯Â÷>ŽÍF›qøN¾ Fmˆ‚~ªûï“ÅË8·Às†÷¶WÍ#ðþÇ>¤‚òÍbâ³ ž1}˜Çe¶QËcÄçcjDßøLÀûÝ•QÏŽTÀQžÊPÙpýQïáe}¢?§ðÛÊ`~ÇÀo8/ÆïøÍçâø=Äåyó²`úV‚õà÷&­ý¢ümEAz›ÅÄ9nT[ç ·C’"<¾‡çŸá2óq}VËQïוÔUM™©öj“>ÀûKÝ'j[5~•¬«æËu×0× ˜ÌÖûY¥õNU®š9JÔ¾á9¶>þÎÔ³~¶®íz‹tĽ£ÌQß&üh”꥟zp5þLÔ*ÒENäFü¢(½êà¶¢4•SÓÐËN›Zli±]Ž3Z¬•Ïhå3zùŒ;Zìj±§ÅÙr줵XóuÌRûek•?·0 ƒÁ`0 ƒÁ`0 ƒÁ`0 ƒÁ`0 ƒÁ`0 ƒÁ`TÌÕÿŠÈŽ®ŸO9ØÇŸ#BÒT¿ÙJÅŠÛgºT ¸ÿf$i_¦JŽJ­$å*.å´Òc9]û’ÔW&ܯJêŽÓ¸}¦;Æ•ö½’íqõŵµšÿ²fšþOzî´‰èçN=?sê¹í”ã¶õí¿ß[þAÏZVVÖúÅØÙ†ïϵ±²²&ÐK#ÆVv]geeM Ÿ¬ÿóÔ¯WYYYèWk–èìýš••5~þÇ51öãG¬¬¬ ôòнGŽŽÌÊÊš@?¼òÏõ]¿\deeM Ÿ _>¿}ãYVVÖz©ë\zÿÁßXYYè…·¶ütxs++k½ú×é÷¯üÐÍÊÊš@?½¶cõ¡ÝëXYYèø†o¶­ú¶ÈÊÊš@ßýnÏ—ït_dee½u½…·ö`æA*!ÂPY†JÁ0Tþ…¡’/ •ya¨´ Cå\*áBv¤)ê È¤È¢È¦(C‘C‘K‘Gy˜äa’‡I&y˜äa’‡I&y˜äa’‡EyXäa‘‡EyXäa‘‡EyØäa“‡M6yØäa“‡M6yØäa“G†<(éFRʤ„Ié6’’m$¥ÚHJ´‘”f#)ÉFRФé‡Cy8äá‡Cy8äá’‡K.y¸äá’‡K.y¸äá’‡KyxäᑇGyxäᑇGyxä‘%,ydÉ#KYòÈ’G–<²ä‘%¬òHu¤Óå°£šåÐ*‡hTç9\¢htî ¸,;ÏwÝ\Øú»Z=áo¶5ª?؆oV6œñý7ÔuË+ú…Ó~¿Ú¡8šõƒ…%'ü¡ÁcùS…Á|^•h=™?yj87:”?Ñ]Èõ©:ü7µ: £á–ô 犪%Fнæþ¡bO!?ôðÆá<À ݈surveillance/data/m5.RData0000644000176200001440000000032210636320360015111 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<×”Y$ ļ@|‘ú€‘fg€^ >4Öà˜ˆ¥Pš ªŽJ2—™zNh€6yiŒ‚aì?F‚Q0 È úˆÑÁ …Ïä0ßÌAä/”Ö!k^bnj1¤ÁäÈO*N-*KM)*.I,I…rXÒŠR ‘$ŠJÐLÎI,† j€ÙS2‹ŠòÓÌ òpŒ4¸ surveillance/data/salmNewport.RData0000644000176200001440000000575412376633551017135 0ustar liggesusersBZh91AY&SYñ$’?ßÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà à|À0<Ÿ0>†AJˆ=M4h hhÐi ÐÓA¡¦A¦†A‘¦I£Lš2112d40›SFÔdÂ`˜š`Ú@oõTzi‰íT+ÕM5'³iµ£Ôz=5¨h€hÐ@J©ú§§ÿµJF"Ÿ¡d"z&M)妆€ h€€Ð ~ÿÕU@˜ÀÀ˜F0LF˜#i€IDdCSLSôL§E4ÓÊ0i 2h@ Ó@d ŠR„!UMbòþï€ÆÊÐÕØî8º<>@ü"ÇJLÏ¢F’Ù>Io>»«Øíظ̬í-m®N®ïoþØDcd¥æèiQØZ\)^ÚnwÌLœ¶Ž›_i¼ÿ‹Èð÷ꃅA!)17AIQX’Ñ*ƒ3t›{®.nÎï/ðPpŸ(˜¨¸éY‰©ê$Uuö6©S¸¹xÝžŸ`=žøHtD1q²O2ß¹©Ú 4TõU•âÎÙ-Ê“CDDÅ}ÿò2’²Ó3S“Ô_ÔTÕUuµé,límÒ¦N¤é¹Ùú:JZzš$uu•µÕö •¥­µ¿ù-Âk”êÝk„×)Ô)º8ÇqÇqÌÌ$Ñ?cJR”¥)HBš©+¸H$‰á£# ÈjU (¨•*2§‚TI@’@‘I!$YŸÊße²2B$‚2*ÈeE‘d«¹»ØH« B[‘Œ’H$€HH²,’0…¨²-°[!!"Ki«)¨2# HŠTjYRH’222$Œˆœ¤ ˜ @•KQ BE¶H@?ò \0°P ˆªJŒƒ%J‰" ’d  “`[$XFéP’¡*€.…„±„„•T2 „ É2NrŠb2ú£0UBI$D C  #UÎY$‘˜S Š€røû(…ÔQäí«"’š5AZKÌÌÌ`€dÍ/ ;IU›A€U M¸ õxp¸LVa– j¢ÐmR ÿGÏÙ ˜` 0â`X‡M×ôV^žÃŽw]¡Òqßx·ó÷…BÕÕX€ˆn€(b€ÌÌa9Vtà %¾#Bòy2©­ˆEÌáʪ54jÈ[¶¢Û b0–  UFX@U5ñåˆ ¡§ÌX ‰¯¾" ©ÌYN‰•it–.´ÒX°‹³›X똷®À¸ÑØU ˆÈ"‰ü Š„íGÏŠ>RûA€o,É.1¦ÓBD)±™öGÉnÂóóódS9§Šc¬%M=iƒJ¦Îý]78Ÿô×’ /#I!£”A¬©­Oy®È‡1´XI‰Žžu%|AÏS ÿ`bœœÅ•m¢Ýž(½a: ¢tKÿ ˜gšÿ²Ž\Wá4ëBUQ÷tÈ#h2Ó0„jµ*ŒÔ¨¢rÆxS” •AÀëÙ†„NºZ­$R„`¾Q‚Òñä«€ì® +Áhc]Í!dšë6(ìâ·`n2{îœ$·‰½µ„fÓ²°Ö®8§Æa¥N`By$÷ø2tá¦q[5¬‰Ï9*¾6‡¾Á¼6¸>òñ NˆäÎÓ=u²­r2»|o£“õš¶ÂÊÕ¶JÃÑ#¤\E RÊáÒt“-x,±·w‘z!y/£—´îLûú0!rísÚêì1öÛ‹C³Š¼¨,5}H&‹€ê®©ÄìZ‰Ž¤Ö„¡ÍiY³^&.˜¾Q2¢ú —.]â[¶w±)mÜ()YÂò§9|T³¼™hr"týGŽ¢;§ê%¥ ¼k•QWRˆL²…Žå•báH 94¼ê·¼ËŸ*“µ#Š3U/{ÙIÞTuެ•Áœ Ús´ˆÐÆ¥ã%Ù( ”eó D€ M£,)0[UI”žVÛR‘¨D ãZA2 Øfñ3çkW?iBD.‰œóxY$Jl¢°ZG*X Ñ1M1Cr6 Þª"¶C`[L<¤ˆ$©¢vL v‘Á‚¼…¿ÐG‰š,oâŽCD¼rœÙ[r¤˜ËL;#>fãÅ¡ÄàÁ›ƒ>Ô3¢©m–c’¸Px©¯¸  {ØÓ§¤S!Ÿ³ÁÔ·$“Òë¯-СT9+ÉS­1êЂZã£B¤‰ˆ³´Ñ`ÚEäæþjÁwúš"jAÚÀ6°qDq_@(_.‡-˜ÌxéD1ã¤1ã /ˆc¾› }ôKï¦ÂI$‰/¾ûKà·Âøßu.œà€ÌÎ`{ž÷s™™ïyÎs0˜ œæœÎpg3Ïzâð—µ-‹Ö—®®Lì€äÉ“&K´/ºô/¿šÅ‹÷Ýz·Ýu×]v•ºë®ºë°Ü ÓAUTËä1Ö;f¨hB"6è ŒDâw “Á®$@‚¾É` K˜0Úv쟡sĺŽÀ²€ô!Wô Œ…ã€9ð ȨrÔ G0à ìs%À߀˧ëE€$ ›ç¯­6Ûm¥$ï c90ºñ´²""\ŒãÇ}÷ß}÷]y}÷ßúÑ9âùoª½K»ú‹Á]˜¼¢ð6Êæ.û…Ï/0¸6fµ^»[@Ú®-MmnBÕÉŸÐv+W4]} ‡ÆE·]^ãquø`·,\þu—W¤ò4åq/B»Š–­,\ÅÔ^–.ÝxŽ;½…w[ º\KçWi[åë뜾;}¼Þo·»¬º(›Ôà­.æ­^ [½Üíï×ZÛ-ë¸ãµqq«»Ò¶®UǶØ]ñ¸,¥À¸‚-ÀQ««¶Ù5tò¦ˆz8uL™Ë´[.‹¸â×j¶.âk[ÒÝF¦Ž×çp ‹båZÇl[¸Ì¹l½`¸Ö—+VÁqdˆ–.(¯:²à<ºgDÒ0g;ų…¹¥Ç·5¹”MlêÍòêðO„³s¸à›nõxí¹¶Ô^g¹á`×ÙÙßãßï(ÙÃZåéy¬ámX¹d]Z[EÒ-ȶÀ-ήï{ƒZ±lOíù#&%ãMÚÒýžÔì]îÆÆè½tò¨EÐ\ `% hËWo·ã×[‡™Ó2¢W¸÷{8ØÒ×1-ë—.]xb&Žv‘HR,’ü°°®°UueUcÇ=y)ì‚êæÕg<µ–4€hŰÀ\æjBþŒhs«€¶€è€C;#C`ÄO oX: <Ï@_†çõœÝ€¡­Ã´ÞŸlð ÷!À7€#ÐÀ:ºÂˆÑ  D¯OѲ¨‚Î2:fr^LIËÇ#'C':›”, QÐRVŠŠ`*R ºÔuHëŒcYƶ1¬¬ÌcÆJ™2ƒ(1ŒcÆ1!4ÆU!¸¨R¹œç9œÌÍñÔØc|Ü2h0C’I$†!À!˜S½ï{ÄÁ€Pöfffg33Þ $’H`I$J œÌ@Bèˆ]  !tD.€…ѺDBèˆ] ¢!t.Š×\’I$’I$žI$’I$’I$’@A½ï{Á$’O?Æg3™˜3˜8üvté£LïCBá ¥þ‹¹"œ(Hx’I€surveillance/data/s2.RData0000644000176200001440000000032610636320360015120 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H¼ØˆY$ ļ@|‘aðÆA`­Ý3;pŒ®†‰Í U£°èeÁ¡Ÿ»ˆõ?±æ wÀÇ08óÒ(ý‡Qz(У` @õ£ƒ ŸÉa¾ ˜ƒHO(­CÖ¼ÄÜÔb C€Ü rä'§•¥¦À—$–¤B9,iE©…HE%èF&ç$ÃŒµ@‚ì)™ÅEùé@æ?å¥!¸ surveillance/data/influMen.RData0000644000176200001440000000274312376633551016372 0ustar liggesusersBZh91AY&SY¶#÷ÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿоêSÃÇ€zÂ¥Fši“ 12i¦š2dhÀ˜&CM440†C0Œ£Èˆi 0&¦‘44i†ˆÈôM4ƒ4bjyG¦ª¡=1&¦i…i¥ /dZÒ“B …PQ¤ž¦x¨¨ª¬®)dðÑh Úâêòû3 #(Fn¦ˆ“à Mm­È„­à€pqÖsèêìPï¾òˆôöòøúùþÆB ï U ø‡ˆ‰ŠüÐÆF¡Ç)&ÇÈHÉIÊJËIËÌLÍ›œžŸ ™¡'¢£¤¥¦§¨©ª«¬­®¯°ã²ú6ÙÚZÛ[Ü\È]]Þ^ß_à`áaâbãcädå7eæfçÏÐÑÒÓÔÕÖ×½úð~Æ.¾ÿƒ7eFÞÂü–mÊýÍÿ/¯ÞN'!Áš:xþ$ ŸÔ*(¿ßôxpÅB$HÖ—¢Œ“10ˆÈžQR,QQC‘(E†ËŽ”¦Ë€–ØÑà`N€ì$‹€„3ìå­Doìî>%oºr†Uùô|Õøþ4ÓÔ²$?ÅÐð¡c²èBz¯E©ñW-„5 /íµayèPIË0Å@àHfŒ tÌÂ2’f^²$0û¦sÝ©ÛÝ<ãÖ¹€Hkj" 1ˆA! !0I jú‰H°RE’õ’¦*\ƒc¶2KYh2(µSÂU¸{!Ä–$†"ó½°q \d ²’@¤$‹>”€VwP… $Y¸ME¤eUP @j‰Ix’’,AEQEŠ˜š¥TXª(ªä4Rª¢Š*‹SE"È¡ì]$„|ÚÚUT3wÚKrj—=ú“8eÍ‚¦NØÃ^ý¨'®{wÆGߊ##â`WC]wâŸ?>‹×Ë0 ÁFãLX80ñð(œ„•ÔFCÈ8zÏ8Á+A @1•¤„¡à8‚0cÙ˺ò8bxpÚ !Er‹¸‰AÍjU7 (,IP) }¾Lx@Á") ¦dŒ¬-BêI’±@¿Bã$±€ÿ2S$ eµsÿrE8P¶#÷Ãsurveillance/data/imdepifit.RData0000644000176200001440000004237013514362332016556 0ustar liggesusersý7zXZi"Þ6!ÏXÌàМD¹])TW"änRÊŸ’ØâÁx»ñÅq•Ò5ÜÉ(ÿö7.ÝÉïÚñz»™fm¶Y ¨ÿ¿y˜ šnlÄ,ñe–ÛŸ¯b¯“·ôqòÉŠfd)ô5ãÊ×™·^wÉÇʾ#t›^Z¢ÔØÒkƒàºÙ…%n¢a7 sÏï:'‘Þ$ªègéòI ·;îápB:ZhªEŽzÇ>Rdß7Ä(¶Y9ß6䮯à¬V`üõaƒèa¡n×<°¥ 9ô¬èS\òwŸ9nx5#â*xýÜý”ųԹôŽ;,Ê ðÃYw<Êxßý1,Ýt%¯Û"WÝsï"<_‚[o¶É/mÐÜ£è`|€3WÜâ2õûË{O€wŸÆ¤Þ] ùÿYëï €#3—Ù2I8Ζ0Ý™ÉÞf˜ÇF)›„x‘²™Õ7J ºt÷¥¢?;Ua† z¬=ûã‹mŒr€&V2徺{*ËqIùiJá1³ó³a¡§zløc€97+iê]p¾ÍÚh_k¹E“Où¨ ±¤9P™™•«¯¯[úT!$Ó—‚ò3€Þ±û+cL–.^¸m^ LÃd"FüP4#¢. Ÿ<ƒK£Ø[ëI §;'¶'âñ`GÒ×W Mta®K‡È8K)Ô€!]®ÎûF„¬láäVÅ€0<û4k3TQïËs)¶=,Ɉ±H©Q—ºwÒd"¨¶=Ô¶¹(›{|†—±ôøÛD¯ -\pžb¡Ž€fo´™[ÜÂîHR¯C•d¸}ú0_¬ œd¨SrEG¡ ¸ ÇåÙeÔ»Î@û1H5´ YÏ­•_šÈ·ÀòµâHÊ.ä1¼{XQûÐý® —:Ø–¼‘'ÿÂØ~E‘¾ñ’·?ŸBï4CR÷ô¬ ÎÒKìÝ¿í›R; 5ùÓÚ¿ÃpÖxækÜL:ó·ˆvK¹,£¨O•0XÍA$3\XvJ`PÊÎF2ÇÞø‰ü>è="Ï–©¶oéÕŸ¢Æ—c'ó[¨É¾^ÛÀÙÂÑèL¦§C5‹ÿCè7ø$SåíÚ’Ï —Dt ‡Ï ÂÖ™ 'µ4)‰ðŠgšÈ(¶•–xüºt''€«á†[ ÃH磎Ÿ½Œj?ø¬”æ(bÅg“ì§ßöÁlÏBà3Áäzaé8¹à'†°Ç\J?ÎÔXa¾`ÞrºsZl?Ü㦺õ1~Ecd½l²‹ç¼¼•ÿ¬ºÉwzœ‡0®úäјe§ j'N^ü\Bév2лy½:Óoü»phm nÈkkHÑSŠrYª6=y,Žx±øµVýÂæªÅ‹w‡Û–\õz„±#RVkÞ(S®byKˆ5êfMé쑜EIøÁÿåÃU?u¾ûǘÁ‰ hK¶„/ÌãØ*˜•Jvj÷- ªW(âF_JG©¯[ ûƒÿ©`î«ü> ÝøÄ?{SƒDOrþÑ¡¹¦Y×‹í¤±¼d2xÆýÂñÉ\4 ¶Þ#ˆa•Ül ¢…)‘~ßß°øÌç^såÚWŠ¢¹SçÂÓUþ’PÊé³Bí;X?ˆÕÙðRž‹ß1ù)²™Å)f²;Ûp-|û>w8NRÜg쓟×åmUÅ\(‹'á$¡ ÷þé'Ê躌Ì¿ÎSÐ<]äwX@`Û *B¡CDšlg²7σðÚw‘%‡O,ñ׎Vq_\õ+™HéÆKù‰Øžîù.=V(\AŠs§r߀Ì0¼\Æ0È@ä,‰+P¤áØbÄ¥lùu”l¶Z€MÕx¨Â{èðKÌu9÷iò½–ë䏨þèϺzª{k{d1é¦üNWM¤b zô/U/Jj}‚Hy2¤XaÅ;¹.ú_›‡&¦Á@j÷\]o${í²ŠPGÿý;3c:çBˆ÷UʵeU½¦„qSó[¼gÐ]£?š×m©b_÷%Æ]w²rŠêgÙ[¤Ý½ÄRk6y\±ñËOFtœ½ lcïëxs†Ê ‰ÃY£×Ù¼sǪ̀¯»’Q­dÔüöqX†ÔÆWÅQ…sçíEv£M75×zÔEѸ…2«p¬üe²J°gy!«ÂÞ¨ôqg©Hº`—J‰HÔóàuy z«Ÿžœ¨Ÿ1táè=p/ /è·C>ˆµ:ÈP5©C„á%Ôa0€ &=-Ø PÛ‰Z˜É›T`0j™ÒÿÃ"©- ‚#?œü`ÓP÷ÛPB/VŸ%kÆj Ó&ò<Ê[úTa̸Y»‘¨”úèxãõÄ(ðm"Ì_E)]þ¢-¶Vi~^\i•Å}e­·€^4ˆc.¯Öü¨|o·±üL›ÒÔfS¢ò iŠéûÐRíG„”PVðWHØT„%}ŒŽÞuM–ùh¯í¨†g½¡ßáuß0mu„‚ð‰<™¼.©kyð …«¢jÓµ\Úæê^ÛóÍ µ!~i¤a‡‚§#šëÍc¾3›qªC€¨ÐlûÖZ4t× `ƒk$šË«æQH‘,”>š~5r¼y;-hPc\z@N…ï~oØ.ÆnåÑÛ£zêEe3ƒìõ>Ù1ä˜h {In¥Më§uqM‘Eüœ‡lŸÄn¨ñDÞ[éž÷þb7/j|`+¢¶"õ@–(–:ÏeçÚ®}[‹ì_àðI;Å>1V®N*€íGJîd·}çg¾Ç/@v\ÞÀ¼Iè†1ݶö£ž¬ìƒJ¿D)Ô D¶ ã…`ü&Ý‹Øwa« 羯±`X;~UP£wátTˆÊÏÜË-ZtbÍ;ØkF`VYLi]7eüüµ‚Ò1ÁÒAaÏT5·xiÒ]°+KÉ1ÕD£K›Ë -÷>Ÿ&ãßÛQ¤HÓ•‡ç[y’ŠB58±êƒ—@Ðßã•r0q»@ÏŽ9­~0޶¥›Ø×ïíi)1ŠKéìÆ‚0y(Cd\œ3jn X´¨ çhpþ¤¸Ôz¼Š¿U$¡óžä¸”‡ù;¬n$¡Êà“¥FEçBä¹Ð@"yTîBÞWÂÝׄ–ÇqåU Gˆ•é=Û±þ œ¾Ý²»ÂZ¸ÛÐzl-e‡ƒ.ñŽh Cx}Þzîe°p³æÝ]#¥¼Þ«ç-Üéd™ÙX*_ì…ù >áoÕZÑ,•^?’…ucAAeÑhº²ÚZ)·ï6Í™Jw6’“(óGÜ?ˆLfa|wÁÍÉ»]‰¯[N׆] Ê©¼ àÅJ3_Z:b³¸Åêp¾(Sþî Êôá¢wf‡DuË’+Ö¨ˆë¬Lg“7ytu)émgEæ½+´e3Ä‹/Éí³ôÑó2æ½ÒÓ©ƒ2FÏdÚ\"ಙ»”D[Eö?ØWâ-¨g½¦øì­ªC2½^¯œ e“Qm+<Ór˜pFñ,® ¾Œ¡}ÊD"²vXª,™…ŽÐÙ’Þÿu€`Î…QÚŸ¸•ªrG&‹äŠzˆN1ãM¸¬sÙ`?ÂrŒ™éÑeMj¼}º¹=Á‰n§&æf*ØÆŽ2ò£Y8˜Ÿ‡$ ·%ýÂ~qû晋Ÿ9fÂ<âT7¼ÜúîǤ-ÇÇíäËçl!8æÝ ôÈðæÀ¡Ö°€ßa~Þ+ÞcaeeNm­gÓfH•eŸ_³%]ì+ÖÄwX^ høaOé½Sž´Gçò|?¿×¶Ü€ ÛòxDzÝs!îw#…¼À˜©)Bç·V2žUJùŽQi4sâäŒéîÅúl*-‰=Ÿ<ëÆ—ªÑÒÁ¶l]¶R/É}ã 3q<[e Ö”±^ŒÙ†„@ª©M?®+Kü\ánå†/Í—ì²ñ5¯¡P6Çèuäm'ÑL¹‹?wjëGNC&ÆÊØ`î:îl€²÷?%+º÷U}SC­×D) qU¯î”!Ð+X|ó¾¿z¨jÙ(ëhçºÌ—©û=K”û7UŒ-}“%fÛ1t7mÇêø66Qƒœù^PSÿ¥&,ç”<Žù¼/* c w"÷ÉŒ¼åÒ¿ÔY>ñ–WlTN ‹`àB#쫆{GÂë‰9(–g5\X òAÉÂ^ y@÷ã5œz'yU:R Î?/þRíkØ0~ðëÎ’£¦°ó¿uÿÞÓôuËÆ`´ÀÂÜ©ãé©Ï´×VHD¹—ý;{Ó•6ã¢yÎ{øÕßlü_a ª93TÖqšô´¢«v0/éî*ò9L¨›œ]kèÏåO>ޥĥdÛúÏà ÆûJ¾¯¿Ö³YÆç… ¯/¸ð÷ ÅñÏê)¨=ÉQ¶œùÀGLäì/Tr‘´Óh©/‰¯ÖS‚wºS îéŒ)í;Ut±yf^Üå~Ô[Q‹V’Ze@t9£¬Ÿ³;´ÎÉÃ6¿,—ó7ë˜Î‹ö=á)¿únÅd4žAxiÍ!Ãs'3Êò^W õ•ŠÅPDÛ(”ê£ÚŒtÞ£Ã6ËX9-&?Çûc"¿ÎK3°Uø£¸É(Œþ'ßÍMŠé’ãOŠt.‹ï(YÄ ¦Ìù)r´*Æf°A“whS' Càß§C$ðt=hÊe÷mCs÷ø1…ã(åÂÐZP¢tOÙ Œ©ƒÁó4Òh u…2Dô×,V‡û¶&¼[îeY‰NKä˜æœ ^ØA³ æ-دþÿ#¼õÄ3ÕËÉ=þ°ô]`+×±ÆòîѲÖüAIåA%CoF¤»ÞüËÃöo8ûñó‹yq¦'ÂiUÅîþÌ– i1GLºJµ÷öCÊÀ×»¿ïøØ{×\žB¿õ;J9N@%~=jOª†hÐö¤Œ¤‰ÙöB‘ƒ‡4ÍüÊ–RU tƒG}·³rOC6ègƒÌáÂöø7á шõ¶„¶D&xee]K°øµ³Çíÿ±bª·d»ÚW¹}bê„Å‘üînØQ~fÝq¢¢M»lÌÇdým4,1 8ÂÜS&ÇÊ­ã›—Gc¢ j«i=€¯÷*ÓkÚŽNä¾ÖF»WöÜÌeI§ó_ÔØˆµò“îäÔ§ç²Ðq—qþ²â-÷â\3ƒ¬¿aÃP±àð…(³…åÕ¼é®O¼',¤³ ¬.XîÁ'«kEÅPùãÍ$´º Fþ:Oî÷Œ&B<*­X+†1Ö*g]3NH½ßÿ÷› Ñe dÏÜ•jvŠeN“¦F¿/æ0^;çÅlÐ_„ñ†˜õ‚@EÅü¶š¦… þ8ÔQc­Îº{Ó$Z’ÄuÝ‚þ0ÆÂº2RLœtÚ‚@º*fø*–F&ÀJÀØavügJiQ±öÌäf®8lžtB¥¤òѤGêòÔÄýžÙÚºø;l?ÏNZµ]d¯‰xßPßyo¤ÅòRcAÚ׎Ïì´ŒÇìY>ž0‚¡j1Sëv–®;_w[&â@ú7ÍÁ¹fƸd)—«ŸB7æ³ >À¡Ú¿†iSÔ-Q­î^K~H~½Ž÷„ts7l“e|Ï~|nÎÖn¸g´q S© ï@y0ÿ+¡JQ&$Æ´Gpe‰WÅ—-:;â%ø)a9ñHí‹’¸µñõ«1\óÁí9›×BŸ6VáËà–ª_ †QÑí ±VõˆmT^°ø`~S[U%¿)äˆ7žªµ‹nDà¸ÆrŒæÊ}'·½sã–‹ÔGà™[EQ <;\tŠ„÷=+¬Ül²FþÕµ‚÷þøµÊsÍó#Îé—ã­OÎöúñ,!vÒòÁþÓOßJÔ.;€%,2áãûB(ƒ_|^ÛR¼¤åБÕAÞ¸RQXË#·FÏ2{1]NZÛýûk°‹¡ØMXÛ#§ WÑæ,þCç~¯p‡bÔÖ݃?Ðâ|\gÁM8§Úˆ¸Zú÷ü«à‚~]Í,õ#Vš¨x ¿&B#ZcÈ…iX&'Ý|-™§Ho"ö“•i er:F©5ùüÊr.#Mt¦.‹Ùäq´V×Éqþçà^ö˜šÄsÓ®o‰OTc’'ó¾`0‰$ê€Vn“D¤šÊ„/;:ƒª„Œ8ÕTÑmž(¤ŒH§þh¿¿4  ›”%°b1 Sýn!Ò@_6ÿ0ü§-ú­'^8SfÈ:ü6™øºMQ4vØÜòÀj[a¾´ºô—¤ãíRùaŒ9îukv@Ä9§`º~-ë@ðùïé9Eaê_nAùFµËj<æ#l³¹ìŸð4bz¬BÉÁì‚¿[¸©>ûZ5ž½V˜ó¬Ô= íµö`%ÚdR^w5hË‘ã×|ÏËÇ»Òavóêe‰‡^Tn©û'‡R¥{ 2i–2XÒÂÂß}€—a9äòG=æãÎÇÇßó§“ŒÚ7êH@ C¼g…ÒK]^c”Í–LB샃fÎEšd¹¤ehë{âuÏ%É5Ì4oŸ–ÁÃðìÕSôƒ|Ó!-ü¸“YVÅãWç« Û&:¤šhV) ÆïÃîûÛ çÍ­L-á‡r`PN„=Œ´Odíµ¾¼‰©Ìx\‡b Îÿæ² Q‰ $  4¦övXG4Ÿ$„¢¡E©þÔüçµM9í³f¤&ôEú¡RgÃ]•ú$”!ÑÚO>Wâ¿oྤ/1˜9_È@E#úÌ}Iì‰Âú²G[vˆµ qEýW£ΪI€ ›êp ®oA`4èõ’ >ìf£„Qrž(:X¯@:#– Nÿ2ÀZÑoïàúÌí5QOGßïl›³'êÅP–ÛÉçBxöÜGŽ‘ÃÏKÜÀï`•K|ýœ~‘U,txR¥@°ÇzÀ²Í„aŸ‹šä*¼^Z ‡U—õA€Û«X‰öÒ¾v¦yõ15â5)¥åõ0{¿‘¬æ Øêp_Ù—MZÜÇq|ó–Fc0] ©ùŸá ßóÔz ¼i‘³ß(Øô5‘ÁNÝ-œ ˜§-YªàÒt¹ îmÓÍ%‹¥®ïX3ªÐ Øk©¦»ät´Ì¶DÑuÖð• ©4-å~÷/Ž£6½b*;W^, á£þ\-ÖÔµüåw²ÀM7o‰|ó“R}ý›+2Á²£¾­GæÊaïeÊ}z4½¹èÝ8‚KËkõpìÓ3>ÃEgcó±Ã”¸«7A¶¿"¯\ ¼Ei¤Î£&¿ÄÆðoBqZ‹G_Ú$V´.³ÂŸX&µ‹˜’ݺ.-]4 Gч'b°‡Ðr+²ˆŒ •‘;’½êÂ0M,xЇº£.‚ì¦G9FQS¡¦ØØßã¢55Šxupð÷K$Â3à…ÞQaå·6xLó™VçÐ6®De XQ䔀%?å6F¿º¬Dj!u—RK˜·º;¨>E¹˜’ZJaM˧ðIèãy.­êj_)̇lÒ]NrϳÎç =ƒA“£kJ^EÐ:~ôÎôsиò7 {ÿ.wËÔ ö÷]ýýŸÖó\Ìþ²™¯œ†ˆJ‹"KC‚Ž‘ô2¸GjÐ¥rËŠNjaH¨u,\©+b:WkQÌa"aF£Öëîý‰¢Ús£Ò¨ØÅCží*A°wõŸDÆ’ÑB`ö*˃ ;oA^‡3¥á±¼«ºþD‚Z^™|Á_Ð1'~J§b¹ KÞ| ¥½Í‹«I“KS‹Ó´Yü|æî<òÂÆSÑA=Sˆ=¸?ˆ;,æ„ᲬX¥ºÍÚBK ÁÔVj~a¶y.Šÿ"÷º»“œ(U4A†Üš3a[1ÍÏÐ*‘Âþ#4ò)µØ8•a^hÏà4] ÒŠÛYÿíá.‰a†qÊ ÞYóÞQ³”“”åZ×îm“g5±Ã/î]Cü©gëÎÔzËæiŸN N%­XÔ=½{Ý9^Α‘äô~gz“…­y.Tá¾çËœºe„wÓ˜±nÖYóQÜCY» /GàÇ‘ï©ö]nüüNf-ñG5ï¥èøu̶Æ9ÔûŸˆÊÚõ)"j6ÍOSCWŠp¨±ÝhI¹kXuN£Y@Ã3°Zü½§îÿü¦õJo‰1¹–gfÂf}šØ['øx7sRÕ\UŽp$E˜'ÚÇd­c¼„j?€Y‹ŽpèV{¹Ì`²ƒc–[yzV=ßoƒð:Äy)¢.$}(Væ„€¿äS—zœ-è`7 4çÝñ2ç8^bB(þ¼\Â.ã~Èà¹ÔwÄlRÉ!Pa´`qOü_‰øâÿx©È¶„ÑT óÚ„¨¯fñ‹— pÆë´AÐß:Œ¸Ãtc#“ÊÞ3ŽðW€ãf½qÊDW‘²¯ G7Ýšó6»—µ×Ò€Üý²v›ž0«&l>KZúÞâ”*æ Lþ(6áùG¯è€r.?N@94Iº¹ÎŽàjŽïk¨G©F¯ÈÇV­¬5.p4% ÑöŠ?Åý¯º ~xÑ3|…ðnÆj “è%Û'G+ðÿ¤ÌóÛ”j4© ¿ÓŸßÃÐB¿@ˆ¬U5Zü[h8¢P¾D£Œ.ÄÍ©ò$Õo C>S%RpåEúŒŽÕ›}Ñ÷˜«!Q“ðp´›äÊóÄÇ` „ŸTòÊ*ʰãà~-”"'ÿØ~^W¯öˆ¸rÌ]&˜uqMN%GÙ’B'…#tg†»N?Z zEИPl½Ðqõ/·è¬¿?âoàþ¹ç¶õúóã;eˆr[jø¨¿cù3„0N*ü ç‰T-¯û ãx¸¥ ×P: ‘:±B–‘½áÔ8dd§´4éw_äÕw3óˆSÜ“.þc'ÑKé2-]y'6Æ¥†¦ý¯4%åGCJÍ>·,ãDˆ%2éïGÛ׳Ðù» rÜ›ò€§X¿hó´N—x hï¼BeO‰œ!TŒÊä=Æ3d“SÀCÌà°`×ÞƒÐc°ûLÄÀEë“÷¥Y( l.²Nò\‰¾‰ëDJ—øïy»\†`[€˜ Ôi߃ßïÿÊøª1°ôlç¶‘â©ZWvÎÐÙÃ~'…YàÐfÞÅ-'Ó‡Dmk·Ÿ îe`”˜ZcÝ 9{‡‚ìtžhkÏÀ3„§j{¼;ƒ¢*oºZÒ à2wpí…?LÊ· § ¼9>„w„·UòuMC‹pE·¶7‰yÒ¦7Í’r#‘mòk&Q8­Otgr§¯aáÌöóÔaœ=’bøøú†ÏèÛð¡w9ôå3•о^2ðžkà¸^”¸§±·ÞHÚ³Éaï’0%Ô°-±Ø¦’s-÷"mTe¿§W'á”`‡…¼²y?MÇa”«3ƒhFº5’ÈS•ÜM¤ÿðÙñP[•+0’! œf½‚IÔÅÞЛƒ;ôåÝ]Áw³Ûé±ýgí]„Kú„uôIe«w ºyÚ#¼¸ê^¦1—F°+teΕÁç)‰|b ‘k‚[ —ºÿ½ó§;³OVå_dnÑú󤢎†¸Þ;ïíb”Ф@ëŸÁÔœ¨_Ñ…b¶‰ÿ s­¶6ÂÜ•eª;~ ÕO…T ¬[ "™œD×A¶ÚWkˆfxÊw›¢äªö!Eë«k^1jhi|•\v…ÒÒëüµË5Ùªvzêá×Â"ú‡•»"æ Heüª:w-îVÿöàim/U(êrÒœ“¹;x¡!ÈK1¨Oby4±zƒPå&ÜkóE ü¶;îñw[¹L¢_Óx f3÷šu!mDÃ/W8Ë?;•ôBÖ!TŸœ'§›NwVqNs’Õ('‡Ôm,¨¹$:3‚ ìÒ—vŸH}z;šÝw±sÐ: ÍYuZ?~(à¾Å.¨ >ÐË `nü:Õóý†rÑñ^þC]Ñ๘"wŠÜwlŸ®V$ñD3?šÃüîðGtÖŒ×^´Yôͨ—rq¤™ é_Õk\vùës+æ·µÁõ_šüÊ[›;wâí,ñqáK>®KéZ7À2JaÊoÀ™x:¶ýõAi9D3M¡M^ ˜Æž9³=<î2]£Pˆ1 Ôš“râzõ¸>/ýð.¶Rå Þû“³³-¿«„ýأ—gfxbÔ6¸€‹ˆdV—8  «~‡›¡ŽÂ> >ë"hÁ„£KKÀç;XW¼"óO¤Œ! žJI)w=êØú*›{‘J,$ª‘Jþ¯ôØ•ˆ¸äQÅü>;ÎÎAÍÒ3N êSHÛ‡oúxqF×wVøþ¤aêŠ-·Zw‚¼~5Fè$ª’¨‘¼ÝŸö³q&—Oú|G¿¥.æAžØðÅøÝõŠƒX†D²Š(¿f[mÁ¾ÜP H> úÅ0ô€ogù”ðœ¶Ñ_Íx@ÏpšŸ7ë2'![ƒåãõËš²QÎ2U&8tÒiõ±±%œh@›Á¼Æ’!b@wl+[Êg¹  ÷iÑò§šÄH¦MÂ*€çlöž:Gd‹zw½¹o;àß±{“%–qE®hœìiý»®”+tÐ\È[žá+["r²¹Ÿ¹™‹ÛNî ‰礼Q2‹k<©ì7èz«¢%¾sOæ%‰[Ï^"JvOd‡Çw%®#ƒƒï–œ 2´)(N¤u]ämè8UÀ^¢ìmºWzáðÒMqi‘ši{%fÇC}ž¤âÇcC‘i÷j ‡á9Œ/ÕΈ)`wGË©óå@oÅç6Ô(òâx»žòŸ”“ý™v01öŽZ4šúŽgí²g£žGc‡ŒfKå¦8)‹‚ŤÏ¿gìÿ¸­­j•²­O .Zô#Pšõµ—? èh [‹¬M¹F­¾ÍÏÇ 5¹šÈm;ûîxq úRæ^®ÉÇn¸Bå¹ ýgÖ¤Çìmª_õE5IYÖàÀÖ4«šVE rI3…ÂéMû‘#°jEˆü‰Ûè“¶A rÐeªâƹ…'€Zyy?ò?äw´”Q¬"ò  µ{ûU÷[Z(…ä†XÆ32 }µßÄæ·+î »‚6ãü †‹O ÷ãÏjAÑôá×-ZÑlNF>5øÛÔáæ5ΊXÇŒeŠ© á:Bs-5ªÁéGÔÊâÅTlɰªÛÏsÚ.`Ÿ3¸$Á’À)„ÿ=Þ²²(å%Á…¾5¿œ»¢}P²T>û4òB„Üj\·ÇUÔè¤O*÷{+AQb0Ð.袓>9 XŠúÎuaÖmuÑ$6`sñã¨^/¶a-•º¾KóÓÜ=8[¯‡Üüw$ÒD jºæ·Óø[q1g»1‡dö¯ hS¡¡n"¡hùéb6ûÒ´dÍuCæ¼(xńލ*&P£äͼÅ6}ú\}TÅÕðåäPTS?xX¨27a²: -IoïCðâÁ÷c™vl®ñp‘làÙKÏÈôDs¿‡0~u¼÷Ä ï1«Ç7Sš”âÑUç$½Ê‹N¾¤ƒâHkƒö¥èz9\â“×YkA⟠4Ú¹<£åÐXÜæN,é[”g}|½œ³E¨Âz×h ¢J5]>6W,Û¬WXðBº:Ü'ýú9Ó®Êð[ÎÇ÷\{?7|1 l 45RæÂè †6D#äÃò²$ÕÝÆf1gçö¦wPµõ•¤áèá›yKãCÖårßB&z¯®]3}ç_@j ?AkªÌ@8TLÚ ¼®lI\­ägI?+éu€VOÔ´>8*øÌÁάü¥ã:?†¤¸Ö ©ŠPpòÂÝe7\#¾Äi”hȹPåÿÜLâŒõî^'ÃõY¥_j6UÃ~k&¶ÍmÁÓÃnw Ý"Z.ૺQ£èWWšÓÛ5É©ŸŠa<*CÀ­dýç#ùØoÿ  å§ð¯Ì/\2ç~†ºÀAOiá&’iK}‘t†MãñÈ>’j ÄÀ/¢_¥Ñ~$Íç-ÖÜÞ®±vŽ4„´‡/**‹´í?ŽyõûÑqH#$¥[ a]íFqù=E¼Ú1)Õç4Å8-õüù«%xê^Qßá*{­èˆö K«Ø“*095¤ÇW1À*ñÞ«†ck£¿´»þêbBV!×d)_´&rAµ àÑ`ZxNH¢/ÐOÎI¢¼'sÌéO6Õ±xu”ÓÚû1X.°_Ó“Æ9– °fÝ€ø*8²öåÌDŒ·ìâIë3Ѧ즃FÜmHAïpæ‰äŒv|ÛµÓš/DNcvš=BK0_ó9?¢ra–[[¨Yþ^°üka³ièÀtU«¢q;Ë2cÓ}~I# Ææáàйaà¾êy%¯Ù¨ãÓ#Žwì´$þŽÎE|÷xj•¥šjÁò2jï‡b¥ËžPlißÎçÿã"öJÁ-$VÊ¿òÁÚzê÷â2áã“° ÷¸ÂQgH/˜Ñ¿z*çm„ó0íUÿ¨KGZ…—Iýù¡A2yÅs %Ç4°óµæƒþm¢"Rhäû¦1<dn>ÕåŠzt®ÕEï+¤]1v_“OV\:¿ñ:óGwk'z!}¾éòä Ù.÷&¬ÅÍütÞÑ0’f͈܎ÓúTÉ‘`ÎOi2‡³·u0oS¾2|XüûC¾–r{yи ·é¥ãu,xb°cÛý—oMhÉÙì[ýHâdGÔ†­‚x'|0mŠ»5 / Pְ Øò ša•:ºoÆ0œyöhO!&ô——]OÈúàoz¤^@É+§-?sÛ„ÀôXƒ?Ž/·b…2£'Ð00Lǰ‚x “qT3æzB_ÿ& qóS Þ« ó&äÿ—$ƒ+N$¬'K}gt˜æAõk,`©@Ìe£ _ájò΢ <Ÿþ"¬ìw•ÈWÎÙ©ŒÙF¤·¶¿¤ëÍÇØÝ‡Â~äèxØeVÄæ+5_ûpê¨Ñì‡$ë½÷»xÓåühxú¸–ÒiÏŽU»íX>κpÀØ—n_اAé¸ÊœÚrQL²õ Ž‘ ¿¾Sÿ4¿æ sOiVöEÓ5%tãÚˆN¯Œtn¹ F‚UDT£uÄO44x„Ñ”2óœ%aA4‡ëW›ßXñ¿ÙÃÛ—ð  iP:òq4«?À…#<=½…´ f.% ê{DƒUdQ—ÐŽÊfìlGdÇñ¨ï:ÜFÛTñXÃu€ÿÓ½]¼TäלˆÛg¨X^|ÔG–>1ÑîšæAw.ó’ýZK8®êm_¶`m­ ¥-¤øÍÒyà…¢û£È'™¼‰F»9›ß¥Ý?èI j»b<2vFtÛÞ+ÖØ0•3û)Þ÷€G÷1Zt÷‰o…ZâmñX|˜jjrÆl?z,x y„ÎÚàæ)uJR··Q±—®DÃqúB¬Ô¸’o@°ý>šb«P"ß1)ÍJÜùèôFˆ%†ÓÖ²Y™…á1Uú[Âî²WXßR1}2^ɘÄnÏ<„ë¥ý ¥ì; …ð(îâNßeWèFÞ…è×…Xø¸D÷jL3E€0j½ßÿq$ÀëkCJK¢;g¦ùÀ®u–¡—g2zebÎÍŸúÙµ™Sý PôEIŒ$HPÔÅ6õå¹aL(+Y¦MŸ=qؽ°)ïS Ø•}á¤ð2ë³lö#ùú5–B¬åà/IæGÙo}Æ¢¸9½Íâ{¹Ñ”£3ZÔ|„ Å'zE+Ûi¡Š÷OH¾`¡%^²K/a ?ʺØ^¹öOû~ã«‘ÔD™MªÐ—Œp8­eßkAÖúIPqy; ZÓÍ¥¸ƒbŲ́ vOµÉ«ø¤}@òeÄŸÒã—£(VïµÏ@¡a`¼ÒJ§X9ý˜´\¾!4Gó)¸ì:Þ°ÏS±¥:ÖKxã¹êwclƤld§ž ¡f]kîiÒ™+¹DíM©@€Hf'|šc”(ðµ%O”"†Uán_ÛˆÃØsøsjBîŸmù8­ùF“Å!H¶n1¤dáK§žÍyÆ#&Á…!é÷7’w €í¢Jêª_hmšÐÅž³Õñ|°}Ç¥šlÿ4‹EVLo–É’÷tÚòUÌ¥ð:qß|’=*ž’éå`ó£ƒT_­¹Õ :§ë›ÍrR ß“!Ò(Ìãö“H‚FÖ|3s¥[?÷3m—a²|m°Yª‘]p)”ÓDæ>ý,Í4‰döBܤ.åX½äb`.+ã‰ó¦mHRâ BÏÛÒ#Ûz¡×¹¦Ø ,ïò®›íÞÚ·|HÎwÄ?}ñ`èyKøá‘jþÝ]ÛUmõÕ’[7ª:>J¿Þmì±â›º‰Wž¹ZUÁÁ[Û#|¼žN§,ý©ÊÿáBÁ-þŸù¨ôFÈ삹m¬\½>õù×¾âËã·üc_ް”„h è" —ƒÔ¡j¡I¸z !q¯‰Ýu¬½A³¤ î©XV¾¿<$Õþ?Õ“õ0B¨j“qï“À”êÝT 68Û'4Ÿ¾*‰•ôܵ(QF Œ+ ”;o$ê«@E©ÜHä< cçMX°Xþ ôኰ嶒ReÑEfÄf<*cY¹÷¶ëBSƒÓ]®=èö)Õ™A¹¾8îÍ#å<+j×öÚš¦ÓÓ=“mV„›?Xß"ä=ÅEê“âÿt5”¾‰À™y´ž©>Êw,ùJY¢±ÑiV¤ãÕ¶„¶¦ô½5 ; ÄûÊíÓ†´VgÁ ºñà…›HVWò,düS©Æó-¯ÿj–ýnÌünŸWž— ðÖ‡ç»#[ãxÅŽÖ=Ž$L÷q8Ÿ¸:!„Ûo€uÝ糄éLû<ølçŒNÿÊ•YØ%G¡¯EmFhøè!öŒÀ6ú$«-Gd†ÎúÍFƒhWg'©¸çr9cxHá²ákø°ÕA>¨5î rªŽ–¤âºÀÇÄÍc`wP—³ïuâ€ÃphÚ£Çù‹.‘9%;2©ý0æáb°fಠ¡Î#c0ežÏW¢K|e8þð¿NxnQ<\ËÁœ™ç¢”t^V¸Ž“k‚%—-«¼u šƒµÔâ:Š– uÕ„}5pyBºï¾ñŠ…5œŒ¼JæE2Âm\Ÿæ¾ ój1)äuyOÓœ‹¯w>Ô‚”J:o‰¥‰6b–àö½Ã6< +UJÍA1ý6noŽ6$¶ºx±1Æ6—õÊŽ-eÓ޺рŒ‚m,óÛ³µ3‰“IÓO€_{«³Æ¬huH²S âÄùÖ“èr¿hô2·þ ž›}BÞýg4 ?ˆÒÄ”Áتê挳˜' !´xˆ~ëT øS±RŒÈ8 §v?íL1!J[Y (ߦ~¼“!ZG½Ã´÷€½ÑŸ{³y€”úR3 Ššá!™vòöì˜Wò w~] I6¹^ÎÓ%@Þ{lòrØ(ßf„k2ìÀR`ßá2©ââf0R[ž·h쟖»Î aýŒÇçdËZè^oQTªÆÁ(UL*‘Àõ\&V5æ_ÕG»öCs¸}®˜Kä’i¿‡_k4~b寒 ûqÚÁà ”a7“Ïït‡Æ4¼ dXÇ'GåHì¦1×a"OžøÉo=<²·’W‚ÞðNÅ1!ÙŠÏk½¶"›ºJ~IØÂg¾å0$h…Sò5¯€WlV°Ò•úå¤ì@]n d¹Ü˜2+¤šUtùe°ì‘$!Ô4eÚN€%¤QK¡{iŸÆ+-ã·vh8«â˜nG\D!´rïëKѦ\KÕÊàë ÙpÃ~µŠ1*Òù™‹ä‡CÆKd;T`Ƈý9µÃ¼ù–¦ÔFÅ y+þ±èÿQÕä<»øæ)­º³I>gòŠâ~"hÓ]¦…ÎÖ¡|)ôž6tQ!Ú=Ž FJ“ÔˆRæ*w…Š®ä†Õƒ0üD³ùéQ=ÉX7Nùêv^D}ôLkäFDŠE6¨˜¼^ä`ÅõÇ(¸ïi/° ÁMùÜÓhՉꨒ|ÍdÉ´ &]+ÝzŸ¶ ¬ëGCÜXÃ8S+×åÞãSÕ½>ÃÞÀrL‹ã;Z$DÀ†nÏÔYÇ›¿Bó®kO×Eû»‚ÎtU&͆„[yQ( `ÃþcR±›KÇwª7ödœXõ€ä+\‚wµ‹·íàGR¿Ôñâ®D×»w·H\úáî y Õƒ”»–žÓ¿ ÒÞþ±ç–ݵÁ‚¶h.i§/w€)’ä¶ÏÛlÔTVÂÏËйãÌçŸDÕ ¢BæNC‡Ö†³<9ιR‰`¾šU‰ÍV{.úž]¶áõ yy<ˆ]É5 ,€<=?`d]Q¢ªÒ8óéw~É_“‚8…ÐA½±‡ž7Œ!dò 4;±À¥­Süòg©úÜsj–é«, <£X¹Lˆ:pž¯ž\¢ŸÍœOÆÑ ;Û«H l BÀ4㚮ד€Êl,Þ³¢5ë4Ùmpt/6´Ô *fgbe:…&÷èx~-³±Ï,M-ß_º=«¬?Y:øþ‘×ô+²4Èj˜×ßYI³]úëíŸtÞ§ò=–É8ì˜P®… nR̳E“}Ô}";ö}ÕDn¨r¢ÃaU˜ääm¢…”LŠ+î`0!„áŒÖs.mÖMaÚ­~áw|MÏù}–‘?UËY J–ÃFÖªrãàæüžÉxeEpЀž”µï÷”üüĽ‘3¡ìï|¯bXÁB´˜íÔXºŽåɰMöLͯžÖjÞ*ÿÿC9™¿¯Öùƒeh€Â·cw…ßîk"¦)/(Ë4åöo¥¦æN™ÏË* Yßßa 9QþòÆSƹ}9»(eÀ$t2(÷‹e‡YÁ„Bn™É#4Ì5ØZ–æÑâZd=ñ¢ˆG☂îá3Lžêj>z<èFÈ. nU„ý§o”ù‰³|l+DU›Uc½Ž0ÿ+ñd»3ýî;7ãwåræ«›ËÝIó·û-ÅEÛЧ‡…=u½s & M¤/F¥2L Ú&{œ¥W½Œk´€ÑÍbÊpc­5Q>J@ RkßщM îË*N[Õç®Æ˜³•½ø²¶vš½V¼ÚÁ¨Q×Ðwš âõÉZJ–²ç2|7ôÝqxá›wRÿ:G8n ˜#¶¼öF¹°îòá^²|š+ÜáT¾ª°¥ªÙæ±jЊ8ii‹ŠIxØ«L)cŸ<áh%’ý=„1HºèôR¤ ¼ŠhøŽ¤‚ÀýǾ ³ævñHÛêh Áh„dð(äX+Û7ЩâÇ*¿Ïúª lbá}bš­gçŸRš<~ÇKMFí¬!M6N”qÒ5Ž«’¬›:jœ¬†™è£l=¹´â…ñ÷Ø¢ÐÂÝdàÑôJÉèô;QFÕ ìS$Κ§¸’ïvZewÌL‘²œ5v³'hô"µÛuè›®«Ò¶ËÚ9;Yg©j#){^'ŸZ¼n® B·:eU¡_ ËåØÁˆ^´ÄâÑU顳(0Ñ/$߀1öûqò…æ ܆°Ã/Ùã'÷ÈTícXºîØa5<«·¾?fÑ™{Üʰ£©n~fû^"ªÚåzÄ9JÉ‹*ñ#6 ÀT6hçÊKÏ-ãŠÑS3&ü² 0aÊ‚o;„”3“ÚOjû̓…ˆøm¦©Õ† /öe^@ª¸Sƒÿî ã±w­+OñŽË>hEv8­³ù´/5üÒø(ËB^ÖÄ÷¥›?ë>–ä F“P*)®a]I o”QqA’Æúš®‡Ç*rúx˜?3u¶9ŒÕÑÔi$€r0wP®¯·ÈŸâ³Vk‹ë­Ô¬£Å¾Ê†÷—3ß- §ØœÜB]\)O³"ÞÚ‹TJpÄOí_ƒ§Xx° ÞÐÅ}s{ÀNMôJ3ã‰õD†f/“0c–ºÐ<×,â±»ú¦r&ü±ÿÕ[a `P˜ª{fÊÕ¹¼ÆfÇ­1‹ óô/A…±1|CðB\i]P7ü e5fó*àN¨£ Nj51/¦ V¢±™¸c·swÏú21Qäú'Ëñ“ÙJMhív+qÕÝ®‰áL\%ÈÔ=r5³IÝ“ûfo€>4Iñÿ!=yþ뺺㿦Á—gm^( JÕ¢®ŠŒúij§ßºò¯A°3&&s\kYòPÊ”±³Y8ßj*‰Òà\¸—ÉVQpIwº¾©Ú’Õ%3d2Þ´–©l6pGÍ· ï'°êKËÌæ··â7ÆjG+俈”{MWø¶+hÒ<ð‹Ms0pð¶á;å}Ãøê [be eÄ«[8~â¢ÔÇm>ß*ɨEî©—[Ûõüd…¢µÈK©WB˜‹`üt„6Ý1˜¤ù8LàyÁñØ\Oîûƒ;)¿ûÝæª¾Éö`/rseÀ,ãPEÛ+A×éӂǶ:‰©!+7mZæê™m18òæcG ÒÌE6°"b:rXÞ¯qÇ ËÇŒðð(ü¢ñ£Aø j6 1Ü‘F .i±K`‘,(^eeÞµ9Nbh—`¬(d<@ $c!‡6«U¸ÇíâX_-Ø»jŽ(Å9‰¨rÙ¬éàœhô„RùâmÌãÄ„âÝ5µ^µþÕU䀨4Ò¿;øYúVY§I]h(>üeª"KY•ûp¡ŸñmÊüJc{M‚s³Ð¦|ž¸Ö/ò½·¥'¨úIjÚ%¯φz¾Îj7”6|D36Ab Ý“ ëh‰?Ù[:‹Þbô¶ø)ÕL—WäiÞlëq³\ºWøˆöA·ªð_‘éЂÉ_›\ó9õc Ê aù•¸Óõäb\ÏÞ׆ÉÇ‚2ƒžp¤@IòÈO® EβTú· ­ý0 ‹YZsurveillance/data/fooepidata.RData0000644000176200001440000014531412420322610016707 0ustar liggesusersý7zXZi"Þ6!ÏXÌû5–Ê])TW"änRÊŸãXdGŸã>@j½õtA©°”'å»r̆®»a{ªñŠÍÊ i-ðNœîy0ûv·P´rÊæWÚnUXßkLÂ-ðË£@¡Ûê4:Õì,Ⱦ}@D–bŠ˜q%Jð)¹ì6ÖÌëÝ=Ô%ömP"ˆ±`þ/¡†êß{}$«Ç[X,>x ïhLž‹ÑõY ÊÿKÙX õ©g:íHxw´$d{-_’BqZºz)wª»±Ï!ópæ]Ö äjdZÊBL·ø^K'ÌŒCEb†;µ:e2è ýM¥wû( ÇŸ4àÝÙãc¸Óí4o…XºÜ¸4yI'®¨þÐuª½ _íàC¨Öêî"×¹ÃQ6åS5nwX^ï uŸ7$„D&öâ&ºO_"¿èü5ã ÑÓ Tœ61KÌÇÀ‹ì—'W7œ²ù$ Ãô…£A«‘y ,%ýÅÍY ê‘ÀÜsÏ|I:M2 ²KAsT²Õæ—e©‰YD‡Oo>½ú…ß*‰ý*®nOc¥ˆ©“Á´®+PÒPÊ¥¿ÕÓºWRSG"­N†§L-x üß×F  =Õ_¸öÇA–ÒZ¦)H»Û”òµ@îÌ<¼l|v§ÞæÉ\ç§Ø `ËÔõ¥ö ÷9<Ÿ‰ ¤q0. 3_å‚éi,µÆÛ4‹Ü@x ó…UDú­‰6TgöE~q O€ †¤ó{)ì|/P›7x¸ÊŸÙbÓS[Ó¼Pübuè%HŸßIÉà¸6§HÉ·('Žƒj¿xÒ‰kAÁY¡ƒòbú^ògHêj¦RÅO?¥  ¹A7õ R+ÍDRއÿ#åo¥ZÊE¡zS{|¡¤û%æRµFÙüàÖÆ?a£*¾š9Iþ'PŽV®tdÓÑ‹¦¿fqõ[cÖÙÖgNIv|J„muƒS¹ÿ?xdÔîƒlÿ‹4g( ØvëòZ½x·{ùÌþNä\*åJsÜe¦‚Ù·ÃƼÕƒ>Ò:$îžõÇx8¤R¡òÇ*רê[1ÂMæ;¼‡LÕJà£Ksš!ÙmÍüløªqI¡MA¨‹zuж:©(âõÛ‹«Xsh9µséj„›$5 ÷­HEœO›c}†1N DÛŠe†U(ÛMrÛ¤œ+¥ºe +Â?N¥È ÿE1˜ƒ YÇËyÁ`Ñg9êD¦ágŠêaE°•~Î#™vY,›vn#èE[sï91–ôÛjY`“²a "!€¢`’CxÚ¬míÁþ߉-öxB!Ÿa Q¥G$=KŒPơʩW_ûaèÌDo¾ ‰]Zm^‰Iã„÷3 ¥ÿÎ÷8pÁÔ笠¹é>’rI´FÀ{é¾™,$QD#€B˜Ä–S…ˆ?®ÿ·$9îÓêÂUO£özG lªŽÐ`rùïx1ˆmO.»u´ÒbZ™ª°ý66-øoŒF~q-ØÝ¢È`[ö¨]›ªz¹ÍD‚ÉÎWxËÐl‹gÓËûN}U&€9í),Qµ iŒÂ°¯È÷¸q¦’§¨b å â1S‘' †fÛj£Mî”!—¯ö¥“ý ª<"¡ót“Ÿv]rê[mCÖ¬œ„ÿ3Gíê‡û”u_‚!“É7?3Üî IîX% lc—Ū… I=,ÚÁÌNä§ôp3\q~®µáÂ~èY'šÁ”c“ö ÜੇÙl£Èµ»¨'€†]eš¿Œ¨Íð¨õÂDyý«vNûÛ­Î`çìÂjåR4ëïëì½{žïÉG@óM“´\v¥ Ì?´•ý’†VæH‰Ëð9f#Ûí 4^¸oQ…Í·}]¯hW•_‡¾ðâ* ¾îH]øYñ·%@d}õî?TºÒ#P)þ{Ã’–ªcBH6 ¾ûŠ™ È©³‰t‚TÞyhXÌý±w08ùµ†@6:JןNzÔ~¢€ Mä’˜I¸éë(@#e’ ¦mñó1ÍàÄocsâ7:ü¶xÿ’ˆâ±ë¬´°z?/YZú:.øÇçX1/w{M÷9ó×Ï;)T·1¢üzÇÞ*WðÁ7å¥r™j±Ï¦zcŠi%Ë+,[?»’”½E%7k£‹@ÒK-óJ§Wðƒ¦ÅXŒÀý-­‡°.èÜè²½>æO*Éüêä|@°Z­näÛ\­3z¥–›'è ÊeŠ„„r®+V"cÿÖcð¦RŒQg"Þì{çw3¤’aß0C}¢9.¶pÁdoâòíP¤RÛlݔ٠Œæ…c©Ñ%:jýcÄá-t|" YpR¡º0ÅO’wšÅ–º©±u$‰£à0ç™ç߸ínP½eð <ß§ƒÀ¥þ (Q2YÝŽîúÔ7ÎËÈvÉû©t%€ §™ Q^V!ß–ª²…¨&ô({rá¶Iû-^îICYàîtk¸ü#ãœ8­½Wç6ïüôÍ‹øŠ³‡ë!\i˜¦ñŠª¨¹èÈôÙÝ ç|—F’ä¾É%¶veû¹É¡ˆzÂT&2:mQ^²¸Š¨ø GÒ]dÃD²¶¢qråaªV²Ì ÙtœH,Y}ÂL©‘Äk|Àý´ŒÄV{ åiB¬œò  Š.e\“©ÏÆBíœËº~"F ½œ´ò‡;Nge_o5WHù “›ýRç8p´Âõ¥¿Ò ,)„x2ÒNœHJá«2ÚBsõyG/8à7øe¬É|²—~¹Ô/]½ÉÆ)Kñ.ýÕ]½Ó1ºSøÝ¥gÇ-¿†üƒmUnqûÊw»šyÜm¯òO}U©Ãõèt¯ñ®xr¸k¡ýêÄ£O¹ºNÊ»÷zá(«ž“¼–r¢yw¿¶|Ë‘$°‘‰-Ä|‘VXK ééŠçÄY%ï5±c•ñzÝKµI:œ§ºØjKzàzÃmúLþ¤b¢&CR' ßüyƒÇ7ö¸¥Æ%ò!h4b ÔͶ1…B¶Ñf£§>Ÿ$MwŒ^\j[’¢Þ¡¸¹c2gµÝ಻ ôãDÂÝQôò¿"%ØSïÊ»ÿQF`4q2ØwC§_p`§ ÷©Ùa™ØÈÞ]t¡%Ëí×mÞ$!Óm<[,÷*û¼±_2^JÈ1V<½ T{Ð{h7zdƒ}Šþ(_ö«L_ÊÜ /ã×%yÛOÛN’ù:¦SÍýÀêlR¹þC¨3ÂD O˜5¹ÖÈìÜâì Šæljžj´êo‚+=ŒF>Û<ó@Ÿf‰Ô_™¦°ŽÕæ‚5†ÈÐVd@±9&TCd~0 «Áë‘s¢ŽiUñV›]ÇäªõÍaªóyÖtœ½9Ý—+&M³/±ôÈÈøšÅ’µ¢~»Îæ[‚­ùœ˜þµ×Sjwm|2çr®N/–éL»ºÌÏÍ¥§E@1t ËsBK”¾ÂÇf[øSç¨IµÂÂY¢‹Ðáåá_ZžX £¦¸vdKCHðï*;‰N¿H3ÔRÆö§!TI˜AæÌ¿¦dÆë– ¾è€{ÿƒçú»ªØ’A:@ýtb¤ ‹ÓL9åÿþf Ÿµ<Þ¡äFªnÐ;¼Wô¤1¤+Xj.1×@l"Z¾£/+çÍës ¢SÇâ¢ZåÐ\kc» ÞÿsŸæt»á#PBþA-ŸðÙ*ö˜¶U•©wÕOª<»ˆ~zb^ÑÕå¼Î,[ÓÝ{ókúìÔ^ºÃ›’†@L¦Cí£š/ôëBWd&NÔÏ8ÃGfö¦¹qk^&Çõp ráÛíb®¯phåÏ7gµU>¥k—Â"›”Ó¥ÀôíªßÛÔ¾[Îð¨TtÈ2 “(w˜ASáÑMŽnºƒ¾zž[,Ú/«#¨Š±›'[Òûÿ¹™¦[*Â>妛E­´†¾àÞ¹Ÿ' ¹»r¬ëɦT°~ÌE”­Ø[ǽ+çT‚¬Œ—nѽΖy¨í\­ô÷¹–ÍÀ7®â"Lê|}$Ú:›ÖÝ4v¥ ƒ’ÑGp·h†JˆÀ”cRšhÓuâMH7¹¼"Ž0kŸ7}&Âr,ºq¯ÿÉûçMW9h¸ò6:ñi05tÍÖnÒ¿úuUOG~r•£ÎÅëòŸíxÁáü‡¤<3ÊOBß=Œ‚.ÈyÇmþ—1ÃÛ<Ç)}?%R!2;?ë5Ó0‹3Y×Òñ_›@ÿöM«în X[;m´E¾ýàNÝšëV€vºRÑ#ï²Â6çgû -ñ¯¦/Vìß$ˆí7Áwe]êûžfðóU]Nån‘¡ãò(~Xù­ëµ*yL(4E+àm[ÉnæôldüáÝYZ#tÜ-e·WXêéI¥ž(Q+=‚QN×ÉGóA~¶Æ/UÏF# Qã9áíߌâËë)OíÞVÎY@µZTvÖê Uåô7=Àfæ» ¹—qyxKjÒ¼Hý40†¶NêÃ_óÖäÔ–M 3¨¬>×¾¿müv¬Yäå[ùÇÚ­üû:ràa¦?­mÙýÑîÔ:©M{é‘ýLİœ¶¿…¸h„¨±ÀS{™ WàÀ„;†ø…òWö27šh\K ƒ‚>µ]#Z?\¬€ñ—›ý"ô*†´ÄhšÍªEƒ±µ¿G”Ú’É<­{>Ùr‰§Æ/ž`$@õÛP³zìÊ”^(×—ÿHY/C¿Oõ‹$OJÃñèz3öÿ×õžT{#åU3XÀ»7UCœ¡ÙM®Qš™¸Íòˆ®úuyÝk§â¼›žÊ^Sî+}YN ××ëfm€H½Z¤Ø$#;©î8éWg©äÅÜøàKä¢oN?{Ù±/…"7ye¹ÕÂMqÇA{° óâÓµ×4QÌÕÏ0ÞGKÛ+ ¢£àÈKO¨‡ÛpòÒY™“ˆ?+Þ² O~eMÒwRòVø›¼ÔVy”PêËݼ+N¶ø~|­ø»“\@글 Š^ ·³¬ÁŸèqC:Ô¬\ÜOy¦%DÕ0]í|¯b¤Ÿ»þ¹Œ2Ë(ì#N휨gÁÀëgºŽS®d¬m2÷þþøùÒTt×GÞÿ2oÑ­þ¢‘᪤ yÅ;@ M—±f 8ݜȱ‚›ˆŸºz&ÿ?Ñ€5(N8ÓäŽb.PÔ$.^ñ(_žþ‘D¹TèXÏ‘¢‹ë ŸÂq4ce°‹"gð[¬âm_ØHª6¬‡&i$€—(ª1~¨»à.ÃÞ€v##|Þ­J­³óC^¿p]J²…×1ú—®?ï">–^ö¬Ï¿Ûmi›2x9ì­58}¦±0Gƒ¦ÄRC¼;3Ëžöó®yÈêQJcd°bô0 ÌWgò@u©Žjept ¡’¬¢:?«7>JÁ\û¶g¶÷bMMÐç’Þõ‚Ø .^Ñà0(ºJº•±ÊHWYj+fBé“{|pp°-ûSs{Fƒ—wùh_m¡ß²äÃ5&lÀùD§p+׆F8©ÉY¼F­L'ûÁHúز•JWe­Í£îö™Õ‰‡0ea¨J&(}úïÉ ‹qršŽj¿SX%àK Cú>Šz`„U ãA½ÏÖ…@=ÅÛ ÖkÌì±ñånÅÊ÷ë ñédwߎ$¹þŒk‚%™bÈX3ÎÁ ô¿ÏQrŠ)­ÈI–M¨¢¥/µR|ðž"]Ú¨½Âä6¿hBùR´ám—ÚÛ0Ô¸ ˆýÑ=×öŒ¨–›ŒÆÍó)-´JF˜Þ ùù½èëïÛ5ª, ‰¿G´.3Þ ø(Qm·I;›±Dçã‘™ 5£A¾öO΂ÃÀ3f6ᙪUÀHº¨ ÎÓö—+ & ÊäÊØþÂ:ãB'\ ®ãXMÀä@ňOâ#HÑ!+VÃ^“’ÌÙJºhÄÈ>ÓìȼˆNK>Ø2I´ÞµV–,€ýS%ÿÂ@„‰Pwí4lñÓ0ëßc–™}@M˜ òª7rø…ôu:ÕæF'ƒÆEæÊ¯-é%ŽÛ¤G¡]¸‡2<'ì©é€áÜo_ïof‡àE›KFkc¿uŽEIØØp «B&ß3¦‘ˆvŠ‹{„ vµRß›¥T;/„¨½m±¥N"f˜±31éÓF‰è¥åƒ”#‚ˆ’âOý"ÜÜ*ïƒ%Ž> WH LÂŒ¼[ü¤D*מ͓m0èf cv3žëø’$QÀ©,#,¶J†/Á˜œ,U̸6N漺7*TzÀš !„wj׆*wæ¾RÆË‰‰K•MºW½’ŽeY¬®‰×«J³qlÁê€à`ôôÂ.fO–ȇ‘PQ VÌCøãÓíC5â¿Ï `˜DzªW¢¯ºÕ¦2Kq¦$°”„øÆu:•çõ-˜kÜüæ!äó8Ð4¹ü¶&¹™PõáÛÏ…±—ìDù‰ý–%³’ÇXùŒ3[ dë¢îàwó}Þ´cñ° UœxT•£‹ù@œÑùL)ÍÙ$U„™hýãÎ Õ˜8šÅv2ÑènWánž§¶ÎÂÎü1¡˜Ûš6š_c§ˆ½(7 ¢jmÚ˜Eéè@Ý1¶Óôw<¡íjÌç2_/™ÚåŒ]ñx`¡fñ6M± Æ´T!#‚ÍQ3>²ŸÌvBŸ‚¦YjOD=Ø ÷ Ÿ5ð»3÷γâåŒLÁÌEP…ƪd¥D°Á÷UÖ:CÃîô\§àÀ³V ¹Ÿ±ºº¦gzêï1óª™ípÓøýç.ã²î¯ÇçÞÂZõ¬”ËdOßæâÛðSê¯âï ?ÎOE#†pó"oq§ *aDÔ­ž8i±ô[pT=M³WŸ´ÿ‹ze=?3¯GµÞ“,Ò^ ¬”g&•€Ý6J2‡ãu yÜs»<†tj:ÊŽÏ®÷àO¤U{Z±6 ô>húvä»Ñùu›í…£Õ‡ïlw0xìT»í£s ›ÎCkçóîŽê®Ç©P¢÷^²f Šwì_U[ËæÊaÊ­Ž.ŽÜêX߈S›h£E/øqÊ›‡“è¤üñJi™ºM>oÉöá5 ïͺòá’æ9öŠâq‚u5Bð~L“†lËQ,)'‹„I–†³1a*Êù—ea‡¾âÇ{çFB ÞÁè? ­à¬¸Û^'ÊFò¦¸¢Ù›¿=Û÷9)AÛ~iüû¯ÿCÍov¹82ïçRf,I}åœõ²35%æKn°Æ-Ä´ò¼U±+ÊÖ <ÄÂAAZ”jq Fy'‡|¹¹'!Gþ\Ùä¬ú—ÁÇ=ÑÌ÷w `Ù7¬&¬ ÀæŽYˆÛ¶0ܲ£±'É÷Ä{­zÞì Æ$›Gñ)P`*NL{môëAéó…& •Çc¨Uï]VŸ¿™ÓK^¸Hs<Ú‰þØÃ|^H—0š#]÷&’.¦¾Ü&×1›«ô‰ÍÖð$‚ï?ÎäŒ/ˆØ ;4 W£ŸC^ý7±›Š àÇÑnfŒfð(-¤ç.ŸãÔ»zïG.` Ü †ì¤Ÿwõ©óN–à0Ú”Ë| èPÃàÞP R¢ñB1´$5¥ºcÎým+™¸)CtÀì›,”´©Ý¸fåû!>%ïKm±AÍMêÛ9gÎÿe#û©N³b´{b{Ø8¿kò|Ãíß… ³¶óÉò¦R³K8A.ÕXc|UncIjËTJ;¿z·\zÜhùé<S¥#öiUZ~k›]¨T0]Ú ‚ÌW>·Ü¨!ŸÂ¢i)Q¿ú^ê ¥H@ªf)hÕ÷üG碈,±+Pí£|#€3ö–l‘).\ÑJ™¥¨Eô1Ÿhêª}?̼™>„ož”¸Õ÷“ÛÁúGvÓzkòë·9ç_-\…vïõø“AëÎpœéºá¶X)Í y4½_ßÖ!Í‘‹Á¢?@ÊC´v 58&NË6T!š±Q-Þ!.*ÓO¼g"‚,Ÿ›4&¥ÓDà¬×.öÁÄ!e˜á®›¢0µXÐÿ,ÞBݸ)·KjÑšÔžöc".d"%^› ¹’ÅÙÝIKa3Äì;¼pSTÿOšÍ·Ba©“²®CVëû‰N×p( ù$ØøƒZi<&_ëƒÁ«a˜éÌ®÷”þw²Ë÷Û8'óB'åÖÚÌ?]Cp¥@RÜO¼"$ÁˆCøê˜ô µ€¢7TF°º£'`jœ ‘ÝüÑD¹7Öô²m ¿#Ös9÷;ýÛYÉýôA`HÏû*{ÚËVq%þØÈñM¾µÈˆMx›Š£^°ôaëùíšS‡Ôšš°ºrx³N -<ΰPœÓôôº§Hã`©€8úbQÞÛh&áÌ´¥’–Ù½‹VŸQ¬Õ¡¥xÆí1¦{V•s¡û‰ Ž àzW þÍÝ{Ƭç*‹U§l^ÔäÚ›…$èÒìÈ, ³õ)†Ag¬Ó¬¯V„÷SÜZÕ*=„´Òµ— å·v¤²í¯­¼¨4Añ©•ºL‡@µZɧ–›ÜÕ\‰Hoó”¬CxÊ-ÝÿxänlúP8þ5à‹£ÙàVSB7íg‚QE×â~UÙÈôؘ¼ž5GD1wŽúìMDÖ°ØW0á8Ñäó¤Hó€luS†ñ½ˆË0dô‹‚†q+;f®,(lº!æŸÄséµÔCœÅvkŸ'Üùœ-i öë,­€Z²ßfé¦茈&U0™eHÿæ!®ÏâL(2îr ʻ³Qâ™Ø­ú¤.«<\ßç†]F§p÷W€E.¶ÖMGüj÷£Ý—Â;O(å?°ÝÒTÄ))5tÎ^tRÊশ°dååPgHâX8­ ,nRB`¤2[]Å‹qÀ‡KuǪag°¥ßg†{Æ ¥6¯4êóoIsR1^§f"…swMÖßòÉóÿQÙÁw – ô ·­ÿ¾Œ)Ø-_—|afh!¿ñÞÁ¨;®ž‘CDéÙG‚"í lüè«NE“»=74«¥—4®H4bwt^:×W26ap½¢`=xbwz¬Ünô}JöW&÷×äÇÆY5ãmÀ+íÀùý&ö=pJðo¿ÆÂvmTàçÉŒfí:°€{ /¢W>hçß]5ž7y¨”’ï!Óµ GÂl|6œ-¯èC¯`æ/ÿ·‡7x_Ök§Ý48í¦Ô£x#:Ÿ8Þ5Ó"Ç´× Õ–Ðãb•iþbqf¦šé.÷ÊKÝ$$VuÅÏÍ7wËÌeý$çD·úUS§r%¦!Šî¯Ú£À!¹§ÎCXáîÿÌÙ`ºÍ0Güà›©#ú©3¬î'S·MõDÞò¡ƒÌH cJŽ ¼wCLÂ$XVÓ”õú+/íl?IÅÚj4V/Újw{ö¬˜MEE„+„.v`Òj"áËúPF¬Í±YðníàÒùY6#{ M+„ÊèGÉâi¢4kõ:_>ÚnOý¿[çn–Ï`ù`‚lK®òÍ 4ê2±Iz*Í»O5Ón¾ óý;q²ëKÇ'Þ½½E ,)tã}ï¾8=ð궃"‹‹'àŒ”'·Ù- ±…¹öë²?µºüK\pÕ’™ €°u»a½Sõ[º!ŽÄ× Kª´VÌ©¡K( l®Ü[¡O¾EÐsíýZk4r ¯%1Ýoòº °Â—>;! Y$¾!úhçœÕ€j¿çm.ÃJ1CÇÂŒÜÝFMÙE2á€2òÅútÿò~,n¶kcú"q)æ2‘ {ÎÏR6H]j'tUÒÆ¼—-@3…Šn±J ŽÆúlìÔš¡E6¸3ï©SR6ç¤æ«dªy\µX=özÑÒJÄ Â³Œ+vnñ=ÿÊaí¦ ¯Îª(Ž•-ìæ9U]¯¥œ6iMШËr·Ñ˜–ù`C"¹Iç!–Óó·1jiˆÀp2,³÷ªqA‚d˜®g£¹R_eޛĄ5š ¤Ü¨úÀ»·7€äjÏDŒß‚ëc*§ìÅD~¥j+ö<Ç(u“x©_Î/|‡õ‹R›’Ø,‹Ü„ªZñ̶ÓSÉe{lÊ‘ýŽAß•¡þ ÛãÑ ËaŠì鿱þM‰YFBŠJ±nžE&sgÍkåc¡hêé‘ù£)Íð¡èîkô2ÖøN2Zpýaºa VÍ_LÚ`àjõ†[Íû"¿]0ªžw+ü½êFìã •ˆíL°Ô\h 2~×q£o gŽ6ucšáýøãþsö,•k„åzϰF4üí b"Á#Ò©ìùÆ+$@ÜëOÁÜèåBü„¤{—¨²T•×ßuóuŽc©ßåÎjdIè'ÿ‰ëÑÌ-X+²‘.мðDÊHÙòÏHãZäªþÅ<û&ÍÔ£ýJÍÛ7bX …©S˜¾·sh›övÅÚw>ÕìÕÐуæù¶Ü~Ñ9½äãÚ"w8È£Rð¬U";¥3_¦±k4Ôo§\D©—8 ,ãð ™NÏ^–8ˆ÷EfµÈ,¨‡9„´ÇGìñ€ê‡‹;d!gM„ðÿHOåfe.òèÊAéLU†TùŽõdR®~*o"6¦Nú™œ¿ö)³8Ñ%v°kš­- õd‘Ž:×0—VQ×T“ÏÚeJÀ‘Osà6ÓGYn¡&zXCÀÿظ-þHÛpÝ1¨AˆÃ½ÐwR+î0sñÛFöv"Yó亪!ô+I Ó¦®Q­,ð'’” Ægo²mY+‚+ú…“—ûØÍ~Þ9õZÄQ¦ wþÿï0z¾ Ý5<ïžp%ëj"W¦'o&¢HFRƒ²–éÒÙŠ‚rQ:Pëñ›œÄNbïþ®OÐ ðZºÑçcí¡}44¾Äþ~]ᶃz;á?ý°Ç^~2Ý7ÑaÖû˜£Â1Öã7Jé¡›àCvþà^9î=Ûœò î–­¿YrÌvLjánÓ{­|’°ÙÉY„cOð”©Aº÷ÐV#ïÕv!¤e{A%×õ¨{—t‡ï[~6 u•Ÿçd[œ™a]a9¾ìü@b„æ[ æË]Aço±®@€Yì¼—‚p4ÓžÝÙx òŠU³Á8ÓN¿çügšˆà.Õœïפ¿ Û^Ì«wxyÀ&„Ø{!ò–ð(FŸJêi¿¯L´Âÿf36'"G)c»_žËuçvòn./èv Vk3Ù8ÒÚáÞø=žì%ÉsõÆ÷õ©ãß4UŠ0{‹ä.ç©  7‘9ø?E´DÿõÙÓÝÛËVU §:ħlüAá1$LÀøÚ&жc¥‰|gK¨¿gI(¦‘LMp?ž\d­BàA>¨»t@SÚ7÷€ÛÀ!W‡§ØÂYpcgm$§ÉŸ@¢_ G ÅcR. %.$¥8ÂúO5¡û Œ ÿrvå9¬”gÌ´þ×Þážmùkb–8‚NÓo¿o3ÒÊ‹Ay®_þ.ÏnÝÍOâ’â']×_¸èýh§Ÿuö¹'B”ê3àóc‰X[¤ð¡Ý”„Š_Ô¶q«æ/~ÀóJ¥¹÷jÚ2›9K(§1ÐÀU‘BaÍí@·Ÿ\r%æ+ðR ð°ŠÁ=?ÏåØÒ°ã@¡19ßOz­¹˜ êíû fls •ë’Aϧ†ìpÚö9sñòm’…š+Í©*ào³-æîHÒÆ»gÿOö‘ν}pìG™G_„­òâЬ™Q›¹ÝÉîQt_^Ù´‰pµH_hÁ}UG•í†ûí R¤j}å—[g>0ògÒ®•´LçÖ~);·HwJJpÚq:Â%£DæX4oí´!õ¯âÔ ?&5î Ó»¤ÞSߘÉIÓ†¼!GÅœJ¤/•Uqãè½bÐp§#ίÚMÊbÐ,—Þ_µÙHù=6pfù ¢~c«¡ââ™7øHîÃéBÛkÚê–ÅÀ&ØÖÔ x T§Ø¸‘¢v õ?)·eR*a÷ãí^CŸ,UeIÉ|ÛóõÄ“9²Ãwkâ v—ã0K‡]–A:'ŸQVÉs™nb¢«˜„m`d¡î¡ùP+÷Þ„rÑ¡,¿ù§¢ ñ-ÙäÊÈçÑZÃ×Tåµìˆ9 ¡:~ùþÏÚ냳m›¿NÃ^:óبv»=öKh$ìß}ªU¼Âé cѯ(÷ø,¹¡Ì¹ÌŒÁá…ùíøEø%NÎ hoüÚ¢+ÚöïÃàåÈC‘Lp'“ÑÃæ6FçWºá¯['.8dK[sº²fʉNöÞ€ÛÖÇ™—õøµ|æø®šAÌXƒGxškqUv È¾QØî8ðÅ0ÝLEe 1Äib=ƒúƒ7žùÅ%ýÆ|Ëö$.˜d{aë"ù†>m€gEVßxD•cFÐÔƒ…ã~q¡-iGÅ/æÚd`$QyH`gi;ïˆÁ÷¬$(AŸt¢U“T ~äo8&uU;óGÕãÌGV°2éÍ>ökʉž{‚=vJËh¨¤ùOñRQï¢ ˜­\v&‡hÚ`¼=4Ê(ü©ÜÙeGû”ª¼l"då†$¾ö˜”OxªýÄ‚Ûøì&ºO\$§˜i>$éæž,ì\–àžåc0\@¯ú>œÿ4yÛc>¯¯ùœÞwEQûì –”ò¤ÕMc‚`)ögÕóe¶ŒöªMËŸ˜Æ^†npŒªõ˜Ù̆—"‰lÈíOŠt]d®àïÞ»n‹aH*òù¸ì¬cÀ&ðÚ^þT‹†å™.ºÎo‹E8ö¶´D¾»=‡à7ã¨Ã” ô\AV³îëpÚÀ¦¤ÔàJ3ë$v.ð\£§ÚA@´Ršƒ«`0KEÖÃ?8É4¯W©ò®)ô ’2”€ÄFÎü>DH-%2MÌçåw}ÅÞ™Þ€šìà D÷‰% •BF•!&ª2¦d\f÷¥#ûТÜn@ÿæ—¢üÏA"4š!ô ü!f™þ²éÏ íëYÏ¿ ï¤"ð„)‰D ¬z-ÆuÎÍa„¼$Í+ÂWæ¢[ŽÝé<ÆÑ‡“‘£™¾’¥çŠUJjX§ØM?\à - µåît\L@«ó¨¨ÂLþfu‹+©šñOü>f—¿JX €_•ïÐÂèe'µÏ‹ßõ‰O¬ò¡>‘ù`êg;ΉÍÍ \ æÈ§‰Î8\C1u÷'ó"n{@-[9œ ƒÙŸr£5<»éùKˆ²å]xõ›ÏÌE•óžßêLšL]ÏH`ºþp4†ìæÓOŽ{‹ËiÓO@ôv$;#jàZ|Ä”¶,(vXI>—¡‘…Hþ‹›Ž-…±´˃lR˜AiÊÇXjps…þ{21æò·÷bSv`kpV‚y³ÇwƒšXµ£n¦jœ¨Òe¥õŽ3Ïs£g»ÐrÜÖ9—ˆví óÊðê'”c4+Ÿ@ëaHÈ¿£ò¿×/ï•z<»NÎ-¤£õƱØmƒ¨TRÑé5¥²Ö4‘­Ð.d|=æ~{˜ñ‚”·fŒí{#šÛöƒê†Sp˜kl6ÛN.ec’à=~•¸“@ñíÃ/“t*g‡U +0,¢. ½Tº‰Þ{óq [›#¯ã&´‡¾ùøZErC5å°5N¼©¢PÛ«)»¸ýßÌI ±*‚|3ÈVONV:2pàtåÐéN³žã.“¤I‘Hþ€XïçËnz½VÍõìèÆ etoÝ£ÕÈŸ›·ðZhMxyrlýÃ˳˜B`ªãDa^º³å·û¯ðuÇÀ,5÷dî…µ!ñûçgdâ(HÇù TÛØPœ õkG7duëJ ŠYCmÿŠí¸ ì¹~ñs"¥T‚/sÊÁ¿a=e|eªŠÐ9ÝŽý5ì¡çôHÑv¨@ÓUKT&ždƒºîq5—Aµ÷™C"Le àúÒ5D˜„2údïʺ©×ÈxcøYl¯´Ö„“²¸‰I‚“¨Fˆg3(¯¶ƒ­Í”úbÐÃQ \±´´Ž1~COˆjð¶·h$ªM¤:×ÕP:Ô;òÅàéM6¤ù-QŽò,´ª2‡ªï ik¼x›k»kc_„ÞEüÕ”k7³˜¡ÐüWâ@Fnš³$õ XêÐô\ØÄ¤z…ú#«“ªäü€2ß!­h­êý¸f†¡„3x°ú)‹ g÷’æUØS•.IcþŬæg?œQ¿ Ãüª9¡•ÍØÌ9ä‘9.ÇãÖ7w£T«Ì1 Yó_üÔ˜ ÐÙFD»î<ø ÑlG¦ ¨’fa*/Í:m·9§Xª’m¯þ«ò¢ð½Ö>5m Š%+\ò>tƒGèÈäT»û6áv¼n#¯îR§ÇGuiQê³e¼÷{æÒ‡±ÂÙÈÉ}^žœ»–´VùyànuÙ–2i½ÐtpÐ2Ó]—3ZkC±uÆžgäòÂ…©…?¿S\ 0¤—Q µüîi—Ñ“7p?Ûª³O|²\î‰ûšË©’‚…3?b™ºçºÞWGéö¡ ]ˆÿS9ÃptëQc{à5§e¬kÑD O¾Ÿ¸]åòɯãÛ¡Xp?nÀÒ b"—MÈõ.Rg[ß/A åwµ} å´¯â?g%]–V xe"Ì£K¾Î‘w¢TF„ŸÒ1¾Ð/FË¡1q~öK  ³ýèûŸû¤PȰÌû2}r} í¸e+ çã­, £?ƒ vm&'g+ÿ‡X[+F@Õ%/£úóïºcq8à µTw±4\qÑ¥á½Òz¢ò‰í›*Xg£L±Ü´ç¨k9¥d)!¦Ðu|£ëˆ ölãH8.\S”°ëkÖz±®~ó.€³c?U;.Œ(ñj\øvþa ‹‘Îã—.-Ì5ñÆ›³VMíEëeHP+FEç­iÐç kÁš½üñ­Qâ1$Dö§Ú»^gíJ‚ÞÞÉ0IùNQe–ÉÚ4üÜh€‰ô–¶áaõ Hº8C§¤’#˜,\’”h`Î=ߪԘ Ç1qº£¿NôÙÒˆá/D©¤'J2¢yw?(Ñ9—Êe%(ݓΠßÍ ´¹¿¯S¥èô °Ãë¶ÑXh.×t&_ã“gmÊ€Ø'($†ep´{¨"ׯû¶;ò`ócý-èþ:¸}²À5Í^ü[ÖŒ0Š=Σ&7RÎM¸Éc(BËßõ ÂN¦NÄþ?+æ9ûÎK¬×PЛNç0[Ÿ0”ý™œÃª1—LErhвCx“ŒÖ§^‚ó«|s´,  ôº…ÔT)½Xg1¦CJåµ{0ï‘0Þ ñ;mv «K—@Xã²h¾òû»¹CÑËß.À‡¸¾²àîr›T?r§x szâ.³—±}˜ÿS†T»¶Yz_!èED;EõIpáô& ¸šר¦á9ÍóO-³ÊìZ¢U©¯TJAÎéÒÄ£Ëw"yªJB;Îï5¯d}ÉÅC„–jƒDÕÏ´f:@m¦·‚»wTãqy‡óáª*Uz„ãÈXi™#TšS¢1Ža ¡ |h™ÿ#½žv7çZœý óÊ©c\n¯)€½7RŽùL®àý?XTùÀ¶Þ{ eGåQÈŸä7A€ÎFY¸ƒ™kÎÆ¶Ô& ONxÜ/%á\4ðexºÀø¯2Ÿü½¸b­+u?÷¬œïQ &Ñg•êŽ h•nÔ5yrµÛoÃè|U}½bÄÄ/ ÉÑ&ó ­k”þ>èöæ!óN%FÒé8+Yóh©[i‚”Gá–H"He8°œ5Ua…ᾚ 1˜ ”*í<‘‰Nª_¤jv°Ú$Q6j=í U¹Eþˆ(Ìsæco°>×®;åqe$4E_$¢-ï9–8Ž×5ŠÓ…¤©´ TFËMÃà`è2E.ROnÝgãÆ¦VDõ”ÆêŒ[¦ðh©%{ÈV*}k1ÊíWuˇ¼ÊM½ËÏÄk®½ë‰c¾yœhI‚ƒsÜœ5º·:ï¥3ͬ£v ¹rB²‡¨ûÿIuÑI °·I+¯„ï6k@ºšÇzν÷é–Èxã›û„ë¤â:ÚŽ”¶B`QªNù±6¿»0Þs—WAÉ\ßñ¡sÔMŸGÉótÈ Û*s&XZ(ö¥þ8]†Ý?¦s#;³Z |Ê6å×çW.žâÓ%N»)A†@ ×[ÞÉc#Êü÷¤8%£ú®Êø?˜Â€–¬DL"Ô*g4cð¡×ÿBjHØ 2ÃDÞ¬zŠÕÄnØ'úªt$°o´&x>ÇD™‡‚YLcc‚MqNç”J À³¿Ú5Ø)µ< :š ÛlÕcwWEkd¥Ùp¯àYwŒ!ÐÀôJ¡Ì*wœ—õ;`º¶Ì—zÁzZüÙ’ÊS?û6Hð ;Áj–´þDì$xŸ_1—J^}ÐT â´³ø+ ðYH£eç»P Sœ&¸žpð¯_º—¶-5ÑþàD-Ø~ˆêÛ2UýiT÷ª·(`‹Ñ˜¤~€²­ÜG+(œóvcÁhß @Äk”'üEÆÎÿã”›3ýØš~Ñ+ÚiY=Pä#"¢a8þ¨‹ŸÎ¡Ý%*"™œÄåhªs‰˜¥õ†Í6enMcÿø.6É0¤ÆÀZc”’ !¢é?5È<‚Erò âa^lºðm úÄD³`¢r:‰¦f²Ü2–Î(ˆX5 ˆB }ß>=7q¢É†ú̱=‡Çè½¥ÈZ$5ب^1‡ý´… K¿ÙÉfŒÏU+ÎáÊŒ5‡¹ÖJMZcïa¤Î ¹D涨O?/£æ~{oöìÚ’Âý|);&Þ€|@˜ø‡Ð(Þ4!n¿`þ:㔵aéåPqá„od©T=¥°CQW²Etðš¦E•X‚"¶4 Õ–[Bøy¢Å„DžÖ³ýÂÃ[ihùZr{³ž¦@fO¦ŒÈå:s¡t ùΘføDƒný± ìê¶@̳‚Å/rÈ‚oðkéN¿ô'S§ÝÞW¥|2ºGTDÄÔÌ:ßJö nƒMôí ¨!mð/0…Kî ³Ô°Ÿ°ö™ÎUØÎÆœ'ÑçhòºKò¨aó›gÕn¡£¬žÙ9âÛYŽÆIxsñg[Ÿr´9væFZ? D,~“Ú“½ùssÏi°|ú~.öÉâ/uuµ×ÁšÔJÊ¡‘B§\ÔPÀpyÐÜG#W(Jœ*K›*ÖŽÀbÉ …OgÖk xãûÒÑaøÆ:7T]qˇ92!ªWÙ?çH™m m Ÿˆßš´ë úбp_V{Á™±ù A‰B/rˆC….óÑ{ÆOßm’L·¢a ¬ÜÄ:=Âõ= Ÿz­\¸çÙy…"‰”älT²xîÆùǦ¦8éÔx”YÉ»™caN’A‡évsÇÒŸˆ…ÉŠ!#ùç _ã!þ2øõ·XÓgÏè ^eS>g·|MTª ϋׇfÅp-ƒœ…A7ÿtºP³Ù´…¾3Ÿ¡ÖЦþ×þÜÁ~Ѿ?ºOý$hh-ÝL‚²C5ÛtSŽNtL.ŒÃÿ¥˜¨*kÙׯpÜFáCgÒ…Õ uÌ“I…‡ Ï`öb«ïœ]Ta÷¼Hq^Ýê[n 0Äúj½­– &ö[f8âóÆ ÇàZo…r^¼rÑÛü_‰Ô%ÛÝeú§Ç»ÔÀ9å› 2Äi·„ K¹›&Óýà«Ó³yáz\† e¬FŒ•üké£N§™”ñ5>¯¨òþÉ]Hõ 9À>@@,j· ±²œŽ ªgÐSþåÚ ¦òFʉ¹ÉŽ]ó—Š`¾K¸-à/ö bJ²Fv·¯¤q&ƒQ‹3m‡ô¶ëŸ ;KSõ°¢W¥óCµæ(e—£“GUŲ)zÍB9½P„Ší¡¦ïÝu=„Ÿä®&[GˆB.lÓ÷TýEbø™¦¾zÃ?í¼ûM~þg~F£ R>±#±j²•—ÕÁš ;xŸ¯ _½üA)pWðš—,«‰Ês˜.ƒ˜$.jn|Åv†a{U_Ÿ–²Ÿ&F郈7©ïQ?$× u쫱c¿?"¹A¯ëËt#ZwƒÍËjS#ŸÕ朜ãmÃ@QÈ\Ô'¹.¬9”ÞúÆÉïÿxÝɽõN5~ÿ.xâ3 rG’†L>ò ÎÉsfØè@‹7ÕÒ{™¦„TQ`z¤×-_m£¹‰=£LÈJGøî»„‰îÅ‹qJ·Bˆ;*ßœ0‚ä}{´FEø ±i|8*Ù!ê€êDH~؈¶TÎÉ)é_*ù2+Ê<ܾ°³;0çl‹Aù#5Í©"wa@9‡dÙÝt/Ÿœëôr?± Qêz ´ß¡v=rº(©>&å–q}"5W‡P‹¬á¥þ‚yÈ¢LõåO—ó ­¿0ÛŠtL1³º,âHg$™z^ós.qh¬@#…9¦´ò ¹×ù¦"Àxì,§B€fÛÒ ¥ÅçÚ/J%äI‰DŸ.õºÅa¯ ˆÆŒìÖ—«c&/Ƹ_Àý@ÏtGv`èT–løl¦aE».ò ’Š‹Ì °®.CTtòû‚kÙÎÓGl¥ HÒî†ä\åÌ4Ÿª@õpUª5ü§y¶FÊøùSZ3¹žôR‘'ÞÄ;™6ƒ¯ÎŸÜ9 WUÄHª. Ù¡¸Šze4jÏ’${v8·Ähòò§`ÝI§ÀÖÉcqéûÊ 2;ù&ˆB=Y;sÈY ¸ lâÝP× T“úM¶j[‚JYOöÓCñ–¯Ý l®”3ÌDý!¼S<«:ŒôRÿc%¸Rv‚iAÈ)ñe¢|B­¨";ºu‹Ÿä)ï]]SO ü(fÝþ_þwç߸D/§s ‚¼(~²–6s +­­üi&’]¿"Ül?LAk/cÖYÇOêÌó¯8 ¡·Ú Éy79Ïh’Ígi¤O6ç+ Dœ³÷.Åù'¶n-â·YæuÈÉ@m¡½jÀNÌÅǑӰſ×JMw˜à ~ßw0SèAo7§!.»qÒ `i|-gÛ:pë±[䃹yòwSè’(á•p^Õµ`8Þa"ˆgw{XÀì@(u˜ýÆO‹Û0L¨ën¾£ÖMÈÙn@C–ña®A øydVvî •­U1G"öjjß[¼‰CŠ£,¸°øõ*¶p–Ê<!„të¶ó{û )˜Z·=J ® Ûç˜Þ¿[VÔô:49§‰T±$É3 a¬û&t‘k¡–q9æýýý•á ZÈ4 D]âk¸^ñx jŠb9¥“ͦî8Á ŘÂhãwÞQ<´8ùÕðÀš>Üôüž]ÈÖÅÈåoG„ð÷Ø•a>£Œgòüt4>–î«´ºµDñl0M_¯Jªy¦jÀ 8˜=®!Êô”ÍÁÎTÑéTˆ‘ËÙ¤1ˆ½½“fȱ1á,DB/U9°:9a¦Ýó÷¯©iðyðˆ†ÚÆwUnè3æ›ò…·yÐçj×ñ•‹ ¨iýk†çÛÄ”D±`uäX*ÿ?ñ)u²Øž&£ù¦@«†U;ØkxË—¿µ”U•Ìš—4 ¡ñò1ÜV(ƒ#ÏT[bQŸùƒ4•¶;¦™‹¡Ü¼za߇Øë»…Ø@Äÿ0j‹9qÏ1vµÝžrü7?S|PºìV¸í$Â’ òŠF«{{Ò\—+§¡IZ(êV@œÞ]—P/C9/ýyÞ¢ˆ{ªb*B×Ú\&¨‚~{•®•®ÀbÔ‰Õm`¿×Ìîf@ç1Å*Ï×x-ç·‘Cœ™‹ŠˆWZ\ŸV«­?ò¡zÕK·¬Mf;·>Å.FR% qƒIpW¯Lÿ™y?Œ? \ÑÐÀTÆLx•c"08(rÙV’`L iz™|Á$ ù½°søu†«9/zO¸ 2©“7"uÔØ£sNÔÓ•Š Öb‡…¤ƒ¨[¹óTäÕ»ãéNMA'"¢Å1 ô«?ôôAL†“êàÐh VÑh4¢ôVr LïpR`ÄŠ 5d®ßÙ%²RëZos?(¿¾ú/ðÞMÀ¢`êCÑçãý+vüøÚK S>©át8àÏ]IÍÝý)µ’ôΑƒÌÎŽøùå­Oõ NèOãÝ’må”–¶XDËj˜õå¾/`N6–ùK‘8b4u*3ÓŸìö- PŽH›´¬@m´¸$^=v7phGø:²G‡É».ÓKX¬½,Ü'"À­¥¿æþÙiØTñÖfáãÂó̯ócE®P:x½ÓÚøïŸï_ºÁüB§ÇørÃ; Mù%)ìI$µzâ÷sŒÎ³ž¯ø{ b—+>þbHÔWèdwì% ˜&o{¾†‡‡3gx!(*:ŠòŒ $üs“Ìš7ý–’ ctŠ'Äa?evε¹!x‹£õ¹¦ÄU‘³Ïùö;Whžúå…™Z¥¬2ÝûdÍH*tYå周ò¢Rt¾§ BYq_Ny7^‰ˆä¶ø%@瀂êÌm˜º¥þCéI)ñø»~¬ ‘ÏüÔ¦“ú OØ1¼¶„fppxÎþ±“.Q€©uuú®¿R±6ˆ1”KmÓ‹Î^é»ÏWwña~kñí¬ƒ® OBÁ‡"µïQòg8´ùÀ7`’dŽÀƒéÔ­Ú¿*L•£ì¦êàIÓ…ždù5xSðÆÉ„+lAÕNvµŒ„3Ðxó‹_B:sÆÀ=¤žC)óDy“‚º¨|Ùq!\˜Tž6>"R1VgÎÔÁ©2HÌ[dÏa¨ïózÍÌ2›"ÒØ%j½âþ¦_Â{Ü’)#|lũπ íˆJ.D®eŠ(é?„›ãÆß@þqìá¼ÇŸíœœúp§ Ú–ºª“ÙA'Rj­½Ù³Ýª± !Y“ü@fY {{FJO6™Ž>=wÉvÿ=ýkÄJg³S  l±xÓµjax²Üç{(zü¬VDRÑÞk„–5·dp ¾Äq—:á+^€­…$F§K4@o`S|ŽGwïýè8}©:©§Ò^ _"¹oYÚ»V §8Æ—çý@ Úˆ‡_‹œy͘>}™É Di’ŽÙ! ñQ 2lz\ÁaFUWø]¿³€‰ã'óDz«t¤™ÒÎONªÙ(¢­lÁý¯È®S³xot¤ cVûWŒ:…·Á!ɉ2v{äYd¨rÉ’Xƒ±o’éÝ*‚°´ WΪÆe5'›D4ö rÖóLçà¢6¦>‹Zamuÿñ–g Ó&×ÓY•š4âJý»Ú0ôÀ—ó‚ÞF›$¢A/ÆhN 'Ë"×ìÄÍUbUé˜ €^Õ]wŠÒKNšØ;A“Õ…nñVƒ>œ(ª”8‹Ã,Pý· ÚZan8g÷rüÓ“y_qåp iúƒ\ܺ_lïq-”Ü® ­ý.g¨Y± ¦„8HØÃ×u¨³Ðôû¶pÖy‡â ý²¼°}/=/+òʨùÓ¦fOñG fQŽÖÆMXÛfù!Á§ÚÜ¿Ý*8± öÇöI?píƒ )ˆíJÏópK²6‚> ¬hM9:ªk5<ùáäÑMb }™æRü#>Ä:W,ÜH][tlÓâè[לN§7Þ/Ñù“LC¾õ€Õ`f‚§-‰M £ ËĘëLW¡„Y<ïºFn¸EÉï [x‚78$žØVi÷G°l‘‚=輋瀽ÙéhJÓ„–Ñ{PíJ@Y‘I…Ÿ­<ä…«A!:… 3ý|þu‚FÕ;ÇéXGÒ]Úì0‰8Oõm„ýén4ƒ`˜tq¾N~噳k …3‚ÿ¶‰qvÈmbŠ’¿*E­t0ü؀ɻgYóƒæÞx \TpÆÔLawøu’ÿŒ‰>!gÏá”6TàiÜ+ÁX}|–œV^/+%´žkMiÄô”ð»0ÛZíÒvHÔ †”Ì\ Ùa¤¹ÆDÁŸãÏd)ÊýªÁï=™,èÔWÙ»KD,qA™â…Xf]zF‚«ø§»#ß¡FA´g)a^ÿÌ ŠÍ Iºó}ÌÞQå’ÎÎKÖ>°;|͵@ä&**EƒŠ|0F‡XØ8¯x0Ç.ãs\‰°Éâ¤}ºï®hÓ¬ô mjì)~3ôß»FæeŸŒhÛÓš23N žIæèüág²azMŒ(~³Dõ—“ KBbG*u|Î"cw4^öâ4íˆô‘,…;ÝBcr+„IöW‰œ‚¡²qEpY7i„ÅÉä m)C5Þ{ÔúÁàÓV ãéÂÞ¡ Åó-Á¸ü™±Ç `>Þ;ú÷Žþ£„+ZØÕd˜§Ëâ.2ݨð?Ç”Ft#+÷,|ÉÜœ…nã•Üä^‰±é7´º áÛ‚&ª`Å›íBwOñ2ÞOn²v&Ñ7§n¡Uï¡cùc¯‰ÿÈ¾Š¦òš¹;Ja@zyîÌy±|RÞN¯Û¬êÖ÷¥õ|Sì®kÞï lÚˆ¨Zþ§5kDHª¨–eׯ‚)®\‹rdqú–Ñ÷y‡ófo<ÿe|M78hAó ¯ú»sÖË6LßýõûHcÊ´¢Å7pŽÁyâÎL8˜Æ…{ÐTJþêk Ò¿¥ȼ;¬2ˆÍ[?8Ëѳù&¼®Îf æg)8QÖ(^!*·ÊŽàGìDrC@Z‘Ï·¡„z]!ò˜}ÜFšñ—8Efž0™Ú•p±z@—ÊÏ`4õÙ3¢H›ðŒ•°­Ñ‘Ô”.ˈd'ø¬~Ý´ (8DbJ*Žü»¥X4ñ¤˜)¶?ÞS—úöäq@Ò¤ý$ÈŸ›ÅrpKÒ€bÿe¿o¼‚+M7|ÿîÕ 5“dr,!{‰©[ðT„:ƒ>ðÙü~‚'ÛjG°ž…iãbmÔkY8…©¢Ào Þ# ôÒ8‹€~kùâœ±ÄæÇOÑs¥³MÆD\L˜9¤$k 6%B;K22ÚØcb´jp~wÍ QÃé›)sã½dcÃò‚Ó\„ØgWÕPQâg;S̟¨ðö dÔn5 =2”f•Áj›ºK®È˜³á#—ÖIÞåYPíK"¦b˜{º;ßqâ ‘´ÊÿW¬1É´!-Ë’\Óߥ\ðzAáTÊ,5–É2ÒZ`ƒú¢æŠ?òæä)í.3Ù,&ÞuŽèz¿ØÞ*kçç,¯eøØÀ ÿ™"ìã³ÿ¬ñôº3¸™‰1†ñôvÞO6+ó“žRÖWŽKñŽßºs’k¤)®go3¼69IÕ$öšòs¦Ñ[I¶Y„¢XnˆÞ4(žÒ@ž‰éÅme%솢Ãg?Ûùª{¼ ±~õ}­Ò^{d©±¼Ž¡˜3N«ÆŒÛâaÛÔØã›ú_Š|MððP"&fD•‹àÐ"O1 ¡›ãØ£’t^Ãy 2˜Ó×ÁuAæø:Tn“+ÞYÝgÅׯ‘ž§uÛŸœ‰ø}9?[>z<ˆÃÒu "ÇÌÒO©¡CH1í˜k‡àßÓ({Vþbr£m•÷µÙÁG‚}¤‹Ý]¨™ ‚Veúm‰Z<ãEé{õkd•q-uS1ÛÈê8“¦`ô…6Ê…b«¢Lÿ’Œ|×N6P'伯5nñõ6q'z%äDyˆ‘A5îÀYQöDÁØ1¨Ô5@m2_\לæù§€”¼T Ó#vwMîNG!KÙþ«Ø> „úÄôÙ>o³à§®—òòª:x£f'B,’j ÞŠ% Ãæ+J‚‚{J¸æÙ݃ÿØgõœ8 Y-Éà¢EÔ6³hÍ­ÁC¹X9ø±ƒNmÒ³àWùão#^.M¿ôJO‰AU,Èg"¬9±ó§®1šƒvG+,F5€p`ê=Ð&E1“&ùÉ•º^cð§›§§ _‘Ïáá†(÷/_Y_?'¯=f´ÆÒŸ·Mtÿå°5aѾٛÀ^DÂо¥äÝNË\›¡\ÐßÔœ O {[ȯ”ÎW‘Ú^GHÙlà¡!#õöBû ©gõéú_»-`ÿxËiáåuñ“óï žsÐA o´5_·‰Ô£Ñ†ÞJ)6Å=žµÍdÄ4áîçº]¢Bd¼šV¦hî‚R›zSMêpÙ¼…ƒm;‹›!®L¾«O, Ž«ËßÁ¤\ûÃÖ[†v¦WÈRÊ꧶׬¬ïÐÅ·k/ÔŽÉ´ôùY–Š•@@õ`eÁóÏ€:øôcª^ÞW°•]8Ÿü Ö_%Õ²]êí½í*ÃN¤I–‹#r| 7ê›…~ {|ñâZ~Ä´ËD±çoŠj‚ ‡%S C¥-ôµÌ‰µì*\„ UÊ@Üù¡ìÃe#ÃôN̤ܞe×âÇVBÇE*/46ÇèÀTýç‚7ðÉuøÊèß*¤ÊmnÖ7 (D£¨ŒU‰|£ÄȾhZÌ[ÉËb \XõeÙ‚²úåv†Z½‡ÚE=ù¸Gƒ¸XD¬hôÀ¸'ñÅc°çíA.š®qª‘Zô•ŸåÙçDóÒe=»ñ>Õ” Çì6BÉ,ú<[Bgàý%qÅ/îð»ß) Y€ëŽË9¿6…`‹›Mä¹Ó¸krñ;y•g«†Ó"èÆ lÉtÕÌÊ1Dø³Åõô þÜœ|ïc»wS†B×LÉ8‰”åÝ?jêè?9£×?†ŽÚ*‘´AC‰î)¦RWŠ%˜âA©  ñRئ}8ðK¾ÇFáÌ1\¡ãÊa^ «ºœÒrL¼.ÎïðOê8‰èŸvص&|"âèÿñ†9\`Á'ás«Ÿ€&V™9º;7F_Càpäé}Z1.ÇMѧ¦APÕ,Ð1†àòŠ ¨±\ÈÍÏ<fÚÌT1Ô!9+9¹«"û²‡å¡QMØ{êI¸f[xqjO¹Ï]©=ë±[ͪtûÁ.h™¥òÛæ?ºZBað³þ¢Aÿq³^•ÅÏÄDŸšSëܼºÏnp/ÜôüYWDñÊ ¢d ¼ë5/|½NþqêSž‘#³Œå ´ýÑ œjxº»ñù«DîI¬p=®ÚŽÛ”UIÝUFHN8|Ù™Òà‘ý(WOMp½~ÀÒ‡ùЄĀó’²ÞÒ֚˛b¤~`Q+?â0¥è¶P+¡vµ´´D!Øv——]"œ·™Ä?#¶p¾;úÙµ»fµ¹-?Û"„~¸¹wèTKû !îè“a£Gq±/ºó0UUˆyN[qí2Tÿ—/³Êæ Ü|ݪÕU‘.ÕøÖgB8J ¤R,EkXD¤Ôæ6,Ò1Þ)ÆÜ‚íq&‚eçÖdŒEü&$Î~Ô\ù ¡ÎãZ –#;+oM;³ß&ࣖÜÍ62xвð³²TŽ22ˆ%ñ€­ú~Å|Ε5`.¸•„%TëcÍFŠÀUÉ7]¾'Ä%šÅ+L«´9[A²±oǶ.s<¢Œ¿Àx?ÑIûß]êB«’PQÆÏt³h»|`ç;Üt;Ÿ’ïªjÍ“•Å%YMkþý½!°YOÝ?Í´6¸“‰ÛÜö’á×lºtÈ€íûÔë­ÅÌ]+ÖØ³tmZ}A­‚¹þiÕ—¾;îˆ1>´5ºW8GÜ6å2Û³¨£m4¦|雹ÛM.ü&ùVàI?+Õ< ¸n¹ ÓÀ³Éc¾QÖR¬|È6%ð¼LðîÜhx/«@À¦} ýÚWüÄ™[o(tÖ?Í—Zñp†Z˜ÕÃjÎm'ø°ˆD ©[üqÇzB+á]ƒFœ š '@ E`Ü„âšGå$ÛJ‘ü>Þ—¥¸ßE7§üN¸»:n„gÑæC±‡­¯ðšm¸)‘K¶IZÁ6„Ú¸š’¡,•ʸù`xuº†Ë¨ºÓÊ”$øC:*0§ßAö2‹ñ¿0r%pß7ô¯Kmx0òç.U¤ Tx<.³Y‚g<}=·ñÍSׯ*éMû.K¨Xáâ•@W¬í4ÄÙ9‹¦xïéº>·h¿¨Jc “dçø4Õ~ ѳW§"té×t˜£“آ ~ñ¨|$W­©'?#t•iàA¯`8s5 ›ú¤Õðkæ¬0TOÃslõb÷eG,æün“küJ.4„ë¦÷âõqœ8Î"qÞ=Ê{VJü0”8 Áj]]ªi58Þ{»¢ÃËì’jc½£lH’MBâ¬x¨)WmMX/ƒ(©Nçbþï•¶l¿ÏoÿÑRSr6O8>^òþ 4T{ñ -*35°M¼=ôêy¬™³VIâ7*;Îg¢ÜàbþšÏÊ1ö¯Ó¦¤»aIPøRö;ñÍ©úÏi˜Ï©ÔnÓ.íÒ—K5Z@c ”ò<ȶB‡¤}ü?æ\gÞcÂ1±Î¶Yd+øWPâiåO©üz1u3‚(õoçN¦ÿ ¼A¸)‰'25‹–;57Ý)ÑêŒÜoPh6íì>1ÿœÐ &_û1tN«ß cyömˆÂS-rp¨É_‚G|ET¡3ܼû]d,E5Co/žóA•,¢HÍ}.æ+=§üUfVi™<\Iò†?jÍJsf=lrmUãø|F,)·ÿ¥Jˆ#ç¿sC€·7,…™¡²ß¶s¿ù1Ò ’v7.ÇŽÔ OǯVÉñÿ‚ƒœ÷ï—Ö*ë'ÁR…Á.hÅE0(¹$[䥮Ö.e@±Œ "V“do[i à£>ÉcÝò_餔/R‹3àjÆÞ}‚âçâ#ʮӶz’\L±Ò=T;“Û$‘AŠžZ¡8y”ƒî&¾‘f¼4îÂ%Á†3 NDy¦   ª®ßÜK‚ÀâXtèÏ@˜ñ\0€F–ŸàÝËw‚¶vwoWZA59™¥Hó±G±Ä¾µZp%ÀFVõ¶‡ÍÖ½Aw T4ºá0Žb„££ÖË‹€Í[X’¿° èñ3MrïÅË“óé<Ú¬Q­Á"€ïâÁóhzçËiS~Yþ.kÖ¡"šj æ#üÒwˆ4áÜùì[eDi€#s>§aެ8ö›JµÚO2k4ôšgQ6|ê½7 yŵ¼ÎE³ìF€¯ )ú]§ø#²©¢ÏJË÷Œ]T²ìTšhòjáÌýôè^dÙ&g>O¯û ͯª³Ê2û‘‰bM¿¨ßjäzIÌ3ƒB­k;}Kl@8G!í=a˜QÍul8„l¾ 2 ø–õvŸ%J3"vºÙišjÉþÐV7r ,7ÈäúTš]§û~\W¡Ük‹*„%œf8ÏžÔ a©0åý:ùœænϰ(!ÎéA™ôKƒãS™[º9 v/à¹Mj[Н°L×­¤ç©" ‚wªŸ˜ñ5¯¨'m¢µD#t™»°´Jä¡…cèÉ>e;eÝÍù“ìÆØö.?~:°7˜àzoLiÐ9`äÙ$ö“«Üj;„+ßçÍ ˆºñ·©›í5NŽª¢öìÜPÙ°ºSì(+n*‚ßÕfПuÚ#Á'ý— $Íl²Z׌Ì&­®}Z±´$È<±~Ð!’¾fGðFR7>2KþËT+¾6ë†bÊڈ̬¾ ŽÛNÕ¸_ô”LŸ¶×¬2’9,˜ÑRËþ¶"•Ù³„ŒLƒ¦ªÑoSŠsž‚f[ (ÜÅ HÂ8J¤z§ªEænúÜ#?Ñœ²…6p$ ÓÇ#ø6çÕjȵ-ìB›Ïszƒelžñû¹N ¿€¦«Wü_ýà=B¶±—ì›Q®pãê"¶ñÆŸ!Û?U ©ù2ÉpRKéî]剠NVš“FWK}‘}“ŠqøÀ-°xçLëš:G¥_u+ÃÆëiȬÕ*ò(x=~#·à5·½–mŒ™ãhqÊÄŽr¥¼ÜÁ±5¹‘xXónµ¤ž_æZÍ/pz“àMìÕÜYð‡÷¬ç¡Œñs“1oÈÐ €ÓdÐÁ`j «ƒ¡VƳ8=#=ÆÕºì/þ³åz¾"óðÔA˜`©›#z ÂÃáÓ™´oÚ9>F#¹ïà¤ôÓ̈ï¦ÓjwÑ(¿ÈÎÎå0ßÌ*" ?ˆNfy?v¼mÒ(ò0›[gÄÇtÿŠ"ø.S:mŠÓÐ=Ù ¾å fYµHdælŸ†Å üŒùpÉÙ† ß÷âgpÜS/%aë·)~sIfíµÎ¥bzÂqP!yœOÉÔÕÅ^cÔ´ÄïÎFRR vÉÓ7v›Gˆ5ÚsE`\ËD¢gô`–Ýõ}t[uà’/×.UCm™>9¸á»;sšsýí=}ZÛ¶ g­:­‰˜S€%©‹ñüç6ÿ2 ‹=¦Ì-Óðæœ–Q: }Í0eo›Ò¯O¼ØÛÍYgç$•ª] ³Êö ¥ÔáåŽZ-‰(—oQ*ervá»&J‘€[špO—û>ö¯ •©‘Á±sPï¿1uEên¹$mÓ?T½x¯ä,xP¤Mví_W-<ß~B&á)±Éâd¦GƒmÓ]æŸ`8îë¯Tù»¿ßb˜÷KKM­'_Ž:þ‘¯˜n¤ðCJð˜µ_¶âöcî1²^ìÓú"ذ€¿±ïšE 1tgoœ¸l e÷æ¸!uس9¯…cï—J¡?ÑÄ;pS]Ìq'.à2G xgòl[Ulû«ŸÇZlHcÑ#è?ð_:¤£ p˜øäR²Ê/-ed&]ÄüÀQc5ÁøœÅ{ò¼‘S=f\eñÜYÊ[ñŽÌÎ&2pOg){ÇÏídÈY[ù–çbíÅ…]úÃɤå yuÆ© ³ %î“7}/oÅúžäö´m?}«?áÇá 5Çȼb —¸1ͬ£b3*®‹B毉P,!YÜ]’9òÒÞ@ù©#éb9=iÆ÷Ò áÇ\=¦:¦ÎÂ@q††æy¡ý&@«ªdOÔdyÿ\S±)߸°ó…uÁœ¿§\ ‘_Vø¥J?in%@œ¦Ë6Í8ŠªS³ áy‚ÈZ«1Öo‰׈ºäKÔgYYÅ}1e×uÕWƒb¶†Ò‹ƒµuç¸ËÊN)ƒúk®áÈN ³¹Uõ‰,JÁUE ) ~€ñ@]Õ%m4¶ýcPȬTÓ8 ¢#vYÿJ!É DE;nðê_G¶GÃÕ¿ ‡ta–u½$Ë|¨nv¯ÛTß\"íí5ÉM7-‰ð߬m(Íq\WË­hÈø¾ÇÕtxóVj ò~ôù†Ü²k²â‘,y°Éø3ˆøÙyäWRh‹z<íù¹Tmâí¨÷é3Ûç(‘Ñ­„é‡áÏ6Æ¿Â@Í’pªºR;‰p÷ËÚrÇéö-¯-rÚ½ÖÂÆÝ”»"á{ ù+BÌ' ŠŒÞùò5©©’VäDñ/º5»?B2ú Èe“´þý¸…FÁƒµ¦’G» Ľd0©üäë¼”P) æø ªÃ¦Ú柃a •§H®baýá‡?­AÊÅÜ4:æP\Páx C®Aò2ø8+nÆ‚ÂÉ3¥'/I·*8¼ë¾S ˜aqK!ý× $ãIþ Hð‚Ô’Ñm‹»!¥Ñ¬Îô§ä”ÅWJ'#íƒ#w„èbV ·Ž¿ TÇ ÞÌNŒÕ8WüÁ¨PÈv+¤F+vP±H÷»N›8²€ç¶ü´Ð$!}Šާ”PbØÀ•”A^>`@Nº/ø|Ž…£Tu¼x…ã__òÄ>)_ãù$#¼-`R  IÊ[µÁó|Í¡@ƒ@¤®s3/{_Œ«h˜¶Ž8þ±§¡5ß4å¾Ý&OÏV8Í>’@åà¾n Í+Qù^âæöd@»úQN¾d쌵öuŽÔ;R¤»±­ åªuÌLðÓ&ôtwˆ¡Høyv þ›[w·É‡ªÅaAÎ0§“á·¼hüx?FÉ€*ÈlÛÿ—mf¤£Š¥¨À5¢ô*a |³`ƒ«\ã’Y¯læ•7™U'TäSðæ–hÌJ²…ŽQBršâÿök¤§ðäj\øË}÷ÃN!†²'Q¨9wÊj|~(ÛÃ]L&.(ôL¨œËqÞFÀª“q"KsZÞ#1+}á1È+ š3]¦Å“¡uSªþͦê1{¤ì‡qw+rŽ&4ùÁÿT Kô{—»¿Ônèˆ+Ó!hYî¼+#›RŽŒËüòàcîBE”Ϙö€ó^Ÿ©ŽfÉ35i|¯PzpÎ f†|'ë¸7^ê|U LmkJûÓ¸>ãƒMH÷ÛÑcÉÝýf]•TqÂ^&9ŸhYÏ‘„W–L!xàÇ>ù-ÛËk`CÌ-‹•Ÿp‘–þl›ýdÊ©68œÒ¶>+ü"ïêˆÿÏGýë%»ôGûØ(ÿšÚì’èݺì”Råôòyd€-úÁ‡*rwóTJ6ü™ÂMHt<Í»”²ô.¦qà‘`Z×lf‹¨¦…$ǹ\ŽD“¯Æêß|+Ö%(ççÍš¦vú'ý½†¾†!òÊÿÌÁB„Gˆ•‘šVIZY3@ƒ¶³ª )œ[eú´|f*ù®Ç*×MQýoê G5M[€Ìo¯"Än°[wXåÃKG3Ùî4Ø©àÉGË\=Bh!3¶é& 0´@g¼;Ðó†™CúR ȶl;5Êyƒ´»‡œ PyÁY†$kß%],Ù¼,ñÆ€…Œô?ôÃsüw¹,#¨=DØOMlaPÞC™Î~§8G@™Œ.ØÒ˜ú±+­„T…äv=Uòg)æÌ€´E­ôøD¼o¨ÐYNV/Ù.Ï·)t‰ºçMžkH¸ºƒ›u=¶¸ÈÂO\¶!eÐùmÁÞ6 Û¸ Ü>6Ýþü®Õš•ã?g´w‹ $2 Êÿ…¸Gè…-TœÕq :…%Oº×:8Ï‚Ý4ž0^ƒ‘àl`kÓOÃ>Tå aPð/æ_IðG?fXñÙÍû£Üꜷ®!¼|(ãŒÛ­1s3Eû¬ðîH¿fu2=ë°_κ"/y•/? ^z3zQ$³À*š¾Új¼&ÉzD^[])†N!C-h:k£Ÿö>?ƒˆBExAÄ@f¬ë3¢º«ƒÂþôêpËV’‡*âÁ±ÂpŠôÞ>竟ä‚;uø6ðám‚C³=Ò(ý.:C"[ä˜6Fg¦ÌÊùV»I*ÿÔ05_ëä\Rï9crÝ>ꤟ¥lcÃᎬº\VÒ[ô–i­GIªþ§õ‘‘Dz¸ŠrÓ,£*¢Ø¹ÒP‰YµÁ ?ÐÇîhÛÅeK.žQÓ–9#ßÝYƒZŸ¬ÄÏ~/Qôš`cð³d(^mKem&‚v+þ°/*pÂ'c³†®ØzùQú2t[t† oOŽt)C[KVR­v›ùmp3Îwå>´‹éà’°çE­ážxjôi —ˆ§é\)ßâߟ£Ãúg-x™1 Ÿsäž~n†*ñ/ +wèèAN¡l»5»˜›ìSuÂ? ½¾ÀõÜ=¹×n&‚É&¥#ÙåIÜ¢áÅ¥–’¥Þ8e”€Ü°š`2Z£ï÷qWrŽÁÍð˜‰AÃ`‡‚~VæÚMŒ^ÇM±kÖ*®’ÉwÈ#P|{è"í¹d]ô`¸\+@BLøÅõbˆUs?äR©\£O$›9ñkÏ õs¶ÓêY†DmØ•'²‰Ä&.Á¡{€M‰YC*ôãC&]0íH² uêš®Ha!Šî£0]üM®"Ƶüm̱›è›×€„‡©p|íoŠ#¯·Êê½0L/ݺŽõ{Ô>ð¦0ÂÁþ¥Ç+…P²B‚|t4k€d¥ZYHÚºÞ‡’0K7.àííWù™Ï="ÆZ`YÝeÑ»$Æ$b‰V©««âßì¥c+Î{î®6Scäi ¦ÔoO¢oÛÖ#õد0£OŠ}~Æš7Õ™"wš)·<Â÷>@:6}ïëˆÛXAp>ÿ·µ¥J”þ“˜é'Üc—ŽS¶kAé{š¬¾$#¾¿ýHþp¹ô„©`˜…ÀÃb gÅë}MçÙ[¢[‘ USÅÌùKã"mìuÔœ¼þVxLbd e£u:).#(?I!¸ß h]þ‚Œl ’&?—vÛ i}ÃÚºQ*¯†qþüú¼"VÞ™&¤»8è?¼n¥%Áp3Õž_Ôë’¾H‹¢MµòüHž–ÐÑMÃQ0{ws©'€D.`l2%üˆ¨Ð™¤Û«€î€™7Ë´óPÀoÛ¢ °!F&i}æ¬Qœ4Ö¯Zn‘×Uì“›wƒ³,.¹4maxh ‚!l´f{màLf35Ÿ{2åDª.NeÂió«ÃàÙÌ ç æ”š <¯ùLäÙ:Á0¹vŽð*H$Gnódtÿ@µ8ã{`ïXÜ®¥bÉé4ý[4F:Ì>tµMŸ Q„»xß÷R Òù›…ÄŸµ…ÍØ]/½Y²óÿXì,÷îÇÝ!VQ¹ÛM4•ñS'¨lDå€wñÛ†ušáLWüH #]nÂ_F~˜Å¨ŠŠ‡¡8áGMæÎ(Gµ6‚‡Lˆ~6⎈È)‹‹×þzR¢¨–ËüÙ0ãâgí׿ŒÉ#Þ1Ú³‘ÀZ$Zåµ[ÀÎá*F÷Úš³ÁÑ&~ü뎙l±v̳ÍÃö~Ó¸¦÷Lr†·ºs ë=XȸP¬}§Õ÷ÊU+k´rç/P{a/‰ÓÙá8dúƦ9Çgù¾Þ ×ÌùŽx»bDL™Å%ÀÃ+w¹N DÊUHÕ“DŽéœ’¾~ÈÔ ež„z×£æýXÙ½ë·Ã Ê“¬jä==V–øåfÔ°óž1µ{]MK÷'™>3Wâz«ù†„‘q]QÈrX4B·õ7„~¯¨aU)«1XˆZnhSCîØcÞxT±£ØËÂp…DÓ?FÛl\Èé˜ ÑyUê­¬¾ÁpÎ÷{-Eùàµó‡„ȉJTn£<49# -º‘Ðû84¤ñÒ{IšIóI<$„uãUj§‰æŒ§a†›‚QÄ\–ð£Fª‚S3ø1,â+úådA†íý§1;„ì-Λ"™Ë¿/ž‡C› "ü”Æk]"±Ê|~²ñ¼O,nøK͇l–æÍÇ6CTLˆÀ²„'°G_cÈj÷Ã$ Êö潈⷗¸cíUÀª=K[ßÜý1]kút–™…µwŠÏ´ömÇŸõ9õi‚˜r¦àõñ Çcßýý€Â¦¸:öæÝk×B¹1ô'§ÙôæšR6Gl³k8_Î]V„8Wä=4Ž %÷ §1äw]£g¸nE¤^^8»ìã1óÁªšUj,3lñ¨d¤þÜ™í} ¸ê¦æ 9È B_W ¥oé‹> D(ïy•5ÎKá°/9ëIo±Ž;Ü)B»n/@èxcHE®†ñæÃP Êrj,2{PÎÆ$¾ó“FAåÚð7¸ ñ«‰n»é-?˜Ü×ù³:·7ô=Q5ÙXʜ׈HnÔü{‹Gš åo–ð»ð° [®tr2›ÜþFÚðßãMŽÿÌÍs†Þÿ>Ù~:Ëëad¼Òàê`™K|$P'v ¸@ £‘ ¨ƒrÑKàK¼pîÎ7J0½„Çcr1¢·@…oùw*x˜ÅEh•ÃÀµ °é_åP«ñ„NkhyIÓY~a²è£ÿÀìáQY0°»ä|×Fš«òÊ+å•‘#SȲåö+É'IzßÛž6_y¿§>}/ö’רSÕu ½ ¶Uú c"±5/g†Œ :›*?͸l0¿É"pöe—Ê|Nz8Õ¦€¹P:Îü½ ™ø%(7Þü ²é];ëÿˆtY4wÊJ»lO•´··ìïšÃ« .é\Мšþ/£=V‘ŸEà®éú@J“È”WGð2£ K.•³$ꕊy´B?£Ös_ÒfénGscö¸ˆqú vÄ!æíÕÈ%„2ÊÝl¾Æ€å­¹"G¾L«Ci Ê †Í7ïÒuhmL†ŸKöñÚ˜È$ÚÙ[þCÍu£­`ª@}Kq‚䧈ÔM[®øç¬PøY ݬßïÒnݰú,ê¡!Íðd+ÇGíB*ª¶ïɌי§Öäæ*Bào‹§­Í0b#"®su"h^÷ÚѤ?cŒØß›#¸Vãi¤|=Äû`'aý'l™K)uŸ¿/ÊåìcTÁ«ô–þ7køÒõrkáÿÍβíÓ!wy%#ø©}3æ=Rô7Áã+V¸PO”'=ÇC¬š.î[ò3†Ÿ!Ę›œÿ¢‚õRIÈfáQQ˜áMþþ;s<”†ó©o`IÆÀc`°Å’6èV<ôvÉ' ^¯±¡b&æÙñ†<#£/ù†å°RMMî á\áÖPƒí`†ð\uqÓŪ_ÝIb?)Möº3 DZ¸%®$pÍ&ëßu˜ÿ_µ·¨×]jx%ÉT8ÑfT•(IgöN´·¢Ae$C¼ ‘ÕSW¥>¨:Åv{BU3¹X°‘-mÕg!:s]`äÖ5"¢ a4Ó'¶lSe (SàfÓf¾”@ØŠ·+ä¾F±|ÂaΫ™ý¹*Á˜6ª”J–’H>À¬ZPûcòiùšíÁ;Ë gsäòûrÔ;¯ÔKë‰Ë–lËUÅàÃn1NÇ–|½m€¯EÎ<^…qüÌçb(t5¨ïžŒèr£¿+4ŽIÁ÷Â$j'ÓCRżáãµ§qéÍ­ú}`Åj‚á¼¢Mµ[¤©°}/pLó ‰:Yk ž%O/%+,)yó2Æ£¬õÀØG—!_%Õ»~mšï9܉H²’*«ŒGëfáûo2j:)Ó÷0‰\œ.vÖl¢ÿZ#T×ýª:Õ×—¨VÛéž•­aI›œJ­UÖDèåÿqE ìÈ¿4¯Ã ²ŒV±]YÏ.R8Ýa-Ž)žo¸×0ÄGÁtn°Y¦Í#ÃtË¡ Ou…XÿÄ!‹?º»ÑaºOõ§Ú›©ÃmŠ"b›_dÕw§Œ-%èS Á-?rÁ\â®&ytሹ—­™tA»Dv²=UuÉÚ„?¶EóÃà-#Œ‘Œ Á¸3>ÇžÇ $"èh!TI¦öî?8¹o¨pª¦ú&ö`ø}´ãÇNë,jÑDZQé;A0>RáxROÙÞ ;×÷¼¬Œ"8£ÀY§Ž¹Á°Z^Þ™pµ`¤ïëbƒ…̲'ÞΡ㻉s‚¸­¿ii| “õ ºê dwç]2iÓœ%u#3·Ÿ¶md$–E²/?]v)| $F(~ ì÷œ˜Û¿X‚SÑ£pïòÙuõ'¦œâìo@/ÓÔÃÆMÅ/‰¹JêÕ»®ùö,àX¸QÔÀüsÁ¨¨Ãi$A¬Y-ŽªÞ~SÁÌÞÿš¼šk0ý û8–…Í)¥k·–¤^ÐÄ0 A°ÌJAù?+ÿ6‹©{Âûßo~òê£îÂo‰Ql¯þè3‘ Ò *šW錖ÇJÐ!õ¹~®¥G3"×àØÓ¿›¦s #hƒ;…í xCÒØÄl3íÓ¡wàǦwÀáæ§£ù‡MýŸÄ»Ùd‹Ÿø9U\¹QPY„ª€.Q7‡cœa¤œX¼Áª$êÑlÿ % {˜ÔÍmÚ,ÓØ›Z°@].ÙÎV? {oý½sG;E|ízÄë“‚UVÜÚíHÜܲh°¹iº,ä­oÇ1%Í,ÉzeЇ}íô1-+záIœf"ô=‘# dnnä¼ òS]5 CU 8%ŸX9'°Jx^ȃÌG®_¨1Þ ,^´ÈŠ€X×þ¥xJu£N‰,øùØaèÅt#™¤Ý6ÙôLÍËk“(0aAU”Ö•ø‘›y“©WöNÙ+ÂBþÒ"îïƒoçL¯Q¸F bw^eߨ˜]²¤¯ÅÛÓPT ÕE\àž˜ä±ðSá[\òõœôœ‰Až$r¶DÅÕ€4°)Ï 4Ããéƒ)Ç¢#Û¡—€«v/€¢ à2HJ¥s2êed«*Iå3UWñdº–”þ‡Ú9œ´ð$^¹0Aƒ²š¤0¶C—\`†mŽkÙè‡xáŠàµx@<O£ ¢èí¹f¶î Κ!Øj¡äJïû]8žÊ“åvŽ?ÿì‰ ^g[éFK’»îCÑ`©T·]û+i» š­;#’W™ê.C£üã8ÚC©Á µ•Jw±ûïÚl˜¥ÂÁ`ógbá¸P½€‡F‡œVkS1ÐÇïK?áîý. œÀg…âö¢:ÁNd;‘Þ (Yµÿƒ ¢^©B´²‰–Ò½ÇXþ´»é޵Jóùe¯âŸnôí3ÿ>Øv<•H-øSiçâ¾7•?Xnî•E§ŽzY/Ål¥¡ÖaWDEf–µsW—B·–ÜÓ g|°ÜŸßaÜq™Â´sÇøVìÄ ®Ü3)ue+d°ê½InU!rZ¨dt”.0°ËLŠﻞñº²4âc.Eþ@~î8&¨quãü<1¼%†ÓÖÿ>Çwò©öZ¿‹¤x"ÊPÈ"F=*ÚÁ‘2°C„]÷ç&œÀ‰ t´•¾þP·ãŸ®0^+Hg´1#iä­eÄ,”·«t4Ÿ’”ß’¹úµ!Ò©!2-©žp½j[ô™J¹Û¸ª4™.šÒcmôÉùì9ºÖ`46•´Î ž+ìS·Äw°-¡„»Ë±béõç~ p$§áÝ$¢ U{ng‰%ï곺¾2Z\Ä °ŽÃ?¾=¸<Ëì%9i#OÀÍÖù£jϰ̷Ku§Úœ£­ä¶Vuø|g_¡¬;/ÖÈgïŠàì²Öºa|KGúÃ?™DxJ/¨c~¿1ýÇÑ‹y­üò¸µV <‡Rûڙ¦Ûhc]Ú²D*Œ½sùX®×iSQ¡Ÿû™ ô‡–y"ûE{}@‘l–gX}ª2ÕÅ%…ÿ‰ ä:É4(‚gÒ5 )WKì=ªÂ"ž¸ÕT¢s%ùô_ƒ± aÀßã°Õxÿk}pës{`Ê'.£ýÌ«¸&~ð¥ÿ(ÄÒ m„¯iÓ±gh"ÓŒÅÞ£©)âÄK³=XÀ½(Vy[Úöñ¹<÷^ZÖ\‘3Ï)wM% ÎþŸ¾”>uÄ‚Þ+-›»“ ÑN¾õ4 Ê~C7p þŸeÊT+{¯¥# Uçv.ÉljÈ3c!½é)[C9£@ÿh©0 8'çrpÞü%”UWÙz„·' Q¶“˜_ „â’`Ž=D&5ÛAyT=R%Ä¿ÕÌ×NLÖ‘jÑê°¸û?vÚ;ï*2²ÇÆÛ lß+„–m"ÀµŽ–0JeY •û r`,-"Ô6Ÿ£ù ¸´ñhÅÐP Ά¶}BµÞ´©c„¢MR£9ÿÔ‡Ôé-WBdg:×~‚Þñ(³`ÆìÔ¥0=¤Bu•AÜòöÇþ®ÆÎ|‘Ö3 PçVvpŠävMò*{Hv;_ì¶øUàÿa¦€I¼ªÑg¡Á¸H´²÷(50»aÑÎÖøà.‡óçÌ£uèĶ„$×Rô³dÿI¤õµ‚õÕ|d¥ø¦4°Ú/ˆærÿw4iø]ǧ`»IïSÂÛÊe‰ø½Ã<*ûÌ5ÕVޱåã·{]¨´ÛÙõw@u/ìãÉhm*ÜÛ& ßÉEœùùªò QNéæÔ£Eñj&!x­6W 츬z9þ`ƒB<Ðë$ÞîzC;\>…÷,¡õ¬ D&Oæ‡×Ê%°%zHåæ~·&nïM­[¿Ömµ+©äEM¸üü™ü ó$6o—VžûLù齜s¥Ëà<׃¨¶Ogß…€gt¥ké¬|üE-”2FW*G‡,ΰŸ˜oFs¶¥Ì}¦NoWÀí¾w58 ®ÏSáv´ïÍ ¤ob‚éHßnk{¥—€~F” :8ÃÉéÅy˜Pbôñ˜^û¯hWvÓ‘w½Ma·þù¶B˜íd½i5Ã’Wìl úlÃhu° Ö©Žƒ5? ›=ÿx'r1ä (]u^jÝ?ÙSpYm>ç_ªq+«•~LU¤¤k¢ë®_7ÆH_u‚ªµ[ÓÃÓ,zú²"oÔÔbz2*1ÞݯJÃÓ#^€¼T×ú\úæ3¡8 1±^ê(¡]«@ä“Ât7‚R½O¾(è¶ÇƒnkkGãZ×H/¸oŸ`µ¤/GT=¸ c-§jmEMS–ÐèÈÙ@´§.d9(Š{+½+ÆQ…ÄiÄ.¸@ƒ®7z{^ÁÒÎêŽzUÈ2Öã—N?º ¡Ý!ö÷¯¼Pé<ÍÛ¡[6,1FØ&ùP–0†’öå‹¡Ø[^ø™4º|Ý=“Ý¡”4ÒßÝC£„ˆÕ¬-©NÊìi`Úê’óv2QÀ–ØYƒ”ˆÛcÛ®q/>Ž`+¸e••ÃÊ0S±þq€ûKIÃiqË¢]ɬÅnêSÅ£vúQ_8Á¤ê_Ûf§7júíXC2IÛ~½ÓiKÊ­.Q_þ$?ô³¼v*œ( ¹ 2µjÀXÿugD¹o¢Ec\]ühOOã¶cõ¤Te8Þ^×ûåâ%ûYx¨âLf4¢‚PùÔÌe¹êK^ׂ®8N‹óM..©·é¡i á={õ`“5 ~9¨·±B·&õîØß›Äy³Œ»<%0À¼‘Ïž>`P™<@ÒêÌ«²5™3f”/$Lá„ç#qèäo¾dÀwУºÕ[e_ h~ÂkíË…k‘T[—Û§´»¯ËRá"³åž/ o$ÿ˜Ûw7Øšzu9Ð}ÂuTAZyö´é€vO ›…•û½òÐŽr\§DŸ¡‰YH žþ¿iÕ¦‚|LêÇ­,u)Ò]ظU¹ D?‰N´Pzmd„îsô3gìߨ½âï ¶g¡d'uÄÜå2`{—0†y³”&û„À𱄫…3——jè‚* Ö)¦â(œ>ŽøïGzç ! ä¹î|~dWs•®€¶¡!^ЉºQySPÍC~“ênS˜?ï;_x¡Úܧ‘¼'`ÿBê-ÕoòIˆˆ`Õ[:ñ©g<3q8Ö'G&:¬Ñ¼~Þâ(øäM¡0­f2× s¬Xùc>Ý›{ ÛüÑ0Çã(ßÔZ"ÂÒG‘Cõ²zØŠïæv–Èlá†õ hÂ!Gvù;?Þ¿©‚™ó;Êjz2š@õèa©ÂŽSΉ`¢ùQX¿€DúD"ìpÛкølK‚wMȘOc‰A9–ñNf/»Vê}f'0éW{Zom·Í÷gì»ÛÆ;Y{m´œgR’VǘҚ™Y|¯½`zÝ>£†ôøÌþóêbÈ„†Ö†¶pXÏ$zc”OHEû‘ßÉ%´?¶Ôtñ8N$ÌË]¼ Ì"¾îeÆ ‚Cî6g½Å´úÉÕèI;µŒJ¾^‹´¿Mê3™{sš^,CJq(i1µ? O³VÄIµvTÓtæb´¢P4só•ÓÿEƒ-Qu©‚,ö@!ÛoáÄœœ/î:Ê3ÉûÑæ¶ßˆÔ›ŠKç0¿,ŠAÏ'LÃ0ü1#›N¦TÕÑEæÎD(Úö”Jª`¤OY]z61bí[€>åÖ¿¾/¹(ïQúÏ'‚ld^5M¹ŒD¢±p¼9ë͆¡Ëo6’h­Z0ÐoÌ_öûÝ?{ìIo,[{–bÈ8X[±²OÚÃoÞ ‚-9©¨!ÒöI"2$ÐdLó%H¤ˆC\¬]䬥Åï ļA:x€™±::ÐÊ¿@µEÁÓI4[zܲÉ@Î’O lWöó«d‹®Ì _›á¤u°‡Xä*¸'÷þ¸åjFƒŠ|1•n”MYa·\ǹI½»óLR%YUÃlfÎu-0HwUu*:—O·ý^RKSL3n/AÑ—¢ƒPÃ7ÀyX²”y\ñWúqõÏœDSê#ê¤Iâ)ÙÄ‘ úøp6y\–Á6/Y,²EÔŠGI¹.T©÷P7Øä†Í ½#×0Vb9æË ±›O #Zß"v“ÉyTðÎA|`Ý> Z¡öéèßž] w«+ç³>³«½Ö–†Îcè„ä¿.×Jº¶«#PÜã1‡—ާ{È$šB~$¿â‘‚ þ;thdõÎÂäSÐk€âZJÙlÝA³0TŒÓ!õøÁ†ˆëï6|†Mç4€ò٠ưBê1ãæm õ]  èi½ã®!ër|I›Ž5=# ÏŸÿcBªþ˜)¡4DzlòçÏñ(æU)§0NÙ’† þÙß u+Ïø‹lAíß\ÎúdÝ {ݼùà vú?)jÜQ…É®Yô“7|ìsP+L1&%)²¾±b4% ŸÇåþ’ Nà³–åuŽ#AåWK*«éP†c]Ï‘¬Ï‡ì÷¨8k‡™ûŸí-ÆÝ™z “ÿ†'úÞj¼zª.AÂŽ%XÒÏ8»uó¥6/½ #h¼Îf_"`礻9ä›8~ÕûKl¢òáùIŒÁL±Õg¤`ï(LS»4Ç×oÚì±²¹·‰LV\5¦­ *ý †nT¶ª1BJdFäS_ÌîÀ›ì˜¬*aÏ-ï\ž ò™•öc±ôISM¥û%„#ŒúEq †dPL›ìw=Aî(¢€‡ÛÒ’>~Iž_ÌHv7ce÷/šÄu96Ü.F[¡üiâL[_•1dz\fÚó÷ -÷ëM9¡_@­ÇÀî5 Bˆ æäÚšå¥þÉÕVuž>B_ÑõÏsi ÚˆðRÉåTŠ[ΊÚ=¸Ì*2u>F]]®3ÃÌ¡¦SG› ï¨méÃŒµŠÅ» ˆ’¦/QA*´›W™±p‹<òeÿ#†}Ü2r¶”x‡ÇÖjã]1—w‹CοH†ŒU\ÕÇTW9Ÿ`¤mžsõÞ¸4úpsŽ5J±º_1â0¿¿nJý]5ð›cîµµ–”3Ø\Í„âÿòÓdüÇ<µ0›ͧ›| Í•|>œX—EXü|•³x~Q~ì] ÏQÕw˜ç,§>ÿ¬èRîù‰Ø€Liµ¦þ2þ(ÅÊjÅ']6ÎQ*+.´_´«©7Ât<©¶\Ey}؃±½72¯<Δ’)×.›Ã¥>È~²™er ¨ž)Ý‚´º½û¥$¤B3e¹êš¥ãœM#h—IûÀGÍûçêå7owÉ!£%âTªÐ}š?&pÖ6M:P¯¤hØ®8q¨ý»ï úSô©Îü æ8!™ ¸D)ÞÙ¦1€ÃÆû3_SýØ»Ë#¯;éFg ½­2xKwú P9Ï8&í“2*8Èà ‘–Á¡>'³fëuÕÂSY1S'6Z*;q' ˜‘HqúЛ†ÎÔcs<©%¢ ¾jÍ†â¥øyîªz…®k—o87&|Ɉ´®énÐOw@qƒY¢WJÙB; æ´'Í, ¹eø ÎvLooÝ åZöSYîšiÿÉ´?)-™‘¾ÆÎü {CksX 9‚‘6Ât:ͦJÃH0[¤ƒ™_Î’þg“uBš¬åK‡ *v·½—¹*jð'üAJ#?ïΨ6N×°a_mìÁh*P "‚zº³æ#Y*´¨¯ ù /ä› Özèw¤þBÁi-¹ÉÈ«GaWw|mÙL‚y¢âÓÇz†Ú ¬7>‡?šý´ÝXEwºÈ>9ss²úxäÞtÀïœÿVÎè§õ†ÛÝÅÅÖVÄ,ÉW·§n%UD.À¨»Ã̧ZƒQ¥Ë¸Á’Öæö¦MN裂¡%ÆÏ뾜6Uüh=Ré*Ô žx&MûQ[H‚^¡ÝOB:^ ³ê¨õÓƒ`ÿ$}õ!«`ܤs¸KP2.|Å”aYŒÑÉ_ir˜;äÉQób¹¤K­ëНUX ˜¸òÛÆ7•󣋥ýµ »k£¸ï¦›å:íö‰Á½†"…bïÍ’Þåþâ”äÿÏÖ˱‹'BÙq%ÕnV»­ öºõÍðî{”z`ünÞ°ÿÏ>I4^Åø/q"B]ÈWl¡oÔ>}zVÑ;6­q"Æ7Zš# _\Ó|`GHp>s fò>Ÿ‹È"èpo.·'œâÖ®í.ǹ7°í-•öÙûuÌŠFsÒ˜¨¦JÊg?ÒÑþQ3†.KJ\¤ð¬pjÙ¸0½óáZWŒ”ÊïW&¯¶¤fZچ߭+‚|@KÞûbþ PhKF>]YoœV½Ë0Aˆ˜ƒÞlZìZÑò:¶¼zL®©Gy2^Õ… ž3ËÕÀ(çm–•*—FD»«Ç••ƒŽ3‘tfüf抆‘1ü^8 d2¥¹0ɾƒúæÐ¢‰C-îd©s,ã¾8¯=ް3òÕ½²Ÿ&*·õ±%Ü öî Žº¢*'-7¡ÆÖ$T廕©¢ÿ²ûš÷±­ù‡èßžO:/= —R¨ÙŠi¿"¤O«v1OõÔ›<¬ÉáôïAC§:x¸Ä· Æ_ð€Ãd¦Jí4ÌÆ¤›ÅÒÑ÷ôJÇ„œIVí…È2Š/P®7Ó‚KúqG‚ªIú#h‘ÏF 3 ³k\ä—g¡eFÌqÖ…œù&º4 áW¨Ç)û¤Ü | LPŒÜ«{¡ùã² ÎhËˉ78‘h§÷¬*>]Òâ¸÷¤€—Æ(g“vÁAð2i±…M+@êQ*JìÌdWLôÍBºìRë8j¾ýŠÇSN0IÂþWÞà\«4½nŒêÈÕ|3š&%i„ :†öÎã¸*1¿Ÿ|Îd0ÝŒbÑd¦ð¹bZÑ/ÅL·6lʦqS¥ùãa SùîpÜÔìY=ÊùÓyd?cÖÊŒiþz?çP§O7Á\ÞxˆÞ( )NîPÁ 0ø0º¶ >ÍÂC‰9\ývOe±‚Cu÷üyåšÕû‘”ã|×@ÙÄŸHÌßðqU¦¼þ²Ö_nú Þm‡vš›l¨HbºLΡÎв ;ùü »dˆ4,@’¤³c¢¶N@ŽD€IÿÚR9'S÷¾QàOT)_½þ·®¢\K“­p¨ÓòÌV°÷9`ý¦iP}ßBõ¹U½‚òU)Øm84kÒ&kPçÁ!Ákü‰¿± 9Ála±·Ý¼Ñâ7ô=-}ÂEo¿ ÜvdÁ<øQVQaè±QV67qø["L¬¯6–åçÀY?‡ÿmèѤ9ôüãÍš0ê¡M0›‹P”äÌÜØ7¦OÛ9ç¨5 nn ‰‰Gñðh…Ù&%9„},öué¾=ð¸ª~ÏC ÇQõY±5~CúæIǺè*DQZ[»Ý±’«ésdOφÊ`Ÿ9P+"HÇH*âM4t%½&S]3§Öý4Æ••ÍŠàôÕ6Ьò5怃-sfM}‹•¢%jè'ìÛ0Ì A’LpIâmj<ä•¿É(VEïæì™X~**6XJÄbhØŒ2'Ȳ2T€³±ÈÃà,h/r<¤ÚN2ÓáH)Ô¥T6(0Áµ¨bÔ=ñ|EülйáE‹Áž'ELrE;1aX‘—ö1Ñ­ˆñF’9ÍX”“¡8Q„¦Ú¢ºËWäNø´hxj¡ÜY÷G÷·ýi2G‹ÕYbÇl šUÑFÉßÓ-gÍ&é3£$ ÐíœÈ×Û™ ÂÏûK7¿mÿñì­A‹Y<¡!wOoÉ_34¥½X 8˜nI_ r(ÍŒZZ¾DàÇ=>™—,|†ð%ØÛ«t Ÿ×QKªnö!É·‹@^éÞÍ»“ÊÁƒ66êv=ñPi,dVêo3M Øtß&V°)Òiö_É‘<ŒÖ­´Zº˜4 q¢ª¬q˜‰xç9t­©Î1"’ˆ[Œe#EùBª2VÔ$EßIjrX(êk¬#¦c–£ [†B86pÒ4‹÷XFF ”·îûÅTø.K×܆™þ€Î§ÚGgÝ4óH‚ýHýª¸'ñÔÔü¹¿«Z2~¹zLcþGffàiGù¿ž«çB'sDÕôZ°¹s2ãÉ)¡¡ íÕ± ;Õ‹±ÈÕ¼—T$ÚÕVs°^ãQ¢nÜ) f¬ß0©Š¤çÀªýb#è]®)Ácè*B@b8ºvnOø•§K«1ÝR5LY:z„ƒÈ‹Ða óÇý—ͺZMÚÉp£íD™ØÇxÖŒQ$öœÚ²áÄw¼öwú×¹ßR‹À-'ðߢ€9Ž ¨ý=n&<ºø»G99§`=æòѤn_-ø³‡šZUJ{( œ¾‹‰3Ž'F3.äŠn, 8¥vù)¤tÊrd<@A˜D¶ýòÏ"ݹ:¥ÿG¾¤ Ûô¹ÆåV‚ÆÐÆ¥ õ¥„°½ZPRoˆf°¿c™±Á£zšXö^P·êÐÙwËu|72&ëbÞ²³ÇÉ“°À¾a_ä¨APE4×Êeúéɦ"î:޼~×ážÙØyBb—‘=؃0õⵂð¾¸FuÏélvø’Â+ ,‚ï¼^‰xc©H-‘dšG ŸàÊÂ?[~ئdt=:»‰u$à°M^hóíÅ: ÈŸÜpÖ~8øï(10öšQ&[ÙÁIýÌ¢²”,ɬ-Ch}ûÇ¥Êgù*ìZ rô¹l ËCOÚTà›ZJ”‰œØ!3?[?à¶Ò ®eˆ}oZ” ™PåºÄi¤cY—pvÑÌu³°è¤Ú ží«_asÛ#w¯Se£6f\œÃ-çÿ@ÃpqôX’O¥X—ã·ÝlëÎ+ÊŸCê³пoÉT]Ì øç8}îsЃs#‘Ç”œÐ\œÏ÷z>~,íµ ŠÃJ„ã6Gú—!HÚ‚åŸ_8HÄBÞ) ·fk?xÕCÈÆ[ §ï@¦"\¥5…H_väm‡ó{Ý”fñ«ðIÑv±–ßׄÊÔ ¦«À²Î²ÊYO ‰Ý#é´zõ?AòðºòãZÖÏ‘9Ätslõ­Ðí_‡x)šé;— âÍå½ÉćËÛ$XÛ,]¶<\]Ls?ð6ÈØª[XŽ,÷…]ŒÙŒ—‚fdºJÙ¯ÅhR(ô²UøÃËV~ËAðO iPëR£Î$Øyf«áYФ!K76þdj1·]yL|û‚:€ƒ<>öW’|(nðZBi½`u÷ f]y8DupF±ó´ÇËÑ€t»ÁÞÂs!VÈ$Ÿ„9è(/„ê£9ƵÎàAO’ ìo·~øQ\Ps\DJ䣕iañ 4dÒ¸TÎäy›/Õ¥!3¤ê­Þœü—::¸}ŸÚ ù^KâÕXQ‡WˆZ3’¨ýg~­€m×€“ôLà)™5<² ÷V}ÃÞMß/n­^Í–bHɵ¦ÈíbÕÚ%ŒŽ œóÇ*“ï–H`ªq'zvónü´ÚÉ^• ×âi¶a¨cµº£a æuõ¸‹õÐ' F7¨1(ó¾ºS­)~â=ËåÐŸÒæÖ`X¥¤þ¼µÐü®ÚãÌ@ *¶È† ÊmVùÁrêz@Q6¥Ö¿þ…Ä®.óÎ/d«A¶U¥ãšõ[+úl}4®;Ú¨×.k*Í[÷µˆÖF°Z‘¢ ÜMS¶|(øúvœ¦î_ÀõIÒ œ4÷Ë–5W¯C×é$ ¦€P½ Æ&"j’¶'¥3¿•IŒû¼Rû-jk Œ¼rÿ»åÇ踇bÆMÞuº·¨@(qU¦7ýQËŽHwL¦³ âAeßm _M* .¢V_Ô¥4'ËqTt·ŸAÝ×È–Ÿ 7¦Žê+ý˜Œ¼`û ÇnMš1Ïêf’4ǯàÑKß gv…bÞÚÆÚÙÄ1Þs¿ëìBÆ–J¦Ö¼ºÿœbu ‰üŠYŠ¢ó­2_¿¢µ"ÏAÙý—Q%ĸ0=õÊr¥#ô¥a7{EÉžŠ¼±QtºÝ}ñ–X2ô0 àešß|ãÒ'•Dò!‘lauʆfxe&©L Ïv_uQÔwL¨ñk‚8­|ÅòtÉð¥•ô\”Ï[¢ðAyšGÀ¥©éŒ™¾ñMN+i>àг¯àçdòáj†z¦‰1pùjwÆu-Ú~A΢…ÐÙÆâ•zK\ãiÿN‹üKE.äd^4 Á©š¦Švžxi“Ær¨YˆîTò§+s;wÔüzµ°ÈZA§§n~@ž(.øç<œ‰Šg²iÉ7»ÊÙ¹våµ™%C¼Äý+²V~ÇïuãÌ4rjѨàüÌÀs­ÿ,À¹þ_Ʋª§Ö©¼D‚W^JïêêX0[á÷út)ªUglÙÜ”p1 Ùrau>s"lÔI^¦³­ç—Z]â3Çù&5 ‘©båCµsÑþM“i/*/ÛJ{â]§ÎüúM(¶Í9‹<.míµaR—ËH?#žú—ù -£‹U‘|7è!düß÷Dd¶sRåäà*]=‡Ò€•†ÿûÌMÉç)äf[Òϯ߅¯JÒÁXš g¯tš€UÂ"í{où1ýºãVuk;ˆ%ggY—rzHí Íi‚‚a˜›™?üí›H…Jaf*иwlóàÄÔ~íõΦv‚K¦¦s\¿FÄËôÏdÄ^M+¯vü¶vµB qGñ3Àsdø]S`´Ú”b‡PQ *•(’~Œ2MñÿaE>ã-¢ Üݬvid"qm’]0mc"—ÀÍ·x™œ òn&ª TÖ[>µºzSþ½n4Ö¨Ë]¾läl¢D⺶ÙT;ÑšìŠzT„ÔœK¨ñ–6q;-ðjó’°™¨lSÃ…à¿KohÖðþ"Ÿ|Ï‚¢FCQ ®ŸþêUóB£_±oÀõ±í”Ìçæ­Æ £6z¹ë†‰ô”Ä:p=ê*«•ÔÅŽåÃ^p¦Âs3Ÿá³«v÷ÈŠ›ÆÛJcŽ™•áèàSâïõ*l¡ ¤çÒ›>¾ p(€ªŠÂH#¼2^D üŠŒˆ>†jH—?±õ¯Â÷™„éLÞ8ÈÛ‹\¶—e iÄ31ºéÈÜùï!M-ïè)m+¥yîÙKãÁ©ô=Á(V`ÎPþ¢—;øÎCÒÒša˜”aGŠZö;=ìÉÚÈÊæ;… óŸw êÕšú|Ö"žxvOÁñ ¦dhD¬ú—$WQ.ÊM­ ! à‰ë®¿Æò¬Å‚?|Ç( ˆQÊÅ5Jp¸´‰Aïom. Ápeʱ\Z˜pªþv–}•vsÌ®iÄ„(')²Š€¤p/`—o5m““òƒ‹Íû}eï,ÐBÖ[µ1kH´Œ}äRýeëxÑÚÙöƒ.ouC¢‹ñ›x€…ˆP;Y*ƒ }®ãdjE¹²ÅšE%*gn&\ŒÚn³2ãÓ-ÑÿŸMʆ , ¶Ù¿×½ zꞸ—ª¿x”}ZV¯RDotÊ'Ë2‚EÎæ:Øù>o„ñ7Rœ°3Æ%I7Z×5 „%NÕeøÍ<ÜV´8s G’ñk"Û«iLì0„‘1æ—Õ„[ß:³—½¶>ˆya¾“d߯Âyê‹÷ú¯ß4Qôiõ™¢Ä#)bAðßÄàò"E”Tr#º㸠 wœþUd›È kuí™ìâdv373Î@Ë3µè©ÂCQ(T÷°Åбл¥ÔIY__×J`¢'ƒ=fÜ g:þjÍ¢a2‹òoÅF³:v+Í^m|õêBé:7áWB¨Ç:ë/”~¥ÄìªðnÇÊB‚•*¨%Ywss˜­‘!U]Ò¥92•[Û`¥M×ÑHÚ„€|¢ëµ>úë¦f13G¹mBŠÅðèl#î4˜Oèa6̦™ìdMµÄŸ ˜¬Ìã,®KÝÇõ6Úû:‡~Ç/ûÇ˲’Óƒd}Ñ—IéÉUBr“  ¤8_*䉂I=Š@óyìi—0²¹ø‘*Aå×Wd3=:Æ?–Xƒ‡B6Ù†nPÝ+g ׺u*UÚÓ6>3©½¥Þ¨åoø ¥þMà¤0_²Kúú]ÞÕæég¹K6¿³ÚmS¾—þ;#S\v,]Nû›4ï¶PRÍ*ë Î ‡úÚºcðÂi¬KŽÅbaüÿ™Mgaoþ2”jÍcô:Kßìv'7ÊDâ2‡iÑ·R¼Zö‰ZxªŠ´‚ÿé1'5i¤ÿâ̼÷Š BºJù’nùϺkè½Z>z¾ØYè­E -s,õÝ…ëøN—ü@5€,XEÝÊõ÷v–c¬Ó{–¹Œ„ب‹;Q†ÈbÌÔ¾ÿj·ïg t]:é9DÓÕ'¢—î3IÔ¦ìšÇ^ãívsÏ*½Ù€6Zk¼$žOk™]!{£ïtù–>O‰Y|5ò§õõR5·KÊš¥*#a½P<ˆšdsEı-P^;aжz›ÈveèÉqtä M,¼MSùÓ²Xök‰dÕëËTé¬Ý¥2«ßÄÄõ–êËV­ÈñÆû: •ëæU‰QÐ_žÉ&¥™T ì‚S²{I #ŒÒ¿C—(#´,wæ$ó3=Ô«ïÖ?°³È¡ÎÏó-æÔ}BÇÇ |‘ÆY…4•ÂB‹ô¯~< ”˜Úã41þ~v¸·T¸ x'j÷;Âí:¸—Ç­ºwúñûþœÅJ G¦äÐ4”5„¡§Žýí™èùDTŠ3‡b6£¶h0X1Ýïæ`í2ÄžA©ý{LS·¤zêZi“7¼þ;=FÈ3Ió˜ Kbr,òEî Å¿ápUvÐbÉÔ|N)1Ù®h°Aø“¾Ï]¨±ü–¤|g°·å|4¤ÇÒ¥šÖ7z0¦š¬HËG®mÃ+KG×Ñüº -b®·<4ñ_ ¿WÏëSm‡sut¹œlŸ$˜'8loÿÛÙ‡É×çØk' éâ%¼ê‰Ý×û*eà]É…Iì¼3oöš€¼€ ê³RÀö“ M•pØ×á³­ÝCVZ«˜µð¢1Š»øž5öŒ¿tV\G¢RO¿+Î/o#DÓbÔF+¤4«²Ç¤ñ`Ø8'ˆöÿÑûö÷Œì`ia?jw}n8?“ºï@å]XWÇ8Òãšb>X+Úu–xËqlšŒM ì’ŸÀô-KâÝ9uÆéÚˆHJGé9™ïÞ¦×NÎ…@ó¡¯Ea!ÞgŠl•еÊf%ç´¹[_)Í¿?ëKÞÕ 5Ø_Z½”;ò¯Óº—÷ä…D.ÌÂþÕ_‡»2É£aÆõÖô_m‰º}Iz é²üˆ$AúÀ»OŠ*-ÑM†cvmÉtN8 y„s'nñ²ó-=º."ºÎA6Rt§uhè ê™Smd)o|ûtf×å³bòœì¿û–}—½Àja¯xXW‰>-ë¿Y?©S/"q=k·‰=À~cË'ÂÝ´ä’ÅÏg"0 ã7§bŽr¤ùŸ=üÙ(x †ê%]çÈ sä'bÃĈ‚Í· J>¨8hó!AÀÍîÆ8áŒf´¡ùó튘cícƹfƒú3œ;¤ Yõµõ¾¬îe°à(Áê1¨ÿ‹j[ ¦Œçijnúm6A_ƒ“†6ÿéÍcèz<«CÄ¡E8u¨) @¾Ó”À ”¥gÅw.|ÿ6ý~VéÑÔd•Ëeüêèôƒ·WÁgRÒ#ØÛ5‘ªDÓNkÚ°p÷õáˆ][÷$RÑ·B¤‚¼¶æM8?÷^¶§ÖAÂã_;2ãxLÄû'"þS è0Ãj²yôyæžJ^Ìø? zÚÌ[Nÿ?å}Þ¡ükÎÀ‚BY½£E=JxõS%˜Â¸ f&Àû-’5oqónF'™%gJ¹yâºÆñÑ•‘2Heÿ \&®Ðî ’=?rÝøùЬo[·D¢eÂúrüæ̇Ï¡@%ÓZìpï+¬¶X€“$íÀìöµ%ëêÀlg ×4ª]ïÑš.§Øâfƒß™½«N5†ý[Z?ŠÕF„<™®Óójg[;Pí ›r±€B gÆÿFÝD¯¸e ß_½qú;;fÈ ´”õÉÞß®Bê ä¤U0̘œÐ‰*Óì{»}·÷âOq<œ¿— ¿[b!kÅQˆb)½gÈÔ§9™Ýeu:üè—Øpé­ß@qx5€ HÖÔûœ'¿œHI\%Ínáæ>PØOSÂtq z'Oøþ4ì‡Ó=ï’÷?1=3ÆÇgUX—)#ñ)„–\¯y#’ͅϳWÃÃ1ßž23ÍM“8ñÄ(\âúÉå”ZºNÔ9\+pëób19àŸ<óM%ƒ°6={·ò†¨^»ZµOeÁ¤5›)Wº÷:Þ°zˆô^$›#oé&nnµ 9z›Ö! £tü‰>ñ!rj;ï#tåÕp¡Ä \íïëqý›°¶Ëcí$L&‘Z-T·Ü¿U¢Ñî+€%Sö̵Ry6覀߮W4öDÓ€iä]we G³z¸ñ¡}𬶇qr«8Î mûÑ»°®Aß¡ˆEø 蛌Üo ö¿Ó”éWs’€2b…W cümÙÕT G‘]º´P¤[¨,c\TGØç7„TAï*°ç>V•¦[ ¨§§H/vwŠžRØ¢ûkô‹Œž².÷h/®ô¤£«U‰#Âk €nû°@+ù¨„ߌ7“°Sø ‚È'VQ椆©¬`1¬^Žr2T‘©Ô‹ü²ñ™Ý¿¹ÿ$ÔÚ­•Ø’2CjS²Ò8o¶ÚEÊ'ÇóÏ^4ÃñŒPñLêÓØj/‡Çî¤ë¹sµJ§1Öe75¸N @ÒÙjÐ,º±–ÛÓ¸d²n_I‰‰‚}+›õ,a·%soï>¼ßX\Äí—=ÝqËäÌÝŽÊNŸžXßcl¬Ò ¥úËV„ªL¶B#„Q瑱ÄÄë_±c1Ä>9žW"ƒKî¤ÿ¬‹_|Tƒµ´Âªˆš™N›;¶A†ÚåÈ:-œ¥vÖaÍZú{’Ù€O2M-©kŪ²“¸¥¹3‡¨}†l.£¢Üuâ™(›4æpÅ‘¶ƒM.ž†%:Gž ¥h+˜°2iCö[§L]îÆâpmÉ?Õ<áKmk»@Þ\¶)¾dÙZ.K>yYé"5Ê[ÝC8¥–¯»_p„;Î$]4F®!óGËTc´¹#œ&!äܲ×OX’݃¹øÐÊq\ÿpËÉÌ|;”î(ÛWåð†ÌíháÌÿ ð­þIáaæ9<6æ#ÂF‹“æßP¼Û Áä¨&D/®Žk› ³ñÀQÿþÒú¸a ³‹…É—_¥Cµmus¡ÏAׄ®tT'Çe•þVðܔ憲z gR‚Pjݯ+® |ëV25d#MÐK1ŠÌÐDdÌÉt¯Úý\ûf6”âÜ&~ ß¡Ïåh_Dr²õÙÍ&¾„ÍØþÆŸ%Hôn¡ËÎé w°!þ,Rt5 ‹ilÕ­?“$,žä,œý¬‚ Áù¥ºÅÑv¹¦GÑX£¨FÒü„±þéý·ç?™’Ép"³´¦˜''±íÛcñKÀéÞ¼Vùäêeù¸{Àà(š¶˜ ÎTsYÍØ¥ær †­ºP‡ï ÃV.out`i°Ü+¤×/ ËG‘Bž/ñn™ÑE1¯´‚D~µ—–…À¶¨#`oÆšä °´ Gå-í8œ´k¹€åþür'k3lRíXnX–±{fJáóÓåyD;rÖ¨…èõ“Yk3+6H5›D|ƒYÁ¥¹î÷ƒZÆ ¸ªjÉósñp\Õn‚`‰ê²SÔNH1Ôþh¤š~nºŒ³ƒ2`ƒNÆÈŒ·$Ñ3ƒµ"%k0³2EÁ±ÍQŒUù´RèÃmy&º²•IÝs9¹yØKæ=ÿÍãº~eÖ+}ˆ, +tþõO†yˆ‰¿ÅÝyÍr œ…õÝêÀ…‡òŒÚyWgfËÇ"Ê\û$"ÅI&²†{šØtYß!ôîçòú8”ù~ âÍ•#¨'èÚÖûŠ‚9™1?[­AÆX¦P¦ ÃAúYÃ8™\íR¦.mbbåõ|¶J WÒ]ÊwÊh>²ë9ø3—uÊ"óËÅuU\ tâ ´û.—<æ,|¦÷Ú}<Žxi,$P:“ÞïgOôÓ¬|1þóõc1'ASRø[;[¬ç/¶:û±”Æ«°\´zsV:ò¸/‚ÂáOÌð$¢’N]¹6¿/7èRj±®ºlû“ê•\pcÎû3ÃŒ¬«Ë®ÑÔ=[´ö&¦Íë ·W.€H:K½ña»UA´¦G· $Á»\¸jºáX_äЪ]+W ’OȤ®EËŽ'[ƒÓÐ=·1Òˆv ~öiðë¿7kùvTÚ<1àúÁk8ý‡¬hs;“hÚIgS¦st¦,8§âÅ© -ÊùXÂ…7ï Xî96™Ä½–ô§ ˜ãÿ•œ3‚|Œi梌h§¢¸Ú¨QH¿fïŽz:Ô¥/Þ¨~8vLlþÖã3 8/ÿT5EÐÂ÷7Rßħƒ‹$Ò¦÷8]q]ŠåÇCù”%–çbRWSe9<{Æê‰}Fìâí âΠ¸¯bÁƒÏƒóÁ[F³“æb™8ì2œ)T·û¨¬N¸9QÉ6e.ºHØŠ6Y3©Þ—=œUèÞ,ï…3màøÇÕ}~¦¦(±®¶^ç¤dp'YN´w„%/˜ØÝ7÷Ãd@‰6Hí,ÎØÕ|œ½(ǹãÔq2éw‘[C<«Îå$ ÚÜãÇ6Cyî)Lº,Ï£`9ŸÄ`7tê÷žp1.ôºÍ*Àp"¾¿w¦¦„gâШƟSÝI>"²FˆÔ±Ø$cy’¶ñ¢¾¸²É…Ó}ÉŠ‹Ü|DË· ]~½*qX“0ÿ§õ7ÌÒZù ®Ýìò7ã`v0Îb~›oœ…õòû'¼rTè?añÇJ|7DL)ÝEô3ЖŸžíÓ€‰OJdÑ>)™×¨:1ÿcÝ S7B3pb (‡[±ÃûØ8PÖ´ÁñEäh5@Ò†y¶“çzž- ¹bõ¨ ÿ(kÂdÊ9¯é¬€®‰(h4°Ìž†”)U.àÒIä•F0؃ÿO¡1¨§µ<œY0-‘9ÂÅØ-M”òå¿<½›ä­yÜ×zv;ÔsbÓ< |ðÿ"„˜˜›|f"VFƒ  ªÕ³FÊÇ“Üíe¶fw–œŠ š »Ð{Û…ò¹›Ú¸|oE½òì1°†°g¨¶Ó¼X¡Üã}Œuîø›œ"ÏO¹ÇL+¡Ð¦9µòHEgœÄ`Nü]]ýMÐ;b‘ÕKR²° u£mÌÏ^)f?ÿ9Í„¤b¢¢«æE»c“ý›F QÏ: ðbCßyOˆ²;Ú,»…@yé%ÖŒk°Kç׆(TÍs mlU¡»ib¤è’Ö77ï"œLèdâŠ+y¿èÌ´8Yú›ò ]/Cã,ùf- œ•…ÆÙ /€_M7)6¢ëé0bpWÁx¾I¥ˆ4JMÑ„*t¾×aò﬜Wå¶æêÃd)åÉ”ÿK‘0‡¢ÏÀBhœÃdFè6ö:–(OûºLGøô°åxŽL}v“D…ÍðA.|W,_qUA³…Rö·œ-ŒÛü18¾O(¼ñÓNù€~b­_ƒHËO´7öÙ—CoÔHaŠ –‹¼Š@v±SO÷úY‰ìKbV͉ÞfÊŠ±á³¥M*Ö;aÉûÖO3sÔ:—À^pÀmICQíe¥•—ël/ú€>0 ‹YZsurveillance/data/abattoir.RData0000644000176200001440000000300411522016226016373 0ustar liggesusers‹ í™ÛsEÆgw 75"ÞP#— w˜„Â=(Añ2Ù]’…ÍÎ8; ¨ëE¹"ˆ"w0¨áb!U–ä‘ýxäÁy¿Éœo“nw1ZE•VmWýò¥»OwŸ>}z&»YYÓ4©´©Ô0Œ°. á~- ãG %V³åyvÂ5B‘{´¾qÇŽ¶â—! S:|ƒžY|0ûÉ ±20XÆ w€a`8F‚QàNp¸ŒpÀ¸ÜÆ€ûÁàAPcÁÃ`x< ƒ'Àxð$x < *À3`˜&É LÏ‚©`˜f€™`˜ 怹ÀU Ì5`>¨ @XÅ` X –å ¬+AhÏçÁ*ÐVƒÀ‹` x ¼ ^¯ 4ƒ(ˆ8X Z€N °¬IÐRÀx ¸ <Ð6€ l¯ƒ7Àfð&x ¼ 2àð.x¼¶€À‡`+Ø>ƒíàð)Øv‚]`7ø ì{Áç`øìÀ—à ø | oÀapÇÀqpœ§Àið­Ñ“«J"­uãþÞý\ ™þ õ5ÙÓžåzb65õ˜Ìý#§q‰ÝœŽ»â8„°oßiN¬ÌÅ¢ EWdÔöÆî@—K½Zú‰Î–ö:ÑU´×ìˆÖKÿ\±_"Z©ÍoŠVIû,Ñ¥¢µuÚMåþ¦ŠN5 ÕoŽ[g~Æ…Z#íK¸ŸŒÚ¾B›§ŠýÚ¼Üo¶ßiÒ>ÅP÷Çý0ô¿Rë¯ù©§ŽK?D+D‡iþÒ~‘æãºL›Ÿû˜!:A›¿\”ç5?£Î7ÎPýç<ì¯Ôt¦6ë<žÏ›yiJçÕ4dó°Ä¸eá}ËÆ›qá:©«µÇóü¸@Ï­‘úïjûù­jÿÙ=š¼Ì®_s÷Ÿëô¤è™r±oUÇ8è¦jÏyN_Qýฮ¢@O_`˜GÅß3×Ôq¬g×mUÇs]î÷ûuÜÙëê~éí9Ïw]¾®í›þ2U¹þ>±?°SO¥=çç¾Õº§^õç`¹ÚÏ8ïš ÚÓ¿ã£ÕõY§=ãÉy;›ÔõØÏ:ý¥ÿGºÝf¨öÜíôó¤ãG¿¨ŒÛÞ«ñw¿fÏ}ñüyΗzqp Ì[7Ð|ÅLˆ2~”u.þ&õͲž–¯—Í@»¥þË(u¿ä\~.½¦®s)¦úá‚:ÿ¥+ªÒ¯Ÿªþq>ýžóþÓÆ#û\ÐU›Gïß.ûà¹3ï¿-WÝ-ë0¿y~Ì[æ1Ÿ#¼7rŸú[ÌÕ·nÏæ×e>2ÿwžë®{Þ&‘6ËÉñ´¢æf»CÞ-3F¿ßp‘@óúÎ.›HõzБñ2ǵ×U¦=7‘jÉá`‰ßm¹-é¾›½‰¢¬Š&­4ŒÂ}#™·²A³+v¬èz«%®Å.œvÄ{Ý¿ÇNnj±SüºÎÐú9IÛ[îÆâ®„G7(ŠYž_r À/‡åšÙµ7VРÏÌÃojΗú+T¬uaÚ»ßJ Æèoq+Y/û©Á Ú`Œo?BŸ5HŠ£vÊsídžˆ”õüW¶Ê_À÷§Tºt³!míI/‘²ÛàScCÃPž DÒ^:¯ƒÓíHüD2i¥¢ñ^¯>Qª`surveillance/data/imdepi.RData0000644000176200001440000224713414006036350016055 0ustar liggesusersý7zXZi"Þ6!ÏXÌâ=Qïþ])TW"änRÊŸ’Ù#Åߨa…ø¤T”²Yd{«áýÌ8ÍOœË!Ô]z9N¤}¶BQLmH¼7ðgÐ9p†ÞVe¯JÕ„v>e#ÎM]Ñù) Pÿ¥Þ­;žR¡ñŠíQígÝ,ZÎn @U,ªs˜³I·Ï!çGeÊÆ܃JÃMžÌ)X»þeëýîÝ)ê7X8f±M¶Ù™ Ú0¿éìOÓôj?{ÝÿÍc$*wXïñ§X§@xˆc×ÝP_òt°‚«>˰ê$ö<6]]ò.Ë»ÿ'¤";´fÃNW`»cÚw²Û¨tc_AÛñ—‹õ9¥ÚzÈEË„Ð_AhÁ4dN¾fRí gÿêM[ýj5¢î›§2·Ôk UöIfRDŒxÒŒbõ8’RñÕA‚Nœþ_!€9ÿ–/YR&ËM«ïœ;ëAæØ> o4}Maе£n²ß¡t…y²å–<”œ‹€ÕjB} 'Š9³¬Š>†^ßÇã‰û6ý›VVP¸àS%l–ºÔò!ûI9­c²Ï§ ëúœŽã¶ƒàÊæÃ\7» ‹9)ØC¡—Lx¾Sqs_ãÛ¹‹bvùèñO´jñ{mÛØc«%¨Ïnߎ…šc‰}¸t“ÿBv!ùA\RO\¹;9ù¢B2ð®ÙìV'4$¬è°^aÔêõVj>|™ÛFS Âwð‹z/@:Üû áv¤Ì.ï‡ežôK]ܰe´ F.Âä÷c´š‘›@çPû¹iø£TÖãñáF—Ʊš)‰rsy:†ÚÒÅ-ʹK½¥îB™6ðó(ºÅMÎëƒð"ݼà€T7w±»ä2yq²¤öƒ»T4w¦æÁtå¬Më-é@¦ÖyÏk®‡ÅŽY›É¸[½[j¾“Ò•ê×ZòžÞÒæ’Oë8uRbv€IÁšåâb!aI#$Π%ëp/ó~y£É|;¢+÷IÜ´B0aÓɽåU”ŠÙ•ñŠD\$‡E¹ŒGsºi†á-<ªyG`b· ¸éØó{«¾BÉÜK‡H¤÷þéçQ{R{·ØÇê õŠË;jWïvþ,}KÕ`t`"E&©‹]mLÊÏ`eGïÀŠe½›¬^pÈÏHiíG1{m©­Ï†O©‘k¶Ô½ÿɶÑEŽÓ*jdŽÜ¤_bgOázÎ_€¡צÓE Ñºó‡ℇ´Ý‹î›ìн‘£±o;ó‰ñ¬èq¹dQ‚ƃÔâX+¨f ˆ>8»pßEæe L ÷ÜKXú‚Œþ{b Ùzy‘©òPÔÆƒîÏôk' Cn킊½éuVb$^ü+Þ„CÕœ*Í@»Ú¡™ô7Ÿ©IþÕʧ>‚n3ä†/Ǻ‰ïÝvÜÞ¾ú-tÁ}›¦ó)†JL÷¼Ìu™qØô–+ÆHÍÏúFQâÕ¬"@ýœ?îâ&áï®ûÿNy‘,¨ø‰ZtQóÁ¼Hú„§hZli˜3QCt7G];ñŒ é±Oo mhïr¢%ïŽn DíÊÆL6©–ÓÏd‘4Jz Ö.õqë©ô^(VÁä ¦WÚ1å ðÌ™êEëv7µNB¾²pŸÓÂét4É¿œžÁ„4”ßߨ'Jº°¿ŠOY"t6úÍ¥Ñ& R£±5©ã%X;×X,VÜûHâ*|©A·OlEU‹|…œÅ³>oZî¶°+,- +:[…$ÏÕŠ3UŽ‚ÿ0oŽDÉhï.ÏÊ,ÓÅ &õ¿U×Eþ´*”êÎ*ÂÇØê…Ìî ÔoÑFÀéâºâÉİ…å³}‡3÷R< }­ ]0ГÜÍr…Oó—1­Q/+ØKM”‡-¤t«•õW5fõ1ÐÍt–ŽÊ¾‚mu¢>2ôÉ7P©!ÐýòÏO•Ö<æ.d1cÆOJ¨ ðÀôÌâÑ(ùÿŠle3¨»¦Êº´ÂqÄelâÜ7xļYi ¼Öø{jIm!:?pé&@EK^§c{(‰­÷ƒ_‹Á]Ÿ±%³8ƒ8b³4ÒÉ>°ÊåTPïà«FxÑùæ…ãUmKr…3‡5;ˆPµü‡êl ',¹P+AñÚeaC)} N¼7ºãÞ;̰x¥ŽN¹˜¼À³È[¼LC/{óí“hõV E± 5TG‚¤z,ï`ê[áÆæuË»ct2©v?¤w"wHœà0˜:ø.£"¸‹­,ÄRO6¾/Ó¿›#,",¡á¦wRµsUÞ‚mGˆ¿àÑl‹d¥ >\DâÞ£^Ch3ãyî)ßȸôQZÚ¥`Ýùñ> šƒ¯4>[êyÄ'‘9ÏÄ_¤Õ\ùyM»¥.è‰ÊJ]¡*à”è ï«]ÀX^'¡õ³Ëœåe§A/e*–­ìÒírÄ×0%œ¿—È<ac´%E}­‰z„'³Zÿl[Ú>ßzVß«m‰{¹1mŸÚFðÜb~© ¥˜Õ-3|›%j@1± »Dh%©t{ÃBl[9ËÒD¥¿jÇúyûùÁó’›lÃþuƆƒè­©h3ܺÑX§(è3ü9Eh!ÈGWŠðY™QJ}`„›ÉLŒSÍ,ë-:èDëZåVR÷… ʽ§f½[ésÔ^•L/¼$ÈãAòx(CÆO†[ËcÀ¼°(¨vGLHmѶèÓÍýœë¢PÙpo1‰¿ÿÊ;¬ ïWû/êŸçÏ©ÒFÑ9>$nG$°t¿{Õi‘²0;ÛÕÕ¶à°„wL%)&VǸ٠¾ëâÍXËn[ý®´P¨»g°™ââ‘ù7MÝÔ„¶Ú£ƒhœÄ—è|¾èÍ/µòòòµ+uGZ¥ŽÊäZ‚éXïK‡mö1F3>hò8ãÓ÷ధ宂Œ]Æ; ûŒˆ©ÏÞ~Mäà¼À Íø:£>¿ ¥TþM ÂÀÑó8tP9²ªƒAÄÓ7Àá~ûÄäxñbc]ZN u'²¶ß>O¸Ú Än[îbùÿ¯&d¦{ÍËòyàAÂÆZ޶±¨5º{mïé»n@750 ä=¤AƒÄ“¹&HUSáì]Õ1šCI_AkB½ Ô`#©ò†ª> ‘FréëN;–þ<œs£ žgÜý¬ñ=Þe—ú/jF•ó¸  OžsNSÂáç7Ê´c2™ôtÑ‹›8q…Ä“=‘<ÅC: ¥åb·nGzá¯øôaò»G6ðM|ŒNSÞ2ðÃ`+³¢ÜŠ@5ì>žÀcÜŒX}|(î3—ÎÉ™·|7y& 'ûkvûj‡®É˜¿ºù·|,¨Ž=0ïàÍ6 Éó——Êqéü0«ðêôGy yÕK+L7Û4`ÅŸ>›¿µ4øŠÃR/´¼k%éÝ™V³F’ð?&ó´þ’9íèT>Z |PÑ0Uò÷¶ ѧçÕµ²©IÔ`dž“į‰>¯xÕóoŽwtæÐ냀·wºí”èóûÿ¦ÆOÿeN&úïä \À…ëw]Ð&iú»ˆ$d`¢ÜLÌö¬¶SäX¼Ôέ k&x%&Z«½´6y¸²òô8|–jð“µNÔSœjÖǭÚÍF/§)Ôlaô‘ØÒ#…h¶Í&ˆ´ËaÐæ»ysw€Îˆ7ÂnÛ¯âN[Û–«ý]ÀQ {ÃޔĻõ l#&êuÈVæKõ€Ô’ÕiÖþܶ¥Ùj<¡ ºq­á¹îí=°nºï‹øZÿ9õê“T͉Ô5ÓDºKŠ¡¬Ÿ¡›>m0/]ä… qSXk¸BºQ`%ƒb£îôÐýö‚ñvA –7x“¢i¤)ÒÓtšÆ,©×oN¶Áö7Àk'Nå/ÎüðwæqgÌ·qŠc©ndÞ•lä«q ‚Ú颶Nšp¯ce© 1û°Ô(µ÷+:B##=ç»#Äyq¼þ-»pبº’¶iˆ–Åg~“™VÄN©4úÀοs0k1£Œ ÚsnF‹ñºÕþÂfJ5‘9 7'×k]¡-B{XfZì$1aŽf–à;%*Î×DoÏn#`®å>¦`C¦æ+¤1×CMC"Ãý@=_MA›n“Lç_oF&6°Œ2£Ý>PhâÊ…%N-WQ¿X/¨¹ ]pºÉ/RspÒ‰º·œÊ ¢öºåò&^Û;Óð![ о@çB\"XT¥Fe{Í* ã“ø,#S5›Lï¼îɨŸ1­©Ë(Fêë§Höx“Z+C @‡¬±M¸¡ åL e¤ï€˜ëÅ?k«Ànú÷ó¾ë¼T0jíOî·¿„2á"‚[j¸=˜Ž‚ªLŸVçã†É׃`õiÊÜg%W29¸ËÀ9$ÄëqÏ¢åЈ=†½+&®ºŒvÕhv¸  XËÿY–íU)5É.‚ô?‰òB´Z;yj^GýÆ(n:.Â| ¾C!Ò¶zOBÊaZà[&~[=Á—«¥UÖiقؕÜ!?Âèhî-qöÒN»šKžRÑ¿»Yo,Ù©O|—XÈœÛRÞz[¸ê_xè-I$»øÕAÓIsÐÂyÓR­ìªu+©î1ßXè„VžU×ÈHBä΄h•­³ú¯üUMcëÉlÓ– òõzËâµp¥¨ ›‰å%-ñ¨ßë×ßUÔBa)¡?MƲûE…UïùšH´¬£Ø§_ÿÅÊuA±h îB·£¹”d±Á;"E80?3ʪœð4ެE‘ÛP>…é™¶‡i4¯>Äz=Úvb[„„&ï¨÷³†à¤uÄO#^J‰ãÿâ Þ›–`±=æß$ü–”PõÉ}ëÜ´é%Mï23f&X0Ae¨q ò‡é×A•2‚|eÁºÐøÅ#Àcµ{ ±BaßêS¸Ïì—¤* æˆ¬/oü>÷´uö›»ìå3ûÿÐJFik²Ãß³cHÛ™Yg§ÒuÀÿ«fëkzSÌ¢Ž?©ÕSîjÂÑK1Ýñ,5ú»%‡³‡‰ À7îýUá‡"º„ghW7­œYÀJôÄ<×âÞ±¥û©VÂ`ôTržC9‘ÝUEM KéÒý} ¢°ËñC2ú?½F\Ol:âF,pdC†•®7¥^þ*zßЉ÷V©©9=Lïáæ⣄J,D ¾U‰²Cô:ô‚1âěٱsuÀQÍÇv9 !Ö}Y ÜNy_lBÚØ`5ºªÖæ*'̓K~¥Hzë´Žð"ñ]D` 8^Äx åW̬S¸¿uL*0Þ _™qžÒô)=éJþn-°±ÓÚÛ™ ›=xÍhΙe¶PJw§¯¾dÂ0q»,1K—»ôŽxl˜»2Ø—ø«l øcƒhä"˜g?Kpccx!iE÷ßoy)øœT Õ$ Éç#Õ"cŸE…Õ|â€À†ù¿ÿ@|ŠºçWáTm…»=rüpý(ÞN„§ö[Z8Pf`@¤ .Ôƒ^è0ÔiƒJ¶0t±5ÆÃ­ìE ›Ä vÂqýW;Ÿ´¾H²vxÄcêM'ï+r1Ìœh§"øCç~«o±®ž™wå!Ò¶äÃeLñÐþ)ô€fýŸøÅÒzyƒßFiù{Âè¢wCZ1ŠÒí,ðPmàÌí¶±ÎØÂ¥äT¶Ñk=è@‚´BùLÌA€n[gm¨§—Ó=è«Oî"ÃXÎ3u' ›Ys—R{Í“ge?`íS¸‘0Ъ1%4!Ú"´t­õ†®r¢N-˜åðc§Ì( äœX×z" (.ãѦX¤ÄsYG/§µg¶V~Z]½½¡&"Ð&b…>íC­#.‡Î#øJÌïóâG8# ä¼ç?ýPÐÏ"E×Ü:–ñèYJâúìŠüKÃ:²Î+^Iš 79þÃ_™ÓðTífãªRjÒ ÍÑîªÁr÷Ê"1€½'3‚òÂXœ™ÓÓýó¼÷ƒ@èì»ä–tÍ :Š»ài‚-²§´w3Õ7ŽRù¨ Døñ~¡á‘•íéäkW3˜‹’“bFZ¤[ÓüPìpNêG™¥@0Î×+ia@H¯’8Ìßè[ÓtÞu!_@Ë›¿5«^¨j®Þ7#7nv‰ÈÏ+ÍýZ;K?²Í ˜²XFËtNcxq\C‘y‡‚bžJxáÅ_i/àæL”´<ƒVlZôÍèºÖk”¨´û°Œy ¿|ºÔšö>ºN³ª\òëùŠ[ T@ŸQX‘qòÓ2mͳUI# /Sç¯é¥Î0mÿbÒû2—“w@8QöÖYwx†•Ý;ñPb]±‘PÌ ÑT "=9”3cÈ´äÛ¼såÞM¦Vƒ«–›¼>ú "úsE(V`u‚fÆQÄÇ3 VaSF#»>öÚüù|Ûáâß ÍøoXóŠb¼˜™ÍÝϸJ‘ñ×UUéýNÊc2¹m7~Ž‹^«äú¼B»ÒT xŽoÝŠÿ…É–ÙY.D]ò¨É”@ÙYÄÅ?¶nÄ.¹‹‹”–б\-¾°H*-i;ª?îΑæ_1'ˆÚ—8¬lIp, ¸;ì'€ƒT« ï¡òãðÖƒ=ñ8_+â'W=!Vî;ï,òý•üž±I÷g!ìmæ­¦¥ïäæø«’{ Zx /ñ¡âsE~3’g€/±5á£ðB½ŒñŒë<@ƒ¡ç’´ÙÁ£,áŠìxÈE±}¤¨®s÷ÎØ o%'ÇfídS '1AfÈëiCÔM÷Æö7å@wWøBº¤GÌB÷yÖ#Z´«LÔs™TMO©m”toã toé°ï²y@üs3.–Ïú£š‚iMZÒ‡æß4]r¦1ëŠq«mOŒèà>ù!Šœ‘ϦEapÑÙÎ MmóÌ^Z‘`è‰òð5h.Ø&ïýYùçbGðòïr¸p*dÛ±sñ£Âözú]šÙwTZ·ØÛSþè>ËÆ°ÁHÒiØ)ëéíZÙ®f &yݧ›¢Ê,±c6D®Õ z¤1ÜLÚÜeÔûU^ôO±jFâ-*$z-~Z–¼²õl\(ÿP>%,I»­Ø·Øþ=áÝ’pdñ¿ò©ã&®é­€²4õ7¶$øìô<§è M  FM!®"ÿûYµb™dXM˜¢£ùX–KÀƒ)…ɬ¾©þâ@SvÙ}zÚϬµ¥ çì¶Ì0è5¯í/~žØf0ôà^¸ïø¢½UÚ”L¢iëä›s¬,šÈq/i¬èØ- Ç<úÖFn*×Á}Þþ ÔrdÜ2¢KrfáæÎª#ôZ¯NÊ%g®Æðe•(g›¬%2Þ¢•º®·:3¶kñ€ìcŠ®ý‰$Ì©X¯T¥!ÎÓc>ðI.æS|ÖP,AMÙ ×-*4É-2q°xdi³ÌÜÒÁÌ}É3 W :È5HÑ­ïpj‰ö£=zàdƒü䬚q*‡_¼HÜí°J)c8Ó8aÃ’i¸¼xþ.Á£sWÃØ[Ý–$ßåšØÜo§Ôö§[ÞäÁî1HŽCôÀSþ‹æµIŠÝÜ–™æA¾§Ý`xú” éiwH"Êd‡~/†°e"4†R (º&x|;ÐÚÜYå›}èÃ2,Q#ÙŠTNØÓ”›ØÒ®åýÓC„¹6Ìü&/õñ¦,& $ /XžÊ;âßÂ6´¢Mß'½¾»ÖºÔÝw¼ã)¦­zÖNý´úV¾*?T“­[ØœV‰š¸G\4¥ëœ¶_l\q—HÑT"S?Xtbà•â<ÖýÎ,Ýk§®8s½ÔêcmC§3d{ìž¼‰š„wpzˆ"ú­Þ–ØVX4åVEñ³áál壉_OÕn™rZ½(ÄÙ«%0;mú/dhÁ½ºSªDß.c`“ ŠËm èóM¯Þtyî“·¹“Ó-èe}ª0\¥ÎmísB²«¾gÞkX™‰b4û×h}tw,Ù…ë\#ºð$@é ~_¼HàGô]h5û¢øñåµó=y m[¶¾&› ! >Cµ}P nΨàù¥Š2þH]¼o“†º~,ƒOBžšt| j ¡¥Ûû͜ߒGà’ $Ð+k0)âÌo€H ’W×÷‡¤~»™pògNY#ŒŸ .ÃÞOïí Âv¿úÚ -º3ê¯ùRÿèY*XŸkg›¢‰ÍЃHé”ûÍ{ŸÉ¢d”L7@`ùý~¸µ‘ýÚ—ur•ôµÛçK4©Ž ¹r®±xÞ”¶É³p21yÔ°Cîa V'Ô$ØôË×U€0÷ÃZ-ÇÍ{à~ÉTAeFyVº»ý!ðünEV\¼ÊЖ€¹sLäc¦Ï:ù‰)šh­ Å ¨ÓÊòâ lJBËè¹R„É2ïàqåuÁ³"/t¤ÕX ÈÜ2r3±ßé3Uâ}Ì3XÆ}¨*',w ÄÎÜÜ]‰Â»ZoùÖ¸·+ †ç&'Ê:l§³J®†Ñ½¡ÚŸ€”¡åµ@A?L ¥©­€¹ÄÁy4¥À|Ƹÿõæc޶uc›I 9(?x%ÖÑ…i àۿίæùÝdÈvŽ &`¤ÀVKï±ø:ûDôÓ‘Ÿ¤%L$#š¨ÑòvóVˆp{]RjկМš9­ ’­G‘¡ZàÙ`öÃC˜Ë,Œú›”ä09#cñî.‚H7¼Ë4°Í.–y>ɳœ-2Ãx" ñjŽ_öœ³¶)‡oÈÈl K„ÀÞ~Ð4å—¥6Zw(’'尿4%«×Å%Œý¦Èò~°!K 4oí$‹8–$©j%ÍúhY\ø&ðn›««³WT>Àn°ðæçׂØô­òUÅNéÂÃ÷s’›I|‰cóȳ¬æ@Cæ–‹93ØK¾òÚë›þ¼ìMi4=ß5aaJ åÎ _È, 2F7ítôEB¬œõ(û3P±yßmoÐ{>&ãR¢´v0{ÀNÞêdIÂhCJuð+…ø#Üz9;‰'ùåþU:Hæ0/¾Ëì0æ(<öóŸkAó@Ï€htTçÛ/v5֢ϳDèÈrÙå¦|aB9B"T£i †„ì©·—vQ麄 ˜ç£naüïxtôø_Éÿ=~Ý'ÿ,—ŽíTÙW$hj+ÓÜpT¯L³:C¼Ì(NÏãH0ùêjìGŸÞaæd¬˜ÙJóæÖ Ð*§V3Œ/%®„‡â¨+/§X lÙš…2†®9ÖjÞԦɌrî~ª{å¤bl˜qÔiü=Š‹l…ѽúª %ç ´†× 0êË ¢õŒ)î=KDfEËKÏ=FíÔß!ŸA~p`‰£¶'ýº\æáÇñhÛZm¸ä¬pÎ'!-ÙlA°Î…bƒV‡.‚‰H½g›üé$“ *[¥~_:ÞßVÁ·LYƒ“ôˆfH‹J¨²‹°CÄþwÀ^ÚÍ#¢ì¢“ì>¨P”ë£"¦¹«§\lÉØ»pZx{¬k Ѫ¡°í_'­w(°0èœþŠC_8|Àw^ÕÆ¹ Âã{LOǘ2%ss¦V\e@BEÖ°†[µÆyÇxwÀß&!ìÙÓÿ³Ç*ëáõéMBv{¨Ú#¢1*Î1]ìÆVâ8Þ,ÂQ/§ëìíÅÒ>{:Ådf~ã¹15Â%»ÂÞÁÞý$z'ŠŽÊAÞj¤FúrÉÛÎÇúzÏÑêÕÚœœA,K ŠŽÝQ!-ôfgöA5øx'9·'Ètç‚Fƒ[ QäØÃ‹ØÙ:zYÒ§ xDcVgO³ÿÄ…Eí`Ÿç+öGäÚcY¶ä’-2¼€Ý¨ñäžu ›¤»ÁdB´0üê\CÅFþù't5íÛ 0©çûF0æÒ‘1fQ_rßzïÛ]èj©ƒG™‡K)JøzHnN° h;â“Á`óDHŠäsÇârR\ò8€þõlG>½ÿðØ2 OîÔBâ)ìÉU)ÝRï£ü ¾†º nà¶þ¥&Ÿ;TÏ×ùZŸR'ÒS¶b]–àDÉw(‚,H»¹¡Æ…Äû„°š´±÷×°Ëïý -"ÏÍ–°H6Ò%Ë›nÆN°cq¹ÝôÝ©xiÒ§¤§žš&Y$ì› 74vdjlµPáû/¯žn2•7yÕ D~xê9¹ä©¢¥X¦Ñ‘ÂÒ–ò±Gr‘<ÌDh] «™Ñ9,%+:éþ… ¡"¿átÏ]# þd<©Ù´óiý˵Ó"¦A~!èM 𫾠öψ=ˆMÊ0ˆ—xµß7Q¾ŽŽŽ€’E:Û¤öïë„w—ivYó²1· ’†» çÞ*ü‚ݼ‡ÂyF!mî]Šð\XòI¨6‚Ùºþ´"ˆ†`N‰.GÑwIªØd‹UÚ{|Á—»`–¼à¡=­sözq˜4°’»Ç¦X½Ö†ÇI:šûäë_ÍòDÉ®nAeò¹/£ö‡ kÊ}úJ-&âÊE“2¥™¿zç`ˆ-vƤ}¹{†I_Ö*õÍöl:n/!³ µ·:K1/ðKÜ‚ŸèÿGÁM:ŠRv÷c@ùÐi»¢uÓøv~îoêI:dãî—KfÌŽ¡Aùh‚… ÏÔ^ÈOê5A(è ªgìÈGü<·È/>Øq"+zr2à‘Þ§8S žÙ¥23õ'TdÊk„rCÖ‰ÇbŽv~0œÚ[$£|öijê›{ÿª)Uâ>[öNpMLÀ¹c2É:U)žEíÎ8 Fìè”ÑÞ'"Ýçu¯ s0‡åltß0¿ÈW/úašlYK—ë¨×Dƒ0ŒemôO¸ÖY§ìdÆq½* ßü˜ù¶ŽÈšWëJT_=ïÃòöj2H$•K¯6r€™*uâ¤ø| ¾ íŒ Ò«å!¬óRÃ8ǘH—+¶ýÞàs `‚#A~÷_‰™`”ƒË3¾oÕ·ºÆ3€¯ƒCû¬ö\••Ò½^ß±–)…°Äpñ¥ˆ¼›€zm,X•$Â,SÒKP˜â®ÄºôpNÞ†’]Péæû°ÃNݦïÃTû¥¶?UÒFo(Ðu†”#¤W(ÙÞ=÷¤k¹+h‹ná'è‡ý©'ÃuÂý²¸‡êó7¯æÿ ñ) ½nDšà~Ü€ë£Öƻ֊läB( ƒ)*Ôˆ è×D”Ñ÷žÇhzÙ36Ï‹ïlÇâ‹:6ô†FC¥³zÈ›9íÕ$bE.0¯²ée.Ôù1ÜBÄÐ|ð‚ÚÈãØ!¬Þ;I3vpºu5ÈÊÎ ŽB¿€œ_È„Æn˜á!x´£†6‹”‚37€Ò¥‡Ujd_3y¹«/¶®ü»ÌÚ³ü¯€A9wm,êm;Ô›s–ÔSn#ï–ëz†WÞûCâ‹B!ÿ§^&ge´ñÕŸlÕMœŒ]ΈRB‹½sƒ/;‡GF‰Œ”Ë2„Hahò­ßLPè‡)Û5˜ö¤Þ¦öÙÓmƒÚ›1Ž5™™¨ìý<ŠÝRºtêHUÎKœZÇ5íƒÊבM{¬M3]âe©Ã ° )P8‹¶B² h]h®Ó#·Í92Uz9æÛ7D!‰V3“N‘¾…ö4_.3 ¼ôýy4Ó nï…mʇr *Öâé¡nV`CS!‘Íä—lž_þ¤CÄ ’Ç6®V¤ç»ˆ*Ñ_§¬ÛžÎ#iæ+žõUä”%7¾U#cãî?Dg[V/ÌÁޤ±¾È…Ø;†FÊ¿êñ˜»1(kÆèƲŠÈÑ<š®«We~L;%§8ãV7bßšrö`U4%¯óÿ*WwC‰Û­¬z×{fsCÌ[=µ—fXж5ÞeÌ© ¯¸®ôÈã À½cS+UÅù/þ¶[?•̤cü¢Bé²ú3hÓôyL¢Eè6kÒg–<:å; XQi¶ÌÍDÚªyH“Àòùë1?G‹g¢BHkÖ:t{%¨w†²IP†ê^jµx¤¹3n”v‰Ãµ¶_d$ÔWg¢ /qªI\ShjñÊ A”÷Bv½B]öYÑòw4J۾΃ö¬ôª¤ùÖ^}žî‹yFAô„‡O* _¤³£µ˜zB ²ì|é%QŽ[¤p£œ²"=°"$zŸé´ýZd½¡˜°à-&ˆ:vŸ2„wq_vëbù*MФ?þF)x3•ݪÅÛQ·ßþñ[Ç,Ýg3µ¥}þO§;/ÌÉKXžö’Uå¯Y+Ón‹Ø«ûŠj«Úy´ò"½L¿äo—è÷`-Æ:½â4œÑéøRcgЭ' D¯D¦ Íqü¤ðêY Å€·[Eáé:¦N’¾nÃ)î’ÃØªšÇ¾øª>NL#ðö& ;‚raúk†™OÍÿ§ V‹±©HmUåÉ%¥ùMŒªP/›}ˆSz&(…edæ‰õ;C„ë«wÒCö‰M´À9°5lc…¬¬Á»Ž6mã˜Už)å‰AݽÉK™*¿…Mbýòƒ«|).‘g$3†…äxå$)àWG¾8⟋“_ámö´ä7Êäˆ;±DåQéØ9¨Ã¦1¾?k$ckǬºzÛpvÚ<˜ƒSË2Ìó𘉹‡ä§ÔM¶eà(à±lMDsz/QôRà/fJí¾/–ó—Xîw»Ciñù3c¼?*ýnb›¹Õ¦„ùÂVGkUèñE zö®ß”€H7ø5¬ñï(vŸ¿xH¨en !öﷱߔŠaáo$…ƒ¼ÿ5¨wù§WÐ<* V6õèD¬½ýÓ‘?kº€ÿ2¿‚@±mÇyŽáô{^ž±ÜÀÏ’ý.Û¦eH¥â dÿúŠŒWÛOF–žÊÞÕc'HÉE ¶lO\¯¬»ŒI$*w¤H'Æ7!:ÔzÚ‰ë…8€!c)Ð?üŸúMÒ2Ô‹s)y¯ñæ„+û4~ɶ( |àÕG6e$ªAÿ÷çq-ËÏã$V_W-XÈ‚( zFÉËŠ‹ÈØ"»…)¨ÌJ‡ànúlR´ëŠj ±Ä¹fíŒPŠÏ^C·¡§ùìFm-ÃèNUëóÁ‚¥–©pÿÆg‰­-0§ :í+ôKXŒuSÏl•I˼ Ï÷ÑZ{Qü_š9Ÿà6dê^Ýàªÿª\çaܱƒ˜t…Œ9mZ:`MX^éPμQogXÓ½RU‹!ä§ÏçnWÝߣÀŸíöïÌi %Sž£è‘Ï!¾¹Ë’œá©ÌÀ|Ð÷ωX¢qLí5Yö¤_ùW£3˜@&!‡½Ÿº^ÏB`ºvàKlñã!ýÃY,¡æ—+“¬`RÀà #”Dgn1A¬ròPÁ /àeùê|4›gfÛ¿ùÖxôÊuýÞ¸®yÈÁà%_…w{ˆóº­)Ï0¸[²„¶Zÿ‹ßš³«lS)ÿ²…hû3¬!Þ·R6,݇0ùg&úg‚aü÷V$¬œÙ£¢†™+èn±$¿’ð+glÕ'mÀ•Öùq±éò8[ªJNërå©.Âé!QJq¾æ©i™È«À>a|dãa£8¢\’3| ¤R2WàQÇ”š…ô“f „Ùçgß²¯ÿoÌWÃ6fÂÿªdEß)‹‹tFò” § þ|I–ô bèÅ”?z'=~aý²s¹S8žô! ½Ã¤r¯ Á‡^¹»ž^"س¿³ß²Tä`(0¢ Ü¿’Zh1‹9 5Í©Ì81òE„^^Q0†¥Ø ïèhâÌå¨Ôå·Ñ…tíµ7' ‡j§³ ÙH±,áˆs¶æ„œÉ“»çæršèGïUIŠÐꥷ":†)&¨÷üe<ê^÷ÿLl'@Àj‚Ìíqœqvî ¸»é›¼Ró/ x‘BÓ­Á›  îÑ,ø|ÒN#ß8äI2!ÕáœY×ÅÁ8öî£ÅZÙ Ò‘@âiÏžÌîå54'çÍÖÂlm$„g Ò'@?¡*:_b‘ÙTÃP(„;·*ÊBã Ó=+Àqƒü” >¾dAÖMHcf fãi¨‘¨"šbÝ/îVŒ~lq ¡–ò;ƒvC„ø@£ Íœ”§^ T%?rQ0 !«Å_nC¯‰S{¼ã52yÿ:Ά‘êS ßt õŸ…ËRuomüP=Ë(^®SR·ëÃI°.®Y6ãmûbìçªzaêÍÄÓÏ@Ã|5€Ó>}¶wñ˜åQªâJJm*•Šß~Þ§Ý-Åq+ ôÂÁ*ÒQÓÒ¨“ùœqd˜ › ÌTëÑ—’o¾HæùÖÙ —¥«AB;Œ-Nw$‰ËÖFû{"½eIîH¯3VIê—Öÿ]rÙ´á{vœÆ‡ÎÒ Qj%)Çx»}C_‚ñ·Aùx@4$Ô3öG³ðjÿ³›Bƒ§(t X>ŽüëÊCv㦦g(`j^òo](³@¯AêT:Î@7r*n’VûpÛ…qË[=çBÂ?5שYH.=V¨¯™Våa“-Óƒ´ïhde«‘MøÅöû Òg=Ø#]¼ªfÿز?&„¦ÿíLˆ]uåDŒ¿tη{äç)y~|©¥\ÆýßuaªJ¢àà„Co@FÙ_䯓ž3ó$TÉ › ÿZ Å¡Mè“;úý”Àmiž–;ý«`húò:P­9p`(»6×þÔÕtÎbZœB|o7Y(Háwyq³Žyc’°º"š-uz©ÀrŠæ} Ùo ÖjB8G7SE€Æ×XÈ^î¯ô-¬i‘uÅJÏYœ”aä¥Â–<öd“O[Р+·îÆ¡æÁj¯q<µ±¦ê ÒóUCz´®¡ž%Ñ}âô¡÷^Ê>«ª2$o*¢Êø[­ûå`ì3š2¾"€öÜö

Ð8U›v„Í<w)#`usm}툉Éúê_’“hdää~ÚàJãvÊ[;žeÕ‚:Àh”ò/ÌìÐF’y© ›%ÕDA õ—ݦ~Èð—_”c*åô_hŸYT±[[” aÍß ¼1µ u« ¿W¶V~ÎN=ã/Ý$½;jž÷™OÑìÜ/ê­mÌ}o•Ìër]-Ž%ˆš£˜¾î¡@Ö[EŸÃxüýL1wÚŒ |ÙPõ#à©,·ÓâMGàÚöJÍ»¯µwÕõ.RPMi¦ gÁ_”ò«Á˜êKNgÉŸ+¶EÞh–ΜoJt! #ƒÔ´°ùòˆ2„^Ïå¡ür°^ž…èóI2õ9>å4W£á ½ߟ /sªm™9©Ô9*ëëÔOÁ=n™+ÇÉ5ŽÄ}’§ŽU#—3…L#0<©Çí”6¦¶»g™yP‰ö+5ìôoŸoåíˆÎ‚îÙDEU¸=¹FA¨PE9 Ëó`÷8z¸CáTÔoÞÌÜø²]c ­+|ˆèqïç­S³À•ÓÅýëÚLü©ÊC^ž‡5}àÀJ¢«è†]þ‰®VNFb±J¸©6A‹Æ£uÕ0 kS»ªÐCó¹áÞj`Î"Ÿšö†i®äM£…t®Ó(Œw4qÙŽ‹ Éë·…¶ e£Â!õ#{P›4Ã"JEçP¼0OžCÊõ·³7¾ß5J}„Ç1o,älî–ù%ᬠE&¨lDˆê½’dk —*à‡ Æ+‹XUFí;´á/Ÿð…½„œ¯m[Ï5•×°™ÇeeÅÃ~ú@ÛrÁþ7¼¿LpG 8uÁõ ¨78ú¼Õ=Š+JÚ yBEêá›ò9ïÀŸäZþÆqˆ ŸpM,ŒT0AÈ[¾ø`†Çs Ä-昪ÂK¦ãœþCy~À/€«”Ážû‹4žôåíÉzàcþir=°ì:¨Ì~­aºêxQú>õ ÷Þ|© L‹5¾ ¥—z´Ðl+Ø$ÜÌ›ˆ ÜîBù€K±³ýüdÎÄW¹O&—¨PdO:¬™&õ*D„ššuèaÛTX*’Áó³ù-ÎfÄ}ßÚv¦ë½õ#óJj»¹[þx¡WߢÛ>š{ô é°ÿÖÛzËk ~ÆGØJŠÇZEæÔ|í·½è x‘Ì– ˜N}ØJ|x~áºõ) )û‰õÇUW–{Íï=aI¯»EvG†ëndep.Ü-ØLuðv,¶·Á‚íŒF\tFv’%’ýŒæ"ÝžÚÖÀ:éÈ䯞*·ÕŒ{–ÂëAFçõ|ÛÜX"5ñ.›WóéÂØÇšÉ¿ÖcÍnË0€Ài˜¦º£5Ó;gRëLíf9“A˜wTs: ½rá§ä×)¢¡Ï^ŠÓÙ<és¸ ICѤÇ×Ýw’GB9eëÔ17&Òn%þ'†÷2oÎAÖ‘°dE'tºtñ#tR3€´æ"ç6=ìàG«Þ&0xLg~¾úHX¬v?¡¯+‹}ãÕ,üOÒƒY¸l@ÔY”…/ î-I`«XŽ!øºÆó¨Õ:·ˆ/³#­4 )›°:Dáè/¬þ)B5”|†tÏÒà1Œ·y—ÉY‹‘!ϬŠ nÕšËj š;{`Ø‹"8t)ÛéXîOmß; P©"îhL çLP|z6Áâ}ÝpºÑîð%f.†«&ð´Yöwþ=´ Â`+ö¸"‡áà](/\Ïr‰$:ƒg8õVÞ0Œ#±ªÁvþ8ÍUmÆ[&σcé%W¤Ì“t?} ]ëmos)è\õÈŠ®/}\†Ûè5º—”å=YÍèòРAsvóð”& &x&coLiãpè!ô¿ø/AV¡fõΦAªŸß4ÏDú»XˆÝ-”Vù»VC)DöD÷/¬ïB9›ä·ñ°F=ëE*!ítÚ<‹¶à†yd±ô^Jµ •'èJ•ÙA°g2j$2¿-‹é¹²|Ö#%Ÿ[˜Œ$U§ºœÇþjâ±[k|¨d 6"–™·uîÀ«áóºQd§Sâ(ô6>C°ˆ)G4߉~kbÛñûœÊγ^Šð˜×é†8©À?Qz19Jç¶^ƒÓðð^åçËY×nñË´Ÿd#h?^ÿ‡FÓ7H竉¢ÝµŽyRô„: àsޤYIÆêrjÈî,÷.¡’Ã.· sòyϨµ|ÅËnûRŒ6Ý€•áÁšUR(ÞÔsHÔ ¯ëTêA+¸°šO¥Šù„<[rõ+cV’F[Ûà.—l£Mô%¸}WÐA³ùÿƒ“ØålV9Ûy FÇxŠ ô|œH’ÂíÂòP1 _lç=qé}²?«ûnÒy@¿*¼à%fàÁ +h‰på¾j¾—¯¿ÒžÌÜ0£Vãþ¸Àƒr3á@ëm'ŽD6ÿ´9 Í»ß Ëÿs',æÝ6@Y`9J3äD.ã+ñÌòáCºŠÞIb¡š éÏ~el˪aºŸ™…Jök“&xmLù.‡~‡e_;ÆÐŠ:àèí``|ƒÍ P0Sް¨žUȘmIu×DÍR¿Naš$»èÈÅîá1 ³¥Æ|{7â]´¨0ª×"Ãd<ÊÀÖúYÎyØ ¹+n$¼Ê¥+5X–E'ÆkÕG²­ÙYØÉëÿ¹Ârºh¢yÀÀѬuJ$EOÑŸ‰D»á‚<‹â¶'mfrô5üV ¦÷Oþ?°/¦ÃÌãJ÷­„ϯ­Ò3¼’` øêMK¨X_úèÓUì~*:D¨¸Mq;^#S¼ÒøR˜Ø—¤÷Zu`Ë­²yë:ë·ø|KÈAš™Ç_á3uè$쬸k‘ÍRü=,pIXÙÏ#ÌÇ ¿ß˜ x8Â~(a[zÊ\.‹HaÄA ø‘ã2A¤-Û™¸€ÂH‚Kãá‘jƵr^¨ukæhB¼JgÜtïÊqmÁ•Ò«®SÙ‡¶~»1ÈÅgG”VT>VÉ­TÞƒàm½&VÉ8Ø4aO"}ß ¶\t†*ß\$ªQ vüw=c)Bû€Kf|'ãÍÓ¥8JÎø¯ ™Ç&‚\~ —)+gEªØ^"­˜û ÊÔO‡`ŒÖi¼J›4¢B³qý%æ ž0ŽÝ0XpГNN§Ë21§òe4~œ•´ä3&"Sec’>€(Ø}¬´Ì5û³Þýn…Õ­õ}ôSÛ¥îÓò ޝº£ŽÍiªF)8/õR÷ÿ‡ê&`ÂÒ9U ÍôZ¦q%ÒJ¼»ÂàOÆÂŸ®ÑÏ#Ü;i½ÊÄðý2:l:I‰ùòk]˜ ãsõìšê”K¨Qôþÿ9–ãT|³¹ý‚‡(¼J°DÛŠâš/ «›Aè[èü°šSlRt ‰zü‚‘~âô“Nƒä~f'Hem\åFµ¦×ô6aF­íèì`YZ¦D¦¡¶ò&‚[½ŽzQ+Oç˜Ä”^Ì”úÝ’?­BîÌžkVЖ" Eì¾Ã)po¿²Vݺ DÝ’žÅ~´”÷¹¶mÃøõx¢1Ý'Pwu Èò0¶Ü@jıJí9\MίWDa€rwñìf1ú¡XZm=¹òT 5ßÎõKìáÂ>Üc«:QýÇùâ8òØwÏSþaÑ`݂ĮOa}yÚ×bEYÛ4.ж>bëì?#?šÕ%¯Ë°ø¸¦Ÿ #)£×ùÀcdÛ¶{ÏkV]w¦øñÎöÞ¿Cs™kj’÷R®<¹˜—õGéÏ0ÝÝõ ½Š?çª .é’~»9Ft̰lF^µ ûXF¦c;)3a碢+3ªx_—qƒÙ2ú«çøÿý}ž:ˆŒá[޶»·¼;é€ãó{…Œw½€Ekíű7~L+PÎ 5ì®TW%S¯¬·Wø€aÏ+œF¶ë‘ê…¸_¨ñtdcî™×ŠÞHWãì*Lv¨ G#kxãbs½“N2Gœè¯=‚Kƒ©@;šLÜC”V]t`#¹äGº‡&L3N'HS‡èÀŒ4¤À4G†óåίLsßõÄsjÇëG.çO™‰1Ù´>ú’žÃÖ(=\ޏuL%‹' g‰oÔ½™‹ë_Ž6|nYÛjãÕ@rW ’+Æäv±C;õ=ž¥¬ ñå®Tˆšø4…çµ® ´"Cµ3«U•6€1Vtë- ³äÈ]LZ€NÂgháâÎõžf_ìÅcSƒæîÇ¶ÑÆ<‹æRcJר?Ÿtºr™(cP6š€'o°BlY S-Óê‹t YLÿ Se¡Œ6©?ÜEYÁ ‰¼ ËïøN¬¤ØòøÊQ™.jÐè±8÷²LÒ{ MOëàñ0‰óK\§o­c7šIy¦IÒM•N&ïw<>E˜-ü /¦ZïÇ{n7LîS²+R¾ÕÊ—¼iD«Í”€ˆV ™0ÿÃ✶³?tù¦ê£­{׆=€L9¶[Ò«7^¢fÏ¥ü¸ðŸ¯6¶¦×,zw(xèoWøsf¢¢™Ãçm žÄÙú铦s^"ê°oi ú´.Þ™”ê¢Cã˜\£[+é R—ð¢úÄ¢œ®m8L©ß'L Vß<³N9og&EnjŽC[€`cæõN¦AcD»k-Ó_Öf3Æã‘S§á€Ÿ·2>“BLÑIH `DDØ"ŒÌÃ÷7PÊÙ [Å¿˜÷{¿'"pÛÕ~ŒkE¢Ù Y¬ê\­%µðs¤2uÕÏJЦ‚hºªî浊Ë#ÖQYº¤zú|$5}stsP…Fh¼¶l“‡ÙgR]óŸj®\ñ‚%ÛPÄ ®Î›¹‹5Ó$Å‹žw¾q–Sþ„Zª—ÿÏCê·ƒw¯älŽPr:ÏÝ¥¯•˜ M«næéwÁ÷TòŽT‚€¬ÆHì¯ÉÌ<´˜†è©ëœ,X”VÓ²:ð\úa8˜Ëra:òÖçŸ@!˳w3­­Ù¶NkL³‚rÄqÏŒKsðc›VªtÄe¯À_¢§Ý¦ŠÝýû.<– ȧ¡…_SYÅç °d¤]‘ ÐÌ' ŒVmìS½{_ì`}–½f2YW雿ÂO¡5àR½ÏˆùSaxòæ]àF*ÁE¥I5¨¥Èò?§KèNÝ8 o®ö 3Õ°J·G8bÍõRフÍ!¬/Œ×¡, ¦·ñQvŠÍÞ5F{UÌßšýò“m-Ôí6aŸÛ;3§Õº×Ë­ŸÄC¦U8<îãÖv/ƒ)o÷Aÿ‡çvø3g«Pɧä"ÅÈf/èSìÆzÇôØÊVX•c$÷%ObñóL¨›¨8‡Ód¢}X„²OÛp±ÍüŸu£ÃR„@Šeœd =À+µ¿œÛã—ú¿"x¼Qÿ³ÕÓÁm›| Ÿ´Š4â‡ÆF™…‚­RPZH5Ë\ºe‚%÷ LrÁ[e\Ä8… ô®™VÙ n­Ѓ[žc ØÑOAQžªMøè ׿,¤Éôa»×Æ://±”ƒl禮) sk?Pøv¬bõ[â‹£9·<Ð’Í l¾Ü[2™G­˜{¹-LxüZFÆÂu¶Êì1€Ã™îb*w\rm˘ý½Un;MÅ7U½ã­ —½#µþ›“« AaùsnoŠß…{Ú  jÏ ß³&()øœ‰s‚ËžûSs»uøèþ¿mœþ~ëÔÅå܇Q‡h%O,µ3©¯XHÆÓR-Ä\Ž3ŽãÈ Á†:ÞTòUãùçÎÖ Þã:?!P›$Î ‚³yrê£AaØ&ñ·¦vG5Ð2&åÐgî ›œé1ÚÏECSáø¬ˆð7—€Ùâ[ªrS‘ÔíKÄŒsZ6b¢Ç< Z™=¾ð@´{!ÅDïú|¸ r—ŸfCry+D¸ŠèÅóºAhJB)‹-éÝ|•Ö®=(|ÌŽ¨ãq)•ùµD.A7'ñ™ÁBÏÏÎêÔ ôºÊ¿q³˜¤àÖ4N˜%!N”cµ±Øª ÙJ÷Ç€Z%‰u¸pä‹Ê.YŸ:¨]ÎÜOl;Fß®ƒ³WÒ+p&¶O]÷A.@ E/£sžh¾º;}(_¦²Ãºw$ßläz½j-ÿ×a+÷ .LD•ê‡ÜÏG'ø.7N~LzŽ^•Ø w×Ô 2k?`q±†T‘Æà{éç ¾=¶g\]rR:Ÿ] Œj Õ§–¯¶Ë0ðÏ…Ã#wYòvJPY“p¬*¦Y‹ÕQL¥×îÇðWãÑ YÿÎøhs¡ðþ*‹²Ò/Ìxå%ÚYr!(ît„d—Çrœt“C¿À2ÑXÔ8Sö÷ºÒžÀà|JP{ï Þi/³âoØvô/‘¸“YûJõÃ3Åã“+´s\›3<æ0gb¢f^BÓ;µá(-ÕÅôw#º{L5¾°4Öp–”ÓÓÙŽsûçwù?W £­Z9c0”U5q]~ý Òl=Õ$—IæË‡†XV-IG>|¯ ù.¾Éû…ù|ò_C„°Ùg‹CÜS@ù/Zv8,Ž1y->ú2GþtÎBQZi™§!»]ž¶dKm8ôú…«,Oµx–b¼ƒÒüb¥ q¿Z¼ë§'@vâ$o(ÏW´¤ x’GîâqBèä[Ò6/޾Uá¯æ©ÜÃÁ¾Æ¼0žÜq&Hl2ûHVd ÿ·ýOt…ù‡“Œ”†‘±G„IRyüå˜&©ä³×vŽc"Ÿ¸ mœ,í}dÆ 0¶i¿Ç)²ðør¢ŠÇéy§c^‡+t€9P÷ûŠÿžÒV§ñ+]Á}£½”YÍù|´7¿Oé[Rèµ´^¿²¦ÄÚ ¯HE²©d¾¬›Žƒ`Úæë¸•ûáÌÓCQ‰Õ¡÷¦u ‚Êúm¥QK٠ݵ@^ÁGP7oމóðK2Vxˆr’îMpwwÐÑ£íAú`ÀBle·Akü‹QÑ;ïÆ’"pŒs—ÐfIÅÀ:¸œpwÀºÊsÛe¨ F¸øsífþ¼úÁÎ@2Þ¹,WIý‚FÆ J Ëaßo¡µfg$+b7æ_wÂãV“׋|¤ ?ÍøÔ° ˆ)³Ü™{øäLB£PÊ´ÿŠ}ØÐ#»+ŽËÀŽT†8F†²å§[ªçb¯z[E°‰`ƒaÖCéõ„\,?ÊNò(+«Á”¯ƒ}¨õ³Ö:BôTºM;Ÿð¤uþ4ý,6_ü~NuKØ’C†PÖ½Á°€L>Š!ñ‚ƒ_Ç‚÷™ì±CöL“R¡~ÂHd¶Ù+^…9Räm¥¥Û\“¬?UP¯ëõþäÆç ÊÇ]A½ò ®›wå÷,¾Öñvë½3Œ¿õ£&²‰HÆüÚÿ‘Z{E ¬ˆ)»ûXCA39áA±I+¿ub8e¢Ì©ÊZf§OÌœÀ\m17àÝî¨à¸ÑO8<¿ v4p®7ŽËöÇ=½èã6Rº#ŠÓ_É?­Co ·Œc}'Ä¢ÕÆBª÷]÷ÜÛ±¸µk¸nï­­Õé;jîÐ6b›à”ÈnIâ°}£\ ãë,> æ±9vÀœBBÞÌŒÀw=D™ôî9aîvœ«š¢liŒe¯›ž¹®L^YŸí-xæ-Û Ž±X1otÄC>ZØÃ¨nt&ç~I·UÉÜdš XM͘”¹ È~7T, &ûÓÔz²`x°j}Ýw%Âó>« …€XPÅnkø¤³’bí‹·J‹£r?éŸ"TÕW¶ImDë×ÑÙqê„XA©y’5ObîKÓàì¿ ©$ʧÁëÜ%lÏXÖ?—®çqé jÇq¶9–ÙÖôª'x”\Ž\Hä;^v\ÎÕT€hhYA‚y*Žëô×5;VÞ†«Lí?éJ<Ò)m.CøµÄvEŒ 0–Ú( Åõzs­ûÜz$jz K½_F•i^Ýd솋կ¡»f¬"ÌkN6¶ 6Ô$P"…|X<°È}¡[7v&ÕlÿrÙe\½ <ÒeqÄ©›¦´ÄÞý<çÿLÂÁü.bÁÀ@¨ âµCþÇŽh5ÐËÚ\7J"hr}k(©{ž!F õÄ+(ºãAœßË#˜oW¾rµWåaŸæ h‘Ù³ª§DtZ®Ç×¶B¿±N.ÛÞR™ T؆Z—¹›‡­‚šÙ¿´î®?¤b|8L@¼0/<èußÊ»3œ ì=÷:Ó”žZ]ç¿]0öBÙCS8Æt¥*#Æ?Il} ú/-ó¼ùjT]¡ØxŒÛ(*-ï}Å:Og 4FowE•C‚FÛæ¸Ñ …ëz‹v>óg'Ñ.ÅMÎÜ ÊâÈœ7AÕž©h›¯Ì ˆžG|ƒl£¤@¡Ò¤^‘‡bèD“þ^ä÷ìæâÉõ´èVr›HUõ\7›¾ìx|¥êË;Ç7R•˜hóѪd"gä€îm¦Œg†]NòB ”X C¼ç"§–é–ÅÁµõ À¾çަPí!胯#” Ý|O ;}GìÙ­bv–ÒŽá ±Æ‹Æ(«¾¥UÐçm˜œ¢b„LeU«PÆC ôd¸^ÿJÇ·\F[ÌŒ\Úšék¸~=êXA\vÛhRcf ©ûá‚%‡6ˆsrŸ¶¼í~ʽi1!ÈM/NU?|s85ä€<ûÓPø˜IÎÚ8 rºùÓôc0AÄ=¿úÙÃé,Šø*Ûª¶7Øäžœuw¤®ãLsW>b…]Ór¬ëÂDIÄ ãÙf ‡ ¼+=ñ“^ñ÷BwíPî0ÖR9K3yv^ŒæÍÛD!3 ¥ò†`ü2Á"n¹î—®ìo #ïÓ~]U€6ìöã Pi5Üòô‡ÌYIJcâÐú™ú©×£µíUDµZ­ ¤K>üSͯ>²+ô$Ô ÷-4½J‹¥¢iSÐóèø¬=ÇQ`¯YÛ¬]C[Í›@)˜ø¿hçaÜ É]`ëF—ÃMx}…Ê^ Ëß5ÒY‡ãûk8­Õ¡î¿oø‡S•| „kl÷ÂWê°ŽËpå ½#í¯d×ä#«q­pÏ© %ûÆÚ%ùÓ}JZ°ª òeC_銤¹‚ëW=À 9,G; ‰si<úàÚ=ð0°ëÑ~#O0së“R`ú:…|¸Ú™0θ D3 -çá9t­É;LnY¦õìa•P1LvÝ0' ë\ؽ»!ü¼¦pÒ*y¥˜lûE§}XOú²àÚÏ<™-sQ² ¥$ÓWY(ôZ¯¢ÊZÔ‚úŽºò¨­t$ÛPž”5Ó„ë`l˜Br@À HD¶9BË I݈àXç‚­qÐ~ýaß_íà-)‘47­¬k ‰a`™¦/Ë1Ƶ¦S_нFûg’N ,ôôF߸ú^|®QO ç9ŒÒß_ÑÒPÅY³ ‰]ôÌ‚ˆU±[¦˜™~þOôTTÊËi’Æ¡À€—(ª(Ò 5œwÛÒÜ^N‰>L+UlËa’I¼²ÎðI`Räµ ÄÝ+ÙõIËŒ²–]8’ˆñS¿â¸5²±Í ¸Ð·Sö.•Ö¦(”u?x{(O˜¥Èè†Ó ïs ZKSÇAï°ò_ÓÔ`uÙm6ÂäÿÎYW»-ÙH×`ý»"<£ÁÛäžö« óx¾D/Ö$߯‚\»ìì!=×xÂÆéÆn\¯†â{\ó¡¼¼X^¼·q¯þx`µºÍѻ̄.;­—½ÿGu¥Ý±ëL0 üŸ3ÎÕ!d$dâɾ—NIâßUÕš–%;£En£GÞ%ÒÁpŠ<³´ëcŸÅ•aX8®rt)Sªê’Hê=“¼ò]©ª<šq¢›â±Eºñìc ²þØA~>OÉ6þ÷ÏoKžäRТ‡Ÿ‹rF<^ÅŒh¤:bãÆû v(voœ£ºÏ×ÊÒ;D—Ñ…TúM;uGhßk››Ý\ŠåÁÊŒþÂ>~¦P§)€cþð¬¼ôÄÖ©o$q(´ AjÏP6ozüó+´2ï’K -äAý°Wqjë½tßÀü`HˆS¢¯Œ3Pb°údí X–œV©CW™y’kÂ:ø6ŠîÅÀZ C>íü¤esIÐûþ†ZþæâNÓâ(ˆÚãÚóÕzXðcDÂtÆ¢?€ qV©ñfe¬ò +q5ù!ñ‘#®LYBµò:¼‹Ÿû¼©;ïËÊxOËüy€Ì*à‚WŽO ü‚{ˆÇ€Tê†5f‰#¼ äà A®ÜŸ*>™£±]@êOúucŠÿ掀s6áè4â>B˜®'G¹•ܳð†'¨œ€¡Ð-`ºâ²A½JhDOÀä‡Ão³÷Óè¨TÄ `É5¸;IŒ„´— ǪîFelR"lÓP >H_SN}vr{Ú÷ªƒZüª2ܰ…îN»Œ•áë禡:Ç0:×ë¬ÿ]<åQ*tKÞl<Ï{\q ì¸ä:˜ùHðFÈ@”Ï} ;%h^ f²¼¼îÓów\í´bÆà<âæKì[Q`à³î–›ŸÛO% ºÁ Cß«f'·ds]®)?88ÞÈ8û©zY)zÑXùœœ_òƒ£ nT]–¾"±W´x™ql‡õÓN N+Þ ½ŒV‚áºÌ; D–шoXs@s1XòWÃúá<´^ˆ¾GþÄ Oý™ôÍaŽŒmSÙñ*m@ðÊ\¶-«Ö‰°*Ø${Z@ö à\Úˆn↛rUÓ¢Ûù±5$$˜'0P¿=’ú¤P—sÞÌÈÜÖ\Ë ú~»ôs §ôO­y ͤ^fŠi||s·=Žå†Ájó¿™í+XÛÀ„pºNUükÔý‹³^Æjõo“¢öÜ¥×€Ïhõˆ×¼&¸-…ghƒß '75R ÎB³jYò .qð‡’ŽÖN©bÏV|Kœ¾ÿ ¼ß™…_ìyÏ–™úÝŸóRk à)ß aèªÙû£¶ZÀÂ!¤Ìàz^ôS>Ó ÒŽ1›U÷Í@S2žù°‹áu_‚GëaÃ`êx41û^cD8·.à U½àoÇߎpÛµú&ÛjV𿉸Ùè‹>+wVÿfò´¯y“L!¼Ïá]v‚ŽA PvrnÛVSÒ—ãÞÚî¿ìŒÏ²Ãz‚°<"£t("$ËÝ*`gNNë-¦t:P_3T•´£˜Fâ-Ì~¿è@ŒìÉ•9­ç¿ù©cªd¹[b–zõCI‡©dzò¶2‘4/öä­>.e󈸙ŸwZªV}0@A;L3îÈÆøûLšát½1Wþ½1)2Š Î§¾®¬Ô0`iy¡äW %sƒÉë ´Åºfv´‘°DÌ-¾7‹†ê Z„}U ™Hs¥ìQ.J¿.-c»Äaúr³'3ª¡üÙ ‡N-Óæ8J’*fåÊf½Y˜YOMë  €¿`SfT+ÒIá«+² k¢‘¦ž…=0п8ÄG‘7ÔfÀ]N/¶‹·5µM}/íÈ#4ƒ®H§€²:âD·ö8¼©ŠvCîôµ¹.I»©iÆëÖzŽÀBþ¼‹Mlcà^ÿzWL§#‡D;NqcPšûj®@®EâD³ŠÀdaîR²º™xËï_Ä«R!úMüI½3³Ü9§Ežªsû¬ë‹Mê{;pÿN{¬óã+r<\y¸E4ÐIÇ&H|s®³#kÅN•"‰„ˆˆÅÓë£ZÃ:%‡~Ù *É‚=¯’®q„yë±¹è»ÙW#ñS|÷{ÄiÍt‹³Á’a&„¦WS‰ÂÕnÃ+¬ö úçD‰ÑÍ ôE=«V?A•}½Êû¶vÓÚâMöòq]²ø‡"¿ÅC¯ÌßÓÇ®H ±øTöé˜düò{ÅšÆA}Œ ”ƒ¬ThÇý! ­yØŽBЧ‚ærϤÖ׃;«iÇ*°eÕ|`°Í+þ>F¿T–ï­ÆD‰–^<1Å†ï ®–ãHáÌR/èñ]<!=U-ÀY;S°/l‘`aJ”Gœù;&­sh;¾L?Q*+Ñ›‰ÕÓ·¯ŽWú1ê·èÀ)ùûåPLò”ÙÆ&[ïµôHØwÿ8Óß¹7ûM+µÚ·J¡îÜÝ‹ÔK¨ý2ÇüÖ#è-‰„ªœ3Ï’‘7ˆþÔË—ð‰$ÿ½L÷¸¿äV°EÇë8ÙdHò™ ×åTñ¹rXE>‰À‰ÿîêKÃ9#ûhíIsÏXc`в6ù‰s#RÑÆ[f[¶øCi}@pJÉ.޵NkYB¤ÕßC†'U:lœ-3rÍzûKIˆŸñGÁZCj¹ÖT‡ó^FµËà [§DX–C‘ ´4^ˆØ²| i´Ìñ1Þ]ÛdÖ$×|þYGÑ,¿âO=ôBy`™>Bû±`àáïTP,)½êu¤=øìׯ¿EC'¼Eœ8ò[Ù£ÙßÄ/Ã8Ÿ,éÖk]7§ÇÄò:™VýÕbn(­¼Øšï¹úØëˆí€óStáô¨&8hn9fº_èÀ Ý~õÈËo)Õdb—õªn£é·ebD~º몽9š£ .êÓÛÄ‘ª6†yl𛽆ßîþð¥“ÏŽV…zãìÄf,ä²î€Ë|†k²•H3‰½1U%w9¼®óÙdy¤¬û­ªÌuÌ©¨Òì×¢¾iÛ/3õØX};ñ6¼ù¼üR]]ÖoVC ›Y-J ››Ï«\ý<ñ ‹’q* Ó:˜¤Ýö9Ú{ÑqfjÆŠê á$žÚ Õ{~3)Acä…Îþ—ƒ™ñÂ’@Bcn‘a‚•î6ÿQ3˜¥÷yÃME×˱ÿõÊ:Ž EW¥ì:Üz î׿|±ïkíÍEý‘‹ýDÒŒ@‘^€þêméñ²JMÌ ^/ÕßËçÐx,vý’êŠÑ» ã ñv¬Š¿,Lá%‡ÎÒç´àw,ªäR¥´zsañt '[,âsc"¯Œ¤kÍ ó>¥$‹);è¸a‘YVK·ê¼”86>•×—="óȢ̧2‡‡Žq‰aD÷ñi%…œuƦ^Aˆ0óåˆÛÁŽ<¬â÷Ä52j¦ä.u™gx¥ML€6• ].aÏ>Æ,„ô†¨q)Þ ø…ìsLµgèKÅÇfåL„miDÃ%b6"°T(pÐÙòÃtoº„›‘x÷¶ðJ»S0çï+¡“^¡9ÈÀ¦ûvP—ßJÍjŒËet£ùƒ8B­ý^Û4 øwî˜ç ~nÞ¦v Ýw\*Ú» Å/mocA¿ñÌ­Ù\鈯œO¢‰õryM‚ŽkÄ×ÜÌ+œå˜˜Íö!eðü½þ_Òò÷¶“)u%Ĭ›Ø8é.#%¬N?¤*>0ìâ¨Ñ'ŰU0„ b=ˆþa* ýöZ¬[€UhDš<ó‘çºéde7 ?ûc®VMšŽztöñŒéT=׿~¢?aödÜvæï¦ÝTèå¯Nï~¡†™•í®kðƉ9“eቸ~_c¬#ðs)~jx=SðͲRä@ÂŒ>£ÐôS„Ëm{Zà«Í¹|ÈÇw"’àDÌYÉdtVÀª íNpøh‹)G0éÊ™»&ÁÉm¡C¢,¿Ìz\ s{]'b<y¶ÜÅEI´7‰<Œ} ·#E±§C®³!è†Ze6«¦Ýº¡D‘ü/ø› À–”ú¬ê PrsfAIèüÍëeï}ZEqÊɳÁ)D™ÍçZ}3¿p@_».)÷) ®Ç" bç¬7k$3ÒÕE;”nÈweªö -µ¥d³Š%ϧtM*ÌŸ ÿ.ñ)<ÇÆUô0_9gÚ¨A¦Î'TØ›G.•³lqp= Ö-̪ŽOàÃ}À¨„+òI…kÙ¡xÆZS*CöGßÒ~T³³% }ÞäK¾¥öå¹GŸjá'¡0št@sŽrå¢Zaé&äÐ@äí…(RËÞ¼= ;¨:…{ÿº[Ö[j7ý!2an¶s²Ì¡»(žU}¨Œþ™âÛ9÷¿rv\b’\u¿w´n: ¾­…¶Ò‡3oíezé–¶á9TbEq‡á3þÚ§½ŸZ~Ñ}žÂ;³'&0º·hXpí ¬ÈÚZeç7öY+‚ÕœÖäp‹Èôyšb>¥HÔ{ë㇫»9þRôIpïã;[l3w÷qµí…`*÷f¦©^UuÅa·.`«9E¨zÜè%sÊ‹Œ¯ÕwOþžÃºjß-ùޣϮókÒOø_ü@0J1L÷ÎЛ³%›dÛÖ •„¼hKÀšÜ'IMq”Ì®ŠÿŒžîúÃ>zz ôpÑ„“Ùòü¤xº#tÏ)Žó;Ë@]ˆÈ®Ü኱ßQRÜnŒÐ/3Ò±ÔÔbzw­±D[þY;„‘]Vü\qÀC¼&œqë8Hâ÷¹sQÜÆÀ¬3 E…JDaAо¬m^ØhÈ|ˆæA¶ƒÅ„Òn¢%z•Cã×|úÖÅ‘£ÐÒ¶y°½ËõÒT4o_ügd²6Ø „N+ê;"@­@%…wÌX©ì²z¶‰ýXÃý×"™š]/É?ƒŸ·Lrâs§öm°À0ü—€ºöãwûÁ´µ³åÊ6“ü´ í•?Æ™-…Q‹mO2”àþšº¡SÊ©?HX/<‘ãýq2)g¼0¸¢¼r?5r˳-f>‡2j3SQÌ“3½`x!ó8@^`¬4µ±‰=¶sBqÈ~œ;"M‡h¿ŠnÐMŸ¶li©ç¯îFèÂúh¶il•wK¦àƒòeÊ%Ѹ姽œÉ¢É>ñ“jo27v†5ó;²»u%c²ÊJMëÉ Sãå‡:‘¢;Ýɰ— ËpA¦BzÞ5Ôaý÷Pô¾&`ÝSÝ•ë‡Çï>[ÃÌÙлó»œß»ÐÑ—lÁ5æ º‚Ô(š€Øù'i#MyÛ ë<¦œÈköê íˆÔ6 šg<Ÿ’Ÿó¤+õ'9W_VoßCåÙÊqÿ €nz^~èo' ’tÑp»AÑÝñI ÉQC‚Dt;Qê 9‰zê*V‡YéÇù¾Z·©Ðh/nÿPjêŒ&È’ðÎ2äŽëœ…‚zä€ô2Þ6'ðûØ ²[&ú­À‹]0ûgNzÅÿO{Œ9ê9ªDç4™*ÏôsX¥°¡äo$|ÕTãaÏVöÇ™…XúP©*‚ÛKÊñÅ·bȪ)Ä ¹Ék>WäÐ<0èZº[KÎ-]Ç1—û¯å*WôgNß,ИGý™–×¢[Á…4£#l% #°÷êfYWËK±úL{‹Ç„‡uš0˦£UüCûïøáÊ¿k-l‚„ìpkÂó£ Iê„Ê;ñæHBtvNù˜V|°6Ý·éOG‹´²ä¤©(£yºQš òNçî|6!IåîžïtF—’p§«»‰Ã«¡ÂÑ”=Ùa‹µ}”3‡Iº™¡]%<òÔÚI¥éxj2¹œ}_ÑJxªÄ¸C1i O:>B/ Ìk¿­zµ´aÙi¡>À±B‹OÜ‘ÂêTèF–eLpî?¬mñ¤É:Ž£IøFþ¾±€‡\þK¾˜Ä>T¸¸]+}övÀaæ'J4ŠÌåh’ð)h¿ˆ¾R±Œ7 [Ïa?«Ïê«L}O«ß5}¾¿ž¼ºJ÷|Œ\–—,—ŠZx RÙcH$°›´ãQ§–©§¦Ô f`Ö´“:‰«L,û‡FP}²ë­ýÿÚ-ÀØc…c.ðÝ]1úv¹Qæu‘)¥?-ãD‘Ì6.•tœº´.³¥¯Š÷ÿØTnj-ix@ƒ•/râÙu.ðTžÄÝßé‹Ï›–#9ëR¡êNyÜR—ı™¡U §¤ƒt~ÞÄ9ºÊçÆº)­K‘=ÒÈ‚Jvó'Ñ»ëe$¸›ÙGòÎqÓ/ìµ(me§'L˳&ûÓ[‹£=ß(!ŠÖÐ@œæviBä­nÈ€÷/˜¥Eé•åW"Â' Kó½ÃØ£ùö+ÄÊÕÌ¿ÀàæZgfÊ„;ðr¦íD=‰Kƽ[h±§§ ‚ˆÃЛbxo³è 2KÂDÝ Ž• ð«ö÷Z/Äd PEFÏ5iB™Z×ÓKú0¸±¤G…Š>_:xüñ}‰9Å×fD¤òÝ­?H˜b‚é&CÖâˆìl|Åsÿ­ÎëïþK{[tôxÉ­7ŽÍ¥¤­‡dð!N¶<6Dq~ß•a¡³xO2“b΢¥HMyùÊ‹«\®XúA_¯èkƒÑÐZ BÊÖQíð!þb«ëékÿ³t[–ŽB¶ôâW-­q)ëa›p{Dé•ÚLã˜bÙupÄ{¢²x–€— ó6hqiQUL›ÉqÊ j²„Ø?GÏé¾y'Ôˆ›_î—Ä~f&Û{’Þs ©*Ó«÷©ë©ÈîÊ|ÎNÊGO5 +Ö|WÖ.6˜Z°‘Á¿ `ÀªPpuµR’ó½7yãX²U>x 0/Y›•%jïùЉÐleû„#á @FÙªN`c/O¢ðïÊL(ZWf]~@~³oϦ°®fpæ ã݇*–Ðèëìvú´-çži¤¿ s"•\TC]6Ù’ÛùÏv5=b^¦«ît× Ñ“M\qÀf©ó >Pù9œU0Ò $bŽd¥Ù ÄDCW gÿÆïX¸u´±Q¤CŒº‚àüN:¯Š—ØVç Ÿ–AÚWmÄÆ¥ðf(ä[ ~Ù)¹z³n,œël.SÔ†PµéR–¤­ž¬™˜[®ï_⫚Af(/#8Sä£As׎彽R´KÙ ¸’i” K jd–$íÐc»Ð†¤©z°w72šV3лs?6K°ZÃ(Šª8‹;M÷‚­S-ÿФI»zéɱÍ0‹êEXõ‚4æêh}K],–Éž×ã5Áÿïîî¨ûÂ3ŠÐ’VœœcùæŽï}~§lÏjÖÛ‚§U˜%î+. Ë(NÔ]J°¹õ6nT: äbUêå úˆß⸙ér÷(hqZR:ãâ¶îkhûðèèÈ"¾3TJ¦& øP²ê&0×F} Úõö SÔrÉ5²O××hó¨b«Î‹…Ìå:³/2Í Ï6ŸÙ::¶3Ö¥Np¡ÌäEîˆd#Y"Tæ1J·ËI}7}x‚‘ޱ¬dØ“fÿgN’ð ;öG BãeúÛelÜ%ì÷ü±Æáâø½‹þ剸sAùº Ý32…à  åý D­\ó@ôÓÞ [Ò&^îï‰nìò;*¢óg$õ`w¥Åðìw±_ú-ììrK•û]½FØcX.ûðRRã˜ÑB‚èójÂöv¶Ñ¿?ô=»ºì†±Ózû½õâC+ Ðît†)3?å'ãUÂZOÅä{ùÑÆM>¡‰1ý÷ª®+…%u=ûjÇ‘²e~A?0IÒ¹•åK°¢BémGD¹2:ô ê«Z¯]R¤Â.ïÇ3<Ú5Æ·A&Œ9Ë–uúºÚ5;x®'ûýìE¢¹ÜÙob˜‰‰ýG8–Ѳ·_¥#üŸ¦† Q»Æ6å£-Êß 7¥ï”ã}é±î×OL³‚fÛI.ïWk‰šd§j!ŒÙTâ%Û‹FBvÙQÛRy}\nÍ¡´³Ar=Aé7rúyˆþ½*=ŸšÂ½AÔ|Ο˜Âˆ»¥†¡Ý¼r Û™£á`ÞìØeF¼f™E,€H}½Ö üµ°#˜93a/“ÿB/pуv·Vzð±¡xé1˜ŸÌËaŸ™SWÀÿ?|ªì²ÛIùî™öO®oÜVŸ{Lj«€ø®€ÜwqºÕ醴™x§Glâûa‹\U&–·jórËL\”†L"öÚ Þt‚ÓYx¾nT¿§=±Š|æÃò-I!½B:fh (§ñ"…FÎù·^–ï Èèí£Ñ„ÀÖ4#§Ü}ˆ™+·×¯„ƒ“sƒÕzkÏÝ}lwŸfÝëÓ@-æØmÕ¤áö×Mï×ïƒë¿Ê†>ð‘5Ϯȸ±6›î+øð¦Ó‹DSFà:¯AáM—ò™Ž¾©=剤÷–`!{.Ö%3(b?6ú¼Å†â-I‡>×**š°wû Ù.„Îîa~\ý; '~j¾UΠ~(ÃχH"ì9ÿÉR!ƨ7Ú‹uæƒ4ºnË+4ª+ƒŸÅsbäU´’[èèÂò#hg¶Sû Yk­é‹l¬c` ®]P¥&Y³qä>MÊèçAû”¯Ñ„áR…Y>NåBèn‘lUŒ¸ Ô‹Ùw›Áƒ`xÔs¡Î¿ (ÞF=ŸÅQ;á_êÐWQ)£=»kv_u3ÕÏY ~ç/…‘~ü-3½d‘îƒÍölrŠÒµÖ±·÷ÐnLxZ'î!îhL'¥âV:ãïà®à°uÆä=t1«8µT¿WíBSaÍMméÚí$ÖMƒÏ6+MÞYt¦TC?š&§¤If¡Ôµ*A=/UJ,Ç~wGhù®¾ç ¹7Å(ºt5_û&1¾vXÇô³}u¬1Ãé`©õ†U‘xå–“^4iXý¡c ìŸý‹“ŠC¶KI´Ñ¤•ÒcøÈÈd…Â]Ñî ^ýQõ™ù“Éí…nOe (Ñ U«;´“4M4z ÞâƒÎØ™J:‰A ¢ZurßbÊÉ\Ì,)¨×F´‘:Õ»JcuR¿FÐhs·AUÍPEm9lÅߦؤçpY”õÖzæ]”‰ Bn˜\/þ{ÿæ`s+,pà`ON»0ï¡6Ž{ƒŸ\*ã ùš„J^Ø®ÆÝ pžM‹ì÷ä9Ã"Ä 6ö $Amè½IЀ5Më¾uª!Å]>säДèxq’‘'V·JÈúM¨Ò‹W+2 _ݯ†feÈÆÅŠÆ¹»||›—ð‰ãHF;¶ûŽìI¡KÙˆ e[Šb’hÁj¸öáE@¤|¥ŸQ0[ÇÇçÕNÎÂŽà8“Âçìóíjþ®°‹Õ:‡8…¿i˜s,’C _ÅHÖkVõN^Ûùë(è%&ÿÑóa‘O£±)J2×Ú‚¸¤=¸wÃ@ªþ;•¹]ZÂãDI;s¸³†½7‚–Éá‘Á«$›5ÚR”#vv7=áN¬=ˆq¼!þ:CçaûbÉñ+½"Psçj]¸{<½ã¥®ffx‹ÿÓìá’ýoo©XÂ++'.ü¸hBu3`wñ¾w,A€Zæç4LSø4ÑR…¾÷ZnH5{1aëõ,TnøqÇ®n…ª¡Y¥ÿ d ¢­ ¤ ÛB¼‡û¹ UU“µË^Öq|y¼—lý1¨ ¿Jö¶ŒË{ê“`÷¬¸7Txß83iÚAÊI:‚Y^ÂðÀ?3è,[Õu ²(ÈÄ>Fñ¢è`H7¦lvššà÷ðhbþˆgÜ–›xW¾i«äÞ'äme@Ÿv[—,v.ºŠË²’úOOŸŸY%n]f6y~G>^IžÑ Óï6ê|½åߥ¿zø~ïò=à5ŠZoÆòD4Úï~•^¨R»·:{€ÑÑ1ÝV¸±àèñ@.r¾ +Èàùjñûp‡».´¬êå=o ýõU gÝ[„/¥g³ŸOMH“ÿ¦E µm›ÀÑ}’ö YÞH÷ævúlh¥éW}ÂöùLêÊ¢¾²éå½Hu‡±„ÇFg¼FÄ?ñ¿.Ûë×ïËÞÄÚç(¼ä)f™EFýÆubµFr2Ît`t@, ´æˆ"hH»ßT œPƒA+ÍæƒR„¨¡$ß®ø| 5a>A¸õáÛ¾ ñG 6ÖŠå†/×Ù¦–wÜÅ0f}{šnïÅ÷¸EcˆìÃìïç*ónÚ1]rˆ…—÷Rêq-ØM8ms)ÚßÀ‚!y9ç5@í4&&2’M¡b­r6r°Ä|Þ´p5)ñQõ«3îˆU晣E¸Þæ³èPÖÀ¬fÂüRêÏwÅó=Ó2¶U †¶Cýþ¿Þ!`~‰šÛ÷„dÇÃsI¬(}Fߨÿ…Ç#7M7Øœ¡=:åmâ'ËàT¬Ó¶™}¸ïåµch töŸKW϶o.HP<=™.™:ì÷iMj ÙF©æ Yã Q ¹&þòåµ0°ÑNïGAͬdmܣƵ„ ižÇ3’bGý®Çþøë Žþƒ¡­ÔYYûÉ*± CâšOúÐñt°œÐSBÖhZôº ƒÞW7Ѻ•s@IjÁFoË£;ºHæ.keoüÁ# &øçªL5i#RŠtP9´Y„Ä›wü3ÞøÌ ÕTA=°íÈla4yTx¬ RK’,óØý ø`{Â=ÿW*óçô½ú*J;0bkÑp¢Å(ÚÐ…7ChDWWðq±Bž‡ÕQOá dZ±C«t_áŸA’ég½¸f¾{ò̳æC_›DßÑ=ÜÕц¡ ×:NôåÛ7ø]Ó7²4 —h –)¨äèÄTï“áÁ¡ /ߢíá( JŒ2× v`ò3@ï ÃøåÍ„…1Œ"¯%qª´¸PB8`ÈÅwïêÁŒ~óÈo}n¨O&^ ,Dõj-BÕ¢T§OŸZk:CSÅ>ž8·ÄËjƒ1B€(TI—ñ…¿ªóœÑ"ç°èË%UН;Y"3–Xñ9Ñè–ÚÓáÃøoÇåxíŸÔ|‚ìêü\YÏáßvkŒÇ`+H¤ˆÂêH …ý§`]˜ÁÕ-9Nj×îùSçV„/ÕÏñ­/i¬wfñ´ŠÎžõ¼øtÅÓ½ÃUFê\î±Ýo1‹¤¿tª–ûÇFb-z@P6ªÍ\D[ÑgqiŽx™ù ¹0íò‡(õ—<ÿ 2f'¤@„p÷Ëñ{¡8ѨŒŒ¼VÿŽ °qœXY“Ä–hAxPàmþ[ üõ x_\;öIrߟlB,rùó[ ??Þd ®4Xý=I,©ûŠWL l¬iÇň«Y‘šBãêzGª$K ÔE@}æâˆíÌ™~ÜTY“š¿†íz¢ŽÚ+OôÁ F|óãŒÐÑtâ Ðv5p ¤Ûkµ6Ü3m¯eÃaµ‚þ¼sÔVû¾<#6¯€áÁåºye¤€;âš²«÷öÈFu‚î£Jèt…F†’B¹ý!ÏZJ å¹Þ¹fj-L%_!'lùMÈ”–0iðoê:PKÓyóÄ`šš‚É¥vZW”-úú#B΃Ue`ÔIÙ¬ƒöÔ`·ì¿ˆï3»dûÛ ÈK3 éÞÔK~ИŸ±K¢’,`iÆSô”x‘Îôˆ¸¶;Ëuº0wæÍ‹tÊs Ń¡šyYÊ\ûN3G_ÃùÙó'²•u¹¼ÎØjì×Ã$ObÞË„ZœÚ¨uGoW¯Ê3„…Í||æÓMF"’õ‰±ö&}!±&Sö­¬«¸‹8s¸O•ï’kf³™!§8‚Á}õF¼EjÏüØ›¿©ÅÂ<ï­ù:ñ­'Ëc3GY\çB0LÓ-˜«_§Z8h½\Èa¤¶-ùÀ] ÔÞ˜* 0y?¯Ó5h]P“›îûÿ[r½©ðKt‘ÓLã«è¸ß2‰‹î¸ãYó‹ž‹€ñvI“e˜ªµòÔ]F9”«§£@Ý$Þ=|Õ.ÖÎ:^¬Ð¡v%=ø§® š»W¬¥ªÝ6#W1¤—] _ÎR /B€K¥sïüÄâå ûó$›<¾¬å¨lÊÌÎîÔ9Z©ÀWì|Žr"NS¹Êǘ¶¿Y…Ìßß÷ N˜ {/Y·7id÷´j€ênæ»°|jcýå9ªãJmY¸¦$¹b»ßZæõ²UıHˆ+žðg}Öwb >sa¨¡‡pêĨHÌIYyx´ñ$ö7¬è¹•‘S](Ó¶%]¼”B¿óõdáMâfsÿ<Àº?’6³ V…{Ç?m–™7È‘‚’žU×{€|“ÇÖsØ_0Ú~¤3@._£”æ6Át‹ãÍkezaâþ[ò¤å8ÐÚ(Ì€ë0¡ª¸BGªˆ·|cΛ„] ¦½R듆cµJ{™Iç¦^ªP¡â9Ò-ŽRvâf]"¹]ñãêïe>‹\¹W÷*wØ=@ÏS:l$±î6i].G-ðaj¢=K/–ˆ`„.5¼îô4j^JºMÖ-Uà94LRô–ãTǬÍ)Ryfê­3¢¹£¢¸üŸ­¤fgjð]I‡#p%ïÀœÇ£¬­éçÀ5dRÓªZД·ž;Ê …*r±.pgÝ)ö F®IúõL5ÌÑ&øý×B9ÿp,q¥‚ÃEUœÍ(¶xóº–*ˆ©üCÅ+‘’MöDÆÌã­þkú¹+)±õ&[دr¸©¹¦ND~a@~ձއªUCSÂaGææÅ U ~‰ §Ï †ò¶øB½BF{†¬½€—¾ÄóˆÄSFÜS<¿¿ÍUˆÐéñþ³•óuMl h'—F!yC(ÞE>êxòë¬uâVGæGO æÝ/íØãóv' y—~fĨ¹ž¶¢îvÏk£¥³pD„žg#G¥+¥º ˆ*Ñ×üû¶—ctþÍ©úü>0íÒþæ_…8 íó2ŒLù4­Ì†›œG™š'‘¸“~icé×V¡ú¼°$IæÆèVÀÁß‹:8ü—^8jWÌa Û ùºjV¿gb,éËc»²(.`²B]ªŒâ=òkšBëC*-Ìm›bM ©µ®HÕÞÊè{Õ9><(Ú=lUñȪ¶Ï¦f£Ö){†R}ÿ-]l{LqòÉØG¢!ZH“V+ ã“.ƒ­ØíyJa) È5H’‚Ã+ô>@(î?”é¢ì?ˆaÕP—*!Ñ!—Ð ífjÛŸßCÒ-Âñû”¢ßSi)ôÕ5?Þ´ƒ½9ËŒ2ŠÙ…ï`¤F°U-n¿e²ò)Â;óû|'‰:_5€õëaÛd˜z‚TÉf·À™a  øa4 >PÿæwB¼û3U­fô•e‚æ:ƒã„øe@Þ_`€'’Ð붆\vxQP½Ü(h±¦Í²ú}ˆ}‚ºûÜI]öóóšßÀʱFfM-Æätrêü|3:OîÆÜ‘´‰é,½¨ ’³eÕ¼\Ì^‹x¨ª;ã8µýo„ß(ú2ê‰Ýõ) M™‡ÛeŽHÿwˆçvæÇ,ç·Ì?Ã"9Ò>e±`M \#˜¸›&V ƒ9‚¬öæ’çÍa±ø¦#ì׊ˆìo0Áúˆ…þpÍý‚!Ÿ+¯ÉŒl&ËÁzâ|-$(,ì¸Rß·›JD¦™²g#þÇAV3¨ÃH"wY¦ñ#·šÏ¯j-¤:nÓ»><4h—?›¤"@9Œ‡’2$î[l; xaävHÚÄSAVA¦èîJ* %dY6Êç¤=øl`%LãK$ÄüäƒFÆRųžŠ¤éñ"‚´o÷®ƒæ*NI…±¬£s¢Q¼œ…¨ ­e.CÍ:þzºaGjrÅÕT“Þº ?¾Yaþ€ƒãjÏî/¤Œ÷¶dGÿ VͧJ‹eÖûO}s¸m …ŸÇ39.•Mvɸ¶÷‰ÔgbELÒ‡ ƒ›HËË%j˜ïý%xÃpPÇÅÂ?y _iŽMÆ•ö½qb‘­PÀ†¦ÿx4ÄÄm‹’]Q$ÿ±X=˜üøÑÚô\Ô8¾Crá4DMR¥míLÃ/fDÊ“ÀðCD®Ñù„M™ÿ…mÕà‰î°ºB´}Ìô­;Í´ÂLDy´„ù—äbp7ËD ºåÔ9€Öÿ+TaíUW Ê[뾩ÃokoFµ4 Ú=3§@äñ³:…Y}B×>9јòCC2‡Ï2ƒzs¡øI×T:X?2}”' If“üúÌ$Ø»BlH.ý„žâ+Éì³¢3kWHØM»Hs`¶´\XO×|(°m˜Çî@¼{‹Qd¶Ù)ʧüßL`t¯{*@8—_°b^ ñà¥|Û67>í_*5–×ÍœÁ8‡ó×éÝ–BãЭÇ'¼Ú(‚^º˜y„Ÿ0Þgò‰C Áðñ,È´’ÇF‚%`OíÜ 6è)ù+‘óZ^Z-¶yF€ºÞ_FzAÖÓrÓψÕ×>jr²hwöÕoóÆûr,ïZEûGÕ2· ¹ö­Uà{ÚÌÔJä¡Ð©š”ºñiû¢áäïhƒj¹,] |dç´˜rØ-‰áCDBÿËc0ý¥üžÂÏø6™W• Œ©gÒjÌÔA†ö·½L©MFùú@P_¼‹›%v*,y†ºÆdZQ’?®\N½T?o]ÿC¡…ˆÛ»‚‡­UÀ¦œýé µ·oVìÞ(’†³J»!Æ‹& r3^0 7È"¶çª2‘zkõ‡ü‡G–À ’5 µ,.çüéKKݬÞäU ¨ˆø@•&ò*a‰áßs݉³mQáŸ-±™["¼„V©õ6: nXä3eP9#)¦õçð¦öK‡)‰¯óZ¨(å¾±Íêy>ì̇&Úgo™t ý‚jwâ÷†wÞ=Ðáf_i©ÖsJ¯]x33éDê¾²÷\³†:ýÐçE§¶·ù5?ÀvisÆ?9$ÝèK¿VŽG;°„Î*¥“t†¢[[Oº»Ä=©}-G6ÔX]eÂ~2ÓßûSÇ¢=È\²‚Ë6ʯr&{GÁÙ„ì)dh—˜k Ëo½øÙ!),”t厂ª7ŠH"PãdXÙ Îý‚5‰NäíˆvÕÿ$»üÐeë“7î¿~aÉA²àŸ(IeÜo=œëgƒ@H‘Æí¨ ŠÙw™i“»ù©ÞŽòHYã¥îûÊffwN*H{hÕÝz).‡i(J„z8º®p’ƒ¹* Ý_âÒ1ŒÞ´0?¯/¨d4{ÓçHúôre¸ ×uZ«—é¹\Œ!X!ÙÆ|´y§É •kìÝ£ÍáAâ71˜¸Ò2Ê.¤ùó5‰ç‹uî>3wûŒïb)‹ÁI=!£Q‚ÞPû-fY"¬Wψ:Sáž ¹V¹²ˆ©I9VÂ÷. £^ñºDNŽ¢!ÿ 'm~‹ÖgÂî40Pc7Ãd*L}À_ÆùÈNs€ç ê±é0AÜxÌŒjßa&ê©rÃy~*ô´—“O߯1ÄåÙõÝ©—mK„—õ(ǸýhJ×íAõ f÷¬K ˆÕöÈ€%³ =±%™·ŸS·S–uи5C„<š? ãÀÖwE¯r” ^Þö¬#Ç€¬ ¼ÞÙË¡7Ý(¥3­²IÄIꬄ¿äÿÞ›Ò,-9Zª_ë¶n,á †áùgym,ð’ ón·G(åÉÉn+û Ý#íâIÈTÔ<²ý*3_·Ba½Ù®·VjZ¾«áܨN4kàR6bW„ôÅÓ©%MÅø8Š‹5a.lÆeưoWåBC‘Êí–ãT†©8âÔ/9Hh­¾PÒ»Z¤I>REcâbƒh\I{¦z!?oÞádºiºÓ…`Ñ_kVIì2šÓåj?u5¤¿Q·‚‹:ç09²J±ñþ€G'>"îúƆƒÖŠ! ÂÏÎ$Éë²›Eç}{Ìçç6j\‹>¹:j@L]._ ßì„ÃŦUöEæÅJHÏ_i3àþ=IJ!–mP:ÕΡÈ#o!¬I$lLÎ4{­,“ãäø‡`¢Ý„ý¥Bž©|¨˜¿ðl:Z&ÊÇ ¸ˆ.º‚ŸAëÎ$3××øŒ˜§­Yð%o”—&8;T\ºë-Q[y„B‰ÓwóvÃi¤!èÂHž¸u¸»‘­¡œÑKKºîïIÉRôé+æZ½Z×L`ð J.5z—}ò˜Ü¼í„Zžú ùBÜÖd¡ 4*mbëï¦>@XÖêRðœëþ^Ëeôú“ ü²‘ü×­åm_úîVA´õs4á-ÌN°Ï=ñq\û§ïëCÅ@=<ºŽPˆeᎠÚÿ§¨È(«Å&„ÖÔ¢V«:(ÝÚ;-¡}Y¡ [T Öõ?$ÜWcý(yNº,ˆÜþ <$ü5KOo]ù´ç¼—+á``}¡6nñ²fV„œp˺šÚÍæzx%£©l¿”ÍD5Cf‹½àº&ÿ±Hª£’qö°…¡A¢ë&šïøÿšŽ¹ CŠPÚt ã>ZšDYdñUd•(œ~Ù•~þ4ü.ýw¾Yp‹³sp†·»ë"À±[Õr„yéøáØœm™K{݈²Ä"B@2Uí2!=×Î=Êà?óŠÆIû\ÓΚ#p‚åâWLãG°OÛÌZôCvê$2©†M/ ¤¨i”Ûn[z§>Qc\9·Þ¢6æ“í‘Í8O6šW…Nš/àôºnéÈJ¥òR‹Áá2’‚2KVÅá‘BÔyÅ1Åš}‚ÌæÍ¢Àp rY)r”è¹(ÃeZÏÿn{É¤Ñ´Ñ •4”ÛþÉã!1>²227 õÙ•Ë¥;«]E²ndiÃß;ÈVáøOž¼‚!Rš€oùqÛÙ™ý&÷mW;ÿ­SÙ‘7Ùú5`oÝÏ´Íiúîý .KJeH&©PwY¥äâ*ÀÝ~" J©Aàt7ò§M9<.î–eDú™/ÇQ'8dä±â¤ïáßn†;[á¤Y "æYæ–úg+b™÷3äúj¯ÿœç¢«·gbî)y4ú·´CvwÝ‚dvŒG-ÐÄȱDí4.XÊh`5UŠò [j¥f”†•åà ?KT*¹•¨ºü¾¢Aô>kH i3èŒ@3Ð9ßßl¤mÞ6ìÈ`óÖ>ÇÉ£Éi^v\oŒíÇYrf z(L…`‡73\15,9Ÿ|w£/ÄRÊÕøo3ÑHu# FÖF*YkœêÖec+E­IŸRsU7x蘛“þ马ñçÏ\¬dŒ™‘‹uRØ¥,«àz¹gX®zŸ†MGÁèÌ}á];œ u®ì´ü^À4Ÿ‰K®êéàÒœ_ñx‘slö~<¤Ê§¸Ü¾¤åøýdY‘åøàUVûp £³ Ò»Õx²®:ézX¶¥Õ ‡—o¨eÑÏ›ñ8¥ÓsŸÓªÉûýß ÉZ! 4¤°3ž®ûˆœ¤÷^ùƒŸ³¢šyDaSÚæ`z:¶;?ÿA(eÇAœ£u'‰ï8“#E ßD,]ØC/ÈpÏIÓcA,©eº&wht”cA8£•GAHÊ[ó‹tñˆÂûº \Ú¡îd/=ÛE­à….‘Rå#8Ѐ‹Û}¢Žé­¢\ì¥òPê´i%,ºÝ ·À'$œ^± xíZ`vV_I6ÝâaË(ÿÆx€’NlÁbÖÖf Áõ–¸/ ÃGýhÂÏg隊c+]Ø[þ˼|'ÎìßtØ<%@;¬Ïék—r!Z}U}:ëÔ·c¾ÓœtAŠ5Òd9‡©a'Å¥k¼§Wü”¤;ÿ ·:mÂÑÛrœUvÔKî˜x”Ó?¡6ð¡Vàš‡ÖbÂΑðüÙœ“È‹‚TÄèžRÐ÷‘MŸÑ²Êͧft”Í )°y99ú~Åhê Žú;‚WÃô‘1-$á^Œ3E•Õ:ÆÈo †6 gZº¸Û–Ø¡®;ݡʭôLÖì亇(æ]ñÌöâ=Â-ªHûS|è@B)¡úl/áŽÞ,Q¦y˜1L4žQê¤0ó`°#j/Œ1¹Ö7hF‹¤áYIë+ŒêaQ¯°i@„ÅÕž0Pܺ +cIû¹ìicœ‹ÇcXÌ„ûÀŒÁ³©¨ Ô¬Ðó#Ã|“)fE“2”^ÊÏFò´þ÷Ë5„³¼»Üc_®†´õ1?Ûáõºÿ #¥r1…|‰3œ¥ËÞèPA‘ËÔ´R{ßï°LîÇfBÖãbªÆšoÒÝ¥Ðfêi5÷7ˆj¤P„›ÝÂzžÂ”g·ºÙL’Ùs‡[GHb3ìPÂæÇO~²z­ÊÐÅNÁ­UAw?à9Ã19zÛ«K±Ç<-ÂäÖvÓ»•}lžµ>ay8>&DÙâ ö½Qÿ…ËX{Ü…ÉÃóÄɮ挳V(Ί_*Q7Ÿd«ëß’kÀÀ²¸Ö¬ä§ ^R°]°z†²Öv³¢'xôYý­Áí˽ŒMë×z£T‚õÂ.4ñ “eöƺJñg€<hp[•8´a»1´Øñüz¦¸¿dæ ‹Ï8/s~S¨4Íq©ô’s£…©0‘’3/b\f"Ú0澟ùñú@€BB°üp%˜Ïh“˜ž®6%v„½Ii]÷¨à˜=>é:kt’÷4Z©dišÓ]=tÉV™È¡üò”L“÷‚±oØÃs¬Ÿþ¯"ÃLOåô_ô³oÅ’ùFø »ˆ;mØ´©¤úÒ=™rp¿a刔qklÅ2ÙxhyYû‡ÓVP!¡q:DìÎ!HI‡m’gVŽPH(©ÜxH–ŠbÀ¿ó’ëLE±‹4™zå2±Š}oí ÿ´×H:ž‰Å¥m[XüÖŸj»@òT¹«!ƒvK}Kñ?|“Û­[9 ó)v­­Ô­ä\FtôÃÅa>cÁ‹çäihæµ&"õq|æ»Xúø„ž¢¼ù ä㫌 áïb÷„^±®“#hÉGãêñàTu3´®6Í(½$º—÷©g ²ßõ¿>µüÎíºQŸ·úJ5•ÞÉEËo2\'S°ª.ØaÈAžM¾€:¬KFL%ÙËÂpÚ'_šb’.B³ç€f1¨Íu}¹p[E4dR]fRhr-+h ·àòÆ7{‰Z¡ž¿´ÞŒu¹÷ø^æ:»DÌÏ båî><‹LΠ0ù; %ܽ`HnMÛ§éâ©fAq†AçòóåµVåŠEéÇ­{7ú5`ÂÔÉ<ëWrœù¯à£ãÏtIÅ‚£3äJì1è gžDRKŠ?ÖÏqgŒw¯œE³‚b"âK…[ᕟ›/j.Çü+,{Vã°TõÆ~ÔðÖ‡$E7–ü0!DEŒÚHŽ>G#¼š,’&DñÿÏ`,2Ó N²™Ï}qÙowa$¨&±5ORh!ò®¥ÕKbtíöáþL}ü‰W¤áƒvœÅrÈ—¶> ƒÁ«¥>bþ4÷‘÷ˆ'Uø~­ÍZ”0JÝí†eâßQ¦7óOý ªÓ»]@LAê]ˆ$Ÿ°3e?A´Â,wÃÉ\bÒÞ|wÐ1Šp¼±À­“¤»9ɹõXgÿÒ—ç#eöË•ˆ£o29Rß±Ç?Këu>2ðö+§¦lQÉŽ¼E  ý·—«r” µýÜÕâ‹eZ†rY+c³Àð•ÜàyúùÂgV%G÷fu •ܼ17[eU¬ml°dÑ “žBôõ!;«Eî–÷¼'í\²;ökøds5Y[¯†ÿ—œXÜ¡›P~· ŒV±,C››žÏ:Ø+}ØcáÚ«ôŽMÿA 0{j¡ªþ&ETM}LOù¹\Ë'ëëÒ^roCn˜Ô?p×Ò²àÆîmÀðõ+˜¸jÿ7\:ýÄçøË)_·«âįø€á«Ì´ºLï*‚Dñ‡^á‰0™jóWý™pimHþ‹«Ä nWQ6žÕ.Øé1šJœÓ¡E?Ð~‘A¼dú·¬Èå!±ž(Åçà#‘6˜éQ,LW…Z®ëh8ÚʘÚhÖÀ\™ò¡êJYtT 7'åH)΀¢ù‡*£î þbrXgfjìP¾2Çl‰RÆ€àìà’£ËKEO¢õÓLÈJ#€(ÍpËÆ‚xŶ•Qô*S]°¼=¦{ò`0ímÚ µ‚ò¨jŠsI7Qu7px«éƒ9¢4}2IÓAÉF&@zXeê;¤ |3”ÝL¦Wü\lCG ½;x?Ї"D’|Ù´Šêr£/ŒÍ°¹Ø\ˆ·kº|ƒêWZÛ__wyÉ7QA/£~Ü"ª«@Ò“šNfX€9P_i7‚›*?¨rúú3ã]b핪¡L^›åCmò¼èº h30.õÆWa×68ØlŽÄRdkBÄÊE¯ k8ive"ÎUÚö'Ý„M-rú«‘å9£]6„ÚeµV•=…m‡isâ¯qϸzÔÔs3ª¬¯#„ Õ~ÀÔ’8ýhGÜ{;†õFùƒ1Þº£…ø\" á jcÈÖ—œó´ùÒ\B{n0&Ú»¦¾„–Ú,¯Ž±fÂÞÛ°­hÑONÿEfÄž3]gZŽThÆ„&…~Ñ%[~Ò}ˆqE<Üpeåß‹Ç A™Ñ§7çf8/lh…Hà|Åt£k”+ 4Ë~%[êh¹Ì€-Ò×µóô@YO^ÕÂw‘™Ó*­JµÄŒ|ßËB¸æ €~IVÚ‘n.¯©³ayÄÚí=^ÃîÆ1Ôîçø(éËŠß„ê!-a/¯ÝËáÑ_©]Ú(Ž—·þf’0bF{,ðÝ”[A ºZÛ zæEÃç Pή·a‚4!Á‡ ­~)ª~0ò§xGö£ŽÌ¥¢µ|üG¬z­ª2xøZÌ ÿ;a§ž>¬Ñž®loѸ(T›;ö"DbJì!s;ÃE„Þ‘:™01 ]h3` ð!†î0éöþ ¡Ñw²lM 俥Ā3$¹Ðz ÉaÓõ9ƒ€ÀÛ[œü-/I²0®F-6 ³{›î‚SI¾òc¬•uú~‚m^Ã/NB²™Ò—Ad>áã„Ä>¡Ê1ŸÓ=hß6k_´âxƒx$yÓÌ)CûD°«™f «²&1¹¤Ï \ðiÒ6Tøœ¾ø©ÕHç¢SšYF²$¿Ôß+¿=ñ)ÁøÐ95°O¿ºé\†{g)¸Y+ à¿éÀé±$Tåß°,07Ìè¼ÏéÜmÃ#ø—áŸj¼$ í¦Bz&C'Nãd„JI¯ê¡ýÀd¢÷ij[[šÀ˜\Zû3wiíÌ ‚x<¥°°{ÀÙñjÐ/LÄ÷ʾ×NÒì²bÇļÖÓ–·ãñC’§ÌCÍ]Ò~À9ŠYFUØÇ¦ oÚ'5¾áÉH3jÿ­‡ž©J*sAlìÞ Ê?ßÓ”ÀyŽÊ0[DŽ”HSWuu—”b‰™`hY/ƒ´¼ò¯9¡OiÎä÷_\Î0AªNmÁè1Õh”û8‰ûi{Vñv´v3'j~¥œðî‘vhVÓy¬ÅÚ²¬€‹KR²ž!ã™ÓüsÜ௙[rJ$xZ„Þ‰A²ÜNlÉD˜ÙÑÙ݉‹ñ_µB1>×içP¬ù•…½àîtÿäŽwQÁH¦û¯^%>¤–¹6Áó]éVÑòóh˜iGxxz•ôg©~±(jŒTÙeu¨3jwDÊšSŸ¿P¸t\•£X}ÉhÞ0pýª‹Ã(§ÐUáVÔj+j,e2v 踓Èü›.ÔV»¦µ.ý-¾ˆÜk]³a+΂[¦í%˜‚ÀW¤F4(Ás0ÊåèëöŸÛ‡ÿÆRH>ëý­˜K_¶˜‘Ú‹ÿz h ÿÞ÷ÌHÍ„Î>8ߺ3¡€4W-I žx9KCßÀÏ4ý>òWÂŒ‘:·}Ì츮ôx[Ñÿdkö%ê Ÿ]jŸòˆà"ƒò ânÎC à§žAG#.vÙÕÀZ~=la¨AÇÓ°…³äñÚÈDâÄ…îݺmyTï$Qç'v…à<>öˆSÕ—N2œ:HŠýÕÑW,°(UTjÿpÃÆëb,ëždÄv‡Ô翎¹î±aÞå}(s.8ií;*©eõËÒ{W<Öñ«ÔãD ËÛ)†Vª¬nÉõ-ZY¬¶üR²=—/,øœï=È\r>[Cýs·pe>ÖMÃa®‚Ó…™fR©t¹J±&]¸Šúný¾Fu-¾ëR C >ÜS8b†ä¬Í<îÜ„RÞ眗—ÙY´¦#³]0pTö,Dä¼]ÙkÉd·eœdXzÆ! Qæ•z…&¦$Á¬ì·´|![¿ÆÐa=ü/4 Ø¢Šå†ºâX¶œ}?‚Wfððd¾ 3Þ÷A§’Ú†¶ßT@QvvX vÖÑ!ò¬ µb<ÚÌ…»aTÒ½MA §^ü®%Â+ÎT«×ü>¦¿k…îÏüXBvù‘iW`{U " }ô,mvJ+¯æÌØôTºwîE#åŠIWÉgùe»KH{Ýgh;J?¹§;ò­:Ö»Üõ쉌ÙÇx>°æÐÙ®}÷éA|Çg¢jgm—ôK[ŽyùP,&«í ¤'tZUм1ÐBhŠ:«NÒxh@>‰90žÅ`‰Ö(Üë—yME°€Êl_ŽWÞ»z̨+) ñ/j­†ü€ó=ÙK½V»µò|NœPŒZØ?ÃcW7¶¨óί깙Õòé‰ÎÁI†JDÙ’õ ’l¥­º.Pœ ¤+VŽŸ¸»Ð>ÓˆŸz[ªá·t¤¡‚צūλáú¹?ãÝmò­#û0n¯_/“\PèÊÌßzÀ±Ïîë4²°B~§Œ‘_›î‘Ç£‹âù q2?U\Éœfž›ûºÿVÙy¤jZ'GÓ¨üÉnµ±?§X’¾êiPÂÉrêP]/\Y aî;…¯…‹ïm°Šž’=aoõãJç=N9²èvOÃÀMÆýq;¸`öñtJÎæRhÅÐ3t¶e,ûî„R‚ÁúƒB±R—”Ÿÿ…xdžÄlÆàIK{~õÁ³8Èâ%X^u-‡/›“ ³뺰á¾ÍݤM5ßrñGNÉMÂSáüÜüË´­Á†R%â—OT%ã¼¶ÌÐ-ê-تóàsi¨á&3ÃL‹‘*¯þ`Ó;8§ë*¥ø©·ÜàÈàyçÆ­åDÛ>3f ¬ÁC¤…]á>‚ú”3"<܆b¶#«´‚ªlº‡¬& sf‚Ú°ëX|”:"_’&*]ßjóòD®Š¿tìRü[\ÙâI  ¥6Z"“§ÉÜœbš§5CÅoÚù…0?¦Cî|çp ¡=µë’ˆEê_ªkc˜ ‡J½ècj+þ Ë;=Ëݲná  ¶KºÀÔ$c­*º`¦({ûË3ݤվÕ=È(aØ>àŒ4,sÖx—v½œŽ¤@\âGÓdH0ÈòÚN6‘–†¹FxÏ`6ÖKˆu¨íåKawP|lÃê÷åC–NCiàÀœcõ('Ëq(µºV¥ÚI¨x¸@…ið¹pº ôi·tÑÇ™æ|Ià¦Vžº4ÉÍ&ÅÐ'þ_( ’g|ö™1M‰™‹/¬è! åÔ.ááר‹GÇs…ãÙ¸9l}@ƒw¦çÇ–=¿ðpð èŠFü•D]äœsÔe0ãË’I%?'Av0½6ÙXˆS!½‹rß ÜÎÉ#]Ã÷ÿúû­Æ•¼gä?kÄÎÙõ7YY¥Ê%Acù ©Ÿ‡§ŒÒR}ªpÎðÍ,´!ó4©ÏÚL7/µ`ÐYV¦ëïÿ‡nK jòÒòXÕ÷ÙY°SÔ(On“¨¸)Ýjùn„ßÜ}xîeü‡Ó"üѳ´U›ª¸˜)Š1ÎEBÅMÊôî}—–÷Ájë«„`ôðÙÏÜ|Bfžößu'Œ>£ªðIñ$É)¯"ÙÜ9PÝ$—W€±‡ÕB7‰è²[ív3T’±ž‹ê’šl>¬Êq<†®¬†Ì¯Œí0ªÙÊw¶¹Y„ßeU×·i‘fÝ„µ Ì+%?`Å<‘O„÷¨~îš o“-UÂo‚slG­›Iqæ?Ë÷[„õQ%N"g¿ÞÖ *Ùb(?;ÑÐ Œøjpþësè»ÓåYç¹Xõ ¸œAù"o5ÎaPq÷x]„‰ t ÀÃÒŸþÐøëÿŽÓ«Š„ÅuSþqùùbk3Æv5pEË‚çTÅT(µóÔBš d¤Ø¶yl4u›ytßc§Z†ïh-Éô€˜ü+ ‚e@ÞÏÁî¿÷=‡N*žFFàûk9Ô¼¤ïôåØÎÒ7–8þl;ØEx7ÍÑn=Œ ѼÀÒØJ¿Ö8~S»t?ßÀmJ·_ŸWï”°ÉM³  ^ªQmx…°ñòdḷÖ6ÈÑ2A‰UÔ{*­ÙS¶U`[Aó1õÀÆher‘õ)VbŽ]jÒ3½4$/ªþ «ÞÌ*c$ä®LÕ©o±}‘A~ø§“—­^I’{WVýÀ™`5Y?Ë`ë–u‰‘"㬔Yn–PS8Ó8t%3îõÖ¸£/H‚ãß½k<¨ÍÚðƒÞî ´_ÖÇ )7+†ùþ V¡ÙK";C {pF´¹›œ'·Åû[D#/^hg-5<Ñ7"Ãþ ã“~[>•&ñ8¤NV¢¦î¼ 0e0~ý…Åú3s]Ø UÄl÷FrÃx ÒC÷O?GŸC×üÕëUŸ<ÒÁ¹ Àã>ë6@ßúœçÂrhÀ“C=oc3`¦Nú õÓžõžDQ¢kF_çèNúÙ:áý&HeüM\‡;c´Jœ™œïXÂÑóœ–1t ÎÇ•2˜Ïˆ…ÊÛÆrSd+T0:1jIÙDÙ cÜKÓô¯{éiäl°Ò¨Y¥NÐþCQ†aG< gE[«)Òer²~`É;N%&ÐhÊs2Šmµ|Ké"öãÀv¢ üT|âÑ;ôïÔ½v‚„æ´ØJ¼UsmÊÏŠèMË¿ *!`­h,Á„L#ŒmŒîkçøŒ˜Ó€Ü’êÃ.¹êA§w¸|Íd~g]ÂÔ5›q€|ú=ˆÅÕôbÜGau÷)K™Ü†Ã4ÜÑ“ÚN—¥RµÂU ‰…j’z|Òk Ä©Rá&?Ìîíï´«Ýö)ÁéïJ ÚÓgñ>Ú´_?Î>öİ*–æQð+}™1­þÿÃ.©œ²^Ï à‡/VJ=ØÞš qæzíV_3 DBíÐ+Œ´"8ѱFrëP åXTWݱœË“ø&l¿¬³ÕÖ=µªy…z÷¸C‹sž)„Œ»KJ<1ïóDfb–#Y~O} ›™=L×בúY]6ßöE¨ ˆ»(¢v:AxäijuÕj“/9‹ž_SÈ?²Z¢\±]~‰Ïæí$x£`”R·b„v;ÕN^;¹Ð‡Ô²7èÑÕݺ‡ ùßïßd0±ëxs×M‚3V†bØAw¿2Ô>\õ‰׫kéÖ¾ø´ö,ìäx­ŸNôõ•#ý<Ææñf»£-ZwΩ¿Â¿/†£fBíwÌ»x¯Ãæ5YÍoM ö‚MÓõÓG >©ÞÜÞJnO¹„Àƒ'wð™j§ß¸¹D¬"PñÎ/b\ß•±ÎøÛeÃgü¥BV§žk@@z ðšv<êó¯isƒl¬¥×mæ¹[=Ù 'þï}#ÞÈž‚wÄsŸØÛþYoH¼ƒŒÅ‚²ôè±´åå?÷_uå$9!'¿âKAdN¡ÜÍ3öC·! k¬MÉ ªI„ãAÿXd7K·Óà‡FËq‰ 5‚íä`4zŠºà†1£‚N;€¼àÞMÒ_dq†€ õ_!RJ~ü¹$Æçõ›l4ÌDSÓï˜í™G;ã¤IS »JˆË_gH|¨Cºœÿë1Z””¼¶åL›X,"FºÙH²m-£Š·qÒÂÌ6t¶"õÑ-+vàVLʉ•y=ž·!ú0es¿ ÙÏ Ð<7d2 ìªG—˜ãê_òÕ&êÍ«<Á{3ò´÷o‚щ#>ŸRÔ ë(ÍòÈš•XáÕ. ÁÍlÔâ¡펨ú+ƒ·¯ù:ʹ§}Gz;Ò“Öä¼ñQÎð\Þ¥¢ón{>+ bèO…Œcºyl°=ÁÎÛ·*Yý>cÌéú ¼1™Ù‹ïùMݰĚ˜ç  'Ú˜(s^]+C¹ÅŸ‚iNóU}¥û{Xœpl´hÎRc‚„*m Á^¢|]c$ÏH½Þn@¤3¶r[afpÜÄ9dŒÅ˜zÁOW-~G¸î2¼âkõ5Ó®`¤z=‰¯ÆRÝžõ­y½7zã¢Ð”=žñˆš!ÄÖ h½ÿ&áÄÌÑb‹ÓôY†V3FY9Û[ Cvý¢]9—ñMþzN hÓTÈÄ'ÚÜyd„¤ô% ½’ç<¡8QöOUUU†2ÞŒ“ì#§ŽÐ»œBIM»¢û˜÷mùâü€Ñ±£³ªRà Ö!ùH°Ù|!!†{ðu&ÄÖ+²Ih0d©9b8æ åõˆÀ†˜)^‡iÀ¬fGXƒmPB6€æh}h<ž#¶æOàªJÍ)£¨ÿ¢XÎ×SÊ<À ûõ›c‰Á,pÙJywg º¶_—^•‚Š{J+6ç”*¥ó‡m‚¯ã‹!‰‰¾ñÊÑtýZ7šR¡éžWSË%)ÙA2èàUžšcY%zÆ ±{øÛ«Zµ·¹9ðvØ\):ÿJ>û ‘©ä F^Xvü¬­/P"ÙÐ_ŽðÄñ¢I“^Ò2tòý–ù†_?I§ÍîE0Èd JÛ¬ò&§ØœGôßÛ¿ÉAp†>$ùökïXgímžæ´ÞÛª—`¿P*ç]GGƒÞ€Q.=-çœ:Ÿ–¯-ª³ ê¯Òtªl¶ü•Èþ¹™l>ò¾¢È¼¹þR]Èžc1ôB­uƒ8² ÃÅz>u’“K€ÒJû`Ÿ®cDPÞ>²òö¶éÈ¥klè)`f´_F[rÛ&^Y•8ÇÆÜV[œüÍ鉔mØ|ˆ¯à€"ËxŸùZb*ŽIŒóÖ¼b8<{Úáu4‹6›eºÍÃ)r~ެ£óm–Ý,Û†rõÆ6oõr¢>^@û5+"^.lՂ´Wdÿ-ÂZïšÄ ?÷jnà.ã´ÍóI]ì_¼£R,"Ò\ÁàFSôKúØzÚb!ë"µüè zùl¶Òöê—2m+qЈ„…͸s¨³å‰×ë@Ka,vŽ¿]ÜhÎÝ`©""ïŸueԨ܊äßšŠQ«Œ”&f[ lŇÑù¼×m1줄QAJÙìB”Ó ©)¨s*àÏ}Yc;뛧ʤ_M"Ê9çe4É”Q|`žð>BmDbÃo’šÕ½î¼ê‘I– §Rn¾n'¸òšM,<ê>e1=›ó‚È3RË‘'z‹ÛÜ@Ò‡ à/«pDV `hzO¿äN¿}pÞ1¶Ù££oÄnœp‹º4ì^¥mIñ~…iÈ;Ô¨üd]¨~é…°kÿ!>}ÜûåY“.Èk3”Ç»eÊ`y¶ùKtoh/¨Ô¶×äèÀ^(Ü5.c``n°o;“…Ñ)//aCþmïº&d®`ß‹ü –ø7ôR—XûŸª£-äzÆpEÞ¹O¡¦ W± 7oŒ}ú¦¾‡0Î…8Gn€G¡Á””©‘ÚÁp„î_¬.Ös‘æMœåš)ÖíC óš‰ôÞKÔ®Ë÷]ÀHqÌ2®Uù†…Xä󌊡h¼a-梬8|SÜI`ç—øáÖ1V= RÍ5Ý,@ ć} …s ÅèjÒ¼¡«±/“¥Þ ºÄÝð ^`'Rß2Z{,V¬4PiLº†•/N¸ñ¯0ÌE»l¹¾Ž²´FŒ…X-rð‹û›A©*ö,Ên:6ÃoòhÛDZm¤1]3¨$ýÁóÎ64èä ße[’;TËƒÝø„"ôÔ8iœe„g5L•Œž²fù%Ñï§Œò g{i<œíCÏ<mÓŽÛŸ4} ɼOŽaE†Ø&5[n«~cОXŒ¤xT© ¨zqîJ#àDÂçþ›CŽކ·LÁÆTyé‰L6[aÉ {¶4¤a e\ùú_²; ±*ëÕB3¢9‘Djé+.Êx“ëYäUX>½mFT¬ˆŸÀÀgœ»söB„Ê?6'®úÇn›ÛØ%ܘ• ûò"*¯PSÄ«°ÔivK‹«À\ÿnçT*3Æÿ‹íŠK€éÜ"%ÚaG5ñB6ÁU _)hÎï Ï^R^õ…À£·ËFÉÖ”Á;Ë’HT¾ööirÜã€y[½gù~Ç ýÇäsn¤¡jU;-Rt—üZCõ w“á›™Uïäº\%¾I'«j¥°Àr´ø731Ði\4>€Ú¿õÂél®‘ÊÀòÞëÇ(ŸÎu$ ßU˜i5ÁðL,zPxA×ë,˜Zñ¹Òj¯«Õ6<Œ×zÎ"¤âÔ#hÅþ˜t/ÀÔ`vW¥€©Âaئ`›è+6 ϵôëQ§Ú§1©vbš—#T$uze¨&Ú÷)1ˆ,ԟ׷ڋŠÜÑg™©``𾊿[ƒ‘o[f{Åi„«­ì%›D‡n$ÌžSóÜõć³án§êtÏ`Di´ˆóLÕ~@BójÆ]±êûL'Ò\‰G>k9È{fA}è™p <áj̼è …?ž³‰L©ïÔ-¦¨žH‰Æ*€&ns¸®¦Ó<0ûd;ó,DZîã-…™A˜$ŒN¸ÐW!^éýo‡„*R¢x¢§Â™úzÏäd‹³åÒð,Ï{ˆ¹ôx>\Žá 5Ëš#|ß.ºÏÓJHDO]Ê®4Ó¬Þ+ðˆkÖJÂ*t!³;ÀN .ñ l½£u5ƒÚrQ.1›Te[P³@ǃ°Ð}§µÒg’M0”•Äd:Èö"ybÇ9ŠPî»'³GøÏi÷Tzñ§Qb2MHð|Tá0¹¼*oß$…­ê`BœBµx‘’š€uÎ^¤Âud@s¯\hÏºæ• ³àRŒùj³-}s朦3{‘C”‹/mô¾l[‰ ±¼°AË´ØâýÓ%þ,b¸ÃPZ4‘­@ѸÛçãþ“k'é_ô:BÃÏÔ&>FÐàšs€Ü€1à¬Na`ý€†9´x„·þDOØþ¼]LJBC hFkt¶5‚Å]èVƒv´]Í69cWRÕÞ955iWb‘œœkà5R*x›.T Ør¬À*Ê Û#Qw·ÿçõu­2g©~ö?“úˆÔ«±ÀÎ4žè4\ ÐSTU˜C:.}Äv$®’¡. 2i¹lÁÕ|ëP.Çí4=èÁs‹?±r5¨X1i¸1=¼ ¡TæwW©ß§´ØŽÆ8xÕ\êÓ¡bÜ—"ýöl§¨AÀõã6sðýËw7õã¢*£¬¿O· „"@Ëp¬ÚVÙ/ǹA-*IÆ£ Ù$&ëöáÏTL”úçW›yª:),Û• ±‰p†Úz±ô!ÌÜ0œEðÝËÇIÊ\#óÔÊý!éÐÒ¸ËæçòhèŠò½r"›á¤ß|Bœ¿m»$ú‡e[ ŒŸlKÑcy¦_¸ƒ]A<ÚÁˆ®” Gs—/vË”Üßê`¯ð\«A÷éˆ×û–ß$®%L{ CÔ–Ñ=F¥f„O²¿ÓK›£V Ñ)×iH߇‚¯I‘`Hù —<šO©½¡Šœ©¢ûsgLc°ñNgHF¨Æˆˆ= ˆéªl¢ŽÐ-ü í Þƒ®)sôËS…Ä]ÍøÝaW…K U{)'C®óxNh3!×S‘Hý™¯|~ÙP½¾\¡ëŒî°c* Ì^ìçU'†{}@óð”@àŽ¼6uõ6‡Õ˜ÑÞÇÕ·¤Tsê–³¤™Ša ñºâäuYé¸Ów6ñéG±õÁ5çÅÏ›@©sïSì0Ay; À·~Lt¯[íŠL—t‘úI´gÍÈKøIc^Ášñ™ÚŸöu!Nº8à©0 © w'Íb’}@ïDSÙx'³¯ºwi|Û‘x„ –põðà®§\j´Ì0î7_òNS­BÞ³a¹ádzÁ.…HÑpÍ .J©«÷íÁÓéí±*wö|ÝvYMU„;M]Ø`>4¼ï3›ÌÂ07jÃ!?𛬚^_×éoŠMJVW#KNX Ê-ÝÞw(të Oº‹ýLÔ- }±Iõ¹Zµ‚ôꢣtlТöpªÜ­Ë™ ¹oVJ~¦ÈÂWwö¯(amÄ6Ü^"u;R·gs³Ö¨Y)ˆ«[wœPlqŸÎ2*hŒóøó,æÇéÿ4&0Ó„ ½¯ZM›59Mv“8?sE )±àeªZû‡wÏ››•ÆÇç ê'™¶ìÌ5'ô {ãŒÚ†ÆÛœãÈ'zäã¢uº ºŠÖSμ¡¡|is<ŸÐýî €/炸ŸÉŠN‚BÂ,¥_* Ú5¤‡pG¦Üµ.ÓÝt‹ö™8V‰¿@­Î’YP z"I»zó\m“^0Ø6Ai굟ïô\Ä.ç™1{A„ï=tlÏ­L“;3:DEGÿ«8·˜ ‘‘ñÛÅà“­þµðË @øW¨â»R™/fXLbé T]"ã‡Õ[,®ŽÚ nmÆÝb¥ðW”le<ÝŸªä,,Ò N¤S†ìÉ»¾jž:nY¬jÿyã§ÖV¦ ÊiŸßìµïc,¿¹·_è•«9úßOrüÑoJ‹ç¿³éäÄ ƒQÿÐl#àƒTÆÞóu[_é1÷m‹ÂÓÞ8×±†>( ¡ Ê4ã_=¡<ì¬înI/X!^%¤À†i½.ŠÃ@.2×KRöE@ofÃ+DáöãÖ÷¤‹'M$Òé^~ò’–CV÷÷ý¢ŸÆ4íƒðØz…aŠö´=ßeCš `·¾&;Ìâëˆ7<º ³€¡œHrÝk½˜‚ŠPÄÿDu¹|vÆÊ8NFö¶϶„SïzŸ^ëXžP˜æÄò8R ›tð¬\¬èc¯wxl VÌ`ц°£ùa“ å{ÀÒD„0†cÆ£D ŒðùËöùÚÄŸÅ5£ö½þ¨+\\[xêÀ˜K§åébvùH\JHü±7ò!_™È÷μ7΀”e#®fÍh‹C¶tìN°”dtŽðl(@”ÀÎÐËOL§¼²ƒ”DjÈ9H7à5_È ,þ–ôvìºìµ¤ìO F(Í™„X}]FoìOçæ@¯'kÕƒ$[ÃUC ˜—L>¡N']I/åpј†”¸—€ð‚“é_ªóD1ÿfŨ©Cú†J;kÏý߯´9YT{¾-§‹ó}q¿Ž-4\-²¡éä²e%o%ګ案e.µáÄaѲ!¥iÖoWíÞI¶%ùùS-!—qtj¨Ñ`ª¢èÓÌŽC<9P“ ûó"òÎjµSÌmÏVà‚¸'´W Ç ¬¾Çl 2¼Ä=hÆ@CÁ"ae 0³ë×EÆóÃt×ÊKë”#ÎW|š§YùÏbô.¼zŠCi#fÞiô®¹àÌê#ÌŒGºó”o3]!Ÿóa%#|ÌþÛ…ŸnUػ̌r׫‹hæv¦vq¬”M„ÿÑZ8è±€fkka,Ô$ .¯K” nþfxë6ÙRi—¬ÒÞ4#®—vÜ8 ‡#ž8s‡Wø•êF½‘Ióµ:üñ†Uý&EFF;Ó/ûŒÅÂ~ØÎçfÍ?qN¦4yeØhû@ÄnêÝüËá5Ûë1”ßC-²4<ªc^Bã¬GÙqÍé4G9ÞR¥$«IPn ˜¯g­öëÙßùÜ7鮀Ì2 ànºù¶Öé…ñvñ§«°Fˤw–Êß:Ͷ*ír0–p;>£gg‚ÔRæ~—ñÍ{†èª>K8ÉÙ‘}„{×µzÍOäa9¾ã.R#V•äA²ð|¬ÎqÏyòœZ¬¢CðèÅØJ¹ú×øÁ#†õórT÷¢èDºžõ ÅóLTpåÎÔGƒ—°QVýìÖÔ¢­q÷†…W“çÞ&%ÜpÝïV#Áìã“×ï΋Ë6»ÿü!ÄÃh𒹑í(RÓô%6süÔ„örÎ2©;¥·¯F’§7&£=ðÜE#.½À»öüå¦óY¤ŒCºåÔA”±‘º[#ă£JèAÅ•H>(ýúý—çíÚÛp]Ó®×…1‘?ÆP©û­lïYQ€ø¤Â <½NåƒÒJ_"Zír1­ ‡d,„ÂñÌ$=ÕüCéºZä,û"d:îA{¹@ÝYþè•ÑÜ\ÙÓ: ^KÀ_$¸c%âÂë ;ÛGãp‚^yr}(†ªLAŸ»¤ÅΛΰ½ &ƒzô=ñ´_ø_jùÒÂÿ’õys&755n=טÓ à)[5ëºÁ=¹ÎñÍíÑ8°ß)<ܨTλ”©ôƒJzÊÛª£ny»4ŠüÅI¸G9ÄJÚlp†¸n‘ø0Ú' ††pcÓ»NdÁD&<f"uIŸ®“.[6‘k•o¯gŽHi?Ï)CðããÆO@ÿ0_MSÇï;Ïa7b37ƲŠU¨¼üYÆ2>Óλ׎%­ùw¤„ßì×éù½9$aH|v]ànLXCÒÄ,_Þ½‰bëØó÷â>Ã]ïOÇDûÅÍy¤.î޲¢Z çRñeøR!ÃWà`5½¥u±PŒÀÃ3ù½Èä­ h“ï‚6â}ª¨raE%ñ\óÿ^¼…ù4<ÍëÆ¬“[º¬KÎëb=¤>í°Ð/ÁæÀPj€|šŠÈ¬êÊLcM Hf_9ð[MädmˆžGýˆ‚—ý(ª`9­‹gÀ‡Q—§аÁQþê¤]3%GFÁÔ,â*Ï]Ónyw|âè}(Iü¬/{Ò®JëKÈӚ̥ôzÒ¦ µ»ŠUxËßïòxƼ©ñ.óÊì…ž#L€50p#ÉŽÉ:Y\ @G? w½ñä˜}Z­òMˆL åž(¥7çW¶qZg=ˆýaºF²°Þ÷w4-¡˜‰s'°~ÿ¥ú愲S[o©Xcr_S[i”¢_S³Ó1(´¦Êáƒh~°¸Ô±Îþb¨Œ»¸«ZXFË`é‚õ]ú¿ÇùjÈÌr°oŽ\ß)}T»ÞƽRêðÍ®\s_Ê +(xàƒÙ¼zÕ‹5 ]l|{yXñ‹*¸–[´Æª]°\Þ­Æs6ƒAiÊƒß 9îïÄ;_eDð½é¸ßspdö=QüµAcË€±ºÞ;äö¦qž®à¿nX1©n®³:-`ðÝŽA„ø6pþ¥?XO‡¨ÿĉƼñÙ8ôÅY{Ì>¹äI,{Tæ–áZÌ¥ó],»Š1ºqÎŽ2Ù)dŒb…jV¶9¶¢ ¿Æ«R|Ñ k9]á>(€vµÓ$3Gó¤°.úAPd“òOúÂçP-,"‚$©?ÌäÝÿk7›¨8YPu²þøß8šj6ëbN*2#hWµ0'ÑëÚ–©þFçQé}o›½õ¨ ȹJ2 ÇÓ@‰:VXizÒVC²¢Vq`>(…'¿SçéÔÐm?Ü–ô’Ý9š÷ðCÿ%År6­ÊBQg³KÔU~Læ7\ ñ\Žh±}*ìúG•^G]!Åt:™?ÜvxÈl÷¶¾}%¸™q* (»šâ©SÀò«­µõI™Aß›„öÔdl[k4A?åu p‘‰èä"%0kõeÝœºÍ;à5ÝŽìÅL$)¨¸Ž¤¥îŽ{æ_€ÈÃ~¦´ZÔžó©ü1>ðT\ý˜ €È!„]e¥Pžqû?‰K-^ô‚€³NŽ¿ƒƒù=Bcâƒ[ß”d¦*| »Øö¥a>‰rg;·_ÐtÍUý'×+¯p±ºŽÑ &µøüóöèV )¼À®À/! §z×I?7 Èe>¼Å>T—O0ܲåâÙº†“ûn‡’Ù^ï¢2©Ò&C˜­‹@sSÎDöˆThÃô}&ÃÚò~“A/91G`7iê~aœ·æ²Wâæ¢üÇ›¿¸ä4`‘¢êgÕyw97å½ãZ ZrEìÆz—Ë0¬+dT%›·òõËÿ×ý&•Æt1À·'¦··ƒVË_‹öä›[ļ/;L*M´íË*8dð±™/“›2–;˜ÐÈC“ÓÈ«˜ÃÑf’´þƒÐ-ØÚB8˜ä·`D]YÁˆcîyˆCAˆ'`Ÿ¨•©W‘HñÇ 5dÙÚïÛø¶³Õ¥õµÃáîÃoðÐC½NSvi­ÁôW:ÖLqþ““Â^‘5ƒ‘5¡:~ï¬.øB>‰>í8¯×›;‘>´rå…ýZý!”J‚›É‡ßÌœ¡3÷‰òMCÌIœ«Ukzu KCÈC| #Ê{sí븚°tÂÉ‹6P …èR½¼_8¢$©]IÚ|Î\SöŠ·Æ~ðŸdId¦žð¯´ hÕí"ôŒˆxK.Tv·îZ¾Ö!NVlŽF÷‡š¡4iz?á×êPëwøhø^Z/ãfÑàþ-u¹c¬vìÔ´^S˜w äÄ=ØùJE6÷Ѥâ{¶U;Ÿâߣ45rŠ2Z¸© êU(ïèée“[ ·Ji°…¿JkêOÛEúªýB¤[yiÿÞ5˜“çyj›©‹bÇÂæ£Fz¼æ9ùܫŊ2åéÜ0xzáj™©÷Ÿ^ÎøÁ9º 5zéWF›{jZyªª£¢<µHÄ­ Ú,‚¨­lW=WrþyЩ ˜ —â2@Áù‹æj}øôYœš`â2(… ë¥ÜGi|M56Êÿhž3Ui3”¼ek‚w$ž'FCIÖŸ߼ËÔ…ÔðÌîI[ú”Zºö‹¶vq„hA7.UZ80[êqˆ18çøÉšVY¢àBûŸ_ó_up*Ÿ·…FVÚ Á гJSÀøÕ9½üC¹¬×Ú„ÃWF¸ëAŽ&âeñNV<«¼*ØIŸR7w¡½”tñ”£ì‚o&YH Þ~Ôvÿ±Ïn¡þŸ¥4^èZ¬ù.wŸ4¡ Ö×/ qòµþ‘Ÿ3jI:Íc>YÎñiáäÿý:&½0Fê ³Ê¯¾³Ë—’?΂ŠtËÝÀ[çhOáÐûHI5­û~4yzôƒ+QN”ræ½…ú¡^.”k¯õÄé¯Ë³ƒ…é]õ@« Dö·ss¬j|ur&´Ëž^7!¦ppÐT¤®†~æÊâb Çü~Š£RÖ³äöwïEMS‚˜Q\’¹2çyž‰›@Ìp¸KMš+ï~Æ‹$þùЬÆB6¬Ð0cšŸ«=A´Må‚›ÌÆ/ú 0aVÈv\p3‰Þo1r 5]á´•.dß åþÒ&´Ü(¨Ÿ`OËÏÁ6cU]œOC¨vçÕ{ ¶§Þ §‰/ CÖZïW\ƒfpË{TˆQùE7x±‚¦êm½—•4àwAYò D4¡vóHé©…!óñtž÷„ËhÌâ‘™wé¾…ÛÕ–è ¿hÕZÀClQ 9µ3j YqW¬{—Èöð ð¾~5 «…ý˜Y Á«9â)¨‚ôJèy€·G´Ÿcqx¥-×T@q£ÆL缓X00½ö!>ëÆ4Ù ¸²›ëŸ4<¼@R—|á'žuì œ¶Îñ=¬q<ý3òÞ·¿«:šÐsX¦?1Ap.î8¦Lé:„YÉÞÊ‘ªV–eö¾ÜŸ’¿™™b-Þ—c·ÌÍþøPkX0ôn¤éäSî[²<;s`Ñ?#6äÚ8ÈÔ./µø™c×`Á>)G/jœ-.…ê©Ò>¯€²ÌGÁóû0ó¯wÍì5sØ€m½¿¯s#ºÕ,.›N³Á»àâ=±2ºe”3tû.«nòÊ«‡@­Ü´¿¶ZCñ§YRW Ø[A@´‡—aó­"­é"á}/— Ü¡º<›€5ˆÅÞZB®ñäXñøç¤îU 4dxž?Olu\w§µdƒ‘0;:ÍAøã¾¶ör¤îeÁ¼«À J½É¢¤Ä_ãø“UzüCz «¸É#*[(’ÿàÕÂ’˜9ê¯oÎ>rÍîÂT­ö\M+8fùÃÛñò¢¯yÞÛU¿Ê¿è_–lâ:cS–tX¶ß™È±i(e—¹àAz–ê¥à MÚ[]KLšjí}*1ß `¸ÇEÝ›îÀ·ËŽ“ªGçÄ?+OÞÌŒÉb— ½—À?,Lõ1v8s·¤DŒ6-§dÞ¥>Ù…c|ÍoJ­d*pb£„»m>z„‘`üÕ-â•}´Xw¶¯k-ŽE*³ºcYko\¤ž}¸¯ÿ ©÷»ªŠpf™€+þ—·rg€ånŒ'˜¸$·ñÀ9Qi]šÙ€2ѪJßûh¤PòÒ˜Gz†7‡Sד£ðóü0€ÓÉ1~¸ßœƒ(%²¶^Ù~Ëd] ·2¹9ÊÄ»E­‹SÖÏ>» g1¢°Ñcéˆù¯QÌÈ`û>M| ª3OZî¨ü5Ú÷g]À”a/v“ü/\aà‡Ì :y^ßËŒ9P+è–‡Ô–R§=8º9_ÕΔ+¾f9è¤Å&R>[,¤½Z¹É“Ÿ–LCgvUæCIËÀ<ºütnkÕ¦õ\ "b•K“æ$+XN`°‡8û¨ö¸‹â9X‚âÒŒ© ,z VCÚ ûÙ*éH,;»‰HÚ^å@ Dín$Bßô¦Ä¤“uïcÇ|K=-w |ÄøÀ<¬bÑö–µ6„­;Š/(®TrI3´+Mø™qïä´±Ìס|Pn¨Ü§Êˆ·3ñàQ”D$‡n£fÿ'ICk×t¦×/-˜À„ã‰Ê£p¦[T¢fE®(:/Á Md˜±(¯û†ªŸØüw"õTÊ`Ä¡Ûzž¯ø|Ãé€A»¯\ÉÑv]ë´ƒ}¯ˆæ–†âµjA½*ñeEŠÈöceh ‰Ud»!˜VouLkÊø…89>^ÑÐ%HÔn‰º€jRìfI/,€„´{œê Ëͼ`Ô[]¬™8¶hU e—eâÈÕ?¾N¼ƒ¬4ס`Ï_g‚_GXr&eBÏxdÊòd'í8´ðª©ˆ¯¨²Íø3LÙ×ÞòÿOq-.ø‚/mj~Û\7"7˜)•Êñ)šG£Ï[â Rò]·ðuù>åŽWº±¥Ø_|¯JøÑƒ6q¹Ò¿xˆÃNà•lú£¤ª¾S¦Åë‹¶ÈQFŽŽ8V9 çð§Dü‰§zšb¼xM¨–Ôãý~×°èu–¹Àsœ_kõ¸äµŸsK´Þ!Ž%ÝïÔaå!ŠGHî“UuÊ]HßÝ áU­Wv«œ6 »K¶baˆ i;= ÷h….„8ÒÛÔ!Nñéøp«ý •ÆÆ°O_•ñ]m@“»Ý ýACˆ¾ÿƒôÚ§L#sÜõP r–9;ò ¬÷ÏNèÊôUæ‘ȧ6qÿëƒ<)BÞz#©äº|«¯Ë`–2“Iò‰.–´íí ýbtH€Ö‘fžOEGRöªyè ÷Ž \éʘÕa©ßaÛd“J¶øÆ*‰ Úd’Ý蹼Ư/ ¿yx Oz,òˆ !ì*ì‘´^R1ѰgïÜæJîgtPMãáþ_ãEk}Ë9=¶Xo­;€×—ßÞƒƒœ Ÿ«$2 ÙXÓçˆ] FóMÛ3£½!5‘`€ž òõS0BBnÃüSè•­L‚ž?GrZ«i¶¦¾ø Qy$Î/bONnGÞœ-o¹VÉ©}!ቩ‚ËPžúQ¿ÉØtª½²À»cÃÖ! ¼”Ðä]“—|3jb“õÝjúv¾íÙ4ýdë™B©ÈŒä˜ÝÄEò¹8årÌm<¿Iw)½yü^ î¾ÉÝ÷öÌV9—Éœ·&‚Åÿ^_“Q‡pdþk‡maX–óvÓž§zÈWÜÀQYÈ€D(Âo&ëÊŠ¼{ÞoË[spUÎD«ÞÓ.Òþ:Àú•:rìåÚt|x]ïWÉcÉ!âß G¿kP\ñÀÞeä‡Õ3YjƒÌO1Éjr8uÌ_2øá‹™ÂR´¯¦d#FE3ÐÑ({Ä{®£Ì!ûO'´¦.EC‚8sc¸¥ôÕÄà6,Äûä(­í ?ˆ¶D±_8¯O°û Ü™®´s&þ,Y½k`@Áq6OÛ’¥(HŸÀVðj!Žè!=g‡ øc|H‹°hCôoy¯ø.96Y»"¦„nŠý„­0„Lï1ÙT‡¬ 3ö=±K’š-˜é5Cc®£Á"ŠGÔÛ¢,²"#D8vÔ$<0Æ?Žd£ p¿@S‹0lÃõvB¨ðbVøXå8:⢀ø~ªté—g°¨8Eºz*å¾Cжh>”Ë5÷ù½¬—ÌH>lBV£úÆ€“1˜ºo› QÂEðÇi€Í‹7IV°L—Wlx‡€ð]¶! JUØ\@K*o" (y­ ~£ð­ÒÑQ\#´uDó»Y2ûnÛ(°ñ°‹[CV•AéÇ3ÁéŒÑ$øë°,·Þª&_Ÿ·­O%oÌ}3Ÿ¸1ê ^s½òðlqI1*j<ß9hû8ùì茬k|²ºfA ¾Ê#Nì€PB8¯¸h"@ˆýlú˜f{.´JN§ éSZjÛFÍub¼Ð´†9—2Ãkk™R%’ñ›’Íœ†"TÐ?”)åÄUMÕªxïEÑR~¤p0$Þ°þd;io<¿ýôŠl¡£ÞHmc2¦ E¾`|…ä'_÷7¾-ûóv—Æ ±ªEzÇ9اÇÂp%ËLýÖå#ÂWÅF×g´kž:„¯.¥ªÔ‚ƒ™ÄÉÍ“K1õè¡&­°@š{×únÂÏã«íðß›—+?YR-…>Îñ~ˆ¢ Ã†ø}ØË;8O°Þé.·ÅÏùØoyá$Z ‘ýL=Ø[t¨ËÚv÷•' ê=²ÑlrU B4 ^J“ f%-vˆé÷I{3ƒ u!ÅRA˜_O!”Ï!–€ß¤Kù¶zÿ<ÀöëS¼öÁ'%½¥­÷bí ˆðSMJ~wrÖDYÚ<¬ÃH3Ù8ï<¿ˆã$hMÛ€ù xÅr$‹tD„eo;ƒ¨í;/åí§FÜóœ¦mç<µèýžTÔa8ßt÷(áð‡h ´FÓ]±› Yø+ÝüÌ v†l[ýʈ•$BB«óÝ?AtLADb˜ØâÏá²Û›uå¢Õ%yAņ3›Ÿ2n²"dn Koœ —gÓ%]Ò\¿äرCGøA—&):²·^^¿°l©(í&f›®÷‚è‘K)yç&4¸={H0þ¤Ô` ;ÿìå6WQ4¢¬–»ð% ÿŸÜ.Q» ûny¯ð©×àÿ¿ÈÆf<âHo›óÍÆ¾sópÊKè€ÎÙêUÚ‘Áa¨büßà¾[|Âqâà=\à>gð–ÅÅ·®KŸdDMxJ0ÍÉÉ¢ê^ ”ÅÄ\ªó–Ó!”œÇ}S!ä_¨ Îsø‘ÿÚã!:¯ãk8ÄøøBž£­ ¤ðÃÃA˜zýZ$%mw=Ütt$Ý(ÕÍÑ:5'94‹¨êÌðK1UHóöž 1%z¸yßÍhK­Æì礃E7SÈt£“`ÀÇË6Ѻ)˜zø‡DíMK7a/µ&SK?¿Ô™p£ßìí¶+÷™ilÁM5ÃàSZ¶Ð‚#æë8¸ŒÔÛÖªê #3ûÿpæå‘k <ƒ™•U¤mÍe),†¡öJŽß¾ Tz¾Ðíè!¯+i¥z[ÑP¥ã¨‰Ì”º"ßC,ôç4hˆ`Ú2©L÷0@-‹¬ˆ²NU-@å‹úKN¤ÞŸåO¥ UâF£é µU‹ÅÞmØ(äúyç!ÀoqÚŽº´™á§ÑwäÒø$ŠË†’×bõ´‘fFd§Vœw³H°»æ‹Õº&ÌÕLÍ”eÿÄ+ï7£˜7ÛJ:îøô:ÒŒˆsžãµú^¼ríåuRö Ÿ#¸‰<…ºä±ùîÆX#2¬h½·šÏÅ\øViHæ&ºÏM(Ñçî)SŠ=@î½MSfÊa[@õÖ~±¿ë·Z!¥uJÔ¦+zìmå¿„9ªéT†WJ× óœ¸:ûTÈÞUNȉ ¨_§Î¸û] ÍQ¹6øÚ½oÞ¯¾ê,¾([¯¹A礘m˜«Ù»Ö0·,Ïâ ê®á´Z”°Š|îŒÀ•ÀðïKÄÉrÈ‚C$¤®q?î\`nìÚÙfØY¶õòRR‡ŒékîÞÒz£\ñkÿç¤Yuð(%\ñMïÉ„¼µ#ú Í×® _ë'Í`K‚~e*/Ä—œJz°vc¢üO»“]kykt;¸n§hõ!|Pù? ÕÔX.KgP{²‚Ì¢ µÛõª:%uÁé²o"SJŽÇ\éƒ. *,ztJ Ñ¥u=«\šž‹–x~Î`7݈{b܆àF? kp¼vo·šÓmØÁ@ñ>7@!w‡ 7bñïBñwiÚÊ×<ˆroE¨éoñˆéÄÀzTNUr»d’‹ —•ù.$ #SÙ!ž øÈ}Š7|º–€™`ÊÔD®RÞ442›LsÊ Ñzâ”/èï(Ã*8ׯQ;ðÏ« òPÉçºç•*ˆ‘Ú퇔ö0G"šv|7)ŽªùŒœQ/.UQ9èý÷¦y s§k‡ˆ×Öb0–],0ß[«ï‰ëÌÃÂ:O‘,iJ)¬Éf´åiƒßòé¶P=ë˜å]g¢ŒDÕ¢2ô1€Ã‰ŒηEÆØlÁgh§D’ÏI#´×bW.Üù„Œ}¥o /h(b¤·çÊ\°8½?ßU='>ƒÝÿ;ÜN†Ø5®­Gx®m®AÇG«H5 µ’髨½©ô$€v”¤ éG%ÛpÉÝœ”ê|Wjáš ‡R¶Â¼“jÐË×*PÐ弟b r¸6r ®¯þƒy\ðÝ */´}ÞŽ-AÎ>µc (ÉÂJr{ÅpˆïÛ£Ç,”lu¤5!k–½çV¼o—nÏIŠ»%½Wô2ï岤ùˆ~iœ%xì@S™]ÜП04Ú:÷—¢´äÿ¨â§îaVÅÖyù¢™‹Z–O£üëÎï(•ˆGq ýi(쇣åj¡ø^Ï OÙiWÔÇE¡I°çÞ YÇ®a è˜Â˜[=l)ÃK{ä(…`Â1‡‰VqQ\ö—†«|.bŠBþÿØÁÂÙsaº”ê#ã<1¾µâo¯Z³Q´pvÕS\a|` j+†ƒ%ä}òHàI"1“qÆIr¤CÁ±ôÕ«´RåžåÚZ|Šê³öô½l@}T?5‡/*ä¶®37A˜i8-æGC€ÞØT —©gí"|ÆÝ@DÉ;GAº{§PJ¼q„‚¢¸b#ùAú8·¸±ý¢öÒJç!_.?îJ²ì_˜ñ*iè.°©VãqŸÛzSÓÏ”à>§ƒiü¨JVOoÃV‚¢¹Þ{DÝNç=l l4cú’(EË?Qˆžx[ 5AÁ¬ýgáÞŠön›ÞB~} ²!tƒõ›®•ëêGZ%g–¬µ‹_4‰ø˜*ˆ;ÙU¼øòW¦}Ü0CŽx—;ù‹ºW«WÐÝ)%†9VºÊ )vÅ‘ÿL—o†Vÿ]õÓ¸ìõEúá_°è– Áj¯vIOOp–u·ÂYäÛ²™FWQ®%UTxÑ*”™Éý]S­·÷h~züj£„ ÂÔ®½T¶ K­Ç¶ÏÍÎmP÷ÁZ¾üû§íg汌3[¸j4YSÿš,*3ŠÎäÏ~ûnÌñÑù¬xtH©™ÃúÉ4Áo&Í\SåµCÈóOZ)J‹’«çäÏ¿4z ~PiQ¬úÇXB}Qlyj¨ÐØÒn’wOQùVVêЫ-aX‹Â7WðY3Ê7˜K×§òˆ•úiöu} ‹»Ë{æA°¦Z&ÄäóЊé͹ZŠ¥ˆí9›‹¬¾Ö¦|¸·1’Æš®Ñ6'ôgÿJWÓ"VÒæLqIA2jAFVTœnöÉø²T » ŽzÇãzZ—(ºÕí×caçÛ)ü@Sz¸¤IþzÙºDß³¾9÷'œ¦—)rÌl´^J3&çБÅêAjnSv líÄTÖé}#qsŤ!ûIìôë,eX\Š•„b8Ä ê$hÒòʱUÝañq,ÝiÔÄ¡G¼¶g§¨³âDH’h„"w‘H) ÏîcÃLÌ't”, /¾÷P›R¡5tÍ¢¤7ɶz\Š`Õƒªd c–1î÷÷¾©­Á¬©óP¹µó¥|æÇ'Ï¿<7E…_ÁÀ2éÄ÷×àÒs3y÷8±Ñ‹Ù=îóøR¥@AÐ"‡dU}oÛ§eºîqà·Ã“³™¸ÅS½Ã¿X’×¹ #êÆlò·ñ¼Åwî{7_½ü <†•í•çE§‘Kgr‘˜[‹<ÖŒbæêÅ©nÆ»–Ptfg?~¬ãŒ.´7`b²”Û\¶Ò r.0r¿w˜ðªÆž‹`&1Ù•´ðÁòãwéÏ`13&tYüQF‡l©Ê¢kÓ|,YL—=Ý™~ÑΓ?öÔOEf¥:X›»½R€îo1‰´·> Z ñò¶Û¦e€ŸèÁŠû䆸 °@Ò5xáw€sÖ)9aO]G>(èóýÌ6âÅ–4µ—átçGn=L{¥²ýBÜ>¼Ð¥©ÿgg ?Cƒ5¥Ü…<лf¤DK¿ªÇ™ n¦ÄéÇ9¸ Ì$$Ú³R]Ä„ïQlض§.5k€›Ñ~Þt6»"yk<ìBO}±Î33¾³=Õ^ÒlŒv„º"a ¬¶«UºŠWÏŠï*¦[3ì¬VN‹ÁƒÿÈ«yÈäïÔßÎà;ÛQUKáËV$ëD­yòÖíýz|ðRE4„Dã°’–O-oK¹Y,¨—ÏÂÒF¥X¢ [Žx«Œôþý qh$¹qú¢8~ÆË„‰²›òìïX^.ïØu;aÉDöýËE "| tr­“ôHÑɘ<=EVšùiIŽ>NelRÍ÷ {ż1x f¸Á›ÝÞ¨®ŠØoÅDïáòFÎá6}~俈·.nEn»¶Ð`u‚.C\úRû;h¸o'j¨”lÙ-fŒí º@©ôžeñFZ!Ö é­ýÔU Ýä}D@úû\LÍÊËz«3Š{ž¤¥´y,P¤—xcyß•‹à×"¬ºƪéÅ\<Ö²[Õ£—í Ì'tL—¿7ÞÖy:ŠݺL°¢Ô#ÁËó3ɹ·ZŽ“ýdÞ+<³çß`)× 6ßqÔ2+µ.â"Q Nt†LÁEþ¶ð‡¥ù0è$(-ƒlW±Óˆ\ió8!L·OZ³†úÕß>Í…îÁ5( fÙRÿ få’Å#ùkwøb0:G+ r%ô¾¬ŸO;aý´žaÚV6Í÷TgtœŽúß”ÅÄ(ã-œÁ”oì]ñ¤fšâ^¤$H½)v‰½v÷«¿ZËÒ´âØ.ˆÓ¤yT0ËÂüs(}lÚŒƒÌwa‰3Ê×+æ/ØÖ¤ÇÂà9S.zò½sã˜iÍ!¥mªßhhTÖR’6MÐx{Û$Ù_nRú?íÞ ¬J4$¥}Ä;Y!Pöj¬âÁÚ[ià%ô•y¥Æ7÷«Åˆþ/ãDO4˜VI?Q>úûÊšÝ\Ò(ÁRž‰58¦Úú+ê…-Ø>²4!Ò›” ’‘ )rëŠF¬v Ï)f T‹§è}:”VÈ‚. øúl1-åÇ–ÑyS>2G)Y†Œ·¸2BÍz˜}°\~…vFM}Œ·m=ô÷ò­;O Œ§0b{ 8iíÇÊÈžk³]»Ö_^Œâ"ëȘˆ˜´`8ÔJWÇ¡œ¿&Å·}ËžlUÞ£4ðA& ÉóÁ Ù¶…Þ¿ãÿ5ïˆï-®À´Šúˆá © üÐNƒ«ÜéKs%?¯!E^Ö éË ®E¨ö»+‘:+œ’l!¯·ö·‚wͬÑô” XVµnÅ¡3û…†@"õꙜO§ tgV~¼TQ£Üý3•'óô7(IëþüÆ/íi‘g¸$#ìŸåêç¿„JÈŸ¿¬'*|{Ñ«í>L®©py…)‡N¸”Hsr‘®×ÈjQòõ6òø‘Á„Z8#A¾`aS¥Ä›4“xÇI‰¬_º+Ýâ½jI0Ù$q¹ÚÍ÷˽w¹†5—çÇ:Ùt$ÇvtÀzŸ{B(½l¡àÕR*´Q¿Åi{ö°9³Øõýƒ|ÊxÆræO]2_6¤÷k©%ŸËtX8íQïÓ}n„¯ï™JRsÐ~lç1 é:)ˆFìä&û[›q§È|{<”ˆ4Y’ 6Y0r«Ý4nŽ+–ÊZ­É+ÀÌu–B–z.ù%ãÆè‡-MGàNeÍ/Y§Óß`ê,Örýjyö K„1Fjy·Ñá¥IdjÐ&è­ÍÜ`käkÔ ÇßÅã\Ýmv½´'‘œIÐxkFŠc‰£*¥ƒy Iß/£q/Aæ ž[y(NJ†.ösbó‡ò ˆõqÀßûGH®{Õû¤h?k u…Wc$ãHŠë×A¬=jQ{Éûá>é»—¹çàZÉ!k Ðf>„Ûu5Ç—·ÁUQUëà dº¿ÿ*Oñì¤>œ.Ñéò§ÜÜÝC%ÎÉn‚ºË •îb²ó\íCˆqÕ觨ŠÐS¥Ñ|SÝ@²o¥–K¿J”И§=3ìm|‹¼i¯K §Àôá׋B¾ Q¾pʳ4Iiã¡u¿h¥¤‚¾ÚG+µó•«éÎôoUb!#·¢Ýî9VtøP€}É;ÔãîW$/ÄG09ƒdœ[cõâ{HÁ·}èð«=²îuÛ¡ÏàŒ}.¾piº¥¸$5µ¡Dâ÷ú£@xÐ.Åf‘ÏR–éÏÃqWµÕžöꃦ_Íì;NëT|RâN|g-Vœ|ÅöbݳÝjMt)…cM†{ã»WEµ˜«ÛŒèöîƒAÒe#œÇGîu9õ‚À}ª ð¥*¿ZvŒPeØ›¯ R*š\µ«Â1·ôfc} ûˆB€W!¸sïÆúUXjØ 6y0õµ>îð1¤öŒ•%°ig-? Lèß å®Ý*tmÒDøO̵Üã]¯9¿…é„q(Æð©Õ©¶"VøXo6‰“üÝ&áÈ7-K …ÅsÞãÞèZ<° çÓg’¦Zßê6…ØÊ?d¿ÖuÑy¿þZ)e”š?ùÉR…\kÒ{{’øXZ¡—\М°ÃyÐéâk†½üËÒ¤óòc? «Ú“‡jöÜaá¯ËÀäð ´èôŸôœ¤ —Ís;bã€]¥›~þãÛR'-MuÓ·77„ºâ³SÄIŒ’Z‰}̦tp&ÛZØ-‰M»FÝŽ<”^b¤™z¾{Ð÷Öal® ì/ïËùçÛ}”pXièÚ²løßÓÛk‚šëR´±­_‹¯¾Om{Hð /Zåâ2¿aÞ[tëv‰™w…¯°Eiv%nLI°6¡Y\;¥ío^#Y ô—¢˜B2Šucfœ­Ùj 4$OôGG~á1!Â,ïŒ w’Oýl•VÕE­NõF¾ƒ4óä+á”F ¯Ã²Gß*Yû®ÁfûðLF¹+ ®ÃÖ¾JÑfCW:†º<àÚ,$×êÑ£6„÷½Ü`ž{ø)©¼iG}ƒ ìͨA…¸Í½hÔÿ“úÙL¨¡Ôs½¡}B§J,¦2ÕÙq÷˜È‘+gæ(}–ËÀÏ Fwj¢4GzĠ룃SU­cÇ ƒpxžÔÆÏ¾7ƒ‹UÂ/ä ?ÏøfËÕ|–eý(FÙ)f¸ JpÞ=(ê¤I*!¾‡2>Ž¡¿‹äÑüCÍ­ë&SÒæ4ŸøÑ³&jH)oF5fÙP‡OB^©/Ë™ÑoþÿåßÞÙËиœªeÛeÌD˜½UBÍÔ-ÅÈl›BPÉ»zñÅZ­DYû'fÓxŸ]wHváêºí:,þ_’òuܪãÔ_Ö ,àHkÁG¦s#dµÖ'F’ò·9ƒy8¶1j^Ü­ëµCù••r°$Æ„zÛ ܾ÷ýX2 íµQíËW2‹˜ÎËk=ÔQ­Õe@OZLüÂÌ€¤À‹PÉ…ø+!x}ø bèÅppÞÎù©¥. ?–° àH¸ÏÉtö£lñø÷Ÿ™üpÛQ²ÕÈÜ)näÚ}•M.Q|$«,òäò #SYá„ä®ÿ'¨æö#lS#šuŒouoà#‘÷) «Ðö%¦m<1‡t‰–ôµ$)4FR]&%éÓ–MÞܳŒ‚B®@ç’daåðV6Æ‘A§zý%àŽý\#åGžqg¨±~ÌCù¶ùÚ¾R M„ë{8?Õ§%®]KWÏìRËzcŒ–tÜÛŠq&ª/ó ƒ¸S°$ë Ä¡Ú …#âpó/‰PñÍðSæ ÐãÁ)>äЗVTÊôC1ᨩþÚšz’Öû3ŠS}ðGŠæi:°&ö%bUƒEG­‚D÷—öÓŒo­†T2š´Ûç Ùó¡{äN%Ú¡l꾨q´}'ì8-Ÿžo:Ò¹Â",Sèÿî<²­ìbgT¤¥5b0—wËD¡ÔlǸ Îî…5¢tÅ|רså ‚ÉY|&Ì_j‹éi­PïFéE-Ú¿ ñ&ìß®7’ü(5¿>ãÝ97@£¡‹/|›­Ÿµ.gŸ]¾Ë1áz?º7(¤+ÕêF-¬ 4PÄ[@»yÄÏ>œw{ŽýðS¶öîáImƒòxlmªƒ@÷Æ€èQ!™$˨c,%µjŽßçÐÑ¥YmÐj¬g·ÀÖºÆô¬ËõîF× àü}ý±JA˜É~ëkH½(ìñÚIŸ€ëǰ»Žº$ ½é)«LœO«ü~´i‡uÐÆÜ÷4ëë 24€"‹öŸ½d«V>èe®Œ«–0wSz´&žª+5m­9)ˆWl÷5ŬOú‡=¯œ;b÷öÎgÌ PÎy7ç¾<“Z(|‘@  bcŸ/s„zîसCYvDÓ‹þ]dÁ{8·×¬æË8Âì¿)l) kˆ+üÚø ÐÇ”(ËȰ mþŽsdMB[oL?‚èo¨°íݧç’E’½ú\o#Zµ4U}ø;:‚–9oü@ESló¨!ëíüѪœbã6aïKìÎúqˆŸ6?ìßv8Ï웋ȼQâEž¦&62´ D·dšÅ8FRÌX[WìÓäyK$/q;V ®v/q(•ñø"#ÿ„QuÚ{ùvз]ÐêFX“ŠÀÀ%8¡TŸœ–\aL9?9I…|ÆÉ|(ç¦ðPlz{h{Ÿ‚@hª=`ëB"ÐëÏ/ŠÛbæÌ1‘Ž Þ÷˜4ó …CCvÐ ©"*kíw#äj:ZmÓç‘Äþ’zÕ`~‰Ë@R­Sv ±;HêÒ &nC%•þY “¶ò:«1ê.È fõ(JÞõö-åª ¸ƒŸž:£¼JÞˆèøXÚ]PˆTš’¶;Bí\˜óÆzgc¸èpÇvº÷A³Ò‰÷»ìµÊ\)"QUè@¿-Q<Øéý¯ŠëÆ‘4J·!°tcæ!ýˆ–ÒK³…WÏ-zWŽ‘Ê)ó|â撚×!=œâc¼#.šÝG1X†U !¢úPijgB°ÙGÒ ,wèÍs•yà†TZ‚ˆ«ßÒÛäæqw½îBúß•L;2^©ðagDaÞãë_ؽÄ9zºž¦':äÎ¥ÃSu¯Y |ðzš^=Æ1áà!}žÃó„|®,¬U=­:Ô&‰|P‚SfÌJˆäeí›ÒÓd\_jÅ:NÅImâ²›ü½û¨eê²ýž,rET‘Y£m1yè…ÑË´F÷ä¨fZ'»¥[½opL¡?ÖJâ¼lU‘Ä´íDN×–Ô¦X´ÿÜ+’”ù·E ÙBpáv£×àšñ‚T•Ly¤òí(8\¢ß>A´­©ð…Ô ¨‘+Þ1ëŽzÆó?ÞÞ[кØMÂô—¶}o’%zUµÍ±~Š4‡?ÈåhåÀvLÿ~­Z…²¡^Û‹ß`]G~äRhgZ?Mq+H’ÏáOOÃi‘¼?„«JŽœ@EV =qC×K®â^^ÑïÒ#96i¡å1õçOç÷±‰Mþœƒ"Éa»#‹@Õá©»!ðóÏ`±Fƒ=‡Pæ<ð•ÝýÊûé&©Õè½|“~-6jdœ`b×ÏFßqWÛŽ=þ*às‘ í¢ì‰êxz‹kŒáhïÖ+Þ[[¾á+))“5-«Í¤`×Uú’[©!î**V9#k˜]9çÒ¿7Îkók§”EGð…Óˆß(¢Á®•ðÂ~‚AŸ:‰ÌìëÍ貑j}Ð$Õ¾7ÁÐ’š³,Oi2 _wlûf´’ák&¶½á>päÌh—¤ŒÊüExÛ ›âê“bcðšÔI§][â^öQÐ.8Ex I¡ ½wûYe9õÔ67ócVâ½B>XŒÉj¢/-=¼ÏI¿ˆ(É}Ñra Y›°´oqëÏoÉød¯¼T¯»Yu=„NqOìM;¤ñîþÍB¯Re4[•±ÿ½&‰OŠ”›Á¼x–MZžU\9ÜÜ}aùRè [̈t©ðÄoµN™ *ùψ§’kçÐ!}uCÕ… Á8iX£ÉãKÙæ€&% ÿp]ƽjRlÆYâz£™Ih—aR{ãʵV\^—¥Áv嵎¨>La±ƒ¶šÈ_øÎNUã·TfçÕšz-rW\Qçìõ§§ys7Œ±¹¬jwq‚<᦮·”^fý|¨š¯ïÊŠQ¬ë:ÎøßÖN ÆDûðQžÐÈш¯¯axs{<’Éoˆ›ð¹Êî_Áq˜3< kf³»î,ðË~šÕÌ —DØõRKû®2¤ü_ÈÎÉÓ1ë,ô¬÷ôµ< 7»C$§5&l–\h­¯ÈLPÂÓ ²lÜÅx†ßÓÿÝI¡8į÷VâëU’^´ /ùx½¹fèŠ}®°µ&  ´U*kÞä…â÷&@ã…YQf1T:¿=L8 ÀË8‹<¬ÄíC i˦6=вmG–Ú;%Û–DZåÔSNüˆ2f϶æjþ3~°K76”ž8xíÒ ÏÑ–g³½‡žìNoûðƒÿ³¿t6 )¹g•V^öé—d$"ƒÛÖâLªDãΘ¤ÿ¢…Ž…\°»s±S×Ýñjaæ;ãgÙÄ0}\Ú*Ýs+%ÑéxíÉ2ÆóyØp$aù%2Ñ÷`¿x«¦a »›®ÅR%Šðb%·ÙSCs:U˜b,m+s¥aå¶Õ–Ÿ Ýïÿ rü"œÃ¬îÍ.+ƒøp–&`΋ ˆNˆuÁÕä8GÕžu%,ã»V+Šà'Éñsëb²—\æÒUe•Ë>–ÚÕ o½ä´ªËh>Ö`Ñ?Ñ„Õ:hóËŠ—ªža?kÇ­pýö†O ‹·Ý1Ì4'º“bÌ|¤8u²ÑEù·úw‹µÜi¦¿SƉ}ì¢Ö|ö_C ½z2}iuÅÕ‘¯~ý-èÃt>± â~AÓ­‚)¦Í /ÒYhT17¼86g¬…ùŽxe‹5v=ôéf¸\±½õ» ©ª‰ÒzYO <3Ÿ5mþ+4¤-ìÙO¿$ùq7&èuQýåI/<7K„¤÷Ej‘U£$0Õ›"ø0-•ž´ðûSU'»ì·HTIFhäòðû”qcïÓPᦘ ¼Ó”iüì¡1¨"¢‰¨P7s•ÄýN=”$§‘-˜•æ1®õ¤èd —ªÖ!¤7R¾×cY§ó FU¸~øª§ÀÑèr»=93‹HTÓ9¼¦­V2”“4S8Œ þ˜øxtV™Ræ•£zLÝ^6BϲNHõè&‡’ÑR¼T¶JEŠ(Î[••êoF{0l)’ë ßo‘ ć‡@ìR`ô_þÓš”®˜ú£íH'M¿mÒ*Yë/A «<®ði»/©Oì¹)Ò÷õæÞ¡Ü’ Ën²Þ±Ù‘{éÇvŠM5r1ÏqgoÕâÒQ,6ÒÝÅ–éÞþ<™„>¼‹V¢$Í39ôfä´R{ß "˜¬}ž·°‡Ñ¥ê—q ѪúTh-ˆ ~ú¦-º,†_@å©ðñ%Ö±îìÒ¯aù]OÐ~ê‘S@ wì뇣ƔF‚«Œrˆæß:sjv.-¹áq²¢ õGšoRð}ìCVç<fòK0DNw&”Ù¹`Æb«µ­P'ÚÝéJJÝΫ†?K~^¸ðõ[øø=D_GÚk0ÿ#gé²Ã+õµ¥’Ö¬Ä%óÖt•$즲c$ª³Ó¬ºéýŠ$ªÁ‰ÍðÓW4"^Œ ‰z?ˆùŸ…!ëµ?dÕ=Ô!Å5"$:˜ãqá™;‚F¶áÁ-=vŸ•Î 5!8¯8æÝ!§ê`‡Ù+îOÙ×?‹âƒ ’àoçl>8•`>Qv?FÙ²u©A£ÚJ‰©–u¹ëWòŽýyCñvÃågª¡·‹¥¬ñ“J¸ƒÅ•¥ÚÒÚ×\ÿÈËtäû9¯«û{…"LÝÿ(»•ñêyh 1Cd‘ÝÁÖsŒ~Úk^‹ÿ:èÆñÛ)gÂi ÅcéUM\&cßÿ2Ï•cïÎiÝðoªÚõýÃ(*d—)ñ¾QaÃÿJï­…ˆ½Îÿø¸±ೃÞ.äN=¨)/-·ã"VG¶Ú£Õ>¸¦M¸Q(¿êK\dƒ’ØVXWýj5°•W‰*Mãí´Á©âÏ»>˜Ë‰“l)Ô~дlOw:ãl¸ïhã­y'§¡ôDš[‘K†üϾ{»¹&òîÖAaFªå …BPÿM(æûîs¯Zéá§ÓÓA7çú®&È%Ñ庥G‘5ˆ@FrrάGÀ‰jÆ®ì þ«ãîð¨/wfºx%gŒß¦ãF.ƒšr½V­ežêœ(‰[goÒ½S¸§}SÖ4—ZŒVîËË>¡)ÖªOF¼©‹ PDØmá€ô•îN´»QbûjÌüŒ ÿQpâcàÂý‘uË5=ÔÏ"Á¬9Þ¡ƒ{Vd¡Ö4¶ð4Ä÷P@‹æ’Uà¥ÎÞbáó£Ÿf™¦‚’æ=÷bêÄÔ¬UR±¬Ö*nÁÛ¼-uÌ&yê\4†Šð˜¸„#gÜKÓ³AÀE}­)¹¨Iܦ$V:ßϬ%[T¦©x^¥€vã2[ø{`aØÅŽÚ§ãõ%mz¢¶Hâ]=33ŽŠ†çÏÏ6Å2aüýùƒ…˜DŸúØÕÎF€4ر`þ kú±_ø1Müï-O>/G1™¡]Ú]® š.C!š\í¤¾«#û1á6ý¤.ÿ3ÆÞ¬ZYc4÷/³öëy ½õ;[> …Aäî1wtG3Åe¹sx7Q˜Š@£çW³šÏ¶åìwDTÑ™¡®K5¦1·®${r’½‚ Øö“‰ ¢ïat™¾>tàŽ>g$$9þ€mÊo$lxªcÔʪ ¦ŠJ&à˜jÜLR|U¶jÜ$O8.0&Ô{WWX_‘$'I“1%Z30Öÿ5§ߤµÝ¬*¬öˆǑצ.ƒáƒeEéÙa´Þp–@T¶Pï딾sî@Áöú:òOÙÅûž)[Æ*¯c“ý÷Rm×Ô:YOxßœÅëï×…}´qÎ@q¹I¦v‹Rzð+_RÈ';9¥T||¿<Òlšá¢‚K?£wÒ¨5 ]ŽŠU:¦X€¶-cž–5®XøI]én_ßj¡ á6ÉJù3wl“ˆ¨m³ÆAÇöó1îáã—ꥊ·.béã’áäOæíÖªSÒKNÞfÛEçF ¿ÑÒ2ñ‹GÆ õ[½l4&¢ìÏê C%(ÞÒx:îðì„Óïv/ÜŠÚ@>5=r{žõ!b¿¼ 'ÈTkïf¨gÞ›‰÷– Èâÿþ(ft›ÍÒ°ÔwG¸4jå0ôÖ1,XÞLx)ðy××[jýõ §ód@Zpê~‡rMsðû' s~–¥ gRG~"^r•p6žc’ÓV¤ôˆ¤s˜µ;ù?d$8YÓ—ÙÕXq ÙšÙDþð\1»dMÊñ¢‰¥™ÿÏî¾áïYiN¦8TJí£¢Òð]®Ú 7ï3ÜCØeká+ÿÖȼ¿ÄÐ’ëÿ‡ˆoÒ0ÎõínAŽ|^Ûå*&–ÓŽj©lG>—9lzu™‰»üÙšVb±H,žt5©µ_ÙeFÐÄŽHv©¿Uþ6'Äuön>¸‡>m°XPnäi›ˆ®*ä·n¢½7…-k·A€èg@q1Él\µ£„ }º$Ø2 gÁ§‡Ër™Ê¢%›×,ò°ÖƒêÅž¢®¬œÊVÎZQÜÐR8ú´†>¯;5ÿ-nÆÕN~øLòÈW-©>¯r02[µNrÛj4'ZcL·m2ò²´ëøúš?OÆ!‡¢y{QCÙN—•HÝ‘²~üJ4T}r÷‰-Y#z¶T¡uëè6x=†‘fcm*/P€QÙ¯}\Hˆ Ì,õÒŠ;“â…õ“u4Hÿ(ÔÒ/ãŠR/÷ Ÿ#UR±5&ñVÐÔ­~¥é®Sk±­ñ0Ê—a½­Y±ÿ0?Åt¾è„ZµDïpʤ3+µÚ»­¾IþÅÇAÑ5 @‘F:Þ›éaÊ”¾[)»S*U…¨õÛ]¹ÍÓ.á5ïC&÷®Ò¢Æ,z=CúêÿÌ„pØÒïÂá-nl[Åá5oL„^ºvk§¼³Kújó †õpRÊmóI*J¦…[D<®YheuÁ·Šå©Hs:.^î=%©gÀ %îÓ„Ûf9iÁç| àïtn÷âk™K2áú:VF©Ë@µ?.ç¸qmwŽÕÛ]`r~™Å;ŸÄî™ÎðºìJ‡$¿"¦…Õ¬…,lo.€ÛÍcÁ ±~Ń—v®í±q%Hµ’ºý˹8þ-)êL‘ßj+€§ÂÙ@•5ùcËÏOìxu³êF¨U4"{Š!Ð)“¥?Là Ãýe÷RÒô)ð>¥§wi'–³]Š ÖÀú@Ð@´?ÅL"pÑR¢ð¥Èê¾[ýô«4·](I¤}ríÞÚ´ãÒ5”ˆã+S…­LŒèðûj(=-óXw³š*ˇŸžð££'»{Hh[aÃÆŠìÃ6%ÇŸÿKŒ¤˜ñ’Uì¾v…eàÐŽ.åW…€CüÄòFI.…©&š+QôŒVL9T‰nŠj4^`bè/•$Ñz¥<þý97?ýº˜ÌàIûćk<î3ÜæC òü a/Áí`)b>M]Û{! n÷é?ûÒo㊠›«Åê/K7U|~Ow†"P …µÊ©öŒ´ô»¿µT’¿qÕò þí£Ìn²ÏüMMZN‹KW!){ê p´ª€N/dÏYËèÿ@0›Ü'µ'$,þ©LIX[x¡›"lDZ]I{d=C5iKpYñyå ….Á4mà±6ãUý E¹ª‰¦Û {‹Üü¾]" ƒ…£ê ,ÚuÚi—gü›LAÍF]ÆèDÊÎhËÌãdò”ÌîÚÜKn®Oÿö÷×0éTìšX± õí© «š¤ýïC ü°À©ÞûÊý1Á!<]£À²Q®«µi›²QyâøÄz^éê…×@ ÅÝ-´ýªÞhà7ì<ß«ò‘¤wvÚ(vË’$“§ûÀ2ᘴ»Ï›µö€rµ§*Ì h›3ú§VRERIOŽ4”"fð²‹ã¢!Ra°Þ2ki=ÿäÁ›§y@Eb™LˆŒ„jEç+Nïèý‰ùG½U³û6qZš,ßšÃq®¦à ?†‘~»nòÈä‚$íKp”Ï8C*ô.ŒLíÛ–¿ D³œ$ˆõH!k˜âÞé5à"àýë‰14™A²LrIÀ‚o@³†‘ Ý°íþqú¿C ¸³à²‰Jfÿ©‘‰ZÖÚ þþõÌx0½"²xæ6VëΔ«\ëh3HÓõ¨n¸×A»•‚\ÝC6.§ØD é_±Qê'ÑŽU;ÄO‰ê˜3ÿ@I–= ²Ã7"jt•‡´ÑâŠùWÉ ·²M)º‚o>9Ƚh¯‘ù*<Ò*fÕŠN*Ö%¶+ø|BÚ:gy#Ö,Oýù#, êÃÇ2cgjî߯RçN´3}Ñëym“ÞoZ9uÛKVÊ.nLãYÎÝx –î©Ýÿ䜙èÏ„½Ë;JFS3Æ‹\…é¼ê!'“Žv³[!îƒö«@ðfœúIÕ«Ž•9ÜNÕeöŒY ?5ÂX>…åÈG2‹ìízX®›츤“¡:\®”#Ü€ã#JO亜áÕC~é{î°N¡—ÕóZ.èt~Àÿ ÿ3D_™Î”/´2a=y~ðuÞ$,‚¸Ëõ£ž·—ZæÞúPй|Gc,X°¨XñR©ÑŽ‘GÁëŸÏ’n{‘•S;3^mzpVq•I «ºÙâàx&A…7¿’½é‘l–©{»®f~3Ø$Uê]ZµÐõûÑé6Éÿ^+ý+?±Ýåï•lþ+'Q€ FåøêÆkÚµ6=üTŒÆéH: žÝ.„óe0¶Ñ0ð0…S·%)“UòІٕ'+ŠÂÊf³£ è٪Ò`åÌóÚóŸ])a6Ç#¤ÿLkH•¦œö3’¼ÊäR)ð ·òQ…‹ˆ ¡ÿuIÂe­ ‹cbî%O‚_×7‘Š-øöõgPu ®],¶öÂB ]½’rWá•Üìãq”…*Âÿ ôÊ Áiy;•áÆÍ1¼ƒÅ± @;~×GFxY<,킬’{&—÷ˆƒ‚p&£ü{2)‡ð}0KÒ·:jVÍWæõ™°†F\âãÅ‹¬ÆîÏ7±F<¥U¢¬›L¥ÆÊN\V1ÀU©x„ rq 5´²œ®ŒMŠÜ„ªJ¨˜ðc”ê註]ZZX+w;óôârÉA ©#xY@{NÙÓæ6®¸]¶•G¢$VÒI~¨òÞYç@ô8His¾—mÍsãÙäËW(ü‚iE±ìëÈ ä[ÙC‹Öþ!«žÿ…€•‚I’U[1ðY£"½¢:÷b—W~ZgSN «f*F¹ÑFf¥±øeà½}¨¨°B»(vðj22’ÏnãŸßæ.öXöU`ÙSý†Gšÿåy"úþd/_ÙYâÉVº*Öý¤³ª:“®k¦‡¢‰P„>=#ʇ©‡Làª5†òRzôfRÍα»+ˆ ©õ·2d+õ€²?Ùh冷­*83{ÖĨó(Fy ”×gÉÊ&d–„ÇY¼íJ¬›?jt¶‰äŽe°ÿ_ƒóîqÑ®‚W•$!Õ|üËD“ Íÿa%¼HHfGœzþØ:,öi\DK«õš³'½Ð™çʾeÐ1çHX÷δѩVÃÁþW`n×ÏÕ‡u¼°¿’øâQU[ócOHDÁ]ÄAôÁàÝ‘F÷úwAºpQô*–U›öºZé!ŠlIÉkr|ŠiYÊW™&C)ý+Ÿâ»}\{ðä6M€}¾°n‚ý¶Þe™½&¾É 2¼O—iJÖO*¡xs RÔAK4Ö˜ÿìw£ûYK&y¿¡÷ÂaNþ¸H‘ÃJÿ¥|.ðöè¯>à…¤ »²N›Tu •b&™óá ¼Í\¿{Ó¾·9–÷)=£ÀæÂjãõôš…®ÒÅ+°Ž¼©/ Ú“A+æÙ‘YgO°ö¢{q€Ü ‡dýUÓ! |¼»^—Â;9»·ÝrUÑ î —5©:e¼È9›Y YQa–@ÅjßцN“h­¡W0ÉŠÝÑüp¬…>©NïÛåv¶›Hy$)[ôð³±~;­å†ê7p6tÃOŽÁÍ¥‚¬’©*Ð$ÆÊfà¢Mc%Ë…ßÍp`Q d«Î{â=$åîóÙ3‘YÚÅȰ¹Nrquì±Wš)ž†›íý"Ñ¢ ›0¯F ÇS.$­th•‘* Ï”Iå_³†–Œr`\lcƒ†×±lMÔ$–WB:@BWí„æf¼_Öˆ­WW%ËG4]V²áO«­YcßnÆŠâZK|´æ ϱh<0zל«3…ŒÙbß_Fl¤U=ݯ·6 u/ÝÆÄïu®A³Ò”Õï¥ê]pÿØ µ/ò¬½êðW¤$¤²ðç㥠—Þ‘×-ÅúAyišÔ/wáÍâZc5ˆt£ž§"Ô¥ß&XèÞqmê Å(‰ # 9&G•«F̰ 1-_€—x>“>ÊÃÇR¢Q,Är(pÒW=HÔñ'j]¾‰Yug ›¦,ÎýQí‚ØÙzÏ8k!Pʶµ¼‘C³ÓkhÇQŽäwöâ®_<.¾V$r-o¦q„Æ?¶-Ü%¾SÚ6㡾=ümú–úeÐ\^EÎϽÌÆÉÛö@„ ¬f¾ ÅJ–÷ü¯Flr§ýÀê2}x5ÍQb„ $Ü.I;²$KW|Ùš0?¤Žè}«®øõÒYÕžö¾º'ÛŸ|9¶õhéj ·³ !êŒ^·»ZòAÊ?Üâþ¨Ò“è7ô—!?»ønË鼛ى̡}ñ·tº-õo~¨¸§D9GÉÌ)„–E¢ú1¹„†t{P^µ£Ííáîj:úËyåÿqÝN#Š´Ë,÷QzÜŠð&CR V„ŽÐ;;úÊ‹Ãá•ø\¡¦R€IVp6ÙY’zÀÑß"½ß+ aTÞÚ¤§qUè»ÈA䎙ÍpÜqRÂO‚«ï{ÛNÔ$sSw§?–ô¶ñ’¡-î‚c;CÜn}÷…avin‘½tôùíá_N–§«û5¤[8âkcVe•¼ˆfâ—ÿqE´ç›¬#êóûáø)øÈ®%D¿5Ùs¹ù؈É…âÚù¶›);½Ë,î½Ùóˆ]¿:¥¶®gµ©#Màƒ’°™¬…Tt}±>}Úð‘_° ‘¹wtÉLq‰u9Û¯ôà8†Kˆ,&³]SÔ§Çö[‡}øUá@9'/Žü?ŠÚûÁCÕ³!-'A±ëxË{7èf\"hRÃËá$DúÌ^ÆÀä²6¤ÅNº×nÐø[åIŒTÌÌ¡NH¦ÆêÄ>âÀO»ÒãºXøMÇtëbíKWìZ2£µ1U.UØ›_÷‚Äè¥?©ºJ…RÕ‚2]«‘Ó\ëæÔ>e}¯¤§“Ljh¬àî†^ôÑ%OŒtPúœ³ò¸{~}í¿Ô *eùi;ùÛ5໹E"C|•ˆ] g‰?%ºù˜¹8Æ»-cgIyù¨ºA„Ê4ܹÒ\<´Ö•ZDÄÔ 6õ 4ôÞñ+.ËeÁet2'ßR7ýoñ+‰o­ô¨zà|ÇWŒ²»¨ÊÕ›]¡»ó˜ì(Ád“\ØÁ’¥JŽ XñˆVÕ?ŠÜò€ÍfÝ$ZæÎdÚ(rõ`êµ´gr;3óAš6¦ýåºð Á?HÈb¾)ás1þ:";ie•)EíkM#6y.E¢ŒóL …ó'ÂÀPȩ̀îà¤Ø€ìœµ†µ@«Aý! yX7׺éžÈnB÷­+lZRQ§Öò±àŽ’‡»çèy6˜ý‹@õ.K$ðÀ¡A.ÓÁ“MâCÛ!h‚Rc+‹ šßï@ÒE‹ZH´ s=dâöì*]¸†ûµÖ ê¿’ˆKëý`ׂ/¿ GNö¡ÝaúíXâo{éÌÚŠ/èû­„ ýf] Šavֆ±†5 Ê‘2>’‰maM`øþŽnq^š@Uù<¹(;x»"…nЮÞQžº;3”®–Ú& ¹ì#’ºÂ\‚Ƹ­Uu/rÃwPW¯§’ûŠ3pÈ :{´­ly KÉ~ä<_/žÊz•õåôºá¶Ü„2/i6yDºL.9µŸ¢ Ü›³ x„vˆ Áš1N<Þ©V ²‚ Ëw®ì»÷÷„;À¤Üª‹o<’î8[›SÜ´nÉx3[íz Æ3  .íRÒïš&ÁP€6BFIŸâ<”ÈGƒã¤ÒÞ#-}éúQlž{tV昭#ðúŒ[»r”ñ;ÚŠ˜J˜Öxû®ûÙ]“/_MȬ¿51Ø µeùY놞»RfAÛ¤þJTù)0ƒïT#ƒ% bƒOÆ:md0EÀ±ó"–ë½Pæ3žG‡_‹º›R~ÝÏSU•£Ó/NðñýR(xi0Šp‡¿0}ÂWúc.³»ºRÎÛã%¹R•}ïD]Q´¶¢fšñ·>élO½r9HÞ-¶·äWôÓáFY˜G­\¬z«î;ɲø„GHZ¾ÐÛyŸ)D‰Ž‡>&³Ž§uˆŽ;UžˆÜ¯ÆR`þ§D}|Ä&E•ËChÖ9@£ÕªºhZIP&ÐO¨ÔÞ8W[Öbc¦ï–ó`$Ÿè"M2“@aá²øŸ,RúuJv z*žuA]§‰…¯n溮q¤ø¼§ÜÅžÐPÒà‘¬æ‘ õ ¹Û–䃮ÿMèú¢ –÷U›bsîXñ"µ~l®úEЀ!XÕ(µ¹¼i—r¾ô«¸ Ç÷.÷âfòÕm®~Uö,:v¿F„~¦ºd§$_¤F4q\õiUÙ+H\Aïûmrïæ43PqhFÄáÊ/r;‚5Ðò÷Ä´žð|óÀ1ÔR«o7 ‹×¬¨@ '=Vý¸£åõ'a8rãöWjœç0Š=ðõœ·ê]=µ¶à)`P¿_ƒßÇõŲöáDç Åì›1$ÿ|I:#(plÎUÖ{wa’Yjž((Â_öú‡¸•RŒ—gŠ*·'´¾—V!ÚéÞ;{, Ç+¶h¸=b#é÷4±$ûÆD´d÷`ÔE=ÉLW¯‘Øš/£Ò"ötò[‡‡ìW…Œžã#1ŒÆF×3N°~Ï2¥åV(«ÎçÐ|õ¢24!hü;y&ÔüŒÅàƒa*¦©A[[µvŠ –ä__Ål­´`Þh˜ÔÀž.ßÉÇ=2€š?P+H²õ{מQE‡yS9ðE(ì2`3K½Ò6A‡ Þas2Ì@éEô¥Ðâ¿ÔŠ2_}gü´Ãc„ ñ4nïËp?Â̪¢: ´Ë´¯œ,äõ©¦DÒñÚΨϰH²ÍÑ[ÑÕ 1aKŒø*bÛ LÛpÚäºg"nħäsp¼È’ˆC.Þ0ÙÁ I›6(ê©Ì­K1œ@UUíûÜdp ú|vZq3>Ý›g&bñu¸ Ów*ÆÐÙ\ÎLƒ:ñç8ˆd(­C 47᯳¤ÀŽîTõæµlF·^2)È}œìß-G59'™?Ç6ƒFè„íN’zXjÉÚ>ilEúÔB|æÛ«—ü<¿tT©M¬afÏk‹‘aÇBŒl{£j}ÅÄ´(êÿ$EðkmS²ü1|îÊ\ŠçW%*ˆ€Òóñ¼3's¶D̪e,ÓzÓŽ*´.ºs:Y Â×¶N“´“”üÊ^,$-[tr`ó¦Í˜„g˜ÔX:ÖDuˆ\Å¿lÓŒ¯ºD×c¢Vt.78/Z(õé¶ÜÍü¦G$?Íñ_È’ ´Ù1Tfv¤šh’ŸPõ²Byå·Øà¼Å—\ÓÈЈðb-ôUˆ²'¡sl‘]gW;¢#$¯Ðˆuƒzh- å¢Ù3U £ÊGÖ]ŽœaGè¼XöE·À¯UÅl™Â¨RêDâþ¨û§Ah˜$•šÏrÝFCˆò e´þÖ€¥Ö3g?ùœÔüc jR·ÖQ…b¯‚‡Ë©Á¡ç†P™žFø÷ø´‰f—„ß¹Qio.p–zS›ŸD=–àì,åú½ø&SMê‹ý›˜ía{YÙ#àÑ„Õðá¢'Te5…|÷ôÞ °>À>u8lcZññño›®Q¨¨½öíÍYs?Æ@9×$G¤ÔÍ¢øN½`è á±ž5jKÅÙ&æç ÎÇ“¯HBÅa)DZN‹o¢Ó’™¥dþ²fþ÷Zó”FRt-r¬VêÞ›ЭxÙ®tòTg^ʲ9¿î§*‡Ø™ñ.RˆnÚ8]޹ìf"vÔÙÉÿïRW×?AAu/퇟´žA‚…ý½æ‰g‹hÉŽ{˜šJµÿq*µÈï]AFf»{ŸŽ^˜÷ƶF¡¿6^i>ÚðSÍÆ€ÃÈø<ŠN–ÚÊ*ì9¢ÿ0Ïè -6žÄí5þ’o4öúÞú\2ë&Α®L¢Æew¶˜ß:#Ñ e/;‡‰È á6ÏuRŽ"ÿñUÅüOØZÍÞ*1œÀШ»7Z[þún¢QÑ#˜nÛQ­Å‘fÿý!Òß®·\hDlÁ£wÀR :t#jÈN_m­å‹ £ƒ²•2Ó–Ï$eB¨Þ‹I®ÕIŸ¯—›ï¬ÖmK¢…ËÚÐg4òÏüð‡º¥È 5KÓù=Ž]e& «ôª8»ËÞt;8´H(z oUüâU²(/¸|á_ðAßiëô«w~Óé‘8 { pû×íEO"›Ù$0ö-in:D)éá1£ƽçhað$w!¨†W x¬X×/ø©;P¥Ù§ÔK’|2%L¨O.B±=Á5¹¶š$Ú½%þôg3?TÔEØÑè9ÑR%³~‚Ìs'„j¹ð*7¬œë蟩€”¢FDSÛ*²©Ð]àÛ=öpÕw [ž¥!Ô¿…Àžþõ¬q‰-4ÁþÒÑP‚¨Ê–¥—3-Ó·¡:óU)T6¤p®ø/ìYp­µs=‚nÊF\Ô`)ùØÔI0• úÕV–‘Wx^o‡â+ä{ÙÓëh°C/rJÛ"Þ©mm¥ÓºÜÖ…TQ­²¿~:§p÷Lx…ÂlW|Ë5óÏçøYL^]/$i­ xÎJ¼&™b&»…pÀóûÑ-ªãF³…õ?ë!BöA.ÙÆ/[~äÔòî W+Xqza%I'x¬dŠÍ¡²Ü½°ÂE,à#Ð3¹Úæ Ɉ"è8¹âmDCƵé‹èìg£‘ˆŒMks„וâÓØm¿1Žx²ÕÅsWh|¤²Oûœ-·d3s/ Õ³I[{ ÷õ 2MY‚€Itö'¾=~†êbX×õQä)ºí¦6ú¶n÷óÒn˜Ü톔pÄGý”æÍ…gÒ¾%[§uU5ßÎ3Î-ÂqK0œ{½ôßÊ>40CþW£V¤~6'ŸÉ(îóÒ$nÄ9ÀÝ‘šéÑkq-{Í–¡®K&}A†xC­Î[×t!ƒj;‡$€•~…Yé®úÐW H-2ÅÓóFŽ–št* ª0­æ&`Àì‚¡_OÎø6eÒxõ 6æ?t2æÚj²Êì)€øBÇáô(¸BÆÁ¦¸2)£Ô1 gŸ”å"[¾¼è8ÿƒ¿ƒ §Q6é3t$Nân –±«ú¦³4Ë_üðD&ˆ%¾Cß pÙëk°21ýå0§ù=¶KoîÕdk’¯£Äê“Æ†àSýJuÅó¼'”äÃX!N­æmqfàE%øÉÉ—§q»ïŒ—8¹¢hy°èŠÀ÷tììM`¨ñ¼Š^!ߤX¬¬|ÂÖ[¸p&"LüÃulPX-á¾´fP†=ô/P ‹pDµÊ2×1™71¼Fg\¢“åµ`ñË÷Ò05H&ü<Ç¥_Ì@ýßÄfïo"çÒ°§záߤ”X˜07“n«ôv›1`a¯ÛÄöÜ4ro«ˆ›+ •]š9ÕŸhæ tYÏ›úÎåËhX$šç×ë¹3ŽÌ/¶g‹?ŠpEò¢“‡µ–Ì2·Ê?LWЖ—ymt}š¤ªÕäà6%³4þï02m䕬 X³Ì^𥛙#´³üø³<~UÈt—£U nV²‰K6Ôþã„5™<ϺÞx¤¸u{X…as^0¥6ÁÂv—µ4e…í½åÈ·öH;˜JŠ[u(Àm£g>¤ñYd]q<ï¡uCÑɹ¼Ù1aZñ×Íòp\+_÷G¾1haº¥ rªñ£³Òå‰ãÖSÖìë?"Éd‘{%ŽžçW¹Í–øàVÑM.ôR¤°‚º&q{Ö‘< ¹{¶f÷øøÚN Ê÷ð*­¼ä 4s6¼ƒÁrŠA”M„¡;Y“Jú2uˆ/ûg|s\k¥™’ìhñá.ºG¹™üàùâîD$ÃÏ2ÝÎÚŽ÷,@Í­YωoüET®~Çúÿyå’ˆóï¸MwÖÁ˜£'Ó 5°q u G¨Z0„+AðÖ¥îIÞ"›AåZ§”ŸÔOI'- dA‡¬×Ž›!áÓ³H5þ“îêGÒìùºYNæµÛ%¯9Û€¼Ê¼Œù¬žƒEPÖ,ÅŠ MöÙÃÅ^Ô ´Áè™éûΟÄ+ê¸ûBË6ï3œ[!Å‹víôÕš"¦¦ì4ÏPö93N¡Ç¿°a Ûx_×èj\"#I¿c‚Èâ<ÏsQ°ÂäStâ[í´ÀãwvÇD}9¶Á]6‚f„z¤&JÂÚ&a¾Ñ3ŠYà>K,/ñÜÁnlfÎ ÞÕ5Øqhï•ûR ¼?¤äœèX;Ô‰t?ðº»Þ€ò¢3  ÷sY~‰îm®}Ð&\XÍ'Oxë§kà~fÂþÛ¿ßÜ=i%\Í-rÇΊªåÄĈ§ ÈýnuI•å=ØÅg4o74›)ºsæ÷ÔågL‹p‰n¶!…K&¼ it¯Þ9.†cü™»Ž.Ch¼\kઙ"ó>ÒL%ƒþÐʰ…0ã<¹_úú\ö`vœµq.„øµXsâb#-Ã’g\íMð& àçŽÄYÃ?u‹ÉFÙ?D ˜pܵۋ½§~IJË~½¡ Ùß âUM§øÔçi«yŒà'×Çœ®t{øª˜()â÷÷¸à0a¯‰ï+†‚4” ôóøLΩüË'èíò?WËÿiª[‡·`™Èî*%Ÿ”,Öx^3/zR'08*Ñ\!ñjRý—G%¹îütÖ+¾kú!Ó5£´ ‰ð²ä–Ò„Ù¤¸%#‚ê$-æÂ+ÁXáŸju¾ü°fsöëT¹­»D6ÜWû«7EQé®;‹-:¾ìÛ§þËã‘ÚïYö2I”~-§zÚç—üU˜¤bõ/gû¬é|’˜YNx´’-~tÆ( Ë¥¯+,Yµÿ@Fe¸qÅz#ŒP}„¥ÊÒø%± ¹6ìè?u»8—Û­xôjy©Jfì§a‡Bé×dÒzÐ÷œ–@}oØÈºCl9ú»Ú€t£Â¸$h^CèÛ¾CaãŠ_^…8}gÉËîÖ@¨ü®ÔÝã Ïä‹d÷ÖQ<Þ5üºXkˆU÷å ¤‚Õxá_ˆÊ9Þšߎ¦û”ïíÁ¿ÊΧËPKQ7½ÕÿIpù8–,¡é¢*puÓ~³q‹ h+;ž ïd5bý]gÝdÆ É@Rã‹.ñž/Z`f˼‰X›)a¡Xd븨ýqÖþÁ¡9‚ ó M–b¡¡7PD.t¨K7èxä>èý ÝYøÖ€ùƒí›•©ú×^íOÏrï5xZˆzãýïÎ;h³×-g½Yá±Þ5Ÿ 0âõÁyP¨ G»>Ⴣ‡ø¨áÞ½ÕÝEÄ9Ú$ä鳨+¿gÔÔ¡ àæ|:Ý“ !H$ˆ|£Šd­~¯O®©>Çô7Ë`@—{¿&•ê;Sž¿æÁ§?zŪÓ×È+®Qp*ÑÉuË4¶ ƒ1ë®›ÒÕÿ±‡÷LáŒ:5<ß'Éácÿr®iÏ€+­`{÷~]á®·àÏrî&Øàé3c+€e&Ô™FtSš 6¼V°>~Úõq§µ–1÷ »1¾k5Ç`²$3ÔRãÐÀ‹*• ÈÜp[ŠÐÔOí8Éhl({&KÙ€œG€éÌ4 Ìis¶ºÏˆîÇßžŽúë"iý7ŒY* K4{š Êõΰ¾¦«·Æ´íF`eàCXyõûh‰Ða¤a™Mn©+È6<蕵ıQ Pè|¥–ÔÿÊJ”nÛ—É2Ž ºfè §m5Jºér0y¸ºûô/²«47ʃpôRÏ5Òð Ae6àæeÊZ< Fk @)§”3¥¸Œ|Ew'ugqÿ‡'úƒ@£á™8Äî«ÁÓ\|—Íߟô§6œñxœt(S£*91wÝ«ëŸ+5>ØRm¨ºåcÛÑzy³Ë¿ö~·eö,Yô:¸¯–¡ê¥}5o*yÑrôøìët Æã.2ÊœÊvícÔ^q}Îáì¡íÿÔJ£a½óZðyzÚÕmÎD’¿“í•SqY™wo£ú¸GaŽ×É” ,Y©»Ï•HAÚü'<°;"Õ¨9ŸUà÷¼8¢í V ÝâI‘iH¸š‰_\Vpî˜YbŸÄôþ gSa¢ÒÆáÊÔ]8«¦ÅE-j‡©¸7&™t åt'-#‡ç†”ïÍõF5«æò4Z1¢"ð‚ ª§ÀC¾nDkpqRøºy½1¬Öfï"ì…µžl<~“"~ åv"HÁÌD£R]5(ùGyrKTŸÆZÌä×–u[r@ôP0z¥zïùÌϳQ æd¥ìEt2"&¦zÝn% ôøûU9hýeµßš8n‘6(!üýI¤‚àj†OOS TÈ ÿt\xcèMs¿¸Tj6…ŸXÏŸïæâ´ ä½*$ŽÅÓòZô_²™;H\ˆch1¥kkÐ.–)Ê4»|J𢵴˜ï?Ë›ôÙæÝ@Edbò³È™Á‰„/¤–Úð?XÕxX&p,<4çm×õÀR³n ˜­{Óä–µtØ^Ìq8y›je§‹!»‹Î^K.í•YãÀDm§(A±÷¤ Ï>Öfs@¬»Ï_¸ö,ảàç% ÜZŒÄ8¥ @ÌàE1lÆ•:ݺÁj€ß3´z¬XôéŽKÔ†Ú¯ÿ?./sß›óv5ß[y™0-ßÁîlå/kË¡ 8ž§ú˜,t7Δl¦SÀz@™øº3`HX™Wcãߟ(x¥Ú¾:ÝëÄiÇŒñ£Ú½³¸ ¼€ŠÞTصÇÏò½‹÷!pÇË ‰ªo8dW¡¯ûy(°pµÕܵðu–™œjmö›âÍ‘=ÆÄ‰!ÍÛ¹ÜýŒÊ¼²¶ìy oŒçÖßÁw¸b©“"Öqh¤y¾ý?Ìu£Ô#m²%× 'dw3@n‚½'Y§9bsëNYíD'?W‰NæÝµ„:zämLÃcÆØ[ !OÞö'ŽØÿ,¼9¤kœ#jp ë=ê û²¼²H‰^”–,j2ˆ±­•eŠžx.*]CDˆ2[Oý÷êi|fr§×JU¯Š§šÐènFˆàj;Gà2/j™¬Î°ÃT”‰ëRƒéòº/¤xš<€œJþ›0E Ëϱªç׆ƒ˜¸rxº†qGk’zš OŽÂ+•j¹.>Vå1Ín€KLn=Ä;¤Iæ$œæ-¯´ç™Еç YèÜn6«¡t:që§î»½ˆÍâtñ RÊÐ:ú“£6áŸóoãÈ÷P¡*qˆ@™8-À”¼]ŠTC7äæ•ž Ÿûj,c«KÂ1¤BÛªˆiö­]ˆWšînFÇ‘áfÝ\žÇœuò 0«·ÏbÓ^ð)ãMdÎw¥ÿ¿®êÔåBùþë-¼ñ’昧v-Zt¹£Qñ$—\íbDÐX9°"… áý™ÙpÏŽ‚àÔl÷㜖 ó÷äx¤¢C¼S™; ©Y¿³€×Ù E$?3Þös¬Yôsöy¿•o,Yï,fnè˜L’ÕTgn(Ä@›³Å=’ÉŠr·")|tR^œvD¼¥É$RÇxGAm#*ïGÃ97ÓjY¤õ…üþÔ‚ÄãÏ> åé[!)A’¡[cÔŠ4¹xMŸMO5þ'´@Íõ0²þ7@(Ìî ¡ªs-Ðéw-ºÆbfºÖ62õ½ø=³âiÚ#§ÕÙ…Õ¸«ò†‚“¨r?* ¨Qàžbâêp£³ÓÍd|g”–,‹®&^òHSâ(yCwƒ×?$w¯§Y’ªŒ;®–ohO6Ý?®Ž!œ'ÂÙ¸Ÿ;{Fc8‚ˆ°,õX¯zqxmÄQíq,ÐÚâxtµÏqóúêMÛcp?ØÉ™z±™ÍSH¯€ÁÚ¹íÂ$øúÊg1µŠWÆ3²f¡ØÂKUkn’Ô"rìxTøgds1‡.EH,wÛÎMÁÓDD£ uÈL®ÄþFWµ—€Ÿ³m{@)åÎ&ǯ/dÀ¨4曢ž ƒ¿ñvb¦F tã˜|ô5Ëé )§,$iØo2Þˆ¿§3!d_ú€˜0<¤#7c›sÛÉVNˆç“2u*?Ä'“Jía°Wõø²@þ&sñ˜øØ´ ÃÅ—8K]̨ã_—M{Ró©Õâ}A›:墒¯‹5Cƒãö®+Á_9 ÞØ¢FµyO¸wN¦ÁyôO"🭠[2ˆÒIe'mÇîbI®Hxþ/›‘ç6rMdœé­aVÞ#¼[ÇEžc”¯±gjdPÞ{§gç+§k8Ýñž¤®_†”dY»$Áq*ùÈt`-`ìy Ãb5gòªžÜñlgƒÓw¬<ÒÌ/¸q³°0<©R€Ý¤¹S8zßHc[ x#¯²¬©hËOÜ8'ziéÍ‹wLÖÓÄ9˜JÓü³YÝ]ªh “³Îp®ÎcæðÍHu2­£Ù\qSÆLT]¹ÉXYxÁûÌ=¯îR€;ÌYÔn›%*å®R—Øù.Æ(\f¬–踪}0ôÜÇ*ÔNÚ)]µß°Î6 j™´SXR6%:Á7ç€àìåqö5ñ"C|aïaÌŸ‰é¶/ѹ-z†™’U÷°úFæµÆ›Â„+võÂïhå[ 6•çÿ>´$ë”ÑØµ>î-*¦ÛÐZþTª³É~MN,­¯=hëOÂIeá1eC»|J@Náèr=WÿžDÊq'J®$’x¦µ07gŒx†A Îp8;ÇqíŒü¹z‹",6¶+à\„ÔÈG#VzsÖõTEØê JÆf&99²ÀeÁÀ>¯Úeâ)Ñ´á%ÃïÓ_ ’kx§ûÛ‚y|y€ëˆ¿}«Õg$VBSJáÞ%9¶Ôm>šgöÔ‡¥ÃÖÁ-F²VŸ!F[³Kë#Xjh~î³ÒËNS­‚ý^­ ¢„‰ÍM-Ã%¸u¶ý€è ¾WÝž‰íqääøEFëx›­±ÍÅ‚׳ïKU©€Xm-Ü?r dîû Žù¦à±°Ý¹×kⲡ²ÑøVŒ3 K±Æô<âqëcd[îDî7_clk˜×¬ÈÁñveÞêŸwØ2ß#Dm½P‡•ÝJ}DvymIÓz©ʼq@îS‘¦èƹÝÒjƒm¸ù÷4ˆõ›÷\L]b`ø3Ïô¢Ç*ú&"ÑXE†dȲPÕ~•ʘ=‚ Ö1ªÿáüìuÍ3Ý«ÊÆœëÃÂÿwtq = x®j%.nT‹5}LÞîÝLëFšÇ 5“ênmËI\éXõDéÀºuÚîù¶ÌÍÞPFÎgø]Ø Þ—C‡'-ŒUi< Ñ·©šïtð‰ð½[V‘ê¹½>ý*Pû0q¹–È)ªïtè\6fÒHŽs–‚ÿGO &–Ûb„`}”HÒÿàøùê›Qw˜Ç-º]çmF½ÑHD CZ`ÌgÒìÝ#3Ëè‹÷”,1¹£ÔǘPœ}w…hx «m¼Ÿ,>Ÿ‰^ÔyYwË+{­@úâ‰D(í>‹±¬ÝŽïqþF4@Ö„¿#†Ee¸³$Ô¥'~”)ÑŸaÈ6ß¡Hî‹ôïj˜÷,΃++ ºÈ¥°>¯è­±b/Ï}ò/ÍæVsÃŠÐø‡']¢Ää¼b™ ѽ5y ê·èòae ÂPœgŽ]ýÍ£&åÈMjéÎÄ,±ôqÞI¥1sÌJ;Œ¾S,@qÿxï¯Âh`Bç8 &¾%ߊٿÚʾÎ#Ø ß±r¸K²zqäOÚAÓå²tcÀ¶ÓÛ ùd]Ež TÄ¢¬1“q8Q}G÷­`ì;ÙäJèµ\höH˜¹BR#¬"jÑh0ÒKå5àÖ¸—›7wrI5pfwq}ýÉ.‹‘BÄDS…B•*ìpüèözÔ‹l‚Ĥ‘4ÇwÕ žÍÒyg7ö¬èþ¬ª pÆ,íi°ôÔšî¨3Ç šRÙ7u÷q’9@È@0\'³Î/3‚•˹øô›\êKê†'Y&Eþªó߉À—ËÃç¼\r}ó¯)lI_cäh5ÖÈ´©ºÃúm‹í‰ÕÏJäÇí¹r~‘ˆóy6S¸N‘óä(˜Ì°tèˆM“;ëŽò,îEªÀóïöÀàh0b¯Ÿ ÔV97ƒ)Â-Ãx/"G‹*»[ÜÏ$«2.}ÉÛÚ–5´ÙY2œIøSdVøq)¦¤âH¾@¸£f÷à´Ê*qˆÓzÀÂtq!•2‡î!·ó½‘s_~¦Ð. Öé·'éÌ-’ð X›³4ßè©Û´b\ù?ÝB y¹ðN‚Ô}„‹Ì*(IXÿ×G­x³ HšŠUªØO”®µ´àÕI5ºÀ%‰g†ˆ/sö4îx+me(œw¨P7&’gl_ÈñˆýZǨØdZ.×DNÅ€¨}9„.N0‚–éx#y¾&ãAM êÐù=ØT}J Î~Ì®_ó½»]ßÐ5/NÀ'Hg«Þ:ªguSž0¬¼‹4ÝÔ%µ äÉÚjE¡}º[Fä#™²½•Bs´lÀ“?õ{­›’çcvÿPY¨²Ï!†‚j¢ àè­•þú¬È´lŠ)'ɧ® Í’o„ÛQkÒA²2tO"^ßXÓ‚qxhÐìøøD4¾­{9ÎÃ% àg)ÕNbTÁe‹+S’ÝõSÐ̪õ;×%”4"â¹£·FMÕßÏ‚)¨'š9s9 c]è*üñÇ´-øéËŽ[ЮcE߆E/­‹£1¹gi³,´c ²š'"ïF´ß§(ÀJ LªV!Ï—Ö+ľÑÐØÄƒÙóØê%z®ñÄä%}ðáäÙÔ5<¶q6ÙÖbØ 5ä3WöF:ù*kRo>¬m²•Ћ0r^­©ä_çíÕ{/:­›(?P‰Àc{˧äo2p—ö(Õk·ZOÈðܽðBôŠ.U2'*®c™“W¡§ùÚRz‰:ë‘Aéîľ.ñÿóôö{âÎFN6êý ‹aÿYF¢t ,,eüû®$3²Ëÿwúeï„ 9êŒ_æ@A‡ÜL*Tí{V7Ùßâý ð!M¢Ùþ—Ô#qE›7¶kÜÜ::*Ê¢˜Éœù3,ʪlŸ:,'ÌQÙã18&õx›ìÅÀîÚ1v«ðaó6§RÄCŽï׳a=ü¿#ˇå<ãµ3j¥Êj&6º°\RO£Û°¿0É"õì€ÅÀAüÌç@Ðîµ±®õR_û®íƒú¸ú†Ó±4SgoÊÙ1ýªfQ‚öÎæŽÛX“” :ëWcªBÙpóÖ°]`x~Šýjè÷Ënüyºª«›x0HKÎüÑÇû©‰J)UYa²ÉººžžÅe rT‡ƒÃ{P¢›ø<ìœhŽÒ#bÉ¡‚Þ®OCäp¬÷ö춘óA÷´üIè€2i]úJSU¢ÆÙ׿2oÍÔ ã…‹kîž™õ›Tq —’,KsE9t°Ìý÷Ì~Oó~z•TðWœø«V ê›Ouù"2ÿÄ@÷q…ô2câqé§L¢ÔÏžªs²Mªê€‚ƒ„¾Å'çÜdˆÈI1ß%³ºq£¾¥û‰¢ \ª(lr5ën s†Qí¹[XÑþ+É…¥%IÅw nÓd/¦&­Þç-Ì€69ˆ´¶“Qñ/owh?È™±´ß䃚ßt @(´V/‹ÿ†…è^M´®îšP®F[r(…@á¹ Àµé“p‘0u‰¯öv;du[ó§Ðé³à)¥‰Wh›´½¿©O-!¤çò+,„‚Fìvu@ú¬*Pfð¸Ä>Ê80),hEdÅ'>„'#3 GŒ¯–á8©ì_x:áuLaY‚û³‚Ao)ÇëÑ› &i6"ó&zH RY·v«'Wl~ån¡,¥òa[7õnÃïõAäj´~éÁ †#”NµçIS/ž‡N¥=œïß{Éhwǘ"Ù¤ŽqÞ”ÔÖ[AÝa`ºyU:X…ÔÛþÆ£ïÍÌFzát—ŒK>¶?)’Ç&´„¬ãMß V]q6ý„%’R1hªƒjŸFÓÀ÷Qì<©hýZ½"íØ·"ø4˜>$û––M£*ƒÓ(2 £ø5íj ¼»’mmØÝ¡:@©˜1(NÊ€™rÓ“ulÓRòÁ£h¾‚ BµÁõgNhoñÕA&ùtA0,Ð×28L§v´—ù·5$dSC}Ž9d´ÇZ}(mŽæ{ÛEÂrƒ`JᆠeÀfëó–¦ ‡z=ûŒQ!-»ƒÑ¼)‹ö´wßü÷Øïj0mÓæÚÛ±ÐØŠØ÷‰ûCÌÖ„dQW3¸É¥Ss×)¯I1p•2Ç^GMP‘Ôv6†â’ Ȱ{¶ëå—ÞŠXG¢"Ú:mþQ¯Ù¨¢o)BýD™hAò#¬nßÉu~ˆñÎî•°k˜VÅv…Ì@ë.[ñKKKÀ:4ÃÌpÓe8Øæ \O¬ÎûÔ†¢' Ë£’ìžç#Ù0'›Z¢l@4bšgZ¬ñ¨«³4œo eSH†æú¹Gô+¸W®¼9úI†?  ÉŽJÓLxŽáí|¢Æá÷b!X¤s÷PT’¹”5åÝ#:@Í6µU2”æmi;„zmÔlFŒy·Á$$—¤¬Ü—»†×#.•ýR¥rƸçAý`ûƒè€F¶€ÞÜ+ºyœK¦XòŸWFV™P¶¸€õ†Ö8¾ë±èŒO—zFÄúÝÆV쳋iâ*¶ÄáËQÆ7ãq¬2A¦Äˆ¶ä£î¿š[é  Kmÿø‰kCRvFé4Mf!Ê \Y”ª0ûÌxCžÝ‡#(Ç.©$±"†öõÇ]8\h%ÀŸò)zŒÏº›)Z”c÷D*V>»ÿ0D9‹È”Üì¹ÖìÅ+†û™1Ú(P<@L¹I‰T¨t pc¼ß3W`ü휽ØÖŒ€^Ýdeoáj£ç¾s‘FÈgK¥_é[Ô'MKqüfÎæÜª§sºAóÅ—Üñ:ÜÞH†ó龕H°’®\Ý‹?sˆ´v¥Sºö0—¤¤MçI[:¦_P]êEA–ÅêìÑEkà ‡/õ|=x¢6ws$QüÌ>DÕUó:̘åÜaUÖŽé]ÐÒ¬f–+þ–ìN’ÐÓLʇ¦už|~ó¢z|ä×­¤×B£a ‡»ÁK‹F6¡5e2æy¦ôr–SÜ ÜDÞkä»i&_Jx” #Ǭ|!krZ¾GµÒ×pWâ»Q…C5J×@.Eø2—ò7 ¦­´¤FQæX C?Ϙ<=S>Ôô„w`︗"Å\ÞLîÆò½1·¼Ûz ­V­ÕÍ^ð–¨6«]þWnpÃQ‰Ž?­·¨‹©B`í ;:oû¦Õ´¢ôŠ]r`Í„’± B†o^á~kÃà”gûDw4nyiëkbµP–MhÄ/w¸"¢ãª5S ð&k:ºüûÿÒž¶Ë'¹¿Ž!‰W0j»Œ/Šø­õϘ¸ö>wuá>m68â„71ôìNîÇ"šhG”=3ýx™kH$MåÏ€ˆRKx1won>ÓOו„d;~Q_înƒÅ [-FÚRák…0=‹kùÒÄD·Ý*ÊÓ’¤Äià†æH:Oûò;·ŒÛ-/€²aÍLjHwŽqøº:‹:’œ_³´º8 a'{Þóµá{ãZx°©l1Œ¼ZE²‘H}˜³ÌfŸüèR1WÙ¨Rò3: ³ÿïà„f F~i®~Mbtù‹:¸st=-8%çü\­……Ý—š/º&ò޽)t— E‹à³HA…N—¡Àý(y GR}sÞIÁ¦*9Jä87è›@økL»ñ³Òµ^VuxØëšVHy‚m3Ã|ñÞþ$÷]†÷ánÆTZì‡?ŠŸ;Â3ìé’i‰#%4‚O»Ì‰<.²s½N›¤q[¤5¶2£M3{ôáqÆ<=½7Š}ï-½Ù¿:"0yŽ(VkÕ°ÔéVZfâ-…{c“jàr?ør0l€$ÞT摚Íîë{›£¥ìNãÕúxš|ª9]èî’Šc(P_Õ¼>£‹cÞ̾ô2Ñʸfëù=/z¬dñJA/ÃTŠëj0F`)‚š“e9`i­ÞË„È8T ób þ7á´c¾©„a~˜‡*à‚v¬ÝÀ‹‚oåAWã"3YúåO"¨^J Qõ·ÖäVwÛõûýÇöÿrzé ‘à°îd ÅTpGÀÏŽ¾¼{š"P•–üÕˆ!—ÙôݰÒ!C†çä¶þe&iQxD2âV`f÷±÷˜¨†J_\ŒIcü,.6{HSj¾Äs,÷ãý‚÷bUÔ—83_ %%d\c{6V€!ÿ4—Ï8‰¸c˜9¾àóíá3EÍß‹ÁÁäw3µ ÙÎ%®‡®ºSu A ¤’x~C·‹ÉŽ( Ã¨¨YGnŸJäMiî·&•cN[4/à{Çn‚3ŽùÎ“í³…S²ˆ³"&‰ýÃBù°ðû*_ª­^eÜÙG:ôjÿ¸84ýY‹‰<LÀ 4ñO,òµ$´¬åñü¥˜t5Øl I åÙûÍFè\65Þ2ÞžœcÁáÇ£4æTGäûP})WsžðaÍ¥|û‰J—w¡¿B8âJ­u ¤Ð܈mßBo{»eRÓ#À_í`(‹wOݬ—.sBóöúØå~_΃àß+tÛùƯ®Å}µ©H¹QІðYkKVÔŒ£€ä(ô‚e0¨ù¶W1è 1³ÈÌ^îdz/™Æ3­žmy»-™çxôI-]1!#+¶®t¥,pJ—£¯ËäŽä‡Ü/sÊŸÆJ'½qÈñD»9½Ô`µ„&ìÓIUµ9~¢ÅFÑ8,ýdßý>öùϸݕ7áYÛM#ãúÜàm*» ^h¢‰lw^Ò¾êÖ½Aqê:Î=«n½ S€_?8€6@ –3Y¨é(´‹c]JÇxñ‰»´É'$‰åÀ"zhŒ‡çô4³©j½=‰ç™ ^ÞiXꇯM¤í2„¢¡&>MÊëó«ÛJ›=Ê;©ªØÃ\ucYé.'DbA[ñIeþg–Wkp®pqìB¾¯z_Íi(ðÝ&+¤”Wž7­’ç¤géóBÔÏRê3áùYêú@%ß>XžïóõFùÝ!p4805L¯övšr½3ë 4 .£CÝs뛤XØ1ÚEÔ¹1ÔS#QQ£×‡VþöY ªé_h>¶% ¬Ñ—ÝhŒ™=tJ4û•= bÈ»5‚èö«þ*6ü뢎ڹø;FLÐ8iU /…:èþ^áï÷qµ.L÷ …4T€­nE£ÿÙÃÁ„¿°‹AeÂù¼¹Ç|q¤§¡þ§5' ¬¼ù$›°ÒÑ„t¦:6tì·~"›5ëÒo•¾dš®Êg&lœØ‹´™1,·‹Ï¡bØqÍÑrÁ½©Cº‚«{ÏU\½³ZA<Ž£I`âœ1zûv4–Hò$·4Ç2„o¯P\qŽQîÎ/àû2$¤0ÀC?bkÚ=¡ªá2Ãt >òÕ£ft󤸯2ÀglS`'E:B{Ù£ Q+ûˆ†[F¶|ËlìNË™ywWõç%¸iRïí-TÂCeX äï‚ §àÔ KÒ£Køý\ÓɤB<‡ªĉ•Õ0˜UïïSd»­KK Üà} ²/¾]ÚéÔ‚5&NµƒÔB¹•å[ªóè/o;ÃÖãÒèD³°ÿ4&™U@ s+ÔÌýaVfB€Äé¨ïCb¼·6Ôá"¦™–VæIƒ¥~?/Ô §Èƒv¼™‰Á…€eOÀX‘‡2ÕðŒž|NÕ#dÕùøðP ⯓a?~j±öòÅþ³¤!ðCD¼Œõjµe`b¦Œº`þ3 ÒY÷þ4¢&„ž˜e­Xÿ9@êr&®ãnЊ¦p¥y½%Í«•'_ä)ãâ«TÔg6D„ÍÐÆŒ¬u-h{u(ìÏ4z3Sò„mTè„ßègì/C&Hûµ‹‡ËB::7’ˆ¼Yéôþ¿ÿûöS3÷rÁ*«ᆩ%JÕI­Yý•ÿÕ¯ßY³Cð%ú]X’¬Ñ£©¤vÚ1}\/GÅe|B}‚ÑÈu"&HgDznjrkÿ02³ËjŽëE{Ä~s—šùúŸ¶^¿èU0J"Dk€gÄ[û4†`ºÛ4(¯!›cžG²Eä_Ï)аT/é ÀÕΨâMè] @ÎuC(îÆ‘º¨Ò}„âOé¹ð ¡?·Ö«ëtÈsæ'y‰óbZM´Œ7ÿ¤ª}f;A&,Ioháþ¾d¿M%_Ìrh^ºm{¤všg#·ò£?ÝŽe€n[êžâ6˜ÿTé(Íe>Lû {椚ž°ºýÃe–ýª1õæº7½’ÆznZK)šï–št‘ÑÊ0`ÀQ©#¥½.S»ª$ûÖžêè¹$á(—c‚Ó€nû‹„K?¼çÖëi‚‰\9ÔäNKWåŠ/üí¸açÅ_6#׸ü]ÖÆj9œÝ4ˆS_Õ·)xƒX²Z.&ÅSµ¡¦æ`Pò/߆_<Î|µd¬êë|1W6tÌ[…:8(‘\é;iüaÖ]©ïÍ ^§½ˆ<™söHTe©nØÅKV11ÙJsp2B˜SߨÝc6„ž­+:ôñsÂçÐŽ3Ìb6ðªç=@?õvEXUâ6×rZ¢³dZýFŽM]æw*'Ø2ì¼êQ(Hs®#ÛÐÒÆ7ìæŸÞ7Zrz®Ïí­ƒætÓÃ~ûv×3ð}UªÑ·$“³Ä=Ê<ßñlÕ¹•ý{› W)¦œo)$ÿíéÍ¿”¥å+>Ó}„5º©òŒs:C3-S×GÁ«ñë„–ú†ŠêuÈnüqk÷ÅÆæõÙn%CøyÕ¼s³Rõ°MT{¤•nN(§âGkÚØÝ R€œJ<Õpß¾àîÕX¥7áo½ä™ ÚsxÕtÃ$%kLRµ=Ž[°љ_ÎN±LíÆÃÊgØFýP04|Ü âñQ…¼µ¬í]%¥&Q¡. ºÀ{~=ð\oŒÍfÖþsàóÙñ¢ÔÖL=Iƒª¾¬)СtIHÿ†þè„Æù´}ðüêCx ò¦ÊèÌ»î>·m×°e é¡wþga壟5]C1O¬Ü ;× 5p´ïaKÌsÒãÔÚçš/Îxhñêâ1ezçÄòùÁ7‹q2·2a rcËÉùßï ïu¯òᲈeÁÁ6:ðì­\ÒÕÓž†·_¥M/ýl“d-½>›ÕòpZn×àÜÆÍ b¥·nI‰7±¹bÁÍ­Ìù©$z• „}6´öŸÓuœý«Âä´ú{$µ„þ@ÛuùÂii\ ;ãêÌr >îõ’Fÿ¬þÄMœv;žªÏ'¿‚U1§XvgœZßû‰ç›á yæoì¸ýåI8^Ó¾²V ã’†¼œê?âþ,íTK7šbž·Pl'^h3«_Žâ^ìã~´W}wÞiYáetÌ=ž˜+ß8·ðxsöÉ^Ge ÏU®ÿ§@åd?¦…—v!:ßÖ”UEÒ£;^Ç“ÓùL0²91© ©"oGÑ—›(îËžƒýÉ!²Èåg÷À¾¦Ÿ˜Ü›}YÛŒyc7A¯ý‘.'¢žtÕTù#ÝK=(@f9lî“¿&9&/»½—™Và(Í·îœ0ÅŽ†nQÊõX6€í1µ*ÕZ×Ì‘F °j¼¸™ºúu¨úBrs‡­ã¤þ®©‰OšoA8…!´^0O÷y4ÈFÊ‹~„¼1ñXãÒ·pm˱=} èHí¼talRnö`z}a„Ö´< ,ÊxâÆŒ9õgë= 0Æñpûª¶ì­ž‹Çï?©Ð4ìž;ƒ5À½W#q¸ÔTÕ7(v[>á3¶oø®:ëòÍFÚB¥wÒöýý^Úxããüe-%HKëF!wf /Ï[ ªÓ”è±íJ{>&€±ÿùô,°Kz. âÒn¥ø$¿Ët‰êZ¿~‹ßºÖEé‚¥z¾‚»dÁN …Ëèðªb?-R¿ÃÛbôÅSM–FÛî7ºÁúPUÌ¥.ñNŽûLÐ@”3ð!Šú‚O¦âßV¶Ã±†vYÞ-D3ŒÂ‘r)»Uc•ÆŠÜE“ŒžddÎÅEBô¨å s«¸)TFçö}û–,.”ý @+-î<ðE9r†ªü¼ÌÝ,›5(^œ–æ»ôHU¿cyiØÜEÊÄ­þVUqL`îÈ!ˆ2=5¼#`ªä€Csƹn¬)öÑ ©3šC|©Ëß{ºm›,Z_^Ë“¬`$ü×Iü2yWÍrõ¯Æ‹ˆÓS¤¹ÒâF¿¯lœðÞí£—û š¿¯3ôTÔ[Â·Š›°LRBÐþz-‚õ”¿$Å›ý· ÂwÏyo±ÂsßÅ]qéÌgÒú–a‚Då÷-æd…2犩ö×ñõ/·B+a÷T%žÓèA1¿,öB4ɧê…AÁˆmMEÕ¾àQÓïç+, j$ÒJÝ[*o@•œoŒA>(Cöú¨¯›xš_{G™Œ>›y#úÍuTª¹íƒ§Éd‡Ï¤ßì._%ÿÓÞwëö(¢ôF‘6g3ßÐdÙn›÷ZËSà°^G¹õÝ\A°ïQ?ëðŽô¿Z®¯«:¬t÷Û$ˆþÕF Gà=¢nÌ*K®ƒ*³èpë1¯ýïjfULÔv±Ñ ì LîøÔÙ$×76¥‹ŠŠÂ ÚÀ™p>—¢v+ZÈÝU‘›rµdÖR6'\›¨""¾é48IêÑ4õÿKRÒÉÔõ¸YbîVšq02SøKâÌPħíi1QлýæGÍ/âSZß¾Dù€塨ã!löyÉØöw Àò|5ʉT<Ò}IÃbí&Åçìiœ@ì­k_54<¸ì­Dã QV¬ÝlÉ \v# žÛ*N\ ¦UUCw÷Ã:©ŽSleÈø\E)d»SF¿Å ϶"¼$5vÜ.SæcÍì_$öÖË5¼`ª ;.íE}G\¦g޼(´à›ÍƺèyZ¬o{ŠçÁ¦Ä¡e}Ûú=Ùr{‹:¼qLd“åÙ™æ‰ ò*çððEúZ¤ú˜ØÝÏ $+ï­mÖ3怸=˜ÎbââÔB¾Â5jóo†ø;Àãm–fÕ©ÉÝ­¦nlhnžÖ‰ß"aŒ“ŸˆVˆ!¶¹°§ÌÓŒ‹ ‚‚š¸ÖéÖ™ú8ÙÁV+LÃüY?ýO•¶êú–uúZV(†ÉQj¾Îº^ãpH~4-ùÈóïs?bnPƒB㳘: Þb*øÈ~pá11Î3¤‰_ÚY5*(b w±v\8M˜‘ˆO \ ³\Ž_Ê‹O ت ˜ö(*t,{Õ¦ 7lúLÖÅ…o89üùß×$x„£ø– 4~Ž€Èû9ì9Bý>Œ`Ûvç[‚ÚúÎÐmR¨—Pƒ@ìE§ªv` T6ÀÔÝ[`8•Á\ Í—[ø Ê™Ò•Ïâeû`0vcèÒÈJ› -³‚™{_8PƒGÑnHøˆÖô¯ôïAÖÔêÚM’TVÞÛ˜õêc/HŒ/­ÿTÊ—ãŒYbíâöU5ˆ¶#Åà‘Ù«¼¦IÀ1©K}#¬!×|÷˜8¾µ’x$7S¼øÀõsÇ‚?¯³µSE9þ„O‡UrÉŸõXÙ@y¼™Ÿ%¶ö!¥ûÁóܦøö{ÒRЬ„?ªï™þÌÜ?×,yÆãÇ;]’,#©ùè‡$&“Ájºá"å‘ ‰IóaI»4†B­ì©ï³úã¹´Úó”SÅh—Biìõê͆éçÒÂÆ@vy5|)ò´Ñ‘ ,+ɰýWÈ_%@æ™xö!n»Í«Î¡¯Â0ã5yøž¸6=”úÀØÓÚY!o–È€mƒ=­é°½~¬NsIäú)Þ P©R¿<>>n=î!8ùò¼u‚ÚBå£FB§*|¨¿Êÿ(ø«léÔ¶ ö%2¸»Dˆß}%ÝñË"¨Ï4îóp‡Ü³•ÒÜ{Â0LïEä2öþ ¶}>lï˜ÆŠº|-lóò6Öµ›Ê€²E|™ˆ-4¦áx¯Sc¿³ú~¤£þhxg€ŒèÍ^Ç"»;Ë2cáßצ†F¦ñ„jslávf®+p:6||(. Éò忎.ðfœJzÚ}[Z^ôŒ‡ë£};jŸ)u•{\†`c˜¹sÛÕ¶#a¢4¢úƼžåXfÏ4Þ pާõ—\nZŽšú°ü:ŽcS ÒËü¦K] ­h`kD†±ˆÊ/_bå‘LÆß yÐþæZœ¹à$n“²ñßV‡íU!ŸÍôP #Ð_,׊Ÿ± ¬”µ¬Ô.¥[òŽO‰UË `]ì ƒ/aÞãó·ÙÄCWxŠ4áJ¼rÓñVißše“¦'¸c‹ ø5Ôlù†¯ýz#¼g„lÒFýOZmŠøFæbôlšf±=4¦Â‡B“ñ¯Q­“(§Ç¤|ˆ’«œtóàã?½ŒjÒ¼!׈ÓáXîG!˜ÚZS‹Ç Ëv-ì%èJ»)¤¥… SÑmÖb(ÿ~»x”r¥êÓçÂ#ú3Pæƒ6‘ ×& 2†ðY¨Ba¯fæ_2ƒ¡Çh* ÇN~ƒ¤rÇ;á%F¿yâ½ÿBö›8Z\MŸó²<ô$@2]TCžJ“ûÇ…±É@¢Fžü œ{†)b±¶¿=‹¯Þì±éQ˜KºB•»ÜÎõqxœ>Å¿[0d*ˆ%ÊXGp à>7"„.\Jµ6,]ûj“ù ƒ·,® –ÿÏ0ÁØe»¤AåwZX޲é:„ zͽ³¦:ƹaãmwíÐû$o³~j6Bé¦^l¡‘VOPË(ú¿±èÅnErÅrÏó†XÉ~-ší'ã|39EˆåVÉÖ× ¸°JZ«¼ïz{|…É4-ž¨yæ°i¿,˜F Ú£;ȧ©g9ÄÔ(ÁwC';ù('(«TÔZ'õm£GââÅtÜ ËOÉ!?F w-Jë€*ýßñü%¶F›téºô½U†!اcŒYþ|Úy/:&•ÓèìJ6_ážh÷p ?ìdµ§U…W™4ºÜU”2 ñ·cíÝXa‰¥ý’ùtÃ%ë€PÅ]øýzEÈàβ4jí®(h™ …ß§©´å(ÛàGí­†Íùœp‰ÖX™%Ç2+¦ãñGjç“6=«Ù0Þ@Ѥ&ʾ0…>ã-oÌÏ“¸¼?Œ°¡;åcªC>V+p ÑdP¬ó-ô ‡@ï‹;¹>«ž©¾LC0¿ ªÊCnBº“´á]+27À>:@Ök˜ÇÞá#ªmz÷×6ëߠ݃Ùx iBžýì`ÅiÌ ›PÜ{ÆçDD®°À?5WÚ9¤ÖÁÈöÇfÈÓ¯$p4—_´QÍc¡ÅÜh…I—ÎÊ)¶•ªš×ÉÄæàø^«I:*‘{WEeúüÙó éö[œXaÂŽ&2Åë6qp%úá{‹|nmb’Q{W”Ø ¥ùâ2J O§Z@"õ‰ºÊçÄ:Ñf–F†ç\)­¿Œaï“Þèä.±PÕðAy‰î>ê £„Ù¶„àŠh4Lï¯%kdk4Óåb±›åL}+÷þZm@‚9ė矖÷N0áRæ_Ö öD$çZ~'æ3gŒì8Z{BRE”7±Sž'ÇÑËñeãY~¥yµeõü§ÃTkÏ”¢inȱ©ó6§Ùè·˜ÈubL¾J•±(ʼnóóHµ÷3•%˜†f¢1S~4%|Áleý>«bnj?…‰VÕ9cF&qÚçºßêžö€©ÉHÞZo'6Rd_Æ@=SŠøO‰<%P\E¥dK€HÿÜ0K¥°€¨œ5óx#¯¶3/f‡‹ž ìCÕyÊ9ûC,ÏÂþ;n%^ô~—¬“#zƒMY °Ìª˜¿ÒtÏ„­››VŸö|ªø‘§;âd’*š§Bëü­Ccô·c5F¯$TŒ-=°Û¬3ÂÛ*Öµ¯Èœ"RÈ:†ã•ÇΛ_©àbø€lJçIJw¹°IËQ«ñª/SWë¥î݉Ä*‰4Ç/Å4À‹!Y®j÷o:!§ įˆ,_8¾Ø•€{^Üê˜c–î ð.°€köþÓÐM*/¨ÆÔ˜î\zxàôZÞµBá(?»“HXp´+ImÏÈ- ô´l±Y®ýáað‘Ö¬Ö™½^(8˜#&?Vmðà÷o8~¼ä0©‡OßhÓôp+Wÿ ¤ó85cö .0¡SÉ_¶¨kÏÄIQ°OˆNn[A‰ôL­(Ð OSÐâùõcË\TÈ¿ïR5ÁÀ·Êõ ‘*ð…ºêõ»€43áspƒ,Òlyõ7Λƒ3ôóc:ÝNòžhÒ¬—Ã`ٟƧ\+„ÕË{ Ø–ñAÑT?ÕÃä¿ôFæX~¢µÕ+[‰1úç§ï*Ë ž®²ÝÃPΉ>Î PëN¼Å‹[v1l¿,œßîÞ»Ì~å£RîäH|â¿`ê_ʲ‡úRÈý ËðòÕä=p¨Ït»§KCdöºábìqŠï[kš ‰úpò%ÑB×Fµa+ÕÃØÊ>êßkÄ ðº´T!\Ñ&¨õuç„J%R”á UÛNÂXÙ®,ЉµnbçÉ›D¶Q¯ÑŠoˆŽáuÏp”„Hó ýžz<þ(¤'žK·¨à¦ “öê$µ9( _)Ô"=Q³h3Ì ] ão[Q<ÿËÑDézMöOZˆ”a‘á?˜qÂժ׈s$7¦xÐÞp`égª±?_‰»+Wûْ١OÐ.&³t5_}åÂ_ÛÄrþúefzöØUéº7ñ•YæG¥…/oïg߯fÞZÊ6•iæÌö€~¶; d…Õ·®˜›s$œAÒúHá'‰uqn“ª¯Mƃâ+4̽Þ²&4„ƒ?Zá1’6­0í›@7¢¢>Û%+þ5ããøTþyŸ®Nð9€_+¼ø¯÷Ûñ©ì¬¨´”§µ QŸÜµ¼uà^Ù…ß2={'"N ™^PŒ:@§Ún?ÀÉ©ô[á®éiwŽ ­ÒGV׬“2âÚW‚,+àLß íPø·;͹¬Ö^x—õUð ÉaF?°ÖÔC1´Á‹p‰þª¯ ú_i½U½ó¼Å‹¸&¶°´ZÅyQóî2nºwúj=äŠ"ÇÛ@¤€žIи!;nbEé 5ÇKt=¥³÷#]):Y‘_ò"Ëí 섞Rƒ:íÈô „ÛßÕ»¥„‡cç•ñÚï­“êÿj—9´Cõ?ØÉdZ!\£ʉ1ªMÌÛc¢Õõ•ZÅ™Úbb’çà"Å-²±ç)8™ÝU„#Ò ¥NÏt3îµ[JG‘ùÜþ¡8mW¶²uÓ'ìÊ`r¸ˆzH"ßCPâ˰Sȼ×EM Ž8Ïã劣þ+3¢ã±@<:Ìļ>}ÅŸ?p¼ ²»Œ±H–ïËÿqIX7k唈¼QÙGIÐaæ™ wgW×0ZS9¢nÖ1~ñX©– º{·ƒpþ™ {5¼e-#°ùéè›âìŸÎ¶uË“RÈŒÇÐ5‡î’$Ï#’;òšyÄtTpQ+3ìÉßG!ˆÖ fm…­IQDq t¨êò+ßÝ~4v7Âbš¡Ü/k?sŒÀ m®i Tš”­Ê£™R?™Úûé1}phV9E­ÞxQÿ´‚nkàλ9ôFÚ$ƒ?´ái…}Žäù3¶¶¬pXñ®Ó£íŠÊ*Je³+&{Ââ2¾ÆÚÿ ÑëÌâ´êPr€á¡.ú`USHSâZHá°B¬úDšgÎpðƒÈ4þ"ˆæ‰Ñ ´B…­(Åz&g #º9rÆî‹ý³3¤õ¡Ü"/¾–A…Xªû,NÏW‹B×y,2iïÏÄŠÈ„ZQ¢mZÉ –âÔ¹ék^Úð{ÚLeÍtºdTÀMgeÝu„ÙâÂ$ Úv0júõóåfH‘SýË9”bž¼‘m¼ÎðË©BÐM‘{Ñžˆ¾r¬4c}Á=Ä9­6Uðthî{?ãö—ãËæ T-U¶˜Ž[ï7a¹Óú² ‚4NñïÜÅžŸTÝvUGx÷Óí){°]¥x4ÞøýJa×CQ Ï ƒ°º3%g„ºè©aœ=à´¢®pD ¦tWoÏŸ‚>$hˆ¯–¨ÿ´쾤~uœ£$2¶ip6J®C³h÷)XXð½Û.Í?¬„9¦ç%åâ\§l?ßî›x× øR4Ôw¹ Çú[=¤E ÝÅ+!QãÐÿÜÏ˱kjV?6î U­+øˆ¹%äVÝÂHÆ zqlVôVï¦P]€¶ÑÔj2If% iöÓCMp† 9}ر Ïž»=‡¹ƒj4‘Iô@xú{ÖÈ ‰âî÷'C~i ×¶¾ÉÕ®Š|ôjžæP v"vÔa@¾ˆ·ªIg›¦%kNÅ{_-ýL›r¡êïÊÝtKåp"9«ñ,Òj8•Êý¥jÍ¿}õÚ¸Gû)vLq]`N¦z¦Â±Ø%:$×­ ”@¦•ìÊ UII§ä'«•ž3[®z¢‚òËä¹o´•"Ï9Æ™»=kf|,XB㥔ž‹ÖyÎKEßwÕGÕílið{ïŸÔÇ[ïTÛ£ui¾Í=.ÿ7N1G@—BMeêvfCŸç{ †™E0>"E^îì™J2þÖºœJ¸Ï¼:¿Â¤]ZXKNˆCÊ„ßö#Gês<®§¯ƒ’o7ž©kqoê–Tî€ížr"•HÏÈÊóØïû§H™¢Ð¿)<0ã­™Bæ‚㬉«Ñ`L µJ´^mzY©°KÑø„ÓÛ’1Æsµöó}'œ^=[r…qS¨cÕÚmMÐùùŸàĽ$ê‡Çô_ii¨?Íä,,У•*»)6¯I;ÖÕL­²ÀLuK4¦Á%·Kyj[pà‹€4”FÂ@Ø7+Á'¶âax»kÁí/ž]^Q ÊÜÈÔ5J«]冬§'QÔýª$3ˬD~>bÿƒ):âåÑþ Ín®ãˆõøåÁKsœ_ÈH¦ £TtòDS媟ÉIǸâ×0G¸!„Æ•¥1Óœ ´ŸJp™°0¾|•¹ÌÃ…›X[Iå?Gt‚a§-Kí”GðRE@ìáïä¾dàbø%Õé˧®iDí"· !›ÁZQ6+‘®²šz¨@"Ä9&+ÿ}¼"ºó~˜ï ›}€+íò ŸÅWÜ—PcÒBoÄœÔÜ®½Ì·/•U'Sàðíg%à |ªí#H7Ùò#[Éã–Î'\õ«½çiáýKd©Ún" ¡“³ÛÐòÈ|>ÌNu?œ(ZÖfSÛZýq+ ÷ãÿp”;`Ç(Z 2: -˜Dà-Ljs¤/ÜBçÑL½pÇâr»ý>Žu,*A¡/دíAýú ec±¼n±WüÊ'a ¸†¹+û˜ob”ÏŽƒ/,ÞAÀµ /Ķþ9 8üa¦ Û ˜øO+§0ñSϲ‘e¢·hA©{Å]îêpÍK3€ ù±e[b–õ;5·’“c«Ygg[^Ðô»`ùh ŽE&= Ô´²Î7]\ ¿£pྵÙÝzl³j3;à7°(Øð Òï™{ìSaÎ"iÝà*ñW¤è:®×¸RžþyîÆ¥èÏM=@g8Crã bq\ÄvÜLÌJUP€mØÙâ‹ðŠ”C ªãAÃŽý:!¦…û1¡ç qdA…šG¤_iáë«xT5—¶ È¢*kŠq×åõøäD‡É ð€ºÞ_]9ˆÐ¶î¥ô qȤ¦Ë7–³Pò«õAÓð¹lñýr®È.#'¨¾öîù1^d;ì&õñcf%a…¿ï=?r쬓+¨ã§‹¹7•tKlÊxÓªyúÛR¯Â_ï¸ÂX „ŸÄÆùdÓÌ™zÂᑤU…‰çí8 ;öèü™Ôº"‡?ÚÑ6/‹aì†ßK©—ŽÎ¶³ÓøóFÆ©m!„śɲּðl{q¥â€ ßzQ߉½ŽxŸ>¡j”ðöۨףí›B¤ÐfÖÝ­¢ëÆ-¯æŒ3O„aˆjAT€ú¤—D Ó܌ƄvÊn}×\퓚[*æ·ŽM$ÞC‚½UÁ€fݯ5¢oC[ù*lc“ûáhª’¦Ž[½Þ_ÄÈ•œ£%‚ð÷ZM¤±g˜…ËŽj ¼ ÛÂ)*:$¥¹% \G!?®;m§Ô6`äDR}ý Ô¿c(¦2(ô•Â_è»´´1;xÖ†ï‹ÛAv¬Á³KoßK°I×Ùy* ØsEñÕ3I|ðé¥qù¹‘ï¯Üüý°Ó^Ž’Y¹Ÿˆ‰ÜcB´Ùõ"3Š¡DÓ¡ô-I€&îN )Dd‚xs,g¤–†¸º³ë-q[šóŸÜn.˜f8šO’Õ`PÑ2. !¡‰]„xÏ®&ð“Àœœó ¼J5xÒï«vK¯\NµÈ¢Ï¬áãOÔ!‰[k@ÿ™üù Z ÄYŽ©ûš±ÜƒˆµüJ%u£ØÃüº `Ø<~Œ‡Uç°QƒÙÏŠöÅÝ&ÀŽwÅB݈¶r+øgÿqÕ… @5¥ÄQˆ=? ² ¡ @rî6üFëâjœTÑw @ú»x=Ò\¶óœÃŒÕ PcP¸vÑ"„èÝeBç$Ã@2ó]™Vr“‰Á´j(o+꯶rÜY?×ËDuªqEN3± ¹Úï–ý;’q±¸XM¬]¦NÔLØ¥`‡ŒT.ºA¤ŒêR’n“*°?8ªP™J΋áP{ŸõWòÿ…Oýîq|GC®Ó-æiÊ«;oñ^¶a#ÍéÏ`!³[ïùâ©ÆÚÙ:Å&¿”Ùå~÷ÏÃÊÖq910žøhïÉ4ÁóJÎ=cVT…J_úÂö£EÜÉ^…‡}æi7måÿÎG¹òK‚éc{M¹A²Jtc}ËýF¡Ä<[S§ –Ú™{ 6 É©D‚z(/ÔqlUæš•gë¹*&ãÜùÐ/«s/ãüÛÜ—Ö%cªBWOŸ«ÖÉu×á` ç6ãÞulAê¢ÑÔç0w€W ÉK¼ü%Nn´÷9; yš ²ˆ*ÂGf|¬g•W‘RPb!0ÔiÖ°JWy—-ûÊò–æ=,³âéCÒ½„ éKsÀžü)<1qÜ#¨å[¥=‹ÚxS\\o]0Ü Û Ø|uÞÈEÁæ6ãTÊ ±ü9VÁ¦dõ–lÓpÆi„êì.>ó› „£l¼7è[;"6Șæ\SN¬¼”5t¡ '¼¿ 0‡4üêFûVâ¸5š‡c’[Hè\’I¤s¡OÄ¥ž™[· ì@/د²°´ë OÜ£¾í¥õ‹ïWáê¹x ÃV6ÆÖkkNÿÂhÍi}›Ã¬©ÕÃñLj|5ãg[ RøT1pÿ{fcþ*Ó}i§ÐêøÔ:½)— À·ZÒ0`2–„‘ªµœ‚}öq‹³N†Õ—LæT¸bûì3íóê}€nôih¯rçÖkQ¿9t¾—N¼tÇUœ³¡([„BUÁ_£¨7es¥÷:ë穹Wå2ÞÞè¨ÔFè úM°´”Îñ M^½Q>›Ï9©z>ùÚ )öÇ'±¶rÕ‹*QÜýEaè[åu •ÊRì{ASˆüº]õD®n Éừ”';K~üaþ{“{mç`7þ¤…²Ñpò61ÓŸ}¶ 7>SÁ¶qƒ½žŸœŒœsXºçIUq,AÞÌ— ÷uK'Ùm¨üßbaÚßmŲ9°sh³[?¢N€;vû)©þÅ»Vª1k(Tò‰JÌ È¸ˆù’YC>‚¿°ŽŽ{£´ÂlÕ‹£¯ù’Q òÚq"1Ít™"â2nj٢l¶¯aÞ!5ƒÆXí_†–:fóGI »fê; î€saV]ZÐZP}/ÌìÃíë”uÙê’ášdÌÛå(/¼½ Ž©@˜Þ~ÏqNîrÛöa·b™rDÀ…Yà&p&s°|žìÃìelL;.T…™mss•à\Þôbü¬¿3l@°Ÿ±m!YÍ©ì²JäPõ°µS§óAßÝ£;—® LF½Ý+_Ù øÊOàÆñ³ûO=ËСm}@ÜV_~θþ)D1ía¤9¡©×F|DGAü‡Q¹VæwQ¹S%Y»ïáBáÿ/ÈØ> ô—B XUô¯ÖoÀjQfÈ{‘סöl¿÷‚;R• 9tÿ8/«Ó{ÁªýËvd+Ö4J*pNõ„ŒPÀ&Nï0-#dŒ@XÊ_­C¶,ìß©às%ÎwÑ}GuZêdáåª+$Ó›[ì¶%¹„È}Œôya’Éxa”ó$æ5³˜²Š¼¢^¤jRXZ‘#îqµ'ŽçŠ>~¨‹lÝJ7Ë/ ÕÄÈqŒÂš¨7"d8Umñ9¬~’±ê6B˜ àãÆ… ”¤žåÉ·Dž›¤9]ne)•sTIù£etÄ»ÄXµÌ¿A_n^k.l;}:`íµSùœ=Èõ9a‘Îvè%/‡F£Ýüâõ3ÁL|hÈh^…e-‰HÅMa#1Jw¦ÃçÛ@˜¤"îÞ‡ChíÕ¬ ;Š…ËÀ°}ZB‚µFQç!õdÏålk­‡¤HGæw+)©Ëi¢áb 7Ú*Ñ Û“®%VµÛš]‘ÄÝñ£| m4Æ¡Ú/³‰&Êú[Ð=*k?1 ~'عœMxð,jc;ߘ˜ÊÔ$Ò~1â8¡ Ũùök/ ưO\:¼-³,§á›cÅdv°,KîZ» ¢‰'VP kª¤§CC!Ñ&Ák7”~À} ¨«7ÄØÀ-À[-l¼ Ê{`‚E *^ßÈýó(¬jyíyxci7ŸþÔ—FˆkËŸØKÝRÕÞ,'œd‚fþ.ÃËõ_Ã0¥LäÕ3š? D,+g‹ŸO}`Ûu gí¡Ys##_¶4µÃwuùmq›±M踶šìâÏ:»AËÝ<:õúÿ¡Qc¹9:Ó™óÁÛ`¥¯˜e<#ÎÀm¬Ó’°]vxôEÁhÅ•ŽbÕ+Wí¦áQ1¾·‘²‹G—2±í9ç×\ÿ›¦žKT"ÔÍeh]ƒ­f ðš^„¢…¼¤ª‰Ÿ!Ø\(å`"äÕUŸX?7~Fs¶Xʦäs X†ôÝQêéïhya”ýÓ÷”™Q=vÒ¿žÿrš¬É6wïשb&¯„F$Ý ~ÎËOôB> ³K1éó}1Sy¦tù]R0©B h¥P“";§jwçùmçD*éXŠÍÎ!ó>UNxží¼$hËj“P<ÇÞõ’ýXdòô¯ÙggŒÊDmÿg´Ï´h®ªv¼W“s+ž„·ôåz¥øoÇ»¢q•q;^qË¿·Ê³q¦ãÃq—Iî}¥½U™ÞÙáæçLÎdN•‘Ç'¦:ž¸ëd¿Ë”ã@/)Õ¨H ؼÒ0¦­áFV ¡&ʳ’úØ÷ÀÊôœOHD&ØP+( Y}0Hê nMvy×@4ØZU—©oMpý¦/—9Ø*R7 ùò¥o|º¥¬<ÚBo ¦³¤‚ä‘Hšñ@¸géksø™íè”ËÉ1·½Å1ø#¥"×·÷ª‹)‘$R¾n¸T²ó¥&µu´C&¡72x¦cí£l|5¥ Ë)#nd€ö<Óºx‘·­î"©ù¶lj~IJÊ—éOèó]ŽI]rR¨dVhŒO@Õ*eÕpHfÑSV…Æ6?‰Îõž2cTÓƒ3lÏÝ™°îj+µçÈç·c/óÇ¿RN¿~ o>ˆ$>Ù`l¤z¬Í6ÇêÈtMY(lü²kâÅ8{ïîÕ¢d&TU’ÉF¼49X—À±ÓrkàȯûØP'1{£J˜?-áûßßçžœkR„îäÍôF}©¿ª)NG{G]¨:“ !v˜wµþ\ËŽíŽ ,ÍYHš„Рï7‰Ú+«KÚë>ÄwÇB¤|îœà‰„T‹^Ó4tôš³%xu*WÝ;…¸ØÂGî±mØ[ÃM‰iÂS;ÇBÂÄ„¥Gnû-š¾WJ'n±dâùgÁÖãi•„¼]8/‚òV»õb:ÚfLíÆÁµ„ŽucY¶€F!ˬó‚¼ ò³Ì7ŽyYÞ"…aú·S³#ÖЗ³Eâ…펎۹J«sïTêšjA¬ÑŠ>ÜEñ»÷7åÀáØ0åÔKóò!0½Š„äŽ\øË->íÏ1CQ“Òû²nÕ²~"¶"¡ô¹9(YT¯ix ­:L…æboAwÊ›*].ì (×$?ÁóB”)Å ñ‚i¨É8¿sò]øÁSTñ FfΔÓç6äM ›c€;ljÚÿf˜ÃƒØ«øÁŠª(Û¿Õ‡skjdËNn UÃ{±Å²¸œÊÝ¿{x½+åNYÔ`ì§Ú{C¶|Chˆ(>CÒBáîúuŸªÿڜϣHúe¸ó;þ^¥ë5ȉЈ#³ç´B€ò0*fÌjÁÞKµ°2Øœ˜®Þeõ¸<1w1ȾHþ_X,?¾7o¶Ž(¸:0c|‘ij°v#Ì<ñr<«J±5G; ¨sǺç`¼G×w±ÄèuÚ¬«3U !jrHâÓLÙ8f«B^ø«4®bÈ"šÇõñ3ô}{êw2-¢;;‘ðÆ¥bø›Rc|’”¿i¬_§F¬•°@³{ÞÁŸNã'«Ã›ƒbÛ©¢v³Ø:pNKdk …§‘=šã~ŽÜ6ªYœÕ"]µ¡/½Ù‘[DØÒؤÙ-ˬÀ%Ö% aa2¬yõ(!«nŸmçØØ‘t $õ+m§Ð²Ì!íÁµÓ¥Âo«W„G‰…Ûƒ¥Ø¤ÏÚmuY¶pjN‚ÀvOâÈJ;u çC$™*J%5¬:m;ì’TÍZ]ôàÌÉFâØÃ׺·p—‚ÞgX'õÝ`\ž#ˆÃ9‚€Ä-×Ë"z T ʔѩÂdzZ¬>¦ö…뎈âz#”¦Âã’|ˆ9£eÆV6S{MŸ|™ùÊ`Ÿ¢)ÃQn<$2©Ä§Ç=¡þJ||‰¤ËÅBK¸f íyŠæxš–_åqÄZàX:/•æH˜!¡¸ˆÄ4< EÓª€7#Vï@;­t9Ý0,ÖÞªâ i5¤y2Ăݿq¹þ±ˆžN¸)pìBÀ@“·&¼ÒÍ|b¿¼ÀÈÂV|‘™Nk¶t–º#§ë­6:hUäБ¸\ÈC!m±Vª€ZºvI„b–µQßÊé:K?]å|¾Æä¿·´·z³F<ÿYrŽdÄ:W;&K/=LνÒd¡‡3m¾:S”½¢n<)M£¯èµÈßÖ¾†:Hš E"ËØc|J€ßù kyƒô :¾š®¨íešƒ®`d©ÈW\ëEçÈxcH`66Õƒ´zå:ò™Åòw­ÒB†Ýl—Õ×£”¹î$ ²N¿3ü"K|𛲜Ýùr¸Œ7®Tx¡ñztßÃJ­`¦…ùQ ºPž©Ai-GNðPX|†É˜™¨N{@±{¬;Õ]áÑ{Û®ªeï)ò$Ïû™QµžÈÝfUá¯8lÖÈ ÐuëPÄ™­£F¶ø2“”›Sµ¡—Ž9ŽëÇã+@®_¢:Ye Ó¸iØjEõI°ýéáÕz¶÷½áPå´æý&²F×JaP¶”¾|ô¯^µ Ð^;×>Œ6¿³¢b­à°®ð”5#ãϘÀtÓÇ0ƒ¥2¼¨ôu›Û„@·¢vúÞ —Ï%1¸B‡F¬(~ š½75Òêbçi?ÂÜWŠOn j¥ÇL9cÓœøÅÞMÖI*uZ¥ü<ø ~±ý »a½:‡ØØkúÙYš«zêQzâl§¨ö.Ë…r0ؼC‘™môÜ):NAMýyv»Цè"ÛU`l—;£» Zʵy“!%IœUï×߳鳚ìÎõ«ÔPkwµ©h‡üò—Ö¥I¥Ì-‡’e9Ð %É$sÕÈõ*¸Å: (°@Œ‰ÀèPJŸw\°á/üxÄË%͇€@òÆÁÙk`wfâaV¤ú Þ¤^Éßg_Dû&±hDVãè´}lžü¼Ë{­J<*ïÍ5çžZ e§[žž÷Ìiðk–®‹TÀÚhU#)ÜÌ·ªâ”€C6By¼ &Õñ)Dš¿L/Ív`à„U¯$‹BÌ¥ûa6†ò‡¬mvI¾ÝKìûï\^ͳc¿¤Œ(–DÒÖ­¨r7c@¬o™Iñm ÿæ@Ë3U9ÊJΈT±1’WÔ½»;ÑhÚ1Dß7NŒ4bœ ¾y,ÌWzúÙ8Mª3¯Ý/G”x®[=Ö.ùž¦Ê-;ä§ãt%¯ WAEžZ„6ó°O„ÛÁQÜ^0%— lQ–*%×ß¿_ø4<Ä Gsiý„À1_ÕÊ¢ ^ø˜Ý×ìÄ ›x;Ìï^< f•vË/!|_ÆRê/»³ `|Çûï-(¶q•Ä®Dw“ñÁÂKuâ›ÿìH´<ÿx­ÅÉ:ÞÕ¬Þ8i >Ë2ÅæAû0ŠK{—¥!uYM±[¤êœu›$èR[ÓÆðú8ÀcT>¼y‘[3n–¹Š—ÆeÔŸ¤$“`rŠÃOývÁKÜv­• Òvê}·ô»ú /æ·ðŽ­sjÀZûÿë:Ê>ôõ-: @Zcxôl§4\ÂS|iL­cÓ¢‰ëp}™üMY=¶Uà˜`ì{æTæô˜ú¬•ÎÝǼëý™[“´éñS½eŽâ•Zü…Ñ®Ž‰‚siW ŒæiËÿÙë•Wx#è ~{ o(9Ø{˜oL²ù<° <‹5ýO×#Â2•žªÆ n®ßÜ×ìP¸5›Ha¹E’)¥’æ× ÐÒ‡²ÞÄËBh—¡¬v”Ø»ˆ ·÷†ÿÐyà¡ÓÜŒä97× J§ÐÝä7 …–mg³,ÐÐúÐ~§£rf‹n³>Y³Î´{aB&4jÛÌei×ãÿX®MGêHSæ‘=ªÝfëû›qƒ“‚šE®4üØLv 9Юû¨«îÝ cM|oªe¨ú€ˆiTbs­óÈkU?_l ¢ôê«¡†±÷äŽñ7>ÉÝ%JÝ}zLvÈ÷•¡FìøÂ1Cµ´oµpþÐ'h³D7ÒÉ^~]9¤ÌNv9”Fgö ®½Zv†¢¦¢K- ±,FD’‘ëÍ­£e–bCáâæØX8aÿ»üÍrŠàšü2`Ð *ÁrÂD+6(—ÜXX­©Ýèºq®j ú¦óþ9  W} 4À%ô?vÑ‘–{F6 zƻȰ¤ÿš)Ï:kÖ¬”–?mƒówËjÖñ¢¦±¾ |v|}§AÜÀôóe6]Z^5&‘ä=m•*Ú!ÙŽÅm—¸™¥M·9¸Ž$¸­æô4 ¡½›E(.Û˜µtk‡î6عäIÐè´1`(}ã¼Öe´ÌÈsꀣ—”vÀoZi´C嘶¯G¹—.ðÝšdNQ´­´R8Ü É‚ŸÛ8171Q~OB¦UÉö7³{¾fÙÜÐ^ö ²"ó8ÁÕ‡PØð d„Q2ÒPɦ#puàÒ–¸Îa+ë tÆ?YÛE¤ 4¤YÄÆùçôÆeºܪ߿}±5T4†¬‘i”š,ô4bí‚¿>›¬ñQ"R%€eÞ`YdÆ›.1:U#/ˆÈ•çØÄQœ{- ¤eÙ¾i¹6ÃÏå6h¦êH),­@¾õ”T«÷ÜŸ’%÷ýÍÔO£ÔÁÊwÿœ _t\çFÛMeé›h,©Üñ›?Å-ú¶Ñƒ¥’µ5ÁF¬²â;˜O…ãà0÷Êg2 > žÞ—»âyë£Ya~íOèð«”+(ù`”©‹÷Ыfz`Œÿÿ%JÄë»ë%ë¨ÖwbTLã¢UP5Þ§žGKDŽ'ÎÁ“¹Ï¡ïDaYš­^íP<þÛÍ® ²;dÜ]¥5«^fÊGísÛÖ[Tó-$[‚‰§pÝWœl¡Ö}ëópG|„)qº'”ŠÖÍ›òWžˆbíkóŠõ-"¬ªºÁÒáV³t0­I‡ëº|˜ ³¥¿W=¹èjȨ›µ©4¾ð€l«Höaé`¶K›c¾p1hÝç¬FƒíïÈœf ¦â4ü•6S,Á|¬µØÑâ“ÝžæBö÷Nª®ftŒ÷d@ü{ºD~.B¶Æõ-E^Tú¡ÛbýòËɨœ1:Ø0ð©f-ºðdá!Û˜T°±,Ðf͸« #ÔÇ·.Zqø"w”&¢îhòCÁ¼Pïà"‹ØÛòÝs̶c¡Î>*Í÷þ*ëÍÛ¯ÃIKðüƒ†>Aâ•›ýÍÜ„6÷Ë/”ƒ†ä`_"þ£<ËK4•÷?ýñÖÂÉ E)0›W~ÂôÕ8¸:R¿Bf~O…Ṵ̈MF•©kŠ_ÚPGJ“ýC!ïl+æÊ4 …↬śû+§i¢¨$y$HC;ê[èáTÝúq£iƒáá„×ê+ÞU1E{Yðg‘|1‘õ €8çš|çòØþ¸Á ²tèÕªiO-yd~‹æXß(0¼Ä?’Êíð?R¡œôx9ýþ:­ aÕÀ~V%s¹Ý K”Ø53Iòë IÅøþÇÜD¡šÄÒ%”C&(»SMbpÔc4›nËæ?ïóƒMÆ9øBwØïáŸt†ùw¾°È"Ç£#À eé÷Pb[ÃÓÁŠYÕw¤UH7 ú)¦ÑøíP/ÈÕßHv³§"ü©ôzh`S¿ê)=â@ÇH,°]íÊä‘„rhnÀ<¸F2oÙÍ#5—»™—ßc÷áNM¦æ6}åLöÜ9Éu´DÈ›šÜ¹,Uº$´ßá%­ÑàVGóQQž$*¥.¾tçZÔó™Z$œ”N]¹^4‹Z¢Æo ’.f•NpÏæcG¨wItÉÄÅèz@ÑÓ_8’yÇäËÙ<½µ3¦Y„wÛ“†‚?Ø_½?U"¤hÌÓ‚I–°¥`Ä6UÝÐ\^ÖÞ‚‰Z«ÎCQüFË!ÖÒâ Né(¤.&Ïu®3ÔѰ ¼…¹Ý´Ü56O-•xå³2Ä/ÌŸìN^‹ü<%$¸¼ñ†ÍÛˆ¼ªmAÝrܳ ÞÉbF-±–£l¯`¦åªþÚ;½öQ-Ø6ypO\É‚a€ ˆi=ƒz 󺫪´þËâQ'åTÓü—)kÊ¡l `òõKBb¬¯JzÖ›©•©èC<²(*½"·§@”ÊÏhö{h¢ÒUáu>6 ²Še¨:Gãy®¾–+ä¦þzG`j|Ù#àª@GC2ËÀ¼6?`yÿ£N5âëà†x²1BYEGÛÀ<§ò—E­“ð‚ò7nÙË÷`ùGt“¾&$€m¶žÑÖÌ'ì;óì¹äÍÅô®Ê6n]"5.=Ðý7_,oÍ ¶"aNí ©dÈ(ñP|'t²‡˜ªÐ~òßì ¾lGF8 ¥R uãûâh¾ÒŠFؤ"Þó »¦KpÕŸã½y 29È#ÉQ’•;oÓÿö$§…Ú¬¥ªÝBË&¸Ñ=ÄYtþ#3ZÓq^³=´¢ßýb¶Ç¨‰ÚæÈ;õ UóŸ5m“µ7!šC\ß%«3Þ‡ôò4AÉèXŠr†Á0Y£P$—¿$AÕú£irû0Á“ ‰˜ù6þ‘¢Å·ú…4ƬÇ(ÍüNK ðÌÔf! Ùe¹”×Y™‹ìåo0§J›^RkGg-%´t ¼“1 ¾r‰x¸8$ŸRoˆ³ ¿H<–e.ÅyWió½a¯þŽpƒÜÞMë³Ë+ GW½ÆØƒn^6쟴 A]Ç¿b4R|sÅ ÁMƒé„ÍVD@l`OþykðìºE 4¶V‡R^2£O"û™¤{›ü⪇˜ÞÄn5ÞÄ¿a>[…U2‡B<ÔÝ(ðð__šê`+¢6ͨh‡ÉSìËýäm<“êy¾dL²k‘Ê 4@KŒÈßœ¶¡OP,W¸Í“Rã»å ý”r¾1¨¸ÒÚÕÁ)“Óí¢yãU`uýÞ2n?<™\Ö:³|¨ÎZÚÇÌÜK€)ZË~{BÎO+-0c;>~ƃÑhz~ÏøÝLo¡TXÇëÆÆ9èój‚k‰±9­ëÕÝá σÄåeé$#ñ°Rо2uét™˜‡ŒyÛqÜù÷cwþ=meE·9$Ýa‚€boѶcË«¢aŽÜ’‹äÃÐNóJ"|\ˆÞ'µÔ;Èym95é! Û+PgÂù Ô ¤¶Î‡èÒ-Í®·šßOˆ—Ô䢼²œ[ ¼nPÞ0Ôöv¾r¡Õ,3“_ÿŒ1r#è®qº!!öˆÃÁÙ{{¼ƒõšhχÎ3iÒÓ6ß .HÇ{Ãé!|ße"¦CÌÊÊ¿%]Ð!ÈÐ GCF׳ìtç”õÓ¯M‘ÉÀÎ@œ‡¨ÂTÞK‰…دÖâõ¦£B0°pºÇ¥Sçì#øëÌOLRºŒ+³«‹nÏsBñïB;´ Nk6νÊ–:¨J EbL´d‰ÎüÕí&+¼} +Åj‹6K»´ùjèÝß²6½°‰ó…¹iª夢bÄÃ×#‡“•DÒ|ŸMþH!¤¦}|¨ ­íyÅ.‚ ŠØ¼K¥Füo¿µêÓ;rI°øfuÞ†IΗ(ãñ+²TP¦Ê¢¹Û qlú@3-ÄN¯È M@ÐäUZ¡EÕÔGs攘c+†ˆP6É6ZögÍð;~mƒn›g°â"Å8õ7#j ª¼•`²&%œ1ËAXøbѨ½Ç9%­Œ M`]D:Y)Í7‹w[‹yk’†›¥›Ùá€À¿Oœ•{¨(H…=)úŸˆQ‰þ^³´éài†%ÔD‚£/šlÆg?ËišãÒÃ'¨’ÉÔºš:o\ï)"uÔ–œ›;ï\©QÃ9y ÞE’!ùÓ®dú*.CÝ&và ûälÇ[ .Ñ2èQdõÆ?rv{"z”l¸6àm~cpuªÛòýÌr?˼«O¶kcÚ†ò€ÜÀp³Û#™‘h]äëþ—´khÒÃsî¨&@C·¡¯ŸÄá¡“~ºÐÌÉäº!c:QÎÁã‡ÁÐ\TYXÔ4Ž‹èæKá€7&`ÊM÷Iáìâtî§ŠڬÌšÓ£v»p04H|2çÌ¡<пلúɯ$†˜Œ•¹9E ‹Z†YxEeÝ6•ÿ÷xÊß!¸¼w,‰Ïf–y—uMÉa ¼þ^yOTɘW¢£6öF޵\Õ5LÙ˜R@e#í%‡©W‹’³–¬Yô/ÃI ñÑl¸À²)‹™,V4ß©C-‚Ñ]ÉYÆúË…‚TÊ)ãàú…\&Þeˆ7©—S3³É–ÇŒ)#\ºùþ0»½;MÅÈße½gøOÍÌöKD¤iÆ9Ò½‘¥¦X²šÌõUñcv‡ÖA6ˆ§\1pScøÉD†AèþºA[–É‚™<ßòpØÄ¨yh,§x$w/³›Îš(ÖÉ÷ ê\¯žõœÄ!±"´˙N£0WìÄìC¡?ß{×Qï~bÀêæ@ÏøÌP|´ÅÖÝ['Ü>²(Š7çPÝÖ(¼ùÏ“Ø1«Ø›ø~lA€ îž"œ|’[dYÈ}éHîÝ 8˜…Jºf…’•u"v:þd3gÜt‘PK-öZ/~(“²“&1J#Í“šÀân÷Q:ÝÆ«VJ3Obö鿀M0U.óÈ5Dle”uêÛù‡g’ÒØÏ†ÄAÃ<3âyA«4Lc# °'š;³Â·£D6“Ý„þW¥˜Yt(G@,ðTRÀsD¯€‚JfËV%oßw§]Ò¢‚&Û ¯zÀDa9¼ö6ƒmÙĵ©Ùq²f9Cf™uß×5H%@w!Æ'vò¥Æ[Ù*ú`* ½c†Ä8ëš t_oÀ}‘~Üw耈֜S>¸mÑ·q}–ê¥ÌÖ¿ J‚².9ë1úWÖ³¬ q&–ÐÎg¼êA*¾P­R0³FiäXçÅq|$âˆa¹W{Çt°£*Í>†·/Û;{­úghÞJJhÜ_/ð¤@ ]²=s3#7ÔxH™Š¡™í”TÎ3åúâní÷– ¿TÊ]Yôho× #<šöædºÎ‰³ŒÀÊQm$V¢!ðè¿ê7Š´ùÝ> Ù L55t%ånŸ'0BD¢è†e2{ê©cüJO%½ž7¬uMs£^ÄYèöp"8@TBj¼_Æàݳ29uñ…;Qf8¯L°¹.¾E;¡"çu&ó…*DZ1éR8;>mP}4oÌVõzÅ’üõÆ•¸Ø¯ñ%rÿÃjÃ’²[Ëüî!jÝŸ+Љ¸(0–*¦¹þ) ûS'Ô¥‘¯¨5î›nõ·#§ØbmCI{åµÕá—y¾½ŽüañÞc;GH¼ñ¶MÜeŒê@A3`¥JS i[ƒ²1ËA“ÛÕOkCÇY#W„“¡R g1µâoÞ+ãD¦¾Zµ¨cJ’û1Ί[(ýôœ¼Ê7À[]ÊÓì"ÓÔ?ö:v M»nÐÇŸJí¹p÷·_"Y6’…O°âD,‚U>Ó4£\¤ $£¦ºv²”Ñdÿ§ívN$ÞÓOÁ#Ýj›¼µJîq¯uÍ XjHaŠ„v.Z \÷Np¢ÁQt/»•É‚IòÍI´µX™B Ôãí±õΫM÷I!ÑàI9_jÐTÜÔ˶±„ÌGV;óLÇ“Û'L…´°iGí¾…CéGÁó8ƒ’*­ˆvœ\G™?K಑éÛÂŽË­·mi±Õ¯÷{´v‘*Ûpw]œþ×ê<ó´#ΠR÷„À25Ú?r7(‹¿,‚IYý…h¤£ X9ö ý£ó±¬×«¯ÑiháZHãú±“ÔD!'t%ÞŒ"ÙÚ*DË÷¦OÓÚ‡"Þ!š?¼€5Ÿ7µXÔ áßl—–НCsØlüÚÉôSa_¹D‚ ÖQÌ<ˆ:h ‚›‚MN ‡]˜VÓþ·ŸDM7ÍôSX!ô‰u2‘ôAÀóp0¦óئ*Ÿý÷aÚ×é¹G`×Zc<¤ê€£9ùwÁš¤üÆa87Ý(Êû ðÒ äÖ£4Å,‹±:¿Õ¶žÇIàW´P6KÝ8,ÕØáh1E'0-ÍÙYU‡ÎâÎ DÑ1Fð˜wd»Xº»Üæs"LŒ# Ò3¢ÙDfbXH¶ûâQ "7EFÞð$R!Â]^w™“ß¿EÏ!*lÈ!ÿ<:™THƒwþ.Jvr·€lØ[Ä É÷)qI͵»}"…¬ç@Ê…e€m™•ˆ©ä¿h-gtÄßú§ hã1§D‹¶ ®Ìÿz€±+”%š`gGqŽŸ>¯\õabÏ™ãäg=ˆ_õe†ÀǾ,hƒ‰ e¡s¨hZH5ô”ýºPI”5ôlg[W3Ë9’1Ì«õŠ÷$'}|'xÜKf£O/DFVtn ïHèE8iì>´ iðó{—†+¶É çÿ¥˜ÑKãÉÂS>m ©MSàtz€† ÓïÛ!jB¼wÄX„X¿úÅû”ŒROôã¾aê l‚ÄT…ƒTò £äÄ^a¡¾ÌM­Œv úôkUNvtü—6Iâ^‹Çü¥22—;Ü"mª±ntrÁcýFÞ»”¼[ž¿î¾Åó³¤PE"yÅSߌFÂÂaOíg"KÁi.8½rÉŒú¹Ë«—Dz@£iRÊÝÈ#ëIÆ;û+¿ÿE1Ö‰÷'îÍ㦺‘Š„­Íݹ*¦”ýE–‰ývúj&h•ögç}v ¥”aYÙ}$â˵÷@sÔS×;ÉÅ÷̳º_˜ÆG2¥§"XÞ[ÈݯC° :6ÙuÀ¡ÔlÝ\Ó¤ji ô£yEU“ÄQì¼’Su_Ô^ì ¯ÖN]Ž ÚA~ì›ceøÖ~x-îˆá™ÐþÆyâp¬¹È“ÜO¡7¶CbFÂD“‘a¡Ð¯z §4%Ã’ƒB³…µÙ†pC|½ÑdbÚúÚMl; ·ÕÍR®¦Ãñ÷eµ¸ésmª’R2µ¾P™¾¾¼#êxƒ€‰È½IRžK”#ÿ×YΨ(·7/¶£ñ÷96hÑE–H°|×zôtXƒ­Ÿð®3µ†³½ô†á°zšß”Ü(ÑcϪ'€ún5‘º¦VC‚ð†ä—5M”«¼Cƒ/ù°\1X6Po¨‚PÎÐ|ǹD‚v¢;wB |ñ•°j=¯TŸ¦ Ä0R+›YvÌ5ʘù¼#Ÿ{ÞÆ^&+›N½MbFg0ðsú¬ºÙùÊçGÑÖÒB` ó&¥d'GÕÂËšn z™Phì.oG›ßv=⢃Ágúíçå¾ÏPCº•t{^²§_k|ßã^B™Xvhôýç­å=P­ßMl(œ *PÆ£ÇV³¯0Ò.W”P”')<Ÿ¸þ•æøÇO¿õÄU÷+Óò-íb¯ƒáMùècXý‰:LFY†öfP&ü7™›V@ÀF£¡æÍ@ã5ú9SÓ\ Šbnžö‚%?«? ¶‚ܹøï¹·öAá·x¡ÿúšì£H(äóÐwt5IÊ3©•Ùàœ]ƒ=_zÃ4¿ÖÊf>ò°ëàÿäÛ“ÉJu‚.J†çéó™îR©!ôˆ:}™—yÌEˆ`W%)¡ ür%Hß )6«¤NÔ¹<€$à–yxq%BcÌC},i<Ôj,”Õ;2e¤h¹©61óÖf'ýN]˜p)^$we?d¾Óò¡f $å‰K}#Ä7þ;Àç=dªÕ<öRÞg—ÉQöŒ/&¹Ì3‰7Ñ$ç1ób‡6ŠÎ‚ü«û>ýÅJÛôŠö36Ф’´?Ú’9v¸ª4(n`À¯áŠa.:Ý5“læ ¯ C™ã:‚0„À7ÃÉïR/X¾|½2bäg-üˆ=¨Ú¨ç6QäG—2#Ïvt§{XXX«E Ty:/ëWÊ‚'ªlkVÇõnýG›"‘½8Y1UdÜg,Pæ~qÏ?_ÅÅ4^’ãæiÒ-àÆKêçÇ?9÷œ\6€º¯÷¿UK ’:‡šmÁ\Aφ[‰Û¡3H”Ù}בmðL¦2§íÓo8ý3¦ç\$6¡xiÈÏ#lMõhEÎïè­ Ï¿Í·>Z‚—õs«“ùbªWÁÍñ)'FÞ§æˆ}@nØïÿágN&‹ÎIͤ›Êô¬}æ«÷ pøgého;Ý·t<æiL{z¾Íd(ÌEH‘©ÆÁï}LRÜj-ÐÆþa$Ëj4ì vü3Ÿñ½*i­ÿ­êb$É'ù¾çÞY]̛䀤€5®ë›ŠYRAÒìKÅÏñ€+ÔÙ`¨ÓžÊZIâÓ"VyÓXÞ©øÚêXõ ©S&a÷¢fF©c‰«_{8îûJýµ'6D¿¹úVwf›Þç™"c>4‰l-±ÒlˆÁ¡Êï›ëÛ_èµÏ§Š•`›—áž¡ªp ~y„5HÓׂ Èê4ƈ»´¨Ø P3ಌDÝ6Üj@œ2È9«¢ Š&/ oTô»YÄó0‰ù±Æñò-rÛ™Õë”\¸:üÕC4I¨æ,—°:qÎB¶ûÒûõU¥¡™sÜ/!bŠ«\¿(–ûH/‘}ƒËN7‡$ÓÝ<«R¡ëG6ÑÑUéè)3NRw`¸ÃÆHÍ[x‘‡–ÒPzóæìÙº™¸â\zÉ]/YmRKX°klôÑÄa{^GÝ9º¸ýÕÜj§d§R¨ú%)eùe41{øfÉÞ³Ññu o\)Ù’JÀ\9ïolæþã2¸Vå„<¢öFŸ·ü•¬,ÞlcIFclV7<ŒxÂ`¦EõÒ:ˆ¨ÏÊëý‘¨ES2{ò>âXX¥Pz·°ßªË§5Dµ’'ØŽH¶ßèý[®ÖýëžwîÄ0 Ñ\i´lžžLE@öT8l^¥…µq«„iY>O±RÖ¼qüˆ$&TfIÜl1¤e¦åðÝGŠö¡'( MÎBŽË‚gç~{Lª\ö„h¿BؾáÖ6ؽ\M¾T¿F¨ýu´Nî`x‡Ÿ>ߊj* ¡ï®³Ñô 1ÕÜã&d4´ÐeøW%ª—óçÐáve— O¿¸Nó™•¿”:•ñ é!œÛCôyÎ+v_“…uή¥•–ѧÌ©Ó5ÀUWhuWÔH?L×9†}K+MC¯ïÿcLãŸÃºP‚)øå ÚÇ¿œÒ|. eå‘[Å—QâÊö#¼´¸Ú˜«„hè)7ì$!/ÏQN+a²ª€À1êk‘_DR 7b²^|åž%²5«¸¶¦ëÞ†×ã ­ZÜ“CÓ:%í a l$4Wnò&€ÿæŽçÔ˜B÷ûpÖ_üýÌ‹HTà OÁˆ3°°e,aAË T™‡ìõœp‰ó¸Á€ÿ”{ó¡Ç°-n£Úÿœ!RhôLYêÆfûõØæ50‰EƒªƒÞ†2 P4Vdâ\}üi“Ìù4Ôè<Š1±ˆïÍUxc|9)hšŸú”2Zsûo“òàÎú†¥ÀÙ®qÞó"¡õ‚°Žn'ûæØNó„Ç5œ)fªv*í[õ¾ô‹Dö‹KñDPñ`Ü8·F\J´¾y‡‰˜žý¼×„½{!d—Ì5ç¹ýshœvñ¸îyß^0¥3}„éýé ýâ¹{»ež *N3’É,8§ÒÍî29ÎÌŠ­è®,ÎÆ·ÛŸ¶„YN&Ât«J^V#' —¸Okñ¨üvnú–kF“xžüK˜>mùó[DÿsÓà3(À,%›’)¬Ä•Ã}Ëlå)d4O8übIGƒر5†#¶ûÙÕ(÷æñ›å‹žŒU`j×rºµl_jóþœà(ºö†Qõ bˆÌæØŠÖ'G›¨iî›`AÍÐï‘p%ï'Oõ£I¤þAo¡‰÷ÀºQYg€¶sQß,3gïPÐÇ"DæôMÈ­RùjÑÅ÷vìùNJ.QÔs­™Ø\¼Á©-çc& s¼J²cÃCØB‹FËu¾T剡Æ"’ùdϘZþ~Ç8£¢Ût¾{K`ú3éuäJßjwãT]ëçO)*žÇ”©íˆãm}«1GëörÀîæ 6dlÑ… ¯XƒÀ"Q¯–*©R滸֯>_ºvù R¼àc8".åú§!Úª°þ\Œ×±næ;pVˆ/%C%½ˆw ê8)ïrÆòç1üéª5n°9ä׺,ZCC;änèq V  þ=>ð™‚Ë#:‚¶ŽÇXYÈ€D0ôí¦[X\Sûq%¯ÃçÈG Ù®þí8dåí»t6:Â3e±¡€FH‚ Ë«§/,¬ím¸šJ¸Y˜Àsƒ. ‡½ä%Ûfb´¡l/.¦™ÓnÃW[_zê'Ä&ró¬RGCÅ7þN'š4'ÂZ!0Ër"R+f{åwOÄÙË=®ýHË0^ÅL¥åÎ~RêÚñ¨UhUr±,eÊ«½¹-ßW$k×Ò¤d”";{kê"̼"Gâi¦þfŠ­ii#[tHùÛÚ¯«þç_µžKJ4ÄžàÇÚfÝy¹&×öôÎ<þbþk?àgdccK}º^"w Øß_íF›8 6oË85Puè”ÔUcfÙõF]ÔcHø‹¾ó=›Ù²§D¦¯¤ h+káý§`ä]ô-Ò€bãð©ÎÛ%ÖÂÑNÓ¬±Õ’s$Û£É×AÄG¹®Tx-"Êï°xSƒÂ³£\ü¸IoÕv;+V_VR Zû¾÷Ãê×é=wZß®¾c¹Å/é·ëñÒòä>›ãJõ¥¡v–¢„Áó&ü˜ ¬œqćòEr”[.k“Ô˜”L¡ãsDz|y:ÆRÂ<§E’äíß @½Îýçæéá‰%2™hºW•ÐCf™—m÷ïžøDr×F}¦‡|!A-è¹½XÛVå€Îo+®ûq;54üub“:@‚2OÜÈ ´ë¸h&Ìe{â-Ƽi§CŸ<,îã™ÝÔŠ×z$TfNS+§c¾ÀQ-lO)69¨ÿO\Yk%¸5ô™ÿœo7IcÊo/MÃñÔ¶;Цïs^¬U°Íª$Ì%ô3x{SñÆ'sX_*]…Ÿž(¶­mˉ—óÎz bñ…ÌWÃZ‘ÜøÙ.46+ù‰‰Jd7vy l¼n¸jE{ìÞa|Cv‹_Ôj=]¯%=$™(£´ÄâÛirŠÁ14}ºvmöpfÇÔ’VN¬=jø sÄx?€ NVú–ɘϜ‚nEé‹‹•ð܃N?ê`lp˜õµ%©ÔE>  ¢È¨Ÿ5t­rsº%­®y4E/O—• ÀoÊÐ96¼XSÝÄ‹Êðýí’=Ãé¼Å"n[ÔÎL*&°R f˜_'>I0-mU6³Xk_žkîL‘ÞæPdoc`ÅÕ÷¦àX)ZB¸ëf+Ú#O«—e-f¯±[’Äf.þn¯z,¸¦ŒQ„¨8™_þиœæba•Æ¡xJƒÈrô¥f«M0ÀñKàË»)Ђ%ÃQbsÖeÖCŽ‘T™7J ëúŠú±*ê<%á¶š¡’ºó _}ÒÞ—{H†#cZ½©æVUjaØ« 3y !“óv‘BÂð+$þ'ÿCVÝy…÷ÎB¸q>ˆÀò*§·vb‡™’¯âà¨|%ô_”†•oÎRøQÄße>s d HŠåº ¥ýÎWŠØË0Ð!PÊíÄëTžC;ïG¥ºjF\j¯ìQou€O;ÊÚŶ¡¶¸Å÷¿‡ð° wc6"¼#® WÚ1"?ˆÇ˹0¡”wV\A+œc0’¯É„¨|Ånѯ.§“N ÄQÞê|`sLHôFR”E®øâˆÛÕ¿ee¤Y•…×#Åß[ýaâKhãÓ@î­¤¸ž0øÞ*-À`ŠÊ0[æ7üÀ%ý‡ lS£¤Ñç÷Q€Ög—[ŸÁbóÞð„1ìtY<‹pBu×f"f«ÇÕíÐÊÌd2æ{”¿1sØ‰Ô ¼ÚÔ:²O?·qå=©^6;OO´ ¥GšOxfðp«¸K‘L.G÷] ®{Žëš®·/‹p¢¬,é¯j|è˜Rú´%° ø@a)Æ*¸¥ ¸"|ìŠ|ÆIµ½Ìjf­çzS\ç”ÞžÐÃ'˜ô2,žþp`”¯&©&xtø¼«¿­9õð¾{òê2ǃhj²X÷Ï?ÞX܈µ÷‚ ÍíÎØ¡÷Ÿ²§Æ$Še)/é,íÚí&º@Xç!€ðÑŠ‰÷1³A¬½ Õ½PæõÎ~ÕëUGÉvé=ˆµP‡+!‹ò_×à¹Öà3«x4>ïçéRLFI´UašÐj‚ç8Ý Cº|{ Wµµ’Á6Îiÿ¯éD1óU58ë wŠUD<„è€VD_‘Ò^‘ ô^žÕ2kÇÔ¯< “˸"þ?#‹Óšl6ø«A¸^HX3V£ËþÕTG_Akâ3mö…N¢k91]s„(Gí20ì]‡0¾àfà6_b{˜ Ò“ª(=búƒ¿TVÁç-Ý 3?B놡4 FJ$sª²€`ºÆZÐOS¿‰ c 5ޤäÓ#²j²pИõ<ÑctàêüþS­¤ò\Z]†óØ0\—A|žÜðÇc>ûôN]\߀‘ëÝ4ÔVû—v4eQ=-zN;ØužŒæB7\Žˆk»sÀofÿZêq$Ì'eî‡.I›Ó\­ùÙ ÜY²ƒ›÷¦èê(ó°l¸Ý{¥qÓþ~,dÉìg .g÷8Q^ž;î‚Á-ô­Iá{Î ‚rÌ÷„ÚæÙ[DÉ—’ãâøp™ð¥Ši=Ÿ¯ål"”¼-Ê%bBÇ»ÝDl «Zõt&â‹ãšIH¯Cao…[­Šrò…Èã—¸?þŸÃ’òi*¨¨¼PB‘/ÖµœÃ;ë ÂãA²ÿBEDž4À<(ð°8»Ž,ûðúõêJÚ¡aCØ À-»#HAæ¬&±Ú*¢‰|Cyk‹qè3k*$Ą̂x`RFùØ‚ݦ"¡w&g´.ÅAœ¯åç’â²s¦·FÉVQÒÐüY9ãaÖ!¾²vè`•¶q“-ÿËp 1ÜdHD¿Õ°ÞB‡§hä¬Bž—Eá5Ñm$”N‡´,&è,b!U¥y[˜Ž¯I|[ñ6p¯cKåÉ!®!d?¾ûâS³Xm>„E‚¯ÈŠÆÊõ”I¥fQ§­Á莡ÄÁÖ…A*ÕY×z]ò‡¢&Ë3|,„6Æ‘éH'ÍV”({ö‰Ü?G0S«Â8Øh±x‘çÔ†orÞG|Íš ¯àƒý‡¡]Èr–?½*´+"ËÉž‘³¸µ¸&!á´:¼¬Þ„°@¥ŒWµ1ʜݾH¥gó bÏíH˜±_±L²‘pÜ㪄@‡À=n Ö››·Cš‰müØ6lÙÜãÌ`kÆB×ð7˜Æ5ÌýXºÉ™ò5€” ñ,X°Š_[[CTh¯Ú1Øahžx‡b„}AI1 ßd.}.—ßO6ž`-).QµV9 ~´Yãü~ë<%#¬cÄÌ]aÌÝæ1ô(ÆÕw+u§–e\L®à—•ß§ ´Ñ…ì0ª¼’ÜÃÕU:ýi‘‹“l¤ÖÚk\|!¢dì?_œ—ÚeAQPÛ }2t‚àL'åñ€žýÄUmÌ„®Þâ½Òi¢PÙwŒx<ÞÞËâ‚>©•ØÝÒ©Ø–W´ãÚY½Jòó+oÎGП…A{wg‰é‘väïsñ[iïà Äõ[çDªƒøãþ›#3,‰Öi^”Ï7Œ®™®tQÿ9E‚à :ð©K ýqùÕ“˜öek«žÕfªÛÛH˜=×)sEˆÂþTØ?Ý5¤Úº‚KOE+*£ç°ƒÛ<Šøú‹'¡UB”†ÞV.ÓA=†(j&¨ÐÍ`6ð>ésrôö#+Ç}¡.íy`øæàÿºž‹Ñ$ƒÉd”¿Bõ÷-EÔ–°bÀÛÅO(®!ï…·²¤Ù¡ºÁ7]&QZß쎗ØÅB³ß7­Üä/ô.zuHœyœZŸŸû¦`òÕK³`•ýZ–InRÕq|76L(s_vDJ;y+t¿‹LÕ¬Pm[çÁÿB%è&vRÇ»fÉ‚Çê½>Œ<…ÉR¶ñò6%›)×XfÆBïÏÒï;I(®G'FÇ[Ïã”·Co+FŽòû?ßú4#¶Œ6¼È”4r÷±GË/ºÔŠ¢vNGÄN-åHþÕl¡{ t_OXM(Æ•ãȵŸNëÕ¥:P šQØ”ÄØ0L×ʉ¹Æ:>ý¨£#¶îýÌÎ,:–)˜âî 5„¤ý[‹Øß?¼|ä+¬”ŽcNZb©ÿ¦ÏÍÆýkr&ÓÛl|Jù&Fõ× åöØÔ,Ú”Ïé2Påül±•N´J„Üm=½ˆ¦ØN›œåÏÏ»ZÙ2?ÆwÚ6ê½ î<«6ÿLG Éæ6°»Ra¦8„S¤+â¾Àíž((ï)%ns홚–íŠOf!º™(ûMqÅÙ“‰]‰É½î”Åð¡ë¡ Zª£-ÕOÉܯ$¶ acdد‘EŠr·º]4T~>@]3ñâ(ëw›XÉy°=žj®8'à"$wG|m¡¬Ø#$ã†_®\#2g¡¢ì7´fV%BÎÈÄ#ŸžO®YÜçiø/øö%Kf“’è èaìÆ¦Æ…ðÌb‚óa|WDó}KJ&²¶{TÈùp˜GÚô±9uüp·÷ðù8òóCzN)|Âï<‰ÇæAÛøÑ€Ñº#jÇÐL™÷óE™› «€ö‹=g_aÈ0ózD:6 qSLºä;Ê•2,ჿ€,“–œ›`:N«›Š[±zÿ7ÉA°F™ üN 'ˆØÙsê4bRh+S{-õ²tÓ<my 6"xùÐ"j­)üÎæ\ô&†œ•Ò¼‚‘Ó‰H×_Z1Çä(5Ãv\¥—´ÅÍH“Z~9"¾ÚǪ­åéŸïÔUÜ%FöÑ¢G*O‡_câÓ¦7aZ‰‰¹^üß–2+[N6BˆHuQ³¥´ª/9ËQ¹eÏÆ×E’¼Ý1½ýzã€?eSO±á¾FöiK³oN€8¬Òv+—¯”5õCú Ðа‰¹Kr‰½á ®N‘é6Mz—•‚–tṵ̀ÓÀ£¯ ûÊ,xu DDûí>†˜6  Æ"%á¹Çzpr#äòÂë4ŸíÅ]ÎçVx(˜Ÿªé‰vp0êFÈ,1¯6zÆó“‹w}̬ŽÛrª•ÎÎïr`”0KõôÄ_’ðr Ô’&ÃÖ¤G“.5æÊi†:Ð6¸§×~rËðû­œ"ßžˆ°:a³‰—f~^º,.õ-å¨Xšúwœuá݃"Éëñ‰³»ªÅáÄí\ÁNoܧ>UÂÑ?¤šÇZÙE<&>°P]›ÐçŽ3Ã>ú}».Î̵Ž/Qcððïª*†B Û=Q JHš¾÷YU(À´Ùäžžt›ßa´2”ý×6Êɧ¤˜úH&°­3¡fh¹·žbÁô˜]­Ñh£d,´øüÑOf=–»ñЯÖžâžÀÔ,Ùp’RúÐÚ ¬ ’Üz Úè‰Éj“›!AVZ9”¤Øxtñ–Ò<È×+Nbý‹WF“9~5ç¡ß‡¹¨ÉÊr­NC*úÍô »¼ï‰À\]Ÿà†8œñ~dTÞÆJü‡^ô1ªî%Ì¡<À,È”cD=6šûL©x9zû”rÄéÅ'_³üýŸL#ƒ~ÌÚ&ÆûϾ²2~g‡s•½…ö ¬ 53@”é÷sâpê¹ºž‘ÿk´ÁÂkÏzNÓ¼-öó9–éJà9î£Ã=¥Îsæ³Pl‹î < ™¶a™B¼Àî-…¹tE¾=½ðýn¸Ão0äâ*“Áp)»m#Eñj'Äcø—C÷Ö®çËçuŠö3Våõ{ëPŠX ëÜ”Côý‡¬Ë(v¹‚³Ù ÿȰjòTn>%RÎ>ÐÕ ]o‰‹s¤QѼ-§ dkvAMÉ(g‹\Îñ ?¦U‡«ù‹l_B;ª…âž]/xy«Ü. E-V‘9<¥!`‹&õï¹ñÔšÏ{Nb±2xdF+V 4̇Xí —ôKNæ`e%ÒY#q¶Ã¡`+î‡ÿRÇr½´oáUøIÃëË?“Þ=ãÁð'â\/€&j©ý{Ö!Æ8sÀŸ>«1±•jWè¦f¤ åï*^0S1®:»á©}ß9Þ}TèÌì>ƽI±¶ÎuhÿÈ”kü«Þ™©W¯ —Qî².6ü¸\8 áE%b‰!w×ZÌaƒ"?ݲµÞÇQ®ˆ(õ)EV¬õó!¥ÉW~Ú².Jn‚Ãþõ²:‰éÑž6©÷q‚T%j\C#eDó’TVë£ñŽJU//YnTRq³LÞÚbº¤„û+Z¸ÄÊ5ö°(‘&jY•ŸÚQô2œæª0î% {%®_׉·c i?h|/Ûý¾½,•Q‰¢%š¢D„‚AÚRðÅ(ªŠª6‰–ŠØó>áP¤½œGõ-ÃF|Ä*Ê( ¼;ž·%ƒ‰Ê³M3ŸÆtŸÞ8GÜ”ägŸRø7‘ºÍS§µPĦyc†}ÉËi'ÿ„øKÞ…!YóëýLXì²\KóåYú0óìÉÅ[¨²(F;‰ Ûô&  ‰òz-éûñ3[W-¦Ìiš=vO¼‘g¢ fwï{Â?…ã…Õ 3˜`¸>~ø³ÖÂZ2s¥Š§Å¥!ÒNù¢o¯ÑÆpµûêçþ¥Ó›y¶¨l4–ëì0›‹ú¨Jãól%ÙmãS‰çÕ6EèÏ™…?¥3XÇ™øYÈïZRÊ }ºäBËî¹6t$=ˆ„«Î½†k‘ª…=΄ »øE[oŠÇW£KÀ6~kg°Ë ü—丷>yÎCÙð›q£Ú4% ½Á¾ žrõ ¾ûßÏjÔ×BÛi6…2Ít§ŠÊ¯H«ýqå¨Ç­—2¡Ùt<%Þ£>_ÉÐÇ x¨M…mö¾ïŸË`j›¤ç-lWÑÄEŠHÖ«Í#U‚rzË_bH†û™ Ä$é„´õô)p>åÃÒÎ|ðh±åe޹:¸£Äê›»“\:ì6aŸh€”¶®¹¦c£LÐÚ¿Õ•T|»QÅ6W ]lÙhZˆ—D¾‡17awÉ é‘Y©k•Àïˆ×åöÿÑ.¡½…¿Z¢'ù¨ØÙ*“[`#¹e½ÝCîTUÞ0ÆŽü ŸGŽÑ»uÈp£!óXd×\+¨§§û7{ᘭÒj¼ZŽ’ÓìæOãÁ‚AÔ¤ñy{(,ñÍøJ6­…•Ý x5ñ°,ì™Ó¤£"ôýéxÞ¾ü„oböˆJÆ»ë-óå´Èe‚¢DcÕIS÷H=e9ik»þìëÅP{W -&`&5,€³!9E€¶Óc”Úøi—¡d‚Ñe‘{¡I‘ŸOÆ]FQ·)y!œ@u÷°7SÒ­eEj÷@hŠ›týÁ~9 J·û²*NÉÄ}ä蟸‚ «ÜÙûÉŒxJ ÅC#1¥]Vl­X¤”‹[jn Ñ&t·6›­ºÞÇÇBõ¿}ÑTƒwËÜ¥nêɆßs+줰×éæ,‡}ý:²ç€&p,:² ¿0­A AùwŒdaÛUˈd¸#h}ïeŸåÑóO8êi­_Í%òÐÈ’¢•ÁcÂNŠË{!½é9!¹Ýwò¶õDÓÙ[/BÚŽ[ò3¼2bå¤ÏÎPuù(Tû©YlB÷“¤”ꘊ­ò}nqëu3o À´ð&í†Äúðæàcƒ´ÿƒ€¦?ìÁðëâaÖ•ÈꙂÔ% ÷¬¦bˆõ `³ò¦ùEÌŒ¿3 û ‘¹ßR%ì§Èý&‘W|‘qŸ÷v«byØ|!§­" -²£ÊÛ!!ãcµ¼¤zìÛPþ+º²œŽU/vªóÀÂ2ß—O>ê$-¥4d%]³ˆ6HÝ Îï‹W¯%ꢾ€súßÁ3ÄÉ™¤ º®÷ŠÓ yÌ6|-üÜ>=½§CÎpð r]kÐZqT’f¿Ó k˜Óš)ßÎÇhC2<Ùy:¾ ÌàýªÓÃO*°]¦-޼¢Ú‹~¬ýÐȃ.êIÓÛ•:QÉ^€DÛÕfá˜ÿëP÷f®"—;°Hj‘ø¢¶f%C¬¢k5öVOÕ‚ÛäüÀ« °6–öó»@í•OŒ°´TåUöl}±m[€ÿ»w‹nüý AûÕexRJ¿ÀMMQDq[yK¤€¼úº^Ã4)'n’&ãÍu˜‡Ý“|{£šo¾Ò.Í.š}C‰Q>TYa’ÍÚPjzÌx ½^>Yè/á/‡Ux¡œØÐýxA *ƒ€¹²’2-Øù€y”ÉMnHÜüI¬‚á6¬ÅÌ{c{¹^Á }g¦Þ⋤uCo{§§ºà¬ò*a)ÃN+¨žpbg°”T÷ (jÝ0Êk:4at¼`CD˜_OÑžWúÂ7¤1ËëÞK¨H`š rlÊ ²Z"P òT×3g9±‹ r–ðØ+y?äoc’¤ –t“·+ßW|•íKK)ƒ6õ4J–áƒ.Ö€Bh<ÆÖ‘}[.˜K"A쥰aKŽ™´ù™Dùm„¼ŸÇ»sC Ñ+½ó·T¿24{é]ÏÜH2LxôÌØ`b‘/•CðS`<{M,¸«øa´žòÓöKóèðÖ ŽlÂb"Õx ‚$wÄfRæÆ ¶ýl€£¡¶½*Y]KÓÑ6CŽ*δ£Õ9" ›bJKAãÅ|ªÊ 28y]–‡uìJB¡Ú}ÅNú_SÓªÞ £êÔ®)Å¥ÿÓõ›‚sçQV?:Éö¾_´¸Œ"§tè»ðe22 ¹HÈp{Ÿ½Ö9¸gãytÚ—CÁýîÃç" tŠî•* ba(õn¶ÔKk‰¿LÕ†éiù0 šÙ*çèwxìKƒv‡´‡Ôó”YÁâ<úÂõvE–ÿ%ÖÕ\5†•©F¹=ÙkÝIýìJ&¸OuÑíš ôôÝ>txoI<È"TÝüˆÏ~4mÊ#o“DñÔÈctq599¤æ Àä¨dõ2ÇkÚq o˲焤ÁbÍöÊ ŒGþL)òÿò604µRXiÿÌû/¨3õxU8.`劧áM5tÝu¶«§E }§´­‚ÀRÚ•0Þ|§²|¢eAX”gš|Ù—ÂðMšÉi(‹ÁY’Ÿ´8HTe.‘ÿ­Ç‰Eß-¯"=|üÍÒÔP—ަ4ãtôlŠ ¾«ËmÄ kgÇUx´¤N Äj ‡àY¤ÈŽ©ËcíÜ\žƒŽNô ÈÉà\’JPT7黥¤ÄÓàÀî¬@*7¢ê5ÆíþSß,mY]«º—ÒcŠ9ÞãLÔYá#õ¼™G('.œ ã,Îß Œà9Wÿö­pe¡¹úg.v§D!m`ž;ˆQ„8åèhÎÂèuÜ—kj[ƒÎ4~Ø&9±v&NðL¹d4” ¹œ á»n`uxÃÔ‹U€;„ø66´lpím“YO ¶ÖJ2âìµÃ7ŸxTà]¾ó”^b( i [˜1r?©ó@žÊ1ûO8÷½—ýý¡uªma‡®(ÆÕoAÇáÊUÞ‹V9}É=ÌþˆlV5TX/îÕÏ¢‚ã¼h¬™Ôgy+Åù$[‹SYJcÐ=Œ\ñ|=éå×< ¬¨Õ”°.*ÖðOxÊ:/SÙÛ¶ü™´Õ¥=u§êJ¢‚Óò-¤Í[|*·ºž¥CBn=mÜ;<„kÆŠ³¨KÇuó¸¡(NûŽõÜ#`¦w˜ŠÀ®‚± 22ûçZÚÁ¯ºE¿þ&}ɧ QšƒeËY¡½p´}!a©Ði–²µŠO¾é.ìwdÚ:vÚ_½bêÖ+SögZGöK­±¹”¾Å…¶ë|˱ôe’FœšƒèB•u3¢ëOD£Q;¬°¾”.sj« Žƒ,DHŽòßù‹†ñ7A8>DF²žßèxúÎûæ[Çë(j’d@¦eg$ܱè2hMÃß¾»êט¹É¤œ`f~÷ŠSDË.BB(¢â¥, ¯ÿpµRß“ó³3HÙ>“®¤g{‡ ôÕ½q#õõvùZ¡÷wÙ£»,­£¶|‡zd€ o£C”Ïž7-‚™VßXTUßæmL,ab‹ 9–ò¯¿`pS˜¡óoa™/í9ÂxÆ]€C¼‰¥G4ȽëK@oX´P"b+ó+È5OÛöˆÒmëqËJ]£¼Ž%Q/èæ F´¼”ªéhjÜ`‚hõâœëÃe¶àF&¸‡öêÐOšú«QúˆîSÇÿB,Õ¥ $‹S(aÊŠéŽGÙ‹~[“ˆ÷²¬àñ÷ë þ ù½³k›tÞ¼êì’Úž,²¸âÅc 3Ø!ZNA%$ïz²q̓ÔZvì+üCú`·Rf(]Ó4+¨ ìB–¼5 J~ò¨õȆâßÓTGü.ÑþvꟂò„Êy°ÃUåª0«¨\#xûÛ _ÎOÙðÆÃ‘mMP;  O§3BK?è‚2ø PKØï@™Zî©Ó9>Õ¯"ä€>PqbbNfú¿·…!¨Ü´:ÕëÞ(‚ƒa Âÿü™ŽžA©» D-°cy²OϺ>‚1\/غòÃ% @@çGÙù;$~G'²Àð÷²5"RØ»¼ùº}к¢Þ¯Hôá\Øô®‡2k <®5i9(õ/ßG(ɹà¥I9© ,*°c¸åV3Èm(™H·ÀCù,cÞçdtâMªC>?X?‡ yë’a1nÿ“¸ @ aYi@Дɝ¥ÅOr²ª~Æp£ÉâW,uDvE·Àª=Z¬ÝÿS›Úô¥9œÎ„Þ8OŠÈ@Ú2„eÝíàäáÜc=çÕ×ñJîdbüÄ$V Õö%ÿbEÅ-X¥f ’L4/ü{\–zFt}J¬û8ƒKKYÔ ÷RÿŽ‘)ÀÍIÜÒKGç5o8§„»ƒXé"°¿xÇ´¹# çAÄ€Ñp„y•ãKÄœ¹VmS?(t:©8¯$…O’°±Îjtù~rÝvšg· ¶Œ=ŽR2îÁÙ¦Ž:²PjJýáPÜb¦ù{ˆ‚Ñ«÷"Ë_¯ÍÅb*UÒi/áV±Up-ÄQ,MP®ó/ƒ{¼÷<âÑ‚ƒÀÇTE<-DìZrkõ¥öªü™M‘&ÙÈÀÆF¬ãÞ/‹¨XFÑpì~ðPä)ºè,|&g"’’M3zĨ„¹sœµ„ œ§T¦òê¨PD®(<š›(KaoœÖ‚ öýfË+(õâxSl²ŒQgï]—ý“¿ð0t-íb¨î²|Ú×@VTKŸ:fMŠZ@—†}$Þã(Û’'ˆêúÜÿ<ÜiNUf ^Qó2òsç% vBWöøNZmrüŽÀÝc3îˆêÜo¢Nöoþ»ŽéS1SÈK ;ÇÞHÀX)‡asñªHKLÔ1Ÿ¸÷ĸÅq˜ÑëTÎóK“ž³„ «ˆ’“Õ̧Þeá¿2öd I‹ÐíÐ&ïxˆŒ­í,âÛ=u_J7ð}ÚŽ`©\@‘,œ4óeØ¡þò,?EÂOV"_ôÿZj›bO“Í]ˆ _uÄYQW$ÖPË W\Ù¤Õ’ÂŒ3Ç÷nu<œðØXûÀ­Œ•¸'ŽOåîD0'øâ|x-‘D׉ 3¢+À3瘪Ð48Ìr~A+úï϶¿­<žÜäRMƒrð<_Q~ì§b‰¤I3c%¨~ñB+Íky*‘ÜÍKã­R;œÿý¸/°å¦U+$ãHÑŸT¸ÅÐ0Ø»œŒÃRjº_× Š{£]ÝZl9õ£Ã ”oQ}Ž ¬) ô™?¡Z=1 ë,±†d±Ã†x2EÎ?§‡ÈÄQvqªu³‰ðuó"¿–Ñ)cIŸÀze£µÆ×«ñöôÙv|é& lË¡ëŸvJ…¼[SØö臒y™ípqüê ¤ ªðø‡ª¥>°ß8m"N_«ÄŽ÷¨8`ön`X½ZGþ1¸¦ô´¹P÷Œ«Ö›K”k×=«Š‘2c¹CÄ/G¥´HÕ–¹¹þ‘*h6²‚‰!éT0V„³ÞÊ,¾©Ù_EN9Q)Õ]% 9›ŒÈÒ/—uÕö’eé¢ ñ£xÎ0Švê®G@/‹Ñ¼5ÖžaßÞÄé\Ím$)ýƒP1Ì]ÂpIÝóªT™Û´•¸N¶Ä9 o£má(…¯¤ ò+kŒk¦„>ØEWÄ2hêú³æ`‹ArÊŸ»ùŽÁ 4“‚‡ –L)mÇÂ`au‘ÜuI·ÈZjš˜¶oøŽöd³žM8€Ãp«ÉÏÀ\U¶Öç÷ô]–¤ ]ãùºÈC0šöœ.èM#”™[à$&X§M¹®™ïí¾¥¥æÃC¯ŒÎËúÐB\Á GN§£¦ìUµ#mÀbô ·p£¦üSÆ7ÎdI™+”R¯NmÚ ÝzR—{Ô¤ÚOµS>éËìéz‘ú”gõEÆžž@þ`Ê?@SV HK/s³åìEg5*œ/k…‰†=.î¾^LÜ̪M¯PÏüRêÎRžÛ< ýêë,’è*4RwÑnuÑGkuݵÇS§]T’=—™i_¥­U9äahO¾_ / žË ,aV=½HX¹¸ô"¨sÁcÝE€JœøØ9EC¤Lá £ðÖs?1›Éœ‚éž©¯Oڞȼ¤ksäTb`§\†àw@Fa&×Ùø’p4þ]’ ÂÙ¡ ¬Ô€pw¾ö4nÑB‰pºëÐDB.8üûQFtÝ-­I´]v&XûIˆûý^¦< YÔKQüž R-I“*¥t-Œh䜭Р.¾\f¨~ç··ámîòëYu-A»Hí1²zã:%ÎUô×ñÃlÕÝk.Ÿ»Ä»\Œ•¥:Ñ|Áîª èÄõ!>+ËO!Y"~úÅÆ­rÂ<ë`âw@ÄðìºÄã+7aÝëz@wÏAqalNŽ£FÑ ôwÌ4/ÈËö·Ó„ÉÙ>„+°ÍžÙÏÆjÐuÌæC€cöù5. üF:Ö\wqš[–W!x²%†áÀNÑ­ðð‡ªo2"qÀ4õö,\AI‰›@ÌX\¸1KuŸI,©:p•œZÂ+ÞüßèY?µŽÚ<µX›Å°±¤XÐ’?»4,z7(ždÚðž\“Éþ–^/@'?Ãè¡ çGs;}Ǧôœ8&‰d}Í&ü]6ó—?ÔîŠ|d¯ —S3JžnT ›™þ3ƒ ÂFŒªÁ¥ùw`uY)ÝRoî§­#Ž9G¦£, VŸ #aƒd«½9+÷z"ËÅ«¿Wž*ì ÕÊHG·ÑÒAMà—¶_O*Ó£ÿ¶£‚§«Zä©R˜Þ#Ô!6}N{âßÍò¦Áq§0jÔŸë\±‚l7]0…6R5Dðºã¬ž(Á«™zh%ÅÌI6Îö~ÄyxsìÏss»F;Ð~c,Æ{Äuà.i1Æ)œãé+nf?¼ë±¨vna1µ…ÅÉ;ÚãwËt GD¢š›ì®'6˘œ¦^µèM%ÆŒüEfºÕÌâºÆ{â#as¡ ól CràœÇšh.•"1âµe»¢v>ç–­e« òô}”™Q¨3:‰øÚI; Ã3Bл3 z½fèëé*³³â*~çŒQÿy‹mqò FY$'ÒÚ¢[g’/4BhG6•r.NÂß™IÉìÖ÷nÞ\IfFâ2~P&P^åg(à ñsjm“ç]§¾kÀ°Äp:¬…Ú«§1£Ù+ƒµF­Ñ•ø²ÈAH+ÄŠ¾aUðø^C5°9«àíš./eá™± ˆH—ìþ*‹BPý¹5ºÌ7³î dn×õ7ë9e6ˆz½@"šÔÒ/z†dH᪸Òl‚^ʼn† «¦ Yû{Fç¶óT߆ €:¡6Ñ8â®(j1îáß[¯÷hÊ©ºD¿`äArè:JðxhIOm>19ô;&ÍÕf÷]sM•†VG×[;hŒæïV3÷(’ìö}S Wµ1[¶ àÙ89•áÃI{äÅÎû3éïc}ýåRÔ¹m5—Æ›Ï&-yíˆkÜŸ‰+t—‹<žµ )ÄÚpÖOë.ÚÊ¸Ô Å]]s`)gˆztœ·çKRDè]ßT#–æd’¼ñu{a£\ ž »µ¤`ºîÍA¿råÜ‘¦×Øä©î6Ô©Çü¶ßžÂbQ‹â8WŠ9ŸœãZ+±úüç•’´g å]ÚÓ1¯Þ ¼p©²ÜÌrUSîŘ¥ÌÚew–»œÅ…AóhŸõ¨.lÍa |‰[ÌϨA·È˜ï]MØeîðÙn`#|öÓªòÝíwMfÜÃ' ²åã齪GƒáÝ_CÇnHëé§é:ÃÉÓ­!Ÿ´hC׬ýö¹I¤ ÛUåó"ÏA•²{λ1&A8­(÷DÔyXhÃ;G1 Ø]ªP×§¶ù9ؽY˜3 .´B=Ñ$PPúÙ]N's¯XôfË4œùÈ!°¤žk)•k1øÀ•³ Hîùþëz!V·\,ÐÛœ€¤µµ)úugæ,)ú5ÜÐBËP3ø> ßgÄG–±*¯²Y/\38Œš››k&,t‘i*eY_C¶:y¹³.OwÇ[‰=¶–lÔþœ~EaF*¢#|ûZ¾àaèpö++ ºÜ†ZÒPÑÜA–0Äu"×qä¹ úB²©epAÐ7@VKH·e)èA°â^ßëú¨iv†Âä%ü%Ü4ü7—WmwR òÔtOìw¹]G (Õ"§åq }uåÇU±»sØd…S¶83€«ø“ìou¾##iÌ7ŽtKæq \ ·ËSþcñ«#,pŸÅ—ª ¥[`‡ð²¶ÇZ î:´:¥‘õ@࣠I;A0^šJØ%Ø&3UÊsÕ³ õŠZÕDß…níE~μ:*Âøãºí°ºÁâ!& Ú›ó}4ü¢qf•Åq~—IXz àQ¸JAšhÙ^X.µœ¡y÷¢öÝ|qA24ê,–8˜­?«¼9œ:ƒJb½êWïÔbÌZé%²Xä½—U°•®cWªÉ7ë¾yhÍ—§‘’¬ÆòüydnPß ÅðƒÖèê ;Ùââ.Ô‡Zj :yøDj§ƒÒ•kh,áŒ9Ý©†%í;Ð*”׿×Ý+UÅ빈:Žaß­Öµµü+^!1X)æ*ùÓ}w>” Àú›WëN¨¬ W}½8'|·…g*^qʰ=ȟ܃‡?èâ¡ÐÅMOÕ7EÉEžR,õ€ß/l‘ ààRÚºÛ©aZ^Í çìãê§¶]†’r‚ó~Ék¶ NÍ>€¬\8ì-yÆhÔ.Ò6:û(I»¦¼LR¾’>ÌõÝå ¶o‹[4ùÀØ| Ç¿ô¯|Ë»ŽFÑ&›Ò5>‹¤Pq–]ôÚ“5è×q¥¬4¸VJËõzÕê„Çtä û®»^²ÎO»Ìý­ñç§´N8)â?N`jY/HHs¾)fŸaUix?„zöÌDµS¯…’)É Š@|®}l/R8¢r)Tª r22[ù²åfÇØÙ\Uº×õUì=E÷_oÇÿ•!ïrã±µiêb\kº½Ý6m‚¦a —4œg#bi”$¸S*céÀ ‚öð@àQZ{’§Ûêœ-a<þñŒî‰ÞFhCa%¤õè°lØõÞ8ë·ñNê{®¡ÛaWzçuBó‘U½ä+ÏbkVµ>+ï÷ƒG–Æ`ß!b§0¾\X/0é¥ú;#<Ñ/êµDi€ãµlÒŽfÕƒl®—Á«äÏ¥Aû 4­šY[ò Úß»+-T·ô¸5þ S§‚)‡™òþMØOžCÏ{¿o¬×£as0î–Éï‡ÎQ|€A€`J——C4gÆöìãïÒS8¨ða–úŸÞ“X¬8\Ê¡ª›»5 à´c‚YÑ"ã‹&{Ðíi„™ùD×hJÎB‰ ¿—"ó“ ÷噓 Õ²ëõ n1‘µ+ãʾ\•(낯&¦ÚÈðxÿãîøƒï›iUyœy¢…%jæWÚ`ây:øpS‡§zÏ"k\ç™ÒM»ÇQé¿b@´ÍPtÈÜ3¹åŽIÏ>”„JV"<ä=@ô û%‡O¤’;!ƒÃL÷¯ÓrãOTm7z–W(KÝŽ¬î“^‡zú]Û=¨0ö,tþŽPŽ’ú‹—µÒŠ¡6Ô7[¥}Vê&-Éj¬2£0J8ò>‚ÕÚ4ðKDAVœ#5’æY€BË(ñÏmz`WzšdŠpµÊÃò3&î›Õn—¥Ø®!Ob’è)IG'K­d A3¥ñêÇ$õº7“XëÇZzOÖž³B…ß2¯E½PÕ6Ñ›×g„û†™Î|TOÉKgRC‹-ƒ14Áp»áš;(Š0éã:’~—W=QµÁX»Þ}Ž„´JõóG ]°UÒü‘¥¾ŠQ„­6K2œ^:"¨Tlò“ÏX=Ÿò_Lã±òmêÒ«ZÞ‹øã%M$÷ÜÊn4Är›¼z¦°³î»WãRQ¡XÛ->&o W‡¤QYÜ‹áÁ,‡ÂG_ŽÇB©›†ÞÈıµà¤ÓØ`œT§BTßð9/NÀ¼Á!Ë·]xãû¡Û¥r“¸žŠÛ°¯¹Tò8{‰ëß›pÏ…„™`CF'OáÙr5ø‡7”@;¤Poйœ[DRíÙêæ"#îňÎ_=Û×c&Z`?ƒƒ‹‘6‚ö3u1Ý7ÕL̯þ©tV°ŠÌî,:b¨à:9ÎÈR£>"ÒFÿp£Dß{-u›ã©)Û\°óQFýˆ:=ó T_cîs5qûÚ¬,¸\rräUôÆ”çA§D•j¬|ÀäNë‘‹g²ûM˜Œ‚ñü7¬,¡›¤O†úÚK,¨ƒ6 ÈÇ_šéŸPWýxg€ŽûÃÙÇÎn2a'åíÔÄÌ©5C@ßqO{€÷‚Š6Û>²ø6_a^ÙÏû M´ØÉ=‹›ÓšäZaV› .—Ö(‡fžõº¸ë}²°ð†º±ÜÈ–òkì—'U¹¶h˜§…“ËpíÔÂuŸîööÝc,B2æ*R8nÙeÒ¯ó~* Å5c¼v¨¥»‚kÂíü§ÎS9¯ÙžŒ¸ÀücU´æù¼afnÎq!Kö?ñÇáMLîùØûÓNLBQµ¹#³é}J!Ï>cäB3 耛U[G¦š'cN0ïÄk8E+[÷4Zeþ-5{ëüÑØyÞHÀ¿Âd+_[þß[2U!7ØÝ6zP WÍÌÖôˆí?=ÀÈ7WL°U†ê~ –Ÿ?ÎÝ´¿ Oî¹É7&°}ÂÉ Œ…#åƒ/òÂRP¥ªƒŽúz¹ªø…Š+ì3(&ˆvÿˆß§8ö›¢äNk6­†o»éÚþ¥$6øÙ§0ëœì`dáÊ=J…»ÿñ0¦.ë£qÐñÛKÒ$yÞßÚBARr^Á“†+<ý íMp÷Âæp. ËZx&N™Òçì˜,ùv…,­¹£+ÕvƒwP sc:Ô2RR8¢?ñdy²”oUHJH¼tÈ{:[»3›ÃLj•Æn·Ëî>D{Æ8•ó*[Rå¼u ¢1^ý¤Àëê ‚@"¸{ZÅJ \¢*Ö¢K•²™t8¬õVrN\¹•¸cCº/\/µLÀE [øGœl*PŽŒÔŒ£D°cjÃ37!“-!¯Ø”ÖŸz“®ZXGGDÚO«•®4ÚÆ ÓÌÐNà®±ý±º§bD4Ø ø»sX•àâ<ê&§ŽÄãÈÂÃ\$}¹¸ ±»ÓÖ*€­ÈAõIR¬ñ‹VåçUHÚLÐ)ŸÀl‡ÚòRÐt-Ê·•*åõB¶¶,}õB'2‚8’Ô7mÚ~”ù2r"rÌü!6Ýç=ÖbiÅo)×ðKqû¸ÏG¾õs[¦ÝϫҤõÐ'ÍÏ~úé«‘[™}ùd V˜_Ôt‘Ýt:©SxôáF8¼‹.½?vD}ÚØ4‡J3¸¨x ¯fÎÁOzlÝú»—9I™‘ŽÕÇ¢šaè ¶r…L¨ šn÷æD@‹NÈq"Dç”N âM´ #{mlo‰,½OësÚ4˜JœCg^߀.Íìn qºc4†F)Ç/YVØ{]£´æÒFBfC·Ëõ” ¡ë‚K´!@ 7*#ü¡ìˆTY‰-C_Jã —Ô:´ VÇVœÿíÁø²”×òUø¶ò†3‡Dãûv?!ª1 4Û Ì¸Bï™žŽˆ63aLa{|oS¹j…¹@JÖŠ[é3xý@«¤5P)Ñ{ÆQ4ßÓc#ªçúØþÈ‚@ÌÏÇPyéœ}HU&_x–âN5…µžærÖU‡*–Þbþ; øÚۘݲbÞZM%9ÁšŒ@ÊbªØÀ„f }i(54­ VEKTD ƒŽ¨éÇÍAîÆ0z(™_’âÉÇ]wÊkÕÇ|ûÃ8ÁXN[”c#¦fq*å8Q,+1éŠf0Vßd’”ÞuaSQ|A?ž:竦©¡µ}–Ô¹Tu\ üì?Jô«yŽˆ¸®V"»Ÿ“Åo)vS4#yµÿ&|ÉLÀFjid­/†¤Vó/Ÿ!°’õzÆ [4Ðk€¸hÈ߃‰ahp—ýU¾àE¸±×ßÑÌÝÒžQñH6õ¸Ø§a7ݤÊçFÏHZK¨& ±­ˆ<ů>“¨Eò1(ÔÊXo˜_—­ãIaE2èª4=è5W˜[-ØÔ§jQY8mY³ AãzñqaðN¸Òô{ÒË’ïbF÷S<hO"óFˆÚØ Iž¤ûà³À,Ñ; õÌÈ–PE$å×?Dõ¦È<^ÕW.$!"•³ÃÖÑ„?¡Úúª¥UÈ{%uC`øöäO%Mq»œqçm*"÷Q_Zs$šk*iØÆ)iµymÆMè8вZéWùØ…T*'ä³%7Ñò¯åš ^ööa‰Çø í< ÞµáTÞBÞ›r)Õù&šbÛïܔܿ(ò9$I~¢ D†sNÇç›eKÝ«6OVveÅ{óhš#(V.´øwî—•iÄØaÏ盵%{uye¾ç}–$šåé…1+¯ª>.$šÜðë±&Ç€ 8$g<"[úÅø “²\U’Š.œ›ësÀH¿ÍÑ–ÛÍ7}¦â¡ ïñÿ†ót¤Ÿ6sˆºúíwÎÇ ž‚’Û%=k>¤&LékÙÊÂzBµZyóÛªìªrlBsß½B:Z S³€Údý- %x8y¶e¥¶x’WO4]ƒ}ÊF§’³ètáÅhAöu²Á›!5Ë•6¬݋HàÀ sôúŠÅÖe:µÙÉù$Ç0Ñû¹@s¯- ]uwÔ¡ð¼Aõf~õa¥~‰÷ã™pb¼YAµƒìp/Û1˶¾i^3§ˆã—MÊ·®D"ÎÛa³ÜI¨,§˜Ó ÈÔ ë±$8z!6£Úk‘‘keɽºM :ƒYf–þÀ°¸Ð³IÊ]<ž‰Vwj ¢þ‰#+×çµ$‹Â²ûº ÐÚŒ=ôé­¿0=8Ûùï©EÂæäýažÄ¡‚ù¡]I6g’/†UÃ}€`³ÀÂËÇWدÅÑ÷1Y}öÄ$ Áp¬½Œ˜4j½ˆ$ô¬Tº›L‡zîì8´T*qÂA µ`}lšˆæL—ü¥ÃÔ¡&JòµCô³VZngø¶ÎÚxrÏGv‘ôÂö¶«G¸ñƘÁ¿;Û¶s²8h*´ …Í(™‘Ø;åà»Ñô¥”óàÔÑ©¦PΖ|M¾ÔáÛ®ÍåañQý¥ü‰BtM›¯ì·sö…SgIk)7Ãd‹ŸÝ~è³vésaíÞ‰¸n7\ï.¨šl»7tÏèˆÜqÙ.‡•*õ³»ñž&V™¼ø—ÊYËh$•z3WLÝsÒa1>œngä}Ò(Is‰D4×г Ûu Ö¨Âq›Š‚P‰ˆ˜èãù¯‚ßN&5QþƒOÈåx£­×@ù©Gž²¬9éw‡ïáø×4sSOÂEìa‹w¥í÷QÿÙ ”o’Ùå˜Ïƒ´õÛ¨\)Kù ¼Ä•<Êó˸Pw°åÙÛ§ïU§•-“œÑ¤mí…-ç¯Ù©…HqÀO •½£¨ÌdpŠáß×yµÓÅ ¹ Ç[ÁBùY}rÚ³¥„1!ûõu §¿8ÆR^uõ2Ì4Ê‘¯-ÿ±¸ˆ“§Ž—A­)Å%Kî‚ä˜ex±Ÿ^W£~î ø ¶ó°ÏTåŸ/ƒ÷S¿O¬‹£ôùê yù<×ãéÜkñ9C]€plŒZô PÙ «b0½GHK›&05™.£Ä^¤Þ³hȱàìVE-ƾjöî%Ä7¾Í%ßBÅÑ£dGhcaÞ"?×ãl2òcè>;±ÃcƒüüFÏ|PÌh=¿ÁòšÒÛäõ F™QÎüidR®©Ä}ùó¡Þ×õYË´M ’Li²(C5¼Ë¨Ô g1U‚m<é_ôÌüu½`ꤾö³P—–¨¹¹fÔÎLJ¤œCã·*¢Q;ÙJ‡´Öä)@m?³uvÊòŸbé!B U”ÜLX¿×Ê ^:ïM]õ†aª7e=µ @²¯xc²Í ÿHˆ.¼ª±z-i ´ÏÕ?ÿ{D-\&‹OÜ!$–®3nØR_ö‚ìÛ®òø¡$q°º°±ÕMH}ƒh‡†&hù“eÑQ›^Ä"W9´Wtɽ½ëN­—êˆ15³/ïç.a$²òVèµfáõKe-á¥ÕËOšD{ž'‡žOÇÓ„äËB"èjž¹ò‚q.¢×ª Š+Ôºm‡ñž¥ƒÊcZ:'Šg¦LŽ•¥k-è®v£Ú©ßÓH‹“F§ƒâN®|ÂkÌð*Ý’·1%Ô9ÉNXûk٪ܛöYûèNf¯C˜J¿4÷ÈU6éô‘,׈Ñ÷^FEÐc™•|å’InZlï¸<þG‡¾+oÔË©Š´—þŠ…M2†fvïP®ÚÏHŠVJŸøÒh1õohs<ý-pÁ„©?â÷üqDjÑê±à$R3Bx;ÜïQ®HM‘6ø¸tLƒ ¥9|¦,s§‡½ Ò;Ì«sj­$A¼_á: V””Éðhþ'™©™ 0Þbz¯ÐòϵàÕJ¾ŠÂs¢Û$ÏÊUF2Œ­„>Ü A!‚ä¢ï'æs91ɨµ­­C 1X¾Y'I-÷EßiãHD2qjùr0Ù¦8¹9=ö_ã•”ƒ’²Ň,„ˆt³á®ØÒüië."mé3%G¿èöúÇ‚KðN俥µ† h2¿m‘ ªÆm|Ì‚ìþŠóóPˆ„ož×tíî‡ÙPFÔ`ˆý°¹ú}îË ¢å‚ã èûv,S®î-ŒÒLŠö—PœrøpÑŽvTÃq¯·gIi Óé'ヷúøÙÙLJ«T¡£.»¹rbçq@âg^ñ¦¤´Le0 I9’X­KB}žÿ%ÕÓ¾ÀæûêÀ—è g5Dhnp|FiŠ;‘¾öŒÝPë·•¶);òkxûFºÌ\]‰t˜²¥V:Û¶¨ÞÏÓæÏõ¦K¾O†žf¹± õ|šÐ«&Ìc™\ĈËh¾¦ã'Tž×ßåðDXláP9uŒƒ)m×|ÿ‡–¾¨ä q3¶¿\å›â®7··_Ï¡Ãt¤$Ið.—­ÌøFUŽu-iWºcUxœn÷×Ü1§dMÚ– ›çu»‰®_¦¶›iÛ|®ìÉUHêä~t;nO÷fVƶÀ"ç`Èê»o}m¡ƒh ­X4v <bšÕ}'o·³Ð0ËÒX5YN²@$PlGo|²û¾íÌÇñ¡Fêd¬š~ðþ“)b'¯ZD´-Ì%‘,@ aB)tRb£a—ý:§±^ë$V´à0ŸâwÈ9ÄbäpªîË㮩r…7à)ßm†% EKAÔ($p3Å›ä"ÔÇ;~æô@ž¤ß{𛻢Áò'%ÐÝ27 ˆ{.n„̺jjÒu^²`íÕcQÙ• ðâ‡D¯xB;ù´¨´7~_MÓ|&JÌZ4u._µGþ:–À™ÂW à΄ßYr[¢Í „LåG ÃbÕIo§…-UÖ|räNWTëfèŧzÄ]ÄKÒ R* ©=wUpÛ³ãÔÒªeziÓ¯9x> ÔIöôzñ?ƒuïW!ÍHoX§In(ºš5 !%I•-æéfØþéÇ–Ú¹¢l]“ÜÄ™ 7‹¾–(K¡­YÉ~qÀáÓ*ýó£»1ïTnÞý‘¦šû°W´¥÷çb8?k\'$×ÝoqÁ\oÉ~‚}yž_ÄR†3îÒÓDd ‡ ËJ}¾fÝ…°éð$:Ƶîk}*ÈNìÕ¢¢¦uY8!vÆNӪͻÐ"¬mø¿îƒ&~•“ñ¨_ž¶[dy·Œ¨aFÂ@næ¥(œ÷^À^Ë”[·K€w; >w[I£åáÏG—;n×S'›òrŠÏ÷DAÄm¶r"¢üÉÖ{‰TˆS̆ Nàú{t’ö¦ìòƒlA3ôT;2<±*è IÃÜb„‚udÕùózƒw½H;Ãôa"ÒïÿÔ¬véþÕŠxZ .ú¯Ø]/ûKUø"7*Å·ŽKØw‚Lµ/rûÛiÇ‹ëé20*ˆÀ?úk£`ûŒjE\)1DtÙ%O|ez“ÒZŸ|¢ÁÞ$Gk$—àŽoR¥¹é–?L0þ‰ÓIÐ ô“#ô­¼»*z‚3ÓÅð?.Tg4bÖÞãG'¥XÜt8‰™NBn—ÎRýp(L%½Nh ?ƒl£|[ôdü}õŸ#’ ~YŒ—g3õ8ú”Á6n8cNŸ~{Ü sAÆÜn·]H.øñÅÿæjÍ•¨ù^Ë|¨˜Eï yOu-!ïb…ŸíyÚõÿí% À$½HÄí»eßßh%˜&Ô àd(sMpXèâžÂícb±h®Æ!~7N²÷9ýZ U(=ì¿èäxÄN&ž@{b¼¿Ü‹+YߨŒTï fqŒÉFô£5ê(©–GJÜ=„¹Þ@šxa¬¾Í’…j†¿³¾hìàôµIµš;à,/õŽë,œM†•C”ù©uÄx÷ËXcx,ÈC½sAßϧúà2æÎÙê´ó Ûâíúà±ÉIžŒßbWõß§#@j**zÊ++kÓþx°‹/,tYqKúšJúxŸŸ5³-»>ŽÜZL²%I±"eiB§Û¸ü4ì»YG4mæ ïéHµ‡?žRSïJêžöÈ[Òÿ§É¶/ñ7.O£È0K4DLö*!¨Ì¶Ú1Ö îP]ÛÄ{{<{Ó©=¼m‡©;Pªdڨܬ ÖFE!Þ=§Ù8ýÐ|—i‰ÛÍž -oˆ°Î9P“v!ì5‹ÌI+toé7Ü1»ÈÝB;þðÊáUs™]Ê! `*ƒZn§©*.Ãb¹çΘbÆaºÕHa¸àx’gîw:°¸^¶•´‰0@wülɆJÍt•ý,©"†gŽVVž8¦È¥åtËÍê9½~ë^û‰,£ØåkÕf d§Æö@ßT>E&v³“1ÚSs'AW±p¦—­|’°e8¯Ì³Œ­×™—P¾úËù³üI z]±¬…E¯•ôV{0T?ù#¸7wˆ¿DµÌj$%©¡_(cÁßì&˜-êI™r†ü͇D!4~ç]fvŽ•ùcD}Œ˜ÏÈYÙ^ß«c¹w×1”$£Bó ýo•Ñ 'F“/¹ûÅ 7ìÛ".‡iMu{©ÃT¿Ký84VãCO`×° …o¢üÐÃ)Õ³,%¦D­Ü¾a®Ÿ4}P_à5Ìfêªt‰µi2¦¼Ö¤¿ð gßv龩<_=‡h;þÞpEeÉT¢ ×⌖œÔò°¾z—}äǼÉó,s/ @ÅG´Ð'ƒ¬Þ9òÚ¥Y[.ä½÷^täQ½õeÜÔª^Œ¢pNg¢²/y‚Ÿr>}è•û©‰3Ôó\ï’ËÑ*¼<«î‡Bþó,î.p6ÎÆ&êÖ7âfÍpÏã ¡8WmSøR¼\h(ý?ì­Ÿ?´so±07šÅ¡\Јo7Dz7o[PŽð¡"¯#"´ÔÈ‹p^ Peø£†Äصk'Ÿ¿êP Hd“p½»´UÖäs ¤ÍæM1F¶ñ2•¦Ú ÷›ÒÓ—¾zÂg81×…a»! >žÐ¹?‘·'ãRdîWÜ®OF? ¶Ä›ÑΚçá¥0ÍŒ%“#¼.µt?íßzži£ÚÒ5_Ò»béÿÿ4Þx²µÀ‰pú+ ^a ï—æ8®Ž‘¡“F+¾..*ç¸\’ä-l, ‹»ô*á4_zôÌk6×Ê¥ X9iêMÑ.˨V îçbŽ´ü9°H;v)àE¸c†è6éi Èy —7–ߌ´ß¬¢‹?]œ¨†0D°“„Å/1¶î—9̾VÃN%Q_@)eâÍð ;Hɉ6idsrafèæ3ªœÐS(!!‘×-êäþmï‹5ª)4¢ÂÇ?¢%öV;Ýgª'« ¸%ùN­¢Ò˜ùxVàD¡tH׿åB˜ñŽ9O%¤ èæ³¼¢::ÎùKHKûY?‹Um¼["‡L—«¯Å¢4>÷3F­¢";Â<‹vÀ"ºp¼é^Ä3U[zÑXoDê…â€1ôA/ˆ_¶¤yÙÊúÈÝôÑÏtvDZ߲Py”á6ÃÆ¯QF¹)Aø¹§f6Xú(˼VlË}'þs)§±LøÅÚ"f(¸{¹½7Þ©Šå yO´RDCË&UyE¡ Ò«ò½ñ^Ë÷ÿ9eóQ#tk?:/͸#Dÿ•Ý´-“Aÿ`Pwf +‡_¹Tv`ú/‚‡)‰ÿg§¢>å;£ 2ÛÛækÐŒæyÍa„ÜüµŸ;æõz~Ÿ™Î,êFÛI!Ì-ª"Ó’A¡s4úu±ž ‰éÃÛÆQi=2DNæPwˆçJ‚pbUÿ…pZ(ôrŒQ‘­ù ™çè³ 1­Ÿ8ã,‚O깃˜RMåÈ=gÍìܬw­ Mo/¼N¼Wâ2‰I¥½ÿátnùÖʶ>áÍL.F9îÞYùóÏnç!}5–a üi]@!Pq$øÐµ\­'UD)ž¿ €àç'2–LW;àÜÐÅ„œuדw­¦eÒ€×%œ¹…¾R‰ex½UÝÊs7%>·rÓ®},’QÛ+8›»ˆ’•{ ³õ<ùfD¯w8Óí2–æÑµ”á£Ü@ñbŠyX”`ëš):öáízñ]Š‚P¨@8ÄY²¤ÑÂà½ÐHRßÉ Ó"îØFIý­A^Îc$áÐFüknBvãâˆS_0¦ãewœÜè œ‚¿¯Â PàL3Ï‘…TÉß2ëÎß»isÂ)Ž"| ófë‡Ù3ÜNÇ¡}?&·Íî´iöÅ+g¶øtÃZ´Ë̈„u}P‹ªf«qÕ˜pL×ÙÆ³7Ý$Í5éL’˜ ¶UZÁ ð· !KEj6UQH¡¤=A:'îåšÉø{sÙp›OÙO¡Ô«Pm{Š4 Ků£7s ’{Û#Ø×ÖCS®voˆùGmÎÍÀ™ñZ´ZyyuìÚh£¿@»´.a±8œÖä•2/T¶ h*n¿7yù’Ç­=Sa˜ÇTÇ©FJ]³_™’Ø¿&å(H ‘Nº¾ûƒý|ÉϹhpÙwd óœ¶ë W §•#ä%',Úåh MB<`D®÷lîsÖM’^1Fa-…URgጡPî?}a`Âo:‚Æ<» f;aÓ„#eâáyTMî@Í(Û™à‰ÕÝææq®^ªÖµV|ªx{àøpÁŸº‰·û­*¬?2 §Vï§Gvêú(fi£Ýä8”lZPheC8è¼Ã ÀÎoÚ•)°ÁÛRlS÷‹ŽRøWB-îÍ7‚iØ%ÒeK _UgéiÃek½ñ£ {=¢ƒ±îç¹_ÛVãïËžžSºö?*-µDS1Cj0t•^:›XºÓýH 8L¦¨9…ù¥3ü'„zÿeÑ»l³›O8ñcÜmû9ne´§àCÐÏʘÚÁ{ ñUÝÛâL>ÿ¿ ø6¾Á}\ÐÉ8 ›2SiÕî¸åˆ·0ÐP‰™Œ¹{/=~°“œ˜Á¨äL'Í^UQ*°Æž9êÄM¾‚Þ´¹GŸÞŒì±ERæ.ÔöÛ9è`|]›¼Å䯒¦:ÍîŽõåZ \“¦³ížP~\|9Å¢ G*Á]¨‡í”9©2àí1ÚL!vTÈÙ)½T¹‡í¶™5 ÷ô…·w@Õ'ï¡$Ç0kêȉ2mìFy* ‚Eºû¦Ý(«“93&@ÓQÕµ£*DcÑ}†H¾÷‰¦.3“BŽSÜ\8Å ˆÑ¤ïßk5³™¸î¿Ã>sñÈóH“dhæ¥nÁíÕ1ÛÔ|ëžú0^Œ9vcWþí)†â];¨ç긌 q)Vøš¹: ÞwœìWì7 Á‚@~–"# o , Ð\ýªò±r ùÏ×ÕÚà×9©¶4˸XÛtó ¢ñz#ZMS­ M!^KüÇnû¹S0eUL¤¨Ó§c!+ø6Öd­Çw,Z|öŒDz;” Ÿ|_83€8%ÌÌŽÌÌQÀäYT{­%1H"’àD–½w|OèAסêrE¿‡o‘á!Á‰Ì‹¼·cƒk.e.ra(Wj½*“ñV¯tª¯b,Þ„]dã¯ó7¶d;|ÚJþ´¹ÃR Ò2›\(’$ë•r³Gãy)ÆÛï–Êôúl¢¬¹.sœõÆþ‹³u§Ùù =ø2T¾8á6ƒ 1c²,e©^Ý” …h‹o}ì`Âf ò#ÓG23®M=,â²ÇP‹©l ÝŠd­ Fü±r.V_å‚Ú„sŠéáY…3€«_U°ôFÞþ¦šÆçõšË{|ÊFG´¬Vt.¯¥ÚùKB°µ£zŸ€¥,)§å›á‚ØêGÓ¼;}á‡=âÛ 7§eÙRn Fw#½•þ?ž–'.Àcn;ݼ; Ë&‚×ú4 ƒœyß¼rµKþù3ïD‡'Igá7™‹˜äܶZ'‡a² ¯Ù9‚…˃”ºÎ¡ûŸú܃*ùĘEq4ÇÈW´°Êb?µ '±ãò|>h=&ÅhïùXñkQ„kp Nc뉀FR»ø¹‰"pŒýŸ°$¬¦x=)–¸C'tºBB”“æ@ÐÂT‡†Ä2õ ±'zʹ{ÅFWÌ¥pûÇDδ™ÝJrÒOFÛ½°¶»zÄ4»°Gñ/Àò—–p¤è±: _ëò«þJâä(Q;”wVGô ÂH/È*]:_²SOêTÆü‘?ù;+õp·²Ñø*™ì‚ª.NÓ)!4!óð¿‹’öw¬“ÚYñ7Öh$Ƀ¹Âá[! šg*¬ÑÑ‚´ü#“ø8kÅn…]äÙ ÉB±ülz”µ±º &˜ç‰u„ú¶¿,±8sB–€µs$9¹.ÞîVÎÃÔ0'æJà~jôØv î•^õÎgsr– zêéøÚȘq¢?ûï©‘/Ê R2µ.ÜØû;Éú=“ >Âÿ™a2=…™’õHú’Dê[ ã>’Ïi×!C‡+Ï.i¡¾suèmï,Ñy9ȾÚ)lZ•—¶e#)^+×ß+´½œ6Ñ¿þr½Ý™¬¥î‚ tÁ/LA?•½"ùÖp©H‰C%Íq{3±Û‘ùm¨ïäÞ#—Æ"¢H-žÞ˜]pÌ ðË3—/tD?À“å}Œ=0;“ÄG=RpçAÛUI®šk”ð)B&§Âù­ó ¾²²ôâ H ×5FLC+[5“wí±°@z&ôãÝ‘“l¾|ŸòZcø±$ʇ3I˜Ê³ñXÃéIÀõ) 'B¥Ï©…Ãpc™šN"/€‚Ã*x8,÷Ye\Ì‚Nx¼, L?xîÿ‹Òëjh÷ÛÉÚ%†HN›ž¾]ŸzîÊ&˜’ÑwëtB”ÖØ>=Òµ‡®ÃßÉîœXÆnñãÕ49gR³ñã‡niá 9ZtTȱçÚž@—y#;–P÷ÀœÙtR.YVôú”%%@î U±†­-—ê§ Ô$KŒY²…{|mÿò”³€áìm1é"çð©¿p@F6Ru”v¾è|á i3wKüUÆz‹{—âå"…G¹Ž6Ýìn¸È%˜2ÿuXèC†%¦c–6YgÁO<)Ò“ú‘%÷)ú]Fb ­ëÆ™î›ú½ÿY%ªôq\Ð~qùïIšq†?[="é1YþÈgÚï!y†ÓÊÄð³D½ïèæ E\¢ÂŸAÎþ³ë¾]< hNãîO/¿_½ûí¾oQáDVfyÔ`}/A¦}°í?×hº¨×ãÁFUôrååôâË]R¨÷Å æîÆO ó¶CÌA,VÕg>+B²~FöØâ‘½ÀÏ °s:\('vIÿàˆ~¦b°“TÕŸ¶íuUM¥­U;1ô9bþ=û" ³É¯ Z n]HÙÚùåÊñ£G"c…F“§G\“¦ ŽQ,éí`DH½I…˜L³Þ;л)Ž– ÇRc‘œˆ2†CÌö9¨~AsN6)–žZ™$ÀøÐ&¿u÷–ÿš|¥›W(Àa•®#¨ú‚À 9^…þ[Ëûd¥¥Gd;o_™7éÎÆàâ³ W©W9½Z^Wc놲¤Š?¹X*¶pÄUùôÀ¾®r5Ün+´´b2¯Ó|DÕñ™¾^˜áW, sàw;r‹ò¤¡ÐLèp9cåö@&4¡øÜ˜‹Ï晡À‹(d_Ë™Eð« µ‘Q¯ÁK\,Ë3ð7–°µézï´Ä}\ª8çL$Õ½ãtÄÿaœ<FI¥ýN;7ûð×TÿFùYa!ýÅ®˜ÑO.€Ð¢šBσæ·x+‰Y9›Çv%X­¶JkôVŽòV±g,ÍÈ¢Œ’kœœ âÊèBžŒÌ!•xwï°„O“sã«gPòÚ ÿfXd“CD?œ¬µ¸2"Ê·z¥Çc+ÈMHeáÏÏ ¼t÷‘øÄ9™}òp-Ð#{ÿƒÕ×R)ÊV bÖeÿ(øF wúºœû¸ƒ`E†¶w*3óU6ŸÑê¦y¡Ø¤–dq´¾Õ¸æý“K$ð2#Etâƒýኲöf!ئ$Gùªž“ÔÀöÅÜ C;:Ê)R§³ÐU6´wÕµEuW0ðŽ^@R%8~5À¢sþ¼xQqŒHàåºQâÐöâÎ:’¨VJÂUÁ?i­ÍØØÆÚÕüÀ;\)6Ðw—i—ßw¬!¯säpÆ‚(xu>×g ¡Ì/ü¼Ü9«–÷¬Äpåð¾ŠcãÔíÙ 1Q'ÅLBMû´`ÇDʰ˜ù“`<õ0ª³Îê“aÓ\ E8`LËŒ,ù®£sÍ}_HUHE9~ã;÷~AsªãóÜ‘8âÈ%mÙZ1Ä ]ì4~6…÷ñœWÈFÙ-ÞÈjŠôÙúw)FU¹g6Z.Ç>ŠF€&íçÜCˆü“ÿ¾ÑðLZ¾y÷= G;æOèÆ“øèŸÓü¸÷¶Ïq¾™g/R–vYeúJIeŠÜ²ƱXKqk ew¯:e¼¶´@òŸ\»ê}ê¡/6:¦kð¼‰6{¨•a§R™¤¾½(ö|«i%[Á–~FAÌÏ eAµQk×þu!é@å}!G—'!pLòJ3zÿ0"öǸ3>͉çYÕ ².Ä’ K{†)üK€}ÄSc{¬è¹”÷ÞIÑ x–)1ìc’=2 ýëÁ¥kHgdɽϧpá§`èuøÁnK@ññå+‰õ;Ñî’ð¸ZZñë<<ÝtZö=?»«·æw®^›xø¤¤Tímš0uò/Ÿã¾$R:æÈ§;[+ýûuûß§{¢n‘–„sÑ)dTJÉ!Àº?QâúïÞ¢5îj#ܳy0n[¼"éÏý”\¸9/†ÙI%vö½èªE{OA?åŸHýÈìEÄ\˜ÖA~†xü©lˆ#ÐY?Ð3öö’ÕÇÞ¤Íqi¬f÷z¹0_5eQe‘¦Îà&–Ç ßë ®Ïóøã‡ 5d¡ÐÇÚ óÏÝúv†'³Ú¯aÍ¡»B‰Âwdç9e)\gK"TIÖTSçÜ¿Hÿ7ç‰à¨ÐáVØŽ›¬ò¬7F1ý1b®ªõË·WžÇ¡ÁÓ_³´+àN`Òƒšº©Åq4_§m×3“Ÿ/)qk-¤]iݼ†* 0æ†VQ<¼[°Y,b`ñ%îDÄ„<„u:1 ´äÌëèSµ›éû/|[´\ÿñäðE;èOy¿Ç4œæ‰{tuKËŸ²NøgAÂX5K sLÇdG+W›ß™J#*y›¶+WÙ™—ŠÁç§„Ãö—Í!qªEKcÕ®j:ØÕŸ4yæÕ¢9ïÜ;S à¤~Åãªn}sÙs3;Ètëƒ%5¾™8>x¦ôhÈ. nÀt§Æ@*> ÝÑÙŠ0Í´­e4yÇ”kµ"ÝITC‡ ü8 ’gÉ\sR*“oÉõÜ|—eŒcèÌsQ 5‘›QC´Â[.T ½rºub³˜ÀµªèXÿZW@+²µì­££™98ßĦì^3æ¡s3K/€¨Ùþ¹³ÆB#Ž¨ÆŸ@ý=¨ŽE]™’l†“uô%εŒÅšrx•#gó„#´»÷Ñ„訹¥¹ß9L`C©fµÐ¶YWRª£©{Ô0 ä³÷¸•ÂVÈÔ\Æ™=xRy‹*:û:g|y™>ÁÏ ¶³r¬' íâk"gQõHZØŠ¥Æš9Žiçg¯X©b—Sò <ß3Óüˆk’Ó>-ºLúnjpê1:»bB¬£"=3 7QE‡È kb³ïÄC&öÖ”t#–™á%‘\bÕá„‘zWV>ÞŠ ´¦“Üêñü@Žu3Ç[ HMÿkó –AÍKŒÝºk „>‚äFï׈¬ È`în[EsI!Á 2^júpˆ>5V‚v\†[k ké^'±ä‘­¥ü¹x‡+õä!@Â:J/N ®ß|ùGþ-*Q ¶y4ž ž¶¢Õ¼›[öQÉâS­ãËÈ™êˆY÷ù}Ûì=AþJ†FÕÁ¢B‡·øê:ç¯mB÷þbr7—"¢{°¦a¿%f¸´Õ¹àÍÞ~‰F!H­€ðñ†ÕÇ€ ìSÙÅ?,pp)eéFC”Q ©ÏuÎ5ûC¥æÈV†+6Üñ’": Ä'if‹x½ìÉ6p6\„9ŒÄVÁZ2×)ê=[r'ÙÕ’ÃܶæÐþ‚‰ó-V$“p¶«ìÒ°¸]©NñÓ¯¾wg½M‰ !¸·VL’œêCZÓц]êKwOüL™ÿòV$bb—ô˱ÂÌ*PÌGK5WͰ†PHgfíÚ7‰°qrÒ¢S‰È—^ÓKp»¢ ¬[ßRCì\¡…A.¢P9€5,ð>d?` ^0X$€Lð§†!£¹¶cãÓí9ûõ¾‡³ƒÊï}ý/­V±o˜šôÁòÊtJÜ‚°|Ký©gk< "G”:é ×# ~’0Yw¨úl•a+ï½X³î!šæ¨#б&+o¨9K=ÿfÚ! ÈR`‚ls6 i²F_wZ™™‚àSZÓ[\á1í'Û²\r«7œ«Ù‘»&`éùiX|I8n»JË¡MÄÃØÎ‡°²(hŠˆ‰Ä¨BT›f0¼žŽ²­8m%T–v³®¤.¹ê§‚;Å ÔJZ®þy§P2©æb61¬þW^Fo7ÚÄýݳhmÄG÷‚n©ÂãÚꦌÌ0™×Щ÷·»z‘#Ü«@„bŒ-0 Gô…”1¿†p† ÂI‰9ˆ¶°Ó…w"ñeÔ‘/ Àý°³m!jÜ-lMâ«ßYAi‡­4²þ~}8ûc²©ÑÚ¶n¼#]Ž®°¸ú7zõ)Á@«ØÚdœÍ§=$9Vä‘/Cû ìBjä&ä"jh¤ßJ°’ɺkƒCø×’cÛΦ¨I{]úàöp¦P¤ÔázTYWa°Wv%ý”éûdvfr‹Ö’YžlÒžÛ§m Þ»º à_·Îßà¤$c˜ª­³Võkób™óŠ 4dF² íù+uÿýò¹R (.FðL§!ÜÃzbýŒ¢õΕ9ƒÆ­=»‚»Â'y_ÕâgbâTËß^×õèôäê^†ŠEÙHh–’‡0þÉŒTßA¯²zHƒŸpyHL´2ɦ§¼¬Ö0 —ö>ëtpê<à µ!ØàR(1Í¿Ó`6§i²pB¬4ØYŸ}Â;‘¢E Oƒ8é}¸ ðc0³#)™Éæ~K›wNT;ž‘ÃÂýH}6'øšÜ+YjW»Ü3õÃVŸœï¾²sU˘òå3 ›„ã i=É>Rq|æö¤^-´–#ñ.ç¬uE¨'+ç…xYt”‡§s®P¨iŠCnìñÀ”5V¯äDôúËÇHäBD6LÚ˜·! ÅñŠRÍ…kªo‰Ü[Ð;£†¾­àYýcÃÉdžÃÀ»»¼M‡4µ¶ò=Q¶áÚñN_&L„¹2'À€U‹Ís¬õ¨^îẠÊ[¨ÄÑÉ2NOÈ Žk´x_~°ù´Õ9”¶µ ásåи¸Ìhöçütìå>¸JUÒÏFÀWÒáÈœ½àÈÆÏ#æUJµøù#xy,:MÉ~Ë1=ŽÓàÛÛW¡ÆÙç×Obª”º”oE‡€ÃÌÆØ”ÐýÿšãZ¨NåŸb=v“3, I0îÿŸÃ°QXð$GîÔ±²}`o¬ á™ÉU¼l›(÷t­›ù ߌ$‡^Üéó¿ÁÑë¨g&î!H|Ønuᄌݱn÷®ê ²×2& µkÀO•åô4²Ö%.¶3ëª&]ž–xù.j4@•}¼ôusmBký§×Ù]º§N£x$™Í¼÷7|q¸¯í>$‚n·`¯˜-Çz`ó¤ÏU=ÄÐr¯†—V÷n„\þá¥HÒÛl)Ðgó}Wn”–Þ‘à§hüð”°´EÀ‘pQØ)Èú)tÁß›‹NFp¢d¢D9@ELº#ò Æ—p"ª¤²Y î¶^sþÕ¼ä*IuEã}QÁÙ›åÝh•µ±C+@»©îûW,'¤jB'§aáQÎa«Qö¤[½Ø$sÒRn“lXö²Ä’h´Ã¨ÁŸH¤~$ű«þ,æÉ3âïºýVìU½\a4£ZtÐ ;1ð*JÁ}–ë‚U6pÞTXFY‰ó ÒóÉ‚[3â ŽZ'[¬›Ù\b(ËŠó¦ó¶Õ׎àÁñc'tq?&VÁR•€¬È}‚ý$€6mô£Z€YܰOC!fM¼Ó¯ưˆ7ê¼t;$x±)ùAëvJxF†þüMÇ¢¹$^†û®ö"Y-wà™‘lœpÕ_!;û/`†aœ«æ|\ñôc·Ð¿CÍ߀$ºßì„H ,æà>?ðŠB´çs,’Øa“éç›ÀµJß»¼î=­q¸ÓµœæˆªÁ#—VvÁ’<6¡ÛÖÕ=$ÙV¬¹ðàÆŠ‹6+ÆÄE”mMäÃC³¸-o´±—íÚñ¾\UÙÍWéo–TÛ))90b(,œy,f3©bVÚG)µ2*"ž*Ð:Gs“aóRBÌd¬vPö%W½êvæÞ)Xí]±…׿ ÆùàD}àu*Wú¡d×g‘ ¹1@æY×ež;1j½@ºçT¾a@¡å56„E~Ä>Gê:'K4²Ïúù.§ ô(\Wz&[j?­e™óÞ¹¹1ð(£^_‹^l¢ '±ú !!¥HËì îh¶¾ôÛb™673y./AµëªàHŽùMþO)¯ö?kY$st.µ c†ZL"B«L—ÞépKÆRÚGH$jÓÔõd… övk•ê\º­Ý¿)`D[ÍÒÿ\ÃøäÒ«\ç23¶ñY¸[¶:~"NuÿÚ`Ã[PÚ"´—Ì&O ïCÌWDŠ}µoY$—aÑ)bæøÅЍúë¼1‘›¾sÓ>¢'£ãýîEJË6Áõ%¡û_"t- $²b×ϸØ€ 7uõIf €¶[x—Pšt`c—§QÍDXà2#o„‚0•‡L Ò(„¬û“ˆükQ˜4¨H4™V¹‹Wýösø‹¥".pÓm§´ÿò¢¤/ÅaÈí4;€ßKÃ7õõ Ãúáqµ4£U—ˆ>áÝŽRГË ¡©É ÞÕtƒ3u;m—݉ïi\ƒö9Z•"`¥¼¹Ù oÞêuZuH¢³c]³,‡÷Á§dÄÄ&‘¢˜w ¿‰Mµà7ʸ´9Lh5y—£ª"`8QùÆK¨7s^±Æž®ÿqvB*ê4ºm-´¾ß`_ž‚1æ–_§·n7]#®lÖ-z3|'4ˆ‡úÒì®…ù­Š¦gëä"FÎ?ù¹Öb(aÁPዌ<8rl}u:QQ«; ‰·í’VÄr\\ù#\97ÓÀ,†p4Ë@ùºíØih-rÓž› :Údò£ºßë€a)»„‡î…œ Ø€b+™tŸÈm¶Š°©?ìOXÊ Z óÊù½óIñhûUJñiÛh©§N7%ë¦ôqNjiàþ7W÷“ô¸¦1èe¯©Ã79…4cêÒâ«¿‚ú2ÀM¹+ 9gXàólQè@õ)R=Cõ#òç{@nÏi |ºXnÖ‡ôüâÕâTjC>±k›å¨hw)³Z'Á^¡=á#êó˜¢û˜ l|–*'.%$|¼'òí Ê©7±¦.¨•}`·s7õç6kþ9ääÁj”[+bsà5eB°žT.8Ø/£]*ePÇAÑsÐ(F88à õ=;m«GvNÓŸi§ç¡ãv©­#ºÓè.sþ5rå&þ‰%G&Œ\œÀškáØüpIR"”T Eطù£8x´¯[Þß=;$Ãßœ’ìô·|ýÒ[ògú×ÏŽ½ðˆûPszSÌzøÅdÏ—_‰í_jC1¾Õ‡¶K˜5úw_£_PÈÉ‚åŒÑPf[µlƒå±¥l€ÓÕšjfš_\ñqÐQƒÊâÕKÑ ¸Þ¢^€6€¡…5eÂKx–87ž…ËÔû²9¿„a¼c 7lbáD/š„ÕgóèC~2”´y [çðîΙ›š­—@*£çc{+qù¢tKO¢ªØ0!¿4ñ®9†gäÒ*çÄB#ì_ q;¥`sJzeV\îæ¬’W;yQ³ÇÖFÏÛ×Q´³Ê©˜“ “ݳsáâÙä’ o=¬r´spº^£zájZ ’§ìÈ-4GpÝ ‘h#ÎAc~?=V ¶u¸ºä£¢A 5l·«êÊ‹Û=->„§ÓÙ›¥èÊe`Î,6qcoÌ@FòµÛ“Þ-]¸­çnG@ÊNô`g_ÿvHÃõÑ  ôw–Õ®ßÙ :GÃ*nhE(/>B.)!Ci¼M‘õ S²â¯pÇËžv¼µÍíÝ Ú¾úÎÁè=/ÜãñÔmºƒ¸Lï~!#¨Ÿ{Ž:䣱¡©»ø!ïOæÁÀÀŠŒ!m“ZœÐ€d|ƒaâÊôªrªøWfæ_}\]8˜ÐŒ<­탹4éì0 õOçØæÿÍCæ4émàõ™ }Veº“…´Æ‚0ÞÑŽÛ†< ‡¾ é®ãÓº{«îén™Ÿl2ŸâGä/ÊMWŽ}ØñVÊ”^e»è2Ek[*E 9$àï›ô{>8²î ãJWœXy9¹”NÐ[kŒá. (µÃ¹Ö·¬›í þyò›"”ëêHŒ-XŒÕ-™DWÛ´i;SÙÍ q1 û†˜dñ(€Ä>§Ÿ( ÷4˘qµêF®÷­à¥ÈBšÑL+äj9ÇN!;„ßR ªIޯDzØ!Føâˆº1'• mÆè¨ƒ l>,\« ŠO·ày4ö9p[ ‹â²=‰ÒÐq3¯gΊMA¡9>üRÂ|ª/£lŽÃH!”¬¤ò=ZD§a†åÈDŒÌ)J¢«{¥g76 ’åØWf´ë!†²®Špj–^ët Ô  »»I¼HO4Ãe‰ÛÝõtÑOö:¦¾¾E5¸ª˜ è4½2<˜Â¤è¡ÁRgå4:å¬T8Í#M€FB{ ËÞ^¶u˜hÅ›¤éOgØ}ržÃcXûqʃ ƒI:-sõùÕô-´dàƒ`ÇÚs§ñ6t(DÉC`NœV ']’/ Á×Y÷ªùód~kL:usÓµ‡rÞÄû)×Ì9’  »$)H½ÂÄlº½éº<±{Ù™Š¹»‡ú„òm2Õφ 3¨¥hc([}ç'˜»»©@p3ØÌƒ¤Ìž&OCÕÀ\ónýc’|\7!CÏ ·SZÜEàE¥D™‘ÙÅ4áá¢(Ó^0}Õï©ռܤW'•P´Í9‡?"Ü[ØÍ¼”aá÷lú˜S¾ÌÒ¸'c¸dµ¼>YìøoG_(m]š—Þ‹_Òî ,´-)÷'Þ0@ Ïöƒè“°±ª´µì×Ó ‰:"ˆÜ_U[nvkóuY÷‹‰“H%ú7*€üÎÝD2y!6ª'ÂÞ× d>½}F`î#}Å͉l‚ø ÁqC‰W(MAÐ8vžžY …ßÆÛ ;Ï ×VõÕ½)`ò OÉÀÞȬãç1çGߎmâf~…+†Ç ¹.Œíÿ -x—;]ì"Ƽ­‡É`—©œ—÷bÇ PëÁ»7I%‚iŠ¿9jàAAr-›tUå=´ýÄ@ÔDÂrÏ4}Ük Ú;{ÎЬ—,ÈDN9OQ¡3* ùoÌÏ›ð²;M,éË´WJCœú.«ÕÀÏ2Öºp™}æ!quøñ‘ò××r>›1ÄÌôÓæÚø!—'¥f±ª¥!7frù&€ºùxûKʰǎó'­Y(„Š5>ã6‹ª Y¶¯ÂzG&Ë¥ëRSÚ÷úp4ÇŒïØh_5r9ï#}MÑ)ùB¸3ƒ×毠ôa6(Hž×¿J÷ ×}@ë†\™‰Šmé+™nŒ[ÙêIµÙ T;¶¬R?/ýM}”Ül~ŒÑ ã«/Á@4ý¡°ÙFJŸ'åÞú~cúŠÞâ  [>Ù+¢Ÿ^®Œ¨‹Ï|Zyq&G-›ÕœZn,½‘«Ò³PÀë×_I¢ËWðéû/bFÈGO!§TiL'6P»ÙÕá:`p è¶ŽF’ø]>5Xor¦°ˆT9¥÷DîÃXFÒçèˆDPÄÆìÅ9€`;™  °»í,=ö³OÑ®[Úh׿kT7³¨ù†>v£vRJ­³p=QtCPµàÖ®ºˆ°˜3Š^ÓbÌR &k­vÖ¸5æš#Èî^é lì:R Äü0h ¹£ÏôØ‹TTè‹ç\9Ú_z™-:”QiL«ýñ¾*]àpo»3æXq2©:Ö ×š(/,3ÕQ÷ôËáâFÑeƒ¤ ´š E "Úà{q€_°idnHªÉ)ÓÀܱÔÄE˜W!Û¦1ú/q±®iX®&oŽ}PÙ­}K–ò¼þD•)<hÃÍ“ÕçQå{Ø’<¤üºì?Lå)TO*¡6LÖ®H43±—œlå¢BeâÊ0èõU­âC=-ðü6YÓ—µ’ñDwS…BŽÒÙç:TákŠ^¥¬¿Ì²L&FB×W #­[¢ŸC/Ï„d#é½’!‰/77h“[Ñd-à¤èþäïy‚ñÆ„¦~é1$«† ±%€•fÙ-…eï>Îߥ / RFZåõHÅRÉJ 9jÐf¦àe[LBæäÀñÄÔ¨5ÚÄeõÎ_ò³ê$}Ì•gœ=S„ù:áAÌ‹æá;û¹ü:~Å¥£ï]`¢WŒÁ1ÌÑsËØM «Èm7ˆº{gOGuòüÁ€Õôì"Ç®‚¨¢x‰%©A³eœ<ö1&zßΕ(ˆ «¼+¿@­Í*ÅV™VéNŠä³hqÅ–Lk5ƒv9¨+_%àês€3#j‘7ΙӜ›¿Œ“,j]–߯áŠ8Åÿr±skZò3õ×’Þ}èÑÕ³øâvÆ*Yqdʃ:sü l…’„Ò¥öAçÉ<Êr–+e¹µ:Uù†;>œZ>›uTQµ­#%u¯ùÚCvª0€‰y$b‘€ *?²½®Ê=P=Ðʵ³ ©íO¥é …º:#ð±•ÙȆdÇãµÙpŹûünÙ¸2™K"|–á…§•±pÙt¿¥üÕäÍ*£ÌŽé©,Ý JX9‘f¹Z%<¯¸§ÏÏ+¡,I*ŽK|jò‹RãÅB‚. ÀÎ7ÝܽÜê¡"“ß”UÁ‘¼MŸ‰–TÂ@ŽÿEÞ £ ëL›Ñ!R™_°÷#ðdF"ñØHûX}LÝÁ|Î¥wÕTí©E‰g3±c\1“™þ'µëǵJ˜­;äû•Ò’ÞùmV7ÐÁ;^”VYovåùA€{ý?½õò¥Ó`wOì¸|×Uü% TTÕ$—RŸ©t«Œw:™Å£ä‚ëz„K¤r{ÓŽ îØô< ¶§p/£êÃúA΀1K.˜”eŒÎ:d/mmàMƒË™Ÿœa-§H’~.wÞG)>ç‘&-U×]…6ì’Õ‰aiÚÌú—[Ìr>TÁ(9á õG3‡Am •Ão*_í7#•0ØMÑ],žd¶hˆÁK¾‹¢ØM‚ÐÚÐ㽇$j=Ö¶ìÔ 8{}9#6”F4U/ÅCÔJæÑ &/ºO´/º47~PÕ$ÑGQš ¶›-ÆÀºÜ°\¶¬¦”0F‹ªþ¨,XË¥ç3ídÿõ©ž²%Apýb»,Œä¨9xÀGìW’–ÖÄX~ ¦ÒF†£Yx ]19æ‘hªyÞ8Ïq2lê[›JÃÅF0® ¿àÍczþ|J¿Ë~‹c-®D:ùÒd+|üÕ‹H,òƒË]¬qnfNä½&ø— Žä7¦ ´Â'C¥ývã•ûrƒýöÀ¤] C£^ Y6¼´m®lµßÝõ·µë”5ì8Z(>©NYóE ¬ï1Á-T+*ðó°ü_Å-BéÄ¡L´{©Ü2#Æ1?õ³Å²§¹ŽiŒ.Z5ä• ZL§¶¬hÀ¶E‘æ¼JSþêHiú—~ö+Ë_5ÆÑ¿K#µ§+ë &‚xw„OÅ 3àœq‹õxúj9oçW\H%ê¸S¸‹1¨ôîÛô¦.ŽÏ–G¿µ¼£%Ý* b þ’¸"â 8üCä´d|ˆÇ¯YË2ЦŽRI• icÜôBsŠ9nµ c{iŽQ’¶ê‰oÚÕ¤Zø÷ˆéöœªhÃŘo.™\3(ô—ü' ”†>†õ429Œ!ÍLŠSŒnecÛa™ö.HY2Šˆ60 7Kubh¶ ”)É áºðÃLg¢'è¹²[è%Ôn*Qþ1;‘¦Úü|ˆä…UÖÍG4üóìýÇò1'Å„~ôÏÉcÒã¡Ç÷.‰UTžksš“´¿A3%ÍÅ:*±×ˆï£-«èéÓa¹:œçw”:rŽºqh²Bó°"M ÉIcß 5u©|G–•9"ì[R|†5žf:èùS"C—ìòá|É·ñÅâcý¬#ÈÇD”]ÏõJ¸ý¶a²P“•ÚÁ7è-z'QÒÔtµmÒÕ‘8ƇLI0±ŒA*™–´ó¿Ž#Á¹¹[¾Wœ*_Ç ñ╉…UlZ˜]ô6²)(9»ŽÊ6jÎr7†_C\ä×ev dlàáì‡O‘4¢¬ËX^òQÃ:S†!lËÿ1èÖO3ò&iwr€]Üö`Ê忚D……†<#Œ¸U¿Ûw¾O¤ôJM›×1“Ü5å:‚´ÐÜ Ú¹\V_qt:«5wùÊÉ0â­Ó×8|Ë›á,¼'ñ ¯Uã«H6'*ô¶µé;map&¯×þAmyÎè¹tÿ? ÍåÁ³oÛiŒJ'ÇåÀÍ`°ûŠŽ5’ý®=Ci¾Š×¬;£Ï¼’{Z`ÃÙ‘ŠodŠ•ü#‹˜t/Ýèìž'uºüD¶nÒ é“é¶‘0+Ÿ@êô)̆͠ ‚Å”››Ñôö` O_ä…ò“aþÉØ+þz½h½ë@OÛ讈ÒÛä(Iç!Þ›è¹ñwºàYÎüò—׉ÊÅä '8[­‰›÷äêDÜÓÐïÖœûDU~NÓàı=”ff£ªˆ·ÔkkXá=gõ1c±N`ï»%¤kŸ¥úQ;C´ þÊkÔ0t‹+Þ@Ökô0èö''¡8kïc¦ª™ÂƱÜÒ4²äŒòí½–§+f76$•䤪œ8ÔWQ¢,óÞH5Ôj.¶åþMñ—]Ñ)0–`ÿÍG@«öùqŒ¥Müõ:Ì?œÂLó(´´‘%×H0ÉD¹îÝ6ô•ýáè W>š²Óú'n=q ~i¨T± žgå¨ó>ýWNIפæÆv“T‚[á›w»ã4ì"*=ó? Úm³Ô;cº”Pø—&~36û‹€§0˜§Td¦${"6Ä‹•$ŽqJ%Ìx·!ß+^Ëž£g›¤«}Ét“ùM޾¼”Ò6ί×?Ëãò Óñ×/ìÔio×ÏÉ{¥ÿá»,8[µxÀ? |’:Ù¶ØLæ8²X4ÝŒìÑÍ6ƒlVÄÏ÷8¿Äº3)Á|pú£íö¹&ùÕ|Ù¹ç.èÛåïž|œŠÌ;¨åiV»¢Mw{‘<6Ð}É;1mQF©|½9ëÒuíщ%\ îHbÍþ(djÖv.ì[ü3ò]G™%‘¹“ð£a–Xâ9žúUžK+‚G¢Ž>lÓ†wº·f‰wÔi¦˜”®K݃Ƃ  ç™eâäçÊFþ 9”εÅw ªí-{4yM¸^ÞÒ.Uc:-Þo¦ý¸¿¦$ŽU±¨N!Ü­çÃé/×6¨Çæ âûÜ\=«–I{ίÙé azàÑõÙ7d{TÁO§ŸšÁ~aÄñ&ã–.B¾/uNm]ê ¨‚h4)i—h`+„ «¢|7€ –y@,±†Š& 3‚u:[Môi·Z\RoµzΉAÀù‘yÊõÆV™¦ôÛë¸Ú)¨Ñ · ÏáÑõ‘~R˜#OULôÛs‚δIûÄÍ»*^³^»¾!ÌÏ Œ êé¶d·ä)  sÛæ³·ŒóÉɆÌõ¦D䳜ý£3(Ùbïý®zP-r¢¸AV²Ùl ³¶Øˆ +w@kiô k'“=Ížr]{ ŒK¼>¤émíìu'RPÂùg±¹\ &$J4œ‰3ç˜\4•ûÔ…Ýœ€å $"ýòI¯r-u—B¯H¡|Xƒ%‡ †) PR—5á’럷ÏKþ÷øò™X„xñc&Ë  á¹¶.Þ V¢<ÅkPx÷W^,*ÅÏC‡=á+f‘S~Ñø IUœaˆ¾ïê ¢Qã¢rd†v‹4ìv#°¶öäƒU´[rÞ‰%7Ä~F„-ˆ«ç_’ûR¯ž6)ýjSA6Ý™hølß×Àv˜hW.DÂ56d¿yh–i@ÖÎÉGÂä¯ÿÞKÄÙKIMûÖq®ŽÝXªcöK–¯‚ZD à ’ø×Ç1õà[S˜ðñÀ$S¶\²Þf¼üûž±o,˜Üðñy…÷€Øø4]C·^}§²µ•ˆ* m, 8fÍ㎌f}$ù²´n“„ÞL¢WG%M5/¦ßB7ÏSK°uH5N(êæ6:¶s)ÆW9­—Á‹ØÙŽ:“GaÙÍ8Œ ¶–*Z*5‚n@ÙLTr´ËkÎÓŽ£Ȱ‰äH£4á%Ã÷ Æíʴ䥊™{¶è°¥’9 î$á=årX–ù1:ŒLð¤À'›b¥2´ÇØVçÏÊßòØ(öPzuUzô5¨ p¡! þК–dÇ‘ÞOø]ëõ® ’Ä™‹æôÒaãAêTóͳklYæx¦‰ÑZËð‰-žUÁÆ­eü0Êé¢>’£gšÞÏÖO¯Uqýù hQKÚ©õÒY¸QkŠîü#ýMLþºPY g™Û»uŸ ×§èÅ'²e0Pda¶µWóÑÍúÊ<-fžå{7õëLóµçŒJéJYÄ«œrÛÊTw/Û¶~N¶ZEÄ€˜EFøá™¯¬æ˜hðØI¼rál§ÿ"‚„ºÃº5jÌ£ø­I† Éw,ï>øT!õÉ‚û¶VœùC9‰•GÁÁŒ.²zËõ¢¤H,5#üÕŽœ¥s3#ñBܨˆ%GîŽbè"7Nfг·EdÌÉŸ^­!>×M¢–â㿪fT’UÎó€–Ü!î·‹Â ëžgÆÖø=½ôaÍ_¼ßǦѠŒÌ-ÅÒã-e|¸ +U›ðiBFAiN*IvÅÇÄ…¦°>¬ä|Æ Rfâdîn¨ˆ1ýtsðÒbžà­Žª!§XeÞÅñ¦`^îé*ËŽÃz?Qûúô@ÔšVnòš$Q”Që5¤ebki2-QGØ-'òÁ†Û1¬°\Þ綬µù‰< ¡‰dm e7ñ¯"ÐÔŽ“§Ü{ðb釽kvMø%z†˜tBùQ­0׺Ÿ§–·ôê?(ö0‹˜ÔsÐÁÀ_ø:hŸ“0ƒÓÚaBä$ìÛZyõFw`üLk%ÒÚÞëëgƒÞ4ÂÃ+ü÷ïY³5tSMé•HG ‹÷âFþ¥>Ö“¸×mã-zjø¸Eê×8ÏægCi|\uÅši©áߨ^̾|‚<…WLìK8&…/ZR Þö¤“¦ÀËÁ;mBÉñ¿-¯3z>ç²IÝ%V¤\•®KM†ìç»Ïç½ëÃøk·)Ù¡'ü×ô¢©š A I}a·Þ¬:¶c?ÁöÄ¿áÎuz…ðm9F­gLDDù‚Þ¶ívimGÇ'ó»õ¬¾O#Fådq„ö…Š9Meç©$Ë…¨Z~Åôªk‚‰9 KMÂBó&s +QJötC"Äêwމ»·óÀi%¿ôæ9Ñ­Ä–H˜”l¬­2_^‹\o<ÞôÓ¼â™Ó 1D$Ì•.V apD,ÁὌÄsƒwv;{É[)‘ÒV=}µÉaÒ{e\}WäŠcÔ@ìu#{ŽrA %Àïd:žž¢.tÃ*³5›ØëÞj Z›æiI &ß·ÜÄ´òîû5í Ñ@Ó—eAõN¼MïxÊ’†%CœcÝdçµ>L|ïДÏn¿?ÙP!g©œ¹ÝÑPÛ]±h~©.XN±EÇqä×â=‰€LáI#EOB&ô«SJ'èë¸æš=ú.IÎËÏŽ… d ÿµ4—»¢DIhÀwÈàÕ¦èieCcÛôAos6ÒŸÿzUà˜ì×® ¦Ä ÅÛþ2rüã}göºÀMû‡K ºG7‚f#wƬÈ)t®Ä§I¼‘q*mŒ9Q–ñ‘eö5ÁJ7­ø?\âÞGýq–ruþ¿8Îão‚‚ב‰ÓS'Y>öû+R[ë-»ÁÅX¼X‚n‚õàAãOêIá÷t%Ž­üAA"=Q] ¯;&+$•WíÖagÓDð ;Pv- …´h†¼)3ÛÈËR:Åȹ:rfþéO}P/wkbó*'tÕÞ¨T´­ÆÑ_d»TÚ¸”óþ¥Ànˆà?ùV¾1¿T¼†Â>Rñô(oàÉÁÒsŽteÉTzÄÇ©Š`¡ß»¯+Uñ ƒ•ÔË”e>S®gã®gÊ[¥·¹Îå—ÀD¹®'õÙÛ¹öU ýŒrÀ`äMaº'Så¿p¹ Ú«×QŠDž=¤‚EçÇqmy6ã€t-@á8F?»AnÇÃá—¨ä%Ûtï ¡&§.,¥at\qpB]‰+^ú”DE>¨ü@Fižj ZFÚ_t×­b $âXê/Ô ¡)Eñ•%‚î>Ü@}©òþѹW¥d@¼åH¬Ì:| eí< ¬°–î™…S¿NÔŽ7›Ç6ÎR¶pi^»á¿rÏÇK;[ðÐç#U÷”í`}A)/"÷bhßÄRTÏ…ìKæ‚¡×ErÛüS.¯=©B¹ß¿ï323ee¯Ú‘‰µæ¾ 6®=ÍÎÎÓ“ùçßgî¥[…[Rþa '©×Yã nq¿¼Å ÂM`U& [×Éó[àDß`‚)o,Ž¢Àѽø¼Ï$O#JO_èÞ[…^ÞÓ†À3xFqélÖÐ<Ì[ °èœYË®¡P÷t‰ý¬ßÌN1êÛÍÕm“¬÷Zš„-ðQ5NƒWÊ ou§¡¦›˜kDSÄÓ´æ¾ü osÜ“˜Mt ÛäqHÇ÷r!yûDZ.ŽDÉS^Ì©ôû»µH(›«k¤‘IÙÄ-‡çXÞܰ×Ð(“)Ùò•˜s烶^v©–ÍîO±R×SŒ*Ìwªþœw|7eÂ]fŠ-ˆoC3°Ç¤…—ÞU0Â?¶â³,dÊßµ²['Ó†Nà‹Úo¸ M£ÎÄVÊìªÔ߬–ìX5î6œ^ m‘Ø;—päÞ<Ía_*Àæ¦ ›/þM@‰‘Â|nà—¬Ô+jÁúÁŒ>«àlüôΰF?y·¦µíÇ ¥ HuÜr9IÒ³8ÞX ÎäÛ?yéè¤Gáî±K|TÄ@-–{ÊÚhûÒ‹ CÑ/cë,d}¦"°L9aI ÚýF‘«¼òq*«@{=ª[cÈNêò?¬ÚÃFµI45Úw¯µí§[Íh‰{&¡èrÁã(ÜÀ2'ƒJµ # R>Ha¤*5iFöa­ùØ „vŠ˜΂’Fµ^‚J0PØ3ÍÇ?4öê’ÙóRœÓÆíIµ|,°#ÓseìFùÉdL˜´¶:DR™ði­ûâÌã±”´Ë@BìRfßà ´Ëá}TÚ`#£™½¢)pl …ÎÎØ÷y! $"@;Çjº¥½…²^Éý/ÂYtŒHj”NÍ›]¸`·(ÆT dg8£»Z>N/µôÓ$¿Xps%ê¡m¹ŠÂKo›+JRŠ9¼ãdÆ–Êc]±Z¦‚GD¡K…òé=°P7†ÕœŒf‚Ü=é¡ Â4¶[o£â¸÷YûTÃG®ø6íëÑ^aüj Ÿnwå`ÝM"û£œŒoô9Õ”Es•OÀQî:ó4Þøœ­¹i}ô:Ñr˜Ÿ0W•±8À¾ë~Rz˜.‘鸟¤æükéC僷&µî ,{!¥%!±XUì†ÂÝÁx:= ÞN§{Õ)­·ä™-6-ßœ9h4 ¼Ý1ÙAÝxufÎeµeXsã €A”< „Éa¸Žåçøcâí@”ɲ·£F– G–Ó\å¥ ÉUÿT0¬É„=§¬ÝîIü—ÐYËeì£h£?”Ú6ì<Š1ߟêÌ÷Ósu=—5å§«°Ó;’*ì@½ß]ÅZÐ,4êºÓL3ImÖÛ ‹ȧ`ñÒé¦j™j7††|:* ¸#%ù/²×é&hÝ£•Ìó5ð])ذ`‡½EÌ‚ƒlŒ) ü4peO¡ 5¢‰§ÿÆ ЋTè‡Ð¯‡ÄÊ'Ãp¾MS\u1!Z´M×K»xâ)´»%†0s8—]«85©(Ó@(vDwÔ<¡?¿Eƒ{ÌašjYñIrÀ'ˆ)… !u0ºRññVÎP­°Ù»±m¶t{!Ü:<~ƒNãçq˜»FÀsÌçûz»*±Òí»p÷V­‚†úÙ âJlgeXÔñÖŸ‘¹Ó$Þ•[ ™ž­kJT®9r=ÓjÑz—:Dã•‹zä] §·Òéôû¯TYryêK–ñ¤â\-6jîüÖŽbÛÝ2(2ØîSvþ3âÉFÆÁ$UÕ$§P¨¬,¡ Ü4òѱ°GÐÊ.÷󸢓´›á^rWª N×§U[Ä0‡æþáT!´d3Æ‚:_¿¨P§Nå½daesšÑ\׉Ã}ÛrâbM*Å3ƒaC¬Ý!˜ê¿çòöí5}w ¹y.iÆüêØ¶ÄqS/ÂÆ»ÎSûG˨ENÆðÔŠHþ’Š©&1÷l„þ²æ©f:³Ê×ã ¦Sð\ªVÒÆ€óU’UßR«ÒòòÇ´”ר«›º&(³XjÜëËóœÃ.jÿRK¤„ú‹°ùlŒjÙ½n¨”#¤ö£”Šº»Éz¾ÀŒ¬3b Ñ ˆˆ¡’).€¯e½uƒÿ/¾ú@÷ÿÔ“©dUzîí£:‡}gè‡]LoŠHÏ“²5\f6`–‘ÒÄMpª¢¹—;6¦Þ yøŽ¾*µ’ÙæX׳%ýz¤Ë']Šã{pà?œD‹Êqa,÷TÎ祯Ž–ns³õómh½âž½ƒÈwרËÃZnO)3|Ä÷Sk­Fg¬•Ãõ2á…†ª2TÑ97]µ;$üü8<ñ­Hòµ,0¼¯¿üPh/÷m4@á7‡Aª‹9 í%2aý†5“”ÞŽiZÈLh×ÿÃ"óõNNɧöÕM2 ÊÐ @È« mA™><¬Y9\ÿh&mŸO…:C ^¼;2Ž‘û$(?[–QPo…ËŒ]eÄ„õŠG¯«¤Œ¥¦ª­p;J-.ÝÈ«{Q(¼Š¿¶½Í­I±{„KÝØ˜ì-ü…­¶æ.¹„L§çõåe 7æu³¹P1Rî]ÂAlüÅ6,P.4QV¥“L±¹°ëÛìç=¯í›°ÿ@…ÌÞ,ãmò`Üÿ•xí&u í€Z ÒØpBˆ ‚G!m6 =´H¾û 3=:‚ÀïÃì#‘]Bù*î!ª“Tæ(%2í#ìàPC[ '/ß hýÁ” ’6ÖÑ©ÊÞœ¶U¡%³p‡þ±ÒÇÙìï%^íeª?Ü©í¼) Ó–ùÔ@+´®v‰Öt”„Ñ­»>8ýÆšñ™–ô Ÿ`\òõÅòIJüg=hÂox¬ÿôЉS+$ëã#D4›þ˜Z¨Ó8>uÕŒñ¤PŒù´dÅ¥iciƒªÈ·†FΣücäèÛë³³¯t±"î/Ê8à–ÈRQöLTó¼ç¨BúAŽ‚~>Z:;vtÛ,ƒÑqj!%ÅÄ\±RÃŽ˜LÒZ †Ñж¾Ëˆøsï»ôƒ ˆE 5—׺Òãe”q5ã jßÌ}1q¶n]êExÈÌœ\tÖmã`AÀ¿Úãÿš ¿ò›1³Äm|¯s¿µM ¨¢“ ›€†tòµä¶g»¢5èÄ¥U*Ü>2ƒÈ@!¾†‰ ä–…V†Óå-vç(%®œt±4Šiuä2íþA—ÜÖ¥ñ_-/ZÕÀ®WSôtFÿˆh,þZ-êc<\€¸ofÅ¡©Ü¡õÀ@®9Q Àiú»¸hgñÔöü.²÷ŠÉØã7Ü9paÄÞ£¬êI¿Tï2ÿÇÂÍ<Ûg¯µ}ó—@,n60 Óe süÈh•‡÷©.Œ d,>ºƒžAѨâw¥Öfåæ.ŒÊ ¶\§Xp¿t¬ä…·÷<Ü#öÉûç(¦UÒT^;\ïý/ŠÅ°¿¾t8 }»÷?ñʪ [Hâ§æE’"¼r0ØÏÿ§#“º®½JߢN2$œ;j2Ðx°Om+™5­.üjî)¹*†µMí¥Þ¿àÕÞÒèñÃD¤`¦õy¤­S|ƒâ3,H`Ð(ïQ7ºëɨG6áO~;øM"_láÍl¥ëYÀò'µÂÍïWF2B bo S%–¨æOÛe„1"™¼wzO††+ôê‘Rd†ª ƒ5cí6m{g=,GrúÜtÌ À`âÕà×àÙC…þiž›šTÚª÷#³³A° /l‹AÊjK&§) ß Šót{ ¢ÃíÂo«Ñü´O ä[šU)Oë³¢¢Cе3Ã{OÒR…&Ɉj»EÆA+ƒÔI·I„<ê’ç Î6‹êõT›  ¥ Ww \øÀP“ˆí4åz‹@ûÕ Âɠˇf„‰u÷qV3£ÅöJ˜˜fø¼¬U®Š…‘I²aCÃ`©ïþ«eqÃò©,ßd>ž¢æeù-&¢Úº½uO ~Ýï;0qØ\€Ú…À7@Æ"qHårÙ¤}¼x/^ÛÀ^ІÀ)ÜÖÑp˪lö‡µ±@Ü”=¦§¯l`’o¦ãÌìK˜w«®æŒˆgžptXÒßï‘›oãû”^õ‘?äpß–A¸ŸètÑöì ܨ„ÆŽ“¸ãÍie¤¯­–³!ÛhEÕ5QÖdõ"¯»Ï>¢) ³+D Ÿ‘°ÑÒùê"eVë€ Üe€ï4…ÂHµ§ßž.{x ×š.—'Dkô¦W_þùi…»™—8ÊŒ°± Ïÿ…$—}JVãC'#v‚SH9ïo¡6š”óà’R}·#*…pµbâ +ìï¤ É'÷mÿ·Íg2úö…ç-šÄþœ1ðsãv©|ÎÆ"7Ï ñç@ðÃ1#ÒZ¶hÊ#ãK`î‰ÉLXZ y¯¿Õ¯>1t»ÕÖB¥öv××ߥþ]¬Ò­&‰ô¥@V:Lž‰ Ñ\sFœÜˆÄÄ’ðèðÝ%†neQÎ' MŠrmûÔ³±q|ŸÎE Dg\ÀRªkî‘®6/Vw€Ì"iâh âo©9g3y°Ç#Ö'Wj>36Ò # qå&ž r·LF¯Nzá}KÚo·†’¾½hYºÉæ6ùߨ—´\hŸ˜˜tNneÈÜB!Öh(¨ÊU™…&¶¿ÜòýS ÚbÒø+%=<8ˆjÇìYæHJŒV à»ÉcœAó·þÿ AW±¯ÉFyk"S+†ôz6$ œ)Ô¹ãc¯s¸YD‡âÿÝ$•a­a‰äsl†+a¬39ŠK a½¨ãÐfa“ÀÏ0Î9l ÌÅz?s›Û¯¾ècPXùŸ×˜ÆK^I$rÒ3lÝͲ5æþŸžª¯6舫Bm—n†r¼-C8ñØ"¡ 2ªTJG½Æûâ.lOKû 5Ú¦k»ìsæ’Bûã¸ìµ(Ÿ‹õk‰®½q²CÞþƒîU2ÌÀLߘ‘o›"%¡Óòï b9l| à@ïbÔ0ˆ²lš'l¨t(Ê:Æ0k´"N[Ø …ÜÞmךqc$EÙÚ˜u”µX… *ù\D{íá‰3]†A˜ÉŠmdµ¨¦H÷œ ×”Y¾gUsŽõÛÇÂ…‰1? áBŽ bw]ïÌfÂâ÷ú¼ ç'ðÏŽâÙæÎÓRâ†OÃäÔH >ÿÔ{”OìŽâ>HVì@ÂÉÌYD˜ •¢“YKªAqríĬme^W]”WÒL[×.OmÅûL©®÷ó‡ðqm–jœ5,Fx-îÅÌ0§MìçD¡~`­»±AÕdǧö ¶‹øÆ¸(áÏ'â' ¹W|FÇOŸ ¦ æÍÛ]e[ŒÝÕÏõQƒÔÇ3®l Ä¿‰JÍc¨–gü‡öõ!©…¸qÛËëkþkÊR¯ >6ï­D>=ï¥U:ìŸSн,‹SýÞ¬rÝ"ìfáÀv×1»%ÊÙ}ÒM©RË(d/·¼ã賂ð^¶ÙÀVöñzüΆÞÊj ¼Ô¾T ßeåI®9Y Zˆã 4혅t+Ý•ù–·þ«l”øÂÿ§GÁ ¼`ÊýØZóÁèÙLÕqN³B\äËh]ÙõL^KŒë'DSµBÇùã¨Wßâ+¥¾b}ZÀ=µ¿£°?ö³]ÁG Îiyˆe•,íb§ öÆ›E"é/§ÅÁq);Ø‹R“åôÈXÂ=èµßW—ë¡Ça¡\bF5óÌ“xiÐÆ`UÄéE¢g\;›'_ `¥‹+ßžÞ@—¿Í½ ßÁéß2`ð%6Sd3˜cÍU›×u ¹ã¡0·kÈ»9ܶýžyº°Ú ”‹üFàþ}j >Œ6ê¸ø"2µï8ò2Yc ^òû *P§dÂX©ìc—*oiƒÑóîö ÌáBâ%*,®D¡5C¹áų.=JÉ)»½.3øóÉñ™™~Uw<;úsP"]P÷%×¥<¾ÓNîœÍegUøtî˜=5NÉÎb5ÒS# kÞ{Þ*ÛÑ_ãþB‰E}‘A_mçÒG!4kÜMqf{»Ê1*$YÅM‹€lËüæqÖr#Ú¸Gå2¬™Í0z™¹6ü1 S<-IöÔdoÍŒÃd>¢û;ôàï˜÷Ò|lh#è6Ÿöö,铽¡`‹Þ!ÛåŠÃ²©v¨ž·„gŸQ NŠAõ7]ìmãÕµðš½ß©OPcı+·—ÄŽI£–¯«~ÀM&K¬¬m ñÏ –!¢nYO!…'lrªE$mÍŠçs@5ˆ?˜h;øÜÓæžTH³§ï]GòÑoü>,0à'H6@¨è¨0Î,•l§VŽ ÐâêY !±š{ èBŸ‘u'‚³œ¹GJ©­‘Y,eh|øÍj¯•K*Öñµ.ž¦”ÛU¼ô–áÉÀƒÙ¡ØÐªÊpœ;~ç3ÆA†å~ÆÝtƒ•p•À’?p §~½¹w¸8ö!Šè#¿¡¨¾pQÊhÓ õÒ,Qw\0nÂ̲"ŒÞ X]ùîNʶƑLm[ôví`]!›×’;8ZyÓ¶Á¡_Ò½æ³Á„囩ËkÊëg;ùçC |#µœ©ìÎZVËÖ¢ž}\:NzÕ³‰®[.,ÊÈ0¿EÏ^~,Kh}šY¦°ûRWè4Sí‡û}´Å|rÄà r¼M/%À–¯¾ÿ™¡5}œ{š4×n†ã îÿ+x*DúÎ=/Å´aéè2¬$s:sHýÊõ›ÓŽá§Çõ×1¾ïGš@Š´('21%ŸE{¯¢MnnUGçËdg®¼‚úßu;R»X½&ôf$Îeni¢ÉÃ/¯»F%õÓÒû íCîŽÕiÐ åh/Á4áA¥fE#Éq¹SùrVDOñ$†ŠLÃkð>~Â,kÕØ{´Wôe‡2þÕ…œ®5) ›gÝ&š£Ë(ãÏÊ7 ¸VCýjÀ ¢´7$1Çr/˜0D/k=zخȒo؇ßgz€÷@“FÅ®é;™¡ð8ȹ»åºhœu•kT (©"Åq𥮉P"ëÌË 3þèVdXÒën†"-œ®6©!waÛïËš”RáWv¡.ý/3ö÷é{„Õƒ®Ì|š+ñ±‘Þ =.‰£Ø×~iT®Ûò2’zQ‘ÍÐ@ð² Y<ë£1¡iù`_ðQò^¤C¬˜5¹z‡š¡ú÷’…ÕJ¿-õŠ>g5’‰tþò[ÄTñK2%òü­Š]ËÖÙ‰†íéòQzÃ’¿5<˜Â´¯]-Únœ8eŸÙ¨¯ì¬×BŠànÿw€Ý U‹ÍñSìù<ØoÿuêS— Rƒ/XÚùõ•m]e;€.ÎoC³#Œ»¡f3vð%~Öÿ4™3õ¬&UÉàÝ^}#+bè¹¼8BØuf£„¼öÂŒ•ÙòLj™›Žî´i/Vk6¥³Õ6dÖÖ ð8|[¹CZî^CÆ‹ê6Ú^þØv/Ô‰w¤mQÌ3Mez5äïéÿ<¥Ú 1×Í Ðçè{5C$rÏ»«“î­ï=9×tà_7dIËjø5¾—·{y»­ÕÒAc¾|òþCJXÀ¹ úò¦éÊ ËH¼!Ÿ1WÚÅ5­Iƒô†6¬— IÍX}T„_O&®E~^0 ï`}TZÆ&øŸž™$&æ#s¾¸ýX𹇛D'¬a’pJ-Û®8ÿP¸ZF>E•¨ewT3 x&p¦ )p-½µ…¸ÛqŸw–«9‡Î,»bŒª™ÜÜã]G>®`y(tÜÒ?j£ŒP‡9ÔÁãe€Úûyºt¨@z9é•á*DZU’¬|ù®J|íÉIDøM[ûs+Å…NÙÙGu€ÏÇP´[pñâ 9‡PÍw±7Ì®§ÂížOœnu«~,…óÕxkzTÄ*å-ÂÌ`Ä•ë• W'7½ïÐáq¿þýsêúüIcÏèõ-ß?!(&:†¸'D¼ˆñ®E&ðæü51—yþÓè5ú]H0 XeM[SÖî²É:6ÛÙô 7Y,øÖ:ÛJÞÊf¡ÖRà D¿^›üVÞiÂTÄ*×W—ï¶$TIâ̵î‡`8—ehÇÂR&×Q`@jl±#ÜñLVÓD{AV—E—å‚‘|Ó›’’N³fPÞ`¾e^Ÿˆø6I”†r Ybw?³‹Ì‹W…ózg™Ù«Øêè‘ô„çzöK pÌóÀLƒZ‚tèØ˜©2½ÁE{+ƒtc0&Ia~øöŸ™Š¹Z[˜ê¼ÉÇ>±{«/m°¥ùv_D“ŒZºeÿ˜/\Щ;•ïã|­¿mž›¢ÆÃdXs,óñøF¬Ü‚‰3—ªØqµ]1GeFñe>ûŸà ‰À€úsæû—Яö½ëwÕ†4?¦4èL°ŽÒ¶7cÉ6™šBlÙþíÁ_zlŽ»M_ Zôò ›¸xþ:ó¿È ~âDçGÎBôè%p„M(‚zcÜm—÷ã¥#€.µB¹eeaíæû’óâÖÝÄçkÒñ1“c·uÞÅXУ¨éøVYÈÇ^!ü·¹ƒÞ#ÔL4(3ópI ׫©è? | µ™žÍ.×µOâ­DFB†¶XÁ"‰„µ‚IG ÝôȲÒzÂC¬f)ƒ|­üYʶ'.MEàùë9?6 ž_`Ñg£ë÷™5rç!„ÿŽÕÅ4ä¡ÉÔÙDÜðøNÇ•6ö§îÚ1£ð‡Ž.qêª >ãð~Ó|-æolŽÿËsÖñ˜ÚàbÝÊÇj~‚0o}B’É%1 •ùâ‹mëBîv CÇö™wíãt,ä$‘HuÚŽoÀüÍe›ÒÔƒœF§õyË y̸SbÆ~FêÇ9ÜÒÊK[èV#§SfYLäåýÅ1ã§D[Át¬I~ðZ£^R|B—À-Ç8‡šˆ@îÌ7ò‚Dõiqccînï+›Ê´’«MA`#J© Õˆ=c@¯ ¬5ˆ½Z¢Tl‘Ã9 ‡Ètr׌¢¥Mï÷¡­)7Ŵ܆$ùsQÛ;¨N'rUª’€ÿ(-§3# u©&²Õ~Ó-çH¶Q ½\•n„wufX Œ2ƒ$5˜!ÙÈšh„—X® °Í9]PåÔ±£Vbøw Y`ªc™SŽ]1 kË|ÎÉÆOo_ÊzÛ0ïÌi»é[))²âØ B÷0Ûy–#ÇyªÙ‡U¶Œ;%N ,hÀ9”"%o? Œ£)/”nevµÔªhúÆÌï†29Q²EÜÒ‡éIðS¯•^n#¯¿è¥g )ŒÔÒ;λL5 —¡”<Õ–ÄnÝ+©s{Á2ìýÓ÷Lð|Ó:GŽÍ¶^‹Ð@&wG3šSÇJ¤EçŒëAc&[Óå÷¦Á™ÍLY0V­Ð?œ¸"ŸžÓ¶o‰Ô8S¦ÞrËýð%M{ J¯‚¨ŠË5›Áà›TëÆ©Â´ö1 ”í}·™3‘L&o3Õ1¹ìow)$4ýŽÈ›‘É{€·"ë PþÚp4|1¬¤ÜQ$hBh½àÕ"šp+ó"™Vh¹Mç‡ÅuÉŸÂèœñpÂôCþ¥}Ûo¹îÒ ËÄa~’n¨Ø;ˆõÖg¨å_'Ýô2·3ŒÕP ´:ñ-†õ*£‰9 ¾8Ó=‚d€;~}1b¸ïº¥¥AZÙK‘:ÏowMÿ—ʯŠQÊlÒ`gzøC«ëÙø¹Ev¼˜ {F&!ÌÂûójCVVšS ŒxŽÜü$¥:öz¡}F:´Ý ù˘Ԕâõ’Ë-)3²¥OoÜhå}šè=puïü;–µäKå„~éçC}çÐþQŒ¿œ'»ûß²C\ÝX&ýaM¾+£Њ÷ͧÏp?ƒ¿½ô¨mÍÕclúEÙ§(JÓÓ<%M±îÉi$HùwW µð2Ø%«s“1›vqòsˆÑ„ÇtU†4§´Æ`¼ªÍ–ÑÃ9A{­€¿#¸ˆOóZb8ÿòpí‰E›’_/ÉçGúÑ`e·nx0íÅÑ9@Ù_˜åìÙ¥Y²«œgräº Âà_¶$é).ÀCŸ&$'æjwŸ²%3GE«µ1~ãúÔZ¾çmé—QíX«V²Îw@l&úÒtH¢—ô;]@I'õ¶§ý a° mýðñS—Ÿ— D ;×+Š/Ôת Ô¯újž\*BÖ=&y­@£ #Û°ä €¨H±/”‡ FÇSJ oMU«äk4ªŒRɽâX^YÞ rÇÚÔ¬í§)—Rƒ£¼QïÂñ»ù 7G+{ñ_Õ{øA/xoª]ÖjûÌ× ¡üÁBbäUâ¤ÎŒÖ–› Ê#„øêÿ,À6˜,EâogU¥Ž+Þ2¯êŒPšè¯˜|y±ùHȈ#W”+²—[åQ||(y5‘‚óB£ Ä) ö4ö³6ÔE­ÑŒða]Œå²r Ôß*G<°mŠk£Ø(ËÙX8Ÿòœ7r2$<£«ú/ÚÒ¹˜ãVÍCyl¸Fî±'U1>9M²ýŽãðpXIÀø ‡ñ!ïd ‡}×…#þ/˜ÌÑyr5v¸¾^^Ó%ˆÓ 6—Î{ïH{M$ª®ˆÑs~ôø/RqZ¿¸ùY…®¤Š"ì¯àšH:ƒ¬íî‡aqÖ7LB{éC rÕÛ¤YóØÔÍDÕÓPðÅů²ÜOˆÆECï©ý‰™²WI5‰(ËÍVÀ\ †¢U¼Ì™R‡$,> ª–Ë÷“AÕˆª—ÆQa׈ÿ'’RòLFg1tö¬]ƒŠeÇêLKwM¤;6Ž?“\*¨AeÌ ˜ø…Ú[x›Yðo½Emq—3ë'»UÏÏ„và·¦;Ìê°ã cAƒ‚ûÖËÅŒ$~Ç­P÷K©¶H”¶‚7é^WðD!©c™'–l¦bí(Šo9%q¦éýíÓVÁ =æa¤Äŵz%= Cœ¢«ŒÇ|o>P„`¸†,+µgu ©Þ‚’¬kzý„*•špÅï+ AÎp JìÊÖ ðç“hÂTÛ«›PàoY#ácoqá!«+®Û»ÃÖpœCµ[ã¸O„ƸêrY•;C©Ç²½R¢då»Ê›`ÿŽ'ãÅ£m¯'ó¶T@,ªxˆ Õ->Ž¿ò Þ Üì\8}*èó›5‘´ÂñB®±é£®ÅõänEEh¬L|PkÙ E˜1µ¸Å±ó A»¬£t™ª˜ÝÀ“Æè½Ñ 9„Ë9ùáîjksƒrh$W]Zó›üV f"”+¿Øl™Í¼aÌåO»la¶ž"ÄÝM;­ ¿)hqq‡¨·×Цj‹¤iNS{"«¦ë×÷T²E—„K UICŸþf©"P°¯ÅÉ-Až6ú Qþæ‚”ý:Ñæ\Yof‰Ýúwû}&¯°AפÿÖ¥Ù–ÊûžEd[ex†¯¸!Ç\ø ”“Ën*-sX›Ÿ¬^$þ?e-ø Ag¿ØÛåµé±Zœð•¨TKgˆ!˜’‰NDf¾‚…wE;UZPƒ‰fŠÞ6ÍFÏ"½T]:ÂÚ¡ËR{W#ƒ<´?,*žômN8°ƒ¬?B)`¸î3º E– è}OjÍ·yöŸçyx…œMXaŠ_Ük–QsL`Dâ/”´JK¼%@u•µyþIî¸H¹¡Ï´¥töé'–ûTP³™\È1c˜³`Ÿ½âæÒ±±=àǯk.+Ík×ïá”h<ÓNyûãSÎ íÐk»|Ö³ðtòÎNÌÎ+ø\ì­¶Õú!±šÕƒ­S¢u(a^—Ûf!ò?Vεò!ÂÖœ{÷…öuF¯¼âL¿ôúúm§F±ËR^dÔ@Q­ ÈÜq¨zµœ/ÄDÌuøxt&¼]A®0»ˆÿj¥Ïƒ7"ZìLF(ÀZ PWúÕMü¿O¶c¢ÝâÚÙ–qr™Eõ«,ù™øEÒñ½Ì([@DFùWŒg‰×i¹ŠÑ1éò_;©]_ã’äË0 þR†1ê"ÉxÒëùBÎØq[0pFmiMÈìÖ6jU²*»BS¼º-‡Ù‹­;Áa0¾¯‘™¬‹0´ÃOΜ˜ä;U¡Õxv4‘Ä4ò™F›xÉ¥-,"Ýè@ákÁÛοՈÌV„’꜆P/š<¼üz@:Ífny§Ñ7yŠò"Bg÷?dç¤íµ›í‚ð]øÍý{Êÿ EÁ3ƒ1zÆÄÉ~K‘Xdò ¥P­õœÚg† î¤^ ÓpŸKZ¢_ß|ïQ‚ëÞIþŒ.`—€†á‰’â¹3^”† ¤˜vÐð¦G “àyººk(ÉTüBuv]ßCa,\Ët.ãÄxfôxëׇ™’Ó‹ÙG×wVköû_û¿ž×wmWÏÛ÷š¥Ö"K™s/péAѱ»hš DÛûx›Xj}WÅ1m:\²‰Èù"§x Ñ:qÒ€§ÀkVÈÌt­1Í-4“ ¢ƒ‰[U`8†+†¾êe%8ë™äa•mÌÄвÄW­i¡ë²¢A›]œkž³ ]&çö°Êõ2Ožu>FžvÓ8ž¼«#ϻСÙêʲßK½ézìÛˆˆHD¶ÂöÌ.pq™àr®ïSbÿ} hÿàL.ÝúK\òYËÃ4s¿DÆéÕð€ïñ>/ÝÊ-OŽû½pG²ªbTwð#RÅ6™¶“ñ3Ä=ß©[ÛƒW•$Ê㊎Sü]­Åï7–h¾S±Ö—³AI $“ÀÃz«Ÿ:Цî‘Då €ËØì«ˆ’uj3©ÂK_dÆ ‰sVOY?H+³*+x_¹þmDkÃv[eÅÇcl„q¦@ã$QÁ÷@èOn0|Cªˆ?Ú.°TYí% \Ú4v!Y8ÛØ$ kÍR«á]ØôøºJÖˆ…Ö,tœcbðb„rNt—œó?“óPýþ=!G®b#Æó²Dbl’‘Û…2æ‡è}oqS'-”ëÆÖ¸žÉM£Bƨ…TiG n‰±<ÑÔ…îktà ÅU¬&ï¶Ìü0sD‚ ~.‹‡§»ºŠ?‰€îd&à 8l®¡"¬æðAÇ8yÍ(”ûwhxÌci…ýàý’Û0ò<^kÿÊËÖ´&Œ©›ýþÔ¨"È;;îÞA5‹ª¿)_+_/ÖÌœ»¶°»"u¹2/ùÌQq°pf.nÉoµ®¿“›± ´¢œòT³ª87À%§–~ ö÷2°aª[¼‚¿²Úéë\ÇFÙMÃ¥s¤‚9׉ÿÇÜÞ?ŠaÍÆµÎãfŒvG¨Õ]æ¹ ÅF¯ ää–ýón¡ç(u°ÐhD4Zªþ¼j7â+» ²0ë=·Û#¬Yr‰á©#õÖÏb°­À„¡‘eQËZÙÆŽqYË ñ_…dûìþ>/ŠGI˜M Æzè²ÎO›…Ò’år4cx®–úè I7T7ØSt±SRxª5÷CeòõåL†(à™iÛ>5½Ÿ=BÌ9te¿É6åº#¸.db °?fŠ}Ñ@=Ï BK݇Þî@Oj_!” £¶÷݃c û)¨þÅl€e¹Õ­Ü}»Í?:*ôRei|ÃLŽ«oœ=ŸZ™.f__aXçÈ\ô2_ ÐÝP>÷Æy¨µgØ­Udà/C-¯°’†§þRÕ0¼ 1±s;g…F­Ï™ég×QÂÇHËì°Ÿå- ×S¡ûþÑOÿÀ™zM÷+_>bû„ƒ3œO4‘ÙÑFyGc¯'Ï¿xÓ7q–&'ÎoÞîÑ_g’a&uæÎ§‰úeí\ÒêðáÉUh¬ íá—·hbV7ë=Æ*1¾šÿx‡äò'Ž›œAÔW€½Ø£‚¼ÎÒú·¿»ä´öÆ’ж½;ÓC€Ó—‡?—TOÛkÚqÕån’Âje‘%¶‚[2oM¥âþr2[O®¢ééOÆòï: ¨»ÄÒñÁ­`Y‰_pð„Äk%q ² Áä:EZ½5F÷è6–Pd©†Êǵò‰Ê!ðiëA° ¾ ‘åÀ0uï5ÏÓ#@5;ÏV›¤Æ @ûIýªwë|^~äH*lË ìßò(¶¯o­ªõ7‰#bÓŽå|9\Èny“·s½ú±F#Qçöî•Ð'\ÔÀ™_7¨]aO©ƒËH_BCÙZ ö42õ¯!h­+|âæáÞT£è•ö¢áDŠW¼’~pÞ*N~î`rŸÌ¹7¯ß•U®¬å*ÉSÖŸ°Û*ü£à¾‰pp¿ç,d§ÆE!3¹²U…©9þ‹& 1LñôF-zê¼h"Ê ŸñR …Ò×Ð84ü”,³3›UC'JÚŒ‰\GM¤U‚º«{4dÜHf \¼Aõ"*2ÜÒíÙÞƒ ¨ÆÉÄÍÂÂ[(;!!øF&¶±~s‰íT©!.«&ï¶f'ÃVùÃ$)‡]K÷(uð_ƒ§Uy\ä#®Ö» W69º»zÖ[¢fíØd›D­ A~RÂo$Ñ…—/P© •û–®AÈ·6KÝ¢Sn#U<‰hÕ;Ì~îÐE>Åß X£w'Mu陿£èG]µWàÄÁÙ‘QTƒ…Ö‘:_û…³7­eª. ¿(‡6“·å-†· õé*½«ë.o¢à‡E ¾¤Ì©ËZKϾ ¯ÆöÛµ£È–0·Šy QãÍàS Ýþ‚'ª;ac¬Œ¹`iumow/qÞŽÊ®tYÙøÅÂ@‹9^¨õŒü!ú¯P£éàÉ‹Z"X•ƒh«K=:ÀMŠ$'”8¸ø+øY 3ñ&]ºÞþhp—ÍHŒm'ˆ¼ª3-ê£ÑàÉKìCÆwƒÂïŽe¶»'òC\ ß®ªhƒþ3\ÛãGx¸Uý\œ˜»< ÿO*®DPŒ `úW"(olÏóõÌŠ–ðŠù<…ânY°ïU…Ã\yá¯ÛE LcbÉ÷ÆŸþ¢Å¿ÎF~  sUp| ;\Þ’rQìý@æ”­üy4¿þâïw²ä ¢»¸SA;1Sš4â‡ï–³—c0ŠÐlpźu?~Ф¹uS8ÝRÚ }ÁƒuµÏGv>¹z›ÎÇ8«vM&³0*OëëåÅ“À wŽî°»J,øi%ÿšÀ j\bmǾ ¶Ã´í½wñòÚÎä`«-”Jã«ò3øBåٽϧÅêÿÓz3%S¥h†ÐZG}úˆø²e°O ؾ8•·2È9Üò1uZy7i*¡¥ Ø–çÜå˜&ïi ˜£ÈbNU¼u%æ.\/­V\\匼Ý3î^N­¢Z—h zR»(öJ6¦ö=yvÛ¯xœ¾“¤·žb-x)¶W»šà%Ø©rî7ò:r)®!•¿_ì°¬8ÁFgÖ‚Ï ¨h²îÒg%û¶A^Eèa5-]Pä¾–@[åÉìª>Þ$ÿ(;³·ä°×;õU ±=E¡½zj¦`2‰Ø÷½M}žøÕHf€Ä\ry ¦^FÁÉ ëáÖݚÁËø¹Lþ!½E³Îò&é0lÂCÕ`IæðaK{!Ëïƒ=÷ªÏ;Ä$xòx½‹7˜%ÍúU–¬g#áâß厲–­Œd$.Íc÷w+ó :ŒоéñŽ—ÌˆC˜ý¼©V5 pÎiÛ’<>ôca“@à„ OwF2ë£ñãfÌl¢E>AÉ÷ÖŸ¹£B´äR™ê°”%DLo 7Nù·2Ê”Z¡Õ´4Ý`·å?E^Ù„ò}ØØõÉY^¤ž£ºgäê~Wq"¤7%ô®ˆ`Caˆ)ë8ã>Ð.NK3´}"cªMå+Û’±Co9û)—À†Vþ–: Ä sx-€C±ìúºñ—³öœÙZyË;4èöIdˆ¦®QÑ*¤Ä 5ç®y‹¨ š¥ˆá4ÙHQ­ífSiV©·)†Ê+ÙÞ„2¨qU|[zùÇÐñ '~¯Â€£mN§bÿ²=§lÔš=îM,e†ˆn®wUñZ£ÀКmË­ô!÷ÖÅ:Û¸ö)h%3_vA/“e\œµÚªåÔPOž©ƒÖ”[Zy\EõøNPÏ5z NÖ]ÝBiaÕ+Êd‚ªæ“hÛ Ìj£ÊÆÖö8[ɹ½H˜n=‚¡v9½ŸÔ·}·ŒÀW+jL1g<óQÇ4N€È h¨ª8¾÷5‚•Çà ÉÔ(Eüv¦oY”lÔR„’ÒŠc©ù$öãÙì ˆ¤!´R]Q‹ÇÔ ‘,/’ž3Þé¼:S¢žÆœf:ØäCL ]¤8ªº_¥¯Kaß8åͯRÀ;¸í‘ý[JPƱ¶ïºz)^ :rÛ—a³o|áÜŽ`F@5³Ñ—ôbÍ £99ÆöËWi]Z§¥#ië¹ F.ÄÓÈc–šFbHùú?XI%ªè©§ø¶žÊ×]nLKŒ¶Ž„6÷qûõÇŽ…îûÏ0Ubà ïHЬcŽ&®;ªd.Dë~>9v5ãGy/1’…ÑÞÕý<ØwÍŽaù㎪)æÎzòtð_ÂüEW@·å_æ¦ š ›¬Ü²ÛÝu'ªßÅÍIUn=ÆÁmÓ¥}nß/J¥Œ£–÷®Ñ|¥V%KÖ'®S_‡¨Òºm›‚ííý‰g¡2jy]žæ’ŽÄ§É{*ºµ›¶E­¢Ärµç}Ø®t²CF®¬ßÊ•þwv¡0 '"Ù¥G|Ê{6ÆšÄJð§^b1Ád†ÍËÿ( Ù‹euÛ:iHdMSyO/-™Y‡œ·¥)RNjšgô|™ªè“½F|µ?1¸‹pæÒ͈ʴO- ÚXÀ‚D,|Áãiì¢ÏH\(aòºL6s(IŒ:F£H²Ä'΃ÉÖÆÎ-à ƒ­V Šç¨‘U“— u“}ΰ:DKÆêàã;Ñ}ù°ißÎ0 Tþ37$ÕÔô<ú–w5À °SþBFÐ$,}Ò®;ëî‹Ò1% l†17¸)«ÛØÉZï’)ÂbX°´M@ŒýÐN07ù ¼ÌQ ØNß¡]À©b͔Ћ ‡ÎT8†¡ÈÑ—jA 1«'‡ŸëÅ…Î B=ˆ¡À­“våL±77î©èÕšî-cW§(E« b`ÏÝO’|—ªoxü‡ÙçSØD%§ ›;--‚-Ž/EëYØÉä¦P¸BC>—#yD^¾˜Æ ¼'òÚÀžHI(Jå¯zTûŒu'ÇòpÎÀ‡=ìžÕ€‘"n–7±‹ì¸ v4 ]5ŠJ7ä‹+šL«PëC5’£ùö–‰ëÎå­2h¹Êàtt ãÆÅ¿€‰Ü‚—C4¿Z´È«—Š?…f?ÏyÞlÀŸ<(—×A¸H?MÐO½6ÃG?÷º£*Ê3m«ãJ“MùÜkjÌ*Cµƒ9ÞöÀñ«£`eˆQºb |¼ì¼9uÓQ!ïüÌpëƒ铲[ê)/L¢6|Ís¥W?9 ¶]`D (w¢¥ÇAlñŒêáŠï­½þ´6X£Ùnÿ£°Ìâ²ø© ž}÷òÉV…[Ø`™@!ˆþ=_ªúêX¯`²ß…”¯¾NͶt¿øù¶Èš|à UAvh¡M $ ¬’Ý4v JŽ\¿-¼‘šRºf¶2YÛÝ5›¶3l'šØùhýÓ~ôÐitDxðƒb?ÍêŠvÁ ` ùMqçå_ET6å{Y€[{©CSž¾juæÓ¤ ˆ4”>äD°ßÍ9±ú¹‚ÃiTî¹ ¶ÀÖðÍ$(ÊÊ)ˆ½Ö#nÓJôHwïživ[Æoieœ²?ÿÇÄ€žå#r²p¿ôÇàêÉuŠ€EÜÚ0„>±ãÇï±Ä„Sïú$»¨O¢ç©[  ?’FйxbÉ8þ5‹xï#KÑOëè8¤Ô+ lçFúŸ¥b¬æŒQ«óüdWs¾+öR·¶þ÷7ÓOv×ÜÄ_8û<Ò9mÙª1Ú±÷[§]ŒÏ»11™ÙÂÒJÒ#âëõ Œò'¬y¥þîîoèäv¯A™s˜éåoÌ÷•M…aÎQ§9o}›Ÿç`à䇹ÈÙh1C¨A%ð“’¨¤§Óýó÷ÂËÕ-¯9éǬ-1è)ÑÓ/?èDÎÔ˜GcøñË~a±÷•#ù$Ef‰¿{·õU~úýˆˆ§þAf›Ó€šÃW„×–~ð8ü}à˜NÉ=¨Ç$ÖU|á{øŒÆh¹Ô Ê 0¬V„¤ûÛ00@]ñÉIÈe_”-E,:Œ“©^Š%bTc=+Û­*J}êV^’E*5ó†d%_Õ1¯w/K’tPɆ„€f_¤(Ž.¹¢& *¥®øñ»\ÎdV@É wt‚+â9öæ²=oæî-q²ÀXãœSÒ³f'Rp[ø[TâUþLF,BN¹ïly «tìPø7 åÌe³êG¸€VKµ³wØ%nÅÿVÔF\låɬ‹ ®ó…F%hëB'h·³TЃÔýÖ61çíÛƒŽPtÕH=U©ƒÞ%WÚèÔÙœ-ÊžEÉÇf¤ÙµZ¼ˆ¾îÃ\ŠÒŠ4+þÁi‡±çÔÌ ŠT…Á¯c:ÒÚ#y~ ³}WeØùl™KxCãHGõ #É~W¦ÞµØ¶5!óoZ€»šÙgèt·Ö-wÖ@g3Ÿj‘Ÿ•?‹|å‰,*ä FIÔ§—2¢>:K”êzjÛ;Ë‘SÑï(åüUŸÛã…Ä  åæÕ~O¸²È{Îb]5šô-Kô]·Õpš“![Ëk`šNžÜ`of›Éí‡ ³©¦Ÿ¬Û‘_¼2ïE°{½zžÜ˜¯·Ö`ÔOÄÁËœ ùËT¨!»ï›è7ºÔY«LGÈé@²,¬Þ …Å—ûçÞö±á8Оýq ž¥×Ö»Ù­„úð‚Ržér;ê’÷»,äÌæs “×ò×úEñ^Ká»°±®äî³A‰¿‰>Ñ9åÿÆ!Þ8D4ÂRÓ¶\ÌB˜Æ=r~Gcå¡ÐUÞ¨!¨}Ðw9+®&æÁÃj|‘tîU«œ)zâ˜ÝTÏ+Âà1×ô™ï\°rtEQ}Õ°v!ŠtCÒçÐ$'¢}#*´‚ -‚Yᮋº›LyO„­×Sïÿ"+ _HiþG.¦ ‘£ÄW[sãíÃÌH}µK]ævÕsÆ÷$æüalàmÄ&dz›ÄF¼Ñ|D{~˜À£äêA ¬]$5“LÔnÂfvâSo¡¨º*=¹^N­,þDšÆyê<õL9uYí·¢Hsö÷ðçßæ‘f[¢uXKÃP¯)  YzD«á朋i'>Ò |½^?À¡«6nÏ­@‘¾ññÎw›3²ƒrìNúÄ¥†{¼]‚â•F›Àit ‰?`„L„–r#%çéŽëÃÔ'EBØ{g2?ãôs7gUlCŠC‰ýÃ,@0hWð¯]ÑNÍ›ád½šÜ/DŽ×*£_%%™÷ “ÕA„;ëÏ(¢°¸š#ÖH.*rŠ?c›§CL¨ÉD U¼¬É^&b¨I/“‰ læÓöŒ¬ÊqÐû(Ÿ~¸] y¯`8¦d epAž2ÕÈÕ <”Bá¸%—‚tiàÑvÛéçÃôhéÁœI™slèÿú%Øå;<98h,õÎ])åá¾3äý±lø-…ähîû…’¾±½m͋ؗ}ܾ÷¦ÁâÀÈñekY¶· ¶š62Žc“¸Œ”jç`Ðn|¨?m0}s:]•!¡¬´òÒ‘CVe•< ÎterôÒ_+}­Ýpû_ –ýÍĸèqŸ†~þGÈ`ÃÈU½U/+NNª}-ÿf#εÕ|ßá è©’¿ÍѬÏ5ôAM\þE$úÓG\ mR7ôç!Ôx`!ëV“xC1hO¶¾»¥ž 8nÕI Ö?9U[Û£ÓB*]û¢_’®j“‹õ–¦¡~R‹|Aôóç¯UÄyœWDÛ’î8>¸oKDËQŒuÖ©1œú\=ì B¢Gð¹ùØæüñŽv»z6˜õŸèœl=÷œÈ¯LÕ+¾ºzD‘Ùé§­ í4ëu·Y>Qà3¢çŸ•µÂçÏqŽ‚ #ÛÚYÏTÊßMr¨¨°rvZœ¢·ô†èp0Y)ÌŠÀ³-ð2iÌOÖ ô¡ÎR?_}-ú2zûÀlkðÁ¥a ö#PBn'qÈf–_#lÖ¢9Dü»ó}°W~7—Ì#.¬­†Vù—n¼s1¥FYokŒ¼'87V»!2 ¬/ÀÏ̄ݜ¨]oVhÍ)øàü!EöQ|(®w/äÕMɦ~¥þ?‹Ý¢³ÃË¿§FHkß1ÄÇ®±PjYÁØÂá×%Œ‰cÔS®ïÔ «eóAyâëfëãô¾·)}C=3Õ§ÄøZ[‚?"óÚo]Ua8ÖkÐÚÁÒ$ˆi5øiVl’š~E9¿ýþûlIÈÄÜÌê³"…<9ý\šö¦µjûá—€:Wn§¬Y-P¡O§†ôºj[«ÿ”X#W¸œ TðK…\ÍL±¼ ǽH‹Ö9¶¶àð(iÝ;ß”ä9§u« `æð ”÷ý´ûœsÿ$¡IŠ(' D]baLίÑqmAãZË7 Ô|¹ì^OP”þªƒ‚“¹OC?Ô¡ZÔxš’º*§ø"Ff|&•Þ0â†bËUÖT›KÉ—á‰&k1Ëë`cÑ´8¡ÛŠ»d¾ú!™ûÁäºàe®ÆwÒ°ÏP¼ÁYÙ–™C]æ_ËB27õqÊ—ÚñZ[:*g…²ç÷¢Ëk{üÎ[Ò\£·ú•}279¸Ãxúñ-Nx\jï^¹ŒZ6×úä}©²2ð*í5}\ òní»¥ÐüÃBК„ ÇyÈD*ZÐkõLþû˜„aª’\5×þøvHü›4 &@¯Ê¸b‚#~#$€§L¡ªøiE¬Qúë©—ú?º±…kç6ºÝ˜ÕGkÍÚ¾DXsüË`¡²*¯é&´À.j—P9øAÐ~^=×4“_… ÔѰ\- ÛTê!ò>R7°â~Ü`SFÖ¸D¡“¶,¾zòUk¤7¯Þ€%øƒ)éY•A¬2ÛÍ“l×J‹Ï»ÁÛÒ®â”áŽ4Tµ'3ׯ~4¦é’+ÜI%óýµ·ÿ—%Päѳaÿc3px™ÿñçç/½ô¦Äæ )Ì<œîàY}ìáV‡=Hè‘i¿±Æía =ÿuØ,n¯š+Ô )Û×*PHiö@</ó—PÕ¿V$cü c«ºÛ…—쨮”nÌAЖÀŽ¡ùeåmhÛ…‘è¿b`Ívùž„ •’ënU˜Ôz!»™lu=|÷ÓŽõîÿiA­°ˆÄZ‡dfÒŽ³Ø‘uåõKŸW¬Íñ/S˜Â“^ËQÑGŒì&úf²6(´òD³¨ã)e3/x÷3¢ ’™Æ‡Î6q†Ïqo™Z–=ÿÒº›žN›hÃòöv!ŸLÚk [PJÎÕn ÇÙ×9Çï`ëG`‚YT©¢€úouYÐÚïu\ݨ‚‡vËeù9n£óÁ*½RI€¬¡ÿ^IB-¹/Û 7/G#á¾—áŸ1ÛŠ_OÕ^ï]žÔÌô]ÐÖ È÷1”L2tAFÿd‹Àkå®Ý"(.ŒrËìZy?õNÕÊBæŒÍѾ‰x· ûVž¢Î€¢†ôÓøC+yŒ‘Û-¡¹ÀàR¤2òû³•2÷O2‡‘÷]´Ö[¨˜­ÌNu¥GnÖxЏ ž6¡aeŸ#2¡É×9M!½þ„Ÿep7ñ€Ÿà× Œ6,ï\ô%t%A¯jMF&1 ÀG§{ ‚Lw.Pî{Øæ+JTÂiшÝÍ"¼‚d¹–1Ó8,ÑO”? ¨¹,b¹—@õ6Øe&"¯Yvw–CÃw)€ØÏêšrÓ«ü$€‚±érÓ³H÷í°`7Nä8¿»—†PL²&…ææ‹ÄÜ3ÏòøÝ 0[j-鳌[LV^êU-ìK@søk}½µXºÏÙ+–°c­éî~ÓvVÖߨ*‡uÁ ºfWïfM)®€Ç©E¹7y{w›¸uŒôÜÄÙZô'hýláì÷?Ù³ê©wqr$QˆyÒ¹¾\û|¥¿¹[Ÿ_ÂÉoËÑíi«@¾$2„ëhí›S–/«îN.И-|€Ó¿ydgæÂ&éÒUnnaL·€« ýHó@|EJQ™Ø<…õuÕ˜!—ˆ2L]1Ýß}Š  pBÜs­‚rÒ5Ùs¾CcÏ×IX"n\ÛI3Fˆ“õgÅН€²yõÄS³Q‘Aà§ [Å39>…òn§9Ä‘BHºk¾7å2ÜΠµ 1§ ÀÏ… ͱ·ZÞñÕÊòiƒdßÚNÔÑRvq}€)¡zuôBƒ—ºv|¦ÃÜBm_U²¥ÕGˆvãHmÛ"tÿ/øSRÓãäoŠg23cUñ*~« çî."I[¯¾ÕKGx×ûýS¡X_‘ýŽÝ>EŠõS =µ¹†£qc±ÒOŸvØ)Ðû‡ySÛçk˜fz †à6£Ý“àâ"-À”Ñí½¹)ÍŒù @åèg5¼= e³'…7Þ¬d¨eqo–>ÕfyÛ†æ_.ÃBÝ~ɦAiœ éfèµ÷‚q?»^@Ö€g,„žÈÀ‚R=~Z? `ƒá“†17£å3¹jÚÁÿôõ£ Eë$Zà")Ý‘oÕçÎßlë‹mÁe û_,kƒŒ7ËR$Ò‘ZÝŠýnä2i;¸å#føiWBK Îãó30[i‰š|âìæû—×EµõI„ ’ž¿\tZ+¿ò±·µÎDàG¯> ÇLãã.eK¦d2IÖÃí?añyC¤ÀdHf'nßXV8l¯¢òõ„F-måäÛy P |0&û‚“ ÿ·$ÜNœá”—)£Þ€ÞœŠP¬Ös£Ë˜—†ô˜ë¼¦8¯^ ¯éˆ;àpðÓÄÌS8—^õ2Ð%³yÒUJoA–Ívª¡¯xÔ$êKÏßÔ#.?Eý7”ó]´)JØø^¯þÓ÷ Ît/‰ ü£ÓWˈl'F’\”wø,Îß™¸7Cø d…f0âü|÷ô[”>Ôšò¥š#£¾6x Í›'ê¸'náw ÀV㽸ž+Àز°È2—œÜè“àõr"½Ï-üðº°~#2’¯çèG2¿ÌÛ:œçÝýšmXx‰{†_þ¦˜qð0¬>âÏ<]å¶G›¹/# Á.—4˸@¯“ÑÙÆcˆõ[­ŠèÎñè¶ŒV4&¾%ÇöUù1ÿoZ×´øœÎØ÷eäÅ_ãgÈè0yÉQ|5%­rꫵŸN߇l—Cª3s³¸â粫$ÖUêõË>ÑJ½鬺SÒ³qy¥´£¬„ßý{-Xœš´Ûa4§Ulî/rlKúóâòAbØ «¼ˆJÙúX%ÖéÍûu N™°AŠž\½È Õò{·ùè¬s0O…ÓŒ­eËD|¸|òI:ŒÌ쾦›| æÂ£gözXåÆõ&fìÐA¥ÿ~/2ã›}± \%f‚u>&F]KÉãïc_ØÊŽx¢Û$QÀ7gU!hUÅ`½‹û€Ñׇ²¶Ä>¼‰q'ª)÷ÃØæô1î3ÜòZœJ'ÑÉ©D9IÀ,²ÙÙYÄžT¶©¼Êü[ ÊôºzŽÑ£ÈŠ·ïºq…´!Àѯ†N¿.`;VƒX Îûh+ÖtIߟwo§ q:»ðLóGÔž 2Gí;=pQ>•Ÿ”Ó3bhó¥ë…­ÑƒÜÕÉÖÀ[Š’]_2¶êë‘KR#É0^úuF°lÕ}^ÁøÿÃ:OÓ«R5™^æŸf3¥¯ožO½¥ë¿†ë³I|,ë¹Éf‹e¿”ѹ7˜¼'"w>ÓÔÚ$®d®£KtÌ3Ýw>âöÑtƒ{ƒ ý“XãýåíæUAT× né2÷踿P^£)½™Í8OJB9izêm‘G2˜›6oØiá"|P†&e!YÄøNSU xd´˜xâ1Ÿ$€® bm Ù ï…wlbØ_»±yØž§i˜Èl§F©áOTŽ‹µ#‰²ø–æsvÕ¬W®Ó9éC ¤±»§“x2œ”w]W÷ µORb` :ó‹·S%T¢"ˆÜ#aŸCÎi»4¢%INúÏØÄE2 Ï±&5Ãúgž”ê,Àß©¥< ±_õ¶Š·ùùùìþãw’þÅL:ý€¥Ê…j3&¨0žñù_•„ 9v›ì²È\£i¶ÚÑÆö5ŠÝc¬bY¡ìÔÄ»óï“ê(ïÕú·¬®½ÁúÚ¦Œ&DžïîYùâWŽù+ÆhtÝö¬êŒ4;xÈû»Þ à%Ó. C(“AUr;>‘ìhßÙJEq,jGƒn)< VÇfe*™šqå'ð oÑœ r“œ öÕØXáÀ‹öAÌÍ úéªÓqO §9Á [h#DdÄ@÷ˆ'Xø•â¢(|—s0œ­¾aÈuðë”Úíþ0žÀ†5™Ý¾ŸâµR4Š´µAçy$«»&eæ:©ÄNSTÿû õöM\ÒLu7rþñ¾íÐñzÒ þäP´¥Íà*%NuW'º¼Dû‡XÍI=ÀcYìáüódž Qœ¿•ˆÊÛl‹,5ÁòP¨fêâ ņœúƒüB@uà ˜~óAIJàQ±õó¬óá ­pzN‹ã1gÜS3ºMí÷®N¤NÚ?ÜÚ~8p=ôVyfêÆ,] ›ZR«xáêü×ÄÐTJTè&¡Æº rصáßTؾ‰fäË[ܰ$ p0™ìæV­h¤º7h]Wx*F](u¦X´-Á1i‰Ù^y‹æåp S¼q"– NÞÀ,Š97õxt[è´[lqgÍ~±ê¼Vë7œôÌANÉ•¼ZI%5©–‡ÔÂ…Ó°U]ûtÃ7/\ ë osî§Š­|š WÁz"ê#¤bîmmn i¤]Ô¿Ûî2ð,&4UÂX;¥Ê¬ð™ÏR\lŶ“ ›“›;[ÅÉÀXtšh>ÐàouALÍ‘1ú»pK$ÈÕ—ŸºÍÈ¥T™ùÌâ36'ë¢j4õ¹nI’õàOWp²œÜ—ªÐú`úœsÏ ¥ê9åòÕ$ùÉqéõÜZ²„sS|µðGF¾…1X/ÄïÕÚ Ñ{Ðüápå7c:´nC‘¡9wõ< 6vFåwøa’ÏòÈCçÌù³þœ7¦…W†Âõö5ü¡e|'8¡™ÐqªÊ` ƒIG/žíå:uMã=ùÝК¾š¢ªäãL|µ~‰ó0ŽpW.õ—üI„·•{)vt÷ÿÂ[ÿ}‰3/«¢Á’t鯥"_/̧axKͳE$ˆh§^)Ц051„NfÒ/î(¹ã´+М’øXبµÖb%ÙV¶@g ¼³&€Éuºð™hŒèÊ@š³ó‚Ιút?Ù¹~¤dŒEˆÁßÿ¼¢w¯÷ uÉ$BßA_ÈÇުϕ圄@øfó¼ 6h—+ní.£,iÅô™z>)ˆZÚwöO îü;U‡ Ô@BK\ì w¸+“‚=ñãÙ‚D¸S u·¨$Éûd±F ‰Ä¾i|ýˆ5µ³úT†R@Î'xT2o»³L3‘ÓJßZ&N $Í~ÇgSz>ÍO‹xZý…4ë€ÁknSâéæmônu€lj8cè ¼¥}áÞý´^ÖÌÞ[•nI&eÿ~“Ãì\šæ¾JÒNAš†kÚIsE–:P—öv mëÍ\~ËR¸ÂÎì„bÂþöh𾓹wÁ6äDiQ³_Uoò•À{esÑ#ÈõEö´)ü%–‹gÜ€õËFQäwb-”:† Äµ¶X‚¯!;^–_Åa×ëøªÌæ?Ô¿Ð6ª'¢`P¡7SYJGØÁ»’ì€1͘%8× ysµ…Ä©ž?ºÜŒCF Ô#ÁªPçCMy—EÌ5iÙŠp.=0w(Q˜#Q¥9O©¾ìˬèí–Ô[ 榦…HQÜ.£¾p/uÔ§Á ’RM&/d“ƒNÉî2*KÌ{?IìÈ Ñëì ù(œ¨Ø%<;ÛNÿkB ý!þ’™š÷1H……ù]àÈ—$}lrfñ2Eã¨: ;GŒq餷÷Y9QÆyëEð2è òñS¡)† HÊÈÉMó™ßãä.?Q*ã15Æ”®½õ2!¥ãíüªŸœ@øÕÒéDþv:ÖI®x*Ì,“Bµû„N³UÊagôŒ Ç‹ &/­ô•Èø<&`Ü Z¨ë[kñVé Ùû^ôb¨=¶]éÚ¾:ÝCpÐþu®¨ëßñN]¯b8é ?}Ç.âïÂÂRŸÉ뎷Vx¾ ?¢ù·-úºn&Ã¥®c9Y“••KóÓ [áô4r²{Å=rõù…UÊd¾òýÏ5^ê‘\ ¡ê#pš ,«ƒÆß²Šï˜q{~–éO£ÖŠ÷šòÀq‚ß–@F,¢­Á)®@ =[ò7yYééf/!QÄ{{ä†Á­qfE" É-$ÎË<½À;ß45¬Dç±FwâŒLÓ À½£A–˜âÏeݺM‰OÛZÙ¸Ô 7ª¦¬¶wþ˜¾Òfñ1ã9%–G¾úþüoŸÖeZæ4E7‰‚8˜5'9‹8óv:­jņ~¨+Ó½‘©™Ù«H> Þë{œ‹Ö”'ZQþ‹M –ï …Ð­ù‚׬«½")á<\ÿg5Y·}²®¯ÛZnî€#©¯ŒB…ÓÚjX6û+œs<Ô•[²¥4´ÜM4sw0’¿å(ÎŽiÍìlÙ ½XVü¸µ…ÃÑ"/wýºòrV]ëM)vÓ˜óp®ÕdÂqsF×ÑK­8º²t=>¢3DHªûqNù¹ñØc#“–¨â ÷Kûù@èŸm%xý+«Ü«éŒqrÁ  ÷Vàv…Tœ@){Ö´V`Jÿö>†ŸHãÃø%RÚÿኜàæÖ|ÀMÚö é¾ßCé´Ámr€¥VàZ™ƒRüégî[±ÄWçtºZ„³2‡^íÊD>f¼[¤)ÍàIÚÛ'‰sD£¡ËT‹*õål™~ã-`aÄ—vâûÞ eºÅ@Å»¬ÅAPYKKîñ ¼ËË·¦“ìt,‘øë;å Œ¸ÅÃÜ>¿‘\`íhL¹'cGwôÕú”÷¨dö6ŽU‰ª?ȉB’ÿ ÿzbŒfÉ.Á¯Ò_e%ïËú4]áV1Oz54ûèÂXjÁ¬I}>¾•¤Ï3¿_‡ÉÚ,«b]…ÙÚ 4-oDûðô5$‹\Åä§ÈIX7èͪ_Ûó;t\ôÈÔâ.†;7W1Y åŠ@ÑéÛ?¸oTó:¸Ûï©ø$hͱõÎ GŸÜÈœ>)ÛMô|r/ûÐáÖW‚"W÷£—;Å îÔÓyy†ì~eÂæyŸ#6^kX d 6p8 i½ô8ñ‘‹œºy&¥ËdaO‰÷ÌÔ¶Ýh‹în–¿’´Œ‹õ[¤†—#0rr´‘vâêY_âé57²d’ØáÀu´Oê˜')èyÛ<¸gôÒ¬6ÃÅ'˜Æ^ò\{iŒâ…Ò^µþ&V#Ðiºûëk"†‘eï¥ÜuLq.ÃÚšAt 5myN¸,ÈXñõ€ELüŽgOÿvõ œºÚ ±P‚’ýŽÇ1‚ô[£‚ì“ÎþŸaÎÙp›…z_®Nya°Â ¸‰ðÆr‡áéEƒA|J|Ys??úvYóÖWnãƒ"ÀK'93?éHT¸ß Á#|žjÚ¯œÒN¶t°¦´(§rº‚…Ïå6UW­| ebI}Çω\UÜÈB¢ò=¢·Y><È ÀìzMøŠd;Z¹p¡ö3pQ‡ªð'ë/+äÌé50# ´Ö{=ÎÉ“ ¶/0e;þ—SéjœÿP ‘0Â@¤è';.ïÕ”HZxfz"[xdp|Ñ*ÿìè˜mÙ ¹‡Q9~õ¤ƒ¾tÜîX‹¨\%67ë\ÞÅ×!QßÔølN”z©Ø†ËŒƒMš^h> …6«îäp”„ É,É—uý7ÿ¿æ ܾ¡eÑn®ðà”uœöJ׺DùëÓø—bæìî ¸|?‚Sô>`’QüÎ’¾°@2]køGÑ+DèÝ™-´­²ëE˜²²èºKùd)B:Gdo yïrC‚Ÿ_oÈC¤LqÎrÃñ¥ñ÷tU[BTñ¿þßÖÆ"™Ú•p6›©òr9vH©à´aÝëæÐkåÀxƒI†~Ÿ®WL£·cÖ)¦O¶ÝG§PGõd4¶âè¡»\ýë-8/!4ÅÄÔL‚ÝÕðøÄ_ËÔ&WVÎùZ£³Íþ9Zå&Dj "€Ã²ž‰û3ñ o|º·– ¬OQ3·6Ä?A-žˆ™´8Ÿf³¼SUœ&Y0)$Q/³ÅGOøÆÆ)³½ã{ÕRJ¯´%Y ’öÉÒF°‘ïÓGò:…\lhTWë#cÒ€fÛÊ/1Ê7±Ø¥„H?Á…Š` ¥¯n/!S/m³ØJSœ\ `ž×ט§›f¼À|Šˆô›=LlB=’ü öt…]B§ÖÖ- ,á )¸žv‚lÐkMU號‰Ç—ÆÒ~ –ÇÇÑeMòº?¼éÊC¯‡Rƒ˜4 ¿6,âO‚Þä1•ØõÈñ\™w'¨£®Y@rã²|#œ]™ÖkNŽù}‹]߆yªqç¶8˜Ö<‰ëékiVƒÇ­×üÞ—ÉwxD¤ð-0žØ]¨}B¨—ÇúÚ~PôRn ÐÅ…ZëÓ•€£³å÷Fg'W5±Ê´Qå¯rß…+ó÷·&ž15]äŽiYCÅþͲ“~N•á>ûÑjI) ÚÕ’5«­ÆÓÖI½ßø”þ°SZ0áù}TtÐJÍÇ•-ìFñ¸™ VÑz³³?–}ó¨ SêÜ×¢Þ¾õHÞÕÃÖýEƒ² ôÛ‹í“ý‘õÙbŸ4ùNØê$bÃ/y‚PõáªeB-òÃìÂéàˆÅvï08L›5ÄÂÑýtÔ`È®LheWct+sÓ,iºPØJá[Ój-átKyre ÝØ`PLÏŒdg·…{”é¯,1¬ÈÁü Î=)”Éd;Ö<Û|UÖ§¿o&¬ä %ÕÀKgŸÞ¡@—K· 4 tÚó[P Îâ>DÀ˃e/o@ZtÝØ»/£Ð ñÁމɱE•<žCîg¢d’ð9£I\6ã×h¤þÇcGkäž ©ƒ7p² úû³}¢´®zMxd‰)ؤÛ(u6ôñ=¯í|«´nCgXeó¹dBºÃ0SdórÅ6‡O¦È'^/¦ÑöÜó“Kå'æäA»àÑŒT5 æY(ØA,žÍ nܨA@ãnýÆ7sÏn~VõðT0¤|Ÿ×9ZyÊÑ¥Oeíà?0hM¾çI'²"Bç0Œ™ý‘«ïNõ{YvìÜΟ#¾K‹h©tš0Jü? SdÇ@ú‘„ý]WÔ4V ¶­!¿GjõÛ‚MŸ\¢m&U&ù¼Œ¡´_)Š—Ä-Ý.%.¾„Bå~ö«Ð À×o§~ÄüwûA;ÜE2¿µ,øt.5ÔÑKꈓxÜEÙò$‹ïÜ#åæQ]Ιq=òH«"kE\®˜¢Ÿv¤Þš¢žû͆'‹ôµ@¬>f`â çHbµrÈlWø'ÅNÓx*¦µm⢷Ùzv¹Ôæ¨#ã:Ãæm)U4½HÃJEŠX…àò07‚Ÿú+ôõÈøu»ÿïî!Úψ€dÁ” î’ߺ¾ò<–ÿ²ºnŸàÇ” Înð°ˆÄµsç4>ðFwfdÝá8[b/Þwy@‹ÿŒóÿ‘ü åÊøéqÒŠtñAÃ`ÁßÚHÍÆTl‚ñd®(´8ò ‘ki!¯oèŽtÐì?®r  4æ?‘õÕ¦½–¨e>èÔ¾bT=RÂÍòóè:©7âLÆ\Ÿ4 ʦ¶‚¥Ó•‘0ß]Ü€á1µ=c?¯XÐQYÀ“Õ§âD€®<Æ‚@&»ì"sY^’ŽÞ…;úÑ{”¶¹ñ|œ^Lö¶Vx@²‹ô®Cu»q{Gº•½ E×f|Bé2U×/¾€Úß(Å 5Á§!hˆ]³!yúØ*]1CÂØbÍç䬧&Vb-fšz d2 ‹³.œìNÂÜ`µPíAs¼€¬åîl1O[ìÖGG-ëz€ü¨ ²L’D\l ð{.[EŸ"›çLW —a¼@™üK.qä@ñè6t:¹Ä÷€w)Žøn[µoœ\ZFXÉ©Pn( ¿JœÍþœ†cB:ÉýÊǯh}ýÆj–h»¦š€Œ¸n8=‘÷2W¨©„üHYZŸåýèa"C¤n0E±Ø—ñ¨t„£uWÝ ‰üZ²ùq¢ex&Q|2d…bË.ah¸åXšm‘}ÙåÜ턘äÑóûx\÷Â=æjEÔ¥ù8¥.#ßV¯|0(Göþ!½Ê†k°ÃKEKÇŽ9+nÀ°Vm,æö ˆæ„¯fªu%÷y|ÀÉvø§ÑeW–^¶Šû¼Ö4Ú¬ÔŸ­<*‹ǵ”¥ ¬@OKü x9“YùëáÛ¨¤ªÙþŽy”‘ã°‰‘·`]¬t5ù…]»{Ä¡qûaÑú§ç𬞾C—;f®Þ*$è áà•‹Ñ|vù`/M=ôgõ›Èý»Aœ3Nv¯Ün°b“Kæ™»‘¶¦¤‹¨¸=ÿxÏ…'r¸Ýi“d7ˆúÂcÞa»aKy\Ð=‹âU”ôÓ+¬Ò+D®¼ŠmA¡L÷ÑvÅè‰86Ko–É–0 ÀŤÄ\Œ”õ!5ÝàE³’£–~Ï繨Ò[*avâàˆHýâœWb¤ìE²¼:\q¦••0ÿ`ÕÀ¤v'šï§„ÅùÅ áÃ{ý‘¾a{w쬜ÎO6XÞXýX_“@ý<Éæg.]ü«4ÓЀ «½}ŠÀ’§…£6ºH,@7hs¦Žy'9–Ȇéœ^S=JòA²*ÏÑ߆e$}ÕÒ:E3ú¢AÙïk®/Þ»ñkq"WK +½¸rGàËCn4ËÖö€«UÁ&êǵ_m0«y—ÏHýO:zü¯ !¯x^pÚ­±Ÿ ]ñ)"»3,¿½¸Bv1Õ™¬Å™—® @Õ*ÊNÀE?aפtšÆVÎYŸm+Y™áßå¢ £€}_G–´š\QÉFäÚ³‹†£ÖIQº‚æŽbÓàؾ¢…é·WE ú µ‹M~ôSÔE»^“Åm²Ú^‰ÇÄ+NnëÃ-Ò+}ó5iU d%r- &­ïm~A&ùP¢Æ&.–¤à<¡\65m·öÊ)«Ç:©‚0k€§—?û™ž˜£h:ë›`TüÔVt¢Ã‰–ìÿ#šõfzÐ6š21·Îî«plÄ»y G•m uu[vÞ’ó9¶C–Çg/"/,^Gã÷\~m)ññÈãþ(œSòšœƒ`Ö­á/é}¿†J3txVÄÉ~@^¹¬ý“ظíްbhßü¯ca²nq5Úicç Ûô°ã Ø»ï‰7ánÉë7ôÆûÿOÔ‚1tÛË}ÿ¹ =Ñ9Æ&Ýô;¢fý“¤lÆz°yÝd±M-÷†3þÂJR¬M,‚á”@?Ûµ ô!~ÓXÎÑS¦©¸oеÕØs øðÞ¼+ ¾²¿²ØûgÔç×çðÚ}'! uurÊm]Bµ/ÿÈ>Ð  {2½Éç_ë‡&‡ÒÇ]{KêµØtoãÑŸ·HÃ[ôë^Z”æ’âTŸBb 2,¦Iº1„²ú4¢üKÑ»<«ì„cßr^"B˜©Àú&õ©V|Nf¥–)ôà[¥ø z~Öû”5}¼ìÏ3í#À”‘Ù­½…Éó@;£Ä—D¬«Ê‡Ëº9ç+ép9/>k„ ÷eÁÓaøgå-Åܱ$£$59Êû©xªë ô?~—]xµÄ êˤ¡Êo™³.°óp½†SµÝ/k‚IÒõÚŸuYü”s³Šx¤žÁ”=Œ‰„]wª‹ÊÞ¸a£è7Ö§P|_*ô2Fí„…ÿQtüž#êÝ(H¿•Á×™ X’A,n.Az+SêXŒ ¢9 Ý y C4ŠÞSßå  ®\¡â„·×&>¬V§’C„@ö‘,Ÿ›|Õ¾ Ðiºg}ŪË3nXs7rZZÂnÐs×eêtu‹`5V$À\†¦R²ÐäcejõðdJ ö¹¢^´(U¤*UFlyvÀC_R+-¶­¡ÖtUýsŸ:ÇÌmî½4óYMJ=Ž[Á¼MÂÈÛ—ˆq×Ö캛|×ET(wü©¹u¼Ar¾:_>IÌ%£#va·ç¼œ=†L´žs¥F擳9µõlQðœ–^ŸöO¯>|P•![ ³ÙKiÀƒ›ÌJkÉ ]µSÎÀ¼b%g»;Èâ¬@õ…ŽvAQ‹‘vCþ–`Í7ó¯¨À¹çAÅúÙº;ûúREä²Êæ02XßAP¢:;+}l¨ü¡à™“| º7:ºÆ<ÕNub6râÆY^‘n¨͉[azÅ™ðÍÉæ÷”ctï;Ãä§o=gý‡(ŠêŽÈOÜ‹¤ [˜!4!©n³âüAëýª2Áæ7-xYGù»¤§â›6fÃV¼°iOÝÔÂ^NzÍÂ"Í—|uì â†ØÝ¢9“ƒBþ–x-‡”ÀPyÆGn;KRz$“XY|18‰‘/v>e·Œ%ò Ž£ù—( ×«”»úcüîŸÒKÆâ:' ežÉƒÅеÀŽ¥K”ÜÆdj&øœ·(9è è+ŸìÈ(¢ƒ>£ç{7¢Ûi¨BUPß›cc»Ð¬ lO?›í¤ð©ûÄöaÉq£­—ÙêõN–‚Ï® W±êõ\+ZgVþf0Ç9_Pè;J§AY†GÚ!— ÿ]z¼8¡¿çZ÷õ+Žo™hJ 8õoQóU_zz'¥íËãÑÍ´WåÓÖ Ë­”ðÂîÔ×àÑÐÂELUJ`ÅUüŽŠQ · µÒ %Þ ùjUÐ?ý*Ì©Êp¾ùQuæDï[ËŒ<Ü÷b½|Žó¸÷uá¬d’ P«ÿ랦¤cý;CftëÌóÈüÆ“f >œ‘›qÃÝÑ:—1 ¿Aên…_‰Åx^¢ÃLë‘Sˆ3îáòJ÷VxK§«ÇºÑűÊeÛ«‡÷¸*àÒa™‘#w‰êC°3½À³á+¤áòf)k°ü&~ÙÚXì.#¯+‚ãnî’åõšÈ瘖²¯Ë¶/|£I‘0‹mÔ–YèGíä8ΉÆZi'Ó1‰÷õÛ³ÍÜ/]ïžübYå)àû´e‚n,*‰(çCØÆ4´å$n¸²ËQ6»:¨P§ë \üyÙ¢g“!Ù)˜xQ˜U—ÄÍo\õË5WÞUæÆØîäX?9H~íÂ*•ƒ­:ÁViAcv€•%øôEáþ3) ¼¿C9bÀMûgWÍ]*¼KÑì ¯pZ›Cù Kg»ÿƒ_ç©äs“9É*®==†Nï›UT¦üÐ:ïÚr{ûí ¯xÅœ 5­f.ñyç«LìlÓWÏ)HªIE@¿•2aÊy<ÇIÒçÏ¡£¾·‘µ;7-Àî¦-çÓÈ‹XÙÞ#5~K›íóïÂÞ6‘C§„U…Æñèy( Ãh—…YB*]HÖlÚJ›‚|•~[Øfm¬ s¯öù寽îT"ˆ¤¿„ű±…n÷Ý\sDP¥™f îC$zgàÇîÙS!T0+Yq4oH°@Òú×ÛjIm a…8ÿCÈÌ–ý -×ìÕ'¥ÌІûºæîxÕJ¼Œ­l;—?+¶é('¿b6ŸÕû…zŸ3ÉWìt’¾’™ä½ŸRÙ~Œ‚¢ƒvI -~'2±§ìX_iæ8ú7ä¢‘Ê u&&Îg¼¡1Ôþ.˜’†9‹9«ûà:Ð&~zîH¤Ûgz7>¤Ì-±ÚŽË8°il“ !çMKÏ)…ÌV}–¸)脾¶»¿Ø@€”Œ (¸°â¼f‡‰ëÍê3ãGÓ=i>¡íâ?³ªüs•¦µJ9[.ñ¼âoEèiú$Z­Ï¿d‰mÉ»ý©ŽiB;VKËW÷¬éû%ò‚úüñPûRû¿‹D«Å—ȴŹ5êƒûk8š^Ê$Hó”(Õ‘ithUì"ŸþX4v#iª&Ãj¬’Û‡_¼34‘÷Ý–J^wq˜!û¶ê7ùçœ~Õj6ÃΡT¿$z% 1*<_ý ’«H ªÚ¥ƒ#(Ë%£veRßBY:ÒÀÆsíA6ï^’…M·[Ãþ¡…‘Õæ­?åZj¤ýhf’}?(SžˆNÿ23Å×ÕêfYi!½Ë¿}vʼn/÷0C„‡<ÁÇW)†?Ÿ­ mÓ™ïÍ  4â§2Éå/ÓØ€»Yòü¤Ž‘!Ú *xR½vAŠé;_ØØÄ%ÅÓìKz…v5%æOðýÿþÔybAW€f.=é+˜¦h½ÊaȤqDm€TFÃAÌÎêwf…fƒUóR—N®¬Èµ{¬¼Z.˜$LØ ùQ /¹†4oÙÆÕŒ7›.3‹òت¥àT&ù‚„0Å ¿ÝÍ4pMb}Ÿ:[€ %ÖÝ}§´~AŽà_œ¥ivð6jû¡"ØšvUÚ wø¨6x17X>4 e ¥iLo׸¿à¬µ™©­“Gú ¹U#,J7ƒzVÑä]7 U'¥úxGžm¼öƒêGž&Œ=Ø[‚C–X-2‚ìùÓSË?+ªh˜§:!Ï5npë2¶Òü.{óÍM‰ó{MmR—‰,Pgà,!>S„¨®‹€š.Ÿ`ß%†i/[À©ÀSd3“ÇÔ5#y1Èf{Ø£è™>MJ»ã½ý‡¢ŒUñÐXz+D ج2PuX5íqÓ¸»»£›U›D¯üc V×JÇ\XŽ2—äË _û¿ŸªðÛ% X)SÆ-1ïÂ*R)k}f÷ÿ×s x 3ä¶¹mN¨ZŸ¦‡™±ØÇÉ䮞EüÆóAJ"Þëµ’·7™#oZx´Ã•P™¿vD mõkT¬¹›Øî´ }½Þ”;’M<¶s¢ð¤['‘åÕ6æO\QÐcrìjÀPܪêp“!‹©Yf- ‚°Î‡\¨7J_´»uP£=XA)áÄÚôn¦óŸT‡Ñ$~öRµw³Wõ'@8+„êzRIkeÿ© ´?ï›äÍÐìÂuœïTÊßœj4‡e¶hrÕMyCµ#ñr2@cUÜ0³ §‚¢M¥áÅ CªÞ±ÈQ£‚|׉¦?k/€fÃÒ:SÒJ9ÈL-Ô‚[û e¯úo°Œ­L¥UÓ­œcÑer'n3pÇ4ëZ <×Dä‰jõgéa®ÕôQê1p:̲) |W¨Âãdã@£¢V^ð?ÿûeø­ž%caV ‡¦iT);i‚`›ÙڽÃÔ2O!ù’ß(ŒÚEîJt*«kÍ£b³”_l2(±„ ÒHÍ+ò \Nbòæ¯åŒî‰ŽfIᲸ 4Ø(Ë6Êbgà >r¤‰a·g`ÍOrÔ2 <†N0âËÏ;.šŽ²W½Xô2C¥·xÀèä¾JIÚw^3»â×'y©?½RXÿ™8É_xx‘O …‡±e«;v´bŠûˆ… $Km"n¥êž_[Q!{Þ÷SmÁÄs©”WüZŽÑh»âYšÆîà³½¶–§Üàä*5WH?Åàu¹¬û™Sç7:ž½›å§Ä¾ð ¦ãÜùwhwcãOÿŽÔì-–d5ÓI0LŒ}¯£Ý¿C§ZK¼äX)Û¿õÄ\ø×_ÙºS¶§qýŒU¹„–©_)‘‘í?0Í2•™û÷-N¡eqrSÂ5Å%p®÷ÀNÑ"oð®´JâÛ,¢Øñ C@Rü-ø‰¨·A‰b#ËÜ>É‹à¦X¢4ìöˆÁ%ùæöˆ£täNcj’’E!µë‹,còS†Š¢…glü¸?…oz$6’֪à Øê„.“•š@øˆIf.PÌ?~M>‡ }p¼ K6ù€»>§PËѨAYÉ3Ü6-á}×?a¶‚áÅ+±ôó!• Ò%‚V8þóA¤¾T,øíì-¦îäâž!øÉ®)’ò=© ¬³3¾nt<Œ¡GZ9ÏÄE·®Ì {Àc0 ¯Ýb†µJ§jj¾LõçÂĵò—ŠÎÙCk KAr ï¨ÿk4={ËnÙ=Ž÷ ïùo6V4óFÕëRÖ‚ªÁ³¸.½‚ñ¦D#Bí⟲4Äxù3ãÏ)ÞŒ·3óå˜á?·ïf-Î$ìœ÷)ðñ½T%­ða²fØI Ę%&Aòtã½P ;¹ç‹e²8'Ed2gQi3ÐIùåÁžüY ‰Š•aa;ÃôùÊ–Õ­¬Â?¸? f6m‰$°é!¼OÜkQq´cSüµã ¾­Jµ>e-Ñ@‡¶ŽÏ¶üÚ"LQ]³Lq Ôäïà‡@²Å£À®SE5Ãë=ÿ«Ÿ'Ñ…f=E Œ|3˜J fª .ºØA0#Ü Áx€6búœ5:x2naÍr»D¶níºœ˜,PržÉÕkÁÀ7®Š`ÈM;Ä 3÷RBo4¢–hÊ}‡íª^‡Fí-\Íý3c_Ÿ±·Ü µP^圸°kÓ­ˆa® Rzê+ÖÏ9yÑÖéuY-—ˆ­*8ˆ\T¸‹›b¼{6vSsŠ8;‹aøëB':nâôå8å Á}ヲm:{äõ>À–ÞOg¬(¤•wp‘йD¹•¤Fy/e/A\€&*¼Žòò\¸áXýx\O²ô€"+~dé’G_§Fq˜Zh|„‹Ç±3Úó›PÜÆÚW˲¥Ò´0Æ(d¬Lpql¥YÍ×&¼˜%Æ?„Vqg_=|ñ‹Å„Øß°PòŠçÉOúWÔ•‚‚VVÇågÖÿV+’í·0±U-Mkëžõ?’dµäV¢¦ýáM ±OÑ0oé "ŒD:íÝφ‰{>ï¹xº³kdÓ+¥GÚJ¥N$Vþ¨®"7Á½ü$°P3UGóoXk&½é¨Ä>DO’D‰ûúêhÓSr³Ò®ltBê%¼“Ý£‰tE´ ".;Œ`úIw}¾¾œÔÅñ[Î7:äüŒc”´ŽÄ"ŸÉ2–œì7‰f¥B8ç>ÄYV——±…q¶71{@7Zª6MgJ¢š;zÑ“f/'6ˆý½„Lñ’1ÝQm"ÒRŸr°FvÓÚB%ûÑ­cßo³28€ZÓ\àñWÏø^½¯EÁ!—·Ofe£lüÅÈÙr;ÿ Û¼”ÉŒÇCž¼v=)­,§“œÀ£êhéuÎr‚p@—imüŒØÒ£–ú½wkEü™CÛØ‡ )yŒœÃaÒ ®È`,¨¿Ö~í"BH1b,Hän5ÐL{ïXêÝÐ.,cøŸƒl(ÿ\hÖFN5$ÐÔP¾µUäöeÖ¸{záÓœãŸDØ%ë?ÑŠz™”@öHæá:Ì –Ç'Rô]×<¬é·äþËÚ™c‘º3²ßD¨«ï·¿«Ñsú¾&¼kj)ÄcÿÈIœB3Á4É–ØSi'("Ë bͯÏÂ/(|/Uü­øu£×)°#AaÑ®›V‘®‹íQ­ùѹ=@ûq± 4jFf×ÞìEŸt]rc³v ÷ ¬ˆYΚ‹Î|GøGÜkÖίn! ãù÷&ìS|¯luxIç«I‹Òý…6C2lREsOß%‹¾ø[¢{q3 KY|®— WR/-ïU[^K!:÷mé "àŸ /ܽ>0#,0Á^õ÷÷ÜHê-cûÊ, l ›¾ªhièÅÌaµ"1Îkz »ŽôoKáÊô2árÜçN <¤B5?Ghióœ ±“ϵJ…}Výgª:äÆ_ô í‚E½ã‘ù ÀÔƒXF;Õ]È’ÇI KÜ9ÄšŠ‹Œ–!yœ%Ñ0W˜F) ÏþZ96ìÞS%Áq›^\U%ä¾y JÖ·Œ¹û¨<§7Ûå<ª½nœ•ú½ohŒûsGV?l€#nJQÀ“Rå©/¤ü–‚(³—UrÈVíêy¿×¹íØå({ ƒà@z61Kv;òBñøÀ— nsªWšE³í“:´iXL­ÚgI`ØŒ"7L™»dF¡ël¸eßÛiÝA¼úÌZä±Y–Ñ*ø~3ÚrAô{;È’§æÂ¨œté˜'À¡b§Óø¾O™kñþ7Ó• ŸW$|_1 `g_’;6ï5~%6èæ&⃦ˆò(ån1¿e@FˆÓxœräÓ&½üb¬—Qäg[ /FB>â"üDØPS±¶‰:91íq%1Jv wÄf¿êÆ]ô8·¨:ùûžŽ~PyN¯[Eÿ­Hÿˆd¦ž¦™6öŠÖÛ|jjåA°â«¾@€&lºØ5ä'Ñ$Å ¥ ÌpÓ±å—H¿’±gA~nÅá`qëDs½ÁS‡ÒiŸ&s¸ÌÌŸ6ë¸Er‹Ý4ÇbÖŶ£½[°ú–Ag¤«L·£f.£É~à°%›°Rà‘ÚWc l“¸oCu?ï{;ÞTÑäu§12ÜTnv¯­×Ñ\â±Jü;õ˜;\Öaô˜}`7á¸ô¸C,tSß ¤45޹Œ`Vûw=ôÙÇ)Þ¹FÔ8.çÏëÍÈ7¤æV¼‚úw„€+¿5ú‘}à§K¸öY–¾î’4ÛÇájÂ;ž¹ˆKY‘`HbK9zÂÍ7(¡ó€÷YQ’K†a•"ÞfŸ÷ MÁ_fšã1ºøULðÁ~â?a•8ô2¸Nˆ² ÆÕ¬›ãÄVüËRm3¢Ðù1âʨÏM’¨wô&î·™sº.U·èI†hÉRþ²u¯×Þ“EŠsQNO\¬FÂv¼¿»TajùøÐø²ò7òÇ¡¿¬ãôW¶“s;~¸Á§íšHæÇë7¸Ññx°GAIž«ßɳG˜`"·¸ N¡ÿ•°0\° §mð*šs¥ ûYb2ãëI I‘Ø ×5–œ'ò1·öØ-l¶'PX•˜ã;Ëè‰464?jîŽ q…¨Àµ +h«c”ú@ÿO›¢:€°;‡«6Oê˜ o’>Ü[Ò{’”6ç Ü^KÌ´ßpvÑW °x“ò¯O÷Øè¾>תoóõ†»<@Ä} •ÃsÓC){û:‹þÎAx'«t‚s€vôªuN“Iv3õ*ÅoBþ/¦ñ½}÷2dÅ„kñ‹óæ-$–Τ%ùÈÆPòJø03¶JdßÅæ¼¾a:iBÍW/d°“õ¦7€öF¯Z<–Qû™¶…${šs}Ü ¢ª¸5Ä8°ŒØ03¤Aï ;+ =­/ÓM~QÀé½Îþä“Ò ¼g_E'V0fqÜ”/êô¼'· GÀì ð€˜ÓL¢¦M¤ÔÙ‚w¢ÿ†Rd6c²©Uýs¤8ðá%"Àlè$ŠûçB€áš¨/ŽëÐQ¹ŸaG¥ëÁB]‰gì¦ôøCw®ç s'€éKYØŠ¯hÎ6¸ëiu¥™t–Úƒäõ }²ÊhbrI¦Ó6K‡e™߉Œg>ý­/Ê€¦L§i¹‰)¦ç’2y‰}êS8uê‰ùû9£À#ä°%Ç2kȻϤ0×D/ãDŠÑ›²9»Q¦À’áÖj‡<ͦ^vPn¯¡ ¿:¡á2àp¨o®\•dÆ »ÙVãD¼Ë‹RœÛ4QÓ+Ò…&1.À/¼ßï|<‡´Ú7j<5ZWh#Z«•c=_iÆ%`Ì»fx… X‚o˜Ö4ªÆNû˜•t-•vñ;GÎ}6îÑuƒbqô·G:‹¸dÏ¥ÓU}ÎìĘ©ÈB‡UAp¦& \JHm\”óq]§5H§±bú#fyÊi7§þœêÝ;qוlµšƒí‰RÄþè‚Ãu˜(™5N#ŠêÅ# ¯ðm%­F S‚ƒúÄŒ\­Åô¸‹ ¥cj(íŽwÔ—¢ÒÒƒбX9}$[2ÊÏé“:›GΟnû§^; ½ñ7âU7á©;ÔPŠ4G`ãf³ÄtŒfm ”UÑ÷Ý9WIPNðNñö›|±Ê´2gûb?а•ÿVÏÕ(q F"—¼Ä„ÍW³‹¶èjùŸÓŸ¬þ›Ž/&ý‡j¹xoý<ì[ŒtX_ž‡ƒÜ®^!/!Û8*€ºÒÜaÎÛ÷'¢ï»$þ÷Ò¸ã'2Áùø½ÿcKrVëÀf WKˆ­°Ài1«w7dmsn“°f¤™Ko[–*?¹4}—ùÅÅH*Oñ8·|’üEûqn©I9qo`¥?·Ê¤³Ý*ª=íd诩ÜaTb rÛÚŒ § µêÊÜž»CÝ7ÝGù€À Àp5"8Ñtù:‘×(nm)HWé\Æÿ–6E¸Ô×Ó"‰ƒ<‰‡Pÿ¦n =Yר½í­½:û”àUzÎ>öÀZ³¡gí50·Ne„Ùê‰"?.Œ e÷)òƒHí:mkvÁ Rñáñ¿,ÿ™²eL˜`Ž5‰Ñ̽ln¡O *ŠàÂ.æÒ.컓O¶›X™‰é‚q`A»~N¿‰(ÀãUsü¯#.'üC0ÍŒ«7Ñ3ƒ0„гoµG¬èÃ!˜ÿ;Þg|h—_RË~hÛ'õi6Àª›>–u-iÖ+W.¶3ñp¾ZoºÑ#n²Ó Erð s©ã°Æ‡Uæ}Òˆ?èÁ‘P¢Ö_|Ú¶9T1ǽ¶º bœ~):ý¯ÅJ;A7ˆueH]"óŸÀ„? xE¹T£ñÝ7BiÊ©Šq%˜£×Ë»¦ÍãºJæÃR\£)¥=)úõ ¦îݲÊögýsr¤îFÐðËÞ6-CD 6˵ÍrU•¤ÙB,Ce4r`I“Ó,ïë‰O¬|¬5£¯Cœ2F}ŸÑxÎê£Oñó¾ å‚( ¿HZ»ßù.âQ(¦3½ÇÁg¬œ“òHϽýl_VÜ/6‰ÛÙ¨³ñÑ«®³0ôà†foA÷A€Ã,Ï)å·´‰ö#†èÖz§Ø£öK²ÿáp˜2çjŸç¥‘—n€L–¢¦äƒCÃÇ”&šž¢eéÄé_ÇfIWeeêö‘>•s˜ù8ܳäQ`&DÜ`“u¢êñý\"’-ÀÁߌê¬ÙN` !…–™Gî<Õ)ú cyòÙsK²™[]H@V%ž¾UMŸ…fàÞóÛ‚@ ç¤XšUMÓ[ loiFmwÜòÏÁƒ½&îy]röпJF üM™Ë3øZób8Bç‚ìþÊÂFÌ%‡ŒðNîŠù1〠5 F¸ìnýŽMæE”¼®¿˜/d3›¥ó•s9Û¬@÷n¤Û§à÷¶sÂ*RàõCÒ(§¦ý»Äøë¹ ŸõU]©ÉÅúÜ3b͆‚Œj51Ó D¼?ÃjyIÆ3«¦5z&4„µ.+ÿáµ$Üž‹ˆÛs•ÓŸ„j¸å²î©ß­IuDQ3Ò„Qͤ–ŠÏíþ‘ŽA¶Àž÷„œ]„[»l­8º¬Pε2êƒD[鯆õݹf‹ø—ðº¿ïL¢¼Õ3˜Y­nSË*ÞâÐûö4qž)Äc ½†1Ò%¹ "–aMeøv¤¿+ 5.Ug{m:ñ«„¦"^Íä.ª0Ýt‘Ì÷¦[Ûœ°,ö+©©øc‡Ö   `ì§¹¹î|»+Ä#“‰ßðüÃ=Ü¡–úju®+ææh®IÛ"ä<ÂzWKòü|}‚ÓLÔá"PÙïÏø”Œ£.fÏZB/fsóÐOhv®šm?a #¨"mÔ—2´k¥ç:q¹Ðô_Ïê€Z61Iä,³7¢(,Á¶t™Oí—² Û•!“)@ï?;—I…;³…ê‡AŸ"Ý–š´Ž¹»²ˆºôֲƉnk\#›Øó„²“þ YêÍÅÉDv‚6ð?Ç$ÀríæµX`W¿MLë8l²2F¨ïÇrE@qàØx¨/'MÍš¼mòÓ}ÔX,½üœ¯SÁÜÊ÷FcÉs0x¶ÖÀ 1.èÁ£æM3î’dÙzî/!œ›UÀzìîüU(‘˪!S=[o1Ù¿’%F\4æ¸Þ†9óHý÷`Ã-*%áL¦caºÊ´â1©€§³jïÛ òN™IîôÄFú% ÐX7dê{èåA®5Ãõë9|ÙÙP„k7:ìùã§àèP!ÉtÌ«G ›jŠð—vÆÝpÿš½ú¡}ºqŸt.5G÷qÆRÀÕ÷|¦ß N}³‹ÎYä<µº@æ`³hxit+§F<›ÍôÑ+ˆŒñ"'¹™ý¶Ð‹Qf˜Ÿ¼žÌcð]z¶òìã±ù1+/òUµÿAžQØMþdI¯+Ä?¤–»%ÃáLþ0rĘ—ÐðS²ÿ•¶{¤µGsŠ¿ Ü’÷Þ9À56]"mÃj“¿¿°r[" Æíñuä¼7´ç¥-¢p4TLª?QŒcO¤¦8ìÞÛ0\ºÀðì+0:Ãy2ý¸”M ‚V˺ïe3ói'¾»Ó⢆œ´“9Kˆlȃšã Ñ[íþû6„’i—Áok¨¾'Ë`´R5WKÊZãÀŒ·b•µ\Ré9ÓÝÝè¥)µûƒõH'`òÿ’o}8¥s0ãëËro¼ÛÕ»3°‚­?ú¼ò…¢á¼.}Êóp«UlCõlu¬ ‚–/ÔŸÍÚæÃz)—3`ó×?¦•guÝyÓüÓ Ë°^ÞH}†ÚóËäÒãó{Ä4¯i¤t£„&íEWœX#ø׺ϬbWà‡jÄ,-·’ãž,cVeƒV1?ñ‡9gõ¶»“<ü5û›“  QŸ –Z.Iá× 8&žà¤ähŒ;ÛÜ´<ý¼D}³ÜüI] «QÏ¡ˆ°(ˆ;»Ï³ªË/œÉ¸1.ÅÑ… A È³=àeþ€ŽÊvÅRÃ%eš»c§ûár Tˆ›ZÑÞ 8üæÝâÿ{ŰF«)Ò$føsÑ37:>Z?íPÆ…/¸K ÎoÞƒ øh2Rç;x5ènØPO°}pÿY þôxF1)ŠK,À_1Žr½²ÙŸE ]…9ûâÙx†C»™SÅ3 ¡ô¶î“@€<£„œ´ºd0(Ù,î•^è¶¡mÊSßd³dBo¤µÍ“üèÀ_W‘¤ërI |Ï9¡çÔlà'÷£JîSküòO`D†¤¼)o@ÈJq‰k|ùåQƒ.€ÉÞ *»_¿å¼d%†!Fö}¸0‹LSP‡M K¥ æî ½;¡/@»I·]„w댅>ò0&K®Ì×®ÇýIälÒܪjÃ*ý’p²F3é°úMó}·Ð‹àPE«ñ'ƒ¶$×2ê ï°RÞ·£é›2¸ã÷F;ó~Î'¡Qü÷‹€˜×ÖÀ«!õHdç éoâǵõ•?X±µ¶Â¯›·ˆ€“Gn °FS‹ƒM‰µš'³Äð֋޳ñ¾ùtw·"A]]»0¯Hû}wXü‹ÁI(FF¼Á¸U’»´‰’Ë»¾¨ãJ̬ÝÄßËw¡Î®œ…A” ÅDÅçgM Xw"\3(¡RæŒ3¨Ⱦ·oµ(ȧµŒAŠTø–ÚÓ\ò©<|&±‹f1ö³ºä#c’ Ñé"Õ› ¯ ±hTEY33‰´®®²þ!;£þûÂuÇiúÅD¿Ã{kJÞ2X‰œ¼é Å$¡aîÁÔ‡‰òâ|!¤¾¢ý¤»†¥(^ê—iˆzñ1Ò©MÒ®¶¡iŸ–™á»ºAƒâŠ¡ÜWy/áÝÓ NƒÅIÓCéÇ•´Ei¨Äû8Îó]jáõÏv©‘UŠ‚FÆ1Y bæS÷#$ÚD³8íQ¹½ÙÓtó™y¯ÌpW£5óE'¼ª”Ü"¤·s…ÄYÑŸÀDyî? ÄÁsçByÈ­øR3F¾œ¸­Ê¿¼ñ°{l_q§ÀdnÏ©j´2o÷£¦ÚœIR¶Ô+f   KÎñÙüaËô²ú?¬G°ÍŒ´]ðöHèZudÌz¤UËV h*E¹ç'šÍ;òUÙ~òO+÷ˆe76Ú„Lb ™Ž¾xB#Ü$K+¥æQ¡îoçÏœ,a÷Ž)÷«˜š2ÅùÓáú9]œhi5z¨\¶6?­ÊfÆHÆü¶2Žÿ½‡cs;VîE’rÜTÕ}©!€Ò 7 ¡Û4«u°.¼áäÝ}ûÝêÛÈ/ ]žkᕚ 5Ϋ`+“æN€Â…dwèô{Ö à‰qg{Þ—œñ· U‘Ã(ë§‘ÃØ‚þ,¥"UÐû&€-1°‰Œ×äòÐÁý·Ôr8f í|žÁkø|ÃjÄuÉO±º\¦£ÄóOmÄ^|Žüt¹',/™5'õ¾‘<¦‚›1`Nm[LNîE*ÄöIŸ]éKKÏ/µb¡³´Õ0ÝÖ©ü½M>~!úèìò ³’ͪJ Ž Yò%ãY$À³Õyß°ÒL¸w¨ì“QG)ÆÝÒþ:Z¿Sg^· ¶‰?_Öü?RË\_ó9Å”½µÓ®…Éé b¬[n9mÖû€OÜúï`nâÓS‰dÊIiÇÓ1$$§ž×_»·Ì«©wsÈK›ÂGÂþ;zEÃ_KËÏ7ªNÛ9¤K•¾òhûQeå-ÊuÙVaY A¤vÄV½aI!wMßew¿®ŸË­Ä~%õÔÔ>Us花=ÜU{‡2XÒ8õQpö½µ/œ„’‚erÚžÚz0ôkŠ}¥ ²Fö7ûŒ~²%˜09¡ª»9]êgÓÖoŒˆÞÁ­ËLö6ÕÏê­ÊÊ7BÞtŒâoß0xðEìjA;³b®ÈN˜ä–*ì6ÃíDý­IP@Ø!>(0ò@Iåh‹µSIÆž¶qkº¼å``܆±ó^ãúFö¶ }`:Ug²s<~Qx;‰Ã+b5_îuK¸ŽfaŒrtùd ”¥`(j\Å“!Îâ©@q*¡tÆ­"•”¤i¹uó Ò_ ¾"ôPQߨJHÒ[ÖI݇ðþlá.Ä™vÌ‹mrzóóÛhðÁ²­‘(G>Ý BEIȆœ@Π—ž¢Ø±GCÁFî½p;fôÄŽ\YFÆ  è àF&–½Kò¢ÃO¢Ž+ë5/ô ¬ì;N/}÷¦Å~:€C°Bƒ^I[‚1ùÚ6¹ø2ÚyÅIÜmÆ‚óº‹z_,©T9˜ì:°ªî©7éOÚ±3[ÍVp~y•YT]³ nÞ¾_”“LjGÚ9ùãÌl–\ÜB¤Or^¥ŠQÉ#“™)È´FEÍÞÄ” }M=@ìq¯„92=¬D†ˆŒ=TÜ~äœ~P˜ ³{ý´•eû‡)q&cæ' QÁÖD 0Ö6\8ðÞ]I*Ð@™YþDìã·û¹PKŽºg–ÄïöÀ0fFKÑuÙ7n‰LW› çOcQk"$#n`ÞV&æÎún ‘çŠA—ãTÁZvxVÑØ X–ãOrÝz£“ t—ÛK”™²Ùk®^å#Hv œ÷¹"d©A§x½ÁÃþôôuDUßÛm=)’®ðä¬ssÒp~唩’ܳØßkùß’\—„X^]B'Tûv¹aÑ©=>o%AA+ ¨ü›õÞ뮩 ˜8[ Dëz [¿‚£*>ðH݇H4œ,Ñ`ÓÓ+˜ÁïÃK³WÛì´øMû9ž®—oÏ¡*"p«ºLç‡>QQÉ8@r»ÿ”·6xÁSIßJZO?:éÃAÁŸ«*Ñð"è¹D!q¡’—ñœiîæxi Ýl¦ò{¤5º_t¦¬fZ²¦™A ÙÕE²Œ)E5E­{é‡)+.eb×I‹ÃïŽ] ¶^7©Ê9Á÷4ñ<¾ýfU=÷÷Š=¤w²ç¸«ˆÚÙœ×VŸ6Š!üO°„è&„íoßðdy?ÝÕ:î7ÀˆÛ{^J¬Mƒð|p…éÃ÷¦šR˜z³H¯Y=gÏÛTÛ5œ0ø½^NN—AÐØ‚aÁËÔS1fÏ\>^;œ ÓçJo%ìã{2I@b]ût'ö¼ ¨Œ¦“ów¬ã.=–òåâZÊœò.ƒ6spßíQå­rT3@™‰Äß&bÄå”(”o<â(Œñ•„³v›ø’4‚‚ÚSé-Y$Ã6n3&¿¥“˜å‡ Ï9Ÿ+­4? ¥uGo\gâê?þ¸Ì(®¬‡$z'8ÓÃiëè³×q+†í–]´p(]–€ñ8nLZú<#sõxª‰Z†@Â>¥¥3C›âÙ^u\äÂÒ ÎL£ juEim…i‰7—S˜KÇ/èÄšzæn{ãÑ&uª3Á•è€áž\„¡X¢4‚éÖ*‡ÙTKp·ÄÝ6#¦§€è±Ì?}JÌT:Àì02þµhòåаí80uk^|«v:6¸o³Ä·’LUEBˆd¾€zé)‹û_†)Ä&U€"”­½*">E†„ð×.ØÛEbKIÄ-î£ã mEÍNÖQÃaÏüP(O>ð 8XÙNôê#o—’ãן&{™'¤é{uЩÈIáYUÀä}è{á`q£Úép³<Ì‘²±^êþÒ/Z _"rIUhû8~{))ã}{9=“È$×Ý©Æ;K™A ˜O9 m¬¬¡Çqóïp1>81 %]…jÄcÓ"¦sÇ‹Jæ"‡4 Éc1'ÖˆÁˆ<)½0W’ÄÜ¥šN›o·Œ19-ÛŠe-½ëdÞJ±2ÇK ‘Ø·%u)ȉh‰M2ê™1եѭ|rëÝõ‰s|b«Qˉ$óˆS& «©š…¯nKBõÌžœP¬_«/yøñùË®¦bÏ‹ãäZú4Í\q¢«#)óÕtc•Ü㎜ÛÄ:ñË£Œ}€ ÞzkÈõ·‡9¦/àØè Ë´„ÈÑrhÒÿ}†£C¨ ÎxÔ^~r«¦Ñî<¹œwŠ^©Ô$*q[þXœŒ™Gi>½søHPÚ‹«âÜJ¨…9HmÜ3,Ë+ÒѺbÚ|ÒC™j^=¶=iò_Å®¦˜ 8b<š“%|…É9­ç‚·Z¯7/@|a|‘m9Ï%ÀÅ™´;Á ÆGáH,Õ2R1bóï.h‡¸B£“fXðyDNP0e0  ƒ$š1£ž¯šz5ƒ|Äz½+c8 +>Ôgýƒ(’cw½0³d"S¨F-§¼lwJгßÚD•N~üjúPË&²Nœ¶,ë!‰D"‘–0jh‡Ú»s¿¬(Y®†–T«2@„óThˆî¦6v¤º @n<î£þ³~ñNdLíÏŒ :Ÿçß„´…_’Xì,U!›ê³rÂLK',‡‚ÛÂÜ÷a–"@+#ç+‚iM*ZÊ’À$rÖö)“xìÔáϋޕŒclß8"ì…Ñ}\ˆž7Ù¼Šqåû¥1b–cêày[œ¤Á.Þ$[|¦K*‹‘ÙJ¢‘«.t¬Ú‰uG1AyÛ¯\ßãÍ—Ö&h-›¬’DÞxàM!@Õê‹Õv–#à« E‘VW5ðìb'=dõâ¾YÈPzŽË|1»k(äÀÊEß½nõkNµ‡YK.~„Lˆ¬°BÝž$sd‘¥Ås ø)8*t¯—ƒU’8}Ø´‹_ÙÆôœÉà#vj¯`@Ðæ ]wÒ.\vЙ4ÀÜ^Ò¿†ÉÌ{¼¦Mhÿè±0#.Qm¿ù«šÛ V–ØkéópcZŸ ¢KçEú1Ù Âlعô­Â &× 3t1ÏçÒíh4:ž(‡ðènI˜³åäDî|Þ¹›¶0Õ\V„—ƒJþË`ëïÓøwéq=Ÿ”1„Ȳ¢‰ãí'œFr7cUd?š¤tQó2ì/t‡Ð‡IrŸµÂÞý½·û´[z?w0$eTºË¾rÔr .å³X9ps®é×0¶•XÖ ½íj[85Fj3ƒ (šª’Pî§!¢çöë¦:°œÙ<H ªWtáÑ»ñçµ ª/׬?vbê\µÈþ D=8Ò&gY)I¯áSÚ2²Fé¹ ­»lµ§ë£mRÂÇ04ùq¼êÇžœ×(…cÝUîóœØŠXa~j3ë8p†s»\ÈÌ®û[úDÉ9Ä?‡3V¼o¿|ÖѬbLYP?¦Z·™T¡‘ü.y.MÉþ¡ô{Võ²í—`‘.:7À:Á[Y·É¦ŸÄ0ºÀ¶¡u¶§í[¿¤ýü!õŠvxÝ}ëþe tÛ±À8±›{OÆÄ:ªýT9€Ìà{“¯ui¼_nå=ÊS[æ!ñNÇÁ·à.…#fq­@lͽµ›eÜëÄv#~ñû%a.½#MÍ^A;È35sló-Ä%³ìÎ1øœl2¬¢o$t,D ¤àß¾+LM·;ŽxD‰0C÷a…&cHAʱ~ü‰z™;¶¸ñÍæ­øþ/cQ¥”¢K õ"Á¡ÏžTš§%`—Iæ‰->„|{‡© ˜.£©¯Q’©]{›r–“¬¹©<šfê1ÏÍ” û )ãÔüžðŒa}*ämã]VÀ7;·@‚w<=Z÷u6ÆJ³¿Ž,D sûñ“¹:×F|ØÜs„þD÷§M£QØW â0âjF«Px.(û QØH‡Ø˜1‘l];4FÉÌã wó ¯îFyÑ`]…Ô•"Ò6ñÙ¿¢éBƒ%2äâ> ë脼J',`ˆ“~ðÔƒöÑ0Þò§€W ²H&¬á ÿ¢¹)£ÁXO—ŽÍ¼ðè-jn5˜qBr"·Ù†eÉ z„(®‰Ì²ß©é@êo•(ø¶t[‚BÛ¯üž@rÈÈEæˆl`^$˜ ÃReG²¢ŒRWZöN~ˆ±jîÎÇ•°¸:H¼ñ_]Wõ[k ÊßZÿÀåpþûG2ö’9^°~¹Dô7똔ᜎúÂ:ßö8*[\å7‘9™ ûswé(p)(+YwÚ¼‚ëÓÕžß½ÿ¶ˆ#·èÄFÓ¼) Ý ßyD0¸µéîÏ~µüQLÛÃÆ< Dˆ“Zj.PîªGÌFð¦\SöóSÖM²xçït¥ávwOmÊÞ{9÷2ZÁƒ£L\4ªíL®ŒS—ܤù¯!"U ‘”jhÑ–›Í)åNÇèp%Êóœ+ö~ZçïòˆŒ}_«Ç²Æ{Ew@=O¶(蚟³È½BUuÅ4;Ô4º{œ l3½ÁùÀº6ý ‘y HEí$v—q=Å´ At—u†£uÙ¶R $·O„Ûíû"$£î$°¾IöC*ÂÑ\!σ\#ÖjL ÌÛ}’<¶W 1´ ™zEÜÅA™KƒŽE ó¯±.¢ÃN¥YTâÿœ]÷þh°VMG&È&TâX¾—p­ÁØÖ4㙺GÑ#T«nná¼/{–+ýUæ—ÚÅ ŒÐGòsU¡£®Û ¦Á‰)·8°Snó÷›0HÌ_/Ûal5Z9Å@ød€^¯¨iíKèT¹Ò+.„«™zB“ ?0åžÀîÏ0vÑ/EpßR';Ï©Qd¼ˆv%¤iâ î_K@ÓÔaHÙ¹­ ±H-ÈýIfEˆÞ?7ÃIÀãÆ­C ÿ’ü&³¾Aš.¸ÌȾëÅñ˜iÈa' Ú¦«Î-ƒ†rô̪u¯‘+îqyn·ÿt^Òb̹ø^D]V€¦IX_¿Ð£Òñ»ŠÌ]  t©Äh0‚ÇA¶8£6™n{xïËâ)°jgà¶›WŽ’p$À(,î]Ó™ yõ6‹ì¿êêdHþVÿÒ©–c\ô’ã§+ î §_ˆ;ò¨‘çW!ÌëK.*R£ ŒâÀ|õ~“qÍ»#Q6Uï|CÊAõnò_÷$}ëK"n50-ýo"K›ëŠBÑáöUyÏìC=:ó²Pq×ÀêwEI¨(ý–俬Ô^aO0º{îQâ_šlŠvÿ²ÛaW:KÆm É@fãîâ§•ªœ'ž3Ôæ”‘š¸~&6hÿÎΔ`‹¡ØÄ3½xÊ0eðÊÂr‘ú(0 6{Èð6:’ÔviÃ<"#Ë€Š<÷o­D€xk?c†ókŸ` …ä*bŸúbÒRQ©!$‰UWZ®hêxE›§ãW÷Rå~ÃâPýh‰×]Êûæžé¹/ 4àƒ»œôÖ¶(Û¿n…f·(:@k(VHK «qìú  >qñ1üNF ÜBT’m u “ÖX )b4{¦¾‚ä^^å¡éŸÛ<;Îl¯àšâ†OñáÝv¢.ég-å?¶æ%¼ët´xÊ~NEÎ1ˆ“K–Þ¬÷<ï¦f~Ò¹ƒ‘I[Ê#Kz;K¼bÌç7Ì∠uüÍÕû IH—º~3«Í[–Ètmê»ãb­·ü!~i-éõK&pé–E©SKQÝ €›€~U±ß—òÛ?k»#?PÑ\æAjä“Ú™&W›Ó] ë>'Ù;¦ 0ÿ+®¹hwé_â£Ó]õÂ?3:áöî½cæmš —Ÿ¸Ó‚¸—Ö`ôú…JÂ)ÁÕH΢!Û‹±›˜Ë»¾@DßÚÔ+@=â| ÌÜ%%û}BÃY:ÓŸÉR5B]—Ë–¶­VžÉÉE#n:–¹yYJ<ën4´ë‘ÚCx©Ñ©îE±ª‡‰A§;J2Z8[räu>Ë‹(™·ç¬µg-ÿ23“¿QÆíöJCꬓ ˆu‚;ºSD5Ž™~ÎÏYêcB5ƒžŒø>p~#@¦*FOÜ´Aw»²Øó€wkɆ|'g›ò HgåSÞwšœÎ¹ OZ5YøvçÆ$dÉ…jë†úˆ·Ü½ë#EÁËXð\‰†xfå”Y,ȉ)ŠæaE‚X¥Ö<ªONKÊšLÑ2jðéˆÈÿõ>X¨˜v-pL-ý‚ëŠ\Ra1»•ª\ò¤L½Úi#{ÞXçƒ&Î/ ý×ÊÜ2L~¾Üy ÎY{Œ%ÎÓRñÌ8Û‚³…>{Ѩm±G VÍý7vÿI°Ö0{.XØ Z» ®a»e6ƒ²5‡ÂÌÐ\µqÛÐ Á.zæ=T›Ú$‰˜/â uÌç³±1¸‰lnÏZ†ÿ'5VÂzœZ¥ âí“=ÓR¢ùs”æhAÜq>}’v."Y]mƒÖÜ«å“BdâdÑ^… OÞÊ%½ÿ®ƒÝÛ•c„2êÜC¡£•“ë¦x¿ã¡3ôM®Ž/KÐ}¡Ýf2¶ë³ág·Q¿>‰j•ÐpPúÂ!º±ú}ýtcSb„>€:H‡ר®-§*gÍÈ, BùW¡­¡Ùu¾¬‰kÃòYÙzö7%®ç»jH°Ki`q›Ó5ÒÏ—’³ç$aö48öûrÁ0\ÑΆ¾‰ÅÔ“oóøT½¦«k&ǯæôà”îØÎô×Hâj¡Ò"<ÌUVÔæëŒRDàÎaà2q=‹>šÝåÄç gQ_”û˜ñz³ðIF›w’wþ®«¡Ïî§ÓæpT#‚Ö>ûñ±S-ÐEõŠüoÏ’FJŠæî3»…f ,óz½DÝ„ÚÌàŠÉÖïo¤3ªs³ÅâÒ…“ïÑâE¡Om”ÍóÒ?äV)@’"½-d&Ïc…á¹@R;Û¡™¼Jç.±R°WêÔ)˜a6a5! ’‰ð(ìJ¶žS-ðjs´ýL5£{Ó XyᔣvÿÒa¥w÷¯/Í.×u4ØDŠ›ˆÔÿQ‚ÃŒˆ!K»@Ù¦_t7µ€uía€Of½€ÂÎÙs$9Aˆ ½ãît#4Έ)N‰ØDLØt I}Q/ÙþdŸ+s4~ Õ ˆv铚&MÄíó"\ÃT³}îR®xÊ\¾¾{=–š[ίQ¨lq÷¡q3î] ›ó©ÂŸÄ¸*w÷ÁP¦­˜'¡J´HãZÔDçZÄÉ4ØTá_Qž6«_e±Ãû·¥³LòÚjY=pe9݃À€cÕVÁÞÈ“›8t€,ëbGlOàÆœÄóÓƒãg£œ«¤ïOÜ÷i¨D¦q¡n&4œéQA;ëÕü Z³9jî£;ýë0ÚL@\íZ÷ÿ@Í–ýYûèªKo-·NÔP2 s¿‘<öXwgsÀÄE”b–3µØÎ\›‘Í0Ø ¤}?_ çËk]4LD#ƒ$PÜ.`"oøÍ©‘üJ£À]—¾Ïûnñ†m±ÊM¥ö”ÀžÜ®¡)VÀ!ÁCÜκ’O•ÛtŽ ®,ÏEÐsd΢c›š=M$GúÃdþ!a¶Ón‘í¥ïgòí=Ë›PÝ’øË+m©|PÏR’ÙB²ˆ•X!uÄÕªc¡(qÒ±ˆø¦aIª³¶Ï%5aañƒ,N½ÓÛî²ÃNt ƒŸO§lÔÏ©ô“½È˜ž©Cù”À¸W+8"”ÃöÎDj$0ìhìïªˆÔÆà~Ð7Œ’sèHM@2x@¡ǘÎZC„êv:1Ë©«vBƒwv TÄzí÷žTŸ—÷¨-J4RÀ‡¶Zv16 1¤â91Ïîbò’+ŒŸÅ€nÙZdÇj±8Ò%ýú·X0%²oêui´ôµù†TÓBŒ)ªÅ3õƒCÇÒ\ý©àÓxù Ïsy¤7µYª:u¢ì;Áú©ü¥¾gµ9à} Ïޱ;»ÂÁ¿±µºH·"ÛùÁ^¦Ûˆ}°_ð9#mUÍ…‰z}–dMGr¤:vøóKç ‚Š™Wàà >”|Þ«m!È·ýO3M-ÿ,ï/¤X}Y\všÆvù4ƽô”‘¡o#ïWƒ‚EªôŽ^§½­¦y“Ôâ[æ§6XÚ)jWc¦°`É•™„XÎSrî¸ “2*»À;Rï\o(ñE–ö‹+’zÀ@磚|š'SýBM9³#¿ß¼7}A4˜÷ð ŒLx= Ù@Íò žw2/¸äUa¬O4t ÜF÷[C3gPSžls²Õ‰`½þÿé#š.)¢5· 0_mÙ‡·ëÿZ[K ?ÞlÕûÎ=çœóŠÈz˜>†l“°Ç¨6 u¹/ëÜ‹È,Ý ¸'œºœ;kiKÁQ5ÿm”u„ø"éégá™N´æ+Rcy ðeHJe›Òõš¡‰MóÛ1º3£)Üq†µ«ŠYY›é½§®BÞSrÞQ¶óiWûQªÃ)ãí­ÿ”“™ßÂGxyYÕj¤2@&³4c÷—œXw;­ÛÒߌy±r\î^áX$}º›o‚ì{e5+èÉK{¿ÓƒÌT‘}¢QBH‹Vî˜Òs^]Z#f% •g„^˜oÀ½ÀŠrù¦5€•§KHÆHªÙ{†÷m‘¹Ïl•5˜WRa'ÐÃjr››¹ªìÌyKxßÏZ˜ž ß²ðmgÑç&&GMs€ãþÏYÈ5‹“Äëoq®ß©7êÖaNöͱ¸`XjÔ`‰˜F»|'êo“³Î¦$Œ\Í͆êÍRFhNêmß¿»5•ß!Y]fÿG’”çM…Â=FÞËóp p &Ù“r§@þaצiEWzò’^ÈØÐú.±v³·ô¡Õg©"3²Ÿçµ @ —Zr¦Ï&Ñã9„¶‘™;"ËþAÞm¤xÄÞG›<ô~…F=äº9¼„I:¶Ð8M ß_톚à¼wÂ’…ê™f{à9ñ xf?Á‚\H(t.Í1Pä&úã©‚ö"pÒ¸Já9³ß‹ã„[oþH2{ëŠ=Ê7³òˆéÚ‚´ÁR:·ƒyli¿ÇK÷2Sª¯òY£‘$Âýbí-Æ‚¾£3†<%mä3Ñ=Ê!t™¯nÝxr vA&2&Œ}íéï\I8ºžÜÊ…ÕO—Ÿ7f`É Aºh~ÿñl:ùg"v¤aò;*±¸œ:Yß½ DMõ¡C!-tÍå,ctü¼‘ÝýñÖ›m³=.ØL~çS Ça`xa£EŽ1Ÿ{f©™ —K™SÝ O8ºðõoB‰¼7ºÇ/«ÏI> @ppˆ*üä%3¤Ð®ImNõom‰ ù6½m¸[nž;ÁæwÒlÆ>¾šzcn©7gÂ5e>~è%Òô­8¾ë_´šé%/EF0\¨“}3¹&rµk!„ö#Œ–” Ï?’É ýVÜèŒÙÆ­h›eA"9ןíˆáÿà\ìÇ53 q´ƒØ)x²uÄ‚ _=vÕ4”¢ï€ ²Ë¡^óiUж°…¤S¯û- ˆžõ>ÁŸ—Š[˜¸nöÀFSš›ò­òˆïH$'ÏtÏádËaL}”Qc“SÐö.Z•ñ˜R•bDöE =R}z(:èÓ{-™¶F#‘ Š+˜±ùò/Nåâ.T6­>ïP%µ8wp<õ-Êû2t!,”;5{Ñ£å¯0ƒ÷ê½£ði4 ê?%‘ÚY‹‘µq°›®EõýL{1ÛìaØ“Øá8{§ÅUi^èže€à,ÚçêK`­¹RøÜöèH(²…þ3–+ók«äös€…–¹4Ýœ'–TOÆ­YÿN×ÏÿÉ^Å+8;R‡ Í»^a˜_hUA5»”–Ë’³\íê§aJO‹JTél|úYóŠt@Qšîãúë—Ùûé¢wädO3)ç3ÛÞG;Knîtd@e~”Íä€XôC9Ã1ËlÐsº^„@Ç hž °K•Ôæ>ÖÞÿ£j¹y‹‹1Ö»S-b^[ç©ÍÒjAÕD\'( ÁfæÂ܈æÉôêz iÂ+ž×ƽyêì²P¶i Lt9ÍϪ[,œëõ© ¯³í ²7õ«xš y‘¯úCçÔüz96*w,ªO®R0@ôY ŸQ†Âz¬.+±ŽªžoH\V‚â@×»Oê«0äó™„Ã"elGʶèñÙû9¡÷dI ‘É6¸H«ÁÆ:hpK¤dßû2غDÞÎ-ðYB±˜5 9/²‰MÒk\g㼉ÅOŒ18@X"üq“•f°ÁóT\ 8EÀ÷ ?êu1\vº˜R‘^\-sj˜Ä·ð”™= WŸ^~*<í,[>ç‚hõßsÄ“ˆo¥SÄñê#S–FæPJ‰ÉÂ9…uÍS¤@Ï×Ì’•îõI’%Ì TEÓÎê«íK ©å3µÁ–‹"ûKDj1ƨÜ)S ™s¾ô.¿7º¯ù%¿5üÜBÀ Qu7Jªùn CcöÀ–_.6Tºí†×Q'Î o/ÿÙ÷³.r–c÷42Yè—Û‚Ê]pNHŽ©'οa· ƒû»Î6.vŠC¨üšƒ‚¡mêÔ¬ðî xœ GÖÕ£€W¨å¶yæ—tÖO¾“p6{¬”œj)wÒÿ­;-k,6Å•TóN–ß7:éæ%l~\ôë7Oðîîö~…¿Á*舡»ê(édøaZØØ´WÓ)¡lá@Ê`µrÍÝ¢a曞ÇTʳüZבÅUjÊŒâJI‘£.v'wàŒš}ai&ßJ¬ûƒ‰!OAµ¾cÿ\^`\-YW·,*3^{½p3Œ¶SRÌVÌRî|v.d¬¿×Ç)çØÍ#}ŸMõù~-í³‡…¬ð‹¥ÂêíQ«÷Ú †YpN(ó@j¨ëÛ/™k‘@MôĹ vªƒ-Î$ËPê?X@RÆœ\µt„êÈþàÈúbhr³›ë9°ë*_ìgøS¬, ¤foŽ.ˆ‹GP|Á¢rŒæÊIäM¾ D7OCrP{â¹ J4£²rü¦2Ф+»‚v²Ï¯ v³}fýÙÄD§ˆ˜íŠ-^@zŒ¬stô)+wžÖˆýð¢:’TwØXEÖ”özN¤ÞÌoèrs’cr´ d›™ï¥”?z÷âúEtȲ)ÈXØ\1@ûƒ\B-žœ´2ä°R²™ó/ô6­ûÊÙðuÞÙ+4¨@ÜLyw`¢n,8"tfŠà•vgxÅ!l¬”>ŠCñƒ ”а@ŠÎ… 9û”÷†ÛÃSC2¤Æ ð½"ÅUµš³œ:÷œ¼ýOP£9)66Ê!ñ¬)¿xÚ€ÂÓpÌ:¦Æ­$h–Oðºkó Tt&‹¹þ“÷ëpÓ j휴,ÅÂwDô0ó›¿yI,°!µRËðZ®CXp2Åœí•{µSLÞ¨Œö<4dÚNÔ—’ýW<Ǥ%YA†j-Ws\“«ì±1€ KŒ/%¦.®U»5ô"Í~ûRߣZ™òÕôÝýä€ ûÖy“>ëèÓú@´rCu抑“>UìEÃǰO2Ù¤FÖÉ»¦*—7¥gpº°­)stЉ­x1zIŸøsµ$‡Ó§Õ0»Âi>H±…Õ{aÒ`xÁÇ`„e8ˆž…oÚúž¾ä—× %¤ÄQeƬìiW9yÏÃñÏám±ŒZ‚áÈ‘©ñ‡œËYäð³òŽ;ÞšI~`úâ|€˜RÇôsp ÛAOZz3Ý©Zr°‰5Ìw *b8²yÍ‘ÂÉqŽ…¥Õ°Ë¯ŽÍåÖ+eJe˜¯ë¾Z&ñ,Ë·%#×þuüOÁš^{(ŠJû‚Z_àÅ®¸Ð¶¼z`¢éÁÛÜöp4…&9Èüåó“çÜ/fŸö7:$’,,Þ‚yÖÓÁ‡©}¨i»N‘VÚ*o`¥F²e¶Ñ°)¸enÜ߸¶œY ÎÊE”ÁupfW&OUÆA+é”N€8áöjŽºòúüÊo¾¾Úxtƒ@| ¸µ]ÚÌ#kòÚ9! B²ÑÝSÇLÔ·‚5š ñ•±<ì«ÉD~s‹U&2âÊ´üõâŒát&pÔײìtA;ãþ^’*ØRl&äâ¤O%\V8½fX‹alŽ`…¦K •¶f¸üp‚d >j/଺¡z'ç™^ÙZ¶Ì¸”ÐgIt!V|8 ›?øúç”°Ðqvݶ Eã:޼«ZÚڴxÀ’J,ýŒ¾'µ<è¿ê',Í{'Àœö9’ qÝ«ÉÒÝ8ÌØÝ^ßùo#Jd ¯b„Ðh÷a„Ú,sÀ$Kª×‰s x­pdÍ9×I5þûeiÍB ” Ú]6Ž Õé!#Ì.fþIm¨Ü¥*o€ÇvE<èææ‘ÃD_r,ö•ïìS©gS ¸…C«¾.œBªš†Ð:KQ´Ç¿1¢$eáêlð‰÷Ï4þpÒ ‚›Ú÷þa§9¿<¢6ƒñß[ØóDteb†pÉu¢˜Q®[‚)ÍuŸ˜åFÿajází¾)çðT9òwï9>93/WõÙi“ª‹gÁLK´á mñÕ'pvÝí>Ls§£Â1GïNšÈžN [;'¿P^‡kÌyé®#ÛUØÌU¦Íû~MúÕ ÄŠ;´‘#Mx0Êרhbø=ÃêZ‹œ}¹d‹³ñ ð¢?óÓÓÌfXóüúøF+´š£#¨é”›}tIYdÂÍÖÿÀ\¯²†"è¢ý1Þšm£[Uå™9§|þ­%ö½ç:'ž•{óòn§ae °¸{º+έÊ\)%úil*‚ÂÒ(ŽT¿ks+›¯Èø¥ƒé‰óF×ëÝó4†­ $Œ][kœ3!Qd¿…)E☈€ÑEŠöˆ§€7†Á=Z €9¨ñ~«±7QùÌE! ±)ÅÜû3‹×jùÌ#DŠ šLÚ!y´ÏWv—wmì7ÂÁ9?Þ&åRK•;ߨ±zÚ=þtÆ¥6Ú:K|¢ÁçùÁÎ(ƒÁ¹Ì¹:§ò#!bÜAßj.%¸ŸQ¾p÷0#ûäÙþaêÄž3¾æÆ46›Ü¦ÅœG‘œˆ>ÄÒ¡TÃ$°µÄŽÀ³Îi2Ä¢:ï=‹Á?‚Ý ×@B·ê^c!ºj5{è-§U¸W~³­Å,;G¾söˆÆ“ÈÛF§Å£sp¥5wóh;OsKfo&'î“’Ç*HŸ¡’õ°®W¿KySçlÖ´×½Qª¬îjÿI3ó$mDZ‹¾eÔ%I5…f*Ýå}Ff2¼dfO;Ð –º£0”¦^Ë µ¾+gÊθÆôúU‘‚⨚ƒ1‹œýiKËÎ ˆûÎñ6n‚Cxä¤èµàCüÇÔx[ö0ƒºÄ{xä˜Aÿl†T„þÿè\±Œ‘¯ÑYÏ Ã>òÐ@ÓSné‰à:øvÞ€~ÈLÓtÛš-籓–ŸƒIÆÈÙHñH|ãg˜4öûí@^Ùêài§¶­¤–“,ri†ó‰ ¨ípÎFc•p#ß Ÿ¥'E0ù 4ÂI,ù1 KWÎÇ>•Q¿ñFáhÏ“Ï d…ÒŒ”18Ù!3óå_ÅÈBCiÑqT)+ΜÚ$º—šåÝ;Ðá÷…xø:uùÿlIèÀÊ@Ä7_~4Œ†ad{ ÎU™íyý @mªáp2 0l¸d¥åýg¦Ã%ËíO¤-¢Dò—ôûQƒv¸âêr×°Ë|Ínìl-£—É™¡-ú‘ÿßL kBË”O÷`DÏì Ô×0-z’ˆZí¿èo]Xý ˜ô?o§¶¸f¯< «…ÏW}Š šÎÙsVÌ áxÖ¨Ë û+D÷ ð˜+ˆÙŽÄ&LfX zçÍ?ôã–]W.#s2>¯“µ!P?á\x}þGJ¬\3˜ÝÉð;ؘ›€ÑmPC*!Uûž/Þo:.C—‡I=´~Q4Á¢°—ð©VÁ÷–Ð×ÿ£/éOí–ÂÖYyç«/‘û«^MmX ÁsiØ«yʇt€é ˜¤È_gDÉ`æGá¶×{2j >ÀB…Ù'çkzvb˜nÖÎÖò²³%›S&懭,…©s:~¤yÇRƒôjn Èâ9Ò%ì'F„1i©Ážm?J8ÿ³PðêAÛÓ˜>±T4²¸\J©ò-¡ÛãzǬ !(ÆüT+ Ò;¬.“cuJ~n™Hjþ{ú áÐGOEòHæÁËrýø¤9PÔ…îÂ9 c0ØõV>?§ŸP5§ôt"¸é´ïA3 @¿Íšÿñlã3ß0â#DÁÙGÂÐü]\Y—ÆÅçÉø„9fÄ&wJX|le-ÎU¢•ÒŸÿ4Ý#I-à¬lþî×%x$Ðñùpú:Á. ¦¹¶:_Übߌ5ÆqV„·»ÍpÅåºeÔÓÐÊÚ.eu 벃0øf• GJ]ÈÜãÍÑ+á œXhÇÓ\º´ÊE(óPz´*›N¤–ý²Åôþâayû6¬oÁŸO,[ U²”‘xm‰ªöøê·i®ÇWºB¹³Ö¤V¢~ãõ"ĽêàÁ(&Y愤Ï} ;ŽÎ€hd4vådmµÐÕÑlÔÑÂ$ù3Tp¸!ˆÀùý%c¡¢í‡éqrâçÛ¿æ¾t‹L/)®½ñJghÉÐ,7 ©R-Syàÿ/{·þ¹”µÿÍ „QÄOƒú€‘ò>UÜ:Ø"ëx ¸U…)ïɃ<`-ÁîÈ¡“'!“Î4.C¨Ä¡i1ÌgÓÿöokŸì¦µ?ã`ŠÂ_h6×äØüýTMsì…áÅIÉ1ÜâiEžw9Wuoè- ©»—L&²©øASã)O†º{e"”'"TÕ—¼´Î©ê“×;VD!¾×‡;ƒ´äÏ¥¶ØØx=ðÚ²‹_Lô¾øxW‘?½I%%£L)iaÒ­øu³É,jT¶ÌuUÜHL’+l¼Ê[>hÏ O«1®PR$\þ¢þ;y¤B^Ž-gW©=#M/u1ÔgYâÎûÀp ÀætYvÏ zEÅlU7'FX`A (\)[`лpX®cX¹®ý‹ëyÐ^I«eÏid—"˜³)gƒ.XÎFf´ƒmÕ9È×?/Æ+!wâ‹{¥íYÿÚsW»;í‘òå_±ý.¾ueû¤ÀaL>djdÌ ”v Á- Ñ‚KUű¦—SV?9#¾l!3‡ÐØ^‡>̰ðŸu\ðPüȧÈì4*~Æ¢B×¥'¶÷¾syýRÚ5À†UøŠ‘XN— Ôs?Ô%Z©„h¶ +¬æ÷ª±¥v•l`mñœ…,¶KóVj)fŒ€W)¤ˆtÇõeiN;7ýY-€R÷3 ¢¡Ê¡÷CHÖ”| Óp©áÛÉrý’L¢Æ7QÇzmE阛(V‡ ³Cä@ x8io‘p1)àdø=dOlæyµªgÂ=1µ·Go6ÎkS΅ɺGã’CÿÎØ'”žñòl#qOhƒWÁæˆÄ‹µɓ vþÀYfð¥:ð‹ÛúÁª&Ò¤‰Eg3/\k6.ÑÏÙûT*Ò„§~Æ:™sà±y »œ“ þz­tÓeò+*¨íCŽæRåù€}™ÄõqËßﲄÑ8³®XN4 XÚò›×{­]–ãñrÎêÈ ÉWI»ÿVÛWNôü%ÐvД-}6´¼ê¶­õç#y‹ôI­çÔ$4e5kåÜgSi,µnœÿ‚³‰#å×ڮö>«ÌªÞPaA;­ÉŒ)†ÂΊëÇÔÐÔ’:~Vï‘+3 8ïú¿‚“ßÌkäŸS¼ñÎJFâ›YbÝs:+CEZYbÒ‚…z r€´&kaÝ‚}üsQΤîùIRV'0â© £æÁ5z”ݘiso éÊ‚YïÿªÕfÓOÄÁ^ø†j´ò(ÂÎ#snîY4¿ì_C`ÓŸw¾ýR‡l—)Ìæ²»ÇŽús³óóWöo´Ê¶H+ƒ¾.P,úEËqs Dšj¥`öãëN„:Ž‹ˆÊôCmxrcÿ|2¤Ïçg0ÉW"ÒýäÞ—LÌŽ¨/þ’ý奮ä@“%;O'\њܤýÌ ZîÒ9˜úÖ‹tèèæ*»_È‚»ôõÑrjžéÈ-öÕ×€ êëÙl„ŽU [,Í6Ër®Ñn´:öëå¬ô¾‰p­¬ó!I cþéft þ`ö¢ñîShÇ—>íôéH³*£¨r® ®ã÷BÞP’»Y‘udA9jq…$¡±nâÿÝ$z &à„0Ã>|P"¥"?Ösg_ËŽ§£$Oë7hgò ð“…+xr´W]©Ø]í‰ .ó©ÓÀŽ€Ã i* Kÿ¿~“»Z4ÑÄž’®2:|QP5„†XæjÛ”#®|†("܈éY:w‰Ð¾hU’Þû ÖŠºcLÅw%¨›Ôý> DÄê¡`úªåêký5‘¶õÅÞÿÛLjv÷¿Ð[fŒ]_%@''\pv5X¼ë³#týrÚä×/ÁåE}ËZæ7ví.—÷¿sî¢z‰^Ž'|•›¿Q³òÓz/~¤I+–æ mÊ¢Åy øÊ«tR§ `¥ü§PÅîvviDyçû¸Å[¾·œÎ“gšZ© êb ¨_. Ìds çÌzŒµ¨üùv;ôuéø|µq «%•Nvç0·òºšœÑºð¡ÀÉS³ý/úY‰åJî 8ï.çE=ÞÖ’°C*Ï<Ì2èô<öð½Í-_»ÉW.ä÷•pƒãs–žàaÂjz3m[ÃÀh‘S8)Æ‘ÿ±Å£yðZ*ëÄ]qoužû´áìÖ³OðkVxÍF²Õ æ]¥™X\Π™ßÜK8òšPÑÒ—Üô¤™ fì)Ò.d[[o@öï»}j¨"Êtã\¡ôê:b¹Ÿ:Ê!÷†O4]ºëjF4Øþon./¤#‡t0 à­/àuJ sãD ŠëgåqÖþßÒ~s,;ÿ%>÷@ÝŠÑKÛíÝÐ)G2ß/œxãyè2˜E ߘßB£æ' r/WpÓ­¤êtœÉVRú+¡:Øvw‰³2Þʬ“‹•7],4·ýW| T¨¦RÅãôŇÎQ?»ÜÉš4x™Ã–Ž$ÁÊ„=ÊyëÆ6,9<Ña hadàªk–vMV*‘‘ä 2“És×Úüoµ§;¹«ìm}VivíYÊ•1ÒÝPbæ§’ØtxyŸÊ(töqy=«›1„)Ä/N«ØçòÀN¬K÷¿Á_Òö$yÂUÕE~ z#Ö,ï±ËHp£0¬±IÑØ7½p‹ˆãâûÚ@Híæ Doj…j2𰜨¢XÛÃÙïª÷F1à¶¼‹K–íD…׸#øe¨iÕ¶MÄo¾µ\xV¸cüÂx²ÔìŒòË4yšvT>™“ž„"F’vþÚú @%*Q4þO9#‘‰AvñÙNÿØËbž? ñÞÙŠÙúS˜œpÿG)6:÷ñùóñë³:uälE´à6¡‡å‚¿­•z÷áqŒ„ÓϹ"œ°9`f×´'%!¢¬fºt¹·Ù÷„ïgƦ¤³+)û¥Àóá*eÞ°%T×ÕéôBâXO‰IÚEè_áwÊBÍ©jP¡Á¡µòT"ê2£•D÷„ŽÚ€#²æ!í2RîX¼bÌO+Yû5‘ÃG1õÀ3ÞßzT®¬ƒˆWÛkÌI œÐíP󆨶_‚gb·Wën©¸QÔÿõU'p: ÝÂÏ´úÙwϤÏ+=I¬²µ–¥]Ç:›Õ­J(‚þ#=®LÄù†¹ú§ûÒ%)6¾ËI!âSœ¦ÐOk«÷~˜Èyl&¢˜ÚÃ'‹LZgwô_ý²Þ¬¾4샢‚“®¦Ä½¾0ñv›IX´Ñ±Šïÿ¥AI~úò·ëÞiE4¼¤mùŽ\™BÅý¤»’ñ=ޝ5%|û?µÆ”Àúœ]Õr½R _þÉ6Þ*0¾À*ð)îÍ·Éò23êic«‘—£(òþè¾äà@ŽwpF…»jãrº–.SE<àSh(å{ÎbNïÙýKL–ŠfÔ¸Q ´0l¼kå $G2Ó5N?Ú†ÁÍû2ÔàÁ-ЬèÂx-¢ÿ±!Pðdó?ä4½x"1"¬€Ïýg §+Ô—À„ßRÕ![Qè!@*å³Íª €ŠÐ“èHñ†Þ‘ÊìB½¿¬q²ßRbk¡¶] ÿ*ösx?]a¾FWŽ_ªÈôµá²lù%<Ã9‰kþâ~iãËU˜r +”ñtðk¡ù–50tÇۙŃ_’‡‚7¶ÁJ™äÁ›6AÛ&„ç•ö×ÏKz¸`œ³çäS™âz!P£X¿“¹~ø/â¹rå7Ý•u…ïŒ úŽÉô•µëüÎmñ¢±‹±“åß09ˆ8¥çS]5²GìS\]jÍÑc§ÐÚDZsšåJ!ª¥®ËÈ>åéh㇠նxʦýЖ;Òa¹ãe-*äjó@äå:ÿͧb‰ KRA÷=—BÊèTßiÁaË¡1xú"†œŒÂC=j$lìÛ˼ÃäyòÅE„ïä\6ïžyzØaŒ5Ø]tE]O5Ÿ ã“[:ùoTìaµ‡7|ê{B±sèI€»C½’ÆC’)7ªWeÉ(ö‘ØÞz.jp_UÒçvk½×\ïîqyßÛäøß訩Ä/'hGêh®=iei‰­¯*šß¥ôùh1*KÌ̪•-Ìfª ÄXÓ§ªïf6ÝÅö¦ß•üOoâFì«­ fUW ·¯mHN¨»ß5€Ãi '¢WMƒ@œ!&¯µÈ{§°ã(èl¨ŽiG‡:¡plc#sAµ*t3¾3H,D#2Z™Ã*Îëã¹Án¿_àr#KD[KnÖ>^ieºÂ~o2mÅqÎÍX¢AlF^-C—ûí€M´lé‘Ë Wîp#`fðÂ,‰¾Ò¥Ã>’5OoIÙy¾ßÀEÜר™üñø|òO†ÃÉñ1ŸÄ:òƒ«h® ÷–÷ß.[Aw®|_6÷j–#ŸcŸŽ}Õb ‚S`EÆ}é\kn)¤nð®„E¸jìtì3Ñ8ã`š·t·Ùm®#O•¸5#;N‡X›Ø†úË;YºY·é¡„®¦I~ †ìðÆV0ÁmþJ¶Ï#Šð`æ»ÊƒŽèã>"JÜzßǧ^IÉ& î[€;@ ÁÀ;õ~±P-ú‚¨H3¹Ôãá’ V’ i]Ç=;† îk(fÔ7ÏAQDw#3.Ð}4¬ìƒ¥ÅDô7£Òì[b œC“|ÈÚ»LŠåâº}·,<„Ù :+Ö~îiµË ç;ÕãK Ü>b+ù®˜ß¤ðþ–jˆèu hµ c˜Ì…`ßbX9m« ï+O„eªSopp݃~%vÆHMofôyŽ?/l3¦™oƒ ¯Aça•¬ÐÐİߛÝå#‹“›ÑQö÷NÀYK ϯG&ŽåøÑµf–`©Šm?ºí²k~GŒìc²é’ØÌf!Ÿìº-2 &_ÚHÔº£óòM›ïjì9M*‚bõ6O¤cK‘Q•ODºtªÂ7æ#NŽTQÐÛhݵ¯(Ò‹ÀˆJe]—(Òq‚y*Í›ú02赉*¯é}'½3êß…Àq¡Ö}r`ðjp'W+6¦‹y‹"Pö"ùúçt¾¼.>}J=Ðö+P}®4[‰Ûe5© s: â2#)kÐê µ«K9Ø:ÌknN1ž!dYÆGl0xʯ•ŸôwèîÑÀËÙø2¦Àæsr ·ózÝà7v‰‰T Ù³©û\©"tÞefÌ—Z‰ö«rm0ïѳaGsöÅÿ‡µQaQWälgò¢ï’1’SdÅé´ïk%ƒ¿=li‹‹dm?ï †ní%ýh&(äÉ×b…W™ à®4L„>Rñ%2„ê€CG<';B`i9·|ÊDJ:EkS„¹?ÎÓß©³ŒåìóAo€nX<Ÿ3g-[HÓ?ìþ›4lÝÔ)ÓÂ:f·Ï)|þàMÒ<`k5‚hëÓoÉö£à, ˜Eå“–™ø£‚éJbÂE‚ÓqÛgDš1–)Ï_I›—± ɺš„óÁ®¿w ÔÊãÑ:9áÒÐõ3È+xuòÞüøøõR*„Öð }öÑ&Fç¿!P;ºC=HÉ2½…ù(Öt—å'fÆÕY£Ïç'®PŽ_Ƚ‡/yÔqqb[R;sA32¹åtðó@|Öu Ävñ¹»gç’xÙZ}6FÜÒÚ@be éb§j¯°ìý}ôu£ˆ;~“JC‘~—Û¢zÔh!_ר‘½îdÿçƒ}Õ@¨÷|–"Øì™Hxìämì]j8ËWÓ¾ªzy$!çrRHE"ßþt˜ˆôFŠ3™µ„0‚‹.-#tlƒæýd»ý”6Éo\Ùœþ8îó-»¾ÎºZ³ªT¶¢Q{Ê+ùVµHƒô²=ÏÐÓZf«_–S¢«ì¢÷í!ªLÒd:¥:$îæ¥Ñ³ÉŸäêÆ?¼uwÔý¶RC}ÊÏ4E)%Mõ}.,o¦ûB‡Úô5¦í B»_D¸EBîæ×Û+9]€5Ÿc]§ øPäõUz€o~Æf­`3š,ÉyŸøÍQ×—Mðºõ¡ô%m“,^V–»éúcRÈÀKEF¹â•Æ„µ¦i(²Q#ïW[fVô÷ìhܪÊB!˜Å|¤”È!xu­#=­®ÊùÕfûî¤ÅŒ•,ELhLYY}Fo«6o¬1édJê]!±í[ùNÁÅBQP@f/Ioó#_¢3H‡1/£iÅqí"ÕYËFŠÇfàùÖøø”ôdxº V—ñžU隯Z“aÌÍN=•ˆÄÖi3ò<ýwãâfYèw'ÓšX‡P`Ù´ÃÎÝ/6LËéeŒô’ÚýKGŽ%úx÷g£ÕsÎL¶\QOA¯……o_}“Œ<{éa ¿“ãÝdBoP¹k™xÍ@.e$s”© €ËoÐïSàY/àô±/È€pçW;´S Òzü’öâµØ.mÈÅ hxI™V/^ê×…2\6û~e’mK ?ý=ר7™nÝj- ]èLššDàþƒ¸ecíÂET>§÷0 Õ]ûˆ€4ZлýY¥mœ!ÖŽ‘Ê,KI£¼;l^Ð°Ê )šrlðÛÆ)öi^7q‘/Sh·`£K3½)‡§¤Ñèsì›{ÀiôŽ ^ªÿ–ëN‚eëGŒ†EÐÊÝP¬F˕ҟ¼/¤¸ÔAËõ¯a)Æó>¢ß¦ `ŸeØávDŸ_"àIÞŽpmY|Ÿœþ½p.Õ·¹æÖá»´~’ 6©Z¨èÈ4%>ÉÓÚó§~bAgÒœª°ùȧî¤`ùKðG µLc¤èVþ}ä}Ê>¯Ã–+Š}ú0CŠr®U(ãƒ_i‰Ûƒ¥¦-ë¡Ím®C}ÈàÌËÃižá)„x À­…ބɉŸý€ñ‚å[›+†\Äeë¶ –gÄ—‰ ·0 k»ë†šJÒóLl8H‰ÅTÔ"im;A8û5愯¦´Ñ$ëµBñ=/–‡{Ö¦1†‹:"ÿ³LÎf®gý"òõ¸Û°k;lw~^§Mš2÷ªÎPàÞ‘G‰? <ÒÇU«G¹©_?‹ºÄÄ _ÿÐ^’ºq[YÖ˜…Ýœv]‰âô‚ „Žç¦MÈIĨŠs¢bŒn¾ÔAEÖ|>†@2ÎÓÎ+L(=†‰káLÅ“Júk+È JÞÁsÍhs–wØð§Ÿ—Z`¸–¤}”¤cÓŒE“N˜O01Š}÷õÆ«q°ëdSjB–jpÓ¨hdÊÖ‡N·)Óùö{v&Mx!à'•]§¿êLS·¦öîéÚNý±ûðá.ÅÕš%´4$BWÅþ›"u {éq–ð‚zÒ O n¯³tlääyj¢1vZñ24¨?°ùXVü.X†˜{? ¡NýÄøùÃêù.¶‡C‰‡bRiÌ”–´íé{ß·§Ý°ß>¯ëx™2øøI×':ûÓb•HL(W«Ô[ÅkÕS”\šÔÍD6¼8‚\¾Kækï°€ÀOiLÃY\ç›—ÈðI³ Pü˜Ñ¼lz¨ˆÚþ?çÛ,Isê}šgy±ÍûZK¸_ºYàU:\e|ÆÉÚ¥Gä¢Äî®@u}$°P!Äî²U¬ò:V`Ÿ·ª Bò´Hß}§¯ÿí{11@ÐÒ2ÄÁyƒæÑ»É8¢ŽK¤±­ÍøÛæ0úüf³YÞœ¬mKÒÁV~yÿG-Œß&©ìÓC\Ë 'ªùŸ“œÞ´ &3û§"Ã})Jâ##,‘ûÔõ"¦ÈGB[B”õõ´&NÛHÉäBÚRà,Ä~{»æ‹3îõÂÕàeO$xÀ+¬?_É ªÃÍL_’ü•5«8«foê÷Óvu[wcó¶GòR}²d&ÿXaÑ?o̓pNw¹Ðº[LJR'O­"{ÝÃ:†!LJ:c¶1£íîx+œ—me%èfª7;ÛÄÙÏÓíÔWzújaÄ•f3ëBÉ$+wE$ˆeÞJ'@À±â™âúZö)m”o¨PæY꥓‚í?¾Ù‰‚lz6ΘW¦‹:I%Tî` ê §DؽaCf̨¡œŠ“ýSR”-™tPóÚ½(ûyÃ+±'óøËÍœ%mó‰,ÐjÛ ¸Ùø¦ÔQ·mŒNæD2²&lÊY?À¶ªÓ8b;÷ÛdI¯œA…3-8¥ô!µö!ôdÍ7lŸôj$?"Á bÚUûÖú.äuþ2×t(Ê%u«¨Gµ9éº+]@J/ƒÞ-—Zç±Bz\mÉ0öÙ[ îl{ä·Oz¼æ`+ØÃÅr½!¦{¶‚„7q}Š5šÖZ¦:n—ÜX¥æoiÝÐÇ*E-[„õwļ›Zâc³>%>¦u†?š7×%‹ìl:Þïy–õ3K€;9B¹NC•ÞqÅÒV× Æd•ó•_“˜$¤)ÙCò 4å:\ ²ŒTܪJNÿ*­çîÝcq8sà¶÷Ülˆ@IÁ7Rlq¤ ‘,ܬ•FÝu4–â–¬þUu‚ °Ý„%Ç=ú²ew…¤g‘¸cÂkSü·Ja^£fµ× è ²´äi 8ë A¾Üu~ÿ{~Še½xœM«ˆ¼»KŒþàŠå„Š5~uˆç#Sçà%&>™¶Qn Z;×/Œ™¯&K`íåûö)‹=?0¬÷DZÔK 1‡Ê*ÿ4~ W,®ƒ'ìûÏñéþüÝþ=0˜÷>×§¦ApG •¼Ê—WYGFO¤S‘v(’íé0–H÷.K’{Ö½ÕÙù\ Ç"šÕå4˜a9.]DáTÕ©‘Kì#„5®õ ²Ý½ð¨žÕ’TäÛ‚œŒ9LGͣݰE@œ¼Õù‡![èµýüxrêàRSÚ`Úä/†.ï& øYW ÀùUå¶2ÙN8išuû··„ %³J›)Sήm=·Fõ.ÖÛ#žœÞu^ãcQÓEåGz\2C׿ìEñ èè˜T!½ƒ†›#[­˜#B›{ü@Í36S4ÀK/?߯nX ¼Rç(zøJFÒ\Jkö?ÌŽâc&ª&ªÞ8’‹ä3ãoŽ#ɾáŸ] "NÈQªa^Bð¹é% QÀÇqÅ6h¼¬™T)xæÅ‰õݧ•‚Cƒø¹P‰œçÇ͔҈H×4¤.0òÿ‡¶K>Sâ°+°G·äšvTü›‹Ï£ ¦TvÂû€ãuG›W9¥í>´ß/I#• %^¡6ü!buºœ[(ì2w¤#›E¢ü@µðo2yÓ®VFóïÓ_𦄣©ƒ€KF5øk¯ôßàéŠ ï Kx6 ~ñàŒ6–9 ÅÚìFð¿Dè°óû`¼›ë '6]Õ¸ Q^m¢mr{!`Ÿnö;à¼?2„qs•ààl6¡sÊCù‰rÕ O.×ÞýÔf¾úžu½×>üz“›’9×@¼ÕáC30¬Ë¼Û> q†œß”BÈTãïqSôTEwG!öå®Wød¼Ì2jUôÈ Aó>‰ËGMæ\f áè UÛ$<Ì·@ 8šÄHáì’ØóyÁ€®Ó¨v× òö©a“м‡áâÛ\½6Ck™šN²hÓe‡ ò®u†Ö£_ØwÄVáÊû¼(¼ƒÜ¾³­d€›qp^i<ŽÃo¾¬,ZúíqÕvË3ÍMòÆ#§^þrëãi ¬,Û@&¢….XŹñ„{L¨¿¾ÉÅŠú~Ÿká­üÍ{,m2¹ ä›VA)vHúp+s[lZ8†Þ*róAì æÁSß[7ÞQûúÁQšT ~a:«P@ŒõXÍüÛÿ/Mmà?náÑfH¨Í‡þWmÈ‹ûÚêáÔÇ»3XùȽ`Îèy¢ApÜþ^ÉYGÁÀ­ƒUjQÞßûŠoMøNåhA;Š•35Ï‚·SùØ1”*<9À'­ƒ+yG8†lÂ׉ð÷TÞ ²`·³F¼­Ž/x6œ<¼µ],6þºÑU{Oì¤ò'F´¼‘R÷Ô§öð >FÊ"Ê'›_ò} HY¤å Б êÄn üù‡DƃTäA¢öBã ðåN¿éÚ±Y’.< Ìteõ[bÌã!6†°–à¥"Cg×HBb5RLô~$‹é·¸²ä³”0‚°Æ¸fÀ†Œç~:ÖåY[Q5|ƒqäâøê[ÐÖÖcêþø¢¬ñ=ô;9»u œÃ¥'À_uñNµÇ¾¿ê±¯½aV3C5©œ!ÜlMðëèO8Só;4¡˜žqò^ +ëx­ A2æÐÄÍl:!J’ðƒ:Ã¥]mžc³MÀÝ¿­sMýL3ÃÁµ†þÝô’ãÚ.Àâý8•Û̹JÍÏ­£÷!ÈzŸö6Ê.#\§Z!­è=«É1ù!§§´ÀSÚ]jÖ eÿ Ì>çv´ìKÅ.E•BëdÃÒøvVö TߤËZ<"r.H2Ûk¢‰Ï¢|LÒs)¯P`›hG–+±”ƒ˜¡€-ÖsUÖ˜±£j3ªìujogÞ«'Òç5÷Á)_XÑÂz–êªoâÔ8×™Ÿvëjª³OWéÙ×Üaù×ïöQOŽ|¬m†p®Qè ª˜ËÂØóïÁžö7î»ôz ïÐ++j3J (+‘‘ú¤4¸^à UmÀÓ,~í‘2Öt;Û¸²Ÿ+¿š?nn³v ("Ûq[›÷&Q«ð™ƒö´öS.F„#2°a7“^»À}ÒšG-*ÁåÖ†3­ùDD¬c›=º_ó žE|Œ$ƒ$Iÿž¬‹!“NbíæI ÖNY1E¢¸7Îàz>™-ÑÙ`¸<óBÍnZn{à¶6›¢6ãÔÔ̬Ã9Øâº%È8êçˆ.β3‡º¡õÆ ­-–­ Æp2è„îyXc©Ü›ƒƒmgò#ŠU¿Tn •|çw"06Û"› —X\¨ \/U.FÔXÉ< d-1ú¨oöi³úÙò€£(áa^ ûnî:qðƒ®Ä°!mðÒþ ¿ÿµgùÍ*ve}?ßò= |Pè‹Ê|Qw¹S÷ûïð)oŸjjÐÖÕæ"Ø  6yÄ-v«^žŽ‰rVµ–'B?¬_½}nñy"!‰$ÍåðnÙ¢t'ëïÝ>[v Á@ä`ßÔç™zù´¶u~"º ¨=q*;לO j®×À+ m¡Ð;r.ÓÚz\:¹#LKsT<|Yê@q´öt—TWrÍ–Ä&ÚbO¬·­Ç•bL_ë3U‹áS+àG´ÕL–v’ˆp¼hvžaÓu™ «Å2\c®ÛàfEcD<ÇJ¦(|Š¢mã Áž«Ž<Æðƒ(”[MI¨ÍyjÅ[ök¨ú—d­ÝDF¯:5ÜéŒ ßdüñ¥^ŽžÚ¯Ç5‰žÆ×žT‚f¾RÅ)‹3È=Ÿ—ãÿR1Øýk¸_TfÏHŒNB/%¬ÊúކôÑlà•Lô¨AÍ¿é5@àŽÁÚ?œt¶Gmº!Ü-ú¶Ý3 }üà4ß)ú²Û\ù¿›–­{¥hÃÊ8lC°ÿ@¸þH¾AòˆÍG~_'?’Í[>²h‰û¾mR­i7xæ˜èümð¸ãxUÔâ¬a¸WÂ@…ld„ž¦(3˜¿‡è­±, ¹v«@@Î@Ùw=³)z§Ð•Vm·ëø”ëLìâÈôÓôÖEs‰è°8ž4E6É¡fS u‰™A£þõ¢¹Yuë´Ô¹Ž+¾ˆ?Ä++‡8<Ÿ *..mÀf—"ùÀ–¢Æ§ÐÍöüŸp8Íâ ns0ÛÇÍ5Î>0iMsÞ6HóˆÚD EÓù¿?lÖÐc8O¿DŠßG§aI.¸#å㾱xêõ{ ôì^. t5þŠ`Tþûœ¢¥BÏurö\°XæX†fÒvêbFðâ‰Eá‚„Ù£§É~y™ÖwJÛZ nÙbù¹inˆIÜŸ¶C ^$:}T™›µ×µ…Í)zƒ:fóQ· 6ݺ.S jñÓ:Ä ùÃ{xàЇxùÿ¦Áv夙uÍBtõà£(zË4Ñ+އxd›^íÆ‡\Ðf3Ýý,î0\ $ÁSG#t…ú>åü†tp+èÃý¤«ä®<ìy§nk èqë¡÷œO=á tÀůªÇk Ì+=‘[=oÿýœaò$UÞ7§RŽ €ñžU°vØKs°¹µF0_:v@¢€|¡Æ6@–Î~æ…Š&æ+ÑŠkg=ÄÆ:6ü:èœ/u†ÝËšý©yAùKÉÙ‡V‡¡Ç7f^3{*Aïwøk°Qÿ<ÛfîôpdýÑvqxÉ#D-.—çé¸?GŒœˆ3`Ëÿ ×’ÜBº0ûg 8SÂÝâÕ?S£ sà±l±› *)Étv’g=zÖìúÛßF ÛÜ‘ŠAÝ@W4a%šd? :H¿ý³L‡€$;hÞÎÔì¥Eoh\‘™SE*7mǸVx±,¨ßùPgÍÉW,É¥ÛW ~ÕÒiÛjx$¾x#Íòy»xAQ~†.2* Æ M&–#UÞÃj -©lºWÙß]rôÜ?›P*× "lä›)¦¤z47âXØ[iM‰/‹=h?€iÎ.ëƒâ¨ã¢ @= ½'6íÚn4Ç6í\º°^Pî5ôgŸ¶êéD…lƒ®~Ž¢c:Œå·Ë$Ø€ŒeBá! ¦¿>r¦e´Ø \BÞ9 JY’$ÈìI÷Úl(ÝW!ÕkbñÔ$Ò7ž]ôðTŽä.dUñòñ€›S¦ÚŠ—ü_MQW9mÈÐÏÉ,Ж%‹Õ"DÓcsÕc¿–¸K™B&טøH®ºX4Ú Wåz+Š‹ìD§ëæu¦™îJJÑ©»#}xCËP;øÚ£1¤#•íÄ9Þ¾xÂÝ×pt#=1×Aƒ^nx±D.ÿíy%p¤§xIµòxÌâÉ7æ'©tÕ¦]>®Ä°ÛZÒîŠeß+9A*¬Æ¤# ªœü©Wwÿ‘ñƒIÀw)†&V mÛĤƛÓÔjìÎê^¡~mT8ù«щ’NÚq¢ãû—‡«P·íuÎ5-Sš«Ú&U-^ï‘~–… ê6Kh×Éû¡;î§*#Ï\ì}Äqúć£)]öðȼñCFý# ÅÕ}—~Ö¦ðØ¬”ï[…í½í×Ëê%-P o°½Ü[ßÁ*1v§Tá<ÔË^«üK^ŸJ(Ž×r±Š²ðb¯ª dÞ¡ØÏkÈ”{¤¾Ìáý†ˆwNÖË.r’Ã.ðþd<=%ø‘IÄÞÉ2ñy ‡OœúÛÑÊ5Ѐɚâ¢&t%åÉ Ú:0+ćøzäÔ¬ Ù<±êEÒkÎúd×$"¶\Æ@ Ú¥ür?Uj® Ñ`ç4‹Ù§»ÜÙœÓÊÂ΋ñPÎ0CÜÔ­}?ž›“Æ{BÁ+<“¥–Kñ#N×A^÷`{Hßöýxƒ©}‡¸›ÓS¿¿ûq¡ƒkFÕ(Qý拇Ø{ !k)_PW7q·Î,YF”êõ¿É﨤dÁ~Á©‹Q—»j«W´Qk9?zŽÖu¸,þsÁùBB‰fNwt5èpÊŠkÍþG#ØE¯Ž “„XMÿå+ÛQŠ£éР&ÎôV47Ѐ~}'nÝÅAð& QæU (êkÇäC\ž>rƒ.ýzÃí”D/{6Z™Õl¯˜!Pd¤¥T›a¥ ¢= _ì~K˜òr9ZÄ5ùuxá4u¢I>ï–kâÞ«Þš%YàÊ"f.IV挘i¤’»Lâ’}kc¦ýd0(0Øá©„¸Å¢qÚ¤Ó >3w¿Šhü¼Il#…2òpq•Lª|I]CWÈŽm®<7‚ üJ¢c|Y{˜idiš  >}ˆe¥Õ÷›8¡`§`¥GÈåžó˜Ïl!Lÿ@-t´x­dîMÈÂç.¦ó ­+JME<ƒ•¥¥?ØæsùÑÆâÒ;Ž(5"6OLUŸ/V¦ÒäÚ¢ô6åæO¤ ÁLç:Ž˜ Ôåõ©n¨6mç`ˆ—Ì—C@m»5è^,‰GóßPs¾é ·a Û€@Çf“ ( eã~dÅÿü™Ë²¯i%*Wéqñu–@'©”›Taüo¿)ãfc<4¶Â'ÐZUĘìvg—ùÓ ?‚³–ô¶7ÒP&Ö™¥9šÔf‹Üø£±CHƒþ"Äžnm7‰»ÇŸ=‡+°gÞBxßð7ÌB’ÈÙŒŠ=ìöçÇÜ™DÞgl¡a„¸/`ߟøÆ”³’SPñ.'ðå‘eÙw‘ò'‹Ÿ‘åY”oKy,ãzœPíD¹F`òNf+Xtã<"¥ >ò¯pFùÄçø‘²šdõDtò'¥æ E}p{ôñô ‡l[Ç¡ܨ "ízøJýy¡·TËÔ鄬P#Å?‰G€!q:ùSZÞ ÈåšãnyËúÿ>Ä?yýð‰«¤ïâA— hŽÑôÝÇ¡ÝMQÚË­­zôÒ¿¶³–X.AAÏ{Èå¤l¨úH¸Í ñhÕâÿ³ûýªÚúñ›ª÷wÆ•'ˆÅód €véÃÓYµmK×evóœ3Ž×îGã#8·šz,Vâï3æîÜC n¿ ~(Û!;Ž›p (rbÈÉ9硃Å·î óP¸KÜ9N#ü¦ÿs>svõûaJíh±[Øj¶WÞè†ÞèÜß5šê?N ºU >š_,uµF§žÒX«; Õ!YòËÉUýÃ`ƒÚü¯·Ó~êóDpH<ˆæhÜË€M–žÑ8¯ÊìîÑí&ìAô»ì‚ßþŒ—S¨¶²c|Èàþ]„N¶í,š½kyéį֢™–L8›$°GŸ |"sMÄ' Á™Ùd¥è„ Šð)lp/”gq;_„æô 0ÚEL·àP)8œ8é³[' ¿žžáuÞ1m}}I5 „-êH†¤‡ÜîFO½Òùº€Ûˆ€ Î]T®•¾Ù&KÜ£G‰Õñl2‹6¹Wêê;ZH;q¿.ñÚ`±#óÈX}0aÕÙôP·QeFžã›eß>¯Âj¤¦¦pcÞ úyÀ$öwÉNnô ºjðŸt‚bq)­Âó4Q©Œêô/ÉÅ Öº ­ëYZ˼@t/@™ç欜óF· ÊEV,41ÞŠ J›²X„Dµ&þ¢GD",«nO:8üv<„p™c†?§àÁã¥r.I@û‘¶µõ€sÐ#Ðu &"œ·–qý¼•}&_®1Utzèg XÖú)?I¦f’M¸|÷ìtfmp!l0ÉI¾1AîoÞYí|$sÿÎ~RbŽMiàÂÄ£¹…pÞNØÿ"ÎëºÛ×$>I®Ö Í éß B€µHûŒy”ݳWDQßñ¢¢抸ËÁ4D&þ÷$Gx9¡&fø5ÔMÊý þ¬„‹Á»Æs&ÈÅDž/˜Àƒkt±ÆEá5“ÙíaóÇŠ3ô±ý ÄVbª’#ÈÊ-z–€¢Ì÷£ÎSH@dÑù ™®øÛöx»ZÔÈ›q˜«zêBÈÒMzÿ€î”§*9é1:’:¨…ú?%è—hpsß?©´Î2öŸ@ŸZÅRÙü|±&JøNñÕrS@õ¬¤¾DÈäŸfE>;ÜIJ’â•rt‡i?Ö¾µŠ;ßÿOD–å0!œÿ3}±^Ήh”¦?Ò¨i F»kRú½Þt<ó¯W‰•ƒ.° ™úíÇôænHhoctP»½Gb1àaOó·nb~:Z#­ò²^ìØ–~"Û¢3~v«³¹Ž¤jéäÞøÚe¬­G Ë»-¬¬ŸTOuRV%¼í²3ì84i`tÑ(‚¥ +ôN…R<£­‘$ô‘2œ—SÕaCjUͲb}“î(×vÅ[õS’[-14Ûë*ƒDox˜´µLn¦¸Óªcù«ÄWÖv;¬ Â¥=qUž«ÖÜ (ÌIÅÙäÙÑÖ¿ÔÏFéc§ÛR ¢ºGÒ0!aø±Ò¡5êqËM†Új €D¤-ñ…m®×ôΦo²¢Æ¤GíËwä9H?S¸aÚŒ‚ˆÄ4¦ yÑʲ¡ÌèËÄŒ‰Wx¾/º›8GÌÊ"eãª;~²iz[!nPT¹ÖHjdgC i1»fQýû×ӯ׀倧Jq\VÚ¶Jz^a¡­ Í´óŠ$ä«fø÷KCHáÿM­øEíå®i4^úõt-@ O?ÝÔ„ÐÆ¿„\PAø#ˆéV×<` òe§s¤õÄSyó‘F5Ü)xn\ç9çÑJ9-·‡H‘ð°Fj ‡¢S‰tX”ï‡ÒÙ#íÞÖßwÒþ´Y/Û'I1žîšÅÏâƒ&Cf}êù~È÷D‘…ÆÒ£öèå§1Ó¡-a 1 O;MŠ­0…ò¨*+±¹M¨É‚-(5…ª¶±Üß½¬Y4Q[…ÁLh-`cn‡Æ,$ôŒÉS{•3ûcô±3‹­¨Ž.PR£«{"òþ^Þ_”ŸþOê>à.,ìf×Èj¹p€²‘8Á~iœœa02$§ãÊœ%¼wtl°ÚëÍ®ö9jÖúuˆ ¹¿FVÙ¾3)ÎÐÄ›Æòüâ[ÿwMž/Õžµ"ì› Ã ï©4tp(ù ÍU µþr Îð°&ƒüûõÛ _CHè”ßÇmmAAùWF‹‰ ¤ßÙ‰Á0Š£™=K~þpá4à¿Ø!«Â²áñ£ú»Y&T(Ø.d§ÍÒS(ô¢ dÎÊ4<ý–Äm‚yœ.<ínáD‚bb©x®>¡fƒ@î4ç·¼½6ì [â‹3dµdg„´žÑNYxJñÚ ríxm-²¡ïØF㊣|—º=ˆÊ«§õVûŸžE˜µ¯)L›ñÌS%£­£þÄ0tíñ­b`ˆ‘½iɬzÚö® ­'À¦k÷È ¬‰ Pª%²w:;7¡Ç‘¾öìWÑ)B>¦ÀJ«ÛxÒÀKö‡µs Ý)Ââ‚ ¨,ðO~ìî4ë¨c]OÍ@,¥Œ ±šCí¸ú@„¨Âöv 5_ömP|åÜ´'Fzí2—”žêUóDÕ‚˜CõýN.ÐÊß«5'"@Åá¹}: ŒVÀx(©yô•Í0ò<.ÇBXê 4“jÓءùÇÞ€X% :[þЬ7ß¹Ï0,µrÀÝác"‘¾Ö¾8ôqr­ÖMdTGÕ]²Fý÷›§f9B´–™óÀð2åêÅÁ«ýÚÆàP{z¦¡ –ÔñµöÃ\KyÓ“nÔ©‚/‰M¬y͹vuñ"I?Y¹fX¬‚f’?à—ÛÔƒÐ)ž#Êb>•À´O1'öòKk"»^n÷2Æ+×G:SáÈJ*c_9«%·(˺)ì(8~«Õ¿4½!jx{ªà ·gW”;…¡«Œ¼$`Emƒéöf–Ñøµ ÷ÑœÂ&×ûO¾Ã|¦š&05è˽îHùö$$ØIfÿW/Öø¬5[Ôxh×2[Y0ûli¡Q–CõÚÂÐ=rvÓX“È`º«Ò`e1âaáÛ%€¹\ïý »‡ï<æ¶Ûãw¥üY\9¸§£¸Ñ]ÂÓûÅâ’%ѫƛ-°½vìF8ëxò‹Ú”gÀè Šõži{ûµüIʦwnæ_~l„:¸‡bÇ‚¾eï6ð2HâÇzlö•GÌAÿÌÃa¯G….¶5Ž&KH¿PÙû^ŽÅɼë>´€Sƒ ân\ü407vç‘ÓRÁ¢KâHq»ÛZwRÄ.:… &ޝéÂÄòI0YàÝé\ ÈO¶v@fYWÿä¬Ó"¼Šså8Î+4Ì“µgéîŽXÜ&× ”;ŒÕp§zß«™Ê%+·—ÚÝ´ÿ— N¼äI¢Fvî®  }’"ÀLx¼¨½›LM Üè<¢ˆõΉÀ®§§Z QÅ®óãîbY«0šŒ¾ ]oÙªƒÔž8z--5y*D[Ä^Ôx¿¼^Ú[á`dÕÙ£QV## å¹6X Ê¢¦øÄúc’L^¿ÿ£Töü×84Tlï:™ä ëA¥§v·Fç(]Y=´š¼ìYãï#\R¤ALŽ.‘19gº4Óƒ ìjb$ÝrÅÄëôê¶ßøœžpÄ»l“þ÷Ÿ_k1ô7ÈïE þè“ šÃeüÛÏQ¤ßÚ›^¥>6èvZ'^‚ÚÝðý«)Íy.ÝÆr´/©dFýFD L4Q Ý2°Îô§þ9!œ0ùÍO¥ Ó®\!.¾¾Ðˆª˜l¯õôƒÌ¿NB ªÍ›IFÁ-<ë¯Ø"r qÌ„1:=l4-÷dP6yœ;‚‘¬09%¦'+à ag›Of…¾´÷ª±‹iWvå#u’Eê?‘ø‘!–Σd Ó·Àwæõ(ílôdÈ)š ¼œó²»›âá’Ê…Bä5먒³BŽöå‰Cz߬†zë¾h¦â‡ /¾£¢•“wÚe:ž¯¤’ŠŒàEQMµsq ß2õ…„| ôW Á©¤Þm Çmyà´-æÚêÒê¼a?j+8)§7î//ÿØåZ)­òΚù†Ó)>»q ‚áXlÖˆˆÂk݆C¹8´Â±„LP[~•ߥ¥L»Ü¿ %§÷%‚»[J¡õ‘)‚ú™SÄß~äHŸ±{³Ê `€šŠÚräm+I³Ýߦ Ò=w<"4ÙBæ^~§©›'DÃ|k_ü¶^Žù–í÷aÈ©ÖÏ7ÔŽÝ\Ëôo"”ü&¥;ì톯õ9¤G¶-#îX=[Q|Ò±©TѺ–ÇÛÍw$x²öQ ~\ŽÔ‘Ù|«ë¡n!â½*ÃsœjR¬8Çk±@Ù2b;ækÕ°ñO;…,‘²AÌ î£Î¨ë?<­å} GK '›F¸È¹§rš'ÊHÉà_’¯Õ“§(ò*pân0šßóÇ?PÈB¦å(øJj$jÔôm¡÷WÂR’×bq+_‡«™ŒXK»I]ºÃ^¤Í™|m_[oz,y¡¨š=:¯löŠÇÔE²jX}k]”ÔVqqô˜R…Bª®òõÊ\99¦‹oØ5þ²ë+×Ý¢õ\ïx¤7g(säC†rQâ(¿ýWÏI2Þ¨â i˜D°Æ`É/]¾Äµ‘¤@TRÅ­w£˜a-㣿m„ááI·3D»——¥Šr?y5Än}wu<-söÌÊìžx$ ¼Z²Ð×Ë)ïÃCºýÃO·6¶¸Î&gyLà§]HŠUa²¥-ÂþOá± >ë] 4ݚ|Ö²èji„ACÆžQãóºåýx4_݆ÚsY=Ó¢RÐ{rDš g‰†áÿæYÐóB¼ÃѨœ8Òª®çè0ú–? zãö{€í#a•×4ÕéÔÇáï²´LlkÆ$Y$ó{bµÜÂóTFó¯Ú´Ý¤ž­°ˆ­Õƒ ãWeaÌ9ãýzýÂÒÃÆÑÛ͛џŸâÙÇÊ\[ ’a½çuCvz8ºØÜ|Ädq”±o®Z*=[%5BkägDtûz¦H÷×>%‘žƒžB*íF¤¤ô7(ØÎJó@{LÄé#$¢©¹ †›‹pñç×h‚Éà¸Ã½ó‘rB¬—ÇôéÂqÖ®C›Fßx‹H9TÛ  3qûÂQʤ<æid{K©³‚³—rËB‘Ðú Ëôøsü„í­ƒAjCî´9n5Ù÷„$A@€O•u›Žé"åE‚,×±öÝðœßX«;Àj]IбÙBnÝfNɼC|ˆ¥xi-¤Zä1ÄG¤Ì$`•8{vI"J[Qð—s!Mß²ET†œìbÀ ç „&ÔPIØEMÀ4À¸ÐÊôï†Û¸Â9w†=ÅŠ½¾›nV õþ„CñF~¸“”¦&Ø%¤Æ‘±NDJ¹hÌÿÌù³Ïád%@© öüêHð^©]á—¯ÒXPêùI_'̆”YT¼úÜ8×W‘ìNnǰ“mD¯ž:.λñbÚØ1¶«òP¡¤P=<†.J]!\îo5tf¹˜?ò%›)6tWxe"áÚj·§Q>ÂõúŠêùÏñ‰Nßéø¡Q€âr¼S`Uˆ:õWÔ„¿¶¨ç_ –70Ž5¡L¦XŸÑJ€.5)ÅÔÇ S^`ïQº~V&¥êG7d9hwY†•F€.P)?æÓlÛ‘µï™2ˆ/NHoø¢Ä¦é¼Žåcb¤àܸ€¢Ï²˜¦Î·¢¼ñ×&íšÙ.JdõÀû ÙÓ†‡ÛË=šH§æ„±)‹rcðS\±Ïy$‹S{ia~ËL¡«¿ïò0 …¸ú7Þl¸­jùJDözq$3±" ”蹉iÕ\ÄÂ`Ýþ37e¯#ewû z¿wRXŒ-Kä῎<7E‰c‡ºó/â­ZÂf ˜o;Üg™8ãè÷^µx›™ì 2ôX÷UK²ßÙƒŸf¹U»Å›†Òn2 ¬ÁGEnuªlÄŸ¶¤ËÍ'z–Ã6åh|öÜ(ÊAçZ†Ú ŠSµ,Ûj)?ôC¼¼IýÐ]•¬°Ãc(Ú,l×¥àzCj –&ÛÃèdncç$ì½.%]÷#¿Q`¨÷>ÇR?±æÃbðm;DBÅmècF…Ͷ›aÕ´ìùi~Å~°k²Œ¦íáJ¯Å±7ƒIš ½Õ@evIÃWiý¯+Å "ìŽòñ ü\aw]VÐ4aŽmáZ Új{oè!]sLR’—[ÿÀ]à^2Ù-ªþ¤¬Ëû$„ß8¿u'¥Œ¬¿v‡êa…‰-<C½ß¼Å^\¥š{cIé[+ ¨WBG¸Qãfƒèú–¯Þ:›~‰’KkÐ{ͯ³H韻 ¿EÎ?ø¡[Q‰C²ÐôtÂ=„A‚) O]Àܨ+Pmå…D¬]'˜ÀuwÖ€ñ­ßЗCҹ᫱2‡ô]ý<J.>óüðšÙü §”…*ú˶(ZK™‘Xí ÙÝ&„hMX ^ÒÃp‡u'™þö¨ÔXíöW]P_wùkç¢%upº¤ó|T> yl ï|« UÁÒŒþMÍ ýê‹;`KK:Äåò­ú$Ó D´ó}¥ž«¤¯ß _¿¦ôdtê: k MDÊg`-’i§&yóô¹lVGšÆÀ?®*öæwñ:çU°1ßM(˜À;*8 zÐÝMZ•Ççe1¾±^5c!;›nj2ªùÔ íù—àÓ·'Ó(¬£¡+Ê`æýu¼ú¬üV!}4-ÅýBŒô<""I$ÙжüŸ¤üU-KýæùšT†iÈQu„ëxˆ³ëqŠ 0Ÿ®pü3t-™|„‘—€ÐHÁ7N†±l¡«ÀRË "½"LWKª|€äX‡Û@Bö›;’® ÑGe4óç(ËLÌD‡ep»4ÔÓËôÕдw¯ÆPÿQS]}XCQCzm"bF0¨ÚÌr[:¥¼,Mz`)P‡‡CÕ»ïÞÓMY ψp'-š­H¿ÃÕ0œ,{ÛQwìvÜòí-sß*bTÃ…Š&Ã}w£eQl­¾44ͥѻãÅë êzË'¦ÊáTò×xéÈ`~j¦?¼¹HJñ’æAO£ÁòÀ·/¢Œ¼ùW©(¿+…JOásÂ, :± ¤XÑ»©V÷Ó¡öøåE­©ÁVpŽW§1—Büá!p¾JÌ'¹ÕÝa̪cínÓJ4øÊ¢ëq™l¾ÆŠõc%é4ìý·iH½Fmñ©°Ïð¸¶Å”1>ŠÍ†ìƒ?eVš‘~%·ÔÕ÷ c9n‡å £>ΓÁþÑï¯ñP28u4ô•íÒÚ’Ý~\Kw(ž]¶¯‰—ð áZè+ŒÔëe»/Ôé—coíaè=ÐO"ÿ|a3ã¡§¥®¿p€0óïjáNñ[´HÉA-ç¨\Fêp5~Ìe,Kz ûàuS  þ®«¡§V BÆËüÛ7È”øÀÈ2®ºÞäí` ººw¹cÔT¦ÁbNï^7þ,Ï+6 ÅæCÀ7‡c»@Â5çèKzOk¸,mÒ·Œ>’3 !“ÈK¿Úマ•ÂÇ8y ®ˆ°”åòmk²kÂÓ« êÁ‰é*ó5ªÈ±®,ºÝlÿ|’CGè¾{J/±`,6öÎÍ: ë4»dý{啺gq¤®5-ýx¾éN£à~÷mÑ>Ø)®‚ó8 di•¿úcO”óÿI’×þ¡Í‡ ‚¾ü¶ŒF³ÀZKÞ;½Äõ±Í8³æ™²¢L3ºÓ<›º§ÏHë¥"Tî%X~Ü£ÿÿa|°‡^™ÌŸ×°îëªB¹=ñ¶ãúÌ™:ï«K•©!Ž1ÄɆÉѵ„¨K5“ÉÚÂt=ýÃ`Ñ«V›Oó ‹øtMÂéÄéTsÝ®^È #3 ã§~Ý8¾Þ¸‰#¥Skîa Qw:‰Ú ³iÚæøH&T抃ë¸6{ÂæšËL ФÕÖýËFŠÝïHrpeêÀ[óOõ¼Ò’7j²ejÔ¨%Xø)d“| "C#ÉÛØÛFŸÇÀ^ÆAqÊ©WœÏµ]âiKZ¨®¾[’MŽ¡%ó%5N±s ž^-G»Y]ºR ¹ímõöÙþüØ'ÛmÛš­“йšúþPò¾›yìÚ_ q³ ÿ,Ú&¿ôç…FTÈ‘aÁ±é"æ\„_Åzšçæ¶¼A ;Wû¾Ë24 ûÕø ÀT€Ei+?­mºÞÈçÇ—õÝ ÏÀÑ® P}Šq£mÃQ<tП†²ÀhÅo¾g¸vQz!ÊèˆQ­É÷4$Á²Õ]»æ,טl>«HH/dóhqŠ%nå%¶TFÅoÚrˆÍÁ™GbÔ¿) 0Fæòz¸Å²…cÜdsòSÐOb‡ÏNšç°Ý ?™* é5K ±«î¥Y¥ÿK•Jté ¤Y$,í­+¥ y"´Ó–«4wmyi®‘×ö…¤~`‚o”—{ãX Êˉ‹ZœO‹û£­B¶/µO²ó$¯?+€ùk‡xyÃKЬÇêZв¦)C¢ÖN\á5ŠuTì/Xƒkçš–]>Oƒ±’-ARæ¼ÔÈÂñºý…3û¢K%vT…ç0C9òºZ¶ñ7$ãé’Ó çrg©ôsÀ¹[çÓÆ4ÕG¶¥ÝnÊØ£.®8=iÏXšÁè÷‡h)¬:Ò1d±3³"2ó2+*Á èü¹£¶Kžv¯Bw{ —I' m?‹•·àÿ•Qël¼­¾>ÑÀ .ž%?~ž½óy-öæ&Oû«ÍÝËüÛæ§FÅÃO(Û>y)ןCPc=3Ì>YÀ-b49SP…ÜÚhn­wÿ–Μ;ϵ¦ÄÎ Bá²}^ãˆ{'Ï”&¸¿hÜ&¥Öè¡ èMIz”y;Í¢®ƒ ³C³wÊðR¾Áa.5qIÔåC®vTÈ™¡Ä}`;˜\'Õ$ áÎp6@¬Âg §”aëÿ]×Ãͦ_¯=ƒæ¬;ôkÚ{…Ÿå2Á¸qœ; êÒùæ1'h%rè¥4£f±…Ÿ:"á¡(¹a£ü 9û£ ýÞUG³¶ÃÛù·Ùï^wä-+›ò9ˆ„Ì eC0¡±†'E5.ä÷Nï 믮48Æk‡-.7Þ[©Hƒªaø(2ðOF†\°š- ýg¬ªœXw¼ÒÅ‚NA14‘Õ/ü°ƒô½íÿe‡.<²wPÕ„ÓiD ¬tfÆ¡±‚W8Ù Çx÷Ì8µÔHÛ¡¹¦”ozûÈÊÅHg€çï(V1ID|Üðë?—¦Œ!‘Ù& XlÊïz˜$9ØÎ¶qÖœÞùu„ÍšÄWéz- %–Ô #÷DsL‚z0éüÕ¬P³ ½­AºÍ06Ì ƒi„ùã Þ±¦ÑZ‹²¹PîâXéiXœvê:C{Ïã^íØg9YØðT_üÑ4„§¹²è)÷dÐwza]ׯ%Ɖ`-þ™ægcpBAmP9ÿã‡Y¸ŸŒ*#Éä53A”R±#ÔÝf2_2Qü=–Þ)M6÷æñ Î|M óœ—å| «5­@ ÁÚÏ”fCG–ü¤QÖ‡7çjV›ÏUÌ“ÿ®K b©ã?LŠv'.û83ÒèöŽ–¤¶ ñ®>$`G>ÝI.çÛU?S[µ*j¬ñV†.»Égæ÷*]›P-κì拯§ d ê©ß£Ö”ï`¯˜¦óŠFm€Ç˜+æ—¤ËöFΚò“,ü×æÃ»e,(ò@l¹Y]r¥£dxµÞ¸×X6dºŒ•„^Ïl_K»‹ÊÐˆÛ ~†Ë/€­cÎÚOv~Á¯äÌù†Ðƒœ¹õXDžÝ5P—‰BÀ~¨¨:ƒ0ˆ§Z÷·ŠOÔÕ~—jIPz?¯ŸEw«?C qE‹0hÓ”–¿ØÎn,»ä´©VEšFÈ&ßè2<"uƒb°íjRÛ­ää4p<<>AÑgì5yÍæ ?1*ß\¨ï $lÁÒ¬sU1úçUAãœgÒª‰'ʪî´gC%˜‡°ô®M)­¨†`D7¾ú$š"ćÏÕ°áC§M}jØÆX•ͪëã3=i~³_~q»’’8ÀLŒ„Â)Ÿ¦ûvÖPšøÆ0ç–!‰ÕÐðÄþHSìõYæ[Ž=WþsA¸e<„R)‘î nvï°S¸û#fDevûŸ²p£=vk ³¶€6™ï>Ç•Lz”VI14híßìµk".t[Ô»²"÷ÑEQZØ‘€“OwñUö ËOFa×dLZˆ÷k²¼õ¨Ó œ!³^¨h³§ôÜõ’þò‡¹¼¨4jiLJ×C|×4OçÁt.¡j° Àtâ5Ÿ}ùr$Ef!-%ð…´^9]×î ŸCR¹AÕZpÿXS â±ê…Tˈéí׎Ejð–PàU7àÿdʰ,Z;¯q®ƒÎN&¶¼vH|4ŽhO>’-c·£}_÷ûRN¿éRsûG±ù.-Þ–x7š›òµ»°W†âe[¸‹>1YÃù±”ãtÓå'íò"ð@±‚®ǫ̈‹A—zäwÁ–ë™…"bòÇÃFã`<Œµ-Á8‹g ¢?o$ðÙ>IN›Ò³F½¤ÝZQ7ýu2ªüš˜ØÂ¸ÆàÎ~„ºÒ¶ïGÔþ¼ë'ÀÛ®ñÃÓ|ÕäF$:äa÷ƒ×®k€LbÚ›ÇìK¥÷"»ÎÇ5Ff¡Mv«ÙÅØ±1ÚêÜìrHïúÿ¬¤Zo›û¢[ nô›~Ä1IWkñEç3yï%(_Ãî™QW ÀηçTf.oce‘"DäYâ1I‰ØÈq­ñÚîÓE[@xoÀêh”½Së ˜ï± ñîpuoùŠJ‚3ޏñrïþåÇ ]R7â¾ÒhWíGóè¡ÁÑ5{k½XXÌáЀ•ÛDZVKŸ½s‰3¤÷Óà ÇðœcÛ–Mdû— XĽ=†ƒÑŸÈI€ Î`Ý'.Õxîø8%Üá[ù°¬°qN˜9»kÍÃ{òkæ£\(AK¼ ñ™øZ©'ÝÒ!xüõ†[r Ndd ÖI>¥„0ôèž1¯€­9¢¨À0k”;ö?²lv`æÃýœTæ8'Ù¬Õ‡j5sæAa«Û?"î¥ú ïb†zw‰•Ç3’5Ô„H’87§¨r9í¾ô‹ ¦Mm¤ù‡ÜNz€ sµÈH·BÆl+ö9 Äfl$A"©hÍ’ê'òÃGI&=oœ¯˜½•O¶¬B%fR] ;à"Òg^ÐL×°(*Ç. ½m„p üÒ?uhêy÷_Ž´•#?¤¶Êž[Ìà AE!ý†|IÑË£ßNÑŸÔß¶ögååävß×ö.n„}²Ïr=ª/,š]& ¸zÍRLSÃF¸a‡niN8­‹æ‚ 1—¦|wzôù˜8[¥Þ#f²èŒ-€@"d6Ãezôñ ñgVøÔùç/›cO1m¸fJŠJEf¡]~ÝÚ—¡“úkÑÎ’Rê÷®³ª¾š€/ ù”‘=ÌsG¤ o­ÞK geÃ’ —¼ì?ô¶‡.Ž[Ã3Ý8‘Þì‰ôd}tÞ½ 3›¡ƒ…ªÉ>]UÑNàs€Ü­]fެúe-IÑs*A‚àpoó\I#{Á?ùiÑ‹ìÔ”—@‘ÛòCfMûYÐ/©Õž pœHÂX+h嵌»uû5unyázùãE¬MÙòP³+ž`Κ@7J×L%wKàߪ;ñJÐ3#O®™7à<_[]²Í”y‚¿> î3oÁ±‰†&ÃÕ Þ)ÚOý\m-V´h†×=N}ë¥x6Š :ÑØ­û6E£ifû¡àS}îq„_RsËQξ›ÁXÂ#q–Cø¶³j¥ªNëR2'Óù{¨a§— fýãsͱRt—hâýÄ1NÖSi]ÛÄç}yIsö멞_ÊÀÈ—`[%±µ„æ²WnŠË§T™ÓD+—(•ü¯·Í<5?è×eòn½5VÙþÓ Dmy›Ëé×yô`W“YŒ»“V_â›hŽÿžíØÉ_]·žÙËðΕîýrÆ·%™…tfªü4¦E­úwþ AtÛS¼|^€hY¼M¶;à-Q®Íó£«M×åˆÜ"#P½LIšs€–b4¶4Ð&©?Üi­ÆŽ†è‘ÙtøI <¢J“Ûs ®œ%]‚Ý)< à­å ¹ ŒÐ)(ó '`ؕѫq^í¨$”'i6ejhb4¡±ÜzN$aùo÷v±)•Ë»dŒNÿ Ò‹´°EI@j¥ö€ØÕ˜aD×CÐÒûÆ­H9YÌø%M“,°|”†änìǺ±Gî³ÿ•EX¥&ͺ်n}E…Ä|Š0¦R#%Ó7¾¨ÛxêÓ‡§‚i$¥«Í¬yfVF­Í"~ï²YM©ø¦@º\˜BÓW÷¾ˆilˆ6#CQÊb¦t×l¬ŸÚ½ÚnsÚŠ0³ˆÖJþ°žƒx}«¥kÄŸz-r€yªAt•,0ƒOΫºbÄwTõÐÉÙ­óMð£‰Ó1“Y¾œ"~û²w“¢¢Ö¸É7Ðæ¡‰÷»ÏmuZ£å¨´FêïÜ®®o@*µÃ™ƒýÄ>(å&ñö–ñ§r«½‚@jظ?$«ó–m~‰FëÑL;ÕБôOƒZ02‘òÿ,AG Þ¹L¢¬hX§¡N8c¢`(ƒ þÝ7‹43Æt¼´ç ø4@®äž:Þ+žœôÌ@•¥ }Ýñ­¾-ö]Ðûõ Р¹!°J`Q5ã%„°ô­’÷bþkâ±8´ü68¹ãÜÌ[Ý™t©iiˆvùÞë‡ÃäŒàj;­…%ßtºïP»³L,»ËK8²„n`^ž[-Ãî;H8Žãëg€¾È_¨¶zq²Î V*¢Œb5lØpÌv`©¤5¹=ÝæÐð@P¾·š¼ŠG˜÷ yúFIýt‡*<BBÁîÕsÚ̉L,#ÍXâ'—Ar”Rcä*C³=E½ñ‰0N“¾ó%€t¯I¿¨ßÐqäBä…"¯Z h×^U LBq!ï|Ý­ˆRùO_HX 84_ÉÕ‰NIJ³ïO¨“2ÔfQ°«ÝÇÄ\>û®q ž(“|›vRÌ£…´¦;Ó‘¡¸oM°š¦Å&ð5$BД©ú)òÏà4ËÊ5Kš)‡ÕbÐR¾ˆ†ÀéÞñÕ§F6ÒšB„1@äÀ®·ó %]5µA.;Y÷ø q&ã4œT „/—˜jÐjý†€ÝË™}õÒ­i×”»‡í¼Ø¦¼{ MDÁ+úüõAu–`è¶µ‡‚’M \Ô|ï»Û’„àB5Ï øRls^ø¼j÷ú„Š9ˆ ÿú™ñÚ&†÷kdµLòœ¥˜V¤+lM¹’4QU8¨ B@ëêšUT/´àÎ!z~ƒ‚È"€8þ$#E®Œîµ4í)Y!‘¬ò"«_t°q¦”@"æ9ÕJhæ“kÜ EÌ‚—;ÔrcfÎpˆÇÿFª\Ý»D•IÕU‰¿QovˆÐòiÄ`G²â¹[xq° ýLJ‹¤œÀx žæ2%L®Ö;ŽäéÏ… ºe×±sd›t†Éé¤ü#ÿëÛ`T.J6cŠ/s<õfïDZÏs·g ZªƒRV½ñÀרЇ!l+“›á¼’MåfÞíôÿä´Ì5Ò4¥‚#D2Fs“Kç8篈§õ·_ÖÉw˜·ñ„Ë‘Ê4»áD1èi,žéü­Ý ¨8-1÷ˆÏòäúÝ⇦þÿs åânT5/CX0ÛÚ…pF3CGK ¯¶ÚŠ= õS!‘ȺÌv2q›§mfFaø:jj²tíÝ+NJ«F8Û³ÝÕHvЮìnù7žŸê¼Òžêgr`&£0`ef@5Š#´#xôòÉ’(oùóÍ,ÚªÁ4H¾dcð†k{"À”¦Z­„Àο=ÉöhDàí±Öý¡Ñð¦2ânÞæ+`B÷‘íŽý4MQᥒ ¿\ó¾/„ZþÔo†ì· '¦nÿMÄ瀜ŒÖ¾µÑŽÆ`CwÏê˺TNÛÕ'bváDF ³‘h$×Ec`[ö|tG®}ŸŸü@3öØŒÐöFºK‘¨æB¹,ì“““ GpϬ5q1&#ZQsY—°ÜêqðCƒ‚EÌX7p}íæIùz9_c_Yhqh3TR g¥Ì‡ÙÕÎði)°”}ÂÓÊÕa|Øh*&€ï€å÷°Iž–º#gKy¥Ýl{@x¶“§ô%ß§S¶›F¹5üoÞô²½ ñ;¢2u‡GA>—]ú–ŸÓ`r€Â´ŒÝ‘Gÿ¿ùšD›W@&îgÀΉ€½…±ÅÒàçLZNª³oñÅ=i<×á…Ë­£ NWÛ[ºák@µ€z²Pôi÷t_pÎpU‡ãxÆÛû^'ɦRÁ2SŒöІCnÇ›oÒpu¼ƒu‚tÚì2=`BÈL8 îN[âþ¥Žj6ÿf8V÷³s¯<¤4ýÉöìDö§¤AK¥¬Ž(± YÑ‹²?D¯– ú;¤Ù¼*åuâÕþkߨx-*Ô›biz¨ÄàŸeùV>ø~óŠ-üê¾WÊñÆÙ¿£Ò"Ä¢l•}×P¾è9Öüä ~ˆ<óý‚‹~±Çhµš¢R$&û(„¬…Qtym‹Æ %4ÎþÀ“®Åk áSiUŽ»Y¯&ÌÀÚÔ4ƒ- Ru<òþ4YýÞ®÷u·Ø”‘ý’6FÙ¨èšbQ†¬%Ogÿ|ÔA@)¹!AÌ\o­DTµ€‘Mª³V{TÅüBV‚ÕäˆjÈÇ£ ê‡O¬1è«§ý TXmÚ“,];¶i@Ý2µ®™ÏÅð«˜À7x⇉Z´q.p—ûÁ­]µãü ýoG¼¨Öt.;|QEÊ·}&ÉË`\¥ÞÂǽl¡‰S½H%ì/ O%Û 1-8 6Žz6an18êr˜ÀÂw›RaãÕ~n\ ô1QB‚K|»÷ÿ’©ÿÆo~ta­¹ŒJÊòÊùkBÖ žZìtPºñcI´d4-ÂMåŸÝô™¨`WH’¦ ÛfÞž6 Zcóà^Ø3–&ÇŒ´±û]ø!ºpe2ùo3ä1 Ê(±ýS¯þZbTª9ΫBeqsׇ’Ýüú/ 9mœ®uäõë)!Áa&®<ð]CM¹ïÂÓy÷DQ.<ÃdÕüؽeËRˆ½—fkû#!GYí*z¯…‰"öˆçÃÜ€hÒŸÚÓZ±ÄÐënþfÞ”M‘¯5ÒµãøÌK¹Ô=`ÙØî3¬ŠªŽ“îä|;RêÇÀ#ã]¤:[ÙÏ­ç¤ q„þÓò¸¹Ž:ïnýsæÏA*5ô½cæ¨âs´{~„Âwùw|Øw¸ë®sÄà(JlÞš›0ŠÞ°IPˆ˜9½nl GÃ3)æ~@Ádl¸…ýØxŸùö‚ÿ0`Ý7ñͦÂQ–î«V®Ææ3»NEݪóÌÝÉ-Ô^µÍ´ÆáD?D ¡ûÀncd¤ŸßèË ¥§{¼J\’‹ý`Ž.üðjH» ‘¢$üÆyíÆõøŠ:\(÷G›MÜÔƒoÈå!ZÕËfU˜‹¿\Rᢵ+qwyÑ[Ê!ÌŠÉ kT ýB›–oD¤±ý? ]»UÙ`Q4ⓦXŸÿÃôç¯0CkU„<â3üÃý­TÑ(‚ûßÞãêD›÷ÞþÜÔ‹¿ÅŠ,düÿC0Þï:SøçC9#Æè~ EÌ-»aêU‹¤Âf8â€>߀ 4,ŒPŒ|óªXÐÿz ¶ª$ö§p÷ЬÄU_íL L<5©-/’A¾÷vÖ‰XÍd;‚äeá?œTÇylÒ­ìy>ë¯çBÿè7¨,¯&?eè·Žg‘(îJ†aN\¯˜˜ü Uð~g…ÌÉ=ávõ3þI'³‘Vw‰0‘ŽFß3ð`‰4åÔDz¢:yÛ{.˜¹Æ!¶žUggC4h¶|1¨ü¯Ï þ³UP®poËÜ<}éÏ64¨&nö;Ô'”qu)”MÜ÷ÄûvÔ• Ôx^ÀÌá†h*WRb.Éï¥lbI¤¹lóùÈ`Æ:Iæv®Ò)k¯i‰Ïq»q©èt}Q+C$Häpº@¤FÊG1Ì¿AƒêÂTµ¶RËÜf`œù%R¿Á¼€ Ó¡lÿoZhrK)·Ãß±:³’™±:p×Ö§‘þ,"…°á°¼)0rÌÒÔÙé®èŸxð½Øµ×YhtÓSÓÜgñsò¾çxµô½n;ë|e•r¥þQt9Ü­\ª*.9\´¾×Ó<‡º!¶8²â dãË»ô™<ÊÝ(ççs)­¹®†ÚÍY.tAò  ¹Ú–›¤™ ‚I'%5Ö­*$ÞÝ íÀÓ|ª†T9¿“Öü OÑpÆg¢|g|iyEG5Ó/¨‘ Ü6d¢‰—‰Xƒö~ì2ÎUyÿó[‹­w,=$rŸ¿z}Ð×_ÏOÚí ŠS  ¨wªØ†I³oZDæ¹~ãíÓiª—=ú<è'"ßuaùÐ-BÏêÓ-¤FÙS©EŸÿ¯yøš¸°ÊMÆj¨Ù*ôsmNÌþ‹ÜRWÍk»DtÛ­Ûrk†nîx·>“løç §Á4ÀpÑ?C³€º#`)õå“wcd‹¡©í¥(4õ6uYíî6.³ÉÐ/wÙLDß8ß?‰Ý ¸iðŽô{o­Íp¥§§ƒÛë¥)íðé~GoÔúžZ§™ò÷Ñ7ÇËõq}Ëéa¯â¨‰÷»ØuBE¸¹`2kƒÐy@åJ¹kWy«!b¹=ÚúvA3,£TV Ë¡_ª ^@mŽá€–JŒ~  éž&[Žäy2/¬3Èñïâ©/·fþâì=#Âñß>qæ^ÓϤ%@%X¾¿Ï—gcÚn& ’pÚn”‹ûÐÌš)A}¸KŒÔ«± Àú[ǹ;×( ®ý|ˆ=§-ñädfûöAìi†®‰§ ?¹VjCÊEœd¬áÙc=Sèü˜•/Aå™G6•Ó£õkîÊÐFœ¯Ìw+‘  µFŠT\i=Jª*N[& ’…†’’Ï¡ÇEœ¼j9Ïe’‰æ>¨·Ï­ˆ3ý%/XJÛøIkúøv†Å8(S,8°úÀNê‰7Ã~®ÈI«Yb¼=‡ Ò%ø8ç/”ÀÜ÷\¢ù£ù@YáwCšƒQA# ùá¤&¢Å”ÖF¥fuï•+jKH ‡’ÖÁ¨„5 Ž1Ùæëti&^èïÒ¯½Æ©3Öퟛïx~y+öÕžE»f?ˆïÓ„ «î ÖÅ“"-gÂ'4è?ª»œ¡ó;Ò¦jôtºý†{Ž„eÝmpÂçVr°+z`µlj»îÃ>1RÉD5Lçß$uqÌ[%sQˆ©­¿9e­Ëò – ‚i]×Ï xo ZAÇ16©.•ËÀE;ºZdMhRUëPÁ€O3 Þ¦§ÒÖr ˜µ¼“*g÷+ȼDâ„æ`i,j“OâòZûI'jÐ ø;bÉ,‘={þ—ÜöLÐVäh9ƒƒ+Uå!P*?·xûÝÁc- åæbU”?ó—½ÿág z‹ª´Õ“œò¿ªÖîQÔå2N/ìÂÏö•Ë6œ7Íç·hÊ5ÒÓ|›+'GÐø‹ûšl @d°ášnƒÚ (_¹ ÂB©b sºškº ÒŽ8¶ùVú–GC…(tØí5þÌSÆ)‰/À'ÃèU’Uk½NÈsXV¦ÊR擯zè$*¤Ù9ÿXŽÂFÎË%Ýrw.¾øsÅÕ¹½ÚÛ «8å×¶‰Qz8ó³ñU69·uy#Q0ËY?§Œ/h‘þ©nÿS®äòd<æ×äñÍnXæò¶»[3ÿØÓ[Ï>Œ³ôr"hDñ~·ãq7ºâ¡¨£ˆŠ÷-¼ôÃg)ñºâ 0…(RÐ¥êF®çOÌGb!¤§&´ò)¬ _œ ´·;³§ÂêÊFMÕxE}ô¾¢êN„Ù³—]Tn1˜ã*q}ˆ:в t uõ…”ÛÈ„Š÷þ™téz܃å}æóÃãžÚ ÚFªè—`G®fnÏÒR4±F÷& ÿ§~Ú•_<ºø¹LcM†0LÞ"ö2fÄÁFe}¤•ðŸíÛÝ2(CŸÅ=ÆrQ¿ê¦›C5õÀùš§GðÔ¹C„zá;8õð|M >Ÿ®û$Ï‘!üÌË™P]ÑcO]3-ᢺæuP²Œ`²AÆÛ·õš(RD5Ÿ†1öm>.w&ÖbVÿ“£§£hBIvq\˜X‹ã³61ó¤|5ÞFɹÝíR\„ v†p*©±—Ó¥T3åå´Þj–º„Gä)¶¼öDfû !ó)n»½Ô áá"mo©3¨]Úý±_øÂ9¡Ô› ƒ¦ß‡Ö\£¢´ ›Ú«Ùnªg>M0¯ åìMM¤ToöŠJ‘fêvuÏš0ll¹hÒr–…|9¥»î®+{k…ó”Íð ÊàSd þríæbøî„üËn _B½Œ“¾î߀0:ûÆWx´óVá±ó2«°ÌNçÌqe”‹ÊªÇи¶Š\Œ`/ù xb¾xéÖÁÓXØÄöè·RÅqk˜Њµ@–ÚMeŒœº>?3zcöÄjÔ‰áÜÇêh‰Î³œ§ë‰ábåËɼÑrfhŸ(!Á¼úJæå€És¾ŽY“ªJ¤B¯¡'D™½®ô¶’ü0fäèûŒÐMt-ž…™¾òxë˜ù`™}¸lEž&å"PwGÔƒRrBï—æÁ5ãÌ0©pJ3D¤oœQ¹bHê{,Ú¢R¶>nYMÅ'œƒZ!] Ûúˆ+ì”»ÃôC¬³0îÅúÖQTÆ3¾ P{2~Ù‰5H7¾zÈ÷Æ>°žou…˜½Á­lÄ”?h”ŸbFoDQ§«ñwAr_帤ñ½ÕòLœ®•£Žñ½©±ªˆ²¸öX°RZè‚3**7»‰å8áÚJ 6Šº9lÚÄû­#Y]™>æLKi"š%âõ4ò6V›ïO©jŸþ‰F& aØNdI€ОçÝ.—[ž\ÍeZ® ·yn¤þ‘ò=µµô“õ߀oÊ~èçø‹£Å¸Ëš&¶ &Ò4»Úiô[4.æÑ'“¯€2âI*ž4Î1æ¶xÉåÝ6\w¡£ ô¶µï„“jAd³4å`Úß'""×ÅT¹idgðÌ8¢U¹`GK— ç;<â[·!¬ª‚¤qpÓäóïÁŸÀ½Û\Eôwj’ÙÛøÁy‡[»“T·þV™Ëk ò š´”}LR Ööˆck…Cj%'¤†[Ó™¡ô‚y[帲ØEÃóÀ™‘™íáô1ó—–Sa¶§™h%ÆÔ´qäŸ,~†æöÍNUvb“ñ±âYß—}÷/À{ÖɧlôÊw9²Ö ‚A­…ÒöqbàfBñ&¤–›®—¿î¢ª'åë@ÇL‡Ý+„ùÆAf-Kº¬Ç†ÖãÕM$ƒD(ÒνÁ ý«¨á¼rõ¶ÍÖ«³ý£1Z§MÕ¬­ÓsÌ„ZûÖÞhæbÄBdŸÉùõê>•¹~•ÿî4µÅuû¯.(•4F3ƒ44†7ÜUN5ºLêŠgJœ>`° ñ¨klÞ!±Þ4ÖØ)/$ÌyH²]Z*¸ ´®ƒ²9T÷²aŸíç,ûuØV±¬ù]:ø?¡Däê-Œ†¦Õq)QDmñËßÊŸŠo0^ƒ_e’øð;Q`ª‚‘`RÄ÷¾M&DºìŸh\½Â*Š|I<¨ ÆFáümʱ׃€&@Œ /&¼@ŽÚx<ÍÁwœŸ$X/ýVÑísl]?^/sc{l˜Äý:4þ’tù™í‚(F€P¬WLPÔ‘†+ô`ÿàß m×Z6aúú$W^ÛñD+¼sqjÈ>d˜xc8ElEÜ”†½¹ ÞÎ)<Æc¬ùW8жi*á,îjÞ¢ÝÄ6d1òDb"àqØyŒ¶Ú‚RwÔ"ÝÈ'O‹4-k£`ï!ëµ çìLÜ‹,§z… Ô¼¬Šó…ûÙÕp!•iNb˜dK˜±/I‰`ÆXŠ?·ëÔ^z쉼Ì|ãÔÐ~+6¨å4À±&ÏÐ'ÿL¹$Âô¯[Q2-Ž.3·¤6FF»v½z [¾­QåDÖ¨ÛAE¦=A³ ð*Ló¯–|¢¬Á›ÛåçAFr8€=è.1!ELõ&æ…œv{Èr­ÝKRxnnNÍ0E2^Ff84}g#+D˜5þذLS§»6ýu7äÜ…£Æ¶ÑŽ2‡ßÿyÉ;ÃM?"ZLÀéÑä¯ï]üV­ðy\¿ÿÖÿ‹Ç8Uùh÷/+gF[ŠJvŽº^ú š¢]·‹ReÊk°ËY¡tBírõ$²•*Áw“W èr–V`}ð‹A¼÷k·5§Põb| #þ`¯jštG¬fý‹¦›üÜ`×8ì `Ýkb!Èkå™'ƒ~|›œËôÌõª‚ù\èúwiþ¹)F· üFñ '±]𩌜Õ_Ë?v.ôåjÞtç³#óîÇ÷Œ”²7™®ô<¿ZU‡žSÞŠ±Óª©íêÈÛ¼Km˜^Ðü_ÿÁ”ÈL¢Ö±sœÊ–‚W•Jér¤2Õ1IÈQ†ÕÎF-s6X|µó8eò(¾šÔÒÜœ£‹‘BÊúMs}ãr)—L5Ç{{'²´Äz}Ä2øBïpVÕ!¯’?„§h$&™£±ýÚ®€S½Lò°xVÒyûýµ˜Ís£}è fÖç¦ÓgCÈv¾VKú°šˆÔ¾=täVY‡ŽªPÑ„ø6 &tð7yJؼw}è§ø=:‰6~Ü™Å6§\ !Y`U³@Ÿ}µçÂ÷ÕEéÇä¹Ýd1FpÌø5ºÀVÃnØÚPªÿÁ*«y—Æp¯àü«,«+ÏÎ9ùÎeÿ[Žá%óÞQ8““­år+Ð7{GÆRõt÷í²Æ®#ѳqQC‚ñqlx ©Î&\Ù?(ùúKoc|Ìä&†í»$öXY£eQ1 A4Q<ßö1M0ú¢ù2L½J'³Œ‡5ƼÌ9L~£tfÕõ£/8úˆHÌåT¿‚¸AsEýw£o®’ƸßE ø¦s›ÜNjbI”Qpo}Vç€KÉ:Å ^ÊP}Q3Ø´N\2©õ9}¶<Œ¥¥sÈ¿¤´KÆJñÃ¥k ½üy\§,ªO{ŸÓºãp5ï²Iß=«ýÃ?,ÜúŠWšz”­Ô’d®§ýèMÖè´ƒP¾Ÿ‘ ùÊ„’d:Ž|T.¿{¦ÆÛ|q à8<,`އTåìÒð› ÕéLc¼Sïà˜>¥ÁFR…•Xe“,×ÔC’š¦ycLÙh fÒÜŒ:óŽ\¡jѵG1ÄËÞ°<:&@º|s“$,bî9ÄŽ%O²Ô¶{Qôm¿2ÿèû<¼¼ wn€¤Åw¥¾ ж!Š‚6ºšÌWœ`.î­¬ä7¾±éA© =w¹×ÛuÓ 3 …±ÊFÞY½þj–­þ·ƒaWªÅ_6dæ¦J“µ4 ¦Z‰D‚“xí?0cG9¨D>P§]FÜçïÓ3\ÊC9–t˜dôã%çƒ:¢¢FÝt—O͸þ÷ &–ÃFàkãÿÙ˜[‰EvùÒ'Ë׸ðêv^ļ„™dâ!Ò-GæÐu°ÍZ³Qímª=ï¸zªÎIúh*Å\ìø ­2Õ?€_}ó›fTOgÂ<­x9*óµlÏÈ;!yãÚr‚×íJþƒÅŸ7eÜ$æÑ6pŒÜ~µ 6ó©'ø¸)—F §ž­*85dµ~HÑBzب²””ö¶õ纵²0/Ìø½EÃÄÔ¶ç6êÏ Õ…z¿4…жDPHúé…Çipîð zö)Z{éG©qEÛEº¾ÏàVûÕ[ [èÐÛ@&©Ût†„¹ÙX:ö>ømÀ9›TÊñÖeqÚVç,!îG¶ÿÍ}|éWs'¨Ä9uŠ7·jÜÜ]#‰®dî’W“£ëAgëeL6ÎO¢¦SÚ_9¿Ä—dŠÆWµ–ù J<¹MœA©HØrxï‰Äþæî•Œœp´È*àk`•ˆWÿ²v‘»jí½…ª¡h/þ×ÐÚ¹L=§ØåQuÔ,@‚ æ¡QCÂ@ ÚðHg±ƒ tN¨‘‰2¸°QBŒ!¼T’ØËš2w^‰¨ƒ}±çuóZŒŠd|“Ã%*Pä3ø~DÙý)ÂWûQIÄÙ4Pä]ËVÆÄ\×-¬=J3è¹K™‚}B©3s˜ä§ô Z¦¬äð/ë"Gäà´(†”†s&ëÊ@•ýùyÚ¡•AÂhÜè{¾CéòC—õ­=ÒÄÏž¶,FPEk¼÷ÕJü$°›/eˆ­ßöh_ïQ ðq¹ˆ Â÷qê ‡rŸzP–¦Ž¾OÔ÷˜ùLLâÁ5ºÐœ1Éi+=ÿBùÑ2J¤Ñ€6LrÎ+êšSp¾ÛojÊSõ*ôˆoYþ / ÀvËív_ÌÎ6xïZ3g/ÉZÕ’(ªŽlf±ìÙptõ °tv3Ú„¾O”!¡þi5àë ’-3/ùè£Ó‰yÀý'Ý2óiñ8¢d[´Hº¡Ç¦¦Âé`‘ƒ?Ãè¬|ô±ßHòc—ì½Ë}ä@ñZS]ɾƒ­ ×óžÝ¡\»ÈBÂÊåPâø½vˆ“ïêÑu+ ]ì\ÜRµ™½„íÖÃÊmE)Uzæ¼fty)†ñ”³]‡ê슢ö’Ý-9Š3¨´cR‡A.Y_ؘÑoýôSpQF]Ùú'(ËIy®! ÖÙ=xFmÕ²ÁEð¼FÜnÙŽÎú"™™:Êô²Êb{”!ˤ'fŒA ñ¥¢ý£ªµ&0òzªLマmR}$qÙÆFRáÚmâÓïå(K`rÞñUlYÅ`ºnç>ÙÉ,'lØD€;!A \„ÿé´È Ç:b©aÆ ìŒ—t¬Ü ×xT„ƒÄhªÕ„î$2×?ƒMÑ¡7ŸLƺ”XqZ΂ãw3¥ˆ *®Ó˜Þ¨¤À@£ßÄËl×[i²ÑI§S·âg{Íõ ÈyÞ„|@ã7»^+týX1LtáµúËÕ.]H÷:‰»Qé©Ý°uâ.ëÄtO 4ÓY zŽ‘3ÿÒO T„@‚&ç¸óm«²šÉ¦¡jóm¡l‰£¢ÍñhâÓnÿÊ?‘Qà'Ï 6™ãª üî‡tÞK^»R-}©<›M tÉ2Qø\¾Ã²•zНãÏ6Ù´ÚÕGH™"(µt( ÓãQÀ()6ÿ£XAUŒèèK¢uÔF -À´¡“vœøøÑ·mÊæfòMåÜ/K‘±d‡)|®bVrô¯ÉiÞÙ} Av®™¥á¬CÝ(ñùÿìÆhžU+ÿ¹¾C`T¡PÝé÷SŽ©ÕI¥ˆé~{V2)£R®žöÈï½æÆDµX#ýPÕ¶«ÃñðɆ éG·Á -ƒmw]êp±[õYë¦iǶ})„Ùᕾ±ù‘¡:pl j1ö$ΛџbÄ®)S£/7ÐÂBg”+K·äèáj˜õ*¯àO’åëÍ W¾íÇ·ycœ2’ tÑÅP\«vfô/iÞj%ß>æD aÿ‡`ÄV×ñMaf%¡aˆSêÆ|üLU^±HƒȆ}Ë$U`tæá¸ãÉzƒ?•lR®7Ô‹Ðm(«Ü>`¯š¡¥kN¹è>‹„%¾×ƒŽÉ8ÉåÀ©þª“j™P\vÕ#[/,l0BÑŒ‚ML&ÿÑp+‚µ^*Òn¢s!ˆòY@8ãòm:.:~=t•Ðñ7xÁ½æï Q]fÄÀ{Vj™óMÚ˜ %èB“¸énž.2Ÿ—Bñä)S\…LèK×ÕÞÄÍä•ÌV’øÝXnU|;Ù[•og`É„žÒìËý ìQþžN‚'ˆ¡6û¼äp»V€Ð·ö(N@shï«x4*Óá)~?¯‚kÕ˜WÓѰO¼‹Õ‹ÓÖð r¢É&ÛôøAU¦ˆéoxÿä:ðè%@8æ‡0[ÌÛµ÷2ô­õ¼Ý·¥£ÅŲ]7”“…;w¦fÁ+)«¹™Ë í¤Ëú¹Óˆ¾<‘%!§ÕU¤aö÷Äü&gfiß…¹…êååýúÐ.2àÊû¡×šò™,Ú×!¤xÖufÁËôWm.›eÆ¡Q¯’rçx*ü7!¸{³ï¨}oêE‘6çÅÓA?1ößD¡j&”ƒhÀ_J­~”‰n±fI…Õr´Þ¡ªG' ÚȰév%ºgbÀÅ}öÆ›âÓ³¤"/àejYô ‘m+"LuÅ®í±ÿ‹é†<ÞQ¸ª2äMø[˜&ÎdDF;î2¤”YÏØ»“W ˆ8feYµnxòílâ`û4ôUÐùÓËÿ÷Œ]Ë+ƒ«`VF\#ã²§HÚª‚„«7ô$úÓ-¶Û["嬂1ÓÕ¢drCþ£.JÑ3,j©á¬Bˆâƒ4øÕýÒh*¥m 2àv)ÖT^F$LÜ~-Å;Qð± ¡‚Áƒƒð/ šöÚ¹ö©ê~ ä7j~\sí˜]Ç !$šÓӿ׊‡Vóàü´7x}æúf ÷­RT ªÖ=<MµÃ.fmÜÑ‘f-M!iô¸§eðtbëlá§úäl:d¹³´Rþd§L6þ¤`CCò»‡2;à˜´¤~Ê(c QjQ+S§&ÖG"NÐLw5.h¸o­Þa–\W6Vm•[Ú£LR0sìºô¯jw²€q~_Ùòi]§Ð¨Cùêc$~;ÁDMØKñ•¿/‹Û©âò›6ü„)öÞzÒ¢,UÜé/üˆÀ€6†¿¦6oßèc6îJ{Kî'ñcÀ-ÿôA·ôŸPâœÌ8:*¯¨Hõ\¶_—ÙuÝ{-;¥TðTé·ÔÈHV!Sû¨:7XØ¯Ë»Ý¬Õ HÚœÓ²ØÖÎÒ‘Dñ¾Ä`FSëïÍ»„¦w VLÂÍóa<×a ¾Mp¯ù/ÌÉÖ¡þD]ôƒ¶ök}¼QJ.  ó,‰’€Á„OO€|GʬŸvœø¸fB1€ §é$ïÅWú0ß¡Œ–†* j–W!2°ðš_‰ÅùCøæbŠvˆ¤Ž´’,}EÌàîúxæçX¦goùD’b¥Üž+›Ùc?§3} …H=R„D-ÅÏØQê½|zogÈü?â½7TV5¡†J¹™rÈÙÁå…@¤I˜ Ì.e|¼¹¹Ï#77™Uµô„u›˜¨_ØZsè‚Ä 7ܸ!9¶>ŸƒÕšm3ù÷ÞpÆñ’ò°ã*™xè@‹c•(1ªVÃki•Ï[´©r.œµZÿÅÌÜÁðB}…%õôÆ DÄã`­ÕÒ8ŒçÌLöiT;ø@9€•S™`ênÔ­B‚žHƒh 6ñ{þ ÷å]Ÿ€eè"Xr^è\W EŽ\Јkµ"E^¶™^c~c–û‡fŽi¼FÞ@¬êÿá¾$A[ºT<™†š…}¯<øz"ã&S>£€5k÷¥+aìÕ~ë/ Ÿéç¾€†*äÈÃ<~2^ž†|~Z»†+Öp[þ(¬¤IðÉ]K¾j+  9&S¸9w̵ãTÚ9,ãW;¥ñÞã“h…&òcoc¬¢mÓ»´@tE_]Sý“„¼…–mQ@‹‘'ò_°(ó–IêÝ7QFÝÔÂßíV¼›Ôˆ ’Ÿ ü:¿6 df+7"ë9æê¾É9±?MMÐÝ”Vù u0›ßiŽ{:î2ìhGQÝ. É—ö$ãÜšÕ½§]4Šõ‰¡äáU¿Wèf2Ð ‘å}Wy¸tþhk‚<rfú¢*Rf0ßçÑ7ƒÒså0í\&âà]†¶àð-ƒ>ÎîÁÑð#¸lK–JÍØ FÍü‡åK!×íPyJ¬•—!w¿q÷Y`÷àã0× DhýѾ`ì´ãTGýLš¦çi`óïZ” ËÛM9w¶Eÿÿ·Ž—\æ>ñÜòyèëøØc½­¬—ÁsÇÍ"f^ÿö*ƒÌõÃÆ¢ð’ÃIŽ÷ˆq×X¾ëŸÂtÛ¶ÉZ¹˜(7ï3Ð{Ãë7ß§sîÖÝ–2mw³Ô§»Ì]”ª©$œ8¯"dp¡4ŸˆufÑ9ë­,Òøºb­7¸! ü¡N»?'N§EÆå+Ð2%è;ÝöæÉÊêh)ª0 Óã!³º´_dÈùëZ‹c.²Žbõî]VIHb…Ù [¡½á´-(a6Ç@åÛM–s„yÏùBxìäТ×J°¶À¸ü ÕB_4¨<¦#T$™5[5ÿ³VJîfî]i ÜÎK¹ ÀÃвŸ'âÔñá½òÊ6 ‚'ðQšºÖ©Nî•Z›ú£*œGG¶òÙÅ‘Q)æpÑ„FÝœ· »©Tí” ÿ¨ŽpÐAA³š¶uõ@ƒÐ(Ö{O(®(¿ÌކƒË2w°{ïXȈÔ:I†ÇNc,/ (¼Ç÷˜dñÇó‹AQá[­¦%¢}‘xò3Ǩ½²¸!Ö+,ÕST ÓväRIG%8ÒÀ…ÑVêŒI£¤í»ªØ ®µR²4^e›ÿ…aúA=Ap‡üWq¡3±%­§»fb7¤ê¯Ÿx=pŸ¹ã­]žfþ·;;ê[W.{„!°Ô@+EpßF‹ÛEÞ)–ÀÊ>r‡q˜Ÿ™›P–y‘Rà\ÅÏçúß –†q¼öÿœ2÷5âófØK¬²wN¸xñ¯*TØD¹‹x G÷—Æh–Bžd)½ìº»¤I}MU ž¥E•`g¤€ïrp½¾¶)²]ÒÇ6l;¾ƒÇEÖ$w.…§Èe¤Ð¤‹ åek:hœÀNðÆåRÄÀ“ma­¡óL²>cuBÁ0›‚3‘Ê{ðÍ Óû¬ƒÇ\¦³X(}A¸…òžúœÛst‘ãpÝà7âV¼mõÓxVª>?Jc¢¾KȘü½ÑYÚ5˜bÐ#•§ ƦZéxËGPW›1m¢ÂÄ×,èšèþLv^9rWÖc0éFkTç4EÓ~¯uAj|yu` ‹ëñE, ûb“·öîäƒW¬µüøÆÙÛôºÙÕÇÛFTh› XD¼ñ,úÄÁuˆäMt'܃œ/U ß=Š8$uÆœ…^4!+¸+Å^¼¥tuéàNCMÞ*¶¯<óo{÷cq¼K¨+[ú&VôìEÇl±ïž,ôî¨ Sž<÷" if/5rÜ"É\6Bdz`m‘4«X—€Ú˜—tHí(LbÐ É ùi¬ˆ#Gú÷¶h‰rׄÐPBŸXWË9‹&2ã•3, g†¨Wõ¶C Ô§Çi»a€E±zžYúáLÿ¿¼% äŒy»ùð—°†ÂÔ—íE¬ãJž!-øƒ¾þ™œ\Ц]¥'O+в¦ÃWŠÞ‡ÅI3S .ôt‡ñ»£å ²·¾í•ù¼$j`ÇÿÕ1d\$ }œ4*²æ?Pr]ß{N“\9ðUi{i{ïFó0mäÉ%]ÝÍÜ+àK$†–4.rÏc¯Aó<¦qª‹ÌØ•hâË=ðåVïìê… jÒ¢ƒ!åŸ+UºÄŒ™ ”àõc}¤€ñ·CA{À˜ã­„›–[fPåçGàÈI¦ ‹ýȽUçê+qNÿɤ\Âݨœ© e‡Ÿ´HÄ>†ëwü.QÊ›ô5G$•eتC…-‰|’/ä›è?îtéKÑ9Ó—*([j]ˆ”ª‹­ùb6™j7 “OZ­õáçx\2ÖÑ€ “ÃnÌŸ0qÉ‚©/Ñ ¬Â+ÒV›<'gªq+ïù=&¸×€‚ЃÄTò f:Ô1r ,ìOO¨r‚)—‡¤MV­W/ö>™­8­èìzíÑe×ÂXfaÞõìE탓QÆ­q¬!…æ×p¤)DÓûx:dµiDá‚wd>7ûŠI à|Ç™s1¥Bóü9»ÿB¤ t:Ž™ÃöoÒ°úƒ–\–t8.®Xþìs¿ §ÚóÏXˆÜF f}’^Ôî–óJZÑ̰É0꜖¸5Tòœ…ú‘Bò\Á¹4þÞ »5!Adͧç»,l3ß<)ÃÏÇŠc¢,6׳£K†»›ÛOQÿ$`“!-¬À僯ÛìÇÅòHЍgXwñNî¼Ý•/’­UýJÃ&µT¬f]‚Mʹæ"°GáT„$!y=´æÅÃq±±BhOš¢Ç"Dô·R‚¶åW.cqÙ.1=îksKàrB^ÙÄ ß^²M:cú¡¬]<({ކ6€rêsZ~{ƒüMÉ“É x”¶±P#©QŒ"ƒ}ÏS¡}JQ¹Bìhtæ{¾Ì„AI¬¢9q¹ç—YDš…À:yÐóvûÐb}ýðfÇQØ3”êÊPNðn”;`›K= ‰0äðMõtP4ƒc*Nzž¾?öç'¶ç#ÇþX³l-Ë rÆqäOÂß-ŽÄS]ëmάW½B˜t2ÊÛÔ¼a)%8|•šÖ?KÙ¾Ó2s$©ž¤ŠÂÏZÒdäCí¨Ì7Ž«Ýq²¼¼4Æ×ÉÓɃ¹” ƒ¶Dj/‚l°â­“SBh¸]¥@ž¼ \Ù“€H- Oè=¹Äº§¦ïðÃXÄ»»'n¦úÏN¸§³p&$³qºÞ_ÃqçA  íÙû‰õe Ùh7À-qBê`ÿBðf7Ê-¸¤p:u Úq%ÄTsÈ÷y¶ƒOø³) ŸÂ&²ú*xï׿ͱ6 7h2j¥ú(aò/l˜oŽJÍ+0íÂ"Õö`t$û"<‚U÷_ÌìV(£Ë|¾…øyæ=ýå¢ÿý·y/, x'=І™Œ—x¬0©ÆŠ ÓÒ¨ÍSb Ïf!ÀóÀ_Õ»Ÿ°KΙtƒš$9>93Ñõ%Å{$` éi/2A OºèK¿›ÈŸ­ó&¼A–âÏ#l¼é ·³lÌ9spr–àe£23½=n4B¥/²¥ þkÅ…{1Êxƒ¼/ãý€szÊbaט]òvì1õâºÝùb;5Sƒ/²úsœ=@ãù`ÝÇŽCà›NúÕ<³:ü£ææoDÒT–"„V¯³Ä©ÄÑîWP2FÀ.8×÷×ù\môroN v%º'‚ò~ÐFy‡ ¿u«í‹|îiXµ5©íJ}€Ý¯Z[É; [Þ¦ÿS†Ó|"Þ—ÅzGpGsæ*±6¦V‚âž8‰A2MbÍ"¨•IÐréA *%Ѥ.̺۬Tìç‡oZT¬£X0‘´ ÿM-e5¨ñµÔÚ½ƒÁ»!;=j“kÒ ÿ¬ Óè=xKÑ¢ ¤Y…ï‰ÏJï!1Ùœn¹ïÔaë.t¸¨`ùÍ'£öC.øõÁ›VÆ@Ì$Œ;¦3¸ÊžÝy±¶T·"د¤Ïß°ŠG)m×Å} Н¿nêҶ¯Ђ·½Q‹þªWA¾|6ÕPRi®KÏÝŸ4ö€1þ±"àÛ4‘•‹€”Ý\wv*&îù© óu`Ja…”žÈ‹É ¬‘Ì-®Aòpפ ÙxH%r²#·m~e¨qö»ö³¾‹ß"°BüÍ¥·¹ëKÎ%¢†¥³ÛÃPÎÃÆ@(±÷xGD¸Š½ùLðº€æ/QÄlªQ¨ã¯.bCJ-ë·Ýn^´+Òð¿‡Æâ“Êh=4Øa²äO¢ÊÛ@—ĸ½ r$OgkĪúl&ÝГ¦õ ë¥*%è]N"x™d -÷‚|Ù}jÍFÜM"FV8ñ¸ßª‘`FC¿ÓpµûŒ€“zù¬ ”ÿøœäIe ?ǵŒÉ(rŸC9(=xñnÜל[=0²aY‡ª¨ý© Þ Æ¿û¶–12 ~,Ÿ¶(í¹~gNÇòÐÅL_5RT·‘„=!$NWq†Æ×˜8eºœï»÷VØ‘ª8³¨'Ø=‹uñw3í$šÄÃjýl_Ï]H×ê" (Uh/ʱ¬îÇ{˜$º.fõâ|ˆQ-w„žÀVþØÛúÙ‡·3Œ2˜Ž½<¹ ²tW{¦Ü'TøÔ ‘¢Ü.è—"¨@NÊÅ•ñ†ûnµ躇ˆ¤ÌK¶îñ{”ñ1 Ù„³w§Öó·K˜ì˜¤‚øŒ\¦,ÝÏô¢ _?”Ò)ßDÏœxˆS-!ìõÞѱø[ÅC>yuÏI&ˆ ã ì€Y‹xãuÒhñdföåwâ¿TÆ.)8ÝÁ™ÒMµ5]ûv¥û4–`×”%e†xóõº¤zŽE}DÄñÔÓ˜×M3&zlŽå Tó6Ù3 , šì²ó`ŸË"€¼ëÖQAVžÑJì`¬²Á»cp€(ô'E$ñÝl[' w;Ãs5èçj/è4…sâ»®èŽ_P/ ×:½‡Øˆ]®®ç‹–ÙÈ…¿|<òñ (VœHy”è-†›7,GŽÊË.{jáíŠêª ᦂŸ÷—ëO¡Ü¥erMJ\ Ý-}~W B¶–¶ß=ÿßI2ud;ßÏv·- Ÿ³7‰S‡”D=‹æJ$éië/ò]ýëm®—ÙƒLmw¾ø?Æ’‡îJ½Ïo8n.Â.D:ÌCP+äý‰ÍUÑËä’–mn<’ôÓÈke„YÆ•HMqK%>ÃûñQõÐI0ùÈû37:ä÷NÒöûö<™„õFaÇá¶—Ÿã•¨‡ô¾ “Ò0`,Þ€gõù=¢Ð>ïH¢ð®8?DÌj ±­dEåejYèdŽº-­ò(Ò’uvÛ~¶ lвn&Ñ„ÆæuoÖú šçTàhL¡Q˪)Ó;H<[¦UŠ• d"XÔªÞ¬d6f@MR9¥· ÓVT€ºó(`ýÙóžòª ¸'Q®¸ªçt9˜R<`’c‹ÁéDÃò^¢;® oÜ$"‚2­ºC3‚y5»WøôàüZ› 8ð¬F8Þ¾ŸŸud7ÀOдÌ^þ¼mÂ&ö°J£Œ¤ ÚÂ?ãrÉê[®@G oõ䨽GwëŸÝÄÀâguÆèÒŠ«O:3kº]ÄÍ<Ë”Ô:\àŒ ò–Å{œqÃEfšÕœé=ž8 ü_Óˆú¨–¥pÕꉢp.ä,b¼' %«ñWÅÛæ!Iª¶ä‘ªÒ@A•£¹¨…%´._òOÝ”x9#ä•‹-UôX_aG­nœU'ís„Hk7mû9/–eJ|;ÑGø‘ Èë¾v± aMâ FÑ÷6HðŒ«]å•F“+=Å꺣Í\àZµ o_oæÖD>´9éýv<^q¹ÞKñ»ÅxëcjI«ð£9…÷£H©ªi?÷à¤Åq˜0úayµã˜ní@–#}»Iä ÿ{“*F{ó Àx;á§É"ÁWÓòKX=JçúMÉv/ Ñúe)Ý3 † ‹!3n㪕VÓÄ¢Ú¬cmBXéŠä¾þ¨ðì8CÉjå£*¥ãêx‰G ¼æ@&IyÖÒ?CG›îôqm¸VL­’oK¶¢~je™ÙÀ‡˜[øçoÉœ;u01å]ZÖ¢Ú”²§¹¯ð¸ÊS÷­—]Ëë«é‚bŠBlyHfE19±¬w<4ö^pᅳRqö¯ç!w[¤¶–yăL5%0AÄÇ—sÒ×ìNF <Ë?´fƒëS§ìþ¯šbOä²)|1ÕÁì(gäšÍuU¾ª!,"»=ëäw7öøÔµ¬±‘3Ptr´M[ÊÊÉ'8T•6‡E׿öŠJÄXHu3ø'™Iï‰z’ïf¼íþ™‰åX€VýªVÞÿ&$yº6zü+¼¾ð&Up(;Ÿ]i~—& sœPùQ©b]ø.ðHœVßâ‡î/3¼”©t¹ÛME{ío˜§×Î Œ¡:dÌw ArÝVâ ­Sï—'£ƒ” /¨Œãv1«„_± ¥°»Ë4d…^Íí}¼ƒÃ.Z]‡I%¼¸ïXûR  È9MàQ‘Ýhµ_õx_”ä.»Lj;Æû‡‹4uáŸj¸Ô®5úáÂÚ2†¯µ±}F?+³B-ßd+ÅyÇ!üí}žéܶ,ÌǺ¡\$&û¦SÄlØùmQJ lg7àô3óÅ0Ë!/¶è–xÑø0sÞþÝÀŽ:ìÛîHÛ.Á„,•€›ÃK+¾žeцb”£$Ø;g¨ßeÓb¯°b)ší÷·¾ŠÌêÆ…ª¬ý—M–ŠÓúió¥ÔA¢EšˆÛ[fR"XGÚ—xŠ…qwéù˜S£“cý& WýÚ8Ѱ՘—#t€ÆMAC·Öïè}hæ€è¡¼nz/Ãméçà(þþ¢ƒÿ쌲qÆÊžÃ·v±EгD‡+„¯x•YP\oµæÇ\+.´‚¶-Õt¿Š7ǺýfÛ†O™ø1†4ªá—á®Ç"®¸è}@úµ©æØ(‰U0lL×œŠŽÑŒž:ˆbßmÕ- ªŠ@hþ´-\EsÐ{qo 6Æ=Ò‡k/H ²I_©G6Ovµ¿ƒÞxâk¦_£­• øwbÆÁQ×cÀ.P®¿\D×¢tÊó¿Ï"˜œH-Éó-ㆤô„Oš²Õ.#ij]V–Ùê!w¦qÔÊêœx+°¹+Ѳuf=íœÇš>d«Ëu™|Qœ®)˜êa@‡·á£Œ¶"ù5%)·@ve×r2}"ÑÞDJ¢07è ´ýÓ˜È.Ô׈ŸCæÍTªÀŠ`²S6ÚåºMïôÄ“´tÐüÙrMDd]]‚Þ¢ÀH“ NžÑÒõ?XRmÍ×c\ 9ib²TÈòdÏŸ 4¨@2T–«µŽ®jG!]gòMB”žÙÑ@Aa <²ƒŠM§ è“B¡®¿;rÜ „ QS‘oùù¬eãÕŽÃÒdÇ=³ÕsMœ­H¢­¾hZ]=xÚÙêÔß¼vM×øYÐqex‘â=‚ÞqØ™ˆŠ¾ôEÓo‡Ç^#Dí’‡H±³§ñQR‚*÷bkì1Aïð]`ðbLùÜ™åî}ŒdŸN ›l¾zp# Ôè)-Ãzoÿå.nûðád¨ûœ‹êKX†›æ-ƒ¬F[ŸBk!²zm¸)JÉý\о4}ƒ6˜•‹Aˆ]¿ÂÁ8Ì)}Fö(úC Ë ¼ˆ/™)ïô½¹*™ ˜®«˜4çθ{·¹”^Š.Ï6EkÄt-爖Ùctv‘Aƒ=‚ }ØTzùQßyÌ,âoÑ,}Ó‚Yçb¦ Çr±¤¢œBþGÂ9Ëz¸©¾þZîgÀ¥ÿÚ;E>Pó;]ºwòEƒ%¡À>G‚‚'ܳ¥×}½ ;¢¸!-çd²W×#Êí%± k9a¢Ë—¤øÈ¹™¿•DBúWªGyÌ<ƹ*#3Åï½,Ï–®† ²­_âÉ­$kš»5™ZîÛ½Òy6Z¹”Øïšé=:²©“q5×ËÕ©í’z´š{‘å¢È1GqÉmÿ‡úg5öz:3Lµ~AÒ«$PV¡›! WP22GÉoE×0oœ5ä·ms<¶ÙcEœF&DÁ¨àÍÂ5DÌR®WD ¶õ^ð×$H©ÎóÂW"»MSfå{Ç­Æßv½Ë˜5q9³6–ð„JßÃ¥xÍðGñ!{tÉÂã 4ºªÝJp©©r½É0hý?ãKÛ”ý…fáó$…»O­þ£rƒ}j¡“çe—œ&˜ñj«©[° ÜæÆ‚å`ë‰ß¹âY0ZÝwž¶‹0aÃbƒ’£Y«` êÏÕƒKºÞ9~œ[­¥÷T¯‚‚;þ*ñ­ Ä '‘GšµBÒ[Ö`u}JÆqΣaq]𻦳¸øÇ¤Øšp_&iLkÑ H˜[Çã<þà×è5¤6Ë’öUMl–hL(På:“õPžUR¤y:±–‚€½ Á6ã†XÄKiÝc¬5 äÆ:8@z ëp¡~Z°…¿Bhy(Z¸hÓž$ Ëˆƒ]­AB=Âw„T[ètb‰ŠK ¡ïV€¸ìܾÌ(e½`a~Ô÷¦É¡…éð|Ä×Hv†¬—ÞÉ~&ÇøƒÎ)޾JåE*Cƒ9Ü®Â8ÒçÜc£ÿÎ<’f^mh…ð×ayï>Îàí»ÊWàóµ°xd'¥ÊâÂ=þ̯£O3¬mfR«ªßº"ýjÑtÃÿÛéš.C†šðß•“$c B·‡¾Àbö4?¤Î¤:Ö{tчM«M¹1…f Mf7Íü "]´÷“"©¸r˜ © pqt±#¼4Èêß-C  ½´ þ@+aB7©×RÃa‚3û6÷Qý¿b?aÁŽu´6Ö2¥³¿›’¤l^,;ŸžŸA…”>ÈHâ^WXõÍ+^Ñ• ѣ̑|Pן]3ÈWà°C¾Ëjâ ß…ÿ¥ÔǹP ~ qÑvVßξï.¸Œ¡] û„¡pçfE I[zXñ†®Sÿµ’¸kzñìU€ÔéY06 .uɪ ,NÌý£.-“˜íF grd9—døª‘êíå¢[OœEqæ'Ó!&Š–Êã­ÛÔ:œ’úé €o/x36+ Ž­H·]½I5é± ó‚Lfd±úJNY$ö¬úe†›asUýƒ‰çaDîLyCìù1½VrÌ÷sÝ­µR:þÐsôUG³BWœˆãÌ¿W+Ô¾–ѤG‚ƒØ=•ÀçkUN2§ÐCÄ•€Ñý®Óú„åÓ“JÍ9 ¡Ý5v|ü¿Ú½ìŬ÷ÞÈͯzØÁ÷­Ö7ù8a"¾sëñ ޹&Õn?„ÎqQݸÀâÖÓî)ÕW—Ó®ÍÚ¸«yÐ64™EÝÀ‰ÇöŽ'ÜhSã4oÓ%)ôÀ?ÿ½uâ[Ük$Õ²?ºY'jç’cÔ¿y_å¶^d?¨kh ]±æç}VÝž‘ÅúêöÔøÒYßÊmû3¬’æê`{ú–î6Èn,”Tž¼ÈØð/‘Ú·[z>V©€ƒÕbÒ Dl =ËÚQ‡?ºW«#÷馨=$“™õ*jâ;‹^m z-·t0^Å’/Éù! 5ĘÁÉb†g—å7·ãܲ«kMã0°pæûßj9ð s¾MuUCT&¹®žÒjJP$×Þ2äß…þ¿e¡‹š´×VX.-§œ/ˆ8¾’ÈWUÇ"Ù÷jx¯š%tXÇÔ5žöºVyÞþ\Ç1¢*7….Ìšu!LïQpé¹f7|àÅlªßìX’eh´Ant²Óí³>j…žn–›V‘ ñßþ›[*mµ3Âöo™™ÙÍ2Ò ÑÑgÁhΗ-k¹?(—ÒîS¯=?ÿjWÕŽ5 òTRlI’µ»žZŠºeÔÅJÿU­wúÇx¾159óFá#Ür÷rŸAUƒ³;ÜØÎ"Hƒ¤P©‘UzJpu èÈK¹köHч>èäva1˜ ´\‹YöLŒBàÓ o°Þ>õ±â<ß¶^vÕ¶<,Æ #í×Ä]å°m‰½B•ìƒc…!Râ÷EQk¤­Ù‡Íc ‹¨¡Ö’‚¥…&Þ +ÈssuÿÜÐ%5Põ¥ÎÝa˜Ë©-Y Mny|$Q c”V‚ÃU~.´?h_9W€ïd¢u¡–jÑXú¡dR²-‚©ÍS„üriñ‹Ÿµ¸'D~hkM½˜ø–N8"P £O´Þ[ðB—d`íÉŒŽ‹S¢Ö‘ÓÆ~n÷_Q‰LAêÜ‹ s:}VÓÔ&™ýh+þek¤^=]›ÇýxÊgWhOŠLZïrëÌÎ|~ý9E{ÑiŒú@2 ióö_#˃tId¹×¦ë(ⴛͷà^’ZýWAû¸´Ï×™†ƒ‡B\‰„ñ<»5 è“П ¡·‘É´ÈŒíÞ}ØcA|¹8kæ¤ëÓµ|‰ó™¹¢¨¸Œ¢wZá~6à±¹y“Ô—)Êóea FÃ[O;£94~Õ—®»Š«êƒ¾¢µ[¸¢)Þ~µÔ¯>K£ {¨‹¡@.–¦äA–¹­_³<Ð^¤ö7sð×uÑÔ4ÒÎ+eü½[5Ñ&à÷$ÃÊ~2Ÿyÿõ¡@Ü— dbc~øò^çu5)d²K©ã‚u†l¿~µIxS$Æ/µrLe£þ"erÇ*;‹#%LX|¥X±ÃÝš†öoB·Ò4ôµ8¾A›Ž.üúœ9C–# ÞøH×óªÙ®»QY¬Šüåæg“—¤0Óþ…Ò9 Ý°»ˆµçVéî ®¯è·)`åÚ#‰\˜üáÿSsxÝÐ6«pê~gä"ɯf~½çh4À´Ï—²tD¥Cx1&kÖr)Fk4í¼ÝÌ`65s±FÃîcòÀ²…®ÀD:«ñ“w¡k2“†â̸#l³$±.˜ ù\ó°6ųӽx¸SÎnì íÊ ó² ì¸èX•'R½¶ nAÖG}«FÙ›hòûÀ â¢^‡Ý~×xÑæáz£i‰-”«!¨~ ®KDð0´Nc©ß:ðRjFA²Ìÿ^üMy·$ô&…¶ÁGFô³Û å ]!PÓçÛà-ùÕü…šYÃ3–'7Ý@íV:n¦!Rr5ñwfźÚt4H+HÑÚj±Mtëöǰ·…+H!¾CÔ×jO^é&2!Žu𲨻öb×ßgJý‡³1 dü+õ•U#¸T4¸Tdh &wblx‘KœÌê*é ¸_HCÄ7=câISð—ÑwYmbà=!.”.©¾•= õò+žµ½\­E¿y°ÑåÃxk¸᱇£›ý°\áiêÁIŠ'¿-ðúTíÚ uùXÑ£ú„Õ/Å$6õÌÝ®¶B¹„±ÊIè.H%üΗ«K׆õå…ú8AKÜlÛ䳘^òjé9§w/°\8Á,gÖ7ßcBt\çE‹­y-Ut‚ ¬ ü”¿žøû‰’_l¸|e,xV˜`º=Z ¤þŸ':fh™O)ïs™]eÝòþ|<¬'øñªFÚ”ÊÖ{ín÷—ÑѪ¾]œÔ”Lai›­ôBBœ÷„0t:Ã-Úø‰¦[‰ê?ÄTÊÜ(! $%*ÅýÃ1±u %û!@ÙRªþ““²-mì ‡GÛ;„œvq(!à"Q TR™-I×G¿,#éû‡÷×úܧ þX8x´3FqÛ¸î7a1ì¦*Ž¿³×+U0Çã 3ÔËêÁŒ˜#èN ÓᤛCôÔ¶þø¿Ü¹ô£Aš§3eÛÙÌ…ÝŒK| ?˜c\ÈzÑ tã‘ Z@¬×å1îrgX–{ÓŽâ=Cy_»Çþ­&RïP?®øÖÊj3j´%¨”íéôÕ§ô锿±`úpl¤¨¼”À„Šå?NåÍpBá¨6ØuDVhõ¨Ûï½÷îø1¡MòÝÜÕL„hé{ÛÇ^²>'ø³TóZ /Ê,Ÿ£¤KªÉ©ã—FqÌE8¶ (#c;ú ôiÚU£ko™‰íd”^8y ï›÷kéA¡1ô­´ο|«y‚å­ðBk –¡úƒ/Ü­Ì¡O¡p×T­OªåR¸õâ˜460uéëxÏ`¦næïM ?`­ûƒ›ø”)²$Ì}¥‰Ðd£Æn(ãȃ¤¡Dá#üáö}_QÉ’Œ5”Äx>zïñžc3vzå2Ußxü‚n©4Á´ã†ÎØÀ¨ða}M»éÈÿ­>›Q5¶û>Kç’ú ßBgmkPWAÈÙº Å@¢†ý‰G:› ƒƒýb×¾iq‘¹ÿ0è”<ÂeòSä÷7±ÕG´'#RP!W­à¯µæöÌ’ô˜õÍ€å'[ÛŒ5ç.-Ö©Œq¶îŠ‘f%|Ks.sƒ¢æœç`q¾L;dÔÍ„A5Qÿ‰lÖ#=Üë 3i§#å͵_ë_á]ÊmZñÖ¤Tu)7þ Ggŵ`Z%k介ýj,Æ]4¢Ãî)5k­gÊj%঺n¼í„÷ë€); +=ó‘´Åª +ÀvBRt?AèËU~ÈDÞ.}f˜–È®%Á,‰ƒÊ› °{qÇÆ™´ðŠ ÀEžL'ù¾ÄxõzÑ}t"Ñ O©Mñôü›[LîËï/f¡À®ÚŽNwØ“Ÿ³µ%ÈÔÐ!åËÝœ!ƒØ~¾¹<ª4w„Ta­§:ž¶½?:ðû›tÇ 8&‚ê¾”‘6&µ´sØE@QfF¬y äUÑ >3ÂrZÝÐïpÑ FÀ)#ãjEcÖr7/.ÕWc;—ÖÆT¨ëšZÐŒ.~¤rëú¾¶p/‚^41Õ=A2© ™E¹kHóX.h+îéuøÏ;"1Q®Ðzê©[Ê*C­ãµvA¢J*ϞØU19׊ó$0q,Y:j'­sR°m= MÁ®'HúŽ ÀâËУ¸aé4‘‚—CŸv?¤ê–מ·¡I1=¬>Üø)[é{Àn°ãí ÖtdÁR-¾ÂŒ·ÇQÐÞˆ]_(Ð+înŠ’R´ €’ê>{^PüÒˆÃñå_¦.a. SáïòJ;{nG͆6÷’Sýk+T}õD:?/†–Y)JC”Š©O Ž]ØX†iÓ¼… *Š/ã- Š+?/•£2Ñ[M†}·càŠT=&¶2R˜9›Ÿ+oå&Ù]£ú_q¼ZݬÔíÄ7ö…»rŒB;SõE—bKÁ†_G°Æ ­–Õþ0“oAU²ÖÏA$šúUiç–—»Õ, |B¬žp†32E5ÕC+î2BöäâIÔú>J É%œð=–à($î&m3ÏQ¹†Ihág0µðœßÝ#äöÎvßÞ]Ò6 BŒ8“G#ÎÝ|Ø%ÙÁUDÁ1))­•+#š7aôu6- ©`ÀñUF7 Å©.s@¤I3 #¿/­ïo y5ÉöÉäQ•ˆUf\Šk¼bBJÞód¥wÜ·òçA]pü•¿”¾,wÉȨ@Ï£ª–fº©ÑN Þ¶Ú]¹fÔ4Y„ù—?îEV‡fäÕ*òˆû(›Ï²ioéVw÷º6w{´É 7Dá½§Z§šÞ·ø0Ú%ãt/Ññ‹±¼»¦ÞÓÇ ¢²ôÏ¿Ò[+ó§SQH×@wd`²P”{x—l›¹þˆŸŽÆ(ŒPªa‚5§gÉäÀZñÜ_?Š*°¶ýÓ 4ÐByõrô÷³%‰öù M”XS“VûEþ]Væ=¥` dª¨B`ÉÍéjÒ\²æ‹[H<@íZ ,ºÊßšà®!îI±n!Ä™Fé¼FueÙ\èV(y!VãZUV5 ½\¶P'@€íiÊŸÆ]¤fŒlðábY»¾ºÜš!ä3óYñˆCÂL ¶AC«ZÚ1/P7IdãÃÖÿƒÓ%¯›uL<¬Úœ…"ÿHY@ʳ=E]]°Â,âö[Œ²àè$µp*ü ÎV¦ŸÆa~õ'Fwô õMÙ0}:RÜ3ô{ãÔR/ ¨~m~$ éOO¨†=TÇÄ×d°pgT5&GÙ¬E/~gu@?¨Ÿ3þüЬÊKIÚE°Ÿ %b‚šÊ+([³ 2kÊ xmLj‹Ò¾6‚¬¤á÷Häo!¼ÿ¾ ‹„à¸vš×\EФ!à 1§"9¾¿Zx¸‡éÛ!tÝÄá zlžšN} uQÓaîÞ²‰ó„ï"z_k +HÌã9ÍFíIÄú?„|£^YºÝðöÔŽÝŸ »ŒnG”9ÓGne! ñƒçλú› YƒH hsON·0 5TV¬ÿ–Ž3YCÿ–fÌ@ºä!‡Mo»%ÐͱÂ÷!Pÿm…X?–µ”d¬6”ˆMùò+`÷¾ï‘êF¾KÙ€ö‰Æ°|_oÞãÙ¯ý[˜™Dú¸’ˆ¦Õ(zšõGyçP±ŠõTGëiù{Ü ¯½D@.ˆQÜ\·q†Ã‚ÖZcG™´ÔëýA¾vpOn»’¼pŠÃZ†#5P&ð(f”«ÚC£/kxÌWŸÙ>mC Ô®Y’–Ôá×›tÕ˜S,ÀQJ>ð•˜gzoLóãÅ{OÒC]擄¶­=Qc4dت7ÔFé×·ÿRâ±9øG;9ñlMGØŸÓK†|ušö‚¥Ç3¾ÎéÀaþ–éû°\3t-®h'„Ëk1~A_Ÿ’÷ÂPdÔ²ºBºÿéYv'–D&¡•Ë~knGßoéM07=Li©ôEKã@ÂË9l¸mQ<mSà°ù‹[È~`’²Û-—H°×ÁÎ-ÉP7‡h=5 ¦§"$(ró]%ÇÊ)äß4Ç}á8Hï-ÆàWwØ÷#j³ŒÔD‰íð8ĶðÝ;ʘÅÉ£TŸ/™agEs®€6.WHüä;žC¢ ?Ø,’‰D•Žƒé}aÄ,?<÷‰„]:›&J¦1ùÝøCùó|OÝÀÏ èG´?¹¹;€7★âüùyÇ"AzÛ È=+q>fŒLHæ¶f¼ß…iºålVì^ùëpEÊ Um‰r÷XÊA˜lO£Sƺ÷$t}A2¹sÈÐ+ƒ£m“YQÔnûÃv"/ƒji¢>{¡´˜úµ môPþÜH>uÏ"óš¡_×<ö @P±Ÿ³7ß)Ð3c1iÛxCÇ:œ«GVEÃlÐò£Š$TqHÎgîÿñ`@›¬¤[m zAË „º‚^ÀFÅgó7> ZÕ£íüÊ i¿þzõë÷ ·UîÐfÑöl/=‡ÖHÏbük|_Ðô^Ï ¶’§.ò @É6Uðòë)9IÃÀV8ñª÷©´{ždÎêÉpK®íž&ÏÓ'O¶êwS—C·DÜK-òc×Mvã–ð±ˆo[óp÷ •ÑL¢w5Èf$0׉O9Vê.ž(°[ qÓL»`Ϩ  îå'ÉÏDÏAm³ì¯oÕ¬Žw[fúmê;b𿾒Õ[gÙ£¶C šȯ~¹n5ÞU)Ù¹+¶¼GcãÊ_ ¸Œ*ñ,ôdzü4Ý éÞcURÃÂg·AÚ¬=Õø(dè´à¦j.b†µ^êë@¶C~Ò²CMá­§¹)>XârÅ­YT$·l+Žuˆ«ŠY6؆SEã#RÌ ' ,އŒÇñM£À4ªÞÁó·Èéµ/\€Eƒ¿=ö?9êkú˦*)t×UmwÛ†,[Åèú×múá–Y;Ú%ÙðŠ€Ë†ª¬ß1zÈ—Sßcˆ÷KnL|û+ù¬JY5˜™»ðᢛð1gþ§û/äªÒxø7è&W§IÅ–¥òÞ¡ô1C‡#Y…@‚sXNå}³™C„¿€ ; "pÚ™>Òu^pz¤öÔ²+°q‹–DÀÿLØä2$¸WDbøx ü¹`÷ìÝ{ô…GF ¥8ÜGlÁt6ÊT(¥2"騾²éFIî Ì[Êþ^xá|ÕìRèÑ÷koz¦dF°èˆ‡`'ß«,·ôPŸæœîøŠÉçu*=ðyˆÅ ã™ð‰“T_A¬Nn pY¦K]:A|ÖùÁÈ.€¸Ò–’!$‡UžayŠÄeÊÀuAdÜÄkHÒ7¬ÿ´Íͪ‹Óö¹Zl•ª¥‰¯À‚ÎZV‰»ù-¡åÐüIžçU’MêtÃa,,¨·¹á¹VbÒ®ÅOv²…ÒyEñi‚à@j‘Ò½ýOHvòîtA§ìíHóÁr_I®·œ{½PHß_k>a_¹Ú§Ÿ,…žMjX[çJ¿‘òN½‹3¤ÒÅ ¹Ó¬x¹geøLxò,ó7çj_W$k l… ø0b”­˜{}Çò85G zÞ¤ª—­Óí¯ˆbD.B]nè‹êGÉ}·íJÙÐA;!-t;Ï¥“c Фí{ÊXØ× Ä‹{¯«²¿%”f߯ïõ•{°¤¼ƒ£M ÑÐP¹ÅÀ‘¼a;€Yñdá1®Ü†j8ñ7zÖpÍ,&ƒÚO¢N–YÖ¦wÄwŠž|ªT…e¹i÷ÓÃWõžZú*Wá·!'÷Û6 ­òåù³;e“]Cü½ÈÒ‚C>pšq°.ØZ,ò..-c „ú ~ÌQZ)ç´ÿÌh¸6[yCòéOÄC/§ùÉ4F5Mî é,d±µhó­êÓ¾L27j°ô¥¸–é‡ /lð'–žÊ3”±)®ò”õåFƒ|( ¹ Î)ƒõ0ÑŠÍÞ"£;ƒ V›4ÂèZS»îªóŠ0>>*øÃƒ¢}4¥œ»Æª} DoÛ(¸MSyõªÓ)R¬ôVñº{Sîâí„j¿=ØÇ+½**hZ#‡§UX˜Ò»báÈó'^k ¯Ž“¤Ô@ÒÑé°Ó‰ÕD2‰‚oÕÞX'î˜Qlôc— S°R^0ÿÛ¸¶”Vkã–ÝbC²Ð1^'N :ùkir”2ŽòƒÅ_žsvq¢„Ô‘EÉ áú-T} ›L¬c Î:<”:ÒëjÇÍ8Vh.~»VXƒê›\i¿w‰ ¾â!ï*ù6¾˜ØÙXÑOÁ¼—𽏠æE»ÏÌäÛrDvÛ?ôè?X¨»5^ÔB"8GÈ‘üÿ¿R+¢Xpy{¤u&‹ÛáPÞ¸–wß0°_êbÔ1åÓ¸û§-žM»–ö°]3©°lŠŠZ^¾ÆÓMb—ôž´½ð„Êp¬VñògQ»¬-fŽn» Ÿg:’ï§FˆS@,{ÀhÌå1°31»¯uÜpêªd¹Åap9lh5TÒßÀ·¦ì…]ª6n˜·±à!n÷\ä >£¡$MpH¥V¢)t¯ßØŠ./k2ѱ€ò•d:eµØA?.˜–8/ñ6J§ùT™±êˆGØ ê-ÈŒÐô kŒiTc‚óõ’'q6wÚ;Ð#ïàšž#l+v†…šF¿ðÞ‘u»Á4ëäQ‰ñšu†m¶BŒ1X¶ATæÁQEˆ’cª‹³ÜËÎZGlṪèÓ^¡AñìxÝNuÒ1% 1\p½WC‘¦ïz‘s2‡‰¿°Dû ³Ëä–¯.ˆ g5–ùYcw‹ÊÚ½¢²i€ê£@Lµqé´Þ8Ê×°›y¡ìÕ7ƒ-$×ò"XW¬5Û©Ù¶ŒÕ¨h„ŒJ¢’iœuš!ËŽåΤ¬2C—Õñ?D?»K?(:¶N¿õ¾™š¶þ[¯Ñ9‰cM"am2¸ÛkÒRv*Vñäù=Zú×U²pè‰H9'È L;{áMAâA åxL¾¦ïÒZSm[I»ocsžmxŸ 38:¿Áj‚´Ž²’ã¼L^S°>!x’B,Ó(Ωö×”ŽEº"¾2ÜÔ.臟€¤¦t<ä$~Ûª±ðĪª©Q&?.K[-²EüR ¤T'€´)̆"EíÈ’ýà>ã–â$áC¨ _¤S¾þ×P_§¯°¼›¯-yds™ ¯ºQƒ©—ûšY¬ó6/!mÉ¢8IêO&ô/w0ôº„ë±iÓÆ ¾H€CV‚b‚×o»±G°ãÚ??l3¡œ‰$êü.?{æ˜Û¤$~æU»_þ¹è‡I5N¹ŒiÑý»jpÙP=†T‰g—¶¿ƒ"ȯmØ9Ü™^=Ô0Ù…iˆåÛŸün婈°Š-ŠN»ëþÓBø—®1DD"ò_5,òB­‚Ò† Î2Eí¨å‰rŸ§îÔÌÿ¥lP™°qðªœá+¯5¶ôŽ)TŠð)¾‹Á(V:ŠvŒuwa‰—í¥@¥1¬‚ ´HZ7üCòXð”äfµà9©6àºêSk½î0WS“þµÅ}8"£$!îb”í¯ÿ¡ 5E"WçUϼƒG©Dv„òú}sß;x*^Îùd1ç'™Òhgňlœ©‰Òq­óOÂÜа3$ñvCA8Ú¹ò.ÿD.Êpô ÆxP)ö57ýrÏwPmAÇ¡Q5»bëêX‰l0v<ü»¶ýÙ>ñ}¾ívdž][Ón9%¦ILUDÓ󢯯ª®ºöÊŽÏìœ'Ì| ‘ðj5|æ9h¹v¨g:ðk§Àñ0:àƒÇ3ä67®$z(úWÌ›9hðüÀ¼À=ÛTíåÎ'Vásðûj®šK#¹ÏãÜä?»ŸBà yp8Æðòe<›çRÔ¤ÂÊ%šègWKàýá"ßÆ×¿}ض«Z> %_橆7¬ä¤¢¦ÉÝJ­ô¾sxd<AF.jHK騨ÈJ¦–{—£ò¤ó„^·ÁgQ'‹b¡¿cRäm¥¦á/JÃÜK·+£$ˆ¢­ß˜…ÍOœtyÓ9§ç‹«¶pˆQìøý´A…ôøéw´gÙ1D}/Þ8:ˆ~Ôæ³aF[‹gøèÙ¹æöÕÆ“ö®Ð[PÐ_6¼d=^R-ÍNLQ_³N "cŠð9&ↅ¡©3|ÒøÃp™ ”»z>*DH$Q‰qd: P}ÐFQ_ÒÂ7åŸÿúuBõßx&kÍdF©ŽVYmÜikÌÇ!èsìWäéø%Úü2H5dhÞ%U¹,šàn[´j- ×¸-Ð}¦xûÓ2g… w6•cr+Ý>Xl—À,¾žGü5üà.³¸=ã—'CÛVÛçCIã%-1Ž÷¼± q‰>HÇa°nOß/Sžžî}¾ˆ£ŒÎÏyæA*ºYÙáHªÄùšø]ðÒ„»NK%}z©¤Zá ›~ÐÐ,DÃ=½ÂkZ¨ mBÔøtüµ ƒÛðª‘ØæF…“ŸÆVéaõÌòzÐ=?e¦€ás …KõölóA£RÚ"õ _NžBf¢(v?rª| #¡Éªòþ±ŸÝ#6 P±à)]þêƒÍcŽÙ›ê‘Ö.9« ÅûL¼À|òŠ(?lŒ6Ã项¦ á>­”¾)’ Ä»äZWkqç ø&›¾Uµ:…ýdþX#”þ/¿ã\*­…ë;bý"²pÎ>¾®´}ÞU[0]dÅQz_ÏΪ,>lzÝ-‘?|Ià ä™%‰43ºÔòæy‚¨"K†QÄJÛíQ MFäÊÂË!'´ €÷ržØ¬_Õ ¿Ž> Ã|/±¿ßÙ½€*ŸùˆÃ¿5¥íÏÀ5’µƒ‰V_(!‹ç•pšÑ&“ÙX/ýeú–æÄ2ÕÕô†¨ó5çÍ+[yÄUá.<®0G:‘€sÕ -h~ßwì„aŒâæZü FÛ¶W¢g…öšAs,Vá)šØ",Á÷TÉ—¦‘¡Í+çx«b&WÍ­{ï¦Diè«ú²7‘@à§þ¸À}•1-6êë­düÍù P­±¦Ï|æ)Þ•(X—åÉJÂür¸rA(ë’¼£ÿàø ü;SUñ.‘p/¤»¦ž_¡ƒ ‚ËZË7Vªûѳ4 ê¬OàB†Ügì¨[ýý$RE20÷%V±/o-Æ¿ì‹DsghA‡ ìæ$c›nKêáŠÉå Ñ=Õy ¤8nyòhÌ?ÚQ“}þ÷gÁ¡prGÒAç?õ¡C˜â|uí¬±‘uúNæ3^/‡M:“å—zà¦Ð*!b%H09â|»ûmÄ‹oéÌŽ-“÷½ŠtC¨ŠÑΜðY’ÈÀÿøFQ7¹]ÀRõq^÷ ð¶?›BA_’½iß4‹ˆ0¶¦Î…¯øR”Dxª@&zä’…ÍrxçÔX4ÕÈK%Öèˤÿê5+\æ± üò:pÒ ‡Þ&¼XØÉG Þ±I™,7üN€%ÝjMè¡F§Ì¦üåMT9Õ™±”òšp°A^7áBV¯¼–D1i£„d3ù*"ˆ}Õ´O¸²õ¿/A÷FÊÉA8©&iGJR4yt5Ïçàˇšx¨#l»@ô#—í^¯a?…„Z";üºg!èˆkòð·æ—c Y"“é)B™ðñü.ßq8ò¢5Id¡â#'­ÝÍÈœ@Ïøbø{>Á±4 Åa¬©3¦H#c|óˆ¢åË´ÎR|ƯátMõö:»cÕnùÿˆÀ7ªo‡ÀäðÊâsù㇮ê-ZÿÚU `yï>è^ðÅìÿ#Þ w`~C7‡þ°môí—ï°êK”Ca[±¡aê"pÇ—†§…OÙ0 éx踳1ü~A韔႟]ÕÎÕú?p’±ëÑEʼnq'’{öájš¹›} §³¹ª«Ùð3ÅHÄYM>ŸŸ‰yH7ÙR¨ ´º  ,ö@ï]FÿÌÒ l±‰ˆS×ÎÂ9w¨äP"| ˆÒ7Z;Àñ¶PMV*ÆžÅo_2*ò ;Ìê0HЛªÙ£‘ñv0–мGÖÙ^Ö%¨Ê4N –vÅåMÃÆïBOl]pó”’n©w¿hÛÏÐh ×%!å~Ô¹ìù>”=ÆßyÓš$»Œ` øª€ÍîGë­ù‹â! Râ ÁœuÏ"€:‚‡Õὕ ˜Æ€ ê_•Ššî8>÷ŠœrÈš!}…º0Ûï`Q0}ÂÓªø>„+t%ÑTi齯Ä;ª¸^ÍtíwCh‚÷ä.S8¡wèw¸˜¡?ÅÓÃQ‚(vM ðìÔRš˜ørN¸_ôÑ2áö%®:ãeê-C…)¦×MÕoáýÃQ›Hˆ|˜´·h˜nºçE´á­Ž]¿×À!¶¼Õ–Û'­è84Éï0Mp‰Œ¹˜;¶|.Òb'ƒQ…?´•“¸"‘# ƒãÿß׉'ISÇQ8Æôÿ`‰Ø!½rT5ÛêŽ-ÅИE‹©ö¸ #¯³è|Ç»óÝƳŸº¹±h‚–¿e~­Ài.«`tàªf3gÎpü´ýtm~ žj±üþY:ª¿„“RÑ/z¾C/¢—TÿæÇqh.Úí³pÇÅç<½×êòDJ õ¹¾ñX*Š„þ(\‹¥ˆá›jLoOáòÿ*ÁK¡"GÒ¦[\/BJ¤¿^Ôx_FÒ`«ä?µ>=÷XT ù¬V ÄÖrÆh èôJ1P"kcý-öJ¡êPO¿'UýôÑÃñIœ5æáŸg轓K¤d’Ã'‡ñ\äú°1ƒ7®/{é^äããž]ª6]lQk5+ÂÖŠ9𧪴5µ~ï™R¤®ïâòZ ê¥.QL²Žœ¦ŸžÊÎ3w´*~ú§ãXâ% ì::²rMæ¯_J®ª«Zo “<¡9TN0+iÅœ­#ÃÓGR-µÔ'ß3Ç‚ŒÃºkNî\ï”±®ªeGø±;®{`¤OP–ŒÎb퇙Q¯&X<Þžh¥^L^Ï%vå ­fŠ ûåßÎŽëJp+a‰4—D,œsÈœ®½Pè)P¶Š†øÌDdó'ªµ…ȬØÛ¾éG¾J0I<Ùä=uNÔ´´æ<Šþ+<}Æ`p*3»©×ç ¹AhÈ˶mpe)|ϰ(É»EÔ_©æ"¡ÇÙt:ýƒj¼G&n'2O”>ÏþCR'8Q0TzÀ”žTmE^D{¯CsÏ2|b½O«®ù‹gö™û"É»—Œmƒífö:OØ#ÀçþC²7¼ÿè–Ú4†6FAÌK5ž!l/ñz¸r?jlA4 ÁþªäLoŒtzÔ–:AyG÷“uIÐò¨.*¸µBùÄ%¹½ŠÂ„Aý¥—~³‘v½ó¹¡ºŠŒ9yåçØ´–WíõâL«­YÏžêØ»ägWMÿ¨#óf{Nƒ^Èf:uÉâØÌv&!F˜¦î9žo:4n¨¦ vÂ÷ILyæ¼ÎOŒ“7#¯\‘Ê›»Dq‚Dvë¸Däl#ÇÙi2è´°Ÿ×-SÞ­Ó˜«csåé^(0k#ò¶àÌ,»²o]§aÝQ_’M§7­HÌîÓþò «ìzD8-tá->RBZ‚Yéô¤W‚Ïœé £l{;gåúRÉ“—µÖ¼OkúžÁË¿Å掱¯ Ç……ؾ@Øøà€ÙŠŸ¡tg°Y$R u¾×–jYËΦ3Ç‹Ñ<¹74Bš;Ç÷a¢•á[uŒF]³0 ƒ5D-¦$Ô…XPJ|§4‡æc†YÿÉ/ãbøòˆ?}E»M# ï8"Bª5³òjlBºÔåEð8† 7`?žhPý ž(`ß‘MO4äÀšMss©!Û3eÇKöwKe¥?b(&!_ÌÎIÏtYÊf"g•#LÞÄI+ÏM¬¦´‚1Ý \' 9J "²Ið€N(ëbN±Bï)ª”ô·\z†NÅœ¥9î&¤áªðÇ©‹_®c?CR‡nŒ{a!ßí ‹ î€LñÃEßÿÞÔŠh•ÚõÔ©/R~£Ýï^É9qŒ¢¬§r/}Ø v³>»K\ÛýøÖ X²>ô4Ñqa[&ZAOW­£·4tšÈúï¥@Ê3*„ÑòܨÞÀë™é`ZŸÐ$W¦ˆ0{–ûç¹›aðƒ]èsbŸèéÆvEî1âGÄišQê< ‚r/ÃΠŒdôš¥Ð2g¸uˆS6ñîÒV‰ãö 8å`ÍÙ+*Úï—ÍÌÏÃz³è\ôM+Â|¼§é°ß•X_=£ô&Qîðú‘ ul—éÍÞ–dÛiœäšŠeÑê-XžF¶Dº]^ÉYI–ß±®íá$íæ‰+íÞ’dŽ0”„´Éø…CÓHɲȃâjr;Ÿs4שç/,·¤dsew¨$Z7|Ƶ€†Æ6œ¿Ý謆˜çe\x¨¦eá•ÛîðÞnQ…Ú8WÊ Qéúdþ@0âS¦5)gñ¢i~vºÈ EÖ@`w åæÈYˆ9qé1G’¦S7„_ÑÏ$Ü\t{úB ßú 9l¦š˜ÆšÈ þ«?0ñ”½|…püV3*‡ruwu"Ê)V- [#§øy;Eo!–I_®ô«ì{Þ›=Ñĵt}5‚Yô#ÂÍ wÎn…£®µZ³[«ð¢q î¶í¦ i@œ‰>{=äɵÝhÇ‹†<Õʯ¹º)Îc³Zîg]z'€Ý•»guŠñ¸Ž#ÿò€­­D%Ô)1ñÚÖÄ略Ÿ±Jå)o˜C5 d˜Ÿ, ¥hFµÝ„ÙÐåýö^æì ˆÌœs]÷Ä{ìûFغÔ0ÃA…—nH]æ›õ÷&G~…Á7gÏòDmTËÒc~i_UCœE_M}OF’›u{ wÏJð%7hd£7Ëòýõ±v—¦©sÙýqf›¶ý]çàLÿR$^Xóþ“K£ñ‘pCâtV-å]©ØüŸ «W.oÏOTIr4|\åe*Çù)á ‚“åKf…8ñ«Ðd%/Š µŒ»•‘$‹ƒÓ¯íÉ“‹ ïµÆ±­_z¸-?)®7Î2áјVÎ}¨'½hF‰ÓFtgöQãùÍè{b1Á"MfÞÕЫé`;¸ý›¢µòõß§™o¢\À3ê - Ê–æp˜ŽDTI¨Š7ºlÕÏóH‹>½+„`]8E"}húÅê¹µ$Ãò0»ô=³¥+ÍX×gð²lå|£¯ü›Ê² Ë<€Ö²ã}˜ΗJ¢´À n»i{@3/æ/é¤Àn¶¾•0§F¾}°¶äógÊ?; Óâgšð#¿_P ¼n‡"žX‡¸´?•9 »ÀÇ3xL¶ýâ´Sû²€m…ÞÜÚG5»=fê=<ɹÈPJp•+‰ V,  NÅh  6\úv]lÒMÇ·9ùç¼›S2ïO±WìzY¾ÓX\ GÿÅfü»Æ÷®níÞúrÁ/v¡‰Ë ô·O:ÍÌÞº…¼Ó "jœÑ±åѲ’ëì´Š>K´$„ !õf_Ìš­E7 9JO/yãzÀîäI6…“¸>»ê§€ulþú ›@—Æ*ÆdB8{gQЊ*„E<6¹c»!6ªó¹}u¯ès¤Mc±”_0ÆÀ_ã‘häÅÞ†ÀeîQ¼j ^̪~YbüE.â¯g‰ÞŸ'.1o}µb}ÄliË[p Mûœý¹6†«ä5eѸnÂv'ù%VìЃ3ä7—÷¿„´lù˜}°¾˜5G˜‰S|e›s‹`Xcý ®š\hÕ&ù쟖óÑ „…KlFm#&MX#ëÌsÌ#œƒÄ62ËÕHg"èy_¯eQfÀèX¡ M+Ç¢÷†Ö1>i’fÿ5Åc /ñÍbMgèâÿ›‰í¾>dk‘5A%˜Ð-/*J`òT>àsܰÔp‹HŽ”ääÙ~•%}Æi’OŠÍ°i/ÕwB=ÙÀÿm,oŠ4®H4Æ» •5·:›B‡&óĵÊÜù­¡™Ä˜ã OaÛeìFIºê•UkP ÖyÎ -Zó?±ëñ Z(i­m“ù°'6 hȶnÇϸ¬<ä@\àwG<5¾ …ØV<Ê÷†®UËVÿ‰áâåXøý†3¨%|â«ÈÞš!iéCëǵj&(cÏ"×v+hÌ?ú[UdåmUyÓº½²Ù€…ŒéÜùw!ö¾û¯¦Áöõ¼\ôŒ†f{E`)‚ Âþx¾GÆLÛFsʬþÛ2Í1ð² }BᜈAˆ†ÔéùýÑUTºŸ-]°:%#ß7þ÷B<êÉý4B©F¤Í‰e¢EßDÔøÿó”º|CPE•¯œ-‹"š¢Á³Å2Û´ðŽhª˜K?¾}Ç@Ü?Á0áŒ;ÍÃï_FçˆÆwÉÛHÀXѹ|!örRøˆæg:´ÃÀigþ<~E*6Àÿ’’?ú)dÂueþ2j6€É[vºHIë/©wýêfÕwÔã$Ê>“pàrÈ€z<õ!Yãï“%#¸dñs”‰*‘ÿ‹Ì!½‚Y”û †7­Cã1^ö]Ï–®Ú*)`mÖÑÄß)!š3º›ëû„v¥Ê† p Õ2P <˜úBc l2?ou_Ôx­‰éås[Æödò¯ò×É^P O•¿—Ä­ 5À¢ò÷ý 1Þ5¿“­~AO1o¶vöžG³„̹<¡V¿™Oj=¨K–ÁO¢!%ÕcgÀK•àˆqþŽBWÎÌ×#ê§/A½ð¼ ‚}š ]Õ-Í~Ä™.­Ê=æáˆ`sä…¯cS÷!Þ\¤¸²†öB—¾k˜$BL‰Ä&%ްpoZÒ!„3Ö^çú<Ú>10ïðß 3Š+c:•¦hÁ2§x€.m«xàjg¨÷Ghý »eܹ¶ÒTAÕ\‰¼+ (Žƒ!‘SÂ]Ó¶k×:-ë@Š?·î©ðÐãÚ¶X˜2Hù>]<¼AÄný®RÄÒ-‹ô¯¥D£ÏV³Uè.Ãí¥ZŸâ¹Lœ$óSôÍšŸ™€bÄž–<ž[»¯uÄó=<ø (VÇ[½ ¾F¼Ü˜Õ/)JNjäs:ìøßn¸ÒG*K'¸I¶'áä½ì«‡-Ÿ\šUäÏ= +Ao;lר;cV MŸzyò߈ÎîÞ×P#¥ wè 5Ço´}Qô kMqåÔZšã¡÷ÜC~)•»˜b_«£;¤¯“”X¶u1âÈØzR¿Ðð%  0/ä¸Ì;.%–Ã÷íT3~`çý‡ý•d¤Œ §¶vï!ÝÉhT_Š‘¹±…UŠáåÑþÿ#ÂŽ-îO»BÞœâgB€W×ñÀ;–¦zÞ7¿áøÿÔ{}«f­¬Sì[¶ *IÑ…Š¤I8Ï ÀøÍ"w€u@‹¬‹Ô†!PIìÓÎ)˧N¿ßRÝö7@D&‡—<´¾pcÄųƒ“åÕ’ïÓJ!9Æ‘ö©…¨*‘bŒ(Nõ[AÇäÐã­¬ï¥A¹aª«r;–B‘Ü-ç¶aöú›dÊãÄ#gx)¹Y?ñeovZžùõ6]ƒÉ«hˆ3HÓ{ÇgÑÆ|·ûåÓ„ë2XH2¡Ÿ·éòî*äüfô81J‘ <úê´àÿQZ·˜û™©ö×&p`'ë©ȔHˆ¸w¢ tð«-üES¸†u²Ÿf99Ÿí¢8*zéC *à4w/ex:^Î0¨ƒ][ÙÐc÷¤ô2{^ÉXÞ”H‚éÅNG©áIuTlrxžU;)Œ°Qß©õ‡ÍÊæšå·¢vˆlm¦×Z”ë•’—ݶ1Êu…V»©Sd©éÔ×o}Õþ†Ôü«n_‡0]2úèe‡«0ðwß©­”º*¬{¯u’}C·QÒ]úÎìÂ*ÆN“È=r/¡{6¥E˜Œêô±s—Ó…BaêChŸÄ° xŒcÎ÷p—s÷ðèpÛµjÓs"IkUçäËÎ>H¥®WeöæºL`AÕ]›)4j„òåO„ïŠKÉ2ãù<`’íòɪ_$ÿz¢l.`ÕDê]ÈL¥êžpœ ªŠ Ð=j½À¸]îáÌ0–ðÒr%¾Í,¸‘Ìéë:ëèìi^ŸÈãûÃ̓+8hZ88Ë„"¢v¹©1iòt×ðTwrŸLÅÂW}lûˆ‹äÜþíѽ÷4wà'§Éjñ+d¼-Ô.Õ,&ÊûúIi¬Ixîkl›3> k­’𹚦‹P½+œº â•W8‡¯ÍW:_Í/™>CK¢Ý¸û6G™@÷:_ –¯†a÷ÚÑn’´^,t™y)€QúF2ékɈ ò4¢8§“ðìü9{X@ã!8ŠfsÂ&dL(ºn:êRK\0„%„©J˜G[sÉKG&x©XÒšWîç‘ð8¥ÊÐhøšp"Ó÷ÝI3›ß¡–ãgÃL SÕ&Ío\êGƒþBÇ Ü”úÑ"[üeDÂz0sØ"l¶Ót†ÅœÅ‡j<-°?|(U¯Ü߸ójódkIKÖÝ7ÙdrÑjÞ^w¥Æ€r‹¼.3³V?jàÇsÔòº©Ù}¥Î²í)W k‘¬Šðü³±þŒýy*)剮F|fÅ…h0C]~)a!+Rn¹8 o ¦ÈÊÉ) \?X™œ¹`õÍnÖ€ˆ™Ýø¶â®4þBhˆÚ q¤!?#Ø“À딫òa?‹È(É·Á]œÛ˜oaMù1ÔL)èm ‰0úP~S6˜ÿ}}9Dþ¥CÉT›qeœ‹¸9xbç‰o”1[npiÏnóÙv~BÚMÎÒÏøj+h*3‚>ßÕI¼¥£$\£`íŸû-m—hK«?Xbâ¢Óö½©üà/¶Ì"eJ•]ô°âlÊVI¢À”û^æoÙàçËŒ'@“}‹,ׄ¢—WÚ­Omש³He†\ íaQ‹…O(]…ŽÒøY^ Ñyó\4™ "Î(( Zk¤TGߨ²ÂÿS '4 F7 HEDImn‚¹VjôZ…Õ ôÿ(?·B°ÛAÓ1»ÈJ;FG]%Šø„léøÝ^Q?C{›Ùýa °`o/Œþ£Ü€òüð⇎¨òAª8)ŒÕoðsØÄ$å‰P|ÁN£Æã«Ž¿#Kâ léÁÕzfëm°±­éÇ|@ÅWÙ¨sðí“ ð´ÎLÌCÏHpƧáD›{Å´á1œ›Ù ÇGlE ´j9Kõ?÷šBMä?ï¿ÏïÏ×ÁM6†ßØVzge¨PŽÝ&•V>¾ÏÜa õLÚ#þ¢zôT"U¬gyL©`[Þ£ÿ,[6^ug‚Lo4„eú¬íÒ:µpFùzÑ3²eŒ øí/õümvޝþ““¾Ìm ªØ ý5/Í{;ëÙ‹¾ã‚Ø-B#)µ¯=6:õf|ö%ž4õÂÏf¹¶@ü’>ÝñŒ†—o°%é(w2æ'þ–Œ*ûvÓÖOï8Y€ò³UˆÏr¾ìþJ4—c%r¬ñlìÊCy×Hqpà)Ÿ]?ÿK¶w¨z3Ôº³ qK¼úž®¼__¾' ªË€]°šóáÁЈ2ScñøWö–-T— .Øê_Ò—P#²‰Sè|&ÌJgfDߺzS¹jAc¡æxyœ£Ç¸fI³Øb5Ð÷£V•…Z¢$ÛzŠ‚#͆†Yó*4%ôðŠÀ†•ºO¾ =ã)9ÎV'¾û¸µpIX‹D/„Ú0cyœÜôÄtKF«ÝÛv8„òl7:çiid°\¬qך®:ŠS펧 ?«ýÚ…›[DÖ¡Æ·x9×ïXòÓ¬Q,cêߢŒµ+»!7{P §"¼ Kžv¬?;b1NwÿL½>'„´~tšƒÝ^Cô3¾“¶Dá •–|ÀlK{'¢¥_°6ʾ­ö/±(m•YÜ|›öÆ–ËdK}}FV?3¡ÕÒKŸ½/)iå­Q-ï ³Æ–·!¡o»YÜu³GÂKš^¤,Òé§{pMaõÂs·€uy“ œc½eåƒ`ëå’® ó]Âåååà•§Œ1i­¶½Ù òAeKŽ YZÀVýôÀɧ ^f×Û¾”½nC%MújÏÍ}F0@gLNbqw$Î0í\WÆj»{}É ìgi·ýu‘ׂ#~¸ÎCn’\d™ [ë`qŲëy^û¤Ãr¨r9:9`“òЦìtå Èxé8–¢¢ Mön8&l=–Óç˜ 6ž(;ìÞ—QU¥¯_#ÌP/|éÍ Äc¬U|kbô´bÜÁÅ×{9Š2n+L++?Ž_9“¿ÞçêB4¯¬Ø\ÃQ4Ù‘ÓWˆ°‡VJ…N²Wïv5<œX¥e”ª1-ÝÚ ~¢ b»³.Rôä¸èò¸Çð›eöH˜ÝŽÿAÜ%â)Ú1 G­`oTVó©­R ž>R?RDÜ^‡},øpëÁ§Ä";üL}w= 8ËÄ”-‹E‹ɤŒÝ°"Zu®Ó0š-ŸQ¸YË+L7OtÜb,!r/¥\üDCTÕE¯ø£˜Ž‹kE¾©~Ão‰3¹xk}$!‹Ù9QGè²ymšÁ8YNIéýŸ PL0¼Gh‹XX+;5‚0ÆH=ö¥ÿŠN[ˆrfé³ü9è¶ë‹›.;~òŠm{8J\/ûh/\ýüÚgsìÇö2<¬˜ñRH<Ôıüý‰Wy4rt½–$Ó¼OïTý%·ØTÕ[¹ }0ÙBñt¼,ý×]”.]SÙÉ›­¥:ûÉzk¨Ÿg¾D &6BÕ÷‘[ ¢=fÞ<¤ÁŒ¿‘ùW|ÌR$é2–+qEØÓ²ƒÖaçýyv]D†Û/4àéCœÙ­oO”ñW@74AF³ç…¢NÓ •RSµ|Kë#XaÒÏNl™¥m;µj  ä³9œg_iV~üÈ-…áFTZ~}“õ„aôt"æT»>yèÊNùBd^8(º3y®EjŽ#tM#2…V’÷¾¶Q -:Y×ó ƒHlÞXªª4}ÿDZf½Â¦¯‹šžºÂ‡–ÈF¶qFv—AÇú+ʧ=äkQBû:fJ Ð̉ „yÂs_àJÁ—-ªJT$q)OŠ-zºO?Ú{ýÚ~?*·ó™^ÐÈ‘+g1‡½½üñU¬ßW}ŒØAP9p\¾ 3 û‡æžâücû©¼ÔÌgƒš?*ͯaIwË]ð8ȱF…Â4}IUN –ŠÄÛ‹Ï ^7/¢ìmeqŠÿƒÿމ• –ÞÇ¥º¾÷Áo{ÍÌxï[‹iÄãŽÃsøöiz!¿Aá ï8ñ“Øå-]H#NGsÔS­½U<}OǦ2„aÂÃý¼ÔÑvjb­N$F=wWô«ØBÆBÚ^¦i¼ò¨UŠÑÄp¹h‡Ð’ü“ôþû?¸$FF[(­Áœ g7ÙÉ-‚J9´9q…¸%2^¨¿¼ÕS$Nݯ< “c“/)ø«þî'ÃÿaF=ù¾8gÞÍžéš9–éd Ûݽቭ·U†£µÑ£òHš‚ãG W¾Õ5ñayǬràǯ¡í„ÎÂôÜ.Dj6¢¸ÕDúÔATrýjõj [öR‹có&Ÿþˆvo “ªH¹eß?üç±S½ÏÒo>@S|eh©<ßÌëo …)¨€xY£âzD»61G>´‘¸õ“‰H„¢H€tÏï‡öaû¿Ùj›Kx'R(ÏJÝúŒR ‹‘oèt"­÷ÀqY•ų`_}¾ñ¥!Ï}ÓŠÈ@§Ùç7lñèp:]‡ ½âøÚ…¶û-G•«[1çq€Q­W¬a/Q“}µ‡j_-Õ´ ¸–ýÅÃ(Qôß)2íö¬ÍëßBªÒ17™ã|=pâh«p17¹©|Åh°s?§Oü›é ¾ Ö‚”ŸSöÃð‘¦VÑ욤 ÈIÅó{*>c× Ä<•Bq;鉗ª„OXÎÖ}Dê]‰ä•†ém„p§î–ðzÅ"Mf½kqrò‰Þη]‹×å3o©Þû™‚ÚáYQº$ .ƒ€@a‚`5ÿ\/õÕŠaâÞ“[ZÝÉþXlZÝ¢ØyÃâ3^½‘Ák’õM¿C1r¶E‹v˾L\¨Fl¿ãsŽû#9>ˆU¸óŠÙB× 1íç­:ÔsfÐøÞYì÷çJ§‹.žkßóV~¨Ew×# »'°!=Ž—AРüø-b&àÿßÏé™ ö…ïqK§kÀ,]ôÇ5—ÔXGŒ‡¤VÕß~“–C¯Ñÿ‚ä¥CY\™· 5jfi¦çë,&,^šüû¬Ù¯çlÓn`ôÿ9+C@j>\Á"ž•ÝÄ50V6÷A=pR.þˆÞ47¯'“ÈYe€XËk÷a „ ýÁsfW 5ÿ0¥ÌÆ~L©O,ëEÖuÖcz Öír|!>GAí—ð&@÷(u}YÚ^‹AUT^+ÿ%Çjzß•vfGè“¡ƒ×Ee¡Û ¶0¸BùÀ;Çî(;ú‘3"Ý¥Ú"‹*<ÌæŒPXŸ²þ5ȾyÓºáÅ™²"]Õ‘®â`™q¸JS÷C”9'r€/Õ…Ôϰâ”N¿·Ý}Z1?tG‰µX¾žOüÔõý,¤«m$fåÈ‹›]ÕFàyà:QϦe‰Dggx9f-]²gê>d†ŽQ¡ ¢»Å2÷[xKOR=›Ž†•ÇF¦—Ü¿S$ñÂòÉë “£Ðt¿'¥½;f¢Þ;ǯÂPÿzØÛr¬Ì’µµ»BãL¶D{èKb"¡ÀÖ™(MBJ —èJ†Xý IcÝ¿tÿªÄÂ/íƒ1 ¼~¸/.kœ]b9RšâpÎÀ³ÀaF"ÕX‘†qò}ÄkL²Âo§‚Ћ®uYn‚©ßpxü æ?>WÏ„ðswg+ÝšAN[îòYŒ´S¬ôÛ —µ9‘'R:ÄÆ«Ìí!?Õ!å®%“„3½tx@Óïv;TaúªÝ—^1óP…s7Š2œJ3ÔL¬_v@ë<œÀ%­1"j‡€LÙ©B‘ç6ŸåÂò9Âz:L³ñLûmŠí™G2¦lÝÝåjˆûš¨£Óoß_©ëÑã¼_¬Õ liüèMâ+YNðX˜…Ͳþ2 ]›}}u€Ìù$—rŽ—*E~7a‡Íyoo+þ›Žt×;›A{äU;1`œn´¨\ÿd}¤¯?ÕÍxìwðÙ5Ž|‹™¸8)™°_E•…WlÕ `}+ M(TíxtfÚaÛ+}ã!Cæfˆ<öV]Œà_HÐÑI¾²½ßûö·k ³·¸åŽæGQ²3PÛÂ-t”`wLJó-qFT¦^ì«Ô_;:QhXÖ߬߀¦XÀ,?NŽâ[¸ÇŠÔÜkï}‰Ž¢È>[,ÈûÉs ÏáœÚ%鉨½Yê7}S88œŸ¬(ØvB‚±Jç ˜•‹ø7¶"g罡„ÝîŸîod‘Y{ðWÃ^Ci¬w£ÛîsRE¾Þ|Lþ²³Äð±‹g«áLÍÒ?1Ž…Q¬ò|êR¸kjFX°0Ón}¦,¡ŽÁï .pŸZ §ã1=oTFaK›W.«+@ìöúNÛ4à.¹¤©îÈ{Æ$ —Y€®^„åh‰òÿ2^gõP·gbš’»åXɬ¶à ¤t©æWö}Mº{-À%@Í‘é1'F˜8s´=Þ4 .g@êÀ'Š´? 8ˆžiiA¨Ç¼Ü­x£Z~iË0ÕwúE‰?­˜Ï†á=òÕõkúºÏ©ˆöÜÇÆÔ;ðzÏÖeßuK~­ãÂõJgDgú/oTô[nØF,jGãÚ¬$Ú¢ƒ;©žÔÏŠ|˜š°W@† ä2€ód+¼H›0ÙÄKêê˜'ΟGw˜lú±{_¥ñ¦‘ðä¾ Q'q3{ÿnbÔ\¹«“ómŽéÖ£Dy¦4Á$|{ƒ?À?+¿“‘뽕 µ„¤otã]/ (âµETi÷xÐ-eBÑØ=VðI“üjie3ùB¬ÜU"K,å‹ÿ ܆æ÷˜dehXД.\)a0–aߢe¢?û—”r˜âS«£—•;¸ê*K}¢¹úø÷Ÿ”é²g¦åœÞû®u:²µýX{oÜéˆËþ*%çº%ͱ>Œ#¢Õꋈóüv>±pë_þ~ÿŒ?4f.‚G1cœZG’ *Àõ[nV%«ãîq¤A¹=ome½xz¡çï?Ð?ƶ0›ST+?Ñýí|ñ•ãPUôNvñGu[í\zñ]J|2A˜ÁQ%A·ÕXk¸êÏíufK&o*Fx0§dp×'úFc¾›°ß¦Cž5ëѱúŽ.þűC)"G4Þ”sŒœ¤ªLøÿÖñ‚—„<|lI/À½ô<¶¥CšKVš®Aë×Ú¶4_à1è5@º‡p‡p„Òî\^[’<ÍMePŒ-%¦Þõî[âÈÚôàQnâÊ“î[È@*]­´j6ѱMùø’H¢$"1·/W]§Ù*‹’ ÕrKp>ÕJhp·©h ñÑEÛÝÿÑ„X? sb=ÁË‘ÌöÓV)/¸ŽÀŠÕ}ËÔ1lXU鑜é·æŠTÎCRô¨àx‚ìÎUOPH”fÊ“½=Àõ¨‰úц¨3Þn'N€â¤¬ŽcR“;nPÏÝŒ2ïPËàܪ˜ŒODŽšKþ 3ù7Š6@OPLÆÉg•'ÍJø"¦Ë3û»ì[*èI‹b¾éXÕš3þ=êÍ_@Œd^ùÙú}¢À[Yˆ„ ~gË(xùÏç}¼l#´×Re–ñ@jËïFý0Ôâè®—0i:99ö–¸²éP“%³Ls;™ ½;8r`É€XÂ":vÜE¤JÍfË›¸v•âó+Ü¿ü:Î?Úí &O+›jë ÌJ}…ÚÓ£¬sbQCªhbú²µ=öIlC›ÂïÐ%EÑhÞnA,NÅzÛ“Ð+¯³Ÿ¸S[Kæ"°àÙrçz™§ñ¹”.Up~ þˆîWÚ>£Þô»›ŠÀK„ã Áž²P˜åÌžbÔ˜àpIj#~ÌÈ27@^EÞáÿz½(=Œ0æêä³{¶Ëì”+S 20ÔÚ0ÄWênÐöV7ëëÒŠÙVYCI=FuUá62ÕÚ‰²Ð~ÂI¯¶ÛÅëÇAiÕb¬"ˆæîžˆY6òä EL½H á°/QFJ¡ Ñ·ÃÇ£9RÐŽ"J!§ú¸ï§´'f°¬¨‡Ó¼ Ì[¤Xˆ¶G,Þµ;V@‰’Ô!e(;6Ã_xQ!$”ûH°ïoº0v÷Æwoí³•z}Ù"oè*Ð` n¹ØmƒF¹$ì¯XZ1šó;z<¡— 7Ê>p9ÏT¤Åu0{úreq3òT lj7þ˜ŒýÔ»ß mïœÌƒÅÒ„pòÀDù¬NԲݢƒn¸Óøõõùçýa§eëzZpvðvùqé-{‹6Åïů™ì›Í žàâj–Š×ib´š! pŠ1Ý¥ˆ‘Ä%³…ÚûÝóŒöìh"¦ÒÆz|KéB ‚‘Ä×;,Áæ~Gþâql ƒtRr˜–Ò;¬H}xšä ï7~›–F÷H›~H<¶ð?qºë´™æ—5; ÿ ßG]-:FˆÃQe©¤xÌǵy[Š]ϧ·%äL0Ÿ’‹0ÔâNYÿÄÊØœyjñæÐÿ~ M}¬ëÙÄŸ÷Ûÿ %Úm£ùè€T!Ë"Âv­èÚM• Ðt“Ldÿ¥¿¢âÛÓ3ëªJ5·ÖAaR¸˜AíN(_v`ÍZÖ)“#ÓR†‘€V«·®´JòÓ×cþÏY;§'ZH+ù=K…ù%kÅ%6I¯>”ƹÈksÉvVw#ËüxÝdÑèøÄÞuZm®à9š êѺ "›ŸÏeE¼q3±¤M¥kö‹û˜0»‹qzÆÊ–ëD“Âdþa²é*4ÊO]âüª³>™î“X±Þ„Ìe§\$œȺ:ûD›õ2´ îêBÇùÇû÷4©9´Rzóΰ‰£¾sj£Aé´zZ_$qÓ`š$ï²V«Í—ÍêãÞ qÖ[&sìÉ3•̃)® ôFŸ8ÑÁøÚÔÆ/L%{yqEÖë)W'|Zˆ9²<÷ÛZs`»Þ –³ë•/›É“€0øŽ…%7Å?ÇšDk>’‡(äµ|ó´u$øVa„—O è»óÐ+Ç%ø:çä° L•1¸.¿po¬Rþ+àŠ”øÞEv´ÞHœÛ;ðòœ§=ß MȦ}Ä õ÷½Þ‘“dñÖ&þe3.ù>Ÿ W›Yxò(ÓÛ™œ¾›Z°=ëõ2V‚ÊèJ‡M¤aê^·J>:Ãô_ÓºÛ»ðç<>‹:ioo¥PÃ]*=+ŽoáyvI’°©Œ•—‹UñœªñÏgýLÛúÏ 4}ÖD!ÑRHœÿ}æËefõ*J¦#oÑÞ£.+;ÁQÈævœŽåÊÜå\ú3ð™%ʦ¥DSz´Õ1þ}¾>>QìÜß}Ö†˜ßµŒ¿[së,øc.ÜPã3)#¼5·*,oåæJý%^> loŽÊ #ç·<¯ èÚ^‡jØxí”Ë5ÈUMü [–Ñý¨àÒ•ìt±Ï¶"j©…ÿ$âÌá«0ß¶sòÖ|z‚A¡‹º ËÈæŒˆN`¥˜AàMDÈÔø!^ ÃÉ¥4‡r¯wøwÆEãô’Wo†2¯ßV/ðÑqÕÇÔ}r¼sq•P_5úZ©æw¶òо$Ã4Ç¢á–)ý4¬MôC jJãŠS](Åä¾"P'yþLR9˜G8ÅGCšºá:7—iЇæÌÙ9I(«˜y ™§ºà.X…gWÊ‹<7£,8‡3nq³%Ý_γ«Ûùä:‹ãv¬ì¿_èÓ7ŠEzoô,d"ÉS4åÅþ‹±2úòß^¬®µþ‡Þ¨3K—^èl.Åe9Ù$m4r>ƒùY…d”ÿÔõ݆j‰^OÓƒœ¢tÄ:jwXjjÒÊäYnù<®·¢Ã6Ã;ü½ˆ.ô‘£êþÅâc‹±5ÃNIéÁúþçþ±š¾E}ùBekqæóvÙË…14ÍOt¿ÌT8l¢ŒŒs*Iúúµ¤m‚‡ wPlš ¢ds0§&WÃ\;Ä-•"}à%Ž)Æh“ãZŽ]x˜qÑzÛ¸ñ9Ü4p…ÂÛµ‚F ¾§`q»dI…[´üšþ-‚ÝÛj1:o"Á3Ø P@—WÏÜ iŒÚÝR`¬µà*$9Ýägñmb1€Ô8Ç|•†”õüÇo¡žàÕé§ælmä‹D¬T†±DæùôÐq”ãô+ë1ª.~Ž;zïÆ­Púœ”iå횃V[ÎÎYÇLç÷M ŽÐ·Jl\Qù®KˆIùÞ5”s/Œ,ø…üãNròIÅ܈9¯’öû»iázò6R!'(µÐê¡Ê¦×u½ƒ¹r@máÊîôG=ò‰¿NJ0®ÍZr7–Tt†GÚÛ,{ ¹Å}M+ ¯ÝЏâ¶»bœµCm\ãsÒ»³K9A"HùþzPBŸÙ‚ûƧ½Øï÷bj nÛ«…ܧQrfN†+Ã0:é¸{*Ê´‡»ÁTÌG@χÃû—J^PxE’n"yÀc¦¼~èлT355CQüÚ¬P SÂØ·Âx/{d|kœHaØ2.ä»U}¤kV4Y§Ñ.¯*IjàÕ‡Ý%Ž*&ʤêSb(Œ‘vÈ«!¾m:CŠÂ­X’W”V†Õþ°qp—¯Úš%í¨p%&íbòÒŸÄþ §9b~4ô ¯8¬u)–=Àع¤*=®ñ¢ÓÇ{Ô]ß7ÕÌ—MéºpNYHé1Šþ<`^†¿oâút¦ãG}ÈQÙ‚¡ kÂ$Û-îZ4èNòêN%óîíܸ4ZŒ+_ñ&>ç…õ«Sà}©Þ)NJ‰l:*iÅKÞ(Þð[GWIp¼Vk‡Ì±jCXÑkJ™“”"2€£èk]c¸™A»Ì×]8«Ó+ŸP‚’¤“êE‡gq¡iŒsÛj¨,gâÁ6ùæÐK¹K•˜$o ½R\½{Ðrt±«öÑ%¸"GÜŒw$ñχš›òz«)Ë/ÇDúîŰƒ"”> ëã”ѯp{Ü€Dü£Â}ünlc8ό՜)ÜÏÁæ{”ÒµÁ"ÚÊÅùÓ›ç'Ê-ÖåõÝŇǽÂùAÌ^¢ LZéRJÅdKçÉGúŽ¡z¢5¼€±âÇ 'éAéiÀ þ‡'X*uúÀí;¤5ñ/ahį‰0ÒD3(FVÕZt3§Œ¸#Eµ<€o‡i#éŠÍ[‰šRQ¸K½Ruý>{D’Q7}vC&k(_ ‚Ó[ìØŒ±=ëVÛÇj¾(6À´ ’3æâÝÉ&x8‰ Z»¤)Q¯œ%8ô=©_…0g3“y’÷¡(OÜÔ-à.ã75j%x×WhI è&HtÞ0ˆãñSÑõ¯?Hˆõ¦CǨE5´ )÷ó?*ºsi5”†–{éõñ²8vñÊ& ÷5ãeÝèù ‡Kf!%ö言¬…\* qœú½\›ªHnmˆo^8/%x ÁøÍveÓêôùÉ¡JœWÞcÊÉ@× +ËI˜¼kíµX;ÎBûìÏ»‘Zm'ð' øù7Mï™~N\Z'3CèhB-Q-âNzùÁlÔt9…jCØ nÎFÔÎ]kþSýÛ/‰‘Çx ,³M>ÁA}ȸÞÚ2"í—˜ÃW@`Ù"HÎM/û©©²‡7…@ªïe€« ؼî_RÙ¦$#É^|¢7üÍQW¿=3ZèIWc˜ÃnámmÇyv|މ·næ½D{o„`²zéWð¤QûÁ„&cƒ=)ˆ–‡þîša?e 릱Õõƒó¯2ÿÙ7E{"f=‰” ¶%¹b¤ ð±cÇÌeõ=ä v+Yð'%Ûiú>œçáe4‹bÙ¶Z⯣>JnĉՅk Ž˜Í¬5Û±„ß`×\Œ<ÚWç»?£‰¯`}xw®<Úô6dCz‰èN ƒ4^VM%!–.£2ÑC]j[÷lƒoÓ¤Æ.TI+Nçß:• ›sNKïõ‚Tl| C³Ä€Vˆ¢cé…þîÿª’Ó¢'t¶ñ‚Ôf² Ò6:ï.СÓÇ´]U3Ú“†è¾â:Ò=eû> wžP}qÏŽz€ª–;¸Rªº`{¥Ù˜þ%HßÑä2ô+k,1d{Pù½“õAªŸ}C ¶riçq†ê‘Iuz ï’?O—B÷¸lžÜ'¾!×#EÀš)I8v¶¥Ëýàw•uÃ…36œ›gìÛ½ýk-f´BŸÍTd õãÙTÄcn8d‘ ¬‘8Á­äÉL›±åÇReÛ:µéÓ«iÕ';ßÏÈor„ F¨øËŠÏ]ñ‘{…¦qØ/vjs&ÃÌ.ßÑ![`ÚgežE£ÐgИØZU&:T`] Xt`4“uæ1"F3Ä×és[ˆ ˜Î ™ŽÄªü243‹§Žy×aÒŸšYA‡ö²‚´¤ÝãôŒì>·;f›))Zç«[U’ž89[ &µ^…†Æ{Ò•UÙaÆ´°©oÎ7yuŠU Ñ2Ë”ç2 ü^¦Ùèì§¡£Øû ¡ÿë#åeõ¬#¦äb8‡Ý‘ð-Ȫ]?UÒ6dS™ð;&~x0v;™lX‡Ügá´Ó/ñ‡:ˆè5³ß·1 ?A¢Û»™dKx=£iÌvà_ܨW YÄ`Ù[Ç?q^Ypo¨\©–BhE„Á×(ì'’j¡rj½K¨¼0ˆÂŸ»Ê°VÎrY\*ÂŽTui7¬FÖ|Ÿ|À U!…gæ}}´)%ç«yŠ,˜=ô«Ìv0çº1 ÐO8è³÷àï2¡år_àÌcH5Å™_ e`øQfÞ-rÊ´%Kg)n<ØÕ¶¸yíàœúÍ 0°v7×çX‘g0jíÁÛjIN!`÷½‘BôÕldÍ ÞD£ðã"Á¦SòO¢«!{=µÃ)O¦ÍpäÅÖ®/öré %|à £w䇨vÐ £¼Ý<Ó·Á¼ElÒ‚`+lëý+¶ÃŽ+ÇžzŸÕ«·¨œjzÛxžöö,QÍîÏóRÑ›{×þü` áÙKõk‹q Øî>ÒihFÑÏâüy²¨ žäc.—çc“ê¯^õK hòd÷ƒ»ÔméÛÃxÄpîñ+oRž!±‚îz°ZªʘCàËI\½l' ‰îC:‹O ƒÒ™,<‰»¹ï ikÈ~ªj؃¼Ýî´ õiN—¶ìš7ÑbsKÞTÛdé„{X¦‘–ÈSÒ·ü°t"^M… ã÷4šó®÷Eô?ˆñY±6·’] »nà'¦ŒŸ Ü%Ûˆ#q~\àk —éàäXeÃãÑKò„W¾_ä¡ ;GHÁÒ(iÇ¢JK‰IÕF#Ÿg,¸«è‰à}.ÅSíšÜ”/€÷ö”è–HHîš® ü:/Ÿ¸TfšKT+J‹Õ…Á’£Î*Èž…aÄ{Ü7²ª—ÙpéX²oêÛÙdÚK)wAÕO‡‹ù‹·aýÕ]·Ížt‡8Zò”›F@¿ˆg‹;J ü‘_¥uƒè"ƒ’ä¤mBU˜³ó®ÿ(¡-QD¾Í¦ì&ŠþÔ:6†dKÔH©†ÊÜœešèüîjG-u«žâ-îL+R×2sñzÆ2ZÃ'0;­§ë´t,ï’ã¬zÏþ‡aÀø÷žØÔê´WÒrn‚8|¶‰~‡v¦RzÛDjRp „œöLN§Òx‹×¶ÒG©ñóRy@Эì.I)‡è Á?Kê˜ÕGÁÔDl^šcWègç_Õ}ÁgòYãƒ0@Õ¸hèS ôü¦~‚ mCDn‡ðTô®KtÛm týo’÷¯.¢Ú܉%̲Ã_ñ²m…6GôJ]Bâàs¿ÞŸÀù*ö˜Ùº®Žd¿^{Ì]ë‘âmí!ÉþA‹f"Â\¿gˆ3Fü¥’Ga'ŸÏ|ë£RXju^.`voLó×–×âQ†_H\z+αK)ÛúÛf‘u&ýÚðÔ ‘>!Ö~iíɇÉÌ´‹6níN®Œ©á,èhË^²m9ÿp6,¢xŠÿÆ; 9(XiËÁóyb=MÕ·K½÷ž,ëúáU3% "»Tr¢ëjÔšçö2€E $õídåô`q/ø›÷%BÇÝ‹¥,ã$l4QU[@¢2!÷gÈ–¾`A›@{ê$Šw4FÓ97mùÓÕC”ÁÛfì ìS9Pñï.ºúTa™Á8MáñÂåÂýíéöÞW%·¾þZuçHÒNþ¬Ä5AOÊ c٬ŋ¬¢_©'“XÈ&gS$™?|ª¼0­/Æáv°“xWÄD’G}e¤­8Ëv#ú¾};w© l’º slwLrc~³+eÏNÛESï>˜Þ¢jéóF²É>|‘*aÙ&â.ë_Œ¶¢/Oœ˜=ã6Ty›G_¾¶©)ÁXõ¥F´&8…ã& ,3žëq÷ëw^?A½0lPÓ+$íOþò3ÒGe'àOÞšºTb…9âéj4‡kdáÕÏü’NÌáZ”ŒÒ>ÇiÞol>zŽ8té‚må8–H £È”2ÛVõ¤XÜíͧ¡½}ž ©R´œ÷E·+Û%[ÖŽqŽ¥ç²jB4ßÃןMUÂr•!¹ähbÍq¥HÏ×[æ¨æÃÉé—î2wþæ@ö=ò-tÙo6EÚ-ñ*.öQùîY2 |µ½oK.u÷ß(jÑ7Q*\ œ8‹Å¢Çõ'0µ-'±ÔSS“øx¦˜ç°¨*b‡2¿ì“m¯ Ø\¿{z™ãÝ‚Êa°uQK„ÞCž´fê¾<³'$ð×¼Y`2ÎB7ËÒsµuŇÐB›rõ;dÀ~:'Ñ´BÖB†®Í÷‰ÃÀ/ ã‘7y*‹ôCy`ºhÙé$¥ ~?úDv¯ÉÄÏÚg¶ApCog]‰‰¤ð©·#¹hu±Ñ=0{4ýˆV® ¹»×Gá¤Î+ØaP”leÝ¢x;¦ YP®:áéB¸°4åÍø€x6™èÔ³A*2eXN§k¥ëëSkŒ†ËꤕùE¾—N6ùp`Ì#`±˜™ÕÏÐ"2ÅjÒåóêú‡7QZºýtOGöÓ‚!'èƒV×€¯ž"ÎæÂ¾M:yJ:ÁµgDåSB»7‚Z ?];Cœ®ƒ&SÁ;S‘%ÙkÔØ„Ž`¨íYÔJnŒ¸@ü°«$¾Zü’GÎäPg¤ KVZ2x ÕË ³['z?.ƒÛ¥ò€ vì‚/ïùF!²jÎ{Œw)Ó\t€{Ü7/âQšÉ÷ù¾ìvé¼-&t¦ý±í´õñFÁÈ=³r´ëÛÞ¹’ät×cÃÍùñ}É-*+±Ã+ûfLÃ;¼è vNß“‚8PRG _nUë‚6´¤á„ –ËyÀß'íŸ<²tN…ô}™•ä™Ôhâ*ÉcPsö¨šù]’U¯i d]õPC…¦¿>4L•Œ_±>zt¬aR–“Oäqô¶A„ìTù©ÞË+Ɔè êˆ6zùÝΈ€ð1³"½ôÑSò$!D&¸„O,Æ "Ce©Yl·4d‹%þ bà ҜÖúìFµ>Tã¶2¨0ÌH¶ý)Co€Wñ1;"ðE) ð×5©^kC5[†(³¥-ϧ åàJ1zEPÔüRûžï{‘wB­yr^ÿÊFÍ2î‰ÑÁ¬þ£H<áÊæ²_MX×aø&#~„œ¢9XZÈ«±HR’§%OÛàZÝz9¯=IÊ“Ú.›Ú5ôŽŒá-II^A|éºVhò.u !M¯þ »j#Ïä¸~õqä§~k·i£Aß>.rÑ-u†žMÜ—Ó [ÉvVÙrÌ ¨Âu!Z z7þ)7> à·‹a]~¹‘(Ð>o¼«U%¦ƒÄžZ°äÊ"åsÝ·o4ì‹bž;`~ô X†*T D‹†ÆøÌ=ÂY×ÙúçG¹·-O¥(o®ì ™_X‚²œª㵤H{Eò"í’þ1ô…‰ˆ?탵œ'Õ|nQQ ƒrÜÕvø/+Oa–™ÐfÉÊ}8-Ô½äÚº03€´ÌÖâ*y/ˆ”½d)SUî /áH¯£gf@¬6¨ø.x9Ï_Y02¡së–ŒÑ{Á“- ]xqè%&€Ò¬2²n>›2 véD7æ`H[&5ÈÝôBk^‰‘ß"8â.<ÓCÁÿøætÑf–À Ei—$/•änºâC ùŠF”ǰÀPèyf‡Sw[ë_æ¾En5åüìèàò‹(ö' ã }^XhÑ^޲Jȵ5ì-ê±b›NÏÕÈ‘¯Û3j¶³{㸧£_ë*Ê‹ê—7Þ¶ÌÉ_loõûCÞñ%›¢.ŠNTT7£K©CØ]5|Égò/†ÓüÉxó@ðªµÇ{è÷¾ør‹÷ñôyŸ–*šJ~?TñøÙÐG^‡˜‡þ H5/¾Üû(X#:™¡ì>.ŽLЯ]²}Ô3§È—>j’auàî?Nj¡Â¬,µXÖÅ.üz$Gtú Îÿ ·ê„W¹òõŽsfÒú0õJNwJÆZÏWHÎg͹\Ikc "D‚Ø*Mu5¹˜ÚtöUg9MÎ&tÔh.? ¤;ëi[° Fjf@º Q9ºHòw5,zq??=3fµÂó~¯c ¾Ç¾åγ^FkŸDEÖå,í‹“¯ß—ùzdÉÙ{ÉÀ"!*qµ©Pàòñ¥¥Ø”A7B÷#{‹˜vg"®Ê~X$Õ2µ½xÞK¢O ¸äâÆŒæ(F?æHvMÜÛû¿¯Ÿ<åÊka1Na€;º0“¨®úÄÅhÕÛﶨ¨OZét÷õQ¢1Ï“aáßð‰{pou³VYF;‰žö3>¶z_µR³ÙöÀÐÇ:‚ ÈîŠ1<É€â[VžÚêkùu`~¢ ;¼#iåþ€£ÍgèØp¡ ý'ø G¼6 ¨ÙyÉzu 6`_f8|%jÜ5Qá¹S.ª„s åOe¨pš"KUcô„<žN}tC |œ©Éî«l6µd^1§ÙÝø˜,ù3If¤|ü¬tIBÀѺˆ‰ky9P3Ó:¦RY=“2‡º¨N·`ÞÃd %¾)–`¼ÝŒàË8ñÐU;ZsŒ1tQ܉õ«wt*%T¼#ˆ,*0Ìe•ï´^ð?rÄ{~‡}©55jZˆYC†WRã5i‹Ö,4xš ²§ª¾}aQ¸wáÑŽÄêŽd_丅x}Bcöñ'q)j8¤1%,Žbkîå†*D¿“dÎ:{\T¶P|a$×îÎk[îÏü9æl¢ÿ¾äsnêÝÿeÜÞ…MiÊÏ#¬ššã&õâ…"g¬œËò¼ÖOþ›[þÁ¹Âu̱^G6 $#ŒóU o¾.ÄQYÒ\|äC‰•)'+­e(D½Åäâñ1Å!œLÁi‡;9Üϱ„ÿ8Ïxâ‹Lĸÿíá³÷€M0Ùlé?ÞJZ7‹Üq…Ã2&M¾Q¹_“&à™ Ì3Ê„9K$w¸™R‰¾]»:iÜLÖZ$åÌW_O¸åM =p/l›‰©~¹ iA-hARì“qÁíàÐ,ˆt®\´Òß6Ll6òö· ëí *|Öø|6pP9„1¡”_Åçc•Ù½‡l#à:Ô(Nú+ÕÒˆ7žrT8nÓsìg ñ«H»ï›}q×ìÒh±h$Kñ³­œ\IC„m™ºtÆÂ‡Ù˜¿ aQhõ©Äkp«·kǨ®iê˜J|¢±†S\ÞƒJÙ)™Ç$Sk7t¡§rÔײGi³›Ä¸øhîÖ•†Ôæë³°ck%•ðð™c}•ÉÀORgó³A2Dü•Y2ª”´ªe —‘2Tê´jø%õ£îÊþÁ ­ƒ¿]qY¯Î—1ÉOl~Æâvú„úÏLÄvæ¥5Gp&ãYåé6f¨/1æå`Óùg´pàí=üÍTÑ×Юý¯ð`‚#}Æ Í«ó¯o¿lsnl‹kÞÊ£ûÄå§eƒ Ä©?“¶¡õºˆWJcž\‡Õ-×c™>úSŒÚˆÿ÷àNƒIÆÐjaw0gþ\ÁMt‘ö>&çPæJF ™Et QŸ¬cÀ9cd”&<-qØaU&rÚ#,Gi«/œQ¦¯ÃÏL ½!¡šœdƉPrŽË@‚Ž:™D;óÑŸ »iæ5ÿ$Ê„›m>“¯å†À4äzT-»‚ß”ÿïdcþ)ãÔZààÌ|b àžj±Ÿ8G=F1±Oܼ:¸iÏHçOŒ)ä“ “ׇ„éC&Byp›°ÑÉ\*úܪ¤‹”e„´ÑùŒÚ4t6¡üaÎÇá Ñ娙„9Ÿšž<=€}Ù6Éí*âŒÎÁéLÇ^PùcMh½]M"fW‹|ÙLÓ-s)û¹çæ5OûH€Ú^b$wq­ŒW 8ñßWï/댹·»ËP j‹Ïþ®Â8©†#”ÛEÓ&´EIÁF’µmâäK×Ï¥*Ü“]PŤJ 0àd¬¢#;ÑSã 1I‰V÷éÈ.°  Ç<•t1ó$vðØ"’°²L¼à£ó-¨4ô¸܇åL¦÷ GïÌ•vbÎPŠŠÓ¦»G&ÕŒŽÏ()©-Û”nIR„;ÐÆ-ÔÉ#–÷Yj!ŒZµïªF …nÔ;Uc~geµû1~-Á¬À­ÁYú± žœ²`(3¬ô÷ˆ/ü2N«ÀÄ‚âL^[Ç£KÞ›9µ !Y{^U@m8ÇŸ!]qÉHÌö3âaWM^`zÔrû‹Ïó:ËO ƒ禖YªjÕÓµ”jñ¹oÅV­ýöyx”Òháû±ËÏFæFøÅu…–³Ã¥¬"Ö)G ¯qÊæ ó›¢ N¤}ƒ«Áû@ûõU¶ÍYTV¾UÈÜXïìÝNðÉr«×_Ó7Ì*‰—m0“ýµ|GÙéëM9çE¼ cÁñNB©zþï^õD?Ôÿ–™óÏ«®ÞYJø8ª½Ê§É>6­Aìš}ù©ÌÀª´'„‚œ–ùt–@)LJv _Áäº|³µëç–n .¬ 0ŠÄvFÛBñU6êhâ@± ×ûѰ€°Iºá¦bÖ8ÓàúYôeí[·ßw¯¿hD'Ê„v–· ÿÏþùÒRÝÕV=àŽ҇¦T¼¥Ãéj«µ2ùç98÷ºL˜F\¯‘s'ér ¾ÏñoK[aP ‘Vzö_ö‚:Øeãv– ŒòYîhjy„C›Èˆ…*ªê6D‹pÐï?gø9¦n͇¿rQ‹0Ìo ËFørŒ+ºQž†ÞŽQUñ«û6JCÇÂ_L3²¦Ô«Y€LG†T»ÙH’£ï)"=sƒÎhZ²êR ^4¥ž;­ž£ÿ²«8§ÂÝÃIFÃÍ»xðGaQðéšb¨àY–§ª—2GäB‘ÅÛ¤*MˆQKË«(ìŽ]¢tÛ¿` M¿ôNýðâÛlj«-¯¼g‰4Ÿµdûøf¢ä-Âìÿ;ùç¥|øßÓÇB·%¼0Òx‰W€<GR+éw˜ˆ¡¤V@Ã,dEE¯ÁN؇¢òr®jO|{ ¿xÐÃwëÔQ©n’¤¯œ»C”Bjs§}êÖé ÈðE í”\–l;P¹Î„ØìÉèw:Ô¼D[&RCêõ™/©Á5ke~éOJ‹a#íM(NÂಧož?cš³SA'«ÆW-“l$3Ò\O°Ž´-«kÚG êvò€žèe82çNžÕŸƒkJÙÒ‹I`Êhˆ(¼Äꌽ%éÒL¿j>B¶¨¬õ¥­é©@ñHœDÙ¸urb ÚøÈg•¥…&KQÚ/_HѤmâ# %Á^‡zêã[ƒ3 åûéú„Iq¼§ËOG`H5{Ô×C™!/Ïëšdà3·*gæ·Íº.®6 µs9¡çÑC@Á¬bªeX"’U¶ˆ€ù£ £Ä.ѽpìMñç—¬ IÉ|Û­£÷¸ÒDkÔ`ŒÍÇà ²»Ôv0¸©êF×X)!sJRÊ&É.f6W‡oŒròJí?ÍlK§ íš×bÒ"Éíù­~1Îl(ZÜh}2Y`ŒÈ§ÆÚqÂÑ*ÞÐþÁûs“ÁÄ-ýõ(ŵH?7•. [XÊ¿¹¬ º®*¼ðÛõËÄ`#MäE¯YýLµ#vÓ¤·ø2›˜í³‚ùÆÔV§tÀ2‘[¾è¼Ø7(„+‹­’:ñ~{•[‰¥P²hâ\ ±ï—]–>âj —²„–ôþÐÙ6–®‰½ ^0i ÀtÖ¯«5èv‘_ö&Cš˜Hï’qãìèµølVâ•yLŠÔ§qS³“g°ìff¹öíG+Ã2+[þ‹m 9\?o‡O¥Ï:më„ÎÄïnüºïþWQu¦UÏ×$½=úèý:¥Ô¶àñÝPßK·;~ŸTQ¨C¤6þ|á”û9 ò¹™¼ ŠQ„¬ßÒk\Kº‘I”&Õ@müϱ]âóZŸÚšâ/hIaú+Ýh½®¬ø!a*ËhÅ“%ȵ›üÀ/&<ª¯¨ íU(·Wåâ]ymI0|eé&Yœýõè»[g‹ gúz€Ça^•ˆh“§/žECÜK½»7Þø¾ÄRoœÄ„láþŒV»pLr¤MwãñóýÞLQ,:«í>Ì]Ös¢¹œ¶ºæp‡e!ǹ%ºŸÚNÿFiYÁu"Ó}qhšüÎÁÉÀ93Áò˜µÜS…z³C0F A’x-GBßûh·oÍ2 ÐÐ@R½I°ƒ× QW É;xëñ“¦ø{òß¶ŒkV(ÿ«ò (PïèÒ[3‹†Oã¡f¶¸\;ÎùH$±÷]fË<’ÑþÎt´~y}ß&–¼NUi܈}‚(4³1mûÓ„b9ùéwÍì5 81ÓSbÒÜ,<Ó[^ú«û'ÏSÑÃ_¿s¢ØÑ4vœ zí/`Vìá;×ïô¢8æüõMH&’G+×\,&ëéÕ÷/§£³poÂøK»uÇ·Ù¯b¸=JÏïO™N,¡>…4ØMzû­×)ð*Õõ@ö£ÌæfÎ2—ºÝS µ—Í Ååž+C1í´^i_J½q(6ù Kk ä½c±83]ÅÁßk'í‰Éí…Jìq†.º[0Y–^Š<¬éƒ#›˜æ¬È8%ß°ñé܈+Ù°ë´éÎê%]{±–¤ã*-¬«Q]Õ¦äÚôIó'’ƒÛèPq޳YŠF\\úžŠÑóKÊeºŸ²¥Ž<ƒädI¤oZæ]cY¢ y¸µòÎ¥t˜èJö„ÈþkÇžmî½ü·wšˆ˜ƒ1Ø 1/E}…ûX®EiÈ–oZ¶ÚN®V¥yܱsæ8s&“–ûû‡ž=Š ¿­@8¢;%^Y„£5°;¸ˆúœ„NPDŸG ÀŽÐË Jž´£Æ óò Û Ï,­ÀÝ)m[e2È'S<©Ð´Ž ]ˆùË4â¬P[©P*·H®‘U‘–lìÊ}°Ÿ†—J°r.¦¸€ƒZˆH|;ls$Ä}ì‚7ý |·ø]qtaD#lã‚BÂË<¢S¢óçäSš€ÛúŽ×UÃÑdLƱÿIEPIToUÀ½EÜïk"éø[0á·‹´{T'W™WŸ+åg‘„9¯Ò–2ÊóIˆ±)‚Ï¢­ {ÿ….̧¸ågË,’Ó?ïo÷”q°ÅìW‚‡šÍZo|ôb¬#$aógQÜ™›ðƒ…j/`ÞP (-Cj>ÒÊû? yÈÕ^pŒ9V$ÌÈò#È–W<õ(õؘÛH¯Òaö±$î®bÓ¯ 2ËŸ ó ”Ü}Wù öY»Ù]fü˜(¼×vê¡ÔÂ×H±BªI×AËN5 (Á Êëµ4q… p 2y tiµIþʶWœÉmìfTáAHÃs ÔW~¿Ú’sÖÅ,’y”?\qB@’7¾þ÷ç¤çâß-3 i˜ãØ Ó"K?`>QR(_]…´¯.à.Nx® gç£þ]ÓTëÑ6y½RÞ¹%„_qír rƒêùoÔ´Ÿí0é‡/FJâúk¹@è Å¡À'|9>®ø_£2:~U×ùüŽicý1¦jè3~ Å`fyÈÄòãŽ3t‰eÐ:èeÆ`.£cYI'ÍÞÑTN¥i"û/ê=ÁlɈ`±~CtYYßÐnÞ”ø{’pÀú3`Hm&8æcY&ŒËs½ìÆvõ&ëÀd¯Ú­G§˜ŸuMêëj#…ß zµ;ð&&ÞÕ' _aî_0ê|t\mR‘ìIÄáºxƒ,ú•8E3RüöwcÁ`Ây Rbxëô»×ìyj £$KÛ ÔÞ‚éLÙdZ©u“‘`Ô´r§n†K†Ê'Xyôãþ1曯V‰Ë6ÃÕ5âv£cØöꘄÖWÙîàÎÈΔ@õË2.¾­_Ä|eºúæBY‘È¥ãfÌãÄI®÷%qá8°¥"¶n<Á¡¿iƒ@aôÍú¸e@-;úØ÷ù T_Wº¯mG_© j‹6ÿ¹wñÅYYÇÌpì¸WÈpL_ÜìYCäC‚˜„´Kµ¸|?ê) 2íÆu~U–êujKjºO†äîW€·99Ún)`xÉR7þãú7ƒín’DÝm¬(ØÁâñ°ŽÜ•9£-ÔIÆAAÏ}HÉÙ寻wœ—¨ãRúûÀœ v„O\O(£q¯ù“’² ìø–f ü>=rt•ÚÓ˜Õ‹PB“C0ì+:ÑÇÁfÂÝ’·}ý ò]Žû‘$f2·‘Ïà±ÈêšÃè>mˆ ‰bðÄÔ]éŽ,‘£ºö&—Aø)’ÇsЏ`Ý=<žC?À]ü]µ® ²Vå_îáÌvù6BV’þægâ Lœ¢b‚Í & ‚5†»1 V_iã¤ß8&ŧwÇIh܃&†ÙœÍ‡äéSŽ4íìlûn¨žH³xòS`×4»ôK‡>’ýq2í÷0™là{‰%| )öŠ®¸é4YJÇüµþ’¿ß:鮥Ö‹†'¹-|’‚GH{¬N|AXŒ^3³ˆ€[^‘kºÛjäÝÀ_`<æ þ~Kæë·D®“š{õ|Kw&ÛÀ¹\ð þW:¨Ã‚bnÐû9û£CW'6ЭxR¸x6¯SWdFŠN+’ÕãßÎKíõåhüAØS&¸ºt~° n==GO¸@5犒gê—ÙÇ'F§­“´/ejÇ&GM—=_҉ѶRÛyçâÈC]¤GZ@I¥´ƒ>žÞ–v£DóÉ:Õ¾/ªÅ„e!Õw­’ µ9ÚCš§ŽÛ® 7O’w¾ž[€ BóîNÿkr³0ÅáÈŒ;’{<¯0õ)²ÂN'E£ôÑzÕý Ù#LÍnT2kΕýg÷\bg“¶3cDïG/Þ7ÔPâgJøX3}ó›O‹74"cnµ·zÖ…/r?ÔƒTÆSßæ4ÐÚ{Úuº€–bNÚGØí0hÔPBÚþþLhy6>|ßâKƒo9¡×§Ëd8ö‘z¨p›Ë@ÁÛcl«UéyÌ4Í<^8×W÷%”V”¿6Ûxçà,=jÇùÃo!kH¸cëy-"ùZiáÎ+“u>’dÃCŒ¡]i†8æ\4ÎÀõÓ³*?i¢èu8ž')y6³5·YøAå5N,ØY¦ä^ÆK¥·”A:–Û7ob=T/dG*Q¦GŠ,»½"Ó?>eø-¾”)7¥¼CiT{Â:-üÄk'G ¶òÉ ÀmÈè ${´VÉ„øðRøû_!t ôŽž(²èré%»+†_ú‹ãï›óNðM{.Ömq{ÒR(ãK}Ä*ûÒMrÇCÔóO# \!ÎóÄ?Á¯õü.ÈÆêO´¨Y{ñ¦|0 ˆ¾œí°fªªæZýç@¸È˜y©í¬a%ØšgÿÞA¥“uäzñÜ[ϵٙ¬ºõMkìˆO÷yÑSÙQk5ÏÑòÍ(Ó†„ R3è‡Zïy¹è»¦°™†ÿ¢ô£…×U[IŸ©QþŽxÍ Z,3Ú¨ Ã:`'ò|ACÜfùªVÆZÓšƒY«´ÆáìžüÐ0Hï²JvÜ ’;×Ç*‡´€M}<‰%š~çG6o7ËÒûc!°«)OÁÃb¸áãõ{Nê!K X˜Ê¡;rÿsI9šÔ½O°;¤írÝÎV©8õ0†Ã£?Áñ(Ï@_ÁÔoó¡<õú[hÐ=~ùQ‚ÅÂ;’Y¡^3(¸4 ¢ïçåmþ «ás»÷¼¬ÎzIF¢?‹êÉ´à4Ï£œ’Ììž~ß$.}IRî¢U¢}OÒÇqÙ™èýœì\¾1íÕø^.°%±5#,ý"ïqWÊ/Š9M·Ñ[¬(0Ý1htzóN:µF—¥½”Ð\OÄóâbbh ;ŠXêŸçå½?Ë}¿Þ›ÌÒ1-õnjTÀx!IÆfˆr4Kz×=ð_)gÒ ya«m×ä(­™»yT1Ö"õ*åA?/»]k¬êH¹Xç†Õ´9¹N+ºë·ÑžÒ ÞLà€RO4ädäOÊg²}E˜¶7ÿÀÄ™Øô®¬,¶¶H•Lí¼69Ú§J°©c”+ñì27rÌ6Þ8´ {ÁË Ôq%I¶±(]RÈ^ŒJ—©Ì‘AÄp¡ŽNOJš¤×ÚÓ’ñóŒXÏŠÕèi7t…W„7lĵ¼§Ç£Oв0+ß –ù͸x(á«Jƒ\‹Óö—zLP›¡rù”0{ÁUfTàW¸`A±íÎ?Àe„àÍ¿]fÕL ½ÀÄjH"&ÇÑ[NÛ‘]’«'ɵÕP[¤®¢Ð‰hü®y} aâ“)ì}¸*žâ¾ ®ªÎ1 jòXs! Û g|z„Aà­u¡_­Ë}‚¨ãõ’`8€FíÎL7‡1’1rãx<"Áõ’J˜Û<VAœÛýôôÁBϼàî¾AB5õIEFýͽáõ]sIŒx¬àå†ä*Uá¯ë‚VóI­ñ{:YuÄb4eWìqö©`|þEî7g›:H2;ÔU»ã¹ëbÙ-'´NÑš«≉ÕÖÍ|Å>¬þ"\,v#çÌáqŒÌf‰H.v¨+<"û¾ü*÷BgïíÁAá3¤ÎšPØP9Íîª&Ì5™Ã÷é1XÂ;koY‰|II¾ÔßQ-®Ryf y&»)oL6¨ ½ž‚‘qUpl£¦†x'ü`RŠg[Ùˆ¦‹­;@! •¶`¨(7ŸN2¨bóOüR¶úªé»ÑûH+­x·Ÿ:lRV«¹µ²qóó䈙h«{Ó—×öLOZšÆ›)M¾µ ÇÓH@¼Ã'–Ǧ~êküÔžë–#ôøÑŸ¢/?ØàVñy©zfãMYYÈò¼¡‡<’í>pé'‘×ûÙµ s’¥ÚŸ‹6ÓTÑ:û!dB—E€þîÝ‘©ýxžpš" aÃhܧøëø´-9/á‘Ò­‘¢Nã™ý«‹MßDX®QÞµ7éCq£ñĨÂÇu[f×ö-ízÄ  ·ÏŠ27ZÊÞ£~Zyø–gßž'°…ðe.L/ÈB 1â©‘¶¨†WsIìlùZÑùµÝ›ékÂs£Ï>×W¹t¯Èš < "Óï¢òü&hx¬d³b®íåuâš5JøæÜOðI‘Šk*SiUÚsz:ÅjöØÊ[Ëq½ #ô Ñï¥ã¤wþÐÉEª&²jf|æU¥Òã²~ú˾£¼Ë‰÷P?ˆg“? ©n09¼pñ¿¬—òjµò|êÍ¢ª´\éKsg`#žq¨˜vp¬rn'1«RäùØDjJ·ee”u¯ðDቧóvx†àNß™€è“Ëèuó™ïó&­-š­Ãez¤TëP­ü²ûBGîÍ.heÆ;/äF«ü qXœ)h*óØaºO bˆ1‹=3w]×¥º¼Ê¸gîŽY;óÜY lCÄ<(¥üñøŠê|°%út2À•¶1Á¹G³W]ì};ámÎXCÊîº^P­¯oâùØ_³Ë·•áÁMòzSŠÚïw㔌b€yM·†ù½ùB[Ža{™6aºÞE8ˆdžc[Ú Â¨] ¦—¸<Ùv¿ìÊRi˜*U4dK ÂþŒPÛ”NΘjgUä¸4Š;øYgÈYÿÀ `ÆÐõy¥Ñ™ ìx¯ª%¤QÄíXéhYËç—*- r®ƒWØèåy©W£j-‰ÅXdSë»ȋF!µiâP¦âzùÇ Qz²™Ÿá#3÷Š·ãÐÌùY’ê¼ýúsCpä^E{÷º»µ&/ÁQÚds7¢çRaTEÙòµiçì'·ÄÖ*¤†° BÞU\lbîêtZÂÃ5„ïЭ½Ã¾Š‘îü–™…j@ÊÇÔ«J°å--r‡|Áw;ôyi²ÝU¬_V+ oJ†&:£J*;äŒàF xí¥kH*Ñyˆ®Ç¿~ ç9ÍHáÒKx÷¼1•& 7ï_ v-Õg¯¨ãî jÐbq*m§4©cf^½œIÑŒœ L᳑Ä9ðìN]mu Ž‡åƒoBÙ¥@n¸±¨EŽÊXŽ|/ÒD¬É~J¿KÐxM­LmC ƒ ÝtŒ P€u=ÎN¶°p„­ÅRŽ?Ê4 Ò×3,黇ö.K+ê ø‚Ms‚½QeF£þ½ß¾!ºPÂBÞq¼n¬Þ‹®7X´œï¿¼Å€ö`¨»s†²oTT¡Z"Q`Éà6&ÇCÚÒ#Ö)ä®` sœPº»¸E?=z¨Š<3cºx¶¤ e7T”+c §t"a>ÒÞó „@a°bšªáOr)— Všž×˜‡’ˆMv_¿˜Lj*£ëÒ@ü/ ³²DUÝIXCf+áÒJ…BÅ(H–ûÔx\¼UoÒx®ÿ'phÀ”`•²~¥WäCÓ' ¼Ûaõ’Њ"xÚ^pºD‚$ɼ¹¸žûP’±ÕÙµš#»Xq{sŠ÷“l¥%0Š×r}‹9ÀÊ«µK­÷ëë$ñX©UUŒß,å3Éÿp(ž¨w3°êgF¨ÒH\MoýÅ ´z¨Â•f¡Š›ÉúéHöTŽ>åK”TŸP‘TõœËu}Îg¶ç ûÌÏáž©±™íçæyß³¸¡(D‚*Ǽ¯:ýª0z¶‰¾`uGÑÎðº,LoòŸÁVV¯éuÂõ6 sy”ò1׌ìšõG3Ç]‘_•ÇNøè`™þ7Œ²ФmÇý[JùÓ»§¯9a‹‹¨o?cnž>-²®Ú-Çs$®2¡éµÎ#ï„Gº0i`•×/¯¤çgxeÜ÷W:ª?0ð)_Öú/P’^ ÇÕõ幬=å¯5"°ªA— ‰Š©ß¤nD:GŽŠËh,;ÈANÝ-™Ç?0ˆôZMqÊŽÝmw{ ž‚ßu*Œn!Œ\áU÷f“£½…V,™hNàý¸*~柰LnÕOÕkpÒ~Ÿ¤ï}V0µÞù”zxºerÍÄIŠôf¾5<ÅœÅÓоXêƾD½ s1™þÊc\õ¢ _•\õ¼";S>MÊÕ÷ÓxwGd‚>èQü„+ž¼Û¼ÞÄÚwÍÚÐ7ÕMÛSþ¤ =[ïJH²>è:âh hÚë3Ë8ÿ®ÝÿôÅ€*ù' WÇÇÓºŸÊg(e3«cºΖ83{üý²ºÒª=2 Ê-þÉI@ÊV;.mq—ON³ï¬pU1ó€oãA¿‡öÉ?áè»ñ†¯ïˆ4ó¡¿>û¶,þÅtøe,AƒZ-cpß„ôåT,_CƒûsüY]ŸTÚ\ŒbibHEI–€)#2²X¾ír”ÏùŠˆ8WÛ ïEf‹i(zžŽÚ`Ý€¾ê9Ò¸Æ9Pç:÷rÃu¼NÖ,äHÛÕl´½èþHUuãÚj˜4©¦^ó¡ã?ö.y¾/ ù>Ã|©«×œDd>»{dw¶t^á|¶R¦б˜»P8±µâVa›µÈ Sç ­ç4|È>ŒˆpVLßÉMèvtësw@ŽZ'°ÈÿEÓÁƒÚodéhhÀSm¿äY±óáŠúûV»ÓX`$hØKÇ)ÍN}çèðŽ(û‹~ò@ÉÒdíg*j»z,j·Dý¥11_‹09uà<çLTµJ´ì"G÷´ŒF P{@ñ±6]ÈD'¢¿­®AÆy›ßj4b«õß6e8GÌ÷›‡´ñ´†š—™ÿ[ÏIG^=j÷e£íþKçë+²Øv mçÕZ¦¦®¹¸}J(KÕ‰Ö@Ù‚™AÖÑ˶'B csøà^Bx¢òÉ«¸¾hHÉð³¤ZÊ0€ô&IéÇã÷Œ2µ ‚Tþš{w¨¢ß=Ú¥Õ(…´L}èܦ÷]§›s½Á±þ/m5™<ÜÈKc]>FY̰/b°m9=PÓ~HÆlÑsAÁo¬Ÿ€ƒzˆ8îé©Àå'LGKš£>[X²}c5¼—½k:…Û¢Åà3’§³¿ç^.&/T¥k(3»/½§¤ýꃓÎÊŠÏãù*÷‡Žíä?ßïb“Ô·Qï‚°6¯ªü×EAž jI¥çpª¡ÇƒL§¤ê—}|Õá¼ÙwòI”œ÷=‹$ „‘âG»wtÍyìF)—G€Ýü˜¯²Ø†v1[P…Õw ¡:)¶™Iœ]í(41ÎQù-õÇé³ïýD‡fLv=ÕPz­U§î¦ŒDÝcõxêár…kã½$±( t}X]® ÓOiÅ Z«â|•$­UX_Çe”žsïÌ•–„)G‡c{¡ª/kºó–¶Ú ðúýâß~£Kîè" eË—˜úC· z˜sÉfÙ‘„ˆ‡[Ô^pKº¿˜›È7#¾RûßøÙ®nl½a‰zk‘ƒÓí¸»pÞy<Ù®+{¸q< 'Ùóºw[f à…»°š…æÎ{OR¼^EU?“¤gÌ5ú –«þh ¬¹p—I?‹›-caº¯Ã¹¼'}š Ÿ/à'¦¿f­ƒÜ‘»Z”ˆmó¿ƒ$kŸTÈVa㙽„«P.$c³×˜¿ †:eg†ÓÃkI$é Üé­¢úyB¾%4·îò`×M‹\$ŠýEH¹Åœ|ËÌ ¯–q4;ŽR–ê…ïtÖ‘LYyäJ\€1ô߾㠿3+y¬ë.ß§kdÇ÷'3¡¦rܧҎ5.‰F(¥]|„ÝJH"k`XÆÔÄ/}Ý\y¶¦›pðBJ@¼²z*I½èh$o§†î´4÷A z'Í7[{ÿÂi»;ÇGž.nš²RBc˜˜í4SÉ[Ti(9í–$ž_áWB<+Hç„y¦4…Ù¥LxmÂ=¿MüܸƼJznï>` ŒJOãµÞ³€¦n1búù"³2Ô˜Lþ0R¤C àÚø´<§úë¹Ðàÿ;™~DÔqLª°Æ” _(ù¥Òꇶ˜Ù‡×ø_jZù$‹ïáÛˆdâlà]Y¬an.TFž Ç |ñ|\©4ëhÐ[^»²t6R Scð¾äi’’T™¸8Ĉ̪?éÖ)íeOÁ÷?+25kªûgc…íá”C½ ËÄ„%ºÓ;;Ù=IÉa£*ŽÕÔËfV10¯ðÔªP©ò^â÷Wt 7.䔲Ê÷¸ Wø,«IôÕ‚‘+‰f QÂ?yCå€.æ6ùrñ¤àœ²EL¢ÖQPÜ©2ž>s)³/Z6ËsâwD#Ú1€TµÍ×ÍX,¨=„ÃHv=ÕT¥ô¾»‘¸h Ú$ÆøþF›}Ì…ÿ†“è*ò<ÈéüMTJã°›àÅ2'NSñÆ’yt‹o(ð œËT–ÿÄâÜ!K|2AžÏ–¼óÏC¤b|8± ;w¹ä1E¯cÌÞ|¥V<ØÞv¸‰‰¬yjDØñãŸrí:èʼnÙz¯E¬™„8`BÖ‘¢ùdBàQËŠ™i1Z÷€e= rýýd;âÎŽKO×ô0™HÌ΋Œ¶»ç5‰RÒ?$˜A©Äb–ZÊUvTm-#¨1³”i ô¥·ÖfŸ?dcA”8K4žkß8WW,Ü$Ù¸€²2ÀhþÈ Ë£çß €©4F‹Ð¿¹w<>çµôýÌÐøØ°+N“Ä_¿Mx²>…AíH¼i—Z õ<0`_:°†]’x}>*~›+ÇãûL<µÈ)¾:ˆ6~¢^Ù 3ó¶þi/ï þ5piE+|¾²G~Dj?&.AX\û„iR¬†{U8›·¯z•)¯ô×÷g1’I~„"V±Ékk±É¼ÚVÚo@œ~‡½YÇã;r¯sÛÙ€ÙÙ»Œuñælê"gD¥y¯]ðWt¯°ôN‘™dÄçgÓHÍSiå2Õ]þ†&­°@Éôã/ë›4Ÿ‚ô%Á!µ*üc‡@F ‡5–·YPB÷ãKIÝyþL–¯Tp'×­ú®¦T)æÝwÜ»#å÷v‹>P¥¢f šK¬Šé`øëµŠp3CÁ|®I;..¼Ç ÞÆ¨¥ÜˆËæ_º2 6,ÜšuYé\+k, ‚4S,SßDC‚¦g <åê/\ &„ú„ç5N]Õ§6Ø¡ëkÀçŠÂnØRª.1HYÕ¯GçFU\£΋z§gyÓ;Á²É”77Á¹>9ʼÒ%Œ¥ó æ±W=䎘÷Ú’ãksŽUÐí±çQs„â$Ä¥>+ Ùn¿Xg ¾û€sqÚ©Ù“F– žF½ý-Óiˆe¡@8MÛ¡²{âÙ{˜Ê,>kXTv²‚ÏŽ •zižW´(ݸeSÅ~×´]‹~D"†Ü"dd^½y;Ò)Ȱƒ ‡ Á¨¥… MvsŒYo[×á5 ùO.ûº¿QUµÁK+ '…Gã¶³Gqò‡¯·¯ªm9/*¹Ê³*7cƒ!ßüU• )‡Â’‡óœÁ“¬yòÔ%*.ÂŒ.×2ò’aüK öÕ‚Gè*Ƚ%(–2ƒËÈHçÁ(ssOyŠõ–BY5¥r’s hZ˜u×Ö”LÞŒÑXT&-„°›¯«ÖÍ[ŽNyFá›Hßú©¤µöš¶äN¡‡ßóEÉ—Ô©›æL’9 ½#ñ׈£R |yxÄ]|6 $RôÊá>èø3u8ûㄲ¨;4Àvæ¾}b½¸’ÎÃÞÙd÷¼ßT}°åѾª6Q$Ö®÷35Tçº&[Âò;,Üt%ñ²âC= ×QXyH¡ª_ý>ýÈϨ„\/·ex^Ñgž¬‹ªÎt2›µ²CÛ×llÅrö¾Ü؇JƒÌRD[@õ³Ðup ÏúùŽÀžÊgü>‡ ÇîßQIÒ_¨¹üÑ ¶zÒÊ hUQ¥ÆêÎ8žÝTáÑUªN+Ø6|ô+p…uæë±ÎùÔ2¾sITgžl<˜Jxz¨·½ýÕ˜‹•íR}ÀD¦²  à‹é[Vl‚Pó†X‘/=]-k®MÝÄ­a¶6¾Q>ÊŽꜭujÝÙÐÅœRÌιÝÓÄ"„É`–ñ×Ô‘O+Û÷™G<ôC9˜Ò;xL‘÷ä5ÛµÇ! Yû¿JRÒÕW spVÈèdõç ÌÏ6Òï4yëE€rñRôúã3G+,û‡G;é6¢<ºÓÖéâ.çIß‹6'߯CI«6H‡.#&îGLÔ—»A¯GRþJ?S=]eq¶}‹Èñ_ñ'vW€2bÜm Ó5SP8­¯9-Ø?_×74¿¼wö¦¥9÷.øng*+R£ÇÚs­¾ ±˜oÐJ:þ¶°Ñ ¸îºbé:ãA;°Ûd!ñôLs§¡°vH8]¤ç*/ÓÑ™$;®¦lˆÄ'èªL§)——€âÇŸ= ›•»èÛQÎ̦ŸKÄDø z[ÿðHFõ¼}Sù‹ÅšaÂP( ã@sy¿*‹}\c껎(w){¿ÑBøÃÀUX_ÂeX¼Û²n=Aüæ¸!樘`Hä•*ÚöuC·ÖŸf²q<†«²Ñ~¥ ê·|‹¬D6h˜šœŒD*^… ¼Y;‚ƒ„QŠ|$ǹv¥Ï=°Ã,Oî:ŸúíÔ*ýà0;’SªK~#5*/ÍÁOŽ¢]\¾< é–Ï"é·[³VÅP[3ôŠ&f/ÙôÈh.Ÿ¤ÎcG¯O@rjËjlç²÷¢FAvd€ˆ‘ùLÔ_æiÂR8Ü ®×i18UæŒC6Øz« ;ó±BMæã3y£9gs`k‹Ýß"5?s^‰¤Þ€ØbÁy*¡S;àœ v2)'töøÏáSüá[ó=BžØìBŸ_ö2÷©Ø® #/LËNbGÔ?-ýÁd–Ƙp(®Šè|kþ: Éï ÅCYÝM¸_¾äõX˜›—\3Ž•ïÓIÇÔ{îÚWŒÁ¬s llfnÑŠ8"%VÞϘÁ²Çµ<‡m‘­:Tù“ªP™ªõò¦… Í+BŽ®¸ ¬z»XšË¡4‚Üs |Åbñãëú¼ì?¾lI¥äÍqõVÁ.îÕÞ¥ˆ\Š™6l ®6¶w±Šo¦+q6¯Oí+éÈ'iœ`í$êX¯;dâ \kœl&~Ðá­QK¶§Š¦B¬ÒŽˆäÕøC)æ¬Öj02µã‘/îÊìƒî &w¨™¬0óܼÀhÆáoé/­ú°"¶wíò%äîðy2N¤WoÃeûï<š[¨p·)cØØ‹zpµ˜P¬È¬”øúlZIè„4ì+8Ù)IrQ·[£üÐòÀg…ãå4‚.;DUã€ÒpŒÔgîdÊV Ô£#<y¶€R€lÍz}JhÅö4‚HÈa°YuHëª×wGE·Ö,Èl4wЬD<§‰Yû“ƒ·©Oc>q¬ÅjÐ9•xÞG.—. ‘ð=b®¦æùYŠ @Òóyis’í±DòQú |¡}ÃRþìhRtpé $Œa®Òìñ$%÷}Dú„Y‰½9‘”{lø¤ÍX5ÅkeU¶m»a·ð4ãÝZ™ÎøQ-ÁXS~#Ú¬&ë òƒõÙ`,s).”Ë9ë`êžïiºc*S®Ðx"‰Áöú41½5•÷óyçGQߺxB†§sÞºu®U H%÷2~zy)¬1w×£æ’g*Ã%-þYOÓ -í"zMÑl9¸›Ó«-/wJ*jPâÿëQÕ‘U®gyšF•ú–Ýfm†!éÚ.‘þ"­ñÝŒÿ¦  ªpÍS™OiëPõOƨ@;­EºÄ"ê>]°¾}·íJ$tt&»hp“Õq\ž­uTóEðØ$zU `þê×I[kGé‹ïÁd³ˆéïº<±%r:)•yBÛx˜À¢|ôµkQ¸îŒƒ8ÆâȰäV†3n1{2ðñjö¼åÈ`>_“ýÇó.ÀyQP¹ã„J¨å4ûeÞ<¨{!í7n]ÚØ:ŠÅ ôa¤è+Í 11LA7Suþu&FFÓv$v BÈž‹ÞoØTh½ð”Í1Øèz”JÅ`Áåw…RÚ1¨ƒæþ­f«s`BánÞÿ/­ñ\é±ÑäšÍ$ƒUèxùت›l\«Ÿ›a$ö¬Õú–¤€)ù~§¯HŸ-'+çÌZ˜¤»j ˆ&ñCanÉÏ¥ ’HÂãiÃâ;ë B @¼ _QÌ[tß4+=ZeôDDÔÅá¨ÈW8Ò¼_TEjv…eîY¥b[luÒýaË–”e1ÁM”t­Œž„»5™là7ТºÛÈ&7Åøl¿åÖnÄÓm@aÞÛÞ¢]‹´NM…RpPðÙ<é{餻 ]píòpÚSXi2ÁïØ#^Óø®qz}2O_”€Kÿ}*/’*›ìÓE p 4ê]þ•WQ4lnn²rz¹É½Ÿ& P$ã`Ù±ì$pœÌñ³8¶ÏÛz ÝCv?«ø'§R-¦±C¸œÆA <ÙZ™qOØk†sC¯±¶ aú]ްÎÏ—ÃD³gŠ;¸¯³ÙQóÄ;£“£å0…Ãö5ÚDãˆ|9´Ž$VK6*» (žh=šaBž¨ë‘ë‹6cq£®b¿#J3ä=*SÖÒ}òbË ‹’䵈÷ òŒcˆa‘͇ø òÍ’$"7á]¯ô*ƒø»þ³p.^-»;˜'žì¯»V&ÎM‘Í,™?âÔ»8£•J¸;Nêéî÷F¸\ÎxcĨ‚`øu-Ÿr¬ßs¦¡GþŒºu®¨óY8,(ß‚\2¢” eÈ$*çÊçÝ6ÓgÀÆ[’*©r2”d&Xï_ðr€˲hðoyáž·r€ªMAu )½ýuÍMt`8Ed‰‹}1ã/³=)¦ó–ö´ÔõmÚÕ'ƒY-e:4ò‚œReUáÂ_@ÚøNšdÀ.ÜQ“ñÛÞB]ü‰Â—¹n°…W“¹>9Å /ÔšW8¸êË1½Î¨-RÏÕM–Pשi@C¸ æ6ˆíâÎÚ7MmÏMgÕÇèç†õd¤ÍÙÈÚ(„ŽpŽõ‹<}à¼p€Kgšm¸| íÚþ‹T˜\½cG°Ù²>,õ̽¦ôN@6&å f¥*ké”ÇR§ì '»³;—ï¸cgó/¢FV4ã=9—Ʒ׊Í(áIUR¥ôdvÇw¦ð™ÎK¼s …K(a± ÒB37Éb:A–ZJõh,­¶îâ’É»]x½1ìcânjÀ»´ ÈPé Çž„4䛎 ÷†Výð¤Þí‰ÕKàÖ†²¨"¾ïIïÌÝ8%¥b=+pŒ$ƒ}Õ3Eç˜yò°f-åC£&öctXL$À¥ru˜ëížû­Ç™–çâ¾ÓÙXºåžÉݱ)W[6s̈¢4¡)±®§šY@“C½þK{áª#Š{v¦õH÷)>S;ÉÕ?ÝÕä*⌂6‡E¡Î×Fä¿©éÍs¦*¿¾5“‡¦ƒd—Ç壌b;€þî [YÑ+ˆY G<†Vötœ @ëåNqex@å\84œîkó;¯~A¸Ù 1³þKT>ÇÓeùH|÷®TDÛM´|f1°^Ê…-xGjÁ*³ !wwdÖgÂíš1NÖèyÐY‰Œ ˜ kRÜYÃÂo)ÇŸ¾V¨@AtÏëðkáG‹<­±#M]8o%ï)O° ßkd:èM¦ÎC39‹kèO­÷ÿ¹"óGÃæVµ2)±xÀª€“-O5–Xë‡Ü«‚Θ˜B >Ý¢”ªÖg§oó¤y%hÃgá ;#©t0²vgþš pk3'"ºû­S£)gl¬jèF?”$_*‡)™g/°³!!™Îuèï1bI¡˜…akTýüXKgñ͈/‰¥¯I«|‚OP‘ÝÄjòæ°G½VïÂZ{YiÎJîçÛZpÏúöˆ5×Äçxû.6y’r´ðOktCªþ\ðÊeÍVI¸½SD*8Ýh¼Fel_fxgÉUB`c›K-);wIÞTn­¤Œ‹gŒkePco£Ö*síq › t¤KA ÀVkSçpŠKÝEmÔ¬=‹y±¥M¶Û‰#ƒíŠ­p+ØJ}—¿ÓþŒW¶$$“rLÚ¸—v·ö xŸp]³©U»èø—³mt¥f]O¦gð­±'Õ˲‚ µ¸à¾˜õû ²YÏ‚äkÝ…™@æmèóD.ùÕußWlöŸÓ€BD¨¨Ã<' í}XŽVrã äÙµE_vCð«#Í@E…ƒ/Yâ3Këל&žrx©ŒI'Ð["ËŽh¼mdàÂ÷OÛ7Š‚\Ž,”!€ïQÆ/¾s¶yFø¸“»ÆÙóyT³Ðý_=…äÓ¥znÉGãNPã¿QA8õ"Ôþó)£Ê:øK<¾!BÑoX¢ú«ÁSŒ¯o|)¢¹[Šg Ìž€«Ù~E7!¶èØ"˜Q^%ö÷˜àôwâÁNªq¡4ÌJ¥¼Å£>ÔìÿÝ»Ž lù]ÎÇä…qËåõ®Púí:ÿC¦³ü,`[/oÍ=ãò­»p¬@Êó]§ìÖéìCOôNOI@-¯s6þnmxà÷Ú×»tHCî½ ë}Óµßð¼e¥Ìù ³.á„ÄÛ‡÷QqÝ+‰ÚšEÔÿeO_¯œ_òú§†ÊMŒÖýžüvNX™fªìFF°~Vp'Ÿ,‡ç|]65R©ªGéçP¢„¿^ßÖ’«ëGÄ—¬Ús¯Šú:žÁ3Ã%ÐH´]†O+­²µަz§ª¾PêPŸ9EÖHû©#¢Wޝ?¦ÈÁÖÓVÃPèÁoPоa¬I–qÙÅi½¬꘾µ²U³ö4™’S 'Aõ?&"¶CÈÁ‡qT.«>M˜&n‚Ž>ÑòIp«7o‰ò<þº*Ê|ªŒØ»ñÓáÄ{ßI¬Y“-ÂÔ?-CÀ\ä]ÙKRù/Z£ia„™\qyÉ›9ðè"E./CÎMMà 0¼eÜ’Æo_-§õµ€ÆÕÑ\lr/ÿÙOŠ«]a¥ðÉ=*CO­…fŠ6å”é^:øÇåCuöG‚ƒOq€ÐL…ÐV\ QÏQ(þ€xžÔ€÷žˆj¯ËT·_Êü@˜ô}[Ú“&÷í3úÀßÓ8ê >Chˆ>cš¨FåêPr¸Ct1î;MŠH”C~¨ÖS­@ìÆè±é…èÓ§'ãnmFÞC”-±ã¿À›Þaê÷fÚ—V‹iùsר^Nniú„Ò*~ÆÍ‡}—1_?MÄ 3– ½¾ýîÏ™n9¾¥Ýe`¡Ý»Á;úÒÃßk”»E!]ˆëÁП§0ˆ {wÈàë8ÜûçÒ”eä»NúfQâså²Ëꊳßu®€'¹°ºº*œé~Ê8Ùßa5ù¢ñÔZH‚¯¹£0}Ÿ8.ØÕ›’á¼x¥î5ã ÏÜ Ç:Ô ‘\Åþ§9«K5aùKæ21ã:h€/ å<:£ˆ*îŠMCMôñ0M#(J)tWBíATߊ£§¡Ç{sÝž&‘ãØ‚@ö¿î÷5WŽÌ™´£ûNº‘›g 9õŠÄý…[÷ÏxYþ¡@iLœú_hÏJw(€†;zˆaÜEƒ5Fê©eê]„-¬wñ×Q 7a1´‰{˜¬'/ÓúE%õòsg'á9è‘? OrõÌ-Æl}rsø®1ýÀ}f¹¨¤w“™ÁuÅ™¹†ˆ4-ºç®@iØhÌ‚½.–À÷J’›£êáB‘ØüGiGÓ&÷Ù£Õ‚Ò# è‰*ÒI/1Äå⟠–G ÜbMÓjÞ HÕ&ÉõÍ Ô48ªõaG ¿žÄQ×5ÞEVžê9íH$‹™[®oÈÎýÏÜl2·ÖY« ‚<ž-3*ïž_Žj¤FÄ‹Êë)ܰۃÙAÅ|"ðò’¬²D†ª¤¬°(q“1žÿEôO·þZA$Žåì5x€Ù•${mØ_Jš¶EEɃáÚ<Èe £Ë>$*I™ä³ïW%¯a;ûÿ 't7>‹ëçu#E¢+q#'Â54+Ðp©,jG/hÀX«âë6\ÂR—ª€^U¼Ž ÉQâ]‰5¼Êv‰†TžVð^}k]’w¤š>·zSBÅX|(F–q‘ ‘žSvV»ý`ïÛ¬€nc†6L†_÷hãÆÖCြP½› :OL úJ6{NJO|ú`KWQïLËl†·žgÈøÈVÎïåòN¬+t|7O¢š¸W8~ñïI—+ô*¥á÷ÂßÑž®”ƒrSwº½v±lxÁm úD5Žqßl‰À]xÒûª$&Š‚Õþ7•Üæv ?7$IfËCLIYôÚø;H„qMÑ¢Èñ­ÐßQGÉxW^èðåÇ{M̆AìãC‘|¡¤$­¬‹¢DÌ[ŽØZŠÇñLÅNKÏš¶Ðy‰›ŸìíR»Î‡&Mgö8l½€»Ý„º÷ÕñÖq(’/li9ð:ºÜÕ¡b­š£K>t¬J¸‰×Jð¸¡ÏcÌ5~X0ô°‚T>˜4°ãÆÖZZCD¶—UQ”®_„­Ö¾ªÔßÑÚõÇzÝôÜÀËW½»Ej¾Ž4U%ìòÌs!äUÁ/7’v×EyãÖßA\™™ãÌ7{ò½d);ž Ñ]<ŸÜ2—šy¼i»éE.ÌgÇÖ¶†/}ò „vçe˜ ¢?­ÝØ–ºE„Pó|-n²Î<¾„¶va6î4Ac@ ¿ªšFð«ŽÈ¹4™Ù1vÿ[-gò­âfӮ廀ÖòfSß».5U§]PPØS­ZÓQ…ÜÑ’yµ3èõ»äyò$ûJúðZ½þd… ³Ö{]ûü’ŸJ¿›¾ +h”L± ¥iJìÔù±/´^%EHußó5þèŽUÁ׬Nµpo0–»n0•ü]È­äw²÷Ãî¢Ë€f¡Ê.T£¿ŽÍØO¢š+­¯ä…ÿݽdäÈǪ·¦¯-í8-ÈêãÅßÉ_µjgCÚåC ‘¿¥¥Å™ß aíÜn7„+ ÑB Kœ"ú·Š´@ˆ¾‚×HêNfç’Dµc—öv`Y÷ K .ö‹±ö6‚gt‹fuL’D9H¢ïv52H„ÊN4ÇO€ÜâÄñŽyÝ¿©.šk®áVÕÖâ¾±FKD® ­œ2c'ÞÛT꯿šMV³¶Û3Ÿax8g®d¶k½λ(íBëùx·!?ñílëñÿÇ^aÑJŠ8Ú1ÑR¶ Y.é,*@%æÍ\¥Î"'ÁéEۨ‚i?ŒAs´wG•µÛµŒ~º=aÌUšk< K‚B:–j¦÷yõ¿~ã^®%›w_ò££”ç‡V1`¿íúú+=:Iå¼`6ç9gý›D¸è(éP»FVñã!ç$¸d;z[˵ù„‡* ê=K¹µÏ8Ú©!Œ‹ßŸÁujˆÝbv¾d°'s¤æ@¨Å+¢Zò7½6kw\„äQ,0º¦Ðh)û&ëcI7¬u-%SåmÙJqx0Bà ·<‹Á€ßΰ)m1†o@Xû¥Ø_ ·ÉÛ#›m0g"*è$É`4>´u1Rj,pâÂu×F‰ ÅÇóºLõ*½k92†k.8ü¨÷îöÁã€Ö‡Å‹ §èí«7¤Æ0Q×¼§³ï³ZæœG:ƒÊÙ…/4·xuoëüê±|ºu^×ÍÜÉP›MÉ”Ùo蟭>¦GË//ƒVN_lgGcŒkÉñw‡ÑoŽ.(b7t‡ÌÛhº: ¤]"G÷£tȇ”TOî•«^ø;óÔ"š Ô—éH:ÁPž Ñ9M"&¯X:8‚– ò€hM‡WÎ4­„ê2(¥–Ö›nØ/!盀87·=lÉZ`@MCVuÿ\uFµp@•ôÒB—±<µºQ;‹àöÍgñ52–ò%Nƒ÷ù5A'ˆ3‚€‰NV×*F¥ìÁ™Ã5)kÌ&Õ¾>cyü¥iøiIUK@§­²v3_ÕLÐÊ0Í<ô¢rËYæÁ[¡ïIx¦,‹ÅB«óÇ.kÿé ȕի}ÌQ:Ô |œˆôOŠ‚H8Ù²^ÐŒVw`dhLp~‹`“lÓu;&2 ôÅäŠ:š·Ò/í6½dùDiÑ= ÊÅÄ´4Ú­´ö•wºuùîŽõúEUbO2¾þBÝyðÇ.½f鬋DÑà¸>Ý)\°ÏëÊ`pEy{«gß”©#^ÀÇ¥Žoä—ªòÜ;ÕÆd`[NUöд·ì<…l£ïðêEÇ*ŒÚî)[pU}&1Sr¯Í‚m-°Š÷aþàÅW°&Aàòþñ>¬<~û°¬ò.ÁËS÷Q/—ÂWòtŸ „Ül!}½!.³|=I†7ZRnÒ‡uÐ38JƒVÁõ¼w'‰ô¥.¼‚ºÀ’q…¾ör“”ss¶ Å Ë ”ŠÞ :!Ô±É}—¥89óœbÅ©šýÁykÍ£÷B€™ûtI•WžƒŽ½³‹Ù{üP¿ô·&rÃÝ›°89Wz…ìºml¶Úi}—Éú½g»¿;¸¬ü—µÝ1 “hÕ&‹ï‡“¬Ø½z÷!سF‘v—†òŒøÄpöM(µˆç6m6§xÒå›/ÂÊÍQûGH»Zò{ÉÕ®«„(ÏÂ;².‰rø­N+[à€5v?8;b蟈ÂÈÍ0^žAÃ_ÛN@‘û¶ºKõäãA&)èy%<¬é¦Cô2€§ó=¬$¥.Ëê0/ÿ—5ö&Èæk`øƒ»¬ZN}Â\¹•ú Tùíí">]Çwë£ÞÄuæƒaÃu´A3?żÇU‘Ü÷ö,›ù.;ÃË+ypV‡6Y|J=Ï7Â…}´ë'×µp¤wüŸ‘%]rbxú÷kHïâG\t3NëMý/·$6ÄzЧê¬^hNh‡â[OxÂ’Aî!-Y¼Ùi…‚’¦×•?¡s¼Î=?•Ï36ò·Éod¼T¥åï›X(̾B—Y8‰w)P*ÇO8AO€ [oÔµ›p•3–F܃U½°À*ìhKÔ¤5j©éET%¤#úâÊÓ›n4ÈA±ºö3•Eîc•óÕí} ¹DdÝÈM¸Cû°C\š ›•í‹Ðâ30}/6–]~t¨ÚBWpÙk0­ÚoùP?£KTSJVeÜ6Žïî? ñaû:æÛ5v6_Â-Ìã‘{Ö½€êšjÞOÕ/'±g1 êÑ7"åxGèvâë*ìœsÿ¹PÁLÞòó"æ&×’¤‡P¿»ÿ²X¨ïb yœ½³ðõQ~ò}nM³³†TT{P× ¤t]ÙãÒCCp×õŠs» H£„¯ÎÑòÑ v2k˜Ô>a×ÐuÚ‹Å©œ²ˆñg±RÛ¼ƒ–Ää'«Þ”ÇÄ„Êw±HY2f·àLe‰“‘˜ãßt&T“éþ¬#P"˜½2õ\"PÙZ\‘ûOâíi¶Åá¡:€µ¤¶§:zϰ¤%IŒøå"‘;bMºÕûø€ù?&14¸9é€ÅØŽíõº÷OáZ‚È}®… ð”Ǭro‘5yG"°{P>ë¨YÞ ÊŽu®³kó«T’Û {ó@†Õ• <®_ý=Ò_s(Ì/ZŸGŽàŠ®ÜþJéPÁ Ç…¶t‚…‡é«MÁ]^\×¥'× ’›¯Ú4¦6 PI:R¤ßŽ|BŽÇðX«ÿû’°•T¬u¶Î”; éÌêl•;”-"e4–¼p TÄÀMî²bŠ‹-ÿL »žÀv䄾Ñk\åÕÜøa #­ ~<çZ± Á7€îôñ澨ëØBd]Î(º’Kkèp 0wéAM-šM™â¨NùQ¤¤À‰ÐD>Û+ÐE”Kœ¹y™ìçfr£z„O à#lE·‘׿ž6ý]ãÜ“÷BcðãWp¼Èð’ƒF§ùáѳûšÈ½ ¾3®HŽƒÔ÷DÉŠð´U!´ÄmeÙ L"^%!µ^"Ó(ä£ü\]ÏÞRÒ~¿}æ}šz«?™´ k›­Åògˆô1’˜(‡y”!(™Êî`'ùXùªÞ¾öÅÑ']«W\HSÌa´õÃl?ÓÍRa eXÎf€‚¤@vF_yà+XîRQN?Æÿ§—·½Ö´}z6FÇS¬÷¿Ósñ Ú¶UhBˆi Ü‘×8Ÿ•2o×Ož¡.¹ì"¿žÆoh¨鹫h§˜=([9gIqT©B‘ Ø©|I*Æ •Åü!~©ÿª¤UGÞŽœ§Ž:êÁ#¯äÍyÓÙÁ+„lº°T攤Jf³4øë6dÔÍðé-RÊz«4®7>à}ŸëS\ÑÆwaù'SF0YP-iQþ=‘p{·³ É!”‡¨ã—Õ<_ĵ‡ý)é£,ÐÅO| ÜO´–à|…c®­@OñŠAË\ĬŠÒAªg^_±[?7:p•¾õì¬ÌãÈ4Â`Þƒ|:£Ž½õU¡²þ“qÉ}~©pþîÖ8ãs_‡>5byŽ$¸ìG¾á«~§ùàˆ]ЏY3.ž¸žÎ#ÒúÒuè-;Rí´âý:ÝêõµÎzkFu½Z=}KÁãá#!—Ù$%Ì1YÖ*ob¸8×FÍgßuÎ]]9t_Þý}bqâCÍÎyà2açŠL [BÉZÕd–õ‡{מ3dlþã7ôÒzyEÜ>ðØ_ÜGî]¹zY³>¨Ý K‘6õ=ß’+ògqˆ©W­lò²ÜìI ˆYjÀîå¯6 ag$ ÊúöƒÆAÛKKÚ-Ký*|ÁßÓ„ýú`%HO†e…Óø ÞzƒÃ,²’ñƒ9 7Ëí»,fsqš`çÐW¦Ve’F)×W»Oô­¿pÖܨ]SÅÍŒF‰nu4¨Å%T¤4 *Sô¿ï»#%* ¿OÞ‰zŒ"…OP…õ}·(D›Ö7MÿXi•iâb&Ü@D8aÐ0s²òñ>12K:d³½ßÞ÷z^Ä QfbXêˆÔÒ\3)×þ"8~NŒ;÷^× ÉVT7ý+k“7[¥e+ʾ ux‡©[¢; 1ŽISѼô´däÕu1 êÉY\â~Â50UÑÚ¹ñ_ÞBw,ÔS#”’íóŸ€€ uêFL€ íéáJé¢þ„D:Ú± hñ¼0úæáÉ~ƒæð °äË·õ«&Úõ¯­?ÿŸgokÁ§T…¡]ý¥O¼è>^èúÌ …Ÿi°,yGˆ\peÊfÇX.æ€À ¡›ùý|ÆfwðË–¦WGcTÛƒŒÑpŸ1vìºôÍ€(¯UÖÈâ£@¾÷V ÷{o9¦%#ˆ÷I䞬'OgíÍ‚é.õ(‘󫼟v¿Ê+%|Õ%õ]є͑Ü6’ãÀ7w·óÝlïƒm ^@·ë´%-XEÅo°Ÿ”Ò©™ï|èÐCkdjk“.2]ä;ç .í‚7{õ’Œ*ëõÕm‰žÄÆì”¡{\qzž8¼)=Uzéh`:{–söñ"Gò~ 9ˆÂÉÔR7Öíhm‘æÂö¦Š·õsÕòÜHÿ¯¬)ÜTß©¸. œ5ée"˜£g´}xݽôf x¹ž`!ü‰Ýõ;’æJ>e˜Ë·Äh”?ºNű÷ 7µ}Û~&tT€ÂÍN›'O W0Ú}lÈ q(ãÞ»l{Hùæ)à™9‚Åú>#F³‘Ñ©DX°£Jgq 4'[ïR± ;ð€¥‚×{¨+ºo{±O¤æ/ÈD¯î¨ºrh&UÆZ“x—ÞÂŽx‚øƒ'µÇô]»#¾ö™õXÈTbÒz•[Í|`Ô#…©c)婆©Ø1€›µªiq†½5ýbêq ßæ¶ŠdÔ)ëÿ£}CøœÄZ”û»V>Ï‘£7áòi—OÚ[“R~Z?sT‡2t {ê|WPúä_ó¬#”Tw22;u„©©ªd7²yBR^ËÚÜ";,Á¶ØDé#רâ÷œ¹tFÄ­íÇœÄ#ëJ!~vYë_«ÿ´à~y«A˜~"Íaü‘^¨D¹¼ï+Fn­Ò¿P޽œr ¦2ù7“÷!ŒVí_œ>^&(á[Òdäàò¬s™^ 6¼›üi(‡pÎ6ÞßuTd÷x-"4¡8Jò—óÆ™õètZ€Fuze>>¥²)m6 ½ó~üÏÊ °)—îDÀgºW–6Oyúü¨/nc AG=¦P¤ ‰'”üP°c'%½¦7i-€mÃá (Œ-G£‡UÌþFw>iàõÖŠšloÔì˜påL'Ëw<ûÊö|sã‡Üì`÷žûO7rB}¬LÒ·…™±`¬gï;¾ºTí(Uµ«ß`ä@±ïÞ­‰ÜSÓãÏ´ Ëe),ŠV/¦¥à ¬L%VrqŒ"ŸòêEE‘¼…\¢·çÍ lóμ Ÿ­›ã")TìIÑ]̃ðâbSbS @JÜjÎÁHŠx=pÊFN¬ÖõKQPJ-Ü}ß?ÉAH*ñ`´:nfúi™íÔæ,µÕDüGúÖ™hí =Zš÷I³Ås«êa ” îíèÑhY¸v‘—ô°hfUw8;?šòìõžþ>, Ë‹°f–ôìÀ‰' Ÿze—ÓCÞ®½¸”_§#(C¶= ±ô~òRþ“˜¸Ú çÑG2 D8š<­ß+â׿—"Ëw6L˜ÞN¿©ØÇV“º=Èð3$.öv°ôµ¶†²ÝÙÕïÎà‡ãôæbÇ-.޾#šÒz‹ÿl‚œzé×´/²eˆ"áÀ«u°!Ó­ãXg$PerÇ­$µÆ’σjdÁ†,BÛžßâë‰Ï[†Ýâ4rz µ¦ ƒ2%À†Œ@&˜h#(¹w\>ÿòÉÀµ÷Dž˜¤›ŒËU>Ë…!`Ȭ ˘ږGúÞl*RFà×¾w‡ØÅ=Á«s…ޝãŒæüšÎ‘2³5¤0ã˜Ó68"ëþ9„&yCbŽãÈ12Þ¹’Ḛ.軚&Œá?ìý³UŠnáØwkÎK¹"¯ÑiRÕ§^2 ÝÝòF8•8Ï\W¹ð‡C¹W–X¯4„Ðz€ÈÍõ¯ ˜kY@,+I<›xët¾hVo°™†#±åK½ÙhàEŒ¨`IKÍû&Ëh„®6™nšBÜÐJyÀËi@Ÿ<>1[Ïž =û¦¢ŒFj”»†·ÌïLJr<™yÍ^õq¤r¦À¢ ÝÅÚÜmÒš˜ê ;âšš•eЭk:yç§M+½°9Ÿ)[z1à/Ø1kė᥋OpóqM¼ð ¥oâûýel å=2(F~Í*¬rß›]£Àóq¥ ÅŠëO„޵-ùJ8…Œðo½ €å EK††|ª·±ltéC †Q{‹~ãIÃÒäï΀[ÝgjÑÕ<3 ©)™·W5Ü®0VMíž#ád`sj1d¦öÕÏù=ñŠ[cp•ªk4úìäœP†!•ñ7\@ ‚—(P{)ní"Ö¢×a %ÑžºÊúÉ©»˜h'úËØYU«þF£/»®Ä·É’~î(õSQz­BóiiÒ€™§Aܰ`UÏÄ"FæaççÉäj€ÝÙPt”xÐV}#¦DT“é <êÜö\;4­í_7袱©öþP¿øÊ¯ÄÛØØ 5c™¢p›ÿ¬òk˼ ¡d±Ö, ŸWE›‘-Dd4²-ñÙÄ=TÒê/c·OÔºýw¬’3Q¦®«…™Š »,ˆ9Õ_“Û[Fª³;AèÛ“Ø¡ˆ×æLò"‰âaïK8Çû‚¢õQÛœ4ŽCaäÅLÆ IÍ|Ój-"dZkÑÑ›KÑ®þ$³,(?ÿÞÕ}I%ÃRNCðïC8 2¹lZ‘‚:ŒH‚÷:ô_{¥ .^ÿ~Ðö@Æ·†ïjOˆL¢s‡Gð´g=‚&^2óó©·äQ8{ËØÜÉ5m„+õ…Vb6V'L)ÁªXÆ®t=Q)œ~Î îæ¹{?*[ÈiÑ”Ö×å%¹ðóN)1ýÆ"ÃvîH†tá0¼Ù.óú¨«øýB, t¶N«s¡ý‡¾1\Çeèt@+—*¯SŽ€ð nãÊbF–(çgˆ¯ ˸€Œæ)Xÿê«K ñ¤áå·^ÝG––×Mk÷w›«à T ʯ!²MÙÁ±J…¢Èhðòdv‚Á"·{ÂkÓ¶ua8ÜÕBèUòóCWƒÊyªx ß`”dµ¥ÏáÆ{)G¦U)tlþ;›ŽÒðEƒ¼Kr˜¬E{°bžª¾]÷„§G3d ¾ÀêÊŽÙ_0ʨýa˜Kü HÞwã€ö¦›Ÿïü<'›¢Az¤¿‰&õ-3)Ú›s|‰¢ÆÆžëO¨N«9—ÎØB9ûáhegè1Rd(¤+öTýþEEh…¼¡rëLòU›ï½ÜSÛË‘å3À(¡[œ‡¸x«FW|tÇn¿Y§ƒ÷}whñ­h© JTA§-އ~˜{,³àÛÇ¡A)%ÒÑð/ ;™ÕºÊF{S«òÛ6 ­X{6!š«¸ZÍut7éNþühÚh}èÈ?hØS`4Ú¶Fž€Ý¡@âË yMÅ0†µÈÔ~˸?ÛÕ'e£•x »Ö›+/²OVµñÊÛnÙÈYë]g‹šhß Vöńȯ:—”¶‹d«ÈÚ2mýgã‘_WþÓ¢^®kCbâ÷J,wC+–ÀíúÛ}ê0R¢9í„5 OÛ#²ÿN¼'çü„"V<ƨsaÌ%Ë\‘Ú]!¯#m<°ÙX:ö`c‡˜âJûšåò9‚¨®Ÿ‘_5’´ ¤Ú·y/ ­‚¡IÐÃî ùQÜã¨:ë}åM7p`7~[³™öX´J(™ÑÀ(•*Xan4ºÖNÂU÷:*ßò‚ø¾:«’ä;U£ ^êÈØâÅSv?òDí‡å„g—šé©ô·£öhˆYÆÀWï þ'„©Û|”E—@ï\8Wªýjn÷ÐZü[€ ÓVÌ <—eR‰¸ @ìGx(|ÚE¡ÁZ¨6Ýáe:ÊyqZo8™%×s_ïÄA¹Þ*˜ÏÀ„öb0~g"pÁôpf ˜® Îõ†Â”å6PP%ðÊIÊ!_—¹ Fx925:µ!gØU”r¶ßL„K|圢Àßb­þÁ€ðY,d®·´hòT.ÿðnt0†EͧY{gºÔ¸7Y\P¨¦†iúû ç‘ÂQÄ0W±…Q;1*bÛN ´] ¥õ"Ðót57¾øï…Ï>½,£ü—yÆ„À‚Uâ&íÜ*!IñDÑc€Èf¼<â«„ÍjÒ£€¢_$ê£Oú¸EñÔ?ý·èYõXma#<ðªx¦+^ó|Ù%Œg7Êé.ó’xBÈ|¤‡­yGÁȬ2¼–êœ*ÆÞ®‹+Å×1€ßä‰&.ر#ÕÔòZbokÚ€œ t,ΊÖdm\Ü"€Ï(ØÕÈCãΞnv ý4˜*=Õû?×ú9(wkšu²‹:aEºöÓñ½ƒã öz–üÀ’ìÆÎ`bîØ™÷:ðº[_„Yƒêó„¥ò²¯QßÉ1LÜš k•†O=Ùú‰Ø<> {í­­=‰K§Yñosb]yó¨õ->HGÉ1)|t!np™êx­Âéõ¶T`õSÖ>)K”áô¶kˆÚÎöšñkÄÅ/[Ãm}“SãbÝËÿø¹|7T´dÀn<“hÀýÙ. /VÇ“àR|–§¢ÄS\•ÿ¡=˜×…ZŒ¯îR~!W_ óÂJ‹ZŸÉàB\éøôž=¬§Ð¢µlß¼.pD·ƒ½&JN¹ÏP$Oh+› ñª8ûM›t®´<¤P±t¶xïÝÐdu4FûÛ¯ bXôöß­ÚZwÄȱ÷Œ]ü°£i"/—ªÛ@{£ÐÅš¹µ”&ŸZ¼ä|d7 [~ÿÓ#Þ8ñòt¯’‡£uš2ÅQþK×L͸Þý€ãWäÆÂ"SêáÃí„‘’¨?|µLº¹¤yzålayïHÀx†T©Æ¡]Iœ˜É–Ÿf¤‡(ÃæÐ5ÓZdnJÓf±‹è×màñtïÇûoИìÊ"® b­Ÿnõט¨ˆD\¾ñMÛ‚ïCÁ3…T2äTÙïW\ŽàTÄÛÍ«EvNà¬`ßn?÷HœbÃücŽ8•ǰr“5.æÍ›¿µÈì5ïtzÐŒCǨy¥7ûÓ+L4ûµV°YÑc‡^£²è4Äš°l#”Áiï«è랈ÔXè;ɽ_ö"ÆKç(lu}F1wö¬˜mÝ—yšJð?z4•¨•ØAÒÛ»˜ì‰Èë¢30TÊf;S?€Gåaø‘Ím‰ï^O߸‡pÒñPýÁHGG_øðX?–mð‹ÇçiüzjÇ”f’±\²žÃÐè¾ÏÖ[ޝ “ìfà®ñçÐÀ”Ø?.zC¨»à»ínpÑ~´Ég_­æÔÉ¿òR¾…<]çÉœ£Ðñ¼pHhò/GÒ­í ´â¼`2‹ ñ޼íý÷9PkÚ²ëä,9*Z›ô²VÝöàˆ`æLA™ 6²1æ ]µU­+´N >Æžøm†ŸŠºü† øŠÁ•G>Á±æ«ÇaB¬–ŒÏ gà/l2ù‚øõ¬«Be+2ùïìÜ×MAÔÞž^¿êe‹8$ï ¯È†ÃyñÃbMÿ²¥òiÝýX4jCЖ À²ÎÚ¡˜”šiÞñb<îÖtÜš+óË2`ÞºóÀe¤ÛaW6²>¡ É 5ÙÜbœ„u®ô Ù9/ȤÔÄ,h8«­à;òM´MNfbã§'ÑÝ´›PÄÖÑo£ôsê6DŒäþ9j«_Þún ƒ,‡ÝÑqyxHߦ í”§Áké–ÙóæXâ°À´K¥}µ±|¸ÎN–ùâK—üòL¼±'ñ½»ñöÂåèZ]빞ˎBèK“—]—;z utï¶“Hù|e$¬‘ý›æ¦97AÖîÔ0§'‰Jy´šö#Fn3IV&ÄEsñ½ntˆV_·›«ôZš[Ø·YT‰ŠßGià A J“ÑJ0ãF)Be-±©UÑÖÙ*öma¥ÂsÆú# \1†ç¬ _'4ù! Á9€Í»¡œüI¨RS3ÊÎ0ñW³õiœB[”ÎÃWÊQô¡Æ”÷"8lûSS¨=xçÊ6a-yMg{º€ÝÁºz7Ñ2¡ ,ß§)Ój옓I‘éxÆß\¤ a89önR¤«0rÚâ\+wíï³èéqàDf%¼•B?+MÔÐÐÿå>¾¬^V-Bîðç¹ë¥ðL¥A‰ôwpw2Z/«<ªÕàê4Økì²&*æ4øM ?µ(*‚Ýé˜ÝVÂ@–me΢¯ˆåHèT‰T…ãàue=ë†(F¿‰CëŒT*`7Ìè;׊$ÌÄ”HdÐ¥[X›y Cƒ™-¶`n–# Òåäp¥r\Hä&æKÒL{œ]2.µ!rÏ~,9^U7®ÍMžÌí#…Åà1°óÕZÂ#ʕӥÔ>†z;âTHS”dÏ®«K6²œ^ØtÞOfv©Ï·$¤¡¨ïã{ÜèpI4ˆnÓÎá'þwºù/%Á #‰8P3P.ÿˆ‰/²PUž”•è ¸¸ˆì\ί’fR”ˆýã]„tm#ï’ŸgXgK·»t·ÌÌV—sšBÆ{ØhÏ0*¢¤Ã±r¶Š¥î`Y¢›T®Š_ç¹Ê 0)ÃíªM °­»ÈŠÚÁÜíE”õ=æy¦ÇK‹ÙO:“;ÿŒöTv(¿ú– o¨Åtc*1Ò¤_‡€ýs÷h²?}³Ñ¥MØ)a ºLqÅ?·dd}¥]ãÜWWæÂ•°ÿtÎÎDðî äGÆ¾Š '÷¬½µžy›$}4^PR̳1ÛU’„!oJÌ^õ]T’œ9^BhÊ…Ž)ÓÔ`[—:uiÈôåJåSU‘v²›¿gò»~íVr§šRæŒ\¿ªYDÜ :!©Úó½ÞnØ…8qXÁ¡Ðí$Z8Á/èƒÿ ,±GôP:‡Pm¨€tê@2·îã$_–Ý ±ÃpÚAÍTAÐNu<Ít-@Ÿ÷JøªÞF*Óa÷„´Y¥›$“?©t‹3³oP ¦¦þ¸·„W'aá,3G>Ü%;:û¤´fÿ¼òÀÜ„ˆ­Å»(5*É@~ý ¬`ü%õ`-×‚ÍØ«QYŽ[˜%0Õ p¡V³Í&Gţܪg² ׳-í>ÙBM‡ }»»Þ‹ì;B¹¬ë—>Ãʾ9ïÓæà©¡ZŸéA4?ùÚœv„žÍ&ªžZù_êvJ§õzˆcî¾ÚÞÃY£ö1u¢MêT©ï ²k)B@ÙX7ÉÍ Ø_Í&µ ¢œ ÒÒ$O!3‹î-U€Øï™ kxíê;©ªob˜´i˜ÁºwkÚ |q ¯ñ}p$ãÛWjO4ƒ³©¿˜T,à•†þ™Oaéàž|QŒ«L :¥4mêP:rcNà¶¢åö¬ÇÈTrG凸¡¾Cm“Zä] ÛíPô@gL“­:ËüW\x4îurþ‚Îç,}S9úb½efåÝm:CçT+ó©¹$ýnØ8ñÈ®–¢f±—-¬.íoÛÒ±Ë,lWN¬"ÞŽÿ’h¦TRÃãmíâöñw—ìS܆Ç{bѵîyY –py1fq‰é ]à©™tfT«åÓÊJðeÛ?/ÛÞrtIÌE}Å6·¤¸¾?ÐÆê;ªFeW^©û5ú6Œ ØÎåùÖ¡rNàîDA`éÎÒd»€Kþ7º%Æèk+ÀÔÎPŸïqç· Öðkªh#[¶Â ¢ÐJá– i ¥9ÒäÛ³&¬ÛßU3]S†›” ×iµ½oíš²»Åî–>¢©¿œ)^A ©Ð3·ÝW\O~º°â2­G‰jÀDlõErq”jqRÜlÁEàvl_ß,§‹Ù´¿øj„‘ˆ'ÕãzTz xÏQ¾•%gë³âѤä<5˜r q2J"¦«î#?¡óN¾K÷ 9ôP\È-5G(vÕ8ÿüñ“YƒˆóÈ‘3U¹ÞéÜn‚™nmxFÂëbÄ»6²äô\­ò<ºê èG#ZµfîXß´…Zì-x›8Ÿù)[Ÿ¤¬a .ÍX{3Ĭf Ê™3Ó¦òÊH ÔMu³=««Þá¹z¾,¸b™åï.¿o_<…=d‘^LzkKÐÝmwyn”f=yS·@·pXÖ’^`ƒÍhì6òF•dqÄ…úYëDˆCËö_&š‚w·t˜ Ü—š[¡/RŸ§÷óv>ÏYŒ1ú5«K ¯ˆ\,ˆú@m6â@I¶ Q5…±øuéùwÒ½Òy8RlãÚ{³ÆÅéÔ­‰ÀטÖMž‡ÎbclƒµfbŒ×ÔÆÊ]n >9Æt‘ž‚»Ó±+û^Qì–­Âï@ÕÊWL»•ÒíWÃbp] >#6ò—jÜXRÝ)@Šc6^æ}Q -!p°2\«† K3ïk³žb«¿1ø‡ºË'Öc†Kå®óÒt;ðäë\>Ø\4­â°ç¿e³îg}+s þžïäCŒ¹´äý å⎊ö>ÆùZ‹E’øòƒôKÿ)¡Ž|èj Ü^c “'fÜóZ]’ôK¯.,=8qnÆ“üŸrAý¼“VðáÒjʧjL>Ú9•‰FŠ©´,ÔäTçË™ÀÀ”ü½Ù 81¹âuö¹Xôg(S(™†.’ ÝdÎîŒÑ@½Gƒu£ÊÜIßëB"Z ;$ÇÇÒ´2C¿«ˆKޣ͞Z{ŒèR¥칂6ñò0Pçëg{Çë=Ĩ:AÍ91Ô€Cs6å|ÛÔÍàUOºq­Ët‚©ÿ\ïìúÿ‰ýNzȬ½%èÄDÈÍ)-}ôÀ„oœL–}B5¸zê Ž"L¸¦§ñxRC4[%/ÁÆ`Ñ“‰5zà,îi¯ W)*Ì&ƶré(5i#®ƒ%0øÄLc|¾ºlot},ÉR®¹‘6VóeZq áÁRm¢:4— Ú¾Sv+̓ƒ¥Ž{‡1ƇPRQÙÞÊIXÎuý½EChâ†WC`ÖÈàêqm;–x3‘ƒ¶R3ûn^9øÑ–%Ä"K[žZÛð_·AêJqÕ‚m+tÏ _)]T§Ói®*üÊ.Š€3?©ãy÷-.%T•tY,#BÐ]Pxœ…µ4À³tyÿ¿OÇ ÁòÅ<à«Ç é“A’2˜6ÕCÝú°›M¡DžÈ%æ >­*ßyæ[jAíh2.F¤[d?_”z” èEkÌ›§ˆÍx4ñÓ‚I2뺭?ƒÄ92GªJˆWµ¨•}3­á~‘O>%Út qô÷BT×0ùWR.TÉ)l±JõQ’æ`ÂçÊhä±ÞÃŽ8àfI‰J«¯M#Ïò¾TK˜9 Þô ©>$Ãxô¬#I’Ówòt-'e´S/Ÿ9'¥|HNìaþ ¢Ð(:žÏtÃýX_*ãC˜RCú]õ uÁ@¶·‡'8€¹˜rË5Ë;ŬC'”Ü^ºdÓÈ+MœÌòOõÏÈfÌãclðŠÜ—ü ÀÊà DÊò Ä4Þ`9{ÝŽy4ó “T¬à»ÿ·$Aûb!ü´UÆ B¿²á‹qÎ?ú‰òæœxI­ÿ[i[q4¬·¿ÒSI¸#; ”ÎoӇݵ·ŠÖ%sÛ ´…É¢ûX·ó»sÔ*d áÓÏ<‘œS¬ècž#xöv‹ïl΂2QûÓ#˜²x7^_èñ‰á@\MTq¶yqW|HØäs30ybŽ~§Ì¸%bå0ÄV`t €/„_€ T¶q¸L„P‘F"Ú˜bÅŽ° ûòO×}n]`†Ümø´ë4L1׮ޠ”2VªH‘{?7ü\r¥t@Éã'—ä©»õÓ$sÚ}ÄD-âú÷3†Qד=Îìöê´ü.2„ÿ“(}²÷ÔjŠÊIJžôvgŽÌ­Zïù`æä1.†¾Â¸Ï>^ôºõP/sé‘ ´âæó}¾¨†ð£ïz±¼Ûžç»ð=(w~#ͤ+¥ZfpKT‹±î0q‹½AŠá6`çëÍÈ»d"ŵÅS——öâ9¹Ÿ*°- Fw]aš³p’U4’,ÝAÍ®iD@ãbdRc†v«ÝgM^®‚šDA<ƒÏ3Ý%$†‚XÙqÛ©z¹¤÷ç$gK•âY4ªßf­Ñ<X„)‘–gd´±NkÀ[²Â¡†1CvÅÏÕLšÄý”Eèo“Þþ‹°™À-¤ô/csøÐØàÓ8K[uJ‹ƒptÏ4–²¸P¡eG{ “ðü²ÊEÎjîzˆßê}yÎõi«ðXê®}Òu@cív%‡§Ïi}ÓµQ‰%5*¹¦<@–6£`]0,?«˜“`UbÓOÿ϶ôÒâ”zÝ4 ¬Ànêï8- ³ãÏø¿OͲ2ÜÑ+ÐXœð:Ñp·aï¸p©ùuyºþÉŽS/¤.ˆÏÝ_ÄnÐÙ GÖ½ÃïÛ÷¨>(Ð×eƒ¨S ǦIùâõ8¼úwÀñõíÄËQö²žT¼ÚЇÄý‘”åyAÔlPºýjžlMÆà4œÌu9:Áù¶µ|ª"\ (žWóFÕ’’¯N™C”Êb›¹îmN 2#öiäQ«¹E‚‰ççü^š¾¦X‹ˆqÅ–}Œö!‘A²Ù¥ä¤¤¡Êl`á9xŠpöÙÁ0ųiŒØ‰ø~5;!ó·yX³ ÕÈútÙŸÜ~œ"²zÊZ5Œ,$º*)KÌëȿɨ ¤ó0Ä`67Qkx^{Ý‹ÌÑ, å¾°MÒ_•U6‘Z,±Tä~Xýì" ™jî? †È/æqúSé̽žýÞu3 ÂrÄș摭ãï­P’÷$ͺ¢…O³Vôv¯™¦FòŒ,Xò°M&/Ô`Ù_Ε=”ÄÕ¥3ƒˆÕ~ã~<i€o¤ø%Í ß»æˆA¢”ß&!ß=-ë=µÀýå l:Qþxñ^˜\^Ô5v¾äÔß¶%q`0­«+5º¾êí¦ì«è¤ÿîûUÙkì¿e•¶P#°Ÿ½çÊcSRà|XÒZÖþ†‚[K?\4½Ûêo |òÅk—˜ £§ŸXmÝD¼¬ÊuîÀïµpdH`Mdš1‰‰º2H§ÿ­UŒŽò¥Pkü¬6¯(ãVÄFëñ.þu¥h7$ìk Ê›ÊU¸iUÌÆ#\?S`Ç…XÎ8 ﻽º,ig#´v³Fs€¯ìÂï9me$ä` êÚý_–c{¾üš5Æuhû%BÝåa#r.…°6[Ìb× VräÍÐD1ê|—ÝPfÍ J{L-}ëCeÉ oû(½*VÛÔ†(~ð‚Œ„¶±ü–¬³Ã£å—½ä¦!ŒÀ[‚еº_a­Ò5ø4,u¸q‰›z5L̓No&.¾ë Ì¡¬¯vuidŽC7Z%¹}õÏ_l 9M>ømU—$ü2Á¤p'¦ê‚ä"ç5§?ìÊD.n (PÿÏjДšŒ½-\.x´—Ü‘ú›Ž:{ý=x¢S¡‡lÒr±b¥£SÑ`OŒøï°'гGÆ)ð¥2æ=ëY8÷r™&³“’w!Uôß7õ]:£ŒÈÖR¿}§$úédWæªXMÔýâãS£‘‘Ê8Û2= ÿï’Ö$~=7„‰c^ɨ—ȨégiªuÊŸuídܬ°Í §1O|#wQ?­1.œzÃxËRómÃñ²3«|ø½f=žÙ„Ëk4]ÊRøŸš¹õâhÏ "’Æp‰‘Ƴã'ÜєĉsëÃZ¡ØßˆdFW>Ë£™pÓäÝ?Ø€Ûõö±Ï¼Ãj¼Û”Ì·_çd×BgˆWFE¡ÀzK¨ÀKN¡kÄ_™/,ÂÈWÃó¿Å>tŠþ‹zªR–QeÚlHþyG€ªIgifï”z ™ ïó~Þ‰3ÿZÒ êœ’X ão†VÂjÓÏM wزrê ê ÖS!…cû0…t“ÞgëEu¢Ö÷`«0ñÐÊÑõѵaâLƒÌ$yfßµ)µ9ƽ ¨jBJ±S픵BÕg¼³9áÓúžrÃkûì˜ô'¥°r8lH¡ -/¸ÛwþÜÚX"’\ª¨üùŒè¬£Ïn¼·&ìXK󟇥 Q0tšc™æcÃL»_Üܾ–®äNª£z€¢¶-ý!•Êiö^a4fYFé— Õæ³œX6U¾]óΈ¥ç•Ó m’ÔŒ¦Ÿ"k~楩t2SâTÙ÷áÍ+ óÀÞÙs#‰œ|±®.¾3ð_dï¼+TBýJ»š×¥˜v®|ŠgB«ó Ô%Tþeüq{ˆ^ fnh– 'R2ìy•Õˬ÷úÉtìoã_ o½Iï-BƒROq‰ Ï×@3kå@?3‘ àݪ8À>‚J¤aœ¥Z¬2ÛŒœf•Ħɳ.åVnجG¿LOÂÎŒØ3]L°ÂºX¹ S2éEE¶e¸ðBMâ°]“Ò4ïXLÐNNµÊÀQ«6,­ö|ÀË8ƒe¸ÿvGß„Ìÿ|Sƒž" þ¢o*KàL¿6µ¶D?¼‚ƒ©›é蟨~r×ó°ú=Û„B‚¾´8LךtÆmÄë&}Ú€bœxj¸Uý± ïpæc7I¨ •€ôûáJŸÓÊÅL øÇ\“Ãp×ÚRb ÒDi‰©Ö,°ë";Û–9ðj¢g™Rë}Voò´19G®ý#­¯}:fb¿H ˆ¦€ý¦2¨À¾ ý±©´h#,mÝcVZWójˆ+bugjXÖÕfg b¹ü³±› ˆÉ53ž»^©Zt>¦CÄH„ƒýÒ>U§Â·ŠΔEû²ƒ“[ᾕûÀ +w­bÚÁ@”Jð^*ï—@TE þST´¯q¯¿Á«]#q‘—X¦¢<ís í©Å’EËã+0Uö9µ‰ìöxöÔ¨êQ%à”1qrÛû'}Ëü*öݦL º MÑ ÊÝ¿-Dj““Q)å@ ‘eôK Yö¶Ý3V+ïXÚ")tþµh²ËÜã,dòxc¿Á—dë.@Çï4:P gå yIV=žFá^߀oˆÓzà6'Y§jtuíK‰¦ËWþ2æÍÆcjƒ˜·’Iê7î|‡§•ßC¼oˆö4E‡.˜AöúŽ%¤ò™UÃsO‡Ï[”¹d¯5t#ô’H©ï´¤I2H¶õ¾O˜¬x I«†ÈšMÉ"À§°ÿ‹kònA›hL~¢„”æÐæͲѴ¬ Õ’€‚-"စ®¸ÆŠ%!º÷iþíÌn_™‡S–ðy/Êxøl”6Ìö懕Øf’ß”Q,3Aƒ!„ Þ*#A)ú·l‘”xƒ«Ê¸£ä}ÿLŒN³¥˜Ÿ+à±ýÞsðK1åÈ?… ÁråŒñý à¯æå·—E&†96ˆÉ Çï$(wÒ”+à ,Ê;&ö˜œ¯ÌÝwOg—ô-Ä>“Ä ªFvŒ‘ {™5=7NÕO@Þ…÷㻿ƒ›ÙÃà‚¢EÇSöoHmÑRò•MNTç®n ‘HbÚ¿¤D>¾Ì$>ØÖýÀ KÜ‘Hk £îÌLl—õ[é!McÑqD§‡òôŽÜÇê.Ò[ü¸Ÿ²áv‹òÿºoº˜#¯JlI˜ß<Ëyóm cj) ¦R½€´¤Hi˜f¬›½'‰JGoDSíBN­æI‡žº|”vd¥Û™dÙ‰)X*-åÇ©ó2ü¬àDÒÛƒ9’Ê+‘²¥9TQ–%;ŸŒv ª…—ö4޾#§ý·¾ð{X?ëÞÁ̠ШlivA2ô^Ë ¢CW·WºæföÙ/ipÑ™-UÐxNNÍ"B"ZC:è‹i~½q†‡G#Ø xQð[;ðVXĈՃ·_q$p[;×Èx_Ê›{vöyÖægêÿ°òâX+5ƒaPœ^¿{hlÝý¦€¥ »/ô@ŹÈb•›0ÈŠõ‚Ȧtù-ÆZcåx Áä¤ë"6ÈegÅD½NÐNdtf1¶>‰¸1ç°Óò½L¯ç“¯ŒáìО´AÝŽú‘TË[^ä5Õì/¡÷°žzŒhðø¾PÓ„£¨ h¶§ò#+u+YÓøV<0ÌZ™;˜P>x¹vŽåÅG@Í´.‚èp»û{÷µ Cl=ÅqßÏXìCY«úl`?È׃Éòt{û* È{lË[+y;òáb©dgߺLZzmô{c¿«$,ýñdF‚| ±ÓU M‘ Ù®¥p+`h I|nØÔÄÝK©/ÁCr~–•ÿO ¤z3ç<%,CK«> {ѽ°•ÕIðÈ’8ÙÈ“»êFçR~¿Zó" ›%Öjzã§[‹o·¾$5ÉÄõÜîÌyˆC£Þ†vë3£a´§î 6Y6ßxñ¤4naëIÅ ÅÍ4{ËÈ ‚*:þ<}…Ä,L†HZÕîð˜âJÊÜR€ÐpËÂzÉÛðpx'pžH´W£ò’‚^Ðq…9%¢ä‡—ņ¦ÅõœØÏi1°X×k‹måªÏܪŒôç÷¾-â9¢ûöÜ8÷Í£Pf–¢¤¯ÙÀŠt;—ÇŠ+î|aËñØ¡os—0‘ÐôùoéÇ}µ=v ªô_áˆKÀ+”R¦JËáãÕ=ýi¨rVšz.9HÍùnBü Ѳà²k|ò4þâl™-CŽlbÖ¿ Ò'ûûÍ›>ƒ·ýsNNøÃϦ°í¯º’‚ið:‹Ó E‹ï›ô&GLoïJX” Éã»TM`Ò…}Õê“&,Î,ê#{vp'Â5ï#=Š48|ïaáZ2Rx›vBã`!”TF¿rº×=žkçÆÆU¥OжP† Ífˆˆ™ËWC‹Ëá¸CËþí6Xet6liS ífu²©m¦h-ä]qȉ‘@Ìïl´çÓ? 7?–yÙUvó†&e’¢?x—L·€ÍØ­‡Üë¥A̺'5Z‰<ðæîü.~Uº©¿£·Ij {B¯Ë°¬ÄÉÂSD™­:v§êRf?§ÇÈ©j Ä2É£E·ý–G¿›’ä¥>³Áf{´Uo>«PâÄô•úˆïéc¶eyáôc ZÆßÈÈÌ”ª Q‰‘`ïíN°=u掴µí"qb²ˆç_’“eñj1çP̯[˜ºúöÍyÉÁLôá5Aæ;L÷‰g’X+°ZâØY8Uì/ …I’

·?̘Cëo~â€[†œxŸ”p‰ºýää½,EEãúÛµº“0)OÑÎùéocø´ ëûuc’¿ßR«Á¶U®IfV?­¢½Ö‡2ÿž§ûMÔڽͽø/\–]õ©Æ$?µ¬»° øï=FÞª8µ€à䊭øðnK`âéB)Ò$¸*–«÷ÊØ‹“òŸñ¼¯Op]e*? ÌGg„‹Å[x/ O»Š3H½ËF[¥ äz*y±Eæ”U{k4©û!ˆì)®;ã}"2CŒ2‹Æbâo/ºÆÁp:f–ˆæ·ŽýjÝ^›˜ÀfІÆ2ô:¶6&ƒù"`Á bù›}ýáÌO‹X×M +èš‹)§+J?åw’µ¤Q­<ƒâ½/qAª:—þ{¬¾ [ÉÐé2SGmþZ-{ÎÀ¾h‰mlýÖÓÒBe"™«èqÞti„¦ã’ÞÈÚ©(ˆ2áOlÑ@ØòT`k´Í¢ªßTTFõ÷[vE´uÍT™`^ä5Èp•Ö'!†<ŠèÁ$8Ys?ïöq„Wûm Éæ6„ÿ&CïŒ0×±…åôÙÀ{¼å-Ôå¸:þ-Mà möÄmüB¥=jnSwV –7 ZÛÐÐ®Éæh•1ôîJ’Í,2fZæWs樑ð‰÷²LT>XÔ‘;÷«FaÖb¤AK°{“ª†B’@ÀQ±¡’ÐJЧ˜fÑuéœûÀ;ƒ†˜C?Ó£Åí@)9>C~®ûí6[R â)Aƒˆ)ƒŠãQŠIƒ‰„öžë»Ÿh™¢šz¢ Iýeê`÷iÌò’JCAgóY?~húÞZ€”ùŽTx²öHºqÖÀJø”’¥Ë‹sù55Äw¨Cζ?* ¹¯k­´×i.K! ¤odn#¿u!_æ.©½‡€#vf{ç¢O*Pxrú ¬Ø[]O´» °|“ëgC‹½øâ¤ >øIosÎÖXd0BuJ•!k8zÿ"·äàÍCYÅFwçrÖ :»}ê™LRÛ|º É]; cÇ–ÃðC+¨¯ MUÀ/He"|¡-¨Ý÷là$o±J¨&îNäûÒij¨ºÑO~N³VØÎûÐE˜ðÀF—Ý Lyò+Ýr¶2W) *ØœY{º‰ çy-¬—Ú‚Œ´¬½ ßW=Ä”qw—úš‚‚T HìÜ÷lžœžS‘óZ;b»7e2ßUÉ7bÙ=/½¤qÈÔÊr=|ë•ÃeÜaȹ´ã9 …"õ¯­Í™ü–5๣<ÜŒV-;\5—¬• É(~\¬Sd`PC˜ºYÊšÀ&û4}ƒã¿3iº4ý®æŒžÖçÐÎXºK¼ˆÜjÀU–~ÚkC¿<•×õ:ö>tÉ4gV•ŒBè¡xZGO ²í“ÓJøÇÄP9;Û¥×›u7ƒþw«|'Wö]ʉà%@_µh68ª¿[PE•Ó‰‹°›ÖäÉb¿ëov ™|³š†)Üo'µÔÒ;Qî šÑn[ÞŒÕÕ€¯Ãà ý,¢]Q™CçìT¢Lü§y ¡eü ¼#z'渶®]¨¦!MÚœvwÚ:ü—däð+üVüGÛx ¬\x‡ô :#r³âLŠíéÔ˜/d䯓q½ŒÊžî³ 0¨TÕ±ü¬íPÈ„6Ã3nŠ+€™‡\ ácPW…Pž`È÷½9âðÉóL¿ §s+R§ÌBpþÝïlOZg×ÛÂD1üØ“-h`…ß~)Qr²ÆÆ+†k¥i· ÃÕcV *w9ÙáûN`7K@sõ`”û½y+†[Âö™FK U&ÇNìàUX¹’¡¬@µ†NR±ó¸njµ€[ 3.ަ¤=}G¼é5>%«VZ7¢ñ‹Ôm¨Æ'ÜNu}½á€·¹»_ds"ÉÝÅ닦4×-ÛRå ñÔÚ¬Fh: óOø4L”*w¢÷Ÿ’ä‹{Œfzاw¨}Æ”éùźƒ+m¦8óótÿÝ~fž:÷„² úïÞZì©ÆzVÚbïžÄo],þÂkq{¿ çÆ°aÀ¥ôƒA9z=03Ë¥)„!t“K4ï¨B-Ó€Jù.UF±M0ÖE·Äeúo@?$à.ÄÅ[QeÉPgÐÜâAˆÍcžp0ˆ¬fæ#nÖ©ᆭœÅ¦¬U½cÌ‚x=Ê£(²ZûˆK¨¦yÿæ}úóÌ´/ÊÞöÍzb°w]nHª¬¶Â–¼³^!˜—¡‘ â÷«ˆ{,(CÈ(‹…qI?kMPç+zð°UC,‡ý'¯!œnEª2 ò(sþ|VO°ß ñRÆ)}¹×Ó`D>Ò1×#›'Èœ–Šñ_º{k…Î8-ÕWª¥báãúVxX™4’‚Í´À;Ä'î`†$Qw¦JsÖm {÷ÛÙµÿ¬ŒMÒ#¨þÑïŽÖ’¼Lr„Ô¶©”0qZçH §)¢³@ГglËCèBÌÞS3“L¨³žKÅ^K{Gõ7Ž2»ç²í]Ž}#%n_fj>ƒšÎI|8PQ×Õ}Þ\Rf‡™ØPÂ×b=“ø¨xx&ïf<æ‚ïHaz)9ï¥õ¸F¦[æ»ý䌺„J©uŸEû\r!¡UIê…ÅìœÛ.BNï"ÂúçD”“ñ1OJÒ¹È% ‡·¾Ç6û²¢ÓM¿d‡…è[¼!–éßdÞÿ·m&®ïß9‚ÂrÄævqŠã%fPHí>€jnƒ5ÿiìÑÄ=cWXºÏ> -d`i:=zEmßioU­ÚjÏ ã—¨pœíѤ´(Œ+a"’9Óÿ«b`Í™ç;Üð/Àa.}:óÿ¿ÚÒ4Ué¿I Iò,ñ猰s·Ú»-«d¾ú#ÃÈg{—´/ßHcíHëšü§P§Á{›¸Ê*t#NñLá°I¿Úê ¦TŒð2¡3« µ 5Œ® ‰¨¿a ˜ëÛàR&\Ÿ®}N‰‚“4À-°‚Øš‡³ò4žŸêF&h™ªøŽllhàŠqðÉJLJ‰rÖÉŸ‘#⦿Iµ­jÁ5º£)²màÜÅ+O™^iGW§}¯ÄéÙTyå§Ë Ü&†´Oë+_]¦K¬îýõ{×ÞÓlÚÜ)âî•$Âz™Ðäì! .{Ï&UÇ3¿¡”>žÄj Ô^{‚ÁîOúCEq«ðøo Êöj]]®ï¦XBïnCëØI<ÄèB^g1¾cŽSIøwÀ›Ÿ S1*õÕLoìq‹l›pý[µ ÛûƒMÉ©I±ú%Ì%I<:´²Tù¢_”?™‹FÏŸ!Ø+,±¢¬3Ïï‡Z3Osž¦-H8«ø¢p.è`QWcjžrM©î ¤L,8ÛùŠBÓR_p±Érô×w€}ê+I_•¶oÄýòj%i€þ£³×›NЇO¿Sj"à;_uUmÂû*SFfÆó)ëÕrIñŸÄ2xšœ(´¶Äµ¯À¤³Ø£¦úëQ "‘ÝW„Ýu©ºFˆ€XM%Ý¿è€yûü÷òœ<«•l…®wäùJîÿ@ßäH ñᬠRÏ,ì4®…,&šæÒÈ:cHs©mÔ¾}­!ÇíükÇo×wW¤1’§éhåks†¯¹\ER¤]U‰åôë|GV}væÒN˜çÕ=ÃÕi­Ž¥f—yÕå š=¼;iˆ‰[gM´ã}/àµíS`¶\¿„I«½n°„¼-DÑe—˜ÏDŒ—°]ù~™Žôgï(ÿ¬\Ò\:]¼x-M!›ºÕY ʨÅDz`½!–p ?bÛB ©FÐG'ˆn–ê7{ý)0Ì}ÑiŒÔ› “C†ëñ£Sºú8uRHÛÞ—V8èΪBÄÈ‚šB­Ø_<ý~Ÿê—«SóíÁ65±Uû¹Xº–̱I{7e/B—¬˜m@†ð*HVËÚesm¬gžÉΛ:DÂ2w;x«òŒ‚Å4[ä„›#׆gƄҧúz´çƒªÖžwÐFöùîzÐ+(R¡%hÖÿA²Ü†þbO'kÓv0HI¼FK¬(–ö×ÙÖ>E:3>2×s¬=_sÂ}®8wbœËû‚j&zžÿI¶¯íìôP¯âŽc8òdÉ$þ·Úæ æJOÅôákpjïX-0·Es `œ¹-ìŸÄ¶»Pޅ㉠{ˆ³Gö†F~Ÿµpn7ëqMD|Óåe½Î{h1$!/Ç\¶ü#¸?þœÝ¢¡oe€®C¸ ªxUZvP݅꿎 ooÿ¡l'ÝË r`ÒÎ"È„öô{3Æ3£|ChÃ}GȈðz„1Š/FÊñååš: ¥¦¨Šþês‡e›ÑðÚ57[ µß þd,’€Õ˜{’µ2jº,C©H #- X*ƆizšÊ27;³¦HºÎÃäwÛU>Nâæìô ÐG&$æ¼ÂÜ nTI¼r¹ÓB߉.wo/ã†y_'N_”׫Nômu¿¨tïØø¦lŽ^µÀ!ÏP3 +XFQûÅÌ9N‚y)M¥´ ¬0encÖX yç"‹ŸÙÕ¯¯Ÿu]#6æújÞW‹7öÖ§¶#×´ö½$ôg®¸&œ$PÑú.. U&ð"hPa@n âXª®†1/+­z£Rr{3‡€iÕ5KË·PŒ¾°¾q«¤×JÑ©€¶Oàùu+©S{ëUoA æG.k+ø•ˆ‰œý@g¹ˆá÷o l—÷îÐS7¿7¹x" Òzë Ó•e Y ŽÚJp›¿¹K+sOŽÓ÷Ø8Ê\¡†ð·Ì×”o™f6쿎+k@ ¢ö7Ò(‡Íõä±îSuáÝ!;Ý.̦ŒÍ»Agv6©ªÀžïç(µ¡BŒZ婺I=$*ΠH‰®'Â|a¬¹ ¿/S=(-;QÃEó£çGG=Wº#› -éàÌ5³6Öo‘ìU©'C ©L—ÞÙBYúáýq#;y…zþ ñV½‘\÷I;](ª3T8u›7êŠz;û.<†ø·“^*ÆLèÅ7PÃ,ö¶îÀßÌïýµv¨Æ¥ÈÔæ#¯õʼS­ˆûl+µiäÁƒœJmf ÐeJPÂ;°¯Á±Ð6¡/ëÍ,cwV=ôS÷­´’Y;¦+Çzñ±èuï,oûh vþy%Ã6(ñŒö*¼|Ü?8(Ãir@Ϊê]Q¨€‘]`TAá=Ø1j䫆nE?ið/ž$AAtxod*MòÛR|ÔØÅ¯…ógƒ¦ðq´j˜Ç0ÖõÞ–uë)zæ"ÑÅ/N¸Ò£¼b+ƒJÁŸóÀö Ùo–m1æ·Mžš/ÍšÖ*ò1Àpk÷– dž´1‰Ç'ÃÍ'¨þÞ€(˜Ô$'œi+ì“‹rŸ±8‰9Òø\¤wÈ„¯%¢Þ ÷¦ñLÂ3¯zì¨<ÂÂã¯.tÐü š?rÉŪò%Q÷aö*& <íʆ=æbî×®8Ü6íÞ¡Ý8 }$:Œ™èih¹:,ŠáƒlÍđȨZ8,ÕY.ž²Ì_–ç•¢ÃÐÿpù¦ý1‡7[p™¢Ç®Ñ„׳¨„/é}Õ™¥*’ú£XÝ,tÇEh”óRÑV1¢“Š¢Ø¼ ÐTÚÔªézXã£Õˆ)„éÑëX3¸-Vá@ƒ¸†y]Óñ&ÑðÌò•;dñ@ÕiÑÀ¼cB$EûEÒ¡«Ô[äé"x»î0oU<¬²Éâ ú)]•Æ•O¼Ò,Ñ˺î•èð™ˆ~t$ÉjngDˆÜK…¤{‚˽ ʤ6Íñ“¶ñ§'·è;B$ ˜ôº" Idií|ÏQ¿¶cÕ9+xö?:õ+FÛOá9¢ŸÊgE¨L¦©i¸&ìsᎪ@ì¤ÞºÉrÅÞôEÝwªSuÜmœ.`ÄOa´½ñ?È=?&—__^ØÏæ¶á>X a•#˜[·ÖtŒ°4ô­xõ¨;ã”AJFFÕóÔ-(ÇõDu.íG23Ê$Éû“3—&U·S,ºågëÊ©q–[ m…P¨5®i O)ó\¬“: ­{³‘(%ॕåøùêñÂ@Aƒº™’~ÂÃÀÓs _7’ÍXü‹×5“³ ÛÛ& ˆ“e\¿¯x¢"ç©¡âa:J|÷6JÖ©‘(nIºëfžuQLÃÊÆY–xS?ê$iæÝ¡±Òo:sLëX¬{µ +àßh%"âÉÕG3»ÕU¢ED“ É–OiŽ\pclÉ[ó:i—7{ͬy,N0f  ±j+·‹Éh8:ý1!Bº–Çit¨RZè*íFØü̬€^dkYƒS^µµ«-9”1J[—¥ð»¡‡{rt¼Šµ/iˆU¡ESÕeh“ÛV“¶&‰°_²¡œŽeCÓbX Z<;Ú«û9øbH±ŽíAÞHuº¶¶æ|$ù¸6Vx&GÁÉöÙM+Vƒ$««™ô@ëb¾à3}a±;3bäT{`·=‰9²ŠÄ¡ïãtÞ®ßóû‰ý=šäO×jÆBèó2/·R£å\~¨§÷€ëåî6~ }Þ?þ:´} )gزŽã±ßx Ê_ PÎ1œæ jÓû6!lݽõnQø­§«àø ?>,^دêhõ¹,ŒI„vâÕÃiyqÙ0ŸPa}>êAk‘÷¥Ql…|‡|(†¤b¶¸$ò1æâíxÕœ6`?ì(_üãU¿]€lö« ôáMˆdÑ.UH@uíu•ê¹`Ög˜vDm¤~’Vì7iŸ÷v™%¸ GÌa/ûté5‰YSù +&¤²‘UÛï8² œêB25bÁqš ) í"½Éž #àœf³#Ý:H°º.l««Æ:Œ÷ÁõíŽ&µk³6 ”²ùêGDuv³ÉçÑ^ó õ!¶“ÓÏìÇU,ôàgÆJÀ9n&èyÖr  ­á¯ÓÃÅ8 €YûËÚJŒ^¾Lʰ—05Ñ3éYÒúéJ†Ql¶^À–Ñ–8d°•Ö{FM Æ|/3ÆMiÿ“Ô ]¾àÐ51û·±¶\­h¥gW )‘™~÷ hú¨gg>Ô¬î~^ýš^ìlÓßíqÛäø”$_’mCe…Ÿ:ùïW)»c‹,²ÖH|ÅÆë¾d¼"V|x+1Ô•ˆCUû´±d#·É†…¡Â1œ€¹h:屇·é/lzúÁ§q:A.`œ,ñ,±ª¹G€Ui~ƒÃiް 0v{•©G_ìŠ_H=¦¶0MÑçþÞ¢“”Ï ›÷¥em•3­épͰÂ-·Q$^N‰Åmš<ä"•c¨3 ‚cü¦Ô?òþP¨º.Œ\º·)x^Í i æ(/*mzá³û%Þö:äŽÃhñ 'sv¶#¤çI<_«qC§³‡útzˆEŠ7Í>ê ý™¡ç;*bn@:R’µ=œÐ¹ä&Õ»B¦ÂAíÅäõáЪ]ÂVr ]>êʼÅ$fÄ…hÙ—ê—¨€u÷Š\|<÷j$ñLNÏâI«©ríòöJ½ŸXÃAQC B>ÖdÆtñ5ð’³xÕ3`Èϱ~ð£ò ¿5ÂAìÎy>'ll¯ ÝáYuúâ Í)SïÕ%,ˆaÞÒ*J“m‰=µAœAÝ[z9‘DNL)àݑſj„n|ƒ„îËcÄՀƉ'Š(N0aÛ*ç)? P1,ïÍÂ;ÊòŽ1öæ¶ê3ƒAˆ`ä†ÙešÓ/Ó9þK ÉQ¦tëÀpùM^pu7ŸïœÄéd*ã‘¥çP±¶ºqQ|Xbƒ ™‘+›§ ü+óÊì‘3ifºëéÍÉ޶Àûöà”uX·ÍŽT¶4-Š~ª—R ýŽ»Oîm¦vŸ˜È/ý_ã­~vþ—PEð§JÑ“¯ò àý €ÆÂÏÑéìäOK³tðÈ4ärTþËRª´ßä¿p×ëÆïY{»ŸZ1«®N¤IÅLêºÈhO¼…‹Èƒ(‚¾+ (tx‹,É™€—Ÿì¦Uø>~àc;¿*Áí,Û=7‘VÐ? g+ß= ðjä–ýv“@‘eWVjVA®ñã}tÙæË¡­äg;}3É=ä-‰l› ½mLNçãó±RŽTÍØJœ¦èÏlX(>ýD‡Uêç©rñÅŸì%’#ð¿ípÝ7ŽÄL4§÷\ª<|ÌÑv³(8y‰Û’ã•”¥àŠË¥ñ$R:˜X[¬†ÜGÕfgÌÓñ:¼5Bûüô]'þÞuD9¤èyâz»Ž>Ei´ò!Í·î8fËÈ®™àB‰a‰Bèù~}Uý²Óêž øÌýáÅÞßÓæ˜lÑÍå\¥ŽGDyƒ•Óù\qô%çØ;F%Tvú>c =[ÛÜ7†É3øÑ‡Oy;õæeÐç__âm”`ÑÁ×wïãÌ<>27dî2”§EŸ=¨ÖGDgoá .jþ3é·›µÜ>–Ãv!¸äH+â…²óN j³^¯îø;ïù¦Šoi V¾Aj³â½;€²#½í;¿¥¯³Kˆq’÷Ô_ŸòÔ±QÃ’¼Vë{n”Kõÿ /Êá®2Ýù19@êþ¢ð…i‡*›ô b˜‘~ÂßÙÚjÓ(P#·ËøòÆS#‘.ñŠl;ï·¶&5û%zRC)ÀÙþ°* ƒÂe:êÆ·ošI £w$YBâ@毳ÖngºUI%ßá›é{¿HvFÆøÂ×üÑ™9þT H¬ðL¦Ç'Áú…Üo’¯íâ+#s/ÇPõ†á#NGqj¬k¤3žfÝ"5(ð À”n|l½>Ÿr,¨²HõËÙT6ã%•¢Hßoßét`„ýŽÃF×Ðw„Ââm eªôáä3¿‘e[ 5ßZNõH·SÛ¶~FŸï)ôåÑØÄì¡Ñ¿D¾½¾°BœhbÝ÷lzëYvxóëxú•1WÙ ¤øuá|*Q ¢r¾yªßCØ”ÍQ¹¥ò‹j“`’¥ghA$ÕFÎ@F''nëÆ.vŒ5|ãꘄ¬¡yïâ#´ú /Çhmâ3[…°zàìúƳÀ{Ô\äÿ]j ©yUòÉã¶ù&NÿµŒµïDÍ—³ë&^[¤@A˜Ïi$Õ¼qÚáиydzé*VÈ]Tù›A´Ñ—˜Ê;ß>YRƒP­¬‡/à ¹d†.'ì=‹ñ¸šBO¬#’¹ðcg¬h^+LK]‡ÝשyÓ§4”âþíõJBóö›Ôãèæ^â˜ÛkN$=Žr%ÀÍ[d¸\£^ û ½ûÄÇHTÎ^{>N”ÚN‘>ÛÆö¡Dý’ “»_‘ùú<*Á3³ÿf©o,!Jª€FX©øAª^×܎ΫˆvóܽÊ`OÀ s~M‘ÓóU4æ<ÔuH*q°×)þs O&Ù%êªj(•÷œ‡ÿW JÇÍHF8ºÞÈcÞ°Sõ\«IÈÆ-ѧ-¯žó¼‚‰ï$»^ÂM›ð(Õqþò ÑÔŸ}¶ò}—°´ö{3QSŠëi¨É‚&£«ãRÁ½eâÚÌtRÐõNãæHü}ŠŠïRG~ô˜ÍE¦q¹j ¿^syb éÏËO)ûï„Ò1Q]D«|ÒçR¢S½BõÑÂeCZx÷—×@öð`²ê§VªŸ¸§FAJxõu¬†§Z¤,W7˜Àz(!r°½ó°3ÉgåB®žìêãÍâZÐ[ó3KóI0DÞ{ŽÜò*ÏÏ~Lå"· æ÷æjW0ú_¸i‰¯_Qùv‹oW¯\Ÿ²·R¹›šJæWcˆÑ½×¸¸myK°o›åþYªS‚ÇÁyæ4âœÓ±h$˜ØÃ Ð%ÀbòðÖ‰æÔË8„C7g#à;‡í’“ŒëôH²%«€’íßH­ÓÐÁÖ·õº(°‡*"ÕT)á Bpq-J)€ý¥!ô×QäTIú;Vpãçïc]aûzjQA¦•ÃxúšTÖUÎþÆËËÃǪ/¦d¨žv"tèyì-#{5˜BcõÓÇ„ÇWùܰSKé’-¡¯X 19î2oyoAz R’ú>k§L›Ý)’x ö$i¡D¼Af»,³©ž^•–y¥n÷gé3&ˆ1ŒœxÓWÝlÊ!³@©âêi]o…êY8Ãuˆ=³Ébwœz¯Öž$+3†”Ä$×aéñLÿD|ãT׈ʆ×L½°bwXŒÖŒ$ÿ¸<{‰Ù88ÑjÍ`3‹êöëçDÛï(îB˜þžÎ/¢ô@d­öTÀ<–±ºf¿ÁYª4C‘¥{ìˆÙU'3R\B4zmE-*B„Xš»Óƒ0uÛïØRÔÄ;SÉ38‡UŒõ˜ÿ…› 5Nl•nX?áÂØˆH«±Æ)Ëi}1¶_¼ªLbßíUå,µ¹  >)å(pšÃƒ(C/õ+þfÑÄ Pém½Ö6*çÅ`]HlÉŽäÿ$ؙܛäÂÿ×.¢?ºÕ-ÍõÉ¿ û~Bl|èuÎHˆp)Þb‚ŒZC_Ó·HÏì»Ò¥Ô«Ã4#­F…¹÷ÈOÙM[ÍÎ1zPÎdTG–õÛ‰òá5—€=`ºù§(~ØÊ>Xú¯`•û#-XåjõÍpQ²hÜp>ze ÑÇniÕ^ò™ rö1ýÂÛúôÊ<—Áo¢ƒ.4wº±ZmØ?ƒ„sWfxÕÛyÃ4ŠÅó¤Ì'Ì{Û,»÷DÆ‘EŸ·sÛÿ”¾ñ\ “¾[÷^©œ¾ÝÝ ¤ŸìpØOömÍÓ ˜``)]Œ€ýâÉ”gôôÿ|7ï+Ê,ëÝûb’Eߪ—kÍ&E™'K¶–²ôV@_°­ÀE#N±·o¯ü­á÷± Æh³Ã•§dB³pØ¢kÃ%nsË®{œž!:}I­m¯Sûäçv‰àà)–‘á—ïyÝ E›„h!Æ]rXÂ' ,јƒ[UÆÕˆ¶Æê³Ã•$ú´c€¶ ØîH¼†R «T~¡¢ó«\Ü“Î#&(à{FôºÂ¦Amù¿6²YêÊ î ú‚ÚóZ*áˆÈæ7S7šË†b(Þj°Ñ›?àkö¶æ‡¼?‹äÑâà.²-ñc¼VK©„cÎ~€´c%…à·…¦v²=mÿØàØîó6He{6ùÏ¥ƒ¢)îm$lÄHï>ãÓÔTÓAíšµJ@ Ö#«Š&Yˆ‰iÃ×Û¨Ñ/e‹Òi×6¾%|•Z=j&Û­Ù M¥HÜÎÑìé¢2`œ!ï@W2Wú¦m "ÝdÜÖîÊÏ´©CÝ·\ºcàƒ+ES13ʱw?QŽ”Q 8·n-àr¬îFòcÅÇæ’Èâÿ73´¡©+›µ,D‘ôg—TfF}§=UH0Η]|ò#äWƒ¬A€øù/U qÁ8¬Qt«Í{-ž^<ÝWd¥ð¯è¹¸] œûqÌë ÿI—“"ÅÑL³õ‡oïd”_5säãøAìÆí¥==mAxü—š¢Ñ”Ñh" Q÷#ÿ'PwÇ—¨CWAå²ú(‡P«jbhu1¦}€(µg¦æšbtËš"K6&‹Ä5â9±ç<¿A¯šÌð ‡6€jsÐx0šª¨æ€$Q Q§ß`Ù-‰Û»¡[ó9CjœJ¶ã† K¨ááÃËpU–Õù¦6`v(iw½¶ât˹µ$t5‚ˆ±Ú8+b¦fÜnmRL fδÊ~ë#élb–þWþà÷âußȲDL͆‘üÅ Ñ…³ä«Ê:TÑñÎæqåó TÎzÁ”õlúA£L®W;À÷z§˜r"naF‚ÈÔF{UàÌÔôÁwºñLðÄ* …?ø„ÜRY劉ÏÔoå|$Q†ŒZO¿Ö†Mh€ËåOÛÔÍŽ‘–›)ïà®ÃbÆáù±=LòŸ! •a H˜À¯;ÆJÀu„:ŽP´Ñz¦¼z×ó$¼Cû©©¡ÌS·nǹ}¾€ƒšT‡§¹ ÊùMR»ªfËK¦ënúmQ‡sn‚¯#ö$²#ý´Ê8ˆU°tpU]ï¥Y¯»„Õé-f@¬ìsByD~Ç`ó5[ŽTÌÆ*Ê]wqvyLìÁÀ‰ tQM¶:)fÌ~ ÕO±\­Ì½å _¸€!ë«ÿ÷º)Wõ4‡Ä´ôü‡$1­Nœ6£-SÝñ°Æ‰§µ$£O±¹©®ò ‚°“ÙkŒ[â¤óÇm#…Ôàü¬WÞ²c JÆÞ`‚½%P&ö¼6ûsï¶_ùÇ$}cîÒM¦1£8^Úûçÿ3RW­ ä¢UH´æñ»tfoE­â¡ ïFjªë±Æä9«¨¶ºV¸Õ­µó¬š9Úañ—fãF{Ý¥ìf.¯HppÜl—]†Úƒ³ÚEˆµ»ˆšõp¢_mJ93@mÈ%úaömÏCZÙÂT”HšxxK‚NÕ¶¥{z׿OC®®éÌ£ŠoGÛ[$*n¸½yä¼QïK¬©ûè–ÂI« bXã8}Ë–.BÛ_døÛh@©…=[ì¨Få†ÿ.œ|Æò0KÛ~–Ó±O¼ õ¦=.vrøeZ)".T¢(§Å3&ѳçÐÙJï‚(ØD  £wåk$}¯æEY7Kšjó¹Cšo¬(.ÀKíÓ‡ÐfØ“‚Ø¡ûb ³iÉ7×jL„ª/Ú!+uLsÍbô›MsÚUhiŒ8ÑäÃi_´ÙWÕUÝc¸{¤ž=+脈Áç=ûq³ŒZÕ+DqôáD²Õ?l×hYt}&‹ð ¹Ú3Óý'©¼P¯àµ$DUAmß>oï£ÈÀ¶Ãï^“Þ{bx»8'Noù9Ïø™Å¨ uÁXß ™ ö·ý–0ú÷õ,ð,帷ò¹Ù_XÄEÑø„çH‘z à7;OLB£QIHS‘K7©}] cô?½±ûØÃ ±Œ´¾üåïÀk‘„9’ÇÌF½ð…Þ!§"Ì‚àÉXW¢Úá1p •q¤õ^Ûb ³C¾JRzǘs¢?ZF4.¶GXÇ>:0Èpm8•ÌeÚ»$±´!‡DÅðnh Ö¦ ªXóát2åóakr`ÛÀ°ì±4;G¡WÃv½˜ß,SÓäU¼Q¿¦äzêe=˹!w‹íiÚ‹Z¤ÇQ9ªykš²l%º{A²K6'€ŒÚÀ/Ÿë!û}Bç›Ç¦[ú(CC†]XP"µ p‰Wܘ·ý€mÌ«kMíŸÄs08tK¹“rÏ0U—ÐbÝØ] ¨)‡ °†ÞZ Æ»D‘3‡ƒ³qú£K”éí`JÉz54,@¢|¤ùVtUk¼(nM€£ËJ¯cI®ûB‡Š¶?|0%á{'`ä#s¦&Ãá¾IÙXm«ÙœuG·’± ,úÿ\€ø7ëV÷PÆþ 0ãQË»nð ­ O³ÂBóÞCB³]àž;s-pÂŽ– Àeøìë¼ðc@&×csvý“1Ià‘ת”åû’åpáFlcíNa(„wõv2 ÉpjÖ¥5Ñn“$ ž?Òé]ùròI9uw"ÓéX•çýù›X3Ñÿ±xò“yØÜöAŸà=a‘ï¤ @2þù‘öQÖÑ_-^‹¶èµÅë<ÒÌÍÕêâ…ûo:q?äÔ”£ÖÔóÑ{¹+%G÷²I\üqéP­ZȦ­dDû#ƒ£<)»¯½7kn/™±ªy1–¼ÞâñÒñKãëÙ¨6&Êé}çm›~¾õúð·7<6òÅ#½)ÕïçR }¬£849×ÜW/œ]aMñ aVЂÍgˆôSͺ¨ pÙ,Š”ÍXàá†ru/ÿıf4Õk·=Ú^O)ÅÛÍUÆg jû[ªi35ƒ¼ÅíÖÐJî8i™æc3,…]M˜¦ŸmúFr<ÕæY·éî(ìF‹&*´àÚy†eöZ‚Ý“6™dÓ&JÑÛ_°„æõEõ”Yˆi¿ Ôh»˜5aÛˆCLçÅÍŠA‹#˸ˈ¬ÇŠbй÷Äý¤Q»+ÿ$š´MÞ}=Dæt[Ûõ¤Ÿg,´ðJG,̱"?»}{cPRWæ(tÃHý]6?õÞÊ0«®(Nrþ Ūü{±–ä|iÚ–®Ý®­Y@aÜœMUXøŠOì—Ö&Eúü¯fÜßÓ7·g²0³5ù( ®QñÉdD*pß›­‚>ž[f È)&lÉ2À½²ÎŸþÐèÞÆ·d’Ïkó8䳕BãM¸ `…ç°F¦½øÞ˜f€´KÕ`lF=ALtH„ó8Ôƒ/µœ:.Z" kAÛVÛØ4e¹¾Bä1«±ŠÿÔ 2 ééŠÞndL,¬¼ó\bzý óÖY¥7­Îl¼ù§óXˆ¬{3£ªorØ(ì ¿®EâP>£øÍãÜ‘d:…ú~X û6d'“p‘eÛ ñŒ^ €*âè»o‘Ú×ËÅ%œm1Û±j§s÷Ÿê«ÿàqÆWZúHöކ’ò<6þ]:f;ãÄ Md…Œù¼Éæ÷zÎð[û‹L':Ž;äsÕ>Þ\¤öä£ÍüÙµÅÒWwÈÜ·û.¶ÒÅÕÄ™:÷EÞSŸäT<ïžA.**ô)Íß8 ™d~!Ñ—[ö6“õ|gÕFeÅ„ôd”ûãà#†U§BEO_Ù4Ú<ŽROM—›ÿ4ÈBã‰|ÐÆÃ>Þ>aU)÷çKO¦‘ægß ±ú”¿Æ…ôFvò½Ê®f:ÇeÕ㬌Šì?wæ½÷Ń5Zó@ h¨Ò æcûá·»¡Ag'GR–g8âík öéq)`Ö´«è¥äV/uŸVa Š ¬ÉŒV„íή%@çÔMÌЕÜf Ø,§ø]·öÓÕ&©“´ ~%Ø›¥[Úî×·#UÏ·ÜÎÞÑu&8~[®gzì«¶V÷œ¡‡©T¶+´4ÓVµQ›X‹Tg°‰êﮉâõzvÑ)ä›wäÿ²DÔˆ`Oí©X®ôÊÎéåÍøl¿T±…ùëš(R!‰föu䊤åë§@Üà9_UÕññë@w‡Ùí·bév6J.“[Íéá‡EÜXÏ@oMvWh³í.DEÂgÏí=n#Ù1á†yQ‰wt`¦1f€5oP‚Ðˬ†’¨™W6Ú£!Ì7ægš•ê¤(p.PIk óeÕ‘ð&Í͉¨\è' zÛoëÙ¦¡2NLö>ï÷§KúBA¹‡úíý¡¸hO<%¯º!ŽD…â ¥Ÿ°q~ yý¬VhÓ5-JØMÆhˆ—NÅ[«‚Qï™­O!zÞ^<Ç8sCî¤@3#Ø«ºÚuÏÜ›¶E†„¥oßÒï)aCƒÉzY¿Z‚f‘˜1òŠ<.›g#9÷'ç þËû”¡Ë‚«“G*sx–ô­ƒ•=T3»@½C{X;§©ŸaÙR£6ÚY„Y!&åã*ÂóÓ©cW-2úƒ~~÷‚ ñ3X¶ú†\Où‹6õuq:Jbaô­”’X»=…yÙµÿÿúÞ Â5‚¡bº²÷T èÞ§Xך·èªW¨ÜyW˜%Z¿èØbTqQã«uN‡RÒÛ‚½ûW2 Þ/†ý¿‡vÛÞty[VÁ%j¹žði™ñ:B±za€&ki/¬p+^véÝšôó `ùQApx.^‹´V&J2¤Ÿÿc(ÔEb=AÓ\á©Ñì%ÓDnåk²8Z‡dáïŽs~Å‹Ù'Õ…ƒ†ì«–ÍO¨¡’GùJPã=U½[£@ëÜ!sŸ[ßBc2œ-,¢”’ϳMÜ=EBõôV bP2Ò:gÔš@•ZÈ‚3Dö–ÌXêÐ¥£pÜíÕæø@èkf&²!ŒQsÙ.B™‡’ï!4¼4Ô„½X{žÁA¸ýq­õÜNÎÍßþ—þjTþÀîýt`ÿ² fAË·ð—‰8Þ32Z@§˜âU#ÁJ@¶ó¦ìAÛ“6üÖ  Q¹ìfÕ¦@ÀkÔK+ 8>ÔûÞS?³•³ýÁåûˆD„#jS’ËQia>ÜÛ.ĶïmÜp Úty"•;ð)W1°ånÜ玽¢üwõšô“œCô&[„³ïZ)£!ʳ‡@æžT¥¸Ú6ˆökH}òÊyä´¯A3qq«éœÒ¨6.(pÓ+è:¬¹p¢Ø!êCÿtË•"Šò ú˪X|•fÕó'ɧX¿:Q’¯á¡aytÐþ@rô é æb”•ÜߨíŠÐ;0+FKC¯íl5gziªÜ_›Tô£‘v9aÖgëaçÞ'Þ‚ƒ:ðUù ½‚Yµ :1FÔÛÌi&ƒ}‘'…~Õq%'y±œë`á·‘GSªŸÖÊ׳ZpK ‹»8Œ3êÌó 8=mrágÕ8%t’Xl€Y•)Eúcá·wñ×ò´‹FJbb BoPMIÁ · «FvU@ý :s¯}ï"€£/¥Û×*È §ô­‰gÐïÍ ôx‚£fÜG:Të  ´¶pÇ'éWöyÛaû4¢Æ Àr0—âü‹2#mÎ&pð[š†A—Ýø’ÂÈ}ìó‹†rŸv+§¿½ê·r³‹qópØMâv`’鈪Æ]‰«zï¶=o$DpϬbl9õˆUðpô«¡¸%®½šË"1N‰,^½=Oç:»?Ù€ƒYÕu­ŠÃ/ìYŒëÀƒg%àÃ’SÊ,ÕE~ˆ][¼½ãe`8±³l«`Y¼LάO·åqÑqƒgM©°rBµkȧÚ2íâIŠ®A®ˆygAp°X'Ñùqm­K‚ÖCý@¦€åMÕv°É´ ™EÏ Ÿ)–Ìöb-PNÚ ÿ¦aºÿ2CÝSw+ÅF½HrÕÚ¾Ïpßý$¦(™f¦rÇGí›W¤Ý?ú÷Ÿ:Ëàå¼ØØ‰b;Œ®q* Ë4íÝrÃ+H{mŠÆuçÙžÜqÛ =XËQ'½‰8dáÛÞ]2ý<Ê×ðEf ?:à£qâs.¸gÞa‡« k¼#Py>îB“}.Ò’V¿ —[è[û‡à³ü¿ üÆÆ¾:ï"‘Äb>uÙÏOÀ+Ñ~épüûl›±êÌ@¨½ij¨6$þ#õ×® Kܾƒ¿¤üAšâ¦ÇßM-*¹lKìQÑ˲aOA;¬<5rGV;0Á¦‡])•%ô ]"¿nOœYö¬±|ª ÙQŒn{j­2ÌwìE¡G#jd‚¨yFB}Á>}q‡ÓU~X Ä‚µTAópLå.¦Pu.ŽxtÍ·[úƒW{Á¼4bÑÞ.ʬ¿—á|m UG[ïUÊ$b3f¿¾Œ¼ûÁëKÔ»×¾4²Ò'Þ4 °\Nlu~Ϲß1'Tø³Ôki<= ï2cûpõê’´íB”µnGÒ¾ÛTRÅ2MžŒQJd:½å7ÊÑP½œó 𯆤SÏ&ÇáR|~Káq-™GŽbÆÉ>ûœÔ³%)ÑIf¡ßÐ3»Q|‰¸†‚cu‚p?ÔóñJ+¨Å}T†·xÉbJÔuŒ2˜¦¹Ù”{ç0¨³ÓÒÝÄ!ååuz ‰!©º?'¦ý³åÂÙ¢+`Äëé­“`7z¾dGªö\çµp)+aR½]ÿÜ8Ný^ÅÁ‰³õ'ª€Å>EŒë+žÄqgò:^˜1WŽšxQØÖ 2cELPÍü™\¸Rh\{FÿIÓf…•§êEm.wCf›7á-N‰{^ÝwrzÎJâ<@'ÀTâä¨Ù†°pñ¶ƒé èÆWÇøäó²Æ0ôºC äŒä@Ö†Bþ,\Lª_ð[š Wþkïß cGdszDt7]&çw"ö¬¼pfc :ÈsBT2BŽ“ÒQVúÕÄlˆZþÕÃffPÇ›×gǹ ®Š}HC](*²›T‚ªÍKgÀ!Xž5nLO¥‚Ö‹¤!¬v¹Á ›J-P²µçÕˆ3ñl†$ßê†è‘g4†0€T¯q†÷±Ô È3ÊÕD`™Z †#•Tž|ƵÏ$å±÷žM©Ç©ÒC^‹£C^k¸Åò™¤žCHÔ„az³Ð êÿºió’Û‘%±ÔU™ÐÒdwâìÃ{­Âi· Mú,x¬‰!!µ>´¬~BÅZ¤º–€aÓÿ½_m´÷1²AFð?‰ 7|¿Í3«a¦–Z,Ø~wJ¥Ço¬|a”*“óãý˜.ýòËjr-u±²ûÚÃ5#‚×™!íél’éÔ]in‹i"V·rms^„ùg šjÉÀ¦2:‹¼Æƒ{êK:àeãLAYéÄ>©±3_1vf¦ßjËŸõ°-×I“޵¡-¨FtGÚªÉË ÜO öJˆ »SÒ*q\útu6ôµ"ßë)k¼¸5w^¶ßpQÙ.ã-âÁÕöØÂu¼Mª;ð³ú´ëÄ×Ê}¾©¶Õúö^äì32p¤1ø¶T>ò?Ô¸¦êÖ·ˆ;rZ…•`ª^«Ìi¿×8"v&TS¾»Då©*Qó—d­ÞÎî(Ý>â¯{·Ò¡`ê$i½°Ðüž:ÀIÒî岋G@¶›' –¿WÕaRç©¡†N’Æv\0%bPò•»ºÍd¼Û¿/ Ÿ”ûÞg_\¶ê, ÇÔÄVX­ ³zÒ§hò©Ÿâ6€ÛÞéblS¥õÕ·ÃÚ®*%ä›×6­3N+¬*–í}¡Ó;ÙÕÑIÎ> WÒYlîŽ8¶”à;w¢@ k³#ç?MFJ0ãM-ÎðJ±§%*ôdÀˆ1.+Z¸”—#,È“P®¯hlOGôéržgôìdÞ)w•ØË$JYW!(*×å+N3€Ò(¦C>ÖwéØÕ3jÓJ™4ôÖ«Þ2M{ ƒj¬È-ÿ*H>Òd"ùK?å’•÷”O!ó(›¶e1\‚ëëÔ™)zÓë â ©-þ³ÈFø¨¿e^\5Ä®™#Pû¿*ét ºÄÇœo¯ÑѲÌØNü:£¬a.Y<-»³m}ôÍ;/|wñsROc(wV7‹ e“Ú UvÖë: š£Î¼w/Z¿°ØøZUkR”@°[Kpcœf±5¼hsa`ï[œŽfºÛÓtÿVHŸ÷2°Óë Õn7Ñ}=q}ú‘rB|cÕHwô"=,JF7]k˜?ôÚ{¢ÕÆÔ̽$šdøp¶šq~‚ÍVè\Ìɪ­qºÍúêÉûrˆñ‘\ª Ì~U® '“q«ç×W]•’ös=÷ØÌ+ebß±à¸T›Ò¢•gvÆA•t<9=áÓø•Šl±B|2Ø]_7µ7çþzùÞe}Ÿëg‰±Áùí~$E ôUɦ¢(3^óѽa¬ŽÜÆ‘ÙmÑæP+åü‘°m×ê`£ Høè/÷ÍgI0ú:rOÙ§$Ãñ¤Í]f$®'}¥à·ÙŸ‡†RÕŠªqx›dl¾ÿ.}%ȞЎ¢›œ VXȶ_¢fTÇ»šÿ ب÷³vBõ®ªöÑ©5÷–:¥g_S ‹rÉ,TšžŸT~ư¹¸zjKÑ—ÄKgsôç2ìØŸ’œD †‰Ÿ;bÚ…`~£¿+¡ºðñ–/ÆÁößKñc}ìoä~¾X t^QÆ ¹IÝtÉ{ÝNxÐSž^°ü’ÆÂ>­šl*¿ˆõ1ªÒX=Ch3ºÂ#ų‚“µ¿÷€•ì'Òc ‡B¿¸ƒ¡Yè¾%-HZaÉä…Ä4Ç[ñ×$ÕLóx/ºËæoEÓ%Àrê8M¸PkM%/÷^ÚTríq^äN†ÊRh‚mʲ¬Œcì­–°±Œ‹„Ñß#VÓcŸÒü–«¾ÆYˆ!‘fþUÖ>MÑ0WÍù,‹¤èoOžþ¸ñ›ibx‘TëÌšÇó7€¹„Ÿðœ®;‰³ Ù; ‘=¡ÁUÔŒk _KŠuršxH½?Öxq3rªÇâ„TE‰>JB¸Á‰mÉÐ+‘€nÓÇ«¿_‰UT+”'»ªÃçeÜÈÒj)Mšû·é§ÅTõ0¹PLe-‚éI'üŸ0eÅüF>©mïç~;ºùî®n0f#Ò’™ˆum Wd¿›‹?wŸ_CÆûU.øÎ–ŸN½ê¾.<Áà xK~Þ?&åvÊ#¢áuå{{5öb‚eǯ¸a"³5<–¿3Ãz.*+ƒì”憬°¯ïQÚ¥õ"ØRàìšzƒ74$6—~[-Rñ-»%¹¦ xVs  TÚÔ‹p#¹ºî¡Ë Œü>±í/”ÇáÁ¢+‘±@1HÚAýè‰þê„ÖÜ‘Zƒ7D“qzÆ©N kê·Âï‰å×ÁâÒ8"JljÈb“,ðµ(œâæÝ ôtâ~›Ç¦µ_ˆ¿¶E•¸¬s$ÈÀT ™ƒ21ÿµ` ž¯aÙ&¨–˜=Ø3¢¥›´‰qα«`‹¦ß϶[*ëÊ¿)²‘¥øOét"8tPò“ÔëtzOÌó:« <²y”i„– é ±Sãw­9¬P¯-~ë3}îZO@ÖsÆHñxYƒ—~ä¯ý‹dÕ"› ’ÁŽ}B “™Bu¶Èn¶ÕÄù5ƒ4±W„Vÿå=܃šDõ’2DñÍðÅ@—§}ɇ©¡EN_ß<®£ÂL1ÙHcí¢ ÛÇëŒâEyp55˜YA®¿°92lÃ!gäÔª?©Ì ½Û^€Ñ”¶-–ñ `ÈhÐgÀå«•ÖÒŠó¿Ñbâõ¡æÎEH¤uYÚ6ƒ×&ºòtPgÃâpáÔ£cz§ ÍZ‰’‘¸nK•PB¾´mBÞÍÓÃ0•ærfw³Þõ`½¼Jì0ìéËî&9“g\øõI°ØCÐöSɰ4×äJkQ1wBš\o¬¢³÷€²qîr<Õõ<39>ŠGžÑÃ6Wü:XGf,É€R`ÌbDr²üosoEù"îs}VBM ÌþÈéx—²Å?)œQqrÙñ²Œ\¹¿±× [NÓ-p¬Ï«¶À=SêkBÍ©kJãÛ†ÿóûÒÁÏšb+ÁÈÍ‘JfYOȆçÉ€OnªEP3²‡$±Œðà@ãй!x®oU¶ÐaÝÿµaë~³z¥”W`²Š«Ìo-‰µ0ñ",A¼b÷ŸDi&0µ”€ÖgÍè Kª¸ñ7ÙÙùÐï'b –i éá»Á—¬ÒÍ=Ç0VPà_ö³((²ˆ~vfo.ùÂÞàW¢4}±'×¢È#(QD_ßxZïª2å¨Ì»'%à3Æ^™ž#tB‡ö‘æ>$·dÐZÜc‹V‚ë»'ì`3«ÁJæjü‡ÑâlUȉy>“Q'’¸‘®<¹u]ܬ¸ÝA­4}0ü¾Gu¨aë&dðHk€*lƒÙ¥{7QJL¨ap®Y ‚wJkÜðUÂÜntPš5þ´¥·#(#KœÇ½Ç•;qG²Ðœum–Sˆ¹)~О_Æiב~!u·d `*éÐ÷Ë”†n¦ÑŸ£„x†Êˆ—7Ž-b¸bÐ ÒÈ}{dôþ׫-s¦V”3V S ©3“ rõ´i¤~§¥Zâ|Bõ.O» ø·¥¿`@v¤$ØV èå²Ò¡v«¿ŸcA¯›52WG‚¬H@EW!~ˆñÙhw£Dê¡õz „ÎǙ٬æôŠʙ~øj” ”’WnÖ­^›@JUˆêÝpDêjì IxÑ ¯IÇ9w.XïžÑïcù”ÁùWú­’%Ÿ†·×/[ï&Úó¢ñù6rq“«™>×´Ù¹½þ`¦¶Êò´êç*þ±ùŸTTkΣâW$É€yP˜¿ðMcÊ”µ¼IïmKùÃÔ›˜)à™ÇAÑÜ ·ÓT°—ä‘Ô&(Ûû2¿ºÔÛ'êÏ|‰0u¼ÞkS4ÁxÚn$‡h ‹àèH˜J ¿%lŸÀüªÅYl«àM4Â:¯r_ù•ƒ£ªoA“ȲúAv*é¹¥ì^Ðk¥F ¹ÄÊ'…¸EA$4yçöÉšÙÍe©Íoˆ‹g®øíÍ”$Ú—°¡•Í×â þ¬Ä¿¬SÆÐRÓDâ²õ:´Ê=J æ&qüž0v°£(hÂÕ!Í‹¹cy¼¨Ú𮚠íºÙ 38DåyüR¥–T>€QQÓW«À›—²ïªkÌ3=ò-Óá@}/…&ÍOígP # å½Y<ïmæ¨Î.Æ7ÔNýiîpõÌ}q@Æg¸¿tâ]©¹’_Ó=%s'J`¾”éš4«SÆj/VkngB)¯ ×ì'S(MÞD”1þðqa¯óã?2mÏy-c¬»ßlnâQ< ¢#ilw}·rÚî¯J¢TY½qíè[9z÷ ÊoY…´0¨<~ûPT]ñŸ;ÔÕÏé)j£s©^+d}0Ý ª—Ç•¦ËPKµW¥:-t–al;w,ïoM Ï-ÿe;É‚—PØ v‰»øòwà¥Ìq‰ûôéxx¬:JiÚ~HB‹“û®·&8—á•“ ˆkõaåŠ4T·de:ËQè èuñ üñ°:•pÑ‹“Þšï¡& ø¶M…ß©yÓ4î› nÿùvÒ¼Nú¾ÎZ´_¹˜‹RÜŒ‰Ÿ{p[Œ0mCÀ ~²Ë®ÔÁŽ;Wá?&HM2yU`Af‹·Øãj~²]F¢¨j+ÚÞЗëRÈâ’ÖÅ0·Eìv¥‘ÜÂ4EÄ·PsYR}Í®éãQŸ·yèðyÊOJ?“Öå’A<$6R¨áñ1Ü@u*f•ØÜMA‘÷=­„ö™A}B ?íiŠ§Î „6•´_Ò¬8?@çç¿)߈“a^-'•p;A‰ÏÎO,®‹X]©k¡Vƒ;t'éo>Z ]æ™ñH2 q¦2Ù¤ØõÖÿÕÄý)Œ¯±%è][¿R V²ê'„FÙ;ÍIÁàÒœòݰ þx¾é›V°¶ýîáÌ‚gó`ïùY aDÜŽŸP¼ÉÃ|¹–S^aÕ.ŽYDÜøåRT!7Oü~ —jT%#hGò¤+ÐFjã{–Ï( D¡—¹n³ ö*«<Ùg4W6ƒ™?˜^F>æÜᨵ Î…!ŒÅ-m–CIÆ À °`V뀦Դâö™G:°Ï â»À%ø†WÅ*3I×_L˜ ýÿ_% f-‹âë› ‚A*(Ë¡„çírcIuØ cÚ9„–¢ó : BˆºÊ~ØnÜÅNÉø +BÕˆ¯/>fºï1öGA‚%šÖ,Ën³KSlo@I/·]kýC“³g£D®®üÌrÁÀ¡Óû²t)8B'j—ïB j½Á¢Òn€—‹|˜› §a "žçE«žì×oó8Ûƒûs®›#Zú­¨¡_žšÓˆ!q»©È¤t}íz•>#ŸËï…ÆDâ¢Ë•ņ“»è-:Â$‹W¬è£\…Ì G¥¾Žý§IzÑYÜKð[¼…j38žý¢œ=}¤`ÙPýF[îˆÃ0 ž, ,w½®½Òsqz¢g“ç ¾J·rßG¥r]b ’{úuoC…¬<Õ±ZHú3ßnV®Ë<ú¨b¾ÄÛšÕçê%-ƒcíN ³æŸÿ^8)dzOoŸ<%-Êø=DXp š+2EÈ{Gæ£óª1–V›58ÿ¯lF5?õÐ6§vk]»^Ã9ýëA°Þ$sú„ߤ¶nšÿݘ„’-ÚýRL½$·> ´¦· ú?–[Zµ¶éùÐìƒä¼UÜiiL°Â*œ˜ï I{@œ(§ïG“1> Ž>¸CB{§5ߎ•ª×¬Ñà@ª’" ‚$u'Sì¦O\ŒÆ8Å_GµÝ§åÅÌ¢¥{<œÄ堧ϘiÆyÛÃûû'µ·Êò%ØZVH\MË—_vùàfÔfl!‰ê¨$!M`Ûˆt{»*yFR÷Jº°Ð•ˆÄrUÉÿÕA•a2J!ÛŠê€QïÙKµ²wæ¢ß³–<,xESíQØcÛYCÀ3îäø¾û†Æ€NåÇ'Õ†â&%Ñd)F YôÙßl“®a¶ÊKÖ.ÚÜÏÅ·íyéðw‘r¤®›WŽ'ÛíYd„Ìç712³þô˦›ˆU&ËóioÃט©C+äü€|™u7 ªnêúñLîðVBdØw2˜qÛîéŒbV³õ±¡¿3¯òåXòÍBžÒóY8]dObG¨±±{¿]¦€À:wZ uÍöC>ßÕ!Žo sÐr’1=?0ﯿ¸Æœ†fq—<ñiþúHW¾v¥sÐMOH)[PL¶+¶ÐgÜò9¬cÂ÷ú"Ý@„kô™Ä±z…+ B“K_H~Ñìs:dÌž•ªâŽ\XªÐ'½Õ¼¿ïý–…NIéGž½RURówVc t¥ìŽÍßE£€º“bméᇟ .æe&á€R²dÞ”`¢¼Ã—ï¼'«=µ—IJ2Ò€)÷ð¸À´¼{ÆÒn®:ævC­FªgLÈ:Öu4’ÇÝ@ þ#¹­Œ0Éù…L2È!o‚9zÂç-Àó }±ÓR1…¢RdzæØÎé š”[ÕñGF}µ=b³cZ_—0ÉÅ®ÏÈA£suB JÏ—Gî½Ü§WÂ~XèÛeÜ×KºæŽ§§û¹?ÊR¹Ð“*ÛoBYàúŸ)ÙºÄÄH<êî/ 'ÿÉ (#®º(챘CBÉÖu©&9> b'ÒÿŽš‡8[žX_ Ýœ“:£Ý¥øO¢ºõqú¨?XXU$‘tÉp’Š6ª¿oe“ 4±6ž®…¼CP3¢½fK-ôs.9΢A^JWî¨+XÆYÄ©fe‡Ê‰wá·ÚU0î6köùËýôýr!âl† ÷FšŠ?†ÕÃÕf nM3"d^²AÑþ«Ny¸õã g‚¦üFq8ÞǶs¿ûÓjtœÕfb˃yjŸÉˆÏ–µ &䜬·Š2 "œÞ<¹Hsð jcYNaãl‰“G¹”†~{Ä\˜&ùñB9I“¢øëªE_à›Õ­Ã"–χõó}&nÍÆÛé ~à4x[¼­ ÆS¤ž ç¶B¶#—L¬êo51±„ñÇ󙯖o‹ÝJj’IÀ¶œdlZÐÖõZ¹·7e ·é Mb'‰ÁÈ[è“J.rÊxk¥‡m¨ô“¨Ík€w†nê>6׫*ÿW¸éã/Ý\õ%.u@²=Tió¡ŒË3D (˾o-¤Æ„ ¢Ãª­Òñãž®~…Y™- u‰AbÅòüíÙ1‡œ˜Á§ÂøFªÝ+/±áÆÞšsGn`WqÛ#|1¾HŸ7è´®šÇcû´·)r僩ƒ®‡ÂCÈ•ÁI2¾¼Yºþö„ãl0}Æs¤{4ð ÑEß ip”xN˜.F…6ßÑãø‰¬ƒåZ滛o„½èƒñþ(]U¤.É–NÕÅP¥žºSTËIÁŃJ¿É½­&í¤Ž°ÄÐA Ág7½Wp›æç¯Z­½ÑpÚÝF­+ŠoÓÛ0(Tè7üé# é¤ò3›‘jò]¶?ûðÚ¼€gFíÿÃõ=xôõoV ²8NÎT£Ã‚¾Ðû˜à@ާ`Y3Œâ•ÜUs›çKü:z„þoÕ–˜‰R§;ä#â"ªûؾŒ3ÒÍbõsh™>Õ”º€_ûVGá¢ú6Á!=Ç6]š‚Žs"fŽ$-éñt|®4áÔ Úžá>©±ü´ãjd fëy}ÒÊ)Ií³A–ʀǜ¶š·Ž5™Ê÷BñHhí›T*à±àÉb°oD1¯›\Qn´™ÂÐ’§B7Q#E(ãŠZžõ,"D²Úß# Æë¼û¸ RÄQ¯òö8"‘«o”(šI ìó¾õ£Ño!VôûóQ†bÖQÐ’(ÀFÐWy”wl˜UÑèÁ®;*Ñ×süôi¯‰Í þ‚¨Q¾–ǃ }4…I]P-”'CÙ,ã #¹šÖÕB <ñξ Ý×):­)K"=wGÚø?7çÀ•ê?½}ù~Èo"ogÒÂéNºSO56ÎùpŒŽ¦³6Ù)ÆÄ5.ÂçQÔØ(u3 Å!8y˯t-ýµ)=Õ럘Øv”Ìï›ÞîÅR…©u€ ïVãr´8$ž¼ˆuƒ¨±~7¦ÆXÛщ)8±µý…§å€áÍ·§Ý€=åþ¬ùfð"pIͬ¦ô|äà­ùƒÒtËÜGPÖkWФ ÍÍéÄa½à_}äBcx¡¾ÓSh2½à§üRk¾°tOJ”#r0xæO/ÙK[½=^` Jy :V.|ÛmÃTù¯‘Öv°6g¼KÁè(¥©™ kSü´cÀ`ç³E2=ÿ»7÷"Um †Ž†³Çf¶Ðß7ëË â2rš³FÇX2PÍâ(vÍ­×ã,1YeÈ®åàÆÐïèÀx¸OÔitŸö¶ñ îJMDº½GM¢ÌàP¯©ÊUÒü•ãRcšnUÝ—”QMÙÜáÐF<øÐ•ð%˜Xû";Ëm¶Ï "•BÇXˆ³ÍñV W²pZ³–Yâ1óxWêG¼¤(µNnÞ1ÓÐÌö ô)ƒR•ìàú¯Í¿÷ÅÙU>NJºÎã ÚGqÞ‹._é¢ëÚx®Æo´ž¥L®¼ÕáÇŽÙˆ¾oŒ£†J>å:[ÍúÿÙ¦™Ô£XÐU÷N°b¢O‘c›áÅöÑe‚÷¤=0™è-i l ˜8—²C‘âlj¨AÎàó@0 dzÉMÈÀ­oí¿wIeD ÷(œu‚Ôxô­S;`ÓZÜCð#-9{£!hs£Î6È Cw™ìNWÂü:#gëÄÀÊ¡`á2Bö yÐwš8ð]¼vžÊÉ×þ=çºãþè¥Ìñ€y„*NÏž–§{gœi}Ú/k‡g‹2/`oÇÕÉ„ÌtO6¼4³I²†âåTZ<쑃–øâRû¨Ûe“= ]¢Xƒ±õËw7“Çd@1ú~_CõOÐOÎ'F›ua§lzp Д”cŒÅE;(Ž£æë,ƒ¼rÂç'XƒÞÐÒÄ£Œ³§\ˆT®þÑ 6éRºDl•¨€?‡ø8Ç‘9)‘:Xļ>•aÕ1½ b†;Ûà‘{uØ«ê ª7V‡òëÆ> À.ðïƒAA9¦–Ëš6I CRÿ×­Œ¢mc‚lïy=3=< ™M«hOÎí&S]=q: Fh|½ï»Í‘K¬û©²ýÒ±‡‰ñ1´/(zÉkˆ…<Î|xÇ`ÖÆ þÐÇí(´uÒÐF9Q§ ò±¯]Z|ûŒS†Úq9 ­êhÍú˜–},i€Þ;4^i8µm.*Û9}ºœTxT˜!pÉc8þ•ä¼ Ÿ£%›ßú­À1!zНÀep»¾ó´'™ABÁËÍõ)m3A†ÁÆ7…ksýÄžoz6´û`îÔ…«@û<é7´}ï’oäÙUlð‡n=‘q,¢Ù È™£}³?îgõæÝ¢Èjà¡Ö¦uuÿ,’$ç¥×ÒZ2.­ý–Hž¥ò  FÜêüVÜY\ªú4 ‚/ËR«Ò‘Õt W.á ÿešjá^UÀ¬S°øD1¨5µX ¡]ýFÞNH ?‹ÕÌŸ_Í £¸:¿'ÖYÀ8n×d½îuƒÕåeßá§i±(‚BÈ‹ýÿâ.½³Y²'ŒÏ„Çí¡xÄz’9¼@¯|±3ªà仫ßMò²˜@q–¶!A¤k5•ÖcK=†ÌÔ·½ïs"·¥6£<ÉEeœZ¿20<ò9?N³•}~ý˜ÍÞ¶®¨~m¼¤Ú'òÌvt.Ì´esƒ,áÊpMš£?9Yh®Ã"ëHÒ‘£,8SU±UÌVT×j–#œç0kÝî€=! ™gÒªb‚?hèÕË· ƒÀårò¤õ͉êøŠn\<“Í)¹7&ë%év¼êdbç ÜFR^¼ŸfÁ—¼™¾S×9Ö*×;„–%øYÄeäFâ­†è7eÀ/³Ö1¹&±Umt îÏø%¾g¥çöœµ'IJ—~‰ê¸Î~‚úp.Èí ¸2xöÔÛõœX` ’ñNª(fÈ*µ Ú¥g®<³,28TÊóN¢’Íœ_m™ç0;2èPyò–ž”{Ÿ,Wè“(/Œ ´A•»°áî]R.óQŸÎæoýÄr>t2°ƒ_Η¶ÀÒ\M‡Ð õÜçù×míEí4n)Ô9‡ «÷Å—*ÈÒi:Ô µoH ÄŸÂf $_]k;°MºX¿žÎ›ïµ­øÜF3ù>&î±;ŸÊ8•O(»¯–x¥Ó»†ž—G°=³p¶Þ©ÒGoX¤an§èž…oViTÒžb[ßµ¿JŒgd6š ù]÷ІøèÊ帢ïÜ9°°9,”Üч¥¨þÙ—”°÷õY0ë«¢ò¸­€Þp‡a³Ï6Ðùr+¡J€fR+Š04:·árì‚c[v…G*4tþMøK¯2)™ñ¾š¿¬( !|3H·W_’lª?dŸƒhTôÎÛéqÕU¥1´S-köo‡ÙúÚY^†›~?ªÑêæº<•0¸ƒh0&'Ú£ ,Ùr ¡‰E¢Ã+m°¹—x‡ï#ôøÔ5J_›b"èÂ{ožwD,<Á9ÿ’ 2XÊØëÛ˜Hj/©fÜ|Žñ(f+wD€ 4åp>œêS‹m}É nZKŽnòdo›4®[GGiNŠ­f@ð½j”ÉOõÅìûÆ’òm¤ ,5²€¾›Ã£ëèZ ¢óš–xV]DâMùm-%BÂ)¶òȹ2“íÇèÉ'9ˆÀšÎZV=?"\úè‡ùS#mZÛ2 èeس?í'æ‹i”ùëàùTä ’øv¤óùí-TãIV;ŸÏ{kvµ¯ˆ?½ùÀ⬠ÜI7á#;¯t+'ÊHïûbÑZTåä'(„l„Ñ-pßß“k‘ãÅzØ :!³&õ'±wz *`‚/ÓB×̧éXˆ\°QÁ¿ø'è.†Bï¨há‘j¢ ¡È†a©Ë¯Â¹5êƒð4žI+«Ç“Ér®=t¿ÒõÅ0LP{4êÜfå-Ò¨ù"hèôgp—èÌiXˆ3ä·)5F¦$dNÊ6ªrÔ øäÎþuDeé\uÖBäªv›€aCÜi&¸¬8#¬‹6/QÒväW²oCy÷ntñ$ìw$å$¬·|:Ú‘ùÚ§îÏ;{€†SŽJ¯˜G‘§‰â_^²-“j¶A@cJÏîjb’ä]Ëü'åF¸dß.Ä9¶¾Å»ÿa—ˆ“¥9’óï}áÄ×Ñát)1}¾r²ÀsiG‹1À¾CÈí,¨tÍÎËK´)ëm^þYÁ©T-òÑ3è¬ÝÕE°«J['‹¯NºÕè‡[<9ãó㩾À†Ê öàK²ÑÌ[FŸ5}Ž8PyíáÁ]|¡Q; 'Hü‰d/Q¸ø9»ƒø½)!Ø,ȵ‰GŸ´#e×Φöf©b°O¨yMzýx[^ίìŽàN²›ö­XŒBÅ^‘h·SŽ`ÅTëª7|\úîòm™õž•8Odš ÉçËE`,Z8í“O°Î@&ÛÄð·Êo3l½ùÙmü ô%¹ Q\*Õ¯5Í5RÑÆ¬ñ,pˆŠcèõJŒªAÚÁ³Ÿ@§±[NÂ?dæÇ[¦Æó·`Ìçê[L°ÝµêR"ò+Uïçl5Z¯ËãdÚæìЧ`¡[õÇ]¿+ŒKÇñšdÅrë| ¬pLËæ¼ÚꟓU­×7ÅÀî,¨*S´Nßí2,iÓM›ðÉø´$TÍ—Ú׌¬;¢ÿçb›!ûÁ­[Ž'ÃÝ*ºMgÈäï„z¡jF[òC&Œzþ_»f²L6Û‡q 'Ìcv?ýÅß©[‡±>C[öÃý“Þ-ˆ ™%v'FmaHð¬Ö-•Õ–Ã@ÛÌ×î'”„Õ½µ‡BæInw>Ã|œÙzÞ»Cl)xGêc÷p é„ò^ØÞd:9åÄniLˬó!€ø¶oTÙ„ÏT̳-ûˆÌ齨~í2ø-k˜4t//e5©?d¸ˆH±&½èœ.¨èÇ4Edv<Ù¥¢ÄКƪTÝ?ùp îþ 'Ì%‰‚NyËo¾ä‘W‹ßT¨½Q¸ÅçÂH§ÉÖÁ'ê뤧ÓÉâ× 9*råZo¬ÿÛÜ…´Ð§Y„×Â`2,9@Âß­¿É Ÿjdá”ÓÑÌ)™þ‚FŸùÿŸcï'x¤>¡”‚‚Z`Ún©+\~AªµH1ë|ϱè=ˆ\•ƒûßî„a[{r/¬“ÜæÇGìGA0Ó'¬ˆÆSã@ «ÅÉ3¿ÞóP[z¼?$/ÍíŠFô'U¥äT¡f^E5]„ÇŸ„áqC†9ï÷[ .H%Éwo|‹4öÞ¬Ô¾·í”¤ýp¨^탩 &Õ£š}ù$îmö›·ÆaŽJ£Ä»òWm¤Çø6kÅ}:áDrìS¥È$N¡X ²3ô#¿|¶‚Rü”NÉc‡&T›MlÜ)´&ÚBÛV²û.»r2´¨ò´[R8TX°}w½ÎDNÄ^O+o4~GB™6dW¥·Ã{Ã-¯…Öw œ*ãÖè4çö3ß7,Ö›9·©ÊûgÇWU ½ÕÓÑGCV<û|‚nq²M›i¶zÈvðB?EnœðºâJDB0™4Û¿û+uOÀ‰¢ªg.Ž á"ÄÄ…¨/™äwÞŒæ¬Ê6ÿ>7xÍÞ‘¼­$ŸÆ7¤ÿ[€ šcø‘ª'‰.ÞCÑìäµOóŽc¥LŠ© {‡Iz໵ÉíÔý·ÆÝ[ ‡îŠ0=ypÉp¸&ò»3+hªƒjLg©·§¨É3qÖB‘ä~®Ñ@&ìà”Š+<̰z±¹O·äI^ÛûO´LÅgJñ'šK P­0v].iqðóÏàìÆL¥\ñ¶ix-|ý£É#¹¶.;vBë».ÓÖ)4Hu²Æ¿ÔÀ dYΗâ­¤Y1êf>8˜ž?è˜,;Ú¾—c0`Ë*ºT;ÅÖB’dÕòíÎpÔ³îÿ9eGý™rÅç\cxÄkjgR…—p dkü+U ½iÇ©-”ÑÎs;%—¸Í5-wíÁ?¼j×|žÙ´dÜ>5VÐú­âé~6f½/˜V%FÊufñâ¦6x½Þ¸T$!ýCæþ¤©Ù!uqk³¾ñi#ÏÍWu?2P”q±-~}÷Ä©­‹_+‡:RÂ/ìèÌŒ7•P?úBCœOÓ–“\Ðá$ÉŒàUŒ.»Îs1ˆ¬´è .nŠ„¸žÑåpa·@+ÕN„»%½€ëÿ#¿o¹‚PPÊ-–Þúë ï쉑ö)Q»ìeLv£Ñ-×uh`#~*Åí5’þŽWÑvûSö‘”+ìèfùƒ«ÓAj‰Åf# QWOUɤݕÊwdôŒ©¨Üÿ;,‹¦™Ñ™¢µb³qP/ÔFf»ŠôóJ¤v7ÿМfi‚ïÒFÅFó¶jËEj™hWª—â‚#mUŽäúžïЕ!@£ŒÅ;–‹¥á¤Ìaù²oߎâ ,L:±ï«v/¢œ…@Xé.K'LWë¨zåô€ì$w·$ÁßÈ̽7Rr*ÿö¯0|ŸnÛúŽwÂNêN4@¶›8ø!ë=‚Ö$”¤—çà”ê÷ãõJZ'ˆm6¾@¶¥·ìr$Ïy!])¬^ÀÞ_ =]lº£l üC*öÙ‘ý ´Æ‚oÿî‹_ü¾Hrš±[×8U6š°‡Lÿ-EËwµàVÚlU<¨fG{M7?®ð´Îšb~3«T!î®Âåýö!é¯Íqbr9®#ßöz..+Ü™vc£ÛZÔËGÑ å°ÖmqÔ(ÁY2{©â&³Ùb¾jn¡º(;Ï&.{¹¨†Fù)ëü“€#çÓ¤1ÔMcóC å-`u›Ëk"©­” tu·Ù(Ò\q;pö«<ˆúx¨x\Õ4Ý-™BWšs€ßtÇH«^…HFÕl™÷·¿Y”Š)|Œš!‰çœ8¼Ô!íŶY[ªªE•BÅyy♥6+NÕBuðH»§Mzò6ëè1Ôq[“_s&·{r²º ,c–Ù‹‰àeÌ 5‹M|¿Óœ´ï‡ŠþðŠA4.¯ÂvqñMjž‰ÿ¶MwöXEèánC­2ž,äâxaÄüíìî°RÝíŽâÑže õ…ü&œ=VŒ»r?…-ó¼(et5Ð ý(p’™wþ?T†É&àü™¾-š 0-jª§ÈV|#AõLúøÚèÓ¤1Ǧ$.ÄßL ï?ŒS®xÛ`Örëç÷ì‹AÒÛ¾¾œ·ÎqÁî±®9ÖSetª®¬ôRa¡ÌøjÏXkî8ÞRÍ¢·*ž¤Ä•¸b ÁÆwÀ-ƒS°¯Ä9¹ãÕih¾$x4j0!ÎñæL‡…¢Xd ­'æ_ jõÀ;äSmͽ ™âNÞh¥0 ôà´Ì2îÖ=øF‡•$E‡×À(kÒÝÒNz9n,‹üùE•Åc#‚q#}/Ÿ½œt²„yWybéè-®â„dÚ3«âϘRˆÌü8¿D¾ý{ Ži±_¿MùÔ=ØøÈy©ç„"Æ?`ýg³Ã¢±yª(3ŸÅ+"ÏGrR6êCK~‡a«DzÔBÞ*E‚™ƒx³{˃÷öÎ>uƒóôݵc;wÑëmo­Ôûím5S iÐø–-2CV”AÄj¨ë‚®¬'6 Øè*Ñz¶Ô†cC-ž¯Ø,žÃTÔíÎGx“ª¿ò˜JîF軧ƹsF½ Îð혬çc~N¬´ûº{*®^k/x«àyAÓçÕÆŒ*ÚLìˆ_0ìm&ǶQÏ&ÖinöTðG?DÌF¶q^NÁ­4v\qê‘á÷åàŠélj§ñ5¹>w/ ÷I>Í%¬Ž÷Èÿ$nlÖq Ñ1³ùÔÜWº]çü϶]_ž:Âà­žë0`˜G--`çR ;Cý¨î ¼)þm©äXÌÿƒ(€ ÜU‹£\^?”óV¸C+YbkúUÑ7£kØ¿÷™!|®H|ƒ}|ó&ë™Ô„ ¬8ÒwlüRÿîÆ{Aš¸[ìVíŠý"ÉáPWLátRCT\´Ãp՘↓³ÑÑé,E¦Šü¾ÑŽÐ`öÚwð#heqp¥/]Úo=…X­ßqžUã¸æ—·¦_íR½Ì¥‰}“Ü9èÿëù~!fÍ´-¿ô!}\j2!nEX²Í`YShÈ>¸_QJú6—3]vXÛØC¤®|†{s$åÿæÁ+àõW ¤ólÛjI²$æ³Ù„×Wѽ…ŽàÛS¡…Ø÷]lKažYÜÙ×7º×øU±Ç\mD§þ¶I¸˜)a¬öó@äƒë‡§÷Ö›±Eû‚8QúŒ]ÕŽBˆCC«5jØU5$$|Pó:&0$v­‚­$Ôm €?šÞuSSíì\boпñÅv>š1%º0ú&x;í°l¸ ðC¸ ‹ï7Pý¦©m—Ñ›E_9Hm¸n¨zâ¡úoÎà¯ÄûÞP¥ÆˆP´ÝÌ€ú¡¨VMÁî± lͲ·rA³tû! ʤÁ ‚À-ûp?tT¢¬ò ¨TÅirqr)”,Et¤Hßl¢EçÑ]yöÄ#Ã#gÞ¾&dD½‡öðh4ló²º)ÚþÂëz– ënXðÕ3ðæcðŸÖiÚ5‰oóªìÛÞ,­‚ìÍâ¸k@Scÿj¦æÌKˆQJ×/he¥c ° ãsæzîR„ñ9YT ‰n²jšÚ÷¤£¢S0ús]L³ïÓx@˜CÉ®¨¡ÅA†p鉛côÔDdIË^GÕ @ÓHo‡Ô¸ºtÇ\²é†þ«-˜Çí+"¦EŸ,ÍIÒ­ À­ô¿-îЃb„&憲ÊnÁIª=ëÍÆ0åÚ`IÁÿx¡|)A9BxëmÖ¡DD× î(úX}õ.Ëô6M½ñ2'/4®ÞRÚôû{ÆßuÛLt'f^Tš~í)… býɼ¤}þ”n©“LEÏ„æ£Tí YW%¶Jâ7­êæä–ú¨@†Tßÿoî“«ë›cëpûÎQ£“Ф$âÎèsÒâ;À–‰@YšWdíå’Ö~f Ço–?ýÒ¥öÉ•ö€%–a¬rÏ&cnO”œQ‡J€ٸΠ}–м²,ÔÊûýóùÌ JF½²ù´ÇSùÊñúï˜+<®¼˜‚ßí5ê“¶èH&J°ád"å1a6í©Âþ ëýOÕEíqÇá‚ÔÒ#1PÛ&‰t1¯98ü.|¦—#Ã^‰›´M¾{ìù\öG©*ä]}.m’|X€¬Y ›lŸ˜– À¨ËA$sýø¸¿mç}cO–9âǰ0B•ë]ÏÛ¨KëÔ… þ쮇ÈÂbüùî3LૼvÄ™–Q”2'SZƒ;Ù„š]^Mê|‹š×{ñ£+‰©ŸZ[%ªnTç¼YÁvÌ4?J09Eé<Ò nZþŒ™š+­f,´(X˜.f.ž>1±¥‰/rs£ùá Eëå3•„Ë—‹9Â,u7Pð®ÕšA’M_r§W%Ø6Mi_Ú.0g ÆÌ–müê¯ú‘=1v[ÚgI¡Î™ø†6‹›ïßŠë £ó‰ô1tÚþÐ"’kC:±Še>Z’\ Љq•›¯m1[0^þh±1tòQ°)VD‡`ANÏMN ‚¥½ïÖõØÛGÈr¥:Ýeª‚û!kŠ x¸Ž;;D©Œä’5•3K¼„—ÉùÈ"ØÖ¼Ϧ8çí—î,ί¢|cå·Ã­<c½¼/ 7| [“ƒN pM¤Êk5꘴]ë£`€’•¯Åÿ³²Fk¾àê8û>ç6Ó´ò\Þ|Ç.(¸ŽsT à?®Ò¶·º¬¯ÂÍÑg¤OD4BÖ+RÞk€¨3’Ëäß'TÒ0Šè ’ñÖ&…+k~Pº!Ë“Iǃ¢+ÿZ{#O•9ÜJå5Cöœ«Ö˜N/ ðzeÛÛv’°ý¤5¥ŽG‘ß¼“uØûa‘ çµBuŸ'’¼âUº®¿lá³FÞw¶ÑBý<ÿ6ëTÀd ™WKÏÔJO+¤‡clÀ ¤zDŽz!PAqQ{tÿ¼©qÎ3CìØ˜°TÞcd欣EðϘ`}ï#⎒WWXmËP¹¬‘äv#?[5Ã6{N4'®%GüÎkL¬~kŒû¾†ñÏ?ò¸ ,¸ô›õùÝñ˜1Œ × a_Î^@rlW 9 ZÀæ¿ ršÉ^¤á ŸŒÙMAçù÷[‚˜™jáwèÈ€áGh§ò÷]I·'sÖ©%ØÃÐø§fجH0Î6êsâ› zBò¦*]\t4ž.¼"‘üºªÌÉ=Ľk6î e¼+Šj»uúo4àZN:fª÷wôªÂµ·4£=Ú×7¨0Bû À¢8[ÜF‘É않&ÀRÞ€O;(-Cz‡‘NÐ*ÆÞvðB“è?4-t+yõ?ÞÌÆãý–D0Àað"$YºIüž³·á‹²@6µ)hn£„z%öšðvϨ5âÃHÁŸÝ©’ 6¨.þ.8‰Œhüh>6žwGüŽp6•H<' pÀâ@xscå[6Káÿb.ûDô!y`ÔíÖj1ŒŽó9ùFÍ}b’£°uGê“ÏöfrÐÍѲ5žùܼjðù“ÚG]£F'pœ¬~ÿ…Ì<ÆlÏã†E[ï">‹ìÎÜkæüFHR‘` :‘´|zôœEòZçBbX”:HzãWÜÞõ@®ëýG7¬—ßQþÅgO†CƃñjP/¾ísâœÚù[=Éx| Zp$§Kè›eAù9y]ìèÛ oú¬™ïQ·ü–z‡\ħԛó?¡¦ã³EÚR\8÷Õý¨¡fÍç`Óf´ +S•gí ü¹}Ë2eíÉÑÉáÿQп8cµX[Ž(ð ÂÿH1²ÿPÂ1ãA¦ê…®Ò’=¶¯ÏEŒñb µ³ƒ"q­2–-H†Vik¢ž ߉L%%#ó0•2Ü5õ‹Ÿì0â‰3—»^0ÄpÏvh©žÞFba9Q9Zdsëi…@õñ;VÛ:5ÂY:_ITbX2—ñª0Wwòfñ¹LÂ9vÓþƒü¬¤½èöõþñ-‚ ×6(cisCM~'ë\aPÈrìÿ}ŒÅõV¥Ö˜@äjìÈYç¥iþ¤Sñƒ`(ãÆÆÂ°|i­:%»_‹ñ&á£É£uÛýj<ûPŸlÁmÓ›H¯ð¸èöëÏáçbéBÚ@›’0UçéýIñÁ&êóñj§F´y«’E$ÿ©½â¼nñí,Ææ2Ü !… ¢÷ß*„¨ù˵D×Д~ytäm Ñ’m<~ØCO&ûâ¦BÝ üïk–Ïâv˜rÎH[ÞWѹµ#zvxY _”Ý$Tío Úu%Šz·:<øˆQú]÷HØw(±B¦¡r°ŒûS»ÑŒÂÐÝøï@°£…Žþ&ò‚ÃÚO.Vøx¬2$Ìt5uq;Á¥‘œx×&‹T) ¯&ÎR°Ó¬a Ú¸:bœ1™ýœßóxpÆÑHÒv¡Û—\%zÄ fÊÓ…ÔÝ ¤ûTÅDÕ”Vz¬Ñ>—â ‘Cÿ±˜m³¶¼`m…gq!D/á,W2Á'M?‹¨QäÚØõ2F,Ëû›ÌMK²%µˆ3Whó6ös¾áQâÂ'noë\d–!¯q¼b»XÙ´ž\7iÿŽáÓ™åyŸÜ‡þ‡JVç§3Ϊ…t*Îöúª´ÔÂÍŠ¡sÇ´$0çåÂIVA2[¥“§‡ÿQlÙü42˜ÈãµÙ±Ó:iÉ÷üv©ñÎT¯ ¯l26èø¡ š,ýØÙÏ?îS¶­^{ O _Bƒ)ÄEy¡5ëyY-K`*†ó? ÖÜz+Ÿ"x™æ`ò:W­Ýrã x<)$ƦáaR@¯‘±­ðõÑçqhƒ:¾P¯`îÇ—]óläÌ@ž°Ûq ê;÷¸ëèh/)8§ªnñkì¿bJ¿Šp+”Hx¹;#ž¾FL7Á‚½RÌR¥ÙˆÖ¼Â~â5sqWçì<1Ù¯evÍ-¯/M©o7+òÁ1åèÕL’9=÷²Õáºô ;€ƒn ::=KhB³:Yÿ·“üƒh[Ú¯!+Ó[F´œ;¦ÄÞ™¬µãF 3¿¶?iÀlÀ=9ywk*ÃÕRž$ɲ2Ú ‚;Ç^yšH°€Î[Ä–|¶õÀjºóG/l=ØsÍvû¨©¡ÉîRö~6¢ôŸ+Y“P;²»fž³zZ+¦b i_"¤ÊùؽdÏN®‹îNǵ._hU…2ÎÔJd™}€[=¦êË[a„¹ò‹ F“RKÔ‹¡ÖÊXUð߈?½h4d%”/Ë[+ŸXR¤…¤çò]ýþ¾­q L§i•U[MDz«z_mîŠTà‡ü 9W4!ôÖG,…Bê2tXÄš½h›YÜÈvÇš¤ØÆ™/öd<“üT‡0Çãök²Œè<‡UK!×BI-´.ÀÁ#Òå¥P _0iL^zßzVòn ’,EÕ;ÚtýOù q1+/~ˆgìp…ØŸ§Š òô>¤Åìö؈1ìû33”b“‰él±ªåÝ-'«Š ÎÆÜ‚N‹Äd ëËÛe è¶¶!íü„StÅáßÜfô¡)ÏŌܷ© šÐG°g”ï¨ZHÜ T øÚÀ¾|³i:†|怠§¶fTäõ[.Y9žW’äà‘#6ëZ[KÀ¢5Õû¢áü_|ç3¡ç>ûªÀEæ—¦ĺ&Ã{«ÄÕw•×µ4òX/+~¯ÅËOè©è>4“<ëgû!…{ê3¾.ЇžÃ™­_ ÀñA[fgžÜ¶J´5[ëJp^ñöcüÃôþ âtôBã¢(õŠ–m^¤ 1þšÚº=¼#¡ÇÕ[òÞ ,àSf+$¹7±‰U¢¤“ÕýFU‰CüÁ$’”â>€+#4H¬_ÀñrÌ0 ±8ÄÈ´r~-W{ô¿y,ÚãpFº²n’•=·GAQJz€K¼\¢€ÿ³»†ê#¬á’wþ£ZŒžôyFv‡&¢ÊÚlHøƒw”:½ÈàñýÌøÆš¹JxcÕŸ,Úlû`ûÛ0ú¨;f1|šÅÂy´”¼š“œN¥Ò wJ¿´ù¦~1š]XÁ¬=Jè³–œWH ñ†‹ñ¡2eòªðOÍ·¼ MŒ$h|v–ºÏµÔ- ,û `+IPS¬WàŠxÍÎD¶r–aSëÞ¯°­˜É‹8FŸg‚šÈW[aøŽ›ŠÐ‡^è8\ïT5÷gV¶\©íàe%­ÏB†Xrÿ! ž§yp³¼¸#°ÐÜ€iç˜1à¤àÓ¯6TSž·Œ-¶„V«EŒV0\”ùƶQ¬wÚDxFx†ƒRµ8|ôcœe•­P¢l‰ŠÕQúÐþô o5K‚žÙöYš¹Ìû}~ëe#øF(¸[<7Ehì`M¨ }ýÈávß^Îú~.Õ]¬+~è±×ØòЏý?—ãÃZ"Œ\òìòð–b¶…"÷5¥´'joË_Äy®(*÷›g ºôçJÕÞpÊv%ÌT²Ö÷#Dôù•ïùWØŸdýî°ø?nÖ‚ÛýâNƒ…†¦@ N¥ ‰ÎtgÙ´ú£Þ—©­QŒŽÄ …õC,­jÑ!Z5| ý~7Ÿˆ´Ew£ý½ÀÍæ3踹åªÔé= ýè‚v[6Q3D.\”cÑCqìÜR¶uÁâL#yfÔ ê-ì)O`ÔÒpæ“oŽ%í­ÿÏYè5•ÊivIêgêèõÒK»ÿ,Ò4¢1l©M¡à=Gº—¾>ˆz e»lÿoúÜünÌ5Dv&+Ñ]ÿç³ö‘ûÓ0*Þ_>–, Þ"NkADÎÖ0à‚#˜±SËjjw,Í8ÆŠÖ¬|º„„Š1§õ~‘jé(¯oJ†³ç—D-⤠»T³k=ÞC÷ ]#¯âfð³l.û/iz5ªF=91’ÒaáµÔ¶^Z‡©­Ý†&qUÕ5YCÉî3êzØÜpTÎ7«jË_h\×iϹ\^'±é/s-3n5 Öw ›»ôa)î3DûêïbüRÜñË"¬k§ûaQñK‰†¹æÇ…@¨1cvoe±ü44Óä"ßüŽØü²½ØGOµñW2d\I0ÆÆÕþü!ÏÉÕt0MМÅ&.7¥« Å5lg ôµƒh.ðh(µ‚ö˜x`µwK²Æ©îçûqðkdžUL‡¤ßUNR“:?Wë˜Ý+ú¯ñg%Î=`QUùv#r[í[­:Œÿ9®b¶Âá/a°³ìˆÚ2%1Ü’˜‚"VDœ FQ˜ê]àß®ooõÞ=øR+yMvUp¦q~d[xb·[Y±ð»H6Ј’‹»9n6 ¤þ²·†¥Áb“,¦Ò2E³¾_/ÿõÔa[õùÇ‘-‘HmœxHþÆ;û›ácÁ5SšO¢ÿìä=$:x“é´F¯å(¦MRa ¡­WÊñy+¢"©ö~± …8¾¿÷&öa‹‹Á®}°JKw0Â*‰v@‹¿`$ÿï*ÕÆ~"uÉ<ËŒÔí´Ò•µ†[£xÉéOVW‹âÛVï•XgìúÖÍ.á>°hYƒÿ•h¼† ×L¢ðÃÀxÎÛ xÇ?{gÉǶz(Öi»Cª(')…”T(2Óà •ØMM?6ÿgd§£Î·ŠÛ7Åi¿#… ߟ½"«©3•bnK'Q]3£“¹F&hURW›]%Ë‚"59Ç Eä(·d±(t“ao‹ua3(U‚iÕ¡N‘³qb]yãßïß*Ó mÆS H¸PWÍ\fáäÇÄ'$^ÝŸuêW„x‡McP7}ÈŸxdÊ «µ€‘®8@Þò‰õ‘€w’d‘­Zô \aÂY¹<›·S(ºÖà1ȘZËV¯Ë¹¹‚`Ï"-ÈD3P’C4œ ¤¬ÁHÝlÿ>¶l Bá h„•ôGÐ@%Z_tÑùc;ÃÕÌá•“+aU˜älyá>XžKÛw_ã ‰…ââåR3õ-¼\°ONJ»šG©0¾G«£L¢Ä7pª#ô$õ i­¨JåÛ$uæ<¯gššl„.üˆ›ÏQOmÀPÖH!êÝšT“ ‡Hº1[ŠYd³ä]n›Óºá(ò±Qjhx[ŽIÄ^ÃÌU é <ì =ÙŠøöx¾vfq 9œŽ%„?}¦-'ìï¾xJ oX`ÿ¸›¼}ƾ\Ï-íPØ«¥óˆwé׿ZÖ¢öŠÑÇj©#l"ëØZ§N Ãí˜Ò)X×lKĘ £á/Ž.kIÈÁm%Ðñ׌Zžw»E¤ÇØc_qØV4Éǯ_áxc„Äu@XŽeÆ©ìýol ž´Ý¶š×| û›A¥þêì¼W°R}WˆKd+PÜð¯r:HÝâÒJ“}çœË«ÀÆ|RŽß²àGü›Ú~S!½=÷\H'kKm{§ !ÖÂLÅÜû†ŠÞ`¯ÐÜI‚©/]?ç¹F»? øÜ§žx£Àã¸Ð ?V%Å©¶K{.ÝÅ~¯êtPd5õoÍjûSþ¾.×Þ§¾>¡FštMxGâ íÅWQŒ^¬jŸ ØEvwõ&Óõ·šÉè¹v·ê~·ƒÇ·Û û¡mÈ0ŒÂuÒ&Á„ÿfCüÐ,£ï __9³ßŽ]€ëÂ!o7Öy£7ã\~»Ó÷Á¼Ã3:–Ž=„ër^Ètš&e,†ŽòŠ%Ò4‚­M©>l5ƒ¢ö­˜¤ø‰ôИ•C¸-˜¹2:'9…ÇÂÓð"ô@=@ª›ØüjŠ…]5š·22 GÍãA?” ä¶ãø‹@æ MÏŠ3.’f¢ "“¤)ãÏï᜖9 ‘¸ ØöÍÙˆ«töx`ûá5Ì—&7K6:‹—¤x àâÂàÑ2L¬ký|¨|Ojd>þˆz&YC…rÜid¦ªVõ¥¼L.Þµ‹Ò¹QÛñëv§°ª§}4œ®ˆ!éA¢~#Óå±l›åªGLe\žâÛÆÙDIoœý•¬ÄöoŽ…«‡wNôGžF­¸}}êý/ïª×¨È§NÇó°R[QR:zä&ž€ШŸM|*Ç®!Cž¸Ýƒ&8 côOC¡¨§müœäÆú\ˆU³:ˆuqô’dhýæ†jÓ©"¢èt“ÊËüŽZÙ‘¬x€R ÂQ;’E!h/vþå:›ÀòøRôxž}‘d K°"¿î¸ÞCähz_ GôNAá%QV}‚¿g<©Ü«ßÄ}{„h¸ Ofpºª€"µÐ>pð›î(PÆüKpþ”¨ïBë—Qì{‚§ÌD‚ûºkéx¼C¹î@/Ì›÷vû{;«ÂàïQ'f¿ñŽá¦¥0"Ü<‘§´4™/IþâNTÒ ý:hH`©‚½s»›OQqç´Šˆé<=b¢ãv ÒÒýRˆªþÌhR‡ôæOIáÁA6¬ÎñÝþP¥ÑŽæ@ðì\Ôû?Í—øìh*º&>ôÏsëÙ ªˆÍx,‘ƒ¡×YPá\®åþæ ¥ó ‹v7âäI_Š“îkÇã]í;4Ôðó…ê‰W6'¢#Œ-¨ø@êÆÅ]£3ŸvsdmUÚRÆÈTzÒ5ðÝÖª~ ¾M—¥ÿé¸1á•5¶åî©AŠÿß4Ü!÷ÙÎÔpÃýmAGÊæÆa~d ¾¤½/¦çRጉ?*%¹³GóŽJŽ6lHøì™í3VÊ7 ä8>a’PÌ—äö*IeÉñÙ`ð$`xMF™ûþ¾au;)\øüÜ-t4=pJN³ûÀc)0üj^žœ_ú2HîÖ*%þ*8¢JžÍ6ÐÆ­µǸ܆ðÏûäòÎæ/A3Ìù•¾B æúK#DMZKÅ´fߨsð^x0ÆÒEªà CᲓðæ5_"My¿â!® £ª­û›K™Lg~-3öÐùÌ›ºúÆèÝS:=°å-ˆöûé‘êä ‰ ü¾¹Ä T¥¨Â‚†Bø<­&œ…i¦iå¢ö02Þý TµSm-/± Àq&Dƒé^õ·84$=§;cd„à1·müÆÆƒë^7|6òF{ýf²A9çß}8ÆÆyÉYþÌxw \<ÔÓ£ À+kÈëzñÛ/Ý~Øí±?§^âNÎwσvÇøfDóÂrÛ°MÍЄ @¶X>yHü KàäÀ¡qèÒmáœçï{²"œœ1LÚ.ð½Ø úBu¡ãÐ( Éâ¥ñõ|7[…~•ÿ®R¸ú¾ ˜¹W[àw³‹ÛEoˆY~…‹I;Ó7éKÝo¶øÙ¢¶TƒïšV^®¿Hç*ª—¢&LšÇœPƒiÛÁ×ô5éØ7àa.ŠŒD%Û ÿvaÔ8VòRXKx–)¼æ£@ŒæžæhÊ;ܨS=’Á?Íi783jÞ)°Û‡Hoâ°Š˜Ðåô⦾‹Žk®¢|»ÊXq¨¡Ü#H\«iªúÎZ].Zc![ü “W(Y2sÒh9\ÿrCàéxÄú¥W—ƒƒå1èYÙö‘õáF'7?—Ú„Å¿A0è:³^Ø"ƒƒÌšW5å]ø0(+ýÈ]8KøP‰ Öå7BLü«_Ú¸ßzþ- “õnØ0[5[d5ìsFYÙóŠfyñëP¤ãü‰þb+Ao¢1›B„™ zŸJ‰¹UjCmì't*ްpDñDH~ö]€ ¨‚à¤áÜú*é²G³Ÿž“*£UGwˆ‘´x5hÒླc5Ã9ùýkc=2n‹ª(¡Ú¤=`€õ†1Ô1B’6<¤-4–º¿®•2¸w(κ'_Ë;Bìk•ÔN–ð^ÿ@£~pj9w{ 'uš˜X²þË[Çhš3ú•ý'M4;ºƒ«Jë²ËöÀWîÑž‰Š}¼\ø-ˆý‹'ù×þëÿÂL5³fëç,´l»+063Nº:ÏÈGêïÏp÷}ï)+mZ9FÝš÷"öëÿ^ÆÊEñô# ­Am‚l +^囟œ§Q5`Ùycb€ fÂϦèE¶Û$ÝÕ£iS€ŒÉ–>´tK Y9þú ®‹Éª] hx‘–¦Ã/Ð{hÀ ‡‰1­ô£Í¢'*ƒ[w í,ô3&1iQnCDÕßñÆ/HµÊÄÞ5àGª@9ÒN§<ô[)ÍÍANØWÊ@¡`!gæ"›éÚ¾„ÓÎV ûŽ01èÈ[¾eôÿ/(ŸwH–{¶Ì´~:IưðBÜ3n¹GXP¿êýÏ”Bß÷¸¨ 8ÿÿ£j79°W…[n 9¯8·½•BáJšAy?¸"Ù#Íß3/kˆ*¿§ºO')†r¾ÃÍ‹mÿ°ü´¸ÄR‚¢’)›89‰,’¸ä_XLÖrˆÃšç‘kÕW…±¯QFÞ@&tÞÓ¶Öà{ù¤‘² vÙƒ$#Â…€&è ó•Ö–Vïú÷@*šíÃQñfïÒ¡¶s€„M3ˆHR4çš* t¥¢¨xDûÈiœ_Ý15JÕa½L +yç~ %þ^]ßÂó[¤ÇÆ3®L—»$™Õîi% ö ¼)ZÒu;d&˜Týå¯K38cïÍÑ$ÂK=ÝÈPÂŽ\DOÙÅÍ®ïH5.\ f—½n)üÛÐØÕüeJƒò‘?ÁÁhsµ·‹¤)sÁnv3`_¬aä·ž§ orÂL"OqÖñ|dIœ ÂÔÊÑJ½6Hñ$Vãàh6ÌÍÍì]uƒùEkI½QÖºXT{İ”„K©¢ïà ¸å‹pí¼ óÚœàðÁµ%, 2£ÒD×SÓœ¢›ÀÖƒ'ú»•HUŠü Æ¿S-P@1ïš ÍDEÌ«D5¢ž,€ôb8IûÐågò!…ÛMâg¦Ä¹O]0˜üÒ²ýv˜(dáj¯†IfvÛ¹× HèÅOæ/p`h@3HÕñÅ¿7>Ø%Ô0üöÿT¨>à"ÛÞP ó0†™.Ùƒ¢¬©–jŽÂ°;½nØ0-Ξ*3†`Ù{X­Ãw~Rž`Jyômy‹ê¨yÚ:ÑÏjïôu(wŒœ¸%† +Þâs¾µÀà ³ÛÙäiöw–c¾ '+ Õžeº›fc÷ùRl¦¾ª‚ÚœÊÄí5eû³J¼ih·dRÝ^‡[î缕ž ¡áuóñ•ìß!¯Ó›üB>~°—|P¬úÉ¢ôò»>Õ?¤Ð¶évI¯¤p7dxE Ô Æé)´~g ¬ŒaÚÏ1FbÆŠ¼±Áî,Ýñ:Qèò¡öœú±µZ±;;1}ªbÕN¶2` …WÕÆ‘ÒlKÕÖ1Œ.Ösc¿6/k3jåâ_ï«è_òÕ3ÕŠ=Ýê÷BCõ Aš(_´ãDo8dpõëú9Êž kKÆâ¶a±Q’\ˆ±4í¥¤ó0áu~@^3AëLÜGåSÈÀh{‡ácl,½ÜV< ªTCttìÛäÅÜUedœš¤KKPÛ‘àìGD!‡1[f²ÅóI!,|Ü¡ŸýR¨;_åþÅ8ðëm†FðšlÔ¯•Z6Ž…±­ÉîÁêQ°Õ`*[¶aQô˜«m‡ƒ¡"ĪŠÅP>+­ÁSéRjdŠ3øùÎ׺1jÙÃ]?ãï]³}º5é²4™¸KÔ©Æ/¾ëÜž;úù&ó»|hÝ%÷ÒE1e¦KE=Yñ”sṁ8n&¬ß?{æZ½ElðjèÈ^ü>µù17nŸöxƒ©ú›Úsî­xX˜Þ;\'2'ªÓ T°jmÇX†Ÿ#iÈ}ÕRhà|ÇL /<ƒx[©:ÎÓ7 ñ"|ùÐrì9ݾ©CF]ãä„»­Š‚ ~~ÓJ©ª:€Ä˜ßPdoÓœ^šAŸE¬á®oC=¹w{ ‚¶£î)Ó1{c`J·e*'ùë‰œŠ¶…Ãbõžß®¨C#·÷ä)÷MŠÎ£‹JEFÏqšÐ™yêÃTIÛm].2DzֺƒyK½€·'-þ“áÒùв7ûÉ÷Êâpj¾Ú”þ¯9&ŸÉ 3ÜXy<ÇQ'sôYÄj‚@ΓÉúÀW×ñkšŠ…4û¼×¬9D[¸­È¥mTsmrHÁ.ßßH9—ŠFv€…µÖ“–>«¬h£!›Xì+È/´˜‚ÕæÅjð€}kÉUíàüü2³ª¬Ú§e6›­ZO톈³¯"Ìw÷Þï¦[Ï{t§‡G@R9Ÿg‚—E£iCÄÒò,T,¿•.褧ß9ÜB˜kÇóun“Ž=pçi‰Þ8Þ"i¥Š&ÖB¼éI r;`cöSEÀÄθ:ŠíUªiPQMbîBLÃÕz†wY&|ú+°¼1™²*İÂe8Í¿|eÀ…D`ì/ÚÜ[®~+¯&«ÅÞÍ¡i½ï<8»ÞZû’ë«;~“ߎÈ à¸©ˆ¨š£¢êeYsnpu7ZîD MÅvn6j–“3†Â s”pñÓRN`pâ$àŽ·ˆ§ŽÔõmMÒòÏSý’4’»þ6sqHÜѹ›Ó|>ãÚÓ 97µˆ¡sð(´[¯¹DnKóªV+^‚‘«ØhFá¿lydw’ÉFƒ=ßÚZ¸ÿg*b*D“o‹Ùxÿ æ?VonáEƼ¿¼%z$O~Q™´0™½³º,Åom# ö]dç ý\áèÊI”Øòpja9xa[b‹ü~L¤P^»“'øRÃçÌ]‡TL¯JWÏîHŽöô}ÌëAéCëÐÊ=롸Èìÿ£”#}‚hk:ð’£”˜+5½ò7?«ÕnpHŒÃ]9éÁûÍfJ >ÿ5iÕáÛš“Í„§Àx¾ú¸Ã9mx"ĉoÓ«l>{[‰ NXL+ÉŸw,Qç˜O®ýÿ¼Ùæe|qå€É‡7W¬ù] ¡‡Ç×±E:O ?ï—ï,Lä ã÷þQàF„9Ÿ-uLŸ¨k`µàj¿“)±Öß±vlGRqYûoÌmºxºŠËYób*‘1¡è±æ-rt7æýô<†<8•eg^x[GVl+ß?É5+(»àiî:¸d‰7 ø]Žá1Ö¯¾úÌøWÂs0 ìý$åEåÖ_b||Ôs_>XKu§÷¬#6×}ÃZñ@'Qü\½‘}áž½Â.øLC'FÞŠèxEG æ¤È³¼óÙ—us_%{ÛÝú/µí)}ßkQ_õðþz¿mƒ:iød´ðN ןýzYv¬ž4G»Û”‡·¤Ó90¤aŸÓ™ţí_·ûQâ,]€+¦Æñ>3›pT;þ8ÊA°dÂ\`è3‰!´D5±¿†#ŸYIY‚h"‘ Xÿ‘Vt Ø–34z[æ©M)cõ% Z”!-i/ýBÒr¬”ÞÑU9ø³œ§ÌóÄ ƒûè#~ǹõžø @£ÅòÐù»àö¹Íýšž@‚Ä?âÏò3Åò9ÚŸóxí«1rî*ûbkàòæÂq¥:s?°î-Æÿ¥8\×±6;Q ¤;‘H®iñ”Ma;ÁÁà$t—5ÇÍÄfBeÈ5%Èq‹’·¹o?6ˆ^>PM²6•‹ãþç&ûڞኩƒ†Ë5¥'Rwˆ6ƒÖ)SÆ£Ñ?îXÅYÉÓ‡€…o¾ öñk—é#‹}Ébj>ŸºÔù¿¸ó˜Æ5îÀ¼ÌÌ\±uÕ*'”Ý™ŽÔS&Š(6Ψõ×^;yî#þ‰y—¿)¼Âï&+>aŸÒVL™wö²¯9Xt¤i…¼sK\ßTÙœ”Ž6ñ¿Íi´n€qâ\Nrè±C]<[FÓøO#æPƒþ$ œÃ»¼Ï6¥a–Y$(àÉ ãsH¿ûYn,À[ Ôá¶½ù®^™mpiZ¾§1:ÈRRÃF„%œÓã Κf©MûÍmÂ` ý>QÊ*è ø’lOxTÑ×ræÆ&ä­, ·“^@:?^qÅÙöúÚîžÞ=øtTu`iŸAEj%n°†|j‡¸\âtQCäZÎFµ*ð²ZóVI÷]çní6¯ìœ~ø{cj 8ø’“Så¡ûïrËÀˆ 8ÎI/9ÌBa¦–û¹h¸oÀ˜ÓyÕTl{c"×C,%ò¿•¾C>ù´­_¯”Ý5Hƒ+¦o„húÕ“2²EpQ°º*'–0n9m¬½d¤QY½É×8pçá'Ü¡¦ÜW“ÝÍôÅ3h¹s×H¶cãÏx¸ƒ½©×‹ dbR£xìx—ãJ¨Äd$è¾¾(¤2ÒîÇ6N1BÓ×ösQoKË¥ê9'¸Mr>þΛ´¸¨êkø@â®gmX”?kλĴ?ËZžÌÀ%"ìÒX‚d7  6báz‹Å4œ¯äÙÏœÕHA骎Üâ®Ë*IŽz×áÍšõJ|=øð«ˆÄW˜,@$¢ø¸­x*´õ wÜôŒù'Kd†Juq~ºÙ1¼HažŸoÏÿwèž„ÉÉñݨ¥ÁÚÁbO I¼†÷€kö,•†ˆlÇ•Á1·cž§³Yȱ)´=-h±ªÏÔ?QQD™çn b‹ ëíàçb”rµsÁ!ICó–šwZ¤‘}A=)s—œk9 ÀSÓ*ªŒupâùm\{›§Ðöþ|‡ÐbÒðþ¶u•ö1@ zªáÆÏÈVÑP'‚žˆo×R2V·¯ªÛ-"v\p‰ÈC¹Ñr <üˤp±ßÌÑ&n}¥iƒÀu%öÛÍF”¡Äµ;g)|u –eª¨9Òµ{ݨ0A\Y¥¿b?zÓý²Hø98Au3› ´ÍJAÅaFÖÑïS­+‡ôu4aT84û…fªO’~ºò§¾XÒ¸P~PZ4†’¸©,y^›«§‰‰ƒß(ùÐ*(>¼‘A'‹‹×ŸÕ“³ÉÐш>އöZX¸$%,.' N/EÀ<ÊLSmG³u§èÔC›{Üz%?Ù%Ô·9½‡~„À7gQÁNÎwoÿéÛdŒ0òðÕÅ;Œö ]ì½z yòÞûÑèV®Î“±&D¾äÃz \>ò'3V‚gªvšÇ»fyßä‡:©`kóe®£Š1pÛ£IÚàäØËÁý8 W§¹$óû wùp‹ü'ìmìY^Ýñ#æ|°U!n…³ÙQ’ÖòcYzMX ‰Šï S°:?h÷øÿ³‚ÎªÅŠŽ«ˆjÄ/D< Uáƒí”SƬ#[âü—2Oö‚Û‚£OQD–~{àŸ}%=â2HZßè‡ FfzÝ"¾­²ÛzBî°^šdÓíñ{ú…lSûåt ùqKÃI2I:Í'L‹Ý’‹Î´ÂùI”¿·;ÈÿQ\ŽÜª¿ªï¤³ñ²Ži7%r…º…µÿ`oM7AR“ø¢Vù@¸<ß›óh>C7¯^8’ÐiFÙ²ãÉîû'ZE±'Œ^$[µØZ¦OEnrEX.È|¢®Ù¡Ö.äÓ‰sâùÑ"^Wñ6D!$–X‚ñä­¡óVM1u_\<¥ÓŸ\2åKã&!DàMfôVÊÉ•û5ᑽ’°I;fˆST[ ¤6çÏk ;·†žÏ}oËë-qÏ²ÃØ(úi`­¹rX3ÎýJ.Ï,’ç„C"œCƒ‰ŽC`Ã>dVÿ¦`00Jò¬sm~ü!îÖy´ lÑ?òËl蓲&ç3–ˆCPáŸÄ™3Ðõ%ú-(ˆýJ©¼jˤyµ€¤4í7¤°—¿tó8Û1ÐO¼guC—¯º›Úˆn+#£7Xõ9Ú`ͳ\"%ójB£äææT±£ƒr]3P±ƒí$)ÿõ˜Ò}lÏÅukaÚ¦%Rƒä~·{= ;sèJAIFÏŠ-ÿdñˆ÷ê0î^]1©º‡…€~Ö1˜”Q.gŠ—£ë»éò#ÇÅì ê{ò÷"ôgë<ûâóñ…ûZ@¤¡|0Œ“ ÙP óX¨…b@I"Ð?}L =åÒ QP›kÖ_„,75KÊÔxòŠ… öA:Ó£Êz›îp"™ ‹s"& âOª.1á2®M« \ç“&„ºÔ5kTU¡¬‚5àY„‡(‘;4<ªš-Z…h8²ïC£ Üò5kŸýu€ÞòÝoØÈ d5O/iŽJ?»ÇÇËdf0K{òï#A|ûêR¯‘êX¿Å‘E‰Løa×x¥À×}Æ~oj¥[¬“¡ {Š¡äD÷yΦìi¢0š.‰ŸOÜý )YÐF„ j-ºjÅžeÑ ­¯wLÃærKš³)¢J¦ÄÞ&wíh ? g×ÌCy žÈZÕ÷ôX°r¾ hrãÉ®±jõ©æ0Ï¥ýØ•îUÄÐ[~s½çkï(á>kÐ+f‰Å*ÏgZõ¢‘ͰyLåàªâb„%;ò ÔD5e f*/_÷¿ùƒÕæž¼öÕà/¥tçé˜yýŒÓ´!…SÄá[JpòX™Èa×—gvå¯ÁNýÇê8Kišn½ î¹ÄŠiz©{ ÒˆfiVYVØä­±sò^FŽœŸŽÎ>¡”'ïëË]£D íøïèvV•ŽßB.Û7…ͯ¡|¹½Ü±èˆ[ÜZÉtݹ »÷ÄÔZ`#|œè<9¶÷€±¾Ûò]iã½À¾Žˆ¦i–Ñɱ%OñÖÇfoÌa£NÛ ¿¤ hÏS™4Û@îùá¬ÁyÝ 8Ìù8«·(Pá‡ê%FXh§ÀKD»6„ 3M >–Î…Ðqk™ÌÓ—¦ n²ìw±tªLzA.8)HâM\SÛÎÞûÄ5 .ÇF¾\ ‚%‚KYM øïü«­Üú=Su^¡•r±vê[Dó!K›`~$UÃd ÖÍä„cÝðB•"†n‹é¢}Û{ÿ|• XÜ$ªw—Áó‘Œ7úÌ“‘Ëv‹¦W§h¡óBŽ–Ã šäÄö–ïåºâ§¼!ž±Sï<Š »à‚u‡ ö‰®Ã†|½úþ`ÆO¤KëÖìJ'¡ðÒs9Í, Ñpo`mÇwŽt¼a˜«¥ç_¸¯X¾¨ò0.š×ÜÜ9K2¯ù_.¨Øò¥ãwrÑ v»¨^+eÃ8%®æn³gnüËA°sL Ã(LSKXü$ŽU^É3[‡N ov˜£'²Ép]|tûrÑV ±œ{:œ«Voø_ UùÌ1Üò¬ûYß v,Æ¡e fuˆÕ;Æx°ë88G`°ð,“½HF?V¢1k_IïÎJfâ-.`fêÿ„†Ù°1’U$öˆ¥6Eèý/,HÜà iÙ áêÅö±‰_ïWÃt]º9–üÂ^x7?kÈÉ ÈTÕµé{ê$3oÝ ´Ñ.&ÿ„©lìVŸ\ºsI†¼ätþæ8|³ÎÎÈ»Þ×xJ¿“mN686β|sÚ(ƒoî÷‚øQz ¿¨ÌÕ/Êg„¬ä§{åf¿žÏ-ÜtÚST4Á´ÛÆÜ F~øÊz7«æ¶~dúˆ-G <†×üÒ´ÈÎóbóÞšýšpÙÓÂãúµ$>ú«z=6-Péwi^+¤[jlÿ¡`?›#j0dv±—Ù¢¢*NL2yÜ6õwùÙE¼§¯ÏÂ$œYâìü´Ñ—=Ýšý.¡Ý–Á6C >ü‰ô¢I5=‰(-Ù ß2ðzS“q¯âV¾ÒxÁC­Z<êÔ¤sù«˜HS~¶ZŒ’kŸþ¿þôÎÄ«ˆlø®H\R>§¯Ø5¥•G!oñ6ÂÍ¢3NÕ[b³6™^Ü ÅdQ¹ùÄqµÓ÷ä‰ãwj§“"òÇ Ÿ©d,e•}øË¯ïÞ¹÷¨,ŸmÐu m¡ã?,ß@ËÔHÞ•kPªÅ*èp^Ön†«ˆ†Ñ¡:OJ$k°ƒ=Š~dñLÊE3ŒŽÉó3SÝb|>Bµ½ÇÍeF†•%¨µkÒ!èL¤:º|vãwèÀY¼!#W,JáHÑkýú01)e¿ùN¤üly>¡®÷NžêtÑã†øwÉW¹º¹õ¸[¯Öd ‡_þl y’Érس u«•0ˆÙ¹ÿbN–ž”¹¬v!a3jÛ&«T¶Ñ ãq;•!.!yO¹ÒÅL5†Ž, ²\±\¨Û¯j|ô‡–Fdâ®ÅÊ<)4ÃŒò]öaPÈVQÚ¹È,Ó8µÁJÍo‚ÌxXÃÅ}ªDUF$vñˆ¿=ñ_ÊZ<Ž{äÅÂg$ ˆ°¢~ U=©iJ›%¶%·}Õ§Ëŵ[öŠ>Te1F¨ˆnš3{’XûyÒJÌËÜÉMåáΗ8ïz©Vxv'wéògÈðDåÑ•|âþJ·=âë9gÎÊG <µG‚ïU °9ƒ«Åž.=Qc |ŠxësHÛ­Dí¯ Õ|²Ùt™I0Ú#•®üæ:Ù½õÊ)ŠZŠžáy‰õi?Á×­È”ã¼oºZÑ‚ê•xߪo¬ zœ¤phò³ ’]˜æ-·,ˆ”A¹àA=ƒŠ²Ž"ØÅVÿáÍßsPA{«ëì?VÿiÚ•^•czs{{íe©ŒÊ ¹þC']GÐoEÜ4 1ÛKi¢’íš4IM>ð€1) >`-?ÁX8Öß¶ñ (Êî²Qsˆ” ª ¼¨n†2Ú)—^4eöó:ÁûFnÒ»0ß¼ž¢›<ØH´(làŒ^%8.ça´%(sŽmš}3$¥.øØKÆÞâ{£¼œN….jÿS£T-_uƒ1£‰+éÄ·Š}íTRÌx55GšeYšR³\ø3«v•‡4߸¢Ü” $:µ…U«ÍÜ?⾚÷y)ξÐÊîLkSöª‰Ý ×ø¦Œ$Çû¥óο#;5ð­Z‰ó«âÓ ëPGÄ€ÉÂëâÅ„Ú|XxB©5;ÏAåESF0ºùΡ–“Îðsª²Ž¿3cà¼â·G¼¡KÙÅëâÁœ`HêÏm}sšðÕ Úè¡BÓÏ"WŒ©Öáô+1TbAªxQj\,4LÜÿˆ7¢}q{³køˆCM]nßQºÈ?ÁÿÖ:]êï@õ,‚\q^®…úÝD™J"´%kåI¡–b€$ÙpèÑoˆÃ°KcFÑaŠ»§Á‚'÷³;JªßÖO§cM)TíÅu®©_ßñjŒè÷õ{Žñ¦˜?Ñ-¸º½Û¯ìd1ÅT*ŒL»|Ê?Q&ËLŠ6TVGº@ô޳ÃïÇŸ½^­úe-Ocõ(åt$ªÂ4$øš­ÿß'öuh‰¸"”>cÛÆJ~‚VÖ_ØäžÕ6…¿5r,û]X¸{YZÚÖàŽÇ»_=‹¸""}ï{‚Ëßî·<7·¢¦Ïò®Ž¥*`˜ #Y RX²[l6Ùì.òoá‰O‹¦T·ÌÕàö´Ö3vSï×þ̬¿õꤷ¼Ý[âšmUÛ¼|yÀü«VÏoÿU’eèH;iE*ÜÐ|œ§ê°¡iXA<²R¡¡VtV>‡ÜËë '§ò7eÔí–'Vý¶€›lu¯Èý'T@GÅ2B/ï N¤f»êtN@Ê“1X_\¸ó®–ÖÞ7r©“®HÂ’tWAq`vW)ÿnS°É‘{ cýñT%î]¸†¬ö…5Q %Ȩeâ“G ¾¬°ªË)J=ÞÉrkAx¡Ï}:^µxÎ;µšE=ïUS£lÁH„ŸæSˆ• Xòý®0º#o{—^"ž´PIñǰ[<Š+z¹<–eã_QÛt’«•|l:²Z[÷¬Ë;Œ5悽±QÛG®n»Ûç`LuÙÇ‘óamF½„ú &üç0ïRÕÆµ¿TÑÏ䨣ª ]d5z~tíGØ,åu±£XùX'‚/Ÿ³C¬|Þ^K íµQ9Cªux®rŠPµ¦åGô"‹BUÖ.LÝI¸~À8†0ßߟ|ââäÝ k¢[Æ:¦"!ã6ÿÙS–M\É )pëãùXñjxÜžÁìÙ¶;=±eˆÙÁ8dën—0£‘:ɬ6˜ hE¾d©;k=Bz­ÅŠ#åÉ.iÊHS:­´mÑfÕžNÎSêãnƒùN¯_ä¨Ìrž¾ñd˜ãÙ YЯEݼ¶îðŸa—h‘|ù‡Óöä5Ü7ýcñkÔG1âùa'«"͸Yåqp’ÍúeÒ+œ5ˆdͶ%…H#^l$bÃ-!,USÔ;â*â¯ä•€U›ÚýCUÖæ?@h²’šø‚ˆ{%Çoî)®¢i+OopHHû:ô¯„ ”¯r»j.•Õ©ÒY»«5I« \Ô༛®®@ Ý}§à,8Ôæ°»AvЖ3u<¡}¸ýð‹˜ROþVGÄé:Ã#KBöŒHíô­Ç”ÓÞ>†ºFCd ˜ãM'8ØßàW¿½ 8Ьöƒæ­G-ìýœ®°ÝkÞð&‹“ßßåEÒì…S¼È-#„¿Ÿcª3•eÄLñ‹Sñ°8+-f¥DÈöúó_Œ²•_ÏÐØUäÇ™ãõ` Íab^©”•\„Œ¼ñ­‡f¢.—XëûE¦6âK˜P)†"Í15e LŠðœ=•Í~nôžvI/Míò¶cíßÕu£]/Û|ÌÞÑ#CËRóÙ¹¡âÆ+ ‡]$‡0¼Bò™4H^Dé|AVQ>U&à½9 Ú VQŒbõ$Ôbñ˵·óWš`•Iì‡{ö”zÂŽ­ž×0+æk¿7¿;<ŸÔ<ÕLÎÆ&9Ôó3Ë­W!É[š¿·7¯ËÄQ¶R@Ë´ääÿH«± ©è»gˆ W€ò’Õ~mÞ\¸ÀÐôÓ¨Íô7]˜Ò«þz‘.Üu%E›k™mM¥‹aé5=ÙÛÅÚÙ£YK±ÜàÒ[‡‡†Xe4I¨ëâÏWU¾º—V/'B`–ñ ö@^jÃk’MöÍ.àH"¬âl[Ýÿ¨†jiõi,Ï›¹v¦™È»mEÅ Ê)H6›•z©¥rpD´Fë¹ðÀ4XU^Ñú ¯åMÖU/8ÿ¶vtäIýéW‘•érº§ŠÖn.ÎY‡ÓäÚ ìé:qYÎ8ãø#0ŒMÿíº~ŠŸPãCCi±*Êõü µ§/P4ó~¦ŽG‹ç")Ì¡ÈË޾_Um†wh¥ô’Š4[š ÌLq`ŒëœÖvâŸ+ŸYeÇ_o.Rt§íQÆh¦©Ãtj&ýûRß8OæÜ&3Pr¤óÙcÊLâ>ücr¬ØFîJjòÕ"O@šË@JÉöF„G„3£ºÎ#ûoÒRÍ?à úÊÝóuQ«“…ÙoþùE åC§Bpz‚™n,v±Š{«*ºEdçž+ÿûóazd·éO<\SÖeÛ;d;ÿB¿„3ó ö35%žXÎzŠ‘à nž÷êC}@ÑN \Z¼0’Uª|ή£=¼él*íëuS+¯¢cPAç#Â#ûJê£/ÈšÎbˆêÐØWyˆC¿yߎŸy¼®( ˆ¢êñ›FäźÖ8™ s'‹TihN¨”ëmÓsóÛÌuuô? »s–˜nyÙj9îºÍïþº™7Ë2 1;ѧÏŽn®([ø´(0„ª!³· ôÚŒô]i?ëðd¢ ºe%Œ-Ï Ýh»Mr}¸Qóá„S;§Ð :UâÇq?Sl^‰•Ö½>îªô|5U6R#-Y‹Üç+§–¤¾‚ͯX1‘˜n£ßKÒÇÛ’ë4`uøø½|_NÔ l¢3þïdàØ½o{ôZb^oyãö‡‰Dºi¥¥œÞéyKöõžCïÐÙÕ'!ª×êX!‚@Q".ãüp<8 Zû;)˜½ðƒTŽIŽWõÁgΚI‘ûÛÏ/±ÆØå£@d½Ž,ì¾.×Ôlã®#B3ÉEÁp^²ý«áfcå²@’'gõè6Ë&8´&86”j¹O¶ªÍl „áºf— ÎJé¥VÚø\n¸&=ÕÂÙ:ôŽ=}d“:Ï€SùqãÍ1S`´Èõ,ïë"ß‹¿ð î94ŸÚõa¼öù­_ÖjáïÚ©û(ÇÕÖÊõk3^¬~E9îzLJØ…(·tÓbׄfÅŽÓui¢èabºî@Û+Cßh¡Œ¾xó¨¦ÐA‰36eÝ€½b® ¼Êo7Ì› W?ÒÅ_V]àð'»×Ê0žM¥5^•åÿ¶Â&·˜Ö“OÊ6<:€ˆÔãí)†œ—V¶e ¯Šuò§‚ýÿ;– ÎìaV¼ IºáOÂÒö_–{ˆ®‹.Ï:Â{Ä' mÏ/û@³ìn/'•»"Ib›×1A¸Yta!J¾·^”ø®§ªH«—B²”Ó#{EjxNÂ&E$¥üþ©t&°ÜZÃФE»"Gú„ãݲ?çïáýºaXÒçVkkÖ¸‘5ö[>#l7Ï[s‡¿²A%J'ÀŽÉŽ$·úÐ$1§d–Çû|êÒmdl¸Ë Ú¦(7NÉafHa î }?¢d“"oPôhe%œÞÒ(4²<>&9ëIÛ¿ÉeížIMÐ:z¹¼š±&êžI»møÜ$h4lHQÍÿgêØ b·DrÑ»NÞæz Í;|÷•ŠÙé :¼±]µ?2/o€š·Þƒ3Ô8Òq«a#ã7°~Eôr+ÚŸ€¶»òPý:a,‚(À¯ hbÉ#ÝfÏÒN_ú…ÍOlA r÷V­ßèÓÑP·-kî+–2üöÌzàOkÏŸLtYxB§´Ò‰ÝÍ÷ä8E4mßœ?A߯($<€¥M`ߦJ /Ájƒ'Èc¨`†!À³=iø[Îpßd‡ ³Õö­€š“aPpù¨7šFÕq/ˆ8¬à"Efæô7hѤuöÄo“/üI…%鯬*àý©¤”ÉöÂ2LhŒuü1‡쬵T€B¢£â:Ó@Àk 5Àž:p¥Q^¹ùìC¥B/ìë ꎣæ#1­ÿÎ )9dðaë`—Þ]zßyñ‚ÓHnœcïúhpÔ”dj§€âO°ÂñîïEˆÙ.öõmÛð1ª4/éyü´v]"£õ¿-¨ÊÌE’Ò^ê3õ2ž|7Ú3·™‡G‹ž Qó2 š©Ñ»$Áø¥Ó¤y†áЯâÜ=‡eAkÞ!‡•cÁÁ[ ŒØD2gÝõ€»I 1zç$¹—ãÃ/(á NÈÜÄjt;Ù©¸:N¨/i>åbjk= VÝÆÅþ ïÁßZ8ˆä‚àr—8%d»ú¸{äji0&½` Ù­Àt…þà}u…^܇üR ôÞ7àtWYäí Sˆ_“ZC ãXèúÌê I§¼–b;½ŒW\ÅíC¶›òúsŒúàÞÉòåøPÏ¿{¨h,>/} 2J€Ðd0Ý6œc@øi”#þt0Á6}ñw¿¯TB]^‡f_Ì5Á>‹mSp¯LcÉG! •–à ©,Š×,>š$hšõÅÆ¼Ä/ó0¯žàŠ)q²¼(µÎŒ‰ü`¿ ëóe„$Ztó®î©àòb™:ÑOÍ&ÕÁ‡ÝLëžÈã)Jn$é5Ìi°&¾uÊòUL͵„pžÜ”“²+={ØTå!±;ýs?œž×è"`ÚK g>ÁŒ¤Eëä´l.W’!Éá4‡µÞmY§RÉ>Ÿü,ýÁØL…vµr3kERèóêVØUŽï% Jœ™Åç{Ƥ÷Mrëvê|ôÎ6|Wc;DHHV"úÉõ9MéuÜÉ1‰*ˆAjĪZ£ÖŸTk­ Ô™yõ*7Fý¶CZŸO6Ï”Ìrèw´î/+£@¥Ÿ:ÑØW©>úÖðá\ûü6.Lj?ñìŸ'eC)ÙÊK§Ñá¼~ÔAÈrû½aæëéà´n\âëh]ît½„¼€Kžƒä\Ý6û»q´^/ºäfÀáBD+ V‡}|dt<|WܦV”ÄXÊÜÚkwëýÚòâ`=,ðßyk:Iì4U[…G`_{®wª!K£™aQ·¤;—ªQ‡]‹ÐÂVÖ‚æ!}¢UÒSÔ‘*]sq_µó^F]ÊÒú‚3ˆËÈü¾‹,£õ£È<~Êûeáñÿþýdº —ãÎexµ-}­ çJHÎÒ¢ÏhVE˜‘Þ‚e:vË%³Ù6akó® µßÿ=ŸÔûïÀîÂcí:üɃ‹ÊuÉ©°ÅY.ž˜q%¢8ØdÞ[¡+À—ön“Ç.{îÈ%¢º9-±¯;O¦¤£‘ ³ÿK&ñ.1±–}@ÀßF’Ô{ž«<:Ù Ã@QÙ¹Ò-<™&™÷Ù¨çÀfl‚ûP-+1ÏyzïG3Ï’ù^ÚöWtÇÑp;î|Æò h.AƒŸÉÐÖvZ`üU÷ƒ&>#隯¤ùÃíS¥d¬‹Ñ*P½Ç¦)¹bëŠU<"P$kE2˾҇Ëòúõ¨èÙÍN!Åï*Ǻ$/:•Z¦C£s¨Íwu5ÞÉ6Äxߣ ä?8úm‰K’à.³´šÞí={U=l“Ë·&×}¼ ñð¥PÇ•»ÈA´1G&`‚é²]®w2C±‘T͡f9»gm$Èôí }夈¤Ô˜hXe2ÎÚôN5:¤® áá"0¢›Èf3m©/H{æM¨~Ž·8·ú‡Skëܺ·i,bù^l ÆŽB“¶ô÷ù~þÃ÷€0žr,T\Í¡ªÁ-~‰³nŠþËzÆ3Ÿäj&E VPRcåÉ4DëW¦f8ñ§›»8†ZyÆïBˆìCíO$9Ý{/$Ñ|%hß;žnò_sX¡"jlï…*$Åb,D›AÜH9^•¤žÞ‡oESUñ&ÿÝ`ylòSxC¸'4š£ÔØï¿Ò]"pÀf!h¥>²¶Ä#µæ {'Rwí¨þJààß)¨àzÃ83Ž÷“ßr>€MŠÅÛ·;‡šaÛejˆNÛâòRˆa¨HË›Ó[R>õ=ÁHK3#‘éß¼hrflk,/³ –Òܘ´9Ýù„î‘sHÛa\ ”«=”Clê–â’f>„{;ËõþŠ“Œs³(+¡ÏDI?='¤ÛÇÑpHÖ㤭KœVpÕÒf ñöæœ9ÉìL½,¯œ=Ô“ÅÑç•óéŽÃ×\˜Q½ƒXºWT{s²Ê?ÒnÖZƒ•3ÑæDX8VéîÎGÓ]¡óAC†¹!6Èa+wg(/ž‘=ùZGö¿EŽíꞘ֘‚ïLfx0:XqZ³êÃX1kⳕ»?X&•ò¾yð‘Ÿ}}ÿHEº%)¶œè13sù‰©ÔóëÄ"ÛÚh¥é佇kz9³<ýf£8:3.Æ$k?¼©¾Ö«ç³’¯ÿ©g<òÛÚ‹×l-C¨ˆÿ3ûHmYãC d(Œ3Pè êðV«š¦GLeÉyMë^i8¾=àÉž5®·Àœ÷ÄCž'eû!û$™Öº¨"ƒ€—†qi|ŽÈ»žÂ®nº½¯æ ®ã ЫàóeÕ&‡A»É@ïÂ) ÔÔ5mɈÀªœœ±ØV¨yê<ï>—µÏ8Òv‰›¥¬F*ó`ÒÑå6æ<ãbeþygSžìÆÐ/PÕ^,Bõ0SM?‘MSBð6";¶>QapÍÇðp‡Æ:Èp3¸bhÿ¬vÍÌ ª<…À .-ÑTd£@ä±^N™†s ÒS&n.Ôvà*Z»ݺÎ@¹Q§I¶S¿ˆUy½öTE":½ÿºñ½Ÿo´Õ‰ªL=þâ12LïF‚6šN/,‹Òhˆ}ΊßÑ_"âà8È­)Qâm|Ämç•®ü·¤q\öh8_’.Á[yäwâÍÁ¹øÀ—[Ò¯Ñïø*ÕAž-s?p˜ÈïiI胊©©<.$ ”—L ceñâšAèn!{Ö “if”ôˆ8R¤íu¢Û#ÓÐMÝ—øw6ÇÆ•ŠêÖè€øú ^.Ûh:™êsKà%Ø!¥€ä‰üȵch¯î}8MfQÛÒ@JŠé­AR‰ÐÎZ™ÓïÜ‹ÏAwG@ƒì¼:ÊYPâ U×ìlçŒ6wïq$À<<¹€¼¯ã³@N<*Ýœ ¸ÿ¿ù°Ù•Ýå~¬jE…ÆPÄy¤äŠ^Ä]fAiÝìõƒB Zrí« »wáñ ˆî¤”Ñ£$f­B‡ÒqƒAæógÍ)dŽ ø—ôMö42ìÞګ펩׼⤬O”[¹×¡K™½C+‹RÍh ¿•;¶š·8ÂDØU …°eƒ¤ pÓKîðqQVÄî0¨œbaØ•ÅîþÐöD÷`506ôŸ«»À®xû¶~$OÕè3S+‘S”®S2s¶Ï7·³NÜ7)È,½í<ºA$^©æ¼Yýô¶cö¸ÿ_[î:H¾U©¶ð¨{àS6ú“´Ì£\•ZÉ»Xö¿öÛaCØÍtŠ4…”´œ‘‘‹¤>;M¹¡ÿufÔÅÙÁJŸ’è7IãFjöÊQº J½+Øß›_DÓ¶/C3Õ7þF¡Í’„EóÝ<;Uf}p»5…º³ß3&ÇÆÔ|ï©S[ç†ð“ñ¥É2N¹ûº™^?¢ _báÞõF3YMÔ¦p–[)’®u5šUC?ùŸ VÞ ðg»ÉT‘—ij¼©Ï-tBÊZ_ðȺ/f²š÷Z»ƒ¾µ+¶)E÷"ëè§ þjéB¤'£‡é¨/„㦻…éׂÂ&ÓÔ9ðCkù+ü¡·v  7‹Ÿ<Ä–p¬ÂrG¨LC56˜…ø‹{˜?ƒÎ0´chž*)DÊhwBJ~¨á)»oªOBÙj‰­XŠ÷·};K54JZŸÅpyš>P•ΡsRïÚ—¼/aÁëb©“a“iÛaû,i”Εí ÉD»ÞÁgÏC‚øKRš<¶O ÌÄŒo­¡,üëEŒVAIUoL!ñD¾ÒðFjZ™]×_„0¨V‘ù J•qƉ¦2¡"D`Q7æÆR4eÙª8™Š$sAƒ±ûiHüC¸Éx÷Æ”E)Öñ5å_é¦dì4Bl£Ÿñ8OH/Æ¿kÁ\áÞ‘ì[õíYZ\ŠÚD[{Ò¿CÕ׈š~l'«á,ÆU+ôã¡×›È^Ñè¨ ¬ÒkvWUCöt==„‹_%9æµ ÖžŽDb¸Qù¹Mn)’øp²º©AIuÐåî•cXÂ-ÕypëµMz¡Šxþ¨ÃaÜGC¸‡æ(mnmŽüÏoý ³þ•²l*ÏRU¡{ìÓø:•LjùZƒ»úl<¨S¦PÐÌž9CµNó5Ú×.Ʋ³ðèîŠCÄpûáuFf´© Ø1¸HBÁ‚qŒ«.ü¿|-<)ƒŸ§•ˆ½ ZpñjF•Ç<*€d¹¾aÒÐØ%S¬¤5@“Š&Óß± Ђ¾AP©8h“Zʰ”à¦êCcR ö»Î¡cÄc]Ä»mŒ0\ÌQ^äYsÊüi (Œ¸.!òQIVJª’­¨µ4Zð)çK"vÃöL;ÿ6Î]ªù·º‡ˆ²ÐÇDð/ \ÃÀÜÍãG ¥sÛ¸¸¢çpàà‡-§ØoæùÏ€ZB¥—eG¾IžÊð¨$Úì*þ­@£…Ú nbU¨!ö*ÏKGÛ÷uÃe¡¬)Ì]«wWð÷04ÄŒë2BÇ[ñ“+Mù/Ú§l[€3·þC|£_¤ZDÞŸwõLlùwà A=b°“¯Œ©'”¼ºÑ·rœ÷Z‰’xC3 5«ãþxYò)Ü“ÛCVSÿu‘ÿ Gaßt•úÄoѸs\"ñdqöÖÁ†(ó Ð$f(Kûá\‰þA™n¯é¹ Rý¦ó¦™D­i§æû8x}\5-wòŸì­Ñá·+ zûǽ‘éU_ÖS×ÅÖâ­ùùunŒõá- 2êºÝaV®²X,A ñv†œÃV'9=Òÿ^Le¤ß|WY²±"GA‡²Õ®Ïe]AÁ·œ6—! qör;&@¹­"Úˆ›õ¹ˆ:·ó*ìsÁÍ9:R7iV²á0Yfúþ3úo§-élŒj8.ª÷áµs¯Œ0ήªÚ”@m𻏾;ÈAâÕeb%Ç ü½Þ â„ÞÙuÆ›íXpÚýù,>Þ«›»fúú˪dÂ_8ÿ0qçÍ7ƒ—ã#ïÝ.w$$wªWß©—å`:ŸèüåZ=-|¡iîŠßVŸt°»ƒýkôRc³kØR‘h܇L˜¡äô1ߊyÞú!i6ö¥*\-?vkÓQìmCg{u“ôrþ@B¨ 7[á#¼d¶¶B@%—„ÈRUë+•ʵƒÅË[!=L²$”E›#T´‰Ué!_8òò½—.…€ã a)Šh1¾ûai¶Él¬0™×ˆ¨¸]ü½'½°GÄûV¯½ún™¨õ.mD§Pi‰FPˆ·÷ôWc!Ĉ'$Ûnò*àäj求)5±¢èùM¶Û$÷Á‰HD¬òÊïîNÄ"txœVê¦&îz…ˆ„ˆSfwNév¦,?7W ¥Uöst›)oÁ,2ßNü+—Õ`+˜{ *¥ŽL·ÒÕ–~¬\¹DŒoÁ‰ž`XNR…3½ÃˆhÒ÷° ™çÑð§0¬¬ MV,B^E±adÀq°¿ŠÃýµÄ(¡0²5!nPVÑùPóf°ãnª~M|æÊEl½£jU-|Óù(f¦ÌXGÃÛ]7ê—0¶å“½® Ø™¨W¹/Ê{ÄJ3#tå%<À.8ÎèùQß/§â—‚ªw¶‹§nn·›TRQµˆºoÃÛØc‘vÞq~ŸMOÆ~R ·ñrR%‘€d¦Ž4ú(W.=%ƒWGƒG'¾¦9È ýAû ÐylÀú^AÐW8 )¶|~™XBº†øÂÕ{(´çS…µ1Œª‘’/ämª r„4Àqw`o¸R™<$´]6I/&šõŽ1Kќ‚Üöv>’3Ž;Žd®¨I¼‰bÙ·”PÓYÂø‰wéafûˆÇzõÛ˨<¥g-Þn«.`Y/,ç{‘®Ñ·šD³ñrŸ‚Í5›W&9H)wZní˜èD°Öks‚ÑuÌÍBšd4 %„èræÙ¼Çb´s9‹oîÝoIÀ4"Ð÷óE§•›™Ÿö¥ì¥ðYA¿³û‰*Ãk×4nØñ ÿKŽ´ø™î±0 Lcí4»Ey©ÔÛÎùê rf¼‘¾Äw€}aõª¼°>òïçü›3¡k]Së\Æg{Že¨Û‰¬<<• .Mίò}r ÒŽZÛ˶nÝ%a¼³å0·Têã‘'$i¸[¤bæ™ÇQ±-Ñw9݈ϖƒH€­Ý-©Ð…÷Mp>³󭩃'*e0Ý€›lˆÅÉÜ f]æAò±³ Í4øÔ#HÔ¼LC†æÈaÁSI²ãO¨ÛMIxÀóË»q “þ¶ÍçèöshM ÇôR¬w‡éq¨÷0ä•èÿAõàáGeС­ÕJ«nδÔÐTÍ¡X"µ’nF¦[M¸Ñ™òëtɸß>¡1>• „½5,P =m8˜BÌ”ÕX]ŒzÖ³ö£ðÌ8¸÷½ 8fæOÁ9€RK:kÒæÁÎÐv¶DtIF_P¥‡%œòc/mvªÂ¨’h½šÌ·?¿ŠÖ’Ya&oº”µ¸i3ž#j ×ê¨qøpÍ[#Ë*pobÏ /5EÞæ™.Ú£çØ(ã6úP€h ÿºÖE& ÙÓV“ƒ1õGËòIí¨Í]Á-Ì€Ž1œ<î³ð¾¹!uQqµ”<‘_„¢çƒÃ}¸Ð»RŠw»}òRa ôÝÀAÖääñù·xÊ ó]ô÷†Á´o¿ùpˆvãð…[úHî¾Ð4hô^>,áÝq¹ŽŠÑ?beЦ¶)ð/ºH‹?wÌ‚ºÓnÔÃñÍTèa§8)#|\*;en1+€UˆBÅ8Iè¡ ‰\8ú”á7÷ÆŽŽÕÁéhß‚-"»:.´Œg3âÑ “ýFÅJŒÃFÚ§fbÁ8QóØá2ÆúßÔïËšñ gr’Bøé1£-©·‚Ê×°ùÎz«E`*xŤ£JÈ$ ¿wØ9°ôL­TMµâé!ö[×iË®ôª— æØ•ÇY÷FWåM?€ÂÕ¥u(æjSnÚûƒ‹®"mGÅ¡r³õ?‚тֆ¥––w#öÒÊð[^Ì0÷6¬ò“B°Åêîx^§ÐáFóøÉ±‰h Áóo± í”ÒÕô!ôlÿ¾Í"rSÓY*Ñ”žO¬œ‘ŽŠcN¥¦( Íúô²¡>Þƒg €WÕ9«|êtòRõ€ó¬b¢uk/§­3ââíØŽûî[Õ_ Êñ ÂWšêS*¼XZÄMˆ¡‹|ÌÑ”ŠÒ¶GƒpƒÍ^éáJàkGC>Ûõþ÷arÑ×d6ŠÒK$¶q£éé4y€. Îü¸¶j°öøÖ‚“o„ì]mo ÖxlzJçÿË÷}?×£¾ÂA=ÙÚê&_RÐ~#[‘U@¢á‹s#Uþìꉫ¯ªP~0rPÃé,ë`UÙ™T1ùx«™¡ÛŽ0S’xñÍQ§µçvè®} ÁfE0å ùÂÌÉóClOÓ*ÿϯ*ò³'0µÖÍXœû+aÝ'öe1*¤®õN ºT3óV¶èÇh4·AGTBÃ[,T)*8¹ÞMÉ0£µ¹vÄNû¹YgJb¥dªÿĆží±àyúˆxnóz*c0!ÇSݦ”h¹nÿܬ&cüÀ"ËˈøÑĦh;s3£M‘CýÌ«‰fì²½!VmzÆ'Ê€¿€ŒÿÛÝH^ñÂ’ÁÏw/§9hù+±……4¶Ÿ’Èò}YŠ\y¯1 `;¯•° È;P4Ó%aâ4«—"j×SCü¸smDüÍÃ8 ¸yÐ'Mt©JÀÌÊ£œáÕ)0¿ú‡ÞÐ ÄN{‹Z~šÓ+d“P}€ß³@^pHñØí öÇîìݺÉxGÔ>A‘&`—£ÕTùõ„Fw´ìhÉ€s¶{_éÔU`Í:BgØ!‘·ÍOÔ–£·±·»uYÐɵ7ïÕ/š%_1â´{£Ÿ,©æj ©×a‰ù]ÛŸ½´Þ†(a.-Ò]¸M(Ô/,Teˆ<&½iGÆ\™Ç<ž–½¥øBÁsr’î#¤Ãúùè'ÓÑûÆ:È»iÃÓQ[šˆ?•p{‹§jgÑ‘{Yë6uQH¢Ð$%\a6rHc’…ga‚v_ÿþ¯™[KTÏ6gípBÉ'Éx¼Y–£»,¥%6kíŽMS„G¢S¬(ên«‰<" >ä7Á÷«TRyF†ä`¢cÀGM ׉̞°ëîÑcØ«ˆó¢¶Ý¤YŸxܯ¶÷×ãšÒ–¢ú¹o‚_svYžw왇Ÿy(À2=„@ùâ`Çöù'ÁwÁ|ÈÛÈæ2^]…šÅù¹Î†Ñ–K¥Ò9E½Ø”Ÿ¦Árˆ¸þÀäµlÜ©=§;sü|Œ[õ&Þw'öùœÔ>€•šKç!EŸ³‚çÌþq__µðõÔ‰d¡JTßñ%Eáþ‡å;U‡Ñ?õ£íû”#ax.L¤fTRXÔˆ7ó¦ßÙ3wgø Æ{˜r‘‡Æ™9? Q5rLže.ý¯Úu‘¾¶±ùM=6uw2®j†V’š6)ÞÖhäÊŠÛ[ý¡%ñ>ØFT;tÜäóU9òv}°u÷çÖ"Vc 7œÐ©Êl)·©jÕ«vÓû£ñg1H¿Ôd¿ÔpÙOûÃb ã.¼b–…ïÆz+ŒGyšpi3{pŠCNf$v¡‹{%¾¹Å00\雄WYŽPÇ5Y@nÖu•â/AQWÙ{ÀILÇŸ§‚yÚI9(LÅ÷µ1žæD \ëè(´õÞǰ¤—ÅRÃ*ýg²7€Êc!gË,ûç)NÅ­úTÿUj6òtVÌIœ´†Å)`àc6`Æìñµ¹ì5R-8Q˜_aŸ%ôëâe0FÈ},²ò1/ÑlæÄí.³3îm¼÷€E.cÇuN9Á¦ÿ#‰UÃ<¼ºëÉé iI:$zIW·‹¹ù :ÀÖµè ð‡ý`º5”r;êÏ_0éðÜ,²oX Ö4(¯«e‡&÷${ÆðÏìyà•´¨'ÀR,ï ¦·¥§ÿ¿Þ:»çÌ¥áÔîH|Ñ AC!eSc#ì.Ú¤R²²ýŽ qÿ£?¢@ñè(»õy†p`(Toº™}™úAY4YèYüãSÆ…¾M ^$‘?Y’‘ aóÆ¢1é„¥Ì=šôøèì»Îd¿<˜çQ­–ñ¸4­¶›è0u„!÷0®+Øê7c ÏуÃýøŠŠœqNÝÞ#cd¶>‡µ=Ìj†ªŒ¥Û’©Ž ¦`%éV÷÷ó"üŠ%ꀴòå"0ã<š©Ž¤=±ž¢€HªeÎÆfz¥_3r‹håÄáCxE¹‘·dº{iÊïøwš$c*ÇP°0beÏÔ2¶¤ÿ¨yÛ/Çu1™…U§ q¡"ù¹x'¯;£ qÎaEG /c¾ï¬i .7š2Ê}R4 ÒSØsd¡T.?ª?2Z=ާû×ÛLO Æwd|…ÊçÒ`‹×›m»²õÛ‡a;î2ŽÁI°7«â@¦%¶GÏ9’ RôÀý©T,šÓ!ÿ ‰½ïMÙqçŽôú4Ìê 'Œ2ÅîA[oN¡‚¸?é&œŸ[æ×QÜÁÝ 5°ò ÎÇÊì®f(ì %ÜÞºȄ߮q2) Ñ_õ'”‘ý´aÏÁÈS4XÅÎÔc}T0&oÔ¦Bz2´j¢]5Éîad QôÃ}¼:iS ðc ‡DDV|ÁË;dAí/©4óÚIæc´ÖÄØ}A‘ФtÀÈ›yv!⯳"Á6¼dS¥vòAÑæ¥âtˆA±bUü\O$¹½'ÛœhÙ¼•#LEç¿ ¾˜€ÓBÁÀ}êÿY«Â)AóDÍNX„F”/l»ø¢ÀÙ]Ãû_'ë Ù‰ ìÁE-Ó«þºTw“±-‚¼EÂ"µ8e•„D7ŒÜÃw³B_mÚ¤4¶ºµólUñÌÆ8áa/ð°„NeY¶þJ}{;Œ lûÜ!ñÑ3­Ö4œJ·!ô¼M/uQ%iz\XïPùÝ_œ|“¢)39j%/ßu—K¬žÚ|LJïÌ4ÏP7&؉©?6qŽ|®jd/Å:SŸª* [ÒËôf§?zE¹èr,jÜÕ¾ûÒÖ¯¶E ¶¨ DÇRæÓmvµGÿÕDJ¦Eí” ê•§|žÂa¥C¡,9ª[n¢+ÇӒ嫯>ýÃË(CŒ@S³´³ú2Â?G0AMUë ”5íè”,ò¥«Q¬`ÌÔ,ã*%¨;Ô~²y˜­àúh_@òžêúîiçÁäH¸× ¾SAß©D¹iq9@É… rOQ/¡$Zàh]‡Èõ>5Ì BõÏÆ5bCà€&>­Y2þf%7”›÷úÅ“òâÚ[S) {h§-_b%þ©5?¼œ¿“ʵ ãôð€Òc“O úË=ùøT·Bºd1<¼Í8VˆimïãôêÏ÷µ¥|ž‰ÝÿñðWµlUÈ´UË/ø‹Dÿ¼n¶ŒS£¸aNуì‘jÙu¼»Es«…£2ȧiEàëT)6Æþ8Âh!æ·Â¢8P!öM°3}›ãZ‘gA5¾P纤C‘éê.š+P.)):fuÀGÚá¦è²(“Š|Î0äfÁÆÙ3ÛAÞuÚ¢h  9` -:ØE:^÷²Tóô·hũ~ø¤ž½N‘q?h}LÃÿøÊèM>÷Þ·ç+¡°]‚÷k°+ö Rn]ñ÷M ;/³%p}ÜLyã5­qò¿ò½30™pÛ ,}iÛ£ŠbØÛ¤Ö×¢ý” ŠÁ$Ÿ°.LÈ“Š~!†ÜÒ¢â5ªoiFƒ2˜B™I¬mćüE¬¶ý#&Nè—ìþ¯å|Z:ûŒ)˜{Þ] ž^ž»?b×ó±ÞA$Ïl£³³‡5q3:'°Æéƒs¼?ȯZFyι &ê ‘0ÿeKîBdl«ò˜Õ¡}‚¸ŠîŸ´‘—S{‹‘]§Ê}Ù(SUL´h$«Êäã÷ÔQšà%Ü2n—€Aj+Œ_8y‹N™eÓFnä vÅluj39½©…HúÔ÷xâymš¼ ”ÂQèù¯CsOµrŸ±eÖè€Õp*¶24`@fÄ̲{MSF>Ù“ŸYM¶%šáóäˆWûQ&»Ÿe/ƺ;`µCµQÕ½Qº/?Qˆ°EÖjØŸj‚ ÿõÿ雽¶o¯­&= Û.`¦ÍyI§v*B½‹ ¸ÎºjŠîš_œ$†#^KlxÅUï>ëXZd½¦v3Pá-1ñ výu €Þâà¸ÍšXèÒ&X­Q8´5öÏ!„e Ú…£G†üí·j `³°Wñ £€rf$™¤¾"DIv#!Àb_ð¦jF¶/gäÑžb~“D-(+E¿Ñ]bP^¸‘\t(» Åœ!PÝÓÀå·|†Ž«´lÀÇü]»Nk1âŒ+”yfÇÝ<7Ù¦gcX: šA'à6dšM¸¶¡‰nµ($¬ YÞ Ò^Í’'êŽ?¯vȪ^È›Žñ^W;dlò:9é“}(¤ÊeyºQ—ÉÜÛ‚ûq×™üж1؇ï¯ÇÔÍ£½ Á½›*ÓV¡ù…¬ïHb”Á®Î3:è—Vêsê šñíñÊ\à„OÁuˆ ÀByûaû¾fp–¤0{Ô³å– å-†ösÄÊÚÚa\†A@v"¹üÐ)Ñ)*0„„›Ë¼˜¢èd¨“·‚+Yü—°ù·¹"i/?Rf­O*Ûö‰ù„¶‡ŠÚE/‚¢MjW=!±u6 q1a†à¬ŸØ,Lº‰£z3ÐÏ¿4…ÀÌï¸áØB¢jûôbì‘§{°Üz ’`SëhùIùË`Ï3K%¨œìÒÿp©ê‘w°¡˜w´.’6{åg[]E¦Âù ¦°G òw"ÔLe´éÉ©QíV“Ló@ÁCå¿0%Â4'ðŒÌ€J)µå“Þ¬„ÄdV®Î¼>¢sÕÀÉ$ýé¢:¿þ*ÓûPƒ¨˜$„_ªŠƒ±…Hþ¿°B ÈgpR3’¤]_æŒé¦ãÆÐîêˆÙï –œª|Ç¥ßÜ ùf‚™i»:£¡ët”ŠnÂìÇåŒÊoü Þw"qR·²˜¦Åi\ù¯»­¯wU+¥ Åðƒ¹àKäÀïNzWþW$ eu¦­ð+y7P B›‘4ö%ã$ØxPX¡ \ ªtDœMbL‡Þk|öØøµ"%:q vD¨·ôt©_ûS¯¿ 8ÏŠà5Á™£¯6…}"Ù©hàk1€ºo/† csy“y ü6ç„é†xåæï'É8¨Áv ›=Ø‹bø"s ¶Lù¶ÒJQ3$«$ŽýN:Ä UÑ´¾Ä¥ý‹20‡î ¯Pz Ó€î!s_þ‘& „•š"²:%§bŠ·½>lŠ;bdCv‚2¹‹|÷UX(vShçLgª]’Rj·ÊsÄØf©µ÷”ðŒÔýãZ—ñÛøyFRÿÖµÃV÷¼4WXöÎë‰1þ¾Ç:ùgÄÍw¦:óF¡éˆÞûBø…¥élæôÉ Ÿ?/ó§­[[Pm®°Súéùœê"Z‡“áš´úX¿,ÏÖÒ¸ôF&²@7:ÃWî+«ä\S1ˆ äáÕWÃñŒ.QT—Ax¸šø´fz; Ms‘5n@ö׊¡{‹dèD¹4m00€ÖšF™+ßÕb,çE Kày¤ººkÂðyÍÄ”2¶G¹H)Ëù½pxË7‹œSôÛî»®-×n‰äšÍˆË0•Èð*@N=ØÀMc•ÂzôxÞÁŽ[uÒ¾þ³h«faÕˆªÉŽnû}¹'_œm±}b8Ñ€€†äeNO5w.i°Lßõ“™æ1#â€ùÆÖ¦lR c†({3êÀÿ{­¢m­q+É™(g¾ `ö«¸…#*:…ý(NËIÕXÃu,;õè¢Â¢øÙ¡ñl Ɔ]+Ýþ Âv&…bø€Ø} ² ]keÁA3º=¨VΰüN—Ÿô tçz?w€)Ókqtv³¦Gùˆ#rNÞ<8„Öì¬ kß"\ØÐÖV¬¬´&“ ˜Êt|ÇÌÔ“.Ü<¦¹ÄXß›€€±^~=z·Þpj¿fLË©8b yE%™°5=e3õ4à}¼€hrYŽ£S‘™ÌÄ“öûŒâ?ëežd3À ‹é‚Ù®Ë6¢$íû"Øzôj&¬Ü gö€Û픂‹sMÅ¢¼¸´%ÏHÌÖð˜öcµ:Z2FlÕu[G8a¤;ÜÕ÷Üù©§ &``Ô®Á0E» Ì|úDã×é|fѰPîY‚ÚE/Oó…Æ¢°éºï·Bþ€Ï‘#“ fc#]ôÚš¾"ÔÅL$‰/gÐýOÅ;y-¬¼ÆMOz­›—:?÷ûLl†‡iâ…R…yïÓÙ„Fª'9kŒPaÐÏT×½u-§ëÍÔR0£)€UÙç§N­Á&Û„®Ôï{9bîm½þ)IŠaõ7ÛĘ„㘡3PŠ3Ì­Ð~'¶Pë^ºÂX;›Š´+ñÒŸ©c·#Âo¦¥X=Þ"&¨æ­,Ë?Oˆ`–sRžøl$c \Þ¤‡„ºs¸cÔWP¶‹ËÚåᢟñµ`2DêŸôãT[HžÓ[;fSv©º·RÄ8Øt­D˜ö…¤Á9k¯CVv‰Oœß0_õËÜ L/ÛV^™[Äè° È¦ðSqÄ´Z]*ä^=¡«ú²òx@ÂU£×‡)×[52žO³€·ß¹G¢Q±“;·³‡[é”àíY«°­¾=«Dæ+¯Õ ~„Ñ€™ ‰=Ûîz‘,Aµ‚¦0["]5úNÉ"êEçOíß¸à ”#ol˜°õV…{eovýëa5Së$Ã$EwD‚94 Í[ˆVèé(K™Ž<\*dåÜY•²Ál×¶èM=ÔýDÜÒ£ù¿Öøân ÃÛý¾çBO¤îÊØSÔ3ˆ¡MõÓãúŽw••?΃b%„^1ÂÃ2Õ¹i\Ò–Æe®QZJÁ<¥ÜoU<õw–‰U8EîlO%n8$8æ³;Xú¨µ¼Ã!ç¾ÚÇ ±–OàGN$(!‡ ö2ùz¼`u'í`î$à‹N!åª$;3UGeðNK^Åß‘Dw¯­-Šô•ª¡$,ò1кS|CúFŸ‰­j<¡TŒ 3YÀÀÕ– ‚Q©ÔÓªªBw¥:VúáÙµøwoà[Þ%‚–A²É·‰åFˆySí8ºàþjdXåcÔõ¼œ›¢nè{tåi!£Ì®Ó߃ᡘMÇõJ3L]–àûY7/wÛ ÉÌ7ÅŠQ‰Ùm‰é5Êß(çïà/a¸&=M¥Xè Îú€é¬Z\?š‹¤á¼¶zìßËÊæ²™T•ÁFõÝ–z!Û‡­_2LJ˜W÷k_ªæ'-ž­1ÖR6x³CÌ5ˆ,³é9\c”‰¤ÞÚ––§ö—¢Fî–Þ¬Ÿ‡fp(jî N—#ªµ[e笑1ã=5<'1œf¯@½‹L‚E·íÌšÂiÁÜÛ8¡sD˜µå>‹ySqTgòɲkW÷sCbÄÕcJl·p­›«a<=ŸlÝ•<–§œã,Y3’…ñ* ú™>Ô­ÂÊÒ¤yt`ãW¶-KF‡bg#«åæ¡-ŠTºÆO»1 ,?{ňS7sµlWÊ5.qéœúXØ[HÄ>—8×RwÕç;®#t“âçV*vÿHÞí'Ôµ±ò:o¯}>ÕÁ%•6G—EÛDì7=-‚fwûî9ä`5RI@–“Fÿ-ï ´­±©™‚«ÕÏdŒCP›k<AXFNÂbsÇ ¿û [Ë—«[Ïö2mpû€ý~o°?2¦~Jñ:äQ}€=±°Ýï©:]Ø®cïÜ´åî7Ö,O"ã9'LÔÔBA#³ÏŠ]q–¢¾„vŸv9Cÿé™Ù‡Wa•I}ïuw ÓÁg^a㮽·²¡Ú ñXÂڢ켭π9É09°›Psp¸à%™0;h<›jÒyJàxáÄÀ.ÏNq¼CñrWÔ–™¸D¶¾g2 Û‘­#+½9Ó/`³KJ:Žgã¥nÈRàðÌÕ·@êÙ2¯M¼—ƒðݶŸm ¨}ŒâÄÃ2[Š‹OH¥-Rô3ØþýZ¾ØxÒ÷$.Ì%Â$~¹K,mœù 9£-ÞsáÉ0Ф…}MFòÚ1ÿc%Ûpfƒ“ÒU3žÖRqª.Ö‡±/î4P`ö¬J2 ɃìÚø¢¨ùÝ·ÑXÝ"»¬Î0)¸†äÿby'ÂÓ¸¨µÉͳFçþ€öÃÚdmÌx?,ãæÿã‹Å“!¶6ûpXM½àÙ#¬•ƒ­æŸ TƒB-”¤ÁòØ62$rZ–s;Z‘hé‚8Ò™É •¢ƒéÎú̈“h©‘Í®ÿªŒ5|.Ì=ú‘? Ïêà!äÌ( W¸ü—£j eæî^ ÕÃy¼Âë×ÍJî•ÊɃ§TÙHç}è|d•Â<ô»oXFÙÕ² ɇEº~`G§ô&.iŽCÊÈ&„Î@É•-Ú¿¡IÚTRR°®¹Õ¬ÁpÙÊ©iµäÈÑ É‰ƒS_X*§g¿c&}6gpÛw@ç¦Ô‰{üÐ%´Dh”o°Zø†l¬¶_ꊮ‘Ñ<>ÑíMLõ*&Ó.·‡ 3Àfq¨{¨é±=c>rR8òHÏý{ÿ?¦Sª–; ÇâPÅî}¼$,@§þ)ÜírÓº/ kpÛ4Ÿ=¿ñ÷ÞÌîrU&ùd­Ÿ„ÄRbþç²}Qbi³$AÁ«Ú*qºÆÏ"†fŸ³h½¿˜Vű‰’"½*¿»‚§‹EH'¼û+KǶqìµUŸ[-5åÙõãþÈR!”úA`ÆÈa™$Í–Lw”NznÂJïP«±c0^Ë~Ò«†ª?§„ÿÞÏŠïÈd$E‰Ø°G‰¶‘í¾æÏk#MVÆçîYaº'àþÌö{÷¥œÇùvº²û ²åp &~…v–+3¿x-¢rv…ÀÚMT@= ´à f’i¡Y¤d^´ö]ùjÔä:tt•ÿ¥»³Qf!˸¥Š˜×ëýÖ– ]šÐÕêò¬Czö*€ŽCáorkN!£Â¸lë’¶²œ:‰¹Ôeø©Ó1½qË*a´‰akû(>U€’ ED`­/NÕßµ¼q-ÁÕùíIqFÛ„â»À®Òa˜ÎÎÍú £š.Í%êëð »sç>¤†±V—;ÑbI)ŬÈìþIqO›­x¤; ÑTÁÝPg~’©±Ùæx ‡ø}Ÿyþ¦£f^+…Χ`È*´TU›Lç4¾† €…nJ4»T„ÐþÓ“š«·p*Á¿æÿ‹ž†Cë)ü4×ã”Ñ“£~ýBR3ÞÝ¿lÚùdÉçpë^ Âêo”7ÉŒ´ûäIª È Ð¡ôHyÂéó ™÷š óò%Åî9ž`âzst1ׂ¯O¡F|6ß2“7Œª•+_xÇJ_Ã\WßÂËSÚãÆX_Ș²Ýê]ùKø]BQÇ·ZÎðý€w Klû„¸s†+Û1=!`öÜU«°™ß@⫲ˆÒA(#È"~” ¡š0Sϯ¬M½cŠHrµÜiŸé\íY1q’Þ;šV3¹Ũ؀&èÀlæy튔 Õ+>æ!û2}SÃÂÏJCFÖ%ư &z”cî(À¥#ë+¢ŸÎ-³d! Ìð(”ÐÆM,MSÏèõ™‚Pè a\( ‡½ç3µ‹Ï\‹u:©ùÂjfˆÁßj| ƒ‚É4f .Œ=—Œ8ÿH3ÒÄg–]wÛÛjEÔìþ›w{Ê}üè¾Ç…2A7dO€VûÀ¸WÄV¡øe#G·œÝ–ÆëZÏJÚ†´æœlBVå4Q–44®;›iP<ÑV*É" ‘„BßÊÜ“ö²Sµii‰#E\4z¡Ñiwz©oНÿœ Ñ3ãæWB-Û¶ÚÅW¸÷{ý½×õ!Z‡!*º¢A{LçÏhÐz3ëÇ¡2ÌQ½1fMYÝ„g&å9Pa(UŒÆ8ç^l6ÙpI2“ï̽BeòvéØÛeŽ ·€Š¬š…c4°Óu¶ŸPÇ(‘òpv©1á˜J æ$lµàÞ+ãzöEüó?ó`à*. YèÚ]æw¹nV!TÞô¬ù„Ó[k}ñ!:ÍÒ6ÿ¬öŽsbXQáò‘}¡×ó¡Ý ³¥~Ç9%L1»)‡„ÙO°ŽÒ‹Ä߯ €t;ƶ… ’ÙF©¥ägncç;Ó:´j_Íñ¹×Á•A¬gMgtÃÑ»—‹Æ‡³8ó²ûü-MÙ{8{AéÝsìΣѸf|—:ˆ‚æK—k}ÏžjÄ-Z&í'"­½+ðþ´Ä»¡™­$“éQ©€®ƒš°N&%$…¦ÕGÇÌWGŽ›Æž×á½¶¤ÓÌQ~mgeìÕ@EÕÖzÒÎHÔò .ã-çÐ ù¸HÙl†-ÜÈŽ÷2¾ˆ‰¢¢$LFxfMF£¦Už(_¬~¤?#£œŽlÀƒÔ‰›êtÂ!{¨ù—$Þ÷;û‚îm \¹­B³qy¬VâÚÕ meºNø ¹X}½ë.¨eáçØhGa>iñVRGüO w–ý |.|>ž(_ÿÖkc±6á íU9j~‹º‚¶ôÃØ8_ÖY‹›ªA=öx4û\¯1-Ÿb¯È«ÒñÝîC÷f!þù“×ÃŽ÷¸0LöW¾Í`ßcÛû`¸Ð#‰0¾|k÷‹ÉtM&Q˺…3†_Bæ3`Φ0©\¨?»*˜ýt¯ì›ü¥Ò¸X'Kuá`&΄°vP¡7Þ+¹:8ëªqU2MÉ› nÑ´Ò¦ð®Q¦”7¢ºÔorè þƒÚóRžò•c´.ÑüކºÝXQ†;Y²¹§}¢Ù!ï(Üâפ5Ôòžío&-yý†rGú,!DÁñFÉ.Î#š§¶::Rf%,С¸®O ‰OÓw š:$N"o€qwØû÷ÂU&òk˜1C©Bså‡,’ÆÖil(Ñkè# ˆ ‡l§†ütΤäÜew,܉)¤úõo<Ñð¶o²\Æ"6™Åõ7–.èyÁ¡äÖÈ^]Ĺ¡ý8ºà•ߦ-JRºCð/³ögœPÛ²\v³rR1ö¾¡$Ì+sñ÷aZéfVõ×át=$Ba§:ΰÙe„Lo7H¿ëb ´¹ØîþÐù㚢Ä^øóýüBì™B²ŽÝ4nê»^)d9G¥–¬«ð%3ô™2ã@Õb×çZH®I=X*ïØÞâÈù¤Û}¾'^øü¡e:û¹Ò2üï^èæ ?; DßOµÕÐHŽ0† `9ZõË;Ný3ÉëmYPé"ÇI…`k®t›–ªÏ=³ Íœ*5&*Ë¥“%øž–ÿ¼ hà,sº‡O»% '~B$ÅåCSM)°ÿ|©pËãì~Òι½”ªy6 Ó6ÇE„¥_œRþÄ:/ÇËÂ9Ìïã²1Ç.Ñp¬§Ãí>0ŒL8ÚŽ´ú8crAÈP‚é€EèkOZÈ ü–^#^±Æ0³ã¬\ò;l'ôƒk¬ÛÊŽ£Í³Ù|^µ¼b@ö|ð ÈíÖæ”¸Ðf9¢§õãj…ÄPæÎêq–$_G±[߯áþa‘ÇDE„÷©°Ò nmXêp5ÿ_ŠÊšl’ ư`Û‚²ÊÞÊ|ä{ eƒTjøý[ØqH³4"‹Î}Ûr{Hå–×7p×E%_¿Ç«@ ®ÿ´/¨q¸O£>s|W½Ôh%ܯéŠ/LTð=É.GÖ@%Ŭ²Ø# |e õËS;YÕé§µ™’ ‘´à<°+N«¿0­ ÛìFW_Á¨Zeëæ+Îç.sûzXǼÍ%¿ÅØðfbúKà´"VŒo‡Ì=Í&‹Dœˆ¸èÓ“ySvâUW;³L¾Ô ]Õ¿«@ 秦em•ÿõý:1è4KXE ó#Эû £Z^ÃÌ&ðDÙЩÌúï¾3,ûs8óyú³È¾qÑéWxôoééEIxLÐQ^äl—/Š@;„+ /Ù›å%ÅIÌß¿fÁÞLCs}¢Â‚å_ ¿$;«±&0AÆ}×|áÅÍÔ3éK!\é>&áþ’%J…“FX}Üä‚«þ ó|"ÕÀFôüöx`k‘>¬[ññÄ-pûc-`3®öF»—÷s› $µ~ƒs¾²›ˆ{_³ ›Pé…·imžÑe(FƒîóêŠØÛƒá¶¶Yüé!•ïñÆ{..’ï`& ¬pÌ“8vßµ±õ%ë<”&(Ú YÏÚ>§[ Â!–Õ=öÉY‘¶‚l&´ƒ$B|¢%À¦ƒÚ ã¢Çz'¯˜®ƒ¿Éñf©þ8¢\Ý(x=žÔF—b+Ä]pX¥äù'DÎÿž ´Ôû”Ö‘,˱ôYt2-¸j°Ñ³Â{DŒ ŒVR"ÝÃT‚Ðaʦ‚ý©Ä6wüØ%²¢ƒs+øCvê³n¿ kùÕú…úPÓ_¶Öù›ÙPwŸ ®8õ©G [bsPÈïe(?Ÿ‹Ä}Ëäõ°¬ƒåy®Ì!Cn—u,ºW¨å‰Wkøöå,q\ãuk-”o‚øìÉøóŽ‘Ò=b@š&¥y?nà Þª"g­ OÖþ÷„¥¿ØÉßjÚtØ]ˆ$lf•b4’ú/7©Ñm†…VŠ´ã¼HˆlН!àù;ç] á竣ةù žØ£?‡k¯‚E¤î!­p©b{Ƴê^ws»ß¦$ô]PÁ†d…@ãZÞòmï×­×Kõоuåæ’°î|]~BîÊɘðä|N»VDJ~ƒ¯jÆ,í&{$GýJÏÇgJÃ4í‰Ýß²—eÜá­ ‹UŸ5ÛKHól?Ö˜LxmÞÇršäŸ€‘X{äfÒð}ž•”›“e'®±ô 94ls¿¶1'&ü°˜ã/ù5úM“õ¸ƒjz>X¬à)X¤5ìëpTæ¢Wm‡>{¬÷#¶a^ë ªD…oŸ Æ—Y»È]fÓ›¤§œYþK‹Û‡=ç'„4×¹¤JkþT"Aõ/S@â×é>„ô ‘¿Cƒ‚.nM:>-ªn&Ld)¡|òQð rß³ÈíAÐMö]IÒÎÆÀ :±-l\oNÜ}9V<·ê°°Õ®üÌóf\+÷ZÒ50™6sî7¸ÁáÐò¦ÏEØkUþD¦˜¬ÅR“ÎãðÎü½Î_n‚P£'™]¹kÀêÅ8€ƒZà¯dµŽ’܃¥«AÝeY* _RS—¨ègS²^G@ý] ìc¯ÝƒI|9¸Uæq\l>J¦çsP=Ûj‘  4;?÷wFL\6Öè&Øt¤i:Z:ˆG¶•L_°šÆ—Ìa?ØÙ(“Ú³Øx’½L³àZ_ð'?RnžŽ‚ôµ¦ï‰¹j¬u!t4ƒçGõñ9íé÷˜Rr“n?Y^Nkã:w£‘Â8‹¸ƒ¨ËÛ–}Ú¨´ƒFÔ¢¿#Æc‹<Ø·ŽÝq•­/¡µÔŽk‘›ø³ÅOŸ$Ãâ&à þ–½ÞŪÒ°Y\B5ÈÄ®ˆ™ª´ìRN]ü Õxª­ÝKf§JT>ºã7Âr ŽÐ”ËLÐÔ©¹ßàgà±[ôÍÆ#(¢^! Hì—b¿Ä/‘MåDÕ¦ í ‘eÝÝ6€-B0¥X_”wšîŒGvvLM¿xìMhƒËŽCVtè{ÑOÂöå|v­YÊÜpl8pâª=]—# í_(XxåšG@ÑŸ“ˆg%í^ê«u¢þ¤,fb7{¦Ô<Æj>ªòáNÑæ7¯ùÜÁÁç’•Ì»X¾°ÿë&ïµ´2žµñE°DÃG%Öz- _†ïâ#)j1T „‚ØK8 ìPÜ辕i°ŒeüʦÆ–Ráæ¾ _Û¿ÚùÖbâ)WÛØT.VH˜N§•Ç ð5 ¿NýF*¤‡=xfŸp¯{t-U˜ùŒÓaá­Xá3çcÄ1õ«@ú3mCçOÕu4[s-ŽàƒI˜À.?Ë ô*Û1òÿ ÕÃÊÑÈh-Q„™Ì€ÛtiÞ]yc u³‰¨NPüüpð?cÍ’½‹Š§7{P3¬hGìÖŒPÀuC—vwÓ¯#¦²zGË~pÓk1èÓ÷³‡ùG!c8ø‰ö~š(Dšæ-ÿ¶QVn(u>{ÆO5šÏ¬Ø~—ô]µEõ#‚³òŒK­(â*÷ëޙȑˆN3} „:d2£UBbÜR‚£<{M #8oÌø5Á$…{L޽ÄÂÑEqÖ „/ü |¶¨ƒÿA°ðóÂä ïx@Ùm}oßå>9ãí×’ëjŒ¤»3ïþMàÔ7y›T ™Å¹*ÎŽƒÌT@ãèÒ“9|6°èäöb¸4¢`ß ¤¹ÌÝOÞåÀ2æÎ©ì¯6[6cù¥Üv·9ݯ÷7ýÍ?$抃„ úâÛ¯rTÑö‹™Ù„}‡:!›mÁZ5µA+Iî^YßÜPW­‹çÞðè#ìÍe¦ô'mbè]k‘;wä]]ÀÐ#òm, k[*{ Ú.}7 ,edLMã`/!lÌô |“°ì1!–ÖJ_aWzè5vûò(ãEj­FMÿÇ"Ó šÑ=Iž;ÉEµÂ/G`t}Š0øG²8?¼þÎæ|.¥ÀA¹êOì¡`«Joïwš‡b¶ŽE16õ ¾/í:üZS$•³\Æ4„¿ÙO…‚¾_Â\ae*Ú7²±Ì'ÜOmyàý—S–ºžMx¶fQfÈ#§¸ K‡Ôœ ¯B ]¦B‰©¡è½Se'›V2‡Cø“,ÝgC(ýîJõ’ñê¶Ã©Ààóô"[}^!ƒ‚âY4ULJ»sõøÏ¥êžD_GÚçþûZ±ø§L|Wžó.ƒ6u¢q#>vl…9ƒ7Ë0ñ´û9™ •É>7qÂ4TÔ¿fºÞeغô¿<™ ªY3zØäl8ÄÝ.ÄâðVÇò VŠQ %â4Zj }ѳy4‚Eœœñ±´¨Ñ¯Úž!ì5­yç°*6Ûª5f²‚"ÃqÕæLÊšSï ¾Ny!m¼Ô%ùj~CfY¿ßqűl³g2ºœðê£ó>ôÐô=„gä•w_{ÿnm®3níþ÷:Bè*ó+¥ysD¸6Œ“ì–® ]ÙˆÖä& åæ¤<³g¦¸ŒJ ŒVi8ÅZB‘Ú¸„mÅ­W§Ž1mZ"ÖÔÝ<ðnÐ<±­1p!Á0ÑëÿÖV¬w“Øþ ´ÍGæ&xì)F˜¥Z×­shgüUxøØ_€9 nàÌ_ ¸˜õûSªñå·D6¡ªœžh!N¼…±¾v£ ú WH"ï$Ð,Œ%¶Õ)[ÇÛAûîäf¾tªf±ÞŽ•‘ú†s¥7 †ÛA>uMƒHÞNYqäÂãr7e`ÎŽÈšfy¿‡v¹Àåø,Í w¿µNýzöκ|¢°!GÕ¼’äÚâ®+Š—øŒEæO gFRR2âÕÀ<¶To'w ÷úÜHÚÒ»%,^q “اCúY°*œi¥!gÊk)щ©WE¨Ê¤šÂ²üe‰cG༬*2‰›g` .¦W¹>Õæ S¶j?X¦ ß2“Õº¢±na1“h£=:¾B<µe -œÅÆO€¿ì»ôï1t©ÖHwíÇk"Ïø‹• §@¨ØïóRËòo qv¢Óì‘—_ø0f®Ñ—t/èAШût<Ð^Ý@ßû$Ýâá® O2øÜ&Èþt@L\¬0=õxQ'jÕª™/ƽƯõ¾ülrùüm'§2Á.3%ANòÆCH ‹…"÷gv$ËaXÆ€—À»?¥d¬aã>®ƒÃ@ëa¡èú—zÆbºåO7ï ¨8úϱ§g]¥À±Ÿ×ºðú~Š#¼„òJ´ÏÒx””^fº‘›^¦Õ2BMµÖ>`#ÿ» î[®_ùž’qá^ú?‹[®Ul¿æý¡õ©5`v7Ðh”e|ۤŠ@}.:¢YJojS‘1›ÔűU½nÆ‘·5*2sÈP&/-xÉ2S1Ý1ˆ²q!Ëâî­âÍŸëeÞœq^dåC-ŠgצN×8}Û0ëÞ¦ Ó{óŽ©e‘PwuOeau™ÿ‚.[Yå`N-côOÏ“„FV¢ŽuÜIX–Ü'AcZ,Àà KÖ 4 ý'ñÂæIqjÊ»¹¿p´.cƒÔ890w)ôÎÉÁ¼ˆþ†l]Ê ².vÛM^º`°wM³cóbÿã‹:’z{sÚza_zëí¡‘Å+Kò¤ÅŠcý¬IS9E DÔå×­$ZiKï­I—TdVïﻫ‰ ø!Lc ˨Ø6Þ›Nb%gQnÛ½.Î!þX¬í>ºpÌɉ“‡¨è$û¢Ú«îžq쀛¯ã¦š€Qî@ m BK~oosípøõ"Y¸~Aj/"šç Ŀȡ³¤ª…_dnÔ˜V®‚4ßÑ þ¼ÈX¢«Pg£ã?¼ÙÈø_÷®ÙáýB‘o2Þ&Ò '†Žw>•ÙœÖïl`ë’jž:ö‡ôø¶“ê>Îñ¼72ÿŠK§ý¥±YbŠÉ›ÞJÙ;ã0ñ?Í6këlïŒÀG›áÅûG*k¿„Ú?JuÔþÝ É÷ ”ѫʟj[›ÄaFŒ'"µôÙ… ag™—ÖLŠÅüÒŸM5!Úƒðÿ*&=é_wƒÄpµûIÌØ•IdD{ šô™F“½ña£ð¡²1ÿ1¤îFBdÖ-EkŽˆ_ã»™ÿD̶’ ð6cG8Yᤘ‰æM«ì‚¯"ð“vGêµ5ñFm±LíZΛ%ÛMþ,Ì~6å”Í$¦¾ûÔñª™j!ò»¨3Ü+®#+^¼FÑlàí§>æÑLP{o£L·!ŒÒ¸–XÓ¦êˆéÛÁøìµktªQRVÉqÐÁ0UN¶ÃJHJ/cfg»æîø;¯´s+`3àz_˜$ÚžA]u(…=ªó"÷¡Èǧ4íÉPK×$—´£7ÖÕ]2¿€Ó 6Zr¦ ýøŸå>jgòIÊ®iã÷LjÀÂisÌeHöém8îÜ ¾5°'Þ¥…ÌRú ß5Lưà;ç÷Ø"';l@ò¸û?ÓÀÂçpšpÜÓ l€úx±¨Ñ ¬9iÎìb"Ì¿§u£͏i!ýöFóëÑéZfÍ&œ+æÞ¥œ}FBg!ºô"°€5Álœ³(Íâ‹÷Uÿ[(â“Xp8Ùf·)¸t ÜA8e ØH3B²NÚÊa ²@zõ"PíAáG|éùöÜô­ÕA—Z·fz Dº%¸:A`HËoH¼U†¡s6ô~ˆ4kõJà ßîõ3°2>ö…˜ì„¥±§\/&³ÜMEL*Ïwî·!è=H"P¬t¿è}4&~ènù|ƒC+=Uz^*B‰÷šShÑ";äøßí3´a#jÞVZÀK…ã7G†EŒÀÈfo2ö?Õo5ÆÕÓæ£œI š ÎA[ö}ê—ˆ~°ÓV,\ºdØ5õ²Kf…DoôýWPÀ2s =?¯P#‹ùSê&|Ðþƒ9¢”Ø}t€¿‹Cdt¨ƒRûªÿÈÔ°Ñ®­Ä”\#šVså+Ä9ŽóõƒB•º`뀾#åÒhÙüÁ% ,Ò5˜Ž¸V ËyöŸq‚(/ÙúåEu˜1@+*•À"ñcP–hâ=•‚ON¼<Ç•$„¨Êr.<)íÓi6&€‘6E.ëé´™NƦOÄ1fˆ@,æ¼",ꌃ<Ž…)k#NjwFkRºßVªŸGÛÑ^eé9ìc†œ—¿@!$ð^ÏS#¼,?ñ.áÁ`iSB“‚àý7´Ñ“û¹K(\ŽCÝ}ë‘…¨ÒAå‚Àu råq¨uˤ¬%ÉÝ4wU»Ô$ÐpÂŒF/ǵ„øyíºv«JYøšë8azÜfº®<á¶)üžìŸ›ú¢-Im4Y¾‹Ú ØXÓ^t­ dgÅG˳ۘát`¯ j¨«º•ÚjÞwV(eÐÜ`«O† ·ÉÍ`48dmÉ{·ðµÚ¤Ò‹]iRsr騥’#xz:cȤEIcØë+ø6 ÐX*ÝboG\ö·ÙNè!ÀÈ'/kw›BuÛOËôj_eÝjÁG¼Ø„N> Š“ñ‘T¬¿iœ#œU“­Ë“öÂðàX¤ z4.†5ƒ$Äñ6XõÒâjÞü©»s²§[! È-ׇ¿ÀÆu”2ó?â!j.Mj'9/IuõJxÄÿ‘{²fJ=·ejÆÑBdµå 0á ÆžHR¶`𯫂†÷»Šl˜iû¤W*(þxˆ‘~@¦1¼X O²id?ÉdF—KS¦¶É~Tœ¹ÜBBû¥×û òVg"¿Þ-RdBt¿Q'„¼vpj9%33D2´B3@lhòÉ"%ª ¤î¸mˆ$ñÃòØqªÚ-°¢ïV;^Œò6t2>ßðµÂÌ]ª® Â<œ%lÓ3•‚·w !2õ«Ò¾ÅáÌ•@ð$ÖU°2—NÚaÜŃ€mFÉ&Rý×HIe“ j Nzn±g¿Èšoû‚–u=¡ãUî‹ Û3ê•¡"½;§h7Çõýé:3Ûx×·L§/l¤û®0tšþÖk×å]'³#÷‰Òwy<¹½,7ÖÏ4|=8KÀ†þ|Ç‘ ¤•°“j¥J®ê£$w—PÅnõ” `ÌMm3aõ%Ò/Œ(¹,.@âû]™:|¦{r2pk]âI8V:¹ °¤*¥é•yºžn—’,û‚åÛ%ãÂ…ò54™¿õR›AÆ#~g+žD™©bŠMÝm¡7 IÞly{øì…w¶g+ƘÜ€ø—ßÅ-1IÐ片—MpwŽé‚^’GÉRÁþöÀXŒY§„ÕMÐf§­÷gyÿ„ÄùĤ•îé†*5–Ìk¡ 9ø:úrsñqÊ4™çõn’ÊL+óÃ0fk³'šç’‚6‡yªÚWé"lVGŸóZ \ךh,Â…Ü[¥n·¢à½©)Î_eÆúe$i.V#U$”æ¶@·s­[$>Üõ(æ3wAe|€;†Â?eðk·V­Ýéi\ð§c{æ%ÝÕ"‹ldÔâ ›$ÖÓú¯í êô H:Õý%lÁf ¬f.<—çaÆÿ3À‚+RKȬ )fsxØ–Ýäí`}ƒ² æí+D¨å×ááaå>ƒy*l&¤”Àµ8 ÷ÒFQš g RU “‘<<ÓÍÊ7²½c^ýF3S)]ýÑ$PÞWú‘Úæˆ"þ1LkŽ1Óêx.&ÇWü§pªÓØpÕ –ø]â­8 >¬[—5ý’êòÌb^85( G©êXAä¤}ow«ú¿í/¸Ã¬Æ2ó9⅘Ċ*Ÿ–D^*d0FLH\ éMðæ±Î؂ŷ°•ÌÍ1ëÙJø.Ïë³PbëÐ'qRwb€‚*)b€'_N:.ôõlõÿW‡éDa™ÂÅ‚<î홹ó¼q£eè£H£àv(×Ѹ¤,*Û¬Žg´%FEdI×{w<ƒn°Ü¯ Ĩ_f5þ±‰øXŽïåM’§þt¶ü˜¨ò;´eQp¡“p,ýÍÄ·=™ˆò_½ze¶ê¶;XýÞ²ôº³@¶EØÊG|õQÜ–˜ô(ÔÇQåuÂìõÒvè™”ï7Ëj~{5ù.]õÇ dñ¾ºcQj9õ…BÊûÜ;-¤÷û¬?e{¼Îñ•‘ö§I¨²Ì?²šÊöÎ_ÿŸòQÝ›gþ03ȃ°þ Ô%–¢yðv€û‡2ô.Q‘BÞ®$KñÊ$ôˆ„–zQ[ÕÁmÛŒ ̽^%•&et¿´ŽÌŸáxFúŽ=—©ü7“ÎcÀ|ßÕ¿¢b%ïêÑü¹õ Ʀý]}âÛ M ´s`€`&ðã17Ü4Õ]2Ì¡át r‚™aj“ì3MRù¼%–¾€S±Fn¢>• ô ³fcÉe·CªÖcuFNs9·‰#IçÊt`£S¨P’d> ¢+…×Úö4™¬Î V2¬ 8‚Ü≎‹„+f XQër»µxçv.nýscºÛ6-ðe†mxó-‘À!­Mûkz:5á {²üGÕì‚H£"Q/Q”>YÒÓWâµ™4•õh@koºBŽf.ÚVÚ3>M(„ÉyD°}ÅFÖ"ÒºFþ'Q½×6TÈay ŽÌ8·DÚÑ ä¦-6…f­°Ø@­˜ù‡;†jHZÀ¼ÇvhŠO5<ÍØwðZ" ƒ²û‘JÍq²¨æÿ“ºšI“ɳà{ &}†'i×p 5ÇÈs8FM6?!úMÞúYÚÓTÿûÆ:)÷jy/?çNJ㻈õ†~$L¸ /Ôå ½Z¨Ae¨êÝ-¬€&u2É*÷†;œãƒL®¸bÅŒÚvˇ÷‹ÿì›òÕÁâ¾x?ñ>X©¯•‡q‚•` «4Ä0„Iž!\Iæì‰Ô±´´Ý‚=M•+hÁ~©=yóóåâLñNªÎ¾‹a„Šá!:Åß‚®R«ùÏÑ\vur8­ e\À‚üÐW}kñɰjšäÆ[*MRߌPNäéíA¯læ“1·á]ö¥xfÞê7"5CBéè]· î‹©&™­w»Ó—¸Eßj¸ FÇÕ¸šm‘»[†Sa‹…›éÏbzw-idÈ‘,õÿähPmž ÞêÌ×ó½h>éø½í!âóÓÿ•“ý–ë£9&èg;¸>(Ÿ·“ú@ó‹B²#i<¸õ¤TÃ&Ò\‡á#ëϪ%!ZÛÃ"¡ž„±x–ˆÇØÄYŸJ Çi€é”³m7›Öó92:µ»AšÍ4„/fzËL:âBr`ß&~²õZRîùD4zÜ´ÀPc^ sÎå&Ï0ĉ#ùøçÆ ëù˜éù߃øK••–g9«-ÊLþa!|ÒŒ|tx5Æ íÖÊÙÅõÒN( †L|Ù'¡;8&–…V>‡ôrüìad®|‡”Ü,hÔu惃P˜ãÁ³´`@õb墯õd¬¨g=»¶zíÿ û]vާS²^7Ó\Gõâ«uá…e§CáÝT›†ó‚“ÅA?/æ«{q«rÞö m_uÑMšQã›ûvý̼4¦Ñ;»0>ÛõÔƒm§â2Ù’^Ý1¢)| sˆ\¸R©±\$Yàl¨²Qeßнa ¨§„ÕôºŸ§ôÈÝö)‚QsœdÀ”“Æ C-æŽûmKÏþ0Õý¨Ú ±îÿ“³Æœßån‰ sz+J¥64“€< ÚŸP##ï$³P Ò Yòª¥ï—¼¤#S œ}c²÷4„ X¤¹¹t–’tm{pà»GqAì-¶á¼yêÕMÙ™(ßÊÜ.CW?ÝÇ›¦M‚*S¬@}¤ðÙ½bjuݨêèÀd¨¨´‹—<û¨Â©ªH‡Ÿéc±Ž®ã6ÂJ?mó·)%φœÓ,UOKÌvÛNy3Ö’Hr[xlß"K¦ƒFv/îýs‹õ”'-Ml”zÐ Â>6Á¹[°ý‡Í‰ÿ>ö„ TB½ÖàHVQ\7ËvµY­FÓ!dJã¨Ð&Jm·ü?®×å·PÕŒ2qó’ ÇP©.BE¯ÊuÖ1†ÈsToLì£SBûÞPõPè::Ó­ˆ‡»H.ßáy›6M®Þ€ }Mu[«ßóã=#K@Bèƒ"]š©ÀCÌÙq³Æ@Ûæ‚«'M”hœKžª¬PÀn}#/ ¬W£u_ˆ—í¾-M¤SîÛ¹ç¶feb8ñI½¯Ç’¶`”‰ªùhÑ4ÆF³éÔcÖìê{BÉq°yŽ'Ó:.Èà àâVÙ±ÔG¦œAgv¯ü'• ­œ„èÙòĺ7Q¥›ƒÂ×-â s¿qà,rU¥ <=o’¶ÏûÙ€ÇTxó=H/¿d– BOº‰È©ùøb$p“ë°69Å8QLå¯4±ô8Ùn‰ÈmÔ ôV„b…šD@3IÃv4ÂÊ/ˆ£§Þ¼JðN“#xµµµ–͇Ù Å•H‚Üã€EÍ‘Zµï.FÓз¶uªõ“ ´Éõ*ÒúqLï}-.®0‘Úì>°,WØø*§«šÌÁr¦–²ê7ÖÌ—xÀ©·¨X 2îö“Ålf‚YâØ§®9¡éêCHÄCVs[ æIfÉô7a“ܦ³C^É£S—)¢ÈPâ“ï'"Ò† ú±Ï£qÔ “ÏS†wñ‚Wl!K|å‚Kf!äqûÕ #5¿yÎ+ú2 ½Ë¦ë¸Þê„:¹ß σ1ãfË æZT™]R‡ä@Ï”ˆÎ%gúª Ä43œñ‡ôÔ‚_L­Ò+O^^T½eÏüz»x7“·”ö¡þêÓ s¤ 1 öå~âø—:j‘>Éãq½û»3&5ak Ž Hñ'‘‘t¨`%„VS™X³àvF”_ƒG_yât¦ìŸïw0Q+Iæ„þåšÄ.‡GáÕ<¨¡í„áKÞÖæà»>=:ßro™DTaTôl]‡öê 7KI<3ŠÎ ¿(P${.ê³TtTÃt›a|6³5Ä3¹yˆSŠ‘$’ãÄ6Ú$1Ë|ìŽBÇJŠI¬‚æøÞ8Eâ‘Ùm³GH@+#|Óú™“›Ù é'BFe‡‹óØËrôS‰žpÿS>"BÔXºÉðŠ}ð»N’mõ˜«˜Y3î‘bÁ@"W €°ø[(ߊ3ý…©Ýæ9çíEÕ9ÙX‘F"|sÜíÿK=g5ÃYÞWÕJHGSœÁE ÕN#šjâÆšvi²Î6Y…*Îݲ{4ßæ ­9D7vÛ–omÓŸjîDsrxvSac-Åj8§‘ÿ4Å>â“/¡»žõ"r)Œ50Ÿ?K6‚DpÍåûÛòQ¨Ì ›ßvÉ‚žÒv û7E…6xÙŸµ£±I"Ò« |lKòvXø¼ùŠ3Ü@ñf$Öÿ~t•xmÈNd{“Rç ö‹˜‹êIz½$<ãŽåï+Ü¿yèùœEËVšNÙäè3¡±ðÙB»õ†@gmÕ°l úˆ£›ój©ËžO‡G3FG!rÉ:Ž—ùoÌÄè:Ÿºß[ïAYï ”Zi˜”?GƼøÎÐxÆ puNZÚTd*ì2ÎòT¦3Û«¦öóoÇ;*>Îg¬VL¯dz~o;Ò-°Ke¸F¸¦YaÛ€•z-ßz¶„NtÃ>¯-Ì¡"¿ÁóØ.ôT?ª’Ü‹ËçóqDpáÖ&òÌõÌ2šæÖ"`ßú$ÚyUEÍü“«©¸.ßäÖ˜ÀñÖñ;Vè¢Ò¥Î™šM|ÎÄz œÆÂÝTw‰T&M¾*¸M Ê:ËÉ#„¦ê¼ÍÝñùßhëHŽ.ñvOfûÅÅ€àÊFŸüI®¯à“ŒU…¯ aÚ—jF–¢Ú[麃Ê$iB—A·ošº[ïym"ðø ·Y ‰g¨r’Ö‚9qN Z gct“ôZëÇ|:#Ì«Ó$ÍÞ_'n*cÒ¿ûô.¡, x§É»¾Ëÿo®zÒtœcjöV¯Òá¡ÕdmÞ€¬á‰Á£æŽô:Ctì‡~v#Ä“Ó(ÂØà`ÅèÝѶ\üšë]pý5„=F¨¶gaÐßöf‹«¨n“®[< ò—Ë[¿Ô'—©‰ÇÄQp™&3H;œÕn±E *¼Z¼a&<0‹ö"K¡B%g›.„3vÈöœ†ìô^ šd¡Ô Knž—?)P¥ÍÛ¤ðZeÈ)˜B—Þ Ö¥û†0kÅD©Ä`D¾ÆGŽ—2õû½G¦›×“654‰ý]÷‹3ù¶ÇŒr+ø6ŽAo+ç>`ݳÐ_:—ª¢™ouªNÂa刡z›’žˆx”ïæ<Ò]Úë}>w§ÀÓAåH®¯°ç|9ùÚ÷2„¡ Ú.Dî).mO/¤"³ºî¾¤p—¯³³—.VÉ ‚äóL~ÓXQ¡gAß7 b«(_ç¥ÝÄærfÍ¥ueùœfÕ5&3`¤ Ç|ìGÓ¾½®âÅd,tx¾;„þ•aÃàcž…ÞøG¯d’›àâ\¿±0z®: õMêö%À`®£µ•¥‡b‹‚M,Èžž@Éí¶Z>7aÜœ qQIŽ? Vjô³ÿ_𒇂?³á~èÈ9P.Z¼=KÑ[èb;•|P…+L02’AÓþH_lö¹…¢˜0fBÿ¾±&t¦´=ò ’[ÇÉÜ‹4†•šXûtK~’¬oîçOª žZÔª¤?vx ÖÈÒ Ø„oÎoâÑɺÀ¨~“Ÿ âÿŠ}å×>õ´õmCYuûíXg[×á]²m„VËÝ}ùÝVž¼büJ+ˆ€¾@“ÐÝ¢C«ØÕNóà› ü±n¾¯"fµ´yCYo÷.ÿ ÚÛIäÓ¢¸/QÔô¦‘»²Ïó#Ÿ :ª …¸~ðÍt•‚‘ÇfzKc^|ôßûþ€"¥¤ÜClQ/V±+Øz]Õ­ aнï÷Bî³FATxgц¦˜SœÓج•LhoI»Ö#Ù!xßš×pŸ…Sâ”Ó´¼lt[ƒ+†AËk¢ï¡ŒDÞ¥Ë9ûbáíÆ/;™ßYøW]û±2­\¼ K ` ›ä/£c=ÉÀæ’Fм§Šèß‘¨jÃ_½í5*_ÿHæ¾_÷á09-€uÏ`Ôˆíùs}›È^*RÀ.Ù’/ø+_4’š()…kðBU¢tyù°H7t§Ê²¤÷³ñ#G §î«,ÖFºmçbSÅ'Æ%‰¨ ¹Ë±á+Æ…j7aýyùOÐNŸ™ïæKâ™YØ8*Åœæ`8¤aÔåKØë/¶ ¬ùѼw Õå¼;G$+9Fj$·áê:âr!ˆØ¾3Ù(3A}F±¤{Ûn{#ºciÚàb‚=ª«Mi§¾Â6=‚)NLÑXFæÕ?û6’²õ[ï»þ‹áú3@´Kø˜ïÄ%ÝjoÞîÙ=PÆ d!DÌ›Ô š ¯òú%_Åçò§NÆð´'R4`¨Y_ÂWªÉ­+~"‹©1-iܤh:ê—>eC%€®‰Q¶tèÒðHל¤"ð«%……x¶+±Ÿiб@\•øï™öåÄ ¼£~ðݺQìãê‡ìƒWC;¬¢í•A¨“ŽpaWÝÑ=s}RíÑä¢b›¯½q¤‚<ï k‰A8œpRUÙ1KÕoSfèâÒúÛo³DMUrnŽXÀþJkÛT†=Éf9Q£}âKfïUEio ÎzB€4dö¥Ù6Íž‚œÇ [CÏ1Á¥Q0kÌ\"Bm¶Uø ÀA7CÕuòiÆyÖ˜Ù—R˜Re¶ÃÒ÷Óãê¬(E°õ ÎD„0Y%>ˆE¬ÀU]ë.b |™>lWŸ VÖÛ™4A\6eç|±øf5\¢ùôµ®¬QlÛËs<üën‰™Å¬û‘K¾¢Ë™4èË  É+h5Ÿ|XcH 5¦—JaI]÷9Å+i%F“5`Ü—£bÙj‡&=YºdTêæ½#í1ÙRRîcš||·êÏÖw™5M@²Egä8âjð Ôþå'ÿ î[G 8|ûMŽ€R+rP^/RDœ"]Ÿs¼¢6dΛÁX¼x&)À"æÜ÷ÖIß³Pø§èørô™°Ó<œªµå^¾Ùõhœà‚ÄÓ¿Gˆ“Ú,‰×d?zPëîèN&½$…¤B]æ„'೦bR›cè£àûOömHw:§ÁÖt®Èü|mÇ)›è×hCG Äœ$UQnIDZ7’æ´ŽI@qBvF° ‹«Ëeî”i—NCa¼‰OhÐ"\ºåcCßqƒŸƒGVu·Ž0}ª¦y?gPG×…þ@U>÷¡­%àr¾ÚÜ ™R— cäB€M"´6ƒ*'©D«ˆ\°¼ ΧâªqFw“+ü©¹ân;hQÐAçï+x8ûÔ)t2¼AÔ½ŽÌ6t) ¶å²üw1{ç/–mA#…ÑæJGThì 89’`Û«¶*™”ÕFô þ ‚Î|h¿cYi’ ¥+ܯ’~,O£Ž;•æ¾ ›]2Ú†v m<œä‰õ&N«üŒ4Nb•¼å•=ÖG¸Ëo ýÙl·¢;iµ~®qK°Ú Fª3W^Ŝ”S“è)ÙEr‡{õÜêɪ]¥Ã¹ùÉ~/Ëdgl_Ñ)i (íÿÊXeµÖt›a2û¿°¼»D2…Ž|­ï>J?¢ZCªUôJ ù" aÒ¶ì" ˵"*•šÉ¸ƒ!ŒVà2ÀTªáXîêêöþD;’ˆÎèÖy·‡s”$1OëZ'™î°¦¦ËÕ6*Ý÷j'FX@?ÕmOÒŠ/lÁŠàaïQÝ»žú|õº•[Öf[“· ÄÛ6gG”ÏIÆÚxñXμ¦0¤nuÄ ˆ±Nå¯!çË®¬BÎÝ»!ÉBÑ1SG9U諟‘øWÉQ1ôA ¸Ç"H¦dHû5œ{öWîÌ&S6EÖwH í»él?tÙÔ f1«´¸Ÿû¥éMÏ3CôÏ'•½5{£´¯ó+©Y©ÆZÂ{&òüN­{bæR+b‰›/í¤u= „ÂÓ ›hä÷ àsh´„ ]çâD|láâ@Œö“¡üÀøBXÇruzl^Ïä{6Â8ž\˜|ï݇ˆÝH,¸bÜ•Åä(Dî Ó¶:×™?ZÂåŒÅÕbÜàþ£ieúGf#Þà4Vš‹ÖctDØL;9”òRÿnT¤€Î–—wÛG_éXø’;øÙ7tü­l¿pþE´hýJ“u|“`(ØFaa¹ŒþÍhç6•Tš†Ý´ò½¸ýÓå~Evg´•‹K6¶áz–1üNoøÐ|:6óyÉ$s C%ÁPÚìR\¸Í]œäÇˈ6ÉgÒjFµú¡‰Ç!Ê{vÝCQ‚€(2lñA)ÍKîh£n‘tKº²¾KF€B.WÚnbo༷9ÀIp#åÀC Ûü˜GÒ&ÊÏ´Ü^ ÷+´Œ¶Añs7Kž@"°M!`•¥+þ¿vM P{ŸÈLê>È%Cṵ̀$øC$GPøüRM›§ýGäß5UÛß§¾+¹lU`‘f’  ŠÞr×ƼïÎS±Äa½»½ZŠv¸À÷ü°u¦/¥ôãhÑŽ( çW=Ç$‡ì± SûÀ&'#^£¨.«ƒ5ùJ\åáÂì±1cR ™)¬ @u#7ÓëL?îªNÏä4u÷%ô£®e´l]~£`£0bƒÂÖ7<EΉքNß,¸Ø·|Õ®ÂóÕNNË(¦¥žÇ²> •ÕÆ³q^Ýy_¥›ö3™œ RËkf­X¤‹ð¿T(|„ðƒd'W1D­&Ü®C–Ê5¿<Ê¥_ùEÈ™c$¹pÐlËG!”SLµàvI’)©œÿDÖ͹ EØ]ôûòúiMÎÿ?¸™(ð¡ÕIö=ô«†ËŠS±_?m›h;îëkŸc+!ÁQñÄð U@AaD°È¦c%¼Ñ¯Âª 9¢0eŽ•çŸÅ±C„§C­OæøADÕ\f$ÖUÙú ‰ < Ó8‘Q&âHÐeN*+”“‹*Û )Kó#Hx¦nQ~ PÙС þà Óë«P0ÑrÐÃêú½§nቺþh¼¸dÚÞª†q˜77y0ï¥ëp®€2ãZæ„î—^d W”•œº& †JÅÖ˜Ê;L7Ò2ý¬ÇKvwIÍo†2 Ó×ÓÜÀG¢«Suˆô¡!ñK…€cŽQGWPÑpXAûû…ÊzÒ>O\€Y‘Ø sö9˜ýaß åwI;ƒê^(m],•/Ÿ„‡˜Ø`iüÓeCß„­¾Ñ‡ëÖr'@“EMdDZäðÃu•]9pä.­üZº ÓD{JgŠýÐ>ø8·¡ÿ e­Çéu¹P‚ç\>ÏÌÊϽôŸÜÏâ!׃À¿un –§gÈHý×rÒâõ\’@…ì2˜SYÿ`´Õ6ÒnŠsàOÉ ~;SyM Ð!gêêr¨`|&Q?é±Äº_óĵnáDì'/Áf¶¤ Ðr?¯‚Ú°ã×Êš8ÕpTíçä äf†Ìaå‚Ón€¢Æü%F€ŒçXSg˜‹i8r0…oÖQ_-Aœ>1%ã„/Ý£‹uöÍ`æáåÍ{¼¹?`h;Ýcìtìõê}²y˜§Ô†p>"¶Bå¹Ü5”@¨¸Y”8Óm!ö5¤gawPÌl]š=£Ÿ8=Äiî{ÃʺÖÙe˜ÆdÔHÅhÑwª£c DDH;Ÿ²Ý UÑÒ0Ï‚ :3¥°[ %ÂgÏù›F¤jX,ÆÅðtÀPÙ73-0Ó]2?)Àͳ¦sà!t. §ïžäÒrk¤ÇÒ37˜µ˜žl£àsZÆZU:…! áÚÔˆ«xFWŸÅ$ sÌuäl" E!)KÔ…„O–óeŸwFIýHIË.Tª3˜A'±å4–½™¬Ñ2½B¬r…‰Ü„=µ‰Qð&.XÄìêCJìЈ âÜAªÖ’¬®G]Œ~ðh7ø?6<°Ð‘ÇÁ[ß%‡®„ÆÛè),¾Ð¢ñêrÇ"…qnÕÇû#”2¹µø)ÆáOA%µN¿Ï¦ðXxA`P¶Ó$ÖYK…h“h5Éu±Au6ÂuØA 3(Lv,hJ<¡ÑcLã#½uûÍ9µ^ÜW¢†š@ig€j)q œ"í¾œ¦Ù°Úüa;m#/‹úX`ÇÙ¯éÁœ@[Ójm6é\ð?Ö´‚ Kýö„æt¢Á¿R)«´\èþ*‹T/~¿QñZy! \½™þ–ÇbÛ/ä° c µÃì’Ákºû"8xa½ágèͰ­˜wû{¢u_ž‡ Áó“6çàtƒ]Ǻön³»!ÿ3ß1ôFËE60Ñhƒ?`¡²T&m'#Ü‘c’**ÒþÁwP7tHUFÖ‚z•f2^˜¦›OyîæšjAÝc~Í oŸ“r9nDEp›&÷í»æýi”Zvרuáýð\s]'“;  ’#È5þˆgeÊ[gí¾¾bëäöEîÌq§ÄEŠH7$> …Ìóñþ'=ö3pq´N„2ýí¹\î%ìÕîŒZ÷.HHŠn[ïš›ívÝPæü™1žjlkib j°÷½Nn@ƒ ¬¤¡Ùej¦5Z‹ÚrƳwêTõ¹Õ[‡iÏ#¨D©ÛsÄÈñò`’•ÿ­•pˆAÓ•%ÉýhWÆÔÙ9b»vÄÌ “b}§ˆ”ö‹b‚8ø°Š]j7^f›ª¼4GúÙ"jÉCÇä(Eô”ËÊĪŠG3]¾$´Û-ÑAc4[Y +)ÄœtvU*FJòLm)è¶ršd²åsLJv•XkÍj\FgÍg¤·úrÀ«èív¤ª¿®'!”ß6Ï:Ø+–l$Yˆ¥Ð±Ø]m@’ç›Æjub©áä~Ü|NBÏ £ä$HÚyòã}TXöŸL .åŸØð0“öN&ѰíÿQ!¹Ã9±ÞËn±NÁ4dÔƒˆM´iÕCE™Ö„ÄFJ4ugœ…£ÙÚt—âyörÈæç шr†`Ù‹ÖåCþ¨prØÔA£{>… !¼Î0aܸ(Äζ§6dâ„Ö´_ùþSóm<Á ÂÎCwõ°Åé˜ev&¸&G›ÊýÙž}ÿ¼]Ë ›s6Aô†´‚ÓhÝYÆ»÷[¢ÉŽŒtFG›ˆ¬.%—¢Çú¢‚@DW_vS 1ï^.ÌrHìR—3Upš2Í9¾¨‹á:Ks¨3‡ìZ8ø,ÉZ­y6Z‰Ñ¦¾Àqû¡Ü3Ô5eãð…+( õÇ”w#”ñó®Û\IS\‘†´wo"/ÜÃ*ñXGðá§N…Fsâÿ¡s$ìv}7ã¹u±O¤»^ý/°ÄOr+ëš hÒ§ÆŠ²Å)í¸ÄYØG±ùz+׫|[á#BÝÓEq‚ŒÊ[ Ñü–¸rùÙ3àâwÏlT5K‰ËE¼ª¶s劮¡ª•´5ï÷Åú©Eð®S;FÒÁ鎽 Ó nd×#SµŸ )&Ø&õÇeÔ;/¿uìAªÞ[¹ò6•¦A¸¤4§&µŠh¯Â8Éik´h^`W?[eõ² Ò•ÉÀµº|e»[dÅßö½„>˜i<í&´Ž‹c*~½÷aŠz­Ìdƒ?‘ø–¶a7sÌ5šKŠõžø¤f°Ü(â<ÿp&åJŽ@7 EàÀø€ ºÁºKÀh3‰ªP8•ݘ,Žäà±ä'R&-ÇL*IÙ0FýØ‚¨ã«ûüðÀÐ<ðµhÂÐ:þÖëîpo6â–r…âqi%|-„fÞC¸ò^¿#ž‡÷hœU9é¤BEä|_?ñÿü.Cð[¿x±æÞÁœY )ŠÅïB½zL?Þê.+†¤]ïã·- Œªü[ ÚãEô›†T IæçN…”{±¡¿¢+oá_¾ÿ6^"Npñ8†jVB%Ÿ[´Ÿ4Æ\üËö7&)¥pôã—rúý]c-ÖZ(†HXê?Ê X÷}á]vƒHB©TÞÄž½Ì²XÇ¿^Æv„~UºÅé`eÙéõ.×íY?¨1X¢J°Uj¦~†Ë#h1À16(ýG‹É¦Tý[ÇùÙë¿ÿWç’Ø;Ó½ß^Â¥2ž¸Ï:ø[ 4¬ºÓ ΙùQï‹ò8*bÑÒ-ÿ6 Ò˜·C…/O¢6AwžZ¿q,íÀµ±®? 0 ±èþè…#CS—yŽd4̓þùhÙÌkoû^µ „˜‘ÊÞ8ÑŒH䣞>p'â¹5ß, ˉUv+ÙubÁÇd\ôHX!°I¶â²öL•¿É–ñ1oà¬y[óy%k ͨ5¨µ"Qy?õµ >^R–MjZ÷ùõÏ‚.à×P¦~¬ˆcÇíý÷ÑmwhU쥓y¡©Fº€ ”Jú/¿˜ 1N“Á ¦ŽÝYòxÙjâÝi«ÚiŸ B/l¢LJœ«’1’[’º2¥ºS,Y¢ûñáY”1'vQÛ¥xÊ•ôN¾š¢?ÐKF Œ™‚˹ûSm™lô笅>m* Þ6¯Æ/¥Uá®…7Ñ28¦Ÿï•ýù ’·_5æÚ’~½ÿ¶:c÷HS«ßp±‰BU·‹uqqÝA2—h‡Öç´}Ýe8áõ#k¹°jV2 ‰‡õíù©¯ –•Àh¼½ÔB·A`x°š*J Rü—Ô ñöÛúºÍÀÚÍ©‚q3|l9E£ë¾­W)ë¤7&Ùbø¹Jƒ×ø0G'^êÏ/\ÜIÉÙ¬ì2’fF"ŠÖ[1Ìô$õ!âÞ[Åôkü±Ýw ch`£üDásË—Ýr펒GpÅ£_Á´'úWcõŽw~‘p‚?S3Žá¥dü]Vª79m,wônÉ[å3ÑzŠŒ ?ž+zŸÝzȳIEúS€ºâ×@Mvö(옂NÚB¬/ä%- »€I+íhËØÃ°œ’ˆÀì©×„qô!VžýÆTÛêù[|ÆÐÕ0ïù |ñ¹’rjm@ wº›žðóN"ë 1¼@wõ§RˆE†Ús|{÷x#víŸY\¢(Á¸Iг"‘`sa#"8¶×FªÊ‰”Öôˆ¸¨²ìÍ ø´DÜ*y_0£çwîÌé‘K:N¸fR©ãÞ#S÷4š”Z²F¿J±å §;8(´*ÛýÕâÞhîöà7r­À†ÍoˆüaM*8h&Ç{gÿòþ/;õ`ÙnŽûZʘäQ§l+¡'V®\Σڌ莕 i-Óðp >Oêø´½Ð;ÑUb˜Ïdk´7Îöˆ„B¸V ÒÄ]%JÉ¥CqW…øûsTè'ÌMÇûDBGe›‹Ç=ÍÇ;YIÖJúŒÎÙ‘¡es5DÊ»ºÒ±2xà_LS‹  !ìbÊ¥rE6"œ*[Ä^•“1FR–¡©_ÍÅ6÷šeò€öÒÓ/ó;tÅ„¿!/­'|LÈW0GCÌwH09àó£*‰C;q¯ù$rÈ1((jÄ'Ãušr¡ E*:iÓäÿrÃf_¸8Vr¢ …@ uÚa ±'‹NP\tÀ[< ç'¬pöS‚Vgñ¼ÉMEªñÒœnð2í‡"¯îæC#àpáçÛ†áÏ*¨KÚÜbÂHn(<ç­5ÛˆG"‘ÞÔ§/}r¡ù«ÜÃD'ÁNÊ`Íï4 ñF¦‡žÊÚó—ûà{“˨÷ÅY%1(A‘DVckȸ! ¥Q|PË(` ÍS£µ„¹IÿþW®üXS¾×ô3Ö’Ía¤Žý~t)\hXÔ@ àrJ äÝß =\óŘ ï…_8ÈçöçÒ+`¤~¿^`Ãe’çÚÞ"Ö{Žò÷wzNK„n¸Ðøa3\ÓÄaÍ?Â/–ì{ç †|eo†^Ó)dFˆp7Ø%øg~»ßᣨFUˆMÿ$¨ÓЏ<ûÍ¥u¨¹~íäcœ/´¶.ßis0ª›È¾[ t>Ùx*¯Ã°ôÁ [YÕ9•Ú$1ié ©ùÀ´§‰È£¾TB²» ÿQÇ_ñÁ¾aX.;4•šQdo†m]ƒZo Ûäöþu—*%i¤ŸùöpëÜõVÀ«Ì<Ú`ÿ£©ßk¼/3óý–ìkL£‹¶®¥m `21ùQC.›»„G¿=´ÈÁ'‚uý¤÷‘¿`}”×f|ÐrÔæ³Û\õ,¥¨Ø±`äliXФNülcsC€yYîGˆ;)ù±[T•Сí[, ?ß(Kú$¢EÀ“ù]Ÿ-ôS÷ãŸL"tý$‚îÛ@iÎkÊ(PtÜ'Ûþ™í¶®±¦Ø*Älz*¹Ü]­ŽÝc¥(ú œ¿°V9sq 3®ˆ¯ò×Ô"°Z À-3@s)c´kMëäí¡…‡ÕnÎiŒoÔåQóeÙ}­òòŒ>O¨ËHeÀ¿ØTŒf¿Y3Í~÷ æÜ€›¨ IIežò‹ëÎÇÈöwÀ‰O'Fm RÏ—·Ö»öæç0Td’sOw%æ=‰›©y¨>=ÏÉr—OBD0÷CêJ.Bà%;é.‘ËÑf²«ß%5 ÜàüÝßd‡Ôzɹ~ €M•&é“wz’îºÇ¾žmëàô¤É˜¯‘Úý<Ž˜ ìö~ü‰2UlLUŽÝDw’ÒDx3CBiï¿ÆŸóvAË…Ázf©l9J±×íØ‚cÛc|ÀñÍA‹¹”€ºña„aäl{!£§4é¥n2Þñ ÆsQÉ­¡aX B¾½îU‘º¸ŒD8e@ŠËN—õ¼C,YÔmðÅÀ‹”"Ù‚Åváb$ßANN3XjÔ¹]päïg̺;Ó¾öiÆ–†â5J-ngæBAéN*¶ú~jÐäj¦Etwz‡ 1Å¢‰™@hpÏfc‡ïnwjЧþ¯;UŽ9dZ 5¬­ðSƲ€’k 8< AGJß«°{ BÁl{ÈC …¤wMj'ÊæyS»ªLï­ökZ«·… ¨6Øõ2_"K©×ßfÚtópûRß~¾%D¸ÒȸR}ÌP3 „¼›ÄCâ×mÐH½W«<5Fʼn[Sê÷Z‰Ö‘ªòS|l“”aO„Jæ¢Þß“² Î_†NÆ Îõ‘¼P ÜÖW;B—Ð ÀEk_ÀG‰„¬¢Ùþ$8Ì„Så“6“ºùL1ß™tEµs`•8Ž6Øb^ãÿÎ3ƒ ÝîôÎI3ä’ìCÙD,³³ÔñʶŒòšÎ¨m yøg¥ÁÌ=튺%,7ÕG’ú+»¦ÊHÔŠ'j;ë´Ž„e Û´â·þ´\2)´ðY9«æ+f*Â1j£å?Lmgi¿H.r‹ÊfiÞË,o§…ªÙ¢âþ¼ÛÿkÂÒ©˜òF\ê^G¾Óþëí¥x×ÎŽ{öÅ“õe0]J¸»²÷óž‘©LMJ÷ÞQÐ#ÕÛŸ³ö”.[ò>gOÄYrÇ,Ø~»½™ô}º>Üû™ú°:´J¦E°Ðà=2b{Š*õ¤˜¨qjÜ/‘z´›Ã)Zª8Þ1!O•]Ö× 05'ü¡#8ª/…Ù§D\gVPrúe Ü:KXB=f}I$â°­+ò` ŽÖDÈÊkèðç^qu¸l' ¸¯“³< JcƒFó2‹éý‡^¦ùѼÍwùæÕ˜“;¢~˜xÝg}“LOƒ6‘ÜÀqÜ.gõž‡Éàñ1°_h»f/€ƒþd¼¬T‡þžëT¥QÇwÌHœ¢Äÿ1_o=´R>¥Õ HLÏ Šw9w^žZÞ ô—Bìë€sŠ+uZßl´€n+ï·Ó8ü]ůÚÝ<¼à0_.{hºŠjÀC/ Æ5tÐv9¡P¯ÉÅíQÂÅ[õ«1¾‘†7‘¨lMáôTõ Çš®oå•^6Àæ8úh‰ŠªáÑ>Õq¿ŽÛ¨2ŸCñSó?¼§á…‚}£˜´Ñ"b#%‚_O4Ž¢3ÖYW©=˲aþ…êµÏ(y`®ËÞe0 Ö´#ƒk ¾­Éõ¹°2ð¸qÄ,Õ¾jI˜ZÙÚ 2(†/"–ùz}W»Ï ¾Jc¾œÍ¥N•%ô£ &-+ƾ±Ì=ò±ÂÍ´ÉhœÈ\Å…cã1r\”°Rk*¸£NAŒ¥eÙÝ‚Ù%»IQÎ(J`Y™SÁe¥Ù4gÌä4¤üò´ž ²Úæ€Â\(œÁ>ì¾ =ÃáeÀµôͲ5BzÉÔ\ nR:_pK yxÔl²#–2_»»¾Ü÷i gñ'yý"Öžtl(w,(&ñª]Èß( ¢u9¨U}éàˆÓ*Oßÿ%ŒÁŽ}×#·À8‚*“ †Eüqi”ÂÞ5_øÚ5ðÏ÷A<¨ä Àû:a%û°´¿EL0Â&ª±ø{ÓN$ŸF+&¬].-²‚X„Þ9xí>’ÊS#GW:~³Í4¸¨Q¿åO~2oæ¤|uÁçDd§u“œ9¯Þ÷?½FUEX­*"£jQ8”^ÚïZJÅ·í‰Çvq èkD1l!¿ØÙíÁ ’v„£¦æ™*}¯x¢âß=¯(ñØçÙþA0tVT;£ZQ¬ îêh¦&—¤žœ8èö0+Cb^PÝBg¢&ÃÍ|ñÍ #ýsp'ÝÿxhnF &Ý©M$ÆÇ-£èÛÇkãÚòôÜ É"kBxª4ÈñÊP> ‹ŽÂ·æ™°xbðü{nwL³Þü™ÅýkúÜÑÓªí¡ . z Ntü¦m‚ªË+Ë¿Cû[Ñ Y†VYÈÿO ŸÅÏy0jÍ‚4Ÿö0&„c» rBZC97®Ý‰³Öæ;kj7êü$†Š»na[<&°§‹·€Ã3›må¯B6*•6ÅzŠýê@lËîµ³Z´«VKÔ!¼iÀ`5€œ¶»ÄN€× /ãÿçpøÊ­Ù# `ÞÏr^µg,Àžøk:ÎØ˜·OÝ•—A•hKÂ6ÁŽ^5lï;ôX®^jéêâvOº3pЈ„XË䄼jSàv"ÂToýÁÎl;^Â!ð[ÐÔa§Öx¤G ÃbW-ôv²‰e/9FzÇ 8‡=1lJWãS”†(}v¿\Pš]OÔÉ{— y½z²`~¶U…òÙAúã`ï¢×ÒéM&F¥ßW˜0–­°N*"6=+rе®_h¥Á4š\J ¾TÏØ°Ù÷A9gÌ··ëD‡0ìÒêà›k”eÅ•zº•3d(+“û1 :ƒµoÍðÏYALX~Ú䑌1áßæžÚÍä.¦ð¥b`•>ô"D}©)‘ö–Ü;#Ñ¿$#î(“])VË0÷yÛŠ«™þF¬ñðxúós)kk?(v;ŠàÖÆŽƒ±YÎx´Ad²6öŸx´¢U¶Ó–#óä繺3ØÃ3M P¾lzËÁޏÀ'!ÓmîçÌÞ€X•£ÏúFùëT4„­;À¨s&™Û ¬¥Â·¯˜r­ ÛÂzPª„]öÕ ÚÜwÚMÁ¿ª§7ÊÞ[Ónü6©p0+¦…©f»ì»¦P¢¾æ.—Å,–néRTšt‡î˜Î¥¦uÓ®­ÖÀˆ­û¹^ ›; Á7RE+í5“»q´¿g6n¿Ã8âK˜œ&7аP\r ¢‘ij•2½ NëÏlàU~Õî3JL™‰´Š› ¾¹Æã§d£Æ‡Ê9aã2PWWð¯ñ™M¶T£Ñ¿Â0g«s»11üüÊ÷¢‹ÏØ- EþO›";C6…þægKGCÔ²<¦GÜ&¿ýÙ¾²ÊÕ2,Õ1 ÏUOÑ+½œ5y¶ísŠ7Š•ïá6¶n(‚7B22D¼0D…‚Èô!çm‰_PŒ®. ­¹äÿ|1q“Û¢9Í·„’W휪tÄ[WP÷òóãòe¦ý\ÇdÒGžúnµjOý}|=÷ w-HšüËn‡"ö]º40®ièV ÷Å~"J¦œÐ±¢ïH®‚rD—x=Ô;łćrä¶EBüå}zÏ y¹5dàN×™¬p@³›gj´¨ŽV*òŸùzN„hD[)î£ÏÍ4m¬³ÈXÔí ýuø»ÈâZ(gEe&à“·ò4ˆ’Ôˆâõ¦VpŠfÍ6ÆI*âˆH¨Ø]0â%”œ_ü<‚ÄNµCGr­G'®DW/D¦†®(X`‡óÈë#êß3Bvj”Ú¬ç뉄;Àªé2›ðv»{3j[1f6’°dˆ­úÍ(ä©-ðfõÀwi—Ð̹s¥8G>ÕY/‚Hšó{Œ´”Ñj‚Ÿ[eMf¶` J ÜÁ0 IçãNi žZêìm²2dÜ.—ý«(§‡ªnÔüÍ»6½T ݹ-þò®è™¤wÉ¡óÎ{Hû¥¾8rô›×; ªý$CsÂßc%EÐ^¾ORw4@ã$fdÅ (°vå:JYq%ªèøX+<Õu‹Z«4EÈâ(cÑ—WÔhFu9"_¼FvZ?H …ÜÄ"ÚÞ>å iÚ½`'k˜2$a±‘ –Ò £WR^ÄÖV”vX:"5“ à&¯Oº½–G=:‹„~~­Ò1Õ%C H6@ø-‡„m&,šØ{!z—‹µréR˜'JŸà‡VªbÌáÅ # ‘ÝtP2 JyÕ®r§½(ª˜Ò6 fEz= ¤Jà!¾õHáøf]7m¬ÿÕ#¦ªÕõ<›Nå Šk~‚4Áqвa†…,¤RÐêÎC`²ƒsCôPzómÎ./“³9!cÀÚI¢è˜–†\Ö ÕÒ¥9Àd’3,ê¬ò_c)eBSÃÎX‚@W»¦¡¦ßïcäüêĸOpjŽ =3Kϳ•MŸy¹þùƒ!µë”¤Mqˆði­åxE"°Ûµ‰mæ—fÚªx|D7ÉØÁ¤4_G6ü"½€£d=qS Ù0XM<ž‚¬ù"2³o€…ضsz©º¢{„PØ,R™±5kH÷³÷ƒ°êLÐaй«£ˆ3òp\èÁ´ïà­ñB›V1JfµU­Ü3‘QxJ«à³)çÅÓ=Áßè(©ðPéƒ#ÅøÐèKc|ªZæœÛòÐòŸ6v"{¹ûô˜Hj*™í°?*5fÏ¿ðÔ•µîyYeq‡.øÆ—M–rIè.-‹Š”võ”ö'XìQÞ› ± n˜A^´¡êß»™]í/ýanë̺˜ox*¶ôÖ’+l‰Ss¢~¬|àËçI}rúMñO:¤Ä6£’Ç,P¸9s~-eVì’rç÷Èնša´!PaƒË‹Se“4¥œ uOÿh±Ü&*ôÈSJN¾0FÏó=ö_(Ö]î³$X5ØTIñCöÛþ0¥Lþ!H[ýd„ŠEn®%¦;M•Qß!‘Î0ãɬ[cé,FI@£ÌG8¥Ô±þ}ßXšÇl²o=”CzIOÞ,ŒË#ê#©¬ë=Dšš±{ªÌ®7>Fœ7e˜åÆ^åæ¦Â©ä}¡RNH¸#y?̰T"·…ùÕ)ãX¨+ÐuÑ9{£í„¾Ö¢#ÅÔñ ;"û8–âT¼³½‘—Øû8‚i?Å|Ïì6Ûøõ%V;ÞŠÓ¦‡eÓB¢"÷~º•Žu—›—7Ú‚ÓÊ2xp/P7¤ÝiÕꔫ‘èÛÐñcËÈk°Ð‰Þ ÀVðm–©ÛÇÑå0›ï´Ä[>,G›ˆàq­Ë8àï@¯eÿš!áš31@°ª8áJ´•¤¡ÎLÉš§&2¾Â¤Žltç=ˆÄµ;bÒQ›¶;6á?`Ú„ŒìÐmwõŸåw¹…úóÏ—Â”Ò È¦F(›†ÙR_™ìÝ‚ÌñÝ2PêC¸»ýãƒ_!Œ+õö²Y±±í`aº¯J)gÏMK¸V„͈VuxI]àAv¤zhšûú{èwš'ÎGù¼sßЩÑwnyÆ6¨5x›n<2fÓýŸ’ò ­Aã×icñÛ†Xè”ÁÐQ•¯Ä ÜlŽ>?ˆåŸ%e#¼Š¦Ï¯ñ¨'®dð¾§ÞD ¶®A•dGýu¤T@£>$HAr{qJýéX8WtÉMg1ŸLò{ñÀvšx«É»¶+ŠÛVíô¥<þ缈üAÆ"rü›À]A‰qH5;†Ð‹é(Æä²¬ÑÎX@ŽÞ.Ýyö#TF­õål¿o&f³פq3ñàºËwž¯‘³zkÒ]©ß]°$Ñ¢¥ÞÆæ1¹?º:~÷*•LÊÙNm=§¿– ÷a«r¶ÐO`Á+×¾·#Xl¹vþËeöavµ¢½G`åhÊ\4BËÓè­ž3ó=nëZ”850Vª)éšÝš³OM5rZùÝäÔZ‰ÁTËéT¬•£€½Û«t¸“®›6k𦀩;-“i¹9P[˜ë^µ–f,ÒÍüm }! ´¡ÚÈŸ‹–®‡>ü\8òÝ|ávíol¾I, CCDtN(¬9öŽGE‰Ï½eóPÔ½3/'«Ò3hîÖF«Ææñ—w’šæˆI´öBŽñ÷0¿”°°§Ù^峆UóºÁ”/!f7óáÿáËpd…eÏ f&ùèҹᴮ›§IÌ7==S6Î@ &‘8çû•”Φ]oYóý{,Èð(*Ê1]4ò¾3k/úöŒÓ¼¶¿5×»Rõ=*h1œF˺c½Bñˆ™“‚b½`O eEîÒZJ©‹ÈF ç6Ì÷Ö„Ö‘p“é üôã[_zr<€-$`fL'Û–"³€zâ`yàÅ’Ù÷V¯Ö§ƒ>JzÈp‹*ý,بÆpõ¿¸8N½k5ßÅÁs kˆz%äúv’ßÙ… «MœnX@°Õö·s³³¸iü‰Üí™6¾r³À5˜Yþ@ꫲ‡d~;„âìóÖ:åsv T”Ó§×]“ÚS{kéê4ëDg‚B¸l‘ıÒEúãx,,Xƒ;á›!ž¦…ân1ä)ÖôêõûH^CO_l¡™<¶ÛÄÎÛ­!1¸Ý«—˜eeéGQ…mºà°–°y¹0ät‚ÌÀ]÷ŽÅ}}N®Ä¢F>¬M T-S P~5¹ÙfϵEåE‰ ËÀ‹¼²Ãr?­O%VЃÞÚÝmÎÙ£:ÀLsÚ¸ Óhw75W#fFÃ|ÀjñK[aÖYáEa”ŸäÌfîÜMóÜikyô[Ú/N…ùkí*&Q†!%Q8œ'xø\Y›kÞ*–+iD¨Û5èeºÍ,^#•µ¶ ×UÙ’ÄMã›æÝ¶>ÛÛ¦ aÿ¡OCetšLböÅña7Èn@¿š"Ò.ÿ^ól~dºz„\aÚ ­1£[°æáÄ‹?ú ?42³òž;<@@=è!ÂÛ¤~éÊaÀiG\ºøÜ”ÔÉ1‰P‘¸ëâÙûCã4»ø;} `GVÍ㤨ЗÃEa.@`°sÙMµY%ÜÜ’;Õ` ì˜5ò¾$ãNÐ 8áý‰B{Sø€º-8™ŸM[IgLã51‘YI™Ó ùD‚8¿Y®éÑ8h·QßD%c ß”_áÏ6iwïv±6¥ãá³ØfLâ(—`ð,—ŽÙpáß÷d½i拏:™Y¶Ôž؃ÿÓµyš™}Õ&'Ž1)¦QÁžf‡OCcÿ^ÂVé0“’Ë­,ß²îoÉu5¼ÝÁ"ÉðÒæYˆ™Äê8—T:!›(ì6$†ß'šsB§ëqr+lÕëòcР^>ôfRþ‰e…4Ú IPÇŠW`•s#vkŽ"‡@TB‡*Â{NÆ|JšD¬ò#±üra‰ùÐäÆäÍt æ¹$°`²°e2éEçX©›ˆ¿‚Gq¨ÓL@×7a‚W÷3™0oŸ=ÿuELVs~ùõÉ EÎ4¸ñ¥*ÿs[ßOòv«x ^×MüH_¢é4XSiÕ›`¿•_=ÒMrh&ó¹/4}?„A©€kG0€,7¸„ì¯;8Ïî8 )+ÓÌX 0ýià"N‰¨Öõ^« síDŠÞ):r€ì¿–[{y”>Ä ›0U Ƴ‰‚©¥Î=Ù½¶ï>84%›ú?bÓ+FÁ»cGÿ’X˜,kd¦ d’Çf,0"×ñ|@͈­˜ª†Âëý_€»eê1®\ ¬Ž”‰ ¼ÉÐÐ|r}©›W{ÌàgàÛTsMÁÞé‡}LòÖt.ȾXM:ë7N)¡=~BM€;³·z´2=SŸ•Ø8WÁ‡½‡.-šÕw˵nœ $Š›æU²ÃI)Å»RxLÆÌejõÄÃtuܹü±gAô{øZÿ Ïtï†/¯­®‘°;br]ã—(«Î–'ôÿú¬r‘Á®C€.MŒ'yÄÏé×È;X!9|!–é4QÜñý€sÚË‘&õYö W gsö¶køÍ(rØ}W¼gS—Ϩ¶½„b–袥7S]Øò5`ÐwM~åñø Õ+U{±˜§Ë@@4mTI ˜jòÔ<£Î@}¬§A‡’:ŠÑ½;ÍÛsP{“Ϩ‘pIOk)¨Ç—,¹P’! Œá—€Ú¬ .§y•^*Èâöœ­€&JMÔ8|‘|­0œÚòqælœJ¹j‹ë'0>Æ?í9÷—Vf¯³ØI<[ÒØÎq<Ýå0èï'R–•†{Þ*C ϲçïǯâÊ¢VÝ®I’L¦v]§„¥¯>‘>¶@ä3¼æ_ßñìÛSB/Á\T Þ…¶4Øåå ¼*çqïO‚Åâu[r#þ¹!f¦„—˜ñëG¹i:"wSxõ•NLd†Î'„Å Ïý°ŽlKt:ê*Ö;ɘ–SJG©@•j¤ כʡo($Ù‹A›%Ñ,îG™ÚÂôc;bVC?6³Ît>ÐF÷4×ýÍÀ _*½ÌMgUøÿðÊg«’26››e#U>µ›ä)šNìC‰ß÷z™æE튀¸£ «!¡*Žl;}! bKƒHuN*‹ÏsÒ{‰¿fK©Þ%qå• ¶ÍñHXQÛ zH?ÑLŒÍDÔÉ×n=Ð׿ÙLÚ‰°åOJkäúÒN{áø>f½Ü-œ^w¸0>‡Þí³ôù§V8*N]A¹À¡LzÊ2!.Ô«ŒÎe¹¾bHϦ«GEqhÐVÐf­óÖÇkÍÀwvp¬­‚a“ëäGñÔ>Î[á ¦ž†¥ö‚L Ì`ÑŠrÐ@«ØEr–rB"Ñ?[Åir¿O›T¦ aiÜÆ*3f ¤cÔ0$à©ÄF(Ïbê/+fS<6ª€¬z•Vˆ[\¨ŒÚ;»ï½ú2nèÝçg¿økS/U'‰£f ½<÷Ç2 &1$(ÝÞÂ"Bìx!ÞP¶-H?‹£ÑÔâ£ê(ÒC ]ÒÙQ“gxeÆÖË]`÷n$róAE…’ÅˆÍ ÊJYîÈ‘­Õ$z³cË3,뉆á^r¤]À å-—âMò“Ìæó]éD+|ËAf· |ÁI‰0p3¿±r?Š5Ó×óˆ"Þ5}YÎ{­æÆoáøyÍý– =¤å^/<˜ ÔØêÆ7ŸêÅ&n¦¶µdrPµE/Ñs»3³(E¸–ÆCz ÉáÎsÜc†¡fP¢û}_Ä–ÓB€´ÈK]Ûºk•P€-qÏØ¤š_8Ø–m Ð Pí…¥Úxgeaɹ¢;ëöÂM8«Bë{€/²BòðÅÌOÃDejGŽóÀ€¤ÅÔƒ )“1¥™”Á_:™EÐÍyÀKë$è t”œÌ!²¿<º493Þ‚¨¸|a÷X±™!Bf¤ÆŒÝK£Ë¾ø™÷í5`øg®Oî‰knÍ( ‚}ëà·÷…%¸ËL'ã'¶™—(—È^A5"®È0NFâÎùç¯ûp]o©¤€R&V™v÷WßiË×1ζUüÁÊw'“0UåÃ1ÿJTë(ðU³í\²0Àã8lŠû8Ì*¸GáAÖ@£¸Ü)É›ÝzÞXŒúÈ€¹¨ &ƒ ¢”ã†3ÈkÈ>ƒ5“-s¹¢úHгq÷õ{Zø½hèL­]ò¿Š¼8>Êi%þ¯i}›aI:äR m1qi¹:!dâvrå:0wÉÊý,¯c¡£%îPÁÛ÷Õdž‹Õb.éÍïC O’†ëŒ©+SXÆþŠ‘‹iH¿NÅ*þSp /ˆv4fåô{DUðíU5„ûܼ X…BgnP)®Å;è^+÷6¾]@×[g_½¡%÷¼ëª 3mú/CĽ×ëg´ÇñYªq|ŒU•6ò<šEÇaµÝ›¥[™R>üÕèK"¡d^Ehìð¬?Láy7Øo§•5„®u‘M›ÞÞˆµS8¹Áö úØäåÉ‘äÑõ[X ¡žô™VÛ3çÀÀ‹ªÜ‚h¹v˜æC6|“µ%¡ÕRœóJ~[®³Q*å<ÊQ‹êãr…m³TÚ^ *_[1<~›sóÞcæ³ÿÄ Õ‘ݰUlÎ2”í\*M!8«\Útf¹“—;¦\`~æø`/2çOÁ TºZ\¼‡€> µò&P]¼ì˜jlVŠ »l˜¤g!îÅÙ¢ûh6~lIÓ‡+‡*ÓõM°£F¦â;.…³6æP¬¶!Œ¿´SC#}Òg†–|%ÚlÛxXhdQðÂÇ·, /$_“|Y6z¡·àcU­Àððÿ­¡ä=Ù8”S—Ò±#}ÒB¿@ðÿ¼}ÌËd_·Pmaf{‘æ-$µOe3‰+óùhûé ‡†'þ{ËŒ¡ñß”U!|G6Æ@KbX+µÔ´—%*AâÑzW¶§³ÓµÎ;\76GëÆ7Ÿ­?yƒ´Æ[…W5zcó¢ÆÂÞo¥¸õwF&Ș«×ªü1³öÌÎ5̕롖‘*©tý/¿†Â ºGU1k“ýîQ#®V"9à0> ˆÁk€¶.—·´æ~ÆfÞ¥ž©~ù3J6¢C+€ÂðOià|C¦¿Ž2úú÷òÒz§|_¯7,™=á+¿hÔÉuVx‚Þ‡Eq–÷R=ØáÀ›_u¦³ZNÍÁæÁ°™RÛ$Š9`¥ÐÆ_D€ØÇ¾‘kû8äYùYMDŠ<@®nxƒÂÁ†y4'|•–¿§Ž~)Çs!ô !}UÁÀ®Je#ƒ =h&·u‚ðÜú°¦ø¯¸•8æ %âY­ÿ€Q­;3ùg¢C'šqÜ˹8ýfïÓ?* = ÛjËþ³Eª<á­‚Ž‹ØþpÇ_„J(Æh Ã?1ÿþyö8¶†ƒDià+nSÿUÉd¨bü¹D…þ…aã N3®u®~嘱VMOì1DªVŒ„â$üÒ|ñƒ‹U‡œi>ãÌ©”É8Ž]_ɰùrw;GzB‡/ÆcÒkeGÎ(´K—£‡E •ËQ„?gΣm'“%Ê=+—sëgØLÚT¿ÄžÖ0<Öêêê¸29kgZ·øÕËC‚aÇè‰Ë.¹k‰%?9M·DeɉÃnÿ¬UÊX‚»EÔ0d+˜˜b°ýÊSŽÃ作„’• ‡bŸ;±ŽèºêZEÙþ#|ÕHÆ™gá“ý¨…boÇ _¯ª¸Å@X`ØvÖPènª¼æR# $Æç}GÌáͰ­ ŒºÔï*‡fÐ\ڥǫ¨ÄLêÇœÂvš@@ý—œøƒ{a¯›Së…nÚ¦ —àiû¢Er=ÍÓ:GyëÔ˜‰òF,äñ›šŠfj÷@Ç—tê¾{“ô_ ’¨¯ätÐ`E/b`ažãh¨Iùˆd¸/Õßä°”+÷e1í¬áÔøÏƒVù^¦JImÑ"ÝlQÁéÓ<žµ§KδË÷Îÿ0EºØ¹S9‡ç8»ä×b-ˆ/âÕ HÓmUïúK,llF梥 gºrƒO¾Œ8‰A@`ëç¸æã2¹\´ñ—ñƒB'œÃ×|;mùÎ~¸=hç®ÞžB±,¹Y´›Üài<[fÅ}ÃÄ;ìªüÊÓŒò£Òh«ÑHãÄ–g ¥…H«GaLQôs¾r1u®,¶å¸À«iJ br¯AÿæwLšô°Á_;ô‚±Cî3•<¬>úsIêz¬ìÂzch¾­/¾iÔ §ìªôTQŒ1zŽÆÆúÐGK62}‘ë½Áqßï„,@¨Ñ€âôžrêÌ ÞÄïup¾šFQžeßaóTp˜NüÊ{ðUÓèwú³Ñ-Ä »ÃO¶CcüFà‹ûüÇ·Q‘÷¥CêG°ß% ämÒ”~¸ŒÃ/AžªÁɯ¤Î_ý'{ù~4k¡úfo½} «…ÅŒa:(öMí½â!A‚Ó­L¬´qñv±-òî-–úià¢A'!†³Š´¿r¸ÙV€P³…’äVOBDZX­Ï¨‡:àïLN·£y>ÉÚkï£GŸÏ¤!Ç!›~ãØ¢áösDåÓ¢g Öꯘ²®Z‹…%/(ö²ÞWÂû<òžÙ/‘&t@$=}%Ä™åŠnq¼$žÛ,wtình·S»x¦æûõqá-õ‘•&„½Œ©‰ýÖÉ%Nhûq®Ónì[–ÝÕÿ¨Aîž}Áb.¨q\×:å‘ÿÙn̯·›exvþ, œ=<ÔQ4¤x{äúKvÒë©ÍÀ¶Ô“¥õ Œ°ñPy8slbÜ} ©”&0Íà`¥Ìº%w¤Xâ?ÉÚ8àØÑˆ|>ÜÇ|–”…L´$ d=ÙĽlHÆjñÉsÒ°Y' ä?>«R±Çá]NM¹ž´&ü¿Ý̧ß$ZX1¥†rÆÃÃìÒ‚Âu$ÍyÒsi6{ÏQgŸ·œ×éR9‡Õ÷`Á¬EÁÖżTIÁ£ó4 Hkþë±QŠºö—onš¸Y±Q¥$Í ‘‚ÌQ0Ze)ÓNMTçÕ )wjQãdGgkþþÜáÔ…'I¸ºÀ|šRŒj¦zî^iÇ×`ƒûÜß.–™9ãR$¡+\ö »ížÒ¬9M64[»õ¨ï“]pÊ”O\pÒš¢ ÉÀu@AØðýHÎAîy1«Ë £pWá”Öò’chH’ÍfhÇl½^Û€§BøŒÙ~¥­9[¾æ"ŸáÝ›ÐA7¾É³>Vt»]„4iÝE¯ë¦Ö,Tbg5B&#mz Yàç›È¨<:‚Ì«êzŠBQª$÷ØJéqL¥åå|%ÞÊq?Ŭ™ï [2? Ôàè\å*v7µ0â–^«ºŠ»(L#òÛüpL8‚¦ŠØPš½ó¡TO8ŸÏÎK6°àýRð%ükÇ<¶¡€þ•Õ—ö‹1°‰FÍu%sáÄÍWý Æø1vŽË„…t×më7Ÿæº½v­v󴱊f@Œ¥`#žo÷îlžâÏ’¾Dü¦"bxµá¾{q¯ŒÂú…aM­T+; 2'vQ×fsjNTuGïúãµL¡„YîŒìæS3ËpR\ÇÁçuóŠËôo   8)sU¼Š>ã.êÅÆucúaµé2ú'ã ,v\¥yç{¨V4~RÅ5Ó,¹1ÙI8ë¿\ˆag@Aºéªç‘²miõ7u³™ÿ‰ð5n¾âz¥bý£B‹ÅjâÔ.Â6²Ô§Ö =W‘…¼° !xv“0lËE› FàBþÍ…zì盩ý.áSFDì=€JÆÔ#É5¼z7E4×¾“ää¤<;xéñg@î{¤ø[k@ª äµ¢L6S;pì—U£Ãy¡Fÿ!X!Œ»éçÿÐÐãTD¦'tØÝsŒø„e|—zÝ™gwœù> fżûЩŠöЕB›¶Ý-y3?¦âl“Ø7ÊËצwr>ÆiõÈ2´*Y3Öüù]'>^\zåwc´me?pÔH—º %pÔ=O+T áèæ ÍMѧO]M%!…Jð¿ƒ2tA™«î¦è‰¦ ¹1€Ö„I ðÍd5…ªmß9)l»;s¶ìwˆ¥¯„mä^^ß¾põAñ9Ä䯇ÕìâXÐì~ß´œ€(ë’x:VÛÞ¨¾>ÏKnõí,Äà.^œ p›ÓJ àRÓÀ-L«RÃÅ-¾^Z–œ8mÏ—9?EI·  ØÔÛ)`ùwÆu[¯»ÖËlÿ·Ž¿yÅ«<Ëyñ²<þÑ0’YâÞžïeˆû{÷Â2ãož²?9aÂÜüÖ/@¾%Åù¼‰eS0 í}.r)=¾ƒR:_D?œv£×wSüæ…pP!\uÇÖ©Wîn8¨¢³‰$2^÷qÿÊ?@â'@ˆ¦›Cør(Š€âüæ¼Ñÿ¹'m;$Ã.¦èM0=<·àñÅ^«<™'5²fƒÝf™_T!‘Š_½%÷–‚Á˜rÙŸPl}NÜ®ÛZY7t4ùâñ?eIê°õBþ:ieDÕ›ï] ºÊ}uWz¢5lÆ'©ª@ôØÉƒ®ÝïOi‘¶.ï ~Ý…^üöÇû1¢èø‚‡*`‹’=›¢hŒ÷ÎŒÊèqÊÅ?¹ô$˜ù]~•SÉ6–UYÛê¢|X» èâ …îÿtdŠôÍõ”®èØjøáO­ ÔÊYù(ãb}d7c^t«Ø^žë°¥}“ðÏgÄ-™%Å|êSO£ÐXÅÍR5›ZÉmg`£«¥¨~óªÌŸ0Ô_ü}$Úàâ*ÈVZø¢¿ÊeNŸhÈT«Ãn eËd(oí^ u¨Ûx @BB¿î3:¼Å:foAÏœñlq5¦ŸWáÚ½Ga¸—‹­P<3üƒ¢®$øÐè-â€Yà,yIÞù{Cƒà\v)t¾Ù*Œ¾;ûŸØ|Ê·Òsj³Kv¯ˆ<©CJ4Ôý$j׊Ì»ê!Úq¶=V鈧R‘üðË1žrñégcq×vs·MÜÿȘ• *˜”W1~GŠfC¡(?‚ä¨ Út?行ꃽhÝÑœÆ?ø™eA³ùD†ßõxù”˜Ž’›E©'ìæ–ìrd õCEßMÉ[üÉ·§%ÿ—Û½©~Ô¬ÒR™V…×H»F6® ÆÐ9àÃ}7[Ifè‚Õ³³´µJO2È'–%åSu.§–weÛeÃ)b.+ ©ßð½Áw¾¸Ssbì_'Âêo9Y,Aß H¿^Êõƒ½h0ƒT’ú4CÆ;…¼‰YUC`“¬U0éa#@‰zè\ÍaèZKõåbŸ:×cbÏýÄHÙ¹¶&›Ë3Æk:æú]o4Îï`êv$!hµÐ 3™Ë¿—…ÏT¼²L³yòÇvûÙ÷À{j1ž&OÓ%¡m‘¬Þ“ëiºÞʺýðoÒÛ™ázu7“(Y¶×‰Áb° ®§€tg+‰ÒœKîØK¶vù!D±Oã’!YO·é9œFôŽQÜ)£„Ÿêèø µr-b(õ¤–fâ­àˆóX:+P£]˜ KCPŒ»1ËVšŒ‘°ê&!> Nwð _k¡ƒØ¤ÕÏ·aãÿ%G²tê©DE£:ó¡~6l³ée¦w@‹Ë¡·Ö¢)xå¢ìŽ5Òn(Ýc­ýþÏ«BÛr·]ŒîŽhÄÂghl"˜›ÖIP˵fGT%PðÅ„¹Ôùþµ"½¹i¡EŸ¸t®H‚"üÓo»YU[slj “îÁ/ßÀ‰!2½Ø ·JëØõ I:›¢~ ±?ÝÇ‹¬d+ b2ØüqùvŸaGÄ5†ë“ŠåÁ‹lïA—sæß‰Ê‰dÛ«Ecëb%URÎGÎXL;kÖëèrs”¢Ý-¹ Ô®ý «"Skaë];ååõËUÄ¢‘è܉ª¯Qí·s&j¡Ã$³ ÓFô¿£Ù®1©M`r¨5˜B¼DÒG ko2OQµ˜Yèä™5 Žþj×o#ºÏw ÇËOKöbˆ&¹êÏN”›KÖlA*,s·™·È‘=ã•úÜŸÂÌ?kó³tÔLo;=ôÙ6%Qñ§Aáö蛕UˆgÝ`\ ³-K:5pÐ+T¾™î¢ÚJˆÏÂ_¶õõɨȆÊ=2Ò]@Å…rz±h5ÒÞߟòÏ`жŸÓ”ߺº#Ûó e@'ó\ÊAݬÍ1­áíÖâîPƒcÕ‚¦‹ÐóLyËÎÉ™"’Õéû ô%PÝÀWÛý•¡qœ/5T¡áDðääO5Û§«&UhK¯ºDø  0=|\ÆosåºÊ¶5jö¦¥÷æK¾5î¨*áU¨¡wUæ&ˆ«Z_\Ç-Ú%Ê ¿Û~G7Ö"¹vXÚBÙí¦âü{­ú–ˆ¶zn265ø&4 z«Ÿ¥O’Eö4nyi OáìMd@›†PY«¾Éâ«ÊØV˜o½u lû:!UýèÚ£ùºKyÙ… àg?:C b1ŸYë×äÆ%Ëh|þt\ŧÙÔŽãš'%Ê9øÇ5a’g­5g |wpò#YãSi"ÆYT‚¸å÷ž'‹ŒãYw<†ãú4­€ºð­mH)ý(4kç7ž¬–Z,CSm•kŸ‹ûk¬ºQ]4f é”EìY»Õ–ÿ^J­¡Ÿ%﹃^ya˜y´O\”( ÚENÝä[¢ÔÅ™nôç`¢Úç“i­„¾¬*{ªCÎË„½‹B³?0«#•D‡Ž,3MU;|P³åÝÐgT˜g1 øµÎ_ ÿ®­IõCϰ«7/a“)È÷žAIÞ‘ÚÒµu<¤®#M¡ý¹—‰Iâ[½¢ÐúßÕ—‡Ö†FbŒÖCV]nF½ XAVîÛí ­J5½µ_ÌwN¯a—‰ð=x„Y0ŒF>ûUAèz=ÿ;¢°/¹’jQÒ56¨×½ÖUkÈ»ÔI¶ËE…¼µªQ¾³õ°»í]^oË|º^Ø ‘‘ËðEYŠcƒ›j$)ýãÍh‰î£ Q¦=¥¶@y|¾CKöRð²=úüÇa;d 0ÁMñ./A{ñ,my4¾M‡è_"£j"YÖõJQd#ˆÔFªÑjƬ¿ãÄßàÑêÖ’{{FmÕŒ@-$Τm쯤 ñïRëgnú–Ù>yÛ¤±:¹Bâ«7ŠTË8]‘ìGRl6ªÊ@¿¯£SJið¸Âp¿üXâ<ýˆl®(ÕÕwBMŒˆbç;+1Ù‹p¹·À…ÄôkÀÎÆ‚NÇ·b@žzeˆ³ÑÞê…·}F¦Ø’Êe¿b—Ðõ™™›^ï"c–`ÉrÈ“Éíå.[øgì_ŶJˆNž‹J85PuçÀ/õ`«0~IÈI}h2g3éî NÆ&\á¦ï×é‡LÐ Ymæ|Á´:Se®`µ)±ÛbM]8§ý8øÔÔNù&¹Áèõh‹/ÿæXr‚QŒ.Ñ2€€øâí=Ô¿LF¢iXó)ð7ÉÏþÏˇPœÇy>äi•c`š¢Š3Ûæ}ÿJœ®‚Ç4¾«®Á:Bùwf2APY˜Ê®wÞ©o`¸‹î-¤n‰â¶^Öɦ·ª;zCsŠpvü骔¶(aÕœ+×§“jåÆþ1tŒj²ß™FpèE C®WûüþÉ«–s(Ñ÷ó²Ù˜BPP mX]à‰ý3‹óµ_A6Í$}êØ}®ü&Q…ÕäóU9È€ #jšHAÆë1,#o ‹6lËeב•‡›If}Kù¿hËnò×”†Ï-–®øß·n߃r} >±q.¯¼Àœ×F»L*3£äÏjBz°JuqèAxƒ{KËÁ#ËŸÃË–in6æØÄÅìÙǾƒ¯úðÚè2EýøVT†ô-(…ëcYî€^ÑÉ•¼•ÏãïF, ÓKŸ§Žv ‚nY¸U¡db½6>¢QaÃìG7T¡|ÊAƒ„1g4Ûcp<§…ß·Íß÷·­&g7r–1‘–8ÇQ³Nã·AŽ•í¾>)žPY(o‚¸Ä•V{;”ÖX.tF¦,oîøO\zs¨Š/²Åj4·h’¦öhý<2líÁ­~‰ v3¹‘8®3V4íOfFÔUiöÑ­çøPi†.õF™2å¢ 1û–yÈø³ôÐ_ô d½I#WÛP EMzÐ:M§ |ÞNFN‹ðÁÈ(j ›öm1]HÑëY'Ù|¢‰x%û¿k¢Î£§:R5ÂG»MÌ®c¾j^5§‚Ž9;Ç Ó„Šƒ\I+$C¿Ö+Š]D_6˯ž<"ÒaðÝ”vöÊÎPI6`Š×)›¯#AÙ¡…Dæ$_C`Ü²Æ 9è¿é!DÔºDüõÑ–„ èFD­›qd¬Ï‚ô„Ó1É@MQÏUÆÝeYk΂€1ùX4šÉgq£°É9çûtÚ\ÀG„ÊbÒ4°ÿw"“ïÙ[ó€)ã4=UònA64þõéÙáŽqVDUJ¿zbæhê,GR×€)5HA`Œðø‚ÐÏð„ ɦ-a4ù ?£„é2ã…GIôD…˜R¯3l·‹HXÖ§5s°*Hˆî&ç–ñ’Û©\>Vnïåerßò&“¥Í¡KÐÄå|Äš’×ÂðØœÄFÒGëû¾m”w¢0QšÊ.ÀÆxÒ™ÈÏš\#F¤žçÒÍs4@Ï"§M@?y¨òEy3 åN£oDŒ;U+­±™Ó¸|ÄØHT (zg0¼ºªßw¢éUDåƒV®™™‘‡Ä ; +\sus£Ëì”5íqØúV¦ÕvZà~'ûÃNZ^¸ßò¤}äMíË©èÊããÔa¦Ô÷¾5]‰&ƒò3¶Í;úA¸6=Eõù(R+(¼Ź­¢QÌí¨-=êH÷-‰‹RÄQ¨…<”Ša^¶Efà ~ØÉT6C¿Ñ.õãΊîg„­ØO¦¢aÿ)¢qCF…á'ðáAvý ,Í#÷éè’(…ß5ÂÂgÛê6;¿6N‰¬¼.€` ®êzç þ¯jh °Þî(lOs#2ù©ÅÕ ïwRâš2TaL¯Ù´œ˜›f®Ñ"×cæÔ,>h PSÛ«=fq—EKx€ /dibM(¨tì®\¡¹¬¸·³&Çm!µ5oùC]{Y…l á¾¹®HÞÀÓ#5¬³ýÖ%3”a(H´qg5Æ0¼ã¤­åª/lE¹ŠnÎe½ÙFÏDÐख'š1qnðå×o¹g¡ÏÕ¨äOc`NŸþX6†åý±<4ÝK5ˆ§b Ó£X¶aº±åØ ‰<ýzbèB•æÔ^YÓmW9¨C¿ôÞrV°uæ{ZŒ8Fó–âÕG^ŠàŽ:}]]QD†;žR Ø}ÜC"¿¤Û–f“:V&‰úª+0fç3³.KÐwfª gµŠ+(ß\î™E¦Ñ³2TÓFðŒd›d^4â¾ÎƒôÓW¼ø8Hy¡¿Ä_Qòh¿Úúò-4T’‹:‹Jú™_ýáhß쌹ÉUx£0õÐl²N³Ž,AÌö ž: á?¬¡¼Áý8X¼‹bÖ ÏŒÿ©A•¶C"ºÚë”/çé›á}Þáçf°ìI-_H9ßåÆëº7 ™ï¡ÜWšv¬Âéïƒ~5Eñ1d÷ˆÇW©Mù÷è4 |\'‹ ìðÛÁ&b¹ËÓæÍÁý¯åP  rêagN«á<½)1Bk&L“úÂÑèõ„d%È:¹@£ÙAR)è(æZâþR§;•‹Èµd¸³)l³+ƤÈañ‰«feôcšûªHÆW+!è.q€Å|§.è}ç"veè+G¶˜´dœ]±Ã©öh†=ÆÚë4ø"ÖÓáX°bPž^[K#øì:D.qƒÞˆÝ¦ÊÒÇka„ ÿR&“IÉÝIPGt,1 Èÿ·8Ñg:·"]ô¡aA{˜;¦ãÜåCÞ@6>Ô%“æ<¥%"™iÌäÚuú8Jõ°E~Áä >µ'´E3^‰ HôsÜ—n lÇõU Ï'•z›³‘V°j¹“+±#lŒûÜ wlÝ£c,d}r|ÆmœùvF9,P‹< _CáÐÌÞ?G›{\]dÌrÀó”bÊMÏ þ¶²•ÝzavÒ i­&ƒ†÷†àø[>F°=þjÇ- ÓMé•‚9ÖA`ƒ°ÐO7ôx\Þ­q^Ì@ËódîŽß7_©L ŽÖ@zË¡¬øKéç’¢Ž–*Ï.¢¬'ó/žMÝ–HT ªh§ªë3Hbk^¡ãÿšžïeÜ>i›†£Gö^)²-ꤑڷˆã7ryÈX%SÒœ È/Q@þ\ p±\ÙfÜv0þˆº„!B-•€%3÷‘“ßKÈdKe€¾ÿé…-}£#"ï¢4ñ‰œ†ÿGš!Ñ DJN ý¤RÂZÁ†Ü{3EflŽ‘¾+Ÿ„ÆÚ  õŠG”$wÜF«º¡Ùò“^Õ› œQàZ9–“عü”fËl£¥¼nOò½ªªOÃAÓ…&3rJzL&C÷c WÈÀ|ÃmyÝpçpp V¡ËJ¿fªFÛÝÂ9khÎ ðÁŒIŽ™§n~¿›ÎüaêUÎq1CåÆÙÄf¡<ᔬ5ô~JvhÐâ&“ÓrR6yæ ñT¾ 2b„$[" U_4øWß=™íŒ·«¹á öé¥lÐè4î@bÑ-ùö;Aˆ¿ºã@«d˜ƒ‚®loqjð»-2 }Ø{¡ñÚÂåu^0Äð݈ Õ°»^Ú{ÌFlÛŸ1pVðvf$™ :s¨¡'ùnulG£¸ìlÕ>ÄTÛ™ÄmÒÿ„ÒZñïV ûïÙîÕeî6.åU4¨Ì»3f—z|~ìI¼hx%@:C˜— ”3é„¢o =á>ß’@£üùvs{÷CÜŒ;@nðà@i6wì6üŽÀÍô€šðÑåYkT©äa Ælnæ™z®P¦^ÚRW§€5;@ƒÅ™ÂHµ›XcãÒê1lL2‡U%a%@é1ÓØØ<¾†ÃÂ!õX\þÆ[oyË– ¬hå)Ô™ÍÏö‘Í+¬2ÿMeòÁÚÞ¹ø,fXæØþÓd‹¨Â#…KÞÂ^£‘!b—óAøºã­©]?Ϫó[í?æ 8¡ß†3 !¦ tw)Ñܺæw|î¤-§–K –?!AŽpº"fšÒî(Øé†ðÊG~«3nέÝi ÇrRm5ÐRq*2ÒÀ–ø#/k:5¥Ê…SBú#NhöÈWÙúÐÜÓÈIÿi«üAb 7\SáÑû1ZÒú%åqâNõ~êÚu­Be¼1ŠŽGƒfYu“ [‰Ò‚ç; üØÊ«–XEÅIU"ªÌ{DÀ8…Ÿ•ÀìS]c¾dmÊSñ§E,›Œø)ˆ­ÛI.\Lêñ™šzAQÕÕ0$Ñø––ŠYE*¸Å|ê@“žÊ$Ÿ<û¶…qY™ë(\1™[$¼ØHµÝ"êZ›4“Ãî)#Ä›×—Ö–ÊEÿxË ÉÕ%½e¿Þ¥×¡± _#:å(6Û^e¹3œs¿qÓ)ÒÀ”ßøZMî¶8Lh«_»æB4sºó‰º~”ERËCÙ¨™;–Jg ùTisÀQzͦªa)­e.SÌâ€F‹©*=FSl»2Ða¨øi‘e?:H™pƒ£O¯³J¾ã?Y]°¨,Zõíd©)7]€6hÓ'šÈfmÏK³’‹f ` F®ë‘‚§ÀôÂmiiŠ;°´Ö´;¿Mòƒ-:˜“lÖÏòQ*SEh,:ì1ÑØÖÝŸ¹q«Êí;†W¿Séì€ñµÃ+¾¬z™“™”T¦Ÿ%ÀAáŠ(\§¯l1”að‰ÎˆÉÉÀ"%íïˆ '<ÅJIâóRÉs¥Æ«@MwNºËfõƒ¢Úèzû¿Yœ¼ Î@/OùËò‰ý ¡Ÿ½-¼2s#¿¸°;óÙ«›U šgˆÿ®Áuê=\|%s`6Ðu-Ìšp¤ˆòŸ¥`ˆr5ÙÓËä)üЃ˜¾µÕrI÷U;$vD—=X¸àÏövgéýRÜÐ2¯ù!,p®*€4‹%~É:‹ˆl¼÷¶IFŒíEìyÜ|f&“–?*E[_™Óx5鉎f'2jkîþT5T;î8Ôx›™tó]^H•÷²MÌ&ó3$/Ƴ÷ˆ:܈Þ@ls zZ¿“˜¦R=%abw0jù=„…ÐoCeA “S!¨úÂü½âv¼ ÍQ下”cø\)¥?°Úœ­Sú÷BL–„äx/Ú•¹5ÈÆ‘wÉ ®^î ž£«ô±fØÚ MÚÁ7ŒTv·£$~#æ$fF£/c=DçH9¨GÑÕ"šóÌÙ“[´n¡¡tF…=‰Î4Óòd)U ĈZ ÇO\+žuÍÏà6Î" æÒp3‡²ÕNÄ«ê{X¶–x}_×îÌÐ3üäµõH)ò¤¸¦ÌÓíÃ9熼Z·.Ò¿û_¦ãÖ‚ÿÖvladlÇòÎHiÛÒw"îÊ‘^Êâ´¹[8úñn–Ë•+n€Z°¬š'ÕA6ÜÛ‚ø\Ñ¡7-s¨f¡zÊñˆkB$Lq;«ë/¥ß¹Ðqà’£d‘f4´! -·-Õ"Ì ‰'³‘Özgw!3£ô%èÈÓ*ÞP©AZf]ñÆŠMhž8Anù°0¼ûæÖ)𛋽EÛˆ0]-LåVX"ü.aûF«îã£`Œþô!—6€,9´*l D7W–c¤fH½ùA+‹Ä¼9¿‰¾ÏüœÆËlP4’«Y¿Ž””¼×H€ÿ[3(rð‡¥­©Eò·X· øâÙf_ë¶ïÊU#²¼¾'´§Þº"ýŠÌÃ,m¬cjœüãhœr”ÄèQ’õ¢fR#5=SQ6²Cc‰Ç,Õ"ÉÞ ý!ÒÞr¯m]ÊYÛµÓ`µâ[öT ° ÖbðdmFRëGUë4Ž<¦Ü’U¢‘U‹I»ñáªzرÕâ{ÿ¸·y"RìèF<™®±‡"ýì⡳Ù+´Ì?ݪÙx ï½µß×XràùYÃw‚H¼0ºá¦74„ŠB+àõèÊJ­Âb»ócd“-Gýĺ£ÏƒK~‚k¾Òï4ÓObËGŠÃå30{Fg+r;ÝÈÚ•Š®:w§àŒù¬6V9dP7Ú/0æt%îìnXâ°œ#üÍQ1 â ¦§7^2gEÖ'œV”ôQ^üž^Eµäð6 µŒév'ð»ç±´²tÌ¿0UM+Ìw } œ í- $T)3#GÉ /a [°?FàzMB ”1¡3ȾÑ;†bAKŠ mÐn{«êÝE$iHñrÙ‚ŠlíL·ƒjH­dÙïwIÁ^÷°š`ú#ø•ߪÀZ [âÈiC qq+CÜ.ˆDi.!ÜK0Á8gàÜ•âƒSh§ò%ˆ'¬€!ôh&°5µ‘lˆ.“·Cï>P\"žjÍæ\Ä>©³\HQ„/ˆÌêû›6ª²f+:9(»åà"7 ^÷!y;Z—)ר\}µ“dB²BR÷ _¸ïP4>rŸ«Š(4$›äDëkü@eŽH"~§Ã°ù$¶/e”ÿÌÑüãjC<¢“qzªO"¾†ÿÖÁ¡ur䚃©ôk§aúY0§,$ÌÀKGŠö‰ó²8+oåÉùWÄ(ö*\Nr+çcÏfXcX5=ø‹% Á‰yñyã•Qùòº%®h¹3º/T1ÜÙŒàÖUδ†3!@”{Ðá¿n1済Ê[/M4§'c‰Ì@zI­îëÊ L‘“êYAÕŸÛ ÿu1½»ßfÿÿÔÛóä.·mƒŠÂ>ܨÐaÇæ§:ßkéσ«•0“é¾µÆ[;ŽTÝwé\f´YÉ(ÿŒMƒ“Uøp¥¹T^bˆŽmê™cfVÇÖ¥@\ýÝÎé¢+Äd¨“d!™Ôfk^v|&ß@)6^¾¶ý&óí¬è½É1Õ×úB!nwFY*ß–6Ú QÅ—ƒäÏ/çŠëå)’ÚÈÑ"þ….W²(=Øâh›$Y¿+ûA0ïÁSë{E?㬜«× ­<¢}d‡°Í±€b-¯ê`mâ#Õ:„Éï,f»?ºÊ){*^±« æùã´*ËèÇnÄ€ÒHiù/„Jâ}ý˜~'î!šKZ¨'EâÀ`à,û…Z‡Õ5LMþ@¾æº¬Åµ&‘6õéKáy2î \Ü>ËEÝ·[h’¯¶µ‚¹(´'fNEÃ;˜ˆ ô”úëVp·²Q­~o:ûG€’Ð’®¼6ˆ„ ²¾„§ùäL[ú>û·¾cëo‡<îL|rø³¤Ó=9 ßvá­;íµø›‹8Â2 †ö§{׬ú¦™jjï`*âMÌã‰-Î7°sÚ(»¨¤CZÔó—!wðY:}[µ:u´ßþÔ »èôèÐ}]^H1;âd»u!/×u¾Ø€k¥EÿÙLd›ˆ^g“a‚]¬iÆ5” üjáçZ‹,(`µÿî4N) Ò2r8æõ£`Ÿ^Lýk,Ïà8üކNn5™×´8Ô=viO#’/õVk*Ã3ÎxêÔý¹€æËz·g½V~zasg¸S|príX ñÙjý¤ÚK¼Pä3µ&Cð|,:«£ÀíU²,†)ÆZOæ*ñ’V:hÕî.|%&‚’ºkä·éÖfý•wtÃéªl‘ö}€€m+’ )BÍö ùÁMŒÄɼ¬Š\-ÙP”ÒÞèÛ[¼¯0eí ª0¹?Ýu®O¾zÜN|šèÆ~oÕ³Ý?ä ð£Í 0ˆÕ i6TÊÆt8ú@…v*Ñ bÉ¥=¦un>ð“‡öõÅ?ÊHˆŠönvK§Ï³ò5š@e»äˆbùê-¦ÿ ÔÒø½|qœÆ)‹G”-7 𒨺K¤zÖ·°Kb>‘ÐÎÌÇ«P/’-Fïø*Õå|ÖC<²%ˉN°q‘Üʲп} ~•ëõv; €ëiÄèNáq60Â’Ú’ó“9¤v>O­«ÿâ°ºHÁŽ Oó†bˆÓâgyqÞ ÔÒ&mGW&E–c@Mý³‹ôákc³2ŒùXÂí©ù½/‹#`j%6(Šb r¼‚ØÀ Žäݘ ×<' Çû²-¤£§Ï\ Çfq:ÓÀ¼>Él`Ã'|fºéCÙ£þsÿ¾í@Õ¬4€¹dÞ¬Ìè{9uŠÀ  _ß§auŽN¼qÍaY"ÄA™UzHýߪ=8Cù3éàJShkÀØ÷R=å‚=—þÂÆ4µMM¾dҶ¬r©sÔ ®ð^æåò4Îä?¸€Ïk'¢ê•XyÇJlÔ"¸jÀ€‡FSjÉWy#LEJ^hk‡Æ;ã¾uøšÙõÜ88÷÷êÇ“k¶£b…A~Ëm1ß&]ûÇbßï˜GùṦ€Ø]7{úR‚6F2纒þËÁa—ýNiÞ†tvB( ÎK_z>ª­Ð!ůf¢‘ #EÉÕ‘Ùb_9\VÑÈL›»S¬"à¿j†j®G@s6vš±A4ð°3òT®ÂìÆÄôYðŽ:ýˆvÂùΞ þ{aJJÛVû"Z[êÆð±'Qï@;s€Î æ ®;a}§ÆP‘S~ÞZ{ÕÌ3´Lg܈qPÁ Ì mÀ‘\T%û=˜y‹>EÛÁIn vÎK×ꚯc(s~Yw€æîüÇ·d¥ y³y~4º¦„ù#!VjÅi°*’í$æ¦ÐÏÞo³*à|Mî^Ï_Œ•-ozU ðü»1I7¢Èt+ý-â2)Î #¨–äüGæd+*Hi%FEnµ ²ÅdXÃc´ð9SzQÀTC»Éc sÓû9w”»ï—g—a¬GZhSà]U:q×î<-¿ê/u÷”T½x•ÑMB\LÜZž @û:êÎlM4 Í©($‹1G…â¦ç#× Z“EiN*Ò¿ašš]…u3³½YAfp]x”‘@ F²(è[öFŸ*Â¥õ8!®ªR6æX%q¿yÌKµèo†è ú¸÷3÷4~ Å.T+۔ʦp(väÃ5k´WªB$ Â¥‚jBÂs¨Ï©×߯ÜÉISD­XÛÒàÊÕ5wüåOÙa}ãeŸ…AÆpI­{Ê ­Gb8âB'C“¢ƒüóaÅù+¶ëXàË» <‘Ðòï$£x`Àê¨0“’ÿÄÐ.ż¼®¢[a›[4,a•‹Z³ZÚ%ëW gF`ïüâ²(Â}ìÃ¥°m“˜ÎÏ„¶£DŽa%DK#ªäÝüz‚Õ‹×òŸ:Û}t¹‘ý1[§‰oëŠë{:Òb®¯*<æ›)哊Jžšù$+Œ•ë?Ç"Ê.tÃ%>~¸ë:ù¥Z ý¹5—ÁJ×ÀX鑹MHã½S!Ò¥¾ß¬ÕK¤yè}ÈÆé_MwjX²æIBMŒ¦@ƒÚÁkiÌ<>8µ>÷ìNynæm$™udÐêo¦“tº¦”Ë@n&—Ò™1“j0¸/8…[å[nãå¾OWäýsk!iðÇOÔ‹6»5]U…’Žõ¹Ò&H‡†û°ó×e0Èz†Ì!¼ëÐ5ñ±þC~ªÖ²ø}çàAß§ÏûþÜ*ý–zãÚöÏ#²¬ªª_²1®8á¬Pª„YQ“B ýc¬ÎTo Ï÷P¹xXU҂雥P‘ù\‚ˈVñD\M×ù/Ý#˜e‰ï@&ÿÒÉ¿(ûÌQ8ÜòØ¢,ú”ðuÙkjšÄÄ9Ç'–Æ¿$Â>0”Ø’ ¹ŸftÊ.ÿ’ö˜ ãÎþYƒî³ËY®Eõ#õå¦ ¿ õ¤˜ÉôxaûTfÕPošé¥ó Ö/à­˜í{n-}Y‹{ÙÏûº ¤½†‰Ü„–”k”Z ¸•Ìk—2ì/^MCíàsêc×Gûíd›ù™ÀŠ•›­l¡Þ¹í›Šó**×ᇞèÏúÛÿû>˜cÜ>€¬ÃZ´œÊ2 qèSñ÷ƒÖîó]À9¸RÇÓ?¤!;¥x¸Ÿ 7 Mn˦UØÜ +óæIoþ®R†û`¬ë´ç$×àœ¥s­¦¡\g••œ!ŒÐP çÕ›UgùÛ+3)Ò&[×êÐJ±Ò®F—³‘æúš{Á©|½‚°š:Ë_µ‘ÞèPEŒ_sî™$›'‘¬¢?Šßpu‹ØMù¹çØá‚™Ñ2ÐQÆŸ®&Çkp-—÷T§¯ê·/}è´-4Et¯þh¶eÐ&µ¦ë$ÊyMù¦‡ìฺmA´i¹©A¢ÒîÓ8î& ø4L‘«J–®¾¤ÕnYú®o`刀üÆø[g¸ÕJ² ‘ž¨ÞTæ6ÆÛ¿µˆiy¸?òý£ØCDÛo½Š¼à9· +ÄŒÊ!”»80¹^idaʬ7üåûèX¤ÝÄj€’õ$½ÝWÎJgæþ©/'wÛK,½8 wØLá q›x:ïPë;ÇÌ:}s0>ý ?LsÈX—‡¨IŸ@ ‰yˆ ¿~p*ˆ¶˜(É¿\ÒÀ7¿ÑGB[‘ømø*Eæ4*QܺMùÉgú'd´ýe”"*Ê0ÚÓ?ìÌ âh8gÖÌéfË—¡<”v2ûßô_ØdíþR*fûUܲl'‡ê{~ªk/®‚<\iïýÁsèã–æ ¨ÆbÙ<±¦ ¬/c÷ À²Ž•)"1æ¬H ÝÔ°¬äN7~ gÄ®ê$˜ì,=MµÒº.VU ð&DNPëà =¸Š¿Žf5åý¿‘qvƒé"J=“RO’bà¼MI«¶¬×”®bÒ¬d‡ ^¦ƒ:[)ÉÃhk¿–?’„õ›?…qYtµèø‘O]Ý`eÁ§–eÑã.º[³Q?‡¯.VO¯ñUÊÄ£0¦®nqªíëý—˜?—ÍñÑ¥N€6ëGƒ³ÛÄc¹êíàÛ@“ÎUó†UÓ_´Kkåì°Î³£ÿÒfQ€wkï¸ëgÓ©¿ —›F@ð´J11ÿ–ò!¦ÎA¶ÓíõyTe‹—Â=.D°rL¶pÀn¯‚|îµÚë³—’Ç3ZzÝ!,ÃØ›OX¿òkDûT铚i„z)‡«®‡ð"ª>¦,ÙEÑY@½ëUÏ«ëä—Õ=éý%hÌ_½j S—åðz‚º1’™ù¦þ!Øà×¾/NH}œüÿ!Ĺg‹C¡ƒ±˜{ƒ4›ûîèiuJ(³Ó‘Áº|`FwЯ®yü2qéûGÛ©nEØTµ"Gm€ÉÖóý‚l^QÌàNýy4§Z“¤ÒzÕxÐŸ¹ÃKkŸÂ¤¼¶$íÜŽ˜XýˆH²'ÌJVˆ8鸮,5i‰8Q7XU¹SÜóFn£ ÔMŠëÍníÕ³À¢€\M°·f±5<[pÌv:ÇhÍÔ‚ª3Y‹¡æÌÍÐ7»`%”°‡º±Ùj)f¥ý­t¿ž×Pü‹qe2£3ß5öyBÄ7"°wܘ.¸ë ÇÈHhà¦ÕjTZFßé< ØÑ¦:É_pÃE°ê4xz„2Lc³ò:zÊÎCSÌ®”]Kè ™º a0ÍÝ8Љçx]Ä'|^¢Œ%ÏâneÙõ8ëºS» u‹àRSåußvI…ë#ç`‚‹RÐz£úN$½B ÑçîxÏiƒjÊ¿+§2ˆ;inØZ0­Îzý·æß÷¶ß•\@=œºÈ´£oªwD‡Ñû¡¯å4-rƒ3ÖêfÀ†];*îÓßX oÑwseÀªz=—¾É©}Áì L¼—1q6Ò§€” Ú„#‹V±S$…›š~ßWƒ^ao–²PÓÑý¬`b4±<Íú½•Uò?ÜylÏ«®aß´7 J(·Z`œ^ÏêÒQAHe㚹̤ºä*Ѧ͠Pliß œ¢ΡÃ<Ñ3CXúoI.ö\T+Q¶zŸÒ%Eß¹ðÇa‡Ø' nÞ†¼§ÿ¤Gðç \'j»£ÿ>nŒieÄKÅù+U÷×¼Sð‰Lëù[¨jº$¦Ö/ÓbÕã99œv€˜$Z·5°Ú!²•x (ûœJméal>Ðõº$|lpK½‘¹È¢^¾èô¿é±­r:S4Vä"=Ãñ W0¸Éyv15l™ÎÆ·ù“L¥Sµk!gv`îתµ‚ù “¯¿ŠÑûGE˜< N’=š¦F¤ZÔ~}T¦^«¡—dƒ ‹Ó…~² ÈiDõl‡ÖàÝÁ“aoÇ)§d²ì+])É"„¬Oªp¤Á·x|40ª3ñtø¤Ø©LøãnMá­Ü§Lb59 ûE8` ÌL[u¥gŽž¤Ä±w/õ”‰ñšn0¨ïúQf$­èQ?©–Oú?€9úIùaIöâ°·­LËe¾e‚È‹YBI w‘"®’žY;òb¹ Œn•ac0­`êÕ&ù7æ„%«­MBÄ’bžÂ•Õp¢€B„%30»ôèh-l?Ë‹;Ð"´Må”Úê^Í¿ÙX¼õçÚ»^ù$5[€Ç›>{^¤Ùêÿq6¶V=Éçí"¦k2ÂN;cdxe5oÖößHxfM™Ít¼ëÓÂéÅtðŸhÂè¤NsJŽNõz3iàhçu×â1Q ¤è›Q_ŸßZ6ã±}i>l\Ú›Ä=ö 5RÕ×iÍh”éËŸÁèZÔß–Û+¤Q]ò^1ÊD9Ÿ,z2ˆ(º¡ˆ»Ý‚fËŠšµQ6ó@_ö láÇÔ3í{yµî€³¯!6}€G›¸x$s±f­âÈ æñl.ÏÏ}IõÃñé¥ÄxQãHUíS­ïØJü,bÛÁä;)€m 4DDWÕ¼×ÖY­z;vò¶¡Y rD+ò‡¼°‚dÉZU… h‹’ý]üÙ¹Ê8¸‡¾Q†‹¶Ý­ø vU Ám”Âϰ!ôYFÀ`ÎäÁ÷:c¿?Ýâ„ âDŠÍŒ[Æ«®Q¯ŒJ€I¡ƒ4Ql6í @M¨8>z¼Qêsô'Êšº´ch‘cÇPW²¢ÖÚ ²;5×¶¥ÆÔà ç‚5²þYV›Ínî1 j)Œ™[y”ùƘ´Hú¢Q°à‡º[%¨Yßù˜«™$ëŬ×ûL¨dçþ1Ëë¡z§Ïx\šcú>Ü1ºiWQt£ Šýñ-ËípY§d½¹ïŽw™ÖOãûyúÔÈ‘Ö*ï¢p>‡GD£…Á¦K(ªúèF;·ò4H;þY5xµ«·²Ûwšl'¼†Ç¨ªÖÑå‹*„µNmõÑ Q–‡¨‹äŽ8Ø'ä6ðX Th ˆ¡„)a‰ª€Ü@”9[—*|#m¥'¦T€Ë”–jGá3ÿÒ†ŒÌ }p|ê5#ÜO¯°OòÉ´Xh EÜÎzt?3KÈ—*½ìÎ4ÔèD+k—³ì>]mÜL ä5ØË7&>f_J{ù~ÔŸ ô 7ùïÔèÈcB¸‡ðlRCqøk( +u( » ß•øm¼-6ù.QH?Ï_ŸPz…s[ „k< k¥ôWô´‰Ö—0JeþGa]§±gypû¶*‹Kh²êÏB—ÙÕÆJöúÇPd)ÛkZaÄÛx’qy«š90†J–jÕ,³«Œ-9#õš_ÒæRËkÊ¡¬¸wQ:Š„Íôƒ8‘R3“ Éˆì¢#+”­È?„o7ïC² 28í<€J=¶–ÄÃ/%”X/ü'-™CØî¨çaKᑳ(öPþ¦ITž±8a<^ðBÐxÁßjø<€/Tî{nó)”±XHã…O¡Húóv—8+ÙŠsâà™užÂëiÚŒ˜*2VŒ£aâq°Ÿ5½T;àoCiyVEËÊÀp·‘?”\¸ðDOW)Ï]M±M3Ù–´ŒK…ëeƒWÈbÖ7Äe 9£M:sÔÛ™9Ä‹.¾-ij=f9÷å[ ÔG??@…«¤˜×‰×ÕÊ–T¸^Éw‹*£ŸQAIJrYd±ELìµôužŽ_"µ@#âuÉྦ;vN¤þ·8ô‰U¦Ècˆ˜;»„ 'iáfÓX^Ä Xܺ%©ü%¬tK£ºëÛ"ÎU± aEy³EÖÒS£I($ °ÖÙ+8S}{;ZZ I§Yõ®|)Ö““Z+‰ì1­Í)¯¸jÔ¶îcò]"‘ÙiO[\ƒçb$¨\U£4eŽˆ×ª†å<ú%™x5`ú ™Ìeà^ªÄ£ÜÁ ˜&ËÞ˜ê‘w½‰nÚp²P0of˜W¬#0÷S|ªå݉@)ª¿ÓYZÇ0Zì‚\ö!îÜ…§AÕ†=‰€"©¨ºåÿ:rWgǵBòûãs ¶ã¿$¸,!€WKÚÉ Bè T=S¯Éx­é\3t¾N‘¥,0)*‘ÀÄ bó7“n¢zÓ¥3®rVsÂ]êuãLÀî1šÈѤ«<€ºZµáó1ÆÌš°úJæ”+[—VtÐ'™`ÕØñ: &§X#JvJï»êYüõ†0§}½å%¼5Òä´ “ðþ¨wcVŽdO¸äЀö,ÿ†y„þ|6|0˜Mèšûò/Ïþ“÷1k÷8D«!ÉŽ¢&nO€ V­ ús¼ÿ9@ýÝ.©Ú¸2øñ¹©×]Ûò˜âQºR —†¶™9ìØÿ¬)h]Àüw)wA»±hêV®ÑbncC'úÁæH ©g [ @¢šbׄx2î(þã&þ1µµ ‘/T*ÿÈVñ8´\œSD½cý»ÍŸ¤µdùÕ1¸N‚DZ®;Û!nˆ»À<Íy›ßzã¹òâ>„D¹™!€H=ÖSàP¥™5s¦´yÈo¤"ÝfK|Ž —nù>yW"J²èÃØ¥ê¥hÈwTýÁ\Òe£´Ñ”#t¤—ˆ"X¤ ßl·áÉ:l¬Ã…è î3ÖsO.#kZZÈýý6G«$1 :cót7½Š_7S’jq#‘Y7wÊVæ3jZÅÏ^ Z§lÒF¡I|Œnì-ôø¡éƒï“)d%K?Â/ކ·ÔÅÉJhœ’ó„Á§KåEëU^*ç:»ö æp²Ú·MªXñ[³Iˆ+â•—µ C"x²äüW; Î1þ§ÒÐ^BPµ‚Ô·2,K¹©ÝÆÁ¾Æ”§÷Î5…è ÍäÌø5اàZl‹÷=DJ„0BYãŸz`WX))¥ƒáƒ²ý-±j˜3ј)Øâ§£®Á–»³ÃÅý%àÎæÈ‹)šwL0¬õ%Y½£b­\gpGGåæëGãè!*æÃÍ·%ö&üS,zE(IùºÒ²ÞÕBáO€Aè©y”çmCÀ8ñ\{ âGñ(U¯h/)x¿gY”˜üõÃñÀù– 3q­Ãå&ZçbÂ)ÒˆlwCG o~ð‡³+÷¢oWÑmàr³ñÔÂÆÿ#€¨¢³´kå¶d)°:µÙÁ«É÷ ûç=ΆÃ"¿÷;0#»N“äÚ›²<ðQˆû‹úæ±¾-±=åF-”øâ«Ý÷²´ Ã{(¥:Ñ8ÉÙ²:Ø3Ên˜@Í‘ˆL'#+¡[ÛhU1zÒ@TmEÏù!;ŒÌæ†Ì 3ðÇûc“…A# …aÔF ÿ=r˜U–"äžž©†ìb¿îiÈîíÓR®3j”oXº¯¿[£,µ$Æ/lVy± ײ`ˆk3¢Ñm[¾­\¨°eS»§}€ +ß¿æºÃ hIvÔì4;^ŸäÑáž•}°Í¤¢öýKyBzÇ9^؇˜9­Á–ù ç I‚ÛÛ_éîç-UÔïmS´Éˆ©ŒÝ¾UF*¨òÛnU³ŸYb9# zì_~4¬ õê1««»PPïßôë« óÀ4Tyu`N¶¶®[ãì]6,ñ$î·4&ÊL&Îl’f`/ £•eôÄV<…^!sfË“9…?ü¼Ïœ ìEúPÔ3­oˆQ†ï¸¿-@?q0‚ iÌu©Û5ÿlp…â Eb€mÈ”+`ÌÕà2ã\'íÏ„ó « wôf’oUmú›Ð Bxz Ér‡áopÐÕøÒ*ÓvòeaMÄâµâæÜ y_%åaú’Özîéîä¢á3\lE9îmÌ›iW1 L‰Ü䮥8£xZ¼&¨8jÓë4–ÑêÏrÿSÔÓHíÚÝÇ£­T¨Vù7Œܺ.VL K ï ¼Ì[°P,ì6[ŽÇKü”Å#B5Ü,~¾¥‰|‘Ï h Ÿ]ó ³µ*ȉN‡—Í f’­2gÝ€˜ÎË,<€Ì½Ò·”ΘjN]ªÙ–L°Øžsíßÿ‹£ity;w,‚*è[2a8Fc×)Dƒ.ÄqÒáºÖ¸‹qrA0›;}šÛÂ_b+\v¼ÄüÓŽÉ'XÏ'b ÷é}n¨iÉcï|ÌÆ™Þ%Éáá4õlåÇ;ßþŽ™ïþÊ:€aB™‡Ášþ<œA …ÑùàÅ4<“D™é>ÀÇ‚ŒéX'(!ñ!Ñ?oç(smùAP˜QLØ\µmoË&•‡’-“Ä5j@Øñ—Ò)xöT+âø4šñ)›W#ýÕâBý€ó7û pþÝó‹@Tù•9·üAidM»2„@ñO¾ £ÃÑŠª°'W¨åySR2[€ˆ¿ Öò^ì#w=S¢¹È†SÄ‘¼a.@ƒC§wiÿýÞD—õü's ¤Y¨¥›̼îðD¡á_}ó›cãâÈê<›ái¨~|¹mT´j¤ËY*_)ë7#0Ì/†m•àÝÚÃïqI‚í[É ²û\„—ÞÖr ÿ\޹bð¼#ÝL®¼þŠŒ Êù¡£˜RÍ%ûÑ ‚S»¥ÝÆ]æég˜Íw IêÙæ+1O„õ|è1J¸AË-ƒ=)¡àGâTˆT…†CpzpL2& W}[;ËÏ:¼`Áép6â|å= Ûî.¸YÛ4¼ ôA‰‰¸ðèý1¹MçÿYQÙ¡šÅC§!xý}¥í¶EVqwx p€e{ü ÙW`‚ÀÁ&Ä™×z­‘›,³2ç‹z¿E!£¾1”6EŽå¿â|/²_±uvÒF¡}\Æ„’­íš@ðŒ"‰Ô:÷ˆ:ß>”I˜]·£3°€MO긦‘XÞYdó><[g=–Á¥òU ö2ù5°g@IÈßÕMWèe‚㦶ô:ˆ{;Ó£ël¯aYéÞñm9üFSž8ögI( Ó5„©i²¢u "šÄd3ï– ä²ZwFù Ç~»8wÞ6.Îm4ÔxSËh›…-É3Ù9ÔêXØ¡+ÈáÜ\éš—Qs½¶\5§ÅVP6ŠØé aŽ“8ÕbS{ÂeÖ¯Rš8÷Š8â™ÎID®КÐÉã…ƒ±DvèÔ° ž¹ãcñA»híΦžŽ§ÑL˜!Þò ‚¡ÂDÕ-L Õ¹ÅêÜ2â|Ïpƒó5hå8—ôš]Q±þÏŽJŃB | ¼®¶ŒÎÃÊÕÊ®ƒ} 3¹{ÅÇQ0=|Y :’¦Gà¬ä{Š.p‘—!×Zþ !mˆƒÆsTi‘FTëš¿Vâ裵e¯j…Áæ€A¥êRX—º¦úC:[ªÇ=Å‹asŽk_߃$bC³Þœ[Njj>ñY¤o+È­[ù~,WÁl6†ÂÊóqV¡æUƒ´üßùu5äùNSk†fO…¤“t€&” ©ã8Êc)ɧ‰·'¼m,'}{•jg g5Ç‹CCÈMi©2v8™î Þ£}Aœo†VI92ªÇ„±IæbÏÀ}M¼Œ^þ&ö/ô;¤l,J¾^ïω7:÷r•¹li*홌¼ƒ%¦<÷çÇ pN!—PÖûÝÞ'ìȲb"#D$áÅáü>üµ•9k%$U|[ÛžGj»á'‚VukéÍKp2[g½GGøZ{™ðUnö˜KøÙ½Òm‹9ü¶¨/Õpy°Ÿ+æ[XöîhxnE@¾¹&Ã¥³@t8#-ý5 Œ’î4k ­7+­@NQRhˆ‘σ­¤UÌÀ”ªôù(I&Þ-ƉûÊÖz“#ߺ³d·'Ì4ˆé\hDó7ä7ÛçÝîp¼÷|޽ -“¸Péj¼ŽâM7Ÿ¤5‚y´MÓ¥û8²ñ=¯•\o'{Ö,²/àöª3S8Žü¢@¦ž‰î·ÿ¹°Æ* ô¬9W8@Jú¨×ˆ±à,zaÿìn4U\ÜÄmýxôJ P õ@Î!ÿD«®B<çs‘ ÊQNÆâÞ·HŒ ¶™¼à´Æ ~ úÞ\:ÛÆ!|¡ªg°>@ƒÕ»˜‘÷+4ØÉà¶”yù~">«ðNÅÍç~uŠç4ààñtáâš(Œ³·¸-µmÈ5Š’ÙP¢Ñ2;‡ hóÚzKÄbµž²ˆå´ "ü=K¨»¢pšóXKf¸\ºçY’°,ï¡b I|Œ•õ÷‘…² ÃàiBYû…W.öýh©œ72nj"šÜúµ*pFÓG<¶yw™1b[¯¹O¥u…2ÆX³Ü¶X°”Ý£FšV?LjîéIŬ/Ò= 49L½0Ò¢–˜÷Ú$<Å2]ÞŠ»qŸ”%j·Ÿë¨Zöœ5Þ" ¬o–hŠ01‰Kÿa @úÿå¦J]D¤aÊw¦´Ô›ãõ£Ù?aüMcÖ²æÿºÓÝ‘ßÔ…¿fõ/ï»c®ôÀYi@¸¬ÁÙî¤ÒY¢\$õ·DWoýd‹\_ Âb¿-«×´,h[Á-—oéÙùåéÕ¹ˆ^ê¿0¬~*4ÏyÙOã&ˆ}䛲rüJ 6 mÿ%tiIþ%×+‘¸£cíYþÚ6«£ÛN2•WÓ׎çÞ¬Wu­Ò.¥}Ô;àŽ”QA>w&xUø Êj¥²µ|-ß♬º {tSOÒ $ysú„Än¨ŸeëG\DÁ<ì«•N;ß•*{™0š&Ç‹^i‹ºÏófÕÿõ±*ºéâ)2~Ï––MóÉó‘±÷Ä#ò…9¾E‹û¯Ó~Ø(Ò;φ6% Œ¯‡éÐÞßMväœPÈ™S¢ SÕ¦§ÉÏû”,úþûðý¥„f}\§8"5pÒ²t.›ì*Ù tòßoTIt°(ðëáÊÿ ÛqËwÎऔêá§éŒ†Ò(8eKq-Ü7•iy}DϦCR¯9C¶>xäŒg† y¬ð¦?…òŽŠ$nÔGµD2LSú”š±·NP¿¬dãyÖv6inZÓüýyïžBR2uÒ“„!½s v«ô`]îX®R£€O‡Ð„»ƒïYÛuí«ƒ"3^÷¶à‡Ì Àå\l,D1PÿÕ×U“¸\šòÉ3犋6HP—9=ˆf7£¸VIº;«~TUYÄÞvú€˜( nËä³ÒÝK{ç¤_@9D„ýŸ–Òî‚ ·B•~ÏäÁ÷Ö€Ë~LþIU± ê¶+ò½Íý˜«xÀ_‡ç RB$ö-¸•ÒL@L—‹g<²)ÃÕ|Ì¡PZ9´Éx.«Mw¦Rþ¿éwvSèEº|—z¬w¿çDÀ¾^Ðåß,H¸üRž5³5PÙ…,M#Ôdجð %Åwz° <„›µyÃKŒ_5Æ&•ó{¢"ù#þ ® …\x¹]êp?Ýc‡´6_8‰ÄÓ¸Œ ƒÅ+æ¼—çá‚è˾‘kêDÀ`92—Uº Â`šæ·ÙµÈPÔlî.Ù9Ó0rúö=Áª/ÅFönD ?OºCRæþ/ÍoÊ©4Oz}±û°f§q+½ò}•B³<}æ»*DÇuz¨ò¹ÍeÚp•ûçãú£;SB’aEb)Žm@ÿ^ l/íi]ÕW©Þ¡#ËB,¿CÔ‰x.ä•X¢WsjJ&€óüî€è]ý'À3 ÃWLÛ~L)­)eÝ“wßàGÝü ³%Äüq*˜e«Ž ð'ÅǼ¼ŸG’Ƚ,›¢Þ²‰ õ :è‘ÂÛy¯ÎdífR8\V¿NúE9ûõV´°’Ã-5†– ¹€d”¹º^þ¸‹SúzÉ… ÓÌf»••¸¹{ÑT?œŠ"L £‰GKh¸œWÿS£3ŸûQžtb],<ÇAeË ŠRe ëp§ºtaÀœ„ »'°^0¬4TÞLZb˼ ¹HùV!ÍÔ»6@-S^xÑ[Ï u VÿéyZO½)6C r·q±\'—؆i„åû ç'A뻑©6;nìÌÉO€’Tí ýNCMjk¤× žµªÚžððº'Xàë@ôqyǵ¹)”šfüê¾ÄÔ@H“Ô"Nò€ÃÓõLd;'_z3ä¯~Lžf¦{©êÜ#ZÆCË…÷÷€‹úíÒ˜³’Lâ"ð¨nÿÉ~H˜_ÌÌ LóÞÄV.³¬Œ ˆ NØÑivÞþC(úÿD·"̨\<R|ÔÄíY¤:£nÉA·Lú’ž0^qÖy‘•iìú#î •–Ü«<@6|Ã^H7´ý:‘N, WæÙ;}ª¶è$€fÑÙ;„qDœf¨MןRA=ów·tnÙÙaâ•¿!÷ù‹;v\(!¢ê+«ã ¶‡#â-7à› ki:‰œ'k3q{¸È—Ý«šš+?šÀdùRÍÉíuù…AœgØ­ŠÊ’R»¬p…Ÿ”IRÝè7Á®;©2v¨/0À+á5=ì°·íÞØܬÛƒ01ÎÖRâž0 FMÍ'– 6 úaª÷ÝyÉỸVËð9N~˧P¯GD¡šêWéJ%Ï­Íh¤<¸ƒ­Ähºl”æ{A½ôÄ ´©´”R¯°o³¢»e§š«8~${ ] ¨i:ï:.ÆM ƒõ{†bÿyˉ¬»­Þ¾gÚ‚ì4 <‹h¬ME¯ø*ª¼ÝüD,ò ÜGsçö|wÝ‚·Ñœšâ'5Bxä…ÔyÇ+²QÇõC9¶«’÷º ûã7”%%s”º^®éÃq1yc"û)3cÊÂ$†<ŒÉ R›ªŸMÇ]éÔ<â¡Á|7Ej|©t?%&Ysrgòï§¢ç‡ÌÐ {—kŸÉŒ=¿Ët$÷®ƒŸ%9 {æ85'¯@µè) 5~ m6«-ª·¢D4W’J ˆ*ü½ ·“Nî|•(†.—˜7 a¯zV´¹e£V Î­L ¼‘Õյ焺þtZå€Î)®ÏîHßí»sOÒa°Ç‘¶Þ¹Ç‘÷­[I‡³†û#$Ž%§^åûû¯é$ÇÙ$Weñ¡.öÿ!@K%§üÙº}wgÞÒFIœiòaà@åX]ë6fç+̆ʶc)’”ºyÕ*7#ŸB\.Í–‰Õ3c¨(ÓjØ:óœø86ìᚦ2 rtÍ_á¸÷¸–©OÌý>çòª'Oi. AÛ/õAšLjÔ{,M œi˜Îg8ŠUÀߊD­ðýkÊæ…;JSÞ{Ý ôËÁ¶I‹]Óá_õd½Eî«Åæa­ Ÿu±Œ¾'¯€±Ha²ŒË«0ZXp²,—L5ófáž~ƒã®G,E±^?Éž*e ~ô0{‚I%U”‡0 ¼ÅþËß ˜Ø×Âá²Ô-›SÞã÷˜¿wBª´4ùÜÃñ³Mà eTÊ#.`~M¥{õP^Šõô¨9OàþVÛÆÇ}Á*"?•p  ™óާ?>hlHë3Œ³Xx…rQ¹´X¨Æ¬Xî¤é³/.e_k:P6>õÙZ­HÃá37³«ùA¶Ð ˜¿ª0c#ê”/Âãã\;-¸Òºb×$¶ÏSÇÇZKÇþ'ì0siýžrÙ£´¯Ë‰>߃²âÊ °0TGÜùŠ+I’9Ê ÞŠgÛXìÑTv>Ì¥ñF„ó5å®›W“.Jul¯Ö$¹¾Z „b¶°ðšï“îÞX>1Šô¹¯ #-ôvÑ”_/ªï4+÷à'Uš¥‡ßö–Ϊ£*çZ[ßIú΂°¶ý ¬³“5'»‡sñ:t.ÖL”›Â9§`TèÍôq¬3*‹‘éØÏ¤x˜9›Z6Ñõ¡¢/ –OvëÕÜmÚ£&=+\¹CÆ•·ÝïBPE3º}òô[…BÑå‡÷ÄdmTíÛ/üùWñœÞª-§„×ñ yÓF°Èð»µÀzª5{ «—ŨnÊe[ªÕÊ/~ 8ô/Û?[m×%çmàÌŽô¾’óó6ó¹B¶ÇB}ržiß»»³Õ ¿E'3­gä¯b_W£*qóÇåðüß Þ¢6%öÍ+ Ï?ú•Ç íŒç>Ÿ¦‘(äMë”Ål8€?3›á>ê©-íië@Ò“ cîàãÝ;ÖövéŒC,ÄYmìä´Š`î÷ÕºùÝÌE4d…–V¶¦ cæy¦=ÊÆ¥@å ¾Í¿`g¨µq’ò—ä·5UGà]?ÑSñ£at©­Ì¶CüP4ï ïoC2® ¡”‚ Rò‡“ËoXÃù[9Z—%Ú¾lÃç0ç‰aÂáI]·Ÿ„³t ñµ_‘ž¢A+R;X»!c¬½°ýmžo×XIÇçåcB¶Ÿ`O)Hø³æØ_#õb‚‡4\ Æ-Á`E\—˜ðS5ß—ß%f¸aòO,­¹ï1èœxíeÛú@wœ~U{Mø=³ËX‡’äFRb¤ÊOŽò 23&§û%°xŸÊ~.›ÜÝ‚œÔ•#ÃÅàê¡NyF`Þ§étMÑ&í‘m“þ£‚–ø8´ o¦J¦ _¯˜!¬UÞR< 7Á¨L¨9J4˜Èn(@Ó¢dKM™…oÀ¤ÿŒ)º_Äk¥Q¾nE»ÁR"÷lôi½ä fÔÁ5¦Y3‘ëêlþwà°ÖíËõ‘ßH7ˆa KŸpÜxã3è©lr€+D˜BÛp†½÷›¹ÔÁ@¥è¥y#ÁT†—5ÜF·S|é<¦ç’6qý,7Èú?|MÎ$½Ð”ˆâkaÕÄgF^N”ýÑËr2=ÞuÊ*Ö¾ƒG¨í«Ù(‡I2•m:ày:ù³im’/‡œ~‡òzlç¶J:/‰tBB ¸ûÕ`:? ‘=Ò¢V겄?ÍQ÷¯r(ìO…ÈJÈvoKL.ô™à_§8Öñ\\—˜VŠö.£pümꕌ.kŸé3¾[E.Ug~@N ïí3 R¼U6þ\ï‘Iž‰XUëŸõQŠC™¿9àgÒD­W ™úå·ÀMšË§’³kÔØÏ ¶…"IÑÍÀ;ÆùíFÊiƒFØÓ«ñøsÑåÑû*ügßvü¬ ë7Tæÿ2}B{J,ñÄ^g>ñ7Dz¢€#c!áËWïna|]µTÊ2f%0zÃO历ÓÅŠðY× v»E…Õ˜Ëa`fÿÌ»YêÜÃo;n³©bÀXuߨš›Xá{PÝQ­Tìºw°¤­„’ê¢¼Š­±–h4ªæé¢xy-‘t!ûQ›îŠ[œ“žì«k¾åÌéÊî²Ì=•ÍNFÆ&s $e4cô›"*?i›B4¿€² ˜¡d9Ò1ˤ–±r÷—îíCîËM¥Aõtl€~U}¬¸H˜•ó÷>Ž1ð8k²«øÔr6ÔÈà¢?AÃÀ OÌõsI./ŠÖûˆÔ‚ Žäô€x™Ë b¸“Îé èÅ…×úTš:¥d¿\Þå;Ï5Aä©=6ó´`ÑM(ô»¬i6ÝLÌ÷™ùlÌËØ8rµ Ê¥Œ¡Ö{ÁÃÿÃ!ë(p['"èðf$›êÐûçn?;mV»õýxÊž÷ te_QjInY{…ËÐn}AîEOŠŸ°-SÛ ÌÄO›[ŸOœ·G–s{·‚µïÒCƒ½dt«ÙÆ ¼8 >­Qã’_kõHxtå0Ã.l£Å‘Ù5³{4œ%[’úM÷Ç6$™—Yciª‚b]‡„^ ~Vº§7÷PÃmÂU´#:žƒÈ0£¤0~Õã"$š8ߢìÀfi…½»š 4=¥!«¾µ„›s½©ZÍå  ßÞs„ןݯøž‘>H§PSUo—³‚ÄnÁǦ:4H¡]®õgñÃkšâèZR`wM¶)¬´W¿[d=Q‰xò±ßÿ¡Q?0ÿ´§Ù”T¼ÛÖ¦F…võbnRÑW€Š/ÙÆö·aÅ¡Jéwzl1%b§”ù@§µh¹Í(Øxö½Èc£Z('4È”›ˆ™ÿ¤*y‚á(é…Èv68œÕîÐrWŸ¢î&~hæ ºÁ[W9ÎìÀx…K£Ð1"j aS©´¸Q{ý¯~ß׬°7ú¡gÃUoUºjÅ’©eœFM}¥8]ŠÕ…„¾z6v(± e„‡¦‡}ÍÃ×Èp¾·†½ úK’Ó(ú®´±øÒšd‹ïÍEÒó%ü–Ù¥°fÇc]U¶?Êu%®NQ=Ù¦ R“cžBÒpvŒÈƒ ’¢¯£š';ÑÇRIÛº5eåµýÎþD!ÿãuKCYŒP#6ØfET¾- ¦}è<{-¿Km™ÉK°xMWGŸê(¡uYÚ6ÖBóÞI–rüÿ ¨éÇŒÿô™†?UF;ûÂÂZ`˸<ƒöS–õ]m«;ýYv‡V®•KRµ'dÕÖ„†zŒ9 ”K9ª4¨ Ï*³+Š»w “1oÿ?4¨JÓ|¶wx)»…²ä®c¯ÇæÚÖJpª¥› (#¨Ùa0¼3­Ô„Íù£­­L™ê2gàŽì–‘æJrÀx+;yÁ\ÎÖ¼$Kõ‡ApnvtíÀ¬46Ha+.ô’æQi³ÃoÇ®Å#dÌu*ÿy yÎ|AÆ;‚)..-̈6ªhÞån™Aèôa™Å7b&$âÜ©7s a)¯ T_·d¶1Q›Aâ“¥IÊãm|dq'q€qäæ29w%>ÑPݦz®òETLµ‰›,žiÄòôÚ17Óážž@¦6¢Oó9ÀR5XSÅ1žÑ‡B*Ùœ?q‚5pµûɵ#÷8òÓ*ø–(¨ñVCWOs´aÿ‰áWX}ßù(£Pâ ¯ì§{ÉÐ$y—Žó™¦"ß±líZe Šp®B-•›ùù™¼¼dµŽ³æ™ŸÊãóPæÜFzö-ðè‹X€ºíáÑáÛ?™c"ëß3SŠ—ëÛ†Úä §[˜7¨¿ 䪄ÙQ›`#ŠÙjEKCjˆ¸°¯*D-7>yŸ‡ÆîÙÕ\Ô½4á¨ÇZ‰¢bíŽÆ‡ŸJ¦îÙ€?p!Ì7 q°ZMpÛ‡»’ÅçùÿVBnËI>q·ÐæíÖ:SLWMt02¿ªƒ¢ eÍZYg)Ìb ¼T9~‚fi’õ,® ¥Y^k~âxæ´Ç$Ÿ«¼O"dð×Ëj†+þ¿ ¬ZWçêÆU ¾…p>.?á׸¯ÇøI=¥N?Y ¬à½o,pÎÀrØ”¢#}Èz4¾Ýq¹ä™0ÌŒœ¢KÃý¯Xt‹Î÷SwgSíMŽ.-,ß7ed˜<Ñgôßy?,Méâóøä÷s`Ø;åYdµlÈ'ü‘a\ù>·èÐŒi®dž~zA)@ζù¢©óGjãï¿Ö2j½ËÑQ 킃ÏMR.y®A>ºaêì.üF [ÛM ±©Vð*CAK>îÔYSÅ¥RµÐÆ,HøPßN4ŽçS'/66=ôùs)S»Oî­C+KÒE Ò$fŠ =ôvôùc½A †™YTÞèï]bûBØn @—éð%²gvÔʰü¥¹B˜ …áÞ‡5GnÕåÞ<²3±!-5”Ýh*nº¼XwÚøÉŽ™º¼üòœNü^ç3…ªAn7§H]z§ÕbëÒÓ†ÚIñø-Æ0EG¼¢Ñ.«ˆ;cYÉų/i¤‹Þ7C +5ÈòfþÒË'ô@» yC¯JûÐ0µè{Ÿ6‰¶Í44,¡ž+§¬Ò™I5Oï8´·€¤×oêóàÍÙbé;iˆ fºøfO8“L[Ç)=hÛ{Æ"ŠônÙÅF溪ÿ5(´ÊõœæÃ}? n®Z۪ß§•#5Í»ëÏõÙ×R‰[ç¤ä$¹ãñ<> ÄÆ5{Ü^îgГÐ1¨)y^c·83 P&ÂEE¼á´¤ó+ªªªÁoŽ4 l7AÓÌ7, PG„CœàiŸìi‚ÆÇµØån'Á‹ÞÿFjšcFÖx|(½òª¾eàØ?qûJÒí}bKܧ˓w¥û2¦ß*tƒôb»Ãt|óÏ<•çÒ2Zö»Èy#NŒ~@üIé"”fê —½¾9§ð…Zü‡ål·"¬­—‘™™[À§;`²1†è#³@UôÕb0ذŠÂ…@Ïhb*’Îy俍Ú4¾e' j/ÌŠŠ“sÀ$¦rùÏ>íÍ’z׎E_õ06ÿc¤b,“u§!Íþ¦u^'ìò0ÿÖB!›°·°­„Xêw&«†Éö¦¨ec¾ØÝ_~žÛ~D²‰kÝ çªé`fŒzAxneå¸Mxì†ÌhÞ.®‘ÿÙJÀ¢ŠNiTçäG=.Úñ|fþä)¸³Êáç`°{D9ªÂç¸sÚŸ°mšP6““áÄóìÏZz'K—CõHÕR›þ/ˆÈ~µ¿!fa†FŸLJŒfÛ®ÕÑË÷ Eod”©’Rˆü½'WÏ#.Ÿéë]6™Î7™T(‘6äñæ«-‡Ñz¡ä&µ ¤¸FÆ =¤óàÌÚyŠC~… ¶²¶Çžž ÔÙÃÃÀVõ¾ÌKfNÞ3µáBYšU @¸ Ù ªÙ°iB{»¨Ã²í±ß}0Pk¨š_Š{þo/³d è{}-xjMüÃòüuê'ðe+¬«ÔIê'vëñ®hä¶)M* kåδÄýûĨZÓúï•ÿ7 ÆIªªÕçç{§å+0Už%Óàâm%Ðáùù9é&BúÇ9:Fô[Ò£Ê̓¥fšfÁøM ¹ÿmQ¿1õñE?8çR¸…n—X’ÈñÔÛ°"Ü‘GN» öê6Å£F•ËoœŽÈ/VéÚßÊnJ#¿ 9 ¨K—?—¨–&I¨ çž—UZ7ÄÂÝ µ]w9ø%²_á{"lj'Å@´iiyÒº1WPÊñoäÛÇØuÊûî€2ü³à²rÕh|‘ç÷¦ôð°ƒív0FàZ=' ¦Èl \Ë]üCý/XÇp6ªö×r•*‰*|wÇOoÞÕmN“¿jdìoþ¢¥{•ñCúJÛD\“o¨…¢®^l]© ³mXÊË™;ALÖdõY>ã :„° › &]#Á„Ýý®3ªÃ£©ÅѪÙâÆ.rc¯ŸÕÂ¥jÒÀ‘\©‰ñ¹è“W6ÈgmA¨…€O£>hÐFa–x0µØ…I!«êªÙä¶”,žMÖK ó¶ŽÃ!™Œ b8Ê×…ÉØT9Z’",la…عAfë-…#%ìZÑaøW¡â÷ÛYß>¬Øú—_ˆ»åS‘í¾'ëN@Øÿx©>+⑈¬ygœ–nß[èô[Rp¿¬ˆJ Eîv¶‚XžÉbñŸ.'xé·¼d¬I·¿°ÝN.N3,Ç6é få/2=$³\½3—†lFžN'T‰AÐï°<œWÛšå·>ª=ªØ¼¶þá$½³‹, ©™Â¦ÔåˆÛ £á4‘A4‡ÚZ&1Ω¤ ãéœdp•“¦ÜWщÖssé?ꨘÓÅ aÀƪ[²ê3ò…*›è¿Á”­Ÿ§ÙíùešWR%µ4ø¤N €…Kûóc5/ɳbt¼3ÅÔåþf™#^9¬´@ÿf=D<8‹-(Ÿ½ (5;Pðöä"™P*·Ù÷¥Q:z 2?¹âU̽1¬ãnîÎbp…¢ðÔ& Ð-( {w¬~kêÈß7æä·¼ú*m°äíK(ñ{Ÿ›R›ÜÓð¡¨mQéï­ˆw+Ÿê«Îj"ñ¸£.dF‰ÖæB„4 yŠ úD¥ÂK|‹£­Ëà ½¹ÞQp*¯$ºÇsºågÝmŽmˆLüÖðŸo,³Ô hÕŸ¹—Úf lñ*~{ZýU‹í|×îv§š%uýñ—²ÀTå¦ÞÖœûXq)²eÞC¤M13×.H&Ï뵂[¤Óø2Óã–/„× 'ð6NRçÕü€–ÿ¦ªz`„ö‰…A65-é ÕƒRc”–MÊ>Årh@Úæ(½üâi —G†#±NÌâi(4jpóªüÍÕÈ«ÍQÿÙ`Êk¡©LCô;M||óT/]6D~«Üèâ-Ò­b´€Â­í2FÚ«·Wyl7¡Í<¸0 õM~'hÏŠ— àvߑ̪ëíZ‘ß«iN«5ëîg·p[µ‘ÉJ«fÓzWLÈ©StÃÝEéÐ^@NAþß’‚á-ÿ›ÙöòòÀ΋ŠI´‰cää"Z våªrE_'WÄ:\®:°88ñ~/æwL¯0¿ÎÚ½æ+ÿ ‘ëR{ô©&g…×L*v%·øÛõArùÀ°pðéª=¨I¬1zyÀºt·*…ÁoÀwX‡#ÆuÖDjÿfh;¦÷ñŽK…?ó­ëï…¿%oÊŒo)¿¢>“IzpƒòŠÆ¾¾C]ÞÛ…‰{àU–—ÄQÖ,=£e˜aÂæJŒ Xa—Så%ÌÀÛ\f¬jòŒ«¡”Èi¶ Â£Ž¼ˆ»Õ §º(UãlWö,8ç£Ú ‘ÒQÑØkÙqiu¦Â©ûŠ¥ha>ûåòjø‘Žß§Ýf0, ¥o°0¾dɼŠEÃßý® QoW/*j LXÎQCweö2éü@ÃahÊhþ¤£S¸@¿ºÔ-¯"C6˜÷Ÿ¢ný+­Ët!Ñõ¡´K›ãy[ˆP_^urm¦ªË ¸$6KŸW×Èá( á$Óo{¼(Òj2ƒ|:æv~‚Ïe=(T̨g$âÐGÿÇr1nŸãIî‘÷$…íëRWÇ•Ý Üù€*ñËä»»|2îSþ&<hDAá°¶ø•½“ý¨·?´søÀÜØ„¨ÀW rháF U=à~lŠïQ“ ”7R¾ú}ÓÆ°s¶Fã>¤Ü~-“´ý·ø‹ÆÞUjûãd¨zÖ“hý¤ÂeÕ<± O ŠQhª&§¿ñФüÁ ³oD»w› ™E-W…[ž.àmËß|_š(·!#ñzpU)0Í6,{œËz¥óË&`°ÕŠ^Ų·$BmÊÄŒåuçW²6õÑD‡S;•¾q³ööO‹óâË\ø^É"À„^ÃS»P¼ý޲•‰ «vÎõPrCi&HÛ#ÍTÿÙ)¤Ì„à×¼Ôø”@c‘0ÅEœÏͲÜûNÃè¥ênKØ (K|0¬¨BWà÷¦™Øwéí‡2j63K4^¹¤oéTŒäò;Kš[DÖ€H;‚¡©Â@éfi²תç™G¾Î×-‚™»rÀ?8•!ã­üÓÉÅ×p6ý¢ÏÍ2Ñ%ÿžˆ0ÐÚŽDÐ!¿CI¥‹›¥ê[ˆH|y|«ñµ¢m >N“8EJ‡ùßÂ##ÄK!ÔApŒ²VIKÃugç¹J*Whî` ¥#§Î½on£Ñc‚ú 5ÞÃmMsèŒå™ ´üì£[X,òRú¾á ÏTœ5Ùš-XØ&ï˜Ì0Áa¾V ÀSÛ\ftE4óEü¸IHa0@âP2Á–é­å;VœrCÿ“g,Ý®cÅ~fŽß‡«õ »|"sÊ2ÛM&¡KÊêçi9}†sy1ÓœAK&çÂò&“KG>N¼ ‘ìÜ]{ª»€²µ6h¯!%°—ãðûñlÏ_Y†Ün9~ÈÙ|^ïIÔaÏrë² ÜÃúR#¤„èhý–…õ$x¾žá¤nUE^ Wõáì/xÞ~sÔéL½k5Pd2èLž»ðpˆT4 ÅÈÖCø$O³'®wš™ëÓŒ³z¿+‘jSsCD"´•ÀlÈA­ö­çÐèè'¹CÈD²Vb™ A˜þCE,ÇxZä!×*i©ãy  ãþ…­nÐ"·9ÂT[<)N‰tYÒ7ø]&‹8D’½ Ý’F‡~4ü¤qæ£ÉF”pÿ—a1* VLèÒU”·J,¹;¾.¬¹:ð«éµpÕ•Zã Ö[4µ4g’Õ—n^Íü#Œòˆ×"Žð¥ùÞ,³õ§lA¿Q(Ý^¤ûŸTì+Y˜3®¾úãu\Qggc€þ®Z)wK|£Vj$À+ÍÏ31æK\™¯ò·E¼ Œû¿¨ˆ ó85ÁÚM‡l;µ1 ánZÆöH `úsÕD©(Ù)è Ô´§=kšY_Y Xµô@\]}}Jð†WK{Öˆ ~•9ž±H'ö²ê “IzƉKe}ÿøß½ÌILŒÈsYtEêòÿÇš^*ûXíé–+5D…ì,-7U~>ÃþÊàµê¢|H.$§ óVse†1~‚ä«!^”­iØ@Ãk m|dæ©7.Ù¨oÈúôÑ"Jn1?HÚØjò^¼F^PnÈá½Éõ_äf³žŸ®æ6û¢"Iï\_Žâ¿40Ì‹°%2ôCqW7k6ߎµ¯‹<‰†2’ÒG‘Õiýo×:ÜEÄÉ3ÅpÖN6!kÜ ¬º{‡b4•I‹ÎËñaL’€Ùxy>lÕxÏ n4Ë‚:PÝ kú cíΥ뻙ïúóLò¬{£ß8sªÔY¸âKÇs+TõEuâµÝ-ø¹øBÅ䃑;3)•yÎøÊ\‘L‹&d³«þd纆‚¿—”ÂeA¸2Läú:m¢¬`H( TrHºd?hkr]$ÄÖ÷óØòñÄz¦Ò¾4 ·$qŒ&ª‘òÊâè²ÑïÚ á’Qæšõû%h êñô>ç“bòÀ%@z—ª3-R-\,àT,Ô`mƒ¿cúô.˜Jûý³Ä•hút´~$hÿ©XözIŠÛÔ`×ÅþúOc§OpìŒïûq§‘¨,õ†­ܪ H¬p©éí Ý*C½d× ¢ü ¡TýMhÚ• ” Iw|ÆqY³~ìjVñ:í'%Ìf(w”cº”—„¦©+¸OjDƒ„ÝÆfÌœ‘vØÛ­3’ƒdßšN)æ>H¨½Æeiih“Ý…•¢vòh1êù¿E»+Ô/ Cë0Y蔽M›Ðû•îù„„NÊäßò¢ {ä 󳨵¡ñ%uãú$Ôèzéļ~æÜÀÕoF`õ׺]lÇ™£À ÃKë*óÎz´ Ö ¬Qt ¥/Ä—(~Ÿð,ÒÙyç8Ú·èüþ© !)¸ B DL#ÝÀ.nm“KŠ8©dh± ¯‡@í¢Ì¿É™ã¶Mf7A.[Œ$›/áuË·¦¿'–°’W©ã€øClW% NÀ×j×;97õYþ·UŸ{oOÍI$¨0tÏHûðÐ[ÌñŠ"ÄÑ…_Ì ÅÑOÍ‘f‹ Ë%uaªçø|:ÑË©`\>×t~>êî‰$+é{\`Θ8Z§ä…2‡+`}Öž˜¼£ß9NÄ„©ž,ò§6åhƒ¯Z’÷Y§nkÄ*'0ÊÒF>'#ºxÌ­*ñY‰×Žã¤k&fß«Þ\ÆQ€S‹;/šEL©³‡×?ÝJ×U—Šg²¶CFÂ{]“4$šØ 8ïÉdÞŽ!k)®$¾´ùùZR°LîóÞ(¬$làG½Ò墲f¬ ”kŠl¨9 Õ­r¾LÇÆÓá„0¾Ud íß&Äê±±¤1wŒGȬ¨g }¸k?ƒëÅøzªªY=®†aÃçNTw²eîEfz ®Õè&_´!ïœ`kïMíö5«VV3K›Õ¤<2zÖ7È,S{˜bÆ‹¬† ZGîÛø’wqõ_´z^§N<‰<ìÊë¹låñ ë|Wã¼nWrʰ§þH®Êt“I|ÀæßãlŠ)­ˆÀб„àg˳Gý˜ŒŸùá© m!Íå­O‡B­N{÷AgµøÑ ý©¡e/r¥Ûa=)!AžãœxQ3uȹï:Ôÿ¥3TpJ|õf+1åð,:.ÌíxF5ŸÎ_šá¨õÝjÍÂ,`þ_ùFï'»H‹uz53&T…(üS|zÌÈ œ¸ž=À‰4ëï"ÁÚrÑ8.áÿ¡éqmwµ++w+pn)4£˜ðl Y)ÿ`ý»P,ÆŸçìu«~™I«¢Íí!Ìyœ’@~Ö sóC{†'r§÷œöê‡JïL‹w¾ DŸÆMP<‘kr‹(^©kcã^I¤Q2É‹oÅôö_G@™…Ñ–"¹œ]•xÒ¿ˆW+¯QÉôNØêxSåƒà˰Æeþûý¿õeè»®Â0r”Ó£D=&.†]­³Pû6bÈ wæ:ènÍu&:þU Ð@ͤ„F»,GþŽÀsß#ûLÔ_qÊHa@ýGþÄîÄ;߉.7C²£}Êíí1dx±U²Ö»WN§®füÍ[Çb·oÙvÑ0l/Šæé¸¿¾»/žŸ7ÝöÕ9þÁ9P¦G/¶½¶ßVž‰ qhZtB5ÚNÄ ã]!fE¿ºW‘¤Ìˆ˜Œ€P €1fוHê ï¯F'º?#Ÿp›'õ"È pL-ôÍÿÚŽx+8H‹bÊŒút:-Sð—Ü#rEC¥\~Ã+än÷UDÎ×`&Td|óI¢þÃbói¦ÄÄòö„îyZõP½ô“ë£Té÷a Ï…“É4¹o:o±–uì’q1\À¿@·9ÏÙ,Ùs{°ÝDÔÏy©’£¯7çfDrýÛUÓœWLM UY¥³0Iº–নçÀk ¬ÔNPDF´¹w~”²È ‡¥8Nê§×Û¿–¶sD\ˆn ¨\¶\ÛûaRKŒœ ^¢Xõ.M-öCBAç·Ë€$rÐÄEßñËÀÝQŠa·® YkP›G³ v1.™Íœ¶¡ƒ4s·¡Ç9g‡1½.æë®Ð¥Ý¸-¿$“侸ćÓ{-Š€nðõsŠjtªažÍ“?µ(²äñÚ©Â üAWÏQ¥%='~¨ˆzpˆßš:ìY„S“WÁéþçgŠ 2Ö|'’\ ˆ|íŦ4…àC¹fzµ²¢~[34 x6\­±É'5Û¤#*ƒt\B½5 ¯Ý$/Vƒg¹våý´gÉ»U;ÖÝ=ó>òößÄ…”Ùvéf ÙÙPy¦6^N¿[v9Ëû'Óhá—2lÅñøÝ“†¼ÐÉ6MÑ]ßϰ"Ú š„…©ñÙ¿lÙëU"Ô Dãæ{+ƒ‚¦=ÁG£¥^ÚP)ú„£Ì[ƒ˜3š„Ð[™›*lã ÎA;÷‚ãN b¬ƒdI¿[/‡¼t±æxHNé Ã|é·1ÍkŒ j»Íwã4¢qf}!Q²'LkuI óTSSþ=’ÛÞÙC G…éÍü±oöÅÃ;‘GZ*.¶\p®Š•”Ýgêñ”ö}If_«6(3ü*óØÐç‹àÖQ±oþØôg\Ý•qG¹–œ{*ZV¤/%*Ç|Àµ*‘k­ü'PTŽh¯SÆPöˆ(­º\O>c£vA;›´‹ãš*gêBP½4§Þ­ÈÝñS#Ëþ fÿ?z%%Ä|7b™ŒÜNö£›ƒ7Øfä+S¨É2 ™ßDò—Ó’†Šê€„êŽkiÚH(5BðÛwë)"¤ûgŽºÍeô@ؤqÅKM¯s[ѤGé!x×ðÑJÃÒ¿瀞®£Ø\–h^Àú(ánÁ®^*ÐVS-w# ömjx·´:i²Èù?]mn¡ÞoziX1ì` z+(¹‡J¤¯Äà íf¡’Q¯NšŒeKI|oÈMRŽ’ONm6óu¿åQlžgg.Dçd|±²çŒª2´*aØj¾ëˆg)ðjÁ¯n£Æ³Ï?*K¼{_hç.ç™»O*£—bï [ ¤µýõJ^|QD¹waé’aÌž°Ôvá}´„9¹4Z·¯oBUЖ¼˜Þ„ÎGI× ëáOÆ0È ]ŸÇfŸŠ]DEµ%NœK°%ç…‚ÜÂÆy‡Ï{ó=jÄ#ö@F_1X•Š ¬=e‘»“ڸ–p1q#L…NÁðí•Qø…ô»&"c:ÔÒpú·š'Ä4Œ’÷*r+÷ ‚Ñv]yÂxÜ÷×¥¨z3seƒªß}?BX:DKŸ¨KÛÅRÒ½@UŸˆ™‚ëÐG\t5Ðü`J@SòIƒ I:DÒÕtFZùÔKr%>9}ÁmH–{ŸÂ‰p \,;Ç¥?'èÛá²9öð.½ÄºZøF9G?ÿHk ç'ºÔû“0pwféĸàzäs ¶ã×lúû@¯p'5x…ƒÌXåW'-–D>©F¢:Õï{µ-¨z“Ô!à Žè&9ÊÅá¬ÍÔÐ7ÕÑ:Ø.ãYÑ,Ê(oºžø¤Í×_ à祖­E ²­ŽöIªÜ§}³©¾Z-ˆ\‡­óì;]îß0ðIå·¿6Œ¸ò‘{— xY­­È |ÝÒ× ‡õ'Û0|‡ˆáÝG޳¬"PŶìK¤ìL«»íg·m(R#—B;‘LœÉÅ&!¹k{!™o¯– Å©\ÏϲeVQ¾/ !›EC—RС(*&Å¿­H‚H(TÝ'çÙ 6Í=E W×îí Ô±-µC{·‚TIîêÜì°þg–´Éd8`ù®ç2Ös>9hpefÖ¾Ë/CIE±‹žÍ¡›î¿½…­–ñœœhFö´ð㨭 ã6Ãu³Ã^ÿúÌ6´wã“Iô£ÞåäÓ>oÅÚ­C7ãÐj`*·ùו'o Bœ‹‰$´'¾M5P^I4ÜgŽ b7Fr8³¶0LDz ã©òß/©ÛÄäpYw‚„š1>IJJe¡Ï»ˆHrƒ€r‚´ã Æ#áÝhšYo'>œi­EïÊM™•ÉèÄÈï5,ð„¾Æþyœ|ØEŃ‘)$Â)~Ài@[·'ZˆÙïIšó£9ˆ¨_S9è ±}›6–1éÓcsáH—°*²J%\'"ü'òmwvþjD¼Ý´k!*ãe$Yä…†–Äýä` £;pÉJLn¦½Þ…%¶KJ¨Ú¸“ô”cNš\Ø hœ-•ÌMq MíO(5kŸ]¬Wûž®Ye:wEG ‡ÓðpFT…ëwÖêÊ2í9Ã=\?“0Œöcœ˜šæÎúêHä+ ®¤Ú«š³Â‚S1Q䲑Æ+ 2šŸûÆE¯zÈ»ÎHö"D7±/Jñ1v§ñÞˆ—–)rðc-—ù¿ƒžÄÿi*"!ù_¢Š¸ kX¶Ü ªsÔ•.ߠꘉÀ×ôú„š‹4¹>?ƒ©¼ŸTÔü™•Yêr*¿üæÜWTüy¬¬qeE Ô¼bÁµ“ÍŸzIP†©ÜPvžÓ|‚¾éíˆ}äRò†•Ö*)ôü÷^_1·—„p4ÚÚ¢&]…6Üd˜V2ätPz†ƒcŠÂ©Í¥ˆmIs/Lcëc®ä…ê¯T£OAˆ‹¨g™3ùïjÑN‡C·¾+®t«QŽ ×šþÆQ¸<6~y CÇt/>¤mîËO¾ŸÐ™M\Ù¶nÑzŸ´“3fS†[)Ñ.N/?ìW”õkîdƒNQ–#µ³ûšËln&4ÚKíßJ¬„¼ïŒ›.ž$0« ¿6„ eŠÿË|œK%M€>Ĥ¾.¦ W?TÔdƒh\þ—¶ƒþKñwà}#SŒ°õY;|­ª‘ïš-}ÿ¤{Vv×ašyᣔ+‘X$„åÇ1WÝ Ôw’ëGPiL¾£ÙÄ~õÚ3~¯yW—€bÏÜÆ(cª˜u"ùŒe𬠺8*Ë>Ù48UçÆÝy*{dªªZXCýlÕnépP'‹Od Ëj"‰×Èn ~v*îÉw©©ÔÙ‡aPÑþÎÔ¦SZ%ùÉð+gè<—ˆ¾/àDì+h·FcŽºì/Ó&J7_¹0¾Û•À‹ lûEtyßÄ:.oÉÿЀ?h ·0dØ“§®I%ò)s9`¯< À¸õr¸ÍM–òŒNöfî ³óUš|)§Àëè)¡øEnHU繄 €ÇoMv§r¶N««²¥Úòfýêãd¿Ï³³VÄïÝTsï ¬ú†Q_ÃÄä"ü5¦5cc4o9FR¿åÐ G$y`Fp 7¡/xáÄñ€s4þ‰˜ÂƧ@àl¬Ã¾Ó?OÒxmvM¥03ö[7ƒ´;‰â%õ–'•BS0ù à s½Ç …ã´'·/¢b㤨4âÑÁ ÀÆñ˜¼KÆ%Hz_©WŠ_p3ñëŸw8¤-Sþa')ý1ÅÍ÷,ºDËq0A—ÊPLOèÓ™‚Œ~Èk˜êþÉò=²¹Ó* ¿É€)òæ|2y!ò÷šNýOµG®ׯZñøæþãíó¨ËŽÇ2´…Ö›b†~Rv-R0FpxÐ'Ì­êG3Tרø‰m)ì›ÕÖ¸ƒh›•nՉà ëNú¨êOH[Fȃ[Ã)ñ*FOh|,1D”îGŽÍ[¿{+‹ ú$@ÃõªŒ•ÈjOGq¢|¥Ob¾†²€âD°Çé+>Ä•tì ›bÕ•]Q¬²¨úhžçB–¡{Ä«´IºÕ-õ\«o—ƒá¦î¢•±q¾Ìö*';Ž•n ’®cò ys;¡Ô(–KÿÔÚ›$³y²ÙÁj`øp8¿®þoùg8‚n÷JeÎ:µoõ{@oèÓèÞ„5¥ñv b†%ÿºì`éceA_RŠ_ƒµêÆ芣ºÒÜoóœ‚Ëïn0ˆjƒ¾EUî·å>~¼Î׳yÁ:TþmÈ0¡N‡Pæry­Nƪe!7³°¯Ù[ÝA€*’o¹]‘\Ql‰‚WËÖÓpk:]uÀùé©ù>EÓK.È´uŠ^€ØùV\ g©Jæè¢S½ý _Äf,ÔKãçü OtVÚŸ£|–6ö_Þþáå]¨ù£~ƒmÛ&_[´š’€+³–4—Æ—WÒ…æÀð®‘^9Øç}*øöÙ›Õ¨ff;PUaœpu½xŸkS…<»6GïG×ç´˜ûı¨¹É2Ù6cNf¬BÀ¥¹sKk‘t%’‰S"ç:3Õ ?·¼ysÜpq3n¼RÙßäÇÜUC[Í=ñvÞâ–O²|ÿã‹ÀÌÔ”oZÔÏ„É %÷ÔI/Xæj &sª`;ÏK¨ùMÍôKJʉv–0vMyÕß3¯³’OEªNÙ°oiÃÏÊeÃf‘IåžáÞ§Õ™=Û@ž6vµRWd`3vàd¬ÙüÉ÷xDJGx–ªŠ/yX"àñ«²… ýÚ ‡ËÜ‚Å=wb"SaàÄrÔ†]U™Ð”‚GÚ­ƒxà'a-öðCûjD€Ð¾¶?sëÛmî¶ãÃæÌ@"bµØ“(5´©œâ€2ê»—Pý0ã0GýĨ(êâ&Á–É4|h¢õ“ýÐÏï„WPÑrgbfsÉ‘r·r*ùá j›—¶×阑$1 ÙH‘ý‡†è}O>óÉûÚR5­ì¢×¿j@ÐrË‚Éúâ²¢•JçY¡-؈Œƒ˜}Ýcó ÞÕ¤‹¿+¼ü´)˜7‡°ñ­ê_Ê`t„¸_a®©½™ßFU6Å醸ÌÍk…“—àµ1šŽa¢¨¿R—]„.î(Aý%`˜a²CaXÉsð_—Ë-<X¸®Ñªƒ –W–ö•æÐ¬Œ¬f†Ñ'é?:¼„Ψ;¡•ÐmG t|  /N ÃÈa,žÍ^Iv̉_Ó¸Â/ÇEöˆˆ›põƒß)}o6ŒO‹²„ëË;$5¬—¬D)OϳàÇ|¥5}K¤?dQß½î¼á4(ö ù&úÕA§í³ÖÆZªÊãQ @úUfuÅŠá Y  P|c Å¬í–ln—ÜÔå…^±Ò!–Q`0df ÷s/CªóµbâoBN=umB+;ž˜øÀb{<]òt¿Ä{ce¤v}Wäûa§ô.yO¸õ¢¼éé;n|ÂÎ6Vô"¶€Žõ4û¤fÌÚ#]ž}}u6d_[í8¬Oàj«ù¹ñ=„ NTªiÛÇLk´:e¿÷ËÄê>®6Þš‰U­}¬ÚÞ…PIrE¼üu$Q)o¨ÚÑ5no°A°úÊXºr¢”-JS‘³N¶C ÔTd°ýˆ Ú Úâ/ÊÅÕˆËt3 dH,øäö÷w16—¢~Þ%Õ¸§â£?ý¸ÍTûµóÒŽŽ4pP@ïy ÷Ü©XÐpIS¸Þí²–zGVÿ²§O=ò( prn¡´(Î_:¤ëq¶Ó¶ž£„ã8£š#-8_CžÎ›@ÅeÄëbƃt†`¹›óñ|XÃwœ‡å¡×ìu!qÑEk|ÞªG»4âäÁZI2LÀÑ;¤,J¯ ¯¬(ÊH¤Ê915ô :Ã"ç‡ÍýÈÓ­1·}àWuºW|ùÛ’0(ãYm,¡…ËUbs¶DÏ‚ŽÉÁ•é|Ù^6$0¾ÏG¶VI N`hgâ=† ·áظTÖ4˜ãPœixíŽ+(ÏMú%  Œ§Ä àÏ/å~ Ó¹¢Þ{C®— öïddfÏo1ÙT­ÞØ‘MÈ\×)iM‰=x‘¤vTø°É?©®<5ç(m–l²½_á-hYäœ é\ˆ‘\@oíQI,Ÿ˜ºÚâ—K‰?Ì‹R™ßšÆÔ­ ¾Ïùî©1±FCç·Ñ[ÓGHá«uº³¼ùwÕáÍ¨ïØ‰XžÄÁccâœzFŒ_’º^;e$g™qŽ`Ó¡ÌÏÁlµÇP <ô@ÂÈX^º3,XZqq>bÜú'zƒyi‚\’%»\v„¤†ÃÞ0å·³$º«9!Þ—UÞ‘Kê®÷³;™´“  ]§0ðo¼£Îí£jŸûÓõý±xÚßx«ˆÿ]®;ê±g›WæwÌq²ºó\íSf *ãzkg…‡*30Ý“Ê?üµK̰—ÿÍ5"K2´âÖ •ÞlíLüœ]¸á*Tö¨¡hŽí|x˜J17 úéUíÉyx~UD½ MNÊÌŠþ­i@ù$œêR0Aº³Éetª¢•&ÕPüä=çÅ)ÓssïUƒ‘„q4Ùi )–#Fr”ž [À?C–æm£&“ÑôQ:ç† ”ú¹ô.ÑãoÓÎ &#|^0éó+,;ƒ6ü¡*å~#ìÙ´FY>‡Î+ñNF”â|qÞ›u!ž]²ŽÚ9‚­žV…Z]$Af^7»g®ÍÜ,ù­†&7´»R†.¿¼€R ~XBãR’ò©£%‰ùRèUÕ?àKÎò Àp­ÝÖùg³J|†äU„¦š+Û|ߥàsЮš”ìÉ%Ø¡ìGžÇBÍÿÚS#Z¢wãHöX¹ÿN)°h`øäbži¯¥÷Þ²b_g­#°– $V^JªË¸PoÆ4ZsÁ¶~óÝ©3NŸFÊÓñ&µpM•ýË$ÿâz7ñGîù %û©`øPå´I*Q4HP»u&•bENÖÚol²å•ñå­{î{]ÄÉÉ`hCšã3£ˆºH^“jë"Úa4o+û_] npöDFQnv9,ðÅŒú‰œ”ê>¦î}‰^´2&=ÑA!Ðæ”ñÃ{Ðt4bfZYÙV…öÛ˜Þþ®&Oû¯}>·›êbxW–*Ä>†ú"@ËJpª_ô %İh¨aÄÂóJnkMs©hU]†Oj¬6R™ÿ5Bël6g<‘¢ñUz¨»<Â*ÖŒxζr, ÕÐKf èN“ÚFó0Š£ ¼ØæCþ×f‘‚~^¸1à‘,º@ËÅ;É%j€ÿ­ŽÃ>¿ ÿ^¦Ôâ ð0žãïzùÁ4®äjß»`¶LñoŠ…C¢¡«ÕV0]?ª¶ŒïH¢ Jã½ûaÜæòU«œÄÏШ®Ð[Ü„Üqþ-ñ–‘/›}DªvãúŸ3Á¹íR[Tœ¦W?®²ÁÚ^(4Þx”¿'°eÞ º YZ¶Ç°·G· ÍÔL¨o¿Ç5Ž4±Àî*Ћ5çhÆN®BÌèÆt`³×°‰:rMãzf®íír”…Ñœ@·¯z"ñ‚Z# Æ“¤Ó¨¾ìù Uº>]€$¹*ÚºË)aH‚(Móþ.ÜfÐŽQäÃÂêê‰jâyзSsg]DoœI“B¤uP(­-åç~^EÙ4A½”©"J^hB¼…©wÜô½à{ôdŠ9Ίvâ_×/Ÿ'ò«x,Ï»7«"¤¨ k‘íëØï•~pÚ)SëO‰ÜróÎÜ¸Ã˜ÔøÇ³,kÐ ý×ÿºïÈ”V7øèo±¦” )?ókÄèH}´Í0f2¶vó$8ù)fô‚ŒÜ¼™?—$¸Xùë'¶ˆ®vi+ø¥o7 äz©ôÊ ùïè“Ùu%ÉWJ.¤³w±ŠÜ¿ Î6ÚÇ{èEÄ>¯ù¨ ND­%èóœù£Ø‚âtVÒ.“2é9©áYGâIµ‘Æ)Eþïâ0蟃Súzât†-tT¿Íü73W>Võ!³Ï,Š<Vƒ#¢ܼOôB£üL_ nM)R°ŸÞmçä(S’ª ¾ŽXálOeš°ç4Ñ8/Q6ÐuSnžI< Œ¤ˆ+˜°ÿxab¸_-ïÃΩAÌØ0/Æéι*(¢—ˆj››ë彚‘Ÿ˜±êÄœ‡=n©I¦Ø=Gš†9øº^G º°Ð&’aƒ§ÔÞŒ‘@¦ép!*3E™Ó<¦õá)\¿äUÄüôZÂ#!ðÕš[‰²8¾´vÎÿ™{º y>¨8ÝÆym%çkªhŸ\c"ë~Îá &î)ýCˆï°®4@±;Bइ‹¡³Ëtá%wƒ}³³)ú}ÐY–3¨e•<‘zЃD4CªÐ~H.\0жFO÷¼lÄhš-‰n‡É!ïë˜KòHùï+ó&ñgû|6^;«p[®ÿGç B_†šc{5ÓœÉ<TfQgšºxî·•¤ʤo÷-Í-_¹uèGf÷,úË¿¶ÛJÆÄ*7OÓ³™%TM¹XÜ,2 ðpÕ±’ZÒã`¤&h°Že‚s5ÜF4"?fõ±Ñë?a‹ïq:`Yi ö{¬[Œß¿à”\é’ñš-˜ múb¿=1ì›ViÕbCOÔÐ8ç`¡Œ¿å÷êÄØ+ ¿z*M>Ú‡ÌNÖ6sVXöñ$»ûMÜÕË,;ÑNAãX ˜Ž5pl O;@˯bƒ="6sù9$JñyY÷ ë…?šñÐÜ&Ôú«ïÿ;9¶DìÕ«qÈø$WèÀ~îB›+~Ý˲­ezI¹ÐÝWnG¿UÝG¡Í˜t@ªÝ ÏRRDÍ9aõ&x¯ãˆ#>ZF1ÏÖ"÷cã'ø’ÅÐ~kñuÓyùÁœÛ‚Iƒ~€Òjå×<¶¥•FöÎôGôBÞIÀ+;v@0O t”›Þ»rù¨—°ˆÒ˜¹~p1 GzIõ^tqªAðgÓ½JT[Ÿ ëJ"àÁ²ö‡Èf¦Ý1òòâ¬>‚Œ½jßýÅvÒŸ´€´‚æ'gÞ6iZ·o ;H|ò«~’”í?~ýxrŸ«JöÓF´oã¸7C:8ÿò3,~#ŠiäH¸[ç°uS¿/®Á¬`€¨õ%rjhweD˜€%±£3ç7¯Íï<Ô]ü“º¯ÝøæðÀ“ÓÑH¥’²ø¯ÙãI‡ë7oˆ¤_ˆ²xi”ëá~\Žo¾öq³TG©:ₜnË$î2œÛ¤êщŽ*ª_âeFÔ=NÖŠ-”ùÂKn…·Q¹S„ÉÍáô=#Ò­Æ'Æíê\/ã0¤Ó©xÄWí`é]“~AÛ ®|Cº c.ò¯±¤r¢·<å;=OhyýûÓáMt¹°Eá¨0Á JóLQËx©øKÎFPWW*6©a©¿²m:£€¹p·>Z¡·3{ß»g9³ÒìJ…´’úJq)uíÞý /š”F«΋à^P…^Ýäî\žÂÏ—eSþ*ñ€|!«ÆnbшÃ>—¥i~r/Ê6Þ3û„²6É©^/ðÍÌè‡Æö•¨-ìâ {:{4˼V{D(v©RIaê8CØa)‰›?ëÉE‹ýyòÒ÷ÉsÛ½SLžIe«˜Í»ñƒ§És7]ÙL®ÌæÁÏ @äÌJ€_̦q×yíý¢Y]¡e‚˜ø¨?Ì’ÑS »P·)”¡‡ÕÊð Ôâ€)Ïø˜ŽÔÐÏ+´gÓùh'4Ô“ñ¶Ä½ïIê«îfÉcŽã÷ŸVÑì±EswÑX&Èú[FV±‰fJ³ä»ôW¿1§F“Ù¾‚ó!­Œ~zðªº1©9dœA{ îˆ}½ƒÇXê› S¥y[X\Gý EØ-Vh7°¼Xâ<7|ù¦¶œùBµîW+Õ3è†1üîü• ƒvÞ+®ydýˆ*—¦_:ú濬Ü\½ßrFŒ¦G Cc³gÔ˜>»;}f_2’­Êˆ|öF1ÍÎóü»íTÂ4êÝ$‹&uý*KdØ[ wÅXíðHo_c$á#ˆâûd2ƒ¢•Ÿ[£ò§8þ¾;ÁŒ¹°¨“Lá¦~²\+¯P‚zU XãÕm$ŠydðßáLã|Ò‚c XÍš‡xè¡Àø *R: m®ÞBõðKbf”|[Á–PkR~Ž"ÛÔ¥ˆÌ6䜦…{ypzóB)\”;le”ýËŸþi¡kö¼™5‘˜(žÓJÏád q ÕnøÛ·D€3¨æ— eÖù›Tóìò6:•ÈÂëêÏØUÐõ1"'r“e¢mTóä;E±õ¦fmÊ©dí8e€}þFyÜB°Çtië'¸É¥8!;HƒÞñr+j2“°£þOŸuñåöÂS¼Ûq©ÀKÌn£ß‚ûe«úÐÄÖß* T‘E÷B¡·"Kþ•å½-xý»I‘2´—Óün¹HÛp>µRúΛ²r§!ʤӟe%"=¶qy,\N0ý:¾ÚÝBáBŒ³‘îdºbÕiÎe]!c¯MSaþC ç×,ðR%E†€uõ˜©>óî"—¥Ì…çÛ ûð²Mž¯ÙžâhÔku¨CԖϪAm´H¬ 256ý/cx1@XL.£ˆ95ø¹(K¾ ß?ªQyáu*¤îáãBG©Ìzm÷Ù" ]š§õh[I>d ”‚_¶ÖÕPÃaOý#B¢‡bï :}³¯ŽÆD枯’Ì-o=´Ÿ ¸ÀHBE´þÅõ Fð ÛU:n¿z¶«÷´¨G÷%‡KUûâ<‹Üñ{ņ|Šu·”qVêw@e{kDÓ‚Ð&€£Ð-ZJ!sÁ¤Ï“þ*·»Ï®m:’ {@^€Y¨Ô6>õöáÖ'º±Û,\§Rʹä…YÓšM<±ÿj·š£¼ÔG™«vÁ›maV³šrà¾LG~D›>¿Òb(¢õáoO<¶9¾¼wÌ1ÁãhKÍ:á ʤß,µ]æß÷‘ÐÑɘmåÇýFÓð¸œè4”àø¾‡îñp *|êet¯½D¾v>z¡;>º¿‘¨NÊѹª]’„‹Í ÃGÖÉq;0…1î~0ì «Ÿ½¿WŽßŽrÔeí¯ZèQ´ª‡I½ät€Ói3 hKòŠ~}·]¹^«ôç¹7&HÔ@ЄØôš ⩾f»ãC6HËaUÂÔ*ФÔ>²–òå}®÷_dឃ§‚…·7+5ä³Qµh‡o®×'Â$Ûø‚’‚Iïþô3+&²•nàègû5¨J†S¨`áÃ`3À£¹°{à8Z0ÃÌÐp÷Z ˜—³4÷¢+öÒ¤ Â?óLZœ O÷¢Èг#Êà­gAÝ¥ûôp¶s6ê­æ»Ü\ †'²ÖpÆ£H‰Ïãò/ˆ¡öc÷â¸[vXñσý(ä왫¹»1Á\3nz±|C1ÄríÿßÂ:k¹Ùû?ëZ¯QdוDé®yp4ñjˆ®3jnгÛo(I鉯1h·x2$Bp¿'â\Õ|Õ@’Í[.³QTØV9®Ô‡‚éÑþý ¬ž Nûç¦Ø(‘ýL)ìiFSô2‘å3CÉj¹5©È) £8Ñ´VÏRSʨ?ìh,å„]8”÷è3}dFœ;~u÷»²Š9Ýœ‡ªô¢³)Ö ©ú¸lnƒujÓÌV±9¶›ñð)Ñçoè£8.a4bÀ@o<ôï ÅäÎ7%1…ØÖQÎ=;èÐ*H4ª,ZÜ$#Æ&*ôµù~ tõå6’ˆEðBÉ$±™X"žb•ãýñ²úó62ϵÝoQê |¡¢-ýû‹çV×—0¬_}çlÛg¸¨¹‹ÍÍiéÓ#p4Ü*÷]†èˆÜ¾ìuÍ0›xç©Ua¢SUÇn´Ö»Ë`Ö¼Út#–¾}ðD0Ø¥¨»¶C[¡ŽO«Î×TIw‚½m¯¥¹Šßø³MÁ€k6g„ع@¸µz¡Í;«¥&é¢ý¼hï1Ì ñÚÒ‘–ž•¨û^ãê¨ë©H$¢Ã±k¥S0Z”½M:yvýRõ4ÿv¹Ó´ƒ§zî¡„cÄñXÕl±Š1<‘æ&d5ÃmXKE‚¯à?1æäòQ¾Æ$k *å)²KúxœŽî¦KNµ×fÅ&¸Õ85ÿVBñq¬Þ.ƈ}•ÝC²x (¦÷S%¢‰ƒ×$ú¥é(L8±Ë^Æðkw, {˜¾ÑÝgªË?FÁüî»8NJþ÷ÅÏV˜©[ƒj¨Öá/`tÆwò#Ž ¬l‡ÆÎ%·òEO9,zt?SÂpBj®'a€dè-ùê.‡È½ßl½*5e-ËC]V×î‚*Œ.›°ÿÓ‚Œ/Ÿz t×VÒ½ûùÇÖN Ei^‚§èÉkÐâÙÞ¼áhµ’Â)Cí0Ó÷šP™ýçùÁn\9þ°íIQ¢³pÿþÞˆÇç3P¹8³(|†~„Uô7«€‹ê^€£‹§ÆÚ3Vn8AìxÐ-ˆ &Ú…s7ætWªðçÍ{cŸÂÀp»€lªLîúÌ5ùóÎv…ö†ÜmzTYüœa§2Dçñ)yLËõfg¤ÔQ¸X.ÕxÍTúQ½D¬CLxÅuôz«iIÛÄ ÿvsÔ$[ŸúÈ79ü®qO •²tëè …vüPí*8ÑchЪþy-EÙ®N¨… œTOað«Ó]ïâ@U¥—ˆëH¿I€|&$j»'¼1á~hÜ TM‡}¹ö‘¸]ðáRßãÑX2Ä|ÞÊÛ®ršê!bfüÌÇ58y…L.BRE}²jhÞ›Ñ HžrÜcÝÌC OÁIÑèò½';ÿÊ\&ÙÉ63Äý V!2õ˜-‘•+£ÈúÕ-«· Í£“.JŽl,/ãp}ßÉÔ°éšÊÄz*(T­Ž!gþ•tÎe£rÉûãÏô#¿úÐ+RÕ$ÖM  Yˆ 5Â÷ÄýÞ¿TwI—;²Þƒi±Ò…° œ´JzÊÒ>P —y!í…¸ñ¬kŠ& ‹•e¡é¡ ÉÜ—ô£fëèƒú(~”ŠÛÍÏÞ‰ç:FÉV‚3ÈÍ ~§)H:q‚Û¿`,çuꀆÀk€Ò®Ï•në­»ÌÝÉEÃLï+ܦ´B—ÉMñ{X½dùRÇ9º¤ù¼š1ÓÛ‡®á¢Ž›ÅgüzeªA þÒ\`ðhΨY–ÌÿAŠÍvÓkLs“3.ã³íšˆG“ÍY:³]J›˜Nà·-´Ä× •b¢Tq+sL ë^ÂåðnŽ ‡EY_(Å»OQǰÏÅÊÚw¶¯ÐݘûìK”,³’¯t;,%Y™vå4°4ô÷,Æ¿g¤¹-'Ý÷ÌÊ]õA¾ëa ¨hpÖ­hº0NH°Í6Ðo‚v´L ëòU·Š©©f¤ô´‘­£o€dZ½ÆqbמsL ’¿q>Êý.ÏA}‹´:åAr>ôâ7?fó×y,ß~9ÙšU°CL”“ êèGÌýø~ó•"SÞ7§î$l©TDJ\ƒðR³ËôÒ“rĤJ.~Ë@HYTo#ïó;Ñ÷ÿ©Yqs+<]oJÿ³ ÔÅŸ›éê?á¡ò¸öÕ¹pJ‚æÒ© ©â¡è­G¬)KT# oKŽæ„qœbâu*oµ"ács† Øx›Ô-Ži—®UHÜÔާˆ ¦~ ¢¬¡dp4 ŽèÜ;V=-Ö~ókWÁ«Yq †Xä÷êH#LÀ`É9sÅ—ŽRØËc BÑÝ#àý§9tð»c6Ô8<:ÎŽ!÷Ü‘Ý ö$´?[NÃJ–:ƒÖ§øÅ÷;²6ËrïŽîßú Ê\þ‚} íÈ;V\ÕÈUu í÷jf÷UÛ%.ç3*Ä_2/Z³çïÕ5}éÞÎrA |êÛ7— Ç6ïöïK,42‡<}så*F¯#öÑC$øRj9öË ,  Ô$–]Öh㸞sô›ï¦‚ZýÜ8ªƒ–3]¤ûzÙ´«Ñ ÓÃUÝ}¾ëÖBrâÌëUþ½±ÂˆßÚÇdthÔhD¥ÐkIiÝjšŽf/kàG£À J+b6GmZ—+\IW„ WêÕú¹$9 ·2>¨ 6l/ði›€V¦ák2O¥ÔZ¡4ž<Di¤nPY;ÝÍ/Ñņ\ W¿½%áT8£ÜÜÐMX³.Q|{@VE]†€"â–G<× Ñ¼µ„¥ A©:ܯ—”É—22HbxqTÕ;¾ñúÃþ’™y}¿Ù\ËË–0ÞÅc‹†x0§¬ÊûðCv€]À_w£Å´Ü{|TK¦Ëš@Q/on•Ćû¸ìÚ÷³QºMýŸ8÷¼ÒOAÎ4ïvR¿ºr•ïŽÝã€eþ’WA°¼Íª¹tǧNî’=ñÖðüîºûÚU» ³u€ôO‰ãE­ô¾xU…‹¬áÈ|ÑêS_¥ç#<9ß;ú‘¥yUÜBúåóM·Íi䚈“|‹H)OTû™ÅÙk£U³ù^ ‡×ÜÌÙï…¶¥k{f¡)kZ9ï** 5£èsQ»Äàá{G†8îÝ߃hÉ/ñÂ6zE­übˆ9]¡xÚú{Sˆ©D¢Õ»û~oPeá»v¸9ãBFtÂêA“{MÒ²›9?Gªw=²Ñ.ÑíÙq»>Lž¨Š¸~%Æið‹ugòÚa6Ã0eP²¡³Jcsf$ÍÿÄw{UãUŸ9UÅ>UBݯ¶:Bÿ—ˆ\m»»ò,7*'Iþ¿˜:‘Þ¡$$±À ²e±hù@U¶± ã?ƒÃW­®]«À„ú<ÒŸ®.úI¾ý ¹¿-lf2bmñ4"¯/nJÞBmön퇑^õÖVƒpÃ듨L¶½ÒËûɱæß<S½\‚mf7x¤˜ê@‡ÊÿÂ'g#¶R€A-[?›V1ÊÙšz@ÃÅgTì8ðDÚ¼Òg¸Ínª *Á•AÑGÄ ûEVÿè›õ6¬9ÚÓ Ê£VP”(uúíǾ nf§'/`#¼YôÚ7*.Ú|Âx•~±E3¦­(dÍ›m×€çi™¥¹>: ÛŒ8×—dC-¢; eº²¿>A×j©‡ÁÆe•áfl°sp)›'Ã×ÒcÊ3zíèóK4Ï­ö—Zðp4‰ T™ÑÇç ÔLK«|@2Û÷ ßÍ×Js2"Ûkä×)ñÀ$gJh¸‘£ÈC{dÿñZéä9J£°—°}>ÃbÊ‹ådDC ªcí-ºï¢Ú¹_Ë—;HèjL·MuBdæÏГNAݺ^N‘²¸ûÕĹÏÖÿ"î†1¥Åû•ô&­¢yAˆù5ÿ'×dš,/˜´Ç¢½ã:茷7g)Zâõ$W.ÔŽ3t×g‡ œÃM­ûÈë «â˜Óty¨€(ŒèùrRÛF¦¦¯ç1Æâ^,þˆú0!<ëäˆÁ±>KmŠæ,ãÌ›*)’ŠV¥Í Q”ú-H‹¯ƒ…?7yz# 2q³­è ¯ïæÒºì.tRœ·'ÓýØ.ãßLQã‘Çãl*Ð’Œðí“>Ê (ÑQÆÇJÜçÖ vˆ2Î Ãü—㔇/†|O¨/jhí`þϪç¯ojU¥±KÇ(ÚTo"¥Ý¬áæ†ï~_TC•‰ÒRª$¸žo…á0~×i¹ëSÅ+wE¼êFòê— ü ÿñΚøòÏý*_®¶«¦¦|[åy¾ôIåw2ëjþÃÔ\Ùøµ®Ärª.(b2OŸÒ‘Ñ„a1„ùL¯ó N='† 5‰ePÌüº˜²Ô×â{±òZÜvž÷4†_|ïuÌÉŸÀ³Îïa”‰èØ“ hØÃß3ë43 ˆ¢ŸBÜ¢/ ärO«æKPQLüK ÉäœÉpevE,¸¤ÂVEzBÅÄdBË´œL…ÚCÈqöÞzü2$ìøæ¶­óàQá‚Q«¸oÅ;iQx}M ½Ie¤ £†Å¿bEw‘9ÄòDyL*;às 5d÷A´KâkŠX®JáôqXžC¸ïy§”y-Qw½ƒ§PR#œ; Ì JTÈÿû“|ËàØæ¼ÝU+gœóÏ.mq,ÿuPtÏËm1’–gìEjìSP~e±–‚àÄÂÉ’à*ì·'vQ’mÁ¤ˆKÜrÿŸò¨>[öM%I»AÓ"Y{–5“»Ý”º½÷ÃO"èô…þÒì²ÁŠ÷Îm'Z÷ñ|£”¶´€Šª¢ØÂ¦f-y;ý•™°ªõªçÈ")æŸîv è°N¢¹ú'ÿ#‰“¢Åå¡'E¼üƒ9Ê·w8nŠÛ À¥=Ò5¥[ÞCp®Ö €æ ·ÑÛ :Ä%4ŠRBÙ¦ËqoM¾ûD²€ŽdѼ¾ËˆYý‡±"z@âÞÄ®FGá)î±—Àr!óczè-2 cˆ§õyÄFo*=ëU3•cAèùÅpdR)>ÿQEUèNdܻȪ…ÑçÒl´¿O xrÚ*²½Ó=„ž3ÌkxÝ'ùBž4™¯¬»° pº²[><>x"¦/&µ¤R¹V­¬˜ÄáÈc(½Û{n±Ýê–ûXª.kŠ’ó›z·n)¯uþÿå˜ÂñsA]"Ò¶h-WñM†Ýb\=àÒŠøúå°÷´¹Äv?y7’@ø]£ßëÜ®+·l©Y$€ò_0lÝu’$-ü1ÖvÖRè,¾á°dFd(0p%8 lˆÚŽ;í”_ýêQåilU§ÏŠI|òòSãÂ¥§SÄÕÈp溫¸œvyÄûøÆwÛcË‹ÏÊù1„¤äÀœ¼vGÍêt2¤UÎ(è=ªxC e8fñM8Ê4¶€½öCÿëË„m":–ß°`ÎÙ3w>j ¼z‰4ˆö+i‹¢ÓÝÁ‰bÓ~’{ÃÁÑØñ;—þyžóTŒðí—…@^0Yòú@‘ŽÈPªä|zˆS&˜ íŠüì5~´h¢‹óÄy€*O1dñ6(YôC½9II)ÞÒ pÊ8KǪQÞ×ηlÖÌrb!® m2ÎKÕ\ò÷ Ɉ'»´–ÉâÎgêö{QÅê×Åÿwá±]Ù’bÒïé­ÈDaU úh2°È ÒJSë wôÝãƒí›5É!ÍãŦ‡©û`3•kËåø)\Á?©áåK›÷pȘ²C§Ò‡Ì4?):D E,ÕzÄyÃÊÏ¡64M‘SÔfC×=ä^éäˆÈu¥ +Dé,óW3v“cz’Œä3©¤l–-}pÈå|Õ7qññS“vcÍ.Óg@Øzy­¸¥l¿©°>À]ü¾Å¥Q ™ûíaŠê­`ÍbDUst|Jw9ÛYÂÓF—U¿„®IÑ BC=j¸×KßÐ ŠSkrTIJ+`)Ü:VôU¿v2M3|Kܱ(YÕrÝ\z—¨©Xô~½NïÔíyNSUӼɱƒ=ÇÁ¯²“šx¥­m|s -0¤#Ì‚ühj@ܱd;\RRñq‹ÍxwQl µW(Ǥgö åÅÕT“vÞpÁX?ŸåÈ~•¡Á"JÇê³>Ëx²XÅ%íÕÓÑó{~G°·hÀë/œxÿ›`=Xœ…NùßfÃ&&6âÃ…‘†Á ,F;ÃêEyörùê¿è”NChžÐ4WÇÞkÓĈ Ù½¬©DÎäÏ}ÕäîçDì 9m:¡ÜŠˆÚ% «¥:›I—(:ù,wjS„O®Éͯ*œuB ²¦Ö*èGí2J8Àcv“IíÕ®ÕŠÂPÄéªÔN\…PäÃèN©Fn¥ïxÃ¥L²`Ž ûßÿ‡Él$Àóð€ÿ{MÇb9ßaMU{¨ïô›ÆÀ+mód @γ ^gÕË—Ït‰/”2y*kâhCö¨9qú"K2¦><ü4ÂùÐ ?î3áÓçm ¹úÇM…ÑÓ×ö§­¤6uí!R$BÐZ²çý.ùNÝðI¨d䑃Ýõ0tÔTæY[”Ì/¤T¹&œ·ðˆž%%}<û妸ƬȨ€ käÍàµ8á/æÌŒ¹ŽïW»Í¾Ã¶c!_»$Ü#:‹Õ î‹Ú%ú+Dß÷t:Ê}[螊ìóÉÍÑÚ”ÖÕñ=  ,“2aû\,‘)á Q€¨ú¯ú`)Hä4Â$cooâÕ”ƒ¯ÚUÈ¡zV¹Àë\Œû6FñÒûä°|j;†8æ“BÇnºà³²ñåQŠ…¥-Â9±°Ç €1qn^_ °Ž(ÄSCžeþyéY—9=š¢¥ˆ“Wðne!~Ó×x1°À¡ØVRÔzTÕ¡:Ñ/˜‘ÜÆ@PõfyÍ››_Ésçt¶ÊÿÁz§%LLK¢ÿcnK€W€‘G®T.ûÁ(•(½Ç… ç+ŒIžÔkhD>lLÅc$_;’#ä´ õ?Yo4½ÿÛ±êJQïr8á¨Ì!k¦Ãûì>¨ $šbt”¬nÅ?*E`="ÚÑ›ðX w`Nâ1ŒJYn§Ä4EÞQr¶ì2XÆXÜö.©kÄ ƒ…_Õ{Z®Ú¯k—MP›yÀ9B,¶”%÷ÅŸˆ‹ IÚU"Ù˘[  s¨±7 ïö[‚$Ýð°æ—ð‚›µ¤ö¯\~Ï‘m—ÿäT )”»-Ì„=ócÓöä¾:ÀåR¶#º“íö)¿´Œ†ƒ¡U ¦¥Jeotz BÚë‚^eèŽÂ,¡RqWÄx{ùî ªUº3=r@uÁƒjŒòÂX.„ŸÖ”o¸&>Ï&ŸãgFGµH’ì1G"+ãœâj¿JûgÞîÐ8èC*(‡OE„jc~æPÎGþ(Ìôõv6»Ÿ¢Ü[ŽÕã `¥Ì,8ÂweÇÙè*þ,91fÃsiÄÐ›è©Ø:’¾¿® };á—M¬Oyˆ´á ‚6Î*FdVŒÈíª‘b;É-ÄDºÓÈ!ETM¸¡x ¨0ê3B¨[c8áÈÈåÞÛœ…UÓK÷X°—X³âÔÞÏ‘‚hXŠ£*îÚ)›D THòóç ÆEçøý•ô¸¿ç›"ÀÇ­;ô)E8@ 9$Ö¼1|´·öÏõŠô¬Ý_—eÿìúrY5¤"¿»•„÷³öncš(õÔ:1fz>Z‘û1º¯«¤.®¦bgtè-ùN93s]´¦õsïPœ «ø×Ðz6…Z¹…渓’ÛMWmÁl;Ð)¦.Nø³) zá$Y"ÉFŸ Á(êÔî×·âj¨L­UxëûÃÏ÷Clü€¡Õg\·>¬Ämrc|ø,RI¡š ºÇì¨2•¬7-Kð¹Ñ‹ &ì7Ê‚¬ŸÌú cËOꈮxSÂ9½µÜÏ(mûÚbÙ™Í|ø ð†báét ¨~I§˜¤<Ú™¦ñÞûîɘ±›>Á.¤ ð½ŒÙ'S—ÿ@<†eSh9ä<Œº{ÙÁÀÃ1è  (1ÊrÌ>Ù_t$×zXù,œ޳)£LfF¾¹8›…#~ʃævüñ›s½ó !§v‹cN–²²¸Ð"gœÜüAXÜË €b5¢Â„fæ~1p²÷™4¶: r€$b¨Ž8ôiŠ0´MìW5S…(ê_õ‡c¾Aîmt›LË Ç|`ìA+E'ÏYX+󧃱e;JyÎ{ÏÏ®ÊPÐ7¡5ï|‡ÍîÙä©(º{q#´IÁÃqXô‰Ær”F·Ú}LÊÁ 7dª<‹ÒçŒ-qÉùCë°PŽüJ8¾l ¢„1ï•¢Zÿ<%‰v”Þ¢ë¥Úc x1G ,áb"'Mv+ä:w‹s=…¢c ÁñèË»(i‘@ô•mȺ[¸¼æîZ‘—Q¼²3 0lªc÷ÇowÌ'¸@àRã–":$¦ñØoÿµ° ˆ7-2”IüÀ¨’ *q÷s©12=JErÿºeE:†TÌÒS—…¼)¸¡,|u\ÞÉÕa·-œVÎçU\¸¶ƒBý@ëŧ;} ­Á¬0‚›ãz KÝdÓ¦‹Ô+‚àÀAɲ¾§˜QèiàèÚàãŽÄªg>½ê%Ù-œ‹ÍÆKÍ…©ûäæ6ï¾7sŠ4œk²VÉd,6ñ_Ë}AÇAÕXn+:–Eõô?öß©Ã)]ŒÞC¤9«9IuÒ—,ëýœÂ2/¬m:ï,-1EÃb³Tݤ½å$F3¡·ÚyÁ-(ùÕ¥Ýß5íÆ½f¿>óÉïE ã-Û ÜG¥z®Èý)mÁ®GÓ´ÌsK­¹v=ü6ADÙd8ÓÓ s¦ðlW­y<)ˆ*Óʽ܇ú{#voo§«ÄÁº‚¨3vYO¿äÕtÁˆmÇ7%OÛÑ–.GAË›Lª,ûðæ¡xêíÊ Ý8 ]‚‡‚¡¦ úfÄéãöd&Õ’¦]ß°é—em~WõU)D=u8+i0[ŒØ*!Ø&Õ=ö.’ظqß ½Šf¹äë'õ&ΰ˜ÎþíT€ëC*ƒØƒƒƒØDt¼ô*Xô:,p³ôÕWa<³g~_ŒýNÓ#‘ÅZ4œw?£ŒÀäˆÍÝŽÄ`]»Gø¸€¡ÈÞÛ¼ŸT,‰ÇÈó²x f ÆORîÀŠ­lü­o3=Ôkt6¼›Û‰íõº‹ÊMLÆÿuR…žYi#¢ìñÕ’D_qü LÓ/ï^sŽ-ÛX$¨áŒ] # ;(ÕºÃÄX6_#‘8¿¹º&‘ó3WÞ9öy„f, ý¦•ÿ4á^ô3ÚÃÔWüåßž#¿ó%MŽŽ3ÒÁŒpV #H(7ãOßúèK4¼Óeo¡ð­òyö ÅÙƒü‡zvÛ"ðçëCÅáÉÑH+Ò²œšÚÄNk¼ª¡àÏ/:a“­6ÊNê%¶»Œžoì®å;Α½Ëóg9òÏ©°@jÑCo¤²…×äÚmí œÐ‚í͇_f.àöú-á@Ë–œo„\•®Qœ.º„i¹¶ÁC'gW=Øl=„)–¹K²åo7¶$â†U€Z•Ô¯ÖxµRý;ÍÕ»ÐÊÈ#€[‚óE@BHÑS½l—‡–ˆµ:uhM"ì 59á™eù±h„k X1.yè~…æ71Ò@ XÄÈ”aó«F&2Vl|tŒ+7cìœp3–ç£xc⤹¸°†upA»øù3¡:‡ Ö9;Mš©—Fe86™BèvqłҺU+ª¾IÏ‹À{où6s¹­Zýóãç˜ÿÔŸzÐàEÑ÷—¸!‘ÄÔBŒ–¼#¾õúáS½ØÉb¤À¯ÐüüßôµU%„b@§}fn^y0ÙõËSdÑ~2ŸªÕl\(PJ3f%¨ýPŠ!ß&jDIµ$«×ÑZãÓ.íN›~Ðf’ â}Y[öݳ „ûÓƒ¢]È_®n 4ÀÌðè] Õñ%ѯ´ þ¬”%Ü9í[K¹ 1Ëhºwó¾Fb»WÝ1ÆTj”OÁnMà†N' eÙsPx"ì]ß'3@åå5ADA9ꀯ;[86/žÚ±éK€ oMûc ³Àa*â.ÛÂýËÔ´ÃÜ ‡,•Rû™ç”–æëD¨SÐøU½² Hq~Söƒnµ<5 Xlü¬¦}‡s ‡)Nir,|úmàx¦¬ˆÌ*“]øf/Dè3ý_̯†{û+3¤Ï3Â2y«™ Y)2m›®Šªá8Љ¬* —*ê‰y( ¿’?¥ÊÆV£GˇjJvÿä¹T}‚ém²sòèÉÆ˜ú‡|†LZÏn>Èúò^xLó5 350‡À»¬ô #Ô™:šDØ^`òqDp¿%ó“‹´j¶¸Ã©„ŽújiÛç÷¤9õMpPN±Æ Ÿ 9=ï&ŒÿÐç5LUÌZùáßÏF9Ê`þ™jôÅáöNÛÄVôÙY€–ƒöŸÚdaHo‘é qÖ ö[µÀíV5ƒ|é…¤65)e˜T‚g4UÃîÔ¯¯¢Œ«‹ÓÕ/]žÐƹ¹ Þ­‡ÄK)3R U`w¥1íœû´CÆ=WÈ¿8Ô”(%õ|æýe “ãùåá7À¸Ä Âh´—¾ÌjÕˆ€Ù½yhÓßdBp¥6¶àaÖVÕÒNv è.Ù³f¦'î7Ø. ý¿•ur„u—hæ$Ý -D_Q%RžZ¶Òþ‡ rþ¯u¼Gм}ߌêÄyK’ì)rñg% ]f6E£hÁø(ó‚ß美¾"ûzý\ü‘ó¬­†kW‹M›‘–ûAÛôêoX¹$§Wúܶ R4k3wù]ò ´Ï5ÀSßkgƒ£z;"£Cé67`! k^L&R2ƒƒË0á;3ãlüȧG¨eŸ‰ö}QÄÞ®Q½Ä%$lð JMïÿWU}Ôúee Öôª68Á'‚ÛЩ]aÕšî‡Ödù=ulótH5!÷U6:_¦J}¢&5ôZ?V:›‘fÇ<ØD¹_+¾²·‹Ò–TÚƒç8tTÅßh©ý•~øÞUæñ‰‰¼ T;® )òlÎï÷xÝÌøÉ”Eî{,Ùùš*ºa;—›å¢Ñt¸ÜP†>‚LÛ=ñŠ|9æ¦EÏC%lœy‹uE:xiEIS2¯Jáy/Û3¯MÒ¸qÄîÎìGTNð#¦~q†üãéšOj²;îýjð¾ç>•\¯'ÑÄ…Ðq‹c¹ìd/ëp'}ȺÓÑ›ï~¿¬gÀáXvW®;?ønDbçãÿz”8N¯ÝËQ,v6_¿ga\ú™;]ë`bì&+—‹ë)*üx)hâ­›H×ò5 Ðxì1„¯CžHÓFÐifJ°¦˜ö椃'¿ÚŽÃˆWi(-«ŽÔ8s aFv›±ÄFýïé·º þ^èü±Í—^)–bÀ_cl.Fòs ¶•ñ»w_W‚“(„À‹/ב{9$ŽôctÅTžm¤O b:-qiŠ‘HGÂTNËù΄;Ï=Án@áC€Äj„¯ä«4ø’Ó¦ˆ{™Ïf¿u/ÄWbãvIkÙg2‚‡Os©NyKÖ(< ‚µå‚Jèp¶4/“ °ø2;IMv:¶a¿Vøhˆ1ûQ$ôÈýÈN •p¡,…¢ÆHïÜ×€¬õñ(ÑA7t”[2àÉú"yçÏÅCOÜ¢aòd0ÐÌ[öºéØðmDQ‘0'"½¸7dÖxn)Û$!#”ó€Ž4`±_‡ëS¶*¸ú9¡?ó þ°óã).̈›p8ÁŒMÄøÍ ÀUÌÒ21S¿¸-øhäÚp ØWÖ¸¼ó‚ÒÕ@nR#QÔãG£~ÿ†™ÀÖí†P®“)Õ;å6¾ÄàÔæ×NMF'ús䉱tÈÙ¶W&¶­j¨Êï›gÅ€[׸ñ4c1®zú¸"ÀÔ(š ¡wƒCа`¬±õ%.MÁú¶ï¾ ÕàÂ8Æý‚õT·“jõ}åB&bÅÏÔš&Lžê™X,æ8¤gWFš†ºTkÆÅ]Š·zk“Ó«ÇvF?=žVáp˜ž³–ÑzNåä £o†¨œÎº5;ß/Í8¹¨‚x~êU‡»GÍȬ÷qYëpÃ*©Ðì#õUQtê®k'‚¯dm³åÉ̤ªßašáÔê6"|Dô`×(w 4§ýï®™ ˆÄé„âz2ËßãgS˜B'yyw­þ´N¡bµ0mþ@DÇ IˆLgޱ\ÿ¶Ø[¡*n`ÖÕw­¼hp€ Î*ÉÈ¢U2½ðÚ¾¯ •°–¢|X ¸xêluίÜ\Þ‹Q‚skó‰«HÅô·(ý„ÉTà'Á@?£!<7p÷ßÄ¡äá${wÓ-ùOÜÇ/ÖHõ[”]ødê$Í Ôä8ï¬'Y:Šû‡š‚íó©mm"eD ~Çih½>M¦gLaØßt¾…W†á>EC½¾¿þ@D!pq~°ïVôT/_'Ñ zljÞ9Óú ð„]_ ²»‹®ïTùÙ­~žè›*©óé§G0Q Ö‡:Ö÷_K–Zêþcši™Ð ¬#š+yì¹s¸ŠöÓÿ äs›æš»%_óÂe„ó•·R µ}\E Ò4ˆ“åÙñKÃû°ÆçÖŸ‹lï6öºsuè·M)ù·¦PÅØ+lÉ…÷_Ás2„Í×ykéj¾÷­sY$îÈXuÎdäãҌنš­Ç{Ý0´ ÷qöƒ§uÐÖ6[}É•æ­r©=­|qaLŠ9ÝíË>\.ÇÙ bL×±k’Ôë×ɈÓ+äüä}Ê6g¿rÎäCå#hWikç¶W4ŠÎ˜ˆ>i†?ͬ›|&±”_û ª½g©8Àî>“aå"°À»W©hîÚ7˜‹_C#ò ¸xÑ@À¿%áLã“ø§ÄòÎ¥iñž¿¡ºSÅýV™Vb#«öD;Ðÿ[Tω…¦üïayÅRüº&å_í¼"ÇpÙä”áÞ~Áûð Åo 3Ê?fp©°_µ~ñq( Ü‚°gÍ#ÀôÌáßóf» ™Ó=º~âãÁ÷ÙÈßÖFÙïˆäi÷|/e$’o(€‚œÀH2:Oa ìï¨ô0’Å4¹ªí1W¶X$¢õn á?Ïù3þ+Ð €¶L)£1ù8$›ó ‚„G;W'XÎyˆÔåÓ•>ž!”Ó´ÓJ (zaAôzép!/¤æV¯×ÚkÛtäZÁ-¡ m ÃkäH Z›p6ê3¤>ãç7².: Pà·ÁðÒÄÅ@iг…«O¾°žOg¶¶Mmd5tfêb¨0Bï"ƼØ\Á§¬gŒ0Ùûçß#JŠl 5J:ˆ¢"PÍO{Œ”HÕÖζ|Æ@:ouñ \¹Ñ.Xñåôv^ž‚8[´°³Ujì(zà"øí•>7 `þ‚^3Ûšý͉,éNe¤úÒ0úÁ¶R`0ò³ð3p¡IR&G«pŽÈ ó²G°æÄŽøÆŸÌò4ö˜M'<-à¤ÉsÎp­è)ãÚ­zÿô§ oPÝü5×Îxà&Æ«GÃ/'b½© ¢Ý@¢0“??P™»´‹ÍG<œµïÛp¡¡Zò&ÁΚÜ9ù<祢­†W7–Ž•XøVÆI'…JäÖ¶üÑ÷âA{¿§¿þ ÈÉ×Ðæ/JÐD[¯¶DðãDI?ý…,ª -ê}ÀýQã¢À”&Ð﫚ž»®Ðƒÿl¨sÛÖç ±!${j`þ@ÎH†Ú~Úx.:ßûHÕ‰k•MÉñŒaãI¿{ °ÛfLöÆlàt1Y&Üú;=©7² $m;“LÏ ¯ñy2ßÇI÷´ÅÉ“#DRœÛ›å)móBÙ¸ 8‘‹8XC®+—Î]Ï2~3¨O³‰YîxÖÆâ¢BÍŸvQ†Ö^> t¾Otsì®cR¶…¯ÔÌ? B; ’«}b¯ýöV’Õûw·ŠàÚýý…,I¢ÈMõÔmYQŽª ¹,­#Y¶ŸNhˆo On@–mŒš'”•(i\ÌÔIÀñ©á³À Ø}K³ž]–Œè+Ñ€!Ñ¢áeÀgõw®¡‰*ÊU‘R†òÇ—Îqøº?ÒT ¢_Sˆ%Œ?’=¤Æ½o¿[1%©o Ó«è…i³Rëó Ü£‰àKñfÌàÝ/ì±$‡¾¬ bìù4#]•>“|G§ K¢: ·.Šîçå6°ôï}Ìd~¾I§ Um2f~QÉïJ<%ɔͼÐõjÆIcm™å™kO[j¢}k ò±æ­x»±¾ùæÜ5*t›}1ê£EÎJ¦ÂˆÆ&{äï¿·6X`¾o—›çÀèã¶q°¹”ä¯5<œ:]&+à ¯“ôx*,ŸÛä»tî»÷œ5ÂæŸ¹œW]ØwŒ-þ|g*.óTZ¾©ËxõVàðh¥¨»„q“1âF…&9éáo ÚŸdO—k¢‚ºÕé0;ÅIñìÏãà÷c²èÛ°µ—‰ã¾.4à&$$LuŒz6¬ë€qE,Áȵ¸)>SÜ-«.dÖϦ!E!:–ç¶õR*wþ §9º€ÏY|¤¸ž™Ëìþ½£Íy÷‰è.9¢€¯zÒÌtá⚀nb¥©æ.!ÐvæªÔ!ù¯36ν…_ìoÎ9R†ÐÕm…¼T½%#µ7×,§SàD f$-©naéKh5‚žä›áVË#uà­:.‡$Dhÿ[Éu*LÇI ôä 4ß‹¤%Áôâ!`@-nÌШBÕ‚Ôû/ÚmÊ/)==øûc²pµ)€méGÇ©V»d½`ÍŠ¿½‡öäwb gN¹ÃÌç¨&Ïpº¬ÛlÂv@&ç6&Lç›$ØœˆÇdAkº834ïú|+ŸÚýg&–.¢‘른9 ®¤NæÛ"vT¦²§ žZk½ü©1Zúíð|;‚E3kVÅ¡»²g–yRut=‚a™Ç”âÝÉÁ¢:stc7›¬ Lò<j>WÊu—ðÎê¢dù)1èƵÇRjΤ !mÉaô w¹Y¥Ò_䯔7l9!k eîúÛÆ•fÊ]¬#ÈÀ¿“¶ü5^.Íõ]år#Ôÿ€‚<èäÇ7_Jg˜â’ê²Ó º“å¥&ÚÕ^ýGUø¶c£Fj‘ÛÙ.°_ÌÔªN‚Ò½Ú¡Bo_Í—4óŸ¨XPýÀúØŠ&BÖ]0 å§aé~”q&„æŒv°­(*ke\]«ÃFvðí7áÞk]Åíg9½G³jùã0±b9Ƽã®EÓŠÃ(@ñ­5±*¡ÜÙÁ‚_ìÙ0ךEyþ[‹;‡0…‘á¼É Z&Qöþw›z¶V+–çCí¾™(uï{Ý)ß±R¡‚Hâ[ $ÀÕ £˜º¶…5éÒ‹C·uûkE£f`Íü˜­‹È“¸&Òøx´‚ê)ÛìéÁ1Ã='z&dœê:®šÿ°îÇH`\p¶mdÆk!Cå;¿¶êÃÁì‰dku.\`M·×nTcø.å}C¾”k2SÚ—¯ªeÇ ñ"ó?§…ö‚SÝoõïe!ã&¦/y&‡pÆðž¸rªÀ£øvðDôsúr›V'K…9U ÿl0Ú½»%)ÃTH0w¼I_"‰jWfì”— Kà†FÙðªO~eëŸÁê¢ ³ÑË®H³èí¥ótåÙki—u¶øxº¿»ò=h_¼ý¡L!䑚$ÏF<¥4Ô¸©V"—b‘™Q: õ¾r#ˆY·ŽÉñB*E¡ÁS)­3x+dzPZMÊä"êý£™­Œ([”ËTî nhrÚJ"бÖ9ïSl²;z‚|ëî£gƒÕå=[â¢ø–VaJ¤âï/.JNûÜÆZQÀFN… a‹oMþŸYѵZ„¥|É´ïùvL&–²àP'Ý¢rcÉlüÞChC÷P…Ùø2«GáœBõ~Ê7¨·$z®ÿã. ~y?¶àmˆ8Ú™O¾ÈNm;2¢oð 9–óˆ¹<ƒ•PÒ\2B¨‹šK¾˜‚].dÔº;šÊÄ$$îrW 2Ñ UZóÁ| ÛZ‚ygdoüäîàn9·û…õ°H¢Yþ*U{¡â혈I!:§hFUÔ»?_I½*ö³RöbÌ÷…JEä'‡‘ɳû5æ{6øppØÙ´!¶)ôhpŒ ±L È‚-Xȵ#EzÉ¢­ÅO ³ß©°|@$S—õ0)ž°n^+F7†Jøhv0\”pÑs<:3ÕÁø[`¹H5Iˆç‚8J¥c_ }ù›oÓã°¤£`–?W…Oõd­D§—öAæD†Åž§çî*ó)º:O9°RÒR¨ç—n'I+ƒ¨FÁåVG¢‡»Ág  Þ êÄ߯²ï5ˆ| âÈ]ÖŠ*¥˜¿¯‰ØÃ´œ ‡%ñ}q©£¬Ó­–:ÚO»f™#cZ‚û~4BA#b ð¬O€}²m›ð£Z®Å&%¹P¦ƒÁ‰ð1aªÃ ãY30NGÑ)f"W©}>¶z$òÓòZ³°¤YjÝ#-u+&5Ôo ÌDjï©ÆÊg\âˆîÍ(2á¸{g7°–9‡—ȵËÞ§JfäÉl›B/ô[° ´£Nrˆæ'úùi¡Hâ(v»Xà0áYÇøXsšã,>Ë÷36û³5l»<æÑ·.vZbÎ2/ì`D‰3-ê5¶¿:WÁ±ª$Éß9ê*›¿A (nJôBòŒ s«QSiäå^-–Ñ’vSƒ=+ ÚŸ"åˆo|(Lfš3T)G3Mÿd§SgRÂf{b0QÍÿÖÓÂå}*ˆÀžqCËÅwkú¸ÿ£ ¹Wór ýŸ´¡ÃAÊmÄ6'[¸ý ÙS}àgÄyÈxê_Ð<éTÈ©Me«h48µ§Q¶Õškk•ø©vͻΞáN£vK³Úkr'LÔ":FP»=BõxUã„G=i1¬¥Ùü.µ¦zj½àgâ¾5ãøÖd©o5¿ƒz#Hg͇+n;žïooC’·{àB%xn#:ñòXÌ2Ñž”ŸŒhšOµð¹¹¼’dw?AsÖ|n…P6*yùÆ„Ç3˜}àa‘~|tºÈ­òÙ¥úTLÈ–N"Þá¤M½p*!¹y``~–µNñ;_%‚ u°”[~ÌpÃbÆËÙ†Yú؃H¥›R«²"-Qo$…R^Ú/Ï+Åhm}•$c»ðvÐR÷ƒ¬²œO^.[ÀH ƒB:›pßûäahᘠ¥cMê<27rí;ÎôÓ”üf ü—‰I,è´ Ó¼.GZ‹Ù½ZUÄÁÿ.,9RÖ·¾\H÷üyåÿùɘ>ပÔfŠHÑ µr)X©¼!¯|¸ýô¯›fâ,Nà®d¨\G#‰¹ïDRŽ‹U­3П5ÁCü$ªe'¼Ž4g‚jCl¥ûŽ)qqðvcÈ+†{æ/Ϊs—ò¡c@¹ã·ŽÚÃNŸ´6Á›Å¾õX×ÞÇOj!*ž:O_¾I>@°ú‘zoúv26·Ú·ßŒÒfʜӴI3=¤K*É£;T8b?ŸÿØi_l IŒåJ°÷ }7熶? ÐqwéLð:‰›Íú¢qœŸÏm¢U˜ ´LǼꗥ>!’îL÷^Rë¾çùñËü]/÷zYâî1¶Âåd¶]×Щ'óœBg.!^Å J^UΚ_ _*å»4R–ŽÚǬ5·÷Z Ï.ÁL\¬µôÝmbcÞý2:žà…øDÎN#Ñúûb®jެ¼±•2¤½­#éâ‹sÊPBb«H0ËÛbWª›°è¬K3¸ÐTå‚r#á€üˆè†ó :ì̤?D° ¢äfP[¡€Ýñˆ Ã¦þíe()»R£Æ ¬ÿ''°ÿ S˜‹è<ÍŠh|óíØL2™\m ò¦çh£êfC c g7ââýÚô¡ØiÛî®! ã)îÕ>Ϲ%óAɬÓÓÜâ>IÍqZ_Ë#(],P£{à°(JÞ¹S0¯d/%L(Îã²>:’éÑŽˆJ›æÈ•òž¹ƒH›¹Q2;[‘¸ÑÁƒ·úœÄT'†ÁI{òÓo#‰ZmûŽÉîÖ.ÿÈ ƒOÌĶÓH¾ŸgÜ)³$_“ý8ÇY€Ì“᜺qŒÔ¤Æé‚9:D>4•Á!RG…ƒýjñ¨$+wñ`áä2ÒÝ%\;à†Çze0rV'û¹vÓ.v;\ŠI¤áÅû££¸ƒn¯ß=Ö{ý?i0Œ\ÍyÆÒøqØJÑoèµ õ«öÂwÃé±(<ÌKò±w%1à”‡¢Öåd±ÄHU<ü•¢0¹ñŽuÒÙîÌÌæß·ïÁé ÔîbïAÍ©gEqh¢÷SOÈj6袯÷®¼Z¤›Ð<ÛJÞx1È•öâ]øéj¥¤1PQýqœ ¾nÜÓú%©Õ[%>r…’}¿…)Wš›Þ%[øÁ‰.r,ínÑœ.·^ç¸Ñ`¤·ŒTëÈ r;»žöߨQçC‹šÔQYâY¬¤“'¢ÀÚ¬åÑPá †¢Þ¿m”74Ñãh׌c¥ZJ™æÍnØ^+U#ìN¡2S¨àpïkw;ŸÜ0wxÙç,즶EN4+Üù¡EÜi ‘§\’ì$ì}ŽLrÉq­xlÇ;²x±i Áº@ÁD6¾±% ÒF6Ê©½Šp¹©­V¶´dJŸ$ÿáààå~V…£ò)]¤Ÿ6åy§òÛŒN·,1žÆîý­xÇôG‚hYÇY«Yì4WÏÉh9X-E@NDƒ u¯Í(ù@=²Ž’g ¦ì—5g‹ €¼’ã"Z­ÎãB>ú¾Lák¥¹¬ä\H*:+ åʹíw©~X ¼D}2¨â ’ƒW÷Ô–2„_ûÚI>K?þ&ëû:Ëf®Ì¯¦ÎbÊPiF¡:G,­^—iø *Q®ê×…•ç½ j!ôZWBfá°ßî­7DÝ}“ÚP8€ÔWÀ‡³{¸ fRûÔíø¬ls>2|Jšþ!Ó„Ìêî«v>Þ¾všØï—ž¿˜Õõ@lý·,õy¹åx)!=…s\ççr!}‡1²2TîßÃFRäÅp[Ü$rýõRD²y]!Â:ìú[ÅËà»!tä ˺‰lî[D˜#ö-+{.œ`ÆqÒÈëüi7< ëÉ€ÂÌF•;ʧ ­ô}žw4™õ4“ Y»ü®,'„˜ôÁéVyMŸH•h–Oˆx¾r}X%³–™º£¤‘óFÃÔW9й$¹^éÞ ,Ü-^㟒£”½KGÔoË› «í’™d)Äž;.WDê»O{¯s2}€hëØÌÅÐ`5ɲâx6¢1E™Ò3d¼Ó^üþçñ!µW©'w2“RÇ2؈írÔ‡–s]vAYSA…%~PØ‘"ÿ.¿.PsýqãÆ\Í2 D€æ šuRÕ àE?2! J°<_þeJ×ý ×PÍëµbÑ b{€g†.EKe6‰Ú°ä§Šè¡¨ 7ÝÖ"X¼ßσãÚSÖuÒH00İ$*µ©8µw3ƒúÁåô-û—T´S–Kî»øºµ¥µÆ›À§ÌóvþÿpWŽè­Š=·F½HœÃá«ë ž¬ÂQ1Ãm½pÒÞ¸%i[,ο»+QH:HpSíßÚƒ“øÉç8r$ðüúˆøÖÕ8÷žsfwï®T”]ÁÕ®£¡oN \¼Hî€°Õ }Òúê BT WÀ_ð†øþïÄqæ¸P »û ¾Ý fvbÇQ·à‚•èŒàe;©½ˆéN‰ž…#}ê½dó2L¡6Ѭ¡E¼¡£=ÿæ@âùÆ~’̪½i· P)M4mA³óV³qûuOÞÇå†k ê-’ôÒ:·ïÍzEV›IŽFîèôŽü^Ó5«ŽìóÄö_â$v`c@ÌÙb'ÕØÐœýË"±Ëj• ²I$~–hš×bL«Kè?ƒ ”pÏ‚m²+ÓLС—¼ý·AðÕ·gBoI´jâ.6 ,†Šþá¾ }¢óËÕ2¯ÏÏWd,ŸñÄË. Æ#.‹MâL!¢9:Ý¢W´ü*­‚pn=y*Î+ øYɾ£‹‹W%`–¼œm¤3»êgJ0N™äLÇ@›Þm3Mý(d³NFÿrxô‹¹É––›JvÑÇF‡éœëFR;ï=ûA°7¨?Ã9©vâØi Wô¹šç¨ãWsñÓ|ÎÉó+Á WYøŒÆ–\4AÉDI‰`ñèZœÿ ÀmO*Û«$ïX±°ÏKÎþ[·Fõ›‹˜ô§Àä ¢¿®*¿®seåÈ1œÃ_T´}Ÿ¡ ³¬•wªÐ÷|±o ¨ë¹J?]“ŸeÙáñNáûlHÿ ³Ì=ÿQ¾1%·˜t•qµ=m‚k”v¾Qpº!”é cÅ9M}XE£“,7ÂMÜF¨’!²kñ2ŠWˆû­“FhòËÐ}e–_µë×Y‡Ì޵F [‰c8üüCòæÎ¦ë´É#,¬ÁÄëI‹Šé/¦ŒÜîoÃ×a¨r…QFB`Ž­’úöDgëõ  íó‹óç ‰Á: ”­>¯YŠoÞW¡‰¦í¸Š f/H„uåq}ס³B2݇V4NßZ·yHËñ°>¸Aê'3GW6´ø†ÿùoÇ«èÊBõŒ™Öð±þ]øÍ·HOå'´¼p£õ$x²>W´Fo¢ôd{ P)Ì[\D⎤qïG篲6úu­ŒžüºD]_#–¨ìnÃ.#ª¼“B“&¿U1»ù¤\3Qs*­Âa„–+Û¯|;ƒâG'ÝGàiÒ¾îÚñÈiZb43þØ£ˆÑÅ<S?Nª?ð)yNïâ"§;Ý«Ün}›#Q ˆM ›´ûöZ”9_6žJ°Ü7+FLheÀ(ÖÓAöøYãì°ÄsÐÄÕ‡O¾Ÿekiô *NÌ‚ Æ"û5Xèm*Ê.Ë_Vi»åÃáˆe»;i€!·`R ¬,ægìÁÔ¬Ö£&ÿdöÜNåá¸õÙ–Óµ'M[רÝò²Ð0ÜV [ÿ`¯Ä–Âyóòè7[Õ«÷U\¼Ÿ9Yxä®ßÓ.kÙ6Y’8aìH8ešˆtT“2ÑoLBa‰.ÚæE ë§4Zè¿Ð:3 Ü¡IîÕübÃR% eOEôZ7æc™õ‰ŸZêò¥*xkºïàÔ›1§}÷üW€B†+€oÐ;›–¨gTlõjO6슰ú°‡„Ã^BM¯#¥ig#XbT!˜³ ß¡Gðñ(èYNF$”gÖ½MjñšéøÊ-RO¢äö9Î’“KV™±È&½„äHÞIk®ók<æ­ÎÆ@â e¤F¥]Ú˜Q~olð}é^’âF­…ŽÇëÿ]‚zèüŽu]ªÙKüO\A÷ò)nÛ[(ϵª#\Ö‡¡(üØ!cÿÔ/suw.Ué«è¤"Ï×6”ðÈâùs1$‚réâFÂÁ¦So Ø ÀÖÿ–»®6kŒ¿†ìË(¿_ R½•q€íâF"Üx©µJ»6GÜX½:÷ÏÃ}¹"ÌyÊ 0ºG›*NìW\2®ç$ÐKÊNÍä´,{ªJ6m °5õfd$°H¼É{çx°e6K5ÖÇAh ‚0: ’]œGÃSÑ–Ph<}ÑI¹×nL”3…?½r•¸* î5~;”é^hÃÂzœ;¥Þh –¥‰!0­%£`‚ÏLKêçÚî ù’¨X«ÅÑ‡ÉЈôp¿äíV½k9 mÊÇÐKî"‹˜%_Ìž[T¹‰Ç .}ë>Oó‚ñÚþ¬Â„DÍSvÃä#ÕFŠíÒ•|(Äl?õiùÀî0æT<6Á‹‰.N&’ߎ~+|Ñô³Ÿ5‰a@Ùñ`ÒÉkÖlƒ¯>àEë-Z7"¼w»ÓkôR¾Û(«ÏWÎW×—ZÊå‚`?€|Ö•¯>°Áa>»äÇ`¬Ñ Zò‡.­ƒñ0m×Ï=¥Zìá=ÀŽ);–;Ÿw75wW—¬†½É?`¤ï v|<´@—Ô¼QU®é_ÂŽ£øM79ZË€‹SØ;‹©nE‚ßÚ‰;˜hÓóÔ¬ûoOAÑã¿Þç}[î$Z?†CsÀiÖ^.dÝó ”?¥ÙÞolÑ}†”ÂI,ê~Ǻ‹Fƒw°Ê›LsZAZ´cóG¦ÖÌ>>¬X¤Ô±ƒzѰ[o÷/f/ڀʱ‘—}|˜ýL È®Àlîçv-}èb¥É í};¼›cßïÐòÌÒÇ~nEy*¿h{Ÿg}•ýŽÌùAV&‹~$]QËã»ÄžÈÔ{ýÕaq0ߥ d‚Ë­®eT®U\'.)xÃ}W¿ é'Ò#ýn¦Äå;ýr*£ðð9PÛóVbÖn[ÓÎVš;ÓûQþÂ:-$ë˜ÏŸv05XÖhîæF!ä$¶Ê^eL#´m °Ýn pZ CŒžò•ÞûPÍV«Œß£•A›¥x‰0¸ð.ƒñ#Ë(Ò:/j£8[ëeÓ&8¼]f}K“¶U„0÷Ý¿‡!¦Ï|ͬ®½¥Ál·pv ¸,YQB“p–¡‰CPnæK¡£‚§·0^f…9ƒ„y¡.¨-b×ãz²¸ ]òæ ƒ¨H{P€ÿ-s%‚¿sÙ–ß…?Ãy4Mq¥î: ›†#ÜYý×êß‹<¼ÔÒÝ›¡ëåt_¬’áßé_^Œ¦§ÆËÁˆà†præïS“,à>‚3DaaŸ¥ÎLÉ$ŒúDÏ”ÿë_¹©$Tõ+”@žˆµ ŒÞÜS»†å½åcp(WHÌ ÉFÚ¯J d0¼ÕdÀÞÝ䲡PäÕ¢ñÔª€¦;Ca6@ºÜ4¹n5ðe5¹ 3•³­©­Üøí÷×I›WZ·w÷ùwx̸Að \€i;eˆ  2@kTv+²JõÎÐ}à…m¹lP"ZÑ=ä¥ûæ¤*€Pä\¢xÃogŸ¼¥îƒ/Z1¬æDº‚FĸìÈF˜®ežqQFÆ$ÙøEp“ÍQÊ‚ö¬ú­Â¦ihרßÅ:eQ›™àO`˜#ÎÆ‘mW#º—Ü„óøG­Œh÷«ïµü'ö Ó›IÉñM€1¶£«k–÷ZmYþ–î8ÔtF*»€'ª>ª:â¤×x5(êðb‘Ãn÷ŒÃ–C¦ú-ƒY4úlLõÛ>l#¢Z©¿—ˆDq@` z=Öz E¶y”…ß)ô›å¹Âk…±’É|9ˆ«u:TÇëi™ÀÕ?“@ÁÎ0åT RXP󀲃ËÒ¹TÙÁ ¢R~ÖгïîHOþvÿ8Bû²«:º.nfmÕ;üøùYŠx íÞÃzY MÚQÆ×5ÔËL¿pBú®‘ü+»ÃÓõn8ûLöpž¬¯·Yxq_>/]Uüw’dCSò§Ò> ¡ )Ρ)l$´òéÂÙêG¤Ø¼ØÚ‚x¥Ÿ–ˆJ§L“—cRó^ÂÑY¦ñtªÍÉ™WNf3=®Š}ÉÀcêðØ“óÉÜU™oºë0Æ´bïO¦+'’ HŠå,¡I,‚5¬™¨—@Ƥ·å(£Ã¼nxÎ.ˆá¿Â#ÔÊ´öôbéJ!ôcIØw>òA[‚—÷ÔE`àÎîíƒìFãÉ øW©#Sá>¼ªÀzÍt©~7&!¤©. -ÿæö ~$™ÇêѨê—ñGÜ{È›{ÈðˆÚ° 8NêÂÂ#Ê^ÚOR6‹Á˜!UcTa}ÏSÁLS¹øÔä7œçï”âÐü:®W¬n¦³–-­Wس(ø Šc›îºx™«<“]½AÓDê MédÓ»7Öœ¯JØ@'ûj’jûTõUçJ… ,HÂu‚fÐ&˜ðbŒºë£帜€÷zÁ L-õG‘ô»þªø"«¿úpmªo2‹³mÙKNì;½©:úÊŽºÓC>¯_OKJ: 6:.Op™TÂPÎ;)¬¼Œ¬w£#´RcQ°ÿ£$DT;©mHé¾ÄŸ‰&Aé¤3¶ôø§‡!•‹«¢NZ±‚ѵ½˜Œ¯R” óŽú­iK*·›¯læœP¹¸S$GAÌ€P#z¼, žñ­ü‰Ûl»Ë:õEªóºmWæ.OÃ(Â&ÿfÔ0ãnôÞ£/2kÍI€VŸË—VsÁ¿BÙà9ÑʘÔk×+FèiäB»µ€%Rœ¸hŠÖ¸Ù¡+€ÐƒpDL÷štR±¶ Þ}R üzk_îV~ƒ›S;óJ!îļ¡BQ£Ýßq$/.©_º:IïÎG ÉºÚH÷ÊkúléõŸRûT¡¥Û³xϯªg$ (‚ ›âoé1££´^#o®¶.‡ÕÄympNÿÛ‚; ¦™¢›“HSô<e|}­Ù@H¿Jž¦ª5Ðæ,]ÄÒÀucüþõ²Ô«ÍZ[2)뇃_ÕÜg¦EÍúE˜Ü3#їΛMÓØÒ¯ÜWâîE:Ï”²ü‘>^´Á$‘ÑÄÀáû§ ÇiðfúÇÁ-„WÃèƒúâô5ÀÙ˜Ž£ÜCÌдO–÷Sœü•µÿ…O§WŠ€Bf²Y\f§1äH¸UH[±E@#d„K›c(^ű«µØíjìý2Œ€eEÝû¡² Ë«©o9Æ)3c"§†+ é0a«ë—ŒÈÈǧÖD]cĽ»Ã‘¢‘¤†IHí40önÑ•¤= Ȇš‹ß…=ˆÌ Б) ßå_áR¯@fVƒ§)ÈÉÕrþ TbPI¯¨ƒˆh³Ç¶™¹A[˜:ƒ5ùVšf& Å´8y.´cËo¸rîî(9/°½{æŽV0{Ñ+áZ ÊÆœS¶Åƒ‘éÂÒ«c ¢¯R·™ï"G¯¹Ž…Tm®äs¡Îþeßù*=BÊfÏÚ®”®ºP‚…*Ädæ£ô‘–N@N)þWÍÎ5ˆÁ»á$==ˆ¬o‹w;üX·Â-Ñ;år» ú[IÛj\Xü\°ˆ“ÙÁpµ¯þ%Ùjoà Ë‘‚ ë~’võœfpè£6¿æïibðþ­©–Б]ŸÊ=‘ºóŒæ’ãóv S°eÆ`nxOEµ¤% eG»Î‹cuv¥uê;ëŸa&¦"ÍbiÃBÖ¢ /°ÿlh5Êó=¦Œ©}±ÿ¦ù_Û\Põ¡#)¢{#-¥3}–VÒÞ“(Ç£ÙDQ‡Ð™_}ÝZà­Ü´þW¼zS_£ª‹Í+EßDË’iY\ú¤h>e8Žî(Êž…æZ1Ò¯uY¤çBM)H ‘^/ÖúŸS \·'è£r‡N1þ,)¦ ÕòèüjÇ²ÚÆxè-à{fôay’ë—ÖT¿:»@¨0‚ÒnýU‰7Çÿ9*óœB ñ‰ŠPõØ×Žq» ¥ôÐhQóQÃ?œ-NÃ=Ó»jüdžˆå“3lÓ§=y{QUžå7_uxh¶‰ä˜ocó‡x7Â%GÎê^ä=t“ë’û©àëß-P´óhs}ø)ƒ‡¦=væèg•Vkéåpí:E õFµO’!(S³›¡GäEHy@Yt2o‹UÖ)Á{ 3Å*—ãØáIñõRdRÓF›»Ï©1å hâJNì0'ê}eWƒÀ#ØÆ.²½ížF@5K¹æ‡7Ѐѯ6¸úÅ¿¾ãÖ. ä±Òó %û°„ö*c5¦gJ £îÒ&ÂÊU|þ'·1}yqªG×¾SYˆ¯§ŽLÜ;˜ºÎ ¥o« Çá}ðB7M‡ô‚å—“ø%Ôbš1ü1zŸ>"5Î{|7×±>ö°sÍ´öæ¢&RÏwCÙ\ú'YŒ¿×ÊÕšÓ30ižFŠþ2vTTI×`é¾0ã7´raÅ@kà='ÁÊ…@ˆ°°°ïN‹É’¬Kœ"87yMøOùÙ/«M[¥âù;Ú#'¢Ú4ÏéF"ÿô•èÐ<}~ùz+¾K†ÊBfO7õ¬j£ö‰ñ'@¶³©œ‚ÓvWÅ!—鑃hݬí[’= UÙΑäu‹õ]QPó7ËÔ‘ÌgyK€l“‚ p«÷º|æ¥oЫwLš‹ºiÞf÷â·ì=ÑC‘ÈZú"•/úOAÁ¿MÕM~#&¹R ÔZÔžÊøƒ‰õ³¹èWÕõG5ŒxË=¨î`cuthÿ‰3ä>u{Q›ènÚ âkÌQØnlF•·®îݵUe^ó­ÄqbuŽhÒp“©´†°'Ôߤ|ÁsEQ‚©f®éCV¢œW)H™X‘áĤæ@Á—VWP¨L°'ÿ‹¾Y³·|duƒ¦º¼$þ 3×µŒîºÁH_9zSkQD/õE¡‚ížÙ ÕÏ!eR…Øk™ÉHN17ƒ®×37²=K-dÆî%´‘ê1 » BŒš@õýô‰ª¿+€!{à£åµ-E%nwÒ¿lF!ñÉpDƒšÜäú2¦9ÊŸµñcTçÅvfƒ~ƒx‡~½›Ú%‰óàûYü{Èæ3c…*Ó-Vi„";Mƒ¥8™"Ûc¹ô-÷S6±¥ÚJ#»úöË/]"[£`'%_ñ ©™2´pÑc؃zksP]c6†q=¥ŒÅî{×5}]ô¿N ;Ë¡uЊÞÙ©ï[xÕ®RµŽ]œ3‘YÝT–’êRMŠö6ü˜ä$ðÖ0a–³å£J€·!¨²ÆÆê¢Bp¬f÷ºÏ#ê Á‰;IG|ê;,™¥sL2ÃuЗɎ² ®Rð9° Ü ±Ë Yd;;w_”Òé(žp· —f~Š’ê’tZ‡™`;-5tKÕÙ•ÀkWHØXïÔ¶€KÿÓ“tŠéè,1Ò’\ï?\Ú¹ÕvTr¾Í&ÂCD‘‘ý‰ ÃÁlIß‹ì"™Á¨r,€Ô!¿õ~ãp¡åáf†ŸÅ!PJ’ŠdŠÈ2´úhd]{4Iº´LK\þNJy*ƒŠB_‡ItÐ~뿈b^ uÚÛh(]ƒÜ ©›ZMÿŠû\ƒJA¡1ý\Îçòá¹GøÚÖ "í·¼² jé*ɰÏlJ iÂÂåÕpÙ»P.ÿ~ª³™âf+¦3R’+qØÑ¨Õ°åǯ1WQ]‰k÷xAO­A#e”+™•Kª‰Q7:SM¡—òeôJrÅ6¶X!Ús¦Ôèrl)Ô͉&£¼5w± )ÍÃÞ©‘dk¾EE ¦c[NÍ:×Ñî­.‘Ð;ÂPÛÓÙÓÏÖ==E—3 éÙW=(_s¬gÓÎéK‹ÐUí6ßÜ2 triìÀÐ0èÇ—´eB0å©ÓUH.'ñ=ðÚžMžÈÇ CˆaVÄ4›¬B{_¥= b¹ö¸ $ÉûÖU°ïø’×¼çf]}@òÚì5É'„“x˜â¶5÷@§ ¶ªkzWçpÍ›* ¹k{p°³QËßvnîòµ¤t ®‘Ó³uƒ ?Ñ™\·úb2G¬-+¤MبrÓ>?â_L?ïödž›^¤KÅÝ• yb5ƒ/à‰1_ÚKþAý°Ú šéßœHWoë`—âÍdA[ÏJgØ’"¬ Sl“?]œµ¼Äˆ;ýþήQÄmuÁLrXRËTŠs>ô዆vÛ#@µB¡÷’ù«S$ÿÛªûtï!…—äW);Â>ÚáÊY=ÕÊ6 M ÚÎÞGä—„tP›™‰L°·iÆY|«qºÕÓÉgå@$“».xj4/€…y—U°‰Ž‰ðtºÛSkdõÓ‹WúL›cÚh° ã¤KÇ\îÂ6±*¤enÓQ¿ºEźW¹Ï¼ZöëÈVê)VÒwv]‚­/÷Šür (º¢Š§6„mD8•f§Êií• Æ¶l·³A|8ÏèýšHûá<ý%8îíõ§í™rVÉ;ˆQ«\Ÿ¿–ˆ/A¼ô”oÔ™òÍŠñ ~Ë"š‘º¢#y•“Ò>§ù%YHfé—ö7I ñ¡U¦½‘y7dç;Ü÷cÉ™zFÛ±¡¿HbNõG»‰´õ /ÿi.44Y/ â‚ä<̲ãý¥ú7$—W1Ëw5V¾G¦GWÖù 116hol³ŸÄÂäô7©z-Åö‹ÇÀêbí9¢sÞ9\³Âóýe˜÷š{S—AO/ŒFÆ3”‘s>7vöÍ9‘kô«(Œß°Ó;òÅ•rœ$Pùo¦ôy’0¾êF-íÿ÷Ú=YÇgï4ÂßjVUm sSÏv:c±ÓÙð±RŠ™gàĽÞ”=Ë';n”°ØÁN?Ô›“cŒx6 Ú¾üÁ]øw=é˜2æKœ²CŽNziš+Ø&;Q“Šœ"»ô({·»õf,ö}hb¢Cœ26}6’Àqj  D1 XqÝD¿¨@kh!ŽîâÛß4-·IÀCŸG±VÅO‰¸ãÄ´Þ©V\ÅäV¨™Ëª*™HŸ%qµ8Hn'4x«}âØ’©üæœtUHC͘×eXŒn"¿-#Ý‚¥«{Ç g:CA±/¶.Û Ø·ö°fi?vÌYÕ¾°çAûãÛO÷¸Ó5UԹǬnœx˜€Â gü I:,ƒç/SÚ™à¯$iÍÄ ÿ2éã&j² Â6師©CÆâWÐë÷p,tVä;tÇïÆ E5Ñ€W|@JÀði|? oЀG›þÌ?×.íТþw<^ÇçeÐësZ£ Ð8ÀFœù§k?µÁ…ËJ€Ã[…ËLV<ê»#õAèc!àb+bÀŽˆdš¤`ùʲ^MÚû{§t²3"¼~!fÁá.ÖÔ6ÀtPcRÒ£¸Eàc¦îæ4…Ïl‚‘ɬÓGµjLûàãBÄ+ 9>cêÐ9!hW#ýifú«É\TàY¯ëÑËÕÉÂ4U^"ðœ|¢jeôëj _†þC÷,ßéú»˜^pïßþÖ!m×D9À\’r7­u0ÀîÑÅç¼%5€§{ÉÏ}"Œ ÈWÅA2O‘D’–ÑèûûÔ ˜*ž¤´.!çu3i€ï>?ƒ @°HšÔÊãq†áeUFè­/SMžejŒ³Íâˆ4 =b K²tâuèþΑoçh@@R±f6€|T_¿Åï©’4‹1c8.·y©CÒ6-Ì»ŸÎEY™Ù·$J§·…ÇÎOIMúñŽŸ·÷µ­.왉Ԃµ,01®ìZÈBõh\ßXÍYæEò£±ôE¡Œþ;©fwÙ«mCOÿpÔÀn^Þñ9¨Ç-¯x²g:%( G÷²¿Ã"ŠÿnÙš»+dä^´aûCJØl$ ý¢ú@„„Nó…ôÉ„}ÑÆo¶µ0'í¾H“åúÞ5^=ûÓs»ZTm.ÆWÕo3GÐrš>Û¬ZQb­ûÂä®ÈS!MðÞš‘Èœ,jÍ¥Žƒ)ÞkgÍ:Ð|í®ˆî½¦hÝ•6èË«–’ÅÃÁ{R‚Ø’ Þd^i¢ú ±¾…þ»èÝÂŒÿjn ÚíåÓðXi 6ñyã©ìŠGKáW#–hÀ¡Fž.»Òôו×EϾ‰ÅPû¨–%i„„j¼Ro‰{·‚ôÇhgÎ[÷2ßöÒµ<J^ÏlÌ.g]æ¯r¶rHG,Ÿ1‰IîŲ&öçÇ© ‘šá^õU•‹QŒA‚P¡øÚýô눃ºGÌÀïŽ+. v[ö%m Oìî5¯„‚@/¾ÒÓæÄœr’©•˜œ³97¸ØW¦¦'óey6 ëÄš$þK5ÖÊ%Y„¹£ŠHö@J%Xn¢Sç¸÷z˜/äŠtŸú‹¢»]&W°ØFý Qß=7TSÀâMÚOmPŸ\/'îÀj²m™‘ƒ‡ÃÑW‡z€ƒ…mYùOØDp»» ¯p–‘šXDCº¾d#RzÞiô †è>0¼ðyX!‚Θ³æŽlN`ð9Ù‰~âR|ç[Á¯S´N_¥7Ç&Ì:*·f:¿ù„Éq°­ÄŒåÓ c§|\Ãþ?òN•ó.øº"³ ‡‰ðÔ>? '#v!ªüßg;šs‡çŠ,¡KÉb!–Jø^çK0ÙÖðÇêØ)]dv§ßïÄ»6H\éÇÜ€DÖ.ç¶6nÉŒ0+mAIø¢©´|² ¸c¯î50xÄF­z íx¦óIÁAd¡×Dñ·?Ðr¨JɃˆ˜¦—0ºý¡›¸¢½n£JF¶wnŽ#Ê”DCªýÝd|$?ÀE_£°Ô{¿8ºõ(?u# Ãa'ÑÛe&möéá¥F3>èHªýöƒÎûòg|ßNýá}Æý3=n…DÈ­\.Ä¡•raÖ‰Ö4–I™¡¼ÇÓ4Ö õäñvÕ0tÖP›æàðÁ™žsƒà™Ž ”!LvÛ:ä» Z“$´Íäq%du-`írª;­Ï¯E„Ðð× ·¨×Ââ {ü .»6ý`ês j ä‡Å}¤ÊŒèüqâsÛBý!WQÀîêÀEwÜ!q¾™°­Ò9!’TmŠvÐ@ ­ª.¼±}&êö¶kIvוšŽÙU*‡„ÛÏßg¥ã¨‹d»-: Ÿï˜È‚:Yô>F 'ø%º¹"öàUÚÙé™Q>º[D¯˜¬U躒e­ñYÄI òÒm§ßTÐÝ—dÒÂQB‰¶ ™;\¯|Gå—¿'0[ùW{F}ó™VwÂ7ûl ¸íÿèn½/eÜuå"õuìy¢ÝY RU¯üÝ0y‹5èåÂSü3Ç!¯³>HkUŸéQFÎê“î+] þeø¦ŒKÁS>Ê÷†JºŠgœQaë}â÷=®ò€ãO-W-\:€À@tf—ƒ6÷Æh·eÅk Õx°hÜ‹¥+šä„D±³Î±v5Aâ¬dàOÐ6<pOTu;X§Ì¯¥i^ëõqÃK-CqiÈçŒ ãE‡CÆYì €oT@ˆžÅ …eŒûÑØôš Ãr/væ>b8AáY¤­·R&K‚&˜¾,¯bÆ0UËÆ°¡@ „“ªgqѡгtlöl Ò{¯¿«Rh1uV#;áUάBÝwg"Ïðv¸ýåÂmyŽä‡!°ÚŠ0"Šu¥EôÎó&e¾Ê`}çJø×Œ}ª‡P¾Ê³²[§ïªfÙ9uoðÚŠˆ–Lc3ÑAR mlX0ëñðz¼e5†’|[™#8&Ãc]ˆ2=‹¥Ñ>ìO´Ðxô8­ãÙ‰o$¡·fs¾”!…sc× »UXò¿°ºŽ" th:©i çø®KgrôÆð8È ï-ÝE ï¡»¯¦|¾éÓ…q%‹1·ëe¯ËÔ›Z‰¦þ«Û$]Òå½wóóˆU‹s´rç8[îdäÛV´ 'øà¼†õFKÅߌ€8`9Œ¬ÏP6øM„*i +6þmig M¬È^2pÆï8ýERþBOÅ#ýNe:œ„Kqc§í4÷x•êlm¤a7 .8~ w"‰@•q-õœg“ ú  +½:}cEº‘‚·$ÞA¾ïÔÓ^s´»wÁ‰‰CþŽÁ(õ|®¶:në}N|”Ép¦Ô8F˜g‘#Ëp¾IºM†À$c€û2Þg;Q¡*œRK£þNѳ‘áð,/·?ÂÙ·¿rfkØýÒ;³ÅØbíØ‹%ƒÀ8Y)šI1É7_é%Ñꜞ!:‹m F­ìŽùÍñTaªT¼Õ¸Rþ>;3רW ¬@»(Åæy‡ÑxgvpvO‚­@ðÒTš+nq ×4(¼.ÎlV™êÕx^€gv#ˆIØñî”ìEe*ê7Ä—Àµã±#VQ-µ6ÒÉ^ìqØò“@!‹.÷¼ù‹¤ÿå¢Ý…?%PÓˆùgÞf)¬çÐëGHÌZ˜ŒÒµ?dŠŸ¢úWä÷iDaÎŽ¼q»F2â¨q¤1‰Ê®åM +JÀ|g)B5C›±ÐÞ™j¥'€'„Â) HÓ™Õôí¿ÉÍ9ArB?ÿ»Œ+,¹.²(vE{‰ÿ®"Ò$\1™XJåøBúÕe›?=žq& ¤ÚÕÚÙ/ Š#µunOV# ž.wÊ+$wïÑ,¥M3®T‹Å›Ã¿f”ųÔ·5²RC‘üü' Ä1€Ð®‘µ4';‡Jnxü«íÇG•œùüëÔ,Éô'Ye” Žsç®û³<ªùìÚ(›cѾ ¯JüLÁë—U/…ö´/Á"p¹aÎ.–Ï7ƒrÜfmlíj÷ïÕÓ8ßWÎd¸ ›˜ÎY¥ð1ÑÝ4Ã1O%äŒhj¿ùà OîàšF׈_&뜊ª Õ‚E‰NšÑ£xZÐð|µû#ü1Gqž'BàG’gdè—½,‰7nCÙyžÆÒ{!HZ’ԛθèð¹v¢Oø÷ƒÝ ­êGÔwV§-»¡ )hyúU¤BôoP,'ÿ+ÇÏ"_°óîUk9D²Ûñua&CkÑ ÍrËO™-/Ü£x;*0}¨4!m×y 'C³¢¶>TÂÇÜ—³ˆ‡r8õ€?;L MîÆNXíï¤ç•¢Èþµ z Àê.ò”Žæö}»¦ÿûo»ŸhRŤã+€ð0hÈ3ÛsÑô+y*ò£ü–°ÔLæ¯vì&€¯íg¸KÖ ÆÁ c€cøC’t)»\™Ç©ýµÐo¬µ—í›u¯r Ïz‰FŒNdûÑ ãøc·ñžå¿±»þQRÛ±­{èbg(C‚.Þ;u0€ÿn¯öôAOñ¬’**W0Ufì .ý2¿ð®rK˼ÆtÌ®xoÞMÿ8¬_²N³“9t7”†vìÉI~ÔéѧYÚ¼Þäú+§ó&C»íÏx—¹¯Z2ɸ`w唵 u(9=Ü1,2)ðj i#žE¯DœDÊÛœHÎ4ÇÇp_$ýIORàÅ'·9•ïÕ*8ŽK×hÉv':?•‚ô%…,ïz?ê §in¥&#ðßJ^;sv[ C§hŸÂ‹kˆLÇ(Ùbüîuy@* G<°\t#B°ûX*Á°Øž·×F}š¾àUúº¯:ÜÌ×7p™SrHY¢&œ6ÌHï¾?gð€>å&'ˆ*¦ö¹W}~"3ïM?“sèôŽß±¡9d -$мŒj :ôo} ÅäÜUi¹ðkœ=*V/Ycåu»ÀL¯8ú˜/ƃÏRZŸ1o³^²+­ N0‰”(Ô.–Zí<»Èï;QnŸ×¯[“ÛFF·–ò^Ç5V¢¡ªþ˱Â|J½äéA¶u¾®†wÔ¥keŒ££3Ô}ªN3m¸ îæé01F¡ G*’MÛT^x׳»a éÒ߰ʲ‚‡š·bÍ›1ÛMÛaý[2#íôŽJö»¥óâßÓÒâÛaü¯úÃÜpð5êÈ–ÍÉ÷Ðï Ω‘®$D[\è´çž{- ´=é¾KlðÈR`CÖ?mß\ó#=P]"ˆSñ€q¤rÐúQed¦Ô¦‚¡Èa'H†tßá רbQ>d)÷™}ä€Ünä˜íÆNúµR˜÷ÔÄ ¾‡‰È³Žán(PÃ6ŽgÕF•k¾$zÙF<X?kîN¸í£ (uNªé¤Î¬‹Ü["j›Nÿ  ¥¸H¸ZÈáS!"oX·œÈMç6úÛn½dxød» \†ÿÆõ&oƒY6ŸD®QËS}â =íyky?DDŽÀJ;ê‡ÿ‰µ4¬ mð÷–ž6vl¹æœrM%>³’éa`ñü6ü /fžc)f.Œ¸’»¡¨:MF£D€x%¯¢ Q~¼rÛW8Ÿi6…Yj†Ï_üu:¥¬mjr»ȧù/¦?EqÒôÒ®f¾D,~oãíåy5âMâ8iúý¡„;gD^;MKÙÞµ¿âDe,Ò*Üj9þZb°‡ÐyïG»ÁÐG+}£T«öP§ífÿ´»< }»:ÓjˆÌ8ܼ-‘cØÙê*„Ù>¶ì›`Ì:A.…™rø3ÔB` ]¨+˜NÌ‘ X׽ɥ)·• } bª­Ç÷¡ÛØ>œOÕÈý˜ÁϧËЄòoë¾NçsÞëü¡q,³³¼¯72j>œhD{ëüƇLQ=†Z®âÄ Ðá6©m¿ruy’¥M2ØTd+÷oƒ©Ipÿÿ£, K?¸B7Ù,[ܺ7.{mÖa¡¶L}}Á´g@9¬®ÇnMBœÉñMÞÉ‘‚¥Edš}*^à®¶ïóÎfý¸¾£)”N¢OCÝí4è)è’a™xÒÀj#áS á%VABš·f7g-“¡x‘Ä‚xÆtýÇ8œ=/¸jRˆsKé³)â ž·ßÛeZp»ÖÌas Ü kÒAÇDRÑ}µ„““≨”9„§Gã.ÉØæuéËuI¿O{ RÍÒ“èÕTTˆõ I<ž6 óލk>Ó)vý"À¤ˆT8]ˆû·0©kÜØ: Y¬fúzþ뺿½ äbpµd»~­ZfŠÃW—?Ç”e(þ\‚äϽA:&Ãg VeÚ2§ÚÂMîÎÞÝŽÄëo@ ‡ûwIµNaÑÛ¦¶Ÿîé™Mw}ÓÎRp}n¨¾Ù£ Ž×±Oþbl%\Å^3^4t4ÞßûÛÒnCB%/odÄc RN1tŒ8™ˆg(NÔ%Às©F~×H `Ó×…ª¦Í¬›š'ªYh‰„fZ¡ði8¯Lq Ö[‰æy[bœ‡™Χ„•:¬_ªX1õ¶eb3vQµx¼6Ö'4¿Z(xéÙÈR•/Ù™òŸÅéG.®P—?ÜœÎ×Sã$gÇCôнÁE’ w?V.Rê€c 7Dc?««Ì î¦f­FFuÔnob„‡Î²XSN®³zU?dcÙç@~²Ð$mlŽ.”7*ZÑ2‡€FÚmÕóƒ§iVˆ5Cë)3”GP^¾k%¥(™ðãð´Â”!ü1ŠLÔ>– v¹uk– vÛ‰÷•°ÌÊ+{8‚½¬±cb}¿½;™„æG' ˜º9¼g¯Ä‹Ìû†„`hòëÙvþDõ­ð‚39ÁplÃ#Uð)ÆY¸#’†ÀsF’üë“5%Öê‹LuùPI Åö=²Ø úp{Ub4ü~<‡ Ƙ`åºRï.ÎÀêí¾†S ì¨9\Û3âô¡>=嬨œ½’@o*ÇšžsA{:®gXk¬Ð× /gÐt휤bÅÜw£ €ª¿-KøÆ\$èðj,ˆ‚3 m(×Ç“­õ¯X-‰0hÂúò㘆$!µjÅõ:K4šÏ ¹¼#]þ‹ˆ+ ,Ò×ô2ðâºÓ$»Ç‡ê-žÏ襾‹Ø( ‚40ÞÞžþÜþkÈߤhLÝ–ó[«q)ºv.Zyç3É{±@zñ;ÞùlLW(}ºÐ>Ù¡ìnÊên'¢,“ô«3‚‹P²+ÐVLåREu¤š‘00š(½%/dsã|ó!ÞX.þ>OÖðY¤[0¯@ŒÊݹ]núÛˆçÓ·+[ˆ‡ âF’@›ì¦ÓšáeV×9t®u˜ÄÂP|uË´ö=È%#>×¼–Pñ‹Y¶r¦nné×AÕÄ?ƒ8*j^àý“U*„¯Âœâ ¡J}¸Å¯b^žì¯2hC“ð¹æ[ÜÍ#?)Õxrš!‹”°›OÐúi„ìTû6pÑp!øoDÉkyÈy€?ö€R‰×Çcovß»iðÐØ§sæôÅxRä„€«-Ã{•û^œis÷ßËД“™6cø˜:Œ6 (æ6b Ï‘ìºJ^…ÿÿ$Ùæ ƒ[¶Ò·á¦® €Ñü¤ï½¯Ðåæù©7 o%m_ö°¡[-$Þ! I ÊæüÙ¾q ê–gðG#eÈ[Gl'¸Í}f}Hrºµ’w-ØlK^8÷Ê+N–·€I½α¤8u¥Ü–¡#bÙbyÆžgÀ‡iÈoW†¨©8OqéãT§¾æ,{KjNÀ§ ?õ¹Ñ>cC[ß²ùï‘HJ’9ÜÁš/=_ Óq²îïÀÏ'„’,P2Qv°6‹„ÎìÑ9³Ý@ú{2¶§ŸA“wÝc>t¡èDã˜ïÍÍ-°‡a‹J°)š—rê(SWƒѰÂ9qc¼NðttT( wžÛSR¥ZÚRj[TRò´Óߨu§{²2¾$¾pË ‚Kg<©HD_Ë~^  ¢Á4B^×›eñC(4Þâ¶^u„*nøu±Þ×OSåÂËÊð@3wv~û`Ò¡µÁÃhòKCQt#7~3nÚ §o“£@™¯û?Q¤ Zf3-{á¾ ¦%•—ãsAPA;í`×LsµNNf¸Q5×F',ÙV±¾]5pÖ€ý® SÚšªN|ñ×ðSL´K¾ïêõÀ$¿å„¢-ܶð-Û@KH±;Â:ï ’Xh©û(”˜'÷3´Ó½LN~¼0ò:@¨ÃøiNâÕvì%€+«›e+’&Ö~ÅE,'5äƒåU9«©,§AŽÿ·¯<é¼ù×—Þªìß2 <\ª@…€;F¬k³­ËhÊXÍgÝ¡ÿ(\Ñõâ nˆ²¤Zé-Ñt»Æ,€ŠãÃø‰P¶Ë9—ãúÀŠë5vçÐÃ\†6ÅY·qµ­†O!”˜Oû›o+Fœ¡£8Âbÿ+Kʪ;òÚ]Ö¤Ø]Q³§“8àDì¯Ýxù^¥¹¦õ:\Ï-i ì-Ã’ú¼,Î:À;&ÀYùŸK8§,Xk(!”^dž~4ë?†åæãÛaÖ¾…Ö‹¥IÆÕ¶˜FÒì°y©¤r„ÉO ǬЉ¬”cF 'N€: Ô™d…É ¬žkýÌ/y÷ÜV—±¥²Ö<éúàÀ؜޴È}“"€ µ¡| :†–ò"–ýÝd>\Òù§-¬b×ÉÖ%ÆñäN®LÚ¦DÚäà§1^ª@æÕ«æÒ¶÷.§&ήð¸ËM„“ðDFjÂËACŸÙš 5Ô¬±^:‰¢¿P„Còõo‡=5w…îÌÿ.Å÷üzQ}¢-ìÄíøp²s÷‘êªèS&Ì?öŒÐÍJd`êy\hì›DPËö©l X563ºg×}oјώŽû ];>“Æ=)õ˜Ьl#ò4[Â\¡Šc,ƒ`WÆÅ¾¾§ôs!dK|c:“ã)ôøÔšü_nê)MÑ…fçƒNŸVh|›^©£­rˆs-B,ˆ|®Ö<YÇñ|Nß*¤ßñW­EK àrnh€irÅ(s äð`ŠpÜÅ©Çð9«líU˜B²‰†«mÞˆüQÖÚè/Ú™k”b>+ÚQ*‘ʨ3‘A®*ö@‰lä¼¢x2Ä"¦?;Õ3&_"r "KbŒ•*GZ‘kû«‰¿SÞ.kü×sSÈÌ´‚´{e %U8‚ìPH\N`øâ'kaâuFž)IAîQ —Žo{-$m&.'ÌÔzÕ@¯€c‹¦÷ÿƒ¼%£;âaažå-Tÿ‹ Ö K‘ø4³½ ‘~(LvǽªtØQÂŽ#’¥e/p×P`½DÀ© çWD£E ~Å5M1íÂpè22˜Ï˜™p×ÍΤ’ÎùA$õ¢†TþZ^‘á°dþþ)³¬EèܤãdåVõ’Á"%Q=;?[r¶Œ…ÑžŠŒAñ£“+E=‡(ƒ "ÂŨ§P ¦¡Hñ*r¥Ï¹I‚V¨Þãq-áPË0éÎì»U: {!H­5 ˜ÌꋟÛJ ÞBâ†Ò½4etk‰ØÚÒ6ÂwÔ àÐúÿ\º—o#.XyBLQk³X‡ød^‚&DŽœš•A©ãȇ€­°²ÅɾÈHÛUº¦¥þ¸Â¸”(®›ªiúCÊCÀñ˜q’TщøëÉìâ†[k[ ®õjRº]–·]í†@qÜôXŠ„Ü-é3#8¬–ÇVšVÚ_ØŒs«‘=Fû ÆY]-e$ƒàuq¦M3¿‚4WÞÐä³$4¹ö~Õ°‹+á ñ&`~èQ• ö+¹ïú“£@6Á Õöë è”*û¤aVÌP;÷—ù}kÃ3’XZ·$QW÷°ˆ2Ðc^=¶Ä¶Mgg˜êüI¢&RÜ/È+‡z'N^L;fþxÿj¿zƒoð¢r„ÃvuñþŒUf8–¶„¤å¾ù¾i]…ÇRr½‡Š4KÙ3q?ì!î­#^¸j‚J5X§ã(f¶Z"µsAÎÍ\iÊÏõÇݨÆH@³|È-â[§”åûò®(‚vY,$¼ª”†*‚ž=™¿(œ¤²+Íl±ÜRE¹RΖŠ»*{”Þ³K)Ó 3ºà¢ŒØ½ 9PB|IèI ¡ 8Ýv Ca£&Άe!ŸK ±¢Jö¤´aI´ö|¬é†ßñƒôµÉÝPß´k’Ù©‹þ™ÅUƒ:ŸÞcqg„ØúŒ³ P‹¬Tût±.IÙùÄšªc-ŒåAtøÖ0£¶] Í›iÛa› cdâyÍR+î±#AªAâòøÂ$½ëýÜÐfý ›g!-ÇâãtÑ)wUìÖ¼™Yx‹BÓ³óìáÛ¤éú–id¶m‘ïÓÄî  ü y.“}O:í‹Z$Èô—øaÁ ’ÎðO•åX *}38þâDro[./5UY÷?khûËs£÷:Z¿j¢eÍÀúÊÀ¨½ˆñgCA‹T`SdŒË ÃLæs–N0xwš“ËFÉWZ%» –8P÷NDÃàÍBýùÅÜ¥MÝ¥ds’$†]ësV^wÍæš]ŠxwˆÙ)¬¡—Õ=…ÅÛJ¤ØRÌß¡NeU¾ ý áºÌH­£`š™4GpÊA(òÒº-«X‡ÅƘ}z©NŸæà0íbÓi”jŒÿ C&É[0ŒWv"¶ð>Dšè¥üip‹§¡qV‰Ús ÂãÍí7vs?Bè‚Na؆0=[¸”íÚM#Ø[½¤Ç. …õ˜›NNÔÑyõ›Uÿéy¶¸¼Û ÿFˆéEC¹€V h"0÷Ìrg8µŸªßçøzɽºÃ";”7Y_Vr'Îøϔ藍Ðèu)?­Ó®õ¿:'–ª›Áaµ“$2SLÇå¶"ø†Ke[HUœëV¬¾]î¦S¿†ï½–ÚÁÏ;†si Ýù4ê¿ßi]¤8-` ú4€•{âFø oÞÙTúü‘¤ðAëÆrU»e¾¨'ìÙ'a3ôÝU] §Šâ²VT…Þ¡%¹’Ú($ÉbòýÃ—ÇØé?«¨øÁM®ÜÇϤÍnyh  sÄŽLW×c‰qJ™ÅOÖ}k[•·c–¢s¹)<:„'‹äf IŠ3—ýuº˜AÑÒÌY¥¡7J[üÆ£­˜!£3J¢5Å­ôKõƒ2—ÎThÈõ}«³¾ìsÉMƒyþÈ¢þþöïXåJ‚ƒè%ÐÉúlzìi½Ÿ™ˆ\ e¤ ÉÙeR9D¡ªÕ©xvÜB©Àº¡¯n°°YM9K±Ûj¦\vúÀ’üÉ•)úÞe?B§ÒC¼âr£/'Eû#Òã þ$мûaªÄ7 ÚÖ3âˆŠä¹Ø×RÞDÕ×D:‚ +˜ny;Ú¨79vÔiQ+›’› )çÛ®€éÁÛN[:ä—îjò"B@`©²F‘†ÌˆLtlÏÙÐ\YB¸A¶a,`Ö74‘s!1Õ‰éÒ)\UžÄ,±¿ŠÀ Ý®ðžZ—W/YvÊ×€©ºTAÞ÷DŸ8³uð(0Þ ×¸átõ̆{ð¼ãlVø†P% ;YWGl¬9RÝ7»L–hsçjüpsH³…!¾€­Òístê©ÅwüÙj$m¼WW|wcZ/jð0V0š„xiR…´éŽNñrÅAS VD×ëù!¹q1¤µö–.ʘhÉ…ìî¡Á…"þ6U‰‡€qÕ ½p‹Á¼hZåãWÎ9÷jQ”pµ ä2Ùê`ž T,ŽQLëøÕ–“¦~¬ãTúvËØš}¯y{š¡…Yp2Q¶ûÒoÈ“³{€&Â2ÚGV{ßžÒÆïnàŽç.Ißä0fC»À,ڑŦCŽÆ+ç°äønl I¶¬Áb<ž€CècÐG€íÆhÎAc÷¥v2 %ía4§ ”1‰7JÙæ1ø_¬lõ•¶e3û4&‹X4í#´á;![+å‰hh ¤þL‘ܤ>a$BÇgSÁ9Sÿá瘨؆i{ÙÃ!-}œZ_‚vÏñtžrüùRèR% Ó&ãø1Úਣ̹‘0…"aGz«‘Ž ‹µÊooJ¬Æów8føíf:1?ÀÌ`Sp¼ÁÇ-SE”9ì¼×'¥¨ ¡@£÷6Ó|@Õш›©Å¼S¹«W‘ãçæ &Œ?s"a-´á°Â}2ë>;³´âñ¥Ä;ýZpNÐ@è-¦£)×JÇë~I£+(óøæH¾ Ÿyh;ƒÁ{1hH,a®*àfeK²ÀÃÆsŽXŠrsßUµn·?8[õ1žï¸Az­ìW_6}p/4EøJêðaeˆ-ÐÖG@aÐ,y¡ ÷˜µ%e¶úþø¯C¯(¬Áå'žÃèÈœÞÚ¥Õ‘öšÍw (?äçàaÀ¥ØÙ¼h_ n‰Iƒ,RíEÐÁ x»º¯0 v ߀’ÝüX  P8µF>x+ßfòÍqXx¢d~ª•´ƒ|Ï«#,£'Òö®ÐÇPÑ땞äürY{ é›È©´§ @!^­ö(8tYȲ–8Síå[ÍJ¹ _!i§0ÞtÁ_”,°{$¥ú'1ZZŽŠ«~êbê©Öî;Ê! •ƒü¨ò6Põ€N¦éPü"Ð7x#BPÑgE¨_К¥,‘½§ÒT×l{S²Ô±k;Ë®¦ñ ëæËfSßÕ5¹µW½¥ Sì–Û*LšiûEl9 ¾ †ú elwf2 ÐGMýã?.mC4„ÿõgçáØùû£”1˜­”æ›ãÅå—“å ©ˆyøš\Û~¿sÓá3º»¿ƒ±ðeQ˜WüWÒ™\æf’AÙš86¸»%¢ëE¸`ñºæ µæ«] ²îä„M^Ȭ>Q‰¹,ËÑI1YaÙØžlç]xá*T…Û*–Ð/·gíè¼jM h¦ {Ÿ3\P¥wïµ"`8ãì…7±Ê,˜Ã~c¤ê·E%½›¬™Õ.ÈVAJ"ÒÜwI1'^·ÀÆ#Wæâ_êF½%›!$î𪾆‡öë¹[d )ìX‹=_dÌ–št­vqÞÙ2[\ê[óEüù‰ˆÂƒºdêάh”Ûd€˜ó¦dƒ±·¯s†qÜgoš IæŠæíÎ3“ÀÀÜ ‰)šk”‚mÅ‚â‡&–(q³ˆp§ûh>(;ÝZÖ½÷ÅVÓVWPT£dºr½¸I¦¨NYœ(K ”»eœdä¶ŽnH°÷Ö¦§÷ÃU«®Õô÷gfmÓÀ+JÕT¯Žˆ1Óš ´Ÿý¿TƒŠ†æSõ°ŸzÂ$úõ›u7è“y)×öWcIlÄ…_±¶ßs¾‹I–àFJý¾ÕäW®É‚Ú‡’qÒ(Ùé ×{Àa5æ›N@‹Ä²°Z>@ÆL‰–\’Ò¬²#E#›Ý“²~­Àº»œÊÒÏ{ Ñå‡f¨øÂÝ0÷-V’víõ26)ôMZ[8? |hiœ6¿*,¼}MiÞúfH\ŒC?Z»âaŸc­ƒ½ˆl{„Ç;Þ[Ù>«ú<€m’Åë}´vow·5v`– (¬D†'ÈoQ¾×ÿþ™<–ˆò–cÝB7¨¿sÅ —X¨¬‚$hÅak4ižS¾@áÜ1ù)Q|öÍbg‘€º¾3~-†f *-I*ü“ÿô:2µ> ©åÓ©ÒñåcÝÑɽê%˜¢ÀäÍç(#Ë|ÿ‹ûã_º/0Ä xpñ6Ú½®º–]‡|^JÇ]o¾ÏT—²²'K«%[îÝô(<öÛzô^˼<€QÕu?7ÙªÇÊóT1€îkXŸ_\¾¿W[Po^Xdž= Õæ$’+&o”¥p M˜¬0J™zÚ Œr[”,Ü oêy†B3çhwFؘ(å£`6(=4}ØIøC¶ð½ï˜%dívÁéJÌe9­dˆ|Ä=ý jÛhªÑE·aö¦“´ hG…õÛ3³iÊçÞ}Ãe‚ÜeDƒ}ýuEíû߬Çê‘¥XΦ!Û) ˼ªaÀyiöV« Ofôiõ;³ç(v}f –"€õN…'h¦:*‘öýÏÊÂÜØ*¾‰ð>­ÙQ@jÒë9ÝæF5aNµ-Ý*jƒÿÐñJr¾-s[s‘ýŽ{šÐ=¹&nï«NÉÊéã+ü-"£º ™W5Îá@¨“q!¾Ð"ÆxKbP“*n1ùu÷iå2£bÖ¸ág-Œ;OÎ[:´»¿:ýŸS´Æ/Ï区MÊ:.xÍóNòš%jEÃL£lÂÓíU ÃL°Âݲ ¶É| 4ÍtY2‹?°G~ô;ÙË·1arÌÕ´&Ðj7i8aËÛ C p¿ê—iG~Ñ éåO‰?–]6†y.¢~gÓøüãiºKU­£ R[7 R~r,³ec)UV\Иð`+>±Ìu¤©´ÜEbÄï±H𬠔³¬ü^ú²ŒR öùU¥æû#ƒ÷È“§N”Zï±»ŒäÂéF_1~”6Á-p=ËÄ*à`··à`ñxwg¿UÕöqCAúÙ˜à2ë-/MA|–ÓTeÛcZ &lv‰ÕªƒÉì&Ëüc¾€¹éåI 袽HÊù’çõ>ÖO†+ðmÆâ^Т(2å. ~:ãÜÇê‚Iå3sK}¯¸ZŠè¸Xø6#Õ™&+*4Ók7‘ÏØ¤ÎÜšž)M‡àxcgÿ¸àâtJ)‡FVMé= Ž †ŠÒQ¾uÀxÉÏ´ûÖO£22“S•ç**t–úÙÜÜÏ¡î¸ué,ög‡¬}j1ÃéÇvù޳F'î-5S’^,ѺGÝìÚ˜M0é®[ÛEäêÙkJ`ä…õãüÖD(Î/"¼‹ ‘Îj«…€J¥º`òÅ¿Þubß\A6¨‚ø43Oí2øÂ$‚ÐE‚vÖd#áô" üäÞóDg‚”`mfëR‹¨Wôp'´"éÊáüԿ%•GìgªIÎïOEhÆáÆ\T\»©cã©0$·yè«¢qÙel¥÷ayq4­ÌuWû‚ß}†ï*b_LîÓZ «øcâK P+½8vQªé;wAð”(4áN€ —†ÛÅ^@—‘­Bm .Ù­dˆ$È}2"¬Sm™Ìnõ´lIéßß1ËÚa¡v™:¦&ËA‘ŸÁ)¯Â\£Ùî8…q ÷{¼Ú¸“êûgİ]Í;§_ûŠJ¡ž» rÒdlâ¡ÁùÑ‘¸üx ¦Y‡ø<Æn8užôóbZÌSd1JBↃÌðgpЭ§º¨+ýŽZ¯ïésæì])|Þ¼t¡cAOõþíH¡3f–á)bÛÆK2½ç7˜g¹ja¿KM í·Ž¸] Éý‹yWKuö»W%ÀïwÞR­•Æ4t[Ž©Áwç§z_çZÛ—boJ«Ì¨ „†Ô£ Ã¿ú&¼sM¬Db\&‘åÕ2>ÿËbŽˆª¡´àã=[¨,kh’d FçPòôêp®Â2+°r²êóá|:è··‚.ÇV‹ý£~/˜mÎXy¯¿' À”ŸÂ4? éYV[>æ‚ÔUAsc)$;ɸ·Skñ×óÚènPÎu†A^ìÖ¯$o^§8»á%d!§m¶('€ˆ!È ÆýôôkêPÁî:°õ•FÎ¥)ÎÏ?¨Ûn¡”ó@ÏÂVÑGcÕ0µ¶DÓ²4›÷¤rC¿ßˆäF1$ ±oH´ÑŒÖ¦ûÐiOôÃfz[·PzßO¿#Æh“Íûs‡MxÌ5p§âú ¾É¾ÐmCÔûé R-ù~ L£†ëõÊ=½©zУ"¹{Þ&—£¤©3Œ#^eC$œžÀó¨@šhE@|o°fÑÈAÿO¬Ú·Yî,I‚ ¦Ç5(yf£0c!<•àwÛü÷ÆËù똷7Udà*ÍèéËš©¡\ÒM#Q;­Þ]@‚IÕfU,Ì4EÜïñlxÆiÈ×|Dœ¨Ì!IÔl‚‚êûèf§™¸ÇÎ"ñÂîÌZ¥Õ‡sÁŶoliùúHý7dó‚1*Í;ýPÅ&z… †»‹Ô{y—&¾…À’?…ÇkÅÄlypX'm»"Âr`òÇ«G4vÊTÃ@CªCQpÆDè\Ï&ºKkÇQ%V£Æâ˜6¦Û–ÑÇÔ$õ|$]¬,æÕAYë£W”*±#÷¦¬ƒ…,ÿÁ‡?®ð ;:Al"o‡ø;hß?þoËöÞ…B ‹ÃFÅÁ4ÍêAò$$Tnö8!«X§˜”Mo•¬’ÐíÜ‚¦Ô[?ÿ}cûJ¢ÏÕU²Ž}Ë•õ‰‰)!3ó6Õ¦\2K¡úÝ)~cõz¾f9f4ø‰¤B,;ùØG5:~|[w>¬7j Ò,˜ÎŽXœ°º¿ï¥â*Ç•ž$ÅyÄËæÚQˆ2rPía‹o%ºÙù F#kêç`¢^QÚüÖBŽóØH+~í~Ù”j»9LìĘäùKÑ1¦#E/Õâ`ÝQaùÕâëS¾`Luî­¨Æm’ðgñ‚y}u´©Ó·Ü糕õÀÖ*:–\bÐFµ\wÈò£™ôm€å`¿úâÚ… ‡\{ '(*†/Ýp’Ï÷ŒšP5Çõî9çîÃ^…]q" þLÔ‡Á…çÆ‡ºœ¹9EAN9—¡¨7KËØX|},æì´ìÚN¼hî7ó_¤óÆiïW5£à;0;*ƒa©n‚“KR…y˜‹ÞñvŸÛ­ºÒc¡¨ýŽ Ràj™á ©8B?ïÒeÊ“‹)c7üÆ>ã]MßÒÃA=m§Zr»vö·﯂¬â­¶þEMsM ÓH´™°kO}ÊÛµÅF½•!E‘'Eö6o¹†N‚´—ÁþÃ’ÓBç ´(粎·€ù½U˜w¢oFþË!95]^'C+¬Þ¨ü³û¼àÿóüi”rÆ?½šÙ4ãUþ`Íö&Ü2C“X£dHWî©Vô”i¯^Dqò¼ '× 2r ’»°¶ÊA4Çzv¯0“f»oØ­aŒèlIW­lˆƒÊwÝ0Z zlê$ *NI¤’çÌ)Âé”3-8B‰wŸø×”s˜ÆlMbäÄ“ýi6Ÿ¼@¡{^´'//ùÿ6Úñ4¸/»ëØä²WOœ8Ûw(Ö6€—.î¹f‰ÕaFõxpz jÄ+ÛÑüö¢¿Ü™Ë}m¨N9Àºh²Pä·äŒËXX½g±”•D$}±y¤‰éleK|s·¼‹ê?T´%ž.šî¢7‰}isò(oäT ;j"OéÄG˜|Ò.îGÚ¦Iõ±¶-S_oUü~Iݦê3˜1µÊÝÖL~U B²}|dC¢±ý7àïõ dôÕäö4š‹ÍùïªØBR¬ï<«‡ŽW!ÛYÝý ¹æ+ŠNVÿè-Œ+IÐF$H˜ôóé@²ºþS÷²…»?«†>n5UIYø„ó×€ ²cëdž$ÌÌq$à¯o—k` ëÂgÓ~ÄäÎÀÇï¶÷äÝ|lH 9¢o*¾×‚#Ñ5× nŠ{&N*–1 ®Ùw7ÁPدbkIQÓÌVdYÕ¤ÁaNG°lþâ…ÐUB¶spF“™M£Ï«£=ëR'&Xm¾„Ь€úÈ&fÀÛê9{)xk#|ÜÚxÓç†ö»ðî-(£Jî Gž˜¶”Sq\ ‰rÁÊL^7ËwAÙ,¹ uB1—TÃô·_ˆe˜Ã:£à-zLœ„%ÁyúV¡GSÇÊÛÛšzHØÁaeÖ]1‹;ô:Ü ²›ïÁ€‡ù Ú¬Eá.Ïh  1!f«^à(ZäœqVÕu9eÑu("Ê=[?'÷•øêWî©s+L<%žùj98&Dܲ'óÑBî&}êt &ƒÃRg”ìŸ7ÓÍ:Ò°ö‹ú#š+IÝf?e)ø<é –ÏɾÜûziÇ!_Iãj‹»½ÏP¼¤+×ü,ÌŒ….š®úû”5 Ò9‚pÜä]0ºÖÈÖÎ[Á¾®(„c œÄk:Ø w޾è\˜ãdE¢a­ͩw Yߢ±¢/­–ÏÝ€h#‘r/Wú±3Ñ€b5I×MVØwÁ×SÊd•I~‰™nCÌ(aªÁ‹@U;ìåà ½rÞsÓƒ„ Áû|ÙQýôaÀKTÓúÕJñ^k@PË6mûú¥bmë¨îo¥{4<¯" P.S'î \P‘{9¤,Zî4ˆŒÊq*Géj¼2.[_7„±óAa²Ó¿b/ :? ené‡j]F¥[×½œC=a>³TÑǧcáµï=Â6EŠK äî ’5Vlq c,šGÍ^áLÇó!Z¥bS"˜`ÀÈ£ñÑÑ”²Tgì+æt ý*{ç:MkþÆÙÒQþÉìmõ¹$ÛLós­©pwH«¢CiÈKÚbc ÿ¯<$|wé¡­ø#·=@jEÖ‡IVx÷&kŸÓHü0è„‚ßu2]æfFa¨’ŸG¼À[V®æ ŠÔµrúËÙãAcÂ%>w§îÒõz……ƒ¶œ3𭨝ðo—Dñšz±ý˜P·œ¦¹¯q8%×½‰<XüjÇ[‡`'QÝûcL!÷Ì…nÇ’­±Á×cßóƒZ:®ú³G«í•i6-Ÿ—Ü.*¼ù^Ùó€m/¶ÍŒduŒ,Îü—¼Sa¶”ç]†ó^&YÔÆü4Sµ"ÚIÎßßA𺲴w5€‰²l ÝTØ&yÝ´ŠÐ r4ºÓ]D°­a¼1ÄÓ/AïÇÿn1wÓp’AHP°ÚUSËÈÍÏÒÝ â‹cOÃ&b6x1Œ¦u¯Ÿ§‹œìXþ¨ÅEG;ŸÞdû9Q§KqU]l{)£(:ŒBœ ÕÕNŒÌS¡¥]Ì÷“J ?¸|>ög²óˆ3о´ê@åžtîÅ\¼³`'ÜMR½}KwBÓ#{á'Ÿçë¯hÍøH`qDnÓvL¼YãÝðÅ8ðfL½á•JÈŒëgª9—Ä@OßRÚ%’€a»6ª–¼ü~­IÜž\bÿR$b;°!Û&+\¾FeÌ›wƒòT$r¾¾,LW¾Ç0a8Vø žTã`œßF¢¢°ºsUEã"hÇós‰¢]¨1Pw ´Â‡aOžíïdo‡÷© Àh-÷¶CÇvE ÞL¥¶»ÆVPÛ"/+’ö¿ÒŒFQ W&7”w7Tç%&Ùã$àD&QcWäz});r)ÿ¨ã¼+Èó»šRHcÑ{_>÷5àm"ÏùÐP,åt÷©m—Eê ×°™ÔÐ×áˆ<Viðp[ÄPà‚ÍÖt5YzÖ"¬±/´'J 9(ø0ui\+øs±’ ë…{ü ÙûÍVå|ìl²ÌÖUºqàÀ.eÁƒ ?rjýÃ&.Ë€¶kgõ$DÀ¿³ð2»IéñœEÔ¾[™Û¦±•—èVª ÓcÂ_ù8*œHfÁ#Uß‚Òþ´Mƒ“°iÏFæh ªé "°Ï¿æÅlÙXÖnƒuõÛY&o¿m(*ÇËV?hÚLGÅQtslmǶº¹zUO©:æª~ÚnBŽ‹”‰˜¢ãeòEs•tâÇrRÙÁ”GvkÔ’WJí2¥:s–ädGŒ$MTøµÏˆEœ¥pÛ‡‘í”Tšõ5³‚Ü…„š}¶òô®é$cÅ[ñ.)cE}U,µ¤¹MÕÔùÄ©·h¿.‰“Ó:/Û±f€ì2и@1'°™™{ü5t,¢?l¾¦8DÕä#äz7x¨êÉ=.æLØS†ïEŸš¤Xo‰v=ƒQÚ)ÐqÏ”]s!ÿm„1aš¼þ¾QÚ”ê%ʉ‘R\—ᔜ™Â‡ÄÉ ßLBç»òÐŽèºÅoX3B‚9ú~ÃFwž×S-tYûË2R¿“{ú3JA³‚ä·ðꀆF¦Öë%aQsê:n²:ÊbfLlnh‹‚C ͇-<ê²”³Ü{Ôªè2_úöq(Pñ«{(Fþqo¤Lbd½ÃKÅsŇÞÊ=$‹t­þŸ*²óž,XŸÙù0žÊ8û ή»Ÿ¬žÉžª&t7œÝ‹‚áÝ PôšŠH® ›6†œXÜIjH\Ú©c»•ƒnØÊþ˜ÛÖ)neòð­G*‰åU\TôZ…<‡É¿ AÏÏz $xaïì2Kš:« ÓE#Ê4¹Tÿ¥³+ umíM÷cÙ¡¯ËJ±˜õ˜Ì˜T^¦b4"?«O]l°sÒuÞÎÍq_òôX9XmÒ\ü[Ø:61À@¶¡Â~ŒTÓ™Ùý!õóí]´Øôò(}3™¼GdˆÚàUþ*»¾êÙæe{ÝzF¿'cYm·:ŸÄæl‹,Фh9” ôX…kõý|áÇ")2›õcæ©9š™Vå¦ÒèÖ¦HG£âÎÔ?Ð)=â·#ï¢ý«®—k±}<@š3«RQ;‡’—y÷-S”Nkæ˜cÚ®wd)Éj£k,IÃ&Æðµ¬vÊâ¬6MOp{ÖèZ·Øí×`'Ã@×7šÂôù:¢´Y¡.ÇÀ þ º C²TÝ<íšId1Ú%25ñàÊ#eWˆÖœRT’$‡å}Y ¾©x9xm+ò±ã1¦ŽÊ@<Ö’¯¼ ï˜~e¤”²>\ªHwÔ¡Ý oݧ‡ª:«—xÙŠå¬æÞ)3í1ò Ç9P{Ì?`§I¬ùA»š·.óN Ã¥Ž{ÓlG Û}麥œê(ÆÈ±Ø£Õ& Ÿ²gW ŒvNòåfIŽž%uì%”× g×.X¹Žß+*‚Ê…2£†RÑÆd¾Å@¯SÚ¬Ó :?¯9ëMÌTS ŠmجmFªl\€yˆ„ÛTõi`—âî‰"8°ñ1ãH€ õ©A¢)³hsöiŽ–…Çlµši;ò']Lmâ"í;¹ñ~‹Ÿ0ú ç™Û 2‰\5ÄžÓŽLw´~•Ô Kê¯úËFš1vQ’m±åþÏB{ww©¬,1ôK·îYÖHpJx!¨Õåá¶bÝ7ÜZƒÉäŠB˜—~‰.®iO’ÜÀ"Ð Ž2"ò^¯¥´>e`â_òuRËc,™Éw{È!îúÆs¿Õ÷8€BE´¹О.¯&"Om’$yè¯K±€LëÞ}l‘¹(§“"ÔñiM ÛÄ&—àݲãa —Õ"á0"«W÷êÍÇ'ÂÆ,2–‚‹/a ¿¾ˆPµÅÏc¬¶†ã­¡˜ì63båv%N·Üÿ6®ô6ïÝ;è6ǽô«•¹æ=rýRŒ}M/´§²IRkû®•IqÄjõ!@˜²l‚ÏT¯ýøê¸ÊûÝeåê2FUëPŠ U MªÞÁ<¼¾È2 pÛIód#êTü°:®ƒÕXwã‚⿾ŸDÒ˱Ûѵüÿ&$ÝÙEÏxá¯kÝb€A`»×ÚLÆØËox;%—ñÿ?Æ*õ€gƒótòŒË`ksl2Â1é´ýÞv¥‡•¿â:2dHÅz,~‘¢›q¾¦?ÿýÐ$gCÚõ¤~·\µµ.l“8³ˆÞv ªX$ËuIʨÕ{œNö\×ê,ì©ÇC ý’â®÷à—Q<úÛŒ¬4÷4¤MDÍ$•)?­¹æ@sâë{©y"P6…ŒÐÔÙ€zúöú:7ÏàJÊó¼Ûc=Ižª±ÉeXÒBÈ_kyr)Äü4æÆVô(ÊòU àÿ<Þ–yãŸvNø0¼k^§C00L1¶ÆÝµcþ¾ÜÊ­g¨üD0ß/VãM˜Ÿíÿ¨H¹w”ͶXÛ-»übvú­v J#–ë¼´\a›+Æ¥C¶)‡áŽQ –x{ .ûa€fÖµÑl‹©ÆÆ„‚,Àü4¹Yc/ÙdÖ;K7£Z4ÚdØÛ¬ŸÒã»&Ї/}õï—Ĩsû)ô[Û{ 6”Çûå‹^Xò¬Þ¸Éwö°- »¬°§ ƒ%éWÖFR«ØÆz_»•ƒ¯á5Ñ ~§ Dµ“÷Eí8·ÝHô0Tò ŒÄÛE¹&O%‘£\”®¸²Ðo·ü<ADj6[­‹}!ï/:©ŽÕ}ï†{ሓy-&ø„Â|«ƒâ¹R”±|—•öô‡šÑ,ÈøKœ?Ôj¯WN¬£k̨*ÑpDÑ[½Ï­ /cE±¼y¦:7ó>òƒ^(Ujúj`÷PcÚLøûÒÃ/¹DT(àѾ· º³x¥ðúý5:²&5µ¼’såÝ]¦ïÕ Ÿh %J%R)bS<„lô? â)Á*$‚c‹C+À͈(¡¸Þœ¬Ð]HÜžœ•¥§€í$û†kê–Úo&d¶xú&¸ôX(GÊû0„ÿô°Yˬ(_V¼IwÅCZ.}ÿŠØj BÄVºŒ+ÓPãdLÒ¾Jww/0˜HìÚûîÓ½Â[ãD® ¶"³ÐP^`FõêYkϯòI°Coq Õ¾§g9éÐ~íä×i•£ŽH©“ÍÍ~åcÀNbÄt™íGt¥…r¥“ÈÎÀì+âh2 këî?´m¾jÄÚ÷вÃG)3A€^®ZÙraV¹7¨jFUdÜíÞEjj¦lJ6Õþ¤~ÊȉWÓ×=ã±rÐbÖš8¦©‹Ý{­hb«Ó<”ÚùH3Žã‹ð•*—©âÚ†èQtX &,‘f$òÔ?2!+•P“sïqò}çfÇ‚e Xì_Ü`K7<,¸±»™¯-ntZt4•±}1ñ¸¯ƒ¡æ|m +åþ]=£Ë©ôÅlIå3½ï^e0%v¨V«w°Š°ç#ruáJ‰ 'Q?>$@ ylܲDðË{o;Ãí¬É`ƒûW‘Lü4Ãàhó…rь̴ù¥ôk° ¦Âr¬¤¹è,~ÍMÏú†GØO¯Ãv©j£üa‚“Ñi |$Ú!Í ¢MÝBiý¨‚»_h@‡ó% ù¬,YÑI{9[§<#ðè0E’ÌVTYƒñµwa‹ ë8”œŒn—LÐ5'b˜¡P¾˜wŸ_È©:Eª©€`$a±WÚÜHÉV¼kD¥ï¾´cze]h=$!¸³º9‡š_Ksp0fú^Ê/øºPm8;.SuPèl@@¯´ˆ”ƒ¶ó xÛÄTé¢ÂXb©Î7F[«j, _Œªb3±ò:##·±¢D‡Ð‡ˆ©*û€yIå”]$é|·Ëà» pd+B?d‘lHø6q£Q³$®d¸c\޽8?¼O¢È”˜| ‘ïëNæÚ?oºÝã}›s½¯!úTO§b£åŸÃÙ k§U#•K»˜¿Ÿ(hcM)àâªÀ(݄νL&j}t¦¿‰óÁ*Ž?øDN:Cð¤Ø³=UŠ…ÔV§¡Žtœ•Äÿó’P¶•6^¬{f‡Š'í»ýÙ¡¡N…-T†MŠÐðð©ÆÏ›‰Ý´,X[ÕT÷óŠ 6gåäÔ²yÝ ù3¾’TKj'–âBOœaÛ´äÕöa” ªºY暃“:4L%FgœEJ3ó—yD·| )y´WÔܪ5¥/PˆÄ;GŠÊ |HªRž¬Au' §zESp½èŒ9ÈáÂf#.HÌ!ÄZ"<*y(e’òÄ4*ê˜ÚÑ#‹Ç: y/qŸ ðð€ÿÈ×ø+"™Q·R8(i|û—ù¹ç°tŽ ŸPs(åJ‡üj¤õ̃2b‘Éúí~ ?äY ™0Nƒµ%~`œZáÊ, ì ·j^ O‹n±ã;]î¡Üœ™Øm%¬ËEõ-Û*´OòG ï¼Ñб£I¥¿Ì´PƒÚFvüîN&ã’DAöQZÈ 3p*Z† ¿^&l33háë¦ €z©Š–Q8öP:~šÛD‹Ô]©½„¶Ê# §œ¹E4 ͔ٯ:4¹c:P ±ÿb]“>g’ÃOpìyÄï/véid#܉žñûÖ÷È‚)çŽ7SvhC”½’¼Y6TR¢Œ#„ضõÿû‹y NÛƒÅùp×n\ ͦ\‰·èÊ2ÅBtQLj`È(þ<4)^7² ËY$!·ùVžwƒ¦, i¥=´¿|ÍNÄd „¨„é마çÛ!«B‚& UVU6Rä Ë0rÁKeÉi÷'ÈbÆxf”¶"üH´7ÿó¹;Ë;ö‡eüʹÚDå5C¹è)Z=´y}_ÝÛ€Ó-ì'ò—Ø_9{ÒÎæ9ѤÏöúR `ëÐ cö3Ø~ÉÖÉÈ’£DÌY±£Û ÞïPqócéüxăï"Z5_a³Òý® ?âG 8Tw)‹_òAn¶ô±ÄÜáaÇÖ¦qƒ8†`°}8¡ï‰Y¶§cnÕ{ÜŠþûž»¸¸¯á6 2>qç?Ùþ•$5”»òë&°,Ø$\AwËZåB½ÇI={‰/PœUÉ£Êy †CMã#ƒ)a‡Å´>_¨½»‚Ù+ÍDQÏÕõØ®ìÓn–ªcÝ:ìªð.Z÷a#¢´)‡Ï ¸Za„t=Š>CxÉpªå`-!4zdCð<» ¢7 §{ §èÒ_Ž{Yî}²çôûŒ½iàÜ}À*Ûþ¡¤ƒ¨k§¢¥|”¾S”Ø²ÓÆ×3¿RœbD-^Á‡p» ô⋌,6;¨ ôÐÍ‚\ÅDÏŽc %R=êC2_vùÑ?ŒÍjŸ‘.[éIŒÿöKc¯Nᶆ2mÙÔi<#O;¶6xÃcdú¯ùùŽÜ=á‰ÈýÇ ™pï茳˜Õ ;~g‹‘!Úi·º’~a²y‡¾nˆ[¾ï¦Ø”DžÃOA¸µã-àãǨ]ýsNˆJr‡þ{„»ªÐz=6½¯™§¡¥sš“'¼Ô¸übx‚ˆQcˆ„ú‹ÑëEÄ!Ðx€b-aµÚ®_wQGÕ¹í¦ (›‰YoTkÃÒÀì¶n•|±1@,§-Âszï®3”N5[ §† OºˆMƒñr„dJLzïÄu Üòœ–ÑNn}ÇÔéÎ!<Ù,’[¡Î¶jí>l›SñÎPèÅš7þ±É}õ¤JöW;=W©c%A¹A>Qã‚èLY•<ÄñY&ÖWA3Š¿O¯IÞVŽoz£¼„@ ߊ‹™‘aãj¸‘åB¼ˆ^¶ï)²”zOË[k,ÿ9«ÝŠqŽÉh_ÎaÞ‰*{žÀå'á´ïŽ)¦]Z—‰`…©:™Õ7¿¹ï’u¢!ä¸ÅjºxzÝZ^“Êy™gFÀ‰bVæ_½_å"2žc54{~nc{[dWò-M4•"¸·¬ä:Dyk@wòÌ1i10ïæ i6i;ƒöU5Ó4ÔÚ¯¸(tuB«sX-°=dêï¶h Ó›aÇÑ–Êjo¾ @H%˜¬ùóeÉž¨¨´›g¤ŸoÊA·U…ŒÏQ/S×Ô9¦(Øòû  úîiÕ¬/P]tã}êŠ÷µŽXG-¼…È~·RÀ ç.•³ÌqØ:t0¯J}¼ß»ª>ô'úµÐÖÄ6‡—ê½j›~\¿ÿƒÄ›ÂÂb- ŒTç¬Ô_®åWuËRdò«+·Ê6#ÖØ’®Ý]èãÑR>[¬F„£­03Ö)5Çç[»LõÅ?ô:ÇÀGUÅâÅIrï9rÇöÚPøÂ=™&üà¹0ñ´Ž›¼,fNÕ,šøýM¼vx•¢ÀæºÝ‚ 9õ×ÏD5ÖÈö°½\ã~.•k“ŒŠ¡ß{sÖ/ Û×iÉäg‹ë3æ¯R'fJP&ñ £¢†/ÝÕ–‰ÎUŽõ É_o0)¹1¨?ó2ù¦ž¯_j¡ì‹.k_a¸ûeä¦ñƒ ÞÉk‘”Ptœ«$ßû¡îû¾ èò±¬æùxª%^Ö?‚T¸ùNWgħü¶.D^€ê×ÓÌ2ï×GÐVˆçéõõ؉䀾E]¯yŽ*Šh:¡4þ¥ Ü8Õ¿#Û†éдuÍ|æ<5³®Q>à¾Ê lðfµ)"< hEw³MöÿÙÝrKºJ ÷1s¬kÚéüÄùXɤ²õêXK2âW™†i^a|þaÑ÷””¹H5L°«QçéÑK÷«Ð^2 ’Ö]‘nÎ sUã—÷>÷Ùøiz;-îÚ7j衬¾å$ƒäÎ$E~,!£Ï‹ŒÑg@ð»vnñ¹<1]Åc˜Áƒ«Mû‹èË¥^€À‘Óë“Ûám_ÑižIÊÝ®›{œP6À(uäwâãcˆ\ò“ Ö ÉWÚ…zWÑ!Ãþƒy$Ù»¾NíO¸˜)JéDeõÚ±Hh&V+­kÛÝÿc—Uš‚:Kß➥í^(ˆ«N“€‡V=G “aÌúfd®ö±mWàžŽô÷רe"9Ì\-,Uz?’6Õcò ñMä{NÍG-7ÖÀîcØ‹?U0a¿Kl˜g!zD m©™„ž'‹¤ØúŒ+ò£É9z}¶€hPTowÓ¿< ”ŽÜ+³÷‡Q²jãÄÆ#G<µîEäÃiͬ.$ýÿc½s÷ÿ3—¹™$-ŸWU ¸{A&µ ¸o”d¿nCn!ƒAX˜XØ|Elü@c32 (µ ô àcÛ=é1\Ѓ@sáÌŠÆŠ‹M„×>Ë\­˜š( S^LóÙ€÷CjIDÃJà6âHú$¢¹x…_0s“|€I}5)Y¼/«¦“Abå]fTŸî¥ ã"¹êcNók=Ã\ï­:!Ñš¡?áJ tA^H¥=VU±ô ;5P³õ”¡sǺ»éMÀ &E6W8ˆ9xó0 ïŠ®JMUm9©“•ÃÛq:ÌT-¢Òð¼^Œ÷Õ´w„ ýxÞ•+£H»ôîHf Âb~iâ~£6ú qË‚§{ç]òq_æšì].”"Ö3Zò(f‰u .¶.šróz‚ò¶qžÔ}¨ˆ4.¬YB'gèe`bÑ’a¬•þ2uTy’Ïý%Âc˜ié@WOrzú#®DBñ¾¸ÈÅSùÔ0/@3#Ï¢¯mPØPÖnoÆÀýküã”ãÍ••ܵ*:\Ž$YNÌI³ÿ8_IÕOH²¹@SF&„’èàz&aK»[¶=!ϰyùSeèÖfîàÀ9ö¼M8Ü™êF*··êƽÓÄ3°h€RN ä¼1ù¡àÖKÄ y Ê¿RŒ'ý_•LõGnë‘GmUÃic±±Æw;ƒ%ƒµ E÷Ò³pÁéÉþÁÆ"Û0^vadIfˆÆWp@AÈÜùJ - ‡A®?ÿó®oÆdÛ´¥å¤ñá,çG.߉¡bi †ù˜YËðy•ÏÕ(.¤¹ö€ |Šj&ÜÒñ 5ü󳥫dqß½$Ä—J^¿ÔÂÐ$zÏGE»†ÍÜ7º6kˆQÆÏÅ,‘¦Â‘°N$/¸¸¨.œ»pA#Sœù™¢G LCaš‹~n4Oé´æóœ·}Gó—$N¹nkoçc¹óžæºòÒr€µÇÞ*RD癄©|§—iB¨7˜)¯ÉAÞù1yëIs¼VÒTøvzɬüòD#;g=Ñ‚l((ù¡§©..rSÒ6Þ`kÉèuÑrYÊo t4%ábZœl§î§É$N¿ÀŠQ•ÑyŸÈl3iËøù !EñßÄGáŒXð[ÞIóx§­hi ¬“O@çø@´ü‹Ï-˜:dßd$Jvïæ{J±`ý-f‚0¢È¤’ØÅUk_®´íÍ£NvÔUUä|'÷½ùi¹§Ú¡·8r@û2žâY‰_h ”|IÕ–ç¯F+ùùRJŸFÍ1àsG¦†\:»þ´üU_&oәχ ]`ÿÏØ£‘˜¹QLDˆTæƒQXþ” â­ÑÈ2^þ‡7Òír”b>Îs&hø÷¹Oî5"vÖBØ%Öùê 2ÞG˜÷«×3ýxÂíÉî÷ÁÛ™ "¤«'Š™Ç#&ɤ…hØêÀ­®›öð…r™O6#7ëà®+Ò˵ý lŠxÞãsc›ËàY•À’û:úw~Ï :‹!>D’¹‘â±ÖL}+b¹=Ժׂ¹EçUt”Ü=–à·Ê#ÑM!ù!¬óam·+(ÊÞC9ìœRq@çK³9ô¼R‹KËSÝš¾†„¸Jƒa%"#˜9ÝÖü9 ž®³ äj¶²ûXóì|×=kPe¦œ×½nLGA•ÁT9´¨ëw扚¤eíýÖKïxéëCÂÅÅ!R"®“ü/x/˜ Ðob̼2ÙU®~9“çdtZ‚÷pðú:yh5—ˆ©?Z î$¢i3‹C„¥¤Ý×Õ<šC:Åí R¾`–Ž› ÊaéïxÀ 2d% ¿¯#ó›ûè´ c½A^…¦KfeÞ›“ÇøÝ×ü þäRq@&9 T ¨íDýidÿI`iem´hù>tESw]šØ¦zþš‚y S4î'oŒó©Òú“éVc:—Ö NèÆ š¶¦(2d™ hw™~y¿_VT^£ÕK ~þI<è®îzðÈ‹ˆ®Ì&ÜBïý£Osi2ö0R‡ñfÄÀ,ŠöïfCŽtÖ™}[¹^~åæjD»ôfIi¦JËgìöpV¬-3¤ VÆló!PÙ[‹&c„µ.xd ’†pvÏÙö‚%L½xJ ¶Æ‘FDkuIŠz±yœõú ¸™¤I-÷aÛ¾>2ÏmÆvW€Kjèg;Œuðv´A6öQº*aÇ„ôÛIUðž(í»÷ɯøéšسU½Ñ~±Ò)âdb4JÏQïqN–¨_õÍnnŒõÃWkÏ;à·±ë<|;¡°s ßU§ÏœFkö;C£ge?Bã‰%™Æ§*@ÔSÏfLµÛ÷n ëúéGpÚouðnaù Mëfj;Šà Ò’‰ù Í6~¡„aZ1½‹ezÑøèµU…qø 3w¤«{Æí’L²Íñ_çÃ(ÔSW;Cœ3Ù ®ð£ˆák4 ‡ÞèÎP#¯b^*Û×Ut•f#Sç¿{ùöX ¨7m¦T¨«šÃ…±Ø-·~¨|OóßÑþE0¸/ 7Ã*o>Të´ÒCS&š5Š¡­Æš¾/™Œ†Ó~Ê0ßøìh¿¶…mËl"ÓöÞ@•cgêÝ9[«›D£ã¯€]ÂN%.¦C0ÃPÖ ,ùø|Eܱ›æ÷•û!ÿþ^É#a?]’N·>³Ùá¯ÖÑ%©5VÜJ³Æ£¹ßKâsÌo1^Aà½ÿù”[TÞScÒ0i¡êu©mD¾ÅÊç’"R(²ÝápÎ~OH*€~?è¯D%ÍŠ"¸jÛvr—GɈ E.¼çÁþs Ô GØJˆQ¿+¯R¯p—onÀ¡ÿØ<òãÌÇejÉ­¦° ‚À'• `Š]<%*[»TÆ„c˜…>žæuº‘‡½‰"ˆ1câ*®¦JG0Fk_ðp‰ï´;§*›àÑö”]"7™‰4ì0®J×¶'=gžoùié‘=¿’Šmò•¤uË?\´;<ÉeLï€ÀÀÈŽ[Žvèo¾'8G›þñç"3úm&åê_'ß®·ÍE8”&D­•D³)R6¶žocZº^µi¤æhËPé(*b:á‚åZ‚¡RÂZ£•LÎd oÞø§¯.þÊÞ#-òo^Él3ù•&|E¤_9oƒl7œÁ>ûú lÙa'šÒ«bÒëÉI oWý<#µ§iþ ĈT¹ÄµpD)g[ m߬W&ø?™s?ÏÞ[ÙvêO=«YRcåaÇf¥ýîÿÕäŽZ½Ç÷m{€ßi‡òDvüî{à}ÙÔП¼44ûuÉD<ÛW[ø â^l2$´ÚR w½ë0†Ê&½Â%=¹EjÙnÍ3¡KÚ‡éÛ8dvO}®*Óö õ# À76iΛxygèZ´XÏÄ0 ·1“AÂ"8”¿ª?oi¸u@‘ba¿dÇ»§=:b½Nrº"q›l{Gó–xÀ.šªåƒÈhi/W¿´àTnÂ{ÙsÀ¹£4:pßÍáJv»6õ1@J‰(êù7P@òÙù?Ò„¨¨\9#7_žÇøI6&þÿŽÔ«aNÉ;²a ±æ·ûhn³Ä‚Þ„ÍÛ-’ buh~ _W·ŒËg‰ß'Eœ} ´CUk˜ùQ δ[þþ«Ôòª%R¯ bsäBWÝݰšM0×ö±g‹dt@¼!¤ÿ™!‹½óV&â4•H°=;8)Á‘ÅêüÌ6Üm¿'X› 1øþ! /‚çzþt0 4‹°‚×/bá9\‘u'¶ö7ø©Í¦…(L`, qE¦Ex´b#I•øÈ=–ñÆ¡ùΘ1pµ…á<6ó„Ø´ ý`f¦ËÝÊ5êp‡§²2 ”§0>ez²žõ¨ÐÞÊ‘ û!¼Õ§wÂÉ{V½+ÒÚãžkÖ`[ ˲ÕÖS‰ç° 9Œ |¢vEER[Û©U0µ[Š~Ñ.í2DÖ…J÷òk¼H49¿úbí6Ðæ+ 磊©øP×”RÒø¼ØXñ%$ `À}ò+ËJƒÄt,B¿­R¶©F2,qåö ,àýE(¢S…e>£îî0¹c`3™ñÏ}>¯Ï}Ûd·¡Û ZmÓÌK¶$æ‡ n ò‰À »Ñ϶@€lSêöÞ‡”¾0f¡¢:¹e‚˜Þù8)éš¹(j$¯%9ÿ€ä³(‡0.F$w¢3ÌÒH¯Ý1Þ‰ü]jì30Kõzdí9~]Èž€S°Ô!P‚ÖŽ:œ™@Zd+WJ™rÊÂâZ<œÆ“@N—`zQÑéß ØûKI.’áÕ~GÎëwagÎË4çØÌÙ>ǃ´Ë,^9N,º‡Â¶µê“®*0ç¸Ü¹¥¥"G•N<ž‘A€²$²ù¨ü*iÏÞúDç½³w¿Ê©Ì  ³!{Ì~sU„ilÐ*â&7I“cʱ{ÍOb6Ho÷IAîÜ1ZÃ]ÙÂCbÆËðLí«–BÙ å·4²4ÃõSYl&ÏÍUMX>©PÞ0L|?¡¾\[/‰Õ^›Ü’â‡þŸàl×WðÉ&“w,¹.U…ø€)_ å5¦Ë›ëà7˜@ÌCH§žÿ».|ÄsßÕÄÀHíÏc»ô%€]ê\•nIKGŽàd&\ŸÐøºDÎýøÌ[&œù¿¢´(3ïa94«ò.Çf½nú{v’~êØ6°¶»™U9ú¾jõTl[(ü[Ù”ô)¥»%”NlÏT U$¾»¢C¯jÊ)¹“8-ÚªûdgMÞ}0»:«e/¯"•TMçŽç ™øYÞhBköÉå%ÿÉ·SB²ùâÀ‡€¬޵LiãáÜ4/Ôf¯¿¿’½VEÜ§È ëXø­DF“É6ÌÊ+¸ÒÆFK=¯¬ÉÚ¢å¬lÞ1‡¤‡Ó¦;,W°CAás/­høÏO@«–¢"+•kWJ·!‚QS‹e`GgÆ–¬nMÔšÇë‹ù˜Š÷¿zñºPâïÒ÷‚•±3¢–0†CÊÑ®p@ôù fÎ$¼¾NOÚxüÄ;[zÖÿýãîŽ÷ [È–Â6 bØñºãØ`¼ãíð‘lÈ»l÷SWl<žÄdùõFÈîºvUW+jvÿ¥ûäÓoÍx‚×Éðø¦ûΟ¬Ez¦‡Šu9!Dd­Èaõl°C¸"Ó$î$Ëßù îÝ” aþŠ‘kÏ#v2:Kͦ4û%|(‘F’›‰þnÑMâ¦ÂŒÆhÞ,F=ÒiòRƒ†›¦ ËAk ‘VJioS=“Ù†b°¿b §[>aiÈKOCÈZ‹É¼?:|¢ŠÆ I4ö©Ú©ÑÉ.+¼ÄúŽSfùù°IQ!6–gwËÈ2kªÖ 5q Àÿ"7ÔÔ;E’³:øÀ{™ ­Ü]¤Àóóet‰^·ÃÅ‹6E ‹­SúÓY‰õ]í—¨Æfì#¸¶âšš~‹ï˜¦q£}ix3zr¥ñÜhbX™_‘ïªâ!¢>"ô¥ ˜&uúyê¡y\¦¿ê9£oEp’!yÔ-.Íz7 ¼È¿¼hX±Gò ·^ÚÉ›³»Á]Ùö7h TÑ !ýg +VU–Ÿ'ái^³ÆÞ EÆBƒÙ|OßÚDcyIGÊÍukOwg„ݲVCKÌÕÍÑ5`ŒÁ¼¯ÎÒÌgL2w•GíÔ‡¤fh³Ë1Ÿ“I<ÇÈç¾§ÓÖ’Q*«âºÜÀ)¨}É!—ix´¢±k&¼jT0„ágzŽû!Rt †¬ª`à÷‹àlAÌ”˜E(rùh£è6½+g£Ñ~œ=²½·`FLȳá¥V^0ßf™²L`KÞÕ3³_eh[ûøå¹»véVÕÔ•w8þ´Cc azìŒÒ¦9ûó.`ÕÚîoot¶[Ö¯Ÿ¢Þë{ÓÜ@\tã!ãôÒ­|Ðû&ÎÚ1‘Rô7áø¿Æf‚‹åA5_¶¸É"#„ʲOCß}ÀöºE¥gvyiOóeþÇ7M²U¡™Žä<´ "7RÄîõq°UÁ²]›ËÊž(Åü‚¾~Çs¾žx¯o¡?ò“Ýz@kd}ž(‘áúôÊ£?ÖäÄ”…îM¥v§¾Ä/HEÓJû ‡žþF•ªwô çÈÿµ™Ñ|éòg(ƒt«9'…ê ‰ÿÎ<£#áKžÚGßûöIœC‹æj¤¶_qXŸ*œYxB_õ#(0íÐÉMfÒ J=@0yÍö¼qH2öLŬVîG”™Þ-¿\b ïÃÛíÑ·ã\“9ý†.—ùAé¥mV‡‰ôoW?+ÑûÂg>M´Bæ:¥û¿²ƒ ý:¨w‘¼ª€Æ@ðl< ¥¤² ˆdsT&ó0I¶ÅHÖšPÈ'í_Ûᥑ¡šá¼^M*¿.õ²Ê{uí)wM÷¿6gøåf£ªóqØ£Fó1 Ý(à6ÅãìPej*4×u˜¿7=„Pù9çÔßêLL›ŠÕ%'ê”ðªò—R˜Ûæ <‹qZnFÚDÆ!×§¸ŽH¹â†Ÿ¿)’ýýˆ5`¢Ö”­­ *•z%¼ø«¦äJWrëÍ-ѶÁTC¯üÃ%Ý&Á‘Û9’¦í\·N2È*´œ~ò›¬óWJ(ßq”F"ù{ î•ÁÆÂLbgÏþ•—F•½]÷LCÁñx xÔrù'J 3œ~N/·Y™+{ýŽ8¶à" ¬Pð¥a'&XŒ *ƒþtSˆÜË£ Äêœ$F©ÝÐõ§E¤»_ÂÞcÂBì.€O.ß³õ¹üÙ‰gHcN‹ÎÔïÛϹ̴Ê×i§Dަ&²k=Ì{™[aü°Òè'ÀV®•bF °žÈ¬EÓï46ÐÑßëß\0ïç°©YH¡Ä0 @1‰ö«3OëÏP« D6ù;%%¢‡THж·ù9 Kâ5Rÿ„ˆo†j QÍ‚?ãˆi6†î}£‘¶ú5ÕUíÄÖ¾e)é Ç¡Љž~+A‚/Ov¦cÈg>tb”5Qj$ÞˆÙÉ¿šœ@d¶@*IÆÔÓý“3íª/4~Ÿ‚WvfÚjzáãúˆ/ñ¾î‰ÜÁExׇY'‡¢aÖ«Îñ™¡ŸùUg<§~a¢8 %ã]¢Ìm†%"ŒDÌ™¨ów7øù¨9ø‹©ó¸xõT@Ž W§RxȪ*èfÆIçÒ¸–•¤jbÈr¬óòüqkŒZ‰€‡Š¦¿Á$I‚+½­‰‰`H»¯Äxů€àð£…>g¢¥&¢&Õp»¿ä´’‘Á£¡1çgµ2=ú^ÙFTÆÙt SðÎSúj˜¹;}Ö,@Òq3ñòQ]z÷'ÿÔ~EÄt¥ ´ÛWû±p[òãÈ`|-f‹w’–°:m¸*6ç•…¼×ˆXÝ«Š•¿u•L24†”|Û;ßÚÁ[W¸ƒ¡û›AcöÅ㳡á+SÑå‹N„jØ3ââ/± †`$Æ¡4ú™]3›ç÷j‰ýE1·ÛÔÄ@Òý,µ[œè #Ù;!_ˆB²=I§jµ°ÄÆõ3ì¿ý±ÏP<írpÓæ7×ÖãEÊÀp·¶[‡bÛ–ñ_¸|-ÁítÕE<µ:í‰áµ>˜®Xö°”ç¼lÏ1*ŸÍ†(¬~Ûê“â%-Þy¬Uš¬ö×[¯Q­w“2“2§o‰ýhd×þG|ÙÌ/}§HÒXŸaz¯á ¾þ×Ós‹ãÚy°Âsë7È¿¾¨„²ˆè¥–Jû†Þ«ËPýÅ|ôsÜv¦ÍZÉ–ÿ¨Áâ<àhæÒÞ3õ¡’><0bœ‹Ù€ú T°š0ø]-ª‡ÍÏ«JÿV€` w]úáÄ;gl´u®aïŒö‡jN¸N+¤ðWá±-ÝJ‰7ß!¡½3åJtDð£]-ÃhÝ\œ¸ÀåV*C/*ˆ'Í–½½ž¶ï,5È1?ð‡ÌbŽ\h­=qFP‹^‡³ñÖ­CÍæ9‹iS¸OzQ\AR_ +!ò@)s{uç­‹:ÖSéÈÚäù|(ÿ™T¤Ê¸ðŸ@UëkY“3ž³zT ;ʦ¬i„¥º &â)Ûgßc&&g*Z=p¹ùDä+UkQŠ\9«äò&¶µ`žÜ76Eå"Øó&­¹zz]bO)a£ ÷üéLµŽì41yƧ$¤,XªœŒus]4ÕxáxÙ:1Eèžy…m 'jìâ!³| +f_úm|ùå 2´üæäÚþü‹¤©¤Úf ¾À¶H€Ož}ºågð:‡Øw*‘‚ëjù(çl>4 Žû8ƒRgr¤GîCn&@_¤8Ø&möKê׈]î-PZÆü´¬1½ür>1ä )Î%ÖkO[ÈubÆÍ©åÖ‡ ©uÔºZÉéJl¿Pb|½kv+LX›N¨Cà5Ï ©¸r¿Ì‡ºt?‹~~=°s8ñ7pí·N‰ç¦±'BBÌ>-vd{Kcùøõ°q~8€¤Ò¦’[Q*ݶ½ñ£®åð%KÅÌr몤£-S`%D ÔøÅARÒ³4¤’áêz}…êƒ<±üÚðzu*-ÃR·çJPþa»# oНÌú.`÷p~Á´UÝ(TåÞö¼Á̦û‘)°ÚóÙ×H|!W/q´É¢wê5q^Ïcþsü˜À;¦otH¹‡Ðm¡*}|j*Ud/ÿ=èãŸacáG|gFu-ϿʪÛt[4>ê@~B,5G±ª]õÜTãâ‹@ÛD*AÃÔ&¸2ùpà ’«îåÞ¬w4E’qb„¬ÿp=§Uì_HÇ nÍñž[B à‹Þ~ˆ>'Mqýf ;ìH'ƃ³²Â) ú*(ë™´?#ªq”oŠ©O ür?j^¦¬›PöÙ˜,­€´œ‹ZÉÌϹø‹¸)ŠDlJ©´LÖ¢KûŽÒâû›³z¾Ö›{´W²H¿÷ \~˜­ Aù¹ ¾ßа½ùæcR2fÃó°¥bWfÑzNûÅó–¾c§Ô4÷(aÿºÒÚ2®Æt?Yêö>0AÈ‚}Þô×Gé£\c½JíLÌ[º)øàúè]ÝÍž×½S mª.(þAü¹ávX2[Mœ}Fç³Xiú" \Îë¦ÙáDa`]ôKU£Ûoðø,—.ä9íÝ2’n€¸rÄÀ°í[@ûĽþ‘gïäRâ4û2¾ácâ½ãäôtNNøå]Þ¾õ‘sTˆ>b­ÿ\(Ÿ>Ø ¦ì¿}vjÏ3†qJïuá*z ¶ÜÅ}¡MºL«Zà\-k|¬·ÛçÂc¤ÔoYöWEi9½ág ÷<³˜ßûrº‡ÍÐ)i¾V9•èiŸ1š"_æ™)d÷šˆ„‰6ÍŠVËf%¥OŒ›Ú&=÷‚†L œMŽƒ@M/g×¹l¦äžfW®âX€`_žôyXI9¶°Á2¦~ÒåïÚ9yÕ;‹±Ä¾ÙqáûÆ2™z%¹ÂÓÑÉ#ŽÈXj>ñÑZuHNRšé†YË€¶FÙ€:KMPìâ’œgδT7Ï÷j‰éZ4!± fà㪎ó²Xp­bg!dn0fôˆrL5 ¼(ƽP'¨ü›íЇE$µ‘Ìù¹7œ–{@5)íuýê &§ÌqĆº=2 ›´¥ún‚A¤%â¥Q:>yýÎ ªg›ƒÉΛ`‰-‚óó9hiBLì"Ûu£p¯rãI»àòo*u¾Í]ìO; j,'D™­ÄC£­¨Q‰ÉˆÚØ•Jåª<›"®úé¿Ê2J‘¦Bè§+c*×{Ž>Ÿæ#úŠ0‚í¨ñQÔ(bɦéêÝÒÚ‘ßPÉv¯ÿ§Âl¶”‘ëfîŸ ¹=¡IÜ‹7AðP4"9GÁN/ÛÐ*}n-è÷›Õ¨ŸÚÕáJpÒP?©,ø~ Þ²“v!È¡¸P^´‡•v]ÃË g¸øÕ¼9=ÐÎqå×ÕV ²´†“Ù&-5‡Ô QRÍK¨wà€¢ã3jrÿ±aNÿ-£ ^¢ƒÐ`p´nnj >`òR-7uí¶]þÐqŠ‘è/`جÚµ™ ãÓ݈0 #MªU'úÏ+CVE 7èâæu®øÏ´áăV$`†ÙËw;èêüs9KÑÏÖˆ˜Yu"UוÈYõ;ýÚ­»#êË3åÑ_ù –%"†°Bf;?¤»Ùüi¬ v­Q ²®¯hØnÚÇŽ–Hu„íÔ­|âú{aº¢™R†æi쨠rŽ“ø7¸oæpETÍ&½Ö¾£¼×ëÎïÖVØü›WøDYkš8K%* Î?ë FÔ‚¹>öñkÆÜg@R¦íÚ¾Î\ɽۅ Ïr—°5^‹;op$oLé²ÖÒµüÃcäá©FE’Á}­k[ë›ó_1íWÖoõÞjÐ1h£“^Û$CÛtÑ ®²Àù–ÎÐ;á’ßã”È%<¨„v>ðÔR(rUÒÚu2(вn”õÚfÌŸNäü9Õ!)¾›`¯‘Bž)ì3¾ëyèzl}€ÜrÚ°&ÑKØúÀ=­µ› 1gy°h¢(­f›Uaz”ô>|EÕb±ÖÂ.޳Ö‚æM"‰7-ÊÕ‘7(„‚]ýÜ9&búLäj `B³íÊù6ÌVœDb õ4€Lm[ëáU«$l,¾2377HøÔœTzJçdšÑÒémÉ"l–¸ºõ rÏH$+|X= {'û|Q¶Ù°' ­®»OÂàíèú’öHºH ‹ÑoÐý’ÉaùôZ6.¡×UL¬áb+ñ.ÙÑ,è.ºÔ¥¾d§„¢ƒUzT ¶‡ýJ%þ˜BáMŒ³Hi‘(1¥íiÄÒ@Ê»íªÂóJ òØ+‹*icRiÕH'㊄Ç2«þä„E¿®*ºÁ†‰s<2ñ¬æ/ØÈë V© NùœhZ¯W ñÔŸjÄ7{Öœwx®ðŽÝGPI+Hε2©Ÿá;§%¡P`åXŠuÝ—hË–¹‡È uƒloø£|ÖÔy9±?ƒÇ†º^`úûqýÐF§Ô.¬T"ª˜VÙ“8•VÄ£Ê胊ƒ_¤¼Ê’[ciPqC6fûpu¯?õ´ºuF (0Ê*UMó%ð¸êÕ¨©§„Ë®„¼@ˆZÔüõ¤¿ò6Ž5ŽÆ“xžÚor,ÓEF4#‚×îFПÒÑgZÈé=~›j„á3±u»Á,öhCF&]‰÷[³¿Ó€¸:¿}©´9ÞE:–I0 ÊàQº$¸Å§¹èŒRYjb_øÞ±’ƒR·Pí¶(έöÂq^A°/ÈqkõÛN6Tºb¾Üoªß‰Ð’¬Ä >ê ü\ž¢5þIMy]ØR³ Ò°3<}½¡c– /ø•åJµ©ý'ùv+Nñ‚doñÄÙu êÉI0°LÏZþJ‘M~*ƒ¹ÊA§*J.²øÔ nÛvÇâ4øùäŒÓ¥(¯¬K'fÑI¼£éÌI,R1î£c@ð€»¤{ÔßM~ vþ„r?Õ3%*Tºí:â÷Ph„zª¬Á“²Šz4¼¤5uV‘úgR¹¶Šá’€7QÚ7cÞ·±ž5.Úä%…b‰Hv†Ì¤ˆ% Q„:‚€_ŽºÀ()_¢ÌÌç ñƒ…¢Wjý@¹§Å¦cꜩøqU[)†Ê;|’­K@•š@úŸzeÖXp6xûΜŽäõ°üâÉ_Xg3ù¬$£ŒÛ:+K½1{ Jæ¼~ÿAñ’âQiíˆÚêéÚi•¿rJ¡vCíæD‘ÚF{¸Éâa¤g_u§ ¤sð‡6T[޳vþ>íà6œ‘-Lj1\ºTç`¶7í>û+YW$r“Ì2ª+r&¥ÃëÏ9hà‰µêM/Á|Þa·V$>N>ÈeW!È^IÙ µñ(‡d†Æü6j0ÉX×;§IóàIn¯ó¨áüÇ/©€£}B§è²ìÚÁztEþœé.ÐôÁ@$鳚ý{DÁ¿Mž'0B$ŸºYÞ²ž ²Ïô4³vv®Às€S‡Z{À.n|pñ Bt âÕHËFÉ óQ¸R÷+K—Tá$¿ŠŒ£#ùäVâe¼Ï So×g¬-ù¹‰‡í“ lòÙp¥wnüÄyÛÍ<ÙÚ+€rpˆÝç^lSØ/îFKá§ÊââõoÌÇ#ƒS±æ†rƒê…ò·.à1ÐãÐÔ;!‰›ÝÕ-i\ÚÎ@ب[zµÛ8tÜÐ#quz®Éújžg K£DMF”gLržn›¨8¥Ý ó@ûÒlÝé%¾HYãЗ ÀØÌóG}f{ Q"rÿÝÍ*?λ'ßæy¾¡£ EÉL$g»ÙS‰áªk™†¬ÅóúŒ×Íи¡=Ùe¨©¬÷-yVq²×tpi6ñ÷×T^gbŒ¾ÐÎôÉ™ÀüYgCþ®Þ-EÕ¥{µY ÛëHž5Ãõë85K¤“ÇD}‡ï°ì“us¸e8âÌ´J0²b&³ƒ2E/þÉÜœ –ò•O·².7s,£¶Ñ±°æ ›FI)™£KŠà{ŸÈQ‹ÇšE¤çÊ@†4ÜÛÛ¾ !U$Ñ/&›Ðéa¢8}KÖ^» k|ðóE6@y»Z ïU 3tïõêÂÛƒ{®EDZK\<¢$>üHM®k/$õ~X‹M˜»9ð`2*Á#ÆË?3äÁ3½N…õL[Â-¬ŒKo/×°¾9l11bÊ•NéÀf§N†4ªK€‹.18²ã¦9$÷²±a­¯ñ«6Ä4ÓŠreʃñý˜¦”ïÞÓÒªéæ1ýrÄö*m†JóÕv¶Fl3ß’zß´‰«z˜Uˆ©q.¢hBJ£MùG¡+!øÆb¯µgQÑ.lš‰‡]äý¶‘ïÑtP!‚Ç!bÝû¬e9¥/ÐÖ=™—Ë ^ßžJeœ SíO|Fv 7iŒYÚU$ÓÑqük‡qÁzqvÔW¿X|š6yž—QžÄèÚÀÛï¡4Ó£^h¦(’nŸ3\ý¸<šÝ¾()wJÖžÊÖÅÔܹƒò«á\ÿƒ@`(°•°ßº¬0ÚWks‰Öù-¹…Ø?W«?‹=Ž„á~Ã!øá¹d$g.Ä(aéÅ#¬ð>d Å–M ìëx¢¦4ÓyzÁ\íobgŠ3•B3Ç›?‘¨Çáa;/“úàÆû¨äQ»‚Í’ø–€à¹Oˆ®°ïù XÔÑ¿o”ƒpNÆõkè*\\›ÙqúË Ø* z0{|7^"y² EKŸ‚ ­¸¼9Â$0 ´þùDO/°6CE$ÿë_àÇùJ-Ä•+ÉŽÙ–~ciá}2«O.ògpÞGè¦Î2tô¥ºÒöɦ:šô wR/¼ïÕƒ). ˆA„ù÷»!XvX݈(ÂÈÂ:¨«_1€C3¾á ÚÑFÞN(ŒK˜Àüãh¼…ÿ%•Ü¥—{ƒÙÕy­1ǼE0Xˆo2¼&‹ü»t¾†Íä©Åvà‡ô¿‰¦ËÞBhœ¬Šü¨Œ¾Ä9»«ÒÝBQðÑu 0;-.˦ÏS©Š^ðc±ÕaÓ!I[´ND,1Ìa×´?÷ .ËÄ_œŸȷת¡TPdMŒ9%NÌN_Ú9L\Äk¦° ÀlDLÐ4ô"Cèž‹Åïï‰ @ l®é3Uþ„–ð8)ægkéúTþƒé¶ˆ‚òÔ®y.®3|¦ ˜1ÂŽ,mƒQ?ÿòælÉgQó–Qk*•Ù›ˆ'«Èœ—²Q®‰dŒI¦IÒ‘ê“Hàâ2î™ÙÔã÷.é.®­wÂ{}2o§–'÷Gætº¦áȨ¶àX¦°ðNB§DŸJKåWÒe(nŸ| ƒ¨>öˆ˜˜ó¥måÀ+ ˺X#Q1îPøæèußéKÛ¡7Ø}›mÜ›ó`£7Ò¿ªÿ)‹Fš^öÄôµj†íV6²²ðá“ÓŸk!œé6’‚ÂðØÛñß½a<‰ ˜t‘Iƒv.sÖö`É9C…S·M¢Æ9Ì%kè`ÒI KŽÈœÈ‘z^nïÌК’ždÝÛlAóšþb†!×™gÈV'±gæóM*ûjÄ÷iJÈÅm eó¹ ØeȈ!LQ·&“"|tw%Çx®! týÒ?ÍlüÜCT8¶JÕßÐåÇE i5Wà[øÊKÍk,yî)аú¦‚Ýiî«ï¿,‰—ŽE&HÀ¶Ÿö,ÐNüüYùã˜ùu‰OšõRÅ.¾÷2xE¯`Êßþ! NþáÚºíG3ì§;ÀUÅÙ®,ÇŒu•ÁäýŸe2“€ìPÆ/®Ó?.Fª˜ç˸J2âö…*9Ö5zÉϱ¡º¡®Ã:Þ¤—JË9 88ÌÙ ‘¡>Ó¡+°õ†éTV¦†¶0^&k•Õb›—uR!! ‡„”û™ ÍÆ&3Ë`Ðïyf¡ø– ™4[ßÈ“"°ÐA5›¯Y±1çJZX}àò îKÈR…C‘ð¼œÚÝYQ“ù•ܤ¯÷¼8-ž”‰dÎçð¶}‰@>0š¶+öAî”gÊ•¹¡Ôv}ë×!g0øß§¬N\Ž Ý©Ýˆþò¯@X%Ü›õ$ 0Êöø©5ìÔLµ×eO²¢VÄ‘œŽ÷n2‡Ö(mÈ;óÐTÙŠ‘!%bߨ]ò‡¾°¢L>47Êß"Tç¸é2z ‡—Bˆ¼4 Oӈɫæ.[ökœ«3æÑ× »½ì¼ˆ]›»ñVzÙ%yͯÍw~tUV\‡––ã~ lôžÜPÙ`×’Ù¨zÌ_Æv|Sžôãgæ«7Èç«Õ/®,zºÓ[Ϊ¼­ù'@½ÞÇàðêm>†‚Ya¨pÐ.I‰½>.‰·,Åõe'S¿U«v”ìŒZhÅ> +o}q÷¯1ùà¶ ‰œn ~a ’W%™ Ü>.õîÄØá×2ônÏÒ (Z6Ÿù\à=ÿ ÛþùÑüw3Æ 6í_ô¬Ö–¡¤¡©išÓÆÚÞl´ÁèA;$ÜÓ‡FzËþ6ú ]e«ÐízŰ⌜O‘ÜNk²ä_$²²ö>&LÃà&ô´Zmäf¨ŒÍ¤Ô<ðQ¯… —…Ò€ž_À“ö-?–!ð"Æ–‰ÓY¼¾D[Ð`æÌ‘Ø8C¦¡v5ÏC>À¶NX£‡s–5×¥[8×Ê]}Äcÿ¯jÅÅœ¡ŠÖà­¡vÁ\zõ]^#§=Nk2õn|ìŽÞ¾¥D>=ú–ª:§©$À[‹‰ñ-—HqNŠî+õvRö4áêe„_:Ûâ&t݈iàÔ£t¼ÉÁ¼™ùÅh?}Þ_F,O»Š;k€*ûî*‡˜Ô‘°ÐÞrAÅ–?vC köp5¶«g )*>ðáϰ%~´ñƆˎrÙÕ'^¿pZO*C½À|?Ç[î~<賺íÎ*«•å«¢¿¤o€ AÃà¹+¼€W”SN0_èj:‰Ttga­dn¶žMëˆ&u ø?M¶šCÕ9‘Ó„ïNÀ7 ™êbá`¥÷©˜¸¤ i46²tKˆ(»ßm›èåj»:@(˜_À\ÅE…"@Y+*,‡âÿ–¼‡„‰íyÝÜ ¨8ïŸ\FåJ³;ûä uZá'£sÆ‹Âß”íÇ˜à…£#‚æ|b—Ñpf/ű[Úñg$Ác|ÆóÇÓ¶¨³÷ÚÛÇæ²J6t)bŽ‘û×Ì?Ä,@F`s C/wê7¯ÏMÃPÞ|î‚WÖð,€ÁM´ø… ¹ÁZèqoÿæ:‹ÑŸz„ŠÏ‰7lÔ‡A:½³þŸ•ëÝ,7`éï㲼̢jØ1’µ³œ¥HAààŸ3Ì îÓYn[¾ƒœÓ"ºØC5¯‚phëR Ï‹Vn0ÇÜç_:Jú”S×fg*z›õ¹t‰·Fö‚¨:ñ˜ñY©¸‰Ö)Èù*½Þ!(_/È¡¿„7sÓ¨_ê×õY1p{ ö û·Ÿð1–n‡̲ëHÚo‹à†uNÛ:Ú–gÍ Û‚ê.©dš_Ë©kä¹ÚÅB.ñ{Ý|ó—íž¶7ÛvF›{¿¼¾=‰ê2™Ê¼§Ñøß"”Ä}ò?79Ù”ÑL„¶Ìü>Ñ‘Ô$%Ü„A QAsºö»2¡€§ª·FôD¼Ä,”÷çqQu8ÞK±^¾Ù RŸ®|³]GÝn°ª#QŒÖ¬Šü®˜. )5.tž8£ÛbÈ¿ Ð óýƵ+kšmç®……Tú£ügù¡€/àóЍC=wÎT>Å)‚9<´“7tø›¦mǾLi¤&õ85†<Ç¿@¥sAv©YÐF¦ŽÈGFÿçõÒ™“cËç¹@6|PÃM5À…χ¿îØÜ=Ÿ©º†+GJе– &ºµÙBc…İõ$*ë7Û4‘»ü#÷Düîäÿ“²^ºyl|ª¿ á*µ(%Îe#ô¿­Ø¸n„©±በò Cé ³ #"]ti?8€ÖÓ=sËw4Å|„xwkä'Ï4¢–ó‡þBç‚{‹(¬~j\Ìl™ûÖv] îUù£'ÖÊèöÄo÷\°oÅP«ù~y>“qšBê”RY^ÈpÇè¥+õ "¬Ë§À%sÆF¢¿`•¶glO*gX"°˜<‡ƒ%tåf †Ä(qP\†þÊ]þñ©-ÕSËAøB6Í­6ƒþF~îB…ZÏ_dĤ> B¬ösñQçÊlQàDj–ÛU‘»3æÔ4{Ö`$µœg¹‰Ì»MÐ"•RÂþHñy²GŽÙ2¤°¿ºv€h¨Î{eL¡·Î쮚~Çúå왂TÆpù}ƒÚžáà‹™³WI{]mÿc˜mŠÜ¿?kOmÞ o\&üÃB1Ûk?*ߟCWbh7ø!§zz“MãY%…w©ð–KVÛˆš4Ôçí ãl%™†¦½Õ ²û·à°5!zØÈå'/êÒ^ï#Bw×øíèüÍ9všÒEtçy[Ó£ñÒ0Þ¤Ww}ˆÊÏG§Y ,‘1tÞ˽Ðúè…—ØyÙ¼{ ¿èØtzëªìª§ïæ—w #çsí³8¸`;ÇôÛY ì}…ÚáöÖ‘ïµ& ´æ¤ØNØÙãš:Ä‚q"u±¾X{H)M-vÞv^#î@úo&vT۬͗QzI ]%×*IöŽìñ¤MH¸n•£½TP‰JÄ󜫌UoÛÊŸSú$š‰ÛJo%ߢ^É ìZ—µY‹¨ˆ*‘+í{«´ŒßÝá0oŒ×ÝE§… dã2¹$ŸO^3WÅÝé3|° P÷!÷'¶^{PÝPZzˆ ð’Ç•ý©ªuŠßJá=$û[\Ó—6£+0ßî½Q£·ŸMœ¢‰¼ÿ-•TŠ&»ì'>.ÕHòZ¬½bò¸)ÉOÔxwuJâ?ÿTº_4€ÿˈ¢Ð‰pBW˜¯ˆL‰U" ß«µÿþÓK™óèES—0¾õ͵«+¾Ö+Ø6ÅQû»sÈÃG>{ˆŸ¬ê‰·þ¢JD - 5øãQZé è}†ÛXÎîÚj±Îºy͆ÚY&šëÑû~ ÏÁ~Re¶É]ï-­æ@/h)Òóø7À®Äð6»3¨'¤xrÚ,8ƒ3L.ÅR¨=8 4ÿ*Fl)% £Óu!ùöÞ‘²qìvÄwtY;xû ÑË·M;Ïl…I» YMr šéÐæi¾úÅþ¤Rºú…}…çË]Âé”X‡ZO¤›Q†&5Òiýܽê&(ÛDHXÆ\mÀÆb¦EÀ{ÎË:{i;‰Äðj zéÔÅ…*ž˜ù)Q‹5kŒ•X'ÛòP2A !¤:PuDä£Â©˜{‘žW³Ü¸§„.©4Ëòèk²c´ì®ÚÀÜŒÏg¹ë"ðüÒ"ütr*m¾Ñ+×´õGqq o…h×?^»„q.ïåÑÞ›nðY|¦e´VÂÖ _~ãÝ笛Úéž+LÝú<¡Ü'­‹xe¸¿O~³nÏ8žÅ 'öþ ÏÐbÉ›ÒZu{0ê{ÞÏy-çÁa¾YÑ*V?D‡I@÷,$У*P’€ Ó³¡«S7†”jÇP¶j÷†CFA€¹8e‚ÍΟy_í¶ºê×HþÆ_o´Ç›™gµJt‚~"„#ß!ïDp¿·x,ŽeuÙi òªã„aU|ÁQORâ¸7ñJ4Û›Ÿ&1Øë,C<¯­?Ưwˆtš'’»#ÿTD’ÂÆfH"2[kœ¿QÀwXÉZðÁʽ¦6Næiݯ]6…U(þÀý%’Ed™ÒâÛ#'Ö˜Qù˜cZRëw¸0.õ“¶|¸#;²ÞºB’ãϦu¼^Ž *ƒ]}±ÃHL=ÇÛ½ ÌŸMˆ݆|s9$«ÃŽDÊ(¡óf“”“ù¨bæÙ®ýÒUr(Ý^‡5@?þÒ<Øm1çHŽeô³KœaÈ28/_ƒbs^Ʊë‰'.ƒÏt£FUª26ûAoæp ± ì.8”Ùøw”é5üÿÝ57=R„†2V|ð2Ø‘¬‡-⊌ügÂñ­žBœ*«–$™gxç”luƒ ‹èML•ÝÓµßi£¶N!òn»?8{d±²[J±ŸÃlúÕr?“BÏ#ѹޢ(S ‘jÛ³5á­ÃåšÖÛk6a_·ƒç )Á҂ʇ×ÿ$»/l#ûêKUµ¹cìŽãSM`o¤ÅIfæÊ~”´Ô~3,Ô„F&@NÄÜ®,±V€2{'ëK‘‹¼ãÎŽ%»zˆ¼Ê~.è/~K—ר"÷Bx 0·+¤ §* õÌôÿYVfzê‡+ܽš'Á!}4ˆ¼/A|O$*k­5˜5iÈ÷G*” :Á ²sCÉ1À(Ú±„[Ûté¿ )¨|ÚöZ߉GEÈŽ‚3ª¡Pšîç«c®ùiÕM¥ K˜dfv´¥¦ÆöwºQÔ¹áH6C+mKÕ¼¦7@¥tº†S‰Jq95"C÷¸þ|ÛÿÓþ|l:g*@.1MNKŠ®ª)æý§wÆ%fR¾ ˜üÎý6Fez3Ž‚‡lÖd׌Ñ18NžqJ ðmuÏ×MX›QÝ› …ïø.éõ¸0öžÎ~?.ùƒLf…¿ënya…æVƒ¥”/u~2'Æö ¸é±“œ"^\f‡P³Upìx:v–å·Ì0•uy¼3¡ÃøxÍ=6a’·³@'¥O’1`™‘ Š“`ž¯ñ¦R‰@‹M&A½hû”(…ê Kð.:°B ÃØÒ°ÿÆÑSJó‹_ŠàS<j[?4|'ŒrCÁLOˬÿÚ¹-°ñ ñ7VÓ}`q1 ®–G9 ««-£1sWŽ„ÐZVÍÊ«@ Ö;™ïÉCïH»—ÔWÔR_t5¤«4ª´‹Hkd!ÃcÁcóÕ6橽+zi(«Ù“íá£À“+ow&]c ÌìY>¹^Ñ…zZ½JA@NeÎÉ©³aïçËkÜU¾’þ3—„ñh¿¡ë)Qìü o0>Jô’%Ê¿qeŒ‡5 <#&zsK߉#©Û m€¸fF ¼lY–l+B`¶ŒÉæ¸ôLÌâ}Ê>æÊ.Ü]>5Uql{*9,U®³Å·8Ré€9zbã5¹Q(½TÂ"X‚dÌ\ ÈãX”«fвI¶´Kc^¿ÈP¯æ@ý 3†¶•®9ñ&Æw,Ö{ûHŠÊ&åIŒkpðÛÓI©õà—V¦ñ&Çxqà0K}ò™„ßñMÑ#‡ÖzíÔöx¦ipQ“nŽÏyxÝ5­ß¥)¤šÝÛ¯¶´éÔuV'ÑV‰·‚ƒÌ-¼ÔèÙ‡ølÞf>¸< ®õof¬…éõÛ@ºõ2Y´ÿç5ì¿Ë }ƒ½räRVÆÖ9›öºém»ÃК^ádù‘ýU™³ñtXþ;w\õ{'nÌêÒ}|H®_æ£1\ *ŠóÎÎaó²~Z:°ÓÅ6*ômÊ#PÙø  ú<³Š¥Ýq_5I*ä‹g}¸÷p岦“·_É>!âô… VöÅτ̽ÂT3Q—Ö×ÐÔΊ)+:Mîo«Ðß^(ì¬$Jl8½‰©5»ä‹š )ÓQW À%Gå¶SùÑ ÔÐù<ª²à~‚6Çn»{2éIu)ÏÛw<'[øÎÖÍz‘"êJK¾« 8±|¤ãÁ5YL¡ÄÊ×ùú¿ŽFÍ.ê§[Õû– Ö:û—RËF'W\Ÿ"ДBœeM.ßû²Ü8å‘;³Ñ£\‹x2”'j ެ˜ •`<çB2.ŒT*Ði»ZõzÇŒGç×á »gÚ8èêíañ´,HÄÁÜÖW`ÔÊ5èd°/ŸTºüLŠìäˤûQšVð…wL›Ô¸ƒwö:ÁÀêo“ÍÔWL‡>[ ùîg5ÕÁüäàDüvÙÒ—®;÷Çq7H*Bþ8ƪóÛÿ ÒC< cõîmYpzË‚°ÈcüKdÝ£YÔÑ4Î…ñ¸ž9ãi„2’  Ñx*Qžr¬‚s0«ž¹1\Âì];t=¨…çµ+)Óuæ­D¿|ßep›¢=ÐR¡Ïf¦&6i-aÏìíä£_öV,˜ckUÐÈúÚNºyÉ"ͼÚkÓ*4¶'¾ªÞ¿ü¼Ùj-× MónoËP¹7µ#”x¾vjÕ/»‡,ƒÌqþkrë 6üÜbN¯èŸÊ²oyQîñlÙúÉ—.‰Öyª ßÃ0¤bâó†Ìgmë)ÓoÙeœÉàS)ø)´ëâ9ŠH̤­DÜ#QìCîK-”|PZ6ÿº‘´4àÊ`Œý¬¬¡}º8eXøàÝ'GOiF¤*ù²èŸŽÙ"h U8ot*F³€½ñŸ5¼')àÏ=ˆн^GíÈùse—.Þs¾Áq'Y¿þ <ÝMV–žOÚc+¶£¥¨úsý\¨žòøþbèÒC¿z ø´{þÔƒ®iøò FìgœÊ  ¿_½Ñ›.&Ö#zcéÀíÔÒ±¹¬Fì·¢ò d1ËDMsÕ´Ãî™ü|¯1ë…s/:þËB1áñÇkÒr8.¸l­lX}šK&  |¢Rú&WúS]åŽÿñ>j·Ç–N6·GÄÿLÕÞÛ}Co‚–«ry8T~‘VÙß±˜-}š™ÞÓ£-k¡`IÝóO¡«˜}Þ¢Í9Öt©¯pGÃeæKõÄE8|–Lt‡ûE¦ÆaµFÖl ÿˆs.Œ‰”GtK¾IjÛË£ØeùÆåÓNõZ¶Dgˆ”· óC1þ„zy‹1w` Ô-Á“.mÅ-ÍÎî™ à"s„‹Ù¼#–L߃znF²ýö.<ªËaT({gMiéáb‡ýÙnÉ®Aì—µl#ïÁê=q d˜e˜ª¥¸¦!Ð>Ðm¡Öië¿V§OšG‚ztqÆ?ì¼Ð«˜‡Ú†sʆÜäﱜuÕÇõÈñaèÀ¡±»@†9äa±0[9%fõÌ5.c_ ËzÁkì…f‘d(`È!!–€šµMˆq°‘Ì‹ü_".Râçfä&{Ò"–ƒõ®ò&4{Ÿ‡T L#•í«çݰeóÎOãNBP©ˆâN÷2ˆ‡Ý-ÒÚç³YқϫPÎÁ°f„61,²-±l &ça2@Îy-é!AD´„^‹g”KôisöºÜ‚±[†üÍYÖg¥µH\¬/;²j‰¬–À1Ýâ£/ÛD•Mÿœ}çNi}Q%;ȺQþD]±$p·ï¾¦ _úü=ß—ê‰Îý·ÐÍcÁ¿…?KÏȤQ¢ äM…Y¼>¤¢¤"Jvp‰ýÄPB{ÌCg2f³pú÷ÝVF1Ê-R?òš×D-Ûå&3è£H£· unÖ+ˆýM-ö=e-§Yæú2¢w•ÏD™X(Xö^E%äWæÇwU'é"åýiIùÂÂþ$íãrÚåê‚¥«> · Vß-²ØBqu{X¦ÜÉ/€JÍjq™,š±œ^ƒ'3ѵ‰ù6”0´ž­ qÂ^Wë@ñiÕèС /‰Ïœ}²éèéiÊ]9žQÒîÓ`e¿¡ç:»&Þgó{î‘Ñh¯§þìå<1ƑӇתîÿÂýgÙ±ðwøÊ²Sª0xAf`ŒTÐÌóÙw¯3µ$ö*ò"kÜ(4{¥~±Eî¬Å?’}K@7Å–u¼½ÎgéÁ_ú³,Ã1 `‘HÇŠQЩ´³*X¨7Ô×ÄÜšÒÛ ÿ£ñÙ¯ >ÅC2Mª4Ü$ÖºF±0÷ÆÉf›Y´ÐZj?·èl‚ˆ_pjø;©æ¯ISª•óðd™HsŠ}C*±jº„!ä’à°–it X&ÂìÁ¬¼Ò\Ü®òÆ5ïw.oÿ|*È÷~R‹“Uºñ:À&¨¯DëeìÌìAãAM.÷ðý#›W7x¶P š*-ØÛ-Ó7"ÈTÙË¡¥Ÿßn*™Žèa å,f}*é\¥¦ÂÁuîDY½„®Òå ;—¼=õJAîÔÇ_®î€ÉÏ‘qk.k2EƤI Nz¸%á˜8@ÒXN~¥Ñ´ø-æ¬4àÔ^꨺BKú5*LšêSííåäû©­Zöt1ÁP!ÐT(µ/×¼FO¢æG âÛ…Ü{¿Xǹ¨DÞj+voV;™S‹3g ã:À†(ÌX )ÀfÇö£Œ]1cL¢ ¦Âß*'ÀnØ nÌ_{¶hBá¦KövŽN8º5Äe)µ¢Üp`Ô²ÏÉUÂ49r¢aϘG÷å>ãžÝãY{à禳îz¸õZ¬°$Z=˯û¬„Ë«·v³|*•NÐe½xªüC6I³1y&¿àyŒM¦‰ ϯl Þs=9Rnÿð@8ÃoÁ·ñ‘¡²¬3ê¯Ç¼)…ÅWôK Ö m£Ea 1E$¤säsóÛ²€Ř@ýQòhñçßf–d6“/¯¥Ú¢+ÁÓ4<ÎQRȤÏë ÉxZÕëËñ Ø­-ÀÆ4üÈmeËuuN3h³‘‰Ÿ+’7¸ª™¹Ù½bj¬ UV˜KaâÎ3-´§8-Ø‹¸Ê3û+ùøvMÀ‘ïQ§×Aå*:r€hP– !'†3MQ£¦zf½bgË¡Ñ"‰ïädõWã¿§è¼£1N‰oE5B50•µ#cšbã EðÇ^®oM•Μì¬Ò›ƒ¼JgAÁŒ¥_ƒQ©7rxÀ‚ýtåµXŒ¶ˆL)Þ¦ÔŸ` McBòàs_¼®‘ ÏðAàðæ1è.U‡šÃ\…iˆlÕ[ÁØkÌn Ì嶪¦ÄC’’gp÷;­¼l¤j©W[øÊ¾€:XÃwãN3¶<gXê©–v ð\…ó×4—Êq€—·œ‚a&ÇEd¾GSädÖ(úß3ó õaBjMoAŠ:yx´À4Ô9x$:ò;^¾W¬X\™Õ0eR†ƒ!6ûmÃÊp_¤ãDZöõ2üÚÞ¥zå¢û|¯aÚt…·Åq?õçãb‰ª¿ª >Še4²ø‹ß¥Òeá±®2ßççm'hK^R?uaò‚ö.Wç„j—5|°EÝ•œi‡D†&:Vb"7ŒÄX–t©Eq¤¡íÊ¿ÅG›=˜X–¯_øUA†á¼ñ²"8 óLÎ3¹p¬k[Îb¿ÝòGCÃóóÀK`ºþüîW4KßÇ`¤HÍ·ßLÍâtBNõÚÂ?uŠÕNµ|šTœð6p[zp\À˜€Úý7T.|ѰÄ»+‹x•›ï^kÛ§ä:ëâ;g)_¨¨˜ïfãrÅt­P¼]~9VZª;¸°;[.uÛtìãžv µ)A¸„B]ê}ór7yº áÓqŒ•ÅOYcÈÉÕµc­±.ÇÌÍ€‹Ô+MGš‚Ÿ|*Ê4˜Š;5P¡#<¿ª$Û¢-™„1ß†Í ô ŒV–ÄÈâµû¬e/vnN'jª I:õ4NÒv‘¼ ð…#Y£B¦»&æw`†„ÅœòÆ‚¢µsæzËjêX°ú©2\œ5 ®†¾Ôô1“©OÛ™S„;fÎ0ù:æ2Qz{…ðqmm¡Ô‡ŠËäé£^iº)ÛQ¦]òƒS;QHG~±`¿¢Õšr¢>/Ý€y*hÓe)ºaLQÚgŒûB;ø•iLú‰Q–0×Pïç["…-øà*ÞîŒ8¼€ÊZÞYŠO©ýÆDð9=92T“ÆõÊ\…†î¼IÏM`Ô Â1kBõT_wÖ3]ù>æ'ƒýudÒQÉ…W³œ¦ôµšD§^z.¨nK˦é®ÀDì”ýôŽaKÀ ç"”f— ÏÄ…Hq9ÙøÒ§2K ¿þP­Š¨ÛXoArQæa¦²Ðæž bF‡nnÒ59£…sœ<^¶Z®¡tnà¨k‘¤¢ÔŒfÎ:³¬þõ¯–Çß“¼‡[ ®Ö¶¥8±ø§;ç›t‹ºvÁ¡³ö¯l§CªQ©#Tä^³øúY¸)Ír~²’6õ´`l'—ç/V‹é—ÿ`1Rm7îTe.󨺫¨Œ@p~«˜83щ­úêËlëšÆFúþ‡Ñ9•DKy Ýèôÿi·é ’  X:«èK™¢7ØÙO‘Ü-[óÍ»¾”rÿ´›;æìµæôTi!lév–g¤Ÿ7÷n~ +Ø5ÎÉ./€ûª’±ÈRÕT‰£Ã\J ¥ìRÌêþ§ô"ê´óñ|OàÍr©¼©N´ï?Ï„šÉþ:¡RqèpÕó¯çœ°: ºæ<Ü´×úÒ^=kíøµ\u„#Ûs‹iRHM«:Öék­òÙaÈóÅʈ*Qº„:% ¡…î ³†âãUámQÍÊʳ<™ñÛ̈\3­ØJD´€í×r¥‘³€q 1e°t£RÃ\7e(Ê­¿\Åâ“Þ ¡¤µqbŒMÆÉY± KàÅ ¼Ü0²º6°‰=Ì­?6/ÀÓd‰]ÆÕ~r:EÅHˆ;sÜ‚Í~n­Ûå‚3‡ùƒ'ÑDÜäÅç<ùè«Ç«ôc6p¯!D׌àÎb “’’Œëý€Â;VîÜן‰k+ |óµÄ•·ãÇKÌ —PkZOƒtP`&_,Ô¶÷üëÎ :j47Å…¡R®}›4\'~34o¹âHi¶ ô¬xTž%¶ñ{°è[{)û;©ý Ž¥ÂEì9#¡ÂÒªÐÆØlTMCè?„˜•»ð‚ÊŸŽüœ¼;Lzƒ#æÁk™EÆÙþ*ØÏ~Û¦8:Ô:Ür$²Ÿ$:,¨_ÌÇ¢AYìTèË…µ•ª)‘'`{öRn* …Æmîkk¾Õ–¬Sp³çÄâÕÅð¿4K<´£q#¹Š1<œ ðëÍI1½XêƒÇœiÁHpŽ`ìÖûS•²˜ÇbMË„ª~¨7ºp ù;˜&ÎM \yºaò£+ÞˆÊÆBÖoÝB¹lfÇŠVÏ*üxc;„þ'Ô1®ÝdÏfy&ì5…;mNþNø˜¯½üÀlÇŸ6b°/_‹¡?©Óñ]IÙj3Ëí´ÐYŒ>»PϨG² ´O‰„’…WEÚX‚,o÷ZÇjä_ÜÏçÅžjè5M°Yn•Xù\·O±–}/ƒ›tÕYÒQЯUÁC6ÿf²ªFb¹Ç…¨êðºûüPl²²ŒP eÏ*Çc° »LvUqCìèûB¶£‹ü761[Ú<òZ3|u/Gs|åCP__|!¯Ê\Ù .z(i TÐpu¢@@ô²­‚И+ËÌ8«=ÐHžu¹~’Û jÛ l¡Út« ¤‰êÃLJðG9âÝ:O™f9tGΟRùc#éjÏÕ•¤l!iýYz X ½Ëê&‹a°»ƒzŽûÿ ZÑ߈3šÉê¦~²Ç ›ë­å¸]Anå©7ø뀧RÄÝæOŒ#w‘Ÿ¯¼§èÊ–±=im¤ì˜œ¾'ò6 h9¶$OÐKvPâlxk±Ä FÀ†øFF™JpHhÕQ¨uÈç£ýp°d0àE]PÆNû燦w©vº^h‘†2> ©Sly7Ÿ¨47ÎŒ†ÈŠe’P8›Å"ˆ cöǘ,€Ý p¥_YßÏŒ¶$ÀoÀLºkc[07;Ú}(êAsÉÆË¼)”,F‹ÇÞ¼Z®ˆÈ{Ž ½úÅ&gš-ägÏo?¹·£¶ ûm÷ øJݰ¯Ä7yiCZôGü–ëôiM#)i–GÁQUÿ;9UÙ/ f*vyBëªb +¶…|ݽØc@íy`D”3Ôäx,#þ °û90®z¢ší6P€˜.ŠN­qý"Q^ÆÕGˆÌ¢æfv”w6»½QiÀp2JÅ…ÆûÉö¦>BÜ ¯ra“ÇÆòrbuG0…l€Øn’&ùŠP–;7²•usmlÙs®¯­V Тlm]–f&š¶¡©€‹ëf$n'¤È¿5ÉÏä9®âE.²vj®!M? .§%`ºê2·Ùã–l±6M[tJöö­B5í¨ÇÊßä9ôSï¼F‚iПî:m¥Àü×y|Ú1F\â˜Ú)c°ïB\BÖ©ù€ :a$~æ®9úÑÜ“ø¹šá–†è”èJ­cÆ`„R*‰ç›Ñ`Ïd¹—g †)’)ns*·¦ö{o{¤®œµAZ ÇÿϳöÕMV˜FUO-éè˜ àhÓ"¬Û?0ÝÏ7Ù³C|âiœ×æ´¡É^áàRe“Bàø¨¶;`Ò³¡[pÚ´u™BS[p‚Ÿü)­Žvï(–ô§vÆË‚óW}û! FŸÙ[ýŽše0àP©ŒÆË÷¬ì,iKRíû¢¬2$\ R¬¾ÂO>i”Cødz[ù_q&ÎûV˜Ñjb}3~w†A`¯¥©èÂJÆ©yѤ´èh„×ÃØ458ÁœAÔú#_A–#·^™´µTÎK/ǵ[Yì¶·œ©Î™ frÔŒm5& ÕIÞÂfÍãÀ‚íÿ?¡•‰é)8Ë?¥uS¸`Ô»òˆÐË|ƒ ÙL¿níœJµhsµ2¡ AìxSD”U<¨Ws´ßH%Îi5ö’³$[­  ˆÅlb0_È|¹¬‘j±È1pÜöäUó¡Å%€cà‡|`‡Ð.,6BvƲÔãµvèú'>‹kž§Ü”¾IxG¢Vœ¯/Ì1Ï1¯3õîNM£‚i°3÷ª÷U6¶ŠÙ…šÇØ„Øwwµ’º"6o8ËAl*R¦Úøµ ¿ŒXª¶¦Šîžù,C†ÀhBÔéas1ÏaÜ&[8jû¶F¯°l•3Jå¹#]´cí¶Ç!ƒÆïßÕªò—Ø“¢)\ªËRßâñD|3Tìc¯Qˆ„ˆ&.T¬9;5f‘ŒÏy H…¥ôá SÇ?—M÷FÓQcÁ_Ü7Ü¥UPúÒð]¿Xã\m“§)›×{w$‚„¹âùSµ°²åë{‹Ó5YØeÉûüüJÆTÖ!—4ÅÚŸxN‡Sé[.§èôMFº|V[ö“‚¯)y<\©æt¦Ø.OPÉo¿ ]ÏŒÖîëQÞ{yL¢ uõ=›ûÙEÑ×ÍËΞ{|ëq“Ù™Ž%ƒ ãÈ­”F­y‘%¸®¶å°>6Õ¯©^D7ÖIn€iu„–I$¶øËä¾±r¤¢ð–m?îêX5¶-„‰”ûÕCÂ49™©lL)2¾b,´‚tœÕz9i04Àqg#qs$2Ft6tÍßd<»H³óLÇñʬïÁí oaxÇXþ39áT†žâ%Pr6î¤]¨4­k€@o3ò§µÔÝtE%‹G?U%_¹lú\UýyÎÈ3›Úç‹YÿÈCûé^74‘\CÂJ· TSš wÀù]Et‰;Ô” ü½WÅãåÈàYeøž•˜ðaÚßšø–òЧsx\¾"}é§>>ôg‹ö¹¡ãZ\UÖñÏäˆô?mº Ä5ä>G3‚¤&¿•"iCT”Z“ £(·Uþ+?Àªáv-oÄK0rC„|-ʼ”ÏÙk —³éг00&)лÜ Þ­3;rièÎ8WS[—±qÍb4¹ý2¥àÒ¸N—£³V´ ¼‡ì«÷#2ê}9~©7Êp&´Ð2V¼xá*¹s$U³úÆq < .‹ nßàÈxVtIÙt/Ò"¯µeßAn Ûáj~H3[ð)F®­# “ujNl½F2çe =ÄÎÂÃÇ ]„z)8g…˱,¼{ΚîœD¬¢UâçÈŠ!­~Þɸ kÂé±·©™¤¸!p%µJó2ƒƒ§÷."<²ÊxJ—ÄGÒ5fŽ Q™Ü00q¬®LxDvšã€3™´6*±8‹‡+iJÁ¸÷nwÓ‹ÖB¸e‘R½å9È7ÔcǧÔ)äkš ë—±É$´êŸA-TÜ[pBƒ#ƒÌ´—#ªL„D9ÉEÜôû’„î¾øÁ‘#™r}tCZî}¯P/s±¸x…{í‚!°3|u„h ´‡ãþÞYRûRSïy.4“$ƒØZìçXo†/­³›<ÛÿJÔ)ÝMjè#6Yäq ‘ͼB¹èÆ ›„¹·‘·>ì 'of£Bîïsu¡.lZÍÒ}b“UF®,Û>jšº¯pˆ¼ÌPdÁêY9ÈÑ€¢ÙPDé€ëÂÉS=Ž.fL©?›îÑcdO þDDa+ÛØ»é*­#„SxëSïuv­¶n¦> ÚGäÓÇi21¼±î£Ìªx8eɰ/bÑÌHä½0¹”¥‹ýx5îì(,d¢ñêr@Î7ͯ ð2šøö“«‘¼oñ«Ú·4^ø[Žs¹}îEµçSg¿ÆÏU–ÂЂ¯ÃÄNÂÂÙQ¬«£†øéøßPVI£Ñ5Rw¡ND¡¥£¢Ý¼Ðtù>%¤!ñ’ø¶NiNœHMÝe@ì9B]7EÄΰq˜éÆ®Å;µc™¶ ÑRl%|~mð'«‘Ô‡äŠ@VF¬x&8sþ a¹à–+Õ«=_¦ÀkòÎrùÿ¦î@ †ìR6}:þ[¬¨GZ ƒwE;‘ï´hbö¸Œ 'ãíÊ´9÷sªÛÎÆãý6²g. ä ÑN‹¡'L%·gÆ$ õ.Zo¸’qºdÞ¢ÃØÄìgq|P9F½ÌPä¡òNìB[åTÞ6|\}ïù"°Úò+Mx Ÿg¼ÛÏÝ3š\iÇw A„Óˆ$+>÷}÷Yâq؃ÌB¾û`‰zþALm½Ís»ÚëIo9ak»*d1é°æWˆÐk²ú“ ]uñü• Àbö…Íùø[^üúvu‰æòŸÃš|ç ʶ9¾ñÂÛîCqçÃæ‘~ynu;ÒIûêzéºͼ£#¯®*nX¡ \3>Æ`GZzš—AÄ©svªû àpцºïÅ}h‰°Lõ}0Áåo9P´Æ5Y´ª¶g ‹<ðÞrE¦¸/ÔRh¥Më#ÈÙäd,™UGÒË–›À< x¢LxBUßÏ®éWN/B?_,>Ðb‘†ë?kuš¹q_ûùìpJ¦iÙÈG¾CœÐENôçaF‘OV~®µD²-]ÆFÒý—qs6†.v  O¾»=·²•°Üƒv /Â,1/›?Ñ,~¯1þÎ`®! å_Ä d5ÁO$¡ÏÀf¸aimå °(£¢ÓÁÐ÷å™¶hs”NÂ.»ÌZFWP7Ä9ÿyô¦¹c Â6»}WH›c=M´RˆïR\“É ùí…q_Ò‹ C™Yø¤3PØ*§[|‰gù4R@¡I3B u«‹ÈªÙ ^.¤š¹®yš›Oç_¨v+®2à V%{ä'ndÅõhWW:¹ `ùCÁ`¯9×=Ï|©®8 ‹mÎ £³mnƲÀý4¨µexÆÓñ˜ *¨ì˜ýûeè•Ø.RÖòŸ>xÞîKG€ÄÐD ”g²ºP/È?`þÖŽ»Ë‡ Zú!/¬nâi0:õÌÏt7¥¿Þ™ˆDÏ Åw%è¢Ä>ŠKoé Ù<«Df2ž±ªt ‹Žys,,§ ¡– ð#|f+{€U¶ù=¥I“U²Qcá3ûÓŠJf÷Ü™o/5Ä{øÇ\\½uÁ ¡ÿëÐlþ+-ô5õ"cÌé¼ÁhªQýxÍd׋G©xä«+þ¸‚>£›ïa S×Ò;fV%«eÊH8Ÿ²BáqQ—_N ÌX£S‚xÁ%h@.¶EE5&,!²%ûÑ:qѱlgí¤W¶(ÖIÝ/j§–r#ª¥2îOÐ ÌÁ8hð1¯àhŒs´`™¸-8]ì uÇâM18ë¼Â‹­!(Ò’mÖØg¤Í Q*ª÷¬Ìîm~àN°X÷ŸT¬ýÝȳ° „kvbÊ»@=+¶E“ƹ–Õg×ÖS”FC–£ì,GÕeðÅà*}(k^dõ J/å{ˆ ]ëÒ)l@7ëZCõ~æ{rH3eÄ&O?ŸZ¨®Ñ ?Ž=¿žÙÌšDç0 iBšþ^¸Å-ˆ¥»‹!WÓOï¬È-¡ºd·:KX®ïIÑq(lÕ´8ÚTÒœ½%(1ߊÉaÞ—­rÓfîN•óœ) ×Á3Ö»ñŠÜ*ŠÔXhý$FVH5kO–ÐWaó. Ýzà6â²P+‡5,øGq¦tFÏâgéÔ#vñŸÏlI>vÄT¶ÿkB`K¤·¥Ã‹HbÈ0µ)ÊEaø@’z eÉf7èèæÓeÝö‰éAn™x-ÅÔÃÆ9?!¤·ö—‚Hö·Æ5ݦW„×ïnG­|&¶×>¸ÒL&öÞ6"-uüêÇ.‰L-«)ʳ*Ér|ijÃãßVÛkë'½»ÞmÇm Sã¥e ©æþGj p`3îEÓU<5¿PЄÙH`Lºê|<œH»–ÜéÜæ-@Ïa¯5ì‡ÈçÜËîâá+5^¶­ñUíÙÏ5Þõw¸VWŠ(@¥}ë‡@í®þ¬«†d"ð›«L ©žUKÙotÓ¾Ü)DEqDù¤è†Œ{`CÖé^2«ìmZæEl~[Øn?-[š'ŸYù€ýýçûòtF·hΉ}Êó¥¨5jÝ_áÜW´¤¤7s¬ÿêØÍ Úr‘rJ+^ÜžÏÝDm2PDá[\W[Œ}|ÅGã!÷ú]_|Ðe¼‚Uyç½\ã2üøÕ… ²‡ªBŸïš¼sËi«{ßÎ’Ô.èx¥«Ú!1lõ¼ò¢+ÑoðaV–QýK鿲•ÕR4epø7£©ßƒü•…MXj9÷Œ¹hwŽ´Ý“ÔPÙú`“ÎòÛ‚h¸Ú˜á"@5ùÓï;P{GJ>˜Z>-ˆ}"Eÿ¾sîAwµ(—ZÊŠ ± %Ù£[97ãÏèfÝi)Õân» zEèÆ¦ù¸|‘]‰¹ö‡Û¶ÞÈ*#ln”úö<êóŬ†‹4$^Òбkv?ÐÞéÝã[%ºpNʈxì£jâJ*]%ƒJ¼ÌÓx’‘ O*­Ã‹ñþ¶²ºKWÒ €=5®¡zmY"‡Žý7»{uå½ Në ˜ ß<µ %މëQÕ+CsHøª©ç{«@«/¯dá‚¡´‚_Ø?ž *úº!˜ˆúK½* àçîç÷ rbñ‰=™Xý-N™7o÷ü;c— ît0dàÖ‘¶`ºYP‰âã^JUé•@+¹W>7‹x#ƒNáíZßμ­RåÍû  Ì_n9ÃKö‘ñƒËAæD"ªuæ<ûž`œ‹ºŠþA[tüÎ˲Cñð\…DýŸ¸ jÙ" Oúî“2¸O,ôóÚW$uVÈr©Õ±á™âs·)´Tt"J8-ÑÞÎÄÖ\Uúû9 O øy¶õ†ÝP/àêÌÚŠxùZEUy¬CÜ3ÂE™à©àœ¢Ï`5biª¬  œ µãY ¤ç)Ó­ëÄßç[( x×*Yvý9Dmþ Zn ʶ§ZÂ=&÷+H‚ξíéE"ÐÁûîØ •ûÆžAiZ¨wlŠ%û AõdÜ]~Y i€wªÌºÌЊï>Uæv? ºÖ½£(äÿIhÕ<Óðêrn¢-ò {ŸdÄzÖ3¶}Ý*P2I¦ï)¼m:J¦yßyk´ b[òú L“"^³·ùØtª–Ïq™™®aÌ^ÑVßø󗟨?Ç–=VÔó"p`€ëE&漇Òå"7‰„:Æ+g1AlOœÚp<UûÈPɨï˜ -ÁÛ(z%õ¼ùûÃQ‘Û–Ï\ª$þ(ÃÝŠpA ìÔª7LýÌè“ͶÇzKy£øÖ(†dª`jJœMìâ üî¯ Ô|¢cÇS‘DB_fFÄì–Ù©\;Øk5ç{®smjRUBJñæÐ±ÚÂD=Ö}bvK-SšÎm¥'Oå‹Kû°•&èÑÓY["ʃdPRêûSy./E{Ý­ÙƒÁø!9ÔŠ FÃ!ȵbS¡D íî°×6tB‘Šx`K-oæbdÉžð·Èq(5 âÀsÀ4ÚÓm»Ð>/8NÍÏÍímÜN&ª ýûÓü9ºÖŸˆ}4ˆyžC 1|&U)„$8ƒwK7Ò‚n¬"³Ä«˜@þÐÚ°kü;5ûЉ^Íõe]ªujfA'9ìh¼S”Ä ã:^/ÓkR4c‘f©8ëW¿d,U;¨ÎÆBZ{¬äùNæQÒ–™ú{æ oUz²)bFÂIè𜸨E€ÍïPcrÊn[Ó¡öÿÈ[˜Ãx†6#výQNÂQ——8dÍ /]ìgÀ²U–ðÍŒ D_dh¢[ý•BaɺTÑ̲ŒªRÖW¸»ôE_9_ ÂzçñÒÉ‘ãÞ&ý¦^0ÍIʲýOo…Í{ž×b]çuÜ%IK¢¨P~¸Ï,Ý–u&Ñ¿„z™‚¦.]?°ç=qoÄúxÏþºMšòu¤}.CÌÉO6㔦£2i²`ÑôsòPÈUõ|Ñ6-Ht)½‹÷€È91^Leøõ6KŠCÇ~AAšObA‹ Iö£•ã¾çDH¸ª@âƒ8ái÷å5ÇI==Ùá^<ƒæ®›j`2Û;º ` ‘%æ… °¼ 6³ˆÞ‹ò@})\¢3x'KM$­ƒbÐÃËͪºåLk8wͬu3zÇÒ‚ ì±'? w·Ø¥6Ä­*e‹Û»²Ç9Y¿Åæî¯¼á\ ÖŠ6‚¢tð/œkœÑØ.-rþ=6¸—3,•E{^ÏZ\حΨ=¥ö=](Ü>RÍÔŸKš8¼áú¥#ÆÏ wÞõWLw1)(gθ<¿MÚBg–“ò;‹öÍïÆÏß)õ ¢Ç{Vöð”Ð`‚‘#u¨=»[*t.GoùG ¦‹ý*OÅgƒc¸ˆ¦è(™2㻞ɘ»©nhNµ8ÓÎ õ3ý Ä÷ë®5œdžë¢à³8 ;’•qèvî³ÁV3þW¾ÀѾZR~ë}ÕŒZî4þž`G~ÓʘÝ*ÑŒ‡õŒu)η”éô•¤MºÊ^¦ukÑ·Óç{ú‚<oGéN÷ž"㈩4¡Á%ey°™pfåºÈJµ~l„=_‘opZÍ‘'A“Qߨy¹tv°]åÌ’‘‚ö´Q¸ÃÆ"@Œúæêy ¤޽•-†ðÏ{G+vTÅDOmïw.¬s¹ ¼Ž=î d~¿þÁúRR’Œ5a58Æéqñ¥E¨y²ïƇÕmü›‚ÐýÖзTV@À¥ãI¼²Ëo®Ó†j¡Ik‚cåy5¼ÀÖ-6Ð =6Ÿ'‰mB·a:HC9d«ë«×÷yoj´þÎXiªXK¶˜Ô ·Pã@ÞÃïžÊýáµ£G­îÀ]‡‡ÐÆ·¤è7e… —êèëë»| ‹¥ Fæsįa鈠È%îúµ¹•2 D 2¨> /Ê{ÓÈø‰ ¢ûÚ…(¨Fµ ©œE˜ÞS\!XÕvÁ¹~ºÙRH:ÎQ…¾^ÃPÁ¨^ ÁFÅ1 T¥”Å‚ ‰H'ܸïm)`  ¿ã:\i-šs‰7®ð,¢‰e”tÊúµÖßæMÞñ«çÜçßåë,bì§&¤nÞJRÞ&PvÚoeÃú˜1_öþ‹„(ðïò^«´•âMAl5‘ÂUÉ›êͽƒoõx½B/Œ¤yá©è,p»­B h4;Y|"¬¦2cÜ×ÅóË€—/-S¥|ygõ—”à’ªŒ\ëÂvìV.zcÑà§Ü äѽ4HÅ÷Q/x:¬”¬ïFH@pai‰À–€È))^÷FÿÙ&‚S®O— ²…‰¨V–>6»ÎÉã™ÏÈßpAä\O`›[ùÜ…ÜNXØO3­¿E°ÈÙñ^“Åuoua¥& PៅžÃrŽ4îq"ïƒØÈ´îhÙƒF\Ìp³²l áKý²æbšU›ûïöQG„aë|$×=,íïhH[ìÅ©Mjþú¦2áø´ LÜ(x‰1ëŠß¡5)o×ý¼ü8—r2 {À•Ÿ?ÒÚÏ¡JÕ9lžNΤ>ó ½þ|ÎAñd*&äèx]_ú1ãO-Üå×2އâ…Lk1“%Àeoj‰ýùµî;ÿE»c½œL¿ó@ …;Àav†÷H`µS…x°T 3z:Õ ¹.ù­f<m¥@5¸ªöt}N‡×‰þ%ÌXFtëΣø~‹_ùW°·nYß+1ì: tpÁ4Ê”—“¬OèoÆuݺüܸr<‰­$œ‚l‰âs ¸Y\T¼!K$òKÐóøÑC–5Üží¢áÊA¶Óg–9N,|}B*‹®ØÂúÖŽ°ð1:H²½ó™¡“à~=¡Ùd‹äÜïÛy{ü§Ã³>3YGßÛeËñߨBÒéUã59ø²]†þù €?ÑsöŠ=©«w4gžë™®MÝaòt1K¨ãöƒcIC ··æÛiÿÇÊ–Ïÿ·~ŒÂn!âX&Mÿáî€wV ‹]áuí7¤q*™U®["‰Q:ƒN GÃ}”‹mò²h]4:æT(þëcÞQ Ñr ú€iaž 0NÚ|Yɬ> ©<­æKѲÉìèr®AQîz‘‡?óxD5d.ìV©sìfð÷áp AÿÜ‘ ±°xxX4]K/¼ÏCU1dÛñ<äÓiËFªrxÃßÇ­V]`æÓ\Ô9&EZ¨æ¨€¿ LhY/®}gŽ¢žg·¼œ[},ìÍ–Ñ[@:§s¨f½¬Oc×ûD ØâœÖWÝ*Eåv¹ ±|;«µ9…84é UŒ§¦é:¯˜&âVÃi`žRŸWwe÷òG)ÆÝ)ˆŠ$”öm»%/¡–O€ÊßAvscivÆò亽€c̃ 7ç²&z˜ƒ«ß R™%ß«8q=kz“Õª=~æYqS*U@ƒÉýÌ÷…Ó@1Ü‚‰o5Jß ·2{"œ·Ý)1÷+™&»òj¸Ž]ýéŽëûб0p‰âÝÙ^WTÅ3&ðê(.¶&Y¦K”)gg? &ñ<>J§éÍ\XwE—ò츋-YYrëG‹+?$1J¾5?_lÞíÅé/Z¶âè6²À¾fº¦-ac`úßœS¹ª*’?ùï:Q†Mc 'Cº<‹‚{šë;nÖÇÒS)ÖüKÈîàN Âa(#äá „Þ‰ÃÞj{7Tˈ¢]“÷óÚ{A§}\DÉ#¥TJ…ù"*á’~ÖEÇ£=º2°³ê­.°~íPâöi7’÷‡—“¹6”V\ÌWÇYVÚV2d±,t—Õ·˜H8?)Ë®Ý̆h ;Ìž…Z™ð¶$%ÁƒÉSýðGšÜGŒ¬sÛßÝR÷¶T‚6®Rhiö*IZRÏžëûíªÆlé÷³|„õ8¾$h9ý‚”œéXShþ4¤™ïJšú­Ééü°*$wKÑ|zêr²¹vŽà£ËÒcq æJÖùŸ7è9m¹¨ø†"£Ý¾+ÿLna,fD,+bõŒ#êcÉô—ÀÖÁ«4qÂpZùEòœ×u _‘î²kÆ Ý±–|Ï"ëdKÍ×_¥¾.¦÷­ÌõÌñ(aj¹uÏž¸Ñÿê¡,·¯‹‡œîSZÀQ@ùýs¼Ëív¼Ò@¯Än‚–Ý5·YåËPŸ‚¶šäRw›c βG8¾›Ô¦ùa»¶=ê’¢øFS…«1÷‚È8y7ç҆ˈG_Yì9™ŒlºQ˜^ùb¥Ýù;U 1\°x‚dE“Ø‚¹.NyBÿþê bk¨ëb^Brþ:;¥¨·Ý)¥sÍ–Í.PüJwNÈæŸÐ»¡MMIÀM`'5ÁÑcp&+ãË\pLEWsÛ†[‹~Æßºœ½ß*õé üó§Ðk<|) p—Q©ð¼Ñ£ÅžSБ®îø*´Y©¾T\q_d“=¤Í/àÊ6tðÓùµÄð¶(PU±Q|I¸ßý¾%ÎH\®=”|?‡bÅ ](€¶ìDˆ€$Œ'ˆ¼ÔÒí ª÷˜Ù¾pÑs:¾k‚•±,ðŽN (» ¦¸æ lݦp±ù›î áL2ÃnŒ -Wx„c85Ç<­Ð§‰4Xz~ˆ ÅjÆBÙ«?aÞû)RÀ{®`ÌåýVäŽÜ •°A0)¬ýØötü{ZâÌ(eñ^õC8È-6𓃀¯É"—YGÌ‚5Øbƒ5SÕëO¯³¤[MWB»Ù[¶püò‰ }?Ḧx ¾j(®4:%3 ôÙùÌÍ À<÷ÞßïÐÇÛº%”/˜$Ù¼§U2Ðjé÷å<$Íì˜¼Ú Ù ÇÔ'ê±F­$i!SžüJ_hU;bY(;gÅh=’Ìc Þ–õö— `ëÍ]ä Û&™AB@ÅØXZaì¸1 \~kz2{Æ@`¢j´øNؽh~Xnz¥xm ‡%{ uê•VQôé+ù›68»ß,˜ÊÊ9[RGr§sü§>T'ô¸óÞ ×—h»'Øœ=ëcó{1Dâ„32Ã1+¯eqÀ·þ:=ÖÔU¹~§Ti÷d ¶´QnÑÿÞ<˜G×Õ»ÕUT³˜kÝS]_Œ-ˆê&' 1š‰¡·Ì^ç¢eÒ·Ñù] òòüæ»õdþ üª½[–ûŒ0}2퉆û§£ƒ•µ(x¡©•ˆ·BV`oäCÐ3.6ÃÑzùØ’Œ~¯–\MI&Ówú+=þ8σ¬ð0“ã†Â#NT~eÇ<$sº‘œ²…+úáþw–@y Ÿ —OEØu…Â$° âe c9]?—£ö-Õ#Ñ ä¥;’Z¾ "»˜KÒD³ƒH½ùnôQ-w‹ßõ`qåìSClOZwÈJrÇl1vº]ßí0jÈ o_ϼý}§Ueà`êKœ:ˆÓÛdëóaù3Œ¯oSÖ¢wpÓ{ŸIè‡YÛ <·°í®hÄó·©DW{³<“Þ”Ås…=“ˆ¬~—÷ÌÔNÙ¡`³øªí[(†ŸÅw[á‰Hã¤~(à0îùtà„œÉ`–fæQÛ¤À öàÅi–¼áË=1÷rfÁ‘ Âb⌢#Ä|­©ñžÊv§•Á;‡gˆÉ’ Ò!âs„pi>'ì‚ TpðVÛíÞ–ŽSžYêïa¢Û>½Ïk†’§ÞÚž Œø¥È9üóLûèuV,&ß²Þ(ïÁ¹Š÷.H@J†Ç2„¡’7uè“?äµ8¼™Ûi(½ØOqµZ¢.™öõBTŠR¬.[þ_‚HÞúb7·Ú±)ÂÄ ¬kQnT2ŽF #½»û†VP:ÓSe˜mþ.ú±½Ú9wTàV(ËÕ[ºçn T;?Ù¿³l¡Ç‚CÐF!º’Cúpå$¿À0Œ>Ówåõ,noWÆ»m¿°D9·¬`T‹Åûœ‚:¡äùR4(SÐAè›DCÔÁqÃlÜ÷ÚéŠ^Ëu]›¸ÓÔ ž_„ã’¯ö5ÿ6ÜÀ5y%Ï,|A4q+Õ2¬ž‰Ä×|c¨"Øq:màµGWæÍ[„ÇÑ<‚Ö<“'¼ã¶OÜKÝÖ¸z,i¸>.,d¾?Ö·y•ëF-Gy¹§‚z»ÍªˆOÑbwåœÇøï“ë„'Ñê{¿pÙÐtÌa‰Ñ:òc±£¢®Yì¢IïãÔ£öt[ÕÕ4;îe¤hN¥ÜÞ²'¤Þ9žÜvNÝËmðfó S‚³Ìùˆ†ÞýIt3˜mB†Ê)Œe œ¨mk‰Žgªþó7“­ÊÑë™ú0¦vëlP«nuÞûºÞêìØHBR7Ñk 8§© «ø3Æ9Vkü0P’w`ç4᪂þ]ŠÒ¹—÷"[ímËHíe0ó±S!·c2 ÃŒÎ)€)³/¿)q¶1EûêÎÜ<ãºlô7žÏ¨1h&jX|ìf`OÃPýC˜Oí.!BOOHgyq4¬ö“ÕÆeö›D8ö’˜dñUȳ ß§WÜʪ­ âÔÝ/>–`Ÿl V)/€0ó°]ŒQ58ç³Ë _–{ÿ6˜ y­>h|¡½#+2±ú9ÞY. ¯À‡é(Ýw–þŸ»I:fê¹oõt¹‰så(h³Ô“õGìø_WåA±8(w µýF«˜ÞbzZÎý¸.½ûÇîCN$ãaíïÄÑ…*nM;ºzåôæ¦4b–}N:}Ì'µrýÉŸ pÊ?@ˆÆ¥±/Ãî2ßÇÈÅJʘLCUIùÊe§‡dù—1´\©×rwB¾^Z9MV9Õ (ôU‡ù±h7Îþ"ðåÇÆ2¤, U 6§y3#޳N´³&y ë®ñê³âG¥õf®‹ø'x{|*Ѐýz„Òt~à‡X›ýIÛ5äÓ™‚‡jTç/Æc…_IdºpÄn¾³­Þñ©91ž/‰mêwY6óÒcÿuVÂxYOb\Bþ~††*{³ó¤_n¶ûÃw–'zjv7•‰ óz ”ìÍVlQkCÒù`Û JKKjg^+½LM£˜"…@lV4ŠIAz>_‹ò~Ê}Œh)^°Ô¹Åš5ð&30ªÇZ‚õGÈzØcA1Ü,L¤”ÏåG ‹Ì$+¹³×Èœ´¦rßA;Þßö@ÂUÒ.öëæôûIÂS·>X›gÛœå@¡ ~QÉ[—@-@Í>›¯>wÄ{˜(‹Š…`y}¬Xêôö—æj‡ÝT±šröÑX¥J-ÿ¤-™Yaö pûÊóFrZ¾ÅØ‹è˜IÌ%^ç‘ac§š 6<¶j–Ê–¶,ïå'öYTü몢ËV Z7(sý¶¢…ñöÌèô¾:SrÁ€›ôt&³Ó¡Ê€Ò;07‚®×ô$L·ºñ§¥Í4¯Ýr&F£ôá8`ãâæzyÈBŸÕþE׫®Èy×Ãi¼wùü; fšÄ½¢‘7ÅÊ$Om™—åOÝ|ÝLüQ_´Þp­ÈvtìI¢×Ò,ñ"®ÓµÄWÛ>;×.÷è¶#ã[™§^´1>4êM‡ƒÜÎê>HÐÕý@è¬%~ {&-/âÅ'¥È8ÿi?û0NtVÀ&¡¦ºïxp\Sx¨WUe5†4’ë!Ô Veç LrkTý¦¹s@(0JÜ Šªß²ÐL‘K0È£èHÐ%ù[|?IèUc6tÐÖ1¶G6¿¥qLQNU5à`nU9;oõááОGv£83¼F;˜O{n&‚辬$š¹gбåÐÃfÒéÚ«xâ&Éñ6{l¡ÞÂNmó@3kãaM‹¤ŸñNë9Âs ádTÊkÛŤDFwç[È=Œé{¹—qÅf0M8†ß´&5a8Tå€k>X.”ÿ«Ç9°27ƒ(“OªLõ.´2åÃÕ%Üó,jlØ‚öȹh`ZØSQ"Æ0I÷À¾ð– È{Ày¶zfîϵS¥H¥[ÕŠ_C§—Ã9ʵÔd˜)ÝI£$)un»H‹ÌjÀ;aªÇ~£±8‚Râ{Éí ‡C*I&§°²y Ÿ½0cÙJÕîÅ^’\ÕË3 $žÞ¡nƆFVD’AÜfÈÒg­ó¸XN9¨¸jZ$1ë—œNŽ?ÞgL#tzVƒªÑè78ÕÖC{F«¸À*È, lnfNzZX3õ—­²WY½Ï•È™1Á«yǧJçx¨ë®4.»qÚÇ©WÐ¹ã‰Ø„—$\C Þ¶L=À â÷[˜x)ùHÜÏ•¿Ô€‰µ}Sšá0·g¼ÃoÎawIïBÈÖæ noÅB´45Øé˱Ëä]ñä¿ÐaÖæ3E ÷È՞ϗèÑ4&$CA_ D1ÚcÒ;ï!˜ÈÒî&ùd¯ý¹öÔèv j„AãXan ;½¶UäÜPêËÒŸ¸33Td›úÇü:‡MLJ9›cªdóÛžÕœâG‰Ü×½óŒ†Ô)ŽâkÐ 81>ŠÉð(ÞzØì?]L¹E@m'WÂüŒÊ²¡s«n’ïêþÓ ‘vË¿Ûç'M-vJÌaq˜¯º„•—§¶ jbä^·<‘dã¬Dùjít§ádÛ[%uè½ÎfÝÎ÷èšZw²œ„G¤Åžy AÀõàÒ'MÞ£N)ç/Ö´$š¦vôÚ mº§ï)¼nÍ—¡³$ù϶×úá“6ë˜ ñ˜TQoYm=Çäq?ß<>‡ºq¹ÝùeÛ‘WEXI1x¯¦ õ7jFŸÑ6Mu_®&O2 “œÕB A‘m¿–œ®«b1Käkeo<[Í¡à«vï§Y˜­u‹ˆ¥÷ÖË#¨§‚Ù¢Éf°ýª1 œöÓœŽ£Ö’xQÀd²àÌOèûü•ŸzP${wthdhl,¬2ÉŠ8ó¨l7[í ð "våÎèß&ÄŸWxÏ$WœÑÒ#&¨Î×Ï©]h_?¬,ƒŽÃâa€öÎO–‰sò—}Êat­QoÁâ>éøKÊJÐë9.cîíæ-sK.¶8ÚÐÉb/hÄ;éš"¢,Nµ`§º6 Q^=¸IÑ/<|RY-wë?[/ü/õ8¶Þ¦(ˆ’+ÜçtUÙ…Wã&@j²×^ìÚ:¢«|镪*ÚMð)Üú4× °¢«Ž]‹>»A¯é:\lj;Åš8VŽ-ìðëÄ!ð ÊE !S Z ^;šó1®7tƒq²3(.,©X‡èf±Z8NC^!RûîY¤áq+‚´ƒ»›q™ë­r[ë,€ÍøÑZت¾j£WóJUÐ1Õ åšñVI3A@Ö9´¥K¦.Ñš÷çwJY0¼nçl¾X›÷©–¬€_D)¬²vb6Þ/JÑF‡XNSO=gÓë½xž(¹»¦t'(oÞÏa[ý¯ž/GN@iQ&bà"›Ðµ›"2;i›ª²¿Ó'Þ|þgåbš> cæä]"³ó62þª==XÁ—r0ÄP >1>M†Ö²ÞÖàv§Ówÿ\j‹*–íÕC¹)&ÃhxùÕ¼M¸Þ;¯«IV•"⪔ô" Õö+n,Ê*ì ÍjUÜ´Ó¾ÿq–3)àõeÝð‰¤¿M½µ¾Ú–rs²éÊ9n©EÌ3¬  eµá…^Sù8aò’óçÊ!ÈŸuï-+ùQ©ú£Ÿ’fy+ɨTUŒUÑ]ÌÐ÷7&Ûö÷U]†MÍ&j¿~ì-•ó¤}!A̦€¶‰%¸«S>~ÑÌ„®x}ËU:ãÛ€ƒç;I ¡RÆøº83PH‹0ª×uÖï™Ì›8XÂQÊ_Ãa޳Έ7èÄL~ä »çà­ýÍê  ÂÒÉL Ê~€À£TüÀdÀTÏ„Š³ýŽÞ½©«¸<€+%Qp›ãë Ooßõ^ û窨²œyw8<õ„WºZ¢$ÿMõÕUj—%%Vþf8¡&èŽ ÇjkÔó „eÚ%iv0£õ”Mò ôvác¦4(Ä%æ4o,Œ ¸±JͪeSÞOÉ"Üàv÷ýq¶´¶p ĜѤÄ%½eÏóäöAq®@›`1Ìw5nŠ%2>—*^R—VA`cÍ;êþ:,¨X×qäEß oåæÍ–5SùtœèÑ®û‚]D¡~¨f€öJ`GÏ—Xzý ›oH]NZòRùƒ-}ç÷…÷ºª=,Q?A(åÜýé¿,½ fëÁÑX–8.%‰¯<–[þü ´CSI¶ïÑxOsÁÜK_<¸ífž}”NïÒÏ#“¼ƒñü!+¬Ö.~z\eûõIŸ1mð0€B™ù£Ï}‚@¬Ú¦XX ¾~Z#I¯Cº)›™9.½Tóþ×|§6ÀÆìnMnß©¾ N‘ˆ£”®^UŽÝ7´§~ÁͬŽÄ|·÷ñ€ƒ`$.ºxâUe5ë«8èóôJ2YÑ®ØfeoÍ]¾ÉP=uq²¸A£@³;6Š>gQÚÏŽh(DÚKQ³÷×ø 'Œ‘žƒðO,Ê­|a>¼h@æ{î]Akd÷jÙŽ¼Lñ ?<Ê@¡Ù!£÷ž‰ÆÎÊ&fÞ㦘P¼tŠ(}!é!˜cúhòz ñÔâçÿELž.ŵàmµã;°ÖÆžÂX8­¯Ä6'µÂtëæ^8çs’À定ZF)–ì¢dOŒdžªÚþs¡q®ˆCnȦf ,¬È]>j =$} VJw¿§s$¼, %€‘Ì’ÓÚ–æºq¿W1Áh–%ÿÖç-ð\x¸Ì!j‡uà×yÏoÐëÞÒ™zw.¶Îª±TtÇ›2(INˆù Ÿµîù‹åx{1Ó›]ú ]haÈÉbŠv’ õ0{a^Ø‹B#«æ2AJçé§‹ÊmÄ21ë°ÿ÷nMÀ6yÎÍ eÇ|×ÒSGØÏ®FK$àŸŠñJ¤¤6Ä´™ZÌOmÛÇ@ÆaŽ”žÒ[$t®?BðŒ{ØãùT-–º¤Ô¢€ÈÿÁ¼±h'ªL65'puœj 0îþ3ì,=Ìhùyº¸Ë Z¨â<ú¥§×»ã³»ç̾)b[ļÁ€±'­ÙéSuÌ‚I±°Sÿ8¸=«ÙpE'4ü‚º“í6…«Öëëøâòµ‹é¶¬(劸 ][5æ&f _UÉòÂj•´CÏ$ -5õò+IÆEöf‘ÛƒRÆe á¯jÈ“ùš{ªÈ„Ò¨ ŽaÌÄ1bÉ›'*9֦̇ü‰ÉzKµ&#£¿c÷$³ß)u`‰‹ŽŒÒ‚åUvœ[ª„n•­Å»ñÞUù»­mg›A[%2¡T£Á1bÕ-Ô¨ÕJ©i¾ÑàÉ“…jô8¯Ð>•ò‡`PuÊ$p7€ »LŒ|Ô»Èm[š&„%*ªºO‹ÉÉÙû[’ž!¶€Ø’¬;2Ç…±™ÁÁÊÎ9ÊVc{ƒ(ÀÏa·‹$ÿ|:"´\C–A¾:gåÓ¦wómʤ0q¶mùPµë"éõ©c•§{ß!ùá/*lW`ÎYjñ]—æFÕÅXîÖâL’è Dt7ñ'uAk‘W?¸4asŸ®DÅUàBÜÀŸM?·J3-¾DLm[ȯÊn„xº²0Ú N4϶jþ•%ø–Ìʆ |IæÒ¹Spíñä…'qܦ·¼ ‰}/u èF¾·m™›¨X÷ªqÕ¡,Š ó.Ué5g÷ZЖŽ!cÁû »MˆOäÊý¸jÍX¸Vµ›³ y÷ó!z¢gs¶ÙTOu÷×ëw79ÁvÞ*£L¦ãùçLYǶ‡ø…ÿ±uë(¶orð+"÷¹S®½+ 8˜6xßéÉA V¼¹”áá&ÐVNLÕ`uF¶—âÝŠ&*¿|ƒñSà„»Oƒ=ðø](¦í3Í┌.›(Èpc½Þ6šÑ#?KIñ]F Éw"ºÂ§Ý½"Ñï½7#^Â'ÎiæŒ]C²N›DüÿQàZ•×r¯Ê Q’¿2p°+/ˆ÷¤I:¦~YâN¯c½ê'ÚM ‰`||=˜Å?¶¾çÜ2A²•ý¹5°nlÁ‡„C9ïMÏ \ Í²Ö‰‡»ÞmØÅE°]rj打€NŸîß+Ï¥r•­æNìøá8%ú+È8oiµ±#LkžzK›j –䆢±2æ`ª‹÷mŸ¦ ±”¶|\qÝ‘ê¾.÷õ+äâ;öJ;ËtÈ`_ŽÅ¬ù›¶sýMÃë†#+Õ¥ß=^V%ÐEB6yÐD†üóòŸ®÷ñ¶ ²8ÙT“3l/Wõ`!NŒÜÄÎ ¨]“Ò¼’}fËŸïRx^ÙCŸìpJ@&.G>º9Î2-eœ~ñƒ©×†+MÝ~^Dúµ)íÒ„ýŒŸiäÅÍ¡Z5ýÄwaU©0W).ûÏ i8èOù kËî*‹¢:M5QýºP!Ÿ8dbxÑ<6Ô› ¦sd¬+ÚhKx,*—Ÿ¡e˜¦ŒîrPV\¢ZýI¯¢kx¡â A+Ê,þÝ)SR‡ZY¼sÄ!ÕÞÁrt¿8øGzM§È©õ™ðr˜–Á†óB„hw9ç½ýƒÖݱ™ŒA&j¥48ý" -¨íÀn›Òt@”³ V뮩ތç‚Ú½7ì]×z¸J-ôü}*š­Óçnh¾>I¾NS3§¼(”ѦëgàóÊAŽ~¯ýé–ò¸<…—§ÎÕ“ €ð&Ñ”éb1ƒ•ç3'Õ WÊüœ5«÷`_+ñµ¢¸»ò¦¾ä1b37D©Jò¶‡¨séídBì£òE‡¢wÝ~ÂSsÜí-õ"GþÛÈ5 r7Z ›2½àƒ’f½‡-\ádÑØY”b«¥釅ZYŽ•1¢‚ŸþÒN k£{_Cïô­[+e”;ï˜Xxü’p(@-"¹´zŸÁ6ê=Ù²Mx±8ò7¼„ T$$½Ÿì`P³UtΗD½#3Û<S§” ´^Ý!Ù•áÌõµOƒ6Ûˆªk„?º/Oz?®)ê7å¼\ÛÔÈûwÄ¡ÿÂeE(‚àŒÄ ø ¸•&PaÈ¡4y±”N‡ †2Ù‹C6âp˜ìᯠyŸ°àÖ¾/€l¨T+jìÈkO(±!‹µ–A Áð"Žì怎ÕNª|²kGÜ$—üø$&Øoˆdƒ…¨‚sšÌ;W·Õe×ø]úƒ?ìjròi™<#ç >О~ÔþäxÐ:k«¦ÙZ³B+ª V‚›wñíƒc½á÷q?lÆR%dèÒâ͆|2ì‡)¯ÅF­ý¾VíOµÔó*è‡zމö˜QõRoy´W³™ÈI†;0Íf­ƒ1€þ´%…s®ñ×’ûl­uòO_/Q(ÔÛ?%ŸÆ'YK¹[Ü/#þ«^”³cO޵ –Àåþ&¢úȤEÏótˆYãc8ˆ{{qk.£ÑüƒnäQçt†ñøõ*Ù-UáŠøIß‘ô—êT¼ùžR©!À0ZÍ •®"÷Ì ¬&A‰Ä[ñ”mmP<–¶¡Öùè[‰”®ëа{NIuY–ɃaeÄäŠæ/”Ät¼”°±@À$äï½ÆÏq¡ûR×éÃ1]©6:ÙO=þ—ŠÚçeÁrÐÍ‚t/úáÛ8Zí|TÖh V Ú¬`Rõvl¸9­–ú÷y1¹zœ F°SÄouëÏ8ÎÚ¼£òuÙΡÉnÏŽ;9ÒuDLîÙ¯…eCTÐJGú}Å@áȆeƒþQ bÒ„ ž£¨¨>U&ØÀ æòù4‡•–¨æsê=ìÑ=ÃoBwŒäÍëÉŒJÇŽ7”FFDŠæÛ˜E…•ìt}aí¨Щþ6¢Z5r…ñÚFaV¤ƒŒJ´±²jøKŽr&PŒÄ³T7êNÄ [ßÊ| ´ß ¡#F!]⥸“£e˜÷ €¸‘R—û&MpOÈk¨‰¹² ôe z|ë瘮ŜӘ‹YÊ×qŠîÐúTï q5zÜgè‚VÌ`$&U$só#µ.üŸ*Vb+¦Ä%ü_äÇÿð.ªÔ7™#ºß5×ôbëÓ0°S¯"ðEUSù:*[䡵ž'CÎæ‰ojaŽ#8gÞôVlTbþÅ{î»· ‘ç ¬uèÔ¾w¾´cyÿ>¶ˆ²—£!ȹÝÁA÷ŒÉ’®‘å1Ržð €¥)ÝaSÆ,êÀÑ&öÖl¥Þ..”„%Uv¾ ]Bû—R¨ÂEp•|[$³¸î…;ŒUíp-Î}û(:^Ñú÷eÓ[ùá“Bÿ°¬ü·\s+Õï”ÁÊÏmx1…·?”I!W=™‚°W¢oH?°ÐmË‹›¾ßLDk˜â/tÇ=“Ñ1]ÆÛùçÞ×I@¶×Ÿ›…k<߈L™>.£w2‘Ÿ<°Â|ã6µ :akÂp0 —N‚éë…0ªb€½ ¡ñVöUš% ûÖãx¦œ=‚lGÌ·¬„Õþ–ÝÚÛ6 *ófZXìÿÝQW¶ÆÐˆÜ0¢ÿ¶ÿ&æÌÂ>Yo]Ígl¤§œ”£ŸˆlNÊäaö>«t7»²ì*27‘º7/™êʵBBFïê9,)‚0­É‹›)‡‹ûïhó3€B&‹ãß…jw,WýépÚÈw¿ÐN©5úÏø,Ñw)R‡ûþÒ³¢'»8«êVy®øÝ-ô¯èÉ7ãá§&AM÷ªi©QÇpr zÏSö?L~ë¢mYLQ}Þª$Ìa…e4«)®¶ˆ¨®!Ñb:_æ4ìJÛ‹ˆ?^ÉGE‘ÔöLg”ê×n@ÁNµn¾L Køz)q\h›p&ºÖÔ€…¿ÑmoŠã²¡A”çdýßð¹oLZ­¥¹NЏ" ¶æ0gJÎ:àÐw¤©ÞÿË®ÍXët *Ǩ-øÁåbïí7DI+œ–áï¾E8ãRxÞv ù{ô÷Ë„ÄtganY—‹3W1Ùø3sá‘îÚEëv×:OŒË:yÔ—2ÕS› ˜A¿/VZpÐÃ\;‘O!”1îÜ`CZ"¼ 3¬csÂtÃKžITìó:Q‘NŒNsɵB—½4—ÀSþæÒLq@Ñ#)ÓžáàÚä,q^uc#›Ñ›…ø7Ìn»ÑόƖªhx$¯ZÕ;ûh¢Ü5'ª1­.21¡l„U„„†4ì³òKÉó\-î»`ý°ß -âÿüOŒü>éHˆ?¨zéêIkqËm$ºÇ¿>®«‚ë òP» {„R»“@Y‘8ç¸Qg°°æÐh×mœù´)î´*úá°N<x+ÿ\ds(¾ F]“+‰~tJ?Û<ŒN×ï%\²ïö¨zÛ¢ÙTgTºr]Ÿ} Çäíì#P;ª‚uZ|3&6à?í¹°T«œ‚Áþ̹ìMwŸÑ"`ÒÁ5Xm„êÅêFZCòrŽÉ㯌 _PòòA.ÂÚ<f„H螦'm0ìø*¨Ó:þ0ðO)Û'¿bhÌáïÒ -0Õµ¤8túllØŠ¹ÏVlßûV‡lv½X€r5¥?. Ñ RuÔPRiŠ>m5ˆØãòä5ÄþyM?)V8cEÕ¾Ðåµ±Žw’’vËFžžðô¾ŠŠW^æ2;Y…¼òu¿<˶–27bÞp…ÊI‹)m“Û8 ´3UÀÿu/µœ±9¶ÊùÐÇÝÉ<Ëਠ94ÛÒ0’"×€~ø£”Ózö¨±œ!ÍšÕ»Ô(…#‚šPpÒNfc€ªàÁSžO QäJeò€jMWªôS6 ƒìªåb\õm¥š0¢ŒêCüþËóVE ‚%–"Ó”—nÓì‚Êô'´ÔK¸ÞÌ=ò\óé齈BPòN.Ý|Y¯÷v#þ'M°±‘ æ<æ€#Î¥¶»ü½sÃG~v‹q§wø'Å ‰.Œñ‘Úª;ýàë;Üa«Òö‹&–¡K{µ&ô3´c®Þç øà<ÄYÊÞ\Z*™÷‰- )õõ>ù™½Eÿçñ¸*u‡QðƒLF?½!¸çPy•§aŸÍ!!ŠßÊ_ÞK¾™hîÞÿËV?‹§úGë‹Iæiɪàz¤ßušÖiº:T×^Ó›¾Wn+þ3~ŽZøÙW¼Ê3÷[›Nã2´í~³{û%®ôZôóà]ßµÝl²,ádŠCVÞá‹ÏíÄDÚ4JÊ3g±µýS®òø‚ Ulp×]å´’ÆÆŽž¸ —óŸ1v+ ·%;íûFçºÂ30‘4 –¨;(ÿN©k8ÝnWŽøÙ#/Œ6J)3òÔú°@zST•ýÑߣú׈œñlþg ºŽ­›Áe½ ¼§øVpÐ<¡‡íÛ/ñYä“ÃË1<åƒÌrž*N…^ípsù6lTæSi(P›ÿþ ÏbT9hXp@ $.Ö›ÒéàÊ‚üPùõƒÏ×¥A}ðøªM•Ì’ „¨ÜkTe÷cBi"†y ‰H],ìô™.Í „èÿƒCPôÝÔÐ2•š*{º77NyñDÂ7Ï•ôë¿•Tà†¥Ð4Tü`™¼é5ÁIÜS0Û*óÇü‡)[0U Ä‚È6›kIèÉØƒ’' îvû‹ñÿùuÑFß‘¯;]n¾b g“Y€tÁ¿À…ÑCr J(ôÒAL÷e]·ö¯ «Ñ5¬-Å_Æz~Ø~l‹¾Ö/"ÙIüŸ¹}SČڶºc†l¶‰ó¢g/Î')úL§~ÕÙ„Y¤*Ÿä÷P…C?ŽÐ,‡×üÖ¢bN@L²&óÚ—sîwßkF«ØÐÝrò43r,}ObB’RÆ‚ÎO’úúýÍø.o‹Ã•mB6ÖÖ¹)iHý¿h&TJE^¡PéÆXr»ò.†‡IÂ_‰|‹×ïrH‘’´¼ŠeƒP†9,§,˜`üm¬ó0‚X©Ï¼dþÑ6t·\óžBÝçÁgž| rø‰]7²Øüv;nו²’à½J–ìøkèŸVJ²ãÖt^Ý6ý×fj±-¶k¿SëïÚ,ÜÅžÖPSw,F”ØÃ#§)ÒBŠ·b–©ÍU –Vxšž§r-„󆛾¿%Š9RW—0H*ØÑjL¯¤ÿ¦¤oXo {ÞU6¥­_Œ!þ’Öþé›Åóµ88¿ª_?ýj¨ÊÆ~’[®PLævl!hj–‰M“È ýpÑÃûŒ!gç¤Ôt¿-^œ;Æç$gk2»RvSÌ#¼¶¡—éΡ¼[Aò€ÉÄh¥õ¡m å‹€î× $ÈèxšÊBâw<Àe- á‡ á€Ô‚nM øO7JäS`}o¬R!ØÂÓÝߨ=š­zsNŸ&XFfçhS©ÿgðÿ³¤—æÑŒœJB»ßµ@Qyð59<ûcŸiãvÞ‘¸ÓxFü3¤nÙÃèÕ£nlÊ ˆñ¾q®–bœ³¬Nöè<8†A D(جîJÃÐQM_ú_ÀàüdTû*ó5wÞæ8{Õ¢Åjµ]tsrsž¨öÆÃâ_qÖ Gm¹hØjñ‹Ü÷©ò)‰tòï¢7o¥zaLúíÎIˆ ÊÓs¢¯§@Ùrd‡W™¢‹/áRÙp©Œh¦y¾[PÒ˜Kê3¦¯ÒjV«Eä« åBùiZÿ~n¸ô5ºÓ˽/l›ÇÏê¤+ÍË^NWoK îofö”c@4ã}j¶Ãh¢; ¨?yÂñF§‚×HÚ(}̲ƒFëAvœo)Kº$6S|ý´8K„‰îD'ä;’>“ŠïÐ’ø%Q茺? "B?oy‡ÑzK¤îĉ–[{Ô+¥ÞêE¹Ú ]¢S«ÊYF¶Aƒ~Àó‹À„¬¥UÖ2ƒÿ†TxYC³¾º#ùg* V2›wñd-ô~7S‡fx¥5%†´|èi‘¼à€{Màb(mîyPó7[K_ ¼RYÓ® ¦RL¨‡mýWÆn6äõª_ml¿©_©4p½E%è¯3I:ŽÉ?A²[ƒU)Ø´Ð`x²ê´ "˜Ts<S5zküÅœƒ¶ `YXééJ1…ÞËý(ŒY:³œç']Ó¹º !•_Ù"ÛµŸ´¿z/ôbœ?:ú½•÷gšŠzüñ]¯êyt;/œÙÕ@NçÑìÀð7ÎÔj˜7"°y§GnÚÍS&Õë}‰áÄV뵌€Rtø¬ûî'|ïn ¾N;»†/¢U™ò^å¹ñ¹ìF–ÐÑœo fŒÍË“ÍM’rI-:u·—,.͵Ý÷‘™7Ÿï!!42i})L ç=‹%¶—f·½ŠÂ´ äÙI„Ù³[o¾a-ðîÛ:kb΢†O>ÌjÞf­%¹¿mmžJ¼>²"‘¢ÿO¹Ìį]–íךZÞ­Ï5!hðm‡ŸA[›”¯{-,8UM+þ–ž¼áÙî<¿~!µÕAg@rúÓõ÷„lÀØÆ2:¤ÃWLVÔYÁhmu9ŒJÑy]È‹õ<, E\ƒÉAÉ‚„Ök¯/5ª¿©>Òé—´HP5œ¬˜4Í·~A¥r£P¯vIüG>=ækž~Ù5,2?òdyi74£YjÛHåbëçtÐ~ÂÚ —>ÁÊ)vwú| 4ƒQ VŸZ‚ÏJB\î¾½%—¶g›ÃÇo<}ÓÆxUv³êÁ»Güè&ãXIáýðs1Yš“yD®’€Z›lõpø7G¦ —¾,…rU•©~™A}æ yËDR|ÏQ£Rúaç_×1w7ôÕàY°häñê_! !Æìá9ç´Oà“,À»ñ›£zO)èÿÂØÛvroùFâ%ÜFed4æ 5Sù½“FM×SÁ˾‰)]HÉì—ÄPw *Qøs·^ĸDœWwþdâû-¹4¸å¶‡P8/”}6HX¼ÐŒ3‹ff½,­wý8amÉ£Ÿ‡å•Ç£àü …ÀSŸëó^Ah ¶Ò,,ÒkÁêPä ®èRŠGü€µr$³_­]ŒÌÇ0¶ãaÜbK¤Ô³QíiE’q½šˆ‰\ °ßSuud9¥¢‹ä?pŒ¼¢öG…×MkVtFª?:£¦q fÑøÝ'ø`=¶Ü÷ô_½øçBñ>Däø¯R`µ¹bØ=J“Àù›Áad=ñœ¯¡ŽÙÀûªÑ 6Ì,éJ>Œ\¼,®‘òÀH;`ÑoÁzðxg^Šèê“èik®1í[;£8æÐ““ŸËÔä(¦œ Î:1ù¯„°éCk}­kRˆ¹,;|à[SÅIM†ÁƒÓÞ<«®õmnʾÄr+‰3×m¸¬‘Fþy¹êë~Ä…#a"‡Ò‹Òö eÌÔfO˜*Rln6ø¨FGƒu"ô^øØB¯[°8ÔeìºÒµ}_ó5âbÓ13Û5JÕ{„Ý’|8¶å‚—¢§ õ„ÖAJ<–Ö«K r°ÎE™¬¼ HVÍT\¨&¹6×Ã1u¶À‘÷&›igÍÍÆr¼éc ª9¶Æ¨¨GS4>땨—n‡ì›ö ¶ŒÇóÑmHûNlŒÕ¨Ú7sѾÂñܼbüþã½µšä¯v;¨êpÃAëM7À|P­…ó¬½ ÝÔ²DP<çÒŽÅç»S^KÞL–u<ÀÌŪ›gÒŒ•#¶³s£ÿ¾)V“§X4¨–’Ù˜9ÜžÄeèÂoÞäh-“ü øðMý¯z*kÀ–OÄ‘`Ö 0,÷LI%U…¿qñYËÉJ%ådûŽ2ŸPëÖÄ6ÕãSA½DVÄ–i¾~è$I¡+Ìâ´DøÛ¢“—¿ =œDW¦Z޾.½¤Çª¿¯rž›QúÁy÷ÑܨkôÜlG°,"<Ù9ÊJÉ$+gMãeVÀ1KÓcw `wcÁ˜êÙ3q˜t‚š‰ƒr»'ýÛÙVpãßë/%ÉÓf13¨G¹uÇyc!]йæUåÓ|ÌRnû\«ŸÑŒ\i¬›|íUudT,¦Ý‚¬Ã[þ#ÒN—ÒðOßZ8¿Ø2FG„FÀy¨ÆDý¾¢/8ù@#õ»4û¼p7Ži«žé‰vPT¥R–—4ófÓ©Æ8ÁU]9Ô|îq»ìÓUhªCä0k#¯°?#ùªµ"™—ãb¢Q“w9:ü5µåå”hd/F|a1`§ÛT6ó*ª3ƒR‘ÅÔ~ß•þܦyHˆÑ I=2ÒW‘¤k6Åäû©9¢:ÑÈ‘öÒPŠÆ;KÆj¥C¸>5–÷=ŠÒJ‡×lÞq¿÷çŠ~‡kЫÀ¹ˆìtä›wˆò˜CÔ`kÒýû –ÈE\®dìWzqüp~[èÏÅî)?¸%¨µ×úÛóŒá°1Ü¡8AWVáÿî“ËùÝïPùxBDôìPòÅôNüZdK*8˼E\‰ÎÁX‘¼N ›ë0ÏgØçu gVèõÀõõÜ-€MgÈìÑÍÜk{é0Ý­<ô"pàòM®¡Xþ×…(œ±±Egéì·!!ÛÏXp,A÷…¡d’L “~žh—ŒoŒ~H•¿èdFÐðèn¦èóiÀs3þW¾>´šî¾àñ囵Œauã…®–)'giÜVQ¤`“M™ý;±‘¼TŽ{p˜¿,Er–ΖÆó2¬®êM‹Ù½Èrí¦´yú†Á4ê’Tj´Ç%hê& £Y¡ï>‹)UæuÎ0ä@Úÿ·ë:Y®@Tc\áð~t(´8J­ˆÀ·§KteñáóJ†äÍ—™.ã%ü”þËÿqOUWÅÜ&Ê5Åððp¥›€b,¡íUþÓUsÁµÁñÕû–û™Ÿ•Öº$#é¯VW’áˆZ)?*^öá"æÝç ­ Ý\2EJš½#Œ/¼ø‰ "Ôè+㦵“ÞßW}4@›XÈemáSÛ©˜ðvKÎíbWBF‹ùy\öÒì”­UÃEÓç>‘ ·ÜlÁÜHö&M~ö! Q°²ÀÁè)º*ÒmnÙ§XUÔQB»ñ%ªñ·ÂŸš‘Ô0uÉôdâPI#Ÿ):oí–`ï(VeGU†uØÜ°7d©/ŒÆMÎH{‚SEÿ¿üÌÜSãÎh¿û¡Ù=œ$o°Dm©{³: Ð@ªòkØ]¯ÂACpŠ—ye» ™™NZÐ02v3tv³£]—úÑéÉ‘æ ¥­ÝõQrÅkŒ"“ ôÛÛœAw -óà îν˞ø–ž`~kÖ”¿‘ÈŽ`óZÞ4õ«€Òê»iˆ)õ_*{ …+ÖLZf°F“OHÇ<¸õúôp«(ØîŸ¨yQ}•RÏ¥˜\WÅEãUÅ'O`èBZ°âà_.ý6…3òÏU74z*l”CÛTx9[óˆ@ÔÿíÞø*‘ S¾‹èpxˆÝ ¨.×Ì®ÎP¼ \Nr6ßäOA•W`ù Ù“ic\™ 8ØÐCJjø29™Vïè®'RDºÁ°[žÚ–Yò3±€qŸAxå¹]‘i!£À«þqËĵƒ-¶M?_¤[xÜ×VßãúzkÌM ѳ©§¶ŸÈ.›‰ í)‹öžÓªFãÝX1È=¼‹^š!__Ç2U‰þÖ‹^”±t<‡Ãš´²6°–‚û;#õù'6óØ4q"DÛ:§ÁK£†æ·j$àÎ…özXz6ZÓm!IÔÈ{·eãÐþ}ÃïK‰e®Õµ¥ØÉ9O‚D¯F 7Ô¬ª£<_µž‹"¢çŸ ©>GwмŠ#ý¬®’xpØø=füZKµ-µ缜#Lò~¯F‹”æ8U{ŸÂ¦ ‰”šìÄqÓØ}:ǧ)Ü24ÜãÿçNíâ,¾@óÜAÆM G¨ôË{•["awÜœ}ÿȹ[¿r¹«+¸¹Ê,©:V©¡ãW¬øßDf 3p "HñaÄ~ú§JËtqMœá_Kÿ¸’A‘êZ0Q;ªý¡ð=º¾Éï冶СÀø`í­tÆ®þÙ*]‡µ²V+ƒhXÑ K_àÀ¸è"—T_>ž÷\< ¥B7Ô|ihf|(’U¨ 5¶Ç£±ÊýÈãŽA ærÝŒ¯±jt³Y¸°¸ «)ôüV0«LFÔ8k€<‡²é%®mw;¾v@D5ØŸöŒÞÆ´‰ˆ÷ÙÛ˜Ñ-ð Š~†È*+|ËÊ ÄM‚gÅZÛi.v]Žcg‘ }¾Q±ÇϨÔÒS!añ­-¦§¶˜ÿòá-Bh}|¹ÂpЄ“ç±S–u$ßÇÏ<ù$š¬³i:«[Ý”ì©7¬÷[;Ù¤-ÉOv é\ ÷/Ò(ŸÐ7 Ö&cÙ<2`Ź1 ý³_±;~k2N/ç\ÛÉÔßô5qvò¢}z˜ïÙË(/iÜÖ-RZ•°y]•.»G¤áóéž‚ãj×›D… \áf™gÈÚ"ïÜÕ]+ :ÂѸA1Òa…ZxGCXÍ^õí½Æ>o2PKø’‹é†E$0±pÏÀl&± 1H3¿ Î¥Q…ÅO|?ÞÌåçm3ŽÖ0Úê×—IÜ<Ã1x€yHks¦ iG!F;ß+!¥° ¹ì€Ke›Y¬ l<ùÜÀŽ@Ÿcöš%„W/‰¡m0Ζx<·P(œ‘)6d•Bk€áß7Œüª:gêŽ× =È—­&Ñp»þñÆî ÿª¹O"„ÄE¹Øå6TÏʨ…š§Ö6bcÉO{ÕÄ…GG{ã.tûº¢´ø6­?‚˜<ØOðœcOu‡v Ò©²lHbÕ,ˆx™˜Í ¬Do/C”öÞ´ÇIóºj3ã(7b?¶<3cnÌ·릨|R¹‡õ]Îs´©%zz GcÛ#|!ö$·ä·b+Ðgß³%2CmÕ yÈgR…,Ü-qùäi,Õ”2€‰éêÅ$”Ø’ÃK–ɾ¸Ï¶(òŠþÝä+®èJ’ý2›÷„r0© "ì;‘}IT"&î{í8r¸nÁr¤ué IA¡Žæ‹*Ò–Ï=S—¹vÒnæÿ£´y ¿JÍ7Ž–[Êꪨ6çª%ð»ÌcŽÉ:ÕW³uE0×Ã6оV°ÏKNVoŠÊŸ­€SÛ†=o qaÅ;0ƘÏí°Q9Ý4o¼¡¨¥2`ôNuKuaŽâ\¿d84“±&HD`vUÛÙ i5‘O¯L1(O-'è°@biX ¾›¼ÊÍç_^ …$ÀZ2gp(%%¹‹ßÝMõ§½HÐÆh…G3ßbl”ýÚ¼#±ãŸKG§ê62FÙ£¶Ip`&¸V`᥺ ·„_YÊ”d- ©"cÖrÙƒ.mϲϿÎ[n.6.Šw­äž0j(ú©c‚!ž¡SE~ZóÙ–oFGç%|“Y…%ã¿o¾Ž*5œ)nöæZrË ¼'9éé¹!Ÿ!mæ+Â4ß}7ªD¥È„Û!†âÑrÀ#Ÿn`a°N†^âˆn }ø‚|/„sƒW¹8¨p7¹±‹eÊàîØRKìæ§òJlj†ú÷)ntOõ„7·XȈ"“\ÕFwi´ü4Þ¦€è4ùÖ9ÜšHÎ¥¿ÞöغPß s‹?h6£Œ]Xî¶bï¸iì|!øY”wP¹i\Bµx“–,\;B¤*„\&ð…(9S è54Î÷ƒÇÄK yªýèS1ŠáÀ•Š8ÚØçÕÞ¸)©$˜Äv¥õa5.sk™’ 8¿žæÈï!»¥g¤w,A{«Žj ` ONRiTd%‰oÅ5fda,‹M£í#¸ý·ÏïRÆ®fÀÓ$¦h—jqñ†è Ž^ÀþÅ}©²éº'Ñ0,)pÜvÂÑP{}ån•'Ã#mÃÑ+œI´{ Œ„½ná@ð{ ׺…ÍÓ­»í¹ Dè!KžîyÌQò}rYáô-RçCÙŽÔtz°ž×U‚ÞѤˆ°kuž:Wö;eð\E„˜nbüô3»Js(®q>†ùY~»yeÓ¸`Áéj³iÎDï·Ñx.ÑŽàêQlŽ\@“3o0¬=xôv§¨/{9»nÅk } ˜fÌ?wûÌïÆmKJ~Ox›·ØJ[÷nÇæ¶ý¸"sDZì¢hæ‰nc¥½Z×¢Jâþfû˜»E¤9¨¬oyÒî]’¢HÖ¹…¤ FóVxç9þ·XAø€ÑcÚ¯ˆí¢= L|p¥Ýx/ú¨\å]9ïŒÄüƒXŸ/°$tøº¸':bB¤7Ä¿©^!ýµô°!~Ò(ðRX/Âqj€Å¹4:6SDÿ¶]½ ”>ä ô!©Í¾8jØé8í\74 «Ê™q®!ò Žt,qµì+X"Z´jÞ*ⓤw¹·ŠFh ó)ÉUÑ7#±ÿ˜Žž+ã|Å?Cü½Çvà-ãtvN÷¤¾!š|€QŒi° ¢WBEùÍ¥M×{w,¡¿…ÜÎaΪDæ\÷ûVö\¦r`Θ ³[¥q[•"=H‘"Ûémþ³9½WúUÝ©ô¹ R+‡>7Ÿ²Ë¬Ï‰Wü^,ÀêìO Ùfv6ñ~ºlê¯,žr.ý)“ÇU[ÀEF–«ýЗ.æv*s‰Šôe,¥:ÿÂþ–¨œ(“V¯ón$s ¿G_ëÜÀ>hÞºw÷óÁf'"岚1[VçqÝÀá‰ðÒÊàï§‹‹/{mÏ·ÚxXYFÒ1ÂÊPŸõÌåÍ{—òV7dú¯*¶@gœÎI(rB:@%ó·«™ü#ªÖ€»µ)ª ý–Ùî7^ɤ"•r•:ðní‚ÝkÉîRß´ÆNhY8Ä_ }É6¨á|8®PÕJ»´Þr¯‘–Ò˜H>T;Gn$ªC÷‹U-'Ø{hàÒYJ@”?çG€ò Ñб­¼ÑçsþÄ.a›¸µIz(åå‚·õ\—"s<¯åÔT£Ÿò»°Ñ„'ò‡FKn&"•Òœ€e ša-"Û> {‡x\5±MH6¹ç.:ÜUBrg?DÃó#†ÎçYu»Æ(V]ÝžfH¢QHÙ¿P·-œãY*©÷ñhyoWîöÁù„ô©ŽáS“ùë¾’Oßcÿú‘¾#¸|^JmF¨„ Zˆ‘ø°ª 5J/µ+¾?Á7DçŸé»NßÞÈ¢õaÉY-&†zsæF× Å³âv Íì8³’*Û°~q¡¥`OŽ ÷ã6ƒI’(LPð¬8®fŒeÜó ’9è –Ã3$tkdÎŒ÷•?_JŒuà'¸b£ÍF¨7+€ZbWrÚ°àF%D2\n{x¥›ì»°[wû)ér¬O{ÆÉE¤=M5mÜå¼ Ol–ËT9ÚgúŽ´Ú˜H–¶¯VC9.àBú o9Žb¶U®mÆsx™6ÐÏ•üz#õÀu¹<“œÎÞ‹!*"~ÇWT_ Œ§; Òî/u—cÕC™+K…)©aѸ<þeØX‚àÚ2œ?„êK¼HÜîlöR•To™p7P˜Òe! Lv| tvÚ˜—Pc¦.é>DzÓe÷Cb &'¯ênô¶ýšÂRV7Ú™”$ 4€ªÏFî:òØ?Tö ì{]/³UЦû¢Y^3OÑí¼D.·éDÐãj¥!}Ü·¤g÷(>m²ôE8ü‹{T<¥Øûö±„¹½–5ºX[¼ò+¢‹ÿœAÕ)VCÍÞZLï5 æª©"a¨5ßUe£è™´•k™Á¼Á |I.iÙjC“dã¯{w™ÛI„Ò‘%ÝHÝ3ž‚øÜtK¹àg(\‡!ä>Í (ýY¶O¡újdeDF˜íë5ïV-ú'#0 ¢1cð  ñ¾É=yÄ$¸„dé >Úk³ýzêsšzF(©4ü_ õ‹8N*Nœ† ž “u³]Éö¹¦g#¹úàŒÌŠ•Ì°Žx¾ílÎ vu@åãâ²ôÛ–³ñ|>¸O¢>ä[«ÏŽ®:§Ó•7ð¥ú`3Ô¬\Ý“‡Š©M.)ÁC¹v—ßsÇÃêm/Jíì VÍï_„>KìéÏjòs°™Þ¶uP±/òi“?Ï%Ùâ|!ãvE°çqõ\ò bü¢”àkÛ-ðP•嘬ùã¥R]¿Q{hŠçA ÙLlDT#5 S_Î4k*{ê¹AnœÞ粫¦´wÿR¶ã½9½Õ}ñIŸAïÇS™‘Æç ê+ÖÌœ®HU2­#”óÀÅÂJWÕºb#GÖˆg™Ej’‘Árþ“tˆ—´l…vË‚e=rBj$)tvi‡…“œÝö¶T›ˆ1ñÂ}î<àÜ17Æ_KÃ^ĦڤD…ˆïT wfáÚ5¨UüÖsÚåWѯÂ2zýezÖÝIL…ÿ*$yE¤KŠÝúxð‚¯Àm•L•’qN&rœ_têÂWj¿ Úaê_Öê 1”^%ˆ`×u’ ‚•Ýp}€hé/hü¿‡:<§'Æ®T˜Ë°Ã?ȽØ—"÷'‚{a9œÅH P‰Í3­ÿy.£Lµ7±Œ—‡røW®á»ë¬ìBlˆ´²äæù›«œÑÎó¶›øIœMã—VW©C´â‡NÒ9î|^´u™_pV5}ŸÓ×V»îÿœ7s‘ú2>FD¸%³´\]S¦ÌÿÔãŒvˆ€dø‹gTƒ›5Ó7´sl{‰f·àÚ[£§Î1–±[*“ Â'Ö½C^Æ^.Qâî“þ=¶,™ï‘mø*Ù ø€¯ 4•ú‡Æž…(‚W·=C,ÇFw ·åQ:åŽ,Š ®ÂÄ¥är,¹VõzÅUv½ÇúpO_§/« ¤LQî¬P…e¡/4‰—d_>׫ÐÈï?â› æv’OD÷ýSJ5BæÇÖ¸÷f”‘N3&˜ûcÆèóÅj£é5;Øôü›¤{‘µª~Øt6¹ !¾U`¤ˆºsÑ'FJÔ(«òî[ßv•ú2U§³ÎŠ×ˆÂÏM€~ ¤-·¯2zƒ4Eù1‰¥Ul£Ã£4Øp¡ $ýÿ)Ї?†Zˆ¸J)“Ïk²ˆêˆÖˆjfnþ·d6j-6gŽƒ˜âÖÒJä9ø„Ùð-ª Í´`':àÛDIˆ¢ˆñ5é1ijôr —„2)ÓᥔîB#9t·ÏŸOO½½‘)°”4€.4dHd6æFÁGG¥53~ç}.¾¡ïLÐ"S°ý-7tÛVc­­PÇ~Gªÿ¦ÏZòs\yÿ/ðµB¡§ýcg0È“-´Ê©×h/♤oC n?4íÊÃã˜~¥‚£‹Ü?û..\ìyî—ªR?ËéLi¿iîÓäÖD8ÏñîÜ#Z£¥9’ ŽôBüy@3/§›ÛÑa–„!ôÔ²DôôJ'ÎNÔr&çà™’`„Ž ÀxYµþÇ*n$]q-×ÓyxóŠê)x7«¼Ní¢JRÎÁ_J}®a)»‚è° §“é³ÜŸJµ¨ôF³Mø®ù\ü{–àÎòp¯ª?PSMÔ¥*CS¿'BB›tuuÐšçª yZŸÄvô¿ú QŠw)Ô‘¤AåÓèÝ]®œCþB"ÿiì”EüwX6—¸P•ŒÄ€Âxœœv‰!žÑëÛ02±*GÉuÀ;:é`O·p„;†ß9UZtqÉO«ZU~6;8¶žÙ!¨7të¸?¯±ûžÎs»WeñòŽÞ faú-O¿§Š˜—Ð>'9æêïÊïÒ3‰¦’—mŸjw(\Þ§“  íîÛl‚S”v#`àµ{ÏÌD(®=fôЪŸú°LQ(X³(¹ø'Dîœr Ähù±w¯èüx Ibw˜1ó“Öªz–Ke=Ž­8¢ JMcg×~5XE“MLeÇùªÍ.``}çÍ7T+@žêiÑàÊs ̱]ó࿇‰>©ôÌCÿšïÛ10¥ª4 .3@g¼DÊ?*•óò0ª{^g°785})èn%GNÄ—{V‡féÀQYmH{UIo€QüØe›¥ò—÷~›ñ2Q:òÍo ° Ùd`åZíõ$/ÿb}_ÿ9ùò‘Xž&·Ôã ʼn¦'÷Ein´Q0/»“#GÜd ÑÛb-ͼB3Ju8l¿µ£jݽ©^Ì×tm5÷‡ˆØgeðgDuÛ+yPZb©' †àçXw¿AêÊ´U^‡´ò9ä©>¯¦ÿðúã_ùqRšÅ ·Dý=g‰“)‡ ÕáØ›JŸŒGö½ËÚ¨\´†äXƒÓÄKÑqŒölsKÞ‡äRü$¾ÔÝuR¹Ru¤(xÈ Ç:P¥B÷þ€s¶1&6„|'  ×ôÛ$»³ôOÙ¾âAã& Иê'aÞPäçípwÀ6KD{ãË|N‘\†˜ #ÿŠLrD7´Á!º» ‡1Lç·§•kl´ÌsÊE²¦ XO“_9EØþÅ¥DéôŒ "°q6¼#¾{ |dàív Ìf%4^@¶^<„ Ä)ÐR+Û@qW'S€ êUÊ5ÃÊ8|MÓPƆ§Æe¤=ªYW‚„»E hÄË+^ªÌ€šB1V-i³\h0ŽR²/{ŽÑ Dɦ:À\gì<#€ÏH4KÅ-#i0ËÐÿ0·¡hUâv<¥òN È^ÎL™ÆyP3)>ýu´x…¥¦°@'Û²ÕÌUm}"£¦þ" ñ»ËP,Œ#x0h¿Û;!0`F­UOªtÜÿ…Î.æzCÚ|~–5Wô r;ûYZ‰ê8B42eÿÉcõ ƒ€îË YŽ1özžÇEGI¿G+»3ܰ„2$2gÑj°;å å5×W›xn=x$6Íñþ.¤+Ò"Àü=>)ûƒ7s»•µ*)ky‹ûCá öÿÂyÚk7 “s&tH!®^^bÖ)_ío¤ HPëó샅­Ÿ:eâ^#Zsès¦•ïyPÖ“[ŸÇ‹œ9$,¨·¦øôPYÂÕÍ+ðêýýmSDÜÄi…ÎØßWÞý„y¤üVèM £:­%ô’yÐeŒßìªKÎ'Q- ¶Ù²ß ¤ÖD³Þá 0 Ú©xÒyyu^ƒbW÷¾å×ÿˆ6V[Ø./ô”û%Ã+Ãlä“C1õ¹É 9MS4!qí?n¹–dòÉbWCS„*޶É]µ H6¶Ký3G» ;œë“†Û[µÜ«¤ÿ{ÓÎEf9ÿ^­úqíµë*%˜Í]ʧ­c¸|#R?•ËHä™É? ÉüaE´Ì@vÊ‚5mË„Llu¦•EÃ6×7¥¶sýþ*+Ò1/^:Ë¡5BQI‰%ŸUòEÅE Ï·?šÔ(›Ì­ÎÔO…d}¬¦¶#ÉòˆWG #ýL¹D”:-®`‡¤ÉCŸEâbR}Xä^1c=Ð~»}®?¶ÊõIr K¿ñ• @2ÿß/Zb'<Ù:«DKƒ3@ä-•£†èˆ†·«~¿âƒÜ?vî4¥ª˜7žü% x#Ô—›yq çí8_+4iV¨²|ôÚ©Êg —!LU#ä8 ¿É2'Õ#Ó„yCˆ¬…âÖŽ™´¼Tü•|p½v"aHéb®žwý‘Zn$¥êy»ƒ,XàC}ÞÜ!5Îaæ9(Ë¡=l|‚Íö2¨Œ’®¶yÙŒÍB`—4ŽID7<+ m‘bµ"ßKzÑW-”êÛµ–‹¾–Úaº8±Ü!ƒ½Àš·M]§ÅlHÃE(\ÑÃl¿~Ó©x£ ë ¡Änï}“£N%X/œ($}é´ÿîi/½<…-Öåí@«€Úï›±õž¾Å´1nÃoœèz_#Ücé¾HO¦qÿ .à@·øõÜ-|#¨1ŸÓ«§ÁCƒWg÷Ó)ªÓ†èQ°± ? «Ùy~1 t΋´Q ³H/ú‰&m6°i(rÖðYAâöd­þ/+Á ˆÙ/QL¡6 ×áGвÅïÀÂn¤ÑÆyChïÜjæ/ÖðÕk88]ßsŽæo´ðÑ(FC Ň;î²lÀݑ챽_£ò÷BBZ]kÆgyÕÃ)Ö8„£?Þsdä]”rl—ë¡éŽBË‹/ß% }a²UÊ0ààûÛ;¼fBÔ¼@.¯æ4îœQm¿ÁªhôçŽnÌÑÿ(*Øä9Š,¨cÄ2__Ž` º~­ï£@qxpm•dâAkˆy62¨°j¶ÎÎ:Ž•r¸Š@þÒñ¸‡±Óˆvزրb4Ô!Æt°×ûtz–9°Ý8áÇs7¦|•m0Œ„H „ÑÄ4äv8t¢}1D" lS§=túƒo¼¤¦úkßÎÜ»¯SäNOMì™ö‹ÛÝøŽñfí_J:¹›Ð¶vºë§n…éŶÕIÕ7Ì]\`šLr ßqû%Ú%99_øcá9'é0²ªœ¦:]ó°Õîôûü7œy€PÔ×”­!×ò ܦ€ª#ºÞñ\ýÀ¦´=i¿÷WïNþ'çh®âûôÆ× ¿÷ëoÏs¸ì†©»þ0+Lj'pÔWBÜ”ªnaO Äj0°Šm9bÕ|˜€f•‰ûòÙ¼0Lßó¸ Èâ•S3x<+ YÊÖY®¸[Æè¶ZÕéGSƒxÁ3’†t«Ï>1b«Ä®ûÕeI†îÏôâ†n4çøD¿ë£ š¢x¼…rü‘iX’ôz-¨"L™ý–Ø7­“’]|ám¢š‹›%v½ý¤ýhÅAHý‚OþðV“Úxþ§"¢5¦ª•×­¯¹r\A‡€[„ëVQUƒKïZ` oj&ÉÏ yµêH_›I ¿CÐ]ê… ÀjóRK2æÂYœú R†ðoÒ™ Úx5û”º«mz‘hTjü;yTÇûÄ8SßjFçO€ã…’–ãEF Rœ\­0,¹×|>ºñ§–Ç'Z²ZžÊ´‘@Å÷ Ò<³îq*þ£©O0é[FÓ½‹Lurõâ–,ÒZ8kðÍÊ©*ÎøÏêu•WÉÓÿ£Æ26–*ãæž…ýÌÔŒÍÁJ’ V aœ÷,bK„vj­š:”“UCWrèj·e˜Ûë«ÉìòYËã¶ÂmóãÙ!™#‘•P ̧±ª/‹27™æk†¡)›-\u°µhgYbÄîØhn)²MËòþð:® B?®µ_Þמ›Ý>Dc´h¸ö$T)¬4öB jøyS·Ü­ôfñ$7gЉÄå°Ä8sa^ Æ¿íƒh~ &[,¤%¿c¼=6Ø;â;Œ8ê*}å…¦*è“l0ÚúX bfqã[ß|"›£"@Õ}¦nâ‡æ³pc£(oIâ”üæÐ ä²ß²òAý@‚Üjv^_u†ýŸzJ3:_á^€¶C>·¯P"OtÀ·`Ø †T#V”áð/-Ç¡§MA÷îÁñ§kµG1uÛNÿ\A+íÓÕ¬e8n`¾LÆŠñYÒ~²¨ =×$G ï$ÂBÎ{/ØÌ1p£, ö‡‘‹ëÿSDa;æÒ8­Û»ž¾©oà™<¼«Ü½ª~ûýô"ÐÇBUcqNÉæ‘P*¾ß ™¾4¸‰(æ_¼ÐS–0Œ»Hû’Z³å˜¢î.åÉq¤Ë^x”èµÅBÛ™-ì¡r=Žïµn`!ÆtÈÕ“÷må!Vé;R¨T’ð„Ô:NU0¦v17YƒËAñ'´ð#gšøk¹þ†â ·æo"Áá³CãåÏÌDc¹¸u¾8ð:ä Þ”D‡¿àŸ æ9Ú5;’ f{Ƹ>dµE¥¶„diÎ7ñÛ†Ikè¿¿ÆZìu¢ C<ù¯ÉäsšøÌõukÖ: ûÆYo³õ$¿}wš}o?”Ág£»Âx3|PÐXä Èš¯`ØUè‘8ÕJ·ž²ùZ?ÑK°Ï̯^L¶8åÀá˜}ýn€žE¼ k‰æùÄmá^ºÜê àk­WÜhUª¬±41\:C³¢£wŠ›ÒŠÿ¼ö8c P|zX¯"D¾X‹·3ÁR]f`c•tÙgÏSÿà•)·yš…Ìü¾ŠX›ÌP&/:j1DÍšµ3ïlƱ.ˆË×ԴѺ‡D(f;")ôÊ| ¹H¹÷t ¡Rίtgc‡0-.©åúz«B:ÿÑ}«Cû6fÜòZ®v]Ÿ9~(#ÂÞÁJä²XP¸ô"IçýH*—„ND¬¯pÃèos;xÂàn³{ߨö=4ŸÄY&O±mð2ñ¾#b¡ ZöóÇü5§èØ@úßAó éÒôØP“ ”_ŒÎÙÈÅÁc;;یȽM/ö\d=¾LDGÿþ­aÍ?X0 æË\MÔWsm¦áÈþy!µ¨3ޏ•³gKø…:_ep‹~0ÉÁ›âÜ®ó4¯ðÜdj¼“›<©K 8LÉí1wcô¾š4í™# Õm®šÜÊÆÆ@Ë×CîÅå»]Ëiãed:zôS¢ÓH»ÍŽä«‡c€óÜ;Ý–_5ä#ÔqM¦± iÎ~ Ú½^ò1=a…Î%”T-7#;rw¹H°xõv›{ÌhÀ lᇂzİ„…ÿ÷cùîI³Ügf—§Q~D•¡–åy3}ûÞT9ùäòÀºË%ç†ÙÍî¡7þô]€ FI³9þÕ›ÁÁôNÈõç;ó$rÍö‰ïwuT{¹`Q5 =€ùª‚–2yš ,÷Û\a¤ ¼&ÖäÜW›Kÿ½­îØØNf…±1ÿ~µßü'W ±y‚àÕëÐðÏV»™@å/E-ʼ¿žÓîªÕ£Ñ¬ŽtªV€tól–?$ÁÀ“ò6{ýÅ(¸äLj9¤©ê´êæKœ%î2¹A¥ü)©\¿”ìÉÈÅv£ŒWpEC/ªäÀkscõ õÌá)«ŠÄ¡ŽäûkÇ—òŸBÁòwwqeÆl¬ü´Ågv6˜ÜmGÓ0Ówó¤µN%7—CRÏð´,ŠšZ3äeb Ù J•’»û 'UÄ2dÃêÂ3d 1Bá§¹ŠZæð´¾>˜¥‡w}n¬;ãüûþ£–5.(Aáwé‘·R8ŒÍ–¼Ÿì›ŽŠzSéHM™âdãÿù}uyöë㻽(usôRQ¹0• žÅ¯MpЫ†Ô£ûöHW±—âz*dêÈxƒ_ž4„,;W-1ç3TŽ H—+a¶Ñ²Î«`çiâæ…ÓxñäßåmäÂÙ$í< øWx"ÃÚ¨·éúzÿ¸YödíwI*s}—…Ì èÂMØTU·Db• v}ÖÁ^fÂp[Ê`výÕ8MŽEªC짪S  ¥æUC=ÀÓÚ Åpã}ž¢ ä;YÐÓŒ¼f ?šïý”VÚ`ņ5žÂÛúÅVŽV§âÄU´å–`Lsƒn¼Åo³#ùñÃ…FžWyÚëá±ÚÈô€a@âˆ|û€ØÌùLòŒÒé.]ܼ«¶þ3AP霰{&± 縻Þutb¯u!Mâø”R¾àóÞ}*xÂWwø:¸éSʘEC“A09?¼Ëb§¿M@CH#Ü£BbâhÞNFÓŹø‡^.¢Ê{¶r,þã<]jÜ]w,HÁÇ¿·CÓ$XDÜßÿ…a'ÔýQÆQ/g^„»Ç!V4h˜Ìtº·ôæÓP\í%}R &¤ —Qp7Û6[MZíi?†Bä f¡w´¢í·™ žbz‰+'ïÇD¥÷ÕWÑêlegÖ¶í¸¤óŽŽŽ÷9èÑ]ÚŒÄ/2=ʶXc[K^«¥†µ¬0ˆ‰m€èÛ…2J*0åÇnµ“Uöý¥ŽûÈæ.x$áv¹¦d›nñV‡Í»:Lo=NhÄEäLŸ&˜+“3¾µ]è¬ÿq<“¦ Þ…;ýfJ‡2>šô2h’þ±:&¤b›Äb®ÑÍ/:©uÄ §g£ò#!ŸeäøK,Z¥i/d]9Oÿ4W= _{íý-*ØÛðDÕu6ŠßbÒ YÆÈJÃcmÒ ô¨ zÄ„îZ~Å€½ý>ãZ^Ä??V'·»`´:ךþNbo5o3.É “mL©èüù´öUïO0f×2ƒÿà²G¹‡ç*ô¦‘Û|‡‰õaW™t8.4?ü-1é H¨ä|Ôóe:™ü%›ðx2@"R¬NEAL³ôk‰§×üä 3÷²6U Íx×K—ðX®°WЇJ‰ü7‡h…u8^Åœ~VhuqÕŒøR=U™;ZÀ·(¸CÂɺïcê1Z1qªxRÛÁ]fD³_Lá!Ο ‘îºè¿ÔÐ1#DøØ¾2DÕ(/˧1G¹(¯¸5à±ÐWÖm~ßç¢;mí:[[¡ù!ÖŠ•—ÊœÄè"`.7’žJX{ìÏ9 Ó5Ïô¥°Ö‰îfÀ ²J®” íN¬¹&šDô¶¸t$Þ=q/Ú_µ *ÐJÙ¸žùKÄ$¦ïA_~¸¥¤<ßVÉäLŒ¯2ogBþ³\Aø¤^ïÊn±$K¹Wå\h£ífy²üŒì>´ê¢JSÞuºnòH#Í´sÏ÷bc~ÄŠ(BtøS+‚iòT‰ŒHV³3*Eq¯áwñ5Á4fM¡Ü(eÍRÉ!3D8óbÿ˜Ø‰@Ëc×ÿ#òïÃ.»×7hÕŠÚ æ®2ýv±²ÚÑ y«)hgv÷+Šg°‘†•z!%»A…äüßd .‰l8,‰pD÷Ü3)IFøÒÆ&zÄ{…ÔxTŸèó¥Ô§QíÿÁya·-_c7àŸ_ }ü´áë#’zÞ­¥£XM±}&ü¶êQP ðành0âJt!‚½òz¬˜ëŽäg³,¼Ø€vǨ,Á6ˆcòƒá9“ÙHÙ)ÑXši¯£è­>îõ#³ô\ÑÀ²e$P¤ì+% ŒÀÏ-—á¿:ÏÕØ˜ÁÆÐs)›N„œZ·R öî±c*Þ8v™¯›–uf,KÿZ&¬r ’§¾9$ápž§#_ì(Ë…Ñ•˜ˆßŠþ Esεìm`/zñ7/[‹±kL›ÂóS=”ç'·åž¯™‚Íò{gׄ¨™¢Ú¶½1ñ2ï‘þÿ/á¹dèdi?Ï/¹Çs‚÷ˆÔÐŒ¸Àï`WõU³˜~°žµ�z1rQãBˆf;‹Äq€»>¥ÆèÉFó@IúäHX¿¨â2YTÓ€³ôdöÎv¡Éýñ™Ì.¬dÙɇ˜(o¬òòÚ¤›jüS·ŠH¢”ÒÑQ1 ul“úé ÙÖdT›®cæÉvójŒÞsdD1rÆ=µúÒXT‘•Æ ÚC˜VÊQc†àRÙ¦°<¨€O*CÓºæædB¹q¯¢R'cÔé–w¦\½û¼Ã[;æ© v'hEüÜPh¥£Ç×<®:L¸XS|K|>órj×ù©ÿËdl  xóRkhŽÚøÊEí>ô\ÕÐÌ¿e3…Ô™ÔÐ [Áæ"¦² -ó{â¨q§ d¡±ÛK•ø^øY‘w?Ëe¨¸kT+“­Žx¥;ŒÉ“-Ê:­ãe]7øžgŒÉI7ª-h—¡§É…Lbt¡šþµÞ6YÒþ¬áøÎ[,MMÞÞª%ÀÆ1‰â¡ AWÇMI­ÿ‰R¬Ô*ì“}4 Í¡º`} (Ç ¤?*'ã™EtÏÐÒpy–¸â× ) [ ›¹ß{‚ç'Ö¯ PïÀ–<\½º:¶œuºÒ³¢—i&§éU‰Øõ„ó¡k/¤„[ ±ÄëÙªmÇ„l_jj¸™„T†¢øâ‡QNL°Ý¯šž•àÆïãm1#$ºÒ¾Ã‰!öNùï¿D«Ká ³TX7I±­Lh¡e°ŒÍ«á1Oaè3q[ï‰Óô}½še+ôŒ, 1NûŠ‘bêI?lr4\¦yA FÒ( Érþúf"ü_8©8T87HoT†¾­l—ÁèÐ\¨Gû§ ü’yß ÿõô$Œš?¿ÏÞÏn—rØN•f<ì1Qm×-Æò¦eaÑ Lêé>å:«ZÚDõM3ê¿ìêgÝM ÷@˜ž}…¼º½ í&öÇ¿¡Y·‡Þqi{°ÈTC¿UæÃâý¡ŒvÓ´¡þ‡”­ìªUwÂ'ÿ7ŠqWÑŠÌ$~Db£›E°WáÎb,J¾\¡¦Q$Ø/Eh0£µ'À%UªA}˜D©7ä† páÍ8ûoQŽ“ã»"ý-ß”c ý¼¦â›ÍI‰×n>cþÛ¥uã ½?Žßý;ÒÎ5N_D.jÆP>L­ž7xhéñïY'½%¹<>¥e£NSÃŒªCû·±]Y‰h^n^,³_Xs¶„»ûT;D„ƒšçPSF6‡€g£ö³#yR)j)¶¢J`ô\ 먶&Ú¨¶Tśޫ„ïû­¿á„¤@VÄi³Ë²55ú¡Cº&MÒáƒ$B“o* ˜g-öb6ܳ”U·xCx\w®„–ß…¹iî€Ã¶¾qØ”+ŠšÜ}ÏoFIhè§Ø‘Êo£ÄÞNÕœ~f¢”xIr®Û$z¢²I¶E6Mlð ±¾é\Þ?‚ôî‚¶Ù+Ø]ZÎMÚ5Шt]]\ç`c7ùÜཚF ¾B4ùK@ MUÆnen=B0ó9š´âØ A‘»öJðBq{Ép‘öGG)fÕL<Çì×BÈzx¥(ø/§ÂÃà5OnpW¬¯ÐóÍãÅ?2a(H‚:Jœr¢‘œWŒ”í£^ x±§PrÅî¾ ¦á.FìÿÔN ¸êvW kâ<ð’÷ÿÑp¼ß`XoÕ~|¯ld‹«Û€À*¸”Eo$ƒM{Ç«aîÜÇzNö32.kdyVÂÝfn _Ž3>¾š¯ Pâ/ ½Ü¦7ª½ 9F¯@bÚY †Î}€â‚€Üxøéú–n®Î5l;ûÀÄÿ_{|<ø eˆÂIR ЍÐoJÈ-%z~[ˆJޱD`ÅébbHŸ1mW~$TtAÆXñ\¥ïñÍé84Y @¬fƒ'@ö ¢%Ë¦È ­ÓŽ*aõš@mQWLa`»³;*Þ›Ÿ; TYßRŸgÑ~Th Ú3ÌD¹w`2—Dp-'Côr+¶€³Ã ƒ\Fü@û0 Ú€³@ʘ%È& TCÚ…„2þpTCö¼ýECk¸M™ÿS7Kï»=P[4ޤ;=,'céõ1Ÿ½ÐÅ÷„ǯìÂ0$!â!Ý ’ê¬Üd¿]âNLÑ?ûùÿUœÙòRÜ(š|§-Fó²Uæ„„ý¼‚IqÿJ ÕeLȺòŒ_-¸‰ŸD¶dw)®,v)5î)òÑI)Äß·*—|hFçwõ#Y“ ù qp´yœ:¼[ÈðQ`²¶òÁqåô„ó‰ªïa,§˜0Ó==Ê»°> /ö‰vDÞÞ&/é#FÚ°q'sãL š,K§èg>«0áñÎrFP–?êš—±yi”NSãöáÔ”i±n̾¼)áFú& Õ5ÉíãV}•ÖDsr&ßôŠ•Ÿ,²þ\b|1³bl"ÔC¿¸LÂþæ`} Žˆr º1ÕN¯šh0 ÿⲞ.=(º³*f-YÃMáSÜ\£[zEp‰¦õ v À*+žã5¨Ô瀠¡·k—¾Xûô—år)ãª6V§¿oÍ‹ žaU{ì:uïrVKðÂ5ÑÏÊØøˆ)?Ô|)ý¸ðyZcÅuOÆ­>{Ðë"!ß½æØAW»TÇ/­%Rú_¡ªN•gÎ¥Ú«E°¡…^á­œøwŠâ¬Ïßa€‰>BcÌè†le×nøh+Ê'P·çÍäJ9r)×Þ½NÁãaÅÏ­Gïs­y"ïÕ½’Üc µé*2‘$rLÉtçèÐ’¶—bÝoë¸À™bËOgÝÍõ ;ÎIçëÈži¢g§ü›zèê¼W›&A4\SÁ+„ då¶‹Î ^=Bc¾ðüê}’qÆUWÀp(Hý?çL†[ HÙdc>NÛ®Êð.xUtC’=3þÛ‰o‹ñ?… £&l}Òî¶ÂÎ k7¼V¹·sçµfiÍsHn´êÇÜÛÁDTŒû/x´ÁZõuÔÉÒ'`}©°íȪÊ{b{‰0(MåÜÞÌñ]ä… MP Ë,‘†kK‹è-™¸]þùìtÝð£o›)‡0n:3ÜWÌj”X/ÂÛjÿ/šòá…²í;K¯”+´oVJ\1aþ½ºb­²cP Úë‹àz¨|›|8÷ђ}û@å­º‹5RÙÖ#I~nbEÓb—Ôã™gW)Ö[Ó ²XÆy9!’Õ`°O“óC+^”Œ°Ðꑸ_Ú€ïG5}†±Þ4.àq/5ªÑ!u™N²§7ÖÔ¡Þ¦‰2MÂÿ{«÷æ¼ÇŸ9Ì!†µkxÕ¿d`¸…"]«åÙ@;zªw¢FÛÙ}†9aáqLtê©OµËß%yÓ` É·/d­ò0o'âÿ AñÖîÑ4ÛTA±ö3ÜðÜ oÚ¿ÇfFÛýrD楻.¬Ñ+Lòcu7ˆÞÉÈ’©-ÿ@Ðþ@«6® )òh4êßöïÅðùšþìpR÷A ²TôÝa4 Ý=A,3|e5¾šw˜Ágÿ±“bmpcÆØW(Úúäù~|Üeœjd¨ºÉƽÕVðÂ,'°)êå *Ÿ121U-õojóã 0ÌóuJ։ωxÌþ¹1¨ùpETym ÙÀ,ÍéX-Û«¨”—%3î]¸Ôe~YkXŠÎæ6¶QÚ"8ްÿèpÏÙ8}ÝW«Fyöz)bÁ]Qj¤Ì~“z;|z«tÛáj+;›ºÝ9ÿzlZÔ)ífŸhZ¿q¶wÖËå}vÊâFyíŸïA£O\s(*áøì󓆺$ÏÊÐÆwç=9~â8º¨‘ÞGöZÄ q†‘.aãŸ<ÒQŽÓúKá¾|Bxþ±ÑzÝòâ¡kBåÈÐxUÝe¹3E¹ÞŽgõD‚²v²g=T Ž×'Wç.w—ÄjrʺôxãK+1©Âc4´ ÜC<£Ë«©ž[³‚JüRá|î;´YCã™ôÁ¡l ãîî±7ƒï)¢+ÖÚé‰ú#ë©‘lÇÕrú¦ ØÜ€*ý¼[Nþ@ãP„1Œt–|ÐK+ƒÙq\R ®‚˜ñg…¿D›è´XÉ>µkŽlH8öÑ”@®ŒË‹¨Éf÷t¢O¸lª¡Jƒ˜Š¹Þ¾·ËSToy/µfT¿RaÖªF`qÀ‰'Lo«¢7T\ÓXòŠtVQ¹íêÆïöÙSZg-{fY¼ ’…›*Ô±l¦[v4UˆŽ N àL´øg zq>zñ£Hèâë-г¨¬/ í(›æ;~-(X˜_<Íj¿³õÕ.Àz­R€JÀcš2VÙ6'ø­V°XÚ¡-hÿªŒkÁeCU™Atx'ǽ©-^4¨Œp­1§æº¬:@É ågNÂ} èÕ•ÿݜܟ!¿ÕØ¡ä]%ÊŸØcY¹ßo³ûÝ¥/0‚ç'“Êb5®íMo âœÂÌì&Ä´Î Á¿I4Ù‰ N¥ÎþÕ®(0¨ýú«ÈjÎXE;3Έ5Y" &.¾ÕgaÓ‰Tt,ÚÝ”Š,Æ©#]ú6üo¿ÉX4¬—ÉWoî/cÚ5ª²ƒ‡™DÖÊÎì;ö‹a/e„y^¬ÅþyAÿ·h&‚3üYãþßÕ ×mAŽýPàË"ðo ~ðS_60ñ¿ØVHýun”ògTVV¡w…“ŸŸ°Á³öÏ ²i¶¡L¡h}áC-°ãE⬀¤Ö‰ž›ôøöY Q<쟹S½Š`‘•4¬´¹Úõ‰ß3û ø³’ìÎBÓ<œ…rËö üå"l«„c¶Iò °ëŒ&]ˆÅ”j£G†â›jxÔzÍ™8½9ä=§uŽ@"SÜma4"] ¯§HeúÝŠiþ-¯Zd¼’†T+—àÛŒX°×!£‰Â®ÔWÕ#ôÿʇóáÆN¼˜½òH†ùß`P~!G|gýÑû½-5Š>ò¡º,¨ISÙseçbÒC&uñiGÚÙϦöªV1ÁâÕjÝïq‚9Ýa&íÆ~“mWqm7äœÙMv/µy˜Y(jà6x%‚1FalY‚¨,¾¤::y¼‰R¼¯S±$ƒÑɧxbrm&_ÄY-Ë!p”²ïÅ|ßNÎ.:]‚ž ààÏ_$ͨ”D$µM‘Öà°ãõïg•TÆÁ¢Ç·N˜#+~l„­ö4>ùËô¡»ÈA3âÐÍé&Ü8ÕÚà Xõ߇Ë>Òe9€£œSsÌT¿ùC`CÌUŸŸÝ¹%?3tø†|ÂU\Zù³ºˆãše¶f€Jø†ýUdø¶­Ë\ •ëÕšùTÑ“÷FÈQ~FD€Rçʯv¼Üç&šù3 ‘¬Ô=Ñäe…ûf~÷žÉ`²¡„l)üÀ=‹Ñw°;4e„»vëÈÔqX³*·;Û «E›ö7ƒmNò’ê¡ö¡ð§Îôøµî$[ïáš|_æ˜M ¶Ÿù/á»P¾’©³vº¤íZQ^ û„¬Pb”~'^&1e•TÔ…ÙK4aµÞ{›GÔÞ÷jÓ7±‘j%ÁªØÇù*…ìÊ5÷@æ6`«]”FôÂú¶ÙÌëbT™Ö¦çÈ+º*;ŸÄD^^D¶jÀúÕúƦì³×sR—:~z€9´¸2-®ˆÖñ|@TîÕÉ­®|Þì?ð_!â…¶¦X'ILJ1iL/ò ‚êV ÈÉ(‘E¶|ÓOb»~úÇÏ⢕\¹©/Š)›üB­‘k½ÿn¸yÏðŸÒ$„ ¿;;9)\.œf©Ï"ëz‡Àñˆ*¦Ð¦µ‰aå{_ê‚/øuTÿTòñV¢ðð;‹cªC®·"€¼XG…jªË6ž=Ö•PIUw˜cÔV–üÓ1¸€B¶È—Â’þpylßNǧòÉ®çüƒÈããÚéÞkÀºŽËêûÂæZn7á¶ ÆÿÁu‰Œþpˆwþ¾x»_ܳ¼EOªöìâzÉ2RHÁ»¼®C-ê ØV°ðŸ,õz2vèÌ„¼7¡{°†›Üàc‚©óyÿtŽ—ùëÝ6ŸžÙ™A~¯nW:Snr¤ä €XÔ4 §mRVŸç=¬—Zí¦Š)Šúf¿S'{+m¸†á± - !<亪×Ë?”WÐ+S«¹^O»ÝõßÈFëï¡v‡Ü™Äá%vÝ«vD`ï¢]N]²?`IÝûMœpÚ•z À˜a”½ÝÛà,œÌ—ýߊZÁÁn¿ïâm­'Æ-‘[¨´•c¸ô(ù¬©eßwi™Sk¼Œh“8Sl®Ç•Y ©¾žŸCV…eM/¶6Ò7FPØëú='Pc¬ûñ÷-Xjœ³ß“>¾Øc½^ϰ¤˜—*ý£óºx;‡Ú±’¶œýÝ}ó(¾U s/8žø0ÎÌð"W»%9œð¯äžŒè0‚³c/À-˜Á28Âðü'ƒ«Øš ,HƒÄ» :ã„!K3á;0•ßW`é:Š+RáªQz-£6Ò¯ÚyÌIFYn:+.¼4ìŽñQiÇ8•i)ìTA£õ—&×z¢Fq8wÐ&½¦c´0…eU,ZƒÅ½kw·Ï·‹ÿ7öå?_|Ÿ:Œ åÌëÕ»ŒýaôÖ¹þ? êõþOý 6Ί_}ì]@ ˜Þ!¢ Ù:Z÷F$’­$ r˜yÄšR4ôý“´ÿž>ÆYù™}üYGªläšõ/úÐN¼é‘*¾íZI¶dl§Nbá²íüQ“WŽÔsNVJ˜\Ú¥¾™¿ËDá¦Uös¯2ã]œsˆ¶•~§|Ð[«ôc xVàå ‘Á‹Âs¸kJ}'é¼7SÁe¶œ©‘©©£|ç¿:ëæM¹þ;Dö<·v¾#6½OËš9&¿Ž®4¶ÿ>œ3Ô¤“ʇžÈ|ãŽ{,Íp\=ó&&”ºZlð¶&VwYg£šºqP?|GÔR±ªˆF€G*+J_Ø󿳦Œ§Æ öaÛa< ¾8pá†W6¾8¿ƒm=rt0ãîœ'úÅŠ¬Ð…ŽÊ¸‰X6Ÿ‘õ¹#¥4Z+È]‘CQ?!ƉDÌ %% ÕâJë^W5O`÷ƒ‡ªƒƒÎ‡)Z?ã+R·àô™¦·œäô¢flœô2Ñóá­]-ÛήÏÖb)-µu:>¿~‘ðÅ.‘kFDok×n!×¶4 ðý!ßv¤à.wÏ÷ž¸ÒpUÃlÚÔ•–5ì¦k’ÚÐçjøB–AV ¯I”&Ë_)ÈÑóÅ:É;¯ìè¸áЧm~ak#\Xøm‡ˆún !l]ú #•G¡}ÌœW„UéÇÎÀòÛúîqV#ó#g­.§”å'ÄØ³µÓé`óŠÁEz#,?¯Wέ“ü»õ%Ñãzz5EÁj Ú Çsi™ fkH<Êæ¯'2)u7Á*ž£óñÇ/MÕ­rq–^Òrx¿º¶Q³µ®"åQ/O_à‰ÄìtÛL…Ñ Á–‡ko±þ–¬!Í`E>ßšÒéç×µ &K74„ue-ôü%ÈÒºFó§ ™,}©›ˆ±ÅQ±Nî˜h®ÓŽ%sÑçDHÀùe H”#UR!Pu£KYæWšhk ŠþñÓ݇ë#Fƒ€¤†Þáá¢6Qá#zw§[ÏØŒt®ýblAg…¯Xöþ½– Ïåá¨ÛîÈÌVýk•F p2ˆŽÀ~ŒæíÚ²™/Uø*1˜-µ‡SGE¥R?æuu:]‰ýÏ Ê ð˜Á)HÊ&U ­2–on Z]!7W¹”ušv5ûð!2”¼ö|r86I šJd.ˆÀÄ Iú¦&±ûú…ácq Èñ0Z‰nÅz6M›"Î×Wº CKOÕ÷Óû“Þø¢4P iéøQºÌMi±œ%ÇÆ¢Ó:›ãQ@YZsurveillance/data/salmHospitalized.RData0000644000176200001440000000726113554240046020121 0ustar liggesusers‹íœg”ņ§ºgvÉAE1ç,Н  ¢¢ A‚ ÎîŽËÂìÎ8»KA1€ˆˆ¢b@DÉ ŒˆœÆ"Ì T’Yá¾ßô£x×õ\=×sMŸóÒótWW}UõUjª·m‹NÇWëT- y!?Ç…<_?Þþq¡p¨ªÎuJ£ñâ–‰ÒdQY4^Ô/Vr~ƒ a"±d"¿»~ÔR<»4[Òü1ü¼þÞ  ÿÿð*ðª0\®׆wëà à½áýàƒàCá#ácàãááSáÓáfpsø\ø|ø"øb¸Ü î _çÃWÂ=àbø*¸ î_ _†‡Â7Á·À#áÑðx,|?<~ž OƒgÀ³à'à§áçàà…ðxœ†_ƒ×Àëàwà÷áàÏà ð×ðø[øø—€Ó¡€Óa8®ׂwwƒÀ áýàáCá#àcàFð‰ð)ðépS˜õšõšõšõšõšõšõšõšõ:fýŸfýŸfýŸfýŸfýŸfýŸfýŸÖÿ^V„¯LÅÌmQ뚦U )-‹¦Êä5{ M&HÓM•®’È+¥zÅ4 {5툮٠Íz óT{{PÎ5ól›Íå|'÷ìÄ0Â[ïg+¼§‘ÍŽln^ao4;vZ!9Í2VÆN³U'Fu§–è4;Åë´ uŠÓiôvK$Í"zr§Òwª1§QħøäMNã¬YCÚ÷"› ÚìÑf°ã$[IXk°b³NëÙ­õÙŒÒZiŠ|ÚÙVÑ7ð¼Í­•Lá·õȶªµ‘ØÞVlQúòb§™”Sïå4BºFR+l,ÉK\R*&ßeœz§´œFX7R:?ÈWH+RW5P¦ü¬G·YÅ ivÏæ÷pêÁÊÞF²^\3籞iy·°·ñ¬­àmò$ùYÔ•³™½±ù‡Øav÷ÆæY’âvÊ¿›ˆÍÍ\9uÕÖ|RjIþšJšM:­Xœ½UùŽ|åe²‘ìc|l>åj>ó0vM'ÏcÈÓ`ì·º³YÜ®/æùMø‚Gº ±!ŠY]ȇâp* 7ßÒŠÔ©®=­ÔÜ’|Äi•àä'N¾î4ƒqZåº ‚¼Y½;ÍŠÍtlvµ·•Æ2ÚÉ<®Í¤mتÖÞœÝE¬.&Ó^ÌÏlU²ˆ¼Úý›¨Ó9”‰ù­õ¤;‚zrõŸw­iKÇ’Ï[©³µ3÷ÛHíƒöâìmÂFÂ7 ê8´•6a+Ÿ%üO~¬ ÙŒ«þoån3t›…_‹Y[±^k4¶ÛŒÇÞ XÏ7’ûÖo¥>-ÏÖ®Ö‘Î,ÊÊf>æë›­{¢­¯úßÜLÞª׬,B?×CÛð§uøÓÝhåkåj#»µ‘®ü6[¯ÇVó£$€¯ ³Ûú¹ž1ÿ´¾äAêhå6“r²ëã÷$unoâ6Ã_†Ý›${Ceíloý­öf„Ÿ]Jy[_9{Ÿãü)y²¼/À>ó‹±ÄiurÊý|l4;ì­ï¥Øuõv eaö˜¯•`oa/%O}xæjòjáú£_Ûàî[¼6Ø[6ó£{)O«¯)äsúïò¹Œü'±ÃÞ.—ÃwS®IìêHùÚýöäm÷m•ÖF²Ù·a^…y†_Pd.V3¸•™f¸ŠS)‰Çìä®A¸ŒÛÕù}43··W2å)SsðjwöÈÙ#{dì‘=²GöÈÙ#{dì‘=²Çÿù°—9öº²’÷¹výï¾ïˆÆ£©b=RÍâ ÞÝe•UVYe•UVYý]ýóó”jåÉd,•—(/)ÈNV²Ê*«¬²Ê*«ÿUÿüd¥fI¬¨°»&+©î‰ó•«<­`ƒZ%iU’Î_HºV2‘,GËŠ%礢ù;÷âº:¯”æHÏHyÒER©Pê/=*Ý,%¥öÒ]Ò RTé5n””ª?[*“VIseÁ…¡PÄW¾êJŠ3gwi–ò£|å¤tž õ“ô|îbÛŸ UUØ*-¤ýuí<…›¤86Kã¥ãgZúX:Ui|*#U—ö ì²ý¼ÞÒýº¦ç½’lòºH%Rsi7IåéÖJS¤…â’~û²Çï¥ß_éÜVÚOÒ³þGJó9Iq„•ψ҈Œ–}{Úæ Ie”ÓQ’]9*ל¸4LZä7÷ ©¥Â]­kŠ#¢´"#—®…§K+¤C”ŽÒð{J‡Ê†‡dÛ|S–7•‹·/.²Nç³uþFúI¿O§~ìl{~¿ÕYñøè¬0~3é1ýþ…ººEzQÚª´»ÉžÕ²­¯tŒ¤p9ªÿ\ÕîÁRoÕÉ:_/]©{÷I*³Heod‰t­âIHk¤VÒú·Q®Ý‚ TîG·Hʳ7MzM2»”¶·t²ÔD:S:Z²½¦¶GSíÀ[.©.|«_qXõVa•KØìP]å´“’ä³9òçùrN‘4X.]¥<(¾*1Ie™»^jødÄÂ˧"ÏJòϰž O”^ªò•oªd{šmO¹Ây£¤!’|Þ»†vÔY²°GIÇJJ׫¯ðßë|™$ñÊ¥Öø¬Å9YZÏ©~õ%•{XöFŽ”NÒo+kå7"ß Ó9W’OG”VDa#J/¢º §8äÿá¡’üÁ—?ùòC_þä+_þa”½µí±Ò%²­y°o×­ ìtOIJ‹Ø“­|föÊ˯ÝA¹W`Û«mýšüÌ;‘:´}ÑÛtžßªŒ½×•¶õ?ÊŸ_E:W’ßø¤;d«z,ÿ3ÍNÕ·ÿ¹4O’ÏùªC žý9xÞëE9ž&Ù~åOð±›ØOn_©döÅ«¯s«É‡Ýï.Yž¯ òâ6IoKj™od—W›¾NýœSŸà6}§ù°S?ç¶Ó§œ%©-{ ¥NÒ)’â÷Ö~á«<|ù€¾TO×TfÞ6úÔž”O× ½Ìžñ¥¤gyèÏ^kù„}`ß!¸¡`?¿í¿>1¸îj±ùBöbï%Õf¯v!e§Ží¾íS·>ó¥[¿µ~F}§rðÞ“­£é åcžÚ€§¶å©_ôZ‘/óÛ/¥¹<7þJõäÅð…úÔÍë´Û¿˜2ßì½Î|o¡g2ß´eÿ¸ ŒoSä\êEm'³ßÜöý[?'¿qJËÕ§¬ÔÆ=û^bŒ4“~Dã‡w tÆÎúÌô‘ÛhŸ>m¶ö'ôÔGzc‚0îUú ´KNc‘S¿æÔ§»S(SûZÇö?®ßœÆžÌ·}ñ;õ™ïÔþœÆ3§>ß©ÎìC7|Û`>™O;<*ˆÓÚ•SÝd¾]y9Œ[Â|f|; QŸê웊$™žú4Oþï]Œ4NyݰßʾåÕƒ¶;œ²ì‚]¯ýõÛSmùÍ ê ³ÿÚ¾"¶½×²Åfÿô\É/Ž&+ù[*á¼¼„¬ÎÌœÂÿ}Æö«þÔ ï·äŠJv¦Ü§ƒª'S‰KËRE%…•VÅnGS…;çc*–:*þÇZ~'9JYYÁ?Ø¢³«„@¹ÔQ]³F!Úˆ»ŠÇ¶”I]=–/¾˜UŽÄÐvºY÷ÇCt·ö‡°,ÅP2ÿÝ)¸(^0mÖ(âHnŸ÷›z¥ÛY5_)ÖVH¡ü^bÀІ†$AjƒŸMJ0'/Ž‹½~méB^‚¥|pš/[EÇUÝ@å·²\Gàý™ÂÂ’ÝIÚÞúøÑ¥§vo¹â>TE/&?´•_ Ú !îvà…@¶H¥ùdw =U¢jÎK. ߈|¾0=²øÆÙ5é‘O|Fag¿­|5PÌø‡Û~]ð RgÔ "ø.ì¼xŸᑬDSH£@‹²–{R9Kœ·±¢Dñs¼éé7µ½áPuZ#ŒÉJ(b/«áËèÑ›%}K;JÙ·²‚^cÂ÷cä!nƒš)ãømßJîG#J~5Rë)&&N¸E+;mlѾ0»¢hcø˜^»¤a挻Âd>T–ÄñPBi¢?ZRá!¤jPvã;[NY1»œº³Ö€š©M¤AVqé2¸À•ª÷æK÷ùEÞù›ó”â×T”b•¶ká ²Ó«4(†Ø2O²eÓ“d>ãpoÙ÷,Å>Zt¿þà]£:9ÝYGë"b<Ò²QÑ´£_TNÀãvF„ô @6²3nRÅópt–~ OÌO{顎†Óцbnç÷È«ä`»‹‰—ÓCày»éßÀøÁKߘŸF…©D­ð®*6&'OUþÍýLjœþÓW“%çÁÙêwcÉË­Ti%º°kqñÃëŠÃ7"× Qsz„%Ì· (lzmËP ý¯† ±$×î%?Hg¼Ð¯‹‡DK O ’A%÷HÑlÅçjuµÅ±2G¶¬š×¡NrÚ áo9˜ZClªq›Êq—ìÁIˆ*αº@]øëX‰þ俼„OÂÄù+éQáÐz£ÕÇm]0l…Ö´ì4 Öþq³töQaV‚8cÒ±ÈRêêÑbM’¼Ê;ã=EG±Ô Øk1Ë”moQÄy½ÀFjŠÑ§ÈÚj¡í%®xƒØÁ8p-Šöi¼e;¡ÐQœ=U[ló ° ƒ¥~~¼Yr„CÓU¨޽t4o9¹;¨ûeû…&&9ã¡cá£ØÚ£5>•9Ñø¿éÍwšöV¯ëlh`_R\âKÇd þN‡ygÌFnž‘¼±©²”‡ÑúÙO£’tÄ !gÀEŸß'se°kÁt¼ YôMg¾×ÂÊ#6Íâ¹:kRòSuGõ>­óÆ!œW»ˆ\6j“O¤^ß‘mƒ×8„fµû¦×_ö‰T 3BššS˜ò„åúï±Û‹4H¡á€ ì5B!ú‘õ1¤|ŽÓ"˜iâ¢3p­ ˜.ðPó &­ýŽv;ì ¬ï„Æ4ž*iµéX\³øßCô¥žSÖÚ5‰Ž¤ÒM ¥u”þÏ9†G€Á¸Ù^Àü±¸ŒKIbû(ÇÐñç*Øãˆ§IËÜXê¬ÄÑLúãsGwy‘*O® 1壞I†‘&ìÌ73Œo6ÒÜÀ„¬:y×å·‹M–çþrÔ1Fða€+¡v´^WŽo~A‚ë-ø†`¯|øÛdÅ÷˜M@ƒÊjµ’,¸¯÷‡…YÌyà–9ÉP.+ÀI«ŸBÊjÿm!Ÿ? œ4Ï…:m!'PB]«”úö³þíÚho!ë5s„e›*%]Öí¹=vY±§MåÉØ÷¾wPÅ3ö൙tÈ øüYŽq*µ½u@ë â ­+÷¬Þ\î#sDR$GE¤­Ísâe5ÿ ¥¡_âP’¡%d®´gï0k™çtwl›‚¯Æ­Ô1ÏYkŽ ó´Øï(ÛB}˜ ›©AÁ[9~ühF EfPƒ¾«J~èJdÃôaøFCûØ1¶°ã(Šà¾ìçÛVb{æó ÝñÄ» ÌF?:Ó,Ññƒš¢x ü,„;¨å&½ç\ØÐ·ÂŒ ^>Ù?ó˜”0VEÏß; :¾Cx SêêÓ^Àë”GM¨·ÁèALL®E‰Ë¦kžšt™Ô¥a‚¹%âÏAç´’DëésF±¾÷¶Ú ¼wXæÙò¹½Z`Ãû4¡ZkÙ_k¨qjr‘;›ÑO,=¾ÔQšçiVv)RB¢×î‚.ÄŠ¶gyWífÏ"Æö _W*œw6¥l=ŸÝc‡Õ9$sŸ FmQÌéMcS|«ãÉOÉ0kÜÁí/÷š{—™Õ÷Fš˜ð?ÿ îý=Jï¿*£þ0?`ƒ¦'ö$†ü[¹‰üχìwµ-Œ ‹w›hS´½·ðþ}ËÒH¿=5ñ¾••Awœ_éž‚¬‚GBf ²`’ff€¢©jÁãqe4¨ cæ×›mp±„ J¦+ù'è¿èh—ÏGVªêtw:[Zc´­zn&èß$ ¦lµåJýôaæô”¤_µc½7ì~®1Û£êÅó YÑViØï†ìîÅ­m*Ö…[êe–Œ¢4c› uèÏß]â“ú‰Y\wþ…‘µÁÙ°+³µ¤•ž¿NP‰Î|fï% g­¯Êfʼå‚Ûn:#ÇÒ½ÅÿÊä¿â¥€;ÛØYqåŸG¥Bú1DÂQÁ¼vz•©¼ÛåÄŸ]0ÀnR¾“ú3¼ÑBͯ5¡e‚Âõp¾%L å¶+÷2È®éZËÛ¶©lú¼ù:Ï«HAæ=¢‡ÖÄkRô*ìg…¤è§Íó³&›‘!ÈØáò:[ô‹“г/.qíš Ââ>=·ò15˜å/ŽEýCõ¶>11yOÚ0s.C÷ŠÖh®zlqª°—sìIÕŠ€˜œk þƒE>”^›$‘é‚ÐCôÃá/Xâ9ؽ‰Aõ¶(Ì[è¬×`ƒ­ç¾ØøzÙüù -Ýÿšsh_fw/ëQñPSÕ¡[µbÞÇ_ðOšn%, ñÆíÕú¹œ•!0(×xJ}Z"_àAvÄdÿ‡"ëÖ £.°a¤TEh}}ÐS­]¢ŒÐ‚”®T‰w~‹zà ÙcvmˆÛwOò8CªJé§2SeàG|!3˜ï\+™„`MÎ?=R-d±xÁT…¡Öû®Bf» ~à߯4©)£­ðGŸ( KÙ_!eî¼Æ‰±[s-<:¯¦ö(uè>b­§ì ÔKšç䲚µ1ýF¿©n“g·vÒe²Ì({vVÏS±ïMÜÒaJ'CYżU—}ðDÜøâ1*üñ;:½¸üÔα8 B”BcÏD‚•%¡ÒÐà:À£Å{Ëhò´&Í·dœ¥œ?éÉ(CÆc/@Ç& §†lG* àÏ =-(ÕèGúÛ8©Å¦ …;áh {„Ü ÔN,²ãAî”=Ôõ”ìÞÛX±õsB[^ÊÀéßXú4ª·¬2 ¿Úb$:iÖe[Œœ×÷V†ÛÅp(w–D B/ÛÏþƒ£òS†bœs«„¼¤gÕM©¤&Õ7Ÿp êpâÀm¶}@5èhpÕ)¤’ÿ©ý }ˆôs–ÿ»M¤£lýMâ´Kdø&ˆ\Â)£ñ|Åÿ ßÛšátáž{k‹Ö]†ñÃÔ`WލlØN96E†¥¼E ‡–‡'5…îHjæ}*v …ËæA»;-Ðn}Sh¶-``ÄŵL_›àONGœe"wözíŽ ÕeÜ©‚ÇÈ·Ôâ*J1Ì ‹­ÿçß4‰1‹ÉðÂĶZPƒMBe¾°‡:Sôá!zAWý:˜j岈h6ò޽µÔÀîºêh”_àQ5ëÓú 1J^Æî»S ãª8ùw‚î¼–âË2|&ú¹’Ňž|K¤"ϲA²&¼w×Ò:¿æå3 1ôöæã¤SVÓõ´Ÿÿg£¡g1Ô;ký[á#=˜‹oÀV_â¥úø–%Ý} kò>r‘Í¿q‚˜®#‹ ”_=Æ‘â6Æ'Ó1MÓVcèp_Nb†ÒUK6»öOHÍç%^7åvq«Fìy‚E¡â>ܓ̪XT•¡Q#HÄÞ¥=ƒS… Ì äØ·ß,oWHãömn¯8›@#š {HEiÜÕOדWÇ7öÃÇ}g)B9iˆ»âSQƒHÈ W ¼Do`Ó :¢=>Š¢RåDß¼Mþ©Ž·äúM+©±$RÃÒ!©™snK=WÍ·ÝÑš}¥Û•†ÓaxgŽ˜¥)g¯Ó»ß> k©À¤ä)‹M‹}óh,:¬B3÷SÂ@\v‚ޝõï«?øˆ¨Ì—Ó;ÀðŒ–­"uš9#”=—&»¤²ñ§õ)¯çGÆ?Š˜%ëp—tRƒBÁ"7\)’`Êà§ )T¶^xºqó»ÒdþïG6Û,3ùrF˸€\”±%Ø×¤‰c1~…b1莋+°< ®4|ʃ}Ïœr[¶â1ÃÑY.Õ) Ôâ‹Êq‰ÂÊ凜K"°zfpðd›g¼YÓÚc'é¾M'ÀÒmù ƈð¨kÞ:Gäûy­˜gðq¸!Ãz¼£Éµ@D‹ÖËä1_*rȸ:X‰.åvpÈ_‚\nõ¦Òì§G La €"Ùÿý(þÖ€Úø¹Ä£µ;TkE?ÒOLQCHCCÌ@s³Ú ~T]ûŒ‚2²ó·‚œ*·æÆ[?Çǧ/?(…pHppìø•@†h  sé¬ýO†î1M¾n³`ˆ!-fh— óM2™š{ô®ÆáÂÃz_F~èv¤+ú[¦-AÌÀM¯ùmÂÛûÒ äïO'å¢Ü•ÒFkÜ-ºÅü@6Ì£–žg™Ñï'ú‡ª¥Gb­ƒÉ’Âm÷V\b³Q‹6HLònÕø«™×9ê­_¶÷v ,¹ïAñÀö*K63{ Œ–aJè½øßRøZ™4%îJ!ct Sy¿J~Þ.¿oBœ@ë°ï\«å}턊¦ª2É01Ôú•£ÊÅðGn\¸ ºoýÁ˜1qzÀ…GÚLH aã˜ÖË;}xgÆ~C⛌A/í¦¢[¢Ï ŒŽZß4åI„Lny>fÀ­Qì FË Q–¨Ê0ÃQHCÄnÑ‹¸o- JñæFQ¦§ þ¹ÅñÁR;§ ‘Ýšh …ˆ”žq ØZy ¼å÷\Œv@u<ÂDÈàä«(‰RÁû¹þi¤„þ»À¢ÌoÿJal‰H Vnk~íÝäãäæë{éî’õuÔ¬ÿùž°Úÿ¢ €×~a¸î°¶6OÁ ª>,±—Ç82 5k®>æW Ò5çÝbµpsNý½ÁýœÌjõ•p$¬¥CA¢¯I )&h9*¢]ªðªÃÉ 'ûâ-@²bÓE>Q ‚ ?"5|Ñ|àdúu§F‹õníãNe]0Çñ•EvìVnaŒä ˆãþ˜•&+\v™»2-b¾çs¿Ö%¯®}kªyÁ“Äõ~Û<ÿ­û©hh =GÛ ¦*K9\ÝÏ.]©?¸óÖbËÑ_¦µ}À;×yŸ´©©RKŸ©Š'Ä=ù`T_°:Kg¤µÉ'SÐ zLoUñ®Y¤3 §bÆÞɰiïî'ÌèP$M„žŸ¡0°#X;ŠùoÙ* UZeO耎±tÍ` ßwkTc&›4AX÷'}º}v{ž‚‡þ»íuʼn~Ä*›;Îŧ÷ËŒçÙ#–¢s»¹Ã’p´k!ýw)€I þxîçz]›=ýÓ±Í[ë§~ê.Å2€o2 >?ÿ™êzJ'TÞùÆÖ½ ÔU¿?`ü¨XT'­9̨¤ªì93~}\ IB E’ÿ/&r;¹–!z9éÃ~<œÑCo+¬7ÓÙr<Õ­Oo|¹Æû{˜ Ù¬1T¼gÑe•âa¶.>¬p¨ä7Ò9 7pVjåI¸Gwwe½$/zx£úN1ŒM~\$N‹iÉÔ¼5ë Í ‘^ÿ:Â&2ñ£BI¯º¡šš\gˆûmǸñŠB+Ùì¸Að¶²ô4š€:Ï-ÜêÛ,DLßÜ;Ìmµ–é_†÷Oé w¦šæ8ûÌŽdx•qÜLª¿ëç\GÙM•.Ú7•€µkº±ˆ¾ãŽ"Ä5µ‹µq•R]/ `uôÁÅ{ùó¹ò„ù§ZHt>ýƒ^Ù`Hõ¸üôð”7ÂòNï8±™ [½Ü.aã§4¹|çOƒ Æ{¼ûG0oéâ z¢b‡Æl²¼(¨/»»íy)Ì ïìƒ1©¶¶G3§>29wÿ¤°E»”—ÆWü§”ãð¿Æ%Äs@Ïøñ°%ãŠýЖ8C'¹ŽÚfàô *Ö?Ó`sèYÔõ®¡›Ÿ‹˜ºgVh›ptå„•Àè(œ´øeRD5(fuαç&#¨ø‹ÙõÖ Õ1‘‘Jåt½DS—åÆÈ6¨ûÎùÚ‚ú¡lˆ!L<àÎdT+ܨrPê8̽Ù芭—-ÿ.뚺α'\Y†éfRX¾év¬Yäå[ùÇÚ­üûR+tÍ[ BùÝS=ø!å¯t9W¨KØHuæ´zzï‚ý“‡BGÑ1 ™HC‘?”z#âê!UU½ç­Þ?Éc³â·‡çk,Z\ ½ôèæ·Ü>—ûQw³‚úÔM…¼ýÇ|ŽGS Mv&öë<¼>w:Úpn šN|Œ|ñ3U6á!Úârù™"Gmúµ,äºCæ+u+’×dµÒˆÎÛÉàGÙøJÙAòÖ¯z BѾƆÂ×r¬OF%vR‡ŸŸXWÈXåb-¼y3µc†.3“ªbè·{83~ÌhÈщëè°Àn5-Öt|³¤|¡~Žj=] àZ–h‚5“ŠšH Þ´¬xƒÙH)žY«‘³‹"ÝOÅôx¹˜W=A‰Ý ":\=´?y ŒØPQ zúûwnË ëiëeYyƒ„£·:iù¶¬÷’¯À97âq!u¼Økû„Õø‹§&sÅ7i‚¨*¿v˦½ÁŸ3æR³êºOzU·;8ó6õðÉøQ€=]2Ð8Š‚¯ï³Á{­ÉMŠÍñJ×—óÈâVyÆë{#;ÀÚ0”;‡Užßïþб‚»Ê!RÝJø”8¯}ܤ1ˆ8\¿o–ø¼ßz>Áó'v¿òP°%lÂ÷zºÆ,QÙîM˜ÃÛµÛå ú8]KÑùËQ”-–M®–½ª`råÜÍÊï‰Ãæ¤ÐŸ§ßÅéÁN°2à¯ds‡ÞiÄ~sÿÖÇpîãä(ÒDVHú‚ O.r½ãšâšË̬šRøÃÍ\5‘½¯~[04KŽYT{T8Ô¯8 ŽöF…@;a¿«Ëé><]~¥Õô³9—5©ç$•(Šá²ÓŽN«›?Ý‚pñÉÁµßÉáQôV3ÀÖÆŸþ¸pU•ÂN‘ðÅ2yš…\ˆB€ó^ooäÒj'ƒ‡S=ªZ!p¥c#£Æºk£‚Äöâ{ÉÄo¡§d˜Ì]JBcpMψñ= ®Šn/ÍE°µ—×KrîÒrp‰.ƒÍbà*+à cÔºŽ°4ƒ.B­PÆsƒ%f…QN}pïÏX:Åq<ŸC9RßÜa“/ù¬äŽ|#ø[”€C‹°ÛR¶NFg)ð–Ò ”Ê…†ß^I•˜Q[“8PsVaÍ+ ýˆ–®“D d]ÆÈUz½³‚ Íý±ïQ¸ÓGÒm¤…KÎ4l(ûSö¡AüV°?”u&<Ù>‹"6)Õ—e˜mŪƒeãNËEïË ÕÂÛL8;8÷”ø@<-½è/#X.§>2&þËò²§€|®«lmF'IŸÞ*”×Ääy:æD*wô¹UX q-4·Ëò Êé…Uª©ÑÄ£`™'OG!P±’\è`Kv]²Ü[D:ã˜JÚ¢^aWžxQsYM^z“™M›ã÷C'÷jhy*ÎØ ²~Cž$Ýx]ìÍj@W±Ý+̲ک‚÷˜óõÓ^ü¦ëØØ`Fý-K3ꞣ°½|e¡m~VÕŒ+7{D檛¹v9 ¼ñƒ|i¼µDJQݰ¶qv3©vŸõ£A (8n‘â¤> ªeWMp ÿsBÆô`ÐÅuHõï[Õ<ü8Ò% ‚7Y*r›jÏÈ}eCÅÂçÿXj[ƽ ¿· ;þØp2˜È °yœ Ûe-û ësî•€‰¢…õƒœôí+¼ËH’z*ÇiŠrÞ’sÆ,©lß–VÑna×ËÐ_…ÐÞÜ œŽ…>]ò.hÚ¨Þ+¨¡§[!þÑÍ;ù€“°ëF¨ ¹>7™…ær.L/sFšVŠegâ}„ÝÙÏë šop± h»B6ÅÉ…:ÓuÂ=ó,„¼^5H dd3©“ëAT;ˆ4‘ ÀÁzð˺+P×ÎluËú›}M›Å~=­ªE»Zâa<©3]›«ö‘ücï0“[¤1¹5[¹H8=Œûµ[_·DuRÆöSÖžN€Îû\@ðt´þäî—ó±< Ôâb–ÞñjGïˆ*b€£âöåRÇ‹<æœÿ‹¨ü+åܰí|õŠV;{;Jei#ÕàÉIš9Þãšê´¨Rüßö×û1ÁT—‹XÖ+CÎî‘íƒÝîSÈ@Ê šꮉQ—ø:Š‘§¥†¾ö:Ö¡$0G¨Ä†åïûf 𩥯$Ûúz–÷»\U*ª\¢Ð쩳]W|bFÚÙÝRøÞÇíÀ‚¯(míSXê®Põ©˜ ÷ü­Å®Rg›íÿ°K§Kû|8Э»nœº|µ±+ãlÇ_e/TŠ&½•›æ@Z úf":#×±;)jLò—í¸€vÁ"V˜œøDZ×0 þÀºQŽ]ÕWûDÁ…#jt Ra®¹ì%ï%³ šoåÁg¯øyâ`k4)L[«ì:©iD}JÂÁGp¹•ãÌýŽW5fgØÒ©//©t»MÆ4üoCf=xØêž.Bí#”,¹ê2íëo·U|µˆé¥ü´ï¾ªYªs°Z'*Á5×|CœC¦Âªl˜#zügr±?ˆw“GD¨4Rˆ¡B÷Ø;´×ÛµRŸ3è¥n‚g¤ÖÇR i/8R\|®ô$æiØØ²rA䑨}߉J©>O¡î»¶Ë] Íìº ”͓ǡ–€1èi,Ò}è0T"r1¢HtXe¢¹QLãR?¾Ð„ØNG,ʽ ¤+:þÓa>8/Y³µ±R@¤‹éÈn²§NY%/áÝ®sŽó¼OvZ)š¤W2ÚÑÊ2ôÓä›û#¡âj¯òëíH€VW¶÷SÅ´¤°§[xSµÛ”•u7ö"\fk.Ž·úSÿz#ÛÔoRÐêÍÚkË,GN€û2j?dÉÙrŽýLaI7h&Y6ñyŒD¤V9 sl ¡±¯#n~³kæËÃàkÏšõé`>—È€þ:lã+¤®Úï`JWdÇ$í¡þÌæ~Pu?1E™ñòìýà@*ß 5J€ˆÓ"{nœµ¯òƒFIMŒaé/-(ØÁµ5(¿0Þ‡Ÿ~<Û(ëÑVÙ\N.ª¦«áw!ž¶? *«8,?ÓJm¿Tm6Td 6V¨Bžµ¸.†k_ºPÄ«eÇ©Ü2sBùôÀÖN½&lªÀØ„íx 1ˆÚ\Mø<+$VÖñNÛmpLóYiÔªà‹«ƒQOpáwl!Ù6tU BvãQëÊ~Ô~ú'Œà·èñeÃyÕi-{ºŒ ^ {´Ž“ÀÞ¯XÊcX ¡ÿ *ßý|8,6±-7VH,Š­©½kb Qà <1¤»ƒðŸ¢¢¾ ÄàýÐ&õ­ï&¥õSz·Yug³ºEMý9û!Öñï?¹¼á+iŽ« ë¬Úþϳ8k#\´´»ë3¤D4Ô E(hŒ8H°TPpÐïtãæ| #›×l]ªÃ„»E6Xš¼ '¬vt°+ÚpÉ>Òì5d“p:›}¿y'”Òºv„ËOº‡m ÊäWÌIÓ#èœAI”*§•1-qêytƒÑ¨øu2Z·Rú;"|ì|±Ý'¦Y}¬_´¶]übÖ^ëiºa³£ýÿòZw_ ï˜Â‹3DxÚÍèËÝ­Ï4Kº42׿‹–]fizÕ_‚ñ¾Æwï"H @dQ(Máæ(l(gÎ/·sÆûþñýcÇ€Åüß E%öÐ…N·`Úÿz3|–ø¡GM¹^ì H˜ºM@b)òÐBS¨‰ˆ±Æ¬åáÔ áy3™¾š£mWÕUP¹|™^°)7ƒøHí˜óª¶ºª¢f”«dˆ47‘?èpe%“.VPe°#½Î(qÛë{œDà5=uA$šÙ éRñò¥7Å}”†÷uϯ„ßû5‚G¹=ß©{#dŽâ³Ñ€-Áh¸NGÞg¬(¼w—7κ¦º¡g¿´AGµr£ÂÅÔó{6hà£?/`´ÃßL9½uýØ£å]hdó~Í/}̃yMÜÃr ±«‰ÐBW»Ü>æžJµ£Ïö îv=0…9qài¹ürK#aøk?Ó»ÈýRÃ%‹éø¢:_Dªê¾j4ÚӰ΄F2¶ F&ÅgÒ’ty’n––C¬>È.”þ[ù®„šQDg½ëdžFéñ—pñû¸yü…&æâý'Æs;@bê!Ö-Ñý]˜"@öuŠþ'8ºµ7ã™ÁE—NTÀ-¥ÜYQ­ß¬*‚¯_À?g<7|%JªT¶°gXóä;à®¶Å ^½!ÑÈ_ Öa,zœ_ÞÀ‘­^XÌŒ®ARtÇÃëÿÚŸ;/)–"ÒXY£›ðJlkU¤%šÏ‘ÿ-Ó~± gœd*ׂ]³»KwiJ¥É/œ]š€Ìå ÜÁµ‰æ®ôÒöÌ,©€Þ¡Ï –5P}L:R¥½9ö%`)½S©;ç“Z)Ò½…ÉÅ_TÖAã =xf Æ( ŸÅ”«B›)Â|JqÒõþð‹KÓ;,&íðË ‡¹ÙªÂGçgª€Nçœ ìò1ß|ŸåLù'8³ áx»qÚ>k-Å/þ­¨Ö›O/J`6#¹?¥ºW³âÆ%d®“PMS(/š Dø‘µo^r¸~ >t¨çÊ.î¿*¯îhÁ³óاPågq”xÕ+3„DáÄ#ÜaÉû€øÛVÛcêä§LÖ&†•>r·w=®¤üO±ItCŸþ⼟÷ bñ°†ršð"ê"=dÐFšéuµÐãÅxŒÅ φåQƒÔ×)Áp<€‰8j%´&ÑÜ8[•¬0yòÏJ’š%o"eK‰eFbºÿ{‚`p AhaÞL¼Z’ ¾tfœ5XÜšŸ™rçxÃÓÜ̘RŽ3Àƒµ§á{ ­Œk#U–/3g`),?¸«»Z«Ïd Üé–Ÿ2g‰m{ ˜‚òû×±ºvv¹Àãvp@3ÞCd.¸²‡Íò &&1x ó›k§ Ò½—<ƒO‡÷w’ão0 qŠ!¤ú«[' ÝYÔAüb„ÖpE¿à|gï¶âMçºwÃ<Ò‰k>-™dÑhiÚÃw¨¤»™ÐKê«É^Ç“Ý9Ú–ä qHJø‚T{Ô‘U%鎸 ¹ˆ Ž&°;_éK éG{u¿(¡ãYmr³&S!¼1¥1Ð\ÂRFæ,Þ“:ÈMÂuŸ}·#z`~îÖƒ:þF„Ø «å`¥Þe©KQ})>Š®GJ eî0Þçd5Eéøuð-ÐøWмS[¢€c¢¶ŸØ©Iè©JÆ]ºS5Ý4®Á¶9&#-Ç crK\Z^aûu}çΪ©§Æ†dd´§iª=ÓÂÙksa9?­šZµ%P„òixßÐ,Æ‚**'iåâL êvF)C²IØ¡ŠÅNŠ[DVå±ý >PèDÚ ;#ñOM).[ZÝØèQKCo†#b)«‚OŠÎ(1Á¼ñ(íþØ Fo«Úcñ4¾máyUoÞËe®,Ž&÷2… ±±nÔ’Wð1Á!#æõÕžLSÅú÷xKFÖêJ¢…”Öå`i M]I€zBžN w¢ÅÊì_tß^Èw«ò0I°©W ¤–ìw™¶ÉY\µQ8TAó°Cµ‹Á &ÖTܒص9KCZ›=P†’x'VÚÇàä ¾öéG¹¶.·x ù ô»»énO¬}Utˆ4ªÓqçÿzüÄ÷Šè=gW{N[ÿ9¹ëòïŠÊ¿­žÉPõ%îò.Bùa^%.Ëɬ´Õ+Qšæߎá¤&P tGlH|—Ë…¦ÆÏ&öÖQ¬ãÐÚDåþp¬GA;aŒ6V³ÜôóÔ˜Ž—ýˆ#”;ª'ú¥™ïdBHÁ,$NÀïÿtËê˜;'0²„Îb¨+½má¹Ñ뤷€ëP¦o,.‹ØÂqC7€E“SÛ9\¼æÃÎy)È'7ØxežW-Ù£- ¼.øì;,ÊØÕã1£”‡õ÷Ñ{Þ@¨œR>Àp.‹4&Û“z"•? ßZÖ9&F‹ò¨¯–Ìüy;Ä ‰ŽÒ*^—ŽÆ)—6Çù0ÙR®‘Å91ÝÜöè:7C¸&³wÁ‹µû|¦Œó5»%NX-›¾c§%÷­¤I¿•z¾ŽRcÕéueuIôb.2:Ãþr€hŒD áûHp©®˜ÏòÕoFª2⨾€¤ñ¨üS¢ù‰Xø9ܾimaG#viá}*^¿Ð퀔&!>÷’3âÈOä07ÿŽQnh@Ã{L€ýy÷Ã=oäƒßYœY‘|ΉÌ~ä×ám¸#±›„Q ¡ki|þÐþÆ2ל¤•ù…ëB…Ê ^Ä’êô DöàÉm1­%bw4z}{ÁÅkCޏÌ'ÝoWk&}0™ñ1eÌfˆ©‡Âvhéï0¼¥ÇðÞQˆ%FhAQ m´F®ïÈ„d*p’‚bêmãî¯A\&†6ðQv­S!èjV¨ÁKWà~5ˆ<W70€—Ç‚XDí.Cœÿ'ÑžÕ.ºÛ^÷[ö vªoÒR=ä*¼ ½’zärƒ¸ûdü¬O5B,цµ²šÜ¡í£ïžuÀ(¸]ÜÆÙ°õÄÄÃÚçÔÐæ4ah’\²ñ!~.”S’™÷ßé;_2 „ƒ ´L£‘È»ƒQ¢_x·Hò:Dƒ²1'Öžóúìˆ7»Ôóõßsß2ûÉrmå"JÚ)à©åø˜>€Ÿ·´c¹¤'¸Ç¶˜Cuë  K›š\ °†Âò]‹ûUyKlÝ_ §„¯á%ÆËð<4°,dU³¨ŸH~ó5Š-+lÒÝü1Tâ©GçÔ Ó‰X~|v“0šO…F8ŒCžç¥ó–{rAYž÷.7 :”RŠÿÓÇ-$xëß¾ÉT€”Ý87ƒ®´Ïû½˜×µÛ3vÚ•PеItv_ß±Â%ð,SD}稶!ºÞJ;’ð>˜Áˆ4÷FIꮜâ6tî›.}ä{fFG² Äó'µ†:ÿ˜¼m&Hr¥æÝ%P ëqË\­õ^‹Ke…Ž nØxõ9 e«‚»~äç²~=?J6äf1Â7ˆÖh‚¯ˆ1\'æu†¡Y"òç8ÛéÊ?´"Kˤ³ü$dùÜôtYiÖ€¦¤ÕF ûa¢[·™]H˜-N™Hqó8@®ö=ÒcUœýܺýshŠéÆä·@9œªØGÏ"7Ðç\NêD¨ó+…Þîð(¿ µÈ8à„ötû©<‘$–§éWÖU½ “嶇(›%½qft¹3àœO–(#Ä«‹’ÏW/Žÿ·vvok.ê0g€Ä"Ùk­ìõÊ-­ÿ®J^¢ë]…ÿñ‚Æ œ#¢f7.úÛÈÚH¿Á°KQø¡Ì 7õ2Õ>¿kÑŽ.ÿëÞËÛ¸ùvþ£“ûÒ‹°G?>Ö›"Kk¦#ÄÜ-ÓId1ãêÕì õØ«“)…“ĉSF5Ô¬sÈYú³ùHîÚ;nÕ” ìæÿ¯³å£¾N;œŽðÎÇO!†ær0þKf¨Î»í^Sf˜–Öøâ¼­Ï§wÿæòÝš6´Û¸”s“•²"6’àa³xjÖ‡u%¹ v2|n«¦u©å×.4- õÂgWËLÿââ5{.£7Î í ü-'÷ÞÊŽ}{'VÞ…®xD§F§¬±UŠÁ' ¦ñéxX -î,¤§3/ìûñpN3( :ŽùVå¶µ—·–¾)HËœ¯3ÃèëUA# ûw¦VÝä¡€³Rö\ø†7í+IX£±ý%ŠÃƒâJÌã0w¾&ÔäRÔ_YØnÙ:* áUB·JƆ <«f¯ëYÜÅI9ůŽÞ<™|Šòq §s¼–X²CƒŸ³€Þ…ï*˜ÔéòWRDLù\L†%ÒFTRìÚ&…˜ê´¬Ü+{)¿ÓúÊ/·Ù¹†S¬F/h¢$bbX±;à{K%÷= RS†{ ¯äã'wZC„ì)Þe¢ò^g׋âtêD˜ß„3»y*G<"’×ÓåèÅK †ÿÖaØrrrü¨ŽçËpÆ£7Hrs=±“O„˜7§·Ï‰{×B1Ä‚›L+Ù©×+ªžù¥™ºw ÒÙ•Lg›fÔKÁþU9ÉBÓ|¢:9û„ûõ¹Ý¹¨3°Ó9 ®ý»’bÏÏOoE³ÆlÓ'††ÈMC—ÕªŒ‡ˆ.(°Ûêâü‡Z(}hÇÑ; ¿Ð^L…™3/7Vñ¦1°\$•Išë7l­{¼':“‹ú–þ;¼Mèè°^*EC;2:7û~³'tIº¬ãIkd:sˆse‚˜²½ŒT$TqCL¶@ ÷M¨2^+‚Ã_‹U°™isd‰ÿ¹NеMò`…Gf;ªœÅIt©AÀ‰³÷ú=É/ïXç}ϼÛéåf=ƒr[z ’ ˜=m9Þל&]L µ¤ýêboóL§vkÝy$ÎqEÈ@ÛÀª'³Än9МV^pqb³ª‰”ê`Q­§Ä2E$:“í#aÃBDèú±®Teå ¸á7‘êPÁ²¤èÆg,Ø8Ps›‹Â¢€fqÜgM(<Å&“ïÍÒA0N$q˜r4VÿøuUGgÆïƒúuA[ÖðΉå†É@µò±ù–G­‘c*´q[`h°›€L×¥*qT4>§¹¥LsÀG5Ä*.¹/v;†V¶@ÄEíZ°auݾCI[g›Ð¡ ŒBîìòÿW¬´<%4ž$.-ivMæmùÉðÕ<Õü«BS†Ý’f T~Û‘®Ù³cÄ£HêõFxޤù§Î0«•׌Ãë¥ümØøÑÇ7§5="B²ƒêË©:ÉŠŸã ¡X+—µ2ˬóÓ3™8,~ Rþ?C™¸T¾ÀG¬Ç#¾eÕ÷8f ÑrÂâhâåþþ¶±3šf¬$ÒßÄj©3áÁÏ\èjÙª=GI'£Ù—"wGÉ (h-|"šùðç?Í yñ=ÏÄÅ͈è\Ì¢ýô ­ãl6šà:ºÏ?Š¡üã÷‹&Ü›×lÎk˜c*¶b²²w¹¼-ýŒbÑ„-údhÏr+v„ӣƢ—CÚ?'PŸ{Þoz é¹ò’UbÃ6ùëi&“š·RÖMÅ‚ãoîK¡Ç£gã¸| ;³¬ËíÒÈ"£ž­ýWR’ôêÐPH¡?2¾ö"$_oš´?Äp­gð«ÎÓ§¥e¸î¸ŒÚp¸yÅlÅ Âr[ÁÜg»$=˯ÛÞ¨B6µôçÞ;VöTV÷õÈ™ÊÐ>¢ZuË—}.ë-Š_UçJO‹ÇDÏÎ;_¿ ë«× TyŸÚö_>:£˜,‡È­MÓE W¹RTZª5¶p,ø½ ÐÕwv/}‹–5’þnõÜMw[z>_É„’óáÍ—óùÛæT¿žÈ}Ût€?àlk+¾êýŠ1Syx‡“€áì8 ¸S„PûŠû÷2xƒÅ#âìaÊÀûi?|Ÿ©m q}c:ÓÓgÿÓx|µzŠužu Ë&Ä8ú­ÖeL®ÜíË ¤o·} ¢ñ²¾8Mý¢ï5iá½j¹¨T/dƒI¼$DÕÄ-‹Ó ýŠSn`\a7.ýŒýu—E‚€¤~Åÿþ?ÒWÄ<ó>•=>ì㺌×ÿКډ×Z}_¨ŠÁ ù®6“ú¿÷ iŸû€}…¯óþTRŒáž'Õýnïá •å9€€%L"¡­M·µRdDð—žèýí—È_²|åBakQs¾ùsD=@á6¹‘YºÛ‰Úëä§Ec?ïÀ ÁxB«êߊÆuKÞí‡Í Qx£A6¹n ãóÉI9²¨œz×fü‰w,UuO" Êd-VvÓ3fS¾å7_¼9g<Ç€m ¦ ¦d…®ML äRÑ àÄ ‹]ÏÛ;jiãG‰ëcCÝEN=ØÜƒ÷Gy–çwüÃì†Óº²â«’,ìÎi1?f~.‡OZÁh ‘“µ×ò&XØzHí—ÝØAù®ßZwòbéPã’¦üoøðQ–ž/¤›êþçH:ш rœ†oáT|°ÃÁË?ÓØâGöK©Ö¥m’Š+…þÉ :‡W§ñ<¤Ô$Ø^çcMpWøÈ‰eôΑzp<ØBÝ‘:3Ÿ«‚raºèù¢c˜C¼£’ð8ò®5J…9Ž€T$|£’ß“ØÚ{žûc¿v¿'c¨M'-ž©d}ääM‚Ž}<º^hNE]‹élL$—aa 0ÍSåÓ!>öëaŒ·‡¤õïäåŸdo4b/;Xņ±¿æ•r ðUíüq«¶ô! Ì:îóüÌÐ,‰œ;{ÐÙ<ÕŸ}†ÿ[dº`ïéSüºñÛ®ÅZôjý1ÊãÜŒ”9ÔJŠD~{¹µš"yÀ\¡?MÚ~4>$t¨xôÍ 8ß_§”‡w:†û vd$‹bò‡Hñø3z6åúÜQdÖÇÃpkGÇ/ŠîÛ¦BÉîR’X´ý°ÃÚ;Õ̪'Êã%ßE5YF9M+ÞĹ‹ª³?Vdx«{ ¹îî5ýNÖq$`Àö1û—ý²±¸e|—ÈXzÀ\vw¥–dÅ7‰Iž~W5_[oØõ&W–wÂÍy©ÜÇf´ëŽ*©T«ù/ý9&h¹õÑþ¼Þ>o&̹{ÏbÕV=^/uÖg‡ÆõQÕh(ñhãÌ_sû·"·$"¼Y1”ò4߯-ió„nféûT±ÁdVë*þÿ*€TÓžE ëHô:WÞB–`•:yéþ´z,my4ë›^!H8p“qÖZÍþH£-/zÙVÄéYèˆË¶sV Pl€âLÒîŠÝ«ä‘@¦hœïPÄ_¬ÆÒÁ×û®U!å€ìÐŽìÐÌR…ñbÚ( Ô v·Ì*j3ÞÊÜXèÕÍ‚ÄJ÷ý`<„:ãõ:ìf~Ì‹B!È—5xµ.±‰ì×õu¡ö;ÏN|_PÙxÖ/þíÁf+·’z\èÝ5cD—ƒb»"#·Ô0»8›´¤V(rù0¿0›\š€KÁíÔ7«øà­Ó}Pk‚å;k#…?Ý1«5ËÕñÞzwØS_ß<8}èò=ä4ƪï_„Ä-m-Ú­¦æq•O~Ú¦&&t+®'T-¤žX“¶Ñ Ìtð€Á†ü3ûÃHç/MlZª›3·³8ß™€¡'²áÌÛÙ ogÕSU~Ñ´¶%Î!üuÜîA‡Õõg †EE[÷ùX¸SXàЦ„Í|‡M>@´‹Á¤U—/‘l ºÈìû¿.v”Óíâ÷'¶³fŒVMÔPV÷-£•‡^Rè cÒ6_›z† “&:÷Z\dâ⣡عŒ!y^_Tû9æRˆ¾ˆ{-Y? ¸õÓ4Jxq¿ë+ª›k‘)~=j¢ľ.×£¢•a-®ô4,ûÜ{_´·Þþ\xå–‰é3Ú#…¼Ì‘A½ðËÕ­Yë?ù?ôû~º£'¨\¡2:ìäð¬ŸÁZ'E”cBÙtž Þ:hº¸2?—£½ ,'KœD¸Ä–te¨?ÞÎO˜‡ÈÑ_ Îߎî“ôÓØ„ÅpòVóŒTüñÊ¿Ú÷³šMá(&.ÝÇõ†ñà¡û¹3X{t8—Ī»w5J` fz]x¯àã¢~Æõñ<•^ÅωOw¡’–j·áGodýoèˆiàKñ0¾ Åk§¡HG؈Ù8¨ d™ßkâ-q¹ë·šþE?O4òCÞ0Úü§ÅC: ~IT"%ë²×¥cr²; + ÂU"ýÆfiB”;!‡ÆêävÝ ©#`Ë £Mûðž®Ã6lþ°“DçÕÑîûËËÎ $hawÒ°ŠEƳ$¹cÃÑúMÒ‰ÝïÆ„þ°½¾i/CV­UɽGíÆÓ•¾Ú2á¬V–)U¥Z€¥¬†»Ø^Q‡ÿjèΩÇCßS\—º†oMñ8Ñ@œ†Þò¯ê…À&]×o»faE 7”ɸâ}÷OÆÑ5+¨Ã©5îX¼-a¹ÈÄ\x²X0À³4™#…Oév¢[v'+‹ !$ ™±q®Гj®0£}-Ôä8ì›y‡™Gá5•t!›VvÉ®¸‚ÐMK9ºof~×=ù¡8ˆÌ}ÔŒ}½r17„  QüqÊ¢³ó=ð6@ž3T2´c÷?©œ¾ó–ØG« ñ¼ã–€¿!@_¡uža"ßœH륩f§<'_3ynúÞ¢#pªtÎ _ï~:Zg|'T` ¦~¹»‹Ì»½ ÷fÕðdÇ{¢ýH­Í¼F£u1ñOI.Nâè‰ÍÙ†¤ÈóÉ©¢FѶ”§YÌc9ŽmóýÆwçÒ¸áƒ)4ßf ~:+Ë‘p\ˆ5ù¦ì¾#^ž:ÒÞ‹ö7‡,bSh§iq0Ç",ºÿBÔªü8É¥-ûfiþa*^UÔ™,¥Ég€ÿ¤èOy¾ä_v‚N n;ïȲò“p¹†r§µ ßÅ%a­ƒ—4v%¶|d;D¾g,.:­|¥¦å¹ÕÿSĤÀùzöÿ£ž„Ød`£©Y(ÀÍØo¶j&ó3+Dz}n£ô.:ÓO­ÒóB.õ`,>A_-Q§YÔ>Ï„üŽ€ÐPT×E¾†¡?iº]ìÓq¯ðq¬‘w:gùY}$ßÃ–Š­?'œ€ ëN ±äÏïöé%³R:]+‰V¶ÀŽÑ§ì­©«mÞXÔKî*ܪ‘·V†¤ÆðÎ2’sÇš?Õžaaørïû¡K<‹†\ξÚx÷ÄÞ!‡÷Å×H«ÅÌTìÅŒàÉxÙ7áˆ_Ñœ’®8èøùyzB›Ö÷mçrk“õ ´ß lóIk¶ÏìØ²wÎ<ô üIî}ƒ­BÚy{xª‰¦U¿q3úä¦-óóI`š#¨ ¶½ž.°½¬õÁÄTfŠ>¨Ø²ÉŒ÷oÏF)3Ð¥YÉ·X‹¾teäd&:ò†ËÅ34ê _W}ðSe,ù#ðQóÄöV¹ElĆ› lZ×÷dk«ò¾³;WîÔ ²Ä°ŠÍ^ÝÅÀ‰Ó¬Iáú[qó“pŸ±6;†.¨Whæ‹Wì5å_ûry¼jɪ#ÿÄ ƒˆ„í§‰mGJÖÖòQv-O“>Û¬e~E|yK³n¡Òê'?’å]Q¨fòM6ŽË‡[åî{惆DïøóëžµªÑyѱ­ë)·ÜB­Du‘µc@¯%†ÑýRª†ɬw.†æ€¦ÿ°ßý+®ßÖ30@ÁvTw¤>n–áÛæ%¡Ž©pÃù-½ÏŽàšÞ 2Œ@ÿù§×Ìëœ™Ž®é¢ xB•h ÑÅ®ý:ðc{²åi8VňI¯-,1Ž¥KËdC×vúª¶¡(ù(û_Ø…"‡oçcæGºïå4ó¾ÆgêµD” +ÁóYEÞf1¦9,åÛOàȆLg!w"à¥]4yþžª·ð2Œ)o+kh6iYÓ{ÃÇdÍ#]n„e²ëÔè ŠN‡Äºö¶2á¥*lÉò) CßÔG¨¢£€Ö˜ 8DáñAÛÍ)}Qž½“J<« Q×ÅÒRÁEþýþEAPÛ‹æOýËâ…Ô0U×JÍÅìrÐ4 ùÛþ |»µ+/ µÜÅz?+„aüÈ¨Ý =<åøoº0mË>=\Ø»†w€šCþïPZòDzžd ^ŠlMá9Ø’’jÔ&W®Sƒc›ÇQJ¥öfãF/€¦"ãÉv?k®EìtP±:bsÖ½ nåÚœÇ!>õ¬p°‰AÆ„næ xÜWc™ÂËZÏì!~fôñê†×ƒ—RFyÃ#~O³ÆªphÓ|ÒÖÔ‡EÕîüL8OÉÕšæÚÁdIo0v•¶—ÝH7RE×Ãüãuê]ÑDöGŒXa¦a0b10ÝÌííÉH½=Öø†¤ÌßßD‡ÚiXdÆÌ_5cÒˆÕ{»$CŽºwü¦ù}Ç ‹eÛ{¢!{‚‰”ñ’\»&áܸ½QÀÞÖÎAÈŸ£4'‘Æþ0ï’$þÅ” U©êù=Óµ¿o‰U5fkYCØÔsãø]©cúJÿ‹‘­~eÜ^\WdãµK$aÁ /‚fƒX”œé´Îßóæ^鿣1LBÀ25¤Ñ·,Ók§ç!¦S.¾Mz Oyœ’]¹º‡;3掣I”ÂÃñf¥¶–ÞóÁòy +ïi›áM F7Îçú…Ê·b#p•¯Æ•Š „Ók&u¤ævÌ3LH#É]'ÑÐŒ`n’äë®3•¤.ËpF5`‹ s\A´É^ìÒÇnÌÿ¤O™*ÐEi…YK0¬~‘Þ™¬¹6Ü,mö %ž|‘7UуcæÛ}2ºZ1 ­ÿrðÁ1_JB •ñŸ@î •‚ Ø÷‹Wh%iù1Õ·õsmæ„þ^ñÿåB#Ü *þ1oŽÌ"ÖQ’údlô+áúd›6’u¤jÅüÙŽEbgùF¼y«0æÇ׌Œ0ršW Ðú¡Œx}¸¯fXrÊt¥Ì C¦£t߇úþ2woAKÆÊµŠ3ÐUìM·çP¥WùAΚ£Ÿ+ä 2í·šÀFkÜZR MwdöínF I:Ì)wß}^þìþ»<’/ýx’uŸ±sèg “/%≂`ë"zˆñ„M™Eþª/—Mög6ãÀ=o±ê}U‡CB6 à&0ybqîÓwÎW»c ‘ªõp@Ñ›¸tº÷ºö-(Ë=âg+ï"ÚÈÞE뙯vŸ§Î{õÒúÏ€›´1ȈÁ£TYÀR¸ô\‡ò÷ùg–ç.[¹Pºœ•%é)š&ÈV}®›–s·û]‰#´_0Ô^A –†ìI³œÏm[Œ+_!«Sœ"È2àfµQfˆB0¦PÍeÒá5ÅÑŸb /d³X(å[U,ÖÖg%°êþäé÷ÓÐél­â¦»R[/|Œ?¤|]”Ò[dæª1”§‚ª ¤Ü{,-nŸRÏø`BqF•xþ’Ô§~EwU~q<7h$„·»=ê5ØÐߌ¹ Òž”’ùàï‘Ä%u”Ã>j§)ãæ¨Aµ_ÌááßžÚfg5ýp#@ă¿øeSo—µ¤Áç4E—%¿ ÙgH…Z—Ab=h« „&$Ò½MÎõÏÒš?¿Sxm¹¼Ý  ´´x{}~;]eD$ß`ì®$à¦âÿÛûæñÿ3Äbêå=r¤&à#̵yšÝöÝxsaCŠ&ú#óªeV_¹WHR.95 ¦mo?7NÜ)>N.›ç ȳ¶aŒZû¶Å齯*uC>ÄýK&PÀ?)Š1VŸ :žVv$döVÅŸ[ªnCÏ~—õY‡û3ÃsŽr­æ}Œ\èü±‹CœˆG;§=ŠD$\{Ÿµˆ¶mêé¶Ÿ±šDÜlKÞüÔ(zgÀ6þ¯ÁÓMîl=ÃÓOu´¨E_³dÄf’kh@'&€äLÎܲù—Ú¦gà·-¶úÀkYƒD¾ ±°ÓfbNìt¡ŒÜ7¬d„'WDˆ§¶½è¦~žBkgõB&CžMæ¡þ«þRmyQ. Ü™ÛÍU®“àÛFY#LúĪM{¨I'^—uª½-똾ZÈwòbU Óª¨Ùj³ÒϘ Sµ£æ2Pªþþ>µ†O¦ ïÈGØÜÙB“}‰V–†m«€ËÀÓPø+ÀHFÊ 7¼š$…Zí]¥XÆõd±ÃIN}•›q)î‰ja[¥òiO˜Ömí ¬º3IL@YÁ]q_ïB€à¨Ù&6šºŽˆWðÙ© m`¤PKs|òöº)Æ‘7zœŒm@›½Ž“h ö‚ø!h›[NENõ¤ý_Ì}¢maõN­ÞW¢rM¾;Í>r áŠvýÍ:êC–D{\þê+~VBƆhƒùú‹" zÔ‹S5\—zë“i?‚F?Eðbòô>ãã)Þ^ü1œþý¨†5¯é`îHÇ6dæåµ±Cs8Ô ¤@Ñ h€õ%誱DÕ)0¶.Òž²))µ·Ãÿz nˆ×(ô†cœ”ßÚÙ>:—ɉƒè¡q­úÃÐŽõãWt¬%šÄozmˆ'GÚk~ó¥¼ACˆ¿¯ˆ»wñSÃñ1‡È(š6(¶Óòîxò—c&”¥µ‹¶Ó3Ÿm}Ï¡hßfV…Eäz9 © ›·O(¿MW¹«,›ž^½”­àðØÒn"Y b¯ËÝÇ@­¬Š‹|vs`“=ž5 Aj±E2tà݃•ÐZ¹ b%ÍÕ©ùbS7w‡3(q{‡¶môÊPŸ³ó÷@~YÊuhàa”áXñLF½ÏЃ«šæÄŠ›©-œ %ÑÆU@š/MÚöñÄ‹ÞE$*lbbRší‡tlÒñ<ûL¯“>þ>NiÓ蛸H(ßœð…Gâ¬Ú3¨dEþ™ Só•oÛ#¶ R†íå²úŠžAδKïLm€g(=Ÿ¨óm½¤$C„—ƒñ(Û&vHNÚçˆ3‡&æÀ…ÀÓ=¯e¼åÛƒ†ûË ÏÍWªugyÓ½l2¢bʸU‰|ú÷—¼¶6G¬ÕSt3tbŽ)Ú¶öZCˆx¼Ÿ´ž½ÿ3ÕÅe4u¬ŠÒ´õÉXŽYÞÚÛ˜×è)›ü¤x|†60„M—!ÑG(¨­ôZð0ü›E#lÒà×MI¿%ý¶]ÿ Ö@çðÐRNŸ”ôÞc-sœ® Y„r ÏÄ¶Ö s³d,éºvµt ²üVf{Ú™½oÅ5+êX;Û™Û I@ºÎ¢—ü„\§ª|*’ð­þgÈzºèLâšz?ñ ­Ì† hF•óu¿¬ì)ü ,Ä l¢§ŽÍóÂx¬óœº ¼bQëÞ¹%öXäbÃ]J@Bþõ¹K²>…~Þ)@ðNwlåòmö}(Ÿí¿ì€cÒŠÍ ¥ µ¹!J‰e ÛÖ,6øý­Ü-Z.s8ÜåºÄÚ¥ÃY%Ñ”˜"x½ØD_`X^·¾øÜäÅóþ”W@)ó„ë#n­:’hÛµ6®ªmGWH}ÔŠáz|`ým CßF½iŽmìmš­ñnð…„¥Wss'cq%N©©úéâ5süÀ™EMl#ŒöŸÍ­]Jd†¨e'Ú„ÞrêrïÁQø¥¤[Ø0c( <ò&Ä­A¸‰›öùmô‰‡KÌœËF"Ù®‹ö8/ ðÔ÷ùª£ §)àm6%M;"ÁçXMÓ§üË;šä³Ô=ª3e– Ñýe°ŠÓTžv,·;¦ïY÷N¸¨gˆgÍ;÷R Žê<ÐNG0öxb”ݰ´WkÃ$°ë@vFìÜŒ|ïºÉ1œÓ/HW÷¦Ùà†°t?Iq’mAMË£ýMrŒ=ÏxW éXáEô@V˜e"UCã÷«”(*‡™ u•èIS‘Gç@P†rx jÍæâ³}¾ Ϩ~þTÄÜÖ¿ÉŠÒáÞ«"V ÂÇ2'É¢P‡ŒˆÕ¤A–’:ïµãÃAu¹¦¸§DZüÈÂráùú–Þû6¦–ðï¥OÎ =(õ‘7£08s‘w…&úÉ~´qÙìä‹NjUéˆ/ëv²ÆÃ ‰–V¥˜B©î´j’kZ°£^céYà³40?ö1ô,4Ê=‡AÈX«¿ C~öºí ä2bÓE›ÐøÐªê–!Ëû¢5î>VS+}»ûÊí‘AÀüo‰’5`½zŠæÄÂıº £Ë·ï16Í5ÆsþÛ1«]És¥—ž#’ãg7l´8??Ý-ºØZ§ÄP ˜‰ «ÿ¯·NÃì«$…Ghéa&S_à¹Á8}O‹¢ëÛøÆÊÏs& Ë2j‹['‰xKöDq»º3ko4ãEÞïây¤¥új¹mÏpG}4œ®¼€"ÎYË+˜g™†¯XõÐ!9`“@+jØAß ˜Å†=3Œ6”Ο<µ¢òU£@žÆX¾©œú˦ÒÉòû6}H û¤gºz±­é÷ü,®}âýTGXÒ!Cæ’ÏÛsöð±I\_Ø r7ªýòzôÄØYé™ÃVŠõ8JŠ^{ä3K×+=ÞE|Pv“9™]zr!•£%dÀÒTj»²rwŒê¦—y¶v½ª€LY­× Ç5BàÂ]ÂäÛ ZæeÞ¸ðƒqs{¡©)éÏë:5ðÄ"ëŠN®Â¨³éHM5îQ4iíe˜„´öÛváçóR)È<*íëEÜkßî[°îÖõëN‘õÝwOüÝ~”NB„4aº¬JÁ #éÛ'º²BÉH§5è0‡<ÛÍßý{¹S&>¼®­œ>Çÿðº«pŸNj˜OˆËÀ~W"ßµ¢y- '6i|xmékƒŠ^1§®äiE:íÕQÙÙÎÅäøfY:fBÕŒÇÊo¿£0ç2€÷Å_ôÿ¢’ÃY‘oPðS?X›ºfoÐ@õ#¿ÇºœƒmhýËn1ŒÎÏÊÒ7Ê"‰o¼2qeG´“Ü?øaòB”‹ö]ÛíŠYoÈ./_ÃÈðG&åź‘n¼Y67NÈN‘ˆÙ}[tΗ©CëöÞ“¾PA˜…w(†,×7.Ì{ìϨÔï?¥,Eñ e<ŒzöP/"·”ÀßcÅË ÄàƒTªDKSJsñM`6m”PËÃO‘4 Pº¥äàfé6f _}‚òç`zõÌÑßÃXí#JB:ÅjVìØü{B4Ôõæ×= L<žPz×¹îRýÀ>ÓûQ1h0ƒláabEÉ;UWOm~N r[ïÚ Þ!2‘“‚ÕA_÷úH®ýdY}LeÎÓ €†¶zž\v¥ªÕŒ bÚCt^=piÒGÁ½ªº± ;Üm«Ú±¸çµ{`B}®‡=ª‹”{TG*b<éCá“Õ§úûY‹ÆÆ3„Ûót`E)A'rùðªm†auk«à^€¥òzZ¹³ÑZ©»&§Ù$ÂÒ¥Ãe5«Í¦³}NÁ–û1ô \vÔ‘`Yr¨ÙËÍŸ?þ­ÔA]™ÄÜààëZ§V æÌ Ù¤Nòˆ„ò0VB²ÀÍšK#A¼ÐìÖžíàqì\5 nr0ÛwâíIÄLêH ä©Ó½šŸ­~Éŧ-çVQ-fH9ãxîY˜7ìâèC˜9ï…w¦•=îÀ¶÷áàbôm“ËÀÈTžn¢Ø÷K=~tŒáÉx݆ÓTš_ú/ÈŽh=bLß¹elŸ!Z8k¡åH±'Ó;Ó&æ…[òNN@f»ô ÁxëšÅ{§$èþØ1+æ7onǰ‰h¼r¾¶ØÔ©¿è²ö‹ÚÊ„)Ó x/mº½Ç9Ù!ƒ‰¼ÛÅ”n™ðà¥ÊïkÑŸè¬Ýã?N§`ß**ܱN﮽è¥@Acd(sfw¤y"Éí–çåeßÿç4ÔŸŒÒUªZlÝÝ8‡ÏÀ±"âû+µ)uÑ·Nø!k.ôÑI‰@"—Èò ³J†9s4Òêę˔w×Òà!Gâ‡S¸²6f)¬õV¿3 ÛŽeë^»Ë‰s¢ØéYsÖЫ]öcŠ^üOÎ4_[ß9Næ¿ ’ªó°ôBüØ'.ƒ±?ô:eXX×Ó.°;ÍÛl†Ùl”n^›R ôöö¶Û/š…¿úÁÝdn¡ÝbžšµLÙkR1:šw@ˆæ6pÈM–ÍSŸ.«?/ü2®jK0†+:Pµa³ýÌJ»”)]ÉöÓšz­Ë\õ*¶ª‘:®swQÇÑW,üŽ$pH½Ð02>€×Iæi+n;þã'oâ5àø.òœ× l_ðä§È nG ˜´ïùXÙ•ä)Á§h=gAȾâ Ûg®éÌý9£_zdknñÀ¶Ø¾ÊŠ×+tƒƒ˜íëÑ»sá^„Ø·ª‰ÚÈêíݶÓpct•Ž›zš¯/ÒMYñ2_ò/{-iI*ùe/âßðS?‘Q¾çL½']ÉYQä$çaɯnЋçÿ‹‡û•3üð›Ö<^»UàR«Þ°ŸvU6=V½Àl"ˆr=»´>®´þ°“¶Pj'¸œ $†%;ÿæ &]œ üŽ@Ý*¼ì­1ª+¥=iÄŸÅ};ͪ?Dëóª¹õ€²d¡Eµa½×`R$þ?yù;ZɈ½™l÷9{bê³ÉÈ’ß#k† Šº¡ª×yCHÚ¡ ý|fÖjw¶?Zmd„{£¯S"Us7 Ô~tyi  ÀÒ#ÂO­ gEÁbJï2:‘;#€4+;bwºSçç,9ã€&¾Å•ÏÅbé).…q!¾±N-,“&o6Æú9®•Õ`@lËh‰*úåªKZ7Ó®>›¯ÔuŽ·_›Iìò}Þ?KÊëôð‡Åå# ‘¡VàiŸ®U .°˜oAëEX8ÝÃhƤÚÃúh1^ ¥Äƒ¸éåZ,öÇ›ª„Ñ„Ô,ÙyÔûP餪å=Ö/¯•?Ú‘È´Õh­Î\ ˆaåMTäM‘GÈ>p±ÿ%-›ØzØ&™Htåö^,ÌQºÒ¯Í‚h’òŒsþûâ=kØ¡Wb`gåÇëéý6·nÕ3³N½êÞꡎùP÷ÿÌýªÚB.þ•ë rÚ›ê¿;DÁ‡»îKt ¢êZå똤ñŸx¯ „±ö†Q95zw §…nY¥x­~añé˜B~rÏŸr”L+4Tê±uýý¡eìk^Fy— ¯ ³âÿ­²IQ_UÍÀý¾¼×”!kr>9 °ELåâêB7Ý&f§×Z0)yà ÑõÛÕ§Ì^"Û õz¾Èœî †qˆFj”™ç˹;©ûä9oñĶ)Є˙̲æðÍXuÅÂâiø¦)±þeu¯»X5ã¶±`ùö ×ÀH:g0h$Û’Þ«ü 4ÂÞ&Ô­ønEw™ÁHb ‡´RàÅÎU<¬X»7Ú ø ö¨Ñ%§1ÑÞ›”äÄ'ULqT–S %áž<¨?à óWt'NBB8?ÛlÑ ®â|¼9÷œæ-eœõO é°îá|X|‘z8(\´„N*ÈA5ŒlN ™ºE$¡ °MfCµòvPÐXsÍÚWC4àâHÖÚ9uæšg ¿`aDrº$çx„E‹YVäìõ†\°ôáA)Xp+*À:Ož-à%+mKˆ¿^ØÉ»þfe¹É›0ËÅÁÇÑ×KLöçÓbOröWât²|ÀÎÊÍ;"<Ýí)6õ3˜iÊrüØïCcm>óÌDÝfý¨§&48 ú].Y"Óö¬@„ùër.Àû›òsôõgÕDL&ð(Çς׊1"t9ìî âìn¼èàþÖ³ªÛCUósi3ÅŽÐaç¶ãðñGeB ¦}]œµ~V¨,ÖÂIÛBñ+˜I-¥Ô t²Ú¿B”=¨&~ƒ-óº‡S¼t¸Í«ñˆPö›¨ú(wn”ö`Å[¸ ¼€LzÛÔ!bö¦µŽÞ8b‡Œ¥Týdà1¯¬öex§SÛ"¶ªeA· ¦@a‡!¯þò¦¤£YPÐ òeanDµõÐk »ÎMÞá&¢IõíÆàÞÝ_X× Öà ô`ü®Z¢¢™â8å²Â(*$öU½_e‰ (HÆÐ~ çn]-=®}Lƒ³î¨ËJ¢`‰Z_a©cîóÓ}dÀdõî:I^¡á2Õ ¾V•ot !ü‰¾Æ¬”¨§a.Q§ÀËI¯ëÿùIæJa@¹cµé ¬¼Jùp ÌQt˜š;è)æ“ÞÎ+BÝ,‰³@8'!„V×øíØGHd§}шCö¤êußÎ|7 ÿ³8Áø_ÙRáî®òÐ “¬Ù럂>êLž¾æö>Oÿ‹Ñíùˆø ³8ણ è_ä~!c®ëá«+&‹\~"eØ í¤¹Oª‚±B‰IÁؾh ßNtÍ6=1‘€#™Zˆ?§0àoå.úy™ºÜ ;w‡w¼7ØX‡>%½ÏëdÃäªù¡Á=£ÚH.>ö¹ôÒ&ÜF²-цò—^‘’‹Ìvºžž‘/„>Á¯iy?Ið ë,˜æV}qù8ÿ³'ëeáZ53Ô›'.^S¾©£Ÿ½wñ5r_žÔDËa7K,m¥TNrꕆ…œÂP¹ÕƒÚq:W ».9eO":yÈ šÀ>S$HQnüw=Là´¥m(OùÅÿC²JùVQÞ9ãü0}ÛÒÖQhÎ%ºFí™ñùù­•JBu¸Û»*ƒ©³x)Xh§~½óì c˜ÚØ«6´æ„JÁ„8mxêmƒòV"å „ê3¯p¾šÉzácQà… ×A†)óûÇÿõ6xôlÊ"¡‘¢õ“'ŠzÝQUwó{ϲ”À¹ÖøÅô;wÕ+Ÿ™Ô?ÞÛ«ÙbTþY¯¸Æý°ý˶¶£Üñ„½WŠh^Î:kÂ,€À«ËcéöçyƒfZ×™¶µŒ—’±Z%Iê*AádRQ&§†#×#¶ÈCÇæÆhirƶ,hÚÚNúÑ?Æ»ZHŽ^f’“ˆ3ç…9iÓ®šX\°NÁ@ÍA D1H‹p.EÄ¡—ªŽɰÌÕ° ]Èܜ̷ÏÑÃóšÂŽ}ô_]ã!K¡qfXæqˆR¼’¶«Ã „gÛ%ÏD áP B9ºïz}í°€¥ùnam¶7Ynµ!rãÉí¦Ï¾EòÇ,ÚTËF¢GÆŠ—„/57,ŽŽ•8ÊOŸóù"ük¤‰HìÚš‰7ÉÜÖ^Çžøf¾É$½>š­mUþ=’¾·‹Õ)}ú)_ õŽÌâûÆóKuÁNVëElRD~FÇòùR‹25mê^o·\ÀÁŸ`^`T ‰?eºp?P‚ øAÁ¿qén5­í¯ùÇok-x9œ§ùW:ó䛇b¦E ø(–™Ðö 5ÙfE Wמ´”ÙóØ•åœFÉVNÉAyÉ,ˆæ»r|/=Ú¹:\k;ˆN¼U{i¥[Ìþ6 xן°<çÍPBüïêÜi¥­fÜÇ?‰xš“}x‡2™ù { ¿@Œû¤7 ñUQü¤‘"½žÆW;‰&Ï\„Zïá¼êÐS.›ÚþVåTÙ®UMÊô£Š·Xò\©ˆæøÇ3ÏôÂ⣠à Úÿc/x~3àƒš\?Y‹,ê6©«½ Ï,§ª—8ðÍÃi_=÷Arº.á9¢§…¢ Æö‚ßÍ{×d†s08ü´ìøY¸½x$»ê…·¼Ž¶Ì+Q?¦ØáÓ¦Øv¬®¼uŒ–àï…>”éöõaî›c+Ã>û½º}{Ö)v~©7M5˜n0|Dï&6å6Ú,4 Â#¦ó•UùäMþàò²Ú- }ÈÃ[#ùSTréßûbèx(ÍPJÇ.ü)äÙÙ‰c-­Õ°WUƒ¸B’t†Ð³>qÊJ¼ Jla‰chh$ õ03€Ô#ÎÛÆ¥¹]šç7íO¬©Ñ‡ô“'J`i>´ϱ;¤¹´3Vô€`&KUgO¯+¢ò”P;â[Ô1PqþöúcEmž(èCôX, äølþÊ&‹u®³Xü†ø)¢öïÁïqLK/|>0 ‹YZsurveillance/data/m4.RData0000644000176200001440000000037710636320360015122 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<ׄY$ ļ@|‘xÀH„<#’:FâÈꙡY3&@7]ŽÍ ¯%˜ˆEX ˆ-€ØÊ–„by bv¨ZN4·²BÍb@rŒî6r¥ú‘Í@wÛ( àc -/‚ö¨C‚Q0 FÁ  úˆÑÁ …Ïä0ßÌA”c(­CÖ¼ÄÜÔb C€Ü@ rä'§•¥¦À—$–¤B9,iE©…HE%èF&ç$ÃŒµQ@‚ì)™ÅEùé@æ?¤ªÄŸ surveillance/data/m3.RData0000644000176200001440000000042110636320360015107 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<טY$ ļ@|‘8À„EŒˆ™!¦£¨a‚šÏ ÅPšM 6óÑıñabÌHvñ±K±Ë±"˱<K1(dŒ¡âš@,ã„Ò 3@aÆävV(fƒÚ…l'ˆÍeãsç( .ŒáÊÇ@|^ûK‚Q0 FÁ  úˆÑÁ …Ïä0ßÌA”c(­CÖ¼ÄÜÔb C€ܨ rä'§•¥¦À—$–¤B9,iE©…HE%èF&ç$ÃŒÕÛ Aö”Ì•üt ór×b¸ surveillance/data/m1.RData0000644000176200001440000000034010636320360015105 0ustar liggesusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<×Y$ ļ@|‘˜!ªÀ€Êfb~ æbnÉPq^¨8ˆb¨>$sÐÙƒêF4LmóG*náÄÇ€ÈK$ûÔ¥GÁ(£`ŒXª¼PøLó]ÀD=Ò:dÍKÌM-2À D° G~RqjQYj LQqIbI*”Ã’V”Zˆ$QT‚ndrNb1ÌHPdOÉ,(ÊO2ÿ0•ƒø¸ surveillance/data/hepatitisA.RData0000644000176200001440000000203111075173445016672 0ustar liggesusers‹íØù[TUÇñàa”FÙž••™‚Š0Ê*¢bÑÞ#L"ƒ3ƒ¶K›íû¾Ú¾ïûí{ù§ôXï;÷û™§9ÅóôSýrïó¼ørÏ~Î=wžæ¾šò¾rç\ÌÅÊJ\¬”_§ÅøQâ\ÅþÄòáäX"—Ê¥²«+MJfboXÊ¥óÕ0ûY™È·€p Õ›…ƒPƒq‚vÅa8GàH…£q æàX‡ã1'àDœ„y8óq *q*à4,Äé¨Â¨Æ"Ô ‹±KQ‡eXŽX‰U¨GkâÖ  ÍhA+ÚÐŽµèÀ:tb=6  ÑlB/6ãLœ…>œsp.ÎÃù¸â"$Ð "‰-Â0R¸[1‚mEcØŽ ²Èa;°—àR\†Ëq®ÄUØ… \kp-®ÃõØp#nÂ͸·â6ÜŽ;p'îÂݸ÷â>Üð ÂÃxâ1<Ž=xOâ)Ãç˜Äø_ák|ƒoñ¾Çø?ágü‚_ñ›Ëß?±à^ØvG¼e"Œk-n°¸Éò»ì¼ÃbÜÒÛ&Šë7)_íY¹ÕWZ¬±Ø¤|+ß ô‰âòêw¹+î_ùk,…+Ž*¿ÔK×xšUß·ÓÚë¶óî°ÃøfK_oéZŸÞI;·üv‹ëÔîDñ8µ^Þ84ÏEv^ëŠË·xãWÔ¼4¸Åz‹•^z—®þ´Ô^U^¾ÎçXÔ:kÝxíWzåzíÍ·8Ï«§y©]í­‹ÖOû±ÙbO8áÂõ(ìO+ßé•×õQ;ÚÇê¯Õ¢¿N…u·ò^ºÖEûÜOoðò5ÏUµÎ~¿‹½¸lŠôê)Æã_Å*/¿ÚK×¹úÓõÒõôǯû´Ý¢ÖGóÖºûë£ú­–wÅQשÍK×85ÿºè\ýè>QÿêWë§výý­ûCÏ µ§ùh¿Õyõµš½—®u×}­qh>jO÷­W_ýèùÓ7F=¿t®ç|¯Å.+¯çö½æ§ù(Ý¿~ê_뫨yxûÁûâ+LŸ Á§ZlŸyEEfPd4±-|6̶rû\øIW(“îÏ&3;’ƒa^øªsÑÑÑÿ˼Çb¸|¿•éÿò}–ÿ7F,¾'üæmü½ÐA^ï(œÞ}*Å(F1ŠQŒâ§~÷諸¿ï¦ë» —ÿ_~>qÚÎdrëß_†a…l.‘Kþå$“S­-™ävû}æh254ÜŸÏ §Óª:k,=6>’È¥Ò£­™Ä€?’‘DV# †$– ¦²3é¡pänߟܲ`nÆsurveillance/data/ha.RData0000644000176200001440000000233512376633551015202 0ustar liggesusersBZh91AY&SY½* §ÿ÷ÿÿÿÿÿÿÿì͘XÈ¿ïÿ˜ˆˆÈÈ€@™Ðž8Áà-Õ SÐLM ~§ “ÑO)&'¨CM hb 4ÐÐÍC€hA d DOÕR‡ÿ¿UI¢ ýPžÿU)6ýêš”Œ€2 ÈA‰¦€ € 0@‰)¢OPÒ=)úšji£Ðš2d<ˆõ=! õÐ šz€4=F›SÔë÷Á ›@‘H@¯^‹¢H2 ]à dˆZ2WRȤïR% „—D¨«P*Tª¢¡R)  ]z— Úˆs¶ÒäãÌÈiëdqÎ6)€!…`dÜ€¢Õæ Õt´ïVüã0ÁÊ6DÖÆBî߆:9ƳŽA~ü˜‘ºÆˆø£…¼a¼Tv”<±°<Áñƹ£ä /’3œ<ñò’å<´žbt’—/šé'œ–==ÙM¤²ôÓ¨žŠzIe6ÓÓMÄꥃ¬QNPÎßb®¼é`t.éÞRªÚ,@¢îorö‹(ßGGf€¬mk®£>'+Ëó<Þ€»»»»°ã®ºë®º—www¨wwww`îîîîÀÝÝÝÝ€¼Í{ß¼}§ØkÀûŽéÊ6(Ó7»´dÆîB‚{¨€` @Î+fÒÑÜB3QÙ†!Ž…ç-‹A“Ï6?w±½Ö-·ºS?Àå8ЖÔ)q£¼…ìaÀI€ó‘ÈgÞA‘Aø"D‹Ý¥mÅÚü¢/ydŽ©¸Õu[q_oeé=ЬpøkL/Yb@µn÷^§›!f)Ž”ä8+ßšúÖ¤tìr£ ¦ú¦_ªšλJbÎûy8ÛÕ»Uå†5Mn˜’@™|Ë¢Ô1$•ÌG­†[ ¦x‰}´Î —á2ÕÜhˆÊ`$`¨ß•D ºô¢ƒ¿Ö‚¦Ö DIt ŒI³†^ÎîïGwwwqÇqÇqÇ.óœç9ÎsšÎsœç\Vé5×]u×]Ày¿RIX©4¬VšIX©$¬T’bªI+$•Š’JÅI%b·â·òrm¶Ûm¶ÛÀ »»»¾_†íxV*I1U$•Š’JÅI%b¤’±RIŠ©$¬T’V*I+1\997ïÛm¶áwwÀ*ª«6­]Ò€WqjÊë™™™›UUUU±@®k®”¥)FUUUUˆ›vÀª€*šÈˆ•˜ˆˆˆˆ•UYˆ ª U™UUUU[.-X X¥)JYbªªªªÌ@ «và»»»»°Ýw¦ši¦ši¦šiZiœç9ÎsµUp©Ã`H –]¯óڸ߷òP~ûô?ÃÞ1<ÚíCâö3Ò%"æÊ®pf4IƒK|á¥,á ]ç­ÊBa”Ö-óÍZ‡ Ä/×Ñ æ–Ž,5SFm}?¯óÔà©’56pb†Õ¾1È‘†jàà ÖÒs¤! =¡…‹Ì†&n.†‘†© C9l^Âælaÿ‹¹"œ(HÞ•asurveillance/data/hagelloch.RData0000644000176200001440000010602412625315364016534 0ustar liggesusersý7zXZi"Þ6!ÏXÌÿÿ{L])TW"änRÊŸãXdGŸã>@j½õtA©°¢Œ¾ðÙà6 ý9ÄzßøïÂŒô^´n› Gä·¾ æìV‹Ý8oÛ¼ü)ëÆJ?(]Šaî$¬%É!Oª»¨ìK§ÌÑiVˆ‰¦u´@d=  <š+$Õ†ÏiŸ ¹‹tç#„²BU¸<þãá TïÚãÉ·•mv=ÏÞ`ºü.χhÕncH°¤p;-yó¤Î×m ²ã]>?™ÒõàÛQÃe‚øsr‘þ­M¿U‰í%" ÁðêuÜviŽ.ž®î7* 7¡çù0ú¿&oÀ•CÉ0ez‚£3Ìü’2P_9¯É©6cåYºˆ—òÊV¦x8bC«( zL®¤ À%—¢÷ÚTIXl‰%Ì i‰Ân†HâèÔŸyÜD„1‰ŠO ¦O†ü™™eª»¹Üm˜Ÿ®]bÜ»GM¯ïÂz5󠹃f>¢`üŠéæˆß¤*/ª_Uþýž*ê ÜæÞ„¸¸L;xsgpý²äã‡ÿR ^àa1Àl!œäª3-¨Ó€Úš1 Jfñ<â²KL}Þâ)ÏßЬÆwß“üÃ\­úÇ6xÁí‰&pÁ°eŠ¿Hé†lýQ#>ð#÷6Yká)aIdÙŽ¾•ò±9ý»˜áïâR…3ø|Œ\š¬¯oe7 ^%+«¸4i—H=z“Æ^ûhñ &›¾6ӉͶ}áÜWx˜ÉõqŠqÊÏ #Ã]¯·XR·×˜ªÿÏ ¦dµ³¶}•àâÿã°­*-‡¥M S2ƒ'çÙÈ_½P8zþ7:\LÓÈö].\:‡qkzOöªŠEXŽGu¹Çi‡èr›ÁÞ7Ǥg2m‘&XÍL®"Æ­º:Ó[n|ÅóÉÌf#m÷ ‰Aµˆ(ê²ùègXÙ‡-YR|]°UJø‹mÛ×õvéÈ>ZJ²;—m‡! ]ûHS?@®^¤y5P•¹OŸ;ÕÌ €2é땾ÄfD/ŒÜ«Ç"ùc†w(ñ»z1Ìþü]ùù ¯6]Â«ë[X ¢{Ý ø'»p/ͼ¾(·˜ý6'êkX::õãM1¡3"¯—» ·¿í>°Ž¤í”ä +Hì6lÔEé–ñ¤øgا"‡=NÆ›hç;Bþã%¿”. à”!Û¯1ÒGû†ðŸ²êÒ÷álíÊ{Èr§Ä‡­²Ú&Ú²¥ŠPÈFÍóÂU iŸûÅÚ»/·%¶a'Ù`ÿ+[úyrK×Ëfûîëæ,ÚSþLpj'ÅË#uåxk‚‡n攕l¶?’éê@R8/Û• & Ëc¢B‹ÅÇ4ç^¼%ÌeµuG¹qíÐõ›Ž~ih=eŒêª€Aý(Hçû‘¯L÷•/êç0;„øIså"V¤ã!%»õ ‘|‰˜dø{F¾¡LŠ`ȵäf¨„Íù&¯Ôq…¹wô÷ó˜® ?žI. †Ò¦n.¦ ˆ ÷º×ªYx©°oÐ pCJŽ5}Ãø%»ùF~­ù¶gQ5{‚»n7·…Ç4ІW˜J÷¥~¡4iFƒ>q”ÎuS½õ L˜ äÒÛ­áAH8Zh±œÿIkL=˶¹Ø †Ž^ |Œø’EB¾^*wÈ©ˆŒeµ½Âòk³ÑpRêÀåÆùB£—aV¾ZŸrïKdšþ‡ë¿eøÅyëø3©%kÜ. í¨æ¤Õ À*_ßS« ¹ð%¹¨êÇ\Ú(©¸;«í+VG÷ÇïÛüÎmi‘AÒ‘ãò€°ê d~_ïn@fÊŠNí‰íÖ¨¨â.|œ7e I Ւȉš´ùº,XV/Üiq&ºðÈ#Ø4–*ÄÅG¼óyé½õ-] 8«¿®„±zÄ_bFýe¥ˆ>ß“z‚”@»Ô$_ðêBÄ€¯¨ñƒ)(0¡9||gæ=H©AҿŸNÀ¥Úÿ`6±¼ñ׫Ä;»§sË,õU~!JGÊ%1ƒ°àmÿ™Ïu§aØuàű¶­0×Öÿ¿Ðˆ¡vüsyeAºÁ’Ç/Òs1L· Ϊ|˜SŒV:®{YË©Š$NÑJ>ây|TH³îü¸‹»¡`¹\CÛnö£†èç.ãä×Pœà$#ü?LÍ+g×voàº5ž+ž€‡éäÞe›˜=?FûJ–9ÊØº§Ð³J ½´·þ˽3ß.Èûo4%Õký0L,Ù”IOhõÝ¥ÃÈan6²ðìK}Üg‰ïIdѦ*«ø¤~Æ ¿ Úûh |þK4Õƒ©R†çí&Óm]\^Ü…°Pß¹/ƒp?ay¥81 X™g½_ù z ljþeâÜ¥—Mu–ϸ¿~!°¨’¹Cݵщ¤ú¥¿Ûc¦¢ÇÖ1üg¥é†ÂøAy–Ã^§?c]ùkžA}nì+˜/øF´ýÁz¬'öÞÖC©3ˆÑs¾n ÆSÉ\Yûz—ʼ@äJ7ò‰®t=Ûá*âc™ZVü³µ¼Øõ´ÊmuÉËï 7ŒP9/•ÞÈ!9ÌÅø{çeõ©¯ye&$#ËM¦¾› ¡U[gÏDÀô¿µµ•— +“n -jb"YÛg7×R-e¿?]ÉT°Ñ…¨Ø£+1ùëž»í¾—WÀÕ ï^¿5“}o¦ªŒÎüúÈìœUoWaY…#“ÀȽôä×j…Gfö:ꦱzgþw·ØÏM š*‰5$M˜Üä° Júrp~µñ/ æÁ›\¸©¸ðÓ*~s|ŽÐÁÁI£Ÿz~Àrïùä Dã•1ì[»8¼ Sá@ möÚašÉC³ï6sÿ뮄õ¢?×ÈD^ˆßÆéç¤ji¾ÓèðÔkÓ;6æÙT“ Ü‚ó:¾¿Òƒ”ôImt€ãÆ×„+@áÁ^S¥û*5ºóïÎ||ÍVˆ|/ÞÂèQ\'ŽLVWÇÒ 7z1‹ÚOq™0@gÒ–‰&¢„ç]5‘ÇÆîN´ÕwDŽÿ{‘¤ùcÃ_4BË^eç1‘r‚úKcV7ÿ. 27vNjéQŽÊ÷äÌå÷G?¦áìÙPÜd*¿§ÀûÔ¤[®gàˆÝRi3ßïFDõ˜z-œ 4¯7Y>  â^¢ 9\§V³»qwÙÌS¯( äÅ¥‰ÏCKÑk6`Ù¬« pöÓï ŽxÖÔô{¬5èmÀž;bBö=¿GÚ.õãÞ} ”£æ¬T+(.ëw!sfôÂƒŠ£FÍ9¨¹Ð¤1!¥©=KB oRæÀ«ÒR¬2Û–-UÌ=ÈŠC`yM¼tè^B½(3KoI¼niLê(%ádMä}2!ƒY‚ÛÆk}Â'0ÿÚOTÒáµ^ìE‹ú èåÏ侃",Ø«¼Ô6CËwÌÅkþïÄk þ^±A@Æh—ªçþõv´Áw\×Wâ»ä,ør\ÏwuvB´íI1pTä+¿³»ÙÈWÓ¾Ëõ?ðµ,[´Ö¶cîRTÙÅøŸjã(¹ß%¾Ö9á4) §%E;™õõ>Èü0ú—|`9`¨tt…°ª.u<6ö˜d½èШéCÁÔ.+ùhqX=Sríôï¢rðTï&Þœ ~ù@{EúE«IÞå‚––•:’8¾â)…ßÙ£»¿ þLÀ&“Št´iç‚äêaeß²üTátøb§⮥mªg"Ä{JIÈMB|Õ€"î©93ô3qž.„Þ¦ÇQÜØošª pÓ³hÞ¡ò°b×øQƒ}ѽ÷ í¦)ÚÉŸ^o¢v;ÃMæA}.I‡ý¡(vcäŸN<µ¤!øgĨeFtð îÈî'ÿžÈY@£|ÿÇt-æjc€s°ßËà‰ÏP û]p3øþÞðúñ ZWˆN÷øc«X ¥Ö]ñs$mãèßçÉÕ¢)iLm†Y/¶ˆ1ž°l[Oo[‹Zo §ÔçÀ2·ºs=Lð8ŸàIZKie< )ÈöÀA>6‹M Mð&=tK¢<,—ÃF­j]ÒHŽIN;9ö_aÒ0uûò|\–A‘ÀèïÚ¥|_C)ÉÆtËíù†*PnYp‚@}8>œÒfÙ¹].qSÜP’Œ¾iȲ¹øÜéoÎ#`‰9ˆ7q¨“Õ’nÜt7?¶w定ãñKæçp^zÁ;L$”Tc•/Ç6Ïðî}žûÀ§‹k\Ñ鿝cxøÇj¬æWØç‚y¹G%ùqN¸*Àt5‰9Dƒ¨Ü¤â6¤ªryŸ&”?´ÞQüêÍ5èÍM¼VApï¸YÙ¯?¢u ïÍ*ÒŒT¨ü`§ç㕉ZÏb#±Ÿú›]y i»ŽÐÜ5ßÂ÷þ,~}QØ  ·–*4^5ùü´¯à·T"IÞç:©´g«S¬àÅ B0m1u"…rùÚ ›+|µJ Ëc`´WiÏìÄú8¯éØËRÏT§)×üD¿…òΩa§ƒBåmÒ›žlÏö›ÿK`¡qÓRVŒneoˆv,:žgBÛô6ÔVí̈ñzn–qk~óùëÔz:¬Â¹=B•¢‰Œõ±Òl‚’­°È"Â(j)¥5‹[Ú¥ã¤Q”FŸ6ŒØ¨ÖdóÚ˜Íú2½äf4¢ ÏZŸÿ¬¡ïE ¿…÷D¦zóñ±=Wo®óñAJIAQïY— \ Æ>&ȵ~ç|é˹.Û`{þËØ•³jÍôUöX3òáØnØL¯‘èœB{¶î„­ îH@Ì32XßÀŒ áüE?ÆáÒœœÜ[¥!dÑ®šd mvGŒóôëÛwn ÞNU)lû20„˜RwÙ Õyžû´ô$2 ¶ŸPÍŸÑÉÅÌÖË?Ù ¸$Ÿ¤4ŸÍúÇÂØ©J¬Z:¥ëáôúLV[#Ž]}vp£FÑRë5’[+bÒc<;m|çþV®÷7hù)Ð^Ù[}Å–«]zÌÅÆÙ-š5ƒÞí¨acÈ(¿«ðRÔ[ZÚß‚äLêÌxÊä/”‹1þúËÍÃÖU R×·špš¬SàÉ;¥üEÊ_`|êãÀ¥÷u2Èßí¹ín7tl{…³´æ£°‹¨y¦ë@©ýÌ÷š “&Ž˜Ï ÌX 3@œŠo08ïôX­þSÑ>ì&V¸8.°>í¹úX%”’]6NHëÒ¿S¡ï'¾]HÔØã˜y®|…Á*1M+ñ™(…‘ßCL¨³TB+ªpw%Üí„B·µÌ”1Tÿúñ¼TDÆ&… V¦˜ èGÏ~ìèQ±ì »sùCªëo)5QÒ¸õ¬Ôî-™5Ü­õ3AwújfÈí/ù÷hÂ>~ùRàEj‰ÓbŠSãÆòó÷éxŽt“<—"–>åÂólŒºŒ æ A [_ê,:ã-sG9üè4U¦E˜ÎÄ즀ï¢ökRÏ=ÙØuŽc䀹&KïÍv+¡'ŸêÜD ó™hÌC°ôoÛ¦wQÊqfÜ J·ß,ìÆwTxáóCB'õ?!Eb‘qܤ„µÓî°@̤ÕAŠIZuœŽGR¾Ñ@Ù¶Å:s¡Ü:÷Ewg2‰÷x¹ü¨žfsÇW\6·±o- Û«"Øé¡·1øïf•ü1DœhþéÃh»uîΘ¾Š5ݤD`˜,Ì­]X³çrhmW>l@–ˆÛ£\£XWWÝnµ¶­¸ÒÆYì§ ¦ßG\OV§s_i½s<îVYfÌù3s÷87ú†'¬|ÉIä¦wÔŽQm^‰ìNn¾«ö¢;ßeð=掮]‰7vÆtÇaSTù²úè¬R·Æw™ýõ3ƒõ@O<’þ¾4kR‹²ó<ªp¥GaA&€< Òc< ¥É’1þÓÈDüFö±'"¹9Ú€ÎË•½ £Íë§¶jBgô¦l>÷|ntW%ÃzSïÛè ÖtŠI r7r¦: °h¦Ÿ] $˜ÞW‘cÔ¬<5@^ø‰'¢F^ç&YµÓ/ŒQ‰Ù"zÉ·p­8R$i×QwßZ7‘‡ ?+ækæ=!i®åøóNˆk“NOnšeñ›RIÅDô¼²KÐË›±Ce8Guð‚ÿúLØüåÀ|!¯Usnñf¸q7GÜäcDÔMG‡ñ]ª–Å'ÞÍ‹gˆîï·[›–b~8Ø›1ØœJá6½ymá3ÙHÒ™êEÌ–ð^ª©GÊ¡ŸäùêÃø1hͱpë/Uv웣éÄj«{­W Kh­ÏšKëþ†Áì¤ Ù¼Ø ˜arrVïa¿všw<‚Ö_ÿWG ŒåI{ô2Bxõ.‚\ï£1ãÉ–üpÄKí"ïö Ø÷þ¦%û-K+âÂi »¶2Õd¥¾øš’äGÕ7{ô²v~¾îÕWh8ôN„†êé-aêUoÁæ Fîõ«Þ¯C•;÷¶Kyð1üU¼×"wÝXÀÈë†û]*‹éÜÆ^4E#n-û%ü궨arI õc¢-_³Š<ƒø%æÙB(1/s_b™ wË¥b »…g—¥´ëÆ»¿â8 Ná+&ªÿ&õ4ŒDtš¡Èmï–qßùÐTgùQˆôöØIAôÐŒ‹~ñ¾œ,þ´DoºÀ™Ãÿ¢ŒŽã×míHÀë(S½R{x#°UlþM”Ø#w+6Ž¥‚S¾Ã™c¤»ÿÜŠ£l›]¶ ¸jÿk™§Y¬ÁyZ(ß—¨A£Þç—†œ5èËž¯ŽêK‡%º'ÔŽ³æŽ¥ì ©açRî=ÕØA ¢½8O‰ÙÜ)FYÈÛ+VÓÒí–{çc=Rd›ûX`T‰Ùße1¡+~äÆNÒZ ÛŸðÐc£ ®.×Vól¨³ÿCŽOW„´xøKR[^«5.*½´}«ì¨yû¦Kè4Hmð4à©Ï3p™Æt, ~á\·K´ÿmÖõåp_þ{ú¤>Æè–ļ #¸ŽbV=ÌÕ¶€ÔÄQÀã}|»~ØÅô¬ÌGëPÂA󬿡[ù¼¯rRʱ÷X:—Ó/xRP fO½R¯c~…ÌxÎnd›&[ç•€C_{z?‹ºûÔ‰I×ÀÍR‘º¥è£ *ìªÿZ&¬r ’§¾9$ápž§#_ì(Ë…Ñ•˜Š~*‘ò'u÷À˜M˜ýدÕÄ%Søô/ªžöÛªyûÄݰ‡à4Èl|°òq3´ÙQzªqRúpõëì šek&wîÐÑx [#*‘Û"ÀPˆEïëÓŠË:5;{zX8×ʾµyÐÁ3¬”ú*¿.Øô4,6³H+Zëhíû>i?à¬Ä÷x„êþÞ$´\_ûí™èYç&GX¢<ƒlOp¾@Ðaâ†æØÞù´3J (#{óDÝ„{„Š6~Fô§4j÷“qâs¸·œ“ûOç±C½Ä`Q‚—ÆÏn¸1èVgKµY·°«¢iƒãÀ??{c¨ì͈äÖó¾_Ép;À27˜¥¥è£ *ìªÿZ$çNŸÿDìsS§ý¾®|1Ÿ·1npž§#_ì(Ë…Ñ•˜Š~*‘ò'u÷À˜M˜ýدÕ(ÿA*,Mw¼uªðN‰ÃfƒŸ(ÝXFJ넎kQÿECÂ,'.±hA{øtNg:sÕ’¯úY­} üm¨j±«ˆÕpJ0Í_™ñF-ÑqRžZ¯ÿ¤ZÕùÇÚ­üûR+tÍ[ BùÝS=ø)d ;€Ë*lßµ8åQ¯K*ïw”«´½Ð ¸Ú”dB΃PJn„NhW(Ý߬¶]E:›p,ŽÝÞUcQ˜+‡ó?RµaØ?å Ç~Ûþš·^õ¦@­ùŠ“ †•£)_Ú…ÅÛ÷éN±$@ÚÝ7Ò¯˜F¨3†Nñ) 6ÁŽ-ÏÞ<7"È€¨F?Œrbß1Tü‡Ç….գͬ@ͳÈܰÕoãxþV@àüq£Sbv¬Yäå[ùÇÚ­üûR+tÍ[ BùÝS=ø)d ;€Ë*lßµ;ð÷WéÜÅ Êeh"ɦlªíÖQ±ß[àb#„×\ÀFþ °¼&……k¸Ö#WIdîlâ?> ¾‚Ϙ9;ñ Ì£RzÊó ¡‡^‘vZ´u;+^§’§¾9$ápž§#_ì(Ë…Ñ•˜Š~*‘ò'u÷v¾ßv%C£¿&JÐí²ßL ¿S] }wÿ¥$4€Ô¨<% *Ëùr†Áj¥KÀ–¡…FÀIUÈo¹L•Îûú«åAl?,öþÎÁåyC¬jOoTSL€©O‰ å2û­ßcn"QÏzL4ÝA…|R@4jß8ì)ùüÁøÔᎠ¾?­¥¦›H‡3ó&a(¿»ÙGQsóçvá‡~îUtÄÉä-áLìgl„¸¯QÐzÇ…¸”jó”fÑf*Å‹Ä@šp®,ä&~àwÐ?8)ïŽÞÖÝÙÀL˜$\,fÌÞ–F÷ê”<×ðó=á½éiýØ’’â#ù±I¥wÆ$¨¹AòçÀ{«°Ó¥³¯{J¼tµB«O¾Ží¼€m”ëJ¤Ï¸¾n„&|Χ?¯=)Lg¹ö;³"ñ¯aâ—£˜P›ãËŸO6PÎTIHÌ)îøU*ðÍYaZ̲ʜ&Üœ õØO¥ô¥ñi8˜ßlˆÃÇÓÈ æq ¥HãHçAÝôA-• ÷^‚ïãCÌÀGù÷ÇÛ[G[­h7úðQ¥U}™ E 78“¸í¶Mróܳ¯A2Mn¨Ø"Ä:Íî-¿qx†,/;ßœÀƒÅ€¹Ì@ˆ˜õäÆÀ³Èôþ„˜ñí6š–šssÌò#X=)‚/ܳ5­ŸÑ,¹N5fSǨʫîûD:Á<Ù4z£Û:롽Ÿ)ŸÓÛ¬KÏ‹L*½`g¶)qÛCô¥'›r•ñIµ†hÈ'»pÔkaëÉPf'9rõÈ|ŽP{]qäøgN8½·f×:^vÊ0Ôž`7¿b™Šj­$kIüƒ8Y›Û\UÎÆÏܪ§šwú}ðp“šW°°ñJ‚ žó•v³>Ó¤|x#ÏÌä7 ÎOx˜nx:úDNôå¤ é8#heóJ”·Å2ƒµ{µœëÛg°K}™r­Åá eŽ`r-ËØã1Q¯µG:èŒjø¿lYÞš‡þ`šÂ”â~¶™zj*¡â½Sþ’(Œáô15³F§dQ'7oîÔùòT(c›¡•õýÞÁÇ#ŽIL¼a3˜õ¥í—˜KÈgÛ<ôc,ϲ£ê+ÅÿÐìlo¬™IHI7m‡¼cc¾×TÍŽpp¡Švß±Ûd¹HÔ>TV NÈ/.>ù£ïq~Œæã¬Ö½J-BéÒ&ú{hÞ•‚Þ-U5wi M!#˜7ÚïÿÛ×”³¹6·Ó¾v‡l }ätÂñ3eú›cÌ:}\CÛ‡p֓ņÒpù¬¶ £%Ð n.œ*‚¬æÓgWn¯­£˜cäLãmE);n(øô¯fý¾냽w Â¸·'óêÛ²ÖÖòUÂi…ò>Bß:#³¸ŽÔÓÞï¨Ãý=%Ôpˆ’² »6…E‡ãû€‹lÂÆ h}ÔýHF«ÿ"f–ÁTËÑB>N˜y¹‹ò“sGçÔ³Ô:ôÀ ˆlŠNû'ÏÑžóÕöTVP}–a/U²Ðrµû PGS­MÇ/Ä((ÄqDÞ8ü³Ú6° î7­ˆ+Ô¶d!ç´µóÞ»A *]G•(Dçó`ûM#ýõdžΑ”Q¥/8îTõªÔìYθйš´Ìor^~Ríe¦¾÷k‘j†^ÅÃ7ð§U4µ¨ø úÜM^š\àlVËAÔ¯aÄËW‚ «Že¥‚ÇêŽ!ˆÉï¸9ZhlûwâWÇ=‚Ø“ZB£Ý`ÿ×Ãu.ZSJ#1¹óa¦\›¿™[Q€hÉ `{&HÛn¶´ïÆ7‚|öˆN˜þßé¡6ñb5-•(\*òš¥gÆ÷ÜGÞ-]…{ëä7JÞEÇ.pBGm­ôonT¤¾µé¦>Æçe¬YÐWÚˆå¸;w» 5êÓ’i:ÕGF©Ã4daŠ+‡ÿI¶ð¥/™«àà7†Îû¯cªðГÐK€vÔ©Uî—±s\©8òôB‘ó2àÄaÖö5ï’í*hõU -ϸ`V“eYÎdS‘Í­ÉvµÄ $BŸ¦é6òಷ––ά©Ötÿ÷”ûÏ ­ÜvR ®Ââù¸zj˜¤ýýÛ [£º6ü¹a¿wîOVã»±»´zDKP4“GØp¥^ºï‡9\…Ì;›sF6G•좟މå°lr. 6E–„ÓÞaq‚vûã£ÊÂgÙÚÝÒ¼Ž²9³àn¬0z ,$á¿‘tR÷°™‹tX:}%¾GSÀÅyy¦sѧ|«‚{ÖTŽ ìŽmwleë~`^ µ­fe5E‹å0`hU©îövÛuR$gÆhHäµFL~¹òáZÔß™dÚFsr…Ùx_zÎõ@\£=¥ XbaEý’§ɾwòQ~AV[OâÓéê6G©ÇÈæW–ßÔœ(%NÑ73¯‹Á–Evï±lÌ+.þ”mñ¬=BÝ´ «B\¨ïŸŠ€™-†ÙÍ­²IÔ_ ‰ÎkÉ9,‹‘#"=Áà°ª„Þ• ;Ð<-ŸÝu­zÌ8~,†ÎSáäžó“"Tm¡cX©>rAÖÀâ˜ð¿N¥RQò9}RLó{rî}YæˆÍ‘Çç>Êá:›Ì0ŽóçÑõ…ã®ãC¨ƒð“ôÓÙ~¢¹ù]xx~»»u)ºr/àÇèž8 ’™Ë‹õŠW|§:Âå+<áa0?#tÍ1nÂ_€©¾ q?KµæyÚ‹T¥Z®U«T›…"^ÔÔ+zÑÚ{KÅÇÉ;r‚²QS²e ›ý`óúõ™2ÿPð탭%µp‡>}%GÑž!è éŽÝ,Ï(R„{j[MU©I½"£ôˆ@hö<Þlã-ŽK§ä?!~±ŒÑ'×b‡·…´:ãꃙïM ŸØ­…†Y€Tß…‚ä.2vNÐÔ¤Ê] CÈF雈iÏñžLoaª a‘£"mðÒ-難Ròœ9vÇEDSã±Ç€¦g3¤Š«_šUøkz¨?_Ù?‘bƘŽy[âñhÊw¢úQ!Vm3ò!ÆÃ6ó5.¥ kÔ•C+VUiyÌ2ÐyfÕžð@î›Û€ îXi·O`ìÙKýlÊn/u‡+®è‘ªƒÿÀ 46„,¬@m(´ý×KÌ)Ýv÷ç'•Ïl–¹”ÃÙ$©1ä´Z›ž†rס¤qìÑF§'n#PÃi¤ùFøÚ ®jÃCÿLff™4 åqô[¸€Ž;ñk´õFÛUØ‹zCilwã:ÙÔr2Ö~Šìq?ªPcä¼½$݇Ôìä#?<Ô·xÌ)í¸¸_4‰S7Ó¾Å×­wØÝ ›>½^¦™|ÙiޝdUŒMq¢y|Ø·:8³Û÷K·èû÷ŠAö&‰vÿ6ïáK' ¹Ë,À4¡IëßO½ªÂÈËXÞãqé“—Wæõ[ è6`·ýø¢úð3jNeœÔ§?i ìöVmC^Gñí|”áãÞÝQWF⇚»L¾Ø'‰¿d2 DÛ£HëµÉAQŒPhræ*%€Ÿ‘-騸Ы-¶ïÖ€3öǰÚUõ(šîzGkŠ‡Ð¦3ÖéÒ¥å@4|j%5Pª,´tjÇÜ·ßÔFíH!fqgá½ö, Qj[`­Lìúý’¨Ø£×Ú—V¸oL¹øP´ž°þè”bt- &Ÿ‘ ÔMšŽ2——UC—Vï’Ô¹©©î÷ 9à3éUù¿º2¯`íî é\v%İK0H¨±%ºi¿I Aú”k‡tn/0µñˆÑP“äcPA'óTc“Ôüo •@¬ȯ£' }Ù|pö™g²ãÜ!”}8«ÌoœâÅ|÷ÁmU5.­‹›á-ë1pÁ$}í[Ágc'V¤Á·¿ªš0èBT¼p{í$"™`ì‘ãq»Ð§¶Õ¶+S<7xvâŸåJø_¬µ¸#ôÙbá%…†FÅSUàŸ.ÐEQãôÇYîoàÅíË]€°âƒ˜L[¾R?‘²ªîˆïÿObê„{U@Ò±þ°çèIªsõ~Ë zÜÐoO ·Is±7æ–õn,F› ön€)÷\-·Z…Ð(ÅÝçßãÃK•(ËßD¨`M2)·ö°5]·ú&®¥‡îˆÇÛ1-9ÙØG¸=p%F‚þ“qª¶?sDc+0y¶JoÜÄ.«na'8íQ@ѸÖˆ~#‘ÖÜŸjéû¡~L(œqM"/N®ÆÄ…Ьk€ŠÿJ;f·ÄŸCAå†cuž¹ó¼2ØûXÊ×Vƒ™óa1¸jš’Æc˜4lì¸wðãþ<ж𸄇¨íZ¿pší–Ò4;Z8#@ê)ü¸‹sýÍA €òªp_û¼ƒ=kb´ù²] ‚$妗RzÌVÓ‹nòU“PgV:…ý{Y„†+`´/„ØñUU¸!Ž=r€ç(ã/ñ!ƒÄR-‘£Óš MÒ¶Z…ö¬ñ`exNÁr Œ8dœž&2˜l±Æö¸5J<@>ØçöÎwö$Þ.õ+'Ñ9À´ÄØwŸOÂÕ€œgb×Ä,\#»ú\*ãI·bòˆªžµ"¢08É6|‡QÌE ]æ-/¦Ãõ…oÚU.Ö²dLã°%Ví¶¦ÎßL>À‹ËH¥Yï²&`´‹äF¸{±Z,èQùmÒÎ,¬Žq¼UÿïȸۑO·¡Ï.¥Ë53ŠX#û3&&ùºw9aÛ9k½´¹õóeó0ôTĈGÒÑô*`v»¶ßÑála¯YÎÂ}óuûù„´Ò®£Òzå¼–`‡áTœšg­o a§û öϬ ‹›!K‘p‚çÂüÞ{Q$bl¼W Ô”ïÈ!ÒënÖýW¯±æOîó^mýêÝ‘>íô‡¨t×Lè '§BŸð•ñ© ×7 +ûÀ°1«ò Fb¼¹‰Áë ô>‹j5øÔíò5Ra„½Sž„þÀŸž/¿ÒèÞzÜ ‹˜5¶¤ÌÑà/ŠtéU¤É¢çt,Ýñ×X™ w[²ðζNe÷L«sIÔUÄáñšp øª™js|aÌRâF¯`º¢Òû¼ßÅeÍÄ,l¨U)h„uVϯdôé”*ÖæÇò%-¹ɇlÌ|Œ A ü¡È"Û mã8ÿžDQ([j”ÕÏJ¤NòšW "çÊF¶qÊhJ"úvU`IÕ hÁ–Š2€îB’&˜½u}hR Der=‹_x`)¹‰vÍëW/ý‘Up5Ž«q+:¯]/:4Î;3›¥1e™TÛ¯ ›&¿Ä}´D¨?ülGà”<'„pCíu°ÈI¹›"tÓ°ë”\|dGýg³6Ùa('é6–Hš[ œ ?Œä-γä½@RË Împþ掑€Ñ`?ÙDä·ú ‹®â„[›ew­ñ‹Íì„`ؼÝK9LƒHå¾ÎÀ,Šƒ9ž¥Ìj¾ºâ"¡vå˜íwIï؀ŽmÄ[KJö½ü''g)Ïj@³ÂŠ j1_li„Æâð^ª¥^-ÅKþ‘yœs–¨ 5Ï=ÞßVeu2\¦?$¼ÊL!ˆx<ÉŠÆÀ0£A÷ ˆËUHùb¢© Ûì˜>mÝÞ:cR/X]˜óêm@l>PÒyrtb¾¯÷¸¥ªõ³¼Ñû>Í`šÿwç'D)u'„ô¿«[‘wÉÌy# ÆBø Jd|¹®Ö$Û*3Êj,Á»7:” ±-™$Âf°j¾ƒIz|q“¦ÝèDÔ»"=Ocê´b?î»àG82˜hÿóØå›ˆdÃ,E¸G;`|ß!i² V‹îó$,p~9GÆ,y»Ô]µŠ!ýþ ŒQCŒ|ÎϦ®´Dfõtá#¡Ø\½¸Ž ¥:µ'iŽØÿfžËýNs$4v,²éÈP„e™lzyD§F(=väüS ¸É]ù9CÕ®75Û2m¢ÂZ<ÅÒ‹Ü(gP0 Yg•ÝCfó¾y:gdŸi_–Š9 @g[ޝ¸êÚ!Ë¢õGöƒÆÍ¶¢#9–rÌ 6Ô©ª:da¦ëKüžó& n©3k±Ub‹-Ü‹qŒ9â~äÜ^}¿y;º“Y“,;“q¡/Î;Æe*ºµ;Q4AÐÞ Qo¤É¾Ÿä3âÓÉú;)óÖ‹+(¾ Û›¢^ß~êÄèJ‰7]ùÏ*zt8º'uò›üËJ¹ óõ‰½,…ö³ÁE›ŽÉ®Iªñ#5÷q›Åyh ¦xsÐî!±jæ!ô[©Â€Z)îæï;hd§Å ÜáøÁ%›$ dðfÞª xFí’h˜"2"ƒë /èËùB¾óQJñ›'ˆ$Ýȳ* `ŽÁY+:x9‚æÔýªC⦪¨øô81n"° `”iÙÅoöÑO©!›OmŸ¢¶˜xEôÇßËø\ìÍ3íP½jå½NŽ ÷qlé}árãpŽ’þÞ15 #AÓy³}ÃH¡Û“‹€]ÈЪs¸ÜÓ#áÍÖ±!xŸ`˜6.)QQЯÀ+Æ„ÚjÇç·{ù`P¥=tØ—µÒ]¹Œ‡´Ø+ÆYpš(€FÔeÒ¥w§¤ÍkA‘çq‹\?áCÚ‚ºóÂ;oÞîokÉ ÊzIÚ¯µ‰8ÿ±•u]SB•ò¯­¼þD¦¹(3¿úùtù,Ö'¿1nQŠW ÓèÿR*‹KT´þo¤ªÍ‚u ÑÃ'x@ò$b– ¦{ Tç\¿ù¦ê =4ÔæÔ¬3;C¢óa©·e[½óÄzDì‡Kq³1˜4÷p`VFñì%Áª ?kµ†KßÞT§AH÷§¶Ç¤XÖóÆß/`£,•àÉ¡þ·,G[o9ŠœŒíR¯\u¤˜AHJ ,…nÿŒ;Ú2MêqÁ–üÍÓÉh PÒí´"akía»§vó¬c²ëþ8Ò¯AG0äŸ5A/IPº}‚©_‡ XbïÑBn9¿KhÅžë*p•³,í*[k‚#¶ $Ã(?Yî6h?`Ç$ó¬{pƒ§}4°¶öà€`âÜ!Ÿ®¨ ëªóè…F4eßЪ@uF4nN¬ê§¦•zy`‚§ç(3ÊLX”%²l/Øx¦I†C.uvCÍ€€¶ÎƒÀÇG¦ÿ©&{O»‘’R¥•ä„èÁͼBÕŒSÛ¸,ëækyܪs3}´Bf‡Ú/À»ªdD÷ EbæIÙ9³ ¾Î]ˆúž†)Žr%ù²Äj pûÛnǺê÷6X€´¤‰ÏìxÃdë\g"E¦—A&¾+5’Oéô âÚ›(l\vV<5.·Q‰èˆM{®‘”„µy.ðZ>(M ¿l¿)5áÒ‹~”- ¨º(} ÇÌÓ$‰‘ÐöS“rP‡ÃG£'‹Œ ,xºðîvãÚ*5õ|—›Ð+òOô2 ,+¸˜à…ÚÉkÑÙig§çû®Œ4ýpü©àÎÿŒMaEÏ .!‰Ç"™²Æ9+óö@mÌK&¹ª¡ƒ]q¹Œ¼ìßþHéï\ÁïGª¬éÆU³'Ç4:U”å!¢‰¿F–6óHKrhOˆþÔóM—\¬oÊ[®«^ •íõ-þxI·æFíKÜÉóÖ,-5å 9±@$þO3îݦj°‚"oâ8 ýïËž ‚&½—HW°ö’ûФ´á*¯õ¢fk™¦¿_±å=þ$>àþÎ ,‡ä¦±ÜHT”¨$ 6××¹‡ZâÚ9hùÀ¬ÚyÑ—ÞÒAs¢*êµÈÕ™òyMÙ?_2u4¹¢ÃúÕ™¢¥æ©ÏhwyÕÕ!».̓¦ÇãßeTžæëY <9Ιý(;ø”Ýù¢³Áüë¼Û A=$­í'VµÔmôX®ïŒ¾Ì³2U¾âð”¬(i¡1‡XÎN Û®íè{ãÝ“»e Å^Š ¹T.q^[Ã=¾*9&ÞLªHê^×ÊõÛ­ (^Í“¼B—e—¬Â½¹MYö·ßæQÕ£q+quô ’Ob¤u&ü‚èHú#GÒmŸŽËç2wß«œéo}Õ‡1x´á?¦ávN`)ê9•{ džîûîqϸ˜ªŒwùˆúõ„àTõï1'F'¶áH¢ªÀê«R)0~ž¶ÔIo¨'ôó)%GŒàF–Èädf%«à]±«Í^)½_Õƒáž$œ 5ªÏÑ˾±'¨´Ó*Ìe ¢#¹Ú´·<;)¼e¡p±ÛèCxo“ÿèñœN´\ˆ™h¢,,•/Ü L¢¥oùÙ4CŽšwÒ_IBµl¸áëá`…ã!ц°’)¹ (ó¾—ÛÏNUwy¨C§æ'Íþ ‹ÆÈA$ºÒ¬ wp¸Ößã o`i†ÈFs5=”ô/5½W"9ÔÇ8"\éO³˜òU'ƾ¯Óþ^uo†ámª§PÙéåó9²{¾ïÔ „ëÇ”U‘·X(ÏÁ$‚ÂÐÄŸô“x"ˆÉ$DJ¯8Í ~Qh¹ÏyŠèduvz^…÷šÕÞepô®†Vé)ØürÄ)ØœJà4»c0ÒiQŸ=—ÇM-C”òdÈ‹C‰/BC Q$2N›Ñ`N{‹Ø VíLvß—¢ÈŽôë@nz,“#Æš^é©ÔQk/ŸúÌñÄiš9?Ïx2¬Ïq“7W¿~u#g®e‘>kÁö~E°çvdè6ÍìÂ7ÉTÖ~zеIÏí/\—‹-Ï4vÇçh•Ö'; ËöTEüÐÈæ×SÃ+Ø¥øX˜O÷¯„¾é3Àh>µks/ccáVoImƶ¾7( ‘Uáåì-URøÑÕX2Ösõä-NÓ™ëg†;•Ów-V¾ˆ„5dE²N¬b.hja_&ûPLÌßšÈÀÅò²¤A"½Ë,J± سÿ:@_¢U×o·E®õ(' N;ä™[‚êà¦x¨½êtR3Tó#WNE·•ÆF û­F8µ«‚*^º×³)'$Í7·Æ‘19˜°L‘sx‰—»¢2ÿ ñÅ B*×|A˜,m×ùËa,NêiÂýfå3|±Í½Ì}aØ–ˆé½áòí–VYbàç/VÅíG2DÛ\Nw%šÜÞê$ßÀ/éö¼²áT¿C€y¼ð“è^Ä[Hk“ç†W“:$Åûà ‡Þö[•ü7š‚íKÄ€Ž÷îiIF8•'Fí,@&0[Ëŧ†¦² ‘ßaêÎ¥F$Ê-»òŸË¢ÒT––ÖG%BQ¿*#±Ôzyq‰™+¡Ê$‹S_ñHeð¥ˆÃk- ÿ–ꂎ9•2ƒ9Ïì°Ò[x£6öv^Ž'¡-à I1d}ô¥3¨ŽË,Uà:³®2šõOj «ø–6»TKµFQ¹I¥¦< $pj€;×v›?LÀ§ B})aލ*MfsÃ^h¬—>ÚXž…NîWB¨=ogmƒ2¯ÛO »Ø“X÷9ð+ €T“|ëËYñøÿ³öéb‰¯™‚ MÑdööé‹åO«½sVá©c.å׉!­ï~'ŒÖlœg7t‡¡ª0›,Úø±Ðp®ZG×Õ4ÈFì †Œ{‡\©RV¬D”Bªý~·ðnª2d0¡f“SoÀÎggåÙI¥sG¾½õG;Sx(â¶ÎÕ)~eá³|æ)O!"1G h˜˜LÙEªC¤ýM/77ÿö´ù¥éNàØ}X³¾½kŽŲ=yüêAð¿¢yÏ‚ƒ£)Œ‡lè è ¼Ã¹8öGi[¼M¿ü3*ߪ©Øµàá¡Èè8[–ïÊYrÜ6f‹“ÞŒèôäÚVþh<°Lܯâsæá·‹”zv ay…ŒJÕOJKàb çº}¹„Ïó4Õ¾¨@9p´KVZœ8†¿K€ jo©çv)Bì36ò?ÐÀBØ6q«–z­í„þ[ö\¿µ”=«¹-ÈÇ¡}tÒ-ÅóÓú”}¨ é/MÿäKD_‘1 ¤…ÿn¥«@<¼ÕC*‡Yg2:¸ðWý@HO%ý~‡ƒba—ß³çJýïVÖãPHÅy&)·×ÍÎéáq!U%AK ÇkøÔ㬪«šà°EŽ#†ÓÄs<çñkÕ¾\6˱ΠF8 æ‡I8ñóººÇKns›þªÕ$Dï¿UXzn7î:Œ@D•!ëbˆÔꨱ¿z³ñæÉ>œ~4IE8||p7¬>ÂqChZo5 9`fT¸LFHY3óºŽ ©mgîA€ŽìYÜF7^Æ“£"W†Lj=ýÍ5HˆWó@.Ü£T%ž×eḔ­‹±ÍjRÏ=rÿ¹¥c˜Fö*äfyb£Ê ÈÑ÷ÜIMý(dXDN6kï+£lWM†êäÈÍ–Õ^ßœ{uIptMëÙ—·rï ÍãaP2@ɳ/˜°Fo!ëè#ÃvÄýKÑD /B"ÄÄô%Ý'=<ŽeÝs§A>É“$½ûd¥nêÞ# wg¨Ü×D°1Ž`¯/CTtNNríZÙ¹cpa3÷öJl8!—¢O¶¨wpwÑÖ^ -¶¥£dÚAæÃfêK0 8­ÍË gÙÁ+ïüžñ wÃüoUÇ36ìêö)oZÚîÐ6R¢ô”nŽw€F›ó3®iòîÁ{Càø4jóC w ÕC–½”¢{Eù6tÎjÝI>ƒýjÖ¡öñLÙʱ<,ò#|Ùz›u&Æ<°Øj”9Í­ô‘iE¶ÑË‹Ã^ÿË ð³9¸äŸÄL΋,à¿IOÀ¡iÈ÷1vxºYÇ>²F.Ô‡~H-†UL§+~9gïÈÛRĨÐf^Fá9&´_F5?™‚W,Ä—Æ_P 8 5”Ó~Äâ\¬lAÐf¦üS½¼¾Q´Ÿ½ÍÜèDï#õã³y@^$PÌ*»Ÿ(¹Ëºqઃ¶×L,¦RBqÏ¢^[ %üOh¦ç•ú™Éà¬äß¡h\ýÔV3ØôjËœŠØÈ—Cðxn`"sQó^žøqSëØq`éÚVu¼†,›X|妨ðUŠÐ=q÷UQ$=¾ Y kôXÓr ›Sþ D×K¶ \•UidVß`7yNçh’CÖ~øé’]Й'oÆ—ªšgzTöIZêO«;®7—û3âåÑiþu›æ¥— BXEmuØÒo¥T2‚òölGÔ˜À@kï 0æA„Ær ±ÌªR«‚…~Qµ7 ‹ìÞŸ&ι߹çj¸‚½DÔªä E L¦={M}¶òÄ–jýI‚ƒÝ1AÌÓÍj[Musf-¬o;·,\ý¢a’"w¹MÊS‰7étBb—p+@;"½>}³zy"´}I7àÝ‚¦¬ÈpcÇŠ)Èm3ÁTÇ`G"1½O‡û©…n5ԄƳïòÜ:ÂwÀâ‰4qýŒ`øS¤RÄü+øBÍ[,h6=3Vä¡X©=¥`·7V:ç0˜™àòæ& TrwȬBîÕ·æÀBNqÇe†´?$¹¬J%áŽKËâ6êE"=h"ñáO*ï«kNkUï—"¾¹ Ù‡½Ä|:¾zŒæo±´2xò Í¡¬¼†Åœ5>+GoEËü{7°ж£“ÿ Ì€Œ¸ˆ3/n:¥ª¬žÒKô¶f ‹ ekM¢ P4›" –ÇÊ#§—è.ž¼çeôKX~½wêP”É[±Ë\Ë^!К"ByYqM„q÷9Gáã<­áÝðα›³IÌqñ­Ÿ©гi/Ïî[êk®tšñ°T"ÂéÿüÑØ„y¦øÂ)OÁî>¦ÿôÚœr19äé ÎÕš¨P|½ŸñOI"°´ãÒ̇o9›)ºýxÉW`šFÊ] Jö^³ÒLü·ô}&ñí?ª¤Â¿ð!Hʬ?“¾Vmû¬ù;Æ$®1À”ðÕsÿ¯¹®š»‰'OO7?7ò4«g€³Ó´3]HÝòAHÍ¡nn¨w’õKˆá‹KÅÇÄ^ÜLöÜ3?c:_Ù¢BüÁDGm¡y¡A¥;uJgèÌÉàÅd”õnæd ˜8.ûpsZ‰Æ6 øâP¯#úå\¡éQŠ!XÜk¨9àA›B¼¯ÝyXK³Þ‹§‡¯Ø²ñ¤¢é?þ¢ªg19±sŽøøƒ -“ «ÂÇ.ÅñcÈ¥®ÍáÓí?êa´ô·¹!í층»›åsí|7¡ñ’¯Ü( ÀÛðÚºû…@4óqÒßñÛø:ؼ–Æ)á8›c·Ž¡p*EÒAæD Rf)©%e•ÂÝuAÿ†€ûœ·5ª÷ñÏˬýõªÙMû]èuÊ“S™€û®ÀV/—€ÑHK÷°^¡®–ÞpmúnòBF§pg,æôúwö¤i†ÄØ7aQ0ÜÉã)KÖþÙsu/åÛi‡°ý¯À¹Wy_ƒA‰ 2ðÕ«¦'ÜÐèÃÁ†¦õÂÜ)Cw<*yñp¥77H,³Å ¼äôqÏòZGPCjÞcšÄñ¾Üsi%òÙ<¥ˆ²ëa$Ó‘x쵃å‚öE ÷xdÉ*ÊM·†…å M˜AE 5;b) e†:òý¹g[òBÂþx1 [RÁÌǰíá4Ÿ+JÝBŽ®íp? {§`¹ä@þN%g×}(ÒwÅæ #º¢m¹b;„§”´ß–.¼¾æcÚ»v#´éÍרZ84J4/$W“å ݳ>©ƒH‡yŸ ½€}_[¢]Kä¡gKæp;1ãÞOh"ým)k9ç6L¾Á.Aí’Š¸“¤)q—å ~P:n•Þ“#ôËùa¯Y, ¯Ì¥áFš¥š_•²<Œð·,¤ÑÉR‘ïQ‚0âðËQ¶$/ÒA½?ÇVK,Ô…NÈÈÚëdQ×áï8–pÊÉ·¿0ªzÉV‡(¥4lD@ x-uEÂ4×§®¿•ÏÞ‰È t¼µG«£ui)FP˜s +¥z@ãË+ù•Ôõ‰Ã‡–ÉÂE𜴠•/(….)DÅë%Û6Y&›%ÚÄ%ìÄ# òÔ1¼õåbW’ϯ†o¶A–W¾ÕNH?c†3ÏBIJé7 Àèo <ö+ÕèكϑO‡ •lÕªÜ_¾Ã~•pÚûß*í‚‚¹y,æ4$ ø]ÇòxŠ©ÙæHÓÆS?éf–‹>mA³“Y26yBɉ¾GœØŽÆê,»¼.ýhÆרµ2™šoÐßÚI)ú•ì,Kâ˜âIzÔÝû¶¡Q…¼v¢Õßûõ ÎzFƒbSÞ$ž'XôpQ€ËÕ˜BCTr­ òéAX—Ê·ÍFÛh‡Þ‘3†ÍbcÝ ŸW¬œÓeg­Ejs&¢’ÖÓ¢}ð,|Òc‘m_¡Jþ XÍæ<¨>¸G)жRÐFñø˜ÚŽâ‘и6l£õùýè° 4Ú„Š×˜SR#ԧм‹7:¨8Ì÷uÙãk 4M›Ø¹¹µ¿ižIþƒˆ[kº$;VµoÁ£oAr•È1ñа1ü´˜š&%‘+†˜¡‹8kg”DLóø—á€J‰ríU¸n¾ &ËÇ,ê®å½¸ùï7ô5Žq-…övßÄM;ÿ·~ü…3Y͵‹£K ê¶GÏýå™yyašãš§D)_YÕl¸Ì¬—KEÄ´|¾ÊßyqÀÿM¿"h%ªº[ ª¯ +¨ÅBò2_kcðO ã{puÚ‡6c‡]m•D?®‹y‰ ]ò©”ûÙ_˜ÉÅ\LÅioƒÿ¿Ð1ÞÖûÿwÑï÷w¬ñcƒã‡ï©ÊF…•{!¯½w“^…Ø yêF#Ï&9#ŒæÏ!†»2¢&0»’Mzq*êC·¥KNZ— ‘f´ä½fF*ÅÒ!—y[S…Û×øñÍðê—6ŽØüÓàLæ,I8â«Ý^ÑIOÞ•åÍonÀ=Ž%•5»¿r†ÐýÞþö4òÔñT³ÂÄõÞêIi’ê­MüÞ}ú{û³ÂJkñÞ¯„[Ñ6Ñ—Ó1Q?)ãš™äþ„­[.œg<4”64Īš¤†¨…Õ´~P½Léß’eæu¼q?àO“ ž1bS½Œ]V°m²NECÒ°-¦3Ñq·M§ØÐ}9]°œ—‰ÇM<1gLD¹{>`Vƒ•¬~°ÊBÛùE£jŒ-ƒ£+ØA3©æÈLX¡F|ý±”­÷[ÌŽÜf•ôíS |µùiX|ùäejÁ¿Äj»áŒÌ3ò‰ 3k}¯±•ÇäÚrÜ´ÁÕˆr«2GwÐNûϤãâ3àŽûÁ0Fvé¹Ï>>Ô¿ð샵Ïg·}¼Ñ.‚˜ƒ?“¾êû[_„Ym=ÖõRŸ4ÐC¼@-B%z,{ðæ™­©Æ—ºÊL ŠÔÊÙ•Gæ?ù¿" Ýd#2sÌ#ç§aÒ4ËõÇíD›XQþyt€¨9àÒ‚_$©³rÅãµAZq× Ý¤°¤vùŸºkˇ‘$a€[TZ²aË‘ä¿.œ˜€ÔY¼Ýnê ÅeoªªÌA SPl.Á“yIÁ- :—÷/ÁÉ`!u?¤c,QéµêQÌͼ!}Žr[Àä= p¸¶J(¶¦w¿oV_àŠ{k­ hòÞwa¾Ð?vÞ'D6gµH9æ¨S_Pã•ÃåjÎÄF0šäGU§†-i'uøY¯jÜù‡ >µ lÁVÆ›¿‰Y\åª(¬Ƙ—…ßUÞþ½:vMé—Z8qs¹ú‹ß4i D0ˆëã ©.‰p÷NöûHTšH— ˜šS½ʓ؆Äu3–=MI@!Ó.¤ƒ£Úc©7ЖÌBm YÞœh¬¢0®”Â3äýá›¶BHÿ™‰\ñ^ãü©Pù´ÌgÑ;“OÆ÷ûcç5ŠÖÙ3›6U·QH¿(†åÛ€EÌiWB§ù€hȤ€Î~XWVß7·a8Šž—P&X ÍÇ{n¥#ˆfP×F–þ9ù¼&s¬ðã¾-˜‘›y™„±%~2œ$‰ûÑ|ÖÖ$vOT½žŽ/ÑVæfOÀ…Ÿ*F-iš)Wªb¯¶± íbf5õÕþ ¿¿·S'Þ`€ïY-+Qdƒ‡/¤ôTÊŒf UEŠÖGÏëñ|»QÿÖ¦D%äôàü”ˆC#qqÇãu§Ý³$g(+à ‹·Ëðlí±úÑ\ñ…r'‰rž}¾ßlhçŸåÅ )ü€-…0ÿyáÉZð¢–ÉjÀŒ¥Ù}ÌÛ&†ú&ƒY’òÂME ¾М—½n‹RæOçà?)œ¦-óX¹RÜ4å’ÚDc ‡ ß ¦oûo._"ØÝׄìêh¸f®©!’) SÒ ´ùŽäZá`ƒËèm3Ç»ê{#Ô/·Ì†T ©ñS< y¦žÎŒTVˆ¤ü³4Æ´Z²m¥‡ŒǺH{öY…„N‹.àÏ­ÃT6_þï^Щ^Ñžì´fμqOŸ*wãçó1CZAÒ ú²*ª ë #=,hH«“lj"ëÌ o`¼÷UÍšLqþ-,qÕ°}Þ$­ìL[=€UCó¬·‹3˜.ð òpü>ï°kz-°™ú³u½Ël&{>ŒÉ6?Butϼ\)Ý»ÁÐ5p3ëvF ÐEðæ‹0àß½ì U8ő˽¹¾êÌ]á‚\A+‰ k‹= }°dMÍ\o 1OÆT™\˜KJZ˜;gÕ›$–&6, QÎbÂÊ|&ˆMæc”¾-œu§0¤{:zOw’jCnþ°¯WÄ8ÏH>-õ^¡5L0ßH¾ð ÆE®ÿbÖ y˜Pèi†G ,|r 3â:åÛ­âRƒÏÅt$rUº6ëúұ쮛°Ä@1ÞNÓe*¨¬‚m{(ð vJx\t©UÒÛê掽.w AшTîºm02ðöfùhšÆ*J)½2gÿÒŒóÆï‡¾¶\„”DL”0”ÎI}X¹èpÛ|01éÎÑ•Óc3ÓΚbƒyhZæbÔ¨à~dOÿÂÞ®ñËú!û³M¬¥fO7yËqØ!ìpùosj/_N¹Nûqu aRØÛ\BÕK|5‰Ù¦{ÃùÜ¥JlÓ#W]®7³¤ ÙpÌádÎ|Äê ¯ãè<¹ÃN$ 0ðòm™-öN:BÞ¨½ÇâJ*¡”¤š/´˜•íxËݬ–¾];7% >+y!K^¿—¨Ÿ3åˆ<²@`Så¤e±n¾Ãp1n/G·¬c1ÄUeVàI fͱ©T²Ó5+m£wˆú!Îùåîç$¯’’@”ëà¤#ãi 8ôc‰»È€!eæoœrØ ô;{f°M£øÔÌ « Ÿ{} 0·‘È2ŒPŸX<µ.ÿ§pмÌéÑ‘©WèϤwÓD¦m¸«NÁdчæ‡@™+‘y]ów8PbážJW˜à†«3¨ü°QVÝIÌo”Ž÷'sÖˆ˜²L²T‹m­ìó8žÏ,CÉ6_…ˆ3Ç¢~²o&.@‚5%“4‹ëψœŽmÞ‹¸ë+¡t7bÖ‘çHk_ÙL߈]õ¹?uäûÆ„à˜ˆõóW gˆX0¶½lwKSè÷ºgX’…±ƒý¾äæ¡ó¥®¨5ÎaT" ¹«µ àÖÑÔ2X3Xy÷«ÅüC· ~¡÷,ÌIù’ÞÔÉUybTÑ8Dãc©.å+}™$£4ÍÖQß¼)–Û~Lry¶C¶Î%{«åÈÊécçïÄ›øÓNéì #³†ÝÅT~‡bk…ž«~•¥y –@ÿ“­¾‚ƒì63ØL-ÓƒŒ±É1’ñ"Kñ¹wPn^ðfq”c€ÝÌ’ŒE.3œc5Ü Ù‡6ØÁA>F]þK™`Ÿ9®~wÍEM_®è¶cKÏ C€Lði„êdÙ³Gˆɵ+##ÕM]aiÍá§iá µÿ›°Õ3¬QMk‰_1ùãÖ©³2wšøÖŽªâ¡Sä¢ô¾Ø’/$by—íöœøÑ@R0a¢i0Æç¦ájÓ˜öU*¯dÏm5Â!¾½îÍ“’q8« ?ä¯d®uäyÞd'e3üñ|BðÞÐS«ÎÏD{èš®EÉ)¡‰sÕjJ³ÕÆ[݇jº™#ÃÛ'âi@TÞÁ¿…Œ»Ã:zoÅçñ{g•Æ%Ò;MJ+Ñ*²a=æ—ËPë‹?Ý•¾rˆ±ó†s°[ýßMDd5º°,®NHmˆÇ¡â…삯΂„»u1ðg1 ›Í¼Oø…l[OÓŽÀÝŸ/+g>ìþœS“<çÃÂÆÕÃë¦ïâÓ’0Vެ€¬Æ›È3__S5ìVíÄéò·ª]‰ÃÕóU©h”Yé ØÚ™ÞÁ)ÈéˆG/íÛ$td¾¬ÔãàÒ2ÐO_^!n »[wšÂsÿpL°àš¤í%‡¹äó­áä9ba0òyRÒ‘ø`ÛE¹¢IBJã4ÚýÂKâ¹Ø#À†]%¨öÖƒ-þ©ÿçåw€iºxŸíñ½iÌC¸•èJ<«{ç*pV¶•ÝÇ$`_|UMÓb³«œ.Ù½äã”i‚lˆ~ÀÅf„^‰Õ°lÖkí\(¦ÿŸ >Çt&E§[ç=hw©1¤Ü[‹öÀd™ lŸóÂtüÝ]àà0_Y,h…nS´Ý=N³Í—M@7o|Ž‚ÊƒŒÐÁhèò=¯á©ÌAbA¦ˆÕãª\­¡›YæéÃ6µ]„”c<¥5êTrµy…a5‘š€ÛH*‚QV-ù×s)4Ø; ãêXRyPÄ=ëÄ‚¾eSý,uX¡÷V’!OˆžJëùu2Ý3‚u~ -ýñêÚ ¿‘‡ØÑû 7R·Ã÷¨ ƒß§{ü,LN-nðp³¼¹¢Z°þÄ$mÁº&ÉÛºfá1cV®Ç&ª…W@_»½Ë^]mÚ7m·0ã/Uj[ÏÓ ýe(ª$ãÎÛ»¡wηÈV_rš~ưTÎëSÖƒ dnM;çvX\áJlv±Ã©Š‚gvÕý6}\eëXÖ8žÚG¼×ënÊÝeßHܲ_† +¡}¢¾¦7™ÇJÜ~î“òÁ°¤2ñ‡ë¤ýE”#ý«]ƒ‚ŠYDˆ‡Ò ÚŒñÞÈ-Ä’ßé>dpç'XHË|<¡ +Ábùßø‘H_›ó^Z %Ë?*–ÖšX0oq.ùL”15×;¯yãË¢=¥2i—6·\"`ÂaZï ¾’¥¼@ÅËE–AU¨Š L>IåÂ,ƒ;Æ °²e±isCf2F±Y´`ÕêtøãÎÖÄEBVx6‹ý EÑb5/ ÖˆèÕ~·üñš±¬!RZwMÂL–j$J`›¤œõ~ŠÂ*w>g‡!{3[üåÕnÂO¼îÊžÇ, ¡ø™;sðª {Û-õÜ„ýÿdÆË@¦¦ *T^àÏT­ví¦ ÈÊí#·Šõ!™㓟Ω©ã,MÃ|ˆqŠ’†E™K¸C/Âß¿÷ÂÛÏ‘1ÈöOß1 ãÄ^ˆeÕ‡ cqêQÐ>œ"¶Zo.ë¹—[Í|VÈ,8!/ü]A IÑæŠ3áôêSœiÑI ¤îÖ" ïÕ PÞM╃§ËèÄÓÿÅÃX?e“D^°eÙÕ‘ŠÞ:Z†Ñ¶N‡X$Ñ´:ü…àÑJµ¹!f9z•Aï9õñlÂÔ1Væ]ªphQ`n¡Ø²ssAkƒzf ÃuzÞÙïâÖ<ÈmÓ£!ãLŽrk½ã›u÷“ERæ…Ïï¨8o”‚•™Ý+Îñ&‚¦jü‰8¶B´r›5ƒD… ¿ƒ¶É‘ŸM«êeK¼XjâÔ<ƳU©ú¢!Š@îrÖeŠèÑç~³w¸ê㊚äÒuQôE®´gš›báEæ]Îû‚Iæ½7µ™µy,¦ÏÍÃtÍù¼´4({IæôÔàx S’àäÈY´›Y pØï~ÚÿA<â…„ø[4eþÝ$ô¤ãb쯗ªø©òÚÛ’f±á¨ ÅÒËŒGšÄÑ‹¾™…%¼¨×ÛDšzv½`ÊFÑ?«¨)MêÁˆ¡ º•&ÅÍ-:jË©Û(5¶u‚qþ†Ú k«ª dm#6ÝŽûÅÊÕ¾¦vBÙ|9;¢JÉ–µ§›¼x5³%[-T)¯߃Ì3é¼]ésõîdlªÌ !U³ºò¾*@bÍàØû©Ò¼Õ]e€.r<¡kö);ÑÏ8†)Å’PŸØÐdŽ¡xÓ|Ð÷P‹HMx~ηp2‹ˆ®ãÉï·÷lÏŸ|øìfëƒÄ¹,Íê£)ÑdŒR<[>z¾•jù(qßZÆ/¼þ(D<¤G4KÝ‘ o^Oûú… ˜uÏÈžyQäÂÒ›9êØ+Yµ'Åäð¿.yvxhœŠ >8˜øÁYDå*”Ý “„¶0¤Ü߸:‚Im¢‰]L_lÉtÀ¥']“2 G2ý•#wååjòtj÷{Ã{iÁÄ5z¥X(ÈM Œ•®-;¼üfÇÎãúV7BY˜Ê;LT×?nÆR®}uèÎÒíÆ&NÊD˜6ñÔ|dÒÉ`åÒ `ü˪àŸ‘Rˆ(¡^‘ñ3m¹ÃpCwuŽ1‘[u57Éý#iD-5„ì_ÎÓ9IÐJ«©Ý¯"‚C³Ö€„³»+ ÔP 13ïu¯Ò]Ð|¯Õ3¼±ö–ÌsægHƒ¢e÷[&ô󵙯” Z~½_“Kÿxhë†B=g Dø7-`Ýër²äFöTðˆu,0ÛÂPT‘"—]ú*ñLj"Z:IÈ-³>³¾Q¥Þ¸ƒ§êÓ ½û¯%™ÈÍóМQó X `Ë?¥I>Ž ŸØV1¬E¥³”§;Ähí°®Ôø:5÷÷Aš®$C¨ÎnŸÒ‰=ãâü“l6TÛ¨Ù´u«e@Dqï3c›Pwm÷ÂMÎîBÇ©‹Xû— –˜"…J àõ¾¿šýS‘Ž/‰÷Qõ H-s#lZÓTš ¥4qVÉÕõ d¤ÉÄ…åYÓkh1iW£ò¥o¿4 KÛƒ,l§‹¢‡¯å‰æÙ7µ?×½ÆYÑG‘„ü–ÏuÏ{éô-{ÆÝÒ¸G†ºHdçEÔr="oMy©yÚ>µ W>§»xjýÓª®†_°ªiò­ý"œ¿•ë3®OÙ… Ôži©¦”ß—VôïM– šø=úX–y×^ à XWû Ƙ†5†T¬ (üÌá'Z>bQhVJù0YÞ0#zy<óœ5[E#À#€PÒ³ Ž‚üMr*Çé¨oŸÔOèÔ}::GdïbT@Ÿv~¹aÉ¥ÕñzúÖav»|ÒÎS³ä‹É÷ZÖ$¨D‹ /ÔOžÈÇzj åŽ=¤# F_Y•ÈP­¯=¯cµVdæ€92.Ò#±é¿f¬›<ÏOþ#úâ1Nƒ 4[„&BŽiºÄ]èaðeâºÈ Ž+ â÷»á1lÈQ>vw[X“ÊŽë+  YGÄh‰ŸÞ˜~û˜°’gB¨»r^GªHHÊ»<8Š}¡{qò’WÑAXby¥)Ç%g¹ÄÞ‹X%„GæGœÛÌ]Èÿ¤Å:zÅRpšØ0f¾@€†Ý¥o‘Œ’´±Mô´|¸ î|74…)íÌø°>s ÂuÈ$7÷*&~¾ºtïô!Ïùú‰j¶öŸ‚­”Ñ5Ÿ,® ?Ö3QØ2> Ãøi¿€GüŒÑY1¦NdŠNs½"°#‚‡b Ý/ì½Ø’/¯½ÍHR_ùÞÔé¯þŸ/1ηD°¥9Ã_¿SIí ¤éhBS³ æ·&–ÿ(QØz…èTæ’Û '6F8c‚áÞIªÆyO Þ×&ì§·²À©]ö¼W\q|}ˆÝ2šš’7{N«k:š5W@ÙøÙæŽ¨°8@ Ýh ‡Ípv‹u/B.iÈS-HXý(±?'$»Šú¨ñÝJîœ|ÕK5Ï¡Ö*ñ…4Q’ðüÇÈú Na¿kü Ö”ÓÔ•ú¥Å'VA})Ù! žþ]@–ŽŽ‘£$óÃS>{Yl’ ”IXÎü)¬w‰ùp¬}‘~±q ,wC}™®›¥&:¶C®Î­˜é5÷t™%gÓë˜ÉåH‘ õK!GK½Hí'“)C½á «ÚDf¢Aᣳ5r Á(Ý%P醌ëƒ=ˆFA8Kª8Øõë¢/À7ÝÙ†âûÔÛÿw`DœRÚö>ð–7$6^¡…|™ñuhÖÏA¦‡S7 /‚Ãv-•"ìš/2ÏV¶v“®ÎªáÖ=)é¨vµ²œ“".Áá/¸ÀÄ—÷í# G_Ì`Ó-,Z¿Ô4‘b¬1˜CöIµ_¶‚Ž#­îr…¼¯#Ö\º0‹Ä+/S­˜z2­oÚ°ûJóñ$XçB05éðïÊïn!å§¥¯XÞ'ž†}·mhvÙ²‚­ØÆîM°Ýµ›­ºZ´õ.>ˆ"w sUè²y¤š—#»cw>ë[iCÛ…ídø<ÂÊæ$9Õ¸åTæ”væƒî$8âY}`8%øÃCÉùâÕ:ßÿ^‘„änÌÍš]ÂÇô³ì5{¼ò£M8;rJÏA*`Õâ7Iž]Û61]2Ê+ç>á83iS˴룓,fìq´ŠÀ COo•‡d4_7ÛöëŒN]öjΣx›‚²ÆtRsBªoÓ„Ó¡)B— —!ŽÅýö]?šx&¯KÌ¡«–™¦J  µy²W•Ê¥Ÿhl!ªMu_±ÓEÙ…ënM? TvyñÓ¿µà Ù¦äBÇšÚ¢Id™K‹ïL4~±¾VìæáóCØ«¶ Ƶ¿¶ŠBË)=Ççõ^•A]0? I¯ÆíÅ×Ђ7©8Ç$fãÃt?R“‘úQs$14L- nG9zW5›=\d3ˆ÷BíP9ô_-sû¿m( GBÛ''Rľ¸wâ.ݲ(å)®Õ½çCšP”%<º)xªÈšÐŸn² dÌíIíc*«ÏH‡ò.j~šoŒö°Ó¿åo=K÷^7Bñð .°Ôrµ mìu‚ÿ>œºlyeÓžd6ÚñbïÌL;2™8$C&ÈoàûDþàMýüÔÃUlüƒât©Í‘çÑe¦ +ÿ¨(#ÓB15èfn Ú— GþI+e¹Ä».Š5v»ttlj„c‰Ù^ ºr F`*doÛb!ŒÍÊ_ùœÓ¨–'€*Ø´Ì÷-àécŠÖéWLR‡žÍcoãÙÈ£«Éeh,pz*†üÇýXù¬Ñ6¹ËL1:aô¤‡íÉE\Áì›M3RÊIí·B¶ÖõÁWm ¬ ÍÝûÇËïø4_E‚ÅC¨ì”WæÍ-wlŠ%ØÍíz»-DšR´À*Œú]"¸ý9z¶\Š6Ïñ˜o}Þd“´Únnò§a£T´ô´úqÊR€²Ž÷WGùÔC…Éïs=±öoüŸ’›$ˆ¤jaEõHÔ“èÈqd¿Íž3ñ¢QËÞEk‹gÕ6.>"å¦÷EªB«ËÎõ´­*2ê<ެ†çÖÕ«Áî%l¨¬×äÛ‘â€ã(`<ø°GßÊL3sî÷«Í  ¸–‹ê-X»¤Ö]«t/¯Fg¼1Ö©©'eyå}Í’íVl 43wZîCòÄwý*Þz×ufçiZžeê‚a}½–†Uó@˜pïÞݽ%Xd­¯M‰Gbð¢S¢¬Ð‹"{ô–Ùm „ùKôÎ^}d5Ÿi‚†ËuÔ×QÈÄ[,ô˜~ úü ΊY €¯¬’ô¯ýFE˜žÜø’ZL¬Õ}­Ššô'E<êÎ^Ú½·>­iñ:Á"a¾jôÔ@ÏT^ì”h¸ÈßGÀ<^3¬yB`ûV¯åöWÅ>·Q§…ûÞkŒ4JðŸ§àc¢ýtë…Ø†.ÁÀÑ R§œh[ÕüŽ«ïIég¶%úžDPø9 —²´¼–q´l"ªÆÜ½ßbOÜ ³7‘d(pÙ+Ûÿš³…‚ÝÈbLÜëÒ§£1ADÖ6=šF¢ß€;û-s(KÚUÒq&p¢›Ç]a' ¸G(tM9d>R$ˆJd^n%l›¸Äs]÷x»õ˜œ]¶ë§Mœlú>»mž>Õp @óð¥òŠ7¶.‡b¡.¬ñúáhÈߘ.íA×Ñ; ”#[k;ãbˆíØX+x«Ë)º{¡ºìì#Е ¯ùÓ¹[á‡VG›k´»]í *?`Òl§È²#©ïò,(Í!8‹Ìå¾'¶²¬œî‡­‹’ë o»w7tFÎüDÖ«bu™ tîxD%ñî%€4$F+#‘$Ê€˜sŠª¡£Ï6–öüÔMÉwPtºr;ÓvÓôö4W $w­nZ ¶fµmgÕsNnȯ ®×“³Ž·ñ¼Ké.õð›m¢ÍM!…;l˜Í¸×cìÈ Ù•îÉöÓÞò"àÒDÙ¡éh ždú¸zjšš©ËXKÊ•Þ~2T¹tÅIÉHÑê»:á/Vÿ³æe©–iaΜËqœŒÁr³uMºœhj8‘DÆGÑA£÷[¶ÈIK¥{Üê i»çƒÆ$ʧÒÞa«'ƒCJ:krÕ{©Ÿ;Jv¢$Ó®YWeBɾèïƒÓ¶8p$V²¦/‚-qW7Ÿ[?WNÙuºª¼>ø!BÚ~»*4GQEÔ‡³¾&’P4j࡞®¨*(ýN-¶Môu¨Ç%CQ’iÊ'HC™}Aøa£#2s¡ìÂ3Z²Ï‘Wš™Ê¸Ý(5VrBê¤2û*Ç~3ŽkÖk‡1rn^múÕWè;””{ýÕ8³CVžþžu<6<°Ž.C°^ÏR<¨fUS&×°´éßE8.°8&«HXèzMüÝÎ.&7ÿõds~8/Dl™õ‰­Êž#Äæý0oáðRÙ Bƒ´4Šü8L>¹QxÛQM è@¦ŸÔ @e£‘½“ú~”å÷dWû!žáj‡¬×‰øùC¨‹ØÉ6z€íœh£–œƒ.2¬½Ä¸UQš¯Uk!ØS#fŒL„=¥§\šV;¹Žó6Ö’«Ç©B6@Høèãú3Õ°É!šÐý4ïåB²kO|é:nN‘CrÁEÆó{g—7Üe„1.´Ì=bp}Òo/ïì`üi/6äÂè̯„òŽu«d}!-þ”›a’?øêÛŽJ˜ÃME/;;åØñ›ÎôÛ£ µVâb¨©8üÏ].5þPÙý”Ûô O3†¡ +qTM¿núH™ƒ F"ŸKv§šaH;‡þKËËURu‰˜ïUÿ4œÜêĆNŸõ¨òÊQIqp#t>Î~CC–ñæ€ê·Îµw^a¶ Ÿ%Òl:ÉÀ…ž¼;G$/öÉ©ð×I_ ii×µøÑŽæ… QtI]Ó¤Jr-^Ëçó5µM¼1º1¼î« ÃT®—zØP?[ÖÓ¦í <V¶íu×× pÄ·ÇÄlá*QD½ý]—Q‘÷Ú(ÃÅŽØÌLò ¼h0E«ãñ?£æ.€0Ðlcʳë6^Ï%¶wüUêsŒq‚íNHÅ÷U™=Ø8㪄LcQ”˜¬ÖI¼êç‚ÀxCNäÈn*¥~öè¿-¢ÈQ•z{F~ŽU{(ð¨Å¡º!Ò¹ç2ÔºA£#œsÊF(—fÇ`]="I%Ãähã|¼ugΰa,Tãiœ¯™Ã~þåy‘@³Û[¸’x®‚#æÖqâ'­¨:â}u;æsÅMRl/_˜FbþPãÇCO<~3)Ò´áýäòX’²RHT¤Ðüóuð1ت” o'i±Âu;ÒþÙlw4‡(^áøÔÏPõúøÌË?ºˆìÁøž.„äN0Ñ6 Úzâ†*]¶7÷Þ›œÆB“¾|† ¶Ôß ¬ˆk¯Y°³“ªùˆ—pK(v‚$~zcWBP¾Ý4mäátá‹n°x+3ádø8b@Ïÿšì×í%éV`”WŸù¶÷ i¸rN˜Ë´ßÛú3â€rã1Õt¦è—˨Ty#5üðÚl¥oŒOöd`oàÕ:nýù³^jã°€×”×gO ¸Ë«­’œ‚ÆLá׈ij«¶lô¼?3׬„Òû5šd±9bÅ<“ñ3«¥fÅ—Í›þœßâ³®ÎÌC™{øk*™=þZ½yç–! @u¯‘a#`9®ÍÜu90Hcó ¦h‰µ°§níîΦJOˆN/Q4$ rT>NDxb3Œ÷äõÛ‚ú îõjyøØý‡Øá™p›ùÿ½â-ºn£b¤ ´ÀHaRË£y³­¦Îç–M?wö×üçÁj¤(;©—G˜A‰çjäi˜)$‡ ø¯?]¾Î?€ß*ŸI8«²pççN靿£6ѽVºÅŽ›/E€ss´]Ój| ¡>œQC'7ü@Ùó,ðCYÍN€rI¦G‹lŒ$Á}˜Í@S™!!b£ƒªL´U§ˆö'P˜Õ–’QÂ{²0Í„gè¾sÜóç¥5›áôºÓCwOØ?›OE6Üñžgª8¯“ÀŠFG¹#§»(°[›Å”)¢Q²’Ò-~M­îX1|KòSña=eÏíæ ó¯£[¼˜dD{e¡éÁótõÿ+¿”~±¹6'O6°×±Ô™%Ò0!"nï¾ ³jovž,&øÄ ¬ûÞ`ó'²†N{ÐØ»ÝBb¨"'pzÊ™ú• ì ÂÀÓÇ­‡²¿ cö^ÊKá¿?Ÿ¼_A/]*_¹cÆÀ¡gÕÛŒ—÷‚)ÔÓ,µñaž²O1µ#é4p­LKé0 ÓvÜï†÷H¸hàâg-TŽøÍ¯¾xŠ[p °:\²D×Б&¤´‚¡ßüµ@• pèGìv:IâëpŒû`tG$–ÞqãûEãSržhVkƒ‹$†töµ*颿ÿÈn\´;Ç„„pP°Båý¥ ÖŒL\•fýÂÛŽDF þp²v>OwåÏÞî½ã{umË09Óæì‰5ýŽéj”ÓÇXÖ7óµÅÓ×4™J7;½F[Ž—¯p'7––?²0¿¬ÿíñ°0Ö—{Pf°“)¸êIòâo >qŒV‡;‚S>-Ê]¿Ëo•EÎC5u$<ë($‹ < ÞÓVØw¬–v“×/ÿí7H¼eøìçö98í=};¥N4Ö#¾t²ðpRVî r›š:ËÄ<”OÇ'ÝqfêUÌc–µIؤ›)Q~ùˆ0w¸^>V^ !&›@¤¡ ý¾ŽÆÙ™>ë½y›K¿Ò1òå¾å¨iQX¦<ã“Ì´Olâõ¼ˆ3|úz= ¸(é²Ì©µs@9‹œ}¿I+,éfÄåö;YFã‚§FŠÃ’Íàœoïw1óÌG"@‹§’«99ËùðX§’ÀÐFùíaÜ©œ\ÿþ@ÂdÔzÄ¡™pŽliP®ÿă腞¼Ôö—íß/'þªBXC#‚ÀE¾BúÂÓ™ï0¼Jãî Ñ¥j]xÞ(AlÑT“³!ûV`'Ë:¨ü/ÚB £œ!Ê\è™­r¸ C@V¨µ€Ñú1"ÄhܺBAÛ3|Ҋ㪺ŽÀº»£O•¶ÁID¦¦´dÎsǹØ×ÆWYœNʱ >Â_V¦y_ßu8æÂªó 4µG€¼ :stŸbhÌx'êÓÍ¢|«–2ãÓ¶Ï àxÒÄüú¼È~̇5ð~ À;§ü8`nEv;ì:¼4Æý× ]`ŽÉ2ÿ«XŸJ[çrn>«`:í¢œ'(É#NЭónòŠÑ/2ZYN?—ÚáKRÂ4ï)¦š#fl»ðCJ~r#5áMà,]zßmÙ *VþȰxUˆý*¬Õ¼Ótûöˆù-x“J•þܾp¼uAss& jñÓˆ}´Ä:vÁ[`„äSúd¤ûqÊNÞ°Þ‘Õû9/[ƒ>ez¬QZ^ª¨e“õrÕ XHÚD{ˆþe‹/úÀÖº»¶Ã?BéÚNü„KÝßsŒFGdõ+ór1ÎÀQ1åi³é¹Û–È'§¡8Œêªæt˜yƬžÅ2g¹ð`ȉó~L³ÿ2ÙK ƒùކ„ Q3§ç Ú‰)_2 qlíÔ¬‹õ©XÉGÇux A¼u.š“ì„ðùÞ&:…Y»å%dõ Y›!~Åfz¹ý·‚ãÉÿé©÷7xóû ýðÆX‘(q©L4VœhÃhÓîg˜ê©À®«ÉÇCcÏð¤`_ýOsLH<íª­ß½è¶þ“Hˆ=ž´l SsÁê¿Ù¯Z»ïI®Ë‰<Î<ùô[/† %V÷P¹A.Ffù,‰_çŠíÒkÈ*™Á0FuÕôÐAXÞ1w-º7Kv\Ód°#û éÆL>Œrá!Aíuz5ýAøè¼ùuêÏÈŠ)Y´…:å:ñÔì$Ù{ˆ)(`䍨 ¸i¬N-ÈôŽ…=¤é)q¾ôÄ»³÷PG-ó:H °í[ÏÌÉqIŽ›W‰¡d:êzÍbºCå䳨‹÷z!û)<û¿€ä‘Nè33‹æéh7æœ"j:εâçr<Ów¯6´yYÔwäYÄT ,“Uw¢Sê#½.} Üò-¢K0%3.B,ºGäÎÔ¸ú®Óœ ;ã3yæW¨ñ+ÝžT±KØ‘^`‡ˆè{4µ”œO܉hÁ¶A\§iÈŠ„ØÈL.säc 1Ýäù“k^ê þçá¾7*>îÜ€Ÿ¡4‰ºd&s”ãU4„}Z„wÿ2Xkò]þ”èÂÉOK¥hÒˆ˜p"ž5½pýªwÔ;Á¼<ÿUîåF˜P:ªÍVÔF”D´‡Cnv®(:öªÎ@ɜϊ]Mÿ]¡Œ`*àFdKDÌ7sKÆ™ß6½´'Ü/wç&“’YßœsXrf=È•ø\øwP›h× YÒanŒ: Ÿ¿ˆËZê|*0 G`þέ¡Ñž'“\HÏ4æØhŸ¸¥Ïa£j|òV É´E è#;sp]Ø* —äÜé ùm=úW'85ê/¹œüe&ô•·1•útšréòv]vtWYíào†d´ècî\Ûò2ü~ß'–ãE3f P6¶É'«£83ä dšNJî¤À¶ûzÃ?E—¿ƒkûˆ/ü³[:Û2 (ž˜É`˜å”, ŸÊý/åxO°ÿ®B<ü¸Z&ïw û増ÕùpK3ÞÕg!·› Ì(gãyÅî}Š/Æ~ƒ«ßŽÆYs-,žÄÆ|ü¤›ó-…Ñr΋Xî«ÖY‹,¢Q`©Àtï­ØƒÛ¾l,(4oÇYSÅ”ô½(¨S½¤Lðn‡ý5ÁдSØôt¤²‚fmDçj\v™œ—ªå€bëy鯗*CӻĽÌå×Ýþe2E›ç}<57§ÅÖ~ɡےÏxºZ™TÉî12î$ oàž»~£J}ÄÏù¤{ŽÈ–¥§5<úÀÞ8Òó­ûÛL —°Æ`mf–:qÃ`­—kÿŸáÀß:ðTbØ»]$ìX0S×4”ÌÞµPz÷‚‚÷2¶ný³+ ù«ÈRfþHÚÔ*ň‹ÃAeÌ©áím¶Ñf»DŒWl7ÿüÉFN«/o] C$ÂQ3öï^'Uú¯S/|«=eTÙ¢’O¨{6Ïj~«œ³5šÚÛé½ÞÓôæý÷  &Àh(2.(n˜+…é Q¥LÁìÎ,[§Å©*wðÖ+Å„bI2&’¶É©[6».V0;vš:çšEžáÜ’›©lÔͧ»®Û5ØéZr7úm³9j#)†"q—òE ¸$¹B:Bje6röÙýÁM‚íß³ÕqRüIë@w¤wPÔÝ°Õ 4ë6ÉJz–V¿[ÇÙÌ÷gi~‡c[ÝÉz[]KEGhmüòìõSóI¯9¤KÓ÷×ÿª¤]Úɵ²›eùÆ}èÖtSÙz‚—¡ÝwvËîÞéT±µÇÄ®ò;ä<ž²ž:?ÿÜn—A(c.ˆ3ëvz.š¼ò|µÕ9ïýK|´ˆ ñÍŸ;šÌåÛË&77„߉׋•cS3BÚu–ÒtÔ±ŒÅ¼fЀç•$ÿ²T>–>._£uM‹l–ÿL¶2Êvõ¹Ö{çòójŽՃNæí¤#G І™×Z9D€»ÇxÒc*ÜÈ¿§‰>Ó§ÉbÁç¹å“IŸÕ-—ÍÍ›€R• 4±5ó;×´c‰›š+%‡È¶‰»×ZåÃînøš_ŸmU¨®±ãÈ,Só„Ó|R[Y—D”ŠJk˜‚Pëí‹à“?v\xÞ¸B{ G¨Äj*šù¦þFÚÉJH¡ h!F²!Œ~¸•Šý׊23¢{„¨ÂÀ¦³H_~î宄£'¾|¼0À×—z­wáG„‹óSZS#$KÒ˜ÛgAYÏ^ЄPFxºÂgx•oõ¨n>ýK?Áæ}õT#ƒ]^ßµ²×žšdãîqÀ =ÿi?š9o®ÇîA ®Yêi~у°Æ™§è–ÑmõI“ùANúô´}½Bä”Ù¥R«¦§›ŽnO9Eè¦ÐÛéxl8«ÌÌÁßÁÓaŸú=ž¬üåFv£ýu†oÞi…ùq©åý3'òó¹Ûïlç©ãÅŸÔˆöÕ‚Iq¦ášT"œÊ@Å´ÅB‹ìy œý€®9 Œæµ®kFzÑdà‚¬¡×-B²‹*þÉFêÞkZb½©(pM¶pÝ_]…XªL‰Ö1¾3·ì=œxcËßEaö D²a‰j)ÑI'_f`¾)žEo/Î ‰4Ù˘k~®æ4è5ˆŸâŠeGºm}píOæƒe©šYßÁ©î¢œê˜ÞÃß`»1GyüÇÀç:ÎÚª‚êr„¼S=ë@Èœ=‡; EŒ(5—iî% Œ«Æ2ÔPIÔYÛÇ@Ç:7ÆåfÔ½…Ä!ÙÁãì.ž‚*â°×ëæj¯êíá:í™ködi,K´8 LûÔ®Öwª,œc_'{dÏÛñ°ç{Fœ3`LvÍ(/v ¸‡ñrõÙ dérMºÀYÞQeš|u^q$˜ýÇ£òº<!v™´öóBBƒÒ¸1±oóš×QžR<ØÎå­^}01¨LxÛÒ‰#…_ ûe.AÀ–·- g¬¤ˆâÓcœ¥¿’ð‘£êgÊâ†w iÆíí d^€7±¥Là¡&>Ó®ò:ù OÏ ²„ñ1"ÉÉÒÄK„CWa[&ê—¤‘ä÷PuÜ›ãQ@YZsurveillance/data/husO104Hosp.RData0000644000176200001440000000125312625315364016601 0ustar liggesusers‹íšÍn1LJMj‰÷¨ñ=ôÀ ©§^W$ˆ* 円òUÊWÓ†’¶¼R_©`O[O=±½»Nð!ùe½žµýßÝñÌ(k«ë÷Zë-È ¡>YCýlfêë 4aIñú“ý‡wïÜÐío4nOºBã¦ÂæÊÉ+Tǰrò1Œ[Ún «áˆL¬ßBM‰ÿßA¢•˜˜xÎ÷X)11&?@b-‰‰uà6$ÄÄ‹ü±žÜŒX~‚Ãø"gó «áWpP÷ûŒhrÑäP·Ñä0¢ûà î7“ß%¢úüÍ1í<Ô牓vVÚ»úèiÞï«·.46WóAGñô¼ÈGE³Í_Óœq'»íèï»Éî„Ú£ÝÞå$Š¥U´ HãÅ ^¸Ó–œRp²„~Œ”ñMÀå$ç¶.a¾®ç#8X`ëuÀÙ¬*I[xðNÄÅ0V0ué¾¢ÉàÍÝÁè~ŠSÐ3Úûƒåè|ßHOŒ¤_I}œ: ë-Œ=Y™¾žzúê+Ùr%%¡÷I ÊË’Ç™ Ó‹±´ÎhÒ7¹òN’<9·çס§¯¾¡~Å7‰$λøº.g2Oësý.vÁÎèþ†Í_òãÒóË“ý²q”ï¾íz‡Œ¾ú-îï›hç™®4´³h^Qv~¤'m‚ÇÖ+í$}œº³qøsTÖÏï v¼Ÿx}L÷uäÒK /ªQ±‹Ï‡tÛgítêÆüÙ†º@ÕÈÊxÍ%ñsa‡ÏüaŽ¡µ”T+æžS>êÌxiÍ%ÁÈFb\k$Þ/àò³‰cœ¥‚bÓòc|˜sZwð`î.ÉI÷‰û¨!r˜ö.“øaMÈËÕW&ãfI.jÌJ~÷ëGî3÷´ÅœŒ‹õã.ÀŸ«†ûÀoß ÞC>÷Fâó+¿s“L2É$ÿUμf«ûhlVŸ—‡ÁíÌÑÿa¾«·Í ÇŸ§ÆY÷<4ýG³Fа¯÷Ükß¼“£ß§/m=2¼ËÁX®ß†‡¾Ûøîwд+º surveillance/data/rotaBB.RData0000644000176200001440000000447412305624556015766 0ustar liggesusers‹í\ l\Õ}óÿlÞ&vìÛ &$Ä1£q°BCcœ¡@œ””­ÛƒmÏþŒÓ¤l¦…¶P"6! ,jUµZ$(´*mˆl8 jQ+@´Uº«tB€{î¼óìï‰-Z©´‘xO:Üï¿ï½{ï[¿É «7/)ß\®”r” 8.ÃþRaUõ½Bª«K…܆’7‘tÎëÀCØÙ¹ç%¥sÏ/G4ý‹¦{CZ¾·šô8ÊO!ý8åç‘¿”4Cù5¤·R~ù¯“>CùÒSþkÒ¿kù¾°æ÷ՒΧ¼ôLÊ/ ÿiòYòבÞFù¤Rþ=òH_¥ü·¤okùþ˜æ÷Ï"]Hy;é*Ê7öP~5ùÒ”?DúMÊ@~”ôuÊOúŽ–(#­×ò-ä—‘®¥|išòùÏ‘ÞAù#¤OP¾›ô0å?%ÿ'Ò÷´ü¥JÒ9ZþÒbòËɯ#¿™´Ÿò­¤_ ünò_%}ŠòHHù/È¿E:¦å£ Ò&-m%]Aùzò—^IùvÒ[(¿—ü×HŸ¦üEÒW(ç:ý›–t4°†ôxÊ“¤+)?Ÿüe¤ʯ!ý2å\'¿AùwÉï#ý åo’þSËE4¨ŽüòKH»(¿t å9ò7î |éã”?Kþék”ÿŽôm-?Ìurø-?ÜL¾ƒt å•.“6§ð~új¥÷¦Pg‹šJ'’/¤ü•œÎ‡Î.ª¬|kJå¸×“Oû[Ó}P­^Æ+DÀ9ÀÊ É®3 4³Ùeã€9Àjè\ÝÀ'ðÜÙ |_-²Ç€ààaà]èCŠàYVØYÀl ‰ýœȈ AçTè>lÁóç!ûÐÊö¤mYiõÀ ÀEÐÁ q^WÊíÄó§ û «m.í©¤=ÂKpöBoðÔ»u•ÌÆú q”Ý#`W ‚ÁA¡õ´ÿZvªÀBÖ{¾ «` bæ^Œç¥É–eüè¯ìëé—ìŒð7´è|ðÝŒM"à÷©‹»€W¡wè;ŒïF¾‹³Îé@p °ÈDy';þ&Ú£¾K_V«€[¡;¸Ï»€åÔKÐña>Û¨ oüdÎE—pýÈ|YDý*Êõ «‹©e;s8&³Ø_œúaÒ(Ÿ?2rËø•QÏôcžËiƒŒÓÚUŶÂãâ¢æÇ3¶K¾™¶£l»ž~.ele¼e'¨e[¢WÍúQúÕÄñ`ÝÙô+°+Lý(ã)6%“èCœuÜ€ýfÕSÿDÆt.uãÔ»*Ù¶Ëx×1–u´Ýøkc½8ëU±ýÓØ_-uÌ8¹ÿ#>«)3ãe_¡€ß¦n9û3sÀŒQpÌL;f_2º&žÁùgb§ïnI{ª¤ cWë”α`=_Ó¾Ù+Cj²&&ÁøÆ£Ÿ€¾é+Âg±%¡&ÇÛ)iÛôkæU0¦Á5kl‹beêTÐ&WcS°¿àÚ7k.¸¾ Â%ý­VóÒ™¦Ù÷’À¹Î$…³¬¸¦k Y³H2ÏPú,[û<¥ç«™k1Æ/L}±AöÒó”Þ¥¿¹ôÝĬœz²Vå,ÙàP8Šk¿–}T²í:Ú/çg?p7°Ÿú-»ÙÔ-SçžØº€>J?÷}ô©ž}4P§…zŸF9q^*¹quѦ¶)uQ.g󣀜‹›W‰¯ì§²¯6±íu¬·Žþʹ"gWž>×ñ}=û©cì¤93q(î¹ùj™ÃxWÒcX¿‘¶-cÝfÖ¯âcß@[Ň/¿nf}3þ‹ØÇ ÆÀÜ'dO”y´+ŬÕû”gÙg/Wú\¬¦žY{fýÏÀöÑÁþ‚kËÌýÇí3³NàBÖ3w³vÌÞ/ú7¸;¨{•>“ïË}•ñý±ŒíõÀÏUñÎUô¡FMìI&N¢'ãšSz.­ ßÿëÕ1.“vÆÞv(}‡êa;Œ·™«Í³vúû<ð$ûjá;³nÌþ'¶ŸNz“ÒkFî'gÐf³Ï ~3ûÛd­¯ ´;“úQÆWüù-çô}¼çJ þÀúf·Q_Ú˜[r¿vû‡h²ˆwêa|‡J65”Ϋ‰£ô}†2bîôÉdk²}œéhM.7L[²µmüM[GëRóÆ]–\¬›:âó €^'¡¯û¶Øb‹-¶Øb‹-¶Øb‹-¶Øb‹-¶Øb‹-¶ØòaùãttLMù7ò˜ÈÿOeRþþ')ÎË#Jÿÿ1 ‹ÆÑq§/ÎåÒ~7œí³{ ‹ÿGÇž*›ìÀÅÞð<ÞíUÃÿÉÿÈ4þÿ—|ÿB˜Èy¹áLª0èe×ú©Þ@îïAwßz ùŒÒyN’c‘T:7£S鼕~è z{ÑÏBñônc|îdÛóÔDžX—ÒyR߇âá®o¢ÉWÝÅ1–\â>¯×6Úùcç?vþØùcç?vþ|ÔæÏÑð}ä¥rSü®Y¸§ÇÛÆ¯¥ðˆúÀ/bZËñî³=o›Â Šœï]Ùž/øƒÙþ) ‹Ëë”ߟgÃÅŸ«C)ýGZ½™TJNuÐÙUºKôb¹TïU©þôxsZìäs´¾Ô¾xÎËlï÷²&[•¼/Ëe¼Âù~_Úgx¨P3Vb̌R™ ÆÛµ™cÿ¶%±^/[ð½Ì4†TšîÌüêbw1÷œ¿Å1ùyh8SÌzC0ec÷‘ŠGØíæ ÓÙZ™ö·¦3™T¶7=aµzÿ_÷qõ®cOsurveillance/data/campyDE.RData0000644000176200001440000002031012625315364016121 0ustar liggesusers‹íwPYÛ·9Ý=3$ 9ƒd3n#Š9GÌYŒ˜ÁfÅœ×,¦³®bÀ„+`T èšVÝÅœPy³so}ϳõ½õ>ß_•oUŸªßÎ\ìÐÓÝç\§Ï¹Ëu[F·0oonbb"™Èˆ$ã­"áÂD11ë®gÜàø±ÑõLLd`)¼ZâÓætîZØ„Îå›_o3ßc~Àü˜ùóKæ"æ·Ì˜¿03r–0r–ÂlÊlÁlÅ\–َّمÙÙ›Ù¹Ä|„ù8s&óYæóÌ9Ì—˜¯1ç1ßf¾Ëü€ùó3æÌEÌo˜?0fþfäó&F>¯0ë˜-˜-™Ë2—cvdvfvgöböcdag®Ä\•¹:s-æºÌõ™37enÁÜš¹=s'ænÌ=˜û0÷gÌÏ<’9y<ó$æ)ÌÉÌ3™ç0§2/b^Ƽ’ù'æõÌ›™·2ïdNgÞÇ|ùó1æLæ3Ì癳™/1_eÎc¾Å|—¹ùóSæÌ2¿a~Ïü™ù«‘51ò¯2³ŽÙœÙ’¹ s9ffgf7f/f_æ@æ`æpæŠÌU™£˜k1×a®Ï܈¹)ssæÖÌí˜;1weîÁÜ›¹?ó æxæÌ Ìã˜'1OfNfžÁ<‡y>ó"æ¥Ì+™×0¯gÞļ•ys:ó^æƒÌ¿0c>É|†9‹9›ù"óUæÌ·˜ï02ÿÆü”ù9óŸÌ¯™ß3bþÊ\bä ²‘/h™Í™K3—a¶ev`Ö3»1{2û203‡1Wd®ÂÅ\“¹s=æFÌM˜›3·bnÇÜ‘¹+ssoæ~̃˜‡2`Í<Žy"ódæiÌ3˜g3Ïg^ȼ”yóæuÌ›˜Ó˜w0ïbÞË|€ùæ æ“̧™³˜/0_d¾Â|ƒù&óæûÌ¿1?a~ÎüókæwÌŸ˜‹™KŒœ-9[ËlÆ\šÙšÙ–ÙžYÏìÊìÉìÃÀÄÆ\¹ s$sMæÚÌõ˜27anÆÜй-sGæ.Ìq̽˜û1dÊ<œy4óXæ‰ÌIÌÓ˜§3ÏfžÇ¼y ó æÕÌë˜72§1ogÞż‡ùóaæ æ̧™Ï1_`Îe¾Â|ù&só}æ‡ÌO˜gþƒùó;æÌÅÌßœ#9GÃlÆ\ŠÙšÙ†ÙžÙ‰Ù•كهٟ9ˆ9”¹seæHæ̵™£™2Ç07cnÉÜ–¹sæî̽˜û2dÂ<œyóXæ ÌIÌS™§3ÏbžÇ¼€y óræÕÌk™72oaÞÎü3óæý̇™2Ÿ`>Å|ŽùWæ\æËÌ×™ó™ ˜ï1?d~Ìü;óKæWÌo™?2aþnä\aä\ ³)s)f+ff;f'fffofæòÌ¡ÌÌ•™«1×`&æhæÌ1̱Ì-™Û0w`îÌܹ's_æÌC˜‡1bÃ<9‘y*s ó,æ¹Ì ˜3/g^ż–yóæmÌ?3ïfÞÏ|ˆù(óqæSÌg™eÎa¾ÌÌûÿ\Þÿçòþ?—÷ÿ¹¼ÿÏåý.ïÿsyÿŸËûÿ\ãþÿeMÏAq# +ëù¡7Ò°š0Œ°Ò†"‚_’q‡d<e¬DeŒ+$«j;3 W+a!aÖ•^±˜%<¥e<¹dGvã.ÊØiÉ8¾‚IÁ*Uƒ‘£Wk4¸ î†=¬Å.N‹±O-vÌZ¬*µqÆÏhqάr¬4ü\)D° R:ðϰBVÚà»pLy¦ñ; ç+°32H#á»eÌ"ff »c ÆK8 OiâŽ`–Ø™HxÚJX!Ic %ü ×%•G ÇÅNVÖ!÷D0òd¼Wð½ÊCãµh ç¼”¯3³‚cj°"Òà8ì 4°C9‰à)¤`¥©`6V ׆U£Œž—±ûT°£Q°K–ñä’ñ´“1£ÊØ…Üs݃tÆxíf }%a„K‡\¯„ï°‚—pnL‘0{K»S*gü+X«J3·Œ§‹ŒÏËØå)ØYkÀ̰ìŠ4XIiðtÔ`ŤÁSN‹™E Ûµ¸ÿZ¬âµÙZÌÖZ¬H4¯ðûø¬‚Ý +l³†Òˆ_a˜biì#Å0&0Ã)˜…d\·8m,„ipo …Ã&PÆ5ÊX%I8'«y;6 ç aå)uF0$ì ¿Žñ÷ô“lø9ŒÒ`–Öâ½}¯ÅXÖa¦C胱bÔbÌk±SÒâžjqLm>_Ï$“ǦŽ‡Ý†¦½ñ½‚û!cu à)XåÉXÉÈ ìäîHmvý¦`×£àš$Œ ÷N®IÂN[ÂêZšÈã.ÇŽ%…á^`ç-ð´‘0¦¥ß-c6”0VdÌÒ2û¢dûIÁÊVƒ§·+< v Ú²F¯´;ZÜ f v§š#H9㸓¯r¿ 6:$ã:\ƒ2fkÏŒcACR%ã3|§²Úøû2îŒ]¨làºÈzãdóW¿^1ÞeKÆ{¥‚¡lÿ˜G<}5ë|§÷Y‡¾ÔaǧÃùëpº¹î«.¯cG‹ñ«…ZÃ{|NsY†àÉ¢`¶×`¬A*è;ó‡‚>ÒøóõƇŸ7fn{! }ˆyJ1ôæ9Šï5!†ÂlˆqΓ^ 8¾äÊž /eÃxޱkVBy|`|j°‹ÐÃyc^ÕŽÆUª¡Ü‹ _´è[m_/Î[‹sÐa^ÔY!ø-~OsÌ8Æ ó†c@ƒ±ªàÞk"ŒsžÆ¯¸ïŠásd˜¾qn+ŒcFƬÁJ[Æx—0IXÅHßxŽ8gœ·dŒ1é÷›an¯6\|•ñYÅð}¸ÿ2æG%ßø^ÁîZ‹y^‡ùS‹9Fµ˜Gµ¸·Z¸®Åj_‡{¯Ã.S‡9T¯µðZ[ŠÇ%vx©LA ý…{¢l`gqn)Æï—1^%O`¼(Æ9_6ÌÅE<§-3Îåž2V52îŒß— aþ‘à†<—çÿn<¯u3^Ÿ‚óÑâ³Úu8GüL‡9P‡’óŠ˜ÂSœ“ß¡Ã=Ñá|tðD‹þÕæEÜáãù§Á˜Ö`U©¼Á+VËÊkc_ið|UÐïJs«4+ »_ ý)ã§<0Þû¿ú×.w6Ž9 Ç‘ñ >KpAúd|ÿ×¼’ÈÏŒ-ùñ§úÏXS<Ì0vL1ÿ›âÞša'j†ùÅ ó¬)î‡)ž/:ŒEȘ˜ÿLqOMãñ3C?â÷µ†1†¹VÁsCƒ9K‹9Z³ÊøL5ÌÿJ¦ñY$c$ßF°S”‡×&–ƹNmjS›ÚÔ¦6µ©MmjS›ÚÔ¦6µ©íÿ¹ÿ0dé“ëM_"Ûg…­§”ö'»S·ë­Dîk¶¾ýy¼~Öø!y¯2‰y’XŸ¼÷kÚ­pˆ.ÏýôÀl;L·(~“žFqŽ·ëwžü:}֢Ȃ‚Ûw+½3á…„œ­ÕôœE|Z·Þ:߆üßÎ^Û ‚z\‹Ž¹zˆÂ–dLØ»`&…uN[N³¾RÈn·´Œñ=)âL5iHî: _72ãØ¸›~¹¤Òá|ðW÷ùÃ{ޤzn=÷Î) îÜqgýôÞTþð…Ø¤‚‘ä_8ôìºÞÅä]vSÃî·\ÉÏǶ٘ǣÈí—·›êVN$¯uK›mêò•¼>Ωºnyº0ŵ œÌÏ<²ü yf¶¯LýÉÝêNÅÈ›éäñðLö§V·É±a^ççß+P©7ŸO™o˜L+[ëœG.D³§„“ãÕ†õLý&’éwO›ìdAŽsµþ#J"½ÝÉ+ß<ƒÈ.§úO†M r+5ij> Rù£w´ê³ƒ¬ûþ´yYq$ÙEWßpkré3V¯ª•·—œî]˜ué Ù®Ý4Ô=ã¹w©nV;y:9”´œs•Èfqƒ]^®ÏÉ9é'¯§«.’çÜÇy©QÃȧÏwß-fä¿â«Å^òÞ]ëKÆÊê𬓿õ rô TËêÖ#(|ÛÓfÂ'Rèñø¥ÛÝR©|áƒÄÈ3û(xé³ø¸3)$ÊašõñÛTîsãÊÁúpA—Ýó¿á¾OªÐ­úY oÕÃ.8r*…qíß~^[ *ö¸u2ZG¡&/7TôêEÏö®o±–üb†i΄DR &¨ê©ÉîxßF¯˜Ÿ&Ÿ‰M÷vtî@~ÚÚm{~"¯’;¿Av¤¯þù§ëçÒ0·½k1m9¹N±*:’çIîú§ü1¸ 9¨=¨í‡­äÕñù÷¶µ²ÉãNÿ¦Ò…1äÜ¡míŒÊd?õÕq}n)rRî$TkNvQýÇ›„½¡²¯ö÷°\’FNÛïZêk’¾¯—íî=¤²)ú ´'Tn½c^ß&¥ÈcWŸµ_¹‘cllí9·“íµ:ý’wzQ™œíÎ:M6W"“þ˜†~Xô¤o§òróg¡ Ù?»¸¾.¹*!1ŸÓ¯“ËÞ;µ²\Ž’{“®¥%‘—Ö$p¦Mòé½!M߬˜|~Ý?z³+ùÌü®æ§?ȻϑäI«É³Í ÁA³~¥€qîíS Íö¤?HþGL>Î+úÆŽž1åÞl Xu{ôèJTþê«×W¢wPh-÷ýï4¦»™-éÊÉÓÌ|@a%‰û_¼ØHaöÔ¹]¢°M҇àGŠžñ’‚^§þü>“{”.žÛv0ù˜ï?fOsòÓ¥ôøp‚†ývfð´×ä—a34Õ®¹Ÿ¼6 îIòݰݷj½¥ä§éñç— òœÞñæ˜A¤o•=Ð:f9gŒItÙ–œÏìçVÛŸœ šlçQž>‡¾«“hFö#–õÜ–LyUÐò)9+Y×X²#×¶šˆxÛ)¤¿°äë­¤­ä蚘ڹvYoÚí6n·%Ùí­¼5gñp²_P~FÊ;²Y¹g’ÝxK*3+¡ û2w.²ûx*×^S±j‹Rä¶Ïr’©)yÚÏ›:«F/r)åC-¦&·‚+þÑ‘SÈ«KÇe„L!×¢{Ní½I>Ní\>Ô‚|-jÞ;T÷y,Û¿öu#?ò©=wwŽç ¶N,7*>‚ü'úXÝèyù ÈM>KAm®ÜZÃŽÂÆé†ë÷~£Ð;”µåQðF½M¦{:…µµ]Öù\K Ö9î èú’"êõëØâ½?•}‘Ý©AE œôvèä>æ?þÏ–ÞÑé …u”[MŠÙNaI1}gúPàÎÊ÷ý‚—“ßùä J¿$ÿGûnuóœJ7?öŽ_G>erÎ6(KÞ{Ÿ…UZ8—üÝ;Å[¿L!Ÿ»ÃL辑çÔ®î jEúvÞï/½XEå Ÿ¿Ûd Ù뫾¯4ý19Å;•^œ,ï\s,L }â ‰c—üL69»ë,Þ?ŸÊÏM?ÚœÊd‡yW´ÙCå"»ŸþzÞ‚L«¼ý_TDeNywY³ŽÈît÷/O×,%ÇôßÞmµ•lÇ;ž´£&•íóÑ®íÌÉd;ù|i¹$…ÊÒµ·ë*¿'§™Y­¦¾Œ#¯Ì#½æÖ»GN®ß.½ù֞ܵ£F ÏÜéÒíR]ÉëÏë3Ã<ê‘—çÞŒ!É{VÿšÚ¯"ÿ'ªùï‹#ß"ëÕ^Oæ“W£uUs'<&_“Ì7“kQÈé¡1Uë6£°ƒSÒo‡í¦ÐÎëGí³›Fá ÏÌ3-_–Ââ-?l9p†ÂÒ¬s¦ê§RÄ«SJŽ>¡Ð´‚º£Fµ¤ J´sÌm ]ðKà¶Ý'(ø°éS}½0kü¹·-o éöµÆ Ijøiäº Þ?O!["œ#û\¤€¿9%xµ ×’ØŠÛ¿ï¿Ò7/¦€Ìü~&?¯%w뛯Z-&÷?‡Ä–u û“£’¼ȳʇ 3²:‘Çðø«Ç7W$ßÇ,êÞ¥"¹ZO,ÚŒù2æR‹“>“¹»­Òô ¹Ï,ŒêÕZǃ#·&/!÷Œ°9íߣ²fóf×ëN®5BïÜóŠÞÞ*& #ç‡æÏÄ]ÌW-=ß«_‹ÜÆ{ؾjz”Üêêñé-¹÷*ŠÕˆœæU±lu‰\Lzì‹ìÙŒ\º†Øå¥N&¯æÙun¯éO®ëÇ(Ÿr†|úÝp;ùñ+¹}–mÇã¹ä·¸ŠþÒZ Ì'æ™»'5§°”vkµXHQ›×Ü£ðI¡m\RØÔ•™Í;SX÷™ ûëLåmÓ3je¿¦ ÉY5ÇI¡žuî'uÉ ðA¿lŒµ¶¤ÿ–Ée*-£ÀvÊå>K(¼ejQ½{)´a»îË+_§° Çz-Ȧ€û{΄½‘Èé¼WÓo’¿.êiT^k'­Ü¹3üç/zÜʦœÑ3×Óí¨ýÁ>äQò$³Û;ÌwneY\[E^-öw¬6¹UOéæ9J%­ºëÒ/¬Ñâ|ªLú™/¶ŒzIî[‡ôþåò(r˜·5`yK*³sYêÑŒad÷(aò™ªc¨œ¾¡ÎäŠ é׉λ¼¬È½ÿ¨]' î’sâ‡Öϱn˜¼MôK §eÑŽ{מ#Û£ ÚkÍ‘ËÑÆ¹#+&‘{ãD]+O_rÌ/Ÿº5,‹Üêo)Ùðe(ÙÝ»k9°ÓMr¨7:½G`!ž—cÎÝ<7œ\ƒË´¾Nn#3Vv¼@ž}¿øm¬Ù…¼öçÌã‡õÁ„™3O_HAû‰û_’÷¦ù6SÈ­{V)N‹)xÅΨs Èïò‡!sO­ À·¶ßæ¥à”±KöPHdÐöާý(xœk祩c(è\Īmòf u¬¿õDž…¯¼U¡piW D1VS.P°UÉõ¯nk(8ê¶G¯æQHö¯}"S4êÔäGÝ6T¾‡ã°¦ŸogžÙꬮÇÈ×\™£Dm"¯í÷*ïkt‰,¾};V2Ž|‡ÅÐÜ_G^S½ªÍ‹ý@îŕζ>ô…¼ÿˆØç3Öuusö|Î&Çvýßy¥{‘ýò 3æ$$½mç¦?{f’ƒõâ€!¢59ÛUÞÞ՞ƿ®ìsÝ”¬ošçú_É&ó*ÏG:·!Û˜¬e×ã¬È!9569·?ÙDW²žž7€ì;nÍÿ8›l“œ‡<ÒgQ¹+Ag6Góž•´¿x¹4™yáÛirõH­ݼ49tûyÆü÷¤¿ÞbtQ È£rVÞ­3òn¿Ù9gÔ ò²;ݲˣqäÑ1ëÐã'æXMs/í·|šÝ¹X³o$ùöXñ,<½9\­zz‚Ù$òæ½;:î#ù˜ß·~ýö>ùw¨˜’ÐóÌÅù™¿Ç…l•Ù¾è¡Ù"²<ù¹FáÖ²™V!Rê=—ôîæ&Ô¡²‘]޹…}%åÈeç %äî¤+YâM3'¹îs,CN[ö(Éöä’7û•d÷Š\-j]=¼DKúž1G¯©J>•®ˆá·ÉÓÂ*¿ í6y>þ>ãܸ_ȷϰ IæÃÈïKÖÂÚo:P@@QÔ‹?)ÌÙÔªvØzò«ãºà@Á ØümÖÎx®Ÿ^§=ÿˆÂ*M˜ã½r3…¿}=ÇßéO ­QzÔ¥Kc(ø}ẛMz`J¿åÍ(,ów«SëÊSXLâb›Óû)dhóÂç—îß•êÉåÎê(pV•þúÉoA3¹ß²v0ªyÚô¨[äÛsj÷îË›’¿½ãä´ð,òè9ö{w™\/E_:Û™Ü7\‰¾˜@>õRßvQ|Éã±s»úxr·-\µužÙ]¹ú¾]»wdYÉþn¦„ìÍãß¿¬žD–‡ O~½ˆÊn¬oº}Ò;*ñ{^ønrÈþµ½ø1¹Wþ:ÒîèBrhóùÄÓ²ïÈÖ¤èz©=»É!ãRŸ•VËÉÉçAóá)1ÏY/ìWœJV{þHµª[D6G=ä³÷BÉþ`ÏÒǶ¹“ëjÖd“Þ±o³ÞU-È˶С笉ä¹âEÓiÅÑO¶>¶Nż=µu=ß©ä…G¯'—.¥ýŠÏ÷#Ÿ(ûèz; ˜ÕÆáÜð]ä½£ÇÌõT¾ùÐåsž ò§&í¸:'•‚*ÏÍþyà^ ‘ÙyEÖ JËjÒp²žÂ”ìQ3˜Pðí‰U|Ë ¦òïk-Z?üÍ:éòSx~Ùó<*Pp–Ë?K^aqx }x,E´ì•¶èÐ Êüý•åô1:}iDH£ƒ˜ãWsö‰Ãä?GI?\\DÁÇ|‹/cÜÜøz¾¿sy›E‹ØïÉ-«Úœê㦑wÍäR1¥ãÉ;ÙQ·¼J¹Õ˶üi=é-½÷Í_¼žœó÷o_s¹Mxš8tÕ rZÒ6åIéw™[§»Õ"çâûß|äÄW†’‚nÃßu…¿Y­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}á?­/ü³® ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ðŸÖþ»º‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔúÂÿT_øŸê j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë ÿ]}á?­+¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/ü³¾`òÿÏd­Wÿþª¶«©ýóc7µ~ì¦öÏÝÔþù±›Ú?ÿ;šÚO?vSûçÇnjÿüØM퟾ýUWPûçÇlª??vSûçÇnjÿüØMퟻ©ý󿣩ýôc7µ~ì¦öÏÝÔþù±Ûÿ¥ÌÿõÏ+¨MmjS›ÚÔ¦¶²‰ÿ0ÿŸš"ýu|ÅÄ ¯fÇ&„ ‰Ü{ 4/$*!•‘*HU¤‰D!Õ‘HMÄð—FR©ƒÔE¢‘zH}¤Òi„4Fb&HS$i†4GZ -‘VHk¤ Òi‡´G: ‘NHg¤ Òé†tGâHO¤ÒéƒôEú!ý‘È@Äð<#C¡H<2 ŽîÁHd2I@Æ c‘qÈxd2™„$"IÈdd 2™†$#)ÈtÄðªÎDf!³‘9È\d2IE ‘EÈbd ²Y†,GV +‘UÈjd ò²Y‡¬G ÿÃñÈ&d3²IC¶"ÛíÈd'ò3² IGv#{½È>d?r9ˆB#¿ G£Hr 9Žœ@N"™È)ä4r9‹œC²óȯÈ$ÉAr‘‹È%ä2r¹Š\C®#7Ã_–ÜDn!·‘är¹‡ÜG ‘ÈCä7äòy‚âï5NÏ~Ãû98îï˜7 «ß{xÿ¡½ŒW!•ð‰ÿ}5æ8ñ¸>ÃqM<×ÿ/Ç×bvh½surveillance/data/salmAllOnset.RData0000644000176200001440000004155212630575752017215 0ustar liggesusers‹í}y¼GqÏìî;dÉz:lË·|Ÿ²5»Ooöa°åÛß6æ²l [ K²$s„Â`’pqá°!Ü$@HHBÂýv$Ä9H¹$!@¹Ã¯¾ÓßÒÔTï|~ŸOþÛý¸=[5Ý=uuuUÍ>õuÝÜ]vó²BZyò–|mçò¿,´Ã´\—ïÙ²ýîó·o¿zÇž­{CÖ:ÜÝïlݵóö»äËÁ!´–mþôÑûä{ØüéãB¼žHøTÂg>›p—ðáyÂ#¼™ðE„/%üÂW¾Žð„ŸDø)„o%|;á; ?“ðÂ÷¾—ðs ÿ$á~ á—~9áW~ áŸ%üó„ßHøaÂo#üNÂï!üË„?Hø×ÿáß&ü»„ðïþá/^$ü„%ü§„ÿ‚ð× ÿ-á¿'ü„ÿ™ð¿þáÿ$ü?þLáÏ´ O>ˆðJ« JøpÂG^OøD§>ƒðY„»„7ž'üX› _HøR—¾Šðµ„o$|3á§~:áÛ ?ƒð3 ßMøÂ{ ?—ðó ¿ˆð}„_Føg¿Šðƒ„–ðë ¿‘ð[¿ð;¿‡ð/þ á_%ü„‹ðïþáß'üYÂ_$<$ü„ÿˆðŸþsÂ_'ü7„ÿžð?þgÂß#üÂÿAø"üÙá϶ O>ˆðÁ„W>„ðá„"¼žð „O!|:᳄7î~,áó_Hø—¾’ðµ„o |3á'~:áÛ?ƒð6ÂwÞEx/áç~>á¾ðý„†ð+ ?Høu„_Oø¿…ð[ ¿ƒð» ÿáþU¿Nø·”ð'Šðg ðð— ÿá?!üç„¿Føoƒð?þ6áïþ>áÿ üߎîP®-“„—>˜ð*‡^Gø(ÂÇ>ðÉ„O'¼pAx–pŸð9„Ï#|áK?žð•„¯!|á›?™ðÓßFx+ám„·ÞExáçþ Â/$übÂ÷þi¯$üj¯#üs„ð› ¿•ðÛ ¿›ðû€ð‡ÿ:áþ(áþáÏþáá/þ á?!üUÂ_#üׄ¿Aø[„¿Mø»„¿Oøß ÿ7áFøó­~‚ð2Â+¯"¼–ð:ÂG>–ðñ„O&|á „7ž%\>‡ð¹„/ |1áǾ‚ð5„¯'|á[?ðÂ[ ßEx;á„÷~6០üÂ/&üRÂ?Mø„_Møµ„Žð¿™ð#„ßNø]„ßGøý„?DøÃ„?Bøwœð' †ðç ‰ðWÿ1á¯þKÂMøï‹ð?þ.á%üï„ÿ‹ð#ü…<Â_˜ žðI„O#|&á„{„KÂ!|.áó _Lø2ÂW¾šðõ„ŸHøÂO%¼…ð„ï"ü,Â; ï&ülÂÏ#üÂû¿”ðO~á¿–ðC„ß@øM„!ü‹„ßEø½„ßOøW˜ðoþÂ#üIŸ&üy „¿Dø ÿ1á?#ü—„ÿŠðßþ&á"üÂÿJøßÿáÿðó±CxšðrÂ3„×>Œð„!|ᓟJøLÂgîž#üÂ#|>á‹_Fø „¯&|á'~á§¾•ð„ï$ü,Â;ï&|/áçþIÂû¿„ðO~9ῆðC„žð›?Lø ¿“ð{ ÿ2á_!ük„“ðoþáß#üiŸ#¼@x‘ð~”ðŸþ ÂEøo “ð?þá!üo„ÿ“ðÿFx!‹ðB‡ðáå„W^CøPÂGfþ¿Àüùÿóÿæÿ Ìÿº„™ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿ÀüáVÂÌÿ˜ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/¼0óÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/,fþ¿Àüùÿóÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿ÀüùÿóÿæÿæÿæÿæÿæÿæÿƒÕ„™ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ6fþ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?¸0óÿóÿóÿóÿóÿóÿóÿóÿóÿóÿóÿóÿÁ 3ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ|0óÿóÿóÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿázÂÌÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡·fþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?|0óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿá— 3ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ_ ^Ì>¯¬,v6Ç+ë‹S¼ÏºÀârÞg}`q%ï³N°¸†÷Y/X<”÷Y7X<‚÷Y?X<š÷YGX<Ž÷YOX<‘÷YWX<•÷Y_X<ƒ÷YgX<›÷YoXìò>ë‹s¼ÏúÃâ<ï³±ø8Þg=bq3ï_Àûñ>ë‹—ò>ë‹Oà}Ö+¯â}Ö-¯ã}Ö/oä}Ö1ŸÄû¬g,>…÷c]ýlh?c÷V8V(#Û—œïÓÙ³wËî½ì”o~¸š?œ÷‘§vÞ¶gëîgo•è2_r•H0—è.— 4—(5OKvÜ’Œ?—,1Ï–ß/M2Œ\ˆÌegÏ%šÈ%bk=(Wñdm‰ŽÛ¥I–Ù‘©#ÞqR"ª ñ âÉ'$»˜”ˆwrQÚ„ ¡wJ"ˆiÙ§ž–h{Z"ž)ÉÒ&%³ïÈêêHÿ ¡yBVþ„ìF’ñuÄ‹wäÚÞ&Ï–¢%YqKÆäò¼L)‘É”¬¦i‘Ñ´Ð<-z˜Þ—ID0-²˜O3õ5é'ò™«îˆü:’M¶å9m‘s[èmÉîÓ’Œ«u|”'hÌeÈ {yfKv÷üi’uä’)äèwŽÜygg’mç—&Qi~¬´PWò|¼Áj]#Mæj—ѪçŠNÈ®?!²œÝwre-‘΄ds"ß Éú&Å3N‰l¦$‚™’,cRVþ„D{û£\Úòü–d÷-‰ð[Âg.;ek&ÊrÌEÏùmxá&tJÖg¤Qv°ìSlb­¹tȾ/Wñ ¹dk™DøÙ?ƾdr¤4ñÊùŸÈ¼xù&yk-ù;)ʰýj¬¹Š·ìH†ÜÞ:¹vÞ.4‹ÍM\mqâÛ‡dh“·ÊwÉŒ&„ÎŽØGì¢-zhK¶Õ¶¾+MÖFK²÷\2è\¢ô\æÏewË$Îd ä3‘·\䙋 g°EÉF²/KÝgoeÛ"Md–}TúIö™_!Mô— ݹЗ‹å’õäÿõݶÄF[Bk[¼Y["Þ¶ì2m™³-ÙK缌”&óv$[ëˆ.;¢ç Y‘[Gl¨-Qw[2ë¶ØNëslòÌ–ð×’Œ5—9sÑe.¶™É÷L¢î\䙉³_—&Qy&rÉ$;Ì~Ž8ÑA&Ù{&ö›IÉs²_ˆc*ÿ}Ënž‹cË?í!‡^e­´Äv[BoKàÖ‚ÌÑ‘uÖ~;ÂÓ„ÈB2Ç ‰î&$âœ(¤#6Ø)¢oi‹.:í(‡ì@ôПВç¶`û²+¶$sËZÚMBÓçh;Ƶ×U.ÑTö›¼û{ÏDïÙoqMgyF.¶‘ -‰6Z¢ï–øŠÖ+¥‰ZâS:¢øŽØqGtÙ‘ˆºóúɆ;·H“uÑ‘ÈcBž3)ø ñK±ŽÈ±-h[ælÿ¥´í2Ÿìø-±ßÖ£”‘d¹D‘ù•‘î쥉oÌ`+b›ÙWIóG©ÉH2ñW™øìì+ÑÂdÏ¡ÍÉšÏ$ ÉDÎü½dŒyŸ¾æ¿äyâÃ[/Œ~µ-k½-;d[ÖH[lª-Ñ|ûúxñÕmY7í»¤‰>Û²¾ÚâÛ"×–ØH ûˆðØ’Œ&Ýæ/äÞµ#ë6û}ðš .;YÚå\ЙÈ1“5–‰¯Ë„†ì8òðË´Ë‹¥‰md"³ì|êð/è!‹G)¯GéÛÅgåO¡mb¯ä"ƒ\äÕßÒ_Ü’=ª%t´$ëj‰o‰ÏÏßÇõŸ#ûT¾&ú©ìÃ|ÎÒ%þ;»´ *þ²Ó¤AÞ’UgòÜLöÒ ¼Ÿ+Md–‰]e/•&~1›“{™f²V²·Egïàš“í’ö>öú ®Å/Gû®üæqäkOÆæbßù ô½Wr?ùJ´çJþâo²WR–â÷3ÙÓ3Ñi&ë§Jfq"kA%k=- ³AµòwÙWôPÁ“5™åÉs² Qá‹Ôõ5|Î?Óöt¿¾2~¯ö?ĈK$CÉdÍdÞLÖQ.ºÉ¯“ö ~Ç>±’s·or=ˆ?¨ü•Ì—=t¼˜ö‚¬öõsX¤' óBõªîÈþ5¶J/íÈS?œÉ™!“Bõò[ò]ÖP&{`ö êùÙ܃ÑO2†ì]Ô߇h+ÐûÿÐfeýâç'X—¹øé|š´Ã.^@ûÌ$óÏΩí+›¤^¨¼iÂ|²fÓe²·d³”õ3¢-TÏq<ʱÈn±‰ÉÖP‡à >äPÊ6}ù»‰v ž°¿ýdˆ{›¬›Êç|0Äý¾k{ÉK“$»‚´làÜà ûÍ&ÊwŠôIl¾Nù¿ž8TùÞÉ{¥Ì`?èëo㼰ÀŠ5²(TÅŸeÇ“7T~‘ÁÞ/¥\ç£]VôL‘žQŸ×‘/‰Ó²çQgX‹e÷P¯ <à‹ÖËÜâ»3Ä×? N@+*xË#2¨n ƒD• o‚PÍx û ’úy~ a¼MDFú®¨§Ê>?HQIÅÛ¿!màpò){g&ë¦ò53QNYI»”Ø0?IL”í&ð3âû*¿sy´³ðC®÷¿&=x«+YÍ<¢uÇ6$ìxi“Ç46ÔL5¤ËŽ-woÅ‹³5±–^˜1}¦5)âÍ$±Ù»5n­øºqüÆŸñgüÆŸñgüÆŸñgüÆŸñgüÆŸñgüÆŸñ瀼l˜À o1&ÿÿ{k±eû–ÝwÇW˜­êGuã6nã6nã6nã6nã6nã6n¶ý_e#ËîݵkëîÛvÞ»ãŽqJ2nã6nã6nã6nã6nã6nKµÿ«”dÅŽ­Ûî¼KR’ÝwíÜɬ$d£ŸXýaÒ¨'.ù´›ŒƒwíÜuïö-{·íÜqÉî-·ëŸ™èßͯãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾.uý¿z‹Òº{Ë®§NíÚ¹ýywîÜ¡ÿèVp÷§wmß¹÷êÝwlÝM‚|‡öm·í|n|2ŠøýOÏA»vï|æìž½»·í¸s$]r{Ëî;÷8ýã;·oß²gOüGUk^/¼îz×or×–ÛŸµåέnº|Ï. ’ô­ù¡›kåõ»¶ìݶeû5ûå„nkø£&ªŸ|ûÎ{wïÜÿAH(rÿUdtÜŽ~0¼ö¿Ìª¦š ßqÜŽ À?î×6ז鋈í`*v%Ç´^:ì?Åñ¼×æ3Ûì—±_‹÷u|Ë|W:=z/w÷l?Î÷Yê¾í§ó+ýöÞæ¶´fîþ¨1K}T>?î3õjé^J–-7n”<Õf‚¹Úù—’·—┟Q:°°§ÛÏ;jl;Ô6æŸéi%¯+ÿ<íÓrý}Ë›ž7ŠVKoMýÛy´¿®·Ì\½ì¼¬,ßžWÿ¬Ü4¯#í‹5>IZ°±¬ µ¬rÞÏx?3÷¬ ¼­éØŽ£ë@kÈÎåçžÁ“ÿØçuLõ‘¡)o´UÁþ õO82CmS?SŽ/û±¾ÔûŸQ6ã×Lfú{[;Q^=?-ó¬ GÏR6Âhšì˜ÜµÌ\4§å'¸1–Ï–;¶¼{Ø6µMëKFñmé³{—§kV‡ÁÝ·W]3ú ë7CHõ¨: ¡)'Kóö¼¥ÇíÇVgJG'ÔkFiÊÍwË¿êOã+‡šz±ã—ò·Ö?{?c?mÓ7„&¯vN¿§,å·&FÌcç·>Àۇ߇ˆïö¹Sù½MiUyªôÙS¡ש¿Vÿhõ†ûÓÄéX;ï¤áÛ®·e¡©Ëç±|ë~ ôjœ¨´ef}ŽõK˜c…¹¯2™&ßê=ëCZŽ•ÁA¡i9Ù¯|¨ Ûõš‡:¦Î\+O˜9Û¡©Ë ó¬e†w•¹êKåš»çøŽKÅ‘`GR¾8Î G2­—†£ñ3ãº^- Gãàõ>AŽ…›•v¯çKÛ, ÇKâÈ- ódâvKÃ1I8šǽÝ&íNÂ8õZi×snÙçGâ8:…½à|øÇÔ»¤¿cè8ñxi'óú8òp Çàx¼iøÇ¹Od¿Éw—ðyäõbòÕ“v«4=†ãîžNúqtá=ÒžC¾p}˜×—q ø»NÚ äsy»ˆ|¬'_gýlä~å™' ÇGÂq õl꼞dð瓟9Ž}a\¯¡vS÷Poû¤á8ÈmüŽœò¥Òp$ñ”áã9öjêò¾€r…ÌN!î"ò;E¼4Ë{gSWgpÌF^Ïæõ0ʼ ¦„-žCYmf¿ã9þBi7Qö[BüÌ!÷(kµŒã²ðºßÏ{8>÷uÒpŒà}Òp<ê•ÔŽf…=ãȺ‹Ióñ¡^ ]Ò´Š¼œIZA˱ÔÓ©sT¨×ÍÑÔÑIäá¹|Æ9äÿ\ÊìJÊ ë¶v#éÃ?ÜŽõ|;yÝFÚ¡#èóY¼‡¤ýVi8BñvŽ¿²€î.ãz:‹´Òw2i?Žßב]w§“þá ¼(¿CXkX%õ¿5Ä€þÑPDpü/ŽÀÃá8Ê÷S!þƒô’†£©qœŽ„…¿ÀQŽ8^ÿxýB\wà}7å™À.ŸBy‚÷³ÉCIYw)W¬é9Òxé½™2y"eýÁ¾/§|ÞÂþ°—(×·‘~3û0yí8&öÓüÞþ-T‡"T}Á;ü0ŽâÆqr8bÇ”¾8Äu÷$£Û;¨¯§Rül"?¥Í‡Úgžgô ^a·Ç°ïÞ‡¬N¡îΡ<°^vñäyù…­áiÃú Ô!tð"êä>ÊáÅ”ÉV~¿žsÞ@â˜â§™çÁGœO~ZFÞ›H7x‚]@~Ïá=è¼O}`­Q×Ù`ÿ°WøX¬×kBôM[)Ïg’7Øüõøºøêâ§È7ŽÜIy€fØÕ)Kõ ×°ÍQæ°ÿe¤2ž&󤯤ÜO£l ‡sÉÿ‰„çù Œƒo|\¨mö1=Ç?‰t€oøa]w~ØÅ.ÊðÎs¿”õ™”é,Ÿ¾ð»¨ïê:ßYä ´ëz?Žã?•|@OXw3!Æ+ùÏ{,Ÿ³—²ÆÁ°%ØìóU¼¢amcíÝB~n¢Ÿj;úXG}@§JêdŽô>–r:Ÿz8™÷®%­h'q®õäíT3Ïl¨ýÿÔÁ1ü®±Á<ûC°ýIÿfê φ-ÞA:ÏâsA⇛É×s!ç<ŠúÐÿ{åýÿX6¥÷/ã<°ßç;¼žDúžFßÀg_C:°°¶á£"þC\+¯&>áµìƒ£áqȩLJèǰwðØ›°Ÿí Ñ×ÝÊ>W†:&}X çð™›(‹Ëxÿ#'Èv€ýí\Î÷xêçÊz;縀2~€Ï¾'Ô>o/yx1ñ/4ü¿œø»Ù4Àfïã<·‘þ­¤óY¤UcàêðBât@—°•’¼‚þSØï¶ ¤v[Ñõ¹9Ô±¯ÊônÒp+Ûíäýùü^à³ÞÏ{ ÿ%FO¡`°iØ]g_h|ÞÂ~X³q®/‡hØ+>À9ãð–·S†8”Gx©ˆáaSá¿Cuˆ`†›pèÏ?†êð˜|½4‘S.úÉÅçW‡w}\Úw¥Éž›ýM¨lÊD¿Ù#!÷{¡z_„¾ªƒ¯p‘ÐP”ƒÃ—N$ýð°[ì¹ ñ ð„ØPöçê  Õ!R8LªÚÓ¿*_U4y¨æÀ!58äÜà (&XøÎE×Ù?„x¸î“8¦:ÌòÃ<äLÖqþU¹~G®8¼°žÊpŸØVu ÖJ½V‡ÿ A¿ªƒrªCr® O°×÷‡xx^}2ÄØêÓ”?úA<üîHouÈÒyÅA>/¢npà’è6Ã\8tHô†ƒzr‘guØæI{m¤/{Ê?"í²¨ X‰ƒ-[Ò=V‡ßA?8ô2û+iòüêp#ØÊW£nªC½žC=LÒžŸCý|†²‡oùDˆ1-hþH_ÑþòøöÇ¡Ok£NÂ_†*>«Í’½¬:lì!%ñ8¶ÌqØÛ7C<ìÔ—ÄÆÕAˆ2gužÄ¥ùs£^«ƒûp°ì±É^U`ôT– Ûo‡xÐx„/yˆö%6aŸ|ùø\ˆ±.|+lº$ꣲ¯o„;®c›Š¸L’õؾâ¡J8ä ÝÉ~›‹o¯WÂ{Ç>i?œcR÷-òõPìŸ ]8È ‡ÕU”½/ÚZu¨â5Ñ.ªC­pàhø%Ò >Å^«8÷©3=¼ìýl¿Ã>à{þ;ã<8üª:ü þ‡bá =Ù'ªƒàpðá¾¼z”:ù沇T‡¥Jš¿“zù6õ†û’vñ?9Ã!„E®ÒºBŸ+ø,än?I»ÑÃÀÄU‡•}†ëèï)„¥ûÆIÎ’­¤?@? ñruØÛ;£}T~鮸òS¢½åÒ§:ÄVÖCuÀ-üýxø_žß×|#ô _X­¡WÓïÁî$f­ÃÁYX;ߢ?¸Ÿ|ý5åœëO¢ï¨xú }ÂëæÍ´OY;â‰¿Š¶ZéM|auèžè)“ýª: Lö÷ }ßC{›ŒvXɇÇÁf¿¢Oÿ2ímŠþ ºÅ·°þc)7Äe_‹6_Ù×WÈÏÆ÷4Äo¢ì¤Íaïzy~ ùÄ~´ý‹ü×ô'ö_íGÈÙøèý(òˆµu }|ä.qF&~©:dñ•qUz€¯Ä¡fßa¨€ûWÚ ä,üV¾ëu\ãØg46C>‚z âµ_ãúÀޏþñ%ƒõò»yï«ÑîªZôöÂo¤®ßFÝÿi\[ߤ}ÀâÄÅe;¾Wü5q«ìëúùœGIÛ»iïðMØÛÏ!®C †Ø~ qêˆ °W]ê:pˆ×_l¡~;#gzù¸‘ú}ùy”kk>mC„«C¿~=úùÊ^ «¿•öÞ¿"ê²’Áîèû«Ã$a¿B9ýéxˆr…=¡¾ð|òvO¨ã˜Ÿ!íZBì† þ]cYè{2âN­»<#Ôµ<ñæÃñÙÕ^úÆ+B\‹àóÑ÷k”ä.ñNu 'dúÏìzßÌ»A.ûR⯠_ˆã.#ÝC]o½{¨OıR¯ZC¹‰ºw’wȱ.rΜ㡎…± N†-c€Ía=¾—r…~°?A>a—ˆQ>H~ßËù°ŽŸLY=‡tÞC:`?ˆ¿±g\D]€Þ› ?×Û8yl öµ+ÄØïr¶«ˆ{˜z¼1Ôùó»(Ëç±Ï|ö½¤õõ”êYï ¿XãØÏáSÞB¾ÞHÙj­ñ‰¤´=ƒò?''øäXOˆíÏ#=È.áõLŽCŸ Ù ¬)è]ë ;ø<­]ì$ÍwñÙ[(_ØÃ¾cÈWQÐåÈøAÍvõrò}ìµ}Íìã$ñƒƒB+y`ÁšÀ±÷Ç¢o­üÊ×B´ |ÿ|”eåc%.¨å¼™ûÜFÙ;$ïÊeOÂá¤Øëß·îç)k¾:lYb–è²:T]t”‹ŸÃaà¹Ì‡Ãgq8h>!MhÉçb<‹ÿÁAµÕÁØE?_}àû°æÀÀoü=iÆŒ\{ÙññöÅÊî?ªC2‘#Tý?Æ=‡`"YªßgåÈ^c²ê`Vñ·ÕÁÛ88W|Z~Ð.1eKä[Ä-:j‰Þ[¢ƒâî·2ºû,ž#„=#Bü)>£ª£Ò„zËèS±>?ù©lû|âCÔÇû?B|™ó}_ÆwC<4ùò-ä ïf̼9ÄXZ|Uuü„ï",6Ú:,âó!~%uò%ÆP×G{©b‚õ¡ŠÍªøõ°IúÍEò€¸í#¤ñ%Ö&âÓCÜ;?LÞÌ~X«X߈밷ýOä¯:pøéqŸ¨r<䌈EÕ¥¿ã¬üÌGW1øðüâïT‡tËšC>‹u÷\þrÚõ…Ü¿Îå^„ýû0b2ìÄ%=ˆ­Vûö…÷„º¦‚u‹˜æ|âïç_G*y@.ˆC°/JŽZ8‹}¾à›Œß^Ë=¹óë(÷·ïˆÑ‘?Àv>õ›½‘±Øg&>:“õƒÃ¥«½ ö_ñPý&°:÷ê {ú I;t„1ð#ð=?ÉûêoàWàw±?|züDÔ[uˆî÷);øTì#ðU²~ªE~Õê÷Rw¢ƒêPfÔÞ×Dö†«UúDN}õ~n[T:ü¾BÛ6åú m뽡®é;¤½ä ~>{ö¬çs tûVÚÜB´çjÿƒŸO9޲¿…¶ù‹ÿ®@–uUå.°#ä?ðwÈgE.ÕÁDzOd/ãÁxäñˆ«þ#ꨊC!CäÂXëÐ)jÓÛIø{-m :Ážþs´7ìaØßï õ;ŒÃžp#á]äúÃÚúóø¬j"_½+®ãê`àÍ!Ø-9p•“¯â:¿)Þ«Öý¡q­Wë“0¬®È)ƒzÿY¶@;McÆÞ„w×ñŠxàRò‚=Xëêwñ>®/&O7QV°³wR÷š'¾˜¼~˜×GB´õOÑvP?z=ñÀ!^{iG<‡wØ{·‘Ö­¤qé;*Ôï`±ÿ£~ùûÔË _Ê{°1Í×l ±^¨ï:`ŸOàs¯âsoä}ø¬µg™ëË(<ûô)°_äOá:?°Ø6Ö5b¥ Hb±[ùÜH¯ÖƯ`³ïÞ6ÞÄ~g’wPk[bìøZê±ÏÅäáBÊ º~%õY`=J^W­Uð¦5ù‡H'j2°qø¤” öy¬×Pû8ç³Hÿ“Øv‘Ä©=Ò‰û¨=#‡-Èß©äíRÒ7Gé{Ѓ8uÖ äm+Ÿž_}ߟNþ±öô½ lôò[ÕÜø>ê綨³JN#|-uÐ#Ü#]GQ½¾Ç]›ùýI¤ç*Ò ½œÈ1ú» àPŸÖ÷A€»¼wz¨ßéo0ïY”ÞÃ\ú t\By^ÆvV¨ß»l g°!'<’4¬ ˜ã°P¿‡GííÒv,ñ°¯Ã‰_mx9ŒÏ+9÷g9Ncr’áw=Ûi·ž×Íäé ÊãÊq޼éûèÓ9—þ|¬á³ð^>ý>ó`CÓjsðŒáI×ò³’s¬â³Ö†ú÷ G’öãCý;‡“(³£ÉË©¤¹ \0kPmçôPÿv@7~ª÷ÚbÌXù øBøe¼;€¯Ô˜þ>¶ŽµŒ¸¶Œ¸þþ> qŸÄL¨3Wù±ì§lKüX~)÷FÄ8'rE¬€:jN?Á|¢cÄ÷Õ>…~mÎ…½9 ê'XW ñó½¸wUkh;iC÷L~¿/Ô>øÖ×/ü2Öâølì#ð#Ÿæ¯ã¸ðù¨b_x ¿Ã7ýÛ/1Îy:é—ý¢ŠÉÅ'W5©'Çø´Šg±‡~´Ã¢nŽØò/HO?²”=¢?G¾ÿ´‡<@?X—W‘Ø2üÖ-|ì6|é¿"Ê¿ÚO_Obï}éùíP×úàã´F…|ðŒdÞ*„,»¡Nõ¡®Em£9½ŒôáYØ´"CŒ€½©Gúôꙡþ½ÎùÄ!€ lõ;¸Ë‰ßCžî¤ü ìϯ!ð»°UØî®kL÷³áޟǾÕ;)¬[Ä•Ÿ¤L´þóÓ´‡íäGíþfê>çã!®3øökCý›ð®>ûtâà`oë©Ü?<ôÙ÷ÚP×6`LJúçû)»Û(cØìËy½W䎨¥aïÁš}3iD?챿NùÜG>îàs¯¢Ž {Ý!oø”³¨Ð ?r q³äóxö;*Ô¿iÃý's^ø‰[B½wBÞ!·g’6ÄŒ·†èCðý ¤ßï~‰røuüûêïB@¯Æ–ØÛað9»BŒwôýí¹|öYÔÖo@Ó溑}À|3üô û€ßÈgB†X—÷óŠõÛDür5e#¶Áúziþ5Êågyvv y_H=A^“—@½§1ÂU¡þ=Þ1¡þßÉü~,urõ‡{ëBœêß!\Âë þñ¢ÆsWSˆWQÓÛNÝêÚî?7Ôµ×yÊsn íºWößGúK<ìéP6Ћ}NcˆcˆŸ%_ØOÏ õ> eråÒ u‚çŸÀùOgßsøÜóÉ3lt#yVy<†xÝGÏàüèwöìN¨k€«Ù®õïôV‡:Þ­§F<1êßùà>lri>‚ãKöí±Ï:ö;2Ô{:ÚY”¿þV}ïàøÇð¹ÇR†¸w)¯Ç‘·£9ö(ν)Ô¿oÁ35¾9”÷W…:ÎQþ°? Ÿ}€ò8Œ´Á¾3FF « nN¦®¶ðyGî’·.ùW~AÏíäKã°õ¼wL¨móÎvŸ¯¼àûJ~_êxt-y[Çq+yoùÑ÷ãjSÓuz:å¡ñè>;Ô¿åþ6Ò]\Âû€O%Íkê5qv¨ãËeäSãß•†Ö#ØÖq<ö¹ƒ8çÊj-õ4Í{èÓâ}ð9AùLòþ$á#ùÌs$ç:Œò_E5^WY/ õï×–q®UæÙm6ØâòPÿ~þàPÿ­ëÊPÿÖ~Šc—ñy“¡þ;×CØwõ¶‚sê³åuŠtè<ëøýHÒ¿.Ô1ùá|Ž®Ã SäMe‚kÎ9•÷•æ9Pÿmª‡qÊËA¤½Å¹—qþCxo:Ôö°šã”_•ïjÒw(ïéž!<ù×£€l ÑV¯¥LaÓˆ»6†¸ÇÃÏc `ÂþËïØ+×>†ã°W`ÿ{$ÄûJ΃ñ¨·"Æ^Š8±ïÛyÅ~÷Ýú\안ç±Ç 6‚߀¿y!ïÝâ^÷ÔHzµOý2ií‘\ׇè3pÅzƒ?ÂÞ…5ª1ö<õQ#|/lû”Pçè7ÿ*ÎÜ')‡[)›‡ù|}·‰zöK­M¢‚ø ñöaÄs¾ëCý7!Ö)«ØçÜPïûØO±¾×§¾P×t Ý/g¿‚sö8ï™×%—‡kB¬‡h­d#eþXÊëÁ㾗𠺡wøè’¸>çÔ=¦$mé†m]Nz#ëBýûWØè!l€W„ÚG«/Oº×hü}$éì…úïÎ õß° nxœáùÒö4Ê2€¿¾”ðfÒ;Ïg<êjÒv"Ÿyl¨÷C©‹åüÞ1<®b›!_Z#€ÌÖ>‹rÀ¼°ƒ³©“u¡ŽeŽ!Ïózg¨ÿ>è|#ó ù†­6zø¼,ÔuŽ£CíG¡õ·‡ñþ‰¤ÿXò;eô ^Î$ÿ'§8vÆôóN!èsû!Ï õßN ÖAÜù;‚4ŸI]JúÎ uLµŒsjÜ 1Ù ÛòPûGÝ3€kóŠ6Íë±äå4ÊVé?-Ô¿ ÖXí8~_O™KY®Ô÷<4ë9ãŽu}ë”P﹫©ŸY3ø]Ã>jSº—輌p—|® u-KýIJPÇpºöÖ…z]ª-IÏïéT?©2>šr)ÉÓ œCãQïaÝžêµããmfBýww:—ÕÛåtD¨õ{¨¯6|(á•”Ç!¦Í&µó#ˆ?ŒcÖ†Ú^Ö„ÚNªý4Ô~ ôM“FÕÅr^[¡Ž–sÎ 3ŸÆQ“F¬0ôë³5–Ó8As¥´öB3ª¼4Î<&Ô¾Vå9tø}m¨ã åu"Ôñ˜>[ã‰Pÿm湆?µÇ)#Ÿe†F½ªŽgBí{V…úo4ö\Á¾ª/ÜÓxëöŸuª´j?A56Õ˜­å¾+ß#+:êqÚÐuL¨ãÖËy¼ ûcNÄ9ØÇyõ]ê 8§ÖµÎõÞ6Ç껑3(k<9Äñlð³kC½g`êúÓzÀÁlר-èXÍÓŽásÖ’æµs1ç×úÖe¤t"—¹‰´‚fÄTáøÓBýwß³¡®i©?9˜<ÝN9¯uœ2jÿ9cø€žaç(oÇ„Ú×èÞsp¨ëVÚpÿ$òyh¨ßSÍûˆ3N Ïg„fuç;6Ô>m5ûàÙûÁiíI÷£UìxHã3]ï6/Ö½EïÛ}Fã#Ýï×óÞ±¡~/9j>*ÔµµãÈãq¡®#i­ë¤PïÓg…z¿92Ô6¢¾_÷©Õ|†®Ïœ}Û”—êK}ªêl¹Ñí ç˜æXå_kw+¨ÓyÕúèÉ¡Ž/ Íz˜­%(͸Œ¾TæÊ׊Ðüw-Ô¿èwåAã:½¿2ÔkNã²åæÙ«è÷'¹ƒÆSISaôR„ú,x;!Ôñ£îÝSÞºwiJý¡ÆjÖwZß«{̲Pï+J¿î]kB] ÓÂê6v$ïNx­“ƒÖqçUó|]»jGÓÔÆ¨6fQÞÚ¡¶7YÛägÆð û‘öÕ5¤z³1àA¡þ·¦)wõ'«C]k]j?tx¨ß•kl·*Ôkv’-„º& rнv…é§{—6ÝUgvŸ×º >Ëò¯kGã •“æWʳò¡1¤®]×>ÆQÙk¢{y'ÔqdÛôÏ ÎÆ£¶®8*nSz5~é¼Õ»Õ­ÖVÕn2cTžj‹Š×8t2ÔëÛ÷·±‹ò®Wå1£5Ò¹27nÚÀ6FShìimÕÆ‡k íª[«Õ£Þ·ñn|…Ðü·urӬ앾`t¬6¬q–®w¥K}æ/ézÌB³)}Ö³P¯+¥AmNùËÍ\ÊŸÕ—êÄúA½§þQõÞ1cmì­2¶±iÛG‡:N;1ÔyæêPïZgEn„œa}¨ÿ ­Ñ龫פֿ u-Iíµj®ïÎ4þÂ3Õ.TßÖwÛxhÂõÕ9t?Ö˜m­á rÒØø`~?,ÔïU§ú.ôÏ„ÚÇÛ|<„:öÕØÆúoõíJ·Ú­­L†&ê‡U^*õ·š/il MßÓ©¾Žuì¦ï/–™ñú®P÷˜ËC½ŽW‡æþí÷_Õ‹åa"ÔöØYâª:<(4×òÚP¿oÔ¼Iã2ÝWÖ„:VÖ:±ÖWØï':´ûƒúé`dßv8•…Ý?'Ìw­·äf>ÛY>5æÖ¸w ¿_ê÷Á«B­WôÑ}Ví[ãëÿÔÞµnæk…J›­×ŒŠç&Í8õ-ºÎ¦ NmM׀ְׄzÝë=ͼ,ì^«òÖw9WÙu¯ñ¡ÝƒÑƒål,e÷WedëvßÖº¦òªµ¥{ÆÑ¨÷|¦±œúë5¡Ž!¬­ùÇêÇÆ:ªGÕ³úÏ*ý¹ù®Íæó“fNË‹Æi>vÑ}Øæº¾t}Øz©%l, zPù´ ÞÏa÷ó–cñ6¾ ç}Ž}†ÊAi³±zi|¢û–ÞÓyõ3aú´ ÞÊØÆP^oªOÕ•­'ûøLy›txkïJ‡…•>/Yzl_Õonæj…¦ÞmŸŽ«òô{[n`Ë¿ÍGUWêƒt-Z›±ùjîš•0óZ>²-w}u¬ÛóÜú •O6¢Ÿ•EpWÛW¯Ööl|®Ï²v—»ïž6+£QþÏÆßvÿÜ0Å“Þo/÷¼Œ’©Íó¬ ´¯Í'¬}†æNûçÞ˜'`/º6ĸ^cFûþæÐPÇcëB½~5îÕ½Bóh­AhíXëŒÈô÷lú^Tã¦5ÚSÍóµv6ÉçN‘§cB;kü ±›6]7*'•™Æ'ÏÚzšÝ74&Q¿¤1¢Æë«C]?õw…ú7…6çW™hmT×9>ú[¯Ôµ­kÕú»l­°µí¾§ükL¬}޵_Ò<ƾ××}ÝÖÛfËðѸ֮1›Ÿ[Ÿbý‘¥ÝÖmSÿkß[ߪ:Òçh½_s'(*[3°þÞÆÖ§û8ÆúÕÑ„íþn÷cm£b#å!„fìªû„®­ kÜäcs;_õºÑœÁú»7Y™ëú³¾]é²ýtÍ©¼¬ ¬ÎqEhú2]÷Kªît>»'uÌü-7¯ú¿/ùø@¯6ö ¡^³~_±vaç·²°ù…ÚêÀþ@c6+?K—Ƨv=[³»OX¿`ã«Üññ稘Ýç'ÚôÝõ¨¥·kåÇæ ‡ðûá†íãcÿ]yë8œß7uNóÙ˜ÀƆʫ•™õIV~×u>*¦™vãChòg}‹¬-Ø1Öfýž¯~×Óâãj+W¿é~¢¼ÛÉÚ=­o³óØ1ÞÞZî¾îÉvÏù±ÚWeíie—ž& Ú{žvïÔfkã–¯3››û¸Þú K§•‡ú`æµ§ê8Ÿ#Xþìšóòð|Œ’•_C!4mfÔú÷ëØ®¥Ìá,­KÙ“Ï)¬/>ÐØà¾[ú-¯¹ëký¾õý~>ÏŸ½ïiòòÕßûKŽ¥Éól}ß~ö…¥s„}±êwø ÐLˆü#TûµuSÄ‹kÙ|·ꚬÆiv¿Çú=žã׳ï¼êXz½y–ævS¤G}ˆæ¶&=aÆØÚ¢_£J¯ÊÕ>KñšX¿¯¿õS_kc/Ü;Š4Úú‹­›ÛwŸ»gâ³Â̧5w»Ö4Þ°¶aדÆDÖ¾íû^k6ŽÖû3!Ýÿío0ÿáF&“æYZKU{³õ]»YºíºðþÕî»~½ÙØ@¯6¦ñ>ÑÖ÷µÏThî­vÝŠ í:ÔßvX^ô¹Áôõ±‰Ò‚ïë^ç±ñµò¥¿gÖþ¶¾ií]ù³¶ ¹…—>›«ø8Àû*¿÷„Ú¢ÂZ7³{Pn`»§X_«±³îƒºŽ|¬ãúú=ÍêËî›>Nåo}œ`ûéø¥ú{;RzÛ®¯õEÖ^ì\ö½µ#ÛÇÇž~ À{Û´óÛ8yÔ¾isN›»Y^lÍÕ·|X¿åãoKkÍ8kTŒ9ê3*VõuH½7Ê6쿯/U+÷öè?>&Ò~Ö.5xÍ­ï\ÊnGÅöÙ>G¶1ga;¿ëGÙ¦×ç(cý·»Þ:#æÐÕ³§q”Mùy²°4maÄýQ>:мKùD»¦,n¿=íû1Zˆ¿•ÑßÓ­64Ùß)hØî6ž[Á«ÆÆö÷Àöo‰pÿH3Fûéß¼Ùõƒïú¾"„f¬`ד¯õ*M¶3ªVå÷>ë›´æ*ó,½¯¿É×ß® uN`Ÿ©¿;<Úà¬ÿS­rÒß§ü^g÷eëGlÿì÷Û8te¨óˆM¦ý¯µ7û½Òº‰ß[õcq>>°¾Óúkkwvn›X¹¨Ll]ÌÆf ·MSšì{Kø5çó3ß×û¿ÞGÁ*ŸÏhBÓ­M).Mzõ^ªûñôÚµãyò8»Ç/•_ؘÀÛ‡]ûšâÅþ^o”ïWÚ=?K]õ“;ܨߎXýx½úÜÈçv½Ø| ˜~^–£h;Ð>ºÔþciõ}&]?«'¿&­‚¹ oe–ö'æÅ÷¨ø|”Ì<öÞR6â×€Î(Ù/ÅŸçÃ÷±ˆŸç@ëTió5è¥b Ï?ËúPk?Š'Ïߨû~½êsìü£ü†Åáãß#yÛ]êã×ÇùÏ(ü(ÿ1j^ýî×ÈR62j°²E“ÕõøEïê÷£|âü½=ã@v³-ò×KÙñRÏðóyü8ö} ÜŠã= þãýÙóL;ç¨çhLå3öý˜M–¯Ì?ñðÿßsjñ·3ÀO¿†4ÌT÷Úñ]zwãÆbCõ_‚é{L±ÉcºÝ3ßÄt7lÜä1E7Á$£ºsML/™§—ÌÓKæé%óÌÊä fÞcŠdT·ç1½M̦ K)f=¦[$'ç9™ÜcŠ"Á$£ºN>eÂi™pZ&œ– §eÂi_ç1EÏcºÉ¨®“ϼ(ÈcŠ &ÕmʧØè­˜¾Ç8댳^`šò) ou‚qVL2ÊY]Ñõœ Æq Lé1žÓå´[­ÓÒcVWaºÉ¨†Õu«u:ë1E‘`’Q «ëVëtÖcü<½dž^2ÏlS§Ó÷˜"ÕÐiÄÌ71›šÖ[aÖ[aÖ1NÎsMV˜bc‚IFu|Ê„Ó2á´L8-NË„Ó~Óz+LÑM0ɨ®“Ï|Ó“D̼ÇɨnÏczMù`–㬫²H0Mù`ÎzŒ³:`’QÎê°N» fÞc§X§=ipÚ«ÖéœÇ4¬®Ât“Q «ëUë´ç1ÅÆ“ŒjX]¯Z§=ñóô’yz#æix¤^µNK)f=¦›Œjè´W­ÓMÓ°Þˆ™÷˜®“ó\S§3ï1E2ªÛó¯Ó2á´L8-NË„Ó~Óz+LQ$˜dT×Ég¾éI"¦ï1E2ªÛM0Mù`ÎyŒ³^¬Ê ¦)¬ÓžÇ8«&嬫²H0}qœbvŒåt¶Z§›<¦au“ŒjXÝlµN» fÞcŠdTÃêf«uZ$˜¾Ç›<¦ÛM0îé³ §³ §³ §³ §›š:­0 FLé1 V˜žãt®¹¾*L1ë1ÝdT×ɧL8-NË„Ó2á´Ÿè´Ÿè´Ÿè´Ÿè´ßô$³Õ:ó˜¢ç1ÝdT·)¬ÓY)ŠÓ÷˜nS>Eá­®(¼Õ…·º¢ðVWÞê°Nç<ÆqŠU¹1ÁXN7Uë´ç1 «‹˜dTÃê*LÃê6Uë´ô˜bÖcºÉ¨†ÕmªÖié1~ž^2O/™g¶©Ó S &ÕÐé¦jv̼Ç4¬·Ât{Ósržkê´Â=é&£¼NË„Ó2á´L8-NûM똾Çɨn7Á8ùÌ7=I…)º &ÕmÊë´ç1Îz)=ÆY¯`œõ…·º¢ðVWÞêŠÂ[]Ñõœ]ÏiÑõœ®n3W­Ón‚™÷˜"Õ°º Ó°º¹jÎyLÑó˜n2ªausÕ:ó?O/™§—Ì3ÛÔi…)6&˜dTC§sÕª,LßcÖ[aºÝãä<×Ôi…)º &åuZ&œ– §eÂi™pZ6­w®Z§¥Ç³ÓMFu|曞¤ÂE‚IFu›òÁ:í&˜yqÖ‹uÚóg½Eá­®(¼Õ…·º¢ðVWt=§E×sZt=§…«Û”I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€ûI¸ŸT€ûI¸ŸT€ûI¸ŸT€ûI¸ŸT€ûIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–æ“ÊÒ|RYšO*KóIei>©,Í'•¥ù¤²4ŸT–æ«uÚM0óãç阧a½óÕ:ó˜¢ç1ÝdTC§óÕ:õ˜†õFLßcºNÎsMFLßcŠdT·›`œ|Ê„Ó2á´L8-NûMë­0ÅÆ“ŒêÎzLÏq:ßô$¦˜õ˜n2ªÛ”Öé&qÖ Ì¼Ç8ë- ouEá­®(¼Õ…·º¢ðVWt=§E×sZt=§E³nS «‹kuÄ$£¬ÕU‰CÃêˆé{L‘Œ²VW ’yzÉ<½džÞˆy¬õV¥Â†N#¦è&˜d”Õie ëk½Ä”Óõ˜žã´YŽ˜bÖcºÉ(¯Ó2á´L8-NË„Óf˜˜y)’QÝžÇôœ|šàˆ)zÓMFu›òqàˆqÖë*Àã¬×U€‰é{L‘ŒrVç*À•Ó𜺠pÄ8N]¸(|8bVWø pÄ4¬®ðà¢ðàˆ)f=¦›ŒjX]á+Àãçé%óô’yšàˆ)Š“Œjè´ð`bæ=¦a½…¯GLÏɹYŽ˜¢ç1Ýd”×i™pZ&œ– §eÂi³LLßcŠdT·›`œ|šàˆ)º &ÕmÊÇU€#ÆY¯«GŒ³^W. _Žgu®LLS>®1ŽSWŽ˜§]_&fÞcŠdTÃ꺾\t}8bŠžÇt“Q «ëúÊRÄÝ3ï1žÓÙ„ÓÙ„ÓÙ„ÓÙ„ÓÙ„Ófe)b:íúÊ1ý&¦YYŠ˜¢H0ɨ®“O™pZ&œ– §eÂi™pÚOtÚOtÚOtÚOtÚ¬,EL±1Á$£ºMù¸Ê1})6yL·›`šòq•¥ˆqVç*Kã¬ÎU–"Æqê*Kã9mV–Šž¯,ELÃêz¾²DL¿‰iV–"¦(L2ªau=ÿÛˆñóô’yzÉ<ÍßÓ÷˜"ÕÐiÏÿ¶°èùßFLÃz{þ·…Ä897[1ÅÆ“Œê:ù” §eÂi™pZ&œ– §ÍßFLÑM0ɨ®“Oó·…ÄÌ{L‘Œêö<¦×”ûmaÄ8ëu¿-$¦)÷ÛˆqVç~[1ÎêÜo ‰™÷Ç©ûmaÄ48õ¿-Œ˜†ÕÍúßS61ΓÌúß“ŒjXݬ¯GŒŸ§—ÌÓ1OÃ#Íú pijÓMF5t:ë+ÀÓ°ÞY_Ž˜®“s³L̼ÇɨnÏc¼NË„Ó2á´L8-N›àˆ)Š“Œê:ù4+ÀÄô=¦HFu» ¦)WŽg½®LLS>®1Îê\8bœÕ¹ 01}qœº 01–ÓM¾1 «Ûä+ÀÓ°ºM¾L̼Çɨ†Õmò`bæ=ÆÏÓ1OÃz7ù pÄ=é&£:Ýä+ÀÓ°ÞM¾1]'çf˜˜¾Çɨn7Á8ù” §eÂi™pZ&œ6+ÀSlL0ɨî¬Çô§Í pijÓMFu›òqàˆqÖë*Àã¬×U€‰™÷˜"%V§ÿ.v¼“ß¼qÿ·bÿ·îþo½ýßf÷Û´ÿÛÜþoåþoýýß”žÖÍ¢„þ7þ]ȈîìØr÷Ö=¤G‘ÙŽºç¡?t7WíÞºkçî½ÛvÜyÃîm[vܹ}ëˆi’>·ßuþž‹¶ìÅmó5º­¸ûÞí2Óλ·mÙ~Ãõ¦cˆ×ÈÃsûðÖž½{â­µž®å{îÝýì­Û¶oß²ãv’Ûÿù”Rk0surveillance/data/MMRcoverageDE.RData0000644000176200001440000000151112004012605017140 0ustar liggesusers‹eTkHQ>®lÕ4·Q½þÄqÐÕ2b³4léGt¹:[³3rgÔ^Dý¨¨~ô"(ˆèGDDdЃêGE"¶êÌÒ"¤ìÌ:w48÷ñÝóøî9çN]Ubq8€„JiÌ¥e^ˆ†ȃ±4—ÄãuŠÙÆkæUÕ¹ói.¡9’UôŒ ð,‡Î` I!‰çÀs^DRì9#GB‘ ŒdZ^ÉTnD7·raÛ<ÕÈE³Ô¯d»¸0‚zRîŠ*3È®±u„ºà).Š«™eÏ\ÃEŠ»|lL K4¨á–LŠse‡>ä1Ú`Š3•Ž^²>ÉU.,¦hÃ&‘õ¦P…Æ“DŸ[vÓƒ£Ò:Ö‰ctá»}¸°ž1á¡’Qý?ÇùÛh…¡1Ý–ªW4[íÉæh©[6²Þ¤QÚ’Fsà!“i3]æÀcäàßbä+:³d-‚ 51Å6­þøµ@ÎiƒšhÀª¢`âC€hÀ×»K.@Nì„nœ¸40wÀžï1hY°úýÔ ¬v@Ήk~¯DÐÙùö÷÷Û«Ñé®ÿùâýdt4qsæ£sèôšqgc?ö½x?éðü:‰²Æøëoè÷Û-œzþ~Û3ìßèÔ¡ƒ{IÅBg^š4~ [¼öîÖ¥ˆÎÅç–›Øoû¾_f£[þÓ÷ãóèÑÆNñݼ)'í{Û1Snœ9VÛø‘q܆¬f–d?t‰<¡ÛöôÖòDº¤Dƒ}fÖ«ÏÛ*Ž`&vê@ÁœèÆ_½6Ѓ™¬ÙVtWµ\~^…î´ë…‹æ¥%ðKû÷ÿ²Ü#ø{‰ 1 îùåìÊìKìíZscÂî.LËûÔv®T·LÇ^߯œÓƒOÀ§à3p|¾_‚¯À×àð­é曇üñ¬ß6ÇlÙü²y¶’Â+yçË1sÑÈuê2?CÑ͈nVt3rlûË)OÙE¯$öé •ž¶]½¢Ø-™dÍäå¾4y寎Ñ»¬?úï©þ@ÝŸU10¾Œèq^Ø([“/+רh7§l{JŸñц§lxjÎuŒ—±ÒW}c£ÿž:MÒW®'ó_TkF9_^j,kËîUÜ—¸…b'¯æ“9f÷µªÜceIÉ@$}(ɽ5¹–^Îç„ù–—~ú¶ M¼ïr/fNdÔxŒƒz¾ÄÊÚÉ™8t~ùb³ 2m&ù\èUþÒOÖYÁÄ9’S÷å˜s¯ãÕ}%é×ç%uNÛ¬_ÆÃ9`îø&YË\‹¬øRHé“Ìí¬‰s±,Çe5¦Þ‹hƒyo±ÏÄšøn×K\ÖF²Wl¿}FÚgf¿ÌqŸèTÕåÜöm[eå[Ò-KÌôÕöm¾ŠÒe>Qo“èqéwAé3oC‰¯bâ|à~¤ôõX%±Ïú©ª¹cîê~ëë:‘=j¬¢ŒÏ=„ùÎ` ¬?ævÁÄuX3qíÐfÍÄõÀ=,PãÐ.ç—µB;¾· >2ç9÷œ9sjâgºþ‚Ôu®cá»ýöÔ}ºNÊ&ÎƒŠšî±Ü‹ù\cp}e+T¶¹^ºFè#Ÿ§º~=™ËªIî30ñ^Κæ{aîk_ô³@ï!=æÌ=ǘxe̬+Ös˜ó¨×X¿èg§~wá~È÷iæŒ~×ÖÏC;ë9ýÞ“U’¾qœ´^¨ô¼T?÷ œ‰ë¼h’û×LbOü‹‘nΉ{ùäŠÙ„J*­ú\d_SûDï´,=K$À(;‡ä$ÄÉÐÀˆœåp620¼MuîêžÁ†W•WJ×\sÍ5×\sÍ5×\sÍ5×\sÍ5×\smÕšýÞçýaÎú0k¯¯Âw¿®n=õÏrµôηÿ7qÿÛ˜ÿ³o¥£Ëý¿œØñÛn'tÒÉ5'¿Žÿ^9ò£“N:éäš“?ÿÔ>ÚìuÒI'\sò×ñS›—Øî¤“N:¹Öäÿÿ­´û3ÖÌØÖ¿>ZÚsoì;?õM3ñ›Í€?Ø”ßaw/ú‡£èÔÙž\ˆ:‡¢iÞ°°X_Œä¤ÒŠš™ÉöRg¦Ý¦Fu¾=¿4[_l¶[{;õ)ÚÜ߉*Å´'S³õz’a¼ÓÍ…}vC"<ý'%Ï^{ 7surveillance/data/measlesDE.RData0000644000176200001440000000442511532744762016456 0ustar liggesusers‹í[lWÆg/¾_ÈÅM[ %åNˆ-m¹”æâºÁ@Û„Ø t¼žx7ÙÝÙÎîÆ )Ô-ôÆB¸´U«UÜžZ Á U ‚'xàUU_*ñPA(áûïžcÏήã½}Ÿôó7—3ç6gΜ93Z?rCÿ‘~Çq’Nr0á$SXL'ñ'ú„‚ç–ó^yüv'‘ºÚÚÙå•üL Cà)µCÔ¢‘ ô€^u¤6ÕqÃà `Ø ¶€­`\¶+ÁUpÞÞÞ ®ׂ·€íà:ðVð6ðvððNð.ðnð°¼ì£`xx?¸Ü>n7›ÁÁ‡À‡ÁGÀ-à£àV°ì{Á>0nãàv°| L€ƒO€O‚;Àà.pŸ‡À$˜ŸŸ‡ÁðYp|Ü >¾¾î.˜0

sÙnËaq™mEÇ™Vù1o$i«ô5¦o0æuu ­Va×uX˜}€Ô¹ÜÐôM¯W-÷;‹åÓá“Îò24ê+ì|5Êo—Н[¥%7X¹Ù^¡òaÖaXœ­\#¦ô9’0=FÚæà@«Qûi%fal5‹ßΛÞ&èŒ,K}és¦Û¦.GTûÓû›…Y/5ëGÃòÜj¿¹ZEµosY·»v¦Ýªšõá­×z—«“µžç9jwY6JݬU>Û5æ0eߣVšÆJÆÕî‰û[IÏwG¹Ær­>KµK튫•g9™‘±¼ž`Ñãþ´r=‰"Û7©m~Xßg¤“2–Û9f 5‹ß,»Î—ŒÉôØr@­›ãO§ù¬dßSÃâ_i9ZÝN{ÚZ_I3.ý¬mÎ_4ÊGT^õr:âø¨ív¾´ôhX»1ÃG=×Ùa•±Q »/›ñÛ÷;;N©×yÁ"/Vä%ˆ¼l2Yÿ¬SŸÄ—‰z™xwúK A^@ÈKy"/]dì!sz|!c ™;‘±…\oº®ÒjÝœ6ó6§l®k5ª3¿NCòЯ–…ͪÌ[Õò•jYò)mïZgqÎ.jÞÞ·k¤Kmw:LÔõ/JËæ#ÄÆ{ M¿´¿m5¤u©>¯jÒÐÔ´/·´·ÝŸÒ³”ñ \ü‘‘qÀ ï‘šÞ4l=}›}Û÷`ãï°ó\>9??P68{›;ïªW·ŒA¾.k ûP¹¶PÕiÊûÇÒÇ”ô­%gw¹ö·Õf…ÓOâÚÓ…¸ surveillance/data/stsNewport.RData0000644000176200001440000001213412645666575017013 0ustar liggesusersBZh91AY&SYoEÕJ~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà=¾ B€@p à€1@qà{ÞàÃ0Ù’IØß†"!2`#F‘§¥<™4¦FÔI¦=CÔÉê7ª 2zG©„ɦÓS=SÒzdM=M¤ôžSFFM1Ô¶“íi| Åü_—Wãëgîòç÷¿Ú`y¿óÐÞowø~¿‹ìò±ü?Á¨ÔøÚÍmÞ»_äì67·×û?+m·Üz¿K}…úñ8\>'•Ž6Ûí—ùÙí|¿3mƒçn7;­ß£éz~¦­Ààð±}Ž'‘Éåãîw[¿G{¾õ7ø^¯­‡ÀÄàúü+¸œ?cÿq8¼n?#ÙÆö¹<®_3Ç3Á™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™é¯°5=Ô=^Œ‰DDŒÖit­d¥“Ä(PH¬*“Û@˜$ê®) Š1©J ¥Ä&U!€$XÔ"¤)j0”â2áUc ®!b ÂYs¼TÆ1f0c;lå%Õd ÕHTЩJ‚0*‰ˆUQ €È“ÏÁ Ild*Œ5HT!KeIeId©-B¨U­•IP2UK¶ PUEQ9‚B†€ˆ¦&Êq4lâZ(LCAED™ãSÿ…@c(Îs²’œHb £&˜…¨ ª™+ßÁ‹8dÝhTÿgHCc"HB‚¬±±“jÔ*Ù ZÔ Y) I3œàÊLçe!•‘% ±U`ìRJ»bH’È!f.Y-bbîÁlk{)¶bÙ’^–Y…ÒâT08BbÒ‘U‰a¦˜ÄÇr1l0‚XÒáV’ï5̃Ó&ÉBË%1¶< ©½ß¶7›V1‹²²Á$d -¹iʘºhB@áfKª7ÝèišJÁQ×K¸$f!yo†–JV+I@K? ŽHÑ— ¹fÃ5[emક$•¼›ä­»7´ c,‰d8e»àoÏñã,ÆS ÝË!klÕº2G9Öô\å̳e»d©*MµÆ™½-$c¬½vbËyf%Ž4—Ž Žqº·MfÂi3Wn¼I— ‘Ùei‰¦3¦¦xÆ[Z‹gbÉu™ä!ö¼FJ€Ö÷eQ2o9ñ·&gaâwþCñenÒó1dMùÎ~bC˜bHc-ïœ, 0gº„·[¦¤µ&šzlbæq›®Þ¸²e]‹10“çc¨éŠòúOß/÷I¹“‚Т*ov£56à4²hÈ„&„¤ª0Ä€7s.wi“KÒñm0­©yŒb^™»löX¼oο‰œãní›+Œé·“­íæ›2imføm€=æ‰.3ɽqŽ6.kµÀlgŒ¬Jk˜±…‹ŠÕ‡9iÙœ@D Ĺ[–% «ûÏ6O<뮸ãŽ8Ûn8â•Õt¿//×ûÕ+ÝtZ/¥Ü)JR”¥)VÊR• RºŽ“µïû¾ÝYå|ý³ÞMÑ|nýJR”¥xŠV_.¥}Õ)W7]–¥Zuwº]?h¬çÞºúy¬ø5`  ht@¡ªÑþ<Ô4š>ð þû¾ð´¾P¼ò÷ûväxÚð0çk€ÁyûíçžÝ ñ´Ìóv{mèa€88#‚(ÂÞo,X±bÅ‹  118 8À8øÜøæ <޹$^ªH‹ºø0˜€ãeæòyøx©£vUO@\'Ëãö£°ì5:ªªªª«$’I$UUUUY$’I"ªªªª¯ $’I#RI$Íi$’IUUUeä’I$Y$’I"ªªªªª«'{ÓçÏŸ>|ùûÖ|ûî;wwwwwwww}»¦½zõëׯ^â.!®Ò4 4Â!¦˜4Ó†’!¤i"àC^¼"õàׯ†¹×äC\µ¤+BÖ½­TZ×µª‹^Ö½UUT’*ª­I$’HÉ$’I$’I#/$Ä’I$Šªªªª«$›M¯{ZֵꪪªHªÔ’I$Ьš½ïy$’HÚÖ¶Ù¡{UKßÁ›$aCÿÅÜ‘N$ [Ñu@surveillance/data/ha.sts.RData0000644000176200001440000001761211746064472016016 0ustar liggesusers‹í\S×Çf+(bˆD Y`N݈n„%‚¸ÿî…‹ºÅQê¬Z÷(V´®:jmÝŠV±8qàþÍ m=¿Ïçë É}ïÝ÷rϽçÜûžéÒ·ß—Ïápô8z–ø¯>¾4ÐÃ¸Ž Z£`yý(u‡«_±À'†ŠH¥0¾0Ç÷j¼ü o7ÎË}äÈÛ1FxHÞFy‡2EÌ^mDZ@ð¸b…”C¬Ä)T@ì¬Ç©„|…TFª U‘jHu$¯HMÄ©…ÔFê u'Ä©‡¸ õW¤Òi„4FÜw¤ Ò""DŒH)âx"ÍÈ×Hs¤Òi…´FÚ m/¤â´G: ‘NHg¤ âƒtEº!Ý‘ˆ/Òé…ôFú }‘~Hd"Gü$Q H’÷=… ¡È@$ G"%‰|ƒ¨(DD#ƒd02Š C†##‘ÈÿQÈhd 2‡ŒG& ‘IÈdd ‹LE¦!Ó‘ÈL$ù™…ÌFæ s‘yÈ|d,DEÈb$Y‚,E–!Ë‘ï$ä{d²Y…¬FÖ k‘uÈzdò#²Ù„lF¶ [‘mÈvd²Ù…ü„$#»‘Ÿ‘=H ²Ù‡ìG ©È/ȯÈAär9‚E~CŽ!Ç‘ÈIäwäòrùù 9ƒœEÎ!ç‘ ÈEär¹‚¤!W‘kÈßÈuä’ŽÜDþA2[Èmär¹‡ÜG2‘ÈCäòÉBž O‘gÈsä’ä ¹¯\Ÿ‹ÿpÑÿ¹èÿ\ô.ú?ýŸ‹þÏEÿç¢ÿsÑÿ¹èÿ\ôn^¿þÏEÿç ô.ú?ýŸ‹þÏEÿç¢ÿsÑÿ¹èÿ\ô.ú?ýŸ‹þÏEÿç¢ÿsÑÿ¹Õê¯ú¡7:)ƒ@•"¯]çõ3\Yž÷½Ô›Y”Z®Rk éÉ[¼,ÒìžÎÂ<¥_”B5H¦‡'`>ŸS¿-iÞü)}¥¤yBiÎémóyÅÙoQm©¤yPqóú’Ô…ô¦tµýb”}W¿ó®ïäcϵ|ÎúÜê÷¡úó­÷×J³¿¡ÿÊ1>ä±ßg b¯KÚÇìgô ü­KºÖ¯tÕácÌÕ},•Æ·KÓw—vŸSïŠÞ s ü]Ôþß·ïü×¥$s©ò{øXëokÅ9ž®~£¨˜èõ2%=VQg›¥Ï©¿*k}ŠyéÏùz—UNþ¹Æœ¯«¬Æ¹÷Í™ÿ*Éy½ï5øÔÛˆcþWÛÁ‡RQ׫´sïs|RÉTÚq²,æ©ËBoË=?ÆÜæÛ|¥´ûü”þóoñ»K=ËRŸjA×x WÀ57𮱤8óï3§U•E<_Üú~̹‡÷-÷¶mJ“Ûh•ô:–´m·üÇ‹J«1פkÞ¯(_ý¯Æèÿ•ó }xý[ÚÆÇòÍOuþ¥ÇßxþL? $ï¹Í¼ggóžµË{ÞÕ¬à#jX$B®È{ŽÓúU¹—Ïé ^–Õ<ç’ÿŒÜ@{âÌ^‡ËƒÚ×!j5{¡ˆÈ^GÊ#´¯UŠö: ?`¯‡*‚ôïû+Ùkµj òUÝ =§V`½-Jð|‰D"‘H$Ò¿Nìÿx›%‘H$‰Dú¯‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥«øñPÞ›årtþh›qÞûÿÊi“‡ÉUáXo~Þ´Âw‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ˆ/ÿèCtüèÈH…ÊO@OÒAAAAAAAAAAAAA|ÙüGŸ¤3P„û)£UÁJ¥æa:ÎÌO}±‰7…%ÏQt:‹€óy:ÊçZ¯‚l©ŒŒ“«C”­Tr¼¨yÃ6ÛÒí¥È’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%ûß·ÿÑŸ[Ô—Gr¸ú ¼màç§üê§Û8 lð¿bó^²GñŠMUÓƒGÀfs×U |×ËuB*õÓñãztþ¸žžæÜÁìÅŸè‡kÏ ë7XGµM#UÊP·(µ*$"HGõyyËUAQšs“\Tr†þaò(,¤'xý’4ïâS œq¤Ü ³Ê-ÐÂ5-ïÕÇår‹Ý¬M"Ôꎪ…Žöa›[Ìfª×¶E¾ê _–*ÏöR :‡×¼ç'¡õ+Ö½æk¯Õ[œz¨³›Áà_X?Ó£PNTèìÑ¡ïÕûr »‘û^».s5žÒÄýj9¶[âb¿·ÖŸùÄ«òÀÄý›W¨¹.Äq=ã½›üⵂVI3ñ¾ÈÊQ?7ñŽ '=¦çÿ½ÓnõÍé‡@|^0®{åÇ ¾¿ÿ^¿­×@ü´M§?ÿr‰ó¤ªµ3@Rm£Å“]¾ ©ÐíäO}+ƒ¤ÍÜ%£í‚ÄÝ¿ë’4;?«b$^vÄ—v)â]x[·½¿ž ┞¾Øïâïj˜ãó@¼h^NâþÚúóNÇÊ>X­m¹|‹Æ7n‰SgÇ=²Ê«ÁTúð ƒzÀ´=hZhM0u3ïÈ›™¦¶Uι8ÌVówe ™æëÖ êæK ½°h˜¬Ž±™µ̶—?v¤˜Ø•;6Ìô»$Ôí<øS·/Ž;ð+˜L¿/’Ý·Ï£nnW`×Ö5l瀉J¯Æ#gßüTÆÍÞ`â´¿ÑýËôåX½5V‡çTüÀžc¯£A¼«ÁU*¸×W1C‘±LÜC"?gsÝÕ ,䣆ÍT®P®7}!pâXJ÷h’žbMM¾IxJÇôvB¬ ZìÉû $‡ÒoLHÝ’#î= ôâûó*¥¹»‚dÌîl‹v}Aû}ìéÝ‹A¢nµ…7Ó$í:g=¼ ’Åß.”mš’ßmÓçnÉªÍæ»šÏÉ®±ÎÞNv Ù^¯ÛžœË Iq¿=çXfþ~E¯ Jª’qO.ï vIÄ–ç‡Û˜¤÷Á[r‡|7bnÅÜŒ¹]ùyçW^qN%ëqï‚Ä|C{÷% i–z|JòM¸Ú|wòï qÉÚøôÏÜ>¡ÏQ§I ©â7¤’ùv4h8wÍCH:öá‡LŒ×^—rµüf5•ò œÝÂÝG2üÀêÞ#ñ¸IÁj‚ýäªÕÇ•ô;׺¡;@ðôÜ(/~74ï'=¶,nUßü,Æ8´³ÌÚ´.Ÿ¹1Ì\f†.ðý Lì;7Ç´¶«-‚IŒÞÍ ’F`¢/[å; x¾ó=g k¼ÎuG¯ïŸÆ+ž¦ÿvÒxm óú­¥Às‰m5íÛË`bk™z³u˜Ìz0$îÇÀÛy1mB˜ñºžZÎOëÎæ¦‹¯Ê¬À|À: W*ƒe ?qÞµz 0vŸu`;&ù8üæ}§ô僪+Îdçö€ÕàŸeª—ƒÕ£núÞÚP®ƒzNò׫ØuÑáÎ5ËÖu:Haw~öé°šëxÞÄ»’FëÕ/ßmX.Är#–+±Ü麭AV"{FËWŒ7Iõ^>}/¦‚¤‘Ùÿl·â(è4¹Jœ¥x¾Çf3Å ïLc÷‘}@2eò‚ì A2ïÚ=§¾6ùkêÍ)¿~ÉìþÃA/®Få‹Q\¯æ=/ÃBà®m2|„»¸“æCï`?Ð rotgÕ0ªP¾ó¿D0ºzÍñ^2ŽN5Õâj™óòs7MNÄr$mÎÔsìåé3À¤fù‰ç¦˜¯ƒÜQ°ë)›Ÿ\žp ŒÔM~¼¸w/…O6ú5¬ vã?ªâqô=Œt¯=q§ðŸ,'g¿çL­ Vï2˜¥x×è¡«v‡—ó­E6¾²=››ùUå<ÜªÇŠÓ ÕèÑÉîmk¹Ü+¥;ôq¨UøÏw±wO™ªZâ-)k‚öÇÑÃ]u8ÛÄG«qÏ´ñÝe‡GnXý5GR6eøïÅ^0øŸ˜Ó6Þyˆ/›Ç%^ â;ãÏ$-k^ÕÙŽ·1¸3øuwüÞþ ©dº|FÚ(Ì•6ÿf° s¼î&[þw‘’À]Wšn­¿6>$­ÔÖÚô‰¸I…öÑWòs– ±ÜˆåJ,wb¹Ë­4¹–6÷Òäb,7cS$Ú)6…ÂFM6*²Q•²ooJÃý6hÐ~•^ ˆ½®?Óë3ÄM.<ù¹gC·=Ä«ÛÁÄÞúçBqûÞ wºÅk¯³Íþz–õÎXƒû¦II–`ÓzŒ¬Iì °ùá¦SÓí™`óÈqɰ.Áæ–§ÕÆK›Á¶CC·Ž¿Ç€m€ºb‹óÀvNøêYáCÀ6ó¶á‘Ú `ûaŒþæÞl ^û~yóåG÷ÛoŽ)¿Y2lŽZ/zäí6÷~»Î:º›úe<úêràÂÝÍË%"»LºÑÒßìd7"Àêfu³c§9…j”y¡_ÚGmKÙÝ´Ñ®Z¦å|‹Ab¿Œåoå» s#æVÌÍ|…ÏŽ¶Ëw?,²àQL²àRl²¹ý€“ûÚƒ¨ÎØúpëˆ\œ½ž¹íQùô@C›¥ ²àü)]:DvrÓßÃÛ€ðÞ,C= ²¶é0áî¸}ÕmºO‘_%ùŽ‘– šâÐlÜÅzu·›e¢Ñ-ÿˆ±ŠѸ„5zÒ• Ú2WÚiëíq¸bÝC Z·k½Û%8#«ä¢M}|/Ø ¢΃\G‰µ×ÃzfVçºþëÞ“Ÿ Z¬mÞ¬¹³æÏÜApjØ¥òXæË,èdA( J5A* ZÙš³‚ê÷Í07w5yãz‰ Øß=ø€l*X pZ3¤ú°}`U­«× œçüªÁîÀú›#&OëQì¸bùØØ¿äÝ®C~wökâé¸r›´ÖÖÕhÏ·²òù¶úšPÅ,w°¹˜¶kB£ßÁ&pí¦‡Uîõ?zײO„õ1oáw1kÙõÐá¾eë¾:¢°û¾\…-ÒYÊ&ZdQ³VïP0ðiê}/gdáÉ¥5sÓ—z*G,_0ùó!ÿ[ýÓC†ŽÎ-§þ}òFv[‡´ž—Ú %Žz“=1:pËjp+¶ˆ]NÛŽM;âË’f}ÿˆìù·×ãvOª¹-—€ØÞD1<ô ˆMœ—TÛaž¿ô§Y dKƒÚÜ”åªl!…-¬°àœë,xgÁ< îY°Ï‚Íùi‚jYö¨˜–¿:ËžïóðkÓr˜ìybbíZƒcdÙŸrm"˱¸×ðÑ ±,çZÒì=‡:g~½FMe“€[uõýT‹ çu^Õ$½+è×=TÙ}å20\åñ`xý80úéI•égÌÁ(ôtÔÆiÚ%B¶dÈ–µ9«&‡e -0´A= òYÐÏ’–h“„Wç÷é§rt6ØÂîõò†"s™¸—ðÄ•MFü f™U#Á«PŒÔåâ™.¥…jyÕI¦F ìîø}ôªv1¡|hðñôî Œj;AþÛ_ L>²Ál;Ʀv41=Â^G’wÆý ÂPyÖ‚Þó@8yêÀîwžpÖÌŒ'‘ËA8õª,;޼© ÉÍßß÷9‡÷ía¼ç<‹_l@˜Ýa͸ƒ­òGE6J²Q“¢lTe£,[Qg+ìlÅ­ÀkVäÙ ½vÅþoA|pËz ¼¸ål¯ãgAxô/›Ü*wAø½çæ{®íµ×C¿ËÙÌøaB0èôðRnØ:0LÍôNëÖŒ!wÏfïc7žÓ‹CÉÀŸrakýŠ`:`–]æ WíJºeÅÞ©;³»ƒÅžN®?‚Áß;W»‚§ûRb–Ëõ\Ú;­˜V½·^³¹qGÝ›LÝCÁªíÔqÜ^ÚQ‘•׎ššQ´àèÊVêÙÊ}Á}V?æÖìNÃÄñõ§67Cƒg‹Ò¯IÁ ÷«_ã|#AëÜÊ¡ûRÙõøô££N‡Ðá¾y÷%é,eâ¾Ò¡0®ÃÏ``Üóû§-æ¬Ñ×ܤ›ÛתVJ÷üö©6µÃ¦zØÔ› bSCš©"6u¤]Ž×,ϳåzíº#[‡dë’l’­[²…ÍB[¸Ð.dtZµ÷ææ™ ^.þÙõ ]ßÊòùˆ* =øâ§®§/ôêÜAÔ‚4ï)ê}¤Y‰ƒí§€ôζ›7¶+Q£ù‘WÁ£Î“ÀÄ0ðèïà“)-Ì£åä*Ûðh¼sØ×àÑ"lÅã¹à!]Æ_µ,<*ÕYì‘t¤×o{hÿ HsÚ;Ôö ¤Û,›ú¬3HÏ-òK»5 ¤)¶.Sýóë—3z>éÌé5¶Ú Ò *%[ƒt¢›yô a ] ïlÔçH§L¹ÊYº9ÿü”§š¬h ÒÖ{ݪC'Öê{þÇ8¼Nw¶.ñÞs$›¶Oïs@’m[Ç›·ÉŠ¡N&µ~Ñ~l*‹Mm±©.6õÅ¦ÂØÔ›*cSgl*M;µÆnS`·-°©8v[ƒÀ|Âü óWg²‘ô¤ðš7Û8×ù(/ËZ9Òªð¼kC¿D ívÁF³€Ã«º4FÝïpþûlÇüdÏ«ƒ½Àø…¾´KÜA0Ö[¿XñxÛŒÜõø‚xÝ,Ž×.׌7§¦Zd£Ußñã5#¿ ÙíÏ7Ã;I]«qoÁÕ1ó—ê ú ¿›]kzžûÝ«µwì‘ëNÝn´^Ã=Èr_ïº4ÖY–#ÞnØq²ìç”O£íOd/äré¢ã.²çÒ;æON„˲†yœn$d·ÊåÕ‹({b²5ùn LötKõ±ãõ|eÏ>e-ËŽW>o1C– A~wø²ï‰5.+È^<«}¿jW#àˆÛŸÛZ/A–2øù?WÊráÁö=€óó%‘ú¶?p/Û×Ч?û^ut§Ò²íNuvP…»ÓW·pÕy•Í\A¯-ë¼Ö­ýšœé?¤.,<{±öxß']¶•²;íÂ&¿\Š… :ý(õÛºZ³¨hÕ EHX˜<Â_‘_kNÎÿ½«…Xʽsurveillance/data/deleval.RData0000644000176200001440000000142511522016226016207 0ustar liggesusers‹ íÙùRÓ@ðmR ´€€Þ÷­¨ˆ÷AÄ[¢âí6YÚhš›´â¼‰¯Ä#ø>øÝ6RíVfÜùtÛä·›_6³9šÉÑéät’¢-#šŽ¯q 1h‡6“Ù¬DmÓw„Vµ0—y|é„|°B”;‘Ð*û€DÐHn+A».ØÝн°¶ÀVØÛ¡Ù »`7ì½°öÃ8‡à0£p ŽÃ 8 §à4œ~8 çà< À„‹p .ø ×à:Ü€›p † ÃpF`îÀÜ…{pÀCxá ŒÃ<…IÈÀ<ƒçð¦á%¼‚×ðÞÂ;x€B 0Á ä*ǧæàÅgûŒ,-{-—ÚìùTøA–þ–.‡ ýˆ Nð¬ÇD‰aÚ<°ódc”Ø_è+ÜgÔïØo~ÿ‹²Û_ï}ht\Âcõ=ê÷Ÿ–Gå±Ú}\m‡JÍüÒM«@*çL¹8_©k§ BZ`©œCåºR9·jAL‹É¨Ÿ¯6pËó*+&¿3ˆ&'ÿF™Ìª¨¢Š*ªüwE^œZIä°M._ûÚX‡†òe~Š¢¬N3fl²èºLdyÑ1Õ´U”µkÆ´ít˜•ËcÚŠ<çf0sã d¢Õɤ¡,V•j—ËÝ¢M}‹;c‚ÕÇá¡ï剪U­jU«ZÕͬ›q•Ö ÔxëÏfùlpÍn# ßEè æ§,g)ƒÙˆÄR®à=_XN."Á„\ME®zÍ//_D ?î6•;®u/[¨LfÂo@]j|¢9¶¼;™¯çÙ‡óK¸ÜþšãNõoxZßîÚÜ&Áð„â&õ)r‰jÜRýƒ¿;ªgÁ¿ôW–õܳJ>)·Ð?#º´2ªf0ú2.î|¨=ìÏ(UÚÈøÞp¯õ‡¤ÍàŽ/¸]gDRå7ÉÃr2Ÿ$ùõJ¤ö¾±P´}Ëáä4•Y¸btÏ÷êäÚáE‰Y¶Mƒ-eM~þ¿‚surveillance/data/k1.RData0000644000176200001440000000051610636320360015110 0ustar liggesusers‹íVKNÃ0;NZJAEHÜ.@]±B¬º 4 ħ"ޏ×aËM8ÂÓΨÏ&í‰ ~Ò«=ÿ»mr5›Ÿæ#"²d![„­³áÃMöXÿpJT³:ð ðƒ60B‰XÁŠ/ËU]eõ- æ4’ÇBü@VŽá®ßežrÇÃÀ±øòºX 1·ÖÆžÒØ'ÚÅs§³QOL!´ cýJtôè«ûR|\RëìÓy¨G6ôè‹õõLô޵—âÆÂ#ZßC}§w‚}n›vÈzN}v³…©]{Ç9‰â3ÇïÍopHñoé_ãü3^32222þ ü<2Ó‹H¶Ó·ÙJØü/Go‡åsýÔxZ¿€9Q—×¾i_›…:ù®îÜmÛ¼€¡íÒ”7µ×”üÌeå`qï/Ûå]Ø~1¿MÊp ¸ surveillance/data/s3.RData0000644000176200001440000000047110636320360015122 0ustar liggesusers‹íVÁNÃ0 uœt Iü |;ìÄ qÚµ°€€‰¦âwø&þ„/@$U,^­iÜ&ú$/¶_cù-®Ò›õæ¼ÞÔDÄÄÎÛè:Ž?†hy”òá‚Èž¥t´“h´?ìHÞ€ÑÈÊ3Ô²À¡±…}x¬Yêã’½ikX¥Qz’¼…¾7+h`õœè1Àëÿm Ø›ìÅ}–†5ò”{}i:æÐçq´*ÇóÌ'=u^…K¶ÈµðœPSUÐVÒñ§gNÏ™ž}V’›e=ôÍó>8¥¿½K&L8\~þ¯uÂÁ"ÝGfu5ˆyõ¾îƒŸó|V/ͳÑYR9öÉÅî6øöÍoå¡Ð5Ï»oý+m§KÞ=5AJ¦;¸ÿÎØ>†ëv÷ݯdßJ×I¸ surveillance/data/measlesWeserEms.RData0000644000176200001440000002375414006051226017707 0ustar liggesusers‹í]@I÷MЍ`A…,`ADò‚ °  €Š€! PÄÞEô°—³‹{Å‚åì=EÅ.ÊÙ;ÿAw’D=ùÎò¿›÷ùîÇÎÌÎÎÌÎ{óæÍÛ|=»ÙëuÓc±Xê,M–K]ý©©Žþ£†®uÖŠ ㄉ]…‰B‰W|"KM£¡B-a‚82ýQqÌÇŒŠúX¬•U@\ ±6bÄ7U<³:b}澚ÏBl€ØqmÄu×E\±âúˆ F `#6AÌFlŠ˜ƒ˜‹˜Bl†Ø±âFˆ#n‚¸)bKÄÍ7GܱbkÄ6ˆ["¶El‡Øq+Ĉ;!nر bWÄm»!n‹Ø11 æ#ö@ܱ'b/Äíw@ìØ1ر⎈ý DÜ qgÄAˆƒ‡ +ânˆCwG†8qâˆ{"î…X€¸7âHÄQˆ…ˆ£÷ùô~*½<Íh‰°?3þjPѪTù'& $IL!uXäù±¯Leaqo4SуÕQùjE,B„ý¿!P@iz0èÀ =ƒüŸÐ…¹æÚsDåk«Êõ(Ö+P·òµbþçî«*áûñïÞ÷¹tøL90P]tTçKïS¸“âsÿ×ñøÕéßÞ¿ÿÁWòÿ®øÖzÿ.)É¡Î÷y¡7Uuÿ[è¿Ö_B„ýzDôÐÏ!øIÏýQïûß:¯€ÁÏí/ÿî¾SqëUôHý æ R åêS¬Ÿ¥PX¿6ƒÒñ1`PqŸ¡à…t©ÿ§T.¯Xÿ×ÞÛ?5Ÿ¶\üìçÿÛégï·>ÿså±Þùš^ùV?`ÔQÿ½å¯ªô³Ÿÿ½è[û6 šÿãMù¥ >“®´þ0h©€MòÙ âõ¯[x·eÐŽAŠA<þx}ÃõãúÚEè× ÿ/ïãÿK; ýÚôoGÿÖ~ú1·¶˜uþsûyÅkÅý²)…k\îÛ§˜ÿwý_Ëÿܹ"~ž’]ÕŽAgáÄ ;ƒ8΢-sÍcЙÁF úŒ¨\ÇiØ+”3W¸ÆíhÅ ¶ãǽ®âr_ë'NgWN¯êxþWIÑ>'ô}ékû÷¯Å|­B¿}ëûV̇ÏÔóOűý¯ô£ç¡’ú3íPò;(¦ãõË€A;—ÿÑô¿ÆþÛé¿Úï_°Üú5èÿ‹\|/ûûŸ:×ùÞãøwŸ ø9»ð=oúÞô«´ã[éWÇÿ*}«ÿä¿û¾*}_§ÏúôÍdErÅ÷–†ŠŸà¡""A¼0‘õéÊŠ¼,üm%óMŸm+[;ù {ù‹VòòŽrŽò8ÊWà(_£|Ž•*p’¿h-á,á"wád+!ß'ûOUúx1IˆA|ŒHˆ!B„"Dˆ!B„"Dˆ!B„"DˆÐ¦ŠÃ»jå,•'œÚéäDS'ÄãÍ(…0a„ &L˜0a„ &L˜0a„ &L˜0aÂ?†É‰æ×O4õ’„’Þâd‘ôÿ5rxYÅÐi/%H A‚ $H A‚ $H A‚ $H A‚ $H A‚ $H A‚ $H A‚ÿMH>;üúg‡5DÂØ>1½ÅÉ’±¸âËC4Rjf¬O¤ÉŒNjÈý­®p­ñ±BYþ[“©GC¡5ÕåêÂ÷ȳ|>‹¥úYŠíú\;0W–\º:«r?4äž¡.wŸ|žSºŠ{äÇGSá˜åÛÈbU5¹ºÔîÁí‘ï—b=_SűWWHg©x®<Ëߣ ñ=,…ûåû _V~üŸÛ£¡p¯üøà1PDÅ9 ÿ¾ÔU”Ul›b¿åÇGÕû”o «7ÅñQõžäç’|9Åñ‘¿_q|ëPg)üûRl·*¹úRÞçÆYq+ÎuE¹g©ÐÞ†,ÕÚÛ€õÐÜÿ‰N*.O5Ä Éq‚¤X±¨½D‰¿Œç-šRßåaü:‚ VgöÒHcÈf‚ V7öñ]ez‰ A‚UÀM¶ÔjëË ¬.™J?p¯ù† A‚UÀ•Ǫ'§¾›@ Á*à–M9‚KƒL $XÜ¢ûøëË$XÜ÷ìO—yy›$X\Î.^7pM Á*àš…5Æ$·^A Á*à&£¦Ë³2$H° ¸úú•íÙ}æ$H° x`¶I½·k $X\ÓàQC#6$H° ˜9mèƒãj$H° 8ûÙ²ôL¯  üv$_ÆýÓCxAKM£¡B²fïÞâ”Oß!²4Áxaè¹K+<€Ö<1ó{&˜Å5ˆXúg# ï<2ë甤bœVù «:ó µüÇ …øX‘¬})*š]=A"îë˜$‰õQÑ|Šl¤O"S1N·hQ‘Ñ6N,ê'H¢ZD ’’ãÛvíäì@µ‰{F £ªÒŠŒ$¢Duùz4ÚuR(§ ˆì'è#Tx¢zb‚ŠækGŠãã…¢¤Ê…Õ{vð 耪3GM¢P›,Ñ…³C3s+= ‘'?8¤#ÊK⢨Bq”0)6’ ”˜$Œ§ì\œ˜räåççàã‰ë2·rjÕÚÙ®Uk+{g{ÇÖöö­ZÉî¨ ?/ÿÁÞ!þ>ÁaæñÂ$‰ÐÜÊ.""âS¡ÀÎ>½Ðó;H„BÑÀØÈs+[Ùí|ÿ~^ŸîŒöAEP®­]k4×í]ìí\\ZµÂUµ ÆÅÅ&$Šc£qVörõtóAýïƒ{Wñªb“’£„”¥ŸX„FB(HLªÜè€Îž^Ãì"*§~S{T=X„Ÿ+HBω%I1ªlÿ¿<8$ˆßÁ+LzP»€@¯0ódQ?‘x È\¾u½øÌ«—Oöðèfíbkemçlk…®»âÝ£édneþq™GD¨˜‰: â¸A}Ä¢DFH UIS`å2j*ÊhÅ z'TÌç ¡fÞi>Z>v@«ã•›£¨]¡€)«Æ³kCÁÓ^™ŠebÄq¤ǒ~¹_Y„*Dß3VÂ(æÿJEªEŠÅ’¨DFÕ–ª-³N «5ÀÌ&Úâ`³0kª¹åæ±a`ÖÂ8ÐÝ>Ì<ÏŸß¶¤˜4î±K·-˜õKô|2u©LíÝ:è€ñb Gº¼zýªÐÃ`Ó©F»€±P?hÈ\Ô鵜ãc¢€ž´mžÛŠ, '¿X<=fÐiûÖÝy߯BmêÊ–£Š<Ãr½£Í¼‰OÙµË?§l”^³nBœ8)@%T1^Fåóµ©ûx*—6?eléèÆã¬ fêm©êÀ‡ñ@7Këãt‹ˆÖ~WV¢ô«E]ÖÝ(Qãáq Í&ÕÍ›t hN£=-ÑÅvÕµè`®sêœ=4"ûä±}/ÑDåøk„µ?4U« TŸÙÊ9%ůðsULTƒ³€½ôò®Àõ·€ýbc» CÀÔçLø Ñké8ÑSO³~×ú|ýȦW€>“}ãø¼–}φý‰–Òáí®¯Ÿƒ–P—U£µ€>r^ÖFŒ®GëäõDKîÁ{üÓ7£%Õpkí“@ï®±pG9Útät=Û`ªo§oÏÃ%+.eþ²Ú½~Øms‡£éž_è /nÜÔË@hól~rºîhßâú¤‰êŽ?¹ùt=¸fxþ:Ùnïvñîï†ñîï–ñîyOƒ¸{Ô¾;«žy%¢vû±f-h ô?Ót? G× ÷C&Ã1—¦—›MD‚²ÈzŸmŽòW^æ†÷úÒl Û–ExœTL“ï+0&eSw¿èt5vÔ0FI`\æÍjÝ´Û¬ªk×Û|/ä"ͱ¯u®ø°#W´ÏßxKšN_Ôi:ÎáùƒÞ•ÝЀë|S œþã5ûÞ¾ëüÁhM,0鿪³@i@z=;®s£’*ˆ°K³&…T_¦‘.å™X{!W«]yc™d1ùôÕ1´$ǵã÷Ê_@_n«ÿdÐW¦ôÐðÀù*Hë;«ØÌø%h[tõüQö_­•È}؋ơ ˪úv|S0/×|ý¸HšN_KÛ”vql`®¾÷¤úZœþ}gLeãBKîZL‡4þÞš¤ÚذW^°öhÚ!óûøtm)æ¬o±Æ¹ó×®v…e@'Í]Økt¥&å ïïöQÅ à)µŽ±µ,µžk[×”ûå·–œEØïQšé dÛ¹<¨ä56㪷j̈èð^€J¹³úe¿ †u9s䲪û´kEŸJ¸Ð´÷Þ!@9¿>¼sjs´íëü{ðÎB t^z$_j‰¬ðP¾~»à.¥‡î”TnßW·V–tnÍ´ZÏ5NîôÉÇÁ8“6-ÊŠNÁ˜†CŽg÷o+#4†£ëž±!žk€k9hÞÊ׃õŽ[…[ç¥Õ}ÍÍYÀ¹öô¤QmÀùsä ¯sÑÀIlÙÜèC[d3ä´ƒn{¤ã µº±Ž­rl¥c«}ø³ˆ…ÓN»(­‰‰OsN-­ ´88ýzPÂG#–ºßÔÁWj 5«ÏêÝëç…-lXò$­©‚.×K(´¦öÞñ¡O3”ßk{¸Ç>´vÙ$¾ÕªÞK×í ºèû®x t÷¼Œ—ÇÐÚÜeÚb¯7Ÿ¼½h¾èˆqúÍ» zX“3ýЮCøfù­j@Çk>^ÛèÛµÇÂN^ó!sKЃl®DÆ9=øly+§S@,j»UwêWÿN G={—Kënþ½\õîA¥¨heGa%éø¹ÛjÓùc/ÇD %¥‡ÈæaV5¥¦þ]^<Þ·¼Š‚(›Ðx‚ã Ï, X`dÄ0,pGn^›ÀÝ;üÜ%à ­½lù-àˆ“Û³Gû'`øù÷FêÀñI-θÌNXTÙÆÈ~ÀÿÛ‡òÞG3?ØÓ¿ L=ÇÍß>LuuºöMßìËsfe¦Æ®ޏ„€©E¾¦ö¡b0Õ±r>º:°õÞËUë ì„wôl…l™‘³Ö9 l³™¾°LÞvêšàÞØZÃì;¦FÛi…Ó±™ÞÀ Þç½ØÙÃ$C‹1ž?3pð-`Ÿé—}¿}c0-Y¸vÒÜà´Xs*G-K:nRÀ  ,PXÀ°Àaĉ4¸Èze‰&М»©Ýþš^7%G-h·é;Qý.–mÛ)@·6w¹vsÐNÚÕƒ»Ý‰}\¶±vî8¯—ê{úoºÅ™kG– lÚ{ð~Û<0y)9è?ÛLÅŸÌw&}§…ßiuL4yµ2›‚ññ¡¹¯²mÀøœ‘kÝ[0ξV朣 &ÓÜN¼[Æ…ï^=ž†Òï‰KÏÑ`üÊ`Ú’±²~J`¼ ã/ØxÇ :^àñ‚ l` fg Ëç"?ìäJ¤w¸õOÚg÷šsãàË—ín¬f3j&û½¹è6°ÎÕC ~ë½MÆ„?ÚõÒøóî¢ô®eáS}vo—œº@K%“‘áÒ~ùv‘wÐJïŸÎ?€Ú;{ÌÁQ¨_5[¦[¥ ÃbI®«áNÜOâÈù^âø™˜UXµ(:}yvÿ\CÁô]H™¡oÐ RMu [(55÷^Ÿ¤é£šUQíennÆíÝàØ-Î Rú®H"[èñÂϰá7éÞjã cc‹[èììÐ]r6ûtߢ|ÃîÀ~<:æ%¿9°/Ì›ê ì޻˹Hƒ·¤Á\Ø ÝòLûeîgÆ-uO3îêõ=²­y'e 9^Øñ>€Ã®¼EÆ;l cË[ÊSó¶ÕB–ƒ]Ï<4ßfm[ômíY}ö òêS´ß’ ²`1|°ˆÝãØ]þ©ý*§á?'8ª&˜ñííVcÏ}ÒíÑñ J¬oaXäPÍiUœ`ú`âü[ë¡`¢5åjú0>ÚU¼Îb°4€Ý¤ÚyI”çCi9úäa¨+ÒL'Á®î:´;šø¼Ú|º6Q<2è3¡Ó"Dâr*¬Ú÷Ò4Ÿ_øUJ©jm£ìÞ=ÐéÎ-³m~…Ÿ:|íCvC ‡Ž7Þª¬oÎ4[»e`ý*N‡ö²@^Ø‹}qà/ö~{´ñâ0‹È¿kÌ"»Gu q3*Åïd*Bû³½zO³ºî–YÍ“}µ²B€z81(ÀmtÊÞÓvçöuüă¾Ñ€:Û°g?vµÝh°?« PYúëÇ-–¹4±‹»<± »D±‹$àã‡cþp Ž Ä1‚:Dl?Ô©ÙÁÑ{ÁLsQ†¥È[:ÒÀd¨Œ—q 3lZ[3íÕ  SÏÚ˜©«= ]ˆ—O ÐI[Cçù ="òzµGdt_ßÄÝç0ïÄ;dDO}7úá cÍŽw,Â¥vÇ\·ºæž3@Ç›ÜÞ=¿¿e§¼Ã×e®MìêÄ®Oì Å®Qì*Å8Ç(â˜EÈcqŒãÌó·^½Ñ·¥íò÷$Oì†ÇC…x[|/ñþL`ƒ*P-ÚÎ_––ŸÃh›RÝhÛ‡¼÷1 •ššwt¼_Èå­Uì2Ÿ>ããÇ>ʲü;ïŸÕèRç7 êÑâ…«JÑN>bΡÄchgŸÊqÌx÷¼úµóž@Qƒ©£wÕɾ֌Á@Å<(»¿­>P F ªõd+Ps ‚xÑB –M°Íˆòjñe«†#A»½Ú÷ÅI J-:·â=Pw“O^›fêé3ÊD™@åurîµg 5[!µe¿A ¢[øÀ6˲;ÓÃðép  Úwo·ø%pï–zýu:Y·ÿ¸wôOà¦ö>Î1J3qfæƒù¨wöæS¨ßbëÂ…–À]ø!«Õ`±,–ÇXâ˜K&ÇdJc4qÌ&ŽáÄ18ÆÇ|21 8&”›»®e›BàNY}å4®L9œ(sñîóNï:L"sáb—.vñb—/ãÆg0Ò3æ}JÏ&¤gÌÙE ÎѤÚÈ`ò}˜wí,Ú„å¨ýR¶Sðô»_v hè5/g2„\Þ׆vý~·rÙtÛñ¢MOªÍ»¤Ýlnw”ßË7¸éx RÒ-·¡u¿UÑÞ¸€¶ñl]íPÌÝK§ŒFKlÃå+z[›mô|ßèÍHvj:Ôµ³æá²Ãot€6¸¿N?Ëh]¾äæ¥5@k‡_9ƒÚ©sxqÄÒcÒæèj³Ìu<§—¯9%)šgØg׺^Y·¸ÙhGÕÀ‡]¢‡®sßN=¨!‹‘ű«8–ǶJc]qì+Ž…ebcq¬,ŽÅ±´8¶ÇÚÚLcg‡ ñ±=ÿÔÜoÚ±m‘sõ»¯ÖŽàÛhœÚ̳zÛWæZÆ®fìzÆ®hìšÆgIøléÓûT¡XÛü`ŪJ!©V¬._ÖV?Y±ö앹ƒþZpGµ=JMÝ=vî‰9ožVQ±ºË,šÇÞ¯oÛ¨… OjNE dÖf×/÷jÑ©Á£¶Žjsi×2Ç•@-i®ùâÒ™ÂÄ +T¬`±ÂÅ +d¬ ±ÂÆ +t|¨‹yñ¡/>Æ‡Âø[XØâ¶Ȱ…†-6¦¿R‹%âL|³QSÐĽzýLAÐAíîJv ‰?yÀÜ]ç‘™ý¬ç{¤p6]ì–±I¦P°‚Á + ¬°‚ +0¬Ð°‚à ÞâÃ\|¸‹{ñá/> ƶ¨°……-.la‹ìSU&÷ ¦ª ­R0l¿<Û®ë„::ß{jq'´µîÐ"´Å-¥¦îq½Vn{J§Ê‚if\ôÛÓì@½[Ó#+YåifÙgÑÖàU½ÐCWÂÁLdŸiEcÀÌm×Sƒ¨5²oñˆÙà-t‹€· ø3##c¦q 5Ž©Æ1ÖøìŸå೑S|]º!…°x¶g÷¦¨ü"ÍkøwÑ–gϸ¹KÚ5¸åÚ¾Ö“€šr~úX{´…ÉÚtÄâ”9ÌQiìšþ`Ö`Á¤¯JûK羋á<ÏzKíöhë²þöŽÝ¼mhóˉʽ‰¶sV ú°l!2í‡ìŸ÷l¾ì[K¼ÅÁ&>6ùño ðgPÒk&æÇ`ã˜lìJÁg9ølŸõl1ð°m4 è]ÞýîJPþ¢û;îª8“i`² ­°§“¼DO×}´ôÈļ@ kôï>h;îï÷L•ØeüâŽHó\í’1öä+¥ ì“ÖÒ2,Õ¼Êg0T€m|Bû=@¹yÍm;þ |ïÌ}ˆ^|ï¨%E”Jóe‡U“–÷í<èkËW¶F&ÒÕ6דâü_ã F¥Ô«Ö^Êè{âË"FŽ~÷£]1*_?ç¢SÀ¾švWýV—)ݺÝ4¾ps•Ï`ðY«ôìŸÅâ³Y|V‹ÏnñY.>ÛÅg½øì»ˆ±Ë»q¤5޼f"±qd¶4RGnãHnÙ#½™Èo . g"Å¥‘ã8’œ‰˜Æý”Nc|‹åë|f‹Ïpñ™.>ãÅg¾ø »’±k»šq¤4ŽœÆ‘Ô8²GZãÈk‰#³q¤¶4r›‰äÆ‘Ý8ÒG~ãHpþYqüÏ`TNØÚÇÿ>5 Ðý€IŸÛJ6¼WóW÷½¼«ìJ挋ì1§ž8zÛ&Nì9 Lï7¿3;s ˜^~;kô1]0}váÌý!ÒrtáeZm(Ú]5Ý0cÒWÖ–õ¶¤!ý5íÚô%èÅÝÈ[ó”3.÷}]É*¬8ºôfë" o- œ T°07C‰Îè*+x®µCàÖÕ±ÀÉju¹Ùàк})-“L&Ÿ¾¿öÀì·@ß4´ðOBí¹}wW0»1Bû™ëãü©à5d ^E°JÕ¨ZÉÛ+êöÜà† û|%¯% þ­ÜCÖ§Ÿ’¨hBÅ7‹Ú3šÉ«ÎTR‹™q†Ì‹®è»&3Z²,}˜f” I€²ë0÷°d¿–T3È—òÆÅ E1bIbîJõŠâŸòÑG×qèºw²¤“V£"-Q$è-IFöc Pbר¸TcbŒ`€¬?_Š/”Ä DQ8º"-YƒÛ‚Úʼn*=Gϯ¢-‰r7VTÖ^+”O3Bi$‚èÄÈAtå!%ÅcãñôB¹~B¡D®¥îø©èNE»#cÐðÉšØU˜(”Ä $‰Ò†W¯HMJŠOFíùôî ùS…6QÝMù¿Ï^g²ü6nÊs½É…üùoöç®-æÏ½>лw ÿðj×y’füó qonzóóu3»öØÙ™W”›åòh,ÿ@÷ì?RìšòOùfNÍ~{ŸfÛæU÷××åŸ1Ó±êùA~¡(iço¨üQÏý7;¬çSãLy³h/ÿ`áA*wõ;Üx2™ªPð€³¸ùÁ¯ùš1ÓŸ­ø˜oŸïÿ˜®ÝäS9õí >bí£Ý>æ¿Ê›òñšÕ&åÓýõn|Lÿ ¯ë]‰úx]~%á#¾TÿôÜÇÍX }l¯xÿ´”W©¥¼bËqqÙç&ðפ“±™Í+Ž{yôõê¼bf“wñòxÅwŽ,Z/’÷8Çu¢ûì\^ñ–àEºCxŸfÛ]oÏ+ލ±üRJ(ïñ!±¥oyöÜz[7Ç{\ž_´R5¯¤qTËmÓy%1™QýuLy·êR­ Õ_·Þƒ°ÕyÒö” hÚýã=7ªEä Ô®nB­=}òŠ™ô’š;/=îqƒWrï„ÞõÇyÍœ[ðb¯„ÿV8þä^©ÖÜÕÛ(Þã‘§ÆÆLq啪ußße£¯ØÍ$¼ï„1¼xúg½Ã3x%QõEôBù Ó/g/åOºìÔq:¯¤Q‹>Þ{6JÛó å¹÷èïîA~½Mw_ònçº÷ÌòÞÆ»7dÇ ôw¿ÐûøEŸù¼»e9[Ô<ÞW»Ò‹J¶ðnlxšÝ×Ü‹wo™æïÝ úñn¥iÌÓË£xwã ¼Û³OÌó96w7Õx¨mÝμ›qy¢}Ó‹x÷8Aé¡f¼Û[—iŠÎMáÝ™³Ã#`ÚF]¢%Ä ñosUÃ&k/¬k*~íKn`@`ˆ?Ø'çêDFF‰#mìm¥¿½¦W‘f§”bÿ)Eª|+©O½ f-AmQhŸ®D<ÐF¾†rJþßü³pJ Tƒ AR¬ ¯SžhÈÚËFì~H;R,J’ˆãXŸv!,…ìêÂqd ¿â_úÕ§ñÉqI±"q #include //.Call(C_eq3a, as.numeric(lambda.old), as.numeric(Y), as.numeric(incu.pmf)) SEXP eq3a(SEXP rlambdaOld, SEXP ry, SEXP rincuPmf) { int T, i, t, d; // get arguments double *lambdaOld = REAL(rlambdaOld); T = LENGTH(rlambdaOld); double *y = REAL(ry); // also of length T double *incuPmf = REAL(rincuPmf); // for times 0, ..., d_max // Create long enough vectors for queries about dincu and pincu double *dincu = (double*)R_alloc(T, sizeof(double)); double *pincu = (double*)R_alloc(T, sizeof(double)); dincu[0] = incuPmf[0]; pincu[0] = dincu[0]; for (i=1; i tools::package_native_routine_registration_skeleton("..", character_only = FALSE) // for surveillance 1.19.1 // + adding R_forceSymbols(dll, TRUE); // + adding function declarations via cproto -I/usr/share/R/include -e *.c *******************************************************************************/ #include #include #include // for NULL #include /* .C calls */ extern void glr_cusum(int *x, double *mu0, int *lx_R, int *n0_R, double *c_ARL_R, int *ret_N, double *ret_glr, double *ret_cases, int *dir_R, int *ret_R); extern void glr_cusum_window(int *x, double *mu0, int *lx_R, int *M_R, int *Mtilde_R, double *c_ARL_R, int *ret_N, double *ret_glr, double *ret_cases, int *dir_R, int *ret_R); extern void glr_epi_window(int *x, double *mu0, int *lx_R, int *Mtilde_R, int *M_R, double *xm10, double *c_ARL_R, int *ret_N, double *ret_glr); extern void glr_nbgeneral_window(int *x, double *mu0, double *alpha_R, int *lx_R, int *Mtilde_R, int *M_R, double *xm10, double *c_ARL_R, int *ret_N, double *ret_glr, int *dir_R); extern void glr_nb_window(int *x, double *mu0, double *alpha_R, int *lx_R, int *Mtilde_R, int *M_R, double *c_ARL_R, int *ret_N, double *ret_glr, int *dir_R); extern void lr_cusum(int *x, double *mu0, int *lx_R, double *kappa_R, double *c_ARL_R, int *ret_N, double *ret_lr, double *ret_cases, int *ret_R); extern void lr_cusum_nb(int *x, double *mu0, double *alpha_R, int *lx_R, double *kappa_R, double *c_ARL_R, int *ret_N, double *ret_lr, double *ret_cases, int *ret_R); extern void siaf_polyCub1_iso(double *x, double *y, int *L, int *intrfr_code, double *pars, int *subdivisions, double *epsabs, double *epsrel, int *stop_on_error, double *value, double *abserr, int *neval); extern void SRspacetime(double *x, double *y, double *t, int *n, double *radius, double *epsilon, double *areaA, double *areaAcapBk, int *cusum, double *threshold, double *Rarray, int *idxFirstAlarm, int *idxClusterCenter); /* .Call calls */ extern SEXP determineSources(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP, SEXP); extern SEXP eq3a(SEXP, SEXP, SEXP); extern SEXP pKS2(SEXP, SEXP); extern SEXP pKolmogorov2x(SEXP, SEXP); static const R_CMethodDef CEntries[] = { {"glr_cusum", (DL_FUNC) &glr_cusum, 10}, {"glr_cusum_window", (DL_FUNC) &glr_cusum_window, 11}, {"glr_epi_window", (DL_FUNC) &glr_epi_window, 9}, {"glr_nbgeneral_window", (DL_FUNC) &glr_nbgeneral_window, 11}, {"glr_nb_window", (DL_FUNC) &glr_nb_window, 10}, {"lr_cusum", (DL_FUNC) &lr_cusum, 9}, {"lr_cusum_nb", (DL_FUNC) &lr_cusum_nb, 10}, {"siaf_polyCub1_iso", (DL_FUNC) &siaf_polyCub1_iso, 12}, {"SRspacetime", (DL_FUNC) &SRspacetime, 13}, {NULL, NULL, 0} }; static const R_CallMethodDef CallEntries[] = { {"determineSources", (DL_FUNC) &determineSources, 7}, {"eq3a", (DL_FUNC) &eq3a, 3}, {"pKS2", (DL_FUNC) &pKS2, 2}, {"pKolmogorov2x", (DL_FUNC) &pKolmogorov2x, 2}, {NULL, NULL, 0} }; void R_init_surveillance(DllInfo *dll) { R_registerRoutines(dll, CEntries, CallEntries, NULL, NULL); R_useDynamicSymbols(dll, FALSE); R_forceSymbols(dll, TRUE); } surveillance/src/stcd-assuncaocorrea.cc0000644000176200001440000002424314665273731020032 0ustar liggesusers/** * File based on algoritmos.cpp and sv.cpp from the TerraView plugin. * C++ source originally created by Marcos Oliveira Prates on 06 April 2006 * * R interface by Michael Hoehle initiated on 12 Jan 2009 */ #include "stcd-assuncaocorrea.h" #include //#include using namespace std; // Calculate the number of events in the cylinder B( (xk,yk), rho) // (i.e. represented by the boolean matrix MSpace) between event times // (tj,ti] // // Params: // MSpace - contains for each pair of points is geographically // B( (xi,yi), rho) // EvtN - The last event, i.e. t_i // EvtJ - The first event, i.e. t_j int CalculaNCj(short **MSpace, const int EvtN, const int EvtJ) { int i; int Soma=0; for (i=EvtJ;i<=EvtN;i++) Soma += MSpace[EvtJ][i]; return(Soma); } // Calculate the number of events in the cylinder B( (xj,yj), rho) // (i.e. represented by the boolean matrix MSpace) between event times // (0,t_n] int ContaEvt(short **MSpace, const int EvtN, const int EvtJ) { int i; int Soma=0; for (i=0;i<=EvtN;i++) Soma += MSpace[EvtJ][i]; return(Soma); } ////////////////////////////////////////////////////////////////////// // Comment: Unfortunately, this function has not been commented in the // TerraView and hence it has been a bit difficult to document its exact // use. // // Params: // ev - a list of the events // RaioC - radius of the cylinder // epslon - relative change \lambda(s,t)(1+epsilon*I_{C_k}(s,t)) // areaA - area of the observation window A (also denoted W) // areaAcapBk - area of A \ B(s_k,\rho) for all k=1,\ldots,n // cusum - return Shiryaev-Roberts (FALSE) or CUSUM (TRUE) test // statistic // R - array of length ev where the computed values of R_n are // to be returned in. ////////////////////////////////////////////////////////////////////// int SistemadeVigilancia(SVEventLst &ev, const double RaioC, const double epslon, const double areaA, double *areaAcapBk, const int cusum, std::valarray &R) { size_t i, j, NCj, NumTotEvt, NumEvtCil; short **MSpace; double pontox, pontoy, DistEucl, Soma, UCj, fator; //order the event list ev.sort(); SVEventLst::size_type n_event = ev.size(); //create the spatio matrix MSpace = new short* [n_event]; if( MSpace == NULL ) return 1; for( i = 0; i < n_event; i++ ) { MSpace[i] = new short[n_event]; if( MSpace[i] == NULL ) { delete []MSpace; return 1; } } //create the output vector R.resize(n_event); if( R.size() != n_event ) { for( i = 0; i < n_event; i++ ) { delete []MSpace[i]; } delete []MSpace; return 1; } //Populate the spatio matrix with 1's if within radius rho in space //and 0 if not i = 0; for( SVEventLst::iterator it = ev.begin(); it != ev.end(); ++it, i++ ) { j = 0; for( SVEventLst::iterator jt = ev.begin(); jt != ev.end(); ++jt, j++ ) { pontox = (*it).x-(*jt).x; pontoy = (*it).y-(*jt).y; DistEucl = sqrt((pontox*pontox)+(pontoy*pontoy)); if((DistEucl < RaioC)) MSpace[i][j]=1; else MSpace[i][j]=0; } } ////////////////////////////////////////////////////////////////////// //Sequentually, for n=1,2,3,... compute the value of R_n by //by summing up all contributions of Lambda_{k,n} to form R_n, i.e. // \sum_{k=1}^n \Lambda_{k,n} ////////////////////////////////////////////////////////////////////// double LambdaMax = 0, Lambda; SVEventLst::iterator it2, jt2, ev0; //Loop over all n for( i = 0; i < n_event; i++ ) { Soma = 0.0; //Loop over 1<= k <= n (in code k is called j and n is i) for( j = 0; j <= i; j++ ) { //N(C_{k,n}) NCj = CalculaNCj(MSpace,i,j); //N(B(s_k, \rho) \times (0,t_n]) NumTotEvt = ContaEvt(MSpace,i,j); //N(A \times (t_k,t_n) ) = n-k+1 NumEvtCil = i-j+1; UCj = ((double)NumEvtCil*(double)NumTotEvt)/(double)(i+1); fator = 1.0+epslon; Lambda = pow(fator,(double)NCj) * exp((-epslon)*UCj); /* //Alternative estimation having the desired property for \rho->\infty // N( A \times (0,t_k] \cup (A\times (t_k,t_n) \backslash C_{k,n}) ) // \nu( A \times (0,t_k] \cup (A\times (t_k,t_n) \backslash C_{k,n}) ) double iCount=0; double jCount=0; ev0 = ev.begin(); for( it2 = ev.begin(); iCount < i ; ++it2, iCount++ ); for( jt2 = ev.begin(); jCount < j ; ++jt2, jCount++ ); double NNoCkn = ((j-1) + (NumEvtCil - NCj)); double volCkn = areaAcapBk[j] * ((*it2).t - (*jt2).t); double volNoCkn = areaA * ((*it2).t - (*ev0).t) - volCkn; UCj = (NNoCkn / volNoCkn) * volCkn; // Debug // cout << "----> k=" << j << " n= " << i << endl; // cout << "t_k=" << (*jt2).t << endl; // cout << "t_n=" << (*it2).t << endl; // cout << "N(C_{k,n}) = NCj; // cout << "N(W\\times(0,t_n) \\backslash C_{k,n}))=" << NNoCkn << endl; // cout << "vol(C_{k,n}))=" << volCkn << endl; // cout << "vol(W\\times(0,t_n) \backslash C_{k,n})=" << volNoCkn << endl; //// cout << "mu(C_{k,n})=" << UCj << endl; //Lambda = pow(fator,(double)NCj) * exp((-epslon)*UCj); */ //Summation for the Shiryaev-Roberts statistics Soma += Lambda; //Find maximum k of \Lambda_{k,n} for the CUSUM statistics if (Lambda> LambdaMax) { LambdaMax = Lambda; } } //Depending on the summation scheme compute the statistic. if (cusum) { R[i] = LambdaMax; } else { R[i] = Soma; } } //clean memory for( i = 0; i < n_event; i++ ) { delete [] MSpace[i]; } delete [] MSpace; return 0; } int CalculaLambda(SVEventLst &ev, const double RaioC, const double epslon, std::valarray &R, unsigned int &numObs) { size_t i, j, NCj, NumTotEvt, NumEvtCil; short **MSpace; double pontox, pontoy, DistEucl, UCj, fator, lambda, lambdaMax; ev.sort(); SVEventLst::size_type n_event = ev.size(); //create the spatio matrix MSpace = new short* [n_event]; if( MSpace == NULL ) return 1; for( i = 0; i < n_event; i++ ) { MSpace[i] = new short[n_event]; if( MSpace[i] == NULL ) { delete []MSpace; return 1; } } //create the output vector R.resize(n_event); if( R.size() != n_event ) { for( i = 0; i < n_event; i++ ) { delete []MSpace[i]; } delete []MSpace; return 1; } //populate the spatio matrix with 1 if is close in spatio and 0 if not i = 0; for( SVEventLst::iterator it = ev.begin(); it != ev.end(); ++it, i++ ) { j = 0; for( SVEventLst::iterator jt = ev.begin(); jt != ev.end(); ++jt, j++ ) { pontox = (*it).x-(*jt).x; pontoy = (*it).y-(*jt).y; DistEucl = sqrt((pontox*pontox)+(pontoy*pontoy)); if((DistEucl < RaioC)) MSpace[i][j]=1; else MSpace[i][j]=0; } } //do the calculus to find the output value of each event i = numObs; lambdaMax = 0; for( j = 0; j <= i; j++ ) { NCj = CalculaNCj(MSpace,i,j); NumTotEvt = ContaEvt(MSpace,i,j); NumEvtCil = i-j+1; UCj = ((double)NumEvtCil*(double)NumTotEvt)/(double)(i+1); fator = 1.0+epslon; lambda = (pow(fator,(double)NCj) * exp((-epslon)*UCj)); if (lambda > lambdaMax){ lambdaMax = lambda; numObs = j; } } //clean memory for( i = 0; i < n_event; i++ ) { delete [] MSpace[i]; } delete [] MSpace; return 0; } ////////////////////////////////////////////////////////////////////// // Shiryaev-Roberts space time detection as explained in the paper // by Correa and Assuncao (2009). // // Params: // x - array with x location of events // y - array with y location of events // t - array with time point of the events (on some arbitrary time scale) // n - number of elements in x, y and t (the same for the three vectors) // radius - cluster of the radius // epsilon - relative ratio of the intensity functions to detect for // areaA - area of the observation region (also denoted W) // areaAcapBk - area of A \ B(s_k,\rho) for all k=1,\ldots,n // threshold -- upper threshold when to sound the alarm // Rarray -- array of length n, this will contain the statistics calced // by the function // idxFirstAlarm -- index in the x,y,t vector resulting in the alarm // idxClusterCenter -- index in the x,y,t vector containing the cluster // center ////////////////////////////////////////////////////////////////////// extern "C" { void SRspacetime(double *x, double *y, double *t, int *n, double *radius, double *epsilon, double *areaA, double *areaAcapBk, int *cusum, double *threshold, double *Rarray, int *idxFirstAlarm, int *idxClusterCenter) { //Create SVEventLst SVEvent e; SVEventLst eList; unsigned int i; int j; //Fill coordinates of event list for(j=0;j<*n;j++){ e.x = x[j]; e.y = y[j]; e.t = t[j]; eList.push_back(e); } //Array of test statistic values std::valarray R; //Call SistemadeVigilancia, this calculates the SR statistics R_n SistemadeVigilancia(eList,*radius,*epsilon,*areaA,areaAcapBk,*cusum, R); //Debug purposes //cout << "Size of R = " << R.size() << endl; //Move values of test statistic for return for(i=0;i*threshold){ controle = true; break; } } //Advancing the iterator "it" to the point //where the alarm is generated. if (controle) { unsigned int cont = 0; SVEventLst::iterator it = eList.begin(); while((cont < i) && (it != eList.end())){ ++it; ++cont; } *idxFirstAlarm = cont; //Determine the cluster center of the alarm unsigned int num = cont; CalculaLambda(eList,*radius,*epsilon,R,num); //Index of the cluster center *idxClusterCenter = num; } else { //If no alarms, then return -1 for both alarm idx and cluster center idx *idxFirstAlarm = -2; *idxClusterCenter = -2; } //Clean up (nothing to clean) and done } } surveillance/src/surveillance.c0000644000176200001440000011046514661330147016411 0ustar liggesusers/** C routines for the surveillance package Author: (C) Michael Hoehle Date: 8 Jan 2008 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, a copy is available at http://www.r-project.org/Licenses/ Atm the only C routines are concerned with the GLR computations in the algorithm algo.prc. //should check that these really work... void lr_cusum - intercept chart with known kappa void glr_cusum - intercept chart with estimated kappa void glr_cusum_window -- window limited intercept chart with estimated kappa //removedvoid glr_epi void glr_epi_window //History 17 Feb 2009 -- added LR scheme for negative binomial (still experimental) 08 Jan 2007 -- added the files for the negative binomial computations 21 Sep 2007 -- modified code to get around error of extreme strict (=pedantic) MacOS compiling on CRAN 28 Nov 2006 -- file created */ /*#define DEBUG*/ #include #include #include /* header */ /* void lr_cusum(int* ,double* , int *, double *, double *,int *, double *) ; void glr_cusum(int* ,double* , int *, int *, double *,int *, double *, int *, int *, int *) ; */ /* Helper function for x^2 */ static inline double sqr(double x) { return(x*x); } /*====================================================================== Poisson GLR detector ====================================================================== */ /********************************************************************** C implementation of the LR test for the seasonal Poisson chart with fixed change in the intercept Params: x - array of observed values (pos 0 is first interesting value) mu0 - array with the means once in-control (pos 0 is first interesting value) lx - length of the x and mu0 array kappa- the change in intercept to detect (here known in advance) c_ARL- when to sound alarm threshold ret_N- here the return value is stored ret_lr- GLR value for each n to be returned ret_cases - The number of cases to be returned ret - what should be returned (value of lr-statistic, cases)? **********************************************************************/ void lr_cusum(int* x,double* mu0, int *lx_R, double *kappa_R, double *c_ARL_R,int *ret_N, double *ret_lr, double *ret_cases, int *ret_R) { /* Pointers to something useful */ int lx = *lx_R; double c_ARL = *c_ARL_R; double kappa = *kappa_R; int ret = *ret_R; /* Loop variables */ register int n=0; int stop = 0; int N = lx; /* Loop over all 0 <= n <= length(x) */ while ((n < lx)) { /*Compute for one n*/ /*printf("n=%d\n",n);*/ double zn = kappa * x[n] + (1-exp(kappa))*mu0[n]; #ifdef DEBUG printf("For kappa=%f and mu[%d]=%f:\tx[%d]=%f, LR=%f\n",kappa,n,mu0[n],n,x[n],zn); #endif /* Add up */ if (n==0) { ret_lr[n] = fmax(0,zn); /*5.11.2009 -- Bug fix. There was a small programming error for the computing the cases for n==0. if (ret==2) ret_cases[n] = (c_ARL + mu0[n]*(kappa-1))/kappa ; */ if (ret==2) ret_cases[n] = (c_ARL + mu0[n]*(exp(kappa)-1))/kappa ; } else { ret_lr[n] = fmax(0,ret_lr[n-1] + zn); if (ret==2) ret_cases[n] = (c_ARL - ret_lr[n-1] + mu0[n]*(exp(kappa)-1))/kappa ; } /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_lr[n] > c_ARL) && !stop) { N = n; stop = 1; break; } /* Advance counter */ n++; } /* Return value (add 1 for R/SPlus array compatibility */ *ret_N = N+1; } /*********************************************************************** Function for the computation of the glr-statistic with time-varying in-control value Params n - timepoint n where the glr-statistic should be computed x - array with observations mu0 - array with estimated in-comtrol parameters dir - direction of testing (up (1) or down (-1) the function returns max_1<=k<=n sup_theta sum_t=k^n log f_theta(x_t)/f_theta0(x_t) ************************************************************************/ static double glr (int n, int x[], double mu0[], int dir){ /* For the recursive computation of kappa_ml */ double sumx = 0; double summu0 = 0; /* Define max of the GLR stats */ double maxGLR = -1e99; /* Loop variable */ register int k; /* For fitting and summation */ double kappa_ml = 0; double sum = 0; /* Loop over all k */ for (k=n; k>=0; k--) { /* Backwards loop makes calculations faster */ /* Recursive update of the kappa.ml quantitities */ sumx += x[k]; summu0 += mu0[k]; /* Calculate MLE of kappa */ kappa_ml = dir*fmax(0,dir*log(sumx/summu0)); /* Recursive updating of the likelihood ratios -- See notes on the 21 september printout. This is fast! */ sum = kappa_ml * sumx + (1-exp(kappa_ml))*summu0; /* save max value */ if (sum > maxGLR) { maxGLR = sum;} } return(maxGLR); } /*********************************************************************** Function for the computation of the window-limited glr-statistic with time-varying in-control value Params n - timepoint n where the glr-statistic should be computed x - array with observations mu0 - array with estimated in-comtrol parameters dir - direction of testing (up (1) or down (-1) M - max time to go back in time from N Mtilde - number of vals we will need to estimate a detection the function returns max(0,n-M) <= k <= n-Mtilde sup_theta sum_t=k^n log f_theta(x_t)/f_theta0(x_t) ************************************************************************/ static double glr_window (int n, int x[], double mu0[], int dir, int M, int Mtilde){ /* Define max of the GLR stats */ double maxGLR = -1e99; /* Loop variable */ register int k,l; /* For the recursive computation of kappa_ml compute for (n-Mtilde+1):n */ double sumx = 0; double summu0 = 0; /* For fitting and summation */ double sum = 0; double kappa_ml = 0; for (l=n-Mtilde+1; l<=n; l++) { sumx += x[l]; summu0 += mu0[l]; } /* Loop over all max(0,n-M) <= k <= n-Mtilde -- do this backwards */ /* for (k=max(0,n-M); k<= (n-Mtilde); k++) { */ for (k=n-Mtilde; k>=fmax(0,n-M); k--) { /* Recursive update of the kappa.ml quantitities */ sumx += x[k]; summu0 += mu0[k]; kappa_ml = dir*fmax(0,dir*log(sumx/summu0));; /*Calculate sum of likelihood ratios using recursive updating (fast!)*/ sum = kappa_ml * sumx + (1-exp(kappa_ml))*summu0; /* Save the max value */ if (sum > maxGLR) { maxGLR = sum;} } return(maxGLR); } /********************************************************************** Fast C implementation of the sequential GLR test without windowing for Poisson distributed variables, this function can test in both directions (up/down) and there is the possibility ( in opposite to old function glr_cusum) to return the number of cases at timepoint n to produce an alarm at any timepoint 1<=k<=n Params: x - array of observed values (pos 0 is first interesting value) mu0 - array with the means once in-control (pos 0 is first interesting value) lx - length of the x and mu0 array n0 - number of burn-in values (number of observations, not array index!) c_ARL- when to sound alarm threshold ret_N- here the return value is stored ret_glr- GLR value for each n to be returned dir - direction of testing ret - what should be returned (value of glr-statistic, cases)? **********************************************************************/ void glr_cusum(int* x,double* mu0, int *lx_R, int *n0_R, double *c_ARL_R,int *ret_N, double *ret_glr, double *ret_cases, int *dir_R, int *ret_R) { /* Pointers to something useful */ int lx = *lx_R; int n0 = *n0_R; int dir = *dir_R; int ret = *ret_R; double c_ARL = *c_ARL_R; /* Loop variables */ register int n; /*l,n0-1*/ for (n=0; n= c_ARL */ while ((dir*glrnew < c_ARL*dir)){ /* increase/decrease xnnew */ xnnew = xnnew + 1; /* put this value in vector x at timepoint n */ x[n] = xnnew; /* compute the glr-statistic */ glrnew = glr(n,x,mu0,dir); } /* save the value */ ret_cases[n] = xnnew; /* set x[n] back to original value so that we can go to next n*/ x[n] = xnold; } /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_glr[n] >= c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter*/ n++; } /* Return value (add 1 for R/SPlus array compatibility */ *ret_N = N+1; } /********************************************************************** Fast C implementation of the sequential GLR test without windowing for Poisson distributed variables Params: x - array of observed values (pos 0 is first interesting value) mu0 - array with the means once in-control (pos 0 is first interesting value) lx - length of the x and mu0 array Mtilde - number of vals we will need to estimate a detection M - max time to go back in time from N c_ARL- when to sound alarm threshold **********************************************************************/ void glr_cusum_window(int* x,double* mu0, int *lx_R, int *M_R, int *Mtilde_R, double *c_ARL_R,int *ret_N, double *ret_glr, double *ret_cases, int *dir_R, int *ret_R) { /* Pointers to something useful */ int lx = *lx_R; int M = *M_R; int Mtilde = *Mtilde_R; int dir = *dir_R; int ret = *ret_R; double c_ARL = *c_ARL_R; /* Loop variables (n>Mtilde, so we start with n=Mtilde (due to -1 in index) */ register int n = Mtilde; /*l*/ int stop = 0; int N = lx; /* Precalculation of log(mu0) -- apparently not used anymore */ //double logmu0[lx]; //for (l=0;l= c_ARL */ while ((dir*glrnew < c_ARL*dir)){ /* increase/decrease xnnew */ xnnew = xnnew + 1; /* put this value in vector x at timepoint n */ x[n] = xnnew; /* compute the glr-statistic */ glrnew = glr_window(n,x,mu0,dir,M,Mtilde); } /* save the value */ ret_cases[n] = xnnew; /* set x[n] back to original value so that we can go to next n*/ x[n] = xnold; } /* Debug*/ /* printf("For n=%d the best GLR value is %f\n",n,maxGLR);*/ /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_glr[n] >= c_ARL) && !stop) { N = n; stop = 1; break; } /* Advance counter */ n++; } /* Return value (add 1 for R/SPlus array compatibility */ *ret_N = N+1; } /*====================================================================== GLR in the Epidemic Poisson model ====================================================================== */ /*Helper functions*/ /* Score function */ static inline double score(double phi, int *x, double *xm1, double *mu0, int k, int n) { register int i; double sum = 0; /*printf("[1] ");*/ for (i=k; i<=n; i++) { sum += (x[i]*xm1[i])/(exp(phi)*xm1[i]+mu0[i]) - xm1[i]; } /*printf("\n");*/ return(exp(phi)*sum); } /*fisher information*/ static inline double fisher(double phi,int *x,double *xm1, double *mu0, int k,int n,double scorephi) { register int i; double sum = 0; for (i=k; i<=n; i++) { sum += (x[i]*sqr(xm1[i]))/sqr(exp(phi)*xm1[i]+mu0[i]); } return(-scorephi + exp(2.0*phi)*sum); } /********************************************************************** GLR detector for the epidemic Poisson model described in Held et. al (2005). Parameters: x -- the data (as array) mu0 -- base means under H0 lx -- length of x Mtilde_R -- number of obs needed to get good estimate (typically 1) M -- Mtilde < M xm10 -- observed value of x_0 (0 for initialization, but known if >1st round) c_ARL_R -- constant determining when to signal alarm ret_N -- the return value ret_lr --- GLR value for each n to be returned **********************************************************************/ void glr_epi_window(int* x,double* mu0, int *lx_R, int *Mtilde_R, int *M_R, double *xm10, double *c_ARL_R,int *ret_N, double *ret_glr) { /* printf("====> begin glr_epi\n"); */ /* Pointers to something useful */ int lx = *lx_R; /* length of x */ int Mtilde = *Mtilde_R; int M = *M_R; double c_ARL = *c_ARL_R; /* Loop variables */ register int n, k,i; /* Init return values up to the first position */ int n0 = fmax(Mtilde-1,0); /*hoehle: 25.9: changepoint can happen at position one: fmax(Mtilde-1,1);*/ for (n=0; n-18) & (fabs(exp(phi_new) - exp(phi_old)) > 1e-6) & (iter maxGLR) { maxGLR = lnk;} } /*Debug */ /*printf("For n=%d the best GLR value is %f\n",n,maxGLR); */ /*Save the return value */ ret_glr[n] = maxGLR; /*Find the first time that the GLR increases c_ARL there we stop */ if ((maxGLR > c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter */ n++; } /*Set the remaining values to zero */ for (i=n+1;i begin lr_cusum_nb\n"); #endif /* Pointers to something useful */ int lx = *lx_R; double c_ARL = *c_ARL_R; double kappa = *kappa_R; double alpha = *alpha_R; int ret = *ret_R; #ifdef DEBUG printf("lx = %d\n",lx); printf("alpha = %f\n",alpha); #endif /* Loop variables */ register int n=0; int stop = 0; int N = lx; /* Loop over all 0 <= n <= length(x) */ while ((n < lx)) { /*Compute for one n*/ #ifdef DEBUG printf("n=%d\n",n); #endif /* LR for one NB variable as given in the first equation of Sect 2.1 in the Hoehle and Paul (2008) paper */ double zn = kappa * x[n] + (x[n]+1/alpha)*log( (1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)) ); /* Recursive CUSUM as given in (4) by Hoehle and Paul (2008) */ if (n==0) { /* Statistic */ ret_lr[n] = fmax(0,zn); /* Number of cases it takes to sound an alarm - backcalc'ed by backcalc.mws*/ if (ret==2) ret_cases[n] = -(log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))-c_ARL*alpha)/alpha/(kappa+log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))); } else { /* Statistic */ ret_lr[n] = fmax(0,ret_lr[n-1] + zn); /* Number of cases it takes to sound an alarm -- backcalc.mws*/ if (ret==2) ret_cases[n] = -(ret_lr[n-1]*alpha+log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))-c_ARL*alpha)/alpha/(kappa+log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))); } /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_lr[n] > c_ARL) && !stop) { N = n; stop = 1; break; } /* Advance counter */ n++; } /* Return value (add 1 for R/SPlus array compatibility */ *ret_N = N+1; } /* ====================================================================== Functions for the intercept chart ====================================================================== */ /* Score function for intercept chart*/ static inline double nbScore(double kappa, int *x, double *mu0, double alpha, int k, int n) { register int i; double sum = 0; /*printf("[1] ");*/ for (i=k; i<=n; i++) { sum += (x[i]-exp(kappa)*mu0[i])/(1+alpha*exp(kappa)*mu0[i]); } /*printf("\n");*/ return(sum); } /*fisher information for intercept chart -- its minus the hesse */ static inline double nbFisher(double kappa,int *x, double *mu0, double alpha, int k,int n) { register int i; double sum = 0; for (i=k; i<=n; i++) { sum += mu0[i]*(alpha*x[i]+1)/sqr(1+alpha*exp(kappa)*mu0[i]); } return( exp(kappa)*sum); } /* Formula to compute a single l_{n,k} for the intercept chart */ static inline double nblnk(double kappa,int *x, double *mu0, double alpha, int k,int n) { register int i; double lnk = 0; for (i=k;i<=n;i++) { lnk += kappa * x[i] + (x[i] + 1/alpha) * log( (1+alpha*mu0[i])/(1+alpha*mu0[i]*exp(kappa))); } return(lnk); } /********************************************************************** GLR detector for the negative binomial model described in Hoehle and Paul (2008). Parameters: x -- the data (as array) mu0 -- base means under H0 alpha -- fixed dispersion parameter of the NegBin distribution (see Lawless (1987)) lx -- length of x Mtilde_R -- number of obs needed to get good estimate (typically 1) M -- Mtilde < M c_ARL_R -- constant determining when to signal alarm ret_N -- the return value ret_lr --- GLR value for each n to be returned **********************************************************************/ void glr_nb_window(int* x,double* mu0, double* alpha_R, int *lx_R, int *Mtilde_R, int *M_R, double *c_ARL_R,int *ret_N, double *ret_glr, int *dir_R) { #ifdef DEBUG printf("====> begin glr_nb_window\n"); #endif /* Pointers to something useful */ int lx = *lx_R; /* length of x */ int Mtilde = *Mtilde_R; int M = *M_R; double c_ARL = *c_ARL_R; double alpha = *alpha_R; int dir = *dir_R; /* Loop variables */ register int n, k,i; /*changepoint can happen at position one (ie. index zero in C*/ int n0 = fmax(Mtilde-1,0); #ifdef DEBUG printf("Length of the data = %d\n",lx); printf("starting at n0= %d\n",n0); #endif /* Show the data */ /*for (n=0; n-18) & (fabs(kappa_new - kappa_old) > 1e-6) & (iter maxGLR) { maxGLR = lnk;} } /*Debug */ #ifdef DEBUG printf("For n=%d the highest GLR value is %f\n",n,maxGLR); #endif /*Save the return value */ ret_glr[n] = maxGLR; /*Find the first time that the GLR increases c_ARL there we stop */ /*hoehle: now >= */ if ((maxGLR >= c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter */ n++; } /*Set the remaining values to zero */ for (i=n+1;i begin glr_nbgeneral_window \n"); #endif /* Pointers to something useful */ int lx = *lx_R; /* length of x */ int Mtilde = *Mtilde_R; int M = *M_R; double c_ARL = *c_ARL_R; double alpha = *alpha_R; /* int dir = *dir_R; -- currently direction is not supported?? */ /* Loop variables */ register int n, k,i; /*changepoint can happen at position one (ie. index zero in C*/ int n0 = fmax(Mtilde-1,0); /* Compute x_{t-1} */ double xm1[lx]; xm1[0] = *xm10; /* used to be 0 */ for (i=1; i-18) & (fabs(theta_new - theta_old) > 1e-6) & (iter maxGLR) { maxGLR = lnk;} } /*Debug */ #ifdef DEBUG printf("For n=%d the highest GLR value is %f\n",n,maxGLR); #endif /*Save the return value */ ret_glr[n] = maxGLR; /*Find the first time that the GLR increases c_ARL there we stop */ /*hoehle: now >= */ if ((maxGLR >= c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter */ n++; } /*Set the remaining values to zero */ for (i=n+1;i #include struct SVEvent { double x, y, t; friend bool operator<(const SVEvent &a, const SVEvent &b) { return (a.t < b.t); } }; //STL is used (check its use) typedef std::list SVEventLst; //Functions provided in sr-spacetime.cc int CalculaNCj(short **MSpace, const int EvtN, const int EvtJ); int ContaEvt(short **MSpace, const int EvtN, const int EvtJ); //int SistemadeVigilancia(SVEventLst &, const double RaioC, const double epslon, // std::valarray &R); //New version with different estimation approach int SistemadeVigilancia(SVEventLst &ev, const double RaioC, const double epslon, const double areaA, double *areaAcapBk, const int cusum, std::valarray &R); int CalculaLambda(SVEventLst &ev, const double RaioC, const double epslon, std::valarray &R, unsigned int &numObs); // Hoehle wrapper function to create SVEvent list //void SRspacetime(double *x, double *y, double *t, int *n, double *radius, double *epsilon, double *Rarray); #endif surveillance/src/determineSources.c0000644000176200001440000000461714661422402017232 0ustar liggesusers/******************************************************************************* // Determine potential triggering events close in space and time // // Copyright (C) 2016,2021,2024 Sebastian Meyer // // This file is part of the R package "surveillance", // free software under the terms of the GNU General Public License, version 2, // a copy of which is available at https://www.R-project.org/Licenses/. *******************************************************************************/ #include #include #include SEXP determineSources( SEXP eventTimesSEXP, SEXP eps_tSEXP, SEXP eventCoordsSEXP, SEXP eps_sSEXP, SEXP eventTypes0SEXP, SEXP qmatrixSEXP, SEXP nTypesSEXP ){ int N = LENGTH(eventTimesSEXP), i; // Get pointers to input vectors double *eventTimes = REAL(eventTimesSEXP); double *eps_t = REAL(eps_tSEXP); double *xcoords = REAL(eventCoordsSEXP); double *ycoords = xcoords + N; // move the pointer to the second column double *eps_s = REAL(eps_sSEXP); int *eventTypes0 = INTEGER(eventTypes0SEXP); // 0-based type index int *qmatrix = LOGICAL(qmatrixSEXP); int nTypes = asInteger(nTypesSEXP); // Allocate output list of sources for each event SEXP sourcesSEXP = PROTECT(allocVector(VECSXP, N)); for (i = 0; i < N; i++) { SEXP sourceVec = PROTECT(allocVector(INTSXP, N)); // maximum length int nSources = 0; // Check for each event j if it could be a source of i for (int j = 0; j < N; j++) { if (// 1. type of j can infect type of i qmatrix[eventTypes0[j] + eventTypes0[i] * nTypes] && // 2. j is still infectious when i happens // (use "<" not "<=": CIF is left-continuous, no self-infection) (eventTimes[j] < eventTimes[i]) && (eventTimes[j] + eps_t[j] >= eventTimes[i]) && // 3. j reaches i // (use "hypot" for Euclidean distance between j and i) hypot(xcoords[j] - xcoords[i], ycoords[j] - ycoords[i]) <= eps_s[j]) { INTEGER(sourceVec)[nSources] = j + 1; // 1-based index for R nSources++; } } sourceVec = lengthgets(sourceVec, nSources); // trim to actual length SET_VECTOR_ELT(sourcesSEXP, i, sourceVec); UNPROTECT(1); } UNPROTECT(1); return sourcesSEXP; } surveillance/src/twinstim_siaf_polyCub_iso.c0000644000176200001440000001536014013521730021131 0ustar liggesusers/******************************************************************************* * Call polyCub_iso from polyCubAPI.h for a specific intrfr function * * Copyright (C) 2017,2020,2021 Sebastian Meyer * * This file is part of the R package "surveillance", * free software under the terms of the GNU General Public License, version 2, * a copy of which is available at https://www.R-project.org/Licenses/. ******************************************************************************/ #include #include #include /*** C-implementation of "intrfr" functions ***/ // power-law kernel static double intrfr_powerlaw(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); double onemd = 1.0 - d; double twomd = 2.0 - d; if (fabs(onemd) < 1e-7) { return R - sigma * log1p(R/sigma); } else if (fabs(twomd) < 1e-7) { return log1p(R/sigma) - R/(R+sigma); } else { return (R*pow(R+sigma,onemd) - (pow(R+sigma,twomd) - pow(sigma,twomd))/twomd) / onemd; } } static double intrfr_powerlaw_dlogsigma(double R, double *logpars) { double newlogpars[2] = {logpars[0], log1p(exp(logpars[1]))}; // sigma*d = exp(logsigma+logd) return -exp(logpars[0]+logpars[1]) * intrfr_powerlaw(R, newlogpars); } static double intrfr_powerlaw_dlogd(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); double onemd = 1.0 - d; double twomd = 2.0 - d; if (fabs(onemd) < 1e-7) { return sigma * logpars[0] * (1.0-logpars[0]/2.0) - log(R+sigma) * (R+sigma) + sigma/2.0 * pow(log(R+sigma),2.0) + R; } else if (fabs(twomd) < 1e-7) { return (-log(R+sigma) * ((R+sigma)*log(R+sigma) + 2.0*sigma) + (R+sigma)*logpars[0]*(logpars[0]+2.0) + 2.0*R) / (R+sigma); } else { return (pow(sigma,twomd) * (logpars[0]*(-d*d + 3.0*d - 2.0) - 2.0*d + 3.0) + pow(R+sigma,onemd) * (log(R+sigma)*onemd*twomd * (sigma - R*onemd) + R*(d*d+1.0) + 2.0*d*(sigma-R) - 3.0*sigma) ) * d/onemd/onemd/twomd/twomd; } } // student kernel static double intrfr_student(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); double onemd = 1.0 - d; if (fabs(onemd) < 1e-7) { return log(R*R+sigma*sigma) / 2.0 - logpars[0]; } else { return ( pow(R*R+sigma*sigma,onemd) - pow(sigma*sigma,onemd) )/2/onemd; } } static double intrfr_student_dlogsigma(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); return sigma*sigma * ( pow(R*R+sigma*sigma,-d) - pow(sigma,-2.0*d) ); } static double intrfr_student_dlogd_primitive(double x, double sigma, double d) { double x2ps2 = x*x + sigma*sigma; double dm1 = d - 1.0; return (d*dm1*log(x2ps2) + d) / (2.0*dm1*dm1 * pow(x2ps2,dm1)); } static double intrfr_student_dlogd(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); if (fabs(d-1.0) < 1e-7) { return pow(logpars[0], 2.0) - pow(log(R*R+sigma*sigma), 2.0) / 4.0; } else { return intrfr_student_dlogd_primitive(R, sigma, d) - intrfr_student_dlogd_primitive(0.0, sigma, d); } } // lagged power-law kernel static double intrfr_powerlawL_sigmadxplint(double R, double sigma, double d) { double twomd = 2.0 - d; double xplint = (fabs(twomd) < 1e-7) ? log(R/sigma) : (pow(R,twomd)-pow(sigma,twomd))/twomd; return pow(sigma,d) * xplint; } static double intrfr_powerlawL(double R, double *logpars) { double sigma = exp(logpars[0]); double upper = (R > sigma) ? sigma : R; double res = upper*upper / 2.0; // integral over x*constant part if (R <= sigma) { return res; } else { return res + intrfr_powerlawL_sigmadxplint(R, sigma, exp(logpars[1])); } } static double intrfr_powerlawL_dlogsigma(double R, double *logpars) { double sigma = exp(logpars[0]); if (R <= sigma) { return 0.0; } double d = exp(logpars[1]); return d * intrfr_powerlawL_sigmadxplint(R, sigma, d); } static double intrfr_powerlawL_dlogd(double R, double *logpars) { double sigma = exp(logpars[0]); if (R <= sigma) { return 0.0; } double d = exp(logpars[1]); double twomd = 2.0 - d; double sigmadRtwomdd = pow(sigma,d) * pow(R,twomd) * d; return (fabs(twomd) < 1e-7) ? -pow(sigma*log(R/sigma), 2.0) : (sigmadRtwomdd * (-twomd)*log(R/sigma) - d*sigma*sigma + sigmadRtwomdd)/(twomd*twomd); } // Gaussian kernel static double intrfr_gaussian(double R, double *logsigma) { double sigma2 = exp(2*logsigma[0]); return sigma2 * (1 - exp(-R*R/2/sigma2)); } static double intrfr_gaussian_dlogsigma(double R, double *logsigma) { double sigma2 = exp(2*logsigma[0]); double R2sigma2 = R*R/2/sigma2; return 2*sigma2 * (1 - (1+R2sigma2)/exp(R2sigma2)); } // Exponential kernel static double intrfr_exponential(double R, double *logsigma) { double sigma = exp(logsigma[0]); return sigma * (sigma - (R+sigma)*exp(-R/sigma)); } static double intrfr_exponential_dlogsigma(double R, double *logsigma) { double sigma = exp(logsigma[0]); return 2*sigma*sigma - ((R+sigma)*(R+sigma) + sigma*sigma)*exp(-R/sigma); } /*** function to be called from R ***/ void siaf_polyCub1_iso( double *x, double *y, // vertex coordinates (open) int *L, // number of vertices int *intrfr_code, // F(R) identifier double *pars, // parameters for F(R) int *subdivisions, double *epsabs, double *epsrel, // Rdqags options int *stop_on_error, double *value, double *abserr, int *neval) // results { intrfr_fn intrfr; switch(*intrfr_code) { // = INTRFR_CODE in ../R/twinstim_siaf_polyCub_iso.R case 10: intrfr = intrfr_powerlaw; break; case 11: intrfr = intrfr_powerlaw_dlogsigma; break; case 12: intrfr = intrfr_powerlaw_dlogd; break; case 20: intrfr = intrfr_student; break; case 21: intrfr = intrfr_student_dlogsigma; break; case 22: intrfr = intrfr_student_dlogd; break; case 30: intrfr = intrfr_powerlawL; break; case 31: intrfr = intrfr_powerlawL_dlogsigma; break; case 32: intrfr = intrfr_powerlawL_dlogd; break; case 40: intrfr = intrfr_gaussian; break; case 41: intrfr = intrfr_gaussian_dlogsigma; break; case 50: intrfr = intrfr_exponential; break; case 51: intrfr = intrfr_exponential_dlogsigma; break; default: error("unknown intrfr_code"); break; } double center_x = 0.0; double center_y = 0.0; polyCub_iso(x, y, L, intrfr, pars, ¢er_x, ¢er_y, subdivisions, epsabs, epsrel, stop_on_error, value, abserr, neval); return; } surveillance/src/ks.c0000644000176200001440000001341614244757706014343 0ustar liggesusers/* * This file contains a *subset* of the ks.c source file from R 4.2.0 * (https://svn.R-project.org/R/trunk/src/library/stats/src/ks.c, as at r81742) * with original Copyright (C) 1999-2022 The R Core Team * under GPL-2 (or later) as shown below. * The version included here just leaves out Smirnov-related functions and is * again available under GPL-2. * * License: * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ */ /* ks.c Compute the asymptotic distribution of the one- and two-sample two-sided Kolmogorov-Smirnov statistics, and the exact distributions in the two-sided one-sample and two-sample cases. */ #include #include #include #include /* constants */ static double K(int n, double d); static void m_multiply(double *A, double *B, double *C, int m); static void m_power(double *A, int eA, double *V, int *eV, int m, int n); /* Two-sample two-sided asymptotic distribution */ static void pkstwo(int n, double *x, double tol) { /* x[1:n] is input and output * * Compute * \sum_{k=-\infty}^\infty (-1)^k e^{-2 k^2 x^2} * = 1 + 2 \sum_{k=1}^\infty (-1)^k e^{-2 k^2 x^2} * = \frac{\sqrt{2\pi}}{x} \sum_{k=1}^\infty \exp(-(2k-1)^2\pi^2/(8x^2)) * * See e.g. J. Durbin (1973), Distribution Theory for Tests Based on the * Sample Distribution Function. SIAM. * * The 'standard' series expansion obviously cannot be used close to 0; * we use the alternative series for x < 1, and a rather crude estimate * of the series remainder term in this case, in particular using that * ue^(-lu^2) \le e^(-lu^2 + u) \le e^(-(l-1)u^2 - u^2+u) \le e^(-(l-1)) * provided that u and l are >= 1. * * (But note that for reasonable tolerances, one could simply take 0 as * the value for x < 0.2, and use the standard expansion otherwise.) * */ double new, old, s, w, z; int i, k, k_max; k_max = (int) sqrt(2 - log(tol)); for(i = 0; i < n; i++) { if(x[i] < 1) { z = - (M_PI_2 * M_PI_4) / (x[i] * x[i]); w = log(x[i]); s = 0; for(k = 1; k < k_max; k += 2) { s += exp(k * k * z - w); } x[i] = s / M_1_SQRT_2PI; } else { z = -2 * x[i] * x[i]; s = -1; k = 1; old = 0; new = 1; while(fabs(old - new) > tol) { old = new; new += 2 * s * exp(z * k * k); s *= -1; k++; } x[i] = new; } } } static double K(int n, double d) { /* Compute Kolmogorov's distribution. Code published in George Marsaglia and Wai Wan Tsang and Jingbo Wang (2003), "Evaluating Kolmogorov's distribution". Journal of Statistical Software, Volume 8, 2003, Issue 18. URL: http://www.jstatsoft.org/v08/i18/. */ int k, m, i, j, g, eH, eQ; double h, s, *H, *Q; /* The faster right-tail approximation is omitted here. s = d*d*n; if(s > 7.24 || (s > 3.76 && n > 99)) return 1-2*exp(-(2.000071+.331/sqrt(n)+1.409/n)*s); */ k = (int) (n * d) + 1; m = 2 * k - 1; h = k - n * d; H = (double*) R_Calloc(m * m, double); Q = (double*) R_Calloc(m * m, double); for(i = 0; i < m; i++) for(j = 0; j < m; j++) if(i - j + 1 < 0) H[i * m + j] = 0; else H[i * m + j] = 1; for(i = 0; i < m; i++) { H[i * m] -= R_pow_di(h, i + 1); H[(m - 1) * m + i] -= R_pow_di(h, (m - i)); } H[(m - 1) * m] += ((2 * h - 1 > 0) ? R_pow_di(2 * h - 1, m) : 0); for(i = 0; i < m; i++) for(j=0; j < m; j++) if(i - j + 1 > 0) for(g = 1; g <= i - j + 1; g++) H[i * m + j] /= g; eH = 0; m_power(H, eH, Q, &eQ, m, n); s = Q[(k - 1) * m + k - 1]; for(i = 1; i <= n; i++) { s = s * i / n; if(s < 1e-140) { s *= 1e140; eQ -= 140; } } s *= R_pow_di(10.0, eQ); R_Free(H); R_Free(Q); return(s); } static void m_multiply(double *A, double *B, double *C, int m) { /* Auxiliary routine used by K(). Matrix multiplication. */ int i, j, k; double s; for(i = 0; i < m; i++) for(j = 0; j < m; j++) { s = 0.; for(k = 0; k < m; k++) s+= A[i * m + k] * B[k * m + j]; C[i * m + j] = s; } } static void m_power(double *A, int eA, double *V, int *eV, int m, int n) { /* Auxiliary routine used by K(). Matrix power. */ double *B; int eB , i; if(n == 1) { for(i = 0; i < m * m; i++) V[i] = A[i]; *eV = eA; return; } m_power(A, eA, V, eV, m, n / 2); B = (double*) R_Calloc(m * m, double); m_multiply(V, V, B, m); eB = 2 * (*eV); if((n % 2) == 0) { for(i = 0; i < m * m; i++) V[i] = B[i]; *eV = eB; } else { m_multiply(A, B, V, m); *eV = eA + eB; } if(V[(m / 2) * m + (m / 2)] > 1e140) { for(i = 0; i < m * m; i++) V[i] = V[i] * 1e-140; *eV += 140; } R_Free(B); } /* Two-sample two-sided asymptotic distribution */ SEXP pKS2(SEXP statistic, SEXP stol) { int n = LENGTH(statistic); double tol = asReal(stol); SEXP ans = duplicate(statistic); pkstwo(n, REAL(ans), tol); return ans; } /* The two-sided one-sample 'exact' distribution */ SEXP pKolmogorov2x(SEXP statistic, SEXP sn) { int n = asInteger(sn); double st = asReal(statistic), p; p = K(n, st); return ScalarReal(p); } surveillance/NAMESPACE0000644000176200001440000003260714676756252014221 0ustar liggesusers## refer to all C routines by their name prefixed by C_ useDynLib(surveillance, .registration = TRUE, .fixes = "C_") ############### ### IMPORTS ### ############### ### Import all packages listed as Depends ### (for utils and polyCub: only selected methods are imported) import(methods, grDevices, graphics, stats) ## sp classes & utilities (bbox, coordinates, dimensions, overlay, plot, ...) ## (we "Depend" on package sp since it defines essential data classes & methods) import(sp) ## we define own methods for generating xtable()'s, which we want to be usable import(xtable) ### required generics for own methods (that's why we "Depend" on these packages) ## importFrom(stats, coef, vcov, logLik, nobs, residuals, confint, AIC, extractAIC, ## profile, simulate, update, terms, add1, drop1, predict, as.stepfun) importFrom(utils, head, tail, toLatex) ### required functions from utils and stats ## importFrom(stats, pnorm, cov2cor, ks.test, formula, rnorm, runif, step, dist, ## update.formula, terms.formula, rpois, rnbinom, setNames, ## na.omit, as.formula, pnbinom, qnbinom, qnorm, sd, glm, optim, ## poisson, ppois, qpois, predict.glm, summary.glm, quasipoisson, ## glm.fit) ## and many more... importFrom(utils, packageName, packageVersion, modifyList, capture.output, read.table, data, setTxtProgressBar, txtProgressBar, sessionInfo, head.matrix, str, flush.console, write.table, as.roman, tail.matrix, methods) ### sampling from mv.Gaussian for OSAIC weights (twinSIR) and iafplot (twinstim) importFrom(MASS, mvrnorm) ### disProg-specific importFrom(MASS, glm.nb) # for algo.glrnb ##importFrom(msm, msm, hmmPois, viterbi.msm) # for algo.hmm() ##importFrom(spc, xcusum.arl, xcusum.crit) # for find.kh() ## (packages msm and spc are now "suggested", not imported) ### hhh4-specific importFrom(MASS, ginv, negative.binomial) importFrom(Matrix, Matrix) importClassesFrom(Matrix, ddiMatrix) importMethodsFrom(Matrix, coerce, forceSymmetric) ## sparse matrix methods provide a significant speed-up in marFisher importFrom(nlme, fixef, ranef) export(fixef, ranef) # we define corresponding methods for "hhh4" models ### twinSIR-specific # for use in computing OSAIC weights by simulation #importFrom(quadprog, solve.QP) # moved to "Suggests" ### twinstim-specific importFrom(spatstat.geom, area.owin, as.im.function, diameter.owin, disc, edges, inside.owin, intersect.owin, is.polygonal, as.polygonal, bdist.points, owin, ppp, shift.owin, spatstat.options, vertices) importFrom(spatstat.geom, marks) export(marks) # we define an epidataCS-method importFrom(spatstat.geom, multiplicity) export(multiplicity) # we define a Spatial-method importFrom(polyCub, polyCub, .polyCub.iso, polyCub.SV, polyCub.midpoint, xylist) importFrom(MASS, kde2d, truehist) ############### ### EXPORTS ### ############### ### general exports export(surveillance.options, reset.surveillance.options) export(animate) # new S3-generic export(R0) # new S3-generic export(intensityplot) # new S3-generic export(formatPval) # yapf -- yet another p-value formatter export(anscombe.residuals) export(magic.dim, primeFactors, bestCombination) # similar to n2mfrow export(isoWeekYear) #extract ISO 8601 date export(formatDate) #format.Date + %Q and %q formatting strings export(refvalIdxByDate) export(ks.plot.unif) export(checkResidualProcess) # for twinstim and twinSIR export(plapply) export(clapply) export(fanplot) # spatial utilities export(discpoly) export(unionSpatialPolygons) export(nbOrder) export(poly2adjmat) export(polyAtBorder) export(layout.labels) export(layout.scalebar) # randomly break tied event times or coordinates export(untie) # new S3-generic #export(untie.default, untie.matrix, untie.epidataCS) S3method(untie, default) S3method(untie, matrix) S3method(untie, epidataCS) # intersection of a polygonal and a circular domain export(intersectPolyCircle) S3method(intersectPolyCircle, owin) S3method(intersectPolyCircle, SpatialPolygons) # little helper: multiplicity of points S3method(multiplicity, Spatial) # list coefficients by model component export(coeflist) S3method(coeflist, default) S3method(coeflist, twinstim) S3method(coeflist, simEpidataCS) S3method(coeflist, hhh4) # Spatio-temporal cluster detection export(stcd) # tests for space-time interaction export(knox) S3method(print, knox) S3method(plot, knox) S3method(xtable, knox) S3method(toLatex, knox) export(stKtest) S3method(plot, stKtest) # PIT histograms export(pit) export(pit.default) S3method(pit, default) S3method(pit, oneStepAhead) S3method(pit, hhh4) S3method(plot, pit) # calibration test for Poisson or NegBin predictions export(calibrationTest) S3method(calibrationTest, default) export(calibrationTest.default) export(dss, logs, rps, ses) # nses ### sts(BP|NC)-specific export(sts) exportClasses(sts, stsBP) export(linelist2sts) export(animate_nowcasts) # conversion of "sts" objects S3method(as.ts, sts) export(as.xts.sts) S3method(xts::as.xts, sts) # delayed registration S3method(as.data.frame, sts) # see ?Methods_for_S3 exportMethods(as.data.frame) export(tidy.sts) # more S4 generics, some with an equivalent S3-method, see ?Methods_for_S3 exportMethods(dim, dimnames, frequency, start, year, epochInYear, "[") S3method(plot, sts) exportMethods(plot) S3method(toLatex, sts) exportMethods(toLatex) S3method(aggregate, sts) exportMethods(aggregate) # methods for accessing/replacing slots of an sts object (cf. AllGeneric.R) exportMethods(epoch,observed,alarms,upperbound,population,control,multinomialTS,neighbourhood) exportMethods("epoch<-","observed<-","alarms<-","upperbound<-","population<-","control<-","multinomialTS<-","neighbourhood<-") # methods for accessing/replacing slots of an stsNC object exportMethods(reportingTriangle,delayCDF,score,predint) # plot variants export(stsplot_space) export(stsplot_time, stsplot_time1, stsplot_alarm) export(addFormattedXAxis, atChange, at2ndChange, atMedian) #for time axis formatting export(stsplot_spacetime) # old implementation of (animated) map S3method(animate, sts) # S3-method for an S4 class, see ?Methods_for_S3 export(autoplot.sts) S3method(ggplot2::autoplot, sts) # delayed registration # outbreak detection algorithms (sts-interfaces) export(wrap.algo, farrington, bayes, rki, cusum, glrpois, glrnb, outbreakP, boda) # FIXME: rogerson, hmm ?? export(earsC) export(farringtonFlexible) export(categoricalCUSUM, pairedbinCUSUM, pairedbinCUSUM.runlength) export(nowcast, backprojNP) export(bodaDelay) # sts creation functions export(sts_creation) export(sts_observation) ### disProg-specific export(create.disProg) S3method(print, disProg) S3method(plot, disProg) S3method(aggregate, disProg) export(sim.pointSource, sim.seasonalNoise) export(LRCUSUM.runlength, arlCusum, find.kh, findH, hValues, findK) export(estimateGLRNbHook) export(algo.compare, algo.quality, algo.summary) ## outbreak detection algorithms (old disProg implementations) export(algo.bayes, algo.bayes1, algo.bayes2, algo.bayes3, algo.bayesLatestTimepoint, algo.call, algo.cdc, algo.cdcLatestTimepoint, algo.cusum, algo.farrington, algo.glrnb, algo.glrpois, algo.hmm, algo.outbreakP, algo.rki, algo.rki1, algo.rki2, algo.rki3, algo.rkiLatestTimepoint, algo.rogerson) ## auxiliary functions for algo.farrington (FIXME: why export these internals?) export(algo.farrington.assign.weights, algo.farrington.fitGLM, algo.farrington.fitGLM.fast, algo.farrington.fitGLM.populationOffset, algo.farrington.threshold) S3method(plot, survRes) S3method(print, algoQV) S3method(xtable, algoQV) ### conversion between old disProg and new sts classes export(disProg2sts) export(sts2disProg) ### twinSIR-specific export(cox) export(as.epidata) S3method(as.epidata, data.frame) export(as.epidata.data.frame) S3method(as.epidata, default) export(as.epidata.default) export(intersperse) export(twinSIR) export(stateplot) export(simEpidata) S3method(update, epidata) S3method("[", epidata) S3method(print, epidata) S3method(summary, epidata) S3method(print, summary.epidata) S3method(plot, epidata) S3method(animate, epidata) S3method(plot, summary.epidata) S3method(animate, summary.epidata) S3method(print, twinSIR) S3method(summary, twinSIR) S3method(print, summary.twinSIR) S3method(plot, twinSIR) S3method(intensityplot, twinSIR) export(intensityplot.twinSIR) # for convenience S3method(profile, twinSIR) S3method(plot, profile.twinSIR) S3method(vcov, twinSIR) S3method(logLik, twinSIR) S3method(AIC, twinSIR) S3method(extractAIC, twinSIR) S3method(simulate, twinSIR) export(simulate.twinSIR) # for convenience S3method(residuals, twinSIR) S3method(intensityplot, simEpidata) export(intensityplot.simEpidata) # for convenience ### twinstim-specific export(as.epidataCS) export(glm_epidataCS) export(twinstim) export(simEpidataCS) export(siaf, siaf.constant, siaf.step, siaf.gaussian, siaf.exponential, siaf.powerlaw, siaf.powerlaw1, siaf.powerlawL, siaf.student) export(tiaf, tiaf.constant, tiaf.step, tiaf.exponential) export(epidataCS2sts) export(epitest) S3method(coef, epitest) S3method(plot, epitest) export(getSourceDists) S3method(nobs, epidataCS) S3method("[", epidataCS) S3method(update, epidataCS) export(update.epidataCS) # for convenience export(permute.epidataCS) S3method(head, epidataCS) S3method(tail, epidataCS) S3method(print, epidataCS) S3method(subset, epidataCS) S3method(summary, epidataCS) S3method(print, summary.epidataCS) S3method(as.stepfun, epidataCS) S3method(animate, epidataCS) export(animate.epidataCS) # for convenience S3method(marks, epidataCS) export(marks.epidataCS) # for convenience since its a foreign generic S3method(plot, epidataCS) export(epidataCSplot_time, epidataCSplot_space) S3method(as.epidata, epidataCS) export(as.epidata.epidataCS) # for convenience S3method(print, twinstim) S3method(summary, twinstim) export(summary.twinstim) # for convenience S3method(print, summary.twinstim) S3method(toLatex, summary.twinstim) S3method(xtable, summary.twinstim) export(xtable.summary.twinstim) # for xtable.twinstim S3method(xtable, twinstim) S3method(plot, twinstim) export(iafplot) export(intensity.twinstim) S3method(intensityplot, twinstim) export(intensityplot.twinstim) # for convenience S3method(profile, twinstim) S3method(coef, summary.twinstim) S3method(vcov, twinstim) S3method(vcov, summary.twinstim) S3method(logLik, twinstim) S3method(extractAIC, twinstim) S3method(nobs, twinstim) S3method(simulate, twinstim) export(simulate.twinstim) # for convenience export(simEndemicEvents) S3method(R0, twinstim) export(simpleR0) S3method(residuals, twinstim) S3method(update, twinstim) export(update.twinstim) # for convenience S3method(terms, twinstim) S3method(all.equal, twinstim) export(stepComponent) S3method(terms, twinstim_stependemic) S3method(terms, twinstim_stepepidemic) S3method(update, twinstim_stependemic) S3method(update, twinstim_stepepidemic) S3method(add1, twinstim) S3method(add1, twinstim_stependemic) S3method(add1, twinstim_stepepidemic) S3method(drop1, twinstim) S3method(drop1, twinstim_stependemic) S3method(drop1, twinstim_stepepidemic) S3method(residuals, simEpidataCS) S3method(R0, simEpidataCS) S3method(intensityplot, simEpidataCS) export(intensityplot.simEpidataCS) # for convenience S3method(print, simEpidataCSlist) S3method("[[", simEpidataCSlist) S3method(plot, simEpidataCSlist) ### hhh4-specific ## main functions export(hhh4) export(addSeason2formula) export(makeControl) export(zetaweights, W_powerlaw) export(W_np) export(getNEweights, coefW) export(oneStepAhead) export(scores) export(permutationTest) ## S3-methods S3method(print, hhh4) S3method(summary, hhh4) S3method(print, summary.hhh4) S3method(nobs, hhh4) S3method(logLik, hhh4) S3method(formula, hhh4) S3method(terms, hhh4) S3method(coef, hhh4) S3method(vcov, hhh4) S3method(fixef, hhh4) S3method(ranef, hhh4) S3method(confint, hhh4) S3method(residuals, hhh4) S3method(predict, hhh4) S3method(update, hhh4) export(update.hhh4) # for add-on packages S3method(all.equal, hhh4) S3method(simulate, hhh4) S3method(plot, hhh4) export(plotHHH4_fitted, plotHHH4_fitted1, plotHHH4_season, getMaxEV_season, plotHHH4_maxEV, getMaxEV, plotHHH4_maps, plotHHH4_ri, plotHHH4_neweights) S3method(quantile, oneStepAhead) S3method(confint, oneStepAhead) S3method(plot, oneStepAhead) S3method(scores, default) S3method(scores, hhh4) S3method(scores, oneStepAhead) S3method(calibrationTest, hhh4) S3method(calibrationTest, oneStepAhead) ## methods for simulations from hhh4 fits S3method("[", hhh4sims) S3method(aggregate, hhh4sims) S3method(plot, hhh4sims) export(as.hhh4simslist) S3method(as.hhh4simslist, hhh4sims) S3method(as.hhh4simslist, list) S3method(as.hhh4simslist, hhh4simslist) S3method("[", hhh4simslist) S3method("[[", hhh4simslist) S3method(aggregate, hhh4simslist) S3method(plot, hhh4simslist) export(plotHHH4sims_size) export(plotHHH4sims_time) export(plotHHH4sims_fan) S3method(scores, hhh4sims) S3method(scores, hhh4simslist) ## internal functions for use by add-on packages export(meanHHH, sizeHHH, decompose.hhh4) surveillance/NEWS.md0000644000176200001440000031336614712407636014072 0ustar liggesusers# surveillance 1.24.1 (2024-11-05) This maintenance release adjusts a test of `formatDate()` to be compatible with recent changes in R-devel. # surveillance 1.24.0 (2024-10-01) ## New Features - `residuals.hhh4()` can now also compute `type = "pearson"` residuals. - The standard `frequency()` and `start()` generics can now be used to extract the respective slots from an `"sts"` object. - When indexing a spatial `"sts"` object that contains a map by region names, i.e., `[,]`, the additional argument `drop = TRUE` can now be used to subset the map accordingly. ## Package Infrastructure - **sp** version 2.1-4 is now required, mainly to skip versions that produce misleading/obsolete startup messages or throw unnecessary warnings when **sf** is not available. ## Deprecated & Defunct - The experimental `algo.twins()` implementation of [Held et al. (2006)](https://doi.org/10.1093/biostatistics/kxj016) has been removed from the package. The source code has been migrated to a separate R package, **twins**, which is archived at . ## Bug Fixes - `update.hhh4(S =)` can now be used for a previously disabled model component, when it simply uses `f = ~1` and adds the requested number of harmonics (but gives a warning as the specification may need to be tweaked, e.g., for an offset). # surveillance 1.23.1 (2024-09-02) ## New Features - The `sts()` constructor now also accepts an `"sf"` object as `map` input; it is internally converted to `"SpatialPolygons"` as required by the `"sts"` class. (Based on a patch by Sophie Reichert.) - `as.epidataCS()` is faster in determining potential event sources. ## Package Infrastructure - **Rcpp** is no longer used. Only two small helper functions (for `backprojNP(eq3a.method="C")` and `as.epidataCS()`) were using it (inefficiently) and have been replaced by C implementations. This also reduces the size of the installed package. # surveillance 1.23.0 (2024-05-03) ## New Features - `update.epidataCS()` gained an argument `stgrid` to update the spatio-temporal grid data in an existing `"epidataCS"` object. This enables updates/transformations of endemic variables and/or changes of the time intervals without needing to do `as.epidataCS()` from scratch. ## Bug Fixes - Start values for endemic intercepts in `twinstim()` are now robust against non-finite values in offset terms. - `intensityplot.twinstim(aggregate = "space")` no longer fails for endemic-only fits. # surveillance 1.22.1 (2023-11-27) ## Bug Fixes - The `pit()` plot could lack some tick marks on the y-axis (for R >= 4.2.0). # surveillance 1.22.0 (2023-10-30) ## Package Infrastructure - Legacy functions `unionSpatialPolygons()` and `polyAtBorder()` now use **sf** in place of **rgeos**. ## Deprecated & Defunct - Long unused methods for `"gpc.poly"` objects (from package **gpclib**) have now been removed and `surveillance.options("gpclib")` is obsolete. - Package **rgeos** is no longer available as a `clipper` method for `as.epidataCS()`. The previous default **polyclip** remains as the only option. # surveillance 1.21.1 (2023-05-16) This is a maintenance release, fixing encoding-related portability issues and increasing test coverage for rarely used functionality. # surveillance 1.21.0 (2023-03-14) ## Minor Changes - `nbOrder()` has been re-implemented: it is now more efficient and no longer depends on **spdep**. Furthermore, it now defaults to `maxlag = Inf`; the historical default `maxlag = 1` was barely useful. It no longer messages (about the range of the detected orders). - Printing `"sts"` objects with a map now shows the first row of the attached data (if present) instead of the object summary. ## Package Infrastructure - Accommodate the current evolution of **sp**: **sf** is suggested and some examples are now conditionalized on its availability. ## Deprecated & Defunct - **surveillance** no longer relies on the **maptools** package: `unionSpatialPolygons()` with `method = "gpclib"` is deprecated and now uses the default method with a warning. - Long unused `scale.gpc.poly()` and `inside.gpc.poly()` are deprecated; the unused and undocumented `diameter.gpc.poly()` method has been removed. - `stsplot_spacetime()` is formally deprecated; it has long been superseded by `stsplot_space()` and an `animate()` method for `"sts"` objects. # surveillance 1.20.3 (2022-11-14) ## Package Infrastructure - `vignette("monitoringCounts")` now uses **knitr** as its engine to work around [Bug 18318](https://bugs.R-project.org/show_bug.cgi?id=18318). # surveillance 1.20.2 (2022-10-31) ## New Features - `plotHHH4_fitted()` can now produce simple (unformatted) time indexes if argument `xaxis = NA`. ## Minor Changes - Various documentation improvements, including an example for `predict.hhh4()`. - `intensityplot.twinstim()` no longer depends on package [**maptools**](https://CRAN.R-project.org/package=maptools). ## Bug Fixes - `hhh4()` now warns about interaction terms in model formulae. These are not implemented and were silently ignored previously. - Fixed a memory leak in `algo.twins()`; note that this old experimental MCMC implementation for a two-component epidemic model may be removed in future versions of the package. # surveillance 1.20.1 (2022-07-13) ## Bug Fixes - `ks.plot.unif()`: accommodate to `NO_S_TYPEDEFS` in R >= 4.3.0. - `boda()` with `samplingMethod="marginals"` gave all-`NA` upperbounds in INLA >= 21.07.10. `boda()` now also works around a scoping issue (with `E`) in recent versions of INLA that led to wrongly scaled upperbounds. # surveillance 1.20.0 (2022-02-15) ## New Features - `plotHHH4_season()` gained a `period` argument to support harmonics with periods longer than the frequency of the `"sts"` object. - `stsplot_space()` now supports passing a `col` argument to `sp::spplot()` to change the colour of the polygon lines. - `plotHHH4_fitted()` can now handle time series with missing values. ## Minor Changes - If the Nelder-Mead optimizer is used for the variance parameters in `hhh4()`, it is now limited to 500 (not 300) iterations by default (consistent with the default in `optim()`). - Printing an `"sts"` object now omits the `neighbourhood` component if that was not set (all-`NA` prototype). - `simulate.hhh4(..., simplify = TRUE)` now consistently returns a 3d array (nTime x nUnit x nsim), even for `nsim = 1` (for which plotting now works). - The default legend in `stsplot_time1()` now only includes plotted elements. - `wrap.algo()` no longer prints progress when there is only one area. - `summary.hhh4()` now prints the number of excluded observations (due to missingness), if any. ## Bug Fixes - The `print`-method for `summary.hhh4()` did not apply the `digits` argument to the coefficient matrix. Furthermore, printing of estimated variance parameters now adheres to *significant* `digits` as documented. - The `[`-method for the `"hhh4sims"` class was not registered and thus only available internally. Array-like subsetting of simulated counts now retains the class. - `farringtonFlexible()` with activated `populationOffset` (non-default) always used the population data of the *first* time series in the fitting step while iterating over a multivariate `"sts"` object. - `plotHHH4_ri(..., exp = TRUE)` failed to use a log-scale color axis if further `colorkey` options were passed in a list. The (default) color breaks could fail to span the range of the data without warning (resulting in unfilled polygons). This is now checked and the default breaks are now equally spaced on the log-scale. - `stsplot_time1()` did not pass `lty` to `polygon()` and `lwd` to `legend()`. - `rps()` was wrong for distributions close to a point mass at zero, e.g., for `mu = 1e-3` and `x >= 4`. It is now also protected against wide (quasi-continuous) NegBin distributions that would consume too much memory with discrete RPS calculation (returning a missing value with a warning). [both issues spotted by F. Rousseu] - Plots of legacy `"disProg"` and `"survRes"` objects are now generated via internal `disProg2sts()` conversion and `stsplot_time()`. This fixes their x-axis labels for the default `xaxis.years=TRUE`. The obsolete arguments `startyear` and `firstweek` are now ignored with a warning. - The default legend of `stsplot_time1()` did not show the fill color in the non-default case `!is.na(col[1])`. - Multivariate `hhh4()` with neighbourhood component treated `NA` counts as zero when calculating the weighted sum over units. A missing count at *t-1* in any unit now gives `NA` values for the neighbourhood terms of all units at time *t*, thus reducing `nobs()`. ## Deprecated & Defunct - `create.disProg()` is deprecated. Methods for legacy `"disProg"` objects are kept for backwards compatibility, but new projects should use `sts()`. - The long-deprecated `qlomax()` implementation has been removed. # surveillance 1.19.1 (2021-03-30) ## Documentation - The project website at has been overhauled using [**pkgdown**](https://pkgdown.r-lib.org/). ## Bug Fixes - The `CRS` of `data(imdepi)` and `data(measlesWeserEms)` have been updated via `sp::rebuild_CRS()` to avoid warnings when **rgdal** is loaded with new PROJ and GDAL libraries. - `simEpidataCS()` now internally resets the CRS (temporary), which avoids spurious warnings and also reduces its runtime by about 25%. - Fix encoding error in `vignette("twinstim")` for CRAN's non-UTF8 Linux test machine. - This version of **surveillance** (formally) requires the new [**spatstat**](https://CRAN.R-project.org/package=spatstat) umbrella package to avoid collisions of old **spatstat** and its new sub-packages (we only use [**spatstat.geom**](https://CRAN.R-project.org/package=spatstat.geom)). The **spatstat** dependence will be dropped in the future. - The `epoch<-` replacement method for `"sts"` objects now accepts a `"Date"` vector. The standard plots may give nicer x-axis annotation if indexed by dates. See the `xaxis.*` arguments of `stsplot_time()`. - `tidy.sts()` (and thus `autoplot.sts()`) failed for date-indexed `"sts"` objects with non-standard frequencies. [spotted by Junyi Lu] # surveillance 1.19.0 (2021-01-29) ## New Features - The `nowcast()` function with `method="bayes.trunc.ddcp"` now adds support for negative binomial response distribution instead of Poisson. Furthermore, additional components of the design matrix for the discrete time survival model can be provided, which allows the inclusion of, e.g., day of the week effects. Finally, the order of the polynomial created by the change-points in the discrete time survival model can now be specified. For further details see the work of Guenther et al. (2020) about nowcasting the Covid-19 outbreak in Bavaria, Germany. - `animate.sts()` can position the `timeplot` on other sides of the map. ## Minor Changes - The weighted sum in the `ne`ighbourhood component of `hhh4()` models is computed more efficiently. - `simEpidataCS()` (and thus `simulate.twinstim()`) uses a slightly more efficient location sampler for models with `siaf = siaf.constant()`. Simulation results will differ from previous package versions even if the same random `seed` is used. - The default `main` title for `stsplot_space()` now uses the ISO year-week format for weekly `"sts"` data. ## Bug Fixes - Bug fix in the `farringtonFlexible()`-function, which for the argument `thresholdMethod=="nbPlugin"` and `thresholdMethod=="muan"` unfortunately computed the limit as an `(1-alpha/2)` prediction interval instead of the documented `(1-alpha)` prediction interval. This affects four threshold values in Table 2 of `vignette("monitoringCounts")`. The default method `"delta"` worked as expected. - In `hhh4()` models without AR component, the matrix of fitted values could lack column names. - Experimental time-varying neighbourhood weights in `hhh4()` were indexed differently in model fitting and in the `simulate()` method (undocumented behaviour). Both now use the latter variant, where the mean at time *t* uses products of weights at time *t* and observed counts at time *t-1*. [reported by Johannes Bracher] - For weekly `sts` indexed via `start` and `freq=52`, `epoch(sts, as.Date=TRUE)` now interprets the `start` week according to ISO 8601. For example, `start = c(2020, 5)` corresponds to 2020-01-27, not 2020-02-03. This affects `as.xts.sts()` and the time plot in `animate.sts()`. - `stsplot_space()` automatically extends manual color breaks (`at`), if the intervals do not cover the data range. - `simEndemicEvents()` and thus `epitest(..., method="simulate")` are no longer slowed down by intermediate `sp::CRS()` computations. ## Package Infrastructure - Removed unused **rmapshaper** from "Suggests" and moved **xts** to "Enhances" (used only for `as.xts.sts`). - Switched testing framework from (nowadays heavy) **testthat** to [**tinytest**](https://CRAN.R-project.org/package=tinytest). Together with moving **ggplot2** to "Enhances" (used only for `autoplot.sts`) --- and only then --- this switch further reduces the total number of required packages for a complete check (i.e., installing with `dependencies = TRUE`) in a *factory-fresh* R environment from 119 to 94. - [**spatstat**](https://CRAN.R-project.org/package=spatstat) was split into several sub-packages, of which we only need to import [**spatstat.geom**](https://CRAN.R-project.org/package=spatstat.geom). This new package requires `R >= 3.5.0`, though. - **surveillance** now requires `R >= 3.6.0`. # surveillance 1.18.0 (2020-03-18) ## New Features - New spatial interaction function for `twinstim()`: `siaf.exponential()` implements the exponential kernel *f(x) = exp(-x/σ)*, which is a useful alternative if the two-parameter power-law kernel is not identifiable. - The `plot`-type `"maps"` for `"hhh4"` fits, `plotHHH4_maps()`, now allows for map-specific color keys via `zmax = NA` (useful for `prop = TRUE`). ## Bug Fixes - The `nowcast()`-function now also works for `method="bayes.trunc.ddcp"` method when the number of breakpoints is greater than 1. - The `amplitudeShift` transformation for sine-cosine coefficient pairs in the `summary` of multivariate `"hhh4"` models was incorrect in the rare case that the model used unit-specific seasonal terms (`addSeason2formula` with `length(S) > 1`). ## Deprecated & Defunct - The original `algo.hhh()` implementation of the HHH model has been removed from the package. The function `hhh4()` provides an improved and much extended implementation since 2012. # surveillance 1.17.3 (2019-12-16) ## Bug Fixes - The `head()`-method for `"epidataCS"` objects did not work with a negative `n` argument. - Fix for `"matrix"` changes in R-devel. # surveillance 1.17.2 (2019-11-11) ## Minor Changes - For multivariate time series, `sts()` now checks for mismatches in column names of supplied matrices (`observed`, `population`, `neighbourhood`, ...). This is to catch input where the units (columns) are ordered differently in different slots, which would flaw subsequent analyses. ## Bug Fixes - `simulate.twinSIR()` ignored the `atRiskY` indicator of the underlying `"epidata"`, so always assumed a completely susceptible population. Initially infectious individuals are now inherited. For the previous behaviour, adjust the supplied `data` via `data$atRiskY <- 1`. # surveillance 1.17.1 (2019-09-13) ## New Features - New one-parameter power-law kernel `siaf.powerlaw1()` with fixed `sigma = 1`. Useful if `sigma` is difficult to estimate with `siaf.powerlaw()`. ## Bug Fixes - `pit()`'s default `ylab` was wrong (default are densities not relative frequencies). - `R0()` for `"twinstim"` fits with specified `newevents` now handles levels of epidemic factor variables automatically via the new `xlevels` attribute stored in the fitted model. - Some S3 methods for the `"sts"` class are now formally registered and identical to the established S4 methods. - Minor additions and fixes in the package documentation. ## Deprecated & Defunct - `hcl.colors()`, exported since 1.14.0, has been renamed `.hcl.colors()` and is now internal again, to avoid a name clash with R's own such function introduced in R 3.6.0. # surveillance 1.17.0 (2019-02-22) ## New Features - `W_powerlaw(..., from0 = TRUE)` enables more parsimonious `hhh4` models in that the power-law weights are modified to include the autoregressive (0-distance) case (see `vignette("hhh4_spacetime")`). The unstructured distance weights `W_np()` gained `from0` support as well. - `sts()` creation can now handle `epoch` arguments of class `Date` directly. - The `ranef()`-method for `"hhh4"` fits gained a logical argument `intercept` to extract the unit-specific intercepts of the log-linear predictors instead of the default zero-mean deviations around the fixed intercepts. The corresponding `plot` method (`type="ri"`) gained an argument `exp`: if set to `TRUE` random effects are `exp`-transformed and thus show multiplicative effects. [based on feedback by Tim Pollington] ## Minor Changes - `W_np()`'s argument `to0` has been renamed to `truncate`. The old name still works but is deprecated. - `plotHHH4_ri()` now uses `cm.colors(100)` as `col.regions`, and 0-centered color breaks by default. - The help pages of `twinSIR()` and related functions now give examples based on `data("hagelloch")` instead of using the toy dataset `data("fooepidata")`. The latter is now obsolete and will be removed in future versions of the package. - The elements of the `control` list stored in the result of `algo.farrington()` are now consistently ordered as in the default `control` argument. ## Bug Fixes - Using negative indices to exclude time points from an `"sts"` object (e.g., `x[-1,]`) is now supported and equivalent to the corresponding subset expression of retained indexes (`x[2:nrow(x),]`) in resetting the `start` and `epoch` slots. [reported by Johannes Bracher] - For weekly `"sts"` data with `epochAsDate=TRUE`, the `as.data.frame()` method computed `freq` by `"%Y"`-year instead of by `"%G"`-year, which was inconsistent with the `epochInPeriod` variable. - For *non*-weekly `"sts"` data with `epochAsDate=TRUE`, `year()` as well as the `year` column of the `tidy.sts()` output corresponded to the ISO week-based year. It now gives the calendar year. - `sts_creation()` hard-coded `start = c(2006, 1)`. - `aggregate()`ing an `"sts"` object over time now recomputes fractions from the cumulated population values if and only if this is no `multinomialTS` and already contains population fractions. The same rule holds when subsetting units of an `"sts"` object. The `aggregate`-method previously failed to recompute fractions in some cases. - For `farringtonFlexible()` with multivariate time series, only the last unit had stored the additional control items (exceedence scores, p-values, ...), all others were 0. [reported by Johannes Bracher] - The supplementary p-values returned by `farringtonFlexible()` in `control$pvalue` were wrong for the default approach, where `thresholdMethod="delta"` (the original Farrington method) and a power transformation was applied to the data (`powertrans != "none"`). Similarly, `algo.farrington()` returned wrong predictive probabilities in `control$pd[,1]` if a power transformation was used. [reported by Lore Merdrignac] - The `control` argument list of `algo.farrington()` as stated in the formal function definition was incomplete (`plot` was missing) and partially out of sync with the default values that were actually set inside the function (`b=5` and `alpha=0.05`). This has been fixed. Results of `algo.farrington()` would only be affected if the function was called without any `control` options (which is hardly possible). So this can be regarded as a documentation error. The formal `control` list of the `farrington()` wrapper function has been adjusted accordingly. - The `control` argument lists of `farringtonFlexible()` and `bodaDelay()` as stated in the formal function definitions were partially out of sync with respect to the following default values that were actually set inside these functions: `b=5` (not 3), `alpha=0.05` (not 0.01), `pastWeeksNotIncluded=w` (not 26), and, for `bodaDelay()` only, `delay=FALSE` (not `TRUE`). This has been fixed. Results would only be affected if the functions were called without any `control` options (which is hardly possible). So this can be regarded as a documentation error. - `pairedbinCUSUM()` did not properly subset the `sts` object if a `range` was specified, and forgot to store the `control` arguments in the result. - `wrap.algo()` now aborts if the monitored range is not supplied as a numeric vector. - In `vignette("monitoringCounts")`: several inconsistencies between code and output have been fixed. - `epidataCS2sts()` no longer transfers the `stgrid$BLOCK` indices to the `epoch` slot of the resulting `"sts"` object (to avoid `epoch[1] != 1` scenarios). - The `ranef()` matrix extracted from fitted `"hhh4"` models could have wrong column names. ## Deprecated & Defunct - Several ancient functions deprecated in 1.16.1 are now defunct: `compMatrix.writeTable()`, `makePlot()`, `test()`, `testSim()`, `readData()` (the raw txt files have been removed as well), `correct53to52()`, `enlargeData()`, `toFileDisProg()`. # surveillance 1.16.2 (2018-07-24) ## Minor Changes - `autoplot.sts()` gained a `width` argument to adjust the bar width, which now defaults to 7 for weekly time series (previously was 90% of that so there were gaps between the bars). - `"epidataCS"` generation now (again) employs [**spatstat**](https://CRAN.R-project.org/package=spatstat)'s `bdist.points()`, which has been accelerated in version 1.56-0. If you use the `twinstim()`-related modelling part of **surveillance**, you are thus advised to update your **spatstat** installation. - The `boda()` examples in `vignette("monitoringCounts")` have been updated to also work with recent versions of **INLA**. ## Bug Fixes - Offsets in `hhh4`'s epidemic components were ignored by `simulate.hhh4()` [spotted by Johannes Bracher] as well as in dominant eigenvalues ("maxEV"). - The color key in `fanplot()` is no longer distorted by `log="y"`. # surveillance 1.16.1 (2018-05-28) ## Bug Fixes - `autoplot.sts()` now sets the calling environment as the `plot_env` of the result. - Several `twinstim`-related functions finally allow for prehistory events (long supported by `twinstim()` itself): `as.epidataCS()`, `glm_epidataCS()`, `as.epidata.epidataCS()`. - The `summary()` for SI[R]S-type `"epidata"` failed if there were initially infectious individuals. ## Deprecated & Defunct - Several ancient functions have been deprecated and may be removed in future versions of **surveillance**: `qlomax()`, `readData()`, `toFileDisProg()`, `correct53to52()`, `enlargeData()`, `compMatrix.writeTable()`, `test()`, `testSim()`, `makePlot()`. # surveillance 1.16.0 (2018-01-24) ## New Features - The `as.data.frame()` method for `"sts"` objects gained a `tidy` argument, which enables conversion to the long data format and is also available as function `tidy.sts()`. - A [**ggplot2**](https://CRAN.R-project.org/package=ggplot2) variant of `stsplot_time()` is now available via `autoplot.sts()`. - `as.epidata.data.frame()` gained an argument `max.time` to specify the end of the observation period (which by default coincides with the last observed event). - The now exported function `fanplot()` wraps [**fanplot**](https://CRAN.R-project.org/package=fanplot)`::fan()`. It is used by `plot.oneStepAhead()` and `plot.hhh4sims()`, which now have an option to add the point forecasts to the fan as well. - `plotHHH4_fitted()` (and `plotHHH4_fitted1()`) gained an option `total` to sum the fitted components over all units. ## Significant Changes - Package [**polyCub**](https://CRAN.R-project.org/package=polyCub) is no longer automatically attached (only imported). - `scores.oneStepAhead()` no longer reverses the ordering of the time points by default, as announced in 1.15.0. ## Minor Changes - Some code in `vignette("monitoringCounts")` has been adjusted to work with the new version of [**MGLM**](https://CRAN.R-project.org/package=MGLM) (0.0.9). - Added a `[`-method for the `"hhh4sims"` class to retain the attributes when subsetting simulations. ## Bug Fixes - `aggregate(stsObj, by = "unit")` no longer results in empty colnames (set to `"overall"`). The obsolete map is dropped. - The `subset` argument of `twinSIR()` was partially ignored: - If `nIntervals = 1`, the model `summary()` reported the total number of events. - Automatic `knots`, model `residuals()`, as well as the rug in `intensityplot()` were computed from the whole set of event times. - The `as.epidata.data.frame()` converter did not actually allow for latent periods (via `tE.col`). This is now possible but considered experimental (methods for `"epidata"` currently ignore latent periods). - The `all.equal()` methods for `"hhh4"` and `"twinstim"` objects now first check for the correct classes. # surveillance 1.15.0 (2017-10-06) ## New Features - `siaf.gaussian()` now also employs a `polyCub.iso()` integration routine by default (similar to the powerlaw-type kernels), instead of adaptive midpoint cubature. This increases precision and considerably accelerates estimation of `twinstim()` models with a Gaussian spatial interaction function. Models fitted with the new default (`F.adaptive=FALSE, F.method="iso"`) will likely differ from previous fits (`F.adaptive=TRUE`), and the numerical difference depends on the adaptive bandwidth used before (the default `adapt=0.1` yielded a rather rough approximation of the integral). - Added `quantile()`, `confint()`, and `plot()` methods for `"oneStepAhead"` predictions. - Exported the function `simEndemicEvents()` to simulate a spatio-temporal point pattern from an endemic-only `"twinstim"`; faster than via the general `simulate.twinstim()` method. ## Minor Changes - `twinstim(..., siaf = siaf.gaussian())` uses a larger default initial value for the kernel's standard deviation (based on the size of the observation region). - Non-default parametrizations of `siaf.gaussian()` are deprecated, i.e., always use `logsd=TRUE` and `density=FALSE`. - `twinstim()` uses a smaller default initial value for the epidemic intercept, which usually allows for faster convergence. - `update.hhh4()` now allows `subset.upper` values beyond the originally fitted time range (but still within the time range of the underlying `"sts"` object). - `scores.oneStepAhead()` by default reverses the ordering of the time points. This awkward behaviour will change in the next version, so the method now warns if the default `reverse=TRUE` is used without explicit specification. - Minor improvements in the documentation and some vignettes: corrected typos, simplified example code, documented some methods. ## Bug Fixes - The C-routines introduced in version 1.14.0 used `==` comparisons on parameter values to choose among case-specific formulae (e.g., for *d==2* in `siaf.powerlaw()`). We now employ an absolute tolerance of 1e-7 (which should fix the failing tests on Solaris). - Interaction functions for `twinstim()`, such as `siaf.powerlaw()` or `tiaf.exponential()`, no longer live in the global environment as this risks using masked base functions. # surveillance 1.14.0 (2017-06-29) ## Documentation - The replication code from Meyer et al. (2017, JSS) is now included as `demo("v77i11")`. It exemplifies the spatio-temporal endemic-epidemic modelling frameworks `twinstim`, `twinSIR`, and `hhh4` (see also the corresponding vignettes). ## New Features - Pure C-implementations of integration routines for spatial interaction functions considerably accelerate the estimation of `twinstim()` models containing `siaf.powerlaw()`, `siaf.powerlawL()`, or `siaf.student()`. - The color palette generating function used by `sts` plots, `hcl.colors`, is now exported. - The utility function `clapply` (*c*onditional `lapply`) is now exported. - Some utility functions for `hhh4` fits are now exported (`update.hhh4`, `getNEweights`, `coefW`), as well as several internal functions for use by `hhh4` add-on packages (`meanHHH`, `sizeHHH`, `decompose.hhh4`). - The `"fan"`-type plot function for `"hhh4sims"` gained a `key.args` argument for an automatic color key. - New auxiliary function `makeControl()`, which may be used to specify a `hhh4()` model. ## Minor Changes - `twinstim()` now throws an informative error message when trying to fit a purely epidemic model to data containing endemic events (i.e., events without ancestors). The `help("twinstim")` exemplifies such a model. ## Bug Fixes - `siaf.powerlaw()$deriv` returned `NaN` for the partial derivative wrt the decay parameter *d*, if *d* was large enough for *f* to be numerically equal to 0. It will now return 0 in this case. - `twinstim()` could fail (with an error from `duplicated.default`) if the fitted time range was substantially reduced via the `T` argument. - The `"simEpidataCSlist"` generated by `simulate.twinstim(..., simplify = TRUE)` was missing the elements `bbox` and `control.siaf`. # surveillance 1.13.1 (2017-04-28) ## Documentation - The paper on "Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package **surveillance**" (by Sebastian Meyer, Leonhard Held, and Michael Höhle) will appear in the upcoming volume of the *Journal of Statistical Software*. The main sections 3 to 5 of the paper are contained in the package as `vignette("twinstim")`, `vignette("twinSIR")`, and `vignette("hhh4_spacetime")`, respectively. ## New Features - The `calibrationTest()` and `pit()` methods for `"oneStepAhead"` forecasts gained an argument `units` to allow for unit-specific assessments. - A default `scores`-method is now available to compute a set of proper scoring rules for Poisson or NegBin predictions. - New plot `type = "fan"` for simulations from `"hhh4"` models to produce a fan chart using the [**fanplot**](https://CRAN.R-project.org/package=fanplot) package. ## Minor Changes - `scores.hhh4()` sets rownames for consistency with `scores.oneStepAhead()`. ## Bug Fixes - The `"Lambda.const"` matrix returned by `getMaxEV_season()` was wrong for models with asymmetric neighbourhood weights. [spotted by Johannes Bracher]\ Dominant eigenvalues (`"maxEV"`) were not affected by this bug. # surveillance 1.13.0 (2016-12-20) ## New Features - `earsC` now has two new arguments thanks to Howard Burkom: the number of past time units to be used in calculation is now not always 7, it can be chosen in the `baseline` parameter. Furthermore, the `minSigma` parameter allows to get a threshold in the case of sparse data. When one doesn't give any value for those two parameters, the algorithm works like it used to. - `animate.sts()` gained support for date labels in the bottom `timeplot`. - `stsplot_space()` and `animate.sts()` can now generate incidence maps based on the population information stored in the supplied `"sts"` object. Furthermore, `animate.sts()` now supports time-varying population numbers. ## Minor Changes - `hhh4()` guards against the misuse of `family = factor("Poisson")` for univariate time series. Previously, this resulted in a negative binomial model by definition, but is now interpreted as `family = "Poisson"` (with a warning). ## Bug Fixes - `animate.sts()` now supports objects with missing values (with a warning). Furthermore, the automatic color breaks have been improved for incidence maps, also in `stsplot_space()`. - The `as.data.frame`-method for the `"sts"` class, applied to classical time-index-based `"sts"` objects (`epochAsDate=FALSE`), ignored a `start` epoch different from 1 when computing the `epochInPeriod` indexes. Furthermore, the returned `epochInPeriod` now is a fraction of `freq`, for consistency with the result for objects with `epochAsDate=TRUE`. - `simulate.hhh4()` did not handle shared overdispersion parameters correctly. The different parameters were simply recycled to the number of units, ignoring the factor specification from the model's `family`. [spotted by Johannes Bracher] - Simulations from *endemic-only* `"hhh4"` models with unit-specific overdispersion parameters used wrong variances. [spotted by Johannes Bracher] - `oneStepAhead()` predictions of `type` `"rolling"` (or `"first"`) were incorrect for time points `tp` (`tp[1]`) beyond the originally fitted time range (in that they were based on the original time range only). This usage of `oneStepAhead()` was never really supported and is now caught when checking the `tp` argument. - `plot.hhh4simslist()` ignored its `par.settings` argument if `groups=NULL` (default). # surveillance 1.12.2 (2016-11-14) ## New Features - The internal auxiliary function, which determines the sets of potential source events in `"epidataCS"` has been implemented in C++, which accelerates `as.epidataCS()`, `permute.epidataCS()`, and therefore `epitest()`. This is only really relevant for `"epidataCS"` with a large number of events (>1000, say). - Negative-binomial `hhh4()` models may not converge for non-overdispersed data (try, e.g., `set.seed(1); hhh4(sts(rpois(104, 10)), list(family="NegBin1"))`). The resulting non-convergence warning message now mentions low overdispersion if this is detected. [suggested by Johannes Bracher] - An additional `type="delay"` option was added to the `plot` method of `stsNC` objects. Furthermore, an `animate_nowcasts` function allows one to animate a sequence of nowcasts. ## Minor Changes - In the `animate`-method for `"sts"` objects, the default top padding of **lattice** plots is now disabled for the bottom `timeplot` to reduce the space between the panels. Furthermore, the new option `fill` can be used to make the panel of the `timeplot` as large as possible. ## Bug Fixes - `bodaDelay()`: fixed spurious warnings from `rnbinom()`. - `vignette("monitoringCounts")`: fixed `boda`-related code and cache to obtain same results as in corresponding JSS paper. # surveillance 1.12.1 (2016-05-18) ## Documentation - The new `vignette("monitoringCounts")` illustrates the monitoring of count time series in R with a particular focus on aberration detection in public health surveillance. This vignette corresponds to a recently accepted manuscript for the *Journal of Statistical Software* (Salmon, Schumacher, and Höhle, 2016). ## Minor Changes - Non-convergent `hhh4()` fits now obey the structure of standard `"hhh4"` objects. In particular, such fits now also contain the `control` and `stsObj` elements, allowing for model `update()`s of non-convergent fits. - `knox()` warns about symmetric input matrices. ## Bug Fixes - The code of `boda()` (with `samplingMethod="joint"`) and `bodaDelay()` (with `inferenceMethod="INLA"`) has been adjusted to a change of arguments of **INLA**'s `inla.posterior.sample` function. Accordingly, the minimum **INLA** version required to run `boda()` and `bodaDelay()` is 0.0-1458166556. - The functions returned by `W_powerlaw()` now have the package namespace as their environment to support situations where the package is not attached. - Attaching package [**nlme**](https://CRAN.R-project.org/package=nlme) after **surveillance** no longer masks `"hhh4"`'s `ranef`-method. (We now import the `fixef` and `ranef` generics from **nlme**.) # surveillance 1.12.0 (2016-04-02) ## Documentation - Several new vignettes illustrate *endemic-epidemic* modeling frameworks for spatio-temporal surveillance data: `vignette("twinstim")` : describes a spatio-temporal point process regression model. `vignette("twinSIR")` : describes a multivariate temporal point process regression model. `vignette("hhh4_spacetime")` : describes an areal time-series model for infectious disease counts. These vignettes are based on a recently accepted manuscript for the *Journal of Statistical Software* (Meyer, Held, and Höhle, 2016). - Improved the documentation on various help pages. - The `hhh4()`-based analysis of `data("fluBYBW")` has been moved to a separate demo script 'fluBYBW.R'. Due to the abundance of models and the relatively long runtime, we recommend to open the script in an editor rather than running all the code at once using `demo("fluBYBW")`. ## New Features - Overhaul of the `"sts"` implementation. This mostly affects package-internal code, which is simpler, cleaner and better tested now, but requires R >= 3.2.0 (due to `callNextMethod()` bugs in older versions of R). Beyond that, the user-level constructor function `sts()` now has explicit arguments for clarity and convenience. For instance, its first argument sets the `observed` slot and no longer needs to be named, i.e., `sts(mycounts, start=c(2016,3), frequency=12)` works just like for the classical `ts()` function. - `stsplot_time(..., as.one=TRUE)` is now implemented (yielding a simple `matplot` of multiple time series). ## Minor Changes - `plotHHH4_season()` now by default draws a horizontal reference line at unity if the multiplicative effect of component seasonality is shown (i.e., if `intercept=FALSE`). - Since **surveillance** 1.8-0, `hhh4()` results are of class `"hhh4"` instead of `"ah4"` (renamed). Legacy methods for the old class name `"ah4"` have been removed. - The internal model preparation in `twinstim()` is more efficient (the distance matrix of the events is only computed if event sources actually need to be updated). ## Bug Fixes - `stsplot_spacetime()` now recognizes its `opts.col` argument. - Conversion from `"ts"` to `"sts"` using `as(ts, "sts")` could set a wrong start time. For instance, `as(ts(1:10, start=c(1959,2), frequency=4), "sts")@start` was `c(1959,1)`. - `algo.twins()` now also accepts `"sts"` input and the automatic legend in the first plot of `plot.atwins()` works again. - The experimental `profile`-method for `"twinstim"` objects did not work if embedded `twinstim()` fits issued warnings. # surveillance 1.11.0 (2016-02-08) ## New Features - `update.epidata()` can now handle a distance matrix `D` in the form of a classed `"Matrix"`. [suggested by George Wood] - `glrnb()` can now handle `ret="cases"` for the generalized likelihood ratio detector based on the negative binomial distribution. It's based on a brute-force search and hence might be slow in some situations. - `boda()` and `bodaDelay()` now support an alternative method (`quantileMethod="MM"`) to compute quantiles based on the posterior distribution. The new method samples parameters from the posterior distribution and then computes the quantile of the mixture distribution using bisectionning, which is faster and yields similar results compared to the original method (`quantileMethod="MC"`, still the default). ## Minor Changes - Revised `vignette("hhh4")`, updated the package description as well as some references in the documentation. Also updated (the cache of) the slightly outdated `vignette("surveillance")` to account for the corrected version of `algo.bayes()` implemented since **surveillance** 1.10-0. ## Bug Fixes - Fixed bug in `categoricalCUSUM()`, which ignored alarms generated for the last time point in `range`. Furthermore, the exact computation in case of returns of the type `"value"` for the binomial are now checked through an attribute. - Fixed bug in the `estimateGLRNbHook` function of `algo.glrnb`, which ignored potential fixed `alpha` values. If `alpha` is fixed this is now taken into consideration while fitting the negative binomial function. See revised help files for the details. - Made a hot-fix such that the `algo.quality` function now also works for `sts` objects and if the `state` or `alarm` slots consists of TRUE/FALSE instead of 0/1. - `intensity.twinstim()` did not work for non-endemic models. - A parallelized `epitest()` could fail with a strange error message if some replications were left unassigned. This seems to happen if forking is used (`mclapply`) with insufficient memory. Incomplete replications are now ignored with a warning. # surveillance 1.10-0 (2015-11-04) This package is now maintained by Sebastian Meyer, who has been an active co-author since version 1.3. We thank Michael Höhle for 10 years of maintenance ever since he created **surveillance** and published the package on CRAN in November 2005 for R 2.2.0. ## New Features - Calibration tests for count data (Wei and Held, 2014, Test) are now implemented and available as `calibrationTest()`. In addition to a default method taking pure counts and predictive means and dispersion parameters, there are convenient methods for `"hhh4"` and `"oneStepAhead"` objects. - Shared overdispersion across units in negative binomial `hhh4()` time series models (by specifying a factor variable as the `family` argument). - `scores()` and `pit()` are now generic and have convenient methods for `"oneStepAhead"` predictions and `"hhh4"` fits. - The initial values used for model updates during the `oneStepAhead()` procedure can now be specified directly through the `which.start` argument (as an alternative to the previous options `"current"` and `"final"`). - `plotHHH4_fitted()` (and `plotHHH4_fitted1()`) gained an option `decompose` to plot the contributions from each single unit (and the endemic part) instead of the default endemic + AR + neighbours decomposition. Furthermore, a formatted time axis similar to `stsplot_time1()` can now be enabled via the new argument `xaxis`. - The new `plot` `type` `"maps"` for `"hhh4"` fits shows maps of the fitted mean components averaged over time. - New `plot`-method for simulations from `"hhh4"` models (using `simulate.hhh4(..., simplify = TRUE)`, which now has a dedicated class: `"hhh4sims"`) to show the final size distribution or the simulated time series (possibly stratified by groups of units). There is also a new `scores`-method to compute proper scoring rules based on such simulations. - The argument `idx2Exp` of `coef.hhh4()` may now be conveniently set to `TRUE` to exp-transform all coefficients. - Added a `coeflist()`-method for `"hhh4"` fits. - The generator function `sts()` can now be used to initialize objects of class `"sts"` (instead of writing `new("sts", ...)`). - Additional arguments of `layout.scalebar()` now allow to change the style of the labels. - A pre-computed distance matrix `D` can now be used as input for the `as.epidata()` converter -- offering an alternative to the default Euclidean distance based on the individuals coordinates. (Request of George Wood to support `twinSIR` models on networks.) ## Minor Changes - The first argument of `scores()` is now called `x` instead of `object` (for consistency with `calibrationTest()`). - The result of `oneStepAhead()` now has the dedicated class attribute `"oneStepAhead"` (previously was just a list). - Changed interpretation of the `col` argument of `plotHHH4_fitted()` and `plotHHH4_fitted1()` (moved color of "observed" to separate argument `pt.col` and reversed remaining colors). The old `col` specification as a vector of length 4 still works (caught internally) but is undocumented. - The `epoch` slot of class `"sts"` is now initialized to `1:nrow(observed)` by default and thus no longer needs to be explicitly set when creating a `new("sts", ...)` for this standard case. - Initialization of `new("sts", ...)` now supports the argument `frequency` (for consistency with `ts()`). Note that `freq` still works (via partial argument matching) and that the corresponding `"sts"` slot is still called `freq`. - If `missing(legend.opts)` in `stsplot_time1()`, the default legend will only be produced if the `"sts"` object contains information on outbreaks, alarms, or upperbounds. - The default `summary()` of a `"twinstim"` fit is more concise since it no longer includes the number of log-likelihood and score function evaluations and the elapsed time during model fitting. Set the new `runtime` argument of `summary.twinstim()` to `TRUE` to add this information to the summary as before. - The `animate`-method for `"sts"` objects gained an argument `draw` (to disable the default instantaneous plotting) and now invisibly returns the sequential plot objects (of class `"gtable"` or `"trellis"`) in a list for post-processing. - The flexible time axis configurations for `"sts"` plots introduced in version 1.8-0 now also work for classical `"sts"` objects with integer epochs and standard frequencies (try `plot(..., epochsAsDate = TRUE)`). - `stsplot_time()` initiates `par` settings only if the `par.list` argument is a list. - The new `all.equal()` method for class `"hhh4"` compares two fits ignoring their `"runtime"` and `"call"` elements (at least). ## Bug Fixes - Fixed a bug in `algo.bayes`, where an alarm was already sounded if the current observation was equal to the quantile of the predictive posterior. This was changed in order to get *alarm_t = I(obs_t > quantile_t)* which is consistent with the use in `boda` and `bodaDelay`. - Fixed bug in `algo.outbreakP` causing a halt in the computations of `value="cases"` when `calc.outbreakP.statistic` returned `NaN`. Now, a `NaN` is returned. - `wrap.algo` argument `control.hook` used `control` argument defined outside it's scope (and not the one provided to the function). It is now added as additional 2nd argument to the `control.hook` function. - `stsplot_time()` did not account for the optional `units` argument for multivariate `"sts"` objects when choosing a suitable value for `par("mfrow")`. - `hhh4()` could have used a function `dpois()` or `dnbinom()` from the global environment instead of the respective function from package **stats**. - The default time variable `t` created as part of the `data` argument in `hhh4()` was incompatible with `"sts"` objects having `epochAsDate=TRUE`. - A consistency check in `as.epidata.default()` failed for SI-type data (and, more generally, for all data which ended with an I-event in the last time block). [spotted by George Wood] # surveillance 1.9-1 (2015-06-12) - This is a quick patch release to make the test suite run smoothly on CRAN's Windows and Solaris Sparc systems. - The new `hhh4()` option to scale neighbourhood weights did not work for parametric weights with more than one parameter if `normalize=FALSE`. # surveillance 1.9-0 (2015-06-09) ## New Features - New functions and data for Bayesian outbreak detection in the presence of reporting delays (Salmon et al., 2015): `bodaDelay()`, `sts_observation()`, and `sts_creation()`. - New functions implementing tests for space-time interaction: - `knox()` supports both the Poisson approximation and a Monte Carlo permutation approach to determine the p-value, - `stKtest()` wraps space-time K-function methods from package [**splancs**](https://CRAN.R-project.org/package=splancs) for use with `"epidataCS"`, - and `epitest()` for `twinstim` models (makes use of the new auxiliary function `simpleR0()`). - New function `plapply()`: a parallel and verbose version of `lapply()` wrapping around both `mclapply()` and `parLapply()` of package **parallel**. - New converter `as.xts.sts()` to transform `"sts"` objects to the quasi standard `"xts"` class, e.g., to make use of package [**dygraphs**](https://CRAN.R-project.org/package=dygraphs) for interactive time series plots. - New options for scaling and normalization of neighbourhood weights in `hhh4()` models. - New auxiliary function `layout.scalebar()` for use as part of `sp.layout` in `sp::spplot()` or in the traditional graphics system. ### New features for `"epidataCS"` - New argument `by` for `plot.epidataCS()`, which defines a stratifying variable for the events (default is the event type as before). It can also be set to `NULL` to make the plot not distinguish between event types. - The spatial plot of `"epidataCS"` gained the arguments `tiles`, `pop` and `sp.layout`, and can now produce an `sp::spplot()` with the tile-specific population levels behind the point pattern. - New function `permute.epidataCS()` to randomly permute time points or locations of the events (holding other marks fixed). ### New features for `twinstim()` - New S3-generic `coeflist()` to list model coefficients by component. It currently has a default method and one for `"twinstim"` and `"simEpidataCS"`. - New argument `newcoef` for `simulate.twinstim()` to customize the model parameters used for the simulation. - New argument `epilink` for `twinstim()`, offering experimental support for an identity link for the epidemic predictor. The default remains `epilink = "log"`. - Simulation from `"twinstim"` models and generation of `"epidataCS"` is slightly faster now (faster **spatstat** functions are used to determine the distance of events to the border). - New option `scaled = "standardized"` in `iafplot()` to plot *f(x) / f(0)* or *g(t) / g(0)*, respectively. ## Minor Changes - Initial data processing in `twinstim()` is faster since event sources are only re-determined if there is effective need for an update (due to subsetting or a change of `qmatrix`). - `formatPval()` disables `scientific` notation by default. - The `"time"` plot for `"epidataCS"` uses the temporal grid points as the default histogram `breaks`. - The special `fe()` function which sets up fixed effects in `hhh4()` models gained an argument `unitSpecific` as a convenient shortcut for `which = rep(TRUE, nUnits)`. - The convenient `plot` option of `permutationTest()` uses [**MASS**](https://CRAN.R-project.org/package=MASS)::`truehist()` instead of `hist()` and accepts graphical parameters to customize the histogram. ## Bug Fixes - The `bodaFit` function did not draw samples from the joint posterior. Instead draws were from the respective posterior marginals. A new argument `samplingMethod` is now introduced defaulting to the proper 'joint'. For backwards compatibility use the value 'marginal'. - The functions `as.epidataCS()` and `simEpidataCS()` could throw inappropriate warnings when checking polygon areas (only if `W` or `tiles`, respectively, contained holes). - Non-convergent endemic-only `twinstim` models produced an error. [spotted by Bing Zhang] - The `"owin"`-method of `intersectPolyCircle` could have returned a rectangle-type `"owin"` instead of a polygon. - An error occurred in `twinstim()` if `finetune=TRUE` or choosing `optim()` instead of the default `nlminb()` optimizer without supplying a `control` list in `optim.args`. - The `"time"` plot for `"epidataCS"` did not necessarily use the same histogram `breaks` for all strata. - Specifying a step function of interaction via a numeric vector of knots did not work in `twinstim()`. - `plot.hhh4()` did not support an unnamed `type` argument such as `plot(x, "season")`. - `simEpidataCS()` did not work if `t0` was in the last block of `stgrid` (thus it did not work for single-cell grids), and mislabeled the `start` column copied to `events` if there were no covariates in `stgrid`. - Evaluating `intensity.twinstim()$hFUN()` at time points before `t0` was an error. The function now returns `NA_real_` as for time points beyond `T`. - Truncated, normalized power-law weights for `hhh4()` models, i.e., `W_powerlaw(maxlag = M, normalize = TRUE)` with `M < max(neighbourhood(stsObj))`, had wrong derivatives and thus failed to converge. - `update.hhh4(..., use.estimates = TRUE)` did not use the estimated weight function parameters as initial values for the new fit. It does so now iff the weight function `ne$weights` is left unchanged. # surveillance 1.8-3 (2015-01-05) - Accommodate a new note given by R-devel checks, and set the new INLA additional repository in the 'DESCRIPTION' file. - Made `linelist2sts()` work for quarters by adding extra `"%q"` formatting in `formatDate()`. # surveillance 1.8-2 (2014-12-16) ## Minor Changes for `hhh4()` - In the coefficient vector resulting from a `hhh4` fit, random intercepts are now named. - Parameter `start` values in `hhh4()` are now matched by name but need not be complete in that case (default initial values are used for unspecified parameters). - The `update.hhh4()`-method now by default does `use.estimates` from the previous fit. This reduces the number of iterations during model fitting but may lead to slightly different parameter estimates (within a tolerance of `1e-5`). Setting `use.estimates = FALSE` means to re-use the previous start specification. ## Minor Changes for the `"sts"` Class - For univariate `"sts"` objects, the (meaningless) "head of neighbourhood" is no longer `show`n. - The `"sts"` class now has a `dimnames`-method instead of a `colnames`-method. Furthermore, the redundant `nrow` and `ncol` methods have been removed (the `dim`-method is sufficient). - If a `map` is provided when `initialize()`ing an `"sts"` object, it is now verified that all `observed` regions are part of the `map` (matched by `row.names`). - In `stsplot_space()`, extra (unobserved) regions of the `map` are no longer dropped but shown with a dashed border by default. # surveillance 1.8-1 (2014-10-29) ## New Features - The `R0`-method for `"twinstim"` gained an argument `newcoef` to simplify computation of reproduction numbers with a different parameter vector (also used for Monte Carlo CI's). - New plot `type="neweights"` for `"hhh4"` fits. - The `scores()` function allows the selection of multiple `units` (by index or name) for which to compute (averaged) proper scores. Furthermore, one can now select `which` scores to compute. - Added a `formula`-method for `"hhh4"` fits to extract the `f` specifications of the three components from the control list. - The `update()`-method for fitted `"hhh4"` models gained an argument `S` for convenient modification of component seasonality using `addSeason2formula()`. - The new auxiliary function `layout.labels()` generates an `sp.layout` item for `sp::spplot()` in order to draw labels. - When generating the `pit()` histogram with a single predictive CDF `pdistr`, the `...` arguments can now be `x`-specific and are recycled if necessary using `mapply()`. If `pdistr` is a list of CDFs, `pit()` no longer requires the functions to be vectorized. - New method `as.epidata.data.frame()`, which constructs the start/stop SIR event history format from a simple individual-based data frame (e.g., `hagelloch.df`). - New argument `w` in `as.epidata.default()` to generate covariate-based weights for the force of infection in `twinSIR`. The `f` argument is for distance-based weights. - The result of `profile.twinSIR()` gained a class and an associated `plot`-method. ## Significant Changes - For multivariate `oneStepAhead()` predictions, `scores(..., individual=TRUE)` now returns a 3d array instead of a collapsed matrix. Furthermore, the scores computed by default are `c("logs","rps","dss","ses")`, excluding the normalized squared error score `"nses"` which is improper. - The plot-`type="season"` for `"hhh4"` fits now by default plots the multiplicative effect of seasonality on the respective component (new argument `intercept=FALSE`). The default set of components to plot has also changed. - When `as.epidata()` and `simEpidata()` calculate distance-based epidemic weights from the `f` functions, they no longer set the distance of an infectious individual to itself artificially to `Inf`. This changes the corresponding columns in the `"epidata"` in rows of currently infectious individuals, but the `twinSIR` model itself is invariant, since only rows with `atRiskY=1` contribute to the likelihood. - Several modifications and corrections in `data("hagelloch")`. ## Minor Changes - Better plotting of `stsNC` objects by writing an own plot method for them. Prediction intervals are now shown jointly with the point estimate. - Reduced package size by applying `tools::resaveRdaFiles` to some large datasets and by building the package with `--compact-vignettes=both`, i.e., using additional GhostScript compression with ebook quality, see `?tools::compactPDF`. - Added `units` argument to `stsplot_time` to select only a subset of the multivariate time series for plotting. - The `untie`-method for class `"epidataCS"` gained an argument `verbose` which is now `FALSE` by default. - `"epidataCS"` objects store the `clipper` used during generation as attribute of `$events$.influenceRegion`. - In `plotHHH4_fitted()`, the argument `legend.observed` now defaults to `FALSE`. - The default weights for the spatio-temporal component in `hhh4` models now are `neighbourhood(stsObj) == 1`. The previous default `neighbourhood(stsObj)` does not make sense for the newly supported `nbOrder` neighbourhood matrices (shortest-path distances). The new default makes no difference for (old) models with binary adjacency matrices in the neighbourhood slot of the `stsObj`. - The default for nonparametric weights `W_np()` in `hhh4()` is now to assume zero weight for neighbourhood orders above `maxlag`, i.e., `W_np()`'s argument `to0` now defaults to `TRUE`. - Added a `verbose` argument to `permutationTest()`, which defaults to `FALSE`. The previous behaviour corresponds to `verbose=TRUE`. - `simulate.twinstim()` now by default uses the original `data$W` as observation region. - The `data("measlesWeserEms")` contain two additional variables in the `@map@data` slot: `"vaccdoc.2004"` and `"vacc1.2004"`. - The plot-method for `"epidata"` objects now uses colored lines by default. - The **surveillance** package now depends on R >= 3.0.2, which, effectively, is the minimum version required since **surveillance** 1.7-0. - The two diagnostic plots of `checkResidualProcess()` are now by default plotted side by side (`mfrow=c(1,2)`) instead of one below the other. ## Bug Fixes - In `farringtonFlexible` alarms are now for `observed>upperbound` and not for `observed>=upperbound` which was not correct. - Fixed duplicate `"functions"` element resulting from `update.twinstim(*,model=TRUE)` and ensured that `"twinstim"` objects always have the same components (some may be `NULL`). - `animate.epidata` works again with the [**animation**](https://CRAN.R-project.org/package=animation) package (`ani.options("outdir")` was removed in version 2.3) - For `hhh4` models with random effects, `confint()` only worked if argument `parm` was specified. - Computing one-sided AIC weights by simulation for `twinSIR` models with more than 2 epidemic covariates now is more robust (by rescaling the objective function for the quadratic programming solver) and twice as fast (due to code optimization). - `simulate.twinstim(..., rmarks=NULL)` can now handle the case where `data` has no events within the simulation period (by sampling marks from all of `data$events`). - The `lambda.h` values of simulated events in `"simEpidataCS"` objects were wrong if the model contained an endemic intercept (which is usually the case). - Automatic choice of color breaks in the `animate`-method for class `"sts"` now also works for incidence maps (i.e., with a `population` argument). - `hhh4()` did not allow the use of nonparametric neighbourhood weights `W_np()` with `maxlag=2`. - `scores()` did not work for multivariate `oneStepAhead()` predictions if both `individual=TRUE` and `sign=TRUE`, and it could not handle a `oneStepAhead()` prediction of only one time point. Furthermore, the `"sign"` column of `scores(..., sign=TRUE)` was wrong (reversed). - For `"epidataCS"` with only one event, `epidataCSplot_space()` did not draw the point. - The trivial (identity) call `aggregate(stsObj, nfreq=stsObj@freq)` did not work. # surveillance 1.8-0 (2014-06-16) ## Package Infrastructure - Package **surveillance** now depends on newer versions of packages [**sp**](https://CRAN.R-project.org/package=sp) (>= 1.0-15), [**polyCub**](https://CRAN.R-project.org/package=polyCub) (>= 0.4-2), and [**spatstat**](https://CRAN.R-project.org/package=spatstat) (>= 1.36-0). The R packages **INLA** and [**runjags**](https://CRAN.R-project.org/package=runjags) are now suggested to support a new outbreak detection algorithm (`boda()`) and the new `nowcast()`ing procedure, respectively. The R packages for [**lattice**](https://CRAN.R-project.org/package=lattice), [**grid**](https://CRAN.R-project.org/package=grid), [**gridExtra**](https://CRAN.R-project.org/package=gridExtra), and [**scales**](https://CRAN.R-project.org/package=scales) are suggested for added visualization facilities. - More tests have been implemented to ensure package integrity. We now use [**testthat**](https://CRAN.R-project.org/package=testthat) instead of the outdated package [**RUnit**](https://CRAN.R-project.org/package=RUnit). - `hhh4()` fits now have class `"hhh4"` instead of `"ah4"`, for consistency with `twinstim()`, `twinSIR()`, and to follow the common convention (cp. `lm()`). Standard S3-methods for the old `"ah4"` name are still available for backwards compatibility but may be removed in the future. - Plot variants for `"sts"` objects have been cleaned up: The functions implementing the various plot types (`stsplot_*`, previously named `plot.sts.*`) are now exported and documented separately. ## New Features - The `nowcast` procedure has been completely re-written to handle the inherit right-truncation of reporting data (best visualized as a reporting triangle). The new code implements the generalized-Dirichlet and the hierarchical Bayesian approach described in Höhle and an der Heiden (2014). No backwards compatibility to the old nowcasting procedure is given. - The package contains a new monitoring function `boda`. This is a first experimental surveillance implementation of the Bayesian Outbreak Detection Algorithm (BODA) proposed in Manitz and Höhle (2012). The function relies on the non-CRAN package **INLA**, which has to be installed first in order to use this function. Expect initial problems. - New `toLatex`-method for `"sts"` objects. - The new function `stsplot_space()` provides an improved map plot of disease incidence for `"sts"` objects aggregated over time. It corresponds to the new `type = observed ~ unit` of the `stsplot`-method, and supersedes `type = observed ~ 1|unit` (except for alarm shading). - An `animate()`-method for the `"sts"` class provides a new implementation for animated maps (superseding the `plot` `type=observed ~ 1 | unit * time`) with an optional evolving time series plot below the map. - The `plot()` method for `"sts"` objects with epochs as dates is now made more flexible by introducing the arguments `xaxis.tickFreq`, `xaxis.labelFreq` and `xaxis.labelFormat`. These allow the specification of tick-marks and labelling based on `strftime` compatible conversion codes -- independently if data are daily, weekly, monthly, etc. As a consequence, the old argument `xaxis.years` is removed. See `stsplot_time()` for more information. - Inference for neighbourhood weights in `hhh4()` models: `W_powerlaw()` and `W_np()` both implement weights depending on the order of neighbourhood between regions, a power-law decay and nonparametric weights, i.e., unconstrained estimation of individual weights for each neighbourhood order. - `hhh4()` now allows the inclusion of multiplicative offsets also in the epidemic components `"ar"` and `"ne"`. - `hhh4()` now has support for `lag != 1` in the autoregressive and neighbor-driven components. The applied lags are stored as component `"lags"` of the return value (previously there was an unused component `"lag"` which was always 1 and has been removed now). - `oneStepAhead()`: - Added support for parallel computation of predictions using `parallel::mclapply()`. - New argument `type` with a new `type` `"first"` to base all subsequent one-step-ahead predictions on a single initial fit. - Nicer interpretation of `verbose` levels, and `txtProgressBar()`. - The `plot()`-method for fitted `hhh4()` objects now offers three additional types of plots: component seasonality, seasonal or time course of the dominant eigenvalue, and maps of estimated random intercepts. It is documented and more customizable. Note that argument order and some names have changed: `i` -> `units`, `title` -> `names`. - (Deviance) `residuals()`-method for fitted `hhh4()` models. - Added methods of `vcov()` and `nobs()` for the `"hhh4"` class. For `AIC()` and `BIC()`, the default methods work smoothly now (due to changes to `logLik.hhh4()` documented below). - New predefined interaction functions for `twinstim()`: `siaf.student()` implements a *t*-kernel for the distance decay, and `siaf.step()` and `tiaf.step()` provide step function kernels (which may also be invoked by specifying the vector of knots as the `siaf` or `tiaf` argument in `twinstim`). - Numerical integration over polygonal domains in the `F` and `Deriv` components of `siaf.powerlaw()` and `siaf.powerlawL()` is much faster and more accurate now since we use the new `polyCub.iso()` instead of `polyCub.SV()` from package [**polyCub**](https://CRAN.R-project.org/package=polyCub). - New `as.stepfun()`-method for `"epidataCS"` objects. - `plot.epidataCS()`: - The spatial plot has new arguments to automatically add legends to the plot: `legend.types` and `legend.counts`. It also gained an `add` argument. - The temporal plot now supports type-specific sub-histograms, additional lines for the cumulative number of events, and an automatic legend. - The new function `glm_epidataCS()` can be used to fit an endemic-only `twinstim()` via `glm()`. This is mainly provided for testing purposes since wrapping into `glm` usually takes longer. ## Significant Changes - Fitted `hhh4()` objects no longer contain the associated `"sts"` data twice: it is now only stored as `$stsObj` component, the hidden duplicate in `$control$data$.sts` was dropped, which makes fitted objects substantially smaller. - `logLik.hhh4()` always returns an object of class `"logLik"` now; for random effects models, its `"df"` attribute is `NA_real_`. Furthermore, for non-convergent fits, `logLik.hhh4()` gives a warning and returns `NA_real_`; previously, an error was thrown in this case. - `oneStepAhead()`: - Default of `tp[2]` is now the penultimate time point of the fitted subset (not of the whole `stsObj`). - `+1` on rownames of `$pred` (now the same as for `$observed`). - The optional `"twinstim"` result components `fisherinfo`, `tau`, and `functions` are always included. They are set to `NULL` if they are not applicable instead of missing completely (as before), such that all `"twinstim"` objects have the same list structure. - `iafplot()` ... - invisibly returns a matrix containing the plotted values of the (scaled) interaction function (and the confidence interval as an attribute). Previously, nothing (`NULL`) was returned. - detects a type-specific interaction function and by default uses `types=1` if it is not type-specific. - has better default axis ranges. - adapts to the new step function kernels (with new arguments `verticals` and `do.points`). - supports logarithmic axes (via new `log` argument passed on to `plot.default`). - optionally respects `eps.s` and `eps.t`, respectively (by the new argument `truncated`). - now uses `scaled=TRUE` by default. - The argument `colTypes` of `plot.epidataCS(,aggregate="space")` is deprecated (use `points.args$col` instead). - The events in an `"epidataCS"` object no longer have a reserved `"ID"` column. ## Minor Changes - `hhh4()` now stores the runtime just like `twinstim()`. - Take `verbose=FALSE` in `hhh4()` more seriously. - `hhh4()` issues a `warning()` if non-convergent. - The following components of a `hhh4()` fit now have names: `"se"`, `"cov"`, `"Sigma"`. - The new default for `pit()` is to produce the plot. - The `twinstim()` argument `cumCIF` now defaults to `FALSE`. - `update.twinstim()` no longer uses recursive `modifyList()` for the `control.siaf` argument. Instead, the supplied new list elements (`"F"`, `"Deriv"`) completely replace the respective elements from the original `control.siaf` specification. - `siaf.lomax()` is now defunct (it has been deprecated since version 1.5-2); use `siaf.powerlaw()` instead. - Allow the default `adapt`ive bandwidth to be specified via the `F.adaptive` argument in `siaf.gaussian()`. - Unsupported options (`logpars=FALSE`, `effRangeProb`) have been dropped from `siaf.powerlaw()` and `siaf.powerlawL()`. - More rigorous checking of `tiles` in `simulate.twinstim()` and `intensityplot.twinstim()`. - `as.epidataCS()` gained a `verbose` argument. - `animate.epidataCS()` now by default does not draw influence regions (`col.influence=NULL`), is `verbose` if `interactive()`, and ignores `sleep` on non-interactive devices. - The `multiplicity`-generic and its default method have been integrated into [**spatstat**](https://CRAN.R-project.org/package=spatstat) and are imported from there. ## Data - The polygon representation of Germany's districts ( `system.file("shapes", "districtsD.RData", package="surveillance")` ) has been simplified further. The union of `districtsD` is used as observation window `W` in `data("imdepi")`. The exemplary `twinstim()` fit `data("imdepifit")` has been updated as well. Furthermore, `row.names(imdepi$events)` have been reset (chronological index), and numerical differences in `imdepi$events$.influenceRegion` are due to changes in [**polyclip**](https://CRAN.R-project.org/package=polyclip) 1.3-0. - The Campylobacteriosis data set `campyDE`, where absolute humidity is used as concurrent covariate to adjust the outbreak detection is added to the package to exemplify `boda()`. - New `data("measlesWeserEms")` (of class `"sts"`), a corrected version of `data("measles.weser")` (of the old `"disProg"` class). ## Bug Fixes - Fixed a bug in `LRCUSUM.runlength` where computations were erroneously always done under the in-control parameter `mu0` instead of `mu`. - Fixed a bug during alarm plots (`stsplot_alarm()`), where the use of `alarm.symbol` was ignored. - Fixed a bug in `algo.glrnb` where the overdispersion parameter `alpha` from the automatically fitted `glm.nb` model (fitted by `estimateGLRNbHook`) was incorrectly taken as `mod[[1]]$theta` instead of `1/mod[[1]]$theta`. The error is due to a different parametrization of the negative binomial distribution compared to the parametrization in Höhle and Paul (2008). - The score function of `hhh4()` was wrong when fitting endemic-only models to a `subset` including the first time point. This led to "false convergence". - `twinstim()` did not work without an endemic offset if `is.null(optim.args$par)`. # surveillance 1.7-0 (2013-11-19) ## Package Infrastructure - Package [**gpclib**](https://CRAN.R-project.org/package=gpclib) is no longer necessary for the construction of `"epidataCS"`-objects. Instead, we make use of the new dedicated package [**polyclip**](https://CRAN.R-project.org/package=polyclip) (licensed under the BSL) for polygon clipping operations (via `spatstat::intersect.owin()`). This results in a slightly different `$events$.influenceRegion` component of `"epidataCS"` objects, one reason being that **polyclip** uses integer arithmetic. Change of `twinstim()` estimates for a newly created `"epidataCS"` compared with the same data prepared in earlier versions should be very small (e.g., for `data("imdepifit")` the mean relative difference of coefficients is 3.7e-08, while the `logLik()` is `all.equal()`). As an alternative, **rgeos** can still be chosen to do the polygon operations. - The **surveillance**-internal code now depends on R >= 2.15.2 (for `nlminb()` `NA` fix of PR#15052, consistent `rownames(model.matrix)` of PR#14992, `paste0()`, `parallel::mcmapply()`). However, the required recent version of **spatstat** (1.34-0, for **polyclip**) actually needs R >= 3.0.2, which therefore also applies to **surveillance**. ## New Features - Functions `unionSpatialPolygons()` and `intersectPolyCircle()` are now exported. Both are wrappers around functionality from different packages supporting polygon operations: for determining the union of all subpolygons of a `"SpatialPolygons"` object, and the intersection of a polygonal and a circular domain, respectively. - `discpoly()` moved back from [**polyCub**](https://CRAN.R-project.org/package=polyCub) to **surveillance**. ## Minor Changes - **surveillance** now Depends on [**polyCub**](https://CRAN.R-project.org/package=polyCub) (>= 0.4-0) and not only Imports it (which avoids `::`-references in .GlobalEnv-made functions). - Nicer default axis labels for `iafplot()`. - For `twinstim()`, the default is now to `trace` every iteration instead of every fifth only. - Slightly changed default arguments for `plot.epidata()`: `lwd` (1->2), `rug.opts` (`col` is set according to `which.rug`) - `twinstim()` saves the vector of `fixed` coefficients as part of the returned `optim.args` component, such that these will again be held fixed upon `update()`. - The `plot`-method for `hhh4()`-fits allows for region selection by name. # surveillance 1.6-0 (2013-09-03) ## Synopsis - The `polyCub`-methods for cubature over polygonal domains have been moved to the new dedicated package [**polyCub**](https://CRAN.R-project.org/package=polyCub), since they are of a rather general use. The `discpoly()` function has also been moved to that package. - As a replacement for the license-restricted **gpclib** package, the **rgeos** package is now used by default (`surveillance.options(gpclib=FALSE)`) in generating `"epidataCS"` (polygon intersections, slightly slower). Therefore, when installing **surveillance** version 1.6-0, the system requirements for [**rgeos**](https://CRAN.R-project.org/package=rgeos) have to be met, i.e., GEOS must be available on the system. On Linux variants this means installing 'libgeos' ('libgeos-dev'). - The improved Farrington method described in Noufaily et al. (2012) is now available as function `farringtonFlexible()`. - New handling of reference dates in `algo.farrington()` for `"sts"` objects with `epochAsDate=TRUE`. Instead of always going back in time to the next Date in the `"epoch"` slot, the function now determines the *closest* Date. Note that this might lead to slightly different results for the upperbound compared to previously. Furthermore, the functionality is only tested for weekly data (monthly data are experimental). The same functionality applies to `farringtonFlexible()`. - To make the different retrospective modelling frameworks of the **surveillance** package jointly applicable, it is now possible to convert (aggregate) `"epidataCS"` (continuous-time continuous-space data) into an `"sts"` object (multivariate time series of counts) by the new function `epidataCS2sts`. - Simulation from `hhh4` models has been re-implemented, which fixes a bug and makes it more flexible and compatible with a wider class of models. - The `map`-slot of the `"sts"` class now requires `"SpatialPolygons"` (only) instead of `"SpatialPolygonsDataFrame"`. - Re-implementation of `oneStepAhead()` for `hhh4`-models with a bug fix, some speed-up and more options. - Slight speed-up for `hhh4()` fits, e.g., by more use of `.rowSums()` and `.colSums()`. - Crucial speed-up for `twinstim()` fits by more efficient code: `mapply`, dropped clumsy `for`-loop in `fisherinfo`, new argument `cores` for parallel computing via forking (not available on Windows). ## New Features - Using `tiaf.exponential()` in a `twinstim()` now works with `nTypes=1` for multi-type data. - A legend can be added automatically in `iafplot()`. - The `untie` methods are now able to produce jittered points with a required minimum separation (`minsep`). - `simulate.ah4` gained a `simplify` argument. - New `update`-method for fitted `hhh4`-models (class `"ah4"`). - `oneStepAhead()` has more options: specify time range (not only start), choose type of start values, `verbose` argument. - `pit()` allows for a list of predictive distributions (`pdistr`), one for each observation `x`. - New spatial auxiliary function `polyAtBorder()` indicating polygons at the border (for a `"SpatialPolygons"` object). - `animate.epidataCS()` allows for a `main` title and can show a progress bar. ## Minor Changes - Changed parametrization of `zetaweights()` and completed its documentation (now no longer marked as experimental). - `twinstim(...)$converged` is `TRUE` if the optimization routine converged (as before) but contains the failure message otherwise. - Increased default `maxit` for the Nelder-Mead optimizer in `hhh4` from 50 to 300, and removed default artificial lower bound (-20) on intercepts of epidemic components. - Renamed returned list from `oneStepAhead` (mean->pred, x->observed, params->coefficients, variances->Sigma.orig) for consistency, and `oneStepAhead()$psi` is only non-`NULL` if we have a NegBin model. - Argument order of `pit()` has changed, which is also faster now and got additional arguments `relative` and `plot`. - `twinstim(...)$runtime` now contains the complete information from `proc.time()`. ## Bug Fixes - Fixed a bug in function `refvalIdxByDate()` which produced empty reference values (i.e. `NA`s) in case the Date entries of `epoch` were not mondays. Note: The function works by subtracting `1:b` years from the date of the range value and then takes the span `-w:w` around this value. For each value in this set it is determined whether the closest date in the epoch slot is obtained by going forward or backward. Note that this behaviour is now slightly changed compared to previously, where we *always* went back in time. - `algo.farrington()`: Reference values too far back in time and hence not being in the `"epoch"` slot of the `"sts"` object are now ignored (previously the resulting `NA`s caused the function to halt). A warning is displayed in this case. - `hhh4`: The entry *(5,6)* of the marginal Fisher information matrix in models with random intercepts in all three components was incorrect. If `nlminb` was used as optimizer for the variance parameters (using the negative marginal Fisher information as Hessian), this could have caused false convergence (with warning) or minimally biased convergence (without warning). As a consequence, the `"Sigma.cov"` component of the `hhh4()` result, which is the inverse of the marginal Fisher information matrix at the MLE, was also wrong. - `untie.matrix()` could have produced jittering greater than the specified `amount`. - `hhh4`: if there are no random intercepts, the redundant `updateVariance` steps are no longer evaluated. - `update.twinstim()` did not work with `optim.args=..1` (e.g., if updating a list of models with lapply). Furthermore, if adding the `model` component only, the `control.siaf` and `optim.args` components were lost. - `earsC` should now also work with multivariate `sts` time-series objects. - The last week in `data(fluBYBW)` (row index 417) has been removed. It corresponded to week 1 in year 2009 and was wrong (an artifact, filled with zero counts only). Furthermore, the regions in `@map` are now ordered the same as in `@observed`. - Fixed start value of the overdispersion parameter in `oneStepAhead` (must be on internal log-scale, not reparametrized as returned by `coef()` by default). - When subsetting `"sts"` objects in time, `@start` was updated but not `@epoch`. - `pit` gave `NA` results if any `x[-1]==0`. - The returned `optim.args$par` vector in `twinstim()` was missing any fixed parameters. - `hhh4()` did not work with time-varying neighbourhood weights due to an error in the internal `checkWeightsArray()` function. # surveillance 1.5-4 (2013-04-21) - Fixed obsolete `.path.package()` calls. - Small corrections in the documentation. - `update.twinstim()` performs better in preserving the original initial values of the parameters. - New pre-defined spatial interaction function `siaf.powerlawL()`, which implements a _L_agged power-law kernel, i.e. accounts for uniform short-range dispersal. # surveillance 1.5-2 (2013-03-15) ## New Features - New method for outbreak detection: `earsC` (CUSUM-method described in the CDC Early Aberration Reporting System, see Hutwagner et al, 2003). - Yet another p-value formatting function `formatPval()` is now also part of the **surveillance** package. - `polyCub.SV()` now also accepts objects of classes `"Polygon"` and `"Polygons"` for convenience. ## New Features for `twinstim()` - New spatial interaction function `siaf.powerlaw()`, a re-parametrization of the now-deprecated `siaf.lomax()`. - The temporal `plot`-method for class `"epidataCS"` now understands the `add` parameter to add the histogram to an existing plot window, and auto-transforms the `t0.Date` argument using `as.Date()` if necessary. - `nobs()` methods for classes `"epidataCS"` and `"twinstim"`. - New argument `verbose` for `twinstim()` which, if set to `FALSE`, disables the printing of information messages during execution. - New argument `start` for `twinstim()`, where (some) initial parameter values may be provided, which overwrite those in `optim.args$par`, which is no longer required (as a naive default, a crude estimate for the endemic intercept and zeroes for the other parameters are used). - Implemented a wrapper `stepComponent()` for `step()` to perform algorithmic component-specific model selection in `"twinstim"` models. This also required the implementation of suitable `terms()` and `extractAIC()` methods. The single-step methods `add1()` and `drop1()` are also available. - The `update.twinstim()` method now by default uses the parameter estimates from the previous model as initial values for the new fit (new argument `use.estimates = TRUE`). - `as.epidataCS()` checks for consistency of the area of `W` and the (now really obligatory) area column in `stgrid`. - `simulate.twinstim()` now by default uses the previous `nCircle2Poly` from the `data` argument. - `direction` argument for `untie.epidataCS()`. - The `toLatex`-method for `"summary.twinstim"` got different defaults and a new argument `eps.Pvalue`. - New `xtable`-method for `"summary.twinstim"` for printing the covariate effects as risk ratios (with CI's and p-values). ## New Features for `hhh4()` - New argument `hide0s` in the `plot`-method for class `"ah4"`. - New argument `timevar` for `addSeason2formula()`, which now also works for long formulae. # surveillance 1.5-1 (2012-12-14) - The **surveillance** package is again backward-compatible with R version 2.14.0, which is now declared as the minimum required version. # surveillance 1.5-0 (2012-12-12) ## Package Infrastructure - As requested by the CRAN team, examples now run faster. Some are conditioned on the value of the new package option `"allExamples"`, which usually defaults to `TRUE` (but is set to `FALSE` for CRAN checking, if timings are active). - Moved some rarely used package dependencies to "Suggests:", and also removed some unused packages from there. - Dropped strict dependence on [**gpclib**](https://CRAN.R-project.org/package=gpclib), which has a restricted license, for the **surveillance** package to be clearly GPL-2. Generation of `"epidataCS"` objects, which makes use of **gpclib**'s polygon intersection capabilities, now requires prior explicit acceptance of the **gpclib** license via setting `surveillance.options(gpclib = TRUE)`. Otherwise, `as.epidataCS()` and `simEpidataCS()` may not be used. ## New Features for `twinstim()` - Speed-up by memoisation of the `siaf` cubature (using the [**memoise**](https://CRAN.R-project.org/package=memoise) package). - Allow for `nlm`-optimizer (really not recommended). - Allow for `nlminb`-specific control arguments. - Use of the expected Fisher information matrix can be disabled for `nlminb` optimization. - Use of the `effRange`-trick can be disabled in `siaf.gaussian()` and `siaf.lomax()`. The default `effRangeProb` argument for the latter has been changed from 0.99 to 0.999. - The `twinstim()` argument `nCub` has been replaced by the new `control.siaf` argument list. The old `nCub.adaptive` indicator became a feature of the `siaf.gaussian()` generator (named `F.adaptive` there) and does no longer depend on the `effRange` specification, but uses the bandwidth `adapt*sd`, where the `adapt` parameter may be specified in the `control.siaf` list in the `twinstim()` call. Accordingly, the components `"nCub"` and `"nCub.adaptive"` have been removed from the result of `twinstim()`, and are replaced by `"control.siaf"`. - The `"method"` component of the `twinstim()` result has been replaced by the whole `"optim.args"`. - The new `"Deriv"` component of `siaf` specifications integrates the "siaf$deriv" function over a polygonal domain. `siaf.gaussian()` and `siaf.lomax()` use `polyCub.SV()` (with intelligent `alpha` parameters) for this task (previously: midpoint-rule with naive bandwidth) - `scaled` `iafplot()` (default `FALSE`). The `ngrid` parameter has been renamed to `xgrid` and is more general. - The `"simulate"` component of `siaf`'s takes an argument `ub` (upperbound for distance from the source). - Numerical integration of spatial interaction functions with an `Fcircle` trick is more precise now; this slightly changes previous results. - New S3-generic `untie()` with a method for the `"epidataCS"` class (to randomly break tied event times and/or locations). - Renamed `N` argument of `polyCub.SV()` to `nGQ`, and `a` to `alpha`, which both have new default values. The optional polygon rotation proposed by Sommariva & Vianello is now also implemented (based on the corresponding MATLAB code) and available as the new `rotation` argument. - The `scale.poly()` method for `"gpc.poly"` is now available as `scale.gpc.poly()`. The default return class of `discpoly()` was changed from `"gpc.poly"` to `"Polygon"`. - An `intensityplot()`-method is now also implemented for `"simEpidataCS"`. ## New Features for `hhh4()` - Significant speed-up (runs about 6 times faster now, amongst others by many code optimizations and by using sparse [**Matrix**](https://CRAN.R-project.org/package=Matrix) operations). - `hhh4()` optimization routines can now be customized for the updates of regression and variance parameters separately, which for instance enables the use of Nelder-Mead for the variance updates, which seems to be more stable/robust as it does not depend on the inverse Fisher info and is usually faster. - The `ranef()` extraction function for `"ah4"` objects gained a useful `tomatrix` argument, which re-arranges random effects in a unit x effect matrix (also transforming CAR effects appropriately). - Generalized `hhh4()` to also capture parametric neighbourhood weights (like a power-law decay). The new function `nbOrder()` determines the neighbourhood order matrix from a binary adjacency matrix (depends on package [**spdep**](https://CRAN.R-project.org/package=spdep)). - New argument `check.analyticals` (default `FALSE`) mainly for development purposes. ## Bug Fixes - Fixed sign of observed Fisher information matrix in `twinstim`. - Simulation from the Lomax kernel is now correct (via polar coordinates). - Fixed wrong Fisher information entry for the overdispersion parameter in `hhh4`-models. - Fixed wrong entries in penalized Fisher information wrt the combination fixed effects x CAR intercept. - Fixed indexing bug in penalized Fisher calculation in the case of multiple overdispersion parameters and random intercepts. - Fixed bug in Fisher matrix calculation concerning the relation of unit-specific and random effects (did not work previously). - Improved handling of non-convergent / degenerate solutions during `hhh4` optimization. This involves using `ginv()` from package [**MASS**](https://CRAN.R-project.org/package=MASS), if the penalized Fisher info is singular. - Correct labeling of overdispersion parameter in `"ah4"`-objects. - Some control arguments of `hhh4()` have more clear defaults. - The result of `algo.farrington.fitGLM.fast()` now additionally inherits from the `"lm"` class to avoid warnings from `predict.lm()` about fake object. - Improved 'NAMESPACE' imports. - Some additional tiny bug fixes, see the subversion log on R-Forge for details. # surveillance 1.4-2 (2012-08-17) ## Package Infrastructure - The package is now again compatible with older releases of R (< 2.15.0) as intended (by defining `paste0()` in the package namespace if it is not found in R **base** at installation of the **surveillance** package). ## New Features - Important new `twinstim()`-feature: fix parameters during optimization. - Useful `update`-method for `"twinstim"`-objects. - New `[[`- and `plot`-methods for `"simEpidataCSlist"`-objects. - `simEpidataCS()` received tiny bug fixes and is now able to simulate from epidemic-only models. - `R0`-method for `"simEpidataCS"`-objects (actually a wrapper for `R0.twinstim()`). - Removed `dimyx` and `eps` arguments from `R0.twinstim()`; now uses `nCub` and `nCub.adaptive` from the fitted model and applies the same (numerical) integration method. - `animate.epidata` is now compatible with the [**animation**](https://CRAN.R-project.org/package=animation) package. - More thorough documentation of `"twinstim"`-related functions *including many examples*. ## Bug Fixes for `twinstim()` - `nlminb` (instead of `optim`'s `"BFGS"`) is now the default optimizer (as already documented). - The `twinstim`-argument `nCub` can now be omitted when using `siaf.constant()` (as documented) and is internally set to `NA_real_` in this case. Furthermore, `nCub` and `nCub.adaptive` are set to `NULL` if there is no epidemic component in the model. - `toLatex.summary.twinstim` now again works for `summary(*, test.iaf=FALSE)`. - `print`- and `summary`-methods for `"epidataCS"` no longer assume that the `BLOCK` index starts at 1, which may not be the case when using a subset in `simulate.twinstim()`. - The `"counter"` step function returned by `summary.epidataCS()` does no longer produce false numbers of infectives (they were lagged by one timepoint). - `plot.epidataCS()` now resolves ... correctly and the argument `colTypes` takes care of a possible `subset`. - `simEpidataCS()` now also works for endemic-only models and is synchronised with `twinstim()` regarding the way how `siaf` is numerically integrated (including the argument `nCub.adaptive`). - Fixed problem with `simEpidataCS()` related to missing 'NAMESPACE' imports (and re-exports) of `marks.ppp` and `markformat.default` from [**spatstat**](https://CRAN.R-project.org/package=spatstat), which are required for `spatstat::runifpoint()` to work, probably because **spatstat** currently does not register its S3-methods. - Improved error handling in `simEpidataCS()`. Removed a `browser()`-call and avoid potentially infinite loop. ## Bug Fixes for `twinSIR()` - The `.allocate` argument of `simEpidata()` has now a fail-save default. - Simulation without endemic `cox()`-terms now works. ## Minor Changes - Simplified `imdepi` data to monthly instead of weekly intervals in `stgrid` for faster examples and reduced package size. - The environment of all predefined interaction functions for `twinstim()` is now set to the `.GlobalEnv`. The previous behaviour of defining them in the `parent.frame()` could have led to huge `save()`'s of `"twinstim"` objects even with `model=FALSE`. - `simulate.twinSIR` only returns a list of epidemics if `nsim > 1`. - `simulate.twinstim` uses `nCub` and `nCub.adaptive` from fitted object as defaults. - Removed the ...-argument from `simEpidataCS()`. - The coefficients returned by `simEpidataCS()` are now stored in a vector rather than a list for compatibility with `"twinstim"`-methods. - Argument `cex.fun` of `intensityplot.twinstim()` now defaults to the `sqrt` function (as in `plot.epidataCS()`. # surveillance 1.4 (2012-07-26) ## Synopsis - Besides minor bug fixes, additional functionality has entered the package and a new attempt is made to finally release a new version on CRAN (version 1.3 has not appeared on CRAN), including a proper 'NAMESPACE'. ## New Features - Support for non-parametric back-projection using the function `backprojNP()` which returns an object of the new `"stsBP"` class which inherits from `"sts"`. - Bayesian nowcasting for discrete time count data is implemented in the function `nowcast()`. - Methods for cubature over polygonal domains can now also visualize what they do. There is also a new quasi-exact method for cubature of the bivariate normal density over polygonal domains. The function `polyCub()` is a wrapper for the different methods. - `residuals.twinstim()` and `residuals.twinSIR()`: extract the "residual process", see Ogata (1988). The residuals of `"twinSIR"` and `"twinstim"` models may be checked graphically by the new function `checkResidualProcess()`. ## Significant Changes for `"twinstim"` - Modified arguments of `twinstim()`: new ordering, new argument `nCub.adaptive`, removed argument `typeSpecificEndemicIntercept` (which is now specified as part of the `endemic` formula as `(1|type)`). - Completely rewrote the `R0`-method (calculate "trimmed" and "untrimmed" *R_0* values) - The "trimmed" `R0` values are now part of the result of the model fit, as well as `bbox(W)`. The model evaluation environment is now set as attribute of the result if `model=TRUE`. - New predefined spatial kernel: the Lomax power law kernel `siaf.lomax()` - `plot`-methods for `"twinstim"` (`intensityplot()` and `iafplot()`) - `as.epidataCS()` now auto-generates the stop-column if this is missing - `print`-method for class `"summary.epidataCS"` - `[`- and subset-method for `"epidataCS"` (subsetting `...$events`) - `plot`-method for `"epidataCS"` ## Minor Changes - Improved documentation for the new functionalities. - Updated references. - `twinSIR`'s `intensityPlot` is now a method of the new S3-generic function `intensityplot`. # surveillance 1.3 (2011-04-25) ## Synopsis - This is a major release integrating plenty of new code (unfortunately not all documented as good as it could be). This includes code for the `"twinstim"` and the `"hhh4"` model. The `"twinSIR"` class of models has been migrated from package **RLadyBug** to **surveillance**. It may take a while before this version will become available from CRAN. ## Significant Changes - Renamed the `"week"` slot of the `"sts"` S4 class to `"epoch"`. All saved data objects have accordingly be renamed, but some hassle is to be expected if one you have old `"sts"` objects stored in binary form. The function `convertSTS()` can be used to convert such "old school" `"sts"` objects. - Removed the functions `algo.cdc()` and `algo.rki()`. ## New Features - Support for `"twinSIR"` models (with associated `"epidata"` objects) as described in Höhle (2009) has been moved from package **RLadyBug** to **surveillance**. That means continuous-time discrete-space SIR models. - Support for `"twinstim"` models as described in Meyer et al (2012). That means continuous-time continuous-space infectious disease models. - Added functionality for non-parametric back projection (`backprojNP()`) and now-casting (`nowcast()`) based on `"sts"` objects. # surveillance 1.2-2 - Replaced the deprecated `getSpPPolygonsLabptSlots()` calls by `sp::coordinates()` when plotting the map slot. - Minor proof-reading of the documentation. - Added an argument `"extraMSMargs"` to the algo.hmm function. - Fixed bug in `outbreakP()` when having observations equal to zero in the beginning. Here, $\hat{\mu}^{C1}$ in (5) of Frisen et al (2008) is zero and hence the log-based summation in the code failed. Changed to product as in the original code, which however might be less numerically stable. - Fixed bug in stcd which added one to the calculated index of idxFA and idxCC. Thanks to Thais Rotsen Correa for pointing this out. # surveillance 1.2-1 (2010-06-10) - Added `algo.outbreakP()` (Frisen & Andersson, 2009) providing a semiparametric approach for outbreak detection for Poisson distributed variables. - Added a pure R function for extracting ISO week and year from Date objects. This function (isoWeekYear) is only called if `"%G"` and `"%V"` format strings are used on Windows (`sessionInfo()[[1]]$os == "mingw32"`) as this is not implemented for `"format.Date"` on Windows. Thanks to Ashley Ford, University of Warwick, UK for identifying this Windows specific bug. - For `algo.farrington()` a faster fit routine `"algo.farrington.fitGLM.fast"` has been provided by Mikko Virtanen, National Institute for Health and Welfare, Finland. The new function calls `glm.fit()` directly, which gives a doubling of speed for long series. However, if one wants to process the fitted model output some of the GLM routines might not work on this output. For backwards compatibility the argument `control$fitFun = "algo.farrington.fitGLM"` provides the old (and slow) behaviour. # surveillance 1.1-6 (2010-05-25) - A few minor bug fixes - Small improvements in the C-implementation of the `twins()` function by Daniel Sabanés Bové fixing the segmentation fault issue on 64-bit architectures. # surveillance 1.1-2 (2009-10-15) - Added the functions categoricalCUSUM and LRCUSUM.runlength for the CUSUM monitoring of general categorical time series (binomial, beta-binomial, multinomial, ordered response, Bradley-Terry models). - Added the functions pairedbinCUSUM and pairedbinCUSUM.runlength implementing the CUSUM monitoring and run-length computations for a paired binary outcome as described in Steiner et al. (1999). - Experimental implementation of the prospective space-time cluster detection described in Assuncao and Correa (2009). - Added a `demo("biosurvbook")` containing the code of an upcoming book chapter on how to use the surveillance package. This contains the description of ISO date use, negative binomial CUSUM, run-length computation, etc. From an applicational point of view the methods are illustrated by Danish mortality monitoring. - Fixed a small bug in algo.cdc found by Marian Talbert Allen which resulted in the control$m argument being ignored. - The constructor of the sts class now uses the argument `"epoch"` instead of weeks to make clearer that also daily, monthly or other data can be handled. - Added additional epochAsDate slot to sts class. Modified plot functions so they can handle ISO weeks. - algo.farrington now also computes quantile and median of the predictive distribution. Furthermore has the computation of reference values been modified so its a) a little bit faster and b) it is also able to handle ISO weeks now. The reference values for date t0 are calculated as follows: For i, i=1,..., b look at date t0 - i*year. From this date on move w months/weeks/days to the left and right. In case of weeks: For each of these determined time points go back in time to the closest Monday - Renamed the functions obsinyear to epochInYear, which now also handles objects of class Date. # surveillance 1.0-2 (2009-03-06) - Negative Binomial CUSUM or the more general NegBin likelihood ratio detector is now implemented as part of algo.glrnb. This includes the back calculation of the required number of cases before an alarm. - Time varying proportion binomial CUSUM. # surveillance 0.9-10 - Current status: Development version available from - Rewriting of the plot.sts.time.one function to use polygons instead of lines for the number of observed cases. Due cause a number of problems were fixed in the plotting of the legend. Plotting routine now also handles binomial data, where the number of observed cases y are stored in `"observed"` and the denominator data n are stored in `"populationFrac"`. - Problems with the aggregate function not operating correctly for the populationFrac were fixed. - The `"rogerson"` wrapper function for algo.rogerson was modified so it now works better for distribution `"binomial"`. Thus a time varying binomial cusum can be run by calling `rogerson( x, control(..., distribution="binomial"))` - An experimental implementation of the twins model documented in Held, L., Hofmann, M., Höhle, M. and Schmid V. (2006). A two-component model for counts of infectious diseases, Biostatistics, 7, pp. 422--437 is now available as algo.twins. # surveillance 0.9-9 (2008-01-21) - Fixed a few small problems which gave warnings in the CRAN distribution # surveillance 0.9-8 (2008-01-19) - The algo_glrpois function now has an additional `"ret"` arguments, where one specifies the return type. The arguments of the underlying c functions have been changed to include an additional direction and return type value arguments. - added restart argument to the algo.glrpois control object, which allows the user to control what happens after the first alarm has been generated - experimental algo.glrnb function is added to the package. All calls to algo.glrpois are now just alpha=0 calls to this function. However, the underlying C functions differentiate between poisson and negative case surveillance/inst/0000755000176200001440000000000014712411606013725 5ustar liggesuserssurveillance/inst/shapes/0000755000176200001440000000000014006036350015203 5ustar liggesuserssurveillance/inst/shapes/berlin.shx0000644000176200001440000000030412625315364017211 0ustar liggesusers' bèZC ê08Ažâ³ešõ@`©/ ´d=A^i(àTA2XŽ’0ÆØ¢è–ØràVø R V8 ’ˆ 0surveillance/inst/shapes/berlin.shp0000644000176200001440000001624412625315364017213 0ustar liggesusers' RèZC ê08Ažâ³ešõ@`©/ ´d=A^i(àTAXZC ê08Arÿ6n@ý@ê¯í d:An7KÉæëA(&ÏpßÇ68AÂoqß:AZC ê08A§ÆñªA¤¬ËtrE8A›úœœÿ”A¶µ%ÚéQ8A›úœœÿ”A ˆat8A8{šòÚRAM/ð´>¦8AÆÃj–¶AïÿØÍ8ApX‘ÈÿAÚÐZÚµÞ8A<äèúA¸e  ñ8AÙdæóÕÂAOßÖï_E9AÙdæóÕÂA/î/ù‚9A²g_SA)‘Y…£½9An7KÉæëA¶2Īö9AtÁßs<±A ¹  + :Aâ3ÅsÖjAøj|e :A ÙŽø¼A;£4 ø=:A‘.|ó=©Aê¯í d:A¢¨5Ê)Aئ“¥¢W:ATè6rÜJAÉâƒÖ-:A§ÆñªAÐlÀ+ó9AËÄà7Ñ–ÿ@úa5pÑ9A9œàñfAëDQ¥£§9AÁ6œ5Ac–Z}9AñevñxLA*/>U u9A\“h#A…úäÆj9AüXYGîÃAï'€JµA9A0Ír¾Ad$úô¤À8Ajf$âgÿ@d$úô¤À8AÇ[’Œ±äý@”SXJØ8AºGi7Zþ@z5 Û8AÍå&7ªý@Ý¥¯`Á8A )®á)Lý@²í$¥Ÿ8Aþ…Œ~Áý@oš>zé“8Arÿ6n@ý@–ñ<ƒ8Añ\7Ó6þ@ž"7Ê€8AÍå&7ªý@³pÛ?o8A}âŒã·þ@¡gŸÇb8AvzMâòþ@^':PV8AºFŠAEõtÏÇA8A+d³Æð A&ÏpßÇ68AÂoqß:A¶2Īö9Awx&'ŸŸû@’ ô× Ý:A^¾{<ª AoêþòÆÆ:A›AàYCJA’ ô× Ý:A+ÈnEw€ý@zyeèÑ:A{EHb=Ãû@ê6LšY‘:Awx&'ŸŸû@IýçÒåŒ:A6/ÔöQëý@E0Æ—Gi:A:üõ1ðþ@®>Ÿ‰dj:AQÊÀ”¥äþ@(‹ì0÷4:Aˆ@72,˜AÉâƒÖ-:A§ÆñªAئ“¥¢W:ATè6rÜJAê¯í d:A¢¨5Ê)A;£4 ø=:A‘.|ó=©Aøj|e :A ÙŽø¼A ¹  + :Aâ3ÅsÖjA¶2Īö9AtÁßs<±A$f¨³Ð÷9AèÃA)ß$+:AŒæ¦ÒAç É:A^¾{<ª ASóÏÊP:A‹µ1ç3 AÕÙ¯ì™b:A½ôr‰¢ˆ A4 K%&^:AªóÉa‹ÖAcÕŸþ—:AªóÉa‹ÖA­¥F¬:A—ò :t$A^Z„€¥»:At½ð%äãAÜ%ªÅ:AŸbîQA WAœ§:A¹©î25gAÆ ¢:Abh[A˜ˆA¾ ¹1·:Ae5}|6¬AoêþòÆÆ:A›AàYCJA0 -Ë S8A8{šòÚRA7ª8î"™9Aj5 ³`ØA# ˆat8A8{šòÚRA­f/èuW8A®lÿßôPA -Ë S8AVUâLòÆAVèÐhza8A¹ýÚïiAØÎa†Is8A½Êü*4A”0Òܽ8A(¶ÝŠ AÊ OÆ‹8A/Ñò“` A呺½ÌZ8AçÃæo A—[™÷aj8AVýºÆ[AúîVkŒ‰8AÌ|æ2PÀA£pøë“8Aäl+¦xA2â@ãŒ8AôwÁÃùAÿiré~k8AŒ@ÅhVÄAVèÐhza8A˜§*1/AÂÃË•5†8AÜçä¶[AÇ—>š8Aj5 ³`ØAFÉ„«Ný8AZ„ÆçIA`¡<×9A}!y«*`A¡fè9AŒ@ÅhVÄAÄ4úJ+-9AŸ,3a LAÝìA.ƒ(9A ÃQ!A_‡Òd9AR0™‹½õAEm‘%¦€9AR0™‹½õA7ª8î"™9Açí\r e A%½³Ïv‡9A¢ÖˆgÉ AÙ‘–øê[9AJlß¶æY A»ì¼‘š'9AJlß¶æY AƒÁ1¼C$9AçÃæo AeXUóï8A½ôr‰¢ˆ A¸e  ñ8AÙdæóÕÂA,Ehšå8A CŒ.…ŸAÚÐZÚµÞ8A<äèúAïÿØÍ8ApX‘ÈÿAM/ð´>¦8AÆÃj–¶A ˆat8A8{šòÚRAØeXUóï8A²g_SAç É:AÔ*©ŒA§RUV|á9AÔ*©ŒA1#-Üø9A;bÎ( Až ëÛ9AèE¬ Awo:¶ã9A„EdÏ‘ AÁ* ‚.ò9AR#-#¡ Aì’? :AtÝâ A«w‘:Aï]*Š«W AãJgq:A k,Ò Aç É:A^¾{<ª A)ß$+:AŒæ¦ÒA$f¨³Ð÷9AèÃA¶2Īö9AtÁßs<±A)‘Y…£½9An7KÉæëA/î/ù‚9A²g_SAOßÖï_E9AÙdæóÕÂA¸e  ñ8AÙdæóÕÂAeXUóï8A½ôr‰¢ˆ AƒÁ1¼C$9AçÃæo A»ì¼‘š'9AJlß¶æY AÙ‘–øê[9AJlß¶æY A%½³Ïv‡9A¢ÖˆgÉ A7ª8î"™9Açí\r e AEm‘%¦€9AR0™‹½õA§RUV|á9AÔ*©ŒAè̸¬ÌeÃ9A‹µ1ç3 A7¿spÃ:Aè9?fDœAÝ!í¥*h:Aè9?fDœA/%0§3|:AÙ_·{YAê6LšY‘:Aëº~­§ˆ Aʎ骺:A%zv«®# A7¿spÃ:A“yë» ª AŽ=Òœk¹:AxÞþ·° A7¿spÃ:AëO 4 A­¥F¬:A$jg¸õ Aê6LšY‘:A,ÑÝô< Aœ®$C_:Aª@À%+ ASóÏÊP:A‹µ1ç3 Aç É:A^¾{<ª AãJgq:A k,Ò A«w‘:Aï]*Š«W Aì’? :AtÝâ AÁ* ‚.ò9AR#-#¡ Awo:¶ã9A„EdÏ‘ Až ëÛ9AèE¬ A1#-Üø9A;bÎ( A§RUV|á9AÔ*©ŒA̸¬ÌeÃ9Aš%A½]ëFÎ9A÷X‹#pA.Pƒ7:A!Ä~ï]A‹ª¤!T:A^¹jÒ8CAó,ƒ–>U:AÅJ†AÝ!í¥*h:Aè9?fDœAÝ!í¥*h:Aè9?fDœAØcÕŸþ—:A|_” ¯A]*ðä—;An[éëÔ A•$“jD;A|_” ¯A”©À0";AAsÞ"‘AoêþòÆÆ:A›AàYCJA¾ ¹1·:Ae5}|6¬AÆ ¢:Abh[A˜ˆA WAœ§:A¹©î25gAÜ%ªÅ:AŸbîQA^Z„€¥»:At½ð%äãA­¥F¬:A—ò :t$AcÕŸþ—:AªóÉa‹ÖA { "¤:AÍã44Í> A5Äü×YÁ:A{àñ2Ä* AŒB[WU·:An[éëÔ A Ÿ÷æ:A=ŽàƒY A…§£;A ŠÛ‡$ AÆÞ]SZ!;Aù»%aNAà¶ 2;A߆àÑ A¡•œ‰*;AÂÂÞ±6tA {ò1Ð ;ARlȉmA\~53Ù;AÛ=õ UA3°ý™‰Š;A¯:#~Å>A]*ðä—;A‰¼mP:A3°ý™‰Š;Aë&ÙSÄA•$“jD;A|_” ¯AàSóÏÊP:AªóÉa‹ÖA› –H;A©ÝzÅ  A4 K%&^:AªóÉa‹ÖAÕÙ¯ì™b:A½ôr‰¢ˆ ASóÏÊP:A‹µ1ç3 Aœ®$C_:Aª@À%+ Aê6LšY‘:A,ÑÝô< A­¥F¬:A$jg¸õ A7¿spÃ:AëO 4 AŽ=Òœk¹:AxÞþ·° A7¿spÃ:A“yë» ª Aʎ骺:A%zv«®# AöV„Ü:A©ÝzÅ  Aä¶^ðÄñ:A´“wªd A#Ø×PHù:AFÌÏ· Aë'ˆ+;A—ÏË AX»ø² ;AŽQ)œR A]¼ÒU;AÈÅ‘ž¸Œ A› –H;Añ@9ñŽ Aâ Tc5;AÍã44Í> Añ¢:ú:A•"GTk Aõ/še»ß:A~­"r AŒB[WU·:An[éëÔ A5Äü×YÁ:A{àñ2Ä* A { "¤:AÍã44Í> AcÕŸþ—:AªóÉa‹ÖA4 K%&^:AªóÉa‹ÖAøõ/še»ß:Ažâ³ešõ@`©/ ´d=A•"GTk A<3°ý™‰Š;Aë&ÙSÄA]*ðä—;A‰¼mP:A3°ý™‰Š;A¯:#~Å>A\~53Ù;AÛ=õ UA {ò1Ð ;ARlȉmA¡•œ‰*;AÂÂÞ±6tAà¶ 2;A߆àÑ AÆÞ]SZ!;Aù»%aNA…§£;A ŠÛ‡$ A Ÿ÷æ:A=ŽàƒY Aõ/še»ß:A~­"r Añ¢:ú:A•"GTk Aâ Tc5;AÍã44Í> A› –H;Añ@9ñŽ A#SaìÉ[;A˜†˜†  A HËûµn;A Ò<‰(A-hÀàø„;AÍ+–²?CA¥g©u;AD~¨÷¢A/5â—¨;AŸ^A'LAº0Ò-•ã;A…ï^ö]AìàA…ù èA½¢© ¢<=AîÔ®~ŃAæ¥=ž(=A™YË(uAqM`LíæþA*L+ƒ»;A^z5©r A—C» ´©;A1 ¿iGÍ A¶–Ž·Xœ;A9=FVÀ[ A‡³@›’ž;A˜H*Ž( Aíô÷Q|;AÆñ¡ÖDC AµFt;AåÁ¾ˆ(}Až¾Ö‹¦‹;Aë($:èA]Ký¾‚;AAoqÏ@A/5â—¨;Aë©!`Z÷A1W5Ì;AO #:A÷mf!ß;A/·-e~GA“•ÁÊ_ë;AÎ#pñS(A¬myöü;Aþ.*§IAA~Èü>`ïÀ›Xžg¨;A‡ˆ„:õðAµÆ†çèÊ;A„!‰†A1W5Ì;A¹j)/¤<A/5â—¨;AU J€ÛùA]Ký¾‚;A«Ï<‘PCAž¾Ö‹¦‹;A¿étzíAµFt;A¹‚É*‚Aíô÷Q|;Aš²òGH A‡³@›’ž;AØX™j- A¶–Ž·Xœ;A þ––Â` A—C» ´©;AʪIÒ A*L+ƒ»;A2;†éw AàþÀU,¸;Aë`X©@ AòÏ•í5Á;AH{“>˜XA/5â—¨;Aâ_¯)QA¥g©u;AÒÎèù§A-hÀàø„;A¡ìæòAHA HËûµn;Aà’F‹-A#SaìÉ[;AlGéÆ A› –H;A籑yó“ A]¼ÒU;Aœ†âÞº‘ AX»ø² ;AbzÜT Aë'ˆ+;A—ÏË Aà¨+Ü—;A@ãž Aïk„þ:Aáœ(Å` A 5cM° ;A,ä—Ÿ wAé½ŠÐÆ?;A¸Ås5AÑåÒ¤/;AÜLÎ#SˆAi×ù²÷-;A~ vaÔAˆ*Í\œ ;AÀ``+‰A¸ yb;A£tò2¿xA9ô«–10;A'ÂèiõAš‡i \O;A©B½•tNAB ‹`Y;A<7“b&A ˆ â³hí:AFÌÏ· A"¶7á»f;A^i(àTA.ãï¿mj:AÙ,,ÄAd£rÆ~Ÿ:A¥¥"³5A…Ãg«Áµ:A‹6@‚GA%ýËr5º:Aò¸7*é­Aò5‚!Í:AôR{ %õA§°~Ë¢ï:A´ß²>ìA÷³ÁÌ«;AwÓO41NAþ.ÝJžå:A—óDtdA®+šI•Ñ:Aym“ªm•Aö柑 à:Aœ'ÌíòA?¢¥Ù…î:A[´wêA—í%”;A^i(àTA_š¾È;Aœ'ÌíòA€â£ ;A\%²£ AH·δ;Ax qoÏqA Þµ V;ASLõÍA"¶7á»f;ATÙ±ðA‚|ÓHb;Aî„°=pAY¡{tF;A,^5VáAáuM6:;ADblÚAš‡i \O;A?â”uóKA9ô«–10;A½aÀáçòA¸ yb;A9Ê>vAˆ*Í\œ ;AV8 þAi×ù²÷-;AÀMA‚ÑAÑåÒ¤/;Arì¥Ò…Aé½ŠÐÆ?;ANeKm´A 5cM° ;AX#G_rAïk„þ:AI LèÂ[ Aà¨+Ü—;A@ãž Aë'ˆ+;A—ÏË A#Ø×PHù:AFÌÏ· Aä¶^ðÄñ:A´“wªd AöV„Ü:A©ÝzÅ  Aʎ骺:A%zv«®# Aê6LšY‘:Aëº~­§ˆ A/%0§3|:AÙ_·{YAÝ!í¥*h:Aè9?fDœA â³hí:A\á2°AÁ©M00:Aýg51ØA‚\úæJ:A£–_Z²A1Y¿øÝ6:AJʼnƒŒAN)ÊI:A‹W¯S ¹AêjÛëL:A޾ä#Aš4º%™[:A.øxÌW(Aãï¿mj:AÙ,,ÄA 0œÀ=“ð8AR0™‹½õAÝ!í¥*h:A@’À/A#’þõ&»9AêP)Q÷Aì0ë^ø9Ahvø‰[A1Y¿øÝ6:AJʼnƒŒA‚\úæJ:A£–_Z²AÁ©M00:Aýg51ØA â³hí:A\á2°AÚÞ8X:AÕß{ÔAÝ!í¥*h:Aè9?fDœAó,ƒ–>U:AÅJ†A‹ª¤!T:A^¹jÒ8CA.Pƒ7:A!Ä~ï]A½]ëFÎ9A÷X‹#pA̸¬ÌeÃ9Aš%AEm‘%¦€9AR0™‹½õA_‡Òd9AR0™‹½õAÝìA.ƒ(9A ÃQ!AÄ4úJ+-9AŸ,3a LA¡fè9AŒ@ÅhVÄA`¡<×9A}!y«*`AHmÓ a9Aäã&©ÅAœÀ=“ð8A`5h˜>A5†N9A‰½kÝÌqA‡VHª(d9AØá¹Õ€A~¹ab9ANKLvüA°„?d-Š9A¥¥"³5A“VJ‹9A³‘ÖŸÈApwÕE9A³‘ÖŸÈA¨<«œ„9A@’À/AжP<–µ9A@’À/AÊ)Ë}¾9A5“ej«!Aá4¯»‘«9AÓ2†»âÞAb@Ù`½9Aðô³¬fAº™žX\³9AlÑýäêA:€/v+Å9A¬w¤8LÏA’þõ&»9AêP)Q÷Asurveillance/inst/shapes/berlin.sbn0000644000176200001440000000037412625315364017200 0ustar liggesusers' ÿÿþp~ A80ê CZ@õše³âžA=d´ /©`ATà(i^ ]†žÿ hi˜Žv'§sVƒx ‰`±Ã Ÿd׳ ƒÿv$—mî Mr©$V^™@E¼l\surveillance/inst/shapes/districtsD.RData0000644000176200001440000024410414006036350020241 0ustar liggesusersý7zXZi"Þ6!ÏXÌãĆïþ])TW"änRÊŸ’Ù#Åߨa…ø¤T”²Yd{Ègd÷G/ê›5è£BlP¨*àNçxQzVÓócÊö9Aò_Ò€°àé7¬¶¶;Éã2¹ ’ûó«k 0xßjÍ<{¡½az“ ;ØÍo[h¨š6x›:kÿÒìa9¿JÔ˜¤¹é,ƒgêD¹ÿùïÑÑ“w’Fi9xŒË Åï …8ãz®¶—õÐÍ gëzWÂ…V,Ò$ò«vÜÌ[«/ŸŽÔ†ä[\´K¦³ÚW%¤ƒâß5ï/;1†—îÁ‹zžŒ·h<ú€1öØ^DÉvÂN‘ï à$+•óS‘n…rdЖ>×Q`®ºøèŸÿ³œ§Ñ@Ó¾5…ƒt†½ûE$“Øw3ªT¡–·±ê¶±·®5ÕoúÖU…-ø‘»Rì¾~·“µ³+æ¸øTán¿å*  ŠìÉÃtIOX&<<"ñQÁÃNe åkÝ^ šÞÄ¡{ Jpwq¾´›vÒ]K—1X`ÖŽ‹„¾E¶HÁXîäJ¶~Q%oÎnA(7kw„ñø9‚RËUë"%ÄŠòªî&Ç òÜoäi€})S¯ìý²~zH³Êp¥»/Îd¥bSÊǸ¾† Þ9óK ¸ÓÆw¬´f-4ˆ6¶Û1Ö‚aR$­“BÏ–É|ýúT´‹/ã‚›‚bCàÎ1) ‰EºãÜ„on.O¹º;Ršßßž¦»»•ÃÖ¶n<ãŒ.ø7VÖÉ~u…0žâDHiís9¢gµËª!á\Óšdñ’a•>Žìçù‚¿VbìüjÕ÷QŒYRxy¤þþƒz) Í(“œr³Ûôp¾,Iÿg âö“ÞÜ:¼…-Žz¶©-8à†´vexè*O.Ëru‡ìjµoew…K¦ G‘–=öFãé<ׯJv¼;áµ—ý UüŒ‰Eç=öµÓZ=—z]»˜%2¦´‰„Ú®€7wÇý& JÖŒçœ=ò€øƒv1Ί;ÁƒÙ¬ÝŸ—¥%ë•&yËaPß.œ¡Àô[³SÝ8†ã2ß6—«J‡žèc‚ž^7¯LÄ3w}˳°$Ÿ¯ X1¬MÝ…óÿEœÊ©mSú…g%_¿´zÊB)gM|eÁ1•ü<„\;€'N ¿™|˜;³âý¿{Y)F ³å,yü)âÁá_ðŸzòe‘¡ˆT Iè§Vº–$÷z «…drž)5ÙÖ^Åïc\¯`ãr( 2d)¯qÅo»^ÿøaøu=F§îS1özÓ`7&#rªÓ¶Â*Z÷Ü˶¨š>é˜ÉÐû-vÌtåìÈ‘À”·«cJº²°Ûy÷½ZÙ#·¶o"»Aب-›ßr½=*÷ã„U£ýÐCSȃƒÙuðý~ ©ÚM¯XªnÊë7ê [Óò ïlM¤±µeØp¯¡.¯‘;Úè3Š6pk̨ ¹`óš:æÅ<ÞyWænFïX´ö˜Ëm MìÿûCÍ_L— ~R$eÿïEÀ¢xÝû ÜÀ›—æ{A*é~ÍÚ¯gÝï—%ÕQKpOvøî„ ‚´ ¤jWÀ:e’ËâGráÒꥧÍxk–µ¦„sA§øZ’ÊfZSVóÚr›÷è&ì­Ð®uïâl‚'8ë^UÞ+ƒâ·øïïåm`·Ž¦Óœ¸ÿ‡Ç¯s é3ŒX V†°Ý¸.ÝG@D,7<ª&3û É1ç:[Ùúãv¾”6½Y55¾@—bÙ‚“ø¼1­Û(×ãò=çP¢‘¿CP8Áô]mI4Rã÷üÛrú~X•”Šòv]Ì‘ì;ÞßÝGô šFÒÎö_äs(,i©÷aº½ÉNƒ´ :šâ êÎCiâÀgƒHÂU3ÊÔË‹ƒû†'qZè¢oYrE0l£èsIfdyó"¦ÈT Bf‡ cx7äø…±È¸ÝÉ’W žÂ¯˜²”êm§~$‘%™ ñÈž—[ÕŒOïvÓ:ä„K@Þw”iQ ׉¬Ó“Z1‚¦WÌ<üàüml!µ.œ}TîßotwÄœ«9ð¢ùidl Y²(M~òÆ.Ë.ì//ˆïAœ·í‰IàJUg`‰ïÑÕ§ dICþSpXð¬MÓ=ãæðF•âÉ–:4¥ –l‘ ¨Ä{±qK²#tK‚ìîÓžQ¬êÅT9VÙa Û]KN»MRŽ+@ ç/ÐkÌÁÎ5· ãvOº5£vƵ­¸cg ÄQ,ÜÍZB™9ŸÎÓ¡¿¸®?íظ͖:w/tÛe\p쮃RG–®É”A>t÷óÊÝ.ÀÌÌ71ddI²ºûBŠ |C2VŽSéCð(vÈ£à¿N¹YÆØ‘‘ä`"«I_øù$c‚{¨04‚¸v¸_ìð?”¤R¯ÔrÇC•oQÁ¹¯qÜ´}qTsÞÞ½ "þŠw‡þÏ?1Ó3>Ìoí”>Φåà sÎj¿ïìCp­ðçF"ÌóK“--<'TŠÊ‰,Œ]hð!ÍaÀ¸r>ŽóJ?h‰÷"õsÉ{G‹{ÁæØ:^¢½q]à‹Ø øurÿœ`¯¯{g¤ÛWײ¹ý_½åôåïnæÁ‰$+ûèº÷EŒëeÊF CzVÁ ü¦Kot0wqžž¢#ÓKg5î?T§Ì}äÜR~—¶¾™¿e³Ô:Љ¥Þ¯£©î•»úƒ>À\µ§µÂƒ¬-‹ Ì—â™c6TLT°o^ç†Jb%;`ä¾øiwÕ;{;¨M]½üOý„!}Ç2 £!EK²ýQ týh²Ï^ ÆD£æ²3è µŸ;‰Y—‡Eð/»dšOþÞjÎÛŸ¯Y¹“c”…äÎ%.—¯J{ Cöí誌/¢iýK×Wß×Âí‡ñed™I¢cŸi0–»]ˆº–©2ÆLt†öê¹ü W":F m#6a©·›‹ ½cÕXÛŸ^èçAãTDé¯5Ääì^Œ¾ÑVèí:ó°Ê÷o¨w“ÉåPMZtx*ŽºfMjð#hHŽš—Äo@›µxJ=“ut°Øow$eHÅ¥<^;IÀAp5½ 7'5gø¬O:“ܬº—Ãàv~j‹.ÈLXÉÖ•ðÃ{Jõ" šë‘(<êÒ9J«ázQ~‚AˆCýaF=  ½ ÁxºÊOk“Ü›¬dæÜèäambi'Z¶uâ$ Û¾®œ¾®ÍÚû3~õn³€ï40g½:‡úãv¸Úâ§Xj u%¬|)ŸÛ­äPÊFµ¯”:ùÛD[ëÙ¹\t‡™›e‡ê K:÷Ÿ¿UŽ®rÉû ṋ«*Ÿ[´ª&•«YàªJ(­ÛOVJ ®ü²§ë?õ©à¦}f ¯·c¾â¹ŒÔŸÁÌÃJùUçX!2`,¾—ø!½ù³ç”º1@vcó.ë|`fŽ Ô…¸…Ip<V‚ %"ì;!¤|*{dšÛænBå+ÅžíÀU¡pk6­Ô@ΛÇëæ²áñL™`‡}ùv]£Á•BV¡´Û¾q)9 iR晜ðcß ¥#JeÛš¬ýz0¾ 5K„¾);h&Á]5¤Rƒ!ƒ!´Çߟ7m³{^üó‚‘…þæ‚Ä~UƒÍL|ž–1þlMû“³ˆœS^pëÓj娠yÊl­žC«`Q1áØ¼™„+udà+VÖziÅþxÙ4¨7ý1J–Ã~‘cªÒ ‘’>p æ,oƒÝa£ðBŒÉµdµŽ‰¼Ó^#¹‚¶ÃÙ}| Í%Ÿú¹QÌr¹©îÛmí¼«&‚N ;ï<o±â:˜K™DäwêUbr[}Å[uÄBŒŽƒRçòi_Q<îIÀnšÈX¯ÿü!qI¾mrÁššªxlûPH5Ђ =5¼k½¾¯q¤ŸÒæ€f+.i8E Ÿ)sã¦ÄÒAÆõíƒhêö%yÁvÈ…­w›4ጠK@zÛõÛÝÒ ŽH/‹8›yEÆvG¡¶çVáÓ¥;ûÿ:åÜÕ=«ª‚¾ÌLj)ÒmO¦CÒ1 ç7ÌÝ×R,´Fdû7®6gì¢G|‚|öÏœõn®·,Ì}N"‘x„7Ãiî/(‘¨;êê¥5Güµþ¥à\C±ò j¤.Ô/°„ªjŽpˆ¿z-UÀ7KT¼ ,7bØ~a㼫/жŒ†0øú[ ru^1D±bÝɤ˜–íû씇;iŸÚ…»ïŸ(¾r+ ü¸ðBuKz ŽÉ#øäëÜB´¨ãH†òhù\ÉÿF)ÕOO‚Ü*]Á±xW®¡óª0Ïùê¶­dGTZ;ìòúsâí%cÂWí¾»KÔ­‹Q‹šGÕÇN©òÏYgœCÿAÄÜ×%óî¼Y®ÖcÖ1 ?ǯæç3 —AM’É#®¼VÖŠ«XúV3Ø'RKA ~#È®Ñ)RàÕåz¤‘ö«¶k¢BÊù²|Ãè1Ãnf¿™•à Wߨ´‚ù0²Aƒ€1clžÙ…¶ŽxSSVýø-_8³P[kÉE]ºéâP+-›@C‰½“1J º]›I&ÓͲÜi=S˧/MG24E–½f£p&Zê)ÕG,a!ÕíxÊ[ús€Rk€¾YÒ(HÊì”éÍ8#£jä­û6þ6«ªxÅÇœ4=¼Õ\Øö.¾[õu^ñºÔ.ÏÄZÜÕåš8+r1™N¤…n×t=¸óÿ›f²x$¯Rvfœ¦ŽóÑßpôÓjG#ñi=êëù@¨„’qÕÜWñb†»…¶>>ìiX/R©Þ‚pÉLIÑ_®n¢ï‡ÙNáÄ {·ÞF“e­n®NƒÙDS˜{ÿÏQ<1á&÷Ô'˜\g„+‡öS»¢“sÿ™° ½“ +¿*wgÁ¸Äf9* Ê#`ÑCºÅÇ ÝÕש51„ò\ÝžÛO&­Õ@Á'®ó©“‡²ý˜\¹ 6e+!ºÞ¢:î³/õ¾¨7ÒQüpT'»Þ|Dç<¤2åw¦µ³p!Ç\z^Qj1iûñO )mb´>òj5‰â«aŠ¥U1¼ˆÁÿ0f°žgI!„¨‹¿/b„×çn¶0»Sf­cl™Ö.(’ÌmlGÕ?J5ÍFßÈÅ•M:¸A |•^o§¢(ß(J{:ï>? ·¬Wª_”ùñµ&ç<š«•ŽVÛ§ƒ¨9ÞQvóac Xï„@µN,Åñ[öª»WÆDô|lxF£§§SÙ agW¢bZ®Ò{Ý£1e ²‰éµ‡L´i^pÎΠøv”tŽÄ؇eÑãûïf@‘Á ŒRa_yPæDAOö,4oC '9‰PÐ «‚¹9Fþ'óè¾s°ŒxÈÿüA±˜ÁæZBSÜxWs…Òô…°B¡X+ßýÞ‘R­gD¾€ü}˜a<@ðµo­KÈXîý€:pì fį΋ž[hý=ú2²¹{Âš¢øûño×óDc²ÔšgÀ"ˆ"(ŽÖi¯@Úƒ0þñݳöðÈ€Qc“Îeþ¬½*Nüämæ M§*ÿäË4ò[É'Œ¿>kŠƒ {ˆÛ`R Ü'†×]Ì•¿½¹ÖjlfÚñ»e:¬aÔÔÕÒ›‡ÑÙ5‘È1Qpáš›uk:…Vcc; 1T6Na+‘ºˆz3 –R; 3U’‰tÊß¡Âz?~ÿ·”"ûQ,¥£íiQ‚éÔyY‚Y©žeîo°ÑÅ2÷¨þSyé¯hlŒÎk.ÌÒ«û´?ú3y?ºÆ€ÕXš4â¡’Ø ÈyMu1–ݽáz µ#æZ™Íæ»’ÌSË-«3¿÷Ý·`Oh,BJÄÖ€(‰íMgÉ@ÍÍ+Œ—¥4ö¦—Æ£q¤EHQìϘìúÙ&#!O·ÚŸïaôC#CìxQJeéÖòs÷Xú¼àkŽWžœ- ä­†W±r«rŸ3u?†èÐh»ëpû™^ ø%‰ýÕäç­­ˆ‰s4Ù«ëÕ²\XãYs$­ˆ+™…Sy®6½ÿ} ç&Ï î*® „†Çj¦¿ù \ƒñɄߩ_!ÜnºÓW(/ÊÞ¼.DÑ9`óª‰(ªiF¥ׯ,óâì.ª*>S²/JˆÙéÍo¼èª)BܹñæY¤Uýf¶ø´é eÌØW6´ŒüÑ•6Ânš…b nQ²@¦ E÷¿}+ÛLV͵Hƒ:¾˜ê`e!G è“Ø_cÉî+~R¶nøOƒ!]Ä{B•Za° CËmtϱÆ_Á“xaÕø‡º‡ÂÙ²“ÒÈ@ü~Ì'žµ¹·!'Ü}A&•Î2è!—ªWxU•Am0Ñï(¹ë:ŽÌNÞÏùNpl,Êň¸,"v\e@Ö¾œ¹¦œ*é°Ò°¹wÔ¾ÊeÔ»L5]ØÔ„Ìymj‡½{gRú ­œì¹ÙÅ^öpâ†èšKWP Ü3Ëëï5sɲp dš‡ËïþIìêçt|* šÀf<7=_t,ÿ%O£jùŒSĨªþzŸ@Gg0¼AÄ1P¬æÞz ÕP+óZ·ðÌý S¬H>êf·OEÍ©É÷ÏAæ|–,±zëçé—Uoi|©ŠÞщCéš‹@?²¡izWvµlŒüäîÎ >s›LèšiUŽéz)®C¤li_ŸäLêzKõ½Š×}ØâáÏÿ·xY ­/†áOh¤¼«‘‚¤t`ImZɪc ’Q¸©B'>z!÷ ‘—V0¥Oõ%ñbØ€H`û•;õ ¹äé0H†/—‰–Ï]Ƈ"´+4”½ºÃz8p÷HÐ…±9]Z'I¿©»VK¤g ìf%ö܇Žj!üºC Ÿv½Ä;x¼ŸäÇåÌ„ð£Ì63›-‘.í÷^²ÒJÊ4 à‘ Øx“DÓl;ü‰ÂƒK/aßÜÓô( WÍŠæõ†®ñ“â’þEKÿÚN6ðà·i®à©\æˆ"¼t^ûT "üT/’«/×íD­©c¢T3ŒUm}0¾ï2W©úñZ›õC!éiq.y³¶L¿ñÝ÷ô Ç£à9±©WIW±·ìxD¸Y)Ÿ¡Üzˆ“‡¥qwAá™æ¯öw:#tx’ý„ì.ê.µƒ“oš›1ßJD@”uqí›s[q~‘:Úø¹tñ+^JtßÚ#–òF8hŠ•ÔCÈܰN§ÿ\'Ûû&bî2±-ûo¢+@^õ,†°¬]®³ 4g+ü{óŒ"ž¼ë þXê(–щtèOn á—iuíñõÒRØñc`=£)’Zxw+¥šê0}p=Ž´ùfgÙ}Çü(ŒdbFzH¾ÿ¤¦ùÒ“nL÷‡"M+Q”V>[ç•ÞºoŽyøoœïÀ`bq4Âkÿèüáï;KýP‘ƒe'<Ø;ù12·än×E!¿?.Îmó—V¼ösíÓ«s|8ÆJø^Yј`¥¨Mxó [[€¶Øi—y tFÙ{}òb?ððtݵE:½3£»î0¶xÇk~tø5<ÅÔ²á¡90?©#Mœ†½æL‰ÔÛÃù•ç/D!+ ñ½x>ÝúE²c}œø¹dðáxP>Õ¼îÓŸ¶+¢sW¡×6ÕMkRX×w÷N–KuÀÄYn ±Å@Zž­ü÷{jè ùØKyé˜Yîvt+±ïôX ¹ôºuȽÁ€{lh«BÓ^}»Íàp‹‚¹Úa,åb}[£¨Sã…Yí>7fŽ…–¥aŒëh ÿ Ó9³ÆÑRQ;á ‹"[r1‰Üi5#Ïm|±ã¡Â¤ ¢Þ¹:Š6Ò¦Ç# ò¿~Ë)[Nº.Ð?Û,ñ‘?ÛhÛtõúyݱó£—Pܰ*4‚BθTP“ l§|ïÿê£p£ÀH JÚæ’ìzz¼xmA^€n‚Ô3T6±æxzäæ—àëCØÿ[ðææ{LmŒãKtßüFO·aзŸHéÂéðg\é9yöÝlüÉŒÖ# #ú†¥-ã× SÉuuK©«¦°SÿeÈ—Wxɱƒa;u² c–°ª„RçGþ7œZé~±æä³¤¯*`ç|wx&Ê=œñÃ5ÝÔ”â1ʽj|¦Œá­Ì}§µÇâi{¬ÂlËOˆÒY(Üɰk¤¸ýpHå~§}„bçÒ{Óÿ6ÍÏáH,<³Àª½×ªÇˆµÝêêHYùú!ƒBAŽCƒÂÀlìÀv³ÛZËU ±ïû ÎdÅ$†¬™Ul?pû¿ŠôN1"ß„m1C@<(ªû¹ù¨Òš¾Æ.5œUžTGsÄ ¦+;´ËC+>ieܧëœu@À~Pqô»L 褤š[Œ€NxÇ•ª#?¡»kSM„eÛ|q_(õø LEÒDw"ìùGV¼}Ü;aÔ#‘DÍäØ.ÿeô¥‚ïÆž [Ī·äs¡ú¥”柳Ø'v¯˜L5ùκ€Èy»x–^Ò€Ã!a³d“ö(ô]¿Vfšarªyøyd9Ûðå~ó “fš~RØ_ÉG Ù%ôæ­XâMî&±þ4ƒyBÃÙfzà@d¦®´ÒŒ‡h8ŠX^½ ‚÷ã’Ð{F¼`U¶pJæ¶ hV/ ¨éÁBOµçO˜CÊhp€Uß7D;uÐy7x)ßOªxÅ$£êB¦üvŠÕ|-­¹ß šêº@´Ã[ýõ!W|&§™²J¬ùÏ 8Sµ,·Æ³^ aL‘©©²èÐÖ¼ññôçÅçGAµ”`á…ÐóyÖ”I€Ø‹Aë¡6d™ð¨´6*²Í‰FŒ@)ƒ÷"«‡Ç3’¼; aÉ£Køw¼äÉXú‹_ˆ•’Zú]ŒîÑ<¶¬f†'œ×noSÛqÎðR;Î.eãÙ-W51Žs‹IC¹#n>S°ß„:®aA\±í®ŸY`æjLí Q3]Ò º±`ÞŸW»7¹h‚¡Ÿ¨‚- ô‡åØy 3a‘EŸÞÛ¡aLdÏÒ-*êÂCÓ7ÿRCáPd7ÙÍ(ðͬy(§ò ½y‹f´uÆmÕªw¤ü9t‰FH¾ïZÈ-Mã~Äí×{PBúWÇþèâï|ä5vÒ A}êÕ剨áMùß×c31/ŸO eŸ^ Oÿ·_fm|ó^ –ÕÎC‹ʼnL‡Ý„ùË&&8fÊŽ þ›=7ñ4µÞŽ¿£gÒs_ŠNc׳…Phay¤`£ŠÚeî¹åÿ‰òvXE^XO‡¢1¯m¦‹ÔÛõ)TyH®$ËãÃì†cC,º"fM#=¬äï …±—zo­Éõí@„l}VÊ:sé\¬Cä uÓœ—ÐŒðxjôV_¹'ëeTÏÐVï­ &{6 P+ýÃá¼s½'&U¹¤U)ÜÓà}¬z˺õÛöHCp˜èϣܱ÷5ØX|p®ÞðãPDĹj3JºÆÊôéèxÉ­àšRZ±½ýhÁRÁ©ß5®å^§§KýFo‡·¬ôkˆ»¸l9ÖAªëãcUë1uFEnÛ éW=3¿ÀtЉ Ö(Ÿˆõß ¹së¡%—£$܃›ÇÏ+Iþò¢ã‹¢[7NÇ—\â‰9¹Ž¿vQ³½jøÔcPöS°©íT;5¬Á\]2"þx/]ÁÛ.Íb:‡M>† P`‚‰Îéã)yhÝ'=î,3] ÁZäC-H_ÿcåJT®? LÉ`ÞçÙG?W¼ÁÙ’ ÐÙ8ËÄŒLÒH9‘’[ñš|˜ 쨈Ó_˜­÷L÷ûޤ¶l*•ÓÜÕ½At!x%ëíU@aS¹rë}NuQ7Ÿ'ÇÇ~~\‘\A[ºF½-Éûbè:KÓU&jîå"ìºM1 Zù\ªËÇ~‘ îÆa–úOx%™ ¥¶Ò²-Ài„ ¼o|ônêæ¤VV*©‘Å»àæwî|è…ܸÚï•ãPóà®Ú#çÔȬ³ƒ¶;š0€¹ô‚³æ±ç%Ñô±GÍàCš£VûÉ+¸{CW𮃌߀ڊ’†Ê»ˆžAÁèkŸ¾Òõñ²¸UOClƒJ¡hËn'f;‡àg¿¨ìK‡¦Ãûå®[Uç BU\{°ç:2‡ÓÒDÒ1¾ A©Ø— 1¾çîßà(sÖštb¸7!̉Ík¢/0 Â:r¾†¹\TÄ—#žòcÁ{CÖ-v]LÒÙ—ÞE¹åx ÈTIÂäúŠ3'Ç­µ„ ‡ÆNë¼Y1éá£è`cö2¢ÇFñäÐ"Y†±-ÑÇÔÔí);¸v‚M×ôýRÆ(»–mÑ ÑÝ%í¡‰‡IK5*œ»òP×]rYåI‹òßÉMD%œCš´Îÿz¡`r–þJ{ð©WÒ,vÚ€C†[{ü) 锄™ôßèæ[ú•œ<0ý¡Å/'ã܆N œ„ôn6\‡keòù¨Ób¿¶ü–ì;Ô]tŠtÇôš‰¹‘€®e=ôBzóÐHzy^Û úoù2G&·GM>¿83P¥[ýj@ÚÜ$“úÌIH?»· Û¾¼£ÔÅé´†£¸A•‘˜xèøZDM"paþò_2‚® áAAó{êÓV²¾1¶!"\ÀFóxè–à@>ùˆ‘¦¼9½nĨêÅS¹7f8~z²·Ñéߪ1ô’#”ŽaJöK £±õÑÑ3a€ñ9áÏ›ã2ëµæ¡„Àð£”r:.ß°Æ>Höi=HŸ÷­1É3)}âÍ7ðY¥ 7Ô0‰:ýp…Í6WDí!w–¶¾êÎÌ`‡Ï;Lƒ'#[FDOܪ„mìû—n¤:Mò»úƒÙ^D'99FôÈ£Ç_ý¹Àh‹Ìy3 𓨜‹uÊn ÛÉD¦÷ÅÆ§ÓF›xžo¨W1·¹³kYé*‹¡‡’ ‘“ÑâðÏÅÑÉu{¥;ˆ¦Yö‘;z•±V¬òÁÕý¨7èùZ‡¢AùxÝ̨â…cxC‰ÍXCê×í B|°²×„Æ9P¿ù`mÑ¡õcv€ä(ho_þÎESÒC™£Å=U(÷‹æ£š9°-»6žØ ê¡~’î>–┾Ý]݇ÈZ7ÒNî) úíqŽr׌£Qà Á«E4Ëã©ÌMf˜¯ »,™.ä/¢ú78 ÆÀ»ÒáqÜk—íLòú*ÇØL®Œ=ÿrް††L¹†€¢|Œÿ1Œ“¯W·ŸrßðtX”­å!HéõŒ=À“óÿôEO4u!ö/Â8Ì×›'YLŒ,Œ®¿€ÀƒgA²H—¬nñÁ•íë®T"é´œcQë¥ æÛˤ"%Ðŵ"/ )ªÕî­æ´m7ÎW8ýâß—×·P Á³:ð¯çRÄÀžçµ"ÙÖ š%šÁ‹¡:¶À<¤iÌÎsŽåÃjUîv¶ãÀpÈ­lÝ nY°]0¯ÝRÉ€Ï+ÌñÑn=Èdk…¢K·ˆÛO Ï ¾®néÀh ²]-×<»hòk`od¾)ñCA‚Ê*Tâð|njŸõM^ ˜–6ÉÇ–ÎÓ„ Ÿ;bhøÛÐjvagoÅ· ”eCÅz”͸!޼zXØúZ 5²8 d…Õ¥~”>¤ïÝÓÓç±'ÐßX,ðcÓkÓ Äh÷šÌA£jÕ¸PéEvÕÂ2@ðGæ[†×õ?SÄþÕnŒ\Q“"ûúߎ[ò5ê;Ú”÷±õJ9‰ú€Öʼnó.mãó2êOÎE¼3°íß{Ì€’?˜6ôSƒõ£®[®ýu”r&×ZL±íêŸ=É2Ÿ®m:ê­@(a`6b*D¦Ïcmo¦ä+‚à Ú]×Òlãù5öAL4ªÞZ=ÚíWG¼¨7ZãP<ƒ,¶'Mœ|s(÷Õ¾íCµuÇvIH4ïQ £½w>Q)DµóÑW3—OÜΰ…>áÇK"ÆXÆ÷Å.›£~a≫ç€#ÁÁÆã´Ñi0Aƒ8B÷v·é:H×*d[ì\ß¶Ã7VÈI‚6jWÝús쵄ÀÏyúN„ í—&ï:NýÀ¼÷ ¤÷r86õé—³†æaRýå\énü ]^+"zDFòÁÒz¶Ò-6Ö\õ³¶}éÊ 7 QÂ,è™~ÓGЈ+q ò„*KÎÕ”ud¢U´v*©µV”ßh74JùÖ` rs…ÛóRpΑ:Rô¨D-FÆÖ2¾•¨Ø+êk¢H8ä3Y­iÕ·7J7òx$0x]ÇRu‘ž5äß¼BÇfpŒzÃ?–F~8!—ÉÖõ §Ÿrt}Í“‰šÊÎ)ÐX0“%Ziã©®¼§ Ör ¼¬ù¦šÇœÞCúá±í ü¦[¢ç¥Õ…— ÝRÈoÛèUMCƒµ¤úDÿ ©®±·Sžá B*ùú§š:{'hu‘jŸs°:—âZ`«ÌÜn˜”^ÞÛ›„õãÔífp™M´µb:K»‰žü9Éåg°?"N™GeĉØÇA™Ë TWÖ‘æ,¦òPcO‹€.<¶³D0óûú¨¡ò3f=ÇòŸøªxˆÃ#Z¤‹[íœÆýŸ_ƃ$fÔZ¼k+Z_ç¡G õê£ùHf‚·¿å¬P ºÑµúª£úŒm(Yå’ ±÷æò­yrb›ƒGÊò„Äù2^ò¨—Z%Ÿ¼‚ãÙ(:Kö ·¶²<ão–ÁíiÑðš˜Bü‡,ƒóÉB§œ_×Õ6w/¨I]´À5Ó¿Äãm½öÎ(–ã‰ÅryÇ,ö_¹Äºl†ŠlÈ£Ì{îÁvCj"ì J9B¼*¼vý¨å3¸h²FõË*êMoOd?á½æ—ý9‡Ôº¢¦¬ÄÝÛ¥6sÝN‘(6\næÿ þb Ýï·â8’µÿ‹²ù«=+œL;ô’¶QÛ÷p#éÛ—uzœü×–•¿ãÂÊê6ÏzYTü¤“áö’§QYfµì™•|nÉrE1Íf²ÔûÄøRÜ0s-Y)KêI÷Î_·B·mnÛµbÝucÊþس2ûn‹’ÑjNñáì<6ÇjhU(_€¸×šžà]F'»;£€dÆ=O€ŽêÞÎEa};|ÚŠwMÁè1I¹žü3i×›ZX[¢p.˜¾iÊfi(í±ðO𤛠l‡¡p}§"‚ªŸ€‰hHþ»âë\`€*ó1ºOÎFï‹÷Cò 8™%ÛßìÆÿ6Ì,AôâXÉ&Ý´˜øFíDcËd Êf|Éò”Í=8KäLLÄ*Eéžo]>ë óm fjÁKàßLJ9¯å¤Æmͧçð>YÇ÷ŒU­÷¦n —šjÿkɶ€JŠ™ð4,¬Ö#œ³—›< !Ëí³Û:Vïp0žäÒú®adM4)Ýu+h‚ìì±÷'dx|)KÕ,œ ô,Õâ¶~ðE ¡W‰§]'Q bxW¶n…Ž$LB/œö˜(” æŽéü™:·ä°V<Í@‚Ïôl8yŸ¶âXi;@yôX¼™Ó]¨Ç²Hÿ²Ça† /MñR%ü³¥Í$ëègïúûÉ›®à¸Hʌڣ!ãqõÿ³³9H:Zs"å6$;c»¾‡o+Âÿ”°s ‹ìÈ©kxIÎhŽøa…x†;t7¼~Lzÿ¡ôr9ÆZÍêäÇGî¹HÓŸl—ÊPÕcÈß0£Öîi_K´Øƒzö dbè$ãKÓ¼=½ø‘p .¿÷$Œék;‹’`2–Óž—Ô “›Uôz²œ5ô `A¹à&Á ! î›ñÔöÆ!ÿó&Ê—Ü?“—.µt…7Ÿìû‹ÓÄ~~ÎN<±y;A¾Â8Ï~-5—:ÔN”áÅpº‘-D-— yY1šh'…8=ƒLHÜÀP^ …V´ãõÿ¢f#¡c*!õq(–d·Ñ!sš‰R­ì ð:[Ü„+uÑ‹Kè/ÖF •œ¶ÀȈtÐ/[­’=4g«?ØJaã&TÌþë¹À‡í÷¼Heƒþþ\|©Ö¨ä!ëQΈñ ÞÕ|ú˜ÅõçO»Ì.¡;1¨Ä æ@Œ¬\® ¶KÒÁ ÿ™“ëÚm&`÷syƒ“›zÜ 0QqFËR uJ†kfòhqR¥Vô<>x€ÿFIB@WW<™2F@MÃÚ­Bt¼n­·ÄNûÕÁ‚Ò‡üg™ñŒc’8÷"ëÛGÎ@Sƒ'YÅ;1ÀåpÅúlP_{©/Ôá U Æ?H%ÍÄè$à³!AøÂ¬‡.‹¶Ÿ¡_H>¢Ž8ëSÕ„Æ/¨î16o†‘FüQœæåà§l°“ˆ Õ¥$D¤'Õöæ…0ŠàTÞ’¼ ¨x«M‰ø—Ø`£½GžˆõžÂJG6ã{ï©÷Pú4¬Ì/jIIxÏ‘'ü¯´v(Úvºôò×¥©“ÝS‰`¥aϘ̈WÔäå{r5’`G 4“ü9¸J“ïI^ ï"?ý…/& j9FD¶îæ&B‡´[¢õ¯È…[µ‹ÿ¤f%›§³Üq÷;ü8奰Î[Ƥrîš.¦y«ð5UÏ%x»"*¯È·Þѳ7ËʾV=¯Eù-Q:8IÔT{ý'“+èÎ$u%=2¤Ü% ÞL-; Q?m%‹©Ž£=…­‹QÉóáðËOÒM ru+B-Ö¶HÖ•ßP&`#ô… w– ~k›ÏÚ8ÿƒ-›ã¾Ï§_–v•m>™½J#õ KS 4ÄŒ½°Gúk‹Úk®JvZ£BI¼7Ö£`¿]8Ç óË™¾Ù+ë¹=ˆ¡&Ý•Ú&ùm‰:€é GJAJ‚:`­Å°ZW \Ùðržæï…ŒòCþ/òåÉ—áÅ€]¤ƒ›©~‹Làõ==³ÛRRz;ìrf‚)¥Gti·C˾ a?VW׳PÂM>¦ŸÐsܲ¼k»3)Ò§QB¨H^ñsÓekY(êUb‡°Îç´úyˆ!öë{BËÂzÅô”qÃ[H?ñ{›zΚÃÜAWE±ruã˜Y+ˆ6¶'òA†/KBcUâ1ä¢÷ƒÅ0({V´Î×Oå£å‘ÿ÷àPHîp¾3Ñ  4÷< “ÐïBVоŒZ¬§&6PföOY] ùé«96ô‰õŸ›§=•ñ 1—é5$2Ýxžðï¬*¹u:½9%Û°ÀšÿÌî@µm‘I®4n¿ë}þk5yÿÊC³nš”êȪê這úÔRP_t›î™-­é±Úac¶*–艗¥’±àBáö™ ô­Ò¥ ë„>bŠ$éQ¿«•ºW<6¨ gÊ’°P°9°Öý1‡ÄƒÕȱ¾\=áåŸk‘)7Þü_ðU »N8õnxè™­Ãs°_T`·ì1ª¥¡„º$êžÂ^‡ ’¨‚z4†¯¯IM&W3¾Ê湤ðiM _¿(TZN :úïwøå:u dLî{4}$òÞG[ºëdzÜî‹}@G[•YuÇ^4‰§ÿÏñn¾QnPÁ¬BÓ"D¤#ãù,ñ{’ËÝ P‘^š]¡ZÔ<¢áÏP¢¦Œ‡Y/dø!ÓË€-§ýÁ#ð•ÝNzêcwšÞ$ªa0ž¦¼;òYkF…ÎYIàKtƒùÞé v+QpÓ”B‰„BC|ŸÕ8éW@12ÚzêZég3ÉÎ[ìÝ9Éá!X9ØÂìn5QEØô`NêZ|ð³1Û ¼ÿœ¾n­ÔÀ_à žà¤Ú£8·K÷ #À ˜÷DzÝÏÝá5Å÷µû¼úLh=™‹jï•ØW*W|ÄŸq/¼h{ã@¶QÃ;£Î>pSÆ#!lqÙZ8™kÅÔYëRŠmÙ>Ó¦„"ÊÔ½&|c hL—/çl| ì±,–†vê‘!ñŽ…r–úƒ2âQŽèÒÎ<áÖ¶‹¨ÅhEGùjl}…Xí€:Ï)̸’Ü[Ü„~×9àß%in&ƒ¨TK‚’=P ²J¬–1nA×Õ€†ázr ;‘´¥òÔö ;sÒĨ*ˆ?¼ÛmM'³­5„%Mñ\7*f¼ÐD@0BÁ^Q„¹·n/ATô+Ê1ùt4I²çë‰ÂXyK1ƒßÖ+®C-\÷3$:êv;·Vr(”߆ÄK×7$Ý«Óõ 䲸݊333ÎÔ´xaÊ"º6ÅŸHޝ{ ‚Q ‚å» o‘ö:óaã³1c=pèzЇ*:J˜8*¦}³} hÛÝ+ý(JÄix5˰6 ì}àø¦#…˜e„°S¨‚BÚÃv_ wm‘:×_‚/‡ü’~¦™Á×è Èá»þO‚È_Ö0¼ÌVü¦Å¨i±ÎæÁ™Ûº¢|DV´p2mîT—w7ˆøl'%lñm‚„ž=fO€OM=!›<Ž7Œ¤"TÄ#MpǨ²åëˆ|]Hî~:Ë%Ìvʃ7æÄœò¤öý }ݺì$™)|¹ ’¬þÄgÑÐÓäÚPõ‘ñv?ÄW32ä›bôŒ8Í…i®#–.c$N§)…œRF€[7kÕ+@l­“!¤_£ »8ÁÈ@OX8À¦‰òëýÛÆ~2Š}Ø(«)ü“¢Õc!uçêí¸4ܰ@9"î“׃L‘^֭чRg5é¥tIýÇ÷,í„ÒBy âCf7æáoGQNŠ”xß N ü¶ ïà·©ã^™ t–jfVÂD¤º>ß%Xµ¢€·+‚že²q &^àÏåiø’ÊèL[QÌÑëݬ£yô©Y¦ûTE=é¯%°«%Œ°æ@ BÅ ÕÖIê>^wž¡ÍvìpÜ÷­ð@4~‹=Bb¿a–AgÆ)'Õ¬íóÕ'Õbí¯˜«£—à¨ø9btÞP”àÆž-´ˆïÌ›uY@É; œY:@‰‹^ksM$å¢w¡0u*ì0Zþ¹Ú^.\Eá\ý×ßóÝýgä™E3ó•³&ó=iUÎ5µe/ÉÜ wÌÙ‚r¨Ç]èãåâiGBÛÆ¾)£™)¾CÞØZ q}ܘ³3ˆ˜ÄDgð“ÌÆ&„ì¡é¢ñ ÍNtâó’‡VχûxZ¾×sÌí¾ilR¾8f<%ÑJ \ \u!Vz¶•ÿŒ•ÚP|1‘åýýFýãgÁ)Öó@,Ûû97  @¸³ƒ‹hMÚ)ÀÀ+¶oõn•¸8„™÷ãô œ”,KJ¸o‚q½»ž0 šd`ˆ„Á9Àh\§“Í{ŸÚÆ.*lo¯DÇÅ<`UÅx-8¸ÌlÙ9ÆŠyëè’¡–åé„§ C_·ó[æÕÝe–Ûó"=pŸ a®`ìøÅ5†D”?––¼Ý546:'¼&æL(Kô»"E—ˆ‚¯Æ”T/•sæ=G†ªæÛ R­PŽäëf5üîel’•¸ÑÿAÉ“­ev|Çϯ">îO£’v˜V mÍÜTL$=—v÷Ùï{›knùt¹ñNÆÐOg‚RÌ1ž•ˆ3cÞ ß9[¼•¡í ó… B†ÒzVcÁ$u¡eýÞÒõÖ uXŒ8’£¹ #…Âé^9ó²àL߇ŸÊæX‘ nFŽm¡}vç~xSp)ú2ÒXïÛÃgùZ÷8à{ØÃA~f û ô|® #qïrj–¬Í­ñˆ³•œ ¬Q}ôOl¹¥Ÿgóü\êk½tøÀž‚³Ÿ)~tE5cÔIV÷àSïÂ.ÇÂÇÄßœå’=õþ"g<«xäl¿ab½êÚ¡žù: 3ü÷]ïFpM?>Â/V>9BD\ [,™=½@74®˜P<*(^ÿM†ã>Ëbþ&P¤ BôP_žßœKŒ”‘2å'q ØðtIcDïBjÌcÑÚ[𵱘xü#;¥Û›ÛK`q-‘! —õ‰ýõ/6J þvzmþ&üû<æŸ`áf*äâŽMï}âƒÊ“ !¸%d2¸ ¦‰O/]-è.>®OúŠº]…îð“E8(f—²ÒX¤¹±¬L³PñÞZ 2´¨âs{ZûäîV,ðÝó:§•—ãæ¼—^ŒZ–‚H±Ð¦ãºÑL@N(ß,õ|éWVušjp¦LÌ!ïǬOéœà¥}8ýÉÓ}/E[ðl±(’F˜ö·3‡ÌÛ„BÉ1rþ•ÉÜ($ªd$`/•dO›—yjq -‘KC×ús«_oQ{®ñZxÈ8ŽÒ‡”“ 7NÆÚáï° ÆÚ¿™Ë1c…Bm‚DwÍD[.¸¿ƒjKïáw/÷'©›Ìó»î¿¦5—ëda_zH(#ÈJ®¤®Ÿ*<Ldߺ¹2NræL¤DrJä0k3{Zj#‹€¡' æ¢È×(dÂ.èZ’‚ízéÓÀ‘ôà›„ÅN¡ƒuýÈú+>•ÁÛª¡X•ËvGOØz ²@ÓOhçS¶ãªýMÅᮚ9dˆ‚b ªž¹ßˆôÂF†ï„× ö‡¿F :©”«EÈfµñG^jòÇ?e†òÆZð$¦­]ÐM\Ü0§žV—ØK·‰þ"f Ô‘‘Ÿtýãjé:ÍÎ… êáOþ”û íuÃõ^BaªósOu®Ò¾Ð;{ÌL` 7·þƒã}Qê†æÛ^œÅCŸ0,é /Ñ÷„µš#¡a{Tž¢ÐŠ NH%!4ÎüØ“žZ”¨:)Ó—œÁqép s½nžN?N›D†3úÏ¡\ªLWUTv3·ûÁºMkžŽÜÚ‡Ñ C\ØÝ’3dGÅ OË ™ƒŠü^ÚÚÛí=HÌ҈ç2z°èf*¯2ÿ éZtˆ<ù\d¢ñåNB_*1<×Îx¹ºøÊÚ#fyqК•¦x8Çw¦–¾jÃ|Üaýù^9c_žpò­/_®¦! Åµ¸7+4Ñ2{ßÉúÐ,F–©1>ûCÝ«\4êr #·"4¡__qôôî®ièÎTX[)0œa´[ÁsÒà›[kÈøÃÅú,c.!*žliî«a7±ØfüFcôòB`± ‚ó@7+®‹ëZ!T…cÌØ1äˆjbA&ÝŸVÀ®w)Áý'.M\KS¦àp7*-ÌÛ˜©~‚ÄñÆé-œ ŠD«©¢è3x£þáÆnç¯ö¿Ÿ^ØQÊù„ÖdØî• ŒJì…â±Tiâ.ZÑqZC?JëYr™² ê_7Í£oD{çV‚“Γ’/jÝ1GGÄ©§šñäFÈúhád°I¹‹‹°ð•ÿ”#7“rYжÇ¢Áëóñ ´ÕÆ“g'ƒPVšô*\~.å­ÐÌ›EU«P@L”ë}Jm#>®D—¦ƒµÙ©ã)œØ÷ExC(ÿšÔò®x ýÒÅ> 2æXJ2&·†7 í¸rõ£•í”ßQí„ÍSKóA(rÑ<¢5j‘àÌí†&Þ’MNîŒLPE9–Ñ7i«þú7@ÚXšÍ¸mݨ_§Dv2#ÐjÁ¹3ì :žl×Õûͨƒhº<„@Åú¸ƒ_ÄÜ@ì¹܃v=Œ¢[ÆÔÎ1ƒÌ³DÎì:Ug°X$_ã{M `.× ¦@ê×ÇOÇm¸5A|õv+í§Ö¯¥¿É³lÈ&¢ïYAÁ°Tkå²ìâ%6¢=%É;œì-_J’ý…×ëÕÀ9§¬!Å3ä?ÓÉõv¨[8!XÓÛ£fQ¹Þß…$Õ»¦!sJTn›UãÕ>&-z ²C „Rh=áØˆ~?S¯žêçÞßDIÙ(xô8à؃o4¿Eu¯ûÊâvÉ?ÿÝØ±8j8€“¢ìȉÞ^ó=z_Á ŰB†ýÏ]ÂÒÁoÉñAÐw@Ó’ï+4„ñ:ûÑ–— IŠ’Ö±ÙÃRH÷`òެ’eŒð(ÆK3u®ùVÔˆ£V9.\ǹíìH!JÅÜ#{ˆéö•ã@øÅQº˜Ñ ª'B˜L·±ÒN3QžšÃÉ`(Àò§œ*‹qxl¡g©{š‚ê­<ì'غl1í‚0U‡ÐÆ¡8dÔ-ðþe§Wb¸¦5ÄR‹òðÊ@l$¼wIQmøÙcqQÖŽ†>Ï÷Lƒ3.NAƒ°‹©mðn ¹v¹3 »¹1è½{ç c¤§‹&¢–Q\5îs­“pN‚o¥qúí ¢‘w„ÙIÝÅ»¢£Z‰íô[î•u$ƒìߺ!—"™sU¿2Ð厠ÍJöT‡›4&ÆÃüíCwÄ.#’1z¹›ÜM<«â¥n@Úâ‘ü¬}s¨$áPU7É®oƒf_’°ø'Ì}£†î¯[\åó’ÝÜGCDØšF 9l±µîxBZ÷¬ ¯¾A ñyØ6_Ðø$n. çáÒ½CаA2ó%½«£áW©ÏœÂŸvAuS§’7!+—uW+—„>Ûâ§£-×_È…×·.¢…WŦÕß”Øÿê³v–âŒüöË.gû€ óµEu·²–³åÜú3;‰¦çŒ^Á”e*»t.©sЋÀÁi3òmeï,$.GõÇ”'ß×ÑÍ…e·@›¹ŽáBh{? zÞwÞ·ðQî Já,,á3€›CïUå‰$a8xTþÒ1¯A9÷ú<‚¥$ë/â“÷°fƆ.dj‡L­_íI(䯆±ZžâúÓà!=¥pš°æ²e<4¹–ÃU4Ì1è`¼ #ÉÚêlD?M|ÃÀ OÚÂK“^O÷&n£ "¦“x”[Ý&Q¬Óþ »U†ú *çsA!ì—Ñp® ŠvEI2É¡PKwâ‘\E¥.b²$#ÐÜó¨‡Þsr%Èí/¤$~Ø‘&ï^w§>Е¸}öD¼æ£ó1+©ÍprX|à¬sGï’-êDîï¯BÚ«L0”mÑ<ú‹D16´fæ´[¡a0BºYñ~1(e ´Ý÷p=È­Øz_Ê)}ùX¿ã•mçWN.3¥û”ÒPBÓ;®Ä#>õbÝSËé!šFÿ¨çw×ÇŸŠ¿þhÞÞ©t…C¾ `˜$\6Ùn&ÈÆÆÙûuËÁQãX¿»æ±“Fw0¶ªn)Õ³º¡ìäÑx5‘[¾ýõüÚã(÷â”ô  ¦BpˆHýÿL´b&‚J«>ó> a™Z‹81}#Æ["+§ííë4>‰²âjÊüÆÎOU —”‚á,ÅÄöP¹»Ê³*éç­áD—¬R@¯%°ÊæPï/^Û-J7VÁX·5O„œ² «õH+´DÓ«°iL•æ9ksîq%KK¡ñ11×øKK¥ßj »°ç@ÆâÅÊ{2nÓZ…½›žò·bÖe¾õ`V¼¬b‚aN´˜‹é¿©D`•¯ø¦í´àÖ¿†§öˆF}˜Ã„„¤Y¾ª™³«ùn$&&öì˜JÇnfî:ºhC§q°†K7 t¿ÿ^<¸Âï‹%AÏþ–<˜¢F8?:5MeòÅòz€ž†™`\nßÁ(ݺ/ß§Ÿv”•˜üRìV&—¿§Å¨ŽÔö‡+§¤o5°ñ¦b£³¿©¯ Äl`æÍ¼YýnAF¸FpênÄp~ïQµSôÒvÒ*Ý©i[ã™qÑß¡(åhÒ[Ý_òÙr„þ,¶˜žêw§ÝÝs¾ÚØ]Îõr9„¡Àø aÜ´s ÑŽ|V°¥^YY «lM|‘ó9æZ§Pاóô~ਉˆRwkȉÓäú?¥€ ¡,ýÎp©ó÷6´•*ºà¨ìlÀÚö€¬¼1‡k²¶; p4{Ži7ïýtºWËüâ^ûA.¥ 4ƒ\(ôÂGƒÁg;0(À_€ü§'ï7-%¹Ás]‹ŒŽ?všOOÔÚ€ü.ÀŸñäB³È”®Œeƒfĉ8vóœ-±ñM ýNèGqÌQú]ÍNü–ùâËËýoNßÞÄÎyOn˜Yˆy·ÛÒ–àÐé«Ñ&ãIdýe_Ôç×’L¶ e/_û[ૺg§Žô7ÏâyIyi©i\`Æ·¿¬H5±JÑcY_ôŽÔü>ü§óõã»Ô÷ãÃLSµ’xîsyè5 H[¬®—X‰Ç̶]í­z$÷/e^²LHœûêÐ3U׺½öB¸©±h.h#‚T~Îí¼`®Œ!#œ0‚VëÉÒSÏۦü«Ò¤rÙê!îô^ðÆ)/:%÷Ydå$³²„Q×i<$#O4Fìî¿Søw ·ñÁ5®ÅAPdHé²ó¬~Gñ$3Rv J%‰XO^ òˆµg2«¬²­X*iÆóÅ 88kb#Þ2{åäÉðú€ÚŸã)ŸåˆëÌ·—L–Šoi@Ñnýì<ß«¯¨\²>ÏKùÉ 3ò š0%O³ß8¼ {]Ë^´x fbÄ#¢Kro‡–?¬"RßXfúY1ۅТÿ³†ÁºpóŸÍ ,D^þ0B€}ù!ì¯!s_æqÍ=ºCGîT>*±’\E£²Iþ.", ïÒGfÿDðÙÕI”¿+é$3®Ã¨û –Ë Z% O<Åiâ\é+Š´‰âü~OAFoLws°¢…fŽ;cÆ:sáDLÞ@ªoàŸ,CÖ ¸r&ò#èä·+Š ÀJh8­tÒW[›y¥ŽÔÿ³<óÑWGÝ€œƒ˜ŠÌ‡o5W& ü?JŠFiuÖ¢ó`,܃Ð:WXø£9"‹ù—pT©ïåºÑÕúV5óK«žRt)¡C«5có$Ea1 îÚiÏ™âÞ.€ îïæŽúŽŸ’ÑfUßLš°L•©ÖO­ñG@Ý ±åHÑ m÷ äÙ'ëg)ǽ´ºVe]»‘þÛ4´Ÿrßo˜ggJeå¬ä¯Ëªrç› ,58•>-·'8.,±}ñGjfý=ûµãù£ü‹Û k׉`4Ñ "÷/tAú±ô‚@4G? w]ZŒ¨7yF–Њ٥ËEh˜Ð®rI__ֳ祜°= ­³K7"`íÓŽ‚À¾-ÍÛ1«oo¹·†¬$wk(y X,8$CH=“(³^ôí>•é¾»‡¥rÊËɉýeG^ÇF^XRûŸšX"!S\¨G`oÿ9çr´BªÅ¨‚<‡GZò"VvÎò់ƒÉ#¥$èºò<;He wèôÁ8ç÷æ~ l¹qÑ"ÙËŸþ s$=B1fÏlø÷Åe¿buåërUÄ8§Åy‘Üæâ5+ûMöÐÛ$ó›b—‚ÞÑ«l@™h°ä–¥}ðÃñÅ*…ßyÌüjŽ@ìâv+tuÏÏŒ£X v/ Á¥˜NÄ߀¯UzààíU4òÄiv :«‰ŠRÆÀ%ÑU7™²N5Þ6lí?ÅÚPwß$Qp¡ô— @¨hÊü¬‚D„»ÝÐVRÅÈ…‹&êûSPÞ­ç>>ï§òkÿ¼e«˜é‚Êx!j€š.€ìƒ‡²<º¹á~ÉÍ@ÓÄú¥ò>óë¨òºFõÅ5£9Ù=x”7Ïzyxx‡Þ–×ùŽn!b÷8¶> ŒññW ‡äÆ\Ų ¨Þmе,Wûu±œí5¥Þ¤²H#êdÂGqäD,´í‘E&·лÀ Ÿ;®áµªµ«Ì‡ÊÜʬ-ðâ#È’ØÜX>”[_¤ˆNÁ"ÅLм»¹Ä qÆ3¥,¢ 6Ø=Þm¨)"ˆàÙ»å- –¼ˆ~Üö“…Ö3„á^ƒü=¶üŸBô¬[ï¨lcE5dÂé/’1 –(;‰þ‹>oæFËËØÞÏH3Œ5 ¢—$Ý’¤éNsÓÀ@"»ƒ_™ExÂTýžš·œ¬ 7¬?Lͨ߼ˆ×Â_'Õ1õ¤‹ã†Á{³ÁM~ovÉ#4ê¨ð²·óÉgϨïáa[ÛF›$+éNɱö ßo{¶h@Èzþm§N¯hPòÌ¡6ªÐ‹þê 'I±õ.—}BjÞA³ãÌúå§ŒEq¨Œ®?H[Ó÷¿^çÿ†åÉo(ÀËY f!®;:æÔ{Ûº£öpÛĕڰ˜fo¨­]A¬¼¿Pc¢“†EÔ˯ Œ;¥åw’šâ[5KpX´‘§ò0Ê7låE‚’Íbv`ÎA¤VKB/xœéjæ›­0Ì”4 ¥ñ-°Táod±›ÏÔÄ[%òM¨ =elŒ¸ƒ.ÖJ%óR—8žáW^ð9Ð~e$Éu¸zé,pß9¨nŸçFà·7hmæ(D —š“ÒÓ¸!©ÂyŠ;}'•z@Þ¡– ÛëúEH#óf_¶áó6(P¢(ÝÜ>ÚÆôKjžQ~ØÉˆÉëˆÖˆf¦=óiçƒëH 3³I§(‹ ó P¤4{A8˜³¯5ŸzYå=¹ *ê¯òcÔ‰ä¡+Ð]óý-ŸLÎf~Lµ¦ùÃ+_=I«Ð¼,^MK/pÓoº âЄ LˆÄKó½}æ°ÄLoOùÂ[,¾Ç ™àü‚]™ÚòÂ7›UÄ?+ Ì5Á4H¿,Iâû;ñ2÷ ˆY®;?Ûˆ»}µ×­Â(”7rèuE·3Ñs+SFUŠÇqȵ aóšŽú¼3iHàU‘ËÍT}[ŠÓ÷®ün«"ª0^~G àã^ãŽÇ5Z8¨¾ 6Ù[Ÿ„rå­õ.º¬'Js÷ƒc®ï³Ï±ÃˆÊ&\7ª‚ÛÖ[°¨m0´isþñŸ…‰Þ’úÞn´ÌQ3ê8BvP­a™åãJ{Bëðp½¤ø~!­µÆ?nUÖ~a‘1“-%»3ÖÀÊ:a·PÂôΞO€ý-t÷€ÑÙNø#p÷‡¾­Êrʨç4`*Q¤‘: »·3×¥G;sgÆ,D9¸%"7S1ØÓ28–8¡Èp5¿-s‹hÏro™µ91²U;S¿ßûþ¶<–R]îõç;GWñ@lX+vå!%|èäýn¡1ÈM-|‚È!iP¡(M¼¥bÛR ƒf¯íbÉ}K{µ©€ª¾“_¼Ùæ´¬ó›p±W¥ˆcârãKÙ<•ÑÛŸ;ñxæÿfG¥äH~ýè]Ì=?ך)*Ê~b~%æ@S¤ÞK!3§ï´žÅDû4'ƒŒ‹ÝØðÙìÑTçZ@a vÌ¬Š‹Éè‰Ñkˆ~â­õmWšz—[Áòhzc…&HÙº šÔÂ;:|ßî·”dšg‹ &éI(É'(¦>º=à:Æ!OÂ4õ*Þ´ë’“(xPÛZ’^3¡ #•}8!“ï#î9Xé=>1­ƒ|{‘–ÅÕí=.Wz°Óž¹¬kÖÀ³ßúû§þ(‘Ɔ¦ã†åNTô$x|CoŽ„ñ£JË.š“€YZl ÷ÆëÕÈ+÷øUŸ–&Ò¸gK9bÒžbg¾¸nÿÈUYÍ&$²7ùµ\^Ò ‘Bû¾ 4é´Î¸î€ê ¿z¦}Õ–ßNPd6#1Ôh`,pŸ~QØOÚÛÉZw%@ÿ¨]‰o{Û¢@=[“šöZ´¶8@džš™ 00±Á~ƒŽ®áî Á‹øë¡ì¶úßúóIöÆój[+5v·W"¯²?1ÛW×¼ìÉùŠúA@º ÊŠ&fz¹’º"é_Ì—é°7\ùgžUG`½{ÂæM¬ÒÍ/æÕ•jÇ#u5gr ¯s|tt+P½Sú§ï$Ž!m¨EvßvÌg¨ŸórŠÔÜ~û¤…èCq™[+©ƒÕE'¡hîÀ9"vJÔÌša|¯/ ,«#âB–§¹ÇºXy¯+íËcã‘ òüFgËy?%b^V!ZxÆÌ™< Ç™!LAæm‹¯„y#ÉFr\ز?† ƒMoLûÈávv`7¾¦ðbPßBt'_W‹«Êÿþ]¤[BÊ´Ô\¯è®z #â¢P=žÐ§‘§±ÎκÙÂN•DmN=Ì&OÔè]¨ã’üljÖVüa¤Z ÄB¾öâ<7<åt& ŸAã{×ÑeËõ l…<`R¢€Hø}š ƒ8µéã1—ø…~x•eªt7 tP½Š¬¢m@¥ñ‘ó8ÔoþžŠq¸A£¿#¤Ëæ¡ëÝ&úo^Ѷ.èÉ.‚¸c‚=‘ÌŒ|KwGep‰Þé¾Q—uË"ay3«R¨EÅY mmû¦­µ Ë?kÃó<YV—Báêïõ$¨¥«¥™w|?…xu3(LëÍ]`ëù¸/Ðû Žç¾Æ-)ð—mhŒƒÎˆJ]×ÅÐQo^¾Ý¹wC*jaôÉR9¢Ímú{»6Ã)£öUÞ? ôñçPœ¬$ÍÙ–mÓˆH°Õï•7 ¦žßÖºçPb#Méó%~V’hÅŒt½»5¿>>@]ž“@ÀY3àfàWÁµí茼ê›P®3š‚¦Ø¸÷Áζ¹ŒS‘‚Žji›D®æt½ëËJ|º;Y"{}4âLÿÅA6! ¡!´8&åb?PÂÜmXàÙO×f‡Îy@ qu2±¦ÒS j›c—1âÈË3Ò“«=”ÉVÄ3öò Q(ù¼WüוM'x$9é ŸS¨ ú7àÚ_¤É^}0c¨ééÊu¯”@þ£~‰Ü%œ|6(U( kI㘙°IøÃY:[|i×CJU‰ïŸt\*f¢Ã¸yØö…ù¶™B•¶Bç$b<×n#r~`7}-€¬…F‹cpŸd³™¬oƒèN5(”1¯VÊ_Öõ2Ap¾ÿÞņ4þ‹”~s F„¬KêÙ ¼÷‡ Áß¹!ˆr#˜‚.‡î#.fز„Pãì*xß)R;È…ýäýUç!+3ÊaE鿌p-?.ÌŒ9 N]àÛ‘µƒ6ÍQ‚i¼¬ôÁ~ôUµ²ß€«“O¾UmÕ7¿†I-`èÞOò»¢RýUd9¼ˆý:ùÆóñ´gÁ‹ð¿.w,Ëp½}݃^ïn½¢*„|¦m›ÇV¥ciÁã0ò˜T¤«½ÿÅ‹+мWüöJ4Dv,’1tŠÈ†_Â黨Peòñ¸{5´.^ó–Å3å­ÙW“m!%MÀTGŠg]Ä teú/7t î ‚z}Ÿçp£ód4™Ø;thÖ9üpü†[ʃÖßrÿ"`,›¹öƒæ¹”rš˜}%…]tÖü·ïûˆ¸öî‰1î ; úé.¶¶HU ÛmLX’£qrÇü†¬“Vç‹Î™ÕÌáÙÙÖﯫ`Øq×ìrÒ̓WæR°C;š|óž¥:?ä'†àÐæKëk=n´@ Ù¯ •Ïz'xÁð‰ú÷Æo«LÝ» ÅI³ P7mŒ÷ÄŽ[™»ÀïhËX§¼RŒ¼M/í>¡aÑ3Q(ÅÈÌÇI+(4à™nQÝÅÖå•Ç@âi—c$ŒªrpÞÛ–8Ù„ÝñØ[/}ŵß_Ä0îÞ´¨3´.dÚ‡4…¸¦CgŸ”UäŸ vB’ÐÌÊr¯Glº” -Šœýœj¦ZQîÞ²àAM­xÁçô6ô""ZìÈÄd°ÜÓ¤£ºª¢Wõ÷{´H5Ìn<m’„ø ¯_gs=—âÑTªˆ*qMÇ7CÀxÑåko¯ëöÍ+šÍ+Ò#ryOÍ­Ѽ#m¨wcÞeŒ'j•¨|^Á¾›óÏDî<òó“PÜ©QY®0Þp¬=hE'‡÷ý5¸e¿ß Kí£mˆ¦Å È׈¬ôõ¿1Ù zÏa=ø¤˜ë_yûCå©Ç$û™(×î@ëïYa5 èÍù͘P£­w˜Kª8eúŽGÄbø(%,D mÈ`\”ù½Î|ü ‡ÛhÛ“‚ûûn$ˆ "—ñ–±{ðtŒYíiΆŸ||š¬åÎ8ýé—•€?Òhü&üÉ…båæ½ý|Vï0|€ÙÐá×í+Jb$X`Uƒ–xÂïuÏÔì.2ƒçÄwn–N~’Žå)Î È-Ut/yþT@jžLŽù‚B¬N?][b+Ÿ½<ƒ/˜·I‡È‘î'5|Â¥¶)§ýu•ç·ÙWèŸOakm3ñÈÚøeʈY¹%O<éb*ƒí_Rºà,‰ï)½ò3H¬àÎC̈m´ìÀ?£ÓæØ°ÅÓ3ظ\›PÝ©'³|T믓¹ýˆ}BaåôÚmó¯CÙï-£ùöã›r»NöÇþ¢,S½5yóž—F7ÂH{ö †@¢@Bxê EÎ#ÿ¯ ®”kµ¼:J¨¤\“Ä¢aªœ…n¯±¬‹ünï ÀÕ<ãâ¡.«ôã¦ý„*£)bÓ3èœY “¥1ÈœÓâ2«¸NUpO”»öeÌ^kydÂgÎ<Ü—Ôz‘é¸#³¨7÷9Á-¨”Ë%Z³ämí÷TÔô ˆ†ÿ·ÄvPƒü\ôíƒaÊ¥ŸvVÔ…ËéG˜”…á”jà*†Ÿ9ßùä…}ò7C n*¥ Zú<¿X¯{n¬ðc{n©*oi0âü þÄ•òhÈ›åøBk‰lç“Alû‡²\×sFi@ÄÁˆJÁiž¬²oˆÊçÄu¸úóß”©FÌ W =¿†ÀÓ@·¸ÑŒz „,3xdÙ†‡š¢µ¾ †ñÄvÒ¯¦JY|Ü«£@ f0€âÜ·µ%Ôº-˜Õ¸ˆÚ—þù=á®ô±êK.9PÝbI,Z0:—wïr7•€ËãEé=›NÆ$ò·à­ò†¦iØCÑàP,ÕÌdð­@ Òü-ç"‰(["Hš… n9U±Þ¨<•€š³ª¼)Ö¿LÈÈM«ÇûÜ_1Ý<Æ×B¼QnPfzJµØr€ä²ÛCr.%¾€ÑþvI;u”1Ͷƒs'NÝ6’o±ÿÞú’âÙÝM;ÒÄ;/°$œŒˆ9#¹¹^·!Dk>¤cxD§Êüüz½ý7+ïä }e-`aŠtÙíGmeì·Ý* ¤÷'ìF—+eFz‰éŸî3{C+1}?òm¤vUc Ÿ+6g¶-Û/C®C”¬Ð(D® ÉîØ-¤·Ý«G:Œ³²9åéÏ Úœ:¢«òçñQ}WÀÄj¶,Í…N‡rlÑsð Igéã#ãVò§¶za“ª¨§Éý »ŽØÇ0Ü9^PdPc®;Íáöv<ñ;iôj÷å®5UÄÁAËkº¹5û‰%r±Ž;²½¸)>DÚ”àJ§«¯sƒ¬O·©´m.‘ø Ù3m}餎ô!W‡ˆ5[\æþþ…Àþ-˜ñÎmñ$«qE×þgá’%⨃—¯m™lÓD.^+¿ÐY)'^¶WerÅéuŽÛh¥D¬-NU²qF½dø'àí#*˜ÖV'T0œ›?ºÎÌ\Ã2"ùïì'Œ¬‹~Ôüí* ]:Š»ÄRÐè[ªÁãöÁÌD["€oNÅêI1YcTæJÖ–MCÅ5Ÿâ¾šÄ»uª'‹€w}óŠ×àjr«cè¶_lQ+”8¤ ÷_ý; $þqF÷hb2ãéàè¹ý ´$pé”]Êÿ¥© Ë ˜aê†ÚÁ™Ç<Õâ$J9F£@1e¿Õw]‘¿5”qì:¥ž)`è¼%h_ßž¸½ŠW§+ÛŒe¡–à!mr‰¦•ëÊè~òÖÈ,L{“ b €Þ‰¾] bª—Ó%É. ÑM@ÿíŠàóËý7ø¥ßó>8—ˆUóÂn,W!ý>Öíÿ.u/?UM-p¼ KЪgO°Èœ²Ê?aðëîŠã!jMàˆSÕçFÝ|gíRà6^©Ñß&SrYc>A—¬BÆóõÉõi¬]‹ëhW-ÉÞi›©qŽ’jøiµ AâlìP•øF ²ë;„2a‚ìœÑMå<(Ì’yä;`ëòò°¹ŒðËÑå6Ð›Ó¯í¹™ÄÆáuÒ0Çà6H6Ö¤½” ;q» †¥hžÅ¤»KŠãj~Öí]Q<ôݰ§ržq|Xé3ªcá¯qã‡O+„ÕÐ^²ðU'Ö}sû,Òd]Þ)¾9ìG-XWæ“Ù\9›÷æ·¨6¹rÝYl ¶4SÔY¯nïvßâoÂf^«s¥²àÔ+µÙægñHpØ*úß7©`£Ð0ê78P ²O~Ë”üò›ÐHÖîDÉ…" =³º)ü+<9õ•6936ÆPE ÛøøÔžÇ«ózË;¼–;ÃoÃŒÛ:<@Œ;`Fz ðlLÂÀιPu˜Ã=Σ\Ä–.–Ð÷Q=mfv\Ïo|vŠã>”{ÈxkÖ;\Y9Gu\·°i zB_Ù8ør0Yú£²Àü²Ž'Rj)‘ë¾Fñ?fñ?iðwàðHÆ…dªtz§ƒ`Îëžï%Xߞǩ‚ýÀD#ƒh:«ú{ÆapRÌ…hz˜>- $Yt#KÉŒÙ.EÏLü¨húW;øF;Lg(ÒRÇi®óŒï«0÷i¿Ø©¸ˆˆ z¿J QcÊCðg1zÏÉ—ƒÚ” ÄWÞúÇeö ;¨|<8ĨãGR1‘ì#Ùø'2 Çñ*ãîÏ6…`ªA$½(²ô¡a&|‚rLñ5× Wíâ MøÔ á/A= •ß•¨î7ñ51Þ#VТ¡è qXåvl™ðá–…NåЬ¶rÂ-·zé<Ãùà ±’ç¾#c”wpÜ¡ÜÚcÞ¨î7ü †Ì²^]~ìâK²;,ÓPÝèŒvZÕ)-`¯ ¹.†¾SîéÁ¹,±vÝä"#½üË>qKT’^¸Çˆæ=Ù¹ÜêöÓUÚÜ·ŒG#ç÷6øÐg´Ëw.öÇçz} ±ØÜ‰»ˆÖæþò*)N¯|Ky¦Ýr–Ô|?58Ÿ#ÙQ+]Çge„GqÛß¿¸¸mQ¯®PÌ9€Qæ‡ò]Pßô]T¥@q©cõ`š^¼Ýíÿ®açÿ¢Ç*ò”Ó§c³U=J°F$ÅêÛÄOU8R»ÜH˜ã€ô¦O"Ú°-,B¹­ØFD.ª]Âcï5Üç7¿Ž7ƒÒ*PóI™»úQ?%nxOÐgN*>šÌ)T¡ Ñv!9J%l ó<¸«£«êÌ<¤à÷z»aúYpÏÛ®"¦šSíÀ®£.²gÈÅ6îÑN ±>ŽùΟ*ޝ ÁMv”úmšP虾JO䰙З?R¿£äi^Vp𽨜²}QëA2ž’ ý‘ªÒh ?Þes|þWÚ1«Ë@"»èOæ£<€¨&¯Ú2XøržpTt(kEK #"K¢ßA«ãE´µ;{‘k> rEµRìˆëª†…¶Žm¥V/NTûÈt ÝÌÑSeéqRO]ê«R¡Mf`qvMÍÉä"FˆüSa«Q´b*ë:{÷¹ôÒ +ù´ØÅõó÷öS:èI*àK‡ØÂ¥ÑûDA‡= '‚Þ^Q¹Tž"þJ,aÞåOg ôŸ\3ÛïGiˆ4þßôÓ¡é;&’ºØìO( Ýcö$ÐÃZñ–ÌUÒ…ÇÊ'ú.‚vyo."‰l}D+ª.GN{¬UBüãÝròºľg¸‰þŠ1Ëmr&˵¥)jç,P´…fŠQägЧ³‡N¦ÛPÖ&|™v=ˆôýY¥·àØÙùŸÊ{¥Ô;‘Ìö7L© °ÑÖ¦(u¦ Ö·+«Í¿žÆÐ[÷@ªm;ÛŸ·¯y`~á+Áˆ8/­‚¬sRÍù£¤Uå…ÔgÎõ4ô^Òí¾ËðçY_¡\Þ–u<±RËê”åáNh^ƒÈ»‰ß´Åº }9veX®“ ÙAêu¿ÞûÑOî‡j'~'æÞjPû'ž-$o1#ë)*ÎR§;%zô5 œÍqëzç™’þ/©¸Î¨ÊDµÏ@‡/º5­nóï2ƒ¦å¾.o¢É\7Ùši]”ƒ/$‹x‘@Ñvað£M}F_*<Ëtƒ—/»ëV@ ৤|‚IEÂfEŒçvÇ®3NÒ3hö1”~8Ð8"¨æ'’ä ¥lJˆ·U:Ì_£ÐNž”㪡ô˜£0¬¥ XÓfeœÿ3ÕZ¼/ —ø‚,í½”¾õM&"ÂÏ”jo:U:\›‹#Z[O4dH+rÞqGˆZq;Çüõ—UŸ›–5é:é`PKÿÍñ¯é¢ãž)øùkÔ6Ì\?úx|Q¬íàÙOp†l´2ÛÅo´Š™¥Îƒ…Y¿†ë]žû6›'ÒoŽ.uAèQfû´.U^”=‡íiºZ—h§ÜHèœNš-X<Š$‘µè µÕ›Åï¶'É“¼Šö“Aºo¶Ò}Z5mÄ{°F¸z»o5š8“%–i5pt—µKS¬:[B{kœuͻ̚œûq=/ß#‹Sð€·s‡k#úõ1Œ¼:Ÿ†9Ê`QÍ.,þ€ÿØ‘·ÊAO ø`g´ýc-{(ÈöF ~Ñ"“½+ȳ´ôÔ­i´’½‚³ß"8(Kà/Fb’º©÷›†)žoϹ£ádBØß9QùÈERCS2ñM@—V•6hý*Š ÄÏôFføx%Â(@µð=o}¹ä H_r¯NŅ좂 ¨'ŸDÒVL— [þߎ2añ vØp²g2bä“ê+ÇŸ± £W­ÊǧÒÔºˆ.ꎹʩ{õ/ôW¥#xžm[„€=(ÿêÃY¸7dºU´¾Äð6 œ’-Žæöý§“År5 ¿Ð[%QÖ+/:Ž#ä˜duÕ;¡©ÀÿðÄmö %,˜!…ŽÑt5ÍîáVÓ—k ž7£œ2w…WžÎ›òùÂUߊºSæ)úw»ËµÕ¢?©H¿Ï@ÌwH}9|<áöZÈÕ@ßëÊå çÏK QŒ. ýS³ Ôå7 2æ^ÏÄ;Ñ¥‹y,ßd]Ý^Zèø¥¢zï•<–~]¿‹|éå>ß(“?KïüÀw)ì9"Q(X9BÿöÌ+\¬[ÖŒ·†H_¸Ãd%&Mê3dmÚNÜ‚!Ýl¹Wv2±Wé@¯/:™Þ™»kÞÄþãc)˜C*lÁ®l>ϳKÚ!äH±à"áoXëN”KèÅGF.‚PKj‡pá0X¿/`ðÈ(q6¦+E…òþâe¸ñEŸ‡|i>m98Ë\™q|Lê:OÄÎ#ƒÌ´ŸæèMs¤èÖÿäåò§œs`„~_l‰«‘ŒáqÖÜþkUF?q¿Š}4rþe©°…7&ÛHˆ$õvXÉ·%ºµt³gÊŸ@Îú™ýÜ‚Ñ\:«ÌÎq•µ„è: zº€G«™*ïÁÀ¹prÅÕñÝÚ© š˜ÇêǾnN†Åà¾×Þ$’ÄCÜþèʨÐØÀ÷ i…r2Âù*»>a곌í6ÿ«V£´ʉ8wjÝ€µ£D“¦¸‡œ)ܯ!/[Ж—Ê».PÇ~nÉ ÇL!‹üy¹XÛš!0H":ÁQ¸+ÓöDDE‚ `ñ:tˆ·.\/B‡ÝG24f‹„XOoª-Ÿ²g ¦ à(;òî̵Ö*¥C…ိK޲Þ,:¯G?¢¿PÂÜ;.Þ·ag“}_ÈÑ0ü!$Ü+qnê!Q¥j^+n\1Ó·>屨#({–÷&Ì!Öi̤LŽ»7ú¸aâ,,k~ã¤l[Zpzj™1hEÓU˜yy¤¦üêbÚh'˜ç„??¸N.<‰ I‚iâÞiÏ@—g:3Ò/¥+І³*é` ˃Çnôd=Þò3sCŽñxÈ—Û‚•á¸E¨>UôŒGxx©Ñáóù³R¤‡²Ý̪¢ª.ö 髽‹PÃÅQ‰/E‹\q[aa7·Áóó6´ššøÓpy|ªi´ÇÎö` F`¢”ŸI JÃ`qD²\‰KkndAõÙ•í!õ &wéšI€Rc//9q•ÖN`EK¼Pê6?Â[:=Çê>ÉÏ¿Á%B“mFi%\»øûŽ}+s„…(ʶ+Ý¥Ìbáè”Â8Ä1»¢åÎËxÚŠ°Dhè´b©V(|P " kd~wÂù ÈœúëTŒã„7ÝÔJ$º¤xãG¿,–Ûemæ 0“NöËúFìæ¢¡ia9*ÄÖnúʸÿ-æìš°RpÀålÛuµt(:Q/ƒ|î ¶Xÿž<&|4üWR‰ûqùŒ¥=«ÙƒJCWÈCr†¶¹ãŸc–›¥s»MŸ“ ‰ÕÄÝ9ªÙœR9Íæw ÒâÆÝ˜0¨÷ÅpîdšXĶŽqW`ÕâÔk§5¯%zÂbª‰4@ Œ ½ùnM@³@ÁÒ¸ÆÛ&ã40=ܪä> —V4œ˜ô,!â NqÙºR.ÕEŸ£©¶ôáJ°E8w.‘¥ 膛]çñu2uïBPÏMâž÷ZòSKŸY ;¢1Î *ÁüÓÝ@¥+CF•üŽD#èd'uyÈä%±!Š›9µ1§îqE[|¥Çbšî%oÉÿb¬¤%-zÞˆÇiæq=¦CoK²Ðó»p½‹NÛ!=,[n•LIGôàü®ô¸•’ŠòºV¹øb_GÃtw@`#|?u Ô½˜¥ò˜²ž[ÇZ‚œ;{%VÉ\Q„JQ»e©Ü¨ýDH¢!yUŒSÓÒùh@Já¤áÝ©h¬eMeÛ‘,Ž9ó@»ø~Àò½ZŸ4M¤›CR-ôyÉè‚|ÌbƒZ_^¹Z­b'žÜ5 ¤èVÄÿIN‚Ãl«(nøå3ò,e¬ŸôÝû…ØNŠ‘éÅHxÎ0ß­~ÁIâPÏU5Ð0íý(ÑÎ%Øá˜DKûع­eGù²ìG龹ܩ™{O­æ #û°î‘×c%¿ËChÅ&Wéj ZµO{s»‹gQð§‡ñ•WÏt&,¿çî)è+ù_}YBÛ´NÄ\ùõ”ÜhH—_™—ÿ©³¯Wn¥Ò¢*.ì·ZœÏÔ"ÀÂ6‰±gÚuÅ:™ X$¥™!Ï…ME6á˜ïS¬ ]7ÏnΨ¢Rf²Cò ðFwàýX h Ά,$WÆÆÜlã*!I+¥#ä|Åé›È’VÀ(8«›6†š•¨1‡£«±¢Íì“¡¦jñ©Þë/ãú®û.XÕ 1mf?TUÊÅŒˆ7Ør‹;*g U¥b8-Çbm˜A{kgÚÿ® WÒoŸX<¦Òר‚eô(W‘=Kÿ`-ÿ¨ožÏϤr8pXÌ J¡j±jçÅÌðˆßäd"úuÛŒdºïW”ÓÛ>¨\¯>æÕ§¾ù·kËãë3M4Ë_ö¥_æTÄ­´0&ôg%¤rÚ¥kt‡¡L³€>‚RN¥g·mL×$n)= ÏrØPÔG Í«'&Ç£ß*º‹"´»t´‚À“»ˆt”-´­xFåpŸ™lz‚ÀÄïÝI'à›`fqÿƒRXùŒ¨›ÏßD|Ã,ÇOÉõÁdÖÜÏÊç+3(FèÞS-Ê:ü½Tg>¦Í¶6@ÄsÈb‚„*·üG \Žp’aÃtÿ´ð™üº«P—mÖ7lpùWn#M0ãtOþÐ~:ܨž†è}(UÃIŒÕƒëW°¾dû$aTï_ÅnHÛ@(¤vÁ_±l&ï>¬?1 £ôèx×Vœd¢'yÀíîìåâ;¶/RWÍÀ‹¿X·•êL®¾R"p–L™hs®ô²¯r|wD¯£ låÑ´ƒHOž‘ú=sšú°NéA]?| ñ…vÊÃvø«/@ï÷(ò^õM¦í¢ÖRôÊ¡ª³õSUI#Ò$ùâBÒÑxp/\|š]·ä";µ3(€ÚçîÚ¶¬«E>,=ìI÷Ê´wªÅ—°!•?j<—YV+ÿ“öÔÌC Ò ‹[æ’¦êƒBž¸Ï¿-ñx/Ì n>Ô@YMÜï<\镆iÝqж•Äm î!¾©Q|ÍRìöÒųŸÒI±ä…é½Õ`÷VN%ËÑûEíÉHs óz †ùŒw(IWFÏ¥ÿħwÐ¥ SµƦùôä÷:{£gKž@šhUqª&µlñÖó½¸ ë1á0Û?x—i ^!73OÅÀ~B?Â`¢Iüò9Iá¾P¡œ0~èÀ‚Du_Ô ·ð(x6¾Œ õ@¬Je&°¼Øb(÷üÞ]X'½¥j¨¶„Å‘ÙO[¥-;hÔãyž]\¿ðÜç+¡Q]oìP0w J!¡ÂØŠÀ«¬Ýd‘åò¦ô„‰1}|ubEÚ"ݪë^G4xز_ ÏIçľù ¯ØÜW@D‰d)HùVæu"«»éaèž ¨bÕpcHïʇyÁ¬/ VÆËlFÝgFáF„däk@Ma” ]¯Œîz?¡î}òY:)n@¸T… NØ€Ik%nšN}:QÀÁ¡¸ÃUϲå—,þ¿ñó×>r%á’À¶@F´†Í[mÁ¢Ø¥~“G2þµ6E(t²”âx›ð¿=Óa÷=êiëðD ®òÍ©ÉÂ2ú êæn{eXDuŽ?f°Ý„ M¾òÔ• ­z·kfä!¶OÜ–;Û66ƒZh/¸§”áCZª>µïJa¢>ªÌ†’XÍfEn6Ï::p “HÿeI:Gù³þ·RË(xh‘A.¸¶FWGO.Ö›ÂýèÄÔ¯ÎÎ@¢fŠð»ñD< ¸ƒ¬yKiáô¾®¢§Û†ïè2’{{$ænÈ7øPÏsîF´#îÅ(ŽÜѾðEfôF%|ÎU]YÌar‡CGÈ¢?•|ÿÌ5°ó/:éÑE£»N=½üG~I>û¾‡RÔóø~Ij¼Š RöÎHê'ß“brã"ßN™9Ê}¿,“&âð |[åq<Ý_µA´›¤½®PˆÔXz`#åfGÏQ&wž]tÕñ°vÓ²TŒ.yð é§wÜ D¯á¼º{zaÆž ŽõEkbÌùÂòV¥ðJ€?IÙAŒgÑ8å`ÚÈç9–ï¾Hj3qQ€©€Íäz£Ò¦ÏÙ9ºŒšzÈ,+QcMOÌÂV{w¸{ã0™å§ZÒˆ0#=«jàë+¾Ê_ôÅO Ó|õØ$,Æçß’Ýàž®ÿ4grÅÖ¨G{LæÏHôªM Ê6~±›Ï*AòñZâEœ¿øí8 Íbå5£Ê‘)gM$€H„ýh¬ô*È %dË!æºÙ¼ljs[Nvåß'Y»¡[ ’bªoLì•úäï ] .މÁ$DÒ€ÓœŽ5m¡|X:ìø7kga§oF€sÈ[EIuNÔ[^â3(m°­ðFD†lëÐkH/'‘‹YCÒ.¼ke8HÏÜxQÞ~Ë"áb[Y¢¯8mKùpL+™k 4 ^¸˜[«kÿu@X,ÜÎèR>‹)Ô.Щ)‚¬h(xn … ïÓm"½Šˆ5ijÐ}åŽÿ°>ó …- ëØžLЃ‡•‹K–9ŸþàÝ8eqPŒÀ¸5–º¡ê†™âõ@õzk¸F¦—¢Ö—[zX@ö(”IÝÇžð÷ –Œ’‰¢¤ŠMˆÍvL­Ÿa ™­+ºøo™’^b²üäíiýîüZ1ßA×F»ƒº¯!*Bƒ"²]3ÙÒqŸ°¶j]Å4pÏ®? "?ƒœV¡ƒÑŒyt¹´ÖÀ¸å+í™ÖôMÞ/ñÇðqFÏËKs/lkD¥CñP9lÔê®D †éÊB~á"ùሴRofõ–Ãâ·wÄÙ…µèütàÅp‘BÑü¨c¦[טcYzoí*iå¡í ¸=é†Õ?.Îsâ>eåy—m!Šã0Äü+äMn/H§–ÝÄ9 ™ƒà91MxtƲ¦YBA\ª¹fÙ4殓z¨%ѬÄ)<øKº«ì07ò\Uw˜Ð7‘0TÇ]«O.Ú÷‹].bÌ/7ê&={;üÕš=á¦÷e˜VúÃXm ò;(kQã>˜£Û¶òß×£œ:WpIF‡Òž(ºpïV~f˜òäÕ§9žÑýîB~ì WX%CÚ°7ƒR9-òðú{3mñJÉ<%Îgæ¿™ÛÕ7 q¨YYk³Ùç¿ýëk•Æ;jmMIìo3a>; £ªT»“Û/ Ô—ÇÎYëMFˆ§ÊÝ>ÌW—Ri}\¢­wéXqBêh[Õ鯭Sp æcâ.ˆV/#=)0 ò[ҿάm#éìšk4ˆ‡ ÕªªO|}Å–rŠŠ|³mÜû~LÄææÅ± ’(wr¦¾—¤éãûKìC1LÒY¦,fKâBÿi*:¡Ô¶;OÖX |+ (?¿2dÆ£ü{ܦµÄlØ­ÉIR|±@,‰€¯Q¿õVEèFìpÁj4] ¢æp›/8áÊ{{híÐþýãÛ¦|WŒÿù2A±»®Põ–wêÚôƒ ù49^¿ùqxÒ\w(‡VÖ0ºÈ-äþëþ"›†q‡Â¹õq’N£—™£à•?<ÆWë¡Fæn5É.²xÀ™9Í rÖŠñqj÷ úH)cŸ‘žªäQÆ™½j.ɺO×I!2Hzœ;i:ôA ±É*˜ÇU´Ù„a%û-º†”XΣXÕ‡°#ãoGV”ÒcE33গõ47†åëê–v>—Mëe'êw*Wàm¢€•Ï`ÓÝFR+åæ(ïÞ˜ùþAD’í)y—ò¡o}™‰²„,_¦Y¹0QýuÔ¹Ô*ô’UŸŒ1ÿ{ W(QRñx$‘YǶ…m~Ð9z§}ѲSGË Ýµ9ëYgwŸÀË 9°¡`É ³¯e@<û+²&¨A÷XP²~‡M¤™|/¹­ùQ¢è·hä? X- µí´ ÀÔDxü®ÔìQÜædCu`W¹ÆÈá²íÝÙŒù)zqÄö„yAœë'ŒV(2ž·eø q1Æ,H™öÕGL>D]in¾©áüXû?Íߨ†GÂÕóŽiÒx|¥ ×ÿ½~wfÞˆç¾ÈáñH§§•5„¼„ÁÜd2˜ ݆ӅÁ ü¦HéR³ù³Ïd˜ž µbïóqåKöµ¦=¢*fµ'vô~uBfÓY+á¿Á[ÌÄI¾Þ¦Ï“mОCAL:ðo"Yò¥=Æ 2ï\Í:N^Å¡,À‘¢$¤Bˆš(ÌÆâo³õÆš¬8KiªÝ‘Ý<]<Ÿst÷CbŸ'É-²?+5éoSݰÀYØ5$Å,„hS¦'wS±<¦æÒÅU|§ýº Âvþ™gÿ1¹Î6uaÎ9£¤gÐF8ÿ¢V]98û=U¡ìÐ,ý›. Ô‹JQi·xõ¬6î÷'®!ŽÑ‡"Þ ¬¢ÁIh1F§£!m‡÷FBo¦Í{Vøò1 ¥—º çêºGNqP‰‚·ò|Ûñ-YÜŽwì×›l¶<’KEr.™GX1öu1÷aˆ~Û¼s*€3sÊÌÁ6eÆó­SfÔœÜ.dn»ŸJ8âÜ㻕â×uÏdÝ$I+ÆÉʈìÔp5VA¤a5>-Œ Î%ß°íx{Z={S‘ÆÝx[Öu]*O™õ›bÒ>©ßuçÙ¢®Ü|9Ϊ}•-wåTD.}HSó/xêÛÔÀthWf*ͺÌ)äã:.…Väç9M0Y[i?0Ðtï2àè=ú(Å®gNŠ–Ë»2è3C×ZÈñÜdÓ4ÁAoìó—€´­qì0:'ǬLw¬þ]»œµÇ§pq¸5ú‡<_î/pN¹ýJòª‚ió©G™êÁÅ—ƒ1Ãd _Öfçj'Âáîï×!Þ(wˆ7$!þ)öTàÖ?.\aUB{®î¼½7ìýæÂ€ÊÂF«¹{Â%HÔ´%™Þ¯¥J_ÃB@ÚÔ øT€”)j]™×D’7•°à¹t"¹l{õ“DþºFOI¦¡›-²/8˜×&`q°o‚kuw•£ºÝË,I®õBQàè&IØüeRÄnçÐ[ Ê6Ä^êŠÊ¤i€7a»ŸÁuêS03B…SÒõ£Ñb'JòYU#ðÌ÷‚>!&œü;Pü/‚JS ‰>ÖÇóИB^[ÌôžjÎ u 0ÜT¤–'o¯j±ÈÍ•e#΋Fl„tL櫊mN¿J¿h+¸2a­üºÉÌÑñ"gÚÙäNM^wÛeGªmIwÃTWz¹ÊèÍh€êr¼¨¼ »¿Ê¬ØÞ˜‹s?9ò÷ø°Î½ˆŠüµ?OÁe,§B•[ÚÛ —m¾feÒuÛ?JËSFûÏ·*†ZîÔX*¶âÚ½ð/^ˆ…œ+8%P®®°eiޤ¸où­îù]\ªn^KVý\eŒï`òg»‘ Ð\ÆÔ–AE³q·ä¨ú_Ç·IÂu*yíe^v«!Y…*Ä{]¤„´‚ŒDœ¥G°H¶B?åc@ÆÒoÕ®{Ö»ÀYXVåŒò1Ç8ãó”J×a ³¡ÃïbOôöMÛ‚EäTÒ˜Å;s>(x_òÌ^õ ¢oÓ=ý¹áÛØ° 1ÜÕ’þ§&Õ¦Eö©Éºä|GÅë/=;›¦æ㪻\Çtò¼a_O vä^ØjJ¬ÎŽº(²^3aT8à@yÁ“c ­“*èà`{Ë„VÜ,¼2ŠsJKS8S®÷è¸ìþÈãðßÑ »O›P}Ua ŸŠX ¼h;Xñ0É ù ãí8ažmT¿6¯1Õ$K**æm:R«trÞà c(.ÚÔ!ÂȆ}fDŒ_#åá<«a折!׸TÃpœ¿´$ØÌfªQ~JòQtGÝ}ŠãÊN±°2\Õc@8*žŠõ6’T9îEA`3 34r¹æijoÜ!óF0ˆK°'&GÃ÷+'Í¡«V†[€cÅv°>ÅÇÆ“à¤eZ„ËÿìJÂìjÄ»BÁGæ[õ ÚŒD‹ˆÞÒù÷Ù.¢5¶‰=ëqqjô±¡†ÞÞùpRhTÏW#`^ a¿S¶)Z%¹Ï‘_ˆ…  犖ÿJn)0ÚîÄCŽq{TÍý5˜±DM&¹û->™ ¡,Àí`7_¼7#Vf¸ÝÚ0…Rþ ‚1tè•r—uT”T)×ïJéÑÔX_^}=–Ø‘é"^…ª¸DÚ=‰VÓ[¢p 7òåOSpû¨ƒÊ®L®Äâä#QuHr€r4€>Tǰxï±£[;þl«Bâ¿^!cyXÆ/˜¨ã™íœ-ôR@ĤEGQ‡ÝS*™Käg€š\_ ïǵDÕÔê-ý§aë¢×Ênï=CçÄÃ7kPIxk ÍÄIŠKJ†~œ‹ø„ýeYw¶å#çsØûûš© æB@k·ì͘çñÿ³Ü‰¢s”Ÿ!8«"Wi¢˜ge‚tXìöVt 6+ ¥»aäÔ†?œ/Ð¥ìÌãã›ã¿¦àÖöËP”·ŒÂ–kÂŽŒÀ¢WBc°¨Óø6EfÕbZRo²•vÅid£e²B×;Oç7ÐÍú'tÁ¿—®à\+ú—HÁ¼Éú<>BÍUx‘/  Èà f)ª1I~v½kêY/ûJc¸ò|².ÕÝà$ÿt‚Nt¢(¢³zh[2›P²@á÷i¼Í¡á8ÐÚqQg–±‚­éö^wVŒ%FáƒðñØ=æû6ŸÝ–Ô§/l ˆjÛ­„ÓDs«Jð àÑ9@[üñuý ×­é±åhŸ½yCAdžž–¥°}Œ{æ‹D Ì-ôë/7öûõðSewðÍ.ZÆÖp¥­ú|x‘ …&Oþ‰b"RC;qU[Èè¹{¯—béÂí#m÷Ÿ~>¼\@}žÉÙiÙòÚè€ÚL¯<wÅå2ìønFy”#‡¦k*Z¢6 €TFñùb¤ª€–¿.…à¶!i ÚX¥“¤¹§ShÖMAïC&œÇ¼á¨X+°[2K™¢ÐZdÛ”¿ùZç €MP1ã>Šce¥;e#1ÅLáæÈ pw>0Ùó’8JrjŠ•^\EV*wÙ^ßÐWõâN(71꺼Ón7§ ­Ø‹/×ÊTˆJ¬Ya©²­Ú@ ”»N¾5¦“¹&ÿ(15NªàZ…f2…òúÝ#o/'>Ú\ÉGàx_ÎÈgÜ1çÀítÜþÁ{²‹ûf]š–ŒY{´¹6¯Nɰޜº£“䊫œ)Ïè_›("ì ‡Ü1½Ùɉ&šŽÌuëüÇ>,#¦^Ø0Vµ±)tE@6 p•é:ÐØ@âï9X H1TfÇò—0ç«ÐQÏ:k )£k¸gï`í‰oÉöïá{©þ‰óº¦Ž#múÿ ®0S~Â2}~ÙcHžõ’ç e,Ëí»GAïÀ¾Å#$žÇ¦#š*`½ã7Ý3æ,愎?5ì Š.‰dÑâ‘r^:¶¥¿íuÎüä •zã 'ä±BÍ^K½„ø°°­’‚[¶"ðeãš-¢ 6ÐWšss¦@²¾Nò¥(øŠP@Ãs5'3uÈæÌ­¤J:ê·þôf‡Þ¸_éÁ;|Ñ‘¤K`â)tlŒŠe¬6Á•Iùµx’­š¤y·{øÙðS5Ö›¿Fë‡?/Lû:¾<1X[&däq¦Œ[ɯ¨úàÇŽŠν6 Ï9›!žƒi'ã¶’!u…»¯Ù;ªÛý•«šÈM™‚"ÈÅ™ÝÁRÀ’#αwÈÌ’zsÈN½‘7hSËÑ4NÒvEå•0›I½r„Ö)»kÀšÊ7nG—Ë_¿g@QF²ð±‘PÔÎ2¥Ë®Þ/¥Ü+ãö9îWB†·ûGÙ]èñZ× ÇÙ,I­¶‡;íûnÛ…Ùü-xJ.m&_†,]ÎF©¨Ã€:pÏQ{ë[§œ-/9cˆ,˜ƒ¿h!«PküüYhÀÍ9"û,'0²«¬ÐƒÖ"õÁBW,³Ê /Ï3Þ¯'ÕÀCtÔÁÏ0_gñÿ¦ úge¾ãJé> n#K u©l¤%oçh°Á"q™ŽXÚQ‘/»ŒqÊ‚ïýƒ)”¢Ù¬+#™¬¡ÑDÑ[¦àúˆ¼öx(ðÞI.Èûú±JÚêyIÄú,×w»ß¶4'3­N|{Ç¶Þø(_@ûAÛ éà 3Y§;HÉñAf¤;ãÜ_»z—œªˆ¢&J)B‚táû™¸*¡AW<Ëê!6þÜ);ÊŽ„Li|`4·š‚FÌŸ|·ÃmYH–dã⩯D^‰%*Ñ ¡+b\“Û2ó ìMÜOډȠsûô»#¤+ܳ‹sö¾ÜC—Þ…sÑ`°ádu/vH´eɸôEmA…Ò8ÕÕ“¸0&ÿ»|õÖÖ»bq÷g”ËkI]R9ÆQóñË2ö wx±ï`Jbbüå P­q—E WÞèËdþñÈlû”Ç%è DqµPBïH貦¡c—δzDØæs¬!>MÐCw¶"=W…yZšÞW Ãu«P8FD)y¯XA–$†GH¾a3ú•CzØÊôlÍP‹Ôä©Ò§æ6ÖE Š•\PjòM§~•Ç’ãY³³ä›TièfÅ(¹«ƒ$’˜wò¿¥< E¹Ýw=7ILVÝeŸR7ïõí´ü¾ÁŽË…ˆlÑy‹¡ƒœ¦¼œ=±— ì±ß¶Ó#i†yª1Öå“ÁÁÂðgÄðë³÷¢OGÛOhíD¸íÝ"EV!“¨_Ÿp£Œ“ÞuÓg‡ægt5C鬾¾ =Â--Pß”ÎpñPL¤¯ÎÂu+Y{Cĉ'fâÿ$ñk;€i±kMׯؤ¼Ì‘ÿ©aOy[×W8¦œêRµ ‡uó\çßÐøØ@?rQE· ž´«±‹ º4{Ã…3>§$S’>¸½Ã%Š˜Ó“ñt~ÓZ¶2Uìµ¥ÄÊŒc{ò¸Š^îú‡ù0–.¢0N$Ë>øG­Oº‰ÀnXp™/ÂX!¯Ó/÷Év=ŒYÔôÜ6pâƒã’y~y–Uêx×þÁ*3µ×ù<º¯$üEªÒ<\™nOÐtmö 1ÌAK”+wTÊÿ*<ßÒ‘—V{ÕùK"ªU’gÍ+lxWõݼU3TH ÞñM31úŸ›ß UÁ½õCz vJ¡þ}~¡¢âÊ?§®Eǘ “kÿpÐlÏí˜C`'Ç!.Ký!±Þ(¼C E¸ï¢¹ò÷ýÖãF‡7·Ô´£IâÁ6 0W½Bûò èw°Ëß¹÷H­]VºÓáܼ˜ñ=|hLŒ'Wžœ CÆÊCgè%ÿͲý6¾ P²á qÿÄ#u ‚Þ*õÎùK DŒ>–™ÇoÖd¶ÂÌÚì s@iýZóm­eN^!ÇÜ} ·ŠüMQ픕­A/!ô-ð#á4<øüöÉúÂÁ¸¤…Ý E-7ÚvŸÉ7ƒÜeÄB„.”µÔàS«!‡ÇÈcß3Y§ÏmÒkÀø×¾2©*s¨pòSè!Eç² ¿1Ê6q|¶¯§9•ä{”(ùm»]÷"¢JM¤/œŒÁª¬ (TÇÙB–Ú€ëe˜DE m´~="à™T(&Í0[ˆbSº¬³|y†[è,b©„7d‘iI|(ØoÌ_LüˆB#F´ì[;Èo~ê틎† A}VÀé±ÊÍŒ¿d\¥D&fÕÞûuƒá”˜¬ƒðÊn£*´™ì¯ÝꀅæˆnZ%ð±…•ªšN²{ÐЃԆ9ÀR œ!Ø}ˆNªÎe$ƒ­¾Œó㉖€jÂì¤#ÎÐ"R—õ ³O¨oç»Ê¼Ÿ‹1ñä¬í,÷Ê«8“ä0A ÌÞ³Ù‡ÜÕý8™yų©O6ÍžÍ4ð·aßÝ’fêα—2ÞÜëŒau€ªÇrÆöõCÀ„Ÿ-WW!¸>?GÙ ßk迦ÀÛ¼ºwr¿LJA5'뉪 ܯü»°n12Èr¶É¬*\J.þüÅMLa;ÿR;ÛæJñ©áÐÉ›äZ×ï÷¦zp6=p"ÏL…†₳¹íR¢–påaD<å½ÞŠ-åy‚–÷Piy®Êˆä ·fZh^Îêt#yÌcaÍÙNÃyH­¸ôA€Ëèä v›’|Ô1jÊ?³(œÒ.ÍüÞy Ž+‚Àò%Ü瞘M˜aU˜É Àؾ É(…œ§ÙèqõÞ Tî…Ðn¸²¼’^YÊVfî½khè ¥dÇèKmÕþçŽÃªu2¥\Áž…E6œr ɨ¹#EjÆZ…Ô~õ6¥"³è¢ ˜7U^ÝTÓ©¸?KŠG`{ÖÕ—s,Á‡¦â¡âWVO£!¼ý,;S¢ *ó‚8èÏžßWÿu‘Œ˜Œˆ-$WÊñ«Vh×ÙqGï‡åNUaq˜djÁÚè´[el¯`‚^¨õò2¹è À„ͽjIò8”JM© ŒzŒï­šáUбb\·Ô]Ö½v_8jq…ØCD¾®PôÖ玲~3zŒV5«;9cïI¥ -ñ‹î·) +­î\jMô5CW¤ˆÅ¦¿põå„)yÑŠï-û辬³=C&¾è Yó¢=Âúa1¼ãQ¯Å³Ší&//ÚËѱɋ³M„ü˜4 ×cÊÚPðk‹öØ£%ýËÜé|AüMBÚˆî~_Šß©ÅR_è†øÚòÅ“Ä^~~ÞC–5±@,¹L²d (HrA©ã:ÿ‚go¥mª&.Æ“¥–`­°;%ï'š?ùc7~MPêPƒ&ϰ\kö‚æ`¿·‹9h˜e²rßÝxúaæ{Þ+œnå¦n*N[Ük™£­¶‚ºqDâ×ì&Ÿ3Ã\Ã9ù’œ·4‡Òñö’1[Ä÷>lP”»d`#)Tåò- ðÍÔuÑþ´ÞäŠqƒ[;÷÷$4{©‰Ò¼ÈžÆÕ[5 úíÊÕxµ …¶Qyÿª¸›z ìeH™™^¬ñ˜œT,èÞ¡ HÕ®'RÏ;¤ •è;œµWPFd÷lÍ:Õ ‘Ë6-Ù‚tO¡“va1ïÜH"U¬Î0‘7ôûø¶ôµC óAÖæ0Ûˆ¤ taI¿ÓAÊÌ·ÿŒo{Ϻá°óÁð8Øøs;ÍlÙœ“²}«ü—A`hûÿÊñKFË·“ž¬Ï ÓŽþf„Ë)«® uX“6¨îFG~¸Bà|N(Úî´<êØä¥šÌ±Å¡\‘ÓÜ ÌpI™Óªì¹u³¯Ó稫-ßCA´Â™ñ•Ýyã†+¦ÔåŽà‹kn9¹ñ™×¬9ŠáEÿN5PÄê«ãíâ†Äüø¾[oq×z\±þg,襈4’Ëkë.‡š‚ßIÞÝ¥ÃǦìŸg·õNW1Ô-¥Û,í»áõîy&Ä‹“çÄJõòfÅ‘+ÎcJŽöKMëœÎ1m=[ÿŒ`ÝÇö Ѿ·G¾_µ™sïS ÿˆ`¤wËq€ºÙ£ p'Y¥ÞX¿%Ø–ÀzL<ípÚ %„ &ù.Z›z˜ÞÔ«¾=ÎØžà/‚Æ'•/\­ä¹hØ’§…{2Cp7Z©Ã²G€«WJ"p³óTMn¬Æ¸?p}Zå¨N|Óå·DÖéèãBu@°ñƒt³Ã!Ï\ÓëàŒa[ ¦ébŸò6°®:S`1£nÿsgk G3Œ‹ âVkkö ·ÝyNl‚†a'jíÍa64™Ú9ø‹ÞÛ‚}òëCJ½°m /¥³b°"Ø;¡Sæ^ÌjYEz£Ó_€,`ÜÍ; À¬Ãó_ ©›_» å‚`™R~ëi|÷oOžI*_E>Rʬ1â~x¾C”ú8Eö‘ïî*p_zÖ&ô;¤ £ËãmloÞSøîÖÂß ‡~¼{âè‰e"¸P,¤q(aGÀ¥¾×rçÞ!“FAmBOËôޏQ´MQÈ“a%&g|j”ÒzÚ» PƒDŸ?—éù:ÖT|™Tõà›‘§RÊ·®ée„ÕHWG†¥ÉEüjÚÀpZO+¹È.’¸}¾ç¨NU PH‘K†JLb5ÏþµF®1ÕêÕ¡t ì뙞|…о4ø»!æ·¼©³ö¦ar©?ôï|„‹¬-ïþÙÓÛ'·B-ÿ‡3ACfP]žI®LM>Î`ð7·6Ûo–¥‚è´#@JÖ:5ƒÎ¢.… Lã d¹Úzíôb]ÑÝi¿:…ðªÀó(¾+Ã0?Œ"jEki _G‹9÷çjçÑç¿›ÈïN~Žd +´'÷çTÚYÝ)RÛ_á¹I3ÿë×d¬[e*ú:mHó¶Þš|øÁ$פ50T4«ò/÷@ûؘi¾–5TÛƒ-Uè²(ýw>Õy„Š„"^ ÷ßÀ£˜o|BKZ=âŒkE  \ þOBV…:†Ïo2õ5cŽbTÖÃiw¦äñ„k|ÇO²šMºmW𼪾Q—2åÚ’_£Q™¥fi'CœG˹å‡nWC>ÏS ¡É[ìjÃíš¶TºÍ/V¢L}°EQ'º‰hÅ;0J‰Á9?òVPÕ€±HáõêAqõ²Å°bº¨I5,£3Svú^è–©€dêæ~`ñzósp¡îÆ‹u:eœæP·û¦o¯’$VÄ@þ”¨±áªm+9viáÙ‰F…¶ÑjÿôÚd|œc.¥üöÚ*MÒÑ}mtJ@f)Ç5Râ~jäÊûá[¨K±dÜÈ-†fž%[Ųàä.¥T1F½næþ˜€^l‚´¬¾‘‡fCj…0‚ûj–ÆJŽh‹S&Ö ¿"¤ù"Œ1d‘¯0÷aWˆGý„þÔx ¥@öô–ae…¸¾±Ýðâ ¯!ÁÛêÔì™RÛ•¡D-rUåéW>m ¢¯'ðu›p»É\e«]‰Cl‹!BQ¥V£ìÍ“¤•2².ê¦O­©gçÌ·Š„•×0$q>À—rwÕöill5G§Úý·¶ —]à dS[¯PŸ­´]"ÂC ™ü•Åóûe<@‚ÆòãµÇÞ§!R³˜$˜œ–um YR *åºúÊüáçÑ, hˆÅ6iÕi´u5Ú(ÉŽ§W¢èiçpƒPäU~€ôVL·9ü =êÿÌ¥ké°¶I`jÃM¦.ékZÿÁÎ B½.ß° Ûóh7£ÚxœBŽ ¦78ÖÑn9àÂV2»è/¥ˆAÔatÀ`K<²’§ˆthX:â¯T¶l·¼=ù¥üê@*8D¤JpC+y~HŒÞÛu"¡—TûkC¿[ö“ 6!=oßüñ¥bÝU£7‚™ICùDZ8‰¤u;úµ=¤µÉ“šób¿ ¹6WtéX î°©O1öñSœ¬…(s)íøoÊÒZ>ÙxlwW9‡6ØÑöù Ÿ¨àîÄñÇ”5 VTj+ò ö©x%¶)º—gØ>ê¿¢[m`«ý¤…¾eÚ/×B³P"‚‘›Ç׊Ù  ˜ÙÂzœ/ …)K›Õuß4uëõ©*/ÂÀ±%¨ƒ_ƒ¬Dûî€¸Ê §£:|ûüŒ½‡û "Ù³Žt$Kµ…ó9¶Ø®Á¦M?è³Q#b®Ì©¿òG×Qb†ör©¡4¥pýØ"ç kž€åX°·$¸ôÔèk›©+¶ÓJ 1Ëäªæº9ÏΑBúÞäa"ÝÏ®á£kžóþÇĤÌû0%¯ O.ìì§$àê©Ö@ˆ»-Î{ǘ›é'ç%òLïÿ‘¿½ÇÛI/$HI¬þm9o4 D°\Ò¨Jʼn¸f§ «‡ cv{ÝRƒvrÃJu³¾Ø(¬ S¶æY5ip(#•~Dôf·%ÚßRnñ{¼–H}îvb%œ`Äå˜ðÔh5ªÏ„1ÞYBŠ¥†?Øh!P´µW7º6¼šÔƒq&HaÆ Ãù ½Bb%²Ý¬·èf ƒÕW¦$GF1à8X>¼Æ;—®4E ðo‹ò!ïVçš>å›Èô›SÞŽèàÊÅò ÕY<1IáINrx<_燛ßosþî*øÆbŸÇ'›=/¿"ÁBž¬Ÿ¨‘G6ÂPUðwF®ã+.³×Yi9"ƒYíuqç|Ø´½äφ0{Šu^ùÿàî¡<)ƵúwÀË“y•­ìQ"š"bÝãlžõtjG7é5js?MŒµƒ¿/ðŸ ÿ­¸DÀ(é*?¼S?7"ÿ¢Ã]Ú¿[ïuB0Ä µR^G½zvg…/…û|†`PР`4Ž–´{Ü·!; ÛÍ"ôy5ÝžuüJNy}\@F­Ç Òp~CêËèMsë*1_™¼&­o0œO"­îÀš"|„œÇÔ¹¾,ŸÚ*²M{Ř⿼V#ßÖu+û¨‡qÒBvbí!|´‡oQ׬†*éJØÀIøƒËEˆßûäs :è:%)‚?¢#CjÊcó4­Òu•_aAt¡{RdŒh\ TFeÍa¸g#˜ÝE~ œFÖUòæe¢üf³‚„TsW­Í˜ê¢Ý­ù¶(‡#Vå£û;¿lñg 5¬f1O˜jý°`ãï†ÿ¥À¶ßm8DbÆßÄ)éè=¬^–®%ƒŽã­¦ ù¾$h«ÚÖÝN™-ˆ7ÿ¤eëØqo"{/bà-©CÈU5Î{k4ÄÉŽ1æÁ—#w%aæ1Ý/ʕŅ`ú/OÑÅA(•¬JÌWWUÆŒæ^›Zo ³åàGÁ^³•aýôwª˜YÛõþïxÜV•8÷dÿk×ì+h”ùbž šÜ§"Š æ\>;¨xÞOó_8ô­Ê~=EgÒ{ʼnUž‚á”ü+`2D£®„SÉo†”ë F¶¡I¬í K”v`Q°iáM Æ·†à)}Ãx7¬)x·1T=±‚2µ’ÃbÛØ:g>VÌàïo Oêrœ¬Þ2㹫vE]°ºÔ¥æ!—§Œ²Ÿ '&q¥±o «Ž2DýG _ —R²ÏcTBÙÍï°Pf6áÒJ¹ d?’ÀÖÑÃÙ=BMûX¨ð(v8’ªÿ<=JjP@–1ÖvþT¶¼*éÖóÜÚËßëâ;æü]â㣡«î+xj)u$æãÅQ¯$÷Lvl-Û¡ó´ï'Pm²¢*"+w#sDzoãAf̘ò%½HõßjãÀ\Æzw§k(Å›¯» à`tV£Îç:¤l–¥ñ-¥À;Cîg’ðæ<¹ºQ³ú ‹ZS*my瘎넆ŒZŽib"¸>ƒ®‘£‹¥âè“×ÁúêíÜÂB[Ö[.ÂêzMÑ숺_fv¢«2 ´ž»¹Y]sÄoÿyG#bÚR•åìÜNzÝJ@‰y(í Á½²lgó{Ö˜Ô\­hEm˜î'v0Žsáð°‚o# ´Èü»lª¯Âü•¿Ö¥VKekîóªgè ðç½1+‚ÁCåÖCÿÈçý\Z!^ßú„½ß§áÃ_±ùDò7ºW¨‡ÉÛ[L*¼ÒÑCÚ'í~ó±ðª—%‰ZŒC^‰ÂÌË¿¥n¹³½š }S¨èå¸`i6Ñí` Ls¿SnyHÃþqâ²Ü%!†˜jwûàqªàœ0®£ÜÙÐ7ˆwoÊ jŒã¥{•j}ºÝŽã€+sK”¨ˆ‘@è[%ÿü8}­<0á­dgMÿ|mÒ>ä4Dµ› ø_TÕ0×Ã%ÌÐãg£\èïI9dz²ð¨Úíöq÷Yë)ö}‡+8Ö<ÿiA=À –ãþ“œF0ÄŸ·ñ¬_˜3O$v=ŒöèÔ%lSÿ˜ŒŒ°i… |_7×½Ÿ0Aú[ uúùÀ¸±('ø š§_œŽ9äqlnv‡G«r³)Ãjkÿ¿U÷/'—†Þ[íWÎÅá1]×Juõ B”–ÓMï€æð”ö»‘Á½¼øŒKâ‡({HžêT1ìÕY~`ÿ.û‡bÕ(L•Ù÷ÞØ¤KtæJ»öXÛÄ2¿Àûæ\Á¡ºÊ t‰œ5ù.«E¹œø÷ë"1}’©ò6HßPÄ= U7aVÓn}ªR1u8¹Þ½À¥5}´‰ •¥d^£³ä~µEî0FEÒò“Â4ô´Hlsú¥® éAÌ9wÆIS¨iƒ+Vƈ'¯Ëo2°l£vØ|üÄmÎÅ‚ÃR~7zMÞËé]âQþò#¥ûÂ5'K)?Œ©2À墯Æ\-xT_ùr±ú¹ž·¨Ä‰¶Øª“µ‘d.˜õq‰ìª D¤VovQ]w LJ/…æâQ c˜{ÙÆæQÀ=¡èžçKÞÄü.¢ïj‡µXsÐDÿ^ ÍÃX©_}U.òÆpóö]P\ÊmSbiûFBývé¨8ÛÆüÕª[ìÀæWšžÅ¶íë…2“0÷ÒY©´AîÕ¢FX°Î¡æ„>­Ù<Ã[lˆüeéÖvàRØjÜÞÐIËzkQ¸"~“bÞØ#]ÒÜÉŽ q|¥Ý;káFÎòoÛøxO’¼/¨R¨õä5Ëkf‘ ÛôšD¶ñçmšøàD/*mÜÁñÀå•t¼)'O\©Ì7©§Û*^_ï\+ +Êtªý„xP›ƒ£¾É ›GÄrÏWö A¾ŒŸâÔ¦mØú¿àd ø„–©yÿïî[¹sE÷ý˜™K@Û*‡ üw”RñqÈ™YU°§á¸zÉ‚2¨Û­±0…ˆNˆˆ_f/–!´íæWÕÇ6—!cUРl\ªÐN á-0°a˜“ƒK¶¡Ãrn½¾¡,•’•`,òªºô÷Œ{Üg,o€3W²’èÑ‹?ž;Á·d¦/• ¬ô-çŸKyHÃGÀ XUÇ¢êÍZ]—ö=©â;ˆ"ÂQä¬ö ¥áq#gƒ¹TZ4?©ÒI{d%RTÞ?®Þ©éëO= i“÷¬y5’¢÷ÓóÆ ñ?MÇŠ9šn™«W½Í“§=Ÿ?GGé7!ª¡0x¹Ó–æñcàJ횃Câëdaä$‹ýËÜJ­Ù¤ z}þt ÄÔ×ÃðHææ¦­Í'/Ý|ÀoÅ\Å\¼k:ÃDó6m bÊ÷Øà Tìš‹'oGú²›ÊÏ I†PJ–A[ìE†«Õ°M%é„jyBTCáxJ!6ªANo‰É4œZ|øˆò²¢dÜìí ˜<Îq¹‡´ G\…wßMéôJ ¹€ŠÇìþþEïZFI|Ü­Epú_·­w‘e6Ô`åË ‰E¦&ƒ.©«­óÅÇÞ¶¯XV¢m£¶¨uTÚ¦!U)*V1Âaçê/Smla'è&ö$¹áåuõËnìÓšÔàˆ[ѽ©1”ÅýNÚ6¤y™™@—Õx3/Á/+sâ„Aí E&äØ-X3íÒ¸ °7–þ6³ÂÁtîz.AhVc)í Ð 3*äËD¡!¬#. êo(É’Ø9þe:ÎeŽœ>býô`´òÍîvš¡ï’FÒnÎú\N­]Qy“B¤å©xª*$guÈ, LýMšŠz»ó0‘­ Ò LßQ Þ^´³QÔh>´IkNÀl2ð16å²ð:¦&YÈÛú²®CŸ-ÏÜ‘’WíÛ£"ckÑL†Q½š £ðgÁ]0·)2¥™žõÍʼ y®føÿJ’Nh{Ì ¾¶qéÔNWIŠp­Æõx£ÿ³ýüuHÞ~ý—9© 1yâÖÈ Õ÷[o<ี(ôÖw70¹’€2ÿH³PÈÑJÅšQ’ƒ~3çOlóÂéþ½v]Ì‚"Ù~‚#Oò@Œ¯ÑÙ˜Æ|Ám=Ù£5Ë^¶*®»s#šdŽýçé*å'íŒ]EkˆÔ*Yˆ2©!çÔ!¼VñžŠ¿©9NHßm–åw]I–Vø1ÉNpl&aÂó øònEf>E6}O#&'þi§ÌsåÐá´K˜Ó†d«êe’¹+Ë/Ã?è!—š_/¸>K Î>uAéLCþX÷P<ž´ëH¨+žB4߬˜EÉÏxv×oÊ94Nœ*nÙcË-,÷Šxâ›±ÍÑû=,ÆE:D~!ÅðIÇuyOòîn¿:Ç^Q‹h]CŒÇ±B—¿’@Q`MF¡Gµ ¯Ië0¼TFV§þ+så3‡ÓÑrŽžKVcë\©¤âŸÎó¦ìîG~ø–eóµdf=ý‰14ãú— ’ëd©c$r†¹“pÈLÇ–é*àntõñ ýuÐɽ­Ù)Ô¼µT,–$)ÈÕÌãßø„éq©¨ù¸\x²Ã”Á“=”Reé0pÚ(z ¦ÆÌoѦ‚É®–$5(*Gï?vš ä[à —^<£Íw_}e¥1bL¢çÝ®^t\ …˜wYv{Ûã Âî¿-êzŒ5ÜÛ󃲺®Úö É÷hV›;%§ÇA ý¡9^ik£b‹HŒÓPî=ˆŽN8í^˪?cM‰zˆ½÷™pæ°]‚ûèµù†ŽJ3À'áëW_(‰>LÞýÊ­ƒ¨â1·ÿ]ÿ™ÛܘäÌqÉÇ¡S‹CiáÂ!*£ZˆÉuÞÕ„‡eíJ¼G§YGSZµëâ(ƒ»©tU¸ÈÐáàHâ;ªì *\P¼ë‘HAµ;ÃØÖˆ¯ƒBÕ¹¥O„:fØþÈÑYD|ž—Õ²ƒ²ö÷n•‘0$eTóÄî3w«Î“jýǬomöø*'æ¸úå3¿þSç'Õ„3]d}@s/U\±kðbàÁ4 µÖ £s)i=2ɾIŒlJ#ànš*%–Òºçž.4°%ÿ¤hNy‹ Ô%FŒøê)M#uà|ÞN`¡òjž¹Ð R„â‘8*áàÀ5Ý⌉®G‹Ã¡âºŠ?Ç¥Anÿ¿Æàº¡íÍh–ãvJ¥žVøco\ÓY™bˆ;¥ý8‹ó\༠{I*ofC%g0òhÅcÛÅ%&÷B+‹_'Rª :wÚ{1ôÙû¢¿‡¼{y¸&¬b¿n¼£Ô\ƒ°ž~í¤¹®1Ì—óç3è±õÒ9׳•¹(ÁŠã¬8çANWæ9¨g ~ÞÍ–©“Éá!Ú'ù{­š=\ ²Ê\ ò'_> Í¢‚µïº•'=~Š\¹Ôˆ‰ ‰?…_d±0ên¿ç¸,óÒ¥qê>`Æ/O¾4@jüvfÄ “æZ@f_7&x™=„í„'á¥g¶[ÙÉBlÀ.Þo$J}CÛ?d"{}ÿ.¿<§VUí…íæ¤»¬Rƒ+ss ™9µmp£ 3Û,+¤y°™gç—gB€ åsPSåÚAÞëì4A5ÖÃÚŸ å–µjד8Ö‘Ó(kÜ6zÀuËJ›|ÝZàG¾±ý¶ §k‘ž?̓µ¤jý~xùˤ=BCÍÄW‡,.3Ç©ç±tÛVjN€’€p²J 4q…Wã(oSŸ^ìî>Ö·éG‡#¼û œ!„nHA‘s­¢Æ¸ÔìñA‰o‹ã¹}aY´ž¾š-öרmýwW#Ç—•áQͲ£…×’×±ÀŠã¡«|G®ÝÒ—£ "yJÛGè(ƒ‰Ò©ŸÏd=K¨“„SÀ! áY¶Þ‘o«4tWØ«PG£ÓÖ´7TPãÑ`ÏäX¯îT‡ük›Úšþ½‡ÐÑþÙK8‘v¬Ÿ ¦ŽBXäVПQ‚vmo$2{ hRb±ùðNMF®u*¾L¯ƒÙªÕÊ‘§ šw>Æii5‡×kt>¬ ‡(׋ØaÃ? q‰ºO\~Î!…^,ü<~4§Š¸˜úe`¡åŠF¿·>þ€Žä‡E¦åÊ 7—ðJu%Çžjn:kRô„FªŠŽBŒ°dM;)~ÝuENz xªÞ ¾y4t°bVqz°ºW/AR§l»¨Ù –˜x…}å;ñöÑýÚJ±Ø^X– b+_TuÃ;Ž&‹. .ݯ¬®Y!â©»ç%Ð-NµÒ0Ž[,½/—õô’G¯{^Ó?‰ýqž˜HõrýüÉdˉ)]l–*Áìí„¥/Ø{eôŽªµÆ­©1+sðÕrŠñÝSèCVDá—äUY}²j‰~0 tKª“0ùÊãK˜u­‚³¾¿ê¸áíÁ‚ µvt¿yæœ.¢k2kF3÷q3Í,¸$E®Id‹¯ðи%Ÿµ—W?H€ZhwÂOÓ”¾Ýbrÿ3íÖŸCñQ ¾aÊÙ{ØÙ&\ïC˜â®%8ö)H­þÞïÈí?Px6jðÔ)ü{1ªF£ )ÑŬ-üÈ´ŽO)pÿÅFÃØ‰æª_«3ÈÊá‹¢íÒbÝB|’TóoþÞˆ•ÄØî…ÞÃÑŒ¥æƒ‰Á(' 'âªHËdˆV]<ñÿgZùÏ~ò|#ÀÍÏ•IÈ èï¹þ†%HÏÅÞߤîŒXo]Ö¦‹ƒHG2XB 7~ñ–# d%bÓªÿ.Ió´¶iYµ,¨NçZŽ^énÌ#é —zíý·Ó§‹ï¨^<«ïŸ¡½b%egoÈŒKê#®Ú1‚'û¶žhPîí=Y-‹‡:Ûâ›Jç8k–F¸Üì%7éŽÙ®’¬'cʨ' Ä 7&­þ„«1©LÇ‹w75líqôŠ>~wRný¬óLyì…S§e­t¿ñùÐ8ò»j)C– l®• S>ŒNÀLtF¦/TÁ•Äò·&uý©a]*[¯]&y1³ôîiª_‚ý8àX$—ŸühŸr}Çz°ýˆ%¯ý+&‘–8ºÞóßÖÅoäp)ïX Ú=“# ¦{òTÞµª˜ÀP7|®ãä;ÐÌV“èúÑh’—¦3Ãé)sßÙcDǦӄÀ?£C±j¥ñ9¯¹õªñ3å~Óšì7I¼ÒuÀ¤¸3±-•xší”*ãžTiU1ëð TÞ\i³ó#Ç),T£Û ˜ƒ‰„‹¬óÜô¿¥Í…óç¿\CL,*ñ‹ä^¾é„°v2Y‰cÕðíVÚ¤IÇÇ÷Æ“óɼ™ß£ ýfkãþÁ)y¤5éˆO YŽP®¥‰¶‚kvÁQŶHó£iÓP»ñ+8€súÎ 0ĉϡÉGß “<ªÕJFýÊ›‹7™9… H¿[ïðM³[Ë×@Âæ6í;ã{èŽiLf ¯¶#7n¤‡m­¥úÆçqï±ÿvÅÕv“ Niu±XÂ2ž§ë±´6Åÿ%©ÏßäâË7¶¸ÙäHÆ`1D°Yä\òªÈF:é€Ðcb7ã*‰\¥]V{©”ýuY™Âö{t{&Bhl]äSÂZ›rÒì];J¬UbuÜôNË&}ßÂD×›œ…Ði»T2tÇÖÝûyFšÂ`h©Hy±ˆmz  ŸÚò¤´t°}D ¿yàú>»[›D‡,{Š”ì‚£A‰¬]¡W³uYˆi”b˜»ª÷$¥I–P Sþâ'P ²Ž§›ƒ]ÿDg¨Á“!ÐHêÛäúÚ^§€žÐJ÷‹‰Õq#j¨>éˆ]W”æ#:%¤k›õri¼i±a¦‹ì ?6²U=ÚÎ õ?p;8‘®Ö 6øY[„kív›¿ËÒmÙe¨NA„$±<ìnvØÐýÝœ¼­³š÷&?¶[»‰k=Ÿh"×r¹ÄÞDY:±IÒÓÚÖÿ¤Mxêþn[K? ÎŒMyó75 Iw†7ÙâY’§÷C9o¨ìorû’u¹ •ÂÉkÆø`àÂ7z?xw‰–êÆõôE}=…;‚c2=w˘¥€CG‰tš¤dY¯¦£Þf<¸q;¹õƒƒ01 Èj©Ù íσƦ+\_–“’ƒ\F¯+Œ0QËÌÚv|źKXù-Û¾ã.ãK%& ê3PPF`ÛG—µtÚöè Æµ1ø㱿~àÚ¶o¬û©ÛÖ^Î< çÏÎÏF[œudŽ#Üñ0"*¤¢´«]Xh¡&m/kêOUq®6ž\‚AÞ¸â¶a–4‡4ÒÙLâSûóhÚÀÀìÀ1ÙÍ£ßð&»Š ÐpK†ÒGuÁ39DeˆÁîã¥õB ¡rŒŒÌáðeÇ ÆÊ{ªÈÜŸÚ9ʃXRÏàÎ}C0Nø¨‹…œ*âó íEMTúî¼û¯Ö"aõe>‚Nè¿ëLYOÐ]ªÕ_‰¿¼&œ¿¬^Ü÷‘|Î䳫Åb¹cz Ñ7äÇ\²ÒßMÁO@+2 ¥¡É§qÛ?Ã' aoæ uá0Ç{Ýhõñç&£t®¾—ŸÄ,Þôyôc!âI{†gˆô‘ZuÒõvjU~Ư •žÚÎA–öSÒN7“—ÀªôêÍ| ™yƒ±ŽPÝr5è¾vùG~ͶJNצ¦ûë_ö̓À x=ÿC AÑVa¾d䉌ôíÂkEœ6hòÐÙÔáæZ .LÉóÏëK[ó_æ@ ì§oý¾™÷¹T>½õ¶tÅ$ÉòV,\ƒ™ÒȸCÙÈ)ÒrYIC" ÎE„Aí~ÌP#®\Òæ•“Rœ® ÁåÓ)í°õÜ‹Q{² |­ÆÖ&’,©“ !ë =)èÊ S2×÷ƒóš4óÈ-ö²) ¾k¢€é«ÚÎôùiMNZ‰±%Ÿ¨Û¯0ÇI„£·ftŽ¡4óçÕ†åÆý”ËíG—H-Ÿ9ŸD¹) WÚ-cæðøÐ< 1Û$a™ª‘TtPôõñYºh— =q½~µ“=F¨&9~ÄlÛ×ø¦8ÕÖ×M>a=Ábí«µxÔ6ì—ß—ëp]xÔLt¶œ_M5óŒB¤â¸Ý¹Eò:Ç­À1ðYbÝ"Å®sç& ÄaÁ©Rëä¼NÄJ¶Ïc”Ï&µÎ8£ÁKa‚w½t¥R;³Ú~ Üí;rñžìxuˆâ×v s—å;äÑÔÕý˜òùÞX~M'ºiÐ7™¢³×Ÿ[꼉b{l}ôW(àÄKØäËAfdBÇ,©mwÜIÓØBõ¾¼–L1uêØ-Ž“ŒN- .l–¯5 ôM¥û•ßüfY¥¿¥™obãèFRŽÊ¹ëYi7¹[:pÉ à×zpáÉïeÝ)ÿBë÷ˆpCROâÉ< z'áè:ÅBf7Á\Йț­Z…ÍGºX3áJƒNW oB'üJ§{u­ÓÿÛˆÇ×ÙrÍê$DǺ†U9€÷½À×,­˜¾Ð\#OsŠáù)Jt”Õ9Þ ½¸Df„ò¢ñEp…?Å®bõ÷È mP¿ʾŒMz:bÇq<(ñùÑÐó{C¶Šàþ(€î­"Þ›¡vÈæ,ÿ<™Ï’$b7½CßH},õõöŠF\ɉAU†ðŒ‹¿#õâ'&TÌŸö°ÕLxØ€Zàá”B´ûl¶Mµ(ï>/GwPÕ–q¥ uš½ Í$úbuþYž—§Õîí/^ÓF›ùMÓ´ñåšÏ] ¡!Veáˆlšo€­0°7Åïl$K´ÉDwþ¬|ÐÞßµ\Üìw½Âªp߯Òs±dC8Ûmù™,0äe™ÚWÆO;]À©æä®XÓK²¸Ž*c]pzíØDÍ +û˃,+Îü™h´ÎØ_Ή–mÌ©e\§„ÇÒi:¾Ä<#5(:QobÖ[4º»žÁT€E8q‡‰Éx;]¸Àç,ÛDŒ„úÔJ8‡€X8`"*:¥dÉÕ°LM¸ÐïCR…c¡““}Ó\ï ÈkJk< ¿®ï6%‰­É5§':­TºcüN?^ 2z¿Ùjë¾66€º(þW:u²äI w–ÒÓV8êí,âÙÄÑì¨ýó ð,Z%™ú©_ŠÛo¼™RmMO);^cŸ¢]ì³ÜMáT ×€÷nÕ: Ía>0”µÛdck‡†ÍåØLüT©Áâ„yÕtôæ¿æä­óÔm'´$?â£ÁãÅ 3¥²ä>ªÄ½ÛA}©6ñb MÀëx=ri”Ĺž•kV?~ H\ƒ¡ÚÍ‘ÐÇ2¡¥ ê mq¥IÌfrÉË8f±¢Ay:¨Ç4ygƒÍª˜53)Z\SÚEú× àv#²FØ„!™sqí‡È–ëé©8V¶¿ Ê!Å/Àh]¥=Hž3 õ3¡6¾\lgXf%²GÖæ¾¸šUGBA ]³ª›©øˆ›žÈß2µeUHS£Âõ!q¶o#Þ bh¤Jb}š‰/È`N×TÛ¨ÎÁãpjFß»(bfiŽ=-ÌÅø?qïeGž^ÿ펫¢«ñ%3qb($Ó÷&}Q]2P–½÷R1i‘›¯Š‚}‘œÍ‡Ë«ûÁ?eÌìТ¨É «Í[O¦³EÙÈ¢öëæX$ÊØà‹_iDÿ^“´xîWùØíÇÕúq›Ê| é5»¬hß/ 6‚”B”‰|‚à&F™$cÁ(éã.~¥#Ý(ž¿íÞ‡ 3¨Ô1þl ,­[X;Òå­?Á··k_oà –ö¢ß‹Ü$Ó});Ú…BËKüï³r¹o`[°&%1ªÊƒ 7Ÿh,:r´àrìûïã7ퟻoÍŒQU¨À*©Å”‘ÄÇçJ­.¿ři/ð@+~—B;`„`¤Å­PZ?d…*; ƒY‰rÕ ì´E¥ä( ½*ìð†žFd!JÏPnö_^Ýê :ºŒÔm•/É!ÔêËWÓ0[:_¨Ä^ÿ¸ÚLU›kˆŽtât›µÛÒ«%R  ­Ö©ÊÀj ŒŽØÉ™Håí¾ãˆÌ-žìxóu[¼ÝtLÖ¦¤µ tn3¨ˆÏSeR)»ëÞ7dÂlxáÚYU64(Ϭáà; vââx×.Cs…«ËQtÜýµpŠÂÜ{—#_ºcOV¿ é— Ì̆ÑÇîM­GàœŸuxç>æô³Æ=sV±àÖS ‰<{Û¦<é=™i²[Ãu€Ñ )ÈÙᇜ–«]dˆœbóŽzw#Æf]=|»Kƒ«÷ÔO"e>w (®@8ët([«0í$JpÒUù‚ôm ÿ}3ËøòøÞV)8ã»ý5×iG ø¯GôñÀ-þRÇ ]šöwóØ¡9Õž·<ó˜Nä-†~ÐÙ—žs|ÅZ›\µ¹õ'εÙòd q ‘,ÜÓÚ&±«•ËÄùnzäÅWä[P3opßV̫ӽS¬Ž]R5SS€µ:W8°³<£ Ú<%bd^£J§L8ÊÌI×go0.,!ñíc}–µF Õ"Vö,ŠÂOHµò–}É“aÎ Äã·EMð”7£h%„/¯©‹¼3Õ„àâên‘]ѹvOL€¿z¼¤‘/èÊô< “Ù,/¹W7K«¥=7’ èžâ¼\6Z{2±1Õ©uªÅJ>IÀÌRïöˆ*âvÒ¢äyî L—ú© ¼dò©IB÷°½Þ©¶†áĤÓU©ŽÓÂWÒëDG¢t,Mº·²[‹3]®Äðââ—Ì>}×'ƒ`åbn1Û'áë`¢K3Ó´Ž$wõmæYGx¼«y±V!oúGÌÞü®j97K„Òõ‘œë¢T¹^̉M% ˆºÏ¶¸@·LÄ~o ²õ’¾Üì` fVªìÓ ZáØAdæœíërêA‘g*Óæ½ƒËêz2ήÆ®´ÉïPɆÍXZaÁ¡”PsÓ<¾xÖ›®ÒB­wÜÐD$w÷6…Ó– fü „asePmÄí‰ÙB¯·©å’è‰êå¹U›Öϳ¼tž#:ªÿoظNyÔ¨@Bò>ŒžÉÆ]ë°ˆ|ñ.½S=ö7ˆ+)R«"Gõì¿;J¦;Q1˜¾·Œ«ZÀÓœ!› 鉯 ªŽ;~Î5#'á¡¥Ïõ§T ëõ_ýÂSXß¹°_=O çrw?‘”}…^,¢à(/þÇ‹üñõ<¬ -U%k€yT<=ÓÖfÂÀnhU¹8ÜzýŽÐÚô泜d <â7³÷Bs®í´v]ž®gn›²½[ùÕ«ï¾æîëMúEbñÃOÀ± k-~º3 Ýý˜´q’½aí³Á~Ze¯Ê…[6Ž ™WºŒe“ú[9ZËñ¨lrŒh™(°îçc°»l¶w®¡rz¨¸=þŹi¼üÈÐ9Rv©()Ó{¢p&.ˆÅ—Û9z7»e)pSÄÍúK^'ïö]¨çQs,(UnÑvÏ´Án/]±">‰q>tøIßj¢ýïj£‰–Á*Z}r¡ºãeXŸë„¼Oá6ýUFK³cõ Jâ'ކ½û~ l:¦†IŒ“ô•ăí/\á Ù®:Ëð²dH^¡hí%ÕK@€Â+cô€ˆ mtÌm ò ±zOR‡ IÂëÞÓß å1WˆrC!aàqÒüÉ]ç'ŽÈ·¸ÌZa°]£ƒ$Aaà@ ÆqÚ.Ì{³¿ØX€lÆ^CB™¸‰=oáxnSNÉTù &ãPÞ@÷Œ\Á»ÑûÝDzpSÚV7ªê™BAäw ã¿Å4åÙ¦"Wj×>r:é­ ý¨-•=Rù!òúá_zÑ‹ÒR›¤ ÍÍ<áATD§a^”||¹Gâ&‚í4Ddã#¶¢RÙ/¤,)ÀXUJ^>‘‘Û••.˜˜¡FçäùgnÑ”ÛV<௠Í?PWòz© ¢’*l?Æ6äaîïd#!í7*MiVH™Ž×¡æsIBeÆB4{ôÀ¢¸ªEhþ<¾.«ÖŠkí¤ÄÝ\ßÀÝ Éœ„Q–ßLï.­†&¸ôpóC¤ÕÙJ ýuÁ†h€QkXÏêèjWÄ'x«ÏFÖôc‰M†w_ªŸaÊ–øÑ^{Œ™Ø5ƒzP<ËÙE—ÇæÄMAż«¤ú0õjüÁZ^3¶þ{kh.m×Ô+¡™¤Ò•öòÔ€Rê(¬‚æp&ŒS<¨`í\Ʀ[Xs飧jÖ¶ƒ{ÐÊm÷A¸N«Ð0 ûpÕÌ l[Ö—Râ)ÅÌÓ$ ²šzû‰™ÃŽ÷Ž÷‘“´¯‡,øì8åX%T÷Åá©÷UQˆ%9j2‡(½ì¦²¿qtÄÊbî”egÀÇâ_-1ÆvÇì85Ø-ªCå@Ir-?¢‘RÇÜÊYš™œ€Ôeí[uSOÔB‡yªŒ›óÕWiÂnE&SO¿c&J2§÷Œ:rQh …Ó¸“™.ÛW“KG^;ëNïÉ94þŸG„òݵ¡8Ö*á‚ ŒJ°ÔË/qEêX}h‘H3ýÇ·ú~K_h¹¹U×8Ù÷à«ùBêwɧ’Výè\nBåÛ(CÉUT²E´çÛL 7p‰H•™›Õ¸§>i;ì|vBç^¤3V8kdbo˜÷¢ó(ß=à™ùt]'¢ÎÎYŽ/au±EŸ Ç ,bÌp.g^;^+Ìý2Jj£["´2|íÚ…T ìÆ¶á2ÖPu˜¥õpÏyáLk°Ø´¿Äð@”w¯¹g€Æé´É5¾²ØÓèÔþCNgUbžqðaä{ÈRΞ2ÙL0³#_éL4"cÔ- ‘OÜÕx¶ q~vß «§ôf¶zú¡ä-A½€ÃÊ´¾TL(¿\p¸ëíUÊ륖”ßr—TMpK2’×PÎ5³Àu¦ð×uFÁ…:Ü! pëÄñ4-šm‡W*ÖÓY@–[[íI E5å,si½¾™·oëÁ€¦DÛ'•¢"·ä¨¨[f.gßsHrC1ÈN¤FfÅ©ðôrä°ÙÝÆQ}5[Çx«ÝÍš¹–í{~J$²ïöp÷è¶• öåhIŸûõ’àã;Ôõä»÷Me·Šéà¢qAÆ?`[•霻TÔžqÂwo#÷¸B§ö“x<­¬‘"Ý“à"Î_™×a ³¿f·×xñ´p} âɹÀŽ䙤¯†HÛ3·ðá’ªÀ^kts É¥×¹a$33Kî¢Z±Q`©IÉuS…ØDÉ+'Làt¦°¯u±ŽÓÕ÷ˆ?äÛD¾@Gä4rlp€É[üèá©CÅFªPZß×Ù¾Ûõµ*Qå²*h ÈÖV„˜ŸûÜù†rÀÿ`Ç;uëƒIÿš²¥bCâ¢T/“1Φ€/OWÒ€Œ4¸dÊ]1IìOÅx¢‚ÈX+ÅŽÏm)‘7ÖJˆp#Ýl㜩0‰Žóãña?“šw¥Tyòã×KZ$.+îoݪ%òÔÐ-‘ìtO9g¡›Æõ\ÞøMwû±®F-3ºÝ Øïcë®LÇw¨éýÐ2T˜ƒ ‰ÒÔq[äóxÈ3M‹HØÃv` ž„šÁ‘÷ZošóJÒ‹¿k°˜¼ÏG€]Ò9À^|BÖruxü"H¢S;ê®mðŒô*÷S[‚®,µß_[ÍZhŒ¸’KòÃûÒAc­š;,ÁȬúÕÚl kÊŠD>̤¼võ5¹‚­¨l]¦RŽx”¹Ú®UôÑêáóÿ9†–•%øïôTøiXGõ~åíãêw¾—ÿ©Þ²I¨ð:MzØw£dÛ±q!j»ÇOþòy–Q8]Þštíóxuœé0nʯ‹ÚJx Oë‰./.ùjœ"ò·ÚdNò¤YZ ¢ŽÊÐrlü‘ò:“z‡ùËÞón£ì†HØ1zó–èD æØãÑ,üZÞÓ&C®Ýda ½BI±< ”…hŸÌ¥›S má.¥•©äÄ‚¡8ÕS¤™$Âõvù_ºxÕäò^S®„5ffy·5ÉòN(‹Âá¬uá¨>Ñ òùIôUNööêÒøÌsþ…šrí¶ó®ãx»ÈÀ“Úgî'|¦íE_Ûa±à¤Kh«¡ƒEø ß q (9«*ÒÒõ9ôÒöR¶¨/n ñ¤d1׆Aôá?lÑ 9Ù€<¾DR×\a½ÒCï}rèÒ?­¿2õÏ`pAô«œ  Ôx7pR.tª´KˆŒWtõ|Í̾ju¤vN휕Âà\×jUHýœ–{:rˆQY,º-•Ð>ÇÚp6ÚÖ³õÓùq±©:Å‚–HµQ.Xô7dÿÓtlªN[lfñçhá#•[–mSÇlÞÙÙ |¢ÿ'Ë_iìßÕMÂ+&ùzž<§ÇK"ÉS¤´xrwãø)XR€øþõºá3O›:ű˜°&fiPYšâïRN¦t,­ïo2©úƒ¶pR#šÇ+4©jÄJk¬hm\šk10Qj~·Á)O4®àI“/V?¦¿ñ¢‡ÝhS÷Ë[Ù21ØKÇòF¥”L’Öé[Jì1÷IVfÍáø~ý¡’Å¢MDs¤'õxDÝŸs"KwÇ5„Þ¡ ~Ûxß?õ£0qTxj{У©¢öüæMÐô݇oì|¾Çùù9Ö&¤È“ »]à—y¥ÿ·Y/ÓäÊߊ'ª:‚(rï×]Ðf°‡è‹xóáQÁJæ#3¡£0p)šµ_δ6Ñ =™Ö÷x)sl¾Ô{Ǧ–5´œŠÄ¼>=otðÊaÊ©êbÕ¿(Ö~­£iÄ=ë›1Hñ¨ñΨ9¿ÿÖÀ?ÃÖ¿¸Éu¨9_xvQc¾¢$ùJj±;E)4º~žunj{ Ù/—›5ýlĂ̜̲*7ÖÖŠ$ùÊ3$ 'ö=ìÂûœ¸à¨[Ë$ÕT]6EÇìaR(–óòçE­6»®/¼´F†U—j]Ö;È«^ÊDéR?©É$Í×rÀÑ26—j—|ºNS{{=|o ÛzW¨d£~Ãæ±‘ìºðèŒ ]s½aò¬q²âÐ@EðfQh·µÚE7B«i#´k“±Dp;^ÙÉ{Û¡øq!ñ3»džT/ _gN~•'Å«±#HLvØ:ŒWì–æÃâàl÷%oÝ›TƧâo ´˜P“K£ÕTÖÇCª÷*µ%Œ»´Æa%uvšï%ñËŽ%ÞÿR*yÄjßÁËO…âÏ“BðÄö\Æ™þå!ƒÊç Ͳ5SÄÜR¤¸[‹éy´ í‡ôê¨Ãql`þ,÷5ÎPÜuÃSQrM®'š.yí¡¢Ÿ@Ýü‚uQh+¼À"<(C‰„%iÐKX½)DB ô6ƒÊÔW‡—Ah*xs_;;Ó…Ëî‡éô%6RY )¬»Ôu‹Ó~Îi93ªo‰– /É Òý½¼Š)+&öƒÑÉNüát ý3m¥NùØÚòYF³HÁ Qˆ™;[ºÕ3ádÁ{•±>Tå·,g|‘~ÅŸägòî•4s¼î\Ø”2xÿ9bhm\Ò\M;¬ YÓ°°ŸÃ_©·eŒYŽîÍ^> M¶dG…mo€`Œóö„.Ø6{ÂË‘Ÿ< H̉)×Öý¬ ÂN¢aWŸMž—.ȠЯæ-õÝœ àW›;œTdŠhÈô-@SõO_Û/õ—{›Ãg©Š}Rœä¬íp<-ÛT#¡õ‘öú<ÀCìÓûBŠ^3¦,K?æZÖ-ùtPHD)~ —½LK,›Çž*/% ˜º|c½À7>w¿`Oy˜_RL NlSÔ–!ì\EÈ8* •O^$.;™~ú˜ˆ ÜkuÉ›‰–2[‹@åÎæèˆc~PVf'')‘]iyÀ<Ÿ½ßÞÚˆì8%ès@e¶0ÊÃÙÓV×ÐSµµ!2®öS ë2OàïW^Wgy±5­•Ç›äìø.Ñ/Â2ÁÝGÖSëéBŸ=(ǘW"µßÛqÐw“<Å;CÈ…±°º×N=Súö-;ÖñÏÌôo¢jÙ`qôCŽjÃÉR^l;r–„”“!ް&gád’$Ÿ¤‘«}°ôÍ Nó¶L 3'bêÒÄŽuæÿüü×YKU[Mü€Ÿf©ƒ¦¿ Ý¥0x‹¨ÝIƒA‡ƒjýz‹‹âVbåDYœdðçÄÛ¦ùd"6/Üߌ£oN©Ð9²âj'vN˜††(f*ÕEÂ7â(S¥9ëŒöXÔÉ9¯9ÂäÜšÁí¾E"q»·ƒ|öq×"ZÞ±ùébR¥úVõ•­äÂq¡°6Ò@‰ë_£8ϱ"oõ˜âÅæ¦jxMíA*.âw!DE69ܹ Bì3!_9¡dÝÑ!ëzuQ]¬sÇzÁ¹çTªJ½sn9˜Œ³AÅ}*ÞŠ¤Y¶ñmqÆ8^ÊQìïÜåð¯R唆¼i?Y]~špßè‰ôŽúauÏ/Pü6b)tdŸót}Í:öÛ2h— É#8)¿—5Ëô3h„7Áù†Ô¾éQ©£ýß,«â°T¦¤ƒí›]~ƒk,îØk"t¦[}ÊÝ 6¿ QãTbÝ»¤ÈÊ:k¾¡A–væò&@ãÃùÅRo9|[W¤—E$ß“w.9š=´ÜO.Ÿ:†Ô\wjeІ‹ ¸ü_ŠÌm(!Äï¢4ó7fÛQËÙëÔ ™­MøÞv„ŒäŸ*š¤{6§×Ås¨R´UGê^€W£­ ºSÙ„]CžE2N‹¿ñåtÇ¿Wé/vÔb¿ò j¥ 5[+ÞýÕßã@xÈTÁ–\ pº!ƒ%{è\w‹;<·:/XÇ™ˆÀº:Öˆ—”FÚl.N´·.ùW{ xa<øR”¸¾²QjáŠ,ÃÎbY1žë¢w1‰)–ÚFTòül ¨˜±Ïb5Žá{~Œï›4cß Y¡‚{Bšä0zrÍŸÎI8Ø¡ ú‰ØÎ­æÎñ‰ÖE 7¯sÉ%‡dž=Éòͧ»ê¥ç2ä?$qq¬šÊáa³þ±eÌè@-{˜bÄGx{.¹x÷¥Ä‰ºwÐÉYd?]ÞVYÈÍ‚IK(]¥Ó¢u”¤ájÇoh0¢¸L:¿Š3°çúf Pµùc¶œ©WæM1Òv(…µ_[š³+ ¢p°‡â±n[ÌÏN€>­Þ“ìͰŽ÷'ýÉÒO¯ø‰¹ó¢@èF¨È0U¹y¢¿O3c£ìdÓKÓ$Rý„ëAo¬ ¼&Öšü\?í2§BàáŽ3*¸—Ö>–¤_£§JØ¥R:í7i}óf°VÈÌâz.t O ¼àöo^Kè£rÏþÞ~’¿OÕÏ¥äÐú¤ú5¯aE`¸%‰´È+¯X20&\:æê Cì'’YîT8²¢6ìI¥Ò+xËIÝ&ÜY ^ãã*xÍWîS˜Àõ×öŒyÇ,æù^z¾¡pŸÜ¶úЬ‚$L7…̨DßÊšãåø^Ð Ý`ìÔ®¨/>7„¹®¢Øœiõ· §zKÏ«åð¤'~é †ä#¯ÄÁ«k g_Ä=NgŽ6k.ú-Kyî)ùqKžÛüКo¸×>¨Á¸Š¹æ2(E¬¬DÓ¤ ¦ºš þ“^'ƒiã¶}²€(OgåæIÔeBc…½«¼È­Æ©Ÿ°RkA.X‹Gù²M'–T§®Øfî€ô!þ†I8ñ-ø`èÚ´[c±ó}êx½Ð-« è8·ï‰å’]I¹¿þ^ƒÂ[ËtÿŒ²ô“2ˆ"Œóp¶l8¶¡«|ê€K$HehÒf2ÓÝ‹®eþ ØÉ[¾ƒhÞ%ƒíºi[LNé£=¼¤7EœXì¡âòÝ ¤qŠj),óÇ¢ÞX³w}ÈÌåõÍ…°Ëª›‰Ì\×20¿Ur䘈2: Üëœ*ᨲãvÉÞíùEúS\¡óãø8‡ÞÁˆk¾ã¿ð¸}=íc×á·šû²a›“Ë$Ω¹ÃÍ.Î##ìÃqûýÈý'¬ ¡ŠUErº37Ó„ß^ŒAœ)?!”©÷ó ;_”Í{>ß=¹ZéêUƒP'¢òJ^e—ñ宲jßžœàm6Ϻö@Útá+y… ¥ qtráµÜ`GïÖEi“Ô)žw¼tóÙ‚3èåÈ3tY¦÷·x„çioGÚÿÐn€gÍö‡†Á]Mi¼­—‚®dþÛyÙŠÈZT÷†y×Sª<Ïjà ¬ ?Ž0$hŠ÷ï"$Õ\ó[ßæ,Fºr!+ûE¥øæ~XÞ²~Œ;`(iL5Óº¬v>É$cE09Wá—FsŽF†¥©v†ûñéYv¯[á„ u¯H[Û|JyUš`móØ»X ùŽ) Z‹­cv=¹{L‡ªËÁƳ7ŸÚéOrú’hÓ7û&"*“Ýd¨Š}aš£˜E\ RÞÔ!é*Ü5¤«1‘ùâ®#M´O©IË}71ì }yVP¿“IšX‰×¿“îœGxmc®Ìßø•[œ>Òʼnà Úa8U!ýÉèõáÙkÇâ°Y.6ÜŠ#V³¹áÿDd¥ k9Ǫb…‰,@ÊâÉùçý-)¶/›RÜ¢ü2µP#ó'ÇŠHŽ ‰Î ­§Î÷:x뀤0&§v3³°ZÜŒõuz=‰ÿè!ýhS«Þ Ôòx¢¤‘KäÜŽwö"{÷ô¿;9V¯rKÂ%èó«6jË¡7üBëãnRÛ{4½RÁ{SªSÆ—´B“pÄ6Œ0†%K·â>Õ¸3Àž½U¨£”^g×yR|Œ¥W_*R`u^ëÓ®ÉD°ÀO±.|2$¼ï—¥Ñ5Æ;µµjIÀöð£fúi7êŸjSŸ{zšÆ¾U¤¡Nß.0á“4Ý­4‹>à6e޽8¦¬µS¿Còûño<œ{òOzXÉÁFŒˆB³þùh¯ð‡£¸è}ÑÃu3Á· ¤E7@!ßÍÚÔ–±=Ê«ÆÂ?”']׬üŸ‚X^©t²Æ¤¢,ô?ªO^º]5óO[P›M_\³Dd ƒV'¦ØºŒ¡G:Ößø«i,¢BÇĦË×ü!$¢Ut³pMX$”ø?£ýˆ}NàrÿìJZ-ؤ©ý ð6 >pD±%«Vv¥”A4†›Ûd#Â<þç6^ÉtˆÖ¾ÒíÔ¸‰£òo'$Fú-ÄAotÙ ñÔ©½ª’þ¡¯8™K±€À4 âþ½—pÜŒŸ¿±ÛŒƒå{ÿ]|úk0 ´iÓÂú8UKÊÏÀ1¿ô1 ð”zñ²RÐŒ"=¾©òÉè’&:E9Y.åA©—4é?(‡ºÖ°c¢­¿]‚•ð!lƒÚ’ŸËP±çYdc÷Rë`w4b†[Ç>Ÿv!xoSI=?™žQA§VãïkÅÝ#i÷XÁ$Ö½DÀP¸ÀB·xm Zé[Q“™nù(A¿ûhi›Á[¹ô>™môŸ¨”ªö?–c¹§‘âÊ»( ó,Þ4^ ŸÀj^Õ ¹ìõ“¾¤—¾æ&ŒÕ p”~†¨²è‹ |ÇßsG)¸× ø’ ˜Õt›}O^úXZq6oí9›v¾¨—AÛ6YDüoQwÙ²ì8°§'5ÁL´Äb¿é”B(êþðq*ì|Ò׺öøgç’å•\+4Tä}ܸ%…^Ûs!¯:xcúàÞé¶óRŽ w<ºÄ£ñev[myé"éùi¢w8ÂWt±IhŠ÷Õip¶lnÊß(¥‘›ÂØ¡XÚôãêJ$¼aü’âbû´!ã² s·Œõ)‚édËÝ »ôÙ-ýô5ùï9l#øô?”Ùƒÿ)mñ£¼êh„óÒÆhõ–ëÌ“áâdç#ËΤFË¥ê ñ¼°ÙB ¾ëê²Äv[rÑ_Y×–¬ì9€ù‡!Î÷-5åÕœ ?Ã=Û̵z{ãŸU³? .qÈæZôM ˜T±_Wn×~^Ȱ £ñ͸]Ÿ¼v \†¿å–Ͷ ‹òæÚùÊ?W탽װ ÇM.D!KLð¬µô 7´\Óï·ó“‰s mæÐ–ܹvljuO¬Hu(eèïè—å€=šô‚^M<Þ§g7ܼKÎ|m(ÆTNN®hr²ÍZ7]¯²¡UV* ᓯQ7• Ê\l2X6•2Üè2ª4¼¯_Jµ4‘ïõ®yoüú(ã¼-L€ ¥ÞܱPüNL¼€q®zE?")ÿlM†t„‰ý5â ‡stO¡0eÖ*îs _Æ(æœ#F¿r6¡wË@Èü4fÙæ«`Zֈ¼  VZ¤ATÅ· zs'»ísQJ÷ÉGw·áËpqp@<û!ˆ˜ÊŠ*Y–ÀÌRI”ˆ·q|‡5µ(Þ¸ÄNOyPKY÷Îöú …‰æh¥hþä„ò‹l_/ίÆ8Å\Ш<¶†•À‡GìN×Á^(£hCwœA'ì#³¿n)ÚuB¶#S­uÁ*LNŒÓ¢ɪ¸ee@7ÕòËÍXËyª>åòm÷ag2s6…€“"‘ím]6¾‘Ú¶)„’}$<ÇÙ°Ñ“?†a|›¬ûêçªNè ¹’äÝâ’ìoù]˜Í˜ž¨Bxu^¯/€´Z8¯5QG9?èÜù{€~éúwÇCVY›HOþQ¶{À>Ù<Õ‰Ö x_l"L‘—hx‰‰vÏ œV·Ñõ'Z‘MŸãz,Ÿ0y¯$$ ¯$ºò€.B—êä+üJœqDJ²ÿ‹<0&,u$y5y=Ù§E‹cé7I6îµ"€Ã¶!õ¥“X÷p* v8q}Â&2_ðA¬ZQå|FWt‘q&ÓtüãÕ0äß|’E‡úR¥ÍˆøÛXÉå%øü¹ŠTy²YB=E €à.ËTl_n²¾ŒÔ¤!œT[̵QRNø`iÚãêá÷ÙÖZèSäþÄ–ˆFd®¶ÊõP7|ÒM×KâÔ®Uæ#í=¾°pÝÎ$F݃ŽêSǦ˜¯ãÿ…PPS:ŒîvÍ è%®e4Œ+þ£z®ÜOJtRèZ\²Nÿ~ÖôŒŽ8¹Éü‚(óì+YubÜ!A3 7æÉƒRÐPB¿`Ù+”;êÅb@¶5Ôñ! ïH’±MW™“{-m¼ÀÙÚ8F$‹øyQðNdŒù8ù•­¸kžùüê}¡¬t“í͵eé-‘Ç"WÜŸPKÍâ¬á²½aå£É%†j*I«ª'¶TP¢–ŸSSu§±`œ»Í¡éo¤~`¨#NAèÜÆª‘wóÇON»uˆõ)h'ïyë»"Jïú#dk¤âŒ9ÕÿHBAif–YµV¤Šx»gC¡Ö>‹ˆì¼A ×ÊD‡‰ª…:–›ø·w8?ï¨R‡MJ÷771ÊÅÙ|°õ­üïΜØ<üF¤Š¢ÆžáÊñ ÌÚ ¶ÆFeòéc¶‘³Ðâu í0ˆ)Èœ6%ÓªJK}Ky¿£Õ*RÎz\ú]Xýx=‰$õ«4jÌõ9Õw®² ¹+¢œ&)±ñÛ§Éޡɣ͠Y%¾¥ÉýøÃÃïAe\PgGIw¸ä¶ º÷•¿#Lü—,ù‰tL.š³,‡ïv\Vµ'Ïù¦ÜJ\€åù¤d6„Ï”ÉlƒïH@PQg¢ì'rìx—è7þ8 dÌ—¿ÐÎ;”¯~ ÚóíÈ%´«EuÂåjìÍ^Ëâ1%QÁ7#…þËXMb2VMð8ë± ïÂwîL‹bÎóT.JÊQý—Ñž ¢Kkƒ_]´Ã<ÍîAì6ègry›nyTþ gÍí>„‡ æ}&š8³’ ÔÙ›Z ÖRþüÈ­y(Xñtä—( _œÄ¨s36Ž4ãaƒqö1’®f8ñ8Šš·Z=‘m™¡§¨ÿ9FÞÑèwS\a R¥ûz8q¹Œ€až­jï· ž†!©««Ü”¿nùÃl¿ãò_mÈCõþ<Ï:v¾y„a+™ç³¹íŽ#Þ>Õ ÌÆ¯mÐŽ£>v£Yß5]z×lχqÃmøñÉÅ1»'pß‚rŸ=v_…þoËÇØô¨D9/|S«,Ë.ä”T©ºCg²Á!+§Ô}õr bœžþ«\§©„A€ÿêïkœBpv:%è+7¸CÿÅãt•xÈÎ(’GÉ£4çNeÖ·Z-?ðyýí3ý¨-Aÿ; 3‘[ÞœuœA&\l´°íñs14ÿ¤Ëºw+ø ŒƒidƒZ7¸b/×`äiÞnNær‘BCõµ>*edâ'š§TÐìk$x™-‘ÃÛ´›½&5Dðvg°Ìqb†:ÏË¡å6ä‹ínf¾C>œ€±:oË‹MzÔ<= /„9ʃðú^«´t1·©Z7ʾWfÊ2„L¶)ÜÚa@¨ø°?¢©5rª·óF0Né ›ºx(Mõ^ƒxí¿des5<*ɬÞô˜Æ«!PÁ{pùI O㳎c~ÎñuqT Ü1Ø»­f§wäžai0wIʵ¢øep˜ƒqàd]X›­F¡pø«?WoJP'Éí׺¬û _Šç  X²[MŠ•°ÛòB8ÓN+2ÕžÈEp5Iw¿gL![—Ê"±™ÌCx3äøÁt—†©¡ƒ¶5ÛLØ÷B3ø¸…uh PÔèY»UçJ¸ÚV¤S\Šïü1èôJ)?BãŒ]NR·ÌeU AÇâBN•ªvÌ2ƵàÚ@pQÌXi‹RÆøþÈ 7dº·È_Ãmêð»}ïƒGñvO÷»)$ñ³WÛ—8…7Œ¾c—œçBCKMgn*†X55kïj“Лr Ï+Žäþ=Ö@¢V¼ZÇwˆŠ¢#÷èæ±n}†¢#8 zªóoß ÛøçÖÄ««¢Ì*£‹£7ߊ‘fgÃL$¿Ó;*li V*M–00¼d¸¯‘I¨sør·í—¿ß€$7E÷J5¶†w‹F]ûUæ> ]M½¶-SªÔ"ž»o1ÙÉrxŸhèÒ`Ù \…«’ýQ529Ó\`8F÷Tþs&ñŸO'ã³þJ¼bºëHy–.sLí-+â§üö¿¿à8ûWÒZßÝîǵݑùÝ£¸‡°Œ÷X8]]橵Ê$UÔDgsÇaK²ÌIÛÇ‘êW߃±ÁÖåÁ8 ee¨Ö×ÐúP.Q'CùÓæFCŠ{XñgÒ¢ò¢p ¥¤Á!Õ ;ËÎ× :ÀáæâÎìd_ ³Ö’é´ïª3¯î°lòUZPq¡o:FXHRK„izþ{Kq3 ·u [}çöÀÝ]öÿÜÚš„ÑþbKÌT)d`ÑÔ;ŠrìIƒtbøWŠˆÚôÈ8ÁyÔ…Z¨æ¬x¶J-‰!¹GZœÅè§,\P¥Çúê-L¤pxW›l—L=[UÅÑ#"Ö ©ÄxmòœggJK]®ÃÛ :“,†%W\ŸÉ¼s|/+99t†„ÿZ"›Dµï¿=‹-Y$n†&9?><ÕMº/à|d©O—Ãls¿‡(#4í}Ö‹Íë­Ñ¿ÃR-N“uÑN—…®µ®»RéëOÍo·º—ÒÓ«hÂ|î¬:¶}»A…1ËšnÎI™!é)Á6x»*ÜË h:š&´7·Ý4*uÏà}$dáXË/È ŠAF>··S?—ŽÜRp7Ñ,8]RŠÃ[‚:4\Lø¨?¹ñÓˆ_ûœ™¬šÞþ`{Ì£:K%Ó^¨DüJa䣈JI\,E’êŽw:¤"¿ùœæŠÀq¡^º B˜Ïó΢(#á]Iè[žå¸bÈ–0¯;ï“«Òk•tÐ_<Õh%v°íb—à¼ÊÖÉå#u[ÿ \ÉœáÞM¼‰ý/ü[GÒZî¢j¸=l—È…fSØ Ø °äH–Y2I—uẇ¯&‰\§ØpW"õ4`â ”7õòIÛúI*·V*LC9 LƒÓ Źf‡Ì›ýEÝ$“’݆e¼aÙ9„Ã]f¶ÁšïùÕ?-“³u°‚SäÀe-Îø‰µ^õŸ—VAÄæßÜç„‘¯ë?¯Lr—Z:|çM|¶uµ)ã4cZ~Ǽ3Û½hÝøQ!ÝœH‹ÄœüòœCö_’Ì[ƒ‰ùÈìžçç?¼²5€L”KâúDÁéÏs‚º¤Ž$]Û†ŒgÆHòÙ£®k|â'{–ç`ò¥±’Õ˜ü 30«(—CYè3 ót‰Ÿ‹÷9† Ý CÀ€-ð¨Tm~4äÇ0ÝÞFì:qh»:Š hÕ$ö÷¼šyenЙú£íÁÇ+¢ {™?ß´ó;QÆÓÒ¡Ÿ¦)g à§t],-.³O&xsJÚßD¸Sfü×']¼:ùÀq‹ƒÞE=æC”šßÅ”Z/’´Ýv’£cÐxàPõ ¯'œ ,8ò Eß齟—ú=?÷ÒføŸ‚Óþ¼c9¨–™ÞHS„‘kMà1е=ö`°FµL^ÉÄ-ºŒ8ŠTß³%µˆ²Ùól¨h­\1/I{Ïâ-†2¤^Ýu”Àv|¦|<%{)ÆõððÛJÃSzѰe{dx‚%¾ùȼ,õe¸<€1F<íú7ëÓ¥’R&»F³»‹=e+ó`…­‘¬CF.È* ‹X%Òù¦9߆’&è÷d‘µ—ù¹Þ.Mœ{à>üpWZlÙá¼Í$ œì!D‡§ëÐ.¨1øÿg˜Ü À¡ÍQqù3ãGá:ß­5VÝâ0üYe¬¬{ ù Ô9 ¥ÕåfQÖjZìYFž©¤HoJÞÌ~ËöÙ?û6ì·¶Ä>zÕ½ùCë¿ý§owh‹µØ¸ÅâYìzà—@4µÿ5æb3¥ßªÉ¶ïìFÈLJÀцÏnvåÑX›dJQPžÄ ØyU^‡fkEÏÿ#ãþYÛ”÷ÕZa6ƒÇPÓ›IŠè&CU´­Wøm^¹}§á”tÜn½³×pÊœÜál–d “Ú?'±„ô^%Wàp'¶„u(l•Bu~ê6ñ‚“@. ƒËnĦ ÌtäPÊ‘¼áÁƒÉôb‡ó。¢…iÕŒŠÚ$Ö'ûÁmZÑ/Mg‹Ì€:Üô lÎʼn\£èÁôƒm_MàI÷IíË¢4–~4 ë]ñn<2¥¸ëíMNGìV¨¯a ›ˆLÓ+VÿbP5;þÚ-ºÍØÙAÕä2ÈùÔ[ 13+O%X°÷ë„.á›Þ°s]ŸÅ—moF¿8 чÄÀ3^ó@$h|$s†Ô×'é縋åÍÃõ¤·pHZ¿€æâᯮS4â›vPvL'å±MX‚‰e¹<[˹֞EŒDV.ó<Ó´.@ N¥LtýZ@R*Ëå½ÌÉsZÆÊ÷‡Èá ìWsÏ“•¸S)²r˜/ÓÖˆ°¼›¨Óäð{9¹ÇÇdö%?`ÄÃ.H¶Ypºsvûöœ_ØóyUôé¿?,"sHah*-„¹">¶é<—•e‰eƒî×7Ëe:ßHŒà&üDt§¯É‘%zA4ൠĤȉ?áJ¤'P£´U&cžò¤~ðKÌÌãÐe~aÌZR9Ê<QŸ…lALu’›×J.r‡cÝꢧ"ážøÿ(ŸîœÆÙªê ”Kë(ÏG…½vé;Ã$³á0g×ÛV\ð qRLíV¤8m ªäÛï‚;êW;£FV_~ðcYÕó!½`ŸôA2…¸‹„Ûõ2Xdš×ð˜+I8Äâ…´BQ3>®èíæÏåÖˆYVy¤Iqi`<‰æ'ÈRâYwž[ä9¾Üž>ý ÞÚ5Ú ›"éèO³D‡LÊL¦v\ÜûW§i<îÁÝkj û¢"®üÖ5¼^S;'âWDj_„숒ËÙ3h:sôì‘h¿ˆ®›Å¾ÕÙƒê&ƒ‡Ë áöÔ^o®ÚŽí–ýTàWG~»÷`8°º>%T½£Jüæà›y:1eú~ju¬-Âm¦·ô]â9§õ­ÊJN`‡Ïdd"Tþ!M±‰–u&ñôãP.Ù˜ƒkïL_•ffî£0Gß>0pEpúR¹“½§W£ÎnjÝ–Âó‹÷H¾¢[u<.sPLŒéZ÷F£m¿õ/ÀN&јX”¼Ì„tßä@%Yš ;“‘ûfçŠüE¦¦ÿq2$Éõï4n )W%ÃÐÄCYÃSu‰ÖÓužá^õÏ ñBêguÍ[‘Ï·¡’¬Y>è¨×¢Ô‰YJnq¼Ó¿Î:h¯)šÑ’䊂!…Öíup$ž¯[ŒO]„7¬!‹‘à=tzQd´Ë³;Œ˜§"wßþégèWS ;·lúˆƒû—æëyÑ8i ¸÷ø}WÈÈ)Mv`×tÞHÞj(·š‡¡Dã<zM¹­‘ÏU…}ž²CP,O„âœAð·H–{é%©Ž¦™;ÙþNI„¥¼±ü£1h¼×¬BjÝyá¶‹¼Üj¡?ù‚EÝzÒ1¦6ÕåÑpü`9AÝÃBÜ<o::ùÖ]K«‰§6×i9Ïti*»–YVÆß7¶Â¥fgºªØ àýò‚m÷¦½‘ ¢"-÷³ŸÖlR@çí£ åÆÔä®ÝrISœ~üóÕ"ÅÅbT^ëù§ õQ°%³¢6;:lé·æ’GŽá«Kª*Åñ 蛥&zj/®ñíø™ ǹþÐåÿþ˜w5o³v—S×zöÃÖL¤Ò,å§óg'+õÖ§J>/1ºÐ4³›UeTò-Íh…„$ˆä"v0nó,|šyÖ2«oÇGË%.s©ð[Õµj¼h-Ý1 ^Õò7z(À¨¤stŸiiâPçÉPóɱ+ŒÌ€wo”±*#Pi­j á¿Æ³.iÚÙ/¶ßP îîlåH×ëZ¯)=וípìl¾Ó¶šePñ߇-êï>Ëà˜¾íGä„|o†ŒªOÄ”êpó$Xu ßÅü1¡öh«ôqœÅàÆ®ðs¼ jCKÁ®åœº.3e2۪筕)Y ã™@”76jX9åo6/±8‚xŸsWjy–c»d:®HÛS 'êQ“#Xë†Ñ¦†ªŠâ›Í ¤ÓB‹A鶪¯%ßNôÀ®'e‚þÉ\—\ã¹»h_@ ·˜fU¼ÕÉÝäÆlg6õôjd(ؽ 0sªê” Q²/ò<@ÃxÊþ(ìbãøpéÁch5ýøôI“[¡ƒÞ,Ej{÷kxå ß9W‡ñž’™Þ±Û÷„îެx `¼Ý'"ZL•èv Ù££#F\cÒ’ÛA;P´‹kr&ý–kMbœ·Ü»M¢üà|“£MA‹Û<ƒÃF¬Ñ<×e™ïš×ôŸ* £%Q1/‘ ÛËÈ!Ü%ô7̵-žmè†ýZáO“õÑžH|žÎ÷£›2°kr‰ò….2§½ÕdÖ¾\ ^÷¡ý%x 3Ý®ÐUÕÀRq«O"Lœ.ÛTºÛć"#r‘CXC|K@CŠÔú1|{ƒ|vÆ÷t`%•%¤ç _“íÓ%·¸(ŠÉVKÆ`ð †2´|uçæ³*Ž™¢4†ZòvªÆø‚ý©WôÁ´)ohÙ“µ¤ßÚ3¢w’ (X’åÇcH¶Þç#ìx`VeùTâÐBÀì~Ž0Ï‹ß×_Lö5#‹µ–ÖMé;ÉH9V«ûŸ¯…çp#E¶²®O¶™3 }CsŠùIí±@ºýRçgŒxº5(ÕrjuB~,,Zr®M„S+¹*껩7¬Œd Ój^á’„7SÉNÍ©žc4}M5wþ›®N÷×:Ó‹#†&æÍgY»ñ 5”TìÜw—&ûÝ0†ÞÒÙ›Œ ªÅÜŒhœQøaïx] `RdnP¶ýCzbêê¥Ê|‹\è—Q£³v–ëaèz(ë‚Ü2죶> €ü·Ü@V¢™@o¥JhdÇäèZ#˜þ“4Rj]!»*¤¹)ð6EíI¹a`ˆ3Ï®u!~5*zo“GpC¼«¹µ'icÂAýÜé=”Ê3èférg¡Z'ÔS$üA ¹¿5=v˜…”#ÈÆQÒM³’‘A””ÀCzhˆhp¯T]ùc]¤“~ÂàL4U 2Çšk–åOC”½ã·%T§ìË"*Á`¾»@,9ž,FN¬ ¬µÆ/ç€ Gù Æþ£. ±&òb‡i|þ~‚ LFhm¨?Û|è!7×ä­ŸZyJè÷ö¢à§™>s¥ul¯"ÏúӋ⥖2-ÜšfggS'²ˆ¸”a?û»*²fƒÆ¬uiäÙ‰™„3+ûõíu•O3AJö¨à?øÞ^˜1³8e§ÐŒkÐîNÕKS`Ñ4ÎÓO»Œ¯ù~Õmx+€_T‡½R«’ËgÖ$ó!:•Â5%á>'Â÷Tj¦<ø-¤-œµNÏ÷-‚2Iƒ¯©–€™¤ý*Ñ™êèű.¬Ù9R_¦zà2÷e®y&`GvèÇÕEn6AK;X…¯Æ]̬v›¡Â™¾žw“Fö®3R/3suÂL+oy}Ö¢ØToþàÛ )cD»dü_aʰt_­Fî(­owb³Ûï\׎‡np‘ˆøÜ~™,R¦©»«: #%I>hzÃ¥KÄ‚MF∯æÄÒ>‹¸–˜ëü¡¢VÒPÑ ÷6e¦i‰²u–þ¡Ï¾ÄIk¦U6¼YEÜ•6apžÃêj4¬TŠ x£½iÒrÈ&›¦¦ƒm/¾¼e^ÂØ—¥ƒ½ìÆ”ÃÎåFTmt.ÂÒgàâÓ[H1å~Ø‹ŽoÿàŽª:®ŽQ*GáØ èIR°Š¾¿’žÀ¯ê?/ Üí†"…=¸žI²Wc ¡ ®Š[xîo@¨ŽzÅu½å'”]G3Ì ¡\Œ†úòniÝ[{&a^û~ëæ&’Ìv"¤»>Ÿ¿{%šzÍrãŸ\¯=C‘“Îáó»lX–iÌ´ùÈêUÛO@[gÅWÁ«æ%×úéð3µíM×6÷ðº–tÃU†°(UhÃ]êñ\îÜÎŽôæGm4×¶:\ßð?S´&s‚àˆdÅÐst“chfçúHjŠ9¼÷ÀŒ>NùuzÁ-ÁôY ÈÞä¹²¯`SÃ7#ÔV4ÝæÂÓ íh:²i~/Í™7~K¨¯“LüŒÙ‡w€íØYÅ7¬r,®%e~Ãæû?Û™áW“½*YT¾è=FÑN.û)¼Â¶þ>Aœ=mžŸaÑÍaxü ú9‡Ò.ZÈcŠÌ›`ÆYBpá/øµqD'V”‡»‡0u0ZŠÇ¡ÂSQ£z cíó´ÇîÔüÄÐ4æ$'\f Q¹þ_+ðË.s•d_ðâ*áµÄ›Õ®þ ¥ âR¹É—²O¨LÔ™F¬Cé ‹‘spe?Ðù+&IÇNK•æñ›?žE‰Ç‰”âÔ­O/!o^¤LAS\#óî-ùîoß„]É eb>iµä{ÑK»8E5¬é;&ÊZ'õZ€–Œ…i¯VŸéãËׇ–‡Ú}¾©øm=VÜp-ëÔdÅn+¨l¢%K#;é§i63ð ß]Šù ËɦîCªF¿-ÇWV oí½>]±bÍ °•ˆ óÈpÎŒÖ}‹ #±mBú–_ч5ºßÌ&ñ¹TƒúàŒwš¼O>ñÂ&ÒUf†¢ˆ I’<…‰ð$Bý*K –YAÅIa¾ñ{‘‡ úʘKž›™Ó"îJÐ'›ÿ8Æë¨p‘×Ý+‘t–#8üT9½ËgÆò°bå)Õ1L‰9ß”ÁûHE)áoó`évßžùRÇ%§ëˆ¥­˜b{ât½\Î÷R †›OQD‹C*äŽBS=“’þ«S¥‰x×ú¡}·ŒS†}âC%kŽÝ"#‘VôÌÁ×=éA·Í>•¦C¿šö¶áÒ›¶D\Lb ïêÅz ‹˜ä&ÂeJ,cs¸ð*|ÅñøJËæŒ‡2B—.\íЉQ]€Èª¥]Ô4?ž82aŽ”%ƒc Ñð?;‘ܲÉ: y<Ôw½³bð=ÙŒnÞZ]m¨âÑ(F’¶(±²ú±)‚/¸ºX43>.Xè |ÈÊa²­~鋬+à@ryE BÀ,8k ¦ÓíEIÁ¶¹D.qª¤ŸL .£´X TßÛ^}›Öí ÜÕÈÝÍ=¿ㆼF‡Á½F4@ n¸Çƒð0yìž^8 À[ìã|îu“‰˜õÝ @½³ D¿zú<²{CÁ{ãó•_f—r0 Õ A^õËÁéÈ2îΰz4ùS¹ƒJèéSà! Ú/GœÌ'C‚nûÁÑq!îÜ¢ºö¤ÒªSʧ‰K`ƒ‡Ê¥9n?žºÑº¾ƒˆŠ+}~QŸt‘Q#äéf&þ~¶¨ê°œkÊ]ëNû&3è¼P?7:ç;PÀôg6¶5Ëf1ú–À•çh\™ÛÙ-6 ߯ïä. çR#%¶2ÍQ¯Ðî^ˆ}.¹d®é½IoˆëÖ´H”þkCÈî:ÊîNéf T*ÁROÆö7ª‰™ÆGýEˆ8Îk<㟕œkx‘×XΫºÇޘ列s‚ivq.ðýRC‹ +.G£§0¤àíîF û=ךc4 ¼Ê1ŽÝðÙ¨Ö[G[]gÌí¼)ð½êôÚ_µt¬cîôdü ’ü—7±­ÆâÈÆ]ù½m=ó'(ÁÔ5hÇ0C^¿o2æé³–d#Z%puËš+%' f²ØfÛûäXÂX"ƒ†V­’rNgéT%ñÄjkú÷È<’ßç4p>óA¸¤È‹)PcÁÈÑô…ÉŒþ"1YËï ²ßacÐãPçe\õÍ#³÷¶ÉV¹`úAGÑT!ü³&P˜à¥F {Ì› -jªS*=ÞG®Mh(í„È„Jß8ÕÅôdÒX? O‹a‡d@èPV§Ýœ;ËzW –ïiÈh9\ÇþæöF»qʹ¬ûEÕZ‚½¬á‚;áá~gm9†’dXž7è×Ä-ÚYÇ lgQ, œ½£‹ÝoZ/ŒQ¸!~¾–¸y^,ÇÖ&¸˜}"³Ñw¦×„¢¯NÜÔ#”(v7» “¢G _“4ûÐ¥ëçqk@– ®Ëhó`»0G%0ɧåé8‘W¹Ž Ô˜Ù|×@4/»m©CþD!ëš—~#v¿û­úíYŽbèÉVðX3FqX:»0`=ìQ0Ùy¥ä[ þâ!Uý ¸Ücáo"(±óSv w'Åš»D°‹æ šûÊdÏva·îÆEm¿Â->+Þ0®_OXèèõoÌ `<ú¸4/{TJ'Z{qÄj ú»åf+î ùôEµ˜³Ýœ¼g¿r=yùÍ¢»\-܃¼žw͇§4°vŠ>=‘OÕ¸e¿¢Ä}WÚ>@s#ãX¾5Æú›VößmÀŸÎ2´†pPÑy©øVàéJB¤p õÄä0a‹ÈéúÉ2Tl®'’³û0¥è¡û®ÇHWWÍ–Nõ`œ4=q;U‡/±¤]ü´ÇûEgĺˆ@wàë1|~D@ú¡åÅKØù·Û[ñmùÈ9`FšFœ}ÂÅLçÕuàjÚ„òLÂã Cº³ÈðÄC¾¥ˆ)c þgn7qü —KQÕki£ÜQüŽ,cCÄó®ùÈ]yãh ’!¾‚ÀÏåÝ v×\ªÌuE[Qyx· ÿö‰ËF9× ><ëJ¡w7~*³Ž=̃W¶¹[Õè®òb׈? ¯¢Œ,´”¶º×:XˆA¼›hÛz Jì e°isÁP^~9ï:Ž cÇ[:†21/ ¹1S÷l.a¢8³®³À{—…‹øfÊöÇQûŸ;-AÑ×ÀFµ°FvÉUábÔÜ¿!.IKisrã}ˆ'Ø“îíüÏê/ðØ‹2Cö"Ñw9e.¢ÎÍWž±IIàVMÐvg°*›q½HWfÍ|Ò5|Øžq—XAÅg‡W d(4µÔP_OêJkЈçžœCvʧ PÍC͘´õZìú9ò1_ %ͦ˜ó ©×Ì:4H=Mø6g8ÀOí5‚‹¿žðhëЯÔÙ)AÖ÷±Øî¶øÙ¯ÛJBÊS£Ý!ËNêggnò~ü™q%z•ªžf ¦7dsO~êÎ<¼èÆý ÂK=ùŽÒ’ÁË?½F-q¼€ø¾J…9y¤«®À鯔ě3{ÖÉûÎÆŽëCLÞ&Šã‡‡†ÁÝ 7²…h AÄÃìžï¹yžÐù}°K¾ö^bIâü³ÜVÉ{ÈUm\nÅu‚“(@ªß.¦Ð©x­ïkôDPVË)y'¨ ãÌè5UJ„³ß;›®½F"@;W~Fí¿’©y?¬-Ï¡Š¿>È”9{æô±Ý8U³©±Æ:¥ò#áHZ™–Á ,"ZL[>yÝO³–[Á|Ré°aÿ¿‰*CBËc{Ü.5~…µž· ¤º9aÄå‰ëR·on'tè˜Ø+Ó(Aû±¯3Åm߇8¹ìƒ¾©@Ëêv@ûbÌ(-1 €äÖÃГö"+˜0Êb¦½E3¸®¼0§›ç‘¤Äº: ÊL  Pm-Ý–…@[éÊæËÓ`åHoFác·ËñæjÌúÔA n´(Ä©õ@>K”Œ`nùt,£sdž!6†,m«Zö„þ‰Þ¼é»n{y–Å)·ª£ÚѲ¶³Üw^])GŠhôCrØÎ,»¶MÍ«pÊ}°æY•2>·8<¼7ŠîbêĈÊ,ˆ4Lï;'Ix¹óŽäÓÆ£bý> . Øaö|£çµ[˜]æÞ/öH&c0Ð9H§º[±–¥•hw`³ˆ h73>UÝË1é˜<ÊŠ3Ç/ü¼ˆYó¢†q´ÈHp5Ó=è5•Õ'.¡m %sRZ5ýÚóø|s_Þ™³h÷ ¦:áÇW81çC>|(\õ|‡ï>D‘5f ó+¾Á!žÀÔwýd—àÎYL›H²â¢Á±çq\‚œB?%.¶-Æ[²õDÕI!×À xàJ²s^©Ýw¦iÇç©VûÊñ'KúPItˆQÁáñ׌w£Xg–ì› O?‘Mj‘Chúa_dªfÚ–>FŸ1ÇÁ`¥N±Î!\@£J¶Ï‡Qq’> œ‹ÃgØð°å äàT“°‘Îb3» Ô3^{†„Pgk`ï!Hò‚˜É¯øFWÆý•Ðq$Ûex ¾Œ=›´\Ûþ× #H—šóªÖ"VqA M·ê•uØAJ­tCpá I iù§åna‹'d¯ö|m§…Ô ”B˜ü’ò"ib`O˜ò/%‘g$„Ë„ÀÚܽ„íª­z)eÊN5NicúNåzÊ– í~²ŽèŠnrt;énanÐæ„µ’ìQ=ÿInX¤È<0fƒÊ˜H´þ?'xq5U5 ¼bCì7vPÖÉ’ÀRÑÛ\û±P *عéÈÖ þ¦þ€ž{!.óù¶Dx¡¦`YIOªÒñŽXªIÝ|Àé‹»¯•Üßôçhåç}ŒŸ¦àJ¢é‘ID/™ ÎwZuéì‚jY_G“ ¹’FDQ´ûÓ æ ,þ{»å¯ùÜüíˆû¢`>Cm°Ë•^SÆãxUŠñ>LR6Šè>â~¡- ZÐä|EŸ¬9ìªWðdôdâr2â4 e´¹jË–ý](.¨áZ.®(N¥`[xˆ‘n©zTºPäI‹¿ź[ÀµÿÊÒUòÜf~\\ iaÕ¶O@ Ä}•-Ü,Br]–íÓ¯Vvz¯ÉõK>ê&9×"Ý’gÀyÕþÆ~`ù˜Ë?àüºŒºqUÉñÒPXu.¬¨}Ï/qˆLK÷¨iiǦÔåU6ÒÉL¨»ÆãTÜBò]Ñ>äp|Sœ„ô¶AÿVêFƒ“·N6Väà9\ß­Ý:ؽ¡”ãÝ2=ÿ9â*ýn”vh3PM 7¥êÛ&Q†(§+'ÆFÔÒÎ>{þh¡N©”QP{ÍðÒ„+ÂfÇ•w8ûTm»ÎP4œË((2¢8¥ì~©~\×»·ÿ¬Ç£a~3W“Û¾¦â¢BhÃ]ëð‘Û`4ÉÞñ2°¿l9ó%œo‰Ìå!W}€ä?úžŒ%ôªÅ›äòM¤šÝƒ•¼#(4ŠûrPíù:t ërUÉÈÕiãN9°…n«ñ„PÔaŽ)ß‹PH”` ÀgƒÍÉr–UH6|qÂírzì+Õ¦¦S 2:‚*é€Â¥Åhj lñ¾…Q×Ú݆öø°›¹$N báx[PíC"r+7¨ æýä÷hU÷ùŠÂµK‹´€La‹_P v6¦V(UF[i¥ö§3qÐ)>êâÜé^6íˆ.M{ÅD€æÊSáü¸,S1„Ø$ƒ^`¦ãHXí¿é­Ž0•™U‡áÞÚg†€“÷¤>ß¾÷0ä[¥Tƒ÷Š…yKVÇylŒ®Ê?¨p™e›P1ó+‡ ¯ÝFaT]›v)ÙÆ.ŸÒÓF^°HPŸû-ˆ¥¸yD^¯šÝnròPpŠÍº hÔ?Ž­$wóT´´JÖÎ I˼D``^º Ì ¸ÔÎ̱Aöj¹ƒ•[X²³Jv$[G•É †~&ùÑÃ$€²NþãN›Ö/\ø®r¦~ÀgÌÿN G¥&G§7E ¤K"jÎRðJ͹6áLêÓM¤ø¥ ‰÷Äk,\à¨xéALæ9ëI‰\zŠ#=}Óª–<øp³*l~YÍÀÄ!ÐÒhéaà¸lOÛêŠi}(†áEò¤Ò¥=’ÍïD©7a˜³˜‘ÂsíÑÁõbyÌ„2ë%NÞq—ìḧD¡«MiD×OTÑ}žè0'Û}¶%ÍÆûUµ„ 'õ#uáTÏßMðÞeþÈÊëmgN--Ô©ˆƒãIècS¬¸xeOjŒ®ˆ/ÄÈEÈÙí&¿¯jŽ|ÜlWP×@ÇÛÃðC9lŸÓ«§ OwÀ´)‚½„dAJz€ÏÐ-½ËïvìcÁŒg åi³mm;msö`·z¶„ã{Ø)¨2 ðsÜxŠ|ÃÆY9›]ßMÇñŸŒ—¦»:§d¿‡Ôת~²eñÇtRýÜû. *jçã,hðÉAUÐW®(ñm¬¯³“Tþe€&»ìÚ˜i^`•ã¼ÍñŽ[’>ôÖ'ÈQަßx$õÞº-)ÍS_C)±oÆWÌ.a5i—Ëç"’–lùçïÇÀ7&Z•„#à„¢Ë 8¦˜¢T³j: Õ_× ’xyï|ß%¢ã»vŒ[‹j“óÎ\¼uWÐÙº» ŒmÑÿM£z&«#m2Û¤H/jEÃäiµé©owD×£º¦ ·é²)lâ!@™^yHd C¢ú±šmªÙùØ«-ÂX¨é–YHì„¡2£€­.÷m ‘ð×SEÖenfžÁ7§Ÿ@g!®=Ñ›—+è¥ sò©H6ÜñÑ+ gI¥¼[iÃþ» û¤8ÜYO`„:=>Ä2X¡ÚKï˜ÃÖöë3úˆX)¤mGg¶ÝÇߤX(: ZB.زø ’#Ì " õåñvÙ0ìÄȤÿ7“‰ƒþ 4 …!‡‘$ÙÂp{Ù‹çJž,Ñ«¦“Æ<Æ-PPœ^9׋úLvô7B…ĉދr”Œ/KtÕÝ IÏ'åõî‡ÓÌ@ëÆ4i‰YüÉíˆÖ¼LþÕpÆxÂÁ®Åx&1 -bCÃæ'÷S}yö™‰µWÐj3W©o‚¨wƒq£îT ²5m1›_Ø\˜ì¦ wDÝOf™N®i–ksrK^€àg“!áA4†k­¡pû¾ ­ûña@¢áÞ—ÈH¤9/8m÷ pÎËSð·µûðïD§\%¶ÊŒâóo] #†A.Ê ’ u'—CúL¶Mò¿D6ì4HrIéÔ¡Œ€&ѕկ‡[°¯Ot#8qâ*8„ëØ‹"o>¿°=ó"ÿ³¯í³¼³pxþ2é üD§öÉîFÀ\9ü{®±@Lò‚u~¼P›«lZ(˜àþ Ïöñ÷ aKþþµxj–û‘Ô‘À’½œnX0š7B¾ã²!²kƒTa=´ðœî*¸WëIþIu':7/Ó«€|~c€Esá³I!NmT!Ÿp_ßÍ–ì²q|Dn±‹¾s g…è~ù–a®f“Ñy ¤ÌnRð#è )ø¸ÛÀQB0ø£³j­Ø‡ïZ­±.ˆD‚ÿ©÷àÇ *–õE) pO!î”1"¾gQýU'ޱ¡pÚœ›ßMëdêCG½æ'RžO/éÜ÷¼³ ±Ç|+Èúäö‡ iOsÞŠ—Sÿ£rIiôtûå.Ê×@¾N¶¬hg þœü « ‹µŠÙcƶ, ‚*$Ö¸„Ð-î ʪAµ–Û¨ân'Iv¤FhgˆmѬcåj$a6R÷6”Ô2jï»ñ}'×DÅ×Ïà”¶+g±|õûâïÃÏ ¦ü[õû|Æ>³œ—ù—˜Àóë}i–Xb#„E¬wéÈö"ÂüÏL÷JxÊ”ÅPòÛ¡ OÓ±Iuœ]SÂ'´y<Ü26#Ál5êÔèq·J×nÀ͉zݦwHúCÃæ¯O.|“¢D_Þ‹ˆ ²Vv(ޱg ™_ÓÓÚG•èYÚI¹ø“ ÕnÐOO:ÔE>ÛÓ@àÀܫG‚›æúôy®úi•Ú…§>±—ßµ#þÏrI'l_”µ­®"¿=»X§›Ç|+¥< –°`A@ü’"Þ'≺ßÓºÏ"LšØ¹$ýêé¬h|Óy+¥šwêL,èGÚ²dKÜèÝ` «§aòTÃ𸔸/Æt1¥B<§Ý…Ùh±usü•I¸_l^«m”+16¶:¼åª†uŽKâò+‡Æ$X™CŠ3 ç¦ÃÄþüRpˆ„ééXωkm=¹ }ò<8—è[{ÐD¸_ñuBJÄYÖlðs*ó‘›ì16‚áV“ GKá²ÖùwòB½ÝQ ¬ Žb&pÚ² Þ‡ZékPz«zö]®âXžz/RÝ«GF¡2&¾¬Î^„ñѧ›o£Ÿý9]Þ>}Høç–@Å%yf, 툚…Y±×:¾“®ú‚=Ä}Í”‘Fý¨b´ ñâ]#qzNXsŒc‰ÒôÓ¡¢)PmÊØD€Üc$á»ð[‰µ¡8­¿Ø]˜Sø¥:»¦{è44Q^”.k“@Gqòõ¦O+S‡¡nþˆý~BoW÷ ֌ˊìHDê©NzÃ-Q*‹ÔÃaÈr}¼"ÒMOï‰yó­-ey«îzÇÜç,ŽEz°žAÄ#‘Jÿ g øä!<¦,ÕÐäEŒôd!p€e”µé‡R+Io"%ÍßóTÂJ`è¨÷9,jÓáXèY¨ˆp°‹ñ „'ݲ“'hsêo§"üzÙB¡|ÌeÁÉDN\‚i j^½àôü:à `pŽcWÚ9&ÊNU#ø9ïûWñˆÂV¢?æF½Ö„âÆÎÝÉŽá«øèq_ض>g"¼ôF:3ÅC¼~ý¯÷4Â4~.ñ¨e1Õ1ãPœ^ØF >ÍãO ƒsnOÁ~* ,•;ÂÕ¼e†Ç!0éÔ±öÊå3dG™>À»âÒ^Jš­¨}«y¥íàõé’8ròÑlŽf×¢g—¦pŸó«¿Û)>0 ‹YZsurveillance/inst/shapes/berlin.sbx0000644000176200001440000000020412625315364017202 0ustar liggesusers' ÿÿþpB A80ê CZ@õše³âžA=d´ /©`ATà(i^2 BV fsurveillance/inst/shapes/berlin.dbf0000644000176200001440000000161612625315364017151 0ustar liggesusersj AWIdNBEZIRKC2SNAMEC 0Steglitz-Zehlendorf zehl 0Tempelhof-Schöneberg scho 0Spandau span 0Charlottenburg-Wilmersdorf chwi 0Mitte mitt 0Neukölln neuk 0Friedrichshain-Kreuzberg frkr 0Treptow-Köpenick trko 0Marzahn-Hellersdorf mahe 0Lichtenberg lich 0Pankow pank 0Reinickendorf rein surveillance/inst/CITATION0000644000176200001440000000223114425016044015056 0ustar liggesusersbibentry( bibtype = "Article", header = "As a general software reference for the _monitoring_ functionality, please cite:", author = c(person("Ma\u00eblle", "Salmon"), person("Dirk", "Schumacher"), person("Michael", "H\u00f6hle")), title = "Monitoring Count Time Series in {R}: Aberration Detection in Public Health Surveillance", journal = "Journal of Statistical Software", year = "2016", volume = "70", number = "10", pages = "1--35", doi = "10.18637/jss.v070.i10" ) bibentry( bibtype = "Article", header = "As a general reference for the spatio-temporal _modeling_ frameworks, please cite:", author = c(person("Sebastian", "Meyer"), person("Leonhard", "Held"), person("Michael", "H\u00f6hle")), title = "Spatio-Temporal Analysis of Epidemic Phenomena Using the {R} Package {surveillance}", journal = "Journal of Statistical Software", year = "2017", volume = "77", number = "11", pages = "1--55", doi = "10.18637/jss.v077.i11" ) citFooter("References to the underlying methodological papers can be found via", "'surveillance:::REFERENCES' and on the help pages of the functions.") surveillance/inst/jags/0000755000176200001440000000000013670366030014653 5ustar liggesuserssurveillance/inst/jags/bhpm.bugs0000644000176200001440000000777313670366030016501 0ustar liggesusers###################################################################### # Bayesian hierarchical Poisson model for performing nowcasting stated # in the BUGS/JAGS modelling language. This is a template file - # based on the control options, the nowcasttrunc function removes # tags or inserts extra code - i.e. this file can not run with JAGS # without extra modification # # Author: Michael Höhle ###################################################################### model { ################################################## #Prior for the TPS ################################################## # #Priors for the regression coefficients. A joint distribution # #forces the updated to be MV metropolis hastings (might not be better as slice sampler) # beta ~ dmnorm( beta.mu, beta.prec) # #Random effects with automatic smoothing # for (k in 1:nknots){ # b[k] ~ dnorm(0, tau.b) # } # tau.b ~ dgamma(0.001, 0.001) # #1st order random walk prior for lambda[t] # logLambda[1] ~ dnorm(-10, tau.logLambda) # for (t in 2:T) { # logLambda[t] ~ dnorm( logLambda[t-1], tau.logLambda) # } # tau.logLambda ~ dgamma(0.001,0.001) # #2nd order random walk prior for lambda[t] # logLambda[1] ~ dnorm(-10, tau.logLambda) # logLambda[2] ~ dnorm(-10, tau.logLambda) # for (t in 3:T) { # logLambda[t] ~ dnorm( 2*logLambda[t-1] - logLambda[t-2], tau.logLambda) # } # tau.logLambda ~ dgamma(0.001,0.001) # #iid lambda, which are Ga-distributed # for (t in 1:T) { # lambda[t] ~ dgamma( alpha.lambda, beta.lambda) # logLambda[t] <- log(lambda[t]) # } # # Prior for r parameter in negbin # r ~ dunif(0,50) ###################################### #Priors for discrete time hazard model ###################################### #for (d in 1:(maxDelay)) { } for (d in 1:(round( (maxDelay-1)/2-0.4)+1)) { #coefs for logit @ delay 0,..,maxDelay-1 gamma[d] ~ dnorm( mu.gamma[d], tau.gamma[d]) } # #Prior for change point effects (now as vector) eta ~ dmnorm( eta.mu, eta.prec) # #Alternative: Separate random walks for each baseline # for (d in 1:(maxDelay)) { # tau.gamma[d] ~ dgamma(0.001,0.001) # gamma[1,d] ~ dnorm( ifelse(maxDelay < 3/4*maxDelay, -3,-0.1), tau.gamma[d]) # } # for (t in 2:T) { # for (d in 1:(maxDelay)) { # #coefs for logit @ delay 0,..,maxDelay-1 # gamma[t,d] ~ dnorm( gamma[t-1,d], tau.gamma[d]) # } # } #################################################### #Loop over all time points in the reporting triangle #################################################### for (t in max(1,T-m):T) { #Time dependent delay distribution logit(p[t,1]) <- gamma[1] + eta %*% W[t,,1] #haz[t,1] <- p[t,1] -- not needed for (d in 1:(maxDelay-1)) { # gamma's are unique # logit(haz[t,d+1]) <- gamma[d+1] + eta %*% W[t,,d+1] # Two subsequent gamma's are the same logit(haz[t,d+1]) <- gamma[ round(d/2-0.4)+1] + eta %*% W[t,,d+1] p[t,d+1] <- (1-sum(p[t,1:d]))*haz[t,d+1] } p[t,maxDelay+1] <- (1-sum(p[t,1:maxDelay]))*1 #since haz[maxDelay+1]=1 #Observations -- loop over all delays. for (d in 0:maxDelay) { mu[t,d+1] <- exp(logLambda[t])*p[t,d+1] # # Poisson distributed response # rT[t,d+1] ~ dpois(mu[t,d+1]) # # Negative binomial distributed response # rT[t,d+1] ~ dnegbin(r/(r+mu[t, d+1]), r) } } #Loop over entire triangle not just the moving window for (t in 1:T) { #Curve for the expected number \lambda_t of cases #Spline model for the curve # logLambda[t] <- inprod(beta[],X[t,]) + inprod(b[],Z[t,]) #count the total number of observations at time t. NtInf[t] <- sum(rT[t,]) } } surveillance/inst/THANKS0000644000176200001440000000075214517725527014661 0ustar liggesusers## The authors would like to thank the following people ## for ideas, discussions, testing and feedback: Doris Altmann Johannes Bracher Caterina De Bacco Johannes Dreesman Johannes Elias Marc Geilhufe Jim Hester Kurt Hornik Mayeul Kauffmann Junyi Lu Lore Merdrignac Tim Pollington Marcos Prates André Victor Ribeiro Amaral Brian D. Ripley François Rousseu Barry Rowlingson Christopher W. Ryan Klaus Stark Yann Le Strat André Michael Toschke Wei Wei George Wood Achim Zeileis Bing Zhang surveillance/inst/doc/0000755000176200001440000000000014712411606014472 5ustar liggesuserssurveillance/inst/doc/hhh4_spacetime.Rnw0000644000176200001440000015676714667617354020116 0ustar liggesusers%\VignetteIndexEntry{hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, lattice, gsl, colorspace, gridExtra, scales, fanplot, hhh4contacts} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/hhh4_spacetime-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ \documentclass[nojss,nofooter,article]{jss} \usepackage[utf8]{inputenc} % Rnw is ASCII, but auto-generated bib file isn't % (specification is redundant in LaTeX >= 2018-04-01) \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to spatio-temporal \code{hhh4} models implemented in the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~5]{meyer.etal2014} -- which is the suggested reference if you use the \code{hhh4} implementation in your own work.}}\\[1cm] \code{hhh4}: Endemic-epidemic modeling\\of areal count time series} \Plaintitle{hhh4: Endemic-epidemic modeling of areal count time series} \Shorttitle{Endemic-epidemic modeling of areal count time series} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure %% knitr uses \subfloat, which subcaption only provides since v1.3 (2019/08/31) \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbb{I}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of area-level time series of counts using the endemic-epidemic multivariate time-series model ``\code{hhh4}'' described in, e.g., \citet[Section~3]{meyer.held2013}. See \code{vignette("hhh4")} for a more general introduction to \code{hhh4} models, including the univariate and non-spatial bivariate case. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("twinSIR")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002. } \Keywords{% areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration} \begin{document} <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("hhh4_spacetime-cache.RData")) if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE) @ \section[Model class]{Model class: \code{hhh4}} \label{sec:hhh4:methods} An endemic-epidemic multivariate time-series model for infectious disease counts $Y_{it}$ from units $i=1,\dotsc,I$ during periods $t=1,\dotsc,T$ was proposed by \citet{held-etal-2005} and was later extended in a series of papers \citep{paul-etal-2008,paul-held-2011,held.paul2012,meyer.held2013}. In its most general formulation, this so-called ``\code{hhh4}'' model assumes that, conditional on past observations, $Y_{it}$ has a negative binomial distribution with mean \begin{equation} \label{eqn:hhh4} \mu_{it} = e_{it} \, \nu_{it} + \lambda_{it} \, Y_{i,t-1} + \phi_{it} \sum_{j \ne i} w_{ji} \, Y_{j,t-1} \end{equation} and overdispersion parameter $\psi_i > 0$ such that the conditional variance of $Y_{it}$ is $\mu_{it} (1+\psi_i \mu_{it})$. Shared overdispersion parameters, e.g., $\psi_i\equiv\psi$, are supported as well as replacing the negative binomial by a Poisson distribution, which corresponds to the limit $\psi_i\equiv 0$. Similar to the point process models in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, the mean~\eqref{eqn:hhh4} decomposes additively into endemic and epidemic components. The endemic mean is usually modeled proportional to an offset of expected counts~$e_{it}$. In spatial applications of the multivariate \code{hhh4} model as in this paper, the ``unit''~$i$ refers to a geographical region and we typically use (the fraction of) the population living in region~$i$ as the endemic offset. The observation-driven epidemic component splits up into autoregressive effects, i.e., reproduction of the disease within region~$i$, and neighborhood effects, i.e., transmission from other regions~$j$. Overall, Equation~\ref{eqn:hhh4} becomes a rich regression model by allowing for log-linear predictors in all three components: \begin{align} \label{eqn:hhh4:predictors} \log(\nu_{it}) &= \alpha_i^{(\nu)} + {\bm{\beta}^{(\nu)}}^\top \bm{z}^{(\nu)}_{it} \:, \\ \log(\lambda_{it}) &= \alpha_i^{(\lambda)} + {\bm{\beta}^{(\lambda)}}^\top \bm{z}^{(\lambda)}_{it} \:, \\ \log(\phi_{it}) &= \alpha_i^{(\phi)} + {\bm{\beta}^{(\phi)}}^\top \bm{z}^{(\phi)}_{it} \:. \end{align} %% The superscripts in brackets distinguish the component-specific parameters. The intercepts of these predictors can be assumed identical across units, unit-specific, or random (and possibly correlated). %\citep{paul-held-2011} The regression terms often involve sine-cosine effects of time to reflect seasonally varying incidence, %\citep{held.paul2012} but may, e.g., also capture heterogeneous vaccination coverage \citep{herzog-etal-2010}. Data on infections imported from outside the study region may enter the endemic component \citep{geilhufe.etal2012}, which generally accounts for cases not directly linked to other observed cases, e.g., due to edge effects. For a single time series of counts $Y_t$, \code{hhh4} can be regarded as an extension of \code{glm.nb} from package \CRANpkg{MASS} \citep{R:MASS} to account for autoregression. See the \code{vignette("hhh4")} for examples of modeling univariate and bivariate count time series using \code{hhh4}. With multiple regions, spatio-temporal dependence is adopted by the third component in Equation~\ref{eqn:hhh4} with weights $w_{ji}$ reflecting the flow of infections from region $j$ to region $i$. These transmission weights may be informed by movement network data \citep{paul-etal-2008,geilhufe.etal2012}, but may also be estimated parametrically. A suitable choice to reflect epidemiological coupling between regions \citep[Chapter~7]{Keeling.Rohani2008} is a power-law distance decay $w_{ji} = o_{ji}^{-d}$ defined in terms of the adjacency order~$o_{ji}$ in the neighborhood graph of the regions \citep{meyer.held2013}. %% For instance, a second-order neighbor~$j$ of a region~$i$ ($o_{ji} = 2$) is a %% region adjacent to a first-order neighbor of $i$, but not itself directly %% adjacent to $i$. Note that we usually normalize the transmission weights such that $\sum_i w_{ji} = 1$, i.e., the $Y_{j,t-1}$ cases are distributed among the regions proportionally to the $j$th row vector of the weight matrix $(w_{ji})$. Likelihood inference for the above multivariate time-series model has been established by \citet{paul-held-2011} with extensions for parametric neighborhood weights by \citet{meyer.held2013}. Supplied with the analytical score function and Fisher information, the function \code{hhh4} by default uses the quasi-Newton algorithm available through the \proglang{R} function \code{nlminb} to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. Computation of the marginal Fisher information is accelerated using the \CRANpkg{Matrix} package \citep{R:Matrix}. \section[Data structure]{Data structure: \class{sts}} \label{sec:hhh4:data} <>= ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac @ In public health surveillance, routine reports of infections to public health authorities give rise to spatio-temporal data, which are usually made available in the form of aggregated counts by region and period. The Robert Koch Institute (RKI) in Germany, for example, maintains a database of cases of notifiable diseases, which can be queried via the \emph{SurvStat@RKI} online service (\url{https://survstat.rki.de}). To exemplify area-level \code{hhh4} models in the remainder of this manuscript, we use weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002, downloaded from \emph{SurvStat@RKI} (as of Annual Report 2005). These data are contained in \pkg{surveillance} as \code{data("measlesWeserEms")} -- an object of the \proglang{S}4-class \class{sts} (``surveillance time series'') used for data input in \code{hhh4} models and briefly introduced below. See \citet{hoehle-mazick-2010} and \citet{salmon.etal2014} for more detailed descriptions of this class, which is also used for the prospective aberration detection facilities of the \pkg{surveillance} package. The epidemic modeling of multivariate count time series essentially involves three data matrices: a $T \times I$ matrix of the observed counts, a corresponding matrix with potentially time-varying population numbers (or fractions), and an $I \times I$ neighborhood matrix quantifying the coupling between the $I$ units. In our example, the latter consists of the adjacency orders~$o_{ji}$ between the districts. A map of the districts in the form of a \code{SpatialPolygons} object (defined by the \CRANpkg{sp} package of \citealp{R:sp}) can be used to derive the matrix of adjacency orders automatically using the functions \code{poly2adjmat} and \code{nbOrder}, where the former wraps functionality of package \CRANpkg{spdep} \citep{R:spdep}: <>= weserems_adjmat <- poly2adjmat(map) weserems_nbOrder <- nbOrder(weserems_adjmat) @ <>= weserems_nbOrder <- measlesWeserEms@neighbourhood @ Visual inspection of the adjacencies identified by \code{poly2adjmat} is recommended, e.g., via labelling each district with the number of its neighbors, i.e., \code{rowSums(weserems_adjmat)}. If adjacencies are not detected, this is probably due to sliver polygons. In that case either increase the \code{snap} tolerance in \code{poly2adjmat} or use \CRANpkg{rmapshaper} \citep{R:rmapshaper} to simplify and snap adjacent polygons in advance. Given the aforementioned ingredients, the \class{sts} object \code{measlesWeserEms} has been constructed as follows: <>= measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) @ Here, \code{start} and \code{frequency} have the same meaning as for classical time-series objects of class \class{ts}, i.e., (year, sample number) of the first observation and the number of observations per year. Note that \code{data("measlesWeserEms")} constitutes a corrected version of \code{data("measles.weser")} originally analyzed by \citet[Section~3.2]{held-etal-2005}. Differences are documented on the associated help page. We can visualize such \class{sts} data in four ways: individual time series, overall time series, map of accumulated counts by district, or animated maps. For instance, the two plots in Figure~\ref{fig:measlesWeserEms} have been generated by the following code: <>= par(mar = c(5,5,1,1)) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) @ The overall time-series plot in Figure~\ref{fig:measlesWeserEms-1} reveals strong seasonality in the data with slightly different patterns in the two years. The spatial plot in Figure~\ref{fig:measlesWeserEms-2} is a tweaked \code{spplot} (package \CRANpkg{sp}) with colors from \CRANpkg{colorspace} \citep{R:colorspace} using $\sqrt{}$-equidistant cut points. The default plot \code{type} is \code{observed ~ time | unit} and displays the district-specific time series. Here we show the output of the equivalent \code{autoplot}-method (Figure~\ref{fig:measlesWeserEms15}), which is based on and requires \CRANpkg{ggplot2} \citep{R:ggplot2}: <0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="htb">>= if (require("ggplot2")) { autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) } else plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) @ The districts \Sexpr{paste0(paste0(row.names(measlesWeserEms@map), " (", measlesWeserEms@map[["GEN"]], ")")[colSums(observed(measlesWeserEms)) == 0], collapse = " and ")} without any reported cases are excluded in Figure~\ref{fig:measlesWeserEms15}. Obviously, the districts have been affected by measles to a very heterogeneous extent during these two years. An animation of the data can be easily produced as well. We recommend to use converters of the \CRANpkg{animation} package \citep{R:animation}, e.g., to watch the series of plots in a web browser. The following code will generate weekly disease maps during the year 2001 with the respective total number of cases shown in a legend and -- if package \CRANpkg{gridExtra} \citep{R:gridExtra} is available -- an evolving time-series plot at the bottom: <>= animation::saveHTML( animate(measlesWeserEms, tps = 1:52, total.args = list()), title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", ani.width = 500, ani.height = 600) @ <>= ## to perform the following analysis using biweekly aggregated measles counts: measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) @ \pagebreak \section{Modeling and inference} \label{sec:hhh4:fit} For multivariate surveillance time series of counts such as the \code{measlesWeserEms} data, the function \code{hhh4} fits models of the form~\eqref{eqn:hhh4} via (penalized) maximum likelihood. We start by modeling the measles counts in the Weser-Ems region by a slightly simplified version of the original negative binomial model used by \citet{held-etal-2005}. Instead of district-specific intercepts $\alpha_i^{(\nu)}$ in the endemic component, we first assume a common intercept $\alpha^{(\nu)}$ in order to not be forced to exclude the two districts without any reported cases of measles. After the estimation and illustration of this basic model, we will discuss the following sequential extensions: covariates (district-specific vaccination coverage), estimated transmission weights, and random effects to eventually account for unobserved heterogeneity of the districts. %epidemic seasonality, biweekly aggregation \subsection{Basic model} Our initial model has the following mean structure: \begin{align} \mu_{it} &= e_i \, \nu_t + \lambda \, Y_{i,t-1} + \phi \sum_{j \ne i} w_{ji} Y_{j,t-1}\:,\label{eqn:hhh4:basic}\\ \log(\nu_t) &= \alpha^{(\nu)} + \beta_t t + \gamma \sin(\omega t) + \delta \cos(\omega t)\:. \label{eqn:hhh4:basic:end} \end{align} To account for temporal variation of disease incidence, the endemic log-linear predictor $\nu_t$ incorporates an overall trend and a sinusoidal wave of frequency $\omega=2\pi/52$. As a basic district-specific measure of disease incidence, the population fraction $e_i$ is included as a multiplicative offset. The epidemic parameters $\lambda = \exp(\alpha^{(\lambda)})$ and $\phi = \exp(\alpha^{(\phi)})$ are assumed homogeneous across districts and constant over time. Furthermore, we define $w_{ji} = \ind(j \sim i) = \ind(o_{ji} = 1)$ for the time being, which means that the epidemic can only arrive from directly adjacent districts. This \class{hhh4} model transforms into the following list of \code{control} arguments: <>= measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = frequency(measlesWeserEms)), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") @ The formulae of the three predictors $\log\nu_t$, $\log\lambda$ and $\log\phi$ are specified as element \code{f} of the \code{end}, \code{ar}, and \code{ne} lists, respectively. For the endemic formula we use the convenient function \code{addSeason2formula} to generate the sine-cosine terms, and we take the multiplicative \code{offset} of population fractions $e_i$ from the \code{measlesWeserEms} object. The autoregressive part only consists of the intercept $\alpha^{(\lambda)}$, whereas the neighborhood component specifies the intercept $\alpha^{(\phi)}$ and also the matrix of transmission \code{weights} $(w_{ji})$ to use -- here a simple indicator of first-order adjacency. The chosen \code{family} corresponds to a negative binomial model with a common overdispersion parameter $\psi$ for all districts. Alternatives are \code{"Poisson"}, \code{"NegBinM"} ($\psi_i$), or a factor determining which groups of districts share a common overdispersion parameter. Together with the data, the complete list of control arguments is then fed into the \code{hhh4} function to estimate the model: <>= measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) @ The fitted model is summarized below: <>= summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) @ The \code{idx2Exp} argument of the \code{summary} method requests the estimates for $\lambda$, $\phi$, $\alpha^{(\nu)}$ and $\exp(\beta_t)$ instead of their respective internal log-values. For instance, \code{exp(end.t)} represents the seasonality-adjusted factor by which the basic endemic incidence increases per week. The \code{amplitudeShift} argument transforms the internal coefficients $\gamma$ and $\delta$ of the sine-cosine terms to the amplitude $A$ and phase shift $\varphi$ of the corresponding sinusoidal wave $A \sin(\omega t + \varphi)$ in $\log\nu_t$ \citep{paul-etal-2008}. The resulting multiplicative effect of seasonality on $\nu_t$ is shown in Figure~\ref{fig:measlesFit_basic_endseason} produced by: <>= plot(measlesFit_basic, type = "season", components = "end", main = "") @ The epidemic potential of the process as determined by the parameters $\lambda$ and $\phi$ is best investigated by a combined measure: the dominant eigenvalue (\code{maxEV}) of the matrix $\bm{\Lambda}$ %$\Lambda_t$, %such that $\bm{\mu}_t = \bm{\nu}_t + \bm{\Lambda} \bm{Y}_{t-1}$ which has the entries $(\Lambda)_{ii} = \lambda$ %$(\Lambda_t)_{ii} = \lambda_{it}$ on the diagonal and $(\Lambda)_{ij} = \phi w_{ji}$ %$(\Lambda_t)_{ij} = \phi_{it} w_{ji}$ for $j\ne i$ \citep{paul-etal-2008}. If the dominant eigenvalue is smaller than 1, it can be interpreted as the epidemic proportion of disease incidence. In the above model, the estimate is \Sexpr{round(100*getMaxEV(measlesFit_basic)[1])}\%. Another way to judge the relative importance of the three model components is via a plot of the fitted mean components along with the observed counts. Figure~\ref{fig:measlesFitted_basic} shows this for the five districts with more than 50 cases as well as for the sum over all districts: <>= districts2plot <- which(colSums(observed(measlesWeserEms)) > 50) par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE, par.settings = NULL, legend = 1) plot(measlesFit_basic, type = "fitted", total = TRUE, hide0s = TRUE, par.settings = NULL, legend = FALSE) -> fitted_components @ We can see from the plots that the largest portion of the fitted mean indeed results from the within-district autoregressive component with very little contribution of cases from adjacent districts and a rather small endemic incidence. The \code{plot} method invisibly returns the component values in a list of matrices (one by unit). In the above code, we have assigned the result from plotting the overall fit (via \code{total = TRUE}) to the object \code{fitted_components}. Here we show the values for the weeks 20 to 22 (corresponding to the weeks 21 to 23 of the measles time series): <<>>= fitted_components$Overall[20:22,] @ The first column of this matrix refers to the fitted mean (epidemic + endemic). The four following columns refer to the epidemic (own + neighbours), endemic, autoregressive (``own''), and neighbourhood components of the mean. The last three columns refer to the point estimates of $\lambda$, $\phi$, and $\nu_t$, respectively. These values allow us to calculate the (time-averaged) proportions of the mean explained by the different components: <<>>= colSums(fitted_components$Overall)[3:5] / sum(fitted_components$Overall[,1]) @ Note that the ``epidemic proportion'' obtained here (\Sexpr{round(100*sum(fitted_components$Overall[,2]) / sum(fitted_components$Overall[,1]))}\%) is a function of the observed time series (so could be called ``empirical''), whereas the dominant eigenvalue calculated further above is a theoretical property derived from the autoregressive parameters alone. Finally, the \code{overdisp} parameter from the model summary and its 95\% confidence interval <<>>= confint(measlesFit_basic, parm = "overdisp") @ suggest that a negative binomial distribution with overdispersion is more adequate than a Poisson model corresponding to $\psi = 0$. We can underpin this finding by an AIC comparison, taking advantage of the convenient \code{update} method for \class{hhh4} fits: <>= AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) @ Other plot \code{type}s and methods for fitted \class{hhh4} models as listed in Table~\ref{tab:methods:hhh4} will be applied in the course of the following model extensions. <>= print(xtable( surveillance:::functionTable("hhh4", functions=list( Extract="getNEweights", Other="oneStepAhead" )), caption="Generic and \\textit{non-generic} functions applicable to \\class{hhh4} objects.", label="tab:methods:hhh4"), include.rownames = FALSE) @ \enlargethispage{\baselineskip} \subsection{Covariates} The \class{hhh4} model framework allows for covariate effects on the endemic or epidemic contributions to disease incidence. Covariates may vary over both regions and time and thus obey the same $T \times I$ matrix structure as the observed counts. For infectious disease models, the regional vaccination coverage is an important example of such a covariate, since it reflects the (remaining) susceptible population. In a thorough analysis of measles occurrence in the German federal states, \citet{herzog-etal-2010} found vaccination coverage to be associated with outbreak size. We follow their approach of using the district-specific proportion $1-v_i$ of unvaccinated children just starting school as a proxy for the susceptible population. As $v_i$ we use the proportion of children vaccinated with at least one dose among the ones presenting their vaccination card at school entry in district $i$ in the year 2004.\footnote{% First year with data for all districts; more recent data is available from the public health department of Lower Saxony (\url{https://www.nlga.niedersachsen.de/impfreport/}).} %% Note: districts are more heterogeneous in 2004 than in later years. %% Data is based on abecedarians in 2004, i.e.\ born in 1998, recommended to %% be twice vaccinated against Measles by the end of year 2000. This time-constant covariate needs to be transformed to the common matrix structure for incorporation in \code{hhh4}: <>= Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) @ There are several ways to account for the susceptible proportion in our model, among which the simplest is to update the endemic population offset $e_i$ by multiplication with $(1-v_i)$. \citet{herzog-etal-2010} found that the susceptible proportion is best added as a covariate in the autoregressive component in the form \[ \lambda_i \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)} + \beta_s \log(1-v_i)\big) \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)}\big) \, (1-v_i)^{\beta_s} \, Y_{i,t-1} \] according to the mass action principle \citep{Keeling.Rohani2008}. A higher proportion of susceptibles in district $i$ is expected to boost the generation of new infections, i.e., $\beta_s > 0$. Alternatively, this effect could be assumed as an offset, i.e., $\beta_s \equiv 1$. To choose between endemic and/or autoregressive effects, and multiplicative offset vs.\ covariate modeling, we perform AIC-based model selection. First, we set up a grid of possible component updates: <>= Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) @ Then we update the initial model \code{measlesFit_basic} according to each row of \code{SmodelGrid}: <>= measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { updatecomp <- function (comp, option) switch(option, "unchanged" = list(), "Soffset" = list(offset = comp$offset * Sprop), "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) update(measlesFit_basic, end = updatecomp(measlesFit_basic$control$end, options[1]), ar = updatecomp(measlesFit_basic$control$ar, options[2]), data = list(Sprop = Sprop)) }) @ The resulting object \code{measlesFits_vacc} is a list of \Sexpr{nrow(SmodelGrid)} \class{hhh4} fits, which are named according to the corresponding \code{Soptions} used for the endemic and autoregressive components. We construct a call of the function \code{AIC} taking all list elements as arguments: <>= aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), envir = as.environment(measlesFits_vacc)) @ <<>>= aics_vacc[order(aics_vacc[, "AIC"]), ] @ <>= if (AIC(measlesFits_vacc[["Scovar|unchanged"]]) > min(aics_vacc[,"AIC"])) stop("`Scovar|unchanged` is not the AIC-minimal vaccination model") @ Hence, AIC increases if the susceptible proportion is only added to the autoregressive component, but we see a remarkable improvement when adding it to the endemic component. The best model is obtained by leaving the autoregressive component unchanged ($\lambda$) and adding the term $\beta_s \log(1-v_i)$ to the endemic predictor in Equation~\ref{eqn:hhh4:basic:end}. <>= measlesFit_vacc <- update(measlesFit_basic, end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))), data = list(Sprop = Sprop)) coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] @ The estimated exponent $\hat{\beta}_s$ is both clearly positive and different from the offset assumption. In other words, if a district's fraction of susceptibles is doubled, the endemic measles incidence is estimated to multiply by $2^{\hat{\beta}_s}$: <<>>= 2^cbind("Estimate" = coef(measlesFit_vacc), confint(measlesFit_vacc))["end.log(Sprop)",] @ \subsection{Spatial interaction} Up to now, the model assumed that the epidemic can only arrive from directly adjacent districts ($w_{ji} = \ind(j\sim i)$), and that all districts have the same ability $\phi$ to import cases from neighboring regions. Given that humans travel further and preferably to metropolitan areas, both assumptions seem overly simplistic and should be tuned toward a ``gravity'' model for human interaction. First, to reflect commuter-driven spread %\citep[Section~6.3.3.1]{Keeling.Rohani2008} in our model, we scale the district's susceptibility with respect to its population fraction by multiplying $\phi$ with $e_i^{\beta_{pop}}$: <>= measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) @ As in a similar analyses of influenza \citep{geilhufe.etal2012,meyer.held2013}, we find strong evidence for such an agglomeration effect: AIC decreases from \Sexpr{round(AIC(measlesFit_vacc))} to \Sexpr{round(AIC(measlesFit_nepop))} and the estimated exponent $\hat{\beta}_{pop}$ is <<>>= cbind("Estimate" = coef(measlesFit_nepop), confint(measlesFit_nepop))["ne.log(pop)",] @ Second, to account for long-range transmission of cases, \citet{meyer.held2013} proposed to estimate the weights $w_{ji}$ as a function of the adjacency order $o_{ji}$ between the districts. For instance, a power-law model assumes the form $w_{ji} = o_{ji}^{-d}$, for $j\ne i$ and $w_{jj}=0$, where the decay parameter $d$ is to be estimated. Normalization to $w_{ji} / \sum_k w_{jk}$ is recommended and applied by default when choosing \code{W_powerlaw} as weights in the neighborhood component: <>= measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) @ The argument \code{maxlag} sets an upper bound for spatial interaction in terms of adjacency order. Here we set no limit since \code{max(neighbourhood(measlesWeserEms))} is \Sexpr{max(neighbourhood(measlesWeserEms))}. The decay parameter $d$ is estimated to be <<>>= cbind("Estimate" = coef(measlesFit_powerlaw), confint(measlesFit_powerlaw))["neweights.d",] @ which represents a strong decay of spatial interaction for higher-order neighbors. As an alternative to the parametric power law, unconstrained weights up to \code{maxlag} can be estimated by using \code{W_np} instead of \code{W_powerlaw}. For instance, \code{W_np(maxlag = 2)} corresponds to a second-order model, i.e., \mbox{$w_{ji} = 1 \cdot \ind(o_{ji} = 1) + e^{\omega_2} \cdot \ind(o_{ji} = 2)$}, which is also row-normalized by default: <>= measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) @ Figure~\ref{fig:measlesFit_neweights-2} shows both the power-law model $o^{-\hat{d}}$ and the second-order model. %, where $e^{\hat{\omega}_2}$ is Alternatively, the plot \code{type = "neweights"} for \class{hhh4} fits can produce a \code{stripplot} \citep{R:lattice} of $w_{ji}$ against $o_{ji}$ as shown in Figure~\ref{fig:measlesFit_neweights-1} for the power-law model: <>= library("lattice") trellis.par.set("reference.line", list(lwd=3, col="gray")) trellis.par.set("fontsize", list(text=14)) set.seed(20200303) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL, xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm="neweights.d"))), type="l", lty=2, col=colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm="neweights.d"))) lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2) arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2) legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5, legend=c("Power-law model", "Second-order model")) }) @ Note that only horizontal jitter is added in this case. Because of normalization, the weight $w_{ji}$ for transmission from district $j$ to district $i$ is determined not only by the districts' neighborhood $o_{ji}$ but also by the total amount of neighborhood of district $j$ in the form of $\sum_{k\ne j} o_{jk}^{-d}$, which causes some variation of the weights for a specific order of adjacency. The function \code{getNEweights} can be used to extract the estimated weight matrix $(w_{ji})$. An AIC comparison of the different models for the transmission weights yields: <<>>= AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) @ AIC improves when accounting for transmission from higher-order neighbors by a power law or a second-order model. In spite of the latter resulting in a slightly better fit, we will use the power-law model as a basis for further model extensions since the stand-alone second-order effect is not always identifiable in more complex models and is scientifically implausible. \subsection{Random effects} \citet{paul-held-2011} introduced random effects for \class{hhh4} models, which are useful if the districts exhibit heterogeneous incidence levels not explained by observed covariates, and especially if the number of districts is large. For infectious disease surveillance data, a typical example of unobserved heterogeneity is underreporting. Our measles data even contain two districts without any reported cases, while the district with the smallest population (03402, SK Emden) had the second-largest number of cases reported and the highest overall incidence (see Figures~\ref{fig:measlesWeserEms-2} and~\ref{fig:measlesWeserEms15}). Hence, allowing for district-specific intercepts in the endemic or epidemic components is expected to improve the model fit. For independent random effects $\alpha_i^{(\nu)} \stackrel{iid}{\sim} \N(\alpha^{(\nu)}, \sigma_\nu^2)$, $\alpha_i^{(\lambda)} \stackrel{iid}{\sim} \N(\alpha^{(\lambda)}, \sigma_\lambda^2)$, and $\alpha_i^{(\phi)} \stackrel{iid}{\sim} \N(\alpha^{(\phi)}, \sigma_\phi^2)$ in all three components, we update the corresponding formulae as follows: <>= measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) @ <>= summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The summary now contains an extra section with the estimated variance components $\sigma_\lambda^2$, $\sigma_\phi^2$, and $\sigma_\nu^2$. We did not assume correlation between the three random effects, but this is possible by specifying \code{ri(corr = "all")} in the component formulae. The implementation also supports a conditional autoregressive formulation for spatially correlated intercepts via \code{ri(type = "car")}. The estimated district-specific deviations $\alpha_i^{(\cdot)} - \alpha^{(\cdot)}$ can be extracted by the \code{ranef}-method: <<>>= head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) @ The \code{exp}-transformed deviations correspond to district-specific multiplicative effects on the model components, which can be visualized via the plot \code{type = "ri"} as follows (Figure~\ref{fig:measlesFit_ri_map}): % exp=TRUE plot has nicer (usually more) axis ticks if 'scales' is available <>= for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, exp = TRUE, labels = list(cex = 0.6))) } @ For the autoregressive component in Figure~\ref{fig:measlesFit_ri_map-1}, we see a pronounced heterogeneity between the three western districts in pink and the remaining districts. These three districts have been affected by large local outbreaks and are also the ones with the highest overall numbers of cases. In contrast, the city of Oldenburg (03403) is estimated with a relatively low autoregressive coefficient: $\lambda_i = \exp(\alpha_i^{(\lambda)})$ can be extracted using the \code{intercept} argument as <<>>= exp(ranef(measlesFit_ri, intercept = TRUE)["03403", "ar.ri(iid)"]) @ However, this district seems to import more cases from other districts than explained by its population (Figure~\ref{fig:measlesFit_ri_map-2}). In Figure~\ref{fig:measlesFit_ri_map-3}, the two districts without any reported measles cases (03401 and 03405) appear in cyan, which means that they exhibit a relatively low endemic incidence after adjusting for the population and susceptible proportion. Such districts could be suspected of a larger amount of underreporting. We plot the new model fit (Figure~\ref{fig:measlesFitted_ri}) for comparison with the initial fit shown in Figure~\ref{fig:measlesFitted_basic}: <>= par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1) plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE, par.settings = NULL, legend = 1) plot(measlesFit_ri, type = "fitted", total = TRUE, hide0s = TRUE, par.settings = NULL, legend = FALSE) @ For some of these districts, a great amount of cases is now explained via transmission from neighboring regions while others are mainly influenced by the local autoregression. The decomposition of the estimated mean by district can also be seen from the related plot \code{type = "maps"} (Figure~\ref{fig:measlesFitted_maps}): <>= plot(measlesFit_ri, type = "maps", which = c("epi.own", "epi.neighbours", "endemic"), prop = TRUE, labels = list(cex = 0.6)) @ The extra flexibility of the random effects model comes at a price. First, the runtime of the estimation increases considerably from \Sexpr{round(measlesFit_powerlaw[["runtime"]]["elapsed"], 1)} seconds for the previous power-law model \code{measlesFit_powerlaw} to \Sexpr{round(measlesFit_ri[["runtime"]]["elapsed"], 1)} seconds with random effects. Furthermore, we no longer obtain AIC values, since random effects invalidate simple AIC-based model comparisons. For quantitative comparisons of model performance we have to resort to more sophisticated techniques presented in the next section. \subsection{Predictive model assessment} \citet{paul-held-2011} suggest to evaluate one-step-ahead forecasts from competing models using proper scoring rules for count data \citep{czado-etal-2009}. These scores measure the discrepancy between the predictive distribution $P$ from a fitted model and the later observed value $y$. A well-known example is the squared error score (``ses'') $(y-\mu_P)^2$, which is usually averaged over a set of forecasts to obtain the mean squared error. The Dawid-Sebastiani score (``dss'') additionally evaluates sharpness. The logarithmic score (``logs'') and the ranked probability score (``rps'') assess the whole predictive distribution with respect to calibration and sharpness. Lower scores correspond to better predictions. In the \class{hhh4} framework, predictive model assessment is made available by the functions \code{oneStepAhead}, \code{scores}, \code{pit}, and \code{calibrationTest}. We will use the second quarter of 2002 as the test period, and compare the basic model, the power-law model, and the random effects model. First, we use the \code{"final"} fits on the complete time series to compute the predictions, which then simply correspond to the fitted values during the test period: <>= tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") @ <>= stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2],], check.attributes = FALSE)) @ Note that in this case, the log-score for a model's prediction in district $i$ in week $t$ equals the associated negative log-likelihood contribution. Comparing the mean scores from different models is thus essentially a goodness-of-fit assessment: <>= stopifnot(all.equal( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) @ <>= SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores1, colMeans, dims = 2)) @ All scoring rules claim that the random effects model gives the best fit during the second quarter of 2002. Now we turn to true one-week-ahead predictions of \code{type = "rolling"}, which means that we always refit the model up to week $t$ to get predictions for week $t+1$: <>= measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "rolling", which.start = "final") @ Figure~\ref{fig:measlesPreds2_plot} shows \CRANpkg{fanplot}s \citep{R:fanplot} of the sequential one-week-ahead forecasts from the random effects models for the same districts as in Figure~\ref{fig:measlesFitted_ri}: <>= par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1)) for (unit in names(districts2plot)) plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit, key.args = if (unit == tail(names(districts2plot),1)) list()) @ The \code{plot}-method for \class{oneStepAhead} predictions is based on the associated \code{quantile}-method (a \code{confint}-method is also available). Note that the sum of these negative binomial distributed forecasts over all districts is not negative binomial distributed. The package \CRANpkg{distr} \citep{ruckdeschel.kohl2014} could be used to approximate the distribution of the aggregated one-step-ahead forecasts (not shown here). Looking at the average scores of these forecasts over all weeks and districts, the most parsimonious initial model \code{measlesFit_basic} actually turns out best: <>= measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores2, colMeans, dims = 2)) @ Statistical significance of the differences in mean scores can be investigated by a \code{permutationTest} for paired data or a paired $t$-test: <>= set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score], nPermutation = 999)) @ Hence, there is no clear evidence for a difference between the basic and the random effects model with regard to predictive performance during the test period. Whether predictions of a particular model are well calibrated can be formally investigated by \code{calibrationTest}s for count data as recently proposed by \citet{wei.held2013}. For example: <>= calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ Thus, there is no evidence of miscalibrated predictions from the random effects model. \citet{czado-etal-2009} describe an alternative informal approach to assess calibration: probability integral transform (PIT) histograms for count data (Figure~\ref{fig:measlesPreds2_pit}). <>= par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1), las = 1) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) @ Under the hypothesis of calibration, i.e., $y_{it} \sim P_{it}$ for all predictive distributions $P_{it}$ in the test period, the PIT histogram is uniform. Underdispersed predictions lead to U-shaped histograms, and bias causes skewness. In this aggregate view of the predictions over all districts and weeks of the test period, predictive performance is comparable between the models, and there is no evidence of badly dispersed predictions. However, the right-hand decay in all histograms suggests that all models tend to predict higher counts than observed. This is most likely related to the seasonal shift between the years 2001 and 2002. In 2001, the peak of the epidemic was in the second quarter, while it already occurred in the first quarter in 2002 (cp.\ Figure~\ref{fig:measlesWeserEms-1}). \subsection{Further modeling options} In the previous sections we extended our model for measles in the Weser-Ems region with respect to spatial variation of the counts and their interaction. Temporal variation was only accounted for in the endemic component, which included a long-term trend and a sinusoidal wave on the log-scale. \citet{held.paul2012} suggest to also allow seasonal variation of the epidemic force by adding a superposition of $S$ harmonic waves of fundamental frequency~$\omega$, $\sum_{s=1}^S \left\{ \gamma_s \sin(s\,\omega t) + \delta_s \cos(s\,\omega t) \right\}$, to the log-linear predictors of the autoregressive and/or neighborhood component -- just like for $\log\nu_t$ in Equation~\ref{eqn:hhh4:basic:end} with $S=1$. However, given only two years of measles surveillance and the apparent shift of seasonality with regard to the start of the outbreak in 2002 compared to 2001, more complex seasonal models are likely to overfit the data. Concerning the coding in \proglang{R}, sine-cosine terms can be added to the epidemic components without difficulties by again using the convenient function \code{addSeason2formula}. Updating a previous model for different numbers of harmonics is even simpler, since the \code{update}-method has a corresponding argument \code{S}. The plots of \code{type = "season"} and \code{type = "maxEV"} for \class{hhh4} fits can visualize the estimated component seasonality. Performing model selection and interpreting seasonality or other covariate effects across \emph{three} different model components may become quite complicated. Power-law weights actually enable a more parsimonious model formulation, where the autoregressive and neighbourhood components are merged into a single epidemic component: \begin{equation} \mu_{it} = e_{it} \, \nu_{it} + \phi_{it} \sum_{j} (o_{ji} + 1)^{-d} \, Y_{j,t-1} \:. \end{equation} With only two predictors left, model selection and interpretation is simpler, and model extensions are more straightforward, for example stratification by age group \citep{meyer.held2015} as mentioned further below. To fit such a two-component model, the autoregressive component has to be excluded (\code{ar = list(f = ~ -1)}) and power-law weights have to be modified to start from adjacency order~0 (via \code{W_powerlaw(..., from0 = TRUE)}). <>= ## a simplified model which includes the autoregression in the power law measlesFit_powerlaw2 <- update(measlesFit_powerlaw, ar = list(f = ~ -1), ne = list(weights = W_powerlaw(maxlag = 5, from0 = TRUE))) AIC(measlesFit_powerlaw, measlesFit_powerlaw2) ## simpler is really worse; probably needs random effects @ All of our models for the measles surveillance data incorporated an epidemic effect of the counts from the local district and its neighbors. Without further notice, we thereby assumed a lag equal to the observation interval of one week. However, the generation time of measles is around 10 days, which is why \citet{herzog-etal-2010} aggregated their weekly measles surveillance data into biweekly intervals. We can perform a sensitivity analysis by running the whole code of the current section based on \code{aggregate(measlesWeserEms, nfreq = 26)}. Doing so, the parameter estimates of the various models retain their order of magnitude and conclusions remain the same. However, with the number of time points halved, the complex random effects model would not always be identifiable when calculating one-week-ahead predictions during the test period. %% basic model: same epidemic parameters and dominant eigenvalue (0.78), same overdispersion (1.94) %% vaccination: the exponent $\beta_s$ for the susceptible proportion in the %% extended model \code{"Scovar|unchanged"} is closer to 1 (1.24), which is why %% \code{"Soffset|unchanged"} is selected by AIC. %% random effects: less variance, but similar pattern We have shown several options to account for the spatio-temporal dynamics of infectious disease spread. However, for directly transmitted human diseases, the social phenomenon of ``like seeks like'' results in contact patterns between subgroups of a population, which extend the pure distance decay of interaction. Especially for school children, social contacts are highly age-dependent. A useful epidemic model should therefore be additionally stratified by age group and take the inherent contact structure into account. How this extension can be incorporated in the spatio-temporal endemic-epidemic modeling framework \class{hhh4} has recently been investigated by \citet{meyer.held2015}. The associated \CRANpkg{hhh4contacts} package \citep{R:hhh4contacts} contains a demo script to exemplify this modeling approach with surveillance data on norovirus gastroenteritis and an age-structured contact matrix. \section{Simulation} \label{sec:hhh4:simulation} Simulation from fitted \class{hhh4} models is enabled by an associated \code{simulate}-method. Compared to the point process models described in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, simulation is less complex since it essentially consists of sequential calls of \code{rnbinom} (or \code{rpois}). At each time point $t$, the mean $\mu_{it}$ is determined by plugging in the parameter estimates and the counts $Y_{i,t-1}$ simulated at the previous time point. In addition to a model fit, we thus need to specify an initial vector of counts \code{y.start}. As an example, we simulate 100 realizations of the evolution of measles during the year 2002 based on the fitted random effects model and the counts of the last week of the year 2001 in the 17 districts: <>= (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) @ The simulated counts are returned as a $52\times 17\times 100$ array instead of a list of 100 \class{sts} objects. We can, e.g., look at the final size distribution of the simulations: <<>>= summary(colSums(measlesSim, dims = 2)) @ A few large outbreaks have been simulated, but the mean size is below the observed number of \code{sum(observed(measlesWeserEms)[53:104, ])} $= \Sexpr{sum(observed(measlesWeserEms)[53:104,])}$ cases in the year 2002. Using the \code{plot}-method associated with such \code{hhh4} simulations, Figure~\ref{fig:measlesSim_plot_time} shows the weekly number of observed cases compared to the long-term forecast via a fan chart: <>= plot(measlesSim, "fan", means.args = list(), key.args = list()) @ We refer to \code{help("simulate.hhh4")} and \code{help("plot.hhh4sims")} for further examples. \pagebreak[2] %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages knitr::write_bib( # produces UTF-8 c("MASS", "Matrix", "colorspace", "gridExtra", "lattice", "sp", "fanplot", "hhh4contacts"), file = "hhh4_spacetime-R.bib", tweak = FALSE, prefix = "R:") @ \bibliography{references,hhh4_spacetime-R} <>= save(aics_vacc, measlesPreds2, file = "hhh4_spacetime-cache.RData") @ \end{document} surveillance/inst/doc/surveillance.Rnw0000644000176200001440000005522714712367340017676 0ustar liggesusers%\VignetteIndexEntry{Getting started with outbreak detection} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \newcommand{\pkg}[1]{{\bfseries #1}} \newcommand{\surveillance}{\pkg{surveillance}} \usepackage{hyperref} \hypersetup{ pdfauthor = {Michael H\"ohle and Andrea Riebler and Michaela Paul}, pdftitle = {Getting started with outbreak detection}, pdfsubject = {R package 'surveillance'} } \title{Getting started with outbreak detection} \author{ Michael H{\"o}hle\thanks{Author of correspondence: Department of Statistics, University of Munich, Ludwigstr.\ 33, 80539 M{\"u}nchen, Germany, Email: \texttt{hoehle@stat.uni-muenchen.de}} , Andrea Riebler and Michaela Paul\\ Department of Statistics\\ University of Munich\\ Germany } \date{17 November 2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} %Put all in another directory \SweaveOpts{prefix.string=plots/surveillance, width=9, height=4.5} \setkeys{Gin}{width=1\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################################### #Do we need to compute or can we just fetch results ###################################################################### CACHEFILE <- "surveillance-cache.RData" compute <- !file.exists(CACHEFILE) message("Doing computations: ", compute) if(!compute) load(CACHEFILE) @ \begin{document} \fbox{\vbox{\small \noindent\textbf{Disclaimer}: This vignette reflects package state at version 0.9-7 and is hence somewhat outdated. New functionality has been added to the package: this includes various endemic-epidemic modelling frameworks for surveillance data (\texttt{hhh4}, \texttt{twinSIR}, and \texttt{twinstim}), as well as more outbreak detection methods (\texttt{glrnb}, \texttt{boda}, and \texttt{farringtonFlexible}). These new features are described in detail in \citet{meyer.etal2014} and \citet{salmon.etal2014}, respectively. %and corresponding vignettes are included in the package; %see \texttt{vignette(package = "surveillance")} for an overview. Note in particular that use of the new \texttt{S4} class \texttt{sts} instead of \texttt{disProg} is encouraged to encapsulate time series data. }} {\let\newpage\relax\maketitle} \begin{abstract} \noindent This document gives an introduction to the \textsf{R} package \surveillance\ containing tools for outbreak detection in routinely collected surveillance data. The package contains an implementation of the procedures described by~\citet{stroup89}, \citet{farrington96} and the system used at the Robert Koch Institute, Germany. For evaluation purposes, the package contains example data sets and functionality to generate surveillance data by simulation. To compare the algorithms, benchmark numbers like sensitivity, specificity, and detection delay can be computed for a set of time series. Being an open-source package it should be easy to integrate new algorithms; as an example of this process, a simple Bayesian surveillance algorithm is described, implemented and evaluated.\\ \noindent{\bf Keywords:} infectious disease, monitoring, aberrations, outbreak, time series of counts. \end{abstract} \newpage \section{Introduction}\label{sec:intro} Public health authorities have in an attempt to meet the threats of infectious diseases to society created comprehensive mechanisms for the collection of disease data. As a consequence, the abundance of data has demanded the development of automated algorithms for the detection of abnormalities. Typically, such an algorithm monitors a univariate time series of counts using a combination of heuristic methods and statistical modelling. Prominent examples of surveillance algorithms are the work by~\citet{stroup89} and~\citet{farrington96}. A comprehensive survey of outbreak detection methods can be found in~\citep{farrington2003}. The R-package \texttt{surveillance} was written with the aim of providing a test-bench for surveillance algorithms. From the Comprehensive R Archive Network (CRAN) the package can be downloaded together with its source code. It allows users to test new algorithms and compare their results with those of standard surveillance methods. A few real world outbreak datasets are included together with mechanisms for simulating surveillance data. With the package at hand, comparisons like the one described by~\citet{hutwagner2005} should be easy to conduct. The purpose of this document is to illustrate the basic functionality of the package with R-code examples. Section~\ref{sec:data} contains a description of the data format used to store surveillance data, mentions the built-in datasets and illustrates how to create new datasets by simulation. Section~\ref{sec:algo} contains a short description of how to use the surveillance algorithms and illustrate the results. Further information on the individual functions can be found on the corresponding help pages of the package. \section{Surveillance Data}\label{sec:data} Denote by $\{y_t\>;t=1,\ldots,n\}$ the time series of counts representing the surveillance data. Because such data typically are collected on a weekly basis, we shall also use the alternative notation $\{y_{i:j}\}$ with $j=\{1,\ldots,52\}$ being the week number in year $i=\{-b,\ldots,-1,0\}$. That way the years are indexed such that most current year has index zero. For evaluation of the outbreak detection algorithms it is also possible for each week to store -- if known -- whether there was an outbreak that week. The resulting multivariate series $\{(y_t,x_t)\>; t=1,\ldots,n\}$ is in \texttt{surveillance} given by an object of class \texttt{disProg} (disease progress), which is basically a \texttt{list} containing two vectors: the observed number of counts and a boolean vector \texttt{state} indicating whether there was an outbreak that week. A number of time series are contained in the package (see \texttt{data(package="surveillance")}), mainly originating from the SurvStat@RKI database at \url{https://survstat.rki.de/} maintained by the Robert Koch Institute, Germany~\citep{survstat}. For example the object \texttt{k1} describes cryptosporidiosis surveillance data for the German federal state Baden-W\"{u}rttemberg 2001-2005. The peak in 2001 is due to an outbreak of cryptosporidiosis among a group of army soldiers in a boot camp~\citep{bulletin3901}. <>= data(k1) plot(k1, main = "Cryptosporidiosis in BW 2001-2005") @ For evaluation purposes it is also of interest to generate surveillance data using simulation. The package contains functionality to generate surveillance data containing point-source like outbreaks, for example with a Salmonella serovar. The model is a Hidden Markov Model (HMM) where a binary state $X_t, t=1,\ldots,n$, denotes whether there was an outbreak and $Y_t$ is the number of observed counts, see Figure~\ref{fig:hmm}. \begin{figure}[htb] \centering \includegraphics[width=.75\textwidth]{figures/HMM} \caption{The Hidden Markov Model} \label{fig:hmm} \end{figure} The state $X_t$ is a homogeneous Markov chain with transition matrix \begin{center} \begin{tabular}{c|cc} $X_t\backslash X_{t+1}$ & 0 & 1\\ \hline $0$ & $p$ & $1 - p$ \\ $1$ & $1 - r$ & $r$ \end{tabular} \end{center} Hence $1-p$ is the probability to switch to an outbreak state and $1-r$ is the probability that $X_t=1$ is followed by $X_{t+1}=1$. Furthermore, the observation $Y_t$ is Poisson-distributed with log-link mean depending on a seasonal effect and time trend, i.e.\ \[ \log \mu_t = A \cdot \sin \, (\omega \cdot (t + \varphi)) + \alpha + \beta t. \] In case of an outbreak $(X_t=1)$ the mean increases with a value of $K$, altogether \begin{equation}\label{eq:hmm} Y_t \sim \operatorname{Po}(\mu_t + K \cdot X_t). \end{equation} The model in (\ref{eq:hmm}) corresponds to a single-source, common-vehicle outbreak, where the length of an outbreak is controlled by the transition probability $r$. The daily numbers of outbreak-cases are simply independently Poisson distributed with mean $K$. A physiologically better motivated alternative could be to operate with a stochastic incubation time (e.g.\ log-normal or gamma distributed) for each individual exposed to the source, which results in a temporal diffusion of the peak. The advantage of (\ref{eq:hmm}) is that estimation can be done by a generalized linear model (GLM) using $X_t$ as covariate and that it allows for an easy definition of a correctly identified outbreak: each $X_t=1$ has to be identified. More advanced setups would require more involved definitions of an outbreak, e.g.\ as a connected series of time instances, where the number of outbreak cases is greater than zero. Care is then required in defining what a correctly identified outbreak for time-wise overlapping outbreaks means. In \surveillance\ the function \verb+sim.pointSource+ is used to simulate such a point-source epidemic; the result is an object of class \verb+disProg+. \label{ex:sts} <<>>= set.seed(1234) sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) @ <>= plot(sts) @ \section{Surveillance Algorithms}\label{sec:algo} Surveillance data often exhibit strong seasonality, therefore most surveillance algorithms only use a set of so called \emph{reference values} as basis for drawing conclusions. Let $y_{0:t}$ be the number of cases of the current week (denoted week $t$ in year $0$), $b$ the number of years to go back in time and $w$ the number of weeks around $t$ to include from those previous years. For the year zero we use $w_0$ as the number of previous weeks to include -- typically $w_0=w$. Altogether the set of reference values is thus defined to be \[ R(w,w_0,b) = \left(\bigcup\limits_{i=1}^b\bigcup\limits_{j=\,-w}^w y_{-i:t+j}\right) \cup \left(\bigcup_{k=-w_0}^{-1} y_{0:t+k}\right) \] Note that the number of cases of the current week is not part of $R(w,w_0,b)$. A surveillance algorithm is a procedure using the reference values to create a prediction $\hat{y}_{0:t}$ for the current week. This prediction is then compared with the observed $y_{0:t}$: if the observed number of cases is much higher than the predicted number, the current week is flagged for further investigations. In order to do surveillance for time $0:t$ an important concern is the choice of $b$ and $w$. Values as far back as time $-b:t-w$ contribute to $R(w,w_0,b)$ and thus have to exist in the observed time series. Currently, we have implemented four different type of algorithms in \surveillance. The Centers for Disease Control and Prevention (CDC) method~\citep{stroup89}, the Communicable Disease Surveillance Centre (CDSC) method~\citep{farrington96}, the method used at the Robert Koch Institute (RKI), Germany~\citep{altmann2003}, and a Bayesian approach documented in~\citet{riebler2004}. A detailed description of each method is beyond the scope of this note, but to give an idea of the framework the Bayesian approach developed in~\citet{riebler2004} is presented: Within a Bayesian framework, quantiles of the predictive posterior distribution are used as a measure for defining alarm thresholds. The model assumes that the reference values are identically and independently Poisson distributed with parameter $\lambda$ and a Gamma-distribution is used as Prior distribution for $\lambda$. The reference values are defined to be $R_{\text{Bayes}}= R(w,w_0,b) = \{y_1, \ldots, y_{n}\}$ and $y_{0:t}$ is the value we are trying to predict. Thus, $\lambda \sim \text{Ga}(\alpha, \beta)$ and $y_i|\lambda \sim \text{Po}(\lambda)$, $i = 1,\ldots,{n}$. Standard derivations show that the posterior distribution is \begin{equation*} \lambda|y_1, \ldots, y_{n} \sim \text{Ga}(\alpha + \sum_{i=1}^{n} y_i, \beta + n). \end{equation*} Computing the predictive distribution \begin{equation*} f(y_{0:t}|y_1,\ldots,y_{n}) = \int\limits^\infty_0{f(y_{0:t}|\lambda)\, f(\lambda|y_1,\ldots,y_{n})}\, d\lambda \end{equation*} we get the Poisson-Gamma-distribution \begin{equation*} y_{0:t}|y_1,\ldots,y_{n} \sim \text{PoGa}(\alpha + \sum_{i=1}^{n} y_i, \beta + n), \end{equation*} which is a generalization of the negative Binomial distribution, i.e.\ \[ y_{0:t}|y_1,\ldots,y_{n} \sim \text{NegBin}(\alpha + \sum_{i=1}^{n} y_i, \tfrac{\beta + n}{\beta + n + 1}). \] Using the Jeffrey's Prior $\text{Ga}(\tfrac{1}{2}, 0)$ as non-informative Prior distribution for $\lambda$ the parameters of the negative Binomial distribution are \begin{align*} \alpha + \sum_{i=1}^{n} y_i &= \frac{1}{2} + \sum_{y_{i:j} \in R_{\text{Bayes}}}\!\! y_{i:j} \quad % \intertext{and} \quad\text{and}\quad \frac{\beta + n}{\beta + n + 1} = \frac{|R_{\text{Bayes}}|}{|R_{\text{Bayes}}| + 1}. \end{align*} Using a quantile-parameter $\alpha$, the smallest value $y_\alpha$ is computed, so that \begin{equation*} P(y \leq y_\alpha) \geq 1-\alpha. \end{equation*} Now \begin{equation*} A_{0:t} = I(y_{0:t} \geq y_\alpha), \end{equation*} i.e. if $y_{0:t}\geq y_\alpha$ the current week is flagged as an alarm. As an example, the \verb+Bayes1+ method uses the last six weeks as reference values, i.e.\ $R(w,w_0,b)=(6,6,0)$, and is applied to the \texttt{k1} dataset with $\alpha=0.01$ as follows. <>= k1.b660 <- algo.bayes(k1, control = list(range = 27:192, b = 0, w = 6, alpha = 0.01)) plot(k1.b660, disease = "k1") @ Several extensions of this simple Bayesian approach are imaginable, for example the inane over-dispersion of the data could be modeled by using a negative-binomial distribution, time trends and mechanisms to correct for past outbreaks could be integrated, but all at the cost of non-standard inference for the predictive distribution. Here simulation based methods like Markov Chain Monte Carlo or heuristic approximations have to be used to obtain the required alarm thresholds. In general, the \verb+surveillance+ package makes it easy to add additional algorithms -- also those not based on reference values -- by using the existing implementations as starting point. The following call uses the CDC and Farrington procedure on the simulated time series \verb+sts+ from page~\pageref{ex:sts}. Note that the CDC procedure operates with four-week aggregated data -- to better compare the upper bound value, the aggregated number of counts for each week are shown as circles in the plot. <>= cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) sts.cdc <- algo.cdc(sts, control = cntrl) sts.farrington <- algo.farrington(sts, control = cntrl) @ <>= if (compute) { <> } @ <>= par(mfcol=c(1,2)) plot(sts.cdc, legend.opts=NULL) plot(sts.farrington, legend.opts=NULL) @ Typically, one is interested in evaluating the performance of the various surveillance algorithms. An easy way is to look at the sensitivity and specificity of the procedure -- a correct identification of an outbreak is defined as follows: if the algorithm raises an alarm for time $t$, i.e.\ $A_t=1$ and $X_t=1$ we have a correct classification, if $A_t=1$ and $X_t=0$ we have a false-positive, etc. In case of more involved outbreak models, where an outbreak lasts for more than one week, a correct identification could be if at least one of the outbreak weeks is correctly identified, see e.g.\ \citet{hutwagner2005}. To compute various performance scores the function \verb+algo.quality+ can be used on a \verb+survRes+ object. <<>>= print(algo.quality(k1.b660)) @ This computes the number of false positives, true negatives, false negatives, the sensitivity and the specificity. Furthermore, \texttt{dist} is defined as \[ \sqrt{(Spec-1)^2 + (Sens - 1)^2}, \] that is the distance to the optimal point $(1,1)$, which serves as a heuristic way of combining sensitivity and specificity into a single score. Of course, weighted versions are also imaginable. Finally, \texttt{lag} is the average number of weeks between the first of a consecutive number of $X_t=1$'s (i.e.\ an outbreak) and the first alarm raised by the algorithm. To compare the results of several algorithms on a single time series we declare a list of control objects -- each containing the name and settings of the algorithm we want to apply to the data. <>= control <- list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), list(funcName = "cdc", alpha=0.05), list(funcName = "farrington", alpha=0.05) ) control <- lapply(control, function(ctrl) { ctrl$range <- 300:400; return(ctrl) }) @ % In the above, \texttt{rki1}, \texttt{rki2} and \texttt{rki3} are three methods with reference values $R_\text{rki1}(6,6,0)$, $R_\text{rki2}(6,6,1)$ and $R_\text{rki3}(4,0,2)$, all called with $\alpha=0.05$. The \texttt{bayes*} methods use the Bayesian algorithm with the same setup of reference values. The CDC method is special since it operates on aggregated four-week blocks. To make everything comparable, a common $\alpha=0.05$ level is used for all algorithms. All algorithms in \texttt{control} are applied to \texttt{sts} using: <>= algo.compare(algo.call(sts, control = control)) @ <>= if (compute) { acall <- algo.call(sts, control = control) } print(algo.compare(acall), digits = 3) @ A test on a set of time series can be done as follows. Firstly, a list containing 10 simulated time series is created. Secondly, all the algorithms specified in the \texttt{control} object are applied to each series. Finally the results for the 10 series are combined in one result matrix. <>= #Create 10 series ten <- lapply(1:10,function(x) { sim.pointSource(p = 0.975, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)}) @ <>= #Do surveillance on all 10, get results as list ten.surv <- lapply(ten,function(ts) { algo.compare(algo.call(ts,control=control)) }) @ <>= if (compute) { <> } @ <>= #Average results algo.summary(ten.surv) @ <>= print(algo.summary(ten.surv), digits = 3) @ A similar procedure can be applied when evaluating the 14 surveillance series drawn from SurvStat@RKI~\citep{survstat}. A problem is however, that the series after conversion to 52 weeks/year are of length 209 weeks. This is insufficient to apply e.g.\ the CDC algorithm. To conduct the comparison on as large a dataset as possible the following trick is used: The function \texttt{enlargeData} replicates the requested \texttt{range} and inserts it before the original data, after which the evaluation can be done on all 209 values. <>= #Update range in each - cyclic continuation range = (2*4*52) + 1:length(k1$observed) control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Auxiliary function to enlarge data enlargeData <- function(disProgObj, range = 1:156, times = 1){ disProgObj$observed <- c(rep(disProgObj$observed[range], times), disProgObj$observed) disProgObj$state <- c(rep(disProgObj$state[range], times), disProgObj$state) return(disProgObj) } #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { data(list=name) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one one.survstat.surv <- function(outbrk) { algo.compare(algo.call(outbrk,control=control)) } @ <>= algo.summary(lapply(outbrks,one.survstat.surv)) @ <>= if (compute) { res.survstat <- algo.summary(lapply(outbrks,one.survstat.surv)) } print(res.survstat, digits=3) @ In both this study and the earlier simulation study the Bayesian approach seems to do quite well. However, the extent of the comparisons do not make allowance for any more supported statements. Consult the work of~\citet{riebler2004} for a more thorough comparison using simulation studies. <>= if (compute) { # save computed results save(list=c("sts.cdc","sts.farrington","acall","res.survstat", "ten.surv"), file=CACHEFILE) tools::resaveRdaFiles(CACHEFILE) } @ \section{Discussion and Future Work} Many extensions and additions are imaginable to improve the package. For now, the package is intended as an academic tool providing a test-bench for integrating new surveillance algorithms. Because all algorithms are implemented in R, performance has not been an issue. Especially the current implementation of the Farrington Procedure is rather slow and would benefit from an optimization possible with fragments written in C. One important improvement would be to provide more involved mechanisms for the simulation of epidemics. In particular it would be interesting to include multi-day outbreaks originating from single-source exposure, but with delay due to varying incubation time~\citep{hutwagner2005} or SEIR-like epidemics~\citep{andersson2000}. However, defining what is meant by a correct outbreak identification, especially in the case of overlapping outbreaks, creates new challenges which have to be met. \section{Acknowledgements} We are grateful to K.\ Stark and D.\ Altmann, RKI, Germany, for discussions and information on the surveillance methods used by the RKI. Our thanks to C.\ Lang, University of Munich, for his work on the R--implementation and M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial work on gathering the outbreak data from SurvStat@RKI. The research was conducted with financial support from the Collaborative Research Centre SFB 386 funded by the German research foundation (DFG). \bibliography{references} \end{document} surveillance/inst/doc/monitoringCounts.pdf0000644000176200001440000130173614712411612020556 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4956 /Filter /FlateDecode /N 92 /First 784 >> stream xœÝ\YwÛF²~¿¿oãœ9Bï[&ãs¼'o‘ÇÎ$ Ip(R!!ÛɯŸ¯ºà&É„B:¹‰CakTWW×òU¡YðBÖº\ûÂBY]ØBÉ ‡ó…/„ª…äWx!½DCQ(ÍE!d¡œÂýªÐ\á]hn-´Æa íÑX¸Â¥ ^,ˆˆPX:èÇ4’¢p\¢Y8‰öRÎxëÂùà 4õ±-<Ñ“®ÀifŠ ˜ EP^ŠÁ(0%Šà¼)°ø£®9§4V…q)0Ç è)•uh ö¹G cæD]a B€' Ž…tƒÃFXh‰c}¡AYx‹q‚²ÅBƒ²” ¦AYjÔ ,-Ç] ,GcP–PVÂ*ˆ;Ê`”•AØÊ‘äH¾ã(kîH†Ø‘èÝÈ5ÎPÖ PÖ·[PÖ‚± lfÈ‚²QÜèN|Ù¦AÐ$`Ç£",WQ-„•êÊV9쀲5`r–fݲ ˜'IK0/šp ŒöÂô…1 g.²ó8ï@ÙsK3‹ á8PösN K Ùƒ²÷œ”}À_ÌwyP*à ( ‚ÔÍYq™ÌfÕ .[ýöa:Í[Y˜%¾œJü¯ÎfžÂ’ŒD’EäÛ,î#ÅûH62ËÆäöYFVg9ä-ÑpY–ë2ví5±hã–Û/ÍQlÏsŸ' Þb{•ûV‹>ˆF×v¹>›Ž>%Ò—³éèrXA¦O^>-žœMçÍ|8«/š"”Æ”MŽ.ßU渃ýWu3®Vt-÷Ç¡³¼d wyÞÕB–-¯Q¿ÚqÖôÔ,Ñ1KãÍtc;üQƒL_¤ùiï‹÷Š+æ¡ÕóOÍ×z_<ó.³¾ä¹juºÓ‰a¦åcÙ^ïî¶Fý`z9i(V°ok(ô,Éøø7$߀87ùdˆx¯¸EØŒ[8û|¬ò6ùÕn³ãQÎä­Í[—·>o]À‘¶©¶é؈Ü|j:Ÿè™èjŸèPôLÛt†Ÿ®‡ÔNæ­j›¥Ût¦ž!d:ûsë“—lâd2mHfR´­L'M5ÁIc]8ÞQ=¸?ýˆftÆS‚¨×¢„&Š3ÜÐ:ÞÃj>½œ ÑuðÔ 6ÉCϦãª!öòácpT}l@áîÝeæVçÕ€F=›7E&ñt€}§5ßÕ‚|çÃjÞtzÀÞ¼ýA«$xdJ È0¹‰ïçÔ»¶¾q-áã W8 •|à în ×çùÊj–6yš²Nå©l5*+HÖ»4¯yö³2deY D‰Èª.²’ˬ4ºy+ó6+9×W̼ØÑÌ‹Ük¿™¿?˜WñvöÍëï^>{òϧϧ烉à‡Õéåx0+Ø£Ép:ª'§bQKœáÌ8ö5ˆîQPð…öÄ6`‰¼u;'DËIêù‡zÔœÑäi (úñ$΋Å?ã ùÙøóÑàè!²´çà$!ZˆKEoÓAkÚ½m2ß›h'ž ‚}óþ(C<³€§„°éšÂT¡c¿þ%—î¡c´¥­Si‘†I4'올Åʰ‰!C¸Zw[Åmw>Žeb˜DÅ”¯Óy‚‰äPI,í9b€¶ô#šüo÷oY}Ò¯皢AB?w~e>$«£™À½øºªOÏÚCè6™ÙvÝgØCöˆ=fOØ×ìöö-{Êž±çì{ɾc‡ìˆ½bß³×ìö†½e?²ŒêjVÍë9œ+Γ;fC6œŽ§ü=?°«X5^6ØtÍ#¬šŒó3vÂNèÿšÅÿßWìdÌNàØ);c¡gÕ„Õìû…Ù9›° œ7›²iGmŠã vAÞe\4io»WõtÄ.Æ—sö+ûõ®h;Ó¦»x_{nGiwÆæl^×i\óê=8š×Ù|Lü7¬9›Uk>LÙ%»ìØzÏ>°ì7ö;û½šM¿ˆ&NÅ$á?N)ÿˆä~r›ðÚñ*‚wˆsôsºþ¸W° Ûz/œz>8¯nryß —©‡÷&§ˆLèîY=ŸÃFG…ƒ3GMuþš2ÊeW¶ä7ÜëwßÝûv©¯ûÓñhÉ·Â NîMæõâÄÂË"9Üð²y0—䊷ò²†î-«†âmø£F‰Ü3æçknnýrw`9ü0ôO£[1ÆA4£d%É$È’âã—ôñz-¼Aß„B®²ªtYå¼tWiœZ׸k´`[u“úuco²44Ò†î~ÿâÉ›ÿ ×£Ád~ed¿IûÙ7´O¯iŸß6Ä[½é]-bÓÊ„êå =\šŒn&¬¡ªÓêDFñîµYÐë³p­<¶œ$ [ZýË×Ïß~ý¼ï‡pƒ½Å¯Í¦øíºñËmåß‚¡mŒÕP¡rV<B§~©p°±/ÕרÖHgU4€xŸMQÔ†ëq…öv×XWðTÃoÄ4:â`š°8Çó_¢¹©cþF§ÑFð'ˆÞmäNQ;¹ŠÄ+!µ ¨SŠž)Pþ}Kƒ8ö±ë÷'pžUWm:\ ÂD¦ÖT׬«îÍ µuزŸö#fS›|øÃÓ'‡KÞ+õ·œ!´¯S_)6Õ×ßZ}?7:õ¢23OÑŠj½Êø¸å‘Âò¯‹Lq?µY2 µæTã…)@$–°/ßsÇK€/b¡ïþt6ªfG·ö üû™Ê‡Cª*­K nÖ— |h«Ê¤\( ;wð´žüÒ1EÅÖ+²Œ'ßþðêÙ4yq<®½¬¶Åº›åD©6ÜßÒMm‹sùµ(—¯`\þ‡.Uê¶A¸ü|»ºùZ:ì–Æ×’«ØÄ´'0à+Áì”]6.ª…·Æ%W š/ ZÂ@\­™—_7¯›fk,{»œøñ“£G_?m;?&MÿÔ슨jÖÔUêm£êÍêº~u¡Šzí ý£Úóª4öZºW—˜Û»®WÓˆ¬ã¶¬¼©ýþÝTHÞ0Ï¥¯GÖ§ŸÁ(¯ÁÌ]AtÕLõÛY骅ª«ë£<] økÖ™a-Yç' d[óÔ[×Jî¿=|õöÍ¢*Ó/t\Q¥’KÏ1ÿBU*‡œm}8¾>×Êc[Ñ#O¼Qô[އ÷ž—‡³)­¸ˆØãèqpZý{~9{_Õ@‹“aÕzHèAÐ0‡AòÊ ¶ª°Þ–”`o‡=®í*ägÓù™}|8mÐÔ©z)áªÛÇÓ-r®tLq[rn ­dÉ š _î¶cª{­rÑ©ü¨ó‚ƒ¼>!©¦ÎË’ñ™Äh^Ê`R…ß$*&¯[HTò*“¨¬˜Ú´<¡BIÚÖ˜’J•:®¥À½øÙî{zõ7í{M¯ûæ}K¯úæ}O¯ùÒþÓJÇÎ.J~Ì…ª½gª8†Öï!1/éi¤ãØJ)`ùÖF šW¬íÑ×çï0!Br4ÙËåYE ÑßÈ”B(@­-Ýg|Ãì])Œ\KÒ'),2ʽl ’÷P%­uFEnáÿòiQ!K*z¿xœrø¹}½åE®¬E/½A´(¦%{®TÈÄ;Dê ^ÿU¹n¡(”]HU`:z`€ŒþwÌõ‡Êóz8›Î§'M9œž³^¦G<Ðf•‚['_­JþZ¬vß—ÞÒw ô´ B©]Çã°ª¡¥Æ!ŒˆÒÑW’X»ßBA‚iÆÓ Wbº­w Mõei-‘<}†¬u4²ÃIõaÞKÌäé½Ne!l¥CIß3ø‹rÝŠZ"èÓw¼rÁ])]¿×êøOwæõ°þé *ª@IüOwD©±ÁIÿ¥øÊ†/¿Ô£àá`í]¸iÀøɃq¯™Au£Ç8ÝÌHZMÀÿ&cÌó(É”1Ñtèóv^—f¿R®¢zæJÈÛ`7zn²„d\@°ï:ØíÙne kãñƒ>æWq}Ïg„û/.›ãY5øåÕt:îü)•¥…"FàT$Ä/”Æîµ(¾œr!2¤*w¢gLá6ŸJ䊪« R™pèóÍASÍ›ælÐÜ¢Zóyêú;æ½­ì§§„9KTÄÙÖ^·ªìÓç#‹Uùi9ü ëÝÖ''Õ¬šÐJœÿƯ/-„¥Xý K|÷:½oKkáÙÉ ~5~cÚ¯écWKj!$ tÝ݆§¥>¯$ø?»µyendstream endobj 94 0 obj << /Subtype /XML /Type /Metadata /Length 1583 >> stream GPL Ghostscript 9.55.0 R, surveillance, outbreak detection, statistical process control 2024-11-05T13:46:00+01:00 2024-11-05T13:46:00+01:00 LaTeX with hyperref Monitoring Count Time Series in R: Aberration Detection in Public Health SurveillanceMaëlle Salmon, Dirk Schumacher, Michael Höhle endstream endobj 95 0 obj << /Type /ObjStm /Length 4273 /Filter /FlateDecode /N 92 /First 866 >> stream xœÕ\isÛÈÑþž_I¥Œ¹¯TÞÔÊÒÚ{XŽ#­×Þ¤öDB"Ö¼–‡#ç׿O’@ ´¨¨R*÷LOOOwÏ8Ø„'Á%R¨$øD Ÿ„¯Áyâ‚ÅQ$Á%~Nà<ÔžîèDx‹¸I¤ÒôÜ&ÒºãU~á¥,5å><ÑÜyœˆDKGB&Z;4"´wøJèĈ@wLbð '61NÒËä9tR-—ôrH¬p<’'Vá¶"±Úâ+<¶­ ©ë,èĆxÇ$ŽÓ(Ш³4é/ˆxé‡#Câ }¥xâÈJ$Þ[0AÉ$pŒI(0N|¥t˜&”I‚¦q)›CãR\%*O|Ä „"þ)&5'¾QSš˜ë Þ‰¼ `¢ÐÄ1b•Ð4fiè=C¯Eäž¡Þ#u¯‰µžØ ‰Áã[CÜÁ)Î1ƒÞ64@M3lˆ–Z5‘ ÄchøD‡¡‘ð@­87ÑK4*EÜ#z”¡qYºõtFüñ´°Ä²àÑqQG Œ–í[C£RtFc1Ä š5í0KÂÒù9:º©Û‘Xö±âªÏV£²¯=Ú!›Ú,ÕÖÓÒÙ¡³÷S°z˜VÖ£Sa,|ˆ¤1⮓ÿ hm¡Œâ¥›Œ+Ÿ +-™½WÙöÿmÕˆùŽ*EsäT[¡ÏØ8›\ 3R·5Tmº&…*fC6l^”UÜàãå8[ŽH“²5û7tè¶`_ØÒ"ȶyÑÔ¢„¹¯*fu«RK{.//~~{v§Cß©<ª—ò¸–òˆž®ÅFõlÿYʣؽ×ýn/ÝfçÊÝÑ1OÀÁuK<¢ÈZÖv÷JY¢Ñ˜fkMy½¹6²CîìÊ}¼ÜÈý {;ƒÔ—_‹:‰5丒Ý%¤õË…âïP< PEê§! µÉÜèýòÒ[>]oùüñ»gg·"_”]ÜMÓMLc[4CK4{£ž¦Øÿ÷B‚È!F¢Ø˜"t2ÄÖ6EÄGΫ'ŽL±©¿Üß«6å¯>W|{­øö:š£ˆov±—¦„ ½q$‘¤7mÕâ¡âù¦ù Æùœ½‹æÆ†yÀ†;×:0Êd†ƒÄØÙ¢œE”Û5ûLVöŽôrÝ-½/”-Ÿð¬C~k«µ•ß}òÔWtaB)ˆ[r|rùþ݇¨7³é &½%Æ·éÉtYloìšZÓh!š î)ÐÕ$7'Ö wÄÆËÍÄbnvçÄÖ3‚à^ð–Q!mc)ÑÍ)ÙÇšž3ẫsÓš'—g?Õ†ìòËäj6^îÁ¶i_xÇl´‚*Þw6\…ÖvqÚÓ± êwþæ˜^Š¿hw-SB³·cJâåFâÞ²«lÁ®Ù ±O<+cŸ Ï•±Ó8_.˳I1E,4YWÅ|ü¥tÔ^²EN×r}µÌW€v“3Ý Å½ÔOCä½iÊtí62ýt=ÚÚ´äùÇ÷¯Ï~þ©6lÝ®†›÷¦D3²}!œQ}Ä#zš¨.^n!}[ÿvïí Ÿ=0@¨D¢Œ¥£‡éŒ¢)z.ãeŠ‘ï‰­1šw¡{‡¯Ý×vc#{稯8§½Wf‹a¾¨2a‘žÓx!Ê |@Ù­:ãøñ—‚Ç)Á -U¼K¦ëñ˜Þ¼Èô¦Ô>õç·©FܦCJ±…!¥Äȯ;‚ñ¦˜~ª‰‹‰¼§¢‰ˆpx½¦É©”PöÐT%¯wi²!¤ºƒ&çRTM“‘2 ˆ,ž•&ÏS·,h¡r’à)•(7˜Rõ<4´¤ÀeC”2©…S9Q¢¾¨ˆª3ÐD”)­ã˜›Ð$I+š#ShðØðšÈ'©\z\6‰]’*>Q¶:˜¶ßÍÌo²ñ-ûËëËó¿¿®pêå8›®:ñâ}@^©¶¿­þ»é¡8¾ùã{Ÿã׿u¾çÝö]ÞqÅ7môëñ8£Þ¶ÒŠŽÂ°×JÕö¾Šù™ïÙÀoÙß« ˜r”ØGö ‚ál`ºÌ¦C–-E±*ÆÃ§©ÅòËV”Æì½tú)_mnã¼|0¨Š e*hȆ³1„’j ñq „òÛÁ8›Äü3ñÙzAÙÑM^tôe>*bTNˆ:†æÓ¸iºž\àâ¦oA¢Ê£²úý¾ž­òáÕxo‰b“^Ý)TÄeYÛ€ š_²à(Ý”--ö­d@]Ûà±û5z”½÷¦³üÃ9y Y–m³l½.½ÒT ¿ÿ%a•µi°±¢RTÚË(o+¯®*Ô»ªPïªòrµÂ@TÅyQÕ¿EU2U5V¸ŽJ­?Z¥¶®µT©=:à IÀm8À%ãxOd¥:hҩѾ ÆxÀš¨‚>+QÕ@}”ËŒŠ4âm«Šö\í9ðƒJZMxê-HéSIÐWA‚Ï@É’Š«Ñ$³Ž‘-6R:ÕÂ>) ÞC‘ö”Pkh§…^JpKÆu|©*³y}@Þ}ÐM#*©Ë¬qᚬ¯ö¡µÇ­øåôäôõ?›Uµ—³ñðNz¤ÎLnó®éÕ.quÕ‡;K\¶„2uñÊØ»e¬}%°ÿ•?kúª,t•´üÝšßO±h;ÌÇøw^Ðåm«ÆÊåþ§å>¶Ûðú­• ÷ICßD ç}órï¿}ùúÇÓ:çc tG%K5+Y:ô@„Þôk![{' [^n&‡_ „‰¤˜õ­é±¼dm3Sxs6öò§çTø‡JÝ_ëÓ´ð©Ìil.«|«Wðþ&¥5äC¸7Oìh÷\JUÜš(-AŒ´‡õˆÈ|,Þ0öqð¦•rupò@Ô¾»ž®wÔÞË%ŠÚ8l“D°‰wðW¥Ú”8Ç(jÎñ­·©2=âW'Ó”äÀp-ħæV”0š–UˆÏrÈÀQÁ•¨Ö”> , ¼,‘0-Þ—6¤ÒRN§†?*mÕ¦‰7h‚ Hi‡Bñ9›ÚR]9e1ƒ´ÔZb¶?𹫠»Âð2ÐÃOÿ8ûøÓóûJ;÷¹ÛQ;ÖMB/õ+V†Ž*Ìýëvü¿Ïk”+ÏÚEüÐZ%µ—!½ë(êN£3uªuê; );t¤mÌA+€éY5–§Ð¥'¶ñ-µkÒD Cž±†zVV¦T¯70,Â?QyÚwT`q#çþ+D¡¯Û‰onáN·œ2¤²„ÏI”QÊÆÝQ©†,I/Kc”J\÷À!JÀª*³W¤¨žcÈÐH¾‰§´oèyˆr"•Fo‰‚ÃäÖ<QULAñ³k•jNi@âåHYPe,5_ÓŸ(Ä÷e©& ð‘„=Q]¶SºÒòƒ¦öPw$¸p»“ÚiÐþ™¨ªs[œÊ†n›Û@Wá¨&¡+3é¨p*Z 7a$LÅ–¨hLÕsý ´Ã³¦ úç¤|ªú3%¼•y½M)#£Q5<±¤ÂõãR©ûØt§¶TAÊ(ž;U-Í›š‚FãZ ^ƒdâFßhË50 •¦M€öFÐw²|ºÜ7|lÝ;1øÕin ¹dÀlÒòðº.^¨'¨Ö÷'ª²O´Â‚ÊèÔr'‘VÏ? IÒ”YŠš&_&)¢©™/Þ';<©×ÇÞ‘V”u«K— {ñý¦ÃÁª˜MË[­Vóå_Ίt¶¸a‚4Ò*Ç~[.ÓÏ\è´àöO±ô´Ÿ_bWǵJ%mB7&¥=IÚ“´”¾D<߸=–lÄ—‡-€–Œ¢ôPå»í¥NûÂÍÞTŸ^œ¼M/^̳ßÐ{À<|Ênòÿ;ýæüº¥¤€ŒB-JY¸˜‹€£¢Í7©ëë}$|’ãÕì/“,ót™'³é7_²Ñl–.óƒØ ctÜX2Kðo4œ§†oµG'·3,Ÿ^,£õ$ŒòE:ÍWñƒ”º&X*öÉ#\ Æ$+y›ækv[9/<iÜ´1e¦Õº¿Êµú5´r fHœLé¿u ´ÔÛJö€Ñ,óo&Ùj”.×_)ª ¶%€2 ))JéJÝ7©Ñ›«ËUv}n)e%í_ÁYtJÿ•C<Úrqk0}—¯õò8O†\²e~OÒטּ¾Îù”Mü+.î.?ÓÐʱlÞýšiÇ_Üt–Ä‚]Rn­LhUÜP™T;*Ñí:aSün‹„Í ÈpRî¤Lh %å8hŸLpR-JÊ•Kq©y\ ttŠ#3Ö°V‘  ¡îùHýÉŠ5”õÌ„ ± Y÷}œžh‹Ûõ±7âÆ‰¤±a"Ùì¤ˆÃØÝ>g}³ï"¹³ƒ¸Þ^ JÛÕlÉÎr¶r‹ÌÞ9K¶òN+õ¶;í»ÛÿR«¾endstream endobj 188 0 obj << /Type /ObjStm /Length 3659 /Filter /FlateDecode /N 92 /First 859 >> stream xœÝ[Ûr7}߯À£S)áÖ¸z³©’¥xãJœ8R²ÙKò@S#‰¶L*$;ûõ{ƒ!)Rr‘)înzÀ!8èntŸ0&e¡…ÉZØq5Â…€«9ðw&x.8aµµ(xaM4(aÉò³QX2 IØ`¸…M Mj-HŒ SîXATî јv‚Z¶Ú Š‘ ÂYÃ?E ±hU'ábD‡: —-°-¼ŽxÊá-:µÆ OÀl ï ×q‡Àu¼ð ­ ÂgÏ•£­Z“D°žŸÊ"8ôl1¤à=z·F„tàBò\ u¹ãPH\ð"B (‰h£ˆž1ãÐfÃŽ™HFNbù‰d3‘HΰDH‚)–;A¤ÐE‘5‹’ȆÇEYd‚$¬Ó";Þ4+ Œ;93fç„ÑÚã1çQbÝ@m(‘ã¡cíX¹øftÀcÖA•:²ix¨Ygôk=4Á¡a´d ôFb(q }1XИÀ"ŒÃb6Ð2·‡>,KÈBÆ–‘ôˆm¥´¤±™Ð ·}±‚áÁ ›ÿôÅB‡£éDü«Ø²'Å”Ûkn¯€Ú^M½Úz¥zuõêë5ÔkmÏÔöLmÏÖölm϶íý*ÔÑh8m†@ãs{O½lνg£ÀÇOajHŒ†(áðīވ:i&£÷ã~3<²çh­ÌˆòÛ«ñ¨ÚLÑzuü\¨›S´ðå—(þqÝpS ¾. ÅÖÁÙ:8ÛŽõÜ^Ã-àiKà¡õ‡¯°U¶j€ª¨j€ªF©j”ê ©šªF©¶Gµ=ªí¹Úž«í¹Úž«í¹Ú^š­B³ux<¡ÛkmÏ×ö|mÏ×ö|mÏ·í™ZÏÔz¦Ö3µž™Õ«ÊòUy>Ökª×¶_j{¡¶j{¡¶j{Áߢt·-¥‡p¥?ëMšò¸:|ñÕ7?œ~þí˓ѻÞÐØƒg£«3¡¾öGgƒáE™þ¥ýçƒñdztÙãVÛ÷q3é×ÓѸÄÕRëÛ^W ZS§ï_OKߌÀt@ÚŽœM/ÙîB™,¹XÉÝÇEŇ@JðògVÏÐç´žî§¢!”áÆ9œ»âcRbý!D°šŒ.†ræÊÐêD**¼íÏÃ(¹–Gåj˜¸‰¿·pXÝ\âA–ZõW@€9ÔwÝ/¨ÉPùZ>úSBùÿøóK*›Ý‡”~¹©IŸ'è ¦QïúëfpqÙ}…½±å?Q‡ê™:RÇê¯êkõB}£^ªïÕ+u¢NÕê'ÕS¯U_õGW£¡:SÂÔkÆÍd0Qçêü| Êÿ¿7êsL]¨KuùÇõe3TõV]©wj¨Fj4{f4lÔµºnƃљ«‰šªéå¸iÔôÃH½W¿«ê£úCýû3¡x¢0ø¦êùUïb‚]æÁ³nî—ßÀb|Ó¯í¯ÏW ÛBë@Ê­ïzïš;gí‹iïjÐ?^\5xB½L&˜Ãe¦•‰¬N§Í»¿·0æqçFã³f\}RAsT¾˜ö `?Sý¶úû?þ ¦*#âGpIzDôáû«+®yÒô¹&˜$ÐjŠÕÀtR–L(9,kyî*¾ ßvèJlz0(Ÿ“äD`T&™0¹;PàVÒãñ½‚rÆH“ü9™‘™ì§7˨"yÀÀ–P™dÐ;P8-Cää(Ù§á1θª9ѨÖÖkk€µ5ÀÚ`m °¶X[¬­ÖÖkk€µ5ÚPÛ m{7o —§Š¡E¹aàݶjÀŸ%a 3Õàj@Þ7RÍýQ±Ü2ôwË„ç ³C…¬Frª±_Tä£ ~.+‚Ys¢¿T¦ûRQ-`B'À½d¹ŒHkÉæc’¸Ž2rÎŽg8Ú" “ò$2Vf½â«½ñpƒ™i¹t™#lñ@ Ñ¹Ü6!e½Éj+^qŠ3H6É _:ƒ=z$¾ëašQÞ£¯øáçŸÿ8x×LJ]à»à¥ÃÃád0¿1'¾H|–&¯íÜ$¾Èþ×$¾mâ²øGH©ˆæl¨­ÁpOÇš\-qüð…¡øCüRüíü/Á$bI§Û_Úz‰{{w•^ÀÅ|•û[¼ò¯^E˜—">ËHË8S.¿w÷¸ÏÅ‘ØBƒ–ØŒ`ý…VÙßs°¾ï ëë8ßëÞX½÷úo›éUs>íÊcn„°PÁRn~{ß»b2xƒÎéßpÎ7ꘈÒ^)µ­U:ø[!„“æw°ÇÉࣚ\÷úÍ]±npDcË;{[ ‰ø1!ü± –8b\户™ù' ¢ŸD¤þ·Dõ÷*{N\6òÓuµ`ÑM›dŽn%xXxAiœ-yé,“ǸÁlß6¦V}‡‰Œ–9…GÂä|6¯xj‚[ŒÁu˜œI2z³_LÎjD<Ã䜤Ý@Ò«L–n%èó]m /_Y/Ä3Ä·¤ó^0%-˲»‰’3>“‚Ôã[–í’A6¤yѸbb^™(ìÓ-Ù‹l'+ôÈ!$^A¯ fºÛ'¨Nyš ÆP\+‚ß.µ]¡óÀ{<(0#Þ÷zP¹lr« >ÓSÏ¢-g‘cñ6X^²[yëƒrÕ Ì@yN°wêÖÌ1¥[œnón$’¼HÂ\(»7Izé~¨ ѰþZP¾Ä÷X X:¯‚²I”nQ8T§ÌlFzÚùÉ]¨<FfŽ*aº QçÊ®q»äÀû‚ÝÆÖ èPÍßNÊ^^W¢î›©ÞÃl—+Û‹7!¿º`æ$os{²’7sÈc†DT‡ÜÖí˜o܉‚/ 3L¼²ÈëæÆ´š­q3[”Á hEL`F‘giãx«b#$:b¼‹±[·G†ÊÇ2(άù@æTš÷ä$ï×EåÎÃÃ]œ»)D™1uÒÁa&%è7C…6óbšCuÝ]¯ß…)39œc"Ð7>}°}L·Ìº»–÷:9…7g‹îxÛ4$+sO "¬³sPPòv 6ˆ 3Qg¤L% )e–foQÔ'daŽ*I ;@u‹yuØ‡ÕøÒ‰Êµ søž ñé%éÓ®MýP¼+ÄyÑ  çE»µš«ôójZWó ¯f¤GûÄ4S/Þ”cWˆ~¦Å¨i»ì`mLsM‡9¦²`Â.0ÝâÏ è²‹;ÊÏG\J£rjn+í …vGd*9€y,P”¢´+«þ”1Ó09øqÔwŸ˜î–à[1yÃÞ|'˜n³r :²ºÝ”†sË7ƒk1fÚ*ß\SÔ’Î0!u >âò(˜n_áêääy)×ñº2ì ªÓmèÛ ¤³ƒê ñ–\9Ê»OL˜@§<ŸmÅÄígmr&¦ ©Ó0m°ä†ÔÞð®W*Cg;‘Ó˜2œÖ‚ 0êÝjƒu¤™E!ÈhWvý$Ÿ’÷T»/Tq:Ï@ñÖ{Öfß :Q¹P¶Qf¢ÊHk®N–C*§BýtòbV¡?Œ†í­'—Óéõä©Rg£/” ×:ª‰Ö&éùãÒgåËÝ£47òT’I'äïd+Hòúh"BÀºg„îÿ©×ƒÑ;–\v›`æÅÄ€ôÞ •Öóí…`‘é5§Ë#CÎI-{°F^`tW ©Òš9îýìÃõFö'g=ˆJ#©…6~#a{xmð9 Ã\ÚÞÉïæü7c¯R÷ 3©¼„„ Ó¿¸î¾æ½ S4êÍèýxØ»’×ýמ¨ä|Ühf& ƒÔç$)òÌ,+G|ÔЮ}xo]ðG'‡ßÉ“ƒëñè z/ã¸îõßö.š¿L®ûÁ¶ì" rZ`†ŒRó¡Q7>ÿ]Ü>|“ÞtÒï èò’%¿íÅîa–\.‰ì­™ŽßÇ:,‚–"2.»^²e'‡OV$çô@à- $š5ÙùF’½iýÑð¼7Ã~3QǧG˜”TŽQ6 ¹šl$|BjáuyÁ <,ìïG$ùÛ™;Lõ3–½:Ÿ—†—ç½x"évü#òluü•Íúä ZÊ›@6H7‰·¡ÐŽ…-!ü¶0©=OðhÞSwô~8Ýlð’op¶'!ØÓfÃä,ïPàeâRˆÉš#ùµ$„Í›^È–2¿*ÈÜuÝÕ‡[‰èÀteÞ}îÊ ÛŠüJ`W¿¼!Ú•—·ï-kSÖÑl4éi=® A©p o|Y\wÿ~T"ij¬ìÁ(Êv#šL`öüª%oã~ÅlˆOóñÖÔá½9çi\ˆ9Ef¼šªÇo72B§ËY‹‘hŸ'Xã.ÉжFÐyY¸Õ ù-ê,aPü¢ŒaÛáï.ëäûãgGùZäRÞðÛë}%åàBjwj÷UƒÉj ýŒz#“)»Püæq.·3ù=’5·›ö€»Šé²ñj(Æó1ý]ÎU­­úåÉdÐüò™Ñù8f×/OLÎŽ_ãfzjÂ3âéÓÞàì`2xa~‰˜+û£?Ûƒß6RÌŠ7ÚÐS{R¡SÕë³ûgUgöeq•r›Gpô\ûŒÜö£'ÊüJÿb$åW>ñBÂñà¼cœ%»ê|À‹©ü#¢…=«Fÿ“Bz¹endstream endobj 281 0 obj << /Type /ObjStm /Length 3472 /Filter /FlateDecode /N 92 /First 859 >> stream xœÅ[kÛ6ý¾¿‚·X„âû±( $mÒ ´Ù™¦Ûv‘ŽG™ê±gm Òüû=—¢d[òLäF®1ðH”¨ËCÞËËsùPA1ÁTÐLYü‚a&\-sÑâꘂ^x&•“¸ LM7‘Ig=Sß qƒ§Ö8Ü(¦ý‹I$ÞGƒ>Uª¥¦Ç´•ô•gÚ9z˜’>̃ÇB0£¤ÀdÆ(|!3^Ühõ 7†Y©(eVAŽŽY#éÆ3k Y/)sd6Ø‚9÷ZJ椥Å} tÌK0 sâµDcx´Ž8EKϼ@ËiãéSšxMOy‘GIæ]0¥˜ …*Í|ô¦ 2ÒË‚F‹iÔ-4’VžgP– ,øHr" Q#³, ´¡†ô¨40kÅ¢†Ê´Ö,ZüÓڰ膶,‚¡‹©P| …TôT(”G±+… %Ia=D‰;/è™Â] Š„@œ1¸“òŒÅ]Ò'*€G†Þ¢ i #rHéQ¸6(C†@êFJ;IÈ-ÊP„_£© a·†lÀC @èeÀœèe@£t‡2Шhb¨T¢‚h$‡2 `¬R;ª¹CÐ Ý¡ =YÊ0’L ƒôeCÆàP†qd ŽÌ=ÀÚ4,\²aíQ†•d|eXåQ¤¤5ÔjhC”SûúkV<].Wõ†ý7¬`É^›«ÍW—¯>_C¾Ææ Km®2_U¾fy2Ë“¼w¬øvµ¬Ë%Jµ±‘U¼.¯ªÙ³ÕÀAÒl´œÌËHŽNŒ/ÞÌÖø€5’Š‹r³º_ÏË £¼€´dðéÝ›õj~YÖT¼ùî+~*ÿ¨!á›opûé®$Q×%’½Ê« RåJ«\i•+­r¥U®´Î•Ö¹Ò:WZçJ‡ü<¨•ŽSU:è/ª´Î•Ö¹Ò:WZçJë\i•€ošªFü‰J<›mÊôyñŸ—¯~ûñ‡¼zýzVß\~º}¿Zl“‹òú~1[³âùr¾ºª–×ÉìS9/ªõ¦þö/Eá»r3_Wwõj†“”éÕ,çA×,.ïß× ḬÞ.+ˆ-Ñ ž3ÂŒ¨ºªo¨C²¢1ãsúó©K>$÷]§øÍœTáàÅ‹ogwÿ*«ë›6‰ªRÛÿ½(å-r‹Y]Wó²^Ý‹r³)ÿw?[·Õò~ó+¨ÅHÔé© ³ë 4œªÿ¬µ…ôÎÃOQïš—/ªE‰ÁK¨¬ <úav[~V‰/ëÙ¢š?]^/JRÚëj³JS;CexrY—·?“gßÕÄŽ^Vóë«g¿¼øw.°ï t¹|ºÜTÛ[ë‘l‡özö“r èµxý®àvu•’®ê=UtšpÅb¨P¢ÑÓ†îkãñÆ© 'Çê⇋§oŸÿ˜‹{þ̦Z-¥8؉[Ó٪ဢhA?ÞÍ#ÝØ‚ÒÈýhð¶jÛå¼m~]Ä’~îÙ&;#FÒ ¾¤£þôÀÿЍzßú¨lþòëoÌj+ÁAò–÷‹e¼(ç”1.(Ä ’;Џ´ãpø6n¼Ûév¯ªåï-´DBN„d™ ¯·œã!L‚I¶‰ŒI†¸…â k9±ñ&0t®ÐL ˆ-ňÁs‡ CiÅ6S¶E<ý†RÚrƒbû-e '[”>r 4V)÷ÊTwF¡ÚòI“I¯ÉdØd2l2Ï4™gšÌ3Mæ™&óL“ɵùšåÙ,Ïfy6˳YžÍòl–g³<›å¹,Ïey.ËsYžËò\–ç²<—å¹,ÏâÁ™0~9öÙ¾ãÁS›DîÎÔgÞ’eD… ÒÅÙì¨b‡ ýˆ{y$¦ )i*!Ó‡ IujG}¤·šDÊÒ´B—¢éî;|RvßÑÄB‘J}÷kf©rÊ‹4EÕ¦TšžjRÈØÞzÈk3yöíó@ž£½wLµhª=`U?½¸øíç—P.gËÍA2õ¹uq0|è6äÛÆFq$µ%ö4 Cä~"wÉÅóq¶#¶ÎZ´Õ>¯EWƒ;p[ßa}„}°AF¬`r# í÷—o¾ÿñ-å«åêø¦·š^õš>…:ãÚ>Ùçðoû¼¹{(_ÿ›ö·›î¿ß½†4z?¤Ñ»zZ¼*Þż¸*Ê⦨Še±*ÖÅ~Ô)?ꤑ,‰îEèŃªi複¢ø%WàQ~Q¶“b;~ÑDÍBü  h+h{”Nëj Š‚šë;¨†NhtàeÐTètmPè´0”pXÞž<~Å qL‡ŠfÿhÛë_ƒJIÃM¢r‘Ó&±U;ΜU»QæDgk¤ˆÉ«Hš[?-‘²Öð膱sœŽÕµ L)R?/(¸ú(· ¬„Ú”>¨ƒó*Fq`%ÚpMM{Z’ÐN#^°“ÆæG 2Êi{q‡ L0í;ŸÕ±æKGÌStì1)L "}1”ÓÎŒ¥2˜”†›—á8POÓ"Þ%+Þ^¼ì2Ìi{xóèï7u}·ùgQ|üø‘¯Ë»êª¼­æ›ùj¹Y­ëêþ–¯Ö×ÅWi…ïá Ê]_&@í-MS70-ÌÎÛt–OK™².ôP ³ê[¡Fi¢:ø4åé ê "¼ Mè7 º†:Ôhý^­ª¤JÐO„/€G<ñQ_¹QZÖ.œ³Çh[Až£Ó¯d餩‘º”’Nû¬0-]¼¯V·e]` ’\ÜHZIsÍÞ{»$”–v«ŒôC玆 tؗ豦uX6­ÉÁÛ{7ÒjžÌAiíŠù—OìÌ6å#H¿«>|(×å’vÐL2kNë5ÐêÙ=Q8¶=ËG‘.+ªå‡jYÕŸ`xH]­êÛY}C•njÙIÿ3¨ÜÝ9lÿÐ Û?ŸÃzgpXÿTœ¢ûçŽXï¤Xò>†>ˆýbž ŠIOŒ`û‡Xï|  Ñ‘*¶=¨ÔAÛ,š¨‘E«f%v•k‘Ê'9Ó ÖíiÎÃåþNllendstream endobj 374 0 obj << /Type /ObjStm /Length 2974 /Filter /FlateDecode /N 92 /First 851 >> stream xœÅ[]#·|ϯàcÃÙdó0 ÜÙ¾œ;1îœ8Žá‡Íž|'d-»:ÇɯOÅ‘´+íZÚÎŒf8Åf³»ºÙ²gBNFÄ£Í&:A[Lrm5%$Š3Þû€o¼d«â@¯‰¡Wïy%£ûqPŒÄÖO5¢ oªÎHöè°z#E+pÕ9à>ß®àÉÀÇ+úÒ\ïK…W2°ŸÂû©&ú¨‡3QÐGtÞÄ}YT¼0:\Í¡à šX3:5êŸJF}áA6þwÅh,<¨F#ˆ€«0¢÷FÛã^ ¯€^1¶äLjoÆø“*¯$“râãÙ¤êùT1Ù%¼ËW“7Fq&s¤“‘E“%˜\<ÇMq £5EØ$β)Ú®SRâã˜À˜18SjÂãÁ›êÙ¤VâÀ]9܈ÑVU¼ ‚¨™BÂÜWôˆƒl¼s)Äæ|®âH ø¡.Ft1{§˜§¡ .s""4ÄL"fjäpq U93 G=ðyï#4#F¼Ã'NÞã}†þD¥ VŠJtл¬^B‹ŠwH›NÅ;D3ïÃ;¤`f£âR3ÿÅ;‚'RÅ;‚dDùø D•ðŽ@Õ‰Šî0gò„Êsvðó$$…ÙóÉgñüþðÉ'fòl>_,oÌMyÕ´qÕúÞJoCocoµ·©·¹µ?šÉg‹ùr:G¯É¯úš|=}3»x¾ø ïáˆÝr⣷"žøæâ˜UÏ“WÓ›ÅûëËé! þÝnÿ}s½¸|=]¢£É7Ÿ¿0“o§¿-ÑçŸâð¿¿LÙÕÛ)NoŽ+¢ì€¸V­ìíÇíÓ@û.YŸ{[zÛ#}0Ò#û#c Fž6éj#]m¤Núà¤NúàB\èƒ ] CØ3È0Ö C|Ò C\èƒ }p¡.ôÁÅ>¸Øûàb_c± +öþbï/öþbï/öþÔíJK(*OJÚ7c:8õ1 Ï×o¦×ý¥®AÉN>ŸÞ°#ßMáäßÿÓoAœ· V}þþêŠ7¾š^¶sµtÅ’’U(ºÇ0à ÀŠõ0ø¸óõû-Œ¯f󚌎ÄTýL9T[`œw0%›aAÄ›ÁŽ|‰ž £»Lë3¥ó\ŸÑ®ŸÃ"ö~ýi78[9°~ÖQû!c7|8† ®ƒàÈÐ1yÛÐ-Û Ì] $ÏãuÒ¼U›{[z»ê›oÕúÞî3¨i$Í%k<•æ’â¤%pŒ6ƒ½ÆhÕ“fëA­ƒ& ‚óÅu ÔR7q ‘B%…ܲ؂ëw0€($ì>¡%Á VI³¥6> (+Pá5¨ ÖA÷NJªî Âz±+ï.*W‹<‰›7*b+BÉ Ct&PÅY‡««%û÷P1ÍŒÞ":&Px«ðÎkPAmˆzP¾–PTš„·ïÌÜx 8½ÕÈ8 ØÆöc¶tõgB¥DU6¨àÄ*£›cPå8rÐ#·v·G‹†Ö½ÀsHþã3R±íTžæHºÂ1ª_µûbž<šƒ8µ9ØA £¥ ÞÂÖAJb t±¿•Q™MÈz ¤˜,ó>âÅ2èèsZˆDëêÌæPLé0LMfà;ºö ´ƒ¤ƒMÜE©p´à²Õ2ªžJœÉkP­% Tp; Ä3å•DåIÄäñÄ#@Ía€K·°# ( t‹Ú?ÀRnS{ÏP² kB\3ªG,¢>sq3mt{òìÏýþù—}õõ«ÅÏóòñóÅÕ3ùb~¹x3›¿mû&­³ë›ågï.®¬˜:æäòzöËrqÝ6ÑÚM_]lîYK˜²õƒˆW/ýnöfùޱEmyÂ!⸹dlÃô_üòr:{ûn8E§ þ8ùöÝtyñ§¦íî!ÛÉ‹«‹·7&®º>„ü«À~°‡Wÿ½˜]MÛ`.ýåâçé}børyq5»|6{5Å“¯g77JCéÀ•×ËéϧÜß–džn™÷ó¢ˆ0µrW•f¿á xlÔ È˜ b£¸¢AÜÄÁ‚°w…éÏæí6en™ƒsļMÖÀÝܨÖéoßEåV¢Y‹ ¦–ëLó.3[äÄ29 ³jù8sçr.P19PºU毎j7êÝõ`ö8E«Ì¦¸n g1Hm›Äåc’±Ç0Šw‘šZµÄ¹Ûºb_Yx»÷£°Ê” ‘⨩ê# ùêEט¨¶±•-|T÷%Ð!)n|¬pç6!PÈ`8¹Q|8ƒÎPŸªÊ¼km¾s'wi÷%ÐI}0¥lƒä…éßbµÌÿ1@P–"A“À¤dDü§×ó{Ü,"ER­5*DŠ©Æ3£ B‹¼Ú÷à~_ÍÅH¿ØÎ5ÜØ+:`Š`K‰¦ù阿i½Î âˆ(+k- °¼Ë‡Ó¶ÿõÈxhì(ç±Q¥Âl»ºcp•n™þ`]\A‰sͶ–Q÷Ç®`KÊP Å”òø ö¤)‚:Ëò¡» `!3XÚJ*(ﬠËŸ@q°ùú@‘-²"eÇš'ËŠ¹I7wœÎ **˜­l0s –í 0í³›¬EpõÞ¼­: íH‹rC7ŸŽ›q:T$I€A@)+%Œê.Ác¥ýa‹Ð‰¯z`ñ¬œµ ã¶~¤­RηF(±íÄï¨RßÉœ<ÀÆp¼]ðätÇ:åþêo/¿xùú£—Ó«_§ËÙåÅVº}òÝlþl~3Û\ØäÝcÙM¼kÝ:ñ®áÀÌ»jZÿÚôµ(íN&z»‰o§ëLüO³_§“Å|:Yþg1ùßôz±•ç­«¬|BÏånfóó™¼*¦ÙÊÌ÷êþ­Ìü®´ÌÊcnzV3ö`Rþñ…'¬ÏºÞ~ò¤aWw˜MQ¹öJxí•ðºzæÇíå)£}È‘Ü#–çØ¦ ¼!a2b­ÊoŸ˜ºÂÏ&lÜk‰ß_+È´‚ð£¶,­d—œ=¶üBlEgÅD¹ã×x(ö’ÃôÁK±î®Ç„ÑÞÕr|2àè:GVÕñºvÿ¡ýó)íŸOÝ^ec}a¤Ã‡W'©wܢ¿[\q“jF@’sŒ»èéiñ; ?X‚ # rÇOUCÛéô> *Â?~Àx¦­¹])™vë¨}þTö|¦#c}X¥ƒÖ0·;1ªì‰Q¹ŸíÞ™]ˆÐ3U[F`Ñ?^-ÌåÐ":ЗhÊ糟~šBÿÜþoûôìzÕ×úNt÷1á§ãendstream endobj 467 0 obj << /Type /ObjStm /Length 4040 /Filter /FlateDecode /N 92 /First 874 >> stream xœÅ\[sÛ6~ß_ÁÇítBâ~Ùét&IëÞ’n×IºÝîäÁ‘èD]GòHrÚÝ_¿ß)[Jäz<2AÎå;7’2®b•2¾’LTʲʉ#¯ã8ŠŠ3E YqÉ5ªâ†SW]qç ¦\bk+!•BÃUÂ(êã+án9VIÎ-¼’’á)'*©1­r²’Öá)|¤§¹¦áÓèJSgK$â²s•ò†ô•æW<«´Ä?åy¥ ÑìE¥Á€^V†{j¨ÊH10„±RЕeàIáªá)WYÃhx_Y¯e¥«øA 3 9v5“•ó8ÓLU^H‹†®¼ Syã¨a+ïñ¨Æ œ1My´zhÎÐ’ƒsŽ vÐ2‚îBØÌaÍ!mæéYÈžsè-ƒ– !PÎÍÁ1D9æàFâÎ8haÁˆp9„ 9pƒrja¡Ã5Ì! ”Bg\8¨P Ì!<‰Ü’Z˜C ºµs¨œt€9¤&Æ!_.­Ôhh0¤!F :4®sÅ-=9”ä4 æPÊг˜Cð¢e FÁèÚ燀1(»¢V˜ƒb k»V˜C’šÂÚ1shOWŽLÚS˜Ã€õ ¡$©1‡¡;×9„ª knëσv…Æ–¼óp+%‚9,![kÌaµ§'0‡hþòÅUótu³ÜVDÕ|Õn¶Õ¿+2¾óªùå_¿VŽ×Œª úË›««êuÕœ-ÖèGæú=» 3à6œýØþ± VÎ~ºX·Üijuû¡Šw^.¶WmõÅe{yÉLœ Ùªîc<>->¸.X¼vٵ͛xç6¿ïº1Büƒ4aLq,ÙµÃ=´î‡öGÄÈ}<ek‹´¹t —zŠK¢Ú Z TÌ2ªì..§(§1HZHBªÂ5%Ïœ‘Ξ#‰¨Ò èž?îJ æž™‘p¹ð<ý~7\˜0•èdõeŽ$£G ˜¨_¥4ËÜlî1r=ÇëIª=6òp/œ¤{¤•iwÉ{I 'L’vsJŸKʱÂ6&3ÉHÝN²C¸¸È¸6Vz§Ÿa…p°ãûf{#³˜TRýi2™=èAVö‡q™|Í  gjTu,|;X&Þ#‹eÛaÑMæ{É]gn·7±ÀóqoS?º£B’´eB«¤¯W¥‹âÄM&xjB¾$áÀ¤,ó0A×™ ÊØ?B>ÓnÏV™·j‰¼5³¯È–šf+êMLÙ^‚/ä[¤ Cb6&®ÌŒƒñ+=2þ‚œ}™Ñº‚hM*cî®$'™“Ù‰‡l'Þê1¦±wküÞã»ç™©%œfùmY“z{Ó*ráQz«ÿKI:Ô‘Þ–ø´>'Ó¢#I£þ”@èxTó=âÉÅp™A,g3‰0Í=›*dò€Y©„B_–…~Ê¥Jv£ÞÍŸÉü|(BwV£>N—ËÕvQÐÂ$qAË’t|M6´Ü‚ÝMeDtGÏÛùââÉêô§ÞÚëä\˜ÏýC×û¼Ý¬nÖ³vSÑLg-,uFÉ­f/ZÒAóÓWgÉù5¨Bó¿×- õ¶-´EkÙÅâŸa5Ó³[µ5™™}’Mx¬¬.´”e~‡çÃ%l¹/a«a¥N³´‚õ½ëSž³YBñQs«Æ‰ç®Ït<—»¤ìTÑw®dlµÜnæÆ&?-^‰["Âx¯¼Ü‰W;éŸß­Øwê·é å®O]ÛÝa+‡EÃ1 ø(’±šeò‹"*2-?•[¥ n3[ù!†ðL¾dÄ=b…¡Àk£ùÈ6úz=hØOåeÄJ/é3ò™y¸CVcŠÏ~ì´Ú— ÷ùB~* J[Ñ)§ÎWb_õ&Þ‹yv¸–JŒ¾›÷´OÅ:cŠG&m<ºxì'½XëŽ<E<ÆñTOÅñTOÅñTOÅñtOÇñtOÇñtOÇñ´™ˆÍúT±Y÷žõ#b³/‹UiDw\д­e˨&Ù”Ìlo·^|r±iùÍËŸÿñì§çŸ?{~¾z±ôÎÛ·7Wëªùz9[ÍË·áÕb˜0¸Î§ïpSðŽ{°1[/®·«ux±Ý{ÔЉsW5/nÞl÷$žDÑMýÏÅ|û. ‹« ý»þÀcø¤?rHz:ÿ°¬•zu=û³§ÓaË+í§ãp5Íé³¼¿Cô |tà#ÜÁ,¯{[ÛÌHÝP°zqým»xûÚGÐiH¤¯¿6/›‹æM3kf««Õ²™7mÓ.ç›wÍåâCÛ¼mÞ5‹æªY6«fµl›ëæš0tÕ^n»ÖšÆl®Ûõb5oÖͦٴïÝX›ÅͶپ[·m³ý}ÕÜ4šÿµëÕg°´GVØœ]]¼ÝÀ(‚"Ÿ$ó ÷ Šp¢ÿuwólqÕÊŠvtÂ¥/Þ··àî»íÅÕböxùà†ž/6 0`Å•ÛöýÏ´Á!GS†Äæ—(7‡0Âûùÿý›aÞnº î€åòñr³. ¸·j4›Na&ý?÷ÁCÈ Æ^ܿս¤ÿ´U†®§£0"ŽÑõ¤ Y)ŠGiÜâ€È qÝi¸ï›ÀÜ H»ì±EÈÙ!¿ï€ƒžëÀÁeØE’#äH ],—aŠ#¶ÄÈ>] s'D`}cˆ|ýøìÕÓaÚ'««ùA¨$[i —ćßõ@t^jŽö íø “knÓ~h—#æ"iÉ 8ºÒŒq[[†*4äFšÕúqûÔ3Òȯ¯ž½|E@x¾Z®¦bÔ­:1:QÕG+ 8ÿ°ÞÔ¦¯žö/u˜«¼—S4 r÷0á´LTB”X4¿¥0ÒÅ‹MDEŠÍ.ZLÄ ˜s™£@!lØ_F“K¹F±}º?d;ïððÂ#Ľúþé«ï1닋决c|€xË–GûNÁÍ2y¤ Ï35°Û ¡r¬ƒ¸¦•é`ZjÀïÓ@dêœv^¦)çºÛÙvEÆ6DÆ…ZU¤6FÆW¥Ç-íLLmÚ-˜Ú´ƒ/µiW]j; Ú «õ¼]Ga…œæi8áÝI_4g+lZÖ–ÐBÂëaí¼u ¿¬mpT¾vŽÌWÔÞÚ(XSŽø:CųÅò?Ir¡»7ªB‰¯h_eößÚÚÒQ¹ÚHñ@4q¥jílO”q5m­=ЍsJÅxŠ¿çœö§&Ï32„xFûJyösŠ)DM¢¥9§CåȪæˆ:×yäþFUi\E>AUÊ?¦*=L‰É=d:4FÖ2Ûè×£]Ô´‰ÕY;ÚRÑn‚NÍ)‘u8Qì†yÀŽœ‚¨än@›Ó'µÀÃiâÒ×\é(A¡Û ˆâédïˋɓ%MR°:ì,ö¦V¸-%\ì—h”ì@šn·À£­LU" 5XÚô=€ÜúF¦®i£{?-†éÃÅ.´e]r7AÒmÆž¥ ?|óò‡o?¹xßnÊœ6kë(JŽSQÖ“ðf¦¶+ cÈX,N‡öpþÒ È1O+ÂiŸV„Õ…K8šæýby³i– ¤…!5¼ºÉÓÂQ±!÷®à-ÒDE"FÈX°·¦z¨2ØUÆa‘KŒ#—a¬–bd̸T úŠPˆñôõxtWWݽÇxã]Íü8žjfçž×Ê :O$` ª–Æ=UôºŠ¬3REû¯½ÔÇQu«EK«Â—UÆ}TBx„óB¼®ãʆŽÚ ùòT!_ô{¶?9ä—AcüyOÐP ‘þS]3®4Ò5ú‚–Eàç'Ù©mÍ!g2LÚ#¤$°h}%« 0ù0T© A;P…Ô€¾‘tU'Êp9}{Hö=a%Â}Jö{bTq.á@¢“¨ <}y¬vô%-JM> VM©ÉÓ×Ã,¼»ÆâÒ7Ü—O®½ƒS˜L_»¬ÃÀ­²¿©xS¶vF—ÂÖ×Tíkk`ypGcEmŒ>¥ÅN”4ôú× Dyh2ùsˆBfYëqæ/´1(?% À‘BÍ‘œŸ´D:œ(³@p쉂ûf÷CÔD¤…>1" ÆN¡uõÅ$BŽ6'õ⇕ŠIÞ †#Õ#E42þ@4q‚ &eMm˜¹¢äˆ(8¢Ú35Â95}uÕw4À\ªÂUí¹ š4GÕí¢,ˆ1÷AÓ”“â> stream xœ­\Ks䯑¾óî“åˆ>¢7¦aÔ…‚ö4¶Ö²üذ5tø íCršÑ€¤FÙwŸ* ª€&GZ…Ãê•Y™_~Y•Ð÷»"»ÿsÿ^.ŠÝñâû AOwÓîw—¿ýº4;›×ÆèÝå‡ î!v¢–¹‘rWY™—ªÞ]ž.¾É.oÛqPZå…°ÙS{¼¿™¦|"òºÙU? 7ãÃþ 묿¿Ýk²©wý ‘5÷¾G•5ÃÔ^u4„„*{x|ßµãíÍ5?‚æí½{km6ÝÞìÿïòO¸h,ú m.dUí¢ÈëV{ «ýSÿ8Ü7ô6L¬²þþméïwS3µ#L¾/U6zטž›a_âÂE•ÍFZ’:¯…MÁL™,„ùïýåwÐÊA+Y V\£ªàñ8EnŠÚº&ßf¢øvÿ¹ø•*slü?—¿(ò’¶d8¿Fnl Òe^¨jWU"eÁþe×}û9Ì(¬QÕo¿Çü©¨Š¼Å2ÙO5md^Ép’eå ¸{†1¿¼°0VU‹:/ôîtQJ[åU9?é.ÞA Ô·ÝUÆÀPÐh~@5‚Ž%uôæA#š+hP=ðýY-ê¨r)ÊHÀÚæÊ˜]%E®„a7øëþPä…©8Øy;õC{ª4¹ÁïûÇû½`N¦Ì&|^f—íéfiñîfhoF÷»,ÑÆÙÊ`ª`Ò‚Æ­væñµ3±xà#¨¦‚mþs?‡ÍÞîa‘`î•ÌÞÃSXŽ€åÞ ~Ïó¤1¹²jwñjayŒ/H<¥ U‚ùO7WÔ¥‰,û#ým²¿¡·^ù9uöÇ›¦›n—÷½7PVg7m×5÷WÞ¡PÒKraas-ÁƒU«,š–2kºÏlþÕRÐØUö®éNý¬7»C×/ÀÝp°:7F x ò²ä±¾îA ²V ¸¬UQÚlÀ=R jÞc“$Ä’€B™ìŠ*þ–[ÖJg_Ý£‚KU‰¢ÎI¦Gú­­¬ëlrXp6»%¯Ð`—Jî‚~ÑwN<#³wWlBU“¢ m)³ÇSaË -³Û›a[z™«ZòŒô`náâé+/=<õÒëÊK/êOž¿.}YæÜ)X ÛêZ+©³…Ïn››ÎÛ–ÌþøïÛîæÜvWµ¬«Hàwázz–½–ÊI­³»Û IßP8 BuöP¸ö {ÀF˜Do{„we`[F|ŽZeí´Gµ¡U}Ü[ÅfoØÙë­,”³Jmí/´3(ËOÜŽ/+\!5B¦)ÃeM˜)—Ÿ/!fUìjX¶4!`ʪ†P w%H_IE1áíûqš«É˜ ºD dÊ€-+åo¼æZH“ñúK¡ªlyÎÈü¤Ð¨€å…SbUZ@HЬ†H?>íÚYˆòvÖ»…Y2© ÝUøÈ*ÄŽ¬iOˆáÀÓäÞeÖ95Co “ŽÑðáÐmøãèt¶‰»7c°„÷+=9Ñ®×úð³ó$¥ÎhØ%¬lŒü l.î•óùÊ& fËÛî£Ó°-³!z©®?F¢ÿ¾;°˜@kt g NKl¨% Ñ^ˆx‰§hÛ‡ãf'ˆI}¨§)T`¼ôænô3izùŒeâÝÀV¥#˜®ôh"ûpn+¢ Ȇ ã¹_µƒåç˜ïšH´ôØ·žqe ¸X­pèOî¹ çUŒ3Yçïõ å70’I¦(ÀèaÊeOLœA“Ì@W»Ë¿\\þ×7Àÿ#}à ";íé!B†È¨;é”à>‡ ùÎ蟈óŽ 4ʬ §xˆTýj›ÉQ:ö”h~‡äY®Ó­/(m 7¦ÜR@\$>¸@¡2fŸÔÎ(Q“L]:eùtÛÊÐÆ¦CíY!G;co86SôûÚ-R› ˜ââ¾ Ñ~x›(45‘á*Kéàåmà³´¿Àë!êEên\¹²6n_Sy8ëÖcÍ÷®!©É&§v„o·K¬Ï÷â<ñƒ0`ÖùåYµÞ'Z¶Ã Gk îrëZ@Üj"4êO y‰ç˜A)d"©#ñÐVvî§ç~YHÿëx†Õn»vïIc<ü¸x¨Q›ššPR†*/ÇÙMH0YÅ´Þ%7‘°6K ‹wÍ14/7‘ÆQÈ—|ºþ Ó5/f(Ìó+Ÿ¡Äˆ93Îe¼RäBháÇ.K>=ø'Ò8 ™M…ãÐ Z oÓ˜P¸i±¡$|¨XQm˜%>7±õ…ㄨpZ=í| Ë®(M+ G7t!׆MÏë³Kyj#“‡‘£(ß$3#§°ìs'BÃH'ž“W¶tœƒ*=& «`odñ8´b̨MID’C&†Ä ˆÍÇ$Z—:[³ÈãÊ"çö¯ÐIf±Ý¯—LÎŽÿl™àâg¿õÌÓC­[á×›ƒ—–3%Z ÏÆŽÄJ§H×JnÐXîyO¶^ØYNÀl¶)G Ùê"QKJ…,ó‘p×fðA–Èà³6~Ižöe Ý6st¶ß}”¬)çNuŽûÉE²±£çGŠU„ª ¸[i‡ðÆDä=as×nH ¤)rdǨÍý¹ p;Ú©­È~LÌmÙ÷y9¯Ñ;4bpW c øi’zÕ@(ÿ6ûò/g ~»ÃzF³8qÞÂ…;ÖMnŸö¸ZQ †Ò˜)ØjS%¼é$„AI?†d¥êšhpsEˆí“Ëëí }Ìç䜬^QJM×pTã¾*4 ´l]Ö@È^Üà—·óN$BFŠò³<"¤ùɹòàä¿èÜ nñÕ+@‹’(Û2‡Æe¥Ð+V°Rd‰é‡ÈÆ$E‰“XˆÓÂPÂòvÍåÙj:Ÿä¸Óƒy½ì({IŠãÈ€Ó–/ònð)ñkì²K/ '§© %^þÄ:ýÁƒïgØeŒWíFFS¤­ÅYdµf:Øüôyï÷3ÞÃîpŽÚϸñ|ï5"ûŸ·(Ĺ„yL½o‡iXwfqêâ(…þ$£vG4tmÓtŽÙé'Égñåpbÿ%RóÌÕMÓ[™A¼"<Ä Ý83Ü0LÅW‹Ьª—Щ¨ä#åÒU?¢Í~×pp1x›*Œmã{ÁƇS.Tu’3ý0ÑÉŠ&ÿX6.¢€g³žl8õq*õÆÍ‘92!Z?¸:mÖßy±Üé"]â¨Qã<ìe}Lãql‡Ù`;+’ã4šøÙKl#‚2¬ÆÛ<âètßJâpÀ…X‘ØõŸ¹À mÂh‡‘ÓYƒØkc¹2*ÃàäÓk“Œ55‡›EÝûSË×Å´uõp8à_´¨{?âíY §yçtn&ˆ7¯Òq>qTxŽê4³L—ŽT±1.xë3…TQ4”D¤…ÆÛOH¦¤‹™‘ÅÓÃrå…á¾­…ugp+âç}ôÃè×_½Âé(­K–%Ñå8Ñ{Áû]÷š Šµ ¢ãÙ³]Ÿ#:4L‡®½ 9¨Ó^bÛÝSŒ]Ò?,ÆÞ·. RòçM Þˆ(nÉ»4Æ¥šgë¼wZ¢ÝÞg [Ð>°JyÛ*ÊêŠrÅ>Ü›°Ü¹LðâÚ-suûg‡$?p«ÉMž²"4ŒÜXœ!2rþ1‚¬äè%Z6M]éäœÚs;îÐŽöÁqnü»6I|u9´xP|æâ!l¤GÒØóNwgZèC:ÔEÞçrS{&›å¦DÓP6»‘ås„àœ°–ñY|׸TÅßÒùÄ=bܧ%§~å¸+Æ ¾8QÞÛ˜ÇvîbÌÊì¿AJlÅ/ªm–=¯7öó~NŸ÷§•Ò¹¬í˧•h>ŸzZ©sUÙÚ³¸‹‰Tú@±7?ÄѨΠÕ[QüwW¯WËZ©ÞÀla¢_ÇÕ4°ÒÖÿ­“»˜&éy¢c­ˆ¿GîB#YŠôøt<Ž) ’¶kIÌ7èßóSäy)~Pk zgãæ|‘Ãë²7Aûw¿I­ØÚã,f.^-[#D‰‡3h²ºNŸEöNþʽº4’Š¢ó×¥è€'é!úÝoÕÙÛnê©Çâa·R) |ƒ¶eÂK¼EŸFÑUÛϸôqÔ\ˆ6êüÀÆÄGÎ{º>® XÁªåNÏ®AaÏç‹Û€õtÕ/*¯”>‹¤°˜¿gÇ0 Ì•L¯êÏÜgaKU}Ê…–àèŸGê–@Ë­ÿ2J5%3/{›T.ù,As…%nŠÍÂ’"éòja ÎiRÞòRbêlÇÄõ_U.+,ê+s[¸Jº?ï‘6~d¯TTüÜS‘+ äøãfa3m¤¯`ýœoè*61¹1Æ®îð‚xDË5yã±é •p T9<͵‚B>TÉÙ7(ŸV3»ã*§÷Á ¨¦ª¹s¶PÌ,€ZE¼žKÈ$í¼üÊc™Ð•¬ýìiOå2o<Á{ä3|€Æ¨C´†q\zG­z¾MÔ¬¯#ätl s9—B°´Ò—sùŸ¯ÀUÐFFõ\ÀPeaw²’ˆË\+0¿, ,ÏþꞪ1C¢ËM>£ÙõãÕ\gº*Øâ ©s)}µçÿúò-1Šñ.qYe³gvª²t Àu‘> p›âŸÜä ;¥‹ëæ¼Øp­} D¾À-ÕÂÂ$.ñ}¸ìvðú«Ì|:Çå‚ÁékÔ5\ø=n¦6êåR-Cg·,áœiQ‡@Z:RòÅ‘|¤+iòKà½Æ%ÔQ¯Pˆ~Œ¸ìó®ômÆÇ dàw#ur›ÍÃczÅã'­É…c“»)D˜´­‰f‡Ø–› Oܺ±w"ØújºÑMä»ÚÓE²Z¬à;à'JÁ ºXìà$Äî®hХɂ£_s‰ž7'Ï9iYáú·°ÜíæÝÈî+ ¦C•ÛÃuŒK—Áµª™¡Óß 2ÝJ@ÿöÚ½Z’ÿ õ·~0›¸æ‘;Då¸mä“x‹o yÐÛ®_ù–ŠJÖÖ oœø:8ÍßhFH©ÉÎŽÅl†5˜ÀŸ«n®"߉Wx¾ôHÏUz›bÁü¾K¢NÏ])¹ÆÓQžÌ(pÊ}œm8çC5¶SƒºÐ\l¢Àµ{Ôí!r.Z_¡½ÓE ^Õ kgVËŽÕíÔ®€"‰Û]·<®ùN&ÅÆY´q¢›j¦ÅùÕ'Ç¥©'~ÞäX·²&áIËR?II}úÓ~329àÃû¿cù¿Ú{p/çZ1îïãC°žE9'︺S?@Ø+óè—»«DÔ‹VzíÖd„üwmcÕFü©½Ž l‰þDö,}'ï¬+×FƦ`õÅ9xã8LóÌšïáê‘`5ÑÒÒhL³ˆ„.ÆÀ°ÁP­9ÇxÜüÞž–×(‘¾•µÒp¥‰Ý~¾g)³ï‚‘#š¸Ã Ú¤²¦s ¤j|d;ígö”ÁØ·áý)±ÞRŸµá@‘>gͰâab))"½½Ìãã¸Ú®’ Ò_xZ³Ží°™×]p•,¶e¬Ã!Þ0p5-SÒíÇWx^ZRkâÇÁŒ€Fçç/ðÂ&úØ$5¾Íb:å"nU{ª[ÓÍóm \—_ÐÍ1ñùs€ × ¾•IâÕ?«UBá˨ÒÄc4á;a~6É‹1¾»`< 0;fMCãðúÜO¯ÌxŒìñïj|3bÌ¢¹:¦ïC’ƆCuÍ@çàŠÀ8ævÎ#! ø;ÝR› ±ò”¢X“V¼y}×ò¼ñ.WNß–Ïl¸¶ÿ޳ÌëMlï¬ÙÎíBT¡tìF<ˆØ-¡N˜æmáѤ­7GGEþç¯õ5Æú~9Tû% põ\ó@ç%®˜æ"æÃ¼ÿú°Ø_#k%ÒTyI> rˆ+7"ìqøÍõ96ÝäãOÜú >-·—KUD"›ù>€÷eŠ¡ 8³™“@EÓ}úA´ÇÄât)’¯Hý©2läèkt–O¼óóÇ0\Fƒ3ó`§qˆè !’Íç#Åá5÷/ñÎ>Ž+¦0nŒM·2Ê‚}|ÑBÃáÌ$­‹¼"6ý5Àr%ô,Ö?»Yjõª¡0… V\Æ<ÆÞC“é°f£>PÖÂÁáÔ'ôß•Í~¸ÛʯzÈè+ 4Ãׯ¸â4Å1×Ì ÷ùÿÏ š5 uø<Í߬ÍÕ-f剡¥œÖHÌ×¹£/e³½ÛÏe½Ïí,¿¶ç³†ä@hâoµè7û½M-ŸÕÁX_r µ…éñßLÔч´³:R:´Á½ •6Н9jEêˆ#å´ýå3 š Œ ý[Ö%6Aü§¬“£­¹ËFº€¡ñ¥ž¢Ð^ôs¼z¬9í‚Ý^QOûeÃA¼…ÎQU!É]´Nó¼èÇw÷'w]ê„ÆŽNJÁ†ë%ù¸lÍ0·W‹¾„LôKÆè¹»ÝŒ )“Ÿo‡·ó˜BÝUjRÎÛ÷«éý)ቓTv¹ äµaèÆFHÇ…Žñ¯Ýž] D~*¯¢Úƒ0n¤XÍ©"å!86nrÀ†£«—¨Ó»ws¯Uìkæûý ,/6&¿Ò$lü0é)!×óâ·hÉñ_Z‚uxnr.w‹í剸óEÇß/þxÿÚendstream endobj 561 0 obj << /Filter /FlateDecode /Length 6123 >> stream xœÅ\K“ÜFr¾ó/¬×1G´ƒ ¡žäð’µ+y½Z/E‡” g8„Ø=Ím´8šýá{v>ª€ÊÐ3œa„ƒbÐ…zdee~ùª¿]T¥º¨ð_øÿíþYuqýìoϽ½ÿ½Ý_|óêÙW/}oʶjÕÅ«wÏøuѨ‹ÚÕekÜÅ«ý³Bo^ým+Ú]º¶…ö¯.Ÿ½.†_7UY9S«ª-ŽŸ6º)+åÛâªßíº›ä··›-þáZÛ4ÅÕæ_ývíÓ®+[ߪØõ×›­µ¶¬*S¼x³Ùj˜˜5 ¾¥ŽÕø¦8»S¸Ùl1eëÚâ2R´<]Á/­Õªç~H¾·EŸÌ9ÌQ’J›Ò·5ϱxÉ’ÔÜ¥KíÝÅÖ¸²ñ^Ê6ºÅ àjŒ·Å{Ú[\YÑ øì€~ð|Þ;WÒ/OoRz‡¶StÂ÷ðËá>Ã’¬/Nï“ï¯B›Z Rõƒ V7ÄvðýáæÒꢋu±ïvï6Ó–¦|°°ï‚Ö81ãÃ$q‘b.Ýi¥8 û~°éU¹Ù:Ó”mÓ¯ÞûÁ”ÓÉ Ï¡·ZCoªèWÙã†>u0•SÏËâ÷w)C×ķʔζúâÕ>{õ/¯‹.0§©ÝØgm½™3™ 2NùŒ½Â ‚¯ZÝÔŽØy±²:’Žw÷°Û‰ ‹Oâ§ËÐ5ðÔœ®Ø·>Ï7fý̈½ë‡·lñ<ö¨‹wI/Ä28…¦âT¦›²ïâúuËŒoø¤ßÒ>TÆÉqv»0PåBs³0 AÊ †éKã—¦x¿¶Ðn ÿYò6×¥…í‰ÛüÌXÛv~¤”vîcJëÌn‰wêˆm+:ãa©ÐÝUxY×¢y¼ñ× QÕC7§ð1|pZ[ K²Z炨N’µe]»(ŽÅòX€YxüÐ]óHXÖÆ‘„ʰUiªzÔ)á¥?¬G´í=iÁ~QeȺ¦;¾MWßó u‹ Hjex«üÀFÔ uðiR¶ëw]*[wqS€Ø©@8öZ3#8}à‹oût¤A)XØFÁ²ê*;;óÍòÚ{]™Ä€~ÚFÁû>¨×Jß»¹0CUÖJ]lIX[Ýd“›vùÅ‘ ç´˜ o[W“€ªq²uñ£`ÉÓÈÏgŽBóÊ?ß¾|ñãÏ”î ɆîD»úÝ«g}V•Ž`ÈqµÔ‹¨EÔgõ…¯áÀÖ]^ïO§Ã×_}…#–/·%\´0çÇÃ/WoOåáxýÕÇî-²ï¿ ¿?–»J&ôÙøÉU¶¬—3AåPæ7żܭíhs¾ßLdŠ”õûUeˆ¡!’"å×á£î~ "»ÂãI¿Ô–4.}`lÖ©àäp22š–Š™F#n„l霯`§•R“.lü P£áÝ¥uÊø{èÇgüefËäCÓXdV<øèØ‹aFÒÕ UŒ‘¨zIKT¯¥²¹ŒóñRŒ¶lÀ“Èú$h›@Á'ðž À4¾¶¤î~Jº:‡S/t?*8«*&ÿîúpìqͶ^Kd±ÇyW- ?9?Ò%J«âSH¥s{Oë¤çø!Ùã_îÜÑ)J.MjfëÍœx8€µ£Þãž²©ÒШƒSJ¡…-¹Hç±3”Ðíî†~¤Ža†ÀÉ€¸ËEÚ8ØU€Íø‡˜ù~ZïVò¯Ð$ááÆu˜»/=LYÕgÀ úDN''-H{1“þL*a5÷Ь6½6:ÑšQÕ3H(ÍÎŒEó‰ uhÝÊ”êŒÉ¶ãþÅÁ/™—IäºcM§­DyÝ­06ñ ’h®›Òðˆpà@âhTžˆFà¨ÝÅÞuàCCH>l_”ЉýH- ËS¤°÷aGd…ï†Ð¸±ÅïSq/lø~x/e€0,â`$|éY-Ø ÚõÒ, ?âæ!mÀ4y)öõ“Û·q `©MäÑÑfÙ¡á1Åw ÍÆ£|ŸaȆùþ^eÆ›,m6î¡©ÈîcoñL›F!¾/¤a>r ïÎ>ŠR;í³ ÄFËIaºaŒ\dvãº\àÙ,ÅÖ®•vךÙ:…æ.•®ÐWåΡ½eŒej€üÐÈçÌÂXßH@¶  ”|:Uv p²ÛÀŸª•I'ˆ÷ÓlM[Z@‰i¿cÒógwéU©ÁF4$\N̤ˆ/AÑ ?Ñӷ϶ªö“CÿwÊ9aÓ\&{vÏv†N±ƒ;ÿaÓ À wÌËIÀ*ôVx”É®øcw<±»ÈÆš –®—Gvü¤)^Fàã]æ8ž¡àÆêœ’[ƒNN8¢/n!{¹*AÜ=% ( håZ_ªú˱¤€ ŒýjPXO`IcÑè´i—È’h<)tÞøâ{†©•ÑkN¢`£V¹˜¶C@ÎU•AãŠë£Ð9`–Ò/hé•­}¢²ƒlwSsÃäÈ.†Sǰð”§Å¥ÆøëbÊo“Lf(/"xÓj¢Æ»ä=9¿@¤/é«ÌK_£•óxãË´Štþ\e„®¥ÊÀÅ   UÝÇtB»«°LϘ—&Œ€.›Wæd•K4C˜{¡M° f”›ñ˜ºø§UÕ&äaî Æýo  —š¹—¨Ìû€ Ò-–8|ÐeÍ|óñ}cföÄÔiŸ´Ê,¥ëñ°}Ø®AC I0`wr¯²5kƒd4çƒÔȃ©ò;I€!üT‘[ž=¹Su†{¨U…ÇcdÍí %S.O°'°ñì‰ã¹vöX;Å£‡Îe”¨×ibðÈiÙn©M´½«ñ˜b ð3̯23^™d67^y–s^`âëÌ6cœdÁÛðÐä¿t‘¢K}iÈiJ“møCX)29 @!@tê3"ßCè ulIãóA=oÇOÕB´4ôLr •$‘¸U“œ¾ðŽð-,,#Ç¡~Xe•ËÐ…”“±¯r¤Ñ»05º·#–ž‡YUÅ^«¸’fî×Ú-@Ÿz{º]ÿw±W Žt!QŸ§ã2 R­T{è«¿œ@iØ&ü ŽìùmB‡“®ÈÃþ?¼O4‹! h.ÚPšÊâŸhû±BÕê)‚ÙpÒî³ÿÛ%üÍŒþf´jOÇ®Xu—/—a-è€fúëÄv?1g5u@—Óè9§oÍÂk’Téœg €Ì8¯Î› ‹CÂvÜF+‹9CŽ„Í,ÇzS÷j=雘û œ5”àƒ=PÈkÔ\ý?¿%f4lz¶vŠ£!NÄa(Äî6 åF“Ôáé¨þb˜f&°Ë1L 6¦‹mÐöI½*L®ºøp#$H .ß>] ù‘Ô‘¥»GÏc#`9޶3œ[ fx4®ÈáûÄ:—¡‘cÙNÏVgÇ{94L° ó©¤êK‡{“ìþÙ„ÐÞ“/fâ¥! 'å$y5Ïb’(±˜ï’)HsXSÐ_ˆËQôqóŒܰ¦ø1OE 8ó¿Î&ª¨· Âá{ág²òvPf‰,A›#z&3ç‘‹¤øƒ f”s7%u±l Ñ3š‰\|_[D½]vÉt¸¸è+ëÛ›¬c–&õía¿ßD9¼fvJñ4÷„…ü{ÌÔ‹®ª!þÿöÀÒÓ£Ê>vD$SMÌ´.?ÜÍ7¹S%ÊJµp8òŽä›ö˜I$x,êêðc«cT'ôõNŽœvðlº Æ3 6ªÕlkhVä‹nÔ°OºÍ‘Q÷O¢_ ûSw˜DtšºžÄ0ßsnäÐJ™âO̤>‹~¦9Mê÷²'u ÒþçâåŸ~øy³”ÂH˜ÙWä¶ûFîÇn2—Ë‹œFä¦`r䈄3ŽqT‡dï—²ÅH5ã̹t17z\¾X fÌ^fÑQ±Ûoq‰Öž)‚˾Ê|ž¸N»€þB‚ùÃ&Ù Ú….UˆñáÌ–cn&5ZNAÌUâ¸wíÂÞ)âÑõŽÙÖ•ÀVyW‚É|ÛÝn8°sKžmØùÓ’û!$;âÇ …]öÑëðnêó°d\9–ܪÄNèç3”ñqU5 Ä~ÊÝÇ4d›é‡:[Þ†q¼-ö S¬~±[}â3ظHj²„Óþ´òé´ýïÃ0 E2É L˜ÕõŸfÉ8S»)ÿ¢OH”K³àž˜)´¶RoÉ4j–0Î27ä§—9€]:÷nPc«‡mVÎÞy§=çD¯»ŽÈ•OJ5£Éo§L&;Ô Í6Ä´jâ|¡ý€†ñ 6{eüÂ#…Ðr©ëÊäq3ÎÍç–H±ñóN²\\'HÉ.å)'º”óVˆ1l„GV7Q‘!Ž˜2¦2lÊ2Kx~ŸÜ£›†œ9„ÝñÐyI¤'ã ½[GtUÑ—ðþçbóôˆº6¶D¹k°Ó6$F\Œš4«aL[Sà÷ÿàü@W7Ö²íYµ¹O(´GCs{ˆªø^ø?÷¢Y$”Ǥ÷¤hvƒA•.´ø×/Ìn5(0ûú–‡nŠ˜Äu)ž­;û¤¦ª$ùL†c±Néñ™T.zåt '‡ˆŸfàÜ™˜Âx¼¿ P½°þ){¡¬¢œ~´Á¬ýb{¡0 @ôúºø³8Qw,®òsëP@°—¬y×wÃóiçÂK àóù¦p Žá¬†'Ð Y_WÍ—¦“nmÙ4z™P¡péL2D Ôy!aÌüÀ!gž%Xý‚Yc±0ȵE‹`;Vä Çç!(£@ö;ý94(å ;ùðãL«á¡ö±ŒŠžëu}?ô× .ÝÉ{­Žîr_ìÍU-Ó«ÉKxN½o¶Ñmb)ØcHF ÏX‘*¢ðKã œjý!·DðL;fþÔ]¦–EkQ0s­R›¹©$,ŒÜ>4+«Ì< ô×hbÆ_bŽÈtÉ$܆¥“ëGgôökƒÔ~mó‹¡gÇ%wE8høP@5º„µ^ (²¤£‹]zŠXZ©t /’V¦á|øiêõ‰yŽÚ´¥jꔘå¨}MÆü9%ûÄ•x_6N-mÄ$2‰‹ÜªÂéòþs÷÷4°Ô§y­OQæT5_xï0«Æ§+FMP=%!°©Jë[¹w%&ÕsYé_n¥¦rÌÄÕÖ×/¤Ñ{›%ů¥ô k8/j­ÿUwËTtÛ–³ýnä$é1£OkÃ~ð°ë~æZ ŸÀ¡ì|Æìˆ„0à–é§O²¶à–!}Ei ؃iæ«Òœ-²~¼3±Â¯"##§ÔÍr̵Qeé[«Šó2.77 ­Mü|P ‘2>ëTÖ c‡Èl÷EJFŠp" NÞ¥;0ç«jVŸÊÅ8ÛõuR]‰i–üÅ2%pŸãm¸þaø]B–2 Ÿ3„}óôBø}Ñ#Ö‚Zš3Áµ{+˜h>†’SÆ›U’R+þŽ 38Vd«Œ«Ë%Êo"­¼ËAMzâ¦Ê麆ŸÖÚg9¡_V XNòÚºÒW\½gž …t´`f+ËßÑÇÄøñ2ÓÛmEé@k¹¾!ºè±f¥ã¤iuUÄ4X•™$c^¿£¹ %üNrÖ’à -g?/Þq§ÝCÐR’mÚbZÈãJeè[¼Þãþ+‹¨©çªZ½YÊCVDëä²…n¼õ'³¨0_1ÂùÿdW—ðXaŸÈ­ -&Åìz)ùpâÜAØAÇ>Š&5OU1^”£ &é:ºUSöz,Ìlø*8®âçça! #Üذ/áqÌÔLÐ5ì\éøsáeÅÄ™º™Ó¸¾…òùvÕØÕܘàßT¨HàÙ? ÚÝ¥k *L•7‘AH¤;åuVIÅúZ¶Æ ñd*k·ƒ ÐðÎáµÐcSgvÌz2XȰ ëýò´ø5Oæx½–^EËg~3J¬£¤ o£ÐcjNÕÕÔô 0ÁÔ¶;„vŽoíáçF~ó¤›QTiFª=ºÑQÒ-F„Æ•…«}Û®¦r¶³nGjdíãRà`T±Û…Ç63‹sÕ…YÀ3_)“â ÝÅOS{ÏâK®#Hr|¸â ç«°¾d<º»nälZµ¥²!`qXº^NÃT aôNqQ‡¦Œ:éÏ©b9¸dZ7+ÕŒ´éZRºY‡– û?­C´"ïõj6Áý ¯ˆx¿Ž`ãtÙî²U©ðžWaw­”¥BÉ—|‡Ú JuT–!ì§P±já %e°™£B !×>¸ˆ\Š×Îót±nk\vÍUê©pŸŒã”MÎSmæWBõ±Q›iâ±±B½›ñ†.%ά7éŠGÒXïA)ž¨J¦7®L\ª YC‰`›¼l†-œôb€ãÊÓ×£ÿo%?¼a©®efÆZÅÍÈ;K'€Ìý˜´ãåB~0ÕuÍ·MåÕåø~éþàé{´¦jCšh Š·¡E;W7ºf÷%&܉DÙ¹£·æ[«¯rX'„?µòtÛtþÈÜß°¢…’š#-°Qk3»|wÑF½=sÒÑ¡Z[íRǑ󻋕Fù,ÛáA5›ÓïhÂZ“±àŒÝ‹V‹×¼®yr ×ø²3™wi ÄœWʆcë—å…û-)/2…Bû¸Øp5‰YŽHÆYL÷n?Ž Èþ.¹nºû­œÂù}ö‘ƒÙ0endstream endobj 562 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8652 >> stream xœµzXT×Ööæ»rÔœÁ{/Q“E]Q»H‘"½W¡ ³f†ÞëÀPÁÞ{‰‰“X"j‚šbI¼1ûÍ¿@cn¼¹÷»ÿxxž9œsö^k½ë]ïZ{D”I7J$™­Xiãëíè3eò·`/ÇáêH~°ˆÒGìŒu¿)ÛâL¡—z™œ2Ჿ±?2öEkúQb‘h½»ÿ_¿ð€nîA–S'Ož6aù;ÛÒ)ÜrþDËeŽÎž¾¡ž;,}¶[.›¸r¢å*ßPrq‡åh_K'wG/WK_W˵.,íl?¶±µ\lcm·ÚvÌÄ?íëõŠ¢Ö[ùl˜ï»qߦ…þ, \´$xiȲPÇåaN+ÂWFl_åbíºÚm»Í[µžv^ë¼×OþqÊÔiÓgôoæ¬a³ßÿàב£úž;¦½uÜñïLNü~Ò`Ž¢†QÖÔlj8µšzŸA­¡> Þ¥l¨‘”-5ŠZK¦ì¨1Ô:j,µžGm æSã©Ôjµ‰ZHM¤6SS“¨EÔdj15…ZBM¥–RÓ¨eÔtj95ƒZA½G­¤fR«¨YTêeF±ÔJJ ¤B)sJFYPbj5˜BݦhŠ¡vPÝ)KªuŸºDõ¢¼©Þ”Õ‡ò¥úRŸQýD=D=© $†” N½Õuû°[±x„¸Ðd¤I¬É SGÓ;’e’‹t8Ó‡qî.ê¾½ûþc{”ö\ÝóÛ^©½×÷¾ßǪÏW}gõ½Öo\¿ƒýgõ/ïÌÍn³—¤IûI¯œ0ð;óÕæçe²V K‹ôAVƒÅƒ£† â:¤å€w.qÙòòK‰¥ÎòâÐíC‹†òÃtÃ=‡7˜1"ãÝïÆŽ<²uÔŒQŸŽî5ºptÓè‹£5æÐØq6¨¶O[ÑF#¿5TÔæ8ÐN[CTº¢{µ™Ês“Ó#!TÊÄ(ìÜþƒ,|ƒóN;5ãEÿ¬C´ÊÔHo 0Tè4Y­ü 27E 9'h’´JH²ð¶?΋®×]ƒ=Àà(SŠƒ%ÈÝ2íó?ÝÆé(0ò¦F…Þ u»Š\®š³Õ|Í@#½@½‹A¶4<£W}T¡Gɘ[|W2¿ÐìU c¤ÝUóÁð@Ì«˜>Šžh6Êð,œê½u$7!±®NA½Š¬°UQ E©KIÏFë MÅñÚ$]¨, &8ÂAðuî†àAâ´3vÄièŠ5ͼ}2ÿ¹9{ MŽ–Ká›Ù_bqÎ“â«—á æ›Iwñ@®½›W¹ä¦Vá&o/§Ý’q^ü „,¶~/ÇýÐ=éòM3±˜Ãï"µ¤V›~ˆCý$ìÍ'uï­“—ãéÂõ³Gp¸¿dKrz­U Õ4kò¬yây^¥0ð“õ¢ª´«EÌ{")0ê%îûÅ"ÜKÿ6uG½zŠXnV†ÜÀ.x[°ý6ŸàÛJýì‡ Pp²|åÁC¥{a?ì ®p¨p€5༺÷@ÜÒf)5Ò^ÉÎj?À4q0ÝTªPF')åx6.ÅKÑá„,ÐBªE©!åg¤ÝH0¶w£ˆþ 2þÈÿ Ãë_¹BR¯»N–o„ë$Œ1ˆþH•Õ(Gv4²CŸ6\8—RÄë×gQÁƶ FÑé¼ß.qÛ%Í‚ôh(cÕ\<n9‹€Y…7ìFÇÐq´~÷$jŒG–ȵQ Ê¦t¥rKBº") bâ¹V®õŽŽ lgàiØ;£÷ð´ Í|Šäˆ‘w¦^gDãõ¼…1Ê`öò**h1gûñEÈKŠØ±Ï°ÉÇmÁ¡Üš}‚GIq=]¹MÞîþî&:dú{R|HgÒ©‘Ív_ƒzþí)’Êg Ľ?žiåìRÒäÇE•‚JH³ŽU©>6øÆ…iØT؉ó vó'à5bþ *‘Hâ±.KlÝ |+ƒå5þUÊÏ£ö†>énä‚AÜçÌt;s?ŒSåªSb‰†„p9–ѪÑsZ-h‹Š÷;P—’< ~ú9Á…¸ß!B*(ÊÈ¿ÛÁ+﵊ÛQ"A!îCŠÎ{àFŠN ýP§p•/§± fã|—áMu³±öü¯¦àQ%Ü_ð‹gÝÉÑ«ð{x*vÄŽh:ž†lnÜ©8·[ž¼×9˜LÈÈ—£ùtcJê'$†¢„o)…}ŠâhE¨Ùß®’"ü ÝGý¤gÖÒVÞ.®KàQ!‡Œh¸*íô‰z¶·å˜$&˜f÷qµ÷ý.¦þzÕõË\§¼¸hD»;ÁœØé0ÐH$ Š/§ëµÙ7¹r£Ä]eEJ§ ÌwãUNw Gãã(ú¯ïù$uº/H¡Ü_BÁQ×(Çùo¿§“dz…ñ°í3z5¿Ö"Ë:´ÈÇñéGäÑì><ê÷4YDOß¼xþ̤CÇ9¶ºO³Mÿ½ª©r<–ž“ÑøÓû«.VsShâÕC^QÜV1z0ÐèO¨ê²^—}›«,ûص>ì°¬‚¾­ë²L¥øóv}›ì¹nwíšXV?É(*æ£Ä|*?‚'(ÙGÓ…ÒØ Î‚0ˆKNJR¼‹3dØÕ(s!À¢¢ŠHqÄ"•8k¼µD\‚e®‘,-J›˜ äÎÌ”,dŽnÉ2Ë ÷]ÑKо¥‚õ€LìI°ž1š5!“åÈä'B,y—ŽêŒ¥*G˜.ºõôSˆv—·o¡'m´]DZÔ°ÜÎ2ìˆã9»*ê}K|åìÂàQÛä,X]·nýùƵ/³9M)à»~5Ý”—¸ÎÚK ó¢¢6+q›m‡©ÁÄÔ`˜(˜Z¯Ö‡ƒ(!91z2ΔF5I9jAT6B ±t¸Ê|: m€‚ä¬èTe¶wzØ œ(JsÈŠ)¯î%^™HX> 9ªOd†•¥FéâhÓRó~Bõ²ŸqCŠB¸d‘ :ÁKÝÑײ¢£ÆÜ:â%¢‰ôFTðð°Þ¬æ&r¾zƒ$O4Ú*=`K¯ P*<’¤rh ÍÐèÖ°½qcÁf`f/Ú²Ô»$¢¢ª¨¤"'±v«F^Yw$»˜#g¶O•»ÒT«VxÏÛ°¶1¬âý'—®Ü{¨˜cç;§T:\z!ïk9þà˜”ÕŒ_°Ã~“SÝÑSÍ-hvq¡¸ûù7à×D`m!)Þûq$úN†– «ŒŒǾô®¿ÊüˆN³…Dò¦ADÆÆÆ'à+ø¸ ]ÿLÅ4bP7´—¦ÅeFCŒ…÷v¢…{­Káö6ÛQ0Áh–ÃkÌYŸK¶Ì®¶ƒpmP5„¬d»öì9R^a¬oÊ?$¨nÿdoµ?xÃ:m´†l›µ,MΈŽD6¨\9G6ç§8A¦Y@~~f‰†asI¤)UlÑø °¸õ!ëgX*Ûb É[l6¯YäMZ£¦~PÉÈúó‚u ¹ùƒ@_]{áó¯FÉ2¹‘uqq;ýÔ «"5“ÒUB£zW²Å+V¹ÐŒÎé‘k3)¿K[–h·C]ÚmÌ3,™ã°%<’C×èNéÖA-íßèú‹ùAÍ¿‹WM#×dkû/;`XW{p+l rME r¢¡4Ù§Oe”è÷/w©pÒÙ€QЦĕ¡¡üÔ®’Œê ?áowÅ»QD¥/$ð“°“;EÓ.z7äýÀÕ%ìh•Ûdp¼ætE˜½ñ*¬HÒ%§õE÷@Ïo3šß#íÈŸùȨ.ˆ m]¬:91f$V˰铲’SHæU4@ñ?ðÑabPž;Û.’¬^ë»h9X°7I÷VdLÉÐCSVímßìvôRÓ™3åZÈÏ­¸tLS HvÑ¡Õ>nèxë‹ùi¨§4+T„•ÉœÏÄe1®À¬›¶Í@3ï6ŸÈ¼¤v«“;©”ÞÍø…VU”îúlnãG¸ÿ$Lá~xÀ³Ñ»ƒjP¯,!©2¯’ʲ åW¡Ø¯Å¿‰ßR×ð‰?€:!û¶Ÿ—aoþLœ^E,±Às^K!í[F²«»uôú8T)çë54RþŸn©Ñ©¿Ù ËHÉFê¶Þ2MûuÉ«DkÐ}ÖÑÂ| Be,?€ôe|w1ÿ.²&‘ŽÃ=B¶a†è˜dä{efw^n<„sø‘ê3ˆTOû¹¸u# E"Á5í½ã ‰Qé$<¨Eò{¥VÍ)í½` ì¼Ì°W(ÔãÄ}4ô'`Ù£q¤mXf¬KˬæòÇçMúŽ˜ò‘âçbdqL>ý,…91xèÐ9Á§=®fƒ—ƒ“_n˜&YnW‚MnŠ`P.²üú1ÇROÐ8CŽGà+ÒažIÁäþøƒùÕ¥µ'õŽk²å¯ç‚] óJŽßø‹ÑàLØf鯍ÑO’WsÎbZøO‡ƒÿl4ø?ÝîT®У。Öâ6¿o¥i­€¸â½…îá° âE}}G~ySíÚâ'å·.À-æG,¹‡GqøÓ70Íú¼}àô Õiˆ¦ ˆ"¬Û±Ç ¼` ,ç&†=æÖtJ¹kð­Â»UrÌO“. |æHõÌ‘@äèuYÚj(æ!2IÂï÷‰¤ç;Û«‰^šÝÿõ}ÂÏÄyK“R弘fÏ`KÁGŸd* ?ë_ÛßMWuɻլl-ÿ“´2¨Â{G¨o€_™ÿ®Ý%U®36¤gý؈æ/ÑûU¢Ó—?½ŒV\óIh•ž/½;³0ÊVæo?Iºìk'/ÜBèñ,û4N£evW›¶v4ª juLçnã]íÔ4•´xæ´¡³NÌ¿å'ÏN:s-¢2aWB•k©–x0 7.˜é37õÈ:nÍIÕeu½:+T¯ºí-ÝvºF›ÎèRjOw\vk%µ¬û§¨›¼“ðˆL)ø–ìpŒóãc¿.%®ù¹n”ò \r3S€%m7cybäúsù)%yPÉT„—øú†‡ú¯?í{æË‹—q쀶a&oséWˆÿW… uFQ½e´¢ ƒ¸ÍŠß æHÖ1ËC3òkÑ8(‚ ÈJ.M1); jçì%iÒý ÉÏ h"8q¦‡AÞnAU`ç¥dk+‰D"ç{äá¯e³ÀçþBÖ¼¼òå•Fb] ŸAï Áàr³h±L­ML#ª1åúù¬ŒKÇšµ¥‚|öQEƒ/Qý+µQ‚|.Vg) B£bˆêŠûÈø š­{{^‰t¨Ûë¼zA_>ush³-„[„E$…q’¸ªÕÕD·Åù‹ÆCS€Ù­/Œ¯‹vîùºhãç46öƒñ[p²áøþÿ¢ãèM㡈Áä­ˆ~ø’rºÈ„½ ºA×ÂŽZ-íj€>·4 Á-Ó¾¿ #°·Ú&î8*P‡´½Gºì¶Íâ6Ÿ×hÀAÖW—ú-¯R&+ñòö¶åµÊ¼Ž>»ú :†Ð‹„V¸ýA׺ í¿ÉÒÃRU¹PÚÔÔ<Èß—å5TV&ôÙb+»8é À#m'ÿ’#\¢¾±Ê¶ãœäëóœäÈÛÉðß$LñyJÂ?5ëfE¿š³~SvxÊ;ÙKí $¶ÄôOÕ%JU<ñÔØv'žÎG«S’ÓHŸ¾ë,Ttxj±à©>Âíì¬3P 9núeXÞn…g𠵎È0Ý[o>ñ%¤$渢-ím2]œ.6ò@›ž’‹fó©2ô~{ZçE‹Î« ; Ùò÷ŠÎìËj$½¯ Ö·Éô¢Æ”Ñ"æÐ )ÜI¼ãþÅÖg8‚5Ì÷wšè¹(q|óR¦4ÍÝ÷þÐ#p¾*ÝÿCÍÕÔ[p›™•#%°\¬X¾s¼·=l‡Õ†ðçá1œƒËp%ãd1êùe¦jáJxñè,[˜ +˜?ŠH$úÁ¬ªÅÿÉ×O¡ßÿwÄ$;€^JËCÊü¼Â‚Jƒ*E†2-ø§kÄ1† ÆË¡"ä÷…˜Ÿ9ÐèIOQe7Èù³t9hƒ¸•˧§Ð&—3W0íù$,1S8OA¼}{ÉÏ7ã*ò¦›On¢E¿üd4;úËÓ_à‘9ûo‡æ“Ö$Ñ;a[ì΄ø¥„¤¼DòòšŒ¸ó'á¹’L¹ƒû`S«ISm‚®°.§©"¼Â=>Ô*®ì““ gy´ïýÙröø`ã‡kWâµØC¦ú–@†§%Bh«®“¦mDêñÓEƒM|LBBzÁ­h®5¼ônåÙk$€w§7r®õ\}Xµ±D_}t ìäŒG®äÖÓt*xJLòÿmrïÍ;Têxu`rÄ«ÔË(Ò¡Û/¹Û°x ²Èg›Ã¼ÂsîòºD£ö0õ~%>žQÛ&·‰PŸG~îô*d䃉[O\ŽÍfK£øÍĉi‘q*at‹Ï·ï0õBÅÓ-lÅ…Õà8QÍp¢£téïoè…F)VIŠïnÚa+êöt\ Ú¨Gæ-?õ­ ÑëBÍŽ> i}ï’¶š³úŸo•¢ž³Ÿcj³C¤»‡ÖÓ,Sª,©M¨Œú^{”›¦JM³Ý) Å5Q·)t ‘{Ý(gØš¾¥4^—$ÌÊÙ=£c!>RŽÐៗ®Õ¥¥pÙ '¿†ã`Øš^àªÝNÐêÖŽÛ]ý·Z²9qŽaçÍSëtêìÁµ…†òòƒG”{ÂV9[*›qu,2AÌÏ?"–øÈ‹¿ÿR„VèÑ<½9ñ¤ç8¸‡ûùûúÕ—äe¥=¡ÕjÈV@•ä™°`ÅJyL ‰»ŠIHMJÍnù õàкÿÉcžä‡•µ<Úk0k~ˆ¬ú>4gÛ f¤ˆú#/vݰ9”+§‰lëW¬¼Y¹CÏít{¯òú‚]™ç·ž…àÁ¤ÛõÇ%ˆYøœ=…Ä?|dò))l†nÞÖ[‰ÂXÞç•ùá‡à1·jž?,8+\‘+l€MBâj}p³†`e!mx›LŠ“$¸$ç&3ìD´„® óRnNzÚ-È%ŠÇY‚MðÔ)x°–û±`ð ÈâŽÑpJw*ãdJYÞƒýÑ`d#ËfŸ¥L‡Åm} ¢æ£¥G‘ê¨J¡^qÀ¥9¬42kùÞÏŽ‡+Ìã©g&zßjb¸Ö¾y —Ó`ˆXã3ÃF3C^ò 2ý¡åWn¡ÐØlßlíŽûÝ‘mÝ•´ ™ Ÿ4_¿qyý®´]*µš·~öŒ[ÎÖ\¾ˆC}çT…ò†UÂØ&ø<ůAuÄàùmS¥Ú’ˆüP…ˆÚP=Y…õ@ð–Ë&Ô?¾WvÉÑÃ!t¥Q?ºç'ˆ=w¥HéϦ®ÝnïÀ9Ù9Â<÷ÿv 2¹ÐÔ|¶Œó¤qôð­k"ì´»ý¸ýÕ…ÆÀüàHï¸íKN:ÝGRÒù AžòI¥³vŒ%-§¹"¶‚×¥ð8 B58TÚPytOnÑlµ; í–¡r‘‚ïlCôÉóŸ}E {0²eáJ«µCÓÔMå&µßêïvÓï®xvÿܾÚîªõ¹ÈÃð\:£}@2Jõár{°ƒõÇ<÷<±÷³ƒ·¯”Öµj˜önhµ”½§€¥ïOô÷»£: FæÞÞšºó0¸òöér›• ¾ÀÌ zròëÝõ'Ëõ[ò½÷­,ö­_ßàÊtF“Ÿ.DS ¶ÿœ×zä^"»PÑç¹–·•VDTº…FÅ*•œ:9Y-¼ 9/¥&ýóKå9B–ë˜ôÄ”DŬ¹¸‡u¹ý¾º¢Ê ÿ“Ç: qxÈo;CEÏΊÑ=œ %M…6¢÷Gfžh   €æïAóQ_Ô?·ë=I:eì”Ř]ÍmÀÝb°˜¨Ö9Ù¸÷)lz÷}°, ˜´]ºÐªÝ$-ÔËŸCСG›}¦7;ý¸ô妗6Ý D'Pü4þSéYç›x ¦V.^ƱCæí(‹*NN8BgDô‚êw!)éKTÿ’y<†lœ÷ÏÎ!{PÂAd#õ'‘¬©OàÛÿmù÷ú(K ‰š›)dO :´BNüÿ>Ñ¢Þ8Òš7ïÏ´ÿp¨Åö¤†ò¢ÿ «¬ AWö¢+¡"Þt¯0AÕIKÂZp ª•äAqh(„‘Oµ¸–Ž ƒÐPÒ§Éù$‰‚°’(ÎãP-ª¡óŠ¡DþÆw×ÛZ/|¹½{ˆj?Õ1ïì+Å46‹‹T Ie‘¬N†(aŽL%lû³{/îª *ᜒ•¾ÉxTD—•ì:·¶Ùj"8,ùãðU¬CâßÛ±›h*}0=ÚIŽËþЭ¾Q0Dh)a†méåÀ&çW “Ÿ—–•Íi?ô]µm‹R©VCR­äܾhîM³’ý f¹£ž¼aÔßi7e¨5IZ Ï<'P3 ‹l‡ËÿÕvÝþð?S~ž{Îè÷ÝW¿àØí™P UqqI‘±àá; •a®´£õYQ6*£jd-=‹‹ÖИ(C/>I˜:eHõíIÁô«"ÛY$O¼5‹ßh¶ZBÐêP³Ž±½9ûè¿ÔkÉTüDiQxQøN…B™Äá^xBa8úd¦gdCŽÐyv±ÊiÞ\Ì[·ùH³ã2QI±±*ÿ÷ù‰ÑHУȌËÎKÉÊÒqèûßæ§æB*t|+mqל¥êEHGWÄmL[_i½ûnÛÕÛ\’9ŸÛT?`Æcf=¦þe”\ÿÅ´Ÿ63tëáCÞ>íÇ1ÕÒHU¨0MRj*ãTÑ1 ¦ñdJ?¹ÛüÉ‘ª0àÞ˜q öq­^Ô4ò+n;ðFþlW ‹ïÌ‹ŽÌù˼™fã¼3œ ªs,ÙÌÜ$Ñÿ•ÿF‚ámƒ¥Û“ã‰ö Ή,Jdð@ÇôóoÏ•×%úVr}‚õü‚B䓦—{\íÉõ0Y»v[¯îЫ§^£Š{ºV«»Ð«—¡I—¦MÓét©i)½zSÔÿl .'endstream endobj 563 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2286 >> stream xœU”yPwÇ{èn#"LÓ"(=c5à¹ÀÉF⢘ŒÁáP‘CŽaäæÁ#§ x (ã ØÄ¨¨I<6‰‘5Z&k‘h6É’¸IÊ}m~Öº ©MÕÖ¯êWõ{üÞ÷}¾ï=å4R(SBß KÞ¥KZ¸Àeòû±c!_iºBš1AòQ±<þìq¡3¸(ÁÅéÂŒ‰ñ*,vǨ)¸ÖR*[â’V%§v'ìŒO×,Z°`±¿¿|/×D4+4oêb“õi‰ ]R¬æÍ€·4ë’õr0Aã—œ¤‰Ž‹×½¿C“¼C³).R® [±!|NÀÿ‹úóEQ”jÅî´t]tÌ‚…‹/yqé²—–ϧ¨g©pjA­¤VQ«)wJEq”ÅSS)OjåEySn'—K9QéÔME–âã á>S¾®<¬uJtæãh'º™ÄT±îì:<áúT—Bˆ¾¢ô®^ñø³©â\†T?v.8’{À+öHÙ“Ÿ§sLEÀfjiœhqÀE8eòXõꊺ³8Ù[鉯ó ZÚnùú ¾…nKnc1O²h¤±ÓÙõ©âNÓX¾‰Ú!Õ#¤]³ÑÕ“ó“ÖINüùˆŽ-Á1[CÓtf¸aòr‘³–¹b…X5¹²FË Êb‡k`“/ÁUÌÃèú²ö$Ewé;:ºZ{ùûË”±+Ñ&MïRÙ¿Àü/<¹,i1jxèÓwÇ‹íH¬z­~‡õÍZÙ+ßCó-{Ò¦J¡,§¬¤Øv¨lSßeš¡Ú°¯²b…Ôúøª`w‘ ž1-)-{Ô=ñvãí\›ñVl`ƒæCÆÌÔá¾|¡¤¡rMcºš(˜,(#zr£’ ÝøóÚH&$1-y#\k°Cv†øb¸–1Ï~ÛÏÏÄ|MŽÒšo2¾øràÒ°à*]4Úv‰¸þ8úÛTGq"Æ"íÉi¥³í|[ä ëÊ ÚXLdNæ„×}‹£º³Žvvµž>žÕd*ŽUu•Õ{«[¨N`V›ˆµÈ,–+˜‡n†Ï§ \Ðû°í7an©ƒv5Ù† Ϙ7?owdLw?R¸¨á¬Eæ?!ï[Êh“ ß4þºã%œiU—P¨BÁ‚ÏkPð䚤ÜÍki“¾pmnq1²e6³iÑq®oàËýŽô½kâÞÈ<÷72“Löká†Áœö®žCgÏés*„Žv{­ Ø‘3!AkâB‚WËÍAtyùP z/ÃK+è1X}]èèÀ¹Ž›ècw¨î¢ÚÕQèèãÉ AR¾ÁÃPÒ™Õùyëð%ao^‘Nzmí+Û;S쇻N]ލÝW&tëßß ìß-kßË3ÏçŒêèÒRs‰y¯¹t/YέÀPÎNõÓ¨€9‘Z˜õ\ê–Šãï¨OT> ½,wHìŒÒŧD.]¼Ài( ~øz8*Di«LüÒJÉ!¯DTŒŠs¥åÌÑÒÊäL³9'_ ¿<ù‹³{‰‚8i»å»ñ…÷ÍøÂÛ‰Q<¯:Wþ ÎÀçmЭK/Ã÷ŽEïûø¬'7(“߯#óê÷Ä/i³)Q+à4æXIméI¹©}ÿ·­¥µù&3ì+P‡el6n‡@ØÜœZ]h1—™€Í…‚l5` w¨¾¼b¿Upœ¹PÓ ì}XüÊJ˜M\ÒB+/éÔÜe[yG{¯÷ùíÒr¶®[zg©<’K~z€®Â¸<¼ŠnËlƒèvÄ¡D× F6DÇ£Æw˜L¸72äÖÕ²Í ÝÚg=Ð.^°},÷áA8ijKßYbH]lB[²ÃÑ~Ä~Ewu&™A–¿H*_­~¥w ~™vC®JýϯÑ[Mf”ó¾°ÂwKŠ£±HÈî‚a8È¢ûqèGš=&ª&S:Šî]²è®”†OãÉv:ÈìÊÜŠÌ sui «¥ã‰ÕY¤k¾¬¯¯(¯­ú šä ¯Ñ†Œ¬LCÆ<â´ŠLâÇ_„ªF±ò¯Â-ƒV±úÓÖº{q>¾1­¦Ê¡›ýÃ|‡äíP Ž\Áù#J¹þõ< µL|ûØ [g?\fY0@h¢~u^ÔÁÐ;Q²Qa°‚%“‘ŠD—|õ-N48ÌÃÛ© QIdî½iÙÕÉMp’½ñÀÚsïltˆÐúd¿Ì?;lN؇wîœïënÐ'°÷©LxÇk\E+º`ÃGÅmy^×£Ï˜Ž¯ùOëÈ^ò¬ßËÄ›?á”nÑzÃ.d0°²pCNžØíï®ì,ßÕRg9ÕìÉôc±±i©q!†¡RÞq ïaµ@|~æCSg-{n=ü îþû£¶Í{+„º÷`#$ŒQ †ÌßsôŠkR˜R²>Žá[²ks3Krs“)ÿ (ɇb/}cACkeý*Ašò{@eXå kA­´¡ßm­©¥Ågž$<ã´)Ùe"¸L:a±”••W”Y­'?vq«N×WÕZöË–Y\&SÔ✓ƒendstream endobj 564 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 565 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3985 >> stream xœW Tg¶®¶éª”¢YÄT#.8*ÆÄdâ˜LFA4.¸!n´ ,²ÚÍŽ(b³IÓ·ipAÁVP¢¥fÔ—Œ‰†—M41 1‰Y_náÏIæoÔ,Ï9sÞ©sšsºèúëÞo¹ßU0v…Bá:/p±~ÝÝŒ¨u±ÏMò]–°&ÙvgŒì©‡ŸQYõЧw¾ ”à`wf¸³Ù»†b®Â(Še ™þúÄÌäØè˜T¯ç'MšìëK?ÿæžéå7ÑkΚˆx}FJ|¬×]¤×œ‰½æë3è—±^cõ:¯ð¨˜5 k½ôk½–D-÷  Xä5kñ‚à…A™øßíO_2 3fºÎOïŸ8#) 9eVjÚìô5ëÃçEnˆœµ :fqlÐ’ø„u¾Æ›YÀŒd2£˜EÌhf13† b–0c™`f)3ŽYÆø1+Æ—™ÁLdB˜æYf&3‰y™ÍLfæ0/0/2ó˜@f>ãÈ81>´yŒ“Ê|¨Ð+þgÀò)_Pî´`®R©ZU¿²l-ÛǸ‡|oè:ð”ýûêA~ƒ:x8|?x¥£Âq‘“Ò)hÈ€!/ 93äÆ>luüuÀ$ô”äØ Eo¤«ôWŽ$öªrsÌ™à‘ ÈM"1}Ü·d™Œ:cFQ*d¯åþׂöF•Äå@•¦¤ª•*Ô³ñTMѲVËçÐíp ¬FžH˜©&óÙ»¸KEÏßÞ©]Ò[ï"‹/!ë&¼/Ÿr•fâîZÊ;Dé¿<|N4}Ç wÉ´<•–»T‘ri¦–Cg :Óƒgb'T òºtjgí–É"Ù;‡Þt²ØŽ¸0ÜvD‘VÜ%9£ ºz'£[zôq¶3½Þ8_ Ÿ.þ€Øï¸¿ûŸ—à¾;à2ZìsÔÞëëöÕÊcY1 ÏÕî ù;ÞT S™éú9SE2w¡+415W€ ÕÔ“Ô°:7!;-146O¼ñN`…i†Zhm],\ÞQ6tÈ‚U±¾ÐtQÊñ¨WãˆÉwÉ0¢~öy2šŒº7tÿò6z‰Äe›´°,'6'rmj4¬…¨zÃëy­pÚ@‚-Ûj8Ъ«ˆ¯ˆƒXÅÓÚ»¦0I~(9¿‰¾´ ¿HnÂõ^_ÌP׿›7dç“HÜGÎ{qF@óŵbÌù‚Ëpþ÷¥Ë§®^¯î„›ði`S¼± vßd.nÒ`<·*2s‹ŠòóÄEKWu,¯Ÿ Â~²œ(Pçü¹û[¶ ÞÖµÎß³º|¥­ÁNžÔ6¤CÑJ¿•JÙJ–ª¥™ò½pnY@bGø…àAØQ¯’ñdƒà€#‡ªZ¬ø¨*ÕrüP Ù£×ÇPÎ,‹¼‚Nèuæ¤ôö!?­­€’~™´I¸­ŸÁÞõè­•Ð^ZO½ÑËá^µ–M'®ãÈTàGa[=+ØÝ) óÓHxPË ý Ã&‰i¸í‹ÏBõßv;^b°@Õ×L+ÿ„Vþ:ëø«¢å‚í˜ËV°©ñ62·ÑÑMX(’íÔo.l Yµ&åµ4Ñt‡¥hO}Jˆ‡)q¬FéœE¸¶Uݰ~ƒ.¼%cÿþ–º‘>ß”ÄX±ºåA‹¢µë»®ê.%ö¡F çš7UǵF—…—k·oƒ“üÅ÷Ì»¿(›^,š³Š kߥ šû©——aÈÏ7lÓ—Gï?9yÄʽIU›5-ñ‡óŽçvä]Ü üÂЬPôαp»É²ø(HÕ·rkÊŠ¡ªF,-Ù^QjéÐ…”JN‡ß»F;­tNƒÁ’lß/L¤Fo7aFo 5.‰[kô‡*¯ fáµ8t '{ev¶.dÊ®k!bäÛEŸÂ8ßt\:}ëVe'Ü€ÏÖ“¿±xû2J-™@\I*IGª%\ñù±£u;4û“/&–ÑßÎØÕ;4¸Š£Ü2‹)èÀ‘˜/aP†ó-dµÒ—” ?ãgè¨>« æ‚7ÆèBáòn[p°Dc–3½¤'ì˜B>ššß&{YÂÜL¿üáþ+ÄG2-°®“Ú­Ø$iÏþnÆq63æó¡]#3œPIæþ}0ç3îïê{šÎÀ•ây–`ÅSžQ@o¥lç*•»H\´q"„Ók"DÓ®>èë«å¬–»p„^wmcã‘Ôv¥Ë£%…\, H$éLÉaÅ›Ìt•½n2æh^ éãÑ¢:'±ÄÉHì,*í%Gö Ü–TY´<¡¤rëNê?¹oÝiÙzèÃw†Û˜ÖŒ¾VEÄç‘UÊ©{ÔP›Sl0k-P u<&p_O‹8Å·¢çÂÚÖïmn©;Ú’Zb]Iyñà/4…ÌÒDsd”‘¸…€7?å^üµ‹GÚŽÕ‰é°ôŽx”­­‚=2Yõ‹sÒtá©Gãt¯j*HÕ÷-°ÜUšÅ †ÞC—mÕ¥eƒ‡ÄÅ…›2a”Å]ËQo4íÌ ç> ÕqZ§½1 âÌÑÅÚ+ºù#ÈèMëãèÄðÐrŠOš«à{£»ÄéÌ…ÅÙå7ÑÎý6qR­Ò²8È¢z½ìbÅEgíYIÍ9Y¾c¯EHdVb¬ˆíÜ#oî·¯çwBªOéÐüà&úP#6«©4VfEeÅÆ¥¬¥S*¾6©Ç:®µ³}{+Xá@JUTUA€=´ÚŒ YÝoË” gúm,ß$〟-wS‡cÃc!”JÎb,OlÚ`“ÀIj&²Ó#۵ǡJy2Toß9Y…¦Í…b~FÚÜé õ™í™í¦cp‚¿8änMe‘q§˜›gØ©üß™Þô qqñ"c{^¦ÞŒv•¢ãÃ9 …Iò)Ýf¼§å*ê&T<ôq•|åî{‰äÒm¡(™õ»àE‚d“JX޻ŒèI¢èë^`! L)F^0ÓÒ!ß3ƒúñ4t°¨¦ó,ƒbÒ!½8ßœl3ÔóòA3‡©}·UB~viÉæ:ÏZ(©.­Â òwîæ¾|m¿·´Ý‚vOÁП@›M¶n@‡lgUÈ£1”¶1o|îlâü³ð—ò*°ÀVºM)’wØÍÄ_%±[ïTŸ@øÓ,ÙÔÇä r=ÒªZƇìï†@QzŸ2Ãæ ´Ó7‘›+Ì0ÈÖßlá'NØÉüd!ÚnI¡ñgÏËd,™ðÍ?Py¤½zßAM8'Lc¾µÚ Ñ©kõ¡žkAט}ØpÎÓ(Ó§«Úvt´6f°fí¢¥)‚™~¬’íO? SN» |¯¡W > !F• #ƒ©Òk¹:¨+*35Ái|Ÿš#×åņFH§öùÿ$òÏ€lãä—úÞW eÙ¥Pí¹*4ò5êÁ¼Ç ¼¥¾Ê<)]Í6Wž×ŠS­Î4Ø}õ5|í&ü$Ï¡¼¬Y[6mÙ´EL™¿(=‚vÆpèy ZØÆ2ó¾îhDž%êç&SŽþöEtÃaǾ¯ÓLÀaj²€bÞ0[ûÂók #S5޽¹†£½l‡Â6¡>E_eïlüJ9d4&ÓÉkDC²‘lÄQdúáiœ1U$¾ÛÕðŠi–Î?iÞÒˆ X!G’ÞJxÏô|@‡÷µ}—[?8×$Á98½oVÓ<ó\ð³%U²ÊŠîÃýd+N¹m>âÜ„Q¢ETº 9“:rCV[xV´16Jì û"V”è=Éà…_½;bª&!¸–î †âíñ¼PÏl,X’ºxØÊã¯b>÷îÅ«8‘xáÅElRqR=â*ª@ÜOçW[3Ï{¢ã[]×ßHlË©ÔT•W–l/1‹¶@Ÿ¼+³©i×î="Y:A½æÏœ —N‰Â¹ioÀÅ«W!p…x¿o°:2nùHŸ¨ãÇ/¼»Ä{ìõÎ ¡šß–Ëgá1½y Ú?Dᵡ_Λð Vèü£ žú?KÈ^AP²ÔlÅæþø6ü7¡¯›p·×xOÝ@+³0£I, ËHÖSÓÎ?—÷¶±¡à„Éb¸i]ÚÀ ?õ4ž½Ü5ì‡qŸWEòÙ#dÛú«øÜæ’/6F'ÃØU)ó °,mÿTTæœþ›ò{•²O§ž äñel¦ Õ-VèFO˜5ƒöC¡î@ßÑVÜÄIÎð9∌›Ðˆ5®R ìà 爟­ôó¿Ç>G*÷«òê£1ÖÕÚø¨ˆ5mÑRËáŽÇ‰‚n¿t*ÞìÁâ¥\ˆaj¸°þxòÁ5ç"+þZ§/‹-7”ÄVëÓÄwbϹkèSKFD•Š–¬R:©e>œû(+™Li©bbbdëª]‹¨”‡L&v ëÂöÆi:B¬y_¤5liÏÙZt2m× çWfÌš:ƒ8ìG¯|ÑT¥iOàœþXa6×7ˆûö½ö^~;_®ïÞG{#:“lùäHûéDê-ÏT§ÛRò‡4]PˬÀeŸ¢ ð'ûnaZö„åG8M¯áE€ “oœ óʦTü¶ÐŽ~u6LÂe6†ÑL½dºlm0Ø&=—iÓ¹E–ÜjªàX÷ŸTW•—ýË6ô©WS×AЧàÅDÁ¼âl[Ô™šÆÂ|cAA‘ICµî¢’Óõ—yŠ˜–~Gã„\f&º³BŽÁÚZù%qƒœTØ$öÿÝÍ‹êMO@ã}Ó¯m/x©z=9áêSÏîg¶rzð“ýnvõóHCŸôvýAC3B"—%Šë¿xÙþ°<\·€·-ôþÛBÿ´–pè“™"0˜A¿E%Ö()~~êR3Ž{\NR\ÄIJ\wCÝÓ¶zuLÌêÕm1mm¢£¡R^X¡uÛ*Yɽ‰övKôÁaP«¥Ä\\b.+«¾¼ÓÁAÚj>R½u{y©¹²Äa0Ãü1pÛ]endstream endobj 566 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7436 >> stream xœµz xSå¶ö¡a#FĽe8Ê ¢ Ô2·@¡°tž':·i𤙳2O‡Ð9h¡”(ƒX¦‚ˆ(8!ˆŠr®çœ{ôx¾wïõÿÒD¯žƒ÷ÿÿ§<²“o­õ¾ïz×úàÇgÜÆM[“C“^X0o]zhBl¸çÅÌÓfò0æn kø‘qxÁh.ŒþÖä™7Ç3£Ç!ãXä÷Áåp£SV'§ä¤ÆFǤOY¸`Á¢yóðï˦„åLy}þ”õ¡áñÉYiñ±SB“"¦¬Ÿ¿iþ”ÍÉYøÅØ)³’“¦„EÆ„&DMIŽš¹sÊöm>[·MñÝê·ÝÛìù¿>Öƒ¿ñꪤ¯'¯NY³Ï'õ4ßôµë2×g…nÈÛ˜¾)7bs¤_”ô–˜­±Ûââ·'ìH \ðÂÂEK_ž5{î<þ|‚˜Jøˈçb±…˜Nl%fÛˆ™D1‹ØNÌ&vÏÄb'ñ:1—"Vóˆ]Äb>±›ð!þD¼A, |‰ˆµÄBb±ˆXO¼Hl ^"6‹‰MÄb3±”GŒ'&Oâib$ññ81†H&Ưá´ÉΛøù{¸Ÿ /óšäÕËs˜?¢ŸÌ¹rdÏc£‚F½7zÃè‹ÛÇÌK½ñDìßsŽçŽÿlBù“A|>_Æÿò)ÉDÞ)‚Ù“ÆMr>öôO>ÿŒ“Ú@¡·NÙøì¢g˦ ¦Þ|N;š:íØtþôÓmÓOMÿ5ùiØ×Û p¡].fOç¬ûq®{m9¿HÂ@µµVC…¸yZ§Ö Tr…„½ÝÓ;äµUŒF¢Õæj]£¦Áµ” šÔ@šŠ Â!™ŽVè¢õà›©ÐVv ÷FÙ<û²WVš8D"†lq!Ú j…ê Í…PN³k’ÏFòÐfô‰>ßÂ¥„ÄÉÌsr˜ gÊÏs™ÏÐs|» äù ÉSQ²””Ù[€ÌÔ–רk­Õtå©4zÉ›Î]ËvûeçSòã±! YéÂÄìðüÍøÌR;˜Št:§‰*¿ZqÜd-$I„êl•^ÉžÒ(´JP $Ö¼ÊÂ2K……:„^49ÍU&§ èèÊŠ«»®ßòˆ>8sÓ^v”(œÎU@&¹·>úØ7-h¶‰ºŸX7ÇÅ9á.áºý³º]å¨Sì(t-A~…öêÚ¶Ž&Cg('mrƒ"9Q IT,Dâ€Tà4IlZmÑ6h djIN&;‹}Õûu´[U–ÊŠ6ƒÀäЕ9äzyd¸"èXˆx4gØÅ§Ò +ýÛÄF°Rßmê8`¨t*½Ì^ï2@Õ‚ ÐŒKW •ö|ЉeØÁ¨³[ìz½nàÇ ä/X™N¥÷¤¤™9ѹ¶@ y¤§”í¥ú¤Râ$œüƒ®ËNtÐÅqOú‚ë^†’ùðÙÚîÕ64¦îƒÏáCòšË¡Ø>žP‚Ol… WäªA£ÑìÓý‡d± ™/†ŸçmPJ£Ïxh*F|O' ;üůNgyëÍ»€ ¶hzŒwËî›@oa?à?¿ü9vÅ>ÁKƒÅl°ëÌôUÔâ…Vò¾1¿´ŸóÓä!|¡aWQáU.cF.þŸýß}‘}‚å³SÙÓ.nú =øø[gR>ù’1-Þ/)`gð. #¢\×zj·é4ÝvþXãA ×ïõ÷DÞg 2\îy.zþ×}½‚¯3êÌ`$Ak—‚$ÔÆU!ïn) ÆÆ³¬˜]úÏiˆBˆƒâŽáw)r\rz'»‚·a)KAS/Ô >AÃè+_Ýý!?˜óâ>e<¨iª]™‘ ‹ÝáBs©ã÷—± ƒüú÷Û›D‰{ƒ S Ê“i–×,K©#´‚ I¹Ii©Ãœ¯§› EßiÆœ/”‚h'˜ífK­±”>€fXrkÂNârpÐ(4 ͦٱìZ¾85Äg'[¤·­Ao¥¢-Ö– ¿‚.ûÖøÐvTÒzŒ[5È÷ÚϸîRf==÷òßY>Å^zT˜œã¡-hŠEôÒv>ø'±~‹gîÚº&t9Ó‚¢˜[«E‡ó-ïÓƒÙ‰ô&äçÜ!â 2_á2«ØÕüû!Zô&™BÏ08Ì\M¦WK¢c’…”¸a_ën Y.û;—±¸ÛçzG[m]=µBY¯HB´ª Z2³À¬¶4µ ™nÆœiL"½ õðe ›—¹Gv¶±Ç…F–¦kÎw÷t€ökË“íB{dƒZ«Ò(H ´º?çúÜ…–¸8ܯqÝ«ðbPcž§P[X*f=»jÌCq¿‹ê½îð®X„)rmž,‰LõÂì0èËô[(e(´B1¨òA© ²×dg¼ ä˼óHkmÈÇCDMâšM¾:Ö*µ &Å0ëŒåzj?ò1Ô* ýѼ\)ää[ ²d2UÍNêoþuݘ4^%èt–’/Q²·NoÀGÀArj]„=}õq óì[\FÄŒåŸ\ïˆ{#:(CHINETÄý/%¾ÑÒ`ÕS—P‰ÎÐ…øŸƒÀõP)Š‘¨ãAIæÛ²kË]Å=‚®ëõ$ú¨ u{Ò¼ˆëdöñ q÷#„èáÃ8DwÃQu¶BLœÒRÞë`-2‚ÞXB_D&¯Ïx—ly)¹*!>0VYÕP^1¿+L”§:F pãÀUÎתs”TÎa*–ˆ¼>Tx¿:#yÿt&¼‘¦ÎV§ÓZ¡×Ï…Á-úëÞÛŸ ùWz0ÈçŸAãßæ2Ï øpgEy˜-Ùm…N²ºêÊ'umÒ¯’¥€””˜s«Ëj ;»Ã®cG†Í |õ’¨^A‘vIa;Ÿ²|ZÆÓ !uÂGp*ò‹2Ó“sƒ7÷F¿‡žoGcºñws½Š±6"‘‹™>$6TÄ·ªL ±jˆ§B ؤ,²$(¡­¼"(Ói«ÔV-ˆ@…¡šœ±P#IL‰G9wÙe$è­F‹>EÜ¥‹ç‘jP„ÿJ„_úþY4õë÷»Ûh[š3ÚЛ Žch›·y¿Þ~È"Ç@wãlð& ÌÂ"wŽ‹˜!s"mŽŒÊÙ¾r+)PSjRK=ýêñºÍ+s Õ|9¯ Í2ƒ²*×$M•fbKÁ.òZÌ˽OˆOx«ÙCZ•J"APsøÉÿ<ñ°¿@\¨ÅG×íƒ-†²¶€Õ`5–Pèi¦ÝÚdµ^A• Ê,B˜Ç"„C˜!bÈ"üBI7³/¶Žw)þØs¿V` óö¤A‡7E ¶÷ÏæÁx1ýªñBu¼ulå¿{ÎÓL½]÷›ôŸÎ—œá2½÷ó¬Õf((Ѷì±@âÁ<_Cz3æ‡Aà•d%Ê“dêu¶K™š‚|AvrRâ^ ƒ Ž4Ÿoþªæ m­ÂƧ‚ì‰s…Ìag)µC_l¤¬®º?÷ép¨÷¥ISDô>Ÿ}« |±7éô©–ÆÆjª|{§¢Ú ª¦ÄUÞ^xnP®¤ú!ï÷6ãÏEw+ø…2ÈÚ€e°0mÖ&³í]œ`û@çT…‡ª!ŒƒC?:ÒÒ€¬Áü¦ÙÉý²¸ÙZd@ŽÄ¢±xt¤ƒî€Nõ!œ(OïÀ}k(K ΟA#¿ä2Rf4¿UìJJOMOÏ·ÈÍrªzŸ![Õä=¬‘±]ÒÓÜÛt§îe*5—s¹Ô¹ÅV[ ”µ™æüÔÔ̸ˆÃéÝÇšÛ˨ʭÇ%µ@~wMª| (ê0x¥`ë¿wÈúGÆfÆÇRWQó}ÛŠIª–jµjj–L¬•h![ Á#ã1½\ªV‹€šÕOkÕÒ0ˆ,9ìû>ŽF¢çñô°‘O«º~ÄÖÚ€x´¥ô%• ‡Ú[Ú|ØÌÿ4,mÉ}ô0g¹îáHËǶR-Öª³åTü–dxŒåC®|2Óak5Û?}°aJ@¼G ob 5„? &ìäJžÛIsÙ ïkú•`Ch¥'Cãÿzp7™8á[f‘šÿ†Ò™õ¿îGåIá~þ ø¿mÝ®ê¢"*’]¶jo»Eí&Ðé-:Úe*¬ƒR²JèÈ¡&˜ÄŠm±o}÷»¿Ö VµÜ58›†Þæ21ßóM2‡L¥ÕJeÔªy U¹@nOíê=U÷ÚcôK=­]X[»4%aA ÁØ:„ûëªíÇCÚ6Ühg]÷zò³¿•x¬˜Ä5T™Ë?¾Âuòo,D‘ riöI^¨A’Ã~ÓÁ{Ó«qj0@¬à·f³'û EÛ"ÅÁL¢Íñ =-páɱu`rÄD-”ëÄôV½¦JÀfc)0õÞ:Þùþïô¹ /A˜,f3ÒÍÁ/³Ïö_ü÷Û0ÛévÌý¶¦aÀáö9œ¨ÐéèÃÀ›Áe|<ü^¾ŠÊ ÚY ´dÙ‹ÄÆ,P‚ ”Z‹µª¦¾MGÏyŸí=vl$æ¼s^¬ â¶æ+…R{v­¸4w?ÚU!ó² ,k¡N_h¢­Î†š6¨„r™SÚœ‡Ý+äåH„Bv)»Ä{[ÀîUØCKmxÌÂå7RÅUu]í૤<µ4«$'äÛÓè©ê‡D&p/húý^Pb®¦ÑsÌ•Gäõ6?Ï•RŠköH]bmæœI쾌é7î…ƒî>Îãîã!Ö¤r°Øè“kîɹFÆëßàÍú1eŠR­ÏT츲œÆÅµZJ³Þýu¢€¨ü7ÿ¤øL¡7Šï¿gÊÓiŠA€G!©MaÎ{—ö14èHC¡®lˆs)N´“Ž÷.R¶ÿ6éÖKÞ;Ønï²ÔÑyðŽáXÅÇMp ,dwÔÁ SÙçf°>/[üçAš… +ÿYvÄQ™¼N´ô;<Ô’‡ö§Äz”ñ¿]DF­{i ÍúЉ¼Íu70þ|´tú·ìx6” g¥l;çÞ4íAQ()¨Å‡ù°(šìX°žå.ô_ ä‚m7Ѩîb4å*CŸºw÷ý;@~tÍäÑB—Gñ*>a²]hÞGUNNê-t÷²î üΰýa³SÙ§båT&;Ìk'ÙY)%ôÞëý#Å›¤aŠL,6?0¤m”4šŠ«¡’tæØ…©©Y1Á™mßw ¨ÜUX¯›¼2ûH¬à5¡ÅÖ6Ç© °B•¦H˜¨¥A™Q.-­©©l¥¬.ÚkÑEÇýÔ\wÓÄ¿å;°<õ‹ž?fœG:/ô'žþ;I/ªãCVÞìȽ1AÙ~ÙãyWPÝÐÞðsÞÕû6 lp‹Øàd¦z„ï±|ÄaÖK°Ó28-qº,IE‰RêñœÊgG°³Øgõ½~¢³£°Î\"Rd&Ç Â÷„c‹› ⨴VaWTTP±/'AÞ–së7.ߨ „(›°Í+0½¶kn8Ž5¢‘UGéšÓGºpHçlKd´Zä5vǽjÐX'ÓàÌí/¨ÿ×½AË·(M ™F!×Pé>AÉQ i%š»hÙ5ô8òäKþ¤Z[­–*J¨IPÕ‹È´(“!¶—Õ±/M×4)>X d@èÖÝBƒ\¯¤×4§ß„kÐWƒæ\G#Îsû­€üúìËì(šöï⧉ã%X%‰pè@ÓÑ#§áÍ}2keÿCÒn¬ó›}¿6&&1zu=¢Ê±³úïh5Z ~«Ä–WQUTæ0PhÕÐ.ßv@§/oªlê¼xõßîò?ÚGd81TO9ÑI×x&qZ¾š8¡Ìý5ߢ1ççk•b5•»-1 [¢º®©ÖPm¨¥ ûMG  ÎÄÞYަ¸rÞ'?~í]vÅ–ýº½&ÄÄÊ0ÀŸ~€oÏV>ø{ø¾„J½Á;|R¸Z¤.m£%{T"È&'t¬:ñVãVj.Å…jþöí‰IAé¾@Îàá§,V½E/°è› Ⱦ¿À¼!±(Ð?ŒGOž9úÖÄ ¢[¿¬PRÊ\!™HWW[Ô\ÔF÷¡×ì zˆà­Èš¨y±ìlåÏ–ÈÖ\ûÍ€%R¦§I’äÙtâÒ¨Y¢H–ADuØÉ{Íèy#5aJïÊs&ÆÇ'Äg”f645¹š¨ÁËŸ —{A=í¾‚öb*¶¢>4È;ö5¥ºÄ†¹õÙ¦›R[’ÛäÍ¿¼}¯ÞwÕ>­\•AiE^?o~N¢ð‡6?J­VR@o‹xg. w™±,ÿèÜÑ›B›ÕNE‰ê¸ÈûdžU]–ã92 š\°bæÂ•+|¿ßTgp`§èå(Àž@ãII ©‘kÕx¤P˜Tf‹No·RŽÂÚ&{QÛö¾¼“@bõá¢IhüÏrÌüÍ“â˜[(æœ'Åiüo˜Çtc) Ž&vn›µƒ)¿?˜©š‹‡.àÏ©Ñgä ®0çôóµŠöñ×A „\ȱ·:tp§öˆKVRnLð ÑÏÞ½~½ç=ížÿ›Éí3`õeX­vòlÙùÈWgN“gAEõÛyYØé)rüY_oܰUø+$…`0Á` ôzÎ^{=[_…ø@¶ðöƒJ.×à‘ÔßRS ]„…zp•U¦§ p‚> §Õ'Ÿ•)äÑy ã".QðõŸ}T"öQ ØGÅý®ZÈ2Þñ,ÿÙó€ h¹ë45™œôߘlÊžÓÿ”,2@*`Gßò½‡&`?…†ÕQw™aƒ®I0èš~"~2`åpósîã¢æ¡ì+ TSòÔ\ŸìÐdü¯¼*;®ÛJeä vˆ:Ö^YWSD•µ÷=È6Ó½g(Ò=“ëfÜ/òA㤥¨!•JÄ)JºEµ‚UK—j«åxTÉ—d©äìáþ,ïL•Wã)½xpÄTG…«!’ºBU]¡öè Rõô¹þ~}¶NY Œe£ýóž÷¡wZm«Îx&ÄãÔ ç†–7îÛj÷#ÞVßÚR¹Ç'hïÞDJön`E0øÁ®¸Ø7ÿŸÞ\}aUCOgï»@vÃμy’¦€^Ïý‘‡~¿Erï~q¿?Îâþ8PpˆÓ÷©! c5Æÿ`d¡Ë´- lŠÄÊ…„5÷Gyg0/ÐŒeæŠK:ÚŠÅÁ&Ó+¢"ÔE{Æ@÷ô5Ü퇊<=­S6à‘@£²¢þ•øDÚ*mÍ;:ÁƒZþ§q-»@–¦£ëûÿK—©WáÉ&k ªgÀÛÙ¯Ôeƒ¢ÌcX­`/G—q[.T—3ÚuF؇¶sN·7v†#ûÐ¥ \&-åw|ÓŽ§ä!%zŠå¯^¾‡åùQ»æ‡°«a!™,&]¾×¦_¢æ¬ãgì Úd|HåG7¯£c­×è¶ë§-@vHܰʇ=2wÈ+ájl‡y©Âsñ(¤d¼|ÈÕåë2 VJ³Þ¦3zˆt_Œ¬ £B¡Õ扩W§ùÈ“ÔJ›r=wóÆ’ãæÖ£ûX’,^&]Ù *ã)¨³ËôèV¹¿FŒòªÅ3:£ƒ8Ôeh´=÷—)DKlÀ°‹X»’!Â*4F[#l Áú£Ñö|þ~‡«Í¿s÷ >‰F¬8½‚µŒ ^Ÿeéúø0Ý^^К¯Pb•NC™ÅÆ|“IQÏnKMõ—®#4¦ãhÊRvú‹KfùSÁ)¡i¡>K$k†8P¨×c3g­/?ÐMPŸU“[›ãÊ8„{íˆnôºã~ NtÍu÷çx´»ñø¹ çÕkNÜqs%L:Úˇ Õû¯µ~ßÚ{n·×_ÁŽš1uqLER[[wkO…Ä%öœP­ÓXEy±ñÉIYŠŠòïÞû¶íXÎj¡”õg—Ñé¼ ½D.&„Ô et=¯¢WórNÁ¬@?:9öÍÔ`‚ Fͪ¢6(!K%¥é;5~9¾Çünc_0þhôÐu}F½{l çÛž‹o¡WÏ–tq™Á‡¦‚¦¬:…%¢%½ò¯Çz/Ãä ‡}Øa3§ÍŒ.N¶çSf™NÛξúJöl&—\ÝáùXÒó$¨ôgþTvœ¯4`‘S¯õå”HP-¸|ýò‡§Æm¡Võ?É_¾hùŸ6ìíì{ÿì=JÝ|£&c6 ­ ü€’±ôBœdÄ™8á6J½Èw «’ãããö•çÖ¶¸š©OÑGüýÂÊdj‚lB|BziV}‹«É5´‚as2ÌËâ ¹=\TÍʱ(€Qnß~Sv®š|–ä(¤¸X§Ã‚nQ° Œx™ú"Åc×%°0üm˃jÖvn)ÆÃ½ÑhþÕ'ßîá2ã™ >œ-¸˜Ó“úNH¯KJåÁ–EJŸ^f] >ÀNöïÁÊÙ‘H«5)7ªÍ4âS4õ…†¡u.ÿ$‡ÚÊL´ýŽ›ËEéGùÍ¢ÚøðÔ˜¤øýÒªÊR‡ÑDå½´aO¸ÓT¤Ú ·”£±xÔå©eä9ùá|ŽÌ\lžwóõf³Œä€£b±£Ò€*_£Pf{î—­PN¡^6]†Â!AV'ç&˜ËC|I¢úçòò¤ Í™¹¼;8èûò“ÃýÍÊŒÉp2«(M_êä9;3Šzlx@ÀÞÑ#aô(§ûaüs°Ìh=º½ ÿÙ¢/Ö™*˜ªÑÄÿFæaendstream endobj 567 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6426 >> stream xœYXW×ÚìˆØGŠf–˜Xb‹±‰ˆ¢ `(Š ‚"…¥—¥ƒÀ¥÷Þ;J0vÅ,K4ÉZ£Ÿ1‰£ÆD“/æ?c.ùŸÿî.eó%_žq×;sçÞsÏyÏ{Þ3jQºÚ”––Ö¤öö’ É; ç;zy‡xH•g Sµ„iÚÂk:ûp´pà•2ÐAºç¦½¾ÙP˜7 *&€ÃDJGKËÅ[ò¾$8Zêëíf¶háÂÅóç“ÏåfžÑfÖ Ì쎾N~Îþ›]¾·hqü’¥ËÞ5Ÿ¾ÜâÍ÷V¬\5û-ËíóvÎ_ð6EM§6QË©7¨( êMêCjåHͤœ¨Y”35›ÚLm¡æP.ÔVÊšÚF½Oͧ\©5Ôj-õ6eC-¤ÖQïPë)[j1eG-¡6PK©Ô2Êžr Ì©I”!µ“b©É”;ÅQS(#ʘ2¡t(Sj*¥GM£^£xJL¡ô©×©Ô8j5žš@M¤ìHX(]*ž´j´_ÓvÓþBÇR笮‘nšžH/LïFÿ!Ú.úœ1fƘŒiÔ_©ß¤ÿrlÕØŸ ºÆÍW3îÇ»¿4aæDñIJIÖ“š í åìì¡ÉS&»rÚÜAnpʦ)Ò)Ï’ŒîÛŸ5YmRnÊ™z˜Þ›ÊM½4mò´Óê§=yíí×"_{Å¿Ëóøëü¯â°¼Ð€ä¿Ê…×#µZaÓ3ؤ#¤up¨<½$!?-7Å!(Ë@A(%{áqƒõÆ2†Ò2ÓÒ’P<Ø‚ªù_èš&Ôщ¼Å¿êÁ2ºñ =ïHØ„jÄ¿ÐÕ-¨CŒWÂVÓŸÁçzª¡_î,7üQÎ #ö¸PÜÁuJQ,ïqôÏ[®XïæųŠ.T¹›·¦c¥d¹T!>ŽûÝGG°˜® «+Ÿ»ÃZšmqëà™s’M<ŽÜ#RÍkUΛ¯š'Ví,È䆭`­ÁÞì­È¿‚½{SH%6„ 8>ŒÆ¯C èA˜^]©\Ÿ\¿AÇIQ`@#j¯Á3WÁL½ºFÔÙ!Uß !·ZP¥¸‘ŽMpµ^8ÍÖdž šÉu6ãW2T-ŠÂÄa‹›ñ“Ïä°ð¡9¿ª6S rp“~¯€8Åv•‡"à=)¶_µ¨½Òpì,êgn:ÜÇ:<Ž eÊÍ›Q•¸uP¬áœ,š ½ËwÅïÀaÎÓßvÿ&¸Á$š½ómƒ½Ÿ¸̹îù` Yˆžfu¿í°vSîŸ&‡;r­ hVèÞÀÁ¤ϱ.Ö]0OÂìó@´x†¼M!·ÀÞÒÊÊþö“ï¯^½~ãŠÝB~ØËZEÏîpä̱üP“x:N”±ó¤z“¦†Q'*o7‘sÔÓ0_Ò䢑k0–®lVy/V,… 4Ì‚KzõªkJ‹åB‘\ë.‘-£`·?%&‡¡ L>õ-‹POÄ,\úÌ·¾ûmàò';-*Ĺ19±ˆéFõub‹ªPs`tzRj:Ÿ¹eÆKýÚvÖmE æÈ±M±Þä¦ó`à‘rC,•ÃÛrøBâc 0#Q2â”Κ°è§×·»EøòìóöÌ ¯?x°í¿Ø“>ìq4¹ 1 õãÀŠm¦Ì]k·v¥ÏÃSüMkxéâ¹Oo]´^2êàû ¨!ç†ó,Y s° =‡W¯7 ÊÂGGdy0zf°”,ŒÇ|ˆ'øÌdÏhÐë#ˆe4ŽuKåËF²ö쬟«pž®E ¾>(Æ‹n÷lq$ÞÑ1³xâÓ9 ýʼnžÆz1öwÕˆÙ{êøàEÂÎÑuùr+»k_SÜ»}|•­ú.w)Ž+vþ.dæDê­""y\á`$òD±ÝPC-ÿdè^¬'ÀfCæ: …PÆ’xª3­Ä—3š”ƒ²ÀQ?bšÕÞ_XÜ%Ö "˜¯úÖˆ](Ä c¹º„#æ[7DotæˆØ;ª±ö(B¿Âý£#¨¥ ¬£L°7Ÿ^zãøìÐêÈfÄ4ÔUµmæ§üÕúEÓÈqu„x!6xÒ¨‰ûe~[0 }ðƒiôßúb¹•«áˆ‘<¾!‡¹Žà“8ô+æêýóוå­+C3-]?|]’ËgÇäÄtåƒB•¡ûd©™¼{½;Š"¡~/l¹÷Û/cËĽ)÷âÑfï^¿…;œJïJùôš}¥!ˆQ†KËÞ1) 1«ÐÙf1$ƒ¹hÄõØü>=‚ÊåKÔÕEÉÛq=÷ ï›·¾:: öº³U†Ð l6°ÀˆŠ;•G•ñnpŸVÅûOEÍ—f{ß±Hð_öwñÐ(úëŒbz®"ôæáÃ%m=<»Ã?»ÕL½IW5«¤Á·ŽCU S‚ ( `M e˜Ò)=Õ‚¾\« ¶Ý‡m:B†ð¦:ûñ˜ÑµÑX ߯Zp[¯m™dÆHµë A„Ÿ”ùÖ¡zdR‹Qé~ÁS㎾Þ÷%œ‘kUÁö§°]GÈfp¡(šÇ"::TUekŽô6|F/‹Þ×"ápô§¥>(‰@11<#u7æ÷E2Y´ œÑëUË0%~¼žlrä…åÆB&‡Pnq¼ùavEn“Mç»ôà1y)e15¨ õ Üª¼†Ë0`ÜQ?Œ ½ërÃÓ ˆ%t%T‘ȑ呔Ÿ›ÂC€èúæoð›»f ëÀúئʶâžleg×åTd—£bÄ|y6`¯ÍÀ¶¡¹ ›hó©Ý/=ý…'yÖ2 áTÖÁ©m¤æEôoŽH©ˆ=Ñ [ãí†R¦Ú{ø¸÷AÌÈ¡&¢T\±3¸ž#_ÁÕˆ½3"SvÓx2,R+õÑ­Ãa3\f[ÅV3Wÿ¬×2\`±ŠÕ‚è úx6žˆ—êí¦Ùæ‘ë0FÐ ~ð=ɰjæ×Àt×Ò7/}r ‘®AZü&3"—ûÐJ2Ë.rp$¢ Ûcûˆ`|©{ØØÐ Gx›bÙ£5‰›B"¡ÅHZŸp:á ú}‚úÑ¥'Ê/u–ÝG·Qwr¥sÙb™3L^0‰¤ïFÅßé¶Âyîò{(ö½U;—ð[fÏŸqÿLBÔ4Z°fB?Œ×Hµñ'黟£~_ñžîºÆª¶!¹Q*"Ê$G ,¹'V°ˆÇaÿMÿ7ºG l$r ˜›žÚ²Ëf.ÿ:düF?;j³EÅÑ—ÁêÂ'—aõåÀˆí£Ž X¯¹¸OñáE#v"%Æ\cTçæD×,ß<«O•ÆúÔîœ:å²]Õ~•QbV‹JŒM4E>ÒâB ­ÜкDÓ¥/`2L~Ùÿ-ÏZ™¡žèÓ[[ã =ÞAÌZ:Å£”œ8”†*vzbbEV2Ey9y%¹™Ãzóøæ1»Èu$·Ç´Õ—5å•g7¦– ¦º±¬]Œ×cÎÑÝÝe³ÇÉs<{5ÿ±cgÏÙ±… cÎÝr׬Y–GÕwuÕñÍUÅè&b@-¢‹/†Þ™8öïûspø¢—ýCƒþÿhÏÕÙð;Ø*<u¤ÿ Ô>áºH?G„Y`Ÿ’¹7F‚Nœû%7ò íaõ²R†}ùYO­ü°éƒÕ÷±>×j&(É‘џÛH¿»DÑu . ÃþÞÂ=L‘ ¬õ¯l‹=€˜O›>;Hšø7çêöáBþ}ð»A³}°}¤>ßza¾/¬‰•¤ª æéÃO×@¶îÇã4PxJ-¹Ø…xºÐÀµ…7H$ááICx[[Cƒ ܪ$5<{ÕNqRb…×U#6@ ]ñ>’Pîy(¸peE±G™W7:Éœé=uô+çð¹á¥iuÃ:ÙX-æÓcSxÏîÍen„u,W,[ÂöëP1ˆ‚õØÊ¶´¯#—˜ºìú`…Ä5¯u7ïѺïHVMVuVÿ®ÇÆ*aßPPÑUÌ ”Ç^!œ¹ñp`¨°¢ VzãÔ¿XKüá'èºs‚ „G2¦ ΧQ ò ñ ö (%äÄådç¢TÈ´…UG„…ÇñlòêŸÐa˜ñ\áÙÉÙ³¿u’š ?W<&t„t~j*í—’â'¶tDçÀdPæ¢ÑŸZi4VD-ÿ¹{RsØXÂa°Ý©ÏI¥T‡b@ã·` L‘^·†Æ^ ¡Bh¼ ÏÓƒ—jsìF+Aï ÌU£yÔèî\¿¢ïÝ‚±ømõû3•·ôG¤9ÁaºÛ H$'­îõNœÑá§´™­‹Ë»³ÿÃÃÓy´³CeÙŸf=§ñ„ïÞ~ñâ»Ç0‡ç¢¿é#¼;†Ñ”áò:DUbO!§1-×Ã-õ¹>«ü5b{…r•Êðæ!H8 zÆï‘ðq$5~ÈÊBÃö«ŽÌH=Õ_mh=úHŒûEÞCñPíe²ˆÖ‰ØÞÃ'7VÄØñX&Š&’ÛšôS”v¦|#É KaI2,é„%Fì¡DYà•N]¡Á´;~âê’%!*0íÊpÍ*Hn Cɤ‰DI¤Ùw¤Û}„ò³jSÏ»fšq…Zu·¡bq6}c°N½ã“߄ʦ£:TR—[xâó‘¾$Ïí<ŽÎÎ,”¶ BÒ™4¡üîBqi«æ.Ò•|L‚¤,Ù3ÀkcÝYªT¿`#ÐÝ` v¼M)‡gÛaý•+í@fÃLÅó[7¯½…g åÌx9ŒÔ‚t²–ÃP  Õ´’)¢ÒÒy¯e.‰Q™±Y™HÂHkÒ+k<ÆZ,’iÞHÐ!òšœöæ^­•¡nä“Àÿ±Z”€|º»QwÙЮ„Î@ª"ü!æZ†Þ_DIxœL³/yvûè!†}òi߉+÷LÁ`æm<ë¯X¾lo[bu}cu[Yzyr!_yâdç'ˆ¹gçâµ®Ú:‹qvHNIKG2å«PžÍ‡Ç4Ë +ÿD9ä\W¹á±Må ¯ØMLÂÀšC×w\²íèû¨í:Ïܲþ‹°ÁÚí6~Ͳ:å†i%¹|gçueo÷Åio·À8Ÿàp±ˆ4Ó;Óq_BAŒ2‘ù4[òüÌúœ6.ܽªôdˆ8?¿°Õ1MQuÒ°ð8ÿE?~HÃèÛÇO”îìà;®*®*61-=-•”„ÄÊ¢RŠãËâË#ë}Q0’ĆÅDÆ…£h&¶2¶ª´ ¿ ïhk©ª@%¤ø•'”Ç×E@­¨­ª±º®²½Õ i/J.¼FÂ{«¯ŸÈÖØ®ŽðJxIïO-òå%t(JÏŠÄQøwãäx”‰"¿âÔNò1e¯Q-×âØ¨»C¯ó¬;9,¥A ¿è©}Û)‡¥r­‡ È"x GîçU?a}÷ÔpO!Uã%Jí—šì/Ƶ¢hÖU“—_RÄ·v®¹H¢yÜÚî½5›Þ•l(úDBœWTHœ×V˜¼Çü›µ  “ž?umí~Ðí'Má¹ëkþûþåB"zRð‡ÍЋ°¶‹KŒ§_¯?½ÿ@U‰ùéä'83´&²¥¹®º£×ûü’;¦xvÃI kýœgÖO߀QƒKmß·ÛÓ+䓚ršPÓùô—_[o¥Ü¿$B¸(×:¦¸ CmþšN«ŠF)ˆñEáQb¡ÊSÛÆC5­ðF_Œ°6#C~ÝÕÕ¥í|>ôÀ|°–_ª«ÉÉ!; !U; RÎÊ7°Êÿ™§Æém»KVõ÷Z÷¢ ÌýewñXlðî ÇÛþ³×-#6|`i:çÉb˜†þÈ›Ã!ÎÑÞÝšg÷[Ûï;Ûwê_w/lwWà9['sžu4·íSÈ/~úýã TYüœÔÄÂ.÷¤oQ<ŠBA‰¹îåØÝ8;.7¢ 5£üšìj›Ã®ž¡>Èò~è!áQ@ÓÝ5ר—$8W9HÃ:ŠyXg¦9q;ýphŸ=[}ø8Ÿ„'®œ=—°ªwvDU^~~ªfš¢ëB¤‘1þ5kˆT6&Ù3 \ù•w8çÍŽæ[>¿õÝõ¾GÛÂ"IÂ3]{Š£Ö˜*ñOfÙÂ$-Ø“tà® Ëõ¶ø{Iöv„tlîìäñ%Ý¿\#O^¼Úrк¢l»Ws¨WòÏhe`hÿ¾Ó²ª­I)é (ž! ¥µ¾©¬çŽó ¬_Â÷¨ôU’Æò^"¬¿a5²B¡˜‚ ޹x6Ä)È+)BL[hud²÷¾æW“ÈïUŠªÎÔ\ÅÁøÚ3Ð5ÇÜcÉ–ÐtêÔ¡þV qh«ÛŽ ‰ ‰>‹?ꆶ2ÿ¿£æã§Üg]^Þ!_IµO/¿Ù+*.%-C–Šb™¸Ê˜ê†gçAWEI>ßs¨6¾(±[c ¥…åE¨Ö¤1ª,69#+YÆãûxwrZ| Š2AdfI*<À^ÆɹY„«jËU8r¹vÿš–#rÝ{I‡N‡l/òñÙÊÄð;]¶u‹ñ<Ýn?”Àãßé?r¯G©"žÓ=äžÊ¸Ä¡ò”Ò¤Bü¼ŒeÅÙɈ‰J‹"WSÅpÛbò71UeLXmBUqnvq÷awqÊl¥)V$Cm7s¨25/º Oüf'˜ ÐE/‚L¿¯*-ÌC•LQz]HÞ…q1{âîmü9ëÛNMˆiɯ+Rè#…¼Tšcw>ò9½å¦e_(b¤i‘)q¥©ùb0ÇZ•x)éfíÅbÎ~Gl¾¤ŒètRQ”Øêúå'¯0»6»äüþƒqõFq¼endstream endobj 568 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3783 >> stream xœ…WyXW¶¯ª,•E)ZºÅyÓ5Á˜ÅgFóͨ¨Å—D°¡AÙwh¤»OwC7û&  ²ЦÔyƸ&f4~£3&F³8“c̼wŠ\¾É»dâ¼ç{óüQ}»ëžs~ÛQ0Îc…B19pÍÆ„Ý;â—évǼ4Ïo6.fOªNþd¦ä­¦Ž‘~å”M¶üX;¸ž'pq~gꤟ<ðì$ÌwÇí'…bk\¦BbfRLôÎÍËóæ½âçGÿÿF£ÍÔ,«Yµ#"6!=96F³#>R³jîš¹šµ éôaŒfVB¼F«Û¹#.J“¥Ù¤{S³9hùÆ MÀÆu›×ÍžûÌ»ýÓC†a4ñKü—-OJHIMÛ‘¡ ŒX©[µscLЦظÝsf󳞙Îl`f03™ f3‹ÙÌla¶2K™·ÆYÆÌe–3+˜yLóó ³Šy•™Ï2k˜µŒ;3¶Šqfr/(ÊÆL#:Íwºì¼Øù¶—›Ê™¸‡csÆñþ/ã‚Ç{?4A9¡ÀeœK©ë×^·X·ëî™î'&j'Z±Ëí§1ÏÛ±Nìz<#‡ óþ(™\.²+¸XW}+ïâjØ \Ç›¹†Ç¬ð€,)* ¹0Dªß$WèÑ¢l8É8ü½nÔ±B:5~*žñ®‡}{s_ÙNªVɧ&ÚXúâKSå›DèÁѧ¢W,zÍBT¢/áÐÇKðÔ.ÁµÊÚ{¡7ÉØºGû®\©¹Ywã]2ø!7ÎÂ~Å í̬¡û¬ý]VšÅ¡/Ü»_ÿ§?pG™·D·j!ðdGê6°¨áᤑIü.ò‘Òž—•Ê û™Ð˜Èò&>Üi<Éâ œ°„i‚N¨ ©(Üd*äÝ$cq¿$ô(¤2LPîÇiþÈ JмœLf$“é/DP?|z5<*•E!E[³c²#µ)Ñ;[Œ'Œ]•—íÝåbù©ÚΆÞcûŠ·Å–î* .ÚÎÓ–ÜxыҢYôÃJôs Ât¥­É`É‚<(cV*Q‘±óa¬êH¼œt±ìjÝ—Uï×sáêåëÕ À¸¹ÆHfòæl4@X¬em=«²í³TdÒ_0™ +·¨"ûƒ[Þò&eÄSGÒ¢H2*‰n\È£Wãñ#à [DœÖ#)ÄØ~KÈQtô¡ç%ôô&Jïb²²}}Lœ!ÂrwÄ;TÂt²‚Bc4A•IÝh4•¤ó‚ù߇ì†ô°¡‡Ñ!cDØÚŽËÛ’»ò{AãÇÞnÅçyâ99…hÖnÙa°çpnû lTµwô¶ž„ßCûê4â._ìï<ÒýaÜL©ÖaÌø~€¾^›ƒü‹²sˆ+Ž#¯Q¬ð£X9ø TxÎñG1‰'¾“³|2ƒâÂxápve¼¿÷LNØøHºÏ~ÇÝ€ ñû×Ö‡›7d'ùեÄé±røí>aè3[,GŸ-"}¬·‹^ÂÍà|<¨ áÂÉäè9„bp:G¿Â¶p_‚1,o)/rÂb½ˆGØ.©>lðÂR&•f1XÉ >‹qø"˜SBœéÙ ,f‡:äèZF™föÐÝÑ:Npn?):/ÉWºÚ2‡ ÓŽ  ›—°^Ú!9++ßÝÔ Ûa{ò®•”½u_²BYôLööÂûÐmTS¿Êµc+xܪ>‚ì}o€Ô¬½ñÅÚCé‡á0ô4Ûûi+æ=LqÖt>êTà¶N’€¿VV^ÜÓ‘_“صÓQZ¹µ²ütåå-ûà Ø»Ú”fα”4Á°”•î¯ù˜¢ÒJQY©ú\CvåžrøÃܤ¬iEÛZöTæŒ=Zt¢°¯èb¾~MáúàœPàý!M,þÀT ¶ HsqIJ&Q¨Œ¦ÂFZŒšªí¥uv[wÂq¨t‡3VߢWuò˜J©…›Ei<šÌ®*ô#>èCTôo’¬6Kk1SY.Fý!ÔÁð„ÙŠBT8‰Y3ó^È‹—/jˆ¾•ð^õ½ªkï4|{æ /Lÿäw«¼ŸÛðçõF2ûÿã/8¯Ü 'OmßT»Õ›„YB&ëHJIC5ñÄ·àsøãûš[“ÞMt@-Xklu¼°¤ ·SÍTì `Šûñ¹t4ˆ”î³3ˆµq_㢛²òTáæÂÍ©;éUC¡êªmßÛØ©BWŽŽ”¸r«DÏä,!ÜŒ’âh•pø=.”Ì$ÌŸÓ®‚úOЭòÒ(õ‹{v‹}=Ø&†œóv;Â0€½O}YbX¡Œþ¢X²9ß?tíjP‚­¥â,/ðçñ[V8úô¡H’—í{%á!¨Ûà8}·púÙ Ü/1 iÒ Q!]“¦Ñ$™âÍI Ž…0k®…ÎÀ'Ì&=˜Š ÈD’¦Ú„6ö<-Џ‰3{…»34ξ§ÒTêV°WUÔãVü›ª¼¾Ô~d¬~9UÆjXúQÏ8@EµÐª·„Øl5¶æŒSÕ½úq‡]@T¦œ— a¡º›ÇíéÍ¥Öv¸Áù´odº‘ü:8Ó'÷µû±·à2ˆÝ‡NÓ ·| üq® ª¡ôO¨X*sç¯H-d³÷îÃ18¥ºÍÊ”L9û„–\.;m烡8=«kìŽR0Ö¤5g‚z:­Ž*©¹¶@=ÎFdØ·å²Çu°ËmUÓÒ¯qÉZ2™ÌÈÊØ!@µ[ÏXªAý˜Zq¼¥Äª/W?Bç«ÄÝ.ÓÜeØ~‡ç+yöà†s¨FÏß!qFÏ㲸k©¸')ÛÐïÕ[DÁ Í‰L<…}*P$ë?2Qß¡‡*Á~Š{WlLHeܽs}©Œ[”Ô×¶¥éxÁ“•åñM}¼°ü$6÷«íu´%Ûuö]…A†ê²iKÒÓ%刲†Ë´¼.}7,¥þáäE2ø7¨LÊÒŒã9‡¨5΢ΣŽ?Øi3„¨¨:^ÿEäõ²8ž¦"Õ/¹÷+0˜v'9I8Ni­Í…Èsq¾>=võˆ†„}_~Ÿãdù©Ê+Í8ñ4R«3åf—¤ðOC¢êƒm¯S¤ÀŒyÔ«’Ȭ{‹d› gÐÙZÅ»ý¸ Ä0Qº$¦ÑJ¦ÅgQÄI[Îz ö}åqûqr _Ñ XÉ¥ò’È¡!P df…ý{÷Ú½‰nĹü†.•¤‚9ɨôÆÔ40x§Ë ‹ÑÕÆ zt‘CW:'Ä¥AšÕ`I¶¥´å¾tDeáÐcèSV(̳Yó›½›À^ã¨Æ{ÒcúÉœ¡Fú$,¶õ|}Þ‚¾îÂãSô§óø#…ˆ¬¢ç€ —I=¿Á÷ÒßX¡~£#ë#»µ¶dP“ @ØE´9Iä…O‡Np ŽÕô2hUÂâ†ï”B_tüŽ„PŠŠ¤ÖâÞâ#•íÝŽþò³Ý-ýG[ÑNÉiÒÉÔ½Ñ!«^`.¤Ô ¥Ã³5fÀ^ÈãޢܘµkÓ"€fœTq‘G× å–ÒCu÷³©û¿(‡4ŸW†‡4ã³ùè8®|_ÚÌ/Å)J²Ž«øý~û| Éä9:d·ÁBýñA®_1Xˆ¥¢€zƒ+Yd%W‰ #Ù‘$'’ ¸pàËèÑ‹)aÈ‚?‹køž† ×ô‘¥ÊÛ¥PjÎ7dgíÝcïÌhƒvËÇø,WÏÁè¬ õó*ÐòŒU@X¹ 6ED¿IãÄ»ø+x>¡ðÅ¡3r¼3<µ†w‚Ft¢ ¨Ÿ¹ (ߢ£;þ‘ëp3úÍF?/áóÁ𝔥ûeÒfB±Á˜–œ”@åÎvÞúže¿õØÌ—wõlÛÏ ·~pµêFã“wÉoiüÿl4ý=ùYzlŸC?¨û©Õ¡wSùqocû•ívhÔÕÅ–$ëךKl©õ QQp¾…_QZ“HiŽR¿"9ùð‹8á!½,û ‡Þ¿Lž§rXÔÓÞÁyOÙ†/y ‡±Qîàî’/+\&þÔ/þìåNy쉿•žÐ™Ç÷„ÓÂ"uņ‡£@„Þ^Gÿèœè‚ð÷…ÔŽaÊÊKú·ÓÄž×U,lNtì*/(­Ié­8]~ªëü- «‘L3é,9¥ÔG"ß«GÒˆºÌæÄÔ¸DULWxà “`Á+Ĺ`}mXó®Îàî¢{©-{{ ÊLo§–¿U¬-ܰndìázºáX-e©£ l7Y5šÀ*Àb9ØÒuHu&캡p2Üý¦ ÇË7Ø#öÛt°4tú„ÊÚþ`p·´BÙ$ÇÛ?qkH1+r‡pLó=ôþ4Õ§Û,™B›sÚöœõYøDy^4yLá„•¥Ûì)Žž5¼V0ÍG<õ¯çÂDÜ*ÃXzQ¦Rë°ÃfR±×[Ô9V³ÍPC£B÷GuÕŽ÷e³¥hLÙ ÉÞ‚FÖ<9t+¡µÄd£¡Ød&ó‰§ê–´‘nµOƒ}êt€®¶^Áµ êXWeæuâe.V› R äéjë‡^S‹Yý3NèúBïøDÎêŒ ’Öš!3èÍ ×Ÿù’až8-ÙüóÊNw²Ñ•}„«woü/®.ƒÍ‘Ñ[K¾Xd‹…Záýëþÿ¤+Nü×gØÑBqžâ&Îs¬ÛJÇ@|w8„ƒv§!Ü~xç]u;x7}•´¾C›+«8q<úLø·ñΛ\ÆË„.[©ÅZjqØ-5w\\Dû9›­ªªÌRf/uqe˜ÿ›endstream endobj 569 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2642 >> stream xœ½ViPgîa˜¦UD¥3¡;dS㺘(åWÅx_˜òÑhC9‡ápa€¹˜wf˜a`P@dd8l@oC<‚‰B<*Ù ¡’Hb*kbÊ„|Mš=¾QŒd+Z{ÔnÕTÿèïíyŸïyž÷ž„H$ò[µ:$9)Z*VdL›:%$6^)NsMäýEü³üïÄ „ý¬ˆ’€·¼=/<ë3Ó5CÙcPÔXB,mJÚ½$9E•–¿#C6}êÔS¦àçÙ6•lq ìÕèí;“³Òw&È¢1²WWÊÖ$gá— ²€d…l[ìŽhyœ,9N¶!ö5YXè²PÙŠµaëB'þ6¸_¿%‚Y¤H^š–¬ŒÞ¶}uL쎄Ðò¤¿ý4™ Æk‰uÄï‰P"Œ˜Dl$Kˆ¥D ±ŒXN¬$^%^&V«‰5ÄuŸø˜M°˜“È‘"¹è[dÄNOoÏ6É+’Sä//¯\jµkÄG|6rüÈÛ£jGýèíôþ5û ‡6süÖ,Ñ@ôÓVN¢"×Bn‰®Yð0†½Æ’ݰôZÍáÒà7LêkQ9aFœ¹gA¤ÁÊm†L—µŽ‹¥Ìd¾Šüdƒ0ô&­QÏê’B!pt›å:j&*• J¡›Ÿ¿{¼d!€ã%œÚ鋯\Ã??º†o 6Ab›Pè¾Ïm\Z+›W¥8°CXTÌêý?2ô5áµN~J4[ØH¡¦0B ÁÀê䈴 1Æ j°Ÿb¡Uºñ‡ýŸtvù¿ æ°‚aó ÃÂÑÞ vñS"¾%JkÐSsú…Ñ ŒÁKe 㔂ôÖKh Ñ€F~[ƒhjŽ]ª/SD&ElQl†(Ø^³ë´êdÙe[kI{éîäáÓoÖ…“Ю¬ŽªŽÊ_¯¥ðm…[ø¶"NÄûÞE+QŸ´ …"4MXÔ ©“KjÉÔÚøƒµŒ6^¯žTºû=ïA¢WÍBZGýái• V¬Ø’ž¼~"PÉp0–Øš¿ä0¶fKÉ î’Wà=eûÒæuº™¹ó0‘žû…îæÏ¡»ïs?ZÆ/äÇI­M©Q˜Ýð`eT5ò`è`áù_Ñ+¡K# 1gþ˜`/ËQ8í{%“¤'/pØZëP SùÝž?C ˜Ál4•yºT}òþ'ì‡úr[“æ¡v¡¹Y¨C«²|Ñ‚k×9×n—½õ£±ÒÒ‹’4’>[°!oQ\l°ÁPù•¹ê âô‰ó /øC“3çuY€Þ d>#· ™Â˜¯òZ½Go8º¨ž¾Â¡ÎMê3ö¡xüð£5Qnƒ§“óïC¦èÄ[|­­µØñ°µøïã ‹ ØXX 쎇RĹŒpŽlG¹ÿB0E€¥{ ëV®Õò!¶>{þ-ؘÌÃô'QƒÎ‘‘BÅã‚©%¢vª¹78t‚“÷¥ƒï×Ç2Д”v°ï $¡Û„I´RËs^^·b1°³ øŒýES資A7ÁhșΦ /æÎË™Š&Û  íWr¦1î*pfs¨òË7œ¾t ¯ë“–vb¢ Bó×§jÕÀ&Bñ)“µ…3%Çm튶ÄöðÊ×aÌW¯Ô%Ue×A԰֙ˡy«©ùðYGtÀÙ˜œé”6n“a™aE”°IIÑê =_§½ëß çÖŸ¡è…Û ¢Ïø×À»ûöõPÂŒ³RZ=9g^B„ÿØqØþfé[½(Èö —£wœ(î¸E÷¢5½bþ’ãÂ¥ƒ¾H˜¯…ïRG×aâ#^¿–¸ÈÓWÊ3š7,…Ëײ”šm’jãòÖÆG¤È£à vÖªÚòkp?Ûß‚¶1ÅÕ`Ú[ÙÑÙi¯…SДZ{`›&D³ÍmæŽT·™›o·¹|¯÷¢E½ÛoûÑ<¿’šËòÁ`дÁyq°枨C3Ь¾ãç¡®±S–n3¨“Šru©Y P«¬‡(úÔUÇòöùþîä!™ÂØLá©Oè8‡¼Íe8·¸”ê%hz_ݳ¯Gü³x¸·±±™f¥jïÎ<2À˜¯º/1ÂXþ¢Îi€ `ñÁ°¦3{ÐÀèR Ã'ÜoŽ#-ˆÂŽö3Öz¶o•˜HôÜ_=,¹–‚2`Pl·9УùÒàa6>b¹ íÀ¶ÃûÐ:ÜÆz +çv2¦lyïÕ^?:FÍ×>²ô÷üºR=\»xAžÑ[†ÁŽÁgR¦ ÍèžDBœm9Ô¤^ÉÐ '’J *cQn6E%^Ý¢ŒòÇrÖeÉ:Vr±ä˜­­üRë©zîDó8 GsFس¡È z$eR ZŒÇ€·xHÅB³Î­¢ÖP¸qÂ4ȇͰãÐî6åŽnÜ=Pé Xjª¾‹½ãV‹A4Œ ᙾ‘ èBbK5‰X©;פ[®¸y‚¿&†úeþ±CŒ<מ4gAØZe¶øÃ”2}GÞûÙušF3®2Õš¨MT/]½d(`5²ƒÚr¡¤ËÚj*+Äåš FA• „3†l£Æážcf»ãôEÆ•ðv|à àηû‘‡ý˜!ªPê}ÝÆw£–n?º‡·cªâ@ Šóì‹h…Ѭ·™,,÷\*·ß8{Â\cÂí?É ÉkÌ{L˜üj£]]”«ÏÚW f >Ì'|ÞX««‡‰éZuÞy¾9Ô b »Tú]÷åY¡ÁØXÄ>÷ 7̱crcúúÿ7 Þ¤—ÊÓm ñ¢°ÚѪ†µ Oviz¬é‹%Žˆÿti;ü¤¥íßõö°úF¢o|Ñš;=w–a:¾ø:ý¬@ ~iqmöÁƒ2M¯Ô§UeÔNWñA -ú±gCö£ä~ßoú7õãî€ì¼ÔÚ˜U«À.NN×)tŠé€5¯µ6RaÂÍ¡CŠ®ùó‡Ûî}1 ~ôùÿéâKÏHžþon/,ÌDaý"´Ò)F‘&©£+ûØvØ)úT}jyJ+T@…moYÞ+±k6…k´F#è‹4V½ÊáöÇÕÈ‹òQ:ù%UHá°9IndߨçFznØé=¼GÕ˜Lf“Ùl*5[.{{»*ê,6»Åb±ÚнGÄ?+”ôªendstream endobj 570 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 346 >> stream xœcd`ab`ddôñ NÌ+64ÐõOÊÉ,,M ªÿfü!ÃôC–¹»ûgÒO/ÖÆnæn–Cß }üÄÿÝ_€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐÝã3000103012²¤_Ã÷Ÿ©õ*²ïO|Ÿq˜ñõÃï¥w¾‹ÜaþñWì·è÷[ß™VÞ½4çŽä‚w†~+wsüneû­ñ׋õ!Û¹ïY¿±}çý}‘õñ ¢5.v¿¹€*TØŸÁú]…í;G÷€¾Ò…?æ|_8{!Û ®'Ür\,!!ñ<œÝ<܇z€ ·ˆ¦öñðl^ÙÛ××Û„}?æòð20l‰ˆendstream endobj 571 0 obj << /Filter /FlateDecode /Length 4620 >> stream xœ­[MsÜ6“¾ëä=è>§]L•‡"¾WíA–œ×ÎZ‰_YÉ»Uñhi,3ž*äȱ÷ïÈy»  fô©|0‡ÄGè~úénèIYðI‰ÿâÿç˽rr¹÷ǧ·“øßùròòlïàÔ8xSøÒóÉÙ§½Ð…OŸXm /õäl¹Ç¤˜žýÊKW”ZB‡³‹½ßXw=-ñ·å¥gíש€¯Üx6¯‹j•|;ŸÎð‡öÊ96ŸþÏÙ8´I‡ÖºðÆû~èÓ™Rª(KÉ?Ng$S’C_ÈqgkÛj]7«éLJQxmØ~õFH á Þ ËÖY§óôGß]B[ÁêDä(b¾UBÆÛ "; ”ïæL–¦pVNfRΘ°˜³©“°eX3Å•8Ͼ¥“±Ù;ú¡œð°‘MX¯/9¬hÓè:iWá%¬¤—;|¹„+ñØ«ämo=;j5>¡ ’ýÌKõâµ ¼38Pø¨8%çÅ”KD±‹gf³3&‚WñÌ^žAah3ßàìÊ ©ÙêÓ|ª9l€·ì¶üºÃf^v\wñ£dU7ïâ<#ea„ŠÿŒ«m‡ÃE¡•ὸÿ0}Eáœñ}SÐô¯Îöþ¹Wš,£ÝmHv«!)ï |e…(JãÉš.šúJD»+”šÌ¸Y¼’À(ôñ€+Ëg ˜‚SŠ )Uø ºòÅpŠqnYlíB–…õfbáäµ  +Of ½vQ¾—õש6 …eUªk½é9vú>ÑÔçá=žï;éeoºAe£IK£ò÷ݲŠ}¹É¸’köf™Yôÿ¦?f§ST@/XŠM“çºé¥“ìW|ä°Û´4^~˜Û5ÌÙKÛ«ÎáÔ›]]-Ò±7ŠŽ{C{æÙû«AÃ×uµ¼ðì¸Zãrµ 8×·ZUa̰¢ïÉø]ÝõÃjö¯zýyº§,œ7·ą́Pýâz|…c+Qé.r@õU…•<ª/ÌJ½ûÓ°ÊÈØ%ZMøš¡b-lKÕå*¿Ì2åhg¿òRäZÓ.ªË§0]Ë71°Ò‘éþF¶‹ Úà­CÄý—`ƒø¬@{4g€+ªÿd=³†»ä§zŒ­JÇ !x*U4VY–ô%7Vòè$k¾ÀŽ{C;~Œ&ä>lfY`Úˆ7à¶3ÛFEóA1{§uGãÁÓ[æ23€%eiسÃUœÝa8Ôàñ¯‚_.K'X;E%ÜaMuN¶*Á}Ž=µ`릗üóçDMæñ½BTÙ Þ6©uWá )ØW½¨×ÓÞ•~ï—/Ñé¬Ûúã ßž#)ðÁ5ŸzÑ,;J›eägÙËlÀÞhóËFÔŽÙ)p¹!½Í´:3„¸½qé逷ûeRJi 7&¬÷Kµ ´(l)zR³Õ·šÂSF°`ÚßË·Jò­äà|µôûàïžÄH­.Hc¤)„vƒ%õòà#-÷@û¶V’°Óð*6ÂA2S4k‰ƒSD:ãfBûÓyÚákuù3Š{ f>¼¿a :pfƒóèË´Ç N6_y»Ì¬Ù¦Ó]wÑ<||–öÖÑnØfgî´Á*Õ[èÍu» dö]« €ÁE "V±‹ú|xZ+Óû¦…¯Ïww# ÅÍ]cò®Ê£ü`T0œI[îK¤Çföy4:¾ gY¡Ã¤Ð úôàâÙž4>º¸ØÎìý ÷LŒƒ•Í ~GLÎrÆ-!ˆM ä{—ÿ2 ç5û”ŒÔ´ø>xü£¨Á^fÝÓÙë5žfXªa'ÕâS,á<3íeå%€w)šTÀW¬¿©h½hÐ3ʰ(4#nh´ÿ.çí,ž# °’b.¡J–mí)¨$Hý~ Bwë^a¹g×V¢Þv]CÏÆyº=êÄqà­¼Ÿg4"ª®$’#…Ü—0×øFÜJ˜JƒÉ’¤®>{ à¼AÞǸDÎW¸l†Þ%*úLŽÇÌÇQÓÖxÂœÔ q™ Zô8ÜÊóL!c“ JéêUªÄé8ùå.6TZ&–@{À>IÒdö®:ÿR‘¦|‡ $c<îØ+™}|–ʰœ‡¦˜&ùuj!DnÓ­^]n:ž’âz€œùUžxƒ6‚f^\Ÿ÷©Ðþ§ëåÇÞ*æm×ó½á± «žñÎ^¹‘­¼ºª/æK° 8qÿ£dϮۯ;R.TF먵áˆa_E®ü6I¹l 3ᱚü–]<†­½©f>rGÚÑ΂Ÿð‚ÏÄsD0MúôËéÛ§°{ {¨A4gT?¯×WÝ‹ƒƒ£ÓߊÓ>c,»j›ßççë¢i/®‚ýg8 !|úÑ{< R¥G˜¦ãŒÑ€÷à41?P¤FŒô¸ ®TëÏ…O í†³ 9’ÔµYR“>Ó‚³ª# Å.€ÓÏãHa 3 õºM•¬`¸0uµO]‚T oeTaäß®‹h:Ñ^þ.Cðª€P3•#B”‚½Æ/Dý0uÁ~Fv.,Ĺí2§Îm~`yoŸGWÍþ+…’¼ÇÇÞU‚ŸÐ[±·Õ¨VBCñ‡)«öÛf¾—ôxWª˜ûB—®$.°µË%Ì;T$%˜‡™NšÐ£¦¹e²H.‰¹œÌן#m0£u½wWÑ’Ê ýáé Ÿqš:‰épl·#¬î`œØQn7CÞêý ~öèdîL)Ô ö&=˜—?õVã¦båÌ( "ÅL6\6xMäؼ%P)pÀÁúshƒK"è²–´ò]su3·Ð0Ž!¢Îòç[—ßbÅ bæV«”Jñæ@•ëÓ‘Ðû*ÛÅMçbS®¥ÜÀWû$ûù[žn†öË*±ž:ªý8»³®¡Ë”Šòri7ëÐu=Xõª¾¬Ú:†i ƒ» qxç ‚ìô8f6³^g.;ú¼Äx$<ƒa¦èt/‹ŸÇÎXE*Õ‡Q ªAþ…0L*n=;j–Y :‚c13ï7á·¯ëQf0H°­¢‘ßìSöaµ9"âã ­ÖÙ¯[ x7Ç:É1=­ëDl)GvNÙiÎøð4ÅÄÿ@‘%%]¾îЕ.ÅM„äR$WñÎýè—t9™½Q ‹Ø iëB¢ m]H³h.¿åVz¨Äð]dŠ×5S:¢'NJWþðP¤¡°Ã‹ú¼^Í·ãQ© moå!‚¨M=OØ;Ë"Èì-BqGΊÜyADUÚ}©„/6éÓ¿åqÀvWꉰ\‘ß (ÅAW/ ɽ}D¢V™’ù ñ~‰ÜE­Úºû¿üH@Qàñ'=@'°íÈAÉyrö‡zU­Îë¡r+xbÒ¿†oÜO3Ðx¨7ì8}AèÀ)P—@Ó?'UÇáJ-ûW½¹÷¸ Åþ½Ìq'/:öïËÂXwÿ]S<¤~0Ñi'Ôô$tdá]Èû"wÐá1$}JØ…ôʳ÷»`}Yç]å,gÝìb26ï6ØE¶ ø}`7q(8®áÄ7‚ð ùKºÉëìgFVeä!s,¹ÿí)ß®»ÁX)ôª§-ï糘nèÇxþÇõ|µÎ”tS­í/C†³_†ÜQºrVÜ?PîÁ÷ $SRí+ ¡O‘t‚ÐQ;3¢,¬ò9¹ò ´ ^«Ò—»»R<êJìÆæsõõ[I_òúí­ÐäKºuªI‚LùAF&='åßóÅq}fᢠBªgý×â¡õœ½#{—-·äMŸ6éÁ”±QÙàA­|¨=!oø®S`á "§{•¯n°ó¸;“KË:·‹c9Ëêi¥ã^¬+¥J²ÊG¹Û'>¾¨äèúÇäÀ£ÖC=O¢JÔ'QNbØ…wÑoc,²àý €ûÜ@º"ÄÔ‰²f_yù4·7¬K5áàÄ wÛy‰ròQöï \C:Eoÿ–¾d>¶‚B6sQQè 1ê‘F÷}ïÎ…c_f–Uì¡T€ £Éù¿þ+µc*Mƒó$­ôèšZÝ.ë‹(P¿Æž=G ‰bºæ%ŠûãßãHzìÂS%Å`Íúê^s³ÈMiE7l;VœôÙ ew'|qÁà=Ç©ç~ GM~}ÇBB·c×ûÜY|“žÆ§]æ™ý9ÑxÚ\—r“tŠ­ªügÿVˆ×K,¥&w’»]o»–ì àü.›œøÖÂtc‹b_É'»o%…¢ˆB ßry³Ìƒ/ß~/¹yŒõzOØ‘N××V}¹Ãz&¡AÙ©ˆª£ùþ•ÆÏ¡pc‡k"ÔøÎFNÍB˜Bãºè{u(ÖpGÙ *Öà_¯€#ß]°¡?‡És&cÍV£É|‰³o»IC©e’Árº=8ü­ ñL ,û{GØ0þÅM¿Uèˆi.Ý—ÁâE„ÊÖxkFcR¦Ê»³²õ“X¨( X·bƒ…°–VÞó¿DŽ˜ÿ¥ÁÌ(‡³¶°°Âí§ ÷:ºÍ)c±}‰Ég˜…Up(Y‘{u¹• `‰WÜA4pÃþâ§Þ…,p®›è þ¹eUwvŸû'ùkX‚Ø„sÌdW:9÷ü ønà %LÆ×þ1aéÄ—º[—Þ5Õcî9_Î'ž'IØ@ãýsïÿõËYÏendstream endobj 572 0 obj << /Filter /FlateDecode /Length 4662 >> stream xœ­[Ïs¹±¾ëäwð-Á*s4ø 8ï½*[ÞØqV»^Yξ*ûÆ%Ñ"E/9öÚù—sÏ9Ý ` ‡”6R¶R&5ø5@÷×_ þ6ª+>ªñ¿øïÙâ ]üvÀ鯣øÏÙbôüôàðÄøKåkÏG§¡ q§*gýÈj[y©G§‹ƒ÷ì¸ùçxRWµ©•PŽÍçÓñDJYÕZ°·cx ¥åµgÍ|±¼¡ï\YáÙ“ÐÌ;É^ÌV×±SíŠNgcSi%ÙÕX¸ªVܰ/ÙóE- ,†kh±ùû”–¤wƱM%`*ÍŽgaHiTÑ¡)zÌÓj${õ¯¼Ù<43Âaÿÿô5l•qùVIi+.pÃNϘÔãÓO¥øh"uåŒÁ?¿g'ô2œ«ø2Ê O‹–šÃè–½Â%+_yÏaƒWíì&[ÄÛÁWŽ ËñFHAû‰…Gù’—Ÿ³)`œ0®”ì'šŽ}`ú|Wã‰ò Fež….Ú+çØçl¬Õ’ÛľÍMۭذç í«“Š}¸,a=kn½bÍ_è"›®<¹â[è>Ÿeç6¿ò8Th³\¥MtìGZì¦Ë ®¶¶pÀmlÆñ²ÉmkM †ïÊ ©ñ°áœ2~4á²Òð×p˜Çptœ°+ç»lp¾†ijCþn]çexâ½Æ]Á‘LmX[t¿\¥õk/kš:iØIÃ~ŠÂþ­ËŽçqp;Ÿä¼9˽vWg4Û{øxœ‡ÃŸ-ó·XWc.¼…eÿ5ža JÚàïÙëå—ÕM3ž o´¼Ø@@{5ݸìÉMlfù½€“ØBö¶…Õ¬[pmj }ài×3I³‡£s.,âírŒæ Vp6›¶ßÑŒ,º{>rn¥a í£s?A߆·¬ó&¦2ÆòÔÄòЦ† X‚òi'À?Œ;ˆ’LrÿXzQÑ~8=øå ®4!ðj7`[7ØBˆÊê‘¿ö–¼>_ΞBSÿ;üTqeì<_ãVkæÁf*Àô_[×Õ·l{Â…œ] _ÁÿóéYE€(•£'À ÙGň B1„ %¡¿öìõ³'øE#±wóU‚r0˜«Ø Üáõqü ƒØÆb[8N§Šu*8-§ãY}k×ñ@ËØ§*É]g¶OÇ£ÐYÙôÿÚéÍzöq^‚—"Ôì4³ÕÙ‚pövºšM׃¶ÅᨔRq1U\Š(šðŠC -N-‹WÖYž›{o6KÁÇëær7Ryöu­Wkô︫‚Á‹Û¯ž¾;ùñìÓó¨ÜNE>qÕ¶Ÿ×ONžýTDÛô?¯–Ÿ¦gmµ\]~nÎð-þí*k~žÍ TÀžàƒ` àÏ.²Hè SÁŽ)ü:Ú›-®(âH¿Í_ІßÃ_â4^°OÂgÉçù@«E“£qZ û*uŠô—±ŒÕ¯ŠÖ×iÎŽº÷ìh^ÆCxb`¨bL$HHB´uJsB<Å™ÆæÖ°ãÔÓ4Ä6´ ¦@7Òã’0~ï…²E\™ÛŠò»có³üÚåb;Š*‰¨ØÏEËùÖ]šëÐÞ‚½(ÖW®ö¬x}ÉBa¤S+dGËÅ"Àž²…eäç3+kòÅ!!UŠH Ðèu±„¦üºN ·Di5Z²—¥­¡qÃ5‘gbpÇ®rÜ‹°' 2ù„Mâö°†À%š4¼†( ƒ?ï1c\`Þµ­ jöaáj{ȵ©SðÛµžÛꇷZhÆ }dÍ]}?„Q•Ðj”®’®@IÊ8„0 ÄBƒÌìF˜])R1]º0…&়øBÛ€/8¡—Å$mC´Bø[·?Q«èô†@…œ^§Wš=Â\Á†}§ì gJ°;øKtÍb]3Ú{Zbm“kF¶_rÿפ·‘.äG8-àt» È›¼¯„›dXoÂñ YÂÆºøvSœ_ö½Ù@\6> º•6ì¤èýò ¢©À/¥†Áf.c À%8Í)=â^ÝQu½ƒªs@céM¢ÏgËÅ´Eº…d™@ò­,‰‘ïŽhˆÝxS©Ú‰}̡քh»BLÇo>0CÌYyKxÌkÍsÈŸ‚;+ jåH#vzƒ+È!T"k8YS˜û8[|BQÚo¢ªÒ´Ö@B3ðÞT ×çÏ9xl¡Ë—÷#_6øqj[SX8j…¡ÍgËØL%°oü^ø+Fà–¥äWó<¸™ÏSGÁ~}EÓeÌ|âtäGËz iWËyZ/õŒfÕ®ã#‹\éX…¿#,=ëÔˆ³í¨q`vžÑˆ¾:à0]䨤Uü¥‹†%ìüöeqpóðà;¤–[òÓf€¾$<9^¶³¯cÒÜrO _XL¯Ž_ÿާX‚E3ŸœRþ!ÄIx£Ÿ6$bkþ"EîÐåúAºC÷ÊbT(|»6¢ §aÔÅ…@úÁ¬]®JYä6”NAã.3ûk'Õ°›v „‹¦•Z$:ÁAXUhX ÑòΟ¾¬2¡!ªaª’\eh¿¼iWR¡í’’Á®¹9¼,‡½m.¢Ì@š%{³ ЬåbI»<˜*YY¡÷¡g©;ì!`9z–º×ê17¢;¯¨€_Ž4²UB§«¹UÚʺF„7ómé{À$Îb9Ïg 0©ñÁî,.ù‚…¨ÉV_¶Ÿ'*¾4cÒ/²~Ć‘dÔhÊiúÓ£d¶…êàU¥S$|Ï~Û9Ï !h ’Ý >Ep’ÄwžÝôp©Í’|íd©7!D4>Hôú–o¯$Làì—œ°5óY2CîOÔ#ÚàF¸ÇîèŒ}¸ŸeïFj)àX‘ÞÇéèר æßIY.·ä\pÉHM1IßOÓûý£Ájþ=½Š»ƒè’evÞçyÍ]3;šJ –s‹Ý„ Ruq_;%º`U³ù¼ÙÉ ܃;™AúéØÚ€ºÓPš@,ºº‰ ذt Šü8¿w*K”Þ/ýcXÐC©ž åî]Áàûa;=»Bf€ÇÊ¥º1Ààȹ-fŠ/èÉn׎ä4°»2•_ Ç SüŒùçó”™”€amâ:6†Àø"¶­Eà ¤€A©¨n†B¨ˆÜᤰÿ¯³âëïcb¤¨Ñöc`ZÖ‹Ùº°É^a3¼Â0Ð`M–7™§®–ë(4HÞ²ž›}ír­i|¿¡ <žp**aqú¸RÂby÷BçþÚ©¥Å’†rSîZîö}Ò~0)Ó& 9d !mVRxÇ é!¹¶Š½ê%]mnËdœGÏë0`SÅ@«ÃI¥(º„Ò(~á*•F»ÆÚh¢\±/¤Ym4T:»‡J Ô?ñìy}z„³g4€W‚"nÌ Ð¸ Žb gDMø®‹™¤ßÀr*cm 3œïÖoÞ³TÅr=pXÕ7ôYmîÃ38¤(øJø—‹Œ¼…rŸšÓ6å•eôL¤äË<^Í—ë˜m‚u¼E)’ýØÉìòcP‚ ±p°Ò“gé± pdƒDˉk±G/˜ÁÐ% `øèÐÜ€ýc nn"PNl3qæ¼@¯\ H¨Î8¯d7W-Œ¿åª…&Yyû:m $n˰ñT ^#µŠ KZçÛ]¾!·Î˜>o³ 0ÂÞµƒ²‰Ç*|¸ÓJ?°—ÏŽÌ;å û0Æ–Š(FŸälUkQI—ŠÌƒY ¼“B…#zg*üð]R1¯8¾×ö­©â¥ŽP»F"l‡0µ¼hoVç™îBTm÷#òЧWòNLÇâ!ÿäÁó +3ÒŽ¤ª+S—äàÁá§õ:ÒàX¶¬]²¯5ÀÁ¬¶÷Ñ¥ÀÖ#‰Ò¿Î!G#’k±G骙$E†"Ô¡æÊÝVU +ÄŠ‡Ì÷(y-Оåulqòºk”ç+*M `^˜N/|3“±ÜßOÓ`XXæÐ;dEÞ…¬è6…1ÍîPìÀë`B³f–Ruçq ­ 9È{7«ïiv¿›®\äaÔ§—û|e¹(‡ñn(¸KfB¡ö¨(0UºXݼé`Ö†ë‡Ø2Ïí×I9.4q$œliò·%:XTªeGr:4@´v˜Ú©ÀÀ<‰¨ìxJÜÆYÉÎgg³›€PËÊ%ø[qÍ}O¹Û Z¦µ!Ø RÿØ= à©×~$ìI»UNúÀÖðšæ„hFôôfØéœ–!qÁêa¡úØ»§ü¿QÁB‹‡•?}ÚÌΓvÃ/¼1ÿËÝR0.ÕÙòÏbúà]‘ù½JݯyÉø-¦0y­ÛKz²mVùŒ6!V¤}M¢É¯ÀògÍ‚ò¯ðœtúê«ÂqW;Â2 ½Ãµ×OÂg4Û¿5«n`ÃÙëø„[±_æ}ô¢˜¬÷5M×8gÝtñæGX¸Çk!»r¦Ç§V[w+c//‚‹àhÂm¨i¹¨mêpøLp$ÙV!„ HYÇÞW¹–x?RÇ V†Õ”|ãÛÙŸrÐø˜×iÒa¸’Þv¥E’í²õP’p~‡$qCViÀèŠêeÛ$d3» Qf³ô­@6ï\jª?€jjo±ÜTàÁ.åYƒ˜Fb®°9¦Å›ò1d³‚jñòIÓí—oXÂ;€£JYŽAA܃ä`m`Ð#lËóvP¡Ç'%ìœ^•TF ÕbŸ~J÷ºSý Xj±µ¢‹2§¡¬LɆšEjⲫnƒ—OQ“ÚT[†î¸D›6×§a“•ÛçëAsD=Ý5¢H±žCy† 2ÂÓ±s— ÷T¹„¼h9/a'`¹`T`¦Ž>Hô…;Èå"›¿Éï\³\ŽXÏÖ©}‡´º°¦~6ÁµÓ¨?i?®ÒÈQ …3j®‡P4¿ä/ƒWg'À&!ë.QogÌlês{¯ÐÒuuÀ‹¯K¬8Hl¤B,›Ÿp~ñòPe%*`ÜÙJzû\¥-FÛZ&CúO˯( “/%PñIé€ïò\"zšåþ¡H?F)oÓ¢ÖŠ\¸"ä ˜ór0œUÖ·¤nb;ÅŽÞ£*aBgEÉK ¬á^Œ®)É Ê ’ äÔªƒ ¿ŠS#~ž,cè6º`€oæA¦)EQ -LYéø}ºxüŽð‚èa‰j± ¿²Ø]ó‰iC3ß u\^ÇȉÃ>VС /–La7,¬ DÌ>ÚÊbû@+Væ‚{—¤(†B¯sôö-­X%v"ˆAÝíWHýÁú—¢q0·ãú-½·Þ¾ÃH’²sÀèVÞ+y­Ÿ¦Ë|(ÈÆíîÆCîWnˤCú±-×Ml6‡ŠÛ±Y™kÜGÛöIyÖ|ûW9Áúu_ïáÙSm·¥gz í.íYñÊÕ{¯ÀÀÀ’òí¾»öŒa3ÙÞÃ\€ŒRøÝöN?¼Ñß°èE¶ÀÕý~xƒˆ @œÍž²ï¢_ãïhpÕëBŽ\`f(èæÖŸ¿ ¯©UeL·ÃítÝpÓ´Ãviñ—+ŸÙèpÕðÝÍ /á¡ØÊsÒÏn.ãàæñ‡ý€€Ž÷¯XìÑ·ËâáÔãQßóæ¼wèøÙ½ ï—ƒÏöcæendstream endobj 573 0 obj << /Filter /FlateDecode /Length 4482 >> stream xœ­[KsG’¾ó¤9ðŽÛ"„f×»J»;å•¥ e›¢Ç±kÍ¡ BdK›î¥¡øž73« ¨J²hÔè®we~ù僌êŠjü?þ;]ìգ˽?ö8½Å¦‹Ñ󳽃SãàMåkÏGgï÷B>r|dµ­¼Ô£³Å“j|ö;U4–®ªµ„g{¿³áv\ãoËkÏúOc_¹ñlÖÎçÍuöm:žàí•sl6þ×ÙkÚäCk]yã}úÙx¢”ªêZ²ÃóñDÀÊ”äЗrÜÇú¾Y¶Ýõx"¥¨¼6ì¿z#¤€†ðï…eË¢Ó4ÿ‘ºKh+X›-9.±<*!+ãmX"; TžæDr[Y1šH]9cÂ^ŽÃ1)'¼glFÁr½f?ìPqÏžâK ‡gÙ‹ÙØIÜcÿ;hè„`ÝpèÅÙ~¯keØaèÆÞf'}•MÕô7±›Òìõqšƒ½c¢æâݸ‚7^Á Š=9ú5åד°Jh|%\]3¿ŠÓ º÷q"-ØY»(šL^]áúj ‚Q^H Þº—Nd/še“ÎH²÷ãuû®«¡øéšîZÖÞy6oÇ%Þ_ç"ZkËN›‹lwí„$®Í)ãG.+­¼—EJX’vÒårÜ.»>—vYQ'¼7ìoQ¬m!Ö¾®Œv"‰õ³±†ÎÜòzœåˆa]Óÿ|u—ùÐN‡8r)jÆe DÒhë¢I"뢺2^‹m"Ë]Ç«Ò ß1ónŒ‚…R×a¤Ý7JW´†Îö~Ù«+M˜Ñb$\°zdkWiA0sѵϠ%=¸º©êóšË™ä„ªæµÁõ†9¿Ï4ì t5›«ÂÑ&JZ|?]p{>iÊKþ%ÇW5ÜÒë§ñdëÇÿ˵k>‹_¬a¤.Ž‘rIR.Yk¼jöäyCÐX;v7ŽÕÙ ’Y§,k=e Ž~ºÍÄ`yNàÑ Ö‡ÎÖÂ|ÍǸ ®;rpûîá’†ç— ÕË«ìiL»EmêKбnyÖa„1°Ù›æ†ÃhKÚ‡¶N)vQbo©œ€ÃtQGM‚Ð|ág±‚)íQ³¸¡7°»ywž-¬™n;£0\ßvCÇÄólW‡dÙ˺pS8ƒ­a†€È\0D<6¾ ¨¸á+#÷¼í³eßNÇñK‰€ƒÖÓŒ¯»Ûþ:¢ Á6üÜ|@…ã˜Ö[1@À!+¿Æ0À k¦k¿¯ApƒHãɼʭEþü&žÈׂ¤«(+°²á65-DÕÒTkýþ«˜Â¯´#ÙŠ{U‚J-ÎÛŇ ÍÜâß'hœt>Q@î<})!%‰‹UF¢ÚƒÌƒ¥*Åm<Ñ/^Gø_×h{Èá¦m†Ø¾°Dàù>,Q+¦“ÔHç6ߣiƒ–O©%nvªGiÈ—dÙiDØSѰƒÂÖÔdãÏÓ&H½P…”“I#Fä†vI‡ç ¢çªï¢ 8âdåŠq®Ú“oÂî®Æ5h؈Á6òAÚOaABâlðž Å¢¸Ú \ŒëÆÞÓ¼GÚ/_?ðð”çh+ÊC.I$­K+Ñ ¬Ët§=(x|?ËÙú¿E6"ðÕ»h¨‘yºB+ܶ`¡v+Ö²Ó€²HµØÄ¸˜føÓa€35pnƒÓ€â#}À!ÿæøÿ|!ÁšzË7Ì× r¢PìŒe ²5bqYp þ­ïÛñ øTz{OÄçx ¿ü¼ ,ÇmâUzýcÑ~~ÉŒòìøix®Á^nãQhJÕ=e#RDEžä³  3)éÎ"ò £v}p/‚QoJ8º‹ßMl@I>]üLðOyÁã`ÈãVdÑáj@åKé;?5éXL¡©Ã6Æ…[\ÞŸ0 kTMQLŽrz·k‹b ¤<é ?6—ù6â„Å@ 1Ô%*ïpÛ ñ‚élÛ´àæXaÓ¬_"X¤ô«5&5‘®T‡ë•.HáÛ%ˆÍ°Œä ™ô<|D'öm‡¼1Å[~n¼tìsÓ59Ƴ­^WàP÷xY`&@ˆbk¿ŠqNè%­ ‘ïëGqÉÈ= äH[8_úd\¿ƒ€^0ºš¹!d†¡úT[[µü{xxí•¶j¤5®Df84X[é6pªæ@ÕwC÷>“%j=šWvÔQôÃòýiN¶Š H\Ë6LÒ“Ÿîa œa98ù·¿ã~Ì@x{ümC¨*ÉÒuáÝ—þü‡ˆ‘¾Ò"³¡%)¹½k£Íƒ¾ Ÿ‡ÔŰ7Ù6rºÐôóÂ[.S'ðw*sҡɃ=9܈Ÿoá¼ZÜdGÙw+g*äj¡JÖ dKA$r{¤Š¾`æwŠ.ž4!`¾GÛu<I c™o¤ÑTš¼É0ÀÈINÕæË6'LxÄØ®Ö¦ Ò›ùÄÁs޹#³²rɤñ0%A¿6¸ñh”ÜA£ˆ/­ÂJ+¦4¬K·˜¶Gp#Ü袶Óöz;MBOÛÔ)(µ#xmÌŠHÉí¡kdIëtÔ;fIÂtÈ(‹±Ï…Á”H¹¯TI Ó÷MC»úìõwšÜÂSDÖÑ—Ñ~&}‘n튓‹Ù2¼‹2VºhG8ÒäÙ0–Þ[ðÌcÄ¢ŸD‡ ¨‹ØDqvú6>GSYkBU ò žÍ›á^’ˆ:¸ ç+ ùI©o¹†ÇF]"é ¾Þçûõ^ð‰êÇ%…|Súu?XzKhªÑ¥Ag•ÊÍ릪¹{nÕJÌã€,Ì8 ±É›Ùç­Q¡*«~X£@Y|j²5l* OuÚ_Œ™PÚ”»<‚û;óûðó´I4¹ÂøªIo*ç( òûŠ?¾©N1d‚dÜXvÓwfÓeÕõ—ÝôàôŽçà{â&ü'Í¿RBO_6”pM*ÚBû"t‡&åUKö"Wˆjà˺ oU…aÎí[™ŒÀaxAù%gû _:ôá'i¨!+zZjg{±Ã5ó!+ŠøNÏJmäBròQ®«™·î ^¤ñ;.¸Ri”W›Óì$‹eîŽù~Ù¸-Ü*¤° (<:ðý1H Ðôµ,¯f1ƒ^© *Ý=`,‹YÈâj"F fLZ+B øžcg òÃÐ…g­iÐ[c ؾ}0¶PMÇ¿Êh‚¤G³) f½µû 3“ñ€]A©8/ |æ°i¾¶ß>P-澘!†\mM_ u=-Tô.'õݼ°/t 艳×}x¬¹a'§á}¡¯Ëî¶`¤¤ÞÖ'KŒ©Î!ßÿ÷%>ÿŸìgì'I€¡¬L˜ƒžÅ!A€o²f¹Ù뻦“`įb‰«O¿Vⶆ_—q¹àFÄ’ðKH°rÓÁX¤Wî±x"sc T§?þC ô*O‰tž•µ<s$0J*óÅÀ¡ó•ä~zES€û¥òÇÅ=o;ø`ÁÝwV‚ÞÍçÜ^¬áÀ¨€¬IumÊ ?Dxó° )¯æz_ËGªÕžcÄH ÌÜš’îºú ¶ÞÜ‚ô:o¤î»J5$øëå\©XCЗ¨ÃI‰Û Â[&Ê„¦Á@qñ1øƒ¤tjWL€óuÚ‹›¶o‡é…ù¸'ï0†[h[Å.ó`߬¢v‰šXô'rñ0Õ!î: ‡äwyÕ­J.fY?oûôc\¼ÎûÛéÕ0ë?ή¯o¯/ƒ‰²ÉÛ†:¯,ˬ%é ±ïtcÀ'Ì”f z=]™¦Y샅iÍr¶Ã.Õ¦².‹Ñ#%dÏSVójkaÞ¼ëÿ>$µ6Û²+Š2dR^úæ9Ü´l&Q(Ál0Ø'¥¢#¥%K/ye¬ó‰Ó´@­~-rºÁ9ÇÚŸŠ)]÷z·¶©aRI€[r(mãI^¿ §ŒQ©6ìY{yžöˆA,6|4¢–èåË„QBN|y‰âÍUˆÂiŸ¬Ÿ3wÏ MöÉ£qA¬D”cÚ–Ö7éÑ¥b¿Û.Ó5„j?Z¦ñk+füC<1œÐfa@Š ßOÔGFºQÑ@9å?-I|Þ§ˆ©íŽ59!¡À—!‘ÙYᙲœ¨ß9ò‘¹Ûaê(˜¶âYŽ ¹JÔ\k¤¿á¸Æë(u—'4V}¥Û•Sà *ÅÞvéí´-ïR/ÎŽ6]î xñ¾‚s{8¥V Ÿ2jZ}•é”1¡¦b‰“Ý×À¯±$+謓_Wðš+c³’àà’×XuUcÉÊ£”W!ÕΒǸÜl1­A¢l¨¦ƒ³çOã3–ã&ï2”æ˜úPURè£ÈfmŠ7ªÍÁË·~•^9'júÓ‹çG[E[Á'I 5äBÐDÔc‚õˆò9_‰(U˱¶¯Óµ7¶¶žÃvbÇa¾ »TQ87ì\˜ëÜ•[WÒ?”[—` CnÎήÂå\Þ³@”jÀpœd¼’p¹OSžÐÙHÒaÔæû«ð`dÍáò@U•¶ß´¹i¦¸­ÿ:]Ýé_Û`ܨùRÜÆXúRÎŠ5b÷ë,Ë!ed%þgUß,bAy„al£ˆg¾JÍ]Æ3'ŠªÖ°äî‹Þ˜›Ý<(®ym4gêßU‡×wTBkÆúÈI\ˆrì·]u',­æ)ÞÊ%íã¨+‹ý†å¾!Ef|Hµä;X4óX‡ç~Z\ìe²ÖñªR 0º£‚õÄB@Í–C*êßUd¢@Ö”“®?o/Z´hºòÓ\_àà®Â÷eQP4ýmlMb0+°ùXV„Æz[¢L ¿š<œ]þ\eW0<5Ñò+ 'ÑN jý¾{œ*ÐY|Åš´>Ñb°¶•¸z#?TÚƒ™¬-wh!#À`-9(âcØIšKñe;Ù C‹”ÓPØï%ýõ„‹ö°ÈvæªvYˆeþ#žæq6ÖIÓÇȰsFPû¯<¡æõõ>Ïa’·Ö” ¢>CAÿÁ%øw»h0oHC«ux'û !šÔÇxÌj€í´¹€ƒ]ç>Í~Õ½?> stream xœµ\KsGrŽð‘gû¶Äž¡Ýõ®Z…’÷½«õ®DŸ$ZŽ8À@=CRÜ¿ì»ÏÎ̪ꮬ®€â:xà`¦ºYùøòÕ?^ ½¸ð_úÿúþÅpq÷âÇ‚¾½Hÿ]ß_|ùòÅ¿}í-|Ó‡!ˆ‹—¯^ÄGÄ…ðº÷.\8ãú ÌÅËûßv_ÿsy5ôƒ´Ô¾Ûïo/¯”Rý`d÷Í%ü`”CèÆýýáþÚÉÐ}‡¯º_ï¦7é¡Á³‡®/%,e´ê^_JßZØîmñûý#,lF±|K[2^x뻉–’°”é¾ÚÅ)•Õì‘=±Ï»QÝïÿ·¶Ã¬´Vºÿ~ùG •õ%©”r½H°—7/:uùò¢/„€c‰C®´WÊôÞZõm'{Ñ_^™fd÷ûÃ¥ðÉØî=ìÃøl»Ó?ë>„îH‚ÍI _O·yïN»ûÛ”?^ÇÇ‚‚Gá¦[û2¦nPy!` ,É£ޠ펷å<@Ÿr7Ç4îãð*~Væ¥ã˜Cɉ´aTwÊÏ ¤s1H¬‡Ð­»‰³пü»¸+'xU|ž¯%îM™nœòáœä爟¯ @`XXsCznÒ Úáfæ™@®;>Ò4A+Áekí~Áw¯I»¾¢Ë¼rC¯IH„ê™|¼ÄL{§­’‘%ˆœqĸßW˜WH<ÉYÅöRg=ÂåE‘­ÙÜŸ§AßuqŒcJRÃ42¸™·ßNï€u/¯ª'g@§ÚæáúÒÒ/(¯†øYzÐÇ(®-ΠIÜ ó2ß]"$Ü¡ëNL¡ò³=ƒø/ÇŠi¡ ðÒ‰(­HÒU[ÑŽÇÝ÷¥jüîNrO:6h®¬÷§Ý»K 7Ìc[wÄõ´G;—ýt,õ,È&Ì<¦–Ѹ-2:O,$‚ì½×çX(‰/)+&¾=j T…¡û5Ó¥,pó.fÈ”Sß3¾Ü\ǃøæû"° W¡wÒT¼‡6¦f>x.úǨ ‡z0òy¯€ (Ò[8‚ ‘»SÊ×´½Vaö.†~¾±°×~È»ÛmÌæ<ΖXößñ¼µN'ò‘ù¤äÁ†øüòJXø*øîWøt{°ñcñmüøù2à~~X¸M[mà€A|äμÿÄ=´w£†Þ…YÉ\¶»g²kÒGåñ~þ”5O˜ep.©.Ø]cáÐ@ayÝÝ1ñ¸\ëïÜnß0AqÐn §ç¦ånǰÿ1/&›îpŒ ™ª ”Ó¸ŸI €'7¸n¼»M+Çq71 Vn5Ÿ7xKµÈrš!¬»@,Ú{á“õ2Þkö_´tˆ’#ô^îæ¦¸i„óVÓº_< ²GÇð«üi¼/·Jn“‹Ìñ¾"1r@ Uœ pÖûˆMЍvtdöNŒ“¤{öô|´”oÒ:à1FÀ }Ävô'šh”/¦ßDˆ§q·O¾Å 4±\A!JŒ èÙ7Á#Ú•gΓYd#B·ÚÄ„ÂÁ))¿&/"¡üržì«Cû Ë®ïwÆÑk©e¤‘i"1€voì7ˆz´0tÓg­=îÆºäB­Ñ±€ÏÊW6S'ºÔÇ´%€ÚË#aÛ5h`ð$QÙa0¤nßïÒÉéÇ„¦•Âõz˜ÍÝ7c bAn¾Îñ-,¢ð}÷—Û÷ëô%OmP;@'‹Í›F|:aésW ½ŽqÎ&Nã>_””Ÿ®…á45y{•¡¾wÆUºàw̶€/µ®ƒ;BL:Ö¤}F˜÷ðƒ tõø*#àH¿x¿•ÿ²Í+ZA$4·Ý5„Ä“š€E ®:#MóBX´`f{Ï´MMúôÇ›c>·¯ÝÞóÖÈÞYËíë ÷C0®qàˆf\Â.d~àS Z¾2îìOÃ`Èa9ò<¡Lê3ÛÆd³¢ –vR•3óCbá"«{%ìJd#–" ÜU‰¬# ÏÙ {§E DáTQ#šC¾í±¤Yé+ž¢PãÃc tèA²–>;;¤u½Pòg¨¥f¬HÂdËlÅQ8/<àþ4©ÞÓ´»»c:zŠ?"x§)V€Au›á•<íŽie¼æ¤PÈì ZZ7¬ÐóPÆ)¯¤ò=xËgð2Óh„ÇXªDvÃ4{k Fù{H«èµW—à¸ÿUZ͈(ºøY© ªÙÅ70•xÁÉ‘'!¿nÈ#©‰t8L®€[7–˜wëp™týa1evÎç3 ßì~4ùt ’k}›Ý5„󌮜чÞÚ§"¼WyÔ¥4†9ÿeí¾ED{³¤'J†ý€#b¢)y% Ž iÀd Eû ràqô:~8ÏØ XÛ  é“kå‡Ù>3%cç´tQYÅsULr8'ÞDÖGÆ4‹ ¯LUˆNÁ*Ѓ‹ØîP>›SJL¡¾pëìD¤¡}vnCþ©s34mD¡hs¦šªbç Ç(-ºÃúÍäH!‘ˆó¸6:Ô¹Žä,S¢ÿùX‹}NY%ÑŠßÏ1=Š$% à[LFCP%ÝÝq«|7V–Ì´EÞ‚@(_Γhý3¯.î¬&íæÕ5£¦Òš^è:7ÓŠçäÌ™øø`ž÷šÅÇÛ[0§G0d€4Ã$ÇAâ‰Î}ül×Ö' «£"Du¾veàÑ\ålÈQûj’ 4¨ÚŸ{ªÞK•GŒ€ŠJ™1®[1g(@/Øøåx;½»½i¹MôÈ$KÙ y~ãóȇŸ?%ŒèRàÙÆ:œ"[k)ˆKË(‰¸<I:FK”Oe‚»ã4rˆZE¤ÿ^3J7ØU„;Ú‘/ýÛÝt<}vÙ²R%tùªoׯ[ôTÀ¦ÎÌÝÔä¥v:¬€QÞ7t7Aü?©G…(k*@šÕ£%´ü¸Šì6õcQV&¨ ²¬•bÌÜ=O)1‡û‡Wire0 \Zðœ¾Ì{ÁÐ=Ï”†¨}ÍC¯óýÅkþâøk„¢Ë×XYÑíŽ-yÉ6sp¤{ùõý¦‰ $~Lƒ>kÍ+©Y·a?Ù{½È3…‡};wDÄ2j‰Þ2áæ3b*!™°Md.}¨c'­4x åó›æu!E<Õ[ ˜9ç\Fb¸ê—½±³ݺ/TmÈ׉:‡¤¸°bà‡(LÁÓ-dózÑ\[hÉ<% ^mx:d­[ù5QbÑÇë4B=…°,Ç#æ,)iÙ²MpŸ&3ÚÏ0$¡´š^;B¤Ñ­ŽJΣýX ½R WLM=)©ä8ž—T@ñÒfIýíþ¦-ª˜ µîœ¬‚¼1Ï1ÒóL&fbÛÎóš\¸A£lÅA›–æ§6”ó¢Ì$Mè‚€JϹêÞ‚.ñFsjÎC‰|gžžÇr$µJ‹k±Ä™#¦À$š>/,š<–rx"o#§q,ˆÝ¯¬kñ*Î-&{´›æ?þÐÆ° ,ÖáÎJ÷jºý±É•=Áx)ÅaÜ‚?MŠû:‚AŸ€ê<…0"I)Ö"2±¢­j€X”žÅ$(Ue1ÚcW**yÃB­=°4M>’Ÿ‚"BU?ý i/i ,‘v\UÌ—N—B3î0¿—à.Þx)\lS'‚èÆ¼ñpâÑV'ñЛe¹P/—ÐkÇÙ; ‹yÕ‚+6îßÈŒ3 ÷ *h`¬Be ˜¯:9ØF’E_{„ Z™k(`=Nyâ¹`7"–›_¤ÕÆ©L%KÙÉ¥‹ÊÚX¡.)FçÂ3ÑÝÇ-Ôø¤<Û¦ŠI'ìJøi¹°vÚh¼ëÊdx™y)ù”YT'§qu/¢Á\Dy٪䪊1žªá¢º|ð¿ÿ¥)Þ˜äRr€×ßa>]–ò³@9ñÝe3ƒc‡ÅÛù¶JUäîÊmÆž÷¼”8)±Ôyä ·¯ÕÖ1#7—ÖÒP»’)ï–íññ³nPë/Lh\±RÏÛ|ÚDH@\GY¢çr¨Jͧ'$‡p†ur*qSõ Vdcõ•í=–]Óüg+H>›aì»@ƒ¢4JÅ’œÊ•+tÆ÷…Et0]á¬äMã êÀ^zQÁK"Öá/†rÑ:6úžëú®8dG6ëÈž‹ùP¦oær…¸ˆŒ[ÇÏꌞjèí¬¨o#~‹I„V.iè…xñÿ@°oU0L•+1Ö@»îܽ›Aù*´oݺ$|×H;n¯>)/TÊ` ÄÓÚÆÈÔAn©} íPoä\í¶*¦Òd?7CÑë zSwͱh®Œwþšèd+Ö $}+p€þ¨ÖÝ߯"‡¼—WhÔo›l¶]’fÇTùpj‘²q±]r[™Ðd€oȧ¥‰eÇ“VÕ3nX ­sçWÜî>ŸÎU¦“æß½Nô;' Ë/–”âãFmƒKN³Z\³¼|dg}ÈÛˆÁvK°ö‡­èwæÓ£¾Ñq†óÃMVšgÝ´¸a˜Íœ"é¾y50îÿzظ;<`üx•pßD1éž+cSöû7/_üíElö6Óv“w5Sjò–:`¾æBÁoRèØäý×9 Ïx-›’:Üy¼Çp‘òQÖá"åÈ"|¹£ˆå€r³5FC,PNgúØÃ`&È€ð‡‰lŸF#¬ pÅŒF_æîF·YÿL:ÛP1D&©m’ÖÖHúY2aÝWL´–¾ûÝgÉX¾ù*W;ÚMҕˆ©ÈE)³w}uGÅ‘ÏÌÈwÇÅS?® 8*«b f…ã "”(ÊŽBoœêÄÀªÑ@¹QI$ìb[Œü–ÜÛuxÈç, cæèÕ;æjpè&јVºl—;L¬*0•‹b5f" vÑç7iN ·z¡Ç&ö¶¨[Ø0ü€øåw¹ Ü?d7ƒbÇ3›¸sZG×Ñ9#ãa¾>ÓLû–jõƒ0Á§âæÛø–B³‰>²«ÒbÀ3M(äHª}~f/ðV;3M¢>CƺØKÌu]Ë7ºu“iW%òˆ>†S”ÇœË0#óÊìæ›1Ü7NøEÔ! œ<$[¼ž†é—Ø)£Ð8±¢´€6^Ù&š,Ú& žÖoH|(uwW S©B•Å]mxF§¹Øò9AÞ‡4(üÓTô6†s=µ)¶<¨u¶!ÿ>w¿œ+Ʀ 29¹]TtÜ6ÝV”`*LÎ&äêXßÊ êx«ššœw€¯òëfß:Ø£°úKX^ÿwLßbýFÿ(ÒˆáÌ2ż(.Îa÷+ËN‡˜ †v¡?îG¯²¨HŠÁçpUó‰g¼|&.jØHF*TîgNö‚mš{*ò®QåÅSŸ˜QÊsе·©àháܲP%TKP»åqš“%ªÒ‰‰ód‘Rð%Ô¹><Ð[a[˜&0H´.Ö±ÖÎzoo'PÀMíËWç/ëª*ð]æWUûqj"Xlurî½ü¸¤uÑéV&Ôü:!¢.ðü7[z‚%xH©ð?~¦§á.ðýR¢yäÂq ñ£g4ºWŠÏØçâ"ÖèB­ð8ôŠZ^Lê8ùé[ZbÛyü4×ËQç‹·¬ f,¿ÿþ‡ÛKú^ªîšÒ¹|¦KFÕ‹¹j«K&Š]2R´»d¾™ÁÙTŽOãä󈹊>[öjަ”ÁõÀ,O6¿„aæØC¥øá<›å’ÊôK#IúüxšFBÈè€)õªÌ¿å†6´¤Såò+=¿Ì XòÇRííÖ€M0ÐBÝžµ_‚Z Úœb“uÌÃÌà`åVå+¸¾P›0l3»»–×UIäˆ ™mÞ«èíRlw:pDÝòÝçú0=‚‰±NEšÂ«7? X““È4Ê;ª€¥ÏÁr£N“â››Ž»»2ÇÇ;7qZéñ˜7žoö°ÎÛê…Zºi.+xÇån:¥ñ"zÁt ­×U^ñÔ]6½»€ˆ3Thò§ª¹,áO „WéÚ¸Óö‹Ò ×EÔr%¢c‡ÝZ>3lÕ‰çÚ/$KŽØ~wšÛô¨3OÚ©A{n„«¸iϤξVóš¦dùóûÏdŒbäV@ô^NéDCÊ1…è"ÜÐÅÒ+Ošø¢à;ï"0È¿ITÔab>1 êÕe£U FñÖ/̤ƒéUT4nJúî«‘EURüñý›O‰1jn¬òåîþ!ríLïø´r瀆àz<§ãw—èÍЛ@}÷òÒãOÆå2:|# >ÂZ&G?±¿îËüÖ~W å¸Õrµ›®C±òFr÷•ê£Í£÷’•oÑ!CèDëME:ê×:@OXóåV¸kaY+ÄÛ˜‰£¢Þ¥Ä˜¼­ÈÙ|ê…˜™AöǼGYW½SÃéíwj`æ…¿‡6hD~ @V³ôŒæÅ¦c¼¾ýa> stream xœµ]m¹qþ¾!ù°`6övšï¤8'¾ŒØÏrœä”ci¥ÝÓŒV·3g‚ ¿=UlvOU±fzÏ—à ÜÎÓO“ìb±ªXd7¿»s=âíÿ¯÷Wãõ»«ï®LE¯Ûÿ^ï¯ùòêホ¡ŒÅ\¿|{5Ýb®³¹N! Å…ë—û«¿yù-p³g\g‡P ð_¾¹úfsøþfÆà’ËæéÏ76£‰es÷°Ûm?k¯onñG(>çÍÝ;ü5iÑ! %3ý‹›[ïý0ŽnóÅŸnn-4Ì;÷Ö‚²É1ožž¶Ç‡Ç7·Î¹¡„²yCªdÌã\)Þš´´¥] ÷ûÍisk#•uC,ijãæk”Я^^ý® ÚØÁ¹ëà|R¾vð,צd?„ë§»ë?^¸Ø#ƃ˜í`í#4Æ\‡­Ë{å›ÍË@ÈcÞ<ìï®_m>Ýݽ?¼º©"Å›nñncÒp-”\íÏß>×o¡1ŸŽ‡¥éµñjÀÆç䡦k7æt `Ü©ñ¨]yô×Oï®à¡ŠKáú4õ×ðï[rù믮Lˆi ô¸ï ÉAÓ."÷W¿¼êà½~k|¼ˆÌ…18 Þká7t±Å‡XnË•1ºžUG‹ θk $øc!?¤ÈZÏhkaÜú‹ÈÔzÏíUÆ1 Á¯5,¢Z—µgŒ&.wò2¾À8 Ëš!»ÕvÁ®²¾Ì  ˜@P<ìL¼ˆ4qx¯ÞêHè"Ò ãð¹ö{¸êY•Á ‚l¹ˆ´*9 Uæ˜ì5(^á$~è´˜»—¬Ów’d¥që” “ZȲ²\\-+Ç!­‹µXªúûA!–†é"ÒÄÊá3U¦Ñ¢1\kÁ¢°† š‘Œ£ãCC¦† xîoÙ0Skº†I–õCL«éF:ÎôdŸzƒ(Ëò`R˜$€í£Püi‚àð¹f3¤Þv¬ô ÅOÑrÅ×{üXé…*¬fåz¡è· ^yaÁÕU/“ „èÇ£lü½¸ ÚÀú,¬‘C/.Qa'ã{¿&jÌàdro™dYÆ vU\œLŒ«5Zï«–)ƒ“ᚪ  .%3UÈ‘<¸p¹o…1xn˜èí Þƒéªydp¬fÕ2ep !¯)EƲS'VY¸oW;ÜBîMNÇ‚Q»jð3¸…¸jðsN\Y'yI8¿./°÷¹——ˆbÊ踲ª=TÀº§ÕYŒ̪‰. "…¶¥+`ÆK¼ˆLj(à3YÀÞ»>8”Í{¿ª_Å®«ª.`É#óÁ' vÝE¤=#‡Ï5 >SiUu ü¼j›J̪JhpËZÀà3•ž¤*L@sÜ›&Ùx°÷L£õ‚ßE› ä/,0øN‰ËYãí?õââÎXq0½¸x»ì?ô¦œ X0¶-Ñ ‰ìsï/÷SQ Õm/ÒÖdjGçp~ÙJ+Sí]Œ)¦.úhÂ:`sbAw­3;‚µÏ½]²± 'N„aÝ[%Ùv°õi-â°c2Coºd£ÀÔ‡Àº#Øc`è‹¿ˆ´Nä°>|€• Á+¶úÁbþe••¹6k&Âðq-äVÆ^ª¢õ<šû·õž5×h ƒ]›à[–>õz*IqW¥eÀÒû>’»^Ö²Ö€ wkÆX0bW­ ÌæÓ玕©bž½2‘‹¨( ¬ 8S@½wÊ8ص™°W@µ,°ž4vFaôóÔ—úŒ ‚\Ua(†¾§% Ls\¯®2 Ô¢kÁ6‡5Ǭ<”^\R`›]¯ó« T¼µµ! ¦wüÂX°ÎqÕîÚ¸6·L³’‚®Ú‚%Ί6‹FeË5° Dî¢lN<·¤ «8MeW™|Õ<‹Õä«penÉשñüØ\%µ$+´jVUVF7ô5 Ñ;0º¥—èiV×)33.zV7÷33!TçOé­«ÛK^Š+ÀP\õ>.Ê4hm–ÐF7÷Y)ˆ$ó›j%™ßTÒ)0öÕü& “R³›BEf75=õ£Ìnjrð£Èn6“ÄÕÆãÚÏÚ óFÍZ ‘z+³–š÷pÕ÷ÂZãÁêæÕ¨Ò;™ŽTÖ,.æÅU÷ãÃÈUPU\™b±' Ðô`qY:§G¦ÐSÀg̼q°½O—ÍëœV”O"©j³ëŸ.„ Ö¹ôB•¬¢¦#¥èÁ:¯F‚aÔ²‘If#µ¨%™Tò6X5)¤À8çU³ wjÙHÑ?ÁÉl¤æ‰ƒ·<Á£zâÆy5:`› SgìÉ4m£!÷­0ïÕ[Á‚'wi…qøŒ! `a"p% `êCOÉŽù•ÈšÏl,zo."­ù>§à2«‘X|‰41 !­BŸG\ Ïâ(óŸšãˆFæ?'©rÙG#òŸj?Fë´l‘,˪ùOùŒNæ?5/1àQÌ׉ž£¬Fq1ÈĦ6l#8Š´pÄh¸F«F'‚SˆýN²’å™ ©F‡›ÆSà|rÈÞ§{yI©æÌµP5÷œÂjÄKÆÕ#Sðl d‡H¡É ¹o…•gd8%ß%Yà<’"UÞCÉÊ̦$p<á%|$—h&HCÚCrø\ó=Ímî%€Å{–ØÔV!‡÷ê­ÁÑ´’†´Â8|fØ&ð;q½#£L”jÊšÀÅøµ\½Màbòjò9e0«^!ïX׉bèðØwÊ|Bð‘&UŸ‘jçQúèQ´>ƒóPR¢ùœÇz’-›Ì“ljeÜ·*Õ¼>ÙËà9Üj®>;5Q*Y^&JUaçPòTKÏ”ò9{Ž2Sª%U2xŽÒ[/Y#x§X/î3xŽÔOC¥$²ãy*½FðÊÎ1©‚à9”cR!ÀupÔÚUÀQ¤>"YfÔvމvð ±9D»Š5|Ëåð 뉶 +òe9‘,U¦}u°òú@ kÉRÑÙ%Èd©6-`ŸÝjœPÀ>§Õ@®$–,ÝwÇÖ9^&cÉÑsõ /Ì< ‹ƒÍ6kõH«‘Ãg,N#®làâ¢wãh©>ï;d‡H¢Û·4侯à½z«q|×c´Â8¬!`åõí`˜m6î°—‘Ö,Ÿk¸eG ßZž°cš)Üw66°d¯†´æ™V2¹ÀŠ4M³ï¬ ²œ°†´*£L«]õä13snL"y¬xQ =#yìFðC~Íb+kI9YVñ<)§w$ø¡¸¶ Ê™1ÐÍeûIðBÁ\D&Ù XŸ”+ðáÁ,\ÛoÖ#­Bïõ[#2µjÜÐ9|du£°’¶QMt‘ß§lTãÖX2e­øQgÀ÷­nTVYÏ:Õ”µ&É”µâG†µxÕ™,“Ѫ¸²LFkãÑ5ݱßT©ŠÞŽ2­ìy–šŒ–,ð0®Ï‰ IXð0kóg­×6  ´¶hé6Ñ‹ߪY›­: ¾cug°‚¶³L²‚¡;Ëö²C$Ò}erß cð^½5²”µ†´Â8¼×oM4ñ¨!saIÛÏ&…‘¬–ãëX™çøT†É¡ÈZk &(ZÖZÖXdÖZUÄR¸æ«jî\KGK–™æ«âÓ´žhv0ŠøÖK‰ìI|£eܷ 긚¶£M6 Ü‚¶£M°¼[Ïñ+k{Ú$+øamj¤Â7 éEW(\ªA‚Opî"Ò¤Êá3îÊ%5k-YYf­Õ‡Ì2k­–UÔ¬uÇ’YkÍùQÍZ Íñ£ÌZkúå[ÝÔ¤gd­·"k-‘""GÝ#÷­05k-[ïdÖZm¾W³Ö²,µ½o²¬`Ö÷¾kÕ[yðÊÞ7YûÄeÊ”`rtß‘†4™rx¯ßšé9 ™ ËÚN:èøìµ}LRôð[ÙI'YEf£•m.Œ£²“NưºVã‚1\ëÕጚe–,+³Ìš ûŒ,³ Nf™5¥Nf™5C¼še–ey6¯ ^Šü…h‰à#/`¯?÷H{Hïõ[#Ý¥!sa Þ«·‚gq—€VCÏ„AüÏêþ>GÇ_•È‘Ì×dzä¾&SäšAÆ­o–H‘«£,‚WRRŠ’åFšÉÙw>’ üEêiéd&]m˜W3éò!½Ì¤kÃ?5“.Ë IÛ.(ËŠ2•®Â3Mî;Åþ†§ü:¤ ŒÃç|²¯P6 |²¯PŠÊNlÂ'll ƒ½´Æ3t¯Ü—ÀI±×¨{d*JÀgT";S¶( ϘÀŸ)[eYàÏ2k½@°±ÖŠ‘Ð!­ù>c¥¸½õ´PrNÛÉ(:;9™I×:;ÛSòB²,/“äÚJ%É÷‚≣ ÒGm/£¬œÉî;+×WÒE¤UÉá3C-¥¨ny$›]G§¼m,¾-v"%mg®«ûfN±Ú~GÜ9†S÷”¬íw ÏàšVß¾ÖtU6‹ l¼–åt 70';±Š¶ßQ–eƒºß‘ÇÏ|ÎÚt@¯Ž«J“Á»(¹1Ê2x—ÕŠ.–¬ÞwÈ‘$T²Cî[a2§­e÷38¡Òdz²aàrüªßÈIæ´µ sɬ¾|í2x—Õ—¯].£öòµlø j „XÀ#ä|™Ä*à½~k¤ ­!saQ¼Ê­ßfu+#°ÒúVF¶•±c%¾ÕW"øHà8Ø~ÝiÉá3qNÃv~I+ðžfŽ4¤UÉá3.¦x™qW6Fº‚–b’ͳº1XjÆ]èkIFŒÍ—$^X—Š'ÛÁ\š¸z®UY&È•‹\£¾ðÍ¥>fu ¯ÁǤ>ÂËVѶEò¾ö#øå…oþŒàmFu¿#[VPÞå–âk­JšC墶EQ6 |Ìj.XIÛ¢ÈÕÙàQ”-Š|ç°’¶EQŠ>ª™oÙ®(3ßÊ0ócò"-¤vPRSß²ÆìÅ{Úª$Ày¬¾& ¬ÀS…Ù]y3ª‚Rš„÷ú­‘'{d.,®¿õí±ë[x=~ˆomZë!⛵‘fàêê[ßÞ8G73î;ŸtrÌ‘& Ÿ{Fp ž Ÿ#XX b/"­JŸ«?M¸6“ö|Gâ ã6#F¾­GZÃ8|®aàbV¿½¬µl®7YæÛUÈIÛ>)Ë*N¼k® HSX†|ß! ;zžhì‘IZÞë·žh쑹05ß.žÒ‚'ÊUɬÀŽ,ר­B;*;6…ì-x«¸6ÝöÖmǦ½wµºcÓ[pWÊŽMY¸+eǦd»bߥ” 'd16:¤É‹Ãz$ê-xµõ^§ÆölJ[‘D¾¾GZ»’Ìà+¹G`íë•R`9ð=›Áf”‘å´GZÊšè—ý]"_RûÛ§Sr¢,7Æõ·ê½3Vy«^VhÔ¬»¬Ð:u«2Ó\ ków_?ÏÛO¹;VÑÞª—íߤlŒ”¬ ÒéÙ!ØÎä¸oEQt¯Ý MjH+ŠÃg4Õ§Rv*Ë'Lâ›­z_§´¾ÇÒ;pVÚKÑ×YdÜ%‚^D~½Gš(8¼×oÍlCeÌEQôŒÚÀ,@û–iÇ*âmÍBø¢äeQVM¥óXû™_žÖ¾×ŒŸiÆÍ'yùêó+uµ»²»ú½ÊÂ×IË ë„¸q’6²Ð}JýI®ãºYd¥,eá‰ÀX3BY¸c—5#”…kù¼¬!,\‹@8±„²p¥›•µ ”… ÆL BYÙÔ…šÂÂl1oׂP®2R(à˜´„²p+2ÖŒ&î+kA( [XY BY¸ôÁËšÊÂE&ù¡¬bk‡°fäIJ˜Ñ`í:!”…éiÇX3BYòŒ†±f„²0ÛZkFË`¶’•µ ”…IAVÖ‚PfÕØ3.eY3cÍaYÌ&%ÊZʲA´kA( “(¬] BYpÕxÆš¸È2y-eáÜ›•µ ”AC°Œ5#”…“?öŒ BY8ãíšÂò8wae-eጀÉkA( tŽ·kA( ÃYÖ BX “ׂPl¬] BYñ²f„²@ç“ý‚VDÿÌÊZÊÂóXY BYÁ‰ñ¸ ”Wùx\ÂJ s‰•µ ”~×3Ù/eƒçíZÊJ¶î¤"¬¡,йkF+C¤ÂÛµ ”åmMzÖŒPVôuºDX3BY s|<.aÐ9JœÊr~`‚˜Ê Q´jA(+»º´NX3rb¹q¬WO¬BY q‘‘@9 o11ÒŒPV õU šÊ‚YdáeÍaëëÔâÄZÊÂÓ1ÖŒPè[òŒ5#”U|]û$¬!,pLuõíÄZÊ‚˜À°²„²@ßX÷ÌåäX÷ÒŒ–óÀ5”ãB]+#¤¡,жÌÔaA( ´-³>\Âòxðëá,<†ƒõá‚Pž<ÁËšÊÂs xY3BY%Õíd„5#„ð¼Ö‡ BY>¬Â üü>“ü‚P ÛOr>as‘BYøñwFjåÄ Ú³ ”…秈xtæT´ó+ÞÐývzÄdËæ3JgÓ°ùyã—R-Ì­ÅoÏ´“AgGƒÞâ;$ %Ü1PÏzBè×ÿps‹S˜Šo¶»Ýp÷Ý÷ÛÝ«ÍãŸwO¾{ójsØîö¿½û„ç]¾ºùy-ªð×/ÿùêåß~³ùÙÍm„I:š«ÓmÛÃôÜþóVSq›Çà ,í¿9 ¶póâPü¯µž«ЊemUþáÐõÙ£¿)„T}¼'8U—©ÔÄJÅm2(‘é$Òé<ÏN™1`Ó|¢êkª»íá0Wíª¦àߥÔ3P«>‚T¢ÙÏé¬ÕI+¶H­¥ù°9ðû>¶²C„n:<â/P ðÐi7¨Úäÿ©6!W}n’XÎq ÎüäÖÇ©ÁæÍtð,>oða:ܵVîë8‚ŠCöâlØ„3XÐOS9§Ñ:¦ÑƃçCk?<çck§Âz:=åña×-¹ÍÓØÏCU [œº±€g˜µ•tóèj÷±6@#} ÜÌ ï† †‡²›·D½ž÷p¡®E@ÿœ„½}];üÙæýö¯¡iwãa‡~Ö±ÿb=4.ìÝG}h˜zJí¤Ã¯6Ë™´Ói²šýqfvH%^ãçÍÛ9Æßlþƒ=ÆÃŽÿ< l5†ìÄâ7 weóÕÚÎb<šZèóÛå(abT?T¢ËN!~`µ5é‚V¼Çâ ªZ¿pòÜ?þÜf|W>öÌ`‹Úc•V;³{É,Ç-ÿp<MÔ: _VŒñÿ°³ð=÷`x»¿ž¼hëçeLC·LÏžå\ýa÷ô0 øÍ=?Åù¶~ØÁ´ñTl}‚‘žžáÇ6ÞàG RƵ|—c=aùÕÍ0™aœÎ 07C÷…Çãšì¯q8øÛ€þåöm¾uhÊÁßo?<|ü~7hNxöêŸ+!‚‡úöî¦þ ^c-Wëxwºýu5óͧ‚' ²Ó'D¦î<èä¶‘nñ#ìÙÙ©Ý/©ŸÂñƒ/L¡™,Å0¦fŠfK×~Ö»pÒ&§Å7vn&w Xô?M…µZb¥OÂ¹ðˆŒØ+ö«9‹d…S{Ó&'XÅ€ž5þþ¦UL£³ÝñáÏ7èО&×·¨ùj\Ã4&]–5¾…Eœõã,­¾=wª9;UýؤÝþ‰úÏÇÃ]{®¹iÚ .UÇI~¶¢¡¹ ~"ÿØ qè#©|@â96) wÄÐÀè±~ðf fcâô7ö‡eÂ5L?3WÇôN9 ¾éçv7×n ‹x§nã1Ø´­ñ}†¨»ûžÄ@ÂY¶Â@­žæöû%ÂpA‹0ÚirPïBÞT'vð´Õ P@W³§*XÜàOÚõöéî»9¤ ›¿oÁ,46XÕQãWDð\Áv{•F®“—6Ûý…éý,1RiÔP“Yst¦cY&+õÏXQR‘p¾$ËLû7éÕÖð"š4ðä‰hçÀ㟰³•Y?—‡¾?7 ë¡ü¼C¿¨Š?Á,úälï>>¾¾ÿâP+nóK{áå×ø•Úx þÙÊA‡UOóÎùÀ•±6)E®AuŒ aƒùŒ±Yƒ¾çƒ½ÞjrFÍŒ<5šÊú  ýùZ¨Á$˜èˆ˜. ±Š}°ßÚýœ`ü=ÏÛÉy$œd6©¤É5V¯L+ZM¬ãˆƒnqñÒ;#¬Õ±[Ìâ܉Åè0½a‚z§ª ­1§y"÷éîîý›íg˜}VsXˆê4ÏŸ),Kþ +ž›6¿9gˆgy½ûŒ}^&ÛwQÍO¿ªêE7_ÞäiÏr#RÔdʳ¬át.DÏÊĹ ~>kô]k]ÈŠ2ãcú(5ãõlN9˜Å7CHƒ»$°Òßàb'úêH¸ñ=ál^}džSëpè-ãæ1¼yûŽë¨u+îf6Ön¥•bì\[¤¬}êæux:#Lê§y]%…“ËWc‹6Kúk>«x@Åiºr{±oµŒIú3Öš¢ðŽ+7Oor‡æÇÖ>P£‹‰‹½„gè® ªÍ0 _ží)ü*I2Ë<¶RpxðW‹q‰p":BÞ©7Û‡•öø6”%†|z[£m¥5¾0_ôóqÿ‘Ô s?ŸãÚ:„å‡ç> S61ç ~Ï>„ÞÀ"'y:Mþ¸$31;PÓ=©M‹)Ìú`ÐpƒX¥/¨s{T¬ IŠÆ)ÚRU`]N7ˆ¢Ô‘P"yáŸaÄñA»LŽÏ`ÝrußÜ“<’ з}à:9nd0i1ÖÙýÃüg܈mq`¸0ÆÞº!-¾Ç¹Ð¤˜½yqôÇnÂ05*³Ý.³{60ks¼?—è¶`*9$án?==*×¥.’™Ôœ«r)hzìzƒÃ):}ÑÈÉTn‚ÿ»byÔ°©A {-]S¥÷Kw:™à`6añXS&y·ÌœA LYºÀ£Î‹0é^•çH¶œcýp»ýáá0߃2"ÍgÕoZiù®TSó<f£q€µОy5Å€Õ‡ó¦g§Šña0w1¯rŒaÝ+Ò+-ÈÙÊñ°Ì1^j 5¢FËJ~ز§ä ËiãÖâw½U¦ÐOÔA?«g3íέgÕCWU¯Ý°=’¿1„Äü0á‰û%\ÓV´O¢à9GPýˆS5[„öð$…Päé!{Ò.BÜohÌòt8ÎÏãŸ7 Ÿ«rue«Þ &j;×ê7ûG2Èï4o;K"ŸÃœ„ý$u0MÏšÿLÉ=´lêq61³HzŽ"ÏKºN­¡5hik›É@÷QO7·UAƒ ­ÿć9ßg}nŸæªÏaÕ¤}½Y¤üv[>"i˜ðn®¯SiDÀ°;œª”6ƒÆ‡>òÓÒã”|Å)µ2—­òIëÏêè›þ6g‹Ñàš€&¿ÞÁ…Y#úžV‹Ú2òèHlÆSc§…æÏ7rY»>‚›ÖO^–ÈÛ*“\Åüi øIûìó5¾S]|]1ؘŸ’ÇI%øNVÞ«›_´¾X‚6àX|[×s!ÚïÖ ?BÕ¯‡*ÚãçwjÂm^vž‹ñ›ÿ9]DIÖ­O®ÿg5lE8 pÖØô÷_ž’zP ©cÚûjóâoö/æ&ЫÛã?Þo?¼»[Ö¸ùÕ µ±3•®¦‡³m‚Aw·#*Z›þýL›~s÷tº-´O ¡¥Ns±>wfj‘—VâÇ47ø¥0fx^=¸â³s‹]?U^H½×ØŸš/8-²²†ãɼ§Åþ¹ÔØ ¿²„N—‚É.>Ãå#ˆ#æ:¦xFO³è<7Ióê¯uܰ²M.JМƤ­Ñàå™Gí)ð3ãgIÝßí>‚’mß¼™æx÷æß¾%zq&‘†ï dÛn¦i<~ü'‘.úbJ‘G«¶ôH8s=ûìñmÂršÊ«ËA¸4ŽÕÉå }Ž8éR7GtqšT° 5k†1DÃlúƒŸ±ý“®+j¡._œ#OžZ}ø« ùÄS„~lw£k¥m‘#åz¦ó,³Øþ³k¦uL5ýŽ/rÇe…­=>ÞN¹‡ž )²¼Ï›Î*0K0)\­Yk9«¿kyó”æ}%ø+ö«­5æÙ¥ÜX§ÔTMÉýX§"|ñp·ÔèÏnëÓ”qoë¹KÛÝæÀʺ™íÁ§y§)B¬[m‡ÝRßOðeLqoÔ6úŸ>¸‡l"-«mÚNÄ©©þœ«b·ë\F™,Û»§--â¾]oõéá8ÿr¢¸y”3ô†§=>ZÒøÐOSâ3¥)¸žï}º1˜å|XDLžbì(k“—Ú iÞpVŵýf‹ÀßÞ°¡v;÷:w||–I»R,G»)pÚ_Zû´þ ‚ùK×çÝäÚú|•x3Yç„e*°Þì Û¨úÿkpð "›®1zÃíý öÆf> stream xœµÍ寕å1Û\O¯¦Æýr b“ñîñ-t·{Œ¶¶ 0*/RRª”RF¥œ™² ¿yö³žˆ`Ü—¼ç^2Ëê†òýŠç?ƒŒx—>ÍÓršÛÿÆ¿,WóéýÕŸ¯–NOã?_–Ó§o¯þþ)T2å9/§·__­’å´$7¥˜OÑÇ)[z[®>?ÿöæ_¿™§9Ìθt¾¿¿½~c­foΟ]×ð6.s>ßÜ—‡ýóâ¢ÉçOÖÅr²çº{ünˆæÄD_^›Ú”wöü͵IÓì–pþaóïå¦.êÊ,¾.ñÂoû*ù´¤Î½)S›òçßÞ­–68&¸aŠ{Z{þ×ÿ³]ì~],˜LüÓÛßÔMÒvSY§Å´ öö««³¿~ûíÕ?¿½ú}ÝÐy®K-'b˜¼93ûi6§%x;Åpz¼=ýñôáp§,ε¦ÌœÛ+ÑLvq'Ÿì”ŒY÷ÊÛk릜}:ß•ÛÓ»ó··ß=½»¾nëÜDo–îo'[W6_WÉ6åùwÓéáëº:ß?<>?]Ö¿}ƒÅ„4¹ºø²Äöê~¬Ûb9%ç'ãÝËWh‡Yš+xÕV)-þôc]ÝßÔÿ»ùç?üúj±ÆL)UK—¦´œŠ ÷øÉÙCòÍÕ§W]Z£cBf ›Éû9¦SªG[4±~Ùu);Ož¯?'­z(-Çd4ÉqÑ¥~ŠîÃE—¦É2c¸¨RWwk>$ÃŒã¢KíäYméÞ>r¡žÀ¼=Fº}šÂ1¡.ªÔ/“9ÊѢêêùsÈhK‹ª “ ‡„¬.º4Mù˜ÃE•†eòË!f]êjú2cxïÀ a q³T˜½‹5pëeËå—¥òd"_1FÚjÄ¥á!+ÆqÑ¥C ™1ܾ¥ Y¬½ e~øpÒÈjH¨ÉŒy(¥ÉL‹=$ÃŒã¢K†2s˜‡Š4N&2c¸‹b˦ŒAÇIk ›ÉùC2šä¸èR¹†„Ì$cSp¼·úµsÇóHkÀ:ÈAF“] [!³±¤I3d‹ d–!–©3û‡cWP¡puï²axïhpq›Ct”â¬]²WŸ yo¶Á±gU»Z)/\-ñäç¤}ïz¾ÍæŒ-ÁñÞ–¨£ÀÏWí ~ZxpÒW#B7EZ±ÈO~="b½¶ñC‚“Ö@íÌðË— £IŽ‹.õ“K‡„Ì.º4a” !3†‹*­Ý›àÉ0ã¸èR‹±„Ì,&Ž"õṠ„Ì.º4al !3†÷ Ú9ʼÃÀIk [Œ$£IŽ‹. ÓrÈjK‹ª«WÇcBV MZÏúÉ„C²š.ºÔncL#dfyÞ©±æ°ŽI^GÜy©»;Ôžg¤­ìâ ´«ÏqÑ¥aŠæÃE—ÖK¦=$dÆpQ¥µßÄGaf]ê Û!3±¨Iã4»CBf ]š!Û!³ ±¨H­™–|H†Ç;½‚P;gñÕˆ 6ÂÈ,¾BKZ± y§H™Á°b´¨:Ï3 m)¥Ü2„Ú ¼o¤tT‚Ÿ·aD[ÔVqòæe)Óþu»êœ´Uõ~›:kÏqÑ¥E!3†é[ⶨ}[ ·E°|TÏÍÚE‹²k'–J“á§-'í+ÕžW:&ãKr\t©…PAÈÌòPµÏܦäÌNb©4yydžK¥…ŸÛú֯ݠè^÷ Û3y×+M¯¯V^àtd mÁì`P±M9ÞÛ¦µG乆GNΓá§'u5bíB¤c²®à¢K Ý BfFý4i€W2 0B“æ6©êˆÃ;W¸˜íù]i Ô ºd4ÉqÑ¥NyAÈŒá³-Ö.I²¼IFZÆ@ 2šä¸èRCw‚™ƒQ?M·Y¡2‹T=—R퀥W#Ù) í‹óIyp‘ࡪ¶j/‹Ç n¦%já¢KF2cxoßøFð´j+“Ñ$Ç;]ÎäÃäøÙÈIo ãÉŽ„šÌ˜RZ{T|h^aÆqÑ¥s ™1\ti˜b:$dÆpѥ㠙e˜Í¤HkŠë 2Ì8Þy—¢ÛÆI¤7aÀNj2ÂXŸ&Í0E@2Ë0»@‘&v‚ 3Ž‹.uÛÓ™1\tiœÜ «--š.Ïû‡É†Ea`O²10¨I=Æ2󘘊4ÂXž daPJÛ/í1YÍ]j`P231í!Ï‚Ho Á´A¨I†‹*­]²`É0ã¸èRü™Ÿ dÆðN ×nZäOØ”kQ^ i«Q{_ù˜Œãx犛…ñ= ½y&5 5i‚A:AȌὠkÈ8 ­ ¿½C0´ð›=E&wÈhK÷öuíò= ÍÞ-E‚Œ9.ºÔMËrHÈŒá¢KF2 bš4ÃŒAÈ,ÃdEZ;Œé˜ 3Ž÷v“wŸÃ¤71ŠP“SL‘f˜ß ™e>¨¨ŸÁÀ˜´jO0ÚC2šä¸èÒˆ‰…„Ì"†"Í0Î(™e¢T¤Ñ`°!fïÜûåèa2Þ@İCBMF˜Ì HÓ “f]j Û•L”:?YHÈŠáÇ9EŒENZyžÁhÑ¢ê,æ²²‰ŠÔo‡W5Bf ]š0×YÂHÄÍ<Æ$Ý ±¾‹êRv€zðÔ¥Ï:$}5O6IhÅŸ¦I—…çš$ÃŒã¢K-Ï5IÈÌòHT¥çš$dx$ªÒÄsM2K<5©YxJ2Ì8.ºÔñø“„ÌŸÜ¡@µëÈ"Io OæPƒ[º×^í7òoÈ@3·Ž›$£=Ž‹. <Ö$!3†õ~|]*OÐbž¸½3<±$ r\t©ã‰% ™9vª4bb!!³ÈÃN•fþ[dIÈ,óºšÔÞדd˜q\t©«»ìÃE—FÌ?$d1:¥4ÌüË’ 3Ž‹.5˜HÈÌ`t*RÏy%!3ÏLJUiÄüCBf ë·fŽóäx@qÒ¨—Îù˜Œ&9Þ;Ëk“è"é $ÈDÔ`šø+t ~‰'ɰâx/_“åý?}£Ö^âkƒ3u¡aÇ@[Ó¼ð!YIƺs¬?˪KYL1NzÊJBM>/E•&Œ"$d–^¯±`–y™,  ÷XÈA¾fâI“>Ö* ™œ:§ìðeÎ;@ZµÒ!Mr\t©ƒð„Ìœ6uºÌKíÆ%¾þœô2„‡ Ôd†ÜQ¤µw–ó!f]ê c!3ñ¤I#Ÿ5" ™E>áD•fˆ(AÈ,óßkRk&{†£EÕ¹)2ÚÒ¢ê"&–„¬"aÖ¤®•I<$ÃŒã¢K V–„Ì ‘V¥âO2óœš~ž( ™E^’A“úSÉ0ã¸èR3esHÈŒá¢K=,2ó|Œ*M|Z2K||[“Ö!„)’aÆqÑ¥–RKBf–o«R™‹„Ì<Ƶ"…_1JBf‰ÿ’Z“ÖŽc>&ÃŒã¢K-Ë–„Ì,W¥3 ™ŒkEš¦xÈjK‹¦K D.€aÄhQu–aKBVV›éƒ×ùÚoæ¤7[‰Ö#BM2\Tií¾†c2Ì8Þë'f·®Þy¸Ôîê«?õ®KeþSo$ueMí…æc²®>à¢K^–„Ì™V¥rM2‹‰š4óáeIÈ,ó‘iMºÈ5A†Ç;»©^õø\$½%5!ë4i®Ó!!3†‹*5KaÆñÎݧ1^+"–Š<Ÿ8h+açÉøC2V‹ã¢K d” dføUê'wÈÊO|ÓK]‚,„¬Þ; kÓ¿öˉº”ål´Õ¨]¸’±b]š0²Y‚´S¤í7$ñ 3Ž‹.µYHÈŒá½íïq¸Ho a!¡&Ƙ”†c É0ã¸èR‹‘…„Ì,Ÿ‡£>î1!`ŒqÒH˜EH¨É„1&¥qÁC2Ì8ÞÛ™Ñ}LŒÕþ?Èè+‘1‹ÐjeŒ1)­}¯tL†ÇE—:ˆ#då Æ¤.bŒ!!«½1Mš·!¦2˘vÚa˜ ¦'­ÚcƒÈB2šäxï˜ÈqZ{—ÉÚ‘Kñ5/;èf¹oÄCÈòÍ0óOš4BÈBfòI‘.3Œ 2Ì8ÞÛµ3Æ»Y@zž—‰„šô¼Â„*2‚Y„|R¤fž\>$ÃŒã¢K-Ÿ( ™Y>P•z„Ì+Y%>›HêÒ‚ ‰dXq\t©…xAºÙï¯þ|Õ* æåäÛwóædÌ:1oig\ õˆ>ýñôáÊNɤÚÝÿñj9ý¦þÿÛ«ùôë«ÅÒã—¥gî+cÖ[º•Ü_}ÖÞÖúE/KÑ»˜–ºVXÀ­ ùl¶ÂòB6 EÖ∗…ˆlJõŒ´ÛU¿ÍB9»µ–ée!"/ ™Å.ëLžË×#²Y¨&Çú¬ä²‘ÍB6šì—…ˆlòv”,¼,Dd³làÍ&Yh>½¯û™Oíã?_–Ó§o¯þþ‹sMf®7Áo¿®;¼/sZZU?oO­Wì«ÛÛrõùÙ̳»~³ä6 ¸´O±}jßÎÖOËÜ?¹ÉåöÉ^ÿéío®þùm=ö–6“š¿Ë‰Hjo Ç…²”…ÑÂÍR¶ö¥êa»Yj¶”[_¦³Yj¶T{OR`-–ëºYj³ö¹}Û¶}Ó6ò²´º˜íÛšzYÏën[°ýÆi6gÓÿl%Ïî…†š^¶o;»_¶Þz ,®~ƒÚJí—·ÞÑéýykºv$êâ§?Õ¿¿ÒNøJ\;éÅ1±Ä6¯ìËR‡;ä²Ôá¹,u¸C.KmvÈïwwIM­\3²níߦlûtòíÕ õl­ûãüî|óîúúí·ëVþó•5±¿åä•ý§›«÷[1ùS{¤èt{{Ý~hž“9ß•ÛÓ»ó··ß=ÕjûýrY×úuc´Òëõ–­­÷ï¦ÓÃ×uu¾x|~º|þ‚Ñ“¾ÒSš+x¯^èŸÿðëj™¡t ’û+g¨?#I¿P!.ºêÏHBfPºF•BýIÈ JרÒȧíHBf‘ÏøÑ¤ ”©‘d˜-PáF•B=IÈÌò?ªªÙHBfþõ7¿Õ¥xÍÞ@EIFƒ^T¯J-ŸÏ( ™Y>R•ú)²òßÝR—øœIÈ*ñé>š´õKÂ!f] 5t$!3‹o®“Ï)êRPWIo ñÉ8’P“‰ÏãѤjèH2Ì”ßQ¥PCG2ƒò;ªŠíHBfW‡P¥s ™eŒX)õPjG’aæ¡J*u˜“HÈÌaÄ*ÒÀl$!³ÀÇzTiÆœDBf#VJTä‘d˜(æ£JF,2ƒb>ª*òHBfPÌG•f T$d–y½1="¯Ó ÙGQ•:=@‹ª‹|ÀF²Š|¬G“¦sÉ0K3F¬"…b;’ÔéQ¥ã ™yLbE Åv$!3¨Ó£IóŒqŠd˜å“X‘B±IÈ êô¨RqŠ„Ì<&±"M|dG2K|Ô]‘¦ŠíH²š.ºŠíHBfP§G•zˆSAÈÌCkR(¶# ™AMº@±I†ÙuzT)Û‘„Ì N*…b;’ÔéQ¥¼ÞŽdÅëô(:Ãëí0Œ ¯Ó£é *$deùÇUi€Ì„ÌÖ«êRP§IkÀBUIF“]êø¯À%!3QÎG¹KJ6@Àé @éI¨I¨ú£I”î‘d˜9¨ú£J¡t$dUTiÄ”DBfV“BéIÈ ªþhRo0%‘ 3Ž‹.u|,I2s|J•FLI$d1`)Tø‘„Ì 8& SÉ0ã¸èRÏz. ™yþ«uU!(U„€º8CPFeò;Ð¢ê ¦$²2XMŽ_Ö¥`V;’Þ@”DBM& X)M3¦$’aÆñÎÍCJPhIoÀcJ"¡&=¬"M˜’HÈ,ñ z¦×^-$''­l1þŒ&9.º4`ü!!³€Ó´kjN‰*ÙOÐæŽ´‚Å`D2š PáH•z>ÿH2ó|ê’*M˜ HÈ !iÒÈ  0¬Ý ÿº•!>9éöP«Hjʩ҄ˆ„ÌƧ”&¨U$É0KPæH•ZÌ@$df1>)”4’„Ì ’*M˜HÈ,a|Ji†ÚG’ 3Ž‹.uŸHÈÌñ‰¡ª4ð‚!’YàµFTiƨDBfStó u”$éfˆ‹.…:J’”`R¥PGI2ƒLªê(IBfP‚I“.PGI’aƱTu)ÇSIo€—R€Ôj+‰ö2›ø  ™ÃË…H2Úã¸èR¨·$ ™‰ Lò>º.ùœ$­ Õ–$MZ(Ô¤J¡Ú’$d…šT)T[’„Ì P“*…jK’jÒ¤ª-I2ÌjR¥†×‘„Ì /!¢J¡Ú’$d…šT)T[’„Ì P“&õ3& ’aæg OE e™$!3Ë ’¨R ˆ„Ì<†§"…¢L’Ã{ù P’Ö@í´†#0dt·½0ñã5Óµ–$¡ö¾—L ô¸`*ÆS1B%IF“ê/©Ò€ ˆ„̆§"…"J’Ô_Ò¤iÁD2ÌÒ‚á©Hÿ©½$dÆpÑ¥ ™ OE E”$!3¨¿¤Ió‚ ˆd˜q¬?ø¬K‰ÂJ²RG]JVj^¶ýúÊ›—¥2¯ ¢ÕˆsË “Ü7e$ùf˜AÅ$U e$!3¨˜¤J¡ì‘$d“4ií†#0¬-ªJIBVP-I•BÉ#IÈ ª%iRÃ~V†i:(y$ YAµ$Uê!×!3‘¨I¡ä‘$dÕ’4iía†xH†ÇE—ZÈ5AÈÌB$jR¹&™yˆDMšÖŸ)í2c¸¨ÒÚÃÌÇd˜q\t)TZ’„Ì,/[¢Jt !³ýIMšø,(IÈ,ñ TšÔ/˜¹H†ÇzU«º”(ø¤ôµ*€õÖçý´Jˆ] ž’Þ@ÿëˆP“ Uj 0”$ÃÌ@M)U ¤$!3˧o©Ò))™XMš§Å2c¸¨ÒÚ­Çd˜q\t©ƒi‚™ƒš4@J BfV“æÉÙCBf Uê ¤¤ ÃŒã¢KL#„̾OK·9¹3ngkÇ6:¾bŒ´Õð#ÉX1Ž‹.u0ð/™9˜3 I#$ ²ŠœBæi>&Êã¢K ¦'230'K“z>Yy>ý@ÑELI$dÅpQ¥íwXá 3Ž‹.5˜’HÈÌ`À*Røõ¹$d?\W¥ S ™% X)­}ÚxL†ÇE—ZLI$df1`©Ç”DBf ï<ú²)arrÒÈ Æ’Ñ$ÇE—ZLN$dfaî–& Ø¿DBfº¦š4a˜"!3†w2ÝÍ ,ûF,¤¤ ß 3 «IJdxÀ*º ))YeXEZû«á˜ 3Ž‹.u<(•ã«è¤¤ dÅpÑ¥RR2Ë°Š´öió1f]ê %!3«I#¤¤ d!`5i†‰ ‚Y†9ŠÔHIA†ÇE—:˜¸ ™9˜ó I#„© d!‡5i†‰ ‚Y†9Š´öiý1f]êyyIÈÌóÊ ª4B BfúÊÔÏ0çAaÆqÑ¥3 ™ŒkEê'ç ™1\tiÂÜEBf #[Jk/9aÅhQubYˆk©ó­Fé!+†‹.M˜¹HÈ,a\KiœaJ„ ÃŒã¢K-f.2³׊4Ls<$dÆpÑ¥ 3 ™%Œk)M L‰d˜q\t©ÅÌEBf ïô‡]ý̧Ié $ S$Ôd–ÒÚCæsf]ê0L‘™ÃV¤a ùÃE—f S$d–1‡…Ô׎4Ÿë Èj¸èRa*™9ÈaM÷?’Mä È!3†‹. ˜·HÈ,`T+Ò s+!³ Ó2ií<Çc2Ì8.ºÔMÖ2c¸èÒ€y‹„ÌFµ"Í0·B2Ë0-C‘fƒy‹d˜q\t©›‚;$dÆpÑ¥ó ™EŒjEšan… d–aZ†”†Ù@Þ ²š.ºÔÁ AÈÌÁì M!{!³±­H, È0[°¦€&5½‚Ã;CÅañ“ ¼IFzBUj2B+R3ÃT A†Ç;³P‚±´@zæXBMz˜ž¡I¤¥ d– h©Å!@A†™ÅÑCMj!-!3 A«I=¤¥ dæ!h5i‚´„Ì­"u ¤¥ ÃŒã¢K-¤¥ df!h5i€´„ÌÞ;5ë¿FXÿ„ êkåŒ-ªÎb"!+‹é©HF 2 ˜žŠ4c"!³Œé)¥µÉ0ã¸èR‡I‰„̆¬" ˜”HÈ,`È*ÒŒ!‹„Ì2L•S¤Ñ` "f]ê0P‘™Ã,V¤ ™EÌbEš¡¬Š d–¡"‹"MÉ0ã¸èR39!3Så4iÄ@EBf³XJó ÕWf]j0P‘™Á,V¤fmBf&|hÒˆ¹‹„Ì"F¶¶7½±·kI²š.ºÔ@ö Bfb[“ú镟ÀIèä® d• ²iíób.‚ 3Ž‹.µ»‚™…ÈÖ¤¾ýuDÈŒá¢Kä® dï«Ô¤µïÌ^Â%É0ã¸èR ¹+™YˆlM`‚‡ d`nˆ&M»‚Y‚ÈV¤vá/á’d˜q\t©…Ü„Ì,D¶& 0ÁC2 07D“fÈ]AÈ,Cd+ÒÚ¡æf]ê w!3‘­ILð„ÌÌ Ñ¤s ™1¬WíuíÝqÛ9Üëm¨É·éý·wÂÉß#÷÷`õ—°Ž…âvJÆÎ=r{‰#'í Ã߉%ÉøŠ]ê0ÝÃE—F˜J!™E˜…¡I3¦2ËŒRZ{·|*… ÃŒã¢K=¦2󌊫BfX¸@‘¦Ó É0ã¸èR3%{HȌṳíUnxœô"L¥„šŒ0 C‘Ön+Ä’aÆqÑ¥¦RBffahR±…„Ì<Ÿ•¬Îoiïhã6C…‚öâµ|Öæ8-ªÎÂìAÈÊÂÄ M`–š d`‚›&Müµ-’YâoÊÒ¤Ë9)È0ã¸èR ³%!3 -4i€œ„ÌD¬&MüÝ.’Y⯅Ѥfœd˜q\t©ƒÙ‚™ƒ‰š4@N Bf"V“f(ð"™e¨ £Hko4“aÆqÑ¥fKBf&ZhÒq*™HbMša¶„ d–a¢…"uâTaÆñΣÛö27>ƒHo Bž #ÏaE—ù{b$!«ŒoËRz‹í m²œ´üÁÇјPDLG$d1X¥4Ì0·AaÆqÑ¥Ó ™1¼w$ó€ô"Æj2bbJiœùÛ\$f]j1ö™ÅÄT¤X0@2ÃZš4aì!!³„‰)¥í—xé 3Ž÷Πd1 9é à ™ Ô$ޝiÒ„y†„ÌF¡”æ£É0ã¸èR‹±‡„Ì,&¦" |È*@bJ]ÂÄDBV‰¿”K‘¶×·¹c²š.ºÔí$Ç=@ !›ÁªI3¤£ d–!XiíÃÆc2Ì8.ºÔAˆ BfòW“QAÈ,@þjÒ !*™eÈ_Ej „¨ ÃŒã¢K„¨ dæ 5i„„Ì"ä¯&Í¿‚ÃE•ZY+È0ã¸èRY+™9ˆiM!k!³1­HÝ sf]j k!31­I=”„ÌëÁ°b´¨:»ÿ‘LøÑ€ Ó!3$4i¬EBf cZJk˜Osd˜q\t©Å¬EBfcZ‘zþÖ.IÈÌó~©Ò„Y‹„ÌÆ´”Ʀ92Ì8.ºÔbÖ"!3‹1­H¼µK2 ü…_ª4aÖ"!³„1-¥ii‚ 3Ž‹.µ˜µHÈÌbL+Òoí„̼ðK“fÌZ$d–ùkiÕ§²íes|êÖ@v¢HF“]ø ¾Uà/St2eÈ^XÌ·wDZy ’t+ÄE—:¦’™ã9¬J#Ÿ» ™E>íA•f¦’Y~}ž¯oï“có´jϘ¥¤$£IŽ‹.üÍ^’Yä/Ó¤fæ))É0ã¸èRÃ'%HBf†ÏgP¥ž§¤$dæyÀªÒÈ'%HBf‘ÏgФvæ))É0ã¸èRÃ'%HBf†ÏgP¥ž§¤$dæyÀªÒÄ'%HBf‰ÏgФµgŽÉ0ã¸èR^œ@²âE 4ŸÒ #?ñ-/u‰ÏZ„¬Ÿz¦Ik§8“aÆqÑ¥v:de'pº€AŠ„¬f°"M|š„$Ýì÷W¾²­înXN>´×¢™“i¥ñkð,mztŸ±qúãéÃU+-úñj9ý¦þÿÛ«ùôë+è±R¾*îk3^º°’û«Ï®l²£6ÈËRnYŸ?-u!s0õZÚÊ!l…å…¼,ä–z½ì¥„i¡ Ù,dê)9oWýB6 Õ/¸¿,Dd³PýÎëO. Ù,l^Ÿ]"²Y(ÖŽ0Ûœ²Y(Ï£Nïe!"/ áÞlò—…æÓûz,ó©ýoüçËrúôíÕßÿaq®¢ÉÌÉÞ~]wx_ædC›ËfO¾îwoÌém¹úülj—âúÍ’[)÷Ø>Åö)´W¬×OËÜ?¹š퓽þÓÛß\ýóÛzðÙöSþ"g"mØ‰Ž e©o7KYÓ‡76K –êõØRƒ°¥BœÛ©±Yj¶ÔX×ÍR›µÿÈíÛ¶í›¶‘m«|Ó´o&kòºÛ4sûæÙô?íäÒÙ½ÐðBÓËöí§÷eë­ÂÒŠ²Ô3!õ'ŽNïÏÛ¶ñÚ³úSýû+턯Äõ“wˆ_Ú[(Ì+;ä²Ôá¹,u¸C.KîËR›òûÝ]Ò)O9Ô-°9à[-.ëk<¶ŸXÏaÝïÎ_\·:›6×íu~wÝ7y7¨»4Ïu÷U‡7¶_zê~m?ì²u7U¥ÿr÷þ‡U—9Ÿo¯ßo¦9ÔSå—×oZÑ»zgwþãu»½Ë&žëmñlk„óßÝÿÔÄí…ˆùüåö_Ö&Ú{>¸nïc³ÙžŸG[‹;?|=¤n9¶YŸ‰Íùw£1Ÿ]J翯ÿëÕÏœŸi©x¾ûÐþžÛv;?ÓÙ¤è—óíºÌìÌù×Ã)-)¤óc¹ù@›ó×›ÆÙb_]¿4Îõ7÷Ô¼??=ß<³}ß±FÏ»óMÝ5ë¢Ù?½¹n_ Ywþ˵÷ç›ÇÚBÎ6Ô¯twC›&œëÚ½¬ÒWC_¿Ýe§÷`ÎëÔ#'Ôöx÷mÑvp´QôX/‹oÿíêíûüüïëÎÄÙÑ®[׿m¶v¼DËwé#Ûõ—/½~lkÙ^X÷ë‡Ížï^mþ‡á^}û·åëVØŒO—Æ]=VL:ÿôýæ_ïØzöÐ J×ÄÚš|†/’çá¾ÔChM6ܹÏwÛÍ÷4VuýnãkÖ7N¹ÈN¹þ’‡z’Îí\«ÇÆÓõÛoÅy¹ä5uçõ„|øâeU¾Ý;¿Üž Ïõ<µí©Ç¼°Ã÷áq¬ßzZl¾ÃsÛâu 켞ª—?·h_¨O–«Wöñ…nîËïnü¾ž€Ÿ·oö¦œ5õîéM9ïꎣå—ËüÉõoüùŸÞ¶ÃñR*µªÛµ5¶Ä]ÛÖÙÕm}¾¡¿ìùÃÞ6ùQݵ“Q»Qùx´_ÈεñówA[?ß“ìÇ»;}míRWª…]½ÛâböaÍÍ*Ï9ŒQ¯H±¥fßI¹…âšš®æÁsß,^îê¾ýtß÷Dì«ãGˆ­ûìøxO«Ó#”}ÿþ-ã¹õ¡úŸõï¿Ýú<]¶„¡ïî“öÝG8}÷Ô÷Ú›¥½‹;D:rÂØõª`Û~ò—5¹$Iãs\ø‘}÷|ׂ kêÎÛ~Ý›ç›'RÏÿ 0ËÜê½å¿{zøãííwÿëöæñÝùöû‡/¿y·ý÷w×ï®ÿëÿüìßÛ¿ÿ÷_µ~æ'Ò¶7Ô?K¶—È'¼„ô/[·5n„Ë·Ù9ôÝæÐÿáñ/·w÷÷7¾¼ÕV+¬³æ×…ÿnœ&¸i¦¸ÐÉ϶F½ú(–±ÞÔ. V_‹ƒo=y¶;ezÞ7¶½Ñ·vGžÚv¨WðÚ¿|AÞ7вÃ퇀&˜W3À‡þC°®…ÐW¼^Ýl×ùš¦ŠÕ¤] ´yá›`í9Õƒ¤ž¼<ÖC‚,ý¸žM¶Þ]†…r¸æuÿJ7÷ýÙûC&$vΰXû9M^¯}›~Îú¯ýºXWo±,X¾’v¾=ôEúXíÖÕ[àóo¨±n‡51ªÇ_.ñ4«×‘ö¶©zƒw~€+Ao¾^Šy·àÃX[ ›ï®M›ýèÍeyïÎ7Ûo\{bíÍj66eo°ÍUøþâŸÖ®jý;W-Æ#^<Íökï»H—óñÚAX» ¶Þ7ñ3fý&Û­*Ϙ§¼³² >Ò5ö|óþýãíûº+÷Ná0Ö¥vÛ¾•ÈÍ’ë_®Së«P{/hÝm²Ã!Nrv ±~ÉOÔó7´{¯¬ó&}?ùâ§_ýâ‡wϿпHµŸê…‰¶ì#m=bw/†~ÆèÙRo[}˜_Ï–ºWó~¶(WÆ/!áꆅµÞv†™–_?Ö¹ö­ŸÅU¾}µü‘WêšQk¸,¡g.´ºÑÕ¨Þ»ßë[³Þ,±E—EÆv °]Ýòríø¬†Ï‹eyøp[è­½©Ûð~{™¿îé×:B¿ëݧ<·ÎR=H®×»#×ïµîgû]†Ï—+@ï7µ7(Ôs^¹cl™Òrþi,U¹yף膾jínCâáø7íY3,Å›cŸnžôn‹wíüX÷s¤uÂ]¿EúbìL“ÛË+òº3ý*þUï«÷.Ü/žïÊí/v(ÔÃå„â÷ûüöð‰n¯,¿!ü δ¾%–õJ‘\¿Ò‹h[¦eòÃs¿µÅÔkæ%*ÛŽ²!ös¨?ÄX<µRE®¢ãÕ«»³ Míø¾¹ù²ßÄ»ÚÕÿ†Lö3„¦Î™®­ý«ùÜ.Ší’ÛÅ©]¾ÚíÓ úÖª‡¼<»{”±gžw}´;šÈvÓD‡‚;-m؛ާ]…z8™0çõ¨÷‚õ:ïç¹ïÈ}¸¶­óV·ùõm/×›ÃÚ©‹ýµ«S€¾2}‘zCuóE;¥Û׫§ñã¸!îüÕíóí—„šO{ðþá±öÀÊÓºÞs½RkÇo½/¹=[ŸüößI<ˆ›"»´c²?khëç†{S›åÊÓX°=Vè÷/­ªK»¦ñÚ™c)NGSýó»ÞçèFµŸÁŸO\îûÒŠëó»´W¾¸ŸÓ}¥õžãXo³vÛÄz· ±üĹ¿yÒcÉÖc(}D×ûr ý¼§hßh)Cg´ÝZ»ž˜íÏÅí³‹Ç»ñ] xÚ­†õ$ýB?Üï.Ïâ~¤#|1žâíÕO®öõ65`\÷>«'ëÝÓóÝ—×¾ç!ô'Q¶¨IðXñù¦ÜþøðøÝu·hiòuë)­ËÄv|7ÜîêáÝÿNõ^Žóþ9ôã|]®îéõ€×Žév ÿ±÷ÇRöëYTOº[€­ý×z~¤sÛhOÖhÆ>Z{´3Ç oÛ¿_ØýÄcýÂ[ù¸ªͺš¤žûø£7±ô ¢ì/§þÒžŠhw*£·Än*´[ÊæàצՄ·ý)ëÅx¯«}מӶgÑ5”ïÖs¯­sïZÚq¡þ=€½ã3ú¦ËzžµÀþÜöÅõ’÷t923»ô¯—[ôïú?/ì2=¹~¸®§àOë ØÆÌZW~‹ØzÒ„Ú ˜Bíõ¡z½K2·ÖVhgÆË’ŸŸÿ@¶gúc¾Žn2îr_󫶃כÅåòX3m:x î_õ_W…{º)µ„ŒeŒººíËoAÔ]B¿†žÙþ\Ÿ¹ýrKõMÜÞÞz‰±÷Zˆ±Íüy¸ðÞ²±Œíéõ¸Þà¶«+;Uúš½ç!ík£½í¦õ®_gÚOéÛ£­õ0j—œ£“bn#KOYð2×]xкèKï¿ô9¿h˜Û£š–c¾_ì)Ç´¬rí¹©?i_!÷C‚]qúw ©_ îžÆ÷¬ÉÚ;mcÔïüts¹ù©SÍ ^ —õÜnõpW^z<µK|órsDâV\3Ã-îz]®‘ó6þØžê—ëöÃçÐ;‹íÏl²ÌËuvïö°®QŠú­ñèC·/ßÞŽÚFF~ÛÀì{¾+û2Í*¹uûö¿óºÚz»ý ünûasÕü0lê&^³…ÀyÙ†ª6·wÛ—w¡^Ý´#%´hyYº==jS#–p~»=VúñÑÖ¿?G_÷X>³£ig‰gFÝ&˜Þ_hoýNnÝy5‰ë){CÛ,Ô. Ü“¯ÿbÂÀºËzXº-¾l¸7Æ·Uâݶ8ª¬Ä€wátÔ¶’5ýÆ¿_€Úß6r-<+ï’µóÛ¯Ô­¹Å÷íÐÔuë”þ(¯/T;»ïoö†z÷¨7ÿÑû¨¹|~w~™JÐGÊ'zÜŸ1ÏhÂH{1qÊ'SoFò×ñóÏz2˜ÚíÂ§Š›»Á§Þ_°cÀFe;¯[êS:7³Ù|¿ïƦYÚl»ýíú»6 ³Þ´lÖÿüîz}:×^ÁÚþíÍÒÒ–õXùîjÛàl ÆìÂ:‚Ùÿ–AÕ^2>×;‰M\>=Ý}±Yèîþîy ÞÚ!jAÒò2–ß]>;¶G5ýf,aãú $o.ÿ÷ëM€õœmNòÜï˜ÅPX7´Ç·ê}híãÂ*´3„ž?>«ÏIÛ HÅFýú†taééѲNhÿ¾¬W4ZñíÉs÷_xoR{¶×.ˆwã©AÿǽçËÄyæG‡‡rûzYhM©Öe°"¥zcmZÄh¬rÛècZ7£u$Œß<–{Óïµê}T»å}^{K»ç½Çþ ô7ê•=º—ûÌ'QÚ:´Zn³y€ûÃ󛇯i=¢ýëÖ£?Î^¬r5ûÇËõôy\ÖÞ Dü´n¼þà„·çÍ‚‡q¯[÷Cï^çz@›ŽèÅ.›{‚v¿\ƒ}½'ˆK“óLlÖ;ŽSí×%¶KþÚe¯÷Ó~qt/²|D?ú“1è×N|Ñ6…¯·n—Quôf6•ÝÝßlg~ÜÓò_—ùèY¡;Ìv„Öƒõoh8-N-N·Iï&Úüý‰÷ôÉzj'/{¢ÓÄ×k¤ù«¯Î3<Ûü'úÛíwñ·#ñ»—±¯†Q]éË£äÅÃÍZ«jæî[5¼<ïÜ1¶Ù»uÉÖ㨶Ü»§e޳e‡Ñ‡QH!š“™êYšc_òWê×#Có5ê>|õÎoÿ¶·Ý@ª_‚¯[K¬ÚûÙÞö^îJy»±Í€™=œZ|ý×›ÛqçtþϪ?U^?Ei­ôSÔM±,n—üÈÛØö¾È–8ÿ¤>caOÙ3–vÕ³óåȵl.Ö¥W²>¥¡ÃÒ›3ëf‘8õËÅú¤í•ËuÍàÉÒL†ÇÝiŒ3t?_;–ú63ý8\úOªQ›I9_®ìLƒ˜R›ºzé°çÅ=`ÚKic½jò›N~¥ÚæÅ=Ý´¯û³é°Î¼¿y,í£ï[üå2±™&‚Ûknµ[è;¼ÕOw}?ÎR=Eûrÿ¨n<¥ö­N›%7{̹܉‡ °Õm+giÓ«ç6=MúŸÛ«-ùW¯Ïëå«v·þÍ/wžb¹º;Ãòê¡èñ@ôâ@\àýÿˆã>¢³Íb:º•À[Ò¥ïû?^vöû݇iË2>LKõ¯ö«M:e>nlTÝõxz™¥6ÖŠ±z{9?{`µ³iv‰½÷>ÚWœÍúà£l8FäùQ«ý¿Ô{ÿryzu<Ûc´/ÿ6¦Ò™V‰çþlÏ÷;¤°ö+nÆëp¶=mïKúƒ^ïó>ÎÖ¡?×£™l–o[bì“«² ^ˆU, 'øÑ?¸õf*¬&xŒÖD¼a;ϧÒèÙæ_w‘çîËEäÿÁÉ{Gô矽pOÔVoÉ›Þv=yå”ó°NÎæc…í–þ˶õë-çÝóË>}ÙÊðôXþg8ê~«G˜ø}èÞIoìœÂæáõzÿ==ÕÌ4 ͬÏþÚó›Ú#aYt·>S0±?ÒXŸ¤-;Oç²öxvŒðéëÝ€3û³¶ã/¿§XŸ2™í4âꌹȟ tg‡Ö,Q~Ì’’7}Â?{àóôýfŸ¯÷°>_”?w k-=Öq°DæáízûfμL©g·ë~ù·ë3]AÆ<¸VâɆñ¤-Ûµ·Ûý½7<Œûu¥Ýcö1Źßèßÿ ·öËó×%­££ü±ÅêÓ~>B¿Ôg‘~º*ÔopÎÑ Lp[%ÊxlsÆüäOÑú"&}üÓˆªhã„yL1ˆ}Vºœb°ÎÌ,bF†ÖOmêü(7Ö\êên3P´3Átã‰=ÕK¤¬ÓEÄIÞ@ë‰õtÿð¬Ï…p®9uõ~øþûÛÇ/~øð•ú8±õ4_&#¿ò¨ŠO¦X¦Ôº³c²d?*”úÉ_B½[wH{Y¶³r‡´ïæÛö+ôÉñì"c7.®O«A›„¶7•Íúzy£îýÃO·¹U7Sû]örÙJï®?Y°ÖbN¿ïw¦†ÀìÙ¿\Àñé!?]×ó »»>ëˆ_Øéµ>1jÕM7t{£6ü: “'x÷êñr7Íoö.94jÓB¡«D'G_´vŒ`26e¯šã¡‘86º<öã~÷GP—0>Ù²·F®¶7«ïåMÏÙñ«Ñÿ Èù]endstream endobj 577 0 obj << /Filter /FlateDecode /Length 6324 >> stream xœÍ\Ýs7r¿¼òž/•ªËÖ+U&ÜÉàcG©²eûì«Ë]NæÕ%%æa$QÔžv¹ôÌR2ý×§»ÌÌŠ媔ÄÁF÷¯?ÐÀ«¦f«ÿùÿ_îNšÕÕÉ'Œž®ü/w«¯ÎOþí™¶ð¤n›–­Î_Ÿ¸OØÊ²•Q¦n…ZïN*}zþ7hkeÒVðZµ-´?uò¼nO›ºQ°¦­úw§ÜÖ Ómu¹Ùn»ëèÝËÓ5þP­´¶º<ýßóßc×:îZ©ºÕ- ]~º–RÖM#ª/_œ®9&ƒo©#ˬ¶Ußw‡Íþút-„¨[ÕV¯¢!“–‡KxÓJÎÌH‹}/«MD³§1eµn£±zæ8ĸZ1ß+ŽmÖ‚ñškµZ U[­Ýt¾aµ’¹nÆÁÚ%¶n’% }šê=Ì;ô*ª± »ù"’q1c¢qG'óF2lõÃÍa'šoÎOþ|â0\­ú‡b·he-ÕJ[S[© ¿¢“ïõáÝÌ6IÏ«™+”ÕêüÍÒ,c‘: ÁæâLœ³Õî”kDžÀÆpð-•@²Çw/À©Ò.#F†[šÄš¤·åˆßǹqÒÃaÕ „áð·Me³?ø­ u¦¿ ‚- à¨Ò°²»ðË€*¦º¹ŒíààzÄ4õ`mÒõPºV`Jœ½é»kв9é²Q6ÁtæhDÄÀ ˆFD¾•©ä†#K­Ñ£Õl-Ë ÖÁó¡EuýÛêu¬€ý4V²„Ãá(ìP_ˆÔ™„9öfZ”à\ b>j-ÐÁ mîè!Z¸d6]_÷× À—ëÖIŒrÌüC7¶w§%Úž‘³P%†ëÒ9n«ë%½Hä vSp}ú9Ú­àä ÞKž~ú2þ±‰9~ç?nçFä Ûw;rŠÀU†RÇj¤ŠM”äÞW²›L•b¢)–ÔSÕm')‹ìŠÓ‘]í#ó²€"¥™ 雟ºÝÍö28Ipþð&üн$^}ó¥ëž £ªg?LŸ#î…îãM}§tqâvÛгâÐ3*„dš¤‡qÂêÛT:ǵÉ}3êaeÉ” ƒn°G´Ë®ž. Ð-óÛH8'ìfœÈ|‡îà_€Dnv9c¦.v™Y#²%Ò-çÜÿr륪o¢Ç_>‹˜ºiµ7KèTá/üW’’ƒrä¬eÃÉŸãŸ Æø‡Zƒ¯“ׇ’ºúWÑg&ñYî†ô³ÝÅi DdL9äŽ,ú™\åð&Að†Öÿ†yÌXGm@¿~êÿg»¿•Ëݬ{¿ñ¬âíÜbÑ$@Íò ïqž—”0k£VªÅè†;Wé[UÚôÞÅ@ô|[6?ý:V ÁþwÉ›«mÞÐ96ÚЩcãͪ 4ÐPƒ4~†B¼^âi,DƒÊ&ÚÚr½RVÕ’ rJ/ªÈ+ýHŽ3L €•ŽûåMcáï2 ¡º5q— ’§àñ*€ Àó<þàš5œI,ä^ïüÛFL-•É­·ªJŠcVµÛ"¸2ŒÛ{ÖweÁŠáq“Ãâ>D@/(­uyPÛÍá6Íw !2¬ç/ƒ?] |w¼ÚnNr 8r8¯ÁÍK¹Š €—™Y[‰Kçl3—c'÷û~7¦„8‰?­¦wÀíHm sëcªn³í^Dm­] ¹óý!øWÕþ·g 1+…µ>qöƒÃ£mƒðô›Î­…¶ImóŒÄv›ƒ‘ü);GÊÃTuÕ¥a“oo«§Â9TL׆³68/#î q7R.@%ÀPWïÉò¹ì=ƒÈ`ˆ•Ž<|3ÉŸãÞO7q3'?ZHáÒQ±¢µ‚¯‰8柃ћZ¥²†Àª1vc»ùîf6Yk mR*Y™íæ:ÿFÑ7ÝÈÍ;6dãC¿i™¼Š XŽýÆ-³á~™ñë& æ/ÓÉ«¡ T ©‚låè¨ I$4¤?£:dvT‚h$¥ @œw]rƒ)¸ÎÜë]»ƒOŽ ¶‚.LãÜ:Ìòpº\kܧ–MÉ”µ¼«¨ás ¾Fzâ+£OÇ[Eî=å†ZIn?ú$­ öCçä¤÷.âhX â©wvj>ÅšK>æïBMQÕBZÊ:DS ÌÐl’nŒvÌh”±l5k Ì5bnL}Êš)ÖBü5üU‰¿ºVV ŸÑ,Ï¡ÀÙ/N×LkºÏñOEÑçÙS÷çSƒ‘• x[«¶Ñ÷då÷å„{÷ã€ñ‘CÅ|“t¥ c_–BXo6nw 9ÀȤ±³ Šb^¢Æ?ÒòX.0Çv’Y°M`'À ÞÆO Lç(èvŒD¦d'*ƒÉÜuD`×µËdÑÇ_Ü\BL!3Äœñ™Þ€ï§PÑÁ±Mëøwž¸Â…¡»Äl$ª„Ί'õ"²‡<‹·{Õ¸É#iÂ¥$&£àvlBÂÞ~ÀðŽKQ„@†ySáå¥zZÂS›VCÔGÊaû(åH¥ÔÖÜ¢óÚHɼF/FLq¢æ:­¹‡† LKq®ª‰öë>Å\±0ÃéZ›VÄ“­ž”wœãJ׌AÄ”ÁºH¬¨…Qª›&¢ðÇ*†FV‹Sá øU0ƒqè1PÓÀxšŠµžÂ"¨™š`'ðïKs”oqÒ˜GÏ"!®4 ‡¦Œ¡’®ÞCLö»a9úä+YÀ§7«Ý‰dÖÖà2„'Û“#·t¾ñƇUØú–‚Á¡4w ƒ)-ÜÜusÌ*%sGÁXÔN Å í‘Ø(IVÝ‘5—è¹à6²FH—>ÑDèÉÈv´SË~IËùcý’E] 2BºtÏÀ₵œl1‰odƒ« ôˆÚ‚€µ€¸›‡G¥ % ˆtY7Ø¥å5f…w‘÷“|Т»l‘1ýRæ¤ú»»àfáÌ2g¿>… s_'(ua@³[L0Ñ kÌ„ Ãv1¬èý·1Ë„)9fkT³Zƒ¶XÃÝŠmJD€Xnº?)±(u6?…‹ûp¯ìâjô*„ÄÅc†µpÖmlJš±u•xÍÝ|o2*Ɉ–sœa(¡æLBDè›'ÓT`µ$øÐ²V ®ÆË6–7¡­yXƒ~|ΕETp’P›© Ú,Xø#&mâÃj>B›¡KTÓk³)¶£ò«â´ÜŸ™6ÍAA6Þ eþ?ƒØÂ)î‰ ‚&*Ïì{±ËR!@D >Gˆð‰cüMQ´ üùê$Ö\Sh¢Â°G ½mä'L@Ü"o4ô!bνAÇ=!¹v.Ñ„[,Z„¶\ê¸éç%ì]# €£‚ *¥&ÿ'_EIàÔÓÂRR~V‹„›4†O›{qʛʄ¬+`xÜ…¬=F¦¥}Ow›cï,Tl¹úÂØ^ì=aL¦Õj‡8 íÓþíYÈhéjs˜ÆãáónHê¿v³ì‚§%ß--«1Gð‹´y—Î᎚DZê»RºvaL¹ËÔŸV øY°Æ¶ÎŒýCQ4%,W!ÞúcQ%Z,EhB›‹iT–¶ÒÄ×ê‹岤°ÚË™¨¤#_‹åªíf™(ëvb!¸Iþv"Ìs=ÁÀHhª Iéý|ïð~ÎÎZ(°ýLD»6Õ_ÊK-V¹«fn°zî5Ë[«¤Šuisô•¯]˜ ÚO]Ìl^³ÚÒþõ½ŒqÄëž3ÈðZŽL\’_$¿†(’'X&†›ßॕ©eµbêÃ:žtÒt-¸"R…p6ó_HÛ¸©ñ3®ÔmkÊq(b|0ÚÃÌ_çB´6ô<<˜<õ_©S¸]qM4^)Xθɘà6%r™›­½‡‰]^ÏO¿I{÷Ìí¥s7> 1éÏ%?ú—ç{î_°§›°Ý+ý2Ða‘·tÜà>°8¦,à"Ÿ«56YKX¡efŽ£d(à :pÚŠ2ó¢MÚÓšÕ9¿Šûí_ùÝ(Áæ&ÙwѨÆYªZQÕ—c itx^Ç%¦y´&ª¾Û K{?qqY’±¶Õ¿|<šKygݦ¸üþ¨ã`!J0çP¶g"f0¡’°¸&éª%íbW§|û“s¬r >¨{|¸™­±áÚçkp¿CbZêÓèø·¡H‚cì-NÄ ;†âöD%€Á’ì_Lõ"[BÇä$ ŸVÊÍŠtáÅ¼à ´]aU·™Â_Xįϛ‚Š'öÃøIñU‡mà8m÷‡¡Ì",ÃU÷/†ËþÝå«¢(ˆ…BŸ¹i_*‰oö7·[WÇVL‡€k !cVAœÕŽë^¬Âfµ±#°â.øÒ¹+Ùt>`K¹ÐaÅb—ÊÊέ¤Í²ZLÚI<õ»ï—®ØPœÖ#\O“›•h!µÁI2×rä~Þ@Òo‚Ð%§d¹ìË”.ë«…mIÖŽÇæ!cuµí†C`?«xã§ÐΙ¹uÇ 8Ù"3™á°(V_ŽœãQK<4Z…œ%î¸!é—aKǦ|v‚VMç_ç¡¡!{玌1à,E‚ƒ‚,ê6/ Í³ùöææ²±¿½.j7r]²æ>›Bù05ø@Bœ‘.é!ªk3Ž%2¨ŒÕ}Ž‚Í£í"?Óìãɤž!þsˉUö$RYpƒšþX °Š‚²© ¶©ǽÛêû˜Ù‘ãø¼7X¿> „ÌwTâ‹e>Á“þàÖ>ì° CÝËyŽ¿ãfT·É9Lzu‡Î{,=•Åó$ïâ%5«Á!^ªô‡(T!?ö¡yWØÅLÍOª±'æ‹(^Zs<÷Ð4M ±«ãô*A…½Ø±æSR¶DáKŽtó¦[´dmñ@ÑÒÑKW³.TC_2t|@TÏOaZWÄOë‚iu«hé1‡måÈ+Ã:T)¥4š‰ò²þ°lzVvÛÍêË>`”œ @\pn4Ì?àËýõ¡ßo‹¾ ô;ÝÚj¬W[—Ÿ˜ ñ‘ÒåxpŸj~v \˜KCuÛYÉ*È&™ŠÿÐãÒq¿Ò…qÞ¸xm‘%Û܃0§¥I+ˆìÅ1ÓÝC\èÙñ£ŽšC™ƒã~;mzºÅcî·Ç瀼eIKVßC¾÷Ð{ÏsÉ¥ÿ¾ —$—]òÂü׳×ÇwR§ž1S5׫5€‚´Ú‡]Ï 0Tìn®yÃþVtAÿ¯§wïßl^¾¹Ûÿõòòíÿ€Ê_T—7{|6tÛÝ/ßßìûÃÅéÅé?}ÿßð½ÿÜš'OB?²Â.NO ÷&Ä”D]þîäüú.Pe#ªXÕ]]õ—WÀÌ„Š³04˜»©ñßÕg·×›ÃgžŽ|ð Åcë˜ÛÍp¸ðÖ΢âžϦtXöU _'TÕhPÿ.Z,UZª€† "÷œéŠ›Óäq~¶‹ˆ­®Ú(,8€Mcg k”WØd¬ÂIqPXÉ$Á'üO›ÎIãnØÐ‰S&Hœßm’ð¹Ûn~.œNV2I¹°ääp¾yD}Û9=`ë?îïq÷šp6äq‹Ì5ÓÁçîÔ)±Á,¼ùE K^Ó+ß—»´‡Ø¤Lõíæ*¹¹ Ϩ>ò@ªe5oø ó;¸!òØ»@H©0%êüI®,›ÊÂÀ@ñØÿq¦¿QÔO=&GÉöÎy‹ýí|ãðtæR6x ­´Áíš„ n‘Ÿ–&OJYÛÎw¸Ý—¹'wz ƒó߇ývZ@¬1?B†4šÂ1¼¦P|1ÎI»pð¿w»†ò!ŽÆÅôÇ÷(hŒÂ‘2O™×L’GËF¦fîqÁZ¾˜ É©´ù!SM'=Ó³‡ ü]Ðk~ÇÌ}ÄŽaQp”%‹Ñù“¯toNÒ“Öèô0Ýn3«ÑÊÐÍI’`Â4ŒOÓàÍlí$*óÈö}êL·Š–#_b˜Dhb†d‰b¼z›V)…Û£Þ_{*€#,Xòn[÷Öf[¼ØLNX°õñÖÈmªê½YåOò±b=ïS*×ä¢:}<†buÈÝŠYQr˜÷•?>¬t¸H†gV´§4ù)_¥obžâþÏô‹¾Qdoþ+è&,de#¹Œû6Õ3d™6Dñ „°Òoò~uõÝf;»EÀw$ªÿì¶ûÞ@!¸¯-DA1Q‹Wd'¢ß: '¹œÝeÙ¢+|ëÉCG2SN' ¶ú}"ÐWþV#qÉòìä·îæžvJ"zýH–g×…º±Üdª2î$ù‘‚?ªr¡«œP´e,=Â0=ÝÖ†ëè*‰éOÙ©-nÜõ1C åüly¼°ÏbX¸žÓ°>Ê_‡ÆéŽ™µ¬X]5ejqXP¥~sõ†P´tqd¼‹e-ËE¢çyÀ‹‡”ëKø[å`ý{$ðͲ­©‹Ã8§µKÓ>Ë™»¢IÆwÇ̶ÓÍÀR)¨wØßÒ™Î]ßBÇzÜÚżû»˜º MèÚ³°y† ‘¨ªKPB¶{Ò…mº0n|ªr—Ÿ›ìOÝ­Y÷®s ý2¼ç Túõ6º!±WIYv ŸÊ¨,¹îiú¡°ìqÁRØå-Ç\‘onø¡Çx/¼ÀÄûÐùWÌôrÓÁ zK7@­Á+ h8XªÙÞˆr÷‰=Q›þÒ½ÀÅC¸Éß‹H—”²ñßÏ ‡GJsë´AxêŒlý LÅ$ÁcZé4[”&nCvúæm’‹ê÷;ß+q¦i©¥‹Sú»ÉmÇ ¾ú‚|d.)ýH/W‘Œ&Iµ„sÃç7ËHN™‹ño =nÜ6‹µœ§·~íÓ;ÀÜ…bø•>vþðÚSÂ7ߣ 1ù<íŸÏVÐ,–.³X8õ_3Ä8TSb~Gˆ'„&á.'’;ªè2GPI#±ÉLŸ6ǯ³IÀ>É…ëÃñÑbz}~Ê:llÉÔ ôùÜ@`—R¦³è52£¢u…–äãã§M¾Ñ„5OxØmèÞ1÷-ÞX‹"'8@^zûÏÁWFIôbÊ_0 s¾sÑR†×Ƥüó;sM~‡3¦Ê-ˆ"<|HûÎS>ÕWBæ8¤³{܆!LÈ5¸pãmÐ`=1r¦À«tùë’¤D&Šo3И2–ý.™Ì;mq滟É/¼;½YªØ4îƒûoóüÒ&«¡ûš£Ý}^« lœKô&ñª>›š i.'q ×ÕP2&Á“n ÎL9ïB7ª°Ë©£º¢K–û%þWYÈ%V)¶%ƺc;yFGøšPæ.‰q›¯ ¬™ï2S`ðç“ÿ-•6endstream endobj 578 0 obj << /Filter /FlateDecode /Length 3462 >> stream xœZKo䯾ëž[!@8‰Ä°_$;HxýŠâµ³Ö X+( %1â2ɱ¬üåÜsNUu7ÙMr´°±‡²««ªëùUS?n’˜mügÿ¿ÝŸ$›û“O½ÝØÿn÷›7W'ºÌSxëD³ÍÕ݉ÙÂ6,—qžéM¦²X µ¹ÚŸ|Œ¾-þ»=Oâ$M$—yT×åö\'ŠGï·° DÆõ¾mè™ÉŒëèÌé\D_TݣݔäÁ¦Û-QJŠèaËó8‘,Þú¾Š”a (¦÷%©¤r–§yÔ‘(¢TômeXŠTŠ`Gí´Ñßÿç“Õ†,åiʳ®þ¦JsßTBd1ãh°«ÝIÄõöêß@Ãd`Ïs)Ùæ\¨8OS¢»üÒ1+©ùæêíÉÕ>âËsÅ%Y¨¨ïÛwEWìË¡ìz÷^F9Ÿhꪮ£®hîKûR«è¯øSÅ f峦¨_úª?›x4í»²«ÚÝÈ6Ÿv±ˆ%g[<(jôÇí9Œ«è©}:ÔÅPµÍ›¶­'Vž´¯>{ûþË•­7‰G-G}Xô¼J!|вºú«‡®ìÚz玛ùŠóXåF>ÚU9«Ng(úáCY>ößµÃEs[vånõ$<=›,ó4 ½êÊf·n²I¬Ìó…àÁqø¶ÚQy_äisó®>ÜWÍé™}™pˆ§‡bzôb|®˜º®öÕ äª9o¯£äl •\o¯·Äãî÷‹•õÐO üÈ»+º®jùª.®nêò:ê!ß¿+ŸŸÚnø8Ú/E¹§oŠ]ÙÄe7 åþ¦ìîO×Åeš©èô;àñ_>TM(ûÌPWÅéõö‡£†Nó$‰nÛfèLx.Î&”=:TÉÓÕ쇢h{pòªo1†þUÝuT>µ·Áɯ·÷Us¦èmåÍ÷å±õ %?•8s[ % cÌÅ [”¯ë¥ÿT5ÇôÅ30Õl¦49o˪#ÑØø&Ã…:[h @UꥪãÓ7 šÄ‹¡Ó,Îü˜qo~EÌä±à|#rˆÚœ› á¿àÁд‘Ìñt” `ÑœGßaFÀ•è …)[ |‡ágÊÖŒ—žx1ÇK|‚—^祒_Áëˆ^ŠM¼øk¼øXf ø”寶Ýñ‘-KÖ<‘‰˜é N%<¥ì`Ô –¯ €«~,…ùOøì>ÒÉè@Œ”šÓΫÓe:@,/Êì›ODÙÊ8š£F,–¹ÕäÊÔ™FÅ Å»äY"#3¦ ØŸ·0|ijl—6ã´À’Ò›š"súØ0 aé@ƒûµÌ"›ä†jä ¥Ïd¸ÒQÅ@´ij39f©3ŸLU 0U7K;»' §èØé•`2ôFè³åS7¡(¢Ò &hiëÏÎ ÖÆD€öæ´T§Ì>½j8ò,j3 Ê#°ÌÉòèn;É ÈvGçò¢ž¬LpÌßÖ¯á•;Ïüˆ×ÌX¿æ‰Œ\'’cÙ5Î{;íãÐùwþ‹“»›ÚIŠYU<Æ ’Ø!,V"b)fÞÝÙ"Ý  ¡ãV ýÄu "ñ XœÈd¤;œÐžU¨ÐÊÁÃtVÍH"tE ÍÆ9ˆÉ±ª]Í›'&èwÞûŸ¶ ! fª‘*€²Å½£–6à7ÔËÐ]”*HÄ ¿=y OÞ¹»¶07PíLS>¹ÍZ玫½Ð,QΣÊûÚ¯± B9„`é£Òhgz”*é/¾‡v_ ¡gNç^Í.¦œù|·¶d4†€Ù÷|OµH!«+Â$ d•R.ø¤‘µ/ž,ßûÚÙ /ÉÈnh+ÀÅZvõ/ý¤Æ=T-ÑÐ2¡ñ/ðÚß'‰^d!½OÕ˜†iXô¬„\[ ‚j›o„–hI¨LtILÌY- Ì?T?™l˜Å? vÉÕ²;_Dç*ÂÔƒªÔ¦ ‹Ô‚¼o›ÐÅtðL.‚ÍOûù ƒu5ùîÑÒ0’f\¡Dó£É³™ä>0B?‰+ŽÔ‡GîÝÆL¦ØÎ¥H–næš"°®šc¥ï&!%2*¤rl]& æ®2o»ùÑ̶{´aºæ¥ `ÉæA?×i4#’SǤßÐkö¶ô©ŒÃ„„‚­G!ãD‚^Ø|ÎFã{«žÖ<úͤ^xHÌÄ Z† ·~Ï¬Šº~ñxÔ‚ÍÒÕö‚³ÈGB¦Å+FíÍF‹YÙÙ÷€~»l[ŽæNE­:)]L‡@̶GkºyÊaL   d ”o_hÑu-ÁœŠå3öm@ܸãÂ+e‹"½²èh0ÿ<8ÝyÔ¯8c¬AAYÀ*¥.tjâ=1èváAg®£þ*t48`P;SìÛn:Bá÷èÐ)u5¿Øšá—E(¹3‰Ë˜ 3·ªëW«& » ŒXÇ!8ÆëÞ7–E~6ú2«z˜ðXÛ8è•-HŸ ²À¬„x,li³Ÿ­ ðICnÌLÇékNsÉ¡ŸÂá:õg[6F 2ìSÐÛË¡´·8"“„NL†ß) ä‡á¦+‹GÒ@j0!£pÆeƒ]“47‘îá’6dJ)œK±€/ËÎm|úfë^#vłðÑ/% z2×yMoÌ“àÂP ðÆÚg-žÀ¨6ÍÌ D˜f4^}ÊØ&Œ€LúR‹TÚïf ðq!s0f‚&„—ȶ[p:hÞâmò×N¢°XkíM©ˆÅY¤)D¿à÷³œ0DjÚ€÷`…µA2˜&qšÅ2¦m›ª„ï§Î=îVt ô§Ö`¨Р…€¦ÝôÜåäñY¬¯î›W•H)ˆgxÁ(' ñì}ׇýy?/_8ub#E@›d ¾í=9íœqˆ!7ç#BEg-€Zr¿ð+åbPv†K}PÞ¬”\³SS¦fÎ>j3'Åtªeí7¤ôqµ5 ®e ölÙˆÌùTtùÍ…}€ÒBƒB¹yÜa`‡@2 {±âu]GÓuŒùõÚEÒúe‹d9Þ3EŸÅÍ…Ëúçý±ÝI¼ú®|ÐçŸøžÏ3öê÷| ¼†J]ŒàwsŒ‘7A‡Ú¯€n³tffxÄŒ_msDàJ œÇ‘&ú¼¾Þ¬,Òf ˆmü£ i•å@US k3®I.¥pç»å—úƒãØ'Ć K%C®·²‘:W‹¹SrNEzX€ZêŒÀÜnÍ-º@äbÎøZZôA&tÕÍ4ï-ÆÌÔ2ðÑHø«‰CÊfT~.’|÷ûyÄ{Eo‹ Ä!šêÜ~HÃ0¡«.•ãQ+šqŠ´H‚!à%I_Æ8}îúâêIdxÖZnÐ;WQJ¾»0UÔÌÂú,Î}*bgI’¬ÝtøiÞÕoý¡åÆ¿¦‘ša_¯áú°]ôD‡˜››GÔ×V¯=R‰×=DU*34í"O‘Œö«ÁŸ$öC{Pz_ú õVi†‡1Ró4¼v,/­Ã?ƒªïìŽ{† &û –ii¸93T{gÉFr÷ÂÕì"×j# 榛(‚/Å^¬UÀ¦jn©va¦MIlg$ÐÒ¿0~qãì4­ð/zC0J!¤ªù-€¹\õ ™©Ð­]Èk@6èßš,ÐW ¤ÇQEÛ›u¾>n¢Nj>ôY ¹ëŸ¹¡Yï¢ÆpPëTôÎÝKûqg(öú¥‘»ô†¨ò‹ÄÐùãzXe|:ºš \Dî/òÐ4ÃôÇv!v¦‡Æ༯úñz|ü$Ãéòa z ÓÜ«üíÔY¿?ù?}³aendstream endobj 579 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3789 >> stream xœW T×¶­¦¡«PD¥lñW‘h⌢q~FEEœ‚28¢€È 4óР ÍÐÐݧ»™glhhq@ÄyŠòCÔDýF¢~5&މúo‘ËûïUKžÉ›þú«ÖºkÕ½UçÖÝgŸ}v s3B ج^ãæîiåfÕbõtÈkëÖ ë'Öh¨×ÐZÔdý³IZŒœ…Q¦·Af=(°Ç–nàGÉ  ªýò$á%-É»*× øøE¬¡Þ’tþHf!!¿ÎÏØÌâ*r› Ü ‰,´È\aa$ÝdpŒE«IºáÍõsW¿,òö`pòž²à÷>ïÍïºõèѱ½èÂs—W¶ô±>­Ãùßbañs]ÏUø†z8õÉô›IjD·5²`¶¿† VÊ>gb$Üh‹ì?ú‘ÅÃÐ÷âU›gc!ƒ?A*Q“&¯ƒAÃDôíçͳֳ5¸W¼tÃܱ .òQæ5±¨­%ió—íNn¬5§¸izA}/Úß+äBÑ.11OÄ<‹ßLB–hÈëˆfæä‹!¼ã|ã¶ù†o?ð­Š<}.C ‚35GëŽwTµÁQ8WëWëë À¯7¢ÉzÎÞ˜l°y׃Ê{méaÜ>$#zâKl¾Àß7NÊt“ôs<Ö„îõ<¹/Ûò7s-²øÝ?‘dΞvï[@¡Áo^ 1;g$²löâ€ÀÊÑLr¨¡’B1$=¢«¡³¡ËáæåØ‚µþ‹ Ëø!ëïºß=°¥9‚.n”4ø¹»ù%3ÈÌ”aö_eX¤mƒhSØãÉÅÊ¢9‘ôø—ínåi@¥a*i DQUIú}†âF†ßNEÈô÷‘ΦéÚ~"ö„-=õ£b8¶?¥xWãŽ|ÿ|Ï"·¸@5×~€Ìrœ%FVT äèØ×däÉ2•²—Qd¥¦e)ë·CPØ:ÐÍ3¤<¢.ŽmŒª—ßH¦è›ú¬{{–ŒÚ°`vðùû Œ¢D• Ô^ÈHd±¹2ŠrÔjŽÑh@³OwÔÿ˜ªŠ‘<þŸ7Lðdü7!3 ùR”nD«¥6oz¢ h”Á–þÝGÃÄ磽ÈÅaAnð¤‚AF4ƈǘ˜þY´H57ÌqBGÒÆû¸A„‡>Mi¹^ý*3}™^f$´Ã¡àÖ‡6•oj®«ÏаÊݵõû*k‹3›¶ªÙºæÎ¢F :Ïï˜Î‘Ë«ÃíŒÞ¾-›÷<úËîãm:†v È®óïp¨º\ú‹çw‰iõä%;·mÞÞ|òl{/š›k:õÐK<Óø*¿Ä6ŜږVp%üéµÞ¨‰mÀ£Ðb»ývÖÔ[—u¨)#¥ SEA¬×ìUS’v¬RæïÝ3 ö¤îÍ”¯Y`·àuZ!h ×ÊÊ *Õ]b$1¡ˆu¤ÆžÔª÷—XlçãJ-ëÖ*ãT«1ªká'…¿ÿ¢8mFIÙ(Ð74]¾qkœ]¾¬dÈ!--)REÑ žè„¶©ö+íyFtF™ÑôC«Ap møAÈÍ@ƒÅ…© HSfÉ•L¸ÓÊ”  ÖÏ8‚f¢Ù÷ÚO|© nf·+äa°—ŠÚ'­¯­¬ØÿÕÂCŸãáS1‡á/Ç# jDV…Œu_ûF]ÏÍ­öùõ9Šù3Y*°¥–Ï÷/àÉö/$ñ;®<­X¥N{ü¹¤AT•ª2UµB­‚ª_GF‚ÏXS‰Zj‘¥I&ÆBGËU9™jU¶œ›ÜÿÜ® E­Êªòt,×IÖAÇ/̇ó…U!—÷˜ÖýÛÓ5™iJyº’ ë ©° öǶ†€nh¡P£H¯…ª—ÞÏyy¤¦ŽåÇQo'"YCB»Ù‹qª(MøÞp¨_ ±Ã“ÎâíÕÈã±êòjÕ)Õ6hÆ·À_¶4)ã¹ñ⊔ÆR_ùv†Æ²&mœƒ“«ëç¾ú@C<»7)q„€¤$Ð(ußêÔ’—^È zÓu§9¹kc=³¾~|Á7/?ÈP‡fÇ¡²¡º¢òPÄa…¨§==·[÷´FW³-ZröEÛÊò@«’eeÊ …Ú]’R^¨Ë«fðRLˆ!RšžÔgðªºNÝXf`髲âüêú6‡‡0.–EfýƒÅÞK7MøÔµëôñƒ­GµÌEÑd3Mj"¾4 ¶’v$xgsÿæuÛÒ|¬ÈÊ9ÄrB’>Mu}­@ÎW½þƒÔši›¡Yy@eOÛyq¯Åu±µa;¥Ñ‘ÕQûTÖ˜¿ç©cR!¸åü­?pÿkÒð±䤿âC`!ßûÒTñ}³Œ]ßa_ø{ÂI”|áa‘ÖNBžRUEA,¤+äJ9^Õo‡=9¼”Çì΃1’Á WL›¿:( DIý¿Úå%ä(J 499¥(†»oWÚZ×ð•šï€ÂÅÞÿà6ÞK`gß™k8fƒ¯ûîÀ䇋‹¶ýÁ||÷ÿ4ÿÚ|üýSÿΠpŠ8}Ÿ^p¨åó–ÀÝÃÝÌ»!ßl}6·ÜÜÁ%j»S¨k昋²/<2領ÎÀ­ª£?5öäÜÿ¢æ‹a,—­Jšì¶ vÀZCâ3Ù%ø.ÂUèÎ?£Cƒ¿-0@t'êÆzÂBXMñ;ó(µ¯J(ò!7{¤1”tVµ²Ü²4±ÌšU3 Ô¤h•|œSµTŸŒg&T"jÖ>„6þzÍŠ÷‘n?¿\ß¾6Úœ|ûâ-<á»ç\ÄѢ̰ ßÔ¤ŒôÇwQ7Ñ»_Ð4Ä\:¯ì‘Èù.¶Æ‹§N÷< ÚŠæâõ‰µ!éJP)˜êkgZ/õäȼ¹,} æoú“×ì…wÙÉd „Š#E&ìê¯óú6¶ z}Å @N?ðgæes+Z(†{«ïŒ©ºWwák¡{3ÎMút¡ûÂ]ú„c¥¾á¤$1ÆÎî’ ŸsNQ®‹òeöìTD«ÒU1Ê HWe¨ •’åAsTt¯uù<Ú5Ü×oQÅŶ9Ó¨‡ƒTKdexLh²ï´§+Y?yò3óþ›Ù‹I½h“Ùö.{Q¯×JmN¾Œ4ë%?²¥G ã±Ù*Fƒç¾ÂÄ¿=!Á Ú@ÒT•¼²)£Ñ ýúII®"'ƒ¥- d*¤i›¥n¼ˆ˜°5ϧ*]›e²,ôÁñ©¾‡Åd"¤—æi´¹ÙLQyë™ïà¶æ'–ivðrî1þ1;‚¢¶òìö8½û"E/Z¤ÒjUEM†ššÝ†]É![YºÊnfÏDdލŸŸñôýY¸«{Ÿ´lÚ£Å#ÛÒý<º~¼“œþ —mÜ"ejH”‹†µtÕ´ËwꙤØ&©IÒ—ï/8tÉ÷Ä<;`1ŽÂ•ˆZú”¥Ï"áO?";ÖY-†-°iwp˜ûÖÌXX a—äe‰pöQw_=.?kŒÌ¾ Ø›MSÅsn7òd]Ê'8±ÏNŒ³DØ”%Y:*Z´ o·0ˆ´å_–çåÞÞhˆ°9žîŒva>±O…mÇñB¦‹„³Ú³ùg²«K½‚‡]A1ßꫨߤîŠx'xðNˆ¼8kqCLMxxLLxxMLCCMMƒï˜ÿÓÜÀ‹xQ<òþ¿_ÖòÞ üÆ;$12*ª"²%G«&O]¤ÉσX°jqF:Oo•‘“•Stã.¢˜AóÔ#¬=ÒêêmÎ]¹lxc@ó® Þ|:Ý·¢/\\”V KÍÌÈ3›–»EºÀ2Xcð:•P_Æ×ðÂ¥³±%rcÞ·7Ï?Bæ¥Ðнt2³nA—17[­²ë÷þ³so^y镦j²‹òNÛ'Ï-ÐhyÔÛOŒÈµ—þC0¦?„o¨˜Ø°dƒtE š‡æ_+©:ݵøc†sï÷‡†gÝï‹|J¹ñh©TÀ}ÊÕ‰ñd4 OƳJ’‹Äb‚ÿyZ^"}rjœë›"ì D¯Ä• Ìô?%'€Tªƒ2–ûQT¦ƒJ¯7ç×’˜þEIk¥,÷LTjZ°Û81þ×$©àå!úgˆA šÝx8² EëMär¹ ¡hx‰‰Z*/K+Ou^ŽéµÌFl–‚…|£XP„‡œÅ—ðÐ+ ÊÍÖæ™ü÷À(à–pÄFüg ùwÛ¡=ü~íH+†;24Ä Y¸£¡3¯ñ? ò¬,¹”ºDöÅøóx`¾Í- â Á0l³7å= äÙY¹…¿BôE¦ ™#!|O À²&u·¡n=‹60Ú`p#j•‚N*…þ® 7‘Éñw¢dH¨¬])ƒšP#9Nœž[R‹rõ"ã žÁÌ s//_+K°¬WkÔ:O£Ñ^¶²2ÖæjrµZmNn¶Õ‚ø+r1Kendstream endobj 580 0 obj << /Filter /FlateDecode /Length 399 >> stream xœ]’Ánƒ@ Dï|%»k'R´—ô’C«ªíÀ²DBIýûΘ¦‡éÇŒ-oާ—Ó4ÞëÍûrÍŸå^ãÔ/åv},¹Ô]9SÕlë~Ì÷_²g¾´sµ9¾¶ó×÷\j”aå·öR6¢½jVS¾öå6·¹,ít.ÕÁ¹t†T•©ÿ÷ÉïVG71¯Ð+XŒØrðb1P‰X ܱ ¸'bV±y…{Ì*6¯p±‚øb#GPDP‹¡Œ¡ˆ CC_måŠj1”1Ôb(c("¨ÅPÆÐ6™€­ÝÖóˆxf<Øç}Öù±,eºÛUÛÕòXÇ©üþ|骡êkÏÎéendstream endobj 581 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5668 >> stream xœ•XixSeÚNG(‹` A<§Š Ì‚¸ ‚¸ Ù÷µ¥”®éž6Mš6möõɾ§iZ’îéJK¡,JbÙ—q\FÄquÆySO/¿ïMQGç纾«Wòãœô¼ÏûÞ÷sß÷s˜Œ±cL&súê5kR…Ù¯ Sóøi æÏݘ‘Uš—Z»õHô>ftæ˜èý, -ßÇ +ã žñcOÌœñÈ”è„{Ðë“{2c"“¹-¿B®6X] ¶¾qYa‘¤˜Ÿ•-Lxbþü…sçâïE {% /ÍKX™š–[(.Éå'¤¤'¬œ·f^ÂÚB1¾ÈO˜]X°7#;5/3¡03asÆö„-›–oÜ”¸qÝ–õ›æÌûÏuþújj^QvêÞ ajVj~~j^jþÞôÔÜÔ¢¢Ô"~Q6¿ T˜ZZÂÏÊO-ã3ŒG –-/.ŠËöJÒÊ×ffeoäoÚœ»%ÿÙiK?7>~ç^9}æ}\cã!Æ#ŒMŒÍŒ-ŒíŒŒeŒŒ—»3+¯22V2žd<ÅXÍxš±–1‰ácPŒ ŒÉL#˜&¦™iaZ™6¦é`:™.Æl|ŒãÌåcæŒ9ÌZÄê+‹ûCÜ[ʾyW-±øáîиmãÇÿ)Þ3aóÄ''ÞœôñdÆäîÉÿsÏŠ{S¦M}bjï½³îý„#š6sšrÚÓ_æî@íÿgÌö% y(:7ÄDßUŸgE/£Y·ô ÐKµ¤81gÓN ÊÕîpƒ«Þ¢júÐ$.íé]¶`ç*a9©=µ7’ ÉP–®Tð+׃ŽPxÜ&SÈNÖ¼Uw´ ˆ:OUŽH/¯ÚFm +ôR´<‰_Yí :ë¤Éì=boý™kÙC¶°ï5nudà³/€èweæ¬ÙIß[±‡R 2IÙGnw£Gœ$.ý\?£42<7¾©9n€FkPHeðåW6¼²iuù6 L“¿|Ί®ˆNàtæ¶n_™²³°ŒTõgµ%2@)‘ð«ÖáMüÔøU¿Í³µÍ´ÛÐ4®Õ×|¤>ät´4¢1 *_[Z¢ÂSÖÔÔîÂÈ3ßÀ¤¸f¿}WtkM@s «¬Aæ-j.°¥¸²œiè'ZêÏÜhxM^MÅ¥PJTº¤¡P}MOÿžÏÓÜ̇Sž»&mÑÇÇå°™Ÿ¡ã+—€ܯmh…f"\á òE»7¦]GO÷  ý±õù3cMË mb&ºëè”F½\Kµ„„Hák¯7;¬5Ô5t4î6»Î uH¨…ì.ô ­ìDÌ]®/4f+ÉtzaÜÜBe2'ÔQ7ØËèn]9Hˆ-û3N|3ø#ÝÏñS§2/¸†¾9Ößf 'F ÎÉ¢êòâbAi•]ãR‘yƒv¿`Ž`»`kv6nߤ¢ÖÁfGÄê§úÐ[ÈÝ v^Ÿ„L¢«I½:‰Þ¤¨ó € &­pk~^:‹áZM›­çšDyZí~¨#úsºw>–I?¬¼°9`#›>ï‰tá s‹å…êr*…'K† bþ¥ìwjŽÀ•^²qÕ›šVxkêx¿ Í€£±ÎY¬ÃòÝD©1^µÜB—n±¢êåGiЩ dNBbI.émX<‡¨t¿½1|ë ðlPûª µâb(åF¨-Ø{|½Ÿ¿!{«PF_Üâ.bÖFšS«Õi1»ÌTÇw:€¨íTnÈ+_‘I'Pk²SS@Bùl¡}ò¦R§4¿X›üšøÐÅ®+v éÍìJâÛAÄi 0ü¿»ƒÊìcBò«¬èBÔÉùl뛋“÷äå“×Љ8,U—T©2ÊLÜ`ÕGÍj…ZÉ׊ÈEôe;tÍ{l`Í54MBsÐC$=‰^ÂÉY‘œ…ŸŸÓt­jç¨Ð-{Ì.ïØ…þêF ºšòW­Ï¡ï’dÄÊùbƒN õÝèÃÔ`œ÷ ±¢åÑ{8V?˜ÁAÄpVTh¤JÒ Uåé$âÅÜÝô tÏòW·]~¨ûpÍÙŽTà€ÕÃ7·{Ç¿ã{»·Ÿ™³r‹u•ö€d#$OœË£§£¦¹™¬Ú&Û™¶UÀÏ(H†JØm)ï €ü^·ËíƒZ"RdUs*vî8”yöÛo?Cqͱê>ÏuÜè 1\cE_ú'Ç®q`ý6¨4ä’Ù4d@¬.:6t îËŽ³TdðäÁ“Ðû«üEx‘ÊÊ ©¡ÔDIP^ÛÒTß{,©ûeú>šGÏ¢XpzÉßѬ¿óÆÖ¹Ï_r†7ä¼ÄŒ&bzÙt6–Tµž®\U–bØE¾OjàPêOœni芜=ÑÕõÅç¡£`%ÜrµÞ Ô’ù»D%P²jiMY¸¼.ˆ’牴Ëe¶ÙÍTíáÓ&'ìƒZuXÕ+õ@#díyfYYÅ‚g¸‰+²7â¢G i6{ìd¸³µ© ÂàV6Ôˆ‚-@|uMm°²f•acfF˜8E=s•ªœl=ä|ȶàE52,ènpRƒFJAoõôØ‘ \Z­U&!6¯l±òŽðÛÎ’¢gŒt(ÒÊsŸÕó4rc™Ú¦s¶uZ ê€.};6Ô¹•&9µÁ¬ A8L6‹q£ \« 62\ç:Ê-x,¶ Jˆžàº{ƒ‘,„Íkªññ¶'ÆÇÚÑ¢zøf0ĸ….ãÞ>6<™s89¼—¿Z2;ŸÔˆôŠz ñ »ì'÷¹È~a„’ü®|þ6àé°o•[\]PM„%Þ2AAiÆîC%Nö¾±?H¶ £ &Ǻ½þ“¸–S`{N žÓÖ}þ·ì^WmMõ>°bj%):E6H aPVÛØÚcÆŸ¢±2½Ÿ\E 1ß¾ÊB#+8ˆ]o²›mààÅôYQ¤ÎÒ‘’îìÆ4ìâlz2@?4ûÌú«o9âqS&cÍÕ)ù³^ä˜ ]­.O#ÔymQi®$mo·ø/èž«ïU“-Ñiœ]ô&@X\ZÆIò$XŸvH÷mAãš^§šŽìíâ¢ÿY­Ö 1êðIŽyaö¿„]Íg•Ϥ[s_ÞüË|8ØÆÃiâBZß «wå%g’~[‹H½˜~xämÝh:á ë´®@Àë·‘µï†þ|'ñÌvg»ÉnqENu4…‘ZlË=ü¬-4³d-¥j1ËÐJFig¢:™mù ãóéS ψ¾Æ~Å+ééÁÖÜø<Dz/ ¿½Þ⮵ð\¦6Ì7â-Ä‚ÙbŽìáxq SÔØŠ_ÜS."Gê‰Ø_·¶Qf¿¹üðÞŠH‘ûë¾&®/8OO'éý?· ¡† \F¨Q¯—ÅØÏš®À¡ç>Iìg~ M± ©ú8§“H e™…Ä0Ù©‹(‡Æ³? nÊ–ªò4BJ]¨ÌÄ›*§(|Ÿt~íi»êG”¦Ýd~0tpˆ…º‡ã8u•aQ‘ ¨Ì_^n ·’®Ñ/“¬ÎY»ýGäìþðªçÞ0»›xÎ:›ËfLŠçfü–‹Ô"‚R vÓDÅ… *DDRGöQ Âî báx~3%^AÒ+¬èkHÆ7ùR¿0,µ>^ä¹ø-0@üéƒO¾øèÌzl®N@áu›,5Vò*ÄZ£±RFîÚ(8²­a%•©t<}=áÙä×¥Ô? »•'¥°ˆ·`ÑÜ9«hVM®·Õ›ì¤Éj²àøèV›0¡ññ“:Ý&º ‡CMg·™L~/ylðà†Ë•§q’‰‡&ÇH¿bÖ½(ÝÍ~&ZÈiB/á¹Á‹u89rœ]F£ºlý2×hÐVà46­Ãm²ì¸àǃh6=ìfЩ4z™QÓ¼ˆ2S/O^–+ìMÍfh¢>1}dlVC3ðÜ1ðU (®³€*°¨,Àf`·V#^´™ëh¶Ú½—¹sŠøº_÷œT—®PFAÛO,q›ÕæØ¹Õ1_ú³÷NÓ¼tç媟šÖ¨«Ô“â—„ÛS€(«òtÕXÃÖe­Á*å† «[žöD‚mmáú£‡;˜ÀlôðÈ 1Áh6ìÒ+ÓA6šw°Œõ´ Ûw&«/#ùéiÒ¿GŸåþ?zÝWíòÚI›«­±7tè?¬€WA :½Â 3Ħ­õ½iÇ[›Ý!²ágptŠñjz„yù=Ö°éÆÄÇÆ”ù›Æ´€æòéô]O> Dâ–C×:pžû2Êsu™Ýo¯'_0\÷êiŽ%N%ÿ]¬‘§j„¥ ¹kiP‚¤Š"ÖðJdá€We“ÛF^G~n•Ãz äJ¥\iÓøÕT4D›Fð§R­Õ€’'w)=œ…}dÿÜcsÚÀË»s>ô "´å;&z5ÄB)&ÎÅâžôqqaQ Ý볺ܤÅl6áÅqV¾˜½.'‡’ã cŽ““ÍóÁ{ènrbTOKDßKñ ®.àx”.¹Z­×èIúo?¬ÑVï5VÏ⨱“è‹ï—âeÃ1²ÞGºX¾>Äqh,8—êq4•ìÌÀúCäÁûõû°+x©ÛhÜ>tw¬£[Žù+µç“ÖgïB æ{‘¾ŸæÆÒAç¿9w5|æ]Ò·µ=¯ˆÈÉE'öp.]*Ç1f]~ÿùcˆÑö:uäíµxvû èéÏeÂsyLŸÚÇ _¡U!ôCÈF¶ð”(ÿlÕ©éSÇFëÐZŽ-d‰%Ã^E·8"«©¬.÷¸íøÏÙÛÚzÀÓOLýÞâ3{½3 "o‘„ŠÚRƒI@ÇÃ|ú~>=“ž7BsUV¶ ¬“õ2jâÖl8œváLíñýG»º_÷¯Ú8²äÒ¤ô쌜¤2¬•Ëöž|+`àqziÛД÷^4W.©¥Ê ÂP®-WfH2ò Tj¥Z©;…¶È‚TP 1 ˆ’ÐÙÐ`u5>…»ÊQAL}Ò-² ‹g@¡6_]@¬AÙ©Vª¯Äº•&«ÅÕŽçLx }LýâŽ2è­¢è‡W™è‡V´7ºhô½“^ƒ‡rÛci¦=bŒßMÿ²äLÚ±WpĹg9ýXžÂnÊjëAw!¦ÉƒÝî÷zÙ’µÚrµ˜*})Ÿ&@@Èmj§ÏÚï!û­³Ïì³úÚ¾:æôþÑáõ†ð‚ HÜÂpІ·‰™Q%+Úoä€Å`Ö[MµºŽÞ½ÈÞâK3O®r€jÇcUCâ—t—n¡›d2ªxå~Y àò¸$Ò î¥ç„¼@©š€±±šÙï¼ÝM èã›LôÕeç­_ÄÏQ‘({E¸y7"¹¯³ÚZÑ1»,><ܦIÇ&s{°­©)|¸§¥¾·Æ Åm¯%da¤-ÔÒàÒ5f­]¿#3…LÜP"͒սϵ7z€íÇ·"¥$az•zT;[íõXýÜ]š²ƒhÉÇúOËa%ö*­A¡«0ÊA5êUmÁŽ:²¡Ï;tÇ«že3ܢ轧™èæ1Vô|ô÷œz”‘ô v)d@JRvº  øÛaC-KR‘kiƒ|wœÜm´“~ö/bö|ûÄE“šÐLpÅVé{”áE9§™QçÏ贳ŎÑÉÉ*Üš_¡3Ë_±çÐ×t2t<¹£"Ônk®¶—ÐqhÉχ¼˜ãí§™ûÏ¢æó?ƒ/!é26ý{šE/¢Ç/|cùg£±sšWGóQhÌЛééH/âoO_¿EÄδ®«­Þ;ß úÞòãþ±óռذÛ'M‘Ѽ?„rð×ûb& ·ÖŸdE'ÍáÀÑ̠ܶ6Ì;ÅN‘c]=ww0¿úà@ϧ÷uWµÆöÓz" {Ìéx”eR‚F];N=§ºÞ{§;X†0 ç!Ò˜bJ¯*­€Ò» ÜØ`5µD"ÝÀQéºd‚$ΰ=^l×£7'–â<áñøP~ˆ74ž7v󿔸»!~|Èd¶àð›ªMññ ¦ì®vœ‡ìæø Æÿ??‹endstream endobj 582 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2475 >> stream xœ•U{puß%mXh‹x3ÁÆÇnZPJEϼAZJ[KAÒÒ-MÚ¦i“4IóÞä»y'Í£mÚ&mÓöRÚ"o´ RQñu":£28¢wržþÂ-êm`æ377s³3ûÇîþ~ûù~^?K›†á8>gý† bYõs2q]Mù“‹ +ªšëÄ©7%ïÓ÷OK>À¶öï nîH‡Ld¦¸fä7(|7RÝ…vÏÆø8¾¥N¡i7<#‘*kªªe¢Ç—,ùíâÅÜý÷¢2…hUž(_\^+iiª­‰ëw‰òó6ä‰6JZ¸‡5¢’zQYEµ¸®R$©Wlm.ZSX$ZWX°ù…¢…yÿÞ<×I«ÅÒiu †aw­lZ'{VQ^ST;gY†Ä°\¬[€mÆb%Øj,{[±,܆Î`³9°4¬Ÿÿ2­…§H[˜æLÏI¿Á?3]5}?±‘øj† %fýÊ»ïc ¨$‘|±¿éŠBPÛ|ý4¹<ù Ýgó(A¨“Τc¾u){ûª2]­³im $h{{ÀçvÀEòDi®0D‚ÆLɹú ì F†. iÙhßË®HW+ÚJÛ4Ð ŒºÓ?ag|ä[ü«ÐE{pvB„bw"«€µóQ9º’>ëWüz¦‹º†æ}<ÇÑýgxÉ¥èQ\]©ôlóíòÀ¢»ëo'öµ7„I™E®€FBÐô…G:ŸÍïßÀÞ+~d«ªÆ%dTÑE×í5žÒÁhhÝ-i­l*±©  Ö9_™´{öC€–z´ª2mñ g+¾F«ÆÑ]HŽ¢eßaòR%’T?qwÓƒB¿Ñe0jiXD6B ´1mL9Ó„© ZÕ0Ð;úÅXXÀlj¦5¦†v±EWûì¢Æµ@,`‰ãhég£hޗשë? ¬ë8hÖ?¤¶(@Ki‚à ÚÝNòM¤gœv7¸„“Ëh¤i½\óÔösùýë@ÈjX5[Ç*Øeh6›ŽžBØå}Ç©@mLâ'¸ìv§»+vÃ÷½â‰»½¾@„¾-R7Å‘«ãÈMÎN Nyô5š+èÐÛMí6K›‘lÙöÒê@ȵ¡DÄÑáRéßñ#ˆpþPRKøc(×7€°WåWÖ¥;ÚÉ:vVúÃüVN_uº¨«üÖhjÔWƒZXðj͉ŸÎ œ@ŠÏêR–;@# œËßc°…T­MV[+¹žÿ048Œ@XT·wéL Êb³Ñª€¥ÓÙùSHí³ûÞa‡æŸ+©ÿ±’½÷Ö¨¾ÂjX ÂV-´Zº`$fg"Ô9þu =@¸Cw£`WRr»Õ>Ž>7㺀³Ñ‡üµì ¾N6¡Vóî€îMŽfû÷Ù}ˆr9ê§eåaìÎxâÚþx’Šãg¯'Þå%ÃÉ,3vðý-n­YfkÐV³¾Ê,çx̶Ñ;ÿ° ˆåØá©Ñ¯¢S”¿ßáƒnâäËÃÛ”±9Z½Çâ 2n¿ƒøâàÞ1 Â>LnTYŽr+” ?h8}t´7#ÕEº]Ûv—•7ì%T8Z†O8‡ÁMÄAysµ²¤ô`ù{7Ðô+(k˜S û1Î*¨ÿÚH?ô)R~ÃKŠøt“‰¦Mfry› 6ïL|t¨çÇ£g©Co¼Ö½pÄ6P_fÖÔA Q?`º&gÎ<×_Àæ²$w‰y{â¡Ç?û>˜úKÍdÊT ®á_¾›¸ÈC“7Ó}ªNYC}ÓžæNUt`(6LFn5 ü‡Qk5êhR¶¬¬¬­Ö5ótG¨‘OG>õE#Ð%|­|ïÖEbV¤ù7ñoŽ rùÍM­ÛCI×JŸ«tÐÜfÖrV2QuâÛýH”B4ͼ„KþÍEÃ8Êu¼ÇK~‚”8Ò6&ïIìö––ôeïñõÀEâOŸ~ãêÙRk²ÈÁBj}VO€qv:ÉI´ýßlµjÛÉvMCm»vשõ¡­@°›ÁÎ`ù›Fj\F*Q=d¸¤Ü«·ÃqÈxNOOü./7ŸÍèA³Ð뎑Œ?=ÐÎX46‹ÌL–±K¹ÄJÜf‡a‚¤ÇkƒÇ¢{N•ÏÕʃ(݃2S¾[øtJǃWÃqTqOvs¡¿Ã¤Ia!5¥ Ï–Ñ`ê 2W”bœ\)wÀ•yÝ[=ã}££àÉ׃ h¯n³¶Í]m}ƒÃ}ûG›Æ^Ú´ååÂBrSac»ÊøçäÜlÆîqŸ¸,>­¥Ž¶ÊÈ"K³Ug…P‚À10éi°š$›{ëK¹6Q†Ô‘QïCNò(*ïê8è¢nD>võù÷[˜ÊYµ©‘«.ù“uìݺr«IZ!k*5õ­•@”ÖöŸð»cÔ´Üñ&8 o·a·ÚB²Ô­ã\פ@7ö˜8¾˜ é𡌞Ë]šQÕ$\×Ï;œÝk/X¹ @tÂÛÕ3š'Ÿ?ÄÃQAœ‡j‚sM‡^®n‘H%Éx,†|uᆠ¤…¶Z¹‘ ^“'ðÙ'hFÊ’#»ï„$Ä·>äÝœù¦  ºÝJiR%®±šA *° Y_ßH 9à%|&§žóŠÜDJ,XAÖþNÊŠV³ü±uœýr8>Àæ,xwå?è?ý Õ·|ÊÜ Ä©Ä$w"o9*XýüÒÆM@lÙ1|yoç_ž§^yãõØ~8 #»‚Ãë ËÜ›R*”åbòdÆ;8ºu’—ü>9_o%ÉþÌ—C”l«ª’l#¡÷Ð^¿Ýáu“¯^: Q ¦øõ9/²Y•«ŒmºÐò.]ç„âJ/yyÓÑt¾|‰b%¬ä˜ÞÙQû ¶¾h$æ±Ù->J~¤íÇt„ß'P?åX¿7ÀZw¼ÑÒ‰±ÏËQñP2w¹nÛ£ChúCoÏužF†l.Ifͤ²…ÜAºÆÀÎe…ÀÎÂü/V  ³lq¶¶T_ 4  WÄErn@k|(ÝhŽpu·YËÎgŸVþ%™›ýé|9äìÔÚY¼Püt=€ž³ä½ÉgüHÚËϼ”AÎL+–d΀̌»±˜—;hÏÌqù£Œq9BŒ+3 ÃþÃI;Õendstream endobj 583 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4410 >> stream xœ¥XyXSçš?1±jcI—shÝí¸¶:×öÚEíâ‚€‚‚;È*K0@öì$yOdc d©€ jݵZµU´Ú^íÓÖé´Ï´·3ó…îÜùèåú8çÎ?yž,ÏÉû½ïo{?1~Ááp¦lØ$LŠH^²tÁÚ´ˆÄø½žg»_ä¸_ç~™Ëîù-zp—øpÁgüñ—ž÷ŸŠŽLAi“Qà³—ÃÙ›²Z˜’!ŠKó_ºxñë à×þ‘þ«ú¯‹Ø› ”¤&ÄûG$Gù¯[°Ð£P‚?Œ÷Ÿ+LöŒŽ‹HŒñÆø‡D‡ù‡n~Ófÿ7†mž·ðñ²½'bÆ{É«„«SÖ¼/JMKK"¤‘{¢¢c‚bã6ÅoÞ—š˜´ä%‚x•$fAÄL"˜˜EÌ&6!D(±…ØJ„«ˆpb5±†XH¼O|@|H,!>"Ö¯ëˆ7ˆõÄb9@l$¦IÄLÜ%b“}Ä“žtÀ÷-߯'w=»jÊø)ú©Û§q§IžÛñÜE~3jòýë¸_àB.÷V gp…oSAî6©VGí$õUú‚ä€V­Êcï ÝñK ¦…kdz¥2Iy1@MPuàÒÕi²A¥EɨéTCN1TB©¹ÄRþ9âû¡lž]ÆdRô‚HåV06µ ™n‚f]#EÅ`§ÙHÇgãyhºçåë=e¹}ú«OqÝWÑ ¾Eùyzmv>¥ˆOY²Èl¥ÉYc;hvеŸ7?€Óäñ´£oìˆÝµÒv'¶î„4Ø/ï‘ÆäÊBÅÆ0Î"ªìLå™f k!9OšŸžŸC¯b»ós@ù‚C½îó.›³„*¡NIƒN­õ»˜1–П cdŠÀ(ð< ³6GKIÞÉH]ä0ŽK‹‰iÄ8žÂC>¶È hhÐèä !e(,†{UƒÞÜ;(Ø”I måeŽú$(åZÐaî²/u>ÞwÏ STö Jö3Z ÏÜ÷¯œ 1**ónrÝéîiü¾MÂÑé[c(Å™=e)ÿ°`Tb^B¥ÅÝhò× („z¨ÎÉΗfƒˆ—+Ëìu%­¨3mbtåâu ç‹[hýQ®û9´ˆ÷Ö”o·¥Å𡛬­¾rçKœ`¢bóuIOÊL9g…½¹goûzÖ'nÖž˜J±ENUdUj>–ÐôåA™’ú:;.6¼´WF1ÀǸòª s®2*?d㩸ÏÿaÄ=Aù¢[øì‹]h –‚‰'¹èçQE•éu2 •—5oVÔSS™Ñi,£o ~¯¯xVŒvdÒäu¢%Œ±yø­*“ŠéX‡£Ø%^ËyÚ~‡·š=¤‘@îËκˆ“?Cs ñ±«GhÁ©Ê~®»û‘”ëÓÔ”äÒ8!險ʑ?¾†ÚŒ¥`ÀÈ)Ë³ä •"ŒœÕl–™N#DÄÄír—¢»élË΋´ÙYX²3µ}ÛâxvŽZáSPj¤Ì µ?œ²Ø¦IÉ÷‹ƒé„¥¹aE.9“z´«ÅÑÙHÙ¢Š[ ®WEKñ)( }Ý[F‹]xÊÞ&Ý庥îIü>II†T$MS4¸ûΔ‚È"÷ïd‹Yﰜç›8ÏQæš§.e/ËÍ!9ëfVz³ý¥–ò¤þóéŠþ?Bb'™€øü²C]hœ%ŸTD%øgLjC¶‡驤ÞTWÒO7!¿¢¶ÃP8ÒC•('Ÿ aEª$}*(9‰ÿ,;Þ|¸âLÓ÷TÙ!£õ)«Þ·D¶bÉy_¤÷Õ6m¥ªÏ©ëà&t\®»N>ršŸÎsÝÖßòUÔX`ƒB &›²$#A”^/í/NÁ^Áa'`˜½´wÕC‡j»ÛiÛÆn¹óïçÄ®Jç«÷.r‹îVñ±F4±¼“®=ßÝ÷1gMKU´6Çkx˜-בüF£„Ó7€N`Ö'=, t™JüáŽmØäÔ=ö*scñQÚù]å€cଇÂU`ÏIWçf€ä…{ClÉቑ)Ù”¬)±%È9á¬@âé˜1”ÒΛGŽôétfmO“ïU&Ò‘ì Y¼(t4¥.³©ŠÉÊkæ~IzÊÞÇ뺪)sjí®³@þÔ‡ìÙ[äÃn†xý(Z訡…GîÍÊ¢®¡ƒ‰)Àª“¥Ÿ£ðËÑ+ôAb–…\£Sé5Ôì¡yŠXØ2Á? 9Æ#/´Í ÆÚÓ®œ]¶Îêoé«ÁZ`µvœ8äX‡òô¿qy$ADßâºwþ;ߤ4«µz½BImYý®Ðƒ½”î3£1¡ùìÑæ¡ŽCév‘>] ©¤¨Zc±¶õ÷F´m|˜;f ü={÷çR¡¸‰_Žš øoxbh&.“'-ȳØCWýBÝtÕz&ÃcÒ“lqú#ó£íº$@#×g(ÌzcýA¸°kví‡Ù4‰š ™´Ë€B/ºÛ½Þé¡ß Rƒ¶Øt Í%î ƒãýûêÐå±¾b…‚fœY[èVhÓµŒÄ]«²7ƒÙbf ƒÇ^Xš‹ÌçAPaÁbtŒf„ãbDIa}A ^u_dŠ ÆßªRŸO±ŠœF‘kÏÓå= _•¸ì‰D9W´P;J¹‰h¥s¦ùÉS^«¸ÝxØToí [y-(ÐÔî˜ö ,=‹]3»õŸ†çIG#ߟ}(1vײÚìt ãi_tœ]/n¿á–»Ð׺$œ”t}€ëÞ48ßåŒ|MÄNWQb–ãµá‘ÓÓgxk†¸y:EÖF,"oG,䃈ɵ·™Œ `æRZZƾ¨¶´CwzqŒ]v:®{Ýú›y½ÃkD¯[ÛŽµ @™4^¥N)-•W8ö&êQ êªA—p š|‡;¸ÇÝÌÿjíŠíxŠ †“OK›Z1<:<ð0m(»„¬^hMA~?£‰ô›5|ÈP,Ûœ¯Ý½}1NVSyWPÝh¸¿Ï»Û±/ÐÃ"&^HÝ@' EÌïá<_'Ç8ggÝÑæêu äZò*ê‹jM"íO˜ÿTã…¼´m‰ÉRÆ«D´J¨ˆÁβò‚èÄ— ¿Z¨åî~†† bwS³xŸ¢ s£©ÀÂL†¼J“ç×<ô6Xä÷ãT4­ïXÿóÓÐÍÇÚ¿É& ey…5µ¥­ö£ô´Ür'h» o_]Ô¢}ì\̓o¬}€ ¾¤²ýêLUý›¤L‡\P‚;ÄMß÷rš;–_/)–$% “Sªr+\u 8ÕõâpIm;"ÎqÝN$çÃí½Ýáåó]~ –¥pƒ¼wûþ×ÈØñ‰¹™ŸLépïp<Å4Ù†w·~ÅŒ|‹ðÆ2%µ+0æÚ{õÍ›‡í“nˆl¢«ÒìšÏ$ç2üºrìQ°‹\¼ræâ·×tüb5ÔÕPŒÙ ¯‘™NŸ•Ome£ôZ#G÷Q#Ã[©î³u‘Ý ·ñÊ1 ;áshú¨ †û;€’>ñô3!˜ÿ/n/(t”õ»Bç…áH¤4ë‹ð"`7Ñ5;Ïò@4=OŸ­N£ç 4éI3?Öcð¶f¸°êz–ž&MŽ8–ÛòÕ¥›Wí¸èÅÁÅOêãC¯ï:{e`L>¶‰œMÒ{€Ìȳ¬ƒ¥….¬#ØàÆòªfW¹ÃÙÙÛz¸³«`‘1ºxRÙÃqÅé¬l¬•6ìÚ½egµù#‰2Cùg÷b¿îýÔëG{k´Yð‘4žE ç| äk§¶µÕÔ6VP•Í%Ÿ@!9r­„±ñ‚‹ƒv\á^÷8:>QJ¢„TP²h• ¤Ø£Mt›Þ!ƒ$Pèòtê¥ìo~Éì„93f¹)¼óžÓØXTMÿ›{ÖOÅÏÑÄÅè –ŽhC,ÞÑdsÞ¥L)d ؉wÖ~‹Ç=«®·‹úýWù…®¢6ƒÀhc*ðø lbμ Õ¢Wù˜ªš|¨±˜j󳵊Üm™ñÿGmÞÔ!F§ÐÊp[šãzšÎúRÊÞTzɳ] ‰Èƒfsö ¦Ãár•PwRq•{µ¥*ªx®‰ýÏPLJ}¼Áç™J¼‘cy3v–ZŸ&¦‹i!Ô0FŸIñßc |endstream endobj 584 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 516 >> stream xœcd`ab`ddðñõÍÏË74Ðõ,IÌÉL‰©ÿfü!ÃôC–¹»õGß¿¬=<ŒÝ<ÌÝ<,~d }üÈÿÝW€™‘1<-Ï9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õМã2000—00„0„20=ÀÀÂ0…‘óû¾ [O|¿z‚ñ»÷‰ï'˜T~Wí~¬67frðÔ´IÝ+º§LZ±fÎÊÙ»§vÏì^ݽ°¦¥¥£¡»‘#sEÛÔùËfmÙ³Nç·jºAbÉ”ÂeerËÊçt\ª[Õz¬±;µ»ª6;³2½"©#¯»®;¤»`A_ߌÙÝs8f×/έÉh ×þ.ÓµfùÉž5‡ä¶-[±«{Ä=çO|÷+güžr‘ùGÓwÑþ®Å™Åí•Íre1ñ‰ñÝ5e—OìîíŸ%úû4Öl³–u¯Yžß]'o˶æ»TÿÌîÞî>Éy53+óZ š:åÒ~k±ê±Õåugå/ïž!“Íã÷ZÖˆ-ñ§¿3]úη\ޝaÚÏ ßm§÷õ°àºÀ-ÇÅ’ÏÃÙÍýcVô÷L›<‡çpOÿ„^ ·¯gÎ$^rÐÙAendstream endobj 585 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1302 >> stream xœ{LSWÇï¥Ø^¡CglR¢¶u8uf0ç+Ñm1÷PDèÄQQЕÒh+½éë×Ûw/,(¾g},K&nîác.›fÑl‹Óe‰Ù’Í?6r.2wMÌ’-ËINnÎïÜóù~¾$‘šB$©\—Ÿ_Z_YØT]f2Ð//Ì.ÐU4JëÆfs…¤03E˜%1bïÃò‘ý“@.yêÇ3'%§¡ä³èÀä›JÈHr‹Ñê v÷åšjšêô•õšE .ÎÎ÷åš²&Íë9šµ¥;«LfºJ¯)5îÒ¬ÍÉÏѬ7™ÅC½f¾É¨)ÓU–Ê5¦rÍ&]‘fsá…š· 6lÞXøBο$üÇqE®´^W§«m(5t4=þQ§+7è,tC­«§õÕú11‚H_O–ï®H!Ó§) â%¢ŽÐÛˆ"Aô“nHÉr±"•øˆ¸K6’‡SV¤I¹!yM2˜:+Õ‚Že<’,±[ï(î“b1nÅ;ìÁ³«WooRßÜ€-K7ãZeÑ-Ã-§wÿXu§æ^ zNi?À&Àë ¸¼ 4ÝbwX­n·ÓdÅSh<µ/ÈÇÛëÁ PÉ7ï·ûÝPÖmþzsï'çÿLt¨Ïüvmìø<æ)cy­ƒ'æ|K®à%·çƒc=Á£èùhNeE“”þƒ]CáЩ㷸 z:/C'•ñˆT|A ­Ãä½a Ú„¼Š7iÚhŒÓ‰D<žPeNÜÔ(´Ä«™D†¯$ÂJܦ€H;0žWýå°'x°7þÏïñù @ñmÐ:oQQ®K…ód -µ&«µ¦fƒÚ·ÏÍ0ˆ¸Õçœwa…ß“Á; *?WýeÛ :BÀ«'‚‹ÁîS¥'%h1®V<\!‹B·Ù «ê¯2+Xzz ;úÄ!Ø(„ž8ˆª;¼ËÁ ‰”Ïàø–S;yá* l1¾³Ÿ* Wxmà‚J ‹’ÕPÄ1k®Õž¶á4=¬…EÉ\h ëššêé7v·Ãí”-‘?_¸É©(ù ìïˆFûû¯ú¨`Ð$“/#i „\œÇÅH«DâÆó¡Lž ÛÚ–Ua­¸¶!­wqmÉ0¬­Íç³jT,Šq1Ã8Û¡=Óa#!ŽãyÒŽ-¬0g2;Baþ15'É‘µ¢~¬ªÑ³R«Ìænˆª…³Òh7ô<¾‡gßû]¬ñ^@QåÞ  œ@ÙXÖÖpv¶«…öŒöbŽu°Ø›i ³¼ƒ¯†PWØñCGæèÎTµG5š”ZÍÿº­€Ž}ÞÖÀh y”B/â"¾:Çkpº Ý¦½ˆ»û8 Z#ö°CÂ]J¾P|XTÄïþÊI Ž$y')ƒŽ×€{¥8K‘Í@”ŽRÐ|5Šÿ76Wã~)^гðT¼¿‚²ð´Lú&Þ`ŠUÆžª2ö4e^B—ÈKÂð€dD‡~R²ó,ãlaÜ*ûœÜâõ°ÊN®ºž÷éön-PYù³_¤ƒmAÞÛãUûõýûá*œ©øv͵‚ó–úãÊð¯ê &’ôL8“&Ó’éª4É–é+å“AžóÂ^.â x¹ÃryÌë ù||”ãFVÉŸ!ˆ¿œÆÞendstream endobj 586 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1032 >> stream xœ]}L[eÆßÛÂí¥\Û”1`·7:`ÇþØDÌ&‹€S&& Y`- E(í”òåV8¥ëÊG×- ˜Q“¡˜¬t8qqY0óc*Ë2%*$j4è{»wfÞfÛúžäMžó$ç9çG¡¢(Jþz~¡þíÊÆ½i…Õµ­ •ÍáæÓ|"Å'‰øíb ö3Ô 21È"ïù¸^ŽKŸÀù[˜¢JjõôMmͺZ­ËÐhv§¥ ÿ \U—άŊjDÇE·Ä)Øû@¤ÜŒÓ!é45·†}kbÞŒoªàï®åºëG~ÌôQ@EšY_›ÝŸ %ðªý™à‹—¿:¶A¸ë¹ôÛù›ö5Xf2\*(€]–"ã“9æ:ÐAΘq³k ÖaVà‹Ñ+|;r>€•ããW1ì‡\æa8øùÿu…-߉ù¢8¿V’juWó ’©~[[uôÍ–T`ê$Sð |6ÅÜ‘ÔX-©¬¶Žž³ß… BýsÖÇÃnãß7õ+7ó7Žl⸭Ê)þœ«j ­¦Þ2˱w{÷A;0$‡Æ‰8vÌó±̽íÚÒÕ+ðƒ£Ÿ½E䬲€È²4åö¹'ÎyfÕʺ…2°°ïyãìE`~ fíy*{‘’5Q¸H¥ÓÒýÍ ¼š~´ƒ‘ÿþöŒI·¬7®oU6ñ®P¼Š8éfh°5–œ¶Ž1 ´ŽÔFž£=£+î¡QÇ×àké„T~Nh’ÚB2²º¡b~.¸Ø ðŽI,½¸ŒŸÃåñã0^áhqf Â1œ ®†JÄ!'æU¾è`ÿ‰¢;ZÀ`:$§=ãàSm„Ïöät‡Ið&Ã^홼ØÔ{»i3Þë0Q.‹ñ_¤G§lgÈv¬ÒáC€Ÿ<‡£qâå€ûŒÍÆqÒÙÝ^VÚÓË’ÂéIÃ:ÉÃI;™!¸Ô™ð«³_Á¯ªfï+ª%ÿÉÂV!ì¶«`£ÓùXZþ³fµ ˜nk߉“Ðﲨ1G¶Í×€¤ùˆD“¤ÒŠÎÎ8Áœ°÷Œ]º<<ÄâÌMã<À²GPöñ¾c¢ø„@‹]åk3Kæqvƒ×`€VAIPbnPxÁ­Æ‚¢ÍÐêó×Íâ ž—¸½a4Æ þ€ëG†&h¿ô›hVQ¬—E,zÚ~‡mphI&›¶{¦ì§öA‡ã´,¡®þî#endstream endobj 587 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8315 >> stream xœ•z|TÅöÿ a¯—.¹.¹1("Mš$H @ ¡¥÷^6›l¶e³'Ù’dÓ{ÒK7XXª¢ð,€ >ÁçSçú¿ÿÜÍ’ø|¿÷'»›|fæÎœ9ç{Îùž³ØQƒQvvvcÖ¹»GFDz†íŠˆ{uöÌþña»b„™I¼³?vÿ‚} Nþ}ÐïkE0܆>=vf ï9uŽB;ž¥ìíì¼Ã’ߊŒJŽ  Šs™3{öÜ™3Éç"—ÝÉ.Ëg¹¬Ýµ'42164ØeWÄ^—µ³Üg¹¬L$ƒÁ.S"#\vûí p‰ pñòßâ²ÉsåFO—ÕßÙäá9uÖ¿•­ß EQ–ElY¹õ­¨Ñ+cVÅ®Ž[ï–¸+i÷ºä=î){×û¿à´1ØÓ+tSX¸÷lÉ«s¤sÓæÍ_ðÚK Ç/š°xâ’——Nzý)S]§ùLŸ±cæ¬W(j<õµˆš@yP‹©‰Ôêej#5‰ò¤&S^Ôj5•ÚLM£¼©-Ôrj+õ5“ÚF­ fQ>ÔJêj5›ZM½J­¡Ü¨¹ÔZj5ŸZG- Ü©õÔBj4µr XÊ—zŽò£ÄÔÊ‘â¨A”eO=O ¦œ)5–¢©¨g¨©qÔj(õ5ŒZJ §FPoP#©QÔ³ÔFb=²Xc7ÉîÑ ý [ö‘ö\&!ª¥ß¦?~&‚²tèÈ¡¥Cÿ3üùá#GÜé=êõQUÏîyöÓÑ¡£ÿ×!ÜÁ†±?<÷‡¸dL̘¿;Vp/qØIêtõùjç½ÎÇÆ®{ð…y/œ{1äEó¸­ã»\|Éå¥ÃãíÆgOØ<¡l¢ÏÄC/Ë^þhRçäÁ“7L.ŸüýãÔ9S¥Sš6kZÒ´úiÝÓ)Ô6’¯ó?ÍüK‰v­èÐ;ö¼¶YœS¤1É *]<¤B0_Éeí—f‡AH Õû?®â¤ª¬t•"#+M^eÀüƒ.‡Z04Z!ý“C hÄ@Hu˜“:¼Ê…5ePOÖ0x,Ú"Ɔ¢ODVP·ÙËìð›yYÙ&¾¸Ylh‰!2~ô”Zö“ß»KÁi l ŽObXK«AW²Çy9-²½ A10ïÓÞ¸[ä×Í¥‹­gön׌VŠØ¦G¥·öŸt> ù‘ïøãDnoïc ÖÇfÚc¬ÒñR³C+r_„Üñ8òvEîëȯ‘ÈÝ‘½Ìg ²FU1qô4Tަ£8Q5]b;Õ:1NvW‡Õ@ LÇ“8o4©’üihq24ÇKØ5hÖ#¢­Ëê¡„ «¡oãx¼—‰âi¶J±V ë„ÉöžKŒF£Í«ùo±ò8ˆÿ󺞋 3ò5;üd)²€ ·ì"Ú>Âç¢%âKÀG¯W\ª>}ÊÔ]xmûml N ¥6ê ˜zÑc©(j€†µ4€DpãnÑMf:$VîÞé6 ˜‰t;ò¡Ñ4{ù+(pW‡0Qø€X±m›Ç<²3KïG "ô"Íú Ê—+|ùTfô™ÙŽ&®B£ßxˆƒð²›’€G'`öóh/ûª³:Wœ:ËÕu,ƒm7J”|ûéGWà*œ^›:û©ÕÜâOîèÁ?ä? º’ôµF5,~Ë8õÉMh¡ªªª‰Ilyº¬V¸|ýw|AÄV…á·E1ý§Ð0¢ä:›1È1Ä’-èm´ ]UÙ¦‘df>Ïl÷­ýb±çóÑR±±-d 'TFÄN]»fÃê_ëд:4õ—_ïóÁÑ‹Çe§h%Íк*}e ÇéJõuá Ê •R“ Y)1»*·vÆÏ‡ãµáøí»øy4?Ý-¹'ŽcÌè3º$øÙeKŒeŸEiù…¨æYН²*|Ôò_ðIÞư©&ûÿÙÇX-5çqã_ºÃ*©q5g¶[æGw Ýí»É[Á Ù}_…XfÕv95]²xíJç×!ñNÞ±Âk;ZvÁôÉé‹Î×áÈòÔy½ö³»OŠb‰ºZÑqš·MÃN?»ûœOP^mEf|ÿA´›FŽ-È¥Í'Ç&á!Kñ(ØÓéÛ¼TôM`ÛŽ1ÓGA×ÍŸZÈRgÑí(ùìõ8Ûèü›R¡ÓW;&EåßP¿Ñ Ó¡3Fð³7§Œ^‚Su5 û8‡Š¶ €Ë’'˜˜ÉË7®[´ˆ`xóå’{%÷o[¾ Ž?è´¾!s³ùl¼ù ±‘hb«%œõ˜7—ÜÕU1À)24‰é«8\Iœ*^„iån¤ÚA_­«(}Àé*tdadI”»ìHÓO„²hö¨|³&)3¾œ:@_¥«$†0´dš‚y<„­ú ï¯_~Ýùù†V¦OG¯Yô+Gv ”&ÖUª/„-°&Ùm±c--²¿3Ô_#·¬¡{ñ5÷¢Øž&QAÄNù®ôÆh„³&¶(±Ž8lM©¡Á&Aˆðr@ƒ-žBxs%Žìþ2¯^ë¹™ÓãÑý/ÑF³¿ w €Yý]Ú›Þ‡BDhìŸU«·ªVcUíØžU:ºW±ì×=ª}Þƒ¥šíù84Z\öO<º*ÌàVÈEèÝ sèë;[¾‡¿A~¸6:+E›Ò6ÃX¸«ÓÇ‚JªQî®òƒ$ÀK p‘*PòÊÏ)w¥Ç7Óä›U;CfÃvØT~“É*Ï*ˆ†tH¦qIfL3äCivyç»§³Í#Ë;Ö™Ð\3zÏìpׂ’-»‰Úx¾ )ņæÕëošÃt¼qûfX U‡&ס™?þ|“H{!N‹)mŠ>½þO+”²„àðæ€’]€‡vÀÎáØ- ¯»Ð08G›k‰Ç ŽÏÔ$v8³LŽvE#ZZÛ“+{”x‰˜8Ôâañ²< ‚fó!ÈA¬+×WA¨4)2wŒ8xòOéëvçA$¡…ýÍÉzà…4Ëßîq âC¢%2,]$š×‹keïÞ¡wcdzwà5pºwÞ-¹Û/™þ8¦ç{òÛ‘½#ãõÍâÞD Ä™ºþgTfŒ}E8ˆf§PBÊ$±÷É ;žDSò”3y¨_úgß'‹ÜÆôÿ7©èªyKþ´z'ΗLÿ(–hó¼k:ÔH¸Ohf”;_£KaZž†’¾‹Hð÷î¥X˜²ªQbÃþþñŠÌ Ê!«ûïïÆÊø¡$£­·ÑV{þC~â«á!ý•ÔHã×ð /tCÔ8À’Cú+¿™>ƒ+¡ œ*bËÚ+úŽkî£ãÌOÑI³ÝßÏwÈÇž¿Ê¿LôKr9ƒŸ¡“…½¬±˜ãôd|R¤¥¡^}D}HqQ[Äë¥ñjå:ü¢2‘ÑÒYè¤èx/ïŽ#³}·©‚fÐã»\¤Æ\Ùó%ž;áeH_®¯Ô’ë7åçvæäegWæg‘@ó) K_Wj0·U2ae«d§Öþù.æžjaX×°²cÚýÎVÊÅà?‹5q™ »’É”½¾ pv‡ vãüã÷;ÑËúÞCxø6<m3_ÓÐ6GöZ¾‡ž„æ£qhŠè á# }ð1¤çk€Ù“8Ÿê­'?áߨ–ñžTéx žŽç‹öÐlS¿)4¤ ¿¡QÜ%<*Òʺžøá›¶ÀÝŒDÎíúý‰o5£µé- 5‰™ àÔºJC]ŸêK§$Ó —‚^.eº@ˆ Rhñ¤X3â/¼ÂJ*õU=ô!Q“ Еյºh–ﯻýQÞiu­€þƒüð>\'™×#?3ïcv¸ƒ¶b/ò^@ÞïÜ^;ç6¿f ­„yzü^G a…¡’äÉéaÞ+ÔU™$#Œ¦6#% «ìsTÿ¨>š"»°ƒ©ÑÖ WñœYÃéRJý®ËÐjœö¾–ãÈÍÏ)"p¤êô©å1Îìû.Q˜œ­ÜÕ°ç8<‚Og,@Þ‡ø1K=Û7\ZÓ¹1h²#@E¤ÈÈ’%*Ò¢¶/ƒðÎå’oóŽEÏ gâY@+W•Ik‰ÃÖ”š˜ÂkÀ°+,ÂcSç&â៽Œƒ?êÊlˆ_dF¥ä”ã]@~HÕ `=B˜Škµº« ÀžônB¤Ñ“±/—(E;ê‹ µFUmŒÃ={5\­@¬È…’¬ÜkÃÛ}` _ðÑ\6­ÛÑŠ½rÒôq¹þz¥^Q ,„"(É+(Ö‹ŒU§I4Yò8ºg§õ:­Ý¯”Mô”pHl:ß/å*ý9\M£ÿAÇk+³uº2'c{¼5Ž= C@®P…(vpš$ ¡R ø¯çPÿMÔj4)Nªàj!\ò£è£®RWÒ¼. çpÕòOË‚ùÔ~©ì+ÞøW©, ωlò/Ý NØŽÐzÓ“ˆ„ŸM¸>íWç.8ÚÐÚİËUYÒƒOófÑkb¶ÃSî±ð çàs¥äné·>º ÂO¹×Ó|ös2+Þ{ZŒ¾Ôßêè¥#IØŸÄk”mR]8­Èz²~¿Á_&ýÏùHQ6ýÓcMnP©¶œš¡HgÜO®ÍÕõKøðÁ§ çH˜âz1œ rMFRøOy$¸‚Û‰¬¯t’®"j6vV ÚçG<ð0¢œÉ xÃv⑉_NBbgÄA÷=B¹¶£ñb\A×_»tö2œ‚ó1ЉO«_¾C‡%ØÈ+:ʿ냗F!w@ë ¡L2«óÅîé+7%z†'̹P•yBs²ø›ü³Ý—*ŽÔ\h+¼ 7 MnôÒoOw•­ïM¢ÝfKŠeÕ7oXÐÐoÙÝ|Flú` QÎX°C:O¾™›<€æ­ù‰f B2ig¨íO5&ÑìšS¨[„F ”ËñHš}9ïhÑÍOHæuÒfêöv@%Ô•m²­3#ÙÎZÈÅo8Æ»ŠKxÜÃϼÇý÷%œnAë„ )óïÜ+y@rb³×ªéª!èWúhY%ßlÉÉ eçÎ~€Þü ü‡’ó‡,ËfÂZß³Àù –„óÖFÀžëk¤-›@Û´ÞÁ ûÉÞihÅç™ðš«trgaHARš$-^® 2Åä¦/ò•­Î’Iç¿=Âë™î⯌òÛYîÞêWYI+ ”9©ZÅòb]5mÙQÙz}±Ñİ.š¬œö¸ãÎ÷á««„Z³s< Í™Mé5…µúâìì¨j¥ Ê ®LìƒíIÁìíç › øhþi†ýøÙs¦“ïr>íÛÉMa,Vú-Ú9&ÃêwsßÓ•—´vT6–æÃ5r(5ø.I›:ßfkŒ°³víÿcϱ­ÿË-ê¿é:–>ºµÿ$8ý·=G[1+Tˆ¶¬±¬¬»2¾ãØÐ*ô2„.l¸V!HHÈ;"¨S¦‹9yêESRUzÁÕÎ&sî¡â¯Ýoã¡c+Æšÿª€JÚ›tÁtCdEBf¼r©‰(ÙZuxq(Ã~/ /¬“´;_„Žs÷3“ÑÏbÅ6¯ ³yËúäUšýšºí Ÿ^½þÈé,iY ¿³—¼ïSaàñœPdíàâØ>ÏNÙÄW‹õÉÕ‘DÑñ™‘êÈòøFh„úêÿ³†‡/,±áX Z,6}qX^t0:×µüõrnOahGÞÑü“çŽ]4´3³Ã´ñ&U¥­¯Fœ­EJZxP‡w!IÞö0wiêÙš·Ïc‘}× ú<‘ÄïÍK‰ >ú †­òoÐÎ)Ï)Ë)µäñ˜³Uä k¨†üââÖŽðó’…ŽÝ7wžT˜Vâfg‘ÚFP0ÊÚȼٯ›álK“ û0}y¿fNþi9Y-ì= æ[6°µa­¨8z@7èi@fv¨G>x!y»tòYOþð&o¶Ë‘=íÊ›zMFcmFãÑ3¢Ž^˸ÊZ dÖÏPÂÞuí¤±žqýb»ÎÚþ’·Š¿&¡©gœa5T˜šÌ9÷ögˆúl%2«¤¶ÑÅ·î_±rê~EÄfP=ß?<öÐ>Õ‰Åh‰ɈïÿÁßìíuˆFâø»dWoopÚ ž§Ê;g«éê­äë/Ú€&âQW^yNàçû•hÔyô<öo*\{>¬·c€Çô!'x΀°2¦§ªþßò2;\ìBÄ—#{œ/ï!p©9]%Éás v¦í•·Ç”‡²*ŒgØ[ͺDHví½Kìâw\ &ZãÔÞ$$lÙŒVsìñ»%Çr®‚ÙÚ½XÊ%õ l7þô@É]²þåÂm_òÄ(4ïš„æ9²køß¬äɪö¥ô¦ÿSѯ#Uó×Éë%ÞêH'-­ÿPжQ]r-ä-å¼=ÕPãlCNEΙbÞ…ПYÚ[6’*–ðÛÔǕڠZR);å“|^T©Ï}€Ò  u´o)NÎÎÒÅÔC.™¯…‚4—¯äX¦ ·ø³ÑžjB{HY‚ñ k»x”µS†×…/5…ž'• ³¦@ƒ§,ÀC_'E/Z‡¦Ô¢I_?¼NrØé©±x²°íB3:!¼ìx_o±¡)&[ØYgÜghi@ó9}þÐÖæ#uUm†:!péërêój÷ßÍé#TõµÂe“a% `i¡s³TŠ­êÈÔW9U &Õ_²7u«–¤HPeƪÃkµ&¨×"J£Ü…sêp…ïшýqg”ÇÀÚzxæ‘f42ѽmëºzöbz6ý _Ö:’@‘®L÷^°I–˜Å°‰6!K™S¦.!ôò°ñäþs³¤$}?| ~ËG¯‰=$Ö×÷6Á5IêHËéK'uãÄÁ«]ç>,ú¢ Ÿ{’þf-’.PÔËÊHÑT_¦oÌ)Ì*RäV9Ýr–T,`Ù‘:W¶Òcƒ«6àõœL¡Rk¤¶ï½Ðý>Åm¯âÑË9"E 1¬¡96;b³±]NnW#ZÂéóÞßÞäWﮂ”pGWdz!K¨‰Âó9åSè¸õ¡Ûµ™x§ŽPâIY6­“ƒËàø±²éVŽ1ï„¡±ägܧ+Ù_z äXv­Íˆ¶Öm·h›Ùá“»Ùw ïÝN´ÂÑrqá•€ ë›»÷užË?StÝýÂ3ñpxÝ'}•:¤ZZiÕƒ¡1§8Ó¤Ñu¶\À~ Þ TøªÃ‚Âã¢c²³6d¦‚:ÂÐlþC8¸&cCÆú5ëfÃp-H>j4ä‘ÒK_›ZCILª:4uÎ7Ð(@ŽðÓ}BK‰”¼}#Î)M/•â¢T+TÁ‘)qJe¾¬0£(¥*¢ L“—¯IÎ’JÈyKöîhl,-äÊ Ò ÒJÚ‰oµ”Ö—U—´UëÊmA2ó/ô}Ùåßµ£KGÂ^_‡|ž@ðuš$c›*@%’&ØÒ¦$âƒø_œ,M›¥IT…ä)[„HŒ)‘û®é#Üivm9¢/²!¿Þ"Æ14jGÿõ¥ÅŒæ ®&ÉFÅe?­ÿ‘ 0|•¾ñ­h#‡”š‰ÕB*—«Cýp§IÎŒk%îe0ä›ÚZß+?·¡m¹l­tÉâw^#¼Â=/é¬ÑŸK â¦ÄÒ`R!T®Ú+]xu¥HF¢ïU {>u£ÁÝh‘f‘Ð&1IËï’@ä ^)Þ»÷£—uû´C±L¯V©U*r~lIb=‘¯¦ÌМw<êÌ4"áó€gáÁØwÎx´ü¡µ 5øKâc¤ðÎsã[°Âg˜UµÆÚœbS·åħp ¯I[&bJàÏ®?­}ñßhMi2( 2ã5IÊ]\!¥~!m¨ŒÆ;ñº8*Ê’ªB:ˆOTšN¡N´-¿r¡¦<'GWlEÀ#¾"ÑŽŸÆw‹óOïÑËIÀß•)ߊӸñ-3Úav¸fQ D!ˆøÖ4«oÝð¼°²êˆ3ÇóÏß~ë¦P‡iK¥‹å;·ÞˆfØkK–{¤¹J¦Ýœ+ØÃ~»Súw&gl\å·œ ­e9lz?¿+ÿÔ‡Ç>‡›pÜGîÍãbÙª7=’y¯…àÙU`1™-¿…ûpd]†µÈE·ÐQ;>ÿPl:š—I&ËôKÀ~\V*$4›å•ëË“@;ÿóŠž .êF$˜²´Þü„ £}$>ˆTS,3n‹ŸY˜ˆG$aúÚ’£NÁÙ²S‡Âð³3¦L' ÊN*5ŒF]™àûѤV€¸BB+„J4nCÛ˜µŸ‰å^oo\‹a×'E׋¿¹ÕuÞ…Ú¸ÂÄú½Æ¤ô‚(U èµËhÒe´€Ø±m;‚ 7ú0š$:FX;lƒþtz¦ 3Þ” Na ФáÜÄ;úNÜN¤ ê 9šù„Þ…'RÙoðˆGiÕšä‚”*h¼&}á>4’ûù¯&>µ $ü_7±°åD« Ñhä†FÛñcøÁâÜÎèúPð‡ð0u˜2 >ºöCs Iš[ð…¿žÌoV‘{^ÞçOˆ]ÚÑ^®-ó¨4o‹L¡Lפi⊄8^hì,úlçU̘Œ¶*% 2c4•?‡Eio¾™¶,36Sèµ0œÊùý«U'úÂ<}¾1¡,‘X3 S¹Cºðý7-SXk“á „:]©q?‡*>úºð2ƒý‡ØË´}_Þɼcg^41¿>vË·xow“íC܇i¾Š-Ìÿ‡¾|ÓêOˆaX¤:XYtâ7íNJQ¨4©J$+µ0¥ ªá—3h°5ÿv£ñÝHÓ&t; qW€@r»I¼åω‹nFtùÀ6ðÙîšöz“ç18ÇÎÞ`PÖC±®<\52’”é¹?Vrª Z«Ô$I*ˆ¿Ý¯S¹±€wú}5g4é Ù¹ÌÖÇ¿Š‹®G]Ø [a»GÚ²ôe 'à½PxÁ:>O¬ð‹‹$€d¿H‡ÔƼ÷Œ‡jš‹H¬) Wí&¥Ðã<±Ò/6*`VÚû^Þ{5 …o%Q ?kVLüV¬«åeäbrãÐeäV˜[’§«pÒפJˆU4Z‰ÿ/ÞÃe¨Rš¤¬4£,_‰Nb®Hž£Í'I¹ªP_csåkf4†¸òg]`zÅgž6×_éSX•ÁÞÛçnΨ ¿(;ƒ†þbº ¯1™Ÿ® —t÷•LVìÌò,XÇd(V¿­ÑÆÅ&)v¤½ÙñÖ§Äÿ¶vî/Jjßr>†C—òŽÚ"[VEkÕŒÌ/>M~DYØÐÑx¤¸îk4›kéM‘Ò¯ÄêˆØ@O婼Ó9yùç[ê«IÎÉX£•3kïØ –‚/d_Ô7ä+*ì:¥—‡˜âJ÷êäE±VŸð¾|û²”w Ñ!@èå⇴”)8r›àÈè_Ä/Û¿ŒÆ3È¢!Zào!‹ÔAÖ‚é!] `è°Ú ]ç© ä¹ø$òçÒó5„KK !=3N“T 0)‘ »qø2vKW 6pÊŒ+K/%lIŸ]’ÏShg2›Yúz®›Ä9%*½¤ú29Ü–=2£qhê·åyúœ’ì<-‰–€0·ç'âa-¯6l=´ü#ÏZ`ê!¿2;Ϻ×7d¯ÉD¸J4,ì^Ô‰Ý×ÖvÅ+f$jY©ùJƒMÂvéx¾lmÊäwð8ã ’þ" K ¤gì Ý# LÁRDÕ¢ñuh*úŸI>|7£h½&G(—ÀÒùIXİŸãa‰ç_w>?nBËL@¼ðXÀ“°c8^ŽW?ÂNÈîÁwçôML2г+K7mÜé¼B?(ºÉ°ã¿,>{ö°óûо!m±õÎú;²®¼ …ˆue²ü¬ìø2÷¶Øb4ôW”[œ««ÈÖšösÞâŒõ…š²óm!‚uC´ruD†[VôԋĈY $Ÿ$Y“ªI2© •=8<Ô#M)Ui´™êˆƒ€Æ^åX™*:ÝM¡•«BÚà´eçšLçÔwW^ÜU+ÉÙÞã!#U‘öxë¸ ‰´ MraJ%É ¦’¼"~Ãï«8Si6.&+àß*@¯è hóP˰‡öŠ>†Û_jÌþ*õÆáûr ² s³MgŒ ¦á#(êÿ5î˜Ëendstream endobj 588 0 obj << /Filter /FlateDecode /Length 2299 >> stream xœµYMsǽórMá8HÃïYV¥J²dK¶ÄTLÁ©8R+$VZ`éÝ…\öïÍ-÷œóæc”K¡T:h±;3ÝÓýúõ›áÏ“‚²IáþÅÿë“brsòó óo'ñ¿ÅzòõüäìR[¼¡eQ²Éüú$LaË&FZ 5™¯OˆÐÓù; ¶2,,-”À„ùÕÉkÒo§…ûmXQ’îÔã+Ó%YÖMSm’o‹éÌýP¥´–,§ÿšï–ÖéÒJÑR—å¸ôùt&¥¤E!Èã·Ó‡gR0Ìõ Yfµ%]W u»™Î„à´Tš\¹¯¥æ‚c žðž2d“éqºÀXNêÄåèb*.¨.Mp‘\†åÑœ f¨á“™PÔjöòðRÑBsò“$o/˜|3¥0oöÉÉb\Lr#(Öäc\Þo¼ÿRYc©‡.NÊÝ€£Æp““KZ–äq°þ¤]ߦ©Ë"´š¦¹J>¤ík¤I±¦$ãî™O­p9S¤Å;‡iHÛ¸ï0o¹N–h»ø¾Ôä23”ùÖ†ì—C~÷ï·wá&×o“/ÍÎ7~`£Ï~UÝÂo‡—ûnÉ#€@"Ò0«’ŠB ¹’å.}tÊD‰°òÕ˜xA¾ÛD‹Ê’¿1±äU²aŒ|M£>ß›«S@’Sdu2c‚*ç“÷è[øáj_ÆJUHݧ!IW› Í\¡“˧ûÉóÕ/JA²U‚Òr€ïf?úMîmºž¾™žŽ¥ óú³Ôb1–ß¹IØж¾mÒ@¬—›¡Þ8sÆÂCjTá‚çn»©bîY£Êíƒ!ŒÛEý¶Écæò$…ìúv;xÒ©7áQ帺$K€Ê-Y DíV_¬Ž©´”[³‡FˆŽ…É4ÞUZ ëê’Þ òYaùŪ4îW#CZò¼jš³'—S®a®=¡pËJ]Nfa‘·þ™å¨nòŸ=H¥ÐžTNÝ£%ϺvX%v!EmTg£ä”ä½[Ó y 0€£ÍByÚÔÚ3ÚqÖdFS³/»ßRÏBi&†içMØS•Üc!-Iá7 +WÀû÷× }vU?tÛäEÞ}¶ìw)õ–ôv yÀ`7éô¦êâ|Æ]ö]#À¤#Í' ?»ÈôškÎx|·Ñy½NmŒX/Ô¼º›ðØóÌö‘úÐ%¾:ZÝVK6FýûvÛ…*sªD¡£\»gëó•+Â~¨Så}Òd7Û|Õ^¿Äú+°™åñ,{y¡"yŸò6E:DS­uQD˜ǘCX¦î2¡våÁj'lÊ„Nƒ@bïFŠŒ¹Ÿy©?N„Æâ¹˜c Ó€¡ØÑ)JÊÑ g€anÚ6@‹ û=Mý¿¬È8£Jð‰.JlßÇŠ¨óºà`EZ0Ldv/bgþKÎŒ© ªòÚ˜IS¸¶D~rì¥K/ ² í6|À—%N·i¯YWA¨ëê>fw1;·Ÿ.S¯3HuÃúàˆäMN†ˆ/hù;3"èÈ™ãÈ©+ïžu»Mö>ÊÁUHþ³áÃñö›ä “Jë{{ݺn›öæWŒË6*3í¯èÒzbbÀ /|2JÈŒ±Ÿ 3$ w?oìdtÁ!Ý߃…’ý:·Õ^츜©1cÇN4>yÙ쪾1ˆ†ÏŠcégB(1:RÞçH‚ÔõgÀò| ŠuçÄY0dÖÉ ôÊl]ÕÍùg Æ1Uª‰†2e}i¯«%êŽö¾ÆýZ­Ú–"h¬RÈ̌œ>\p:bìÀ÷ºyt˜õ‹Õ½Zvt³ཅw'ìè @êçŸAÓà»eNW9}]…ÐÓåöÌYÚIª¶q˜ße ~+%É÷{ö¾ÇŽ…)©ÆÁÈ7›‹:Ö% Sà¹äI—“çÿM¥N“–à O¯”]é ƒþqÿåÔºr :ùE¿«­” v·°Ð8qßñï3ñÖ¬Çj×äÇ”žÂ…9”_yG) á/'–%5ý¢ûwÊêC‡“ïxm•ͦwŒzdSR2Ž»·ÉÚŸÍãùÂëp£Z)³©¿'Ø}_ÝÙ;gìò»ì%.áäÅ¿j—«fùy^Ñ~û0ÎB ðÒRÔÁ¨út屜û¡º¾¦{ßÏÂnÎvV8ùo=5endstream endobj 589 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1546 >> stream xœm“{l[ÕǯãÔ=´!))K¯Ô5 -Ò!•ÇÖŽªÉBÒ4¦/b7vìÄS?ãWâG®ׯëØñ½ŽÓ¼ë:in’&:\VF‡`E+ƒ"!„€1„PÑÖãì2[þ@BšŽttôýãœÏïóûQZBˆD¢{ÔÕ©,º,*ƒþÄcµ;Ÿ3ÚîäÛ‹¿«KŠÛÄÀ_¯]Wo€21”•ª%;*ñà=Ø^»¶E¢–Ž·/|ÞØí0éÛuÅ®ÚÚÝ;w û“ µCñ\b¿êD§ÑnîÔ+T]mŠý5u5Šz£]õŠGŒ] µF§2hF­â F©hnú]c“b_ãšš­ù?t¿ŒÔ‹ªMc°¨ºõp&bcÃYV^UI/‡‰#¢D”(L ¡`¢”(ˆL%2ñŽRYéÙ áùòÿ•$$D€+Ê8Ñ.Çârqñsüˆ”qƒ¿¯z‡È®ÚçOªiÙ¹ñtaxQ¾€«Ù·ò PƒI8ãn÷9ô`BÖQóüÂbîõ¡…úFm«£—4­65â+÷ñ†GhHGå¹/oœ[´”utöxúÛåz~›»¾ý¤ªÁv–KfÏÃ4špNuè´]‡t×®.^̦ÉiÕŸz®•×qż\`¯ßKðÇ9¼ë'þ¿á»é[â¢=$ýºXËB"U® CKßÑî~òÔƒ*þ©A«Á<]åí7;;5„.O^Ë|ö†<9¡a½õâÜÁ^â«í?Ã’óXüf’D'ÁfñžpÉÛ¶5‚ñ’ï\ž>Y$|Å3û÷B/Ãö‘¹tffו´ku/+ íŸàXvoÉ“ñŽûˆã[vQq ÿZÊ8¡¿ß þ éïñ™~àÍ>ÙÙÙLæÖM|×L¼ QÄxÀï> ¾Ҭ뱘áX3–Œ9kÊjínÜeðd 1œ‚tDÎÐ4u.ŒÎH*b(,ËŒÝ.×ö=üq¾Æº†‡á E%i’»¼Hg`&¬7ov, ^K?ÀåKw¼&^%øgm¸žÃpS6s•Åð÷u_Ý·µ´øO|HŸŠN ­_õ.›Ïõz5Ÿ{uäÚúŸ(K±ÌýpÞ—·Mv,´0¿ø»øò¾Š¯ýïYÈH“Ћ†ãï`Z–;råäuxÞg®]¸Â-½É\E| -õsmÓé:ö¶Ú£,ÜH‡™#ÿ †F_á’CUr¾´)î ÷ ömƒ–k@ïk7»‡ Q(áÅ·54CDÚ+C¯/,ÄÒçÉpPXChëã´3âè¹::¿iða©Ýg´ ‚õ޲‹ƒ,ŒÙ$(Ùô„ðMÖe¯‰.}ÿ÷‹_ãâb+n‘&—ã˰ 0ÁtÿeÓªn®©ðÄM˜‡„Ãáh2‘HFéh‚¢… Šº;àò»†œÐÊ\C¾YíS;µÝ*M½»nдÔ#š©.´|ìÇuø>ûvæ_‚=Ô}àÔÞfPƒ–uÍ2ÁQáµOäÓd¯¬¬ŒŸ™fgq¯l¼c´=¡{(7xÀ8dì7Þ)6ßNŒØðú7¢õÚâ£Òe8ȶIlÐ ‡Žè:Û”àCžH±•&—.½'\ŽÞ–˜ž>ñdóv×Éà xP÷„cfœMÅi’e©hlü#ü† —J¬5Þzh@û²{Öæ¹ù¹‘`ÜÏ’Ç>›Â(NA2~á-’1ÈËÒtz&ïà<ö®à¯­á5NôÚm|ᶸøJ±WŠû WÿôÃ-|õ3¤r§¯†§ÿÐG/|ñ×Ï—o½O~Š+fñnøñ ~³”×H˜·f¾<÷ÆäÊJa Ðjöå†Öǽ*yßi?þ›n`Àõäûfá\øGê"*wŽ•6qJÂmº½™ÜTbï+» Ê6saŠŠD1Ž¡©²²KL>¥bá8•J•ÝM?¦w(endstream endobj 590 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 424 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ìÇ®Ÿº¬Ý<ÌÝ<,~}üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000202ìgÉØú} ߦd)†²Õ?™V3õýÀ+滾_½Òý}éïÎßÝ¿—:9wÿ^ð½ó{g÷÷—åtfˆv{w«Uç›8×eu'v»Ï/¾W}´ûm÷ÉîsÝ7f\òôúŒuÝ;»Ï–.´ŸÖãÔmDZ£{Óù›N—3~_úùG¯Ø¦v•îkäìb_ÙÞ+çé­ÚÞ͑¾´ûl÷ñåzÙ³ºëTäRØõßì> „7»µsð•-øá<ë{þÔÉ Ø6qÝã–ãb Éçáìæá^ÝÓÛÓ×Ó;©§wòqž ½›û{ú'õôOéÊÃËÀa“¯¦endstream endobj 591 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 376 >> stream xœcd`ab`ddôñ ÊÏM̳РJM/ÍI, ªüfü!ÃôC–¹»ûg÷Ï8Önæn–ßï }üîÏÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000:20(1012²t|_Ã÷ŸYúC÷šïk~D”3þì[SÅîÓÝ8¥~õïºÿ$ÚftL©ê®ìîhn«ý]üç¡DcAY‚e7Gûê¾Ýs»Ww¯ìÞÓÁ±†=¾§p~÷ŠîIݽ¦ïú.(ñ} Ûáßê»[»»%sûó岨¿+õê9Ú!ù{Á÷Y¢¿»Ù¾ |¿ÍÊW¶à‡ó¬ïùS'/`[Ãu[Ž‹%$Ÿ‡³›‡{yL˜ÐÓ;ùÏò¾YËú&Nêë0a"/U·—*endstream endobj 592 0 obj << /Filter /FlateDecode /Length 5994 >> stream xœí]KsÇ‘¾ã7ìaŽ £Ýõ®Ú=‘²%¯ÃÒ®%(|}h 8æ#ÏŒHÑyï{Þ̬GWÖt7H‚G†‚™ì¬WV>¾Ìªýs3ôb3àéïËû‹aswñÏ AÔMúóò~óüúâ÷ß{ ”> Al®_]Ä&b#¼î½ g\”Ù\ß_üÔ};þïåÕÐvÐRûn·»½¼RJõƒ‘Ý—ðÀ('†Ð»ûý}ÚÉÐý.²¯º?loR£Á³F//% e´ê^_JßZØî×êùý&# pLô[š’ñÂ[ßh( C™îÛmìRYÍŒ¬Å.ÏFuú¿šmÙ¬´Vº¿_ÿDe}-*¥\/$ ìúæ¢s—×ÿ¸øãõÅ_QÐÚ¨^©ñNÃT6jðZ Ý«Íávó·ÍÃEè…wfóþgø÷ èWþ÷ß\c]£™à\?„Íý…°RöVÊn–Ÿ(´Á ÅtŒ›§ø^ ¢x×±NñZ>N ®×fŒìµ]¢X 9 Ðj–zã‰`å#!\¯æ)Î÷ÆÅÉ^úuŠ•‚š£XÚ¤xh¥æ)¾wÔ µgJ£¨• ²n–æiiZ»EJè¥CŠ •˜¥@VÅ 6¯S¬`³èYEŠu³_ã¸Nʵ¯ì[ÏS$Ê(^ ð³Ü+’¤÷¶÷a´xœ •š¥À®ÑÎ*ðq½s³”ÜJ‰Á.Qlè­ Š…Vb"´’³”¬!J:FrN±Œ©QCÀAÚEŠ@ÛCЇV³ÐÜZ¥•íž§¸ÔHV2Gm7ÔÊh˜E˜§˜è£”Åi"ÀZí @,>ㆫ€¬"¤†Rƒ¬eJRCžRc«³/€lâB¿ÇÅ0A²<û–RC²e ;%ßÏ6ÍØm™’:ãäy=Ÿ`—E€”IW¸2ô[ІŒòª™7”óVqÞœ:kxži–ðˆ2SăëÛœáòÒ|¤›‘v‚„•˜Ê ×(QP yaÈ„«!J—)qȆ<¿9g‰ ÐBM vò^<êºÌ\ g¶«óÞôzâ‰@óÌÝ)@):ïM†šKn:ÃÌÕUeœ¹n(i¶³F+ÓfâŠXs½¯RÇùR¿ùR¿ùR¿ùR¿ùR¿ùR¿ùR¿ùÌõ›)¸îÀ 4 Û=ôF"Xÿ€NØx«¢ßR" œ…ò T6i0u;3x S; ˆž±va€‰Èº]оWl<8D6㳪ç©fP¨™Ú¡ÛvŽœËÔzjÚYDM; E¢n' 'Ö»¤nÛ}`ql®¤„H'€µN…)Ô›`¢àþ}*×DÃБɂRr¦B™˜Ü˜ÎÕL…R1Ádž)S&&/°˜W3JÅä dL™21}°5S¡TL.P«˜2¥0ÉsÍS „`¯O¦LL ‰3JÅ–äØh…21I@Çœ©P&&5t9S¡TL`¤Ö1¦L™˜ÐJ9S¡TLðÐ Æ”)“‘¡a*”Š íÀ0¦L™˜,¤t¦ÞÞ‰R1´¨š'&§gÉ„‰ÅšPøÄS(x$Ŷ¤P&&t?œ©P*&ð5Ší[¡&…Ž…1M”ŠÉ0¬™2eb Ìœ©P*&„˜‚1eÊÄ”ÅÄT(hsÔ)@šž–  Äc‚äO¡TL)UL™21ÐeÎT(“S}Œ)S&&+}ÃT(“‡vlç ebrÊ#Pª˜ ¥b ªeÊ”‰ÉCìôµ¯œ(S¹S¡TL)¾VL™R˜J0"O¡TL)rVL™21 ©0kª˜ ¥b‚´ÒÆ”)¤ŠLk¦B©˜Ó4L™21d¯£è}E©˜x¨­ƒïxÎ#t3ËÇ"´"’^‡×Zˆª¸V‚FŵâÆ+®¿9q­y²ŠkÅ·T\+¦\q­×ĵ¦É׊nU;´²¶Ûœ½ŠØü£M©Ò`^+éд“ƒåÀ³vN§i‰b-¸fs‚9®!ÔÇA5—ðLÉŠ+S—‚\h°5W¢0.¬¾xÆ•(Œ+͵âªfÿA›N‹!:,oƒ!3—Wòc3˜NÀg)qÑèœùc޹Ц=$“Ž9E5!DÉrC É”¨Õá³0gYÃh±üâ  %útªœ~´Þ/{ ÆjÁ—xB÷#êLdÇDŽØA1KàpŠ.çŠný„]Aò¼‡7UZ½B"ûÍŒbi•zL±2׺b®UÅ*\«ŠU¸*Åúë¢PùíÅ,U>RQ“V}½½«/]n/¯4ÞÆ4¶Sÿqyeéjƒìþv ›ðò%ô¨$^vH·*ƒ‚dµ{³{ ÁÕ¥N¦G¿€®â­L:ºælð5˜nÿ*}V†] íSOBwߥž@‹¼ïÞ¥®ŒÄžÒD…é¶©#ãºoøõÐûñï„BtÝûÔbЬ¹"z¼ëòEÖ8•íi`Þ¤vZv?—[«eé®;57U£,}÷ÇŠüìûÒxðà+Aö+0ˆð¹¸þ÷Ÿºû<¨ÓVåNµ ÚíA¸li`2\h Ã`»ëfŠ"ìvÛ‡æð,ål¿¦Áø“#ûö@ë7Nv¸©ÇaSÎõ ý xQ×ìbï/ìsÞQ¾o?WJS·­Wp“FõyY7w/k­©›ïÆS»8Aܶ$q¶›Q’F¸Û¶ìé}Ü€îúÒãåbЫÃv¬g{ÇîwYdžÔ·^Ô4»-_Ö©½ Œš2îÆÃ=U@û´\WF4’€Y‚êF2mø2¸F£ˆI‰öÝi{Ïä“m×Ûn¿Ž÷»Éб+0¾wËw³ëŽ[»ÀÖZwûŸ+ú‘Yûá-Ýæö®éö&­Iɤ‚glj*lè’YÑL,Í ô’|Šx˜´­ËãÄ•ëèv²Åî›oï–E’Gntk|HÓ0g’:Ûñ_«­û…}N¦d¹kž±¥Øà\í²+Á¡* ÁÒ4¾z—Ø­ÂÀç '(ïÈ"Ëý™7§±Öbê æƒ¨]Ÿ¬7Q¦;&'¯•Xé`ûo禓žœÊVG@lšel£…Žg“JÿªB)ˆñÉA9Ô/­'.Ú‡&QL°ÿc-·ÛãX‡ÿ]»Ã“݈ÉN¤ÞC2&mØ/KõÄSŸÓvÚª5iÖ=cü¸}L#E±èJöebZtËÀujÐXÜû³àF£HÈKâÎ{c—¼;¦Á‘ÌùϼauEaGåóÞŽÐi·±)ïS’Œ*Al;î¦ñâ»w28þîÝad¡‚aX°Dˆèìy–«é!}V¢Å¥%ÂxŸ•ƒ{¼Ã–%P¨ƒ%ÀB€o0gæ¸åÉM´:„Ç:ž4„çÝŽ§1–À|Iz¹<ûë<# æQ!÷Ýø»äŸùü󦂛h‚Á–å´h¢x àêØxÆ7îÐ[¤)LÞ¢4O›‚«q”øš6²>$- ¢…„ùeŠ(‡Kônhlc9d2åÎÛ†º]y©ijÀ<©éøf*ÛÖSí–¸ñæ˜Å2‚»Fœ¥TÄ£Ûæ\•g.ßdÕÝ‹n*êÅJ›Á:ÛÇz¤Ä³‘°Q|HåžkÜó&ê•i$ãòï¿wìEa%z…/°ÐÛ¯?u·(;kI¯Á Ô°rîÝY(äWg%èQ)Э•ç¦b`©ÖýgÕß'Ê aŒ³’Ë«®K±t?ŠNqHß͊ÎóÜhPŽç¬ööæ2#ÿý}j 0¤5Ôêð±ëÒÐНëÅ%âIg÷mSäÚó6âPïÚ4¡ ²&Jàá<ÿêÌ”EÒ4®ŠãF5úc•P]Lá›Uú#2½•…ñ±8LU !hæ2ö§Ì­“¼¯«SõîP˜Ä®`ÛFüh(é¬Ùû”\êÖ?çm’¹É*yÕ'œ«•% ÷ªIQo/ñ¾rÅdd&Á´´äC…=O?i]Ü‘2Íl}{Æó§ØÓ‰ HU<3‡3¬• ßK2!E=M€"ûë]úˆÑŸ¦T*ÊìÝã’”ìÒo`e%&úa~|sßf0’ªØÑʵíˆóÔ*†ìªýN[E?¿Àã+/pœò‚C3ÏõjÆkë iðƒàB𮆶b°_³ Ñfm〠ûGêcƒÄŒý.GÖ‹5èw\ŽÇ8 ç-%„øE£drÁ/¸ìmð†ƒƒ(»Û‘‡UÅb ˜8c]YµÎ£“lñh œLœ¼èîvwûòt{“v/A¦‘еzš/¦ß4bÃzÊë±1å ÏòÞ?n\:ÕI­”Ö žkVI‹´šªpúI Hãuš›ÖQhÒ쌻¦`R›ÍûÈGåÌËœÌVŽo&Œx*p~h&¨04òÚ{¥ÉMJÍ0Jà‘ ž.aNÏw=ey¡=¬ †­¡Å8ù¹Â4>ÍÒ©åÎw¨•4¥ÛRïöÄ-ÆT^€Ž˜?{3¿mT ˆ³U|W@s‘cc¯lø»ARR)—•âñÎÐÔ-‰ÕÌœÙá8ÖæãØ‚ýiNeÍl«š$rP)B• –º’ÍQµYG÷~ܾÔüëí!¦š6{ÄiG@åبE¨säµÁmušSšËóUãX¦Töñ(âp൥S¬€Åü›;\ÖƒFQ$V1$zX@O¼Üq¾¦ê;ÎBB}ûôXÓ!®ÙH¼M|ºïP ³™¾Rbã(Cx¶„I¹ãywŒg¿ |U< ÆÿçýE câ‘Zln¨žJÿj<Õ?™UqÊ9 LtÏ:}BΈwk× "Ä{H˜b¿èžžc ŒÒ²~Àè'T¤0½×¦îÓ[”›ˆAz·¬Ügõ|Â| Ð>ºGüÎ181#áæÓf<,YH›ÏPM6 cÚå`gòI,÷;[àE~pvZ}n«ÑúƒãòüŽ¥huõÜâé–­\¥ÅŽ]xaN}›Äz‡×¾Ž÷ŒÂ²uF»@ët’Ž^¾§×ŇSv5@p·§ÖÂb‹bÏÙý¬Ù3µ¡ëmÇjrœ_ñj7‡±§ÓS 7 $£ÐìÁõò³™ ®·ÚW½>µÞN[;u˜ªK½ lijc’hú˜>‚‚<cqdø~¾¾}ÜÒ‰" º=˜¯/ðÆø§iÚ­9¿†ÁÎÛ‡+i<­ô*¥¨°S‹j –T—#|‰Ï¨Y¨½|ÿŠ >6Ž©ÜY;µ¡{þß(·bž%vØ„ûØ@… Ç×^¬Å›¸ôööÜÓ–R¾Ê@|Qx÷>ýx%¿É÷¯$ 7s-ƒV÷ØïA~jý•àZ5µÏbÆZá‹å¬[°cõ;ÖT4L†GiÇ ”­åeI;ÆÝnºUðî˜=yPÑ8úVQe@ø8¾ïÓ¡–kŸw¹J!CÌ30Ÿ[ˆm@YˆÐ/‰HÄÅíÍšc?‡gXëË3XFDzñÁ6Å<5t æ84yUØþpŸ[Èn¿X ¼*§¦É£åÛ|ZðÛ|Ó =J¯K<ùHw’½‰wqãçæ–Óxš«Ù¶j0¹RÜyª8=2£¹Ã}hªÅ–Ò–3\µri‹ï‚¨PÆ Æîýô`õÆ1™ó|HÇ ÔêÝ1,pYGS7ñJÉX–q^Ô"ž¶R4W±?ÏqãriÛâe璙њ0KÿÀ‹¡yúŠ®}ÐÊ…aFv¬=¡dbu³èœ_ds`*sdÑ7]v‹ßȤ5™ôŸš(ºž£Nà‘ÊS’#!YDE[¾97õ×)ƒÛ•’`. Xçr±7Ð{ \ÛÞnï¬-ûEßÌ_­=¦ášJÓnœ“LüB‚iÏJsï‚ágÕ””ã í¡J%Îï)Äk”&™i t1 mFÃNñÆ€´]u_íCë±;à AVµœß%?ðx.‡4Ç"ü!”x !~Vú<æáÏþðz$Ö][C¥Nwõý–&íïéRñ”ÑCis=~Ën]çñø-¸©ÿÝW?Ö'y?~‹ˆÖëÃÙŒ'"Lô%àÌ7ŒŽå²ÑÔ´9ÃxqCl÷?ñÊŽË–þ¤#vxn`Sû< Ž7ëWƒÊ3þá-6ÕKìð  ­5ŠIxO™€ê¥  ‡DªŸ©¸U¤âŸ~GOÚxA†„Ÿ!åcêx&`AË4üÐçsTÛuï…Ûüac–Üóð92jƒ?ïdë¡>»Å_c’õK·¯žTÓ;¬T(«¦ m_:e ·‹(}Öø»YÚ5‡ ã_‰ÿ# ÇàÀÈã&]%1ª#d©â *s´õyç*0H™ým¾éÒ^OöŸ^Fþù=3ôendstream endobj 593 0 obj << /Filter /FlateDecode /Length 5486 >> stream xœ½\KsÜHr¾óî“çÀ#èÛ¨ªàÛx¼;O¬w†>h|€Hª…š­ZÒò7û¾çÍGº²45pè &PÏ̬Ì/…Ÿ¯ëº®ñ_üÿþpU_ï¯~¾Rôô:þw¸þ÷»«ý!4ðd×Ö­º¾{{Å]Ôµ v|{íßµÆ]ß®^Wßwÿws[ïꦶچjon1»ÚéêÇxáŒWu[uÃáøD+ëu[½âfm0ÕôãûØ©¢Óý†©œ5Õ»vµUMõ1{è E‹QZœŸ?Ò’\P¡ ÕHSi˜ÊUß÷<¤i¬èЉCZ©þø÷¼ÙÀÍÝ4ÚÿïÝ©š“Ê¿S v÷pUis÷׫[kÕõ­q»Ð4øøuõ¹?½ƒ)j\H5Æ©[ÓWÓ‡›[\  ¾/îó?NØèQÛêtŒ#ÁP]ú©dóî$†ÚÇþ>ßo7pǶøéƹªûîÍrß±9ÒSy€óŒ:òʨVö(gzŒ 'ŽfäŸâ8À¢ó†lõ†‰Ñ¨sÇL¬æN¶>Ïy¢…àVŸIˆjãdñÇSœ½©’¼ò<ý ¨–?ØÓIJs‰šjf0, ?ä­Pn€|ζúúî¿®îþåu5IíÓŸÞ6¦BÚh_‰És ôŸúüÏâÐ Ï7%9²(ª·ÔÆÝ‡F~ŽgOÌ1á"Ú¶Ö-0¥{Dz`)voXh$÷Ì/ìÖþˆyHû;¾=ÏÀGË -¤µÛ5:ðÑz]ýB›)‚ãÓ#±] ½­òWÝÍÚAuÍNÁüi4yäri}0p[½Í;#Û%`VuûD8^ûñ˜séCö›˜Òè… ÞÒVnuP;ìõ-IQ¼…UÕ†•Ä»ŒáñySˆÑtû7Y»|‰§þˆCƒu ²Š[ÿ2å,(ŠTv2zÖy±ê¼GÓ’”÷òÇí4¬"ô¼­ÈçÔ@Á¨NŽÂ”Õt þ*Õi‡ÆÀnáÔ¬‰ QÍÎ'åþ©ïP»C!X ø­š(¦Õ=¨^R·ÝðÍ_~üË÷ÜCŠb«v9‹â.í3T_3¿-G7&òµ¶{ÈÏ0-]Õºú,Npÿ°Âw§"ÁúÚvS6†î$ÍÔÑqØ’ ¡ø³Ýæè4ŸÕK{™ÄÌÆ1}TIÄ.ŠŒ ö‚Èô¹SEÍna Ó<']©]µ…š¤Á ýˆÌ8òƒÞMTdÐ|¿­ˆž¶x ÚÞ… óëá$`Ñø$ØE ¸‘ ÀCåÈСք›Ë#Ar«’’ÎÖCÜuÀ¾u Êäð¢?†#/¡AvGª“¾‰$iK Ê,‘xs`sgwÓÉH2D  ‹ç áj¬s¦!¼s£cFµdÚá7ÊBNIçð»@.é+aÙ^žö}w*ùÓDÏèÇYÚ7‰È¢ºp@ðÈØZt9q>Z‰{v»~}[ôXÎYŽãgö\àôvãCܧ-oFÀ^¨ûŽDWàyÚuð/h œtü›u›8#|ˆ¨àµëš†³äÎ’å²­Çâœâã6ùS•ÃÏ>çxè»á§›Ø´Ì$¬k[<ÓR ÃE¿Åê–ì> -(ða6`Ç©O§.;/ ¡€ÍÝ>k§“ôx§84 £=Ž†Ž„Õ ]ËÓ#êŠT£ö;Ügš8©½ÈÜé—SËåt§.ÉH(µJ,Fu@ß"ÎÎðÌ/.f¢-˜¬¸jãÝ, ³–”¸À bНr^JƒIs€Ú»èiìÎdþú)ö¦uCa-–Ji´zŒ»t&ð+Ú·aŠ˜„†,!ÊDj.œÏçuh<þŽ(ðm7‚·?Ÿ¾ÿÖ¿­¸ oS§mÜ6â@`ó½Lâ`íSnÅ (^[=­‡Þ®)»¦'Îþ‚Aï/ ÁÞ– ™NSŠÎy„ikR êÿD ÇÒmzûvz<½èR§& ®˜Zç4‘P¼q}A hž1®Ðú¡Ãµ»šN×áñôîxƒ(ÐÐS|:ˆÀ¸mÙKy÷x~ñ›ÃÆ»û÷ˆvÖ"Zí,2…€îJê7¤T¤“ÁXÜÂÏ÷PÀF ŠùtŒ·ëŸ%¦Ø@qÔÑÀ”~@U8BPð[³VàÂò›€”@I„ýr”5{ Bi÷§Eˆ‘ViWâ,4a#Ђ€T*É´àBI½Z?t0¬;ÉT×oú§M'ý6uAqf“³Ù8|Èu¨„?…òOÇ ‚­ëÌ{>›Èšþœ»Æ0ð6ÉiÝþ6ì+ðh”­iɬÑþpwõç+N/¸ëq;­ IšÒ ¢u­¯qè pZ!—9©1Ö°tDÌëA¿ó&9Ù¯«Gd’jÙ­Èã„»|+¿t¦Ñ;m|¾€3(H¿6TŸ bXX?øÐS·ARû§„¨ eCº™ÉûwŸ™…ê¡;•m_˜eÙK—ûÄ3É$Á9|µî6G`­ÍXs:îIÈNÝ{oŸ½ApÓØ‰ 2¡¹ti¶ò˜YŸò1Εͦè6ãÏÏÙ‘&»ä pÁ=Í“Ç(bA+VnËÛ†ÌA^·œ`ÖvLk¹ý0>½YSn0|´`‘ðÝ‚–„‘þ£šBÿVWàÛ…W0÷ãt[YRp‰ÒØ¢ñöœ4eôa'x­Çñ4ÓL/B|užµ‹v³-”y4ŽìÅtÃóÔ'lÒÚa0dºm†ÈK‰ÀI•v©j-îÇ¥;çR°3PøŽ*ÀôíLÜï {hÇÐ^»:ìBcYÁüí$ÞпÙx¯—æÉØ.£°„7Kçt\É$ŽofÄÊ4ñ°){¹¯-ÕÊfc;à7íȳd*p ·äQ.ª&:‡F”ÞŸ<"Y¼%”“ÎÖaŠÏÀÕ81<Ÿn Æ¿AŸWyö8ˆRo(½°€kîo ï«÷¼\{áÜ(­A“FPú?[ ­ã(y °¹ílj7"KPflÉñvæpò úÛŒNbŽ±Ï•AJELEpŠq§ý}‚´fW¢·m–y\q%­È)>ôX&îËÂSL!ÏŽ<@æ ¯5“ÛO½ˆ|Ž‹®›Œ “ÂqP Óš"g[R¤¨ ]ľ›šBö$° Å£—n'@©œ…E‘›| ÿ' Ë Z][‹QÛßAaýpŽì¯‹iôÿ¦€§<Áã²ÓíbrÞ…‰¦8š¾0'øÂ/í!=we˜za0w7a-)S0)xü­Âú¤ë¬ÅtyÆZXñdŸòåMYÓÀ OO”Ë# ‹º†XˆQWŒF¸Â<È.‡.*ìhÝZ\‹ ƉìÕjæßE©2´ræE/™bË(Mé¶$Êsxà›±/²±=¦‰|C€b±oïòšœº„Û´§:§…æÁ®˜Fäѱ–è@‚§Ç9–³DÆõ+­ªh0ÀÃÖ¨!%ÒjE&~Y„»Áâ£ù·Û >I½'à4†7wú¶1PÊ{òËÔ3NâMµ™ê´T騹Žùi¢”ÈJo‚“Eœ…újÊÙÐBí ôåå¢;ˆpk¬a€=á¶Çy‘·1egemV?V+Á(»·À¯ñEˆ¹Ç¦!ì²™(Hs†êŸÒ˜¥Ç¹mÒxÎ$Ê£ª`[µmV´ <‡&ÈŽé×?üé`ü¯´Ü8*8a‚Ÿ§EBù’ðDr˜ü¨G²â E–õ<þ‹²é¡£¼€â Œ^F‹¢p ¥Ztä€òtBÄ ^äçíx ©›â$a©ã-VºêÛ›`qù˜º*Ê’N(éÔà¯â oPª„鑟£}Y&DÔH7’Ç1t„ c馨÷±;ãRÁϪë îm0í\Ÿñ¼ŽÌº‘Vm8 †³º¥I¦Õ;©3Ÿ˜¤ ¯^xã«N ;¸øÂÁ=æ.ÎhQÿ52¿H| ×йïmÜ?­Õ2ÌIšE-= 7«0ΠEÑä*Wš;hÎÐYÎô‰/Ö÷^ʉ€8iXÍyÍnÉ#Zó:lNóYTx¼&Sè[:ù¡U¾¡B4DppÌuµT± ûz.= ó*–´>Ö$*;Ø’9Í[µF2`,BaQ§`Sâïìf “Û…À52T²)Sì¤Ü”ç‚jƒÊü,PGº Gkò/ù–‚ÎçË44{¼%á,%вlL1å~èB…9¾'Ýuc’Oê¸?/Ø’¥¦39}Ì@‰¸Hõ”Ù¹ýf±0gƒ‚DÚüöp3mü$Ö(ârèô©¤¨@`ÔÞ&øJ0‘×€‘¾ê„ësùªSÛkÔféO±/ûB¼fï‰ä²ÆÈÂJ(ÚH0žûË¡›šC&ò°Ïe»éÆÙŠ¥šâøˆKàLû "žØåâ3Å­„°ÌÖ1,)Ê~0G»¸“×Äon$p…zd$kΡæÒÌg) 4  ¥H–Õ„R]Tu®'”Vîb¬r 4£„ÁÍ9êT]KÃÆÄè!é•¥`¤0ú*j>×êy®6X‹¹ˆã“Õ!UV»d¾ç;q æÓ"T‘Ý=È;4ý4ïŽQœf4yª8›U»S¿}u•bì—°”‚æé7—a¬D"ópˆ˜dQdlžD;ÄÙõî% &ál©ø Ë»­•|Ï}—%ߪ¾‚žâ¦pÈ—Wu,.\'=¾ÆS4ÎmÏeok´ÿò,!®ÈQr1Œ…ŸdË`'Ò>•µ`´ 8Ûl‹w—‘¨ŸÙmv>Ôï‹›»-IÝç~˜¹ 7î/<¡-Kv:æ\ì“iòòX¿]"/€ >ÿö¬¦‚sÔ4æZµS.PZÓþ†´¦H¦TãÅ2\,°hÿ¸@ðZ£l¸¾µõΆT aSy„ª¾¥/OûTk$ÆRàï¸zŽÅNL0š½&üâ&#…M׫’6Îo£Â¦vVÛì–›kæÊ3nz.õ8Ïî1¢4—Î% h ´°æÇ›X–A·zù¶î~µãV[숕Év§tíyÈoއù>Èf RaÏdÊ®>»J5a3•’"c* hÌ ä2ÒðK!ëµ$®ÝTš(ûèÞ“¸ä~ÅUk1šÞ…Ú_º* ?m­ç ²‹è©ž?X‘¾<Ð6+ ˆ×*AÐ~ìHýÕT-ÙÏ_.ðý‚×íe~þ™s!&~9¿Dàãxþ0ÁÅð’–*PŽ«ÏŠ…~ÛÝR7Üâñöª¼ALAõÚç!Õ¬à˜ïÎå p‰’ÇH#˜ ~ºŒÎ,ÕŒÀÉâBßÓ€Äȧ]\2òB¢$¢ñ^ 7šÄm€»_|µ(~¬bzž¤};¤™¸É@VTØz¸š¶8G‰hd´/Ç%Þ<‡e¾–fîð“ 5Õz|‡ 1, "% жP\Ð> –cÙÖJ*Üçù›0<#~^ÒýÞ߇{AwëÜ£yÜâ~1õ‰±ncøF¥J ,Äy+ñŠ/¬nMS˜eVв.E yÖ/xuxÅ,,ØËBP Ÿ¦Ës¿Ã±»XvÙ°l¯øX Oˆ=”åD U@Ùj‘ãa÷<Þ~H·äÕÙ½yÙlX›o¨—?`ŒåsÂŬQòxñšéÅ´l“ª¡KÛ;fe}$ …øacÛ0·,ÀðÊcY˜²r±bŸ>z¢µ¢ÈjoVi->d”뀲`ª!æÚU¨\)Å­‘~î\‹­šó'!Ôz†–W£Ö´~¾eþ}»ãPÑ+2GFqn–—ä)L{Þaä ; …àRÔAÍBIPˆ–`Ó¢úãpÜ÷”âT|÷½O#ºTõ…W„Ž÷‰<>úÖ¸½*éç ŠÚ¦R©³¿ï3€¼tE¹rĤ›¹_á³3ÊRº‹~Z X.Ù-_ÈžÖ€E*.£`¶å0‰Yþ&I)½é¯.„µh´•ºuZŽ ¾ˆ¾û9¸nYêé+–«z—£Ñ..¢W¦¬(ð+J”ñOWˆîV‹_/XèÁé|êÏWÿc¸Œendstream endobj 594 0 obj << /Filter /FlateDecode /Length 5070 >> stream xœÕ\[ÜÈu~Ÿ÷¼9@Ã0v°Í°îUv@ë{¬Ý¬¥Y¬ )œ™Ö =ÝCm³%íøçø)9§.ì:¼ŒVi H°X¨»Y¬:<×ï\8߯ª’­*ü/þ{½¿¨V·ß_0ÿë*þs½_}yyñ//´…_JW9¶º|sna+ËVF™Ò µºÜ_Ü®/ÿ ‹­$‹…-+%à†Ë›‹WE÷n]áwÃ*WÞ¯9\eÚÛf·«²k×ë ~QNZ[l×ÿyù︵ηVªtÚ¹´õÏ×)eYU¢xvµÞp L ÷ú,³Ú‡C}lÚ‡õF^:¥‹¼ê4Â'ø›âHnºÎ¿¤Û¬åE“‘I¤¬â¢Ô΋Ƞß\^üé–ÀÒÀóß]XË%°Rpx¹Ú_(^¹²Òý/»‹—Ÿ*àªanÿ—šKÏ«â·k Ïì\D -‡ÏÙçøœNÀ³ÆçÔ@<Õ x%JÆL¾õ«âECXqµ>=ð޲ìôøŸn\V¥5‚<ÕëbG’ I‘}yUÉlçOÞRkP$II]AE¶aÆ–VóÕ†‰R)o9WíM½œ¤´5Àÿ(©¯ˆÛiŽ Ö]i]+7Ñê5+~ÿ÷»ì‘ç9Ât¼´LæÔ-#L‡û‘§a2q†0 EI& ¢•ÂõïÅùëí®~\P¦ö‡s¼L_fâ©wû6È‘Iã—6$@ˆ2Öôd{Q+pƒ»³­Ê³lU»Ò8•ºŒx ¸Daɾ ^uŽ­:UZ¥)©3â­ ðNFñ:îÅ{]··í¡¹®w¿úöå·_-(eå lÇ€ö™ÌB Þü¨eäZ¦àR¾/È©:˧V¥LDHó©¼LR3¼¾¹^P4R—²Rc<Úô½ÍBáhhÙ™(¾ØÔû®Í}.^‡g¬*[üÞÃ3Å`éáÁƒ6z'Á-Ÿ–îŽш‡~\ ÅëC;pÿKIÀƒƒä…cÃr†ïJH[òÐuþæ·ãj—ßÉŽ³c¥°Õi‡9–Æjš¡iòßw¡Êæ+kg%V ¶?˜ñdïPÛÂOù¾ Gg%͇ Ýq™‚Xe°·=R‹XëE”œ—à³™*Ù Á꺅ªš½bsYJ½`G 8# Žæûž)DÎ]ÉÀê ©3Õ/ÉJ 4 Ñoëæ°½¹jnX`ÖîØD[ŠŽ>ÑùC{»=tK–$87ËT*ûÞÆB]%¹D¿ÔÞLø¸„iþ‚˜ +öuë³Â“X#Éè[&®P tù¾gÎIY•DPR×ÃÁ¡4"#‘¥°ÙˆLúåÓ‡†¸NcÝJ* )Vö.C¼’ áWÙ¨P¯Þ 1–¯˜.ží°ï{¼ËÔyßáÒ0—•µ‡¨ ÖàÞ~^KXýÑy­ 8¯99²vhHóãìóK@ÀkÜ1X…è*©ªÃ_†Œ¾¡kʲè.¯Z¿‹³o¾<êgß%ó°!•xJ±p³lµ(=À1á¬c ±Bšâ['}Ÿ*~ršw;¬œo*(sÂ+ÀÏqÍQäEcxjâ†o·w¸ŒùÚ=Y¶·+ìÁ'EÆ0ÖúAE¸""|G0éHfþaŠöMúŒ~ œÀTÑ%Yž«Âá¶ø¸+èÙý?æj×_øàW<´ûxР§XÓ±À®ïß”0õ"ÓíÀ½6Þ‘\×Ð) íJÇ“4_~ØÖï·S¡H˜’óT<[¦;áx z³Â>‰†þœæ¶=¢Ó¥“'›LìÞO@ ³T¹9&Í¢·±Ü.ÈP¦ÀY MÉÿ3öÄ<ýüxÅä9Œ™®çD»Þo£?eègq“ÁÐÖC»­»ýNt±ñÈ„¿ Œº›ŸŒm粓Ýc"“'g‘Ìô~ïâ1r°,±Wîºéw®[ƒs=ÆvvØÌ)ºØ·‡á0 (áp*!¼ê‘Z»Ä$òâÖö4HØ=v)>…éÚ}ŒG½dÄ>‚xÃ.Ýn$xŸS¨ÒìC+ ¥ßѸ¹¯SÈX$M+5ˆ¯ Ö2SüÑ[¼CIFg ±#FУ»SàûC.éîØsÂibS& ³e8êÁ½KŒ£õêòùÅå?¿* €•äV•×gp@ç@Ùü¶àY8ǰíA^6ä—0– ÄCUKýJå÷ +Ç‹Ç@Zø’_8n÷Ó®¢ÂIT—(}™Eº<µ”Ü@ÔL¦¢E!JšˆgûÀÃA9Þ…_1²‘w˜†õy߯í7ÀËðÑúa©Ahʳ„º?SBˆC(ß´WýÑì½ÁiŠŽš™Ãïï~kзc³OßÌÀø Áb]\ërB‰ÎD"„,çxÜm㣪¡_ëˆÇ8 ˆC’™t¤CèÑÆãÎßìn"BÇ`ÝçIAð].íôÚ“1ê²N`æ&½¿V)ºáìp~K0lÝu´·ƒ'®w;ü‚•wªˆóÀÅ+葨åè»õönCD‰X“/\I“º,×HáãÅ·C2bÄæÍTº´F¯²7"ƹ7ÄgÝW8žš b*ŽSŽŽ}S¹’Uéµ ÀåÈ¥ai«ûDS;‰R`Ö‰ÍÇT"fÙHÏÜA/áyØ ;‹pÕT|¬mV|…¨QXá>›:À w±Úä+/q%F0 ®Pà8,÷›“ƒB’4ÊéYógð™Òx#¤¾ÊÿêcA¦‚>¾H?k…!õLHëdz:¢Äǰ :÷µèØüGôcDïwÕfúÍ!®>Í{ùÍÌÞԻǮéÒÓ›à5OD´Oå÷ˆ4áº!ܼšbØ58¢ô™ ­&Æqú(ïC8æÃñ™G‚âiáÚmÜŠƒ§ó©x€ÐàÝP6€“éež¸EŽ„–Ó‡¡Ù¬Ë pëU£©óÅ¢À#^О‡õÌÜKsfB*Ë1Ãn㞎ù= À«¿0}®Á¢Q¢æwg–g í¤7‰ ØäioÄÔŒ/ ¤r#zFCVMÑ”ÓR²LÙ]wì¦hà¬ä8©h3‡ý×9FÓtºKüz¨ø³¤7§êp—IÉÇ|SšŽ¦¾ ù¦n7BÌŒø[ô¬—œNQãxîoÁæV>£’E?¼Í5±ž*¨§Ri< Pí(¡L @Œª>gVNµ(¹Ã2vUr©æ;ÁˆºäDÕÔxÐòUý·<*§)|m@8Ÿ, $5òì¾±§}üB9·'ƒÔгO©Ó°,M<¹³þÁrôŽ(/´¥ß ’”Wôêé\ñ8Y†Âw|ŒHÕéi²Ó+¯aFwôEć˜Ä„ƒq?À‹A²ð®E#V’Æ·ä[óqɰ"b]µ¸nއv7‰’¤Õ0ùîÃm.Q­ó §|.¤/ôÝ6ïûœ˜¦!ñ'9E,Îq²¾f;ãß" _ÿ¢ñ¹÷óFE?ßYOu‡ëØâ¾"£(€5/Æoà¤ÌÕŸ §îô°îç ®NÑxüæð¸ÚÓÅC§Æô…/GÔ»ú°ï—qšs<92LÕÀ¦IФ?;Ô·“:‹¯G(Ñ+-:ð^ìq`­Ø5ßdøÉ¨}—ÞOîr¢¦Yˆ„·éÍéìαÝ×Gpß}* ~'B8|ÁsêÚ·a¤`Šéb.7Ìu Õ¼QÁ Û„ SÃL±ßj CY„@<%JÓ P€u}™öͨŒ’³tîeô'ÍLòR ÕÓ»ò×àH^÷­`J® ›Þ3xô‰|cª¸¥]¥È«€P±`Âä üÊ(ö?u‘ƒ•Êÿ®@ÚGJ__iqÃùpÔ%1B¢ÒQ`ô–Z¤ª‡$_o¹8æcOšazÔ¥€ÊS_Ò»Õ—! oø¢–·ÈJ ¼˜‡lÊzS«Ó C >ÆŽÆZüj%Vø^OJmæTç>܆çùê*ž­ÌL;põã ¼JZ>S2€dBʤ„ó%ÐU%XÒ>ZDŒp›æÄÀÁøÊ°ràì}îY‹b%ΦۅbtÜ ‰÷Ðì(°ÉÃ…¸™é)È”–Å77' zì=¹OQrˆ¨< &Bí±øž•"Ù°ªòÍ©¼í©÷5.7jF¦ ÜòØÌ:û}ÓîÚÛ¦ó¹“ý¤ZŸ—Æ3nûʽ‰ÙŽÈû¤YåIr¹‹lFìþÔ_! ÈÄ ÙoGª ÍnnœŒdd#Ëú¶ƒœXwC”xRú6„*ö¤ Ô±“’÷ΓS }ðH–qÄ*ë—äˆ]ÿ:ŒÄV­À×K!Q …áñY¨Aqß“ É`=jòû{ÐÀÞÄ{xðFø3¸Yš ÓòG['.—j °·“ S…*’œÚ×{>ŒKHbliý¡f®šÅ=<=°Nq=HcfÓ3…]ö>h¿,ñeì0búõöÃÛµòãÒ³krZÁ” »ÞÍÅŽ¼¨5 (÷ ë`›“Y>ˆ$I÷Àhš„öÖÊ¥—·V.|£eäp DÃɾ羺õ†ÞrÒ¯ùÙËzt¾X~ ËXñeöð¯ÌLe£Xn¾ëëœÿgIGºñ¾j8uJ×í‰+£‚ç*¾AÞ҇¯/‚®ØÒà¬cJ'Î,{æ’-!~ç'¸\5()uÇÜ$‰ËÜ5u$ÃÒ"ñTC¡G¿ÁgŒ¦O@Õ+Ãû1Ÿ4½ø¨B]u(M¸‹ùá =¹@ö&,á°wzÌG¦‰"n¡²» 4£È&Š(¾0¶NŸ‘ª—1!Ǭg˜¨ ã´¦1$̉ €÷¾ñãI;Hà× B¾Ÿ¦]ä™Us@Œ¹Röc.Çö9ÏÓÉrå¿ ¡žÛÞ;’¼sH&”퓉$íA³hvãýBèŒÁ”Ÿ55CŽoRÊü ¨ýÔõ,ðåp.Ð0ž^õ±*„EŒã×h‰LóÈÓa‡÷}r?ªÂz. ,ÅôÔ©{žp_Æ[â¸ÂÑ7šâûäÔ#^epvn,·×—úîÆó_½’ûèepl°bƒè5з~¢ƒ(F}z:¸˜Ëtšã/Nû¤²Š‡b8ÂsèA&}˃–¶ñ«—ã„c úUâ$äc‚}OÄ@ò†!y/éX†IQìô ÝO ”Ñ0½?® ô˜F¥ žOÙ0,÷øòž(F:OðЙ3v ÿR\1€IÒÆ¿ðqÎ;ˆB.‘ýÊàŽ˜$¸m# LàÒ W¥²à(½ú½ø·õߎC7õ#~UÅ¿nN?¸k®ï^Û·-þÓÕ»==€8h‹½ÜùËt¨X*³üÿ Ø†ñ ?}½†å)R«§óã}îÙCBª~g& )¯3áX]lÒ:QÈ×럇«“ù9̓ÿ;gq3õ¬M×~·ÝÞÿe[¦üõúgxùx=Þ îèÄéÿ’Z|^/Ù?]üºJ endstream endobj 595 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5142 >> stream xœ­X XW¶®¶é®Rq£lÑjPq_0š¸$&&*nQTTÔ4¨,²)Èæ ²ud—U6‘¥h· 5f¢q_f&j4‰ŽŽ!q¢£§ð2oæ 1Ë{“÷½÷ÕTWõ½çœÿüÿ®Œ1ëÁÈd²~Î.Kƒ=ƒ&½1þƒà€ Ò­¢­LÜC"²öEv»«Ìå`nöÉàAœ>€Ú~¸¨?#—ÉÜ7ÍÞâçã»Õî GÇÉãÇÓßÓí¼¢ì>˜`·Ðs½pD¨¿Ÿgл…\&Ø}AoúÙ ²óÚèëàmìm·lãJ»åns—ºÙÍ[ºx¹«Ûè ?ßÔ«ÿ†™ü~ÐÁ³7Ï ·u~Ø‚ðÏE‘^Që]¶mظØÛÕÇw©ŸÛ2ÿåßMzcò”7g<<~‚À0C™ÅÌ0Æ•Î,a7f3ŠYÎŒfV0cwf%ó3ŽYÅÌfV3s˜ Œ3—qb™yÌ$f>³€™Ì,d¦0o2ÎÌ[Œ ó!s™±`xf £b,[æK&éËô“õf¦ÐŒ2fLóT¶QÖÚc^Óò¡òd³)fRŒPä)Ú•o)sÙ7ÙcÜRîëžkzÞí5·×­Þ޽÷›Û›ï6ÿ±Ï‡}'õ-ï· _iÿeýË,pÕ¢¯…‰÷á÷ ´xF5XõK•å~«)V ¬¬ ±ï¿äKt ˜ÐÑ$®‹µ·XšÆ±$»½o|‘nw(Ø„€.1>Фt<·Žßºàää$.J£Ügø ª ®A™Ž3±a°‚sR³À`HkEKk,Qž%ŽŠñe­¡  ~„ GÎc¢ŠìTbOlRômWÐ¥+M‡L!F ”£ ס̊ÏÛ,MNXÀ>òú˜ô˜íâ;ËOÐc%ÿÌܥаŸgÀ5¹ì¤aË Wa?½ºöà„~, ™›­ç–„¾'Ê_>BÃUŸ–ÂýƒËL2tÀ~ø5–·‡¡‹ M»DúdáðÊý·á÷`êM2E蘡yÖÑf¯W*qú­{ß©É4üJ5wÃlÒS £± (Ÿ”Ì\¥ÞOn©œýfV Îøô fºï¿z¼¡eêÅAFY šc.šËÅJ V¡íÄÈ$2uÊ0bI¬ŒÇI8õ›ÐB æÙªi@8¢"–€=oƒ?× ¥GŠLpê7ïõwð‚§ebLè¡áa’}ŽöbJ³¼=#U… );bcA«âÈ8¢rŸ ar‘ÛYßÿ“€|ŸíØ©s7g‡€}<«ÉC\äW†r5±e&Ìšív|~ùû`Cv‘ Äx/Mס²Ø{©iÉ :EÎ\oñ”V1Í­øþâWªBaÂ=bëº2½p‚åÛÈû¯*Ø‘ù\ÆV„ù 8òü+¡&æ–ÄaöÊEMé±3X~àñƒ­‡l¿8ãJ¬izåëæÐ‚Šm´šÃ‘KÕlÄû* 'ã°q:¦wWpº—á(ZñMj28E¤çwß5¾kçoš#¶áå7pÙï {•Wñj *šaÙ9­QèÓ§O³âíÄ÷DVÕâ¾ßã?'Ï™r%‰Lû%2oШªà”Ó¸¦àB–eÌÀÉØSØ©ßQœ—q[E…±°I «oeŒ8¨‡TQ-k¸ˆÛ/ÊÅѨVÁñ-ƈ"¯:¿ôåÙ‹rçÀqî‹{P‚òô¹!!%:S*X ¤–©¿f‹!cG‚âvIÉÚøÄäàïtàÉ –C±XM¢º2јq!àɽëá+ Ú‚…„½ú”mÀ…CòV5aÙHˆÏÏ0@Á^a_ñßO lNâ€\´‘ò½u–„9“ha² €Ã}hhmÅ‹íq›ÊĆêìÀˆ«ÁZƒö,„Cðúˆè€XOX £ò\®m8úG@sxRxùHëo"ÿÇïÃà…/ó[›Ôuþ§CSË…ì5jXšÎæÎŽcMèañ#Ê<›±O³ß&öÂþªVOwvA`PÀb¸P&`7‘áèæÉêGyŒ•Ìm¢ r‹Ô(íoo½zýð©ë´:òà GLXÔ 2k¼‰ÖòöÛ–&{±í™‰ ¢ûÐË‚ œæ)"7±è×÷% ²U†çPO¯çPEaaGð&9òËû´£Œ›%ÔiZ^£Åe-².ñpH-𱼑8ý¹•ì{ë>œ9+©â¤À[ãw,_õú§±ìÈ AÏ˯Ã-“2CÙWœÚÝ1Ãh ¢•¥‰˜Qô›™XÝHð¤×Hð¡[F³Ž6b¦aë ¡™^¡^¢ÐKZ™‚pqŒI&žTÒ[:ð‚7iÁÙÊÒÄx š«&=I6Qaâ¤I¹U76C,-ôkϲ8§Ã"+ÒX6iÈÚ‹ÓñŸÖùi™g¡›Öºh¯ê\ HMóèÑÛb³>¦.)V=”ì!,6(N›”¡:WºÆpº‰3lê®ÝÑiq© Ù¡˜cýYB,–žÚª›GŸò¤ßt†Åñ2¢ÒâKÁ&‡"/sï3,²~F ²Â¤mJ!5=£ˆÊÄ ëŒÂÔŒO¥Ýõz—6ëæJqˆÑ¢ŠVÇKªÍ±¡TU;ç(€2Ø|NìÝH¯Ä©žµQ•ÕU% ÅñEÛrcV9w±iãtõz–¼A&DäŽÈE\úóÇ͇÷ªù•Þ ù»Ð¢,É„R5qÇžªñS£üW{þ™šïwK˜ÜüùO¬g-NyÝÒ´™]I»cóH)vXc®Û““•ylL¬.fBˆÁFÖB¹~_,§g;z‘« ¼ó;¡º‰}ò-n$µ†ä´DH²Ñ®†0AÃÖRq¯†¿uÉ«„ Ú+/(6®Yšæ²d&jC›œ=Y™_Iû˜¨  Kû(.¡XIŒÓéÔSFÂ>Šæ—å „åô Ns…EG²”ÊãȘññÓ€¾óÐPE¸_G¿)2|w€!#Sý('¶ O²ÜpÒn5´ÒgºúHäZ6qy ¥oÌ‘tÉ®K—†Œ¿O†ü-WXéåÏáqöuiú{3[X\X\°·eÅIm#U#áÙt jDuc, õðXëóÀûøÎRN’¥áÇœ(j¶Åþ@øê®L5Fñ “¬eòîVñÓ%½l8ÑÉÉ úd©Uv“X-µJ(Í@0m×ÎV9Ç¢K‡CbÌΠÄ›ðuþNs! b@›nH©Î…ÎZî·æ°çg·?¹~x¯€~¢gz^Zæ9°é+&S´ª—5Pß1{ÉE_ ¥\-Än×ëc…øÈÍó'Rå£ô=îÈ™´B«Œ3ºDÐëtzurrôá<ë¶U”4ì9v›°éˉÓ\jKX2øÑD‰“jË P4;ô%GŸÒu^dwS#ñcÃ!âÂI|Çk/ˆ£=N‰Ü‚ì‚Âôú-IQº}p[5Ê2Ã_:ÍÀ—f`+»tš”¦ORN<™ÂbEÇóÝÚôØB°)„ôìÝ9XÝÞÃ:E«²Òðêèõ*iéÅd¨{SÏ%N—‹+qµÊS¹Ë>ÌXç¨ÄjQ™•H·)Ž…Hü—RKf)š•éJ£¸ûJRÓÁÆiéúñ6Y°W{+»iYìEá$1³”Öt©ùŠ_¿"f‘åM¯‰¬cÊ?ªr¢i:b2±#Ã~x mN+6R»³ü¬çf|凞+£}lI@þ<5{¥ êšSgÒË  G?’šJ¶˜êºUá»F ÉDŽx¬ø?‹a´žù; a»>9:AزpA¸]ÈA¶§Ôø‰’Êh:TTÇßX{LíÙì¶g ýÐñ-bAìž8âX{äY¡z"Ú¨HœÒДr¨¤¾¸ö@©‰v|ú*‰‰21 íýë;­åB´—·—áCúGJ†‘ćø ±ÇÍô²£ŽÀG öy*¥¶Ê)Äo™f&µžÎ5O{\Kü5zL½Ótñðå«g¨;úLSµîà’\)¹-÷nöÀP£ Oï!'gˆÿT5ù4Ïq$ò„Þ×\'/~Ãa½@¥‰ô~Â>=_`Ì1èuéŽظmέ¯ÚWZŸX¢M¦ÓÎå7`k—_ÄcRL+ÄX2ãî’éBǸ.úSþ’þòñ]ß~x÷‰šØ[.€©d¢@ÔØŠj%N„éóº>Y[‹o<¸Q‹Ûjƒë,jn/}†>Z/$® †Ea׃„Öøë„1¢m½ñ*|Â=z‡¸ Í3%ïÛ­nO;ËûîòÄÞl#ÔÆ”n©ö£î|zyµøq|‹ï‰ÛúRÛsïç©I­8AµL?…¼-žX½•85uº+-½lZ÷˜ iù‡[P© ÜS+¾k-M.âX–?MÞ•òpæµùà÷Ã9 ½¼õ*ñª&¿š^þ›6xÕ44Õ 4ßÔi¿gB÷Ftj”}~]ï7ß—‹gp þærŸÈ*ÈëQ¥ÉW!k1žikûf ±*RÃA_Ü= kç`Ÿ¬4«CJVC xØ{“ˆl~ýš¼êîûžn}–«+ ß] +9Mø;Äl2QWãˆ]‚¾R#^®]ÃAJJV¶““µ§¢âÓµ·£¥yÍñü³gÒ|Ð×[’ƒoiý…Zå±’3‰U«øçHe‰¥<›…²Ì»8¸[ß’±%0P§0‘±â·7YúAæÔ,Ò㕟ðjÁþ&\ MIÈ­øñ*¥ÜíÚ”©I©Ú<ò6X£Å¹Ù9Y—$§±EÞ°Ü`«dsË“w%%$Q·A’ QÃòú_‚“Ÿe(£e±åK*áR7@±¹ù{J‹°q´ægeì‚dÄkc#¨×ë|£ü¼ô†¶ò ¹±šl: ‰b·5zTÞ~¡ÝŠjÿVÝL*íÁÔ†I*c+©•'W%¥è!ŒëÀ’a#–^dvúT§ý†-›ÄjN{àZt¹C§o AÈBiJʾ´"ÃÞ”"Év!‘ª±ÔŸ š©ƒxˆ¶f»š¥3ê¯zñ Å`%\énµêNW7½v óQ×ñ…CW‹?Øp‚˜X3Ï»°ýî¼üE0Ü]Â=¸ÎšÃ¿ã„æ"Ên8{°4læot|%üü\¤ˆï å£ô×J*‹g™ÿ¨‹µÿ7aäU YŒ/TöûyúzW׬ª> `œå¯îu ­Iªé\„ w¢B.FБkˆx‹­Ò¿ðþ""—ÎÔ"5ÅÊК޸‡ë(%j ‹+ Šî·±žC›“ìÚ +”‹ô§ž&9<ÞuGì®ø™°ƒÆ0QI!×å_]lïl°—ÝbMc[aÚQVS_r´9 $ Mh<ÚšV܃ófÏ\1ÛK£&$"6Žš(›mâ4¶k͘ÆC( Å;8°¹Þ‚ê$^Ýh{п(ý­˜ƒóTðqÈ#2±òÛÊ?~_r7fŸ%jb6ÝuƪCÛ÷U(>Z[·&ChnºéÀݧÀÀ¤µþ^ê-~[tu1ú}’.!â!‰Û–NÖq%šÁ0u`O˜ð©ujSV~ TsMAU^?Ë3(Èsâã娧ù×Çê—é¥ê/`JãX–ä·+-McPÙf#¾ÏVèÓB¢t°#F m‹> stream xœ­[KwÛF²ÞkåYxu7ZÍiÞ#Bèw·Ï™…-ÙqËq$y&wœYÀ$-3¦ Yãü廿ë[UÝ»)PJ"' @¿»ê«¯þ÷~Yðýÿg—{åþÅÞ¿÷8½Ýf—ûÏÎ÷O7…/=ß?ÿ¸ºð}îTá¬ß·Ú^êýó˽÷ì¤úßÉ´,JS*¡[­“©”²(µ`gø ¥å¥gÕê²^Óo®¬ðì 4óN²ãeó9v*]Öi60•V’}šW”Šv|¿¬ …Åp -6ï´$í¸3Ž54•€©4;Y†!¥QY‡*ë±êW#ÙËÿK›­B3#Œö_ç¯à¨ŒKJJ[pv>ßcRNÎÝ›*Å÷§RÎ|ý~T [*Tz ÃJv‚p*žýÂDYÚ_&Ådj„†7š=š„)m6¥ç…òÆÇ)ÛëæËb¹ZUëÙ'ß^ q…64~ÏžL¦ÚXØ(gOÃåh¯œ‹Óˆ´#œšSBÄiNÇÆæ¼Ð»ü*=ßpì ?Wý†5û˜´©|­èØ»OxÐ^8«9[Ä÷Ú²^†BeW7ËôÅEĨþä0k¦ Ýú,¹[Ö-ëTÐÚ°ï›§ h³ªüg[L¸tx™éo.Ó«)w®Ðp†S. ­¼çv”ÈF}yuÝU°˜u…B‰Š§4;ÃWm·œµ“1!ä®´ˆƒpS¶Ì¤ 0ÆÄ‹bBŒ^¦€%)ß_æ/Lý2I2mùcíDA x~¾÷Ó^Yh‰f7¬ä‚ÛÊ€ƒu¥Ú·%œ†¨2¯—O )8lA<]9L•FÖ ^â/¼Pø¥ð§k·ž¹dEw œ]Š2¢Î'Ka©°tœ>LH”å~§D>NzŒ€W¨È¼$EÖ¦ôŽ=ú1ÈUOå„'袞€yGBer¾H1wú• äÆB D„í6k8Îä²ûþHvã 7õžâ+;ªòn zYWPlì ;_^ûТçȼ¼­/®QÂÀa xìû~Æ pÑì‡õ®Q—’/$pÕNFæŠöÝd*¬†A‚Ž™ié~£¯ð±8› E€¶@µÓnã ­5ïhÐÙ‰æ¸>X òWxRO4ʇÑð&ö U`‰°Y#¼•ЍZÏ7?NCgP†EÝ[vÑL4œ gÛ†KÅ©àÃY×\ϺëfÓgE„àpV²_?è¾p¨€&öô¹ç)­},½¿Þ& ‚×`ʾ¶[Â3ýûÄ¡ì¹%"«ê‚–7`èJ߃%˜Ä®—ÇA?‡ ¾G?˜áÒv‚Û‘Š4 ž¡Ÿ´ÙÕæëˆíg/ã/KÔ‘‘.áË:v‘á€f‹Gp € jË£g)0,”}¥#*ùÖ1´ËªÎpö¦­`’›ð$u®ÇHÚ–a ÛÍíW*ð·,)­˜£)Î6H¯·ÈÝùóäÇQÕôÃç-’]I–˜X€2ŠÀì( =ü€G~Ö]Ï—»¬<À¡Iá @]Øí»ˆn3—¹Û|•0×nÛ`ÿÞôŽƒá¡sÑ· í±€kÞŽFæìëØlç_£ÛÎ{Y­V‡G§À š`彈¡J8ldD xƒ î$«®“E¯ðkI{<‰Àó$ÏÝÏ]¡Ñ÷ìÑQ”Ãû6JI‡½ï–JTÕUñì%·ŒùÏHîhÀ úkòù55]»oÛç[з =µwë~Ÿ›F€›CŸ›žAåÛŒ[|¡s未c "‹÷$.xÚr v[0;r5¨S l³ÍX3Á+ÏÙ2{ßF@82ÊÝËBø*’+ßrÈÁÚúÌœœ÷ü¯Ü/ºOúÅѪDÇ!6{ÿšòv¹C[ɺ»è†)¸á¶Óèݾ½áºá‰ngi¹JjûXIã¾ wÒ"àÖ4Øërîxv,98œJ˜Œç±_‹Y;¯ T¦¢DWF?„D`ô؃†ë*!œKú°å9djŽÑ( ýà§ñÙ÷!³p}ó¤C“IÛ J… _ì u.É>=O"\Qõ†@OE’a‚3˜ãëšÑð~i`Ž›ŒZä˜P“6¤Ø«ƒ~y‚½®0ú< šn´Ýú2 t9<<:}ú¦8‰Qo,»jê_³®¨›‹Ã«j†Ûø[{5{PFT¡;ËÓô*E¹E¾­R×i(e•r‰ºù/Xª…ñN€þìR0.¯ë£ñïó’’ó4ø=ÛbŒÃ—Q€ç…à¥O´ÏjŒ5?Uìnªf£R ˜e(JøˆÑü¦ ûD_4}9»tµ[f^ýêuˆ¯œ£À—îiqyÔØŒÀôS¡žÓðR„øA˜+}6ô[LÏÉ ÂË-)ÒÁA™.‡e"΂qd4CLZÂ<£’Æ/FtG?Ô´¼ÇH¦ö¬n»Œ²„÷‰üF²ïl ¢GÉíøïEÿææ¦h«®Uk’ö˜ ©\ÁµÎ¦ .Œ¥/¹„¿t°Þ|³ÊÁ òÎW/! Aˆ*¼&l~ô&ëyçCdÁ9¦®ÆgH‰  šƒç¡êy|5Nÿ¹ÈÇ/Â%qÌzÙFþ _€GÞdÜÌu}'¼0åPe”¦×՜ز"µà¶Øå˜J¤[‹JztHÍÜS£IÓîÌËe50¿ÃCÆ$3Æ$Jÿú[Ⱥ„ýjàJ¾€ƒJY’¥=”£˜âAR.¨Ô(¡—rŠ‚”ó(åyœ¶ ÆéÀ§˜|•L81a„M zËà4!’bZ{W¹ÇY¹ŸÝ,ª/£…jà¼[+~´-ë!ÿ ¤:[ç×ðׂշcsá‰VtôîŠÅ„ ^â,nR«ö(ÊËÅÚÃsúüŸ.®´ô¸œÐ—<·QY!ãVP ÕÔÀ1nÖ˜ZT:ŽYëxÆ6ä¾h-Žýç„ÛxY7™7öù ¢?æîú N/Q„{]:r@Ë3Os"ÊPÖã)öU´¨æ}W[òÓOâþ\"K,þ4ñm3ðÐQœ>QdS²ùr}«P‚È.ñUÅéB»pÆY)Zu¥¨2†ÉižÇÖÐó{\0XNð·×¡§w£³Í$ÞÔzÈ` ÿcbm¨Jl>·Ÿ0ÎE_€&’0©C÷½k–®»Å°§yoµÃösöº£¤0ø-·²p^ÊÒ¦ÿ>!z¹X¯«ðe“›¸Æ¥Tãå… >H)@±âwÖ%„¼»fÜ”kÏV¤×?÷YyÛoC°T—b“ˆÊØœ4#s8óÀ˜Ã1c‰”AƒŸ›à³zýqÑ,Ö³E{x|v4ôGÐ;|ÛԳłìð!\SGB+ ý Ð!€ˆlBÅ÷#V¿vã^ÕŠvõ R&OÀ½³b`“An—ˆ1^€a à‡CÙGD4‹ï]#w¡V\f Ê)¼ µÂ‹fWá•fxW\n´”hgqšq¢ßúÝÿráÁ ËÙ;#rpdEùí#rÒuöûþJaÿDDd„Žÿ!Q9 “N²ˆ¡&ÒЗ-¦–3dY§ ÍŸ´dí_Q¤4¤2GMÝæÊØÄ– ‡§Ïú^²®¡˜9ÝU—°eîKÜLî×µOîú×¢²d 4 €8ä1ÿCXç„èÁ$#Ä¥Ùžpp±}}¹ Ö£=ŸÇ/€iÇ®jº¾¾RíÊšÌZ srk†m<®Ù§õP0=†ôÐø=Vl‚³L¨?š¡¬(,Ÿ{ÿX”ß$4£Ð¼j±(ê@nÅf8cýb3kŒm6Á†.ü´÷ÿ5wÊüendstream endobj 597 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5193 >> stream xœXiXSW·>1䜣RªàÑDÛĶ­óX¥µŠg™UežgÈœ’!€„9 " âDÀYkP[©µöûZÚ>w¾Í÷<÷DûÜûý¸¿î?ç°×^k½ë}ß s™€±X,×½qIQ‹ýS’%;^@ÏbÑïL ßedûsLÁ¡ù®peW—šw¦{¹ÓÔTxìm˜=sa±Öì¶~èüÑÂ…‹¼SRóÒãbb3g¯X¶|ÕìȼÙ?™í•“<{ó!;*1%5)*9sW\RdVÆì×qgûGÅd%JÿÏßýïiÿ¿ó1 [µ1ùóïÔ´ôÍ™YÙ9‡r#óï<²+*zOL¬ÜÞ„ÀĤeËÅ+V®Zýñì5k=?ûð£ðýK0ì}l7ö¶›ƒùaþX6Û‹bAX0‚}Ž…bÞXæƒ-Á6aK±ÍØl9¶Û†­Ä¶c«1_ìcl'¶ ›Š¹cû1lFaÓ± ãb:†Ã0ôõ+èWwˆI—3›"wÎÙGg&äEæod˜ÄÜ&€Ý.PHèk‹Jªô}z®Çïm¼²b&Xrh¡ŽdŠ¢pÐ+¬æaÅlh¤RhÆò…ˆÞy1ºC÷WAä.}‰¦ ¤)ÔÈÐBô.Âlõ:]ß-HÝ_‘¿ô_»Çgò•ôÑt³˜z³Ç0:˜RÂ,N6®ÎÉr€ˆââ°ªÐÒ}À¬MܹwÓΨ¥M ÑAÈCïÀpÈù­ÿë+ü¼£ŸûlMZ x¾ À~°kïÙÄt!á¶„s/déæ·%ØRª·;o’`’¢v»âþpf=ŸáQ^Œ’(¨9Š{éeeº$\NxäÆwÔ)N΂“‚.p.œ²é‡{#ÄÚ˜+Ý+䉳¾”²Ý¤Ø'%@\±GMzœ‚KèVªåRGÿƒ³ÐD¾Gšæå½Ï¿£…ï,ßUzªƒUÿŠFØpœþŒ:Иd> Hä¾±Ñ\4õÖŠ—ƒÏô Óï€<ѦRåD UeÒö’ôKB®ç|ŽžQ £@ªPfåÅËA"H-Ë©Nhɾn“pÒ÷¿½Ö¿ïŸ3^kg=aO‡*¾Õ ªÐ‘0‹h;yÎQbÖ(,|›Øª)d½­Êq,Ûw(%Ë;Tð3¡1dÅHò˜T+ÀZÙ`E‘Ыվr¦œ_0#x¥š»XÿeÓPDAq&!_'”xjI4¦ãú£Ñ¡'á;8$µvIå ²/„pƹø}Ujð&Ç7ºò ×Ǫ‰ FI…î> “á\â]¥Äú ˆ§¨•ÙéÕuîç¯AÏ»3˜"ß·©ø.GŽkò5…j  ƒ¼8³4³8ëüƒ½Ú.Œ?žS•y )!›c»F3ù"´¬7•˜Œ6Á΂¬>úè(›1œ (Ž£´qÑ ËÅ¿)°È Œš/ ´ïI…žNÖ“Uë‹Ä5Ú?Hz>‹ÆOs*ph¦ïrÆCj”Ë×ýMÞEÒ í=’ÞCîYËï¿îÖ=ÓÁjzs ‘ RR00SZúô †Ä÷‰âäÛœzUª/f@vš‘´ŒˆjKµ8u‡X‚8è}4íÁ*ȾÔe?Ý.ØAÂù´ð T*™B.ÌIS$rMàS8ºœ}ðè™}Afæåv¥3awgÂ+ûfxäŽ;S–åâO5åBã{$ú‘§è\Ú‹÷‚Šüî}äøÎÿ3ówçp2¹WÑu¸ñÏòª'&ÒÙ¨/ar$:Xô"¸– ßp0yð›“/çu©Ú´×HxÏ¿©hNoKêØ_ BÁ¾¼¨¸}‘©>À“Dü{«!ñËÃ!ˆä£ÇpeyÜÞy\õ)å«È7òø~<ä`ýÁ0ú5'ßf(}¨º¥«¶\‘|”_™fUT1Úxôh]GDãnßàÔi‚´ù1ºOIÏ„oÐm\ë¥û8_¹ð4Ê-à! oC7â:ÖtÃs¬ßF¡²Ø•Œ™{oVê?#z*å՛ή30¢÷€„Û‰Fm•®<_”õÖ_ië¸ n“’®ÔæÃ}«‹™vUáp—Õd25ÁY×öÍY°'9½!óÍX]†×`ü‰bËqІ›l:žæR'ÖÙ@bÌ1e•rÓÊRŠÓ¹d£ÏR߯¨Ûñ‚´Œì™¼°€—¥–3¤e‘ŸÌñN‹ÑdÐpÄ«‡Oð»Z«Ú@¸¶¯gc¢J¸† 3¨öcÇ›J; «µÐ ºm­MǶãàhÖÔIÚH¤ŸIµ««ÏòÇcÒ¿ Gg…s_ÙÖ}FP _PCŽãý­Â¤J~u¬å8L¤Äîßyóÿ 7N¿Àº?w1èÙ¨@³Æ¤ûŠ„áÄ_‘<÷ÊØ½Ÿ/c¬,=¯ˆ—êd¨"½Q(²·4ÿ `<ÐzkòýULƒm„_q¾EËü½š8ÙßRÕÍø÷†˜MFh}”r óR,áôávz´“5: ¥LׯæWSQÆœ²äv K¸Ð£áÂ9ð3è•v¦5Gõ¬i\Ât¥9_ö?U*¼ÔLc[tˬN7J\2@%ºÊ«ññpú9å°”v郇fŠÉåïO‹U/dè¶2±GÝ~<2ÃãËÊéPa÷«ÌÎC Q`DK÷rÄÌ,[ V}àÕ¿¶dbB»Q©ØRHz| ]Æ–Q©™™)ɵYŽ–ÚÚææÌÚd ™s=É‚&ƨ…TSžER+8ºôÁ³a-b‘õ¸®çŒ_ÅÕh=§¯ƒ¬š*HÈ ã…¸nµR±Æ9±§ˆ7mYbg}3Â6M‡Rž£?d”Yt<èKÀÙhw‘ƨ1òJF5ÐJ¥ZÆÏÃdaL¬>t-†AÜæ&8º4UÞÐ2òvPBœÐY €(•R‰”YܸôZ¢ÀpD–¬ôó’œm-×›õN¿m–† Ƴ ]Pa¡üµñè£i;ëÏQøï>öX “Ĺø°Æ–c˜C¢:lQG “RÃw$zVŸz:¯MÕ ®“ð>¡¿_VöÔDV£Ž\≺L¡ßH¢›Úøµ'\Yß9Á¯?iîÃ$¬ Y*¾6¿éë#ìšéPnÃ}ò2Ý%§//0„ˆ¢å> ×–½UϨd[™„YÒ] D²³€¹l5S:îëùôu~³™§Ûð½È¢ë&áqJËL¦†ºÞªã€ì«eÀ™Dhýò'ÅdÚˆ ©Ô2kJ1ÑÒÛvô4 /M]+@1„vZå§f^J±i†„b¹ œàÁHN:re½_Hš_ ?ïr\S 8R¥kw™4ˆÙHƒœ©õÍFÚh… P ¡ Jö§¼HÇÜYõ¯`ù+64­¥ö‚C¢è¿€(D4‘ÙÇŽ!òt@gÄùŒApôVu¼ØIß"á¡eð=4ƒ_˜FœbD& EEÌ^½:â¿àw Nx.x ¥±)Œ`Æ=gÃIÓa³ _„Ý’þ•È7 ­Ë8 4lõ&F¸jÌ⣈Z_¡d³ŠÂ}·o±o#uë_Âm¸ó¨GtÝüé9›NïRÒâh?¹jŸŽ‡òq¸úüðâÄ#ð˜÷Û'Ãì Î:ÍOˆ'}j4Üîo» Èo/ù¯Y·éš´ùqdôL'Ö%ôOWÜáWO¢î1 ÃgÔ¨ÓÖ)¯gv€ÍäÇ;6¦ä˜ê£ùŒY0 [)–dÇöfÝ}ô¤±çŒàtOà ¸ Dý)­Ùµ¹ÖƒÕÌÞ9ÝÐyaæ7¾—„FbøI)ŒÙm+àv?8Õv·úîˆǦ§ ’˜G[2ÞØD8ÿý£µ§¯žáñ‚Ndö­¹´_ŽnûqvÀvô)áñû0ütG[oPH…C|åüG†¤“¾ü„é»l¸~JÁ¼ õÆÒ®¸J“8G©fö…#Rè´@´¹p·×º‘©6‰ŸPŸeÎdŠD–ÕŸñèÙ½¦óç§NÕ\À½Üþ°s}þuhRÍkü8h—~Vû Xô#›öó¢®ðËý<aë÷  ™`UÓÊÞЮˆ × §<ÿ…qð”÷S41"Gå+h‚ ŸÁå$ŠD'¨ïÎz£©h‘]›V¾„KÏ—:ì6AMe«™7hd"æÛéûX´“Æq|š_•ßs»ºü’ž“p6þ‚s‡±cï¿®‹cÌÍá~éѦ0å˽fx Ã^š ~»ÐÞîÏ|†æ!Ö'[—m¯Nþk)ßãÄZ›¼yæG·Bºßúc8î zë'~Þê~p}  ·8°}CÈàó›5=CgøÃg‡©ƒ1ýà9xªçúވͻÒo9à”6¨è¥]¬–ŸÙCYt)¿X}ç쟮Â)Î"¡ç28MG“WÌC³Û½O vñdeÏüH´±g£Ei$‚cÈ)PÊ•©™Q’@n'_®¼RÓ(¨²7XšùÝ©Õh3eW¡ë-8ó‹n¥§Sãúm´G3]Þ|`LÐØ;ë 3€g˜ùÞ–”½ßgUìü×ã=­sÁ÷s{³¬•ÜO¯§t¤>ȸ-~•?kºê¸ÖÒqoüûþœÝ…6Qζ4töõÝñßœà´è_WŽFžI« n“‰¸O}›b^õ[-^`x_ꙺ+ugb´·Ÿó´¬aÌÜÀúþŒM¥PÌ¿‡`LÃj"N/±é:ȱU„¾Íb9¦ÿ—ágØíh•cƆPLús¢]W!ÖÇÿ^Eèäòx'Wåͺ Ùl8õ7*)==!¹!½¹µ±¾¥5­1Ià&© ƒÊà ¼kÒ³É]FW×'E®oaØZÄ—endstream endobj 598 0 obj << /Filter /FlateDecode /Length 5848 >> stream xœÍ\KsÝFv®l•¬RI6™L±f…‹ôÝvœ*§bÇNÊvI‘ˆ. .$JþáYçœÓÝ@w£qI‰t’ÒB—@¿Ïë;ÆŸNšš4øÏÿ~ó¬9¹zö§gŒžžøÿÎoNþéìÙïОԶ±ìäìå3×…vÒª¶¶BœÝ<«Ìîì¿ ­‘I[Áke-´?»xöSux³kêF‰–5¶ß¦muÙï÷Ýmôî|wŠ(+©.wÿyö¯8´Ž‡Vª¶Ú²0ô§»S)eÝ4¢úâÅî”ä`З2ÌhSc7õÃíîTQ[e«‹hʤåt o¬ä¬×â_DýeÕGkökLŠ‹ZÛÖ­±úÁ†bÐ]qlr*¯¹V'§BÕFk·Q³zwª½áÕ¿ÝÂâD+kkTu )aŸœWý/á…m«ßLÿ‡®¦ëË›ð¦êöûÐ]W/±»´ c¬F|®€Õùðæv'LÇ ·Üèꢛ:ü)phË5láÏÎþþ§êlgtºº#ªâ¯‡§¬­ú›×´li8,hŸœõMò×-u—¸ G¬…B´=»h«á%þ†SO×)iN%ª¯vãþÇ1&Tu5 q(!²é“Á⣦±)§<‡Î´[VÝÅÍûó²Z\ûñ¹©úC8‘²R" cáT£ªiÿÞ›p¿àºn­ðœäö¼•²Ÿ©u«‚„ܳQEÙÂFç•/‡ ‡ù,oY•të“ ]º® t7ѪO…Tµ„E2Qñ[É—ŽxÛH Ž/Æáµ“\|îWk _r8åVÁ^G+xƒ¬°V²êEô|+B ©®·¤¼ÛÃ)P3 ìšðÈa꧘@SÒñàÎþ¹¢~yöìÏœJU'㇪R.ÛZ0y¢M[K+QŸþT}íæw:pŸÐ 9°qúÅmÔ*æÒ”£îÔõòçïºäÒ³tÙ{5ª¯H P9m5^E³ÿs˜%hêøn•õÉ$M p=4׆N Dq ·; ï̠п'ÁvÙV¦çŽ™ÖtÐŽ-wüè×éòeA¡ò¯þ=±Hx Î">°Ûˆ{ûé—˜eS%7úQ-«xÚ˜g>”Y(-؉†ÿ­TŽY~Þ=ÇS@]ÎSÑy×&œ\Ã+…Lî·§W¤§6°íXÀ:·o ?_uWžZÐHš ”ä¶úªMކoŽ:ŒýU"bÝÞ/Ű+a×Añª;„ÎfÛŠõ4öž¡QA'í¸Z¯,úãäZ‚™ÐMIqn˜N—ʆS·TkNCĦ%›êÞè†}‰fœqâ98ëešúQ܇†‡ƒªÒM-¬&è:¬Ï㎊‰ ŒË¬ÕÑÈ<¤âukT<$ [ .ê}8Y3Œ©™gLQ |Ë›-Ø¢> 8BÒlÓ=n`¼$Î"œS€ÚyËEà’ã– ä7SX½MàÉ!,$Ïã;4ÊóV50ظCôÈufb/ÞäBUï籟FbÝ?­Ä‚S£¥®ôìòõ_G¶yCH„8f6Ä4ˆš$#­úm—˜ÞA'©ªWSúðÌÆk{©˜Ï…HÆ%ûô©#Ô•ãÏ;ä²9DVß 3 Ý¡1—@Hc×8ZJ Äxš§0ä€15Aw H°'ÁD@ñëH§…IµZIçWûËwý‹}¼7p~ hK®s¼Û`38:¬°ñp 6˜_r:"³éwÌ{韷j%ôô]r:½Y_СESž«žÝ~gú»½s+­@¢L×ÃN!Oƒ¾(z˜­Ÿjvð»yù-ê 6frp•$+nç–ÍÉWߺ¥õVóhn௑VkÐ-z{¹S Q:o a݃v£Ö„Q_¬Íû‘ûÉo .¹ª¸PuçîH)aoWWîÈ÷9Ð þÛÊgžý0#3@q㔳×mHm” ÍaaAHÞ?søª˜ÍlÝJãÂwCìøÅ"×õ./¨ ÓÎV‹Ð ž‹1O‰nÀháU´Ö'ѳ SaX2.<ãгœsÐ6=VD7ÂóøP)ÒC0ÚdÊràÃRXõ¶ßÑ*AÆ#{zªµ†&6‘ÕáõFÀ-Q“ýo¶h?9ƒÒ‹Jí¥ Ñûùœú<ókšÉÌϽةóØÏLAw8±Âö`Û`Ñár× µŠNèÐO½;»¦…óvne6~íÝO01H3ðCQ+[ÇÊßÜz-¢øZ1·à=¢y=Ž÷ƒówÜo”`dèø6©­™=ŒDӄŶY˜« »æœIÁlµöð€ä¢ó0ÀnCЮ|m˜°,ÿð¼Xìm†XÙÜò‹#ah®ô(EÕ^ž<Ço‰Óvm‰ã0×.ÌáBà —©ÏSK´¶šo’ {¤ž1uЉî†gœTÁ, Yl á˜mùôQsMº¸ ý¾ìb]òšdB A Ãë(H·<`…Ó³`µUçÃí4û_J4¬jæËn¼Šù¥„•J”šFù1ä:Ð~í·ªVJ;§ûÎ £…E]${€‚\Nf™Õ1 ®ÑÚ»øÊ/{l›ƒøÆº:âƒ|cœdÀoTD!JGª—ȵ¸$¬E=ˈúh&$ ð7}o\AhYÙ” ÝÖrƒ3ñ&œl†,­°}jtÜ´jÒßùÝ܇ïRÎ'T÷8KÖB43<ì‡ ˜T7RIsÓž×ô¦ýéÌ ¾ë¶=ÔX­4ÏÚ‹LJ­Ô¢Ú“ñӤГ*mT€g”]6Z €Á2VÎÈ=%N–¥ZÖœš‚˜™€ZRpJ– ×D qËO‹Úh¹b\z.‚¿Qÿlõ-FÝä:ßïËéQ„@aVu;*²È|c#vªo‡7/ ÉΘ²$ lj"ú4 ùX‰šžÕ¦ûó಑èW¯°ƒç‡ØørjÔ'ƒ žpÎ5æHÌÉ´Êélêc…#S£hn¥ÅA?"çV{îf2ñ ()Bò‡Ü*îbo«ûç²ú‡Ó¥Í¾?L>3‹›é ‚3\;v·÷V\UŸÓbïo¾³çá¨n‡ï/Ç~¸8øáíÒZTÌ g6ò‹e¸hdù|Yà]±…ˆ[\öW×Óáìz¼<\û‹0{{ÿô¯»Ãôãåå«ÃwÃôÍíùþÍÅåÅrNQ÷e>è4Ït6^Þ^”6‹D+N8…®ß¢¯\ìû»‹ËýÔýn&‰ŠÂ Z× S XNûYO™¢Ô÷å r7ÿ·ôæµ2#9×óœæ!4÷–“ìC(ûâûýÐß ñI3n‘U€š€ÙÐ-3×–Xd=JøúççäÍqÖ¸P6†n”1Ö{yô#ÜmSÔ®ô¼ç7ÕǯSåJ­`{h¿hÞRp#ñÿy芽ŒKጡ©^;!aˆC—ªVŠí£ “é¨Gþ‘²„´Z½ìÉï 3}†¿tóˆ•Ç!­EåÞ¯IœåñÂy­S¾DÇ‘fpLmÆxÈMMNù’éúÃ!÷uF¼J0ÓmJÆåÅØíû_²z†7»BÊ#ó{#O ó¼–ðîÍàödØ‘|ÇÞ7‡çîpsÊÝWa$–MøÊ·2Úe°`1!§ujŠÖ-qkbn^§Êƒ)/· ~^­²á7^úù¤LN`))b€L“¢V‹P-å¡FaùmC-t-…m4 'p VJ`õ‹o©Ù ¸èm«i,t. Ö üMA-›0f2m[kÓ4愃ÛgåÐØ_¢4Ò¿/Ãj9K‚!à µmååªZHÓ¨òrY² .à"â–Ÿ…1Yº\ÀŽMH&LÅ-¹¥@úWÅqx,8Íó8‚EëÇ„Ñmºþò!ʺÀ˜,ÿª˜|¬¥KÙÞ\•Ò¦µT%v[ÜçßÿÀábH-Ôÿ6Ô՗œְmiBTÁEwW‡#k.ÑœÜG\#B\ÔFš«øt|&šX ì`™ÃLÝ‚N gõ7”Jº¶¡u*ŠØ¢´œ,±‚1<àód5w‰áñ¤»›mæ€!*¨"W)p õ¬yM5Ó2–0ØçÛ|=¯óÏ‹£ÙZ’¨»6Ÿ”Ç¡Ÿa#Pý$…Ÿa²|ɪwó“e5g¬ }ÿƒ*`O¸ï,«H\ü7» UZð°i8iÛ,Eq–_‰å¿ºÝ¹àK°›÷„®É¸* ¹PîZ;€‚¡ùðÊ?Çðuб´3búÈ£Ï÷¾“¡J. B|hQ Ç‚¶­Õ&VæÜ0¦Á¸f‹)Üxž$b•g–æYégšÄÓ¿‡„,aFëÂ^øs ùièVÃÐ ôÆjÈ~ß%•°QÓËÜèŽâuÝ3ç;ú½L9`y‘6ÛLH]º±š _Ç©” ÅÏóuï)Å·½Ë½‰`²(˜iPi«ù÷Ÿc£ N†š©»r«V ½‚¼MýMæ¹(°Áàù @…¨éÁÉq,£Äa@Ù<… V]wã°ÎõÍŠ‹fmyßJÛQ©/ø¡x1„iE.ð§ÙS÷ó³¥Á‹¢eÇ;,LÌ–ý}9g×—Ç1“¤LY††DnІE7˜þ2÷!ôÙ!Ò-z–ÉXºoçÐ7wÂÞÝx^c¹Âç[€§u¶ÜgSŠ;íÂOŒòO`Êp¡±u@9pDe_ Œ‚±ZÈ]%¡.;̶ÖV“JwnqPs‰Õ'@4æjÑØV”I‚7)fPøäî2"Èn”kÜ¿IÅ{iéK)ÙÚ¯]G#âͤõÛ]H²§kC Ö`xîi‰§KWQ e’tå!5è4ºÕF…¨šÁ>qm&á­)®ÙRÏûq…D"+“n$EEž²ÖÊÛx­OS°imݦÃ>ºŽ`'ÈIrªúg £›æ‡IB©MÌRŽ_B×¹:ô¼KÌ0Þ\ë•òôi¢,íoG ˆ%Ë£ G¹Æh#I)Àa‚M¥Öpªy:¹4WgîÜ`¶X VsÉb ïáf/6á¶Ò7IÃZ„Š1ÓàÊî> ¡§ª¡ JóªŽ*S¡Y:RHUÖU7&¯s‹`)c÷œNË‹+£@ýHTºv dhë²­ºdÅI²l.îÙR!8lžÆ$§»tX—„%Èlv‹<¡6¢«²ØðRé2”€t‘Â>ÐŒc2wbÉ̓<®,,§p¡a°ótß‘1ÿ¦1Õ«n^ò’«S:v5Ñ2 dŸ/^.UiYº–šU”àJ¥]—i vå&‰÷o¹¾Tn•p[Êd62É,§F¯„¡[^(çö»¡z`?IçÔcÍé>!úÛ9GèéàM¨ÁóÌ‚Š@9g¶úÑ…nÚÔø†T\l1;7À[AE‡‰Nx—æ˜Ö¡¥‚¡À?Âp‘ºÞ.gàRþ}!1áÑlh䯌YWî•(Ñ?·Y€ïËÊh e£lÐàæ×ÉÙ¹.:Y:vÀ›§«ÚÃ0¼¿Â 1/7@{ ÚC¾KO‰È>v¨ûiìÆ÷ËÖoCL )9›™iØ~*ªaZñIT·ŸjŽ>è5*U™ Pá¡jéXˆXx+_Ê8Ù¹Ý+FòÏ•¦mz2,™Ã‚g×N«nL¬h(7ʵÀÂÿ€ß‰—Zîûã} fÎÅÁðñ ±O-ny$H\ÊrŒ¸­[ƒžÒ±±­¹’ó> 1âuˆÓ÷ŽÉÃáT?åЮv‰%^sÞ·Ó󲃨u;Gº—l‡HÚ/Î ?Ó¥Óü0»’‡©k}­ç§û3:G‚ªÀG-›Oÿë–œÀÓ‚KÜ£|ê5ÆáŠ´af^øcL/9µß’ÁaùÚ¨Âø›feி2Pš:=æ9‰ìÁ&TFÎf]À ÊË;…²æmê–ðÌR2aº:WÊ5ñ¦M||Yê.£j›b<È"fKE9Ï+'jL­ì,³¯b;âæ¬ 8o#(NX¬`lŒ+ñH´>m»å„Pˆ7V{Cð‰&´9Húhø´`Ú¡þ’§›$¤í3Zqaj¶E«,û j`8üÓ)¼-G.¼»˜¡fŠeU“qH­Ko@P£1Žn¾äW¥Ñë¿ÛBSéÈßU]=û<~¢²ÏƒŸvš*ˆ¿N}ÚdßÏ·’n¬6KI²[Yl=óèi‹ôú€l÷VŠÐ‚'$ê>Ss¦–(¥§4ݵîÂ/ù‘÷+éÀ̺‹6xQ3º‚s‘JjºÞ¼Õä×Óßúß¼*‰¼âä4a¼j—H |~ç8NRmúfISŸÜ1IÔ  œ³üæ?e˜uyâ4¬ÛÄre&S ¥Î(žSZÓÌŸÙiï ~uð+BK4 ODшK’‚Ñ%Œ˜mÖ¬¯£Fz¬œÑk*M`öbFG8hªgž»&ÙŨڰ¥xæÅF^ˆÒ|X²?«ç5[‚úǵ¥N¢Í”ÆÄ“±Gîk<è\ @áÚ„ã§üó%éç“®ý:„Xy/t-¯mŽ\D~ Cƒ7VÑ$R$K¶îÁõ–z~ï;uŽF7ÙE+!5åCWó8öE”ôVûÍúæø‰à ˜ŽKïi»Ç>·íö¤ªci½Hý$S K]¿¸õÃäqŠwÛ‰Æ x]Š‹µF Zº/ì¯ß·t{ ”㸯FëxŽCº+wýÖÎã\Fp‰Ïc¶¹'@$¦ÎA b6]¶X-ê?e ç[”¢Æl%ø÷—ËYºfùŸ›É8ðbGÕ}ˆƒ>Á¦ª¯úäÛ*UøØÛÈÈÿ€á„w”>7UÉǤîÇÄãÍ顈¢”|º;x²€åõA& ÞÞ$ÌÐßÐǨYÆÌÇnP¹jBwßç¸ï‰C£ÕLÖþ[G‚9ˆ¹ƒ+«Ý˜3ÿÈïK?Í*n¥/ÞuÒùüƒtìÛù‡þoæ!Inü÷þ¤¥Êï5jñY‰µ• ^r)äÄÛUü®·´…,Á”ç—‹.Ó-eû0w\GÅfðsä 3,ûƒX#u†§I1Tž”ÒÜàñMBQ‡ÂçØèÐÒB«è>³$›öàûÌÖ”²fÒ[jÕÄu îÒPUâÍ¿©m(hâº%)>Ä ØBQSpšü¨ÆúËxmÓ®¯Uà-Ëk„ðóžÌEî·¿X7†þÒ™6·ÂŒRñ.VAd꼯ìÓ«‚nrŒÅuKÇîͺãn7çõ[1²-Å º‘îe4Äh«i¹¸ÿQ–<œõQK¾ôS¬6 HÈ}‚äC̱¸'Pg×÷Š–ØÔB[&‹5¢Ë·|èPâ½%m‹÷-YTwn‘J¾ì*ŠÓѰà*R„ê8U•†£ü Ð¾ß$DR rÄ/pÓI—Сߺp+§¿ì&Ä Õ_c•HüñÙÿ¸z"endstream endobj 599 0 obj << /Filter /FlateDecode /Length 6597 >> stream xœµ\Ýoä8rO^'y¾—Kã€r²­ˆßÒ&9`d÷6Ù[Üíú‡ÙÐc{<ºévÏI=ãóŸª")±(ªÝ^O0Ób±>~õAþù¢©ÅEƒÿÂÿ×ûWÍÅÝ«?¿ôíEøïzñW¯þåÛÂ7u×tââêí+ÿˆ¸hÅ…3®î”¹¸Ú¿ªDsyõ'Üj6Xµuc]JøUØ®ºíw»í}òÛõåÿ0nÛêöò¯þ §¶éÔÆÔíº8õ——­uÝ4ªúêÍåFeZ x–&jEkÛj¶Çþp¹QJÖ±Õ þÚY©$ „Oð½tÕ‘=tþW0VV}Br ‘³JªÚvΓXýàĹ¹QÂÕN^l”©[kýZúã;x‹°@¤ª>$|Ù¥ ¼Ûô÷a˜¶q¥Z«ñØï·GþUࢣ> -ô4 )‘ Ð&á•‘Ù¿@*4pß…9¥º†»††ÛÚ8xåÅFÔVÁÒÌÇ0³°qÎY©±ŠÆ5Š6%6µ0ÀÀþËÚi %*˜ÄÜä[‘­SÊZ[Ý ­kñ«õÕŠZ+ ÔlÒ±ÿP" VYRƒü°w]õýûÚ€hÃNÎDna¿:ÇèÇøƒJWßLï¶CúóÞ#ŸîÖÏÖè–+€ /Ã$6ºJª þ9?‰•Ö‚z Ç-Ȫ®é ì«D²µ¬1MI1òÝp°õJ!uÈ?êqÔBÖZõ9e öÑÖÊ 4V1iÓÒ5:ì‘ne·*mÖZ¶N-kaè9¢¦»ºkÁÔ¡¹0Õ?jøzÚ<¯ø‡û™Øjd6áÏ“ŸØ/Qð?0yú_ ,îäRþà{˜jÏ`£`¦ÑHƒ†˜hW®úU°SŽ›RÛÔZIØ„Í(ð¸ÞÍFêWØ®Ÿª8©å¶¤£Ó¬¥9Å4ßÛ”ô!ZS¾Ÿ TN´kf2›¹©Áñı§§[ x22£Ì aÐC­îy ¦f;>îS÷r<ûë QN3!8 ûíî§ËÀS48CÏm qd£[ ç@yT ‚Õzޏ׮!ã0vÁó{q’¶CWecFT¤‡7©7d"»÷Su][½¡ùµ°h”¤mIWRK7¦ªº›‰ËÅØ!×8E´ƒí[p*ÐҚ̜×Ò¤4y»LÞÞ>aBH°“¬ˆo: ¦mýcY8u-õ,œV†ƒÍ¬þu¨Zƒ±=ËcrÎ=æß†±|RPm"$y*È®«E;Ëî,:œ—Ùõ RàÀ†Î"eWvÓ2¶`Ÿ 8™Í^æ`6PÄ&Êz'ýš*™”­ZKð ÿ«"Š lP‰èí;¡3fïå‡åÄA]œH×qDÓücÑœ¶`Ìädÿ˜³Ø*vìQ% ŸîPnásKðzÁ~ø¾q«f'NQR&œBç*>¦žÖ% Oºîi8"œø9 Ø:y˜ *!“Åæ[R/„ÁÊOÇ¿ƒMv–LÜŠâƒèÁF«¶¶m+ƒq¨þÇÀS¼)©´O©¿iÚ þ~ìkÐÿµ5-XÕH— ‹` Û$g,*B2UÍ.’qpÓüq“øX¹DÜ0wôq{e-é%épàh‚î¤8D8j² N[EлüÐ .¯ˆð‰ˆ̆ò\Órhõ÷k˜‹á,šGax\mw»ø²b˜çñ<þ®Úçàù^ñ¼Õ„çé¥èO‰ 6‹§Ùœ[æ_o==Wý1N¤ŸÛ Øg>ÛàÛ^Ú8t²w%¬¶„.{͈èQ¼1AñÿiJ”¬Ið¨ínDiíl*íÁ\5h„ `0H÷¾o˜Ìý4Y; Ñ¿2‘Ãk€ÉïV}ò­Õ¸‚#pøõ§K¤zèK©ŸiwJ |1ßpÿæw»w}1pÒ¦nEÌ9ø ’x 2`ì‰áš¼Á1n–Ì"²+`ªO=:!ò$½©q‚ïBbo ‘‰ã2#;Y£Ìb®Üx¿ä|²©ð/²íÜŽ=ßÞ`‚ëWEêAÙÚN;Õ@È5W¹P, fn‡ X+ØÙ‘ppâSw»Çè5·Œ‡{ÏëÔknd !œCh Ê.tŒoÁEêÆ úcÒH7>°ÛŽGüË’kyö8ÝP[ëïÔ"f§§ÁV¿YM9 ,P›é¿ „€Açëä†u0àŒ(óüK‹"lÞc)chj¦UzÔ鄸yÀœKC‡9é—k¡=›QÍˆÍ |I,øÙTz0B(Ï4Ð’ÎïŒ]¸;Óü|w$º³ÝÑ’Á† Q`ðJ vµÖmŒ|ždðY)Yä/SŒ¿YÆÌsNiü>ˆDšà•öQ¨Mú©RÄ@ÿ°í¹¤â”Z–ôË2K­ etâ)¹k_š©Î^Û”mÇË"¿ºMG@æ—¥ÐTÂ1ìz’ó@×–”ŠÀ9šÉä 3µM,ä[k0%ÚeÁw¶£†. Z•ÕߥÖþÌ­G«wñiŸ ª¶0“D›U}óÝoç×…p@› šR3„K:3aÄ÷`\´ÿ0s"ƒa6Ñ;’â·šŠ’h, TðˆÆ`é»s5"ƒŽ_÷ÃxD”e%•rs­ bkÐ’»Ãг÷áGøõCâѰF* ½á-Ñ@V vƒÞÀ"^Cgl,AOTDú¬lu`ùa*LðÐË|˜é"Ñ&}ðœW&3h›ãÀŒÀø6Ùõ +ÚeÜ`áDTã{ï’TCîÐ#ìâWÙ=Ë+'Ôˆ“ ÿ Ç}÷êêŸ^cœ„öK¹$XòÛ”—f@Ÿ) h"…Bý®gàè%±0*®B¬°õºËä|…ô%Ê1TõËFÏ,–@)KÖ(1Ýñ1ÙÆiˆi¥W§ážu›…Ŭ.‡ªq`Ë¢ƒûpx¸PÊÆbPv±c…>.Ó,雤 øN‰þ-&ß®÷Çá°+—&ú#Sóqw8b´å|õãj5$O·Qœ¤á '$AÒþ.} OM,·Ö§âw-Ä”ÆÏ\F{ôB݆=o(ï¥â&Ì¥}4CÏ7èC"ÀYe‚­!ï'{žÑùÉL%"H–”çàÆ>(D± {Ö÷«¬ Z0¡c´¶JOÑ 75ÇIç*o(Œ=’l£íxÈö–æ¤ æ}ÈÛgm4Ån–*çóIZâD¯A;jдà+ÞÍîê0f[ê‡ë©”ç¿GWËwe·RTÕNÊzõn¸ßv7WÃíýM±Ä¤aš@¦õV¤Ï,ÑBbGn/°²1ýaºßk›¾md~nÊh!ÎüX–Öí ­ÄZTg8¤eCCÞú˜ ðHý”{A‡+Kud{ܼ2ù´˜ øÙV”ðh°eêí ªYÚ<| "t˜âÃOå%óUý¬s x4B³àôµ&…™š r„Éþ`mic ¥•…4Ù9‰ob† X“ºÊV±f°ÈV§O›f•ƹW~1;({+=E›N¿îÇãdBäçÅàøf)z1ôžÂWEÄc*,ªòq »¬–Ñß½óyôÜëÞ„YdÉš ðÏöF9þó<ÌÓöCÕ©ê«ÔSÀ*0ÙfË__N-~‡½ÏÆÄ°„ ­D…ËØ’P~Æt»·»}D¯ß.Úž2?/ZL>sõv; ýýÝñpÿõîö/ý0¥FÀ#zns<‰+6ZšÚWÔÒDà®ßc F‹ŽRmyþ_‹–² çï+è“Åœ`÷üäBöÂ+ò4ÈJfgübÅÖƒ&6ÑÖ?Ü%Çq²øÅ¬Õ UbíµêHBr§æ ”]& ¸€Açí¤l–à4 E¥›0=x~–ú¤éŲ8BßóÄýÈ«Th¨åªoßÆÙ—¨ŠË†d jŸAǯXsX–¦ºŒ•OÆ¥Am./#KÔ²V ïTëỲÚ¶áã?…^µL&€[ ÓŒþ­Töc|T0‡‚¹æ Ã­[8á“ê*…®çšøYp$Ú_û§ò홞lW® ‡pÓÇ»Ë,[Ð8*Îæ‚EëÂ" 4³t=B 8q£¨ XgvƒâlGÒ”'Æ”.­Ã»2ÄKOƒÝ.&gæ(‘º¶|„ Ð}™n™©ÀΠã›ï~ë3ÿyõê÷¯|»¹žÛ¼Ž t@;ØbÑbûëêëËÓ‚XqGËœy +!‹-yFãbOÞëê·¾¾/sÇ|wBüs©†ÀÓz)ÕØ÷‚ø2n(©k);6¯—Ìüì)5¶;Î`j ›]0o3B )°>šhXžÊàót]öVÛ©Ñ]”Ó̺ńuØÄÓ¥íYݶãgHÝb»à ûžÙô¸íƒîæ‚H)œ( H­#£ÄÑkÖ‹Ähª1³¬-„öó‰£Ê±%'W6B¾@…2µhu:eÇpfd›öü|ê=jDy» cœ qÄ‚²UØY,DAq@û'›ÎÀ<È©¬’Å¿©5uVù1_[·°“¾™Æ[D‘šúÑã1œƒ'õpy>kݲ ¯+CÆS÷r~&bÛŠ%FT¾T’ׯ71è+õ)-3)χH\H­(m¨kˆ§(eK›ÍÛH‡íTt êŒYí½öɾ§¨ý«@\+V$m“÷C{h ¼èùþ¥}Æ?u|Ñ ù¿ÞáäR[Èäãd¦Kó©T1>¡m€eªœœU¾¸Âº®y¤6жÀ§ 3¹ÉX› Ú³‘1™}•'¥¢ëÃÐß1aAÜH?FÞ3ÌÁÏOPaåØðap¥O=–×}-»=í‘p.P „D4^ó¾ôôÙ7‰lîP´ˆˆwWÝÉvG…0š·+’“YícåÀÜœu ï '^è› *—|¡ˆÑÞzþ&%s—JNÉ-ØŠ©0ï’ÖM -:-ºÚMNý@ó?{R£,²•üt‰•P¢®&Ï}€ Ñ8>ϵ™ÛÄíèóO޲\‹h[w¾°xà üãÇ5E-½ =O²á¥æâ‰Ÿ¡ßƒ !×T‰YX{?ƒ%ƒ?§ÚRh+”W[´¿Ò ašeõ¬lÕ=å PÔò ³nSz ¸Ó4„Xys\ëkX¾³%;Á»«Âëš<ÉrÙ­­ÞÍä>‘îå®3ï0…âÞ4~H£fÞëÆ[ëR»²k0Å,ªo§D|ë!u…Ÿ¨…œ:äEyg»h{œ›Í©%,äý{ÖÒÂ=ï>{gL$%r‡®%Ÿ»¨Ò†WŒë%'V¼È*ÿþq·LYûeØÕ÷í·sSôc$Õ¤{sß/ODi?q˜…·ë”wºŽþÔãz/2_ûÜ/ϸ ¥ýÈ_nmOU°$†~Ù`Š?`?‰¯{B ‹€¡Ô83• PMVQÿ¡Ëæ¬!—›"Çþ8íÛc¤«ë‚û1Ö-Q”ß—;ï»´a°‡ÈÅîdn™Ø4©" ";ñKžðÍ-(v$yÇÝc²†Hß2tc>å œl€Õ†ÖŒBО¶™i¢N,t=_M,psñ—íÂIPУuˆAäâËc'ÏŠSR[ž†ˆ«ª“ÜçÃ'i}Ä1òVó‚øõžjP¼¯û»kzü9¸­[g.”¥Þ@ʈ˜—À`<ìT:ßtëíܲÞM|±ysîŒoÊ;²AïSËÕC„ýBóDRvx8ÆÖ öjÿðk°ËR“·»}=WÑÂ]õo›y̲Èö=÷ýíÇÃpüæv?ÿøE| Åî›dΟ.—.wAÂýáã[ÊÇm„qŸ‡‚8exÿ"& ñý߸à™)ü÷Xö‹Íÿp&D‹t8·’Ìù.ßc]ñØC(¿ò¹¢6«o߆uŒØÀä.+œÛ#“ôS(%. eä±Z’_OñÂì9ì¹´êO9½ž¸ g-q«umZ#Y„,|÷ìç« PìÒ&¤~–„­6²–2åÀKóµ˜ d<¥t- xÚ‡ë‘äùf»Üï«]„øÄ“Çe´?ƹHµaDZîÎÏIÑD` ƒ¥¿BçÍe—]V~”¶™ëgþs»a²eæVQSCÚ§[ȵÑ0Púóoìëê#½`&ø<û;‘hN·Hàæƒ ÎS1~ªúá¿¿ÔB ð8r=ß_"ë¾…4Úã½NÿÂóäÓ ¶½7Á3jÅÜþs4˜4G󃼬íöåæF´M-ZswX-IÛÀ½¤8Ò¹Ú—Έ§£è»u“dv#N:‘4 Xª|Õ‘òAës}E² çJin8±Äb.¨isÒx/måÓÆã}d~ì÷ýnK]â ùÏýíñÝáÿ€RoÆð‹8.äABnç>øáØ#yý~{w[öåèÁð`F9=.%žj窂m iÚT …Ûá°l)³‘ßDAúÅ-++Œá‰N¬âçbBaj®@)crzK¦³š‰Ä„‡[ûD3ˆä>|¶TŽ“2="±L—äòx*ü‰bYîצ!ŽçìûñxòzÄüeò ØþÕvµ–ñVŽ7ÛÇÛbW9P4·-AÌKCøLvº¸hxß—›Å¥¢R2÷s§ï±Ê;`gšX¢¼¾¹.Öñ¾– · ýF˜±å'À¤"ÎVW¾çoØIÏ ²›}>ƒÍt`áX¸ÆÕÞbŠ—ØËl“ëæÙ^/²üŠÒí…[ÙpÙàÿòC#è;Z‹á/·¡igëù‡.Í¥îß©J(ðÙI¦„®¸Ë°Üßðr ·ÒÉ×áù”€¡×x©P¬uÈ@•ÝΗç;‚lã2?¡˜ú•'(Sý)ÉÓ³[· _x :ªËzéÒøjèÃ&ìžxÈÎÓâïØèÏŒoÓG¹KŒ¶^RéAùûGÃÝi'Ž™2X¶(å(“™ÄU‡‹Àžuª&&ÅÇð|l…VáH&½n½8üî?¥­pDœi™I2ÚS­˜.¿ã™þ§ïb ‹óS{4ŸG$œˆ,·?¹wŽ[šRß«%À]h)¤æQ©Zié¸}@“ºbß ž\tM„r?¯k‚ uIKÅtÕŠ‘’.À *ºß®œ¤à Dv$¹?‰+{MáöÏ Ìú²ŠÁ~qÄ0l’?üè;Oi»ºÂõv‘ÊP©¥C´hW|ÿ¬µÒ6ó¦¿ó=ªxÞ°Çô´áŠzyò… c|õÔêŸw¤ËE@4#ø]Í/,4ì`WºÎ,Ó¡LÒ®øYvKÙõ'2ŸÌbS{.Š®Áœ"0ûë,°Äã ˆw š®VœOH¸©—{{w—_´0jñ€æC¹.Ä\È{ʤӊå¢TèM>@lÕåíÓ±Ðùêµ4>e 7+íóì÷›Rﳤj8ÆyÛÅùú^æ÷}žo÷ý¼Ôhé?–o24jÁ—s._Ã~ ÙŸo~ö•|þÉ6ÇR)ýié}ÙT¨°.î2¾6Ø'^™ñÝO¨~Û]í[ñ±˜óýaÍ¿ªr>«jÉäɦÄ=P¦‹³O¥žÊ‘–ÂkÐð6¼_²§ÿKñxxG…¦§)†w„\±£#Oóª$A3ºƒ °XžJLSJÊ©³ŸóóXFÍjg!‰ÐH~~5²TtŒõ .›–aJ6’¥¹]<¾ñÆÝµzµ×ß×Q;ºS)^&ë ´¾\ÒèXynuR£Ë7λ“Uù| Göé‘8Î¥‰â1êx.-3Ó‰3S}[½Â)ûIZèî]¥èl-$£sxþtOÙû,ÀféÚ€6{®îù‹Î__ºÞÖKÀ]µù&½¥†Ÿ°!KÄ•Iû÷žŸ‡ó eòúÐ.¹ÖbQ Zi¯‰7ü¬ õJZžv›‘ÖYNQÁ*2¦s<ÍóŽñmâC?¼™õOܬJâiq¬]£Í¶%í›Í}x$µÞœ)ïè#b2Û¹FM9W%Nâ{x–‹ Mѵ"c¦ncÁ*ýá|t¨'§ÄçãÂÉý'¡z!ÐÞ/“p~éjÝš2K·U|[HÑ„B÷!üP@‹sp]ÍCÒ1)àýþÕÿ@³•endstream endobj 600 0 obj << /Filter /FlateDecode /Length 7727 >> stream xœí]Ï“c·q¾Ï¿»jŽoRž—‡ß€orÉqYJYÞT’”vvD-9”IÚ«õ¿œ{ÎéÆ¯× ‚˜ÝÕæ¶år‰û±4€î¯=½]fq»àÿò¿ßß,·7½½Íÿù~û»7ÿòµ·€Ìa âöÅ«›ÔDÜ ¯gï­3nÊܾØß|3}¹ùŸ»ûe^좥öÓn÷pw¯”š#§?ßÁF9±„i³Ûžâ¿…v2L¿IbÁ«éß¶Ç×¹ÑâY£ïï$<Êh5ýp'ý¼ha§¿‘ï÷°0a@bÅâŒÞúé%áQfúr›ºTV³ÖbWF£¦ßÿ/Û%1+­•î//þª²žªJ)7 ‰ {ñòfâîÅ7ÿþâæO¨iiý¬Å­qºmj—þ+…œ½=>Üþ÷íÓ›­±êö hýðÿo sâ |ýÅPRÎÞ߯õ¬ôí°›‚ì(bf'"âÌ,B‰D/bV¾‹X9Û„€îŒí#Ç…ˆQ³3]$¸Ù%ÄXƒ.bÕ,"f± é.âì"«*M0f¶2"”®ºˆ‡Ãú…} ßõФŒ:µ°È¾ ¨ÙÆg[1ôX™˜‹]t¤â³mœLHútÂÌ:t\—¸¾N‹Ùú>"fŸí¬›½í#~vqš.¨4‡ $Àî/Ao¾‡xºŽ#ôÚÎÊö1LJ{'gcº€É»Ä…ê# î@‚Ôs]Ö7µ FÀ™î!AÀn‹€s³T]`A]ïn$؇YË‚£ZtDd˜mˆºŠÿ†éBSâ"àA² ˆÙàØ¤Xü,DY’U`p•»ˆEYD,ÌÄuÐH={‹g¿‡ÀÎh$š4¯»<= )•“ÜC|0¸{"lñ*ë\óé"°¢Æ”+¥ºHYc ÆêD ‹ž]jeÃìM1°›S«VJ]C¢}‘¬¸”Ï NÊ5 ö«žMè"°ã—ˆ˜eÁ‘ö‘O«4èB;€E£,ÍÒGœãÂ0à`¦{€@I@ìVÊö?Û¸,ì`«»ˆÕs€~xÕpŽÑò‚§e‡ÈŸ£S  4 j‰.SÂéC5Á)“X}òˆ* ­‘À¡ÔŒ+íR†­Ý¼À&Š\éÅœ¸ŒŸ¶û‡Ûo§7¯OßÞÝ!“ÀF÷"ö†(„]€J€©„–ÓW‡ùöð †óÓáx>URñ´"‘?6èøxnCzXjB2ê×”d¸ Ñ„ÂnÈߢµ°pLJ›ßݬ4#Kí/B3È©3ã#ÁÈß:dœ¾>²0*>¤•Êœä©ÌJ©f’…—¬“lÂKHšdï»M3… ¹3ï»M3× ¹3_QF¡EcÅff´Ž‹„ 4¬.¶YwPž—)T3ªF(‘¨ñÈ oÂB¤Ö 6!R$Í°Ë ÛGfÎ5œb!]ã5,´«™cÓUf^Ït•¹×Xª°¯U] BØ×Iêjà++T¨Úp`•¬”ZèZ|¾6@~H]qxßmš©ÝÉq¸?øB!ŠpÚV©LÇ]e¸¾A ið Ü?•26GCÀÀÜâªT&ãµ.´q8Ç›ÍÕtU˜ã°«BWu5¡Ž$©«¯<1“LòDŽ’9@ÒøÊeBÚjôܬ eJÚîÁEF™¥ )m×ZÀ@àßE*ñÒÖtÁ%ló"”™éxì…Ž¥ ? ÂPÛ}ƒ3G•¥2Km§ÈúªÙŸOYŸOYŸOYŸOYŸOY†|Êú|Êúü²¬ÏêXཟ.ÿР`x/MŠ tü/:M5´"¯@J€ÊY3²¬ŽH&i+½à0h3Š@m§Á˜ÉÛp˜Ñˆ×v±§½ GÖxÞÎbJˆ Óz—xpmgሆfvn‘É ÕvN…Dz×vp$#¢í¤O¦{mgMb½k;8¦º}ž_ ¨í¼ð‰»ÖvNcÖŠµ“Ö*ÐÕC¡pïR`¦üÌÕ"5x>´nk3 †ÚÒÇI$•Ê6í<Ò3ÚÎ y³¬¨ÜðéI΋´)¦t8Ã6ÅÒ´l—E²v°]§¥ ‚·³ <ÃÚYäAžµo¢uZà'ީӂSºÄ¬$WË»§Q{iG$· VQ×&>œ¸Ácû¡R+¢"ÉIR@¢W©‚P©lˆTAˆT¶«P¨L>÷D¨ TÊ‚ eÏ«• ¼£ÐôbDHY *R*ë§“*•“ÍæV*“m*‘²íyö¼ŠP©l¯ˆTA¨ÉÖ¸"DªØ°Uª"T*[,"U*e0FcR¡RÙŠ©‚)i}¶Ê¡RJ¥œÌ*U*eBÊÚ®R¡RÞ`0@¥ B¤°e,•Ï „J‡l­+B¥R¦ùЬRrrê+B¥ xµŽI„JA0ã “*•Ò¹0;S"%аÑݵ"TJ;z5³'•ràñÙ+B¥BHb•*‘*q•ª•22¥HV©‚P) c’é¾"DJ)æs¬•ºo™P¨ ZÇžW*d>ð® B¤48"ÁÖº"T |ƒbš¯•ÊtH„Jer@¤ B¤ X¥*B¥²ã'R¡Rà$Ó|E¨6|Ž!R…2ïZ*• ‘*•â~™zjê]/üy3Òçü9FèÏ{N"uÕ›™o!RKO¤®ZÔUfd߈ÔÀÚ©Á©&RƒSF¤»™H öÑÃ` ßi¥mи{bðöñÈÿ1P3ëÒEüJ^+óÖ ôzA•‹I/‘Çב•^n¬Rvsb•*“’!†çD*#LÊ@äc,•Ê“Êc%Rdô勉µïhI,,A®^Xîî®…™~Ô8¡º\?«òÙÈI/±¬á}ëž)”Á¢g„¸Þa`‚'=…øI»„Ô:ÌÕÀ‚PÆ!•Ôpæµ õ¿)ïþ!Ë@èncÇh p_ýnªÔk7Œ÷ØÀ¯^jv†è ¬–†žëþû{¯ ºý |~Iâ$˜týEg÷I§<½½ìï¾"5Þ}Uj¸ûªÔp÷U)²ûþtUµ ¾«3§Š"0•–ИXf<};m¾½#Å´ÊjEiôí&؃Ƈ˜ØÛß('K:0§úVS~"":Do6Dàà,¾‹Ôž=Ä#Òv‘Ú 6BÌ– £SVi„ø”þ!a±1)1D êb%ŸA 1#@ƒ‰žmxIg¾‡ê%f›®òsˆ0FìCå»HíV@¼aì3œ•8þ‚¾Î ¾±]¤ŽPBœ!MY[A”¯ÄFÄVŒ†3Ï Fä«¿Ñ…cDCl¡:@s¨x-3F€ñXù Q…fñéJl„(“.ÉF0L5`_Ž œËúgâUßîœ.ÅØh©ÆˆÉg $ æL»SÏ À ‚#,¹xÏžAœIWcoõ¬x‘)󉬛;à6í1 Øq¥»H±fQ2]ã#ã ÉÛ+éR†é£×Õbï0gÓ©«õrTW« „váëjß‘a¼O]måúÚÊ8*×kÂ8È©3÷ æ*9VÃTzòŒT&(¬JQÖI6¡($M²÷½¦…Ë ÔYï»M3é ¹3_QFáGãEʉŒ‹„! 8¬îÖÕV.5*;K|j8îʨ†Û¦rª:½!œj€¤ù5p¿ª¶Ò¯á ÿV6ìªP°áf¨$ì©LÃVu5¡a$©«¯¬PalãÎ6ÔDfmëà9@HÛIcoà}·ifw$wÆá+ƒODpXX©à¨ÌºrÁuì B¸àIcoà+‹Xhã°¨¶ÇñRê8œcáŽÏt•ÙãPñ…>®êjBHRW÷_ˆ&y"GÑ ù‰¾²@™”‹j+-mÏ‹j+1ÕVjÚªžUÕVr:|¡§ÏHe‚ÚŽž JQ[M°ªÚJR? ªöSúçSúçSúçSúçSúçSúçSúçc¥X}­¶Ë’ÌE))„ Ó¤%…°ÝÕÌ+&µW±ü™4ó`›­|„)ä¢í¬Œ%D¤Hi*ËnRFÛyOÓÚ.€”Õ¬X,Í+4u:N†´)ÏÆéKüж *ž–Ú´½¤`·¶ËõÝ´Y`·hÁÚ+†õ—³jšÁg,'Í@ˆïÂŽð)hâ…ï˜ÈëWvâ;s’Ë~ ¹ùÿP©Y«J”ƒã%“*•Â*aÁ¤ B¥<~&”"ãñæ–V‚¬•ÂËfö¼ŠP)ëfÇ„2@e‚JÙˆU¨ D*Hø–uU*¥-Ÿ_¨ ¾Æ€=¯"T*ø”×\¥ ²Jé99­)Y*…¥ÑšI„Ja!´dR!Rø*IkÅV„JI8T쉡RXB­˜TA¨L &U"%ªÒüOú½Ò¼>yE¨”]x}òŠP)oYÕSˆŒ’×ð®•Rž×𮕲†×𮕠‚W)¯‘ÒÂñ*å¡RXÀžX*.ŠÕ𮕠&Åè«TAˆ”šÕð®•Òž×’­•‚x–Õð®‘*~t•ª•‚ð×&U*e$¯â]*åB3ÇŠ)î€ ¾TF ^ã¶"TʸTMµJ„JyÅkxW„Hy𠬆wE¨T&Dª T*S "U*• ‘*‘*ta•ª•Ò ¯á]*Îϱ"T* "UUªÒ â B¥¸W¦~šzÍÖO·#}Λ¯•ƒ#¿I¤®ú±UfäUˆÔÀÆ©«•È ì‘X"58ÕDjpʈÔ`7©ÁÞ"z¬á;­ô/«ëg¡Ù ®s½À­f¡µi=©Åòüú*µVÖ)ZYW¥je]•"•uUªVÖU)RY׎•Hý‚ºNeð/Æ?j]çGªÄs±ˆr­ëT>…–Wë:f ÄÿC]§‚#(Õ»Öuº_RÖy¹ùŒìeFýÍW¤Æ›¯J 7_•n¾*õáeHµBÛ½–u~3};}—^¯@OS.Ùh_ªz¯€7aÓ{¼ÞPJ¢ª¿™>ß>ÒwÁë‹gÃd~{wûKBèûdç,"ôôU~ãkP‹ñÓ›Ÿîîã«fåt8žË«ií´}Êbú‚¿Uv¿yŠï¤…=0½E)P²` ¢9ʯžu¾þö}ŽUOÛóáƒ8IHÇßWû2?^PNyëíú„T ›º Ó¹yímÒ€ƒYl·é}»©×Í.÷]ìÙóXЃG¹4¼)Óæ‰ˆ”ñY±._üb0¬…¾4WDvþâ7/þù›i»ÿ)Šj/¡Ýñg,`Iþ?Aˆ8±•‚§ãÛ pϾÈLý”iH ØúC´TÓçwøgC(zL=.Âñ>ÇwèéW¤‹Mk5½IVf"à™I'5šìðbÍ㬔Ÿÿ„ŸuÜ3­c¯°¿?ü¼Å•š[ÞdsÎmsµ/Àq[JŽw„ÝÒ ï”dŒRðÃîe!Œv{*£UÓî’ÝÛ<¦ §ïi_‡=„FJ.ê–~“ްGø?ŸzZ²Ó#ÛGiÒ>îÐ_¡ºDÌãæ¸?Å9Ý«H92áž ÙݼÙâI‘N¢ ¿´€ãyß⺠Tˆ› ÿ.Ì_AÚul >á+É–.6ñÌt·ÑѸ¥à·ZFj¦Óy»Û•!I¶ Ø¨Ò‡Æ²¸Ç±ñ2 `à˜*èaLž'/ÁæÔÐÍS‡ž’@Z…†ÊlÊÑs†”éx¼p‚`÷ç2®€ÍyS¾plÛnÎmr‚¹œ¸KòÚI·è¸và_Ðêœlµ¯Íò”[Maü¬‹CÀá–;E¢ïÌmJ¾™²CˆSW2RýøYF‹?úÖå?[ƒw(Í”h´™Th¤Ÿ8Ùüù ö “ÝøÔ×~2ªK¬°ÄI—_vúîðrÓó¿p˜5ñ6 þ/qGëW©5iÉ׺–:fº-5Ÿrâ3âƒllçǼ4VHy«$Vˆòc^OÌjý#¯©u—64îùÜdÝ+£âsz/jTÍ”rôý±ƒA]·Jà;eN%Ç죣y™´Ï9¾†CtÎÉÍFì‚|`7Að ¿1y|Ằ z `|d\ìܳ¯[SQØä{S’©ÙÀW}Ö U“Ó¡,8!O%LöxW¦Giü×E´¹\]žµÌ pw™‹ìð_N]ÁÅÁç‹È¥wÌî•W³“”_X¶ºrÝÓ¼Oï& `âñl'm__‰¯úÅ4à!NáKúh¯h»˜sõ‰8ÿúÚþ¦£xl¾I­UŒk /yÛOœb`å5’’òd ñøîP3,o.Rœ ñŠDV1ýØO}þ˼[—†õÓÅ÷BÚh#8ó=шrŠ;‰ãþf Ë'ú:?Îå+Ì©Rlg÷Ù¸·d…xÜSZ¯þ—Î;­kãÓõå¥ â@ây\°9žëâ¼½óø+‡BÆ_cô&î®7ÌlEK€»–àT2g†›ÏÝys•;w¢t&˜"F–$;‚µ8³TÏã:ûv¥ŒŒ|”ACg‰dCÎßuúJ«¸AÚ¨b:QE%/½Îº·Ø7Ì­·¬+Ú0ÈçÒ½þCÓ††qxqÃ²Óøë ;ÒY@ºÙ·ô›Çüq™ôˆ¸»’øµ="œ›'}`N패Ö2žÈÏÊÓ˜n6ÇsNÓd“ð7²Ev›¼HlÛýýÎ`bÎGZ²˜xÜ<–ÁáUÛ«¼æ†Û§˜MÀÞö¯/“ÙTÈ@5 †š#¾Îå—MþPij` ¦¹šÂ½ÒO©nÏYXˈ٩:w.ÞÈv é>t“?.Vey•R$ß9òÊCí^©+{Í)¹üþ‚í䑬9•ù(±½m]ì7÷5ÕŸ3{>åÛ@_ŒÝ±dµüà¯SEºI!žò!žœžé*±71É—¹×õËßÞÝã;Ú{w2ñ)ÍÁ(×GøÉy“y³Á½Ÿ"=£N|Ï'-óÓØ,=ßdÇÜ*´Î—£,Bf”§ôSPL,¾mRÒÑÓ`¡ ´7±ìÂë5wÉ‹.Š^‘å>ߤCŽs|™¼c¼$\ ½ŒÔê÷\á|õ‡©#W{¯§âPïRòJm“+´ñô²>Ogd}ƒßl"¼êp:f¾:äî´ÙoÙ•Ñùí-¾è~qŠß÷ñV&D3W;+Þìç²î ×I ÞyÏs3bGçã}Ì.`‰³–ܾâ«DHZ'Òñä“ã/"˜d™ãçeH¼ºâW :f_‹>¿ó±zǦÔT|·œ±$ }ñŒÎsj.êü!)gå û¯?fýQ™Æô”ÙKŸ²-:29I™–x‰Ú˻΄_†´Kdj–ÍÇ7Ò%Èü¯þøYŠôœäE ³]Ê…Øôu7ÕxM ‚ÇtnÒOkpD¯¥À[[˜éGÉß`|£­À¿Äš…÷)òu½Ö¹ÊçÊ¡‡éK$Lì`Õïlñ|%©_ÿÊ®Té¾â•oK s|ßÉa½†0|n)¿£Ç<¬uuô2ï¼Â×®Ìß5²ýÈ€¡mº"¾Áá î…‹e\ï?“õÆ: РÁ?µ©Þoý2ÝÙQ³;8Ì6U–0çÓ¦+D¼ +wƒW“ 4'jò1š$ ð`‚¬N‚–3)cÖ»Þ7²™) 3Ø©#ƒ§­$¿]8nj>&ß[ˆWRÊg8# [MŸ•â³þyÃBÖ]s¼? Çw ‡/ÕšUù«¼FEz¢Åb‰¿ÄëTÜžÍ\ðk=8˜îuêz+ý¡|Ú,³šŽ£õög/žµa³ÿ¥w»oßF¹\k4RWëÓ/ÎfÜ—y[ıXûãzÆ´´6Y!|2Væ›N‡]›uMm0Å[.~YAó–ÕÝ·ëÖ?Ô­Yi²°›xØæÚˆµVÒ nfØì«½^(r¡‘XŽ,ò­¸ŒµCW “Ø?^G ÿ«ÍÅä#ÍØ¥1ŽF¦¹Q@/ýßîtA†6g %Ÿù+ôWUþÝÿV¬43ýKÊÿõw\*endstream endobj 601 0 obj << /Filter /FlateDecode /Length 184 >> stream xœ]A E÷œ‚PFÒ¸hØÔ Q/@ahX¥ oo¡Öo’ÏÌþ°þ|:{—)»¥ ˜©uÞ$œÃ’4ÒGç jœÎU«žT$¬¿¨ø|E¤ëÚM_Õ„ìÞ¶¼>ñͤƒÁ9*IùI×4²³Vôæ¯%6Ã`& $鸀V¬ò²Ð‹DYP¢.ß×”Jâ= ÕKJès=«Æ.iÇïå1Äâ¢+ä Í\äendstream endobj 602 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 542 >> stream xœ}QÍkAIÒ5¶k¬¥ÅVc2*&”ö¢’¢X!•ÄÒ^7uóA7ÙÚl AWMI+u6_¦[“ƒÉÁ\„‚žb.¼y,õ_èq6Llݤ"ü˜ßðÞÞ{ &€ž¼é÷sR4˜‰‡D!yÑà#)[íQí4Ô¬íŒSO§Òñ `ÖˆYÓgíÛÁ'ÈÚqòh0.Ä®aõª¸’YE¢šžššq:õó eÐòqKËb:¹C\âò¹ü.tKLë` (ÄG9!ŒÄ0ºË/¢ùàµ@]Üž¿<çúw¼¿Q^àã|Bød’¿Ÿâ“¤Ø/‰+˜õð>‡*`@o­cÀ °Ýä½åÀx9 Hº;)Œ5RX¶uw9…%©Žkvm—©ÕqÃn90|Y7Zd³7PÛõµÔÍÐIL-{2q˜µÀoq°wõ;qË™Äfâ>$¨—¡³ô<µÒ9:GôMfíÄûÇ¥—†zzi¾ŽáZ¶”-uÛä͸ö‰¼~YÞ*ãêD5«>~¶‰×ŸÚº?莜˭ã'XV7Ô í;ݯæò¸ˆÍUU­ÚiÄôŸF=¯·:V½Î©–Qÿá™~§ŸÃ‡jÒîjŒŒS®×lšFÚGú¯³êÇRg¤ù¡Î´[C¶A㨗=ŠÙ¡f!_ª(å¢RR¶Y¶YP¶ŠÊ«íb%¯°Çø\æ Íendstream endobj 603 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 397 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6Ó JM/ÍI,ɨÿfü!ÃôC–¹»ñ‡ÁOVÖÆnæn–ß }OüžÈÿ=N€™‘1<§Ò9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°:E±„!”‰‘‘eÒ÷5|ÿïÜdh\ýƒmÓ÷°rÆïl·˜è}WíëœVU×ÙVß&—é”Õֵ͑aÆÌîÞ óä/}_Ïú‘mþÌî%³êº+åUÙÖ}—ëŸÕ=©»[rqÅÔêú–ì&¹öê©ëã~;süf`+ëîêjïhko¯ënë«Ò=¿›ã[Àï†Ö’æÌîzÉÀý©'¾³Ÿÿ.;GޝlÁç©Ó¦}/XÀ¶šk·KH>g7÷ÊÞžÞž¾Ys¦öLîçáÙ0kQOOÏ”‰ý=}Sxxfî§endstream endobj 604 0 obj << /Filter /FlateDecode /Length 227 >> stream xœ]1nÃ0 EwB7°¥4‰ \Ò%C‹ éd™ 4DgèíKRN‡_ÀI}ñwÇÓÇ)§Åvç:Ç+.–Rž*>æghG¼¥lœ·SŠËJzÆ{(¦;~†òýSÐrRã¯pÇî²Ûnôʵ¡8Oø(!b ù†æÐ÷p ƒyúWrëÄHk«ãV ´F*=¨¸ú.¸c/ø*ÆQp *ž%Á*®êS#¨=£gOß|AöôÍ7 ²§o¾{]ãõ_ÙH²yEaã³VÌ‹¨I.)ã_Æe.2eYæNõx!endstream endobj 605 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2049 >> stream xœuUyTSgä‰Ȉö‘¤¨§pŠŽU\êi•: ˆ0Ô¥Œ‰Àˆ¬DöEHÞMÂ’°¤·©w;ÚªÕ#GTz<êŒN=®Ó©3N«=žrø^¸¡ÎãÞÎûãóû–{÷wïý.Ëx{1,ËŽŽ‰ÑSm2&gä¦efL›:9.Ù—®ÍÚ ßdEÞK –˜ø¾l^Úån•‚¯|½Oó#šýŽcDa”X0𠤯˜D&‹©`˜™}Ìq¦—ùš¹Ë<¦VüXžÄÎ`ç³ÑìÖ°03«0'ÍjTOŸ:uÆäÉô©Öª5SÔKµë7dänHSk3ôê¥Sb¦¨—eÐÅ4uhf†Z—œªMOQg¦¨ã“?T'¬\·R½$nyBìʰ)ÿ7ŽŸmèr¨Ádã0]šÁ¥ÍIÎFš4ÃË›ãäôä”á“Ãàù½ç[šgFžç†PnÞÆZ#u­OËÍJ×>?úªó!”ª5¤é“s¯p2ähõiëµé/è½Lè)|Ã0cc&Œ3Tö¡€þ­ìÀÑ +°ÀZX+kcëØz¶mdí¬ƒmb›Ù¶•u²mŒÿP*½™pfsÝìâuU¢óíÝ,õ“ÖHÊÈ*d»e‘'=~O¼FgøþÞnž{ÜÍ’œn ÙM¡‚ñ{l'zžŒB}¼œžK˜Íðîwóy¹¼€%ß]“ˆ3)€Ž"=¸Šä•´§Êíªn0C)p•PQ[Wk5«ö¦žŽïE/Â`üaÀjð,F_ìÀ(ü­Ùl6‰«p@S«ìåýÛýDu™Ž’`yHGý.I`háöò#çö²ÄÜ+!ç(Tð#â‰RÊ÷õ`iŒÜÏ]É÷ßɧ¬)¹Ü‘ˆ?ñýW@»`©ª×u¢âB>™hvB3œãD‡ŽÁߢo鿌ûbñ§$ñû=d"œáÄ«rèH~÷À^VhãºÀ’Wb†²leèê°yùèg*€Jˆâ<:9¤C¢P^²l*Ê¢‹*Š`³EpV]Ly°°ÇÔÁ åœçžpÒ£p2:ÖUNM×e—êØâ&l,å õ ‚¼ Ÿp"½K&½}GŸÍk6C1pù‚_ fGêH> \Ú‰¬%PË9 i-¼ÿÕœC«Î|t9'ÿ'Bç¡!%Š𤕫³×åW×B-”rù¡Ëi…–ʇ'þs£‹øÙ:Á9quèsî1¥±Îbvª¾dRU¿&ŸÊM©öÿ q‡ñ}&t–Zëº]8öFÑÔî¤rµrn;½ïµ€ÌGÍ]ÂôÑB–[‚ÜÈá6tØvÜ<þ|m¯§Ö;8—`É+4CQ–PŠË •\#‡…0'ñ×E&èÖe” )» -‚½æ›•÷¦»p–-*[Æ Òç|‰óH¤m¥VhÎe±PeŸHÆ~úãrÊØÌ÷)ÀÖ-ïn. Œ%*KÎ&’5 ¾wBô!¡äV ¸F|þI«Íj…:®©Š‹Í`6+¢—ÍG/Ô 0%áÉ\Œ¨ÂÙ€³ÀãsÌãOfâý¿bø} ~8ÁQe¶×ÖMª_Öo F­P_k[»u'›¬2¹¨~-œ›†tk™‡ ­Ã 7 `,Sc­ŠÄ¡´炞¤*£×5œO43Y Q†Ë…-AƒTåH(¬J.œ»& TÕPí 9£¶m¥íR# h%Ë`ç¦*_[§þ}ôúÉ?ÿ“Ó1œ¿'ÒÙ ?`ú–÷~|œå¥~º È‘é'¼µåók²18Ï#™Ø ~ßh·Ú ~ÔW7yRÜc‚ÄÏed<Ü+q˜OW}»ùƪE—’öÎávÈð ²WÊ£NfA0mL° ÊŃ©Až6Ïe°`\¹:”¼÷Ç2Úñß3/ÚCGâŽåû¯( Îl5ÛRD]Œ¢¯IiÖë ÒȵŸ<"‘ää rûöÑ£6ši° e¯„6oq±ïbOˆ' <‘à þ—GMñT§ñ î3CK™œÀ9ÿ—«Wüб´-··¥ÂH<9CfÏÖjͦg] m¼¶6%¹KzúÄ$#Ÿª.~—O”gY/Ý-᥻ÄŠÁ4òþ`*¾ßë^O”n*¥¯·˜ôƒD<ÅDSŠ>kEœIîÿ†„‡“àÐ+í‚e3p%UC$k¬&ÕänbàYT‘±xö€Gž÷V{|0o­ å‚>Ó‘̦Ú!¢vp¶YÁj¥•ÿÕùëÄ‹hˆp—ûœœÜN"ìd6Yœß@1ó€+`ê;ÍU޲âÚÒÒZ¥§‰w‚Ü•¨ÂYíÅ—n’̓Gö€ìÛlj_ð²óõmPOsþúð±uKĦ¡áÓzºBôÝØÎ÷»ä¯?öJÄKCC Ké )íÅ|ß?RQtHáÝï<-Ãþ„îâE3¿žjc‰?q’…d-Êh¨hÊJÍPU© T£j1Öa#çVÁ.2 ‹wéhšÊœEöêC† «ÐTA¯ºd6»Å¡ò«h'Ö‹ª&›EvØçòH¥w|¦ïðéj·6Z,u¶Fç_ßö:{#ýœNé÷}ƒaþ ÆR¦[endstream endobj 606 0 obj << /Filter /FlateDecode /Length 5701 >> stream xœ½\KsÜF’¾ó4{ØÓøÐGô†B½Ù“¶%Û²<2=±ö@±EcØMÈ(™ó7æîódfUU€”MƆj¢ õÈÊúòËGõ/›"g›ÿ¹ÿßOŠÍÅÉ/'ŒžnÜo›§§'ß”žäUQ±Íé»û Û°R楩6F™¼jsz<ù1{Uÿk»+òB’Ë2;öÛ"/ϾßÂJVTY}8¶Wô7“†WÙ#Û¬*Eö¼é.ÝKE½ôvËa(%Eöó–—y!™Î®ƒï5´Ð0¦ Åô|OSR%+u™u4‡¡Töª±] -£ê胟È^ü6;ØfškÍÍÿž~¢Òe(*!LÎ8 ìôü$l{ú“”l³*/µÆÇ?º%Ê’WUÖ\¼u³0R \„d0 m@xüƒåU¥³wÁ ¡0®ðåJc$tg Ï¡ií7B ©¡+üª2¼Ñ ( X&Ïn|ÿ&kz70cYMÒ‚MÏ>l•ÊêæPŸ%ò ¦°ÙÿžÛi©J–eÖ؆“4ëÁwm²!Ù0ÛÏ(Úˆ¶_ÈÚwnŠ|Üת®šð‹­Ý%ã]*D®˜v»ô7)ÝHHI]Ù&?fIý ¡Æ™šHÚ÷Û©*· 86€’Ü‹ª¬ÜÒá9ãÙûPóºÁËVoÉi‘©€"ÅÛÊÃßb³ƒ7•¬¸çû@7j«êä~Y_à´´ÂãçE S ¼+ûE‡ìÌ.B³Ì·†cªX¿_]Să{™ Ü ø,¡wYih.PF(Á9ª6Љfƒ½ %©Bsh†&ÚöÞu]švm|¦Ï箕˜+œÖ€(*ØÛ¶;œš›ow¥„?¡ùçÁãöL(ÃŒ—£`ñHÑÌ.~öÓ™ï/ÉLšX;¾éh 5žQÔÚû²Üœ~srú_?fœÏ¶‹ö—_U ˜&Ú®¶ÛîT@ ²þ:ø¢û@Ò`LfQ?ÍáP‡böfo;+Œ¢ §ŽE¬æ¡Îaá+_Gp§#¸!„¸¢ù*@½óëÐî+içý¤{Ug4bC1W0šà`­}2!n±°S½@n &éÉHç!`õP_†úAu¯€É\?g´"!èœÁçì³éD‡sYŸXƒ²%Y”*ǯ“'ÇïÓÖ™ý”Ñüüôä¯'–c«M·Î­žá¸µ¨4pk¹ÑÚÀÿÜrë/¶¨C¸Mÿ‰­¡•È*ãpŽÃñïÀRá³dàŸ¶È™¹ g‹Ä¦ÉÒJâ3‘0®£ó‰£„ u ¶À’]Ñ »Ñ€!yékg¢¸)d¼ÃhsáÄ‹I«Ì¼Cáˆô‡i‹¸V‘NŒêqo€©¸­bFäR³V2Y‰-x-0ô²×òs0k”3ÚµÒdÏêè̃ilé[ÔX>ƒ\XŒìï[ÀŸªìö)øx‰ÿàe!@q˜¼â0­†óX ?mÝÈe;?K™zH͇¦‹ô㘶CéÊÖ‡©«Å£[ðO9ºd÷N… Ýƒ(š}-e,‰oÂiÂF’ÞK1l“öç{:ç Ùßh7KøÔÈm•d§ëPÑÏ;«b_9Ôªº{ï…æ÷ÙhV9‡¯4pað-qy°Ï9¹¶00}·c:—Ê.çõN%6TËîp´ @àvwŒ é½±”!“—S9Šñ7QJâ3—G œ¥Œ]jMŒjòyRca)}“Ô8íDc¯1žÃຠ–â–/£µ•E>Ÿ_\+þŽ(øåN×É %ýNìÑR¤§ðXZO `¹b$qÏEq"í:c‘c¸Å}gÝn¥AÎÖóR¤i1ºH¢|`¤¶èKÖ¡‘?w}£×Ü%§¾õ!Ë™>%øagÔjtŽ­iû2Z¢·vÁ¥¶hö°uui¸é›Þ}YVQba[ òŠP`˜ÞËRº¨MÜHÏ Jùœg¹þ-îöÁШUÂfFƒiƒ|-A· {9ƒ¿pS«7 1@™Jç´zœ’emï’2¶9„=ŠiÂ¥/¶äÜÀ>vqðü<Æ1l[´o/›hÇZñ56Q˜ÂšÁh—ʾ#-ç¥Q   ƒ=ãíg6Ñ”ˆÙ|#ʉ!?bÊŠŸ’Î÷7 Nj)Cqeÿý| Jwl‚C½•M(Q¨dèøšPõ‚@+̯®ïŸsĪ|$uÖà’xë@¿[‹2çFl(© :Qð[1L‹8®ßÅé\ƒŠÅžY˜ü\à#QŒ¥,.²¸NY3*‡¯36—ª¦¼æïLsÈŠÑÙXJü•bîN¢AÅÄHyK¸œf"9†Ëý¤Båz ¨|þ¾ù<2€t‹æOVa¨æ!\$©M«Šuà†ra ÌŸbqb‡?7"R3â%gŠåBÄÛÆÄ²½κ}}‰á‚}·(ð¤ÊJ³” “,gšW¹tØðU{s‘]é *¢èìGÌç<_?‡vÛÉìY}=á¤S%©ÄzN6vþþAÝä NŒ: 8à=Nb!Æ-‘bð©—¤ Ê_—`Ý/®C@¤@jd'÷ŽrKÐ"Úb/05Œ¢×WÁÈw'  Q1¶*òÚéÔŽ©)JœæSZ8‡mµ8˜£²öºÆ‹Œ*7#I}]Äj“ £ +‡Y|7é ÏÔAàȘ8=¸†à[žZL7<ÆñúˆMPËï\&GÞÄó& ƒS`Aôpr‡ˆ©è왆ª˜¤Ï¡<#ƒqÊÐo_õjgÙ°¥’^Ì«}ÎBº¼R\ÐÍE=>°òÓ2ð>}é'v8rÏjë혒$ÛÈ…©-<E‰:c…œVž£É¦Gs쇥d«Õˆ½ëKò8ú1æ§ÑU˜ZUÖÇüX™¤®ÓŠš‰f,À“ð%Û8D‘´ºYý5S’м$Rÿ—Ö±P|e×Gu ·CM VèÚÌ)Œ‰²KWÁ˾oLIáü¦1½2X«åסªìÐôËb ÏŠ ,óB%¶9Í6IÌ™6…õ#8 ÷ÍàÛ¤Ò¬H•Õ¬Ïñ}'ë¨<–âàb”Ǥg%R€VïoööznÏÂc}Õ·ÝÐ\/S-Ó×j)+B·[@Ü,;@úJYm@ty)(ÕŸý< ïû¿<~üñãǼÛûù¾§–·ÝÅã{P|tèŒ2ј€¿T þ'~›¼HôX4)kÃ6º¤–°öô4†€Ò±¸fÌýe‹$fÁU@¦=†¼™‘~| µ0¤+Ë hd0멾¹ÕrµTN\e9–ÐÊË¥•‡ ¾¥ÌÈ#šŠÛOCnO1áŠÁ²¢çÑv¹À0WT0ž`ÄùBBš‚lǦ=´7D³JÎ̤,Èþ?‰üè¥|àH·‰Ó¾ -ÝTèªKàDZ²ÖûÒ«ê¶(Ø<ÌmÑël—°[8(¡ÒÅ]u^=±ñGÓ¶E¨Yq/±ÎAŒÁ×ïëÓ°‹ïã’·«)üºèr‚ó¦ªu9eEÎ/ú—FH—àŒÎÂá<îŸti00›÷sFU8x ˆ©ð1Dw}[‡ä@:)Æim ]3tÍÙÌ89,=§ÞuVØÒ_m0su§MXý]OWŠì²¨ñÈŒpÖʶoüXñ…©Å!Î'ýÊ’çX{ùà›8ŽCKŒ9Æ~áø|ÍÔêl¾‘˜[¼ôýÏ«•iYBÆÅ‹(ˆŽål¤ D†d í¶ ÉŒæ†g}® àÃŒg *h\/A>ÃïÒRÐx°L2RsÒxàR•›Œ©¬Ò>Ù ‹Àjܽ’(,2KÃçWí«Ôȯ8ìÏ/Žû«-^ôèmÐ ¦#—l×nŽSÂÚ wš¬ŒýÉêHå£K$ˆP¼´µÿˆ+`³  #öÐ\n=/Ü»7•rtÑ^óŠ‹°—n8ÊÑ» 2¶t%É'˜;ß3&Á ב‚E¯Ñtt8ÒÖ¦ÚqôzåøB8FíDdsüSÏóÜ2 b–Ãí.µ¾µJj@~V‘cõpœû©ët÷–,ƒ#„÷ ßÕ]×\]€}qØÿÚœÁ2¹.h^µ”€63í§Õ <Äšo›fVy¹„œ&{•OÒ™_y›M}º¤,˜“s^&ßgàÃCë]¤iýõpDÎ| Ë÷%4VÚËð2û.è<Üíç[{ñ¨Æ^•ó•ÈÞ#ñþÆJçœÀÒ4“½ùúå ûk„I(ØZƒ‘¥)u¿›xU¶ïöWo÷w2-ß+¯òÒÛéSw\Ö«¶²\ú\×Íctñ9G6¿-Io–:{îz¡ë,¿Ù_R¦„ÃŽœ–¾1*{… 5 øú#0úŸî†7ÏYÐOÛ‚š(d±êv»7I¦ÙƒVEÌF4Þ'¢Á¥«ÝM¿Ïò¡é’Ø£É^ëÁþflÖCûºƒ1¦øahMCœa'¶,=ʆî§Öêµ³õ¬Ü¹ŸeöÄfØ…bwu· &³´pÔ˜ºUjÀåOÈ9ªéU² áfG?!0„ß!~Sw”'Â?´½þäÒn?4Ÿf¾xeß….ê‰;üõäßq=‘endstream endobj 607 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 300 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªüfü!ÃôC–¹»ûǾŸî¬Ý<ÌÝ<,¿Ïú$øÝŸÿ»3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡; Æg```te`Pc`bddqü¾†ï?S¨C÷ÅïÓO|o8Ãøò ó}b—~ ±×w×wÕwsüNý>ýû½¿ï}oü.Ç6½{z×ônŽïÞgþýugã+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—‰Itžendstream endobj 608 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1445 >> stream xœ…T}Peß厽K¶UFm÷D-S¹&ÓÌL1AeÒQà8äX¹8=•4Äøð8äãøPMÍÒ̲ÑÅ:KÇt²ñ!SSçÝzù£åÈ9«©vvvæyçÙçù=¿ßïyIBîA$éÍgòS¥hs2’ ‡ÄѤ8ÆC|IE¢í7™'¨d ’ŸCÕù"“Z> E'd$¹Tˇñkò :mZ¶:(008 @úÎP¯ÌSÏÖ¨#“V­æMÆÕ:uRf²:R­Q/àMÒ¡N=‘ÏT¯LIKÊHUó©ê¸”xõâØðE±ê¹‹b/Œ}UówTÏb‚ ¼C3yƒ1jUrÊ´E:‚ð'bˆ…D,Gsˆp"‚˜JÌ#‚‰Hb¨4!!' ‘œA6{¼î±Éãšl©ì¨ÜO^î9Ó³í*ÖƒðXÇšÈfÓ‡bd¢µ•6í\WnÝ–€½Å:¿â–Ò È3§`ï~»Ÿ²ÁZRdµ®‡B¥¾ jÙGÔîhm3–ÛóØM£öŒóÔš Cß»¹GTm´rxŠg°u}ãéêŒ:…8Á÷g'ŠsޤŠ­L›Ìl"* ÆyëÝ]n.K;Û¡z;›2¤rMPÅʼnîSURõ?¹DNÑ-.8q²Ša±)YáÊkÈ påqRg«€®ä×NÔ蔉Z”Á Í/XŽåš‰ØÓ½SòèíC¾lÄFý]Ïóç/^:È>8‘Ì ?ޤE³èÅÔ­;<=~~^T»OA_i³îԱ؃*0€>£j¸pç›îUQÕÀ³ €Ã2äCÑãïîCÞl©±ÖÔÊúºšf7ÚKÚ-ÈÄDäÃÀcÌØW—ÏÝå—Y6wT6µ·õÞ¨ÒgmcKó·æ·r?Øë8§¢õÆÍ–%l¢=rA‰gfÏоö$ÿ®…;¾áZ!,Q¦¦¦.­¼j`7íÞ\™Ê4Xkâ&)Ì`h­¨)íØÅמ,q€µß8ƹf-‰H'²Jìbn)êÀ®KÓZ6[EË)EU󳱦Qf£Ä#Tsý–Tw$ª¨½;*ÚÝóu;‘ñ–LLE$ãÈ«y}‰i#k-Ì] Êia]wŽ9¶„b®4Ífieƒ½¶¥{$à<&«îM@¾ˆÛw¿v°hœ€¾§$RÒD8#f$](V´1­Y`aÄí”KŸ¿ø*ˆJoYY³B"Šœ<Ó½ ¿=éé©ÃÍ-–^ ËÇl7UÓmÖ 7zlÂô·çÄ\¼Õ×u¾ëÜñØ8ÖÕÎ|½(øÒkÄä?ÊÛ°%w#›¿¸˜‡ùÜ|S‰NPvt jþ}<{M~ãè<ôáˈA~ŸÝndç Û¨ªîÓ_uÁÐi¨¯´_”€¶¤´:%’ÙbÓz+XœMdIþj’(ní·èŸ WÍ!Æí6=Š’ì†”Ý·{¸ˆKVDLfÇ¢-O©¾#K%¤Žt­¦ì_-PüƒÁ~Ëlæÿî¥Ô7}àõýɉæ9“œuÒµÐ+Úz˜v#­Ïý솒Ô|>=y>,Þîkɶ[*•ô“ 6áШ›ï\ÇCXî¶Yc¿ÅàŽUÝ(2J€ (ý*eƒVhç•ôïõk!'iD‚Þ¶ºVï0ïåÙ† 8„~eÞOx/ Cé—(úÖÝO.ãžÝ—ø"݃ÙJA\&q$qËú£ëƒÆÂþn)'îÄÞωqÌ%Gb±žqäÔó|NÏ×ç8õõvhQ¥V‰fU–UR§;DÇ«^•ךí¥Oy]Ùv•j¿}kÙŽR[éÎ/÷îTyÄÓ|3Äendstream endobj 609 0 obj << /Filter /FlateDecode /Length 6674 >> stream xœí\[$·u¶_'ϱ Ø‚TGêJñNÚPK‘,’àË8~ØM€ÖÎìli{¦w»{µZÿÑüˆ¼ç9ç’U$‹ÕÝ3%y ykªy=<—ï\X¯]Ëþ/üûìö¢[Ü\¼¾`ôvþyv»øøòâÿh5¼i]çØâòù…ïÂÌÊÖ·0Ê´N¨ÅåíÅ“æ«õ.W]ÛéNri›Íæz¹B´âÍŸ–ðƒ†u®Yon·wô7“†»æCßÌYÑüs¿{:u6ëôlÉa*%EóbÉmÛI¦›7Éï·kh¡a1LA‹ñý5-IYfµmv4‡©TóUï‡ZfÖYM\h>ÿ¯´ÙÆ7Ó\knþíò_€TÚ¦¤´Œ#Á.¯.·¼üöâÓË‹?¡­–­Rl¡¥q­N¨©Vuðÿ»ëÅ_wL·– ¶x $ÿþûÝì½5Ê.´b¶•jq{ÁáÏÖÊеš-6‚w\µ’Á; ÄàÕVÜt¢•ôƶ\P?Û Ø®…ùºd.hçÂpÑ%¼¡¹¸r­&è:Õ:Wm5¶Ñ ÷Šý€|HÇ…vЯÐ/¾IGg¬Ó­¡Ñ×\µëŒhÚP?32‘ŽÞd£+£ZàídôI+¦$o…ËFç0O/2ºtR_%cOñޱVê|áÔ Þ1¡=9‡7Ù™îO[Å7ñ„j™M[Å7i+ÔX4iߤ­@0ÛΤ­â›lÓ~‹C£ aæt ftp²š«TÉp¬Ã‰Žx ¤c.—B5ýíõEnÅ@d@4+T´Š“¨PÔü º8 os + 9W84ë|3Îu:7œI[®Æ“–ÀœºS*È7¯Žó3§DhóÕq$êAÆyÒ<ß]£–1ÜX#š×Ë“¤Ö`[^Ë$ûлž·/É@/Üs_°RsFûð¦X.8„æ-èüNš#G a~Z*ÈF²Òbþ•Ã@S M1~¿]®¤c£4=r´;q \´Àe¸Xwg,ó]>†vŠqixÄv¤~ÿ0Ë… ¾HÐ-5tR´Lë….Ö  ›§ÍúéÒ¯Ýd}4%§}·ýýõ®ß^íÃ.™KšJj’E´\qcÈ*ñq¥¯/3H¾ûÙ ©Eë2Ø   ôp™Pš'؉i+Õ1PsvBjæh”DìáÜpGb'¦­Æ6£²c­Mtmx‘Ž-$ìRÉD×N a•×V£®6k³±Ã›lpk ’"|Ò —-“ÙèR€ær©‹o2²¥[m“ѧ­¤ææ,_;ö3©ÖÞdk €æslßdäÃãi«ø&må€2Ë4¼I÷ì15Ûl×ac« mîi)$±®--(=gøÿ›‹ÿys¡¤lÞ\¸³ÌEǧæ‚4ãy¼}? ¿ŠŒ·ã›t,’,Ò‡7çZc1\ @QØ,±í1C8O[n: Ô:Ó|^Â8Ÿ<Øú ì¦Ujýž€ùû†ü œ1XBÏh¥)®`g›ÂŽOl¡hIJæW­àtzš±@ êöY“zƒÀy+‰~›vüõr¥¥l> N§´(º?ìÞ$>óNŸàø5‡šBŽRÐlŸÇgÝ ×ÒÏ¡›»äõö÷èWvpˆ…óÙoqo ƒœ5WI‡=¶rÎ2nšÕe¦ÒJ6ß‘Gël1Ð&¬Çj·Äq}–6:lw±þž1òfÙÛ”„wäf«Nx†d6ŸŸ@4ûÔnÖûí]æë÷Ú¨ÛæÝ (`‹.¿·´ëxF‰l›¯ˆZúe¯ÓÑÓ¾}ú×Ðùå——ÿð¤¡CEé&¤?|¬ÛåÊvš8÷ó\„âÜZ̬I"ß‚Œ —G‡ˆ™™4 »ˆ«4+„3 €Çà·Eï=lp ŽÁÁ^!?)Oµw4`Çå0Œ‘°¨õ„Y Ì`†¤ŸQênÂs×é >¡ÅåHx|{*äå•Å脘°˜P l*HG2È~°ö3È·]ßÔ˜Ðs—à‰~f¶®ápÒÁ u²ùt9î: œùJbž ºìDkù±=K39F"V§4›§kW®òý:%ì&Že ·ÛeËÚ5#PÓÏIf<ÔNøCŵƒl®ã:4)+àXeeMéÞK†ôŒP Žg, ¬?‚«ü¼GæÚô·ý!ý £“ô„ÃQÑwøÒº>ħÍË}hŒ O-á0ˆð§}š×Ë™­›Yš®§cž`4¼ ñ\À»¹®Üg³õ*ÁÁeÉ78©¦^=Ûn½È‚}»×±ÞV¯ÊUé’{E:€X€I0²é|Ø¢ë4âX ¸E¦»”C@”Ð iºy—ì¬Î·Òèüxž¥ÖøÐçŠ(øró.€‹‰Â  +¾tÜ/¦n‰ˆ5y×%;â€ñuvÑã)H¨Z0 ŽåÖªÇk+†AC}€>Ž!¥ÊªÐôàg}XQƒâŒ9¹2)N.LhsþÂlkŒ…áBxœ×€˜ä.=„Pú4¡ž4­y˜v)E‹;M ¸Ï8èæ¶Ð -îCP–3ÆöàyÒ8ØÉ$è‹ëo…‘a<zîÐX TæÖ(²C¥ÅÍoCç%Æ/8Ùýw}ª 2Ìzå»  ë—`]SzĨñá牥¢Y øbY.= ¼ ë}õjwÌ;ÞD€ðs% ±ßÆ´ËñÁú€?H‚%pý›w! æ åëA#ÇÃ41{'§0×gõ`‘ëÛë0!8XÞu¦ Œã±Q†˜(U¶¯Â:¤òf›’ŸaÄ”«ro¯Ï<ðƒ·€z[ ž‡Q…kï!›A9ì–ÌǶ›}D¶…&'MçŠBÀÞ» ²uE—‹QŸ\²Rfx×§ ÿfY£3¦s7éÕzøËõõËý×ÛÃwÏ6o®®¯ª¤fV6 w¬k⸕ cðÿ91x + 7ŸYÒú“ø ¾÷a´¡Ê ͅ怎o½ôËŠ Ìì㇂Qð¡Ù`„Êÿ…©©>wbÆÂiõ~^, ;„Ub(ê›™ðJ>)x³Dš?ŽàÙÄα\ð&XA`Ø#SkÄ`ÀP"³˜bÊ*[òbÄÅÍ#4OUé>SJ©@ïN ЍN'’ü¶§™Bí÷‡í®–Z·õAQ,Ÿ›5bMW·9D·#Ä™|ÉŸß¡·>µÍÌê' G¼D *9+µàGø¨ˆ1ßÖap´Àã¬Ñâ¯`'nðtkxL·} M°ÜÛA=Ð{(z=¹ª.Í.S׸¥É»Kœ¡×àçqû*é™GUk.7ŠèaíSV~rNq¶Ž¤ýÎí«‰>“öiÝþ2G‡8Z¡o×ÉŒ9oâ^A/ö³šþ’Íì6QEˆ„´Ól„'­i~÷åW‘Œ:?ROÐ<ùZií;«Ã¡O¥®£“LRójûê'ÙÇÛífù÷SÅ Z%%³*…òÐ @éˆk/ÿøçOk èÔ_š$jÞ›}îQן7ï&€Ï:¹‰¿àвÊ4 ½Ýïû,´þ.LŽžK¡ËWß-Éd+Ôzœœéû0%­“×ò`¸„\{ZTðMZ ›ŸÁŠñ©£“œníD4=ÆÙo¶ƒNÓÞà ‘¬cz©ÚÖZ¬!ñ¼°?쫬ХºnûÍh2¿“žLybå³s™“!ñIìhJ±ïÛ~³‰úZ©€Ø]æ:Ƈ²ðÍ>Ó™âßO”N§ä, ÜÀÑôG«ÂÉ5Ö]áͶ1'ZM€€Œ€ó'€¨Z8tgHÙâ&k½~0BªÝ37c[æ^² $dÖ;• ÂÕL¬ŠƒÌº~•Uލ¥V®Â&dŽüÆ5ô¿¸<Üûá^œÏùÒpЬ0ˆ÷õü%—Àö‘é†]Ai:ÛŠ·éVŸKK2-ái¶¥dŒö¯SX;-ÁaéŽ lÀ‚¼5 t’!¥ó–Ù!ÕœpÏžýt×|R[!œ$›;1wtæ²™ ]îEg…4½31xý\VXÕ/LæÿИk;« Ï`i‰Î¾ð¥`/ŽûWüÁR\A;þõÛ;ßÑټͬ֜ìP–ã3þà¼!Ãû&„?ÇôSÊÍ€E¥}dnv¨š™¨q³#¨˜ƒ»Mf? Ó<åaKJìHplh%©ÇŸDÅЄÓ:%Zƒ{\´,¡Ó¤L ¬ê¡Í+9AW´>…1Þ˜‰q)\Ä’z¡]Ÿeôj±%ÿ•Uh"ùÄ£êÖøš)Œ•qסð€Ï&0öyeªE:s¢äÚБ߀ϗýz‹6Ls»~™¦’©SQºÓÿrR­Sz+Š{‚GeŸÁ×ÛôÔ•ÍxlŸä«½¦ õSfÂE²:cíXÁœhfGÈ#Ì%]–Á`^YwýMr×›ð#ヷŠ ó|‘/ áÊ'%i¥’yÂ?\KHà–ü>hÓv7ïsËr‘5vÒ¡¼U¥¦ 'xñ ;7N¢Šôîn§V/©[ Ð7Õ47èFƼì“J“dËIÉùFïj:VµbÔ±hy¤c/¦™sR²ÂP`§ùIuŒµÃF~…ÿ^ÝÐÌj€q³?«í#C>ßG¾:ÙjÊ•¤ûˆ—^& ɺXu€R‡‘¬‹ÕÚ̇·€ 7èGr® ää¾ÁaNß:sRfm dºÌâŠpš©`´­±V䣖 ¨ÊqôïJ2c™†EŸ9á¢uÎ s0W¢o®¨Öœ¶8¡L`? °U” Jv‚ØŽ).N+aÌ9‡*CîU‡jnΡû/Ƴý:’·(ãt9d`«®ºlÇ;¶úÍŒ¶²rà’'Í¿RpÖ ¬Çn­»–xÝ,^Á;Ã@<æ™FqÆ™væô™2ÃÜùg °§~¦%IÇ´blùtM@)¥]+À·KýuMJWÜa0ÝYR!‰[+¼|æ`êŸùÑ?EÈcbÌE¿Ìw(P=Ç8¡ð ÿ¬Ê¢2¿£k '|Ùàè¡‘%k‚#-1Ë‘ p$¹9ˆiBŸ•óS[‘[^éâ¯ù!ä  Wƒ¾ð¸'1ÅØôƒ3s¼fÌq}ÒÓpXŸõ»PÉŽ˜;«8‰é®c¤>”E¸Üª–¬­u „7]»²® hÎA{D‹p–Yî•];ªz(aÀñìT7lo¦4k’‚ôµJyºZz*‰åÕCjl„øTK(pÃ*r—û¹YÝù©EÛB$„hX,ݶòr~€IÏ Þê$=Ús´‰üß=d1Z¨™²£ú!W’Û‚´Åµ±Ó'm““žFɺ¬²K–„åEœ8«ÛúÛužî£ §:þZÇæuŒy-ú&½Aöa¼)€¡Ú¢ô„îNüj|{7:‡¬¯"ø2"wïÌJÈ&r'¸¯ªâô2\Ägn“ù¢¦Òé'Xíçã+§„ Kêlâ ²*(Û÷|€Z?™s†ºæofLZÇ0ÖÐeÒPÌ¥1ª6Y~:­‘jЋ 뺿«€†åêAÙ–Ipɧ&‡ºÉ¨£„éžLR7hàS5T‡áÁùK,§[L2ôa-˜L“î±’mØ×p¦Õ¶ƒCÈðÒG˜‘0T!1£™¶+&çSÞçGh¦xÉÞü'9õIó×£ P!>•- ~Ùfh)ÓÀß(#…¡±8F.#à7ŸŠPxu~–Hk{=~4Aü.~)= ¦~}îöBÅñC:ñÍÑÏud“Ž×D:LyóP•”þ–ÈUàfË„©j Œ ²-çêÇ O=—þè!Ç1ñÅsifÂXxk°Xp.Œ¥±fe®ˆª­D±H}iCùݳS€Bƒ”E©BJ¡޼À‡/ŒmYüë‡TåMl|i‹êZ_™!(¿J®X›iñÉ6Éíî¶›0 Zôù|nµ¢Wã-èHÿËÝõþ ™¯®/¶Õ*x¬ L¸+ÛÓë”8븨pµ&nïýjµ'}k0×W×›Ãz¦</…fï·CæËº2¦ôyrù¼¼HåÌëÅÚâõnÈjáýL`:IÇ73Èúeˆ¸™(_šO#•q2ŠçQF.ÿÀÄÎ_R¥;H%B®C…¬¿²¯ÚÙ½íÑYãèëhCž|èôûáÔ¶ß{?ÕÃIÔJ’SÄç~¥544^™$&ÃW_#®ùW¡r“Òz¿ÌéǯrÏ&&tæCTrÓÉ1à#ÿÑLÂV˜¬¸4—×t ÷Æ@+VI™azÏè3Rf!ʰ¡‰}DÄ_˜–%g$ûUòCz³vâSán¤ÿ@ M`ý…AåïäAªä¦V¿‰Û_œ¥ÎÓs &t­|f¡7ëø @Ç…ï¡Ù¥<âáØo{r¤è¯~h]WòÉéÿ o—Ïendstream endobj 610 0 obj << /Filter /FlateDecode /Length 9998 >> stream xœí}K\¹•æ^¿¡ÈåÍFeôå›ôÎ6Úv7<†ÛÖ 1¨êEHÊJ‡•©,GD•¬ù᳞óàóFJUåMBA_žKò’‡çÅ/˜»YwêfÅÿò¿oŸ^­7¯þöJz“ÿyûtó«×¯þõO>²KkR7¯¿}Ũ›¨n‚ »dÜÍë§W‹²·¯ÿ ÂÑÂ&îVgà×ï^}½œ¾¿]ñsPkZŽ?Üjø­òi¹?<>î?t¿{{{‡\²1.÷·ÿýú?°iß7íÜ.ù”JÓ¿¸½³ÖîÖÕ,¿|s{§adÖ(x–Š*ú¸ûóáùÃí1z—œ_Þáo“×Fƒ ü¸Ëyxèmÿ¡y£gÍ–ˆ…}j¸å€`D[Ú¬×3$áîB$±fKÄ­iHûÓ ;wŠØòJ``¤Ä6®´Á&á*ÍžÐjµjñѾHܯcÍ–ˆ à–¼ÚÅ)bmÜiš‡@³Ý}ÁÚŸ"k¶DLHIgdŠä¯×4ÛΑȫ«Á³íüq0ç°^M´ Ü2øP°{3u^bY³%¢á-ÈÊèÕƒfOÍï©×z=`Fƒ! ‚V‡Ï ‰\Û 1ßµ’ZO°ežåÐÒL‘ÀvJ+Ø‘jŠ(èÛòS†µz†¬èA±¬ÕÑ)B @¬Ðêæˆá]¦U`Ýž Åe€SE?>Gb™Œº§ˆ)KŠBº=C,î DÀcF5EÀÿÓ‹â0B˜Ží¸G‘Æ1š-"<Äš=AÀ;ÒlíX³'¬½¦ö¬ØÀáš!êëÌQz§ù-! °s¬;Ù!øU[ A<:O?EªN|=E@;4#0û:MÐÖcámæøGÖmã²¶ Ä€‡ÓÓÏX×D+cÁ’¸9‚Ñ=„ÞÙ^@<ûdž×š)¢Ê¬;\£4Go|gY¹Pý²vŽu{‚àn¤wpê)bÀ‹zš-q¡ŠSÄ—ëXËgL)-žK”|Lˆì Í–_‹f ÄÀn$Bš4r\­Á C69E0¡9'½ž 0¡¼anw1Ì q„cÞ7š)‚îšö½†b VWsï†P2ÁÚ¬ Ù)î @ÂÊz=A`›Q–©¸Ì2%bÀÛðÚðdvŠhðl¼ëƒaÍ–ÙwG»rŠ„ü¢Á³fÏú„8`g'ÄOX Ö1Íþt‚*L9t5VbhÆ!TD5CÀ%RTeȌ̀62Ïz,ÌÉ7p4Të› ¥¾I| ZŸDªÝ¢øNƒ+Šs|ªò DAÞI‘¤É&mž!ŽÂˆeV +$Vš›µŠJ|(±±1NS…o‚…7ž•yè¼¢hqKDcU…ÄDGõ=‰(X×üމµy†d?o,xs§f¤£yeÑRr-[ `Í #:q-{‚›b!4sö¦cÄ)*|,(U-õY£%­1ᕲ^…YŸ·ŸK.i,¨šš3[ã0‡ó3Ä`.ÁˆÊºoW]4[ 9Õ´+ô¨€²%»‚_ 8C pð^´«cÍ–Vž Ð[,î Ÿ!ý3@àZA:Wz3Ú†<6O{I‘­Zé$y‚DžO•õ…¬(¦­EØáLJW¨¯fäHÕ_w)—à•Àò3 F¡ q_!ƒ9Þ¿úÕ«Ê’ê¥`ç@çà2AËŠó¤¶Rè8Ø­,•™Rƒ¼¿ÆÅ€ˆ¸H1WJ´Û,¶¦˜,µ<ŸFÖaeº”h « ©I1aJ ‹üjS¦d[XÇlãbÚ”<8„UU)âN‰ÁcðaM"úÔçZb•;¨_jSš)T¢-Œ+ƒ«RL¢ÚJa•Ä‚1/RL£ƒ‡ýŸT둉TRm`?š:[™J%ã¨Ö“©D[Šê6z¦SÉ1ª UŠ UÛуկÖSªD[XñoR™Tµ=V¿•©Ë˜iUÛ¶0Kë6P&Vm¥0[6ªµÅÔªíèmÀjY“brÕv\(m]ÇL¯ãŠèå«~1ÃJ a ¯MDœn ®%ÄÖT[ƒ¦>!A¡Jež•˜T w[[™i%zD¾‚«¶+s­¤ÔéÊœ+!¥íЖ›ƒ¦~¶cæ]I•ÀD¥*af^ õr8uV3÷JHÁÎÒk=³¯Ä‚пIþ•˜{xõfy Köh»Õ.,¹±LÒÚb–ôk·… KÌ—ÝtMЍXrϪ÷± Kô±TÚ„˜%¤`˶­QYB †Ñu±p·d`ëÒÔ8³·„e /Ôí•ù[ÂélÁHap ¡s×c[‚, ‹!5)Ô1ÙVêìV! W‘¶Y¤ôtcXLT“b™BÏÚ¤¬Ø4zݧ=…D&½µÙÙUW©m´ŒCÇ  ›f”Éz55)æ”I_»¹°ÊÄÐË‹ñÊfžºÅ5…[&´Á¢k®S•ÙeÒo‚*¥: ™_6óÔÝTeŽ™Ø­øâ® žYfr†.H*<3¹ñ¬$U)fšÉÝZ(U¨f²C š‹PæšIå{%Íl3é\Sg½ ëL&›ƒ*gÞÙËV+SϤîÂÎB>&Þ÷±H¡ŸIOí:ƒThrð©Ë”‰…&u&vsá¡I_ả0ÑÄЩâVW'³Ñ¤›†H±é_f¤ÉxÅ÷Ó9iRÊtñdá¥ÉU—¬fšô­ÃîÉÜ4éÍ}W:)ì4™å».*ü49«¦;( 51z´m'fŽš=’«B“b–Ú,Üêö>Õäàc—rªš”ò½¡Ìt5±Éð-ݰâvcÐ~Ý4E´5©Ë}øPˆkRjí·k¦®É41v©V!¯É×wÙk¡¯ #§Þ¦I1Mº•¾ÆR(lÒ‹ ŠšIlÛÑ;µöÓ•ilÛ¶U¶šÙ¶£gÚsW¦²‰¶ ‚hÖ-sÙd{•Ùlbê“î}ÚDX;kcÏ”61ó>vg+…Ô&£ŒÐoëLlf6¿®qnæ¶ÉÒHèÍif·I®ºd¥ðÛdî=è|f¸IëúaeŽ›—í•>³Üd’»h$ÓÜd‡ Ò´º<™è&ÃáA·2Õíå4¾ÝÄà]_1,„7ÑDë±C¡¼Í‘μeÒ› âÐÓÞfyAg¹2ñMºÓ;ÆL}NÚêc&¿Iã ‰nR~»5xêÇ8iuû°Ðà^Ìq Nú;Õ=sáfΠ¹»L†ó>È Nº»þü²âD‡™ŽP¤œÜù Û F!ÅI)ßg>™7K½;}ÈÄ89ú±G¦ÆÉÑ뮌\ÈqRl‹u ;Nt8T ?n[nR”5™*Å 9¡6Ît±`áȉaá÷uk‹hr2˜÷]qâ¹/pï'34Åô:á£0È[Û+2ÁnÛ#22šM*;áYloç ÉNú;×e¦…f'ü0ž}¦:®L´ÛŽÞãe5Õò=ì>Ýšb¶Ò ›Fd¾Â/eµy`ÂpØüTKY(wb汨Û:Ì´;Ù¡é" B¼“Rýñr!߉9E–}¦ß ŸŽ§ôÖW)bà‰ðt¾™ùL“1^èœu!âÍ’¤fm Oh3¬a‹4 O´…eÉê1 O˜y´‚ÕŽBžh ÏKCkKOwÞwÑé¤*ÒK›õq*H'åŒm\Cz)ämãªH'å‘^8Œ«"½’‡ùªH'T-tCz)ð²vWE:©¨âhãÒKA°F©‚tR B±ÁÆ5¤—ÂcäQª M ’0;îdžôRv3ú†tRjÕ£…nH/e7£oH/•VúÎF'UN /¬\Cz)$¹ÄAª ’N+×^jiº§óÙ"ÆÙ®ëç"!H£ÉÔn¢„†tR‹(ƒÏ®H“zÉJtR/è`“úÑ7Åâ·³-^Á‚šÎ7ÅB”ðrÓq6~ŠðÉãUô)Ñ'<¦ƒOjÍŸ~Pt›,][¯†Í|û§Šx₞”†ôRsÛ:©‚ RÑë^*#ƒTE'Õë‹&±Ýš 66«§ÝG“ó!ØK1- ¢>˜%Üu0ƒ?ÕiúÇümq¤;a®Žc9˜&å(+Gw¯Âoay ¶VÝ`1¿£FÿÖK¢~¼>EM_çót]ü¿ùÏÌ£8‰“8Þ9/ ³‡¯a语ŸëÍÂ_cS‘®ýoøñ]—ÿðW¡;ÑëìðƹÞ©—õ¦J½¨7UªÓ›ÿ¼8]~üCóy¾ð+~Џ•¤4¿9<|ßþBýr¼¿½Ã¯Â®Î-á·wxh²*·ü×-^&—tXò¾OÅñÃûÇOùa¨¡ö«ïpsCH£ÒB7:ßa6%¿<›6vùõþé»[—*ÂóŸŸßtãÚ¿åæÀWú¸œïûOÇÜD´ËáCþÙ…å·÷ð<ÄEžöna0µ”Q®£<Ú ;²(wX\€—]žž?`GÉBÊ–Ã-ÄJ9¿œŸÃÞ•V–7Ô‹IÜ Ä °ýΡFÌŠ;ó>ãÁ€,MŠWË3ü„–Ïhª{iÚ´øµüÖ×ëß¿zý/_/O¥ç`½Á¶ñ$)Õf´Ãá zÉ©å〴dýò¶_–gšneüòÃ-^i²š°ì‡ýyX¼Óîö2ååõ_º±Ýc“0‰Á.0‹›_\Äeœ¤ï6jÖ~s>} A¹ TêDÙò¢cçÖ,½ò~7ü NÞ8ÙeT–7*ö÷ïð.ϼü wûÇüìUŒCßûóV%h¬t‚°¤.¼öðð|< ¿}Ú‘àÚ¿Æ]zëX¤~ÀãŠAƒ˜©å0¾Vûù0( ïx\A÷ǧÓWÔé¿þ)øÁˆ¼Ì؃!AûyØÝïØÔnLÃnK}½|Mã½Ø),çÃÓF'x1"X‚/|Љž^ .73Õ-å}–²IÎ'áaŒHÑ3^½ã¸.)†M³ïx&’1Y­òÃR?Ý–ÍÚvðÖ Qÿ0™hߨ5¯GUb݃}m\×M{q¿N­™þí—g„íÙœ®Þ‘å€X”Va°{´{FÓЇ_ y‚Ðb…áÊÅ"y͜ѣù§åÉ»–Ű eCÜ« ë5Þo‰W’dó6Œ§À`e L;«~ZÁîÆ®[õ7x ¶ê%ÉE;vÔþ~´§ûü4üâp.ýo6Ïi4`û#úšèA“Qðë æ'X¡ Ô‡aƒ¾ÝªwgzNƒä¶€.ÔÔ‰ÁëýÜr>nŒiSøwù°Dä÷ðÅÀ”üt%/“LN[† akóy[…~_øLÙ¼ö~ô§]s‚¨Ê¬%¿¹%ƒ’–~åŽÛ9îäéy HÐ&9E+ƒ‹ y |ω¦¿±ªÃ D¦«;´7䃵>ÊEK‡%ËWYÃ/ò¬–þ€ ÞÚDåµ?÷AÞãÓÐýWe݈՜á-™G0雿û^âÂ^8~UÅ C8ïï9³¿Ã¿]¶n“Ä}o±Èç`ޏüîÿõni¨5tÓöcç ¿"á,þý<{ôTºýf©5ÙŸ¼ø‡D°HÑ·«W庖t“.î<®mkòëå›[ž v9X㱂ܼ×Áð¤>|)ž¡VÀdìóŒÃ®ë$ƒÙ†X«pcäÐëH2ŽSéKC ªcçÈŸÛ(ö½Iâ¡Â!¿®Çp}ÿ0:ï_äbÖ(³Â»À°€ò?>×8ìã©uÁ1 Z™±·¿v•×!’<çùZãXÀ;¿á:CˆÖBp‡¶!¬› gÿž•?\N³ñØ}ä?VY‡OCêƒ o–æÛ>z;"?W §T"NEö²½Á·ŠÖá²Ë£X M/ŸN­·m@O£s/Õ†Xýbw§ÜT¢.øg/›óc[ñ¿ž¨ÆHC´›´áÛ‹fl(Ø]}ivß9üÞµëîyS*­êŒ@èôÄi–ÝnOÍö—&Ùgûg¿]z“ÔwžÔ0¶9!üÀ+üû~ÿKü”#59Qƒ‚æÀpøÔçÁÛ<—z%þÒ´cð¾xnìß=W½kfcX9®­¦u[4º …cP|MÌ^ÄB7ÛXP†ŒÅå3„>"£ˆóó±õCEUœår^B%–Y mø¶ C“†¦‡&&Áv{¬0EƒCxöóÜ—H]_£èÙ×üa0uƒ2?Mkõwø·Š°¡ÑÈÝSM“ò.,’´eßÝþ_ŽŒ€@ìSúÇùr…W?Ú¡]ðåúçørŠáuß$ûr¼þ&¥WÄçsÉ™Ló` í¢˜‚Õô& ®m(%ob\ª[a[Éo n˦?ìÊ1]-¬ŸJWºv‹®à»yñvìñð{3+s0<Æ2Ës¿ù6£®©¥t“G‚/3É’øŒ°DNà#6Fõímõ…ÏÏ»¬úÞÞ ýÀÁº¢êS1ZßÜáWpÖÄŠovL˜ƒMvõW÷Ÿn •?`Â>àk"O¤?ÜßaFü–«ÐÚ:š*?£BGoúîþ|ÿ–&"a,ópp›ýoÿ¿hŽV:Ì¤Ì ¯Iãæxªñ. ±m¢]õj:§x"W<µûÍmÄùWþB—÷öËãJîËÆ¥˜©Ó÷ƒêîû4ò±““»`%“+µ`¥¢C¿¦Cæ›õ×X˜SyÀç#!D®Ÿ¯ñ¤õ?©Æ3júÄŸ[,ï> oß–™N…‰Á˜ÒjF©£?ž¸ÊJ9‹qÅ? «c\–sHŒ@ÿRHbÕ¸S·ËçKuõåòøäܳž¹Óɸ/GŽÖKÃx?Xf6‡°“?v¯Ü¿åÅäxhæé²]Ì=c)aâÉŠrýÔÁŽ.‡ô­nNÙB¯T7w”)ЮÀoҩͮߟžûGÀ:Ÿký)?Ÿ"›åéÌí4œ‚ýPÅxðø¸)‚ÆÆÖq‹ìÏ{,¹à7³“[þ0ã¹b´qånâIÆÚÞéôU©Üip($|æèЦ¢ e_0i6Ô¹Çê]ß‘–p"£½X<Ž*ùÔ{(ñÏÜ]â:€ ¯\É¡XOSùYó49‘lUæÄU®Å¿ãáÝc4„ôœú Û ™ù6zkÿN5bË;àP‡©6ǵø6‡í¥7³é“8•ŒÒ#µJD0“úùÁR½ÑKeà—Lyy<Ž;útÞOÒ®ê‹ï6ô4”Xú@ç|ºuÙÁ ì g´0å䬸Z©!x^v»ú óŠßQăóáL±÷¸£õß¿ÏÏ$»9´þ¾Û“ï²”OøwØ¥w %8¾HÀ+äô”8wgé›~ýø§þ5Nå OáKÑóSÔj_ö ¹U†<· úX>Iƒx‹Ç/gÑ䎷‡ôêÔ ÚÓ ðF1¦î³¸¡_×7ÝÏ£?øÛ÷rœ%ͧ‹ç€H*Ltd~á@iøðþTä³;ã¶=À&1½ÉÈYI¬QèIòƒ •€áC¦ˆ&2P_´ªíÍ.ðPä©6‡šÿܯÊC.RzNmæk&:ûõº2£ƒ¸`Õ³yè.=ƒ­4öVýRÐ™Çø’»kލx:5”1O;.¸ ùüu6õÙTÇgÔT䇯åÌÁ¬q³é S—йC¾×Â2¬b3Ì-Ÿ$±= XÜ+³@ü)L”Ó©=-|’~±2×½°Y¾NEþØÙÇ_S%€ÆºÉ&²…Æû%Õ&7—Ä)Üfzè!ê:Í$`"[Æãé”qU÷±ÛìŒÇw£MÁ¥oi¼çGt"¾gu¤tÈᧇwx¥l2™µ­ÙéflîI;ÅÀ‡üܓ挞4ÖjÊ“ÿ¹ÌhLö”Fg/ÎUÛ?(÷õ)¿.Ïä†Es,“á¬öä$O£',o ý™xA-¬“œ–ê÷È]1“›^«6‡âŠ?}x[F¥–ù_õÂÅJŒ“陃¶¿(üÀÊ}ðToÀµ£ŸÁøMµ¡J~.qÀÓÖ  2‡ü ÈYO}ü‘³'©¸ˆ/ʇQ4>ªså ÿÜr™˜…Žê7~çÈÉ05ë¸Å²VLM¸j9¬O¸ˆp éø®¤ãZðà©Y÷¹4¤;|Èoý#ñå°m™RSV†?³w§iþ«bÖY®–3àVì©#aŒ2ôÐËÊø‡aãþ±:øý÷\¤ˆQëåñg• éϪhø–iuÿÀãdx1å†véj?ç8Ùí´1}“\‚¦éI›#Æç±„С߽£µÆj þ14,ÞäaþOŸ>Ôï×\6'>#Yiï}5½ËßW¡o” ܇}ÏÇÇòU&rbs7ºÒò+äx÷Ÿ«‡Ûm”]LÕº Lç¦*o—û<îË+]À“Ï-®›f%w—TœãáŽÓñÇn¡~½£Ù•ߦÁöËù€tÓ:dÔu¹Ö-OxÌ®·•®úƒ­“£†M>[¹r*OÄV*ôöÝí³mïùžX$ä¸Üms/Â[GâXï/.zY—ÝÒ1ñoZûµÐ1ÞLù˜qçý·UÌ:Ò)¨ôLoã“(Ø3ŽËÀ¼ºš1nOÝzoü÷ï:yüLÄD§/öªÏ /»þ{žÿ½`iGendstream endobj 611 0 obj << /Filter /FlateDecode /Length 7665 >> stream xœ­]IdÇq¶¯ŸdÉ€aèãkKýœû"AlÈÚ ZÒ‡š•EvwQUE©¿ì»Ïþ"—÷"²^Íp8A°:+¾ÌˆÌÈØ2³ø—5ëEÿ´ÿ>x¢n^?ùË]ZoÚž?ÜüÇÓ'ÿúÇÐ2g•õÍÓWO*DßèäæóMôqÎÖß<}xòÑô»ÝÿÞÞ©YåŒKÓýýËÛ;kí¬¼™þt‹/¼Zåiwÿpx,kMž~\Ér²ÓÏ÷ÇÏH%z~k0”wvúäÖ¤Y9¦/Ø÷;P0£=(Öö—…%Ÿt i:–¡ †òÓïöµKœìâ¾sc§_ý'»¯dÁ„`âÿ<ý ¦*$>UÖÆYš°§/žLÚß>ýôÉ>}òÌtÂ{mülòsÀ({cŒò³27Ç—7¾y|ë’hçnò¬Sô¯‰Uy¶.£g7Gëêš<½µŽfÖNû‡—7Oo^¾üìôñí-q\¸ñstÆØ›7èç7ø÷S ýË':5»ïC &ž¸õ¬íÒrÿäO[DÖÏ9¿hiÐè06š˜1±‚¨·0ªŒˉS--œ*b}µ ê-+•QVϘ¾•jmáT1Í^µFCëè,'ZZ86Œ]--ŒÊ€•9ÕÒ©À4…SõFem˜CäTK §JvÓÐsf6‚÷¥…S%ÒIAÕ[•š¯ÎÚ©2Ì‹T½…Q§ç($\Z8UJ³$j Œ&º8[!áÒ©Àƒ«³´0ªŒpiáT9ÏILüÒ¨² ³˜ÒÞÀi²ÅvD½e¥²°Á³ã®-œ <Ø,¨z £Ò`Ârý[[•Q0<|â×Nåõ,ì œ&§9YAÔ[•…+r|²ÖFåÀƒã«³¶pª`gíUoaTž,·piáT^’øáû ýÄÊ,-œ*˜Ù‹‰ZZU„ ðbe–Nåà K £JàBLToà4àA‰•YZU†Áb¼¥…S…8!áÒ²R9縄k §Šv6QPõF¥Á…èª7pð 4amaT?rÝ[[8üPÔ‚ª·0* ‹ïĈK §‚Å·BÂ¥…Q9pÁ—già4àÁˆñ–Få­š_µ…SÅ8'1¥K £ ÆI}X[8‘`«70š¬piáTiˆ.ÖF5Ä.<šá‘Êò ‹úÖÇ‘oÕÍ]‚Q/ÌvoaTV95î&–NuÝ80ª·¨£zϘS£‡DLÉÇÔbN£T¼½ÓÚ$xcú+Ó_ˆsñYë5ôÔ!C3b*¶à¡þ‘;ÐÒ”y¿Ç )-- IP9ÑYIzËJâ°†6s’Ö²’D¤áIkYH:s+ g÷}§v ¾âPÜëÔ=;¼ØÍÏ·0µJçéË[ìW¥ŒŸvÇS™8 xR¬jƒ-©a(¹¸£LË…ú¥I¾~¹ûúå©|‹.)+`ȦW·X”Ýñ¸|}FJFÜ™ 'íLë%oþɸϿ§¯öÏðײ¦”ÞÔukjf­Šä´GÞoÜó›9ãKš‰ãkì|§i•œ}™ßä3EöÁfO‘Å=Zà§s®-¯V\ô‰¢C†CŽVUzÁ--„Ã8ˆøxHo¢NCƒÜ0\ƒ±á*ŒÖ`b4ïgïÄhdÊ´©h¥ƒ§±‡o‘„qœÍ³ ®æN —2c#p³tpû*œNsãÁ°ä(qY••å8²Â^ࢣ­$qÐ!(>ÇÑn —™lÃÖUè0¶ ÆW¡Á¢'†¡¢¢=WÔÚðjÉ0ŒÙ¬k6é¡Ma–³/0D£È`Ö†c²5“­á„p Ç„k8&\à é*ŽIWa\º “âÙHúˤ ÐÕÈ¥ƒ¹A@.…«(&[C­²5”­¢˜d µJÖPB°‚brU“«‚¤X.—ýÅäBb’ËhŠ¥` Ç$k8&Yà ÑŽÉÖpL¶†ÂU“®Â¸t&Å H(…tHisÒYKq”®Â˜p Æ„k0!\…1ÙŒÉÖ`B¶ZuY‡C û"‡s¾X*1\7Y½E:£-¤ ‰ú”Ò5¯áØx ·5Þ"ß‚cò5“Ò¤b‹Ÿ/ZÁ'"Ÿ ŽñÙpŒÏ†c|.8ÆgÃ1>Nð©s±l<‡-%¼AÎZzÛWK=Œãà[ç©äèÄxbÜÈ'¼«Š— UR8ÞÕ °@«€eGi7‡ÙTTXàJÁ4|«•£y5“׊x‡ÃàZU0¸V7p©• gb²Ún€Öéï 6ý ħ_kK¹Ìa!%‡ÉKöj)vr<Ô’Œ<Þ 0˜u#e órœ¦‚ö8œKEç.ªvqL¦ŠÛ86- ·NKlji ª(ÖÏ1¢Ð8h%üVc)qã¸! 2†Be¡“[Ü Ô0%qÐIŒ6‹91ØáZŽ…>Le+-sMŽXql²L‡ä9Šá¬Æ \F’Q©±JQ ŠiÅLš8Ìá ˜ZØ! ÅTbÅ‘íPíCâjµ›ã‚+qøŠ³°©ÃX(Šk`¡("ñ㊲ëMܪ`·*XÇq³P0¹ 6Å9‹é¤#«a[ØÆ$a9Ë,9:¸RÞg0Jƒ]0ïå†zµü9.ª’z­8G í c¶ Ëñ’.9Ã!ËÖÃây¸`á˽7Ò#¿í6Û)Ãcdc(/2`ý/XW¢†ƒá7l€Œ .H{ žÕ$®žSp\ÈÅk®¸½a0‘Âf†l¥¥ßq àL€"ÊH,"' e¹œ¯úA ‡!¹!@yÓ`Ù#¢<'¸ŒˆŒðZ±á‡¡s3ÄEÑ)JÃ’ö1ˆÁA ¢ë‹ ¥ïp\ôÒÒ¡|lD„22؈)Èà <é‹à-b·Èh#"“ÑFtæ"kL — ÐZâ ÐnðI‰M—Ÿ'¡'ÚlF̸ âsPå4z’`ÇÅ\&‡O0þÁnÂVƒÙa«Áì0n0+lI™:jM:ЧLý Ž3‰§$“Ú^Ä vGÆ 1¶˜’„a´Û†1á*ŒÉÖ`B¶ c—­¢„l&<ˆõÎTJB§8˜“ŒˆÄ eÎTVˆ*NÔÔ3HŽ¢ÚŽ@e=…yðB3öóHE£8¨Vƾ³Ÿ±mäªQÇ ª•‘ˆÈÙ*Ä’2´ÉÞÉôj99å8J¿ 68ËÕF羄„ F ±f)³~ÀaÃ9%Äšdl¸!´éG·G‰ïÝR;Ä(V!ÒQà(ñ ‡°ÉnÃe^`‹îvSæ[”¹£VÝm(®ÌV#>p\™4eéÒ,ea˜¥Š5΋9¡ÃJ ªTÜ3Ãù í78P³ŒJ­E|@'H ^+é,żT·ءH‡(÷––džk86\ÃÉñ "b°–be‰ƒ: +ÞŽÀ9ŒBe1+†‡ãhäpHâDiÖR>l‡Aìç$‡ˆ(숡KXD(ß<Ö)5Ö‰¬ƒ bó¸…­²Ûžkéù­CFeäpÆŽáI¿Àqì„çK~ôüÖg3ಖ[±ƒ‚µ<ŽÃx¨[ R‡\Ðì61+Ø]2¼¶£úmغÅ;lÝâÆ÷x…­[¼¡Øo(±Çc¬Æxe2©áøÃFØ85he„)Mz8þ°ÿ {'#ËIˆÍtz'–.%=&!ý–ǹ¡~h–7 lf:élfÄÉF°™+ž‘®i1+TB•,cƒÙaé2¶‹P”œ†ª$¹8iè·+8.Õ5KqD2‹Çõ{S×,E~ØåTa'|N!wÊr´`Ç>tnäISVV×ÀOêú¥£0AìrŠ@â8œŠÈNy7H‡d8qsT(VÝ) 8, :@8d]âÄÍ) ¬ÀÁ ù*z×2_u* µ2G!ȯ:ÔDd‚Nû¡¢è´º¨(‚ÊËœÎiè˜0šNÃŽF³ß•á¸,˜Ô6Ói¤&¢`í ¢ˆ Á‚[lØ‚[,Ö‚c6 ,)Yèvª)BJbFO‚ÞM±Ú Õ™xrcé‹;ºâ¬–õG!ÈP1uˆrC ÿš‹%]ÎEœ‡ û»œ‚8k §®ÁØp¶5Ú*]‡­Ò5˜®ÂÇÕQ«›j(î·ú•'.†ü Óf‹w²5“­áVÙ:N×pL¸†[…ë8!]Å1é*ŒI×`R<˜H¡ÏÙ—¨ :º[žôÀ%,¤úì‘~‰ÖyØU?JÊÅ_ŽË²äARI¶`lR*ŒÍIƒ‰9©06'ŧ¤¢ä”ÔëkŒÇ€\/H&]YiÉdíLvã²á—·rÙ`œÍ “lÂú{á%ra‰<\FLJ‡1.+Œ1Ù`‚É cLç±¢Ai™ ¹`†š#Ä·c ¹ãØhƇ«09œ¶%*`Ã9%ƒ>âÇ ÏÑÅ.‘º†º#XJcþ‰Þ“ŒÞ•]…rù¥`èÂ’°{!Å0]sÚ†±¥k°uíŒ/þ(A-gé¶!‰ƒ¾džk86\ÉñÊM6\ÔCq’x"—Ãá³3š¡8Še‰ôIà"Ýs0ÊŠîF Û€ ¯¢òì"Ò_qð ¾/nŸ¹HWl¤ti(s‚o½uÜ:™·NfÇñÉŒtõEì &ŽŒ!p¼ˆúÚmW†£[jâ }ëy(Ú9ºKçø=—R­Ð®î.Ù‰2w÷‡«7!å©~þ¤Ä¶ÜüÅþ5Øu¤Wd‰Nfã”~r{GfZééßïwLJÏùƒ¬Ã¹*3êS-—LÎÓ¡¼óÊÖMoö ñºÓûé<<CBŠÍ´£QNõïœÍôŠ‘ŽïÆ?çoÉvà·<] Ó×÷‡güÍ™ ;Ë7kûÃiêCÙé¼èø4ø34Њ?ÆSc¼öXW…qÑþ‘ã"©ˆ†Ö4™éãtÏwåÞ' -&:Ý<ýí“§ÿòQë±Î|$•…\ÿz,Sáu˜hÙ¨*¦iºo‰Ý¨huǽ˜VZ|›\œæÛúâNcK  6åÉ´Ó-Œüüå÷çýáý{t£ýtx…Ïä?3†ýäeÿ‚Ö‰>(¦Ããùx[H´÷3õü“Ýñ|»õÒÏÐõ|Û‡ýÅ-¢Ÿœ›~Ð,x?"g¥´ûE?²¥µ<´9± ?–¡ Úµ·V%ùPñx¦çŒ¸èô¦àI¿ ÄêÎÇ=W<¾ÑÊT­’òP5š–åØYv²?¡¨?d_ÔŽ<é’$âèÆ½R4ëÃþ¡Á‚¾ÜoE¨ ûl/?‘ªc~@BGÎm©-=½ÜeöM†°Ì-BÄM§óî<짺üQ¼‰%“‰$²>ôühÚ?ÞmÊÉëªM”sêàH›6¶ôè®÷tW¶T6µÃ]G§¶mþŠmñBª—ÒX9|q¾;¼êìDû~ìz’«¹hµÊ;½áóy8•}„é‹aºßVfR‡A9î÷s{Wfvœ>»úÅ }ô¶8Ǧ}4€sÒ „ØM«=`wçÚ½0¾Ð /šCäPºfa‹HZ |ÄÞH“©°ÓÓkoŽ7W ‘!bÈ×O׬ ·Ž.¶z5ÐwNÓÍ2×ôŠL5Q?c&é öYÚnhµPyèiPm\lÒ§ŸGž‚ EUÖ3ÓE´;*Á']Ÿ*|¯Q"¢¡ð&–9fŒ–(µŠªRªF‰ÝÀÆusÀ¶07fN˜«P(?ž©dášÓmЧ¯;‰8¤Îî(öB\Z(ÏRŒKq“§—ðŒòÓUjA©¬êK;ýuk\Ê ¨³ÍqõŸ|£üø¶’JM úEŠß4á ¹Î;:ŽÉðµ£÷qšÎrì°™h+ÀWÑ«OVÙl©ýNª7ƒØ9`•ý;¥ÆÄlI=Š5@PȱGNMœäå>a·.^s‘¯wçý—ÅY%¶ÑLÜÑ¥Açšý÷—»´E¯-ª}Øï(FP±8+víö÷_ÓW4PlÊ€£X·]ÿFùðºý‘,4gû32÷0äl¯züÏ«wypò¼#a“Æè» ]ŸúÙåK_MòÝ‚øË£(òÕz°åGiýo> úr<í—áL]ô23vºÒ-C{!Âէƒ>ÒŸ_÷ž¼•Œ—€àjÜe-Æ£œAÄ_!˜[¢irý5š¼ËïiÚï.g¹­þñEûA ¸µ‡æj“ó××ñ¾ý*FZTâ­òcñ‚åW>¶Ü݇5Î\º·ìßÛ½!닽£é»{0dûÅ,IûyGWzµ…çC‚ámˆÅêÚo¹ íglKÛ‡ûbŽêíç=´Õžùh“­ö,X鵄åƒ'²6w—ðÓmKO·“‘§ßðÞ~¶Í%n¸¾ÚÛß5’5„_Ùl³&‡³öär9嶇-ß1,ºÒrX}Å9Gkš‰ï”ÛóBwë颒¬ñù-oðÖ*¤\‚›éO0šÄgØbEÜŒuPþæ®(uÛøßM«¤ô•ýã[éù&pTÖ¬®ë´5Øsz‰¿§Ÿé-.ˆM áè¤ÑTÑ¿¿9ItØ’h¡@ô´ö­óå´›w+âéÊ|Ó-e¡ lÙkR¬@!¦¹aÜ~osú¤ëw°šÊ Üò»1´íø”Ôâûí óúô”Ò•›7åçk`Ñ5LY£ËSrÅSu¿·¼íÁ®ÁlnÔ©ÈMPØc5£ÊoM¿yÜ^l-³¥Z]¾! U'ÿ~s:òÙ*§wîÀôÞ;ÿ=táB™× ÿGz{5-ìkÔR_N{–ÿo* ýô‘¾á2¿[YhÓ¼][ˆbÐ×Ô.Õz®-ȉÕ\Wqt¥ÝÄQJ´uúmUä[1$¡Ç2˜8DcsËßÞ\úä¡ÒVÊJÛ ÝPi޵Ë¡:«‘cÅe>küMïþôF:‘Jœô؃mñ»\K=àYDËqö¦cëQFÀc‰Àe¥ëAˆöω.—¸°Un°¸»X{s-B<5$8´÷rfO/‰ ÓF|Å•(+€ÆÌ>ôùä+>ü&¹ys9§ùIJ„]27D±{Q7©Ý¸6ôñ²$ÝS˜!š]XØU»^¢áìP„©6÷¢„¹dbõO D¦_ˆ£êg—¶¢I®«rnéÀ&ô==§qãÆä–ã'µD‹§ûC­ÚRľ¬$š’ Šœdˆª…ß{Ù0Ë›&KrWû]õòåÐËúÇg%K#À(µ,#ªRþýÕa©N^éu;§¬?wç’€ZÀ…QÂÎúçkiÀW¢4|¿l‡ÜPä-»cUmÊE8Ybúœ­³,ÿ_W¡óáxßåZh6ÒV̯çòU*Eã«ÅóÐVñ²NG×1U'qz´¿Z²^¸Icùñª®ˆó+Y–¬lºdéÜÃÑÓudEc!†6¶ñï(ĺ–Hc›`”VýÓIÒ@ôÃTŠÎèΪ¢ÜµöXØ@ R2íC1&ÄVý™0>¥ XùÑ^®ªð¢±à}Éè;;£!RüW‡t÷¸ÝÞ±œ E:óÒÒ\Z¢úÅÝi?d¸–6P¨~…>S‘PKRÏþòS†Ýp0BU__~ýä¢ê[øÅ†+u%ºCMF..Ÿ¾ûÊ_VœØ.I{³Œ™†Õ*­ ØmΉ»ZEùºÏºC÷°¿ß†*‡öY_®jQ욥 Õ¦%æ¥f©§¤?F•Ù`u»%b«?ZêécÞï€Y×»tÓß©öC;ÿuà|ðIÝQíl«¬á•ÿò’¶•­¦dw/ôƒ±üÞ¼Ò[i­9³­Âýas`â9ïD¿h3¬ç÷î’4# óúñ-YKW1µU¡é+–òH6FE5˜×7Û¾«óx ‡Ô%ý@l‰wšÊ|^ÌY@úŠPæÜÚáøÅŽ;s'7Öî³Se;‹ Â"‹žð`Í{Yçƒ!/Ý'òÕ‰Ò ¼h/*ØsîE￸b /*­¥¼wyPÞƒéG^T\„ù:‹âj9·*:Âhórüýô⤛Šxz’'u»1‚ŒT<µ¹–†_Õ.¨˜ÿ®°Q!5=C]ó—)BjD½£w¤ãi¬a9ÔÇÒÓ³C{a׿¥@¿Ìd?ÃWÅ+HÍ?]«ã?çŠ[N.h@;ä"%ˆµÕ×½nDy uÛ2"§y¶ü~ó×Û‡IÚÓõëžM}ïJ¡Ã¤ÜjpÓ¼Ä9ž&9gr¼a„ïZÄ;z4Ÿ¾[z3Y¡ h«³-l!² —ºä”ßë<™N#Ø1ðêYžÓZG¹¬¹;ú0gköJŸsüà;!èˆìk¢$ôŽ^Z)Ë9}TòÍ®àõÚOaþ ¸ úì7£Ñë«Ëc¹ø=»·LêÊyÏ,' Å)n“moIqDòýk'\iÙíÛ4tyÈäÅîSž£"í­%¾ÄïUeoçÑôæé‹ ·×nUð?K8õ¦C-2±Erï½>Êûˆ§}Mã© |q›ÄÐÃ/:µÖ_ät®^“€g<ð4cHÊ­—lë]]ÚUÅô”ìy77ßAºO¨Œ,Ò@ K^ù+ÁÐý»o_OÕXª^®óßßYªnè×p3>¿›TžËnRþC2u¤•>%Ééí¶=+שû–âª=ûF— ² ßÌžy:üÆ\b3|{{6r‰-`“ßàÊÄ6ï ’]&Ôæ]@,&?UžnÅÕÞþf;ûÀ¶ÖËÿqf;²aðý²`)øô6ÛEa’·¶_,·±Þ¼ë®h”Kõ28©D,Wü²áÓ¶™Ó‘_¦º®$sýñkdNÓLözökfÓ¶—4ýrß2Øëûãã³­M*óÅü¡rr²›1 ý T YèÂë3Œ¥¡ß©T®&âå0<­ø²Õ¯·S$C5g[b»åáPz—ÿ­/WªK: bYçýò¶A<ý„Šõ®¼Šà^VTÝOëè¡ZËc¡¬ré¾I?i2s?ûõï™ðG·G>üµCÅ®ª]OÌÚ=jú!ï0æSò~þý_¹Z÷H^Ò$VáÇ_§~Êk†cˆvW‘~ý$ûVÂ)?…â¼$ܾ[A–ÐöwaË•ôúС]UJ¤éçó¨yÙ®i–>ß¾¼Nér4¯×‘†ÃÍ×»²tìùæ]çýœñÔ&Ûé$Î×Z¤†4i¿q˜ÛzlxÃtè©Gô2ß9ÉNy¦(ªÏŒ|Ù¢—³ÓnfÖ§tÚL¦}TGòåY ÇéÏWgçò†Íà|>ëÅû\ÉNÍbFëu„Ê‘ ñÕ ¢XaCeôâO‘2l®˜e¾’)W’}U‡ïìÉÝ‘Îíú‘ÙoÿH•€.áh¸ {¯RÖF=†Má[=Ûÿ+áÿRíDÞendstream endobj 612 0 obj << /Filter /FlateDecode /Length 5808 >> stream xœÕ\ÝÇqòxFü’(ÀB Ù„;éïÅŽ¡퀲eò' ó0<cÎÞžwW:QxžSUÝ=ÛÝ3sw© †qv¦?ª«««~õÑ÷çkùŠáñß‹í[]ýùŒÓÛUüçb»ú÷ó³yj¼i=ó|uþú,tá+ÇWVÛÖK½:ßž5ܬÏÿ*K×2-¡Ãù«³çÍáÛ5Ãß–3ßì¿[ øÊo.ûa讳oë þÐ^9×\®ÿûü?ph“­uë÷ièÏÖ¥T˘l>¹Þ LI}i ÇqÍ~ßûÝõz#¥h½6Í+üê¼¶9.ò©»„¶¢é3’#‰%«„l·Äæi`PÉÍä¶µbµ‘ºuÆD6w74²rÂû&ŽS†WÆ5¶½Ä_Àe›×Y£Ý>®×Ù¦ºý6þô¢é‘³\ðœ(ÇZ¡‘&ÖJæQÿ»@=ç¾\!Œ Mã&ü{*›mNiœÖé‘Ý»JÞj/W°|a%Mñ¢‰sTÔ´LhëV›¬é1¶” „­·Œâ¦xf ak$ˆµdiÌ‚n๑v"kùóù™\¹´BŽ+´¸h”8à 0Ò5ÛîûÄÉ‚"®Z­”_m ™CÒpçA8µT­ÒÇiš¿NDˬ‰iµ³œÇ&ǹQ@€Sü¾QŒ”õ(|ÇÉZ“|äÌ2Yð±ØC:‚\­„n¥A~AÃOçfõ­b¸w çwO"wÿÜÀS£¼€¦šFÁxÞüg<®ŽK›„;§„µŠk!tƒe–&8,ˆ7,Ê6ˆö3Q|Jf–¤[á9HoÓž»«¹qPÖR#\É¿Y8ÆÀ¾£T1Ùþ:¶„)NôÁ¶(à rØë5µüÙÛU«`ËeÉw>» |wN®D ÿ‘½ãèÂB”àQG7ïæXˆ$âhÅ¡=ÌZ ‘+8DyË?–µ!’Œ¥ÓôÃüÖyqf~ÞzÁÓy_¬±éçg@9q«[° Ï¤°°'ze<˜"°Û3i¥+›^ gÏÍlÅ»dgaÌ·Î8à&¨A4¶?Åf³ÿëͶQ ܿ٩åÇÙìzÞåÍN-ÃfO•Ÿ’Öùè‹Ç[þ-6´À^À+‘)ý¿Ÿ]¤kâ¥e‹VH€fª­P²³Iæø¯Gඇ6ŸÍŽSòêó§Ofõm9¨àÜ2¯ggô@¾´º ÿ_çQ E‹+„Yº «oßd8%.«Œlöñ——ð&¨ñz%<˜ÖÁ.tÍ‘’~ÁZÀ ô‡„»VK fDù¾XMsÈ?í†W'8º{Ÿ% ŒØT8«y&T¼ùõ7Ï2œüÍW-£ŒvuÃÁ,Jýã  àZqN’ $ ñó9ž€H çŒ)J¡.TMŽò¯iÒ{ ým^wýsÕÜ^Ç®€×»¼É«€é=Äm ¡V†'î†.ñ½&®wùÌÇݾòWåÏáæËè=(UâýÝö&øÚèfw]ÎzjvMI/bø´9M`›œôîWè ×À<_Æ!­hëa58²\–EÊöÝÐÿ·,¾¾*ÅŽêYÂáò"ììп=9jù!úB’£\x"'€,iºb ù^ø”1`D?y z%¼ài‡©µT“¦V–GÏ&¼Þ ÎÉ9tÏypušht¦Â—üyÚl¤×Í>çÿp>€¡=Jã–ÂþWwL-Ãù'¹gÈà[Òã6ÍÂò$ñYû…åšæï²×ï"w<øqGjRÒÐ]3$ÈÒ›r_i;}œ?9;ÿ§ç£¯(I¦¢€Ã©ÚõAŽ-굨Ê80pGK•Ì* [ÁQŸ÷ ›ìÀj*€¹h“G3ùxÞc ÜÀ!ÉZþ„¾¦áöa¾¦36 cÅ}ÍÔò'÷5£ÿð—ík–Ü1­UÂÛì‘7ÎÍD”n&V­ÈpV¬•¶bã[É#dûÙ<‹¬ãâDDÞXÖ(Ô‘q³þ çv€·›“@p€É> äIÄÑ‹ž2Ìò~ž²1e´ãOÐÎÃ=eZÿaž2øÔ÷yÊ(ü÷zÊàÀ|LW .áÃ\å ð*ky‡O$¥¹Ï'ÿá/Ó' °ô±ÒžYÐAèõ:íÀŒo~ŒÛ ~3YíŒ ÿŸ»½cwÙíeú'ˆq8sï3÷a1Ž;ÝÞÊëå.x½¨cïöz1Pð@·7Ä;œ<+ÕýnïÈ«»Ü^æà÷Y€¥y±€Ïæý^Ë-:ú½ŠÍ{þ†p–Dùm†©h1Gèrw]ºn’ À•9`O€ÛsQúvè2N3Ç·»cz/C¼ Àö8¸Gç é22€MjìšH,7Í» +Öˆ5ÃÂýHx,1ƒ¨tWxg؆‘¿0qu¡/ëp³Ç)\´þ“2oÛïÖš€ºiº!Lœ²I¡‰ÁßFBňÀØY›ªá€—Ž[á9dÍÉCÀg^nVAÿ\‚)ºgG’KÙš—Yÿ’us >Gç!B!hûÀÍŠ+XCºØ’L¿´M< "„nïi´bîAË81 ï²ñƒ)'«Eæ]’ãÐ=‹lbÐ¥,ÒSç(’üäi;:!Qƒ×ZP¸u‘Lœùz¿Ö ¼£c蚃¯4À0øƒÁ<¤ã$è£@ÔÓ0_®24&ÔŒ¡õŽz•› cÚbLºä0*¢«aýrNoÀÂâ ZNt±ðsH4áš[ÛfÛ²$Æ’û¢Û®/ŽRyŒcgð­ã@ªV§öíz£•¦Cÿe¿_sì© ƒ§\EѶšx^ÇFhtåÖ¤ –µ¡Íî02É'5îH‘F˜ì4§0Öõ†¤œ.ôÐ ;¸£šÝPTîtRÊŒ›¶MñàÓ¢"Bð\Œ¥Uq—ÚßÕ¤½oûÄÕj‰À¤ƒ ªßÓäJñx,ìë8’|”¢ˆ‹Ò¨ ÝxšÖkêŽî>¬‚úýu¥m©s©´»4³Ryæ½:\ÂòÃ>­ž„î)þÃÀ<7ßõ£ÈY}ê&mªE,Ð.Åx3ѱ°Ž~Z|-Ʀbàpgà3±¬ÀB .™ƒÝ¸r ÍæD¹²'QÑx/QV譲ѵÝâSDh³ZÔ—2Á¶í·l!¦Îuš¢û ÀM4¬Y'¬ [ã~Ö#).b qy•‰ C?颛âÐdáÒx„éKÙèöÝö+¾Ÿå8Эƒn¸yÓÍê{”Le2/Oˆ+Ò§¾”Íá]¼$Ö„¨"u„RÆç¢÷÷Ç"z¼¿Î$Mc˜³Ò"0¬«’ $Å%<ø NWŠ«À´¸iΞ«s%ô´ÊçD37ýuh‡Kxüä+üáÖ”—¯»=’è])5¨9C'5'Í˧QöDg…y*=[E½°pÁÚ"@½Gæ,Âê—†¹êó=É·z²ïD('0KÏÂ×Ñç0—óõWu,{¾k&}0¢Po’ÎÙ™€±ÂHv´àˆàÈb•^[Ìn`kŒwÒVSW6f° ¾‰6U俯 š|‘Û` @•¼\:òqý¤@VHd¿-ô}_”§Íë@¡T«Ç Ú³¹Sï¡ƤJ¦x•l[C2Eî‘\Ì¥J˜tÇÕ‚ú›Z’ •ÕÑá˜×¯ ©Ó}èGP[§aòØäüé7_Ìê}iÑm\`éó%2b$Ý**îÊUM‚²À,#¬ ÚJè}:$(jšº¥6¶T,ßw¥Ý_ÏÙ]g[ëŸBÈ÷¶»pzOiæAê;\Éè^þ ²Õ!¯„%.p8MŠ ˜©F¬2vF9 Ê>Tà|ª§ú‚’ž()„ýÞ8q¾\4÷b¢¾ùRÌS–èkÉ2™çãö¯iñ@˜X0kð쥣„9¥F^%¶È÷Âõ\šÖxevLY”M‹”j!·Y±©Žž»%¾uvÛ‡Ãnÿ.¥ôØËZHhèPÒÆb d\„“;Mɦ+³­$ZRS«:×h÷LYÂEPH:–R“ó1q,qÅ–/'È iÉ74ò%Û… BOtI´ÇÉfLgf${ÞünHzМ&)WÂ25‘réCVúõ¦ç¦xN°PóK NסÐyC>°\–“šb¿Àq¢*ØRœ´×„Ø1AÀî oƒ/$5Å,hd™g¦‡>G‰Ã8ÈB4`ŸÃÖªªØoæfZ-R¶ª¿>^î/.oŽsæ |3§tGÆÌÙE 9F}.oúÙzšPu•ÙEäžãÉŸ.¹Wª„ƒ]”šTô r¼ªTÏ‚¹¬C' c™UÅP¿ð%ÅI”'CÝ@Ñÿ8ËhoZ1f¢o.óî‘Àòâ3„I…¦ºøˆÛÜG_PMl] OÞFª5ŸAaè ’ §Ÿo+-¡Y†EŸòu6ÓŽêï©o(2KÔ—w FýÕR—è £rªyŒÐÈo>Ñ•4²53‹^€X\`aq4W:Æ_ŸЬƒ+Zοw9ZÒ"MÂ|L‡H EϹ…cD ,qâ$·…¥™Æ¸p“"ò¡0m¢ˆpX RþÈLƒ¦´IY1ü-êÁ÷Ç´6¬,>Ã&Þæ4õyº!4™‰\Eª»áj·/Ïå6ñ’ÀÀB)Z·T5ô‹ö/ÔHF™‚2Κ¬ÖmŸ•|µNµd }uP³ .1o'•}n`އÐ*ѧco…h3Åx :Ò®‡îÇÇ©6±Âù±3˜·BÈú-æ;~¬!·Ò6¿„"Àì©› IÎ¥÷t±¨³Ô‰:’jO|8$,Öõ!Í-Ü»Hô(s{d=Ñv4—”3¡Nþ%“Ò÷¨¬Ó·_…„V¦Š1©œE«ó^…³ã¯9ÍdYf4š‹v¡´fæävC(w”j˜è)JE=…:m¢§°£U?F¡T¡ç0¾”e00¶œ«÷-¶6]3Íç‡ÓH¥Ž*tC×/¢æDŸš^‚£’p»P¯öï{«PIºS´’@ªqË>ž7¿ùŸ|¹CⳚÊ/ªñ«î‡‚ÑA­*°†oב?âÎ#ÎÀ%+B>lÁNcýˆ)Æ _³‘ßwHÎP¤>ÇR†ÐÁE›hTL‘(]: <ÆÂ=89Lc>P‘Ô§÷•à¦ããh…™Áºø0½¯@;Ñ‹À>û;ÜðC_'tBPdû%7n3\–Ø1ó#pM¸4Û}b¬KÆ3°ß ±‡«¢Òû¢âêML—‰µDTª…<éÇáÝ€Þ£VŒz;îmµ·´QèÔ÷3µý#& ݵüتNÙÖ2±ÂÀzYÓ!‡Á¢Lý’°!_·ÄòòòÃð¡jŽámþñÕ\6®€=ûjî4$ª9ŒXPœLÐu ô½¹©®”eT#]s»úm?ñ#p Ã/‹g¬¼W”:$9jŠ1øºüÜÔŒ?²%Îb°x)P‰$Ì6C¼ kÞ½­ÓIЈRfÔN%È‹lê?Ñ{ÌÉôåɺɊ¾Ò¥A¨þ”§þN`õاآŸ»m…°Ç ¥ýî.À’_fË`l)eLög x…Ê)?S±ïiÅ+“0Mnˆš)¡ŠåM²°n]µ…ûöUBο)BÆTÄ¥èÚFæÑKÌyP@–’Ή²ÌTå,p-èéäÒßU£¤„«‚2hf2t6“¢,pOû ÄÁ0ƒò:>‡©¬ˆYV‡$n˜bÙSWSmHiñÇ [i*¯S°#ËÏTÖ·v b<ë²tN³Ý]_‚¤âý_ê:|Š¢ƒuOŒføÝåí ¥ƒP¥#­si ïñæù) 4¢y\¦í·É©6…½ÜH§Zië¸_ô!'Â…âÐîP¨¥íä6”£™'wTL.ðafÆYºÀ'£8Ù6ÄàÊìúpì˨Cø.¿aF³Á©> ^ 8Ú…_{ŒóùÃé2÷^å+v©>£ª{ÀY• ƒÅ|–Öp±‹YZ*UJ7Íñé=¾)yòå)ë!ñ=¸“K埩,"¬ºº–*!âöQ $è\ɯZç~’Ç\0´LÕTE9ÎÜA¬UÎ~„Œ§Æ+9zšòzWÊ3Ð9VxC¢7ÍD ¼s÷¦òi45ñ2Â$¼RTÝ¡*í#Þ}iñ3Ži¤±‹dñ¾G½¬•ÑM–lÌàÖÈp?²ïRpèsÍHfL£òA¤bR>8v ™Fø" \zTŸœ¢Ãut ÁæLA’»d•‚³t˜-Øc“PH[–˜E<%9á)l‚£à¯Aè¨w¹4zq‚ ˆ,Ÿ\‡:E0ÄM/Û.%·©3… ìwÛ8eíᥔ¹˜­ôëö‡8…PVN¨#à) ©ÃEbo¯.PZÜ–ÜøX‰Îª´B Ðǰ/RŠe¬_ÂÚÔ†È]ý ‡¦ÅiZ®Q ƒÈSåYpµ§¸V$ÛmÇ9ìÃýÄU°é¯p}˜M…òà"fZŽ7<ïˆ&¿Mø‰â¦J“õË©û(Q…öï¢eã~`ðT9 nÙ’‘ôw (ê%¦Å¥)ÿÛcâ ¯ÿ0[!­mJ]’­Ä­°’|¶‰žÃ:^]Ußìrƒ×åŽmŸˆgŽˆ˜Ø =tq&nKx<Ò\FÎÒŸ¬ bRh6ñ“SŒ…c~Y4qkº‡ÞØsg“Â+rÏ>—&„ÓÁZŽw LHÈ|Ù_}[ª¸2Øù¡â¤[Ÿ¼€ÃSÿ!²„·]@²ñžWaî1jz{HüES,‘êBpÔRÙVÜ$¦ ÇtÌ¥¿1ƒA¡¥+c~4pñ ¸òjÓxíJ•Wi¨òñÞÕÓƒ}ŠlsÄð[“ÑÿÅæôíöMñæ°ûãååÛÿºìö/šË›¾;tÃ]fð”_¢»ûîÅúÅú~ûì÷Ø, 'š_ÄG@Õhðá¸ÎÜ›Ð#æéé¯ 4¤ô\ÿ ôr0¸¦•ÅC8¾ÀRh,<¢—€~yj&tz 븚¬©z”†å±¸b®Õ°»zÑ }†W©§;5åͧ0÷áÓGs úçõÆ+º!Gw6¦ÝÓÒž%*Lþç´Rñ­Xüèôeùº?Î4äÍ—Ÿ?yön÷X —oJÆc MÅW¾ØŠZÍÉOÆ¢ÉfTÆoqr:þ8û_oj½=endstream endobj 613 0 obj << /Filter /FlateDecode /Length 6288 >> stream xœí]K“·‘޽Îi÷loDß¶zCS.¼Ý,{W»Ê’¥QìAô¡8[Ꞧ»›¢ä¿ì»Ï›™x€BÕpD Ætg%^‰Dæ—‰¬Öß6CÏ6þþÞ®†ÍýÕß®Q7áÏíaóÙÍÕï¾¶(½ÛܼºòM؆YÙ[ã6F™Þ µ¹9\}×}1þc{=ôƒ$—¶Ûïï¶×Bˆ~P¼ûf ”0lpݸ?è;“†»îÏæ¬èþ¸;ý ¶ht»å0”’¢{½å¶$ÓÝÛìùa “a 8&úMIYfµíN4‡¡T÷ÅÎw)´,ŒE‹}œèþçŸ9ÛÞ³i®57½ùˆJÛ\TB˜žqØÍË«Ž™íÍ÷Wÿusõ”´T¢b£¬‘0—¬¦LöbsºÛüßæáÊõ̵yÿüûþ :掤ÿõçWLiÓÃpšÁbŒÝ®˜æ¼×"QöÄ»ˆc)ª)Ú+Ó¤ ¶—ÔÊXÓ+Ö¢ nèn%_¢Ö;"8ÓKÕ"8Ù3§8ŽÐ 0–ñù0@«çDÐ|‘0H$0fz±HáŽ(†÷ܶ(ƒS°]Há Qð¬AaLƒ:ÅB+Ѧ¿w•g‰âüÞqáxÏL“2¨ž!¥iàÔÔF Іµ(IK¸R¨Êm ì.î ‡pš¡BÏZ›ùWÉz«ð«á¼ñUƒ¡¯·lR@#8uh(’jSLoiÏ¬Õø©EÑ¢7 )'±@qauÎA+Ѥ89¸®7¦I±| °A/Rt/VL‘21Y†‰µœ)Q2&íxÁ)“ã„?2¦Dɘ`S1ò̘"%1•‚‡O"d,ZÉ‚'R&&&eÅ”(“sh}s¦H™˜ ¤ª˜ebƒC#“1%JƤÁ!˜‚)R&& ˆ¦dJ”Œ jV0EÊĤr—L‰’1á9PS¤LLZ xÏ™%crx¢rž@˜XŒt%K$L,œ¦,x%ck,Š-I”‰Éa6·`J”Œ ›(ö-Q“@+V0M”Œ t™›‚)R&&Ê\2%JÆÚÌYÁ) Ùžå[2Q2&ÐæŠ)R&&Œ‹Ñ"abÇHù·‰'Q2&ÐåAL‘21)Ðå’)Q2&#zç ¦H™˜4àñ’)Q2&€®Ø¹D™˜Œdos¦DɘÓTL‘21Ypï6·•ebrÄJ¦DɘÀ›bç%1%Ï=yžDɘ‚›Î˜"ebŠ>ybJ”ŒÉØ^«‚)R&&ˆÕÀ™æL‰’1!ú+™"ebŠþ>ó«‘’1•®6w¾“ã™{èj–yhÉ®GÝáĵæ¢2®§‘q­˜ñŒkÅnN\k–,ãZ±-×ÊQθV×ĵ¦É׊ne;´²ï·ÛƒÅP–€ò“/0ÁwjÌ›chÉé³ãcéò1]å÷‘J0iM?@pdÎ@È€0_p"‘âµ » fÊ-m`É6`¬Â¬9þu1íüdÅa–÷Ó†"pÔ›oQi<;X4Cì ™À%@r¸ AÅq—¤\ßaW¶ÇHæ¯ðñe×@¯a}ÞÐ,© žiVäZ׬ĵªY‰kU³W¦YYjY=˜¤ IbžÑÑ&ÝúïÝ}^ùxJe–®sŸn¯¥DU*K.ûÀÂd÷çPßèÉÝ»7 œXXÉ»ãé«#E·{E™ZtŸßAO Í+(ã–MB{Öý<•jz~h«™7¾µëb©§ŸÇîr<…ñAÕ¬í^†fRu/R]'õ À‹u—¥RN_qi ™qpPFòPqy¿?=¼ð Xf‚ææ<ÛwÝ«íT홋õ¡(>j=»Ë®XRO'úZ ³–zâk;FßøùK ¨ç/5&Uu·;¼Éì‹’ÓCñí!Iå2ÒÈÐ!ºã«©‹–80A |ŠP’¸Ä‘FP´©Ó:_æÛøã.ÿêÅæ7t܇öðù²;Ä5+ÓËRÜ]¡çÐÊÉî­xªÏ¡5¨í¸/g|™UÿÇT¥ÆOGš›tº»/êwC›U5Â?½É¹ÆBc&Ò¦†^ƒ)¾fˆñÀ—“Ùýø,&ŠQwß/©Æm®©—Ýd1‡` PH²˜~?ÔÌÌÑþiÓ½©Ìü4¹a$´pàJ}§Vöè­<ƒ8·¹ÁkÙ ý¤.M·;G9°î4†Y{þ¼Þ‹ –ÀDw9Òçr)GêÎnW’ÚÂ_cÊ·‰Î”ò'*·œ§1.ÇHðT—Ým®×d‹Ì@í²Ëg€ë0¬Ë,(Ø ¢ÑÚ.µÙÆ,õdµý¾>Ñjã<À ‚ÕöÃH^nû®˜ÓܰÎýQ+ï_xûMý»…7%îÓ‚\7Ž¥ÏK›~ŽÒaÊÖÏJ5^ÆÐó€p]ìuÞý‹Ü²în«ÍNfóÙÕÍ~×U[0mò¸¹]K@^LÜùm®?zÅQ œÝ~?.ÊÅPöwÌUëMk²A¯*pF³AþÇtÿ{>ç»VZ?N’).AW'òxX’Þ¥–Ôû€'+‡¬<–ç—¢{áù5k®8•(#:/Y<Ñ¥ÿ9° ¼;ïî ¬÷ÛmÝq0c8šlKh;ZTÔbsó×u®Åà-çˆyþb‹Ž~…&±tï—ÇT¹V)ve+ce îñxF¡ãàîÈ16©Íó:ªO è¨õÌÐj¶OR ?K^œºb½/—ôô!È×{©…cStU¯Þ‹Eˆ ÔG¹½FnØ(Ün‹„ÎaX‡hïþxÚR9l£V ¥äÚxKžM»jó t]êÙqF|fäSû¦‹ßH¼u"ª»¾Ý*ô,x–.§­ÂU€n÷¥×¢la;:ÏlaýKž_BƒIž½•—)yÃkprÀ×à<‹d‰ÓÊÁG<†Ä‘ ÿóâ Œ%´¾¯Tfzô ô€å0µó’ù¿Ða¶°û›¶)н€€«^®É“Z)C/¸Ë^âBÑ)‘GKá×e»{ȨáÒ*üÀAé]êö¸gh '½ ž)B¯Tø¶!ƒàÖ©Ò] míŸoÑ"iŒw‹æûŸ½€y–Šæd-p¹ÌC‚ypÚšæz ‚a4kÖ›Ú+tš¯òtØùaüØ82ð¬í#Þt¶+ÃŒ8 €ZÔtôƒ`!à`£¦ÓR¬Î–¥~Iþ 8~/CWBÏàù‡et$V0z *"™O¿<Ë-z0œ}’U¢fxíÚÈtH±Å,7ƒ¤)áôò‡Óñ\šÔÓ%·äÐs8Xƒ…7¿ZrK¢(TÑ/s–@r‹aY£y—˜ÜBœA²-!ßKŸ­wøÒÒA(“—ÈT!¹S‘Ñšøw{óƒ̆7|Áao·é#*±Â&Ý©L=ø¡ æð.Çïâü €kÕ-æeßm[ž K§gøNÉ“ð;4â*Å ¾ ¹ ßi1®¦á>ŠÝ‘a¢¶r1ŽûMà ] À“Fó ¹F<Ȭœv~hÿ`…‰4³ô1º£-¨Q!ò#þ¬#*¢žLO6¹§Ýχõ?·}¹†|9¨Z7âÀ+‡0¥úª"¢ë錶šÛëId´4…/J&¿YÁÐ|ýû$/ÌL¡š;ËO’ö[Ä¢a&Ά‡À¨@›Srö8‰“ÏQN˜ÌaüiwØFµ+R¸ÛF"ͧš$ec^ÚGL‹ Œ‚° qŽÓ£æ”‹AÖñ|Þ½¨o¨¹i{Pz8¬BÃÌ;Å!­¿¢×§5ø˜‰"‰ ‚b÷…†~È÷ÓwhUÀ&ý±ÈúÏ!)0®3ß4A£ßûˆúެébßéFCOZ …Ά·Mµ|8ÖA?Ͼþ$´„ðn9Ò)£Îs˜Ä}(_jgdIµst|<|k8ÌPÌñ|ô‡ZJˆtº±¸Aø9Î\ewÆ¥îì= µc”‹.cý]ž’¸ÄÅ€*.¼S†¥ ô¬0ìŽËgEYÁéx˜d4³ê¸£K¨_ÿ¸TÐÜOŸëˉ٠5X`!‹\l«`@‹ž[±êòúî2.ÔO|2£Œ÷oeBc–SF.jKð³jØ #(Š:G§Ê3¹‰žÐþ|ÉŸ[V{êýY¶áÉ œÅ ˆÖTò"ýR-ç)7Z…ê¾¢r7‹ýxEb‰%„VÙÌ~•xEbNÔÊ¢_1üÄ+_*!Òe¼ÒœŒÉì¢gy¬ñôwõõJq† ‘¤aJL¼æ1y«t_‡C¡5ÃP†ã¯¹”¸¶L R¤Â* ‚eåüø› üŒiòYšy¤&{°2*Êâ‚Ú—ŽæEvÕ²O]‹•ÔÀâµÐo‹pmÁ9T‰Óy–ªûGL ìˆS”…ÝyäuÓŒÙÊEv² IaŠ1Ë_üÛ/ÇS©;ã>„QXËU]EMOn|ý%ø 袢ÞÇ “¬Šeš˜X„‰Ù{^3Ÿ‹óA»ÿ\‚Ÿàv…ÕÕ]=ÂTüi¡y®»ïÿ~h 1Ÿ{±ÐǾ²ù̸¤õ)’qÌ{’„HßKc¶ 8váºËMh¸¿9®l1Í`U{>¦Œ"gO™¿oãE”þ?ZnuÀ_X:_ü$eªjø1W JJBxM–„²—²÷H4Źýi0¿'kë;¬ðT©­ÔT­Gj—Oã6æ×y,ºˆÚ›y¿êHV/×ø@H­ æî{ºwstÕ¼„¬î#`£Ñ)ͺTù;/=LÀ–xä¼x}±ô±J¯^Gu¨œ•wX1«ªÐì§xò•(œ.ç>ÞMp…798©–ªº”(øfwØí醂aÙî.¯˜&ƒãÊrO÷.¦_ßMÞxvÄê·?ŒU¶rhl^%„qgE²_ÂPe€zhWð¡Nªtýê¸;·üŠT½©Ô•*®œõwBõ©§9ÀÖŒ‡øMÊ_\›…ƒ(ÓØ3ÛÀyÏ¥Úg ÅÑœÞqç•ý²•Jf[Ÿ’kåñØ¦Š»p§ž÷->WńΡW7¯üó}²•DßC’Ú%vÓ(‡£~ ÈOwá‹©.½—jÌ_†^CÕ‚Åûòyö›ºM, 3‚U†täöúß`þ´©pl€b±2üöíùí¡©p Ž•IiÉâ5aÞH;dÛ!ü½¿;¡žµO$È:zÜ×h|vÌ—îo×ÛAU&1^ú Ð÷S¼íÄý=NG™²Jû}¾dàN…Û ‚üK)•Ú !ÿ,…NÃI[Iób*å‹'ÂÅõÌ~80k¹ù[|ïA¡µOW ¿j 6l0fÄ륒‹q°²TM8 „ƒX&Óô+ÂÖåSûua€~VÝ~hL?ÕbK!ú8˜Q¶¿þ˜Y4]k@<"íÏÇÕHEãäUÕEv©¨jÚ¿-Tx!0@ÛŠ¿Â|¥þ–«+\»ë¼0o> stream xœ­\ÝÜFr×»Ÿâ‹{ 'ÐÒìO6äqöÅ‘bœ¼†Xy ´«£™¥ÌÙÚûÃóœªên²«›3»«ô %§?ª»ªõÙüí¬©ÅYƒÿÂÿovOš³ë'¿=ôö,ü÷fwö—‹'ß¼´ÞÔ]Ó‰³‹·O|qæÄYkÚºSæìb÷¤nsñ¿ÐØiÖX¹º1 :\\>ùµÚÜ4øÜЦ«¦ß7~¶«®†í¶¿I~{³9ÇÓi窫Íÿ\ü€CÛthcêÎv]úß6çZëºiTõìõæ\eZ èK9ᬫ¦©? ãÍæ\)YwÆV—økg¥’Ðþ‚÷²­¬Ó›ô!vWÐVVCBr ‘o•TµíZObõÒo… 0»‘Øä\‰¶nåÙ¹2µ³Ö¯EÕºÞœ›odõ &luÝuªÚ]Þð(`Û”Còý/Õ["/e5NøÚ@“j7Þ ‡qn®Ã«FWoúÃÕ5¼{ÓoCwØâËþЇ]æÜ–𧲞?¹ø×_«g[ìÓÁê;‰ƒÓ¬ÚI ÀÏ“¼¸ö-›ÆÙ~;ûXÞ%­`5$ÒÀjþïÃ4NUR‘aœÙ³§’&«ºŒ¸I²ÛUvoµ®¸£TG/žÀ?"5¦z—4èç^’'(o4–i« …V¤²•‘ìÇÒvì‡Ã;FÇ][ô6m=Å}W;RýövŸ ldÀd|¤Cª;©LØT-luXŸRrS“àUè%å¿âzZmUÜW1A˜Ø2ÙO[ö´ß?…ÙÎ.ðÐØÂß–‰ÆÇD¨^'ï·Ã/æ ,me>¿æ~ ´øae·S°ý¬ËÈò?^Å9Ûj¼á“â$50å~ ­šB.Ž ;¦„yÞ8_\à§}XI—WÏÛÐ +­ÙŒ€€ svq ZÅ“ÚM{ Ó¡ôÿ‘n0 .-ì§´é¾£¬ €ôx–H ,>L†VÏÇ:ÉÀEÚñ‰øêãHx²S¤™ß«F>uûصŸ‰jA‚ °l6·ÇVýkÂÕuZ´RC£«1¾CNœWdD¼$)¤‚ºx¿å[õÍK!äÖÖ ‹A§¼÷:EÈ.mÓáB†6_…6‚µd„v¡ º‰a¿ç=jØôØÿTlzŽÄ$˜aÁpVï’ÄB¤€Ë¯8ïŽg„;ç µ±êìÈxR¥„ð7,©Óm+R}ŸõjWƒ4ðøK&7‹ø ?ãŽëj¥ã–ÍÜwd;ÛDÿŽÒçèøÈc*86Ï1S:IêÏ.º1"SóšÅ0nÎ@Ã\Ž£&ßévã”×tÄô&BD®uhœÎð¾û€$”çxÃ4!ÑBÏÅça ßÀŒ‡\¯ÑÀ }¤J-§<7 _oØ/4î8ðX—‘©nI!\­uIRŠÈ9R\-ÇEá’vì÷ÄYÀ]¡£"ò‚pJ涪Þù°è[3å6îÓ]ývø?€C Ô¯-ˆ„Óì˜sI* 73ðo4ƒÂ_ºú0›<ã~8 ¿ÅNiB8¤ÒäM÷u{XVNFj«=mqèÏP¨¿f±?²§†2jÅ)4©•%aø1G_ìÒfu3›A³Î *ÛÑF1íÂLß÷¾ZÛ€ç¾Qÿ!i“ògôp€œ9¤`[Òç aV:É«$ @À/H‹3t`ÿà%Ã#)k‰ ä„&èjãTçâ˜C\”Z±nÐ^”°Ý)gÓ¸ äuÞÑa?Ô×uüI˜õh jøš:R÷×;¦ò-ìh(ÏD»2,´iu&vöavÀkoŠâ>”Î’çpĵ 0œþË':ެD¢Ý‚ ƒ¡q÷ { á¨G0c,º`ì½)A0Z¶ üƒËkqÇ$çñzêwàx4^DGGóèóF?ô^Y pÍ]¢Â©Ã>†ý¼?&@¤ìZ†Ã6•¿ÜVñªÌq'hg‰aÔ_&Ê"•<¦rí@@¶†è<¸1y›<Ð ihc Ñ”v`kþá]) ¥Ÿ.“Öû0¤)Ù®`x°¦Ã˜‹c 'Zøpv5Éxœº0éç öóé¨+œG µEýò8lãñþ>®mÌdáA˜8Œ õç)•Õo3JñœN¿ßÞÆFI{ÔÕ~`>c\x#_EVµüˆóHÊñ­$sû9çƒêdæ šA¶°5Û~¸9¶+—!v•;7c„¾pøÓßpùJiò¿I„ð©¸0\æÛ~êw²ýHÙûû¶vFÌþþEîj!p›ö8 ¯:8þc:1Ió%I9ÏÂD‡9Íû‰µ–<îé-¬×uÄó §‚|ÜpÁ¥Àyû2Q¬UŸï%7-ã=´ŠSÌEáw¡…Ê-œûÄ”ÁE§­èîŽàtÎF°2®ôÑ™~$µè\¦T”1P§;Bz² MC†ÐÂ_&" ÔráiÑ%CÂÐÑÝ»áÀÚ]†ù¯Æð7¸ßþüS²·?¿8Oñ"³.™ >}*Í\wöžAŽ3öõ‚çÚë“^Сâ£þò.}FÓ¯)4à¸.'7Ÿk}i2² †Œ[›¥qžV–ñŒÄh™üB‚#ÁŒŠ`(b8ÁÒ…m‚W,îuï;žá:vÖÁêá\-œ“ѨÓqYRs‡…¹žCŒ­£3ws?0A©£“ª0«€¶#ŒFudc ØKׂ™?Ò° Øw÷vÜŽòv8HÔï,×rÇ×líÛiù È74¯ÊøKÓzƒq%@Gãc€Ž☦ËcJeÌ‹)œŒ;àãåW~dpŸ3ë1?VËлH,ŧæLL\*Ôµ„ín¤Ì™lRb=Ç]¸œ‡ïcNñð_(Xanó÷Ï_„éa—yŒæ:‹ï}ÌÉ$SÏOöâŒÓû0×Z¾œd2gÑ1ïhN/ô–pfZ Cšš›Ï/i&Ð]Q‚òH5ÖiPc`6®Vzµó·ÿ{W Ûâ»}¦~s~6+ÔSÂRKËÆ•xŒ9%šœtȨ‡©ØÈVÿà‹õ@àcLÿn„›a*hH~DW¸L5e¬Gù̸Ô'8™áÊôc‚G#À|Z å;ÐêZÙFH‹†ÀþùÅj’@ÔV™˜G¨±‰ÏZ°Ab´m"V„Qw8ÉIhÓ‡;­®n7kÄiØs¢÷#ÎÔmÛ´1ƒ1Š: MdÇÞ'É&©E­ôœ_ ç(°ªUc•uä6¯<ý6^¹l¹)l”Q¾ÄXi}ôùõ¬énÃK×kl°¦VJg)ÒëŠï¬ãÈ žk‰ñí¶lVŸÁ„N¨°bWSˆÅ6Äê&È?óDÉ•\ÕA‘ûtyZIykLÈ8 ‹„Ñ\4ä5X”Ùìy~ayøØ‡H£Ž»%ºã®â5㑤(i×Ïë°Ÿò×´ÅcgTb:zJªH—DÀsð“¶·'½ )R’yŽ¡è€J—ÁócÎçÐUܸĬn4ïÑ\úì¦èÆT+¯PŽ%“¦·ÉÖÓ®Ø쯽_JãF1>²DÓ‰Ú:OHQF²ÒŠâ_¿$EÉèÆGu¶ÃûÙfÓn‡?W¾ww¢JepɰØ~)Ãà–{jÛˆá²ÎRB㎀Q¢ÁŒ\ÑKð®# N¦ò"°{Dƒˆ$PÑ{ZyÅ,™«4qãÖK òЏõÒ‚¥Êg¡:2}QÍÝfËÞÑZɸ[Q¶_'žŠw8T›R”˜QØÓçèæsÊŽ–9N#‹#zß{¡¬ì¢R1' Î-ZáhÀaáÞívTv6Ö>ÐO>…í¨XäK\&¢ej_üG1é–g•YΟ^Ð?6¨cÍÿŒ¿Œáipù¤<Ã’SGßQ7SR3Ûd˜°äÒRÿyÔˆcÄÓ`¾ÃZpÖÔ«{Împ[7TéÙsù:WÊ‘Mø¢Ÿ>=&»', /h ŒŽ¶ê ¦ß­­¥0l\ \|LdÑ€¿“ é3µ´yžEâ†iEY»ÅU ½Ü– >At÷ãvÅ¿S¾lò¨†§ õ66ÒyÜ C1+òSÔ Ö³èý6’¬Ód ?ðÛ°V·ütT¬Ë4ûå(eIÑ•ó ]üz=ˆsÙÀ±÷¥½zN1âÂsj­É3g>{áãÎWk ø¨3Þ£î:š Z_c¨I¸P¢E½tŽgù ÀÑ–.FèêÇ·‘½V‘b?S$Ë‚O¤ µ'º£ÌúI$ó@çz½Ä÷qHM¡4ê×ñòÎ~?Ä…Ç PÐûÊ=}ŸBî;¯&c[ngú2­è²ÕJ>Ö§àrýçÍúÖfÆŽ/a¤+˜]ô–ß}%ž+¢1ˆ½ù ¶?I»þ}™×÷¹Á]ï åŒöAçïmûPE ÚÇ2‹s\‡¿l Œ-g9Q¡BiÙÚ6+«†2‡#´T¿Êeo·v½"–5æÉ´¥e={Ï(ê1ãk›U9ÿ|Œ¯uf?¥ª®§ÒÒZ¨ƤÐU‚¢ ã©«u—!>”Óh і„!¹ P ¥1l€QÞ<Ì=0J¾¾º¹B e3áÐ?®|„_©˜ºº¼Ä›@t¤ƒôÞQiï„ÛƒC€ËÛä|äñu:fÿ)¡¡VÒ‰Þ/Þ)£ÍFà<®ƒ'&ú*ü¹}ö›6ˆùË™Û`öi°¾ª¾öâùO ›ÓÊ´§›Ç›te~²kã¿·ðkõr¸"àOªð y5~_Ã"¬Z®ß3ã9â’±&ƒí‘nb:Ò/Äû1Æ™ÂÏd‹À’Ãs%Ì!KŽ…5IîñŠZ:ž ¯õL±ƒpÂHáïöœ¨Œiôø(<}ûG¢§î˜müúˆypèÏÓ¨ó·¢—O•RݱEžWxnÓµ*W–ÿ-Ö2G‹µÂµ#ïi1%r–Ñ / g°w—ƒ a–¹Ûx4ýÅç9%ÿb9¨¾íO±þ͕ٜOžº˜‹ +X,‰[´"4©¼/AÚí70ãö-ïÓøKê­³Îe#f\ÜâÌþû"©”aCÊ‹Æ@µê²âtü©h¯6kzC´¶V&‚e ÈË…KÒ¾´j5 °Ýˆ9 üUØ/ðT?® ‚õU_T-w2Wá·E€ò@ѧÛÐ˹ô:Û4g#1RNœ´Ç® ½z®ÛûÔ<1ý|.©™ßq?!,Ì?ª3>ígrÕÂmW|j²´Ê§ÃŠh¥qÜ•«ó1t‚¢5ÆX ˆÜq/sŠ³Û‡&äb…*&O>î£%Hül]A¡›~Õ$Íâa…*A²5Lp(šå?<óbä g<=†¬‘Q&½bw;°÷“ƒmÁ"¼kõʆcªÎQd CŸNf7 o²ãµÅtyˆ*?Þ² (<"Á¬QŠ|üùƒ¡Ü¦PÞÓï¾H—?·¾ë¢Öòð4ú^z}!Ãa™¸¼PìãÏ%hÒÞ€X¾òv»QÜ–)ä8_¿&Då¡tOoq³¶qFpœ·}zŒ’±& ÉWzA£·ÛÙk•ù^Æ¡À•°¾4|ò6R# G¯ñ&WøàK¨’Ž÷ÁüåÓÔV¹ ÿ3ôçÊmpVd°Æ·| ݽÓÙôSgÎæ˜a[ãR ¥àøÒ k’à¬^ä%ž>w²À G<üçcëüT\d¥.vÁuÂÀˆtPYÎ n²Ê«³](¶mY`´²Æ×Å}™¢È&‚—Œ’Q"8¬ó×׸kÒÔ0ÅÙÚ§Uø·®ßÅyïβàò™mŸë~·Ýgá’¬sVö¦k‡~­îm¹=øÞ¡ÁÒuÄ“/àp*üˆ0àxšZªÎûjð Ÿ…oŠïá yWqKiòeq-€gàq¶ñ8Á¬«[%ÓePñ.Õ'*E¿ùÒÔ&„žÅ*máAZø0;7~ÊËÑj¹ñ*X“—<’ÏÇÃÑ“8EßríB~QšÅ¬Ä{güT q¿ —u„4±þÖþÕQmH·éi_\úy¸äÓzþö~,aý*ü¼6¡Szòùš,€çéQ"¿cQÄ&Cý}¿¹ý›Ý‡À÷æ_JO ø¥Jï§]ò¼„!¯À·kñ‹g cR?gýËŠè[$‡{õs éGÏèNPƒ-e¿ç»º v`Û´Õmì¡Yúø )ž£¿úas‰)-ýt3_^8á‡&Ìáj²kšY0*¾®™}–ÇK™ÿT®¶0Îz†Cÿ¨;ZwµmL:à¯^‡;R׿P}šó!bÚõ–û¤ûù½ð›R¦ÖѸ<‰>.œ’ôüÊ=·p>4àr‹eé×¶L)ÍFÖª£ÂÓv³¶zD™OS[¡×ÕÖ=|7'KEáüG*ŽûŠ” ÖEAÉzU^è(öEª/ðó”˜{#%²L [tÉUŸFl»ÔyæÎ—Îþ¸¤ô³¿ ⺕„ºÿÂ~òŸ‘tºñ°‡{,X„ð ]·íÂbðs!š’QS¸ß‚N*¯ßUTFܘN P§ß+²„y”#KÐ$+:0\|Yýé7/…æ© J8Íqº—ö~7aôzUýißow­ãUÍÕåŸÀ¡™¡èïOþªÄÖîendstream endobj 615 0 obj << /Filter /FlateDecode /Length 6314 >> stream xœí\ϯÉq¾¿»OÉði˜˜“éßÝÀëØ»^x{õ $¸zÒ½ä£Lr¥lÿ&È_—{ΩÝ=Õ3CJ+øÈ CÅoº{ªª«¾ªžá_WC¯Vþ—ÿ}y¸Vw½S$]å^V_Üßýӷу¤OCR«û×w|‰Z©hûÒ*¸Ð'ãV÷‡»çÝ7ÛÿYo†~ðƒÕ6vûý«õÆÓNwÏÖð…3A ©ÛîÇ'ú¬lЩûÃR4Ý¿íNß狆Ø\ôr­a*gM÷f­c?Xå»Ä÷‡- <,F9@ŒòW´$Uô±;ÑT¦rÝ7;ÒxÛ\°m®Ø—Õ˜î«ÿ•°=üö^‡?ß ªòQªÊ˜Ð+ »¸ë´Yßÿåî×÷w@Mk{«V.zÝЦ 0ü«Ý;µ:½Zýiõtzï¼Y½­ ÿÿË ®YàÛ/ï”Ѻqåa¡}´«H,Lªd/$Ñ÷F“$¨Þú%‰¦‘$ÉõáŠ$ö`vXw¿(¬ $±osAÕ;GPE¸"ðô9™ù§€jƒN…T²(‰½2$±0ô²D¹Þ³Ä»>ÙkÍ’4à_‹’Ø{Ò·W¶wW$¡t•7`}M¢è.¼7à<‹îK’P«K’¡Ø$(Ev[’øžôŒ'³- ^‘„|U‚ûQqY2d½'3ôvYRvYKd¿%IÌžŸà;µ,ñ‰}EC”éí xµ# Ĭ –%톧1œ,Jt¯I‚' .H@—t‘2à‚ôN×(mÙ~s‰-÷{Wº(q¬/ N×;»,_á‘S`ûÍ%Ý_ÃÿØxË­g³M?BD2$ ®Jͨ!’ aYp½ 1*õ抰t•±†m6—À¿Š4` W$Sè.L], BÖ5äÉÞ/ Š5¬…¼²$pEb¡v‹¯úA“$&¶×\ù%ÑÀNÌKK’1L‘ÄP”^”€Ç“\Ö. àæK »‘åf’hibaÍ6ù˜´ÉvE˘EIÀ×i?x—ð¯% ìÍÈ¡é¶ä‘‚› nØY­08jس¨HI"Cá·¨dW$ zJ®0ÚÚ•s±7à>ÄÕî×äÁ.v»Ã«Õ‹îý«Wߟ_¬×Èdð¢¢ñ pp8ð_§éÊî÷§ãÛãé²WÍO 4L<ã`W§Ç;0½ŽàÙ‚àÔ¯Á, À®P] ‚LýYë`È»/î*ÅiPf15!+ æ8³¡†„!¢€˜äLAÎ÷ê|™æ¬Ü¼Ô[QLt¦cárô ЏÎdéàNÀ*Æ‘@4R"ðØÉœg†OeÖ3]¸÷ˆ©*!óžÉšä{kU1ñ™i*aT¨fê3CA Q~D1ù™-ïIŒÅôgºø±ÑSQL€¦ …x¦GPf@³eAb†XQÌ‚fË6Wme4 RrÇb&4 â]µbæBÍ-B®ò@7â8cfCóua°­3f>4[—¦˜R@Lˆf Ô¼¯¨L‰¦Áöz1'šùÄ0(*ŠYÑtB TOWódZ4[2XSÔPˆÑl(¬Xt¨(¦FÓµcZL17š­ÝBÚIª¢˜Í઎•Ò|¿bê¨ceŽ4ß>@Uõˆb–4]Q%p37Ö®‰‚BY·¨"‘¨ ûÆŒE 1@b5ÀDØt­¥«D¢ 1¶–®‰âÐZºJ$ hÓТŠD PXc$ªJ$ ’qké*‘(ï'–®‰Jjbé*Qzúí$j”H”I}ô ªH$ Ê?Õ¢ŠD¢€Bº”£ DK5TÄàzƒÉ‰ôiR*‰Š®÷-ªH øZkçQ"Q@e;‰r‘sɈ*‰Š”n%ªHÊ@„Õ ªJ$ʨ‰«D¢œ›Ø¹J$*;W‰@Ù[U%¥#&U$¶±uHL[W‰@9,}T•H”vXJT‘Hü­[T‘HT 6)QE"Q ÈAãU"Pâkkë*‘¨L]ªH$ªe ’CÜbÓ5|ˆC€Þ܇3º@Ýȯu#Û ÔÕ¬"07¢¼@݈¹#êzl˜ÑF nìjº±Çê†Ï Ô ßz˜3ωç~ˆyÂ]W¾íó#êSN4qÝxHðɬ|¢ yM¯7X8ìüdàÔW½Ã–N6鸲Uæ.â¡J|r¹ól…c÷Q¢üäO*’¥Ýd¬"iP a{ T–4(?]W‘4¨¦ceIƒÊ÷-PBiœñÔxÏ@ô¸¢±lH¤ëV0·SðAç6À+¿ñ£¡þvÊÅÁc“4"§ Ì”,ÉYÂ~(ަU TÞû¨ðÄb…Pëù_WÏU>Áu5v# L‡Øx¤þGjDq‚´¿ƒâ>NC1Eãíbk¦(|LWu‘úæ¨Q2¦Ñ¢õ5Jª¨uDU‰@¥¨*QÓµÊÕ¨OˆXüÆà›d !Ûb»\w–þDê|þ3Å.Ÿjº”:5Œ!½îš’ŠÄ' ,‰)ÁjhŽß% XŒÇ=¢Š¤A9pæAŽU$ *¯B Äº~j&ÄÚÊR»¼1êš !‚7@ˆøÉåO @ åÍwÊ-¨îjÀùøÛZD «¿ñѰîþÍéÕùÍqÿ°zƒán¼«ø@ŽÇsÁÄAñ÷œ¹  ¬p¤:‡ÑñPÚC,ã'ß_tczKÀP– 1è~1âc!P)R Ä£~DþRL9ŽpJðq‰ü¯Åy1²‹sþ?ÇS„‡1é.­?ªŠù—ÅQÔ¹¸Æü÷¢²€óCŠ)z)æ'$™ç+r ÀV”~2¥‹É'÷êeòq–ÏjEò‰|ö0f<ÕRmöQøEöÁnŽMöâNªÆìƒé"¶ Èð©ë˜€àj:™PM75At³MþQ±I>ÄšÌCÇÈ"óäƒ'‘y\ŸÚÄcqÍMâ±|‡Ï@ûà°ä•Íh¸Ö~å¤Uá5•adz>3šÕ`QoðM¹Áð¹M–ðEË–çK±îLA^š%Ÿ˜ @ç`z°/¡ ߟ.¯V¿ÚžöGt]Ü ïb2¤}¸Æm¹>tÓYÆÝò£bÖ#ÞóÔ¼Ò(–ÏÛ†Vg“XéGgàèNÏ»ï„ `zÙÍr¸Úôw³ô,£bwCz+/„c E^~ùËo~÷Lì^Évú|m´ÝWyPQhÁGçC% àN¯ò¨Nå·ÐJ‚P!‘m¤±g äTWäòœ“Z›ˆXÒ¬§ 3eÜ@‰†FrWVÔ8âcY]Pœeq3wŒ iÓ*‹¬hÊJx±_=Èwá‰åa ÏÆ—‘|;¾1ëÇœqŸ©œñpݦ‰£Œ O¨€ÁøS=%šX »†œµQ©¹·ðH„&‰ ÊðîÝîAàgqÇU KŠQôÉk2Ä{ºæ' ît#³éêJÑÁhydŽ{^Ek§­@ù»oÊ:Mqv×ÞI‰ÙÅ ƒ…¸Ñ(ŸÂ"òôî|Ìì§Úª»ŒÉ·&~øA×g7¿ÌR8ΕÕvü=‡Ý™JVºévBæ‚L1ézüiÁ|lþ‡<{…&쥧_ÕBQ(dÖ…%ŽÑåÑÁ2•‚Ü}uÌ}aͨƘœ°øÅœ…C •t؃HÎiä‰xÊ£t*;ÿW˜ÁV!äz?)› }å eeÑqÝ3þ`•‚ Z¬„º×´^«;ü‰êéxØåQP‹Pf<¼ÚŸkˆ\¾,˜×ö[ŠlX2!Q“1ªM;UÒ¯¡õ<&SÌcèktY3Pi®)rïJ,8zhÖŽ}4\;óï—0is»‡:Š÷ÆŽïb—øŠçsZJ÷áj„æda[¬ À(RbU„™øøö q)« Ü7ò§ÙÊ™/À`ÐÄ’Nã[Ûýçk‹š¦›œÃHüÛýñò¢cø•S´v²ß¬ñÑ",V|“ÒÅ‘Z5[=öãgî>qwãüoé÷ñÈ›Ø Âxä“H¥ëÙù­³Í+âk!ÉŸ·™ÄâcØš—¾Õž=šün¥¬QI'È‚›(,ùÛ%O ØÉèýçltxôPfIú–‚·ÿ1¯²ëëfÄj¯y’. 8F}ë&TrMáÚ—Ñ)q "Ñp˜†ëa¬OŽ’þWÇZ ¼§Œ<Àæk¦yWžf­\k¯&ÌmÈ_7q@kšIQÐ’Ó[aȶ¹8ï7DfM³²..nÌí$<&_„*’ ÇÀͳ@Ù½ýž´¡¼Ï‰ÒùRÊW;I纪Èá Çt®)ÇCÕ{sзèzcò±3fæd7ršlNÎǦD¾œO¹ˆ˜ý†gí®ÍJ¯lv" ƒ¡}òÛ…~³iK´€ .œ…²ñ>¼ÆÓ†þóÈ/:i¾ã%_ [éL×F‹kÛÁ|°ÞK…ÒÉ+‘b  —2¹v¯táB„ðØöaμ„”¦Å÷„¼:© ·bîyóÔŽø  Ƕ›v\*¡‹óCà¬KµÞS¾/«¯¬+uÃÏlE}½j¡Á»ã~]OnÆ¡UðB§¿[«”8W©IÓmcÈœUü 7H.ÓZãm^¨±x»³†¨G*Ç“‰Y¨¦ºÆj$8jÊR@ðWTì=ub¸0DD¢Y-Ê7q›W º;¶û}`ˆ?vÒ–Ø!ŒM•ï&áLÐË&ÁN”ë© ã”§G²Êy¡ò ¨˜¶y\¡tDãBb-=€CÏ"55¶ŽÓtKKÿú<ñžc}ÂvÜXçŸ!– |{b6HôBùú¾j|T†¯¥ú•'¤ÖW`M‡ÿ”“NRMãc±Í¥8ÞT ìp”³"u 8!]‰“|yÎ û3“س¿«ÇÔm{ûÇ2á'¬ÍŒšÛæ?U\,/Æ3vB¹Y''·Bñôþ:ñ£ŒÆ e¡ô•zÈ› Ìö0­#Q3¥”ùªëeg¹Î:ÑšÍ'öMù~Z´  Ìût åùCáóÇ8"?Ùpj\ñ2_6f…øé¥6»£oˆÒß¶Ê®äš0²ÈÄw¤PúÚ3ûác¥x©YHáe{ºäi=³B?}Òp³TŽŽØá°Ìûëü;¨rpæxbà¾Ñññ÷L°)þ§u¤,ÇŠpÌAFjvÌR"#ã4íÁ? }Óo½—aûÑ]pêÊ£å‡ ¬Ÿ>!UT™Õûããî²9‹Ü> stream xœµ}]sf¹q^åvâÊ]â\²T©òK{ùßkËUR,KqÙNEžÄ3ºàìŒf(‘ËÉÝÕú‡ç:ýtsÀÙI)•jçmöÁÁÝOøÝ…9Û ƒÿµÿ~q÷Â\¼ñ»–©í?_Ü]üôå‹¿þe*D9WSíÅË_¿GìE±9æsõñâåÝ‹“u—/CÌ%L̾œMôôÀË·/^¿¾4ø­©§‡o.ýÕ¦zzws{{ý¥úÛ—Wøk(åôîòW/ÿM'ÝtŒçšjíM~yB8ãO?ysyå¨gÁ[z–*¶¤rzx¸~º¹ÿòòÊ{w®1Þâ¯59þEt—OOÓC_èýqO¼ît£ºÜº8•óçT³tñôK ÐÏ^¾ø_<ÐÖ½¿ˆ>Äs.ž>åÂÖÎñâáÝÅ¿]|ùѱFÙ]ÔâR¢ÎØ‹©wÅaV^^^úHclÊéæîÝÅëÓ·ïÞýöñõ%(÷…{èô¦ä@^xS2½Ò†³½¸.Þ¿ ^VŸãÅ·ôî¤ÿÿFýù—?acÊgšX©4ùñLí[Oß—Ï®à_üôqe¶As…êÜ…æì`*ô2Å­ÍÄTÝ9Ñ; œ=¼ÏjÉ¥ÁTÏ1›¢ŸÅŒ^U¯tlË`PCçJÆœ£;öÝ”³³vpAFo4õœÃÖùdí9GË¥xNc ’M$s‡¶\6çdF[ÎQWm•s6~pås©‡Þ;út›Æ7’”ûp|£#1ËŠ«œËq¼, ¶K£_´4½]ôžþ•F¿B=—ŨÚH¯È­|—ßXiTcÙ¸’9g·{j«Œ7ÒšqþØ)¶7™HÙÒ:>¶å¨­0Þ˜I¼§QŒiÂTHpãá…?óhª”óq´BHÓVÒ.G©´l“’T“mAI”mz²¡%]}žd.oOjîlŽƒ3}’‹ƒ+ÎâÜ^˜ëÙn}ÏŽ´d=6Er’\‰þph*y{ÎÛfú5-2é{ÂϤ¸2´Êþ…)’\ÖÑ÷àfan/$EbÇæPÎþ(€)BJêÆ%#|h+ZüipÕy‘µÞÓ—«Ç3‹Ñš‡”4;.Wè³ÇûhÅå£üE2ˆy C±çcÏC¤…oÆ(ê¢=ô<к8¸HQÛ£zÔuãÇ É2¤õýèV!lòH›9[W™eyÙûB«ÄU`ö쇪)–LÆQZø´D7.·°*9Q_GCžìÅq°|È4û£!°á )ÔÇmͶ§²¨îÐuÒ±¤<·eQ"Áã`YêWPLksA†Ú©n¥ƒ¹àΓN'ƒ7¸È\Äc[$&Ŷ2 ÇA+“‚nt+×Y”›M!ða4(eo-ä…´ÒÕ’.ÕÌÂ,wø&;ÞX÷ÖBÚò“VcWèÇÑücWž…¹õÞ’¥ MGõ`Iõ—¨¸Ê,Ì­÷¤d½Ýµº½½h#A ÃÞ»ºÂ?/e ª³<7¹¡Šq|#éMs4‰¤„¦~ùØ{ëéáñƸ·­÷¤þ!P¿Â?ž¦$«Jvè6ö¤…¨ÑÁE?/œ…°’ñ+‹å}:úN Ö/0eÀâ\eg04¶bª³87톓ÇÖ¯â Ý°bzSΆuG œm0qÑë#Éu‹n´eíûÄ€Å^Sš…Y&z,θ½Å¶hù ®< s‡ÂîBg"Åi#IHHè=sÔ‘ì©WmÁ¹tÇΓ¡¶Uqí †´E+q`fguÔ£ü£y-gÁ."yMNM"y õ¨O:ü·s€=|°.ô`Ú[ i KÝ”‹¬_ ¡¾áa™Œ£ôXùfLb·ó™I˜üxc-³0·ÞhØY³3mœB?Ä´4ž±ßfÇÒ§¸Åj…匃˙üñd‹wƒ+ÍÂÜŒ¢³ 2“¦Û[Œ¦'Éyp--B,1 ®°·Ív’Lc BYŸ J9K6.<@2©ÃYŒ£ ºè”7é<ÆšÖK"ˆ/6Ç‹ÈÆp˜‰+®¹›ÔêøÄbfqno¤±i =¡Ø°€døÓ­jgiîg»yèá DépmhÒ\KDfw¸+`ah ͘jXÈrôih!Ÿbª³4·¦àñ ä\€e845Ï´óf…A1C¶œ³4w“hÎ%o£…a±ÇÑÖ¸Ùœ¤£z“.s,jG ôdæ«ýŠy…€ÔëXý˜ysÔ@c=\‡€J<ŽWÄäýæòÁf°…¥Å7pqUþëÁw :W84w´R$(eŒáØpši½®è© 'HÞ|дð'Ñ¡œ1u„ ¸…į\ô¨µ 'sTŽ&=!F4äÙŠõG‘€Ã†Þõî`3ºómìà"ÓæŽZ0Á ã}]! ä̆u¹öhÓ1¦Ál2ˆàæQl}â€6>l†@£¼@áNG%H ,åá  ¬ô)Ì_\˜t2RÆn‘¤™£Iß·U–&#DÒ¨¸ö&C–"Yú0䯆þ™|obª³(÷¾Ã½ßÆ!ˆ “NÝH›oJÉ̲ÜÚ¶Ško1šáO*àé0x d ½é~‘½õÇåêI˜²Mu g¢,¢4Z¤ëW™…¹GʽrïÈd‘ÍXÄ!<}yLõìú©„:¸ÅæãpyŸ…vH“ÍX˜t’&5Á¢¾H c½'Œª_¤ÐÓ¤CæÔ@Ž5 0ê+q‘Í86EB)›P—&–>å1‹4]ñ¨ò0,Ñ@C‡ž"#Måy)µáX-LF°d2¶X‹ƒo²3·™D"Ò²«GÇ&PG梾® 'e\i–çîÃ:N'¨½41тƓïùè$`?;†+îmFÓóäJ…ÑùXV(Ñ) ámz&gz¿‘`¬_ÄÊINpN xhÑ/CýJ;›Ñ, œƒ8ú•ý €º]¤U5`KÊ{£ÑÒ¹€¨$:õ¼wNc©D(Ö-•”Âà ™ã!z¶|®Ë„bí1²ëÉ-R±–lö6C”3­j…3…˜?€R&ƒš'¤—“/·€@U[¼ìÊ,Ï-6J(Ë•Áå÷F£ÕiGL&û¥Ñ q<‘ɧ­ GQ§:¸£?*T²8 ¿ågqn}S<)§½ÉXÄÔ‰ki2æ(¾Ëˆã,"S울ò982[ ™à‰?ïÒ:”Ú¥Ìeo2¶÷Èñ‘fqn›<”rÝÛŒF©øWç*&® í•Â`“8·Þ“@ŒxR¡YH “ŠÑ²‹ šZ?£-··²b©vlÂL+äáäeYP3´‚ápéF¿ÈxÇ…kCÒ†'<1‹sS¼³Ÿ^É.*0Ì+±® P„aMõ 7ÐMaÁ’Éjf2^iàƒBCì°®µˆbWõsRž¸ò E’9;ô[©nçfci]o„ßq­ˆŽ í\ž=º6‘Ô^ÜÒ°ÄUç¤u¯p:šLPnB…9ØF¾޵ +5Õ«Û-ÉÆê¯þ`4q%›"èÃ4¤}Ì¢÷Sn›¸ò,ÎÍ0¢\d¸I5îFó‰ÖÎ5Œ÷V"¶Qâ}×±˜É…]C([ô)Ê1¢Å¬ê/vaµZ&C–þ$ò•p¬_$XIŸ•2F!¨…IŸÂÒÞ&p‹jIW^`jk‘Ò<Ø É.hÙ".Òc %Hko8#Þ¸°„@Ö‹U\u–æöFÒgiž æÙmºw\ÃÖ™ÂÁdHSIùÖĵ¶‘ÃñÂhWh·Wž…y,t[ˆê¯b»Fî×*àŒå9^—÷c+z‹Ûš&®²«&j Õ8ˆ ­Æ és§Š½®j¼ò‘ÓÆUF$ä9`3ÙQ³*Á@pedðˆ+튉Z$Ùë~YkÏ‹Z¤‘Æ mž öºbŽ*và-áö¼p)i ˆ%®²*ÁÈdßF&†Z÷sÁž¼1“εq¼Ñ×½ÓÌî7ud3¯ÞÄLGùËÁª¤¨·qi0¸©qÅ]Á^så½Ê!{K(vQ]6NbJ«Ôˆœñô6ïíE«.Ëç±vl^š‹á$orj‹ß쵸GVP—¸Ê ý ”´Ž9Ä”.Ì9Êœl\Kƒ/tXôÈ=•£Sª™ðÎî F+ÐB(§ ®¸D?ˆim1 ò.íªú¹û‘< [Õ§()¨qô‹4;z5èWúîK^¬WD=ÍàâÔ±÷pFÓ`*«âÓÙT{r$s@Ð×HG§Æ£.[½0íÍEË“MfŒ Õ*XClà&,ªOmªú 9.ªO!½JQ:f-:?„¡îME‹Q"ï7&°.êzrÛD±÷¢î\êu(¸[žNN–']4‹ñ?ø-Ââñ³*ʆ‡èQo¼À=È®?º…<ëÂOìÆqQw긨ssO3/œ?"¥ÊUŒG8†àߘdݪðtÎäWY¹Ê2ˆO{S!é:?í"Ö„$BýÊaU­çi©¸Ñ-®-–—UùxâŠûÊSžë)è}Ý™ŠæE¥Þ}][ + sâ–E©^Bºh¨"ˆÿ¢ô4Q7Ô¢Gú¢ô4êÇñF»7-&ïµ·´Ø00t]Têe8Êc°XË-â¹5hm‚Y•ž"ºY† ao+¶Bq¥±8Sù}ˆÎÛ¢T/£Ö"ŽqHn…{ÐVˆ&¤¼ß¨Àiš¶áy.ûZ˜òê5zeû²@Gˆ¨¤1eg+ZÊõ–Š©®p¦zì–ñˆMµÛ‹öÀ²‹Â‹¹¢ÏÃê™EŒ†m{Ñ–uˆæšñB›W¸'À’ŽÞXmT°ºêЏòj§Â\Àî#×°>pL¯ ®²ª»à}kczbKäCf9j®ºÚª€š¾±ˆLL\mU4^„·7®dV[6Ú ­ ¾ÎÕz-¥­Ã˜>f»B>ÐCš#¶Ê,Ð$ Éw±¬MMãȇWYlV@À: 7Â¥Rd"”4s8leÑ©­1Z Y¼Å^¦©VÊû/6+8ÔZ žƒÁ8Ö!û„¨Ó›¶^Y(lYžŒŒ¸°ÇΙEáé.^@ÿ\^Ì»é| ƒ!IcׄJ§E6në0 æ¼V­ÛvÊ,ÌyÕaG¬á¢î‘»QÔìS> Ù`…r™Ñ)ê² =DJÅ® OQµ4Üé\µ(SÙ½1 Eð¡ ju ‰Ç¢îÛË@§pP;œ\©ƒ«¬ÐÆzÔžb «ÊSìƒRðÖoSLÓm!çyAHæHLúì—&[ìÉ>­*O!š%.±‹½ HÀ)×5ÓT,JO‘ZSk?Š G!äq£)l‹>¢$”Œ(¦Ï šèͨÌ>q•ÕV…HH N&¼ªÑ×Ibª«­ 0]£VÂÓ´/Ë.M£-Ò+‹ÒÓÀJÁ®´Ü¬à‚ÚBAØÚî6+´¶Š–Ôb–&#ÀF ‡¥Ð_ó¢Le*y!®²¬=2Qƒ‚ý2 %­yª_no3Z ÝiÛYüÒfì”WÁ>Ã…"Ä”Œ0s!»À@(¥V뿎]Ôž’çCã5Þ÷f£á7jZšiÓ 1í¬FËíµçÛ—ìVÈÁ†8E!»Höêšlrªü®ð¢…÷ƒ¶…”¢?º5óÖ5_êÞh´‚r2ceT¬7Aå%‰+®*O=6Œ‡¿b¿Ì%¹)[mÚ^Hi=<Ö=¸³Í•/:Ú^]^" ÌôQV”_/¬:6ò JˆbU{:ïSôåñGÇfÞÝA\{«Ñ|y]»íkŒK ´k ;fV… HÔ´· nd­é+áØc¨,9?vŠÏÞfˆ•ÂVµØ®cŧ%7%¯¶+d'eckÝ 1-0½ÃÔZöûØ¥,F•¨ƒ3GÄá‘…&®º*>EMƒÝs0„dʹ”]i¤÷F£A’¨q¥Õ†XÞ±q5ì?*ÁŒêt;:*’•ŸN†Ñ .l™Y•–yµ™‘¸öFC&ã³í&.F„8oE„ÄUWõzpx† †°ìªÒ¨À@0Ø2sÔè5Z'®½Í¶¢ÎuS–6#ÁÕñF²ñ¨£ÓuWÁi[Ÿ"FæÆpÕ¼*>ýù`ÍÞjHïQ¡·Åûˆ«¬J/à70C°vo7šƒàU= qÕ BIúp§ÈJ†ýŽÖpÈólÅ ÁÒT,j/°™§„0¸âªö{|Fž“¬ÑÞn4=˜h$®´DAG?XdÂi˜Ù$®¼¨½˜Ý`É4ÛEô´«›¸Ê²öÂëÍ‘ñ„š"æÄU÷{¤0®ªb]‚}qU€êI/£U‚EÄþ¨½ ÷j‚Ì.j/0Cá8c ÈU«ª·—š-Fk~,ójÏÂTI\yµgÕÛJwZØÕëIß§@q•% òU9´PªþÔ£R>޶üÒlÌÇ"#W{BÔÛîÐÚÂGETq 0% mQx1ïR ЋZ·”Õ®§€ »p:§ Ý›ÁžJÆ¢R}Uw r3ïRY´åu½eÀöE¡ÄD!–àö'I|:Ûìñ¶:G ǧ!:Y¶ÓØîðRÏUjrûâ_Á92¤¸È®|Ó  MܹQLW§(®'CwkP4!D:W§h.¤æ¦~mÍ…(ÓÔ¯¢¸P•Ÿ§¶6ŠæBlejk£h®ä8s¤¸:EseL߸Q{?AsmÍå=ÇÈW§h.Ò in«S4­Ñ8õk£(®Jk&LmmÍ…=nnâêÍýN&6Šæ‚K9õk£ .‡RÌI&Es¹À€GquŠæ.W§h.@Í4quŠæð›ûÕ)Š suƒk£h®õA‹wŠ¢¹€@¦~mÍE2g§~mÅ…ªØ¨åkP4—ç·š«S4WŠìï(®NÑ\°aâêÅ;ÉÄ h.86Ó6k®F™¸Ú).õŸ6;È׊ø“%.|»‰ÁÝWŠÚi¤Ãq§G4ò—ÄÕxø ¶Šá/ÖÈŸLã/B3UZqK^×x?嚎Wø‚ Â_Ñ?ß®B̼Óéç‹y'˜9U8­ç½s}|Þ7®ÎûÆõÑy߸>:ï—š÷ÿ_W­X‡Z;©ûDDä_îÏ÷¿fi€€C©¯pZÎVÂtÒ˾ºxz JÚ»pþþþ“7÷·_?½»øðõÝÍÛ›§ï˜[̈áÊ·$= ÎWï7±Xg8{GŽ_ª÷ÝIJŒd:›Xq>yQΕ$j2‘/¾“ÀÓ0™•V¨W‚ ZÐ_?ø¶v¡¶é‰+Í÷«YÚ±QñÓŒs~pX6Ÿ mù½Ô§ëeú~«3((½"S3Ò ÂP}¿Åy>EQLIø[,3Ž)•D„ŒªßÛ-/’'¦y½Å/­Oq\'”‚ = ›ó=7œH ‘p†´BáÌIÂNyê>(äsYt'&ì»…ôý+áðæ,ïò¤gаï Kj…(¨JÆè$Dm S GtG &™‚<(-`Ë7F€‚Zä ' o·tL²r|(™“ÉJ“)•ÇÔFÞ¹JAiÁ6¡BE&¢etÈ í#²EÉ( ò8† Jx"ö-³Ð3…,Þ”{3b°d®øºÝ’@‰k ¤áÀ©‰Ä•¤<Ê™&‰7DãÙ,Tøà–‡žßni"þN'-ÃÁÄxå>78žˆÇ4öQÎøÆ §úȧc–0^è©ðHj)¡Lä4s–Oœ–q‹;/ )J dn6gyÇýÂc›¼£®Z‰Ç,»\œˆ;¹ © !óâÀËCÚ’S G«Ë:Âq=\XZ¬€Qš£€w‘Ÿ]ÖùäãÛ sŸÖ;²YU"ÌLáK2|è$SP‘‰Îh!4YGå€|’¤»Nš—ñ,p”ô.Ë«€›æEØË ¥ pBOqÿvKˆñ¢N^("ë§9sË÷Üà!Þ]ÊѿĥILI<ž¤{ƒ´+)´d4-BÉM}л™PǬˆSŠà,䓘 )¶„C¼c£° [ÞÊ”Bø°[(Y9"¬–ƒK8µKÖ  Š¢"+<…sE ‡iù¦Êk2¡ª}BAçó.1=oGOñ¢`JáÅõ¬IK©Q-!‡á ¹‰LÄ-q/+Èßäœ' !Šê°F–¸Ã1:Ay]£pæ•K’ƒ$:VnN ÃY$t@î…‡T"iM–ó„s*‚¼\’…¥BCÐlz‘-gJuØO¦Èþðd$Eu»¥Ip²¬ úËC ©±°Ða®ZZ—-@šRë=ßÈ <ò«pÿ\àE°Žâ€ê0óųšcág¥Ô}=Rß>«å(ù© Œ¬uÙ¢É Ã:Âmã߸c£-EW…Â9Ì„¬PhµcH ß§'ε±™ÂS$Ÿ )«Y(œåL8”'É»ªH;ăU¶ÃÁ}<¤•3 LŠH¸7ÂñC‹%ŠÁò$F‰Ò%Ð9vÌ}MBa(À 7Yžlˆzê4YTÄJËA„ËJ³P8ÅǛ텃½aõQŠ(E‡mr>‰}¹héV%î8×ßCN±ûà …¯ŽÒO¡¬ý!‰óò”$dWQ 59-;(D!y‡v¨í#°ÑÁF1q¥ ¥Šñ}‘àª6‹õèS[²|ÊÚq¼³Ÿ) Q‚„ÃBØœ:”ñGt›D…dLåX`PXéÓgš688t€‡Ôûö |Òd®ö,1~J&—8xÆo¨0ŠH; }–v²HûXè-Oœp¾Ž ;N´uUº,klåɌߨ‡B`Icki‡=A,î‘«æn·Ô2[Ft'v°A”Qxà:-ÜØ?•N6èÓ/¬S‰EÄ=D7[±¸ÓW™FI\« óÏ¿¶¬˜Óö"z¬?Ú'$v0Ñõ¸ï‹ òH‰1¤rت÷ö¥DÖá©VyU ¢>RèÍT‘u—[é^ÅãBAÇÛeÁ´Ä}¢ƓèÔ„ún/A‘e݉^À-‘<¤±`Kì³!ÚÑ-SH NŠ"ç€5V(Iä4Ѿ »âÛ ‹fmÅ  ÚWežG^¬²Äƒ0›Ûã#žSs¬ä¤V€VK•è…CYhh–S¦;lK(z"æfË$Õble©f>«¯Ù3+tÚËq£!×2gÓ 6ºò9[5‹Ð †÷ê°# H$Ò…-·l$TéPËšÃâ½DydÔsâÀ+óˆ `G¨¯M™`' 86fˆ¶"žö¡ÕŠß)º{AkoCìx¡‡»1¾™®VãÀÆUƸØ&ê¦[!ìݬ‚}+A¡•ìÙ8Á„¨fû#R‘ø:^a "çð E@q]ž+‚5®`%˹õ‚Þ{ÙD‚íÎò ¤¯ŽÜF÷ÛYvK9± JIÇ]§bqqe+ÎÛco·R Ìí«*î„ô‰æ‚Aaà%àpÑæ€¨V¡¤¦=rƒeØhÈÚCÎeJÆ÷0†ÀB|„i‘‡^­‘pö™ÄÛK¸H4+êÓw«|'¶ûFݬãÊ6ŒéæOö„íHbHqÜø±ê±=r‚KYನӰUy(7Q/}Éàî4v9cjSS±ýÑɢ̊KÑLÖ(¶å8ÂÂê×ÓD½4óà±0Xyd/J¼Z\ü„¹d;ßä­•°Ug äÙtbÌØó¼N¸Ã^`·GGYyg÷±—$>QZŽA|x87I("쾊•ô°Ž;¬ z¯KáWyˆ7Ë)ò*¸ÇÜÁÚ_UDØÙ«§pç²ûÛ)"츂ŠQ¶ÇZƈn¨ÌcåZ± ž(i\žQ6VÁµä|G ¢R¿ÙQð±69Çí”Q(MÎå¦ï[œ®d%BÐZ…’9è¼ÎŸÛXaÄ–›è…alâÄlc£>+ŒÈ…%La1Ç:d@åq¶¨ŒÔ„—y ÝœÅOè¥dÉÊùÏ D+ãÉòE¤ðDTîÞ`)ï±Ã^lÆÆ”´>ñEP"^Ú‘Nž)Iޱ)©¿ ù¥–Ñ!-HdYVbà{¹à¶¡jDÖùåBA: ÅÀÅ UܽŽíªºÐâÛFâÒ½B-6»D‰â·ÇÔÐYE> …ä«ð„$?ÛÒ–½†gO@jYüv\´-L^r.7ñ¯©ˆ™”WA!­èš|µwå&îÎöþ•ÁøØ” Æ;e ÏŠX'}±W&&läæìM@Œòޤ$E@̼S6_'ÍÆ·F´N«]ä%\¤Ù7Ëob˜`L0¦ÎÅþn/Ò.W†2%D pw8ÐëÇø…Äq÷E|î`žÍÒ¿$ÒÎ:P(RÉ ˜'"à¬A`É¢PŠ0P[¥W‘%cåU¸ · Ö”fbwW{ùÌ{4\ÎÒnjÒî›ÿÚ+7ÙÇ­òùze¹ “·o !Ëpš,Æ´×u²MöÒ*RA¼C^ ²àz.6 ¥ž[^Dæ»~&ÂÑî+²Z®kîª\­—šcb„GJCÅ}eBpò³©?DÐQ𥑠·Ho°ËÚJ´„)¥Éyi1„^mšpÏn•þÕ&赈º 8guGî‚…9âð÷rT®:`Cp¾£Äby0EäœcKܰG&ö51ö‡i°Û^š£ÙKX9’$ +~fªï |¸™FÚE* ¶þ¡d‰P….j8„™GÞ‚<…KqD'd¹p O‘ÄI‘—ç*Cjª¨Ñ^;<¨àk“ó°îÀ'òGºMä¹pù#{¬¬œË!­¢õrJ·(ô‹gÂ/îÊ(—Ý%s“´•î/ªó-gð¹F÷nÞ}‰ã30›zzxwyøü¥rJŸ_^áæ7cOÿv‰0n=Ñ_ñ7B)ô÷éÇoo¿£'áUÙ|úòÒñ5'ÝôÝ¥Ã-X©žÞ\^qtÙÎM<ôN÷¿–’„r¸?¶¤rúJ%½qºxšþô¶=Ýé M¿¾ûŠßÒé»Ûû7ªG×ßÜÚÃÍýãÍck²„]“ïc3N7_â¾^áôsaJ¸¹¾ãîZ†%ѧö±¢'PZrÅUÎò®š©y®xÆ%’8Ëæå?½xù—¯NßðWú¨•’?=<Ý|¡Gñúöò GŠP‹§écÏô \ÝD#ü?¾® ÷§ë·ÌŠ£~«¹yº¹ÿRýþ Ï ×õôôAÑßµ7KÄÓy½£¾˜§î±Í]Lñ45;½Rÿá}ÿ’|º›šºî½4Xú#Qoª~>õžÅxú B` åœv²9§»›ù{/ùhlç1Aü‚êNO7w½™Nó¤Þ\ò¹¿ù´~ºøÓ ÿ;Ÿõ€Ý_ò_iª¿Õ_"ÓŽ¹¾&*aÄÓ·¦¢+|‚ýišõ¯Õ>|³­´i}¹y¨±¤ÎGÄ9¨MÌ~ùw—W¸¶ {ýtýúô£/h }÷÷?ûÑëËM.ãŠøÎO Dz¿?ýíÕø#ýáõéÝW÷_|h´zúñàl¯øoôÆwŸ é'`ÒÞóW—W䘑ä¼y|÷ðÍ»·½á°jå Z Ÿ òãÓ5Æ·z€9Úçá“þâðm_ÝÞ?½î_¸µMzáþ¶3ÝòîÞ½½ùúîÍí×ïú¸í›¼½ùòÝãë­¾¾ë}ô§¿-EóÙxó¯ûöÉÆ>ÃrûíÛ%§û¾Y¼þý õ*¨ñ»~ÝZr´~÷úd:ŸI\ÞÿÙç7ßõǬî1½¾Tl·×oÞÝ>ŽVëá ÓXŒö•X²µ¯/Û7îm n|&¨×>úåµh°®P$•ü°X‹!îú&,l¬wOëœMò.ôö¦Ît¯Îð Rg_)2 VÿCbˇªŸJë cÁÜé[1>ÎJgúÁæ˜0¹k01»ÓãÎεŸ±ÒjcÍe^nÔ¿÷Ú«iIÖ^ìÔY¶|ÜóV b{ã¶—‡Á éó€k`ºÏ836ó©~€\iƒCÃoÏ5‡8OÔí½"]y…ó¡IG7ìSr9©AœpÄÎ&|#ÚpˆzàzLÇãÓÃý,“+x5èÇU[™o©×÷b5©#“\Þ\³q¾Â¾€g0•X´’r—BAσ8nez2— Ãì% Ù.H›Ðq=ÛvéaZ(~ ,®ÞôæAMB0{—³H,4*Ë_:lkW±EÈ»ççmLiÏ7óÍ ÷±5A+@Ùä–Ýh”øžÀä^±læÈö =ÄäJ@@š<ýë½—?S­ÿ÷ÆAÒù?­ Ÿÿ"´O$°p?ùÁovÖ@Ûoû3Q7è—§aı%äxü3iy¬m+£íÅ$±úų¢˜€ò÷¬!4æí´†ºÛ5 ý4û³ ܤH~¢U”aò¿PG6`©ëy(“f Ó<^|·,ÝU`:ÚŸ áãÓÁs@QUwÐ'”QBž ;ÖhŠÐÐûkà“}8í:éøCwˆw=Ý<õ~’•Öý¤5Èý{Ö!8§¹1vÑT—@½åW™Õ€»ÉŸXm÷Àß ¾¯)#ý6¨#”•îÝeåàü6Ýçì黢"mv¿Ð[}>Y^9’N7—Ðýµ @­Ý >gNÚcOÚùä/FÝñ¯^;71ÉŠ©‹›Uk¨¢›º#DK{õ+X]|Jœgûæñø¿)íûsóM ·A|׿¿øü)\Äx΄|.xÃnuÀ”ŸÎÆG÷õƒþR^|r®µ³ó§†¦owNøCüL³y{{xµ™)€•Ž/ Ñ›Àø’sR‘ B¸ü#0&ÊåÈåËâsu¸ÁÏõ|z÷éëîþZIçýÃ$<_N‚;}=a!øX'€ÃÙGü‚/"ÍûóyàîØêãR‰à>ô?èÎÚ¿{ÜyG­¹æp36”ÝÐ*œß3 èý$½±¢TÒýãMw™šž•ÙꪵCÚ§Þɰ{á£×Û§†cq ®Ì™qìæ5¶I™ì;½9ßâO¿Ýg n¾¦P’%-ñôp-¦:’}þíhŸíþ3‹gSýäôÏp›Ñpµã%$øß§Æør[Í×¢tð—Ç}uÀní½"ë‚mîîjŽ¿¶œþsYÞlÃÂyø–U  Å.†wÓ{CŠ¥¡D'!è/L®Ávñ86MÙ²@Ö/mš ˜÷Q6»|Ñ ˆGöÞ:Ž8”]$A,Ge÷lÊýæÔûøt·{#ãÏBË/¤õòÍ%ŸÌî©n¦„Îäbú§†ƒ~rût?‡]>b8/­èt~É‘{@`´ÙÛYM4F*ïiƧãûæaKÏ·ëå6¶¤'®wÉÍ_+yk+¢µö$=ÌfŒ–Kfû’´›¸e—¾RF¦Cž=ȹ~h9¨ê&0ø åáíqÈ{$‘§™ÖïSKX‘[øtßÓZéù¤ã È:c/5©žoŸà/[»¤ªîîç Îýs¶:h/¹úO™<î9¼}Òp6’—C].Ïz.9Ê7Ò¹?ÿÉ?‹kgb$ûë_æÉø'N*ýGÍÀ›û·×rlÍ.)‚ÃK|®WÍch=ç®®êl]ÅÙ ‹A傽°òd¨Þ¨£óòDæÜ›¡ý¦¼¿»á…‚—“©˜ÁçÓÃÍ›ƒ"j6òfô3ˆ5•_È´ A²™+~s-–×êÐLß$ ×xpY×Ðp^µ×Wbì«={TuÌÆ¾uâãëÑgô|uwÏë 8/ìÓV_N:¸9ŠÁ½%‘Sꢴ@Äx\•¿ßEâGo“=LJëYýïÖÉgc9ÞœgUÿYÏV;;áYÔÿ†|qåP’&ãuú®ÇäüŠ sƳçÛ.®P•­YõÔ9ë´Nαš¿ÐœÿµqÚ‰³o%Kê_~*aÚC/9[ÜÚÖÔÁ„DС“î(ŽhÀÕëŽNíÂmÅ­xŠóÕéo.¯°ØôÏû íz Ùv­Ó¯/WZà {Q²•q+ȹœ\VÂÿNÜ´Ã߉{ ÕwÎAÝf¡*ÆW³ÇÌrŸmÞÍf‹%)› 0ÒKqÅsOªþ@Ó1~Ô·;Ê,öx›& 4G‹/Æuȱ¤>GÛ”9о\¡–)¬K õ© b NHçwþSVh{7qþ‰óÄ×´£~Ø¥*nè?]oˆèÛÛC6@NÎp'Kø÷ñ€Nˆe~5{À8xÞà/ž çMº{âú¬å*»;w~ʹ²Ö%==…ºäÃÉÔT0‹³ˆN§S„zUH˜ˆÓÏ–z*±š }ɯµTÀÕŒôœù¸-ÅËš…ŠÔºi~¥ÖM³¥†2¾ñôãçú9ã"Ö®BžéÎ^…ØŠo›z³3¤ûU;ÓÃüêô$äþiKᨠ±cÎçïЮ¿@¡þ­öÐÉûîÌF{ýÉíÓÝ9ý‡eÇqƒT4¢|}²ÈãY†ÂõÌȆñæ:½ÌC§3“êÕœ?þógM;dëcV+ÆnÆõ”’µØG›Å™ˆ¨ñzù>ë`-’*âƒÞÌ.ÇýÃð0n”Ÿô¾ê}QPi!’$‡Ñ¸âÃ'Ì ´^nï ÷"GeãfVè±õ—Àã‚ØMæ'k˜ÓlM{;u¢æbwzŬÖ/޽ôµÀu?y¥Ì —ä~%žòÏ>P†`,ެöÊ›Žä¾¿ÍÓ뇵J?T ­V}o<€L³Ìï­Ÿñ^œ¿€;ƒÃ9_èþݪƒÉ*f8ÃÔ¯¿8¾ hpÍ/+Á%·hé?-?û”pë÷ Ù6¬¯ú_a-ò,ÿþQÙ¥ç<eûƒôÐA—¸ rn¾ã+|[¿~Ü%ÀÐ3¢Žj¦º ”ò >Ç?#ÜÏwTùçßt†0:3­œPÜ3Kd‡+²w;¥û¹Ú°ðÿ%-—‡endstream endobj 617 0 obj << /Filter /FlateDecode /Length 5391 >> stream xœÍ\[oGvÞ¼2yu 0  'átºîÕÞØÀ:–b/dksáÄ}h‘9«Ý=’L?äç=Ï9çTUwUu5%­½A`êé®û¹}çRüaÕÔlÕàþßËýI³º9ùá„ÑÛ•ÿçr¿úâüä_¿µÞÔmÓ²Õù«×…­˜•µ5íÊ(S·B­Î÷'/ªoºÿ^ošºÑäÒV»Ýõz#„¨Å«ïÖðA Ú¶êvûÃýfÒð¶:sÍZ+ª/·ýkß©±I§Ë5‡©”ÕíšÛº‘LWo¢ïûZhX SÐbzMKR–Ym«ž¦â0•ª¾Ùº!…–I‡.é± «ÕWÿ7Û¹fškÍÍÏ G¥m|TB˜šq<°ó«“ЉõùŸN6R²ÕF¨Új¯_T_…ٌԢêý¯VÀ:—VØòê視–·´%a_uÜî“.›·k¥ f±„~êÚTUÌ|U}S«À^ýCÔ§Žêª:ôÓÑ É—Ð¥m+Y‚¹Dˆß0ckm Ÿ¨•l¹;òC•2gÄÏëT Ù­¬úî.j“æ°w­fªw(’¸‹n÷úbíß7²Zê\fD.k##^ô%þRµ–¶Q)'ÙÌÖª™±Ù"kÅ;¤Ò5àv$l“!ó¸³%æé·ø™ÌZË #]_)eåŸÏyDŸ%λЌZçuC ©®¶ûûT#©q­@$öÙzªJ·Aßx¾£é9M³º#ªI¨ÀÄzš~ýüÙoJ´âá×Nå ŠÂx¦µÖðÝT*¨ömJá :¨ 4‰)¶×‚g’îõ€¢Eéœ0’çá~Q„»ÝîDΚEÙáÌÔ#°ú©lÎ#‚93Œ-›3X©¥D#<Âx|à v#´imü§˜ÉRÕxØî2†ýA·$'ìô©¨ËÅÁ†ÁOÉL¬™È Îdðñíá¸Å÷ÀßàWDïo¦eo_¹çVÎÙ(R]aÍŠ€Ò ,QGkA¾i‘ÛÝ8 Kïå@Ð×¾m÷H}š iüx½¤:Q5´aa´á Ø‚!lp:SÅ MvV)+§ÁiI– ‚½uk{~ؽ%mÜæK¾š¨‹íT3Áqûv´Sqo§-‚¤™}€З8‰ii’_Åü·‰7šèPp„ø"wéêUÔåÐï?2¶"€ÝÌÙî»›tŒxô]r ðŠP5«ž¦}‚d#Ž’­Ú°˜Ú*áIûcI´Á‹´m£?©‚CÔxü%ª;§ lƒœ€:Íf&5Õ·ä``?°°¤qñYÅw2|þ$ÂL:reÝpèÊ’ã¢ÐðŸ;µÄCÀ 8™Å «#Wä°v8®"¹![Öo»cª‡Pph§¢zw›êlÜ Ð a#[flö3AK¢¹ÎÕ!Ž yn÷`A3»÷£?TŒ^4”äK;ô¶ÐŒ"­QŽýX][ïB‚O\„Ê΄¡2Ól²mŒv  ¡eØ’5Z'¢œ{1òZ!aT©…‹k%*ò„M’Ífúzâ|R£’Æúú•b—üXD³ÀÖ©ˆ§èBDüêÃ2›õeÄæ‚ œh†T£ Èo÷&_L€öÞ‘k{ÏFÔ’ÿ ’Ë…‹D­µyJv!@l*N<Ï×\º·$K¹Œ‚P´U È,èïb2V©òç5Ó<´_ ù¶Œg±÷t2Œ&µL&ѱ‚M2 ž¡kôWÅÀz‚bq¬iþ©‹kk¦ 66Ñ[3ã Û]8>0Q.šâ⌹%üm®…½€5à±ã¸"ÚÞùÄ'B™”fF†À&°‡©¼ö#á£5–¥Ñ»øy×õ{¿æõƒ%TƒÇîæ&‹’&*o¤¯“™¥O›… ®u›;’)z!G2÷6Š2„1vÁðR“*ºE1U¬ã_¤VÔãMøƒ 7¸ÛÞG>°WWÛ]¢\àà ³ÓWI`©Î­Q,ê•£z­dÁ~¤af†:¶ ìÿòpÕY[×R·m`mŠóâÀÎ!³éùÄùD\ÇI¼°Oñ3ÂæºzØ% º{ÚƒˆŸˆÓ•ÇÐî0X®Ú·ÉÏÁypö"m 9* Yñ¦1õÚ瀚Zi–èǯ]!>ž¤vT€\ÃZÏÓRô¡±©DÞ}·/az™û\Iß„O2üæ†d‘ÁgL9Ìð'­T:¨)ý( $‡À$~Ì$x©ÆäãÛ»ÃÍšri˜†¾¨b~MÍdÃCŸ¿ÅYéLh-’¼ªšÂYŒ w€jY:k´y8QË&_ÿŒ,§ã‘÷¤š’0„c–òxøÇ4þšCkl¥ ß‹L,ºáí%N®ŒaÙÎ|¬Ðó“[½ìyY™Æ9¢õ¢V/æñzÏMÉ>CFË­”²¥Â%ÚþÙ IX|×Q)õ€V.DÞ[ ÊÁ7fæÃrƒoßè gÎ2± îêåmF}ß ¥#Q dOŽU,øÁÉ£…‰BmmÈüm‹9C’¶º»~÷pÝõÅíHUàr¾_Ê€«‡’ˆ…ÒSÌÖuý™/P1mm›<‚jãÁ+Z9’X»(ºK»Rë=¬ÁÂP1DKâ{¾˜†wþ9º7v¦Ï A™¢:‹r•¬%x0$uB¤¸Wü‰ø¦%ÖGQXÊwf|æ{¸é@í=dvyß µ~f©ž)Ñ,ðãæÒiBB Ë5ûã¬È—¦S¤J†>™Ü1ŠäXûÒ‡-ƒ~›ãï™bŠ"*Ç8×Ùß¹8"1ª”1£Fu`Ô)„Á£ÞwµXëšikÛÚDzº½I¬u^fðäüäw'®ì]­úår÷¬"Í—»s¡k ¼ÀÔ±âXî^i\?ìG'Ym5ÇC)Gq± åK¥¤ªØXJ`r Ør‚²ÿÉy ^ÄUI½h¬ô#³7BjÂ1v#‹Æ°XÀäb\4!ERšLPí Œ‰¶2Ͱ§É³ù—`¼½'nDm¹Éþ36Ãê,U¤ó£ôL6»4(Ÿ:'?°ÐG;rÍ…­h‡ÐÃ:£«]™ÑLã" ÷÷œ}ò½h¦†´áôëÃjG]sáSöô\Ž¢MEQqÓl~ ìd7GÞáõÎ…ã9GUUf¹:®†”&½µÒÅUK˜;ŠÜ'B¼"ñY—j‹uœ#Ÿb(Ÿ~%×ã}ŽøvÉù“¶þ»Ü´cáŸcbÑ—×X¯)A'ÈÔ=§º_‡’¢¨ìn³xSöä.OŸ’$û\'‰Y*ºêbÒD5ÁŠK}LM[”Ë yM4¹ûn1DºŠjÓ±rXçm×?ïö×CÙý¿¼¨Nw¬¾}³?b%§;>½¢û-§;1{#ý›r|¦•Š ßieÉ#òœÞÚêtR±KŒ8ôÀCDB&[Ú®¶¯žQ´*nžÆV”Qiý¡>ºìö÷_>y1íx:Ë?FñœÅ«žþæÙwOÆÐ[)&SÓ˜Ãt0¿dh†/ÅfRvùޕʶ„6•d”'¹ŸtÃîp,ZG0>Fó8¯vS2¶nY3:˜3À©Èü…a†4è&®8Sµ²„2ÌÏAÊÖFªh¸³Û˜¿$8hZ ±4X%¦±’ *½£#ç„ÓsÅKïÑ*`†sð¿AW Í¡)¦BÜÑur}°N;T–¾ ¦e‡ÐêZÆޓ³àa§ÙU1ôÀ1*U&‘mk®Õ˜”\H”0—()ÒÂÀa7–'œŽ^—ŒÂhºfÈù.(PMž×7:6µ5"‹¬”Š‚¨*¹¨äÚÚ4c)Ï¢’3µTf¬`½â4 1½Ï7 ú<[Ó½ÄÔ ±Ä4Gy‘æ’·˜yí2½×ì‘+!£Ý)”¾…Úš U71w?Z²BÕDß ‹7Ô×£›ËçoD‚3‰!INßøý†Ë!ùxñ± gZÑ]$×5“§hCJ‘°êÖªèŒL47:ìÁâ,]DõÎÆ⋪d˜dÍ%oC5ÞçŸ9%L…ÚzW*GD­y¹,HMŠÎG.±\—épå‹mµ˜´€cÎô»ÓLtY XD!œ¿O ˆê´Ç´€#J@÷­mhI¤ÒG,Ñ!ÕT]F-h•‡PcIÜÇ‘„Ó9t2…Enº–î<¿ÝÞ,¦ÑŽd"° 8»œ´zë‚¥4 °¼¼ÇERÀLÎ«Éæovù(b º b;À}…\’OW.ùâoS¸gU¸ûGóóê·±Óþ{ßfWÎ:Ÿâ”mùìý8Ðæ|4dõâiÓŠî,š›P³ ƒ±ìj½4ióÁÏ”OoÝ„÷:D~£«‹¾Cç•0óCX?qvøý¨b œêÂ5š÷”‹?nµÀÕ°ã­‹G ç@•Œ‘Ç¿(ÿ¥“†?5®vcNÜr…¦mãâåyJa,¶æ Ê¢ÒuæoŠ —ÖÜùX¾žÅâ}(þ‹‡).3/߯Aó ”ËWÏö.ÆB@ã1«w€—ÿãÄNf-¨Û®ö'Š[üKã›ÝÉwЂaàmŸhkþýô[¹FÐQQÇ±ÑøfjDsÅ LÜ[|z·lÅ åÿ¦ŒÃxƒ¨1ì‘?ìB<6ù¶;ºr}¼6{–«c¢}¿×$j)Å2t!k˜ kŒ’’Œèš\¸½å"—x¢þ`HJW{\»WÉì›±fz7åíèï=øIfè¥XäüÓlG^ªŽûB†t•FjLb¢Ð¤Ó˜ýR=Dxx?З© pFéVò§JâR=:"ÅbŽèýë!¼OªÄ§?qè)»‰*Ÿ.fú#=²ú&«ø8Œva ó…„O›š^g ÞD¹¼kÌl%ñ»r¥,Çȸ22I³°M®Ü_ç@äÍùzν…ŒÂu\J4LËÛw“³÷à_·> stream xœcd`ab`ddäóñ ÊÏM̳ÐuÊÏI‰¨ÿfü!ÃôC–¹»öÇÏÖÆnæn–ƒßß }üÄÿÝ_€…‘1<%§Ð9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õP\ã„d¤–$2000]ÞÅÀÄÈÈ2õû¾ÿÌ;N2ÔnÿÞ÷]ä{ßV¡óßÕ»Ï8ü}Éá ßÕÅ…7þâøþ\ô{ÄoÙï–¿ÿ^ò[æ·Õïðß¡ßå~›|_„rßM¾‡ÊýVëV*÷J K‰tI7ì6èvÛº3ñ@Ù¹î¯ÂùÝ›z¾3ºvô惹'»v?©>a¾×¥O½;šÃMhvpæï%kƒG^û}I&;_íÌÓ¾ÇÏ:“m?×w>n9.–|ÎnîM}=ý½}“'÷Ì89›‡çðÄþ &ΘÜÛ?­‡‡—£Õ¤endstream endobj 619 0 obj << /Filter /FlateDecode /Length 13223 >> stream xœÅ}ÝeÇqŸŸyJ^bèe@ñˆssú»Û‰ D°"˰G$b¤†Ü!¹Öì.5»MÿËyÏsêWÕçTõ½µ»ÔG÷ÖÔéÓ§ºº¾»ú77Û9Üløßüï—/Ÿm7_?ûͳÀЛùŸ/_ÞüôÓgÿñW½ä<¶n>ýê™<nBÏçÞÆM+íÜ|~úîáá×o>¿½Å|y.<›L`6½ezô&m½Ñ+C>' ø¥oùæéëg4Ë‘Z¹ùŽÞý·ôÿ2þÕÏŸ…RÛ™HQͱаç4¶šnr¡>ðÙOŸV#ª¶+¬²õóˆU±ú9×+¬”ò9¬žÎ}ÁêµÅZ¨31ŒbsÌ×c…B¤ÌÖÈgÌã+÷s¤ùN¬ºÑÚÇk¬Ï5¬rÎášô06ÏŽELã‹JËŠTÏñú Ë (R¤¾*µqNQ‘h—\žVýC8°h—$‡ð­Ãêԉlj®‰•ÏaÓ7ætׄÏ!œkU¤N‹uÇ9Š‚»íêä<"Ñaš‡ÒÈ’:¤~úšÏÍ¡C&BgÅjž¹¦1`W¤r.åzu:Iš¡Cõmû¾ÐØ}J¬^±XלEsJx|ð5g%zE­:¯A"ÈÁâ zP«môW÷…} ŠÔδîWŸ˜1Ó±ÅZHçèДälo:VèXøk,k„h1“@sÖ‡h݉6€‡Tϵ”o$.º³ó +:äíÓõ'cÖ¤ŸHï¯M‰ÇKÑO, m¼mèë -ôpöá"&[¥…¶X$¬Æ"ÖÒ·Ñ‚®’g‰íà†Ö¢'Ù"‰Åm¬îI¶8”æ$m©†‰·®sêÝ‘j)G»z$kƒCZ—laŒ ©&ëB?•ÕIùœ‡ÃSDä¬üÙIÔzR­ÃHŠU\©é_‹ØÕ‘j &@-ŠUù¯WÄ"^Ø^èØFŽx‡ð+U±ÚÙÓLÄC_Hvv ±töD‹ì¾A"ë¬HØfG3[Õ 4… ¸~cN´˱ˆ¤môU´¥i皯¸=“„ ›ÎžÄ­·YH$ ³÷‰õlèÐ˹;\JÒuë:wú¹J5ž{&©’¢RkTOªe‰A·ê Oñ¤]é0HÚfG’5—”økwJ®ŠEŠýzCç !FLRíXÃ#:-Á3Dñ¶4i"3M±y† ¬=­hpx™äXÑÕ…¤œ³§+ dƒTÈy¸þ¾AFGÑb—xzbу,íæìC˜ïñmƒf=N«aÙì©EUL{†¾©5 †„'ÜHæe‹$nrX‹ˆj„ÈéܼoÌË‘Ì žØÊf#Æ ºÊ³UÈü:hOXºêz^dwß7ºŽò%ó«F}a¤ŸwÑ2ªÍFX$\î"ŽèÇ~m€ìIJø„ŠT/< µÆz?°2{cžIML±Ú*ÜvžôfѱHènåé§úE„EC;”§/·4Å;”O¤»Î‹„®3Ô€kqà4x}®¼]r4†£©+m¾MçNB7YÂO“†¶ÂÐ’’éάðE]?dnt>HZÇ.“"ù²gGõ@R.!‘[ä|a%ívXúä E׳XŒeÂj®kEK’¹Žk‘7ØcŠÔ/\‹é&“)p(ý>¹ÞÔ…Lhu€ k°Ÿ©Ç`ÿ'‹$Aó6u8B7PŽg‘I%]Ä@R÷zîä¸2’—|áY{ÿ=°h¥=/™ä”Yè«kMˆM6Câ´ÍÓÔÃì|²Ü\ÏÂL¼·Õ«ØD§%]wŽ×ŽSÎÁŠ,ÞnÌ„&ѧ<’ñb&9C=¬áÅL2ð`>Zf28œ’Te¦±¼IŽXý¤X屘T'»=é´HÞz!Z²ºbU×¹ —@í£‰zžÙFÖã¡é©yÞx´ÅÂO¬2”\ˆs:;Ž¥jºHÒ)9’†ìfA"Ås/Bhú‰$Z=÷‚´y;âP„5\÷‚ˆŠ˜âŽE¦ÉpHŸúÂ]$r“³§C³0޲ø{†hBr•lgóTãgE8ANÈA ùÛ/lƒeK:Í2yT7J^³5!›L§NOxüG¦¶2 BžsgÍ̉¾žwAR9«jŇx14) Ïb†—ÚÙL‰d­ëXðè;ÉZǯXƒKúÚõ+6(ˆà1ǯÀ'•Ûð·¼p ¶„n¯ä¨úLR7±ÔÍ݈ÉÌ©W¸!è®"°´Ís+°]IPèíž[A_¤qšXzðü l1c¼æÃ5‚­t+$u° äYP¥‰°†Mæ&C¾åXÂJR×KY,‰5ÂênÊÂ{c…€ò Ø]±ÆjŸïVü°V¥ÍÔßÔX;rXdþm®tƒ5¤\SIêzQ“5ÔQóæK721UëW’ºžmD˦6u%Ë߉šdÚSIÅi%©²];ï „æ‘ív Z6Ĩµùa“l"•¾Å ›wiZ†°º+Þ a«g/l’[1 1ÂaþÆBƾú¶udǹhiq Ýë5,¤ç‹nØF»É‰š@ 24d 3î¥r`#™›<½bƒ½±‘pm׺º¥±…¨Xmõ-&Ï#ï¡$m)ž½¸*6FW¤æ…M 0 37’¹NØ$“„z9°ú…|›†˜ŠU²+ßB9[¤á†MÜ[¥VÍnØ„¾É¸6fòv5£‚8Í ›TbŠEb78qvo‚i$ÙÌ)y]ž<ñ›®¨o$u½¸ ‘z¨âì[¼ˆ›¿Ú ‡ððtëw’ºÙÑÔdgØC÷2²™~šð^‡ ãQ~QR=’{äÉÓam–Ε0×– m+Ç“£¼¹â-4“!¬âO6˜EÇõÜà b3í¤´ªóIê*w»Nð$ÃwÔ(QÚ­7Ûk°Z<;r>•eZÈøQ9 ¤ÑÇz±軤KïÝ‹`V–#Hêz©Y”5iì¤YœØIfáxL~ƒG[¯®é ¹ëÄNØÍÕ½8H®8±8xÆ;pCÊçlWq òéÚIƴͽÜ,Âd/ɨì„ÚDWh lqjgFÕ’,p*N@Óí¨ˆ£$/vó ª;¥ºÇ'‘®=ëTµÌ ®Šq”A6e„U½JFŠXÕð ©ëEPh_´¡o$ŶFP„ æô>ù´‘Ôõ2³µ–'¬æ9ñãióìÎn¨@ýìdfKÆ.з‘¯äDP 1¥Æ… k\DPäûàTd}cÊ^f6Cþ¾a ÏÇ@$Z]­´‘ÈM×&˺+Ò†¼éµU`ëP¥z¸|YéPƒ@ÉHIW}½Þ  ,['môÁNby«¹¨Dó…$rƒÇYcá,¹Ž‹3PCÌi#渨ïHUW‘D®Ã[´=5œ\gO£Òì §@×KÌÒ< ’¸^~Ñ7â[K—^‘•é¢éƒÉ#×Å@ h3XÍw1²‰Ï¥@"×ÉÌBjΕ°š—™…›b‘̵Cí±öjbW„D¦¶·ºq ÈeÌnøU—‡WCXà   ¬šuVø`'ä Oàð«S@&É׈j±Vq| ˜H(Þ‘ˆ!=ãbî©x±ßhJ…S¤•÷b(H7Öaµ cz"ÑøÂ)â¯~ ÅìëH¶£ãdð7^nŠ1yN*ÓF0XÝs2d-º5"É]/9K†ºÙý­Ã™ËÈw$0N`ªjÆ$Eºž‹2™˜«x.F­8*±jX} ó(lÖ”IB­{q8ˆU£~ ’`èÙ®ü@RשjBPSªäæE7=‹ØrÓÒ–óJÚlC%I;ÇÅ@Ey3„ ƒÂoe3• õ8ž‹1ˆwŸ°†çb †`;rC uðž‹L†Ú 9 ‡·z6¦uB©¤£a‘6NŠDR÷z+”îêKΊشª„H9x.F ê¡9.FFÒ¨èKt]Œ:LÎ;qÊÌSH©êQ„æ%~ª)ÉJ¨1qŠÚ Žc¨NG^Õo´aU•Áëuä[ ¶Œ%¥^Ü ‡V õÃ^Ð}˜ a/?[6V+‚}BÏÖvá˜8NFEx"éXôWG¾!<®ÅH >»£ùθŸÈÉ5G¾Á5ÐY‘Ôuœ dA’jX„S½DŒˆª³"©ëzÉ+´¤S|’I‰kåcâ¾—rÛLQcÊ$x²vÖj¶äº¹^ ˜d±6ÔŽdC}«jêB×   žaö* '€"Þ®XÕ«mGz0«æ¬rTëZ»1*I\G¶ÁfÑMª$r çRuZ81tÍ•TµFÝH»&/€R«TS÷JÛ JÐÕ®©Þ”P™X Êp(pW•³*Êy=²7“I•†vJPHl› Â*^…(ªÆ5§¶½àŒäf°ª—¤-[´©Òº»µíÆ**¼:òì:-–SÛ£¹Z¬æ ·YMë†Crk5«Í '„‚¥Ö³Y´E²—¥-üpT¬á†PPtD‡©y!$ÈÕ¤l(¸vÜzV5gC‘’Ã^P$M§•ƒBÁ´ô (aU/„1_Ô%k¨õ<‘jªÁŽx{E(µhµlj°ãU²Ö¡Ô¢¥÷"(5š¸©‘Ôu"(%™ƒ ÇÔœ 6£±s‘ØsiŠ5 Zn––¼=š”pVÍ©m‡˜ÕQìH ^ܱË‘%¬â• àÈTÔåé$tJ!kTÒ„Uâö–mùBê|´òz¥Œ”¡XÍó0 yÛZr@›<ú”bR«„Õ}ƒ$‡Æ :Ÿšty~¨èÂi5/M‹ÃóªÉ: ^¯ºÃÞkxœ>Þ4*Љ¹=£Û ÈÔIðz¶Ôfj«9iZ„ÝM€¡“Üub(8®•^„U½òvè³:+Ißû6,Ar×q1 Ãû‘ÕN8®æÔ¸£`Â8dgǽ°;êì¢2ˆœ Ì' $w½÷%ß–jho$3R3Ä5¼È:28Ÿ¸ØŒyãÆ%δlê1o¨ÿpJÜq:õ¨Ú!¬æ…P y3Z2¸Á5Í©»~Fڌ՟q`ÍKÔ27é´Hîº1”°¼KïÄÝn®:zŽˆ¦Ê›°Šëg{ ?oÌFް´­C«ºŽF°;ò6‚CA“”»œ=ÛO‘¶xvÊAQœ¢n a5ÏÓ¨KÅD8ìÉÓq> Bê^­û*æsˆÙ«u¯Ä5Z6FXíu& –9'N­;<Kú`/S ?ãÈ=VñRµ(ÖCÜ'Ö…{¾Œ7 ˜ëQÊGS!™(ñzÔbÎEýÀ¶w^o9´”C v?:Ô½ÄK;Ìòøìt¢ÙØ R,>JZ?€¥ %3ŒQ„e;°b°Ð ƶbƒ…@hX°ˆÁ‚û3F±ˆb%Èõd±b°`ûÀªU¬b°zàÊ.EÚŠ“Qýe_w Ε-ÝË[íYºøX IœÏ,œáÉ Ö1X8d—ðX|¯H;Äb¡üº-X;Äbu9 j°vˆÁÂq²|á±Xäì…å ˆÅ*Ü+Âbí‹E«±p©B ÎÄåˆÅ"—o< ëÝ{Ìb¡âq™ý±X¨?\V耬帔b‹…â¼åˆÅªrJÈ`í‹5ÄÎ4X;D±"D^]öþ±XIŽ«¬b±j¸#ÄbõÎúÙ`íƒPdWH!ëÝRÐb‘Š ÒXœ&…ûi‡,Tç-»_! Íïò‚µC,ª#Æ‚µC,ÚO,ó: kHí´ÁÚ! µQËþWˆÅÊaÝÿ ±Xy,«x@,ÖØÖý¯ƒõ-e±’te4X;ÄbÕmÝÿ ±XH#.ßx@ gÜ–o<  ɳe…ˆÅBÕÁòÄb5©ª3X;Ä`!s¾ì…X,œ_Y¸ð€X,ä.–: «mûÿ€X¬ÑÎ+Ò¤-·å ˆÅB4{YŸb±ªTÖ¬b±ºTº¬b°ÐyqÝÿÄb%iœd°vˆÅ*ÜÏÖbí‹Õ¥þÁ`탅N{‹¥¤‹ÇÅþ? «„‹ý@,V“„·µó&Äb I?¬¢X áåeÿ+Äb!¦¬b±êX÷¿B,Ö¤¤ÁÚ! ñİX©Äb¥±î…X¬*% Ö±X½¯¶ì08hŒ´ì~…X,´|[¾ð€X¬wÛá‹Ï .X;Ä`!ü°ì~…X¬ØÏ+ÒXœ²­»_! ý¯–¹‹…ÜýBÒb°¸Ôò…Äbå¶Z³ ±Xµ/¾Æ°88œ¤b°8#º u@,Ö»½$‹U˪Ëb±z;/¸ º,;_!+mëÎWˆÅâ Ö±XMk‡,œe¯ k‹ÛjÉ*Äb‘µø‚ ±XèQ±ŽµC,Öh«–RˆÁz§kqr]íX…X,t-X&Àâp%Ô‚´C Öuµcb±R[íX…X¬2Ö}¿,N¯««ÅÊj.-Õb±âX÷½B,V©««‹Õúºïb°Îs[¢‹ëjÅ*Äbå¾î|…X,.]¾ñ€X,¸—o< +¢ÀdùÆb±ÒX÷¾B,Î.ßx@,©¶eï+Ä`á<ÇbÅ*ÄbáPÛ2ûb±pÆlAš‹Ó˪Åb°.b>6 ¤X¿÷åìp"ú‹þq^~ö´·wláçŽ_•~ÁF/¿úüÛô+lóÿ-ÄÛ»€BÎ-âWÖû2Ž»2f°óå©ÛAKlÀÁB…X¬º5.‘V¬²`¡ç!}µÁšKŸY¬ Y°î“˜ÅŽ5! Öü"ƒe¾ñ÷[Ÿ$B@–AÇêœÈ*Á…(ôGäáFáKRÈp0@z‘£Ö LÞãÙ{¼7¯üÀÛN>Ü;7øGúçs/*Ígrî¬tFeWúÐJïXï_éë½+}`½w¥¬÷®ôeVú³Itåa"ÐÇ› |ݸûò ‡j9sWùød¦‡êÈIù× mH¹ŠôqK ‘Ðm •ûá2¤ñ$\ã³²Ê\j€é N¡ÑSEH3£»5´$r„œ«Ègólæ¡YT„žê„ TÔÑ(]–! ;Ó†Üb€Äƒ+Žª¦!™¢î‚V˜pEúD MIjL8÷ˉW4ãÜä¸Vˆ D¶$ãàh<½+mœ¦b—qšÌ§Ñâ@G”™Ÿšó‘óK5¡Á|ú‰‹ÀÁâ—£7™é•Oò03 ]Ëñª†Þ 8i®'ú Ѭ(Œ2Nä†úÕñQp$P]q–¡ a'T´0’¥B&æU+±ób@ïŸD3n¸EB¦ƒÌq›k5CÛdÁ–}68EoêM\Â=|+úì &úò#×&5pG𻂴= „žÇGñ)OÐåÄI܈!Üò®–ÙãñˆŽ3 ùÉ}ì*×›ò ÎF”A6at½!ñXѨLV¡#)‡ÅŒ|<éñ§×Xêd㞸˱ÎÊ1$oÂYò÷ÌŒitÛY¸ÌÉ¢çøÛ(/Ü%¸âȨ|8úYà™Ì'sìHEÏâЂóÒÌ7qÒ-)Xžg>`¬Ðî“)1ó'uv®gHeVBßuy(s¯§CmE4‹€4(çO肃ÝR'©$ãB€"[!B™p~Œ¢"«8<„24þ~Ú.Atóž’©AZÅÒYÖVî¶!“Tçé6ü—!…iט{ÎÆ ÄψVô©çÍÑ; ƒ0…pDŸ6 Rѽgu**§„×Ðÿ€í!ÔâÊS‰Û‘ÐÊØ ÌGiÛøgFyAE½W¯à,êØˆÖ0 ":É8éˆ}¹Máåz=læ69b扪Ü2'Êvj …aÑ7€­ë‘Ä Hc»•QE¾åk¬}Ø[zpb]Za_1…gvªÂ;ªÂ7ÈU©aHáÛâj‘³¸ áYTœ:¨òîÊFíÌ0™vf´XúuÁ!Û vzÄÊîà»ë¦%“™%qÏ –¦ô)nfÊ«&i{Á‚®LlX®Ü3b?â¨yÄfåÓ- ‘¤XÅ• ó)ÈaþÌÄÁqqØàLVòÊvAܦJ8™ŽÆÿU¬Ÿ*‚Íl+DïÞŠìð.àùvU‹s£â–¶tI´U®wá»Èx£‰PÊüyÌUÀ9k6 P}&H®¢µLxe˜/Œ=æc4D`Ó@¾–!MLƒ­ŠŠ8aØ8¨“gî®N~í ²gÈ`㷥ɄqEŒ4•}5³{UZþ „ ÒŠ(µG!ÓÑÞS8ÇŒ!Ô L&àÌÿ‘îêsõp%‰¢¹MXy£%ñ3"ÎoÌìunjœ†y¿EÖj¦ +¼Ùz8pYñ`"NÔioòrâIØ-ïOͤ"Û³BBÜ ¡Õ*VZÄÁ[ d1¥#®„X¯µO5>“އµqt–­ƒÆ½bý™6qÊHœ‰…yÀ˼V¸£±Šy+br¦)+êêØÚŽˆ@¬£•Ç ‹£Š† ó *7–¨" ÃÍDæ)"ÖQÆ/#÷ þÞØÙ· ²¿7Æ\«Y2Ua8ˆ˜”ìgÅu2¢mq‘!û{(ÌëéÓá«“+pC!;|%ÏÍ8ó£„S¦ø€MÂßîF\38ÄÊ• ‚}Øh«$êk&P+jÖ‡àà0^…²A¸°è«6²q `Ÿ–ð)Wnz@ ÏE·GÒµiIHKb!Ô6 ,‡dAVWôuñ–EíÌ”¬Úÿç!Ö•æ¸go41–å)œS„XÜT‹!’´U+7âü!Ä:.`à©à¬!KõÄ"!ã¨(¾”UÀBHu\B&ãJ𷢓{ G¬¿ºMC®Ë ¡E‰s6rhE¯‡Mž’DpÅe'ó)\ó ‚ÚI™߇A&oáŒÄ:'¥dIWt¡›´èUܽ¶¸Ž=>î¾$&š43àüX ]ZºÚtøÊ´ip,b…¢ò*ÜØ±))úp`pPüñH>W˜<•!Ç)*lÑ­CŽNTX2ÂX¸Mbä,Nמ6Š g΄f€$âJ4pI¯Sùã,™x|¹2DÊ+Zô‰n m‚„)WqŒmÍ­ÌuÁmebkî|Žƒ^à$Øçb‹Ì”wݸ AnŸo-k!ŽÆ½=—§r;½ÈI‰W¸PÙ<ÜÁ—!)ˆ¾Uaë„cTé‡.M¸ä‹íô-΢Ûq ß R·.¾yÂ=]à£m·VŽ8±yWHœegû¿É¸­ˆy°«õ„SJ‹y õØ<MÁž‡¯â ¤Šy°{)ˆÔ"»Cö7û­`À¬Î‚#‰û ƒÕh½Uè8Á\ž`1Iä@\‹„ã=là^X2ûùï90êÈÁ}ÈŸe† f|ŸªˆÐÄá¾!áÞò B­ƒ’ç*Ìj€Š{bئM R˜A•.ooÇ¡ SÄ6NÐ`$ÚKÂé³`€¦#")±ý6dÆ2™1$t GGQ>%tpÐf@ï8|½´‘Õ qqøêœ FÜØÖ›öjma`=d1g‚Z§ n6GË"Ø.<‚qÀœ —È>¶æ|HªÈRI².-jجuÆ«Î{Äpv¡wÌÝe)c0Û§68¬ÓŸ‚žÚ#á4¬¾ãŽi: êÆ ¤J4øØŠIªÆ‰U¢‰u ¨³I¤*a¥Ù8h¸ˆ^djÂ=à¤[ã dˆmÀ7L3$g± ö¸î^=Á~kœRÄ6€·&ºI48dñÎL&ŽÇél$¾G3Ob¯¸¨8êÇÔJÜ'JŒn6g7€/&n–pJ€mƒ²‰òØK2* @Pƒ7yšþpBî†ezbx&ôøëâG yHJ68–^›@ [1„Bf9[»)•Ю€­q¨ÉA¬ƒÜDõïeSæâë·°ÏÐì@žBVC»ŒÄµ0àæ‡ A%ˆ†éŽ`m<å*»“þd+þ¸¿ÛM›¹{©ˆYrt-hSŸÈ7 5h°2'i ÓuÅq<Š…ú±Ïfu ±zŸ» —ŸTfõ¼9bÆ*¯‚…ÂKeÊ©YBžÁ6¥dA¿Lìò¸K~ô©…T‡öF)¼ƒ {‡øYù”UåÀœŠ„ƒõ=|ÕFMû7Ááa•=ãq ©›Á{hšà³¤¥nÒz€Á鎊0!‡I:Á:ÀÀl‚'\è!ÖA³c/za¹ ;'H!ÔUáVu@x~h5™~{UŒ™R7l4Î~RŠ»í0€O ±Ó0äM…Ã@ÄmJ©YH£ABꆥúŒÈ%¸_ÞÂTœ¸Ë‚Âèú4!CÂÜqŽ!æTdëE!sÓƒ 5§:¸¡5mm ÄY‹CïŠS7¹Ê‡n"j›\ÛSq|•©„\Kâç'F±Ž <ëw*Î/Š @êf ™O’q$Å <ÙD¸ËA’|û·Ï ŸŠ€¢hÜÑÀ±¼ÓLÈÝŒ"/OÁ•7I<(¡;îYãÄÓ2š5Aê¥ÆÊÙèIdnØåÛ² ŸœÆOÜ‹†êŒ?¢ÿJfû’!€7ZÙ0“Šu©+"͹›O¸ž€F—u$ööY› Ñqë@®b{й‚CÜC˜2r–"1#‹TÇÍ`&„èÛ„4ëh.|‹ ÖU‘Kµm½<×®ã~¼)Nަþl jù6Ê ììåLü”°:ó7ž_æ€VÄ‘l¨Ç>÷îÞ®c’ù6ʘbiV@UXßÂhšß©9bAÚºBÉœ„«L'„k¤*.›•Wå™\›8? í—@X% +õ)¥ˆŠ9Iˆ…ü sš0 mbÖšÍ×f­{;ЉkïuWÆ.GþF²Å30@6íƒ,¡•Œeeû`8ì•YšÞÎXèÝXÏÂi6ÄY®g¬=cÆÎöÚ-úð,óÉÐl!ì3$“a a“É ½m⬆±÷Z/uÌ2²70`òî H›._w.£:3’ÜôxTƒ1ð&˱°œßÄsÈ𥆕ódÐ0‡³Ùå)9”/“æ( ãt¿ ½Çs—‡ò„Ž oµg.SûábLT1jk*#€ŒÝ›ÁAy˜0TF¼§wSÚ±— ±ŽfG;#üZ盢¼ª 1ÒLd–Œ¬oÃ$Å,R«Xx–m:ŠÍÜ¿$#÷mšMv4A¬ÉÃbðmÄ©bìîz†®aû`·2J:Jµ4‡ÓÃöÁîÚîuoDŠ!qÚ ®%Ù«lºd°×/ZNYìƒ=¯»Ʊg«"Gd¸­Èè9Íùâ݆ÍÈ—sÂ8obgddkËdô0!Ud:ÖYÆAk~ l¢73úAsÆ8TñÆs$¦Ú¦Øä!©¶c3\vbÞl ”™$ȷW3»}m›»>Áíž½Âzf_!‡Ãnß®˜2ßñ-,Éæ|Fe–ê»ÝKøêƧÈù=â­{4‚6§’ÄéÛEø¬ñS{5#ƒÃ2ý`Q¾ ŠezC=£K1Ëô4&µö³ £Ï¼ÞQ8ä:@Ðá5Ê&\Á÷ã%£»2¢Î9}öÂÁŠ€ÏÄAZ¬g¡ß] 10ºXµÇ¹ah#v>ùãŽ&ã½mbôò€Ø*«-m§,Ö.šK…µÁšAƒu„I –´‹³X²`™°‰efÿ¾rLr&o Á¥Þ/CHQ,Éõ*R›‡ÃâÄŠ(Í+ÛË $ÇËB‡Tñ7NÜ‹ªÃ;fwúˆ?ˆÿôúÛ×Oo_¼~ôÈ-ào`—š>!|vúô½ÝÈû9½~{ÿxóê·/¿xxºyýÕ ×~ÂDŽ wæ™1}x~óåý›‡7k•¡K,2a‘ßh‰…£%•—­þ×_ÿöþ=ÙðÛ8==ÜÞ%k Úüåí²Ëc¤Ó?Ü"„5Nôw`Ä׿~üÏÂýh§o혯¿½½C";·zštÄN¯¿Â¿Xï§O0Ü@åÑéþñ%aéóM´K?=Þ¶)d;žïç|C=}iqˆFö盉¶µÓÛo̸÷o÷?”Ów·ð™I ­o;HRNöÉ×oä ™ýô‚–ñÅ¿ØÇd $|c;=ŸœÒéÅþñõôóçéåý+ž9n§ï÷i .,¾c¾@Å!³èß=ûô?|ƵÂçÛ;Nï†~úN‰©zÿœç–;)†Ós3ë“úð¼ÒA ÁÃw¢½{;)ea_?Þ7à21 U÷…„e—ky¥ýÃ×sŽô:ùX²2N–_2”LÓ261âº2}»ðFËább˜Ì!b\ìû§ç;•>Ì0x ­ú‹ýß¡Þ|Ã<š!ëO¯o1ÁÞÆé»¦´Ž÷o&·zºŸà^N/¾þæøâ·ûˆqIJ‡á‰u%À™yB¨ÚýÍýJI;NæøÕ_aïb3˽yý¿þ_÷O}ÿö~þaœþó‹óù‰$Í—ß|~zC»ðoˆÏ…¹ž~ûùíÁˆÅ{Ósþ§_½~z æL;Þ÷ãÛ»B,§¯¤pFÃoC63Z~Çä¿ý†¸=ìÏ´eÖKøÞåæq¢?ΗŸ òñŽW²]/)Fÿ‹«×\òáùùW;AŠyg8}ùÅ‹WÏ?§xÆ{Î_=Ý¿|ðØøã…Ĩv>}GDüo¬†÷íQN?ù ÙßAßWôÞ7×/¦yÓ«®3ÿüôÑ÷„ª§ÞÊ/™ÉGoÞÞ¿}8 ÄÚÝ?Þ?½\ ¿ýöÛ‡§/^ÿöÕóc ¢ÏG¯>úøzñÝ­—íôÑWO¿Qütúˆ7ÿ/^ýýÃÓ‹×Ïuíô‘Òè£ùá—FFBx»SŒ†>X£"y°± }³|þ’uUG¬šQ DBüJOa¬Ì:„/OýýUئ A=f €v7*…ûŠP£ðç”ÓW¬DJ!÷çôúññ6`.´„¤Pp}‰§ïÞÌ9†ÀJ"ñò…èµB¸ËØoïï¾x—Ê}ýòÅýãüÊÞVÕüæíÓ û %#[ ú“!³=J›á¼.çwDµ8Õ\!{æ/!ÝàÆÈÿÎ]j;ÌÜsMè3÷í´°ã°Cñ%Jä0YÌ;1ÂÉiYòØ61´º˜¨$Ù`~¡ýi"‹éó“?qÜqzµÏÈÎõZ¸3ßû2¶®€2˜Ÿþä,ë~úócöðr€ý'xÁÞù‚þŽñW’:ãŸhÿ3êºý5FwÁIüï^Ì}Ë»È%u„-ØÿPJ¯oGL% kÿÇîàÜwÃñÂÏÊFönŒ¢˜„ Æ%ý^¶(?“â‡$O›LNEú7mΗÅßSÖ1‰ë’ ~ZŸ ÊÇ.{H¤‘'Οûkzôþ)ר¥:‘Ç_ñùw¨÷JäýßöÆæuá"ª~¥ET0€Þ(ÖÝÈwZ|Ÿc%&ÞD#¯àJWÉÒîF溾âi©­?FÓÈÇäÓý;ü­w°Bâ Òe ä­Ì8ׂ¾ºÛ;Ö„©s©>Œÿ·î‹7ìfò\iÏØ…¼‡Q¶è®õIx´¸è…̨_ìCÉ–ù¼x3ÿ@¤ÿØO“˜SUÝ_)5—\wHc _þ*ØÑ9dû™+QÒ’Jñöò$¸>W¾÷ökÃ]ε> ±Tó3HdY¤@v«ÏýÜpÉɶ—“x·ÖÙ1ß)ÐäñŽyña¤ÈfEÑ]i;¯~`+¬Ä» \PEóAn`ðÿSLÕ”Np€}"Ž{!è*Bjþ°Uœ˜ÿ/Vñrï^Åóëøáƒ°±˜ŸŸ‚kØá\éŽù5æÎQþù!ýó{Lîòƒwcß « º!ÓŠÀmì‚ø¯Ý!qzw~Ü)ægô¹w8¶ÀÜß±8û nAA‡]#™/^PìþAæàŠq©ò1%‹ùgîÔ–µ BHKs¢ÿ;NZqòMDEN*ÜÂ$qÑØyïñþ ’Í6Êá¢TÈ€4øû¤C6:mOIñã}Uh}æ¢,kŽc[%” ìvÌ¿y'SâjT³è§¿ôDÕNJ‚A—pI,Ïdq#ŸÛHdzðy¯­¯‚(Ù" ;vmdÂÒ¿;sÑéåDê¹,*ú"nÎÏŽ~m ñ˜¥¬&Ë?Oõžê…»ù%Â¥õœÉ¥º6Å®‰Õ8ÁøÿAdVéŘ—ViÑ»U[GàÍe›é|s!iz¿oÎAãZK>½`o&ÿ+MwL]V³èj–úþÕœøìhÉ/zÃý>½zz|ýõ‹·wsöòܯñç€=ðÝbS óÅ-ó±eŒý(—–µ ‹ßÏ zošˆ+3 ÏЦ*'‰Gpˆ¼;æ6šû ïK¢Â¼àçÿå—÷‰1™?Yƒ2¥#F±ÍKïB~anmzM2…LµwZà¡ñø´ZWüaªÒ·Êx· ð/sèÚ× pùÉž- 1¥þÊ›íʘ6Ü|×Î8ÉÝ—ù– UWpsÁ ²ÕÞó_¹R/rGö²XПí·x`½åª>3óûѨ;À¥®ëG_P~cr~xÇ£€ ô•îÊÐÝòÛïÄŸ‹ù’Ÿm`éõ“æ‹4-µûþ ¯ß¼YBmœ-åW¤Koþt÷»[„vÄÓ÷× 4ìœ ;Š6Hl&pHO"¢+=ùâþíeáØ°ï7™WÊ£ô?—=Jà®7â€Ý"×¼×ïxj äƒÎw‰vÄCY7ýE4õµÄb6þÄr|ÐeXæGK|r}Ù›9þ%e9‡“йä)çÆÔÔ¯E䨶,ÙG<}Á ÿ|ÿÒ:¢NÆnfëÿ/$Òüendstream endobj 620 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 520 >> stream xœcd`ab`ddäòHÍ)K-ÉLNñ4~H3þaú!ÃÜ]òcêÏtÖ²< Ý<ÌÝ<,‹~lúž-ø=‰ÿ{Œ3#£¹S“FhP¸¦¶¶Žs~AeQfzF‰‚‘¡‰BR¥TFÁ%µ83=OA È(KÍÉ/ÈMÍ+ñËÌM*-VNÌ+Fh$Ï(C#SA!a1V ¯X"ªî2Z|_Å÷ã@É•Ïo2n{ú}ÃSæï˦‹zvûç¦EÅz—hwÿ–âøÝqû·èwïZw¿‹~oú®Pú2æ¬\Úހݶ,¯viýŽø«­©óþ{ô÷è]o^É ížÏø}úcæïÓLý3ýñÏô@öœßÌå5¿e*9¼Ù zþ8|ƒñ‡åSæ}Dÿp²M9¾zã£ïK¼;´ïj÷“îãŇ7%n ŸëÑmØí‘â[”Ú×éÄñ˜­oÏÄÓ/Ú¾sÙnŽÛÇm³"}ÒåõCk˜%¸7ÿ6’ü‘ÃòØÍïn~×ÄøÃhKÁÏHÑ?LlaÄXï°mÙ³vÎánŽWǼ”T|µíb6Ý.“7f›85AáæÐË9·»9¾+¿ÿü]뻂Þëß2‘Éu¹IòË¿G±~ßÍÆW²èÇ‚Y߃¦gÏd»Ãõ‚ûfϽ©<¼ 0•ï!endstream endobj 621 0 obj << /Filter /FlateDecode /Length 4973 >> stream xœí\K“ä¸q¶¯}”}q„¥9±¤).ñlÏFh×ÖJI–f[aGLëÀé'=U]³U5ÓjôÛ•™H$ÉêêÞµ|rÌ¡Y$ùø2‘˜ïM- þK/7gÍâöì»3AoéÏåfñÕùÙo­‡7uh‚XœßœÅ.báÅÂWe盳J6ËóÿÆ^³ÆÊ×QÐáüêì]µÿ´lð·M¨vŸ—¾ ªën½nï‹o—Ëþ0A{_]/ÿxþHÚ–¤©ƒ !“þçåJk]7ª~þ~¹’03­ô%B^xë«Ý®=tÛûåJ)Yc«+ü¬T¼—®:°N—åÜ]A[YuÅ”Ó9«¤ªmpqŠÕÛÈ ÎÍ•®vr±R¦öÖÆµœß]íe¸ÝøY},™·ý˜élµÝÅyékSmoÒ³2Õ]Ñi»/It‡vÝý¹\[÷U¦!9 Ú=k¶OÓ¾^Sµ»n‰?¥­¦í$|ÕáŽ-¤”‰[6ÝòË!M'HÞ¿g©Iž¡øÈí.w…¹çÇP¥eXi-ì9ë‘Y©4nq|iùEwËä·$€Ûÿïçg¿?‹ze»—ê“ö¢¶ (•.Ù@J%H©Ý ²6ŒÞ»ª^®¬© ¦úÏ{ÎÅ~ù¸”•;¯„ª Šr¹}åRºFW½8m)3Ðõ®§|ÃmW°=!ôÛ¥º=ä‘ÇŠD7ðF×ø^¢è'Ã_o6\«S+¡'’#4úšCSѤ8ô(ìâD{tZqh5ÆŸRœÈ[uû´„ÆUûM»^3ÑÜ%zÞñõµyÞ&³P ·©U9µ)“‹»"K» 6ìü×gç?s½½/ؾ¯ÑÄ*RÁ_n£®ÁpãAßù¾Gqbôz÷:_èYm£Äj;j–Z 9|ÊȶgÝ]ûÓ.¥EÁ’Õ#2V[¼‰,Âg ÿos>;›âË&Nì@r)vìQ&dœDcÜ3d'¥]>|VvVøâˆÇ„/mäUrnàúN ßÈñö»ë§z×$-("¿Ý¢·Thc´›Qqü ¦›(A/­C‹²£BUÚÕM &L¤C¢B¨È3‰üCbÏÊ«»èæ›ÆËyˆ¶¾AQœ(2Ò6'Y)£\¶zøµO¤‚«ʽíÖ=÷f¬Ynâ0D û\6 ²‰c‚PG6¡…­îÈs Sª`… 'x‘­ˆÉ6„ Ò¦e"‡l±ŠÜÑe¹ÃÜîÚ('µ,õ€½¿HüÎÒÖâ'M®†‰Â!¾1Ü3µŠJªê¡l~±$išhÒØŽ•FB ¬£¤‚s²€6Š9±­ Æ†oÊŸJ–¯97&‡«1h{òþ?楸©°X³ñÕMa+ÚËÒ4Žt&=ÅÞâ´ Sy¼?`-t/ðSN0Åȹ”[¼=LpYÖõn[ºþ¿in± \©€¦:lSo¯«ÛüÊ÷f[âOy Ø´Ýe@ªýD ÇKœ÷iº`¿ßgãø˜¦ûvÔøˆðìú)L24‰Ž\Ð1*Û ’k‹®Só&ŒZ[2~ŸùàTµï.IÙŒ5Õ‡Þu’€ td'J8t²#ôºf¿6#CE¶\ùê°þkTq\b`Ÿ–ãxtMÚli§bK?ëè=è[¹ç-Ï_¤…y;µáñòPíò:Æ,Ô M›ù~ïù2µŒ?oÓ ý,®fšw•†Q:¥8p‹æòȆ'‘÷ª·B ƒkO™“#ˆ““–9$Òá,‘Õ7¿+´vŸˆ‚O`óà"tÉ}]žòQ‰®ëå)¹á}úÐŽ¸ƒïÑuï±Gg'=ªfœŸç°µko#M¡DW7HíûvxžÂÐlÄ ²8Ô tlvœìRÙ¦ã´=3ò÷cKŠm4{?A£¥2‡¿q;&Ž‚â*=WRd$líµqyÔÿZztV°  šÀAô1 Àd ÉI!"Gd0´±8Èh$ш0M_JÑ…¤~°¨‡¶&v…6¨¦ôlHMÉ¡¾sg:Ë>•¨çð:§,Ì0;poݦ_â Ê ®ÄþqêF|~!ˆî¥Ï¸@âF"Ì$l·a›î:®Ôv´˜Í>Í&æK˜²D¶ˆrúO€çí.5øyilLq¶»®}_:žqN°ÏŸEI¸)å/DZa&ˑ䗦cH€ç%§Aå8/¯Jó‡"dbCÙ‘9‹~—š( A(¹âG.ªÝQvÕ^M° eÜi¾1ÌÁ ‚TÔØ¤TúõÇíåݯîw áÁÕ\ZÝ¡g0"#‹Cûaœž,‚÷˜½NašÄÑ#1`ÊÁ G Qeª±sÊG®Êܽ7óTñŠÐCú5–ivEEP9ÁÀ*„´b£>;.G»%Œ„àZó °ŠÏeO"¢b$u+´õxPó!™Å/Þ Í$tõÞ‰¬o¿„Ð[jB!Ÿibô ìæ¿®†/—ÕðãÕã«×C³W÷ì×ýbB3|qÕ«‡ëë¿ý´y½{u±\Ψm9±Mýþ=D# %l˩ݶ›õ~Q]B‹«‹ê±¤º_=é~2IýAYÄðø³áñÐx “Ä·Ãw 1ÊýE%ó,dõÓ¡ëÇ.OH”¯Ùòû¹@@WŒz¹ÝÏSU]¾SxÜ'¦¯ÿ&ÓŸ£úâéyŠùüꢤ&è«7o†É‹a–¢œåÉ®º’Ë×s°ïn7m}³Ým>­Û⛿£Îv¼i7Ýú1f«7C篾ºHt×Ýý‡‚èðøj½½}udJW”xËr]tÚ·ëÍ/cE`u}U_ݼûxxIôZµü‰ïc®D-ÁJå}8r(zIþHzž¢iË„ÐmßÚqïóàºMüA "Kt4 Í0#‚™iˆÕPn¢Ûg²â8©3'2=Œ5gã‘*æútO<³šg‹×‡Že;žé;tÅa|"«eƨ"Ì17å6 æÆ  ÓÄ®G²’/½|¦XxbOéwÛMvR-`®!ÀxÏI»0µóÒ Bÿ½¿°^ç,åj¡}c²ö0~l˜Ê„kІÀé0v±2µ´!tÂæSWL=-ΚÅ7g@ZË…nTÀû͙ȿ–¡³>ûöè­P¢XÉpæ «š*ØÚ9Gg¾àÒš|ÑÅÕF:•’.Õߥ&Œ?€¼…y4Os&À€²v:ë>ÁˆC=qÆ5n`Ìx1ºÖ°Ÿh‚ê;Â*¨ô *oo†ÕÚºHnóR«‹ØY«F-V™€~(K(0½<ðnjÖ«þ~Ž3€¦œ‘ϯHppí''¨Äæ‘à'k²£¼25lÛ‹AB­]ÿæåÒ@Úˆ¦³µRáÿVZlZâ‹Ù1'.8.‰ËÂâj/5êÛ ,ïb@;Ê)Ž$< ØýŒüßb¶#‚³/³QLz$„æ(PM¹¼Qž²ÖF…>šÀ€UÄàiß_méXÝǠО?é‹¶ÀË-úS@ôtbÛh7©6úaå&x¸(¥qlj߸Xòm12¤çª¢ŸÚ%v`Nñëdõ o?äàç'‰*d‘­~±ô©ø˜æ ‡þà}œ-Vþ₈>A¯Ë%ƒþ6ß·rÇRý£+B?¤vǃ r£ÝA€ƒƒçÀ´£ù­> stream xœ¥ZKoä6¾û7äÐ0öÀÞ¸µ"Eê1û’Ù ‚E 3,vr»íQ,µz$yfœÅþâ½ïy«Š¤DRj{2VKÅb©ž_õ~G|ãŸù¿mNâÕÝÉûNwWæß¶Y}{qò§×y w¢".øêâöD/á+žË(ÏŠU¦²¨HÔê¢9¹dçå×›8ŠÓX ™³ºÞ­7I’D±ìͨ$ãqÁʺi÷ô›ËLìL“yÂþ^u÷fQœ{‹¶k[)™°wk‘G±ä){pž7%P¤ W@1Ýß‘H*çyš³Ž¶°•bç•f™¤Ò[Pz+j+M¾ÿŸKVk²T¤©È~¾ø¨*Í]U%Iq »¸9a‚¯/~.=}n¤ä«M¢¢P¼BÚas™4×¾nÐZ­;¢Z2͆§*â)àB`¢~è—¬Â!šsa­²9õó‚ýrĬ"õ-‘rŒ}t_Þ¤!‘aÒ‰ŸÂJJxœKö®b!Ie©€4˜²²7×± l\»Óx·K²¹%ð~ÊÁÁÓ, sHèȷ*—ÉÍKä  ¯¥ð%+{oÉ( hco–ˆÀÊ¥V“L¸«&Ÿ«ï«gVå¹`’k™1º®Ãx¨Êqð¶ÒªÁÒ5œ™¼’ùiÝx 9–"·ª¢]´èW -Ä­céZè»QðêX*ɺ–îâåG[¤¤V9RÈYšÒ¥¸°!¦ï÷ÞNO…1U6݈é,§ ^”g/«ÐÝ ~#æîFReþ~µ÷Ë·„ñË„"J+ŸóÂËê ÂÚª”]1Sy¡;D22IRCôhi’¼‰Š™A]Þð(…ü$‰r0” w(ñlr`üÈ~Y"âdåðºd^CJÉ?_¼xa~a<Ú7ó‚*ÇAq(P–¥…v¬áÞìç+!8‘¸¤P<5!ŠÌH-ã”÷–rµÑ%S‹ïUêöðP—X|¾oûƒ½/½šý°ß—ÍîŠmuíÑ‹²p‡ˆ‹säÄïŠõ€‘k5”uõëîæj}6!Ÿ<ÿÍ«¢™öºßuv7öeH÷\у=OÿµëOiÕפºèÃn;´ÝÕÈ}Y¤³Ež?¶§ (Ðcûô»ZÑS=-‰‡+Ó%\®Šš‡z¨¬ ®Æ8ÖÓe}Ýv»÷»ýöÑÒî *aqÔ®~(»ÁD¸hx{Åä½³éGUŽ+w‡vûnq%=ù߲ʛ|ÜÛõ G¨ÉF‹˜ÞžEO ïÛ¦*ë‹7v¥·õÅë·¯>ç~·Î1}[@©+Aff§,4mçÝÀ*% ÀÉ©Êà}¨2ûc=˜Çè&(TÑ4´$þ‰GáñùÊy°wpŽ•A"p‚Ëœ:š]ypZNSα¤ÎÀ .†Jêï¶›š0*GÒ´D]]Ï»¾6–IöÅøž–¼D¯x·›+Ëbg³¢Hå.¢Lƒ2y2꺡Òh¡ë,»;ãL"å5ž•uÉN¡& à¾`ÙóŠ%ÜžI [ßO›‡Ó¥²àTIYX`EŠBÔÐvŽA$ùì—ÙbzÙªO?ÀñlñÌçÕóæÛo£íCÿÐL¹Ð­:·û­NðgS2kÜYÝ5åø0…ß¿îZhã'Z'ó|÷Ío^M­Êþ½”|@¼+VÝN%~õQS‚—™¨dŒÙðñ’Ÿý<í¼«{gñè%7É‘nXëw}ŠuóàòNÞ¨椙Y]õu=æsîêç3ÕˆS’õ"žáˆPŠÿ<‘˜-ù7·NÍL&Ó„ØLÅŽŽÌk_–ìàø¥Ÿ¼ëª©Ü¤]R›”èŠÐAÛãäg;<+ŽPã…CðÄkî,ƒ°´±©Rfúê”Íä6]§a¶¾u‚´íš gy60ƒ²èä¶Ý][¿,‡åñS )þŠuåþnyJwx=®pÀ»éÒ!›@Ç)Ø¢oáˆÍqAo¦7’q•- Ñ !­+pƒaqƒÓ-ÈÚŸžMqv gñµÆÜ™æ%ã)ÔC¡ÏX Ñ5Ø{'ü%©²”nY¸±TŠÑ4 ‚àP¦lÉÃô{C1ŸØ•™³oFû‚2®ÇIhI&ý)µ½ÅÍgÅå$ž?ê<çe½âAIñXmˆ>%¨l¥½†îËÜCö½û£¬§Å‡#³Òò~Ú 'wôNj>݃¦ 3µáO¼ 1Üy¾éZÖ«þP“E®m…à5:z2ˆ&ü~L'ñPMÉ3ƒmÍØºO¢hl­wÎ8þ]؇‰³¯¯ L{"§é¦GþÉ6 <}”adò¶¨F±$¾ìÔ9VÓoŒÅ ©é› i¸ Júa­0¯'àØõƒÏH ðÝ:+iº‚÷ã…C ¼Ÿ¥þý2¹Úúfò‚¥á­å…Õ¿[<€¸(Òqr0oU8§Ñ¼PÐ`¢µ[Ê>Æ?½$”„=ùT*Æâž2‹ÞjŒ7Šªëv<ƒû8k¯|5újÏ‚®°ÕU)WA;vÔ ŽÂBòm¶HOC´pŽ“&…ÕÌ莚äž*˜9ý>ä)!cK!V\Q(k¨øÌG Õmƪ‹.a5ê”8ºœ—¿ºžYéOR F58ûBˆË%²¬xRDRIÂÌúTë÷)„K$ñøšŠçiÉX¸,/ñØ 4DEr÷xß9HÔzkýáúI‚“ˉW†œãȤ  \ú©Þ˜¦ ¸!9Ž=5zätx?‡uH’¢F~æô2l$²ì)¢¢Là™½ / Q6óµñÕ%;7Ÿ[¤øEš}xÝ—€œ[£¬¼x. E…"ã“‚’]?LáÜÜ)wÖÂï£q çôíÇ&º‹èQA)ñ8Žõ°BÄØ/È ¥ôU£ŸâAO0ž·˜WpÜBáä‚n+í*qL`ø¼ÄÎñN96@¨ª Ü^z˜ŸÎ‹ À¬ÒM„²mÕ§ª1ç»z•ö*ºNæxŒöDc½u¿q}{Yyç#¼=bA;ßhÂÔúÐßýiN¿1¤çåGÔ ú¦W“Oç¼þ´ï§“ÿ 45endstream endobj 623 0 obj << /Filter /FlateDecode /Length 10999 >> stream xœµ}KsdGvÞ¾÷ZI¡€G 4DM¾cÉa1d­Ð(dº#¬0{ Ý]#TƒÐäpãŸíµÏ—÷æÉ×iœî ’ATÖWyóqò¼óÜÿ¸PG}¡ðÏþÿ›ó uñöżХõbÿßÍùâË—/~õUHÔrÌ*ë‹—o^l?ÑI_DÙú‹—çã._þžÀÉ `›ŽÊ[úÁË×/¾><~¸TøµÊ‡‡ï. }«C>Üžîî®ßwßÝ\^áƒÏ.¥Ãíåï^þº}×ÞsȹvýëË+çÜQ){øûo.¯ ÌYM¿-%B:<<\?îß_^YkŽÙ‡Ãk|›ƒ±†€ôµ›xx~tÓ¨?·„5‡S7ä}ˆãR{ 9nC<|…úo/_üOZè¬ÌQÅ o¬?zw‘l<¦ì/ŒÊîÝÅÃíÅÿ¾xÿì¦hç.òÑyïL¿+Z»£SþÂ[}L.`k¾>¼¼´î˜“ñ‡ÓùöâÕá|ÿþéÝã«Ë²®eD“Ö1ƒ¾ð4×£Ž.›£ æB‡D³ÔmP œ¤h”oé79c¾ðQÇ£Kö¨s6ôììáöÅ€ò1 “h…´34[½ƒŒBûÚ“õD$†AáhÍÚ“Éúh<ƒ°0kO*j´ï mŽÁ-=%"å3ƒü1Æ¥§@£ˆ´¸”Ž9.=…`DOd ¶¹#ì;1cüÑýx:eš–ˆ×ˆŒë!´hÚ^$o‘'F;æn´¦!Ó/+Ä?w£]ꨌMØ—Ž&V#R Â~Ð@ /Ñ‚hDÓÂñÓ\ùnéH«„²ƒ¼*ºll2GËO£ÅHzš&N4ÏßâËü#3fžZ öè¦~b í`º6´Å&.ýø޾-Q •ó~¨ì·ƒ¾AòÑçu?ˆ[¨ hŽiîÆ™p4ÜM$–hÖnÀ†4/OÌG½‡¡£Ñ–™–Óˆç'mùéí;OL$òB'Ú½$ŸÄÌ[Og7®[Ÿ‰³8Ï=cÌÂÖÓ Cë)µ^{ŠØüºV«°Ò˜,ÎM¹ñ ÕÙß6†Añè…BrëH‚`‘<ˆë ɉŽ,Óm6zQR{}©.jÀòë¶X£ð ሸ¶Á– \㢖H+¬¬6¥HtÅ7yä$[OÑåî˜lÒvéÉ¢ ŠDœ{¢]iT`mÜÖÓ"’pëäÀù¨Xçë¦$" •RYØ]}´<ú:ÑÄaˆèAItBr•Ÿæ Ã\;"Jó¨‰ûX‘‘:ð³ r#3©dBó±<¤!y—Õ&®d-E59"tcÚÖFR¹VN:Ê5KçÏÌœtd’––®œ45«Ä$BgÆÏœ49:H‰‰–z]»!Â.ÄU1¤, ÐÖ±#²…ʱvCÇÔ5P˜øHáëĘô+2R:g•A8b)^`¤Š¬Î "z]©'†×Ñ‘¬Liv¤ßz&Gzšåˆóã<"ÒzŒ^û!ÜØ¨#áífâHÔOÓžœ)BeYFÒ˜»™™¢ñNâ:íŸ!$ƒ°¶;®1 µ‹Y±#µG ÇGÁH ŠÓÛX }ìÑ)Z÷U£ [>ö”¹2Ð ¦ynŽÅJ"#ot˱ôäI”;–µ«º’ˆ£Cì˜hñ%»ÊZGB;µ¥ô¤Ž,eÒ? ‹ÌqeÄ´%'Â$’ÀA‰!4 ґ¢oº¨£g땃fâb® ‰~a¦†ÅZfêVÈ4TÍtBjpXIÀáhGà wL+ 8º¥‘‘ì=‘Ô$® Òô*°“iÇ„Ÿ@äÓ@qZÉT „iб§O‚©i»UÛYbàëÃqÕ†$æHÑðxHçÑ¢¢›˜õ¤ôX©'ZÅ[Käâ$6 ÍK:bXÙlÔÐ ùÀ’b"¸…,éa>ÖÇa·ÐÈei/’[È@!r J’[ZefÉ´–ÜB1Ã_Ð@Nr ‘èo@Jè¢þ»!©®‚Wç+ð‘ ¤ü¬D‚ßt@{½n$bó.b©n%,‹c±FC¥'’Q‘µ”¸’8yc~ÁæÉ5´É¢º "õG­$it&f'Ë`=úäV6 6”ê.Ušw~r©B©ð4Æï_è‹¢ÿ~ÿB]üÊT´¾Ýõy¦ÇB•mÎлÿKD‘`»|Å-IJ‰c”¡…†¶ÒPÜÒ£H ‚°;TméPVûÂnŠ[z)ˆnx"·ô(";€ö†S¼N±qK"Ctè©6tÚ Øê Sz ’Aµ¥GÁw©TméPÓ~õ;ØP”Ûxä/ü ¤þ·»QÊ\^‘᎙>hÕüíìkß©úÌ-d­%h)­(šz§œô(┼¡jË€²¤¡kîP{Ë€Š¦˜ÀjoéQu¬ Õþ'.!–ïJ)4aWH×-kHlçòÊø%}0åôÁí‚¥¡ÿÆÈƧG[,Á`´`XÝ®ƒ—ÙG }^—8˜RWÊq¤§ÄUâÎ.?°þÎüG{h¸FÞë ÏÆzˆï:É ábáÿ'&P»Ü#!Ën#£ÜÆ\gyEÊ›˜r£bWˆô‚j=EÉ."žÆ ¯$»\$w +ÙE,dzƒ_O°{i‡CÕ JСhÔÕ '„ £­_µ^æP×nñÈ <9"v™ŽM‹‹|‘é©iæ¶à‡ˆvØÒW?D!!ÍK”Œä‡ ó ¸jÐ8·?Dq°…J“m´+¶tlÚ˜=X©ÄgØÅ äzëè¼´Ü¡%õ®L©åÝÖ×Ðz–~©Õ“ZJ_Sk¡‹9ÔíÃ|¿†&½ÕV‡6¢è× òˆÕÓ` ¥$ÇñSv"ìàØÐ¤ÏZ¥gdž/ì0G¶™âg»ÙJ:d<¤ð"Ò‘öU#'È?«Á1Õlmå‰5¯&IôÏ0ÚŽñ³½’66Ìì ÙÝIœs½Æ_5,-Å83›Z¤ÓÒÃ#3IMC -8åSæ5†©°î;íVj&Jì,²i•ã]÷nôgTÓö94Ð:ÛlQÝóQ(ø’GÇ”ˆøÃB‘>ž>MTðh }ƒõ~£É \=£%É:ÙXÛìÁ±5'ÆÙ£QlCx:qOˆ?œ†g# „VÿiƺA¼.Hv9möd˜. ÄSC#è<ÇÌöSÞÇ£&©"¸40l$nTP–\´iA"®)ù4HDpö¼äÓ€HlÂÆ ±òc œÍ>Cü£ÀŸ—–;´øžH-ï¶¾†Ö³üËÔÇ ¥–½¯4Å«^81Àj:¼›Ä¡ÓjÚZ™9 W2€C|? ¡:2›ÊaȶÏ+?†{ÜøÄ 7yIvÏ/¨Äc‚ß] )8HY¡2NÍq}RUc¯)7Åáöøî¹¬ž((‹Ã7dÛ ¬i<›HèXÓ HÒ±ú6`ذï—0Yò’€õå̤Œä%)¡G¤†(Bð’dzœ·¼qtzò,O4"G¬— §C ‰ ‡M[½øHôv`+"I.øÈ’a¢3_¸—IS(nïþÅ̳¢5Í }@Á¼„y ÅÕ´Z³Ì´îìh&ý²'!ZÏUµ'éšK‹hÆÊ”kÃ’¤“"ùtŽ#Ÿ «‚ɧÓǺ&r9”Ä”uóEärANèšëDˆ9·û©•µ>K6¥8²‚fÈ33F ã#úÎçÇ"ž±rd¢±¦G C­kíã±Ap*É6véÈÏÌ"‘hö¶õ”¦8~Ãv ‰%1 !(˜,G,”!1¢Kj¯$éQRÞ  ¬yàˆj]Ýs~ëÝ”7³»¾‰’#œÍ Dw(KûW"éß’­×™Òç¥å-±çK-ï¶¾†Ö³øK?ô³-[_c+[-ˆˆf^Ðhçü€²ê¤h±joI>ù•¤DvíÙº‰G ”TVÆ ˆ2×@iF¸1}`×EzßòGÖLâxÍXu`óklì50·qdßúY GÖ‘ê$+³7ÂÖË´ˆ?4˹#j•è†[Óì‘;bæØ1–§©j¤FJî1­zãÙ‘ ,¸Ç v±â¼—¼cáªF_>IÞ18„8'‚ôBA™…3†òF.‹ÌKÃæˆßƃˆ©7…×!«uí ùÈ6qOôpÁ;S ©4ŽDjZùõhi:„¥l×Þ_…¼-y¾TqÀVP íªhÀÝ·íSc^DQ[ìc!¡À<Ƽ$”wå¡Ï£¸¥ÅULÉ{óª¶t(­KŽm‡â–Eä9DÙZK"µËOä–e KéQÜÒ£h·uPµ¥CYß=¨6ô:ÝãjqK¢o­Pµ¥C9Òí°={Cw¬ßÃO‹z™iÈæŸõªA‡&ð¶†>j´`t¦Q§1䵃ºˆ×ê#^Ô^Ô¼*¨Å»*¨‹wMÃl O wÁ ÷ögw}†€“ï2´ YOñ.¥òï"s`Ë×üìñ.˜°9Éñ.Z¯gã]H»êøÅO x%’9~•æðÿø*>Ȇšo/@Sì5N1ØÞMê °T„ä¬TYål}¤äG5f7«q1‚#K‰X¸›½¦0t]`LÑUYý) {µ*Ëåj›:)GÉü¥bÞ’ê—žˆÁr¶ œd~Á®ŒÇ*Î5lš\&A*™_¸ÈŠ àÁª·„O‡êw¶ä§¯ZQaª¬ægc¥K  Úævˈr,͘Üù:ÎsÙ™lôÎV’Zе0µòãúß²=plÝ|ˆ $~š}Õ]GL¤xÏ×¥àñ&Ý©q’ŸÆH"? ašÙs ‰Ø Á~ËEW;Û"fq¿€ï+Óú‰Rò‰™Æ#¬rJLž€?/ó .qÎÑÜÇ„ Ò%ŽÞßO˜Ü_â8/-ØF8¿žoÙ6vlíb+Í…b‘b£ÃðÀ±¥tŸ{wÔ²?ph=‹¿ ¦ÏœZ¶¾ÆVQÖÈKHVVš‰.$1Ã"‘)lyÝnºû‚f—®Žhäòxœa‚OÞvJ¡UH–4™^µ¸DÆC>¶`ñȶJÏ·lË9¶Š«„+¿ƒȦòŸl—ýC˜(]1ѹ_%¸Ä„+& Q6Yø…+&(%àkäÂâª}’üÌ=³G²£à+¢ãï-s•™]º1=¡hD“Öe¢£ÍPÂäù–IQAC' mñ. 2cj¹C‹ÏkË»­/?'o”Ây Ì\8O‡--Òv¤ô>¿‹@^Hß0¡“Á7igæk›7Þ’ 5ÆGkµYiÉ€iÍmÁLÞ37ÅGk•øÓ5Òvô¢š„мÓ6v£1tª‰…_Ùͪ ‰¢Nê ÖL Åèéq¥•bIý`O»ÅÚ,¨xÃqDÒŽ 5äFX¤íØÙF…±Åw¸ Æ‹}ö±—§:ξÐÏÀ 5™ÕQ°«NÅ'Ÿï¡àžs/ráXÕ+qÝ}l¹m5SÇ`Md®šÀ¡ßŽsï tþxkÔݶU¯nd9銋ýÙAÂŽT™¤—ÉÈÎYy#nì+æC¥ ÀecèK!»‚Ö1sðÃ3—LØýè=]ˆ¦•ËÒÐxÜf.™P“P:- 6f•Ù¶74‡3÷(A/Dqƒ#¬l—´Ù.#PîÕéóÒBLÕ Éáù–Âf§VÞàÌa{ ?¬à¢Y?òpÅȉ—ê* ?ÂLuª>Ò±}ƒ(‘¤Ž(yÔa®«P½8ÝùGŽDvŸ´f‘…#$=¹A#3q¾&œ¸èäZ&]t‡@Q¬eâ‡Ó”æº Ò‘Cœh îõy©8‚CP›æã°&«ÕXêñXFLQÍ=©—0ÛR£ÌÓZÄ×Û“¦¨&³ÈކУVÛ‘qLŸ[îÐ’{O Ôònë+ÏC²Ür—d­žË/ÔóáØbqJH×mRcºÆÜ‚a3™ÀKË6ð±•I› !]J‰= ô.¯ç“c„)nÑJŽY”…Icðo!,‡Aµ–.T•i;ô°ã–åU9ª¶ô(žÈ- EÖ}ƒ’­¥G…r´GÕ–I }qK¢-ûâ–…oGTméP¡;¬}méQ¤'š´7ô˜qÏú]ü¤ ¡)ÙhÏ Ý%¬¡>Hµeˆ (šyìRCµHaE ‘ŠâP!£úPaEq¬Q}¬pkC}J°‹ˆ Ïç~†h,DffTc°P«+=^޳(6ÿÁB‹]¨U??Xh¢ƒs°ðùJˆ(9Ùb»ÊBªE-dA ;ßSÙ²ãIc£%ê ”@æœgk6µô ¼¢ I¡,Ê åz‹@A* €RÚheé¶ ®²sÞ´$ cl¨hQü@0Æ<ü¬÷DX¦Kr\Žì;!]aTö~K’È Æ´Uv¶F7ÅJ÷‚åªF½žŒ1N猬CEï„»*HnWÏ @« æŒáJ‰„™o„í–Y/ì]IjXîŽLÕÊ<ØR1T¸ä×W”"“.•ÀìâMIˆ±Ùs¤ðEN‹’W‚yeÊ’Ì '™WÛÅ^%û Kɬµƒû ÌBî! 4àM«\g!h„[%%Ť­¥S’ß–`l+ù=P%†oEh¾¶ñYŸ:žž`· |LJC‰f!ø=.q²ã'ù ù=†ûlÊ’ßc¨g¢¡ ˜`bºDÔC â÷‰¹@"C\( ’ëˆ`+ ºÒ\h©å)7RÖ x¶ÙÅù*˜ŽÍ·Mˆy,¼ 5Y˜±£Ï̹¦Mƒ‚¸rÒ€J½†‰-«9•ÂE-nÔÊI‡BG 7fÅr°+#«)8¸Ë”ÑᙑϾd ÓL›ó5Ž…õ … v””÷€ÌǃkG`¤È2 ¤¼‡R_´¦Y(Ky籉تp;m<ÙÌ…±!Ê·oI’?J³?$ÒÌNK¦h® YY4BfÓÈE³MRfÎFó›QŸ’§¢Ô{fsvNòTÀ¥Üb ÙÍ5öd:í‰/jeµ%µ_ó"ù¹FÃ&ÚpÓ°m¢Bô ú‘æ ÛÞš®p3æ›\EI_ÖIr˜ão{)ƒ®ô–Eâ‹pEÞø~­Eæ‹p×€|-cfQL(‰[¢95Ð\§ag£®Sp2‚D×IîœÄB ð…òÍ‹¼¡PƒEJFâÅÌb¡TíìÎe 5Ää›ä$¤DU’ï Ä)„+fã /ÌG7*›õØÆV Î!EH3Bå-ÿ‰'f%Wª`;ÍEöÛl¾^Ó#È\Þy—]…x²¦æ’ ‰±ñ55äwÌ>¶í{‡,µ’Hñ˜*^%;_½‚;iám©í]Û-dñ‘o^kÍÊã]µGåÖ3s5ëm+IÕ¹<-¢óœúˆ¾»†ßÈNoE"ÊnûYÈâ­Ìö<0Â]TÖvü,èÀ‚ R!^ä0×TØ9ƒçÛmiBôÎÖ0*¡ Ñ{Ÿº’å·$„ð=Ò¼-tŒ’ê‘v xþi©©°©Ï¾#'ÐYÛù‚mµ†Ò7„Âÿ¸Tè«q*Ï‘µ=ölZ\Y9¯&·+J b^M¯Ïh.¬°ëý*æÂ!äÕàn8«,)Z!ÜWkM;¤pXÉ:¨uL¸ºâVBAyHFš«;ïqÚ®œ¨ÃÛ„KÃ}±D§Í:³A]uH̼Bpp}?‡Ä Á+äÆdyfv.ƒ°÷äšcÄá*§PÚF7j;—AØ9Ÿkת\äB±H tÈh.ƒ°í›.Y Š«gÈãU-­¯$Ïw]a‡ûFaá¡f 6?…Ív^Œ7†8¦#Þ’îC—ò3„STæ«€>5Ôc£6ã%!‡J.ã=/ drѶžEµ–.àQÕÚ ¨ÚÒ£PBY¨ÚÒ¡Ò^Ž·¡¸¥G¡ìðDnéP¸°‡¾¸¥GáŽÍêá–…àÇÄá–†"M#¡ÖÒ£p‰Ô¨ÚÒ£²Ÿûª-jÚµ~?)؃7D(º?5ØÃ®ö¶ÏÜÒ‡K$®žŽÁžŠjÁžŠêƒ=Œâ`£º`£8ØÃ¨.Ø3µ¡>%؃âð|öXÏg¶|$Ö“6eˆõø«0^ spøÿ'ˆõàš³r¬G›gc=Î#_îç] s}HŽ„zj!<‡ µÂ ØôM#C¥lÁ5l»„‡BÙ«ä+tVoÊ;OÝJ0ú:ˆr’e4jQ¨“-XFx•O®îj‡:Ù/â¼´Ü¡eˆuI-ï¶¾æ˜ØîÕîêÛ9(LBYÉá>šóÛ–­ž&݉Xƒà³"«‘¯38ÔÔîÍ[]Ð Ê’Ë•)ØÊv¨©-Üž@" ;Ûjj'Á£©ºÂÛÊRNÈP(Ët¶Ôyn¸CÃt_jmy·õ4ß Ú]±¹E$*L ~á ƒy.ù5HUâö.”JKOCR’PÀŽ:^o¼6A¯þÏdúMw)aaáØ«7CÊn i¼±½üÌ¡êvœqÍÎFÍmÁ«â\¦À•²øË+Pü±Ý/q4°Ñܪa¿.oÔ¡âöRÀ0«.ùС޶`lá%CœWäPq[0¶†_ŽˆW¼ÄЧÃ(HÆêC…6l?ÇÐvJîL’PÊô¯ÆV¹ÏCŒK8F¸ÏÕN È Ç¨Ôbã% ³\pšîý„‘JA•¨s$ánBIUŒÁ{L¥Î xy—`õ!=EénBgu¨Aºš0°Ú­äÛ(„®§ù¢Òî¯'nÃrD,BÈ=׺•å!•œ¨ÓÐøq$ƒ\ŠÂ£B³ÿ¨²äÝÐ%¬.,áÒªDr9y÷¢àsO}üÌÅ­ÐÂÒ‚±u™"‚?b’ÇbV‹Ì¿››™ï m#*—<¹';GÏvWŠïÎd,¾·uç2^-ÙzJR@^ÃáÆ,2:=ù6ÀoR+=êðFŰ®Ð%T›?¢Kæ>3†Y`£…›ñpt°^}‡I3dŠŸUßhäWŒóV¢_ü®H˜/•+Šñ‡ e» †™´¼s7-œá…!\=îè:äa,> k]?ž8½µMIÓÚAi.½m©Î¤“—|Cò„ƒžgÒÝHÂHƒD‡ƒ]yݼ£=C‹Y|!*Å‘¯v9¼Öoy#j)ÓÇr:©¹Üà©Lj~#ªpš‘~!„ÞG_?Ò/„Ðû3"P”® å*]2óõžý.h<¶!;© »ŒAñÀÌ  ^%P±óú"ýBм#ºSƒOéR½ƒŒ*S–Ab½ƒRYŽ×Ûf¡¶£ƒFþÃääJ¸ÙÊî³äæJ»JÇ6 ·¼uËõè2¢’/„lìœîD ñͨxû—¿$øfTx*ùŽ‹KA|3ªÃM¶Ô@â›QÁô›Eò…ðfTëC¿'q®=°ßð€¡ä¤ å½­£¹ôÀ¶L(WÌ–o"cM(ð8††He—_Œ›š… ¡ÀÞôÅ·œ20„0Ôr)ˆMöAp/ypþ¶¯~~êv c+ìx!¸—\ 0¹†å¨ÂƆ,¹—rsK{PµyÇÈQEµÈQEõ‘#FqäˆQ]äˆQ9bT9šÇÚPŸ9rÈþûS¼Aë3„näÈ$ZáÚ]ä(ª_q£ŸÆœ~ŒäPY9‘6Õ¯éi¾8ééháéÿúpÿíýÃÓéþýÅýên__Ü\?Þ>ŽïõEIã­“Äfºi¿¡p'"n›ò§·.QL׆òááöòÊ–w”Ûƒ6¿¾¼ò ö³9üöþý¥ÁÛ©M:<½+¿ K-çÃÝøêøÃ·}O÷ßÒ6‚Æp¸¸DÒá̺¼‚Å»àÛÏI6Nï÷®l>üE×Õw—è'Å|¨£óþpýö½¨ ©~‡«·÷ýDú¡<î¿Òúð¦k¦Aáqu:[#Ï_—µÀI“ÑrØgc5~ø4|õ¿A®6MúéƒU$ˆß.ñr1ÒÆ¤áØÃMß íkÿq_,~[˜xøòáú}×ÙU9šô/\óxùÏ/^þÍ×4 ¶?µÏèè8m{èi¿éúøÐÁÞ~AÏB}(e¿ôp¾Þ~O:Ëá‡K¼VùC¼¢³cePqÒŠ÷A]— a#ýáû²HÊÐè@F«t¸»Ã÷pµû{ÿ~œ ˜‚=ô»výp¾ïWåt³÷#ž•0<ê•éè»­v vôáz'KRxô¶§( ¢ÃÞñ‚@7ð8n„YîÝa¡JîUý™Û?Ýüp § m_Ô‹ I=næd‡ óÍ8Šn¿öbB ÞúåÈŽG>µ_Dþöþöµ\,›ŽB{ŠVá~ÿ=õ;¯?i”4F¯éÔìLÄìóÙ©ñþ\ÙCÙNǧ~Ø6Ó¸:ýliÐuù\Y²4‰™K+ \æð§?—ÖË“­žRwTž 5ÿê«hz†jð¾R•ÔÅË×/_!/<‘p³!¾8ÒõM!EGþûÄÈ*w J:ûßÜ ƒ=Ÿ¶Á:M‹Tç†-…Y’¼ïv„³Æ(2uðÃÎÞè0M‡û7K¼ß$Î÷½Hîî´‘ÙN2…L\9è+¿ÙþÞ÷Ê”‚‘„aådX²ýèºPU\~‡Çž ® Ó@}:DË9Å«DˆéÍtÃ$²o«ë÷¬¼XPï›vøíoþù·ÒÎ’.í£ø)[[ƯM‘Ùr8<28~žôFš~ÖÈÿLdÈïé%ÿgà„ý9»?\©osCÉ+ÚÖáÇÄ«¶Õ$9ƒRÓýˆîPaŽ’¡>ŒôÕåu»ñW;"U¼Â–oïoÞ}QFGÿ’¬Ro )Ò§÷ºþÖ÷?¦/^Ìþ™Xñß´¯¾=µ~»æòˆÿñþ_oN÷¯qh—‡ÝÜ?Ê£/>íaø§<‹ú×/öSµ.ó·ïH_ÖõAqXëÒe·cü¬¿mÒîþ©8¯¿ Iž¯”¦ñã»[käÇþ§}Lmôó¯ïNß<\?ü@…d©›QõWíoànßvãþðt¾~:ÝÐAü¡5?]ÿ;Y…¼ìOïnkt|¯ŸÚfÝÐÇyýØvåáöMûÕã}ýÛ¾¿m?ÜÞ?¼¾}à…wgƒà!à ÝmüÚÑ–O¿ºüÏ푵ë¶_Wmpô[ÿE›†þµûñÝ:«öw?Ž}U_ h1NèŽæ×Û6ò(Ý6›ßõ„ôÛŸWºñ—µYþ­ïf›Þ”œR‡×§~kºsô‹ßþK%YÂNíïÁœáÏÑñãüñ¦ §oš5»”ñÅèäÎ>]sAHÜXAº¡Î›:ðßÿßàH˜U³?RñÐå…¢¶{t¯ê/ùã'íQëÐw[Ü€­ãŸ­Ì¡ôuÃ’€ÆÊàБ˜Ýô¼DwÖŒÞï@:ú?T ð›9VЏ¨"š¥áµß(üÔœ‹0í~t`÷U[§…øýÇxÓM¯Ò==~ÄB’ ÆxqÅVž0ØLZ¶™ÎJ4VÏú¿ÞÜß¾ysº9ݾzüºÙMdðÈ–ÜYý¤Ÿü²ýywO¶šoÌý4”³Åendstream endobj 624 0 obj << /Filter /FlateDecode /Length 6617 >> stream xœí]]$·u}Ÿ¿< l©±5å*~i$F,ù6$‘Vp€=´f{gÛnάzzWV‚ü÷\~y/›¬Þ©•ž2X,¦ûô¹·Xä%y.YìþîrèÇËÁý‹oíÅpywñÝÅèÑËøçÖ^~úââ×_* Ho3^¾x}LÆK=^Nrê ——/ìEÇÔÕ‹¿Y Bæº$ƒ¯.^vï®÷~ÓÞ_1øtT¦ÛîöûÍ=úìöêÚ½‘FhÝm¯¾yñçZa×RöF3»þÍÕµ¢ÞýîÛ«k%|[ïHZéîpØw÷Wל³ÞHÕ½rŸÅ8"¼œMÝ‘Ýâ7³9.ëv¨È±ˆ´ªï•™B»/]ýáÅźŠfJ÷b¼Tã8õ’]ŽbOP©BöLŠËÃöò¯—÷S¯¤â—ßC¥ÿþÿí|3ãàË?Aå2ÖÃÕ(tÍa{0Ÿ‘}K3y1p¥q#ïåt᪇/#RCcÔ&¡™„GôØ«©†d+9ˆžó*¢x?âbU$[ ÓOËÀÄzÁÎ Föƒ®!|2½ÑQÐø“¨!šAßdC/T aÐúS@ànà³ ’¯®´ìµXF¦A÷ràcÏÆ3ˆä8*1µmïIõÒT‘leL•§ˆfc•†Åk3ª7þêZM>*Ode†…·fd½Rg.{®k›Æ~TØwñXA`4|”=ô“¬!É3ƒFd aŠÆh W“9ƒ@Y…:ƒÑÓ22Žª×ü ÂM/åD1“5D K—¸ “5„4&kˆµÔd’4JkˆÑ=˧·Y¾~Ü« ú„ˆR!&OQ»yÏ#Úôƒ©"ɳÇ"&­'pbòaÐÒ{ 2F^C Œ=ÂxFP“§ˆ†xr`½kˆ—Ì#Lú˜ ’œ˜¼= ¦t×ö0ßÂmzYùYP•ÎÚ„v&0( fÌk0&(œÓWǤ¯ž °‚ Ö0¾î.`–b.ŒôVú¸¡·(R×[%òæâÓ‹¸.ÞÎKµèŒÂv¥¦‹Î(lWŠ¿à¬€íJ•QØ>MN–Î(l«¦'*ó‰Î(lŸ(P©³¶UÓSÝZ"Ñ…í*É]Ô®SÆÑ…íÓ$téŒÂ¶f:+ë$8+`[5|‰Î(l«¦§Z½D¢3 Û•2?:£°]•WµëÒ†èŠÂö‰ùEáŒÂ¶jzšv”HtFa»2c‰Î(lW¦6ÁYÛ§å@¥3 ÛªéijT"Ñ…퓳ªèavMâܰ}Z†V:£°­šÆÄm‰Î(l«¦e†wŠDg¶+“CfflíÊ,2:£°]™nFg¶+óÒèŒÂveQØ®Ìtƒ³¶+SâèŒÂveîQØ®L²£3 Û•ÙxpVÀveÚQØ®Ìï£3 Û• Ñ…íʃèŒÂöÉK Á §ñÁ«¥ Ûªé¼(ÑF¢3 ÛªéÉêÅ QØ>qáƒ:+`[5WHÚHtFa[5 ' HtFa[5+, HtFa[3—b଀mÕôtͦD¢3 Û•Ë=Ñ…íÊu¡èŒÂöi H¥3 Ûšie]©D‚³¶+—¤¢3 ÛUkWÑAíº%.ï*íº=ï¶=ï¶=ï¶eäy·íy·íy·¨ÄçݶçݶŸj·-ËÃÝ…ß¿òÁƒø(¦ÀÔ ‡À_ÍÂt‘FÈk˜xöÁ’‚ ” ÛIe|ù°3Aïg3ˆKƉ™Ñ*ì䯫lµi°Üc¯ŠRjÿ86ÓÐ<v>êªFR;#TèbÉÎh·‡íÌ`zU˜¹žŒ×ÊÅ;6ƒ¨dôî‡bÛq¯p¡ݳgÔN€.ÔØLh&Îd&`öW¥™ÛÃĵHÑ—í rUØAÃŒäz’èÔÄN ·oKì$HJ-ˆ‚\Ìv &,Lô“¸Ñ™cOŠ)a†´Ñ?|7¹¶1ë9Œ^,oñºËBü(׋ֲ22xÕXR¹‘³f³`4”š°f±Œ‡~æJ¬„`¡cdÖŒ`Œ‰ŠÖŒ`Ö<„dÖŒ`–á„âߢÏ%Œ‰Š”(!˜£"'uÌ‚q %JfA—žHM%±Ò@—X Á¬y\ˬÁ¬yˬÁ¬Iô¤X3€9frÊ“f±¦Ñå•X Á,ÁBv™Y3‚YJö$fsôæµLšÄÒãPÄqB0 &Fê*!˜5ð™5#˜5égfÖŒ –Æi&VB0‹‘ª oñçóÔ‘)3‚YóL‘Y3‚Y0 ¤’Yl€‰ÄqF0‹OaÐϬÁ,5Ð8ÎfÁ4£aÍb¹×¤X3€908ÎfÁt¡5aÍfMœÆqF0 ²CF‹5#ˆ‰äŒ`LGŠÔVB0K ÉÁ,è)™O‚X܉7Á,Ð$’3‚Y³êȬÁ¬i¢ñœÄN“úJf¹\—ÔDB0+ªšLŠæÌ&“f³fÁ’Y3‚XIž$VB0‹+Í3€9Òš !˜¥Ç"š‚XIüd}1#˜Å¦"š‚YÂÐQ2#˜Eõ V4X…|¤îÜ*ÇtN÷VS÷`V[÷VS÷VS÷VS÷VE÷àÏÛº‡°šº‡°šº‡°šº³Úº‡°šº‡°šº‡°º‡pšº³Úº‡°šº‡°º‡pšº³Úº‡°šº‡°šº‡°šº³Úº‡°*º‡|ÞÔ=„ÕÔ=„ÕÔ=ˆµ {«©{«©{«©{0«¥{§©{«©{«©{«©{0«­{«©{«©{«©{0«­{«©{«©{«©{0«­{«©{«¡{§©{«©{0«­{«¡{§©{«©{0«­{«©{«©{«©{ˆ 9Ñ=E«žÓ=Šõâ줙I £r"-uýLZˆ¾DzÂÁŠù¤î7&áRÒhpËܹЗãO²ºRÀ»q ïÜKîÜú£ùEÚõž·g'cTX|¤ûqˆåþ*Šaq 1)„#Ý3Ì á¸x3“"BX“ð{ÁˆŠ÷ŒX¨ž|ÞìÁÇ }0Úúv®®Gi¦nt/8apMâ_ƒ¨3rãüx'‰ÝN¬ F 3.¨/|!ìGD$„:+3rnAWÃuaH†iE eÒßÃÖ=J±&Z%T»Û€.-àZîP>:ýÒq ÇÛ¾ü^¿BkÃP6Ð:ªD#›@ƒ“ÝØZ4&ÖR4&ÒB4&ÎR4&Òb4&Öb4&ŠÆ—±~ÐÓ, þâêF§‰ˆ3ÿIŽz¥6†a›0"ÁD͆)Dþ‹+§Œ‘ºÛÙíåM÷ývû÷Ç›«"Ü[ßPàf ˆ |¿3£/%”–ÊÒM·ù>w{aãGöî2rƉO nï×Áè“85R5žAtÜÚY@\þb̦%Ï õóé 9ÿÀ—7C’#55„ Ü‹ëô òäM jÒgˆ!1À¸3ª3ŸÂæãù yF¬†ÀèË—ª'ojd*ä ±ù=yò¦†€T!qYC`èPã2‰ Ltg˜@H\ÖÈN¦e2®–=€<}SC +!QYC '¡‘RA ›'QYA\>B¢²†€æ BFeQ:¬ç-!‰H¾ŒHÈãÉÓ75Ò—²ÅÎ šqyЏ „Æeù–(ÓÙ;Ë }€<ËXCŒ¤yL£¦cZB CpOW8z€‹ËSY¹g,ÍD«".O Ù:Ë Ú—<'VC¤(Ⲃ¸é<ƒSÄå)b ëuKˆŸÑÏ  žÈ38 ¡”GÌâò™­$dP4.kŒNÞJM#ò ûçÖ~’ãøœC»?ÒqüZO9Ž_‘]R—]%âŸù.Ẇ;¯Ø¢3 Û•Ò.:£°]©£3 Û•b18+`»RUFg¶+ågtFa»R§Fg¶+mpVÀv¥òÎ(lWJäèŒÂv¥–ŽÎ(lWŠîèŒÂv¥:÷ÎJØ®”ñÑ…íJ½QØ®J ¢+‚ÚuùCpUÀve¢QØ®ÌH¢3 Û•©KtFa»2ljÎ(lW&CÁYÛ•YStFa»*½Š®j×eaÑ…íÊt-8+`»2¯‹Î(lW&€Ñ…íÊL1:£°]™RglWæžÑ…íÊ$5:£°]™ÍFg¶+ÓÞèŒÂve~œ°]™HGg¶+3îèŒÂvejQØ®Ìჳ¶+“ýèŒÂvåª@tFa»rù :£°]µÎ]Ô>i9¢pUÀ¶jzºJQ"Ñ…íÊŽèŒÂvåJHtFa»rÉ$8+`»rm%:£°]¹QØ®\­‰Î(lW.ëDg¶+ׂ³¶+Š¢3 Û'®(Î(l«¦åBÓ)QØ®\£òÎJØ>y1+º!únÅz×ÂÑüç ¸ç ¸yÞ€[@ž7à–ç ¸3ÈóÜó\ùºG苉™ð”û|@õ͆ècå!ï'ìâÕAs÷½1?Ê*˜ƒÑ#©®¬kYÉG‹¸û9ÖŒ`ÄÓ„5#˜·l$aÍfAÌ‘Ã7A,ÍX#+!˜qGßd³ òÈ-Îæ@äqRª„ –ã7$VB0‹Ë0¯eÖŒ`D¡ µ•ÌÒ#ÞlµÉ,á¾¢†¾Éf1F̆̚¾IæL#=D–Ì2"Ìq™5#ˆå>%ç\2‚YÜÐhÎf)F‘e³´¤ÑœÄb¡„·øs>Ð8Îf¹GIM%³ Ÿ8ÎfÝSW@ÎFz„,#˜å~_‰¸JfÁ GŽe³´¡qœÄ¹Lßd³¸ ?³f³äDŸÀÏféÆñ Žû"MJ•Ìb’"ËfÁlBã8!˜5 tŒÌf^ÄqBKŠWÈfq4fÍf©‘½ÉfiQDsBk¦£&VB0kžd3kF0K²"ž‚Y0鎤¾‚Yf*â9!ˆå¾0Žk0Ç=Câ&!˜¥$=|“ÌÒºˆæ„ –GÍ3€9îÇÌH]%³¤*¢9!˜5z,#™%‡a¤ÑœÌb‚$ËfQ ƒU V©}Ðñ¢íCXMíCXMíCXMíƒYmíCXMíCX íC8MíƒYmíCXMíCXMíCXMíƒX Ú‡°šÚ‡°Ú‡pšÚ‡°šÚ³ÚÚ‡°šÚ‡°šÚ‡°šÚ³jÚ‡|ÞÔ>„ÕÔ>„ÕÔ>„ÕÐ>˜ÓÖ>„ÕÔ>„ÕÔ>„ÕÔ>˜ÕÖ>„ÕÔ>„ÕÔ>„ÕÐ>˜ÓÖ>„ÕÔ>„ÕÔ>„ÕÔ>„ÕÔ>˜ÕÖ>„ÕÔ>„ÕÔ>„ÕÔ>˜ÕÖ>„ÕÔ>„ÕÔ>„ÕÔ>„ÕÔ>˜ÕÒ>„ÓÔ>„ÕÔ>„ÕÔ>˜ÕÒ>„ÓÔ>„ÕÔ>„ÕÔ>ˆµ }«©}«©}ˆz(UMÙªç´O:z¼4ifÒÂÈœI ]?“¢ïcŽCó‰õPíãÐíÓÐù)ö´Ñ8#èäe5(ºùXéüib¡ó§‰5Ÿ?M¤|þ4qæó§‰“ÏŸ&N:šHèüib¥ó§‰…Ο–÷ŒXqÚïÙ˜< ý#çiÆðih®ãâoë44Ÿ@ Œ?Áih¸=ãsú4å8ßW^‹ÆÄZŠÆDZˆÆÄYŠÆDZŒÆÄZŒÆÄúÓйzæÓйzèièÿ¨ÍÜÈ òûIËêqhÍ~¤ãР}{.G|úewÓ}~ÂÜ@uÑ{ù‹ï×âÄ™^»o£à"üàúwwä×Ü·W×Â}‡tVþ›«k)* £Ýg›ùçÔ ¤îî»[ löÞ°ûì믻¯¿p¨{BBuÇÍq÷xÜá_båÙˆ ÊÑ >UbüÒíÚ žâæ¥ÃQ%.ÈG•Ê»†‰@*&/ñe×_]kæ¾´^wÿ~ü=üD=ù‘øí¹r¨à~hþ\9' ÔÊYxƒi.¦pA»ßFæhÈïÑ»ÉZÄ˲ÚMÃKPoñ²ÛÜÇF šis°±‰ÙíçöaÝã„{ôúzj‚z8|î"Ø à0óß4Œ]•^»D&¨÷ý%îš+0Š÷kƒ¾ îµ+èDâ#n§îM+\‚ld÷çûh¬ð×.'40=†[…J2óﯘ†(g’´y·ÛïÉ]•ÑáË6ÉW-/4t¶AœÔƒ7V¢³W~¤ЏÙwøÊvçú—÷5JÒPO‡Ý·ÀnŽ»‡ûxÓ’4‘Çy·›«‰³ÔÀ—¿½º–îÛ5ï~þóüú³7›û»­{/sh°ãöp»}{Œã›0°G¨¢íüFw¯w‡ÇãlɺÛýæñ1¿½é^?f'²ûýÙËf¿Ï^d4yð°}@,nèröáÕv¿}' ×À²vs@:n¼‹î_¯3Ì®*aíìØ¿²§vvp°³­üûíÃöõëÝín{||9~’jí›|[ÙÝÜ}ˆÑ¯Ò5åô-ƒbÝÞt×þî²Áaûö&Üñ¯Å'sÝëNÜ\Åjr%þ—vemöoßl†ÜúøÎ·ÿßÿõ[öÉ7ó¢ûÅ/Zåä†P‰züù«ŽuÕ“º'÷{¯ßÝçPÄ—ƒnÝ@vÓýêf«ÝoÑ[ûî“|éýÃ]~óo¹Áþø»Ï¿úƒÔ‚•êþ· Œ›7ºWŸ'ó¢$¯^íÊq„¢Ü\¡ÆÀ¾K ZøÛ½În\Ùb Š m÷[ôÎÕ±#Ôú’ 7·8 òåË>S¯Ý7s%°J+É·÷ÇÃþÖ;x·‡ð¦;Ì#R(-ªãÇíw7Ýýáá{ =7Ÿ~êª%ÆÊ7©T.ÇÖo>Á5h„ti_÷v7TÛ zGlŒP˜·»q‘=:v­Nç˶ǪƒŸ½ßìßm–nBA‹¨îÜÉêãÙã»ÃûyD;©è[PÜ^eoö ©¿þb®Ov' …J?kän×e(¡L/ÊYÕ¸·S)´ð &Ìðö.9™š¸eqcÆOFéÖ0å“@¦c3§ ‘ldê¿›Ë륫›Â™ž@ßÎÕB ‰ ȧb#jÑÙÕDTžó©ˆ­} îÛ•»û ÏâCûT±çÌ‚°÷-!üˆ‹øJÂx÷ý}¤p û‚Œ  ºð }œ†~âS¡Ð+Yc ””Ù†¥éVR\ÜîóW~Âý@Òè5¹_,yZ-YÊÌþ Ü5$”ÈaÈ™sóÞ\¹Ärk7™üõÊý¬‹ï î7„hK¢4õõ4°T¦ÛD D6•Ì'Æ!°|R¼³;HÉ¢¡P®ÔHM°¯ HØîýîÁ[®ß‡æ ó{GN2’òݽ‰å§éŠ¿AIC &6ì×G¯¬]…üðßD¨Bèg¼(ÉvÿŒœ–ɦ/s•ä.%FÕýo ¦BRdˆ¾B¸–—EøÚ‡P -ÿŠŽ}ùâû9íÉå#t¦ýêÉýþ¡‚H9î˜ÓF{ê?‘±óP´†+¾„âc ó2)¾KÙýÅ¡ wèõI錥 7¤‚HiE]Lh\ýð:ºäºÕ•Óèüq]™»C\^ºƒ“ß—¹t_-ˆCŸÜ÷ó4sù®d~ÑËý$ ã»öp‹!ür–›í‡iŠkY~îa!‹û`ìݸ<Å¿ƒTÇ7„—]® {êïáL…ÛÙ&LêÛ8™Ü$mD)qðî|lëÓ±û ãÑ4çcåAT{­€Dž%‘wOfº5ˆ•ãâÿ±uëtö,¹’>ƒ(†£tÇÅÂí‘´;)Â"æŸ_G_Ð4¤„Û€"®4ûëùß÷a¸À‘h:Ÿ?ÒØ(Ç>é–%aŽÆWÜ¡‡ÐÛD[Bÿ€œendstream endobj 625 0 obj << /Filter /FlateDecode /Length 6274 >> stream xœ­\K“ÜFr¾ó/¬í˜ØËbj¨Pë%­B²%Ëâ2b’ ‡l¶ØMP@“#î÷Ù™YU@eU¡‡ÃaðÀ<ê™/¿ÌÂïWMÝ^5øÏÿÿüô¨¹Ú?úýQKW¯üÏOW_=}ôåÓÕÚ6¶½zúò‘{¥½êÛ«Nwµ•úêééQ%›ë§¿Áýb˾n´„žÞ<ú¥šß]7øw×6¶šÞ_ ¸Û[½8ÛèÞóëþ¡­êûêÅõÿ>ýOlÚÄMk][cmhú¯×;¥TÝ4²züìz'`dJ¶ð.5Ô·½é«i·ñÍõNJQ[mª¼k„_p]tÕ™½ô<þ#¼.áYQ¢!û!ò¥²6¶sC¬ž¸⫹“mWwâj'uÝãæºì”‘Õxz릣µªFףꅵanV£ÕZLieužq-dk¡ª‡Ûâb´Õ¿<?œÏã†#>Š;ÒVoã}¡SÛ^ ¾l™æÙwÔÛêv:œù"†QÈšÁì£ð˜îÌ¥5ƒŸºËΟ_EƒÎ4 ØÙèÚáø!LÍT§1´Ãyœ–‘›ÐÖ2?zI'͇К¬˜ÔÞø†´®÷³iu5±•ð›)a?Æé¯Fµ'9ß ÜÈÞ^íZYkeÅg‘ '´Mfè…€®£Ö˜ŠÉv°>v8²fg¯@VåÓ'ÅJ”f<®Q€¬QUlØ>°7.=s½à›ýÂ_×]²ÈÌÎÏþ}˜Éyôcì»Í¦’íŠÆxÃ_XŸ:Æã¸?Ì繦=$QWýÕÓ=ý÷_ª§¯ø)KÞå 9f$ë<̯ñ/I‚ ‚â~+Å·04§Dµ9¼™-îtxæZ€`°çn|¦­œmÆqp :“ #_úß:_N7ªjþ0óÍ<ù[MŸlÚñP (Ó˜Û æehçL»xjÆcÀ˜¿›¢©›yß¾…[Ó‚Ú4Kƒ©”»é·|Ê~2K»ëTH«¥…9Cë\«Çt/WŸ®‹æÑÖmû‹æ±Eß¶øÜX‚‡ç×äáçëaÏeä ˜Wß)ˆ§;œ˜îƒ%-í@ok¦>ôy6²>ÏèM^º«Žå•VxȰuÕn>IÛµ0U¡í'5¨®ú雯¾.7ªA½ºÝ»(IBÔªï–?¿˜™÷?¿‹YìQÀ4`SC—¨ÇÊ‚æÊûie‡ZÙåZ‰m鬀nÚäú×›ÎV/#6#íx/UuËMí½í`}…—KÀ/4ÌbÙÜÄÀïžm—S9¡R´6г²¨F]EV;h:Â+t]Êê§ÿO4™]Ñ”à³VW¿V4¿=}ôó#mõÕt_H+@þ…º2 Þ k©~äžiçñe4é³:øù¯Ç)Öµ:Lª¯x®!ß}&A¿¬èùÈ~½¦rëDËšYW}£í:†¶é¶Ò®‚’€cæÔJ8kÖô4 nÍnc©98qª^¡iÁ=—‡£R=J“­~çðw ä¸hÑ/˜ØÜ¸7P$b¿>byÚí"ðƘûÙ…jà ˆX¤J•–5DJW•l$mÞ“C,+G¶Èü 9uà{‹ËKòÿ>Þ×(uæAB×ð‚‚û×këÞ´´w ߢZöTräGÒãî¤í­Ã pð솼J‡Î¡Þê\86LÓHIµÛêi`ö&ú£…“W7ì÷¶ý‚=Wáë4-:ÈHt£ìŒÔÄ6œ}ñip˜Ô$õ ï|8…¿–†UìU GB¸8 çJò™?Ó¶–Vßß/kQ÷¶ýŒZ ÁÏhÚŒ4µì½4}3. y{d[ hb<šóßcu(¬²•†<.tjûV$ZC-á÷ÐÒîDzòÌZkhܘ.: 9hŒÀ|ýp`ûãøÎßÕÕO?DýZ:Ó¶W0I/m¤~ÚZr8O¯ÁÀ ™ £š^S€Ä$'¸d0¼¯ÂȬ—@z䑸Eôõ2ûç`z·Î§ƒO/p±bíƒï|sA‘W` ˧’.‚ÄV/‡ ¶|ß|{|ñÇáI‘ÀwðuÜÓuz ÓPY,±“­[軲w‘½ˆÝŒ9°¬5 ,â[ÒÄ@£  ?/ˆK­&2zD(;]ý¶ã³°ì¨v‘²—M·hÅ` æóHVÃW2)ÉZ+øØÛèÕѶCÀ«H ´¼ÁqS& îñÝX¦ù?ÿ°»‰À`@)a€3³è£åÿ㺧ý29ÛÓðzÅY¤Ö©Útm›ƒ#Sp- ”â´X:曎L@âHsƒM×уô•‘ôZÉpƒ{€ g;q†Ð·ÕVLÒÖhV$ÓÈLä•Û©Ö™¤D@ï5£âN~º­|0ѼgÀR’È—ÌžÓúWC¼øçñ4áICêDÂòÎ)‡Ï¿A=€µÏé"hÇt)Õˆ9Ãi‹À,µ¦:c˜  ¡ðÇGÖÇÿŠ›­”صVÐ Åfl“>U­]b\Ôk‚óÁŒD¤6ŽŠJ¢AÙ€B9DaÿÀpVÎ(㳬8¿¿í+1Ô¸Mbèh8ñÈ¡;°±Âöž¾0–*²ôÜi€FÔ#Ä®«#˜I­j{¿ý[èì•lSlsl›M"=ޏ\$-RJÏ 6hý’xí l]Oåõ ˆ‰‹8DmÕ¸ §,@PäE¢}§$p¹)„® ±~ -í–,,Û+æJ\ …Þ'RâœK6³„€{•’{~ÞÅf0}È:DDßBæa.ŠÌª É&G£Žçã­?e¹±ÇË.P ÛÝüßVdá5‚%zÈšmºÈgË„æ—ãÛ0€œƒeˆ²3w=.z¬ÿôú_™D‘ꀽE+%TîPÆ%]b]oÄCmÁ¾õR³ðl“öŒÝ)3&²ßÝ•–|à÷e¸nZÔ‡3zfôøÊáWLz(Í¡Ô!&MøÛ4+$*ׄ5üQÓÆàiß\LÂOÓ7ÌG¿$M_ð”ï8Ó>EW.w#r;‰ÖIí$ÎHË’D -ÚÉÕ€½X ˜ —áó’1"Û’Do×plºn‘ ¾øÛÈ5O¬¤g5[kj´W;—‰)“š€«ñÏ‹â”pLî#²lÙ½Óq‹×¢ÕžCó2ØÃñðÏÍÄ+¤Y­¹(sîØ”»ùLzäãI)oi`³ò¼¥·fˆËÝûC’wIò{¾ÓÏÂã*ej°LW0ºÕ–¹~&ž¹.N4šåq"R»Ï¸ûÔxà XÕ+E ÂýÕAQ ðÙbÏ’°A¸Òc<’è{!(Ú RŽ8gû…Ëw'¥$Äœa ð8î?øf[å["yÁs¹àÓ¹·Ö6`Òù9w£ð å¸×Ü4°ÜÁáÛêÉ}_ÓXªïÏa| 6>ûaáÛe¬ý¶#öY}§V]î†×7N‰¿ÀWŒ$!Ã1ŽQŽÆ˜n}Ë ÌbÙ€³J8£xþÐ8vØÛ$†¦×³¿â– r#¸ÔšßE -C;lò‰^A¸Û¨P“`~~ú·ÔcRÆÿP41‰à‚ÐÇ«ÂvúuÍÊ6— lT›m@ïïî]D,$tX†Í@7ð¤Äèãëv®R kW)@E„ôѵÕü"ÖÍ.žHù„uo\ ‚|ÛXSPõ-A5ë…G‰Kúc8mç!\Ä‘…A©Ä9 >œ‘žâ‘—_®rü^I[‚—Ä‘í ó‡p1Ï€ÒÀŒýÔ q!êÕ.¢«Ÿâï¦efrpv”‹•N¸°¶È:G„B€;_¤Ô|¾‚F¥4_¦ƒ¡ª ¡xêoє깼UÀ7L– !¬M0ÿ»KÖ‰а:f§ú–pÏãĜĸ¬Úû%ìH+²­ºï](¬,%ÈXu§Oö›Ê¿›^ë#Çætø:i=LšXe]4F@ ¢Z÷¬÷8ßÖ¤ÔŠKÀi¹ й Ä@zX«5Þ0ª!*R‘ox‘<¼þñ:Ä©âQ°‘¼yÇb}ÕCÕ:“>bTÿàl?:A¦zãÐó]àì g‡nÁ¦Êæ·PÙ>ÎÂ%aÆû…HZV~„øå)Ë*ªÓ"Xþï†ÅܼÏеiÈÌç$9¹‹iäjW*&òkgM?µì‡Ζë÷9%¡&Äž°Š´ÕÈ·ƒ|ó4N¤¦õÙ –€¬™Z¹?bBÇ®ó­˜*ų=/u»6]ñë%M<¾x‹i‚0º•qñŚŜ9A36TÛBq£”>€WŒûLÆ]ŽÊ µ¨DMØbõ$íMï©ù_GBvÚ3êÓCAíbˆBÅå»ÿB~ a¤äqEÂzãŸn)ŒN£jEÙ*öªü‘h qòrïßíã$ôà輌Ð%Éÿ(A„­;R> ú J[ûÙfµÍ8/•ĺd4½áH0†ëCæ¤ì ?v…t³`¬Yè–—úÁˆ‘P¿\zðí!$Ãål¸¿—† nçOK^D&ÑER’峸Í+Íš™Š8’ây“Aq?¸ê¡¨RN8jûêû7¾aCA6J‰Eô…$(ú•b’O!×/àÚÕG9 C˜€Ìµ’-xVØÛëº5wÀJ´K²â‰Ç°?:#ïýgœœ\@ Ê¡k~‰A»Bb‡Ê´tß3–#K-JW–„9þA±âÊ?g·…’!ÕÌIWÞî™mì ‡"ÎÔÕú£«­yM¹ZaðPI–r L€ør¡C`ïc)‹Çð,²‚G—¼–‚l6:`¹x@ SÜgfK2ì÷M} ‚¹bë€{H©‚áªwd fè dµ·n“5-5 rrßf‚è BøüÝìÐŒIUñoTñ°Ú-=Uw-3û Æ)jºŠþ®zÑ™¥œûãJèKÀlõ’Õ¹Wî2¾ùyLÀ¹ÈD‡Ž’¤‚#Q™¥0î8j‹³w\ rP/©¥e2=æÅý@»‡X¥ºdìÁÝKòqZJÖà šûËS™”xM!øÈŠß'?°¾jbúì‘©e#™aºÙ¨à*$¿ZöqÞ¥s߆T>GGXœ—îq´AÇ«¯{DÊÿø.²áx#òÒÏqJ`ƒ¨|¿_ª¨Ûv—A&\¯¥P‘f#еx %œ·¤GM5ñRÖס“qÄxä5£ÏKC\Å–åSë—ÑÙm¦¬ƒÍíHuθ¶ÉIˆó®Q¹§*¼¤0ŸŠ…,ñgOÙÙ£R­ ©3ø(É2¨¸Þï\É·…舤tB# n Ì~ ›žÆim2?#H¡SòÏfxËS]1¼ö»=žÂÛèÏCßýšGù¡M›š†ôfIaC¡SV¸‡!àÒ),ÿl[M {]À†EºŸ¹.àUrJwHÔÐ)ŠÏÉGwÐS2Ž‹Ðt*Þ, [8S6Z!»mAÒÃOoÙ|Ç5´§ búzüÁ§Ñ‘¾à$T(„º-ÆÛöÂÙ‚ !ªÁŠáô(3ÎZ#p<¯¢º˜Þ †Ðt`1*{¬2 Å&½ô@‚RšS7“¿ŽÌYr ¹kÇîeÿév{5hiTCðO—!,ö sˆó}±KÚýÄíÏÔT5þ‰íö” v§tÂK‹…EÙ-Þ!¬¨îKø 1,»«‘Ú°§Àžé¶ˆ Îä¬é)[ôYÊZÙÒaÚZÚp.g¶{£Ø1ªPid8×Yw šKÉ™sí³£YÔE  K!»P¢ŽÕ]TV|ïª^À[ ¦|bTó [—Cx³’ã„­è69l”—¥PTÞ®ÓªV€±Ùh¿û¿X9(Ä­×¹×Ã`[ _wT¿©§ÓJ(|ÇTÖ§NÂw1˜YZš…]Q)¶V¤ 鮬|Á’Mæ¨)Ö¬ÝÛH›¦È#ÿ]¿Þù1 …Æ’At:}Ž™Žô4žò.Çç,*ÂÒRñ‚3:yhIùŠ%W¹h§F‘Þîs¢ðX`é™so¾ÐÓˆõ!ð¿¤{Øbu¶ó!åÄè­7ÎYWèOç„ð·áˆa¨¢Ä´;Cæ"aî¨×$;tàèÕMµ}RÕ>QpGªúCèª$.«e¦¹éËšÅã˼:¨œ—”Û”Q0gÅ%ÿ~Ríu¼åR6Ää“eã`‚tè¢!áfw ‘# ‰°*èåð,7.<.8ûWzÕ4»f …XÖÕe\¤é6†‹X£‘$+‹::¬`!#-üçc‡6§$쪯Ÿ<þïõ¯œ0uIËÄS2w0%´"Õ=­B^I¯­3BÜêM,S”ŠõŸ#[Žôô¥3Ί*ñ¢ãCº:æœ%”®a-ñ˹°ÅF¬dENÅ>Lþ¬ï‰Xäa^)½zì~ç|zf@=‰ñÛ–ÍâÈÖ7”rµ&ý¸`º2‡aºZALÑ*#œuxu>¿ÿúå—3@J_áö¢~²ÃïœaEs[};N{…ˆ6ÀüÓøÛ‹ççn|ùppQïuñsŸ¤3¼¤É%ñúyO§š¦VÝòñ–ƒ›yTdƒ^ÝUF‘/káŒû Ót¡e¬ê÷¸£¬%ú\TëþŸ4Û6%Ôa“¸ÊˆC Ã3-£f·¾¸ÃœªÓR7WY*Eiµ¢¯®2$ÌÏ2Oå"a™”\ªÖ8xh“ã6\Ì. ËR3Ô}¸Âa/­L²;>ZAäœc<¤{Ÿ´N +x7L>¡$úN·4hRú]ÿ†\Þñµã ¨¶Gó>‹æÝ:^(kZÀ ùL Ì‘”ȼ[0—j‹ê¥……PC4M÷0+ˆÔ‡‰»«þãáŸëèaÛÍ'à ;iSNy™^G ÿãðÏë¥äâàYCeé ¾ê¾m×<è3G¶©±Pˆ Aê Idqrç®0üOˆ{÷Áû£”Ĉݠ³üc1ámþå×fZ¢|.ž}þç3(Gjféæzœ³º…ÓùFg!KO­BNgð ›™ã2·ylK‹˜qÁ‰1l,mAŒ£Ù7¯]'mK™H‚=¶!G’¥:ñÓ•wsú¼`uºÆûÂÆÁ’m9£‹Ùcÿº U~8 ½+¥J]n ssibYƒÂç`¬ y¿_ó}~.Þ´`âRúV”lðþ Á~£úðfÿõøîÍy®Ÿ¼¹ýóÆ—ÄKêp±Gθ˜G|,ú©WÿùÑÿò endstream endobj 626 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3282 >> stream xœ…– XgÖÇ'2#¢(CÄV;“jµŠŠT[íM -ÊŠ‚Š70"$H€ ¨„{’Ã-ä&÷@B‹UhEŠ ¶ZýªýTºVwÝÕzÁÚÖZ[ϸã>»ƒB¿~ûu¿}æIòd2ïûžóËÿÎŽ„H$¿2`*V·hΚE’R®º9›$â&;p/‰Ï²äI†¸ˆÁűòØ'nØ2ã\ñã±H´^¡òUÅïTG+¢eó¼½çÏ™#¼/’mÛ)óñ’ùËÃcTZML´L·]æïà%ûƒJ+ÜŒ–ÍPÅɶEDÉ•‘2U¤,8"D¶6héš Ù²5«ÖÍôú×°F¾ÁÄ©â՚Ĥdù¶ðíЍè`¥÷kóæ/xýÍ·fÌ”zÄ*"XMÁÄZb±žð!|‰÷‰¥„±œø€ð'Äx  wbáAL"&£gBE¸¬@…p$LÄ/¢LÑ5?‰Ä'78~í´ÈéKÉ[äòåFeRgFùÚçìäÜ:Zá2ÁeKËjLĘ=cjñàXîØÁŽwì{,nè8€‘´Žûh‚¤ƒC@ F;…Á$\›ª-ÑQ¶¼`«ßeüNBÛøi:'%y¡8k#Ë×[tð£$»ó«óŽÁ1(3ö(;ù޲èOÒÅ¿|uüìgeW1|êï>;ö¢›„ÎÊyZD¶Ø~CÌ¥`´=¦>â]yzºŒwçÇ?š®Hÿø#º2 Š¥ «Õaª-[´rØrK⇠Æ>8 pÊr¤¹÷“Šv8Gbj¢ëåy! §„„ùuvœmÁÛÖZû.«Û㬻áAÏà¢RŠn3ðÎk7$m‹`Î’ôc~ÆP~MÙ[Ù§Qÿo~‹ÈÆ„Ö_…£Ñá>z° &ð’eóß hlÓ0{k ª)Œ'içO[OÔtNúúôk<ÁŽå¦ ðOwÖØ•n/>þƃäFqã¤-±Í¡«äò€DÆøHBÇOùÎ}ùey½€´~¢]Kúè÷w°èIÙ¯¢„1’cjh¨øÚ]õµõÍÌØˆJ" %l¬µöâÞ^1'Aw)|¬mJª>¨0¿WžPäS§¨–úÎ;H˜ªó™¼4È.ªÌÕì}ò§å m/c0dddç(딦h ø‰;|BbÊê“ØV塬ތÞôúº]%™–ˆ æO‡=ÓþÚŸÆèKŒ¦4 ö@æN–w'wAF©)/¯ºŠ)4í/+*êÜvToºv]:Ï v ©¶ãJ­Û/*ëé°zÐßâ·8NzJµ–|O©P,‡oªlÆiv~®T‘Æ7¢^ñÔSj’¾|“·IxÇ?%ö1´Ãù¶sÜtœS§è¹ÒÅÏt¾,ÃÜÃ"’ü¬ÿa¼”œ·a…~ÿ2üËÐÏcyOüA~4ʦ=’uŽCO½í4•·P"h—Q%ÉÜ\»ˆ«â^‘ÚÉXýfP2O•O)I›áÀnH€t£!W7•/šÈK°Qo2˜ÀüBc;T3vr«!ÑQŠaA7TCE$Nçq¢)uŸ¾Ša_¾ùNÆ?M¬ím+mËqŒEÛ† γ¸Ä·. B¹ì[Ò“ª`R 8VÉ /)X¡5ôHäÁM€zc©|…²vWcSuMcWh°MÇŠm@õžŠ˜Ïî ×–ä,ñJZá­[ô]üùë‡NXËÚG^dStM²œ­¸Æò>Ç¥´ÅsIlØæ°ÖO¾8õß8ÇÄ a¶à=K‡#;E/¢Epò3{Ÿñ#ï²lsT¼†Áóäsw=#þtÐJvœ±‡}¢ê‡~µPž6g¯KOŠÙ¦\¡Ñ éØS yCV #ð7©òÑdŽ)´ïÁ5®²™¼”ÿ`:޾üqWm»‚¤gèá;A¿;™¢ ¶†*·¤„OÚ á ]†Ï ºM}‡ëZŽØû '7E”¦‚R†Òþ|öPÚQ øî³ ª¿ð‚JA2=zŠžÄ=6kbc5šØØMssCÃPp¸³lèÞ.«·ÅO‚¹©“œþNJ´|’“URŽ‹jlè)XÏ%†ªÜ¼tPSOëÈhØ=…Ù®”´ ƒ`Æ.>Úõ”};9*ZY®Ž„ƼâšÂ’ü&¨aƒš¸r~ѯ==Ãë$$Ó冑p'é/ÿ-À£Ð Œ=#cC’剛Etø– Å&/Ká¼þFÔWa÷7¬†U°X6+Æ/çMX þùž]ow¿þuêQø/°vÞm>oú ®Q J¥o¤&ó’÷ÒÕ ¾å)è”þÜ ç¸Zz¢æÖ¹ªV8gµÕ^ûƒáX9|ºÀ¬Ã~N+Bí1÷þ{ é¥/í`¹“¤Å˜¯fVÌ%5½Î@#õ´œŒÔ§y11CÄnÁáº=Äkx³køðÑC»¨÷ÆÜsÛp©T%1ìÍ Ü›šá'øâý$?ÜÃ…8åL<|ÉÙׄ‰|ÇÛ{CWNq]se{sr2GÆ\¦áâ¹–~ ¶Íö›öîÂMëY~¿Q'TAH|£%Ãð¬W‘À) V¤|nqëBQŠâQtö¡í¢ãvà»R¸é70«v°í£Ëð%uåõÓS§¾¸xG]ŠÍV[kcè—ˆ6ME4ÓØy¦¦¨ë•lŽÍÞ¤Ž`•¡Q†8Eßì3¨ 9)Øiµw`º%7-Í»/S„¤x „²í9V ´RÕµqêØÝòyƒ~HáøÁÛ™‘8Qôý¬ë¸Þ‚×[´nì»ì7í?ßö Ài³Ç,ømÚ˜*Ü@6gØsìCÅ¥[eÅÙ…9 9ìæ”-™rØ ¡û¶T§é…&M¥Aú.–ï&i±tB“û°ošŠ›;5ê1ð^ %¨BÙx¹€8š[¯ èqã"SS⪴VkuU3KçÉN†÷y -äežæ5|Ž]~¡—P(~0ˆYo¡n‚)‘±d2,+~ÒØÑfKùØx*)úe꼉û•=ÐÂTGÀFØ4bIA1Hˆ¾ABŒ!ܘ_kE\ƒZ¨ÃÿÑѦ±÷Ôq¿©Ckù%ɸvx=úXþÍú‚§£¤¸ºZ™¤‰¯Žo«1™ÐßZé›™!4´\*Ç”e.þê º0ÏgA>%ùo©ZÑgÅxÏB‘¾ ÛÌKÑy;.ôœÛŒø2¾XX˜_E”9§0+í5_^´–Ù4Kó ð£Á·˜—œà?ã]}J2šÙÿµ9¦ »÷b¡þœ†ëQˆ®^—…™5Ý©ÏÉ×›³ØO×£?øCÀOMà7ñÓøI}® ,JŸŸYRzûŠú™c÷~tv4š-"àJÄ\ 𥖧%jòWÌÈû¥ÿ—fRç{ãö›ê$vçÛ£gÇàà0—Qà2º!/_¸ …ÙÙü©‹‹µÀ²Ï\PZX tCÿ*ƒ*dendstream endobj 627 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 628 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 492 >> stream xœcd`ab`ddäóñ ÊÏM̳ÔuÊÏI‰¨üfü!ÃôC–¹»þÇ埬Ý<ÌÝ<,x }÷üîÅÿÝM€™‘1<%Ç9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õP\ã0000˜302H€,g©ÿö} ß&ÿU õ›<Ø,´ó»äoÉïŠßs¿+iIqá?¶~¿,ú±ã{ýï®ß­¿Ë3)÷ý.ÿÞõ½câ÷‚ïÌr¿%§‹vÛvÿæ®N)Š«Ìê.èv›^÷œCX¡ù@÷³CRÂݧºïOÞ5ëö¹iK»×tŸªžaË!Ì29ºÛ4H bõ”²K¾‹¬.güõ]ŒùÇå¿EWü®`/ëþ­0±¡¯|BפÎil¿§²îc›ö`öÄîîY¯wÏïæønŦú›³»³,Çò·@åo¶nw×CS—Í=a‚ܬݺtþ÷Ì•ï&ß=$¦Lë™ØÝÇÁW?ýGÀ”ïñó§NgÛÃõ“[Ž‹%$Ÿ‡³›‡{}_oO_ϤI½3nòðì›Ø»⌾ÉýÓzfóð20Ø×Îêendstream endobj 629 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1602 >> stream xœmS PSW¾—$—”¦s7"ÚÞ›qÀñ¥°[+³.ƒ­E(¶>Z@!‘  QYA¤œ%È£*qŒ:­îZ·MkíUÚjê£ÕÎXÔínk;³ÿuN;Óh§³Û;sfîÿŸó}ßÿï„4Œ IR™•ÍUrËãóJËjMEÕ¡Úa)<&<%AØ*줕!…)¤'©T`›¢`’d¡~Kgn¨6”•[4I‰‰Éññâº\SÜ IOÐh‹JŒœµÆhÐUnÖh²49œU,4 ¹JMqiy‘I¯áôšüÒuš‚µ™yk5Ïçé r×.JøU¿üÅÕÔm6T$>“üì²çRž&ˆ\"Ÿ($2 -±†˜E¨ˆ?ÑÄ"†˜GDJB)NIHÅö=ò26?Ìö/IšäºT'õÉÉJd-²÷À)¼ÑÊÃ%ž|?ƒA‰`“”ñÿÆ2,‹_ˆ•Xù`1HAúàP2+»ÔÏèÒÓÓuWîÞùèÃ?¹ÄLLòÀò^u™‡½|4=GxTjôŽéP«d¤zw¼«hÏê^ä—Ž{ïÝë0Ô:'çAÝHNküÈ=Èòáô.ä1ZZ··´1¥ƒ¯ F$ÇöDî¥ã5ûšÙÃuÞÖïm£»nlC/ËM•åKrJ†ÏY™–¡]½’ë‘ÅÊ&†Û‘yÜÕ×åífN—O !$‡”ƒ÷±¢Àþ:!œ' f‰Ð&ÌWûÌÈÆàjk%2Vx‘‹¥b1 ¼l”êCã>ÙY±oçľõ³c„áÛûôn4ŒbÑÚwÂà«9c”Ë‹ÆÙi t<œã!ŒW‚#MÛ…ýã!&;óªà |Í=&•Ú:ƒèbOà¥Tí`‰û%qLÉ’%xK·à¨»‹8ùö#G:Í„ßb®R}!üGX¦¦}›RÒVåNÞ¾Ã_ºòÁé‚÷ˆ‡|¨‚ò‡©"ëyá5‘UÔÏ̇k3¬8î·A@†8ò7˜˜¥ñaXíµ¸9Îbá8·Åëu»½!lå…‘é©S7¦‰$Ÿ áÅj!=|þYÊnáFCð³\H!*­*«2T" ÚŠv"»Ãælw n9-?Ö^ѳ}­¬­¶Yºý/ߢãw"&:Ö!|ýù›xñä© øÄtšaB 9q¥X¶ÏÅZœóG‹•}sAˬìUã¸lü؊ٱ7ùÏË—'ãØ¯ЇH+ -"Ö‹¢QUb’„}T({Í;¶ídL™%æ’6{{íëh‹ÜÚ»ýàñcÃCnæÇ§“ÂmU¨Â8íÚnÊ噹÷&vñPÈ«NL­™BSÜ$T!X CnfŸÙ0|åÝ®‹È#¿–zQ|RQ«_y~Ë ##ÃC£=m½­]ŒÏã=HþÉI}1·­xs5[ÕØÐ¾¡móëÖ€Ð%1tð-êû™ë²òrÿT•ÚyªœuvìéANçÞäèè±WÕXì†ä¯ó`̾}ïÁ/ÂÆ.^†-¯:ý%4}Y ÊÊ*¡@ ²¤»Xš¿®¾¬˜qAÌ[wQé~ÛΖ¶&´CNû,,cž¡Á7ÿf<‡ç‰_^›@’öC_òÛ[ð»röò5yK ÿ9öì?®}þ®6#äðÞ:!À“'‚ïˆþZ„Ïfò¯Q-ýhÇôC­g7…×#‹ß†= tR¹«×§•§âÈf6Ê·¡2ÿÇá~¦j„U?|78ÐáD.ùyÔa¿¸DÓKgœ¾•Ș8pé$úX~sÙ ¬ÀŠe^¾êÒÆ Cª­_™Ÿ2wÑýdPêþo˜d8ªÎ×½–ÉоLÝÛïŸüýêÕÀ†—Ù>ìW¯ÎZ›ÂÐy)Yg.ž?ûÁí¯ÎèrB~" !hÖ-‚Dí7yŒz³É¨?d÷{3ø¬ôwµ™“¿žºðûCâ†ìºGVrBX*ôbÕîzWCÍŽú¿¶2øúOéÍ6ÔŽZb,ƒöƒ=½»¸þ(½»9PWLdS¯Ñ +ú:|œ‰æsŠÇâñ£ý{§³ÓqÀÙ­PøÝÎŽÝÎ~GOxÅñ3~ÙN}endstream endobj 630 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 371 >> stream xœcd`ab`ddäóñ NÌ+64ÐuÊÏI‰¨ÿfü!ÃôC–¹»û§âO/ÖÆnæn–Cß/ }÷üîÃÿÝS€™‘1<%Ç9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õPã0000103012²Ô_Ã÷Ÿiß †eßO_þ^úPèÙw•îï*ßù¿Ë‹ ëüT\)úÛîû¶S³^mìþ. ù=òwnwœÜï6á/éõ iò^±§O«ß ·›mãÔëä¿ÏþÎÌþÝâ÷æ™ÅÓºvKc›?§{¥üoíi¢µ¡¿ùå~‹}/ý.ÆöcA¬§<_éÂqs¾g.ïëa»Ìõ]†[Ž‹9\Äž‡³›‡ûÀ¼‰{zúú{&öõðð¼›>Èòû&ôñð20‡endstream endobj 631 0 obj << /Filter /FlateDecode /Length 3385 >> stream xœµZKÜÆ¾ïoÈaÜLvö‹ì6â’ #$–ÖÈA£w»´8Ã19»ÒÆÈOU?Èn’³Úµø ²»ºº_}Uôo‹,¥‹ ÿsÿ®÷Ùâæâ· jž.Ü?ëýâåÕÅ_ßå ž¤:Ótqµ»°[èBÑE!‹Ts¹¸Ú_Æ’«_a±Ñb®ÒLrØpµ¹ø@º»$ÃßÍ4iïoi®É¶ªëò¼['Kü!µPŠl“WÿDÑy(ZÊTçZ{Ñ?$K!Dšeœ¼¸N– 4œÂ^#HQ•+Ò¶å©jÉ’s–j™“ ¾Õ9ã Â_ðœämZ‡?üvk©•б©Os]XÉ;k ØšKN‹´`‹%—©Ês{d!rNšýÑœ"Óš„<ÙÛ ʺ~3pj%Q;´¯P|t£pKWòTë"G[ ¯À·¡Ôƒ“)yü¯šÔå)>£äèÏl3KÙ¹‚Vªà£™åq>ÎG.®›+.ÈçKX)þP»ÆKeÞ6ÖH9ׯHöþ9yU¶ Éþ„s÷ÑÑ PSŒbPiG婚-®Þ\\ýùƒ³ºõâ6tpôc3]¥9¼ÄP¹6Q[†q 3Ê]^“/Õ¾ÒÕþ5åÄ­ËúÕ/ïy;G400OhŒ…\ajÕ%sò"…jÃÜÑÌŒ¦\²þWD9ø¯gò$¦b'H-©Až&/:§Ÿf³±ér1ŠÍQXàîÜDgŽø—÷!:£†9@/Ûð´Å’i–™\,MÑfîAš}Må ‘Mº°·~¶a/À.Qª‡»"NªEʘôæ­Ëu"3„8»Ã©M$"c?ê1qŒÝ$±fô¬ù¹iƒšó‘ùî-ägcFŒ@Ä-ì—uÙöxq,Kj7 ±Öcæ"K0üžÃŽ›d.98œ zš’>/;–^Rœí!u.OåØ=+Æ$ˆ}Ó«&!‚ÏAµÛ-Ç3×b±R§Ù/0® Þ–Ý–Í¡5)ÏYo±’)¥áœšŽè<±ƒ«Ì:O#užËÙDf¾»”äa{†„‡)Ѹ¨Bxtà1ABý¾ºøùÂN*ä¢}î„Bh¨¬XÀ!–¯ö`Ä—¡²Í' ‚2³2 Ç;,m@f)Ì®×Aœ@éèrÞ/vphÿ\µ)Ž4¨ ÊäB8]YŒo3…f–rÉ¥º`äg‹Ì)âB(òY%ÎTš¸43¶Šu„1ãŽÆ‡Á„JÁ@ÕËyD3¸cæ*'yóέ´½;ÔÛà døL’ÑŒ¦Š)ŸdBóiÄtAnÝÙ2¸‚hÜ –aø?x;ÐGz')ÇíÑìý !…î~7u{¸ž¥y*Í¡p»e).Y ˆÚ…¸´w}¤I#Ë®b† ¤Á*Â`£ ©i7žÚ,ŬdbÈÄýÞÁI"žø €;vÛ)®u e欜E~ªn¢)ä¸)ü¶$ãÀ°¥Î9"sIF¿!ÅpT  „#!!X%X j þ¿`ÉP k%nH” c(õ$tÞ5œWCGú7K¤#hP -lØù”y ò\hÎf¤N!‡Œ4”ÏÇ,åЉÊ,Ñi=GÕÕ×Y–ëþ ËÂÖ:Ž·ÉÄΡ\•n¬âñ–G< ÷èqçh#Ó“'¼Ðh\™ûíùdZ7ÇF°aìœXýu6”LAü×ÙHï‘ÊIÏh1Âñμf>3žŽ” @à–ÂBäžeVÊh´&’k¿æ·&–ZqhÝ:w#û%9pE‹”ªŒÚ‹þ+dèU˜úSCÝ _Ø!ItåÎ>nnz\ä°‹ÁÑ«9(÷©ˆ±öøô×SxϧᄺØö©:S$rkFEº3Ï•(b”¨M«.Íp¸ˆá1*Pˆð£ƒý¼ƒÝÝxDt33"B¡8ÛM3ýs0ÔÜã9ôŽÞ˜!5ãŒ% Óp…pÝôK”+ÖËd2srN©Ìa¦Îó{³HDXaÆ Ò’¥'w£øaCõ]zˆ L›æ:¬®m™xÆû¹óçѯM]ÿ0a`æê)3Eß™v¶7”9à§í‹ çØ^•ép1ªÈ“F’R(…ýxdh$q&ñ¬1 2Õ£Ú3Ç,FuȠǦ“KhßRYÐQizêœ[[ÜÂh»LÚ¹!î’Å4ð5s| üÖÖŽ>høš"°/Ÿ¿™ŒPÍéÚÕ'ó ²6fgmÅX‡aœa¿zÞýÄ_X¥ù®a¡< Ÿm#bêx>DŒ®ÔØ´Ú9álj©!ç[hòÜP_* îø@ÓÎúIÊaÙ’™Oͨ¬&M¡7T¸\A•!g?^à…ø‰›@Ë“Ù_8uÎaA8q|N˜!ßF˜ê/ÖŽ=ç•,¸ ^÷u,^³ ‚w‚x ÷5Øho(”L£šúev³x”îGÉn_¾\Q+×°­’þ Iöw³W:VÙþ t þÜ´ÍÑmlúéÅ›÷¯?^&ß@»\YÄ¾Þ *ý8hzlŽw¶Æ˜»¯’VÅÞ‚8y‘wÕ;4«C¹Û/ÇÙ§××Õá;³"]7ÛÝ®ZWÛ3È4Dk"u‡ÕxzEF®ÞýòÚùzdÿæºÛ¶÷ÛÍÌEP ù8Øið%kPö<ôQ&¾nFèÇaùÒ ¦äáŒj‡mÚÝOï÷„2þÞ¼"¡ AQ†ê#ÓZdÜ(s¥ öͦÚ=¼Z¼òë^•§~sAjóêÖß&7CÈ‡Þ =Þkò‡<î,3u¹7R»=ݵ`ñòð°²ìª[õ–!I?öòœš £Ûû‡QîoOi·ÅЀV$Ø®9¼¯Ãã­BçÆ6·þøöÕ€K‚•Çc W°(„Õ€2Wl(ý>klo•ý¶„ íöXW'+«çÕÖ NËzÿ¦;V§²®þ³Ý¤û»úT]¡i:!±Þ~n^õû™;Ohî_Ý0 ßèò£;_½†Â'%z §˜AÏK”Òðí3H96=–,ÉÙàßoG»NϧOI< kBy!’ÍFÈÜ TæäßÎÊ¿í=LÉ\<[•6/_¦ë»în?#vÀÁ®y<‰Bx._<ŠœÊª^A$}·Þì‚j;o&ú<3Ã|øùâ]•x{endstream endobj 632 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 880 >> stream xœ’mL›UÇïíËÓèhfÚ.c¬Œy™6]ܨqº q0 Y·ÒG@è ´](sUÆЋ¥cc0pk2²hfb0nq&Ã8?°/‹J4~é²0uÆçÖÓ,>,&úÙo÷Ü{ó;ÿóÿJ4*B)ͨoqËþ’ÝÞ6×ZiåOSž§âùjæW“v-7é Ó«™^sù¯êˆfÃñ'À—E4”nÛSÎzðÀ¡¢âb[µ×êhijXÊK˶Zœ!Ë?/»ìoiòX •Ã1¹ÍësËž@M‹Ûô[xÝG=–µÖÿ½øõÿà„4åÛ³Ïm«*)&$›ä‰ä’õäIò™&z’® N4Ä©é>z“>P5©:U!šÉûÃ3Iã „rȃr5D“véUöŠÃYÝZ,a•"6>ÀB0Bî*Xá04lb”LwRoK¬¶ç…“¾÷=ÇO˜øfç"™!¤ÛÅ[ׯÇ÷ãf“Bgñd^œB XÕ¼fR* M°E¾Ô¥ÃRm»î\t8:ôÁôÈÔð§ÎÌ)I7¸ýXÈý> stream xœµ[KsäÈq¾Ó¾úà°ѱ:,Úš†Qï‚C«ð>´Z+†!i—R˜œ†OØÝl‡rØXw•™UTÐr,í¦TeeeåãËÌâ»UU²U…ÿûÏwGÕêúèÝ£·+ÿÏùnõÕÉÑ¿~o5¼)ëªf«“«#7…­˜•¥5õÊ(SÖB­NvG§Åqó§õ¦*+]I.m±Ý^®7Bˆ²R¼øa ”0¬ª‹f»ÛßÒ3“†×Å+7¬¶¢ø¦íþÛOªl2é|Ía)%Eq³æ¶¬$ÓÅ}ô}×À Ì0#¦÷—Ä’²Ìj[t´‡¥TqÜ:’BËdB“ÌØnDñÝŸãa[7Ls­¹ysòk•¶±¨„0%ã(°“‹£‚«õÉÁ&yn¤d«P¥ÕšÆ}ÿ ÇD©dÍW'¯Nþå_n—$¡»¶ ¶øùfú0œwÝåE{?vÕ+ü ÊЉâöòᢚéÅÓÏ?œÞÝ4ý%åéÔÅ›³õéø¤Šîrß]\vðv›œsÞÁ ûq“‹ÎÔ"HíÛµ…“"ûn½áVÃ!²¢¹£3”–Ç;<ÂZ ýØÂ—Úr©yqK4¼¸sU1ÜDs½–Ô4Åñb^,+…5áøÏ›áòzßµçÍöëøñØ)CÊ}-K£¥u3N‹«HÙœ¢«Z‚”o£ˆTuhÁªˆÙZÀ¦oS#àÖÀ£.nÙFòp-Ø{¢5+†}F²@è'чۈN`Bš¢ñ?ó-ìww±%íÛÌâÜ.DñÐ5ñH8H4e)Xfï]îÅé^ßÓñ %µ:,Î ©Ø†]2ÅW›Ñ&ñpœ¬É•€¬¯"½@e#oVÏôÅùBpUäwj™:°íÐÆ¼ìwmCÎG’´›žæmXV³@< ôc¡-Ó>2I}hÑo“%‰‚é|]Ìë÷m¼?gLÕ‰=Ö¥äÊ›À?z(Ø vo*aJ ª!V /ekK«Eã(58Sô•ÓÈÓ¢¹$)ä27¼”J±²S©„ö|vðp¤DûSE"Íæ<ò(x)!„©™‘J‰öÁÓ÷ÛGúði–K A¨DË%ÖêO³\âL×h¹ŽŒšlÐEñ'l'£ûx¾KsaÕ™Ùô "4*ЇXõ[ù9×È{ Ãì2äWîÃ>çf–Dý ¸[±Ü?üÖé%7•,Ž¿“³‚Ža…¿Ñ|çÞ‡€Oèƒ%º/ÛÄ‚¯ýt+“ýµýÐ%¾2v,ÞWá4!‹ð+OiÃkP®d“m–Ñ©O„àì§c¼ÉÝm@¾Ì½QˆæË\)ж¥Ð*d]j{AhÝ„)·×°7#µcûBì!·©uñ€ûÃÒÐFm]<®­$„Pz~3”ÇEijz pîâêþvÂ71‚‚çxtgÅc€O°fßþñ2zÜÝ¿šð×v==D°êÛ/_ÿðK€L~–.þÇùó ÇÕÏÀ~«ºÆÀu±»ÇãÚïΊÓZ#Eî9r|"GÓ¢e3VïºýÛÅqÏÚ¼ (ðÊ*8Rpfÿ;îEáNP¸Ÿç[‹~3í"–6Ÿ(þt1Üt—ýÍ~{1Ò+Œï¿áærzpÊ7Ô*Ôà›–póùþvèöÛi1/[˜wVtÍíõÁ^¾;+n»ý ÚÍW_­&;èüf”¥ž¶š€ì›q„L“‰q Ã÷¯baƒ-Vèv¸Ñ„÷ JG}ö¾ÙÞ_~­Ÿj4?H9úûîý²Åäž ˆç•—öþßCÙCj¥'¹Öœt#à&öÕÁǹGtÖš‘~"o‚zâ¾Dj2¹YïC wŒ3o%J[ôòµG/\$èÅÔ´~ÃJ- ²ÒÈaÉšRU¦«h੃˜¸É ¯cÐÖŸš‡Ðt¥\ÄÓÎí.BEZD}Kö.€p€ùP@¾ø°Æ·íu[º<*ÿòäèwG®È¡VÝáâF*•PÜÀÀoÜImKË7 &PŽžî‹ *SjÓ;-Ίæl]‚òŠŠù$¦^Ýb´ÒõƒKJ$%zž“ t¹†(e Bcør‡¤÷­Ãf¨$o-º®ñY#ŽTœÎ„(0y@ ó¥O‹zÂ&",Š_'¸àÑ}€Ì»à‚H$G‘ˆâÇ>Ç>D t’UðŸÙð&¤™!h!Y|ÝtÛ}X€U»#œh+›"“&ƒ™} Ì0Ö[4—½’hu* °Ý]“l{!¶&X¯ï(™+)<`O*NèF—C£´/} `;±’>9†[OFñ”L—r›PØÎS¦ÜéHÈù‚Ó¹ñN‡%iüÚ¡jñ…çšaH=àe+X.ŒÏA$M†íÄ釨*¤·Ûváæckê´0b“h¬K_è§N†4Û>¬mÀ\¶M·ókFIFí>OZä°¤®è·7ÉD36ÌÚRÖÎv•‚O4èì¾uªlÀû ½Ïõ!€ì£Ã&–ªäSµÑa%Ï/Æ“jûP °æ»n…¡Í˜îãà/q0ãq>4F†Ö&/³w–¦eñÞY—ãPÍS'´Pzãúx) ‡y豎Ë,a•YBì°âõ÷e›TDš`7.Œ]øQ²§©NêÊW$ß·~"hÕBtg˜€Û[3ÔGÁ‹Þ¿T N÷&ªF%yg¨šâŸùßóÔ„öìt“¦Cþ›Ô´c÷ûõ<» €«ñU1´*¡íLÍ^[•?}pàx]œÇq³f€ï׊ʰ²hº–$LÓÛ_½>ëØbG^ÛåG‡„0Ï‹q2D ¬tUðœý¡¢Dr”mì üv«Å¼?Æg&Mñ´Âëvs¾VXO®±Ê3tkÅ0osŸ›(LB‡Nn‘VJ!ÃÌýý°Ù_6à _Ä@ƒe*x¨Ø©B,Üw¾N*+UJ«² {Œ¬®Ò#à¡ìÙßíÇØê£¬Ô©cxïÔˆeþ‚š8ÚU”ÀûÃïŠ2®˜¿‹y›EA‡$1P4n>„¤ ÒVo$‹(È+OAÔsW„‹D"¿ÈêÃFy†»Rã K¹dÊÊ‘Ë3Õú'‡lç"°l¨ð‚;â 9U±qH½Pkƒ•¹Bã©=8|® UÑB¶‚ýŠŽ¨ðx…¡Rqx·kÓdÛMÀˆŽR=¾G2ë(Þ˜œ”°è¤r„ÿ CÊ¢zט(‹#QˆfëÒÂ:YNÈ&˜uÀ)–Šé”¡k¼H@SÓŠ\nZ]ï}þFÀ+ÝL2ðÖó ¡ú©–[’Jçg¬²QNƒ… Ow^ËÆ`PiS¸„ àëÇ*Á`áZY‚=IÛ–°¹œæ€‘TOï¬[×~›×±e¥É?|ù_‡A,sÄ‘ƒs@TØ1¡Òù!ÐŽ4_XE¦‚)iû [&NLmQë䵿n‡ Á'ä…=…Ÿ¦ðtÑ ‰ƒ5F Y–Ä()e¬ß´]¸8aÒ›ÛÄV Sv’öp¡Ú?¬©+ýçŽ6eft¦Ël-0òú¼èï–Êfp~Ë2iÙ¬]LvëRWØîK góòš¹–*ÅC¦ó!òJgÅz±# ¹Ò20÷Á¯@,®é1[W:éHþbyZ)K—@)?Ÿ/^ÅJcV¼Ô ]†(ýýâ& pejãÙ:[/Wak,°œªcŸXuß_2È71ºðʸ*ÙLAiLŽ‘½ÖŠtòþÞ¼ŽÊ„/.çi!³)§Ø_ åÕLôðú¡f”Åÿ&”õ,#Â)†vy¯µY.MA«î"†º!T(%3ÜÜûK 5I‡Ðˆ¬RhŸ†Û SQFˆ0ñ•ìô¼l)¸ŠÜ„ëD[ØŽqæGIzxÏê¥ÈD6r匚"Ç '!eñÄÅ‹—gþ«d付ª‡>–c=) (Hl,û4‰ªyh¨âÒvæ±ßN¥£D'†fó6ÖŠ×@8-}@ÞnìLÞS%T®Šß¯-&ÞÜŒWPd#?$Oiìö¹·£ø.ÛA>0¿¬JñWX¢ÏÓ—að²É “VÁ«q¸å™%V[o„X|:ÔäM.ŸÅ«]U^쨷•´«Žõú¸»¼>+š¾Ü5 ÷¡aU^\¹vÞxqŽ—ý›z35qyñS·læ–ÚϦ.Þb"G½yu õ:| ‹¹Ï¾9þì@Gî/þ;À¥q¡ÚíßÍ63¿ª§F5>eo¦¹\Z5ñÀ+Í+É8ï»Déc%?_aΑ!ö7†h縕kI {ãážõ¡R& •Yi"i¸W¾½¡ØBÅ™: €“}Å™BÆý¢â·ؾ‹‚вk¯o节†c<§U^Kpü‡+}Xª‹}hŨ ðè+ 5+«»Ñs‡KãÁ†š4ãOS'?Œé§Ð³ä#¾ª‘J(E¡;¬™jnÖIïÊ=4qîÚ‡œY¸©£ÝE_Í„´‹’[_Ï Ë=q³r^Ô$H»¡>–&‘cþÕ­œÓnÃoB <×ù•+×^ÎqF`P°¢Íüp–÷9àÉß’* WE^—JîÚÝz~îR.eŸjÌVQDyµAñà-_ºái-çÔ]IS7ÞÖŒ zBbr1÷ iH‚‡À®Çu³&#Écvî Ls·VšÁs`çi(¾ÇPš ÛfûØ·žíŠ™42κ¥ž‘C”wû.zzA»+Ìq‡µe¤ª®:yìbVèa^È ¥ùx~;V—Ƭ0„íä ¶ÐXZV.Ê% ”,ÅT$.÷ÛU~é4ä)ñ °–Þâ}X‡D´éÈj2楔3lÌ ½ð—\üV¥6j¬Û¼Xqé7²p÷n´Ô²”rjÑþ¿Ö>«10ëªû|¦È®.PÙI˜Ú5ýþ„³^*n)aÀ%/l,UÆRPßíz?ÌzìÃ䂳¶6cŸY™@´®'w³2î­ª©†Œ@ˆm<˜;¾¼¶Ÿe/.Ѷ±®ŽªÙõw‹ÑèC…«¤fIn¤—Ú9Öä\Þ©3ByIÑñ„|g±,4'2T1ú‰Ù- —LÈyÇükpØÏœšOûqÈ鸥zâ¸{O*;â>ä&K®þiI.iVÈ]*ìnèG%¤¦kvO$gÔ´kÿ8?õˆ…èÊþt¥-)­*fé÷,4ùjAêwypQ¬¦l=`7Ÿg.´?h$sÖH‹Ê,$¡Wvƒž¸äþÆL½R†Ù‚¼¢ŦÉóëTŽ#8ñçÞ®wEz'ƒüŽô6QÏì¦QàÄÌ[@U™ü5YVÈD›6+dæ5¹ŠÕllîÄJîÍ1­ž^ìÚ–ù郭Yw3Õ|dö7uYixíÿBF.ü匃´/ŠoL²RrñWé½WÆÖŸØ{Ÿîßä1ÖˆÇXiìHìe±™ *çïŽþ@áéendstream endobj 634 0 obj << /Type /XRef /Length 353 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 635 /ID [<59cd8c8247c982f79f7cf6a62b56b48f>] >> stream xœí×Í+DQðsNÌøºÝטQ3³05ì(±‘BvJ‰ÂÂÌde1‹©±ñ‘²µ²Q¬ÌFÍŠBYS> EbOÊJ6,pŸg¯ó¼³øu:sß÷¼çö,fŒÂÇh¥\ú¡ 6´(þë¯òn+þ:¸†Ì¼4IfD{f²NÅOËý¸¤E´§¥?´œIZD{ZFÒr2+iíi™ØGZª’Ñž–Ü2~ëFÂHK¬¦:aÃÔ»0ôÛ|u¢„µ›‚U>s½IؼJ¯`b¦“pðÆ sƒ>¡ kat…'X»Í¬-ÒL>Àúa(ðCï89gˆÓla­wÊõNŒræ6v,ñtÍeúJ»`Ý lÝäÎOT¼÷3Sì0ÀÉ¿Ñ9þÄžyÇOØwÆÓìð{øßÓÌsž#¾‡EÔf‡Ø9ÍZ¾7§›7å„fw¸¾æ·ë°æ†úaÈEè endstream endobj startxref 360810 %%EOF surveillance/inst/doc/twinstim.R0000644000176200001440000002633614712411604016503 0ustar liggesusers## ----include = FALSE--------------------------------------------------------------- ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) ## ----imdepi_components, echo=FALSE------------------------------------------------- ## extract components from imdepi to reconstruct data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units=km) ) stgrid <- imdepi$stgrid[,-1] ## ----load_districtsD, echo=FALSE--------------------------------------------------- load(system.file("shapes", "districtsD.RData", package = "surveillance")) ## ----imdepi_construct, results="hide", eval=FALSE---------------------------------- # imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, # qmatrix = diag(2), nCircle2Poly = 16) ## ----imdepi_events_echo, results="hide"-------------------------------------------- summary(events) ## ----imdepi_stgrid, echo=FALSE----------------------------------------------------- .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) ## ----imdepi_print------------------------------------------------------------------ imdepi ## ----imdepi_summary, include = FALSE----------------------------------------------- (simdepi <- summary(imdepi)) ## ----imdepi_stepfun, echo=2, fig.cap="Time course of the number of infectives assuming infectious periods of 30 days."---- par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") #axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) ## ----imdepi_plot, fig.cap="Occurrence of the two finetypes viewed in the temporal and spatial dimensions.", fig.subcap=c("Temporal pattern.","Spatial pattern."), fig.width=5, fig.height=6, echo=c(2,4,5), out.width="0.5\\linewidth", fig.pos="!htb"---- par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) ## ----imdepi_animate_saveHTML, eval=FALSE------------------------------------------- # animation::saveHTML( # animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), # nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B") ## ----imdepi_untied----------------------------------------------------------------- eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) ## ----imdepi_untied_infeps---------------------------------------------------------- imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) ## ----imdsts_plot, fig.cap="IMD cases (joint types) aggregated as an \\class{sts} object by month and district.", fig.subcap=c("Time series of monthly counts.", "Disease incidence (per 100\\,000 inhabitants)."), fig.width=5, fig.height=5, out.width="0.5\\linewidth", fig.pos="ht", echo=-2---- imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD, neighbourhood = NULL) # skip adjacency matrix (needs spdep) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) ## ----endemic_formula--------------------------------------------------------------- (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) ## ----imdfit_endemic, results="hide"------------------------------------------------ imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) ## ----strip.white.output=TRUE------------------------------------------------------- summary(imdfit_endemic) ## ----imdfit_Gaussian, results="hide", eval=COMPUTE--------------------------------- # imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, # siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix")) ## ----tab_imdfit_Gaussian, echo=FALSE, results="asis"------------------------------- print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) ## ---------------------------------------------------------------------------------- R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) ## ----imdfit_exponential, results="hide", eval=COMPUTE, include=FALSE--------------- # imdfit_exponential <- update(imdfit_Gaussian, siaf = siaf.exponential()) ## ----imdfit_powerlaw, results="hide", eval=COMPUTE, include=FALSE------------------ # imdfit_powerlaw <- update(imdfit_Gaussian, siaf = siaf.powerlaw(), # data = imdepi_untied_infeps, # start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) ## ----imdfit_step4, results="hide", eval=COMPUTE, include=FALSE--------------------- # imdfit_step4 <- update(imdfit_Gaussian, # siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100)) ## ----imdfit_siafs, fig.cap="Various estimates of spatial interaction (scaled by the epidemic intercept $\\gamma_0$).", fig.pos="!ht", echo=FALSE---- par(mar = c(5,5,1,1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_exponential, "siaf", add=TRUE, col.estimate=5, lty = c(5,3)) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Exponential", "Gaussian", "Step (df=4)"), col=c(4,5,2,3), lty=c(2,5,1,4), lwd=3, bty="n") ## ---------------------------------------------------------------------------------- exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) ## ---------------------------------------------------------------------------------- exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) ## ---------------------------------------------------------------------------------- quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) ## ----imdfits_AIC------------------------------------------------------------------- AIC(imdfit_endemic, imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4) ## ----imdfit_endemic_sel, results="hide", include=FALSE----------------------------- ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model ## ----imdfit_powerlaw_model--------------------------------------------------------- imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) ## ----imdfit_powerlaw_intensityplot_time, fig.cap="Fitted ``ground'' intensity process aggregated over space and both types.", fig.pos="ht", echo=FALSE---- par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) #curve(intensity_endprop(x), add=TRUE, col=2, lty=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) ## ----echo=FALSE, eval=FALSE-------------------------------------------------------- # meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which="epidemic proportion"), # 50, 2450, subdivisions=2000, rel.tol=1e-3)$value / 2400 ## ----imdfit_powerlaw_intensityplot_space, fig.cap="Epidemic proportion of the fitted intensity process accumulated over time by type.", fig.subcap=c("Type B.", "Type C."), fig.width=5, fig.height=5, out.width="0.47\\linewidth", fig.pos="p", echo=FALSE---- for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, # scales=list(draw=TRUE), # default (sp>=2 uses 'sf', with a fallback) xlab="x [km]", ylab="y [km]", at=seq(0,1,by=0.1), col.regions=rev(hcl.colors(10,"Reds")), colorkey=list(title="Epidemic proportion"))) } ## ----imdfit_checkResidualProcess, fig.cap="\\code{checkResidualProcess(imdfit\\_powerlaw)}. The left-hand plot shows the \\code{ecdf} of the transformed residuals with a 95\\% confidence band obtained by inverting the corresponding Kolmogorov-Smirnov test (no evidence for deviation from uniformity). The right-hand plot suggests absence of serial correlation.", results="hide", fig.pos="p", echo=FALSE---- par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) ## ----imdsim, results="hide"-------------------------------------------------------- imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) ## ----imdsim_plot, fig.cap = "Simulation-based forecast of the cumulative number of cases by finetype in the last two years. The black lines correspond to the observed numbers.", fig.pos="bht", echo=FALSE---- .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = adjustcolor(c("indianred", "darkblue"), alpha.f = 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) ## ----strip.white.output=TRUE------------------------------------------------------- table(imdsim$events$source > 0, exclude = NULL) surveillance/inst/doc/hhh4_spacetime.pdf0000644000176200001440000122236114712411610020054 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4468 /Filter /FlateDecode /N 82 /First 689 >> stream xœÝ\YsÛF¶~Ÿ_·qjJè}›Êu•¼%N,Ç#e¼dÊ4 Jˆ)B! Ûɯ¿ßénp—LÚ’<5eCا?œ>{7( ^¨ÂºBB8[˜B¨ [ëUá á´(|!¼“E(¤ähÇ n‰B# ! å=ǃ…t¡ž¦ÐÆ*P* 7 è cè¾/,çh «@VòÂ) ü·Îã\NsWHôï8Îuá<ú‘¦ðôœ´…`\áe°…ô…×ZTá °+^x‡WQð°rþ•*‚â¦PºÚ´)€ÊÁi_(Wp¯Ë9ª€d¡–+ü¥·âÚ‡BKX´D3Á·…&ÆEï Îp&à•…Dïšx¥¼(Љ<ˆÛÄP "%€ ©. (K æP–xcpÄyb¦ÊJY<Ê \eöÅ4’à‘eþ ÊZ€²ÖxÜ‚²¶|§QóèÈ‚²áx H„À   (›( lh<(‡×t4ÆìÇ + ŽF›º~a5ÆÛZ rQ¤ð¾Ž„ŠƒÙ”¤Qe§†”Á_ðJ`%<Zá‚rûþû‚UÝ`4èwˆïqÁ~¹ì&õ´j!·ñüÅà'ùæ¯^T{ˆö“æ´¸?’8¼ìΚYñý¸97Šsk°Il|‡s0‘ÛÎmÅ9nq=Jí\È{\”Ã|o˜iŒS{ë3-¢©sŸÛ óµá]¢©ÏõíúçÆ6ß‹ýÜÇͪAW7ÓGƒ®*î=ú§äãÌPÚ˜ð.þÎùß¿Ëíð®÷ž ~­^ëî¬8Of³jŒÛ?W~lf£¶çųÉ82†9?2â5µàƒíy¢Ò½È›U:w&ñ†hÅv™¶Í׉'ñx‰²ç9Ï×¶µáù|¼t˜ï]·ÔWÍævËc1Îß!_ïß³—þý¯Å5ÎÆ©’™9™y–ek>îËxy¢Ûs›Œ­Çû˜ðéôüüýFK8Ü¢¯å÷´dè¨}N|^ÌšÑå°‚üüðâYñÃYÓvípV_tE()9šœ\¾û½vÅ=ÿZw“j.K~±Á~r5Èò|ã½.ƒWÈõ6ÙÜOÞï÷Fåas9íÈo±Ÿk(ÔàMÉùø—ìcÜÃ#Ä«ÉV‰ù>7ƒ}{Ø[ÚK¸ÛxîÒ^ÊÜÎ%r´¼OæNštŽ"îÏ÷m~Þ¦îu&Ÿ®ªÔèmo-“ímåtÚtô:"?ÓCé!8™÷*ï3gòÞæ½Ëû Ñez>Óó™žÏô|¦—ͼô™^fÙ[âø´«¦§T¶öGÕ¨.Q5Á”1@%Üö[z³è}ÃqÕ6—³!Þ•^ôICÃç]v"³fxRu Ä^=ëO!Õ¤`÷Ø!{À²Gì1{Â~`?²§ì'ö3{ÆŽØsö {ÁŽÙ û•ý›½d¯Økö†ýÆl0ª«YÕÖ-œ#ªmÓ{džlØLš)þžŸ؈U,vȪéhО±1ÓÿšÅÿ*6ž°1,;eg ÑñY5e5û½gvΦl “ÍÖÌûjè¼­ vA¶dR»t4‹= ½1íëfÄ.&—-ûƒýqÙtÕèÝ$¶îOÒñ,ÎXËÚê¼NïÐV§­?±ÔaǺ³YU±îcÃ.ÙåÓö‘}b²¿Ø_Õ¬ù.ú–ÈôIl~2œ¶ÑGÁJbÃ’fï9·¤‚ÌíN–” »l« ác÷UŠg¨JS³fÊÖÿQÅ@#×ðë*g‘Z/©\:]R¹AT—¤IH’ÄcK²ØKà²ì­K0f! ÞsUÒx¼ï©"kRæ6¤lûÈï*bˆ`¶‹{¹ áj6äíõáÓ7¯ŽÐëÉ`ÚnõØ×IÂÖ ‰Ók§»›ÀYm·ÛOÙ%ûOçƒ û¸¢ö²k¨î´6ä¶àƈÆÚxøõñ¸’3;޲›uþÍáÑóŸ^¡§£fÚì=JoŽ]×z¹³Öǘþ¦£Åñê/Ùzj|ƒîfËm½ïßÏú߻ؖûÛ´KzÅ.Qâ|U(ðt)ø×Z€ ÖuWOFɇ¶ïaÓÞ fìÝl0|_uÑÛæãäa×ãƒQ3”-„?.Šæöð3þî,B€5˺շOGˆh†Í¬ºÎ¹#Ëj®Ö½{ºk”‹Ü^Óò°®åWêÞÎv×|Öî"ËÛÐùg?¾úåÍ‹%kŸú[Δ²ë¾^Óý†¦‹]3%¾ð¯Š»%ϪŒ_º’üðª7^mï,òMer-«3TM÷)·—¦{ÊÛ¨.Æ>–|è93$G#fezš(éÕìŒ/aÑ–Ç­?&,ýyKR†ÞMº>NÒÔ²;¤ï$!tÍZš¸Àæ÷u=ÛC÷£µ°ºÚ-Eç—·èWÒ­†TjCkÖÂä.«JÖÅà¦W ÇWÌ·öÊ-0&–TãJ]Vøû«•¬ÞC9šT?/bTþ0žˆt’«F¹|ËFF•Ñ•´¼ÔrQ8:¦Ê,Z]*GÂäË8èA–4­ãL(•Ù\QžÕÓ÷=ÔXÚ(™T¸0)¼1©äb’£5)˜ËuH“ŒL®>ÚTéÉ5È\³‰ŠMTl¢b›¨¬Txr¹èë+Þ¦Ð;ÐÂr…Ô"Ä›‡Û”â%Õ3¡¬ù^±¹CÍuŒ°}Sž›ô%âØ›Œ«,‡ÅØKžuðÑ·P|míÂÐY’ëW]Ý9ì>ÖF’ ã/3Ðä*e "V=oõdÐÁ÷Uåì`£¾ÙG}ÚÃéÁ‹µsf“^ò›únvæ6e*®•¢Y0‹YJß´Œ\Sœ.Ú³ÁE5ÛËÂpú) 2†ôó€ï”¡/Wbíð6Œc-º×á€#påÊóÿ%Úi¿j·È†" þ_ ½—؈<»ôë!ÈsÄŽ+nv÷“§“¦“eWþüPÍÚŠÞc¯AsxH—™K3à¾Ô––™8ª"Ý‘ÓQp:û…©à&­…Ž u‰6ð9·>}ê,š> §_fzkia„E껣hÓâ“'XŽ5ýöO>¤ß êéghúcú™˜|L_æªú1MÜ¥öK¥ókŠãêñ¸šUS*Òÿ‡>_ZîMÐÖyû/!JËÖ—¿Â,V?Ã$¼ù+QúæÇØjl:®wÂôÿĽ~1endstream endobj 84 0 obj << /Subtype /XML /Type /Metadata /Length 1614 >> stream GPL Ghostscript 9.55.0 areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration 2024-11-05T13:45:59+01:00 2024-11-05T13:45:59+01:00 LaTeX with hyperref hhh4: Endemic-epidemic modeling of areal count time seriesSebastian Meyer, Leonhard Held, Michael Höhle endstream endobj 85 0 obj << /Type /ObjStm /Length 4367 /Filter /FlateDecode /N 82 /First 768 >> stream xœå\[sÛ8–~ß_Ç™ê AÜÁ©™©r.N¼gÝvnÝ[ý@˴͉,©%9í̯ßï€ E‘’M%r{«6ŠL×Càùò–¥Ì;&œbÞ3#3æñ_¦,K™±L0¡Œg™d2U‚eŠI寙´ù†ÉÌd,³Li)Yæ˜r”ï™ùÓZK&Ò”iï n3ÕE*™ÑÖâF1ã”Âf6un ³ÊRŠeÖyÐ:æR4*RÏœvt“1t„vDÊœ7’èe>ÕD¸d^Qƒ‚^+¤hP,(Å€dO…-hU”"=5(¨ÑT‚ A$‡¶1 O¢¢$" è’ÞÆ¼ ¥§žhô> š4DˆB ¡%‰aÒôb’ú±ôŒ¡F×4 ˆŒÚÂø¢GGC.©¢ƒ^C¼‘PÔOF-(ª%©=e)zRŽÒ‰fE%œ¡;*‘iÜÑè“(4Z×’rhV´ò†þâk¨÷PÖÑHhJ÷4=_“Šƒ;a©J ¥¡%chœ }­¥g”0C-hZLfé/ú°¡O¢Ì*OCkÝ¡TEƒ>¬wT}ØÌS{øº”ÞÍ¢Ú'*œ$š©u§€Aˆqšè°(ë ¡Ì¢çè-é]\F`.…ÇþÇßÿÎøÁd2].Øÿ„WIÙix‘ê*Âõ7Æ_L'Ëb‚RJÛÆ‹‹2>½C=*m2“`f¼ F“|Ž LW¥O‹Åôv>*Œz•Ëk>“†7œ±ñÎ6wõ'3í'ÓËoKú ¬R9ÙTX—Ô3=KçC)º‚ „´:µ0KXøV)FRiúû[=Æ‹MCþ"Ÿ½)Ê«ë%ñˆ!¡¹ú ?à¯ø1?ã9ñ ^ðK~‰æWüš—|Ìoø„OùŒÏù‚/ùò)¿å_ùÝ_§Á¦æŸI0B~8ί€*YæóP!3Ã""~«2Ëq¡@WÍ%½ËoЇp´ÌÇåè`r5.P‘—‹`fIO“»,n>þÑš×$øç8˵ã£_Žßž¡óãéd*ä®”½î²´‹@pêÄ€mGÍ>?Ûz¢túv±d!ÚX –r® )m|Ø $;ð![©¥>|[§h 4ÀwBÄK?ÿzòâðu Kôû|:¾hႸzEiÈÅdR…CŸÉlú@R2Í LȦo,)T§®Çêô¤c@9ˆ]È(Jõu¾u¤ÝXœ¥÷õªš´{°…N%ˆg…« YÕz®É k†NC™˜þf+ΨëœLW­ÆëÿÇÎܽzlVäsþ‚¿‡?äoø[ðù~xý9¸ýh:žNjžÿå×bÅû¯¿Í®‹IKëżX” >³b^N/‚\X”w$®çEÑHˆo[$DoùS4è¢^W ز‡Š¨n›@oÍÿrrxðé˜XM¾¼>ûvs>/ü™ ¢Z[û}]$‹ÊS³ô±Êú+úaR¢Õ‚©¨¶mf:2 BƒO‚B¢ ‡B±&ªÇ…xo eñåƒÉÇùrYŽŠåtÆoÊÉí‚OŠ«|YN'‹q¾¸Ž¸¢F·‹5Q£ÛPD*ø“]1u߈˜Û¡`"j†éç×§/c‡UóU\Rñ;`¢&˺š­¸Nò8YMlê#L%b·kìÆƒæÕÀÆ…4WÎ2`ó̲UÇšaì™”ÚJÁ%ñࢪëL·IäöÇêª7 ¡aüª/Xiû!ƒŽlóêIÁÔbE¯öµÓjÊŠ˜æDP±³´t³ÎnMº®LÅžñ÷üžg×`´Åšõôæ&§½(Æx*øUNÏWó"ÈÁcÿ…Eqs~‘ó›[>¹%f{ƒ5Q³ØÙuI_Ág¸.ÊÀp¯P¿Z/K0Û?:ì6ØCÊ3 ZÈu$çM—ßšš—­øíýȼT¶)^}¾ûùçOÿõb­ÃÍl×öVÊ ¼g×À³¾Êee(¹žª" í÷p㊓ûX§ãxX4Ú5÷ “­Y‰µÚg0!FU=ëL0……Ô×+Ö9zºÆÑ äkÐ&©aÜÆp€oÇ"Á ØP©«\ª¨Ë@u ÷ãe0>ýP|¾=;;:øØ( ›¹xmØ6ØT½†Eð.|ŸÂîQV> ß øHWßú9íùEÚ5¶}ú ½‡Ô–Ÿ¥@Õß*½íI;4ø?šv6y>îeÖo+°¾#U¸œno.ÇŸsñûm>®Ôá« Oø¤„Î;­5_òˆ‹Ëeu7§¶ùl MŸâ+´fR‚ïø¿‹ùt[N#S†ßÀ”k Áüv Å{:ï¯_ýçéÇu_Y±©íô“|ap'o·îY¬¤ünS€IAýÑ…Amï§6†‚Z6aðØ‚ kL=xl@àmÀF-ll¯ý‹êã“Ã÷¯ÞGÖûênYLPâ·°DÙÅÈ&ˆtÍ$ï‡BÔæanô”‘ö¼8‚8]dz cz b šÎË« èiq 9LVÔE¹˜óo«„eq·&|…N·ó¡)”wÔsl=íÈ:9œ!}<9úõÓÁºñ¶sµ²p/æzÆ”xÀ6Ün#]4j’ŒÝü!’ôé>mM ý¡˜Än,ò|žŠÀ Ã]Å Á,˯ù¸˜ŒŠè¸¹/ËÙøÛ½ž>Ï/ÊØì¢¼)1õmˆgv;Â)ÏCÞÀM{À6”©Êm!‰¼ß|xýá×Ï]ƒ«ëp¶µOã>뇤|WÅÜ„í*¦}jÐ=* M?°áRµnî¨5à’©óï5.šm1aÒ*Ï/ºê@, ëÄî›ððÊrDMçÅ<Æwè_„Q= Ålkgëç_~…ò“8 í[‘H˜†“Ûñ˜Jž£P2• L3áu’:Ë´4‰§ vf“Ì‘¾ÂØÛrò¥&.„§kšNa5û(PN•e>«ï=íÔ¨î!‚2UßKV¡0~“LáûxOáòºI#YÖ¤kÚÌï-mäˆ÷>ìá¨lØ xÈ:ƒ¶B¤Uõ1Mœ]T"FD„°ñêâÕÇkŒÇË4^E¼ÊxUñÛ“±=Û“±=Û“±=ÛSâû5øñø¾‹2ò;ãû/?|üxô*FíÎÆùd¹s|_é>w«!Ðânƒ;a|M¼¢»ùno¡Ÿ³¹ì6*î§-mÞbx}}û½ôBÅÄ!Û¡bµî)¥Ð¦^ó7ü(§ÞñÿŽª÷üÿÈ?ñÏ<çùbT–•qUÝ/ËñEÑÄxm‚ŸçóÍÚÝ~)–M2:þÕøf§creþ¯ÅÃjWm+.Ü]|\,!@6ÀC½¹ä(øÿ~;]çã*€VÜ”5•ÿ€jµw·V»€‘/FÓyœ¾wü[ßÉÞåíóXó­™*›ö49ÑT›hhºá¶…Ó3qmÊ}+ì.ðÆsÆø‡Ó£FrŒH ¬’þr½\Îã°oæ_Ë|™Ì¿”ÉEñ×À‡¶‹:Ñ`àÇIPS¸Ì2 ygœdN¸„vÇ ’`äjäøm©j„Ihó[GªJíC1uåHº*\<äÕY’Aš= MJëDcÝÖ4YŸH(ý@S”`mš¬U‰†ŒêÒ5ÂÔH“‘2É0‡OJ“O“”¶|Jà(„³³€'«l¢+ðϧ ÊIâ(€W¥€¯LíFÔàÕøâôà]rúl6Ÿþ Ý'Ó9ù'F_ üc1Ûim—HëH¢`ziÛc–è0˜îÌØG^м’,íi¼RÒ˜e QJf‰³þi‰RJ$rj¢ŒAq³Qû™à‹b§9––Î*Je¦’ÌÒ¡|y¯üw“U³eŽ3 ²!J)“`žŸ–(¥È¦R+¢lõNDícŽç7ùlqC‡Ùe¢•ô‰’ö¨B°:¦¼K þ^”=2c4"TôåÀÓ³¦Ig2Ðø”4iДiÕÐd„Ohßû#д¿X“&Èïíœ*K… ­K4ìmi`þ?MN%^ëMXt€áÇiõC¤I(¹"Ê‹$e}zÎI¤::;Ñu¥ÈÔ%teØm\ *šþ*šþ*šþ*šþ*šþ:šþ:ºtt%èèJÐÑ• c{q»¿p±¾õ}¬ïc}ëûªþºK!šÜ?îRðÑ7ó.…¯?žýüÓ›büµX–£|Í7Z»ØVÞƒ ¾QÕ5 ÷Ê–³Þ¿Õšo× Vø®×·õ&ÛÖ6“vUz]Š®VˆVJß×I=ÔAóúXAsÖèKùtmŽ4´Ñé£[×Jkê°@Ï“ H¶=©á±e÷¿„µÿ.î’úØ;…ywjmfßÔ[;vv1§.×ö¢® hÈ®¢·/õ²™ûV3íÙ¼cÊW¹ÞdáU:FsoCJš÷zq_ Ší—oI˜ :¬†ž¦!MRKgÜȬzVJö%iÓR$’v³{pu¬0­tB^Èÿ£&K´þ4¾“–AŸPä‡(‡ ûÓh&ÿÑ<`~'s CLæVM<Ì{h½»QÿÝBÚìä0#8j’jú”4Å)V™\~IPˆÄthÈcÏ$A„%V¬H2>Ñru—¯·ÃV¯CQ¤&*ØÊ ÄÁDQtˆÖ&*ÕÞB¸ºš§K¹Û*Ôh0uå”ú¸$ŸhPÃÙ$HMbûî@…áKÝŠ$G xZš\sÄ44©”¦Ú샦HIå"·‰”äEn°<½HÒ*ü~vøîìä§ã³çÇäÒœrvwênè Ò.•ïoc´~ýÐ_ÛŠ{ÔRdÚɬïÄ¥i'pjw”˜ÞÃÎ0ܧÁ5ó]qèîÌ›ÕÄËT'´çúW’êžÕ !1ÆWF!)³^K“Ú`ÇÇæÊÛ,ÔTBW¡ãÕrÊ;+“%ö±ý„Û(²Ô­Hò&!¾¼I§á˜¼ªÃãdÖ ÝDïDì%JOÇåÓºú*d¿‹($¹ºý–Ÿãäª\^ßž'å”_æ’ |'—&©ÏÄR ¶4t–Í@“JèhÍŸ'ýæåÅ«»å<ßIþ)Ÿ„߀€¦A–؇tµoêóå¼¼ý— ¼XÝÜÈÐʪ߀ô¦1Ï~íA_ÿƒ©¾˜–a EšüãWE>¡AÙNQ­úµˆ-è¸N&&¥é€t÷%èiø‘!ëÕ¸¶6×VckR‡VckÕõ–ÉÈ{ÄáËòò²˜Ó>bù_m‡¦·ª^£)ÿ=Ò&ºËË=5˜T.…=µGûïh“ØžšƒLmïõeë›}××ö÷†­ÒÝ-Àû£¥©ÎL:ÕÒ>ØÉÀÁ×wl†s®«ãžMO³o” ÝÞVʰ^êm¢¨¤³ «Í#¬µ{¤Ú 7šî )ÐüÂÑÀ˜ê0 «ÎÒ¢‹‡¨èu@é-£ŸX˜•þáÜT F‡ª‚_s¶(YuÒ L;$ Ö‡†U»[L›j?ɾÑÞ"—¶÷€Ú†8UÓÕ#’±ŸÎ‹'w±™ÿyq:¦endstream endobj 168 0 obj << /Type /ObjStm /Length 3302 /Filter /FlateDecode /N 82 /First 762 >> stream xœÝ[msÛ6þ~¿Ûéï¯7½ÎØi|ic§9¹m’vúA•[WYòHrœô×ß³ )Ѥ¤ÐŽ\wn4»‹}vò‰I¦¾1᪘‰WÍœ¸¦´‹(X¦¼A-8¦RB-x¦uR(¦­¢—#ÓQÑÛ‰åðz”ÌKôkEÍŒ·è#ŒDFËLÂs³Jc,`µ¡ÆYC$ÄȬ !Óh=Ñ’$³QSA1'-ÈO ™^UÉ0g¨gPé,õœf£A!(pdª˜KšG楧Ɖy­%ÓR2L4¡ ˜wR£ ™ù‘a>‚p-- ϵt,hK= ˜ ‡)kYð‰ ‰…´’,JУ•bQƒåZi­Ãʰ˜+ËbÌK2QÁ³¤ zV%“û‰,9ãPH,yðèNÑ gÙJ‰Þ´Ö()4f' ÈÑÄ/i!­!‰‰£&ÈàЛ1"u¡Ho€iJCžÚ€ÅÊZЊq”òÔ³Á1Ú»Áfôl0fŠ^@¡Â@ôÆÐ¿Ú„¬Oôcè`è)ÆÐª¢IŒF‚6èJÊ¡FTÆ€cè%ë@‹ÅÆsH“Lˆ¤Ã$Co` +¡hÚb «<•0†¥¾´ÃÖhÿ¯¿fâ`:-ì×,QÉY åÕW×P]c¾þÆÄÓÙtYLñ–ñeqRœ‡‡³èGâã’ãà`´ŠC]ñÆ«á/°r1(³ëù¨X0¢à½eÉÏ^Íg£Ób‰ŽÄ«o˜ø±ø°Dß|ƒâÇ«‚º:/Pm©g"!óòjªk5)]MJû “ûš„Ÿ5 SqÜT7±º¦ DÇ}må=ˆ>.ŠüºxõËàäèõWÇ'ƒÙåpšž ŠóëÉpÎijéhv6žžg…Ë#ç‹åÓ <„¸òèß‹Ñ||µœÍ³¡Í­Ž‡u#(´8½þ}™G'TMJ9ôëñÙò‚8ç”ͳÿÔÇÊòK ;b° è*sõWVu¹ªQ›²]ý A­Ê>—×w<Y²ºÑÚáY¸uçö'Œ6d˜ê«©)B½¢‘/JÑù|·~JsÒøº<·ü-iˆâÏb>û’ Z04‹'dÏÅÑdx¾ÀÚÎëá°¶ùYvÑÜ~+'Ü _YYºõrxYìX¾ß-‡“ñè`z>)ðŽ8/XÌyÉA qçtY\þLxÔ\”ݱ?¿}züæ u2›Î6 ,èéÁt1^ßX[ ²‹QõµÅPdWúY ‚Ë PiJ£¼»vOM¬ÆÛõÝÖ®{W6~Ûúíáó5ô»¬®ô{(†Ë†R“:C YÇ+õ½º¥›Ò÷%´ñF|¼¥„€šJ áÆ4µð‰/Ÿ:8hDÂm5 ²­†Ût£§Â1Þ¬„âMÅòÛ*F yªôÄ”Ç ·d¹ë"ySu^T¥kòžêæðìÒê¾e©¾ïÉó¬Dr\s¹³"þóêí‹g¯¾z^LÞËñhøäp69k"§­P~½j>ßZ±½Àõ~ë@çw·è,9©ù¹#ÄéñÝÖ“Wªs/tFN¶âeŸôK=4¯eŸô­g@ן§¾_Žip‡ÚS4T¿K#wPîvruµjŽÄâu…²õÎæ¿µv.ÇÓëVÐt «?«mÓÌ“q_Œ?ˆÅÕpT™¿˜Ee쯧gÅ|1šÍ‹l÷;6_ÅÍ6K­|šŒÎ´·–›j/·-Š·sµk+›ŸvÛüƒì^ž2ñÓ໺åÁh9žMË[_\,—W‹ ñtpð’ž\Ígÿ-FK>›ŸGÀÑü×p:¾Ò+_fôp6o*/7ÃÚÓ\A”D•^G1Oˆ~VrCÑœ—Üå0n±&±¯—ÅñxúÇŠ8òÁWësëP¹‚éÒP¦bê›·¿ Øæ£YŸ¸G°:½žLD!‚âeˆ[EÄ8ùØDéÀeŽ©+¢œä‘Âø»µ9ŸÏÇgÏ>,çûÈÙØÄEͱ¤Ö¤HaÂF{ µ©ÃP•<÷Þ¶j¥É·k’¬‰Nõ2ZvM„W<`Õ·L„R†S åaÿáñz@|( 'Õ>Ö(òû¸¢()Nió=¤êJEåÔW4EÅáS©“ßÀ#Ë-–’7 ÌQ&KŠxÒÑ=›¬Ö€@œÑÜB mpÜî­ãÑØG¢)€¼¦ ã^ýˆê¯6·+á“x”]š Sh2Ásóm!ÌDÛ3´»zÑÔ0¶noÆö>ïÝpL{?qU[P«GüºÁvã÷|…Ï€ÔñôËã§ßŸÖ¶7Þ5Å”:FW×3_‘íY;£ºh i¢Q®®ÐÁâ&(òˆYcŽ,°”ÞoÁ‘oÃÑV–ô$¿-³ÒMïÿpðæ¤ÉïƒùíÞ̧Pÿ™ï°60?´™¿•%}ÓZî>Î@ÇTúFÀPâ‚? ‹;¹ÄôÖrzÉì…;àÖPÕÊU¥<ìQµ‘¥ýö„¨»At½\ @ÇÊkµ-¬ªmaµa[8ìm[¸^ ÷Œ9y}xú–úÃåEiîî Juw‰u-ÛF®Ûõ“÷fëÜv ìí°½¦=‘E3K±y…Ê(:ïÑچ˧o uÛMÈv¶áv³«'\ÄmiÙÆ.ˆÚ¶üûôÇÕÞ Ö ;øuÊi-œÔÝÓʶd“6màÏ~šŽÑo¼R±­;t‡ô›ž«+ Ï‡ï ¾\¨~½12÷p[4±›+߯žžR±ŸH–ï›`>e>ïølU\“`¶g¼³w"á銦 9ûkh²*p²m ðrÈ$¸Àé “Qt Íɵ$¢L B¯‰JàXÐû ªíXDß JÂcÈ9¢ .x9³ùâNe'$ÅžA}˜•ÏgëZÌçÿ*h•,­ÊÃJ: Ø ‹ï-]Ÿ‡~·5‹#Ñnü´@çAMàäÉêÄ}ÜëAo’ŒÁØ^­Iò†[èÛ_C“±”nìø±Æ§RÑ*¢¬…·míãeât^vETp<ÿÈœrâŠy‡Çfœ+õrÚxNËóùèš(y”önDµsItºÞ>h™[.úßÇx4ÎuV‡SMu8µÊ‰ÑAáŽ÷µóE‡?Çÿîàðûƒû¦sèT]Û=4íjô@éœåÍìéhP7MÛÜÊ’¾þ¹ÜG:‡vr{e¾iÛ"býé¼3 èˆ9§ÐC'Åyèsˆ¶ò&I'Çó E9 éà¹c¡³7fÕcå57 š¢ç0{ éÞ²£ãþ¼cîèïVr:¨®=ü@©÷±wÛ¢šò¯ý­èßÑí&p:NN9¸"Ç­ó_d”X÷Ð ¹…&:™d\Z-éÜhê$+Øù´½°†;m°$-×´Íé舢¿qåöºš±ÇN’¢æqMP’9\¼AíÓž=òyûÝ[ûVoÀ{»/¼·æ>xßÏlYÕ’W‰!y9 ²­£?¸åÇNiîm¾"Úí»¼Ól}Žiº—̪$¬­’°Õ™]m³êê´Š®”ê¶l÷µW¬«cA*[€®L,%ðØH 9§5’ï×:ô&I¡}þkc‚A ã€‘SšßEJXôݰ‚˻çývüî]ù@~¥³Hå¡!ê»ìlÕô>ýA½Ê3Ã{ê2®«<èžú¤?U”ÿyÙÜáÿ9 ó=endstream endobj 251 0 obj << /Type /ObjStm /Length 3085 /Filter /FlateDecode /N 82 /First 751 >> stream xœÅ[[s·~ï¯Àc2c\3i¦Š]·ilÇC5—6£†ZIl$RCRmòïû,–—]R]Y”4» øpîç6Î%Œ#¡CkE‹Ö §#Z/¼'´ADËýQh¥x`Z'ôx%´US$üäÐ!<`Ò”{0NŒy0þœÒxÂ4ƒ£ e±¤O‚ O” Kø"hAŽQ#(h|0±² VX¥œ°Úñd^Xb„!k…õ ›IØ€ýš¨„M ŸG-œ²øœNX=’pd1Ös–ÁGÂ[|Ü.$þ<—xõ…7šJÂ`’Þ1ž¤A8ƃ|T€‘HøDبo³C˜0y(òçAG˜P‚p“’D ÀLբƤŒˆ„Y {‹{ýD ôÃþc <Ø‹¤ "xˆ(xp‰¡’V»A(›‚å#RÂÞÀnƒ´Å“bÒOa íñBâ)àÉL¯Y@óPCBTÂ/à&dE÷d #Ú`.ÂX­ ¢Bk@ö¸kè ¸kèÈP€r–x¬Oy¬a˜ž„½B®À!Ñ4}„5ÀsÈ H«Amìýô¢?|ù¥¨ÞÔË•øYDÈýHT?ýó_ §Äç^IÂgw××âLTêßVY1ò°ãE=[ _ÞõDhžÿ1]]×âË‹ú⤂4z,”Ö(9­™fÕÇ7o±W¦ËÐâñ÷Ûš§º¬;Ôe¯»K]¸Cl‡¸­Ö î>såÔ–¦¶Þâv(„ݯKKMµ"]žÏ7 Ø>CØi0"vMÛ»‹¦Õ{ŽÄv@ŸÎßÓQJÒš¸àAÚg&üÆdºÇö¢{Ï_4𽫥ûnC_[ZWZ_ÚÂSøb _HíáG<?H?†¦« IKM¶Ë]ß·Ï“¸Öƒœg=éØË]û÷õxYgüÕ‡ß}ûæû?¾{:ž-Ó«Q}yw=^ˆê/³Éü|:»ÕÓÙÉl9Ýtdßýú £~f2`?“Åôv5_äXyíÒ׃Nï~Ye*0-tK’ÁÓóÕsØ#º>[ó}9É;‡Ù«^oÿVO/¯ÚWÌʤþ¬}ži™G*Ìw=¾\"uÊóä_oXë@ò×gÍ/o§×5ãE²¹ëÃø¦>LoVãëéädv šc©÷ÓåÄÈØs`^®ê›DÚÙÜ]z„}{ròÝ_±Ðh~3ž¥WÍ #Ú'|èè@Ê;J™HÛÿ¹z}[¿fí³Á”ÿsxÍýmÛˆ6ÏÑŒdSCˆ97BòâXk<$£Ëï€`‹ßÍëšß¯N«q5©êꢚV×Õ¬šW‹jY­ª»ê¿[²ðÊðw8häÊîÈÃ+@ÊC^bW(’ê Å!^  $¤¢ú©lÔZ³GD>üøñ‡ï°ìûñêêô÷›_æ×K¿GE9Oh¯„öÈGêÈ ÕKJ=>Y¿Ã§æuÍ'¬P/¦Ë_o€{ŸŠÚžz:–ßã„îqâ~’ d2êûµt¾8¯šÊ®#¿èæ¥5ß[ÞÔ‘ p@ð°ð§›˜wTOx$¥ a¢¡¶QZä®Vi'ÍIŒÕÙ'ÞMg¿¶è²ó»”n_ (×JÂjk}È:¢ZÎú-Ü ÒsðK‰Wå³üšEê·• ¶4±F"•fë!ü±ÕVz0ÜF+‘ƒ¼ ((Éåˆ5(€4æ¹@!L’©mOz”ä"R“„ðÏ#¢½dCú"˜@c}–÷๊!à\Æ"é}zbLÚkɦ»K'R’+-( mc {QPÖ&tÇ (€q&=(£U"Éí‚  Œ·kPk‘zIPQIÅG¤Éå8'ݘTŽd^“féý”IàÞsò  ’í"›+=-(£Ørº—e”—\£Xƒ‚2rÜõ< ˜sJD-(Ò$¹¢þ’˜ˆý€!&8 „ ‰E„øPAÃNÛ¾˜ŒRà’5CwB#V\à6X'9+>Õ÷£oÖ&«é|Öt}v3ž^¯æ_,ë_äMý{½øóÅøNž×Ÿç$ù0™uGÊB "Y¨!iÀ-'v?OÙa8G\›%óqQ>´ù=aøõ‹mÙfD6Ÿý”/Ú¼q„`ª RGV‰R¬Ã³íËÇí3–^ÁÊ…E#‡¶kÁƒ¥u¿iÝïEjçÌçYí¤|”¥ÚYùKµŸgß”:$9Ævë¢&iÉiFWÁàݸÛù“”¸˜—…ÛEÄOþQ±I“í`²†¹Þ MX±,ä`Ò=Ÿ{!ÊM ‰CðëÒ@!†I·ÌYc ”dT=:9èŸLÜ&zYL6ÀùóIŒ¤ãÃF ”h›Ü@]Òùð«U&Í2Ý&£#¥ºßmØ–ü‡J;¨X*¬Ÿ^1Ú[²ôr5`b ºAñI€Ï¦Ó¨(r6Ÿ•«=:6"ÍÁ$(îŒä£Q"#½~êîPläø|Go@Aç#¸ü< 9¬{Ê£ôHŠŽB{»• ‘î‹€²†dÒi Н<Ó4mÇ'IëvÜJO7EzUA”)m)Ú«R´/sðÓ–¢½j´s§HŸÊf_¤WíùÝCŠôÃì ©®«<`nµv2! °ì*Kh_±ÙU´+[§P…Ð%´ "T ¾øÐ´naéX„ÕþûÅ«ÕêvùEU½|£W·‹ù¿AC9_\V·ãɯ˜êOãÙíõ|õؑ핣 ý±[…òAôfìÖÙ|kCa•Ý›5˜Ö”!-5×^¶™kP.Â…RŸÔ‘s ´Å!ÍDfBNºõAFgŽ”¡ ¼óérµxˆØÙÄW}øìzÕÖZá—3Ge1é‹}‚л‹KùŽ,rQ¾d”Âx8( "c¿ccÒœb°ë. Œæ{5æa :nr;‡â ·ÜßÀ8sÀ~ j°ýBDÚ«|Ç-ã8TáÄ‹ ‚=Ôøi8(‹ŒŸ86iA9½³OêñK"6Ù|s]®ÌiÿSWå€*!¹†Õò1åDR¬JœÑ=uUþ&Ž1\ôPEˆë#ճܽ»$âòžƒ]í‘UBŽBÊv›r!ê¹²Ìõ•ûCÜÉ7uotŠƒ•Öß:-WÞbùÔJ¾û2ue¨™ã+«žu‹9ƒÄw—¡nO:*+{–¿Á”5óÅÞGcê²nû^§ãã, ƯšË˜ø–2ÛD.ôØJ×y¡uîÉSÒíè{6Ò"ÇD7Gµ|¼˜Èl–âÐÊèà¬ò@¥óy«›Ÿè¡‡Ó´˜ø £$Þ›"añ£~j…pž³±&®às5,Ÿ#&ÉWô-Æ_¢É·ÌKÛö,˜°Ž‹Qòeù$#¿Âκ{ 5˜.“ äÈSâîA˜Ž‘Â\]]Ù Ò÷ñdµ|H&C!æ§ÅÏ&ÇA#Ÿ‡¦ð¦Võü‡†ŽÿLÁÔÚ½—ÄTÌFÎd}Z› k‘d…O yv΢â£ß{íícN¹úÆ{¼¬ï¹ûøfzqQ/êן~æ«kÛw̘¦ ×`Öÿl™9@endstream endobj 334 0 obj << /Filter /FlateDecode /Length 5554 >> stream xœ­\KGr6àÛœ¬ƒì‹a4tªö²Ëù~ˆa—ZKÆ®8†¤Å™æL-»§¹]5ѿ׿Á'™Y•YUÝ3 bwufdd<¾xdÖüiÅj¾bø_ü÷jÁV7ºàôtÿ¹Ú¯þñòâï~fåjoŒZ]¾½3øÊùZyåWÖˆÚ0½ºÜ_¼ª.oÛn½‘JÖŒ»ª½[ ŸlÕë ~aÒV×÷WýšÕÞqídÕîpŠ€ïºêq:ãU÷¾éÛæßâXÏ9—Õ~½ÏÒKë«÷@ÐÖÞz_ŽÍný_—¿C^]Ϋ浒 ø½¼¾¨nooÕúòÓ ^{ÆEô –`5³ÌzéªÈ³¨®·;Ú …m…!Rsc«÷»m>c [vÀ= ¾9l^øêzÜS;ìÜn#Ó’åLsQsç"Ó?-p ,)ámâø}sErÂVïš›¨È¦HU;n‡Mv÷ÇŸ£–WÛv·kî®Ò¼b)åq§.Í Úö½©Þ4Ýö:|eLWA‹a— ‘Ú€–j/ôjÃAiÚ‰Èîý›]{…ª½E:ˆÅäbQ'VÕVjúÝáþxZßHcѪªÃ[üìèó˾éIøŒ[à¹o¯Ö×Sɧ¼<¼íšcø F.J€ Uû´nõ%ªã»Ë‹?\ÿÑ«ãGúðº–V®`3µQ6øÍÛ¨†XmÏ’ éêÅvwý, YTÍ]²%^½øßÛ]à8òó‘ŒH¯jetÎHõºúäýI:@\ÈÈ ÐCFø#)*njåJ=Qæåöª0ä¢_¯GKü2™˜¯nÁ Ðæ…ÔÕ- /ì9ÙÝF0W­Ö'‡¹¹Ùvý`ð\TÇíÛíq‹~I”½?…:ètŸžúê¾ÛF޼Í,½D- °¦’ÅC-6:æ#˜„0 ²ê·CñØŽr†ñ±U€4Y™ê!M„Í?¬˜ŽïêÑ %PX=€Ž{á@·Ö V¾Ú_há,8ððdwñF f@³RÛZ5<ÉFÁLM3‡QÓ‚+GØ|Ž8esÒ¬¸­×…Ñq˜è˜ZÏj%$™ñ¨ @ÄlŽÔeôM_¯7š±ê»»ëí¾½Úlß·ô„潪öä0¦ ‰‘¥½»!‚y3î.Q·ÖDp '‚¹6Ç-áÑqÕÕáþn-yÕã#ˆí~›~4U‡ ¼‘Z¤´Ûì{DWØ,¤qØÃDjó«ôµd6,þr (aCRX¢¹KKT?b0fÆJX †[2£Ç•EŠKc¼@IfjëAüRÖ8Eñÿù“ —ù‚žµÔà̆Ã6c²òOkœ¤C[ÑŽ;ã \ãgi9ß3€=°8ÀŒñùæÛ]œã%Ì«~¹à7å„÷…bØqó¯wÙomÂ\èªààØµýÿô$Ep3ç¢Bk^¾Ë;oŠóÕ6ÿòùÎB¦¢­¨Þ„LÊð ³7ë%Ká ,´S˜·ÑP~Øîn›ãu4ã¹âüR%ÀÁÑÒŠ-EÁhOÎ &üb<ÖFB^(O>"A™€vÿy¿ >^’©oq[°¾`*š8̪ZH¦Ù.(² <Û¦«­nª¹—w˜ì"wˆÑÌ *¼Ëíì°ÛÇ­jg¶ƒiŒ5§Dì}=Rc².-¤¿žCG¥VĈ=¹wBb‡ùœÖ²v’“w~û¦ë $ö ‹qÚ†kSKƒ‰ «•õÑf.ÃF5Çl‘ ¹6²G᪟×Z£šMÕ´»æMØ8äa¦jw¸ASd´YŒC˜ƒ8Ç1D‘˜!}ºš>ÅtQóä¯D¾˜‰öŒKÉÁûçcš];®œ“jú&²œF' ¿$ºP;6ÒH>HAS¥0Ž?¹ø1|3ðƒ’UtiO¶Ç2$¿ÇªÉ` ÅCÕ‡ô´wŸ­Rˆª¿ÇlÚJÃqI[%Žî5‘ì~2)Ža‹À‹üŒ§ ç€ÝTù‚w™1´‘œ‚ ¹\û» ½^¹BÖÉqL‘ÁtJítÛœVG³ y6P‚N5Яv…l¯ñ9@Šã€ŸCÖˆñžƒî •]-¨iÊÓ`dD-P@ âKjŽßº>®éCAÖ‡ÍazGŲPêç¾½* 5mïÉúOþ® cÁg–›ÄÐþ3Aá=àÿš‚[ÊlPý’¨..ÿöUõ6£w TÓRÊܽ/œ'ÔþçWQ »àu`-9&W¶Ü^¾P{R!iƒùÌ<—Êìs+ž(ªi9Ü\»9;L†—B"°§à§D…OCõŸo=D(“C#`4ß¡%0Ò€E¬Ë:ù.bø­Üª³`7’Ò Âã‰ViuwQZ”nWZUéáÈ7„9åCRRØD„ÃEpA4¸ö³[PXÔì ïÿyˆ3c§ >F,}€Ã›õ1]ëæH +Èžu9÷&«¨Λ>Ñ‚")ßoÌD´á¡ø”˜•”QÚVŸÉ cÜðªÇì„§”Ø@EiÈ·06XLeÕ§¢×‰9B<”&ê1AÔc†šŸ°+9 Jeh8^¯góIÓ`QÔ„^c5•J…Û´Ý(ÛŸÛ›»S.Ù÷‹„ñ'Xõ}n0qé§aB@áǘIñyXFx …“xÞì>tÈpž ­ @B7ÀaG³ÙM•\­°È8Po"ØH˜d-A*=œòð9ÈŽ_7œæh`ë 4­¯Rjãó]ìB:‚šG÷AØpJ#lÚ¡vÞ£ 3NN{°iÆìS&)와jÌÿ"A¨ËSkºÐô)pV Eñg¿ˆ4ùñveÒÎj½1ÑÅíèIƒ}6§‰íb|}S?û¸*_,ÔèÌ|…¾RMÐ|™묟d½Iø~žVãs÷/Jég¨ó¤Žé"»ŠÛZ‰‚áì˜.“¼Þd¡ÀVOmw,PT@QL$KªD ô©[Ë$ÔR³Â|½®c[“U0Þ2«_ Dž/Šôƒ~birI É â©½ÎA¨RœÏ\8ÆËͤïKaY2MÃŽªØEáZÍ®ýï"¥$)ƒ¶Wd¥§¤Ýµ˜*•YRªdpÀÛžŠiø˜îE 6êX)œnH²fõ=çÔŠzX'ÄZ¨"b´x·Cmq¶˜¶u–i«Äž+$T¸±€e"×teÆÝEް‰zºü:ó]‡U=VIÈ—¥´%® &=ªþ³Ý¨¹>ð?Åá^ÌBOÇh0x "F7ße³÷ƒ“ÞÄMP6®(bÙK«Ëê‡Ã:…¸‡õ´ŸvLñ9>ÆŽí/c†}ˆÁÒcs–ØÍ£EJYý¶$µoÂXÃä|¬`Œ ÿu ™šíu0Aaåj#t혌IÈ?¯éí‡`,Ò:ß¡Éêº[ìÔ+]+#†¬úk ¬Á<ÆNµÖ)' ŸT*ËðÄŒT*ă“6¸-ž¥?t#éP¡12׫|‘C~~ŠviÀì(”SM(ˆ~(°pðTÆ*‹æl ïóc…aT¨³\¨óö ´YZ4ÌÂýt“6àG¿£Þžš]E#ÈïrÉtQ|ùúmWj¬KJ‚pù«ö3—d#åaÎaw¸ †Ë`p4Ü7±c“o4„H ‘7?â)…Ï´˜-8<¦3æ'Á¢JóêˆêKÇæ'¦ê¯,íÛ›c'ˆj]žIc°Ï–N‡Ò׳gçnÅU-A4Åñ¼áf%ñ7ª^Ó©8&CñP ðÉãõ‚xîð(<ãY®vñà™·*fãýpÐØÍ4Åâ “n*•Itªj­7à‹Šü»èÊaójáøô‘CÝÁ·Â×G}+›“@F¯PôŠ*·÷u.Ì­*º™%ò®EðìÒ&GÛ]\÷i‚L"÷R êá¹ü(WŽ`4we’½ºr‘]BLȤN€é15ˆa£ÄzÆkî"ÖWÿLÌa¼µe<¶s~i`Û/„x‰÷>²‘)ù‰Ò?ì#|pW;•޼}¼ÚqŸ™Cnií æ)VúÄ|™7ùl%*§R,ûÓ9O1ƒ/’¾8Tiüóõ†CÕÒ×ø‘ê²ð1{>>|¿WǺ‡+J¹nóÛâú(™Ñ½ÉtÁ3kUE“Žç¹\ð‚è²Ð ä”|Z¿,4ó3¡ñ³BóŸ(´Ëe¡™ZíW)eËnÐMXŸehˆrR–¥Ï\Ç) !9UŸ>¶o·pòY ƒ+a‘h@øE±Ë5‘QQŸÇâ…‰Õ¶yˆÃÐZ›2« Û¤zqÈýk_ Ë>?µÇ·tSâ—Qµòü×õ÷–HêZ(ˆ¤9]Èlõ'Ügâ O% V_UtñQ²xS´]tfïcF ¬!ƒ¢§ôvÃùGÌ`ÓýQÆ©_ú…ðx2õŒ0-N5}–Ø #^¡¶=²‚!E.1'÷ í2$˜ªà.fª¸ÍT½ §ñ Õr40÷´ÛÁË›U%YíóO÷e}Í]”!p]Ê0éOL…S8ú¯#MŠ®:çÐÿ·Ø’Ú]Ç‹. KÎ?E0èháWBcõöÙÃ¥®9BêHvÜEp·]² eüwçææFì’CÜ¿ø”ýcvIùçÞ?doµ•ºÜÿ…CˆÇ÷Ó„ !„Zð¡ •™æÖ >ERÚ¯8lãQ 䪒äïèÉÙEEàÁDîi¥Fn ƒw§4Þ× ³ó8x8ÒÁ'eD…M+>%6´óbž›óÚÔjvÓ´;lŠd»Ù•_¯Ãu)¼Žkf‚¹h£Rþuª.ƒjÌØ‘¨wc™¢ôù2EêÐðìº\ûYù br!‚¦ÇÔÃ0¢PÖ§B\;‘ly Vä]äß”q*ÜÛ û:äm‚®0Ï#zÔWÖÕTݳåÂ@Õ ‡Ç§ª€ÉPÕ)ÏW5°u»ÊF¾*ÂMÓ¥mà‘ Q&O›-^‘‰7oDÙ»Šo ±ÚA )k£7y=”cÝauèrÚ¤`ìñešBìmcwDùIw¤4’f’Gβ!k‰îáßÔAøKªA÷ñŒs"}mÁ[‚ô-ç…ôËZÄ×Êb;3ùM8U“Æxt¾]Ð9ÞjpžŸXµ æ ¯q¢Xô¯)Jç(Ð>º¨w `lAò7‹û i_.Û.‘zâ>¬+¥wÒÄ„âóäù @ÑïÚUi¹R¹ “ä||I¶æÚý±Âø›EÎO˜‘aù 9ÊÉu(l&½”ñƠƈ+B3¸<`Èh§5-]G,bîLx/c°ÙGá|W"˜0^ê€síäp "è"VŒsºl©\°™Ò–¡ >³ÞpHN~³œ71˜dä#Vðþ+„¤À „ÜlàgØ’g¦ ™]ˆÊÛÚØ`¢TP_#µ‹¯g¿Í>'CV/vÜÔçÆEw ,¦œóæá±!¥æ“²o¸‚8oÏ‚µº_‹-f†-ø*f>ð‹“éXz4-Z* EoÜÐÇ}i|÷Æé …WKx‰9ï‹Ï›Ôý9ûiMH ÿ”©ð–nì—åÒ. 1q8‹o4Ÿ:¹Ú5ÅYìôÈ’ˆ1=Ç<$Lxðf"\H— íi( è-¯YY 8ȆOLžX¼IÇ@â#fBÃQЉñïég+tuh».‚¢å‰z"?µÈê‰Ia-èÊúÃmØ.cN€QÑq¿Äc[<Õ^V©ò| Ž¥º\á§E7.L;ƒŽgŠ h¼ØµoûE§‘€…b(Óu^O~ÜiÒÀ/NäÁi²®Þž) ª®ÚRA€ÉüÚ`›»æO“ÁÊI4tcx¸h6œÂÒð»ñ¸é/|Z¼ù”ˆˆù|lº.ÈG ¦[âž?ñ¼µK'àå½€¥Æ wj‚—Š.Is¼Ý­Â«æüSŽfôdN.žÌxM×ÄN*¿°£Ã>ëi9=Öë¢l¸®šë¸Ðöéj69¡ vž®Õgð4œ"u61æ§ß3 Š›7cqQ_mÐxÇeˆ ç.á¬é¢ûKoé%á9Ó›Ô}£?.Œñ&»P¯7†Åø‚Ñ€”È»ý¨+V1(–W¬Š›50VÔß»†²\¢Ý§'ç.×µ‹±¶¸Úïe-°"µÖ†ëñ#LÿpO-¹ˆ„Z9Ÿ®¹„?2q龿 o^ÊñçÐgü«hÀ¾‚€DAÿ¸ÈêpwïäëÌéÀá¯s$Æ-ý†/Ê•``š®UÝöM½ß~Øÿáms__oüÃÅÿC}hãendstream endobj 335 0 obj << /Filter /FlateDecode /Length 6498 >> stream xœÕ=É’Çu:Ã>Ø…Z¢C§]®\+S :B¢µPe‰DØá}h`€ž"»§Áê&Àá—ûè÷^fVçËÊš`Fr8x@Ow./óí[ò›U׊U‡ÿÅ_îŸt«í“ožúvÿy¹_ýúÙ“ù\Kø¦õ«g¯Ÿ„)båĪ7}ë•Y=Û?iäų¯`¬sùXß·ÚœñìòÉóæ7]Ûí¤÷Íuöù’>«^t¾yu±Æ?¼êŒköÃËð§κfý*ÿë Í2^;× •%Â/´„RªízÙìk 0;ck›†uwÃuöÓ6ÎÍáuøèµh6#›²ÙáO²õÞ6 â÷ÙR×Òµòª9áp ‹Êæ4ì_Å-´jŽaY+­•}3ìÏãÅ?ûà ëtÉkeZgm¸ê}‚¯×V5›kØB›ÀŽác'T“wÌÿØìv78̈ӭisË­1Ä]âlÝz¸ç7ÙŒñð&,¥{ÛÆÓp¸f»Æ=;Ûœbg"ô°šn?:²]O JЃ3”å}‡{Zø^9þÃÔ‰ýt™Öº:f à ¢Øt} ~ØšÄ蜿ïh Áu[­EkÐ+ Na$G³mµò]e#Ÿ7íÅZ;ã›O†5ÐI~å›Ó0Ý+ÜÒ&ÿ-ÿ¼‹¬im³¦#…yÒ„ª5Ú˰ï„8-ûN7HRðWAXÀÏÆ4§«ŒÇ‘È=œ·ï›ý’€×–àî4¼½0ˆ}¡¿†Í)§¨HùLº)€à]¼ß««+]»8ØKŠ^&t?퀵Óáœj†ëø85.L&¦Â ¢g—º‰¤§tÙãSÀ ÉVzv@aõßâ ¯ú¾SMÎ'Ãé«ô&ú®Õ‰Ü†Ú]½ZÛMwÁ…Øë¥Û'üêÀ—éjÒGÕl™ :lGFgìª^‚3 ÄJÉ ”H¾-HJÄE"-W ñ{Û¼#®ì4 ”É]”_67o² Œ ®¢¼Ã%œæbqZ¥ù2a*(–ôƒñìæÆ +g ¥'î@âSÂ7_^Ä`é к‰ÒÒ‚òÉÍ&Û˜7¼àgï¼{M$d¥’A‘ Qè˜îËÕîxZ¼*Ô¬l­·QYß*’j‘ʈƒ€ú! ZËé|Ξ‘¾¸Y¨ÇŸE!§2uAzðÓteLó¬Ç tó"#“#Ój#(CWÛlÎ"®s`Gd€·QXœ¶F’H>ÈÛJJ”’jvL˜ºX ¿Œ°ÚR9í#¹ Úðzi!n… 4Þp•±NÇô7Þį•@Âu4ˆE’ J¼|øéPP×Èí™#Þ,"àT ;›ó#6…óÖ¤¨²)¶¡eÛ§$XÀ>ýã“g?/ÅÉ›LQ) Nºœ1ZÀ0‰çH>GË?˹ÒCž:È—8YmŽiþÝÀ¤ÌĪV.±*Üž¬²ªð®uæV… Z°áÝd ?›y—äkâÄp>ÃgØ^Š°Í‹³Øs.Ã[Fá ¦g¸p°.Å$¼¥¯b~2Ö`m-\%R'ò‚õ`Ñ= ¥ÎI Št°#;Ïq?ñQh¢úî°ZIv ë„)´Ò¡DñY¾Œp*ô‰@@Œ Å[.-êö¢U(|Ä×W5|™Vˆ^ø„/´ÿ„GçäßߣÊN6nY Úžâ]£s"£HëfñŸf’ÿ7ÏžüåIpÍj|_÷P‚ÁnÔ ðÕ*©ÈEx¢¸ê{/gdÛ{Ÿ¯÷<£³e»þ°g¿#†œGóE$Gû%]ŸÁvGQ2Üx1Q_EÅ*Àü ¢’`Æ¢|_[3€áá<Ä@ ¡o΄<p®÷  ß4MÍé÷0ž¿ß¶ëäІ_lÆ@é@Tt½\}æÓÈýrÑ”™Œþl-fô™Ñ ÝíÒ…oÀy%¹ÃÖr™ûþúíø‹Äg–Ñ©`°`1XÙ‡ÃÂM]àñ;á$Øzu ÛñMÝ?U=:åÐM«zt ðèt¤Ì<:´ e:±ùh „(!‚ðwqa—€bÕ ½2 Ûif¨j%HÜò(ù:ì<å“{€ÍY# =¬²FMc:—kšâÒu+•^©VtiÜ?‡q¾cãècÜôï«Ç3·DßZáœÇ>¡îØ"½n%['ThÜ¿ÖÀ†K§¥Ö@RÒú0òûÊž¶5ÂÖïÆŽ>;DØIÄ( ôXø&GÏ/k Hh…¢1mÛÈig†m aX :´õ åߓǒŠk~X9—mÁ qþÿý°ŠEHÔw`.Ó©ûñ˜v@Ëdi¥?"¡à~L&‚•õ7c2Þö=–nà~Læ»ÞÝË„›ömÔ-\&Md²î}™HlüÓ*“™À`(@îÇ`qäÿƒý´²x”ên1©ìY‰9{+ƒ•X÷7Ub÷?á__‰añoƒÞÙ^Ø©óÆ dÏðó‹:;4q—¯5z¤`ºIݺÞDoïYáìiÛS¦&ðhé˘=ÿ‘YЉÕÖ`ìÃàÙRX¨æ[†ÉÇisÉs*Eâ"‹ðh æ´×Áá'L¯Ð×ÊrŠvà í‘%‡öņáö¶àÕ5…ÃŒ…cÏâ¿´7Ayàt<3pyÞ%…c Èt¤—G­onó£74üøbá—l“ÃX‰,m–Ò™‡=¢stÀ/gAküÅkç=‡<‰qiÝ¡'ØÞÐȿ۔¬3_^´kk=AQÆ=5ÆCû¹³KJ£Tpšcì1M ¥KÂßãOÎ"Mg´^Aù]ÎD!H¡¡‹e|@]ÇaÑå[s6’`õ{Ò¦ƒL‘æÉA˜é[ 0š˜´ti/^wWˆ€Ÿ,±7w¢Ï딡BGJyZ üÓgÒ‚[3Kb#ˆnØ÷ìÔ·±ïÂ6 ÃmFQìÅB²â”à)² ¡_ 7ƒB†%$„ùÒí¶?Ñ¡‡¸Ž(Bà,ëtú¶’xO€Ñ«¥cä|àI­EêcIáãù„˜,@¡6±¿í`Eb ‘e‰Y]UPÅ!܈éÈ,R—Á>Y:AQØhú=,Œ',f¨ìÊt¶%7ãn¿ç»~Ï€Üb¸Ñ Š]ýyŠÅ°¼À.AR)ãÌáäÓA“íÒ d'D~°÷Ž$z æã'" ©1U röß6§MÜÏéfB‡Qœyó¥/sЋ‡ãyáaŸ‰ýqVÎ[F¦~;Ééît,Ù—†¡ÆÓ{ èâ› oƒþާ<ó‘ûPÜxK’¤á¦|0ÖÇ w£ p¿õ‚kýHÉwiUÉŒ[2Þ#cȪ€hú‡&Íà8à&£ã˜Ça0pÃ0E½‚»o ˜¹DŽ¿ã™•]ȬXÅ¥ékžf’X‹ø˜ñÑù4 ”ÌÙª_ÿó¶(²¹º¨¬mجaÏÉ|QtÒ|IèÝ, .¦îè^xîåw³D] ËÓn`ÄõbËDvkå¨$%‰~ˆ$VµNêzø)'ñåj*ï)‰ö®¨|@Ðe¯1Ç@@HŸ*'*Ä\p帬‘Ié»>\âËŠèY¬V2h¥ãîŽË0L„ïM¡U99Ï›çà3œ¡’–ìkÂ1RV8I€…×Ý}=Ùƒ³Â,BŸ ÖÍí§œ\%ÅOE³Bi¨T:º,÷ãdéÀ‰Ö:&JL Êt¤PjW\ÖÓTXØ{Ѥ‰U€KIç” éÃiq!gùB9l_Å%)¡N iÑÍ3©ÌÔmƒ;c[‚;™µ¿½pf$ #]J˜ÑGPÏÜÄÞbñŸ‘ÀàË‹˜þ2ª, à\zL ’ ŒS¼yHÁèÁsïRØì¿ê¡c 8°ÐqµÞÑk¥É#Ç »Â@^ã KöS(m± ÍaÕŒM‰[Î_×ñ¤çx¸ÄÒ3ÛŒ—K‚ÿ2.dBÝÍq}OåQløw§Š˜ŽtKêœSbæÍ*ñ¦®S{»Û·×/j·^•…û´…TçÉcvžœ/VKS´(6LjžExkH4ߢ„U]’Ñ*@²V‘ ‚ü³_ePåªî‹ó÷QËvU¶e ¢=Ð^³#wùI>Xu# /8Göhi‰Ó÷Ê4ÿîHÆ[œÂÍ ŠH× äñh.Ñn—Ò¶Jø¶{=?šø¡bX;ÿ! ñ¼H©iÁ÷+ibvx^Gç‹%Õþ*Þ‘ž×2[½dºµTŽn$·Ý›·ÃöúÕéôêËæg(‹~6„Ù¥b5'f¾»9’@±®Bc}·Ù/Óú5hô¸P %=J¡þ îi%P‹ñ¼X‡'Ï…Â13w—­ôb>¤d1½B.p±À×SiÆ)ÁçRðç‚÷pGí>Î⥥C¨ÎÚóXžYÅqBT.0—•Œ<§BqÕ—ºæ?±¨ @?G/×_—èÅ x²…Z¦x 4c:M4^VžÖÜ·cÎÖˆÁ_ôÆ}½$•é…†ï>Àí»-pE‡3¡v;@ÔÄB·,˜4sÏ=Õ 5;>˜Ï%Ó^}ñý0^Æ¥Ñs‡O:©ë3I—) Ÿ»òHd“ö6U…’ÇoBu¹–¢'T‘¡û^4y„ñH°·ìÕ È1‹ýÐB0aàt½È×{Š&ᘚl(V~¦ÛT hP H‹!¡)ßû®b@ö``ú¾g©ÑçÍW`*ahN4CµG^!Àºf“¸"ùÉѤTN~Ù~Ûpfê—)£úØâ(Ï—ñCÐÅïÒD’O:ô4¬fjƒåãá‡[>Œ"Yï×eE<Ç&›Ãî°-{Ã"ˆ]™Ïu¼&Ïèm#Vœ[ªW?Ë»áSébæ©wZ‡æ!{[Óu‚P|–®ô‘„¡t¦ÕR¯0¹Û‡nïçͧ¥ {&Ãyÿ48³vbðŸ®2ÐÙ¨!^œ·A> v€a'……Aùˆ}%U£œSë¦b÷g±d"ÓôÔ¿GÄþOÓ‡2–ó×Y~/G1õî̘úmAq ¤<@¶Û— <êwèm ryKÑiSñvÎõDËwÙÏâ4?{Sµ“½ÀØU’®wÚÉSåíÜN.êëºVzÃÊu›ª•^+Ðâþ‡JÉ›AUcX°×;ªŒl~P/stçèí%Yté»uK;ïgãk$-VBý|ùº< mÔù„k#B#Eü\)» $aC'Zdzì)’€vÜÉýŠGX—j;雸·Cûlñ´ãB((é©–üPí¦„½»¨¨Àˆ9™¼è{º@=O‰ÓÍùWémc.µèK‰kª©]:¸æ˜ì5u>鳟wö†XúŽN³0¬õÇ©qÜyL[c ¿¡rÁMU(i @,*Ê!´•šúÁØgj¥ó-¸jªù0Ø7 ”ô§Ã)]©œ@6§øHý³72¾ûxj–,÷›Ýð}iáÈyô( ZÕÆujTtt>®5b±ÚÿVÞ×Ôb:Dê{¥Žu£.µè©.‰ÑâæÙÐv+ôÇ¥ "šêë›û[L‘Çÿ\áqäV¡®Õ6Ô°OÅ×eï#Qj%Á WBÞ¦zD'ì!šBõˆÖiåxˆæ£Ð_‰¶›¨‹Œø¼V+ÏšQS[ü ##«š²%e"k•ð-6©ÚÅœ¦œãyÎ9ý2¡‡)H‡ÅàS‹Á*ÅÙ\5ŠzôEz×~iwÔ =bÊ›žÐ¡îUãKSf+KÈ\)^€²¥_æa1ܯ¿54›s×R÷àTXØa ‘ oÙ°ÊL¥Xâ~±º»ª;öG*Ÿ¿O;0m¥¨¥ |0cÛåB˜¦,?OÈ=š?àcÈ$Í„â\ioòÀk‡ïê4Ô æƒtùŠSq¼c%,KÁÏÜD*Šr©¨]%V’”èš[iÒ…Ðú6»›Jó-ˆm2<ƒ>¦U@d¿žA}Gq@jÁPTû6oP@ÿ6IûJàf Ã:ájê;Á¸/]i¨-B/\GÏf/•ư®µù›.³ú– Zð÷«/!ß27YéƒêÈtÁJ™¬õ5}k z™›œtv'š:{síL5ǸvWy[‰úºlñ’ÍqXÿ‰EÞ(«J=gøžÊö0ìŽ÷økÞšÌLlßvÔÇ¥1ë’<¡°m—¶/íâ‘™m¯âÒF7‹%Ê1ÌUØË¯SEåçÕ&V`~ì&g5\JZb˜7y€×»ýP/ëTàãKŸD‡'äÅE«:Uˆ×ýæ»a?| 7bŽ`ü^›øŠÍ×õÆmæô< G .#(>ÿñ!ôuØsKUéËõù³œëB2€š-ï YnlŽÈÖQuÛøm=¨v‡ËJ)¿ Å¿aúr» &À©RO ÷¯÷Óƒl †1­ÊFh碭í•õ¼A–)Õûkô;šº“¹þKl³) k›uÕÄ–,p˜û_0¹ç V|‰ÁÎfc‘ –®}±t“ž „Q—ÌfPØnL¿Ù±a›‘÷Mr™€Ì%d!‰×u§ajÎÝѸyÏK"éA2œÿ šÌžÂÁöó7=cQUzÓ!Óñ}A¼S c²¾×9zÏÖMçw²U*ùô1Ý@[%¬ˆ½þÇ©}uJ;³?8qì»L¡+5+’=c9>ÆÒýÖPÚ»ÀÞêÁÆ}GFõg!fõ€çë¤h{­ÎK>¿½·!<€æ)oûVx¶ù¯‹×ŽS/’ÃFúÁ¤]“¿Œw†˜WO#ÈbÞFžÍ6[zÈ‘ âè¡í_é°6Cº)dœ`_· =#*“ïÀ¥éí >pÂz ÙÆ'Dì÷ i2^½€€Å6~ûòôíø*=#§l¾°P¦µ}Š Á®u¼ÈC‹`IÕZ33øZ7Lñí‡3ç–1,½Ä šhb±äU\ßKÈãC«¢èv»ZÙ@ErÑ#’}aޞʗà¤Ôt\>µ:½z|1d@0ú]Æ)èO=No5î€â&N7K/'¿È$n¼`EuVW¥ žI‰·‹±ð¢'„©Gð-æ¥ÿ ·{Ö‚6ëm3,â9³œ(}`Ã"ÇœVXy}üß%ÄçÆQk…òúdúå’È®½¥IµE•ê·ÖXî†õ¤Ä=ÓßmÑöd¼î7…iFó1þ;s°æÅd8´ÏTãzzî‡1º¬^'2ª o…o·eÝü¹ÜÈ–ÝáõãEÅ’‰Þ0ØBd{PF¤Þ#/¨äö€9¦VáF]ù¸ÃÀòÌ¡¡Ìb§çoZ#Teõ"¬jËGvÇSæÍ§}¦èµéĺWtåŸ0¶; §2EGKZl‘ÿüÓO¨R g:p*B,w¹ƒ‰®¸J¿¹ rÞø¾/¶ÈÃe–oœâ:]ˆ½­I)­EÕÒñí[s&½ô—'ÿ DÔ(Tendstream endobj 336 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8555 >> stream xœµzXT×Ööæ»2Ž jÎ`ïÆK4Š»¢»" Ez/"0”aÖÌÐ{ŠD°÷^5&±D,Á˜›X³ÙÜûýûo’›{¿ûÿÿÏÙsöÙë]ïZë]kˆ2éB‰D"³+m|½}&Moãâìå \ÁñƒºðþWUk¬)ôC“SƒÆù›ñ«û¢ÊÞhMJ,­s÷_àë°ÃÍ=ÈròĉSÆ'gZ:…[Ο`¹ÌÑÙÓ74Ðs‡¥£ÏvËeVN°\åJ.î°åëcéäâîèåjéëjiç²ÞÒÞöc[ËÅ6Öö«mGOøÃ¾Þ^ (ÊÎÊgý|ß ü6.ôÿ8`Qàâ %ÁKC–…:.sZî¼rçöU.Ö®«ÝÜmvØzØyÚ{­õ^7qÒä)S§õý`úŒ™³>ä‡ÿ2bdŸQ£ÛZÆ÷ÞxÙ„÷²5„²¦fRC©ÕÔ,jµ†úNÙP#([j$eG¢ì©ÑÔZj µŽK­§æS㨠Ôj<µ‘ZHM 6QSïS‹¨‰Ôbjµ„ZJM¡–QS©åÔ4jõµ’šN­¢fP})3JJõ£dT*”2§ä”5€H ¢Ò) u—¢)†ÚAu¥ºQ©ËTÊ›êIùP½(_ª7ÕGÔMÔ²'®£L¨p굨¶Ëì.Eâaâ“&1&¯LMïI–I.ÑáL/ƹ«¨ëö®ºéVÒ}u÷¯{¤ô\×óa/«^_öžÑûFŸ±}õÑ·¬/2s4»+½Òo™¬›Ì­ÿþs‘¹QÎÊ7ʯZD ˜3àÀ@ÑÀðA=¹¼7é½:vkPŒVœUüÝr½eëàC܆.ªÖk˜×°KÃGŒ9²ÿH»‘-#ÛFõ5y”ïè±chTÓ«58´ã·„ŠZûsá´5D¦)k°W«© EñE¾hæäxNˆ õÞ2ÈJH¬¯‡ÓP§&oØ¢ÝY…¡ONËBC«MÆqºD}"¨- :xç6ëZý-AÚY{ºf@ œR4£sÏæ¿4—lU å2x<ó ,Î~Vtý |Î<~ÿ>î϶uñ*“ÜÖ)Ýme´[’ò#6Ћ$‘!‹'-Sà>èlùÆéXÌâáH#©Ñ¥fQ‰ôö³ÚÖ*Êp³lẙÃXÜW²9)­FÊÑjZjò¢iÂE/^­4ò ¢Êf´»YÌ{"ê7ò5î‰ûŽÁ"ÜË~‹º¢ž?Ø!x«ƒÏØ%~‡ÀE¨ƒ8Uv âÐá’}pö—o+ßkÀ…yë(ôà‘¸5¤ÕRÆÑ^IÎ?À4˜nÌ Uª¢U <—à¥èH|&è ŢĘ|åh7âŒíÎ(¤?…te¾?rÅßÉñº7PHêô7Éëà&ñÃÑ©3ÈžFöè“ú‹ç“«Á‚ ~s̵ŽçDg^ñ~»Å­ãQ¤,Ò¢” ŠÑ°qx¨åL,f^¿G'к=‘¨e"Q¬ÐE‚:˜|З(P ]iÊÄDˆŽc7X¹Ö­?6,°5ž†§àmØ}€'¡Uhús¤@Œ¢#DðZ3ð\¤Ñìõu”ßl.íÃ"/’ŽyMæ8:‡²×hé37Rtªé'z¥«b9M°4ÖwÞXÛž`6Ô\øå›Ixd1ûùųÚþÔ(BáUø<;bG4OA6·î•Ÿß£È ÞçœL¤ç)Ð|º!9å*ñ¡(þkJiD†¢8­5ûé:ñàâÁ_ÑCÔGv6À޶òvq]ß°ˆCC9ë.[.X6›Øµf·[VNßÕwZ¦VÎfý…]ß%{n€»»&I,3„Ÿñ‘b>…Fˆ”ä£ ‚©Bi¬×dAÄ&%&*‡ãt96AÕªH°(o€BR±HíÎZo$—!Y•ã…†a$OÔ%ä¹3#9™£;òŒÒ‚ý×´Â+E_SÁ@&öÈ$ØÀ‡pfÈd92ù$– ¼K{uÆ2µ#LBÝ:ú9D¹+Ú6Óïo°]ËJ‡¨`1¸c¤ÃNdï.¯ó-öUHïˆtPHÁê¦uË·n|‘ÅjÓIßÃð«éÆ\¸ÌvÔ^b¨ˆËãD…­VâVÛvSƒ‰©Á0A0µNcPARBÔDœ!…ª³5‚ ¨h€bbéPµ7øtZùI™Q)ª,ï´°i8A>'d“7&¿¹— 2duúd«³=‘þEž©Ñ¥¦äþ€êä?âúd¥pÉ"ôJ]ÑWòÂc\N-A‰h"ÃNå?9b0«¾œ¯ß"ÁҶÈÎØÒkTJă),ÚLC4¸ÕooØ¿ ˜™‹6/õ.ÞY^YX\žP³E«¨¨=šU ÌѳÛ'+\éõêÕ+¼çíXŒT9ëYÀåk‡ö.b¥ó“+,¹˜û•x\&ÕŽ[°cëF§Úc§›šÑÌT¡¸ë…wè×Dhm!ÉÞpúVŽ– «ôô“Ç¿ô®¿ÚüˆN³„…Dò¦A,DÄÄÄÅãkø„Ýü¿ Å4bP´—¤ÆfDA´…÷v¢…{£Sáö6Û^03ËæµæR5ŸC¶,]mẠ*<YÉwïÝ{´¬œ«kÌ;,¨nÿ$o?xÃZ]”–l[jY’”1€l<*AµrŽ|α‚0Lµ€¼¼Œb-#Í!ž¦Ô!°Yë'Ðâh5‡­_`™|³5$m¶Ù´fuR•Êuœ¶¾SËÉûçëãsò€¡ªæâg_Ž”§+s"ëbcwùi©šÔLJ_ šÝIo²ÊÅ&tÞ€\›Hù]ÚŒtD»îÔn£_`Éœm›Ã#Xtƒîní©¥í[#]w)/¨iÃç`ñF£ieàšdí³5ÄËÅéëVp+ ¬'rM… r¢¡´Yù gN§—ÁA¨ó/s)wÒÛ€QЦÊÐP~rgIFu„Wù»íÂC9<’¨ô…„~éÄÑ´›Þ¹ß±5œD:Jí6œn‡9–Þú½ +”tÊ)GCá0ðœYÑÒŽü1qšü¤­‹Ñ$%DÀ9#CbfR2‰¼òz(ú]>:B ÊuGcÚDò€ÕÁv¾‹–ƒ…ôvé¾Â ¹ätä3åaùA¡ÁQÞ[›ÜŽ]n<{¶ŒE ù¹å—kóÉ.:ê/²š§õíoÝS1?u—eÆ€šäDUë3aY´+0k§ìGÓÐôûM'3.kÜjNj•7D1þ…¡•åÅ»?Ûðîû>¦pÜïÅ(ÂÝÕ¨G¦TÜ› ²¬Dy•(æ+ñ¯â?©kxŽÄ@Ž}Û.ȱ76Ö &–Xà9o¥šöƒÍÃÙÕUº z}®PðuZ©þÞ%%*…ð×" ôéÉYHÓÚS®m»)yhõúOÛ[˜O ^¨ ‚å`äû‘¾Œï*æ‡#kâéXÜ-Ä3DÇt“ Žï‘‘Õžôr⠜ŷˆTŸF¤zêEõ¨ Q( ®në«„$H°ˆL#îAÍ’ß*å&¬Š%¶èš¹Ô…/{S+ùŸhiþ;„Æ^´Oݶr{áÕCFc–>…$Wî©6*–’ B2‡$åNFÚ°É{kð¶„Üå{ýÕg¡êuª–p{kNA-4íâ¶fí$» §5TÉϬ$’¢£þtUã®Bþ~›ýmsiüšÏÍÖhÃÞyUIò X“§)Uk5Æ´ý Ü è”­&YÅk{&ψÖjҀɅ´"”®€Ã¯Ø·ó.AóÛ;àØk ‹Ó%Ä&©â’X÷a“ 6€óî zï#p êT-1è¡ä…ý3wÌûÃÈß?!ýB¯ƒH\¤XŠ,d8F’ŠF?0îæU&¸]Ñ‘¿ƒË[g™èðJÜꂞÊÐ6<–ô‹Ëðb<OÅNDÝMÀÑ"´ ESÐVvX® â÷¦¿?øå¢l4âÓæÇhèBœ!lRçôM}n!“kO‹QkkoY½kÍÚ?X;˜Åôl¯»øö_t_ ‡»"†þúÈ‘ú<ˆÏc£ã € Ê­¨Ê+.cßö?{ËÑeάö<Ò¿B¶¯Ì¥¿´šð*ÙóQ_ã÷Xüú-Þ¿( ±hz ê«—Šaý7‰Ì)¬Ô³¨´£?j‘ )0x£0ÀN¥ÈæÜÁÒüR¥Ñ¥fhÊd±/Ì¥´’çGÉ ¢«·‡:¨œY)VÖ8:êƒNX´è#ƒ‹1Dµ+ÜÜÁ+Ç… µÞé¹ œ™/ìP/Ôí§ãwj#¯¯d×V®U$©mƒx­grÕD_•7ø6ª‹€ùöúõÛõõ¥Šº=u)…$o›+Ò@¯Q&&(!šÙ™ŸY”VÊâ…˜’ŸÆsW@\t¯30Sáei…¶:Ϩ^Qf§—VîøF)P—¶î2û…FXtü䡽õôìyÉ#dÓo'j±ùFÈÞú‹¡Útp°Žpc4èÉ› BG*ø—cµ5TûŸ. úC' èD‡«ø¹¨ÕïkY*dE)!6^꺇ÀFˆ;ùmÔ=yø•5vEÏÊî\„;Ì÷Xòdñ'ï°Aêó磚7|HE4O´T펽nàK`87º0Òãn§U»Þ)¸_©ÀÁüÙ¢ÀYxKêN¶J!Û ÏÔUA10OI"NàÉ.t„„W½6{øË,’ÙŒxKS¼˜–žÅ–FW3T$³ÞÚßE_ µI{4R¹ÿƒ¬"¨Ü{G¨o€_©ÿî=Å•F¶Ã7¤Ûû˜Cs¹‹šU):så“+hÅ1ŸˆVÉàåÒûÓ‹q?N¾2oû)ÒŸÞ8uñúЀglMeµ*Peu6¨hK{‹¯ÑDdzî6ÞUN“IjOŸ2xÆÉùwüY‰Ç£o쬈ß_éZâŸéÌ ¦ûÌM9º–]sJ}ES§ÉŒõ›>us{Ÿš¦Õe¥±ú䚓܎+n-¤ t½÷uQt¤ Ràó¿æÛq~zü—¥šï믤ñ8’Ûm,é­±Ó–'AŽ?›—\œ Lyx±¯ox¨ÿº3¾g¿¸tåVÚ¯uˆÉŸAD”>ÁUZˉêŒ(½¥Å­VüzY˜09@’°ö‰R.š–WƒÆB!”CfRI"(!ˆ!LÙ‘CXg/I£þG8D~^A#á‰3=r÷õ˜8;·09KWAÄy<Ï#O{+8…Lè/DÍëk_\k Ö5óéÄñ® .'±-–kt ©Do%ß¼™~ùx“®Dž>ê(ð%zy¥.RžEšL%DAhd4Ñ˃q/9DKkÿ<®DzÔåm\½¢¯œ¾=¸ÉÂ-Âv&†±íb² ª4UDL¶Æsü%îpGÿ<³å÷¶ÜuSãîoË~Iã!c>·w3"–ïûo´zOF &«"úÉ·HRÀê‹!ö1è]Û«œ¬³uò‰˜ÀRX:ædÿ†Gj›¸}È® iý€ô§­›Ä­>og·þ€%‚ <¡)ñ'*(N­JRáåm!rlËëT¹íjÕY0¶o ³t©pûUAº ]m¿ÊÓÂRÔ9Pº””\È?”çÖWT}*t¨b+ûß)´'À£­§þ2ît‰|l•µõ†¯þÆ£ž ÿÄi"¾@iBøç\WÇ™þh.]ÿ«ª)ï$/7ßÓ?Ñ{V^¥Ž#His’ã©|”&9)•t¸»ÏAy;R‹¤z ·Kgœ…Èv3|,ÇŠ6+I!+Ý~v-úùÎìØÏφoÌ¥¿òöh>QÍ Þñ1»âã–’,Àà%’ׯÐDÄ^8/-dÒ=Ü ›Z½?Ùöè j³ËÃËÝã’@£fK¯žª?Ì7ûgÍTH¯Â‡fÛ­ÄvØC®$u Ãӻʛ¤ŸVŠºýpÉ(Bž›I›²Í•Áýw†–ܯ8wƒ tÊ™±#æZÏõ0„Uqņªc›a˽–SLãéàIÑIküÞ›v¨4qšÀ¤xˆÓÄk †Q¦A{@r¿~ñhž‘¿]ŠD¨×7ßüȶ£Šp|0õäMáDg¦ŒÉo" ¦FĪ…©"¾Ð¶ÃÔ Mdš"¤Û¤ü6ÁÉötÛ) Ó 9VKšïjÚn+êò|l3Ú`@æÍ?÷­ 1èCÍŽ½iùà’µ˜Kûõ!˜o‘¡î3_bjÓ¶w7­£¥L‰ª¸&¾z ê}㛜TuJ¼BÚ•R½Ô¡±C—QÕ…r†-i›Kâô‰ÂWºwT ÄE(ðQ:ârÓtúÔd6+¿þÔWpŒ[ÒÃó]uÛ‰*wë@ÇÀí®þ[HÜÛœÜyž‘Λ§Ñë5Yk Œee;‘îñ[Òù´ëc b~üI F^üÃ×"´Â€æÄȉ$»xp›{¸Ÿ¿_]qnf*)Ø:–lt‘‰žñ V¬TDG¿«™ø”Ä”¬æ/Q7­íÿß<ÖŽ$?¤´ù›}F³¦'Èê‰ïsiáÌ6’Nþ‹»®ßÊ–ÑDõ©;^Ö¤Úa`w9ÃV¯²]†üÝ ŽÌÀýð@ÒˆùãbÄ,üV!=Äßý É“´2Øvºy[o!%|x_På…†{PÈÜ©~ù$ÿ¬äØBWX…À!¹ëÑíj•…„¶á­rN”à^”“XÄH<°)ÖúüŒË9Ùi©w ‡H g 6Á“'áXÃ-b`ë¡Cp0“=NÃiýéôSÉ¥¹\B‘À¸sÏ4[Å þqÉÏÈô»æ_Ø…èGØlßdíŽûÜ“oÙ¸ ˜‹W›nÞº²n[Ò&“YÍ[7sÚ‚KÍ窯<<Ì¢Þs*Ã{êö\WY÷ôAée#ÿ—'ɦîËÓŸN¶Û¾uë´5Èæ1¸ï×£‘ÉÅÆ¦s¥¬'£†nY³Ó^·Ç=^UÀæGxÇn_rÊé!’‘ÎbòT¼ÿT6cÇÒÒ˜+#` x]¯‡c äÌÃ%õÇöæÔeS³£`+#e¨lÏä[tVé×È÷µèÑk1²ã{ɪË||}|Ê«ªÊʪX|Çä×:ÄóBý_?¬'MGUÒçöo蚢×›¦ÍÒ¥§õ3g¹U|ÜoDýìb¢7\7ðS BÍj¯;\GE¤Ïà·£2xnÿ‰Kå'ˆ‘‡e/ÅLPžKÞ6"a»Œe éyøpß’S.+1%)Šþu+ªl†aß¿D}Ø -–‘dúÈTêáÚ”pöÌhÒ©8¸ûı‚:’Õ¹ðÂæ,^$°öÙâ³eSøvRùw¤ù–![ôPÞ°E7_Œµ‹[Â0 ½á±ÁìÌ¥‹ÆŸŒhÖ%dc4—ž8Ùº´ÕG–›¡ŒIˆW±/ñ›ÃJ£Ý‰°‚)–Hm"k”™±™™ºä¬t–×·ªR3tzHµhn#Ì¡W?^ø»ÅØ6wÒ¢bjÝ‚u¡KsÐ,ôáÕœ’“Ç­†°¼uÛÈw>`IÞúíÃ7‡òHôYe³îÙWÏ Ù\zóÿÃá¼t^ÄKee!¥~^áÁ%A\¡±”E‹úÿáZç ƒCMÜM.Ø€ò fMÍ{/§6¢Ëì'[=Û'†cÔJ˜Þ1“=d ÈkÔ »1[o[•G”ê{ˆ>uáÓ/IÀŠh^¸ÒÊn°cê‚ÚÉìÄ1[·øû½ÅÔû+^<<¿¿¦ž½n}>âqÄ峺G$©g/÷Ø ö°î¸çÞC'÷}zènõ’Ú-ÓÖ­–I(a鬩þ~÷Ôç€cì«®½ƒ-kË–-·Yï ÌŒ g§¾ÚSwê„°9Ï{ÿÊ"ߺuõ®LGñS…0 Ã_„â¾Fö¡¢Ï:Ê‹o++ßYá£R±š¤$°@RnruÚg—/)²…©gÒ’”3æânÖe[÷×V” åå¿y¬ãü‡‡üº+Tôâœ=Àñ2Òóèvà¾ÈÌ­4Ðü½h>êúæt®“¨WÅLZŒ¥«Ùõ¸K4Q=' ÷Ø:P¶=)6B!8;¢0ÁýÒÐ/7œ/«Mð­`{øÈ'+Õ áº]ïÎv3±³sèÑzt7huBáJÓéô{ô06êSu©z½>%5¹GOŠú?™€endstream endobj 337 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2226 >> stream xœU”{PWÆ{¦»ˆ0M‹ ôŒI@Ô€ÏhÌcÁ’5Ĉ’d ‚Bˆ Èsä)08ÌFž‚€àAg €MŒŠšÄÇ&1²FËd-Í&Y7I¹§Ýk•Û°µ©Úêª[Õ÷û}ç÷s”Ë$J¡PL 3°[Ÿ¼haà*ÃûqãW~ÒL…4k’ä«„ÂÇŸ?^¯W%¸º\˜5ÙO…¸m®s§” ÅÖøäÕ†ãžÄ] éÚÅ . ”ÏÚX£vUv~G’!+-)Q«OŽÓ® z3H»Þ%_&j ÉÚØøýû;µ†ÚÍñÑÚ¨ÈЈHmXƨ‘sƒþßÓEy¬Ü“–®Ý±pÑâ%K_\¶ü¥õ,Im¦¢¨UÔjj åA©)Žò¤xj:åEÍ ¼)J-—J¹PéÔME¶â“I‘“>WþIyD9æ’¤âUñ´ ÝÈLaªY<éöTŸBˆþ¢ôn–âñçÓÅy ©y¬*lû]¢[ë¡CC¶!Ãs'ç/Èß½£g)\ÜxÖ*óŸ”ÿe²KžvÜ4ž/ è‰îèéÅ¥Hc˜Æ£wàÄoÕ[ÉYižaHè?™¦–æCM-,w½øÀ‡Q÷gâÜß FC<§ƒ6§Æ%Çn+L‚Pˆ»°ï ‹•̱ž¡Îa`Ñ ÈÔÐq¬OgÉX¥i½jzz4¢Ç"ôðâ~öàd¾1ö-eù¥Bjø;ÙÑÀ àœ3§#ßÓl67h¸ÍÆœ²Ì"ŸÿÑ%lõ&k#a+ CXâýã „ËN kÓ¸I7 íR±ýª]1(טžJé(ÞäÇ,XLLÄd!EsÊIš°¤÷>ˆg=‘°°dk^PxÞnØ‘‡óGŠÎÁï0 7áúsõ÷oÔvÀièËn‰iÞ ³a+«€(™ÄkY ,À)J©hºH´ÒsjS Ë ¤HøSÄó l–®•n‚áò[Ø'D£c¬àCù{æ‰wÐ/ál‡¨¾„B5 V|^‹‚×,5â^G›³ŠÞÈ+)4…@ŽÌf-:Ïõžd¹#}ïšø“2Ïý•Ì&Sß\´q(·£»÷ðÙsú¦ÜJ¡³ÃQgvôLXÈÚø°Ð5rs}~”A–·‘áJ¤•ô8¬þn vâ<çMôu8ÕwQˆšôôõâ„©_ça8y”øu}Ñ6r FÙÛÁWdÁ)¯½ñÊö®Çà‘îÓ—£êö— =Çtû7ëïå[ˆ×s&MlY™¥Ô²ÏR¶L,ç^h¬…Cç hTÀÜhø=—ºµòÄ;š“5GŽ@Ë] “ºbô )Ñ‹Æ6 /pZ ÃF~¯™Ž QzK&~i¥ä”W"*ÆÄyÒ æXY•!ÓbÉ-ȯOþ¬ÒaQã°~?±ð¾Xx»0†'@#àUÕDåŸâ,|ÞþÝ»³dø>qèsŸõâ†dòÛxd^ý$o1'éœÁ/­+;%7µÿßQuÄVVW`¶ÀþBMDÆÓv†--©5EVK¹Ø<(ÌÑAÆù‡**Øç™ µ}ÀÞ‡%¯¬‚9Ä5-¼ê’^Ã]¶Wtvôùœß~0-wkÑúew–É#¹ôçè&LØÃ«è¾Ü>„îGê!pýøÐhå@ô2«‚÷‡•þ[SœMÅBN7ŒÀ!=.ˆÃ?AÈœqSµ™Ò1ôè–3ˆB¥4üxO¶Óé@æTåUfVZjÊjY@l*‘®ýª¡¡²¢®úkh–^£ٙƌùÄe5™ $€ ½ÕMbÕ_„3 Y‡lbÍgm÷ôá|}FmT@û_ œ’S14z}Œ*åú7ð€Ôrñíã7ì]p™ýuá ¡‰&ôÕù1‡ÂïÄËwÆDÀJ–LE*y\úõw8IÐâo§&Æ$“y÷fäÔšá{ã­÷ÞÙØ0¡íÉ~y`NÄ܈îÜ9ßßÓ* oðÀžÓ™ðŽ÷„‹6ôøÐŽœŠÛò¼n@ßqßðŸÖ“}äÙ€—‰~ Ái=¢í†CÈ``UÑÆÜĽqÛß] FØU±»µÞzºÙSéÇãâÒRãÃ>Š@¥¼ãÝÃøþ‡§ú-n=üîþëãö-û*…ú÷`$²n…uÒÆ|·­¶ŽŸAzŠðŒËfƒëdprÒj-/¯¨,·ÙN}âê*VÐP]g= S·ºN¥¨ÿ–mq‚endstream endobj 338 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 455 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªüfü!ÃôC–¹»ôÇß ¬Ý<ÌÝ<,è }üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000303˜€ìg ¹ô} ߦ֫ ʾ_<ñ}ÆaÆ×¿ßºÃüã¯Øï¨ï·>­“³»tqÌÞ¬)ú‹gV÷ç.m™˜¿¢{;DZƒÇŸßß•³AnÖí5!sœº%Ë›hj$ÌLÜœ(¿5n{ý±ÚeS;–ͯZ˜ÕÀáâid8õ’¹\ÕãÛµ§º%¿K<ÿðIž¯tá€9ßÃÎ^Èv‚ë&·KHH<g7÷æY=@ÐÛDSyxŽÌèíëñ\^×'ÃŽendstream endobj 339 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6668 >> stream xœYTT×Ö¾C¹sUl\G@Í¢±Ä{ÔØ@EA@EAé½mèý ½—¡ÃÐ$¨Ø±Ë &ŽõiS£iš¼$o_sÈZÿ†–—¼¬Xà¹÷Ì9ûìýíoû( t´(@0ÑÒÊÊßÏñ¢6®î¡>ÎAꇳø©~šÿ–v*Žà¼±ÐEzÚHOçÒ´évúü{¡lÐ_¡ÿ»=9ÉlRó¤E‡&™|Ö@×`A”föÙ)§lR3•›ê5µw7íö[>o}øÖ¸uÜ'b=ñfq‚X!VŠ4CÛ8¾)QòoK°ý{Ø®Í'7‹PIJalNrV(ŠFx,_e˜pT*óA~( %¸â±}Õ†R‚’Óã’“ãQ ãÛ€*¸Ÿiyjn‘ wqí/º°‚®¡ë.A>¾uH.þ™®h@Íb¼öˆ°!ý1|¢Û¿3ô(í”ú?¨ÀNeÀžæ šE-A(Šs‚hú§='×luô çXU+*;Ä™ÒQAd¹T*>{œ†G°”.%««?)v‚Í4ÛôúÁÑ —Jý·sXrXØ?¯Q=oAÿiÀçdÐlè^ï},^ "oó¹Ü;àiöÑW5V^âj|LäpxÇ2³Íê|Õlê¨Þ?Y ”‚+*¨Wióîà#‚‰ _a¬³pžˆÙïæƒh}÷=èsfy¢…VLL¬¾üæÖ­»÷nZ,âÈqJ>_)8®‚kdpX#j Fq !È/Kzwu° b-ÿ æÂ»Oë½þÑÕ¥â¬Ę̀fÄ´£ê*1ˆ…å¨Þ7"%>)…KOEé1A^ŠU{ƒEÄŠ)Øoò&óuïsµÅ8H ï)á¶T§T`LœfÈG«m¿äÇ·÷9Føxr쫦ôR×?á©Oñ?ñäBw:ŸLhE ~øX±Ùäy›-6¯õxvŽ»/dõ¯]½tãÁUÓeÜ ªOT 'ç€Ë"X¶æb#» ®^&®é“†Èò`ð Œa9YډǓhÎã¥ßÓ ÛMÄŒ8Öƒ~_Ö’µ`;APçÀ_¦+Q§Štåš\lˆwtfÎÇ,žðí\к}¦£¶ZŒ½„ý°­#ð€è²zu..á'‹lV­2±¸óüÅÕgO¯3לB•àÔŸ–ªÓªýć¿ó¢^¡f«0 g†«  „.(ªýª©ä^¼‹rá°8Ñl'¤ï¦ÃQèu,‰§Z’ =¹¾QÃ9ÒÜ'õö/¦Y­¶¼‚Vñ^€*ÐV¡¯ ØE|?FT{båžm–vÜ!û¨E¬Eìsܳzx¥ÃY‹µÕxçÛkßÃXN\!©GLMUyãÀf^êÁÏ*˜FŽ«ÍÇðÉ¢Aƒ'›ØÖ'õ¸…ýnTGAl^0þ[_L#¯²F8b(­î)A®Ôæ`¢ý‚EÕÞ9[Š ý²·£cLCkËw_”úfq²ÈÌÈ–|Põ§Cpª4)sªvBá$Ô„¬rï×ÈRqWâg1h7ãææµh¿mÑã .EžZˆu¸Äs…Q(¨¹ \ÖQÌu¹_JW4/iý✸?Ia©N)GUÐ@NŸI¢f5â1ÃÎ1ëÐÅz1$ÀJáëñÊ'ô*W-Ó½šFŸá4zÞm÷û>?Ù«ñºUúÐ ÍTf°Ð€æ ZÔG•rŽð„î÷ŸjŒ'Ív-^ë½µµrP+üëŒzž*ø~gg¡¢ƒc÷{˪‘|ê}º¼^s @89Í@QÁ/j0'P}RLªaüh¥ ö>½Ú|ÿŽ&ûñ¨á)h,À±ê*†‘If Ÿf„øe±gªFF•¨µ¾5lÖðÙ&õ_pA)(‡}ßÂ>m>‡Ÿ)jFÒÁýE¯RÜEïÅt3èÔ†˜3±7ÒŠ]’Ä%Ç„ï7AÌŠw¾9§ )5µúJË<*¥uˆ©«®hº?9â Ûñ´¥XïÛ™ â#?V  i•Ê•úWºvÖ Óȶ–Ï&h CÞ/¶ª3€]® gKjLª4!p+v4ŒuOðKö#Ùv)§çÆ×!)blû=%f›Hºµr}R¡·5lŽÚÜÍiØO4‹Ê„Enb»ì˜üל¤ÜÄâ¤bT‚JóóK³r¿‚ÜâKŒ¬/V/¡‘¯ñO†üÑŸ‚.tøwŠ®‹W\#„[ÐU]%ËBFGBQ8‡_Ò^‰‰^â¡RØ™B| w…I2ÒP¤‘g ªäøñtM.ªBeÌ`ÒßVCz$kÇ ³6Ÿû7¬½„öjr)?HêŽ`ÑAb6 Ox>÷·îM ޵vGÒãÜGã…ð¾ˆm·u\¹nÓö»½ßß¹uçf—­Ý0Ì_vCX7)‰ü# ßV}Ÿ-ù´Ø¶è¬d´e¢õ}Ò áÑoÃÀ âýe4Xö¥•x”g4 £æâ¬£b>·^8 2tý_×a’RŸ à€,"1-<‰ ݳ+Ám@ÎG}ÍÀººu½íG<™7³xÜO³@†gŸ×s›`ºWÒ¥÷¯}t‘>!¨àfH‘w« ‘DÍ®ŠàD˜[a«°|Ÿ¨+°¬i„œYY¡Mq»âlÖ ¥(¨:ö|ìô}„zÐí¢3%×ZŠŸ ‡¨=¡Ì®x?±Ìš„L$ a©úá©6oÎ_]ÿE}°îÀ2n÷ìáúüî™5¢ÖÕ ×ÄYÐãFdó¸³ôãOP3—Zp¸½ª¶\1 Q-•ÖÏuéä(!üÑK“çXÈáÿ%1A4¼‡/XEÌýç/ Õí>h6{Ò~£¿?i¶»Ÿ”"®ƒÉ•®Ãúë¾×õ›®†«lT°Ux5Uµóª;âsyCQmxË®8‡ Ï;š*Šò¨<0uÁ¦ +Vx•…‹Y•ê;y”ÄÖ™`∶ÄMYþ«5L‚I¿ö|ű&ƨ#âüžÆ˜<çšÅˆÙL'¢”˜’Ql)ÃN‹+ͨASPvfivaVúÑ.WÌ.Ù€šš"ÕÅuÙ%²Ü€Ú¤BÄTÔ7‰ñV¬-²qr²ßå|öÇÞʹrêÔÅË'öïæ€ÂXä´áàìÙNž’´¶Vqõåè>bzA-ˆPõüB¤¤ÉŠ8%•[„Ê‘Q]V*s%ÆÕˆK"Ž$•œ’ËÛ >ϽŒ>Ag3™aW‰44zßSIJ ™1q´4…§ÈÒ²RÄg–èzÓ‹‘D9áº.£nô¨ð\ÉG5U/P/RDYìA[Ю€Ý¬rvÄ¿¿2ë¿)vÒ¸3øÜhÚý§*0W9«ªˆ ùޝ|)j%=-§¾\bº[¤?:séÊO¨åb›Bª¥E ûëÇ•ÊÎ)_¯‚GsxóH!414‚1#x¼UÛŒZýö÷š0ê<Y ßJï _EÔÄܨûø(iààß"Ç‹¸àuf{_œÚ±oˆš¼ÖÏצÄJRYÄÉôA™‹§H=]܃ǎH“sÙÉ.ÂÓù‘"´Æß?4Ôß¿&T¡¨©Q õõúoY¨Îª@¬r½eÀúð>°Z„nºŸˆ-q9·V¾Znè\ìÚŽÎ2ºÎÝ…Ñe |r¹¬Ð¢äªÁ^ÁPÓФDú&r.í»Š gkoX³bëó/‚Å ÐeËÉ_H–M±?¸c¿Cvã!ι1õD†<£"Cî=ÐÛ`Ãþæ¦&·´µ€;ºID sïY L öƹ^0|½™øÃ‹×qñf€r1DI0¹o"‘k G€«‘~(63:“±L”Ç(B*ÂBB#ý86aý¨f~z79v’Œÿþo¤© Ÿ¨^om>eDO9US M‡Ká%0ê“ÚèÑMF4—¤c0üs©!Ù1„dWÃ>ÛnÛ~µ>c¿ »a<uÛGô G(1¯ÀóuáW9Ã¥ª«Oê0¢Ñá:|NöÆà÷4WzýÞ=Ôž<*~¨‚8rÒ þñ@ÿ(ÁÄø[ÚØÜÞ~·ÅÅÿpðm³|´¥¹ß²?ÍzEãñOß{ýúé ÏÁ«fáßôRîͪpò`ý bbO&]”hÄxX²$~Æ)õå`‰g€å§`©ÖíYƒÖÎÔ˜QÚÅëðµ˜Ýá듪f{jEBÇ\ÞÈ=Ø^=`3»c&;˜ÿ!r_E¡k9jBF¨t€!/7ü°zÐrÍeÆ¥n£þ1`»ø’~}çÎA Ï@/ñu‰9ìÏEñ—{!oä+ eØÏ›Ó%(bª7=´îº‡ 0Ó3MlÉ"bØ"d»z;ÏvÖ–FZpX* ¤¯‡šôSú½ó%ï§Ô/‚e °¬–°/ùBµîQ;gÍÖ¢ð׉ÖIöþÄ=É7÷ƒCFnBmJ } Å“>p?ÞŸbE”)ÊɨLºlÏçk4ýŽˆeô½¾*]ö‘GN*žZ@d_aUVÞeˆÉ>N:ÂlÇË8B–žÔ€òHOX‡rÚïñU†EC˜#…ŠôƒÇ$üÔeÊz&`-¬3»ÿjÐúglZ ó¦€gV$Âs,ðèµk-`4ÌYªWîßyÏÈÔqJ'@ YËz^‹ø ZÍOáɱ±)œë û¸ðô¨Œ°täÏÉSÊ*;sžâúV/SxöÔ@rGλ‹Þ¬£väËý±^‹<ÚÛQ{ñÀ®i„D{!HåGX)÷é5 ˆèp'Ðì„k¾xò8þ¼Ñ}æægS@oÖC<^³j…›"®¢º¶BQœR’Ç•9Ûòbž<:°t³ÃNs;1ÄÖ ‰É)Hj¤¾æØxA³Ì`ϧ„Ì›à Ô?Õ»½·¤F«üø0¡»û¯™7w¨¸‚.3L?ÁB¬·yŸ™W½´J½airaZ×ÒrWÝUß>ïîèí*ö JwO·IFÈQÓw†f _]غÓÚÖrÑ¡uEgÅ99yDÛ3uáUA!¡ÑÞK~ØIhÊà«/Õîà-੨<º<*.9%9‰óõŒ’D%ÄÇ”Hª=Qò ‰”Dû…¢&ª,ª¼(7'7kV4”—¢BRrKbKbªÂŽ F¤(¯­¨*kªAòÅ@)ù·Hxt÷5Ÿû4^ ¿ÒmIùžœ?ŒR2b$8ÿn˜ƒÒ‘„ñ*Hjá SV#jôÖa[õxà"Õ´E„ƒh‚Ÿu5¾mQÂr¥à™ 2ž|ÀFôÓºñh§¤Pl iÄõU í•”à-Æ•ÂÒ*ÏÎ)Ìç[;åWI4O›Z|°iûûþÛò?ò'ÎËÏ#Îk )‹öM8¼òËÍ _=mME­Ðé!í¤þ¥»›>…ÔOíIDÏòÞ°KôÒ^¬eoéâÈ•ÂÛß>y†Ž ò¸œò•Lœ,—4ÔWU4w¹_žKrg ‹q<蘾âØç øñKÐ#"y¹¹ÍF‹Ã]J _—Y‡J™žëçÿõù¥­&êý Ãø«JÁ)Õ•~->Ð-á/èäò”ˆO.v¨w• *hl‚-=qÂZŒyµWT5q9Ð ÀTy­Jž™Iv@ª¤ªìÔwßêÿ'š¯ÁéC‹k&ÕŸ5žîBW˜'+ã1Xïý5«mÎìý4cïnÛ¶cÔ¹/—ÂDÐñìn%ÙX9™rl›©Õéî‹Ýç>}|eŸ½¸™™Û®äX›•æÝ*åÕß¼¸biÝŸÅŸÃY/æoвÎzæÇ pä—åT‚ eÑYa Trä² ¯„ƒÿÙí²Y¹z÷'žÞí¾wR"! Ï´.ß4E2Ë& `?LÔ†Ç¼Ž¨Ã·ÁÛ5ÈÇÇ­9°õh}K ‡¯éüåùäÕ› ¥ÁMõ…Çzêò…g62pXØ–z^Z¾'>1%Å0D5V×w<²»‡GrýªÎEq®B¬³m=2AÁ¹˜‚5> Ž:æºÔD_ÈÍ.ÌGµŒ"¸B’àžz`åÕuÀÄqnj)×ÒŒê˹£BWyákt‡Á1°CdS¸ûCt;w¼§u}"´Çqÿ¶8ü„ÇœtD{ÔN^ÙÓ{ ­fôÚI²ÿ¦Nxp寈îÞçàºsÃÚc¶çºŽ^}ÈAø+‘<ºBœNè7ü±95>=%…—GUÖåÉ‹²9h|³%»03å]ìûMôÀíÚÞ½n;LL:vœ?ßqí‡{ù|‘S¸ll¸âT§¼¹¤DîK¼­Oý4€Noà”žnUwœ£2Q>bªJäeês­T¾™ADbq’d÷Í3æ¸M0×îÛ„>¹ñG80¾ÑÒäÈ,mxU/R>æt(Ä×Ûµ)¨-7O–™ÇE[íŠMO‹H!Õ!º,²¢õçË Å o+%NýÈYôfÛ@ga>BJÏÿcž?bl>tý u$íê¸ß¥c‰XðhWcâ.]Ü®‰;Nßž¿f¯ºÏù@½ 6üÇUx·7³û1š“Lèù³¤¨ „"Ê"«jòÊJr9øâY^¹ ¡|£qqEüÆ"X[”]D+G«Æp£uìüõF!½1GËseꯜªì\=½öêÌì> stream xœµY xSeº>!4„A F–s (‚ ƒ€¬2²•²-K)›¥û¾ïmš4m’fù’ÓìéÞ†6]Ò…¶´Ð²+VV-ˆ¢ÂȦ¢ÌèÌçOîé½Þ?mQÆGGœ{ïÓ§}šÓœæÿßïýÞ÷{ÿÃ!FŽ 8΄׶lOJI|iþÜé!ñ1aœS8Ω#œÓ¸©lÈŠ]Á0– cG¾9Õ;`"úr’>‰üÆ\'0*ymRrNjLTtº÷‚ùó΋.óÍñ^3Ï{SHX\RVZ\ŒwHb¸÷¦y[æyoMÊÂc¼g'%z‡FD‡ÄGz'EzïŒØí°Ãgûoßí~þ;æÌûé²~xMĂՉk’Ö&¯KñI]Ÿæ›¾!cc榬ÍÙ¡9a[Â#ü"ý£¢·ÇìØ¿+aÁ¢ËŸ[5wAÌ üˆ™„?ñ ±x–ØNÌ"vÏ;‰ÙD1‡ØEñΘõcúÆê~7kœ`Ü{O†÷Ÿ1ÁâØ‰¹ozf=õäSv~ÐÓ럾>©Ñ+U0U`šdç[i?Ì@Õ‡”­@ê­PI³ëPŸà¡­è¦^ß‚¥„Äæœkã8=ÏVžç:o¡™|³dbPå)(iròœm@fªËJëÌvc-]}¦ „>ò“¶½Ëöùe‹)Ù‰˜¦`ˆ‚¬taBv˜x+^st%MGU^­:áÒ‰¡2[!¤W±gTru(c^µµÂPe £E:›¾Fg”œMEcimÏõ<ª ÊÜr€# £Å1ÊBÈ$4Dÿ²ÍÑQxá§?uûŽ u:8®ÉŸr]ËPnmè]kBãê?¸ ‘×ü/±нÄJ0F¨rÔC®T ÍN8,‘K}1òî?š œF·xh…F}KÇ£{üÅx–åQ¬ïbL‡ Ðôï¶Ù7žÞÆ~À~ÅLvÅŽçÅcÐ3fž¾ŠZ=Ð*Þ—ú—Sèqßs¾Ÿ: -qY¯rzäàÿÉÿÊ"v<Ëgg°³ž¹¸åøøSŸ£|:ùœñLœ_âÎÝA{ t\;iGÜæ7èöóÇ›:<ÑpÀÿß—"Ãášëà çïq]§\+ùšbŠIP› @’BêµÕÁW¶•ïÊÆ±l>»ôÏ "Š=ŽßU$—TIïfW²6/rɳhÆ…:ôÒM4‚îÿâ‹Þ€üîÐ ‹RŠâ@I» ja4ÅÔжØ]ôâküÞå: ¨“ÿ¿~{ƒ£b©ü¾ kêcBBYÍò‚¤ñRe¸ZPˆI+Óê1ÝèfhUâwê1Ý­ Ú z³Þ`/.§¡Y†ÜºÐÓ¸4ÍFshöIv??5Øg7Û î £5ÒÇÐ6cë…o‚ Ç¼=.$™“¸™çR€ÃÅÁœÙp‹ë*wn⣙ËÿÆò)öòãÒämC;P Ê —vðÁ?‘õ[üÜÞíëBVùÌ#t@”ó¤©Í ÁÄùŠ÷ÇAì$zœ3øGìÑôý\çjv-ÿá ZFO¡iÎ#x fIªUJ¢¢“„T~cJÛ> Y.ûû";kq¯Ïõ®v{}µRY¯H‚ÕŠÍjRŒ—Y¨WšÛh¡[pç7H¯F'ùÒø­+v¹_úvÓI]ÙM×ï=ÙF8¨®L2 ͉ JµB%'1Ñêµëœã®-qp.¸^åºÖ"à[òA‰Õ)½ÚÆRћ؅xQãÙ÷Ôàq×o&ËÔyÒDTRe¾ôF[YL¿‰’‡·fÍ…”™r*{]vÆr —óÎ#µ±e14‡ˆº„uÉ*±2V© AIæ[ ¸TS\©¥"Æ.‡L Dñr Gl€ê>Hy4;y å§us¦ñªA£1”}†’¼4Z/o’cwæLôù2Læ9·¹N‘óIþéM–ØõQ{2„”äLxUì¿©nM†F£–ºŒÊ4Lâß Z-QÆA)6eÛ+¥n-Óô¹>æ@½n˜r]Îþ#[Ü÷[´s¸›Ãt/Söi²âÆ)!]À[Æ’bЗёÎãï²)/9W!Ä VÉÔŠa\qWé(wuŠ5:Ð ÜU«•9ETÎ:a*–ˆ•¼KÈú°:£yÿ°Å¯OSf+ÓiµÐãÇÂ`DK>ź÷ÖM4¯ÿ$&ù¼³hâ[\ç4ôî­¬ 5%飌p„¬­é¿Yß^n¡âÒd( %úÜÚ »õHohçFvtè ¸,jSG z €ŒK^ñLÆ6Ý)!uJGqªÄ%™éI¹A[û¢ÞCÏw q½ø³¹¥X‘Èá|vXM¨„oTè ãc”GC ¤T Y ”ÑF^ T¨KÔ5J£D ÀTMÊX ’$$‡ïÌòÅeï A_-ZøGÄýWºx)†DXð¯Døåo§£_¼ßÛÞH›ÒlQ0€VÏXŽ£^úƒZóQ K,Ø£1†¯ Ú²À³°Èã"ç°/çƒ:GJåì [µÈd¨+7@¹¡þô¸Ã«° ×|¯Í..-.dM®® µ »y8»Ðc1/÷aCÜä­e« !ˆ{ZÂNÿÇ©akšY.8P«›Ž®ËÏ,2ÈÚF€±¸ŒBSœÆf£ñ"jLPi‘ie¡J§Ã ” R.þ©’neUl=ï’ÿ¶û~ªÀ˜æ] tÒ‡¡K‰MÑ€‡š‡kss¼”~Õy zÞF¶ú×îs›©—ã¡Iÿþ|ÙY®³ï!Îju†œíÈ~-Ȩ/ÂùêÒêq0‹´,+A–(UQkØž¢PŠÙI‰ € *<Úr¾åóº~ÚX£+…*òd¬#x^4;[>¤ÚÒbÊè¨ÿS‹2%­ YN§ø¤¬†@rQ_âgZ›šj©Ê€#ò*h‡šº2Ge‡õÜ\h‰!ÿzËéÏE÷«øV)dmƒÀ0T˜vc³ÞtltNEXˆBéPfBÄüÔ‘ÖF ° ÷7ÍNè’ÆJ7€ ³r$•Á­#]tQÆ@¹½ûÖ0JóÏ—žE£?ã: œcùmùŽÄôÔôt±A¦—Qµ)LžÒ’ö³Åì¨ÉÉ–¾æ{õ×(]¹¾ì11ˆ_œåûÉù—ßF¯ô¢ÿ²S㜶 Ûå¯"çÁ7\××B¾IÎHc£”CÁ~Ãíž måUî•ÍÝÍyînVˆXr Ò+{ÕvŸ ÑuÒ.­Z‹ÛŽì°µÖÙ³J2•þðß7Â.=øâú}F;ã cÊ,î}?¢$å!A^:_röÎy´ö3®kË/lÂâfä†fÆ…¾äaW·ISk9Jw£Wô6óa¬nÖ$Ê’1k¶³Ù²$u&î=IüÒ]>ðAÉöŸP†*Ý㵇 ) 1Æ{ZsR²š¡­¤éTYäáä·átw5½×Ô߉æÁòÑôk5¶æúQS[#âцZЖU7îhíòÑaþ{Îç Á†ØÐ*÷Â&þå,`Ÿäù•s¡’ÿµ“Òèµ?•êc²Ä0?üo5º×Q[RBE°ËVØä>Q‡4Zƒ†vè¬õPNÖ-9”§.?\¾#°+æÍoïó—º!QÇž¡Hr‡ëŒþ–¯“Z¤ µº@J­ž»@‘ d@jOß™ú¿ÛÓ‡.ŸlëÁ’Ö£* Ý#‡`\r¡Ex°¾ÖÖq"¸}óÃ9ûퟢ§nýµÌ=IÃíôξÂuÝüç.‘B.Í>ÅË%HrØ/.xípö©l*Ì +ø¹HôÔ€U´#"?H%JÔ9î¬ÑÔÊ€¶¶ÁÀ†ûÃ*ÓäÓÛµ*;”úâr$p6xixç¾Ñ悬 % 3è-ÎÑ.¾ÌN¸ø“–kÇmÓAwà–kÿÁ«ЯAXÚYÃÊôµ4šéìL>ncÅyŽäú¼éÇR· ™¿)K >Ù†VàÊó® ¢ŽŸ¯ü&É{æC=ÝÉk‚w™ãU7šá2ÈÞÈÎÍ3Ø™³XŸ—Ž/þÓP­ƒ‘‘?]±T&ïZú 4äáƒÉ1nÓúo‘aw-­ã ÙŸ;#îp]N>ZúìWìD6„ c Ø<ö…Þh*Ú"Q’S‹»ù°0Šìš¿‰å.ð_äüŸ 1½¥Èû*GŸypÿý{@~|Íì.Ň»íªn:³hîÇ56NêmtëØn—'ÿHèÁÐ9©ìÓ12*“á±ÑM¢,Œv}·f`tþ–‚Py¦@#Œ‚Èf$eMºÒZ¨&m9fajjVtБÌöo»Pä!VÖã^…y˜©+yÍh±±ÝræŒP£*&‰Ò ‹Ì¨,(¯««n£~ˆ­vt§ü§?åºÍüÛ¾ƒgAg#äÿúˆyi<Ðïyh"šò74š^Xχ¬¼9¢Ã÷dûavLäõ£úá3£»¼«§R6&¬S›mÎîîÇä}â5>â87—a—-tÙüti¢‚5&7àŒÂŽdG±³Ùé‹ù^?u¤Ëj¥3—äï‘g&ÅÂö‡áñF ñl©6Zk°#–V¥äÄ‹ÂÃÚsnÿýÃw>¬¢„(ðÖ•˜¢ª-Ç›ÐèšctÝG{ð–Ι–Hi¥Èã§Mugð °ùñÏ7DG'ÄSÇì3vöÀ=µJ-Áo•˜òªjJ*, u­>4Òh+›«›\¼ú«€§6\è36tÚ1Ñ™ƒ8­ŸOò¬pE}Á7¨ôb±º(_IåîHˆ‹2AYßlgj;ÍÔ…8ݽ»Í8ÔÞ'o¼z…@±¿À Ïè)¦Ç”Øá>U¥;‰—Q¹"xݧ…kEÊBÑZ²_!‚lÒ³kõù¸‹·›¾3R/:#ù WÌ HHÜ“î ä,¾ËÐdÔ´ƒ¶ª€¼ô5ÌnµÁ}÷ÝDôÔÙcoNòüÝþç %&¿€+$iêí%-%íô%ôª¹Q‹7"x3¢.rn ;§èGW3µØ¿tµ¢ô4I¢,›NX9[¡ÀM*¯ =ý =_Lyz×;£ù5y¶„¸¸ø¸ŒòÌÆæfG35tbœápÍoà }ýè&r*äC£¬+¥9Ցϼح‹7icÊr›¡‹üä£Ïî­¼ƒ ÉT…x¾e'´F,ÄÚ2”¼­ ;u†SôixCyjðœ¦ÚRytOñZ%$1EÅPŠ}s Mv¶y¹iaÔµõPä·E[pÞ)ð§U’ÁeˆÝ…Õ2•Ìprǵ™„wtëúÒµ`ðì#!V ñTÄ2¸ІFe}Zẻ¥P%SI°N¯8–?}þ\ w¶Þ·éšu6ú¯ÎY¿mv~aàiid@€{Û÷òÄ?FÔS÷#Ê/e5ƪ©À˜ß3˜Õ.~7çÁ9.j¦s‘Š””,5×';$ ÿ–“³°éeAž`סÈãÕõu%TE[é%`È!„Ô™®Å¡×s\—Óµˆ*‹$-Y ©T†(o ,1‚QM—«kexK²2¶{ Ëk·³Æ£éŒÆ\ê>i‘€22L T D3±CÐæãµœÔ¦jésÚlMQ9pÉ5–Jôgç{^‡ßm³´3F ŽëUx9Ü—Î G2×àã×c>~¹½­z¿Ïž(é•Àª ðƒ½±1¯ÿŸ>Š9ZkMãÉ#}W€ì…ÝyɲDU!½‰-ù-7ý²|»}'ãªÁ†¬6Ô‰qY‹#é{\§-ù! a7 ß°’ Ü(,Ž2†›âA‚)«RŸ¼û~—£Í»wÿ >‰F­|c%;{´)KÜs£í¨,lË‹0§@¡QQúüb1䓉‘Ó·æè._Gþh\×±ä¥ì³‹–Ìö§‚’CÒB}–HÖ ÃfÕj±7*áô Yu¹öGŽQhT/ZcHÙÕ™È×Qípþ9‹sÔ¹†ëL,åëäX4 ( rd©x®“áEš£h½× Ù3¤=M£L§ä*¨vù{—8Ñ,ˆ´äâÎÉÇR¬FÓ‡> q‰òôdËN8ÀŽ]Ç’¯°O-ðQ(eʸ\’ ƒØ¨/³-”Éh2¼ •P m’·Ó½"Ù9 wU2+ŠÌU%–ƒzªÍÒ« AÃå’r÷tÂ韉ڲ8è®—ùºJIiä@¶H™ó:Ëx5ñÐÄüÌå!_‚ïPv%ÄIBœIžwPêE¾MX“››R™kou´4QDó «“(Oÿ˜ø¸øôò¬†VG³cØÚœ‹2QÀwT‚<¸8Œá×u‡¥F'Æ,¨©¨4™Í”Ä/bÝÆ1æ(H%#3T¡ñh M ºx²msRîŸô‚ã«óÎ%M\×®~¾YÙBÈ„ÔòÈ…é ðHE­G¥tˆb/šðñ³¬`_Ë,À_§Ç"«w›·†Ñ¸…Æ,ß“V§\~ß;§­iìÌ9ü>|çdoU5Íl?%­÷ ùZY—†éF#à>‰–ÏxÀz²¯ã!;ØSn°ãÑ‚Ò+`»GÙõh\N†,ž¹ù…Qk–a×-÷ƒ^4é+4óÎ/‹†²ˆsò;˹‹ô\ìóûøZ½ÞÅ䠱؇pMÅ*yQ¶û!‚*)´“W…­Š±’«Âq—„û³Õ—as®µ 4m¹g{âìꉑ;w;ÆŽ±1ØŽñWgE±~ìØŽ ü»A[ªÑU9kÆþŽ þXwíendstream endobj 341 0 obj << /Filter /FlateDecode /Length 4575 >> stream xœ­[IsÜ8²¾ëäwÐi.uzE¨(búæq/v·í±51Óž%•%ÚU* I¹íþá/Þq2 P,ImÉ>ˆ 6™_~¹ÔeÁ%þÏ6{åâbï?{œž.⟳Íâ¯'{Go•€'…/=_œ|Ø ]øÂñ…Õ¶ðR/N6{Lˆƒ“ÐØ¹¬q) =NÎ÷~c?”E©•Þ³«äúœ®¥å¥g«ƒ%Þ8îŒc›ú,½]f/¯©—öÊ9VÏ ÞÐRÊ¢´‚m¶KkvÚìžt]_%¯.boζÂ¥WœUMÖ¥Zã+øToX¶âíM2ÔÕpE)½d6W0¨`]½YÅ)”dmÖc„eMݶÿ>ùùÖy,ã/¥.œ1a§_üWa•‘¬:O6¶@r sKö⯠,[°ŸÒ‰ç%ŒÀê®Nßá†p {(ÙIÒÿeÖg}ß(Ç^÷Zöž‰²ô¥¢1 {ö&9Æ|WÓÊ¡«?à9z8–UÞòo\™S¬jÛìUÛn²ûüÀp’R±ÉÀÛ&>sÇ®¼:¢¸ÉWWuUqÀ¥§Ñÿ'ž±.Ó3VxÄR=b­·›U·D}[J/ŠÒ™Å’ËBÄԠ©ÏÚ Õµ…:Žr[¨´…)Œ1¥ˆMŒžEÀLfPê÷L½?8ŒòBÁ…Vû\^Чüp²÷·½²Ð„Í ãæ@F”öÎ.lé -h~cçÛú;hÊáßÑÇ‚kÅ— N(MZ³R‰²@!yãž_’EüiˆSð©V¤³³"ìºäôb)D!´ñÓ*Õ¹z}Io4g)|ÈÕ E¤Ÿ“*)i>«JðF)ö:*\Y:ö.ôSóÿŸsQî.c/i²–¿ö#ðìq½Ù¦ ×NÔ ¥%ÒN‡=öj^‚T´»utz÷0`àýNx ®"^(‚À PñRD2RvëÙï´Õ¸[Ù M^°uu@ëSÇñ«®“¥×Í8ö—%‰ˆ‡SÆEÓáÄëMÕÕùÆÁØÞ¸’¹€k@À%\wœ}+*ÇØMv!ÃÜñŽ]í³Ž6£´¦ßœmó)®ðd4ã‹[0—ý&™=û°«ëYjœa÷n¦»çé¼2ìÏE¥Â[Z®amvh™µ¬Ò!`á(àæVZ]ÑCZX@ÑÍ GÐÀƒaÿeì`8õûy{Ó\M›NÁE€ %ïEa[h³„•AXf ,Ü—N< Ã'zXѾà& `Á ÈG§õæ# .ІHà7¢­4¢pÖd¸ŽÓ› n_fp‹()´A:J()4€‰×ìåÿ]&€»^áÐà q©l×Ëm Ë›*å;W±0™ã8.H.1MÈ$9J–fÏž‡–ˆRmÈÐv9kA–H³Oô£©rÚ1¢©2ÍŸ2ÕØ0”B¨ÏtÖl¾õ QHXQ*=(hÆ×–^8eAµÆ­BÀ¢¹4 @ W°˜T?×È»ÀXUM]u©²ÝÈÈD~cuœØ¾ðÎÒ›BC°é`æA!t  À=}y›öo>ŒtvBk×ë*E¬ì¨úÁŒ}Ÿo`,IÆ<Àp§ ã}}7È"L)ƒ¡ÐÊ[v¼=ÐxX(ð ž[”>8”uúùW³Þ€ì¸âi…Ü%¢Ë¸BY8×[à"8¬Šqg÷9Àô` |L%FÈBj•a °·£@¶€J*aË˸‚Mp⟥n»Ò»mõØá΂ó…ÎèJ•ÀLAoîé ù„DÎ|ÐÉ@R¬]Ieq[€,ÇŽ>xE\–ò Á+:Ž„ÊÁûsRWØ#r‰-hñœ FcŦÖ2#(Õºîjóµ_ƒF=âr£ZMõ"qÇ£ïŠóêo´ÿ(þÀ¯Q³F´jû}’ –foSÍlÍÏ8Ÿ|^ç#aH[Þ´ÞƧ®tâ¹é]Ä<Þ{n·˜…ŽŠq¥3þ@4«á@hww«¸1–û^ÅÕƒ„É„jß)ùJh[hnÚJ4)wˆRÚGh²ÒŠ€"(úkð„ 5ýÛUnþH­Ã `N6w”žŽÏß ø?Urlš}<´63^€[ Ð%¸~œ À7ñìYß1ªÌÄÃACn¼ÄG‹ .°ê]†Ð'×à3pÁQÿiu¨ÿ´áÁGAln¢üÙM¦íÁ ˜i,dpQ¢ïJC…+§…¨\ Ù—‰ÖU=qµÂ®É[ è^Ò«q[ÿ1µ÷ y¡bU™¤çøQÁ/½:ÛI]2ÞÑd~'ÕP°/600©ÄŽauëXñŒpJÈŠãêü<Ú‚µ{ÚNwÜÏÃHNvA*Æz”‚Ê×õùjSolö2GJ± 4q¶¤0Huu~|·8@ÎT_Q˜cvV˜Ÿ‘lÏ!±¯Dõ^ã<9°³Hì Xõ®pš.õ¾æúI<9¡ 'ÜB Uér æöè]é5h½sË@BŒzŒ3çA5Á¥sE,ÆÖð&gU½›&,°§õ*xU¥â10f)t\e RŒLF´|Š€I?YŒ•1zd)àóìùio€>A¡&‚M¦åîàG—áñ$.ŽÂU”“î•{euOÖßÎÊ6Wƒp€Feñ’®©r{pg¼:âÎ_£3SZö}¦u{Û+Ì4ÝÈ¥ ÝB°(†€ØR¹•yD¬Û69/í#/è-­ —¯ÐXè!Ìœà¥GBÊ~©Úvù2ó±:² ŽÿÏÐÉÖ¿Rį&D˜†åÏ&{“ì\J6‡.tM‹”°µ7ÍçUý0éLæ‡UWƒ ·úø; °œìxÕ]nǃOÔ;ÒM j©áL|ÉG@øûÛ×OÂFL¡œZ(`%^ÄÜÞe×]·ßm×( ÕÙªx³{ÞXöã¶¹ˆOª®b×Íöãê¬+àÅÑ£R}àÅÛt5=_qœÞdôKæ:æ!¡i¶\8lÂÏqvñܶ„ePƒ­BTæMì`B¼Ù¡jÍF2»Á™Ÿó¨aȳh¿JrÔ¾{ÓR–}þ«¥pKÛ÷Ž#hòò½Ó’$ßøbД«z“‰ù«¦Ñi‰ˆKâêoR¯ïr(ÆXN¤(ù†UÃØ ² þæß³­±âi|ô¡Rx_£ÍßëMêïe=ÚvÎ~ ¡‡ãLd¾Î5ß“˜ƒÅ€KØiŒë é웿¼¼Tg½/´½êª³®ý•‡S©ÊpD«å»®¹9ënš˜ g½Dœ÷¡_ÁÞ]qëty ŒùkÄÍõ0Q3t¥èöÕž¤GQj"•áÇ0Dfj `N>Aãù¤.:ÊhŒ¢Ã%í:ˆŽVå4?÷"ñ1¶7Wݰ•…t$‰ œ…·šl%ÿðUA,Œ¹U1¡&x]0Áª|*Luªb!™ÃŒSH=_®š ‚Ê~@ EkšsyszD’%ä18ª1[Xºt G*¼Épôz@î WìVõAˆxÏL8â—¯ûôœÍk ™þg!‚g䤖`…j–X=€¸­L¨€þ°Ty;z_·K‡ÂÒž&sN«ò÷Ì)Iöt™s SòšŒ¨5}LoÅr8 ñ(ð(®35êù¬1˜†Ë‰æ>›-sR²\ð‡GÈÝ®$wC˜iša熋}¢óT‘m@qá p¬ÎIpuÄU‚žÿúüUò1j*ÅM:_Ÿj·œˆdPR÷§´TQ]‘™j©¢j»¹ AªåyÝ—Ƙ ¹0_†¼ú«4–Ç–›ë&SVÀMÕW*†¦ýÜšµQUý­06Z¨0ù4nÒ»Z€²åqð.~j)n—×(ªt TÖˆI> Íf–êÃø, PÆL'€ ”4LJ·/õ“TÖƒBY'ƒ¬vâÕÍÕpM“‡S—ŽF}@14UÄkn9+§J~‚ÒFnåw€&õæêq5Þ ? ä­›¯‰¤sv^ŸÕW;ð¬ÄôÊ}K¥-{<“åÃð¬Œe‰–¸"çÜíG§Ñš|ùÜ"q.M1ÂÌ·Âøc…–°2[RúsZÎÔÖ›Ìúc ™„$a̦ˆ%‰£øæ€&(Ä~]"È}œ%Xj¨_¤ q'”+As¶mÌX±OCÀd»Þ‡yÐ)#Ö@¿(ÈžÏT#KäƒÒHJ?0¶r«’¾ÅùÈ‚ûõ$ÑX×½jH_ëmov× ŽŸÃ/PÜ$ºôçkªÕ;sßR“(vè¸ë€@>ŽW!f{¯~s{ÿïÊz»éŠ–£z ?\¼bFèr¶Å>‰—%<Ȇ^p pÇõ¬K¥ÊÇT#‚(jðŸÒ)bFÉHz“YF-ΩX¯"Çß6E£³©b9–SÙkûÇ<ãXÊggªÚ å߯KïîÉ,p`yV•(í5朢£I3ŸY"µ )#ã)ÝRCñ&©P‚*$“¶¤dC¤ÕÅi¨ìÉ÷j™•Dï iÒ$|0¥«è;íœÇ1|¯ÂÏHwÕ)¶Ùo½‚¡‘à ë©>b¾T=u¾”«PŸèJüñ>¶Qw—7§ÅÙvs´:ÿcÕµ×G)ÞÂß;¡N§-çßöþ L(¸endstream endobj 342 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3306 >> stream xœµW PTWº¾MÓ׫"*7-}‡¼ &¾¸ÇG ‚ðKÏÈÜ&9’$‰Ý•·;>!1)9%Dœöýâ%L¼Bì%ž%BˆP"ŒXDì'¶[‰%D8ñ"@l#¶;ˆ b'ñ±’ØMì!>"fÞÄ“8=„'¡#¾áY<ž÷èäÇð¯zZ<4’¤eÚo¦õP±ÓyÓÎð¹iæ[^k½Ð¬µ³~ðn÷þfö<Ôáý£Çó\¬À%wø Ù×ñÏ—¶³íóL® ã ¦…¿mvIºY]zÃ^ØaÑñ»ëÿ&¢¯sÏÈUâw¡\QÎDqöÒH9£#Ò€ø“+ä``N ]ºíÛúG®ù]}Xɾx®Pt¶J,³Þ¬Fîd—:x¬¥ í艵ßq³€› Ü4Ž—ÃÍ•rÂ;Ï£é€fšñ;¢©µ¡2©$,=*-2<ýDCœý虼þÊËæ®òžŠaWÿÉ3oØOC?ôHmѶèâ½Êêþi¹ý.´ØÁ2®B§ÏíëÁ×_¾…úoùÒsØa$Æ[Óë¿âÀÐ!­è}…þXGØ€A3qÀ8Z!µf^.7kõê@ˆƒä†ÜÞb;è ÝèˆèÔàpÛ üά8Ê Ü¶¹Ë.¹n»Ðj—;mœ6'šïÌuúÒWˆ‰—‘U(!rÉ[¸Í@q ÚrsG?j}NÞóáÂßPô÷r'Ùê²pÕ1ñs@-#O#…©ÃP~G%$ѨUp¿¦œd’ &/‘*± ‰ü@®LZ9i)“Ôò@q³ï“Þ?òÔ®‡0é¸ cã·}iv3;WhjÏj‹Æ¨ˆ’FÛ‡ˆâæ? ]YŠÓ凳5ÍpÎB†1¹9$½8ÀjîjF¢Ú¯FÇÿå ½V£•ÊTYêŒúÔCK•¹g†§Í"ä½oã¡×Î}|ŽÏÎEO+.HNWe¶'Xb-aÖ—ª+/šOvôÞäÅËÔbªÄ P­3Ù OÕ}m¨Ó•ËqÕ  djµ¼D¥Im…à¼!<¨8D™\•Ñ(mÍjQ^/t¨?:&ÛZz0&nP«!sTý©¶Zk,†"Ð*4yRN$ÒäkV0N×hÓã¸í¶î˜­Ð4}»êwî˜w¹­ÏE¥.´+×mºnu9áZ¢ïÐaÅ(®=X* LLH&jÿ¤¯;‹\"ô ‰sÄ=Câñœ‚µ¯ú/Tk¤¢OÉ׸¶nöŸd]À¼§ß³^£¼'J0f®¸P§Ë-׎£$üð¥јǂ#äÆ{i¦èÔ;l“¹Ëhý˜&¼|’&€I€ÍbÀL|€€x®HÄ ‘=¨è0™¢¿b²é>`7`º ïÃ)`NÁ èÄÌ=ؾÕˆÐÅÕüÜä)‚Êr×9zÝ%îó¡ƒîiÑ6P”WœgÞDH@ws‹~ÂW:·½`å+;¶³Œg-CM OLú´š‚匄{®hCÁR´˜8ßÚs¥`™È­8Ž|ªýüœÃ‡ÎdU㊜è’â½YJŒ’T0èL(BTÞgîIïN퉨}ÖÂÆùNUZ]~3´‚½ÁÔ¬¯‚Ž×t'­ípã –SÊÄšmši̺””Š(Š–¯+üRrÕo .œn9KÑ›ã4 1gýìpõøñ›·bPHËlH‰ô ‡ä“–7*~;r ­3?LÇå>ô¦%öñPÌ-´çÿR­ûŠ#±RŒ8šw½+ÂBõ0/ '¿8É3Wª²;½ÿ˜é„ÊDYpRd¦8:5 "ápS^7Ö#ƒ¡¾ÅŠŒ6ÐUמ±4Á´gÕ%4Ä*ö)b1Æc¹¹ìr£'BpOŒ2þ3™›Ë½ÔÚ)-gOˆL†ãª'Q³b‰Ç‘>ŒšÇu¦ëŒÇìKã¨ÿl”˧ìÕ'¾t/û;vÐäÊ.KÓf³ ¯âÒVç«%LY±¶L!ãžæ´¢ ä(«ÔÁȘš»Áyœ‡&âuiz,Ôçð%™Ÿä%¿"Ûþ20t ²áX}»±Ê¡¯55ç×fC.)R¥QX²]IoàëêÑÎQì&Q÷ÕA]-¸I}>ËMêŽ/º>ïÞB·â¾ð¥Yvš)ÔWƒJ@£Ö(#‚d‰°Ö¿ÞŒVµ¢Õã} ®hÛ0c^ŒÕÈÓÊŠTY5¹­Ð u¦=ðŽu{ÏF?÷¥çÁ9Üœî‰?.D _ÁòÒWâ½ùnžàá,oem7ßäÿÿ(Ç1ÁE÷IK5Ý d€¶8›¼$âæ°£*‡ŸšÁ/Ñü5“‘*³4bÁ½ y†Q˜¹ ÀrÖÔÂŒ³]‰žú‡‡¡ÈPR ŒŒ³ýmb–HG>?ùÞ#t>exz€é·¡ëQ:¸Ðo1‚ÝŒÆ)Û~ë|áÆËÙ¦Ÿ¨ý5û­€®•?Šá$NœÝ•Іƒ%zQ'Ìáè›  ×`°óD»|§ˆÞL8P¨ÉÓ–åSôiâÕ„pi´†usþ©ÜÞòÑò^swÕ¥®×ëÃpN4FZò¡L“÷S)Óìh ¶~cü©*–êUî**5¥û,ƒb8É'ŽuKÏYÇ°Š¢vÒ0Øë¾J¸ë®o6)ÙܯƟÃâ¼áâlTb„\1VðEwœð È8?E¼{ÛeSž ­üÄâðéÛ3Ö0&ÛùòøÌ—%ظ‰ÙBs·¸c?lƒ%ûóæ妉^ é.ÙG$­"¸¦Ü­%þí^ œ’û@bÝ ò¦“ôÒ 6DÕÜ9׌jยH[¤–¨³«s[  êŒMF.¶í»8ÐXÛˆ QÖèS3Ôw#òÆÁ¡È¡7àFæ ùÒžìyv¡ÐP§lÇ´‰T†ÇRôt¢#1Ö õ €uÛ‹6RôÓrETm‚=§ àHª2Y%.OhÍÝ•­ŒÃ¢¸e«ìóPäí‡fò¬þÐ|R5ÑJÑÙ¢ÖW÷Â? vu ØxÌej× ½| _¯þÀÜ]Ò-mìëì6Õ`ã`ÐR2µB^&Óä[eµP örC#Åíç¡:Sy8WR,Ë̈Šæ+¡ö¯ÆFŠÖjL-æv›³²ªµõ4|ùÿ¥Î¦ÎMΖ„­?´ž…àÁŠ X®7—Ÿèî7à Þ$±µð„ÂUÔCëÌLû{¾þKîy5„K“(-y}- ï> ÷U“u¿à ë¿Åö˜ŸóÏ?ò„—îcJ܇xßùœÂˆRïK;à`v‚ÆTÞÃ\fùú-îi¼ç[`Q–†3‘œã§=ù†“ÐYÖ©ehŸ3ì×BcK^s¤€$C-QeÚ²N@'8[Ω“K]h› mr]v¡u­¼Ï¯ñÙ´GX÷×ý\ßÀÍv‰‚kÒ†+/V½{íò‡€ÖƒŠ[SI)µJë}7Ö‰^Ó×éÝvLeÚYÔ>‘¤-¥w9p|X¸"o~ášÞ-ïgVªÏËÞÎoV´)‰µY¦TeªüÅÝ[WC:l2E§Â‡Ë¯™ºt•¥Xuïû².bÊ—a+©·XÏŒŠœ)“Æ7wÿR<¨©Â"ê.Úœ1_ºYæ=Ìõ7ìÜÚü\a<ÝÉæ†ýKÓT7Õ9M ÿrí$è>Ûjü¿vQ'©‹úß!fªãB¼?û Ô»7ïúÒþ_›/z G²´Ðؔߘ bJÔRµ¤.»\àpb6¢íó~öÝýšq›sPØw<´ÓÁGQ:¡õZ~/n§ ;S¥ÎªÊìŠVc®®”½°ç@„B©Õ‚ºLaR›  ¾øÈ†¦¹—ÙF à‹>}¨ž³ z\0t  +/ ¸z’¾P¼Wà-u°[ëPºÕì ]3Æg>5Ã344Êk:xÍ´ëtz^¯«Ð.{y9kš f‹Á`0™^³⟉ ùhendstream endobj 343 0 obj << /Filter /FlateDecode /Length 2449 >> stream xœ­YKw¹Þ÷Š,Ø÷õ9nµÞŸ“…a˜Lfl‡ÉÈ¢°» _SU†ðdzν’ªZjºMû°puI¥ÇÕ÷}÷»âÏ1£|Ìð_ú{¹±ñõèÏoÇéÏårüôb4;sÞPÏ<_|ÅOø˜;C™[m©—z|±½%çF™––3Oæ“)þpÐÏ‘÷YCÕvuµšL¥ð¥#§Eϯa¨wV—4Gø¤Œ9òªhY¯²±oòyš«~C^¦o´WΑÅÕdû#Œ¬`dINëˉÀýUU̸è—"ÉËçݱ›ÆûÏ‹Ÿ!vJ䱓RS¯ |W#"ääâãhªOá½3_¿%gõ&Œ©œðØCt¦ããyŠëÆÅzNÞLlÓ ÑÍKø‚¬²qª÷ß.4ukûA%yÚéÈ;"˜Pï&tw¢Y%©²6nå-9=9??†oµa9¿Ýl&šÃ³·dÝt±ÅC°_L,¯TävuÙÕëUÛeHµºÚv|^uU;ïB3‡)òaݤfØý›‰µd¾ªÞ/rÈ ½Ë±ÎS¤ÞLÃN¦ aäþR­¼ˆXd¡šÍ~< cBHœ »œì;W­¨·LöÑ 8U Ó"°È&RÄ—‚ÇOÕõ<Éòy"ËØ·¢ØËI,•SÃ#ÈßÏ^…Åüp1úmĨ¼lÓXí¥±d†"-sT ¤1¹éºÍñlöåËÚvU×Òõ¿huIo?Í6·ïg5CèÆ‰ïŽ2HýŒšCü…Èg¤‘ ’‡†©Tóž !0œ`²S‰aÔROWùɰ¾ R¢]Éå]* ä$€ä׉ƒ£@‚#|iá4ù%Ìã5 ø&'%ö0z§ñu Ãc¦Å ýèÇbºU&;å9W‹í¤9`n³çf}=Öu;OXÑ€(ƒÒ ‹j]˜ m!µ^ÜfwRaý†“jq½nê.Ð2m‰“ºï¨}¡í*Ì óæ¡¬Ú¶ØS›È-È?.Eqƒ·éȲè]å2Þ`vœ2>1²PÄúÃ6u¼xqA'\zò—½B¥`#Êðžš?¯o›;pZë8œvQ¶í5d§ËIP$ ’Ô÷Tšœ¯?t_ªfеù^)à S‰N„À†.*ïb¨1†‰ÔEûÔ§( ô ¯ïàê(mÜI M‚ý°ÅøØXA•Yœ\­ëcè §"íìcÛÒÏÀ(Z3uÎ+¯¨v¢˜'‘×õ¤×IŽÏó̵X TŽœb”Ê!¹U„›l·0o¼\öÊ Ü9¨Mš&}~”žØ“äÔGò‡G˜+ßò+ÏÈ£Ó—Ôl‚ÀL´Ú.뺟±$q\¸„¬Ç¡w¿n;[W/³e´¹ï M]ülûX¤ó°¤„]SØ«Ðû$`žíÃ%PWaÒL¸<îC‘“÷I$߉jSÉ)¦žÂåRErë8Ú)Ct…°_æ?’šytm* –7A¾•Ñ8ra„€ëðX†EµyŒS(CÚB’£Èr±cWëÅ¢´B)‹ž½~¹úÅ=£ æßê—PH‡ _øè|._<èÙÐŽ$W/ÎýAõBa½[¼¤6¢×7ËŠ—ò[ñâ,ªSÁeòÇòAÔKyˆ¼2¢¤Ä+ê ³T(U$²#k–Ñš³{Èš€rP5Ð.j«j¬ ¿SÔšOp`ytàós|ç£yÈw4äñ>´¹û­ºpô 5 @Ô4˜ü€šhº™4  ±Ý‚ÍlXp>Î#¥½P¡“!?¦dg©67õåДÌxø™ðì–,b%3ŲèY¿iy·1”ýŽ1VÑm £BL5@L†ø~ s¬œ…RÁŒ cJ¤Á·cÒkj/4l6[„ƒ˜ÓfŠËÁj ×uzƒ\…€nšõÇùeG¡a–­ô‡ -³¬ÁqZkr Âê°%‚P%ûtl.X¢!žVAeñ­¹VâÎD)” 9åä(>ƒ[Ì­úávLá}®2¡ ûñpm=Û‚ri±Y ÝL¯KͲڴ7ÕfÞDñ)nMØA/JÉ#ÏrÝÏüp=_u˜º0 ëla1Íjò$Í´eM3 ø·äIèµÓÜ~’Þu `n€;]]å{’f÷·ÍÀ°yF¶Xï#•PX¼öWÉBÁqq!K©C ÂöÿâŸs‡ÐkØ¿å"^òDÌfÏÎN^Ó3„´FᲤ7Õ%òø¯ÙYÝä@n¥Ëבö.‚ÐRÔŒ¿Çë¯KŒ×°T”#š@,N»´rîU!þUï$Ì'!™¤† •$‡œ·Ý~¬ÁðVػ܀ob¹/n´¾ëb)£9‡]pb}ìØƒú ÁâÞÜeú{tÀ¹Y˹U>3œwRkï4aÒ±$ç Xïî¥ØàV4ЈE²¹bkZJ0§;Ia 5æ—ÖéPμÄ?:$ìm²×;À¼l뮯7¹*­;q*&ÛŠ{µ ž;r]¡Vö>n?ˆM6]Ö1”ïòú_’œô¹*Tñk&Ém}@ýà ­ L±8g¡øÏKÁÜW4yÍC®ËBiú&$CÎÄNz[Tט֜ ~]4~Iá†ýÿuF‚Ü7ŸbÌA$U;W?åÎïé뾌÷Ä[7•SÉ=$Baí4¤Mg°zQñk‹23Bq J© õ`Á½õ2³BΟvõÕ×Ï󦣆ߧ܇sdçSE„ã=34”¾øX°Bp‚ßû#>¢µh–Qu °zÔâØ!ö—º¿P©Võ2jñ1èå÷*ÇhJEp#'¨ÝŽcL* ä×Ay“EÕО,*.Ùì‘ó°~Ež5eÙ•XL°0ufG–;å2Vð*àtç–ì*-X ò¼ör÷ótñÐ5ýDXK¸cÐÊhXK¼2˜‹ÜÏæÐêË,cb©‚LêárRež‹ÕéÊÜ> stream xœíÍs\Éqàï<íöŽPÄF4bëÕw=mìFH²,¯Ãã°ghû0ㆤHX903ÿá{Þ̪ü¨|Ýý€&@Ô@ ¢²ë»²òWßïÏ'ÓÖLøýûüâÉtòêÉŸŸ¸&=¡ž_œüöÙ“_}Y+H¶ó4»“g|Òƒ¸WóvÊ'%•íÒɳ‹'_o¾:¶S ÅMóæåéStTðW7ß?œ]]ŸŸ½=}‚‡uó…ñùÓ©ÏÛ¹–d#¸ü%Ûiª›4¿¼{;ÄýzLçò'’7OaÒkݼyqªŽs„˜Ãæ‹óç§Ë“£Ê¤ø†³6ÿÿFooº·ìsöå?žýÔ]ôcÝ…¶s„ê{öâÉÆ»Ógÿ ^œ'óv†PèåiŒîä)ø«9£·¯7_þŸÓ§ÉÇí<ûÍÕ÷g—?}³yþîÍWß_\}³¹xyvõæåÕWç¿Doi;¹ºyq~qÅ®°ùß¾ºÿæô›ÓSÊZ’ui›!O»?ßSþâüíV£qW×䀂ÿË÷ð‹›×A ¾h-ê§bœÁ.°L8ï¦ióÅÙ_¶-'ië4ëÉSç¶sJ®§í}¹Å± >«#ú¨Ž”¦ÁQ=EæâN÷µäq;{‡%ÍÛTRí©ýšÔWˆ#nþØ4V?«—˜ÃæGôSš¾9»|õ’œ%oÞ}?„¹þAAò”7—/áP§TãæìOW=È Jg´ë´% iÿД´ñg}ç)‚¿Œv' Ýéêü¢w¡°ù~ÔͳkâÅðÛ/[éM'ƒ^S¶á¯×¶ƒ·,FJ8FÝ:7H™ÿZä¹É›ó+ªrPŠ%|ó®uÆb¯ûföä"‰`Æì_=qsùC¨,¬Ò ÊgðP-—MÉ/zËÄr(‹—MÉ\ئ8C§ùÇ'ÏþæëÍ;R!_¦(]m´ `’¦Ò­Àר¥¿Ì_½¼üáå éÏÿþ¿‡~úu ¿vS”Þ]6ÿ!]8å1^F)ÇC·Éa³•2ïí `ëxnñÊ[«`]¤Í96oÉ­Ú¨1´uÑOqhűi¡÷[͸l^6~š{s~1}sÊÖ†zù“øO­l{üZçŽãa\6ÏÐËr€qäIH,È\#vÕ—'ÿ~òö ü9‡’N~„;ùOèsxâ2°)»“èÀþwr!’›m=yóä«}¾R®Û¤ã LÚêmðEã r[ŸF_$1¾J€I‡}‘Äø‚Þ¶Ì£/’Œ¾’›Êª¾Xb|ù9l}}‘Äø¢Ú| õµfÍÔCÙâüi˜YÅ ’µ‰CãҌㄶñ)èvM`ú¤QœëÓˆöÓÔe%4Y4²&Ê{¼U‰uvѾa ½ƒ3)Qê®'ÕOõÊØ®¹¡la6sù*㘊hS5†ª ¾ÕósuϘFô…½*)æ„cñnøÿéÝiÄ™‰O›íÉùÛ?žzœ—ĸyùüúå í*­³Ü˜ëÖa zNÐö„ÝnïÑŸ¿„nT§y›D9—­kjQ¡'‚®–mEEt3Tc»Œ £$‚BÖ1”Ùo½% ÛŒ‚ÚûO¥uþ–xàì(Ô.¡I Fk°›Þ~ üÖª…£©Ñ„¨è’ñL¤šd†Ñf©ƒ˜Öå-0LK¦û=Œ™ñ¯˜!žÜBù·jÆ—D†ÔÍ ñËàȤ;\þkHË$™ªC6A+ƒ ´üL8?Á,c ®æT+gÞ–08¯ÛÌ C(9(C+•€ªVE½~òÛ'³ZÚÄN#ÙÐê‡Ù­³n/Ù¸ö°­~°¬cÂ(ëmÄ:Nʰ.˜ÆÝ; Ű£B,`×C5Ú¡«‰ve¤øQÚq™Vi'¦„Z¡øy¤ÝçH;èR Ô¬› ¥ôëÇÔýÜÚq¤ÝÄŒäRx´~¤]JŒ?¦H¢©/ÌNÄuêÁ„ƒ;è+øïÐ6âGy-Åð&x5.yç®DèeЦPÏ~T¸‚Å5J™¹à¢¸•§Y¢Ü¸!ÕÉÊ Ä–Oí#µâÊúØ tæ6§“®–ÁNW?vÇâ JÊÈ;•ԋɼCìd3ÐcmCžœ-§)úmML¨Ê»  n·8;˜cÈr ±‚» êÔý°A, „®ŽFk¼ØUÔ”ÁòVÈmC‡ÂRŒÆ‚g7SJlåÓ\ºî1ì`*Ÿ°ýØåJc]‚œ'»IŒ1îàîMRØA¡|o7N…$ƒh„œ˜L»œ»â´ƒÊUÚ¡cI»T–´ky;’v¶ãh׫á0íÉvhG¹vV‘öÐ.UÜO»>TTÚÉli¡o¦K„vÐ)—´c?´ûLigçv ®Ý+í ƒy3·óÐ[›™’*Û„vÅõyÔϾí”vt(Ú;)”vì íX¢´S µn帰¤][Î=à×yC;ç»YbuÊHõdpdž^´2A—ˆw’ô£rãä#Úe¨®>¤>‚YHc/ÊßNQ˜³Ð’SD»2°nŠ©Û éÔh:V¹ã×)QÄlR€Á€`¹] ru–ÉØøLV“ÍTfES–`zÚ¸ª¼‹xÂ&1ƒN„dx‡Ê–Ëu¡Œo‚ÆmÕ):A’ÅÌîo}Â*ÀƒxÚÈ@€ Eó4žë­0ð®vaÞÁ,7õ!‡ð.ÿm¬Å¼C¬Of’U¡O´þ¢¼Ë´ˆ¡¼ƒRµ yçÜ9K;—pŒr;ÚqÎÐ|÷–æÌ+þ¸€*áJ$TO×å a°ŠDÀ:ӊЇ«Yݬüñ`å2°Ú>¨~ÖÀ*’G°þ5€Õƒýn3Ö`bF?}mSÀ &½O,¬Åõ¥,Ö000 * êÌ3ɈÅí }JVh…q&™!›“Ù˜+0€hZ¬d…A\›¼ * h|³ÈY!jE+:–l­;ë¦7²•ÉuW¶r<ÊV‘[Y¢leà­°u¦>öØ 5ØÛò[Ѱ•%Òy0”3l[EÂlåR~¶Â §õ…G¶~H¶¢ÒÛ%Ú=l‰°5°â<×p•ŒUIE° ³S»:«~«¡OEF¬¦B¯nvYÚ {u´[‘BCêDp¢#¡¤íÈÔ€*XGE‹¸n] S»a™Š},J¥G S%mêÙM´ÞÌÝ'Í•ÆÜÅZmf'Ý0-õ¦«â¤Òôf<hGÓY†l"ôï`f«8.è»}‚Tð;ëÐ^"Q¤â ©™­bñgo*Ѳ-L¤!b.DœG‹£9Ó<Úªd«ñäQ-7(DŸÅ‹u×*P YK¦Xšžá)4Ölfª&ú³å)4 #O¥RžzG„Œ>øx3SÅõÜ6zxšBQž¢ÃðÔ·±ð:OqeœE?8žB«ôímå©àóžºô‹Àž;.ñT"yZwxZwxJ³×£xÊ’£xÊÍyWžrÄ<ý <50…>-LUr¦Áä_ƒ(NÇ*À%äf‹”¥¸)tJÉËSò¢0åù•Â4”¾Ê<À´öÍ&…i¢­¡)c2j·s²4 ¨¤ƒº¢½ïÛ®BÓšú¼LÔ>¢=-Cψ<…Qšf:I£4‰7‹¿8ëê]¡)–jìË iiMñ(R64åü)M9b±-:ÿ$š‚Gohêé„Ó@Óˆ%iýÖÌOñttßJdcaB={ éCjé篞f"°ðZ®oc OS?û¥8 ´;àtâ¥`æ©L±6¸Ðß³Ç@J)b%*³ó”EqŠ{ìfzšsíŠ5àoGNÑaqŠ#¿hJvóáÒT$·§©ŸÒbÿ@±Çz¦~Ž¢i5ãÇ=4Em5Gâ>.MEòHÓϦ ”®q©ig¥ˆ<³ºà(ôïÙÎI› RèÎÎî¡*7“:æl§¥xǜű3Êù¤[V1H“&‚BRü×ì¡â¬¨Øy)f4’ò¬HHý¢ã`t³é\¸|iÈ¢¥ooÒIîešµÞf ™¥¨'^œPÚ2¨(嘥¨-jy24÷dÎ6☢˜cC{P*'"…¥`ôú Xa)Ôu6,…–ï3^a)Tc´“Ó8w]êYêEpv( JAëbfºDiÄ‘q$ yzBŠRºG$(mÃF¦á,~6,ÍXYŰ4Ò¼~`i€F–¢Ã°F;Å0E€T{Dö½` …öf†þIa*¥`* »+0t2LÇ?Sè¸fô¸¥´ru J¥k(…)z2g&nƒRn(E©JQú P*[–BS•0PE20Õ•ñÈ@•ÂT˜1Fsç¤ÔnŸò âÑL ¦u帱h€.³–àáâ<^;Q0j¬¦¶õ`o˜êhïv©@µq¥èM>„¨`O&37ÅØ¼]éÅ#Ff÷TýQiQÊ[¥ Tž·)O=-• OñjÒ05«¾˜šò]y éÙ¸ˆ‘Kˆóøb¦º+<¥šQžªDxÊóWái¦E±ïXÑÅK¢fR¢‚Zsç$âíè`ˆ Ud‘Ä,@…Æé÷I¨4‘W ò’±•·< zÐd*: Pa f÷NźÔJ‹6PÙÏ PçÖ©>Pwj5C@$hУåLË»ñYª*ûYªHŽ* ¨"yê§j¤S‡ÊT‘SY"L yk—{¡OU¡,CÕ“mQ¨ŠD ª’c šq寣ÆÙB çÌþ©Ç%ßñn‹jV¨:Ã¥Pu| ˜õ6Ø‹œÈ¬Ù®÷z:-L…šO¦ E° }‘X™J“¾©®ºSóL[·Ü¥ñ¨l4Û§²¤ªPÂG{"iJ4©ªB!úA¡fîFßDUá£PU%LÕ\ûê¸R4a÷OTc7éBUGg»•ª²z+TMyaä¥å”ªŸFfXàóHÁPÕó8@¨ŠZh.·H3V¡X±H±V°ŠKê~q¹R°:-.·t­_Ç*ï¯aU$‡±ŠèµTeö­PUö¬,UÓðBÂm ŠÇÚn¤ª0ônTåÚ»#U©å¡úq¡ŠìË7@UüTE"Põ¹Ðªò$“±*F¬Ú“¾,¡j9eªJ˜©ØÓÍA_Å£05Î[¤Ž[¨{xêÒbáAm'©x¬)ƒÔhNøB1x»”xêú©ÅittxWp >Yô•[%Ni'QqšétŒâ4z²à4Tš¾±ÝÀlGs6Cuœîئ[á4Z–Æ™ŽûŒ,Æ_©I1·a¦£gÊRÏ}”¥iqqÓ(ã³í¥ŒÙœïU? SºK¬0øÐ Ó'Þ‹¬¨c˜òüS¸—êL·I¦|½x€©ƒZ˜¢ãx˜ÊžêÝ`*’Ã4…R÷£ÐJSöÃÍ‚ó·d^´x?š:ºó½FSñs¯4¥> 4åd>MYrGšÖ…mzÄéÇÁ)COph†2à”ý(NY¢8%',(M]î–íœr,NYÙ§”§¤“ÊS$¬]ôU‰•ö3Ž*š•pPÝâ%#ÝwU N´t+@e¡Ô¸®XŒâH¯¦¨PÇÕðÅ­ÂlºÎjû¶UüQ#ߢBEÓåqŠ—ŒY€Úì×q•¨™ó‚ó®¢WPe‘S‘ZÊâuÉÞRA'sèZ’Öe™©‘T¦r a*WñÀT¾¬#LMô ‡2´6™C¾ø4c·ùÂÔPÇv4S©-%+¾rÈ[™ Û§­ UÚÌ Jï6)T¨¦øbG\‡)Îû¬ø³©dYaÊT˜&û® ¥žÆ‹ŠR•@©¬½Jé÷KÒåý»û#)ûy$é{’ÔçåJïmH*¡“T¼CR–(IEr7’2‘4FÚU\).U˜¢¥2wOÑúV³Ô —vµçAýÀ”À”&O S̃yϧ´t•a*{® ÓÉÔyÚV’ÒÓDIyISH ¥¥R!)ŸÖmæ FÇy…¤|HHÊyH:Ý„QΉ`”(-‰ßvŒ:|*}Ĩg‰`Ô{2ÊŠQ¾;+u´«õ•J Myñ–ƒH£Ùñ›¸ŒQ~ÈP1êÃâ•$|T*k½P%0JÙaqnb©Hˆ¥sZÜóù´,õ|šn`©¬ëÞ…¥É¼Æ<˜¤0 uz à¾PJOŒ¬TJ|I¹Ýî¤|ð‘¤÷HRâÛ H‰´ê+ elæ(c“0êJ¿wWŽrˆòTR!Ê;¡Ñi"^¯A”cˆòã¢J!Ê¡¢q±%8¢ôe€(Õ J·’”¢0`SŠ6Ç#Eß‹¢x Ø®îÞFqUÁô¨=uô …Œz¾uý0 ¿³õHÑ@QWn^ÝÝÅ(óî0F%Þc8 &Í™\ã( è³=È»ËQ0„Þ.ïþ†‹¢”C1Jùý`Ei¡· VQ:Ñ[G‚ÒX–(… ¤_ìÅ”õ¹¶¢””^’Q”Ò³ŠR<\änBéòyA\;®v»WIÍýœl3SyƒHpÚ >à”cœò·æ§\1b/ñóÚ~|®Wjj¨rÁT¬7okD¥VY%ê´øôË¢†~Yx*E£@¥FQ rUþb¥/öãLgŸ¨µfjw âWŠÌ‹Hh¾ýüÈÔ½L•§/0_ê2›ˆájVköA•ï ®0U$+Lɘ:óZÜS9Ô#T?$T™lUO¶ûŽP†„êD  *= ª¼‰ÊLå L•MTaªô0Syö§L• +35‡Å™^¹ÊæL/nÚõ%Xaª¯|∘ŠwÊÍ;{˜šåeêŒx3Ù#HSX¼ã€¼\¬ö¦L'¢”©~ñd¯n`*S'z¨3j„Öv™©.ò[IŒU|éÝR•7J•ªiqMFJ©T•7zS•‹´FÕ‰_`ª‚ºØ­S %T<¥.TåÏɬ`•[aÀêÄô VémÅj¥Ïï*Vó°uÚ«M? VÓâÃØ·ÁêœEü™b5,NÝy~óPÕãwüÑTÉ=SUÞM}¤êûRÕÉ'IRxxÓŠïm¨Êļwª’ànPüÙPjö‹Üxªòj°@u¢[¥ÂÔ‰_e¦ò„H™Ê‡Y¦ e…©¼¬LåY©0µòã‡ÊÔåGÛnÅT¹LÓ™=[Y˜Êoõ S-}ò*P-io„*ó0T¡³yg¼É¼6ˆ‡Æìâï€Y†ªàQ¡Ê¡˜&jª. 1¸úCkD-eqI«D ÃþiwÜ™¨žï7)P±?/ â'ô”ú> ²DˆÊA>QYò0ˆ*‚G¢¾/QY²BTæœ0œ³AêDB¤ªà! ÕçåÚ¯_\¸Ò@ŠT™¹® •ç²¬ÚøõhÔM÷<~%—&íÛHºÓ*L…ÉØl¶Q‘—Õ¬ý¶—¼a*`Ì>æ€ü1wO÷ ²K¿Áõ¾R…°‚Ô‰>™7 •OÙ*RyÛs©Ñ-žFµœŒÝ ËH ü 5E*;©ê8¤ò7M©…RUªr…T¥ë5ªB¾•ªÍqTeh­`Užòø$XÅñXÚm°x9á(® HoÏU6 ‡¹êƒý¸Ó§Å*7å#VV™å&®4c±\e?ÂUÜ«œ”r•3¨`‰_}³g}¹G(XíÛöp•_T:«|dH°ZyA˜±*oð Vc“=„847Põ)&Á*ØÉ.ÿʹ'Å*[¸*Ï)WyÞ)\ÅJ¶T!{.ÊU¦è Ws¦÷…«Ä~G¸ jè Vc‚Uö!TeÁQPuóâa|i•ã J‰ S¹ŒÊT~K™Ê¯0µŒ×fÊîµhq¨ÜÁT–SAƒyüâ=™Ê/1®2UzS˜‡™ ¯Ø@Óû1U<ÅT<¦²ä¾™ y˜Ì,å‘©G3U$+LÉ]˜êfZõÔ:U‰0•5N™*³Wa*K”©rvéÖL ›g’¼ýo#l¾¨ø…6;O-ôlÁ P¡šûÃJÔP=mw4ß°Ðõᣀ `¶ãqd@%W€Š¯"G~åD/[(œ"›yª§ Î,K‘M–¦ÂN¦)0Ä™gvhª¯®Ð§ÏC…¦‰N» 4åGBSeçÝhZé[zLS9ƒÄ4BSÜ$´sS|lÐ| ú64ERšï‰ï¡)æ×|Pü64ö2$JØYíÝ¥©HHà7˜ÍQ_\DèÄœâcƒv¹—o$ NA#…¦íïG˜Þ¦²]zO4…®fO$ݦ`df³óW Sèùõ¦Ó‰ž®`Ê„»g˜âLÕ~V\%w„)b€)û˜‚9rçt—¥ˆ"{ÈWF­ÂSDš¹ª¡Vxêùy|á©[®ôB®¼ …§PÎòL{2_xª’ƒ<•~•§¹Ò•ÏÚ?Ù=/Ž$5zš›3Ã$á)@Zã)}˜”q*|UœºÅR¯TßqJírWœÊ%Á)­#(NùÁdÅ)}ˆVi ¸Uœ6Ç#Oß›§iZ¼‘y$O͹xÜŠí}„¦ÐoݧÌ×;ÑÌû‚ÓC¥©Hiª\¡)´û€©¦,¹+LE²S>ò{¦`‚¼9ß‹üµWfôdÒ MíB¯x”‚eÍãÃú”¡ T¶Q¥*9ŒR(Ñ´@)/+JEÂ(…9Qµ$åE[%)_c!’òuR!)Çq7*ÞØ’ÎüÉ-!©²• 2äæèU^¼,œ,nRÐ%¿©çïÈi¢ï+Gåp”Þ¸P†aÏ´;,H+f褷i8HQè´Ù¸»‰¢aqM‡Ü÷NQ‘™“ãÌ1÷FQìfã»åý ÉgŒQ„d1‰‚”õ]@J=âž9ÊËÀÜA 1‚½$3³jsP sê£_ŒŽÊÂð GùAxå(4OÈ HÅOiɼ Ë Ç‘t¢«¨+$e˜­uqüH$k(•íÑÃ(å–PÊ~¥ó Jqs=ðÀY:o‡›§DVAélG–¦hdL'¿LY æ„kþÎ0e?÷ S³þõ±”JõsD©œD” 8oÒo^àyg÷4åë3Ò‰€gy6M6U…¦ÐfôNï14?BS¬~3ßGS>9Ôiš3/ç MÙƒÐTüM¡ ¥©ì}ASȦ½£€S˜²DL{%Ë¥æÜÝ4/?S˜ŸW SŽY`Êí¢0¼ L¡îéêA˜¦áß´ó€ï.Jƒ[$«pýð(ÉC@)ô3gOòë»Ü÷ãT~ýÐ<ÉÝx*’‡ÊSöó9¿ fø)źw¢âÞçüQ€Ê)}žÊ*ó4”þýΧBÏ#x 5m&§h£Íñ£}4h×Uiê_à×ÛÄÒ”§ŒBS|-±¬Ò”×|×hÊ~”¦üô‚Ò”23ÐÔÓÎÕ MEr N©†š ;Wh*Q¡)ÛY¥éÄcš–ŧN÷ÑT.ËM§.Qš¦a¿´;nâ)iç§à)ôgžvTɧੜ6bžJ»Ý–§uqýúfžBçžìGÚyúWÆÓ%=ï§Å£¼¼¸nŠKÂÅ0Õ[§Ýñ1˜êåÛðÇ1•Y¨LeÉgÉTÑŽ#˜Ê’G¦ÖÅ;u?k¤N}Öµ‚Ô ©Tˆ‚Tö£H½¿/Péjw*ÔëbÅ ´ýЏB·5ÑôÖ€*~ŽjåOÅ} ²‰U  >W€ê7N§D¯ P}¿b1ð”ÖÔ•§üa7åé4lŸv‡å)4͇À)û‘:ÀÚmæHÓà(©œF¾DõàqŠæó7à?çç>N¹?Mž‡qZéâà_;N•_Ÿ§ÓâÛ§·Ã)ß½”ö?wÃ)Ø¥þ  ðÔWúÄ˧ç)î$Îö1¤[ñÔ÷ÇâžNô"¯ðTWx™§76‰§BOæ)´ =ØË¥)'³FS>"t MA‹‹ަPðjö.iêçЗþ”¦Ž½¬àÔÓǧ± /áw‡Ái¯‡ãxŠOZÝðþ>žŠän@…Žgw¾wyÊ^§ Ï5œ2<ï„Ó™?ž´BÔyÑsÞª$Xc*KîÄT$h¿? Le?Ç@u¦˜UæÑ#T? Tµ–€ê 9 U´EÕ@U$+PeB•g­ÌTÏ_4Å … z¯L tŸF™Ê7lÖ˜êxFʽ^â¦Ê•a*òÐÎQezy©<‰U¨Ê‰^¦ª$´BUй4>1ˆ“ÖŽY1¼*ª²û jì_•0D²BÕžNÌ[3Ç“8”¨rà—‰ÊeT¢B}´/ *Q¡ f¨;5ì¼á° Ô8õ¹ý P™`Ÿ¨Ë£dÐ û/jº ¨\ÈU Îô)…5 V^ƒéÊ"|= T9ù @ßB|/ r5¬‡Bþh ²d¨`c½™3ìª>L¥ESÝâ`RtÇŻã&¨†Åî탪óÛû`* Ž@ªô0R“Ù|ØÃÓRÌ7eÞ§´|¦ø™ˆ›hÊ‚˜Šä¾a*[ª¦;†_$Ÿ¦Ê{†é Y©³Ÿ>}d©¨¶§Ocªú£ß¿Ný Nyª8• «àtZ\šÁ©g_”RœúÅ¥™}8u4×<§2œ²Å©l˜ NÝòÍ^ù^÷18-ô=×ûÇ)6b¶8xÞ3NsYžóÝÁi¨Ã‡ÚºÃâ4£þ"œ =?KžŠR}XžÊ=šGž>òô(žJÌ T×/l¬•½< ‚¡êË*÷ Tò¢<åžw O¡5<‰òT€¹KËÆë Oå&¨ðªz}¹÷ýx* ‰)Ô+§Çð”½ÅÓ”oæ©Xæ»ñ´Òçg×xš*?1NEr{œº™^ÿÅ…éè±8ESoÉïÁ©H§,YÃi õ_éõ`ë½=á»§OÁéÄ÷RoÓi¹Úû^8-ü5Öœrý­â4ë/Aî¥r)UXêÇ{#}oPÈ( +Jý°}Ú7¡tîÊ«(ÅoæÞÄR9òû Yʵ}–жb©x–Ša)Ð5šN³diw®”ãÞQÊ^Qúž(ƒ˜æ»£TIõáQª‚‚Ò‰¾Å}7”²E)“ó”†{à(¨D°÷Éu*åÅá£8*ž9:ñ§™™£ºG*õ˜ áh¸q™W©ÉænñÒ`7b±‘ÑZõ%DƒáB(tàõ(‚r*‚©’è~©Œ‹7 ”*n@(]óU„NÃfiwÜ€ÐVœŸr—2æù[;+ü„¶±o8|D~‚îÌæ‡ÐÞr<@Yr'€róü Zc6ýþÊI=ô=º«+·¨ãÏ¢}P‚B­Ò'…!(ØðöUå# ê1O7ÔmW*¸T€Rá§œ1R~ÊC Çð“ç˜ùŒIôÁ×Ãü佸~{†Åä”Û1BNÞ)]!'LnìÝRh=%gwÜ•œ„ª5p2ðîNhíþåøcÀ)› Ÿ8k_¶=„Î8ÑqþcÐɵ¦ý^%ŒNåÏ;¸xDççN‘ܡҳcÜEÀÂ/Öqe£t…ž9-¿–¨<=†ž‚µzÊõöøÔU[ágèpÿØüdƒ{{~r üd?wAè„5cJgw¡iØ íŽ¡ôă@(úhŸ¶ç¤¤!pQž¯¾'„Î4YV„Ö~£ínÍ”¥hæo–2Eõ´Ñ!ŒRÞŽÃhZ<&*‚‡QÜ 2·òDqoª~nu]«?D9©»BÔ=‚r—‚Êlô0Asæ„ AÙÏ AA·uaŽn¨[¾¸è„逺å.ÌjíÛºíù© –x#C…˜·e(7Ò¬Ìü@ 3”kV‘˜é;ÊP?ÏíËÐÖ\ƒ¡ñ B¹Î¤­pÜ|DïV {%©æ$ P=Š+-ý•ÃePÑFèÎ!¼›šþÚè)vô¡Òs‡;»ô¬±] =5Ïœž»õþ^ôÜ£Ÿ@EÂ]1eZä•î 6|±€«N(Cv… ºáy€ zpˆ ЧÍý÷aÁöáTN Ý+AåT‘tçU#yì^ J AÝ<<ØUÉ%^ÞŸKÅgî·ŸJÓŸ >Ñêö7æ?g|â™÷uz²]4=ÂóçOãl{™Jž¶§êd”»2L4£]¼ÝCÎ@ŸQ;‚œ®å”œÂÉ;’àßï‘&'WÇ%'ô†é&rÂÖ~ôýà™æÅ“€.» Ýqßð„N:ßÀNöò ³Ð|v¢jŸ`Ÿ¢=Ó éù*9‚žÔZ«ðÉç σTÙÏ#>?5>'ºò¡ñèã Ú‰À6·wâ|†#Ù)¤<ÈNEÚíÙ©ÛœG±F„æ¹¢}ìäÛQ„©}wµÎCàä:[c'×ô*;™6+è”ë—Ñɹ_E'½¥¨è•Tt6‡A'(æœVÑ9c9WÑ)wYVØ)’ÏÚ?ÿ{[xê.§À3÷oT|xxÒºû1ü‰ðSlðsinÅÏ3t €¢%N}¨ï·Øï »HíñÝ3@wz‘ÌH@=êÉÑe u@e‘ö–\®Tpy¿%w €2RèpzÈíêMaðY{kh²;9Ãسá½Uò“J¼†PÑ­ƒÍݪÜ¡»½î³CèŽÍóÛèz'„ú®9ŸBwÛïƒ!tW+ªÅ¾Cÿ@ s ›Öoqjxìú­8ïˆPüXÒ sÎÙšì]ˆþjê DAõƒ}ßo¢âe¢v2¸‡ ¾OYV:AB»ã†îÎ}wº3x?†BïŸmUÞCg:Ê{;†ŠZ¬1”òq¡ê„Rˆ5‚–~jîã”kþctù¾Ì#A%ènÌ ~û€º»w¿ Щ? úuý'èÎyA—Cï[4`ÂBŽŒ»AåChG ôd²Ï'3×(ÊF{¢dAW º\8s‚ˆs§4CÕ·+¹\›kMÃ&hw< Œ24R?Un_Q¸ Fuçó}1šéªb”WXr4Ñr¯rt¹(#~´Ïì.îÜ Ò™&vwér$îéá’5Ž¢=¶7Ö9úÈÑÕ¶Y©§gzÖ@êh¥öžAº»³”.í [g‹ÒpG§þF­rt¼Ë2íÞeæ©óæ(§ôq9ªˆnÏQùt.+:tê~ÉT9*oLߣÐSûeÊûæèAK£Ý9¾ñˆÑO„Qß5ésÂ(eyOÆèε÷ÅèDÄ>‚£PûÙ¾5y¶7Z”¬RùX„Ô|?ŒêTÌ CñNeC'Æg²/ã~þÁ­9ÊïS0G…¡;ülK†Ÿ¥¯ ÅOÐOû\ ´Ü,ø+„'¢ÒÛ÷Bv.tíƒgÞYÍ¥ºàY0ônw\ƒçÜ·.ðÃZìüäç Oúîä3÷ÕÍ@õßøŽ4¦ƒ=: êF̱ å+ènx‡òû˜è$ A¨e1׾ݾnÖa«Ís¾ÐV$”²ûè Ún6¡`D_øˆÅ ÄD/~ƒ', 6T®í{ðàɃbaoI•c_Ð jDY@û€¾ð‹ÙPÇ9Ôþt9øjJ"H7´\¡Ž¢gWº '´9P„71ZTºtÔ˜ ÛÚøŠ ¡­nÀ4Eœž€®Ô9Pµþð”jïéÐ'ñ±:ð”]SlˆªvU_Ww(+Xè+÷®!AÊz@5ƒÛ‡@ÁS£‘0*ˆ|¦¨*ôŒ¢‚´Þ´<ÍøvŠÀ8å0ÄÀ` `̦Æó—†4ºCp.Øç’c°åèeËÍg4؃$´Ží§ÒúeZ¡E–Ñ#¹1]+"ÅÇܦ»{-KÐ4h®™M¢»1g‚}H¶{¶­dε‘ ¿©s1HúpÏ;¬ˆ8h,ƒ`r?GÚ¦áçÔkhv÷øÑ;K e†hÁ}iìÝÞ)yöÀ¹ãÐ6ÿ½L¥è‰‚–^&–`ôªâ§Ñcc¨ãÉ©Îm #>|¦„ggOàù¸v¡]ƒ»vvJènL€rÀ8ƒ-B+~%鱃‰„ºÌ,p˜/݇'#ÚÁ`VÞmûê»yˆÝÒÁDBÝCb î#iH“\°Î%Ç`ËÑË(O8ã›ÚÑpÎhˆb†¡.˜R™T‘RÅ©š$ö\ÏÇ î–†`Iibh 9ôºà4ºKƹ`”IŠÀ¢• Õ²bíõYÌÅ f;`–Þ>˜R²ÈäܘÏì»Ab0iŒc`wO£… £ÐH Ж©it7†à\°Î%Ç`ËшŸ6nãóŒ:{1H`:îŠõØ-§<Ï%7¤ #Ù‡ïùàÄÝÓÀ,‰ æTbHíÚ“¦ÑÝX6Îù\R ‹r´²Áø%B0Ö' ƒ¯kAÛÇnðÚ&CãóŒÜ˜SP‹0ú(œŠÝ=‚$¡]Ö §¤4¤ÑÝ‚sÁ>8—ƒ-G+[‚‘æ”G“/2Ú8a@Ò°Q§µ5ùÉ7ê!Sì«/²ÛÙuNBì¾ä=p9[Š^²Ô–¼t¨/©{ÔïYÇö²ˆ"c}˜Z5-QÐËøÓÅ-rË@\%}¨.1ÐP^jx¬/¹œoŽÁ–£•-c~p"ŠçDZÙT2ã8 uîC`ÐcoËr¹Ÿã„œÔCt}6Àˆ{" Š$¶å‰¨¤)t7à<°Î#G`KÑKÖWkè-º‹ARÚG¼|†l“©öAD]ÕênLæ‰u|ÌíS»{‚%)5x×\°Î%Ç`ËÑËcMœá*ÙDB\ÂuŸ2·x¡QÉVæ/û¨SêƒwŠAÜB6‘—$â–¤!d“\°Î%Ç`ËÑʆ³÷6ÅÅc\…—;š[2êÝ–´ ñAÝûŠ)90—©Ç)?§™†þ=4;{ô-Ip¿ ðÖRäø»½sòü3玃Ûü÷2Õ¶àËûレ͌µ uç['ñZ×}»Ò§/û˜ñQŽ 1ˆ»§!XºÉ‘|79ú‰¦æÆ²q.Øç’bX”£•m†§7Ó3‘Ðäj޾RyòÅ+Ø:=›óÔ,“øýÃôLÜ2=SI›]I4ù’$dz&™`’í-E/Œ8³žQ»P mÝÀ¥RXÞ)œ +ñÍýü têvB_}xßÜz â¦40„HÚ҉ĀÜ9 vÍE£\dÈw‹aYŽçmù.¶}9µû*éf;L©­ò²Y×=6ü ¡Ú`,Ç9Ù&‹ m Þº&ÀV_³À>8‹ƒ-D/.­ërƒ”¦<Áë>mÊ1<˜ÛÜ®ó=^ñ¼81°»§!X‚ƒý 5Û>«hn À™ ’ÉÁ¢­d8wד#*?jÇåvˆµm¼TÌ„¼­ßܘh©}¯š}ÔÔL™ÄÀ`IjSq!¶)Âpº2uc§¹`”IŽÀ¢•ËÃ`Óé½Ò‹A‚žA±¼kˆ‚PÂtøŽÀÔCÛ=}DÊÇÀîHÓI•A 5@; ó‡g[›Cp.Øç’c°åèeëàkòƒŠï0Hnï%ò×ðâssc¢µô½)ö1sUP ìNÍ܈ò€=F‚‡fú‡Ã:¹cE³À>8‹ÃP‚V$œ¹Ï²+~1ph1@U¶4̱‡ãôÍ i†èúöûˆœŠÝ-‰€®­ìk`Es’èn Á™`œIŽÁ”¢¬4sÉ'9. xÆ0`¿jìÛ0úÓ3¡OvC˜›‘q د8¼8{€%¸«˜0FŠ—¬À¢s äÄ( âr(Ø2´r᤽èñ˜‹A‚à¨1¨¾†˜)6(ÉnwcFaXýà¦Ñ5 1°»§ÑB¤´±½ÄàJ[8•4È!(âƒsÉ1Ørô²•¾3E/ç_ ’ÚÒ±æ~¼an€—ÍhrCº ʤ‚€[ÞkâîI`–ä¶K,äö™gM¡»±dœöÁy¤¥h%ÃI\ cÉD‹C±xG}( kýà!S84»µX,ábQ”iIAŠÕ3À?sî8´Í/SmÏ š(Ò£¹ ªyÃé*ÖÄìÚG‘Ô‡w¼;D»“Ô‡²zÉÇ%D9qö!™£ÙoEʱŒÏŒ]¨»`ÀtÁv•¹ŸIÀ<ú&Usc6s;y¢> WÅ@nJC°Çë'«íNŸ¾TÚÝ€2!>8Û-E/Ø"\kV ©PtCÏ‘×ÜX eC<ø¾Ÿ/°[tP$¤Ei'!:(y ’GŠ`QŠV²ÃJ—Æ’‰„3†Ÿ53.'¥h%Óò†Î)n-K¸hÓвq.Øç’c°åheÃ9úpÄóbP©®"‘$gf¤‹U<©ø’ÈÐIÅ-M$ÔS8îIrÖRúçB|p.9[Ž^6<eL¢H¨Ök¨BZEor»ÕʵA>ævRHc`·´›H¨Ö%jICÚMrÁ>8—ƒ-G+Û ƒËàDz‰„r†g7Šv¯á‚—m/ûÀ¯E SJÆÊ–§lKR0Éûà,r ¶½`¹ý=Œ%œ/¨@7f[Þ”‚Ío—ÄirdÍúCÜœ®J8gçœÓвq.Øç’c°åÀ²Å©ó´l*ᜅvPs.QPÙâ)^ö»ûuˆÝZ6–ôœi =çš—MsÁ>8—ƒ-G/Œ4£žß¾$Ý Ä©ŸÖd3!GäÄD<06xpn"«Ú#7÷q•t+À‘ÐCxlF$âƒóH,JÑJ†sõZÇV Õ¹ƒT…Žúq£¹ÄUA>ps?°[M$Tå5‰¤!Æ™`œGŽÀ–¢—¬¶£lC›‰„«ŒYVc?œYä6Ã;ÿuô{ü:WP·4šH¨Î9ný·ç‚}H.¹Ùm9ZÙp¾žóX6‘pÎð.vrΧ/¥h0À að€ûüqˆ€ÝZ4–pÑ()LšKÆyœGŽÀ–¢— Ÿ‰‡#*!u ýÁ\Q7=FÊ ‰ue°3·ùûE!EBú$1¾I¢’ ò!¹¤åheÉ{$íiÃc‘Ðà6†þa üÊX·:´Nâwúý¹eðª’6º•hð;\V¡á±dB|p¶)[ŠV2œºc׋ABuÖl´"riF­­5Bó[ÚL$Tã5ˆ¤ MÆY`œCoËÐË…ÏK{S.–p¾2®fh¶ån­”«†ÞÙÇÜsÁáÉ©Å"犃s®9-å€=p9[„V¬Ä·¤X"¡láQÅiȵ> Éå³þ>p†ˆ[J&Ê™Ä@9—4¤h’ öÁ¹äl9zÙr1ËeÈS‰ÝÄržå—” íí™qo€¡¸¥T"á´u{Ü ¡ œÛ±y ìã¶Bã¡A¦ÁÑaÂe’‡Îîa®;O¡hptØàµµ8…O¸[² m«áÑaÂà zÂרnØ.Hxt˜ðÐïë¾@ÕÖ½ƒ/áÑaÃצ@x´mï§¡íÐ1†Ÿaއð1À´Íæß‘ðè0á7õ‡À6yŠkptØà³©>‡‡gý^ÂÚp>µŽÉáËIµúH¾æÐ&<.– ÕˆC‘!x³î|n”áàø±,o»á%Ïî0ácß¿äð”ÀÇ!|…f–ðÝaÂC‡ðx˜Ò—1|Šß6üÜV„8<îÞÌn †òw‡ Ÿ³©>˜üd ? OÇt‡ cJ\¢çðNò¾ŒÍWv›¯¶K¦é@Ë:†ÃpÝa÷ K¾âŽAÃûá#”ÝaÂC‚Zü€Ç™ò˜}à„nÓ„—š40ž`ËcÞ3°@C7‡ ÞnãppÐÄ4¶|CɻÄÆûq³÷©õŽ!¼JÞ&<°¹áñ;áalù4(~ª;¡ûú…ös;Œ5NCÑ»ÃÇ¥Cp\Àˆc·K~(|w˜ð´ßÂáqcy0–d ß6|+¯½ç>ácºMw˜ð)ŽV O.§ilúÅéìD´-cýÁxbïòNøvåNÂ;Ð$76~¨C·íì*9|» 7*_ÈCù»Ã„‡9ɤá]{ÉaÌðCù»Ã†¯íÀ‡Ç' ëØþaÊß&<îJ á3Þëß—Aºc ïðù!<^¬cù}Êß6ü<š­v× ùßÿõx ¶j:ž¾Jcýíÿv®†Çc5CxÜN£ÝÚÿùÀ!|¿˜GáÛ\·šð{¿¡¤áaî4<^4ôÆxìû„„†Žíõ7êáFT[oÿóÙCøy¬½„«¡u„ÞþwC5<Œ­†Úà Áôþýï¥ix¼Ó”ë-4öÞÅ;1®´ãüª50^7¼Â ìS Eÿ<¿8ùí³'¿úÒÁ@Æ`Ÿý‘âÅ“‰x0áåÛ¿Ï.žlÜÿ<}†Wæñ~ð òÙ‹'ŸT8—šš0M{„%™àµ ç¹ ÿìÉ¿<¬KüXaR*¸ƒƒk]ägÎG˜<™‡'³¡é"šŸ”úÙ÷î~r»å+J{ÈQ#`wO°djÓŽ àR}ÑÈ(⃲ÈáMžßý ¾'J•z1<—âé ±_é‹âK7Ö|‰d*ôÆÖWò΀xbÁàG&iz,}-ò0äjðuS*h±†þƒ“tßÖ+pÒí[ÿñÓäQÛñZðõi»C ÃŽðñ(8¨ÿñ„[.ØGm¨ ”ù¶/èÐt¨…•šBÙŸ̵a æáþÍvÕ½uÜC¥š ðP`?Ûº! U "¾ÞüÝù«ïOÑx†°Û\¾<}êg¼%Z6Îýúôi„fšà‡¯Oç§x—H¸þ9»>÷¶ ÀVÍóæé·ƒãì ¢Fg%ª›˜ÎÔÊæ ê±¼zzm<^^PŽœßüqð÷îÒx{>:ή®)Д7W×g—×ç=‰4ÃüóŠÒ®ÉÄxùî‚~˜ýæúõð‹TJ‚Bö¸ÑWÜüxêa€ ÉnLfº#ûœ}ÙüI#…\´ˆ`6‡ ì8aóÍæ‰aÌ×õÓž*ÛXY/ôïÿxF;:tÏgÿøäÙß|M¿öêwýÍé¶7'¦÷lY<|¬ ¤Íwc{¾Ã’âaw7W¯1{3²®›w§ÏnÌ›¯ÈÇ”¸ÆzreÌ\G!í«#rüéÍO`Z4å»QÃÞ¶¨`ò¸¹¾"ÿ.mÎ^½º<ŶŽ5Úh_]ï(^>‘‹PæÍ=.ذ—œ!·9{ó†B¾;ÂÕõåùóS\à Â`®°=óêFj»ì©m<¬¨•¥]{ÑA `æü\6c@PcòRóÆjÿw‹.¬Úg{]¯@PcÈ)* jɲÝÚ±ÅqŒ㕇²¹~×åóœÚ@¡{‚ÄþüýØÅ)z—7×çVŸ¯8.¨ù?R\Ðõ—½¬§6Whb°}R>db\,~îñέcµ8âÏzUÆà *{B¹Jþ/ðŸJSþe6Õ×ù%,l.lÊ’¥zB¾@¬þ˜þvÖò:û°ùi¿N¾ (S§pÆyp›Çœžíg‘Ø<¼9k[¾y…ñJhº‹ÇÔÝ®¥À[E¨AÔKç€ÖïüÒ8¡í¡àc®µP-sÆÏ»KVáxŠÅ‡|7k,sÀ+µk!þ]÷hNËعo9+éòéó;µŠ±ÆpkÓ3tr¬V aÎ0Z Šý÷Sª×9õŒ¡ô[Ú?îÖ|ÿá’2ƒ ½k‘ÉëHò„Ûy8UÁ‘Àë—o¾ûfó è/ßCßx¹}ýúuüÅ7§8<Ø 1šjøõ*G–Iz|/Ê›æwÀ‡–$~µšæÌiŽöî”ÔˆÍ`äzŸ1k—ÔânÑ…ÿrvaº”5B[ªÐ¥ƒÁ`Ì3ùç©ïÉÓ€úWCÏì—-hÁ è†="Æ\¾|ûüå•J¨ÎLÑŸºŠúˆ/*Ãð®Åú›o»šÃÇv9@L,¹5üþ¡ÿ0ü Þ!»{"i©xåprR¿go¿{c #¸BÈÿ·Ó€6­åÕ÷goŒêfõ)®ª#ÖÑDCi ùêå)ôâ?ÿòíõùÙò“7ÿ|yŠ3Trèrm²…8ûöÜD|ý‹õ·–ß~I]uñäÜæ_!z´Å`óß¾â,”Íß–Üí?(*ýiÁüAã(§ÏZ¿Þü®×—)n^!¯N÷5¾Û¢p ÔÌ[À%2ðd^ÀŸ:{ÅÝ7g%ø¸è®W­âš…ƒòƒFn§_ª•ú×/ÿ±å§ Õq™Ö ŽÙë¾1»/3ˆ™@Ör›Á¼¾¾þî׿úÕ«ï:ûöå›í«óë×ß»=÷«¦ï®%3„µùÒþ9^kŸ’7ém1¾§ødþò,BŕȮÓÝ®·ÆÑ€™Wœã¨·Ú AÛÿDMGívå v㉗$ÚýêòüÅïÿr}É s†Ó<\ƒŠ/ίž7¹ƒ‘ËKPSÔžàÀŒûö%‡}÷=r ¦MÏ Œ3Þ>ÕĤsË·ÝCŸ%4cÕîàåÍ/moÖoþ9ú…þòÊZ‰›³ï^Ÿ?߯‹W |t1äÐFÐ_R¹½: 3vô­ÂÁ‘ëÕù8£j'4ÓæÇoƒ(k¸'eÅ`0ËÆ}ò”sŸd¢²^¶þîËßüÓö˧Ðl +¬l¾»|÷Ÿ/Ÿ_oß]¾úÕwgϱxÿ››ùlÈÌÑ*Œ/4d Ö Vaüª2üÒUx"³ü[™)ÐhªeêãÝ¿Å*ÂkÍ _œ_j,^ÅT6_ü²ÿfïÎ^µ"þóè/èOhãfñã¡>Ñîдuî–ï/ÎÀ¦þ;B ¦ÍWßI÷¸¼jö+µžvö¶ srCæß¾|ÛËý³åß§'WW/¯4Ý/¯_?íFÚ|O¹’žÍ¾çò]ïš>m^ìïZ{ú³Ïn[žº_ÊÀãžÌs†ÂÔ|<Õ¿Pù^¿]鱆að ÖäÕË.ÁKÐ`-†np¥Çg}œÇŒˆÝ.í—…ÒŸÿpšZ¦x4Ø-76­Ç÷&Z àVñä»ZzYD€Äæ¿ñÏ`þÛe*ÐÄÔD °7ŽÚ&`é€ñÇÙu'Fé i^~÷Î Ï.!ä2C%Û0 ú][Äj–d–Ä®¿ß?š†™\OŒÇç㤥MÇðþwž½å7vªÐÊ€ZNeØž¢‰ÅFûï{-^+v“Œuþð²Î"÷B€â«¨Ð…c«žŠ *ˆ É[3Xüih‚«óÝy Û@£þÍ/ibM&a”9“›÷O R²…o6á›ÓWÿ‘\ÝÞCÆ—îÕm…joçÅ»ó_ãS[ð¿_½zyö ㉻ŒªðÜ ™ÆD¶Ã:îÿã/Üendstream endobj 345 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2424 >> stream xœ¥•{pSuÇošær)µéº÷DYU|í긠€ ”G© Ö–¶ô‘>’´MšÜ<ÛæÝ“wÚ<šôÝ&- äÑ*º_Pu]ÿ`YÑYÝu÷wõ2;{Ó²–ÙþÚ{gîÌï7¿¹¿Ï9çû=‡‡ef`<ïÎwìIe¿]¿v›¢´NRžÞ[ÅüŠÇÜ“Áüš¬ú§¥?ñ͇ìÌ·ïYôp²Ü…Ü^¼ãóxû*¥ÏÊät£¤ªZ!~xýúGÖ®å¾OŠËhñ¦uâí¥åµ2US­D\*=(Þ¾nÇ:q¾LÅmJÄ«eRqYEui]¥XV)Þ[±_\X°yOxëž…» X÷?Tÿ]b–³Q*“onlR¨JæWTUK ê1ì^l'¶ Û­Â °½X!¶Û„mƶ`ÏcÛ°íØ,ËåâÅ21šwO’ÁËæSü#™+2¿Ôãx þïíÄÄ©…UYKQr Ó©RÌrq'…‰h ;˜AÁ8 ò¦f¨Ñ’làÆ°ä`µ‹hs»€% ‹ü& Éo¢¦~ ÇpÇ}:h«Cd°ZŒ 'dÃåNÅâ¤ØÅ¨PÈ.ÃÑ tÉÙ.à.µ¤Ð')³a†ÏL¡BOû DnÓÓVRÿJs•‹Ý×îŒû{©ÀÀÊ·‰÷+Žç—”Ó••¤n¢2ØÕÐÐL×hëôÐF˜<ªÑw(á'Ý]ÑT ˆSc2¶Û&j3;fÓƒl"UÔKx»ß ‘=Ÿ ^{¯ïõñ3S@ô†ÚjŠKÙ,])e¡­:h&ŠF%“ßEyQòR”;ƒ,—ùŒ Å…?n›þ»ˆÍb—³ÔºéÍ×£<´ŠÜê²¼õlæ3û§Ï¢Ì¯ïÓs={¤ÿÂ6¦ÐC³ ΠŸ¹¨=è¨ðË¢ž+:(k”‘Š3Å.”B£Lß ®Õ¿-s!¹B‰é¿ÓÇq:­vÅ.¹¡Tá)ÔpµSh ÞÅ¥9!UŒŸFûœŽ±Š³ BØèA$¦¶p\ g‰%æË}Hp -ºx4R\LÎ)S¨„+…§KèöŽ üD§­»Nfo•˜HÍ6ÛƒŸGJºw˜m.×­úPOÐ;ä#‡þáô¹¼à%¤`‘9Ì/Iön| •·*[ËÀNÈFÀ×ô úȾkNËQBòF®kàøãÿÎE¤Tâ:ù͈1ƒºޱ«™Éáµ_ó™ÏÐWÂËÏ%7Ñ{`w!i8T/bM#»Ê6§€p¿ê8œLÑÑk“YÀaÓQ[Ù¸MÇ)À~‹âºš83<9vl Âðº£Wi±MÐH4õhû»“¡©[jÿB =Ÿâ34Z)„/Wu :+ý0þ‘dl4z :!cЯ3›í-ÐJHF¬½ñ®g‹Æî¬Z_ªèhˆ7“qUÌþ‘áåB+T€F_+¡«Ôev)`/ÈûÜîpbDÔ8X¯«nÛ·ÝÓžL¼ëLž#OÅGÞ„SÄÏåÊWñÐÁ+|¦í¦qšl­´‰l.*)-B×ìKøÀåé¢ÞGAÁ7sÂàN='Qž'.p‹ztZj–·9ÈJöAÁºy%}Ž?Ïì?Qò>Êø-IÌ%ÉQå|; ÓèÊ»KsÿÄ ýK>|=3DΤi­Ê첸ld Í`…¢j–°j›·+Ê*xÙ|l¸ß?â룂o€+x2vi™§»ã0¸‰ˆ1¢UX›9ˆ—Ùb«ªŽ½s/ˆvÀTì¿ÏßM _ Žúb0&úË‹.S]{ ØÊ¸ ´w¶ƒT¶–Vi[“IiQ¹}&µQr oågÊ“GF£Ç‡Éø+o™à??0MÌבà |üfÒdvc½‰´©u* Tí¾€‹{©PÄÓ5›£^mX£2jÛìdí‘[Î>ÈRkÎì¾4ýÆ©ÎNÊk({¦`àD Ü“ŒœƒÁ>î½­×f)€ɹ<ßön‚0ÅN¯Ë¾9¿ünÞx»vJôCAŠÑ§x?-e¾¦û¹|îžÁt×^x£^ÐŽïd,¶£&Ø ¢òy†ØœekçMü#¹)5 ޲˜z¿xÃâV:u'@Ô‰÷§ý| ™è²C³ª¤æR’—Bœ»9ƒÌ\[þDS÷h[Ì»TÑ526ƒËÊ“ÀÙÕéì¡’øx·ãXìχýïAqaÿä&ö.VÈæ²+w÷–ÅÈÉ×&áŒÃçD$ê½Â]C<‰BÂçî5>JÖããŸ|zˆÃš†ôí¬:…~Ÿ¶TÎå˜YšûOæÑ§…ˆÏÜ"Z§§mdíñ2'¬€³äýw]M ¦d¬Àf¬}ŠåH - q9ÝN7—ó^mo£\¡¬{á¯0V]øûÙ0B? —?Ê ž%sW—4OžA¼ëœÉ¦¢åÔ-âÈA_δs,Þ[æ¢Am%u/Ék¹¹htÂAp…F©Üo:†ÞDÂóyW‹Æw–5ê5äIôÔm$3‰³97àÖ9èàø1´ú-”p Æ}ʦ¢böc •ëµh­zuÞ+Éê7¿=‰îîýE»Ÿ|•ƒ 3ñ™t0ÌOm£Ôì*¯­çšÎßë ôQc_ ^ŒçXb¢³Ž®ÜÃ.¬I·è!og——üt"Ö Dw¨UÓfkk·SO°eVƒÝ *ÑKÕo?²ÆÈ\q óˆpXÝ¥”+êˆ2ÑïMô¤˜'™Ç?DM—øL½*„^;½/zÿв’ÎWCðqñã¯MþÑø„Öa3)M€nA+œnW€«mÐSj,¦ ii³´Z[K&vzd\…¯X»ú¾¿)^o£.i&Z&Z _´eãÆ /líùÐëêrIpùÜéi¢6SPÆn0µèþ¨/Ðᣜ®p¿Ûw¾è:D@¢ïà»Ùâv37Á §Ó\J !ÒÒ¸¬N @ ú£“=çú߃)b¦,QZTÙ ‘’Ö˜úÔ^(‡z•FoR»- «ÊÞRÎ>¶ mrå6)‹ƒyvÂ&œ¾srð[nR_bÀC+kÏØô”bKúŒévg Å5k)M‘C4ñÌð {:É%-Af›=r;ñTÖÌ"2+s¯,{!d/šìr¦3ðfgŸwz¼.névÆüÙ‹1ì? ‡endstream endobj 346 0 obj << /Filter /FlateDecode /Length 24450 >> stream xœµ½Í%Krå§õ“ 5f@Ôì²$VN|ß\ r>0#aØ ÍY»_w•ùЬ*v“úõ–[˜{ø9Ç,oU÷£@ýò”Ù/"<üFxı{íïß ã›Áþ¯þï/^¾Þüú»¿ÿn<Õ7õ~ñòæÏ¾ÿîßüå¾åñŽñÍ÷¿úÎSÆ7ã¾=Û›Ûz{<æõÍ÷/ßýüágo‡Çaoãp<üðöý±—¸ýáoàÞþòáýoßÍóT2÷‡ÿL‘ÿôvÚý¶2àÓYÂü8 ûâùø#°Ÿp;Ÿ~Ù6²=üûš³˾?<ÿòmÿã$/…K¾ïùÝÃúöû¿ýîÏ¿ÿî¿”ßË/Û¾}„šÏ&F…’‰Ã µ”™ÃÇ…;‹ãŒeWW>ž¨(ÝYw²ÊÍÌŠŠÐ+ëY?n»ÌñDá¬Æâ8c•ëÏñDQº³8î¼G”{QT”î,ŽÛ÷Û^–c‰¦Ùo²åþ´<ÞF Ú§]ƒÊ¥Ô®J°WS¹)ñ¬LΪ{%qmƒåz¿¯ãÖ68•Ûùv½œÊmí{5— b²çå¿¶sàÙ¿‚Öññ(÷ª´ìã‚ìš¿ÎWÐz û3cY…];m«‹=bnû£­cjÐmÉNʼlã¾´ }ÎNŠÊ­G<½ãþXö«ÍÃè÷&ñ@Îeå¸Ðíd.Ë–‰.¬™BYõôJœ±¦2ºtÕI¥;‹ãÚîËbëȺó󭬋Ã.Sù¤WÐr®‡5HHë‚çÏv}+ç®r‰ÂYm×9î•]¿Me¹K,ËØu"|T8«mãŒuÈùÉ¥;Ë⶯Öq<ÎtMXÊÊn¢ëRT$«nPâÎEïíq¤]M¥;‹ãŒ5•“OS7Q”î¬òˆ8ð1–UÿÁÇÎj,Ž3Ö2?îtjEéÎâ8c­þÔЃ l'Q˜Ê"q¥Ïf¢ÛI%l£X2ã—²l\ã•VƒŽÇ¯‚Ê:o¢Ïêr”3HŸÌDᬶç%Žgß:l2×¢"Y•%qÆ*«5žk‰¢tgqÜù|QÎ!ÕDQº³8.øÕ˜hº¯e!¶ÑäNÎj´8ÞùrÓYyW£ÂYÅqùŒXËÚl‰W\^Ȭeq0í>°Þn2·Ö}“™”(œÕvãÚçrwX®õÇZÃ×füVVSGüèðñmeqµÇÍ•Ëݼ®má°•ÅÕ-Þ1yŸ¶²¸Úâ:Eö©üãJ³}+K©™æv¢pV)‹[Ö¯œ¿m½=ÎqÍ'»¾meH¼"ØneÌi~neÑuÐu.Q8«íú¾|Ãù+˵äüqЭ,×hæÝÊ"k£]HJªû$a'ª ûƨ¨¼²(ÎX¬çTQº³J]bneýÆó#Q(©‘8ÌPe=Ñõ$Qî,Ž;_Ò¬ö_˜¥;‹ãŒµ•ùA×ÌDQº³,ޱ¬þ>¢¨pVcqœ±Êêoçó¥;‹ãŒUÖŒ7>¢¨(ÝYw²ê+3`EEè•uȬßË"‘çxT$«²$ÎXe‘¸Ð#n¢(ÝYg¬²HœéˆEéÎâ8cÍë#'AÙN²0šû²ØëjÌŒ g5ÇkeŽ'ŠÒÅqÆ*‹Ëƒ–_‰¢tgqÜù¼Ìº¼$ŠÒÅq'ë0ß‚XQze2ë÷²8Ýøˆ¢ÂYÅqÆ*‹Ó…(*JwÇÙ‹è²8醕@?Yg¬±Ìúì%ŠÒUâxÖÓ“< œÓHf óØø£"l'q˜¡{¯D‰QQ¸³8._˜3Åç¦,zyæf &µÍq˜¡ÊÒ˜'n¢(ÜYg¬²^éV™(JwÇ«¬ ºh$ŠÒE¾¤½&1÷W}ÉWÃïû’öî±|<ÁǪ ¹]S¹PFU…¢ì½ÖJQU¡¨ešì]DU…¢ìù²<ATUÈ—¬Ý}ɲÚ>Ïú’=¨ Ó|ÉÔŒj¾dj D%¾äXnbëD£ë ®Ùà<º®pTyäš9Ê>år»Ó¸U…ÏAYnMU>åùæF{_ò%û˜4G®ù’=ª)Õ|ÉÕŒj¾dj F5_²G5¢‚/y©Ë'¼ÎT¦p–ø’È:p<çŠÐÉ—Vu!!3*J'_XÕ'„̨p–ø’Õ|ž•@'_XÕ'VT”N¾$°ª ™QQ:ú’€ªF!$F…’Ä—Tõ !1* '_²ªô¶á2šu؃Ú=yÇtàŒƒ‡ ªfìzµì`G£ÂYbÞß`õþîUï¯ï•Yv+MܨHV³õªÙ¬jô+*œ%!°ª™QQú:‰w¢:‰rž—é±ìßåÿÍG6xÆ4'Q‚Ä·\i&4ÛŽ$*k˜ôʦªÛ(G_fÐP摸BÚlMµ_æfuï~`šÛxwŒšox÷Œ4C°S3û $ g‰xƒÕF„ VÏðQᬶAŽ{eªox?¨Úˆ°WÕýƒ}ˆ gµ½â8p!3*J'·XÕçTQ:¹Èr“YQ¡¬‹Eq`Jǫ̈:™’Àª&!°¢¢t2%U-HÈŒŠÒÉ”V5 !3*œ%¦$°ªM™QQ:™’ÀrŸƒ l4%T-HHŒŠ°É”Tu !1*œÕX÷r•ˆ ‚°ŸÀàPõ%!1*Â~BPÕô„Ĩ(œlÐÎj¶dÏŒŠd‰ ¬jK+*J'XǪ̃̄(lP`U÷2£¢ô'tKï^À›¡yw ÙüM¹A™«µ^!^î®$3öŽV6ÔÜM8:3%in' gµ£«væÝ5Qs7ï]u7ﮚ»yws[u7%ˆ¡¹›wOKs7ïŒxs)ï[3-ï.-ši)$ÚXµ,ïsªùxªÙç@3ûOÎj¾&ǽ\VcO B`?¯y÷ðš÷[«"l.Q(KK`Mt¦žSEéèXªZˆJÇPÕA„Ĩ(œK`U2£¢tr,UýIÈŒŠÒɱVu!3*œ%Ž%°ªƒ™QQ:9–÷§`5aƒÕx|¢ ü6’¬ÈÎjÖ`ÏŒŠd‰ ¬j +*J'+X“›ƒ¥“ ,w!1Ê&+HÕ„̨p–X‘ÀªÖ dFEédE«Zƒ¥“ ¬j BfT”NV$²ÜxDVT„NV$°ª5™Qá,±"U­AÈŒŠÒÉŠì¬f ǫ̈:Y‘ÀªÆ#°¢¢t²"åî $sØŠ¼{Mjv!l­Z…@ g‰É¬²ôÜé3•(J/Q‡LÝLÁ$ñ"U½AHŒŠÂÉ‹Võ!3*J'/XÕy„̨(]½Èu)K¤²àþF/òõð»^亮emvSГZ·å|ð€ ªPÔ­ÌÒƒ¢ªBQûpØH@TU8ê˜mva”+èD¶CîNäzlÛåjºñAUÀ˜ê;BPS0ªúŽÕˆÚ‚¹®cyZ¡±=:Òõ(Us <þûd+<þ[y€çñw…Gv= sqd]¡¨cÞl¡QUAÆ£)8jÕs„¨¦`Tõ!ª)U=Gˆj FUÏ¢šQêB^g©™‚×YJJa9œþçT`0ºÀq«Ò‚ `tãF ¤RØuìœjö´ (Gผ ÝFีiA08€q粂€ì2Æ­BÈ ‚pÑaŽ»‰? ‰œÃ¾âˆœ 0ø |J฻iA ”Æ¡¨îdBZŒ6&pܲ„´ ø œÎ*Þ5:û¶ª«ÙÑAà69ãž#p‚@)lpÇ]JH ‚€ÑÜÎidB–þ-اî~"ä0¿ )A ìø£€q/²‚@)CQ/î}Bÿ%ȧæ¯Bºû¤„Uç&‡¼¸z£ A¨O`¿Ç­VH ¥4E½\n,¤AÀO`âvN5l{Zü>/pÆÁ4àAÀO`#ç4p‘L¹8ÕÍbH ‚€Ñ)Žû»?™ w„!-F#8fãG( ~¯8îCZ(¥q(ª»Ñ£ w†!-F8ÏŽD0ZÐÈ9dúFSØ~îœê÷´ (­gภœ mgà¸Ç iA0ZÎý›Õ†m¹· è P ÛÈÀ9]ÈÒ¿ 2@Ü/†¬ 0ícÀ¸Ÿ YA ¶Ž‘cf.bôï!ÎR ê®1d±hÆýaÈ ‚pÑ.îœêÞö´ p [ÅÀqç8A0ÚÄÀq×Ò‚ `´ˆã>/¤AÀhÇ¿9 iAð8ÈÀq·Ò‚@)CQ/ÕR¦ÃˆƒŸÀ‰ŽûÇJiŠê^5¤AÀhTÇMiH ¥4E½\¾5¤AÀO`wwNµ¶{ZüŽ8pÌýFŒþ-Ø'°Ìâö8¤R‡¢^.Ò‚ à'0Þ‘sÚìÈ ƒŸÀŽÍÒ‚ à'0ðãf=¤R‡¢^.GÒ‚ à'(Ž›þ?A­pü»Ì?A9pÜ߇´ P —tŽWô,ý[±PF7ÿÆ>A¡bNß1A`.g♑†À¸áYAÀ ..Œ{ýábapÜ燴 ‹ €ãcApÜ߇´ P Ç+ -ÆBà¸ýiAðÔ Ç_|' Æ:ƒÎ©¶O §ppÜòNŒõÀqÃÒ‚ `¬-ÎYIYú·`±®(nóCZ(…k €ã?¤AÀXO·÷!-ÆZีiA0Ö ç,@NŒ5ÀqKÒ‚@)\?·ó!-ÆÚΩV~O ‚‚±n8^$œ k€sZÿ¥SÕ Ä]~È cŸ ¢0nðCV„‹ÕÀñÒH ‚€¡’1ÏÜD€ ®"Œ›úábpÜЇ´ «€ã¥kåÀr~dôkɯþºòëáw+–c™ù×x›BNò0Ýø×x›BQcy˜˜ñûÉMá¨c³GŒr…¢¦r¨¤¡*X;Ðjæré[ÌTk0¦V @P«À¨Z)Q­v¢bíÀr”éÄ£ë ërì+ÿÞtSø˜ÝLn~Uxt×Åö G×Ýòx4ðèºBQó4ó/o7ë`LZýŽ\­€¨V?€QµZ¢ZýFÕjˆjõU« ªÕ@”Öô3Õlý~¦2…³¸†€X΃ç\:Ö Ëë03*JÇZd¹Å™Qá,®'Vµù!3*Ž5Èr«YQQ:Ö Ëë03*J‡ÚD¹ç‰Q¡$®/@”Ûþ˜…c²ÜúÇ̨(ë ˆuÖ+*BÇZdy fF…³¸ÞY^€™QQ:Ö Ë«03*JǺdyÉfFEéOPŸ¬Z™Q t¬Q@–— +*œÅu ÈòÌŒŠÒ±VYg&AÙP¯@ ³>HQa6Ö, Ê 01*œÅu MÍM2+5À­yѲ£²†i,A½>Ó¢¢h,Q@–W`fT8‹ËåÕ˜¥c©°jdF%б\Y^ž€¬¨(KˆuV+*”Åe ÈòjÌŒŠÒ±tY^Q€™QQ:–/ Ë« 03*JÇdyÉfFEéXÆ€,¯.Ą̀p—2 Ë+ 03*JÇrdy•fFEéXÒ€¬CæN¦(ˈuè,OÊâÒ`ÕŠÈŒJ cy²¼êYQQ:–8 ËK03*JÇ2dy…fF…³‹ãz=fFEéX¬³Xƒ l(‹@—A`bT„¥ˆòšLŒ gqy±¬pPA’Ïa½F£"l,“@”—E`bTŽ¥Àª Éâr dy²¢¢t,™@–W2`fT”ŽeÈòjÌŒŠÒ±tY^*™QQ:–O Ë«03*œÅ%Ä:K&ˆ¡c²¼º3£ÂY\J,/Ą̀(Ë)åU˜Îâ’ dy¥fFEéXV¬Zï™Q t,­@ÖYK¨ (Ë+äU˜Îâ dyåfFEéXfA¬³úXQ:–Z ËK+03*JÇr dyfF…³¸äY^ ™QQ:–] Ë«!03*JÇÒ dy©fFEéX~ÑÔôw*¼P6ç5À‚äPu‚¼êIQ6VXê,| TTŽUÈšd:dŠÒ¡ÒQ^‰Q¡$®¶@”A`bTŽÈòBÌŒŠÒ±êY^e™QQ:V^ Ë "03*œÅÕÈò¢ÌŒŠÒ±Y^™QQ:VaËdEEèX‰¬Z ™Q‘,®Æ@–I +*JÇŠ dy©fFEéX•¬³ ƒ l¬Ì@’L`fT8‹«3åE˜¥c…²¼p3£¢t¬Ò@–O`fT”Ž•Ä:+3ˆ¡cµ²¼ˆ3£ÂY\±,/¤Ą̀(«6€U‹) 3*Ž•ÈòJ dEEéX½¬³®ƒÀ9TÁ ¯¬ÀĨ«8åŘ…c%²¼r3£¢t¨æ Ô!jTU0j–Ú·¶E5%k˜=ÜtÖŽ‚;Ì>§Š¶´µ¬ÇÍÄ¢F´Ï™À9Da'èàþ©ÂìJ:§•PfGò>D…³‹ãŒµÖ³Û3£¢tgqœ±ìRÂ¥;‹ãŒå'fFEéÎâ.¼Æâ–»Ï©ÂYÅqÆ*ŸÄƒ l'Q˜]êʽ‚zj'вO’„ÊüMÚ‡DQ¸³Ì»œ˜uðôN„?K•tð|Ÿ´p¦ÛIvÞʜᣉŠÂÅqÆ2÷q¥Ì¨(ÝYË&ó}2÷‘fw¢pVcqœ±Ì}¤Ù(JwÇËÜG>¢¨(ÝYg,sùüGEéÎâ8ciâLQº³,ŽÑÜGž‰BYëà¶õӬ͆%ÐOÖG÷žÙÜGºÓ$ g5Ç‹šg…?•ës,ùèÌw\(3*œÕXwÞù¥Ñp¦(ÝYÚÖxš¥Óp"dm%Ì@æjÒ‡.Q’¶ÆgØÆÇgÎ#Ï„¨pVcqÜÉ:dngÊÌv‰3–y|@QQº³8ÎXÇùc˜¥;K›)O‹67N”9k¦¬qÆé¥fm”)Èf9Ò&QÆp¥’ ™ßHŸ¶DQ´³JÏó¥QßåçTQº³8ÎX7™+™¢tgYÍóżFç¨pVcqœ±Ìkäù¥;‹ãì¹h˜¹í{¢úÉ’8c™ÛHŸ¶DQº³,ŽŽqåÖÑÏ©ÂYÅqÆ2·‘f@¢(ÝYw²«!VT†äš,qÆ2·‘ƒ l'YÍúÕ¼FÎŒ g5Ç˼F>ž¨(ÝYg¬Ûúȧ?Êv…ï37ÈÎa;É|ͯ4ûžVs)i*oå…'nT$«nPâŒen#ÝEéÎ⸓up#ûTbkû3îkmÖ§ÍHÞyíb)œÕ6Èq¯lPÛaO›9„téO”¬¶Æk£véÏ©¢tg•83iº% %5‡J›SgŠÂÅqùdÞÌ2¤OôvЩÎÊjÔ.×ÓÍŒ?šnQÙ².×g,3þ芞(JwÇˬ?:¢DQº³8ÎXfýÑG=Q”î,ís=ÝÌúã#ŠJÖçZãŒeÖMÞDQº³8ÎXÚw:S”î,ŽKûO·ÛÀmÛ‹rðK•!¶m×8jƲ®mƒfóѽçVVú<ÌAàœ¶9 £®.×gl×~Ó%DÎa¦dý¦Ï8ê7=íæÂÑ™H”¬ã´ÆËl8ºZ'ŠÒÅqÆ2Ž(*JwÇËL>:‰¢tg™ƒÇǨ͢Seˆ}Ö5ÎXÚ,:S²æÔg,m)Ysj3–Ù|ôaI”¬9õÇ(ë?L7®D¡¤Fâ0󫆅{ª'J€Ÿ,‰3Ö8Ÿm1€¥;‹ãNmr/©gFEéβ8>Ʋš?ø£ÂYÅq'ë9ž)B¯,Š3Ör6üÆÌ¨(ÝYg¬²žßèú’(JwÖz“Yo?”ÎsÔîâ_éˆñÕ軥öàÛŒ†yUÐU/öf·BPU0Ⱦè¶RPU0h±k•TƒìkˆAU¡Ò‡«÷ú¥@ïõ«ô¡G5£ZéCj FµÒ‡ÕˆŠ¥Wƒ”>´­ù myþ=xh]¡ »+q+4þeå¹Ó¨U…Æ;ïI8þ®ÐøÛÅ“v¼*TúÐG£)8f­ô¡G5£ZéCj FµÒ‡ÕˆºJ®¨K¨Púp¤«Ðá:I™’5ӾʀE³Ÿ3s¸ôA¶QÎfSé j)$F…³¤ôXµ2£¢t*}V-E€Ì¨(J€U  3*J§Ò`qÿïçTá,)}–W#@b”¥ÔjzbT”M¥€ª…€ŠŠÂ©ôYOïDø³„¥Òæå™"l*}T-E€Ä¨(œJ€U  3*J§Ò`ÕRÈŒ gIé°j)dFEéTú¬ZŠ™QQ:•>«–"@fT”N¥À҆院t*}@Ö¡3‹šõ…?•K¥@©¥Î’Ò`i;óLQ:•>Kú™'BÖ<] ô£’4O¿ŠUK 1*YótƒÒdEeHf»ÄAédFEéTú¬Zè™QQ:•>tÖ¢ ÍeΨk\+}ü™µN§ (}€´¨ŒáJ%APúiQQ4•>Ë« 1œÃ¥ULnç*O€­qõç\¡,)j–6NÏ¥SQ°n2 2%kÔ~•'«@fT8KŠ€U‹ 3*J§¢†ÎjE=3*NE Àª% ÀŠŠÒ©¨XÜ1þ9U8KŠ€U‹ 3*J§¢dy™²¢2$W[‰ëE eSQj‘dF…³¤¨XµÌ2£¢t*j–×@b”E ª% aSQC¿$ÅVtWyBß^+2èô¨H–5«+*J§¢dy ²¢"t*jV­E€Ì¨pVcqÔ>@fT”NµwOP«b€ ÖZÀG…³¤öXµÒ2£¢t¬}û]¹Umk/2¨õ ÷°–+ÀNÕ*Ø…¨pÖU‰@qù]xãžöP®ÐñQ‘,)W¸»ÁVQpwZ©ìU-'€½Š gI°ªá™Qɺ×k@fT”NÀÒnò™¢t*0‘?øm–ù³( <ô´ 'ÍK·üa¢ÂYm¯8®@b”w'Ö®]ä¯r‚NO”¬‹üU*¬jøCfT²>ò—OøV¬N>à£ÂYR9¬Z'™QQ:U KZ»§ÊÀÓ–*€¥­Ý3%k%¯qP9™QÉZÉkT@fT²Vò­PÕʇĨP’TtTsò{bTœ*€U|`EEéT9¬Z'™QQ:U«:ùÎ’Êd2Ç3EèT9¬êäCfT”N•Àªu¥Så°ª“™Qá,©¸{Mmæ>l°šô€ gII°Ü¥‡Ä (K.ÐUp…E%°©$PÕ¤TT8KJuºôˆ ‚°±$@Õ£‡Ä¨›JU 1* —’€u)O<å±ïÛJ^¾W°®ëöˆß³¯8Äë¶œ?Þ1UÁ [¹ýT Ú‡Ãf,U…‚Ê Ú r ÚÑö‚€Õ>i­¶ ÚÿÕŒªö?D5£ªýQM¨M ®ž'}`kG“~¤ë±?Òh¸@c¿OæÁàØ»Bc¿/gqì]¡a]Ï‹ÄauƒŽy³e/U‹`$š‚ãU­ˆj FU뢚‚QÕú‡¨¦@T³þ{Ô¥@”\'¨9ÿ× J„¤ñ|3õÃáãß”@E9¤!4žoV>`܇¬ P ›ÿÀq/Ò‚ `4þã><¤AÀhúGzÎ'‚€ÑðŽ´†O„¤ ½D]^?déßI zÊ¿*Q½ø¾¡j×wr(…Ý{ä4)ãßÍ}pî" ß±èÚÆMtÈ BÒY^¢ÚŠªŒéÞ‹î«§.cÌ…ùÕ+¯ÌªûìF6ìb(…]sÙ–œs÷µa[Ò¸=(…ðûÛr¯ZÆÇ~Ss)+d©ôÝ1¬³lKb¦-9_›=ו+yqGø>‡šœ¿²ÏØÁ¿ª¹®ì¶ð¸Ì ÷–d؆«&ÑÝÏͺ ¿㦎Ä,Sy&:®¯tºY£§”c¨óonVçæîç¸Z0÷÷ÙÍ•ûœÓj¹{9Ø©‰n¾©Zä^‡U‡ãÎÈÝuSµ8î^R«uÑ/©ÕÝèWÐ(P ›Èá´™0„¾ÍÕ}H BÒíV¢^9vjKûJÌé/Àî¸I[f°!Ñ1ÕèYAP.šÀgêÅF#8î:@ZŒ&pÜ€´ P È9xÒ%Â:.KT÷ -Fã8î2@ZŒ¦pÜ9€´ P Àq›Ò‚ à'ð$€ã&¤AÀèGçt Kÿ,x¤WP‹>`ÜL(…=ä˜+€ý›±à?ÄýÈ cÑ{Œ áŠïð-¶¿}Ïwè ¶Û›fl°Ý^G_ýµ¯×ÑÐ_»]íµ¯ h¯}µîÚ=¨w×nAWsí+šk7Ÿ¡7P¾œh Ü|ˆjÎFUŸ¢šó€QÕg€¨æ<¤íµ¯¡m¿É݇¶ýÞöÏzPk®Ýƒzsíkü[oí>þ½·ö5´­µvÚÞZûÚùàßsÆÎÚ-èj¬}Acíæ5Àh4÷Ǭz ÕÜŒª^D5÷£ª×QÍ}€¨æ5ô¨Ë}Hk7+¡Ÿ¤æ6ô“”)Y;Ùf( K:¼&ç A ƒû§Jl'ÛlD¹A€‰Qá,v#å&fFEéèH ËÌŒŠÒÑ•@–všÍ¥£3,í›)YïY»ì L BÖyVÂ^.s£¢ì'02寢¢¢p43ˆuðôN„!¶O–°îh`bT„¦¢ÜžÀĨd=g5îåúâ!fFEéO`€ ËíÌŒ g5ÇÝuJpƒîy >*œÅn ²ÜèĄ̀(ý \diëØLQ::+Ä:tê&Ê›(kÜËõBÈŒJ ?Sƒ,÷eÎj,Ž{ñ/bšü©Ü'ð|âfF…³‹ã^.'3£¢ô'ð%]!k#+a/×7 11*IÙæ.!Ê­%LŒJÖFVã^.?‰XQ’Ù.qݽĄ̂( ,d¹a…™QQ:šXÀZ´µk¢ÌY+Y{q AògÖD–‚º×…iQÕJ‚^®obZTý¶²Nà ƒÀ9dÝ¿öW ‚×fÑn¯ÍÂ]ˆJÖíUãºý…™Qɺ½6; YnLafT8‹]0d¹Ÿ…™QQ::aÀª¾dF%ПÀ1C–UYQQú8kÈÒþ«™ÂYì®!˽4ÌŒJÖïUã^.ÏXQ’˨Ľb1º]‡tsñQᬶAŽ{¹L<ÌŒŠÒŸÀþCÖiöab”ýÔMBiÏÖLö˜‰ˆrï£ÂYÅq¯|ájq6¿\&#à…³ê%îåú ±¢2ÄþÙÍÆ¼©¬>&nP»¦f gµ j—ÖænbfT².­÷r¹ ˜•¬K«Æ½\ߥ̈(ý©û¬ˆrW£BIÄa/—ùЉQQøضÈr“3£’õhÕ¸—뇒‰¡? ¬júBfT¶¬G«Æ½\æ0²¢¢ô'°•‘å&2fFEéO`?ß¿FÜ´ýjs›•¬ýªÆ½\®4fFEéOàgß¿FÜ´¯ªÛ×DBÖUµÙÞº9ýVãS镯>ºñý•?oØï]û& '5«”ÃÈ!¿¾i¹sÒW¬[·Èq§ÜÇŠ gµ½â¸»^úW‚ÜõÆ½ÒÆž©2$'y×F¢ÍöÆÌ¨dD5îå²Ç13*Y#Q{¹¾ˆ™QɉV;QnŒcbT(‰Mx@Uo£àhÄ#ËýqdEEéhÆ#ËÍwÌŒŠÒÑG–ûä˜ÎbSžX§WN¬¨ ±y®Æug3£¢t4ç‘åf´­Oò5´½Mrj}’¯ Þ&¹ë“|o“ÜÇ¿õI¾Æ¿·Iží·¤ÏVº×hT…Æl>jSÇ+ª*µÍ“7k¸¢ªBQû¦QUÁ¨e(·å·Ø”¬MrÙçY~Þ{4_‰~Ì;Q8«^$ÎXæ+-”¥;«Ä1Êl%ú¹òD¡¤Fâ°%M;Seˆq5Î>sÚ´3QýdMÚ$tžÌ[š‰•¬I¨Æk’³™¢tgYÜXæ-­”Îj,Ž3–¹K|DQQº³8ÎXf/ñEEéÎâ8cioÐLQº³Ì™âc4‰çDT8«±8îdÜV9U†Ø´\ãÎûÃþÈe;‰Â dÖ}òEØN2WŠŽo6‡‰Ž&*’UYg¬‘¦¤þ©\§ŒtêfíÞ™)c8o³¶ çyâFÊ™’µ =ãxžÏæIѬNÎj,Ž3–yW4«EéÎ⸓up#åTzeܸyžÍ¬âó¥;«Ä-|ŒÚ¾3S8«±´]è<›Yŧ?*Y»P;ïüÒ¾3S”î,m:/fVÑ%*~²$ÎX£4šÍ¥;Ëâè3«èNš(œÕXg,mß™)Jw–¶ -Š4ðL•¤]¨Æk‘¹“)Jw–6 -«°›ÌòDɆjœ±ÌÕ¢ëy¢(ÝYg,³µøˆ¢¢tgqœ±Ì4£O_¢(ÝYÜ4ÔXÚë3S8«±´·h¹42Ë£è'KâΧª:,'‚²Da'èàþÊ©2„vÎgÏùÕ2>¾¨pVcqœ±Êƒ;}ð¢ l'QXÚ{t^Í1£«Èª½@3…³ÚöJÌÉW6h^MÑÕ,-š‰ÂYmƒg,³´øÔGEéÎâ8c™¥EƒDQº³8îdI¯ÑTb÷e£cÜ´h¢HVemÚ}tÞ´h¦dÝG5ÎXf„Ñ´L”¬û¨Æà+wDÎ¥;ËâhBoæ|ÑôMÎj,Ž3–vÍ¥;K»Î›Yd|DQɺjœ±Nÿ ƒ l'i‹Ò¢2Ç3%iQªqÆ2“Žæx¢(ÝYg,³åè˜(JwÇÙ 6sóèú•@?Ydzþf¦Q¢pVcqœ±´i¦(ÝYÚót¾iÒLÉzžjÜùBräFÌ™’õ<Õ8c­2w2EéÎ2·qbÖÁ“<†dÖs˜Ì0äĨÛIf(ó ùh¢¢pgqœ±v™7™¢tgI¿ÓùæÝ01*I¿S ³ŸæÒÝ&*~²$ÎXæÒñ$ŠÒÅqÆ2¿>w‰¢tgMÎÝ´›ó¼›…È;?2q3…²Ú9ÎXÚX4S”î,md:ïfÒm$Q²F¦GÓy7#(*œÕXg,3éV™(JwÇˬ@>¢¨(ÝYg,é-šÊvÒ1Ët>´µh¢HVe¡•éa–!ÿDI[™JÜÉ:¸ñsª½²n4=fÒu#Q”î,Ž3Ö,-p3EéÎ*q<ëòL²ñE…³‹ãŒUžd>¢¨(ÝYg¬òèB­Ÿ3EéÎâ¸Óó›¹õs¦(ÝY%Žgý±O<É£À9Da:Fiß›(Âv‡¨ƒÛ>§ÊÛLkœ9oå±eÇÏFT"ÝXgÜA¨òÔBS0S(©‘8ÌPå¡…æw¦(ÜYg¬òÐBMŸ3EéÎâ8c•‡júœ)Jw–Åñ1ú—‘13*œÕXg¬mr§·gFEéÎâ8cÝFöÜ2EéÎâ8cí·~Î¥;Ëâvfí< Seˆ³žJ5¾­«ó×Ãï—j\}›Ám¯ «¯s ‚¶ÎWÐÕ×¹A[ç+èêëÜ‚ ­ótõunAÐÖù*Õèí{›‚M~[©Fj FµRÕŒj¥=ª)i[ç>´í'½¯¡m¿ÖCÛú:_CÛÛ:÷ Ö×ù êmûø·¾Î×ø÷¶Î}ü[_çkü{[ç>þ­¯ó5þ½­óUªÑG£)8f­T£G5£Z©Fj FµRÕˆºJ5®¨KIÚ:_Eýg×[éDÿ‘õDá,)ÕV-̨̀(K5Uk' 1*”$¥ˆ’&£©2ÄF¾¥=3*N¥Àª¥ÀŠJÖÔTã T2£¢t*ÕV-€Ì¨p–”j«–N@fT”N¥Àª¥¥S©°´—i¦(J5€UK' 3*œ%¥È:¸ tª ±ÉºÆõR H ‚²±T@µ0£"l*Õè¨V@Ñ£"YRª¬‘¦¤þ©Ü^ªí6š)c8o³¶6½ 3 -*YkÓ«è¢w;‰_¹ª)`ƒµ&ðQá,©Á@ÖÁSEèTƒ¬Zq™QQ:Õ`K»f gI °jMdF%ënªq×w}ìd[Ú â¤íÍýàèUÿÐ÷ªÕHô}HÎ’ª `Õ*ÈŒ gIÕ°´?h¦(ª&%BS%éGªqP5™QQ:UM«V1@fT²Ž¤U¥SÕ°jdFEéT5¬Z#™QQ:UMK›‰f gIÕDgµ:†ž•@§ª `y! ‚ l¬š@ÐÁ œSeϯú@Õ:HŒ gIÕ°¼úƒ l¬šP-v€Ä¨û k+¥½F3EáT[¬Z™Qá¬Æâ8(Á€Ì¨(J0€UK" 3*J§ `Õ’ÈŒŠÒ©YÒð6U†Ø+ú*¦è¬Mû§&ŠdI °¸}êsª(J0€5mܽ9S”N%Àª¥S °jIdF…³¤XÚ/5S”N%ÀªE•¬?«Æ¥_R¾ê$`ƒµÚð‰2ÄÞ¿Õ¥Su…,ÍxíÜ îa«l’ýâwûÚW+XPÎ`¿´ ¼¥ªqsÔ´ÏU; A´Gµ(@Bè§Ì›Ý/;D¿â~ùøZ¦Çi˜ÇT z â%î†^c4Û㊩žºŽQyt_‡öæ¶™åB¢8— ®››piÞLq ¢¯¼_ööÝ“Û|kKïfHßnÍi– ž¸ÍBf÷ÏE¢p–ÏÀªV0dFEéd<K:X&‚²Éxî¤CX&Šd‰ñ ¬j+*iÃL‰ãYQ:ÏÀªF0dFEéd<k–ª™¢t2žU`ÈŒ g‰ñ ¬jCfT”NÆ3°ª ™QQ:ÏÀª63dFEéd<˽`H ç°ñ  êCbT„MÆ3¢îœ*cìR¬q`<_qQ‰t4žU`@E…’ÄxÔ´ñüÎ…“ñ ¬jCfT”NÆ3°ªÍ ™QQ:ÏÀªF0dF…³ÄxV5‚!3*J'ãXՆ̨(Œg`U›2£¢t2ž‘µó,L•!Îz4ž¿±wð×ÃïÏW÷àê1Bóà+äêÜb yðtunAÐ<ø ºº· h܃Z÷à+¨7n&34Šm ¶“­&3D5£ªÉ QMÁ¨j2CTSÒæÁ}`k7‡k`k«8ÒÖ=ø ¹š÷±o݃¯±ï̓ûØ·îÁר÷æÁ}X[÷àkX{óà+èêÜ‚ yp3˜a$š‚ãU fˆj FUƒ¢š‚QÕ`†¨¦@T3˜{Ô¥$̓›yÜ»mT¸7׈¥°Ý ÷–!-«0nýBV0ƒmfÄÔ\6†ÐmV¢ºÃÜÓ‚ `´—ãn/p‚ `´–3mÔd8Œ¶2pÜå…´ P [ÊÀq‡Ò‚ `´“ãî.¤AÀh%Ç}cH ‚€ÑFŽ»ºJa 9u#΄!´æ–¨Ë=†,ý[°`Ä}bÈ cÑ6®bþp\í]‰¡†q§sÛ÷e–0êèrH÷y!'BE“8nÍBZ(¥q(ªÛÀ£Œœ ?§ƒÑÿŽ›½£÷ i˜š”¾/pܼ…´ $­Y%êåòw!-~[¸sª™ÛÓ‚ à'pŽ3rKÞD0ºÆÀqÒ‚@)ì‡ú¹>g‚€Ñ-Fö|}N…!4––¨nCZŒ.1pÜ´…´ P ;ÄÀqÃÒ‚ `t‡ãf-¤AÀè Çm`H ‚€Ñµ³}ÎJaG¸sªEÛÓ‚ `tƒsú³€Ñ¿ N0Bê0 ƒ¶²n~.`Ü–…¬ P ;ÀÀ9=YÈÒ¿ î/@Ü…¬ 0_ÀP ßçL.º¾ÀqÒ‚@)ìøÇ XH ‚€Ñ펛¯£Ó 7^!-F—9غù9ŒoçlÔ›ø98…Ý]àPÿâçL0:»À™6j¨žFW8náBZŒŽ.pÜ`…´ P »¹À¡~ÊÏ™ `trãv,¤AÀèâçüÚ-¤AÀhïÇ­\H ‚€ŸÀîœú-ùž?I\ÅÜm®.1l‹ZI?g¥´mQÔËeCZü^sßçäYªZÍ÷cÜk†ý9}eØzø{ˆ3Œ‚®†ôØž»yѰ!÷Ji›¢¨—ë+ç?uGûþظ¡Ý7UÍëN§4;”¢^.8AðØâÀñïCZüÎ9pÜ%‡´ PJãPÔËe¤#'Cè‚.Q/—×iAðXôÀñ¯•CZ’þÓÍÅŽ{ïJiŠê>?¤AÀhòÇ]wH ‚€Ñà7†Ž ÍýN9¤/t8…}à¸Ïœ d¨9ª{úÈ ƒÑÐŽû룙œ™{“'‚€ÑÈŽûêJa8î©CZŒ>pÜO‡´ Í{à¸SiA0÷À9­tÈÒ¿)L{€¸‰YA`,öˆ9ýsĹhÖ_œæÌ_QA`0êãÆ9`‚€lÒÆ=sÈ ‚pÑ Žûå£9wâ!-Fc8î“CZ(…Myà¸GiA0òÀqÒ‚ `4ããÎ;¤AÀhÄ#g§9– C˜Íh·–àßøCý¯‡ß5á—c™éçÝ›@Þì0ÝèçÝ›@AÖf|†/v7ƒŽÍžn È ²þ¹VTmxè˜Þlxì«^Mwˆj6±N§XQ:ÚúÈr3£¢t´ö‘¥} 3…³ØÞG–»î˜•¬ï´Æu3£¢t´ùUÝwÈŒJ £Õ¬QšŒgŠÒÑîG–»ð˜ÎbËYÚ:S”޶?±¤Ëtª$}§5®{ÿ˜¥£ý,wå13*Y{jë5˜¥c²ÜÇ̨(KåÖ?fFEéX€,mH)Y‹jë5•@Dzd†=¢‚ l( ÐY @¤¨0Ëå¾=&F…³¸DY§y‰AP6” Èí{LŒŠ°±TQÚx:SŽåÈr3£ÂY\2€,wò13*JDzd¹›™QQ:– Ë}ÌŒŠÒ±|€XÒØ:U„Ž%ÀÚ´õt¢H— K[OgJÖêZãz-fF%ku­q½ž3£¢t,)@–;ý˜Îâ²diÿëLQ:– Ë=ÌŒŠÒ±¼YÒ';”%D:dŽgʼk\¯3Ą̀(K 嘥c¹°jydF%бäY^-€¬¨pVcq\¯MĄ̀(Ë¥½¾3%ëþ­q/WAfFEéOPÊ€¬UæN¦(ý Jˆuð$O„!™õöJáˆ1àÖ¼éQá,®}@Ö.3"S”õˆòÒLŒJÒ!\Ãòa¨ °½ZšôDá,®ƒ€ fß²÷ŠÜ × >*œÅ…Ä:d®eŠÐ±ØYÚc;S”ŽÈòÌŒJÖÓ»U0 Ëk03*œÅ…ÈòzÌŒŠÒ±øY^•€™QQ:@ KZx'‚²±H‡öâNÉâBdy}²¢’öþ–¸^ A¬¨ "åu ˜¥cQ²féŸ)JÇÂdy½fF…³¸8Y^³€™QQ:H Ëë03*JÇ" dyQfFEéX(¬³„ƒÀ9T, /bÀĨ &uÖ1**Ç¢‰ÎjE=.*‘…ˆò‚DE…’¸xQ^Ó€‰QQ8P Ëë03*JÇ" dyÑfFEéXH,w'13*œÅÅÈòÌŒŠÒ± Y^瀙QQ:U Ë‹(03*JÇ bí< Seˆ³ÞŠ+–ó·í­±€·sÿJqÅ×ÃÓ⊞¶n¤¯£­1çK9ëµoëãNQU¡¨£¬§§FU£nüx9A‹j EåŽsÖ\QU9£æ’qv¤ºZÞW[Þ/kY{,äÅÜìW6 ª F­CYõM¸½¦`T¯¯è£ÛÚ-ôÑm­pt§Ùî<8º®ðè– Ò@QUá¨còb™å ŸƒÛæÕ2ý¸Âç`ý'ú9p匚Êù°_aï#WßeѨªPÔ¶ÏÞ_ Ecm sEU…ÎÕ¸ÔÎä×¹ª Fµ*‹²ÏëùËë½1ÆdŽ!uYIΪW‰3–¶Ï¥;Ë,É…XÚ¤;S8«±´)ø2ÙOÊQb²–àv‚êéRT˜]If¨­~{bTî,ó'b•§cê°Îi$ 3vçÎa;I›/ÖcࣉJÖ \ãìjg"µ£‰J Ÿ¬¹<|ó|ŸÍA¤Ù(œÕX—v°[f3©»ÎlÖ ï|T8«mãNÖqvAVT„^Yg,íé)Jw–Åñ1š5H§6Q8«±8ÎXÚu;S”î,‹£‹ÈlÖ õ JÎj,Ž37ºÒ?•ë³ùèÌą̈pVcqœÝZé¸(~²$ÎXÒr;”í$éï]„ãü1~$E%ö÷>Ãx¶/f ÒyOÎj,Ž3–ù‚4·EéÎâ¸ó–¾¿Å™QQº³8ÎX«·@‚̨(ÝYÜ ÜXÚÀ;S8«±´aø²Üx˜åϬU8Âü@ºu$Jè¨A23®%‰¢hg•8™çå‘™7 C6Ï)Ì׿Ò±DEÙ'I eF M¢(ÜYg¬IvgŠÒ5Iƒðee®dŠÒeq4ÏW3iœ…³‹ãŒeF Ý?EéÎâ¸ói<É2£¢tgqœ±Ì ¤O[¢(ÝYÇǨ-»S…².–´_V³yD%k®qÆ2+î0‰¢tgqœ=ô þÀz%!°OÒæ­çdF £¢ÂYÅqÆ2#Ž'Q”î,Ž3ÖÒOJj$»~Æ‚m±Üy×ÍUäÊœ4×8c™«HªDQº³´Aør3W‘OuT²ág,siò&ŠÒÅqÆ2_‘(*JwÇï!½c(dFEéÎÒáËn¾"QTnY‹p3–ùŠ4EéÎ⸓%-»SEè•%-—½<¬Ð! Yƒp£Y¿›«ÈÇÎj,Ž3–¹Št«L¥;‹ãŒUUø$AÙN¢0i·îL¶“8,ã³k×ïe7·OjT²¾ßg,³ éþ(JwǬãl$¬¨½²(Î^E›I'#*~²,ާò}' g5Vèý}LÚé;QÒÞßg]vÐé;Q8«±Bïïà CúH%JÚûÛâe~!MÞD¡¤Fâ0C™]HwùDQ¸³8ÎXfòñDEéÎâ8c…>߉¢tgY½¤m…\ð‘=¸õ·m°·óIÏ+|Êz¢¨ªð9°'aÚûªPíE¹¦àø¶Ú‹ÕŒjµ=ª)Õj/zTSð\µÚ‹~®šQ¡ö¢÷†iµ½L¢p–Ô^K{zgŠÒ©öXÚœ;S8Kj/€å儬¸„Aí’¢Âlª½T­´€Ä¨(œj/€ååÎáÚ iÏïL6Õ^ªÖB@bTNµÕ*-zfTj/€U+(€Î’Ú `Õ’ ÈŒŠÒŸ°DXµd2£¢t*Ñ@–—L +*B§ `iñLQ:•h«–L@fT8KJ4€¥-¾3EéT¢¬Z8™Qá,)Ñ·„Ó?•K%@©%Î’ÎjE=3*N%À’þÞ‰ l,Ñ@d )*±™øUl¨Z2‰Qá,)Ѩjú¨«Š6Xk!Î’Ú `ÕJ ÈŒŠÒ©öXÚ¹;S²Ná×j/ MþÌz„SÔ^@ZTB³L ‚Ú H‹Š¢©öY‡Ì×( Ù¦0¨½è‰QQ6Õ^ªÖB** §Ú `MÒ©;S”NµÀše®dŠÒ©öXµ2£ÂYR{¬Z ™QQ:Õ^«ÖB@fT”NµÀª•¥Sí²¤¡wªP–Ô^«ÖB@fT²âµ¥SíEgÕR‹ž„À¦Ú ÕZ@E…³¤öâî- HÀ½ÎèAà.ª·1NaSQ j‘$F…³¤¨Y‡LÜL’©,qPT™QQ:U«9@fT”NEÀÚ©§ýsª(Š*€Å=ÛŸS…³¤¨¢³nÜÚý9SŠ*€U‹€¥SQ°j dFEéXT¨Z‰Q¡$)ª@5Î?aí°j-dFEéT{¬Zi™QQ:Õ^«ÖB@fT8Kj/€Uk! 3*J§Ú `ÕZÈŒŠÒ©öXµÒ2£¢tª½è¬V Ñ3£"YR{¬Z ¬¨(j/%]ëSEèT{,/µ€Ä (›j/€Tk! 3*œ%µÀªÕ¥Sí°¼ƒ l¬½6¬ÏaSí n2k2EáOX¢¬Z2™Qá,)ÑV-™€Ì¨(J4å%ÈŠŠÐ©D£³ZAFÏŒJ S‰°´k}¦p–”hk’®õ™¢t*Ñ–v­ÏÎ’ `Õ‚ ÈŒŠÒ±DPµf£BIR¢¨Z2‰QQ8•h«–L@fT”N%Àª¥S‰²¼²YQ’Y/qPÉ™QQ:Ur\¬«²âŠ‹J¤S%°jݰ¢¢tªäV­¬€Ì¨p–Tr«VV@fT”N•Àªµ¥S%°¼¸ƒ l¬äP­Û€Ä¨›*9uð O•!Îyë•ec%€ji$FEØTɨZ·‰QQ8UrtV«¬è™Q‘,©äV­ÛVT”N•Àª•Î’J`Õº ÈŒŠÒ©’Xµn2£ÂY±’cµßœ—o­äx=ün%Ǻ®Û#þ4CÐÑ_·²÷+þ:FS(Ê~uï ¨ªPÔ>öoUŽ*OûBQ®`G;ä^DZ剫ՄxÙUcjÕ5¢ZÕFºˆÚBÇÕ°¦mmGGºÚö(æxü÷ÓýÇñw…ǻ٫ZWxdËåqãñw…¢Žy³§'ˆª ÖpÀ¨5ǶVl@TS0ªVl@TS0ªVl@TSð<ÕŠ 8OM(­áèm…jIEï"Jáú àx±¤AÀX»/¦€´ P ×m笤€,ý[°P³?w@ a±^0^œYA.Öj笞€,ý›¨N ^7YA`,ÖhÆK& +ÂÅúŒÎ©Å=- ÆÚ àx©p‚@)\—/“€´ k2€ã%c=rÎòäÁX‹/¼€´ ë0€ãeJá àxÁ¤AÀX/Š€´ P ×^‡:üÉ_‚ĺ‹*æÞO­Œè[©NáZ àœÕ €Ñ¿ uww¸–:ô˜ø+²­ðvÆË`ëA ”¶;ÕK# -ƺˆûÇE ïó¯S.ÔÌþÎÜë`ÿ‚ @%ä•­xlè¬lø{HN7õ¢ƒžÁbÅ`¼0A.Vgâò‰ `¬4μòu# SìVßê€ã¦?¤R¸Â8nøCZŒÕw?yÕÿ‡my‰ ƒ@)\1€îŸ ˜ÂÕÀqóÒ‚ô¢—¨^(iA0V tŽ×ô,ý[±X!·ùJáêหiAðç´ô!Kÿ,ܽìT6ä&=ƒ@)\€œƒge" qšrT/€´ +€ãÆ<¤AÀXirŸÆ àHÃúD vÿ;ç& 룠`tþ3žFdowÚÛîYËÞ~5ú÷ÞÛÅ*‘Ž8ŽtÖ¶_ø¶YûjôOžµÖ>s\·ko§lÖ~ÛÎ~-ø'ÏZÝ×9µß¶³_þɳV÷vIgí·ííW£ò¬Õ½]ÓYÛúðö—צíëá?yÞÚk®eÜÛþé¼ýÆÝýjôOž¹º·ùÌýÆÝýzøOž»º¿ùÜýÆýýzøOž½²¿+¯köÂZ¶Ý[w.åi[¶¶—½lËJã†òôïÊ.l«­ñ—};èPÌ´±r½Ÿ}7Z5F9.ˆºˆZ'oˆÝ£.¢¬u«µÅìQ—QÇ1[=D]Jçßc(Ï=·¶Ó»ý†Ðy!øùÃ4 ã»a|ûnZí­ÄZ…ÛÛwsñò¹1aº"Æc­GÌñß¾ÿ~J&›¿kWúQLór³ˆºˆZwo²Û£.¢Ê ¨KéQ³5‚»á»Ò£~Ç ÀP6cMW_Õñ˜dTo«Žê¤£ºÄQíSfíâúÞ_ ã|ìVQ—QeÕ}¶íQ—Qö¯u)=j±çÜ·Ø•ßwTçaóéòíƒêC6Ádž¿aP{¥ãmµ^°PéXk ¹ÒñŠ’ÚG®t¼¢¤ö‘+¯(©}äJÇ¥µ¿û .£½0´‚Yk;¸§£zÓQÝuTwÕFõÝ<®çý{´kàíxóý/ËÛ®ÖïæÇÁJ”í×=­nÙþa<ÿe85{µoÚÚ68`N⌫¼µ?›6ëéG믵öõÛz?ëQWŸ»+ úÜ]QWŸ»+ úÜõ¨Öç®Gõ>w-ª÷¹»SÐçúÜõ%Wïs÷;ßÊ-ôüá»rfêó‹ž™6ºcr¦ä,ÌÉYX’¸ìÌ\õô×8]µò0š×¯à]Qð+x=ªý ^ê¿‚wE]¿‚wEÁ¯à]Qׯà]Qð+xWÔõ+xý®ÿ ÞïwfV»¨ŒÓïpfêˆÿ3Ÿ™ë-ÞõR¥½£ûÄÔºösÕµ_1W]ûuíWÔU×~EA]ûuÕµ_QP×~E]uíý}P¯kÿýÎʲïåº9çg囯d5î«W²úYKÎJïâÚŽ­whýDí«÷0íQ®Ð8 ·Á{˜^ãTŠ×Ó×€¨ªPÔT®§tUl EÍåzºPTUÎ%íW–³æþÜd‰0Ù¯`-gOj¬ýþÃË>’ã›w·¶b=¿ñ¸³ßñþo—òP1,ÛÃã›?þêí\þ÷‡~ñå‡_ö•Áyuû5ÕÇc8Fzn½Ù÷Ê•‹ÀQo®ñá×ÿð¶ÐËóÇ8Ÿ~(÷ÌÙJߎ‡éß¾+‹ˆ:>üï=ªÜá§ãáÇ·S¹¥¬ë×=>|±{g_±½þ\þÛÂ÷q/wãO~(Éå(çòÇgO)·›‡¿²ÿ.+²yøò{ÑHe'ƵÆÛÃûIØ_à_èŸ~Y“–µügç~øüåÓNûüxŽç¿ùËy/Ïõö†×†l.׉²Þ|ó®ìÆyVYÆj~|ûnìT<üç²móv,ËÖìr?• ÿðüáÇ_—¿oeÜÊ“ÈûmWÊ©œÌ;“ç –ýY~øôÿø¡nOØ»q²¢’õÍ;›~7Û%Ûþ_¼Ým އŸÊ™Ë5c¼=¼¼-±ÇQÏãó—¿ykÒǾ?¼ÿôá½Ï™RNŽ.ûTPŸ~cùðßêsœ‡ÏoÇ"¯eØŸßÿhÿRôc?ʨÛ–uÕ™°ØCSe?ýçÊ_ñôŸ®G¹NÙ°¸ò‰?'ÀùßË„Ü2×Îí•£ë\+Qå\YtY¶s;?Ø_¼-÷ä’»?<Õˆy~xÿ¹îݰ†Éuí[üßöó>•OŒ]ä^~xÿùù‡ÏõÃç>ýùËgûìêÙ:†Ó¢ô„ŸÓ„{ÿåý•Ý(—w›ïÉnlåÂ0Ý|Uz”¥Õ\Îy¹•“³;íWp®êy›ne.ýz›Ñ·¥(e.ü äŸ^Ê?܆óãô×ýêw^ñ×7Ÿ^¿,ç—Áéfï[¦7³úûšþ®æÞUþ\ùPå^Ñq?øë·í€ç‡ß|xßþ°ø;¯ò,Ëcô#N›çÿ~däÚÖ};‹_Þÿã¿ìåꂟ—:²å3ôüáÿ>?Oå:.§èž‹vRoí?‡qiËåR¸Ï·‡¿:/Iûm÷Óg_Á˜>yÿé‹?jMÃxŽOê£^ÈþÆ?ÓùOåê¸/çEíÛfÒ'»Ðî6°çýîÓ~[Çóþq~¤ÌOºªÙgÿþÜ6¿ñÝä#Ÿ_ær*¿´øÝ.æõ¿×9Þ¼v¿ úèÈ!ÈÅñÝŸ¿í'úåÚ¡Ûy+îq¿¶uÝ`¿r>Ïñ+·™ºÍq|øüüá×Oç5}-Ÿ¶/ÏÿÔÆ¨\4?¼üÞ#>ü«W®GçýÓ6Uîh¿9·5Œ3ŧϰC畜.ª×5ì?}÷ýÿúó6@~¹:Ⱦ1?—÷‡_à™oÿXæÌ¸Ò'‚Çâ½ÝÝÎÛÞ4_¸r=ù¼×cúÇ—N>oÓ>Õì4ß™iuG†}–>‡uFy:³9€çä§_£ì[wåéb^˽eŸü¢òïé6úüË>oü*¿týÞÊ¢ó¶µë÷e©¶œÆÍ?Ȱ·¿ón®eTV­°ŸvîÓß÷ð·²r.kxäNåNþ.Ó6S˪Œ‡ô¯ßÚ’n÷•ÔÀó™”ï¯3íw°öß_Y]¾û\/÷Ó!×Û_àÇ­~ã¿øÂ`˜Ï=7Z…p½„~¨ë¢²ü¼öô¼ÿú^àèj÷w|¯³†F« ÎXž¤ëÚà¿÷…A¹«Ùb`8#ì^pX=Õ£/‹ëù.Q D•';æÊù g) ܹ<…xD¹‘EÈ;»QÝÆãÍ;«J]<ý­VÊЬ屴|h†÷s¿B—…¼ ‘^ìáï¶òðà’êÕË‹áyñË®Y_ê™.KÁ‡¯^º~<¯ÌóVÖ>ä»aëàßú5v>wè„—'¼8úü¥ît¹¾¼ÿL«ß—v<ëtÞæCîe//ç•Ú¶es­>¼Ù²˜®ùŸ(‹þ‰&N:oæa·ãæ­üöcÿçŸ:¯¿£õü/*ÛÚnLåÖñ‹×“iîÓm²…ë"÷aTöôµGƒ÷¿®ç£Ìµe/è?²å¶ ù3w~$üåàm_l;mZŸÞÓп|øü¹ïSÑ:%Wy:>~ÚIþüG×9nµóåI{=X>½í¶ÿñ¥½©œùƒœ¾…ô:Ï·•çÕûüÏ}ãôßœo«v•}n– üðçïûçó î­÷Î_òÈzÞãë«ÔQߪ4(?ÞÐC^@ä©õ7×[ÇøÞu>ß»¾öÊíº¤û=ãÓGž,¯®œ>|¹^\üS}ë<ìð yË_!ozeºÿØ®¿«¿Ê“Íu…/ Ëöòw˜þìýç“Y>ÚÓôp®íoyfµ+ë<úûÔ_þðœ¾Ý¬ßÁÖÈÿ'¾Õƒ³BŸÇ_üùõ<“ýñu¼³P}îïÙŸèFÐ^ٯɪØ_üÿê|•²®[yVüø|ÞŒ÷±\XíJ¼Õ¿¾†©{-÷Øë¿”ëjx~g‹çà`Áë‚?N—›ã\?Žù|?^m«Ÿ?üOY¶rë«)¸ª´/`.ÓT–sÛ¼Zi¬=J|©«ËÞç>.Û^n0òOk ïÅø¸Žk{SüC²–-“b/sA¶š±ÖDZ\fÚè¿H‰ó~ Óðµ×°oDüßÒÃ8ÿ³½(øƒ·ïÆÍ_›ÿ×·É@Ž‹4ÒŸÔ]XÝi%ÿß%+ùrVöíÖFpÌãf%¡Óú­‡Ñž þÐC¶áM¹”…ïOùDÏ[QÊæÇ›ïÿUgÛ>ÎÙ¼ÊÑÞŽòdóξÓ<Û¦ ýo“£wx*Ù’£ê¿ýir^y$^™"Ó4Ìã›qz\æZ¶òÛu{܇ãv£3ôó²ËïÖý\•|H?R7«­›xþ×tGË'zý¼JleÖüI{B”¹°Oöùû]çÂôµ¹ð'é뀱|žöë ña½Þ/ÐÜz7e.˜Í7•ý:Ö‡¼çåŠ6Ú5rŸšåf[™LÓ O©¿ß'µ±Ã2ßâ¶"د3ða`“«ýT®W-úOÛ­vz˜òËa¹ÎV‹ÿ_ürXžÿ4¿Ú{¬¥] ýûlñZ‡«îòp¹Ø—G¨Û¦ƒÿO|‹×FøkÞS-v^JôqkÞÇù™fëûÜ,óy—þ^ïdFVïïðEëWL¾É<Â…îOï?½ç7¼4ø”›ªãZ®nmåóù;‡¹/Áé‚DøGÜ™W–nsy<œ–í+Ï¿‡÷éƒÁqÖß{2˜o‡}±îmï×nŸ¶cmÃðþ•…GúY²ï޶üæc¼N°þÉc¼þóñ&(»|'FyâÉŒòoâõv=’¼ÿû\_oû‚É̯yO;‚ß-~|i/s“ë2]Kh-þ¹}+ç,•eÔ{ZG}úhþѼígíák7@xo¿Ú2D£Ít³Ù¶!sçËûZaaÅÉu›ÇÖf¾ê±—¡»v|:éµ ¶ËööxÎ÷/ñÖJµìÚI÷M²Rùò‘WM¶~·’9n¾û¡év§ž oå?¾²¥tª—ÿ÷öÁúIï›t vØÏñ&oYG“i55nׄý¶¿{9kº²['ûîÀŸ¸ICìÃ2ૼB¬ûšÿóÿœ¾,°=ºe?¼ò‰\÷ äçÙWômÉ(G9•³pŒ¿ËaÎóöÕ㼆âcº¸˜ì7–~Ÿ·ó˪?µÃÛÎåëX޾¡ðÿ¬«4íendstream endobj 347 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2786 >> stream xœ}VyXgŸdf@„Êq'QQÜÖûh«în½.VEÏrƒ`‚Ü(j„7$ˆ\Šr ¨\‘Ãkk[mmµ>}´‡õqWëzÕªÛÝwôãÙîDjíõôŸü1óäûæý¯ŒR8P2™Ìãù‹õëÂus¢×ÅO?fqtlZbx²ýÍHÑG&qÿ$²ú™ßÓ %8ËÁYñÞç67l„™®¸úJ.“-KÌš­OÊJŽKÕL?~Ò˜1ÒïTMD–fÖXM`xd‚>#%!^®‹ÒŽ?V³@Ÿ!=Œ×ŒÒë4Ñqá‰1}ŒfIôrMH°ÿâ`MÀâ…!AÁû»ßö‹‡EyÏÔé“ü“SRÓÒÃ3#çGEÇÄÆÅ'®›8™¢†Q © j5’ ¦–P!ÔRj5‹ZAÍ¡ÆRþÔ\*€z›ú;HM¦æS (ŽRQƒ%T(•J]•M—õ8ø:äÉýää×Óï*§*kéú"3)guìUG?Ç/œ8UpŠ­.?8üÛB€>‚Ÿ!{å!¼Î¤§Ê­ 9æ,ðÎl]Oâúzåg›Œ:cFa*d«eþcA'£R`rý¡Bm­èD¹õ´@|”oji›åŸÐplF–˜¥" è;¸[)Ý÷Úóûv ‚Þævi|iOî3±ÇC˜‹»˜+)ùìå u¼éÍÝ!3r•Zæ| D©Éù¹ZÝ,è&]<£®åŸ =U5ù“xÒ(½tµ(]Dã¶.‘³Éö¡;.Dw¹˜€zt‡ &ªqÉâ{wrèõÍ ÔðĽLZX–Ÿ“ 1]g8’Û ç 8^ÚRÖq°þ †V]iBéZX«Ùþ1ÈR‡ÚD™ÐåvCdº{r¯ˆÕ˜¢B¿±_Ehø&] ˜áûÕPå…ÕFÈ… ¶oû/¦ñg¤´o鯩‰»Ñ,[º2,qÿL÷0œ{sC[ÃQŸ“]óˆ«Zúës Û,ܤQ‡Õá0­€NB¦àÉ}ñ”Á&•–N'¯’iÀúb{Í)n[Ãf©lÓÒܳYaãù4,{Hã8¨œº‹(XNÄmʾfíݾëc´âÚåYK¯ýš 6°óu©èâɉ¾¢BõAPãªÕá)o§ñ¦Û4·ŸLû Uð‘$oa2H\Ù…Ê[¹AÑ’±Km/oZOm³aeËÃYëåG—+/˱Õ*8›Ø¼©rmklIÄmYHœ`Ï}j®¾YÑ?h|.vðæ‰9×^jwº8B‰EâP•À$êLÉaE›Ì’ƒKŽ˜ …9êÉ$ý5´(O 4q5…E©=Ïàð>Dzõå…UàÝÖòíU8¿÷Ú^eÙ~$ýËn±ÓÖŒcl²ztĉHËÅÔ½*¨É)2˜µ¨„Z™{3Ï׵ijpBX{fSsKí¡–Ô=À×Zw¶·qU€:–!¾Fâ¹ †±oÞM¸r®»ýh-ŸKoó‡èš Ø«&H«¦¦é"R»;н*‹øþ%i>‘Üá!0D¡wѽ¬²¸ä+ð˜„ÂSøZ¼´Œä;SUŽÿ«^3R“æt2FÃZsl‘·ö"ƒîdÁP2bSæZ)¼µÌ¢æ xlô¹ hóŽk¨ðºA\•«µ4æÙ I´]¢k—¬Urž’‹“ÐQµsäd˜¶ðyiófB,$ÖeufušŽÂqö<à+wö”«ø­¹†Ê¾äã™!^SÆ õ`ºtÜfT”ó.ÏAÄ^!ÝnðSbòäJŸùycÄ[wŤÛã9™÷§!Á¢IÉ-¯ßšoIò!Ñ’‡{iHSŠ‘å Æ´tÈóÉ|?-J΀¥ØÉ`¸¸tH/Ê3'[À u¬Øff0µï†’ËÛ\lÝRëSÖÊâ Ü >ò2÷}9ÆþKû×ÐéÃ:á:´Ù—b–¸øÌ†‹ìz–`¹†4Ø=Ç Ú~’ô÷ WEõ‡a¿jƒ˜ÐöK °d€ßt2ŠŒþö-”wwVîkSG0Ü ê;×iˆMчúÄ€®as‡¡ ÎJÉܧ*Úwuµ6tC3ز›¢íš¼Ül÷é;­8Íæ&¥ÿ¿îÁ=Oî{1P¢fO&äo(Ìߔϧ,X”)ݧtVº¡Ä¼ïV,:’qD5a’Dˆ裂'>ú¸V=«ÈBš‹;i¶ sÓçá©öH˜`é—&Ùd÷‘ºˆnrq˜øTu(îèìq¾„æG.Òž!O~ƒOî£3èø¥¹Üb“•ÏÉÛ´Ö³kÚ3´ÔvóR}‘Õ6}î'ÛðÍû±¶Øn·Fäˆåȣܓs Ä,ÉÏõÙíÙ±ÆøhžSöE®°ê}ÈÀ ÿ¿®©ŽÜŸªNŒ4ÆHEm(ZÑ™ÀruÔÆmKR^yìoè>9w Ç’a@X~½¾h}dëK+€ç¼NåUÚ²Îú Ë™ËŸŸLjÏ)WWì(·î´šŒ…ùÃ&ïÎjlÜ]½—'KG«–¹sá|ÏžqÎ]ºóWð÷ûª¢Ö.î}ìXïØÍߥ??¼!TýSó_x~ÉO¡Wÿ‹òç¹·çÀªHýrÖ„7iîðÏäÒ×ó« à÷úÿ™êy.<’ãÝzqqAÊ“kÀ=Â|ÑáN“Yö3Ͼ¬*É^—Ä'¶5Ú„èÈðöØÃBKG×amÄÿ–}ð‹ÈÅ SAoæ±ä¶ðÓQ¥¯×êKâw¬ñ•º©¥Žï=}ýjÈÐèbÞ’],hOá¼çEµÕdJKå“’¢ZWï^Þdÿ$¢ª kZ«îZe˽™VŸß™³½ðDÚîÁ®Ì˜6‡8ïGMoÚÅi/J+ðyi•šÍuõü¾}gÂ>Íëoôøä>:©_ Þ²£|Ï>úAl~êÃp—~çsÌä3C^¬eÒ6ó#3ýì\zùgìÌYµ,‰Ï¼9Ý’³ay„n!kßÓþÑžö[–pÐ(%kâind=è+• /C0YÚgŒ)y+·lÌÏ YØ™nÚûчM{kªß=RS}¢§V€“,:Lø’¸ ðFÐñì½-]u=Ýëâ¶óM:Šw{£|dDpæÜ™ãÔd"Y™³ !Ó;KT0ök” ⊠¶ÙÛ,ÁCx eW…·Ä©Lƒ©D¿1²sxÒÛ¨Ôb>‘½ªeÚ-RB7œ‡NiÑ],邬¡q VºÊÅ R ­-+§'6€wR,Ñ;;‚ó€V‹Õ\d5—”T^¨rv¶›»+·ïÜQl.·:¤¨ÿØÅÝendstream endobj 348 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 675 >> stream xœ]Ï]HSqðÿÝÇÝMo~2Š>î.$T„Ã4,¡(²͵˜b±Ùts²«ns[²Iåü:›I9×,YjÚÐõø%qŸIõ=ö%TÿkW¨™¥áËáœÃáüÎ!L‚‚È®Ôh8;·¿0_gnp5[WšyÂvBØ!vJ! t/Éå@K–=]ªÎÁ5ÙX—‰+³” ª¸R®ÙÛjm°8Ù‚‚¢üüT,aM^ö¸š­0ÖÙ8·Ãfeö‹l…Z£fOsîTÓÊîáì¬Él16Õ³\=«7Ÿe U'uUl™Nk8SµW½ñ¨5BHæpZ ¤GTŽ”HžúÉPŒ~b'2~I$aàñ{>ç}¼ß’Û,p–~ˆYwj® kÃ𚜚þøéÚù–rôD€JÀHLõVq F9GÀLÝx-¸ºYMãÜ}jÚïZðS¹ñïüúmõV‹ú”ñî|Óíjª'±>EtÇ•+;î ¿ÖΖ”]0{.1X§˜ „­L9ékù»kfùªi½Â»É5Þ„ËÉ//Íñ‘F#¶›§Tk´„v¥Þ{ñL*xñ¹UùþI&:oX'逮¾è^&¶^ñC/x)ËÍîI÷Šíö‰u[‹%oV ñh\)ÚIlÇßå¡4‚Gûƒ$Ÿ–LgÒdzŽÞtz|ðv0 ûƒ±šNŒ¥Ò`04¤7#ôéÈB¹endstream endobj 349 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4230 >> stream xœ­X TS׺>!sD冢ç'¼Ul­ÖG*ŠŠ jˆˆD& ‚ƒLÉNPfD&‘!ˆ *-¢¶¶­ÖV_oÕ^½Ü×¢ö–êps×};€Öë½·ÞzëV8$Ùûÿ¾ïÿþoGD™›Q"‘hèJï5‘áÓg¸/ˆ 2Ý'8‹„‘fÂ(1›_äõúX 1²1¿0rDŽ\±CaÅ0J,ùmX¹+.J¹#dlÆ´iîîä·§L'[0E¶Å{Šì½ÈXrS)›!Sl –EËÖnß [ç»x¯lÉšUë||'Nùí¦^ýEQ”[Ăȅ»-ŽòŠÞ³4F¨X·Í;h{°ÏŽ5Jß°ðé3ÇðŒÑÒÝò¤cµÝz©õ9¹Í™!¡Cªmß³Õ¥†6 ëî3\kÇÙyØ­gE ·íµ@F¨66£ôv l‘›+tÛ½ ˜þAñ>6[è2_ÉiÀLÂþÏ=d!§¯d£ î%§+t_ “äúU¨ò%Í~ ÔÝÎk§Ë¢çq¸ú÷/±ý·˜ÿ"k~ ‡ £\a(|#Ž1à-E?̾‰‡äÂØê“÷Ñ9¦kÖ]<“ë›#Ö×í"6HÀóÞÃy<¾‘.Zˆ-9<*`™äç²¹ù“øžt¥r¦9¼> X–`j oûo³‰Tj£ð†^T6P6b¡"¥à<õ žŽg̓í±C—;L‡Yž€‡mò¤³f°Û#°¼}PÚÈ•·œ9fD¢Æ]%‘Çw ?äo*fr"•`„ÐXˆVA¬Qt\­AÜ›{¥%©ÚýII(QÃ%ãÉXê7-GÇ|¯†4…^DÀ¡ÇE_ž»tíÎÓ¼vtÁÀZ¼H—œ‹ St•Ø‘À+Þ²ˆ*t6Ç+Œ4±Ù¤ Â“a(öáú<ô”ÀZ˜@ßÉã‘Z)–ûýBB6/Ý91ØMè7Éô¹ò´_¢tÂR‚°Ùƒp“\ F(6Ú‘ÁÓn†Dƒû¢w=TH%*<1x.^@>b.K~ÌSÌã P(™Ÿ8‰ób˜&a[Áé—‘Ï4H" ɢﲩ.y¯…Äöߢk‰¦ESôôü Œ+æ ´´Ãï¤ÿÛJ¯ÀDþb {Ïþ½üïèjÐ=TIÀ› Ëiv‚><À’;˜â…>¾ªJ_ÒÊ‘R.¹›V©1=Dý¥x@FÔ2^ð‘öïéáÀž$5: Ó|ÕŽFì5és¶.(jÁ¡­“¸µPc$àªâ!&Q{'•ª‡7jaTíõZQÓ ØwC,L^ŠÚwëc)”YëòVä¯ÊGíÌõ‡¨ ÄY‹£tœö`ŽIqe(³‚ÿž.EÙûSÕ(y?—ž‘˜’–Yœµ1áØ aûÑ0,¦.¯NÓ§F-É-Q(ygRmXYÜÉ¥×hã£B{xLÓ{QJQ¶çN”ž ¹€Ž!§‹0¼œˆ`D†þ~¤àk÷O`¡³[°‚aÒÎ@?zYxDØ*ôY 0ֈǂo ­™à?aB³“øË=\'q¹¿ç‹Ûm—nXÅ‘e&XÏáØ ¬wÁQÜ{ßÞè"t?3ÒjÚA.ŠÐ1ògø¾ ÇþxߤPºF÷5’ë9ª!|ºÀ¸‹Ïüþ>é·Tý.“\䯙æZ“iÒÞ)¨™ÌiV½~ÕÊzÞ–÷æÎO¯ºÈ±Žð#ÍÖ¼þß$zügÏ+o£{FN;‡èÑlu'U¬ÜŒ"áSÁUj¤w¨ÕHþ¢s”ÓÕåi)©Ó’xl‰ó°,.%{Ô‹Ñ.V£Ý¤˜«4,ê³ËÝ«K«@NÅ(G—{<á_ŽÙE‡s®"SWþŽÈeWµ0JoWCJP˜ 8#4•KË’Ñn¥£ Âè®W°‹/¶J›XW][SÖTšr,>ŸÓçV¢RÄÜhÝîÉo£ñ 챋§{ó«÷ mÇyvC0’ÿÄuHÊrP9ýÀRê>+.t“Böï@Õ=>Âõ£(0;õ°®ƒtä›×´„i Nª-¡^‹Q:J@‰Y:mmjbôÑeáaÑ*e@[àÇ÷/Ün;ÎRÌ*<œs 9Ù ¤EMdž-+±Bð-HDIû4š„4.eﮥS‰º ˜|æ²À!û²: iÔj Ÿ‘qp?Šbâ«ÊšŽž»é¬uØk1w4ùÃTÓë€É&e>iôKÆŸzÈ:/ò› +iJFÉ*œÒwʧ§’‰pTdH) RŸIPŒF³;=N«‰C̹¤B÷×þ!óuÿÙCïBjqX£EåŒpQKCUßó#‰YI%È©eåɇÚ^3G­ tIµ®5«U¿j>ÁŠÈÆÔ&²Lê].|ÿªýš5¾&¼…Ž)ÝZãE =ÎËð˜'o‚ÓÅs¥úfÞfç?7g«ß Üpp‡3†€ý” üò&¾îÒå¬ ÔŠÚâô[M-#ZE\ |kà½)HŒëB]ìWB Á¾h?JݧÉ8˜Êí^¾LåOrÕ€ó%.HØ_*²PUmÊÍçø@ƒïÑÕ¦9õ¦+¶Ã²Ÿ§Á$˜tæY ?œ¤8Y¢kÕ6—5–ÖŸ*7«É%‚Þhòv¿N“Á½0B´^= s„I[wMÃâí˜á\ߕ߯/þd"½‰[ÿL÷|Z¬Ï×iÔYÜþ¤äx¤b¶ÕÇ(o,j39(Õ?þŠš s`ˆÃ9p÷®’¤@Mþ{r}“@ò{ƒ,‚whxëßýÌcûehžÊa:—ÀTä¹d0}áÍõ0£ëN=Ä×G6ØÕÝ_ó <˺ïÀ2”`ÆJ+ãêå UœŠcí¨JEPîgÌ­}gqXžÂ äã÷Æ…Ÿ–W—ícØÇ‰Ñ©Þ{Ö¼ás})¬„9ß^¸ó·Õ5Qœå ä¢ÐV”¦•g'4{ÊÑåmß} ™<ââWŸwD4&äñ5Å•‡Ktiéè £*Ü{âDai‡·»I7#¯™›CÍD7ÏžE7<@^›y0ï* Y9vQ"vÜq©éÚUTăDòåçýø ]l¼1¨È_'¿‰Ñã6- 7åˆÇ’߈³ï£?ÑÿCˆ^"£ô*#œÖCc.bÁ\ªÁÅ-íý.iɡ̃{5)5\ÚÆ0U$ZR>;Ô•Ú™rSzpnÔ.0OG‹½¹> ù3 28ÿzúéýeÞÓ`M· ú„òݵJƒ–’KÑ¡dØŽó÷5åÎÿ,xTÈãzaŠt­f&~‹Ã–ÐÖ˜•éécô³c•¼ã{kG<3=lÔÛ½…I4û!~Ç„Ãå×òÔMTMʼfR/ë¸QøEÚª¬Û®Ý¤hkj­×7›‰ÜóŒà×^-¢+Àç‘á‘X¸ RôŸÞ°¨ ªsœPžñ*d:ô—»»`‡2.S…4¥ƒY|úÃNJ†&)™“oŠ*ÛØìFÜk̼éX´´1 ðÞïdjÏž§1êrÕу5‘h#W½Í=0_ ãqšc(3öeàñLé~Ãø—›¬¿V'M䱘²Un–œ q )ÈÜncëØèÍm\5>ɼròB¹¡£ù:•QÛÓ÷E¢]ÌŽê=õ'ô%moûd4ŽçÎÅ…K.RÈGàøø¯ ã1«•N@oYu!'; GwQ.C;Ï_~‚ÞÏ 69Ñæ4+úÆŠa¯ÀH[wÖí S(ôaÍÍúºVwšÿáÞk_R<{S¼Xö@ýZS(¾õÿô};¯†JO‡TG†‡×F6œ®©=ÅA²ýîÙ Ö°¨KTb¸‹¤]¸s*ýªÄÁò¾øcu¤’#ó+$×õ–^å`` [›¾‰ÛÖ°‘ã"¶Âãv`k~ܯñå5ï#¦ó‚þ±w4KÓbãQ8ŠËÚW˜hʷʧd®þRtþT塌Î6¡@ðÉ…­Çó $F+YsVæk#m,‘uM¦63S«Óædçß±±1>[pD—›©Ë=l3„¢þ *íæendstream endobj 350 0 obj << /Filter /FlateDecode /Length 191 >> stream xœ]Mƒ …÷œ‚ˆÐ›6vã¢MÓöˆƒa!ÔEo_jÓtñH>f3¢iÏ­³3-nÑëÌÔX×G˜ü5ÐëHÉioõü!<õ¨)š‹ ÏWº6€É|U#wqªðªÌ&í{˜‚Ò•€ÔŒÉÚIÀõ¥}6tæ§3‰ó’ËK™ÅºcB!Qk5¡8H¢JŹÚá¬íÕ46Øö¥z‰ÜŒ)1EZÞ:ø~Dð!¹è*ò¼Ý`#endstream endobj 351 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 614 >> stream xœm‘ÏOÓ`Æß—¦P'¢‹T±ëa‹Ü‚bŒh¢ ÆhÔ0 z"kö£ËÖ tsfsàÛ­Œ ¶ñ+vêvzZ¸xçÈß`¼™xzÛ‚5Œ‰—çð<ßÃçû<47áÙ¡áaVðºc Þ¹áñLGýløOäPÏCµ«I½@ ݧ´ñDˆlþ¦þêÀ¥SX:‰ÓíÀáX`n¡¸u—ÅÂÜ´W`®ööö9†ö31fÀÅ ²“>~&âã6ø‚t »˜GüŒarL7d&<^Ö?ÅðSÌSÏ3fÔ}oÄÍÜy<úÄ}Éõ¼Ý gš8>ñ³/> stream xœ]’Anƒ0E÷œ‚Ä`l7R4›t“E«ªí°1‹"dÑÛ÷ÿqÓEéÅž?¶3‡óåù2O{}xÛ–ô‘÷zœæaË·å¾¥\Çü5ÍUÓÖÔö_Óoºöku8¿ôëç÷šklÈcñ×þšï)?5¥(-C¾­}Ê[?åêdŒœÆQª<ÿ–l[*âøØ¥`c#Ð$[ê -5KÁÆÚ8Q ‘êE1&:j«õ(бÉPѳѾ‰É RMXÛâ«OÔF葊ÔV““‡ZÄcÚDÅy t¤"•ƒouêCŒéxß'"P&;ô$Æ8ÒYQ <¤ëDòúuNkk=V¼®z®z< òF½nöº¹ÚSGQ > stream xœuWy|Tå¹>Ãñ€a’AzN@±¢€ õö"*}‡@˜,d!ËL2™Éd›}}gÎì[2™l“„$da ›†M…"Ul«µxÛ¢u©½úôãj¿ÛÛÞ{û›åsÎÌ÷¾Ïû¾Ïó¼jìJ L}}Í©"w¥BZ—¹`þÜÙ9eÒ’Ä­'øGüô1ü…5˜åFõI,„ä±g§?Ò<…>„†&¡“©IÁ¶ÂJ­ÑÆùƒ‘úƦx×òb™º$/'W‘úìüù çÎ%ß‹R3Ô©Ëæ¥®’fî/V•îÏK•e¥®š·f^êÚb¹˜—údqQjFv®´`_jñ¾ÔÍÙÛS·lZ±qSê«×mY¿iö¼ÿ?н*-åJ3²Ò¬ì…4GZX(-fdIey²Ò‹¦pèk’—dÔC9(ÁYÁ*&'„Àëïq7ö )îçó#êK‰D::ººßqK‚?Àšôîhè6zòÝ1úðOEψáPy‹&$‹¹Óý9¾L/ ÒíÍo·œ6fÕ2ÅvU”ÑÕþªX¬¹¾pïáqʾYé/ܬj71gtg´°™–+~†“«—‚é3·t@œnª )å…Ê=‡3?FÿÑ& 2äü¼é‰I:Ñ6•½ `ÑÛ­Z3³÷±­¥y@+uá®f§×UÏÞD'“ Üt fŠ¡™î(xèzM ÂZlÏÕ3YxaÒ\‘Jåi‡Û¢å¸×RjzK_öÙ?£'|‰C~(ú]ƒ8d€2µœ*Fé´¸ >§ÏéEÓøŽÿ!.ðÐÍ>hiÁÂâ+–pIÆD™üÐp¤ ÊÍ`³éYüèÝCú}VÝ(ôäf8MåÐ4k’/ ì?w"\ Œ ©w„|.O‹ÏÊëÔ%¥ò²·)¨eUa9äÐÒµXÇmWôœ9ßön燌·ÞzpÙx–^8œun¦ý«£Mí@ûêa‰NfT³é˜®Ù {iLÝ®<Ž– £ÎŒÇ\ùô§_õüù ZG8ú*9ÿœ¬¶¢¤„œï1ù LPÛ"‡]W4[¾]¾57w'Ði²Žá¸·Óa %îX <’¤öµAed¬Æ4¼É(7ÚÔ -ØfÅÖ‚, Ÿ‡›õÝý'Ð$6Øá‰@”ÌïÝ9gß¿„ßöÇþΠýuöý%Úbc ¼f7dÓóßÎýeý ¸>À´®¾fê€_±˭#Ý·¢ip2Ñ·Ÿ¾FaiìÈí#$%êJpDÈWð‰]p‚—Nħ«4Ué›ÙP`Q«žOÙƒ_³Tí]±$ÛµÇz×_ê¾ÍÖvqXÿw\w:ºÿ«ÜXÎfÎPo„4úÙË…oöw×ÇãLÍ6ÍÎÌ­ò¼ì¢ÝP {¸Šþ:C$ð‘Ñ2—N‘_¹sDZ}—¾þú÷()ž¨]u¿ hßÁÀ/„¼9Ñïz°êì–j+S±J½>h™µ5z¿ßÑãü/“‚5Usô¶ Æ`7™¡†Öø¡ö¤Ó¨c¬ªuX§î-jÛ<OÆ?ÁOÌ=·òVô´ë#¬OÚ“z ©©î`ý¡ðe§¢—Ä;ðv³lU’ôÍ•Å@ï¨>×ú šÔtœí|s°wè«‘E&“Íd7'úöz#‰Ébèù˜àø Tß%ä—}+ö˜¼&³Íf01KžÄÐý‚þ£ƒ!GgíEvHÔ7§¯w¸ß„},ûð+XˆŸ~ /Ÿõæ’ÏÑc}bv!Nüþ)d0¢~4çëÚV O´å±G¨¯]&äjæÛÅﯼ‰§2ø}Q¹– µ¢áv{ˆ­³y¬¤ß,v«Uƒ§ÝíNÑeÙ K€®Hºáê AÓÑx"¸“pÖ½˜áÀïxî¢5@E—…ü iCu}©¢PQ¨ŠT6µµµ¶1R|UL¨ž¨'=,íÙ1kãpùŽÓrñøÅs@GX¤ «ÖRÁν;®üÅ]7I…*Pû;¼¤Á¢t¶AVR¤ÌÉ(;yýC_´$ð{m/÷ FÆ‹ÛÐ2’N8 ј æîQ)ØíÆòuøç)v›¹’äI¬‹7àp×ylÏ´@OÝ/ŠƒÅ`"æÆÊ’nì$Z MIމ4cä‘ptaÜZ÷Ý7P$¥Æk+ÐZ½^«w›"F–aÇ]ò©6šM —hýú G¸?Ìðäñ Ûç†ä>>ø%%Úò­Œ QºCüVIV¾ª¤X•w…Â.€áœN9œöê—s×åç³Z"dh£Ûâþê}4Ž™È[±Zù×*‚àúÑ"qPï×Vñn_~·Æ\f’k"‚0ç­÷0èÓ¿.u‡ÁM.’hþaA…üÇ#b¯‰3­V£•QïÌ&E§ àVs#!„{oDã¡ØZÂê{ìñbÚzúÒhÁ¼S/ããüž1oäÅ?_¾Ñtñ=&¼µ«`è¡Îsu,~µ_¼péRm&Ðë ¯ü`]O¼{¶h쀧¾°6‡H‚z®‘Â/+Ñêú.nBî¦)|Þ¥šóSËGÑZ±;ÆÅ º^U§¦¾º¶"ð—o £ãpp~ø¯\Ø MƒNm»:&;(=8æãçáéxÞ]œbpY<Œ[äçp½ƒÚRê7Ï|†ábÙ¾“‡z߈ Ñ+ÝbÍî²´¬Üìü´rBºË3Îý¢ÎYG„o™¢)·I7Ä«ëäþ*®‚8ÜJ[…¹BŸ­Î.(2õF½YåS¸K!¤`”Ùm‰BÐ¥‡¡§¥Ååoaº@·’~ø§¥KQ2 ŠÍ…Æ"z ÊW™«¬ÕPàpqþ.h&â²­ kqJN 6:¿Kpôâ—m_\òb´Jìïv÷@ÔÙkmµúÊâžôá×?€Að8<œÛí÷ùýî ;à -¾¿¯’vÙ]vŽV­ßæmþœ^U.._–³äuȀ¦ªnÃK#Ä ÍC&3|&:4p¤¹µ3ÚéçÌ)ÑœÙ>©«ÒQ ·e$Ï1I')¼UÉÿæ†}×"äøEâ€ÀjÒ›Ûædþ$ó {§ý½¬?•^Ì<õ ŇVà9:?X—»=€$[ z:ˆ—/Yk®0ªØ²e…˜9­u}a_¬/È4}vu:Ãΰ+|ð‹+höÀÞP(®D¯n¡|ÊQbü‡x½´‹³9­.]ÐTkŒâ½ü[)Ê [Âi@“ Óü6`»ˆíhyõO¸%·ã6Æd‚IEDSWç| 2¡ÞÃ3Oâ¹u I]YÚ€Ž‰‡‡È9o±ˆ (ùG.Ð'§„üþiq³Ê|[TÙž–›%ß f:!‹>§ËçaN½L=,Ú'lÁ¤ó U„Œty!Üá‹÷†˜Èqp†OŸGò”$ÊÇOê÷ÂkDqd¾¼@:Ièh㨜¦[t®B†¼gƒgh$…Awb!‹Â¯+ÑÖ{ÆÂM¶ ±o¹GÐd?ø ˆý-±ßÁ1ú¼,òmúêm‹rs>»š´?Z4:+Åá"mæ¾§Ã:»Mmaðâÿžý¢?»Þ’³Ž[Þ_J%ŒRÑì0bF xüs„8ŸÒ|Í?“òžex7,LDÉ=EáJ”yýçÁéV>òߣañ­¬‘—ð¬ux+Þ¶ŽÁTtÓy¸ñ&4fäšÏ.B2.›GW¼Ïzzî[˾-a¶â%–šÿHÊLBŸMDV|î®64Óo÷ÚëF‹Ñ<´=Ë—‰qã‰xžÁ£±;86ЍNôÈ­Ï>ɵ¶-»öèsLAŒŸxDÀ7ò Å }5(,Ef5Vá9x,íûœŸ™’ØË 69Ù´v²éþ}?0jÒŒ2f-¶i÷$iv]!Aÿן¡4© M‚"¥½Á?D”í2ˆƒGC§aZͱª°ÉcàôÄÚטt:½Î¬%v[ç2x-eáȽƪ¡ó7<³6A~ŸþL8èðv8ýN?øèZs°º\WRffÈVh/Êß²+k3Ðkå§/G¹&wŒ­9t¾oˆs9‰H€Çâ6sV§•h|‚~̦Œ%«+_×e›³ —^ܾæ½ËgŽ]êc‚kzÒ߆¿Àe$î@ñ?Ÿ—ØO¾» 軄âWþ1Öj—‹ðÓdñX„\øæŠßß³мz8YpŒEcîÏÞŒ§Š!Mµ(o{Öú-r²·îÌò­,`'–ÿ †QaL?ò 3~ìæÍéÉã ùÁ˜ÃɯVqÔ:’“[ÝÄMxÎÇ™<¢þxFòendstream endobj 354 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2595 >> stream xœ}Vypç_ÙFYÀ*°H²+ÌPBɆ¤p0ø"6‡m|È—dI–-ë¾·«ËÖiK¾°eÇæÆ!h¸ 4’@“¦Ã„É™6ŸÜ¥Ó®BþéL§ófvg¾ý~ßûýÞc¥¥`gÞŽììbYåvYq°ôåUye 5Å’ä—¥‰g8‰gSÏ¥J™ÃSǦvOƒôTHO»øì ô4Š?…l³‘|†s8{jj£ÅF¿!+$ŠJ™`íš5¿[µŠ}þ^P¢lZ-È*.­5J«…‚âº#‚¬ÕÙ«;Eì¢Pð¼¨NPRVY\S.• Êö vçoÉ˼™·kwNþòÕÿó€ÿµXRƾ‹kKŽ‹+…u ¢Ú²Šb ÃæˆÄRÙ‘a~Uõ†t1!†å`¹X¶Û‚½ˆeaë°·°Ø“8‡æ8±§XN°4¬CrzSˆ”»©Ê´'ÓîO+å¾Â•>á~‚Á4ý<œõï…éc 2Æ9u¾—š° NÞw[þ¼ˆÉd6Kîlþ -BÏ!"ˆW†yPªXY¶«<¯@¸ðÊœÈWcQ„»Jž¿6éï|ì¢d=Én;ï.Ƽ=ˆ^øeëÄÎORí(Îûþ­v–ÔÖòÛÛ@ ‘)kdu{Á†¼Ö– åêõÁ‰È¥1ÀzeR½Uj7’LÚ£\cµÝX |µš ­·Ïå„É;Ðióî C4¤m!xZ½‘Ûq4 Ê*ÞÍF¿A™h ùÚ8ʵ9õ» þ¦ò/ÐAÊIžC¹îv Ãþ‰Ó'»‡¿ÝÍóM>KÍ©¯Ðâ»'bôì•ÔÄzô[C2Ï/º¹ëîõɉŽÙzË€3Ð}¢¥½c8t\8SVÉÛ·u¼ð²ñwÏöýÜuŠì¿r~ü à7¢›´VÉrs=©)»þ0Ξ¼+ŠÁ :GW9SYߦNKôñ¾Øp‹áÌ®âqæmƒý ´:6 É,x4d(·6_¦ƒ&«SŒöÐT”¼Îýz“æ =¦Ô¦º™”Óv'´‚›öPî+2P-F+~@3È]<ÐXÖæ¨T…eËgVro¡žÖ!Ê9|”½Mº1Y[‰_Éå}ÅùÛ‡ƒ¥¢‰©4^—²MV_'­mhSv÷ö÷ĉ裞Ïè4ií&½m())\«u÷õx#ÁràÞÀ½ÖîÀ´ó/”ß»¢˜hÛÈãs±¯ÏôÅù,"½C­¯%Å[ÅÛÁ.Þ·¨,ZhÆ÷Ÿ¨¸øí“r[Ö`òÁ©qʺü·SŸ¢fœQ ‹cµƒU-E5]µÞüøÿäóÏzpµˆÁ¤V9X m«Ý \m.b \´Ü|¯Ùm2ÙíZ¡ÓÔWë´G.ííeé YÁ§3ÜÜ¡ÛDVöï47ÐÐoê7]WÂËøº—Vgf13;Ð'tzzÊ7- £¬‡Uf!J˜õlÙ‹ÁÆ7z,^/Eý„·Åãçºk/•þȺ} š‰æ£ô$ÃC#s8–øë/«¾F²;©‰YŽ£ª¨´¶^Tßnê‰÷Æz‰bæÏ [ ŒOÍ]˜ý+‰~Êöñ'&.ÞPW©ml«ÍPíÜŸÅÖ®T.;5võA+Þ£ÊëÄ’ª²É¥+(åJ'Y]þ:«3:ù ü‹ÖCõ4+¬„¦¨~ÛŠêÍ]}A*àî&)—« üpqd¯w¤kh(œ|ïôÈ9BÀÖ¢ßm‚B¼¡]ÕÕï’ïËÝs(/È͓蔦ï‹2ÿ?´Ý¢ ˜ÌGXU`bÍÚRG‡ZŽ…\ÄY”7i¾Ùy|°€Å®·iìj°à9§_ž‘¶÷ÁÃ:Œ³l1(•ƒvÅRQµ“w]zêPe£H,ŠŠFzÂaÈRçegV›ÝÎþol1{ùMOòQ°c6ÊÑŽ>ôcÌCŽØÓ õG²kóç¦%Σw_î’J€Ø*6‰ðM¨”§±ªíVÄ*Hºe޲zûí>{²oUßÀZåSlŸO|FóÀmwZÚÅgŠ2 ‰[¦hӹŀëU ÖúnÙa‹Ú»sï0Û2F—2£LD§×kÙ&ÞØ®i…ü¾V9ÑÀÈš+Ìz¿‚ß.é€Àû[ œÏmó–ô'2û›Eü;òó=±ôÆ"ב1ƒ5Eã0+­D£`¶™E ˜y|Xöåkh¦E¶*C[d(g§6€6¤ÜQ71Ž^E[ZÙa;Ð<þæVne–1¯7ÿÈÌøØ|³VãL/äUÓ § Гðógì½b]8™úŒíX§<±ð'q>±š—VMÍ:±‘ØÎ¢ÿañ’š‡ <ƒrQ¬ª,bH©\n°7z»Õ £iç¾û’›Õ…žg°µÓßMÌ`3ÿ2ò|c³0 1s"lvœÐ$÷Óôl£ÔÎ¥o5m Õ‚tv6pÙÚ쵯Ân¨Ôž õûyh/Õ^³—¦):@u¸=A:=}Àíë¦hÊí Qîô'1ì?ül]ûendstream endobj 355 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2790 >> stream xœe– PWÇ{fºD¡ÀížÔºñF‘5j£ñ 1”Ã#á>9än†c`˜o¦¹ofp¸DPǪlHbÝl4š“¨èzìkò¨Í6jÜÝÚêªWÕïu}ý¾ÿÿ¿×"ÂÚŠ‰D޽|âCw¹/Zà•š<1û*ï*âgXñæÆ"Ç $`';ë¡¶?;"£Jš‚¶M%¬E¢­ÑIÊ5 ‰É;£¢S‹-òX°@—+Â2«ÝBÃc”»cw*BwE(6¸y¹)ÞOP “;³v)Â"£Cãv(v(ü"·)ü}×ùø*Þññößä;Çíÿ6örbch|XD(AN»w§‡¿µ3n‘ûâ%K—­˜=gž˜ ¼‰MÄfÂØN¬%ë ObáE8ŽML'ä„ ‘K0„ 1‰°i ¹ aM¨ˆ[¢8«Vߋ׊?¶v“°’lÉébi¶ô yššE¡~°Yh£·ùeÒ“ºPýoVó8,¼Ä¢29"«9âDwòÝÓ-äVHm…|I¸ –¸ý9Í1-›a5„$xQOHz¿¢’Ä‘ŸU}Àb#¤O&ŽDYk$ÒSGX´‘¤;þñ¥‹µþ> Îù¯§$ö¼Feæ™D×Q×u1‹bdhÚ¬§x2v˜‹EØËÏC6hòÃûˆf–UÉ üSƒSƒ‚wm‡6&M„ °ÀÐÞÁö£ÇŒa§¶…´…Àfˆ¤žw‡·XÐ|ïlÉ1;>AM×è©ü'CôÜQl½"48UÉ “ô=WGÅ‘´ÂXZ•›åYù¹Åj¯ò j@ÎÐØXÝ¢£èz ‰ Mèõ΂—@§=æ=Šeòo( ðùpó¦Ò4*µé-º6øE#Þ¿*•+ªotSgÏ…/¾ž%¯RÕg ²µ­>ÁµÃmW©³ û Av3ê¹Ógí»Ž¶ÞóÈVV“š‚Òu)³ËmCÞ ¶xFKÐÒo®¾¨êeÃ4êxÈ¥’ö(;ÚZš»>]yà-ì°x*ž6:QÈ¥ÙÕ0öc`YDhF¿¼C<2¦ =Ùh° '˜é$²ã+Iü”o*¨ÓêÒÁ¿×)m„m£¶U£ÓB:5n !`æ„Ùl8d3a¶™p¬å›Éòb¶LÍÏ¿'¯ÎÓi+j€JËŸ ÛáØ#æeñF´úY †_4X¨/.(U–2Ñ3Ý!¶CxWJ_üq†ýê–š80ŽúßBF-œ)Œ.Oæ"ÙAbû.r–á|išsü¨G5Ø5‚ÒŠÃZ‘ÏÙ#­M­ZóZ‘ÇW \N4©â3øÙ²æ¼îe°:,”¡±ª'4”Kuu[¿þ­`S¤9ÍÍΈhˆ«´(½3cC œZ3ê‡ìѤǧ®õæœÚÖÁléØ ï Ð "]lYšº¡ Z›[$ h @ý42rµ/«/¹•Ý¿où h'@%pZUI± ò¨Ìú¼¦Ce+ƒ×bB‰ÚØìä¼”„p þ ZÛuÝf–¾¤ª«jí8èz f¥°ÈjÜVæ¿vûœWן:}´¿ocÎIo"kX2YÙùçhŒ;„DO¿ûçëÃN´‚wKʰ¼˜¤?ÁŠ h\®V 4½„†× ½¥û´Î´Ü(kOi‹ß©LHNlMêÚ×Òaf~/.X'î# …ûPÕô”áÿ5A×™/é:Þü²°ø7SMcr“èÀuT%p3]‘Á7ÅßDxwyS(xÃê¤0·ØõÅ+à XUæ>°òðëW”'`¾6þÒ=R~ þF-«“Á*xGõ^ö|Ÿø ˆ€M挻ªópÎÁ%®2 Û¯ªÍÐÆÙ5¾°6R›=ú,—”"”ø¥˜_:ÝKºkjûXþ,¹ô)Œ×{;Ø¡ÎGmÔx#¥Ésgb㤽Ü-8(\· Wó¬ÒÕ{WÑú'-Ž'ŸÜ?:Ñ¿òþhµ,YZ_œŸ]Tø.¤ dó”>}„!æüeÈvùL|’Å ­$MÕ-=EÝ®hÊg?ÖWhÊ‹XÚ†Ð@±FYðÒSð£•ÆB®dÙtÿì|(Ìbñ 2 *õ\ESÛÔ7ôwøÌUM;ôB2£Á{wèîˆIÂéês:óE¯Z¥å8m­kO³yïÞLsLNtQ KåKFæ"kDýã®p" ½hÓø›W»…¯±VàZƘ\†K¤ØJëK T²4‡IÌR®©úb}]eÅ5¨è.ÅÖx±;vÁ,üÉ9‚Ž…#5Ì)Îpgª†ÊZnþ¹"yu€j#õL²ýwn´^4Ãänî7;ºm¼¦Þv¢œæÑ·2dÂä§‹ý>È a‚RBa…¾Ÿƒ¬/ :ÛÊÄ’8÷›3ýõû™ÁªÎfËîÆÔ¬ø‚Ï¡°ïL`À Ë.¼#[¶s®#¤: !îbFœ„ Û3öµŸì¯ï…£Ð³³9ˆ¢)¢.¶lc ‹°5~_Z«ñ¯òí2<½†çã×ês‹ÄbBbÿ›Øæ<œ"·ƒ¢ÇˆÇ"ÑYK:ä0ãw¥9é T ‘å–6 …Å[¬…µlfügiöóµ–¿+m˜X"[ô=3Ò~ÍVŠFÏŠÑ \$ô™ÍØ9Ƣ̀ZÝV£)È¡~B=Žª,áÔùîï`z³ [åa1,…µxò,9§ÜÜPTEWù¿ÕQ–PþâdpM…&û!‰7š²ä²pv«KJÔ(5d°÷g‚=G^¹CÀÝT옛'˜\C©ËJ*jnŠèsÌ)dU‡Äpƒz®‚W>ˆ†±$'tàžë€»Q´ J%¤ w=¸‡Ìù½w$ÜIs ½¥ êAÝä -¬' ø:lá‘RÔ=f#›#Àk%h*òúpÀ˜H®6¨õ*ȂҒâLì7~Gž¯ŒX7A†Ÿ^üOùëRÚa/”WÞ€æò;ähñ¸ª<„è8Ço‚$v½ÜçД}ª‰_ÓŒvÕV˜¤–I#¶Ì$k?¿`;°³5éô:½^W©×sììÌ\…¾‚ã¸òŠ2»Éñol•°Šendstream endobj 356 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 744 >> stream xœ]kHSqÆÿÇͳãv\Í1#µsD¤4—Ø…ÂÐ.R­‹—Ò bš:/yLÍ%šËK6}×Z3Q'‘XÍÈ}èbTZQB}*Ѝõ¡‹AïYÿÂ&Õ‡z_xáy~ðð¼ QG†a [­ÙòA[ÕÊäìâÒÕ¶šYs‘Ï( ÊPOÈj^¼únHŽÁBæÍAë\¢b˜Ý¥r¦\ÝPSVj¯“RSR–''‡ï*©°AʰH›mE²£¶¢L²U6[¬i›ì›eR¢\%Ûm•%’\"åçKy9²s¤MÙÛóvä$YþoõWBØe©ûÖ&&CŒ¤™$Šh‰&ü Q“ä9ùÎl`Î2ƒú™ã:Ae$øØÁ ó•Jɉ Ú5fWïQ™Ð:ÝÕBaÑ®Z3påšÜƒ‡îG¦Äå4 örvÔón†÷Œº¸?aoðËôç`ÌÝiëÔþiŒšg (‡p“©’u9Ú œGŽ·¥C#pt#‹ñ¨ðßôÏô`ò>¼çP·ø%5Æ”_“’ºçZ{ÿàeÿUÑX>QNáÒ³§n÷ñÖš 3Ò©–F‹4†ÆF}ÎcÐY§ˆìïJ°×;%M¹h¢fL£fšÖwE$(R©ŸQ­.!=†«Ç˜ÉÐnUȇŠi¨š„ŸQlS-ÔÕ¿2°þs0$R»zÈ1Ë l“#ÌÎϲ(Ö>Ìô3ÌÙå„6Ôor0_Ÿ¨ðm5Á©.ws]€¦2ܸpu?>Ößçvƒ—óžðµ4ä·¶ 4ŽJ2ÍÊ­ûD³0a ×Ý ½ÿæ¢+ü=&˜jDÖŠÚ=R^7×âjï8½N%:„njzêhBþÞææ®.èà:<í=wÆÏt ‡Ò0fòœ¾~PÉô£ÜÓ=ȵ/t‚V+óQÀë†Ý³ãõºOv?àùa?à9íóœôzOóÑ„ü/Qendstream endobj 357 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 746 >> stream xœu’_HSqÇï¯m×ese`þéæn´„3©¨þQŠåœ¢=ÜåÔåÜævÍ¿•sþÙîÙv×܃jAQdPP/EAÈ í%Šž|z ú]ýMífÐCÑy8œï9>_QÊuB(ëlYÇ7ŸêäÍ6—Ån+0äW™›Ú­œó×4WÚŠ$f´MÌ’—QµLª@£òåâàfü8ßÛˆoo¢’ªu¸cwŸž´;ºœ–¦fžÝg0æçËùkêbOèÙRîB‹½ÃÕba9[[ª/Ó³åö¹ia÷Øm¬ÉÜÌYY{#[m®ckŒ§ªŒlqUEM¥1Oÿ_ÿ œÓl³šy“¥i­^3# W{k+ÇË;¼¹“ÿ#,.‡•ë¢(JI¡Ê: (•|¹w‘zŽ¢7ø¾vMÕP ^b”;Þ;­ âIÑðë_æðA~®ÿ|<>…Ïb Þ‰€ Žz`¸·¦¢÷JvI)%%@\@vÄH=N'EÑ«ñ£ G ªû›Ò7­Ào¯Óïpâz’Ž‹Ü×K?tzhÀçxE¯îymüðRxËÙzÈíÏiË3¶òH±¿†e¸'ì ½z;z={§Äq `—Z»ªÔ‰ÔJï«¥m“h©gÙ“æ¤ÇJÊØz†N»ÈnP'Šh> stream xœ]Ín!€ï<o°0Û°61\ô⡦Ѿ ƒá Kp=øöjLá†ùv‡ý!§Ußuñg\eL9T¼-÷êQÎxIYh!ùõÏÚ꯮ˆa÷åÊÏ£ ¤»Ý‡Ó‡RíH÷ ¿¼籺|A±UÊnc´søwõÙæøö’Ð`Iµí¨ybÛQUÓ `4ëÆ6FO:ÛPã¸!5´eè+Ã:ÙÉ&Ê9õ¼®Õù¬ˆKææŸ½J¯óÚ&Ô&À§Œ¯!–¥p”$Ä/½l”endstream endobj 359 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1070 >> stream xœu’mL[eÇŸK.]EGlB#Þ^ã"ÓÁ™,M²97^œ¼;ê\ ¥ „ŽÞ–Ò—ÓÛö¶½——9^ìõe2ÁMã‡MƒFÝœ‰N¿è5~Á}؇…<÷r x L“%æ<9Îÿ<çüÎy¥§!‚ rË+*Œ½íÕƒM6‹ýÙ¢‚*S[ŸÅس­=)>Jˆyiâc*ج‘V%÷ Q&ý˼tgþ`/žx³£L‚¨·:ƒü;ÉR[×`¹­½—>PTô\Aâ_ ›é— éãÆæ[¿½ÃL­-ôñŠBºÒÖ¯Íô~›•n2µ-­´­•®15еÕGªªé£U¯Õž¨~ªðï [MmÆ^³Íj·íí¦î>³Ãh1Y›M=Æs³Ñb7wš·ÇB(ë ÑÚ–†övå""ˆzB)4O"X¤V¶‚ÒÑ!ÔŒ$"Bl¥å§…Òîª*ñ‡Ùr½cýù~ëEŸJʑʵ1ï„“ñzG¼ÔFÝ&òŽàÓrg&yŽç(±nqã!"ºì-Bû Âo¬¬©p kSö¤Õj·[­I{*•L¦¨lÑ/:Ä¡¤èTzX~P‰Å²G ¼˜ÐKÑÖÏÜ‹~XøˆÄOgÂ{p5ÀŸ¹Yv¡EÀê‹ð,øÕL¸sÉóçν›ü1 E"À‘‚Fò4”(¹, `¨Ûætvu•ûÈÑÑ ÃpÀõWü¿; Ÿ”OfÂë`¾Öz¥ó{Ïû@ŽÇAÐïRÅbü•¿Cu:|pîX¹÷5\¬¿t:U–è’aÀµSø×±K§ma ”ìNh`™‰c7º—\²Ú ‡ÁFÊ v)ôÙ{{íG|cAŸ¼¤‹þÎ_Wo±V°Wáì……ÉÉùùë2 ñúì-UÖ·HR§´°.AnĆ\¬8A`YˆëwÂåñùÜnJ6(ö&6¸„ëø]žˆ/áÖãFEh”Æï¯ÎÅ»ù8Ë … Û&x†ós '„Ý~øíeB:®Œ?3Njãr†súû§aR/^Θœ†™Ý¼Åe\¸}É$žØM¾}/yJ/®fLm'oä¦+Ú0µ±š1üo¡Û;…p]ú}÷þÓ”&%µh³Ø±>ÜOü,ͪ¤Õ­àIŒŒøG·¿â‹›H~EÌóÅÜ(èüÊòÝžý‡r]î`”gø¸°²£um ŸÜ8Ê9Ù º³ÀFbS¢aýpnT… Jîά[ÁÙ+ÄÊ‚¸¶ ’LøOíì˜àfüCLÛWÚX åдXr³ì«·¦ @>Qñø3ö˜'&„gÂú(&ûø ¸Ÿ´ýrìFÕ§Ÿy÷»µ¿õÙ ¿•r–æ2–ÕË{(µªþ‘bMhöÌ…¹D˜åC âyf.ŽG"ãÂ$ËJ%šú¢…#¾endstream endobj 360 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 698 >> stream xœmÝKSqÆÏ™SŽºVjÃi5ÏMQ”ô›®$#*iVΗ‘&n¾mºœíÅÍùÒ^œ[ûž³—³e;›Ͱ9Ò£… ’ ÑEEQýBwõ›¢Öe<Ÿ«Ïóà˜P€á8~øšB¡6k¯šÕz]×ÙªÊ:ƒ¾û/?ž9‚gŽ 2Çr€oÙ/ÞWæ‚(D­}y1ê+Bšƒ¨ã&ÄñÖ~ÛØEÃЈQ×§5“ÕUU5••Ù>OjFÈ:9Y¯î0XM:R=ØMÖËr²Á`ÍByÒ0Hjz´j}/iè%›zTd³òR£’¼Üx½ù†ò”ü?fÿ"MYa˜À.°6ÜådaB,o¢gâ߂ӥ˜å =+ž™Cg$¬&'àòÉ\6§ñŠ›79¥O‰½/¨É¿‡ ÁŽƒkì>8=2“Öf6Á]°$Ì Ó¬q¶ˆšÆjýx"Ñiˆ*X†¡iâQKÅü,…$a©ahtôD-ßÁË-õà%ÆYˆ&(ê#ã6W˜,@Òw¤-OFV@Â$^­ÈZFÖ1þÂ0jàÐ7Ï!Wœ¡¿)vKK„™¯¨Ež&! kŽç¦Åɨ;âfÖÒ©õ‡DÉÏ`œŠ³å°äL'û—[Ù&à‹€ÏçÅý|_õ+Wêw„= æòéð;ÄHSmÛw>ÂøÄ¾y±Í­¾b_¼€‘8nµwkµí@Ôª¶>Çh6ÀV¼EBÄ.|‡²4¤œ1cØAOÀ O™=·ÎÙg4 EõA=¨à¦ßÑé÷‚|Dï¶÷åòr(¶$£}Ùx‰’sŒ=0b+‡·Ö¥#zÐ-‰Õi™²fÖ ÆW ³0ã‹{±}&£¢‘ Py\ÁBYÀzO”¢Bަ¨@0âX†‰6Øôt ÑajzZtÃþž<áendstream endobj 361 0 obj << /Filter /FlateDecode /Length 5464 >> stream xœ½\ÍoåFrrÔ)9ì) ràKF4û‹MI°^ÄÞub¯½%>Œ‚€’ÞHœyïQ&Ÿf,òg眪ên²«Ijf¬AlÀ~$û£ºº>~U]­ŸO‹\œø¯ÿÿÕþ¤8½9ùùDÐÛSÿ¿«ýéÎO>ÿ±ªàM^µ8=u⺈SQ•yQžZcóZ™ÓóýÉËìÅ¦È £¬(êl»9Ç ÚUÙeô¡ŽmsØœ)%¡g•}ÇZ>ld™×•5|€þ9vPyQTÙ·ìKwˆÆ¾çé¯Ã$eö'ßÇÔºª²Ýõfz ‘5Œ¬²ïÚ«Äõ”šÅfÜRTö§ÿ›í\³R–¥´ÿuþoÀ;-cÞ)eòZûίO2µ9}r¦µ8=ƒ×UYâÛ—Y£‹Y9*u%k áØ\ÆÃæLä…(˜UIø¤uÖ½ò½U]9šktCûmü8`ìÏzÄœìŽíg1.“uR÷²ô4º÷íÀøÔðÇ-a;j“½‹Ùæ™.k L÷Ĩ@¾êàÖX—dé EÄT: tè2ûù~Möú–=^û)€ oÛÆ³NèìèHræi ¾‘@°­ÝN‚Üß÷o_›ãïü÷op]Ke–ÀêܨR…~Lvwía¶„‰‚3-dn„9=*70³¸Û²]Gþ¨éÉ.² óÕùÉ_NŠÜ÷ë:¯—uxUéúÔUn$ê|v{<Þ _|þù,€yÿ¦Í¯·(Ûn®G çM˜DX¨-£I^f›|s¦KA;u¾©HûLÖÑúøvÿžöwŒÃ¯"½ÀÎ(šSïkP{#ù`ÍÙŽ=¿EIT–X¿Ùœk ¦Ú¯î···¹’.•°ÏA$ö°&Ô†Ji¦[|¾!Ðn³öàƒ)=Þò´ùÖfý8WCù0û†‰Ü5~«ei.~ª¢®jèLò§¤ÎKe½üOpŒæ£T`Õl˜Ý¨vpŠÂÀ<‡¬pZ•ÝÓ$¥T2˜¬ö-NYiuv75:¢Õ°…³4 jûÖ‚ëý@ï5ßX%Ž„=¼Ù=xòkÍ Në¨WµÊŽ´*´a[ú>1|\jOÈ.cø«µý½ŠÕ±ef"P¼¼$º´(I–i›äcß²u§]!ÁAú‘Ë©àà`6û 5­® ÍÉKŒÎÙW£ÍËöIËh£¾=9ÿ‡—YÏ:Üà‚@ÈÁç€è7ñmç6­|¯#)ÁÆ%6a`£ù†DÕT¥fTšV¢#+Ð%îœä ‘¶ æÈ!]{DU&áÅïà?2¼ñ‹9ÛÑl…9c6¼kV•öÚ¯Üt¼ñ}·ß,º˜xX›ßâb #F{rAP&ö2ë˜-²/3nÇrßì¼ê[›—ºtªoܸ?†µY]*TX4Z%ˆb×ü Ë€ƒ†l·AKÒy~»Æ§»ž¹ ð ãJ™è«·0D¼Yp¤‘óÇ¡´`šèø¨¸]†ßåÈþ!æKÿ–&%ŒÞîvM<ÝÕv³´+‡ßÜ縻P¹Uµðm®aÝÙ³ýÉðÓvØö_í‡g›%"@‚uÄþ.0ÌfM²Ê3MH±NÍø¥Û@¸ûudÅÙ&3s ›¬•Ó*úmk®gJ“]Ú€”Eœšk˜­K<,q,kCs}ÆÚ5ð膑7ux?‡E/,€ü‰ƒÙ_Ïv Iê@f»Ÿ¸ 8„lø><#ûð©3÷ÃßÀ»¦à/RïÆD!"ŽÍI×ûÎE5W#Ú¥ºä^è.½ñta‡k¹ +œÅRƒvWïE:`E¦íûP ã¤¶°8L~=ëµ´…&Õ®1ØÓ,Ú¹ë¤äï"ñD§Yƒé´@²àT=†ê-¹É¿º¦({z 2P˜Êì2EÞbG¾ƒÖý,# œõ¸9~˜à;…îæQø¾Œ¬a› Ä›¥.rkµƒÖóÙ e¶cb¯É¾k~uÁI¡¥®Bø¦Á½¼‰bŒÆýJ‹\Ø*¦£–)ø«VÚäð%V¢xB„ #—ªæ|D­%U6åÓ'.¦%ÉÔ/&¸Üìö -|AÝA×û‚Ù)Ü20L·5q½oâˆ|-¬¦¡Ñ>Ô®¢í’Hæ'ˆSÞ]ê*~ãÎ! À†Íò¥4ŸL†„'b „¨|‚ 0Ò°ÞxH'DÒ ŠG^Eö¦ëÝ{Ц:DAôdµÚhï]̸…0Ðn>a\i×ípÅÝR:σ"L§ƒ”‚*,ŒhÇF%÷‹è© V»¸ë‘\Wú¡ ‚°ÍnèüSU³p2N™¸çÀGG>ÚYÌ#­$/»ïm‘¢…ÍÏvlߎF=µÙg¦ÄÖ©óŠ ƒY}ß·]îÒ˜õ ;2¿ÂáY4¥†µkwí‘çdžõ®ÏÒ¦ÜbKL±³€ è'Ï%†‹7È[* ?ß47ÛØ/å:Hb†i › ãyž TUb.Ûr?}g3V÷`ñµ IÄ„iô#»Æó|7®7z —PÀ¨8Û;¸™Äc;3Mß6Ç@¶–¹óTŒRg3 æ0"‰$/6ð^.ö6@î±mv.©Š€|Ò¶ÎܾãËn·§O´aòÖ3Õ1 –K¢¡ÀsßœM‰ô9.¥CH×øì_€GÓÊY™“3AÔ2×µÏÞfçã–\ò‹\VAT³¿rMLÚ"œÐä›%¤\çÒj9å û§‹8½„uç)?ÞºlS}0SÙ…àGýÐTØso0ˆ«’¾=Oý5-1ý`xòÛ¹1£U”­Ä|Ða²î7Ó ÈÊj›9¶ŠjÞµÇ[ÿdÊ)%‘uÇaE‰<¶c^ÔK­ ¡ÚÔÜÉÑ™E3(ŽÚˆ9F@|ýCªÖZ*Â]wÓyEÛ¦ÙÞäkŒC•'1Ee£Ýœ^w@’ú\¸@PJžkjx20qêÄt¿˜¡GZ=Ë(¤â-MA¸†‰7W’*·RTÕ£J8Îhõ˜’ ª™É+¬æ|Ú›ÛÜš×õ±Þøˆl“þ´­«QéÌ;m ÙmÀfÇ6F©H8TA˜# K¦¥Y- :Îc®º‹P~¬qˆ¾ ä5iåJztêþn%ÉÊ~<Øú÷$w’ă «ß³ƒBª1éÂíL„ ÆÉÖYæoF‚7M½ç›(ùþÿÒðC ö^bjRÌ,©Û‰ºÉ È8Qêy™2µ˜ir çÛ‰j3žn"°!±7{ÉQs•¸¿Ø˜ÅA]ÔêaâFnyk&T™ÛºJb²ëùözH:,ºC°5J!cÙy=Ö§x6Z8äÞ}Ý™ÈKÞÇÍózsf*â_»ˆ÷P.`A§¬Ó§fYbT`fÂ,ñtш÷Ÿ (j:Ÿ/³/ýh ¿æ. ­\H„¿Õ<È( ²D|rsµÐx íÎê4x‹tæ0[EG7ôÛÌnh`²xRp:—1uÍbÂL®eé·õÅ]ƒ î‡n÷pÓ“§t£FK<&“a²XŒˆKN¥ü·XÈò]¬ËågчÊm"Xc+2`—Á¯>øw•zܨ}èq¹ZñAÊe©N ¦µ• ñ‡<%Ӏˆýhd¤*=ƒûÏøsŠ0‰.JNÇ#JLª€ÎBu G…ûÆïG=ËÁ{´õ6ûCëÑÖzYHý¤ ¤Ñ¹UÉ~Q^d¥\¨I!ÁRÜ8!9@ÏÝ;¯ðñl=‘Sç{r=vì[†ÝiKÓ¼K Àê[î°Š·p~¯ ÊÞ4±ž½æ¢4ÏIƒšúŸ±Ž ÆuxÝûm­XIW!r¥Ö¸¹1Ì9v°n=R×Θ1Ïk-(1cN•ú\€´º¨YlÑ|šÜbðŠw`7esýÖ±d:!ÚµRŽA%Rgóˆ\Ö#Š>\~ß_oû¥9€UE]ŒÑäsÇ¿wëÙÝ­gJæ¼UT—¤*0Z&rÅ“—{&3=ÕÏeïú&‡BÞI°¾sL¸p“lK³kcñÇÃT7èÂfE§¿–Czº ˜¨¨OMXfrd,´â`c{·h—?Ú ×XPd¢)?Í)J¥_[ 7ɨتFæŽu—M²|šI®s[Ul5›/œ” ©Ok4&%öžVÔ£m£„òu ÿ`SºÖ;€6*ÖU ò›|ü ©tÕŸ®AŒ%D‚™wãéB!9dÞÍÒÏš”@ry 6TøÖ5©M½M%!$í>çzÍÃ]œÜÊaܪËráht\$C3ºZжñƒä‚BÞðÆ|–B±¤Ð@ °Ê eκ÷«KÀ.‚¥¾{÷â~?,iùbÙ¸NR$¹«§ÊâÄ›~ó*TˆQ«JJV«Ó$E بĬãL sñºˆÁ×B¥/²Â€2©õlôbñS"ðt’\™ù "ýFáç'tìn+S§ަ“*qZ&:Ï`йa‡ »šI›]ĉe ‰cóKõæ`žŠº”IŒÞýªDZä>ŠR™oW!˜¯ÎMê-Û¨ä39\ËiF[Ñ)ÒûJ·˜Ø—Týï%w8’[.ø)”ó{ÇnÇq`³Dfˆ1ˆ,0ï«=*‹\Må]ï³è–e1GŽÅõ¼Œx¤åéPÉ:¯ªZçZ ‡ú}‹ñÀ$Ä‹ðlÛ? >ÕˆÚD<õ§Aƒ5ØðJó%MuùLxï7±A‰¡õÈÃo}±P€„[VìGç#Àµ±]ã»Ý¸·B‹§pÑ›[c87Þ\—ô‰Ûk2'ÊÕ íâ„© #’)ïáÞ–9~’áBù‘áz §´r…à­Ø3¡­ô1™ 0ÓÍ F„%ª] T’–Y§Áˇãxg°þèóõT?1%l±Œ£œçk©få¡&?œOÆ",i¦xq9[èêF,GÖ7ýªûjX\‚ß=º*w[Þ®¨¬áÆ}¥b°® ­–¬9p}D§ó¬ë‚rñ‹Ë€†r#áx:©?^ÉþV¥é`†,ªÛYs TvÍUé‘ !ß.Ž-urƒu?®Aj‡”õRv¹B‚€'º«Ó(Zfï†/<¯xÌI‘& ¹¦Œ[Š5ac/²«îþ@’B ˜ Ǧ?† Reÿ<Å“Wt/al[f‚ŽlÝ“Ê^õÛŸï·‡«‡Ð¥Œ{ù|)”ýGà¹yCKÐÝ݇“hG£Ñç¯ûæêù¸¤Ã¶½¹½ìîûÛ®»Í«xê4D~Æ÷'0PÜ| »—Ãâ@z¸Ô¹mÖÐz>•Ø;F/H4ˆƒϵ^¦–ùQ4"e®Ë:hÏ´! ³€ÙÔª®õftpSÑ FNXf½t€ˆï-ÈSCUæ¿ÞIb'ªiˆ@ †Ê~ÏŠÊu5/ãk™A¡´uŸWQ¬”M©uý†Ã#Gt8טêî„–y¥Dâ›^½4€š_…ÍÉ– 0(’FEšòª¦p7"ÆÐÑÉbî?_.üçºL]Ó‡F…ÁL¬µU´«¿5j¦KXNYiŸó„"f²„UÐ;N¶ôÃÑÚpƒ&kœ@7AH€@ÉBM‹/”àû48)0ÁhûXz`¶ÌÅj¨@!­˜ ‡ÐÚŸŽ« ä%Ü‘ %#f ‚e4è¢òÑèâÁtZàY<)±œm9„‹`z1ÌþLUJFaì4ËŽ³Ó¢¼/d';øò±*†c{dwBRµ5ÂÝëjüÏ"-ëÉ”¥Ç0EVu¤JŠúÁ¹&l¥Ë™Â§ ¢›nJ+æñFåäšÖØþH‹(ZloZ~Ð@)<„Åhø§‡_Wp8õ“Õ,_ùİL0Iõ©ÄóáïN/9ÿÓK×ñrt`/³-j~!\bh-0RXj±F¬Šéü4a©ÕîÆãâħÜõÀã””¥ÏCG¬_ÝIêé7 £Ê¥»é+àÿµýÛÙá[‘äW£*ßj˜ÒÁH.÷y.¥‡(7½ÅJ¦ ÖÅÔâ³îÇ}tƒiÝyí¨¢S„±ð\ëYÐæhÀÀ`sI•+mNF–wÞ¦‡Çtª°»›"Sv¬wóÞ°ó§ME¡ÆÑæ¢Cþw3h1.íð¶e…ìÍ®ý5)4rCÈlàwÅÏC¼Eƒ^Ø|L©­Æ|U¤óògå®;·#ÙI!PR0G ]–oÜß_E.ã“Ðñ{Pý¿ÿáûþãÛ/Ï¿ùþÏcèói&þ‰M¥ZH4íšËínSšxÊX¬‹ìUwS`6^¦d ¯«n×õo¶Ó¢£¦n¤á®¹Ú†™XRêÀùÛã3paS"j‡»|×> stream xœ•y |SE÷ö-%×°ÈÒkè­A©ì²‰ ȦTdk¥P PÖ–­û¾¦m’6M“4Éi¶îû^º—²)²ïQ «¢ðªPõp{çòþ¾onJ[ÿ¾?HZ~sçΜ9ç9ÏyÎàDõïG999Xáí½6b{TÂëÓ§® NŒØÇ?ω¸‘ý¸—œãpÊã~½0Ø÷?9r’È…óŽÚ†¢­Ã(g''¿ˆ”w£cRâBƒCÜgLŸ>sêTòs®ûŽ÷EÓܽ¶ï –ć‡ºoÚåî5Í{šûÊh  uŸå¾#0d{D{t»oà÷uk—¬Yë¾lͪu>k_ö?ÚÖk¢¨•ïDmXýnLì’¸¥ñË–'z&I¶'ïX‘²Ó{×ÊÀUA>Á!kB׆ù†¯‹Xé7]úºl†|fÚ³f¿9zî¼±ó¼õöÄW=&mžÿä \…“^²éüb +—kuúΆ~·9syhÈÒ Po©¢â_¿¦Ã²?êФ:ôêït‚ð£Ã[çÊNÕK› ŒU¦Ê4Š5–šê"!Tj•6 t©qQ Û+7ã#±W$~¯¿ˆF£Β{üæ8Ί^³¢K<¨/Ûâl{l*ÛïÄ×Ã(®Ê~º¡‹~~6Ãæ”]Bf,Õh†âÀ¿šÑS3ž4ü-¦…ŒŠj6\‹™ ŠºíhÛ~@ÙnÈ àÇ*Ä—Ž`Q“¥ó¼–ˆßÉÝÜ#…×Xf¸â|þg'?_‡ÉÞèaïu«Ëç6$°ÕÙ´ÄXgÀ¾"`$q6Ñ÷¹S&µÂhª‡€6U˜ØT¿Æ¢SH|’ð°›“H|.Á‰Žº!ó$‡ 6uC¿–‡šOðXÇÛ>•!R®Y1w.‰ßúË%÷J¾¿mûŠ€¾ß hy[áéÀk¢ð¼PdCm‘Ĩ'œå€¨¤ÓXAÌ·ÈJÒJÒ—²¸’*Q€\iÕ­´ÚÀTm¬(½Ï+Œdb褪BìJ@ @:š9¬\¯MÎJl·v0U+‰_ÌÍYù¡ |2€î•†MvÔGöˆäFÑ­—gnö /ô¦ É¿qe&r‡¹A"c¥æàØËSÏUK_û5µS~$ófšr½:h[ØtØë Òo u庂XèB‡t«•fÅ5A”f—w¼|R×h|ø¯Ü#]DfZÑV—NJ±í nã¸V¤™›º\?¨whÒ¸ÿš-ëa¬FTšP‡¦þüëMbíù=¦ô©¦ôú¿ðG¨I¡‘MA%Ûì‚Å‘Ø3¯¸ÝÐ 8 ‡›jIÆôOÌÒJÚÅŒ°ËÇBfqZPÛU'ºœx‰„8ÜæcóµÝ'†fsaÈEd,7U…@h’´© oŸŒxòN˜ê„̶ýH)@sz‡“ñÁshFX|»+5Hi‰—Ȱ|®àn$Ø‹Óy—ÞµÒÉ‚¯Ûu¸û~Ig¯BòHbs~$¿]™» ÎÔô”0âèÛœ\P×{ï¾Î¬£C±¿‡ÐÌDŠ/„ Ÿ¾!dFr#o‰ÉK½JsˆLâq×{ ê½YÍœ£ìe&„ÄIdzï{:½ Ÿ¾|» •hZ šæÊÄpÅÍvÈAèOŸF·9ôŽÆ¡æÐë²9éáâ`i5·B5O¹ä/³·á<éäOâ‰7ÀûùHÝϪ‚rñ5º”7¦¹[p8!%qª3ç×-/0ew)¢úpÃÞÞ|EžóÎ!³{ïí¡Ê’¸¤8¢·ÑFgî"7öiÔð€ÞNj ñ›ø†/º!hèɽßDŸÃ÷-¡•Pn±e­ÈýÀ6õðqÖçè¸Õé_hóh³3w•GüOJ«?G§ðkÙõQÒðqž†z͇š™ë B ƒd½wÒãÑ,4 Mì'ò`w|< i5Ÿ>žõyToßù©öÄŽŠ÷Týî§ïã‰x2ž%ØI3½¡Ý0H‚ø7Ê^ÂC£íŠÓíipà þëV$ pn³ñJì/ò§ yým¶Ì~bÑJ²’ÚÁ­ Œ•æº.yÓSÝH'iÝÒ&ÿ<Ñ5ðL×tIw4ˆdÒ/öŠø;—i—•¦ª.ù Ñ&ñòAmO­34ÃõöÝìÞ(ï°§VPïAnp-€“­+‘K€•Ûlu¹‹6b_òM¾«n¯¼m¸ ä_SÐF"}þ—¬£xZRÉAÊ”ô,R†S둊Ð*óÕ›Õ‡Sd¦?Õešq¡"5Ä<1c>ÙLÚˆÇÆ ½À `×›©q¾A:™ 'ÏPDàHÕ™dåqbæ{ HR²bUÛwï< á3ÄZ ”ÛLò˜¡†õ¤K{9w"MFN"sC¨‰:…$3-fË;0V].ù.÷Èaô“ÌÚz¥&¤L^K¶¦ÌÜ(,¼6ü{À\sÞ/†ÍWJ:KºõÉe¸ûÖ*}ŸÕ–_Ï +ñè=î‹§|¥7¦ëèO¢ ç´ªV¹1Ü–õ­Ü]¸×à} ð—\´ ›~ôD›Rª¯·&(2Zö’c³u½ü}þzPn —Ô§Pj3’#7¬UFƒxÓ}+DÇé*R!,ˆÞü3xq΄$Xƒ¼­€Ý»ÉCá²÷ðs„‰þAóƒD½M‰¤›Ñ ¾Õ'ðÝ{%÷ /g®÷]:™GÕ¤üAÿÍK•ëíü˜òzçìéÐÂ"?r)9wÀ&µ­' òœ[mK:gp¬ÈT#o^GöMz¿P!óÙ®yxÅVñTxÓC>[µ­0¬ 9M𖍉T‡äÇå¤ÏõW,Ó)ä³~\‰^þóÜ…âo,Êc[v 9»ª_á:Ò@ehe+‹Õ@¼åDe›LÅ–|!ã®ÕÚŽŠ¿‡o®™ËÌð17e5¦7ÔÖšŠ³³cªUùPu…„¼ðfìLšW¿?X¡‡óN ™O‡Í?þÁ ñ)hÛBNzc‘*`î¶ 0–½Ÿó±¼¤¥½²¡4®‘M©þ¤„l–# vŽp²ß~9ÿ×»¯f´òo‹%¨rûUúðÖÞãàöOï¾%¯ôm[n3Û u*¸öû"s ¥’ÁßFê3•A© ¹òîÀTþdž\MMfcrUzÁÕŽFkÎâo½oãcKúrÍ?ó|{y“® ˜Þ]‘”•¨ÚNúJ᥉,2?*" ë¤mâ¡ýÓœ½Â èWQæ&ßÕÓAø®ýÍ«4ó-õ=´ùdnîÎÐë]Ñ–öЕ±qÛº…Ôèjî“„{·ŽŸï“Gžjkfâ:®ZdjH©Ž&¾ˆMÌŠÖD—'6@ÔWwåŸ~\¾²ÅÛømµhž(ÿbÔAeQÈþØò·ÊÙ…áí¹‡óŽŸ=rÐ@ÐOÍŽÐ'æ«+ýp5bMe™ªKU†‡¸…FŒDAºAn2Âlc¶!;‡ïnM’²$1£O€¸Ô¬¨´…?Ã@ãà \p‘(šGÜOÿÕ•uçdSmGà9”¸Ô‡»ÙëÊCL‡2S&d¤/êuã“w’Envèùõi ßé{ÿao»XºÏ•Ñ3¦du©G›ñòu?hóJò?òeθ2'=¸ünlEÐXˆÖ£Ñè9A{7d<ÍfòTŒ§õés;=:h샧œG¿;ŽãÕÛÒ£vó7Ñ„3»Æ…Œ–ŠÐgâîKWGͨ¨Mtñ­ï¯ %u¿&`2¨® ú§1Ø£E$8%EÍ·!!¥?¹›Ý"¢¾%b þ!ÅÝÃÏÜÖÃÚåÿ>ëhüêí ío^ZHðÐ+¯=·‡ðë÷•hè9ô€¼ö?´ÁÎ\D÷µÑC5õ]ßèj}E}†{Š²Ì¯¸8²êshŒV8sŸl\·U$Ùð ø<›¸>|¡|Q“Ùíú2mG8çÆ¶;”ç_^Ù‡ž”±¦ÀRh$=D”t h®œÝÓÝX>½'üø Ä\™£\y—¨ †HÃ+‰®™‘°--d—²-®<ŒˆÑpyt¢¹Õd”@Š8¼×~„‹Ø`‡Œµs÷ÝîÂÌ/Ù„–±ÌÑÎ’£‡ˆk  Uáµ ËÙäždã//”t’éð¿L·;òk.Šd…Þ8‹ÞAo¸2˹Û¥Ý3 è§È£®F¤Žtõߦ¬”úi¢Ýô´é¢m‹¦&”¤‚H€ÔrÕ|¼EæÍ;Ûl¨0œ*æÜÙ>÷G ºÕÒeý-{R©©%¼[Ñ8E•¦œû(­`?ßçû—â”l1®rÈóZ(hG3¹J–t7§)XM¤ ©¬ó‘+îg¿Îj¿ØÀ+¿Â®ü8ô4½H:UáòQž8|‹4þh`šX‹Æûà:©ë'_ÇøeçXÑ1þãÄùû‰ÌqÙJÀb£e¹y7šÅšêL66}XWÕj®ãÉÜT—³ß”[»·ÓШ²˜jùæÀBêiá3uêÌšhÙë¬:X+ ”î’m$t©†$uV¼&²VŸõzDiUëbðh9¾wñ“yìô>eÚÔ#µPìå.;£‚Eˆ~¼ÐPhiá{luˆ.Ó.duéêv’Y–vC¡Ã0B1\Iðø"S}÷¥¾6Y-ÄJúÒqDÝ8¶ÿ꙳‹¾ªDƒgÞÀC€Hˆiså³ÕAõŠ2’Zõe¦C¡®(3§úÓͧI¶­²™Š%>«=|±¯d™jVîø?,ô}f½;Phƒí,±¢„ÁÜŸñÙØÉs¦ÍgM ¹‡¶4Ô{›B µ+b+²Š½¤SkÂbð,Vµ3?|_ÂÊðŒ-ú¬(¼”ÕD©ƒñx#Jdã2¸?W6Þ2Xr™Jî±–=Æ’½¥ûJŽd×:‚6\D›¬.Ÿufw’Þa ‰VgA‹D…W‚ίlº°§ãlÞ©¢ëÞŸ­ŽÃ[›Ó—jªå•v?˜ ÅYùZcGó>9.ÁÁ™þšÈ¤ÈÄ Ø8]°nu– 4QŽÚñ!Íä=€ýË3Vg¬\¾b:ì‚”Ãs®ÅXiª•UÆ‘Š'Ó„ËfÜY†r…GßiO¬ä”èŽÈPš^*%âO¥ÉT‡FGIå$‰UyŠÂŒ¢ÔªPˆi\j‚,,Q›¢“JÉ~CÖnoh(-†|ÈQ¤¤•&µ‘\l.­/«.i­6–;H’²r/´~}&ðÌÖ3FB“A\Úü²oѤZZÕ¹*Ñ4Á¢>U‚÷ãÿ°Š4½N+Q‡åªšù> ™I#•‚)wÈ.ïÍ)Þ4ãUŽ(¢-HÆo5‹pÚÐ/‚® 4[Ñ,Ôe"Ùh¨ìÑÊŸ CÀ_åŸØ‚Ö°HÕçr´šWJMx®`µ)Y -$Íæ¼üÖ–ÊÏÁmh]¤ð’ÏŸ·êM¢l¼s“O[Ìy9ÆJs£¤4 „2WªwÉç\]ÂÏp@ô½ äìÀG¿ ¨ÿ4—X³”Xhˆ”ŒE„¸üÀ7ÕoÇ^ô ¢nß…6(V˜4jZMö/‘ÔûjÊÌM¹GcNM"¾x~>ûïÄ=°_ªõÿšäiÞä³®y¼ òh†U]k©5ç_°ûnÁÁåiïð†ä'qçˆ ×ŸÝàÑÚÒÈ„PÈJÔ&«¶³]Z©ŒD­¡2oÃ+ã˜ÜO'W‡µ“œ¨(07ž@È -ºr¾¦Ü`0Ûiä:ìÄ¥qEù‡ÃsÓ "YI8€ÕÉ ©$·ÜTF”ÚößgtylîÔA2|¨­åægÄe•èÑ~¤žh›Â‹füÜ ~>Ó×f¢?§ËNˆÀæLœLÊRHvr©Ùl±Ëø„ˆ%M$¤’ÚnYÌ·˜, ±hx+Ú$ôúB¤ô}o͘Û?+º^|çÖ™«ð>Ô&JêwY’ÓÛ†#O4܉ÁõåtÄÖ‡C DFh"TAõ±-°šš _oÀçÿþ!ïœD«šüuæ2ÑBQîÑôØ}wÚŶf–çnPdªÒµiÚ„¢¤Ý<%Z:оØv ó-ަ!²â´Ru ‹i ¦½“ŸŽ)ôfD –±–Àjõq‹©0×TcjH*“e©¶ÊçzÑ u½UhæïÖ댥–½,r©øäÛÂËB€|D¾ù[öäÏ=rzÿÇùÂ?ž¸Š”ü¶x*ö (öbZ»æ†ÿ'ü *ø4®%h’ˆhM¨&º ä($®Û‘œš©ÖÊTZ©NV˜ZÕðû© ÔßNJ’ïDÆ EnFÎGž,ºŒ< sJrn¦šÔB)9‰V/Uâÿ‹w²jY¦6Y—fQä©ÐqÈ) ú<‰U…¦»ý.ß¾ìÄæ\D–ö þª? åD*™:¤•ˆ !ú]­¤ cñ2) ÒɤÿÐéF&iB:ì²ói¤;ÀÜn·¯ŠÔÊ|²éyZ" ¤”ž• M.ÈÌW¡|ìÉâËØ3]ÅÛç–•P–^JˆÜ”]’ÇQh'›o)&ç±È_Ûx¬JÔ&i!î÷uÊëºÉ;nEMä‡Ëg¾;súŒ?!ïc\ÆW"sC4)© …ôŒá;¡€)X€¨Z4º½Šþò+éëÞÏ(Z©5ðªw>,˜•ŒBæK(>m«ÓæÙÏlú4óSWƃS 0‘±L‘§ËN,ón/FϳE9Å9ÆŠl“¹q'Ùç]ÖR_ø©¹1;ÏÒÆG7L¯ÔDexêb_ý˜Q*¢]¥)Z™69_]¨zàÃâ>i*¹Z+qÓgi¢öy•eêØtOM”^©kåÓšgnÌÿÔP&4´òãíµRä[Zn,é&ÇðÊh}7½N¡Q¿ÇchJŸJãé¨4Xøç{¬&”ÑF€çÙS”Õ^vAÙ—·^^M¾®Œ™k#±æ•ØÑ4#¬EczI5Ò0Æã1ò,Bìoç!ÏT!2Ûƒ<Ò¥kÈi‚ͼŽcªÈò¬Ð®ìIî„~­å[Ã÷aM(SXGÎ 9Ù¹†XïÒô,QyZIW"·r>UŽú=;;:²]„„ß{ÚéyöéѧиߟÄÊ)}Æ={È;rt'{Þ==î•ÞGBWzÍÕqûExÒ—*£TZ7¼xA`j‰_G‰šõ zÅ«EÖz"¼Ìíééî^ø¯,ç“×`öŸí|íñ‘±<ðm"dÈ2Óž¬þs)›!Õƒ>S›R˜ZIx.¿$·ˆ[ýx)›_š |â* ¸w Ð[¦Ú:Ð6èåý}£€Áƒö–Z²ù?æJ“eðà3†‚ìœìüS–ÝùƒŸ§¨ÿu åÎendstream endobj 363 0 obj << /Filter /FlateDecode /Length 8802 >> stream xœ½}ß“$7rÞû¾ß“ü0qO56§]ø 0BŠB”ïd7L‡¹~hîwÛœÞ!§{—bHößîïËDU 5½G-å¸8nwvHùã˪槛qgnFþ¯þûúøb¼yûâ§F¨7õŸ×Ç›¿yùâ?þ£· ìÊXÌÍËï_hs“ÍM iW\¸yy|1øÛ—ÿ¼9/yKÚùØâå›ß_ÝŽ»1ølKÞ/>¿‘Ï.™± ÷·wüRÜòp<¼Ö¯Ù䘇»ûå·¥U(>çá°Ñ…þ"]8çvc²ÃññöÎBæâÖ ÚïÃáýâ§·µµ¿×Å›aÿÔ4Ù?ð'»+%Ä]½¿µy7ºâ†3Ù=:µÃùp¼¯Cx7œ´Ûhc´ix:4_O·ÿëåß¿øêå‹ÿ†­ÊèËä›`lØÙtcíô?O÷7ßܼ¿º¡Æç›´ãÆ]¶ÓŽn—":´ngŒ‘=Ù°­üýŽŒ%ï"¦­¡Tdúvø/·~ä\°»9¼ÿþÖ,„÷Ãýëóý›‹Ì”ÚØXDì#Å61…]žþ©¢û¶?…›Ÿ!Üßãÿà?½0Ιu7!vgÃͱ£<€âãΤ«”w/¾î¨ÇÍ–Ñ쌽JѾZêq³eŠÏÕ^¤cß À¨ÂUŠöÒR[-ýˆµvW)Ò׊zÜliÇ]JW)ÚWK=n¶taãUŠöÕR›-ø»JОâq«Y »®R´§–jü.Ã@awp±°—§{aÊãλ%SñÁÝÀ€Ç0扩„ËmO넎F+S€µä+  t æ*ED_QE*ãWRX¸ T°Ò]ÓÄÐÆwó3ÝúYt8€’?±R!ƒû•Âpab)e—ÍÆbb}©LäÔoKÍÎ71Á_Å^lĭ݈éT&¯´!6–n£2…²ó½ØÉÆ‹ópÉï¼ÙX€”v£˜rÙÙÒ/¥Sš6% û)&£w½˜·¹21¥®'‡Maø®L¾ÀËw=µš™¢Ûå^ðSÊ»Ü ŽÝs™/H¥S9Æ;S&-È#"Rê”·í)#¤EÓ÷Ô¨\vy>a›98à™O1żsei›+ ,1gÇèw"¶¹¢n/>í¬ýľƒ°þ É áI‰vyVOdêŸv™Ý“ß,­°Åu÷µ­ö3‹0Ôóˆ­£ŠÛ1r' 1‰ó…Š[tÃd´@ÝŠô‡l@ Sȉþ:~– k#I) ê%z[DS°’q¦x®`ÈZ #úÁ3—L)„¾pç¨gX®¤c±ÆÈ\Ä&2)Qôš7Ëͼ óI\JÏ ˜Q&A«•—(”DÔÄnF]mP´b¹¢$°‘©®F•Á3²ŠìX'B’Ì«9ÖÂX!« ÎÈz:¬bÔ^[Xr¬åyÎHÕû]…scû :‘¿87͘ ÓѠ¶Š˜„'Ô`F1 pÇä;{pÖ1èVc´ÅQû)ab®Žºy¸€µPã2<&aòc†™9>VÃ1ð¼œRâ¿ÕE‰»ˆDUÕEi5-2üÕ•ÁZeòÀ­â¬(‰xdVb…ËÜöLCÆæ•®—^q Ö“«G|£˜…EÈDi ¦gQ»Dµ±Š tÉž­t‰¥˜c£øÍþOR[Zs¢'¬ *Ã`Sr€ªf刴)Ù8Å­‘fâ¹)¦¢ÀS·ºoF‡†w1T?ž(¼„—‰¢4I£ â»lG¢©Ž2…L#(>ªƒX«£¨(²H¨HŽfK]gžH þõ3*•~Àút“¸k¤—[ö“5%ިɑ¹'qñ2Sì¯ÑåZõ"=Ë}˜ÎG阇MÇYJYä1u5ÚFc¸ã¥¥‚ÿ"Š‹µ¯t긡w½nnè¯a)5Xz áq;20%QÎT¤g6lآЋÁ­e}®àÚum¹·µ ì€ùvïñ=Ïà¼"`d59òXV˜h) 50íœ9@a‘œêb’)D,‰&$‰°è!f:rcäi›ß6ÜÞ¶×æõð¬ÄV¢,«äåIä+aTðê¼B8øÆÌcþ‡¹Ø‹/â$/wêtÕ'¬:¾šÇÀ÷í¸²&jÍG/ɬ½>(# ™¯á:rl,™0𤢠gJU³HÿΉ´TŒI‚@òh£¦vžV•y‡IÃ!†L㫾í‚Ã*š{*E‰ßfΆ¹é.S‚n+Ò ÉŠ#€’ª¯QC&…†ÁFVÎ×%½ócÅfXx˜¢ôD€)©¼[ j ´z0¶ØÖ˜®G}\|ª7o~j^à@õ¶A5@ݨÂó*‚¾QnÔE˜”ºVÏt‹,ÆU…ýÆ|+<þȶø4%1ÁH˜À¶ÛʬnƬñ˜ÈŸCñ¾n]£Z+ØR°€ÐH„ z²Uà¸Y+èë }Í¡«Kôµ‹¾¾±Qéê$µ”®ÞÒ×dò(îÉTÔ|ß±êã5»ROÆ Ê«)(K„£ [‚3'Š,²Ö7˜ yÉ“\uš‘dV•”é0½CkjX H˜( +ža(zËÕÇ réq_«~¶ÞÅÞ'm4J»”#à§½R°\²<䑪K…Y)±ÃÕ²ÌIj\ÅÖ »¯M~«PWr`ì»ú-½5—ë)WÈ’CÁxÎITR=ϫլB5ú`7Õ¦‘¦ˆ+ã‰Æø{ÕÎEÜ›‘E»Š›ª½¡ýÒYQoi<á0E¦º;Ì”K…Ñ¡XlaÁÝTÿ§#0—*`kâVÄkR=„À" ½ñ´ Ö('#4™¢”¢I¡ÍX“;'KÊCó\ÞXápÖš+ ô‰©Ôp o¢Û±.]¢ÀÄ8¥SžI1  ÔQ±BŒ“x ]ÐÈiõ2ƒ£–†å¥"iB© ÖJ+¨AžåjOìÆ›M’‡C§éS@)S]‹l™•T# ᩳºm?×üÙ*þP9‰<˜&Û #°LQÜP!‚ÔM ÚW%Öbœp úSþM‹¡ánÒ/Ó»ºëú]_âÛ(ö¥Â®œØ—7Ê’]é²/oö%Ð2éºbÐ׺²CW™Ø(^ôŽ>~÷1¾Ã+ °$z´±$WÙÊ0[ÆÛÙ÷† èÝÄÚ“·ÒUÅY5è<ì@³Ý ”Ñ!‘¬ôU¬¾ÐÕÕÂ6r….ŸèsŽ>/‘Zñ¹«PÝ %øâªÃ2¾§\Åsz¸”êbuîQ‹zÆ»ê:&gbX 'BÇ„Lš¦\ïF]á"^< <ŠÁºÈ<5ž83£[×e¥{c…ÃN¥c/‰Œ8l­Ë%ÿHäR«'¨Ï¥r}º×§„}Ù£«Œ¬k'}ye]é 4}§/ôlƒV£¾¨´YxZ§ºúÕF‰k]wXk€„˜‘ð&ô¸=‹Ö$ÃŽ´€!·G™úûšÓÒ&Môc-éXÊ]ëJËne$㤪žè‚•“Uhô.1ªµo½Ð™X¾ÌË’(~ªb·ý\ fNM?²ðšeL‹ð*EEhÒì°i?¼¿U«ÀL\Y Ç9~ÊÞD^v³ÏÀ‹ ÒÔÞV׿Ü|ï6꽡¬m©7· “쬶3ìÞø7DïDzG³VE/¥fV¡ ãõ`¨Xp •ÂM¼P}šÎ±ŠxÓÄ+åš®¶\Tó`O&䊸yÄ«M<šÕ˜k©°ÿ Èsâl$A«ù¸«íç¢z7¼Àn¤:/å­¶¬rÜ*½tÕ™ˆˆNB2sRÑ•:ûrhW2í˪}åµ+Îvu +FÕúq1^Ã<­G|ÓÏNKUãîL­?wëÎæúó»3¾þ°;*ìNûÇSÉþärãt³=½ŽZ sÜL˜6’ª®ÄÑUAºBI_LÙ€B=\ê Õu]s´­Ýt´kÃôòÀ³«µÆ-R%©Â› s jy!©ÎΓ2G«©vïÂð0% Ës!U™6J}}9p£dØ•×9tŸfK¡‚›bê‰ßJši5å=Rç[ðQZÞÑ›îæùây qãÍG¹g¦·Äææ´ÈQxþoôòæè¼^$½Ô-–R*¼UVÕû¢°%>vÇTú8ÿ꤭εÁßÜ¡k¾b`þYÞåPÔˆ÷ÊøÁåÇ ma2#Ÿ¹“òØ¥ë bÉñ¶€˜ùÒX¯°9Þš€Ü1ý-ÐéW‹×aFw4üp‘*ˆT¬ŒXDMt<¯FP©xDo,/C©ŽM¿FiJÛ†®Ò‹ðãÓ‰?òIDƒøtÇôÍ„KÇY:Fòo×!2JsªðgC¿ wT¿KÏq¬?Ž©+û/Ó‰u¡ ©|Èòþîxiººë÷©+‡Ï\ñûÔÁÅMºÖ'$xV=§†Lºü Ÿ!ÜfÃïŸñ”sÃ,±×†„óvtsÃÊÚÔÐYù·6$ØâEéÚpãÒßÜ®b«íx®UÌ,iÖ¹ÉY–MM;fÞù2CÄÒ2^Æ3ŽÏ­–†!´L ‰qã<Ãìˆ(Ùж3L^nM ñGº4”EI2"Y4,ȩ̂†ô¼9¯.ãÌ/ £XÃÔŽWà/íº¾¹/ÉÚy/,ñ²>·9¯)ü*ÿ›AcÈ<I.sÙŠÞšåÈ'm®ƒ­Õñ8S.pîëžµ?Ö«/\•Òpõ}@ñ›ùÖv_\+).\[rýy\Ë‹À™m¹Ô¾–\Ji¸ª1-¸*¥åRÓYr)¥áª†²àª”†«ZÅ‚«R®j ®Ji¸Ê ·&®bæ;öWUî S%4ÃÛ᣾–Á€w$j˜¨4ÖIù´i®Òx‘î´èë+}Œ†Ci;Ö ¡”ÕÆpi•ÈgpᢄXj—¼OA÷#š„J”{дJdÍ~ƒD? D¦ ìsåäy;žD¸À&þŠÇ œaI/®7øN.÷ :3è“|À {h7ØŸ¦2Å0Lï‚’Gš‡¦WNÉ/MÏ6™_ôi~Ô7Q9³jüty6»rÇÚ㦑_ä1‡\Z©ÞÝ.dÿnñÃá¼×‡€À‡óéÕí®ÂËö…^w<4Npý„‰£³Y_Öõw‡·Ë—W=M‡2˜/[=ŸD¶ÃŸÚašïòˆ†š7j}ÿÜ‹·^/ßÛu><.¦e±ìLßÃÝp~×v¦¦á›Û,•´Â4ßžî¾Z¼@ì8 0†¡}·×ÛIƒ<  _L|NÑø¼VBÖõŽ·å9+^YÒE|ùnñš3ÊÇÝŒex¼•וác}`Å·/>{Ú?ð•b<¬)¾¾#ìòëÝ©e>4_OuÌäÇÅê<<žëÐyYCöîíÖFϳŸ{Ñ×Å Æûu¯‰c.i€¼x ‰uïeö³iÿú÷ÎI¥žcÑá·«-û(«[|Voi;ÕYç8œÎOë÷¼Éª••žìO ßþápÖÍKeøeê¯\VÔ•^+ÙqÊÍ+çöçý´Áyøù€&sóÓÃáí;Ñ‹PÂp~øEÕË”,¿3r[EôëÍB½ÑêwóM2¾{ÎÞ\õzìÏç¶ùÊúl¸XKDÅÎóœµ[ú¥Ub°éQ,†Gý¥‹¢q«y:íàRŒjíËÕòI·[ÖÊ{à[÷¤ãœzM±´Kyÿm5Oq…Ä·mxެŠi¾» ¸âW÷Y;°m߇SZÃþ²ÆËÕ‡;hú¡Ã•µô7­”£y#/·±R ïqÄ>üÈ%–÷=¶âò„ahzßã«VÃ^‹Ý8o†öo—o6¼, Ö¾²öî¹—Qzfá¾>óXUE4ó3–g7ѯúìÀ;;f²[ ,¾^záLJǧÓÄèkÐSKyz<Þ~þ” ë«È8Ù^˰íªßß~Æ _ÂÙ¤å(ØÖ…ûþ׆ÏT°‘ýK³ßÿ°G¤åézÉ~øSc¶­g{x¨Œp+ÿuøaê¤$XÿéÝ"â·ÞNøF‰¶_/:8ï?­çÀËû™#ýýÓÜs¾9<ü°moÂDgë†?5/ýf9ÙùyÏçÕßÃê²zû ´¿öõµ©6D¾©€xç6àЂ°ÃizÝhf,ÿ }àŠ·åÆñ¹ƒ…=è+R—Ût:,_ñú¶BÏØú –­™Ø!kšªj?n9žX™ÑÞÜ-8¿]½ö§åèÍ a§ ›´|ùj³%ËæçéÁä2õh†ÇƒvB8=|Çg›´åáz–i7aŸÌ&òóïœ]bâý‡Eã‡3[SÚ.Äm9j9/¥:êó/?Þo­¦ÌÇN\Påiz2È932òêÊ¿;Ý?}¼‡Êñ¸„6ùù1ˆj+>•` ÿrùáÃûÃy3ç0ŽUQ?õ¾_íÎØ z#Æ­î‡À >„˜ý*èï5²\ÿrª+©EWù¾®¥÷ÃJ=ž¯og3?ßÉ%¾t—ûO  `²‘­T“=ü»Ûæ&ärŸAÆß™·JM&@Ÿæ1%VÑ`¿h‘?gäU·~ftE&1L4@ûÓR5ç@ü«¤oã˜:'-ËÕï¹Â·Ÿ— ýaáCϵÖ†Oáó³ð¯œvº‚­¹~¼ ¢V{¸ªÝniNx­ËäIåîšiE&`­ÞœÊÈW²fðoŒ©30¹f Râ[>#Qâ*tÙ5CR’W›?7AHáPäð®n%Tå /ÃÎÚpôÝByö§Fiçà4¿ÂîÿôÛüjø=6+ÿûW·DjÜðÏ"8æ[1_þË—ÿþÛá?Ð/ Ãlõ¯†ã=+P§oî­¾:ž¾˜F‰ŠN—.ÿrúÿîðúÝ+Bç¯?O¯æP×õ¶ þÕ¥‡Q~¡ŒU0ÃëQÐÝÿ3ñÀ+?œî/ñº´îÿ“´.È»˼Â]ñŠ„²;ÆK¹A@²žSßɳëcÆN½èñ?×mþ¶EôÇU¸œÆK?΂=­í„àêyu7¾²-Æ€÷4{86iÃ~ú·kïH@ÅÓÁ%W\H¿†›~ªN«K•ÚúÀ©vŒPûøÔ–mV‰¼xëb§}½ôÐûÓʱÞñÆç#Ý@ÎŽc[–ü§f§>4‹ÞèÊ…‹»!ï OZ#ã%].±T—õ·®:Ê31åÆòÒiòŸKÅ;¿ìïÛ°,ò9(ÚýnÎ >š­==ürËç.‘½h6õÏ>¬K„\úžµ­ŠRê&•bS¨ØC4J)[ Âô”Âh ­Jk¥Õ~6ÿ/šd´¿ùiÞY‡èê«ÎŠ…¡µâ­“a\|Q1 ͨä©|¿‚]¡\•øi~—“'l™²§5ã,ó­ß6Úùþ9µ}\b9Î+{8¯:“"«Íš?JJ¼ÜÐ<öe„¤N3K6plTXaÁ®UXÅ#Ô4UÂ_KÕÚË»³lv8îåæÎÉ» ê_?!§ï뾤¯ÓÛZßö%ÚO½ÂX–šyÇKZh¾üt÷uqˆÕ‰ÆÓô×\Ryv™›‘›? ó¦Š]ëf±¦«"Œ=8ÉŸ–‡K“È­–\ÒÆ€Mx<›YÇ)‘ © °¯ueZ]ŸWX¦ê––!§+“^†§Ûš4+€®¹§jì-Ÿoò}B8k÷o»\¶†/šVº©s3åsêT|o /I-Û(F{|Ôb´„é‰Òƒðà ø>6£ÿÃ4 l hÜ}VzÁ;¥¾]KIíxS“ç G¿{»“¢œ#‹¦q¯KZ(ûþ¬ë¡ÉŸêBŸÇ«ôiQY s)ZÌþÝú…jåuëTÉQ?;F*_xîã;•„vó]릳ŸWõ.y#ó_.µµy~Ú—{JÍ\–ÅûLJ‡zxK¼vâ¼VÊàÜT7Õý¡+9ðŠè…‡½ÒFüVÖ4„8ò„[íiž‡(uŸg㺼ëP8ͺæµò²SÈ!ûåN&Ñžw²],Ó=ÊÑ ›çƒÔ´‚Q_•:¬-ò->×í%Ï•»k…»óA‹¡±Ó†¨—\vé8Ÿ<7‘mQ±cZ§£iHgq¥/ûöxÿTÙyÖõ5ÿ¯Ÿÿéü´ÿWËc!(Ør¼ß¤”ãG>0^ÚyüµºçûjªŽt³|‚ Ï?WòYs‹òðQ#sV쯞.Ë>{æg}¼ ˆ‡‡ýÒó>¬s„ª…ð¿›.0Å€µ&Ø({½º éñác‘5.üúû0õÞT†2 î§ŸÜðéNÑÅ¢ÏçÇã—Ó]ý¦ö%¯X-K^û÷ß|ùåiÿñþ/ÿôkl¶ø§dµÍý³•"„Îó§ZV›:‘ù2Ø/.$q^»ýÓÛ©ªTò’û¹æ«…¡/–u¬IŽóáü0ð`÷þòRÖúýW>hª ý&qlS!ëüîþ"^ÅDÀÖÿxxs/¡Q crßn»­Lýî«ãé2õ§{ÞÍúâÒcÆï7'€…Üý|xà ¢­Óra¿¸ÔæÈûîþðöÝys©â8ÖòY½›øÿÎAÓXendstream endobj 364 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3202 >> stream xœViTW®¢éª *e võà2ˆ ¨(iYd'Êb”MQˆ—qã¡N‰KˆàŠš¨àc@QŒKNP@„†Ø(MæVÏkÎÌk˜åÌß9§Oªêºï}÷»ßýî£)c#Цi¿äô¼äÜ5‰ †'{Éš–lŒ$Y>ÎÔ½ÑåË¥I¦2•!SãS6f=  ûGCüJFÓs½wØE†EOŸ1ÃaqÖºüì5)©¹JçYnÊUùÊý£ôIÎY“’©œFnò’Ó³Öe$gæ¯ÉXµ!Gž™óßÀÿo)Š¢ef­óÉÎÉÝàŸ·1!?± )8yuHJêšðµiéQγ\\ÝfÏQÎuŸ7Õq&EÙR˨*”šJ…ST$EÙSÑÔG”7µ‚ò¡b(åD-¡|©Y”åOPnÔRj6HQs©`j,eAñÔ8J ÆS–MYQ¨‰C£FS3 ¥”15Ÿ* îÐ6ô ú0ý#w£Fû*Œ4² ²cÎØÑxŸñuù(¹J^Ș3ÁLƒYW6”ÝÅ~ÁÞæl¸õÜ!î·2?(ýàï&kM2L޲µÛÔÄÔÆÔ.šëœP)Ä´KÎ¥´” YÂSœ%Ïàú 96eðÑ¡ ù/LdÉáOíÞÌ€)¼›Ku¨T kI-µP·yuÃ.KþkµT&è˺áË7ü­^ÝÓx#1PÿÑ%)ÙÞ€úi ÞÙ-ψóæ4,‰Ïm“Úè+½P×+ƒ3ÒÛ¹Úb¬ÒL†é`×÷+,„€Ùï°ƒXä% Ô{áñxL¨—Ó̰6à¿ß¦ ‹´KöíÄ]ˆÛ½–|Ã]œ)tÃY¦*²&§ q`£<Àg6aQä}PXZR÷Œå¼¾ …—çã±xTð|g—° £ïwô‰æºÕ¨SzÜI÷i%­¬o<\b ä €‡AƒD|‰ÑY ÒcXÈ”V{ŒƒØã)¢9ô~6•î.µh&Ð,ùGÍÿ"ç [wêÝ˽`yçý[vm·ŽD«Òb<9>äafï3·zaG¯L Ì…Âw¾ßb3ÄaóíçÝH‚1bû¦o·œÊC«',_±Ö;>ùèÉ<ÅÖ㻎ï®à\™ƒØ¬)&‘ì­ºÞ¶¯¼9ùŒèqÂ÷‹Ì“¨bBÍÍ M?\Ɍد0‡‹¹-’}ý¢K‡¾Ù0ÅOññýQ¯d"¯d6œürÿËjöÓ½Û —²½¸BÜ3\½–å†ü,ºà`×§–ü&)o¼TæŽkY¾Z®róO¸öBbÝõv¬[Cø_¼Oª9WÓÌy³d_TªS•Òod¥Ë‡2’ø0e4Tއ8©LîÈ`;½'VJžäõerCM†?‘n‡™ÃŸLÖ;L‘äS™ßë”䯉òåóVrúMï$†*9·Ñ7záh—LúªFرoÚ¸ÌOŽŸá«õ­Å‚Wð†¤Eκíû¢¹næÐ÷•çÛ×z=k¹¸-LÉßê»›lÎß“¶5x}zòå—ýÖXwêîÅg‘gsï¢/ÑçûËqxø (kgAvîšôUŸ¬@\@òź{WÊûŠ}GJ–åHž8³S7ŽdaE8ÇSõx"Aî€J*Í}Ëêü-©hÂôéþüƒÜB¶dGÉž“è:øägO?ùŠآ3·úN.‘¤Á[aÏím_o<ŸRxÞ›(ÅÖcoìÙ¯[ûì)Œ+ç2[æ~œàƒ8§ˆ§0,ï¶ÿ¬®Zå],¨o‘Ì[hi™A¥ÖÞPÍàF½©|¡äÕ‚ÛYø^2f²=¢T j¯R‹³½p‡ô|´“ÔÏŸfRëÂËUdcLc¬êÁ4ØþT{®¡Zä7/yÂâ)Aè¿ÿ!¶ù¯±Y¨‡«Sðs0óGÏV Ö ˆV¤ÐÈtÉ¢®z-£+iåÓ†24’†‘Ìôù¯Ì°s€_¸µÑR1lPÇ®o6_]Óãqg:Ù~š#–áExQ¿-ØiW0e$ïÜ%±)~( şΪÚxá ïpû›„Cƒ¾ëFÜ‹þŽâ°&%²¬u ­!íð9!­“¹|âË«‡ ÂŠfvÓÁmE¤ ¼âV.]T¾j}l—ÛËŽèN8ÜIÿ¬…¾A±‰Çä3÷QuÉÕËU×NÜB?p0i~ž¢Àw‡2´Œdm ‡!Ší«‹ñðˆŠq1XÎTÃXCE‰]î…Ëm–¼dG`,`ùÁïâÊý­1ïŠMð‡®eK«£Ä«qµÙwÑw¨º¼ª‘[ÇbeRôdŸÕåw*æ0²o µ¡ïÏ\ºq­æx‚ÑY.€åÓqN ©]„'`þ£En³—?ÆÕ¶öˆÿötR^ZÝE,]¦&eÊè"†n°óò³;7—*Nçg£Õ܈­kïM]Ÿ»t….¶ÎîÎ7¿Z4v»qhÁžÀw×—u1ü[]†ñ\Ûn†°•Û)½m§ÕZ‰ÖÊ$­tD@µ{}r)±{NMJèf7[¹Ü -‚Œ6çúj6%å%¦oÈ̋ۂô0§>ájBeô—~hò#Ã<;y[ü>rª`Ô|vþÈéSU>W‡¸Ž‡¡ž¡k—¦ˆN‘ØnÎǾ;±Ë)95hÚ,$±I¿%ß ë¡Gøœ©`^ߎwsŽˆp¶­ùm—HÆhhqrIZ…ª9uŒÒi˜ô2µvΑÑxîëÚ–‰0fþSl'/ðÀŽ{¦¨êà™ÏO–^¯:}qí·b=?ÊOO*s¶§í .䆓§g4tü;`±€k`ñ¯Ïl¥5,~ª‘ÏdáÎ3g3 ?8.ô¶ƒS/-y>Öé– z#&J?^þœ¹^s©¤q¯ØN šá{µ#€>ZœU¶þZäOéôä7ïÁ”3_c›å‰[3V‰å°BߌíäàGß|•dñÝÒWB˜,Pc y"UrB@¼Ï&W„-6/ñº¹´2äq:™‰`=ø~f `^±>*Y,ßú_Þ¢Çèfâ1GNR‹ºe3œ—ùÏŸÔü²ÿáã^ƒ½ŽØË/$•C™nÏ`O¼k ¶‹Â[¸æ*lìƒhpƒ5ܼ«O  Ý¢¢?  ÉÅ’”¬¥±Â“êSWPŒÛ3lǺ~ˆåKN¥¶Ä)øwóW%†xLÄVƒN¢ò//Áª#ñÁ¼ë ~sP"<ý&~±ïŠøE cªÕêoªŸŠü;|ßXó0t®[H˜óìeº{Üï9WB,á§®ì‡Êײ:˜'”`“VPèRWÞh¨ú±TƒÀy~[Â÷I‚.zë²¶Ÿ†•xB¿#Œû¡öô½j±û…ÛMCAèãk[ÔŒ“6—ÌtYä6'êáëŸ4vŠæ7ÛXºI qê25Ä«-Î7ÃÊf°3\-ù;Û F·Hp\àåèØêõJÛÖörpaë Qe|¿:>,".>"<®º¾¾ºº^”fz‘C##‰Ä1Žê-IÜG‘OÙæÐº€Ä¶j_“XÅHl$‰ ‹¯®¿gˆ5—žÃr5-]‡RA_¤’ŠÃ@|O÷¾—Aø{aòä÷Œyî)©ì8„I;Æ<7ÑŽj?`jÚUljFQÿ½ãendstream endobj 365 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xœcd`ab`ddd÷ vò541ÕH3þaú!ËÜÝýƒõ§#kc7s7ËŠï·„¾‡ ~æÿ ÀÀÌȘ_Zåœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@œ§¡\KsR‹=´˜Yêtðýè^÷ã÷:Æï¬ë^¬cþ¾âÇSÑ]}SÍšÝ=gnMw¥Üïul•ÕÝ•UsºgékŒ‘ÿÓÉÝÑPWÙ]U9»{®Ü÷ulsguÏSÕÝà×>yüo‘ݢݳº6ÍåøÎÌÖTÙ]Ú]Ãñ§—½»¦»tJ%Çof¶)s»vÏâà+ŸÿÓqÛï¤é웹6sËq±˜Ïçá\7‡ˆy‹·…endstream endobj 366 0 obj << /Filter /FlateDecode /Length 4040 >> stream xœ­Zëܶ/úñþ…¤À"(Pmë•Å7•>4u…Ý6ñùà+ ÝžîNÉîj#é|¾üáýÜ™!¹"µÚ³|+‰Î çñ›!X9[øÏÿ]oÏŠÅÍÙgŒÞ.üŸõvñ×ó³§ßX oò²(ÙâüúÌMa fu^è…Q&/…ZœoÏ^e/—E^(aXQfõr…ÆÙì2úPõCSí–+!8Ì´Ù‹däÃ’ë¼´F¥º'8AäEa³çÉ—vѾ×é®Â":ûÒÏQ¥´6Û\-Ç¢,²È^4ë%Gy´LI%+n+"ûòñ°¦¹ÖÜüçüï ;ÉcÝ ¡òR‚úίβryþŒ`\.ʼ„I8b%%[¬`˜ÕG½Ê¾ùËr¥¸ÌË’gŸ~õÙE¶­«~S÷Ÿ7Ã/«¾Y? ßEv·¿ª†úô«³ëjÛlÂý9|bÙGÿj›¾ow],/–KÏ¿˜ãÀ—Ðf±‚ Òæ¼º^®X¡ äŽf­ãËKв7e f)ÓÌÈ+•!n",ðüìü÷¯~9¹§yÁ2=~çҔ˹íK,,ã‹n³¥ååľ;0 eaa“ícƒh‡Qa%sá axØ×Î&Ësüé½Êz¿„UYµ‹ø@#W°GÊ€zO¥¾²!6Ív¹âäæ*»Š^Ñ2»ŽGY¬È>ŒÞC"qDeNBÆ‹\(ã%¼½½•³êÜr{q‹\Q'\¦Þçx÷“JF½oš~Ê¡SŒÔY³óã@IçKK¾ j¼<ö]7%zv~öõ™‹’jÑŽŽ©D!:J‚J´49:Àö,c¨Oõ½É ›KVFä^e÷Í#‘FsVaW8••¨.zklVÅÖ˜XfÇ*§+з¨«dgსµWLä`sÖíÕÔ("‚Õ­clï¢A]_ûH ×^‡ØlN Vé^·›M‹¡¹`ZƒäqÌ¿ñ”¬yGòã'¯ß¤Ö¯Ð7>É0i8<æËƒØ\ÛÅ=ìègÌp–3³Ð¼øv{&EaÁÀo6g/Û÷1Ðr¬Ÿ-ÕBÅ„Û÷¿5½ßÉ’qmª%y¶,!w®˜.4†·g4B -HÖUkx†Ý5Ô½\I¡*à…… *"×\/X®(%‘ã¢<Ä=7 hÉ2غnÔ„ÊA„ûQ l„1±ü›Gµ`Ñ‚*3ë¡Æ¾kv ç²DIví%Ä¥ŒDé]¾@ö à•ÃàúªYs©¥¿Ûn«Ee%QZ·5Ø&d[O}³½Û -œŠã÷ÓÁÈ ¦™ìºyC£E‰A(Û7n Ûû½:¬…ÓU»xl¿n»ºX*K¯×í둃uµi.»j<¯ûYÖíîš´a…$ÚÕf“×?ÜUM"ax\þTÌ 똕¹±ÚÇévW¿êý§·uuåãu¼!«0: ’ÜÍóæ{ž@Í,ÛÃJ4D ä1ên{x' ½»n;Tí OÙM=üãÙ}ÝÜÜ8+v´`^R ›22¯ðæ-N6‡d»šwLi}ù4Éç ‡6!>i@+ƒ'I48}q2x$9¹CØC1PÚÆÝ°£|ªŠ„×BæZİkw«›zW#¹™´JY/$ßWIv¿‹€o¼ü:fhPÝ;‘Kûh>I(x¹xëlhg˰¦|;\PRàB{颽ø÷Ýr\<Él©`>t?ýFÀòdÜ [(·õ+ 5Q¬"ç9Ä !C>k—¢ÀÔ³×K ùC¡£u ‡žLÁù,ŒQŒî}>‡"ÔbN1€…Ôï ÄŽp”T§A¸…ImW¥(òž²K¡~SÁëŠò±¯Ôîû@KCIz¯Ò}h—Œ¾^*åµèÇ™òùAò4ÙÎQ†vç~—`p ò=E÷„óeI¡¸%õÓ8(¿MIŎМT¸§Æð‰:v¤0’lèšË#wu¿W®¸‚o™vhLy,üUr¨´" H•ÚÁæ5Ë!›>Ùä iìs3ܰ9ÙÜ—¸ I¦$£À›´TTÉ~Fh®,!Yƒ à´v0j&ˆÂd¶õ8GΑä•"ØOxÃ2o•ä¥d¹L•j~¨•Z°z a’X<ü¦AädKf4Ù<€B%£¨HšUÓ@î(šmíW3Œº%Fá}²Ý‡]d.ÐiêcLz%–—‡*õMx”&ëŽ}(q É$aDÂÌúXsîNS&„2[„4ôk7$%Â0?+?⫹hUB*W¡ Ѫ£ãè‡îîdfŠóWwκJP€;ò~¥˜ -Ž»7± ´1aJ4nRM_yêbê¹1§Î‹E)(Ïu9óó¥ÅjÇCdì6q²kbLs ^£µAyr”¹·l4T®½œÍ;µÏÁ}ÐÔR‡” äc¥5ö pÈØ‘‹¸±µHÅõ¤&œzN‡£+É«Þå¡€¨’h‘ˆÜ$³)ÆIE|ZeºÂçrºª›Ú¯m@óýÈGHJ™5Ûýº¡ò1Ê£ÁO(&aÿMµM PXDRuKtAÂ>5fòca³Û0"«ü/¨ÜO'Éãéñͬæ°äãP«œDtùA­qødÃ~sbÃ’n¨…ŽB ¶e _8‡‚ýåéNl«„Å´ŒÇîœkæ° 4G¹?QöѰ¡9êÄÈöco¤wìŽüN ¶FLóIœGOf%õ¿¢6˜¼®Ð5‚Ù¬ÛR“ŸÑñ@1“< ): 8=»ÀÀ}…Hõó›t¬Ä.ÈæÂW÷}™&†¼YÎÕfà~ŠKòY &$'˜2Œâå1ËïË+ÇEjÄ,øYÔRü‰:àºÈOÈB5þsz•Òƒú*Q+97³Q¹áÝ%M  @LSuoÆÆÓDáýÊ% ²;…eÇ!Ÿ¾Rž “Ó:#pµ)†HªœqSÎÑT9›ðV7¥‘(61c‡rç&€÷Ps1¶-TBöC\t‰CTßc"@À9šÃàF)D´Ù·˜PrÀ™šÏ¶\ 3Ü»4ƒxf&a;O©x¤Sе•;d“t^çȦPÎNË ž6{à S>轜B¢¡K;ê÷yž——n܇Ëä QWSQ<)‰ÅA—¶M|¤ÐI¤(m.M8asÛæÌÕøÕ €­µD^û!r|˜Âõrn-G;bˆ´q`3ÅmÎÔ"õ ·!©@pžsÆ=ÔÃ:‡ÅùÙ!%-JòTt,ö¸n’ VÛ£”Ó¨š‡Â5ÞçÆÝúfŤu“!Ý| rY^H!5äS†œ[¶‹ MUÛiÂiˆã]CË©•8Æ'mŽ-†7ÄÝ@^âîÊ÷ë’²Í0m:¶Döõ]>^%{Q_Ñ…F^¸/j| óf„dj4{Q½qAÈäRåä¶P…ö7ë­Y6>¨øA5òÿYQÄÏ ŠŽÙÛm+@a¡L {n…—úäñ¤ë·Ó9.D¢Ã=,=JòµuÉæº9tMGü†gë®À,³‡~¼ÅC•7ýÖ•ý3½w:AóŒcëý)R!9Ì/…­=µ·ŠŽYºþFžôëÂE%ùŽíû'AF6‡Ó<©û$¥9TÂURe,¥N!) x¨±æ¨>nyOfAÛ86Ý5m¯kx«¤Òاù±ˆ”ñp|¡·Î1r„—Æ1ŸìºéÓñØû)„œH {ûA MO€,@Á¬ gjõl-¾W¼K±s ¼ ÔB—dø€…èT”¹¨¹u‡«à`‰C³šÓ+Ñ ‹žkOM›Œñ\²ÞÅ|;ÆÆË·ô3TÁø[ÊEcËYM,¹°…ձаõ8£L™s °À¯šp#ÚëâþÌ2DZ»+l\‰9¼yìŽ/ÔBÁ`“Üa+EÉ-(™r5‚U˜ U.[L¬Aä Hé1ÀçMGE›etÕ•@6x9˜4ka9^róå8?fvÿÞ_Sì³Ø©¤›aNvå*…¡ÿc8e €{n ƒó[ ò¶ ,ßÕëzçÁ=Ý!¤¥#'Ãýa½®¾*±z®šMuI!Òºsíë®ÝznãþÎßß]’}:¾!:ÕÕÆ‰G²^ÕûªbfsÞEvÐ5]ŽÕ¹Â¼ŽÉ¶ ÷{ž·nÊá’ V£®$£ õ²zãof@æ~pMý‚3l»ÕK®h‡«^l´¿‡£(¾¬6 ¶­\ÛývöýÇOŸÞßßç»ÍM•ïšúªîúj}Û×»üª~ Ñöº«÷@ž¾S“XVXY(Ä:6^ùb9Úÿ×gÿžJNÈendstream endobj 367 0 obj << /Filter /FlateDecode /Length 3844 >> stream xœµ[Ko$·ÎYÈ!¹p  Ü“h:Í7iÇœ`ýì öÊðA²^i¤íõŒFîž]ysðÏÎ9UE²›ì_ðaG3Åb±XõÕ‹þvQ•lQááßËíIµ¸9ùö„Ñ·‹ðÏåvñ³“¿~f-|SºÊ±ÅÙõ‰_ÂÌê²Ò £Lé„ZœmO΋'˪¬”0¬rÅz¹Â?,ÐÙâiòCÝí›úv¹‚ÃJ[|’Q¾Zr]:kTΠ=Å¢¬*[|œý²»Mx?K÷i¯â&ºø0¬QNZ[l®–ÃÄYgQ|Ò\.9žGËœU¶ã&Š"Šÿ—’m<™æZsóåÙ¿@w’§ºB•N‚úήN Æ–gÏ„q¹p¥ƒUH²’’-V@gµF²ó⳿/WŠËÒ9^l×u·Ywï7û¯_Ö——øƒ*+Vüm5м¸»ª÷ë‹”öiÝ5—§K‰±Ò)Ò||röçóâ/ËgU…<Ö·WìÝÀÏòbÓtû‹â:n Òßâ^×»vûbSO7½XþøžŒ¿/##›{F¬Øìn.Š'wíîîb‰ÿyaGÂ^u<òŒˆ´|±<ç+SñÅÓ2U|¹ f`“+ƒºr‹˜ð]ócp‹-(sXüdUÇ}ܶ»Ö_!­ç‹U—¸ž•†YÊÒ\UÉ­1Ë9\qøÌ·¥åÖùågÞ¥åŽ|W–l£:Ö_ô"_]yR€€œô;¸ r%%¢‹ö¼ªÛ%Q Pì>«t6(le¼´Æ::iñ•w•ŸŠ•J©Ê©Ò_R¹ILE”ºd謠½R -vž0×”-Ó€}ÝyÑtá¼p’§¨l¸+‹ÝþYÔCq™aE†u»yT ®4¤Y±ëš}ó’ Ç Iê—¤¤¢NÑtm 4¯’¯›7r¨ÌþòVÜ‚†ƒäœyXÝî¶A$VìŸåNRH8Þ] mžâ4 y÷b9l·½K8ì¸yXæ$€š)JºâìÔô/J%÷zý¹Rè#¤ÌIñöÒ*«‹{:X%u±k¯ûêNQ­à4sôo¥+ÝHw è*À¶o— oÆð¢¹L·Ý¿ÕárxÕHyuvÛþÀ´Êu>ƒ %ùU]¶(‹L¹úžNƒKXÔÅã:‚ÿ¬²£íÒ-sJ—ôªSS ÓVŒŒ+5Îñ‘‚±lQ—qùv½DøÑ ­º· ¨6¨zÆ”.¦çÔ€Mº[¦ÁæàÞ—¬=’ÊRkçb0ôÎ ‘Œ5Ja¤qO þû]È3À*·äÄxû©ö7û&½X‚B×S2cÉ4d>³Œ-ÄŸ3ðh64Í… LÇ×SŒLàÌ(„HV ÆSˆäL/À„Œ¡%K£˜J¼Uò0HÊRZg%2ßõѤx{6³aÒ€ÇãþâžaÓô†uù´¹½º(Åhø(f<÷³;& ‡3œËÝíus»ŸY9Çg£w´=û!lÇ]x©†tçOËSÌ:ÓËð[T•”˜‡qQrWEf ‘’s=ü)!-”A*¡‰Vr¯ÝÀMòRXÅ#7).†ÕOîjH½1}5(D—„~×€e„_sI…áA§ŸCè’bŸddýR:Wên;2lÆdqEVúT€Vªb»ó±ÐÊÃÆy·ß(‰:žl;B4/w9ŠÕûðƒ“x#ÆÒæ¦>Û‹ð ùV72Á*Ç«Éäe @”¶ÅбLÙ^X}€ibes5m†wy4ʶIW=OX‡ÌäˆM>;ó[G+H£.$àí(f˜J…ùFqQDhË¡|ÂÙm÷3eJË@ø,W;éWŠL«h$¥)ÒÄ ÀÃ#’9¸B¬¼ƒP8ª*Á9¶ZRÄ…3ͤ¡HÃ≞{ Q`ò®,$¿›c’JGô™(ðP7вœæA”óÁq%Æv3I*¡š€IÌyKEz®7›ø‡Ä¢¡€,‰ò%Ÿ|(·`è`}(ÏÍ B3â‘mäð)¸É:*>ã©h­ªèêmBU§ N³iö>s1„ÕÐ÷X,Åÿ0§@WÅET Á™3äÛ$uoƒž¨’̼¿e2”ý Ð+õ(ý½N\É'äÄQeˆš±knžyï4œ ‘(M–%Ý#’ÙôUwΛ&«ÉºPg"º|€h„@ã&hà™I65×Pá½FÄÈà93¸.’Ãݶµ¿'›ÙåçÍ2‘%Þ/’N;W/Üôš$WR¨aa|^9]dš%st[>’Ž@ª<&í©5gU`»;0ÐTž\mŸWÔm–ÖTÖXßÙHîëNn°Ç%'AñŽ|R Ü~táasn¥ydC*ltiŒæž+¼u ŒP*‰/„ ªk‘  èšP†fÄ*•š¢ q¿Ko1+^6W¹PÉÙ×¥†Ó¥Ô·ÉÞã¼€öÒtQñ<÷ø RÂ׋Æ÷sÓÖ}€~é¡…¼úí@Ôg0BË`bÿ)uøZ©%qŽ8':¾ aÙbÒ–Ûe€ó+×¥XÅûMÛí1TŒd'³ ä>ðæ¡“äÈ—š»-”C6;ÉHâUªª6oäȃü%Tb‡ýµ¾Šduä?£¤ûGUC H7†@WÙ4¦y«®°}° :B ¾OS4añD,äCîToâOÆMÂV•ö…¡îT˜¬?,‘z«/Kc!8qF–áû]BÛ?ÅFô`…±1t²uqßødžÖH³]€.éìk¬—¨úŠX`î×ì»X«´ãu7óàëµo¢Ðé^ßm¡}ÀbÒBº¼¦^ùj4ça0qSG†ªd€þ1c f?IBdRÚ¯gò_H,+sf˜{hÁŽE>’Þ–gú=1è‹«4Ë`³LQ2ÈXŽUö´ì;ÚXÙkstpq»¾ëÛôöµ£ ß‹?^×ß®\|O•þŸ ôã {hÄÀ³ ¹ïÏ'¿Â÷/¼åö±îÖíãmççóUµ*­àñ@ïa~ÌuŸ¿ð3F¼?Z?‰h¶Í¦nã}Rã]»Þ¼ê2è!xö"‰¡ÊûhopÙ6Ÿ¨ÿÍ 7J"c÷øìäÓ?[T‹öðLqdia¦È©lW Áay%ýPñƒ<ïÝø©E.ðõ¨ü®ÊJ# @ÁutÔ5fðB“ùÔ›„g9k®ÔCñÅ¡œAŸÿ¡'š—Òd'.ÞIøýHE"ZA›+r2h ™÷8c&;™Žè¦!@~˜§4ñÈ™H‰üP©¥h.—ÚW®’Åy&gÚï÷“ä/íH÷è»NûUŸjãíC¼Ýk&^Èóúr®§XƒŽc²Ð–F(“„öÈz>C`ÆP¬±X '&NÀç››Ín;JúB$òQ|~ãH´~Ћ!è¹â½þö°îpòz™› ¦Ž¦m8©y=ÛÙ‘)@ B[PSzéAýÌÚä—iýf©l8žhÅ"ÛC샚úœ6¿À0ÓÙ’[þ‹Í2UhÓ÷Qäd¾`‹”´éæõàXZ±#úÙ6½…ÇÚôúó>½{`Ÿ>,ÅFýíº¢÷Ñ.ý/Õ¤‡{Q|èÊ3ãløSÀ­‰ùÙ{ä–ÞŸL Ê[èeúÇn m~ ¾_‘IÞ3[ô— ‰òº,/—±œ…L{2NÀJúBq³KS›Uœ’IÃ9×Pkßæ=ŸmÓu§ɱ¸Ÿâ^ßHˆ3Ae­K CñôgÈ3„buå‚YWb&üƒÂ#q Fx('±1‹@?6, V)RiCûù§iA š¤g|b:#•)m5R,d¿^AÎäí¶Ø“F»ü…AÔ©2hÔ>|M¼óð=é4 ŸŒ›|4Éã ÁcSUCA¼ïfë@VA¦ޡŤÛÌ3ùk“º ÝRCá¡FèÁiw’"_ Ätaòâƒ47- ÍÞ¹§ ÓÇ—¹+y¶LöO5f[µ³ê6ØôbAݻٙ[ÀÒŸCÝYo1ml$½Â!ý«¡r}H¹£^Òï‰sìÆK|#ÄŠ÷—–ž&Ú"<þZ ä•4£B“uw³æò$%¶ÂÐa$uîɼüû˜¤KãOîùK»Ú„>øé}à`Ńǹ§¦Õ´s=M"5ÝåT¡þUIê»v;?ñ çuÜ"=`ÚX•§æyÕ»³c=|varK–ÕÈ’!Ý[ÈRÑ¿H÷«Ù¬OYÕ?#½BŠUüne ÁàÎ<Ø $ ±Ãƒ '-òF1Òé¼JeÉtãN žÅ“è¹af~|½Òf»Tp«à<óõ‘ p"?$ÚúáX>cÏçM‚¡I¸E¶è]_[`½UÍ_dŸØD«’k¾ê=<ßê@/„VÂBôv=¯òðx õ¬{ÄÜ‘ÓH^·õ6†¼¬š·6‰ï•3žé¨rÄöjx|IÛcW籜Sþžá6}9º¬ÖóÁ2Å%\ÃpÈh‹~Ô›&osùøI[K’‰©ZI¥x¨5ÆÌÈÀ¹–V.’EÑWt•”<@g@ݰŸ©Œõtÿ™‘X+ÚŽ ¡øfÎ÷41ô]úÅ8–1Ú¦ÇúfÞܵŒ³5ÃGÙ e·Ýμò›>gg”ÄZLZ £.T0ÂÙQ|­ÃD…WéteÓÌvZ%VÂ¥S–ƒÁ0EÛ:í mú± ;‚qBo.¨SÕZ6Oõ.‚"vÝì¸Cæÿ—‡†[·x¿øúnw¿n7õýœ—júذŸVÑ\uþɂ§¶q*Õf¥×bá…¿þ„ΞAŒÏž„P¯7ÅÆCËtP?Ý··¹þmÔÛAƒ£. ç`áNÇ.Š;:éõÛ·†¹ˆ˜›‹P?ä' Fî× ;¼¿£MçÅæõw›ú&2b)™J†T1~zòW¦½Þendstream endobj 368 0 obj << /Filter /FlateDecode /Length 3519 >> stream xœÅZKÜÆ¾oÎA80æ` =ކî7›yŽ!ÁNì8–6¾hƒ€Ú™•hÌË$WK~vΩªî&»9íJrè Y²»ººú«ª¯Šýã‚bÁñ_øÿzwÁÏ/~¼ôtþ»Þ-þtyñÙcçàIQñJ,.o.ü±ÎÜ.JS•2‹ËÝÅSödÉ nT)xÅ6Ëþá`œcÏ’u×7õ~¹RJÂLǾÉF¾YJ[T®4¹€öNPçŽ}½9ìÙ/ÒuÚu\IJ/ÃSiçØv½ÿ É$+öMs½”¸«sQÙŠÛ¨Šb_þ;¶õì´V–ÿ¸ü3ØNËÔvJ™¢Ò`¾Ëõjyù R/ª¢‚Y8d¥µX¬`œ³‡=eÿ¸\©‹ª’ì󯾸b»MÝm7Ý£¦ÿç~s<Ä÷*}u<¼Ú´ÛúU|ë²·û£¼Z.ƒŽ.Y_p]X^.Vp ¥®¤×a}³\ n8*@³VÃ8!ŠÊáÇMU[‚ZœUQ É„s% ñS«Åå×—Ÿ>S'™‚ Å­d"@Ì€ýÁ) Ç!¦sÅrîl¤+”VQîs¥ŠŽ5»#²v²ªX{@Œ€N’½\Â,Î¥Ž`­€„uqªf¯^œs‰}P_§³¯3tß&HÝÓº¬Xߤ¨Ž¢P%Ín’LJ6<ŸéÛ:Ñíš´𮄷Í!jë§"ÚÃn”n¥y~vcíêЮϾôâ*gÙþÜ”vÕâÆ G[›é¢&<¦÷ÂB¸ðò*Ãê¸[ÃŽã4òg&{åÏ 68£ÛÖw*-a AKpÞ.âm)+ «—¸þDdt›ó'—îoàgÞ<^B\…k¶;øM8mØYsn‹åJKð^gØWû —aÝ1=ª~¤ZÀÄ þ·Q¢(ª’l‹cÀÛºï§6¢9€‡ìyw›¿L†9MÔ ‚jžÂñwÛxÎlÚoßà+ŒªþÔ ‹:ßmTËØh¬ª*Ù¯’•{ 蜣_æ‡NâuÉ^5ÛmÔC°t]´¤Ÿþàc`Gt˜ˆˆ68´7t|¿2`8?à" Š€¢%dQX€NC†¨ÞrÚ8Þ J!‰úߘ„ø¥&£æy¶éÆ 'fTÙó4Ö´3ûO\— H½Cm}³ç¯ûI@L¢ î#t)+ ¨$AÛ}¢eæq›`N°ùTyÒ×€ ¾>uKÿ{Uoû3³2ØÝååA\ôòA·¸C„ÁëQmQj«ØGÙ_ÙŠ}dàYÿ‰&Õãàǰz‹(dppÖoâx˜z6í ¸¢HߤnU§ØB¦CZ”äÞ$ÝÚøÂL µ;Næ'@< )ʽÕdpržA1Øv—iÒdTÐoWCη›M©·ž¼éä@ÂVê,‚4Ï’SÏ!+ïPÀ§‰¸HℼPF Fbº ñë1Í/5H‡¼³_S:.=#Ú|D/uÅ…€ø}ÝwËáO\èáåÅwžæ›E{žÞç4(Ò{'FU…,µÿÙIÅÂ~µ,!àok4BÈx>É­ñ9HÕj Þ^ÛäT-ßU=eHHudW õ‡m[XÇ‘íI°h"ùE:Uˆ2·&poop³&@Ðß·‡æÌ“þí9dfXŽFfÚžs!d*÷ª²¿®—xzÖÍXÃŒI ˆt߯¶,C•óâÅ íëœ Ý. µõô¾~©è/ºœY‡ºM ,Õ~ÖðSÓ4?ºåMⰷĈ$AÐÖq„æ&ZV¿Àááæ”E1ºSù”xFÓõm“~²/ì Y_æ+¯_¤óž¥ô8Åï;›§ûœyžŸM·yA™*¬ƒao‰å‚kOV²~L xƒ!¥àcc,GÒ3<Ÿ½ {†¬‘'¬©NÃ=§iΡœ‹<>7g·º䤤ð[:÷ì,jÚ—Ce1+R‰Iþ#ù‚cÑh Xi›:g³ˆm#0´ÛiRËfF=3šÐ"j”dsüÁã ñÉÌÓ_CÐöUC¡í!6 1E‚^·ãQî<‹Íj´ÙRF˜PtH*:RçN]!@¶‰yÓÅ: ÒLÝæèuàòÑÒaPe5Zvæ7£Ú .ó…›)ìc‰—+œ)Qw±ª(U^ µ/‡ãÎKÛí6;ÛëCñ!²Eë¾MUÙ´‚ꇒõÍ1…u™+g3x¼®O¸™²X*ùrQY0„ÖYMSýœ“D ¼jìù:J­îŽ^¡‰Ñ ª,©ß½ 2’å¡Ö}öaƒØ %æ{ºÔÍüjy¹“½G_¨ýÀMj^dnØJWù6+¦Â~!¤ì&ʃ_Už" ˜Fº`_9Iåû0ÜLƒP ÷È}ÝÄQP÷I÷#VÌ¢åîô%%V™PYgÙ1¸”ŸØã¨Ò7P¼Ô{3>m3ˆ3ƒw¡™§!Vúw–ž{'T©-éå; Èc[LdÂr2­\ašÖqÐð®xÕ~ïÞꬴŽôp`ñ8&z´ÐÏ ¢Ô¼“•úhÖx©{êßÑÒàiWŒ+Í%ížšY[þ/é>Lhü.=âI98Î%ÖÊ-Á¬=ŽI"žÓBãË÷k”Q?x=ZFslˆÐ U¹-vƒóŸd¥¡wAÀ‘0¶‘ÖúÅM[v ðc¨æ J¢¢Ó•–v0í¾áxnîÛdõ–@­’çKïÅÓ ÑДEFŒ/?¯Êsd^"Ÿm]œ2eˆ°+–[wiáЬfšçY¾œôÏ?¼~ZFê…ÆïSÎW]"¡ÐR{B(”ÊDOŠßŒ±}àF |,áѸ“TBªm¦üÕ—Ó†âXþ¥ìŽó uå‚ @˜dÅ1&NZÂtü3Ÿ) Ð¤Å×#SË1hö-=ÔÀ'qx5:žéçŸôz<.EVŒçNt~÷i`¦ZÎR.¥ÎýÖÕIB õŒœ¦íYÖŸ{உêB@ %øJpG§º ÕÇK?`53ÁÞ+@²•RK›¼jÀö/.ŒŽ{6[P—3 Rãü÷³.HÓ7†Pû¶³ê‰´k­$¬ƒTØRˆ+¨IK.~¡“"~¡ó½Ò¡<ÍÎôܨ± ¯ÞÞ̦EmþÑ©ŸÄ/7%$ø9ò5Úiã*¶gÅG+[óдJÙ¢u¹»£÷2× šëw÷]èù˜<º˜Âú§ìgË_ãk·€m”œÞÒG;¡¦( ›¡S£t2JPýT±oô‹0"•£ ë-?ØÈ©¦ÿRT øáŒáކ68uW\T…ðÁH€Í¶Â ‡ÊŠÅŠ>œøûeXËf»V„Ó¨Ï_‡]妑p—Ðèëœn Í,`¡0hUîíºøîÊ/!`:ár±JÖ{Ê~·\ Š[püñˆSÉBº„m¤Jʹà…ª¤€Rse kŒ³™²™ý ˜Orµp0Ö•™ÎyöÒÝFl<˜ÛVY(`÷÷0ó» ðç³6®€^«;P(Kˆpó(¬ðÁÿ…æë Þ „ïe Ÿ „ʽ ËBHW‰LÙ µreBÙì|>¥{CÔmoí×Mw.!,+}“xœ~<#蜺;Z*[‚©¶U‚SüzÏhYIéqJß±þÑò=€ú:ª{/œÞ¦ˆBÓçajÆÊ»aêûU„)µyð›‰öÕŸrœ>g$¨Í2þÆJHàø w 'ÓåS‚ýâ¾#'Ô¹|E¤Œ«œô}U¼,Œ0᫉ VN»G‘(:›µ¨‡î?D‹“ÖÝê³ñ«ƒŽ „lrƒ%n¨´9«ÍÚ>Ó»VôØMŠ˜ÐzÐå¤9„â‚.m„«†ÙäX39ì#u¿ Ê/JU8ŇïÄé­ÀäÞ[ÛÄÇì÷«qÄíq ¦ºš¿8s“î7`ß Ûì×áhý‡ñß¶éú+l­û5Lú..wf¹ÝÖ³ë^-?ÑÃÝEËþUÄß×÷²k›+j<ù‹€†­ÆWâjyµ|04´¥ë6ÜWüi®ñ*Éý)•Ýoþ+Êî7¨l¸ ŠAÍìºÛÝ®nß\åø{ÑbY½;n›þv½yò¢¹ééù¸Á.ÿýaz;µ~ýðûñÏÉÀùÛªÃ%U(<¾€ðö[(>ʺŒãè+ÖõÝ·Ï~ˆª¹Ôœ‡g?l®ûOü¯=»>ìûö°·’hÞEë@,À‹Ñ>á’F<¶ÍÍ ÞÌð.meQZätÙÙï#X _@„ò%ýüàº-ðØ ãÉÅY¢ànÎ÷›ùѲ/Öò’àŽéðh*Q(‘pËç ð¨y½YGcMö/ðó¦u“-=ìúfG\püÞ^±'ýºW|ضC›# Ë9›Xß(d% +”ƒ S©˜JyÆJÛÃó+v<I€â¯áHÍ-M¦h &.K)c妵@õÄqŽrdŒš»ëŒ¶¨4¸'ÇNéÆyœz\|NWœ÷ù°‰™ŸŽH>6£s&ûÏŒ¤ó7tsÏŸ+S¥ëIH\U„î}Á€Vm²ƒí…–ÜdòÉâOŽ­·¹.Á~¨–2<ÕËVÂTc7ø»‹ÿR„àŠendstream endobj 369 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4611 >> stream xœ­X XTÕÚÞÃÈì-¢(›‘!;{8–æ•ÌŽ™VV’b^’DÅ+ŠÈMf¸ƒ ·af¾¹À0Üå>0°Å4µ¼pÒ~‹2õ·(µ‹vµ\›ç?ÿAëœcõüÏó³y˜g6k¯o­ï}¿÷{×Q#œ(‘H4nùŠUÊèà˜y3W…†'*‚ã7' D£NÂ_Ä€¿ŒÈvW1¸Žèyt|ž;ê‡v¹¡×ÆRb‘(0\é«T¥ÆE†G$xÏž5ëé™3ÉßyÞÛR½úx/ ‰R&ÇGEzÇl÷^ê³ÂÇû5e2¹é=Eã½-4"Xæ­ ó^ºÎ{MÀ¢UÞ~«V®ñ˜êóï˺ÿ¢¨/Ç(Uq‹ã–$&%§l[ž²b{hXxDdÀê(Eô¬§fÏ™;ÿ¹»S¦Î˜)õ¡¨‰ÔJÊŸz  ž VSk¨©ÔZ*ZG-¤ÖS¾ÔLjõ åC-¢S~ÔêUj)õ7jµœZA½F£Ü)–Oɨ Ô£Ôej$åB¦ÆPJÊšIòG ²En¢x'‘“Âé q™øÖÈ/œ7K¤’V:ž¾Ãø1ý#_ù‰K’Kÿ¨@×®ïŽö}gÌö1ÿãæ;–[8öÚ8ww•ûÖ™ÝÍx¬õ(òhõ8éqíóO±O6òÂÆdÑ@Âx~'½ÔÖ,;N eš2mQ¤.// G Þ”eîHˆX gô~S´rÖÊxz•a'Õ`5 º‘T†J%=xº9Ë WtÄr úétƒe¨DŠÕä‚®8.O‚ßäÓmîhD ëódÕ›ãyš]½â@Ï3h5 × Y¹7ÁZ¶|`ëât%£¿-a›ñ$µ³‚¾`ÍÝ Ç5ôf5¼Jât« ‡á0”éëž~U ]r´”f­?xìÜ;eVr8í¡cÇüÓIô¥¶ Ól¢æ~´¯_,¤ H)ò|ìvÃìdoìÇÝ™‚Üûý÷È›c•B¼·E¹ysr0¬‡`[±úãd›ípÊv°åè[ûàŒª‰¬6¬ƒ`†l¯åÑ ºa¯åwÚÝïö¡º~Ovа)¤È}êwØeÍúÄm¡Ü9𽋧8öw±0o«|0â÷7nŒmÛñ.0hrº…<åsÆc‰ßÓóƒB÷Æs5`„j©hÖåí¶5>>ý¦äc„É$ù§;jxE‡ûÝ‹w?÷dý…‘ÂXiktKÐÊàà œþŽ„½'>$ÏÇe†£€X‚2½P[Ò.GÓèƒ%è $áô´NŸ– ñŒªvg}m}E G’[ÝçàY7ºxwä}n ÊŽ³{²?ÐÂF©%:¾­¨—\2ªÃäƒÕt˜N½€KPH™Î’Œ€›°WËðQô¬üRKG³17$·K¢ž‘ÛQ•RòŒ:j÷*´-Ýr— ™` ¨ÄÁUTF©mHbCu¢¶£(ã¨X )JnJ¬Üny¹<¶`aœbZë;n"Êòlœ‘3dB^0å`©–ߢwƒ5S£ƒÌ N§ËÎÎÓ(ê…‘:ïX¸.ª<¶>Qަ؟{4ûhÖnmÝÎâ[ „2OO†ôI±ŸödrÚb}a&0é“*ÇôNÈ.-4ª«8saIYAAǶ.­ çÖùþy9Y°¹ÝAD–GË“ÝîSÚO÷IÔ×èk4VzJ¹†~Y¾>¯âP šÄãIh¹’ÖÏx|𖉣Ù>ÃÍ<âjÂqŽu:¿·÷¢üA™ŸåQ/"éGçnˆTãùzŽ`'ÔÑíÆ’K\=/ ÒÀfr@‰QÔÓ÷ðÀéøJÿã1ƒu¿Áì$Á¬ NÂ!‚Ùp TŽÎáò‡!…¡îœ;DC* ¾§~Ù–#r„h<ýWþ-¢g¯_æû¬¦³‡CŸ ÿçhgËñ4–BpWDsòÁÜp ŽÔ7Ÿf ÏJõ8%Uœ$<É‹„*áq)OGk7€¥‘HY³n÷.ˆ…,½._ý.a jÔê ÁâÕ¸ª9žÞªKÐoˆp²_º›ˆ]EšŒ‘¬0­Hk+-»Ñ£èª¬öèÞÒ½‡šÜôŽ:z/jˆV; Ò!Ä1I§¾\É¥ËÓæ>‰M²É¨IS&0y5òÆFt³vQ^ åß 5ú’t«º,´štÙ<œ8•åUÒ6{5½qo™X¤ÝA†Gš¼4Q]i$’âŸe™¦¬ ¨s‰¹ø´Gö#ÞcÎ2«+À«LÅæb"ËêÎ4×î« -y/ ·¡Ù6÷s_¢çúÞ'ì ò®KO*WÓjX‡+9äKyk :¶gcÅz`æ. ^¦¨ÝÙØT]ÓØTò¦ÆÃÖf`Žž }Z¾ƒ^£{I³$Ê7"1BV=ï¶êüµý'ìå»0¸ 9¼s‚í\Å9^xLÊÚ¦½½eÓ–¶·Þ=õ_hf!7„!áï¾… h#ähH´cO4_–k%I ?ß.*âÛÚΈ0ÆhU$¡:”í ]YÉvZ¶Z“·ìyÙ ßæZuF0”–”Ö;ƇêbõAdØîÿu]þ?b©l¹~å*]¤6“¦× ­ÐªouˆoœI»Š fåU |c‹­åòdYu"è ÔYñŽ>Ùal0t’yß7†hnC_ÙÚm(¬Ct÷"²‘.sOúÇMù»úmŠPÅsè<=¤ü÷?ø¥n?ÃoyKÙ^äÝ …MykcC£¶)ÖB„6Ä·§×‚Á!ó[hBOCIe[בÊýР⃷ý!Ên¶Éã€èžˆ…¯I7VJÔ“Ó±;öæo’M:K›\ !Í¥7¹V^¡!¤ÒW<¼Ò…æáúÂÁ¶S¼ æÝk>ÍùÔ“mvßã|”V¿VZ—Â!ÔùYù9“q¶ @yDa¼Û ÖAa±V «$Û‡ ZWªB³iYœâÚ¿¥à;Ë´F†ý¾È`/j{¤1¥2!.5MÔvìïoŸhàЫÂs%U{^DHÏœ%BŠöÝl¶‹ÚúÑ–/Å‹h”´T Z5èvæq ‹b׳lÞ14ͺÒ}º¬G×.OÊON‡&¶&¹±±v7vÑþ§±Çto<KïL%ÖEÞŠF[¹1¿,Nå$þ"/¼zUüËø‡(*~^’¹›Š{e8A8S£7ªÀ ?ÿ ÝihlœDÚê c¹áiïúÃ&Áá&¹ÐJ Hÿª Ü] ^%P`5[‘iÀUfÐ;ž ©§MçI™BœæZ\‡‚¯³AʶµÎ9=ÉCqÿ+=Yï¡ý¾Ê wh6Ðÿ7´Ã‘´¦0èø ¤Å¹yOÅR<î»ÉhÔ‡:k«äËhv …>:º!¾¥¥¡8XáB¢]É£Uv”j;šgw?Õûs/šÝëÉzRB1Z!…SIoÆ·l=T²´âéZÙs5±½ð&s¾§÷$=6}r9gJ1hJïYÊZ9ZC×@Qf®^Ÿ™Ëe¤—íÜYøÖL`Ø(59wÖ¤º7h䇶TiÐ(åÕ«nO${Cýý6¼4k&4/G®'åžqÏW&ËÙl5^C'CN©Å`(µpeUY{Ž]y9ë±–c®~wW>äJH–0­ËÄ®ÖI“‰óþ-IƉÎvI9šWÓŒ¦‘ÒLØ]•oÈ"Ü&z »&rÛ’}&äDzJ'}ÄÛm§'BE›Cí Ñ`­1›  È51åxs¿q;J0vè˜Ä“-Ô`v@¼!ü0ÃnÂÑšo>ízã‚É‹§#ˆS ìd’‘Æ­/Í%6(%-#;ÿ’ ±4Ë?”:HlBb­ó0i¾§{{ncÏÊÄ¢LH÷ÊÒf*C(“£7k½î†è·ƒ½ÎdIí¨|üðÃÂ?hö½ßågtÃnýëÄëR©á3lœmøîøõdóú•ø›Jø ì;ÚÖ­!)¤tó_ج\›ùNȾ¹ðlLÚÌè¿‘°öÿÓ¹ÖŒ¨ß:}¢jû¢ß+_ÿéÐ!íJ´ ¸ÛDúQ9q'Ñè)œ×öG|¸å«^‡•ðbü–éQ‹5óáEXjœÖù|÷3§uÁß¡ÏÞñEËùÂá 3§TJÃÜ,ÿ$,y9+ŽX5ßòäœõôÇx.—ž¨¹Þ[Õûá\rµOÉjx–G'diç{“E(ù’Xxe<9ñùhɉO8IÛôÆ8nŲ'‰'&^¢Î@O#3HNÚL.ÊÁÍëp\7Ìžì úáμèèõ…X؆»£ËÈñÏHËË^Lä“Á‹%ß~…žEχ¼=ã 9íÓ/Ìšµ¾Sc­k©Ü×’T§ÐhAŸÏ5\ìmí懽3OZðìÆ@9^†7¨‰‘€/• 'ÏŽDßL¿†mÈóZk²û~'ÿÿÓ O–S“ø›¤hôœo±hã†4¢ýh=Ý’ÍkxÇÑïýëeÖ<³†Ø#M¶|SÊæœ`Ø AE›«³ ´Ä?2™µSŽ»iVD¥‚š¸æ7ŽÉ\hmé8Üp ˜»€}°B$W§l'NvI{|ÃöP`ÑYjšËöñ‰Uª$efȬžDbŽõ~ þñ4V>´r}’píJ+IüRb“òdRl”`wЖi«¥d%ò`®/:YVj)¼ ådÍa’éØÇ~™x.¬òRCPW7¼YÆ¡=Q‡˜ãï#o ³–^{_¢…¢%úQb´Ný@icâˆÒÚš9üшæx¹ó«úÞ{¿”„Ö ?Ú~çyÓàH© .¿®HŒVU«öÖš 9ˆ×?·Ü7'›˜|FS˜k±~x ¹r¿yës÷¶{sÁí«·MýžìÅÿÿ—?ì üªà.mJªU©“TªºÄ¦¦Úº&-ÿ÷†Þà”¤_Ò’Eߟ£¯p¶ ´¦< –"—íh _@O¶ ôWôˆÙl4Acјs3ŸòÅ¢5ÜÆéñ¾V,9]ÞÁn_.$­ÇR`¶Èÿer”If?ŠÌRøïLäˆÄþÈÍçƒL`²t9ZQkÉ•¿ˆœð£€÷~,oÄ“ð6Ÿð”ÑsŠKo¼D=Üá[ ?reþ)Â%‚RˆQú^lûöˆ•ʇ­¢’œƒç½èËåk@C˜í@£äê%äâØöÚR ­8+*AMb´Ÿ4Õ³¸i=„²ØD ‹I³µHmƒÅqôJ Ó©GúŸÌI¬|w£˜’Â: ïrcç2bõê-®#ÁuTƒÁH.s¡Á`yÛÕÕn²YL¥fa‹ëhŠú_NÚÍendstream endobj 370 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2447 >> stream xœ…U TSW}1ðòDTJŒÅÒ¾këøÃ:Òâjü‹ ë+ Ä`$!@BD "œð‘„?‚-~ŠºŠÚÌTÐò–…ÖÔÚqƱ­uj­ýM{Ÿë¶kÍ  Ð±ÓÉËzkÝ·Î=ûܽ÷9WDyŒ£D"‘Ï+ááµfqÀú„D}rlšûÛLÁ_$<>NxBüÎjî…y‚·¼=œ{ù"ë#H1­ñ¡Ä"ÑkŠ]Ë4)™iÊÄ$|á‚ä½X—)/‹Wi Z•R«Þ!›>_¾Vc •òYµ<.!)6Y!×(ä¯&l’GmX±~ƒ|Õúˆ¨È ³çÿWU#KŠ¢¦©5)iZÞ—¿#A‘˜¤LÞõlPðüg(*‚ФÖQ¨W©(j#µ‰ ¥–Q[¨åÔ j%µŠZM½L…QáÔZJFùSÓ©É”õá€ò ÌÔ9Ñ‹¢Öq+dzâã‹<<Ã<[i–ÞMß’œ`æ1ÅÌàøÌñ·¼¦{5z9½~E“„&à‘“à}¿r¡H×£ÒSBu‡¬3Lìvd ïn9µ8z[ÖÎV:`/ªc—ÒÙPílw;·®Ðó´ÕîÜvBKÛ¿¹r¤§Çªd±V%ÉV“8»;nÎPG÷òè/ú‹ ջĂ%ËOÀ]ì‰=faìs{ò@·ï 6¤BöçˆÐÐЈË7¿è¿80ø~øB–$Ài<šÇ£Þ‘ò-¤|?ÁìN4á¹ï°Gtl–:‰•ÞyË\¦þMá¿4üÏ£iÇ®c™'Aâ;·‘/2uaØêÐå;®c%Ò)½½=zW=ËŽ!Í!¸ £ÀÈêwŸZ´þmÔVÖ!‘tæU*YìA›†¡j¸¿aç’Ѫ£­íXC€±M ¥òï.Ý@[¢°çWÓÜXk¦éq¼Ž÷ýˆGx÷·#_ô$;´¶ø7ÓÊl±å/WAÓÚaÿòË¥ÞÂkÚ`?0Ry4×s¼DzÍm*ÝÞÝùûØ„ú- ^fZ Ùx\{0;œnßûƒ±µàS3lf’ÕIsׯ7öØü†‚* 0 и¤tجöý왤óÐ@ j¹ulDÇ^M6ø¢¹.p]!lÜ¢Lv$rŒ†BU[¸5^¯&œ-Ê@’ŒãÀkt=4+Xéå!œ%‹$ÆØ©r+s›è%}xc ÏÅáD¸)'RºN”ä1Vý„bû7öTÐÒž^Ú­| Ú,j’<QJ\JýäÈñ²Cݬ4xWiÔù_yàÏštA‹j„±P&Ìu¸‘ðDú•ÏÐÛðÛžEtA›ñ¯y‡LïÔ(  LÆu9 stASDoFo{ž#óDÚ”Bv·€;oT$4"§uCÉÚ¾æk–‹•±Ð%šÚðr}mD‰ùÔAT=nøÙ[ “»OÂ<þïûŽ é ÑBM§»6£)*2X”(¹qË·Í„`uSfK£üÖ^R•À|zzçZ/)Ä~Ñ0›‘æ,¿sð s’Ã+[œÐé?„‚ƒ%¤ÇigVâëPà×y¼ç»ÃÈÇ2¢x?Æñ¢¡®?ÔshÕÃdÿ´t]Ä ìôØØÃ¾ŽÖñ¢n‚±Ï-²XLÓY$«¹<ÛVÀ•’V‚-xŽŸæ¹å^á<¿Ýp.uP×—oÓöÛàM(/®.«¨CHÊtï63æVî#»Û Åè ü£Ÿ¥°Ô ä§[bRëãÕ9i…õ~…GÒd£ÉÌH‰wÄœt^¼ÑΡÙºZ°CYñ´ýÅÖ hb̲](ù_bAD²FS¥Þœ ú\6ß”»˜çW|vÖñ3šRk-‚R®¡ÐRdÉ-Q¶í©¦­¡¡íã§!‡¬ÅþxÒ7³Ðd4Ãq×ö@ñ^7ݾ‡‡‡œiÔø‚åwŒ?Ö×Ç7o$=.ž;?ÂIóñä›suª»ö­·ˆÖÉõ6;âsü,zA&íŒz=(xeäŸ}Á_ºÜw浨á~C²~4‘½{¸"vŒ+Ûì>–výÈuðÂaÃm¢šà(b¾Æ2G3ð+ f—ÓÒsy`†¼#@ŽÛUÕP ¥p°¬²ÍäÈuó•ëòç¹ö¬V®é ­Øj)Om̳’ñ^_×Âá0,’EÅÄlÚÓítvwŸ=ÛÅþ„YüŠ˜™³COtwuœ8[ÊöÑ7‘qäõÞï½HBÛï_×hÍït þîëÿ{[‰åúÞ%}¿”°wAˆ!ÀDöÉûÃ?=æróÄN|Ÿ zb=9“ФN#‹§Þ÷7~~xr¶ºsOýE§ŽYFÛÚÆIîä³}ˆvÿ•ö ¤2”öHšy,ܳ6DZ…¥§£ÈÛ™§Ne¤×Ú é¿s8iá°S’¤1àÍ¡üî$Z.‘ö\?qúxCuv8‹³$¹ê‘~ø› ?®ó^xÜ Bû€> stream xœVyXן2ƒt&Z@D¤.(àR! n(n@Ø %@T\ZD}U/Z‹ <° (ˆP "‚µÕŠq·­Úú|uiQ[QÏЛ¾ïÝ»|ïÏ÷G¾Ü9s欿ó;—¦ÌL(š¦­ãSÖÄgªc£Çù¦¥ÄDn¢#-7G˜fáÔß¼û³%"oI!KSdiV5Ü2ÙZC±d¡ÌhÚ+`Q¾ë’EácÆŽuŸ“–ž½Z˜”©˜8~‚§"&[ñöÂ/>C˜ªp!‡5ñ)iéšøÔÌPµ&&+C±8:5Caðý·ç¿ ý¦)ŠrJMK_­ÌÈÌZ³6:&6.~~b’:E>~ÂÄIž“§(¼¼}ÆyDQÔ|jµZL¦Â¨%ÔR*œZFùRs(?ÊŸRRã©@j.D…P¡”7eMÙPrj(ÅQ¶”ESöÔ0ʪ¢¬¨Y”3©&eFP{¨´;½”¾mbcf’m¢5fZlÚk¶À¬Ab/)‘ă¸ŒŠ-%¨Š…sR0™u»`—™!Ø:—G&ÿ|Åg:ÄvTe'fçnܘ+¬ÛŒ2gñf{EvxrcÝ®=¿Øqøìi’JÛ½¹h Ï 756ÂoUêá¦ãåe_òíû´ùŸî*Ù;ÌX(óqeâxXÏ2›  uÕ…~ Gp øB*?µ´®mu#pÏÀ ¼ndÝL<+$œ›[7 U«ÕKX(”‚>ÍéNùv]©$Píî{ÞÞsUÈÔ8Ruü”Â#n3Ø{~‹‡üLñ‰çaå“wÀìÝ®HÀÌzÿ´ôňõ‹î|}vÛZ¡ähMIúU¥—ø±ÿpõoÇØ‚¢_Cú[È$uD ¸1xöò-ŸÝ.Èó–j»’»{ÐÉCõ¬<[ˆƒÓ%È?CÌ¥îù/íº«¼!ê70ê X½¡Åƒ°†Ë+D{P>êØrúÃÆÄgž0Ml¿ëŽÍð\<ûéHƒŸõ¼©0ϬWÅ­^†bÑûÖý°ì‡vœaw=áöݯoº„.£FUþ4– &†Š{`(Ýn¢ ™AÑ¡?›sF^êÀ ÿgD`ZëtEÙp/¹õ¡{Ÿwötv{^"`^é‚uÓjG"6åÀê›Ñx"v›:[bÙôàß¾™‡pê¯H¡©¨™Ô* †Ùɇ‹N„1¼¥òÞÎ8Uõ"Ç•hiFBÜ’Åi3;‹§>Ä p_Õ—^8ÅûJƒ""ç.O)oÎ᱓]œªÕ´$]X›P×ø§·ÀZ ÖFRðNLq]§|GYèªê~ök˵NáOZ&½¢»‰ÿ¥Ýo¡EXùRë‰ÎšŠœ¬¾({÷F¤fñ}#7£îìö„š”ÊÈâH¤DËÓãæ³P&•AqÞ.êê6B¬‘Q ÔÇôkÌHë­ÉɨÕï_öV…8#¤«1¼ømðŸ;â"X ®f üìäõÿ¶+º»Ž]l«NWñXo”t54ýõ,ÚH__”rUÆâhþƒ3Kª!×»6b1Û-•ýæ7@ª-Dök$x’;NÀ0òˆDß‚%b‹A1¿k$dºaØ2}×9XŠdd ØŽ3äPÙŸÄÍDAï«Ä„­›€0°Mɤº%Çt ÷ÑÔYsâBÓe C`»á¡ú‹è¥Ö›€TbÖ€ª×Hø§fï{h š¶uFNê†hMf,J@i¥ë6Ýrý„¾Ïÿ® º¸¥æPbÌGC®Áq®¸‰Óo"cµÜCšåå«Â2Äz¹¬Ål`ècà†ÉÞÖî`JËöÝ«Ρ^F¸?Ä®xôdOìÆ¯Ç é·Ú“—/5ªü¦g¤ÈšñØÒ'!d¶gÅ5Ì_™ÛÀkP`sC[t «\Úomûðh gçEE…ÎMl¼ñ1‡3yxÔã‰àBÐ8¶÷ßÀßOì˜vLÿp¥ùHë°˜t pšù^ ÿ¡úãL´€ì[&¯qwiþgE5µ¥Íˆ=_«^0'&É[øˆ1&#€¥á벪äf‹Ø‡Á…z¥[€O -™pSŠ“åp!pþmÇà˜¾"¸¾ÝÔ¿œÓ[1óô‚l˜âúÚÒÄ^kY6Ù[µÌ/T]óåvYìÂCžzO‚wïë#,â2á9¶[•ôQJŒP®8ù¶&P¦àDQ <¤À0Sñ±•Ûz2·"»2áLÐÑ÷Ð$4'Nå­\?aaYñ̆EÍsoÆ}Olüù¼ ýžbÙ¸õQB^ñ®®Ý÷W +=[Wy µ¢CÙŸE²®8Œë:¾|ú¬ˆ°à¨³·ïœè¸,È 7+Ã&üÚÚaCV“!{ͨ"¦`.-d…Ójux,qÂAæ 2JÓ!Š}õ¦Ÿ ”4³œô’%›#“ÒÓ^qœhË**È/Ø_]u dÁtì]l‡íÇNÅfGT—Õ¼ü¥O¤z©—vxécÀõåpø^}Χ•—÷bÈâ.µÄ‡-‰Š §j<ßÑÒØ)È_îÀuœ®%bv@Td@€ªõêõ–“=†”A‚±J bò5‚·Ó§ =BºÆã×µåo³¢¾ ß%wDÞöošB†g”›3A¯ËƒÑ`ÓP·¿¤\(Ú·w_E%¹ÊÄM_ž\u|;ÿ£¸ë9î5C{úÞ½cg ¤w—b-6à NŸ‡‰yFRú²á• .vÃ.—,¼PG‹·°%§ïUнŒ,³BÔîƒÀÂ÷‹b XZ‚Ph9˜¢þ æÂendstream endobj 372 0 obj << /Filter /FlateDecode /Length 3259 >> stream xœ­ZKo䯾+g##ì%g‡f¿»qÛ¶“ØJrXWCI\‡2Iy×9ø·§ªd7§Gr Cq8ÝÕÕõüªj¾ßT%ÙTøçÿßtÕæîâû bßnü¿›nóÙÕÅÇßp oJS²¹º½p[ÈF“ª4Ll®º‹Bn¯ÞÂZ­ãµF•\Üqµ¿x]\n«²\ScŠcô¼·ÏL‘ÊÍv‡ «„.ºöÆ}ÔDK]ìšøÓƒÝ% ׺h3$Ü7–c¬¬-º~»£À³2w¨£{hÑWw~7)ú[÷h8)ê!ÙRð+Z#‹„ãþ1"uÜR]V̰bÂåˆÒbj»ÆÁY1:²’JIU1´ÉÇqûï«¿œèc„¼c¢ÔR:QßFâí‡íŽ3Üñbº¾hð=úÒ³a? Z¼qb’$UG*˜—°^ ÊŠw÷Ñ pÜL/îýÁÌ]*°˜Òˆ«àþ• ì¹÷õä9"éû™m |– ARÜÍ÷ÍñæÇëp¹5c3\vãõözûÒ^Áó­´.¦ßŽÍ”aýð4µýñ rV"’e$R‹¨¦@~" Ù¬ Í/ ûrÑÍ»¦½»ŸÆð"‘ß¿{Ó?÷}¿Ï\Úo"Å'a“!YI60z[w-†³ C/¾nî>käÌe4ð@©ø¶®V)‹IˆqÒ¬R\gC¤"ö›C6pê8<¡Nò ]£dú~H²ßLIyèáŽH‘À>%ipï‡G…L•2¥ÔÞó‹C碃HQ¸³‘>Œ¿õKøn£*»B”L+m6;RJ Ø…S.Ò@Vªb›xáKO1áL•„*þÎ>È «9$!}¿Ÿ) ””bŽžOq ˜_ô»3ˆja`˜ÍPÕƒËHwÓ,”h¯ý0ÊÀIߣEùHbþà«„–ìè’O>oIŸ³×ùƒU2¬ã6w9S*«G;gæÀ…`hΘçXetšcsGí8ÁäHÁ„8”Ç#1´ç$ Æ¡©gË[Ï ”Dãø%sT`W6+Ó>d0’“!›cu©L"!s‰’ž a¼Ãi­ROŸMÂÊ$4(ÍH#TSéJ×?n5G¢²@žuñÅV# q`œ)ë,¹*ÉB±IÖ¾D­40ºõ˜iß9,ËÄÌ/O\ž"q»,--{ÈâØß™1`ú,ä„]²ˆÎ³éž gïÎYç _×Vºæ4h‚Ä¡š9ž£•MלqÛÝBx„åþÓ±Ü%+ÿˆÆ³÷údÊå×Cê»ĪU”ëÈ€áMžI þ äô|rŽÞ¬ÌiÃÙ• v…xJ{ŠIàM¾zÞ®¨¬©ä¯eWL‰´'¤ ‚¨Ÿ4«1P,|M“ƒS¡ñ¹Bõñ¢>Œ½ÿ¤Ùi uX¥HÑÕÓо÷ë s)¾3˜ôVý¨®…8óÔ 0 *ðL½ÅyIC h‘ZÚ%*)':ÊÈU•šöLÒÇkˆÁ;¶G “äÊ,¢”àŸqÎÉ‹\C)§T~@8¸h,xø ÈQOz¸>¨hY?¶]l‘‡™*MÑû¨Ä±_BĪ _Ovk[š- %Ňqº§ûÜ¢ÿUØï‡}j1KÐó„øu¼(Î}uÆó ãX¿ j æ¢6g±-dèIz¤ ìK®íΠØHbÚxwgM/¡ƒƒûN.žKƒ#HÑèFìì'iœŒ‹™1È:8íØ@kÀËáãÙ{WûR 6³YJ@˜JŒx{ßµ8°±ë gÌ-iÆŸlI;¦ UµXU[¾„q, PR1tÝ:.@¢8IJŽ×ØrÆÓÁ0}­DùÊ¸ÒÆ½—§<5¢atHÛÔÝÆ@§î’µSº3"(Äh@ÄæLùNX5ÛAZx.óúpð ó*íúÇSß%‹§ŸŸ#±µóU•]ÖÚ|hPî‹¿õÍûã‹ÜM‰Æù~’Ñ›}“ó«<5Qõ| _p×&é ÜÍGz©èùB•Lc/ZøºÀ¾­W CmY å´*aIR2Õ8ç36ÆÕϪø±CF\¦Õy/Z™]—¸åzÞÂee3ÖSÃEXb Ü É õ!,–Påà¸e‘«g­0\$#I´)KÀÀ,žs}Ç\³Ÿ«ç3½!e&ø·«eοí‘P¡ŸñïTÐ~g¹Œ1™ù¾ºÍ-ØiéÓ¶ÅÅŽž@æt¤,\i³OœµÆq±F‘žö½RµžœŸ$ÿôvîæ§q–^ÅÀ_ëÄãa »qçöCáñ³mž°Ñ8uÏZæªê¹¯ ‹Ü=n_­{Ç– `ïÃY§¢š÷f«vÌsÙ]X–¦¡Ø·#ü—·Iá;-éFø™++£>³ï¥Nmg»]nòJOa·}o~æo3òãN#ÆËÎŒ9¿h§eÈéÆ]Ë“ZY]¯ã_ß¼ ³1ÏÆV-—Ë7a¤››¨ÎXϼà.„“³#//»­Ni0Ý{ùƒ[I"j"æô”T~ÀÎmäoÇ0Ë]=FÇv]=´ÿÍ@Ö0èòHƒþZÄëÊ>€UïΨ ¦ ÇeÔ6>âùË$wÖßËeôÛîßÓË÷YÉ_}óËYI€º‡C;=î›oïÛ[;ïgW"¬ß_þsù¸Z¸¨PGwáUI¡œ…«ŸÞyµýýzŠûŒÑ_ÛÆ¾Ùž‹e©onoÛ›¶9â/5]~Gûû¬ÙY ÔnØÁúvÚ—aìËŠËa@aEÀ8Íû‡kˆ¨%Áa±b¢*ªRrÁ+ (j ^€Ê©Ê¹íîc“솠®I²ê¿j8Û-ÍqïöH j%Ø?¥"ÞC ëÓ=S¼†YŸ#—=°üÓë‚.øhÑÛC»ØmôzúXP<hÚ©9`eÉ)‹!†š2þÒC sà|’q&Ý™HŸ#Qϲÿ¡öjà/! üÅ2Ó€w×v„[/Ú}ÓÍ¿¤»‡‚êX§åMÓÞ5ÇêÃcóʱVVhªå®_öw»Cû]shñǯ–“wF‘2kŸþùóWhÎ2‰*÷ŒÏV«Œœ/Q™û|ýؽiæ_h8ܤûxlÑI MG#ËÍSÜé‚×<ô­õºY¤b–âåÕÅßáï; wOendstream endobj 373 0 obj << /Filter /FlateDecode /Length 5303 >> stream xœÍ\KGr>ìmløfø`Ch 6¶ÚË.W¾3k ö®í•¸ÖaFX´8ÍaQÝÓ£î&‡üã{Þ/òQ•Y•=äH2`,ödEeFFÆã‹ˆ¬ýaѵlÑÑÿâ¿/vÝâæâ‡ æGñŸ»Å>¿ø÷¯¬ÅHë:ÇÏ_^„WØ‚YÝvza”iP‹ç»‹Ëæëe×vJÖ¹f³\Ñt¶ù.{°>žúõír%Ç›¶ùCAù~Éuë¬Qå‡'ô‚h»Î6ÏŠ'ûÛlîWù:‡ë´ˆn~ßQNZÛl¯—ã~f‰™Eó‡þÅ’Ó~´,§*VÜ&VDóÛ¿ädÛ@¦¹ÖÜ|ûü÷ä¹ì„P­“ßóë‹Æ,Ÿ¿¾XIÉ+ [­iô²yf”–»QˆFj',ƒ‹Öh …ûëwüé»;šwº²TàËÆ¥/!››7Ù2»¸ŽX«¹]r êN7§åJ*í…¾~;ášÓ«3ç\cÑB´ŠGov»õáýyƒ»BâÅ‚ûåŠøc\5×ÄDÊ]s(^øáÍ9M<žŽiSl¶ eî”ÁOðÕá¦9ÒËÎJÓœú%Ã[ÂØ­OùQ7qJguór™©æa$¢Š2Ã[¦Ò¡ý}Mº… ºÉ“@RÎb[!9s‘ä“ú,êƒ38Iþ&’Ø ÀtžÒ`0Å…h²Îzº«&ÊŒP´òJüþCe*Ùj+\ÚôղƯ…20´ÊÖƒ®æ~=þŽ¢Õù + ‹\.VL´J:¦ÈͨxÍ禓´›Úqÿ32û·• ë–X§Õ~Äž"aÁøPÊb(#<·}©ãÉú|ßÇSa¢krmìHí-SX²L™ºpáþ߀Ç+måxƒÂëÒðÒT^&Ø¿%ר1­‰Š¦êŒ$&ɥͩtØ·™‹]“Ë$¿»¿Y½]’Å:&1ú&£)yj—+Ýa lýË¥…Ç~öq “Sá:Rð]LûdYu¢Žãl’ònÞÝ]5›ÛëöT?%Í’U]Ny—ñp(ýCAD¦TWDü¬„ƒý`• ´6êýô,¹ƒ'E`:–špŒ0Э·ýɇ0k\ó~µ¾Îž½ÎøË½ÿD·®i)X 0љřKu Ã 28DwÒ †÷iŒ5÷¹kaÎau˜}ê}ÃÅ,àÝ0©”ÍDŒU·Ð‘~^§‰K)vÓWÞŸ/2Õ+Ï•v4/ÅHFC¡£sv’Ö¥#[˜—ìÒÑlyâ ¼¹÷òíÄÄ> û#Öv A|\xü䳋f½»ƒú¼¹Þ|ýªyZþrî¡xk,·AÌŠà‘ëhN‡ÂR/ó¸~Ø‘P)¯œ+Íåøx‡Ãèàâ‹cÛY»n"ìOJ}¨Ø«T;‹Œ·Yl;Ô»UªE÷pP›#fR˜þ»ÚäðQŒçBÁ˱‚Õ‚á’ k(ö»*%6£ô‚U¬)1^ðf€ÜÑÁ›©èË w¡µ™™_CTôÞÚ—= Eœ‰h×jòâ‹òú¢&/œ~M#ÌN‘•rÅÉ0ñŽæ0¼"8nân$kŽ…ŸËõùTÕC–ÌEäî—Uî3‡ „Óô ÈŽXâe¬I\˜‰Š*ñ^·ûsN³8㛸 óZâÍ™G@ÅÎ2ü¾_¿¯G‰ù˜OìuŠ˜ÿÂÓ[ŸèágÅEMñ²k¥uå– Ëg¬^ZÄñ +bó ºc¦5L @ëŸÁ¨¦ø¢Æ3Óiø`¿ªai:3ÇÊS-'1-ƒìØ0SÌ©¬£]Á¤ŠÁ1¹]¾ÈAà4± º™“Ž2>uóþ³h‰X{á(vèèÚZï W@?¶“&ˆó«_ÃzxPø»íþtй>n7Ç/ûÓŸ¿£dá (o^§÷w›øÍçñMËšOÒÊOŸ¤!ݼØïîö·›[ª…lñÂÜéf·¦0¦Vá§ðìÃÁþpÁª[ø#%ö yéZÁ𷦺Àâ°Y|³¸½ÐxÆ…XÜã(~ÿ^ãð~sÁ…∠%%„¾ØaÀRê„„gÃÛ .¡Ú`ÄàÌœ‘J(¤d~”FuÄ=(:|Ð(œ¦~DÛƒ/¥`š.5F,áOÑn¡mJ~ò«kB™ Ñ`Ðú·´v­¡ 0OëÄI.”á<.n "1ÓH?¢éOçZëù5NÃ/”’ö†$„%•…0ž_«»‚°ÖÆMZdñH6Éü:0ÙÖb±X”jáÝA4îgqt:Ó8JÛ Ñ1 QÐX5éüˆ‚ þayÍcY<A Ï”±q-Á ::¹*éG0#B´2h¥á#é+­U µ§ÉZI#'æg†´hFD%ÎE:EÐ(¼¥< ÏV €¹—e¢^9]×rR L#Âa¯8¶åaDÎÁˆ¦ú›5©€„vžA_Èé-l+°¬¾ã|%‹{!_¯Ògµ4¢qö¤TóŠ#((r¢¸Ã[:ô0â7ƒñZ ¨è`;¤’¤íY&y‹0 ü,Þ—…w óR"ó¢J’üˆÁÄ ‹¼:H˜³ð/98@RŸP{^œa¤à!À‘¯½y3SÀìuœ6ç¢I‘[@m²n¨!·Lͬ®MØÁ5ìFNâ­2§GÈ ˆ@• q¤F2ªd#Õ02R *7ò5ŒdTé”Gªa$£šì(ßãHõP bx –Äá»òHÅq2‚„ÀÉ%Ùª:*ÀJµnýî •€ãâoøg~ÃÙFf4ª½öà³ÉíÂ3íÆÒŽ¿FEk‘BR¬3šðwA¢™÷q#M(ˆ Œ–4Å’Ï…‚(ne$ÊööØÃ€XãíîÂ÷,H@¤[`NÁ¬Áâ²AÇBÝæè]!äµE ,Ïíl¬}üÖ\t¿¡E±¨g÷K„O`f¤®›ïG½yD¼¿¤ÉÉÛÀ~‹ß×5ÑD¶ßÌuHväï %ú㣣F¼’ ¤Õ¡ó¸«cUßçT®ŸÁT$AÞ<-JÇýÐ ‹x?5]ø~–”„Z³ÓÒïRbš…Œ$ö˜?"%‰°öýØgÞ§&5¦©±¥(Ï+ʱNæ+ÒA®fÒæ,Š‚m¬¦):(¶ ÜͨãTmÖ Ë oçå´ónÏ´Ê—ôÆRô¾l ÄžEIôTÙñ Uû¶°¥®¶˜wSý¤nžAÄìï|ŸæxŒ³j¯ãoj·ŸÝDb6T»>/OÕÓÏŒ-fIHÚ¯l‚` +6±>¬w¾E̵bbZ­×ˆœlúÂÅhºŽ,“iöj3³7”<û$a« ŸÔ);±²c¨†!FÂ53VtSé~0׎oû6+\ÃÍzÞYòMKWÊžSꌙÖá9Ù^‘Eîwa íŠÞP­‚-D[šر–Œ‡gäá FRêYÍœ˜‚ÊÕo¿+–_GqÊ·;ü†ÊÊfÓßÔº V4Ô7CâY ³ìÛz1´¨wëwOÿ·vêX@¥cGrJ‡—P¥C†c?ôïRvnËb&‚±4õ4Dº¥jE5(žcn ®6UQaZǨ“¯&õ”Üï‘g`¤Ã³¦‚ë|³têÄ 5‘¨å/s0¦tIr¬€}Y¬K—X®š_¤òmQ€bä)¦wú¾^¯nª‹úéçÕ¢-%; `7fÇÖÏm”I%dy‘”…›~}C!“†»P´':@âÇÜ»`Hòá ”€^W„¼xè‘úä¾¶ª$C±Åª—ÍëåÊ÷£XÓWKÁ„÷8ce°lWžë-ˆ¡L·¦ ªÅØ¡W k»ÝŒØq_o#tl¼=ôsæ)qwÜ.$!O¥‹Â¼a©0ݹ¼ã©ï óØúc ó„»$³ŸX˜WAëÉf|a^3é½Éï^Μ‘ó¯<|CChEݸj˜ˆ.«¸['t(>–un*À+ÄYE(›bÅhÚ~ajØ:”G»õv;½P@§÷Þü]Lz ~‘ÑeHʈÉ7œâÄL•Pm|{ì0Ü]ðÔê¡ý]ãU7&´â‚÷òZUsÚ÷Ùk8€½þ}D‰¡¦ûP 6~꧉ìÂÄó»,²Œ¼IÝO¯é¤¤ÁÈêE”xø~“|L‰½ iaåß Ù‹=›½¬ãñ (á>ïÌÚb¢I dÍ.wD̳BÝ>‰kÚÊYÕ2¦! QP`Ÿ¾™Æð ÎaCI‘þE.‰ýÙ«¨^Û9E2“îÏðÔ}'ÿІ« Ìù‹q¯³©ËÛÔÖ–ÆàðÈ<ý»ªr•Æa ¥jo×ñòœO…¦~—å[‡‡/± *WªØg#vçWdW@—XpeàÑ~äÆÅàOÊ;‰s¥Uy© È…nÓÅ0j«¤‰úô› o¿Ž[ïӸ) r»?¥—ýeÇ‹ÁÉå˜ÝEÁÿ)¿—1KJ•ÂÕôS¸£žLÒ‘´y%›âö]ÅsSßÚïžf²„°öÓ.ñÈdsßÓ펰¢®˜íëåб8ÜÃÛÁ„çFSža®áñ¤4túèˆðq¦}9ˆÿ'¢ $– _ÐP…jäOìTã×@ Ù|—ÔËõÆ+ñ4sr÷ÙL\UŸ¸ÙeîøÂüæb8W¨Yý0â )íùÌê2v ?)Tî4øE;艠f)Ìx¬ÓMÒð‘Ü‹êâ+nâZæ×CùK…À+„÷ž¯°SM q\¬"©Àh‘ˆïÆšÝP‡+‚PéÕ=)]ÎØ(’šL|\ë]fß[¦’sðywù:Ìr:ò;§Í¬Æç÷¯ú¯®šûí×ovÇ+Øåqsx»¹:Òßl0ð–”t§Æñ¯ÇV±êb«˜y‹5.îÖLøò°¿Oï™±Û Ÿ|Õð'âj™5½wëCú£èyƒT<»ájhf L1þfÙd‘ëXŒåœSo¾Âùïοì᢯óîü›Û~hÌÛ‚¸<¦p¿›Xù;£šWýõ¦zú*Þó¯þôtXC‘¨ÛãætêooÒ¦Yqà¿þôìÙ“‘‰íæfs{=žlE<ÿ§29íO”­Wd6öÿB_~ñìë§¹þ¯qÀeø=ý9»zQMýüÝÚ!Âã¿°N@J–áÙ»=fI3Ó×;~ ~ÔÃYgóWó+î‡ýnDç°Ýšã“iv²>%ˆY©ÄD ¶]Êšà1!Hµ€†½¯ëÐÅ>VñΈèeîæÝ‡áI?¯ýTîœWç•üáûkú3Ex­É~Ž(+χÃ,v术΅…U)~x\^-<íËÜ×¶šã1µ¨¤ 1Ízhö(„\T=HL̘!Âû/Ï\”mï#‰ctYú´Mœ˜)'±4Í-•=sø˜LT±¸fÈjC©þƒp˜®œ¥¿~ošu~¯3ªøAIM—n‡î@hADœüã‘Òì^·ÇLÌ'>K•Ía]Ë ÃT k öùbJ53f§¦rî;”~ÔÏþ!ÊøGž0Ë$°Ç}QJ•}‘*mûÔÚ °f¸e[æM…9–k j!—q¼íQ'ãµ^RkútšEŸòþÈ¡øŠ$¼Q-:ÐLê‘ÉkÕ4i"¸òz¯¦4Ͻ¯ò„ #›[§a [=ó…FŒg^èÐpñß)c§-ï´IhßÕŒi?›)›jaÑ”Y^æOTò ÕM×r*¶—ÕM* Ñ]ÂJ,”x£¦XÇÖ¡.Aw=iJ¾u+3èXz¨LúTo%ý·:}=j'i¾"ÖoÜñÒWR$ pØ7y—£°Ìë¸KUùØoÓÇ3‚Æ'ˆž¿ kq'‹LÈ{BÏG7+jÌnr§ αq¦B—ù]ï¤ü4v‚â,Ðà+_t©™>Ýtcÿy˜Ê×Î>OÍànþÉȪ›àù„„©«GZIU7ÉŠvë¨]D£Ý§ê$4íõÜ…UšôÚ¾Œn™ã©{7GÆé:¨–CÛ”Z6T%Ëÿ#Ã&n˜+ª©PÃÌÙ‹äá-WIÃæÉÏÐ'ê\ÀÙxrÆg•Š0~núü‹œÍ<˜¤O ÓüàÇß¡c¡„Î.ÌÏyP æ´¿úUvk¯Ç믌_&E •¾LR¢¬£=øeEnjoîS×óÏ¢|Ñš—žc\·øãû04œE’qzÓp‘–MȈn±ÏýÅ™[=Çí̓ǪũߥÊ8x,¡Õ¡/4íxµ| †¡X-Ÿ©ú¿ü÷Û 9‰KÞ}Æù“oGs笖/V\´Ìt&Eøõ혘nîKzD“nÀ#ÿËà³AÒîïoËÛMóê»ý›CH+ä™›www‡Í<"ên¦cÚC-ò8TNˆÇK† <Ž1P/ï…Ä‚át™2ZˆV*þlafŠ6~5º£()S”Ö5äh"w-×Ö„œš&V¶5ÝX â’çì0º¦ž±ƒQ›³#¸KìÈÖ›IëY«Á ŸrÿK‘ó èîüÈ„Hy`*²Ôp×j—‹ÄZb÷cyôvv-ò¯¹Ûwäendstream endobj 374 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 358 >> stream xœcd`ab`ddä÷ñ ÊÏMÌ34ÐuÊÏI ©üfü!ÃôC–¹»ûçÄŸ~¬Ý<ÌÝ<,¿Ÿú&ø=˜ÿ{€ #cxj^‰s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡k꡺ ÎóIÌMJId```df`ìb`bddÉû¾†ï?³jC÷®Ÿò匛f2ÿœ(¶Ë”ýwóO¶Ö9í“ º%ó»;š[ª~Wÿy/ÑRÝÕ•Ó^ÙYÖ]ÝÍþºgCï¦î݇º7tpìbï6ìž!ß?ý»ùûï"Xµcضô=ïÞѽ©ûn÷º¾†i?¦|[0uÛ.®ïlÜr\,!ù<œÝ<Ükúúzzzû{&MZ{œ‡g×Ä­3&Në›Üß;­‡—ž‰endstream endobj 375 0 obj << /Filter /FlateDecode /Length 27027 >> stream xœí½Û_I’öÞOòƒá FAðÂEiºtòzN. –-ÙÞm@3 ÛÍé¡Ä"gIÎŽôß;#âû"2,²—ӜѴÕh4X¿8qÉKD^"#ÿîîxHw‡ü‡¿}üê¸ûþ«¿û*)ôÿ|ûx÷/¿ùêŸÿUÍò0Ž‘î¾ùõWöIº»ÒÝÙ·QÚÝ7_Ý_Ͼù÷ºVÜq>ÔÖä‹o¾ûê—÷ÿêÙñp´zå1î_/§—3ãþų¯¥0ÊÑ®ûÇ—ßZñJW¿î¿~±–~«_µQ¯ëþå$ì%QJy8Î|ÿøæÙ×yÊ|µþS£ûêåëå§ïñuºókûsÔtÿüíöÉóWòS~£ßo¿ùÝBêõ³|=e”û÷‚^'Ñ|ÿþåã °¨åþ‘í¹÷|Þ¿}¹ß=û›oþÍWÿꛯþßÙT×l¤zÕñÐû]­³Îr—ëu<ôz÷öÅÝ¿¿{ýU{8kÎåî÷³ÍþÍüÿ?ÎVþ?¿JùÈW½ëå¸r¿{ü*§~MÑòê«¿~Ë!ùL×0¬ZëCÉ+!+V¿ÚÃì !+Ö˜-S7Ž„,X·².Ò/XŸêÍ©N¾)·£®Ý9I·Må®§óᜄgŸþå}>Žôp<ûúšâž¹Z¹¡<;×,ç›ß³ý^Z*RžíÍ–ÒY®É¤Ôãá,¢# gšÝ§U«‰'°Ê¬‰î «•k2_±Ù°ÎÒúF kÌ^ÙÚŠÈŠEYk•þsëýèç!]h¶Þi¶ä[òuy¨Ç9{uçH—˜û¤?Yay…¥ª°ò¬*즬¥cŽ¿Ú?ÔIöí‹©GY?®1MÆ]ªçeSâ<¡d޲Ïèk¢ï×¢ø¨Óòöv=´|ZOûwož•Ée´û‡»—¯ý,KáÊ÷/¾}ÿâ;í@“Z;î·Þf£­8ÉÔÙqÏœRÊV³Ÿd×VùaU™It2 ¿ýþ û?ÿ•’œʵvÓ2¤Ó¤\æoI I,”B´6WÈ´b¹$%…HÕg¶¼@úùp5ƒ¨‰Jù<[!¥*äꢒBªÑ͹W1 ©ܧ1;’`Â&Ää)¹<´a%#¦Ì/GJ±Z2æÓ U½ôCFa/Ó>5c.¨ÛWÕèœC™O?øpÚW—b÷:»î•2ÄËÎî2f5 ` eÞf“ƒ¤nCz䇬¬jžö®O¿A@iÊûìHK}M©.å][w¢8§žß+ïÙ¹²áœó/¯™+ÉÐ×ÊÁGãx@ãY'hônõ!_ó›zL¡´íZºúi(M+½eS;ªxºÑ‡¬8UÓjwÞÖZk[l½=¤j†rVé+ÎUŒ¹w®9ÿ¡®8Öâ}ZveDÅ’ósÞmçp3î dw«kÔKÚÞT7œÙý•»×WŸÝ?£Û‚θ]»m•.þjñ²-£zú€îÂA;û9»¿Ø$é›jûÓ4Ýàž¤2»¿ä ±>yÎþ_¤ýú”Ǿšú(÷9µRÏÕ{2w‘ÎÉ"«€]”QÈQ8[}Š£òfçLיˊ–7ˆ¤gvÿ£-ƒ/³û—±A¦›íÎôzÎÙýóŽ3Mq§îÓEH¿Zqä·² â<-šs7 § qî€pêú$D§u¿ùê_~õ•ùõé€íŸ¾«Májé*ÂÕÎaùîöØ]í´ïžv®[O›~ÐÓ^xÚSüÁæj1pO;ç„©ožvÖ͹{Ú"Æcõ´ÓÌÙ8 O[`áÃÓ5ožö’¾vãi­O ¿åžvvôóåiÝiþ8OKŸùc=­CÜÓäãžÖ!îiâž–2‡§u=m@ÜÓâžÖ«Ð=­W³{Zîi½qÜÓŠ 웫³ƒãÆÕ²cÐÕ–AÏà®ÖçîkEã_;{ѵùÚÙ9ëîk«Y¬Å×bˆ¸«õÑHW['¬áj;4W›Ñ—ÝÕ¶\­Cèj9ÊÃÕB˜ÕÓZ¥‡§uÿçžFÈ-ÍT8ÚD/JGKkŽ–qu´Ö*?ÞѦ-ÜêOÚÑ:äOíh§«Isùnÿþìf?âf}L7ë€zÙ/»@F,ì B/ë„éeCxÙ´ô²¡ïERI:Ùµt²QWp²QŸãd½-ád¬w€O8Ù€|†“ ÈŸ‡“ l@èdò¥l¸ÔÏq²¡“õt'ë­þ 'ë£Ó¬÷/w²ÞÝÉú褓õžìNÖ{ûÇl¸>:Ùp p² ä£N6t²ùÙÉþ7âd—ú%W³ßÛ¹S)R¿—Ö꣫̎gá4“%Þâ.œ‘¿ï¤gþ»Èw-Ÿ{Y©Ë„œM´ ²Ë +Ë*?_dÿV´J²Å’û¦C Ôd9ê"3Ü©ë4{÷Xt–^«ÄË¡ Š(±oA»NÁµ†ˆ^+›ЬËIÌ\‰ÊÁ©š"îS>“ul•²îÉù<ea_Å7…ª1ökNÑ­+:dz†Cê:e“éœ%ßù|ea9½¯Ø6ÇÈæýœËÆC¿ D=xP°‰Gð°²V¤ †Ë »P.r2ÑÇlêa¹d2:ë°=%@F-]X¾s={` 5AÀËÊB¿dö•Ô(Ìr“ƒ®ŽPÔÊP2’À®TË]Læ9×*rhø¸Bºœš(ßÙÌç\>@R]„±¬’YçFÕIPð²ò/©§˜’ På  D Œ$°kÕ†M¾¤?[h’CfŸÏà++î:‡í ì© ü­ì©èqø‚a3DRð²ñÐ/™þ.Ls.Î×YXÕ§B#ÄV7Z˜jmNòÖj±J¾×ˆFáæ·Z›]~,­Öf—oK«E™­æTºS@£…·šËà‘v- šDKÕM5‡@²\lǃ’sS+t›Ó8;›,–Sð²ëFE#ŠN¡¥ ¥ôÚÙô€rõ¼mhsðZ”DÇÞ[èÖm´5³ AÀË®!”Œ(9X„j””‘v-Lµžu“eQ- &YÏÍV¿Ü÷ñ\·¹h·½RǸÊÒòQ¦nhN¢;WÎ¥ ¥$…](7Çf›r¡hÕv¬\tlI†rsŠ1Võ¥,ºjP.~îšñ`Ñ5£Ž½n6% YÕª™C(Xµ]?—[«¡Ùô³ºKŒ†?)xÙu#„¢‘E÷3RWŽR8¤ôêÙô€rsÑ{”M9‡@´éiVɹ¹º±uÉ¹ÈØºd”©›C()PròÝ (# ìZ˜jsªù°uH@®táürsÚ5;§IkK»že÷ QvÍÊn¿˜-jæRB’À¦›+¨´miÄ6„í[Z¾‘Î--Y´_±¥u²gðs/sKË!Ørذr¾¥å"ƒ"’®4+Åö½£ÍÂ*?ÒÒ"~êîmVûÚ?gyÈ‚&xÙÛŒV9)°EÈ#Ú B2’À®Tkºçnñ¢ºhsHÖƒ¡Y¶#Ã*·æä”( ߎé©c`:K ,ý‚&Î:(È^ÂÂB‹‚Oð» Ïw% ™DÔlmFj|òë8ãqL´Ù¹6Ø©áñ¹—½Áa}Ÿkk‘z´ù;†‰Ç¯7ñ¡Òy¬{º+Cä¬vê€Ä%aÌ5~Ÿ³ó±Ž0/û#„ãƒ8~È!FEpŒcÛv¾Q‚š‡aÁ”©šbè¬@ÙŠ9Bl¥Ÿ‹¡,l‡-$ctõ™NÁËÊB¿0H±i¼S(CçqöfeÔžEb˜N`SŠY ×:¾áèv/ÆGøb|]‡žì9ÆuhXªS𲯀Øq ?dáã‹2àwãkWš éBëø"ÀÈud;ÊÂâ1¥¯k2[Mâ5}Êj£Ì挧€!D>Æ\Ž1ˆÈ1¶©`j]s­tlc, 6H®ŒC~¶Ê1ve¬ð»˜Ý¼|îeŽ1‡`„8Œ çàcÌE E$…] h–»žiEWt;R9ôÑ;N‰—®8ç®Çâ ®ª[»AåèŠAW$ëj΂]ÑeÀï.4>ß•€f²ÃZ×ý‡`µ/\Å(q7À£·}¿àš×ÒŒf»»Neß/ˆ.÷vœ…ï¸Äp±À®TkÕB|˜ÃDnQ.ËJ?¤Ö;‚ëqîë„(û@;÷9ºSà@#i”‚”’v= Ü\ß¶mQˆÖÏ݈ Þ t;;æºDØ=¡n,‡n€P2R äŒtÕ(ƒ+½r6-Tµœ2EÕˆJ6Ë'Ö*y¬S· éeE@œ x|b’9<8Pµ”‘v-Tµ9`k›ýþæ:WUïòI A5O7×S½:ÄnV2$ÝÑ窽_ºA‘uÀîc²QlBþ«ƒÓX^Ó®žÇù[¶‹tï~ûüýË7ï_<þöÍÛgr-vV‘ÜÏ•+tt4©Ü}óo¿úæŸþòþùïÞ¿yûâû·/Þ½{ù÷Ïr»A¬³Ô*X÷/^÷Bnÿ/q“î¾x›û4ö²iîWWK/û­ÛQ²Þà·Ýà%dÁ*I6—Ö›²Y±Ê°ÍíÀ"dÅZ¥Ü?î¾m{#¾ÿ£÷mí~mÜ·åýÚϸo›eëæBȘtrÝ‚—þúI¤Ù£êy‘, VËz:¸`²aÉ©rݰٰ®K‚¡$¬84pÉ?»ÊËéÛ7Wmçr1}:;½O»€æôY¯Î. Ó@ýC¬ËoœF•þÀýÚœ/½SûG¸c›%háøb×lËœ‘×Ù_o®Ù¶ýší+þÙ×ls7AÉ ¤ÙÕº| ÍÅ…· Æêâ·2g\vZt– ‹Íµb9ÍøØQ@&jÒIÁa—[òÙ™Û’LŽ2½Ù‰m½še)¬ëü79>‹®ï«ÌÍ2 .ßtóY¦ú¶a“òš¶šWM‡æ@«Ý&XöM9Œ÷4EÙP,>@¯KÙڔbSé‘2{„RéVžóÙ•ˆS <Ì×y g9P2ªnýÈI Ê ݹ¯G²Ë9yêÔ»l}è=J·É£%»ŸÇôÆ2•¾NIG¡¢+zKÙftª)-E9áóÉj iÇdqa£WKò8MkY;›|ãäu5#Ç\Íè<¾WÔø¦w-¨—„Ëq0.·Û•àrÌöщ䄔¤‰5ШÃj÷Ë1罩-¯•1ÉÅndÎÑcª{—-Gg\n1™Ëqf[ÏOˆÞ¿œƒ({±ž4MÍaNmrÐ ¬%Éj½íaË1^-iš©=[+¾$Yÿd §A${NU^‰1ƒ=ÙMÎp©ræo8ÍíF­d‘kÐfŠÎu2oÒCLÀaªËq±6`‘ÜEÜ ¾Êsù$ÌÛlÚd Õ/6—\Eu¥ìéë/rA–0²Þ·s gb‡¡ÈQ½¸£Ëîò¹ˆPÝg€i¬t³nt-^fØ¥sdØzVÖ=zY»È%]ÎÞkU>ëS÷ÙÃõæF‘KI—pš·à¨¯æÎ¥ÑÀXë-¸"¦Ç‚»™…"ÂVa"2ìrŬz«a©ý k,kY̧˜|¿Zf>Ë0!ð¥Ü{F÷ó¤¹mØ=ª"¡6vXdÏH ÅΙK;-’¹HHËPËSV$‚‡Õ±ÄØå 6ƒDX\îIÈìý ö¥m'§ó½6™8<⨠1Zcëýr!aÌèõ«Òx|ÀÉENaϱŽX¹Œp`ì™êrZY€c#¿uœùù–œ£¬c¸qÃ1p,N§^³œ-šœ»ñ’Û 7¸mìÉm„j(º\˜ª^QË6K­HXÂ⧯Öþ”Ýk²1òÅÝkvoJÿ:ÛÙDÿZéMé_{³~ëþ5\wk§á`ÅËå¼yØ“H+£Ó*Ø=ìqÙMH÷°2k*œ»‡=îNÛ-ƧlÕFÞì‰Ðw°t ‹ƒ-¨ˆp°–3¬¥ÍÁVX¡O9X¤ø¤ƒåú±¶Øe‰ÅÁ'¬CÜÁ’W8XʶÐ-ÓÁºrë¦Êl8s8ØÚàôè`¥šóî`jÙÜÁ6éqcs°â–6ÿ*kûkó¯æŠè\Ó¡³B÷­ÒµÚ¹øÖ.a÷›kµcÌÕ·žŽîUvHàé^9ýÎŇ¹º×64Œzu¯[w÷ÚP½î^y™8Ü«¤…É›{µ(›Õ½Î1\»{Ͱµá^tHw¯³NFÛÜk;1; ÷Ú,iN¸×V,iÎâ^“¬W÷Ê<"?Ö½vŒÅp¯ÍZøÿÿÞ•CñËx×›û´?]ßêWÌÝ·ÊŽêYVß*[ÈÇ}«8¯óZ}«L}íú‡øVà#øVù¨Å· §«­¾UFkÿ´oõynì1¶“~¾Uj®ÈÑ·Ê"³®«×ee ç*•nÍðqçêiŠ>á\}eêÎUó ݬ^v®_ܹ ĪÎU¯Ôm«Wi.¬á\¥Iù¨wUt-¶XÜüâa¥ƒ¥²xXŸ×µºØX}ÑÅâºÜâb¥¿×ÕÃúht+èÕÕÃÊP3éaÅWÚê¿x´k7“òY–Y¯þl¬ˆÞö¯Oû×€üéü+®ÒfI¼ÛÊz±Í}$‡¢M¶VîÜÓYñ[qtvƒˆ¿ŸÖâþ¹—•~ˆ˜Ôq¦§›kÎà`eù‚"ƒ"’®„»JêÁËövFVÅhâb”mEL~¢\ [Yzšë¸î¼¬,ä Bò×wAÀ&ÛÁÂʨ¼z.ßo*@­Óbÿ½BÅ,Z0ÄÆš>»Ô=ưëENÁË®!Œ(6Y,ŠAWB²f6- šÜK?7ÕBÁ,Rœ‚sºª]ÓskP1’™Rˆ2UsˆIæ ¸³Õ(U£Pm×ÂT»Žj¡.®Z@ Øa!ƒ!¸í-„f²³êžíz«ð²kF4#j®˜‹àªCDÖ̦«é¦;rÙà3ÑE³¦óËÀ@ž§àe׌HFœ,B5 áiíŽ7Z@µ¦†öš@òqèeÞ,q,IS¥ÊçÓV–˜ñs7Çâ_{YÉë€H¨ø¸ —ºg`E­à&¿ßä§NCcòÃÜÄìµp­ÙÍ9nî¯99•ñÁßO»sãŸ{™æÞ!0ÖNÆÜ9¸¹wˆAIaWšu &óƒðèy“òÕ ½KW \Ü (l/ÍHœá¼œÐœºZÓÁõ` %ÔÏìägÊǯ7 Ôe—tB)@¦a×A\f[Ž…Rc® d½K„qÔø¨c%HãßAXÐu]È?S,¯‰Unè24p,î/½Ñ«<[ó¿\JÆà Ò#iÖ‰ àe\Ù ˆ]ê zç7XàNpÈ`¿»ˆøüF ÓlêÌ"¾"º®Q¦—Üm?uË+b–UÌK,X`d/gÈIÀ´„sò$iŵ°°2êN… …$…M h&¡–×j.bã}$‹†9àÊÞÍŘëËædäÒàç^¦¹p»€1pn.\bPDRØ•€f¹Þ€@4I+±JžwC8˜"¿#õîe׌ÊE”›B3Šàº×ÍÞ(ÍÊíT# æO…ñ³&?Æp‡,ù“ÎÅe¶O5¢L‡ìó§Nî–Ü»D(ÛTãF(Ö2îØºb¡\ì§ÜØ Z4ë¶f ŒU­¾ëÔ…øå%åЈ¼‰AÙ@`I°IÞ:¡CЋN»}ËN†Ý¬è„WA®Wûv×?÷²wBBØ…H€]Œ¢RÇ€ˆ¤°+Í®ãÖp8„¢ÕÍp`W.4åa}£ïvÃË®! ßSjÒ½(€c»ÙØU°€×Ô5ŒÖÕ €Ê5‹vkbsŒJͲùxþ,7ÞÇòµ—Á2 &T0¡µ ˆùøý&?t:› q\-Ê5ÇÒ#ŽÉ8®&äÒ Sǰk1AÁËèþÑñlø °‚v- Ú¥ÇØC¹@šô{å+[VrRÐUpÛ’DY=uß™ÞI!ÊÉæåé³KŽóÎ)té’9x Œê)R:…](7t¿§ËQQÝ €ÆW–E=阎Р+«¤ÌïÉ‚ýI!ÊÉ:°ÍÖ]« +£úT`¸ °kašåÙy5—^ DWO³léLmqå[Â\|M@³$Nü}èý-ÿÜËXÄOAÀÖVÁ«¯‘v% Ùì¼Çº\^ 6R„ñ>Ë÷¶c¬åb^?0.½á¼Ì±æ*N#ÉYøXs!ˆA!A`ת•´›F˜q®‹iĽ›Æl[°þ³\œ_Lc”iÓæ`ùÈÀM£ ài5»üЩÚÅ¥#:= ™wØÑp̱iZvÿ½ÙJÿÜËÞ a7"v3rˆŽH"’®5fah<€¡o»úa¶ÃΡÛÈ x™¶ƒÚ í7.(" l:@¯6tvé†AO²<ïh ¬ðŽxÚIþ~j¦ýøÜËÞ aG"ö3rˆžHˆAIaWšÉã?yõe':-¥{*_…/Ë—¦ß »ˆ¼ì¾ z"R §"ðe”Â1 ¥SØõ€r§®¯W»èXµËRRºÕÃIÜbÇaÂcØÏ)xÙí"!0k$@«Ga)1($ìZ@µë¼5ù¡`ǺÜZ‚bCµ±™ür”ÍäG™ª9„ªÝä{`«F!\ùs3ù»PmØ Ì¥K:Ä:TA¦$v8ŽF—,ó¯eÂUJ²¯Sð2»$!ìP¤ÀGÑ%)…wIHé]r×Ô“k½­íÖúX“~Îí6'nv»šÙ HÁËÞn„Xµ;´Š³ðvs!ˆA!A`תYt窚C X‹&.8BÂBµ|bA sŸN€EW ˆÅ¯)µ‡œ¹^”À5‡„¬˜MèUó ĪÝï}¨Ô8R_ôjm³"rö¿Z‘(»f„@2 àdªQbPHصÀMËÜ×-—Çb‚É/Ç¢ãC5ýkA>Ë*/ÊÔÌ!&¿‡ØÎÀsˆAñý®ƒ)ÖN‹ ÅbrµóÚŒÒC±6Ó:gnƒ·{@ÁËÔÌ!&™€àÎÂUs!ˆA!A`×BUûQW%é“Sð¦‡2^1´uNg‘ü,ªäì×äF#£â4ü W¸tV W­×JW%îîBt®F”UI»¢Üç¤`wߞВۻcp+ŠdÅæ]r_«€’P:§%\±J¿åá°Hº*®æÊk+Èu8å-éGŒLeh·è×*ùe;"¢5jºJNÚÑ–xØZOF€VÔ—¤nmæ´º„§W^ÂЪ\Jd¨RÅ!ˆK«rA¢í#y­ám€7ÇQÞÃOåÙw]_ûƒ–U’_EïiV½ÚØwÈð÷I4¤q*n1KZåÆÃ›aVXåb|Aœ¡òÑ@RC—œ½UÉöµ¯¤8ÄM@c"YOtY E­]BE5CÏa÷kGH„àƒØ=¤9ö³;WÉ/8,öS¯÷V‰vÏu Ѭ²„²p³Ãœl=íTx’¹ôšs•`w™gó>r•pw]úÔ‚%Éåt× t‹n¬’rmèò¨Ê’L E.te<ŽDÈnÜÕ-T¶Êv”º>é @FíJFb«ÄPôZÌV ƲŠó#ALÂüÒó ýìrÂÝ ¢gú]“%á ½ÛiÑÑU‚gto$㎚O\$RÓF³Øf[`5•Ñç™$^ÂXy’cVú8*bø«}$ù9ì ]•#ëlÃRï‹V9é­ˆr6£5ô-›¥ã {D7B^«9ôV•£¼Î„HÏ:æ,ulCNνò†‚Ã1mÇÑ®%RµI¬ûHU­½v`7\! (¬&;n¼êHnG‹€Wàôì¼s&ò§ y¼³Þ$Ò¼«áŒÌUŸp2Žw|úÒæOЩf Ô/îTÃe¹S=è Ý©ºû„SMf[VŸšv—zÐÒ¥ò¶H¸ÔvÙÏÅ¥vhå.uêÙvŠ %áRçx¿ÊîRµ‡­.UÒkÖͧÖË®À,>õtÈçøÔ†yÁ§|j%Î'|ªû5wªˆßœªÙºO9U÷†wªp§;UgåNÕLEøT˜—ð©´@îSi(©º£_ej†ð« ø¿êÒýª½†·úUÛ3\üªÏ™Ü¯Îv¦§5¿ªO‰ï~Õ²§/ŽUÚÙú€{ÖŒ4áY3®R»g•W\êîYe"mžuz§k÷¬r9ôÚ\ë¬ZóüáZ Xw­­Cw­}ŒûVÉœ™vßšéÝ·&òrߊgZߊ‘ï®5uzz÷­Õ²œ,¾·êßzà«Õ¹š•üqε¡7­Î՚ﳜ+ûí—w®p“Ÿt®€üWw®7w6v­× Ï?¶oõ‡ÀÝ·úíºŸ}ëϾ5|«4'–ÓŸá[å•Ô²úÖb!Ö‹oõçàÝ·úeD÷­Ñ‘é[ýrµûÖô­2Œ¬.è[e'mËVOåã¾5öœè[ý¨ûV¿)í¾Õ“¹oõ‹˜î[EBëô­be¬[ø¼ ï¼:WÍЕ6çjÁ#?;ן¾sÅ…Íé @TSJ?.‹*œe<[0ºØ®ðVþVœG1IŒbÕH("‰u”u‡(¾¶„ÒAŸ ¦CÇ È °© geU“rm‡éúo-šR}µÑO±,lí©ÄÀÚfA€ec!_8Dò•ñPeaaeù2Á…¶ïw ØeÇÁrÓ³ ;{#D°«<å(’?¿IsÀ᢬r^ZåĨÈáN QVß~®·Ûƒ‚lŠ/,´¨uð;Eä绦Y—tzÀ,Ù@Õ”äUÞæÖ«“â…§Øt(+ND×+qHþ ,+ ùÀš8dÍ‘,¬,_Pb¸Ô °iÍf¿Ð+ßcÀ‘ç_Îe¹_ó1&{¥g_1,“¼ÌQ$NƒÈYø0s!€R…] ÓL"\,dmæÔ¸îñ.-â{ÊÞfòÞ ³¡+†Æ.Pd‹yÙªÛ¿FsÄž5Ì%p Š › P+éVúœ·h¦šÇÒÅ*_ñAM~ö;Ÿe ,|Å×#ëL"(x9Ù{€Éš¨ (dµ÷ÁÃʨ»RV HI »Tnè}yqϽšr„èé°2W>$W™Šn&”…±äN, †¥w,*Å7Àl$rñóCSï+£öTbPDRØ•€fÙâÍBÁ,š!䶉ߢYÕmˆÀ¨vÀ)xÙu#„¢‘E'PŽR¸ú’v= \±8ÇKl¨õIBÌŠNÆÙ.ˆêˆOaQ¾²œê †LðÊB€ec¡_’dbÚiƒ‡<¬¬µaBÁ¥] ¨&·!Ç6Ü‚ÁÒ,¾Æ&ãËp“uê‚Ðí€ð²6B8V@€C‰b°QbPFص€jMßSž^£Z8ÒÑ—S•¯¾¼|éºÀW(«¤CM·cœE¾ ^®,´@tfº¦Š VFõ©Äp)Aa×Êu Àê³’:6‡HH3 ’,‹Šj‹”UT}¬90®üp.P4‚O@6÷ÀÏ“¦š VV.4(ìJ@³³™áô8‡\úÀ­2VÓ+àTnl¢ZY%½,N›Ãn98–‡|á= r%®/<¬ŒÚS)ˆárƒÂ®”»´ —)d@l(Œ{̹d¤<óÓ—¤¼Tâ{/rþHæþ¹M>§äŸ)¿Þå‡R’¤P.fÛ2ôq…h‚ae:äyf¹H£2ë²›e•Rg‘tvè¢\QÑ­'§p ãsVD½ê¿‡ˆöù¦Ùu½ší݈^S¯’h#û-vîÄ=÷*çXòE`èYrð2®¡Ä.ª½Ç,pÏÝEÀÏ_ï*@/«å.O]Mc@NYú*SM½Z› ( Û,»Š ‚9N'àee¡’4i•H²e ´ˆŠ³ä¯ö;ä×» ÐK¹ÊºôtVŽÞ]ÇÂ;9ËÒSž.:ÏCsi–}é]::¬,…/=)\hû~׊Ûm—³¤¡n: º'Vå! [•ÚóÎw¤P¶ÒAÒ‚Qqż¬<ô @Ä„õ» p6ë[äae­ Há’v= \µ©rÌb3?a¬Yó13äæZÌ%oŒØkÇhvÉÁ)x™sG‡`æç03t>wt)R’®”kÇ:AÑf2rvÁ˜È“L}™¡HbÉç¼ÌùG@löà0»p>ÿp)ãX>_ħB1ÛXw:ËFá¨ Ž±ªä.g¬;5$è\0NÜl –¹ò €-–Ηž.1\jPØ´€f×U–½`¥/i_rløf­oH’”eó ^¸ìëXæVAl¡ï°à,|«€2ÁeM‡¼žäðUïÚa¹}äÉ«®§q„H¨ò‡X‘gÑNêv†³`9dÁ’7æ\cÁrÈ‚5¦Ÿ©G‡Ö­¬«ôõ„¯§Y…CƼì¾M”ðõ”N}l®ÉEU$@r×qþ’%#`ÑۈíZ‘Ù°jºðx±Ù°Ú©iX,@6,Ù}mÅdÂ> Ö¢áç6\)=¤OÉ %âà=è=Íåå1Ëô.°4‡¾u´ÀˆWžÀ«OàµÃcÇ];t¾̯ƒó ËËÈ»&»öc#哜¼Íþ®Ç–—ÊŸ[ ü+üÙò)gM ½;x%É÷é5¢çM)Û‹y Ñó›$÷‹§]UHU@Ó4 h†Ò5»Bô@'ÉÐÂzÌ—ò¥1/’É|40Ïv<ä΢2·ìFIfäÒ#ÅTl‹M!ݾ*Ü‹¸&9=NÀÑÃÊ$~Â]Â"Lf=nÊ¥‘û©÷¶ZJÕŽ“t÷nA¬I}ƒPÎÝa“dbC“¼i ÜóÐØTm:Þ$_p2ˆNc[’Yj%w´”·¥2Ö8ANrÞ´vHÖç*”ŽÇÔËaÌÈw„“¤^õ¾[K–ŽK í2î9Ùc9IŽV²6&Òý&9Ž™]³åŒk î…%R<›ÌÃT×tàJGvü§9jÅž Èœ w}öFö*}“ÉžJŒçÜ›\`ÒH>‚Þ$òÄ:¨\)Þr|m]¯‰7I[RÑǸ›ì&©â3ÖM.?ZgÃëÏ­ån'Ú|5¹åQ,Úï 7ÉbJ]I…&«Ã½ùvï„\¨v¼xÛ$ùˆÖŠmr{[Ãþ“̳…wÒ¾¶ÚÄ㙸öFi“÷>M£K^'“N-{*í%É’ež×ÊW¢¯l$ŒÃ”N¹ÙM²$k t'=Ø÷©’à4Ã)ª´l"èIu’¼_‡ œo§!©Z0GÝt–ñÞ EòKÇJK£»XÕ1—Ÿµ.–W§Iç#(қѫur2'“:ÝUˆ%Ü?$Ur[ü@>æ:|¤ehfYa'8a”-Ûè éÌ1óqêÔc…XvÈ"™a71Ó#-£5˵±¼I(vƸ;Äo]éXj¹Ç²-2§6œ; ˜Õ†î±YàG‚æâ6ÕÝÁâÆ×æ`Í|ÚÁ »ƒíðá`+)ÂÁVòr[9 ƒ=Ì}q°CÐ=l­tŸð°ÅB,ÃÁ¼JöÂ[á` îÂ,ÉÝÃÁf èÛ¬Y¸O8ØËé‡K×//mÖúÒg¹Xô÷?ë_->Ö<Íêc­ÿ>ö(›=½îâdó¹zÙ2,[8Ù4 ÎêdsÝ,;r8Yq.NOÙ.N¶˜/t{˜‚ÒÇ ¼éc“¬ûÊîc;HøØJÑÉJNÔádºJøY\ ?ëúÙ†WÂÏ6LIÜÏv<ºøY÷‡îgªºøÙb?¬~ÖúÒêgm}ÒÏæ[7›ÿH^¶þ伬CÜËúWŸð²ù‚^ö&zþ§ìc kÿ¥}첬¥=êæ`Ã~ÜÁäãö(vÕ5ìQàè`åŒl÷°¢AÚ<ìQèéa}eéöÈô¹ð°.®ÂÃz»ü8ë½äÖ{Ûó°ùq6 ô° ä£6 ô°Á6 ð°¡=ì±€·Ú ‡ £‡J¥‡¦ ‡æ¢‹¥‹M‹ŽA‡.V õ\]lôAúØè§ð±Ñ•ÝÇú`¤ÁHãˆ>V 6Åt{Tz]úØ€ÀÇ€>V iõ±>†ÝÇ»ƒõáêV2¢õÍÁNˆÕì‘1êÝÁº)£ƒk·;XߺbÁU§Ì °ëŲ>æ ›6zs< ÖW•¯¬ä&÷ކ5Ê*©)†ÝË ,ùÂ!š{!(¤!¼‚‡•Q}*1\nPØõ€r¥›M‰V#„µ>l¾ÏFáj2šÍ’€FÃÔ XŒfsjØ*díF!ˆáR³á7- šÝÛ_ìG@`ìYå0\‡ i—í=ÃîË/» !„&„hBÈ#L¥ ¥$…](ת˜ÍÅìF[£î›ènöûi3bˆY;—ÝìB³O 0êÎÃ;KA JI »Pn®]Ê®œC(ÚiŠ¢ss"”»°tpŒÝ+Ö[ŠF ‹l 1bHÿï –}›:ÌcC‰³H—‚.7(ìz@9y3 mÊBѺ>k¢s *”;õ!àÀ7u(†j@.~N¹}Ë5£Äp¡AaWÂ4“G j^5s“ä¡H쉹b=Åh1 Ž&`ÙU ˆIæ yì»Q7 A—v- š%h_U#Ä%ë¶ïDɹ»ºel:8Æñ ÀrèæˆF Ýw]7JáÚSnÖΦ”+úòáâ½bηË3#1}Œ]I÷Þ݆„5Å÷(¹ïv€9^ÿŽÙé»ëv ƒ"ƒÂ®ôªš7f±‘1 'iBÖ-ß\uÙ-oB`4®ŠAÁË´‘…s °€ÎÃm¤Ká’v=¨Ü°–e^›UãeZâÛÄ>-é‹\bÈ ^¾g‘“0£ðÏ1ãp>'¡D €$°«½,õ|“¢b潯©|e¢'‡2Cån7ÊÂמ[ŒÓæ>NÁËÊC¿äê&*)\z¦<¬ŒÊS)ˆA)Ia×Êu½ßä%k3 Ýêš]¬É6{–¶=ÊÂö²Õ»c\š %x¹=X8à™¿Ї"R°@YëBep6 ×©éŽZúâýc@šlÌWc+†©šâÅP¶’ZdAUmŸ@,ôB42‹ä<é¨wK–Qw`G —v- Ú¥Ñsr Qy+¤yfDŠ—l2ù1 Ê*¨†4;ÆyØ„Ž¢¬,¾ý* –"*(Ô,ðàaeÔÞ¹ PFص€jC_/Z"Øreë]CSËβž˜øÊ*éX~N¶ÁϽl Ý!šßŸw ùvêVFÍ)`„Äöù¦–tÌÖ%4£‰{\ Eïá W5¸’œZúOµPV9/5ÚŽ1—übÔËÆC¾pH’š IÏ£‚‡•­êL b¸Ü °ëåä‘©=y\æx…­áh6.ék8žCY=Õl;Fѧý‚‚—•…|Aˆ¥… ’¼ª,<¬ŒêS)ˆ!I`SŠY†&g©Úp©w®bpû¡¹ ü˜e•Ó¶&~Ó)xYXÈXF>' ý¹¥`2*O„p I ›Ьè»E­^ùÁšÌz³1Iv†df©ªØH²²ÊÙm¸;ÆP›î¼œ¬þ 85SL853L°°²ÖÉ@ŠH›ÐËžRY.Ó8¤kFe+'ƒr."“%žú¢,låe™Á&¼N€ec¡¢WN é}Êà`eÔ]]1\jص€jMŸ,j#%»fº@º5A³£­‘5ë_£,Œ»íI†ía8/'»C÷C‚‚ü^ +£úT bPJRØõ€rrƒw3жM¶cµ} u ëxÖåçSÓlÄç,‡it ›~N«GêaÉß1 /¾ÞćJ§Þàk¢ïe]Ñ!§5û©ÇíM¾6)íPeak䯥÷³‚‚—•‡~H½LPR¨%<¬lgR8¤$…]*'ºšdl¿Ì~0ô&¶²c[æ¤@ b"P¶#놴cÀm:–…~AH6åIáÔ»ÚÁãÄeî‚”6% Ø…)rB8þ&Ù´  trYV0ǸíNÁËnAbÀ)Ð@G˜JA —&d×Ê ¹xÚ²,Pm” ±Iò2$°•Õ?#A­(r&M¾É&òNÀËÊA¿DÞŒªwA¡èÆ–³°¢VdEÄ÷» ¦–$YؾCXã ÁãlÞ‰6˶ççÙöËÑfA›‘ZÄyx›¹Äp¹Ùêç‡fÿJz~Y{ÄVŽÂX .W–œëkO}±aY^Ŷ“œ‚—¹ötVŽN+KçákO—‚”’v= \Ö›œ5ž¦œCtc3I††W”$4‚1P(«¨šÈ10ªMç‚—•‡|H±5•S(sñÖzð@Yy˜Ž)®”+ÍÂFƒ D.+i˜ŒÅôJ÷¡¢"dÚÊ*ê%µÍÎ/Êà!_8D–N!]ºŒ1+£5ì‰.7(ìz@¹ªÓåØž#Àvׄk[ÎÖ<,Íwç4VZ0ú¶½çEߟ ˆm¯9l¿9 ß s!ˆA™A`SjÉó"uÓ‹ÈÕNÛ¦v±]Šõ¾+J±§Ø^ ŹH€b{¼+F!\uJͪٴ€j]o‚µdAF 䪲є$Sƒžœ\¶QË8Á‹;¹rYXwØ;ò$À²±Ð/±µ‰S85ˆ³8‘+$d ‚K »Pí´ùò¢!.âª)9#C7ɽ¹*êXÝÑH¢“G(G)\{ÊÍÚÙô€rW¶cÖ0#€¸œc1¼¹X‘¡/‘/—Yw@y±" ·ˆ #Á¥] ¨6jï›á±­lɧ¼žuzªo†K~eöÀeƹF™›áÁV¶SÀV·óðÍp—Â1 %(ÜèaÊãXã݈Yá»ÄDL­›IVSÚ‚‘p* ,º) ˆ'Cá,Ü”¸Žql1y7ZP5\ðv j=ñ*9Z…ÑÁÑn9# Ùf÷NÁËÞn„°ÝH­â<¼Ý\ bPJoùM(—†EÔú!F@ìbØ#~FáÎ~Š1JÒU˜cMÒ¼Ìs ‡àÂ)àœÂyøA†KA JI »P._f>£S‚>Ulúí]!ÛÑ'k²˜x"ØHÿžÅè“A"ö8pˆ.Iˆà2ƒÀ®+v¹&Ë¡¢êå€.\Ù6½ÏwÜyܹ„cÃÔ]kvòåzY(+6‡¾‡_úvE·2êLyƒ²‘Â&<ª¸ÝÐ!èDí0“ËNÆ»iÞ βˆÐíè‹ß³è}v ~ÎúÑ)( ì*@¯fSå8µvΜ%ýzÞî7üÔZòÚÓb+†øÍ%ÖÀË~j;sv 8“Ž[œ¸Äp¹Aa×Ê \» å¡hs%ŸãH>®%P¹,Ùös^1ì¼¢LÆ DE &úrõÁ•£TÎå†r»ªœfDÒdT. .ZG\5Dç‹P.ÙùA` 3ƒË¡œC )P9¿ÆåB WŸr³z6=~|®,§“‚䙬J/{®Q²¤ÄI³Ø-X ¬"ãíZgdÁ’@e™l–C¬UP—ûG¥ßʲ8‘,“M¿eé¶"ýÓm}Fú­,ᮥYupJV¶ŽJÿIö Ï;¿¯²à”Œéµ#²aÉ›3šlÔ±Ù° µHõÙÕY$1Ö)³Ž;¹èSçt£å—óÜŸŽ^°—§£]èÊ„•óuXº¾/ž +Ëu¤ã‹%Ä*’R6÷„XcKˆõÃzvB¬Ü¹ðþæ\µË±`×>š.P5Ëö“ONÛŽn¹ ²d· µ§fÈr.vÁjúš,9¶5zUÒüëͬ³!ôY£²¤ ¶ ´l¹²¦%V+_¬£gI!\§Ùc>ùtOpâNÜe—Œ'ä²ëùJHYqØ%Ä|儸Ædww³l ÈæÔ §ˆ4+ö N–~¥Ìs!޼JeMº“/k+l^‘G©Œ.x_Ýy_Æ{ Öe)–²äUÖ‰Üʦ„guó° aš…§ÛW%ï SMïóÐRCP_Á£KY¦W²VI9¡tÁ»>ÂË´§½ý“åAå|tK¡’Ç€ÖG³«•å8x™¶š’EžäÑM$^á,ò$qÇër”fq¯Sd)ï ¤AoæC+GçeÚL:g¶…¯›y”§áâ8$‚5q ¶È HŽÔKÍŽô©¾òJùÂ…l©»Œ»ãz­´$\†[(ÃúõÔ"¹!Òzs½HT†&}*é*`ÞìE»’Uoöê]‘Ì™Ë{^dÎnÌÑÈ%çÃãT/ûªà¢äÙ2é$6‡‘áMI]£Ì%€®rºeU*z“O×bšÓX g·K<â5pÅí[ö³oý¸ouÈßz“þêgÏú'ó¬|~¦g•{d»gMHÿ÷yž5úcxVNù&¤±ý”s­©+†?çêÃôÏÖ¹º<ÿ­9×ÙÏݹ¦n™·Â¹²/‡s•t—åœ+£†sÍ… Y:Wæv çË_8WÁÁWp®1/Dïªiâ7çÊ”«á\súÙ³^žÌïüãxÖ𚾞Y¯f_6B2™‡ÊòügŽÊ,±Y:¤›¾yïÊߊÃ@'&BGÕ‘ËÊ@? @_é –RÜ9¤† ãûU;ú»Î 7N©êbrM—jÃb-ˆ1ж¤À²«åˆE”š,B/ A —6- Ùż(ÔŒ—‹q‰”¹]¨˜DÈXÜ…!Œcim+P%”LÿŽÒ‚p¨Cήðé3ªÎ&º©3bШŽ(P[÷óICè#Î.M9ìi‚ À²kå(FÛY¸f.1\jPØ´€fh³èC† ¤IW¾³vÉxˆÙ•UR¼¾C ¦Á#/öÎ`@$c†HF ³«Õ……Qy*~§ˆü|WšIÆðµ :ÀkklLâ¢Éj·:˜ÌXö&s*œØ à-Fˆà2ƒÀ¦ôjÙ2lº^¸X}Z>ó Å:Ü¡c¬ZõM¥¾êÃï(.)‡BäM 6áU¡97íÐ …`Í©ê .7¦®ThB†%#!FER`l€ÊLî`AÍBb¸Ô °iaš%{¯34sä’ŠEA›Ü>åuÍtQ´h&ØX(°LÍ`r9Èí,\3Â1U ›¦™ì˜ôÅreÏúdrû”Ö5“ø|-m×ÌËÔ,&—€ÜÎÂ5s!ƒRƒÂ¦5–`04ÀåÂ:Øå¶©y(Ö9Ð9A€eWÌ‹(68„^Áõ¢ÌÔkÕzµa“Yú¢fZÙj™ñXbÐÐÏ%†ÝŸrŒAC¤àeØá€˜¥ jȃ }È€ß)"?ß•€fýBv0¶¬ð¹Ù \)E“I¦„¶`H&…•ËÞd@“[„,¢Í(1\j6úª4»ìrOhFåÇê¡b}ša®’ÇÕ.V/S³@. ÜdšQb¸Ô¬›U h6æ½Ñ!Ö— Sƒ£¯ùBÕ{c9®äƒ oHÁËìAwr ÖÛœ{£Ë€ÞHÙw%L3‰’éë„jP³á/„™ÜXp‡fé²bd»Ûë¼ìšBÍHš-æ•uWVÍ!¢W̦4Ku·Œ`_J×f}ßÀ{£¼ß±šÆRÒÃÚQô¾È²u$ÿÍé{Wt ˆá"ƒÂ¦Ô’Ç,Úr|èõmå+«c\ïöÝ¿>!úw`H¶¾Pð2.gÄv‚‚]ï¼RƒR’®”“'qô¡Æ?® ;.’ÏØ²(_VCØÇAY%í¸“H ½ÞËïY:ØwIç]|=Í_ }+kÝAbP@RØU€^Uw õ:k7½‘ç_’1Ö×>«ni/g=ÅnÊÉ‹,×Ñw{Ieã¡_’Ä Ù˜YXhU§2àwŸïJ@39*^½™8HÚºRŽMµd½î&Y|œË>Ì€QBEd㬭‹êEfØt€^=ÙÚ(ì¢C`ÕzÛ->wÃ.ž¸RD ˼ìv‘6R€Ý# ·‹”¿CD~¾+ašÉ#gYZ̨ðv`c â{}Þd³&q ‰!ÿ À2›,VãN-â,¼É\Ç Ô °iͪ©¸b(S*¾ì@©¹ÓzÉ]‡U¯Î¹3(°ìz9R‘¥&‹Ð‹Bƒ2ƒÀªÂI¯M±œë~±¬Ñ—°ô±Aàµ\7aéY°$ûÅLî€/H ¬[IWÙThz•—sæì÷ú2tÕ³IÝÙ¶#UŒYgCÅß"ÓT?ˆÝpòì1c¬H€lXå´ÎïHØpdô׊ȆÕgOí}ÅdÃ’té\±Ù° ó‚µÔÂg7ßù2AÿøëÑ’ÏêêûëÑ;®ýõhÅËûëÑ ^}¯m0ãÑãEi×ø‡âèËi6åG¯§P²Nø2qô’˜íSÄÑÿßÿâíóW¯¶HúÖü³#ék¢ÿò1äOVyUõDà­äÕtwñTá,»äÄ Û*îX­rO·®íÞ¬@Ä_é¡ç°0š)f·;#<û«2 :S«k5׸W'ņ³yIiu*¤œ*4 ˆ¨2‰TÎ岑\³$¨S5gß(Z›’ãÏüÞ~®‰$óÏ.gƒ‘ù—ftă’UÒ±ÉRO²óëJUr˜ÉYcÍjBB‘dÑZìH$ưäRÖº’nJ¹·D^Ãþòj§†T Ec!#Y«d:5"1«¤Ò1îì7‹$» ²´@¯ØêXìF¸šêbXÌæÈ¹¯¬WeÅnŸs-1`ÖiÅFŸz+º Óʱª¾¾pv¾_å`²èíåË&U’èäת@ ©øCñV…rê§QN'ÚFÎÊ,¼«AO9\ÓȆbO†V FÒElDVtº‰‡8Ç*7wí¥»‰‡dÇ}Ïl¼gßÏfÕÍ,I,’%ÜFU4¹$Šp%h‡Y#…(ï&¡HfÔ,âdÎ>+Þ±mfÛÁ,Ñ †kS+§f51ÝbFˆU³(¬91ÅyѤI$’>s' ä "i“‰£½tB¨¸ÅÔùœØÃ²È'Ãé¢ÞµÚ«»‹w= ZxWo|Ò½â9³p¯çiñr‹{eßÿZà.Ü¿VÄÝ…-'}'ük/÷¯’ `s¯Íž‰uï*)¥à·é]ÓÀ(sï*#»oÞµU3 t®òƒ)Îõ „Þuc\¼+½Yx×[æÞµ]00î]-7Ûê]åUËݹ҆s=Ñ>å\ñ¾ýâ\ñðîâ\íøÎÕ&P«sµÞäεÒMºsEÀæâ\÷¹8×Íù&ôZ÷®tp÷š ¤{¿cËÝ«ÙûÅ¿&¼þÕüYýëBgÙük‚Urÿª‘beõ¯|º:üë4Nð‹ð¯’_ÃÊÜ¿N±0ÐÜ¿Ý ÿšÜŽûׄÀ.÷¯ÒÙ¯¶úW9µ±aåþµ%4§û׃3>÷¯S ëô¯¶ë»º×™-Ýk±lx«{ó7Vÿ*¹!­¿¹Þ˜»M'æÃî_%НoþuÂku¯’Éú Ý«¼®m:¸{í`^ÜkÇ,ÑÝkG/ø,÷z@qw¯¯Z?Û½rYòÅÝ+æÂŸt¯˜/îµZÏù”{­¶Jú’îõ&¢þ§é\gû›épçÊkAá\-Cѧkå,›ÎUVgF™ÎUú°©àÎUfÇeu®~ËÆ«_2sç*—Ìà¶á\c©Cïªw|Æê^cÒ@÷*û±W]Ý«¼¿­]S¸N¸W™ÖšO¦{•¾UÎͽf®ÀݽòþA¸WCî^-®u¯ ¼yפÇ7«{e(p¸×ýôÇÝ+£÷ý288Ü+Çë§ÜëÁå„»×£¡Ãѽ0Çî]çÊká\9èù2¢Ý+oœ¸sˆµ&œ«(i΋ÎÕï Ð¹J홹¦sÕH¢mñ*`’ÎUì*Ü-œ«Oùé\õ~òX«˜Þó\«L*ÎmñªQçê\¥ÿÙV«tQs t®Ñé\c*B烑ÎU‘9:Wz׿\“¥«]œ«^p«wsÿô®1ϦwÊiu®z¢­ÎUÆ«Õ;«ŒW›sѹÆ•ÎUl¼?½kDî]µ7¬Î5gÔ»;WÞ>pç: jý\ß*+úæ[g_ÊŸ½tõ^û¥}ëÑìâȧ|k@è[9æ?á[e(~a׊úªÇÒH~Wõ0! šúªÊ–•¦¼²Ìáç¬ü­ø9„[Ã_‡/7ËP¸@´'…ªÉ³‚‡•å JA —v=ô”o~Ô-6ÕV +dBã[ãò =¶TÌÇxñ³LñG|íE%/rh³kSз*®^ËÏ”ŽŸïòC)qÅð“«»­\¹äwû(‘t«}”µðj£Lû³nNÖ/&ün!Í£Ëó¸kaª{8Gϳ4€jèA‹ò•I§ÄÜN¸/+PISµÈ,ǰ‹@NÁËÉâARu 9(ÈåZxXõ×ú‚A)Ia×Ê%‹Æ~‡T™ô+ß+ÛncR¾±û˜ŒoÖÉÀ€!ƒ~@H‘®æœiå ETžŠÀß)2>ßU€^ÙæõjC9Ø“T9%ÒwΤI°ÎCYøݪ Œ¢Ó'€¢qP|ô©”ø\ÂúZÔj€üãó]ªe!ÆU">º©EˆÎ£•«¾I$ÆNªßOZ“e®KWÆ‚ÁgHÁËŲ;D6Ëšˆ òÁuÞ-»ÍZFÕ‰Ž)®”+c,Ï*eÕͧY‰”wat9à«n”…­ìÔ•ÃÞAòïYúŠnå¬7Çãk«J;ùÅâw›ÜÐe®'²v–¡Ï[9`΃¥3W ü;ô¼ñ”•UlÇ[YXÊÂu,Ý&ÐNec¡ »¹N Š³HÁe­Â1\jPØ´€fM¯ó8ýq…hBæZì-"Yq&•Ó–ÿ( Û¹—Í%Ç8íî–ð2žB È¥o¥9…~ésKÎe­ {‰”‘v- ZGd1ã›H·68‹lÑ˾…ãñÍ"€ËÁNÀË=ˆ';‹]ŒnˆAI`ת6\TsUÓhäÜfª‹fsax­ªÁY:/»j„P2R ää±èfB¸òÑëfÓª]Z¡e‘ugqhZö&Ò½°©†² z©©&FÅëG Å‚•Cä¾»ÖXô@°°²Ö„ e$…] ¨&ˆgìúëã Ñ(ʸjÐxÑ95·QVQq$@ ¾ QVò…Côùˆ Ð4{Fð°2êO¥FHinô0å$òÈë Í!X_UìÍÞ€œ:¤•¯îµÊúWjˆéV¾òŽÝŠ€Kÿ$À²±ÐÑø$'Ð5±xp°2jOe †K »PMž=Ø[Í!¨ôÊ;?hžD³µ‚LyÀàH¤àeo6$ µN lòˆf£Ž‘üRØõ€rò„ïºüt€-k«ö4—~´áËÏÚmË•þˆx™«Ï€Øâ‘°¶ŒÈ?.>]Ç€ˆø~Sj ¼Àž€è>MåkDØÆñßè©g^àfÙ&ó$àEnô8Û4NÛ8ÎÂ7z\bPFRص€j}nBóž"8E$…] h–mª<çÊbSˆ&AS¾bl[ÑGÓã>˜•…oµóÇ·yƒ~@H–}Õ ô’Ãråìš… †K »P­XfC!€1§¥ÅeHCï#h䜽Pì¶c4›Î;”=h$òA ñ«s4ÁeMè%ca3û1«}Z²·ê~?ÏíþÙ»ç„n‡)NÀË4ûÕ&uçàfße e$] ¨Ön§ûÁd]øŠÁådžw!bºv;qŒÓ¶ÍœË>݈MÖ&óÎçû.1Ú>Ý¿ÑÊõ®^‘' s=!’ÙÃ2uÓÆÇ­”UÒ¡«|Ǹt:ÏïYRú‚€EœÅ×UÏ ‚¾••>$ $…]èu6µ˜ž±ÈxaVøŠÅ•àœ.M»)(« z‡'0†…R9–OK§µ’Ùèj:‚…•Qu*1\jPØ´€f—Í‘#|Ú!ˆ~¾=b£ý«GOŸÃN~ˆqIÅïYôèiXì3?gl4Dô4$pv ×¨ðîÌ!ðFxí…ΊW…Â]‡MÓÙšI!Êth?"ú+òX<¤pF)éÑv=L¹ëÐÇ{–`U‡ Öô:N³¹‰ÊKO«z%;ö ;&r,{´j@,ÞÔ)X8ª³`¸*EÀÏ.2¾ÞU€^ óäzɘx\ MïI(S5¹}£µ(L%Åò³ùLÿše£¯ø„uü¾è%‹ oeÔ› @ v ×ôá)–O+ÄXÂ÷Â⋷ϰ0»JµëóöÛevœßy™ 3‡`YåŸcÙåÔ}aFÞD h$° ŠÝΧî/<.K÷ ªÎ=%ý²e¯Ð¡,|kµNŒj§^Neã¡_Rm8‘©WM‚‡•µ6 …cPnPØõ€rõØ­½ü=q‹C¤-çeÀ°ö—äõX¬ýÕÎÍÚ{™Ö>f«l¹³pkïB8ƱYû] hÖŽ5tߊváA*Fåó:cÄí_ݦçŽÑmcŒXô¸ý€X཰¸|çÀ¸}¿Ë·‹äÔeØ…I°aƒÊ!—nÿ ¿¡÷²š Ï%”a¡N;µâï§eföϽ¬ ô@¦)ÔV%¹Î˜VF©Ä ˆ¤°+Í$-›t ½-ú<]gVQuJ[ºzΆƒ‹ÛëJ–ƒ—ÅH9”ÁB¿ $«ét]f:ysÕÊZöâ\hû~׊– ÛÓm+¤êq”°Õ«² R1ÛÉÊÂvè¬Ü†o9/+ ýCçïN@^K +£îTbPFص€jRø‘™Cpà%|õØb~Ï×Ì®ÁC6×¶™yÙÌb^NbÎÃÌ\ b¸Ü °ëå$+ÐÝ¢ä‹/’‡ì]‹?òË¡4äi¾%Rp$ËÏì¼Ì%‡ ¾È) þÈyx„’K »¦˜†P­{FÇõað¢«F# ¾¤|€j•‡Œ^9›P9‚hEb6@s—°žG‚Fd:ž@‚fDâ×ZàÐfÑ–h–Á)Ótk"¸° ° ï¹×ŸÎ½\ó¤ß9æìnI•¬ñÓ†ÍѤËÿúå÷¿{6¨¬Žqÿöų¯å¾ýÑ®ûú—Ͼ®ú†ò˜hïßÏŸqùñ;õݻÂß<þvþ"‘ß­Þ¿y­¤e¹=î·Ï_?“D^e”û÷ï„Òì·#Ý¿| ª}³ˆåRuÁ øË÷/Ÿ¿’ßfS§ûÇ7ò眬•)Þö±®4'§÷¯HzΖڑ”ƒó÷YC’,ûñÅów¯^¼›:ÿ‡¿}þîå·’Dú¶>‡\³Nɾøåý¯Ÿ‹7o¡Ñ5D‹É|ê,jQËý?^äûûgR_× „©Ê¬ÔU—ïÞ¿}ùíª…UšÄr÷ûß¿\«J´ûºHZ·¹¾ýZ’ñIfk•ññ´®üvœ™õkmóüµý0“¤7¤”÷¦}þnkÂw‚&!tuþ‚ÏgÍÿ^[ö¨}oðW¯žF·ö¾ÇÇ­­¾Ã'%Ý¿ñ:šµÕ%/ø¹·ë[àÎõ|åõÃõ¨’ŒëþW÷k=·—|ÿæýû7¤2‡ÅËï=öWÏæÈ bG»ÿ?Þ¼gMŒ~ÿܪXbÙû÷«ÿ‚Z=ö¶}û\é¦zÞÿþõÞŒÚx×u÷Í¿ýê›Ê.fí%]LÞ³‘jÀxë³’ÞÍñ€Þ4»H"¡LóÏ4ÊVøO*¢½Ó¿[X¯#÷A“$!;§]œßüfôURí]þí»÷òÃ\F›NöæÕÖ!^­Mm´FÙûîËwÀ™íôø|¶ðÏÙo·>b5ØÆ¬Ô›Î£$æ˜xƒOSýÀþ˜צ†ÛDï¯&l½ß;òó×ñ˯vÖ¿]ûçVˤ}”nk¤ûFýÊNjínRê¹÷|¥øF»²mH¿üæI•ËnÜ6oñì‡úé«W¹ùš†j•ðûÙmÛ¥­ôéÔÄèÉ‹…³¾Ýºî¯÷?ˆ%–¶¤Mküú‡®EPÎúy cXZú}o³iß<ƒÿùýkÈ:‡Ü?ß³ã¾VoÐó´0/ž‰_(y¶‰!q%·A馦ßýêÙ/ä'2ŸÓìkŠo”TQÿ|eóþÍ>b¾»užwïļÀ\±âúÔû½13«|µb÷ÿH-}D:Æs´e>ªcESïyS`ãN£[§»ú ^¬µß®M)M,•¾þ©œÄ‹”ÍTfóQ!ö™ŠÊ<í¼#ù»~8S©ºµ”>´5l[HOþ`ÐÉ×í¼õ\mäuÓ]ßnÍJ|C¤Cè£+gè Ãý)ãøD¼¥ÖÃì£þý„}T­»º#É;}ï›9à¥_ŸÓR½÷n@âg³¼wï_N›ýÁ¼â Õä{SÛ´­m“0É’sdÌÚþû§¦isÆÝë\ Ê/ ¥Ý ÔtÎé°¡üOOSiœèÍ‘#'œGjÞŸµ#.#ï)I%¹|º8Áü G½“‰üaºÌuÒ˜’~-Oœsf)ˆïŸ’F,Ë». â&×ÛgbÎÏãÆÉ½[ºûöÃ>#â¢ÜØÃ9;DNC;¯\,–¹çmç]¸½@3Îåß?“BGžÓ#tÌ'|°6»Ì¶²LàÌkŒi¸ÏîPï·÷c›×¶Oû®ËóWß®ƒeýü•v:ùjB>èËJYìÚì›_ÇlícóÐçßo&sµÈ¿z¦ƒàk˯ÞLÏ»šµ7h¬zN[óöýË77~ÐæiEí$щé^PÀsL¹Â$þ5>îyw•ÿù·[õ¼ü¨AüŽÛ4ÊjžgGø/à7;Ý•)sжû¦—ÿ£º¿¹ØI寽vWø4Óqs»=]î?Ìnÿ%_ÊõnˆêÝ}­WŸ·þÕÿúìë¦Óø9%}óê¯÷øîW÷¿–uïwÿáÛÉôÍë¯ß¿ûŸñ°Ð¯žý²üeû|2{Þ?çŸi®i?ñå/‘þ=A—¡!PésyŸç²M²!—jÝâÅëï^Øô/Çý‹ß¾|x#“‹¦k‰®€×/¦§üÛ7¿›ÓXéDó¤^ÇC’c8Î~ôÃKÇ´9…ÂlfæëgVdÅäùwotäÈê§ßÌÄŸ¿·ÆíÌaó¶N·öyL²ž˜Å©úF`Ÿ—}l˜`ò¦‰xó·ë$‡û +ô4˜Ó¶š¶·®ÎÒ÷Wû‹Ùš_Ë{ cœº1®s+JN›w]Mà*ï~óTËiüÚ:èvKÁšâÜu|·¡·ÛöÂ!ßZº'æõïöJx¹ûqÙ*²µò¯îßÉ4ALhºr­S·Wßá›éibv÷Ÿ¶t³ùðêÕk-Í®Ÿ¼Ka¶³MÜe½/7Þ$ɤ¡óÑÙõ‹öŠß²‰?òBOLöÔUìkú7›õ|n&­õ!&­ÂÉÝÌtÕJš^À2žp›;×óio‡6ÿÐÛ}Xy%mk»mÁEí—½7ÅŒíVÎÆš9í³%‘뺡ãB­ù¥ãBýׇNké+{¼y£,hŒöq‹°7é{›RäbÎJ6Ï>¾Møöå'†Œðõe1ù>Â-Nð¡,:¥ÿ-µ8ºYj)¹ø_•}þöù>=Ù[ù-ª\æ Ï_}ÜSÚ.ŽÄs^©p´ÿë—ëŒcŽ>LÿZשfùÐÂ{Ó=µÁ*+ïi±0ÿ}3=áw/ç„ô‰Ù­äyiú¼Þ2+ú‡éË.1>¿itëXÚ»õOíƒÁí®åó·¾uvî =N–¦™zùÞçmí~´¿àŒ©ÜLoôsÉìÝîÿ±Zz›%}Tª]Æé¢ÞK› µ¹ê{ë$¾y12OÎ’¾–Ü×sÑ7§2_šóm—}¶ôú×/_¿ÿÕç¿ Î\>ûˆYËTæ_Äd韰3ü“§'EUs¢†¹²¾kjS rÿ$–ï%ypù ›n“‚΋ÖKÞÝî“ô»gSÝvýóéY‘Î…NŸ\½[=Ú÷ßï YÝã<×ÕrÌ“ª>â—ÅÎÇ·A¾ÎE™/Ý—»tò±:ü—¶µdJÓ‰;©¦ª¦R¾n÷ÁnøJb³N:ýPÉZµ#+åÁM®–iéÓÍ‚òíÎf™®ßا`2=‘íãªÍÅQ…ÖQŸ=ó£»™·Ê¬NÎê¦íý¹³™–Ð÷,ñÿ±¥ÂœŽ½yùîλäØKÖN4 7'2˜ɲ{ÜLYÞ¼Ýw)Y¥ìcßíÍ…ïIø’5îSÛ ©Õ‡œ¹½q‡m…¾¡òpíé¿.ízÇ“<É¥£1ˆ¯‹}Ûsý÷Ï$§Â€eI*çÍ„U7'”kËÜXD™éÈéëèÛßÞtfa0§È{Cê,B8§mþÃ-P›]oóüïýÓ}ÙªOÛ”}šËÿíÿú߉Ü>\|®éå»Í¯þ üK‚¢ëÍÿýóÿ´9Õïé{¸ÁÕ$O1Ÿ›ÑžÖ~ú=­yÿEÿÞaýóõ±]‹íLõ‰©èû'OMåu rTô¾ßýö;OmX]ìM7îû©ÍÛÜ|ŽUöuÓ›·OJ! Xæ ÷¿ùÍoêS"dyŠ£ù¬b;ÄÁöž þÿZ¡ãàendstream endobj 376 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 318 >> stream xœcd`ab`ddôñ ÊÏM̳РJM/ÍI, ªüfü!ÃôC–¹»ûGðO]Önæn–ßW}üîÏÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000201012²~_Ã÷ŸIØ¡{ÍÕkN—3~¯¿Åü#XlM»NÇô ò?ö³/ëì)KJ+ÖéæÈb_Ö}°ûè2Ž?SÙÓ:êuä2²Ø¶ô=ìÞ„º·tpð•-øá<ë{þÔÉ ØÖp]ç–ãb Éçáìæá^Þ&ôôN>Âó¼oÖ²¾‰“úz'L˜ÈÃËÀav%endstream endobj 377 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 320 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ûGïO]Önæn–ßW}üîÏÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000201012²~_Ã÷Ÿ)YŠ¡{Óù›N—3~_úùG¯Ø¦v•îkäìb_ÙÞ+çé­ÚÞ͑¾´ûl÷ñåzÙ³ºëTäRØõßì> „7»µsð•-øá<ë{þÔÉ Ø6qÝã–ãb Éçáìæá^ÝÓÛÓ×Ó;©§wòqž ½›û{ú'õôOéÊÃËÀÛ¡vûendstream endobj 378 0 obj << /Filter /FlateDecode /Length 3858 >> stream xœ½[IoäÆN®J.9øä‚°=jšµW9±Ià-‹$ÆhàpZ-‰v/r³­ñ$N~{Þ«…¬"‹Z¬I ƒšìZÞò½µª¿›U%™Uøçÿ/7GÕìòè»#bßÎü¿åföûÓ£÷žq oJS2;½8rSÈL“™ª4LÌN7G©æ§ßÀ`­“Á- Î8=?z^|4¯ÊJpM)¶Ñçsû™)R™b5_àƒ&ZêbÓ,ãÇEòåµ% ׺h2K¸o쌱²R´Øìæ 4k!§7]7Ûè«K?›» ÷ÑpRÔûdJ½Æ¯€U#‹„âÝ÷ÑRÛ9ÕeÅ +8œÃ¢´84›•ß‚³¢uËJ*%UžIÛù‹Ó?}tzôőӞ˜íŠÖ(…% jíyñiàCqÉŠý?Ý“að¦Ø]Ú ß{&ªx)&K\¥®N€wrèÙ-crJ'᢬(‰-Î „Øãø'Ü” Íd]Z­üà%)+-R¹žÍA*D–ç"‚ú± Àxæ¸B-ª•¤¡x‰pX¹J1k7àºhãEÛ€‰-\GÃÍËèi½ò»p £pwI’ý¨ªˆ(vûC³ÛºqhMXÔÅK7LhžÚRë©·àˆ-nÒúÎû ê6š¤0°/kRàeŠ›¹€Qû¦>VDÑjÅHtU!F5׳a¥à†:d×N¬œªŠ‡]jò—áÑÙJÛ67Ž®ŠÎ i ÖÔæÚù!x±‹µŸ¬~BŸÊù ë|,+èa$Ã]‰0gîõn¿ Æ›€V’Á³e¥"À2pZ¼å\·s+ªì@Y2Iµ‘”–$v`ã¦K–ðØz^|e™áàS4ñ4 VN ÿöà–æU4R—Ô0%œ§)~æ7×ÉZB¶ýâGȘMãM†F@¥ÖTçñ›ÉJ¦+ÐS<0ˆ0Ñ>/)§F%øyŽ8@¸fF§ø*odoÔ$cw™ÚtÞhꈈ¢ÅcLAßÏ ü^–€¸Ã4XBJy© DŒ+5l+5Ê¡‘)ýgA´)^ - %äÑUS.÷ÞM–DÈ2&Éz‹o0ƒÐ¨”Ƕ•]U˜ÄVàRc£¢»Òˆnˆ•0…¼!t÷zD·¢)ºÓ|lÁ4/5ŒY`"†‚tQ|g¸ÉÃn§!£´ß€U@fqØùÏ}Ömûž›bS·m%»-]LñY“±q?ÉÁöÉ–IbÓ\³3\V»x|@•( a3)1uõ)ëŸV“‰ã¸$ò²©·IN縄ŒôÙÎ ²!jÒQe4$Þ•~L‘€ë0rq6/ç É:}÷yácš¬x †ýEÔÂ~ öjЧŸýaGíºMÀqzÈÌÑè&·´ÃÖ~<ø‚TŠ!p Zªá}¬ ßÅ Fas´=V|Üì[t4¾½ä…>.ô“8/Fj³ƒarŒ‰ëÀ²=:Ô%øÓË}sîŸXÚ9¿î}è üÒ‘W¯èÛ‰=Ãvz×@“¢Ø£tgÙÈ ‡¬¯k Ñ!Ñ6MÑé1@}Hûíï{oK ;êëGÊ  àñìÃùBPnUôåîã|‹o°Y)Šß-úo—gÅñ÷ÛåU½½\ŸØAÅñ—»‹‹vupÏÜæÅÇ_.w7õþJ:‹G‚•Én¸Ù¯ÖŸXi»w*ÙrõÃu½=/QgÅj{êߎѤ#:€na–`¹‘ž®!1ûÝ«r[oVíYD6ÂÃR=e©îÊe½^ƒH®ëö°ê؇m–ñüî=Úr{8T^÷âˆ;þä…^ii(Âñºêdxz5öÞÁÅ;Ø‚GõA„ÆýÜû¢ˆy'5*­S›Í¡q'Hx$ÔûLç»Vü m(\®‡éQ›dH‹Ç›UÝ®WíÇÍáë—u Ž:ž(©b!:×ËÉêdÖ¶ºã1î²wë«R Ûʉalï|Â~çB e6©FÖ+9ª¥FLÒªd]¦¡?—}(`†å}7$5eˆ%²Ô\Ùv¸3jE ê^í×7õrÙ.¶³úúzýú¬ø»G&p›M fa«—¿<}öÉgŸ‡’ñä¤7“ÿúy˜“˜â8W¿S8+zëì ù_9òðEª ±öýõ9ÀuiýjÎä¶ÁÑ'=ánW·©c½}Õ–WžàçzÏ—’3î³ùIçZžØ1L{'Æ«~*õS݈^ÀÑÚHñ;Ãïßt õýäÖÎg|NØù"«E'Z'®w.¼þSöª}1¿»< TDN,«¬³‘mŸDJ6‘’ ½ß1D#å×|g¹Ûö»õ;0y¤ìö9yÄ5ÆVض"ôÁ»Öû(…Mé‹ Á‚uÐëÇ ¶®ŒŸ÷¿o % ªÛ‰P‚]HŒƒóÁ8Ç<:. Їja»T;_Ù0%Šo¦ ŒlOgà'¡"T’Ž‚÷aù` ¡ŽL[<Î)×>f¾-l¹&K†¤%¤ÍÁ_]]ñÜÖÀ0öãýοŽ©1)aFZ¼JZx.¨PðWWžaܵ KJ;?õ¨*wt³ö|Ê— {Ùö°-©†cÌ dÄ@Èy¦O±òïœ ï` ™KO‰ï g QbÞË›æBeÕ>HnŒºxÕê„ô°ßWÖä†]9˰ꃮ1ÌÄÅv9Ž+¢96òù¨Ël÷‚­Ž)*›C2߆ê”FŠà­/°€UÒ ¿ø›íSi5.(PÓ”œˆAC,=‹ˆÝö1kƒ÷—v³á0yu¤|ñE]ƒu”rÛ2o¨L]P”˜»Aûd>€qÖê+ìÌêo³×®*¸±=£à€|M—­ˆýÕ±à¬Æ¶?ÂU-ê.˜0W×ûËé.ž›.ðÉDQ¸À[@ÈÏt&Y7Ë4…LS­® y…<t¼ö©¥/¬†®#bÎêÖÖ_Ó¡9„¶Õö¦ ÑY' ,a¿Üm7«í!·ŸŠP¡0Ni®(í}tµ?‹^DŒŸÇ/<ý.³zÑ»±^²¤âD0Elj·s@5ø·Ê¢ËÍ¢D' ó¬ f@,þÃ#1 U«B—²péÞ]¶Kãš•U\M®IÑç“îL QSÁÚ QóA»9j¥íäÝF-A’ÐŽZ“PkîC­ ÷¥Ö¥áwÈW—†H} ÅD”²¿Wªb‚)ýŸ<-_ÅJJÅmÔ2R2M³` üÍRëÁà‹7M-»µæ¡²½…\g·šš,‰ Y(0giYaBš ½žk¦ëˆ¼ÅFþ(ûÍí¼ö»M#éq~E¼YKžVÏ£,Uªl}ÕlsàJ?´é&2“$‘†ØB´E Ɖž¡š¾…•É®ÒD|мoç6ãÇåš ¿3£¬Šjéúç6³Õ\wÞÏo´OÝϵËÊ»¯%8²¸-á¹<Íeׯýb„ÜÿR.NÀ¼‹;9sowÆž—÷ÇYŽË[óòÅ<œÒˆ~dîÒœØÌºcÕp€‹69z Ch8á2îþ¦pèÚ¼ýÉhSï¿­G­íj€¡MªËN N ÑåÔ‰”¥-ü-aj_¹rS‚v’–qèj³‘ÆmñŘÔãûOðX¦‰N~\×–9™kÈØÚV¹J/ h¢žê£!†%øƒ ²îŒK†ÎÌÏ™C¾—‡|®ÝQÙŒµ;päâö;×Ïm…`S'‚XÝdn—ô‡ƒÊXã}ÙqôÚ-hÈÒ¾ú<œ~ÞŒZò–‚ŒŠð½¢÷3Ðä¼¹/œíâsI~ƒ¬ê\Áür8]¹êA’VÀe‚ =îÈ®I(Z2Âë[¹¢o½óp‘ÚÿŠ×4d|Õ •§hzðì錂RdÐ/Êž ïIM\èçxçñ®kAʲüµ ÉëÚ~`|][˜ÿÓuí@ääÝבÝÝ×T™ $£ú®ÞwÉÉŸPÜÒ¥Azøû²áåÎAí§¤×&Ø= çæîg @Ìü¯åÜ”ïb#©ÇÝ—Ç]eÊJÎŒ.5þÇEÉGü" a.OÖ+»õ¾8ú/ʳ?endstream endobj 379 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 718 >> stream xœm[HSqÇÏqG]vc•¨Û Q‹rH†”…&•8/óVjàñ²KÚ6Ýtl¦MÑ6ýyÜE‡s¶±å%·T £Ò"¢‹BõÐCtÇ"| zøŸ8A©oA/߇ï>|¿_ Ãpß›/‘P:ÅyÕ¤¬ËH•6È[›¨–Í$‰ÃÙø06\9»ÎJ"€Ï~øã_'w#Å.Dí@Õ;1ŽW4rÔC‹R®Ð‘GÓÒÒSS7ôYk ³ÅdUרÖk•$¥ª'óÄ1Y Öo˜Jò ZEÖ6(¨&©–‘¥ Ȳ’\i yVZXVTrHüßjÿ˜†ñÔ-†aÅXéÖ$,«Æ³ðŠùVoº‚ì¾ þn ½Yã±/ѨàGÖ*ÉæR¸XŽ$?ŸA8JC‰(%…ÐÒ•R’s¥N*—Q|qfõ¶ûë ÑÂòÊÄžªŽ‹6¸ÝŒ+ŸGI[lvø ]GÁÏìWé™ùy½×…†ç— .örg«–ºVfÂä4;Giûè Ð÷)05 Ä,Ôvû-}Ý".âwYOsO ÄvB/˜{ûÌæN°ÐÚ4“b¦` nô¼ØÀŒÝ:À¸€!,#]`BÛ ®Aû8ãÍ¢ä€|N»±h?ŠCB”(ʘ€RÏñê ”Õ* ˆÓú÷ŽA«fD÷Pî ¬cÞØàìbð‹Ó²‚Í…ç:6ž›ÿŽ|q”µ‚¤Ë> stream xœ]O1Â0 Üó ÿ )Bˆ¡êR– | 8N•¡N”¦¿'I[†;ɾ;ù,ûá2°K ïÑã“XÇ&Òì—ˆo‹æÆaÚ¦Ê8é dÕáõ Ù@voz"ù8ªs]5k½¡9h¤¨y$Ñ*ÕµÖv‚ØüI[àm7ç); ”Ê\ü»R¢¥Ä~p‰‘8Õ¦µI)à˜~ÏJ 2Ä.S,endstream endobj 381 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 311 >> stream xœcd`ab`ddôñõÍÏË74Ð JM/ÍI, ªüfü!ÃôC–¹»ûû½?X»y˜»yX|_(ô=Fð{$ÿ÷0FÆðôü çü‚Ê¢ÌôŒ#c]] i©T©à¤§à•˜œ_^œ©˜—¢à¥ç«§à—_ÌTÐÈÏSHJÍHÌISÈOSIP v Vpò ÖÔCwŒŸ^”X–ªWRlÈÀÀÀ˜ÀÀØÅÀÄÈÈâð} ß…?Ú˾K•3<[´{¹éòˆ…uk¦Ôvww·uwvUu4TwWwç­mYØp?MbFÛ̦™Ýóg,%Ï×0í‡ó´ï¶Óú§±àºÀ-ÇÅ’ÏÃÙÍýqöĘ0¿"Ϻ½ý“zæõL=¸f*/½RwBendstream endobj 382 0 obj << /Filter /FlateDecode /Length 21887 >> stream xœÝ½]¯]Ir8óÊ¿0óp§ÇÅãýý¡ Ð2Z †`·ÊÐCUqû’UÅ/Y"Ù*µ ÿwgD¬µ"òð²ºZ’_ŒF5oĉŒŒÜ;wfDÆGþÃÝpïûþ}x|6Ü}û잎½Ã?wþå³ûëej˜ë9œãÝ—ß<‹&ãÝ1Þíë~=çõîËÇg—qzþå÷ø8:âaºžÖâ˗ϾºüêùpÖå˜Îóò¶üýÒÿž÷q8/¯ž¿0àí¸<¾~¨à‹îǼÕz.Çqyý‹øÅYÌó|öéòøîù‹©É|¬Ûç;}óúmùé[´/ノ?Ïe¼Ü¿ïšÜ¿±ŸÚPÏíÒIüîw…ÕÛçÓqæs¾|4ò¥1._?¾BË|ùl·iÛ¦ýòþu~xþ›/ÿúÙ¯¾|öÛ«:§åÚ˜Þ­Ç~^çýnjã»îËݸ¬ƒ=ò÷¯îþîîíO¾×q9îš@Û°-õÅNíÍçq·µ÷qô·û.^®µX¯íµoÖ`¹.û9ß½Û¿ó1Û;¾|ÿ:) oãûbt–ëvlwÛÖ†ßóŸb¾^6¤§˜ûX®óxLw?6©ÿºý÷}ëá/Ÿm2]ÏÆ|Ú÷ëºß=6̶_çI˜7Ïþ6©šô×á¨TÀtTÛ1\×¥RÓQM˜Bb`ý}ŽùºVbŒê§^ÐvmscÞê Çö ÛsݦõÚ> †m–سÚÛ»Žë¸ùó®S"—6ü@.¹@nO5? 9Wûš_œãuŸ×3>åñù‹¥}¾íc¸Lø³}"³ÿÙ>‘õ²$ÁšóvjŸÅu./h:lº®Ý "‘ÞˆÊû!‘^ˆÊë!Q¼Qðíàç|9¤¨/Ç>¶œXÓh¼Û#j —»sš8óc{bR¶§Ý~o÷\î~ý—ϦyÞ¯“÷´þÛµ½Ši^æ6ß|Nmþ7xm?á‡Öb=®[¥hÒq„[F.°}Hö3›oëu¬1û;94Iíᨀ­¥ ¥$‡~1·ùzè{xLD{“¿é&Åds«}›“ÁûuKØçÊj”IÑV¾e.GÖ‚˜Ý¦šû 8³ÀFD ëßämópk ù£Þ|ш| Ø®ËKÂbðÞã„mŽ´Y¿UŠ6ýbö‚ÞÓaŠÛRb/ZìöEBw7ÒÇ+ZW|®mÊ®þŽˆ‰ï¤=…1¾ÿÁÞoOÿû#Ü®{!8\ÏÌö„£©À41N£øJÔ`k"ˆ€²}?†ø¬š7Å—6ø–$D›‹MðÓÿDÚãmÀó `ÿD{íIÑÞ1‚½ kAL“s1 rhïdšJ[ JA IÝ ´Â¯Ž;b!LL[.Ï9æ|{J¾`ûóoò·ý‘°¯ØƒQŠÂVðqM‚£¬ñü ÃÔæß:e€ñáî•Br‡›q`‘÷¥Ãi¦=ybÚG°Û"?aé3•Õà ŸÃ¾e6•®R4h ÁÞ‡¯òÀ´‡¾9Ä—”}ìË<¤ ¥$‡~1·ÖÆ?ã6¹}寖Ÿ_íIÐ&3"—„m¶¾œ'ÅÉÈpôá-ˆi‹¢S€CS(¦µô°ÏaHA É ý8|N6µÊƹ-MY}fiŠK[¦—¥Íó&ÇÒTœö¶MöOp›/K[¯¶J±»é”GÖ‚˜é´“ÃÔ¶²Ò…ƒFOð;Edó~Ø›©™ 6èÇŠÙ¯ûû䀽ú`_F ‘¢Éµœ…ƒ`ïÃ[Ó¦ÓêàЦۼ”>öeR‚R’C?ŽXHª³‹õö˜[ß<›vy†"8û^Ú `_&—”Gûw“aôá-€iSöpŠI£ocR€}! )DA¹Ááf1!wWé¶¥=ÑIaöÙ—ŸåðÍÉ­ÛB³¨¶éÒt©¹P¬ÃêŸ9Ž>Z aš^¿Zä°NþtÔGÀÖ¥ ¥$‡~1'Ûl y¬>'…9|9²ùƒÐV£¡}É«@›-mcùÝ-¦Ò\°wà €i cÕÍzæì @Là³üNùؼA,ým‘–»´ÅÊk«ÑvWl± &‚l±¶÷.•¢=²í(§š ,)6—-†Š-d‹QbÚb9‚xQ˺g¾(aø¢&)³ñ¦{`õUµG¸UŠö¥¾+Âù®€áÃ&½,ôQÞ¤ ¥$‡~ñºÚ+\ñQ†ÖTÛoS lx…¾%{lŸa¤€¢Í²i.Ë#†æ9ÐÜbiQ RPJYtÝ8°è·=ÑŸidÀМš±Ê ;m)ï ²¦CTЦc¬Gá@¸dÀÈ dè# 2J!ƒ RÊ ëÆíq°¯£ZdÄÈ$Û}ËàjKÔ¶t&Yû¦Jqøòh’.&0nT¡¹ .tPM²_6ˆØi”µeÔgî¶¾Q>VÌašR[z}.okÓpG[»}*ô¥Û¿'ý>úç¦æ {Ö€˜Ý÷âdÐ>¢6Ôì!`ßO ($"8Ü ¯kó¤gÄãj­Æ×Ùvø½³ÎΦgŠchzHƒ$,óLšWà ó }û Rˆ‚R¯ŒgKl*ÛzÄá1Çu<âU¯>ÑSÈÜð #Cm‡õLrì}àtÀ1f‚wÅLÙìóR€q@°.…‚R’C?ŽÛܸôF14Ò–¥eÍ„ýcM#m_OŒmq۷°Œ´ÄÀÄ™`è£iB’úqè¼jÀ|™6žWÅÁ åÉzm ¦ðÎëõˆÓªµüÞôò}*Í GÞ;¶ØîÈ ­dï ŽªªNùؼL˜Ãçô2Ρé'fü½/«Ï±oþÞ—mtÓ °›0§o&¢hÆÕQŒÜ€ „©ö;šÏ¦6.Ù`kDAÉ¡ìNì÷»+£Ó†º†°Å!r{þcÕ1v+rÄ¡(ìd+GÞ‚Wy“ƒ©Šsé#`×t )$78ô〆5]afÃ:#¦U{'NpÂôÚpR"ã¬}¼c¥Ø]H‚eœCÓŠhz±4Î(…Ì·‰§]ΠÞÙb¶u|†g¼3b›.ÏèL»Ú–y$ìoÀR…Œ€à@Sííw6oBŸ{é `<ˆ©RPDrè7¬¶§íùcV¾ÕSÍæÁv ®ö8¬…­a{á@8úð@ÌdzErØV7ÔGÀÏR RHnpèÇ5‚’¸Øbõ˜[Ág_]OWØÌZ6ÇÕ¾øŽBØ×üÅ•>Q´I¿î…`ôák>0mô£¯ùÁÁžºj°ÀÖRˆ‚r“C?ìÕ“+Ú&DzÄ^ ÌèG“ >\5ŸG_SÛ®¹úQ(`ß«g73Dqœ~”-„,ã˜$‡SÌ8ë?ì_}ö§qÀd¤‡~8(Þ PNÖö±bNãïÛë£çf‡íî;Ùvåý–mî‡ ‚½,<¡/fž%‡6³&ÕGÀØ5‡JA)É¡G˜im#8°ŸÃLFÖ4`l0¦c“™ÖvשR,#Æ‚e¦C#‹äCi¦Q RPJrèÇsÕ7ù´Ò€ ‰e>_ìa‚µíuœû ¶AñÅ1õfá4Òˆ¡‰E4ÁØGi”‚’ ºA@¯Ñ>C?5bl màîÏbi_öæçœ«™a„]™ÝÍ Š&•=q ]@sqÌ䇾ÉaöÃTHA IÝ °ö:Ç;ÇXû‰i«-ý Ï©ö FvY†Â.¿/í™MÙZ ºÄ´ i¾SóÍ…Å>@_óbÙï­{écUlléØz,ZgMã>¦b5|™:ëlÛåu ;tY Âé<#†¶8¤s,ú(Ö¤¥$‡~Ðòaƒ§ÿL:Ðf©¡¶8’“m9¤6:Å6³8–jîä ú(4HAŠ)ÏB÷ïÆ$Å:FÖÙföc±Îæë~tÖYû®çJaÇl…Àb›à ÍÓ4‹ªi"¤iF¡išuƒÀrŸ>6øÏ„÷«}Ÿ;¦WøÏà·+þ³AÛ¿S´}Ü ÁòŸ#ÿ8Ȇ>ÒF)HA)É¡üÔ|j«µy,˜6½†5&>Ã"&wTo Š˜à¨^à…¹ÆÂpôá*0»;á“C³J¶¥ô0Ìö±RPJrèÇK~³Ü1þ3bèýjŠ‹‡ÉïØš°“‡¿Q‹Ï0q œþ3bè#øÇØ…üg”þ5ˆÈæý d Q7H ÚM´â/sói:û:ôIm, V ÞܰÏf.´Ï¦óîÆ>Û*E,Z„œgŸøÎn\gçT]g«Ïèê:›ýh%]g§„Âuvêˤë ¹ÎfÖ„ëlÕW“®³³R@êâ9ûÄq6û\gÀÐqfÁYgqœá¬¬Ž³5¯rœE•Ž3ÀÅqŒgà@·ûHÇ¥ã RÊqÖC'!x‡B°‚.8áIxøZ–ØHÓÓÔ¿¡RPÚÉA°¼1ÄЗBôµ°ôÆPŠâ¯Ù ƒnðÅÌPBÃuFޝ¶ Å‚NÇØ§‚é:kvÔX)Ú¼˜·Â0\gáøbs:ÆØAºÎ(‚œk”˜9xw¢*2óì"3ø_22s¿‰Ì<áá Wø[è Lo A „æ%2s¿‰Ì„%2ó¼‰ÌäÛ2FУLj@Ü×77ÃÂΨÀ14‚`IOz7&DTDP˜â6ÆîI!qÇ»Ù}8Û4…7”Ã"Äiÿâø)¤Ý'ÁálŠ”År*x¶‚O"Æ»l qÅ^’¤ÀãÝôÚªÜSh>Æ“[Õ‘¡ ~ =ÀÀÇØI¶„aÔO•bB}%ÂÑ6«Ófá™sØüø-ûgáC¥ÜàÐCzáÙÍ="8÷63ÓÔCfμ6©ëÌC%gc*5óˆïÔV3/x—‰}ów‰:ÞÝÈ Øõ)=bÀÈb:\ËpÄÕU´ê›ã]>³³·Ú§ÍEŒÒ槤 ”äÐ# °6Þ“&LX`ÄÄ^ÞŒœ9NMm?ÌF _L°%¶93œ¢µ•ÀèÁM0 FÛS³ùæÞÕì `7 )$48ôƒPι2iŒGa`h2kŸ56n}Öõb†(²"DqöÍE`’ÈXKf »Ò"Ô¬±yaó~XB2Þ¯5“lÖ8§œ«{ËÖ£M°¯ Guþ»¶·÷™@9Àˆ ‹íéábé£ ¤ ˆ`ПØG%³™½M·>¡ÖúÂgG #q¬m™Z €i4‹—Í‹E¼&ìëÓ¢,§ÐàÐ/,Ã$à†ù_+¾jü“ Ø1h¨Na#* Êý„Ôy4§o‹¤÷‹"‚"*­DhŠ3|»m³Ø\W¦©K­¯ä°×£tá ÑSüNÙ¼ÎA—ˆþNï—0ð]™ˆ¦wßÃEÒûÅRØyíZ8–÷‹ú®È¾-ö‘Þ/JA JIý8°(Žøôäý"†¾++eà«|[m_<®Aºò~ðÑû¸x¿€¡ïJa¾ðm±ô~Q ùÇ %9ôã€r"cAf14ª¦-BÉhtµ·¿%ì{î•ÍÒXŽÂpšeÂШ•ÞáFûH³ŒRBrƒC?hÅ‹瘓ÄDȇ{KyPêÉm ó,£RX\ha0zðùÄ`gÖÙ¼íÁëZ:.ߥRHhpè[ CÝ'Fêþ¦CWæ×YÚP÷‘Õ+m×vhû»N´©í] ¨Ê³‡¢ìoyª=ß©Á E|jÓ gÃa‡+cª»Mâyƒ¾1ÙêÛl¼ÚÆæ“G\Ì•¢íœ±€áèÃ[㛲8˜z»¯Ù`ãÛ°ÖƒBrƒC?XÓ‡XˆQF†mñ‰äF Ž>©KŒbS}–JѼm+—EbaŠ@D%FRd#ä&‡~ʕؖ.F‘E†™«Ä3Ìà£x¾˜“âWÕÉA°b‰Q„!8(}”EH‘QŒ›"îœC?D¬Dž á|k+˜Ó6&?s1?×hËÛ™0*<–”í©Ç¹88ž¸aÓG`ú¨ÀÏ$…( ¥8ôã@òŽÇoëîqLc™AS$ïøQU{–ö„,·fOé;s¥#ñžGÌß1ÌæÑRÉa³ŒûìÂAdïŒù»DDó›AHƒda‡å¤yl©]˜¯w`jŽŸ„×0"ï§JO¸8Ž>y¿`?ˆs…à@í‚}†Çy¨”’úqèXÎÃ}›ezn<– Ìé¹6YÌfµó”}£hH‰5[¥hßìdqì} Ð„cFrNƒ'ídcÒ/•‚R’C?Ž7Œ‡­7ŒM[ÿDå†ñÃåâ†ÁasqÀNqÆûèÜ0;4'¸a,sb*n˜€«†rÀC?|l‚t\gy¬wyk&[ÜÐjǾm¦­ ûÇ6E– (øéCÂ#¶*a&wš'‡q7 ³€r ¥‡›q &gˆm%ÝgÂÀù.ŠMºÏ¬xÑQ(,]=ÜÖÁ!aºÏ„ó‹ä;©<É})DA)•’ÖbaÈ£™\a Ê$ƒ±XŒ6˜“¢kS ¦ÉM.6‡EFþ²Ø(~§|2øºàð`Æ’©dÀÐbž'9o#Wlë–Éd»'+Šb]p ŸA§<ΟT×eb¤*¿œ™?¦>Š RdP)¤TBY7Žxc¨SòÉ€`6â|2Y,"J:b…DX"q œ eÄ0 ”/†>JF¤Èœ³R)iu×_fÆ*£JKø}‰jD‰U<ÎXHqF²8ÎXEblHˆEdŠU¤ ø"ªTH7èý ʽ¹‰úX1GhØóàFlq8]›9Pc‰è}¤>*Å:!½ ÊòÆ ³ û€Ém/„}v½?¤¥$‡~*4@ƒ ˜ X\¡h0`1<°5`qp¾°¸ái0`1à°ŒHÊ€ExyKÀ"ŽÆIA¹å‹ëÆÒ²‘—.d‘†,6«kÞj@⬚“²hǵR´mg?JÈ"á Y$‡â€€Dõ‘!‹”BÕ@ ¥‚»qÈ^ÛóÈ÷11Õ^;Ïj¯M‘DšöšÅÃV [þÇj¯m*Ì@{mÓ±™[[àöÚ¤¢ i¯•‚r{­ŒC1~C [$Xª/N5(q•Z«/²Ô«/2+•Õ·¶(0«/2%5bü¥¤fõÅ©†-JâŒñJØ¢ZÚƒÛ+ÏG«Äœ±ÒYªEÓ7÷qõuYg×?ã ô¨v¿‚G„³Yøc¯Æ¹ÃÓ}v?|H! H)ý8”“ʆÏ.JßYú°vue,v?»ªSX2þ\8–/ÅÏ‚ƒâgÑGúÒ(…âgåñLëÝí8úÚRÍ„V39•ÕLD›ÕLD Ñ‚ƒ`¥É)Ž–ÕLGËj&Œ£Íj&§2+Ö.nvÒX‡ü»ò 'GŒÊK¢“ª™°N¦åÚDß*Eû0˜W½îÎD9b˜çFªf2¨ÄËKN*zå”’úqàXÙsòA7ß2"ênÀfí}yIKZ¨å%-Ç¡r œŽBbÜÓ‡ær¢ƒâ(\2ÿÏ) aý»T2ÙçY¶6‰ap"Ž,¼¸ì¨ßªðFTCÌ‚c)„*0ƒY\ñ¦˜¢²ÅöZçF_¤Jl#Êÿˆ"œż#¬ØFbhZ©€«}DÅ8ƒý)É¡‡*™0$ùdÄ0ÌŠ”d±Ý×ÝšNv¬¬±¨#2SÑžpæ“ 3(Ñë”=”|²A’™ iÝp€Õ™NÏ>5®¬jV-õ±x‡2Ïöo‘a£×ÅI—(à4ψQˆâŠwã }ó RÔ²›wkb«6¥ØgÄмBÙ+™_æ]HØ7^×JE(µ•&à4Ј‘}d~¡b A QPJrèÇ¡ÎX…²ä0*ù±#¢‚QŒ‹2ŸG¥º¬•âH¯þ¹¸”üH§úŽT¦¬s飔ü€*ùA¹)Ù·“¶od” İjòÅŽ­–øp¥b† +(^‹~VN1L #¦Œ±L*£¤ ”äÐñ©;Ž’TöCTí0UŽ'òc|GÂþLGaN5!¬ÂĨn8¨®Ç šÖYªlª”’úq Ê‚tVUþ Fu;p좺8–ÉÊæ¨æ7 ÂYùCÔí Öõ`YùƒR¨6åfín8‰l¡uŸp`œw {¥ŸÕ=îB—ÿ*Âa³î•¢Y‹&™8žp`,ÌæõÓ’ƒÙ5Sé#`ÔZ+¥$‡~J»ÓõX0ôª­G„±Ó«¶Á;š^µþQÕ‰´q œ•?€IŸØ¬ZWQ×¾ÏôªA Q@JqèÇŸÕ¿ÑâU>±yŒúbô™Ín„U¯Z[ŸÏJѾÎ/'X^5`ä‡ô™(9$¯¤¤‡~rÐÜ\°Ü\°Þ\°Ý^`Úë¿:ÅÞ]0/ BeüG,q(ó¿}rÀzsÀ’ÅuC?hÈQß|ž²Ì034–)¼h3<Ö!޶æ,³³‡‰P~Äð”ev€wÛ’’ƒÝ¯SºpЧdÀï‘ÍûA¨ìä¶ÊÀy,•Šše'—„Ê~QÊN2›še'§Œ©ky);Ig ËN. »1)JÙÉm-úq ;!ò kQ`X“d¯c-jb9]M“ͯ!áï¶N¥9á,iBŒJšU4‰²  P=ȧ‚&Ý”%~Â@T'_˜›pî+ŒM¹ Û=WŠ#kþKÂÅMH |à ' ú(nÂ5ü@Áð¡]ZgéoË>Ks‚ŸßV`ŽÐ:W7&̉¾Qjû_ÐZ~7…n,Íðìcnv÷BKüuÐß–  ß!Ÿš÷#P}®ué¬4bheÍ~JŸVØU+kMÆÙcj²ê*aªìàR÷ƒÖdœ‘ ;la¥Lj" PnþèÆ™¸†Ý0ÍpÊÓ¾ÖÑã),³y÷cDÛa·„Q,`ª¦e­…áèy”±ª­qêKƒUÚÉ.ôý2àwŠÈæý à÷Œ2XÅL#Fe7ß#Ò‹ÂZÅL³n+…%­…áR˜Yà^²è£Vf )Òƒ”äеÖÛªĨfÇØWý8ÎÛªçÞUý0·C­ú!Xž4aè #zÒΛª”UAÖ¾êG?¼´ÑË»”\4a–æ· 3Íü¬»æ¢í‘×# 3d P¹hÄ • í•i†J.dÈl5ˆýðÂ"±cµ^¼0`vŸºíaù‰ÞzL±‰œ“¯‹úÃ|]ÄïëåÃØ\ptà ˆñ:4b…@ÕÁÊ#2 Àß%q4¿4ü©´Šw$†ÑŠ‘½‘ÑŒû„SÅ;F|yR,) „3ÞQD+‚ƒ¢ÑG‰w„¢ÜŒ˜ìƱm²¡,“=ç xdžëžðCdrÏ•âXv™Å¨ Å"³–iN„Ó"9ÈÞBÅ"ƒi³º:#Òjºq(ÐC$3pS˜S&“Ç@1psTõ Ü´¾ó(¦¯×ÈO€ Û$¢Ä\zsÆd²ƒŒÚ¤¤ ˆäÐBaû¨g†í‡‹÷™Í0è`WÈ,;½¤¸Ò`#÷™-Êúå}fÄÀ¨‡¼Ï 9Zå>³n'zØ(7ï3ëÆ¡kˆÚ®·Ûº¹o¼†È1û‚g>Û4Þ‘êçWM »†ïQØ¢°K†Úw#‚7º0…‰ˆËä°Nˆ¶Eû‹†¤ ”äЇ޳7×G`äþ¢Cv×^ËãC[+ÅI‡8NËŒE8‡ŒpÜk ý‡g’"m7H)\7¨³*¯.GLž™Y+ß×öø /Sù=¾ólL8Øûä&PÉÀöÝaWãT¡üªÚ¡hÜK·uDºCšdÂÀ¢Z<T×úw1ÉÎX×DÑtÆ©Øte’‹ íep¡‡b’A†4Ú "ë‹tcÀ1÷ˆ˜,2â”I‰0¥H07+¢c­­Ÿ£–\J„ðÄça‹%¼SPeB ·Ê„tã€ËŒQÇé2†¯ùÔ5¯á2ÛTÏtécå2ƒ«\.3ºÎÓe–Îô¡:Óå2Cé2£r™e´t¸Ìºq@kPœ;µÆ±:4Ì6\íBÃŒ¦¤Ö8âKꕇ\-a˜r´Ð0†fÕ‘ñfa˜á:”b˜ñz†>ª§;Îw·ãPT•¸Ìˆ¡Ã+êOɶD¸]ñ˜1Q+j³%w—Rû€Ó]L:»`lSr/¾2”¿"ÁL·*Z÷òcL;2%2& ÅUÕéÃe‚%-¬ÃL@ãu‚´ê™æL@Ë+#×'Ãöâ…Ù% fË™¶#/˜ hÝ8à¤q-WÙ”‡îéšóÀaKÀU¶ä!ÁkxH° gÙš‡ Bfg(…á toÙÌCPLyHàúq ò®3*à Ù•·8ª;Á âH0/X±¿ðÂy0º·È>ÊBð&^ÐCƒi-û11ÅÂ1K<‘ðùìæãÚPöˆ³ÍµünñSiN8:€F˜ 93Á`Ú’û´¥¿ ¿HÐIÕŠàºÂÌwÃôC—Ý£¾¦ ÌŠæN ?DšÕQ)ÆÕ?r,'™0ðr‰¼`ê#Ýd”‚~2JI?Y?UtÙÒfzLLzÊNœ0ÒS¶#m/=e+Ni¹ú#ï–ä)#Fž²E¶FU  =e,;@Oä–«¬]ñk¼Ý°d’'ˆ¶„ÑïT)šöÇžq-p¹`Õ)AÜp*É“åå·„±Ü •‚Rê€n²§·Œ§|¬F\.áWBÝ„‘L¨0z&Ô±*êgB0J¨ 9ê&x¤3¡nG:ïpÛº¨Ïn:’c<b‰¹)ç’‘‹R8Ûx¸%€—k­ °”o ÃÑü“r/¥z# ¾(ô"’C?]dvöv1ò˜ÝX]¬ÛW`¥œ £÷àÀ„2ö‘)g”‚”’úq@«Z< ¡3Ã`ƸB¡Š¸7¢3ëM0cÜd˜ÁŒ„3˜†"’CÙG f„ f„” fìÆ¡”3TbÊ‹1åÌmð¬*? DÂÙY~·´°š±F8kÊ3š™ùf,eIùY ²Íöòûœõ‰˜lFÙU^bc1Ç™å%6¥Ä½ÜJNp2- #Ö¾»Ù쀹D‚U¸‘–]$–edY¸‘Rèf³SG«qóY7¼¨SÉ?Q°œ–§†„Šämf‘­JaŸ÷˜ ªf¹¸ ܳ(9ÙgÕr  ²æx¼»‘^ÎÚ ¹>‹œµµ™å­(j8ÃY»$ gíP)ÎI¥g†³ÀY „ÕÙºZeì£Ô¢ ”äÐ6æ¦pïå剉=ÈêË–K]&«ðq$üP>ERàc ‚ÜÈÀ¤æØ Ô¶0‰@Š1½fΡ¶gÔò)W59ÇJçþóšy%c4y%ÀZs¢.WÃ+ÀÅ ÙG–7¤*€H¹y%@7•^`\êQ å$Í÷š!~Êw&Œ`ÓµR y… ª%1('Éöº‘ =d=JÊ@ ŠýñÁ*d°ÇˆQþÛÄÛ‰Ã;y;1¬1F9óúäTêÂí¼^Æ1*í¿óvâ}VÅ ò¾¶M5È"ÿ®”zS+kD&1ŒÈŒzŠ ¹Üüðµ‹Éôã×”¹º_8ƒ2 gPf`2(38(ê}Ô°LTuT\fH™q™Ý8 (W¸>xÊroðžä}¯CÂð²o•‚³—Âpr ÃCnpÐ!7ú(‡Ü¢Ü;Ý d=Ç‘•J6£‚‹ `£ £n+WÉÆefAq +ò胃`•l†ÉÙG–l¤*êÈ£7^yÖC±}ÅF ˜6¯2JF$O £æë1Šuï/¥&œùe ;ŒT%–£ùe”‚” ºAdFÈM bX„á=¬r½”5@6œ°HD©À±Äûtg 6? €œ¨F“@FUåŒ ,ËÆ Ý ð‘¡Ts±Æˆ¡5µeŒM×Iàj—•ß­hX5æ§)ŒL±` K,:(†X ; òÉëFš‡J:°¾J@D|ÓfP9ÓËäïy) 雪m:Å9ñ>Ö#!•Ñ'EðÙ–5òÉ=«è³RHÞ`ЉkÑu•¬XN â¼l¥©q`ó®üpV,_q9(lq; ÁŠ#FËÁAËÑGFŠQ U,‡”ªXÞC§áöVÀ¢0ˆ7´ƒx˜#T§"ØF‹æy­m‹jĢ੨SCY$E$¢ŒY¤¤ ”äБ梮…?ˆ@ÕŽ¶È˜Ž ªG„B•ºím…ÂŽÞmÙ%‡„Y÷ƒUíUõ@¥î¤E)Ý ŒP¸Æ!¿–Íì©ø½ìZ£„"°l­fÙWÏàâ#Fyd¼ ~/ôQ2JA JIý8TÀµóÃã=+æ°MÄ‹ö¸~Þ¦1ªú,¢ÁP~ß<ˆ&› nCÌî!¥É á—­ôðó‘úA¨^Üvt‹Â îЧ%*Ñˑ԰Å3RYrõ]Í+n‘.Õ’Œ2lðwÊÇæýýÖÛcDÀ˜Ú"è"­—'É;P€–gTmÁ2Ç€‘12¶ÐG1Ç El.dÚsupCGé–Rg’–‰<£ø‹ªHžx:ª3iñ‡S¡ðÒhÉ€ êLB‘jŽ:’ä¯:“¿S>•©ìFÐ…;—ô8b˜ÜÆpç’ü¶&\ÃAÁ`fr¬ô8aß–Ó‘þ¦ˆj¦Ç)ä:ÓçÎl~3Õ…æa|bÄЩ¥Òµpz-2Lå[½Üz‰fœ²œN·˜ndÀá‹N/ôQÜb,EK JIý8àY‡+-m1ahJ ¨DNKë@Œ€l±mE-mPì(ÎJ‚eCcj£ Æú(椥”A×jÕªt„-“A‡¼_>ƒÏ®£¯•Âꊖ E TJqSÁùíÈJÌ"ï¨WTãªÛ¸ŽóîvŠë;ûd2b”L¶cº1™lñD»šL–¥"™ìÀ!“É—d2b˜L†âJ&‹>j2ÙŽ) É ý8´ægï#&=ccuŒí×¾ÈÓÓ-¶N½[,àêsLq‹ÍÕ+tN±±úÄ Ÿ|bÝ0ª¨Ò°œŠÂŒ1“lÿ³…jܵíñå„}\“k©¢hOíœ Â'#1Ûs‰6‹»ß³ÀÐVÖJ)Å¡‡|м˜.2aòf²˜Ãp€Á#Z\d+ó®@±1ÏŠN6Âr‘#ó®èCé"£¤ ”º­|ÐS¤¸gÙ|bX6ßúÍšø–œqÖ¢ù0÷ô;ŒC5'¬šù°è= $>ø«b>ºÇ¯Žm{ñQÛ 1Ji”£r÷ìŠ,‡$ì.¯pÌ‘bF•œ4‚e” C“êdlL.ôQŒ2H‘n4ÆVC?ŒmŒk2›Œæ‚íðÒ0Wì`õe“3²jAÑþ]j>áÌ&#†¹`äÀ\1ö‘Ùd”‚”’úq` ™"j0í2bhUÙM¡i‡E¸Po—áÃJ»,î¤I» p±Ë€Qä!8ÈêBi—Q RPJ•éÆC«¥æî>V Ü\CMÿíNv]ÒµW ˜d P~2bàæb{ÝʆÒOFH¡s8Úº1¨jòVÓcÅЮÚpËüϸ¢K4Å}©Í€ò;¾x€`]@ / ˜^ê#m3J¡« %³~:´ oCÖš$&kM.]­É©ÖžÄ±ÕV)ìD¸‹|$\kM]ÔáYkKª¾ÖäÒÕš„”ª5ÙC¡oª˜Ãt9]F1¥¿3aÄ›ž•¢õ÷ï±Z%à¬b"Ì>MD¬S±2]N·†³ÎÉÑW1éÇÃoúíò:`tÀ…8tÀˆ ò:€qÁ¼`U`A\°*æ‡×£ëND¸ð:€§ôy@H‘×ЛÈëºq@1ÞáÕÍ Ü€¡7Ð?ÖtÚÇ*Jnùý¤¡‡æ„óö6bt{[0 Ÿ¤#èê6ȧ«ÛºÀ°fx¢l4ahaåwä˜jÄÈF³´“Bafò°&‡„i£ C d¡b£é[¥$‡~JÞŒêxYíUû˜QÕå>FÿJ²ÞÇ‚ Û³àÇZ«}¬}©µê`CúëRé«ÔÅe©N|ÝþâüŒ[$†Q‡ªé0*ñD5,•? šŽŠé£VKåÎRùİT>9¨>úȸEJA JɸÅ~بò“ž3aè÷Új=r¿í´T#ÇÆ;W ‹ä˜ ÁòœC¿9¨‚ …ÊsF)HA)å{ëÆè±JW–ú †÷Oïõ¾iWA·„QÐuªÇL)Þ?M8ïŸFÕ>ÀAÕ>ÐG¹z¯7R§”ò½uãÀ¢? wR6š0¼:nE¥6ãzÌ4Ñ–©üŒ“´ðçÝÓÀÐºŠ¸š^à^.žŽîu35¤cë^~(ûŠQj. Ù´)Ÿ8ŒŒwÉj.""6ë}¥(I‚Yíã`ÊðÄRúG™fì û€*¥5•»A(é°\tOòyL„¹ÖæH-hÚØ>FÞЈCXÂ8¡˜*…/…á詎Ùý…Šƒ_d6f€‘Z0T IÝ " íØÔoÂ( "癹ŸØáÛš[ùuícðVüâÚÇà“£K´½GGFçŠnÜ•8â{é»Ú¦¥ÂG©ê>XÛ”>XÛ4‹ã³¶))JåRç@8‹ãÅð7MÞKñÔRჅMIA; Þ¢mu’2A÷±bp‹ö©Ãë°µ6„TÉ;œ&‚esÉ@ ¬1b`L±½nÑFåí3ëìœw)"͹n Ú˜×ÞI&L^ËVKwD*Qw)[5ÕvWnd›:™0y#[µ±‚yw[-üAÙJa"½ê•”hÂÇŠ¡‹,"nÓEVY\]( \m(‚å"&]dÁ!]dÑGu‘…Yiòìcûq¨RëЇ,£˜Å‰+ˆHœÙ1ˆY\6Äâ3fqÒ©³8ñòÅ,N²C<ä‘ÈÀ–ŒYuSHnpèÇ>®t®®2`ä*#q‹®2\]*IÚMG…âˆPâ*\\eÀÐ×Ep…±‹t•AºÊ ¢\eÝ p(pâD1ºA{ÅIoОq’“&Ø€“Úh\]Ð ¸Ü  Œl0pP°%ú(7hC RPJrèÇ¡z%\ˆ³^ —jwâ­'èäÛp5KâÔ:óçÕ5[Η¢%ƒê:LÈÀc½±È}ÛpH 7 ¤¨•KƵpèÇ!3ì8nÍ0ÇÈ ‹ÚÌÕ Û{+ÌÙW+Ìw–bˆ\m1`hŽC1ÇöÞƒ Å ©Ó+£@Ï'ËÈz³Œ(þÕ;>YFö›eä¸YFŽO–‘ãfÙo–‘í“eDr Xo–‘õ“eħ=-¥ÇŠ¡56igÞ`+¬ #Ö7*ñ˜}îthÂi-š_Q¯d ¹wÏ\TϵPPJYcÝ8þg­ïá±ÐŠ›œÑ­ÈJ÷Aáj>ÙYR]ÒS†ëýäKãõà X–1ò”m-ö‘Æ¥5vftç|w;½ñ€AŒÀd%{^àÎE^ß®(FóWV ²: À%Š‘!‚ƒbu˜¢uÉëåï*õ½Œw·ãP’_Ó˜Õ‰aíD«uWJ+N×ý®Ô^´ôú9·ì{×DsÁ*½( j'’*+‚¿ /¢{üJáXw±¶Ø‰%,m±S‹ZØb+º3YŒ9V°ÇXFÙÞÝ“pd{w?‹8È"CÅ(ƒ%çŒ kXeÝ8Tj&3F!›lRŠ:¯t~ˆê[¥Xgl i“ñì9m2d¿Ü©y^X6h-§M6!Ú™6ن̖»ñ±Ð®jUÿ1aP17\þ±Ezýc7™fÌG§IGP14¨n²ÄØCZd”Aþ1ˆHÿX7œtD“b‘ ‹ Iñ2É6_!gVdD}3>Vä"1 =…&¢4Í()(%9ô〺¸Gžs½Š 9.áCqÕrÛš0ÎÓÇJaq)sá ¸zÇfýÑ;å?ó&¶5alzg¥€å"¶½ôÀø^¡"FêÐÐ+TÇ~«P™÷¿(TvNU*ÁR¨uˆ¨.±T¨()$7U²åS…j?¹*{ì¯ÊžöþªìyEYúÆn*š˜§«0˜ž1 仩F‚Šc "¤cl¼¹'»„–ĹwŒC«jFu=Z] ®£M»lA¿¤°b7Õ²#œv1´ªÈVûH»ŒR‚R’C?9Ù½|RVø'F7]o¾­dýþÉ ÿæ"ß*ŸãâTø'œþ‰A‰~qˆ þêBþ)*üSD]Ð B‘ø6çK9IaPNöŽÊI†“µ–“œãøGå$ab±œ$Á,' ËIFû,'=Ôr’!ƒ(("¯èÆ jN7µð‰að!vS'n#bP¾hQ&]€ãŠ„-p œá‹Â0øðìk᣾¨=’úq(iÉ´¯ÇŠI÷‚­Â'¡ËTé’˜®gùýÄe§rINŸ¯C¥S"È'—D ä+ε2ìÓá‹Ä0øp,q'¢àk _4§]¥@Yq œá‹À(ø281ú(á‹BRúqhÍŸûðEaèÛ; ïvLkþ^)PV©ºÇÎ>|‘˜t¡L<=dè£xÈ …Œ²Qá·a”uãÀù0òÕKø"0Œ?´£“­Æ/þ•ÔFfĀ⸠€¦’YÌqÂ%â\u¼„•L& ÓÁÈÙbìBÙd”¿CB¶îFë{ÛÈLë• Æï„ô—Á6±mE.yÁ¾fïŠvŠ—‘ƒà!,œÄ ä\6¿H2ûØ ZA RPJrèÇ¡àÒ !|LD±£"ðv–€IÊïV)lƒ Âi‰£0CpP"úHKŒRÈVCä M¹:…­øµÛi‡C;lË¥tÓZëuY«fSnX ž!`ËFW¥ì,v!;Œ2àwŠÈæý  !º$…AùGi„()}P$í*żb‡òk©½•° HÃòä òÔU@R:#((%9ôãPn#÷¨E¹ëZRÜ–ˆÌPÜâ9 5Gn]ì,º ~cfÙM:œ\”Û8¦›S²pôQKûgĈSPnrèÇ¡¸-÷ÛÇÄÔ{É8¢üýW–{ÉN”ƒcùûU„óàŸåáXþÝKFg Ëß*§™÷’[¡ Üº—¬N„qnWÊ|Ã2\ЏîeÎ2+îb8ãWHÞl¶.ê¡›+mº†"²RæƒK&Ë|ð¼‘e>ºqÀ•ä‘(µ ¾0(b¿ÃÑ7ÀÝ~Á¼›lëî&+÷ykÁ*ÏÛƒt7ÙÖßMÆ«ƒTŸ·½ÇådK 3¼•IrYDçÂÀ°_†ë–\"€²V\é‘¡3wºŽ…A AÞÍå…Ey2@T‘&ë¼NëÝí `‰MÊ ¥1F +×(§kËöÄ„}ãó—=6¨>ï9W8í±AµqÝ "Z[ì#í1J!{ RÊ$ëÆ:*-³L–èˆt”ju- #Õy¨mªe'Xv14«ÈVûH»ŒRËm«–]?ø4Q5©\N6hzM¸y|,>°¦«î“ìT‰¿¸ëÐ%ÞœpúȈÙñQÖ Äà^—Ÿûò:OlÍß¿xsß~¾ã´6ô´yCÓÞ“¿þö;ÿa;ŽËÇ×ç¿ùò¯ŸýêKélCÍ™3îS2ZsSN;Yjß §5}§>Î6lÛ:ï~ý—Ïf ?Z×H²owv»ß'³m°öòæ#Š¥vZúølǨ®2µ75ÑH–w0ÛûñCŒÅ&“/“öYÅ,X¬æ£o–êh¶œ/Am–y_Ë`×[îÖ‡Û2BØÛZîæe\"‹ÌüŒ œ<àƒ ÈÐïóá·™ª9á6FbÚ€›Lb0X$Ę=¶A ºا6Ûç6ì§Lun6Álßï„ïµéæ³e-³àÖ©gAŠ#zÁÞEk Äê±(É`ñ€³ì"`ë‚B‚B’C7Ší3nJhßá²ùä fö» Ú³šÃšmÒ7xÂ8ø¡µØpk)\¯es‚»Ó8úùw66ó÷%뀜“‚‘C/¾É*©rŽºÅ™[ÀšLžr´‡Œm)\,ÆÆo„¸õ»Npë¢}åþ-áèÃZ3¸i•â«ì#`kA)HA)É¡‡íØp=õè! W"4å< P7³¿}–ËazÜ.¸u{œ¨wCŠ÷x“áèÂ[3øe&â0Æ5Ëê°µ!D@É Å–þ¶bÍfKýsö~å\LíÉP¬ÀÄâtK•˜Ù“”œŠ_VR “Tš­Ù£0…Šï=©„)T7²Vé“j¸ûö³ähnËëÙÄ©n‘³­Îv`Ռֵ=zß#Çç/–ݶáˤ¿fÿ«é7ëerÍíJ›Õ4N¡HÃuÒŸÜTSX¦£² Üžy,*`:*«oÖ¢£ñµS%¦£:ç)ÜDL¥*;¨êæó·gÿÂ^ÂÜ6ÿÑV¨ÑwK¼€ö½?1ÚìŸçLXh«ÌÑ€­þr$ЖÍ'^ÍSzU«?vÞØ'~ìwkÓ L·lb_~ùòûû‡Wo~÷îýËWïŸù}æhY ~Jמ'†ù7ïÞ¾xûî}Ó«,o]/¡‹Ù-•M¾¼zy÷ãó¦Õë¹^^5EécŽéоº£"ls¶=êß4y^>µJtjÕ½l~âzaJ°¾f;íl_â›ürÍm>äòºl¦ð×5æ Ö“¥hn•·½Ï­c=ú©Ve=úɈ±þ c“J+ßâûÇŽBe®œx1¿˜õ x@?ñêP=¸=¶íFä×[t@}½E$Uꀢ²µêBUðÏŸÕ/üýEôü¡=•Asµ÷¤÷¸(ƒ¤ ®GÒýe˜ÃÓRÜýmäÛáRLm”›úqøàЂŗ›*–Ç„¤Jf+[Õ®ú )¶£4p +àà"j8ž—û鉈Îщ€2’A? ŸÂ¤ÖµŒv RûÂí¦¿&œkQÿáy³~†a_/ïž·®Îã´s'Ë.nÊÃåUœGt,—ïß½|õÆõ¨Ñ4é¶}ùïŸ]þöÕû·/_¸Þ’?IEë8r›Íî¾=qûís;ïj_Å<^âðmnÞhúŸÿ2·an—øü¹\:—[x7?u°r{¯?~h¾œëÿâ´·yùw…ó7›¥°6†ož½ÍÕÖâM=榽¾lãú‹×ßþ.$nÚÀyyÿ [ÏËú§ÍDZì]L—_9Íz¶5ïòáãëÇûs<¶CYž6 «£ðX¥­íÌœÓåÞÿž/÷Áqù¦Èó»ÒïÛ‚¨¼?¾n¯L—wßðÁ—û—¥Í÷Öæ\¶m].÷퇶(lÃÖËùÙN~o\-«½ÕÊ5Z›²<í—÷ñè_X­ˆöÔ[‹k#;ãQù7[Ú*ìͼþBøþ=^AüòyιuÝäñ×ßÄüÈ·zÔ·jõ+šõÕ¦m룙ÿôæþ[³Ynß¾ßr±A÷ÕåC׉½«Ígoúþ-þn“òwþÄÚ2]~(C¶3dó¬Ý<º÷ÖЬž­}+N±¶™ú®N¯út_ư×Tßø»÷”e¿|¨½Þ|}ÿO­uñ:žL#½ôsñýý“Ã9Ú÷ô½nlÅ7÷ø¼‡˜BÑb½BÉÝ ý˜D ú}LÑ,ß6-^´uf]Î)Þ ç•&ˆ3l[ôlóêÅjñWÃzùÿºWç¬Å9´ŸÞâïÅ®îöéöMÛíÍœK'ä; ÛWöæõãkRëåÃë·åìžlòSSÓôÜöAæÔüúòÖ àß¾ûÝûïÞ½{ùu›ê÷Þ¼úðw¯>¼zÿ«Ç_?oëêsw²X„Us÷õ yØ/«?˜Õg ¾/}–þÚÃøôkźWsoËScsò%Ùíºó0ÇKZ£ëÊ ºßªûƒÏu톲Úõ×|$/Ÿ¬UÊYššTë;xðïVá@½Äº®—ï¸Wìþ1¶¡mãollûpî/,i¯¶-Âbí,\¿þÛC¶Ó¶^?üöõÛöæ~ñ+ôÿ ütŒ—?ãŸêÝ«oôzÿâõÇÿüû_½sÿã×Ï¿ˆmÛ¦F{¥mÛþòÿúêòošˆ£­éÛo^¿ýø™Ö_?ÿêo_ýèç(®/ñÅorUÌqxzfÀû¯ô¬ØIS¿MØÕ6ªKÛ<íÐåÒ”vbGúœv¯­þP^{æœÈlºXž%AË™>··É‚æ|ö?ÖmáõƒOÃi_.ßÙdËlìÊùšë$ìùðÄÖ±¶5 Ö÷Õ=x÷`{Žm ½WWoùÓþSߌí¡Ë2úãkÄd{£5F.VúýÌò½úºbË·9Öý‰å[Û4oã·?±MÄJV¿{Ó3>#úû\aëúÅõChóáíçP[¶òM½{ßô­§%(7åí—þ¤íN£ÕvR1ò¹d‹ý¡Yyÿæfàoëâòñõ?ÆjnÚ¯-N¦;ùwÝþ¾|¼Ñ%¦ÅJt»ô§ëÓû6»‚Ó¶Ð~`¬|ŸÑÝÞûüßÄ2Ù^ÏåÇ/zõ“ÍËçöøn¿èæZ›{÷¯?û¤_¢Çõ'ÕI›ÝÄf·ª)IUÈä´ÇöÔ5{1¹ý+O¶ÙŒ×änT¦/y7óÖ¯´þJÚîä~RwîfÉ K‚ifÎrðÛ˜yÓèÛ²»PGË:¦Ä·OŽw±Šè'•Å¿ûÏoxr»µ²“FûºmÝ”º aÚ3~÷MöÿTç«…µÌ£:ç¢þ”VØfç‹ùêÒ>0;óhïàòÏ-NðİÄBv#¢½’Ækš VÛ ou´/žV§Ï¶2/R5ì}͉ cŠnuãojËSKýi+üñä„y÷þ}?%ð%ÎËØ"u þϹ)w¾X¡-U÷PUV¿Œç…V˜ªâW]êäÝÄ´yñ”m#…æ…,Û3}|"m‘ÿìNñæ “stíX]¿xR9ûi;1C01Öå®õ´ñzÌ€Ý÷6ÒëÖ ¶v¦êµ×ñš|·Ž¯ÛYÅ«ÚèÏlàrÑj륱;Œ9.ÿkH3Z,n™§æí¢Ä_]þÊy´]vÝŸ’Ãb|§‘ãûú‚NŸ§y÷Ä30ï©fÿÊÏÀŽ4ì(Ô–óóä뱜 ¶_C´WOŠ6ìç|g*¨-3FöÙ4w–”´o‚¥§ÛÆao:¶QNAÙ¿„6å÷6ešÊt=Öñ\ÿÀ»X‡ã_û]œûÿ˜waõ)?ó.>·¨L<Ïá±íÃû±S C65î;|³m2C ,ù²ñæÃ;üÒÔ§÷¡œÓ|ùñEg–ã«§ÌÜÛË.¤nlnÖ¡nçò#”›E§ãYu¼ûz,òæãŸ>ÊfqK圩UU[¥Xo˜|Ѿü?/ò÷ßýð²íÅ¥ñöÕï~(&ʲ?a¢¼}•<ŠÑóæõ‡f¶À6áq$ÅøävÒLfá|îí7êc—ÉôÄÁX9˜ý¬óºÞ½ÿ|HE߉‚G+2qÞÙ”t;ÐÎ@×ßö;<ºø£yÛiµÕب¼?T…r^.?šùk1MÛ):·~ºé¡·ªðlb7“~¾‚ë§Ë›¿ÐÁaXc›óèÈŸØåžÞÉL‡ÛÖ~åX†'VŽºVþ/XaŽBç‡ãv7µ•r]¼üÿO¬DmZ¸R&å“' v‹Ýb›héû«ÎZñ“„ÝæãÍS¼ÛgÔ‹OýúäžV/ddÄsŸR½˜—Ÿxðvòc9ãrùåÓ¦” ÏŒùtsfuyóûP&¥ ¾˜f <¹Õ½ogØ28ØY[oÞ=}>»XåÚAÊôÇßÿ ÅcMErºä©Æ/žüúÛ>Ùö7)¦7¦ð“Ço«rr‡ûî»ï–Ï(û“íÀàû¿¾~j0 Ÿš;ói™Ïg7þ÷|g{ÿÊëu{zèÏq_¡ÅÞÊoåŠ÷™ÆJ³_ÿðƒ=å§Ì…¦Z |8ØÌÿeëßbFÐÔÖ¨mµÄ,_¢þ¶3®ÿþÞf¬…{ŸÇe¦ùù¿`I´S‘q?ºîÜÇÔøÛJ۪ܭ·šÁÞ>ÿŸÖœG[G\SÙöésšÊ͉Õ2Û 9k€Àï¬ÍŸVwWpþ€þt¸­Û(÷qüyRùŸÓ]׆~¤Û}Äõ¶ÇþHÑt¸Àÿn[ÃgvQ=èÙ,²PƒÅr¤ÖÑþ,¾l½/³óf¸Ìvì]~²èÜ÷“•Ût¯õüã7Føà$š;£5]âxýÍÓ Û ßÛ >Èüæõoßß¿ÿý×—_¼¹ÿøñõë_@'rl{RÙ³µáÉCã/H³iõÞ¢w•Õ÷‹ÔÜŒåÇWï©©mµ…Ö£?¤,þpÿöÕ¶[«¾øÍïÞ>Ägt¸¶•ëz½Úw$óå¿zë«:Áÿ"Áý?¾zÿí+üüßB¦A¾mƒ¹6•÷þ Ýsº|ùëÿô«/²ë¦£þöÉgõêŸ~xÿêÇ&ø×—w_}ÿú7v¦¯Ãôßÿœf?F³Ï)ºóõØõŽÿæÝG×:ì°xï·â{óS¹Í¤# Ø fiìq’ý]÷uÐçïâˆ|>çËG;œö6íËù¾ZS?~ª§„ªè¾™Ý¾ŽÞKøÙ/â%Úš9öÏSÿ¡ÓÃßN¿óö—©?{xÿüóªØ}wD¨¹…—|sú·éæmëÇ`š÷¶N—»Ì|¶&¿öÚç£mPãù„–¸[Ðוõø‰ãÛ§5h*`ÿÞö³?ù#·³ãs;Çt]w«P[}SwŒâVøø¾Ó‰?<¾öé{ë€#æÝ#NþÛ§ö²{ŸqÿÌ€-þE‡ ß?¥æŒ–ò}è´É!ë?§G»ö!d_?파euFzÇñùIÎÏ%<Æï;òíçàܶÞçÒt<øPzKâÍïÓ?…C…q ßS8\n'¡ãûsЧ·?òoWÎJùçñE]W:Ÿ¼¼AûÔ¹ƒzäES8üÿm•ÚnLn_‰QÝŽ}…ÉÂÃæ³×˜~û‰–2Û¢j±çˆs¢€nž9‘Ÿ|øBaVù»XQ°Ýïß!˜¤­k\“ÆÊ{[b92Úmù£ýoÝ Úw'i¶Õèë®}„—Býs>;´çõ§>Óó:Û´ÿIô¸—pŠĽØëéF~!ÿÙ/d»fþû‚ÇÖÙªU´íäÉÖpÒ›ó¥)_¬~P½WÞ¶÷Ͳýòá9hZ.ÿø|µÝ|Úšmùú!mÆzcÒz7O|p›¯®?×QêlÎñS£Á=¹.rL-s9Òk¯ë‘ÁäÙΟŒ’ó>ʨþÕ£¬ ˜i;´)I~ʽ~Ô}V/»t>oÖþºÁãNû°t{BçXë¤ÏœɱyùöÕÇ¿ùŒŸXI,lKod?Åòxãwvm/·š_¯†ZœP#ªqBÍ?}¼££õ÷Ä*ÃòóžîØü%ºü¬ÙÊ€KÓDÛâüOOúR¦¨üüó]jøpdžžg¿NÛb[Ùèòt[ïHºú:5[•ÓÉB‹¬ï€>©·zùå_ý;úK¶þÕ¿{ìãÐ^Püë¼–øW_,lÓm«éÚÍnçûßzûææó×1åû¦ñÿ!ç˧öI>1,îxÿ¼Þ“vþÙK]TGøýë^°Î­þ§5ï¿BÿHendstream endobj 383 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 369 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªÿfü!ÃôC–¹»ûǺŸº¬=<ŒÝ<ÌÝ<,¾_ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg```4b`f`bdd©ú¾†ï?S²C÷ÓïÏ¿3<ÙÄxù;Ã÷©˜¬ûî/šÆÖYÛèYÓÐÒjÕ]ÛÍñÛŸí»ÈçµËžœ^µRråÊ-ûº/q|üÍzå·ÔoQC3݈m­Ó–¬˜»~aÝêx¹EûNl¼ÐÍñå°­•KŒ“«·üïÆß¹]]Ý9’?ÜÙøÊüpžõ=êäl›¸îqËq±„äópvóp¯îéíéëéÔÓ;ù8φÞÍý=ý“zú§ôNåáe`ðVendstream endobj 384 0 obj << /Filter /FlateDecode /Length 11923 >> stream xœí}]$7–ýÚ~6ü0†QÐS–w*üŒˆÖ€Ð0lÃ;#c$Ã(©Kê\WvõV•¤Ñþï>ç^’ÁˆË–z´ øa=¦³˜ ƒ¼Ÿçž`þÝÍtv7ÿ+ÿ~s}3Ý|÷æïÞ8i½)ÿ|s½ù«/Þü»?D–ó:­îæ‹oßè%îfq7sšÏkH7_\ßœ\¼ýâoÑyYv'^yÅoß|yúüv:O).~]Oï»Ïoås˜Ý´žnïøÇâ–¼œ®—oú?ïv_~«Ò—åt ¡ßÈ!„ó4ûÓõéöÎcÎKÊ¿éãå}÷ÕwåjwzúV?®ÑîŸw—Ü?ò+<êšO»?}ß õþÖ/ç)¬áôÊîƒúÓëåúPnÃéE‡Í>g?Ÿž/»?_nÿÇÿ‰û±Ü¬ç\ỲÄw!—œu¡Þ¿=?_¾:].o¿º½½ËašNñ½ÏÓíKsÄLOO’§$ƒ:ü‘¶ì?¿ùâß~yzÿðãÃå»w¯/ç·åêpÎSŽÝÕÓyžóäåj^òôÃÃóÛˡۻy™¾^çÙ‡¾¿K.hEĂԻ}þáòöAö)ù„EI§·O×Ëûû÷¯[ ¦óðþ‡ûÇï~‡1§„Uñs‰Ý€¾øßÞß?^þþá-¯ÇÝ—ùôøôÝÝãå=<^Þ==½•1"2…m:çÑ"ü—ûçï0‹Çmvòpw)ž·G›Ö¥Žñ_¿¿~ýð\¦±&‘!ýìOß¿¿¼¾`èÖUöcîf±~Ê*;:»púðty/ÖåqS¨³Ó`¿žóÛj}ñ®SEŒc†È^¾ïš¯×ûçŸøoN½‚<‰T;O?–k!ÕE ÖE8=©à§°ž^ïwÊõÂ+¶ÁŸîß—Ï)`˜,ô 2ÿ§×çûòÅêªzåÚiÚëå©áÇËë»2]ïÞíu]Ÿ0íÕþ«yÿº³oËi=ýp›´þrßO7½;¾;˜€ë5: w|zo¬NQn]£èòéµêyÚíZôùì!YbKO¿Qk›–ŒrØ»® …”^)íµòµt‡a¸yéÝеŽüô¼÷j÷E©Äé-§¯U޳Û+Îë­¸Ôy…  Oá Y»?êxÁj%ç”×}ûóN!ÛÌýéy§‰ýŠ<]K/,ÞîÖ¿Ù)ÜÞz¼ˆÄ,xŽŒçÜë®-iÚÏñòR¿püLÁºKЃaP…XÝÖb òOO//—¯;É|d€f˜òu³?±Ñ©í+ÇöTj]w¦öòm7äO—^ô¿Û¢‡]€¶@ÇsÐ4|9ؼÊ_n?»|ü ñÄȧ¬ˆ>à€Ë0¸±Î;&³Íò¡F2Óv¯##Ù„+0…ŒsžËJü‹W¦2 ë¸Igü;}u*®vêzÄOx€2Î?ŒãÏ!¹5•ؘkOç¼ÀÝÜ-ç%¥Iƒ€‹öÌûyÃ>Á&"0™j¿6 žôã/<Þêâ.ìø_~[;!x‚²>_þ´åžYsYwúâÿýó¯n»Þï·ïºna3,=`Ü>îFži™\ñCÏ=^ ã"'y°­Ë\çVÇ”Ü5—‡žBœ½º/À„ÿIΜ˜Êrç9Hmq4ý çjE9–߯rgïCÂß“¦ÎÁ‡Á•Ôæ1ÇNðrÞÈMS¹õâçÒÀ¾i™—:ǯ3lίÉE„¹‡‘húp¡‰æÃŸ>Œâë–iÌ×ç]óÒxp²GƒÕ¡qþ9£Kó½À-O<1¶_ ˜ŒbæÙ?ë__úhd„ëßòq9D /r?Ø2O¯Ï·²áð¥{˜os7ØÔýìÖáDªþOWIHÖ˜÷‘ÇëE]yEùöíµÆ4«8N®#dñÏH ÊÚ#±‘œ‰Oü¬íº‹Ó9Ûg JéÊêíåKç_ÇCð×І÷‘àNR:(’™Œ„}øñìŒ~ÜÙæ9Þ•.Áý™nàîx ¤¿ßÅž—¿§ ¦y‰ñ4vIb¬¿z›HH˜³Ð‘÷UožÎ³oiN ÈRëSœçËgC½GЗCA`/_ª{ %„-ºòøø$y€ËùôãK]ÙwýûËwýìtŠwüü‹7ýFQùtóüç¢ñiÊH/Ö›ßfä3íKöÏ8Ã}õã}uû;µX—Ã$}ÕåEg}Þ·O5£Äz1䔪ŸJ’,ÖŽß|…,óù³ßÖÞùôÙû‡Ïª«Cºö¼"fõGÚãÀÛ¿¨ÖÞ><_Þ¿~uúÙø‡kCtõ¢”ˆîþœúÓû…¦£À]g~Ûu¦‰ç˜GçýÛæ˜þ‚.+Š{¼ÿúáñå •Q°ÑG„äXµ‡q8€Åç‚_\FUx{=ýŸÛ&[$½ñÆÁ6œ±MKHgú#„L+ÿ~~¸ù››÷sBÜê(… á¸öÑŒE¾ù[ÈÒ|ƒ¬Ž°Á÷‘IþÍõKŽZœ?/7hðð²7Îì0÷q’GDÈQ–3qX„‰[½´Ýô¿Ùˆ+Ðl\ –ܦs³¸>ŒãàØh—ô‘fÇýñ»»è­0 ÌLÁCÝ]D”‘æÈÓ,É^Êþˆ¡KµAüe(Z›‘íÒ6RDUE½¬+Ü%¢U~*û@£Üh†`Ít—k*û4Cé':Gì\Ö>~';Á¼³BUçU°–uzŽë‡–å\̞ȥŸÂRçgM£1Ÿf‰GÛ`·ÊlçÀÛ(`)¢ qبÄF.&¸9†?ÆÝ Ì òœŽRet/IMÚ‰5iƒÌÓ6zª#Ò›K}(D—ËQÙBß.·:\Å‘áÕ .W Õ^sÑë¸ÜA£XY w¬qÔ$!…§±ždGÚeÒ ¶(ªc…]aý21ð© ÇáWGÇ]%ò´»%& 1nJØ5 mµO˜±.¸y‰¹± г幸z €×¥hUŠYv*M"ÐÒx# u ‰Š—ÙâêÞaâŒ"&ãŠpEш­*ɵbW$;À¾Nláâ‰Lä˜\ΘdƒØ‚a·| Km¡êÞ|-&2PxsH“§ò™’Í ê”±*:È’ª¹ÇFa«q¯ê?`lè¯<9ª°3ÓåŠ5°ƒDÓ8$hˆ× Ëà*åjYêQúé4S™éSB=øöÄí\ªæûµˆ ä¾ú\3÷“aNÒÈæ"R¸ ju)Rê¥ÀǶÄÞW•îHIJª©—htáH®(ñá*)à±±¿>Ó‰æpƒ¨£F$ëuÔ4 ž)+]ž5c´å0ŒªÒ¤j²2M‚c§)ÜF³Äàè·”ªšleßåZG™ºÄÎJ¦•Þ„õ™E2ÿ÷dãÙ§È<3A "-„¶ÌedÁHÕ¦E®N`ì: –µi³g#q­Ûˆ^òzP.jØg8ÙµÄGœE”Ùøâ´‚xai |Ìv¢’ CI˜Â"»q©Z¼€•¸2n)á@i­b•BAä™wË“„Ÿ”Ü ×å)¥pÞ-qeu4#G—PRCW|„ÇjÌ÷ÝÄ‚}H²¤µáæËLB ZBƧÜNBhŠ7\«’®“|BŸµ¤~ í=ûà‘U#Vd*$BÃb¬ÌQt`1S½h¥„ñ š¬ª¡Ž‰‚öIÄ9àœÕ‘K Œ6Ã’T¬ÓâˆíÄZS©±ó"_\ÝŒ[ÑLK –©„@“äì³ÈZ¢¥ºŸ™x nÈ(l8™àÊÄ_6B31œ ó Ÿ4ÔpÎ5XÔt{.hÉvf±Œ 'mñ yŸª›˜ãÊ„ãÔ ž!ŸX[(ÍTbô™†šJ3Uk1¯’·Cæ¢XŒÄùà6¢ æš½ŽSZöâ5Ì÷éþuXÌÀâ {°øÄð8‡ÅB`‰ES,âBÍcB35ß«ßÎ%S[5D˜Š{±|¬8W¥âÀÚâꔳÂl©™ã™"²e3~«¶h :‡ aiŠÌÚ'iÖ˜áСŠ<#3B1ÏâðrÉÿ,$ÈÉVݘLˆ/ÍØîy2–àpØFíy‰eýòªv4#¯M:΃ñO“ìý8C»up2”I/*l¸/Ò4v£†¬®øªY#MHÿ\]J–è:㪙‹„¢'C) JCâòÇ 9 ߈π¨Ð‰r´°¤A.-¸9@ p ,ž0À,.a± 릭+7î~ذÁ„&ü A}¼uÖêµÕ}k¬ á3KËR€<$‹„ßS™³%ñ†‰I,<5€° Êe²›0ØœÂäIŸ¥!ì‚b]Áz³æðÂÖ§œyfEvqà|RRü`³*‰ùÍU.rKxyÙ¹”'Å;š!$ˆ!It5¸ÙMâ>èsgÖ½Ú2ôjyŠˆ Fš%!$:H[šáò—f¶E}ñÄR_Р Èñ*p«ç>«&þ0!ŠUW«ÑFçY@V=Œ Y5¨¢UW£ÒFë†Ác_Žè(®‹6Ìm%8nƵ¹Ò“/”l–ÔæêÉ%ò ©Hèa¿5ŠÂC0fä¶­fVQÚ “<º¤& Ï^ Ájüqg ]íQ“ëY1è £UZV ôãÆ´P§…C djaÕôzDzFz´+åq ™_1•Ë%‚Ë^KQs¨ €c¡ÌVÒLµmP‘3U»AeÏVÿl…ÐVm¥ÑV#mÁr_Ò,KEÂs„öñÊu˜ s§faq ‹}|d÷˜ØÈÆO&ÆD {+96¤GåÃ¥ãé®KÀ9M≂—L.©me™½d+³äš + ˜ñÑB«â­tDö$̺Q;ƒìÐ?ƒš٦Ѽ¹—͈¥>¾ŸN]ßaœÁ3ÞDˆÑDRüF9sLñdB =õ­råóÕb Ž“cb1é †Ê Æ· dù^ÞcÑ"¶/ƒ\JwÄ7ï°ÛXÊíZye…Ÿ¡=„t'Ú—I®%Å<ä;*DXSý:é¬(™K"uSaæó[™+“üò.04؆N:-†U[aMçÜ -Óbfñ /.·/Ë´ ! â¿;hsjOœ„óG!‰¼¾°¶/g~‰$ ¡_ÕD0¸t·]ddG?ÀWL"K›Ûb¥•_f%åó®Šúežø%‹£ü2’[’Úbä²T°Qp!7޼¸}ëK‘µ•.2ð‚@5Þ.F1ø…ŸöJÚ/qÛÞüñMuXªØ¤!å¥]A˜Œ î‚Ó›½ùvoàj}—ôŸ L. m&}¤ïkjÿ5Š7_Л¦rf‰‘FÐKë=ú h(è’>r>DôAh2¹ ûCÿ’z|¬ÿ7Ô ÈÌ™?2£ÃF]·«ZDòÇ7X©´m½jKßËŽå'7+‘¨²„ÆcÙ^ÇYl½Fóú´^â\²tZ Iv}¤N²öJËî~ŽÁ…ïzÕ–]/æ:±¿amÙõ¢«›Rß«´°×/™z·æ¼c“%‘i 2ÃôYMýYÌâD ŸÝRlË9•FoAÍ ³M^›øòDµ-agW>Ê}ÞxÌÍÀ#² ã¾"¾Ää¾<}uº'ç¸PîÿÃ-ßU]‚?}ÏwÒ’SÿÒäâÂܽ4)¶—&å4‹î›ŽŸë™>/ù`ÄÒ‘ »³ckè1´d ëIž’©0Tüª¼€ÄâYt Íů³p¼6*Œ_“ÈìF—Á0AËd•RãW'xçF»Ñ>kGÍñ ëâ±£ïx–§ÐQ|Ð"ÙM¡tᑄϰq¾Ð"‰ÑÆ “>1tÜ1O@” l#èzB­¤¡6‚.²¯¥JÐEŸBe«]ϲ+H¡ë S†[½Èèº[­)y&DZ¯;yBÓܦÐ"T¸­x…q$ß \Ç©ê×"˜gÌ/Ï^ eÂbHkWLóžXÊ8µàæûû´Õä$ƒ ~«Ùø Ñ[:Ž®gJ‘掣ëçÂvh]Ï%XbÇÑõÄ ÂÚUô=—€HP«úû%iE¡1ŽR;B\ÃDgî8ºaòBóÚHfa⃇¢FÂ!•‰ Æ“>WCº¡h¤€nX8f¥V¼Ò’cWÂNx%–²‘4Hù³V–¼8á®øiÊr§V ‚QšäÍ VÃò䙯[ë\ž¬©´V.¤,WN_ÒÏ«l6¦±YÒÆæóD—ÔáÀɼVÙ*Vì‰A²äÒðdaPºæìYW•ùT\›»°HÕ kA €6x;«dƒÆÒ¢+ÍCcéz)ÄŽ¥ë‰8ºÐ±t=ÒÜ‘t= ÷‚&V’®§'aª$]šS©˜Ð³½¦Ž¥{JÔ —·²t}­}4–®„£”ŒÆÒ=^%#ÍJpm$]OO%´ŽJ¥•lcéÖgm$ÝÃ(ªKSÑ“JÒõ L›û‘çY$r#é¯êô½a"G‘ºŽÄΊ¦ßuVN+åÂÊβó­ž%±Ï²v5/\5+©µ–Ô=Ù—B‡ªewkµ¬aØ>›ˆÝFõ –rîˆºÒ‡ÜØFÔõ³ìÔu}Câ+W’Øu¡€Nv¦•Š ¤‘˜àVN©­Uí£úC2ÒŽ¥ [¦5–®Ô?y«ÆÒ­yùFÓÅUâoKw7ꨒjL¾£è†Â?«ø¹P+Â4wH?þ” }ãç¤âY?7°F̾òså"–'?W[ÖŽŸ<‰Z©ãçBþÄçA*¼Ë!‰Ê䯢Aî0iR™6GaIüSÙ8ÐÿÒvB}¥¥‘z†A“ ¬Lðe4ÃÙ0/Kœ±1f «ÙnÕ%Ä^NyîµHŤyiU*äHAÂɪ4ÉÞ„ÅP™4Ù˃6š®<ôM¦‹–¤ì©ÊÔ3Èmã¡ EùK‡‚G×ܱ1uÅÀÊkM•©äâÜQu!Ns„JÕ=J¥GŒ.7¾±ê`bg‰ÝW7°j@ûÙ¸ºf\ê•«{gìC÷þ†’é…\µque…$­\]<½P³6®®¬«°\+W¨˜ÂÊÕUY診#ŒÎâxë³xà34°¢E 8iàK‹pÚTßÂGÄÀ‚ àÁ‚À°þÚúô£Û·‘Á z°Æ1 ±,Ž£F^‡Zk5Ûj¿µÖŠxe55ž‰ˆ…_;.Ê ¢DÇÈÄ‚T# ëu™d`0ؤâ˜xL$ ½JȃLò²‡ù–,¾²ú𔓲°*ñÏZFÙ+/¥Ô¹3"È…¼Ò9+w-N"ÝfÖ$§ ½éCKV#Viz‚€ µ2ùÐâ„ÓØ~‚ü.! Iá’J”éÐ:5bá(Y³ Mú,®a±XÅ€,‡1XÍϱ˜Ï²ÐÑ]2”E©,’uŽR yü"Ü´žëyžHêØ¹ÈS³ú’¥ë¼âƒ•ëù7«±sãʽ$n ;דX%ÌÇÊÎ…îèn5znÛãFÏ= 3td6[ JÏ 4Éòæqe•AB‘åÂþ’ê1ÍFÐ 4”¾ã玢ŠAäqŒN¬žtù¨íG{0+¬ŽõÈêÚ@­ÆµÚjþÈ:X b­ÌQÁj?w]©cqäFÑNm£èŠ —«Rt{.ÁŸƒño#‡H GÅ©ôEɾ¢ C“Å4Šîqœ‘ <â%×!¦bp–ÔÂÒQtG¦9-jÐR‹¨P×#Ä3R¥}!KÈü*w](—–¢GwT*³å4Sr”åLénPÞ³%@[&4•D[liÇÏÝZ*=ªN¡ùÑsY—r”À==WK'‡ÜI™ºA~çzæòê|®'EËgž~~W„'Z…ÓµýÈ…?==ß?öGç&Æ Ù~þìÜ]Áel#Ϙ ±£æÆÀ´+nÌ”´Ú²‘W†•#v*Á%†9Ê{RSŽ¥ãÉ`œ,䂯¥‰rü^åä ÒOú®~åíÄ oïoÜ´,zú‡DRÑëñ × -«2Ré`ÒEÎÅ­”±èg7jnDŽ¥dÝJÍ û£s£›;fnô娗ÆÌ„€ÝÒ‰¢@{KWHŠL‹¥DU‹M‘ )g¢Ö‚B¯‡ûÖ¢•Œ#…šZØB:Ï}í é°“¯å±È¸sŠ] -2[ä{{­Ì† HO`)…¸Èè•~¸Viéè‰Á—…›:^nd^ïrÇËN©ž/}eêÖ ~,!áVå á%ĬL€£ÈŽBðHÔ4ûŽ—å\ðÐË"«EËÒ!Ò1²:Ô-ž×7`;ò‡Üô`‚}ÇÈ×â|ÇRñß tôY:ˆÊy †r8äÜAõ#wX~$oU°üŠ÷GÉBÇÉ,÷…Ž’‹†RÛ«”Ü(¯/%72 f¥äFÅäuˆJÉ925)ŒÜÈ”¹Ô‘™Ö0ÆkŒÜȳV)2‘y$*k®•‘yŽ*+‘ ÌäµcäbÓ)Û\(6Vk¥‘ÃZ8º…‘‰x†Ž«:B®ŠÇ\ ¹ø3j\ ¹1r \—½ŠüD×e¸‘¿(DåšG"Ü׿#Q—ºT:ÒEÊq½5ÛÆBÈÛ¬-!Çt…³%íÒ"õàšØ3ÀW€ &ÿ‘š”ž+@ !¥ç "D2€Öþ}àH´…ö qr±žr>ÏÆÉ! `¼‘r«™ÞH¹‘UÔ”7RîÈÂŽŒðÞN ùÀÒã‘ô¸—RTÆ’ålV6èQ÷GUåÈté8¹2Ì”¶JjRB®VˈAOjå,oP¡–D"Ó 9xµð9¤!¸ŽòùÛRUª´$w6êò9­‰´rUd½ô’VÒŠIÏ/ÛÊ^°³¾€WKch ‚E·ò™ÈÚ:o¶HÀ‹3nE¸‘Y´¦ó¸Äƒml•ÙÎs7À8H86ذ‰ Zl`sŒ}Œ¯‰Ak²¼v¥!*¸®ú¶#å.\Ê)7¦¿l¤ÜãU9Š_\:Rnä‰r]-eDŠãâºr²=ë •DÐ"ÅÎV5‰ÞɶŠ<'áŸV{AKˆ¨Õg°}«€s­†Ãß=Rºh­óH ·¯Õ‚°bXZ¹(²|Il¥È€_hµêyúÝÔŸ«Ú1 e÷ˆú®À‰*‚<×ç ©PS¸6‘ˆ×:V^„¡“%mÌ½È &tÈ/B¯,€^C‡Ý”#k*‚‰ÆÆ¥C™¡5«N§"Ñ‘oÈa$­F°•;4;önmeäbTN)Œ\‰àäx´ÊÈ•(Òß¹‘h§K%7²DOD´Qr#ÑD¥JÉ<‹O»-¨`dÉ9vŒÜ£DŠ”Nò‹9#W¤;øŽ‘«èÚ1rWÉH®Y%W6GØ•8å-P×QrÛÃ6NîqÕ%Wô¤’rÑàÜÆæùÖ1t¤ÜãU#\û(RבØYÑ´âxyWÂ… Ò“`Z Kœ’°Uk™ 2Z®åóHÆ%¨•ØÍ²V;A n‚uÐKà:J®ôºm¥äFž2;FnØÝuŒÜHQL)˜ôžZB‚¤çp´Ò@m­fµÿ„5éÍ-70ͨ´\¦í… Th¹5'ßh¹rÕœ:^îqäah³9âÜQs#ƒGAë+î“58©Ø|d=P|bÅïau&=̤bü9H½±s#£GªecçFŽY ­ì\¹hY;v®´¬±cçFêpxn¤1à Yœ‹¤B¹¯ƒàI+:¹r‹TzMd /P¥àÄ´(å¥Ñt¢¼ÍÒy†Ñ“‰°Lf#5ÌÙx¡JãÈàŠÜÕ“"O £il5'L¤òYëR‘ǣŵ«]EBeJ¢)õ­ÈãïDcj I誧ÝU†a¤DÉ1Ö•…ˆ¤MyQ©x”¬aâ¼Ïõ¯0ÀÂR8¢—@xÃ@ ˜Ä@)nQjÇÆÉÅüDm6N®<ƒ¼’YI¹qb¡oéH¹âŠåMÄJÊä%ÈÑI•”+>Ì-)7NNð•Èo )v"kn_I¹¯¯1cm¤Ü@ª‡ÍYI¹Ô[ß Ö‚=5Rn`®RÇÊ |­?97Ùý¬¤\÷Ø·Ì"_ç‘Óø*)7’±,Áa%åF¾'$õüBÊrôTÇÉtôô“éTié'2»è+µžh¥x éV¬Æ ´ ¼¤®úI6]æ®Ú+ÊÜ1î"¿ãt+ö'é©a•¹'ØGìOáÓÀuc½D¡“¸Žƒ¯¼…Êž‘‘µÅÕ)ÏŠ²5NndH¿ºŽ“+ÖÏwÌ“HV ÓÆ<ÁChêØ(¹‘‡ÅñFÉë,¡}¥äFÏ*)B¥äåBÂ,ÒrG¦ƒ*ÿ6 ÊkÇ­¢\x]ZHpÿ–nT@ŽFÀ…6Ì0¡ˆUÓ*m7aMX%9ê‘Uµ:Z•5jmUßZk@¬‘9 !¶¦¼·^ ¸²KÇ¿×Í“ÿV\·ÄW•{Üs89Æ9w¼Y §ÍžÏòì‹'•}Ûø·ÇqÆÕ¹Ñƒ°0ZBG¿µh¥3-äi`Q àÕ”cŽ|=–ì¸zÌ¢\G½”_9ý¶RoG1[53•µAõÍTèUõã>¾^>ô¶éÊå÷¯åè_Ä'™ ˜ñ´»Çoví®}i?½/c:½¾ënY‡ÅƒíÚë!ÄiËrªŸóþO•úŒx÷ØK‚4C™±W| $˜ÒycGÿõ›ÿ êòÕÉendstream endobj 385 0 obj << /Filter /FlateDecode /Length 27748 >> stream xœì½Ë¯_Ir&¶§×^ÍÀ¸è/í®ë“ïsŒ!Y6zf`ufÑ% (»ÄÞb‰¤ÔêÜkgD|_D毦ªJ£Æ¸àÍøEÆ#OfD>"#ÿîîxHw‡üÃÿÏŸwß>ù»'I¡wøïùãÝ¿ýÍ“ÿí¯ÎsB®ãJw¿ùÝ«’îÒÙŽ~7Úx¸J»ûÍã“ßÞÿúéñp´2ÒqÝ¿xú•ΉwÞÿÍòó·ï^>ûîéW¥äYó¼ÿwæžæþp£íÞüR*”‡ã8ïµýòú»…öß®|Þ|C&ýþ/Q§]õ<ï_}ó4 J¹NÊåþß½|þ4‹>½î¤6ޝ(J¹ÿËÿoE{eh=÷žÇ_ÿæÿ™mWóÚv¥´‡«ÎæûÍ7OîS{ú›ÿòä«ZÓÝW~ö.àßÞÿÅÓsÊ|]÷¯ßLF½Î¿óý;ãSÏ|iÓ–ÞŽ‘îŸýý÷úÍ&è·,^e‚îß¾}ùOóùp¤:ŒÆü‚mÜ?_‘^?~ÿô+ù­\{Ûn¤¿“v:J÷ï äÙï_~‡¿gƒÿÅËoÿ~©¼ &Móç¿yòÿ>±NØîÞ|¼óí ÈΗ¯úp¶v7rží}Iï»ïϤ=A÷K NÝF¯+ÁßjÏò-ÎûßkÃ¥yã·rÿvk¶hý…nÜ¿6ÂÖž¯×öYx~C5 ß°}÷î¹á¼ÛÇÍëo×NyÿÑúòw?˜†òEÿ}á¬7Ll”¶Ì†i7’~Œ©|ú¯r®ÚØ_¥òÐê•­ßßvñš¥{îà½C;Ò µßï]þÝV|óÔ˜ªõtÿÍÒ/ß¾{órïÞ‚ö´7/Ykª»~ΗkcþWàœåþÙ ÿ†u©ˆ·½’¯ç>4îŸmdQ0Kõ-*¥ñQéñyÞ><ýjä4Å©÷¿ùhWyK)Æto¶Ï·4óçØš²³;Ìþ9¸z.yޱ©ç¸îÍü©Üßší ÓÑüæWO~ó¿üVûݬÓèw£örkƒ¾ªÇì†Ââ_mßyÿ”ÛOò=Ž¡=àoTššºôxžãþÕ³72b¤8íÀý«×S‘¹ßŒËg¯€t$É¢l¹®šîßýÍÌž}¿gÿõmTz¯—ˆEÜ–³¯“ËÛ×”í|¿S²Q>a¦_»ÿýËYݹ€”VÅm3+/¿ýxÏyî©Ý¿^?ok)]FÚã¸ÎÙÏ^½"²Ø9¶ùjý¿z*àS_þÍT¥\IÆøýëßÍ¿ÏkºÒ¼êgo÷Ñ?GAO]-Ùÿ-¾éšRµ~ãðL$qwïÞ̹É/­WÇû#VêÏA±w„—f §þ0f÷V …Û4HÿáÕ7Ÿö¢-×m‚´ùÍoƒè×÷G©Gùú)Zb‚^¾Ÿó¼ý@/Ÿí®à N¬/h©¨³’ƼqÒs$¼{i_ô¼ÆNý•«:d„¨þU|åöP[æHæ%ùá¾t‚"¶ä½ й¤³×ÝÔÿOÖËí7kçšæ<êÏžÚĬíӀɩ^3³ÿQ&eN®q(F˜žwÎw¿J½Ìᬈ/ØWZý¡Î/WïÄßÞÿéÖ¢YÞ[òW‡òõý…›SØiU!Ûÿ–ç"Û¡•êÝœÂ4Eš„Þ× <ä+_ãFÇ•ŽÌ,¦ÇÆìgïùê|È£œånþ1'`ÇùñvH2“ªç]yHIsŸ„‡q–ll{cfeØf¬ÝLF¬sô›æœCxwIï \&‰¶ ²·›Ëý´üžØ\ÖÔb_å9ˆRGë½üîÝ‹7Ï_|ÿîC ·Iþœµ¡ñt9›5¼µbžd¦¸¦óx‹ž’r½»dLwý:e.fçùj¢Í®vù¿úߟ~Õ²­#^üã÷_O“üÝ‹ß}=ù<{ûêÅÛ¿xùî?¿yùKàè4ž¢;èßðÏtÿ›¿úþõÓßþBmÑ/´Z»ÿų7o^~}ÿòå7_?ýÅ_ÏÏì-ÒÉÇëa~›þZ+kKO}Ïqô§Z5Mý§õ¹Á_¾ö)çGf}°Zç X×­hn³Jµ¢M,êçf…‚7‹Ògng¢Ë.Ƚ›ÖªT1®³YueeS×o@jÚÍûǹÐÞe5üuÛ›yööÖ±«$©Þÿn[a<¢þt_¯?Ú}ïß°zÿ#¦t&çÍhÐ)š•ö ‹öjŸÍ¾7›9äm&fM7…ygÜ öù¿ Âëïß².„Åu½ÏÙ¦/ù:–£XGüðåhí¡ÏÙk›«ÅsG]=ö¿ † ‹/¦}އ|äö×Oejs ›Ö¨–õ§^rÏoU¦IÙu|þa_L¼Ó[Þ(©3±C·BÞ›‰2oª²]׿¯í—¹0ýcºµÐ˜ãG'C1Iß–åï€6GÓ3›Dô9ëúC@÷ù ¶NŠÌŠß¼ïzD´)ônßÅߎìs|fðë2:KM—ÑÍl½Í“ÐHj¹±Ì°nÿ àµ(ZÓ©$¿_1ÈZÞ-è³7†ØÊÄÚ.ìt=pÝ.qÄø^²Í6ëXÎÅu¾ç–ÛáoAq²½i£•6PÖ¹çn‘ôcúõ?nùþ@o“ÿ¸­|ÖéøËwQåx¿÷å1YÅsùÀdYêOðÊKW—^ ªãvM°. oµÀ’üñåíÀ»Y@¿\?;qu!õò›}›e%¿WŽ[©â“fünÝo|ϧTQóþÙÊ⿼·²1ø\¡Üκ„Çì¿ÓÞÑZ?ºí*üýÙ˜Âk¾_Üê÷ï1£‚CËxoñ=ƒŽŠ·Û´ðCqf$V>ï¶ÞòJ›]dä}ïbÖ!Z©8ñë´æµÛį7b_Á†ÉœÀë0yç0ù#¬œÈ2ÝãöƒÙ¸éT§Í\W§^„ëf÷lç·Ûçƒ:%vêÿ˜½ÛÇyÒÓŸg€Îi=6_–)~›³g°Ìsq˜/,é:&e"aQ;UøØæêºó¿wß÷M¹|­Ùçåkm]õÁæ%ýa¢úˆûOºm^mm²m.ôúµ©ïïçË Ä\™t¶ôû¨ûøÚd;kû€…X)ÿþ_ßø3mëmNôÓÌêùPÛ¸k²0—E²E?~À}–™{Ê+=™ùÇ_§Á¯ß„ž{Ç\¿È³7/ߪUŽX.n‹HÅöþn›òicßö}ùîå³Wø|éƒM=‡ÊJèµ;‰ß;gó¥`ûá¯gJ?ì«´c¶Þ¸¶¯RÀWi+u£÷g¶ä½YšVYOL[›–òþÚôûgoæ¢ôwo^ÿž«Í Ϲúú>ÿ²|ýô—\5öûG™X¡¬kÔ‰Zˆ6çk‹ÛÙÔyù;-ÄÊ4>o?H,a5›dfRÇû&ùÛZOûwøþE”Ê¿øÝËwï^|ó‹eíý÷ßɲÅ ù³ïïÞfáöË©Šô¿ÊÁlâ¾üæÅA*Ó -(«wgפÉÞ¾x7íÛ·T>+×ÿõ«_†<¯^|ûâ»oH¹ÿ7k¦w¯ßɰû@3™‚tdÿM[ä/þ_ýúÏÑ*:¼þîÉ9UsPÚ]­sìE å\üÔ»7/îþÓÝwOÚè9—»ßÏ16[óî¿ÌQù=Is øpÖ»’ÎI¼Ý=>É©Ÿ“£C^=ùõ°2Íq» «Ö:—r+–C¬~¶¹[±²`]ӜգCëVÖUúÀú”õ™hwý!ÍEhÝÇb~RÑãÛr! !Çœ>ýêœâŽ\­ÜPžn–óÍïÙ~¯mv½Yž–>>[J£<ÌEiÉij–DG@æòôz˜ßJ[âXeþÕ²aU5˜+ Ö\mÊwY°Ù°Î9榱]°Y±(k`­Òi»ýaÒa®¹ì¨jö g(õ³WφìIk¤ƒþtÌŽ{g#/0à• f;Æõpïäú¢¥czÏÚîÎÑdƒèÍ‹©GY¾zèãnÎeŸënz#Ù¿à(û‚¾&ú~%ŠÏÕkšŸiþtaúñï_?-²¹wÎüÝËï~÷T|œœ„¼x> ·hÛq7ºÚé¥Ûœ%ù,SÙ3Y Îi}vuE“Ï«¬ÚL¢Ó‚ÈñÅœ¼o@âç¿K’ÓC9×~ê|æç120Óc¶£ª4—'Ò¥‹5UajÏÊ{ö­‡l•Æü>SºC0oÕ¾Ë ¹Ž‡Ó¾ä¥²´ƒZ7qM ¹¤ÎÔµë—ké”ñµ4L˦¶tš‘2 MVœ"Í*9|Œ÷d`¦jgô ˜ êú™Ú¨ÒS§á³ó )&ñ%«ƒdmá>­z$Añ€L1ÎsƒÌ”êJ¹—˸K‡RÀtY£­Îe¨1Ÿz&°Ï¾ŸAØPŸC¶gÓ¬àN£½úÕç ;´1Æìûr†&ÂÚk¤bÜçÇ*™ßñÈö=í )YÑχ~2j2æ³ÃŸúÉGƒæS;û cöýœmàu\òeç7Ïøzcœæâf?´±9ý©H: _RY ³ó+ïùÑ rг2ð6éL‚#•fßWiÎÙ÷³.sˆdv«&µ¦/Êê¬ð¯óKkÛœ³ó ï2— ¡svþªòxç;B¥ÁkÎûÞÓçÊìü`}$\ƺÌ/¦t¯zûW˜îé!¡gWƒ`Ú“ËähµŠé-=ÊU"~Ìéœ']³ókò¬¼¯µÝ^CÖ½f3Omˆ9í|HffaE§S5Þì:åÒjMò‘˜ë/™ý®$ƒhãLÈì ÍzäÙ2[å‚#P³ŸÙûz-jµ!‡Ž6¦×ühã\Fy>†ÙxåSíÜ ™¶o8ÓÝ÷€ˆYk˸ÊÓ{ÝpOò®e¤åimåè×:U÷$§×ªé´ ÐS'Ÿ¢j‹mÎçþöÉ¿}òÄüùt¼öÇÏ.ö£.¶åŸÆÇÂ]~ÒÇÖöOð±ù}'›þ9Y3N?;Ù?ÖÉZ{mN6íN+éÍÉZ'Xœì­‡5F«‹5o¾ºØVo]lË·>Ö\aøØ‚)ÝêcqëcS»ñ±,>ÖzΧ}¬uãÕÇÚZ¬¡ÕÉ–ó³NÖ¬;Ùο:Y3v?;ÙŸìÇìt4i®ÙíÿŸ]ì]¬;w±s€ÛÀþ¸‹] ð±1K'«ps²Â½oNV†d;'+JÔ²:YQ4Ÿ«“•Æ8úêdsîb'+ÚÏÅÉJ»÷ëK¬_:Ùœè@éd}Õõ 'ËùENVvÉþ%9Yçî^Ö%t/+Zü4^ÖÇÞïeÝ»—õ±ç^vvœô9/›¹Mâ^v6RÛ½lÑÆ^½¬Òm^vög¬éeg÷8>çe¥õw/;=hÚ¼¬@lªðq/+&¬l^vBŽŸ½ìg^–^îÇ]Ê~k§M¥Hóί÷È¿çbM¢ÒËìZj®Ä´]wá¬ü\ü“îšF;Ì-“Ë“º {Q§ŠQ}~›s¡¯EÁ§øÝE]Jý\”™uuuæz°HAª„M®‚r¥êªÌ.}­ÊJ»®Á2Uaâ°:D%}W…PUŠË–ñ¡P×Ý»"þ4uÕÉ!—øÈ$÷öÄ/ÔY·´;wû( Ó! èáÔN輬,´!zJé$Ðq,¬,(1\Fص€júu™†ª2  IVÅ»™9ô»Ø!°²ð¶DN:ã´±ìX6Zƒ$Ó¥  î,<¬ŒÖ;WJ »Pí´ñgyÂo–u;µôŒ~…‰ÊÂ÷Ò5o`\f•œ‚—•‡Öä°ÎEG ƒ…•µ1 „c@Hص j—8ˆÒdË¥šj„œÒy•¯L9š„: UnÛXù¹Ì(§Y!—¯R QVZ®{ÎAA:^[xXͧRƒR‚ÂPNì㕚¢XeÆ¢,gŸ*â;« mÓb”EȤÛ1g å\(xYh @]:…C§þÁÃÊh:•&"ª¯â›BrO ÊH1 ³³H[ËÙû©"`ÍÊÂR–RcÁÈæèœ‚—3:¢C¦øç]˜³ÁTVÖv€Ä  °kÕæ8è³­ÎiºE48¤ÉìfòM:‹=eâ'­i‹…í4O²t™õ] /+ ­Èœ"¨ ¤ S·,¬¨Mˆ@I`תɂhÜÍo­s×Ç2ù7c;íí,™ÍpµÅ² zÉ$70ªÎ<œ‹ÆA*8¤š $ 'U×ÂÂÊh=‚.5(ìZ@µ¢z¯_Í!lôK'÷þQ°n\>[Õ¿£ÙÊ)xÙ?!luRàW!øn”‚”Ò?ü¦”«i7ÝÜ¥ÓàÇrÉôn–u³n΀²¬^} Œ²ŠzªÕv q}¡àeå!5"!„wN¡ž]Œ‹ó@YФp —v= \«b(wíxÛªñ Ṛ-Ï2r qž‹¿ö²û뀘»u pÇÎÃýµKA —v= Ü™ubo÷qÌÉ·Z¹ÙVº$–¶‘N‡]+ ß¹úÕý GÀt›X6Zƒ,®((ÌuŒ~nlhQ*P"¸Ô °kÕ.›{±ººkæ±ËàÛuÎ3ÍöoŸXñ¹ìžTÝóßmvÈê^6Z${ZA@àyá`e4žŠŒÚ(Ü(ašÉ9PÞ>šCÐæÂø¼â›pÈ?ZKº „iŽÛòѼì- ÖæNßÄ·šøÑ\G Ô °kÕd+¦nªBÉr±ý JÎý«ÐM.·&Ë)°º9¢‘E÷=2WŽRÃåfëlz@¹:n›C(ZK¶ Cѱͺõcl­—m°y9ts$#J¡e ‚K »¦šLÖ¯¶ªæHÖek3¾SlÙ¹n½TÛuŒó¡,_ÞË®[@L4§Ñ‡+çRÃå…](7-h¾6åqѪmO¹èØ} åäˆkU_Zq!€b¨Fäbu× B3Šàšm³)ͪî­šâ‚UÛãs¹±‹šM7«;¶Äh\êƒË¡›C )Ptòå(…cPn6Ϧ”“{‹eSŽŠ6Í*9÷qC·ëÚºä8ÊÖ%½ìº’‘%÷½b× BÁ¥] SmÌ•ÕÖ!  \s%ÖÍ|¯Ù5Y‰£ìÄË¡YÙí·S€à±ŸMÍ\ bPjØ”€bÓÕ¦ØÇò"v¡„ç¹ìcù¦¹ïc¢“ïÀ`Ï –mEÛˆòê¶Oåô¹åàwÕñ¡ì4oÐ!ÞÒã!-‚»þñ©j_»å,Ï)úú©XŽOå´4)ðCøÉ‚*A—v- ÚTZ{æÕe–ó2]»Þ·ƒA9”)=+P¶sRÇÀP­@Hœ€„‘”+X ,5 „c¸Ô °kÕfoÙ?lrÉL¶Ž/ºÄGëC7/¼:ËñÅ‚ëçò#ÿ\äïµ7ñ¡Ò8|÷q)r\Œj§ 7<4Š‘uÂJC®â¯#‹eŒ,/bh°:Fއ~pdQþ~lÌ«øTèRó1ôõ1g ¬ Õúœzú‡^V–– Ę] ¯X6Zƒ,Â…Ù-{]xX­fq'À Ô °)Å$°¥oã ‹Ëî¹ø¨Áá]Œ«s"žg`œ‡n’‹1®b£‚|Ôð|0Æ„p —ãjת͕ß6Ý 㜋ÿ´,6yéÃJ.{¬¶ðœ>dµ…^ö‘NC‡,|l¹ [”ckSÁÔ:Ó°C:[^ÄÈ83b30rüÜÔÇÖ™±\ †O–mlEчW·±ãô9¶\üîâ¢ú">ÊÝNª¼ ÂTtÇ$:~—.('µ‹ñ?«mà’ŠKtº °ƒùÙ²wA á.5(ìZ@5‹@\¶‚u½0.É—ý<Áöms¶biñ{³=\¯Î²o ÄõN‹~çàÛ.1\hPØ•€f­Zx.‡ptHÛeõï>¾z·qOŒ±/¼ãkìSq§ÀñE1À(1\nPØõ€rsÛ¶µ³C(Z»í@ Aè6lN+Â…Mê†ò¢!Œ(9X„j”Á•§ÔlœM U-'„‚j1Éfy`Ù¡’ÇQ9u›þPVÄ~‘Ëä»@T2'`‚/‡ñP-d †K »ªš„[µYé÷7ײڥ;åå’MNópsÙ$»"És¢ŸÓô–±¢¢èŒ–sl[ê¯Øù§Üíá“zi(Ž^ˆ{û½$Úx÷âñû×ožÊõÖÙB’*SnÂIÑ$‰%à·o^XÖ?I›¬QäFᯞܿøî›’éäŽ qÿä ´¹Kj¡¾\A-½ì·gßG Èr—UNðÊv×!U’l!­7^²`ÉQ¥lª–C¬UP—ûÝ›ÍbnÄãôެݓ{³¼'û÷f³lÐètˆ1š¹Êi1r¿þ –Ä»²Ü›u,iŸsE2À†#GÇ!l8CN6B€lXsÁZ$ÿâ6/r3ö½;³óÇ9C–¤Šz1v–α¾ÕßÇ:ý樋ÿ¹‹²9Ÿz9ö'¸,+V6?Þ}Yé©5ÕÛû²m¿/ûyÍ¿ø¾lî×M¤q@r¶h*¹`2pOÃ÷&äBÀU%Ä3#œu.wo«Ù 2ýÄ©c§E.æQ‡yIä]6œÆx[ŒÈœ ]ÚVóYÖÊ]òÒ)`6G”9°ºqÁ5Mr‹—eޝÌçœS¯Ó‰¹ÖxÛ~Xde>³^h-’Sƒü²L7•·t$Ù]çÐÛ‡]5œ @-¥_G;çPëvò§ZÊA6?eß]¯äSnßÈ¡$®Ìé,â$ L—]åÉ—]žÉø Œ%0@#NÝ.Ÿ³ºŠrÍ$óiÙüÑÉ|IµD+\îɳ?>àØÑ¤½‚mí R ³ElýTÍ@åkPëlæaB°=[&s¹Ö£‘p"_!hY¢bmp=Wݦ’Òm’B$¬±ŽaZ‰¤Šé¦@*âŒÒ<‡iží@^ {“ˆ‡,‡ÄW¯‘„sªÀq½å¸œ`ÍÆ@:cΞ>!—­Äd£Ð ÓN íZÅ.‘”$ß:ë>,̳HRÛ‹ïÖ‚ÓÅ1’pX¿vª ø{o¶ ÇâÓJ:-^sþQ”¹DªmÁt™æ’®_?_‘,Es0 âuŽv /“¡ÝÀZE˜—bŸÏ¥t솫¸vÕGºí¥ãΗһx{¦Èí=Ñ?Hvj'ÑKÌcŸS6>t‹°_Ö‘u3F¶¶Do°¾l9[$…ƒ¶–¬)uµ) ¿”ùlRc>mˆu&¹_ Ñ¥U»Š[ OõfßÔú")ÒloðBsi–Îa«Ôbµ:Âm/J+ä²K'‚œK±€ UØ*ˆ¶}¨œëd‹~ž íRæ:©µ$>è@Ô¤} «)0KÊ©;Q΢§¡Tžä^6¹+÷pûBMA‘`;ÏÄ "á6¿of ŠÜ/PæQë:üâB2^~˜QÌ´9ñ¶µ\¶#Enh«ø*¯æª7ë÷:dmðÉ ƒa¼Ê\ÌcŠÆÖy¸G”Á31Gáã䔌î•7ÃÄçç¤æìÈrÁ€—y¬å‚â²­[ôŠ_V©À0XO²âgîÊþI»×nÓÊϸW_â^e‡«ÖͽήPËæ^'äÌ«{ÈXÝ« ´£­þUvgÀÛü«LÊXý«ÄW§¾8X1iÚ‹ÝÁŠÜü« õQVÿªêê_³¬ò÷*:Â'/îÕ&î^åËíîu'SÀÝ«l8¥Í½¶†>áîU¢|ÎÍ¿ò.Áâ_9ì>á_ÛºuOéþÉ>ã_Yük=wÿJœp°ôÁî`»;X—ÐlÆýèp°¼5–÷oÜÁ†é¢ƒ•±×óâ`+‹J³ýt°ÒׯÍÁbrq°š¿­6kÂûÍÁÎŽ¦ƒ‘Vãbýû~ÂÅŠ׿bm9ñ³ý)ý+¿LøW޼ð¯yá_g/ýÓþUFÞX°Ò±¢¥õ…:ü«úökó¯µY ÿê‹6:XÉŽakHw°òaËæ`²³¸ƒWi›î`ç\C¯Î†ƒmûòõñ®Ü¬ùë]åûüì\?æ\36úþ+.ÈfyöTdðãô2ZºËn$Ç¢õÐÛÏîäP~.Nή 9ưîP6Z€"FÖ Èíµž‚ÊRB8†K ›vò:ä¬Úò½t-0}éôäÊUÏ]’x/wÕVT)/=Îåï¸áíÕY6úRÁ!º ä¦o‘–É€•Ñrz>D Š ›ÐjX´ß¢!®—źÜ6á½l‡Ì¿ì‘Wg9ôrÄ—šSšE/„(ºæš-³)ÍäªùØ4#ÄE³ˆpHÎi’kvΚƂߓY V÷²k“‹(·OÄB3ˆàš¹ÐÐlWÂ4;ŠhjæŠvX„ Kn;÷®XꈱŸ³]aõÚ,‡bb àŠa>ézQ€Ðœ"³e6 WM7}Ñ!”lº˜3‡à<@qÅšæ¢ñß‘µÀ«³Š9r€ËÍnh#m}ñF hÖÔÆJ¢´¬§¦È1ºi Üõ8îŽÓh…kÇ5e"tó*N€eã 5)â‚‚ìª-iC@þ Qy“Ÿ:]xï–žÚiáXsØq.ÂÒŸØx.îÖ8”ÝÒÀì4 ÐŽû~ž[z á.5(lZ@3;_XŽÂ2]¯2Õ³29®R!tAƒ¢ð<õ] †ÕfÁˆ+:!EæcQ}6z¾‚¾Ñl*\^Øå‡R§ÝÄY”"DÅºìÆ‡Ëlk°Pê:4Ó†#\¨Uí/WEÅkQT ]È—.&cº\6W¢7w•mk~±— ȸú;!—LÃ2:y-wè9a°‹½Á‚WC`„ÔFáF Sí:Ì•E€…CªNД±¬V$ÓÌ¥’ÛReõT#æÙæ…Neã!5R%€((”Ã>6yXí§RÃå…]('™ÜÏÅdÀ%‹¦Aà¢>LÆ%çK‹Q¹ ’fÊn2`žh|gÞM…p —6- Y®»1$Àå’ìf›ÜùÆ^LwO $´q (‡f€\ àrƒÅ¢„Ýëf w- Y¹l8^UøŸ7y˜}²ôÂ>ûjûdÃËî“b•èq¹‹ã.™8BÙ'7*@¯¹ÆíyÓ‹—Ìâ÷)8v†B±n Vÿ}Õªï*õUÔsq¹å ³c¸¬ °Ë…æ27çµ àhØ[ï`ØÆZºài‹LÇ€ñu (Gt:x‹¥ BˆÀ Ô °iÍÎãÆlrÕÝl`;nÑLÈ/Wß­Ê¡˜ –Õw©Á`Ñ "ƱM xM]Ãh©Ëj-êBsÿË•*òÎᑹÙ~-P&Ï B9í!"ÔÊEpJŒú«Ði4ÄöcXƆ2;øˆ( « 8•8¿ì’­Wg™}X®8Àè‰mBŽ/Á1\hPØ•€f9—"ˆ2§Fá+ÛUíÔVá^¤UΡ›Íø=ãJ;«{Yé?²,5…×—’VFÓ©Äp‘AaSjÉë2äÎKõ"ä²`|á+“:Ç„n12&ÈÊ*©…ñ;F²0Rð²ñ)¶cA ²Ò_Xhm§2Øï!´U¿QÂ4˳Çh¦'®ºb«¦Y¶ô¤XUùF°¯»tϰ¦CŒ–¹2Z ùñ@AVÁ ¯¿»Ð¨¾+Ͳæ5Z™C0J„ëpgµœcéÆv[~×dLQedABFàòsdÁ1\hPØ•€f%m&eZ4MD½˜D†•¹I”=è#/r3~1‰,»I @Aæ#@‹a)B ¤Õ$n @§j·—~H{2ëx/ÃÙÂÒ›‘wŒf&ËÑ‚ŽD ègdáý2ðw ê»ÔÌìL؇pä7;ŒtË`g$‹éèfý¡ÛÔÇ °¦Ã!0¤Ó´.~v‘Q{WzµËv^½àݨ[öaïf«èqØHÇš5( ÑèH àý ,–ž!Ã¥…M hÖõ,œ˜腆啤“•;1¹îª¹™ðûi»a^ewb@cÖ‡‹rîÄ\b¸È °©µ† ¯‘Z´Ó’LÒày\ â¥éàý÷ Ó9Vg9 ¢C`Î@ÀÍö BÇp¡AaWšãÖÔâ¢Ëú*`C³k5õÂm5õ^vÍBÍ®ÝÔó€24ƒ¡ûØMý®4»ìÂetEN®n,ºOA½+JˆoL°T¡~-ÕYfW €u$¯Žæ ¼+ºìŠ.2ºâ¦‚©%÷1z[?˜C¼Å¯eÝÁRü`¡]züž‘'ÕYŽæÔfÙ ˆ‰…ú”Úô]/ à.2ì*˜^m ÞÖõr$“¹Ø<•»^m¤ezÜ.\ßau–]±€˜\$@¹ý0Þ5£ŽáBƒÂ®„jöƒ.rÖToni6‰×9ÒÝz—ó}¬€ÄÍÉ*Io·»œY°$AÖµ"°àÈ‘LÝø9$°n%]eÿA÷9«<.!óŸòÔ*ËõÔ‘„¹J±xº_ëç #qêM7Ð,@6¬>g!zLàX€lXbÁZäúâ¾^œùû·5å!‘ífÛ=•_z=·GOWìÔü¶¢ ý¹;šzdtäŸâަF4é2òǹ£)™UkjïÝѬÛÍÏkþÅw4kêéa‰ÖyÜ!ÚVÓ@¤g² Ã5J(^–o}BÔŠÔtY”§Þ²@–Äà ©UYãŒÒi±«Ubò*pŠÕ*ˆo•TЗB,r«êß !žr£€¹ÕuNBäy•¥Ùšdò\TÞq®dl-‘ĄȬÎ2& »ãQKÒ¾œªÒ»-A³W&j‘«NÉj©¬r!Dsñ­©éÝ’žáöc-Ó‹ð9½ñWå¦Ú‰ð×jµF3ærÚSË«!UVt²Ý|&¼Pe)ÌÛÀ7“äÐä­á¯µf†x"8­Š³=ÀÖ §†âÛU%ë-C<5άJªØ~á;¯Íe¦×ÏtBɪÜùˆC•ì¥Ê]’9+¤ ñD8ims‚Vå¦A¨µYDíB§ÍQq”NexëeÉUÒR6ôPàôãdÀj΄専ÝQ?_cdRnXÛuóÜ-ä´ÊýwôyžÚÈgzEY_h„]íŠÏ®£×«ä,lXÛ c=ŸFEWÙ‰ÑÄ;W± Bµ#úA_YRÀ\aj\l‘ëËÔx¨»_©ýOoW‰h׸4É*¦¼Nåbh5HF¶äNi$¢]xKÒ; ª¬ruX¦Dãèvã¹J65Ù*ëíÂø–H<Íy«a™ ¥fŠU¢Þ„y;Š…¶Öý2{Ô@Ç*qTU7p7¹J䕬@õ]¥#!KÂ\œøi8Åb<[Ű’Ä9Â\²:™“d;ª9/^V‰“IØÖ[Û>}A^h œpʪÉjÍßtZÛ˃IsEp«5ÅuTÒʺ‰Dðq%ë‘r6W*Gºu³¼r|®¶YBÚôë¤Ëùb]kãk~Æ>‹ÍÉ굺9àB·Y ‡î6Úqtr@BzÇÁÞ÷)ÕŸ”Ò>]oqÖÀñ ŸxÛ¥=ƒ9ÜK;Fºa~"So“€v2? °kíSLwuäS—3ÿ4ýj¢q ×zZðõâ[OtóOûÖ´¹V÷ îZB×Êç·Âµ„®5jÑ·J|ûµùÖtÙõõð­. ûÖ„T$á[]Q÷­Þt®CŒgÚœkëv=&¼«·º{Wÿ2î]ýë¹wõìÞÕ;AxW:r:W¸oeÇ ßêûրзÄ}«C>î[â¾uÜúVз.ë–9}k@è[Bßêzºo ˆùVo-w­€gõwÏê_Å=«9÷¬þuéZÅûêM!w­>ìܵú°£k•nœËêZùV·{V¹has)zÖÞ/zhxV\›c-œÈ¹cí¸3åžUÒÝÛTŠžU.H»g=ìeóp¬s²¬ºÂ±æN“~µ!DøÕtÙÅw¬C¶b7¿ZÚÜýª¹¢Í¯&Œ^úUo,w«¼Ã~ÕÛÜýª÷«áF¿š¾Ô¯zGr¿º@þX¿êý÷Çö«ù¸_ ˆûU‡|ܯ:äÇó«772öªÿL^•¬~z§k):ÕhПêÏNNÕ· ¾Ä©úÚÞªwQzÕèØôª1èUýXw«±yD·*ðt/yÜÖåÖÝj@èWüjСcõfݱw:Öž5´ gõQNÇcÚ«7˜{VoÔŸ=럲gÅuÌ*8”¤åŠ~\!ÚÍjá+£È ·aåçâ6Š9GbkF`ù©pˆðQ½…ºfæö%CÅ]v=!›Î§küHiD{X-–%]º™9y;BŠÂrö9íâï—}(¯íåb/û$ëCTAÀî++K H@ H» Ðë´#`yÊå°EÈ]Ø\âØ§‘ÊòàaQVA5õ–cT¤e/‡çOH~Ð@³-Îkaaem<A —v-LµÞ«ßt=Uµ€h§­ò’¶Þ¼”,Srz ”Ÿ‹ïè6N IP3 ^ÎÕ!‡fý ’b|a¡EÁ§ ø"²ú®4»²ÝäöÑò‚ËXÆŽ»3]òšãè+ƉÀ7£eޝ€Ø8q m, l€9ù-„³Š7â›NãHˆNá× ˆµµð»–oáÈþµä±Ër 1q ù­@[{uûNŸŸÊàïÕw  Öœ1ëû~‡ÆÆ<.A;«8j‰9|V²ðÍÅ"‰!Y&V ,­AˆÞP ‡nÎ+£éT Ç Ü °ëAå.½?.=fz\!ºg®ŒuE>‡xUÑm‚„²0žŽZÒb8†åøv,*Å7À©“ä¨~j«``e´7ƒ"’®4Ëøhæ fÑ !7&B³ªyð£Zt¿Sð²ëFE#ŠN¡¥põ!%)ìz@¹b‘Œ’ºµYŸtȰcWä¤{¨ä8b±²ð¶]¨cÌ5¨¼à¼¬,´ âðDRR‹{cáaem ‚”‘v- šd¹¶áFK³ˆL˜|/ímAèˆñ'–c´9c8”È!e †K »P­ µš²dÓ裢·“•¯¾šÜ$äØVT9/5Øü}ZþZ—ê^Ns«A êåæà`e´Š@ ŠH »Ь[°•½6Ø¢ Pr!µ¤‡Ëñ–UÔK×›ŽqJ*­ Àb±gj l+EäBu}ê²”•‰àÑ)ìJ@3É÷Ü× ‡tµ§ÊXínWû›¥VVIO‹ñ&Æe÷œËÆCj8D_Ð U—>ˆ¬–Ñz*1\nPØõ€r§f±Y¦Ž±™Ÿðí1/äò4fŽò`O_fŽò Oñê,ù¼Ñ6éóÚ˜:}Ÿ6R"¸À °+­.M4ç¤ÉnM, Ë2¾r¿õ:u1ì‹l”UP›ó9F²9!)D9Ù¥†€È yÜ…¡ÂÁÃÊh;•.%(Üèaʳs¶²\`ˆÞ?¯’?#ûítîÄýõ*8rY14DÙë³È»å DoŸ»,xÝe ‚Ë »P,iæ¨Ò.Môô~è»5ÊWl®lC‰ Øõ°¢p«¦¶ül~Ók£ úŠOHÕ‡´Q_6s·"ÚMØów—µwù¡”d.ëš3 ¶j<íEs¬)¹oãkNyHvÇü÷S͹×ö2לÁ’Ñ `Ié|ÍI ˆ@I`WzÛ\/fÁWH³^U¤ÚuÍëûO( ßZq~ŒŠK ¤àeå¡5iº  Mó|+kk@ Ç€”¤°ëåªM”cæ›÷ cY¸s^È­´˜9J6˜2Œf÷œ‚—9stæ}NóBçá3G—Â1 %)ìz@¹v¬múp"! fÜôÙ‡¼±Ôcv"ybäB’W÷2gÁÜÁ `ná|öá"8ƱT_d§6³¹ä ˆ­…¥åi¶%·4cÉ)¯+iP>1/]€ÂˆK攂e£S°U¥³àªÓeÀï‘Õw% ™Äs•uƒ ¶¼—\.9Vÿ¾3ëû’ fÙ1¨'îð:/s ¶Ìw m, l€ìõ' õváx„z’k½sN–®Ùçõµ¥œºÚ'B$ù}¬€È gö‚Sªv_qÁrÈ‚Õe+–C¬+}ä+°X·²®ÒÖ?!F=Í&¼’¾68çÈ姉QOi¨M×À,‘<Þøõ±,«!+–¾–Ç‚EȆ%÷ÅʆȆU›N+,@6¬ž4»ë‚Ȇ¬EÇ/ý:’ºRü¼$3nŽxwnOsYy\{p»ÀÒ\¢éÃE ŒxeÃËöšÑðÚá!âñm¬ÿ}40~Ÿ?bP¼Üw¼³ÇꎈO’Î)IÞ)1—GÄ-"þó*qD|Ò¼´çÚÃ";ÆÒG’ÄdNÛšdήq¿)Û x ©šCbB²r'¹yܧXïNrgwzû$ÉA™\“Rn§š4xWqC9Éè0î§Ò&q9’ÈIΫ’Al $…ØöZ’L%:N“$€U…In‰%Åi?“JÓ;©sÜâÀ.é yò*HZ›$ ø˜cè8.‹(MrÀQG\aQÈ©·t¦¡ä~i†ï)3Fq’(£$8–:@ 6ÏÇ@Ðzª:͇¤ÝSVUæ~‚ÒQÌÌgI4¬¼%l”ž-¾:IXåÝ,üvŽqsÚ~&Ê©yŸõÜFDÒ‹F8MÍî~ê×4”&ÙíÓiÄR’ô¯rñDPì³HúWe|à4.5I~<Ö®$é_•÷•ÉJ’K¼ £ë³ïÚ!5õqjCo(J±:g1ÞW¶îÔäÃÇ>nŸ.Ay¼/•$û«ò‰½?­#éqlêå0îN¹—˸ŸˆŸ@/·ÍEVåÔ%,‰æˆþNr "™oû&rþÒ峕boxÐçÚ›€ò½û,/êE’lõϾ›%’F“5§‘4p=KŒ» Œ·äs=Ø«ñ{.m`Dãó,TzvdÇT¸Ë=nû0x<'¹Ùd[Ͻ6;çCÔ¹¦fç¯|Ä9KØGV%ðúq–ÌÆÔ€Wƒ§æ#ü¯Ou&Á+¼ç°ˆv¾`;çxC/¿f‰3²sZ˜z>$vEö~ê? =Ç^€ÓbóÒ9?â¥c®XLR:ee!ÃïM$ ¢—JÓ´imàkYûklB’ qIpd÷WÉ`Ê4q’Ì«RºñF"ë$™¼EA²úéT›òƒ€nj…ÆO6V.é}×iwl¼«Y•¾ªÓµ·jtº4N3Ï–µýä¬Ú¯q ËÎFI±Üù‡¤>Vc¬iÝ{û,¢¶c‚¯°mË ª{æÌ›†£Å¡éžuÌY:ûÃ>®Ióºá¤Z$éÓÊHƒIg÷ÉÎÚ²Îã%VOUH–$NíÞVÈÉÒ«)Ž^ˆšך8œØNpá4ð#‘ñâþµb”„=0Bÿf °û¤­s»øW÷¦î_ñhÞî_÷š$ Y¾q¯Ifuá^Wîî5]PÔݫ䴹V÷ZŽÍ·Îá8V×z\É$q×*aus­e˜Éq×zبÚ|kNŸñ­ü¶î[ùù÷&´AøV,1ߊÞþ%¾U’i×Ç·²øVkíOùÖ€\Á=í¾u`š¾µÙË ?¶oµ(íŵ6{aq­ìÐáZâ®5Ùd+<«»D÷¬.&\k"Ä]k‘;ø«kMœSºkÍxÁ]ëØÔÔ]«¼ŒT7×*óÅss­ ¯%†k~3ï®u\v+dñ­ À}ë6vß*çq׿[ Ý/}ë Äá[ñúÄâ[q× |k:Ñ'Ü·æ‡zëZô׊—6×jƒì§p­öX蟄k•À­÷\ëq~ε¯ý¸®õ&8þOÙ±&=€Ë?cUÿgÝŽU¼æâUÕ‰–O»U%r~Ú­*k°p«¶ÒÎáVÕª›!€gU-m蛓³%¬mà[“æPí‹oÕ­%œ«6º‚9Wûv?Ô·ÆLòS¾UÇÞs¬¾ ýŽ5pèXc©û1Ǫë2p¬¡üjºÖ˜uDz·\«¶gj‹k]Ú¾uù,ð­Ë¨ƒo]F|ë2êà\µØ„ÎUGõ8Wí}¶©çª=Ô}p®Ú‰Çê\µëð­ qÔá['䢗„o=ŽÃ\ûVq×êZeÚº¹»VÙ¡Þ—­rGd¬®õȘиk=!p­ÇAGo®U½™¹l¸Vñ6¾áZUI¸IîôKÔÂ׺l­Á·êØÅÊV}«6¹ÍUà[õ³˜–î[%$öÇX¶Š¿¸6ßz&<¡ú³oýÒeë·8:µti¢i‡2Å#Ÿ5N@'ã2ÄáâX~..î°!Œb-à¼l,´!zw((Ã<Dù¹Dp©ÀzP7h•®&´zô¢¾»–ä"XÇÞ’ô$¸W–EF{¡-0¤õÏ…‚—•Ô ¤êË/AA:¸3¨Öf䯿©d¬µH =ª¾» [O§ž"DýŠrºªM—ÅóqͲʦ¹ ½P¼¬<´!‡£8…ÔMNòHx#¤ †K »P®é» œJ<®µºIbt¥gÉ cûÀʸÓ£Ÿ¼¬<´íÜþÜ‘7Ãc"eemnn‘v- Úм -‡pdH*øeàðP!†Ö©!|q36Ëm¿_ Z¤€‘ZÂ(5ìZ@µéÆ®!”Lf®i‘ÜC¨›æ!/ä¥E7/»n1ÑœE'ÐRÃåfëlz@9ɯKZ]c h=DXö»Éé.¶œ¬,B¦d¶‹Ió'/#Ê, Åú˜S€ò……Ñp*ƒýnò¡î*»i#‘»»õˆ} '>rØß4sëQó±YšÕë/ÓzÄÆ¾S€mpn=\ b¸” °ëå’¦\•sEKØ'¢èØÿsÝŠ^ „¢AÀË®›C )Pr°Õ(ƒ+OA`תeM·3çUŽ+D/þ)ß&ÎB²ºJOÃf&Ê*©¾]Ug"AÁËÕâ–"÷îTy#pØ‚1öK­Œæ!B’À®T+ÝLJ|5‡°Ñ/Ý@óÂmÙøl–½;0Z6»G ^öÏæ´:)ð«G|7JA —’~ÓÊU]Ž/$ °õ’ERXn1‡ iz]_Î ^vBm)À†…ÛÊ€ß)"«ïJ@³¦§w‹ÑwM¶Æ4,&[åaôûÀ¬â]V£Ïr}‡Àè“Lºóp£ïRÃå…]('Áe»r„¸h ¢ÛFĪܩ †c÷‰õÖÛ,ˆF çáÖÑ¥p Ê »TN3‚.Ó‘€ØdB/³?jõÙHﺸ ÒK}9!s ¯nS §Ï©ùãgJÇÚ»üPʲÇëÞÖ¡Q®zS™Êä.!í¸eako¢ư)S`Ùxh BŠJJM7ú‚…•Ñp*1\l#°kÕºîaçf9ÀWˆ\7Nrm?IÉNµxð²p=mÁî2ÈSÔ÷bâ÷"d˜Ïrz‚ƒµLüLñX{WZ }c(Ë^ÕT+‡\Öy5ô[ÎÐõêœߣ,lå$iA°¨µ àåÊ~ë©èõ»†ÿ+£áTb¸ˆV׊ɻ’Ý;k©Ç";ºÅØŠEÓªD‚•UL}lÞ1Æa38ð²±xþdÈÍÑ `©~‚…•ÑtcAp¡­þ®»ô¡%(= §õ+Yá °Ðc ¦@Yå¼–Ÿ“íZ°z”• ;D³š£zµ(n§ne´›òFÈw 6 L­qèC¹É›ZŽ€t¹Q,\ÕÊê\Sš!!(«œz×!0æò^,¹Sð²ò€ÔKÝ8…*=´”­éT Ç€”Na×ÊIðÖÄ)§ ØÇÔ6©¨-vJOcl‹•UС¶Ú1ŠÎA‚ËÆBj8D‚ãƒ@9tvä,¬ŒÖS!ˆA¡­þ¦Ô²9Yù‹šÄ€èPT®bhë°c|†è ¬bÚ>„cÀW:/+©AHošŠÞ)t=vZDÓ© ø"²ú®4+úÎP.í´×ÃÒõ–b’< IŠzÇ5":nÁ&IV ƒÝ1.5æN€ec¡5ÑH‚ €sUçaem<‚.5ìZ@5{e¹ ãj·êÁ‡ŽOšBYøÊ£0+‚NsƒËÆB+’t†Dt.¬ŒÖ«+†K »P­éÅþ¬wºÕ4:ä²óMá+;¸ãÒ°G¡,Œ»íA†íY8–‡Ö Dú‚‚„¤…‡•Ñ|*1\nPØõ€r’nr³À¸M¶×jüƶ˜G‘ÊzªÕ½ì¶·l£.fÔÃþ¡âyíM|¨4ôb^–eR³ïEˆ<‹|*O}·Û3ʉ‡²°µ×mãÔØû À²ñЄ4”$di,<¬l gR8å…]*'û¬z; ™Í'@'•ÊVÌ­<¦§ƒ!…( ÛK7‡~Ó)xYYh @l¸…¦W¯ƒGÃÝì‚’6% Ø‰ÙqB8þ/L¯iä´ô^ŽqŠ×lAÁËnAbÀ)Ð@G˜JA —&d×Ê]²Ðžup3;UÍ$YH`+k~òԢș4u^ $›Ã;/ãÎt@’Þª òâS VÔ¦€ @ ˆ¨¿«`jI¾„Ýè;„-ž Î/Â`ÕøfÙöø#Ûž S`9¾™CðÍH_$îšð›¹Äp¹ùÕÇûfÿLz±}Yt:KFa,—KJ»õE§¤j˲ô,º‰XöEg@tµå°¤t¾èt!ˆáb] ¨–õ!‡i.q‡ Dž3WÁô†,]· '”UPMÃÕfóNeã!5Rõ4Ê) /VV‚.7(ìz@¹Ò,ah®•Ç¢!1ÊX ï1åPQ°eeõ”5F`4V’‚—•‡Ô ÄîÉs.<¬ŒT)ˆA)Ia×ÊU/ǦœlKMضå Í#Ï|ONò5ô´`ô}W/ÊÜ• ˆmª9lº9ß–s)ˆA!A`Sеj‡ª¡™C ˜=g´ŽºP­÷íñØ #/»jd¤@ÁÉ#T£®<¥dãlz@9›œç£uÜåvH×\dé´é¼v¹÷Ïh@+ª¤º¯¾ à €X6Zƒ] 8ª™=ÖkrÕE ‚ mõw Ø°ùò¢!.W·ã;Êí\3 \U‡u ,‡f1ÉH€‚“E¨F!\wŠ¦Ù´€j’$mfÄ!0r“ûZŒÂ3Ê\Õ¶táTÛî¼ìV„ÚR àå 7"””‘v- Ú•,Å7À‚íkI…¼žlúß—ÔÈ6è ã:t¢ì¼ìà±ík§€ímçáà.…cPn£p£‡)wÇÙö¸BÌ ã%¸ ®£¸!‘,Ï¥- ‡°¤àe’€˜p 0Îà ‰KáÇw£•»ìÚž9‡°ÝNþù]x³&¾\Î0ßÀÈ6»w ,Ç—s¾)à»8ÿr.1\n~ûM(g‰ü—£‹€ ^o2Vã‹“ ¿$äg—=·âDËBÁË<½p œ‚O8 _¸ ø"²ú®4“Yû¶ô¨b“oïq¸ì]Rî`­vúÐsqÛQö.ét(R`‡‹è‘”.#ìZ@µ¢÷f¦Ó¤é „&_ù@–÷¶.gÜpÌOŒ†ƒ/R`Ùxh BŠÝ¶! §^Xh­§2àwÕw% YÊñîèt¦v˜ñegÃý³è‡Y@è8zC}½/À¾Äêèj ï=‘ìñ3¥cí]~(Õº] òë€Øq³d¢_ÚýXKfúc9°¾Ä}.!QæµCì¼ü8:®ðÀB…] ¨v-é@L5‡@°ù޳x^=Õì¦m^1ôÌ–2D%# ¾ÜnpÕLˆPBBµ] UM/…ðz˜ª¶@(X·CW nw(VÕ’ Æe¼ìªÕŒ@¨æ×4 …X”‡l›M‹ž]+ËÉä c¨ù©J§-Dj­÷Q²$ºº’¦¤[°XEnÏžk:¬€,X•¬÷ôË! Ö*¨Ëýƒ’jés¯:YûXR-K¢Iµ˜Dë ’je‰ÉÐÄd¼“IH–sýÚÐêïcz)wMªå5%Ù™N±‰EȆUåÆÞ†Ȇ)¬E®/nÑò é®nawúžì‘?ôð³ü2WÛÃÏ öòðs4Ógò[å|ZN«?ÇU–kGÇ—æJ^­²Ïx“æêÚÒ\}^ó/Ns•ûus[xœ¸¤-oèE^¬ÌrðzኗÝ6ƒó+’Y»7Üò‹cr@¦&į›IÞì¤v"óh¸3Ë ‘YrV[@.Df9°Û[ÅÒÎèYM)ÄýCD6j;žÛÍ’Ãw&‡rBü"nôeÙJ3æãA¯ gI³iQdC6krùiWú²$º„ß.F¸D1ò–8;½)º'Býyo1Ÿ. w´Öu4„´i¾ÅW‹¹å-Å,ïêè­ÞæÏ2?UÞ¸-jzOÂv­NÖ± ¾ñ`s"qòb ~ÞkPínïÁg½ ëÚ¸ ‰-ç±u ‘¦H«ŒÎ¥•ÃÒ¶Gw+’DD¹OˆR.’c,áR¬ÞØ,¢ #,õã•Ãr‰j­j¼:.ÎŽÓºm‘õ|¾¢“y[G™_ÆYîH_+ç$·F A¯MyG§æ•M’\ ý..Ý0çm\#SF0¶ZvíMUÒ®^ñ:,ÛDI]/—Ç=ï’$͹«4{˜ŸÑÔjÞ¢8Ý ²jÆÀÒ¼ E²mG’( \d®p:æÎª¨Ó]eC±óbFÍX]Ù™+J?’ó6@Âaº³"±¿Õ0ôêq‘Ãcêmí×y£Ùø¢øéWêÎU‡Ìæ\uÈlÎÕj}Ò¹ª çJÛµ8×n®ç ƒ·8W‡Ð¹vóUð­zG¾”Í·6zÒ“z[? ׊„<‹k…y ×zâÝzºV…伸ָÞ®µØ˜ß\«i½úVût«oÍ›kõ°ºVë$áZÝ‘.®uÜzVtŸð¬ƒ{õ¬}ÜzV Ÿò¬¡k Èâ]Ý»:åÕ½âîõ„¿÷Фœ‹{u§L÷ê&ÈÝ«7˜»W·t¯l÷p¯œ0¸wuÃÞÞ5yڔŻ&KM¸xWÎhÌ»FŠzWUÓœyWžöºxWíû€˜wÕÔ6§wÕ¼4ðÀW‹Šsñ®:4Ü»2±FxWæç wÕ‰¤µ½k:½`ãV}{lu¯ž3¤U ¼øWÕ¢/îUÇô™÷|ºW…}s¯'Œ-îönñ¯‰^pñ¯63[ý«5Ï—ú×úžµ®ü§ã_²øWcõ Ë)ýã`o2]ýì^ÿ9Ý«˜‘/ó®L=ÞUÒ:}¹sMf!ݹ2gÙâ\™üåΕßö_†sugö/Ö¹Æø¿/ç*)ÔÒæ\Ï»ëΕ“¹p®r^Ÿq®q-ÎU!º_KçªQ6çs®ËÎUy]«s­§p®Ü¯ çÊ||?{×ÕyýèÎÕÒ¿pïŠ\W³Kë 0I3ªOÑÀ¶/$VK㈊%r2Áâsq܇BïvâJ^Îö^L@’å{r ¶%nô5#¸ÛO&«m’Û!à9ìÑ¢ŽC ÎÉÄ.—;±¡ÐuXÜ1®ŠlÇ àeWˆJF *5@#ò×ß(+îâC§“™P\'‡P"ºÄÌç •$NÆ0 á:–/Œ•±"òŠ*-ÈB25%‡Ç˨"»Ì¦È•ƒæŠ¢¤kël¾¿šäÓ2_£$K­B ^v}¡J¤ r;ÓÉùëoŽwñ¡SfðÙ°÷¢/»+;‹_³Ú¾Aoep๠`T$—ƒTpˆ…ä9f1ÎÂÊh5‚.5(ìZ@5¹Æ±õ»€°±­ÆQ-éw|­Ú‘Õ–­/xÙ¿!ltRÐ/úøXä®?Q4ÖÛ…‡F-ë-®E#‡P ¾$Ì0W•zC`1V}ú®L_5aE—t¡ Ùêo”‰w©U•rØÒ¡Ê±—zE@‹ÙRA9= U&ä²\#ĨH“B ^〘hAaÊ T§à¯¿Q8VÜÅ7’½²¹è“Hví-/•IŒ í¢SÊÈ@Œl7Žœ‚—©“C šS¹éäüí·Ãã=µâ.¾é$‡Ï}õ¯ Ä$ÊžÆÉ$öc×IŽØó¹`´]§(S'‡@4§ r;ÓÉùÛoŽwñ©Óe™*¡DÅ&p‰í (TêèÓDè$àeW‰JF *6èC#r7 šk´ Ú…ÈrXñ€¨Vnüf6:ºhÅ‹\¿Ð¨xb „‹´° Dmp0,hÅCb¸Ô °kÕú‰ _þ±‚¶¹ôð-xd_Ëfï![±+/û×"„­N úIÈŸ‹üõ7 çŸy:ãáØ•C Ñu¬Ž'ŽC§¹Z‹N’~Uo1€B”©“C()¨Ü~†i:‘¿þFá¼16ñ¡Óe×t–.Hˆõ rà=t0?#õ.XŽ n€a)kœ‹ÞbÈ  ƒ9 ï‚.» K.¸kaªI¸K_çH¡jÈ¿é‚c;:TK§e"F¶kº$Àb¨æ¨FT,Õ „+O©Ù8›P-ÕSô£tn¦0Ž­Ù%ÅÄj %ÇÅÚYô~z“WOu¡nÝЙëo”Œw١М Ê„ßïqÄna+¿«ø-m?u÷{Ü¢IÈC²ô…˼c½@ôvP°[ÚÁƒ÷¸C b¸Ü °ëåŠÞ¥Í© éE ¤kí")ˆ-åq³6⇕UÔn— C¯é:ƒâeÂÕ-Ž!XY["Ã……] h&wòq/µ˜f™Sã«/qf{ÉÜã ¬,|›žâ,¸£ ^Ìì·„Ã>3 L«‘®……•Ñv*1(#)ìZ@5Kû¼1‡`„´u¹GN1ÂzÝm=Òñ8/û#„c…´o‘YóeqˆÆz»ðШ'[ã„=$欷ÝÔ3$%ìáÀ½ b »œK,†=t¬ ÐÚ‘EØC á”v-L5yfb”õcÄÚºHƇo=ºåkµTp› 1ú¤àe~-‡ Õ‚|g`_ËùÛoŽwñ¡S[ÿsäA —·!W]h$wV:&¨¤àe׈ F *5@#ò×ß ëm²ÿðhòšêM¨x“c»Ââåïc$·k9oʲ`I¦‡5 Ü ^å^X·’®²ÿ  ryëÒt?áKÍU^LЛ<þ$DÏ kEË¿‡¥±¡ç²ÿXw.X„lX¹é§ KÓ† KöÛK[±Ù°z׌  ô^°––øâo8G¾ÞÔøè{Î’ŽêÌû{Î;Îý=ç¯|¯nx}yÏy¯ÛãçøªŸ‰/ƒiÂ~ôx=5’ÅÁ¯Éd‰´ÄÀÿ‡xñæÙ«W[üçuÿâ(øšÌu­C‰Sï…½š±àz"WÓy,Çq³xÙ%†×tL«¯¡Ö,ó ´év(T³x*½@tÙã$SÎnY¥hSsiÈŒ k¶¨ÖdÏ^Uyéµ I·ÆTIcÛíÅ"qª,ªmü€øYÎÚéF G$— Ú”[<«,ï4 4_‹®%ék,s, µJ¼‚l—ÕÊú²Žf Q d +ÛOåÀ{†µTM£7•½ì¥¡*Gèð—‡ýŒU×óH}ž7á9»94{Þ Õá ¦¾öÀ]•Ç :ìƒI,/(óÙÁÔFUÉ¢Ÿ5Né²S¶*Éço[é×”Ìk¶a§ôj­Ð|¶€ÆZWÉ®»èóÿfµä°ê²OUTÉÄm;o§4WINqÁN§«$´n¸—f ^–?Æ[çèhvÁ;Uò@ëµàë/ÉÝñN™u¯&_×£ðÚ*‚ æð= "aý.žZ«mÎg×ç¿k‡3Æ %U c5 ¾Fh„g7:ø°âÈí"Ýt9í¤*9ve;QrÈ(kóåšÎÊÅÔ–½ûx’àU³›œv4]媒0–œ—úríB!—ŸŒº@†. &N·CÓ*y,…³˜àÈ!$xÔ®&CY{5¬8$7y%IöWÉÒwj><<ÍV%r(iŽ,D®W‰Îòõx»J:5Yá•“*I29”…¼6‹ÉbU"Š–è ‘.áå*Ù¢”yCÏ×Õt²w:Í ¨÷2 ¡8Urúˆ-Žú«dÂQÞæF‡J¶×3/Ñð a.;ø†SMó$™v Òô }ŠŒ·Þ9ãÊ2Ó³‘(&Z7ÁÄØY- WÒ… ®®U9S´·e9^äοN}ÛÐ×f«Ü“· ǧ…¨V9µCºw-râÅTä‰[åŒ o‘è!{N— ªœÁä™7;+wn;oûo;d‹0UR^ý€_œe(Ik€ˆ(5%M õ»»j8šD1ìVýjòð/yktG;*ÖŽÆðwÜ=j²kˆI6ÂÃôf¤X“Ø¡„K®°Ç•‘ºº&ß§ƒ¬†…żø¼ÌFä3A𢾵àټͷjÄÞâ[ñÈòg|ë±ûÖ§÷JàRÙ|«Ä¶Í·JжùÖâ¦Ü·æ‚‘ð­–Åjñ­u:‘1Vß*‰§ÌèÓ·ÊÂ?·Õ·Jž@3]t®2EÏ«o•«–6è[å8@Ü·R‡ð­¾U¼\Þ|kAøÕâ[3¬YøÖB:î[q#nñ­x»óã¾U»ŽY<÷­|tsñ­xñ“¾Ã:|+‡uøÖ‚¯ßÁ׋o­fÙݵæFÞt­iÀJºkÅ#wáZbÓÜ·l :WéÑ6Ç¡s­É"*ù{µÙ}«ø ó î[-5óâ[ˉø#úÖ|âçp¯š°z×.ñWcó®‰s)z×Ö²½hÞUîT›wMöJº;Wé¢ÖTî]%B2¯ÞUR¤™Àô®åÄkËá^ó@÷*Œpgt¯»Ÿ»×ã ƒƒ{MW/º×< kÁ½v¢´¸×4»¨u-w¯u‡{=+<š»×ù±JÚÜëI{çîµÚÇŽ6t%s¯jGñÅî·Ý÷šèٿĽÒ3üèîµÓë}½v8S÷®ø£î5ÞÊþqýëM üŸ¨w•üº{ׂe„{×4`1?å] æîô®~Û2¼kÆMèð®ÁÎî]ý1t÷®ŽRW÷*”Óê]e µm+W¹®j–ÞU;b_½ë‘hºè]%›“ÙzWq‚ÖZt¯œ«Ñ»jï²y7¼+ž³¦k]ü \ëòqáZ#þ˜®5ù‹Üt­%®õl˜u»kåÀû”k= ]¢»Ökâ®õÌPêS®±Å‹ku\+kå+¹áZåæÁºlMþ¼2}«B®¾5ñR.]kòç–} ZZäZ\kD†ÃµZ£/žuù.p­Ë¨ƒk]F\«Ž:S®U–æi[¹ÊøDøÖÂçß*Ô¾Ufµu[¹ÊX°®Dß*“ Ô‚s•P/Û ¢s•H0Ûê¡sûzäÕ¹JJ'¸[8×£");WÁ±Ù «f2¸Vç*;a6Zé\e‡¡­¾UÌ}Ù–®úòµúÖØ§ o•}îK×ÔÐkÝ·¦Íã¾uZ;,é[Ý"¹šÕÜ|k‡]øã}kÜñ§o…à—ùVdÀøñ}«C>á[qÏtq®¸åô çÊ;M?òâÕBà§#Cv'Éí¦ç Ñw»§cCZ¸ª{oáè*=WÙ`gJ;ÅðW@ÁËÙR $knà 0{ÈIÁÃÊRƒRƒR’®‡žöÍJöj¶ûWˆn*c= ²ùžúlTÎËÞåæÏ­Ø V÷2žFˆ}¶ `v ¬€¦«çò3åcõ]¨%44Û¼Ñ8•"+ej>Y«—©‡–UÌÓ2›ƒo2€«E,}[ž8˜É‚e´Ý™ —v- Z¯vG,¾˜CÐäý´dƒü$6eZ?Úìé:+$ÆI g˜|4BØê¤À¯BñÝ(1(%)ìz@¹¡·~uUõ¤6 Ãz5ž’“öjÌþPVQ»Fb9†=bäX,öø‚†&ŒêsŽ–ëÂÀÊh=‘v% Ù‰[y#Ü4#¤WûÚ'‚ž§»™½"f±VVI›½¢ëöŠ‘S`Ùxh Bšø† Ð4±Pð°2ZO¥ †Ë »PîÊ·&Ò!0p2g ûçóq·²H^-d±÷v@”i!ûæ`ÿbÎïBÐ@RFÈ] SM©ÎËòÞkèT@t³BÙ6XX­×ú‚áRƒÂ®TKuÇü™K@ã{*_ܱÿheá;éŸ}Á€!/VX…€èd<ºj VF멎AAaתeè¾T6Õ"S˜Zð¶>T¦e[ê¡,|‹N¡C¥¼>KJ_Ñ Ð4*j7=x úVÖ–€ŽIaWzYP±dëÍôä¬öåñ²Dë—熰•…ñ\<•kÁÀcFNeã¡5Ñ(æ 0tµ<¬ŒÆS)ˆárƒÂ®”+_Üg?.¤×╱¤#Lú…/¾Q¾M€ {ÍÈë£h €&SÓ¨.×,úZDÓøÙåEí]~(5b/eÉ™R„È.¹ð̶…*¡©*rGxLµ÷ªªŠÑvŒ®“d'À¢qÐ „ õI@üÆÂA‹Ú ¿»È¨¾«½šÍÜ:^N ÈÐôʵà]¡¡ó3ßAYØÎ‘%¹dcØ¥,'ÀrÇËf D^> ]_N +¹ Dp¡­þ®ë .Fˆs@,@YÙZÀ²0ûnއ8Wy`qEÀ;FN€eF/óä$`áËÁÎ!1\jص€jÃæ“‹j„¸jŽ‚Û¬xÑìÔ»ÒŸéXÕÉH’“Ç¢› áÊSj¶Í¦T;-º8ÂÌré¥þªÇ2(.=Aõý5”UÒÓl60*2"/çOˆN=‚‚dd8VÖöƒÄp¹Aa×Ê]š/GÏΓ}7‡hºoe\õM ð­B”UTƒoB”•‡Ô ¤HxÖ]P˜¶ý +£U `¸” p£‡)'á‘ö:;—jÑ•VÅËB\ˆù™¢/ÕäLÈât×I^äR- ¶Ð_ˆÅÆ*—j"0\FPص€j©àájWÍ!&YâÕ ŽÃÑP-ëË‚[ETÅP–±CCÁc‡˜ª™‹ò”‘³iÕäýD]S™ žÆ¸ø~aœòZYø–æ÷I ãò;¹J€ec¡5ÑÛ9AÁb°–“d-£ùÊ‚àRƒÀ®T+6W–½ÆKWjáØá³B2u2<¯¶²ð•hÄ÷I€ec¡Ñý_'Pô&8X­§2Ã¥] ¨V®¡ùW#„^ã~’~¼ÇgkÅ®ƒO‘‚?mäŸÍ!huRàW!øl”Â1(7(ìz@¹vðQl[ƒ:ÀVò¨m±Âô_ƒÖ^–m¼êo!€—¹uV$€¦sð¨Ëà&"ëo*P­ I]¹ßÛ­©x·”»9~Zãû=udËNŒÑq, ^æ~C°[ã°›'BÜïq)ˆA)Ia×ÊõëaÛ}tË0»œ®šÄˬÊÛKFAÁË®!Œ(¸m¹j”•7!I`SŠÙ“nëH#„ã„/ïp]íÆ@Êu“Õ@ÊÝ”Õ@zÙGZ@lœ8Ž#òˆ‘æ¯ÃåÆHÛõ€rW·<~á×¢n©ñáx-Wu¿ÖŽ ™5€ÁÇ~@À‹ôk1¯îµÖ¨ÚÙ|}õk.#üÚ®…©&®æ²öÈ€X‡Æ×Òá"ð–]R²]uÁÈ1¼Ì.éô(§€§¤ì’.1(%)ìz@¹\‘IÑ•sE;7SâG¯¡Üô7mÙ\nö$NPð²+GE#оï¢9ÎÍ”¸”¤°ëåì5ìE7 ˜8Ês<ߘ’VûfJZ;6SeW F |9§†j”•¯«)Ù•€bU¯«­š9„mŽìƒ.8c¸]µÆY 1.{TÊUc9T„’‘_Ü¡šç@¤òÒgÓʵŒ4Ø4%1KÐpeœ†¢ÛwX’Þpc|ZÇê{Ñ-‰C`I:N,iI“ç†ÄŸÊ‚K»P¬§ÖvɨúÐlÔÝFŽs]Uv¼zÓP'§oE´ @v ×´'’æ`Ñ‹ÊUímÊÛ"âÅš^U q¡}¡Àr¨æˆF :hÿÀ"ì#dàï.4ªïJ@³¡Ã.ËœYšÆOβκ³êõë.n[XYÅì8h&Æ¥fÝ)°¬,´-õ@K€…•µí 1\jPØ´€fß+‡Èéú¸BšžÖu¤FÍryC¨âÚˆ…íl91Ü`3{'àee¡5A0S¯´„¦S ð3dí]èue5˜qÈæœ‘ Ó)’Ó§ŽÑö™þP®ë]“%1CЦ¢Ÿ‚蛳Ü$ÎÃ/x ¬¢j_ŒS§òNEã ød=‚ðê–};XY@b¸Ð °+Ífßsé‹"¯º+_±·¹kZ.¿§‚² zjVǸ,ŽŠ¼˜9, ‘~$ã„ædV¶e…•Ñv*1(#)ìZ@µÓæÈE ‚V§!Ò¼pAÔã²sbœ‡R±¾DMB ½:B¤QS"P@ØU€^ˆÓ7gF}‘½Õ⮊÷†Â™¦ùÄ@ZfRð²»³€¨;rðVÎ"ü… ?s±ÍŸíZ˜j§Øÿ²¬DNÏCSµ1Õï{¼ê™,ud`X&cÖ÷"#V‚€S'€€Tgá!«””v XÂY®S©^°ía«&W<¥PÅ5.”…­l䬿2€—«Ei@Süxý¤7‚•Ñtæw€á"‚À¦ô’DW¾jz\XV ×3V]¼‹ë²Sr£ŒãT‹îXæº,¶ªrXu9 _—Q"¸Ì °é½Šåm”L7—)Fˆtg!E/½Í²-x©ea;•ŽvbÔa‰;Ieã¡5I6¨HfÎyXYR8å…](W›5ÙÂWÌiÑy=0lþÙÊfóÏ6V›EÚ|‡PP€Ewnó]Ç86›£TkÇÉ¢FáŸöª”é{öã?»ÍÑ£Ûæ x‘aü± |'€‰’³ð0~Â1Ž¥ú"<Õ¹ì Äq < z\§,¯j©OÔ1ÂqÑ\„ ³À–¢Ù)xù ¥ä°<ÕNA,ÁŠh7dÂïÑ«ïJ@³~Ú51™À%KFIˆ&-ž\í‹S°‘Ç ÜS»ªñû‰X)Öö²Ò× €L>j@I@¦ˆyá`em“€v ×v1ÿÔl« „sˆ3ÙýY Iûóά•…ïeñOD¸pÆE, ­@ˆ9“À¸ò¶àÜõ7õvá¡Ñ9ì!?-s·„¾Ó³0¿óë§eçÅó5øž¯/ûiY@ì¬Ë)à,Ìyøi™KA —v= œœø®ñI ¸Hžö9FùåeOºŽËï*F²ôÌNeO ˆ99Or)€áR] SLÞ[¸D@l£DØÖ%Îc½…møJ'žRFΰ/3\Â!vp è`ÎÃÃ%\ bPJRØõ€rEóa¬Ê9¢¼MHÑy]Üu“ãuEÀ ˜$àe×JF ”,B5Ê@ÊH»P­"±‡LDã„í9e<`âjvìvLB^dÀD@,Ü<"®Ö3`B†Ë »Pm·]Ò!hôQ÷.ÉÛùñÙìµÂÀ8™p¼ìŸ¶:)ð«xÿn”Â1޽Kîz¨rM“N­]r¨híà›Œ&z¤ rM²/œmÁ²`l`rEu“{ÉAÍBbPDRØ•€f寒, vÉéÈ]o,I“nÏÜzÁ³·Û×~ Z‡ü"—ûß?•TZÓüÜ4ñ«÷Qß®ôñqÃÿ†2çû×O¥Ûó¯0Ú©ì´ß(¹‡#ÕûgÆgŽöÙf{˜Ã@,Ij÷ÿ§tïÀ~f­$a ñ5ãCƒJòÍÎΖ‡§å×Ñ:W$o>žQýÃCX߸•Ç{ÿÿ¾Î`·AÃ÷¾Ã¤½iª /°S/“zÛ‰i‹DèÚ¾ýl‡„x-»A1‰Éÿûƒª•¡?ð(ßÿ¼ˆÏÿëо6µªÄx[ßÀADG¨4r|¨f§¼>qK¬†ýªðÛà.gIÞѨÄmcU¨LzGš"œQ¬Kà#'÷‚¡5½&¥ “–ÐBßvš!ÚÁz2úmÆMEc…˜"I3—`ˆîõ»ŽOÁ¼Â̤²ì¶ '=S€ºeÐ%õLßšã`>CB%ü˜p¡» & >7çŒ=.Ñ)FFd!™ŒË»ÉûÍáùî ¸ÖE¥Àtß|¸Pðá)ˆ¥mG‘f¼Ý> stream xœí}]$ÉuŸçÉzñ‹, 1/®–¶Ë™ñ•‘„)€’¹²  É1ô°c=3½³%vO»z9\ýzŸsoDddÞìÞ™¥ ¶A€;qãÆý8÷TÖï/†ãx1ðå¿oï^ ï_üþÅ(­å?oï.þæÕ‹ÿø›àÐrœ‡y¼xõí 2^äñbŠÓqöñâÕ݋Ø._ý:ç¼ê<¸ã̯޽øæðËËá8ÄÝ<>tÿ~'ÿöÓ8̇›Ë+þ‘Çœòáîô¶ÿójõáGçóá´3…~"SxïÃäw÷—WkÎ1=ýÐÛÓ‡î£÷eôx¸ÿVÿ9‡ñpý°r}˰Õ9V+¾ÿ¾›êÃ¥ËÇÁÏþðÈÃãéî¦<"øÃY§M.%7N«?Ï—ÿóÕ5çqUd|åã1§¤’~õ]'^Îð̦˪g†ÃýÝGÈ)a§xêýùôxºÿÀ9âqŽ*þ3‡Gó˜ˆmÄõÔglñúqu(ïÊG²¤<'à“|x#â c:üPºÏë œÎky,ó¼>†eZ‡³:ß/ó½Q…À^êòS;…2xõG•C:|{¹´>Üß•ÑXmJ²È>ÖsÛ$¢¿« E¯uøíýc=ôõ½òÇfwñêW/^ýå7‡Ç>b¶è0NèçügízywýñürWo&w¹š¯_ŸÞßf]®hÇÿòÕ‹ÿþB­F¼xøRk1ÎÓqŠñbò1:±™£Ìú¥Ó¹ÁÝØÏöúògj€F.fKz;œcÏ+ÇÛFÝíoþºJË>BƯ¡†×çÛ›ó×§Ç|8}Uè›dõ¯Ÿ—ay,’ýJD;ޏaª§ñWЩqh3>}wzû]—ñîðöõáåÍÇÓñþÓ‡—íyYÛ>ÜœÞ÷æþû‡³~Ä…â‰7ÞÝÀœ½|}©Ý<ëãÃýÇ¥ºÃ«ßü_~µ,âöúÍÍí¹Î›úMÝâJ½>¼½ùc'öŸÇôúòõåeӆ߿˜S8BS/p©ãqŒaÆ£c#Åþpsñž=à18¯”9M¯0!³ÏÉÍGï䌿9ˆÀ.G.ûúôaY 3âènºˆCÇ/2nvX̘ò1»¶˜ã'5sNøÿ”<µ™óŸ°èÅ?aÍ÷k›9^ÄÉѪ\Ü¡%`±é"&(ô˜.nÑG¬-)BÒ’ÆãЂOR–9æI°ó^òxG4 áˆË4XÒEŒ9ÇY|–ÝpþØzàÑÑüåqÐ0½.& ²¼0ùãè´ÿÂ4!¹cÐåáÖŒX^€ÇrYçñÇÉ¡Ûkì%z8•IVf¸ ò#.²× lÁÃËŠ¡ˆqd‹çØ'ϲd80XViÁ¿8Ê¥áäá~DZnH0jÒ’&ìj—Ë<þ•G}x’ú 'æ¸@_ŽÁÓ q9I” LƒÏ Çñètâ@ãÙ5ˆH¹öHḱ¬ÏÛú-в$wS¢àD\¥çC<0¥x$žfªýÈë5ðä§È{ OÑë³§Zc¾49Ñ2ö™E²T~Ù®ŸÊvÓ䄘‹ôSvÜ'Z°t3ž"T|È:s<&ªþ;•™y©×>3, 6ì°aÂ’et4É  êáy®Aô-Ð;ÊÄGWNhÊ2!¦ ¼xlFYµu*-Nå°/KΔTmE…2ÄÃm¼ÑNû$š:Xsm™1ó0§úôª9,ÚŽ câ„;«îm‚êS™…g áøŠ(Ä’ÒTCûC3K4xPƒz‰¬Q´†s+Ò±Û£Ù9>ëæm(°-¬â r˜¨Ä.6¸±ÐÖߌ‘³æq¨š¾Ò¡ævÂ0D뉢J#¶œ¨nnû˜F®ZéúQôˆE`ë1œ>1#‚ÇRež€ã‡4†p7‡1ÖØr€uJ ¨Õ=Aˆl.—ÙâÚfEž¸cñÈ<•(£ ?*"ÞqŽÂ豜®V8¸±è[h…çv±¨²¸ìPö±IRíÓL_¡Ï‚áÔW¢§H«ÆÞ•lNrkfj¨Ž‚S¥¹œ±žb{ NÆ4ó0J‰ ÒÇ«ã /£“ÙUÛxï¸d/ÞŸK–Ë‹>Cª§ýB‚M É?£˜ã8C¢ê?=ºÒŸsuêÄh##ç(jé`•f` 3Rm‹.OL¢4Oý€¬ªítY"9H8SàxWy,õA öØ@èDþFôBMâÁéÕsÐòÌiÓ\7€Gж S‰k<-K¢²ùbRü,*• -EI6 )JÊ BÔ÷¢ìÌg'¶Tåâ ªb&IcoÍ(™É#(„+Jô™I¬4Ofæóà!'=ˆ!pM ‰V»¥åpVóèUò“îÂÃUàÜØÃ”ú¹Ã R‚Å.rÛŒZbPØ(š,F¢~Ò;¿Ñ«»Õ³Úi5˜>Á³¥ø3¸‚%¨¡¥ŸÒF…—ÙdQ£gh¼MÛ3^Ƹëgr³Û¸žÉÀ(Nt(Í>Ü@TËb)å!–4Ä ×bs=ãäU’è£FYµÄ l)g ÷Äqf¦>íßY{¯Í݇f òåóÓ€ëªF±CX´„»a*^ÇÄU÷Q’t飦pL±Ü¨±öYÏülÃÓt.ƒM.‚£µ˜JxNä‰AƒzþäA£F껦y–Ü%1Î{Ñ“ ¯lfÃ4Ê™h/Íb¬°çêÿ&®ebú !o²6”ô'jò5!à´‚“CŸ±¦~¸kL×'„ÞešdNóP.CA"¯ìPD7i´š¦rÖyÒÄ‹sD=ë•NÕPx“äßí,°€Âè`p ]XxÃB &1HŠ[¨‘y’ÎtÝÕ´©,×Ó˜ g‹1pÌn8„Av®ÞWò–ì;¸@ Ë¥\ûà`9Êûñ8d@3—;0¡’Ð.P%×WóA|‘;‚vë`‰Ä4Ñ:jt32Õ¥`&P6Àvs3П|4Q iÀcÆFpBoÝ"]A€£UE§[ŒŒÞÑWÅ <ª9K0£Zd¬š3SÒKNOIë‰Äæ¤a†4¤ÉÐ$ð,‘i!µà Ÿ×Ö©Å0TïÈ<ïiêŽ2ï(üúFØ+Ã[•¥ÃTí@Õ…¶,IÜ.òTR± ÓBÔºà‰4 ÈÉë•^œÏÄ8Ø©S.É=”5ˆgoØMw€±FáœYâJl[ók.‡!â<¨»ÉQƒ»ÑUëËae9 #º3xÔQÓ¬a9íuR3*ª’ލbÐøìC*à£öáÄT4n­â.iJG ®pè&Ó(EŒD%W¬†1D5jª[÷<_´ŒÜðívš¦ƒk§A%„¤>1(vš–)ƒºš ~–' ƬÇù‰ýb’¥ÊBK!¨ÝTkŠ:йª‘ÕÜf!9Ûdoü³¡-ÐhÁH XÛßâ;XÁL°hƒE$6N×xeë¹w¼»l”°$TW6Wîn÷ZÚ«kn·5ÖHÍ‘§€<؈“hÚW4€ lcè.õ¬çÕgeVË/pËÄ$²ì ?F72V(uEшD̢̤ǜJwkæiˆ¶0 ”RÐ4qª*â_â@™xhC.º)1·Ø’¤šˆ•kʼ(Ø`ÂæjšÛ»sÁ­°†bçb˜Ëc/˜½„ö¢šËl/¼5 ÖpÛ²U<ì\âIiÈM“ÀF¹Ô»è¥E±(^:R]ÆZ÷Ýœ¹¨Y p&‡¶ Å­¶@ajÝG4ƒŒT@/‚ä¥"³šg /ã¢ãž!ð%X°:îvá™°®ÃÈ`ÇšÝXüÑb”Óâœ;Xè,Ý"3ÏUr×å7 “æ9Y¬Y”cŽÎå’ìT·lÌTÉL!m§Öfëq¦fgëz;µ?S´Ä*ã¦YÌÎ:<¹ÛÍsvs¡5Â`A T,ÃÂ62ÁÒ6žÒ}¬Mã®õ4· +ò ÍÅZåĵmø’×0¡.¸IÐçÁõªo̲®h¦Ä3•ˆrQ3¨Û2·‚îLr»“ÿFÑj¤Ú™ÍRê•yŽ€„«ÍÐvÂ¥ê HP0Hƒñµƒ–’cK:Œd™]Áô!2öÐû<Áì¾z§Ÿ:~Šø`Èp$W4ÿ.SýÔËX¨Ú€8þ‚“ PùöqàÇØÎè°LnÈ2q”¡ð¦PЋ+šÈ¡|uMÌ‘:aá<QýTÖIBºîâ ‚ÂqÎíS]“#¦ ³u Çr`ûXÖäèóI3€{œÚ𢮉Åìòâ*åÂI, !f`ÈŽi †Ô>œø!£n‡äë gå ¼ö©P¯Xûö3X+ˆËŽf~ Û†äÚs»¸8mUià‡° ˆŽ¦ ܨq„«I]Åù È5Û§®1¿€ÛösìG¹h/~û  ¿=ç6r$ „`š®4cKùíÅÓ:N“ꉑÖ+ÖqŽø£[›Ç6n䳦‰ÿ3XÄ1ÑÇ<õÄ¢O‰7>9ŠŠíÉbIìJq}~r±22"?ÅHè]?’I<þûä3ù´0é3ãjdf”žÞ¦l0ïì×– ÞS‹½ Ü.]íQâ²øÄJ·zr· kqÐoqï‘ëf×õª-}/;—cN:ÑîT¶Óv ­ÓÞ¢>«S¿r ÂÃ{‹*ºÛõ*-«^ªm]'mXõ)êÑu*-«^åD»^¥å‰ –^ýÌ)Á(&ä+Þ34 žXÖo^ Þ¤Ý.覩Øî£ë‹<†½Æ´7<Ûž£>ÈPvŶÓR±r9ŠõŠÇ¬”]ïÊWš‰u`þqÆîŽÙ·»N`ôÔ1v“8‚ï°‚–L6ßBjq3Ë\±#¾¸Y?kÜ7‡¬lÍJŸÁ4cÄ…bã˜2p;•„£]¦Ž§ãÏ=—Ç1íœrÇ÷Á¨èâB鮢ò†*í ó Vf˜ta’ÒÈcŽÖJ .•²ëXuä¶RvÑ2IúÓ(».G`£ìº ÄØQv¿ø#´ÈZErD ¶J“cUAx+F9†Ç‚÷Ö‚•ãÅ’ºL-jÉ“<ª¡öüƈ Ø÷BrÍöïÉÞ".Óê~ŒjX[ Á³$GÔ·Qv½ sGÙõÂ] e×»q,ú[(»¤L¹Pv½Ó´h¡ìzI€}GÙõüÆ µ¾Qv=Ç“•Ò(»~ ì,”]O˜/¸Ž²‹«&œ˜…µ Fkç礬ÐÎx–½7Ö®›³ÒŒmBH"ÃFÛÕS÷mWu%w´]´(õ¤òvý Dº%[uR•Œ}É„-éöž¦±KÌ=k_´-w÷ÜmKËï!‹I®eÃ<ä4œ-EîK€L£Ú–Š7xæ¬B¸­„ÈBêÚ¶À’…ƒ±@~¤þ·w!ÓY¤Óˆ»næ—µ\GÜm&¼w¡jºæFÜݳ½{æymÁ­•ßñÌk]ÇEºÄ/5éÖÓáæR"©Ä]ŒÔo©‡ÀÇÍr­fâ¥r®VWñTÀ´T^p*OWZòÔÏM {Ow;ê¹ ÃV­îv4Ï*§Uà9)i.V4:¤É$Ò™SWHƒíE}[U–LI­ro¬ÔŽ!Û1v&7¡º 癸ÜQu¥÷ T]„• UבêC—Ó¨º¸pJÆiT]G ÛÅ®î„;*^x©M™[k¯õöêC3èWæž§ëXÍU~máé:ú§ž¦[3󅦋A…Š^iºÛ‰‹òxÒÉý©Œ\O D%úNZ¥m¸¿‡H¥¨Ójž_–Ni­ eTnmeäzOx¾Ñq=™‹ êW†0Hmt\m™::®ÇÎem±ü‰ø‘^´Ñq‘+Lâh‰ù„“œ£m<«éŒú-‚Ü-„ÏWTI=ž÷2åŽø³m'\í`6HÛ†qhŒQªU«Py:r©…Õ*V£¹U+t!Šòm V C‹k¹ »jÅRQó#%*ýÐK ?wüDÄÕšV5ãF¥žûÑ6­¿ÛMý-<`2X b¬°€†=,0bÁ °POS¥éby³0lMW¤ïXºŽÕ^¦«¥ë’ÛÂÒ%¾(Âj,]qZÕXºŽßYÆŽ¦ çW8¸E›ÄžPÿMבu(_n¬4]G½Œ§ëÄì°5Uk4]Gn ýK£é:~Žó6š®ÃÚe1¦k§}®¿ÄÆ» Ýc®#ï¢Åk¾’w=ëçâj*yf#帑w¡±J¿lä]ÈF¿ùÞŠ—F«wß^Žíí±× Z4§®¨íGy³HWGØ„TƒÆÝó£–½ÏJY€ž†_üruGhñê *—Fp˜;¾ ZFq}“#3gß‘we9®gï¢E¿?ÔØ»b cìè,h»´ÐYÇž-è™{˨Ê(”ýRJuè‡qÖ|¤2e=¾#/îån›äÎfâ°0ˆ…J,œb! ËèÆÂ;{‰ ”´7m©ÐÊ[¤a£š×Cü1t¼_'ŠXxÀÛiž³:$ånj1p Ó'F¼nZÔ`¤FµPë»B~ž»Përe‰{éz"04K¿lшÀ{Õ2[Q3U·Êœ©ÞíTølÐV m5ÑVmQÒÖ-7µÍ§ã¥uXs·›GíæZ+°ÃÂ!21°ÊNpd(d™@ì™4wmBwìöZzº2 c« cU’‡¶;87I¯*eØ3õŠ©£ ó­ ¡E×ÊðägaA n°E“R›¬›¯½×3TÎðv-?3ìYÇg!ñÿ!Òðü,i8ü ¬áð¿‹5Œ;ü¯“5üã|¸§XÃÞG¡Ã®XÃá3HÃm`O6­½¬ÃzÎpø ÊpØS†íó,߯ ìÃvœ% ·q=aØ®Ôò…ÛÀž/¼óDCn{ºðηlá6®g Û•nÈÂuÔŠ,¼yÚV;î–QÕ‡òÌ¥WiYõ²s<+º/wo®^›U,½öÖõy½º'Æò›½u5¾pëÕñ…[¯Ên¾pëÓøÂ­SÇn½_¸õêøÂ;;,½þD¾°‡éÿ5ñ…ù …îøÂ‡ònã•)õ™€âüì`kföíkœ~êØÁÁeE÷%&èÅ¢4ÚLp,¹¥ŽZø²wy=Paß?ê—ïAÓH)u!ñ¬ˆÁb¥ùh¹c‡nìÈBÄ´èɾœºR`rÎX£c^}_L£c1ƒl¡Qƒ±Mžtc£‡Ô‹*Aùm‰ØÑ ‚+ÕÁÊHتìæ[Wäý_¡cÕ]Çl |WÛØå!x-Ì50=È÷Ú}‡·Ú[y·eÅäÑ2i °âöÚF]mØ>æ‰Ç±ƒÿ¥!vXo_+"„…ö²B,Éj+F„(ì±…Œ.ò=”F , e½Ò‚;êûk-8Ä’‡7Zp ¦/_c­´à ݻт Q–F FK”ïÐ6Z0Ö|j´`ìsÖo®TZ0¤.uÁ…([‚ ŒÃÓo”7ÿ…NÜycxÚÆ Æ1è÷,+XN|+XôÄw¤`4ŒJ.¤`<ÚI!»%ÎÁ7q•ä:ð«Ó,Ë´<0¦nqÍѯ°æñ÷ŽV¥åú!Pù;8 °|%ßc«Aà‹ Rê`…@Ò¥• =–¸„Ì[á …TÑ+„%G*JC9•5†Žä={sÇ äùŽ¡ã7ËÝ8ÁA^€•;NðžÍÝ3ËËm­»ñ~ˆú àJ; ‡ôí6•šº5Åh`Ý“ ­œàà•‹·”OßCØ¿F%ðKê.tUÜâAèR¨ Å*.tiCGI‘›®Qx¡­ ‹;¦ŽÙâ ɵÒ_:?Ž]± -³rek5#ÈEj;¨Æ,¨UõDÃòÔUþmýÔ­Y´–ÓuOðæpv\¸ñò6Ø VÁ„ 8LLbÃ–ÐÆ†?[øâ6ç:"ÝF*¤3§A™‹…ìYºaeû9ˆÿXÁ›Aœ*°ÐÝ¿»7ðÖK!½NÍ’ ϵ¸ÆT굃9®¥FXˆh¼Öq°5¡H/µž@„iŠ]=}„z±ÔŒq©¾¬$ ©‹ìƒrjy -^±âZÂÂŽ¥¥”¹Ý I>­Ë ßooÕ²àõX–ŠL_ÈÜ8—"/7/´Ì0 ¶ÃèS©Ëâ`àï¤â\!æÀï0ºþu0°Y‘ëŠS‡deB°ò‹‚v‡a˜-€¸'µ~îAóÀr†=*#8Ú%™¢1‚%jÓŠ[{”Ÿ´¥0‚±§ÐceK6ôŒàÀƒ–ne–òf›Ê†(„u´0‚7)% ~†ïi”`Ñíiî(Á{N%x;JÔ}˜G­ÕUNp £Àõ¤àÀ2”Ð+)¸m¶‘‚·óÈÜBôÍ)XZV/\Ý;RðvTõk-ºÛÑ3«ŠV]ùÃWRE)3(©UÆÄá SW=Ã,¥ÕëqáDKMߘ¤=«e-Û6ضñ¸ÙçË A*ý-Y^òªôß@P=vì_ÉÆŽü‹“|¯°‘+)$v´jS E^'T+R{WÔ^ãÍM§¦ÊÏ=,ì_Ïš.+{ýëùå$!×WúoM½ú/F~{¥ÿn&^ÕVz€*ð7)BZøÀ¢†jD’×Zmõß\“;Ü?¤úm—ZÀ¤Šâ7:pà[ˆ„‡SÁ$IÆó,£ 6F°¶äŽ ö²ºXÿtMTF0Ò}P#á¾5)ÆŽ¨øª²:2Òy5ØBø üåyP%!îÕŸhġݘh6íDV6ú²š âü Š^ù8ºÅ -e)DV£~!¾–®àGîT-o"dòÒZ D¾™‚×*Y``¦oæ+u4ˆKrÆBj ò;é10ʙ玹QªîýâU]'ów;ù¾öP,ìÁâ{ÆçØÃB¶xɦ2JQ²Ð±:}íp£‹wd•±ñ‹¾ÌS8yÀw|`ô‘è¿ÑÅaÉäT:°ç÷àFßÑ=¿7Å…,&†Ž,&§ŽìùÞk¡V:°ç¯æøþÍžžühá{RVÜÜñ=¿_lj÷Ê®|`ƒæ¨7ã¶4­ÌßÀ_Ø\Çü…Öí4¶o´_؆ñè:Öoà7™ä¥A•õ Ë¥_žoõG£¹;Êmô{?ì"¿bêŠÕè#n}) (’CÇå ÂÒÎ Ý òš¿…(È…xãæ†LZ}Ï]IàÕ//ÔIÁÆŽ}#Ó±6ί¬†%îÆù ò“sSÇùU[—:æ Z¤D»0W"‡ãüfy¾£üŠ1öå7$5~ çw£ ;1÷i¡ãÁˆ–7%VÎ/,¤€ ç7‹+_’©œßÍ4Uû6>„ê—õm†Þø J1B•ß‹½êï=5~¯È¬]oà¯ÇL=½W­œÛaYDÍ¢n;Èœï ¼g@‹Z$Ñ¢‘4 ¥ÉßmŠoa X8Á@Öï¸iëÊ­»·! ¶¡E{M•q{ïöÏöÊ[«`,G€0¨0|"êBGPÙ‹lD± :,¸dñ'QÙPßd6cØÉ*rV“Yy{‚À¬lÜ>,X¡ÓJÿÃ.]‚Ö>¸z±'žßBêß¾‰ýÁbݘ?M+ è]Ö/æU~Ÿ`˜B…­@´81*OPÐ[¡˜U.!Z’f•o(ë cÇIÜKÎ6Ù›Mï `a1 ƒ{Xld?±‹a,R³ƒæl‹ í G]ÚA ,Jµ 6* `ÃäØÑ{1³ï¸½°Š³¦ç…Û‹¯OžZò8KÚ¶p{·³Ê“`ºžÜø{Œx¹7°îSGî­'¼{·ó<zÃ$¥ƒVro@0¦™f%ž‰%ÓB“ªja÷¾³˜ßŒhô^_ì… &L±w×\oc¬•ر$öšØ«d¯›½’öÚÚ«m¯¿5ÖŒXS³QE¸ØÐø¾¹ cž:z/Z†ŽÛ+Þ=¹w{àªwSÔEWnC©Â,Ü^,Oñ‡Fî…‘Ïrïvšg]ã)¹ÛES âÂthêè½»HåÍÜ< $jPS‹¬hçé;µ©ÌQœ“~Å´ñ{É®PÚkå÷Ú—­íÔÏlÍÖál­Î”ólÅÏTmåp§º¸SÜT)Wµñ›kÕÜíçL6¯ÚbÞ°ÈLbƒ#@™ ËbO…kºof·73ðÍôV~¯¬I2àÐö–4sªô^4ÈG ½×Øï’]ÓÜùŽÞ»á”o\#…&u¶ÙuVEjìÞíR~:»—Ù^”_øIì^aÒþßÅî}–Üëþ?¹wE>ûq:ÛSäÞÀ|IÞýö¥¯n#¿ð•ÀmÜ¿¸üâW·‘_úJà6ð‹_ ÜF~ñ+ÛÈ/}%pøe¯®Ãž}%ðVOî–a†@£ƒ¥WiYõÚ™+ë7Ç;:íÎ\{½6«Xzí­ëózõ«/oÁÙ[W£ù¶^Í·õª4ßÖi¡ù¶>æÛ:u4ßÖ«Ñ|[¯Žæ»³ÃÒëO¤ù!Š¥ÿ£4ßf$÷WN#³6Ìãê%û£ü²‰Wt{w/¾9|}zÿý%ÃkXÚa><Ü\^±Z2ÄùvyÅðrÎîðß®?v½Î¥Ó8î¿ÕÏáðø]×¥Í3þ}×üøˆøgF¤™ïØ‹)½?¼íÛïï>^ÒKÌ1ÅÃý‡õ¼K·—|7ˆŸýá‘Á›ŒîÐ/ôážó  ˜æáñ´šªìbÎép}ɇåi>üA¦F¿~ÒÃõ{ý›ÀEXîÓáþ’ÈÑ=9v‘ÖõímùcȇO|(r·î^žãRrÓáw磼ÄùÊó·‚dÊnŠGýæðJEŽ||Ѱò8´9 ·˜ôðÇLJëòvýO ó§KÆøk>¼ásBrr8Ý^òg"dNmÅ?pBŠ,ˆ~{/z£òÐÉA|½àßuÿ¾¿«K›ÖËùóÕ_+íx<×1ñpw¯œýjÚÕàÛ¥ûFËVÝê¬ãáú±ŽðÝZ«No×YÔN‡ãåÓrþúôp~ü ƒùMÚ9=!šéðÐ_?Uè©>žîj'\Eȸ=êû¥¡Þ¯^¼úËoêÜ‹y–üZ ΘòZ®À¡ùZ|êOåmßùa5ôú¼ž‰3ÐOy®n×iç<–g^¦7òÑW5n( ÊóáÛÕݽ+ÏÁ¦×?Âáü´jÜ?¥gçò9¯rÿP§uö„DŠãúèWþÃéþû½g¤C1_}ßLKß™|ÜñÃÕíukÿ¤‹izÍ><§ØT˜ûÜ›ûÃÝÍõùöæüõéñ?Þºy¸½þtù¬W/í#bRSòÈ2‡òp\åüS¥-ÃqXŸN땪Ïü#†@Ç|À}cA Vëðõ¥üüÙ|X¹³r¦ªwk«|wÿ°2µ_ñùj#?©!2„KçEý°ØÄ&*¸]ÉàýÖðË`(Á›Þ^÷÷N¬{=‹«v±y$¿øû¿…·pò68—HÍan¿· QnæWDÏOßn:g–cj¢¶c{ œ‹®êK,³Ì >©1 eíXöÊ"\?ÖU„ k½ûØÔmûÈSW½ô®ñˆ±Ü ¤$“¸bÂæ0ÒíÒ`cÏyƒºDsty8×öŒºF-t.Á퇜ZßËJϯ䞊¥>=ÂÿAlÂÅå‘} \ŸP]ŒK·màý"kÅýÊ¿1Ûçî_9vFj­¶ßvGqÿpw½£G-T‘©ðère|\¶4zƒz-Æa&Õ®b~øï!oŒì[Ý®[õÓ,…ýúóë}‚ë[­ûúquóß•é¡mëÞÊ9!²ëgë¥qúýÎU¬ÑDuÔ±ºéþHÛ§G½ö¯% ðóa'Zö¢é¸\%r÷¯ñû“aók´ X?y}™×áò±8Ï|˜£ñ,å#.-[ÄvqO"Å'ý뇛w§·ÔwOn:\—Gúã —Õ3VBñ’ïË…ÇÀ —èæo˜,ÿ¾yꃻ›ò„Ox\~ôDr¢£ _–(e¾\)¢/IÒ¯5ÏÀu¸Öóf54H\‰Ñ´+*í3 ÛY‰÷¶»”Ý*¿ty#ùIyî×xx}hiáOÞ6߸1øÕÞ§›ù‹§Ôßü[Ióõ%äÃ/tÍñpþ¾“ÛûuŽu~,ò¥Ï¼_þ½Áèaƒ¸Å«WÉ—Á=“A^×W¬7!W×ß=5ìú]Ù‚÷›pòißx}–¼¥l¢ èK¤+š”žÉƒoÖ—swT‰úÏ Õ:]É[Gb ;rÖ°£?’D”â2ƒ„[OeÙ+}gpÍïžÀÔŸ×îíÁÎë%Ú|èŸ~kÒÎÃbBx½lfU &ÖñȵîF—éO7".³\Ý'O ·Utÿoÿy£FKtÏdÑqê·£°êO›ƒ—Añ° «U 14ûSŽý]9@¸4-¼üŒ žSXïîõ%Œ¿°žaÆ_=y{Î7åBªzQîæþ-õI~Âeß­èõÙ X)Khi¼cB²5­ã£Óy7ùµ&aeæWc~(O„ª¿Ù«ûDp‰•VÑÔòÇ]éì³ÅÕdgϤ¥ïºøí´qéèŸ-²ˆX4¸çüøpzÓMÐËuh8WÚ!Ü""ðVþZßH°Q §HVÉ;Mʯb ^d}¸î?‚ RNP¥ÏL™õÛ]æaÉr¦¼?ÒVeHtͪQ÷p{½^“‚ÌÐ&Ô̯XÓµuüCÓˆU;—Âêt¢scþå§gr¾½S YSIí¡š;§YÚË-ûgÐFöÒ˜¿¨‹ÏO)êííÕïzÙˆbÿô¡¬=lм?^¯²+IðøÈËWÆÌ;ªÎ>S8œ×¹ÕVÝ‹¼6@êÃýÄž‘‘™Mý¿=¯bþóŸ!>)BM+Õ&©#ME¨omO~å˜×rO«üæ…<éòoö&‘W>ƹtùw¥K¸à/Ù úNcœôd)3ì.ÛzÑd\±ÂÛwÄþ´gî¦äÊ݈˜’0ך¸ÛS~¹Ô!@¾ê{~%e]2ˆ¥šÜGŸzû{ÒŒÊáH ‘Í‚Ìà¢ÿ¿ÂÓV‡~K P†0W•kx½ ›ÈãúýVGä áóðz]M¤ ’'ÐñQ?Jþ-™¾0”‡°nr_Ÿ2íEÚÍ[™_lR¢#d;EìãúC™*.w¦\Ÿ9þó’ÍZ¡:W-ëФð·k¼xíÞ6B&§•{=1=t&päÝÅü„·qwßõÖU®î•,Í×àJ½ØÊÛo[Õ,þ  ö6»`¸K…+X§kö^ÿ<—áßÏ+Ìã¡GµžLB΂-ñòÌΈ\&N0™÷ï¯N+%à+|Êç»&N?”0¶ÊÆI9ï)¶ÁT&h¢µÜ€…¿SˆÙº/¾à÷a$¬P¼þèO·ZY’üý‡ò4¸Ÿ½£çGÈè°©•lËöøº„Ï×çóFÀõ3_½;"nZX¥‹6Tu†±¶Â¯·Åå6NO®Îšh%Æ'küÍB‡iµŒŸ• btá‚ßèvIÜ(íëÝÿÍ_3š Zÿ¸üû?]-ÿ~ûúâWåo(ì4XMkÇóÞ\w÷ïnnÏî-ôYL}tq5çÇëóãÍðúð²#8½¬Ï€øñÌ—ohó—Æ|xY)PÚÈÂO:¼|8½|}¹ZѸ»"}ëØç±6¯Öt{ýñãí¯wïo_ovðú² ¯"°¯ZöW8¢µ0zIþ¼Ž£€ÛºañøxSþBÜÝõ*v®ì¨°ƒÿkBàendstream endobj 387 0 obj << /Filter /FlateDecode /Length 6132 >> stream xœÍ\K$Çqöy¾Ù>ˆZ¼¨Úd+ß™x‘Mš$€&Ǧ¥`ÔîÌη{zÙÕ»Ãñ÷Ù‘Ê̪ ¶»:òù}ñÈšŸV]ËVþþ}±»èV7?]0zº ÿ¼Ø­~yñÙ·Ö“ÖuŽ­._^ø&lŬn;½2Ê´N¨ÕåîâYóݺk;% ë\s½Þà r¶yžýÐÇ¡¿]o„àÐÒ6.$ï×\·ÎUvpøˆ¶ëló§â—ýmÖ÷«|œÃUD7_‡6ÊIk›íÕzúB=KèY4^¬9®G˲«bÄmœŠh¾þ¿\lëÅ4ך›¿\þt'y®;!Të$¨ïòê¢an}ùãÅ——ÿšwZ¶ÐÉJwÒ¶Z­˜Ð¦í@ñܲVËÕázõýêöì61Õ­LËxÇ‹m’ðLš•á¢5Ð!ìS³»îÇíõøÕpüŸçýk†y@{iWªÕN3pëÒ|µaL¶ [œ¿ùÃ% cÇFSP-v¥a¶®3Ôû¿^ߎÃñ>-niy’u ÖËS­S«;˜þáéß.˜€Q°±P¢evµ»àD¤'ۋ臘'̵B{)i˜W.•ždRÚHü5“JO2)«l+U.•žLR¼“¼5<Ÿ}z’IU+Ê×8IÝþrûÒþC/šA7°ÿ`Tþœ‚‘®7ÌJ ‡/œ¾€}Hø"é n>|ѹ˜bªaÐ8m0 a[µ¸É¨ÿÀ08|*èj.g¡³éI.¤:×v2 Or! Gи\(<É… î‡Î…“\ÈZÑr– …'™é:ÓZ› Å'¹PXp&”©à}7Žñ–wh½º–6ŽöÍ?ÞJØ‚g÷/=ÔF‡‡2—Œõ’¤K²| (Éü@éP§=õ&ëØ €• L$!Vk¹³}èh{+pÔ¬”ƒj®/~RT­’J9“â¶–RžóY_€LH.Q*÷²/°P„Œ†­™weH&L¨tYD)§ºV¹ù€0ÛÎò 5!G¥cZ)]”b@gÆÍ¤„]k¤ž­8ô¸„@c^ýìî 6ÌH†[S>à‘hK»G+à‚–ûË37º[Ê™ëYN]oök‡Œ[ÝÜ]¶ýxÊÓ6wkϽÕÁ‚“Øi§Îãu¸š¿&¡qm¸ß ö\‘‚Íæ"Ó“Œ5,x_à„eRéÉ$%:XÏ¥¦'™ÆW9MO2) HœczÉä‹Ikû CÓÓöSO"1Aåè±KOr _’êàxé‚Ç’T"²$•Y’JL–¤2&KR‰Ê’TFeI*qY’ʸ,­h:ÓA*?Ôõº3©§³‡cgóo˜Í¦­}:Mg´ÂznÁ WŸ €yvg¥ÒI.AãôDdî¤k(ˆ¼¾(4÷š‚xku’b`ur>žq­æ‘ó&L¨G0©+ÁL‹Ô*Ý2y*AGÅ×Üeô)«w%‘ýã¸lnøB ØJ7c3¡¥õýÒl&!®äŽŠÃÃbÆ,Àžç9Kœªøër–ì„óûq]Â$½?ÑÖ‚Tz2€äV“sÄô$“’¬¾JO2)¡ó°oz’It&rÞšždRÕŠò5~}É®CGå A˜<É_²ä/Bäp±KOrÔžK §@dÁ_I*ñW’Êø+I%þJR%©Ä_I*ã¯$•ø+Ieü•V4ã •ãzÝ™ÔÓùKXE€ú·Ë_ÓÖæü¥ß‹¿¦ÃšŒˆeÎÖ…¨sdø5ÈOO^!öƒˆ¶2 ötàKð·`_p袔\çsŠÐÏn¤ˆ *TH 1Â’ ¡\èKw­HL2GÅo@{–')X*u&¥%Òˆ bÊcZ§#ÏK‹qÖB_ÐXtî‘ 7?@°'zÆpËf_æ)£Õ[¶R`ø’…èë«áæm–ï<\¯7H¥Ó¶aÝçëê`’¬ù†d¤åÎ5ÀU^†±"¥:ŒÇýÍ¡ßø³€À7û—^Ô©æH:Άiö»7ë &e¥eNø8ä©ß›8Žlv{ßÂ*Ý\JIoÇØÀ4Ç}œ…†¡1ïÆ(¦[4õIb0ÎæõÔÇ‹\¢ßyÊûЇýmCª°RÿùX Cý™2­ç•›ÍÝÅŽu¼œU!ôzÓS¿ÒqQ¥ÒûL%HL´J­.ÿtqùÏÏš7ÙÖb3À!éÂb€_ZÛ4Ù1¤Ça#rå¿Í{;ç¿Ý„_LF‚óì¤)êC’'äšB‘}®£±˜'5ax¸Æ×ëhÛ…ÄÝÜ`bÛ±]o.Û®ÓÍnì„.MoH³jú››CÑÃMZ£ Ö¼ÊC‡pvP…Ô‡˜™55†ü¦Â©ŸÜX†åA¯ Œzë`ϼ.ŒkÞÑ¡èX…‡(‹gr»Žö.Ö^•[z¨l¼Fkžm.·lüyìdÚß´øòzôò 浄m…˜<¥Te¥ã1üûh¥¬¬V: ê!0€½åºDókvŽ=¨|_«•Tëq„aš€ÉšU“x™õ³?ìú|ß^ThE+‚CÒ1¯Žö.Ÿpèóc´M“p¼gsLÖ¶hÚ•ȼ;:³Ý¢¦WÀåÄ4¬0¤Ši>Å®;o…µ!ú53„Étp£$–€,HUØÂÉ&Wí>ˆ°ŠÞ ùÆ?Ý„c8éd©8œB'4Í­k{ÄŽŠôÐ Xaƒ´…?0 à=0æñaÌ èæ&˜~'¹D §1 ­ôÇøƒ,gòx?Œ¸ õjbG!á¼³F(}’Å„®À¨ þ»9éïb QáÓÛÉź% Ãéqz¦RSÚ0 €ÉƆïÒnŸ¤Gïš ]– 2Â@øˆ@a`?¸•´‚íðÚûºÂ<ÉQèPþÒë#K}ƒ£t܇!»ùQÁÎ:Ã+O¦‹Ûoc`bÅ~¼Ì¾Äù[ûh¬¯ÝÞÊ´|µ”Íú~Ù¡ècTz‰,Î^ÔÇ>©Èû’IJä€ù±9uXÁNý<ïxïܯ½“%Zô‡0K6Mn,~žÖ6¹Ó ½‹Ê5É]þáä1Ýá!¢öÒfOOÖî9ò¼g ª+;8ïÄã4G'>wŽ3˜†‘€à®0möq8†Ïâd4l ÉÀcâ[QŽè4zR/Ê9ˆ*cágÑig:;ƒ ¯h¯t.ì²zÀœ?ʱlÌf}^ †x§J‘eòÙ¸æ‡ro $ñm vYî“‘¤4£¿6¦V‡Ó9ÐåT3ª•œ­¤R­OQ³>å¯Î¥TOtgu+DÖÛëÖgÐ…]!È*Eé÷ ÞPÁèZa fΞ5¢Õ-:Å©÷«µC÷b“·‡ã«k{ƒP£ˆ¿àQƒ:3^no‚=oн%A7|éæïZk¼OQþ¼àùásôõ–¸ÍŸØwþˆ± #oåLœœ¥¬QW‚%õ¢+Üüù)Ÿ ôé:ç™®°©8SûHß hƒ±&gƒ}ê‡5»Š\¶³°'¾ÍU.ÝÜ©#•óæûµåˆÄ[”ÀuØ|9Ñþn ½‚!À&ÑŽJPá å{ü^ùˆ ~` Éu»[ÚК‚ Êढ¡JB!l<írzº®è(Ûðn­«@mýaˆ9)üMø¨ûCø˜Aö-y‘–ó( aèüDOxŒ³šñ!u.çô0­{8Äe{K}ZQglúsþ?­Öâ—kdò®vR:Q@|s íеƒ-¹Îµ#i‘YÙ‡¢/R þS„â¾pß‹/ÅyðkT¨·sÏ€/³ÝÜüv¡·áÑdäBÒÌó¦S†³ ðBžäq3ÄIk l{!5™À×#0ýói°,€Ñ’›C~Õ`:D ¡Äp2ݾ}$àx…ÙÑÀͶ˜åͦ2¢]h¼wn"óƧ¶û›ÍXæ·Å·ë_€Êo•u+Ì`Ç}ià븯üœ0Å5Ó=7Í7¤,ÃUÌ{†c”Ïð}§ÆñFž•ùÔÀûÉüŒ'.™›®ã(úåãàÁpТ”ªÔâë ðÚÆ\+³`<Øø/þás¿÷±ƒÁ¸O:€ã»ø\VçB@æ»SÄ9†%ªÀÏ`|gc– –ÆEnˆï÷þW»,„ 94LX#.1±0÷X@²z#òûX¤ÑÑáŸÃàb) âŠ>†d¹–À~À˜h?YÙGPz¼p>ûV•N"Ãõ©ð~ÀwÞŸ­¬‡Ñ-’Î+²|ÝaWìcR˜f™—×û×+?•0OU±¬He ïëm–Y¹%‚O®Ìþõ»^Ð`zG2/Òhè4è­0É"ây kšÜ¯5 Þ¿ }ý†Zç¶ä¤›–YÞ‰ ÿO½þu·Â°–Óu€D¬7«j­€£äïãxA%Wø[ç÷ `†i;Z¦T¸·CjZ´SÀºþ-¶³Y;P Ó]˜pó s(m€.€‚´€þN‘äË0‡BÖ®D´–æ‡ÃÂIo;6úœ?t°,:SϦ,­h‘ÎÐBÀ}·„[pΙŒð¬ù´%m<[/q ŽÑTPù¬#ïñÃÊgxyÂø›!Í3ðÅölÄÞÚÆÓg­ŸN< àËP Ð”ö9Âܲ¨i~ŸõÞ‡M¶sÖ¥„½¦¬¢ æë1»+ŽÖ”9òßC)eæˆûòL×Õê°¥,°PÜöÞ-ò‰’,gr&¢ùB±@-&GH+|9Ò–UñÚÓ‚Ù)DúX¦HÅ?Äó¯Z¯#IqæÔòzZFA9Uì0Óå¤û°*@+²ì´ÆúnÉá* (Y¨'…=~t~<öJ‡éÆR‹™UøÝGÒyöôø|ÂM¼}9íó-ÐA>d×ñ«Î_Y˜e)°‘ EÌÐA¨ |EÂâíµCšëÙÞËTçÏ¡ 0ƒ7?r–„ò-öÜi¿ ?µ‰H¤©ÜÇ©à2S¶Ó¥ì÷>Ïqà æU=ëðQ¾A˜„ïòzjVÏêÈc)BcI@ð³0ëû/™Ö¡âôå‹ßÇ ƒ˜B¶K•4IW¤E—ïàÌÂKÊj›ây@g]Æ/˜‘|»Ä’pÜ%êvòõ|炜óiÅmJ³koº€“RgÍÆiêå}G<Å{“eÖw¤Ê;#gÓx¨kÍB•¿óNë’ÞMÅ:ùÉx Œ9ÏQ7TÌS&mßÛ=CEqGŠº£[ŒkS¦íJBy:¥Ýüº0Ù"Ov,¯áшhzªÌ|ûÂÜôa´Š¼z9άZÌ«ÑÔ»”³Âm$œ …"'±  ÿ4j™i˜hôd‚8¹zô5¢â/V`¶<âpˆú««ï®ùËýa÷vÛ/*aº–Ñ×¥Êb ý‹ðà?R5!øTx©Ž<Ä t·?ù<ïUà£ÖbKu¾lFòz^6£ç%Ú¿"rçZ±šœCBÛ’;mñ^Uºê’›ã.'.hø ÏÿÙ ôù»Kå°&ÛŒjƒÒgó(—ô6ˆÃ±‡3$z Ë’Ƴèé¢ÄuXÊWkClÞ¾¹Â«4¿ÿa™ÙÛ³fSú¦ÇYL‰dì“颔l¡E„‚λ}™ü”p–KŽ|°ý©PyÆbسC»¸9°”ûSx­r½¤fèÏä<—IéÙ ×ɈñªþiËã™uù‹'w¡LŸ›\ÊŽl²L %ˆS:+ÂÝÅeËS¯(Ä43hÒ]egÇK·™6Oúâ›é¶Êó<Ɇ¾ ’%@/úªDñ*$%è‡*ÖêàQ;?w\ÆÐ àðÑw¾ºÚqÝ¥LCMy^…Ü¿LxwÒ ç‡°¾G"õÔ‡àƒÔÈIšåk‹;-u^O(rùt³LÃrÒ!nï/Ɇ¢>ûƒ/@(Q¥O7óû8œÖ›3Å>p²ó×f8ù¥UºMÜÿäøžšËd¼ï¦Ï—«{x“Ôü‚W&À‰ððûØŸÔÁ†6yÉ|%#bÕ1–<†ãRúÞµØ Ïkà÷-ZX«˜Š¥€ëÅBKg°³±Ùé¯0Ê)=O·ºïCxqü&öâÍa_]ŠómU¼ ôaUwIôF®àâUÉg.xée¹¨p/f6‚Ï5Ÿ_X-§ðgUþô¢D»endstream endobj 388 0 obj << /Filter /FlateDecode /Length 5438 >> stream xœ½\IÜHv6|¬“}ñeæP˜ÓVÒŒ•Œ±Ç@ÛncưÓ]FÃh ,Õ"¶r‘Hj)üÛýÞ‹2^LUK C%3ƒ±¼õ{KÔ»ëª×þ ÿ¿:^U×Wï®}{þ{u¼þ盫¿ÿNKø¦t•×7Wþq݈ëÚÔ¥SæúæxUÈjwó n6¸’¥Ã7nî®~,¾ÝUeet#+NÉç;ú¬jQ¹â~·Ç‡F4¶)ŽÝ«ôqÏ~|Ko§›¦èV¦ð¿ÐJ©²ªeq<ïööÜ»½è¡;%?=†·Eq~ðEÛ³WÚþGu¶`;>¿O¦:ídSVÊ©bÄá&•ÅØïÃZƒŸÖJke]ô{vºù÷«oo®þxå¹g®û/áš”0¥ \5ò-LúsgCöÂAÓ),^îv{]9 †)Ú?7@q]Éœêb3vçTب»0•ÅC2&¥j?¾Þâd7Ò·Àx óÀ>8³Ï;ˆJX[|,w{[[Üì`Oeë0œ¼ªêâ×É:£Ÿ†[`>8`Ͷõ çuxú:¨1Ï5Âñ‹DƒJ™â¼çbs|ëÕ*YœO[çcI>ɸÒdü¼€/ x7£mNÓ¦ÇÏ\â{.šC÷6#àÅt Jì^ ”}½ª4ÚIo â‰kmÕ|bct±-üÄ´H``€•@+’7üIL¬ƒ)aôm §ðÆÁgþô*}:¤gߤâ]X¬ÉË‚”…Û?°ZEûׂ@©7¢ø~4Ä€C7Œ/A¾ý QÉoÿ;Ü Ð¬°×F.Ô° é_ M{bç ïÐéíD’×Ô.‘F®DûCKcœT0ÆS WÄbûÇ׳fn8`c*d­•J^hðt_dÂ8Ë—I•µ¥r{©¿C§ŸM¼ŒóbÔýzÉÅÉÆí)Ä•ÉÄ7®ƶƒe†¦æ§?£½×E›®òSzJ¦Ò™â¦†"ùá)¬ïêâÜoÊ]O£Š*l¢1 ~ºvU%¸…ã‡?¿=¼ïíÇ—EY–/‚@ºâUE”³Šâæ»ÿúvKò€U˜ä®DW²Wb:à‹-k)„_ø›øH­LY“+Õì•rÑEÊ☊†iQWHr£†ßÃh`ùâ0„Ñ`°Söœ§Yd4n“)ÁïѬ¹ÿìyˆ[-æj‚“™Št‡C»ÉÒ¸hÍìH;¶qóªè6_>÷Ñ,‚èÛqa~ˆˆ õÜϦ3Qy›Ì¼’œE»4™ü3óloc$’LøÙ,ÜÉô6 Ðäþãêæos BbèJ XÒ+JH?Ø›é{mнïÉÂØ‰°^é ±ÑË‚ñLqÄJ¥ü!•PdŠr[JßÃÝ´Càñ¦¯ŽvQ§6íÜ%R‘„ªø¡c´cØqœ—xH¾~Ÿ`àË@ÈŸ‚›žóðu`/{羃¤ÓÜÔÓ6¬ÙæsÁ‘­?60é)îŒæ+È_&×ÓÄQfL”˜BCòÐ>"!O™Ô,¼{ï­…pK|ö/q÷ÝB^¤×SCn“ïæ&@ù ºn8zKÕOFÚK'EæúÞpÉ.À¯ ®ÐgpP9´£m€HÁ3n°‡7(4R‘4üþ<1gÃðÞ»™L¼@ÕÜ.–:KT…xé‘ÈjŒPrÊm°’È뉠ýV‡p†Î¨h:«Îy¼bqiŠFÝŠ06<“{ÐGC»ÔE¦”R Dù…¨ð³\èw€`Kž$€õâó1%@ç±»¬5BKšÕ|ŸÁ| º¬Ðc}P†>ÚUæÚªº´•ôaÔïYÛÿs Á›*O™ÒBt}ýýˆœôh$p>`™îùgo¶¥©EºYD¿sù¥DØÐÍæ _žª ¦R’Óá1ñ¨Ú>>faÍÒÅJ]Âß¶®]d TlC¹úž¢(¹g¨íu‰Tò9Hdż{ ø éÃtŠg ¦ÈÆc¬ÔÐÃ×`ËoSÕó[ CÇØìá Ê"¿25úo„êËvÔ`>ø@“Böºøa× '‹RYé =!*¢]‚aš#>÷CâAÏý1ÌD–"œpÊʬ€÷¡»Ýè-¬¶þ8h¾ ‡ íái B“Kîã=O¥ŸÑôÂ]jƒü8ïuaÊqr@?ÌÂÉ/pÐíêͰwÇùÔ˜Kõd†b9£9üb˜¿'q0ôó`ølíc˜ÎÏ2¤ä‰h °9ËvȵZ¡V«šyàõ¬ÖSÄKP\TÖá‡ûá¾ÿö8ÄH ôäôÐß¿[ ¥¤Ý¤¤@Keã2(ãVSÖì_ÏËt¤#Ë1œ¢éuÎP÷^ky¤ü6Õó¾å鹑=!~t–ǾÀÝ·|(bag(ER¯-§r5 h¶E"f÷¼C.þyYÛ!, s›>¶Ý)ü¦Vak´¤Y ‚š8•ø\NDi’“ÊâØ>¦ ëÆ ©$:!¼³-‚ZeªIƒ@ëàì–¬:*g5AhN#QGÈi–á2*/Ä„!Ç©à¥%e2G ©5â6°<‰Ö$ûL4.Q€# `UŠ¿–™Iv£CpˆÖ3=ùÑgr5ÏöÍH•Þ÷¡*žeÀ*ͪE𠮍–Îç°Èg9¬ƒ?¦YW¢—)†Òû—à)›— Ži¼Î¡À§°SPö>“—İw+æ9ÎCaö¯Ø7 ¨CµOMJÐw[ép¼Ï˜O,gaüá.Ìh²À¿†0ð€x©h§äÓ´ƒš§þ`40éB #­'¤©¾ö6£(ÍTs˜Í¶œQ§=¼Jy*zˆ‚r+Ë@d±½ß\Çp,–~³o_Ïjϱb¤­•,ÍÓ¯ˆãØäî2·(.)dŽºKóòSaL/]>Ö¶`WÆ S6Õ,ÑXð3]È×ÅM½X¦„¢kÿGtÑ=ŠdÅ/V.f™¥öб‡tÓ> î@—?žü\N‰ k„Y\¾g îé ÙsZ”\د bLn|sŒ)Ÿ« Þ&Šå‚(í&]Xu*'¹ï9‹¦"Œ5˜n¤ƒy·Ÿ2ãÉ#Oå¨zì¾9QgÆl:o0ºDTÇ“»\94X±q,×Ïá¡?¥Q&u$AhÆI–ÉGV£?Yɰh»êØDæïzÂgh›£h;‚ÓµëWH•cF¥eûGî†c7.ÂV«ëâõº¯ÄЈ†˜ÌD¬.a)Ȧmâ¡Bp.?BG9W뤂xÁ§žmû§xK˜síÙ_º7…Òg0kÊnqõæ!úà‡¡õˆo ›Å'c<ä‚408Ns)1+¬À—2×ù çkžo§åœ)¸gÑò)1ACLâÊuP4úpÝêg%.NaºáÙˆÔÅ>öLWßr¨Bm–3NEfÚsD¤n᜾˜»ZfVQ$%RU­gñ ùZ,þ?ÌמÎrÐ(F ll}ü¼Üél\4æk—ÖªE“Ò¼—P/dÌØ)¼ëkÆ‘è| æ7O«´TçÐÖû*°~ åthÚ âýC³j®gEGkEpzé£lE•ˆÁ3HÃG–›æCªâ|³4ñà~¤SlpwH©ÔošâN ^¶O~¹<)HDŽ:=Ó0¿Ò²–ˆEØ•Jƒè‰RØdÚ©/3’#Þq™›ù8¡óLÛgúªÒ6 ‹6†êO–ÀË7qŠiwËêSÐK|YPû— iqûÌp?îUD ·R4£èƒÚ‡ê q¿y>êyñ»rY8"hT„ Ë@¬ËʫĴeNƒvŽX@Ù‘B‰-FY‘¥Bɺóo:ªΉÃDâƒ!ÂïÉ{ix‹¿ˆr®dF!ñ_cãEûÆ[[qžšjè¸+ÙÔF¤ß3g·}¡Ó+yÜ–$ùpæJÿˆ[8Œ=ï¾J‡±*i<€QyB›¾ëùˆ´ÈXJjs¸ö—‰_7ÄÔ³Òà“›m´†“p´ñk-·ºÜ¢cñ¯½O}$öYN« 5V÷©>/k¨MµDØŸ 2Hö•é£")N݈mx¹Ï31œ_j„èµúÂVQz€LjEæÔªi®¦Ÿû7«=; Â&cBCWñúõkí{k³œ1¶ÙÈ©³‡%§†HJ[¬kõþSlOÀPÃg])²¶½h«YÆH„–9Mõ€DÉ>$eí)ü¸6zuië¾®¾(UÒ¹ÖÔ:ÿ“-ý‹ƒ;‡¯©¥kˆ¥­|,¸óY¿ ¾Ý‚y2±ßôë$tº3³ª±1F™JÐø /+$Iý t”cg™pj.ÙS"EðØ'"å|‘gv;ƒÏS„:®OY\ˆ¨ÐØû,†%,#É2zqÚ´þ¹Ï]‚G»´Úü”L¶@ ¿ð²M Dº0KŸ[K©†zÓ•6èÍ}å…NdÜ/Ól@­³þ›1ð½d^|åâÆû›”­ç>€+Ѻ>¯Rç,àÞР'¬b¡OÄ›\¤±žÕž'K“·Æ÷øÛ õ´O”°Ç3Àèzª>Ìþ³0æÚA„Žíèëèò*®P€+t ô–¤dm¯ÁŠ`ñ;tæj´Óâ–âûî¸SÄéâ}È´¬•«÷ÓLR•ª©ÂLß§!îq2+逩äâ ô=üÀîZäazgµb_Õ%ððóà©vSËü³+Ìä“…ï³>ƒ» U•'Æi:¨ÑY'ˆŸ¾BÙúb¹ L®M¸ŒñÄ9|¿FmÒû{_ÇV+árÂøÅ}&ï2ƒ…IšHÀ>>žîGìTùÍø±;a«ÆoÀ‘®°[Ð=ñ{«¸¼z» *u]×ëK~ÿ‡ï¶VLo¬/èÚ€F£Tg=*C4#F¬›HCr–ÒO‡%÷´çÇ4Nå/}гaÜæÓóÎ~e±<®’Å®CÞ;†ÞÇ`”²¤ôÖJÂ1ñlÝ0NÇ ýÚb¿,5÷îýRØü¶Óâ8…Ù´U›×·‘VM½(¤,bTŽ>°°?Ýv'°ßkÆD–umâŒøý Ì6Al¦âM’þíºfµ›Ò*“_8Ñà†kYgqê7^p¤¿mY5”Úak×5 Uµ¿¿à/dâ Æ7…„ŒÊ9dÒ-šŸØ˶‡pëÓ~{ãÚ Ö@«©Ñ‹šìýžEw`mÞ º°| Hag]þ­­su¬¯QË*kKSƒ¸݈ªšvÝ­nÛ·´xµwù£ª•/|oÚ¹‘ bdê´€?ÝyÌî ï¸åf-O \ÕÔf@_•/æ/ZЈ¾Š‡[y®&Èá­*+’±6¸©øM›X& ¸ŸÃT —™Ù[x7ƒufÀ²û2°š²T’X ð Ô‚`ü7ͤA±*€DáE£öw¸Šî¢lTÉЦ”N‹ˆ·þ€¨ÉYƒBãGˆ5ùde㮓åãÎ63þ‹ô¤©ˆÉ-Ùa·Úqå‰h/ôÊ|X´ Ò¼˜ëô×p-·:ÅJmë›8…}€¥ÿLÀSþ¾*­×øæc:†~æ}Þ8¾áÈù…G"ø=»Ä#¯1޾=F+'DzñfûËTçb¹GÐñÌ$Ó o‚eUNs¸Åd¼K„§ðvÈYÀÛIºàÞœ÷YßÏÆ #–$i®&ÜWÁ—ž^Ìû纖y3ŒŽ&Ÿ÷Tú«¤k¾&ÿ<•â$¡Žo†¸©&9l^¾n/´ ¢g©4Moá$`yg½‰Zê‘ÄVTÕLÉüÏtì:J^’Ÿ6¯0B|¼jk9°Ï]Ÿ¡pw«ÉæÌ¬èú6á’äCø¬Döæ«s£²ñí©Z±ð|áW¨ŸiÙmí7ŒÙ²ù6sBž>ì )AÃxQ¯÷¨{×xÞÑÆ÷·àV•]Öâ°íÍ6ëñòìW¿¥~±q4ì1Ûü¥  ÃüÎt[·j.Z©8þ’SÌ.|-» U¹Pãmg.jÑÀϪÞìX<´¾KÑÿ)v/öðf7ߨžX‘Út}QD”¿ ""ÂDMí! ]O_0¸kã QÏ{^¹ÌÊXöÛ`±„Ô×xQâEÖ`°%F’÷Oñ^¸È X¸Æ`ŠÜÏ?Ÿo‡ûþÃýÝâBÄËÝFN÷Ë›âOóÕ‡&]¡T\¹ROï¯Rz”üQñGÍM|Tøh”üQñGͳ©ì|ÁkþØðGGGÅÆ{!¼;$k‡fÕÒØÿ¯Âg÷¤‰_;>Âf¾Ù€Áà0¶b$¶œ=V®U\>êšÎð"Qû)RQ †YÊð]Íd1æ´&Yü·nüsß½ðqc^Ðþn¦Ëiðú?³ñ»x<‰.ðÅüÃp·>l’rôôaŒÏv& £~+*'¬l¦W~Ûº.T—²j¦®›<\¨wôÏеÿà jr#ŸÆãŸ´é§õT~]lâȸ¸V¡l=m!$± U5OÅàt™•å‰%YŠø÷VŠ¿ ±ˆÍ"Y²ƒ‘zs–xöYÓTÕjšË•`‘&|×ö};¯§@6ÁìÀ}w©ãoSyB ð#›»aôOñ1xV:ÚÔ*:¯!c$X`ni-ÓR•Rj·~ŽéI°o?%])—ÀAŠ„€BMm³—õîû¿~• kRz±›þ “Üò±Œ? öÇÎÑ/ÆÛqv§ë`Â1üÄû¶b‰S õÆ·íÊ_¸Ý@”ñŠ¢¤¬eúŶܵ[}°Bcø<;Õ]ÿxõ  @ãendstream endobj 389 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 336 >> stream xœcd`ab`ddðñ NÌ+¶Ô JM/ÍI,‰©ÿfü!ÃôC–¹»ûÇ—Ÿ^¬=<ŒÝ<ÌÝ<,¿oú$øÝŸÿ»3#cxZ®s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡9 Êe``` b`0f`bdd‰ú¾†ï?ÓÌÇ Ê¾Ÿ?ó}ò1¡7/¾w<ê~$.ÌñS@ìwÜ÷›¬Â_>.¿|ù®Ô§ß÷+Ëýžð×ëÅ÷óßMؾý>ÏZñ£_ÔËÏ÷7¿Üoõï“¿«³}ç8ì,ÏWºðGÀœï¡ ç.d;Ãõš[Ž‹%$$ž‡³›‡{Û쾞޾žžž S§òðïŸÚ××ÛÓÓÛ3±‡—fƒlendstream endobj 390 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 391 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 420 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©üfü!ÃôC–¹»ûÇÊ©¬Ý<ÌÝ<,~ }/üžÇÿ=[€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°» U4±¸$µ(³8;(ÆÀÀÀÈÌÀØÅÀÄÈÈ2÷û¾ÿLu¾o:ËücåwCÑîu'üÖ;!ñ]óøì‰Ó'uÏ—\X1½®¥³«¹^î·ŠáÌ諾3XçǪ̂¬ª®«êèmèn—›ù[á·ÊÓúÉ=-Ý’uõ¥eÓÛfµÊ×òÿ­é_ÝZßÒ].Y:¯~ƤޞÉÓ徫> stream xœÕZÝoãÆ÷¿<F®‹å~sƒ¦@\´IšÜ¹OÖ¡àI²Ž5%êDú\ÿã}îÌ~»uvâEá“ÔîÌîÎìo~3»fyFg9þùÿ«ÝE>Û^|¸ öëÌÿ[ífº¾øý뢀/™É ]ß^¸.tF •åj¦¥Î —³ëÝÅ y3ϳ\rMsC6ó¾Ю ï¢ʶ«Êý|Á9ƒžù!iù8g*3…–©€ãvàYžäûä—fÉ~ë9®ƒE¾ó}¤EAêõ|x±’Hæä‡j5g8%RQ‰Æ: …“ïþ7«]3Å”búíõŸaí‹×Žs™Ëw½¾ Tϯÿq±‚Îð½P ?ß›äpZd¹æ¤s DÁ Œ£³?jï•þ^µø&`$Y¹!Æ5ßį8eÃ*dÚ?蕊ÔÍvÑ®’…>ö?SrM»9úÑ𔾠r×ÌÖ–œ¬QŽQŒ3PO`¦Iý[;\+iÈ!xL–;¶U•Œ¨«š½Ÿ07~QàYjßÇI«Úî8ê7wÆ‘#㘌Qã­S¡qÆöÓc…¡®ÉM¤Q’‡9ƒiãâ&ƒ=‚ÜMë…P …±Mê¹Ñ:èM4|¸µnƒz׉·ãàš n`g06[PžIa˜]¶-š æT˜Ô…ª²™e!м°ÚûsÛ~[vÕG»£ ãø“€ç\3ØB­þnf£€.&ú^Ýa¿<×*YWñ¬‚‹\à#Î[è~hŠ’Õ*°‰dàÇ*Ƥx ­W ¯Ù|¡™°ÎýM³;$SÅ ·^+¸éxåí´a×ì’©  ˆ ñ[Í;J“î€ÖK6Úï;‰ÍnP™xüg‰Û¥ÂüäÒok~€øëï/®wãv-š†»N¡!2B P9ÌÁgjç3åJ'+Ú€™ÀP›¢’X D]?\fUȯ¶~|&§©ÉugݱmM \‹Ï#h鼄Ù~`¡ßn¼„~–Ý—~KS&f!Ná~£æ°]ý’¾þã|!Ñ… #o¾ùëëWo»$X ¿­–ä`·½¼òßÀå.‡áàþrݦïí¦½\Î%)¸’âSjw›²­7í›xVKñ{ªº.‡úqÚýtܬ[Ú«áàžØÑ~Öêï«Õû0LN¾ ÔÏ0jZí×ÕÇj}_Öð£öׯÿö*ž€¤Sè–¤MÇèçÒ¯•"«¦þaSîÛèÓºÚµ~$4%[νRÀÚ"2øEVðb¶6DTD«€¯Ñ<'`ÿ–˜/¨Ô(€¬´Eß¿Ÿ ðcþ¶êþþ®l1¡¼+̰y¦¹,†…¢3”ï2ƒd5ÙÍ:ˆ=4›c]> ³¥Íi*9׃$±ŒñX27bJò±‚¡´ô£íeX™ŠÑè0ÈK5¼‹¬SLPKiÚ›ú뺶XpÐ#BÖaÐÖã%h>ÞGßëU°ê§i«Ëjç䔥¼ÊJ6r»¡ƒPäXƸãM³Æ•àÄg–ìH]‘¢®ô €«©cÊé.È6DT5¢½Lvvïœ*@Ø´g–Œ‘ÏãHèÂKNS|¡}"â®?³Œ`ß$2£óäú† %ƒ³|ˆm_SZ\TÈÂ`=<+›d0#É ê˜ÍMO×B8œ°”Ã~ÃuÉt÷^¤zÕà³¶ŽÖïGÓÅÞ@ ›³ÁháµMFÿr·(O9\`k¯žÿzh–SIšˆcôóU¡2ÌŒv‡Í(¾ øC!t5u]í·—“`(`‡ lûÊ¥B¦£GŒô!Ip\~Æ4æg–T.zZås2ÚÕõD&å9ɃcšÌ¦?øMã¨Ñ<@<ìÖÔ†£Ìq[?cΔC dE:g©â&àÞŠ‡&7ä 0c6úMz2µíý‘/Ä”‚gçÓl A}¢?AÐ,ñbáó4EÛn€ íšõ¦nÙ 2’ò¸YÎ{΃8ºyÓm_¿ß”ë«W‰ž~1°î0(èÙÄCÏßx¿ÁGŠ ¼'Š…ã…YÛ, EÌ».o«}Y_Ü+uHp š³0Ðo«íý„/ÙmŽÝ_]_ü|á Yrv<_ÀÙ+°(fNl&4Ë ƒ,bÐx^ê/þ¨˜‰ÄÝ cj ŒŽ’4mµy DóGN˜ÊúÄLø´j]ÁÓbÕ·1ØÅˆïκé"õ¿|Êì5Ò‹D+ë8K2¹•X®3­D¢ãkÏc§§4I#‚xÏèK¦Æ ‚ŒD-8­|Ë-P•œ`[8MIšD~¸?E{˜}ދܳ*k¯Ðì¿Ìpô‚Žðõ<=+[ËZµ¶Üê´a~ZúH‹NZᲦ!þ˜8è˜Z;À§iéà³d> ÏïúH͆$5Ÿˆ¶mˆ]&Ù6}´)ôÙpÞ–»ï \ñ‰²cÕ4¬æPu®ú¢×~à4g°¯ge/ÛU8,ÕVÒd‚Ÿ~øq…tN$ò¦#!+rÛÒEB9 oqÝCðY’û}Õ…ø!mÉ54ÜÃÚ·KÈñíJw-;žõyý¨˜=Û,¸77—IÆ{ùömˆ€ÀˆÃNªøÃÕïJ7¼3íBný–h…A˜ºÛ€¯G‡ÖµP|*/`²g“¨}ŠP‚Ùá1p«EJÝŠî«{¹Â­ 0Y9ÞŸSãx.R†³¡I‚ £’™ÿL&eÇ GeŸ¹ÍÞ G e;’ìA$Áã ÛYVïYä&ªÐc 4Éi‰>I¢Ç AjãêÃ}¹ïªz3µHBf ñÄh~þゼO¬GÚ"§ϹÃ~iu.!ÁrêÒ  èP¯š=pÆI_ `8y¾/ àK’<´}†MTÖ¸¬p,‡X1ä}çÅÃ+ãã‚:Y€å+ ®&ãOï¬9Qd²òÅ)eÀïX‰‰1çGWHG7ì¨ÍT„ uœ^}òLÆR Ýë–"9£õUÏ vŽ–Ø±ðQ[¸²§ÖCýi‚ÍÃ!‹3B\¶é[áA-Gõt$lð¤ÕèDÓ†SÃmÊÙÌý‘ÕGGŒ˜HéÂÑ+Qb©_rªž°m7áŽ9üs¼¶MçGAÅ/8³=¦×<»æÜ@+&ˆEzx…Ð"9Ç!Ûl˜)I“SWpPÅXÀóÅà0”L`¯ôGà…"wåvÌà^–¨c2)Ò“+G«Çs{ m/€Šˆ"ãR[ ÈÀi~%UØeÈK$øJŸÀÅNíVNÂzßMùêôÊî=Y¤7 Æi Ó’ŒX1~Céä/Γ€}61Æù^ <ñE™ /UžNKÕ•EO:¿ô p7>^àÒ·­ßâ3±ÆWXð»æ!ˆŸ ÞlkIONžÆg+N³s .éd柆bl…¡8]þ¹åJ²´ÃD®mµ`ðïÝÝO„ŽÎ™Ž¾­a>ºÙŽüy•á^Q_9'0î;:Jâu"9Qò¶vÀ®¶ #LCͱ­Ó—âíP51Èö— d1+W<±I5ÊìàþŸ(³OÒâ\g9 ´øääv‚‡šZ¦«“^Ïq·¸­½Ž–†ü"Ô¨NñÕmÂó§xÓ—,g@¼Ÿ.>»uö¼ÛìÿávûŸÜwžsA¯kuÌy^®[/úœÜ‘°ýO슸n ô¹6 ûùâß5·Ññendstream endobj 393 0 obj << /Filter /FlateDecode /Length 17379 >> stream xœí}m$9rÞ÷ùä ר7å$™ÌöË’%Á°Ow#ëí`´fgw[žžYõÌÞùôëA2žVfeuNUwW÷‡FɈçáK03‹ñ/WÍÖ]5ü¿òßw·¯š«_ýË+—¤Wå?ïn¯þëÛWÿé·­'ÉvlFwõö‡W¹Š»ÜUûíâÕÛÛW7¼~ûϤ< •rã·#×xûý«ßoþòu³mb;øqÜ|4ÿþ>ý;ô®7ï_¿áÂà†nØÜÞ¼³Å7ÕNµâØÃæf¦‰ü—ÔDaÛô~sûéõO6±Ûß釛æO?–Únóé‡üϱu›ë»ªÊõþ¹:v›ÊâO¿˜¦>¾öö cØ|aõ–õ›/7·ïKmØ|ÎÍv¾ë|¿¹»©ŠŸ_ÿãÛ¿}õ—o_ýQ5IíÐŽÛ®»j[‚¼ W¾šm×^ݽ¿ú‡«¯â¶o½W$Îþ–þÿÏÄò弋[×_u­ë·m{uûÊ;?nÛ’¯~7£I™µB×oc°Z"±ZÑÛ±jK$V«ëý6Tm‰Äj ¾ÝöU["±Zcßo]Õ–HŒÖ®ß £µ43\;\u[çcÓÚ©áܰuîª#º;j—¦Çï7]÷ú }·í»M7¤Çm;lúÆüÛ«Nß¹©Û:  ·mG´q;Dv³HzçÜvŒŒ­†Ü!©´bì¶CgµŠ¤ÒêˆfšêF«H*­¾¶ÃhµŠ¤Ò†‘ £U$V«oZV‚ÑI¥Uü6Z‰{ÒȾqI-Ò%˜y <VSþí ÉqëîþwfŸÎ… ÁgA0n€`¥SF_ Xör%8˜}:æ ¾yëÉ‘€*XTÀý€¾“Ú´ÐT˜ta‡£ièÍÔ:“ùñutBrj:õ¼y½=¨ôÓƒÊ×Ñ st*yGÒ){žÒÙFCg*ÌÓ9ݽ@°ÒyÁ<<Á°p‰`•œš`,Ú«V:×ì½!8.Ÿ–`3_׌Çû Ö–÷LgWð›þ}¡÷(zAÝ*zAæ‘ôÊ"®ôv½á7.ï%’gDp0;p.\~Q;³çÂ…àCrr‚ñH7t® 8šÇ¼qò”7Ã`Ÿ„'!’gM¸Ò+„cá wáh„ˬW£ٓsáBy©›_åÞìÒ¹ð”+'§\%çJ9è<ʳoçÂjÊg¾P~:Êñìë8ÊÛÞ<üÏ…gO¹HNN¹‘<<å øä”óü$.”?ʕཔcX(åμ¤Ï… å/›ò0˜—¹0Où3"’S¬’U+kÆ#•‚ÑÎÁÙ¹sá‘F;‚”`oöé\ø&žÖzL‚'ˆ)''¸1»r.X‚‹)vW†“«(Ÿ8©µ^åS/Îrß›‡*¹pF”O}Ž”'¡\t”òhöé\8å“}èì(_<#Ê•à5”{{çÂ…òó¤\¡G¹Í£Ó\¸P~”+Á'§¼3{y.¬¥\Í}a”O[>å“óËÉ(G; ”ó)p.\(á”›èÍ}Mðv!ü¬ Þôæã–\xÊ'O‡/”?åÑìä¹p¡|/åÓÞ“r`x$åöˆÖLh¹Âí\£ ”O>Á»åÓ•K€¾,Êg¾b ”+Á÷§t_¨>9ÕKž>6ÕÇÝ¢}ßË|ï{Ç­Û’qrWwÛm#WîÚ­Ë·pG„%½^ð¼ßžükåü¦'t¬OtÛÐe­¶ñ|ÁeÛv;¤¶ZÒXÐå†X‰:Jß§ú®ÜªÒŽã6 ÜaÄ-Ð1¶üÁp× Mº“9vnëyXÄ~;ôY« ¹Ã2TøBï³ñ2xH«oú--«R“´z¶ÏJCk¿Îd¥aàË9õ‰1ß NF˜o¹ønpr'µÖzûß Þ6Û¾«´|CF˜'Ò·,é¶c»£5Œ ÕÃÖíØEUùºZÓ#$<¿â•ûmÇ3†Ømû+}w—Ëï¨qœz Ÿ¸C¥˜{HúY¾W«'Þ›r™+ˆ ¢!&J µï’c|ýµÇ”½µú/Û5Ö¦¡xÄèäÌeîwx\A#4-_|´œú  >÷QZh{ÇAû(eî£X ±RZ¨ýH¾Bv´«¾Z¿uÙÕ¥Õ‚ÊÿžX¢\f;iÆ4­Ñ\éhAʹ ®!ßg iÁ;îKûÈe®!VˆF1R¨œH~µ!ýÜÎÜó Ï}Z-->EÍ OE§2õÚFWkÐÜm½iAʹT£Hh­¥I[ ¶iÝÐ>r™kˆ¢!VJ µÉ·Øt&ÄU©*¥‘B ïŒRX%±JÖðµ9‡|ô´³_;I‡F"ħ¤C½Ðq¥MI‡è Oöøc9ÏŸØq¢tíã?}NAçÅ”hè䉇qô»‰‡âBâ! ¨–ùôL…æÁW&:ŒÊêÄCºÔÈÅÄ”* Æù.sÏnÐiˆ2¿!ĪÝÈÙåX" ã™›õnHAµJdÉéɦŽ¡Þ«\g$X¼†~ÈI†èØLõiðR‘ô`T•¾s|øÒY nk®¢Y‡Và‰”ÖW89 討"⦳@)˜ Ð(‘(P®+¸P myÞ¥è PCÛgÖ†I‡ÖE{lºò@)t”Jöàä'ENp‚8™!–pêøñšk+œd¥Uœ.ptS=¡'ÀÉHÎ'…’ +N(‘(Rºf¤°(¯A øÈÔsR, É~¤Trj¤d(ÔYj.çÍWX yưT™bžXŠ ؤ֠!H¯òð¨¨d/**9-*"Xe6%É™‚ÉPä~T¤Ò¬+Pá÷ïÕƒ“ÁÉ10éæsLó™.¦0ésgüê±"8é3g )Þ¨Oœ!TŒDž7C"èªO›•µÂÒ”Ço”ØÙ JláV›T^/L?Óº!¬ ¡µ$»¸p}˜kHž׳y8.\Ÿ×eãz>IÇ…ë‡â’£¸ÖJ«¸žÍàñs Á#P-’“S-µäò81Õ‚Ü‹fZ%çÉô\R ÏÏ<<Íf5/4Ë1j?Ë*Y`y6·ÇÏBâ…ægEól† ÍÇÓ ÉYÐ<›çcJó=8û–p,•³i\@\ âl†ŠoFÔY£ŸËú0QQ§‹îÓÃÉ«‡ãl*… ŽkqœÏOýbÚb(È!o–‚ýd¼äHâÁh†4K­I .1Ç*91Ç3ÙŽcxúÈý›gxŽ<"ÁóÙ.ŸÅÀñHŠgoÿ_Eñ‚mÏ“ãi÷¼H–Zîû¿üð$ëò÷Àï\ðávÏAìù‘{ä’Í=¯Ê»çíq³WúûÞ;¾1¸ ƒͷùnÍÑïH4´Û6”®ÞåŸ óõ°$hÓ–o­ìøËhÈXilÒý¡¥Z¾µ26†þ®-†mçlw¡¡Á®~ïßÉ_K°cÌZŽóØÛõIóÝÖ2dX‹šu¨ÈJäKºZ97ž¯¿Œ>Ýí­úN¯B–CpvDÞ²„PëÛfçºÞÀ¤÷;fµC}ñ- :›Q ߤwn‘ ‘ 4ò­ý§þŠŠ}neä/®ôS®\~GF_kðöNbê é³ô÷R=£§ä2WDC,, T¤kf{šý}°£RÙ¦žFMº¾µ˜Œ§ pªï†Z£/ú4ÐÛQÎú"È6¡z1À)˜ bai ò 95иB¹[#!¥‘* |‰š¤œûà8îK[ˆ‘¯¸×>r™kˆ¢»K µÉ7¾º ad¼G¾E^Ù¯ãA×HËý;_[¯t£(lAÁ–Ú… i\Iïòw±­Ô®lÏîôr6dwDP |Za¯çjÐ0A$bdnã×ÀVë›$„¡ÒÂP\C$â›´P,Gð Vˆ†X)-Ô~$ßÚr¶[DR,kCuc¿†ñð3Vtf–qÊŠÞÐŽ2|ƒ¤X†Šåè¾Á Ñ+¥…Úä[lFþ§¶DR,‹|g¼^ɯ‡øiç¼Ñ%ª“Bå¥ER,C Årôß`…hˆ•ÒBíGöB²¡šlˆe£³wòã„׺ÆLÅŽ6X¯•¥¯DPLÊuÅÞÒ²:$]‹‚˜&ÕÆ}UË«vÊ& WÔG>1¥ñ wõOµ 17Ù·´åØZ"±ZŒÛXµ%«Õ9Ÿ·lh‰Äjõ]›÷Sh‰Äjnç®~HŒÖ®ß‰ãnëoÉnÇiÇVÝÖÏÿ^y[?¶Jœ$#[$½£9ÞæqsZtJuõuýЊ´Þ¤¼©Ð*’J«ãdX½Õ*’J«çŒlÎjI¥5ÒþèƒÕ*«Õ7´í¦Ly¢%’J«øm´ k¯ÿ4Y›”?nçúÿ†Ö­Òÿ¾ ü“«MHÿö´á·›ØÌqt 7!qݤ(âÔwþ·ÔnÃäÎÿvÿÿc{àÎÞp[Î>õ•wþFeõÿºdÉ0× .Ã’ž„tu;Ži‹é~rÑ%‰“Û컜ú’ÖÙ>ô DIE֌涎Ê{Çùû$É«—ÞÅßònÇiþzŠù{~n„u0›ÔNàäx<›è4¦vdEU‰Ž»uDSÿp-¸÷V!…ñŠUÇçOç-V| «Ž†AN‰©`¡«¡©‚‹'m*°|“3]*Xà`E^p+° X½+Ä,iùÀÝÿ«ÀR–¬Gv¬À‚)‹6û<ŽÅ1m4`QÞ—«Ó$´`Qg<« X:Fç׬°ÂàVíPº×áÖâýÿë’ýB‘ ±X¤dçRØ’D¤Ôg …á ¤€/â´Uc…XR®/ƒPA²•øu À:°`.À"×b LXz íX (À’ÍWÁÂlZKg¥€ ÀâL1c–´| À:°d„ VºL+X¬0ø€¼VÀS°(PÌk°’Îư@eædJ% P•†ä˜"¥1³ §Û|Ê5À¨Ž€7Å÷>ˆc‹[@œ¤ŽâÒ o;Vµ€CÀ±|­BçÇ<õLöÓ,sif ãNo¹8©’G `)²Ý·˜j8‘–% Í€) ¦0¡ÀVO0…% L—ULIËœ S¢³ÄÀS‡ SBzוT¡P…TA²Š*Ý„*H@•ksļÈÔLª…çÄö90…˜u)¬û™2Ç aJf"ˆBç Ó÷8¢¤á™ž7Qˆ²ˆÂ ¢ÐˆÂqR¹s‰^¾AjÍ+¿—Cílú™—O.¶´rÈEàµ@®~&ìB²Ÿ^õë(zÅ«iq–è}dê+Á‡'½¯!Óy›³ÉyîÅæÂ“bðrãêÒÙ2Ž­Œ£0®Ÿ  ã<ãói„ž„qu` 㪳À¸ ÷¼×ú8Êg3 ­£4¼0Êõ%ðq”ëWqB9$OBùlv¡o‘rY5×0®‘ÛÙ2^Ü:hè1×']ÂÑùÃó=›rè\ø@÷ñ£[߯¡[š ú%¦¸ É©ÙêûÙžM=ô4lOºÙ é ¸FP÷ø\«Î®g3)×ÙÃ{r k!ytf‹2;9=³ú9¦8 É~fÑÓ‰™Ï;taö ™5³x ³âø|C/œZÝÂ¥–¾X––§q±gÃílž¡Çàvƒªä³«SŠŸ<»ó)†Î—]}„qôNƒÿûð‹Z@ðl~¡¯$ÆÁÜ3¡¼L˜Ó3Žíú1æÒ =ãú ãL×7Ð/‹ñ™äCëøžšv*¾9øž¼â?¾õ»\q’§à{>ÑÓ0>yÅû•Œë¯$îϸyû¹†q¬ûOÂ8tö3ŽZRíV8gƈÙÏøô©Ø·Ãølž¢—Ƹ¬ë(_X=öS>ó…~à+žB²Šr•CùNÚ¢§¡zòÍó/‹j­5Eì”Tw×ö}ïþ½ïu¸³IŒZ7 %§fÇ&ñ]ÝãÀ~Ò"í2#¿#¹­´“áéÊÏ™gú,iÚ¬ÚPÒ=œ—‚oônût'{lID ´)óCô)’æëOü ñ îÞ­!¦ c·aL7C‘=.½ŸôÛbVìýÖñ Êг8™ Ú…¸õåÚiþk“~üA´ érð®ÛŽéŠÐŽÍË—ƒ»®ÆçDAcš„=_…φ©a,Zƒçw|³ú˜\äËë44Üä ë¡óåXºôµÆ˜%±Í« _4Þv|9MJÓçûc—nϤ!Û³ ù¢qï9ULJåÆty%M‡6 ¶4Šò•ë-µÑÙ%D%é³;*÷érûØD&Ü©üŽjÕ½Q ÑîÓ—PN]¤ E’raH}ˆÇΉ\fýb4ÄÄR¿öá]xüA‘^­uk$!ýà†gNºã>[TË\‚93}8‰–j´ÑToõ4ú©ÈI:†+­HÔR|`.gJeV—ÎECŒ“jó³K´â‚n€˜&óçÔIF <Ì/ƒR™z .Ö4“|§ H1uÀú" –øïR½á[‰L¹ÌÄ„¢ sµÉ)N’¡'³[8¾³–úèS¡èÒ„3ßú¥2wÉ“Ì1-fÚ€”s©F–´4µ:v«´@s§‡YÉS™kd# MDýÊ…äUÛæÕ¤l!·FÓOmiñåâ{ŸÑkDS™:m»´eª'ññ¦)ç>¸$ŽWmÖ4ÚÐÌÍb©Ì5Ä Ñ€Ý¥…Úä^¬Ëg¹·FÒ­f-¯.ý ÆóKbsKm*S¿±Íéæ ÁI|L¥˜{HúE&¸V§ÉsQ/Le® &ˆŒ.-ÔNdÇhÿêñ£ù[+x™éšœGˆÐàØÊü(•ßqä®êU S)iÅ&¥äQAéïR&=ñd>€Ne® & X˜¨=HNuœc ñ×­ h½¢0ÄqXACÊ¥þ%JEînììß{NÞJ]rˤ Iº‚ÿJkû”µÍ<àKen_úb›4PÙžÜécŠ-ä{Ñ[#!,yMë)òõ Ó”=N¯åËe¶³Ï©¡Áy{œiAʹTC$MÑ(-ðÖjºHEÖÊßat©^;‘|ŸÓVáÉŒJ’V;ä”´ì%æïs´dÈ)E#–EÒÊMΣrˆ'Z ø†§ÞPÑ•‰+DC¬”j?’o#­ŒQ?¾5’1ÝôDå1ÇP4dhB ”/eêwô)RS¡)ç>¸†Húôëm¢\FC¯{ ͰB4ÄJi¡ö#ûÆ©Öl˜!‚&ŒœIÇk ¡%J”A[eS‚Ø$¡rNOTZв„*ÉÁ‚¶P‚ }Z"á¬bd‰6j'ޥ葂°aÀQåÖHú}RÜŸ"8Ï{©y—Êl$.g44ïLu)ç¸$ާ‰¶Àñ 3}ä2×H&ÈŸaq©^{pt#çi/¡]&º>ÝôûÊ;Ÿ‘p@=ÕR ¯Êù,ãmÍ´-HŒV¤ a¬Ú‚Ähu4õBÕ$Fk áßWmAb´FþkÕ$ªµë·EBµ¾"‡‘£ñ˜¨lÓïYR &…Ѱ'…Ѱ7…‘s¼¥tWt<£oU2ÒVT’Íi5ŽÓVŠ¤Ò 4¦Ò­"©´hⳊÑ*’J‹!WõX$•Vß§s¦Ñ*’J«xd´Œk“q¾_š“¼p 4Z‘›ˆ¬M»ñüo>íôí¦ÍÿNyŠ:#èß#í;>ºkšVʰÚûàÂNá“%,âŒ9t`¿âjì;$,êHXÄ©;žˆœ¡(¶«FduÂ"¬FÔ˜»Ô¤|…,h8ëaÓÒÎó«§dJgt¥M)ò©¿çáŒõ…Oíé.]×SxA+xäóŸKíÈJ…IàxƒwÜñ‘~„5/RTåx:¹–âÿž²Kæ]={²"×ò|ª‹•¤xÞûróÜ|Eë â'I£Å*DýXUàT¬à#°jËm§ÀŠÓ{Ž¡ÂŠF~ V¾É£«"¬¨a°XÑÙÇÅG£ÁâÔq /Wã4—ªhNž3XT8¾‚‰Ÿ)w¹âÄå\…?t NÐNŠJÁ‰S«UCJ‡¦ÀÄùÐRªÀ”r!VHEªÕTœ~ªI¦¢)Pè@ÁB,_cUGüQ‰ø¬ÁE%‚J_#)(qBÓ”Êr‰W“+[ ²+EÙ—b!x¹ äÊJn±\Ì.K4ÕzÁÆ¡"W%…­˜ŸXÌ­ôòémb†FéU2…^™ßèd‚]0z…Lñ3ŒåZ¥·oò5IJ/–JÁ”k7¾¢×§ó¬¥W%B¯~ ”Ò›©»ÕF`zŸ3ážb¡t³NÇûØW„ËœWÂÁ/yâ… ʱ]‚rÙ.Á8q×T vm2Ë2ŽŒ«D—1p «Õ ãKüŽù1ʯ2~¶ü:Ž¡+~1}÷ó ¦À¯0z¡¢ôbþ ½²ïƒ^ì WB]ÃDa×H„]áû@­o‘]åRØ•%ݰ+D]!JÙ°‹©*äbß»²Æƒ\ê0G `ÑØUI! |HºõòÙ•<œ ìbýVv…( ¢À®¨€\åìJ„.xa“H5j»8È€]•»Â÷D]ëØ¥=«9Ä.$ ìBg]蜜]©ûÙ•™ªì Q`WTØEP§ìÊn z%&Vzmƒ^œS•^ǯ‡¦÷Z µ°.“÷WzOM8ÕöÕÑÉÐ ÂË‚®„ƒ<0òÀ8t”rL_¡a(GÊñø”#WÊ!ÊeXÈf(sÆõÓ És"X¨Z"Xt@°Î`,qFˆ‚ùe|õèCŸ©€`•Á2Ë÷ä;šXlÍgKlÃï+bA£´,˹ Š@,æà±:Oˆ•è ÄâÌ bq’±xÂb…êiÉÖLnûo–`¡ Cg`Du X4å×å¥Åð 6…_®À¯Œ©Ëž7¿¢³Ž_eSZ–Õ[ùS üBGùÅtÝϯ„hàO0À¯²)üÊñJé-Cà@.³çD/È\Eoç3zÇÒ ¢èU2…^„í{éÕ7f dvq¼»2¤-SvóÎZEÒÂøÆî ¾ù;Àðmð-s‰oÑYÅ7âo%\žY òÊ/—/câ@Ö²Â_<½J&è-+ºÒ ¢@/ˆZ WÉ4³+½¤^<´RzÁæ^~eÈQöüŠd‰_ÑYâWtVñ;•Ę¿ :=¿Ð9–ßòCùÅaüªüúßèÎç$;–`=A½,‚A,Uû 6tî'A8ÆsIŒÃ2VÉ^‚çó”­$¸üþi%Á"Y"t>Á SZ–U|ÁÐY"XÎf ãYåÁrŒÁ2§¤.S‚s´lc.ÊQ_(·äI9"sPއÑJ9Êå` ÆeTÈn6Ãø…_ËÔ~~UGù›«ø•'Ïàlî§·Œ€ÅlgëÈ ž¹2 µ–Rùðäâp¦äJrñÔy?¹rª^ w6×Ù…Þ`ýRz…(X¢NN/žFƒ^°¹—Þ2¤:;–]}Þõ ²+:ðT¹ÜÏ.bpeWžEïgH@oQ9ìLéÍ!j:ŽÃT@8ŠgM8Žj«W~Á¸œª÷2>—m†ï#Ù+ ìBçXvK­uì*—ûÙO°<Á èÉ.^=(»àr?»2dA;‚•΂…Îu/ƒ`¥s?Á8_`yù°À/NÔ üΦA[Ç/Ϋø…älùÅ ð)øÅ»ð«l.ð[ÆÀÄh†ßä£ÝÁ¯2.8|ƒŒƒ©cŸ †¨| ã8PƒqÑ9íôŒë3íϸø/ £ŒŸUŒËë%P®¯¡|61Ú åKï.IÏ’`¥ó<Æû¥%‚å  ‚Eç@´ó%»ÁK#XŽ^KƒÎϧ=S‚óÂU-Úâ6(ÇâvrÊAçé)ŸH¾’r¡j‰r‘,P>=ªL)Ç;¨#)ŸÍ|v,å“'=3”ƒª3¡\ÚY¤\¼X ä-P®¯¢\ÞA-PŽ#¸R^t¤?›¡|ÁxQuÁJç…`Kç‚gsž=Á\¶‚`yµÀ/ŽààWtd>S~³%vÍ¿`Ö‚ñÉ{Ó'f\‹•ŒƒßýŒÃ÷Æ!Y`|úèŒ+¿kŸMˆvaüë> Œ+¿k—÷Uû×iÒf_âw÷뵯äx.ð;el>k~qx91¿ó‰Ò.ü>=¿xýä•Î5Ï&JS‚sHa—l8€Žv,P>uò9R>í~-PÉcP.›%™Òޤ|ú‘'(€€dòé<;åÓZgG¹¼¦<’ò™Ti3„¿xz§áÝ}èÅvµ@ïtK›~;Eu†^¹@o‘ÈŒfNãÊÎh˜²@ùäGœÊO@9^S.PŽh}òÙÔh+)Ÿ,7'£\€X¢|òÐã>”/H^<å³¹Ñf(_EðôyÁcŒ ëäÏX8!’# ÆkJ ¯tî'X${2¡­#vreÆ…ØÕÄNŽ®÷"\Ì{Üýü÷½>ü¾·jÏæ=ãÀùÇlyÚ2háë²#?Cà»ý9ÇLz®ïrf4:7ôüû…ÈDkLŸµ¦e&%ÞrüÝlß2Jå×i¤Å¿%¦%rF©.].Ï9¯Ò¬C‡œ(´$œ& ޹š N\®øOœ%€šˆåœXîŒïêã˜tzçyëÈf%²€Ûnù?¬3¤ÑA‚˜/ˆâlqà; ¨íÈ㎳ pÊ´ä‰Ï™î8ÛáâX‹/¤S¶N8Ⲥ\dïB(»òu÷$éó5ü¹^ÖèÄ—ÚêWÖã˜@ˆ¹CªÉiì–/’!M*÷Ü m))ƒ•ÙbJŽ+ç½g*Tƒ“ЙJ1÷ô³ K· A#4-ŸcЂ–STò=õQZðœ§-\™yŸÊÜG±b¥´Pû‘| ´âéàÖFN©GëMZ$b ©H+šù™A*³}äi ƒK9HÐÊ© ®!ša¸Ò8sZ4}ä2×+D£) TN$¿ÚÐð3 ó‘ $4¡Îm@3Ô—=—͇Ï>1Ðrf&«{Nú§-H9÷‘jˆ$ýŠ][ Ci]«®zg°B4`wi¡ö#ùÆWÖì,I"¡Vhôº’Š&rÞíæg*S¿4HøÚ*Õ •«3 ”bîõ‹€J—ê´|´ÎtË\AL 1QZ¨ÈŽ ž/¤°Ž‰Dì¢å°kÙØDű® œ‰]SVëÒÊp ’bZËñcø&Vˆ†X)¾Õ~$ߺ¸³úC0pÖK×u-o_)ØçÁeŸ×4i8výÈ™ˆT#g»ÔPN]p ‘„ô›{mÁ§œUÕ‡}®!VˆF1R¨œH~õ„ë0TÛ$Ù®ž‡²S»í±&{Öó„²<áœieñ ’bZ(vÛïÞ²g°B4ÄJi¡ö#ù6p²ÕÎ."”%` ÍÒwºDØ7¤yhKö½Ñ `#Œ¦)cQI^ÐBY"ì#輈À рݥ…ÚìÛÐsJyvqk$œeŒkÑß¶!ªeÞM†béHM†ksÐSZ@9÷Á5 I¿(Öh5 >ÍE¾]N¨V µ;·°ãGòm¤Í]¿’»UAYFÚì» k„¾I‘Ud¤-³ÒSê%mAÊXE )kZ(k„¾Ç•UVˆF1R¨œx—Â0Î};ÎT’÷ …‰1ç™B¡Øp8®œt7˜¤,pI\[È„˜Ûþ e0B`ui ö"yæ(PÊN¿$UIˉ®¨²Ëá'/î®Ì§‡}NxH0¦¼ªA›­M RÎ}p ‘øt(Ð8¡²3}ä2×+DC¬”j?ŽÎ‹æy §¸_³…Hc¬Ò¢M•Tb‹ t àÐVµ 1Zã26-HT+¸|#€1 £åÇ6í¬ª‰ÑjÛ”+ÐhAb´j· G%Eóç·s÷ÉŠ6jV´÷dE÷fEó)‹ ¯|Èã#’‘ÇJAªÅ—A»+½«Ë(…¡/g¶¢T•ç[F£T•R=IU*‚J©Ø©JÆðµ©Î<·Ï¸ïä:óL§6Ž¡:Î'›óž ´6qŒ¼mfà­;øéó :0¦”f'Oq8åè')ÎÆý)Îhý]NqæÓ³>}]Š³Ã¨¬Nq†•#T&"F¨m1é5qà´¼G·¾äYÇ o›r“}à9Ç”Ã0 ­â9Ÿ¦7ãK2•Þ«ø™ºÆâe$´Ý²€Žfé‹uY©¹’¥ïRîZ:'w9•;œ–J’›­IzH˜Ä)pnN_Ô5ù™!pÒZÀ‰¶"ï-NmÈ}\L*)07ÁIQN9ƒ¯ÅIjÈnvP€@z'=‚* Nå) Á©'ëó ÔgÊH P@nPRk1·Ù ˜Ð©Â$ ìG “(‰ @€ºœèýh @êø¯C Íå;&¬VÀ ÊL²½@ÉUI Tç*”àð^”T°%Ô:jk JÒí±(A0ab&’ä¶€”JNÔ\ŠªãÂz¤ RºíG “Hñ“³ðdHÍ¥{z ¤ ³)~Nç; R)ಀ”Ô::éᑊ´(  1€‚‡ÇEgïÐ-5“…h PÒíPºàUêú@©äÔ@Íåó9 (…å8 0=-dm|2 æ²àÌÛ€”ØÏo?ûh}TÁA%•J§r OX9Mºuˆ}Ð9Wžªd6~æøÁ)n ?¬âGtä¤yYžOÐ9’'¼ÔøÁyšÏ+q.r™kˆ¢!VJ µÉ7G§•??"º5¾ÜŸZq|q} †<tù|q8IÆZƒÆåØ›¤œûऌ1ÚB×²Ïæ¥~*s ±B4`wi¡ö#ùæ›–?Û—€çÖJhµ¹¢ˆÈñÂJ•BL_„)oP•ß•ïµS\A$„uGv¢–öáÎt‘Ë\CŒ ±QZ¨½Èž ŽG‘Î6•”¹BE¹Ô?Ï%„ƒ2ÛhŸ&KÍl |U¾6 EÌ5䉢ÕóDÒdª© ¢!&–vœHŽ a‚®]·V’V·2¸GYü4ð-k# †œ¤ü} Xe4ÕQ.k—Jòê¦ äÕϼÛ*Ë£š b¢´P;‘kù>| n$‡T–ëúSx¡A¾ ¡å(°5]“5H R–ø’A …`è=è% ò÷b"ª×N$Çb3ò0µñ—HŠY|ÅTŽ“²Ù8ÏÀ±H{èàF(qž´ª¸/ÕȱLZ(†KpLl¿Q½v";F«×ÐWމDÌâÆFcv9¹Á¯®éõ¯ÇÛZYŠp©ĤTWÌ-WÑÛұü¹ØojËSÊŠ}Wp›«·'ÝááyÔ Wù7´Ãpâ%ù0¶|+µ©ŸÒ&¡>2Ú„mõ¹»šMõ³ŠhuVquýÉÆZ›‚äÎÔæ!ÛÔ½ÏÝíkê§Cêó %Ôõçn½5õÞôPŸØO—šúswÁjýœÛGë»mO›º­?wCª©Ï×Àk}Ú=Ú¡¶îÞPSŸ¶bT§xhKÇܺúÌmšZ} œ\Fëó3¶ªúÜ“¦zÊêFßÖÞÏ]½ˆú]“ò© >'M胭_] hêµ¼W¡ýƒ9¨·ïª:S¿çKë;[wö 5­ëRJ8Ô¥“’1yßí^¦zäÿ¢:‡!šúó×N™úéŠú´ø8Øú³×!i}ï9âÒú´& UýÙkzLý”Z õ9ûÐ0Úú³×ǘúéê;:¡¹ÎÔŸ¿ÖDëÓ ám}Ô­·õg¯Û0õSnDÔ§¸hì,þó×@hý6=_’únŒÉH­?w=©rï¡ö@ÁËh½ŸÿÙ¼©ßsð¥õùñKÕûìϹµ~Lé¬P¿ç‡dvâÌÿÌØÔ¼¢>jz³×ÌÿüÕÔNÏÀP;Ž|¸3•g•©Õ;:f˜ÚÑÚ‰;ÿcASN1Z8;pæÃfªó®Žê€XãçZ¥Õû”âXë“R5îæòcêw¢>…L¾³#gþ§(ZH™xQßñCQ[þ'¦~˧EÔçì¥ÎÎûùo÷MýžcY­O«h5rç?*×úcÊ)õGN¨T-Ûó_;›ú-Ÿ<¥>?šì+üæ?Ã5õ»Ñói¿ž÷ó_z¢~ÏÏ—uøõ6ð‹hSöcBS?òIZêÓXö¡±ãgþë4S´;}䜠ÑÿùÏ´>ºrEZ;gWŽùïgLýŽŸvHý6pœcñ›û Ckû†SÚ!LâTbÕÒ1ÿ†ßÔOiý4Ρ¹-ûó¯ŒMý”ƒTwŽsìè›M©õi›ufí¢(¯·ëîΫ1S¯5áÐéXªÊoÅçd:WY‰:žžŸcÑð)+‘ûw9ÉÍç†CoN=äcN‘NIv--,ì#ªwiB±p“‰‡þÑ< -×ØŽ Í{í´òRÔ1æ Juóã/¯™ôлfÜܽý†þEe·ÿüõÎIE+忝^ó H4l®?²§¦Ž›w¯‰©14Ãæ'ÓÆõÝ—Ï¥•&n>ý@ÿæW5ßÜ}úðáæ£Qý±è9¿ùdåd7tÃæÍ_{š°ÔK%® ÿ÷ÍõOûê__,Žíæ£ôé®R{WÕù \Ü|ojUhM¡b6_vŒI µÃæsî‘ÂÈÎ÷u•ÿÆâù¥†¶²ù®`;úŒ3ס†}Óø_§ôW´nÅ––÷ÿãÕÛÿð{r‹”8­ä¸ù95Ûžþ}÷éõfrèÇ_³N1vä'·‚o.|_Ú íæŸx@Ð9gó'é' ¹Æ¢a,úÍÝõGóÛí§Û¢Eír÷Ïö–èJuÚÍ­¸»ªÝªö‡„M“¡š&üX"ðöÁSùöýõçï?ÿÕÍ—ÿsw“s—Õ³Š"È6¦h…Ô¿ù5ÛÀCµßhb›ŸŽŒ„FÜü[#þÃk!#)xZÒɧÏ_’öæúÏö¢/ÕŸ@L¨`¸ùüåîf¼­¢‘¦jÇÞ½ñœ ˜oh!¦í6ùøáÓµïNg]µâåYGc­m\êhw†©RZÎé˜ÕtÑžÿ=íÆ®5ŸXLãmìë9þ¡jéúNÔbÝÅnòØŠ#…4õ³½ì:’¬Šãtž°…´Ð•Þ†zñ½©W€»™î²óÝõ´@¥•¡sµ¥_0ãh¯ééoiÖøôϪ‡l_§ó˜Õú3O³0ð7íæzwgÿÀÙ–ÈÀ» ;ëcÂÉÏ®³+Ãg݆Až®”®ôP "Y)ßÌÊoÈØ\ˆ#ÐÏãàÇë;vŠ3HÓNÿåSѺ²Óh|awelgEºùCÞôCnéÛøÖQS³ôÝý`útw{½8ò¸­Þ3ü²Ä`O3û9·Al×»qZ¡y©¤%‡-åÇþ4ÙjSoò÷©¾"5¯ÀŽ¿Ìi°šýÃÞ™½0ç©ý1¦ØëòeRUÓþËM‰|έQ'`ð‹³±íxz¦Ž¡êƒÂ“šF ì‡ë»Rkï»E“~ÇKG¡‹i¸ó‡n ýóv€˜JŠÿÔ!݇;9ï®kò¾ïvF Ç» àêÕ#uËVb8z>üIÀ¡Aý1I¯Œg6;cææÇëɶ;LñÔÀ¿£€j6\ÑðnóŽ$¯ˆ¿·ïi(þûɮï¸+iûåO¼†âCK¼gùÎ~ðé3É>æ@¯£)Àê<æë5êúËuùñpúj7 ÷Î:›Ühâ%4»™áü©Ì0Z‹?}ž0Ùqò÷a‚_:”¥cÒ6½Zwv ±ã£èUpülzȨx=¤µ±2áF|w“e?aKpþu=j vÆÐµ¶tÒwü¾Z-Ü|·Áqô«=o9`éúª]OÌš–W7ɱó»×[ kR^ñVΜa(c’çôPö憑ÿw}ûsZÄ[:W÷°ðŸÆ‘6Š?/Ó…Á0mè†ÔéOœõcŸgÂoÿ‹m~w}'g€ßܽÿþ³ÿýïU ~õÿøk‰Y7üéæÝO¥%ºÿYþé6¿¢0ùWß½ž‹±[·Ú@ñ3€ÐfƒþBÐ 6MêÒWØüÀ˜ä?…Í_|úåãíù¿¥É'šßmþéúóûï5.ÍæÕû·¿ù]±ë ,áoÀ‰Ô©©?Ï!îA$æÂñ«¼âÁ‘óÐt½ûµ†ûgõ¼WÚiÞüáúÃ/ïõH`懾ã°?Ö¦±[,zûS^b¬Ž·ŸÍÛò–Ãåxš¿Ú‘x:ýÛ »ñ´ïû´üÏÊÕF—ÿ4ñ㜻˻/7KÓáöæóڭϱæ\@ JûC±I@¼®¦ÜqPšýn'áRªû!m®½&¢•*)š ½`h†…hb{‚-€6Ûm¸â§4óšõÿºó°É…< ccÛ¢™ÆŸ4¾áÍ»ªßóìå]óƒ •½k u.}•F‹Í ²ÀQ€_µëiï?b#paضœu^›ä€ö~ãöú¹š*w7%: .é¥Ú­Oñ[;òoŠC>ì<>ûXE,7UŒ–p›êWµgì@ OŽjÎOÃÖÔ½cÓfžŽ£åÄ“üa&(®wé[…ôB¢9b*ñç€]UƒR¥'—;¡-ú9Æi(T…é_n>ê¿o?}ÿþÃgÿîÓíÏ×wïK0±üÇüXgóÏ7Ó˜êÖDQåødâ³Ç¸áxìOnÄ’¡ Þ}·iL´À_†~÷ú×öÜ^ß|Ô^LÅÛï^klV‡í6ò{îâÆßOXS`Üìžðó#ŸÙGßü…ƒ~ÒcIy¢yZìn›º¸}Nï¸6ÍŠô¤Ÿ{hW® é‘!ƒA‹Ú¶²yûš¯†žuÊ–UÑðÈX‹ÿ)¨Ø^‘å}“4"í6CC‘µã/Æü~Œ–¤ÙÕ£•?0à÷YFóß”&kEO‹OW¬´LL{íylŽn¾×v·×Ž¿g2š¿Ÿyú8¦°øšŸ"$¼ÝWÆLõã+n©í¦Oá-]v¡™Ä\s¤¸–6Î6€‡Cú{¢ú›?}J‰ ¬œ|úh¤Þ/êM‚O/Ä&ï¯Óçx²‡ËñPƒÅÓ˜¿U¢‘»;§R“Ìÿƈÿæ-ˇƒÏí!©V à[~açâ¦Þ$L'‹t<åŸÝpÃoŸ7ï Rîjήb£6y„‘ìï‰Bö ¼>Ô×7£©~ ý©ü›VÕ¿ó9«iu¤¨»z·+O]ÆUoîùÅß½úÿ–£w´endstream endobj 394 0 obj << /Type /XRef /Length 286 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 395 /ID [<5e19c470ef34e29eabb89f8f359b3e7d>] >> stream xœíÕ=KBaàç}ERÓüHE Ajšühul i @K³.A›8‰‹bÂÁ B‰Sà n}lÍééÜ÷Ïèœ3\¼Üï×sxà-x´ ÒÑ”ã?×”ð§a÷zèûÇÂé»=4%?6¬Ž¯NÇí¡)çCtüùÉé¸=4¥²À·=þ‹Žaz½¨SÌoab#9xpÉ5o–ªÆ?‚ïÞ,áþtma˜»”‡É”ã <|à®{œà/q¶L«\“†î6“(Œ÷á1gOX§ÿÎ`(Bk¬ÍË:ë<ÿ‹õd`À cŠ»P‰j¬yW‡I¯yc–ù7óGxõ„oz†]ªi`\¸ƒÉ"Onqýz˜ëëÁJU=•? ß8ÿ endstream endobj startxref 336576 %%EOF surveillance/inst/doc/hhh4.Rnw0000644000176200001440000010310014667617354016031 0ustar liggesusers%\VignetteIndexEntry{hhh4: An endemic-epidemic modelling framework for infectious disease counts} %\VignetteDepends{surveillance, Matrix} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{graphicx} \usepackage{color} \usepackage{natbib} \usepackage{lmodern} \usepackage{bm} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} \setcounter{secnumdepth}{1} \newcommand{\Po}{\operatorname{Po}} \newcommand{\NegBin}{\operatorname{NegBin}} \newcommand{\N}{\mathcal{N}} \newcommand{\pkg}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\surveillance}{\pkg{surveillance}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\hhh}{\texttt{hhh4}} \newcommand{\R}{\textsf{R}} \newcommand{\sts}{\texttt{sts}} \newcommand{\example}[1]{\subsubsection*{Example: #1}} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Michaela Paul and Sebastian Meyer}, pdftitle = {'hhh4': An endemic-epidemic modelling framework for infectious disease counts}, pdfsubject = {R package 'surveillance'} } \newcommand{\email}[1]{\href{mailto:#1}{\normalfont\texttt{#1}}} \title{\code{hhh4}: An endemic-epidemic modelling framework for infectious disease counts} \author{ Michaela Paul and Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de} (new affiliation)}\\ Epidemiology, Biostatistics and Prevention Institute\\ University of Zurich, Zurich, Switzerland } \date{8 February 2016} %%% Sweave \usepackage{Sweave} \SweaveOpts{prefix.string=plots/hhh4, keep.source=T, strip.white=true} \definecolor{Sinput}{rgb}{0,0,0.56} \DefineVerbatimEnvironment{Sinput}{Verbatim}{formatcom={\color{Sinput}},fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontshape=sl,fontsize=\footnotesize} %%% Initial R code <>= library("surveillance") options(width=75) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################### ## Do we need to compute or can we just fetch results? ###################################################### compute <- !file.exists("hhh4-cache.RData") message("Doing computations: ", compute) if(!compute) load("hhh4-cache.RData") @ \begin{document} \maketitle \begin{abstract} \noindent The \R\ package \surveillance\ provides tools for the visualization, modelling and monitoring of epidemic phenomena. This vignette is concerned with the \hhh\ modelling framework for univariate and multivariate time series of infectious disease counts proposed by \citet{held-etal-2005}, and further extended by \citet{paul-etal-2008}, \citet{paul-held-2011}, \citet{held.paul2012}, and \citet{meyer.held2013}. The implementation is illustrated using several built-in surveillance data sets. The special case of \emph{spatio-temporal} \hhh\ models is also covered in \citet[Section~5]{meyer.etal2014}, which is available as the extra \verb+vignette("hhh4_spacetime")+. \end{abstract} \section{Introduction}\label{sec:intro} To meet the threats of infectious diseases, many countries have established surveillance systems for the reporting of various infectious diseases. The systematic and standardized reporting at a national and regional level aims to recognize all outbreaks quickly, even when aberrant cases are dispersed in space. Traditionally, notification data, i.e.\ counts of cases confirmed according to a specific definition and reported daily, weekly or monthly on a regional or national level, are used for surveillance purposes. The \R-package \surveillance\ provides functionality for the retrospective modelling and prospective aberration detection in the resulting surveillance time series. Overviews of the outbreak detection functionality of \surveillance\ are given by \citet{hoehle-mazick-2010} and \citet{salmon.etal2014}. This document illustrates the functionality of the function \hhh\ for the modelling of univariate and multivariate time series of infectious disease counts. It is part of the \surveillance\ package as of version 1.3. The remainder of this vignette unfolds as follows: Section~\ref{sec:data} introduces the S4 class data structure used to store surveillance time series data within the package. Access and visualization methods are outlined by means of built-in data sets. In Section~\ref{sec:model}, the statistical modelling approach by \citet{held-etal-2005} and further model extensions are described. After the general function call and arguments are shown, the detailed usage of \hhh\ is demonstrated in Section~\ref{sec:hhh} using data introduced in Section~\ref{sec:data}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Surveillance data}\label{sec:data} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Denote by $\{y_{it}; i=1,\ldots,I,t=1,\ldots,T\}$ the multivariate time series of disease counts for a specific partition of gender, age and location. Here, $T$ denotes the length of the time series and $I$ denotes the number of units (e.g\ geographical regions or age groups) being monitored. Such data are represented using objects of the S4 class \sts\ (surveillance time series). \subsection[The sts data class]{The \sts\ data class} The \sts\ class contains the $T\times I$ matrix of counts $y_{it}$ in a slot \code{observed}. An integer slot \code{epoch} denotes the time index $1\leq t \leq T$ of each row in \code{observed}. The number of observations per year, e.g.\ 52 for weekly or 12 for monthly data, is denoted by \code{freq}. Furthermore, \code{start} denotes a vector of length two containing the start of the time series as \code{c(year, epoch)}. For spatially stratified time series, the slot \code{neighbourhood} denotes an $I \times I$ adjacency matrix with elements 1 if two regions are neighbors and 0 otherwise. For map visualizations, the slot \code{map} links the multivariate time series to geographical regions stored in a \code{"SpatialPolygons"} object (package \pkg{sp}). Additionally, the slot \code{populationFrac} contains a $T\times I$ matrix representing population fractions in unit $i$ at time $t$. The \sts\ data class is also described in \citet[Section~2.1]{hoehle-mazick-2010}, \citet[Section~1.1]{salmon.etal2014}, \citet[Section~5.2]{meyer.etal2014}, and on the associated help page \code{help("sts")}. \subsection{Some example data sets} The package \surveillance\ contains a number of time series in the \code{data} directory. Most data sets originate from the SurvStat@RKI database\footnote{\url{https://survstat.rki.de}}, maintained by the Robert Koch Institute (RKI) in Germany. Selected data sets will be analyzed in Section~\ref{sec:hhh} and are introduced in the following. Note that many of the built-in datasets are stored in the S3 class data structure \mbox{\code{disProg}} used in ancient versions of the \surveillance\ package (until 2006). They can be easily converted into the new S4 \sts\ data structure using the function \code{disProg2sts}. The resulting \sts\ object can be accessed similar as standard \code{matrix} objects and allows easy temporal and spatial aggregation as will be shown in the remainder of this section. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza and meningococcal disease, Germany, 2001--2006} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, the weekly number of influenza and meningococcal disease cases in Germany is considered. <>= # load data data("influMen") # convert to sts class and print basic information about the time series print(fluMen <- disProg2sts(influMen)) @ The univariate time series of meningococcal disease counts can be obtained with <>= meningo <- fluMen[, "meningococcus"] dim(meningo) @ The \code{plot} function provides ways to visualize the multivariate time series in time, space and space-time, as controlled by the \code{type} argument: \setkeys{Gin}{width=1\textwidth} <>= plot(fluMen, type = observed ~ time | unit, # type of plot (default) same.scale = FALSE, # unit-specific ylim? col = "grey") # color of bars @ See \code{help("stsplot")} for a detailed description of the plot routines. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza, Southern Germany, 2001--2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The spatio-temporal spread of influenza in the 140 Kreise (districts) of Bavaria and Baden-W\"urttemberg is analyzed using the weekly number of cases reported to the RKI~\citep{survstat-fluByBw} in the years 2001--2008. An \sts\ object containing the data is created as follows: <>= # read in observed number of cases flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt", package = "surveillance"), check.names = FALSE)) @ \begin{center} \setkeys{Gin}{width=.5\textwidth} <>= # read in 0/1 adjacency matrix (1 if regions share a common border) nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt", package = "surveillance"), check.names = FALSE)) library("Matrix") print(image(Matrix(nhood))) @ \end{center} <>= # read in population fractions popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt", package = "surveillance"), header = TRUE)$popFrac # create sts object flu <- sts(flu.counts, start = c(2001, 1), frequency = 52, population = popfracs, neighbourhood = nhood) @ These data are already included as \code{data("fluBYBW")} in \surveillance. In addition to the \sts\ object created above, \code{fluBYBW} contains a map of the administrative districts of Bavaria and Baden-W\"urttemberg. This works by specifying a \code{"SpatialPolygons"} representation of the districts as an extra argument \code{map} in the above \sts\ call. Such a \code{"SpatialPolygons"} object can be obtained from, e.g, an external shapefile using the \pkg{sf} functions \code{st\_read} followed by \code{as\_Spatial}. A map enables plots and animations of the cumulative number of cases by region. For instance, a disease incidence map of the year 2001 can be obtained as follows: \setkeys{Gin}{width=.5\textwidth} \begin{center} <>= data("fluBYBW") plot(fluBYBW[year(fluBYBW) == 2001, ], # select year 2001 type = observed ~ unit, # total counts by region population = fluBYBW@map$X31_12_01 / 100000, # per 100000 inhabitants colorkey = list(title = "Incidence [per 100'000 inhabitants]")) @ \end{center} <>= # consistency check local({ fluBYBW@map <- flu@map stopifnot(all.equal(fluBYBW, flu)) }) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Measles, Germany, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The following data set contains the weekly number of measles cases in the 16 German federal states, in the years 2005--2007. These data have been analyzed by \citet{herzog-etal-2010} after aggregation into bi-weekly periods. <>= data("measlesDE") measles2w <- aggregate(measlesDE, nfreq = 26) @ \setkeys{Gin}{width=.75\textwidth} \begin{center} <>= plot(measles2w, type = observed ~ time, # aggregate counts over all units main = "Bi-weekly number of measles cases in Germany") @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Model formulation}\label{sec:model} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Retrospective surveillance aims to identify outbreaks and (spatio-)temporal patterns through statistical modelling. Motivated by a branching process with immigration, \citet{held-etal-2005} suggest the following model for the analysis of univariate time series of infectious disease counts $\{y_{t}; t=1,\ldots,T\}$. The counts are assumed to be Poisson distributed with conditional mean \begin{align*} \mu_{t} = \lambda y_{t-1}+ \nu_{t}, \quad(\lambda,\nu_{t}>0) \end{align*} where $\lambda$ and $\nu_t$ are unknown quantities. The mean incidence is decomposed additively into two components: an epidemic or \emph{autoregressive} component $\lambda y_{t-1}$, and an \emph{endemic} component $\nu_t$. The former should be able to capture occasional outbreaks whereas the latter explains a baseline rate of cases with stable temporal pattern. \citet{held-etal-2005} suggest the following parametric model for the endemic component: \begin{align}\label{eq:nu_t} \log(\nu_t) =\alpha + \beta t + \left\{\sum_{s=1}^S \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)\right\}, \end{align} where $\alpha$ is an intercept, $\beta$ is a trend parameter, and the terms in curly brackets are used to model seasonal variation. Here, $\gamma_s$ and $\delta_s$ are unknown parameters, $S$ denotes the number of harmonics to include, and $\omega_s=2\pi s/$\code{freq} are Fourier frequencies (e.g.\ \code{freq = 52} for weekly data). For ease of interpretation, the seasonal terms in \eqref{eq:nu_t} can be written equivalently as \begin{align*} \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)= A_s \sin(\omega_s t +\varphi_s) \end{align*} with amplitude $A_s=\sqrt{\gamma_s^2+\delta_s^2}$ describing the magnitude, and phase difference $\tan(\varphi_s)=\delta_s/\gamma_s$ describing the onset of the sine wave. To account for overdispersion, the Poisson model may be replaced by a negative binomial model. Then, the conditional mean $\mu_t$ remains the same but the conditional variance increases to $\mu_t (1+\mu_t \psi)$ with additional unknown overdispersion parameter $\psi>0$. The model is extended to multivariate time series $\{y_{it}\}$ in \citet{held-etal-2005} and \citet{paul-etal-2008} by including an additional \emph{neighbor-driven} component, where past cases in other (neighboring) units also enter as explanatory covariates. The conditional mean $\mu_{it}$ is then given by \begin{align} \label{eq:mu_it} \mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{t}, \end{align} where the unknown parameter $\phi$ quantifies the influence of other units $j$ on unit $i$, $w_{ji}$ are weights reflecting between-unit transmission and $e_{it}$ corresponds to an offset (such as population fractions at time $t$ in region $i$). A simple choice for the weights is $w_{ji}=1$ if units $j$ and $i$ are adjacent and 0 otherwise. See \citet{paul-etal-2008} for a discussion of alternative weights, and \citet{meyer.held2013} for how to estimate these weights in the spatial setting using a parametric power-law formulation based on the order of adjacency. When analyzing a specific disease observed in, say, multiple regions or several pathogens (such as influenza and meningococcal disease), the assumption of equal incidence levels or disease transmission across units is questionable. To address such heterogeneity, the unknown quantities $\lambda$, $\phi$, and $\nu_t$ in \eqref{eq:mu_it} may also depend on unit $i$. This can be done via \begin{itemize} \item unit-specific fixed parameters, e.g.\ $\log(\lambda_i)=\alpha_i$ \citep{paul-etal-2008}; \item unit-specific random effects, e.g\ $\log(\lambda_i)=\alpha_0 +a_i$, $a_i \stackrel{\text{iid}}{\sim} \N(0,\sigma^2_\lambda)$ \citep{paul-held-2011}; \item linking parameters with known (possibly time-varying) explanatory variables, e.g.\ $\log(\lambda_i)=\alpha_0 +x_i\alpha_1$ with region-specific vaccination coverage $x_i$ \citep{herzog-etal-2010}. \end{itemize} In general, the parameters of all three model components may depend on both time and unit. A call to \hhh\ fits a Poisson or negative binomial model with conditional mean \begin{align*} \mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{it} \end{align*} to a (multivariate) time series of counts. Here, the three unknown quantities are modelled as log-linear predictors \begin{align} \log(\lambda_{it}) &= \alpha_0 + a_i +\bm{u}_{it}^\top \bm{\alpha} \tag{\code{ar}}\\ \log(\phi_{it}) &= \beta_0 + b_i +\bm{x}_{it}^\top \bm{\beta} \tag{\code{ne}}\\ \log(\nu_{it}) &= \gamma_0 + c_i +\bm{z}_{it}^\top \bm{\gamma}\tag{\code{end}} \end{align} where $\alpha_0,\beta_0,\gamma_0$ are intercepts, $\bm{\alpha},\bm{\beta},\bm{\gamma}$ are vectors of unknown parameters corresponding to covariate vectors $\bm{u}_{it},\bm{x}_{it},\bm{z}_{it}$, and $a_i,b_i,c_i$ are random effects. For instance, model~\eqref{eq:nu_t} with $S=1$ seasonal terms may be represented as $\bm{z}_{it}=(t,\sin(2\pi/\code{freq}\;t),\cos(2\pi/\code{freq}\;t))^\top$. The stacked vector of all random effects is assumed to follow a normal distribution with mean $\bm{0}$ and covariance matrix $\bm{\Sigma}$. In applications, each of the components \code{ar}, \code{ne}, and \code{end} may be omitted in parts or as a whole. If the model does not contain random effects, standard likelihood inference can be performed. Otherwise, inference is based on penalized quasi-likelihood as described in detail in \citet{paul-held-2011}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Function call and control settings}\label{sec:hhh} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The estimation procedure is called with <>= hhh4(sts, control) @ where \code{sts} denotes a (multivariate) surveillance time series and the model is specified in the argument \code{control} in consistency with other algorithms in \surveillance. The \code{control} setting is a list of the following arguments (here with default values): <>= control = list( ar = list(f = ~ -1, # formula for log(lambda_it) offset = 1), # optional multiplicative offset ne = list(f = ~ -1, # formula for log(phi_it) offset = 1, # optional multiplicative offset weights = neighbourhood(stsObj) == 1), # (w_ji) matrix end = list(f = ~ 1, # formula for log(nu_it) offset = 1), # optional multiplicative offset e_it family = "Poisson", # Poisson or NegBin model subset = 2:nrow(stsObj), # subset of observations to be used optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules regression = list(method = "nlminb"), # for penLogLik variance = list(method = "nlminb")), # for marLogLik verbose = FALSE, # level of progress reporting start = list(fixed = NULL, # list with initial values for fixed, random = NULL, # random, and sd.corr = NULL), # variance parameters data = list(t = epoch(stsObj)-1),# named list of covariates keep.terms = FALSE # whether to keep the model terms ) @ The first three arguments \code{ar}, \code{ne}, and \code{end} specify the model components using \code{formula} objects. By default, the counts $y_{it}$ are assumed to be Poisson distributed, but a negative binomial model can be chosen by setting \mbox{\code{family = "NegBin1"}}. By default, both the penalized and marginal log-likelihoods are maximized using the quasi-Newton algorithm available via the \R\ function \code{nlminb}. The methods from \code{optim} may also be used, e.g., \mbox{\code{optimizer = list(variance = list(method="Nelder-Mead")}} is a useful alternative for maximization of the marginal log-likelihood with respect to the variance parameters. Initial values for the fixed, random, and variance parameters can be specified in the \code{start} argument. If the model contains covariates, these have to be provided in the \code{data} argument. If a covariate does not vary across units, it may be given as a vector of length $T$. Otherwise, covariate values must be given in a matrix of size $T \times I$. In the following, the functionality of \hhh\ is demonstrated using the data sets introduced in Section~\ref{sec:data} and previously analyzed in \citet{paul-etal-2008}, \citet{paul-held-2011} and \citet{herzog-etal-2010}. Selected results are reproduced. For a thorough discussion we refer to these papers. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Univariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, consider the univariate time series of meningococcal infections in Germany, 01/2001--52/2006 \citep[cf.][Table~1]{paul-etal-2008}. A Poisson model without autoregression and $S=1$ seasonal term is specified as follows: <>= # specify a formula object for the endemic component ( f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52) ) # fit the Poisson model result0 <- hhh4(meningo, control = list(end = list(f = f_S1), family = "Poisson")) summary(result0) @ To fit the corresponding negative binomial model, we can use the convenient \code{update} method: <>= result1 <- update(result0, family = "NegBin1") @ Note that the \code{update} method by default uses the parameter estimates from the original model as start values when fitting the updated model; see \code{help("update.hhh4")} for details. We can calculate Akaike's Information Criterion for the two models to check whether accounting for overdispersion is useful for these data: <<>>= AIC(result0, result1) @ Due to the default control settings with \verb|ar = list(f = ~ -1)|, the autoregressive component has been omitted in the above models. It can be included by the following model update: <>= # fit an autoregressive model result2 <- update(result1, ar = list(f = ~ 1)) @ To extract only the ML estimates and standard errors instead of a full model \code{summary}, the \code{coef} method can be used: <<>>= coef(result2, se = TRUE, # also return standard errors amplitudeShift = TRUE, # transform sine/cosine coefficients # to amplitude/shift parameters idx2Exp = TRUE) # exponentiate remaining parameters @ Here, \code{exp(ar.1)} is the autoregressive coefficient $\lambda$ and can be interpreted as the epidemic proportion of disease incidence \citep{held.paul2012}. Note that the above transformation arguments \code{amplitudeShift} and \code{idx2Exp} can also be used in the \code{summary} method. Many other standard methods are implemented for \code{"hhh4"} fits, see, e.g., \code{help("confint.hhh4")}. A plot of the fitted model components can be easily obtained: \begin{center} <>= plot(result2) @ \end{center} See the comprehensive \code{help("plot.hhh4")} for further options. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Bivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Now, the weekly numbers of both meningococcal disease (\textsc{MEN}) and influenza (\textsc{FLU}) cases are analyzed to investigate whether influenza infections predispose meningococcal disease \citep[cf.][Table~2]{paul-etal-2008}. This requires disease-specific parameters which are specified in the formula object with \code{fe(\ldots)}. In the following, a negative binomial model with mean \begin{align*} \binom{\mu_{\text{men},t}} {\mu_{\text{flu},t}}= \begin{pmatrix} \lambda_\text{men} & \phi \\ 0 & \lambda_\text{flu} \\ \end{pmatrix} \binom{\text{\sc men}_{t-1}}{\text{\sc flu}_{t-1}} + \binom{\nu_{\text{men},t}}{\nu_{\text{flu},t}}\,, \end{align*} where the endemic component includes $S=3$ seasonal terms for the \textsc{FLU} data and $S=1$ seasonal terms for the \textsc{MEN} data is considered. Here, $\phi$ quantifies the influence of past influenza cases on the meningococcal disease incidence. This model corresponds to the second model of Table~2 in \citet{paul-etal-2008} and is fitted as follows: <>= # no "transmission" from meningococcus to influenza neighbourhood(fluMen)["meningococcus","influenza"] <- 0 neighbourhood(fluMen) @ <>= # create formula for endemic component f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE), # disease-specific intercepts S = c(3, 1), # S = 3 for flu, S = 1 for men period = 52) # specify model m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, # phi, only relevant for meningococcus due to weights = neighbourhood(fluMen)), # the weight matrix end = list(f = f.end), family = "NegBinM") # disease-specific overdispersion # fit model result <- hhh4(fluMen, control = m) summary(result, idx2Exp=1:3) @ A plot of the estimated mean components can be obtained as follows: \setkeys{Gin}{width=1\textwidth} \begin{center} <>= plot(result, units = NULL, pch = 20, legend = 2, legend.args = list( legend = c("influenza-driven", "autoregressive", "endemic"))) @ \end{center} Alternatively, use the \code{decompose} argument to show the unit-specific contributions to the fitted mean: \begin{center} <>= plot(result, units = NULL, pch = 20, legend = 2, decompose = TRUE, col = c(7, 4)) @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Multivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% For disease counts observed in a large number of regions, say, (i.e.\ highly multivariate time series of counts) the use of region-specific parameters to account for regional heterogeneity is no longer feasible as estimation and identifiability problems may occur. Here we illustrate two approaches: region-specific random effects and region-specific covariates. For a more detailed illustration of areal \code{hhh4} models, see \verb+vignette("hhh4_spacetime")+, which uses \verb+data("measlesWeserEms")+ as an example. \subsubsection*{Influenza, Southern Germany, 2001--2008} \citet{paul-held-2011} propose a random effects formulation to analyze the weekly number of influenza cases in \Sexpr{ncol(fluBYBW)} districts of Southern Germany. For example, consider a model with random intercepts in the endemic component: $c_i \stackrel{iid}{\sim} \N(0,\sigma^2_\nu), i=1,\ldots,I$. Such effects are specified as: <>= f.end <- ~ -1 + ri(type = "iid", corr = "all") @ The alternative \code{type = "car"} would assume spatially correlated random effects; see \citet{paul-held-2011} for details. The argument \code{corr = "all"} allows for correlation between region-specific random effects in different components, e.g., random incidence levels $c_i$ in the endemic component and random effects $b_i$ in the neighbor-driven component. The following call to \hhh\ fits such a random effects model with linear trend and $S=3$ seasonal terms in the endemic component, a fixed autoregressive parameter $\lambda$, and first-order transmission weights $w_{ji}=\mathbb{I}(j\sim i)$ -- normalized such that $\sum_i w_{ji} = 1$ for all rows $j$ -- to the influenza data \citep[cf.][Table~3, model~B2]{paul-held-2011}. <>= # endemic component: iid random effects, linear trend, S=3 seasonal terms f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) # model specification model.B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid", corr="all"), weights = neighbourhood(fluBYBW), normalize = TRUE), # all(rowSums(weights) == 1) end = list(f = f.end, offset = population(fluBYBW)), family = "NegBin1", verbose = TRUE, optimizer = list(variance = list(method = "Nelder-Mead"))) # default start values for random effects are sampled from a normal set.seed(42) @ <>= if(compute){ result.B2 <- hhh4(fluBYBW, model.B2) s.B2 <- summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) #pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") meanSc.B2 <- colMeans(scores(predfinal.B2)) save(s.B2, meanSc.B2, file="hhh4-cache.RData") } @ <>= # fit the model (takes about 35 seconds) result.B2 <- hhh4(fluBYBW, model.B2) summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) @ <>= s.B2 @ Model choice based on information criteria such as AIC or BIC is well explored and understood for models that correspond to fixed-effects likelihoods. However, in the presence of random effects their use can be problematic. For model selection in time series models, the comparison of successive one-step-ahead forecasts with the actually observed data provides a natural alternative. In this context, \citet{gneiting-raftery-2007} recommend the use of strictly proper scoring rules, such as the logarithmic score (logs) or the ranked probability score (rps). See \citet{czado-etal-2009} and \citet{paul-held-2011} for further details. One-step-ahead predictions for the last 2 years for model B2 could be obtained as follows: <>= pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) @ However, computing ``rolling'' one-step-ahead predictions from a random effects model is computationally expensive, since the model needs to be refitted at every time point. The above call would take approximately 45 minutes! So for the purpose of this vignette, we use the fitted model based on the whole time series to compute all (fake) predictions during the last two years: <>= predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") @ The mean scores (logs and rps) corresponding to this set of predictions can then be computed as follows: <>= colMeans(scores(predfinal.B2, which = c("logs", "rps"))) @ <>= meanSc.B2[c("logs", "rps")] @ Using predictive model assessments, \citet{meyer.held2013} found that power-law transmission weights more appropriately reflect the spread of influenza than the previously used first-order weights (which actually allow the epidemic to spread only to directly adjacent districts within one week). These power-law weights can be constructed by the function \code{W\_powerlaw} and require the \code{neighbourhood} of the \sts\ object to contain adjacency orders. The latter can be easily obtained from the binary adjacency matrix using the function \code{nbOrder}. See the corresponding help pages or \citet[Section~5]{meyer.etal2014} for illustrations. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsubsection*{Measles, German federal states, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= data("MMRcoverageDE") cardVac1 <- MMRcoverageDE[1:16,3:4] adjustVac <- function(cardVac, p=0.5, nrow=1){ card <- cardVac[,1] vac <- cardVac[,2] vacAdj <- vac*card + p*vac*(1-card) return(matrix(vacAdj,nrow=nrow, ncol=length(vacAdj), byrow=TRUE)) } vac0 <- 1 - adjustVac(cardVac1, p=0.5, nrow=frequency(measles2w)*3) colnames(vac0) <- colnames(measles2w) @ As a last example, consider the number of measles cases in the 16 federal states of Germany, in the years 2005--2007. There is considerable regional variation in the incidence pattern which is most likely due to differences in vaccination coverage. In the following, information about vaccination coverage in each state, namely the log proportion of unvaccinated school starters, is included as explanatory variable in a model for the bi-weekly aggregated measles data. See \citet{herzog-etal-2010} for further details. Vaccination coverage levels for the year 2006 are available in the dataset \code{MMRcoverageDE}. This dataset can be used to compute the $\Sexpr{nrow(vac0)}\times \Sexpr{ncol(vac0)}$ matrix \code{vac0} with adjusted proportions of unvaccinated school starters in each state $i$ used by \citet{herzog-etal-2010}. The first few entries of this matrix are shown below: <<>>= vac0[1:2, 1:6] @ We fit a Poisson model, which links the autoregressive parameter with this covariate and contains $S=1$ seasonal term in the endemic component \citep[cf.][Table~3, model~A0]{herzog-etal-2010}: <>= # endemic component: Intercept + sine/cosine terms f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26) # autoregressive component: Intercept + vaccination coverage information model.A0 <- list(ar = list(f = ~ 1 + logVac0), end = list(f = f.end, offset = population(measles2w)), data = list(t = epoch(measles2w), logVac0 = log(vac0))) # fit the model result.A0 <- hhh4(measles2w, model.A0) summary(result.A0, amplitudeShift = TRUE) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As part of the \R~package \surveillance, the function \hhh\ provides a flexible tool for the modelling of multivariate time series of infectious disease counts. The presented count data model is able to account for serial and spatio-temporal correlation, as well as heterogeneity in incidence levels and disease transmission. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{apalike} \renewcommand{\bibfont}{\small} \bibliography{references} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} surveillance/inst/doc/glrnb.Rnw0000644000176200001440000005454114405577243016310 0ustar liggesusers%\VignetteIndexEntry{algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Valentin Wimmer and Michael H\"ohle}, pdftitle = {'algo.glrnb': Count data regression charts using the generalized likelihood ratio statistic}, pdfsubject = {R package 'surveillance'} } \title{\texttt{algo.glrnb}: Count data regression charts using the generalized likelihood ratio statistic} \author{ Valentin Wimmer$^{(1,2)}$\thanks{Author of correspondence: \texttt{Valentin.Wimmer@gmx.de}}\; and Michael H\"{o}hle$^{(1,2)}$ \\ (1) Department of Statistics, University of Munich, Germany\\ (2) MC-Health -- Munich Center of Health Sciences } \date{6 June 2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} \SweaveOpts{prefix.string=plots/glrnb} \setkeys{Gin}{width=1\textwidth} \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\footnotesize} \DefineVerbatimEnvironment{Scode}{Verbatim}{fontshape=sl,fontsize=\footnotesize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) ## create directory for plots dir.create("plots", showWarnings=FALSE) @ \begin{document} \maketitle \begin{abstract} \noindent The aim of this document is to show the use of the function \verb+algo.glrnb+ for a type of count data regression chart, the generalized likelihood ratio (GLR) statistic. The function is part of the \textsf{R} package \textbf{surveillance} \citep{hoehle-2007}, which provides outbreak detection algorithms for surveillance data. For an introduction to these monitoring features of the package, see \texttt{vignette("surveillance")}. There one can find information about the data structure of the \verb+disProg+ and \verb+survRes+ objects. Furthermore tools for outbreak detection, such as a Bayesian approach, procedures described by \citet{stroup89}, \citet{farrington96} and the methods used at the Robert Koch Institut, Germany, are explained. The function \verb+algo.glrnb+ is the implementation of the control charts for poisson and negative binomial distributions for monitoring time series of counts described in \citet{hoehle.paul2008}. This document gives an overview of the different features of the function and illustrations of its use are given for simulated and real surveillance data. \\ \noindent{\bf Keywords:} change-point detection, generalized regression charts, poisson and negative binomial distribution, increase and decrease \end{abstract} \section{Introduction}\label{sec:intro} For the monitoring of infectious diseases it is necessary to monitor time series of routinely collected surveillance data. Methods of the statistic process control (SPC) can be used for this purpose. Here it is important, that the methods can handle the special features of surveillance data, e.g.\ seasonality of the disease or the count data nature of the collected data. It is also important, that not only the number of counts of one time point (week, month) are regarded but instead the cases of previous time points are considered, because beside abrupt changes also small constant changes should be detected. CUSUM-methods (function \verb+algo.cusum+), LR-charts or GLR-methods as described by \citet{lai95} and \citet{hoehle.paul2008} can afford this. With the function \verb+algo.glrnb+ these methods can easily applied to surveillance data. A typical assumption for time series of counts is, that the observed counts at each time point follow a Poisson distribution. If overdispersion is likely, the negative binomial distribution provides a better alternative. Both distributions are provided by \verb+algo.glrnb+. In the GLR-scheme, an outbreak can be defined as a change in the intercept. The function \verb+algo.glrnb+ allows the user to specify whether increases or decreases in mean should be regarded. For each time point a GLR-statistic is computed, if this statistic exceeds a threshold value, an alarm is given. The function also provides the possibility to return the number of cases that would have been necessary to produce an alarm. This vignette is organized as follows: First, in Section \ref{sec:prel} the data structure is explained, in Section \ref{sec:glr} a short introduction in the theory of the GLR-charts is given and Section \ref{sec:control} shows the different \verb+control+-settings. % In Section \ref{sec:extensions} some possible extensions are presented. \section{Preliminaries}\label{sec:prel} Consider the situation, where a time series of counts is collected for surveillance purpose. In each interval, usually one week, the number of cases of the interesting disease in an area (country, district) is counted. The resulting time series is denoted by $\{y_t\>;t=1,\ldots,n\}$. Usually the data are collected on line, so that the time point $n$ is the actual time point. Our aim is to decide with the aid of a statistic for each time point $n$ if there is an outbreak at this or any former time point. If an outbreak is detected, the algorithm gives an alarm. Observed time series of counts are saved in a \verb+disProg+ object, a list containing the time series of counts, the number of weeks and a state chain. The state is 1, if e.g. the Robert Koch-Institut declares the week to be part of an outbreak and 0 otherwise. By using the state chain the quality of the surveillance algorithm can be tested. %The 'surveillance'-package provides standard plot routines for the surveillance objects. As an first example the number of cases of salmonella hadar in the years 2001-2006 is examined. \\ \textit{Example 1:} <>= data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") @ The package provides the possibility to simulate surveillance data with the functions \verb+sim.pointSource+, \verb+sim.seasonalNoise+ and \verb+sim.HHH+. See \citet{hoehle-2007} and \texttt{vignette("surveillance")} for further information. \\ \textit{Example 2:} <>= # Simulate data simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) @ <>= plot(simData) @ \section{LR and GLR-charts}\label{sec:glr} Our aim is to detect a significant change in the number of cases. This is done as follows. One assumes, that there is a number of cases that is usual, the in control mean $\mu_0$. The in-control mean is defined in \citet{hoehle.paul2008} to be \begin{equation} \label{mu0} \operatorname{log}(\mu_{0,t})=\beta_0 + \beta_1t + \sum_{s=1}^S(\beta_{2s} \cos(\omega s t) + \beta_{2s+1}\sin(\omega s t)). \end{equation} If an outbreak occurs, the number of cases increases and the situation is out-of control and the algorithm should produce an alarm. The change is assumed to be an additive increase on log scale, \begin{equation} \label{interceptchange} \operatorname{log}(\mu_1)= \operatorname{log}(\mu_0) + \kappa . \end{equation} If $\mu_0$ is unknown one could use a part of the data to estimate it with a generalized linear model (GLM). If $\kappa$ is known, LR-charts can be used, if not, $\kappa$ has to be estimated, which is the GLR-scheme setting. For each time point, the likelihood ratio statistic is computed as follows \begin{equation} \label{cusum} GLR(n)=\max_{1 \leq k \leq n} \sup_{\theta \in \Theta} \left[ \sum_{t=k}^n \log \left\{ \frac{f_{\theta}(y_t)}{f_{\theta_0}(y_t)} \right\} \right] . \end{equation} Now $N=\inf \{n \geq 1 : GLR(n) \geq c_{\gamma} \}$ is the first time point where the GLR-statistic is above a threshold $c_{\gamma}$. For this time point $N$ an alarm is given. If the parameter $\kappa$ and hence $\theta=\kappa$ is known, the maximisation over $\theta$ can be omitted. With the function \verb+algo.glrnb+ one can compute the the GLR-statistic for every time point. If the actual value extends the chosen threshold $c_{\gamma}$, an alarm is given. After every alarm, the algorithm gets reset and the surveillance starts again. The result of a call of \verb+algo.glrnb+ is an object of class \verb+survRes+. This is basically a list of several arguments. The most important one is the \verb+upperbound+ statistic, which is a vector of length $n$ containing the likelihood-ratio-statistic for every time point under surveillance. The \verb+alarm+-vector contains a boolean for every time point whether there was an alarm or not. \\ At this point in the vignette we move more into the applied direction and refer the user to \citet{hoehle.paul2008} for further theoretical details about the GLR procedure. The next example demonstrates the surveillance with the \verb+algo.glrnb+ in a learning by doing type of way. The example should demonstrate primarily the result of the surveillance. More details to the control-options follow in the next section. All control values are set here on default and the first two years are used to find a model for the in-control mean and so surveillance is starting in week 105. A plot of the results can be obtained as follows <>= survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj, col=c(8,NA,4)) @ The default value for $c_{\gamma}$ is 5. The upperbound statistic is above this value several times in the third quarter of 2006 (time points marked by small triangles in the plot). In the next section follow a description of the control-setting for tuning the behavior of the algorithm, e.g.\ one can search not only for increases in mean as shown in the example but also for decreases. \section{Control-settings}\label{sec:control} In this section, the purpose and use of the control settings of the \verb+algo.glrnb+ function are shown and illustrated by the examples from Section \ref{sec:prel}. The control-setting is a list of the following arguments. <>= control=list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL, dir=c("inc","dec"),ret=c("cases","value")) @ \begin{itemize} \item \verb+range+ \\ The \verb+range+ is a vector of consecutive indices for the week numbers in the \verb+disProg+ object for which surveillance should be done. If a model for the in-control parameter $\mu_0$ is known (\verb+mu0+ is not \verb+NULL+), the surveillance can start at time point one. Otherwise it is necessary to estimate the values for \verb+mu0+ with a GLM. Thus, the range should not start at the first time point but instead use the first weeks/months as control-range. (Note: It is important to use enough data for estimating $\mu_0$, but one should be careful that these data are in control) With the following call one uses the first 2 years (104 weeks) for estimating $\mu_0$ and the the years 2003 to 2006 will be on line monitored. <>= control=list(range=105:length(shadar$observed)) algo.glrnb(disProgObj=shadar,control=control) @ \item \verb+alpha+ \\ This is the (known) dispersion parameter $\alpha$ of the negative binomial distribution. If \verb+alpha+=0, modeling corresponds to the Poisson distribution. In this case, the call of \verb+algo.glrnb+ is similar to a call of \verb+algo.glrpois+. If $\alpha$ is known, the value can be specified in the \verb+control+-settings. <>= control=list(range=105:295,alpha=3) algo.glrnb(disProgObj=shadar,control=control) @ If overdispersion is present in the data, but the dispersion parameter $\alpha$ is unknown, an estimation $\hat{\alpha}$ is calculated as part of the in-control model estimation. Use \verb+alpha=NULL+ to get this estimation. The estimated value $\hat{\alpha}$ is saved in the \verb+survRes+-Object in the \verb+control+-list. Use <>= control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha @ to get the estimated dispersion parameter for the salmonella data. \item \verb+mu0+ \\ This vector contains the values for $\mu_0$ for each time point in the \verb+range+. If it has the value \verb+NULL+ the observed values with indices 1 to \verb+range+-1 are used to fit a GLM. If there is no knowledge about the in-control parameter, one can use the values before the range to find an seasonal model as in equation \ref{mu0}. \verb+mu0+ is at the moment a list of three argument: \verb+S+ is the number of harmonics to include in the model, \verb+trend+ is Boolean whether a linear trend $\beta_1t$ should be considered. The default is to use the same model of $\mu_0$ for the whole surveillance. An alternative is, to fit a new model after every detected outbreak. If refitting should be done, choose \verb+refit=TRUE+ in the \verb+mu0+ list. In this case, the observed value from time point 1 to the time point of the last alarm are used for estimating a GLM. Then we get a new model after every alarm. In the following example a model with \verb+S+=2 harmonics and no linear trend is fitted for the Salmonella data. The observed cases from the first two years are used for fitting the GLM. <>= control=list(range=105:295,mu0=list(S=2,trend=FALSE)) algo.glrnb(disProgObj=shadar,control=control) @ <>= control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) @ The predicted values for the in-control mean in the range are shown as a dashed line in the following plot. <>= plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) @ Information about the used model is saved in the \verb+survRes+-object, too. <>= surv$control$mu0Model @ The $\mu_0$ model is fitted by a call of the function \verb+estimateGLRNbHook+, %% Instead of using the standard seasonal negative binomial model from equation \ref{mu0}, one can change the \texttt{R}-code of the function \verb+estimateGLRNbHook+ to get any desired model. which is defined as follows: <>= estimateGLRNbHook @ \iffalse To include own models in the \verb+estimateGLRNbHook+ function, the code of the function has to be changed. In the following code chunk \verb+estimateGLRNbHook+ is modified so that weights are included in the model (here always Poisson, ignoring \verb+alpha+). \begin{small} \begin{verbatim} estimateGLRNbHook <- function() { control <- parent.frame()$control p <- parent.frame()$disProgObj$freq range <- parent.frame()$range train <- 1:(range[1]-1) test <- range #Weights of training data - sliding window also possible weights <- exp(-0.3 * ((max(train)-train)) %/% 12) data <- data.frame(y=parent.frame()$disProgObj$observed[train],t=train) formula <- "y ~ 1 " if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") } for (s in 1:control$mu0Model$S) { formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="") } m <- eval(substitute(glm(form,family=poisson(),data=data,weights=weights), list(form=as.formula(formula)))) return(list(mod=m,pred=as.numeric(predict(m,newdata=data.frame(t=test), type="response")))) } \end{verbatim} \end{small} \fi The fitted model from the call of \verb+estimateGLRNbHook+ is saved. The result of a call of \verb+glm.nb+ is in the standard setting an object of class \verb+negbin+ inheriting from class \verb+glm+. So methods as \verb+summary+, \verb+plot+ of \verb+predict+ can be used on this object. If refitting is done, the list of the used models is saved. Use <>= coef(surv$control$mu0Model$fitted[[1]]) @ to get the estimated values of the first (and in case of \verb+refit=FALSE+ only) model for the parameter vector $\beta$ given in (\ref{mu0}). \item \verb+c.ARL+ \\ This is just the threshold $c_{\gamma}$ for the GLR-test (see equation \ref{cusum}). The smaller the value is chosen, the more likely it is to detect an outbreak but on the other hand false alarms can be produced. <>= control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) @ For a choice of $c_{\gamma}$ we get \Sexpr{table(surv$alarm)[2]} alarms. In the following table the results for different choices of the threshold are shown. <>= num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } @ \begin{center} \begin{tabular}{l|cccccc} \verb+c.ARL+ & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline no. of alarms & \Sexpr{num[1]} & \Sexpr{num[2]} & \Sexpr{num[3]} & \Sexpr{num[4]} & \Sexpr{num[5]} & \Sexpr{num[6]} \end{tabular} \end{center} \item \verb+change+ \\ There are two possibilitys to define an outbreak. The intercept-change is described in Section \ref{sec:glr} and equation \ref{interceptchange}. Use \verb+change="intercept"+ to choose this possibility. The other alternative is the epidemic chart, where an auto-regressive model is used. See \citet{hoehle.paul2008} for details. The plot below reproduces Figure 9 from that paper, using \verb+change="epi"+ in the control settings. Note that in the epidemic chart not every feature of \verb+algo.glrnb+ is available. <>= control=list(range=209:295,c.ARL=5.1,mu0=list(S=1,trend=TRUE), alpha=NULL,M=52,change="epi") surv <- algo.glrnb(shadar, control) plot(surv,col=c(NA,8,4),lty=c(1,0,1),lwd=c(1,1,3),legend.opts=NULL) lines(surv$control$mu0,lty=2,lwd=2,col=2) abline(h=surv$control$c.ARL,lty=2,col=3) legend(1,20,expression(GLR(n),mu[0],c[gamma]), col=c(4,2,3),lty=c(1,2,2),lwd=c(3,2,1)) @ \item \verb+theta+ \\ If the change in intercept in the intercept-charts is known in advance, this value can be passed to the function (see Section \ref{sec:glr}). These LR-charts are faster but can lead to inferior results if a wrong value of \verb+theta+ is used compared to the actual out-of-control value (\citet{hoehle.paul2008}). If an increase of 50 percent in cases is common when there is an outbreak which corresponds to a $\kappa$ of $\log(1.5)=0.405$ in equation \ref{interceptchange} use <>= control=list(range=105:295,theta=0.4) algo.glrnb(disProgObj=shadar,control=control) @ If there is no knowledge about this value (which is the usual situation), it is not necessary to specify \verb+theta+. In the GLR-charts, the value for $\kappa$ is calculated by a maximation of the likelihood. Use the call <>= control=list(range=105:295,theta=NULL) algo.glrnb(disProgObj=shadar,control=control) @ in this situation. \item \verb+ret+ \\ The \verb+upperbound+-statistic of a \verb+survRes+-object is usually filled with the LR- or GLR-statistic of equation \ref{cusum}. A small value means, that the in-control-situation is likely, a big value is a hint for an outbreak. If you choose \verb+ret="value"+, the upperbound slot is filled with the GLR-statistic. These values are plotted then, too. The alternative return value is \verb+"cases"+. In this case, the number of cases at time point $n$ that would have been necessary to produce an alarm are computed. The advantage of this option is the easy interpretation. If the actual number of cases is more extreme than the computed one, an alarm is given. With the following call, this is done for the salmonella data. <>= control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv2, col=c(8,NA,4)) @ Of course, the alarm time points are the same as with \verb+ret="cases"+. \item \verb+dir+ \\ In the surveillance of infectious diseases it is regular to detect an increase in the number of infected persons. This is also the standard setting for \verb+algo.glrnb+. But in other applications it could be of interest to detect a decrease of counts. For this purpose, the \verb+dir+-option is available. If \verb+dir+ is set to \verb+"inc"+, only increases in regard to the in-control mean are taken into account in the likelihood-ratio-statistic. With \verb+dir="dec"+, only decreases are considered. As an example we take the salmonella data again, but know we look at the number of cases that would have been necessary if a decrease should be detected. <>= control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv3, col=c(8,NA,4)) @ The observed number of cases is below the computed threshold several times in 2005 to 2006 and alarms are given. \item \verb+Mtilde+ and \verb+M+ \\ These parameters are necessary for the so called ''window-limited'' GLR scheme. Here the maximation is not performed for all $1 \leq k \leq n$ but instead only for a window $k \in \{n-M,...,n-\tilde{M}+1 \}$ of values. Note that $1 \leq \tilde{M} \leq M$, where the minimum delay $\tilde{M}$ is the minimal required sample size to obtain a sufficient estimate of $\theta_1=(\mu_0,\kappa)$ ~\citep{hoehle.paul2008}. The advantage of using a window of values instead of all values is the faster computation, but in the setup with intercept-charts and $\theta_1=\kappa$ this doesn't bother much and $\tilde{M}=1$ is sufficient. \end{itemize} \section{Discussion} As seen, the function \verb+algo.glrnb+ allows many possibilities for doing surveillance for a time series of counts. In order to achieve fast computations, the function is implemented in C. An important issue in surveillance is the quality of the used algorithms. This can be measured by the sensitivity and the specificity of the result. The aim of our future work is to provide the possibility for computing the quality and in the next step to include a ROC-approach in order to have a more formal framework for the choice of threshold $c_{\gamma}$. %\include{extensions} %\renewcommand{\bibsection}{\section{REFERENCES}} \bibliography{references} \end{document} surveillance/inst/doc/hhh4_spacetime.R0000644000176200001440000003611014712411557017510 0ustar liggesusers## ----include = FALSE--------------------------------------------------------------- ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("hhh4_spacetime-cache.RData")) if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE) ## ----measlesWeserEms_components, echo=FALSE---------------------------------------- ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac ## ----measlesWeserEms_neighbourhood, eval=FALSE------------------------------------- # weserems_adjmat <- poly2adjmat(map) # weserems_nbOrder <- nbOrder(weserems_adjmat) ## ----echo=FALSE-------------------------------------------------------------------- weserems_nbOrder <- measlesWeserEms@neighbourhood ## ----measlesWeserEms_construct----------------------------------------------------- measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) ## ----measlesWeserEms, fig.cap="Measles infections in the Weser-Ems region, 2001--2002.", fig.subcap=c("Time series of weekly counts.","Disease incidence (per 100\\,000 inhabitants)."), fig.width=5, fig.height=5, out.width="0.5\\linewidth", fig.pos="htb", echo=-1---- par(mar = c(5,5,1,1)) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) ## ----measlesWeserEms15, fig.cap=paste("Count time series of the", sum(colSums(observed(measlesWeserEms))>0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="htb"---- if (require("ggplot2")) { autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) } else plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) ## ----measlesWeserEms_animation, eval=FALSE----------------------------------------- # animation::saveHTML( # animate(measlesWeserEms, tps = 1:52, total.args = list()), # title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", # ani.width = 500, ani.height = 600) ## ----echo=FALSE, eval=FALSE-------------------------------------------------------- # ## to perform the following analysis using biweekly aggregated measles counts: # measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) ## ----measlesModel_basic------------------------------------------------------------ measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = frequency(measlesWeserEms)), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") ## ----measlesFit_basic-------------------------------------------------------------- measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) ## ----measlesFit_basic_summary------------------------------------------------------ summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) ## ----measlesFit_basic_endseason, fig.width=6, fig.height=2.5, out.width=".5\\linewidth", fig.cap="Estimated multiplicative effect of seasonality on the endemic mean.", fig.pos="ht"---- plot(measlesFit_basic, type = "season", components = "end", main = "") ## ----measlesFitted_basic, fig.cap="Fitted components in the initial model \\code{measlesFit\\_basic} for the five districts with more than 50 cases as well as summed over all districts (bottom right). Dots are only drawn for positive weekly counts.", out.width="\\linewidth", fig.pos="htb"---- districts2plot <- which(colSums(observed(measlesWeserEms)) > 50) par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE, par.settings = NULL, legend = 1) plot(measlesFit_basic, type = "fitted", total = TRUE, hide0s = TRUE, par.settings = NULL, legend = FALSE) -> fitted_components ## ---------------------------------------------------------------------------------- fitted_components$Overall[20:22,] ## ---------------------------------------------------------------------------------- colSums(fitted_components$Overall)[3:5] / sum(fitted_components$Overall[,1]) ## ---------------------------------------------------------------------------------- confint(measlesFit_basic, parm = "overdisp") ## ----measlesFit_basic_Poisson------------------------------------------------------ AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) ## ----Sprop------------------------------------------------------------------------- Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) ## ----SmodelGrid-------------------------------------------------------------------- Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) ## ----measlesFits_vacc, eval=COMPUTE------------------------------------------------ # measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { # updatecomp <- function (comp, option) switch(option, "unchanged" = list(), # "Soffset" = list(offset = comp$offset * Sprop), # "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) # update(measlesFit_basic, # end = updatecomp(measlesFit_basic$control$end, options[1]), # ar = updatecomp(measlesFit_basic$control$ar, options[2]), # data = list(Sprop = Sprop)) # }) ## ----aics_vacc, eval=COMPUTE------------------------------------------------------- # aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), # envir = as.environment(measlesFits_vacc)) ## ---------------------------------------------------------------------------------- aics_vacc[order(aics_vacc[, "AIC"]), ] ## ----measlesFit_vacc--------------------------------------------------------------- measlesFit_vacc <- update(measlesFit_basic, end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))), data = list(Sprop = Sprop)) coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] ## ---------------------------------------------------------------------------------- 2^cbind("Estimate" = coef(measlesFit_vacc), confint(measlesFit_vacc))["end.log(Sprop)",] ## ----measlesFit_nepop-------------------------------------------------------------- measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) ## ---------------------------------------------------------------------------------- cbind("Estimate" = coef(measlesFit_nepop), confint(measlesFit_nepop))["ne.log(pop)",] ## ----measlesFit_powerlaw----------------------------------------------------------- measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) ## ---------------------------------------------------------------------------------- cbind("Estimate" = coef(measlesFit_powerlaw), confint(measlesFit_powerlaw))["neweights.d",] ## ----measlesFit_np----------------------------------------------------------------- measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) ## ----measlesFit_neweights, fig.width=5, fig.height=3.5, fig.cap="Estimated weights as a function of adjacency order.", out.width="0.47\\linewidth", fig.subcap=c("Normalized power-law weights.", "Non-normalized weights with 95\\% CIs."), echo=c(1,5)---- library("lattice") trellis.par.set("reference.line", list(lwd=3, col="gray")) trellis.par.set("fontsize", list(text=14)) set.seed(20200303) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL, xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm="neweights.d"))), type="l", lty=2, col=colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm="neweights.d"))) lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2) arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2) legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5, legend=c("Power-law model", "Second-order model")) }) ## ---------------------------------------------------------------------------------- AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) ## ----measlesFit_ri, results="hide"------------------------------------------------- measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) ## ----measlesFit_ri_summary_echo, eval=FALSE---------------------------------------- # summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) ## ---------------------------------------------------------------------------------- head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) ## ----measlesFit_ri_map, out.width="0.31\\linewidth", fig.width=3.5, fig.height=3.7, fig.pos="htb", fig.cap="Estimated multiplicative effects on the three components.", fig.subcap=c("Autoregressive", "Spatio-temporal", "Endemic")---- for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, exp = TRUE, labels = list(cex = 0.6))) } ## ---------------------------------------------------------------------------------- exp(ranef(measlesFit_ri, intercept = TRUE)["03403", "ar.ri(iid)"]) ## ----measlesFitted_ri, out.width="\\linewidth", fig.pos="htb", fig.cap="Fitted components in the random effects model \\code{measlesFit\\_ri} for the five districts with more than 50 cases as well as summed over all districts. Compare to Figure~\\ref{fig:measlesFitted_basic}."---- par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1) plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE, par.settings = NULL, legend = 1) plot(measlesFit_ri, type = "fitted", total = TRUE, hide0s = TRUE, par.settings = NULL, legend = FALSE) ## ----measlesFitted_maps, fig.cap="Maps of the fitted component proportions averaged over all weeks.", fig.pos="hbt", fig.width=10, fig.height=3.7, out.width="0.93\\linewidth"---- plot(measlesFit_ri, type = "maps", which = c("epi.own", "epi.neighbours", "endemic"), prop = TRUE, labels = list(cex = 0.6)) ## ----measlesPreds1, results="hide"------------------------------------------------- tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") ## ----echo=FALSE-------------------------------------------------------------------- stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2],], check.attributes = FALSE)) ## ----include=FALSE----------------------------------------------------------------- stopifnot(all.equal( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) ## ----measlesScores1---------------------------------------------------------------- SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores1, colMeans, dims = 2)) ## ----measlesPreds2, eval=COMPUTE, results="hide"----------------------------------- # measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, # tp = tp, type = "rolling", which.start = "final") ## ----measlesPreds2_plot, fig.cap = "Fan charts of rolling one-week-ahead forecasts during the second quarter of 2002, as produced by the random effects model \\code{measlesFit\\_ri}, for the five most affected districts.", out.width="\\linewidth", echo=-1---- par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1)) for (unit in names(districts2plot)) plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit, key.args = if (unit == tail(names(districts2plot),1)) list()) ## ----measlesScores2---------------------------------------------------------------- measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores2, colMeans, dims = 2)) ## ----measlesScores_test------------------------------------------------------------ set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score], nPermutation = 999)) ## ----measlesPreds2_calibrationTest_echo, eval=FALSE-------------------------------- # calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") ## ----measlesPreds2_pit, fig.width=8, fig.height=2.5, out.width="0.93\\linewidth", fig.cap="PIT histograms of competing models to check calibration of the one-week-ahead predictions during the second quarter of 2002.", echo=-1, fig.pos="hbt"---- par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1), las = 1) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) ## ----measlesFit_powerlaw2, include = FALSE----------------------------------------- ## a simplified model which includes the autoregression in the power law measlesFit_powerlaw2 <- update(measlesFit_powerlaw, ar = list(f = ~ -1), ne = list(weights = W_powerlaw(maxlag = 5, from0 = TRUE))) AIC(measlesFit_powerlaw, measlesFit_powerlaw2) ## simpler is really worse; probably needs random effects ## ----measlesFit_ri_simulate-------------------------------------------------------- (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) ## ---------------------------------------------------------------------------------- summary(colSums(measlesSim, dims = 2)) ## ----measlesSim_plot_time, fig.cap="Simulation-based long-term forecast starting from the last week in 2001 (left-hand dot). The plot shows the weekly counts aggregated over all districts. The fan chart represents the 1\\% to 99\\% quantiles of the simulations in each week; their mean is displayed as a white line. The circles correspond to the observed counts.", fig.pos="htb"---- plot(measlesSim, "fan", means.args = list(), key.args = list()) surveillance/inst/doc/hhh4.pdf0000644000176200001440000104763214712411607016036 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4834 /Filter /FlateDecode /N 79 /First 661 >> stream xœå\ÛsÛ¶Òÿþ ¾v:!îy¦“™Äi.­¦vî<ÈmëT–\‰N“þõç·x—d:QO¾q$¸X,öŽ¥d•X—è$ãYb’ÜÉÄ&Bâä¡O²DhtÈá$þã‰È…L„H$Ïz&R*êš(.q_'ÊœM¢Â&*!„Åý,ÑZâ½<Ñ‘<12ç nk €%&wh+¥²DêÄZ³–¹K¤Mœ°h»Äi­™%.ç8çI& &„-!!’,³\&¹P¥’Üè0\“r¶\<š”EòÝ£K.ÁÜ€ŒÉ~àâ_œÿëûظw8yY¼Mþš•—É%æ¸ZçxüKñù¯åjºN¾Cãh9½ Ü‹ÕrzsVÞ“‡É“Ëåº\Ÿ­f×e’§Æ¤]NnNÿSœ•µŒ ³phÖ§ñÚ…Ñsé"ü qØHþ<€ó¤ù#¯Ö€Aéȼ¸Âóö…?ç2ßV —òÚ8+nëû~jÔ–U"‰'O|N÷Œ‚Á!rT÷hx:Ó¡=ïýüë±hó¡ÖõÉ­ ¼ôë§Åìâ²j‚›I°¾cØCvÀ±ŸØcö„=eÏØ/ì±çìWö‚³ö’½b¯Ùö–½g6¹‚C¼ž,¦lR²SvÆÎ–óåÿ_]Mؔ̊Åt²¾dŧ³ù䊳sú7cþßÇ‚ÏÙ9¤ž]°Kû²X°ûûƒÍÙ[°L,[2ˆj±*Ö³5[¢}Í®IqÌ‹ó2\­üH@g¶œ²?ÙŸ7˲˜žÎ}‡ªúøV¸\±5[W³€öºøˆ¡×³Ol='|KV^®Š‚•-Ù »©ÇÿÈþbŸØgö7û»X-¿÷vß÷…¿ìñ|rAa‘×ƒê»»êŸ ·áâCxþx6/ È:ú tëùäªØ¥¶ž!Äš=X\ÀMÀpG³õJÌ+Äâ¸sRW¯á6vÔQK“ Täñ«_Ÿ¼ýcLëºlñ`±ž57]‰Ør +ãtj]™U•Vy–‚ßφfͳǭ¨©oÁûYg¼@@aÐÛ=ÚÛ>í·Òc$éá<¤üÁÁãwÏ_U«ü¬xgòÃßõÈ/D6ÖTù@ hPÊ9‘.&ÒUf#œ÷¨ÂÿÚkd4úy sxWçðŽÎ™@m@@äçök/“7ìc[¬(ºˆ «doUýCC‹„Êõv7¹Ç®®Ü²ºìmœ¡:ƒ¥~öèýëûh¹XÞy••®rÞ_eiG®²‘¦m'ЪîT×›ŽnϪwûÜ\wß޵ fsï€x;†_z4#Þ¦…àp´¸øa´šm[ù†½#¹>›ÍÊÙ|Zl¶ÞLæd½%˜ÁÊ.ïdõ‚a«ŒX0_‹)LõÙrUì²_ˆQ7 Ú=žDThå@×’¶•ÛÇ ¿UÈ¥ „ìɯ‡¯ÞüÔ²ša¸‘B¦Í`8)B&F ™2Y‡õÛ”n·&¦)±Ž–­}t•Ùš-³¼ýޱr+t<…Û­-÷GuMcVíj|IQŒA£ûƻ뼭á§(0-8½e­7 Ù—’‚¥–z÷ÍžKù\ÉŸ!'ˆF ¦^ñwø½âö`J²àÖÏ&åf“‚Rþ1%“="=6Íûlº•_F;Y_ƧïÞ¾<~y\+ï=\Χc¹4ri?6’5V Žm\•ÁÄf" ¬M~Š®žÄë¦þí=u4÷ôö30gßGX³«”g=]8´#|dŸºœ*¶û-ô²Ùà¸øÈ¹Ã§[øe4—ªÛ][sérS]fá³:¾AšáCäŒéfŸåÌyj ­ŸN­i²œÇ´›ñ;9ˆ)Ð(Ú¦NCžJÒEÆ¥´uö¡Å©‡³Åª>½4‡o~yýäY–Iyyòùêt9ß³¸˜Åk$g¨HÛ®F ŽsÛÕ{K±×½Æõß×_&Åߨ’Déq¦£Þ}³–žçìt59+¼G⯂G2/ÖëàÙ\ÝÌËÙõü3âê«h\¸ OÃ?¥ýS±'¢/·1ÅXAA,82r{ôààèÑa1€ßÌ…ºÏ…B Ù0ë³áF/cùj1ØÂ§[ûƒšÜ8b˜ £t£ë -}æÖ¸À+Æ'ø-¨KÎmóŽ5ãòiMz‘ø¨â÷lÿi½ém+h}ûH<¡éðIRmm¼¯àµi1t†´Ícò’{WÀP6ßÀß·dÄžy«?~~}IÎËiQN¼ã=øbŽVÁ.&Ôº =ãbå³WóÉÕétög‹¶¼*.&•›~}9£C°kœ×3òÔgx»ò×½s>NL@2ÿÔ]†I%£úbr ÓŽ•>:¿ñâño¯Ÿ=í ˜m’*Ó¨ê¡(Þ16Þµ2pÐ.—ù.2ßæÑlû³ÚÞÚ'xC‘«ák5ì£s8ïÙ&Gws,ÙIp¶X| ÿ¥ë¯èmŒ¦ÃS uF°{ŒV鸚Ñv¯ûh>Á|qpøîÙÉÎMž.5r›übnk¶jÚ6¿¿Ó¿çùÊ÷ߟ§à66 ´‡¹¼fß ÚW¹›–ô9¼ê÷Fÿ"fó¢§¼1g1¿Yoɾ·}êö .õvU8ȯo瘯ւó€ê`§:ºíÊËu*3ÑwªU§¾¶ãÎ5¬"7©áT™'S*ÖçTB*"exž:ðM)IUO­å©‚S!­M-œ Óû}EèaTªà)TiçRíòo‡”HšqaR …"´¦ºôL)Gÿmp2"UyÞàä ÎûÀ©ÏI±r©ËJV¥d@ú¬¤lª€Œà4©©Ô!uû+ k¾jõ¾\è´¿Ý ¥…HÚ R#–Oå 2X>™»Ô:ªýu©¢òÚLC3dP³Í·Á $ YFÜó”öìÿ “¥y®¶ žÌÁG`v‘I¬´ßßJ¡C¿RD& S!%…‚2¿#Nµôøé›Ÿ½E£”ûÉ|²(÷±Ë¤û[¹wÛeî«ìëørhÛ0¹"ßòÿÿâhwëÞ”Ú]Õ±­¦£·_…%GȺþ#TwœNV>ÅóGQÖé\w®¿±5]ÎÁvMȆ]®*Z}Pò¨©üXÜ\+„Èã6Á¼_I;aÆên‰í®ð¸ãYÞ­0»dÍg÷ÈÌ Ì`·À¶ÝÐ{b—#ªnwD7îAœÆ®}“Úvnmgý‚gIÒ¾1]XoÀoª¥ÇΧ‡«6ØaÜJÄÑë5Ú(½<:|öêMdŸ>•Vf¹åË…*¯¹Ë>™A'v ¸Ýµ»èÉ»¼ë9eÜúcŸ¢,øÀ±w¯ì|ƒ½Ñ\¶î¤²ëí쇳‹‹Ö–¶oÖGÓj®&Shüùéì‚­o‘™ÎÖ×óÉçæFY|ên¹äf‡å¡‡pïáØcÐÁÞÞí\3’Så­Û{{N@J®SƒU+›Ò÷çFûŒ Öôiì?šÙ†“ÉS*Õ¯pòé¢oŒ¡’S¢/O%ô§Ì\j3´¥L…úF mJ]q›ÕH)ʳ¹|HíØ‡ÐV¦Æÿô€NÅ0O+Isú©—¥–KtS©Êèkw‘>²âèXÐòWߥ‘¹­>@Ã%UÉë1Ͳ*ØBC'UmÆ1ý–Aµ5z¬L"ª„ZõºV‰¬ÞÖþǵ#A¨®ýØB¼¦ta¼ÎˆÞþz˜ |û˃wGýþ~tS)‘]µ)vX[86ºq0£–*Nóý{zßö/|ûF¥1´$à yÕÝï¤äb1 •’„Ò‘&w=±ÃÛ¡Z8ðrÛ, vâw1ÂèÎñ®æÁÃ׿ýÚÚUís\U[sÜðCKÛwWôØW²-^å×ý·!ášujžC³)·ðõ<}_tÇ‚Šè‡fýŠe;Ø·ÞBá½y¡ûVÅÚ¤ÎÒŽ+T0—FùMFLÕŸÿY£%-ì5âë>R°9‚WÿÝ<â3Iýu×/#[ÕÎ’‡Ð”ÔÒoxTÕ´þ÷Eš˜%i,{Bƒ´–·V‰7WI°Wÿ,ðPVékC­‘"a‹r‰ØõŒø,MRQ Sú°÷z=KB©%ýš…¯±¤{ˆ¹í$ìMù\…Ïíìi~äv\˜ôC`vÂʤWú¯:!¢ÿ„´E†¸½ 3÷Åh ™ißT¦4k?#ì[4¨¯ýwÒýÂÛÏ(|sî9åüXã|N×3ÏÍGà{‰6Å=Gî¯(†¢›’ôÙÙ&k¹y¼ÿ]m}õendstream endobj 81 0 obj << /Subtype /XML /Type /Metadata /Length 1541 >> stream GPL Ghostscript 9.55.0 2024-11-05T13:45:58+01:00 2024-11-05T13:45:58+01:00 LaTeX with hyperref 'hhh4': An endemic-epidemic modelling framework for infectious disease countsMichaela Paul and Sebastian MeyerR package 'surveillance' endstream endobj 82 0 obj << /Type /ObjStm /Length 3001 /Filter /FlateDecode /N 79 /First 710 >> stream xœÅ[Yo9~ß_ÁÇY,Ò¼¯Å`;‰3 ì$+çšäA±Û¶YòJíl2¿~¿b_R·Ú‘oÉn6ù±.V™ ™`Á0¥$ –‰–c6¢å™ ÍÀ¤¶‘…Ȥ‘EÁdŒš¡‹’N°¨˜ÒÔÖLyíYÄ`£eZZÉ¢cZ;´=ÓVâ}`Ú9Ëbd:H…IÓÑIT$æW‘¦eFyªhfŒt¨T<õF§é‰cƸž™¨iœÀ¬•È0`c1V[t–’YK Â|ÖÓçèg,¥Áj±)-s 8%æsFQÏœ34N`ÎGú<2 ^. æÙ¼2ø\)æ5ÑFiæ­ÆWÊ0ïhRe™4)õ1Pų¢¢XP´ ,;Z…Å-­] ÐQâi}4ˆ,õ1 >Í…!¢¦¹0z4421ÀÑÈx1+* }Ä`Ò¢5 mˆŠ–HÈ…öèoˆp˜¥!¢:IÏ,‘7à;Z³ˆ@+ ‘Axú–(#ÓÈD5*I+ˆ~ô8º~KÄ4‡M¤¥%+7–¨`@Fi…½%¢yÂk‰Ž‰ô@P‹ÈàˆÈÑQM½¬úǯ¿2¾3›Í‹%û+‘G°Q¢NYºªôUª2–%&*KY•*•Ÿ:Ÿù £*WŽÁòãÉxwþóÐW6ÚŒxhd‘ÇoÇ |ÀJ|”/ç—‹£|ÉáFK„NïÞ.æG‡yøÛg{Œ¿Ë¿á·ßPýq‘ÓP§9šÅÙ ¬­ÀZU•º*Íðþ®À[{ðJ”Ÿ+áªÒWeØ:Üh%â @yúœ^|ñìð_û£ùùx&Å“Ýùô˜ñç³£ùñdvš2¿7Y,‹§gã c9÷³|y´˜\ó™ÓÔi\õ!‹Á/¿ij kå¼'ÇÅ‘Íz›–Þþ\Ý៖õ{ú¶þë¶Ëgmßò\Ýö–Ø‘Ö$%¢Ù­¡X¨-õ°°À©TiHSS»žœÊeO}ªw˜ênl2ýÍ<2C4âçF–G$[ :¾ø=Ÿœž0ÕMК˜þ ßáÏù þ’ðC>æ_ø?šOç3ü{~>æÇ<çé3žÏŽÇË3~ÂO&ßr~2å§üŒOø”ŸóŸóù,ç|Á—|™Ëg|9ùÎ ^üoÎ/ùwþƒÿÍÿÎó2NÌ'TO” q˜ŽO—ÒÄÜÝZžÓ;Ø]™°.ßîM¦96SW‰-=z=>Ï%ñe1žNŽvf§Ó_ðƒÉr ¹LâÃl1?,òóɬ®ØŠlòOÅ ô»'ÿ‡{¯^½ÛìóÙ<>å§—SÈo«ÔÙÎl9i´š€£§ ±§ r[MÀVJEmíùP¯ëüÚÙêÚzK¬ý+6ô]ÅKeW`áL¬ ¬YØ1$§IJI>O’ ~… ^ð‹|1™—r8%y- ßø5Áƒ¶U‚'bUòž¸ò­-=šŽäùÚ 5’7$[Šžÿ¹äA½{’÷æùáá«OÕ¬ûEßô^%yäÐu§‹²+zpö®'z]Z¨Ì ËfÃÂ%/VâjvÀm"Ÿ¶c àÒ:•†èðCvù1D™-ùÓò3~À ìñc÷Í›?Ÿ¾¨íOØ` Èaëî…±ÏÝcƒß– qkíÕòÖ`«y"mTõ–¨bmw(ºè¢¥vÓZ³e³ ¤öSh}Ú|°õ\®ÊœV È)ï”LÁD³#Qª+Qƒ¼ÝvwSöS™r}™ú°ÿfçÓA=¯»îö²A¸lG¸¨ÏV²å6¸©®Zh·¦Þ`È ;f8ká½®ó̇÷Kßw8¡»œ¤È¶ÆÖ0¢¦ý|qœ/*P29Ý©Aêò9­†\dYÙœOü 0#£¤¥É#Í.§Sê8ʨ£ *£]Ey êÊBZ-\æE¿¡þþdöµ—¢‚{¤MÌ¿ÁäUÀ’;ÀT•Sh!!ðL”@ˆ—˜Ø(¸ÐâJúÌBtæà`+-2J«Ü!$)V0a²Õ´Ng ®t—y&dšBzÓÅ”µ ˜A̤2Dâ[ÚI¡Ö!ãïG/›GÅd>+ýrVËs¾¼\|[ã"[|dÇÐм†9/WpJ ’R–%d”·PD¼@™™Q¦g+œ£”p)I3‚»!«~DéP×-Suxå¡~¥R¶®C°|]´Á•uÒ²®S®¦®[ë1CJQ½BÕ¼¾ ao¥‹›¤F”73õ¨ZS°ª¯Ð­¥U/3Q÷² îׂyoïlmþk»±y‘È|_kbàQ'2JÏi å¢<¤×ÐsÏ&o3&mCFyÎSY„(_ Óº m\ÓÀúÂÍ¥£Zˆ”’kþÎ’kò&’¿âŒ¼~÷ê?¯+·úp:ž‘g½ÉË­CóÆÑ}GDÖv¸ñDô&Odþ~6Á¸9ÈP‰ö`üÑsN(…´âœ¤fãœü÷r^ää!Ló¬XÊMŽJ7' í¥q:NJíÕ·NÊ•”Ú6 ÷䩤­ÖöÜé}–ÒîÎeØ…¡Ç"»Ÿ%ùïWo@)cñØ´ \Ì‹¢;Y¹Þm«ù´í•ýÓkD°R÷f€Cl@àÓ%Œ§|Æc9n6$³Ð€ *KɺGÄT‡šˆÅ3m¨‰ý–üÞÇÉÒU~›–ÑSL&èF+ÓõH„’”Ø¡]¿åU:‡¹¨­Ïa¶Œ¶bùÿ,®±oß$¨ZÙ§õ]íÓö&ûôÖçÏ %Vv +v—g“““ˆ â_éFâIb}‰ éw“ÁÈvNZïhdº]ÞE¿[Äé©<îÙ<âÿZA§endstream endobj 162 0 obj << /Type /ObjStm /Length 2967 /Filter /FlateDecode /N 77 /First 709 >> stream xœÅZÛr7}߯ÀcR©`p¿l¹\ëK{×r)qœ¤üÀPC™‰t‘Tçë÷43ÎE¦‹,`—ƒîƒF7Òi&˜t†)‘Z¦½F꘵”zæ•E˜‚2¨$=J­´“ÈàgBFQ}4¢_4”A¯2Õ±LYiqLùè‘ñLˈ>З¶’*G¦Æ“A0èŨVA1£Ò+ÍŒ3ôÊ0 –YA+E¯<³š`†€9Hj™u˜gƒÄ,¢d6:‚©˜“ýDÍœ"¨Ñ0g$ú‰–9k1Óè˜ó‚š{悞˜‚šG楕`^㟒yc"2Šy'2šy)c˜©²e@á‘q,h””ð,È[‰À‚2)#xƒ:€"0+)Y\LC@jQC~ ’ÆRƲè1 ¤Îb° OŠ£%©P4 á…i%yAÂP“ÂÔ……IUx(T)ÌP&”¤¥ÐÈ IêJA"Rkj1¤¶”ÂÒg„<¡·c@èOc ˆõ4ÆP¤q…ELTc eˆ c(‡‘z’ÊCpJ{Ê¥^0† ŽÚb ÿ׃¬x²¼YlØ×ŠOËõ†ýÊx}ÆŠ7?ÿBHx6' WÀ¹¸¹ºboYq2_¡*‘?U}1I%[•^–nÒBH¥W“U‰þëÒªüƒù*ÿÃ|sU²³r6à  ¼ÅŒðN‡¼‹øMóÊp%~ºz‡j„NÏ}J²‡ӄƧa¢áκf©ÝA*ÓÂîá£1Âvl"-KiK~¦·ØS}½Få÷ q±‹*I°‘|O†©»hɈd²üðÜ‹ŒiP†Û¹¥vfsìc¶"rß—«eÀ°ŒÍEÆo²þ§£«ž7ÒlK®&ó„Ú• ÖLjÝ †5èÃvš+˜¥.«C›Õ^´Y ƒ9>'74'—ñfîîâmñDn¹žžÕ|7­:¹MÒ‹Êåé€Îê1¨½ä†ÕÜBg%ÆÎâ\¼õc^¼2Œ-%Õ„Prú5€{`ÍX¥¹ƒ½Þ[ëª 6ë' éGÝl;`€°¸¶´ÞâÞGGMüZÁŸ´”}ÐØ¨ÚvAïrˆ¦ÅÙÚ&¯×ìãɺ}öÕ‹ÓÓåb)Õ×gååÍÕdÅŠoÓåÅ|qÉŠŸæ‹G‹õ|û -Þ'ïP »wAý`JÓÕüýf¹JžU³¦S%ìÞ¬8¿ùmóñ} Øø/«¤jK\lÞ­!+I‘‡ø£‘ÞÖÒx´ž&)c7/žLÞ?+ç—ïê"&p^nØÅly³*Þ}™Ô—ª À¿š\®™ÎBxüxù'&AÝ8]Ôþmõæd~UÂ˨W=z9¹.o‘þóÍäj>}´¸„Š1Ðé|½†è“ ÐžœoÊë×pãÚ’li¡§ç³§ßž¼þ#-¯' éï¨hcm»Š†Ó¶Ÿ¢5<Ï1Õ(»[vQÿCeK«ÜÀ“µR¦TÁ…«žV£r‘óˆR¼³ijlZ%J«'Æ­Kç¸EªØPçQ1)¦Åtyµ\EYÌŠËâÝÇ÷ïÊE1/~/®ŠëbQ,‹÷ŪX›â¦øÐ¢Ù×ä“1-½„/ŸFìÍvÉ6N=Ù§z„nÅ›E‹ÁCÛdì0ØìK`‹è´«\Úµ”[åbˆr5_ÿ~=Ù î`¦¿9‘:éèÁwõ0*Ž=ÕÿkÏ ìùéÿ¾ýî»z$7(x¿àƒü»‚wòþo±‡>t?*Ž}=‡1ú÷ÿãËÿ>{ù¤) >t¯Å€à{ŽáÞþB°nh_ÕïS•ýØþùZþ“?:'$¿Â3ëeJuzB¥z´*¥'TÛ¦1 ü3G¨«'tˆÕ³ÔðDÚ–:oñ&f³y¶É•ñž¢†«r¶©r«d¸‡} Ǩ˜Þø°4|‡µkØ8Ê‘½­±þ—«‹r•×­ÂâI*߆TQpk-Éž;»=ã9+§©¦1\’"´áé¤ÏEN[)üN§³o[Ä|1_ü^£{´X,7÷Ê[î)t­AEϪÀRÊp:Íí€ÒJpŸ\Š ”ö‚+„Çå·QmAÅÀí¡´§ÀëC“žGŠ2&c!(xdGÕð\)®`ó¥s<9™äq@yÉÉ›n@EÍ<&LAõ¥„äöÞŒIAPÁ›#ƒòãüT„6ƒ=(m<'—¯g$ØkP DtG#7[í`4 ̹‘}–Ã8CQÞ¦J°•­Ò•‡wpLðÔ¸Qn‹É ®=STœ|¾® ,ö^gé£*ô S§/ ˜°Ç¥,l”‰[PØ›;&iQ÷HeìVP×Þü/ÂÌ1wõˆÑÿs8’gÏ› ÓÍ|¹¨}q=™_m–ÿ^—¿ñëòc¹úÏlrÃ/Ê/ÑÁmS’mÚeèÓpäKƒ›HŸŠ5ìYÜÓFœQƒt0sFŸîäBLWª}Fö¡.hšôݸΣyÝš¾×u ]¨óôÁ½Î“?Tç«K¹Óýƒª?(‡‹½PîÙùÉËóW_ž?>•bÏÓ7¯{>9:îFrTi¿ƒßÐ?²¼Iºü¡ö2º0b§ÛRÃÓ ÇÁ¤ â‘-"¸qt£ä.ˆÎ¤ˆÌÔÖAJò››Ú>Hmè+\6AR¤»<·›óÒ2)éT‡³éë|„¾sžNeÛ¸$ÐéX=KGåqH†X'X¶k4Ï’;-/æ“ÖaW´  ¾wl}ﬧ]®—7«i¹N»C²$tŸ( ]NÉ@üŠìÓˆ¾J¿MÛA%ÍW“Ëò¾Ô‹Mô—ÌaD‹ ÁXT§{VšÓAÐqâOÄ›N‡-(€¤[^wÕ¡¦Ïú;ô°™.§>§!§U*ïvtÙ«JUNuNMNsÊ ÐM}.º©æ¶À!èfÜÐÍ´ž/ŠH"ÐW'Åéö¡všhÖíÜ}›¸Pä÷ÐT$ºéC‚·idß•÷AR¢¡ay-öL‡}ÊÜû©Þ&yº×WA2BcË”‡4f*àò¡¶˜ª¬ãcbªÝ‹¸APü`àž—îCF%u|ÖE¤'’ÔØYÂ@a]¢àÌÒ>PÈmÞ·6zþ'̨“¡‹LsLƒgtî*œ¢ûÊðÂŽcƒ*ïÛ> eŽ'7šöS„¤ÂÑ%kÏi¯= &¸ªÑê-&˜LŸ®ÚßÓ®Ûðidzçd‚.bWiÞýuÞýuÞýµØíõçÚíu}=ù »½ÑŽÓ]ûîn1n„" 6¥*Cè«öžO¢‡AisPVU†ð˜ ¤Ãàð#ëmŒ>ÑÍ—ƒlccÚS•€LtÕ×SmvŒ³é»‹ô1-qã¥Æû>7HY¡Efš>9ß TÇcm/ZùL§s­s·[ŽØžÎg³‰LЯéJû¶Í¿špÓâïtK÷0f³ùgêm?ÿgd²endstream endobj 240 0 obj << /Filter /FlateDecode /Length 3541 >> stream xœ¥ZÝã¶÷ßF^JgUü&óÔH›=4Ém_š+ ­­]«'ÛYÞíæïsg†¤,ÊÚë^ƒnM‰çã7?’úeY|Yâ¿øw³_”ËûÅ/ NO—ñÏf¿üúfñ‡Ÿ„^r[®Õòæn†ð%º(K³4¦,àÅ~Áv»ZÝü GØñ© %µ€Q7ÛÅÏìËÕZ•¦(e_VkYŠ¢”‚Õð»„_Þ–N²-5çÂ(Vïjj¯Pl³®Æ}³—³Mé]iØ&ÎVJ¶?®Ö”àeš+ «Ûñˆv,:›'ÓöóÂ{v·* ¯­Ð’u«5‡¹´²¬Ú×O+aq:Ύ݇Õ0ô7ß//¸Q|¹ ‚Ìt&pÂÓ˜4ƒœS#.7Roú¬çñ<Öø” ïòå7¨¿äVì‚¢¥7²ºÊ›q8çl“ >¬ . gýx®âÂ/9,BC0`\VI«— ª\ð°î·Ífžñ^y¶«ê¶‚©P¤³ì‡ðÂxV[|Œ¬:l±æ-{WßV§¾©q˜çìmýLÆG£t« ‰äK[€ÆœBÚÉÂpµT…”Bô`_ÄHÎ4^ i´_®¹+„ƒ¤ò7ÍBíØïŸWÍ"={uâŠ}ÝO}Õ7 ×æõe¢Þ¸6Ï~èêGZžss†JÉúæ8,E³ï £?÷5-Cø‚ƒ«@Yxãæo‡&ò%êNMÄB>_ï’šýýÜ%›ÃÝ›‹å^~óî©é­»×€ªYpðÄ0ƒTqÉGìO+qå…gõmw®ºçôÆ0ÿ%§È¥ÇØ1ä_@D- !KŠöÕí©ïªMœ#õ¨?ðLZò w\nvuÈ«Sq;'ʺNì§Áœr(¡×CµAßx©8ûPÝGáÎÁÌQ¸•ØÓ»4ø4êÍÎøÉakV7-˜r3~]'£ŒuѪ°ÒóA™îH"JkØ#Ä`€.Ä‚áFáÂY`‡Ý4 IK/dQZÁîW°¸·GKQÃu5З³sÕ6¿Žµ«(.9†·Vë6À+€ÊšÔ_s! JIóel4Ö¶ÍðS¡™Œ))Té1Z@Ø¡é]Ö#~çBÒâc{aF,>ì2ÃŽû¼]«µ±Šráf‡ §‘VîYß2/Êõlè H•¹îx«‹†ÈýËâæ‹ŸÙĽ—¨dÝ!k¢¬D(`f;lA­åÑEƒ6!> p\âÃ"<¥`¾Ôã,†ÂÊ!&÷)8Ö·³ž!U,»ëª}öžJšwZSI J–6UhxvF4Ò„Ó4]S‘ñ¥6Ñ×$žíaç6ÅãCOÑÿÃðʘ޿f <¬Áekˆâ£8O0˜*šçÊnkà±´,”Ç9É“:˜á¥ÎÑZÔüš¬CØbˆ‰” {›IEÙNVh®KÌÏ«ãôêý L¥‰«KÅŠš¢Ù?´Hí³Ö!¬ŠkÖ‡Òö$®P¼PšÈ.0 wÛž³x†²Þ_GCðÔ9«E”â«—sâq°sn¢ªM£=»=¯ˆ–(bÛ~Ý¢®@Y®kuħLܨni1MëËr·U_ O…`Né`ÆÈ™c œâ•¦JHNÑ%¾Sùø„b¢Ùfœi ®‡£¬ .ZiýšsKccyÉ8%iô@gV·8ÎX÷õžà$Pu¡ àOÂ`òÁ}sE‹ÚYþ?«–/ý+ŠÖ)ÚI =ZF4È–zŒ½ äç(<¸ù1V!;Ygx¢0|†ÂtÓÀÅ0–Ma¿J^ÂFq¼ëü¢%†FˆdF²‰yA©}÷Ñb5hÃY€rˆVª O»&2ZØoÅN˜Íˆ?VX˜¨êB‚´4muÛdQQ‘ê@™29ÿ®Z͸Ä’á’õž}ŽqðÏÐí«úçïW«ß_1s‰Éã¦A£ô’ÃD™°aãÀt…åV (‡­9_pØQ­$F,÷A9­l{ÞÕDö‹¸ÇÁ aÈæ›lK¬×8óÕ‰½DV‘5СÊÐf¹†*„¿#·Ó £&/ºl|… ! bLØÇá "öºpg.LƒH]F=OiZ1b1Ô1Q½ü*{ƒ¡¥áu_Ñ>ö…ÄFªM®L¦J¬"h¤ EKSÐ’!wU¬52a<üJ¶³vN5ˆ<µè«Û0™R³¶É^î²qÛKGpØÅ@c àÔõœ¹*Ô o&N§:1Äñ¥¶“èç¬Õg÷£ºzGGMÜÁ2ˆ|Séå!I0”€.[V ¢IG`@C@f1tŸhœ ».Rѳ@èKa ¦7Æþ† ZòùŒª2½ìfIë,1¯›Ì«‰Ë¼ÞÆPÖðÐÂØndÜÆS§õÕØ ÛªÛŽšÃ.ú:‹Hž ¾ÂuiËI*õà¯+/IÄPpxÕG€ÆUQT¸C¤dÃd4+w¦mï'ñr? Ü ÑÔ6ëxÿáqš™i³»+¥—NÉ…§Òi »ù²œ9Þ’1‡$’NGµmhàšŽçþ6_Lõá§òÿË8c)Ôàƒí3;œFLót6Çæ;*Ùôøp™üi7’~݉**CXB S¸]ÂóW) Œ»áÓ`µóT4 XgYôqD&áb¢«cJÄ$½"w„˜ï^δ9`t.ùŽHöTæ3]2§š‚ߥû!°¦"å±øúv<´ÁH÷Ò9+lB½!Ú„';}óYn¢È|P%ðòØŸNÒ‹liH®´‹ù%êëp(E¿•ø$á«'Óí³nÁÑ‚ÑAëaÚgH—›.C¯ûd6ŽhŸ#Ô ŸæÊ¸nm{9%›ÏF†ÚÄ À:Ûl ãN‡&QS"cWX„Kõ±ÚÕ_™‡Ô.4•2ؼO'”¸Ä§àA©swd Lþ()”Ô$u<ÄÛ‰ { lâ9©ËÙeEà©Á79–]5æ"–¤˜ÒÑ`y§ýá-"ûöNa÷Í¥o<&—Ä-µ€UÃí!•Ɇ8Äðx>ŒZy5KzÈQÝã`’lòìL;Ù˜DC¡È$$—¢ñ^É3‹Á°7S=Xy8î“wØm*ïüG],b¥.,×Sð¢Ý”ÎÑù¢tþ?¥À‹ÆûéÀ¡Æ”óçÁ×öt]?žÙsln´›!ð›&yX¸‰çñY‚dTo.Õƒ%‡í_hN2­dØJþõ zâðÇ|üÝwc± ¥šîôl<¬(CÎÊü5e ‘~¢—H>p¯ÿ?ñÂÄe¤Ns`#^Êy°éF›åñ©eâx³ãñ$e˜ªïÇ(¥‚zbS&úxézß¼° Æ@ER {Ö[êK!h!6§Ø·ÿɰË[è?³ù¢Žo«_ǵ,œ1+$ xÞ‡0Þ!ЩYù~u>åéù»ªÝGúæN*ûx(ÄÇC9CÇéŠèâ"I]Å6|wâ±ÌofÒŽÒi?63‹„ÃáQàånÛ¬œ2@ºœª‰¤ðœßøëçðÂÄÏHâóLö'E-‰+ÕšÂSX•ε`«ª¸ SrʽWçÆp~˜Ut^7w|<îd áùpë.)鋚ˆ™iõñË Ì·mæ‡tZ†K°,7œé¤XÂæ!~ŽqÉ…xZ"/ןƒEÉ™ã|°´¹ñÛtó饙Èâi©5Ýzå%çúX ÇØøEþ–¿å ‘ÔqŸv˜ÖðÚMW9>éѾ$Rò]Å£k²”íªë¢HKÄojæã‹¹~ôj 'TDØñËÉ–÷´5W_šÀ."0Í@˃‰Èþ=®‰ÈEv:òy¦r¨Itì/dàÑßÜ,~\àŽcù´(—^pnñ §%—ÒN/÷ a¸(ÜåI»x÷âƒÊ.!N­5Ùƒ²,„⸠Ÿ Ư¬”_BêCŸ ª‚k˜~¹–…+äî+\›Gúvîw´-Qrø$ü†èlê/£Ù5MÇÁÜÇ;-vªo‹}ý\w¼«ÎÀµ~`é.ßà¼g‡ú)©Ûƒßá]—…š(„6Dð ÜÌù9¡Æ; ¼t0^`0ŽS’;~\üß{Oendstream endobj 241 0 obj << /Filter /FlateDecode /Length 4497 >> stream xœ¥[Ksä8rŽðQg÷P1Cއx3±‡½»íÝqìŽtkíê’ª8]U¬¡(õôþpŸ™XÈ’Ô½¡ƒÈ"$ùøòÁ_WuÅW5þÅÿöõjsñë§_Wñ߇ýê?o.¾ûYjø¥òµç«›‡‹ð _qn+'ÜÊÖªâÒ¬nöïÙÍöòª®j¥uœÝ_^I ·Æ³þžh/kíØ¾iÓëâ­ÓÈ>NÁ%ëâuíØ°mñŽã[ì¹Ýâ[Ž;‡´´6ì).e¼·ì¡Û­ã3kX3¹†G»îR8X¬ì<ÁÙ­4ìûË+emåb×Ù:²EÛî6¬™€Kå+ |Ûz6ôÝå-¡,[?…÷0FX–Íœè2öè÷BêlÐßoþç‚ËJ+çV7¹¸ù÷÷ìzÊHd+ üÒ‰ÐÀÓî:[І™üš¡Á×,{aèŸò?áéÒ Øg¹w@-È”v·#ð †.Ml‹‰»ÓD<ô49Ãþ™øéËyÖîvÍ!£l2ÛÐîÇ;™ÏMÒ·å9Ð;vqäS 2x¸Ä3@Æ¥à+©àV°cÆÓD¹”ìc³ÉÖ©.¯,0ïG|^s]œØä£6Vè™”ä¤â¢Æ²æpÞuüÎ÷¹½„_9¥ˆÒíἚ]ûœÄÈ 8vczE‚¦æzµEñEY†)ÖiA-YÓ§-Áºéa »vªq:«Ò@&àòî2iÅçô£*oã‚AbýÝ”ÃOÓ›v7\µ¤“6£äu iQë‡Ç☔w¤ÕïÁ!õo° Àm)˜ü¯ 0ò>’¥T¡pùm6_³‹T;ÉöÓÓÈHØå\ߤÂù'¿ûEÒT^ö‘N°Ùq„]jö§|‰õx9ÃPG¬,Þ!¿”!ó}ËÌ|{™)Í| †Ç!~ÓÚ:Ž S¤«21 l‡0Òeòl*%}mVÓ‘?,­ª*ÖIÄUÛ¥¹ÀkBÈ ’Ôÿ15h$7Œ§­fSr_Õ^ñ4þ8Ž På÷x©Éo_ü.8 x‡JOâŠ9…€ólóË(”ÿ$7‹ç ÊÂAc"?7KV.¥Q.-l‰„ï†öùRGÜ·Í(mÀ‘ˆ‰cœñx6YÀÄq†h¯Pc”Éb%3T Gv%üR PðI“Ã+]îœ)£ò“Ç lî̺>>èÛ„Kd~¶Ø‘D­UçmHû»Ü6)åðvlú¡~×QäÂ5@’ÍY¬‘û ]•5„‚—¡ÉÄܕ⺀Îv÷ÐîspˆÄ¦9äˆ-Æàñ„¿]–éS< ¢ùos©g.ëQGÎû¤¹;=ÃàÖâ­˜ÇM`‡ÉRïÎ϶Á—¤ñ@RVß‘6¢jš9 7Ý•àìá¦é@ ö/±KÔè©“A~·¤§¾2žjº>+Ý0§#ñh—Èvžöc²â.â`닽ÅIjù„þ™=ÚaªìAƒ…À0j°ÜÛ|¾jƒ˜! »É¨ÛôMênÛ"†71rê³97s¬+ .¡þʤø£f›>‹.ù›§Y)ÎKŸçN")©ÉLî3‚Ú•È ÈøuMKzëú)÷¢¶OÃâ*e ˆi1NΟ¡ô ч[öù¾Ád…¦Ü¨ ~ "­%ŒºÎÈœ²"Œ())ò$ÄG0DÍ.j €_Žás8暥·SzfAå’ZIŸ’]¤dËàhF—Ðú¨° I` ÖP:ÕÛà W¦r)¡É÷íf{×=õÛ®[ô$€”œ•_•8•f2l þiSq+s@Zú{íþ½kAHÔ˜Z†µpY[>ê³þ¥9ßùpÈE9œ ­„ñ1&è±g£¶ñîä¬b´L »,‘Ìôº€â¼€ ÒϘ:&Wú ø‹î4ôµÜF .ÖéÆr–7¯€\„ܦ÷äë£ïízz=ÃÊÌ ÍYŸ(é^°îŸÚùGUų›«jäò¾9Ž•ßç|¢ ±P_Á4„#K\€: vÙ-ØE ®oS-®V%´ˆ.“²–£æòqI‹óiý}8o‘2éYH3¦ÒÃ;#òÆ;£¾Ìã;è¨Fçžv'™5'[ŠBj[ƒ¤Œíe‹) *êBiòÓIBÇÚa€}e[B×—†aT-M(ÄÑ;€"—‹¬$jo8žo®ƒÿk·û¼‰øfÙdpxÇŒàþm($Ê"»G;@ÁÆn›RŠþÊæÖ§à¼ð1“$ã’§£BŒÝ$ft®´–Œc?–×í aÓA’—Cã"á+Ø#6ÓɇÌcOR÷Ö0Zé0»ãÓŽTñ=ph) ¡*9)Ô剆I¡~–M!ªÌ(…¯RÿR…jHÆ¿âl„ã«3ùvë&Î&ùIe@YèãbZuAo'iÕö°‰{å:Ö(· ŒÆM~Üáxk_I¡28“•¬úf¡xk'%mV»/ cS :,€3ée‰v~ÀåG)h†”¶ÑÖ½˜X‚pšCL—'Š ¢8ŸÒ61TF‹•ÐÞh°¾8¯¨Ç¬À¹¼"ÇpÌÍÛ„¶äê^K8êP§kÓµA­ÎF¡Q×è@¾¤[ˆÌº_|®r±Ž³º`}žýéÿ¶ˆs)vtð.?5ÿ˜CÖ†º…«ù1Íë©]‹×è¡íØ_‚ˆÒÔ€DÅo/£-Sp`s[–u¨6;ªµ nbÕ ó0(p–¢óÐGFƒ@ãˆ0CéGx½ùß”œñ@\|ѱŸ²?‡\@Ù1ÖG2\aˆ¼€ æäÙ¯!OW"#¯9¬ãC8Úî…VS2 ư™|æbÁj&Óm³\%’*â ª…”‹”ÅvÇ“Ù9.yÕ˜¦òaÛûÝñ–}Jù D ziäÔÌj" 4[¬‰ÄºÃu ½šÝÿFu ¬‹Ã©ì»ð;¢¥¢Þ1-vܯ”;B•ƒ§<ИŸØ¾5ÿTûjÐÇèÅãgH8¯5À­©Ôoªüoèu޲¹Ð"XWŽãY’]“”Ó )'N/Çò7Ý€½›n$}@AÃxþ/[#©TlÝÆs.‘0r$R"'éZ&ºí™F‘ †iyËO}¹Èªòã¥)«Š™2_ûZ¨A]øzôí»ÅNMü~ˆËÑ»ç]Óq‘ñƒa+ÂõÆÍûóÎÄ2H•¬˜ðÅÚ™rIÿò÷´tøÎ&^/·Iä8†c í)ö~ñ ®Gß c´«Ü©Ûöñ•ÀÜ,¢?Ó(ü0y‡vw*)X/ —!êÚPæÆÊ­:ÃJœ¾@É{Üñä(R²&’WGóØ¥iùYŒö¼\fíg¶×CëÚŽ} 'äF_ßÉð1PP3$Îä_LЬŸF²®Õb~ ÍÖ¯uòðÊÊA©)ŽÚ3¿-L÷O³Ž¹ÿ¾¹øfÜêÓE½ú#Ä#2ãJ`‹ÍjqN¿ì.®Ï~Üêì €µ&û¶(6 ñ»€ý[4_£7FÔÂ5,¨ÅÕ ßl‡áøøýwß=>õÏ€¡ªþc[­ïó蕹X]©ºrÖJz_àHÚäß.þN²[ endstream endobj 242 0 obj << /Filter /FlateDecode /Length 5356 >> stream xœÅ\K#Grö¹½ØÛÚXøB¯.Zb¹ò)A x{ ÃkxW ØÀŒœiN‹-6[³sño÷ù(fd»[+–M¿ÊŠŒü2^Y5ß-†^,ú?ÿ}¿¿I_Œv‹ÓýÍw7"ŠùÏûýâ7·7ÿ1„…zqûá&].B¸ÞK¿pƒî…²‹ÛýÍ›î×Ë•‘¦„îvÇóÛn¿Y?î6òãçô‹îƒïΟ6ùKÝWå Óß=nNßoîŠÄwÿsùñ¼Ýo0†Ì€ïÝß\~Yßߟ6÷ësÔËîýñép~ÌAwÇï7§Ë-×»]šîé°ò¿nÿ“ïƒ ‹Û½¹ý»7ÝgË•fèöëíaF[Ýýê7ÛÕÇÍæÛݧ2˜ïOûwéNù¾òg)Š%ÊPrý˜¾ÒСK·IØßnNûõáÓ¯Þ.£fÿx{ó{Z+mo…Þú…´>@ã…0ÊõB,N›Å,XÕgVR¸…뵓ƒ¯—Rb\-üÂZ×+ïÓR–é-ÍÍéîÓâ°„©Uç¹8~XäY-âdÛÃ"©¾PÍ[Ó}Š ;›n2èD"q¬R‹˜ÓÝÝÄ^Þþ÷ i´"Õ„“½5ba‚ê­ÖI­;.5.†]û}X*âƒ‘ÝæýÔÍ 0‚6 ¢xoÔB*üµns÷Bšb1MÃ…ÅGØ,X¿½‘ƒ¿éZOF—°ŒóňRâÒ›¯ñ¦—ªÅxÑi|ÆYˆ#½X8Ûû¶]Â(˜k2´ô&è‚¡Å}”ê…1A÷6L0Ò÷ƒ ƒÿúÁÕÚÅB½2¦`tHvããÀðÞ”¹KšÓYj½‚ÃTF‘o°“{¬§-%z£Û[I¨#‹u”÷‘Ó™û^ú2+…ß&° sE-m›f!¬íB뉅qsïâöŠë1‰‰ºC¯ƒ1Áôn:k̨Ø×H¬ÚdÒê¹?g¦“®q®ítj±~ÊN®«U-;g0ð7aÊ*Ü]©²ŒÐâvÎpgV޶sð$nfG]4vZ"–´œbvq¶¥f¼‘êã‹2.€šóZÑë‹ÂnWN·ÛÞÞ€›3'iÙrÞœ®]‰h†âÂ0CN އ%nFGO2Œ; ‚oíÌU½”…ãB½ž [¾@œ%âö„åˆ!^ɂѴSq¹Ôf§ ½/˜ŽLÉûiSÔîåÔÆ˜¬V0F’Øl¨j­” b&Ô ½²®`ä0KÒš;Jª9’"ȸ˽¤mišLLÙ4°XèÍtîõ†€ëO§s7ø{ÁhMžðú6W÷ö9_¢TGýÔ~—1425„mq¥ãŸÙ¾Jƒ¯bÂ>승ÐRbÔAE½¸`lCÐÉW&€ “I³¸«h†é´ë˜ª¬†þº%–×ÄóBbK™ÊLL­â®rCKÐ4­*î*±ž†1ìF]ìçŒîý„W,å€ü uêð­ü~ºvZÚ"“TeZ^Íò“±ÂÛ–Ÿiêõjù šý;åy@Æ8LÙÅÆ šòÔ ¿8ÆÍ±´ÞzZšNÔÑÖn²XÌSèÁ€§‚±®žNfÎr-@~;!˜€¯ª0ª%*Ý áIø²ZXÌ`ªs­Ï뫈+91…>,€upí7…‡¥ ”%»˜·¨Q¢CÜç §DäªPYR£”%z]PEÂP”Q†Ê†¢pª*Kj”$Å´/†‚“rl¬"a(¸)ÁÇʆ"OÅ@IPcUÛ¾ CÁWI6T‘0¼•áce C!y–¡²¤Fiâ™®QEÂPpZˆÂ5*KŠÜ%A1p[šé^$ EŽ‹’€aà¸ã_‘0\—aü+’e…§=T¡Š„¡à¾³B‘0”k¹\$5Ê -—‹„¡dËå"a(82Ç,Q$ W&˜%ФFy83ô/†R-›‹„¡àÐ$c`‘0TÑ}V¨,©QARç¢F CiÄ_J†q-—‹¤B)xOÆå"`Ùpy”0”u-Ce C!!‘𡲤F @\ë>JJ5l% …(¦Ce C„cfˆ"©QR‚»5G Cip×1T–0”3±oS¡²¤F©Üe¶/†R ›G C»7*Kʛؿ©PYR£4²6Å,`Ýpy”0”å\.†A™ê˜ФF”‚1°HJ‡ØÈ©PYÂPHÀÓ½Hj”4c£„¡¸Ëì^$ …Ö+é©3݉>Óaƒp´ªñˇÕ!3«Ožã(”†;A •s¡:Ýó1•Z®„ˆ}Ýï–+:ír¨#Uw\®pÛ„èî6;|qé¤ðÃ’ºCƒ¤éާýŠ˜j÷´[Ÿ·ÇC>ECyO§”C¤ù'ŸO,ÿ°‰72 ¢ïΧãcúŽ`}÷@¦ÀVR®c¸÷ì¢í÷K”oÁkC(äý CÇzŠ_´‘EwJøù¦mw»õá}-‡óÝz»¤oð[ÎtçhDwÛ»4¸ Áñé>0çyûáS¾Â»îøT]q~wb­¿}Ìwµ¶[*ä]¾?Æ{˧÷@ö^½]žÙHûl¾A` OKZA¤²[ïÒѱ¢¤0¯ÃCm õùÌÌ}:Ô¿âÎŒ‚RÝùf×#3óý7SÀW¦íÚrÁ–Yú¥;€b{:.®±à^Úí¶µqîûåʶ¿;L>4ç¹ËãZÙ½[’e„vݧ¬åkçß±ÛÞŠéƒT„#%`»o¶‡û„ߺ‡©g‰²k™CûGZ+ŸýcõKY:}È ñqKF•*ÞºÛî÷ÛûSÚM•i?">R »Î3„Kó0Ê]¼–Óð ™ 0k?ÄCÿ·1 ½]æ[‰Ùí’ {¿™ª_Œ*+€ ›¢µï>w»c2ð 1#2Yº™[Ðl¥]ÒŽSøºæ+äH²¸Õ]Ö‡õn™LvûÄ#~!±NÆç”%:î˜I‰4¸šõi‰/ŠôÜoòp†ÏŸYæ´m /±â¢1#ívÅ{¾'˜—(£Á l¯«°nJS°z þ·”ÉùÀOk§,9¨¼ Îõ•Éo;î·©E<‚e(‹ÄÕƒ m3äS†P;¸!#”öHˆVTñУñŠLDe,òMnP‹øåÜM)S¦!‡ëc9d+‘:BÞÐã0Jz$Byšl8Áú%Lei{Ûî úh¢Ãÿ¢‘¦_^·Ë9 *:ËZt÷IQÉ€t› =AVÊP/œLF~9zTì–9^ZhETãñذÛn gLkñ†¸^.6 {²ŸÂÂ^{Ú·Ž”®¡}O3£°ö.ïlF´èþ=qŒR„m{â¡ô¡#ï–”-¿Ï§í;.™¿»+×™ì8£Z¾ÙKGE·äM)ÆD½±\|nëÃ<1èÀcp‹§X)Ò:üŲŒ›¯©Ùn{ãTa;¾_e(žX^¿šc» ÌÛd~v¿˜Ûc€8!Åì]‰d<*„ü³‚Ð|ñažáR:L7—7j¹Ûg³ªÇy¨¿œwžŽÏççC‘s #­øåœrˆëî2ŷݼ‘ôYÞñ¿·¼‡’3‹*P]€Í¯Ð2.ª“LË_Ïjµh9 (ÏøðÎSæœ ˆÊ*êû±uUÖ¶™ºtnFÑ#àºB¦¹»Òi[å×,dÞU_æÆ—CïéœW.y¸"TÑSQðMv^CÊEŸêMþmý©HNÑ>2^©î»Ú«¬SªŽp‰À{žòˤPZQ¶èF\ò~zNì>q'ù–‚Ç~æ¡¶wMáp7Î7§8tKDožHqßWªŠòÇ:ùì—NK¸r†nÂÍúîÚºwÛR~¬ã=cª¨Àqæ´Ê«1<Å Ôˆ ÝÇ h é‚ä¿/ K™‘+Ÿ[c|»È¢QÑÑǵðq$~íCcÿ=$ic锨­c·¢V«·ÆÓ@CE–§4ÕJ8‘>ŸÒG§»ÍããöûÍlUì†^èKŠre’Ù[ê”ÀÅ*x6j!pCð髱Ìx6n—öbéýˆ¸AC°¸Ág¬{§dŽùnob]CçµÞM] ²ÙùaâvøÂhLį¶9Ümh5ç41±zÖäV…ç)÷¬õ‘º©Aº µaæŒÎµ¥˜G³3{EoD«èè,UDe±OBŠ»£S6äÐøµÚ—ŸbˆË²ÉêâÅð¤ëw»ò͉¸§#¾Í¼ÖUív~ª¾œjG×#èDR„Æõ3÷U“ܲ/¤5TA¡ŽîlÂFnÞ”[8Ií ‰*:N"ø œ€U¿dGÔ^§ð’¯ˆZ¢ðÅ@§XõÆÑmˆEkü,l³¦3AäÒèH—§l|ÒejÚ@‰CÞÅxv¥w…ÍxŠ+˜#É•FU6k½UisÄæ„k’Ð]±´“F‰ODIÍÛ„u³„~æOï–àö‰4QÓVIµEî³ÔhZŸÖ{fjÔEõªÌt’ÆN‹6ʈôv=9%m5"=ýí/¦X!{{W €Š¼ûzn<T°žÊi 6W3ÿ™Ú 5WPãGŠZÓeX[Ìÿ8— á»ô|º¯Ä¬™$­M|^sP!¥FoO³«n/m«²ê󅼜f5´«‘ý1\§žCì묿¾¶¯à լ:mm«aw·x[ƒ¢Bl¨xJ¯Ü`~vµO†Í•íûó£ÅÆœŸ×òFã®áñúŽõ”*¼ÖnÞð•vÓƒ}¥Ý|i”Ês äUêͳœ»kÀ\”#š]_Îf®¾·T—¶†Hã­è±{by>!‹%T‹€š^¦ñGm‹ÀÕÝU*K¥v1û¤T=~FÂXW€»êN"¯.Jýl^©ÊI6Jåt²ÀÓ·åš ¸%zs­©T¡÷=‚ŸÒI‰ÒÎñŽÞî£Çú+à›–³J¶t!¯ºÓ å+uxw´´Êh5P®=¾=4M1“ÎÇÖ™O”¥Û;\öD¦÷&/[L—rì |=¿wCÔ?ïÝë©+K8ç6ñ–ZÇâ+oC˲ˉ×SUíǯvyÁ¦UL“caDÃÉÐ}³>íùIvÑ·ˆ%2}Fqt½¸{ºú0At8"æã¯!<·°m`$gòR`l¸Õvû5xª9·¾*I­ìä|”Ó kQæ—t.IÕU³£+ ±Mž!°¼åØñ´ùn¶9®è=m÷—HO™Â~ÿ´ô2¾³Î{ã©mæpº€š“¬:E÷mœ×:vŽ©L—^æê]ŠÁ³ªºj_NO…é¹J ó–¯oßÏ[@ÙøY6^4A~ÿÞ\^íW‘³EC¯R„ñ|#ž¬G“`µ>.Û.0ûÿ•€ˆTw·>¯ß.©¦¶´v¦²g¬Cü<çÚ/‚8sçÓyxÔÁż o¸3+pO%²Å÷°ZOôÐ,Ní”æ—ˆç ¯—²×ãÞKŠF¦d‚û‹ýãXåÒvSG½Ÿ’µ\Y7}•CÖFE/ƒ½Ua>ž¶M¿£›ê¦ÆfgùÉA½Ó][JdzkÝãRG)¾n³ù—OS}õÿ[9iÿQ:ýðà§+Æ|ãE«)ù'WN?ÀjÔ ø‰­Femµ#¾”<ÿ0c4ä+žô:£‰¶•þjª™×W›?µÑèug]ªôWœ²ÿ팙Ocä~ÙLsj];›vP +2œ^] ÏüD¹4Ý­÷Ìgï¶g‡¯¦y³ˆnçÜkÙðRJ3y€á«Ù˜è ½ºëé‰kzªÀ‡ñijzìdñ1½qªªp© 7\°èm8x`FÉsÏ 7ëY)GIOï/ :|vñ‰òâpÛ£7i®U½0"$-åŒV±²÷¨íW&wjž1‘‹¯ãÊÞÆ¦ÝëØ÷ó9õèU8êêiß”žS¯-x\|Š RïMSвÎäiûŽ?Gš;äF}Éöë{–çŸë{×fêéé¨0}~7Êe÷Në„0v&MR鉆»í_ñœ¢dDÕâ˜ÍÖú,ýaGeÓŽ_kúF´*.î¼Î^ÑZÍ+Ò+‰ôÒö+}γ›±ö9c}ñ»æ?´z¾îŒGw0›ÛÀŒþý…‚|0°ŸÔâglçs~²¼ôz»å\.ÏYxÌ-Ц61é UžÚPÔP+¹ê÷Ëò¸9¯lâ¢9•þ€• ½§Õ"{ÙÑþþæ‘vŠYendstream endobj 243 0 obj << /Filter /FlateDecode /Length 3912 >> stream xœÅZKo䯾堸ÉAX_¨ÄÃôûaÃbÀF,üTN«À 4”†»œ¡–Ñv}ÈoOõ‹ì&{fµë43lvW×㫯ªûõ9*ñ92þÿÍö ß½>Ãö×sÿïf{þõåÙߦ~)5Òøüòö̽‚Ï1–¥"ê\"Vb*Î/·g/ŠÇÍÅ •ˆq%.jû…kЏ*zÿMa%Ô.ÿKOLI‰ƒ¹/×gÅ/._ÂLÙ¹,µDv„€ORÒó.åšÙ‘ÈLçb¥¤Ñóhà‹â‹‹0‡VÅ'N‚t~ŒK„a‚'ίðÑù¯úü¨dZäHµ¬K„ä|•Ñ!Õ¤D¢hv&fHC¬Ù¢¿‰¿%î‡}üõ³ #ÓñÒ’”Rh"ݾ*‰Vˆû!_x[¥Ó°R±iÌ'¹idÉ…ÔòÓhBüÐkFY`7†¤rcR5=\ªÄ4ÕD¢£¡ë÷áZt·þ3ÅaçÜÔ!‹Wñ—Îj_ÃÛ;;¾¸¯újëD"çvÙGÏŒâWX©RipZr¦”þ&Ž™®ï“JÌw±2{c dÞÅa·Ž¿4É£;UéR+®3rƒ5KÕÑY•aÂAyœƒ6›j¨ÝXþ=4:‹ö™a±Ð%F!ÞÞ?t-²dDÍñrž$Jò‰8\N¹¥¢~Ù7Ùe±2s=mY†}â²R¿ìo™e…ñ8Âó˦þžÙí ˆæC,£‹*öÔõEl‰.‰Ao'O•‘‡ Dfòä´@KªNíu ž^—œ"¤ž8=Râèô7ÓfóëÀ“ü6R­ÊR0‚ur+Ë¢¯v>¶4¡¼è¶æ‘É<…Û•Ý1„§,)“>ÂA;åm&E&1äb=Åê¬K”pñí…b&þ  €àÍ v„é))Àöð‘RMS¸ª]2,àcÂ2Ñ&|$NÁ,ùrØÎ÷mÕÜR¼ðù¶k[ÏìÀ]ýÌ ’*Œ¡Å®ë·ÐÿMªô¾¹>DƪAB›Æ©R™€xp’(-ù€‹Žþ™-„€Ûc*Ç0O2°5eÑZǪÇFaé±aKDŒä8Â–Š¤É¶¨Áõ2ëd²ÛhWÃŒÀ§ÞÜ`–‘;Ò€¨4f)C·m†a Y†[¶…ÏPYÅÚ÷8-PQç.{ÿÙÚ}ÔJmWª¶~ µÊ0I_N쿾·`¶Ðb4ïå0pxÄ"†›XÏÆLAÔú™ÀST4¤ÉØaŠ{?&Ýuƒ[ÍÔ©©Gú®¨a¨ŒŽœ°Ôs\óXè…hÐj Yèõð6'à:† ,ht¼PÕ¯½¶Ü¼I\Êœ›MØ6è¯sAeF…—ÁEšÝmÊD]¢=ðùÙå__¤*;‰` IkÆäw#¤ xÐïa3,µd3èXësyöÓ™;Fàq&Ïûãgés@S‰ÜG ]ÉÝÂWyl6vU쇽EcfálcLeH$ć^0EK!è‡^¤”¼æ …#H|„*PSò L±pØ»aîD3[U棉ÓÙºŽ4¡…µ¶f*EѶ3d(tÚÎlk9Úñ”´°ˆ½æalx'/7m[-ØÎfÍvü¦OtjúfÞ#q;\`„Û­©‰Eã°„Œ˜ Dç:颴a.?$¶\q\r$g­•\¯K’*ÁÒæ/G j±Å¤/–{`ŒtaóRââî`Ù*“ü Nø¸´s½)‚¡lÏ×þP‰‘ЃðQ“óJÀIøè•±€sîu¤ô˜•‰'Ò´¡ÄÂð:îëE»’ññãÄÁB&ïÞu=¼fztNDC›B—0i{­°SåŒßæüÛ©oÀuëÔ'¸Uç¡²ÔæÀn*ïc–\,0œ* $¨$Š?Ål´”˜=¡j³”Ë»F‡ùÄíʧc0G;6ÍãpDip-ÿžô=óõ%#uf³Î‚_ Ûd^õw‡(TÓó1ð`apJC‰›&â,¸0>B3 „yäzϲŒŸ@ÙÛ*ñ€vð‰ÑvŒ¸e†¦U|8:A¢ó«‹Ï?vZd€‰‰EZ ^áÀ¦žµÍ~ð}Xã,|$D3DXlqƒIæ½[ÿÕøŒÿ>®0¤bI™6÷ÓéwSÚ*ü@Ì!gƒsuwWE[m¯×Õ¯ÍàS·J*ËÅÀ¿n÷õ]8Ÿ!RZ:­ÚÝjTšP14¦o¤é¡ž~÷³GëZeìêÿ“2î7Íi¡¡ëREþx¬›»‰É $ÁÎ<»îý¦ëÖ–›ýpýÒPˆQ_NŸá0Zhèªxüõe3¾†’F[ÞoMûÅë}€­&S©÷4Õî°°”¢ÚîèÝ>K8ú]†õSƒ ÷½­¶Mû6³>+žýØ5û}·{–wQÿtÚwÁÂ÷õÝ×ÍnšvÛ­ëv±øþpß<+È绾{œ¼ÃÔ÷Òè4‘a>Aw;‰ÐÁ£þÁV>ÁÁåMCÛ Åu=}>ìëõB>£ëmó[=Ú“,Ýf?t÷™ÇÜ?ºÈR±që% ìi× ã*ð5ˆ÷÷èÓIáÑÒÀßûC[ïã-`ÌÁuúú®¯÷ûÆYŠÙæÞBÊm=lºÀŽ£Ïví¶Ù]?›„P*"ñöûz÷¼»{Þ¼ZÊñ`æ7uVï!…ǃ8(fBl«~)„µçCÝ_wûQ„°¿ýÇó_¾©•¶ÓÄ^ÖÖu;Y v²û¾³êvÕ×÷]oùÒÂÛ‡ªÂ42@Í›z5Ò÷ÿ~þÜtŸ…ä‰\ðÚdÇY·<ª™P‚€þÛC=‚LUf—þl‚NE"ìÔ̸Qµ³-Ñ Néð"ÜKŸMB˜IŸíûuyÓõý4|¶ˆ5=AzŽÀK×r7© ¤ö +¬«¡šÔ´0BŠÁ¦7› ŒVšƒ*;Xl=9Hj—Ø]nºW=/åzU×÷%H¼Ý³è…{Úü:g0›:ÒÚqØÎ:‰bI÷&’Ç`sKGR…•?N›+]!]Ô3 +ÛLÊß>­ Ý(£–´èMﷅɘ«ÒCĨõ¿¼õ0¯}u)d8Ö>qÌDC¡uä˜I‘pVõÔC&FÍ¡A8c²U{þÉT.b¬Ï.áR‚”Ù"oÙ“Èj4·o½N‘td¿Èì=Ÿ©WâÞàGޱ¾°›×rÇÎW“c5+Å“²*m'Ì®,ÑT›ábƒ'qGšŒÊ ÀÎw»ÓÅ˧™£Z®Mà~múÒ6†gðÛ¨}‘v¼{òhÊápÒŠ3½•ø•….ߙƜ•d¼Dù6{Ú‹‡ÙÛ=3g6·“iz¹ÇÝ“¶`°©ù=Þ)\ÜF°o{d£Š|2»CeHlÎ àGÁº¥¥på‚Ñ’h|ªO7^H`jv vãLt“Á=N[¬É›–»:lNo?„{*¹B‘ìþÎú‹euM×Í®Û6ã] £¶S×îìkhvO· {¥|¦Ð°Š;ù§X›îÔÅ3ÿ‚„iBOñm¸ ÂO\Y3¥¨W“T-Ñ…´`‰h)ž¹ª?ËßúC´DÓ] I………(“`*{—å}b’Ùˉêl’qi{°.OAâeØžTÛß!Žާ‚Ù#˜0±\4µwç7À|ïšô˜Ñ½d\ *QA)šþîÅ‹™½8&]ôÛ/ ƒ|oL=ur‹ØôÜ s.ã]mCpé‡Ú6ßëØ éí¦fõ}2ñã`Ãûž¥oÇ㟎êzŠœ„EÕ´Õu¤×6lJàâ¡©rÇì‹Îü …iŠÂÀ6 Wä~>B8æ$øor8A¢ô’îtáÇ>ÍÅ€¢ z¼ c+­œ”•TL™ÐœØ›ûGš.nÜ1äïy¤Á¾‰Ê: rýßJ‹lä#^b$³åxV0 ©œ7¼Âpä·N#cÕ¦8o—ŸÃž‘[Ñýr‡óö¦v•$Çß•®‚ZIs1†C„a f¶Â+#¸%Ñ?ýÒ aendstream endobj 244 0 obj << /Filter /FlateDecode /Length 3697 >> stream xœ¥ZKsÜÆ¾óÎcªxJfS!„yct -»"Ùb•CñŠ”Ä]jíËX¬mú‡çœ~Ì`1X,-•‹.€™žA÷×Ý_÷à§«²W%þÅÿë‹òêÓÅO’î^Åë«oî/^Ü{%M¡SW÷ןxWeÒa8ÛHÐGiö~°qຼhž©ª(KmÅ¢Y­êÍÃpäbRUÞ&'ÙcU…ª%,’ÞÄãp™\l‡FèòF—p°'kãb¹\š)ê—ýFví–_Œös3*RÎ)/’=5 ÞYü ‡„*Hïà]á§.áJüÚ|~ŒYÍð—´îĨ×Ê«"X}u-uaMUñ6ºíì·!aÛüvEPÈ Û˜•sØrP]£ D˜|NÒ:è¸Q%ËJ¬VÍæ¯Á‘3•XX‚qâ°êšŸg—Bø6u·ˆÃlK¬Ó•±9J†o+Ú&»ÜÇ=Ú|Ñf`Uñ˜ÍÛŽ}”ଘ7{ˆ&¬÷ë¤&'sÙIrPéM‡.›\®Éj¡÷ùû±ŒäÌÿÛøV€[M*ŒŸlHÿF‰.Så–LÚ4Þh<@&àOÀ˜×]·! èf€Äy&tgTZ úh¼×¢þ8ÐñjW¶–ÊBaÐÃY+e6â÷Ñà>´¿ Á$QúgS¯x\èÖ›¤§Df‘;ºY ð¸&¡Urý­wì[€ým‹’U…;#u¶¹™Vuq0d©@ú&T©*~9ÆÂL¿´šÄe×٨|£í6 Ñb“=m:^ ð”d³û$Ù™+efir㟷ˆÊ1šŒ|€ô‚饬aÑįuÇ,6’éÚz3ôLÖ:]€±Š˜yò´¯á'üè±w4Éañ³¼-U©À~íbó°Øïôy,@îR޲‡*¼­z÷õoîA:¯ç[‰A¥€³¾*ú -þÑÛ²’E18=–J܃‰ x‹P³âu6o5ïÇñ¶àa!(ñA(¸õa·` ¦'ñcij“34˜åa( ã;%o(lYø móP æ™çKÇAeoÅø štl‚Xœ>™¶¦|dª(Œ˜¯À;»¸´ D-À:„ Š»eQ`!mJ˜YžÒföJIŠÖ¤Š…=(ôÀŒVcNTá›f»^tmó°ï Ãq¨ñC9$.Z g?óaö(£¹K^vÛ“Ýì_IÉ“ÎX_¡!݃Քf£²+A¬¼«»Ì€íÓ¬ÒèóJĹªÅ ÍÅß⻃'<“ÊJ¼Ã7Ì °zJ<ò 3ÐnnFd‹UnÑ\ù-³ŠÜÛÃê<hûmj—@ʸ8)D`‰N©©iIJšEÔöÔÂì À\(ªOcBNÙdçï·‡vƒÉBãšV3o'0‘²’õ”¸™YäVè< Ô0^–Œ“Aoï:Xwßŧî°hP·Øï·<RæCà h*•¶pÆŒ )K˜ô`ô—Ú†Kí«ˆIå@Ø%LF×™,*®!°ÐEIzý¿enJ(n‹4Cö  $Îúzû¸®7›(kž[‚aɨ´„JÒàî J@_Ï1B ãN;-E¡½óx)Ûzmï— üœ„k¦é‚ìGÛ¥×`æëgàô”A7¥+È'ÁáÖÌÅ þDîŒìZÉ3ÍXÛlg¨k0ìÈý@öi%ç9•Æeêñ#^Êåú<`Ñ“£awÁD}2¾fr']I°ADhŽþ ¡øÆš[À¼D˜È8p߃S¨ k(\êQ寖 G ÎG—\Bð¾ÖË mh<=‚`­1XWþR†PÐÀÞØäJ?ãLúÞr,pþg)[Ö‡ v¡nQ/£Þ1Ôo)ÍŽ3,GP$vâó{ß|‘r1˜aå3ÌíêÌ‹( ;àcF\SY¼Fÿh(êzØ<•zDóüïa—KбӀAþ°ýÅy'üz,³»."0æ<€8e~kO•P38ÑgÓg…™S tðc¾`Íá‚•2—•щ-x*ù#K?…Áö·ÌÚÄX^¼CyFç …ct)àô'¨¬8}sÌ®bG8æLâžpd÷žKE‚²Œ\SÏgvùÞSA¯Ç4ˆ(@â)- šøRFa{ƒ’s¼ˆáf+5…‘6™-ŽËVç% o¯þô<úœž`¿îVu³ÁšÙØDàlBft›ßFH§Q»I”7¡tÚѰR™ÁK:«ö@%?<7òvþ^‡6§÷›‘_ÇÝq¿‘å±~&Žœð5 ó—ß5yÌZç„-M3\Œƒ„ÕŠäj_×›8® _ïÙ•Y.Åû·ÑÕÿr’–\aûá{ñ‹«hßkÝl‡9gˈõ§§*Ï^ÃäE‰74\B¡)04ugz8Gܤ¬°{4&n:p1aK{i¥MÁ)„U£RbŠŽi(q1aÒÁhb’¢û€¡Û:ÃaÃMaã´øÜÏÖTI¤ßäç%ù9Ú cÇÍÇØJ*ÝÈ‹Úè¼´eµŽr ÔΞ$Œ~¹}ßó T´9iyG„»2ô\prÈic[ç1iׄ@ñ#ÂSzëJ|[oò´µŒ-!«QJZoÛŽS/õ–XR(y¯·›¦£’5{³‰!:ÿ0U?Ç‹ë×ÛC‡F w`i¨eIážmJâßËšJH- •ÿ*ú •›gŽ•_S”Í#4Ý îÁM$d&çcè‹–zo^F-E y…~»è–±¨±JÌ÷É“ôÑ“°¢}E s„y¿H· 0ÇüYì§} ŒVé‘/1´sYïFÉ(Í ©h¸"¸îò,@]¢ J(i/±¢w #½±¾nÿœiñº^­^¼ºë“Ú«äÈ Ì2n Üfk>ñ$7²]‹ÝP+¶sÞ‘/²6wˆ sÉ©‘ÔXx;˜C.mÈ¥=Tm¸á#MÀ3ÔÉT#ºÙ^¯jÞž²0& |¶U„iÀâuìøÆ-| ¤yg ž#Äæ‘õŠÎð#?J}…”êæ“ÌoškëñMÆõÔ±àÈ73ì¿€vÅn—- Î PõÍ3ûbhÕˆ%#TW±~ì~) X÷iG…ý—# ò®à˜^sWÌUEÅoÓ¨c |>5•ŽÒ,JGý yÜ‹r °£f}îœÔ£§ŒÔ¤ÇÐÁ°<"‹+i`E*À–§Š­øXnš¦¤~cFSΗ»e&f³MŒ‰«‰ jn\r¦·éØ'ãhïÝrÈÑ&ò¾£LŹüVA$<9цu<шaÇɰUçcˆ1ž#ZL,ädÒ~+ȼÅ*ÈRvÈ-ÆvH÷dÉO-@`ûØý’ùgËãœÜBËÒü3•>[PxÿA`òR^BÒž(ô“—ŒK$c¸ßŽ 5ÊÄ0Kíˆ{ŽØ9Þ†\5pq¶ôpg†A­ä11C%ùcÛ³ýQŽ>íÍ#‚˜jẘž¡ ¿×vO^–£›{¡4êâ®+îi¥7¨Ó;Cy±Ý\¯šÍ _P·Ç§-Ä„íú81[æñ¹æÚdBˆÍZ:~GxNµf'ÇZJä”kh„ >Ë®ÀÏôãH²Š‡Ùteì3J=f÷$ç@l'ØËŠrâ—d8^K}eOÞ7xÚà)ÔU §;r%•©N:r¸ô£Ò%~†;h”URgЊH˜pS<%ã²—.Á'KôI¨.¥„àÈ+-¨”ò£ÜTK ÉLl8[æZS}:ûý$ŸšuŽüùP HK±dP=¤ƒX~æÅý¨Æa‰|ØRa H>ßwøÊ*vøbéaÉið ÎÀO-Î:µ!Š>•ˆK~ º¾ ÉM/až¨°üCÍdaÏ7à…3~œ±>húÃCPTü©Ìy(S(eÔŠ Òƒ E§ly C}:#öXâe¸»m,zƒ½2¡žßûÏ/á¹m…³BHaÕ¬zyýf“Ÿl4ÝòŠ ñË *Ýð ×y:Dï@Ó¨Ž¿ßýð¦WÌŽ‚`ß*}¶ìºÝþ勘ê÷0­h?7Å|ñb"Ýã·nVõ­ˆ´&Ô®7ñû—QÉ£8D/]ôI7õÇÆ?âi*õÙ“¢ÃÐmݲ?ZPÉ2çžt“xožÑ#¬ßÕ+(»ÑЈ`„0¸M „$V†P/ãwVÖõ `è$7l½ÂOçhC¡ú#aíx1q!ÍM'¢ïU$Z|„<É–³HN=(+Õ(”Ÿ%ÒÖLi,^ÌÉé„ï3ô¥¶ÅqÞðËRú|Ö&n t‘ñ¥GëwñOøû?'é.endstream endobj 245 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8162 >> stream xœµzXT×Ööæ»2Ž jÎ`ﻉƻ¢»T)Ò{Ê0왡÷:0D±÷^â“X"– æ&F³Ùü÷ûö4ÉMnîýïÿü>ú<‡sÎÞû]ïz×»ÖQ@™šPÀ|ÍZÛ?ë©“lÝ=Ã|]‚ù«£¹!n¨ ÷žÐ ë~Q´'šAo!ô6=3tÜsnéTÙmèO ‚M^AK£‚wyz…ZM›:uú¤Iäï¹V®QV‹'[­rqó ˆñÙeåâ¿ÓjÕ䵓­ÖD‹»¬Æø[¹º{¹øzXxXÙ»o¶r°ûÈÖÎj¹­Ãz»q“ÿ°¯w(ŠZ¿Èóâ€%[—}¼,dy芰•á.«#]×D¹­Þ¹ÎÝÆc½§—í.;o{ß~›¦ZO›>cæ€Y³‡Í™ûþ?Ó츅C'¾7I2yÊ–¢†S6Ô\jµžIm > FQ¶ÔhÊŽCÙSc)jµ‘Om¢6S‹©‰Ôj 5‰ÚJ-¥&SÛ¨¨)Ô2j*µœ²¦VP+©éÔ*jµššI­¡fQk©ÙÔ:j5€2§ÄÔ@JB ¢"( JJ™P–Ô`j5”ºGÑCí¢zP=©aÔ#ÊêCùS}©ªÕ_ÐSЋÚ@ÂE™RQÔAƒÉ<“Rá a¹›úšÞ7s0;/Z"ú‘Vј¦µ‡uCOûžÏ{e÷ÞÖ»­ÏG}î÷×÷³~Súè?¯M<À}@«ù'âuûô‘Œ–è™ ªµnáhqCo¹ÈòØ`³Á±C Ù5tæÐýï}ø^Õ{OXo™™ìCYÕ”a½‡möùðÃ3FÄŒ”ŒlùbÔîQÙ£öŒº:š}nLªïÛžF´ÅÈ툴» 2FÑ6›)¯Ç¾ífÒ”üÔ̈•"%»u|#Úì¶ÛAÍøÒ?è­23Ò[‚ U:MŽF+;‚,̈NãI¥VJK?;d}éFÝMØ ˆ²%8L„LÑ]³¾ÿc2AG‘33ÊõæÈär¿a!®åêéM ê= ²£á1}c‹½Ë6ÀbØî°–ù‰ßÀÃäf¾ôͬä­2\N;ÊaY™é)¿¡r8,Ckhqí·Î]»šë`ËâØßÜeÖyàvQPÙn+l÷dŒ$K†§‡±'úTŠÞC;ôu{ëÚ4–F Un° Üt–¾ô~µ> B!!55YŽEx¾KCª.% Ò,!O_|PÃi/Õbp߇Äìœ, x‚C˜S˜£“ÿp§òÀ#Á‡à24B3œ©1,± ž‰§cgì†fak´ÍþÉ#ë"'ÞhDõœ¥1Ö`þæ*jµ÷çJ¯‰Ç¿Ä¦ó]œÂ"Øë´øÉÓñV¦ÂIÖáõŽh¦:dö+çÑÙtzL‹ÃÀ ^?~‡$²9ƒpŸf/rs/;ÈÆ–ƒÊB‹ž¬=^{rÈíËÓ±¿·¡ìåþAà4Bî<*“‹’°,r^KrjŽˆ“r¿dæ’Ç3-‹ÁvØ‹ä8ÌÌ ÊDf{¾DsȂ֢Ëœ,5$YF§C9˹ˆÈ«ñWTW" öññW(î•°}j“ [<YãNš‡X4­—Xiã¹5"ÐvÃh`Fw‘„ÛGwòè•è Ü;¹ôàúì™0Ÿf¿KoQoìmEE7„\%Þ(éF‰;F»O«q½ú 3|<„¼˜›ÖêexùoÀ5óE÷%à븘ÅëÚzÝlýì~ËŒ³dT,š)÷ÏZ£äî´ˆÐ$¨¶/Â2Æ @af—ÞáSþŸÏ²¥ñ¶½¹þæ±…ØŠ£¸’:ßZçÅž+œcYdÂë˜ìÏtL¤ÛGa?‡pzQjn£ M¦Åc_¶´}‘©µ–U©#â!ˆ (ß­/1äձ䠚KüAÑ¢ CÛÜÚîµÐƒ…¸‰û™Û&éÜì‘?nV$ÖèîBóðŒÈcô¦Å¶!¿A†ÔéosÞ1;Á{;eˆÄ㺠è-BãÁ`W„YV:ˆ’뵥ܰRóúcÈõXè1 ñÔJà´ßžø<ïºY.Yv¹+òáÓPuà12I·öÕ²šÄ\`ò!½Tö}g‚¦¤B|«R&$*Uî5®°›„¦¯û ;¯¢€ê0Y]PâÓXF|[¯|³dðf/·ù³=Ï?ŠdUùê´`â 9J†¥t4$ç¦k4¥¥¬V Ú’ÒC.‡Õå$è#û”ðBØÿ(käFuêʬ6a{J!,Ä}‰ÜÏO"÷uôSÜC¶šÆ¦Xœ° omè˜-õ—~~fÇ”±¡/>ugÆ ¯Ã³ð4ì‚]Ð <ÙÞ¾_uq¯,?l¿[.0ÙU(C‹éæ´ôI É_Qrú %Ñšóo&ü=Bý%çƒíéE~î+àY1‹Œh„àkÜŒ`‘z®ŸÕ8%F‹p­÷û:¾ñVÍ­klWa¿bD{»ÈŠœÓy1„þgWI7jsï°•F‘—j)Zî°¼tŒo%ÝɇO¡¸¿¾çWY5è>#%j| „GÝk Bt þù=]"+×ËÇŒè Ñ·å XÕé>JÊ<.CˆÄc~M“eôŒmËÏV=ÅŠ{£G´ø@×oï‚jš §çÃT4ñÜ¡š+µ¬5MPÝ5ô­Ä m¢ÇƒŒAô~ÌÝë´òQ±Ä©.%ô‰§vÙ—=ô^(ø†­7ŠÄcUžSÁuÈN˜ßañíöC%¢ncã¢/yzÎÉh^úXò?*ƒQ]MZ›ujJüh¬–b!Ò+sRÓHæU5Aé?)Ã1r /4¾C ^f°l5XŠï¤$²Ä˜–¥‡"¦*²(4",ÎϱÅóÄÕçÏW²h)· êêIMüǃø’Rÿ¼©Ólmz.䦣^’œPuR¤²þ“WÅ{³qúA4Í~Ðr:ûªÚ³AæªRøATQSUV¼ç“ÍâS0…ûã/Çî®C½sø¤Ê6¾M*«TXƒ¾þ"ü“ ƒç‹‚ÔÉQ8 ã’ûqçõ*rK<ÿ)QѰ}$o€zèPÞ9„£Õ2®QC#Åÿ1IK'üµÌ]VZ.R·÷‘j:n‰Þ&Z“î¢ÐÍð7hâ5š?9¸¤7áz¹QȆD:÷ w q=EÈÈõÎÎí½ü$ˆbñmbšgÓœñCi2!^A$Âu}å )–±™$<¨UôkÍ:gDg «ù²E -½n!vç*ßV-îGZ\ôBc_ڿѹÊ_zø8,ÁâïÆ"ѵÃ{ë ²•$©Ä¢ U͈›·ù9†9!ä® Ùt@u@“öRíárã¾ú3Ð-»Ž¹ÑdWQÌ»> ­áæÖâÞnÅ›˜*܃×ï×°=PÖ±€Æo¸¢Ä<µ&’àý¡o­¨ÊÔ…ê •F ‘LGé¿À½˜NOѨÓÜÄŽÒìx:˜È,•qÇéj8úš}G0¿r´¸³ L¼ÞͰ$mJbª")•õi °Üö„6ùƒëÐÈ :‘^å/^¼c¦Œ$þiiáF¨#N§¢¸¬9à€ª˜¯oܸÓÓ\!kÜÛ˜^BtÛB :µ\™"‡x&:?¾(§4³‚ÅK1%@µÏîà¤øÐ7`fÀ«ŠjM]¡A&¾&Ï˪¨Ù?ä Œ •!“Ž^‡¥[Æ^vòô‘}M‡tìEÑcd 3eï¦J–ݹùÖRÞþ‹ÁÒlp²‰ñdÔè{ÑÛ^¾« ÿËÑÒ¿,ýÉ£¡T˜ž„ú´ê 58—¶~%É€Ü89$&«YÅR¯¨`Ø I'c¿Ž»/º¶µÞ¾ôEåÝËp—ù‹â1,þÛoØ öˇFÝ­N»ÕÙ­½åC¢é"â¥víó_X«Àí€;#>éyà¬bÏ»Åjd8Œ›.Yò>Ë’º“'‚ ÈÓër´µPÌSdªÄ£|É¥®”ðmA‚7æ~~Ÿ(›o¥2½YÆ iñylÅcôq¶‚(›þÝùMt кWm)–ÚsßKªC«üvEVíÙ[Vc`»bCú®Œhñ²½_#8wío×КkBN‰ÖIàÕʳËð@£tmáÎ3¤S¼yæò]ôÏqÌ`5 Päv·ŠhGg³•¬VÇ'³^¶~µ®¦iΞ>lÎéÅwe¹Ê“ñ7£«“÷$×x”åxƒ7³tË’Ùþ Òod7œQ]S7ªs’@õ¶cÜÞÙ1fj´¹™,€.­þ´q×5Ï6RzÜÿ™Èº¤‚ø¢¯¸N`ÜžŸüy%æä±EÂÉi<‘‡äN6O+Ú1qæê”PÈb ÓÊ  š©Š* ˆŠÚt.àüçW®=cÅÛ‡›þDÄéü×…£FA£eµ¡,ƒ°}·YÉ÷ðHÙ9Û)@3 ëÑ(*ÈI-W‚B”];œuóÐýGÈÏk8@xâF‡‚½|=&Á.(IËÕVsA/ô.À3ßN^ ƒø¬ysýóëÍät­\ ¼„ûi,FË¥jmJñ[i·.åd]=Ù¢-ç§¿*ˆ_^«åg©:GqOüò0ÜWÊ…Òâ†?Ï+™¼Ë«×ôµ³w†µØA”ed´2’í4“µP«®%f²=1ÌÈ]1íêdç¶½6¾+w=U¸×»r‡_Ñxøø&nÇ= È–åü¯Þ‡ÆÃƒÉ[ýôk$*fue ût›®‡ÃUNÒÝ:ðz"$°4!–®‰Õ?ø1ΟžMØ9hV‡·Ï"bû6a»çv}S݈MÇ"ÞžR—”¤R¤*ðêŽp)¶ã´Š‚Î^±ö<ˆ#ôT-ãçÉbþöyGèŽvwü"ÍŒLWåC1hÓÓ P÷HZÐT]û ß+ 9üÓX½S·ŸùKŒv}²(×ñ7Sö/ÿÃ)ûñ?ÃÿP0M…—(u8÷1ØØh4/ù%ÄB¼ùE'R~©¾j? ±%Gÿ›ºÌ›4Õ UAj|‡«ÏàâÔi©¤ÃÝsª:‘ZÎ#Õ—¿]<ç<”Cž§þ#)–u,Â39¹ZG ŒîOo>ý9¤¥äy ííR]¢.! @›™–æréRô~GF×EË®«Œx²ã–œ?˜ÓL\6§ Ó·Kõ‚æV”Õ*äœÑm ÜO¹ïõÙŽoç¹€ ,rì³,e>| Ó¬,8øþíˆãp¾(?ôMÝô»p™“'!´\._½{¢­Ÿ#ì„õ†¨oå—à9\„kp=ëL)êõy¶êázTéØ;Xkø6›Ä¹Éx-B€?r³}hkUn“Œ»@W‚6”]»z:øð\yÏ©*¦£œ;Þšõá}ÅØO~žtÎ4țƒ–ýô½ÑüÄOßýÏ,Ä¿ph1qÍ)~ÉN »““V`ð Ñ›×h*b/W–Hd}÷Åf‹¦L³;ºâ†¼UQU^I© V±ŸiºÌ³ƒïÏ•‰?†¶Ì³_‹í±·TÎ[ꆣE{öÛ‰*l䬧oñ_5æJŒc¸mÄŒ˜D?ß×:v™ù¢Ò¼M[Ćór{Š”ß8Ý)·ÝÖð ½Ô(Á*Rq=Ì:ÏŠL¾›Ðжè‘EëGßÔ„ëuæ'^†·Íz‰$mâý æ;$¨×ÜW˜ÚæãåÉ¢M´˜)W”Õ'× Aýn>ËÏP¥'ËÄ=( Õ+E‘¸5b1U&”ìÈÜ^ž¤SòUñ¾± #ÃÇé(H*ÈÔê2ÒØÜ¢¦3_Â)0ìÈŠ*òÐî$®Ü lB\Bvzí yo{:ú"#^¸P­Ó©s‡Ô*+£ Þ±^É;dâréÌã‘)b~ø‰ F¾Ü£7´Fê…È•{,¹rØÙ+*0(¨8°±¬ 'ƒl­VC¶ÚX¥Oò’5keññ$î*&9]™žÛúêÉ¢ƒþ›Ç:‘ä†W´>Ûo0oyŠ= xj!î œq– ñ´o±p¹Çæml%M|QÿÆ“•-Š]zv·8úVîÖíÉn¾ätlˆ‡F,—!fé×2ñY$üæïH*³ÖH`l‰öô³ÙAJøð»¤(Œ: ÷¡„¹[÷êiÑXkdK<`3lå‡h×ã;u„+K m£Ú¥¬ᾚ¯,e‚EÞØ•k]QöÕü¼ÌŒ»O,…››âiÖxˆ7–Á(ËpS¯ñ*9Ìîš+1D'¤$«U2ûñŽË7Æ·õž¢Ï\úä »#1­K×.²æ’±¤a;u¼ãŽ @p°œñ`ÍËGÖ7±7l.ƃ/àêyíc’Sªy«½Á6ôÙwäôþOŽÜk¾^ÞЦa:LÐz‰ø¡V¾?#$(ð¾ê™‡ûë.Á0`+;ò$«m×&3'ôÅ™/÷6ž9%Óo/ô;¸¶4 qS“Gwšq3øhòâöß+/ìä!ø´K"í9;IUtµgDl‚BÁªSSÕü R Òê2?½zE–Ç繎ÉLIK‘ÏY€{ÚT:l(©®â%ò¿y¬ëkŽ ÿew„àå!zˆ“%Ä·k£‹ñdîƒ6šhñ>´õCò»ß£Ô)¬—cñzv36‰ÇBb ççâ>g±Ù%Üïñª`2Òt™²ß½Å×· îÊQ{dfƒúÍü8…R©PAji”ì»±çñtÀÄn-ð ]~lט"M™‘óô$¾ÈžD&yH™.†Éõ¨‡=Œhåÿ5?g@Ô 7ìood–]wnwGÏ$(/@–x&^Çãéx^Xü!Ú~êZfá5¶*õn€"&'bØDQ ?ÇSÍr›2‰Ø˜Ux²FË‘F¡9è=´›`Å”dë•2qð#/8Y(C ºB­ e£É³j"sÇÕM;9q26ÇæßL~}æXmËYΦS‘û€ùªàõÏ2ì¸@"¶£ ”±áNk6+"€Ybó ‘ðâãÛuÇbìebJž ª¨Áøþ…èoxÇîNr=€8ö ÿ¬yá¿úÖ“â?„5Sñ%Ll&Ç“¸Žÿ4Ëßýß$nkä?a£Q×t>g;gœ]Ææ‰1jž“–©êTˆå§›ÈL$îxùxÿ•= ¡e¬kª"bïª¸ÒŠŠ¢=í[Mƽ6c‹E¿¬ uHøkÃpM£dƹÊpÅïú©ßè­­$‰å¤‘\ 9àö6A 2rrYí¼€uNÛ µ”Y™wï¢w,%Q/þXžäP/~s¨О % ·RkéSàJºjf8Øý»ízþîwfÞÜB öæÁèÿõG>cÅ;³¡j•1 QY»‹¼Þ¬u ÍA.*¢Zd#¹€K6ÐDúQ–^œ’Ÿ‹dIôÊ0úè¬1§ÿ´Îw§ä9ÎBÈÙ´ûKr³å±Ê„‹ÿþÅ)qBB%ÏNÌ-HËÉѱèï¿,Nχt࿘,ïnQº^€t$Úp]ØÎ´÷“4zíµ[ïä®Laý›ìÒ™ˆ™M˜ú·xü›±)m$taè¶cGÿùØÇ×JbTüpA¡ ®NTÅA"Ä3˜Æ»ýâAËÇÇk"ýMË‹ÄÏëõ‚ΰ’?Âöÿ!ëNÕð¤.šZvÒô/I:ÝÖmwÚàR¶˜I¸aìÿ%þ6ãÃíC$;SC ÂòbJR<ˆ' ýêIóÅʆ”€j¶o˜ž[RŒüs3ô"cϽ؞¦ööN½{@ï^z–/D™Z­îrïÞ†º m†N§KÏHë݇¢þ×ÛH,endstream endobj 246 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 247 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1395 >> stream xœmT[PSW½—E›“‘’¬Pi*‚¼C¼;µ9üe²b­V£ˆS'©RÚÅnõEdÄöðE`xhdXÄ›Þÿû·×. ‚jޤgde«âÕ É©Jì""ˆÝDMl%¶D D„ y¹„H$’‘³vav羂F¡@+´†>ÇçvëŒb¡™dµçiÃÛ v£¿ãF]Ùh¦¦2n`ÿž¸P £{,¦§ñÅ"%5QƒÊñD€’g#8—‹ø·jŠ®Á÷ìhK{©ƒÏñE'£è%Žba™…#Ù«ó]ž$\ÜèE\dÈ`÷,ŒQh˜ =‹·ÛÚP;2U´•£b”#™¯~i;Õ“Ñ_8€$àðäX'Ç.®Xµ76µ»'—VŠvéí<ß9âqÉŒäŽÏIó˜Mäu ²‰¼ Ä]pt£Ã¸•œPöuX×¾ýªŒ³Ý1Ý7ÿGßúYÊ—°!GžjÑ}”›¯‰3çtw›;¬ ¯K#NZ Ñü»™ì›|<Ù8)€yËеÔÞ‚ÆC}‰5qµÊúÈztQ2~[ßv¯*8ÛÀèÊÚ‘ä ª:-¿Ãë­Ë+Î)*9Æä×kkÕHâï—¾lïÙ´†B¹9e øóÖâñB" ‹9ã¯aoä3eM:c.’d “™rLR¹èDk5´2U•MuUF«v5ó-r¸=%iÂIËavÐ]¬ò«WN²9M…” A9GP´ ¿j@$埴3x‡îÔ— -…ß(zèŸÕcÔšoµ³]—ÑÍF(æ9œÆˆO²¹U,ɸe2–J¯ÐèÒQ Š5è%Jªæ3]BeÇåqö:0Š®°bìTŽ…F‘r‚‚óöõi¦Š´¤Ušª[ÀžºW·«Ç‘„ïñO[c{ÁËBž{Øb—yF†ÚŠôJ#jDH¥f¶\ÅN‡°[…olîÙ^sǰ9³1•µ†$ëÚ(O¤ðÊrì¶-—¼ó0ej|¨¤ƒÉFQ˜aq{:#ÇA –m ÊÒÄe €¸7tl>_ä}¶rNV²\À 8?°—5 ãGËt…eLINVð”ˆROå æ êFÐ’ ‹¦[Må-̉â¢Q¦ä¯oÝØÒõ>vßäƒxíì{<œg/M6šÉ^žvôÁf‹ó9pùe͸ÑO¹ ž«5•æW””2;weÇ# "X|MFqgþÜýD°Çë±Ì×G]õh¸ÁÒ‘'ò·`© ‡Šé¤Kz#P÷> stream xœX XW¶®f©nѨP–€:UŒ—Ĉ¸Žk‚FQ‰`¨e_šµi„¾-»ìK7û" FÔhˆÑµ‰ÎØ*󳉉I&&™g¾SÉå½ïÝî›L2ù_ôWU·Î½ç?ÿ9ç?-¢l¬(‘Hd¿ÃËK+]ê¶Ø'$,):Hf¼9_˜-æX ²>ŠåBÏÏž¶hŠ5šbsqŽ“Ü~°‡Üià=²‰ö„I_–ÆÉeaá‰.ËÜÜ–/^Lþ¯q –»lruñ :%MIˆŠp Š=ìâéêåêâ-M!7#\Jc]‚Cƒ¢C]¤¡.~!¯»ìòÝâãë²Õgç®W}Ÿsý÷c_Sµ2v“toÜæø-2„Ĥ䔠Ô`ù!¯´ÃÞ!;C_ ÷‰ðŠŽÙã¶tYÆŠ•s×nXøÜ ‹]—PÔNê/Ô«ÔZê5jåCͧ|©”µ‹ÚMí¡^§6Q{©—)j3åJí£¶PK(ÊÚJ-¥¶QÛ©å”'µ‚ÚAyQÞÔjÊžr *b©™”55›â¨I”õ 5•šF¹SÓ©UZʆʠþWô’¨Ïj‰ÕQ«Ÿ¬S¬GlvÙŒØn²=Mϡψ_ÿ—Ä]òÕ¤õ“ÀÎßîîä“{¦L’4åÎ3ÿ˜ê1õÇi>ÓF§k¦ìS8È.3™Úv32g\cmÙmlûÁÌé3WÎÜ=S1³NLtHCz?½Ã? àgpdÞÊ;Ù.RpNÿðú™õÛ"RS9ÆÐjq›h… EÇ´¢jþM<h¹‚åtu+ê4¾ÉšéøþÎÉ «¥;9œrXlZ×f\·Ø´Ž7‡½Ã—H7ì3mž ëXdØw}mÃ5ÝÙwÐdØû>¶æp2­ŒG1Ñ-¨–oUÆMØWM3‰`{uäC~)ô³ÁQÛŸçž…°§™{Ÿé¼"y-~ƒõ?üê 3 ÍØ|Ö¹)À¸®îéEï Å`-„A4 ö®± ¶q]ˆí1óÍ `Vß| œG)ëêå¾q£×ÝG_^¿~ëö5O7Î䀠ԋ •¼~L¸Çv%ÔþB§ËÈAu¨™Ÿ‹³”ÖÂê#Zçfêꔡt~ìq3ñCKÃB|Å¿"?½“éš‚"±ÄËàÀ[­éžñÄX¦‡%z¸aŽ×Y¸М„tãÙ§-ûîÏûäÑ󸣠:äW¡mÿ¡ ¦ûƒÎdw# ˆþù 0¼ÇÌE[<·lð7,f®\¾øþË›VXü½o€zâ±.±°b%<9XI ãI¯ái$š‹å·4Øbg,™àֽ蔚ˆíìgFÓ_¸D7 ]D8J áâ:‚[}ÛÌ{3xú×σÕs}MZGùO€p.¼L˜Éúø¯Y³ÑóæÃ¯n>ºûæ‹ÛÍ^@’MŒw4¼iØO0üEP÷³#bóVÉ)œn„$p#EoÒ5pÆž)‚9ì4Ó»éT”ÔÓ‹´©®ÜãÜè$:ÝHS£ç£Ê O3V'JË»ù )‹ `m@Ÿ92n‚B˜Ì6fž^ýú+ò~\˜¹g²ˆ­,„ù­µ\A5]cŒb>3bvÖÏLhWƒ¸:2éByÛ”\ܧM0ÿªjFÐÌÀÒµ™QëщnšÄ¿]QN/2$ ÷÷oïã˜ýQ-ªŸ=L×¶ .£CuÉ‚^Ô {ïÃ^k!_xÖœ*x’…í4á»XwmÛ-a$+ c~tÒ Æ*#‘97 &TqÄðµSçÓZsô¸ Õ¾¯aŸµP,Ìc;œÃbZž@¶iB ü½_°UÓG[3ÎeöËßϯGGHܲ’òU‡0w4E¢¦÷ÀÛº¾™œ!¥òã¯kÉ&WñHQbaú)ä| –×ë[hª u ]¼§O*Ê©L«G•¨Öé®ÂˆS§Ö € ó[z‡·   ¹›*Ô¼Iq :R\˜ÃA´øÖ®Oñ³ç¡M1ZEsM{yŸ†CeMã±jM*G’Þ‰ÞÌã-ùxÚ^´HÂdy¼ïùcßPi×yŽqÖ½¥>9»Ôkoø‹Qòa¹„©J @9³½‚{Þø¼æ=Íc‡6ðÇ~à‘|íGæž "”¤%wˆÆ3`%:o{Š®nOÖIã-¢ß8ÿ¥l[Ç›6•sŸƒ’Ê‹ÍhJsŽÐ¡N˜FëJP#ª‘Œçè #'–Æ KiJ~§4.£#;‚k’Â/ZDz<ÏâéŸÿiðt[G;Çx‡!å)n¬bWø+Ëôú¬~qóÎ[#ßÞ¼~óÚ€¯ŸE¦<„äAkA5.Ìþl!V˨TMãB~æ‰ôÂ8ä¼ÕBÑ–Q¥ÌrõÓ5&H54ìͯ ¯U·"çÎÊ“¼PÒ"¶ ]ýà*ÌÐ;0qÂá1’ÉsòSU\Ò뻲¥È¹¿­ø\hmêú•ïðL ÁÔ Ù<õ<ýá?P'w´üpocSmû˜þÚ¡‡|Si* ®$ î죱˜Ã‰ÿI>kÙ#vµ’á‡HeÚ}Ðc÷gÈÿ‰þöŒÇn“š”_…ï½{^ºsÕ¡ãrªÁÇÛ ñ—^»ìÈL§„Á‰mJíڕ寎8À1vT…"¼áÀìÅ›ÝW¬‹¬Iå•¥ÈNŠ™…«e噤êL߀¶fÍZùÄfÀŒ'CŸqÌFÔ'ûõ¶ŒÒ ÝR$ÙBç  ”s,å¢Ìj 37+«Z­C³Pѱê¢ã…'ä«áÛ#<³Ìufw¤µk+›‹ª4%qMªãHR×TÙÁãmØšõ ܳ+èüE޹^üÞÙ³ï\:½7Æl ûÁ ÜÏœ­/ïînäZjËÑ0’Œ€-Z9–Ö7Æk¾ö÷9ðþÒ¯üƒIîÿ3Ç™¦ÃØn24’¦üÐðˆíN@YD`Ũ¹œ‚Ð4):wñ}T–ÝÄev$j•æÉßûôý³>é>¶ãð–‰ J²ðéÕ¯‡¢È‰2ëDÝR ó‹.%ÍBž(¦!ª.¦]у$ï7ÿý$Ñþð/Ö?à57îeˆ¼M3#_}ußÓÊwç{ˆø~9%i\c­zî¸TÃs'0Ûág&°ð- yÆ Ïtl{’N*MJ’JuIíí:‰Ü¦$ux级á¼xCÈuG&Zˆ†µ,ºv:³*øT\é†úµõNA•!½è¼äÂÀ[·À®fqt W˜T‘Û8&…Áɬ…óÒbr¸àÞ]•¤$Z»¯_µíÜöOxÇÙ25í¹Ÿ¤¬˜µçà«ë¥þEm‡¸ ¶£§Õõê:u}Ô˜,ÆN&]¬+©î.çNÅè×HK—Ü~0ò ˜L²}-ìóô5©¼14¢iüì†i ¶í0e¸ZbÒGãUø[xb&“§¥fŒ*ý'L)ÆÿéîÀd¼Ä6,e<´vfD=L‡uŽi‡™ã]‚t ?gŽ*1;áú߬.ÂdãÇ‘ªLý8Œƒî,HAòÙQæÐkÑßx<$K£ú3Ä[ÅÌÀHÿùþ¦ê4O+Å©ãùp÷W‹þ`‰ñœ9Ÿ ±z‡ X‘ +º`…#óH8nìSFì×OH:žã­Ú£–½”{m?ø«K²›Q6‘Ù)è‘ÙûñþI¹bINç Ñýl똢I•r8›f¦_¹ðíÝ3§$Ì£÷Ï]ûhL™OÅvë׬ mϪÓ6ÕµWæUe—r5çÎw½‹$÷ïX¾Åÿµí~<ŽÇÞÙ9¹yHélüñ‰cŠá+š‘ŒOò‚'|ÁÖ¦×*²rórU\Œ4^¡$±É)Ϩ̨JÑF 8$U$¦¥¤Ç&!¹DQ£¨­().)å:Û[k«ÑqR «2«2“{Pj¯mªk¬éСú±fLé…? î “ûÌXm€'ô UY'¥Pž:#§â_œ²3PJ‘D–«º8(Ɣׄò¹ÍÂ/ >ûydS‹e4ÈàG[Sˆ¡K+õ¢P“ÈDƒûËßa»ð@UR0> š0ëèHUvÄr”Ø]_T|¼ŒkëL {s“çºÍ;ÿ*}¥ì])_\\VŠ%‰µÉé1Ù‡WºlÀþñC°6’>†ó"®±…ç#Ê2Èä›UX…4é…Éí¨×kê$x5üãF¼À¶ƒ½öƒ½5|(ذ}1­Q!²èèÐÎøî“-]]¾bó›{ÆSì¹yÿ¦HHØÞP"MñcZŠÂÃO J~¡+O ^¿`Ó‰29ü IžõëÎcºº<3šØH Û¾‹E5ª"y%žþépF`ƒ¾? <Ìú²¶¢´ˆÈâ²¼ÆøX|;ár<ùÜÒÞ½ÜÅMw}ÉœÑZÜXf2ó7ƒ5<+,‚Ɇ¿½{Ø}0Id¹)9éªâ|VcQ ^IÞ‚PÌãÙnéGròPº$§$¥¥‚”sf,Œ8Ì·†Ç-¬þð‡c¢B:d'JJ5ÇJ¹t¯ýŠÌ£Gòåy„1é5iuÝ?^+͈pr€Þp£³·èÌpâl¯ˆ[te¯ÙYdAyè· Ø:£ìô‡V„П°õéu)IªôŒ\ò?*…¡gyMZ£®´¦ª„ƒO~ö(­Õ Tæ<5«Bx¹6TUÐz;ÃdÎÎÆO:eš2ùdm‰ÆøWÜXT2eJ¯öXQ©¦AsüÒ‰ãSž¡¨ÿ¥aÑendstream endobj 249 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3812 >> stream xœ­X xSeº>ih8,–Í\‰:çTp@á‚xÄ;¥@- –îmš6I·4mš&i’ö$_’fi–¦kèž´t¥Y+ * #:rÄÝç:÷>:ΟÌé}¸Ú:ƒ>Î wî}ú´O{zÚÿ;ï÷¾ï÷~‡CL‰ 8ΜmÛwIr“Å+W,Û\˜œ#L _\|€|0"ø+n>›üçòPR$ÌäÂÌ)gœwv.ꃤ³Pìl‚Ëá$dJ7H¤%ùÂ̬ÂèÇV¬XµlþúdtJIôóË£·$§Š$Å"at²8-zËòíË£wHŠñEaôb‰8:%=+9'#Z’½'}otüî˜]»£7îŠß¹{ÉòŸ—õ—Ÿ ‚ ×‹Ÿ—lÆäm–m)NN)IÝž–ž‘™%Ü“ûÔ2‚X@Ä ‰ÄÃD±ˆØMì!≉¥Dñ±—xžØ@ì'^ –1Äo‰Ä&b3±…xœØNì  ¢ˆhŒ 1…hå¼Ì¹‘qëžRID–E†x]SL­#ï'?Ÿ¦˜~Ïô3¨¡™GîYxÏ鍸YQ³gKg5çÖÜ_ÏMEÝQ·#¾Œ'ÀöûƒŠ9¯‡îá†65ð=ZP$0Ž6•â}F‹ ¨ÒéÕìͱæ'=—T•eP%$cªpµvZ òC€éÒêF—´&ZoÊ4ƒj¬îšúwÑÜùHÎs±OE¨’Ô*«Ü`é´@?uz™ mnh ÙP%ŸMç¡èz$®ï±5„Ú\æãçk¸À ~ŒòZЕƒ¡¬ŠÒJ¥K—½µ­Î6G ÝtfMQò£=¾ýO¾+/§t'„]I Å…Š\yjù\³Æ VÉä³R WOøl±ZÁÈ«ô:öŒAo¬F v”5¹ëívj=nõÙš­>ç˜ê;k[F®½äQs¢lûAv†2•.2 #vdÿª-±R¸ðÓŸ†}ˇüœÐýŸrCO" >ÞtlC Šjïø€|wç%–C±—x 5†Ãþv(eÀP¥¤ÙƵB½v#F>ü˨£ÑÇ<´MES¿§sÐ-þêgÍò(v>ï"²ÔôÚ¡h:ï†scǾÇ_úôB6‚bgórÀb·Yœ&}õD¢u¼¯lÿ–GGÝæÜ~pZq¹¯rƒ6äç³óÊãìl–Ï.`=üÆöÑlÄǧþ†ŠàCRÑâXñž½‰ûLËð¿{² q¯Ò}Žw y¢ãàNü#.Yˆ"h™Ÿƒ–Þâ†N…ÖòMÕ&T“`tj@ê jÛú¤+quû@À¦°"¶ˆU±kþô0¢Pâ ìãø®J½´ ½—]ËÎÙºÈ'VC .¶¢•×Q}ùË/}ä½<žW)†7Ôe1ÕWSžèGN°&ömnÐŽøŠ=»?)S(¦T£‰îü» „: ÍòƵ9Z&Í(¨À¤ÕY+íí˜îtz|§ ÓÝ­å^°9mö¶ê:º-²—¶¦œÆíà h1ZB³³ØM|U~RÌ^ ã47“Åì _AqŽž‹žÁˆs—(YÊÎo ã×>.ÉóþOüè ?çbè9nh¾K ]aÇRY[ØU@²Qwt÷ ꈼŻlWHuÆ2­˜ƒ–Q9Á沘ªé³HŠuÜ*¨*F¦§ä/È‹žò)ÞdttÛMaÍá!¢5÷©¡œ) •Æ `H• ªkMÕ fêб´éA‚±L^©JÊíÐ4 Ú mUÍÞ?ÖýsÖ xM`2Ù½Ÿ!É|“Ù‚K q—Úü„S†>ÿЋ{´ä7¨ ÎâŸÞâÊþmæ¾"¥>“Ö˜ýOжËÞé0So"¯É2‚øŸ€À ФÌR3"¨$Ëkäm þÚ0S<Ÿb¼v-¿|‹`ù94÷5nðWh%n­mH©‘Ø20L¶4_¾ÞÞ§IsQ¢*­4¤ÚVÚRßæ>–2°™–òH³o*;ôÔQ͈âI‘ô釋⬧Ô)+Å…7–{d…’ÒÄ£™ï ¥ý(êXøìmã¾&ð£„bÌ’ó\œ46K´TÉK©ëv)…Ö:;ÔÙ;è÷ÐÉÈ›¼zf[(è§y}hqu-˜Á*h.µjò52l‡iìªÈÕ¼Ò¡¿ÎÛÀ«ª ìëN=ý_§&½i¾ÿGåÿëï9npôdzÆ"=¥Ü-ß&2Úk'Î~ ™m&+X.­·8W'Ö¨çÙ‘Ê0T” äqîA +Žv_èþ¼õ2íh¶ÖB#y2ÛŸ´<‹]¬Ÿèœ¹¶šrøÛ¿Òåbò 4Re“·ÈÇGůžééêj¡â‡õÐÍ­^C¿ûüY4f¬ˆÇÏy-¸“‹¾h仵P¼ì.{µ—Bû[Í4;ÇåX•šÌ@ I– 1¦ãDíéÄöj(724ûàØ6»B» ² (QÛ öÁ#¢‡`˜ÒŽUMG“&QZq¡öšö7¨ ÎäVùÅ…ù……åvMGµäYDØú%Øjvj¼úd÷hàVû»”µÎæ½K rVÇÂrÅ%ñëè™cè¿Û¨¨ ¯È÷æ·A¥ŸóõwÜPDh¿FoÑfg2 ¤á€Ã6£ñ&»yõà‚ƒq¡ ªÂãƒ%Ç2æË×íŠÙ)Õª2Í`²ß×ÓÚVì‘1;áÙ¯¦^úúËk_øh4-˜cï°;F@àu…Ÿûv„'ïG‚¬¼à9wóÚð7´ýo<<¤Š”¦%ˆR^rŸbèH©Åu”>‚ž±ùœƒP=αNŠY³‹•ë$Fæ£:gÍ‹1ðžçÕ¶÷üQöFëݵ}ò@ B‡°­ aê!‡=]§¼ƒÒ×á<êz§ëòZgÈ;§Ü·—¹Aßß'úeÔz‡¦D:a¥‘’‹êDØj¹ìtöQvÑêc1×z6Ÿ¤]ûûd‡JUv£œ¯mj´¯wô£i GèÖ ÇNá¼Ðš FAÿb¡Œ#4õ5$Å3êàäŒJÊDBê*êžtëpãÑÈP‹µ*£ÚrÚ µÇÍ: Ã(ZNþ tÇ•½¡yüá”C)KòÙê(¹9Üãb †—¾È{~lšj»&E/h…å ™ ¹Eíí²Ö¶@é+q*ò󋳇e}ß¡Œ^;<ù¯Þ9I¤µ¼Zíèséš En¥²ŠÉ¢M]kkÓa<#’ÂrÝê .‹÷pú6>â·T{±U˜ªP+®¢”ÒŽ$Œôv*»˜}hõ+¯r»iÙª}z™D(H=Š'G9ä€ÔÕäp7C=é©hÌ+ÉQ¦¥ö•Üøãûo½ßH)Pö¶kq§â ﻎw¡iͯЭ¯ÁÑÿ|ÍZšQFþœ[7Çw¶ÀÝïl›²²rs¨ß¡‘»¤»xì–Ñ`Tã[Õ5eÍžz—…Fë'¶š^“¹!Ð~ãê?ZØÂ­/ü‡æ¢{Ͻrö¾y ?­\,}W®UšÚÛ<Ýž>úzÎÙiƪœMoÍX&d—TþÕôjºÛ¾7½ÊµX'§s×d,V¦Wa’ÒZRNÝ–VSó¢ÛƒYüæ2_®H”#*ª“uþ5±ùâ5jE½tÄ >Œ*øÐ©Ê äûU–G;äÖœšJ³Ð[€!ò£>»ùuÇÆõyF]UeTFþu':R'0Ax«4ñ–¸;ííLÅX¥³Xþœšà{qTJÛŸÞ[uB9ÿt™ƒ©/q)]EI®Xû›ÇÖ­ëýþµÝâ³ ÒUz•! I›nнõÖ*›Ýdv:(—»-àôôÅ_*; $š‹¸è~4‹‰¸mÁ‡øG8_ã¼Û= m¥*J—_#O–€àŸ2vÎö‡Êb(¼Ø›q¼¿©½ÕCÕ®½¸+ÏOF€Ðø;„Ð]¾C¸×t fßÁƒ¹”öJBc"ÄÂþláËÿ¯ïN€ÙÝÜyrxô Ç`o™T'6TÐ[XÏÿæþ>§á$ÁŒŽD âÜ7ï&ʃïS4KDÙ¹Ùy ¥m=þî.êßÑïù‡MjÞNaŽ(§°®¸£Çð‡0ýA6.–ÃK|³ÍæÃ»|x ¡Ø^1ð:iÐWÊÃË•(´‡×8-¸É¨"_pƒ ˜ë|<ßôs3¨éSöì98sÌœá³`JâújÛÌ™ýõø{»¹Ödm 6ϼ‡ þËXƸendstream endobj 250 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3687 >> stream xœW XS×¶>!$瀈–cJ='8uÄÖáÕÖŠâHEQÑâà”IÂàÀ`@’• Ì ŠLb€ 2§VQ[ïSëPÛúz[íh/÷µ´Þ[J×ÑM¿ûvÄö¶÷õ{ï~;É—äì}öYëÿ×ÿ¯­`œ…B1hiЊøX}Ü”©æÆÇlvü5JöUÈÏ9ÉC•@Ö?.~¬7%¸9_|nðClyãá’ÁŒR¡Ý¿-5!*"2Q;uòdÿ èçLmxªvîDíbý¦èøäÑQZ}Üfíâ‰Aµ¯Å'Ó?£´câã´á["õ1[µñ[µ+·¬Ñ® ™¿"D»`ŲUÁ!c'þþ¡~ýÅ0Œ_ÜÜø€m ;“ô)›‚6oÙ¹"*d媘Ø)Sý§½À0˘áL03‚Y΄0£™•Ì*f53Ž eæ2k™yÌDf>È,`2‹f13yy‘ b^c<žÂhOfÍ ãÌ$1]йЫNNv%§lwV:or®T)T9j:}†Í圸M..§]7¸J¢œr{ÁmÛ@ï«^sOv¿1ÈŒv÷G*°Nj•ì¨Dn@…_$w{JXÎ~þ&q Šœ%˜ÑIÍÿ•ÌÞ«Ò±W `³HÞ Ô±ÕÖ÷á8@µ‰£K¢Xþd>é¼~²rÇ+©û×)îÿPŠo3tÏ·ìX-)p$Â/ð9å£$ ÒÀ73n“E8¢îø}8ËuMÿ„Lúfézûºýtò5μ÷à[‘ÌÀO5ó7ŒÅj\¤þ¡röZñ8¹§Y5‹°YŠoa˜]fƒèþ§©Lv³ü¬]Ñ€nXŠnJ¹ã5è;é{2…LŸ6œx¯® 8§ù=zÄ­X3G4ÄÐåþYx«¢Y¨j;}D‚·¡yÛáø£ aŽ`žÏ`Ò%ŒNÆL–WÑO¶t(ebŠæp¶eWf&d˜…,ò<Ñ„NÅà$äZdKô%@¾+ûàìåëwŸƒ»€õõdž5«J«kˆql5ä% sBÎ-¬y|È^2‘Œ$[I8Ž¥›0YtGW‘‚HVK8Ò.sR|³GE1ݼøÁò§¸CƒÂÄÄ7xMrô&áËw“WE°¯ð\ÉÖ&Jøp8ô§Oq”HÜ<ÉÈ€5Ktºª³1°üs';Ë[}ß½L¼iz×3€Ê õôü€œ¯•_‘YÍùÐãa/EêwSî(Õüm2ã_¹s—îkƒ{PCwž†‹Y~Œ½ýÑEØaLƒT.ÜžV[k?Ü.P/Opìbs¼8½Ñ¿µ4Õ£å`MfªúPžtùéÔ6+ªá$`ˆÉ[">h»Ä~[¸q®ØõzõܽÇ +цÃÕèµs‘EŹN&ÛŽÏÖãÐúwë-·pç-¥<E œÛnO>Þ•¿ªxIɲ8ǽû*Q™??Á*Xö:઄¼jñ ¶ ve› k—°/7Ø“_¾5?¸X2ˆç0œÔ#Ö娳÷C[V[è¹—'ƒaÍÒòîx!û¨Ù’œrE²)`,+°BùQáXÅéÈ‹p|.á3¥èãÈvÇ2³†${üúØáÅwË®8XÓ©eÅÆÅ,ƒ›Õ6ቌÀ=k6fL.÷-Î{¤Aíw?ñýO]þP Ìɶos`§;ÿ›ò_é(6È­¢ìÌòvøOàÖ°¯lxmöœ}µ—Þ¿eyÛo¯f²£oÆýTó!Ü“Ë,µ»<$¹›6½•²—§Dœånt–ØÓhÐÓ1"¬œûº‰³Žm¶>„:B³C*œ–w2åyœ¤oÈ#5ŽU&‡¬Þ:¶®*Ç`Êɉ )&lR]’Ô‰¦ù° â`9l§·½Æâ¼>¢kN5ø”C¡µè(ÎÄŸ½ Êö^ÇÃ>§Ào«“‡Ú=l4þpGô§å–*Meì–Z ª9Œa»æ^%~!Ä5gº¾1µ®ÞVÙRa<’V"Ø‹j ¸[í[fŠ›X2•øo$ÊÉÈ%ßþèÍŽSGE~ÍVÐýM8¯®,„*‘„¢‹fÂôÔè×Ãígþ‚LÃw„þ()³Ó(?ð”æ³d6êCŸ’ƒE…Ÿ‚ÄN2Åâ­>:¶¢’F“e2‰ÓÆŽÁªGÈ hȱ°ŠÎàtwXœLVPA¾ÛhœtÍ_­6šÒã&z§ÃkA¡øU¨$¾*½N]c½I˰:éÎ]Î¥ìòjV´P©\€®J9’>sidî4›Óscʶ…“€#~€ÏŸ¾bA/ô*¸bʳÉdss÷ì‚Nß”V[Ùrðì}Âæ¯"ó©’²ä¹o&áhœÒ€\Ùyü0æ)3FŸ•{è>‹=%?¹»W"Q¬² Ë@Œ}'¼‰Q>‘EÁ0Pý‹¢~S Ifóö}©¦ds*p‰:uµõÏOôëã'ú•ÈnìÈ‹Ûo¶@'_²°XÛ÷ÓŒüÌÃàsò‹”`ý#'o‹ÃSÔuÖh¢£êhìýÕ »Úq•£ )Èw0b±üůõ ³¼ô %Ø¤Š¶@š’a£ü‰– ÿþEô¹t¶ÂÞ*†²üœŸœùº×ôköDø’Á€ü ê%U-bÃå+ùÕЧRí4T,£5!6|Ùîáð¨Q]ÐåÅ$'ÑÜ—í‚ìæÜ=ÙÂöÅ‹ at£‘fô½,âE5ÿcu>ÔÖï®?+ê;B.§'¿8’xí“q<Ž?Ý{Xœ„>’¥¶¶[Z+›+OTIð7ËZ‡ò…>åî°+PÕó9¥snù%®©4 ÒDF.'Þ?/ƒxG\n¹~ ÊDT«?xoO¨ØßA•K·ž’æŸ*úÍQ¯Ï‹uáwêßñ§ï?l¢þŸj–I·$yÉ¿8vp¿c[,EÅBIIÑÁÚÚwÖßßãh¡&ßèí¥©PºouÈÝWTîþL;—ñÔ ¥ÈK5É´oùy´:™dª:ÔE¨(üGw¯ï+2^§ÆX+ÆšT/õ K/N/"NøuÅ´é”åþ>HvFùèæ#/j‰¦ÙOÇlH¤VPÍÖjrmû,fHâúžaÉðQˉ+ ؇Ͼ#È3z%6Τ¥µZˆ£+zû¦°Ä»—8áz úŒv—‚<„…*‹åØþ#Ö£–#Ï쇕J·ƒì* èIl¥<$²´Ãû_ľC­ƒ;Oy[ÿ„uö7~sàØØÿöâo=Ù_/]›/çQëDïv~¾ l Œ‡Ð C÷ärêß8ÜBŽ ×NV%Íþƒò鯯ÿcB¿hÑó¤ëÉ Ü*¥œL;—¡ò=Öf‚háÕ%DIËKÑU¨O@g~ÛA®¯Šˆ:W[UOW£+^GŸó’â2ú`0QÊVŒÖèÕ¹cð®Ì½ÆÙ°‹Šõ$5Ep*?½u¾õAWíâMTã–<¿ZÚUÝÐ\y¦#¦2f¿Ðv¦s%p]§æÌ^®I,IÎÌ¢F—ê“&Ï`û÷LokE=N|†C:š=΢ÅÑéúµ¢ýF¥dÈ%¸@o&|C&Õ}U÷ŸWácînÀ5"ç™Á³Ö¶î.-Ž çÔè ÃÃ6€a ‹òšÂD©¨¬ê¹ö8[¸Àçèãâô“®¢½™ÿ塸Kz©yÈh~iÏE™OdžÒ8TwKãäWÙZóþ„TìJHwß2•O5Q8ê{*OMð½Ã®é9h†€ï¨~IÁ|fiÎn{Ãþ7T ³÷${ sãÑÛ‹÷È ¬× ûŒ/ÉÐMa{£uŽeygfoS”ùòJ¦†ïn¶7T\8M»¾Pš¹“)ð7:w®=#Äw„•¬;l´æZsK‡Ì4‘œ¢¥Ÿq´Øj).J5ŸúœÂ^ €ádÐÖ¥‡ÞŽy-Óy°­Jä;™æíu[cßH]7íãé8@àµspb÷,º§—ÊÁE¸ñhq©ZrEÅÁÕye¼› ¸ °åYòò,VKaAÉ]7·ŽýgJX‹ ò¬EûÝ2Ìÿ`>Þendstream endobj 251 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1041 >> stream xœu‘{L[uÇï¥<îXesY“6ºöÎ1ÑEç411Y&›:^› ¤Š+P)(P tô¶ôyzoŸ÷–Ç€¶ÂÜŒÆâÌbÔÅlQã+&ËLÌþÐå×îG¢ÅLÌI¾œ“óý~NI$'$IÊ ‹Š4mõ¥æÆƒÞøTnv‰¶®]¯i]›íŒ?DÆNŠo“4aî~mb(¤&tÿƒ-Èó êÙ„Ú6)$YÞdq²y†fs«®®¾Þ›ûtv¶¨ÏÑ5fú…:_ófƒÁdlÐÑš¦ct~NQ]l0‰Mý˜¡‰®ÑÖkôµ´¡–~U[A—•()¥_*9Tv¸ôñœÿÁûO[¯5µ-í½Qר[£'ˆÔâÚº¤­r‚x’PUÄ$é%Ho&’‰ÉRòNÒ‘¤ËMgü)Ùc%ŽÜNÈn“â‘^Ù 'ôàíû«ÍʦáÎŽgÊp‹¼â¦þ»îù·~hø¾ù§*ôˆÜyÂ6 œ'èáèc·Óe±x½nƒo2âÍUxW®nt@½Ð5ä x}. ,íêfÝJרÇÿ˜ŒªÎÿ¶„G?DYòXAïÔlæ¸ê*ÞsëÑi˜ MœE;gQæÚq¥ÈË‘ðÜÌM6S¾þ+ÐOeÄÝØÜï[L$Ò.‰ïÅvð`|Ïjß³s ÀÂ,…v¥Á\òðÇW NPú |z9 n@lüÔððØø—þ€Ïï‡ %Ø¡7kwEžG‰ Ò º[ Kss¡‹êëó2Lx¯ê‚ûÇÈ¢ðëið èk/4~f¨hÕ:U¨#þ— qëTG¹gOÂ] ‰{—a¦|îèdA¤(†ë?Æß8çª"uœ^%>yÃ"‘>)ƒ°‡µ ¸©åHA`Y+[Äjw¹l6%V‹õR[kÃØ¬v¿+bS¡JqP‰+Æí‡ÂÊÛø0Ë ‚©× «y&è‚"Žëyxۙȿ%ƒh×\!Ÿ<>†XÞöCÿß™n8¬ÊÕ%<È8m.8®€^ÞqÅñ \p°àJˆˆ~øµäÑNèQ®.¤ZL`2À€*þnêÀŒ®g!Å2ÊX&—'â÷&$ -úYvÒ)Øw7ãU:3ó*‹¡jÎí[)ø¤zD ÔŽ¢íOCöÀrª¢¾}g ®Áùº¯^/¹Øù>P¿_½÷«*ƒá‰-ó±Ô…ô…ÊtIùÖ½Ò Ýゎå}AŽ=%•Æ8.ì÷G…–Mì“>@Z²Ìendstream endobj 252 0 obj << /Filter /FlateDecode /Length 352 >> stream xœ]’Mnƒ0…÷œ‚`c°)šMºÉ¢UÕöؘŠE²èíûÞtÑÅgéüÿUçËËe·²z_çô™·r§~Í·ù¾¦\Æü=N…­Ë~LÛÃtL×n)ªók·|ý,¹ÄyØý­»æê£>îŸìJsŸoK—òÚMß¹8#§a"Oý¿)÷HÄáùk”­@“ì¸XS{ÙqÑQ³ì¸Ø@m+ 4R½(ÆÄ–DÁlO=Šb\2Tô´Ú7±²EU«•{fkl€`ö@µ¢@TT­µròP‡2Ę:Q±^¨¨JŒÁXœ”!Æ4Üoƒ(+·NcZ®ªmDr¿9¯YϬ¯Eò¬›2Ý×5O›>6}L|Cã”ÿÞã2/L• øXŒ¶Æendstream endobj 253 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4535 >> stream xœuWitSçµ½Bع3dPcrå„’†„æu1$i )óŒÍd0ò,ãA²eɃlÍã‘®æÉ6–eË’ç‚™‚ƒ(¥)I›4%-…6i›¾ä“ûñ’~"Yï­¾÷²<ü¸ºKçœ}ÎÙ{5yÅápžÚ°q£PZ¸V*,å,^´`[^Ae±°<ñÑóñ§9ñÙ“âÏpë1;‘7¡I‚.¤L>3ûÉÉÇ©ÇÐéèÐLj‡³³¤V¥3³_°©¥5Ö³ªL\].*(”¦½²hÑ’ Èÿ¥iÙÕi+¦­æ,“W¥ KsÓÖ-ܸ0mS™œ<¥½PVš–W(,ÎO+ËOÛ‘·+-}û[Û¶§­Þ¶9}Ëöy ÿÿDÿý©°X\(ÌΓ sóŠ¥ÂaI‰°XX’+‹Ä"qaâwqieYI^°BTP"¤(*íÍ éZ¹°*»:'O´½hDz¼¾üµGS¦OãñÓ˜=õìÓõµƒJ§^¤vQ+©ÝÔ*jõ3êçÔ:êÇÔzêUj Ô4j&ÇÂŽ•cã°;ÇÁqr\7ÇÃñRϨ©ÉT˜ó,Ç7iꤹõ“2ùBRmÒäôäûDèé?M™2åØTzêÖ©–G)˧͙™þäô®ª™ÏÏ<÷ؼÇî=¾ õLŸÐ@×Ä›rÎD^ˆçSCýFpu˜˜MIæØk€_ F^ÿöà7©9krë²LJ‹ ŠÖ; îh 1¦úLÝ@;ÐìÓXu©­Â ð;}î Ëo…÷M#{²MijAM—ì4ÉëÔ W¿ÍÂa&—Mò~ p:2ðpu2Ú>Jšþ ç—£”* =–ƒåª2] OUîƒp†`ˆzï ‡9‡oqã+¿â9õ.½ÁlÖê™/`(Þ >9~8ô—ÞK‚®±³oŸ…^¬ŠkIººZ…¹ttÅ!UsG´mødæÀÏðÓ˜çàgŸ_ñ4çã/ý‰87ZqÄa´<Ì9v5õ|O¬×4wû­] £ÉpËvªåF§ãé£y‡޹ø¥ñª¹V|öíïE,oþ1d3ÙÉChþ‰¦–ŠíØ¥ýn:~ð)çÃñ·Ç¹h`"‰ªk”ŠÅqU°¦­µ³µ“ñ<}»“`R˜ê E›v]£ó¶FœÁÖ‹‚¡ÿôw€Íå»CŽ A1Ñ™yß×™NfT ´’ý˜®= –ÔŒÎì-h¬= ö{­l“9ƒÊ’X³Kc°Xê”ÌÞm’ã;#뀟À)ø-HÊëÁ&”²ZÀio@üx,Õ³;ý¬ÇÖ-@ÿmÄøšÂ˜k”,F³2*«óølî[b xã|ÉùäK.Ú1Êë¨h+-­¨(-m«èèhkëH”·ÇJá2$ ÇWÉ9ñëß+þãî>A QlƒwÐÞÀw´z‰À'8Æ ±ˆ´L&Þ,™k1ì]´ ø»+zÎt¸b®ØCal!o:øÿcð¼oR‚€¯ð)›Zü‡Xc÷N¢…ÝâcnÀÐH[̳ ìè¿‹Íôo¸S.RÅwbÙCðk*ǃwP0µÞeÐ*F¥qèƒ:A<Œ­È_Π _åÑøXŠ&N^÷9Üðó¿ÅÿT†Ò¿ä µa.ʲò®•åÉËËÄ!I?`÷xÖf³’à`³Ô½Y¸¹¨H "jN€Ö9Œ߇¿FS˜éq®–ýSAÜ2QÊói<*Τ71ø¯_o4ÔƒÔšÈ Àºšœ ºÿÏ×p‡¤Êáïä:A†ŸŒó\zV¯3™tD†÷䑦ÓÅp»­…‚_pMmAS©X¼*ÂÕÙãÌ-ô¥GÐâ…'ßÄÏàÔ.ãï—o¶^|Ÿ dô=Úu¶Q€Wñ–¼þº*èÍ%#WN¶#ªûÁñ_ži&FãsÀO½–[m5 ~µ…ÂoÊÐú0ú:hEŽÖÇã¢Kõçžzbr<„6ña6 !VÈ»”Mu 5>¯“ü¸‡;;ûFè'þÉl~ÿ,èRuT‡ÅÝÂC™€S`~F„gã…pªÖnt2ŽdØY«ý=MmÚz,ç=ƒ‹Í§Oô¼¥×:xÊ}•™¹…yE™UY@¯Ê>û‹F[#ñ›ãÈпxhð{!V×(ñ(ب‚Zs¡F“WW\ªÕitƒÜ-uT@A'¶˜ +C_$b÷D˜€Ú[瘟Ÿø±Wf—–Ï‚2C‰®”Þˆ y ƒÂT•P V;ëé!Ž#~³ÏD&sRB6±¨‡óöÅ¿F?¿ÎóÐ:ž§×Ñ=Ðhi07hŽË†Ëú²Æ6|#à´:Y‡Ããöx>‡×êƒsìà`-m·Ø-,!¬+À:mNpB@ë­gó=Boh@cÑZêL c¦^«Rêêh”¨0£k}çölMެ°d÷Ѷº­z™YrÈ÷ˆšK£Âã’spnÞoûŒ^WÅ«ZY°bdCI«¢W{ÈØaˆ:ÉfN‡F‡´µw…º<¬!5Tp(Ï-´×Zk $¦28á#“NP8CÿíMú:ÂÇ—ò¼J“Èló£œç-]–÷sÿRq1çäω|ì-<¿Xí¯ÀîB ©–^òáU+6jtrAåÊLƒ„V9tî€;<ècZ?öŽÙ»l[Àèþü š7üËïƒ=‘ÀêtÊ-› ÷Çh\ÃXxÀšm&»Ú§oÐ…ðøµTÙùô@&ÐdÃTZ=DÜ#«ÿ‚#©¸G•J½êù5Aec£Ççu3H?w/h”ò+½:œìµZD6H¼eÉ”Wò<}z’¿‰×&ƒ*ßI®„<ÈÊ,Ì•ìE·Íîv2'}žl=–|OKÇÓ„‹´ B :ºªQètÇüLðاÎ!I*JJ.Â/hÀ¢8b·È›EÊ:Ôr(ä›>((½ W!£®3¾Ó4JNôCob!—Âd(㡱pclò5Ç8zç7þ7TÌóD¿‡£ô9qðÿÞ*ëw.-,XòÊz2þhéÄÜT«Œ™ã¡«-æj#ƒ—ý×¼7ø+PÊ'( Í Ðh fx€§¾JˆóEåñ—Sß7Žíƒ%‰,Ù)¼[†rΣ?œçœjûcÜø7hŒw;wü§xîfœwnf0Ú~nB¬M¿îö€ŒÝìT—½Žç¾´àÚʯʙ ¼ÂXŸà~e³ÞK賕ȊÛÑEÏy,.KÐhZˆ£We•<œ„yx:^¨5ƒUË(-VVBTzòöŸ?þõhúÞ„=ú SŽO?‰·Ä—ðúª•KµÌz,ÇóñdœœÿYü¹Ôï?F”™:1³ ›Uû“T^‹“ &ßð#ÎÐF©hFÍO‚R)¥ºŒ(Ûm¤åùÞöŸ‚ah7„½SËjˆ®×«ÕµAEn\µ]ëÒE*ÅPJK½IIKm}yl‡¢AÍé@ÌÛéê$טÜtƒÁWW¥.¯40ä6)±”¥ïÍÝô&É©Ë!¶Õ4Œ÷Ÿeí6"à4: ¬Éf"Ÿ ƒ>{[ùúÚ ê> stream xœm“kLSgÆÏ¡@ŽP/[Òi§žVE'n2¶¹éb²:ut 8¯å"”[K)¥¥”Ó–^8ýŸ^(´¥µ”Û°Ð0'*¢hœK0ºyÛuF³-Fã4Ù¾ørL¶Ãæ—%Ë›¼þï‡çyÏÿÁ±Ä Çñ·vfgË5•Yy¢tÓú¼òŠÆ¹zîe »g—%°ËFîðì'³I €0ñÒ²¤ïÞD¶7z!ªX„%áxaž2oUªôjEE¥FúafæGë×ó÷§Ò½tK†T&/­V65T+¤òº2©,#;Cš£l⇠éZe´¤¼R^sDª<"-(/’îÉß–—/Ý‘—»gW~zÆÿºûϰF^[R&¯kÄ0l^ƒ¦L‘_µY´à °=Ø6L†mÀ¾ÄæãN°þ¿X"æÄø…„\D0$x˜˜•x.ø ÿ=3ÇÎÃtH_§&¦j¯”þZRÑb$”ð„¿øÃ1ö—·š7Gõu¬K;ËŠýÙ%/ív¸©Ýorì%Ö¨n* s )¿Óë”ô¶GéÝw¸/–œ\ÃäzLf3Å·¥)Ò …þ.¹Q|,s†ÛЋ#ê^b¸‚<©„”,¬OË®8ƒ³çÙ Ñ\ uÍ&U™Åé¹ÏÒV×> stream xœe• TWÇ'2£"*q‹;‰Ûn…µRºŠÖªhyU¬  ï`ÁDò‘𒇂„ PTTÔŠl©Ú®®+w}´¶Õ®Úz9ÛèÖ³{öÌ9sνwξÿÿÞßw9„½Áápœ7K%¢o¯Áâ¸Ìd‘Ì6û¶Õccgý°n\<¾Ï¹àh?0gr©3ª˜â§¡ é—ÃÙŸ¶Zšš-Kˆ‹Ï.ôòòY°€}û £³…~žÂ ¢˜$©<=)A(JÙ)Üàà)üH*g'„îÒa´8^”+”Æ CÅá°ƒC„ë‚Ã6‡xxþ_]¯'‚ S¤é¢˜¸„d/ï…>Z¼dÙrwùHl&B‰0ÂXCøˆbáLð‰™„ áJÌ&æ 1‰˜L8³X÷„=¡$îqÊ9írìns¯Ú{Ø‹í¿qðp0ðñÎ’óÈj2FuOš>I„Úœ~µ›¯#Àlu0+ ÎÈn‰G\ø-VË,3¹d i¥P c`NîÈ«K¬?Ø%  ž“ü•ZÜ ¹@a'±H|­ôH¦À’Ö\p=âß0¨îì^ýFx|ÌòÅqîf1êMÉ^ ö@~¶»’9_UZ\¬×3Z-hë{E'4 @!²ïÏ×l½ù'”&´LŽö›Ñ&¹ó³™ ½aráÿ‚î¢éôY(¹J"Žõ‡u 2£7ÍøM[ÄïÉx_‰ÐCEe’|ó]ÜÂÃÓ):®5_bl1r̨öþ)ƒ³å&йÁêí±ÊÿAŸ—…A²e¢êD)ƒ¶“Ð]q;»¶ÖnÊwíöõ’úœ¦æÃõMÕ…m;ŠGÚOWY€:}açBA,®þP½I²2A¶")¾ré÷²+Ã}Ý'õ ß/¦äˆè¤[Ãåƒàeý4¿øÕ ŸD·Ÿ9×3Š|ËÖçé4›Ï¶‡&ÎÑQ´å!×ꃦЕ{A½¯HUPĤxnPÄõ±Ïq´-¾ÓsöÀM\» Z] =TÚaysS}]ë+º>À3ÞÅžŽgþèŽ(ô†9VÚ<ãh# ©´f[Ýé:…e§<² ZÄð±²M$Òeºy®]ûA¤AlÚ%Ø“›ñ\#6Ës’¢ †Zýc(rB“ŸõßjÏëof>n‚XB¢ ¿8©d—,Pƺú.é1µ¨G##7;wwÊŒ‚Ž£¥‡â»(ÊA§Qª •  rjµ•úr#ƒ×`‚†TMR®l¿"CÔ{ðÄx¤ØrÈ$à)«+ŒÍÝn÷`^†ÙML¡ÃÖlõx{mÿÙ¾O;{uÌEÞ²‡E¶“C_zÅqrâ¼p¾ûóÒa¾  òzUi—ÀÊ%ù°ÐFìÕ,±†×,ÚéÚ¡½è¨f6ß5Ôú”>’Ñ$IKe©Æ´Ö£õÍ&æ7ñq+¬p'ª˜õÄ­ÿ²µ‚·^·‚‰º×ÂÜ—gÆ] œ®QTÁB…nÐp»ðvüW;ûÖŠ üÒ¢=“Ö.‡e°²ÄûØŠãKoÈOÃü¥¡÷;ËHé-ø+µ¤š†•°N¹1÷`Iì„ͦìÇÊKð. W èÑ”¯˜  †³õî•!°6QìŸÙ<:ÍCrJýŠk]<ËœDz««:ÖA²´LÀFH*™¬gu>k¢&‘qj…7“”Ìk×݃nö¹íê—J7¿¿‰Ö>jv>óü‡çð€Ò†üh¯P’¹77ÿzÈd‚?ïÅ?‘b. À“Ùˆç};a‡Uï. 9ººöêcMÙMñû‹@£fŒW:zp|©¯€–m}?4‡âDW¥Š ²’<[vÍרCý–M~ú¹‰ƒ<²žYVv 4ÜÙtë͆;G¿dºãs~þÛ+W$²ZÌõ†–3Û!—1Ÿ®éêØ¹LoEQPZ¤@²-A-ÓìפåÃ~M¾öRÊr¨czyw:×yà9kS"£VÖ]Œ´š ð)Õ‘ZŸ’ž”éõh=â §~b^Ödý½qôA·É¹ç>Zu_zß…?ÁVE#þÂǘ».6|›œi$QšÞÑߨS``rc "¹1×PÛz ëRä©%x&vÃ4NÃõˆZóHÀ?‡¸ß}‹\ÞÅ4lƒ­9q’À…° $— eŸ„Ûp˜ºeyr¿¶ÌÌáX‡OlÛ¢Ùe»ia7x Jö¸+U<ìE5*=%ã%âhOW{àJMuyÙ-¨aûl Ûã…ÞØ- à³÷BD_œ¨dúI8§;W1Pb<8Öû9rCÁ®ªA ÔKÇãÓLœž3 gúŒ-ý÷ièPž÷d5ì®ÜØ}½óôg0L=\xÁkÞÒUžÙÚˆžíL•¢SfÊ JYîÔÜŸüŸ#‡ïFfÖ ŸhÞ¹-0O¿íº£Uuê¨ËW{®ÝÚ²ši˜ éU+·ø.Zýùè eèîIM[ÞœuRÍ~E!^¹ …½@Òœ±\ju¢[ÒSRÒÓSRÓ[Z[Û%Zо ‹ÏNMK«Kí(ÕS^\¥­(),߸*?{ÂÔT~©ª´êúmD±€s']"ÐìnäÙÍ9?¾€;.FOèú,Èc&óò²@.×Ã!õ[Þ!=Ô ðÇöìZ.3ñ-/÷ÕÚAõ1ï míÕ†³wý’+çü8ÈEßà|t Í©Ã3s ´ß§ÈMC3jlë¨r•®`¯÷:ÌßÌ„c;æÂbX^…§žÃ—ð´± •@••èÊÿWífå{ކ[J459¢i‹®²wmJU †"}¶à÷ ذðŠX¶ÏNÇÎ{/½”¨Ê*ïø™~dW¸ð õ*…€]h¸ Ë9V‡n[ºW9` jã½\Yì¨ ·‘y¿yG숗Yõõ ?È 6d!_e‘i°®®C)UežyòÈf²}hh¤ã$pœb(ÖkµÅåZ­î²££é˜®L[¦ÓéJËJ§Ä¿Úšendstream endobj 256 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7908 >> stream xœZ\SWÛ¿ˆ¹½Žjå6r)m¥î]ë^­”º°¢¨(**.¬„! !d@Ø{oŠ«C­ µQ[³µ­o‡XíR;Ïí{ì÷}熈„¾}¿JøÝsî=ÏyžÿóþωTÿ~”ƒƒÃð•^^‘‘ëÂvDľ2mÊÚ€=qa;¢…‘±¼«ÿ|?þÇhœðG¿?Vˆ`°# îâùIwœxïaè­¡hë3”£ƒƒoX‘{¢ƒ÷źMŸ6mÆ”)äsžÛÎ7©n+vì ”Æ„»íˆØí¶bª×T·U‘Rr1Øm|d„Û΀ an‘n>ÝÖ¯[²vÛ²µ«×{¯›0õ?Úfw‘¢(ï×#6zDnzcïâ¨%ÑKc–Å.ó”HwÄï\™°Ë+q÷ª€ÕÞ{‚Ö¯ ñ ]¶!ÜwÚ+ÉÓg¤Ìœ5{ÎÜ‘óFͽðÕׯ/šà>ÑoÒä­S¦ú¿LQ#©ÕÔ(ù|ß1×`ŠL[€¥ÜîžÛê­·M±ÝÆX­ãef§ä5yáä펼V’_C—3{™Ïl"®bb鉨 MB±¢*ºØ¶ªu`,<=\V Õ0 å|ÑØ ò§¡ÙÅÐ-La—¢Yïdˆ²N«ƒbrét5} Çá%¸TG³•Icµ°Vü¥g… 4 màXÍGxƒˆUÄBÜ_çuoIÌh›Ùé¡¥Ð4زƒxû=>-ç[?|µüRÕ‰ãyç ®m¹…ÁZf3¨J€©§ç=’‰ööñ°–f‘ntÞdv ƒbåÎížM·¡m"4Œf/ ù^êf/Þ/Nß¼Ù{&y2KïCz‘fû} eéÛûTfô‰Ù&®DÃ^»ûƒðr/ÁÃ$˜ýt2êÂËñûJäÄ,Ë'Ouw^‡Í7Šïóñ‡Wà*œX‘<íIÔÂ@öèÍßç? ¾Jê*Y<Ë9õ±õh®ª²ªHHly2­FØ|%ý>+b+Ãð›¢hû!4ˆ8¹Ö ²@4‰d3zmFgE•¶!Á$¹™Ï5;|cA¿ZyZ(6¶Æ€$€Êˆ˜ ³cvÂ4Xö[-šX‹&üú[0Þ:DV¢6© ÚAW©¯¨F#8]‰¾6@™¦Rj2 31:¢aGÅFÀbÀ®ø¹p¼"¿Ù…ŸCÃ1ð°«øŽ°8Ž6£—Íè’g—-Ñ–·,J˯Ä5ÏP|¥ÕáC=~| üÀ/awÃŽ¦ Pð×cµÔôG ›f «¤š $Õ\ÙsrºílÛqPÑ.Èè»JÄ2K‡³Ô¤¤ù+–¸¾ ÒÛ¹G ®qì0ùÙ¼‹'λ^‡÷<’göÄÏá.A*Š!îjA'Åõhæ*4»üììµ>Ay•™qöÑN9´ ·z4‹,,ÄC`O¢oñ2Ñ÷4mv‘b¦—ƒ®›>¶ ‘¥Ö¢!ÞQòÙØç1p6Ó÷ø“"6±\§¯ v M¢* ®1°n­¦'ŒJð37'Œ^‚ãµÕ ûhmî—11….V¬]9oÁð†ËÅwŠïÞ²|F¿ß hyMîiËÙ83ò¸‘xb“%œõˆ7wéʉà4u)‡+HRʼn3­Ü©Ij‡6ÐWéÊKîqºr™™IÊ v&‰é/B™4{X±AŸ×.í ¯ÔU@š3ò‚y4€¶£¢&«ÃíýË [Ád2´0½(ͱ Ù—Îìxþ0?H¬«Pš ay‚çJcÇZš äù®¸Ÿ½G>·R÷ü>n*²'QìHV±ã¿-¹ñ=zÚUS(­% []b¨·Y"¼œPË:ÞÜɇ3{¿Ì«Ä׺wæòh˜ý&Ziöwao!}°3Õ>¥}é·Pˆ=ÿW×ê­®ÕX]û|÷,ÝãXö«n×>¡7ädFÉfG> —þ‚‡U†< ¸½gAÎ~}]Gówð/0…k£2µ‰Í` Œ…˶&} ¨dåÎJˆ¼öÌSíIzùçÄ.Ù‘ô›)Š ªÀí!Ó` ¬ÏO½Éd–eæGA7:’&rš¤Œè&0AIVYÇÛ{Nd6šïý+÷H73¡fôŽÙ©Ë‚,;‰Ûx¾)ņ¦nײÍ!: ÷_»ė5ˆªEãjÑ”¾I¬=«Å”6QŸZ÷Â’€R. o ,Þx0`'ìŽ=ÃðÊ[Ø ‚Óp¸©†dLÿ¸ ´Ý•eº}̰‹КîZÙíÄK$Ä¡o‹å14‹ANb]™¾2B@-Ñ$ʽ¼Óbá50××2ìöH!BsíÃÉzã¹4ËÝêN ’Câ%rY6O4³ ÖÊvݦwbMÒ¤s{®Ëu¸ývq—]1ý$¦?1ç;òÛ™½-çõMâžB ðL­ýÚ}YKãm"D³ã)¡dî}|ÃŽ$lJîr%7Ù•ö]2IÀm´ýõÿPŠÎPÖRD`ÉßV®n|úIì„V¡©Õhª3»—/j¶B@Ì6úºeË¡¿…=8XľûJòÜÔP×…`l5´¼‹ªsÉ_foǦ¤IÆo„·ó6íšQ e®×èÁ˜æ'ôOÊw!!߉…)«KÕ‡öÙóœCfÛ_Þ×K •Jø¤£M·Ð&Gþ?úqÔð{'5Ðx¾áƒnˆúDr€½ó›è3øž1¸*Á¥œ ¶´¹£o¹¦^>Îø3;ü ù}‹üù«üâßRËü <˪Ë9JÃÇDZêÔ辶Ÿ×æAÉzYœZ¹¿¨”2Z:íÑݱd´÷c*¡ ô¸‹‹…ä &sËnëŠrª˜,:÷ ÈN7%–At€±$· 1¨‹k"–w»ßŠ…+f'v;_)`@PD;@aPêÞBa\þ•]_àѰÆ@ª‡:¼<©†l¿Ñ”Ó‘›•U‘]”UHˆæc8–º/Ñ`nSÒ$†•/•_ñ“kœÏ9Þ̰îa¥G´û\¬’‹Á“kb3$;ÈÄÄÝÛ ÝÕ ‚ÚŒûMGïv 1úžCtøf<m6_ÑfgöZ/¾‹‹f¡h¼èÑ#õ½ð1 —櫇ic9ï‡uÖ•ëol«x;€ô=<O³D»h¶Ñn èÂàw4”»„‡FZU·Ëã<`3ÀFü×ÍHDàÜf¤ß_ôVZñ·Ù2û‘Q#Í´ƒKè* µÝzª·œJšD´ôh©¼³DHA!å„‘LúÉZåÓ­ò¡B_Ù-¤‰ TÖÔê¤YÞÞw³íQÞaM­@û‹üà^ZÇ›W!'3ïgvº6aòžMÞ«o­º•} È_“Ñ&¢<½ÿŸ¬£Za¨ø@EBj˜€÷rue©è HIh•}–²gõay ÛŸê6a¨p51Ï•5œh&­Ôº4­À`÷œÄèŸÀÌd-@Ž)»À‘ªÕ'—E»²ïºíiBF”rGý®£ð."Θ’x?’Ç,õLoº´–sÐxä 64D€ŠX‘–)—¦§ìÝò:̆՗‹¿É=r=…\Ifí­BT*«! []jhd ®‚m€Ýa~>y†þd r4ÞÿQWjCü<3*!«íòCºë*®Åš®6¯£wq ‹‡·q {dòÁc‡·¡­QU-pøºWB (r¡¤*÷ÄðV/X‡Âg|—Eë¶¶`Ÿì}lN€^©OÏW@!çæéˆEÆÊ„M<Šê~ŽKŸõ$­Ão”Eü$9(Î;cWr•®¢Ñÿ £5Y:]©‹±-ÎÊc÷èP¤«BÒ·ršx ‘R‚œ ø¯ãP6ÿ‘j5šDUp•@—üPºÚ¨«Ð÷×%!㜮Z~±Ü&˜O¶+e_òÆ¿+e{ñôÈÆ€’íà‚ˆ¬4=a$üŒäúÄß\;áp}K#ÃzìQeÊ<©W˜EsÄlû:…÷Ü×\ƒß•â®’ï?ÿð2\€ýë>OêÙÏÈL¢xçI3ú’}ÕÒ EÚËk”­2Ý^pYÖW-tW}»‹¿õ-úŸò‘¢,úá#MNP‰¶\š PgÜG¶ÍÕÚ|øàãг„æ÷ò’ '€B“¾q"ÜÁóý̯tŒ®$n6v”#ÚïG<ð âœq<”a;ðéc‘Øqpî‘\[ÐH1.§ë®]:uŽÃ™èôÑOº_¾A‡’°WÔ^?ü¶>T²yZ õõdYf§y¥.–®—® —L‡ ©Ìx_s¬èkÓ©üsù—Êß«>ÛZp n@«Âè£ß’ê._Õ64Œ°ÝK¢eéׯYÐÀ¯Ù|=Rœ÷Áâœ0{«l¦b7®Ì[þf B2¶f¨±—civùqtN„†ô‘”xÍŽÉ=\xó"©¼.Ú Ýîv¨€ÚCƒÍ¶•f¤1;X¹X’ GxwqÉ=ï;ø)‚÷ØÐp!±½)át3Z)±6ÿöâ{¤¤oðY:I@ÕA¤ýFÍK¬œœðzýô©ТÂ?p*>sÐ’dÙ@Të;8³Æ"9c=¸Âsb}µ¬y=Èa³Ö7˜a/îΗ…–ousÜe³•Û BòãS’RâÔ᪠¼èœÔyÛäË2å²Yß­BÏ‚ðzê\Ñ—ÆÅû[êyÎîªW€YB§C (³“ ´ÒŠEº* Þr ²ôú"cúi2³ÛbºÞ…/¯iÍN÷64e4¦6TÔ苲²öV)ó j ab?ìHf__XÁ‡M'ö£gNç{ç¸ëIhÛBvzc±ÒÞöq0–½óŽ®¬¸¥½¢¡Ä×È¢Tÿ.R6!y–- VŽp°ž::þ×3Çf´êo ´¨rêXòàó}ÇÀ埞9ÚšY¡»@´e¹Å`=Èê’óí÷ĆáÜ(M8… צ+!rßÜ©¼óÙ¹êêôÆøÊÔü«會E_yÝ ƖôåšÔ@-íMºœ`º>²\’§ÜAz"J¾B^ʰßÉà j“Ú\ÏCûG9û˜qègqúfŸ5Ó€yÃzçUšýŠº mÞé~=zýÒYR8³~{xÙ«ÃÀ#û$¡ÈzB€Ÿî“Gëyvüz¾J¬oH¨Š$¾ˆŠËˆTG–Å5@ÔUu矕~œ>³ÄX„e5h¾8ïBÄ!EaШ÷²W˸]¡í¹‡MÇN¹h h§d…iãòT¶¼ q¶F6ÒSƒÚ} Hñv„ “gË—·{~ƒ÷rõªO¥„_|7x/$†øéƒê¶2 ^w(»,»4»,ÔÖÇaÎÖ‘3¬¡ LEE-íág’.'v_ßîî0‰Œ"Uc¯à®ê®À.ô¬%‹¸,ýé/¾Ê/}ì©éö<††ÓKMÉLT„¹„„ŒD@j¶,›a™,]VvVŽÐQ륥WV щ)‹~„ƒ€Æ@'œ¨¨‡ü÷ÿÕ•6Eé`Q=Ià9ÔzÂzÓî˜ÅÕV¿ö~ª‡Ý)“é‡\¬ÐóíÓŒ¾Þ÷ÌÅÚêqtŸcª'L?ÈìT‡üð\òvëä·ŠüáKÞl§3{ÂÏëÁV´DO‰Ú{ ã.o6QW<µOoÝåÞAco<ù,úÕ¶ö–µš¿™&œÙ}a5T˜šŒ¹ö‘¸ÚzwVIm¦‹>¿{]Ä*¨{øe›Fu1ò8f{µ¥§¤H $'¤ô'³çFÜ·D¬Åß&¸¹ûú‚ËXw¼ì÷Ó¶f³Îª ÿæ¦5ø¾½òòpy?ß­@CÏ ûä¶ÿÐz;òa=Gxx/ÕÔ tÝ|7¼»Ý÷¹Ü[¦ÆG“§>…V¢Áh¥#ÿàÉÎÆôØXI’ ?‹ÏrqBɶ›Õ®-Õt„ò.\»Míþå–·àÝG¥œ> IßRÅ(’/ãÞêifŸMžïDƒ„—3{”/ëÒ{à Rsº ¢k¦C8lO Ú­h‹. !8TǰŸ7é¤àj·á"nM:[¹ûvOaÙ„–qìѮ⣇ºVC~¢|Ån,ãâ{“ý¿ÜPÜE¦Ãÿ3ÝêÈ/ø’}šyÍ B3ÙåüïVAiõÌBúq÷ó°»ù©¥Çá¯V%ùª#]´´þ‚ m£º:¤‚HÔrå¼%ÙKp¶!»<ûdïÆõ9³ZØÓ7ΞhþäGÚ (Ñ8…úœ{(%ÿ€p¶°­'deê¢ë ‡Œ×@~;šÁWp,“ßÓÛ¤`‘‚¤².@θŸõ}¨õÛ‹0¼ê3ì,|ÑÓÐPô鎙åùâh<~6ø*it·¡µh| ûÕý뤮Ÿ˜ƒÇÙ€;ÄŒ†HЛ¶£ßu=øFÍ—vó·K<¤§*S}g¯—K3Ö’¤•dª#3¢KÕÅ=‡ŒÇö-~4Ÿ›Ö§.ê{aE]~ç²#zgÑ,Ê.0¶ *(3Ó.â2SUAíÊÆöì›a$§ù’Q1Åúºž“{M¼:’Á úÒ1DÝxÿÀÕÎÓ ?«@ƒgÜÀC€Ôì©ód³UuòR‚åºR}CvAfazNÕ{'šO‘6 ,[“gÈ—x¯q÷Á¼Š“§«Ô™íË:t·WG.7£ì h³ÙébWVÇ[ˆwBx#ò\ <»ªéÜ[§M' ¯{]$b†WýR—ªCªdÖu ÙEy]Gó!ú—à=éÛÔá’ ð¸À¨èÌ=™k2’Aa#Ç÷hÖt,O[“¶jùÊi° Üó ¹¤?Ó×$WD“’¬Mžþõ43<¼K´+±’W ¯ÅÙ%©%IDÝ(ÕéªàȈ$A©Ò$/H+L¬ †½–›§IÈL*H"ëåCyv{CCIäAŽ"?5?¥DÒFÀÖ\RWZUÜZ¥+³±eæ_ èø¢3 sk§Žð@ _‹üCäUš¾±U•KBI“Øk¥øþ7'OÑfj¤ª\e³Ð( é0%òê‘åöIãE³+ÊEÄ“ 9øÕf1ަQúIÔ”f3šE€±Œ# ­—>\õ#‰zlSn‹kAk9¤ìsâX%”U…:Ô—sš„ŒØ(ƒÁ”×ÚòNÙ¸­ò²óWÏ!¥Û+7þ”Ñ`Ê!]s£´DL2„*T»es¯.2k úN9r´á£ß9ÔÿšG¬YJ¬´^L8Ñ£‹d¦/ø$úî܇^BÔ­ÛÐEr½Z¥V©Èú1ÅÒ:b_u©¡)÷èÞ“‰…ÏžŠŸÆÛvá´÷­'Uý¿ ˜&݉lÖ¢µoÀ ?šfVÕk²‹òÎYÞÿ>‡CËS^ É“ðgˆ ן4Èø_´¦$Ò!2â4ñÊ\·h]9‘#¨”ÆÛñÊÅxoî—)S…´“f¡<ßÐxu ÈãÊÙê²ìl]Ñã,0£­f§k¥P^ƒHL´fAáug—T~Qò¨étÑ­7n íí`˜¸P6_±¶cÓ(†½¶Pâáâž4ñæ ÁsNðûí’˜ t@œ¶v©¿ÁE³¬×Ôi:~áȧpŽú)|™`¼_,_ºhÝ\2î3Öuæ[òÌ–óßÀ]xoešµgEŸ£Ã| Aœw847â!Lžá/Áþ\f2HˆwsËô¥¤þ¢íÿ}F÷çC¤Ìµ´Ü¼HâX>@ªñ–É‚TÅOÍ•â§ã1}m:¡×ãpªôøÁ0üÌäñ“H1ÊŠ/1ŒF]©¥QDúCl"©x¡ÆÅBcdžµ¢ÍÌŠOÄ Ÿ7×Î…ù°ãbáõ¢¯?ï¼ oCMl´n·1>u±`J¥͹ŒÆ^F³¥|9Ú,82Oú+:BXéÑv1€nEOåwÄå%ƒK("4©Aøinô¼ú Õ [ÌEzK¤˜ÝÅýôy[ÞÊ=–{äÔóyÌoœÅо[<åo¡îBJû¶ôVj–~#Ö•ËsÓrpòäÐeäYSœ«+wÑW'$‘5Ú$þ_¼‹KS%§kâ3SŒr“Ã\¡"[k"•¡²@_mu…ïå[—øÃ¼E p"‡ïÓ2´Æ¯Uˆú7 G«Ž(<™L @‚ÿM‚B&©ƒ:¬êò>é—;ÀÐnµ¯gªò9ø àRMš,¡IjF¬&>?=O‰ò°'‡/cÏT¥`ŸKFlij )gú¬bO¡]\ž±ˆìÇj p:ã¾^œ]¬Ò'à~_Ä —rÔ¿ô@¾)ËÏÕggåjI’D–`n;6Iñ æWê7ôøp] 0u`ªÈʵVüÒÆ9!ø '|ãÆäÓÄÆŽ´¯±!…OðK°ÚS±NZ•\ÙSä5yƦ†#9ûá'h U‡eDŤJÒðôÉÓ•»ÕîÌ”$˜ùFC›®”Ë=\wúá±–’C¹ÇœþhµØÐÓ»YÓӻ魽úšìmqVvgïû;¯­èŒ!R3MªMÏL6) 4;¤âYò‰ãVãxâ´Ä4…:3Y›ž-­¦qo#S÷â13j"Nßu~Óyªs)©ïóiŸ "IÙN ¤¦í Ý%LÁBDÕ ‘µhøÓÏĤ·Ó Wi²±½ΊÇ"†ý’žžÝõ(ü|¨½ž÷á~”„~ðX쎗‡ãe° rƒ;ðíi}#“€âÄì’ù²õk·»nÐ o2ìÈ/ŠN:äú.´­I™oݳþ£ôœYw^ŽBĺR¹)3+®Ô«5¦ <Ëæåèʳô†Æ]d78c]ÁG†Æ,“±5D@[ˆV¡ŽHóÌŒšpž€*”D2'%h’5ñyªå}oôNQÊT©‹6CqÐóW9V®ŠJõTGhªVÈ­Y&CcÞGÙuÁÁçwÔ$eC.ÑÍ%eÝÖsÍŒôᆞ¢7™Fýþ%B“ûÔO[ýÇÌŸorê0}ZIÏÞÒ´æ²ʺ¼õòòvf |‰µfñHšejÐ(;ÁJúÔG“iÜïObåä>×={‰\²u+<Þîû-¡+}¾}î¿r6^@¸sÿèüµ?Ɖue©„}ã -9=åÑš?—riIZЦk +  òŠs ù5,åòJ²@ày>ÿF>z5_ŸO›Z½8°¿Oäà0xоc–ðÏP¡7Ü™ŸU“•wÒXŸ7øiŠú?ýeÈßendstream endobj 257 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2875 >> stream xœV}XMÙß»ÓÙ{KBÛ–Ä9çMEùL }—>õAT”RNR‰ _­ÔsɸL)„Aå³K)2ù*ÕHJ*£Qt1˜ûîî:î½ëÔÌsïü{Ÿç<çÙk¯µÞõþ~ë÷þÞMSº:MÓz1 i1©ñ«#µ#KÑ„'èˆ$'ä ¤KʼnúÒ— }Ý ú9†ðl4ì £( MÏqÚa¼d锩S­œ×%¥'ÇÇÆ¥*fṴ́SD¥+~›Q¸Ä¤ÄÇ&*ÌÉCZLº$eLbªo¼2jCŠ"021å¿ÿ¿PEMI\眔œ’ºÁ3mcdÔêŒhߘ5±qKâ”63fÚÚÍš­˜3wÞgÓV„O§(?ÊŸšDPTL…P–ÔRjåD9S.Ô Ê•²¦Ü(wʃò¤l)/ʇò¥FS†O¡j,eDÑÔ8ʘOÅQ'©”#5’²$4Rºdû^ê-íMï¢ѱԉ×ùJ§Pç±$VrCWO×Zé^‘ŽºK0Ùd&9ÇgW±ÛÙ\8—Ãõ 6l£·A/Wï˜^•^‡Þ8c V£|qIs\¾aS«cätñg›ÄASЗY¾î5MÝõ—W{Ëð¿;E«òª1—ñ6(TîÄ©Y²?µU´j¥KTP­’Àq±DÀ¶¦Ø»ªÍ` X¼ø ÁkÖ{l%ÏvújñX<*ÀÑzú’Và¿ÝÚ+7X“Ú!öwÐ×{%–"Áκ Û¡)hAB°Ÿ§s¬Âzë—Njp¹ð(é7ôöõ1æ¦2™¡Ûã7'*ý|â‡'[^à§Lkoe$ž–ŸL>¬<ÄiSm-ÛÔ›Z¨7TF|ÝMœ(tÁ æjpEJâ`‚h°—Y ƒårÞÆ-YíÃ=ey+G†¯ƒ oáåùx4î;ßfæ’v #o·¿@7áqSþ®|ÃF܈¿Ûø‰ÇÙl0¬ªv÷œåmömÉÌÞnŒ¢Ö®pàxÿW„Á=C ^SÁ•Dô „¬÷î?âÁoËy—£a”RÞ¶éÇ-…ihqèò/œ"bK“m=¼óð®RΖÉÅ#`"É\WÝ»¶•WÌŽËí¿wÿkâ1Tj\qåtÃÃ’Ä }28“Ú,Z6ÐÏ;%°Ÿä7 &ÍÅ“\ÜÒ(˜à’ĺcG÷ý¹XÖÄ~µg[Vâb·(•î¼åæP->úNÈí\ØbÄoÓÆŠsq%Ë—+]í<#/Þ—‰ì\kWø‹ŒwiE'+9'–œ‹ò\óé·}P Ó>)û|2ÊÆB¸X Æ` Vˆä¼5R"Œ¡%â±0}p‰™Æj’h%Ì|¦±Rk¬ÈÊ>æhý«ÆZ:˜ªhÓJ_VÁ¡N‰øC…°cïn´ q‰_>!‡»l¯{%}7DÇÊR’¶+÷.庘ýÊNµ!îÉ¥u¡ò lVlúV÷Xosúîµ[}×'„#wΪÞï×ú꛵²o‚O¤ÞDGÑÁ}Åû9lîZ—™‘œŸõårÄyÅœ©¾URÜsHþ"ïHnñ¡!Ýå‹>màH¤× UDxa7 Ÿ”-Y¾Â÷bub³ Èz@ Nà8û#–;/Kò–Ã)ÌqÐ;¤8Ÿ?*îwÝœ!¢Y ï„Ý7¶Ýx*¶Âû”QŽ© ÖÅNØ¡G¦0úi Œ9 ŸÃl™³*ÒqÖA-0 Œn¶ýÜt5Êé€6j šiÑO«Z'(gp½F_ºPtlÆm,<GHÿˆã„ ªˆWTˆ™È\\ÄÄU»’ƒ'ÌÄ4¶Ç®Ý˜ÓG•'ëÊåüf·Ç,Î#…žÛ °¡œ?‹GØÛZû>0¸ûìgÙàEkòD-ÊÔ’ñ$¨­¦—ÑŒ{¥æŸ”jQ͈#4jéGfÐqÀ£ìZiñlPûÎë›/ÄwÛWM!Ç›Oü/ê1 Ðïl¦€àNu ‹õ@!(¢hÝÕ§¿>UÅíkö÷×ÞïBÜóZÏiòAŠ$¬I3­&åqa×Áœÿþè…ý9(ë{Y#»)w[6© Çð• å3]Ý›4ab˜J[8± Fk/ƒxËyœo5â'ˆ$Âç,ß?2¼ØÓó¶X/°-X\"¿^™|ÝGåÅWë¹$+¢—š¹¬)¾“)›Í|kÙê jEŽŸ»|±âp‚‘ çÅò 8ÅGPW.ÂÆ˜_¶ÈnVh 0¦òI·üw'7C7u—4 ê«“x¸ÖÁ‹OdnΗ¥HFk¸!'W{ßš¼("uñrœfù‡kÛA÷öŠºýð…‡|Ít–®ž!ÏòBß®<¤4i!Wôõ‰½ýY ¿©dÁ¹ŽKg+P†x’ ¿ø¤ìeD….ä¶ Î,Üx<íÐhg·2Ú‚Pò`=¿ýhXß5—ȧ, Ks5 ÿn@©;Ç´‹\¤ÕBC—¬Œ9Ÿ”äíÀã?4ª$íψ?ÿ{¯ê`ù‡OnÝm¸w>ÆC†?i_h‡wK¢=µCq"Û\5Å52͹,¡&²Èq¼+ [¿Ò›{c.Uœ;Rƒ¸Wµ^¦“ý}¦:†]hO#IçXW°þbð£„v’´ÙÛ` Šé¯ñ„ÐÕ[•QòbX.…ëC$@}¬ ü ÊHð]âBè}Þ„)ä€\c"½"\6Ù"l„°ÁÇ+‹Ëüï%†&ýïàO`<£ó®AëCbäÙà^óæº‡®¬þΕ#¶l/<¯ö›jãç9žOãËž;÷TZ/*È7Ê-ŒD;‘g°Þé†-Bð®¹_ÀR°ƒø¡CF›aiWd‘?#¾_4G Ë KPŒÝSlˆGÛ.ÀR·Â¸æpÿ~~Ôjûñx\¿5IQñ÷—0®}uí¼K2¾spDh¹áì¾> stream xœUkXUUÞξ(xðpÜ !çS‰I Æ¢ÃEk“;’À‘‹P 1gÔ5¡ rA¡àÃPQ»iÚ4¦=áÔˆ~ûô晵Á.¿çÇ~žo­½Ö·Þõ~ïû-–QÙ1,Ë:E¤e­M+ÈLIšbÊJU¦¼d7Vžl'»Û4ýh-äd#C퉣jÿä±{œáš*œ `<£bÙ€ð%åž±K–>=c†÷‹¦Õ…y™+ ÏÎòõ3$ÿ1Óò33r 4X›–eZ–S°83;yM¾!:)'ß œý‡ñï‰þ¿Ô ÃrBLƼüð‚5ë’Ö'¦¥¥gd®ÊÊ^:Ë÷Y?ü™ ó3•y™™ÎD31Œ'˼ÂÄ1!L<ó"ó*cd–1aL8ÁD2‹˜(f1ÈhgFËHŒ Ã2nÌ~f eQÑEÝ,ÇÆ°ïÚ9Û½iwÜÎf?Ûþ”ý°*ZU¡ºË9s¹Üü3|,OøÁQX ô ?ˆ/ŠÄkâWc˜1 Y-1Ë>àcv«öh¿l‘l:¼.h¯_ì:2xîàë uø ù¯Ž‘(†¼š»8E§ üRP[Ó hàÏô› ç›à{a:Á4WíðM¸ÁMz«»,]–çIù4ílà Q+zìÀ‘ OSy§“Û-qÕÁDÄ/yðBüÕ6SlL†)ThØëùYð²¿îí<Ø“«'ûÎ^i"Àಆ– Æ÷…5 Š¥ÿ½l?Jt››\oú£_trzµ<‰òùèGùtÕZ~ã²Cо|óðá›»ßÛ±­VO [J·‘­d!‰IÊ µ³ j¹§ì`ìØtC ½”\&ÛIÛŸ=ˆÓé¹îsÂÐ>£"«v­¾v}MÉé"xnéÄÖâÊb²F|=u]dºéݪBÝÆŠ­[›èjþtøçb$_³Õ--ûN’ruåQc†žš˜Z¹y'Ù+l1w|ÿj©Nm­-€ 0‡–2&°G(Öeòd ¢æñMÞœ·&7cEtîŠEíÿæ{í{˜pºkcÎúºÂŠ¢ª4¦ð…0Õ÷ÐHW¥ãT|×a.•„?Ä]n½Ù«ß3ƒ»Í«á›‚‡ðð.{k´xR0LGNóÄðsŽ&}×RÿöÎFݰiû[;Љ˜^RqBÇ©ä”ê;Ì0ËÛÌÎÿªÚõr»‹l¡ îÚ£ W$…½”ÝrIÿFƒÍQ@ÇK ~ÖÝx¾C§[HE[K”í¬lu™²…Ãéü\›zž¬æÐ DþJ4o›…ƒiü7²æ†MÃTˆó5Ë~À9 '¿îÔ/r]”_¿¥šì¡G»ç{Ñ=æG¡¦Dn|yoýžA"žÙ_˜QX²qc‰~ýfBŠ£7O4.!^¢×¥ÈûçÎ4œ>I±ÓÛ›«6ˆàÍk«0²¥y)Ë 9 Göš?®ÔØe)·¬zç$ eôÐ ê8 âý0`6(±#°ƒ þ;ºƒAJ4Âܘ™fyŒ?³s½C±Â^BŸ5[ú%  ÚîWÏ»âÒ8AÀgk>Ï8­OïYph ' y™±"T 0OJƒÝ¡Oy. 5& <¸âÊU*ÿ4ýÇ:žòª£ºG•Ídw}xXnëã¢W¦--.){§H÷¤P·­rG i#å ï}X]³·þäYµG)qö!ŵpGÚ ý¾ÂÉTNs|¦à" »;üÀõÎ ªôø_jZMDcRÿÃÓï¯iÑWl®î gÉþÕÕFQ-o£þ…šQ^¡¸19(ãÑŒrr4p¸_€=00RÞGðä]pzÄÊu°V*­$#åäÌ–“o´g ùõ!K1<ã*\€/Ü›3aÜЕGÍzÔñE‰©yq$…¬ªYwð ó_öm?%–Ý•vÝjí¸@.’öÄòçDªxZ2¿»ß³·Í_¦šìáT¾ßXUµcûûºa!»,§t-}^[1K9ßçš- rÄ-Eñ˜s{˜íŒ¡½å0­› &¹j'ËÓè•íý©‰MKÜ–‘WòÓSc£MÁÄ[Äyß"ÒÇ­µ}ݺ!rùk â³ö.Öá4¾4iwŽ%»se_Ñ5"¬{_€FO³Ñògád¤ËÝ!O=º8q`è§ÎOúõjhÜEÚ*ø)J… Joã­Ù*j< ~•%›Ù>eÕ2¸%ÉSÑ h B…Þó a <ÆÃ¿`$r8›Ém 5?NL¥8ºWÿ<î·÷éèQO“‹*:ÎMÚŠEyíhµÁDΚµQzAŽÀ¹f öý0U“ ]’­”6ªR^]P/[vADåªÝ<Œ zà*A_é8ŽaþÓO.£endstream endobj 259 0 obj << /Filter /FlateDecode /Length 176 >> stream xœ]OA ¼ó ~5.õ҃ƨ ËÒp¥o¡Ö³ÉìîLfXןzï2e×àŽ™ZçMÂ)Ì 8:OAƒüauÂSGº³ŽWDº< ]ùE?‘Ý$ß×U³Š œ¢LÚHZÎUk­"èÍßI®‚Áþ|ÑEZyP\Êc¡¨*„лê¶éŠq‰¸%¢0§„>×5g‰ç<~«Æ‹Š. o#YØendstream endobj 260 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 418 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ð JM/ÍI,I©þfü!ÃôC–¹ûwöÏÉ?ãY»y˜»yXüPúÞ"ø½–ÿ{…+#cxnuÇ$çü‚Ê¢ÌôŒ#c]] i©T©à¤§à•˜œ_^œ©˜—¢à¥ç«§à—_ÌTÐÈÏSHJÍHÌISÈOSIP v Vpò ÖÔÃî:TѼÔôÄ’Ìü¼âœÄ⌜Ē’ÌäÔ’üf3;Æ.†eŒÝ ,ŒŒ,&1³¾¯áûiùÓCtZÓôÚºö–º¹?ù´Ôw·wwH6L©Ÿ9£ÒŒIr?òþ˜4½»¿»O’ï?³UÃ÷òŒ?K¾÷‰.*í®•ûs™­¶´»¤da÷Lù—Ùf.ì^$Q· ì§ÌNÆR;™!f QýW¡úûî??Øj»K-ê^8SîÇï»Ù!º§nžðShù¦…l;¹vrËq1‡‹Øópvóp/ïë0¹gbÏ„ži<<Ëûz¦ô÷ÌÖ?¹·‡‡—±¶´tendstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 666 >> stream xœ]mHSqÆÿ×Í»9¯«mÌ(k»T”s}¨ÌД”DK¶™Y„Lsoš×œmZÊ &GÇœ˜8 ×”-j…Ab¡‰ aˆaÑ ôÁ’(¡"ý︅m„_:8ÏÎsøIˆ Ii™Ž¹`l<¨ÒÕ™/5›æn6ƒ`·'±;xàˆùbªd x@ñgb¤Ÿ•`Ý&\ºñ¢ÒÌ2MmÍV³¥…Öj4ûUªx?D×´ÑjºÄX[Ï8íõVÚØxž.Q—©éŒ3nZéL¦‘®©³L4c¢ u§é ý1ž.Ö¬(×ïSÿÔÆŒâk²µG’ )’!JŽøè*Z$tÄM¯'Éò‘#…‰‰U\å±xY¿:_ت?åÜ2'…sªÆ\Ð •pܳgêðäÑ×­30+þ'ßÇ—=«ðB¨”C9d»ôŽE6°BѰ#Ú9_a–àåÙÀÏwcp–.h ÅÂáaïFœv½ç±úôˆEåW²Ó‚PwO“¢¦ö”= „6AžÂ³ð÷€Àäve),6r³âúîeðè·ˆt&Z¶VÅék[d!ö".–7ngW•«õzW\!WDâ ,ö?Œ m}>7? Ÿ…8uï[N¢•sT®F{æÁµ¡Àÿ}¥Ì6].ÅíW‹cAøe*÷À®‚ÌʃvhWüI!ÛíÐÒ2~eLBúG ¨ä,ü 3Á$d»3ÎF,…ôÆ™Ø` ý˜èÑ›T…ˆo`¨ RÃ=‰òz{zûç(*ìñ‡<}>O¯×ÛG¥!ô•ótendstream endobj 262 0 obj << /Filter /FlateDecode /Length 171 >> stream xœ]1à EwNÁ H*¥RÄ’.ZUm/@Œ1!Co_ I‡ßÒÇÿ[1\/Wgèá…‰“u&ââ×ÈGœ¬c­äÆBÚ]0ëÀÄpÓáý Èsiów=£xÊó©>µ[ ¼Á%hÀ¨Ý„¬oÕ)†Îü­äViOÊœ,¢Ž:•m«ª¨C¨õ#X.¦Ã#ºTÁ+Xá± >”Ïb_ÓÄWCendstream endobj 263 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1208 >> stream xœu”lSUÇßë¯=J¨Ûðm} [„‰üŸ- Šlƒ$t¬ÛF×­Ý®c?è¶¶ï¼×–¶“n0Ì0¢ÌbF@!!Ä4`#"Y8¯½-øÄ‰?î79÷{s¾ŸsÎÍ¥)•‚¢iz⪂“£jy“Ãlµ[j¬/̘^l®¬¯6Õý©N•ž¡%V!e)©eÕÛÕ S‚NušUgŽÇãðâXüê)JKÓël½‡‡>ÿîêÒ›³ÎRYåàfΘ1kútyŸÏ•99c·Ò´u[M£}›…3Y˹•yy\aM£|hárj¬\™¹ÊT]ÁÕTpkÍë¹Ò’åÅ%ÜŠâ¢ÒÕ%¹yÿËù/Áfª3[-••eu¦­æjsÅ“à±ôèâß’½~ûv“CNà079å»­Úä¬3•[¶šªË,•E¥LÊÉåV¯·Q4O-Ð"í§tbä†R**D/£W´+~SÚ•ƒøAêCeúaŠén`G5ÒÒæ[Jé_¥I»IOfãÍe8mfåÜÛæ…f`v¸¡Ã轆_ s…L8K ˜NΞ"qH!±ø„–äá5$m ÑÎ$ïózÀËt„¡·OQÌøâÜ%T ùëxüž|ç„qà\F¦™xBƒ÷o)c¹ìˆWý¼à·"é—mhô¢L,œ¨X‚ùÄx©3¨ÇQ»±HØ•{-~€þðGýWNÜÆ´ïÃAA€~f€ê>pÙ²‰ƒ¤µ’B¨b’S`),X÷ü›óK˶Xwìäyh§À‡»,¹1s€Ìõ׃Ú˜d$|Jaé”ý­"ìf@ ÿM/ÐC‚ÿ¦÷ÈÓWkqƒw@&ÞÍÄä$Ãp)½ëˆú xCu”,„r&)×EI>gj Ñ“Qm¤ˆïÊHÊuͧÛì\¸1W[¦u2öï•‘e£Ó¢X21¹®oaøÔÏC—N~|âýÞÈ£ücÚØ.ÓúØ—ü v…žCf!NX’Žg×a$#H‹?‘´˜ƒÃg0í"jBJô‹"˜žNhiñÏ'tUa>Q#ág‘ã›ÉI;™ã&ó€Ì…„öxb<Î&7/i7IÖíÉ·Àï¦/=rïT†õ å³xÖ w%Ýú:MÝK¯¾huu¿b'SIäkðŽôr("ú! ^èŠKRq†ÄiPØÜyž14s°U<¯±ñ|µA¢<ÁÄëîÞžÌöôgÇÎkRªÔRlÜ{UÝ=A˟Ń/e¿òÉ“V”í ݹµd­lxG#í’~ …eÃ`&;{±qÒ1 N„;"¾ÓîkÍ—7p}½ùÈÙšŒÁ#j–”iÀóÞ.Þ MÐ.LVe$ú÷:Ú  à/VµO“oa‰ØÀªŽ6ÒñàÛú·Ü‘¶VÏÎöîìDôÁ9b‘:‰ës]8M‰wƒ ôìË”†XUC(*? fjGôlP2ôøÍ ö›ÑÙZÕÚÝ(ÐØ#†„]BÀê=ªÓ úá¼z{#x_7†¢þ<ð{½endstream endobj 264 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1325 >> stream xœm”]L“WÆß¶€Geu¢ ØV/Œf“1uY\bÌt‹Ž* 8¥J …b?h ¥ôZÚÿÛÞÒÒŠPËW S7uà×p]¦1Û…»Ùœû¸X4™§ìÙŠ3K–,'9ÏÅ?¿ó<Ïÿ0ˆ$&Á`0VÈÍ(Å)RIÅÛÙ[÷Ȥ•‹ú¦ø:F<“_Ϻz¡p¡ RYš4“™œ—† +±b®}Ha0Šk4-FË^YƒV.©+ùÛ²³·oÝš¸wò…Zþž,~Ž ¢V¦VÔJø‚úJ~NVn?O¦NˆþfY=_X%HE|™ˆ_XUÂ?Rða~_þÁ#‡ ¶dýÜ%´A,V)Õ‚º:A)*MÓòÔ×¢ˆ8J”1ì `Ä’ÄS‰$âCÉ\ËœfÝM:„ÇÙ »Ì±xzŒÙÏY ëðfŽ_&ƒ,®Í¶v¹z—JuÎìîu=gyÃ?Rgz¦ÊèoK›E¦zn>­iW¶ÕÛ´ZE¥°Ð!û•ðÜèwgîó<§ô¢›‡Ç 7¥3Õ-èî¡ÀçâŽcÖ¬'ˆò@£²Ufmå 6j  Ñ)¿7ߊ|æº:Ë+½Ù>“éï õÍB'bÿÅt§ÿ`Oa6~ˆÙ¬ø¯Ð[Û@oåÖgï­ªÒ†Æú}3Ý“¼(Î |BF'„á”®Ú¨•€©zãÑÉÈ噢h^¾¨\«çÊÏôå¢ÓöÑ+jþEåE~º?rÐTH[«i)4Uó$ôz]^u2, u æ MÀh¬‹êK‹fÄs7&? ù¸C‚뚀pÚ=¼bœ—`c aÆ,üT͈÷á79þ&hk3€©ƒkÒåûʹ˜~f8|ú->޳¾ò·€Igc;W!Ö(pTAeP’‡D€¶ço“¶ÁÝퟓç§(rÄN¥øIŸÝObNWº¬¡¹yÓnú8¥Ê+jñCw$=7ve’ Â0„›†QÕv*A™ô³§)ã§_9|/a-Þâ,Bè- ·p[ëÅHnÃèïL àdp¢Eó5v›ÆÂÕì¯+TIíÓö[Gf‹gr<Çv–ÓLzÍ¡™à•¿=:75à ΉæÍO\ìçѺëhÍË OžèP*χ1kä&oìÎíÈUø¼4Óµ…”»N€âe.ôû8/†ÄcXK‹;žå>Y³*)þ+.ât ºÂ‰¤Ï>QŒ´u›ÝfêühäBÏ%´êOW€ ø×„q´1\-ö½è¥4»†Î ³_$§Û ]ín@})tº]_b*=R6[wæákÿÜÙÙØÔ5ÿ D3)ŽácݱJ±¸ö˜¾Ðî’™û>‡ßéçÝÆÁè fþ£1úä]‡ôÐhQ¶«Ìcµ\ÖÐ-uI¡Û åv+X¡‰f­—£ÑNß×Ñ‘8V´jÕäÔjÖB­Yl’ *\ÊQUu¢pt»‰½€ôvÚ-É[BÐùñ+˜Éˆ¿ˆïy™11zq•‹v|@¿cº[†‹é·ylx—æ u‰*xÝÐÓɸó½çs¸óú‰²á ÷NB…­­­±á=)M€™¡apÐ7ÙãâºO?îyFö€Ãé~8Ñ7xu—×Û—¨)»©7^BbyÌI¦Ä–=_Î]ÆT·¦.…Ôå1I:]îΘŸ"SS/ùG½.²ÓÑEz½‹Ôß6¹”endstream endobj 265 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 475 >> stream xœcd`ab`ddä÷ñ ÊÏMÌ34ÐuÊÏI ©üfü!ÃôC–¹»á礟N¬Ý<ÌÝ<,˜ }üÌÿÝ_€…‘1<5¯Ø9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õPÝçg¦ç&2000°102v1032²dÝü¾†ïÇå†õ?š×ŸZϸã»È÷Šï"Ì?–~¿,ú¦ë{óïÖß­]¿›45z~WoýÞÒû½ê½Üo‘é¢ÝÁÝ-áµz>µ¹ÝéÝÁ ë®4íïþÜ}¨ûr÷™Éû§?¹8uq÷†î-óâç¤u+v[rðýg¶ëcè>ûãâ.ÆŸÉ»˜Nú>C4†­ì·£zÙo…nŽß Ù¾oÿ>m℉º§HvOlŸÐÑÿ»âûZ‰ï lß5º,ümͱ‹-ç{+ë_a¶òúîâÆîΩ òß7þþü{ýïþÖ¶Ö¶î&ÉÊ9ݳä~ ³ñ5Lû0å{Ü‚©ÓØvq}gã–ãb Éçáìæá^Ó××ÓÓÛß3iÒÚã<<»&n1qZßäþÞi}<¼ \É[endstream endobj 266 0 obj << /Filter /FlateDecode /Length 2810 >> stream xœµZKܸrœ{n> œÃ²wgd‘"%ш¬ 'q°ñîf&§ дÔÝrôèU«Çžö·§ªHJ¢Z=0 >ŒZ,ë]_Qþõ2 øeˆÿìßu}^n/~½àôöÒþY×—¯o/^üCrxèPóËÛÍ…Ù¯x¤"½LBð(¾¼­/~aí¾/ëò¿E·ºVB:Õì>ª ä‚Uå¡¿cYWfͺp$²$uÑïÚüÕó÷E•Ýõß‹,~·Zýëöo N¤¦âD\B¥ Òm”‡ÕµHd&Ëì#çì¯Ã ŒE‹„ôC¥¬DhIdÅ ®² ‘I•&)gmg@í:û„F™ <ÚÆPèT±vc©ãˆõ;ÇS&°µÛ–MVÑVµÛëªüÏJ¤Aˆ²xzTåÎk°uaav¹гe¿³¿BÁ:•g¬½á”eG¢õ”¨wŒcÖ·dN2¢—·?\Ü~û ëwSë † ­–°‡•ŠA„(aSªõÔîn‹ŒP¢‘(ë²Ú“«÷~u‡é¯K4 {×”}I†…óµ–NƒËss˜£!Xȯ¸¼f<…»”dÏ>y{ò+´ˆº„uN-òLÞÖ´¡YÖä–{OE 9³h_4ê9C‹ÍâµH|fXŽg÷&T" °oA,Ï„{C¢±öGùl¢°%SrŠ"ÐJQ'Æ”ž~'e'ÖÚä9;ôYׯn?œ–ÄIäªdÏq"‰( %±Tr P˜²w”ŠBBX“ˆŠÕí˜y1uMew€«×+% ±îA~ Œ,xÛge3Í)*7"ä–Ì”ØsMK™Å#Åãœ"Ã÷¬ç-+Êé“”›'ø˜Y2Ò¤ã.3µ ñÃðäÖcÊmó ¯ï­9=¥ØwíPžÊÜÏ wPD¾7ÏŸã{!ÂÂÇú>ÏúlÉõ M¬¿È÷IÌAâ„|/£+;6£©ÙÖ%`^t zãÚt!Ó@€ äNeE@GI%Ð ¨ý¤=`±¹‰dòª`Ûã§¢5 ƒGK‚¬žˆ]kc-” ÔÀ7ì8­Ce8)œ’ưâNäЀŒÂ±fî­šûžØK¶u}1žµ¦ÆÐàÎlP3&“Ú¶3E¥ÇÚë$ÀŽIÏ oå¶…À7Q”$^iI@Ș(º] !@4:6„ [ gÄBÍ`Á‹ÙeKíÇÒ3­·ˆµ?dÛÏÎõ(Š\¯T‹Ýɮׯü2ðŽ Þh¨¿è9ê^T¾£à‘|ÚsÄ:•k¤zŽ”€&Xg}W~²d<1P†ØÎ*“€NSÞw–Ð oâû*ñ|—ø±ßY’dF–âÝ’ÃÁµ €¬ïp¨6©T³ÂüÕO±×/`|#äá #Û N0¶«Ö4‚A——Ú[ ­ lÚMM Wã'áÆa1« Yb¸$Æ%PœÚÍH´ØM!Õù »ÝNž©¨\ˆhŠ­éÀ`~e¯=¡<·÷]ÖÏ»@”"ö3Tîl£DØvÔÅ™›ÞF¢6`;)”^•Ì2ô| ö…8…hi;ø©ïR³j}| •Ž?rËfƒmÌóÍ%ÍLVaadð£!€< ½zÌÊöxÎðգ݆aâÇÌãÙTtàž ?­œ]²éy•;ÁçÑOô¨úÁî˜tu·ºZ9ðzÊÓØ—Д$,æ¹EÍ}õì^åv O<‡s˜ úÖé©)¡SÁ~2?bg‹vkYqyª1t:Y"w"H¬z€"|WKÞ7Xø4/P=Pbi³?ÈT:•h|41‡>JñŒòà UX6à5ŸÍ~’E]{=øá #}$Õ¥Äî"ØŸW)ÚH›ñ—:‚mÁc¿r¶]{Üî,!Äî·M/Sއ³&19„ƇÃ> a+1æ3Clü‘ÈÙ’”z†GOê1E¤›í½iéüÌi 0”VÀ+J Óß‚PÈa<þgâ+Œ`rÀ¶Oí#’€ù$ŠðÎ bU°e^TUÙl/E ^ÖŽû÷º¨p ]©$Üôlê _hD€©Â@óÿ)«½¡Óî+¼Ç‰(ñ}Ð|¶;”ù¹A±³hÛñGˆàaX‹•„°ÑAð÷e]8­O8qV9÷¶áˆi:þlx³»V oæ¯ZÖ§¡lû\V$جŒ|dàÝ%yð’ûÝN@L ’ÏP"ÿâkYg¦ÑÅ‘œ"¤/!þP&Bþ*4ÿ½ø7Æ…îEî|U6=ÌòD[PÔCNJ¨ÔÄJèÕ@„~™±õÖHp6»¯ §b¦ÈJPÝý~¡´åR‘°ðšL#è„a’ŸOe~Wqzjº+ómïÌûšÃˆâ©¼}¢’/Ô0šù¼c-Âã0Dêpëo)Ÿß8ÇáWÀ?¤ë Æ—k"B‡–—ᓽ»ô–fpÔký,ý#ƒ#•A'W6©Î_5–ÏfmÓ`@ÛC=ŸÒ27ÅÉìz¶BTž˜JúÑSè%1|{{ñó…¹#Wq¨drÙ¿ ç`¶r+–KäRé@b1Æ ò?¹«nÉþ0>öźÜ<º«´[Û´]}¬²ñ½½ÿP¬{û;”æNÒܶÛ;I÷£hò¢.×ãÖu[ïÛ¦hzS Mb"Ù›ÿïn9ÂÈúÇk»"@Æ<¿)²CÛ+âÚØH•ŒwúŠý6>ò«qÿÍøúÕ2žèÊ65)Ï)j¿ X§}±£x¤adõåøn⩲¹C n ’°oÇ¥}9î_Ldxñݨĺ=L˜éq—Zf¦³¯¡ÕT=¡›²wæ–Ó “ì'(»¬.Èê ÉÓÖ‡cÕ‡c¼Oã §QüDmÖE Ñ¶ ­Ï™DƒùjT4.VxzººYŒ# ïéTÞÙ&«ËêqqÏs«òó»•õÅL½Ã±®³îñÎéùuÂ3ä—D½ÄÞdUõ«>™8P„±Ý¡?üxÿÁÅU<Ê.OÌšþŸí:V)ÏžÉô³à©=¡iNJ±7m±Ù”ëŠÖáåê› ÎaÂHb(ô6¸°Î¿=Ü#øÇC„)»éó`,[o»Š$5ŠÅý aù ôL"–I ܾHYˆª'|!¨q§W` úüšÀC…¬s­¼…Òá\xŒW-¾ð•b~ (êÛüÁ|j,ªr×¶ùK·E³ë4.®'¦Ã˜ñî &ä1žÀ¡\*¼ž­Æ<|<9Ž~¬ïÍd9ífTîØ”×@#j´ä’§ö›©À…ž-)ª¬‹øl$ƒ(L‡iÍBTàSJ2ošêñ½¦KŒ“ÛBZbvýÛá‘ c>ïX„$Â49Žö|Åyº¯Ô¸©955ŸøÊ¦­éçp‡aæñ¯õª+> stream xœµ½Í³g9n%æuîmo4oÚ ¿ôt=Ý{y?xg,/!­˜QXÝ5á…J‹ê¬¬®”óe–êc:¤…ÿvÄ9૬êÖ„§+:ò?\ ò–§õañÿðï›çWÿøj=·óé|8ε=õýa;ûýtëÑ®§u}øîíÃÿýðáÕþ´,Ûýð‡WëÃ_ÛÿÿáÕòð^m˶>-ÛÃqoÝ¿y~µ¯}ZoAÞ¿úí'°é÷òtlÕúút‹ŠuíÛÓrU,B V[—ÍEg?ÛÓÚ*!«oíéœHR°^J]Ú¡`-¿÷æð€ÞÚàùí‡w~ÿñÍÇ7o~ü^âü­óúGE&#H÷ûOÙÿå7n@ÚþÔï2„1£t>Ý:t[¬63L&«)ޫϤoËùÔ·9Ž10Úڟ΀œ¦ñ‡ã\ÖT±F3:Í Ûv ÈeëtŽíi ʽ=íN§O{Sàæt¬©å¶ÏoGéOû¨j]vgÞÜÝ^9d]­=bc¢¤?9]3|Û=6\çf½ÃPnk[MÙí£ËTò HêNƤkQÕn Р›uðÓåc_QÓq?C»ö§vˆ5¥5ʹ­Æù: —í‡s5Y® ÓÍNÊÒI¦_Þ§«Ç:wcÔ¬µÖÓzhp¼-ëS3©Ö«Ç¿·šVë²mÔmì¸M52+ZÂþçöút>£c6ÅNÆš$8vùnço£T›Yyëºû`Û;ÿôF:† Ûq>]§SÞî˜iO^Õ¶ c¶kñ1dd®§¥äòqvz1Ó½;c {}ÚCª=¸¹ûSsHc‹6·¸NƆT8mµAåü6¶€ÜcT¬Çâí³€‹Ke]~ ©ZkÎØéý¯š âÚP»MTO··×=F™CŽæýh=¼ÇTñjÑçG ÈõtºÉ°ö¨ëÚ]]mx5W§÷šqmBïNΊVa¹‡^ب½ÐÄ»™ ë4Ù ê°/÷“£˜5Šß×ÓÕË =Th7ܵ» ™°âÆÊ©¬´a÷¡ÖöËe÷¢Ù÷ÛixVöcÐ7ˆI€k ˆv¬NÝ!6R/×Ýfƒ'p®õé¼CÛÑïE3}Â9¼òv¢›ö{óÉåÜL'¹ý{ƒÜ®9̵öf-sØ‚jóßw·;±q¸9_Zm¹\s Çêµfÿ|HØÀ„zûX,…úb|ø@2Ût~ò£ÿWt‹-ç†ÑtõÝ×€˜jñhÂŽºó¬ }t_&Ù@Š4a3×Ö vfªÇ˜X­•ƒÌ¹„Í\­Ã£ªs ›™ªy®a4W Ñî&ò0š® mP¶Îw»7jïAǾ_‡a¸`OkËÛé˜95;ÛélC¼éÞÛE]ÏsXM¯*¦‹ÓtɆϣ!ÃFÓ•l ”Fsµ³GÝ6ÿnMÕÃ.\Ë0š«7Ò€ËuË:ï€]¸Ì^5ïwÂÔè†÷Þb6µá&å¶1=fS)è}Œ"mÎ}†á\}òBÝWNÇ Ám‘‹©”6ü¶9PSi|e“¶Y-LÃmsà˜8M%ý›fÛ ßêä¼ÙC3©œ3 a7WkâcL ÆLºŸOÑÂjjMÑ–=¬æê kÃnM~ÇòÅf_XMƒÀÚ5æQè¦Ah4±´3K=ìžib‹åŸi×ó(uÓ cbSÛ–;¬¦¯?†±·<} =šÜa4}¨ ½knöÜhJ7mq0š:u³­6r"íA¸a¥é6$ ûçºBp7Ãë=4±yÓ.GÑͶ†:c±ÐÜ¢ÝCyO4„·uÊÛb~kÞÖ}-3§­]Âd6zgTmÃ{Ì¥¾ü”m‰s©µÈX/˜¼a3}y´Œn°%âÓîÞ±Ó¹ôÀÜ`-@£Ùc&hÛN£ÙC9šÿ¶…¥üùyØL«{XH[[mnÀJ|b¶i&½Å nn08‘¶¡ci;ÈØºz Ù-س)0fÒÌØ¨™ôX1Dm ›9æœ+ a3W[ƒ²É0l¦Û€@ia2W“eìbšo2ÆLj:µÆG¶3©éIBŒÝËú¼œ¹cÞ\±°Q6*Íy³¹¾Çºw4Á€Ü1“rÞ´ÊÃfz]1ÜÚ=l&çM[ã-cûáËÞa‹ &Ó—1–vã‚3i4×¾­Ø~´0™ “é£#š}·9°õªœ»ó>º|õ‘8 a2}tÜ£½ö#L¦­mb=E§Î]¡û&3Õs7û7æÒcìkb“`L¦°ˆm¿±Üôù6j¿±ÞÜÆ1Èaš»Pªçá ²±l]¢8D6ß]±l´¾ £ÙN¬l)FÓßÑ1Gó­§M›glÚ±‡Ñô00Žð‚hOjËä0šÍé l¦Ÿ#PÌüYÓd ©¾`ŠYÓ ×ØjØr6ÝÝ$ÃhrUk; ÍkjƒÀhR9mDcïY³Ùo1rÖlîË8ö²á4k„¥¦ëmÐÙÃjº‡V¾|¬ÊyWL£fþúàøŒ~Z€+l¦ö›écû1lðhœÓeÔœi«š5fQ®h ÒcµñæúZÂfú“ǵb™¹±–7ÈûÏvÃB^fÆŒ-ͼÚpeΆ1|ía3}6Þâ«=l¦¦ÍË~òí‡ÙúXÙÙhYc"5c°Ž;YÖ²Ûl×E£¹ÆŠ§]=Œ¦OÑ —ë¬iÍN1(Ö•ê¦ÃEcí_õ%¬fªf_Ãj¦j“jЏBÅ»}†_ç ¦(ÃgcäÖ ³c¡i³FÌCý«éÛë°/ý«é–ñ :®^c—·£ÿºñuø~öX˜$¬&¶Îéa5sîì÷è“1 VÓ 3,ôí^©«hç½£™³ë½…ÕÔ’Ö a5}÷8ļ}7|ÖG¬bàܾ›«Œ%ö|¶7‡É´ŽõÂ}ÂdJ5oÓ¥˜H¡š·Y•-<¡Îw‡Á4Ó½rßXcJ3ï; ¦ëá06„Á”fÚ²‰¨±1Qä{ ÷Y` {¹‚†5ó9ve06 {)?о¸ùj±%<9¸È„jdØKí5÷å<å®9‚ÌSš¹/îp9Ëœiëi-й/wL)æ¾.a0}ó9ÚîæÀ7®uAfx¬«Wé_†=ZƒLøOO?4J ƒévmlƒvgcL3¥KT5 Ã‚‚Ì1tC›Ç$º{K¶«èå¾Úä×à‚ˆö[¯0˜¾\Ú‚ã8»°i ‡jäùýúß¼úËW¯¬ÍNýÿþ²7×y Ÿ+½¹îþ»Þ\ÛrÇN–Î\w;Å”ÎÜ Þ^xrmS‡ =¹[çÖž\‡À# O®þºr}\ÂãJW®{ÃãJWîÅm"\¹nµbOHWîf†¨Ï®Ü»;¹rMåÿ O®CÕôäšùØSÂýÊc·NOîê:¾]zr帀'ו7ðäÂôäî >yr}Ü­ O®/¸@Oî¶¡!äÉ]é(“'wÝèp¥'× 8®ôäºÃ,*§'wá¦Už\³*±¦'×ðÛ“»@gÒ“»Ðé.O®ÉÒ&Oî+îtä®cJ{_¹~D^P:r·+ö0éÈm ÞJ9r÷5f¥täÊ¿%G®uk¸0åÈu·L8`áÈõN<ƒ2¹îì½ÃÙKG®o:€~\÷2ÄGôãºã,Ø¡+·Ñ“AWnª&]¹©špåJ3éÉMͤ+šI?njæðã¦ZÒ›jI?nª%¹©–tä¦ZÒ‘›jIGnê%¹©—räJ/åÈ¥^Ò›Š)?®“~ÜTLúqS1éÇMŤ75S~\i&ü¸©˜òãJ1åÇ•fÊ+ͤWŠ)?®S~\)¦ü¸RLùq¥˜òãJ1åÇ•fÊ+Í”Wš)?®4S~\ª¦Ü¸RMºq¥™rãJ3åÇ•fÊ+ͤ75“~\)&ý¸©˜ôã¦bÒ›ŠI?.õRn\é%ݸ©—tã¦^Ò›zI?nê%ý¸RLºqS1鯅bÒ‡›ŠInê&}¸©›ôá¦nÒ‡›ºInê&}¸©›ôá¦n‡›ª)®TS>\ª¦\¸RMºp¥™tá¦fÒ…›šInj&]¸©™ráJ3å•jÊ…+Õ” Wª)®TS.\é¦\¸ÒÍpáJ1å•bÊ…+Å” WŠ)®“.\é¥\¸ÔËôáR/Ó‡ ½L.õ2}¸TÌtâR1Ó‰KÅ”WŠ)'®3½¸ÔÌôâR3åÅ•fÊ‹+ÍL/.T3¸TMyq©™éÅ¥fÊ‹+Í”Wš)/.5SN\i¦œ¸¡™òàJ3åÁ•f†Wj)®ÔR\©¥<¸RKyp¥–òàJ-åÁ•^ʃ+½L.ô2¸ÔËtàR1åÀ•bÒ+½”Wz)®ô2]¸ÔËtáR/Ó…K½L.õ2]¸ÔËtáR/Ó…K½L.U3]¸TÍôáR5Ó‡KÕL.U3}¸ÔÍôáJ7åÕn¦—dºp¥›ráJ7é•jʇ+Õ”Wª)®TS>\©&}¸©šôá¦jÒ‡›ª).US.\©¦\¸ÒM¹p¥›tá¦nÒ…›ºI®t“ÜÔMzp¡›tߦnÒƒ›ºInª'=¸©žðà¦vÒƒ›ÚInj']¸©ôá¦vʇ+í”—Ú)®´S.\i']¸©tá¦zÒ‡›êInª§|¸ROùp¥žòáJ=éÕvʇ+í”WÚ)'®´SN\ig8q¥šrâJ5Ó‰KÕ”Wª)'®TSN\©¦œ¸RM9q©šòáJ5åÕjʉ+Ý”Wº)'®t“NÜÔM9q¥›tâ¦nÒ‰›ºI'nꦜ¸ÔMùp¥›òáJ7áÃMÕ¤7U“>ÜTMúp¥štá¦jÒ… Õ¤ÿ6U“þÛTMúoS5é¿MÕ¤ÿ6u“þÛÔM8pS5éÀMÕ¤7US\©&\¸ÒLyp¥™òàJ3éÁMͤ75.ÜTLºpS1å•bÊ…KÅL.3]¸ÔÌtáR3Ó‡KÍL7.53ݸÔÌtãR9ÓKå”—º™n\êfºq©›éÆ¥nÊKÕL7.T3½¸TÍôâR5Ó‹KÕ”—š™^\jfñâB3åÅ•fÒ‹+Å”WŠ)/®3½¸PÌtâR1Ó‰KÅü9'®;p‡óÖ×õFsqÏÊ:œ·‚ŒNÚ?Šõ²q¶r¬ÅQ~ãîÞm a˜õ?+•Gã @bo—üø¸Öeÿ‚\ƒ\’Â,Çró-J× ¿Ãs…Ü®ÊVñ"Î9Êá¹Fy° ³O ל½PPyÔá_2ŽR’‚ä£ÔåQ¸ †¸…YgCptõ2âÛž+dxÀ¬|) du{ÜN¯¥†(Ö  Ӡ0 AÉ®°ÉÛ0bÏÒÝNŽ&¾qtdæH#({ŶFÜ+Æ9N¯’‚Ê£Žñ ¾ à+üVêˆ2:ú®ä’f9 ܘñmEÖB²Ëß=0ÖŸf™—Á4OwFy0yÅz¦Ê­|bPwtZŒU|}›ä£ŒîGÁfñuá²X8Jk³ÑÏâg¯hök”=‡ä!S ¢¾o‘¨n”ïFÂï<³å8“0ÊèÚ³ _ú|⛲ô1-–•‡ X7Ü#¶2×8¸Í•‡»ï–‚áë?_Ö“B–¹òëQຂuäʃ\ƒ\rå1Ëá¼údå¾ï˜HaÃyVÞ×®wÅX·8…,ÓÊ - °áª#­<¹ •'—´ò³!œ·Ùˆ^óc¿Ý…KȰE›/ð#¡ªûþHÇé(Vc#š7BOAAåQÇøm¸Ñ’B$udQ .ˆA.Ia–ƒÂÝÄó!û\§/²­žJ: ¯(zµÛP®D0 1´$ ²×0>ÀnØÜ´œYCGS€"E˜d€\SÖ ‰•¬çKm¹öU€C®…=õª¶t;+•¹NH¬dE+]Õ¡µ°¸ †¸…YgÃ3\(T·„@Y|CT• ±EÝÚ9bØêí¬T–ºBu#ª뺉 bKR˜å€pƳUC™˜9B+0†C鑜WÁ°ùó([´,ËPBCI 0ƒªC†R\\’Â,…»bçž='Û} ¸ú%΃³ãŽ%|ÒD8ö𹑀Êê8BØì¤ÀnAÙoäA= Õó“mÇÁÖ>Æý2Ò2ø/Ê^ox_ã>ã°PD ãBÌ^<è{_íö¬ Šèâ³ü.ŽãëYHemuM>A°ÏòÖ=Ó‡ÃFmÓFª]þî~Ñ¥øxTÖ6-!±ÉlÂTƒ¶ibbf! ™Ií{;÷w_a?ñ™¦E{ÙõL‘˜(Vϱ£LŒ;\¢  rÔ1¾ d„O$ŸœjQF )|…rP¸q SWÿ‚ÄÚÝ[y?rm Ò\üok+¿Ú‚®ïåk•¹òëöø‹zת_µsÕOî¸êŸù¡¼­ö»ŽEA8˜<*®çXC\¬ÆâæÛ“òûÖ⟳œcQI"€‘¦4Å1Ä4(ÌB@2Û+ MÕX„#i½Æ¤ª‘†ß2·qãFbXÓ][¡ÀrŽEA0Ic‘uh,Š bˆoP˜å€p[ÄÝá!kÛHS,ÂEä]ÎÓÜ*F»&UU¹wMj" u¤päBä›Í3ÉAá.÷oúÉF¿C¶øÙ›×ºúÀ_ü”nPÈ5Ê^éîW$$Â>’`ô9‹A~à2N–õ½í«mJË ¢<Ú!8 ùÅçûÉt|›V ‰5Ÿ ×ÅkÕè‹€z ãg¯ãP‘Tæª1!±æ¬ U‡Vâ‚âf9 ܾF„—üß‚À…½íG°ÀÃÍøt{ÂñQ1<)ý*X–E/ÚÉxìc¤ãnWH ,k'“؈ˆ6*ªC[qA ñ ³®G\Ué²ÎH+µøy”AîNö˜-ZׂЖ’ã{³ÇmŽïÙ#A?; õógñ«î¾Ž—æ¦õTF€8Xñ¦7©àÔ…éGy,ãa¨KÁðTØz4“ežÎÂRà ëÈr!Œ`’f! ØqÁeº$&[oÛ£¸p”G¥éÚãi—Ša븻RP™ÓuBb²LƪCÓµ¸àt-.1]Ïr„pÞb>Q挖˜Æ¥NÅiÊ”°œÑÚ:®H [Ç §()¨ÌMÌG¢€ùJuhFÄ —¤0Ëá<Šy­=—¶ûËêd·eÏm ±‚ÀðËy Õo Ûø9»d·‘aÅìø"%»Âw+ë(lÛØø¥5³ôd}ë×+†o=‹ŸGeYÇ„„mؾ̤uÄß 0Ëáüö¾i¶s­§—ûàç\̄Ü­ý¾¦«bx`Z/XÖl˜kEs±êÐl-.ˆ!¾Aa–ÂùeS[5ý„Ðt·áð°ìL”íoÖxWÅØ{¸DAÅbûæ›ßø³r ßÉq|= @©zfæx$„£Éo (³µò?s<+.’†­äŽ:¢YÎñ(F)p´±Žä‚â›#z’ÂYÿ­ytò\!áÆnžÉ¶§›[©¬r„·£?•X¥fflß •é^l€“[5È .ˆAI`–¢ùFa:¤´ú8¾c¯0'7ûÍ·'Æ™¤Àrö› huR`¯°Žì7rA ñÍžß~z:ãi$ÃÏ©ØÀ„DdŸ7òH³Cä_¦36pÜ×V1|N«Tfl !Œì#Fþ±ŽŒ $—¢0ËáÎÈýÉŒ„Ä„·r?ó|B©Ò:Áð”™V1lŽ‘´¤ 2Ï0Á„(àŒBuèC\ƒ\’Â,„óäž©ãÈVï¥S˜òÝfë×Vîå©v‹ê³¨ÁãkõGç•M걨_Á]íñ—¡œÞPÃ{Ë€ŠD<„·¬yÆK0i=#*Doã½ÄÙêzy!w¿í.îs!–å…LHøE>FÕ!/¤¸ †ø…Y·î±ÑÓ¤-¦Ü}혂cJæM9iû£w+~;Yq®¨¬I;!1劦dÕ¡I[\C|ƒÂ,„³Ã>…Õ%$ŽÆöm\ª¤£3ÝŸ¬“µ½íq •0zÜMG *ópM‰ŽÏT‡ØÄ1È%)ÌrP¸ŠËY aÃw¿> DÍÅMКö}9þlkº³ÕeS€0à"ôeÿU=&{ü|â2µHèMû/­·ß€P"ÄuŸuÚß T [ •Ëiÿý'XwÕ!û/.ˆ!¾Aa–ÂÙ~akµÃ`‹Ÿ1DzGx3wöÙqÄЏ#Þ’TfŸÀF'v «Èn#Ä “êõ*%»ã8ùëî¶ýh1ŧ;Æå°Ûý:íŠqžqI *ÓaGým¤@wœ®¿‘ÃŽ\\ŠÂ,„ó<êu2ÿ„ÐxŸK±ì¼b'mÿ÷‹Á¶$q°˜†ŸXm|M£NòiöGíüYÌâë™yHt6\Ç'³(Œš5íñ4z¼î=Í¢'TŒ¾„–T–Y$„Fhôæ+åÑÁwÅ —¤0ËAáî±»Ó(2œ£}Ìïw‹6Ã…G(VÛ˜l„a]·U *p£$d‰µ )„YG”ÑͽbˆKP˜å€p®„ö\!±ÍòÏ{I!ÑÝMÚ¨yö~«÷éñ¤ 27j‚`›% ؆©mÔÄ1È%)Ìr@8k³~NÃRªë©NŸ…ªŒÊ{\-ŒcYã²VÈ2G¥ S¤À1Ç:rT‚ "G˜¥€hÖb®µÇº¸ÜÏr¸ÿl´±Ÿß~ù¦›"ܧ…òàÔïÂá7ØïI Ë ÜD‚,#³[ܳw•¢Œ~<<‚À )(¯vçþ:!±Cö&>Ê[7ƒi‡í×C,Ã/ç¬Tæ&›n“I»hÖ‘ÛlrA rI /äá¼ÉÎŒw{.D!y#—¤HÝqÆ &¿ç¢$UX”Ÿ³¬ ¦„D’ DI5(ˆI,CLƒÂ,$[׸P\+-A°Nò5&\¬£xY[®´Û¢ÜF°‹ËZi%$ÖI¢€u”êÐJK\C|ƒÂ,…ëãŽW-GˆµÄáY÷åp·Îåjäð JŰî»Êña–¹!„k RàZC/”h5B.„LŠÀ$3#3æÌ”LŠvדP]ŸWEëáw!†-膟†T–h€¤hIq>µRD»ëY©¸…Y×6\Ú@K’ØvâAØ ¾è’–ÄG&ŒNXPPY–YP%ámƒiIÀ…0À¥(ÌrP¸{Ì™Zü' –îÇéø\ÚóNÃ\üG¤ô ㈔QP‹°t,íU…ÿb‚d’&) Ù~VÇîs…ÄŠâ°MÆšáîzdGK’Ó *‰ðuP™KA° ,8X…V$âä‘f) ÚÄzù&äF½WÍè*ÏñÌ÷8‘ÎOŒ éþ¤ 2O}²@zPÀ¡®êб¯¸ †¸…YgVzÉøÙçáää÷åi2Ó…™9·]-n>Äï×…`r|ÎrÎm‚`f"Î\¬!ç6² 2 ³”ì ••OKx¤¼‰ËaÞü)Ÿ–_ÿ´WŒ¾Çž¤À²|Z ”(Àc¥:äÓÄß 0Ë᮸]&Ï| Á‘­72ïkò]Þaª#_¿ÈªU„{ |bù&dÚò{邾N|Y?¿ññÌ>dê‘P_†"!K=Rò9Ô:ïäPô-JùýŽœ}ÎrEA0H€5äP$  Ӡ0 AÉ"›¾XA ÿ~™d‰æÑ}²² ~©ØV0Î%rþI!Ë´ ýÚÖ‘„\C\‚Ìr@¸;ê‹p‚P¸HÉOÖ[ ‘¬ö$c3@¤ýK8•%œ ®×(˜¬£.$>¹„p³!ܸÊm­#‚ ìÃ[¹D¹ó’ߌñ›ÞÖŠP¢N¢ €#Öƒß!D„,š‰ VñýÌ:剤úœ¦³¬7ì±ç,Ì;Šsžö‹ê–Ša˸»RP™ó´ ˜fEÓ°êÐD-.ˆA.Ia–­‘TŸDXk`ÜÛ= o[–9·Hìçïþ^Sýœe„„ú‹Ìƒj ÄÓ 0 ɶȨOsO̵¿:½—ž¼5šöþô4ƒ ãÆÕ|AÅ´÷ &›ßà³|rÀßÅq|= @©">-GB ÷þ,S1 ¼ù: ‡§TñGÊ¿¨,Ã! )Ðp°2Añ³­Ååj™a<÷ñ¹By‡wAžžaPŽ6Ýâ‘eÆ@ ‚F@€£jP¤x y$Y ˆæ»ƒû¡Ä.%$BÎ}¾@—‘+véô=IÅð·¿Jo–¼$bD±Iyá9£—Ä1È%)Ìr@¸#résÑ(–|§Ùñ1«bI¨‹Õµh<ýÁ•Šq^¡ª¤À² ‰%Ÿ(`I˜oprÑ(.„A¾Aa–ƒÂE6}±„ÐÀ‘Oûwê}ähRòG^ßs^‘YNó(Œ ÐøùlZ A,ƒÀ,äòëL«Ç@€ØîŸgñ*ò–ûôœž[Pz$úëk•é, „[} '@÷èËWpžÅåæôñÄ<º<Ÿ£Ž¡kŸÛuSŽÂŽ~bô¾PR`9G¡ C¤À1Æ:r’ aoP˜å pãÙßâ½JHøž¼}{9ä£é½ò»g[Ÿ#Å_T¦÷ŠúžH¾)Ö‘Þ+r! p) ³®ïØÌ©ç)íÞË–2ßOPÏÝ›ÌÀðgä·BAeõ\BÐî¤À~aÙsä‚â;ûþ^_öÜ9ô¥çÉvÁè<‘çoBäù“@–Ùq„°ÙIÝ‚*J¿õx¬=_¤ h‘HŸ§N ‰C#o㳤WóQ‹Z~KóZ–b×¶áuPP™ ­„Ä:I°ŽRZh‰ bˆKP˜å€p+^òÒ¤&¦%oåñLMÌZz1š³š_7½ÔßïépFeÍj ‰II0i©Mkbbf!(Ùçãr ¢®­áõ×*à“) :¸ümµŠÐ"ã_XVÜAB"t@ZÀ*x ˆ ®A`–¢m‘Qï)ÛØÏ2—?û0 fbôòK“#÷Y¿ï‘ñß²¤[ýÉG?¶%Ò¹êQäQ=1Äm˜™‡D-Òèó$Mœƒ]-ñyN¦GÈu’ví‘Ì/Œ#’ýEe¤%$ÎÁDçdªC'iâ‚âf9 œ?ê}Õ°NA•y푈ϨM>Ä“q×ÉüÂ8®)0TeÅu&$Â2Ia›z³]ä"1È7(ÌrP¸‘O¿ÇkÝÏÐÇy÷uŒlü=šR ¡ìµž#Ÿ_Ö{gùœÅA~  9Ô×Ûð>%ù(fˆú‰îøùÄ=$:"‹¾ŒEB4’"_#oÛçX<#—_þÜp¥ÀrŽEA0’H#uäX$Äß 0ËáÎÈ¢ÏEHB°†°MŘU¹ÆÀóNebÈQ1.„­“‚ÊZ…¢U(hÂ'¤´ !‰ìR˜å p‘E_L>!´Ø×É ´è|ª*m¾çl£xu XN›/L6)Ф³Ž4úä‚âf9 Ü5OfWÉ |WžÛ‹;ŒýÉ…½Êm»©V¾G1e"€"ás2Ì ŠHÁd®sØõ“ ¬¯ñ¢µÖ‹ ÁjÏ_ *¡q|2¬¬md´ ãŽáN *k½H׋¤Àõ"ëÈõ"¹ ¹$…Y ïx”Ù™1úK¯çì‹—Ï4;ûË[þÞ=nˆßª Ù9!crÕÇœ{I=ggVO q³óÌ<$º#eþôGÂÈbkËaV­i¯QÞ}ÒÑëm(FïáRƉý¤ rÔá_2žI Ç8Í:¢Œ¾ Fò^ÈÂy“ù¼˜ae ‰¨0oãǫ́1>D—aeþÉZ1¶Èí•W&ÂÂDacªCeâ‚ä’f9(ÜHŸ÷Wݶ+dàvÀÛØ‡üí—xŒräç£< ~al‘á/ */d”xÜ=)x>o+uD=}T 0I“ÌÚ˧ÇÛß¼$!#¬|´°ý»êõ4 Ê^m‹ ~a´Èð•wÄ› ²Ž·Ê’Âꎸ¬bÑËGù,òóYH¶E⼂\!*}‹Ì{†°ð…à ré-²÷…a ·^)¨Œ ¢"aQ rÄ “¤0IÉZ$ÎçZ1!±Úë-Rï¹äS¹Zì{¤ï cÙý"À"—‹`½§Ï±TZ/Ša€ER˜… dÈš—‹ !±Áïþèù‘<9™‚îIá@j? ¨LABb/ Øÿ³ 9ÄÄ#ÌR@´}Ç›´t‚~ß{9Ì·3é èîˆË°‚~FZ¿>gY‚„Äö^°ýW rˆbˆiP˜…€dGëÕÌ|Â8eógìZAX—z3³Š půÁ´È§X¨_roÓÅÌ/ T‘:_&6B03yó^šÉô ³&6‰o+¿¯Nçç,kbKHLK"€iK5hb œØÄ4&¶YˆÌ›ëêÕŒ$$Œ€·o Ð{Ò2#þ¨` Bð%j} *Ë4#‚ÀˆŒ„êÄ —¤0Ëá¬Í®ÉÇ#œÞÊGñuðiìô†øûˆkññÜ-ÒûEeùC. Q€¿CuÈ!".ˆ!¾Aa–ÂmK}’î¹B"lÅ[ùȨ>òa/þÒãR1š»ò{õBbVô9bZT¢^È–éͼ"P®xu³ŒHA0žZäÝk¼ñ­ò‘¶G¹+†­éz¥ ²F$!O¤ÀñÆ:rD’ bKéIç;†^£ËApØÝvØ1½º®è²Ûw)ÃV qAd@1£Ë2âÃø=¢ÇX¢ËÈÇñõ,¤Ú#]¾t™ lð#N Ù!|:>»Ìv(}ˆ¤~QPY]FœØ!zž^]F.ˆA.Õé“®¿¸ Y„–ÞG$Þ3îô>¦{Uï3Òöõóiýúœe§&$âKEñ§Q¢SU?Çø|–bù‹­5z‚„>ÜGdÜ34â>#'?ƒ'ü9γb\‘Õ/ ,+x"!ú P žÄ × 0 ÁÎÈ—/’BÆÎȸOÆ#'¿ˆvEÖ~bÜÓ*Ñîéz Q ã¬#E#ž|³q&9(èsF#„óÑÕ¦ šïëzqAóÝ·é‚æ»#­ŸXÎMÌG¤ÀùŠuäŒF.ˆ!¾Aa–Â]‘;Ÿ×… ~ß6O›‘qøíçC¹0üö,‚ŠqÜ~~’î  îûÖ׸\ôu_¸8 †X…YÈÕ#m>£ær AÏHe@`Ü}ÇÛs œ»ï3ŽþÒ–%rûA ”Û&ƒßH±q¨"#çȃÀ£ÌRP´ûÅõÅ„p:²î9Y¹Ï×7½¹ÌxV¾ÊõÅ*jÂ)Ÿ‘ô=ç+Tó8àïâ8æ³YHuŸõYºç ³ÑhÝ+ç/+VÊù¬ùÔ[Ű9§¼ Uʘk³QRˆÙ*ëà|–\p>#—œÏf9†p£½zâIHlFF_ŠÒ1>âkîeš¿¥½•ßm±ÖÏYæ>£@ÆN$ ÄN%kà^&Y †˜…YH¶Fº¼º­@²ÑϽvJ¤ä—n3K±VŒ-rúEAeu!ì6R`·±Žì6r! pY:¾ÈAá®1WÊò'$ìöhå#Ov›?¹!4×W¤ØËœ»Ý¹'ƒoÆï¨f÷:e°œ_˜kR 9giðÉ1Ä7(Ìr@¸9ò¥ÇÉ&¿{í‘^s’«­f%7_Ÿ¶«PPY½&šØ+¬#»\ƒ\‚Â,…‹yÈé­<^5Ž¿æ0{0Š‚ÛºD¦>1üQçq#(d{‚ ¤Oò§:(.„.Iá…ÎÚìÎEùs…À¾ÝHö‡ýó]ÊY äº ÙŸ+’ýA Ë4‚À¼‰Ì«HûHhÉ#íã,Eˆæ-6b±Xœ m|Ý nþ³k‡‹›W¸U Õ¹R`™A¿2‚EaêCÅâ"1È7(ÌrP¸È–W´HŒ`ÑÈ>ú Òü f×E‹ØXŒœ}alñx(¨Œ`Ž„D¸GRˆp¬ƒ#É1È%)Ìr@¸5²åSã}YÇç©O[‹ëKSã¶-£EN¿(¨,D Ô'Ö‘G.„.Ea–Âm‘:/ßH„kÃ[y̲p}øÌãà’΃±½Æ]>Ÿ £—†>„ËC¤åQåÂs¢0³O™zL˜ZD ‚% 7ny¹ùãËÛ´ˆ\÷ YˆÀظ_Ae-"K@QÀQuh).ˆ!¾Aa–ÂY›õZƒ'´ÞÄ1ËÆnsrkžøV‘ºO £Õ·BAeœÁ&$Ni“Bœâf<æM.ˆA.Ia–Âù†áª;š„ÄždÝÏH‡Ä–e²§Y#J£`Ü1ìIAenkÁÆD°oQÚØˆ bKR˜å pwÌ™Z! ‚%®.gY©— e¯ÕÓ òg[5\å[µ: –¶ü+_×Ú˜•AÜâû™{ˆtŒ•Kí/AÐÚçYìsÚ€®¾®«?_‘ׯÏUVg¦&vÅ9mAU¿úü©¯' ÖùòŠ Oˆ¯×óB˜·Ç6où.Qሄ}þî8w~Ëc¶ ÄÏjóãˆùNêŒ Ïê‰!nƒÀÌ<$ò%eÞq÷\!˜®H³× uõš™<m57¹ùÎGYwfYs š@A3ê(s¸HŒàRf9(\dÊ—¥!\ÙÆbÉŒ¬æO.÷š³ÕÖ;Òõ…qÇ[u¢Àr.­Á´pBei.„!¾Aa–ÂõHšO£õ¾“p#á_ãŽ|ÿøy¼ÞœÁ Y–ÍH”ßÓ&~^m YÅÇçæŽ4ùÜw ‚]£7ë]v•þÖò9í;·e¯4¾¹•}§ÊÚw&$v¢€]¥êоS\ƒ|…rP8¤É3Ú1!¬8Ú·gxcóç–GŽ3ÃÍL­Ã·"Œéý¤À2c dÌRI!¢³Æ;&ÀH¾ƒÂ 9B8o³â¾}.Òî×Yúem5¶g°ÉúÂØ"™_XΞ=G èÕ¡žÄßÙ÷“zgmÖë"X€Õå<°ù[Ëå4pð‰T}aÜá§'•¹&„+YRàJ—uäZL!XÔ÷“«GDšŒ‡ 4Ö¾§ÂâÚxp¹„͵͖¨kù½ÃW¨ÏYN "H€P 2!bbf! Ùö"Ï¿@ÂAãí[òü›¿·<åùäŽøbìSž)ÓÅ“pЈ8ªC.qAŒmÊó)„³6›.aNHi÷ÌóoþÜrÍó7@Íóoþ€sÉóÏrvÛ>åù'vÊþ"Ï?Y †˜ÎŽy óh°cÚ™ ‚}•oâ%ÆØwùcË[ݘù~á®¶€ë•ËÚ˜%$¶U¢€m«Ð¾L<A\ƒÀ,DÛ#U>¿ 4ÝGäÚË´GÍLœÞ57¹÷›+–Óø ãO 4þ¬#?¹ †ø…YwDª¼Â A”€ïËÈÆ×®K…lsX1.DªƒŠffÀï#Œ@0Ì@ðwq_Ï@ª3räs+ØoÖ[&•4ŸT–šTÒ|Z¹*Æ™ü¢ 2·Ò‚`#, Ø(«m¥Å…0À%)ÌrP¸«úpŸ+$Öë›í,¶âöÇ–ïÉO¼y6AÅè#Ÿ_Xäz.Öù9ó¬ —ûdA`Qf! ™ÙÊm6"„ÐØÜ^Λ?¹Ü'÷ޝ@ÎâÞñ'œâÞQ9­ˆ 0¤@#Á:ÒŒ bˆoP˜å€p¶GpŸfYŠ‚¥„¿ÑÊRÃ_]îÓbäÞëûÍrÞ+•µD‹ PÐZu”ŸHŒàRf9(\ù2gmA0çZ+ßuN6r×4k7[¼îßrnyb)sÖNH̹¢À9™uä¬M.ˆ!.1kÏr@8ÃËäIMH¶û]ü¤þìò9yR]³öбFj?¨È~€ÎÏÙ)¬ tXP·ÅìøIˆÌl\aÌH÷‘꣉ýÀìm<»\ox4Häï'Fä÷‹‚ÊEOH«'…fÏ:íž\ƒ\’Â,…ë1cÊN&¤£¢È§ôg—zÉFk[dò c;ë5¥LKI )вŽ4•äBàRf9 ÜIô¹i[.oå«Díø³Ëû×Ó¶HåFkõšŽ,kÓ–Ør‰¶dªC›6qA ñ ³n‹$ú<,LHœõµX{ê,°Åú·œ¶©üÂØ#Õ_Tæi¡ 8쪊 bKR˜å p#>ç80AyçUzÍý§-WŃÏ6bˆ°G¢¿¾gY\Bbz"Ì^ªAóY 9Æç“ª˜3%!bkÁ•#ù>Íß]!æÌ2V÷áuF<Q`™ ;²B|Pˆ”Ÿ¬ƒIAÉ…0È7(ÌrP¸H¢OÏ pÝ´¾!Ø{xv<µWÏO»WDÍÅï¾Z¨Ÿ³,ÏOBÂo#ðë¨y~Ä1Ä4(ÌB@2¾Ó…Ì ‘dw9îlþèrŸ‹,~üìg&åBæ,K°„P0 Û¨ Èu×#ÑÂ2Ì"@®;ÒçÓ3BÞ¾cZ…ßÃ_\7È3²Û²uŸ0°XLÏHB†oƒßÃóÁ ä!ø=9_¿€REÞ|•* bjC– yÆãr)ÕºÁAŒ5’ûIÅ"• !¾—TQ¤"’ŠCªI€Êêž¶Ÿ ‰IÈ[¶—Í¥?²|NÛÏݳ *Æiý¢ 2§±„Ä$$ ˜¤T‡¦1qA q ³nEÞ¼–ú‚`¡î Üsïo,Ç «\éï[¤î¡Eb??GQË|bί±„y-òY?Ä0¾Ÿ TwÜh,³!ßš÷¼Ó.lsâóP®Lü·â”øŸå´mJüO0 ªA†C,CLƒÂ,$³B‰B.¬d½}Kdó7–Ë»ä^ñ¾Ô—É­¼×WŸ²¬µpBb%+ X骭…Å1Ä7(Ìr@8ß\Õ’pex+åHÍ£þFäµ|!»­T—Ša“óð’‚Êô†Bg)ÐÙÁ:ÒB.„.Ea–ÂíË| sB8¨ö½»û#Ë[=•ß2‘Ò¯/QÌÑH†ÒQG" çHDÅBX¦ùœSœëÅ™Œ F2í9ÌŽ³¦&{½çR““›?ÚÜ˶N刂`‘‡ëÈH.ˆ!¾9”¯ŸžÊxLÌ>¥\$$²û„,týåuJ¹ð0ž^1låvU *s),²¢€…®êÐRX\ƒ\’Â,„;#]þˆ?Ÿ äÏZ9î›W/_‘’ò`5’ö#’úEå¨c|AHûQ°°o¥Ž(Äß 0ËAá"i>ÏÓÁiØnŠq2NËvÏXëyÚîù£G^¿(°¬ó´„Äi˜(à´Luè"`aÿæ²£ùË÷”R²{2AA¸‘ØÏïUÖ*D¬!@€K Ö‹°@2ˆÏ' ”í ¶)25!*”{–ùûÊ}ŠLÝïHÛOŒHë•yœ&ÃD‡eªCÇiâ‚ä’f9(܉RV’Ú8Ó˜%ª›¿¯Ü§£k¿ tÌ6ÀðÛ@÷âÓSYV2!aãD6u¤•$Äß°’³Χ»Yס¦X+——›?±|Mºv,‘»/ŒµMÚª²t-!¡)¢MR©k䂺&¾¡k³!Üáû¿åÌV)Ï*^nNGûºÓ¼÷ñDJóǕݱ‡ò`ò{-aøƒÍw¡ ò†e® 爢J Ö0K/uD½Ü+Æ`‘Ÿö)Ð=¦ÊL¶HH¤JxËúäÊTŠñ²ò]“-›GZÅØ"§_Tf²… H•¤R¨%[ˆ bKR˜å€p¾IèuN3’·ï•sXó§•­ÎiG‹Ä}a´}¸bDeÍi ‰I0c©Íiâ‚âf9 œµÙ˜*ýå‰!ûØ,Fs«§z¹Eb>ʃÓHÝÆ©ý¢Àò¨Â?`sïFØÆ+’YE”ÑÓWÅ× 0IÉZ¤ÌçîSl½‰Ë=çÍ_Vž’ãO!¨;"ÔI€em@;HQÀ“Uh*„@®A`–‚¢E¼ÒÇpª ÆUäH÷—•ÇUåJ?ŽÈÚÆYý¢ 2ÒÇ@ò· 9\U(}\LƒL’Â$$Û#[>; 4Ú{£Nõ£ÅAgšý£Ç ‹Ä8#§_XN³/Ì>)Ðì³™}qA ñ ³îˆ|ùÔ5¨)ÇQu«ùËÊE³§‘´Ÿ‘Ô/ ,K×€¦5‰U¤®‘ bˆkP˜¤ d½úpŸ »ÈãÜÆYö˜þ¬òZ7 Çµ>¥ËÄßiîåcµ 6‘ü{L×&TµCü‚ÀÌ?„ò=Â= Eˆ„ºË‹ÇÆÆ>]]l€Ž!ãw¥¹ŠÅrÊ%òÍŠdw}3¹0 ³Ìæî–'%ÏÈã:§ÓXy>9l[rMwø IAenAÁR°ÁTÚ‚Š bKR˜å pw„¦ÉÑ“pÓø„¸fKó‡•KŒWl[“³bØ*î(Žž,ÓÑCÝ4¤@7ëHG¹¸…YgæydhC“ØŽ÷H¼çnÅßUŽ>ígÏ,HªùÈÏUäf†ìDø56*"¯­ ë'Ùã÷³ênÕãù\ T•û*ªÕÆëÊÕ¥z.gyŒ¼ùsÍ{ù\eiZBBODz¤RÓÈ5MLCÓf!B²sYê«sÏédÞ¾c^Eº™¿­ìZ‘ i¦bñ1Ö+²)HAe&¤ ‚Œ2Q@Æ™êPNš¸ÆR߯{)…Cþ¼cB0šâ1‰lëÎKÆÓs *Ɔ¬~RPY’Œ(QÀˆS’â‚ä’f9 ÜŠŒyí®ÁÞØ[¹—€eù\ëîúôÌ‚ŠÑÖ)(Teí®{cQÀÞYuhw-.ˆ!¾Aa–ÂY›ÝÕþ ÆÛÛøÊK°š¿²<¢OdþOÏ+(-’úE@eZA`»I¦]5Èø‹a‹ü~b]1]Êô'$ ··ïU"Uýå}ŠT=÷ÈØÆ~L±®Y¦é'„†›hØYGš~r! p) ³®E®|„h8õúôqó7–÷ÉÝs/Œ#^¨–s@ ‚áD n¬#$¹ †ø…YçO·Ls Áˆò×\Ê%þÆòä?dî ¡‡ÿTÖ$„CŠ8âPEIò@òH³­?Ó˜$ÊZ¸¤iùãC%mËk=·ò³¿Ù\²¸²¬áˆÓ¹•‘êe,FõBær,Wæ!Ðiòî"‚UÎ#íÌ2^Yî5Üå´mÉ]1l%7R)He…»$$‚UDÁ,ªCá.â‚âf9 œí¦Û˜A”€?þ4ÎÊDà¯,·Àfp^‘«Ÿw¹YÅ 3HÈà÷#` 3 ü]Ç׳”*2åK—¢ocVÍéÃoYºÌ³ *†­ä®Jåì2AÐà¤ÀaÙeäBJ¾Ùé“îŠ|ù<ºHHœ=œ=2îy6qΗa=òõõóùüú\e]$$ÎDGç|–êçÏâŸÏ@¬>’æK`B"Žï´=…O© óó·•Ý{™q€§©ñY0ÆsÍ=)d™¡€‚ ˜ë‡:J0 ¸H rI ³ùŒL$KOÃw#îÔŸVW”+2õòL‚‚áÏ5›¨¨ÈÔ„D\© îTU(2ULƒ\…RP´+¢ìÒ‚p-‘sOûà+×ÀeA®5òö…±F^?  ˜$!Ãð{XV BhAÄqXY€êZö˜¥d -ñæ-'‚Í_U¾&=»Ö‘º/Ûk-S‘J&@( ¿†‰¼´L C ‚À,äò½Á=É%ø²¶ó©äºC÷S®x­Öã²BIÆrŠFX# ‡:R8r! rÉÖ™ä p×|³ IÖÄ}+Íö®Ç5 E[MµŠaì-cæX,CQŠøžCäPü]c _?¹Šy4VŸ< ‰E‘7ïUÜ7þ¬ò19x.[¤ncßà•¹¬"„+#Rà‰uäÊŠ\\ŠÂ,„k‘B¯u°±Šõæ½r‘ëo*ï¹*|ã\÷H™àç,r LV°ü \‘טõÜñó‰{J„dùì.A²±Gº½: ùÙ]Rö‰qœá‹!•Õ]€¨±AA:Jw‹ìÐà²vøõrSæíuÎý%H¶øQBuüYå6m\.[§.ãDT:)¨¬N#„ÍN ìÖ‘ÝF.Ô±à²ôûù“ž;"_¾ØFA`Ù¬•rÅK©Õ6Æ[©#²úEAeÙFA`ÙH–u¤m$Ä— 0ËAáîpáêxPœî]gäÜóôÏŸUÞòª¯øÚêsÐÍŸjîå|Pe&$Ž÷DǪC„â‚âf9 œµÄ1J0¤®¥^rnå£^q>¬}aôÈê•5( á"9Ö‘ƒ’\L’À$3©}¢ÌÔÈ„Dbãu]SâãÕ·úù`ô¬/’7·yxCIAe¦FÂÄFR`â#ëÈÔHr! p) ³ζ p*K)ì\ß#m‘vÐfÍûš,åÔ}bØÌy–„ß,ËR"; ²ƒ¨£XJp‘ ‚XAa–ƒÂ]˜qS8BÈÚ:ËøsËó±L_½ ÂytƒB–)!dÄ:ê(‹îÂ'üûÎ5á_e-´Ë$QÀ2Juh¡%.ˆ!¾Aa–ÂY“ùd™ ‰°Eodù kôç–ËåƒÕ³¾RnݵÄͤ 2AØ¢( ¬Qu(ðQ\ƒ\’Â,…»Ëý­Ï  í¶6.ùþÜr†ø 6ÛSæ}ö³~z^“Í"Ì5>£5'Ù´÷¬—äßOlCß"Lê%”Út‘SyÎ#nõLõº"G_þfsU/•©^P9H€ÊÃ*R½È1È$)LR@2k-Ÿó¦QApO¨‡íúïõÈ]÷ïåM£Ýé·‚ÑÇ )°¬›F÷„’ïeyÓ(¹†ø…YwEv|‚„p ]‘_ÏAvÝ%y0ÚJ6ró÷š¯ú9Ë9Áh"6ÖÑ,ƒLƒÂ,%»ž¦}Œ± ÁݹGé=RüsÓï‘â/„Û½Þù9‹ÜÂÀý¾æö„äsƒú…Üéó‰{HÔ#5¾ØyBh¥m'±e€mï*ß“¿¯ð±ÃŸj> •eç+M ´â¬#í<¹ †ø…YwGj|Ž g-µö*\¤ß§p÷ ú)\Ç£‹å"!Áš(H8ԑ‘ ao6Ï$…ëcnT\ªˆ*½MG×-£Nýeå~Õ¸ÔÛ3*Æ)ü¢À2ãRQ¥"€¨SU¡¸T1Œä:(ÌR„d÷ùñ2û 8!I$ØÓ¨û³Ê½Zý{}!l‘Â/*Ãê ›-°é¬AF_,,’À$ä2­_«õ Ôß[×G=­ƒ¿ªìZ‘æãÞ"C?1"_T¦!„6€h"XGÚr!Œ`R&!(Øýâ2fA¨%Ö¾½jÑvU­òjÛ†G€a¢^Ƭrê™ Ð3R€©陸 †ø…Yg-æqhžÑ·Œ©:!ãöÑÆcZuÌ`uåÁj¤ê c $IAå'8 ¯&_û^êˆ2zzpA q ³ÎÚ¬OSµ ˜k½•ó*ðæ/+×ÕâmKÔ­ü|,ˆÇ×,k¦NH̳"€y˜h¢DË 0‹@¹î§ÉðÀÑ´·zxó—•ËUàƒÏ6Žé…q\xrXÎñ(F)p´±Žä‚䚺 ÁöÈ’ÏèÍ„Dì¥7pÍ|O+O¹‘·-Xköäíéb•‚ʌޱ—¢€ØLÕ¡èMqA rI ³î@–|ŽFB4žíáv"Ù_ÃñD®?~¿ÚÏÏYÎá(F p´±†dbf! Ù¹Tîs…„«Ð›¸œv6X¹œuVw\©Œ+2úI€Eº £ŸÓÈ ÒÓHc™|Ì/„ dWõÞ>W[§'ýiåé‚‹ù®}ŸÂ?³,Ñg  ΣŠ"xHÑ®ÉÃüB ˆf-¶çÕvÏ‚ÈËûêõ&v÷V$œ^õIò6^k.ɾ*+v3!y) ˆÌTŠÝÄß 0Ëála²O׆BÖzdÛ'ë ÂN%ܽ×ÌäæJ×V…C¹GX#²Î:R8r!ñÉ7›g’ƒÂu<-¥A)ÆÔ½M¡÷}Uåzój_–µ†#ìþjó™JCF *QРCeX‚ a€Ëדî)óe æÛVjÃqæ}÷'–ïšLb‘³/„5RúA ”a›Ö[¸g iþÉÍ?X¤õŸDbíí¶VmKH '+Ÿõ6æÝŸW.ï³>zóî!^{/Xæ`)1œ’B ·¬ƒ2¹ †ø…Y wGLo¾-G¾=îµÝýyå^Ê›o÷ÅV¯GŰ fÜÀH *ãVڄĽµI!îµÍ:xómrA rI ³n=cÎäj+!a«F+—#÷}DûÕCyƒÜán!F‹œ~Q`™‹¡i¡¤‹©¬ƒË­ä‚âf9 Ü–ÍÏ,Fðìhß[±µ»¿¬ìYÁо5Èù´„}„¦ës›€7«¯#¬6É3ðVõa«o•tHiòŠ+$ÂÂF‹Ž±#|ï*ßWf F®¾0"‘VPTàWxd˜¾¸1UÀ¸2qÀßÅq|= ©ZäÇëD°@î0VÖªcBó¾ÝÅ}–:ܽC¶ŠqD¿(¨ŒÓºYÂd’Bœ÷e<L.ˆ!.Aa–Âí‘!_Æ!Câ¹1ÄŽÈÂ/cðˆ<}aœ‘Ç/ ,ç0C‰8ÎXGDrA ñ ³ÎÓcöœ Ùîå½ãÝ_UÞ§Ž;#Q_g$ò‹€Êê8AÐì¤ÀnAÙoäAä1{¾HAÑ®§kÒ´POε*ÖîÖµ¨•×z­¸ûA]P,Š&H¨ ¾§"¡‚T4pÀßÉo|HxÔ¬\SüwF¹Ä‘Yù,Á»¿Ë\2ü³L_Y oZo›* ;. ‚XYȵ-1=j6$&#oÙ»Ìf@{åÜ5mÓ|ç¯2·žXÔl–˜‹Ds•ªÐl&&„A®Aa–‚¢EZ¼N™ d&÷æÄ!Òî(—Gǽâ}©ÏŽïck[)¨ŒC ApJ$ 8DR:f—¢0ËáZ«Wµ>WL›µr/–oßê›ãƒÓ«¾:¾û›Ì[% ²l# ²  Ûˆ:Ò6‚ !€G˜¥€hÖbý˜¬ Ô~kâ«ÌÃî_8&ãqDn>?zDnãs‹õ$ @|NëÔÓx výLnãÛ™yJtÅeÙY‚d[Ÿµ·ŽïI©·|+R1Î#b¶IAeõ jlPPg ŽÒ[à"û3¸¬ý]ä€pÖZc‚Ô¢1!±äóæ-W~ïþœr¹ð{°Ú# ™×9¤ 2 ‰%Ÿ(`I¨:´hÄ— 0Ëáε¾5÷\!*>ð\j¸\Ë l«ÇˆvKŒƒžT¦“Q8E^FÕA/crA rI ³.’ãå¬"ž&oãÌÙý-å-Ë^kßÊÏ™üüšeù©^¦ø.(Q—“ŠÕÜâã‰ytEF¼òF dl˜vP{&ŠìãAåLLöð㎼}QPi ‰¼¤i!YG’ bKR˜åÂm~fe]ù‡WËÃò°>üæ?Ä­7îlð¨˜#²I¼"ß¿úí+7FëCEõ*ÏD¢£þã«Õ)íøçÍóÃ_~þêϳúšái_ü­õÏ¿~µާ€Ø—»ßª9êøüùÕß=~ùã¿{ûûïÞ~ÿý»ÿòzóèv?¾}ý÷Ÿÿõ+A8lóù|õøöÃWoŸß½yý?¿ú«Ï_ý­ý·<üþg0eõäPÛ=Õú}µÓ­qŽæÄõ¨ÿ·¯?óÅ£_}µj½pÜm9ºüq%Û9>þðÍ ,¶ýòã›úÁÇço+Úwµ—ò—ñËyß×ã÷ñC_¿Go_—í?po™?ÿ­«ˆ« ùùW¯¿yûþÛ/õíû?<}óÍ7û¯¾xýúóøi›,øàï¿þø äAcûã×?n¾ûá›Zñãw|Y?~[ð~x÷ñÃÄùÓk0iuzä·í¬­ÎÏ63·Ÿù3d¶ºÿòµ‡õ~ó‹ëωÛúøåwï¾üÁ›Ù­Ø²=>´¿mßgûßǯ޾ÿîÃïQÃ,ÕæÑ™±²óùÿòwóq4 7ò~ýú3¿Ý|YΟöæîBíÛã}?2²ðÿ¼ÿ'ÿà°ncçüø£¿{ýÙæ7Æ^÷ãÜrߣ–küøõ `rôÓÐíñ£s5Àm|ž>þ`âZ°Ž7õ· `ƒt‚O…/ߣöµ=~å?ØVl½ÎÇwS§Mu~?ÙözÛ{¶ÑõøÅ#ZÞfø©é]©¯ £ð?ýÕß|jÔù¦‡íÖ1òlh~æá×w· ?|ùýñ݇ÏF-ÖénÏü…ñ½÷øî_Õþûñ)VüòÏõ—/½›l`öö³òøãcí¦Výïÿñ?R3ÓF³Ê3èš"M–áËŸoèïã“åôQÿÖ oÍQôëË÷ÿôÏ?Kà«Aàñ‡øv1ÃacÓF¡í´Í„øƒrÝMˆñíÏÜ +c5»׮V—}ôû¡qƒ„ Ç?|SêŸêû©M߬—W›ßü«ŽÀ‡I–ÑžÈïlýögǰۘ xÛ~x2”c¤¸sr7Õ‘bÓðè‘_0È_ÕŸfMø6”í´‰èãËžkÝcO©è'†Ú»©ô‹ªk½t›5ýeÕõ§ž\E¾úãúú‚Ï}·ñ=Ñûú)~ºûþø…ÙÚ›„Kg©ÆóEÇ;܈Ô÷O¿N,[Ûw/ÚxúüµW»X}ù»J’ ×ãöÅkãÁoQ\VûàjÐ=õPT6`™°èÿ8iû»¹G_Ñ{ü´o]Ál¹%ØÖ%ZlèݽVðgPŽÝºåÛÑCK›ÍÊÔžïþ¬ˆùÆ؆$ß~ùÝ—³ÿá'Â`öl³®ÙÇGÅq¾däœY—4ð×ÇOÕãÚ^y&.f=Ї ¶£¾ý %?ì«/ž5‘þøþK ­6iý.j÷‰å>Q½­Äm¹m#‡9LxtåÞMóð§V5f^ïSÊ×o¿x|zzúôrÆŸ½µ¢±ñ5žØ±žû??`ÍrÀr%éï×ß¿ÿ¨yû6Åþ:~¼o·Ic=Ôm–Ÿ¤2é‹2ŸáS Dk¢ßÕYµšÁÏï† ·¡c!ÃÏ¿šH¿çìD˃yÙ¼€éª~"¿ciåy7Ö£fþ<Éë-ö-e“ri)‡:/[‡¹Ûk³ýh±ÿá59êýx0.¯e|â÷—ØÈ7Ú6û·Nüùí¿ ª‡¸o¶eŽ.û÷?|ŠƒÏF ð:,µÍFí_ÆÁÕVßUu›a~ʀ풖[Ë207–ï”OÛz€‡­Ôæ¿ Ä>¯ªíϵ[­¶Ï¼¢©ÿâSWß=Ù"·"þrëû]¬}«àÇÿuÏ·s· ühók]_´ùD´ùó£[{¨¨ÿúSò¸®^—mI?ƒQ5ÄåSýnù¾£ÿ{WÛ–6uÈÜ6ö×âuÚÖî:¹îÿ7fdý€ÒÖÉŸ^ùÕGw{1LŸÇva¿mÅbB|8õ¿_‘¹ ËXÕ(Ø ¦ÏFýÆZôñ¿#Ê>»¡T²eæÓ÷3«·:†3öTÎèáWÝïü£¶ow~‚ÏÖþð9õÂù´nçzù˜÷Hþ_óÍ6ÊôÁ׿ýä˜ß<´Ÿñ£yJG>þŸR}sÄÿ Væø#FÆ*¶9®vË«ö§#ù'¦%;âLKÿ”e™Ù»Ÿ®åXúÔÊÿþS› /?µíLÖ’1¾þðóRð döOù-Æû/쓾úYÂî}ûÅJö¹®˜?üt­…¿?¡û^çÙr¢úþǯ~ŽÒËÕÿËæ o4GÈoζïGã’á/0GÛ¢¦}Úµ`&ÞøêJüã¼s¹!÷‹åàó÷Ù¶áñXz[j³ Ç®ç§n —VÓ­<®_ÞµŽÑ¡½wÕSÏùƒ-‚öqpÝ´ýéùTãû pûú‹mom鎸Òö÷2;ë§Û~3ütXýW·ýî—~²éÇ/¾=‹ÿµÛ¢Õ;!>Ø_ìy?Ýò&Tëç/û?lIç–r|55ò»Á†/¿}õ¬½º áËð«/¼ƒX?býÝØÃW7í®>[ Ÿ»o3Çÿc XßÛ‹Ö¯_R‹ÜuÐØ“ÿúÓCÉ/;ŽÛîy›öe¸#úÖlÿg?k_ÜâÆžŸðÐm~Ë~¾ØZÊô ³óæÅxÄŽu8âÆßçfûµÉáõx±-ãµWãŽVóóô'Ž ÁÌèòñgk1ò+f>í¼Üs~Ú·`Mþ ߆Œ«Ä¨Ç¤ü¤oxß×ÒKMð½ÜÜ-“ëëÝÏO(&Äé'÷ öÇϧ±0¼§+ëõG6Sg8•æfùG¸“ÞM'Ëñ«´Fv/›ÿ=,øØN‚—Ÿï×™‰0>_ö?M¯Í]ä6>í.“ÅóïÞ“k{ÜÀ_¿c?ïŸöÓ]=Fý<ÜÕóþ5»mjò¸å<ݽCOübøwܵûÓí§ÓÁ˜9Û36ÛöÃle¿Êíí—ßs>ÛÛ÷¯‡˜«ýí;ósÔõ‡I-ÿÝ`}›’—c¿¾ûù£ ›ƪl:ŠâQ+i[®8 úß|ÐÃàÿOùç‡ø{[õÃw_~øþùÝ÷ß¿ûøáWÄ9¿þîã³—ö10lÑêªùæã›7?~O¤1tHç݇¯ßÿøöÃ?Ž7Ü:´(\|xûî÷ßüîãß}óñãW_<Ú7ÿéí‡/^ÿݯ¦~õë_‰Þ¯þ_Û˜ú_?Ë —¬¨ozMµ¹ÿÅMì—ãÙìáçˇaŒ&NÁ£µúö¢µÂ—kK¤e»Æ.y´ÌWó§gb™TøsÅÂanÉý°_?ùjùÿ{<­·_.ó‹ãéÍwo‡§ÝäÞµáT „5–Ñ:‡Ž=ñëöøÆÛ?¼ýðÃ/¯ŸÞúJ Ék _~õÕoß~ùýǪþÂÕ0ع|1ÆQýÿ柟­ùý¿-ãþíë¯YÍýøã‡w?üöÛ·oÞ}-–­• ÉÏóŸÿê‹×¿–2Z[[—%hLEÆÞÛϾ/„¢1Þ}øáíwoÞ~ûÃ÷)ü%‡¢ÑZ÷Ëhý6i•ªß|ñØ~Jº:Ÿm›i,–ê?ýu+B×þ±1Yˆþ6ûé/òÏ5ÿœ¾}† #:qÿ‰ß¾ýîÝǯr¤vŽ Êù¢ÛË8‹æû§WÏ¿zûþS=çŸuœ¼÷ý_<~ù]Rø‹DŒ¿þ$sÿÍÆÍ‹‘s\W8hYÿœ?gbµùÔú£Žo¿yWzõã‡÷ÿ”¥ïÞ¾û_¾4ývÿI§þÄø›Z}õãÛı©àO2¬ŸcØ<ÇÕvC·;J¶Æð¸§"#þ?€æÙ¬endstream endobj 268 0 obj << /Filter /FlateDecode /Length 47640 >> stream xœ¤½[¯fGn%øž¿¡ÎcjÆ:½/qÛÌcÀhÀ0 ´[~°ûÁ­’«ÊÈ#ÙeyŒ™_?Ar­ÅˆOrª‚p’ü 2‚qÙksGüóÛñ~¾öþ~ÿñéxûí§þt:÷ ¾ÿxûóï>ýÇ¿¹ëä¼?Çs¾}÷Ÿ¢Èùvžý}\ã­åý¼ÛÛwŸþöóÿýåç¾ùöx?êsu|þÃN•:ú8?ÿýÏ¿ÿ¾¹úû3Zÿ¼É}ù¿×ûóôçóŸ}óí}^ïÇ9>ÿëZø_B~œ£ +|m’åóÏ¿³žç,g¡Rúïßýå4¾œ›ñG}?¦±ÇÛw¿ùôù7?|ÿÓÇ?ýô/?|óÝ?þÂÏZÞÇs†äß~þû?üÖ´iåçµ¢Ï?ºS¥ÞŸ6»ú4~ÚõSØ8-ÛmÿÝ¢ç§o®aÒýó¿¡äñLèÞl¦ýqÿýÏßnªþé›o­|­›ãŸ¿w¢]­]³Ìøªg-߯b?Áîûüüó~ÿí7Ö`ßžõy®þöíy¿×2F¸ÿ?֞غåçßÿôãK7Ýw™uôhû²îF/QÈü»ïibûü6e?o~ü&Äžçyið¿_åÿpÃÿâ»OÿùSum3.úÛþýˆ>çm¼?­•_‹èÖ÷ÙtÑÿ×7ßÖ«zþÓ—Ÿ~þ»Ïøá_þõËÏöqÏúýÏÿbdqKÿO¨Ÿÿú¿þÕ_ýYþòOßÿĨ«ØuüYò¿üðÛ~ü µ—MîÏÜS‹Ñú¼}÷WŸ¾ûßþöóÿnÃ¥K,CÕ•EËçïþæ¿þÅbÉ÷?}ùUK¾ÿ»Ï]bççòwßüÝ7Ùº³5Ï>Þg •1»¥Ýowí½Í–k3Zžñö‡ÞþÛÛŸî÷~Ï>xû·Ù´ÓÞ·œóŸ>õºÞê9C®ßoŸ®ÑË{ã˧ÿò*äŽï£Çï½ô÷9 rV©§_Rä,R×ùLWúj9«T¹Ì™UŠœUª•çý|V)rV©ÝálEækÓðyÖ·úþôÞÆµ¥¾×úVžgºxFÐ^Çq~3‡òlœfñu\Nµ)aÔ½ýV6ªn’mû­g,Ì)ëz¿Çô¦ŸïÇe N;M]ñ+Rw{¯—8›T9ëûu®RàlRmÎPsª^¤ÀÙ¤žÃæ¯U œUж¦ÔjýŸÚSC/+sôøzøù°…åÛ9Dêq?osT•óî¾ôÔ#~»ßïkÎÓñÛˆßÎ#~<‚;ÃÛ¹uãBö‚ìK§DˆÍÐhïg›[{Þ¯{ÏéÕ¯ã³?Ó ãÎaü'£ùÿ­5Ä9»Fy«µ¾—§D8þõOßÜsUy®úùýí÷?þÃ7÷œ¼Ïcî¾ÿù‡ß| õ´ém®–ý¶¶ËV½æöâ¹ï·6-½ÆíÍ:U|ù×~üÿþ^ž»SÔûðjvÎTþ>M³Uò¶…âWf¬_ˆýMa·- k<'çyŸ«Êã̦9Ç•=Èœ3*®~ÍåöW;ßËœiõ]§Õ—“õò÷ì”3TNOfPN™ó½çLãêõÌ­×d}¿g«_ÓŠ3ªN[‘ëšÎ;£Ûïsÿó„‚Vâ|æX¹³fú Ž“·ÍŠFÎyÊ‹ÌJj(yjéÃÈvñkXÝf×…|yï-8ò· ã̈;lFŸ}†·¹ G)q®é5&‘0unmPÊ›Ò8³X šç.$J%çA)Ì·g›]q?[]¥Ç|ŸœÙG'jŸ½¥f{„L;Pê¶uÆ9U¥Ž(5;„uõ(ÕoÕu€3^ëš‚&<Î`4‚ë³[޾)žÝRÂ>2Ù×]íÚ£C¨Ï¾A†S}îÂY Í®y)4»fëá>w,t…ˆ ö¾ºÐgÏ ¦¬~÷^¼3ÔÌŽa¡…¸ôON Î •GKôÙ1QŠc±ÏŽñR3ˆc¬õV¢T³s/uÍyû =Ó+uÍÍu‰ºz÷RW™¥Cóì˜Ó†õ¬ó F{/>¬gt„šç0ázÍ_PÕì/dqjfÏX©ù„Ñ?æ,ŸÙ)Wç(Á(^ÆBúg˜‘sÄÍ¡bzm'k…îs„­¶Eµ•©ÞýˆgŠë8ݳjû‘°µ™§3f V¨=¸“S¼P›£=Êø":×eôã\Ëï¨h:Ò®àô°nØ“¶sf\æÀi[-g4/dÏ5 Õã=ÖØëÆäø†×VÔp{rž(5/¼n·Å—÷È…¦/—·}2ÖÃÏ2&'§™ÿÙÓ×1;åj;§¢Trž×ROÉRáƒyó,#ã:K¥npºJù,w³_Xª…ÌY³TÈØlÖvN9ý}è9ÏŸ(T"¤'§e¡¨iö ÆÎ"µ¨¦'ÔÌŽ¹ú2¯¹ÃxoËò8…j,l¬ˆ®ªÁi,Ñg³ïÑÙ1Öµ³籎õ¹M3GŽ—²© œxœ½hÛâÉ™q{ÕÙ‰¨¢TÊìÓ8WÃX×&£Ævµ2"§f/dëÚó8çr3êm»ÿ` /tËâË€ [Öf“Ó£ÐMÉÔrFU£Äò895ªšÃá ͳc|;=§¥œ«–(UôÃe‘5ÓÄ5»ÅŠÌ™•öN#¸iGE=¦«÷EfÛßè¸'8ƒûüŠÎ½F]»íŠ\Ë×sëa¡„©Ïº ]÷q¡È‰°3Ô¯õe¥¼îóÜÉŠ}.Gä}>*µ×º}žäP‘#Ê5.fQïÝ×±xÏŽÐ7ŠïOVN5my=ü™Û9Åfºjџƈ}ñ|âõ±UìA÷ŠÍj§{!›çbDÖãôB6;^Opš—Ê©´În‰çüœ¥&zf·øÎÓö|nNÝRÚºžVžupÏ™ ûUŽÔ9‘¡b-J%§ªT,–µ<¹5N½U*ËZ‡öÆ1°j»TW ¾¹}Ñ67ýTU1†k¯*Ô!óhÇŒQT(&¨:†ì‹Å²>Úï—hŠ§Ë¼®vä~?"½•5ÅZÙÎC GˆœE{ãp¡Øï—möË9–ýëätìŒÅ¹Ï÷˜†¹N·Ù/糪™Ý…ð(yÙ¶n Lüy*ñ[íÚì–‚âÚQªÇ•½^‰RÄz&àæ|¸l¤ö.ÁKÅsžsbÃoëÓµ÷Øð_÷ÒFløç´û^Á‰ ÿeð¤«öĆß8œØðÛÒØ36È"ýˆ ÿ=wŒ œØð—¹Åu‹ûéûýÛ ƒPrÆ~ÿ¶Óà\±ß¿*ã¦_¾ßŸ=Ö|cË?­ì%8Üó϶vF‰-¿†f/E0 "±åÏØë½=ÂLFÇö˜Kdo'öLJ}vËU7Îìn?áuýµ.^}v K3»E[Ý+8]¥bØõé0K‘ÓPŠãyGÖu§¾Ô5f¿ìŽóV© ÎÐ9ê×¥ºNp¸ñçˆwnüpªbtŽ›q 7þx¾œœ¡ºbØz©®F£rãÏþí̺B¦UÕ›äÑÕE6þëŒx‹ð»OþéÓ ¾ùH÷[üý#p-6ׄkBš€kí‘,ž£‰×Rz%^k[çt6¶q¶S¾B'ðZã+^{òù]xíqù,%¸ÖÆ `dG©Æã4ñZƒC€x-'-൶Œ)¼ö" +¼Vh@¶g<Å.-Ö¹²%Α-Ö‘²•ÌÙ’ÓT šÙ&§¨9Ïk)A¶Ò,ÈVö²@ûÈ–(PB¶ÉyömðÙJ [ÕNÈV ²ÅÀ] ["N_l‰&%dK\hlcNÈV"‚l¥†-C ![Âë ÙJ†­´²%R-Á®„loÂÅ d{ƒCÈ–ã1![IA¶’„lsH ²Õ¨d«Q)ÈV£R˜­¦0[LB¶90 ÙæØ$d›c“mŽMB¶9<Ùæè$f»@ Wîád´‡«;f«pKÌ–)ÌV"ÂlÅf+ŵ¾Ô$Ì69‰Ù’3^jf+cÌ–íÿfKÆ×0Û¨û«˜- Qa¶š‰Ù úf+¤÷«˜m ÎÄl%#ÌVz„Ù& Ì–ƒók˜­Ô³åà\1Ûò‚Ùrp ³åØ\aÛ —{8ŽMâ¶šÄmsh ·åÐ$n«‘)ÜV#S¸­F&q[LÁ¶˜‚m50‰Ûj\ ·Í>q[Kâ¶ù`"Ü6QPâ¶— n{ Û}T*6p Üò,[ɹMN"·Ð¼ ·ä$rKÎóZjAn¡yAnÞ¯#·à,È- Ç?¹•š¹EåBni [nx¹j,äV0‘[L_Cn 9 ¹•ˆ[©rË(r˧ûDn%"äVjˆÜrl&r˱™©I›‰ÜêqTÈ­Pb"·œ‚n5:Ýjt ºÍÑIì6‡'±ÛžÄnsx »åø$t›ã“ÐmŽOB·9@¯º=† ºÕèLè–ÃóêÛÃ^B·› Ýr,º,+è–±øïB·$¿ÝŠsž;Y÷ýîÝJíµ®•t{ÿº%g]ÿDèVJèU º•m t  YЭ€ã~ªTnø ºå`[¡[@À‚n%óä¾zžÜ÷µ¹ï™Ð­dÎcßW/Ð-GdB·‘ ÝrD »Õˆ$v«)ìV’ØmH`·9‰Ýæx$v›ãØmGb·9‰Ýj8ºÍÑHì6G#±ÛÄns@»ÍIð6¤À[5ºÀ[Éo¨ ¼)ðV€%ÁÛ”x›œ®R„j¿Þ‚³€·äÔ׺ÞÊž¯€·âüià-9¹ñ‡š?¼åx+PøÉo9¾Þrx&x›2ÚøC‹Ð[A¢·‰ÞJFè­ô¾åèLø–£3á[ŽÎ¯Á·ž ßrx ¾ÕðLø–ãSð­Æ§à[OÁ· ‚o5@ßr€½Í ô6(ÑÛ Dos€¾ÍñIø6Ç'áÛlvÀ·9<ßj8¾U¸ ¿eD&~›"CûdpˆßJ¯ð[qü–œÄoÁù*~ süöþ~KNâ·hœ¿%§½lxWüöZ›ømÌÿ~+øj/ѯá· ‰ßJ¦äözÊxI÷Hü–#4ñ[É´ÜþCð[ŽÐÄo9B×r€þ:~kØm|)`ß8DXÏÉécå̵åí´iŸ©¨ÃinúœþÞ <Ê™p‰ÙjýL"½+ ŽY*0¬i,UíUÀIÐFjؼøÞ\<íS‹ë ;Æ®3ç¡q[±(h$Þ&d´›O+h–r” HG^€Ÿ&¤ ÞB. ¸ÓîZWòl¸B«¡`÷‚®=6}xWkä4K89m%v87 `ïA¸™9,øyÎ0žÐÍ⢽+!Îa³zj°ùödAx¨Ÿ?Ë>ß=€[öZ®ÚÛ®¹ü—x‰Nó„so^GóíÅ›·ç£•íYâáQÅó)Sé¨ÃKÓl3•l7Ø–:‚F'»’ ÝаûAç†wäÝýQñcåøôàMl¡pÓbH¯C@»©þÐ"ñøƒBj íux rüi&5ØÄ1–:‚FG»”•аûçf›5ÿŠÄÛîcå8\sÚ&Ï¢ØJí­Š¡~ÿ·;…Úñ£ŒCÙÝ|úôÄ´rÖÿ+§Äúd“œ5Å\A»Å_~íF"U‘–¿{.D{V‚œ¹…ºÝ-h8=a/ë]ìVP‚VRÃîœ3 Ýwû§…ðÇʱÜ`o^>®7·ŸÝí–^J”˜3”‡ˆ<9lÀ±UðvçC'…ÝoË«b§ÑÇL ‰°Qv/èÚȵ9úMœÇ²-N{,õh8ìý ? ²»•-âˆ?>XˆYöÉ¥=ö¬‹·X®ÌQ¡„‹GåúYÆ¡øn>|ŠTÏȹâ}¿8ÿóëXðâGPFZ­­÷ü}ܱ'diÑ®ß sÙb*à¶S¯íµ1… P°»@¿:¶ˆÅൕãp¨·n„€}ÔŸ¹NºA„ßGÄ‹‹ö ¼9§L'Ý'õ%ûÀitp¿ ™ »ðlþØ€‘õXËÄñt£ÓpŽÀÌú ·ˆ6~ð ‹‹>¸:c{W÷¼c˜Daÿvõ|éŽaœÊnæÓ§] ñ±p¬“G4wQKd¢F¶þS•S¢®J¤³õÅin(Äw:K.ÈÍ¥6P@FGùÝ8öêÑ+–/q0Q?H@°ï½Z$œív<Í„„áOŒ<Óô‰­Ÿ81”Rƒåf/U8‰þí÷ò;LTñÍ zVЯžKú±r°<RŸ–цò$ùœxü•<« =@Ó>?ËB„cÍÞ'Öñ±r<ÑÚÛ–iÖn(˜z évžˆŸøý,/íxpèÌe·­5îu$Õ›ô¬«_é94y9°œ‰Xòluk¬éç n#·VŸ¨;}båò ÆÉ§Í|ø4›jéÒ•ãߊyãâ­‰e’µÌíÂ;Cü~]Š:/-úr!Že<˜YTÐ<§$kÝ[VH» ô«¡}öüX9þPã­»®†™Ç»]|ùI‰ŽÀƒÑœ²“ã¨Yj¯¨#hôq"¡•аûç®=é1ð±r*Lc®&8%÷9í¦®óß}jþó⢽ç€g˜Q©=h׎ú%AûX|ó€ntdºENU‹—Õl&(Ê«›¯£)ÁW«tŒt:F,£ZÎ:ß¹Fõùâ]›!´220LnæÝÅ(Rž%GÙÝ•k¿—CS¢/ù¾£ŒÆp±†e4°P¡»z¯âpŠuB“Úݶ QÙ¢œ˲`•²Oˆ¢5!’ÃÍKsº£îœY¹$î}BÜͧOCçÐ'rhòi6ß{Ë'BÝø}Ø>w)N:ÝGn5͈m­!=£ ò &Ê³Í xV®÷»nž‰“-ÞËby_Öi«Ö2w–Þ¬þ² ‹‹–gäÐ.*g}]†ÑŌ€‰Ùå«ô¬)-™ž‘ãgœö’Y¬n9ó=«ËÝà×,+ú”[à̱n¹…5,¦î Ý'TN Çâ»ùð©:±ì“£Ö/xÞóíŸ2¨µA¬Ï¾Al'"/ˆÔQl©@Ý×Öñ‡.[ÓFjؼ kõ5Åa$õ-• Î@´l°Õ“¶¢h"9´“ f¬!‘&P‚&ÊÓú+h¨äØV0q°µk_˜•Ó®%,Äñó\T"öP\´Ö/q°üDdam¢ö\¼X?%dŠïÀ­VЋê0q²Å×9Qyùì0{·½t¨V1–â¢Õaä°¹©@ö¼Î‰4A0Q]¾9AÏÆk(ŠCÓŽ-ûýнm¡hßS¯¡(:={öP¤ÚÍÒ3š ÏÆŠ»ðÌ@ɱÍâÀÒª³X|vÐwš?Æ:½Ø-ù~7IMâ`èÍI(Ï™ƒÕ/¼|Zòj?êêCì£Äñgko]¢½¯Ñ·|ÓÚFU$†@GèAh¾jgZZmÈPC|(¯*‚D—s T°{ׯ©N„kâв[‘–7…"}{‹.ñ\>h-ßÈ‘oÐ ßPG:G+$q*CÃæ«¯ ´8Xd‡¯…Zƒõý h¸à?6Åž—­š®°^šË/uçÍÊ)AãX|7>=zñæ§©¹ º|ñ¢Áöä'c&б ’¾1È’sÄ(¡9U‰ŽX¤m¤‚Í ºVЇzx¾OC^Ÿ ZvK7øù´Ô¨ˆ½Ð4ž“¾ÒÀ'Ö‘Ï´B´Ï»tnØkžº<‹‰OS–Öu&¤‘Ÿuáa¬û²ËïÂ1Š?ëDè…£Ù)xÔR z“ |£‰òts"<ëÇý²L''V#kâ’”>OÃZÖÏs]¥ûyo«tÒ\ËÄÁ$.X©X–2 {[¤_\ _Ý^Y-á˜r/kúÊNÑxÖ=ϱG£hE£8ˆFj`²E#X:ùn‹‚Ý ¸vž =¸&NÌá–.È#¿Âò„¹áÛu gvR]4ˆ.ôMO>K 6‡÷¥Ž ½5`…$NÅß³Ñeu®­+CådBlŒ$~ùÈv•lœdS#‡vR»ä>^'Gš ^-Ûäøâ={^¶ŽÉ‰Ý‘µ0'G7ü¤–Û«~w=Õ„ÀƒE H_ò lޤ›'V¡Ý•l m¤‚Ý ¸fåâ0œêú6XñXÎ ·Lá-E+ÅA8Qƒºud<ˆ¥Ÿ·xܽ k]ÉêäTXÆÜ÷xbίœù@ÝK[±OËy.uÕ@šÏÔÉ9à[[£³=VË JÈJhØý€såzÅÁh)e›õ½6[å—:ñ{½t,Ž­ÁF; 8”XC6š ‰kŸ!w'èYC_òá39±µ(ƒé_}vÎgÏ^‹2$:Â-Ê‹äãgrâùQ ¸³`z¥ …P°ûÇ ÀÜ×kq0)ä¹®×ü~>×ëŠO§(aÇ ¯ëµh­×â`µ¥®Æ¬#×kZ!‰c_¯w?èœÝ½ÀhúXÙ þU ’ò$€ ©½ª–DÕs‚kÍ#²¤€½À*–îë7틑аyAÏžèK{<Šcéʼnl@kb?3Ä?%׉ ÝÐŽ<2Ht|‹E¢+ò©’syB5X†%LåA·Rª`„d#ì^ÀµÙ`=̺# ÉðÃ{ [?Wº{à,Ý ÝÌ IdèñIˆô ¼¾9{º'¯QØõŒ¬´û…ã$á&JÁæÝÞ‹öÍìÑÃ/r"{Úš·ô8ÑW_0´Úâ+< àT3) }"‘Cœ8B fËXb`aQ‘:((A©`÷®”i ~ÝHzNŽ+í-ì‡{M”´Õ;®–ÄÀùlT š_$$“5œ˜tt‡v;0B´ v/èZ³ÄázÍr„gd4WœqÙa <ñ#h74 ë”°3èRÉûâ ý3°,}cTRÐî, „,„†Í¸eyóCéÉ+ÇSæ¼y=†cynIÐnèã±D»R¢, D{V@œÓ6©ÀÚìK A£‹ÝIÐF*ؼ k5bzþøÄKœSöð#9ÒPž™í´€uJø¡†©@´Wá%À‰CCSƒ}úw/un‹m¤‚Ý ºæYìõ¾í€•á?œö%ÙééïgLK8I´êÉ÷’°ïÊê™’n‘žš ?!-Ø'a×REÐ^Œ „Œ„†Í x6çÑÃo$x89’Óüûoa‹…»•˜ûxŠyÐn©£Ö‡w–ˆŽ*¼9Í÷KT`iöÏRCÐèe·A´:¼xA×üD÷z'WjqНÖÄVÊ>ÈpCq{Ðnh`Ö)á3É¢€ô‰•šœëh äŒ?~þ ê~)@©àÅ‹pÍ,f–n‰Ä gîÆNoÒsSõJò\ù ­Þg‹RÂ.: ¤£/AN± Sà i›ïTGÐî¬톆Ý:×cr¹ý`Ô•ãI‚ÞÈÛt¤#òƒvSã˜T ô˜©@tÅðLÎíß5QÁí¹áªà>88a~—(½»¿Nÿ^Ô?Jˆ¼Óä {ñê <ÎX‡Ó:é?eƉ(p]mT šÉ§É‰û¤!2üTÅÉ TÙ ÚH›t­F?jë˜ßúÙׯëÞ1¯,àÞq\eÝMžö-¬ˆäÞ‘ný¨€;C°¥½#l”†Ý ¸f€¦ç”;ˆû±pìåÏ^–ÖËâËÅqvMÛ{/Ö·‹É©¶ºIÁp 8kÝì6H‚VSÁæ]+Þ•þmiÌ"â4ÿæÍÚxà›ˆæ4n‘pÒ ½p\fÀûIT úæ$"ާf§dÙëгΘ§  P°{A×Ft­r¼“Ð}Y}.Ò®÷a XºgÛwÖõ\5Ö`'²µ¥ÙÜy~›F­ „¬„†Ý8g³Ì³B"ÉqHÿ_¶ó”8b"£lá£Üo(/’HrâI™åx¨!"2A´ vèX®ú˜œ­…Ç’G«Óîˆ>ŽRW<ò´ßϱ(Mô19JP)V!ðQ6P@6BÁî\3Ls{'Ÿœ€|ý£ý„nòØ>>Ešá.1î%þš˜±8€|¥°êhL#$©`÷‚®5t%ß&'Þöù陯˜çâeá¨eMùµ½ºÍ—…â0º¨ïUƒÞÊJÐDjØ€g³½Êô''ÛœEGŸTÍ^è´±eZØ‘ ç’#’´:uÚØ²$XEöml\z}ñ‚®ôä)×È Ä׃ öµ ´m´{y[sÚÁu›“>å86T4X5/¦ T°»@¿õ#ý"'[¼Þkð|õYë[âÏhâÅ#}{ÞäÔÀ.aÙi´Bö(£Ó6?àÜl²—x‡¦Õ=yF§|ë< v;¢å9´ŒäÛx‰GÚ {ÇÝ ºÖ_ãQDT?ÖxÔY£ŒG»à^~{<ŠV<’Ãp¢†kÈx„ ؾÇãîüê—Ö=LŽâDÊ‘µ/OÞôj‰I#]iŒ¼èÀ~Ÿ;¨K›¼­s¢NEF‡=ǵΉÏQ¶91iv˜8hn)P‡=¯s",À­Hd/.Яñ:'Š“-^ËÒ!÷>'>G[çD»´f“ÎÛœ(èÕ “ êұω»ᙵ»1z,9Ùæ£/]Ò‰Ñcç‘ô¤n]Uâ…E«ÃÈa‡¡<ºƒêÕ]ª^—â¾8@¯:‘üäÄý9>»˜R´ýýsV=Ëøï]qè¥Es/vçR€Ý»jÐþžP€RÁîü:Ï—19Ùàµ,ýÑöñ9ŸuF|®s½q¡Õ_䨿žmFT Ùc4Aç6#¾8AÏêkŠCÏú‡:÷œž]÷ˆWÛQt:Öö@DyZMý‹_}D(¿ê¯Dâl.ÏŽHCÿº–µ9oçÄqum~îÃr²´hMäpâ N¬!'X@H» ðë*ºí~‰ƒ1rñ\òB:ƒžCì¾–gêIúÙmY\´†9!TÀÄrˆÑIÀDjØ g#€Ie]%'r¦¬…ÇòS¦Ï¬«çƪxÞ¯²* ͤ«äDÊ £J5(çJ6PB6BÁî\»/ÝïŠA&N9ŠÖäH›Ÿ 8÷¡‚œih z¸þÊäh/$7h 9XŽ ç\–iÝšÁÅÌÎÐ^»vhrô⢵š‘Ãň ¸X±†\Îh‚$`¢4lNг¢iÃL :û2ˆtý‡†Y»89ºÀlÙ«, Dk”‰ƒ1Ò„oG&ºAF–^æäè v/èÚ°Ã/·N#‡­~*½SJ>ʸ™[røÙ‡KéGÁÈ>{ŒÞâmOífÙe4@]—N×k—µ[3 Ö3q°ιœ,‘×±h=‹c‚S"®ÛN ¢µ ‰ƒõˆ¸^±Ž\Ñh…$nÍŒ®a÷ƒÎõ×™QÌmt.S_¿^fÆ^×™q:¸ÍŒ¢53’É å9ïQÎŒ4€4 vàWœq¼£8§ùw ÆÞ÷`´Óò— f\!YZ´‚‘Æ0Öz F sÆÝúÕ4bþGP—œÙ¼å‡/ŸAô› ‘ DòM`râEž°X…^Êõq[§ÂW/àš–xMçª%'NB¶&ö£¨Gõs$󾢊“&ŸÈ4ž3Îí¦ÑL§g:og‡R×5(›Z6H6JÁæ]ós=³¡×pœÈL|FœÄ}òâ%nèt T7)íUx r"ç˜xl$ïv Ò]ÃiàP°{A×ïJ»2¦ôp œ8fÄ›Øoì.Rë )ÐniGr%¸Ô:êðäøB”n‡­³Ž ÑÑn%d74ì~À9C/-ÙËnqßĸc.Š#9'Yi¼ ô÷v÷•#Ô`LÒÓ ¨`¡­—ãè_¨¼(w-nv$CÁ‹ô«{Oâç…ccÙíŠ3Þïá—ÖòN/ng Ô)à³Ö¢tTá%Èñ£&SCÜe *‚ô°!8‹Õ®àÕ wmº¼íøO\8…µ·°EB³ 5¯7®(mŸq)…$N¿ð45ˆÆá¤ Ç1H ·n˜uÜ85­­„†Ý:×,¨zöd çȱä5oc ËFFãž5Ðni\¯‘~O±ˆ¼bfÇS4ÝùPП*@££ÍIÀFiؽ€kcÎóW¼—»&Ž>5i¿À»ú[ã7^”Û·„ðçëôhSiÑ8„sáø·g© εV‰&i€h l.Яj—VËÝõ¡¶p|•wÜLÎàåW.Ðpá&n¾pü%††½\Ð L;m „¬†‚Ý ¸fpf°õ±rZìËjãUõ¾}ª(î†n°ø¤ysˆ¾¹ÃçKÛzgÄçd„h#ì^е±¼`ÿX~š·pDäiÇ`ä}¶A»¡@­%S=©d€ËI»Y:Þí¾Üãbó‚*—…а¹· ËÌìÞ•ãù¿“®:³ß·mº•W»TÝŸÍRè›ÃF  2ÖÀâ´A´‘m±yA×úzéðÇÊqÊ[X˅ÚŒŸd·ýc–}rÌC3ûzg ±dh üÜ\€_ý\ï„ûX9´ŒwæÂp^’&Ç¥™ÙïãZŽÃMRn!¯AŒáÔ§W¬_§F`hØ< [U}J·È¡[¼øfó¦7º5@|R AF·š‚Ž~C³ÆŠw§þÅ/ ¿`àÒß‹ ðk¯a(N6øÚõ% ÇØÂð9ö0-¿È‘_cCÖŽÁ {î.Яò^ëî9ÙâkêÒm:f÷o.ý97k’L·ê†,-£Ÿ×0dý’€}K/Эñ†âаs CÝ.·ú†ó©} CÑé׳‡áÓ·0¤þô‹ȯ±‡áîüznõá~‰ão+½}›Þu.÷Ÿc=:sI»ä­8´âIs=ë¬Ļ̬o;ÓIÜ D_©w'èY Dq²Í—@Ì{ÜÑc§Ýéڗ߇]¤âI³ËÄA‹KzD5,}öì±H—NÿE,Zƒí±˜šVÖXÌûèéÙ¹¤€OêÚb1i9F;×îÔ/¿d€$Î-_\ _í%“Ã`k,žçù‹gY¶2“lïÏXŠ‹V,’ÃX¤DšjP,ÊJÐDEsûe,Z{±á™84ízVË«bž%ñv>nžŠE/.Zž‘#ÏÆš8›5¤g4A‡bño¯Nг‚޼äYQ,ÚÃÏyÆ­÷ñ"lÚÅkN;<»î÷õçªXôÒ¢/9N¼Sùx™úù¦3   ¤‚Ýúõاÿë£ä:—ãÿ'YÞ·!võ%•b’B1J? EŒ1r8D¨€Cä»Îõú€4Pƒts~f¹~>·p÷LŒK¯·o\ÊwYHj¼¢=ge]b¶Û}-ÅEWìZĸbö¤` ª"h÷«®?_š½øf?}jèCäZ-œ˜ÁÛvEÊeÊ–ÛAÝʪP ‰Ž@ "‘µpΰ“ 8³ æZ¥”а{×ú‰>ì‹@¿7oãy#^o ÎAº¡ãŒ0£ÒZýÄð÷SA,Eª!W?š Sóv(X} _5º‘÷.œx-zú Ïq›èebqŸ<î½L,"“-ÂŒÅEãFÐäÄa%©Á¯Í*på( À4ŽewóéÓ—¹~,¿Æö².ðxü(¢Ëï–í¢ÝFÒ”°‚5Œ¬€8ÅÎ-Oq2gVÁ³;ÓJÈjhؽ€kXnï5ÅÁkIÜ#ª×–çÀÍÝz±iïÝêòbGý¤Òz±™7)ñæR5ðͦLàï´9Jï.Я¹*´8¤)Þ‰c_ƒ¹U~è“c—u‹_¶´›tJ<dYtTà%ÈÁòM q‚WÖ´—8—Ÿe1ŠïÀ-C,=îümëGrüêi¤êQ€ÁË$¯¾¤ ^&‰Ž!a[M ¤óorüó0iÀ WÕ‘ïxiEJÐîÐðâë0Õ^|¬ Ïž÷Ž»¿»~™`Ä…ÓniÕ;ô6ܤ!i«Â 'ÞyWVÝ7?‡¤†Ý‹ðÌ,ÆŒ¿§ûX8—ÚI#úlгŒR{†íf>ŠF—˜CíîKqÒQ•Ç7ÍRpƦYUíU”õgŒÒ›ýtªâ¢ûnoÇ?Ž]xíWÄw?vè²ST}€íF0ÍO’EyP¡ßÅÁ`# tc#@Ðè]·€2™ ½¹¿ °´ÉiNRgø%Ž_êmëqøxæÒeCÖã0h·t¼·E`NÞ¼T ºÄÉ` ǯ ‚á׋f A£ÝIÐF*ؼ kÅûÑR‡üð±…) ×é§]F~¨u· h73PiIXP_Š‹>â\°ä\~ºhj°,±ºÔ´{Öןa‹ïЭaSf½ Û/á9ÍÖo^ „ûñKí/G* ÝÎÀ¥Sâ±XK ½—Ãsá²øð\¸¬ hô°›@ ™ »ðÌË ¸câ4Ï ´öµ8¸ûC(Ž&mßç{[îâ‘&¢o3qŽ-(°kÊ ÑÇnƒ$h#ì^ÐµŽž¬fâ ˽îÃNn=bÝW„IÐn%²®%1z(M²rˆ‰sÙñ|©àzà&ª¸Ž1·€?Ë:ßí‡S³©¬¯qÅ™Œ ÇSå¼q}Jµâ ÚjùB‰rY«¥ÑWœ˜˜œ¸¸,5tc‘u.Ž©™°’v?è\‹)%¦œ…3'Ö£ÑcbôIç²£@cbÔuïB€K+'ž¯¬mãæ Ö›4 æ ÝNÀÑ’h©4!-qúˆ™“bÊ*ˆhÉüNY|wž5Ú®JêKFääù^3“ø.Ûk¶Lá³j{ÀÑèw<’PhàáɈ¤<–ð© „‡ËIÐD(Ø| _ÍöAÙ†_dv5^ƒpÃN¸: hýÜ#ÊX\4^‚&ÃñÚTí¢>¡zþ,óP|³>B¹B¤ÉŒÓZ6‚ð„ÑÀ˜3¤:phJX§‹ÑŒ)1.¸E°ü€[Ó‰’ÊIÐHjX½ gÕ–¾ÉúX9®áö ƒ¶NçÐÞ–ª¶ 4DˆfêrrÎX‚  ¾ Ïx«MÚ@ Ù»tíQÇÆk–äRb›”储Içk07³ã¥ ~žî{,ÅEó5Krâ=‰4à=JT w,ªŸ?Ë>ß=€[RniÉÁ3øà…àñ >us˜ð}åïsþíKšGÒšÈÁ[-)À[/Õ ÷b2A0‘v'èÙ@/2m 9ñÒßÚw¹ùvÒÄ™™6`ó/œË¤ºj Í´qðÒ_ :”6 +(A+©a÷Î=úRÝ&Û½.wÓOr™XçÅXôo[£—W™I³ÏÄA‹K{$ÞsªÃX¹~†qK—/æÓ§¦ †>5…¢O9Ïzø4H3ß,àË×ü½+­xҗܯL¤oÍUƒÞ«ËHÈDhxq"<³ûØ…áYrhÚzøewNämànè£@´ßÏ q‡â¢å9òìQæM[kg2A§â04lNгªŽ¬ð¬*«ÇÒX.rœv-']öñ3ãÐlŠC/+šË­8xÛ*H( õÊ7Råü™Æ±øn>}zÔ…ôéÑRgÃÞw¹ÁqÒÛeànçÈwA&qZ]ƒhNâ`ØK¦Õ¡‰CVP‚VRÃîœ3°rEqKm Åóy ÅëÚBñª{(ŠV(’Ã@¢kÈP¤ ’({(îNгñŠâ œ Ü\B‘gåD]m Åù(´…¢h…"9Œ%*`¬]™ çâçŠ4N‘<~%/ßk­>‰C»jÞu{Ù·—÷æÕ}jq¶ßï[3¢—-¯È¡YT ¯xSx:V—ËpÓ@5ËæýêÚqѯ®(d{÷{1œ×€Ë±º¦2ÚÆ( ÇH§càȱº¥"ª†Å±GQžÁDy¶9Ï ¤Ì/—>V×;ï÷zõo·òÙærí ³h-Ìäpa¦¬¼¡^ ³*×Ï0NÅ7óéSÃEåé9ôi¼—ÅêsÙ1º‘eÙ3N² ±xE:½‡fQÍf ‹c¸"œ~Á@ùµ¹¿ÊÑ¢¹PLfåÚæB»bI4˜Œ±Í…õ|_÷$5‚ÁiŒ¥9ÍQ}N„¬_°O6èVÁ¥Ð\â`t”¾œß?Í:0X8¸êµÍ…u;?t¡5¸ÈáРÖƒ‹&P‚&RÃî={ЋÙa‘M^–þ(Ë~ÑíìËŽñ²+ÈQštö8lp*`‡°†ì²ª»Á£Ç݉=¶¹¿ênT‰“M¾N‡v/ĵöXÛ2»í:¶uš'©þƒÝö´l©Ïîbý’€}êðͺÕ_Qvlh×Bl¸ùä÷\-eI§WàÈ­Õ'êNŸX¹|ê{îæÃ§¸ØnõIœlìeEn]sa¸ÔÍ…öûŒ† —-¯È¡YT ǺBŽ•mE¦j–ÍúÕ4“Ð/r°emc{Z¾gñž[\·´lOË÷ü{®›^ÑÚô’Ã-+5pKË:rÓK+(A+©a÷Î2¹%Ù'#¿ßº_Çëå]ßœ8úòØ9N¢—­Yƒú¾<1JwN=oC §â›ùô©¾Î…âЧ¾Î…ãx™ ǽͅö^j E§WuŸ ©€f³†Å±¾Í…4P~Õ_™ #W·&ΖœÊ¬u;¾´7 í¼ã›PÛ==Câ9ˆ®A4¡¶äV& ÀÒT‡Ð6YA Y »pΠÉíõä48‡;¸‘²|âËLj¾Ÿå õû)ˆ=ÍŒæäèÅ9P»Ò™U¿$nM‚Ñ0›tk¨#1yˆƒ¡o·=,3Ãs¯ÐnfS4†Ä@øQÁP8bî ‡#Ÿ83°Žœ;`h#ì^À5'7P*9(Oy_g‡§/[ÆYk9ŽuXޑœæ8ÃD 8ŒXCŽ3š ˜È¶;AÏÚë¤(={âæqZ~í“b9êòcß&Ťӭ¾MŠ…«q[u/>¡rùÔöIq7?|*‡GéâSr²¹ËÚmŸËñ¬³b9ÏmVLZn‘#·žmVT òL&H&JÃæ=«èBÎɉ¡oíqSC9‰nsæ(vÔ`_%ڻฺҜ<’£_0;¨Í²‚²v?èÜ£À+pŽt/3‰·v嬚|[^ê•ë@ðEi‘L®ON¼µ+çYR®ÌzU¿ôñ²3|µNYãšY/ÞlYãê&O¯вRë‹¥U–EÂÒ.—ÔzÑŠ^1"3^ 9¯*–ðåm*”(/®aó‚žèCåÖ'' ¬};Þ¢[‚A¹€-+½¾\ ¯£)ñD¤Ii¦×‹ƒyiˆ zUÁôzÙ€ßi"‹ïNÀ3ƒ&‘•Pbþ÷ÂNºâòZ;9{’0iµÆ)Žú=qÌâ Q §xJ2X^ÃQ²Ðî.D‘††Ý zÖ£Wÿ±r Ôà:’§Á¿˜¤[Z#x$Ð#ب@4¶'nžM ñ7U$ú8†h#ì^À5ƒ(½ýzŽ…sFªµ±_¼÷rãbn¥À—ûñ`’D¹<ؤtÔa%ÄñÓÐRC\kužv+$A»©aóƒÎÕˆ¿ó¢Èᇖ×n7ÏâšVáZî ÝÎ)‰I ¢£DÞvYܾU¼— ‚v·x»8$d"4,À§â[äêà1ÊĹ£­ã’y–I;À Òmôm} Ìš-Ì¢´ˆƒS9Õ!§,nyR%õ‰®;è)ë¤`³ŸNï½Ò?F·Hïí;Œ¼b«Öl&ív: ½Hø4œ H{ ^€ ?Ñ>\~‚}V4úx,² 6à—¡•ÏäÁ(Žã–—ÅöiÕi­‹Ñ•{1q®Ø?Pƒó¾Tá¤7làï4Åw'èY³nlž»ÏÈñ42oà“~brµË Dº™H/Íô§Ñ7¾UJÎáÒJƒM“YƒSèb·?Ë@”Þ]€_Ýw?µW}œ?ÐË[wˆÞâ`ãÒníV$-‰á s*Í£“c'‚¥‚«ŠÊ“iƒh"Êo>бâ =2\1é‹3,•vÒq‰íF}2°Ë .Ñn§¯“‹„¥§’•f’áGSdñù 2 Ý/˜@ ™ »ôì‰u~x.ÜÇʉó}­}‹çО3_ì2ˆ*Ú- d:%Ü€EéŠôõä\±]¦†î§ügA£—Ý JÈJhØý€s³ÍŠïî*0Æäôx~Éu±Ã°iámõ>glï(a_ôEè ˆ19xÒ¢{x¼—:‚FOU€6BÁî]ëKÆŽ+gØãÀ¬÷ÀŒ_æ0éÛ´[ÚðPC‰ñ^W + Èð‹Uœçâ²Ð^×}SB&BÃî<³Ç®‡á•çâZ ÇÓÈIÝ€ªèYq=˜ÝõðÙX’æ#¸83ŽlK& €X…žÀi¿çúŽnw‚ž5Ü9ŽÜíd<.\f™ÙõÀ-ÜJÝ®àiIt5*Hoä“©×R˜FUè•VNÆ\OÞä‡5דyó8ç9Õ+½Û%æµ. Hò0g1"}^Å‘‘¢ t–³LM„†Ý zæÂ¨?VN¼I±Ž`ƹ?+ã¾^í}•×@¤Qi>Ê%'æ©ùôªA÷²² v/àZœò_3í(9‘8dM¬´æI­7y[­÷¡¤ ûý¾1ç¡´hÎqâ°¨YEªAiG´@0 vèW3ü§f Ar"  ^ëeÞÓŒõ*o·³®‰Œu>®¥I2ƒ€ @ò*ü©Wê§í£†Ý¸eÀå–í‘vãâZ˜yígÉœ¨vçÎ’ï‘´ü"GŽ=kÞƒô§_4@0P 6èWUÒ¯ª0dƒ/‡P϶â0ü*÷š¼SKS†cMqHÇšâÐí*÷–}£Ïúv’µL\ú|q‚ž=èÆKž‘o]k¹Ö[k'—yø6”8áóé©./~“æ{[qðÚUðZVuè½­¬ ­¤†Ý8gÀenX>VÆ¿]ð®Ô’÷yGµõZ’k- G/-Z³9ü(Ϲúsò ’( GW°»@¿zò’_Cáè }=–‹'y/ï§ÝÎ-Á»ÖçýkqÒÚ$‘ƒ×_R€˜ªA¯8e%h"5ìNÀ³ziVgâ°Í×+½'¹^èmÕ¶sM­­íF졸hu9lq*`ÔíÆo÷l»ó;M\:}q‚žõ×X‡ž=[,¶ë%[]c±õ=E§c}E”§ÕÔ¿øõì±HåWÿ•XœÍõ25Šƒ¹­ÝÛÔØZÞ,ïf>ËTyÕçº`ˆÖÌHç5*༇ rb¤8÷‰qw~Õ×Zú5‰nøù²BO¹sYêæŸº6‹èt¬)Ý.* Ý¬añŒ·}Ó³º/Ò»ðÌPË=ÅA,Å$ªPëõ%çö·ÔüÝŽ\CQ´B‘F0ÒXCÆ"MıÇâî=+ö8°yF=kŠE×úäæÑí¼–íã$«b1«ŠE:V‹nÈìgÙ¢G[` üÚ\ _C‹ýŠEŸ° èLH¢Ž¢5Žõ5§ŽG±Å­ÐtìÑ Žõ-G5ä|O(A©awž ?m©.eâà™jÔí:Æz­¼UüœˆFH<7ÂDë±L×>5>u›Ÿ±O¢5ƒÃñOœPAN c¿ýDRÁîü2Ôrß3ŠƒŸáœëžñé/{Æv H“hóI}Ý3&Í=£8ØñIw„¬#÷Œ´Bç¾gÜý s =©9DÌÏXoŽhǹώí(ëìØŽö>– LÒœDÄApIæÕ³Mà,Bž»á™5X¹ÖnKN6:wÑ)ºÍ›½6´tK‹Ñê5rÔkЀ>aê4Ù ظtûâ]+/‹urb¬´c½Æ¤Ç¾V·ó^×êvV,€(-ú”_à` H’jÐP£ T°»@¿…^ ;ÉɨËY í,+Òã–öë™ôƒø£†GñÐNr™‘ 7ªCØŽ¬ „¬„†Ý87›¬\ëÜŸœ†pâ…Û1³·ø3§þv¢†ÀUP šSrbâ–Ž=T¡™_6H€6BÁî]ëïc÷¬¿ová"š}èt¬­Ð㤇5좀t:Fk+¶˜u¤g0BŽÁDúµº·® ˜óò“YõÖ¼\­í¥C³Û .ÑVë}hýv ;êlQ@’YùbDJ½Š#å^()_&H‚&BÃî=kÊ5ÐÄÁ01¼sFvD¾†pKRK¢Û¹€©A´š8&ÔÀaÄ:r Ñ JÈJhØý€s³Í¶ÌZ1|3h—L/‡éØÓç#ÚÍ$‰r"Ô¢¼H¦Ö&'rc¥[AU¡ìZÚ ã}¬åWèTÍÈ §Èjîšæ\v‰p½D»™DÁ)QߟEIŸ#:Þ¥¨4 õëôY@ Y › tëAjêC¿ðL ¥¬“¤Ú÷Y±3h­ÉCúÒ÷Y‘uääA+(!+uyY'(wn6ÙØÐüä`sT—iwíY°·óZОËÒÈê‚æ'­­94“ ¸µb ÚZÑ À@µÄæýêXl?Ä©jòºÎ•0¸¶V•H8%£/ ‚ n‹XœÛ&V+š@ šH »ðÌðËÜ~,Ü9`-<ðžÓÒÒZ ­Û][c"8$ÚÁF ¤³-ĉÛY¥··ªŽ¥5x› %h74ì~й†¾Ä»i18ƒ×ç=_EO3€AëÕtku{yÝfÛÖå=›h>‡'#Þ-KÞ=« =ˆÓ Èf(Ø|€_í\ƒïcå`Ñm÷v­Nk@¡uµDkv.a Ì¢€$/–#®…Pq\¡ t±„LÄ©ð ›ô¬"øü”•ÙÖÀq˜}ë¡t;ïxqŒŸÛ»ÑÁÒ¢]¿Ë“sYHª<—BêÏÅ’PBBÁîýz¢#­þcå<žÃÔìªO ÷sç[_ïßv;‘ßg·Õ¾ÍLþäÜžoCH«W ™ÉO$!¡awž†YBèñt‚äÄ¡åÖÂq¬#= ´› ¤ZÎø N ¢oœ)›˜J ÃoÁË:‚F?×g• •lŽÍ:7¼/í¼ä8K]œ+2í­•ícKžºÙF@Ñy.g-²Ì(ðx¼¥Ч6Ðâ`e€‚óŽ55œÚAÓJÈj(ؽ€k–£zêÒ•S=ŹY[DÆÝô“,ZwÕ_í ¼Z³íj_4ˆ¾p>´8öòù-Ø»æs©"h÷ FHFBÁî]ó°Ú±=<£_±æ¸ŒÄÎô5ÿ‰+¸A»‡”èoÒ@Ú«ðdÀN*h~6wV4ºÙ „¬¦§«ðÌpLÿÊÁÏñþX9·_b üøg 5Žž€£A»¥ŽXS —G$íUÌâÄýdRדe A£“ÝIÀF)ؼ kÕ{Ò¾ŠÓ¬Å¹ãÈf7?XRìíilÓ.¿†¤u 46*}qâINó4#i¸|P—æÚ´:¼x®u2g¡z6$5&Ç¿'ò&¶X°T[¦úh4h·tø„&‰Ó^N ¢¶.Éñ·©á´\ï¬ÂIt³ÛÀßi"‹oNгâ=iy×gÏÀ'<ñ)¼Zk­F Úí¼üX§_Ÿ‘HG^‚œê+®4ô ¦¢Ž ÑÏn…$h74ì~йaŸ+Ô;®ªûX8ÕGĬ8î&á7Dýô¹ó#£~ú51‹€?Õ/ @G^‚¿g(5ØcÉÈ*‚ô°² v/àš™žb= UøX8voÓ­î³Óð/…&€4h«øòg÷”°!q.HG^‚œ£‹z|C£:‚FOÇDM Ú »t®c‰ö³š?VŽßOï7œ<~-A¿.,Ú>ÞéWõJ‰UDóŸäÖ q¥NÖ¡;|d%d%4ì~À¹ø†&!}š$£ö •àšîÕ´jí»žgˆï~T$*ðä´ˆ0(ðOQ‡jéM+À%@›¡`÷Ž5ïJ\×ô±rüpooá8}<>³íw`Ò ÝÒ%‰†]"4ˆ.˜Ï“súÝAÔà×BeA¢—c¿ËD߀g†hüTbql-çWG¢p¿«±#•¸ß`$$Ê[uj ­Tâäx&°šRJ%–’ ÙP°yA×Jô¤,HN7Ðï¾ÝÎØËA,’vÞB#C F´QhžWœÈR—¼ha:®@6P@6BÁî]{¢+''ka^Ζ—õM[ÚõÔOD›4.òœ€{¥p°ê`,+(!+¡a÷δ™¯ñ>VN<3X#/·+Oz¬w+[ÅõÜÞ%ö¹Æ)àêJÀ”4°R‚´d…$`%5ì~йŽîd2Er"¿þÊä¹^—›¾ÝζæZø×gc-MšŽ8@·¥™¬@©2€4 và—A›Û;ÐäÄ[Lk`^^ë=²^õmÕ6"Øñ{»~^\4_‚ŠÃ‘CxÇ©ôT&H&RÃî=k04=#‡žñ²oX~âúOyVÖ<‹nÇ¥­ŽL¿‚!·Ê–$!õ‹[Cw/‡[°OnmÀ-»Æ$Ñê•xv74³•ºÝ¡Ä·sÅǯÞ÷SF“&.Ðl)Ú­‡ËIîÿâ=«ï[Þ‹ÙàKoôc K·rËï¶›kKiÑê/rØÜ}ÏñV Ùa°@=Z—5áÅ~úô¼¡8´ëÜ‚Ðæƒ-û–"ÞmÖ_J“”S`ȧ=»[êÓ§~îAHûäÕó+Ahxfß܇n5¡»õ(íq­iÝ®øÜü* B:V„nÈ3Þýž5͇!q+Ùß‹ôlØ^|óŒœlòµ?î—0m Ã1ö0Ž= ©€f³†t È/(¿6à׸^Qœlò5G ÄçØÑI[J“”[`ШçØ‘ê¯Êˆ´oéð_âðÝÿº,‹ƒ…uðº’XwÀÑZ—Ÿº­ËOW zqÑZ—Éá²J\vYC.Ì44‘v'àÙÜý¿¢8Ùäk´—@|%œÍßÇá[7•Nš=&Žº Ø!¬!» HàÜqw~Õ×@‡~õ5Çqì8Ž-3|Ø1i«_mD2`”JÃh©_¼ê{ Ò>¹U%í±sKNN¬«ãàÍ޾쎣îËò8Æò{œ‡ÅJ–ÍUY¬©,%Wúµ(Ë.Ê4‹òîBø5Ž¢> ¿’C¿Ú{[Üz†Qëy­yã, Ãð«( éWQº_T ÇPÃâXX ¢0Œ†Ù\ _CH¿†Â-þ¬†ß C8¶%…; m-ý¼ß»[Ïû½zµgtK}zÅúåÖP²¿kyuËPËíSºä`|œu=לcY§­Úë\RÇu+ ½´h /r8¾PžÃ‹ú5¼d€$.…ao¯.Яþ2&‡~=¸õ†_ût8®ºM‡Wß§CÑéXߦC) Ý¬añ &ȳ¾Í‡/NÀ3Ã+÷@¡¯hW[âÒ }¶@´Ki’ D0F,Í0£ú DÖ/‰sÄݺUµ¦¡ÃĉGùqíŒûÔós€ã.ï›@CìAhbâàIž ð ¯ÈJÐF*ؽ€k÷n”kâв ±HËq'÷âÚØ2{F9~Ð Z¾‘#߯–˜£:Ò9Z! X) ›t®Ø “Í9r²ÙŸguîYA7uO¥FÒ7éZ0hWÙs¹UÁâYÓuf!—~¯õž×ˆ‡†{D–ò‘¥k÷Ï’¢Ó·gIj é¬#£rnì1¹ûçÊý“âd«·­SÆkLÖ$ê½Ç¤h9GM£97^c’VHâÞcr÷ƒÎuu'¦Hqb—n­üä&~ÔK!ÕÖŠÅ¿{gœÅEs“/¶èR€-¼jÐ&_&P‚&RÃî<3°rIqØèeÉÚ_c²{L¶kIÑê6rØèÔÀNaÙm´Bç“»t®½Æ¤8tnì1ÙÎטleÉÖ°Ò9Òé8r®ì1É:çÆ“´Rε_‰I-÷˜AÕ®-&[}‰É¹|®19WÏ-&E+&ÉaDQ#Ž5dL¶kIš( ǯĤá–[ò¦8Èê-nãfjæèž•¼9ú7I”¨qÔ@:;ZœH½”¤fªŽ¥£a%d74ì~йG»ÆH”NŽº¡ejÞ¤Ëû–©7¦\}Vˆò$™Öžœžt½[ñN@ Êj— ê¥gÝ6¾úàŽýçOÿüé´·h×x+ã¾ ¡¸«Ý3|¾ö±É´à?¼ý··?Ùí¨oÿöé|ûËùÿ?~:ÞþÓ§Ûo‰›J¯W£KI|Äøòé¿üR†Œãñ´n—ñ&ÎUˆœUÊ c?§BRä¬Rσ/$EÎ"Uìà4¿ÅU¦“³JùѬÏ*EÎ*µ;­°Èo¿µÆ>Þì?üùþãíÏ¿ûôÿæ´·sIìm¼}÷³q]æí¾<‹¿š>ß¾ûøô·Ÿ¯ã8¿ùö¬sYhը˩ùThÄŸúiTÙ+›Q¿£ú7ÿý»¿üôßÍ€¸/Û¯¯ß$’ÓŽ«ªOEÊžòMæ&eljú‹KI³IÙËÒQV)pV)Z‘R«]j Ÿvù„ŦϞ³…?ß|÷Ÿ¾½çqÙЖ­8{ð»ß|ú|úOx·ó®r·ó^3"ã,ÕO?m^÷[Óf„×Ó}}á <1Ø9ÿ„2ï¾57í–Íf¹{v¢ëS"Šþú§oüÚ¶«~~ûýÿðÍÜÓçÑ?ÿðýÏ?üƃÁ4ö·¹(öÛZfi3;µr.(þ5Ãl´~üý¿ýéûŸ¾ÿþ_ÿEÞ›c¼³÷ózÞæ²2ã}>°ÌøùÃomÊù…ØßØtÝ+ô‘;÷ï²È¸ýAË;l`Œ;v3õ²¹ÈÍËØ©*½8Ƕԓ1üà2gÄjcŸéµœÇ ÙWµGèµ=Ï,¯¼1¢¢æß\ÇÖW¯éb¡xèG®…16™[¡óŠpÛÝ5^èòנƱw6H»;£ªá©]µÌ|NQÎ¾Šøa¢Q•–eÆ©ÈÎéQªtÔeBx©Û/ÊtN‹Rqd¸q€#–³Y¢ÈuØêœ'Šþøl`>v×M§{)3*ÚÜó#O;êZÆØ¹æ&â_ÒÃNŸ­e÷…)ö Ø"m´Bäñ2ÕóQK”±nÂ#Ûª÷8Sûcì¬`S{ çüˆÝéjÞ+v4­—±)6ÊØ¡®QQŠÆe¦zTd9i=<*a¼iŒFž¸ØþŽƒíÓ£Ðhèm? Ñ~ý¢3âòl_ n+äWb”àÄÍ׸Ä9O”²Ò‚sÅMËÖÎÏœ¸¤¸¿åÚ8÷¥ì†²`ĵ¸%2Õ¿ärm'ªÖ0pv‹2¸ÿ NÜ`j1íç'ùX ûœá¥ì¬­æ´¸qÒd£k¤%W«a„æ—Ô{`|û)6¦Ú…þµã1f­shÊžá·ÒÙah;‹ÁGïƒ0·C ì¶?s!̱Oÿq Øü‹y+T=ýÕ9qq•ùëNùÚ1šÏ K±›YîàÄåBvˆbL6þ ­5¹? :£{¡çÞ玫`ìò ÿØÑúÒy6F‰‹G,)ø ãJ‰B‡'†8'.º(1‹´hçjÞ\¡dv{÷àcCù§Cgpà€çn¥{Ò>WñRu —ü3Üþ‰¦s”:1%´¸£â²<çŒ(Uü0MãØ±­%†Ôu= ‡ðû˦ɱti/U}åøs™2ê ÙRZiat·'‚Ú¬Ð1•xò¤M%–9Œn+š·×5Ý~*¨]Ž{†r¹k¨ýb…ì:”X<ÊãÕSîu¦¶Ü/ãÈ9~Òž‚íeé"^h°A¹C¶\ê¨Úb)ŒÕÇÞî_ Ë;O‰íŒco“Ñ1.ìE¬—)qe/0½™ÆÙ›¿:á´½4¾~žâT/dIѾi¼ý=ÍdôމÏ^qX!³2j²—^èaG:¨>»ÍR([”šñUÌÃãZö²à„R†}Ú°< ‚Ø0ÃQb‹À2 íô‰®cÐ9:…tD]5Žìµ$Bß¡;Fݵ~ÐbI=À©ö€é3q¬tþ°j¥N‡òœS¢Ôl¸Ú‚ã º¾Àæß/ÞñÙ9ÝKÙµŒ#<}üƒ9»¿"$lhß14cŽÙà~æ²sŠ—)~Œ3ê0ï9oj˜nžÓŸ{r }®+ Å÷Ήï|ùsëž¹û|¢ê…~ëÀö¶¤¢wΆvÙ×T'O‰¤g†±‰z⢇Ùz«óS#Å6Çá3ûÅó÷c;§F©³³T{Pª`Úz,}ËÄ%üéq"‚݇Æ‘¯V"?Ü9]_Àf<—Ú²¨ë‰ì"[4}ÐÏ®?üÖçz#’''rZìÐ;0"ÄV _ÙæžàŽBÍ?ÃrNäØêwG©ëôR¶w}Jpü· á—ã>¢Ðh¬û.QU1{Lλä'öijµï(äGÀ9£G»u"Dª¿Lª¨ì•­3ìÌ}+0gøÓ1°Ê[èl~Fyµ=Úvìùëˆñ49¾ç·µ†Þ{~»&èGlúíðû(óøžßö¹Qñ[~Ûš(òÄ–ßoU3ÆyøŽßöa>F'#vüs’„µç;þ;Ž¥rŽïømŸïÓA± )¼P󫽜;~Ümlœ;vüö,pFU³;\˜wÚƒ?Ž(5û#¶Ç=¦ŒÉéQÊ{Ôn"wìlÐ<;ÅKqµœ+ÕÁ½îZB\,‹=Ô±<Ÿ½Òc±„ã8÷²8–3NÎ÷‡€…†où펾ÛûÖ?Œô™ñ‰n±ƒÚoL§ ßòÛm2®ã:bÇëgœ;~» ŧébÛ£7Ä; ¿ÓÀÆ?4™Ø:Ç·ü3Zcð]wìøí¬×0åºcÇoûè3ª¾G”i±nÏ™$vüv„Ûµ%vüvÖOåòªg*‡K5vü–qÑ¢P‹ÿ°Oƒþa粇–~[\Zpz"ÓOlø'§ÇÎø‘“ÿa¬v¬ã.Œ†-ëûòb·,ôO›™½b¥JÃ’69ö¬Í7Åà/d·V÷àŒ(tûØ8ç… ž˜Šá4^êòK?Œ3ûÅKiÔÝWløíŠÑî÷~»†œÛ7ü90ý÷;ÆÏ–ØðÛ¹Ñ6&ÎxºŒ~ð·ïøl1ßVÃÖ4ßñk[üŽdar¡ ºÑ¢Vç~„H-?î’6Î8±=n´f´¨éB ?±ã׎µøm=ÖÊÖ=¶ïaâ³Y Î NÇs‰)Áo%ôuðŒMvñËü¬ìÒ¾±ÝÌ“îFÅžõÂJäw®9(xcÙEe^¨Ý˜ûüޝÛ®ˆH®¶xFÛÈW,þÌWü>¦ßB£^68¯Ø[¿ÿçŽ'ÎÛÐ/Îiù´VìÆßìVÖÔcËoϦWXÓcÏoKÚ2Ã÷üþˆ FE¡'vTÅo¡hµ0ø)±C.Ð~é-Á׃èó l•¾oŒ2{D¬¶Jãé¼øùôØ4p°ç¿L~v ºØXÂG?GÜ¿[<1›ûܾ~zŸøÑÕë¨ôŸKì‚À)±ã·{\"Šü€áØ®F ù¹¼%6§2†C^×:(ý$ØŠë ;BÕµ+öŒÅŽõBN~d'žËÂ!;ëò‰åÉ›Òžê½ aƒâç*¶Ðæ'> ,Tì¿Øä>Øùñw@—œ)~jJEKøqkذÆVÊqZ<ØÆüäg{=Q{Ì~&Ö{yb*~œT‹[Ôuq¿_Ew<¿GßúÑ?X@cjñE$>6Ćßö5"~B‹ÌåÜïIÃ6¼ª±á·é<†ŠŸ£ÑãÛÔ'¬‰¶]…Sx·¿³÷L¶;ß hov‹Õmðî/™Ì5P&pÎsqÍ—̵Lp€æ^Ds› ͵çÓØÖÍåÎU`nñC€¿,`îÝ£Ì=ùØA0÷(D€æÚ•%±Ë'˜kÃ16‚¹(FUs[Š 0·b¶M0מRƒ,×úÙ‚r¯ƒ+¡Ü»A¹¶*ôÀ,æÚ ½÷šk± Ð\.”‰ær÷—h®Ac!4·<ü Í-qX¹!/8·œx’J8—Ï΂sïÁºç œ›â¹÷ÃBÀs Ÿ®…çjÆÏ-ƒ(6ðÜŠ9.ñ\!_Âs[EƒÏíþø%ñ\{Ä­@o€Àƒp)ð\Û<ª!<—q‰çÆÅP_<÷êxm!<×Z+ Pºqã—ЭXCÐ7É_ÐÍ¡I@· â÷tË×&tNh–€î‰E.Ýó‰}bºWìðϵ„´ÀŽçƺðÜoÏ„O<·ŒØŸ$žk§5& <×\€n±ÑFlïì %]ƒkvѽ+ñ["º×MÌ”ˆnÜsý%ÝÃ/1ø’ˆîý€,ÂfûçÚÀ 0Lˆnã{!!º˜BtmÊ \›ˆn!8!D·T„Ÿ] M!º¶õ=DtïAÍDtZνÐÁ¹÷ƒçÚ,°+á\»?/àÜ2b–pnÅB(8·¼3œkGŸpîŒÀô6àÜHÝø’p® Ì Xí ¸c %œkx~x@8õËÕ $–{¬ÂrËÀ›b¹9&æ–ÆÙ“`®-Ñ1{͵!Ù¢P ¹¶EEsÏÃI"¹së„HnD a\ƒ’bî"Œë'àm0n\óõeq-›9@RÀ¸vD QÀ¸óŒ[‰o$Œk÷àEU€qm0ÆxŒÛ.–"Œ«wœ‚qí žàƽ8’ãž‚qp!a\ Gb¸þb$ª†{Çá„_ W¨0\ Ga¸•¯‰á–€@õëK€ØÃ-qJ`¸÷ƒm‘0\Ea¸¶½®–Ia¸ÂpËI¬n) a¸ÅoÇú²`¸|¼†›(41\FB¸w¤š}I×6L€áÚóC,K„pm™„5„pκ áB ñ[Ca¸•غ0\×{†kûWÈÀpýúìÐ Wp0Ü'Ü}Y0\«êˆ{ŒxnJ÷,˜¡âž‘O×6<;ˆkÇH9ƒnÊÀpkäöµ-ëÐ$ \C êúVß°¨˜§áž«!\åé ¸6¸ƒÆFß"í 6úq0Ø—q5$âÈzˆ{?'pÓÀpõ<™®ÖJa¸Âp5"âÖS†@\ì`ÃÕb)W‹¥P\-–BqíK¶`Äåãc‚¸”ÂpµT&†ËQ) · Ï$1\B‰ájX Ãåå‚ábX ÂÕ°$„kòí.Ÿ( áæb)÷èxó#—«%Ü«»‚Kœ'Üò`!‚ÛÔ¿ŽàŽ9Œ~‹¿§%8%œ–IYÄi ‹Çdâ´–ä¾ã´±òYpÚ£%N{àu›€Ú‘Ÿ@íÁô/µ‰Pk³H<¡¨\µÞ¨=™I, –‹ ÔžxO ö ÅBjxžR{ Œ\ÚûH- Ñ©=^Z"%+RÌ+R{ü©'x!µ¿R{쉷zý÷‘ZÁA+R{ïH-Ÿ@W¤² R{ïH­¼\ÚëHm@{_Ej¤  P{ÿ¨½^€ZìR ¶3mtjûžx€ÐŠÒβ¢´J;„É&JËDÜDiã-A¢´B…Òrd&JË‘I”6G¦PZ M¡´šBi54Ójl¦ÕÐL«¡I˜6Ç&`Úš„ish ¦ÕÐ$L«‘)˜V#S0­F¦`Z L¡´˜Bi50Òæ¸L”–ãrjƒ.@mŒË¨q¹µÀ•Ôr`®@íñ  öÜSoÿ'ZͯcµDf¿†Õ"[tÁj_`µHáM¬6ÆæW±Úœ V{½`µ›+V‹_bµš_Ájch.Xíù ¬:¬6ZjÁj_`µ10«U3±ZŽK‚µ9.…×j\¯Õ°d«aIÈ6‡% Û–„lsX²ÍaIÈ6Ç%!Û—„ls\ ²ÕÀd«™-fB¶™ÿkï÷«G’c¾×û` Œ ýâ[»­ë/gÎìúÁÀx<‹µáu°=‹…º¤ªÒ¬®TV©¦Ýóà¿ÝAòœCòÓUu·m ºäÇd ƒÁÌPÆV3S[ÍLflsjfÆ–S³&m”âfÒ–¥¸™´EB¶$m‘ôVÒ–S³$mo½òö™¬-gfÉÚÆÄü3³¶¨H-Y[f‹ÍƒŒeš9;Þ¼9\|&`—4.ßÅæn89Fö„0›E€â°¹7åÉ×µp€­}üFqù`Ÿ:Å v²†Ëæ°Šï[÷§‡f:Zì"£BŠaéîÉAðw§Œƒ 9þî{¶0Fø:+¥‡®•‹{0Š `ã"N ‹ÙⳚIp…ïÂò Â`þ“ýšHBH Á kÕ¶¸Ã>‚²Ä4f…w‹·Pã¤<î ØÚÝ㣚¢ñŒžâ"ÎÄD…Yrþá6•6Æ@•2’Aׂª¸Ì-ìQ ˆ=6ô 0pj[B{Çjª§[[r Æ(g€Á2¡¤ˆàP4€N{\†Qü½0ðÖ;"áÍw$ äîø˜¦ìÞº`–»'†þšàÎÑ‚¼=%àÏOw¨W\…aŸÌ8¡0ñjž÷®Y€Ý]èRã³U»”ñͤ8ÂÈÈ€p4áOão´$û"giÂA ð‘?Kd<ÝU€^¸¢e·£Š…ñÏZ/¶_2Øÿ¨†ê»˜§Û‘(NwñÉAðW‘̆Jódûäl#`oRˆ‚R’CÓƒÊÅ…%FÑìqà;QˆvYÒñð¹Ä' H€Ïø‘à ƒ`6(ÖE %† ¢Ô`е jî—Ô<ÓäŒÃzÎ"”f”yvF>^¶wž ÁšgÄp¦&›ÐDƒø™j–6 ×ébÐ%‚?;÷îQ\R<â' ¢è¥rƒ+þŒÓß±ôˆA R|êsÜûCa²››?D}L¨klãtv(8Çéìþ 0l@ÃD 8ŒG÷‡]èuÍ1x‡ß?øT1‹%‘¼o=k·…@‘ào­¦'ŽvHa™?·.0Hø7X&ƾw½Hc!›Jbxò3ÄÓw*P/¿ £xŒ@h¾_¬]  R%9 ûËODqà„ 8N‘˜˜ðä@‡À6ŠË€r”£)ŠY_uCLLØ‘õn5DÖ\¥!z®X-e1Ä„iˆÂÀ”È M Ð%¿5C¼SzyÅd‰ëQ¹çKÔ®Ï5*®_'œŠb½19f\Ÿ˜ˆÊÅQ»ÚP\/)H!)Á¡ëAå®Ç6É„À™fÔ_a ±.'Ùtà”ó ‡\à X“ŒN2rˆY¤&8É$~‡„š¢Uh5-1Žãÿ«‡ô‰ñ³ï^+¸²DÐé݉B¾€]J?¾ÁŒãG2¼ €HŒ¿ #7/ëÉÆ» ¢ Œ`е jgŒ¢6b‰‰}”¿}>å>‹‰¹³/¥Ìb·¥r ÌXbb#%Øh© mÅ$)$%8t= Ü<ûâf—*ºj„¯ê9ªíæÝ?e¯ÊJÀÖê7pˆb‰aq¼G@›ˆÅ’ÊÉÀNXæÒDÀ®„dƒªµŠëZ2²¹ß_wˆfhoï1/•àˆ­ž¨¸^ˆÌùt„íâΨ^ÍãwÉ‹§»üPj‰+0Š +Z–n‡QãZÌ0¾«ç4“`™¡00"r ‘¡‰´BÊ ÊHM ª¶yê'ÍPZÑÙíźÅ×¥Ûẛ3L‚i‡BÀŒÈ€VÆ&Ò))$$-¹jAÍ.X³4#‚rEjÊÅU3ÏH‹À>‹W»F0‚ŠÅóÒ ¤^AzQDêUu€^kÜ}1Ï~úôT0˽mV0Ûdw-½€  ©h s0;‹§ s''f‹•–ÛÜ_’€]@” ºüTêôÌH‘zÛÔCEÔ—PqÛëéËbgWëT9\BEa*n¬B¨Ès…Š”B’ºP.¾³WrÛ‰Ù`Y[8%¤®YÊžÉm÷…`÷?1á±Å]mÈçK RHJpèz@9ËZvs†Ö´7sÄ››Åç©›£U:Us,s$†E°76!s„üy鿨U ^G,pÊu'&RÕÖÁkIeóÔÌuÛ—MâµRœ± ‹a&»…AºZ"›­&˜í– ø"òñ®4›çÆ1a²Ã£HäË-·z0cÕµnkd X#F û 0"l@F ø;Ôx7¨× ²Šû„‰â<¯ ÎÒ½|˜Å}ö]ÃÛR)ŽX¡ñ>½èGÖMËÒFŠ˜ìi_œ9|-;‡jõWq’`ÇWÏãy‚9R £ñ<Ç ä@Q %eΡ.:P1¿µ¡TB$&ê¼È¼Ô9ðõò¬„ð/g.…b»Å‡‰ÈA0+!u â€:µ¡JIA I ](·®µœÏAVâY÷®Y»§wä³–o‹ï 'Åæ_OO€³–/1Q’G[舄vÔò±}ü¶–§ŠÔÔãô‘Û7OL>UÌ¡Þï{ï»ùTï÷vÙ< ~ Na@xãR Ìlc%ë¡"[ƒzT É] ¨fiʽ©& %‹×SòÈ1ÕöÈC‹b÷Kµ’ƒ`é& D#)‡6ŠrB”’½Óô rGÍ&ŒL ¾TÁ꛸J%ÚG¨Krq±«ܺÈA0s‰Â (HÖïîF2QR‚—ÑøãE|(dÉɾ ƒut_úBŒOF”…x¿ÚB|Ì}!¬…˜.¥`€…– h!¦ü}ê qWzÅõây& N³ìý—)O¿òÃ: ÛŽ5ÞîË Â:KLœi‰Cy© ‰Iü.¡ñxWšþjPõïÂ\€µTºñÅ¿‘ƒ…ÝÆ<‚åß…w&zo¶‘þRˆ‚R’CӃʭp©rñÀÈG{ø$úp|‹¤xùÓSÑ"8ýS`ÉpqòÂÀ]ƒðãüÔ |˜Yt”˜¨²wŒ§RtÄï‹©èÈÖI~¯8ü Ý€0‹Ž5C‚"ÝÌ¢#É@É] ¨6ϱÔ)¾"†á‘õñZÞˆã§Ò2¾Ú—[ÝW/–œå8Â`%&%rð(Š ÂbûøââÁ.>uÚcS’˜"ü}ï ;ô±· Cöemg‚öö÷T™„†ƒ Bd¨ …!’‚”’ºPÎr”í831 Ÿ¢•èûãÔu»pý6Ö)<–nÄH7pnÑDªFDÅ iAÕ6ûÐDõ ÄÀ,ø"Üï½N²òžsRløðEK[4;yU[»“\U[»“<ùI3êvÝ;É" Öî$»Tíô¡TýG"¢zÃzø,5ùü¾nÖìç^1¾|J„Qÿ‘ˆ¨ÞTw¨ ÕHRHHphZ@³sëËe[,ºç†ïÔbQƇ‚˲}M5p-øÖª- Ö\0à’ÌrѦ ¢ Œ`е jGX_úaàüÚtøàqq#צoñÅöH‚åF„ : ¶‘nB@2‚Aת]/Wï/ œ÷ô•sç§›ÓýÇ ¢8ns|+¦ûO ¼79л³tÿ”B”’šTn»w‘ÀÈ \gs‘ü u:»Œnª{s‘„Ó$&ÜÐKè;×éF ƒüˆ¤†éZ„j‡%7óõï£Ñ:xËZE~J;«ÛÙê)>(‚£F-¢G­¢P5#%$ƒ”ŸÙ=f¥Iˆ(#²~=óµüò1p"¿ Š)>c(‚Yˆ$ *‰Ä! Ô ‘$ ùtÓ€Zwqcb"ê;,ZâF}Ò\q£Ý~8U‚øc2 ̰QÄ}dQ¡`Ô( ð;äÓ]è5ùlÅ%&&<šõíVBy|˜=]â1OÍ%cSx– VÂt‰‰ &ðxlBQ2ˆ€2‚AׂªnË™5&výÖ½gù:¿0ŸiƒcÞZeÏ1ŸöI1 ¨´Abb×/È ¨ ¥ $)$58t- š¥3ÏfÂÀ˜æø€ºŒMË—5.·fCÅm- ˉ¡=¬ È)‡€|º«@½vÇÌa%&RPÖÁ[I¿á“ÿ™Ã:–µ$cŠŸ%‡•0sX %HQ± å°$ (#t- š™ÌÖ†L˜ìñs­#‚Ë Ê­ÀâXýž¹ä XcFŒÆì¬jBƒFø;D,C^” f«}²š0ìó#®må˜à†2jëòXGuÝÜÔÄ@°ö9pHØBeШBÆ2êE ªvÅHê¼IYoå¼ ·IäyÓ1±u­WX›ÖySbâÄHâ@‰-ð¼Iàg‰Œ§» Ð+î5-1Ї,ÿYÞ'Ð¥Pm¼Û®—ˆJDTà  mdHE)’‚rƒC׃Ê>’eI+Òv‹Û%¸bñŠ\ÓÆ†¨ÛvñÞV9Öš& –$rà’Å6rQ£¤”àÐõ€rÛébƒÄD­€õ²Ûj p[IÖû­UŸqQr2ÌbaP+ ¨%`*6 "€Œdе j{.Nþ)˧ŠñËg½yôaÁ-î]ì’Fê:)ü£ÐÉAðL3&æv…%‡Û£À6ÆH»¤ ”äÐõ€r–μêq1< ³3Õ©–ñ ™U <öé_—CÇ%QÅåÛ}¥íëé<‚åò‰¡Ç&zt¶‘>Bˆ2’Aׂªí1”E5b¨Z|=%ÇuWE·ÈU'Åv&ݧnÀH7p èºR+uƒRRJ¹¦”³fûÌŽ0Œý®ø¤»bCÜÜ•Áãuµàñ¼M-x¬à11ÿÈÑ!ZPðH ø3EæÓMêåÕhu«ìåß¡ç"ÌûÇr™>‡×( ÷€½†N æ2- YqÀ"¬6r™†\¥)#Wé®U»|¯Õ?§úT1‹}vz´k]«_¡­›Ô»¤qƒ†("³™ßp‚/Ìâï¹'‡±%‰QF{’îôåNK`.µÈL”ˆY'o¥„ —ÂeÙ9Í1ÀÕW=OX%f‰‰12@ýP™$eÆó]*vÚPîvª±Ÿ¡1»]}ë=|è–ðn;Â.çnæT(.3·Â€°7áOs³¯¬%ÿžP6á ùÊŸ% žî*@/ËbÚ3vKè%Œß=`¿±m·›6ÛSЄ­ÙÙofIŠy1[K‚½ ‚˜1¨/’å©J º^¿SÂxº«@½ĬzILÔ¬Xçnå­^4˜U/ç`¸U‚#â 2Ì¢—ÄDÉ  ¢E-¨æE2B2‚AתÍ~üTâÆÄDÔgÝ[ÂF^˜˜aã9Ç=9¢0çÂ@0ÃÆÄDÐ' Õ†ÂF !ÊHM ª¶¹OÉœ1ÜñŸ–ü,gµºúQ9ƒsÁ?¢ØcÓL€3g˜Øñ“3l#s”B’ºPÎr™KÍ$&vüÖÉõ¾‰z‹%|ÝRã˹ú]CÉ@0S‰‰ ?  ”1 ¢ Œdд j«fžç&&Žc­¯<­Õmœ:Î=Wd­I±Æ5Bb ˜ç¹‰‰ãXqÀq­ÚÐ.…eƒ®U]Û,22§·—ÐÜx«häztƒ\¯n€‹A s™Ú( )Òd!5-º*Å,›¹Ô1Ü_YoåÝ%^š;´só´µâ:§d87h‰‰}øŒì±?cëøÂâ¹.<5òã‹r,˜˜8ճޭwžð~×<<7d«EÁ{©ÀA0Ï…ÁÉž8ĹŸšà¹ dÀï‘w% Ùè¦s«a¾0ŒÒ7\YÂ(÷ÔfœÚ•ue#pî³¶&Âç ‘º8D ¯&èKþN¡ñxW‚ší1]Òsƒ‰¿á V:Ü·[\Ç÷¬‰ÀÛK‚å9„ÁÄú¶Žƒ2B2‚AתîÚZmjb(Y¿ù„WÕÎî©}…9aé& u;»Wd©ÜÞoOI)É¡éAåV̲˜ ƒµhǵ¸\«prYÌì>ÄºÜ ËܧÂA°V3a°‘+¶‘Ë¥ …¤‡®•»Â¿¦#nà˜pÓ1ܯsNGrx¾: .7¹d@X~„:0€›`r#”¿S@>ÝU€^£»¶–ØOL$2¬ƒ¯’èà¥Ô™ 9‡U”ÄπǤ/™ý„™ ‰ q@¢Cm(")D)É¡ëAåü~?V¹$E*§å=×,báåÚYærž‘«NŠÓ-9މ&0ªTô8ªXÔ€Ê\$)$"8  “å/»! ;²Œg5DÞž†xÝš!^³õa2,C$†¦046 C¤ü}î†ØU ^»`V’%&êÀ¬w}•Dï9W!Ùy­­Ôì¼·21ÌB²ÄD˜8 LŒM¨ŽL2@2‚AתÞ:·6d°ǗˆÕ4"¼±=‡ ¥Ù ¸F<µOÉ!aŽ™03pÀ ° eàï± ù¹ÝÚåûë,GMD“ZÛE:,6åÅóYŽzÝe e$ƒ®T³Ìe;}O %Ûêgÿ¯õ¬WÜZ»#à©gØ—òÔ¾,Õˆ¡dä ÕÎz ®ë¶=6Ȩ¾iZPµÃ‡2ÏaÇ(ÖÅ{yûøÚæz.ã’ÆîIq¸µ‰ƒ`Ä$&ÎQÄç,jC'1’‚’ºPβ—­tS$Õ¬“Ýt»¶¸Å;Ór××Ó‹bŸÃâȰÒr‰‰¼š8DÚMM0-'ø;…æãM jæñ^…Aä·ù& w$ 3tÍÍÂ9“`…ŽÄ0ö#„†lB¡#DÀÏOw —¥0»{ÎmŸ»{Ü·{÷¸ŸÝ=Žš{,÷H ý9Àý± ¹GÊÀßoÝ=v%¨ÙÝvº”,I;îEá’µG"º,jǹAR^*‘kQk9pÍb¹¨Q QPJpèzP¹3ÆR§0Äðå:¦z¡èu¬õTÆ%=ÚÁáeI˜¹28Oa‡(äÀ3¶‘§0B’ ºPmL‡¾ªÇ}àŠn:öã¼ßÉœ‘®ŹôŒ`¹~bè¹Éžm¤ë§¢!É )AÅÈ2fÀÔ.¯õ\'Ñ9hçæv"8ÃÚÈp3aÐåÁ@#‚ê]íªŸ”:½hÕ,ƒée~,LLÔñ]§ßÒÍ2¿ëŒ,t^WdªEqͱ“` ƒ:>q@ŸÚP% …d$ƒ®UÛ{ÄOœÛyÖ o‡Ó½{¼Öî¯[p,÷H ýÛµ6÷xMwî‘2àwHȧ›ÐêrgSªˆEÀÖ»Wù~íu¹û)eÄ—Y€ëíæ>’ Œß‚‰"`2@°ZP±de$ƒ¦U[ã’gUƒ$&Š9®Ë/êF­ÇëæSDÕ ™ê¤“ýƒ£T£`¼˜#9D±G¶¡j j”ñ£hZPµËSCeš ã³Ä»¸Ü2à5.œgs„+#ÅØïÞ¦ÂA0&Abbš$‡˜FÙçYJÁ‰F)5S›®œwÙv–ŒHb<£á}|eÂcÀg܀˔ÈÔÖ"˜V·7>O銂ñ„†ž|G6À„HŠ Ê ]*v YŠÐ±`<òóÎÀp€Køl†Ž³×ÐqÀ§U¬„Ú%&‚¿äà±a6ÐQ"àg ȧ» ÐkòÝGçŒÆzÿ–+p|Ô p­ÙùVϲ¼¸­‰ƒ`µŒÆ&‡8¬Í6xœ›Rˆ‚R‚C׃Êí>’ÚÉ$&ö!ÞÃW– A¦º³qQ£8[‡[›æ>£`|'"¾OɰI ð»DÆÓ]è5»ɨ¸`<¦õ^2 ð^2?.åUs?ëm™ÜÔÄ@0Ö‚qž"äUŒ‰SPF2hZPµ-¼J1¥Ç÷µŒÈ‚ttÙҊü‡ï#Â9f חZÜMhÐ(•BsÈ›Ôìò‘TñwÁøvÃ{ø:UÛ=àÈI«ú{`jyø onjb •Ù‰‰Úm1ˆÒîlµß))(#t- Ú讫¾BR0X–¸¾[ Ör=ömk,9àÕ­M kE#†+9pEC¹ Q@F2èZPµÓ‡R1VÁ DZãún…Pkä¤c Lä­“ârkK„d ã1Rrˆ*Û`”•RBR‚C×ÊYBój~D¸5nð–›X#/]Éæ™klK¬Æd X~D¸0 —` éG(ƒ((#t-¨ÚƒÉhÁøÒûxÉ æc.ÉHt«éÈapd ûÃÄÄ29ÄþRMpš2€2’AתYJ3_{J *½‹³Âq€‘—V…ãÀ\µr½ísØV!bÁx©¢8X£ˆG6Ÿ(,ŸkÂS£ÍG° –0ìë¸êDc±·¤¸ ¸ÔŸû{ÉA°F‹v69p0ö–ôvÅ …ÆR–ñ.zP¹+–¹ ‰‰AHk÷Kd<à­º ‘³ÁàöRÌXD´dÀˆ-dHLH ™Á ëÅ,‘¹5ï! &ÿ^ï `d£‹ó8Ziø€·Ç[ cË{ƒÉ´Âîl#ÝÇ^o/2‚Aׂª>Êòƒ$Íhwª4x©Y—t¯yŸ_nnÉ!`å` f È⨠åy$…($78t= Üè²»èQ˜ìöe¯ÃrÞE#êž«×?—= Ö¸ ƒn' šÈa£ "˜{ôص jJ?´K›¬£Þ£2Ĉû¾Ë.íÜ"K-ŠÓ N k—F ÷Yä€m›Ð.í(7±¤€|º«½,•y5—Œ<ö—yË£Ÿ‘.>ìÎ<3CŠË#¸ä¸ø|aà»Á!; ÏGûøâòÁ&>uÚ|UcP0^!àë—âEÁ'Ñ,1ˆ56À"Øc¿L‚qü_0^ ¢€@M°Â e dƒ®T³$f}q¤`°%¾üú혯­î±]гî²×iŒÒ-‹¬ Ì=ub°#&î˜ÙFî©!„(#4-¨ÚC™¡¾0ˆÔ¯#,‘ü¹èŒõ§ÛvŠé¶…CÂŒõ…A¨. åÙFû”B’Á~׃Êv,Z݇01û­“—â?¦ÛZ’>.éQÓ>¾Z’'aºaàÄ!ü[ ÷pzM–ȬuJ‰‰Âú·$å¦[¤¢3™¦)Œ‰ÓƆç *ILDb€CM(¡ " Ì`Ðu bÇÝ:M WÙiºÕë™<ß­ÓÓë¤8Û:M8×éÄÄ*K\…ÙF®Ó”B’ºPΙK5b²×—:lÓÑÇi¾=ÖA³Ú¶+'˜ƒ& úÏsHÀ?‡Œˆ€ç  ¨ÖîíôztïÜ,W"DZí™ê¤8ÜÒÄ@p ¯@/GÏÇ£\=`A»$ ƒ"?4²ìeó‰‰G›—z=À€·{Ÿ8ŸÝ'.Sì ÉA°|"1ô‰ä§6ä%…(nÍ'ÞéAåVÃÜ›%&vVÖÃ寽!XÜó{³ÉŠ6+Áæf&‚¹5+2À¾K-hg&HAÉ kAÕ.g£cÁ‚ñS=ïã<àêbéXp`ŽZW±NëÍÖÒd çv‰‰ƒ½äàÇ~ÙŽ%~¦€|º«½Foíù§ŠÁ*´´«Â|!¨Õ:¶FžZC¡µœv$¬uŒ®cä€uŒMh!£ ü"òñ®5;pƒtjF åºõÚnŸØ»f{=§™ÖÓ’r…áT )¶—S5 ½(õ‚€Ò«©½Ö9î#gutbtö¡Úçn#ªŽ^§-Ô¢Ø7²xšK— Æ‹›óñ(~ÎX- D@yÁ ËO¥†ÉæÂù”-­ëÕg»qbi‹ó¶öÅy;ÜÈÄpYœ…ÁÒ ZzÑFYœ!…($78t= œe-Ç0NñŽÂSbfÿì¯÷±_)óïx 8nøì’z‚Zc/mfÆç¢£Æ“Á|~ºüÃj0†ÙDH ÊLM*6BíZ+Q0ði.ñ¦ÏÛoÅIº KwŠûÞ¢`9EbèÖÈ^-È'RüLùtWz]>Š|ϧ ®˜˜{\w‚×xw|ë=Ÿ9|E…Má©p¯á„¿§“ â=žl‚oú¤¤àд€f–·ÌdËSÅœ0-Ü—‚tÍ´_5¿ã’ÖÊð®njb ˜ùœÄD:† ­Q ÊçHQPF0èZPµÓG²ªF %k×¥ x))Gt¯IÇûn·0 œªCÕöšRT©ÚÑ.\)2Rµ¦T¶çëOÙ‹éˆë¼™Ý˜ŽÈ>gþc²:“£PœKø>rÌüGb"}!Ho¨ %@$…((%8t=¨Ü‹\QŽ*÷z§èsÍõ¸¨[Éö ðˆUXºN݈¡n[Éåd E5È Õ(#UkZ@µs ç’«0Z“θã[kÖ è\ÔÎ+ö¾$¸|û” —EM,Ià %+š(kdHJMM ª¶ùP–P_Dê–ê¼J$MõXÆ%uRìnpâ X±>1 ÕÉ¡<ÛÈ`ŸR‚R’C׃Ê]÷^Rx‚k®_cðvï%¯š_çÛÍ2©b0]Ibà ®³yÉk»÷’”’ ºPm¬ïK}Õ³`ÔÚm5š¿jÜmyðoap`0£ba׊ÂÞ«$¹1ÊGÙ P@FÅ]êuF¸˜ b"ƒ1[ʳԊY(ukù¶·r³9Ê’@¥@) 1@ŠCM( "!˜‘ÔH‚t-B5ë­«¼'†ÆÔ®Kp\žÖ8OS³ÆiéÖ(XÖ(LÀÖÔ‚¬Q2ˆ‚2‚AׂªwÖ˜ÓÕ¬qžæ;kœ¶nÙ4k,k$†ÖHanlÖ( ð3”-Ÿ[£õÖ^_/˜ˆkgËyfz`Àq#xFÆó|‹M0)†Í¬%ß0#caÛŠC„¾j‚¡±dàï‘w%¨ÙæÃh_º9çÐŒ˜ÃúÉ»× Á>šâbF:@—ruG¦ßw74=.ØðˆñoD'ƒÕ?º™-ŒvH!Á¡+Í,9×s3bxêeý[®¶_mGÛŽÍlK»_…`™ÜÒÄp›%fƒ.ÁÁÆÀ§fl?QX>ׄ§Fëã^߆ÑÃ<庞Õ>_XöØ.ß©yQlmOM8ÃÄDô@Œ.ØFÆB’ ºTí o¢S³ÄÄ¡—õìZÅæùg›ÍË+ª(®pyâ@˜Çf‰‰S/qÀ©˜Úᙤ …¤‡®”³ÌL÷ŠÂÀ©-[½¢bÀçWsv/GKópÍ+ –W$†~àöЂ¼"%àÏK÷Š]êuøH–Œ&Èê—hþ¬‘„.3lÝÛѵ}ès­Sp™aÂ`¦€CL#4À)ÍÇOÏuá¡‘¹ÆëÅn»¶p†D~S»÷êÿÝö¾*®ž{&lmŽõrHžc½š%ÂÞ„?@ÄfߎN»_êœMŒ¡u!DA©Á¡iAÍöð}|©¢`âëØòáõÕÒ º ëcûýðÕFÏ æ;‰‰w*ȯT°¾Q‘@âù®³üåÞ0a°m~É ×§-RϹ~ÙÇkËú6B*³/=-Xë—0X}È€«[Èõ ˆ€’ASz­îIìƒÌƒè)1öÑf;&²îõUñ¶Ä°ï‘|ì’F~:)¶XyÉ0Úð'ˆY#fû¸·± Àd¿îž’ºTîŠåM»ÍÄÄ^Ñ:ù({ÉyÇõßÚmÎÃ5U‚á™nå`)an6…ÁV‘ °“T ÚkJRPF2èZ@5K_îåõð‚¹Âwï~»7Þý`¤ õvø4ÒÔ¢8ÖpŠd onŒ¿ÛâÝïlƒo‡KPF0èZPµÞUþ¹k[ª;·åinÿˆLuRøw<“ƒÅݯÇÃ¥ƒ;½=ß$+ì²C!K\žmŽ£rĽ&šA‡{…:ÇNÏO‹`ø¦i- —)& &H0ÐüA e†A†¤ Ô`е j;ò’Úd ƒ=¢]Q¶vÄ}µ=æê¤8lS› k“) öˆäÀ=$ÛÈ]&„ dƒ®T±Ö­Õž&†’-õÒïu?í’¶,ø:_ÓcI ”fDP±–âÎR1Š ŠHM j¶ER2·™Â`“xõ’ÇÕ !Ž|5Õ%]ÁîÖ&‚µË$†ÛD0À&’ h“I ð;äÓ]êuÅ0*™# r1WÜj¢T͵ÕäŽKyÖôÎxî¦ *™“$sÈ€É6‘É A I ] ¨6&á­½C—l;®¸ÞDÛ’ëªu®[™¯nl` Û!bϡǹ'a¹k¡¢ ˆØµt%¨Ù‰CM3ab–,·v]ø€Ûeá.i+_ÆÂ9­•aγÄÄ4!Ì"µ y&8Ï$#æY×"T³;ò%°§‚ÁkbË —›à52;&¸å«€Öð„Ô4)ì à(ëE³ÄÄ›bâ/’© ¾h&ø;…Æã] jvÜ™cbhMW3ÇešïÍqDPͧ±®”W:–A ‹$Ø›ÚEJ RHJÚôñ¹EZ‡-­$1± ¶.®ûh;0*ÙFµÕ€/c®O¥$aÁN˜ bŸ¬¸–üêé¦õÚp¨N·Ÿ˜ðÚv6•c÷ežj¶ÑÅ\k¾qÀ»5Óï Ï-áØÕ¿dÀï‘w% ™e,[_øí×xÓ­ÏÈ:Ëñ/óÙ —ñà™+‡Àtü„Û¸u5!Ç/!DA©É¡iAÕÖ{c†¶´û­Ñik×½1.s3ÆeëÆ(XÆH Íi™«1Î×1Rþ¾vcì*P¯± o5 ‰)-.’†©-qÅwÚârt[&ÒlQ°l‘Ór4[D 2EJ@S…€²ä¦ô²¼e7EbhI[Üm.C;ïMqº)®K3E‚iŠÂÀÈ€†Æ&Ò)„(–nŠ] ªvø8ª¼%ÌäŠûËQ¼²¬qÑw–·,«§¦“àt;Á¨nIDÔ¦ðy”®¨·HRHD0h:@¯Ñ]G{K$1Q`5•·DÌâò³“Öìvku‹½[Jf%Ab¢@P(À&TI D@Á kAÕvÇ2!²ÇÍ4"[$žËm‘œNŠÝMsÌ„@—“‡„Mä Q +…ä¨W- ™¥/[Y>1Ëí*) Ÿî*P¯+Væ2`Àd‡Ÿ5ëvE*ºŒØéjR¬·››Ôˆ%N6‘CF!4d”:ǼhÕ,‹Ù·1°Ç÷¾¹®ºÇvQçVÓcΤîcæ˜ ƒ^ŽÙU¶Ð®ÚÞ62± ùçKd¶*bèܬ‹‹w\oHEË;®·½yÇuÌòê §wLL87r ócé!„¼£¤†wìZ„jÖ]KûHbâTÏ$>Ëëdëí¨Ç„Öî kQ 5•2Ö„y.( ŽõÄÇ~jCƒ’B’ºTn·7‹L í©]’2™ï-rÚºENG·HÁ²Hbh‘ä§&h‘’¿SDtSšMS$*õdbâ Fëâ-_p\m¥ºê+ë9kQÌ“­mÉ@0_/0Š^pTz’Bˆ2ŠAÓ‚ªmH ÑC 7Å-'òvÙÄ\=ä:/ÝCÎþ5O>(ý#áÜô4œŸøË=JRHdpè*P¯Ë/&¯zC¹æz9Å€·ºt» gY¼W{n+ýB0†šeiÎR1Š Å(3k:@±ñãÔŽš„Éߪ^WÍú¸œsÍû Øo‹NÅň\d Í®šÓÁo•€2³gšTÌÍ´Ç$&NSLÀ³œz®vÍÄü¢ÇŒp»Ð øzœ+€<"ÎRô8ÎZÔ€Nc$)$"8t% ™%1Ϻ £õhÁE'\¯–³îl¬á1iKÂ`P„­‘ಠ ƒ-h=C e=ƒ IA©Á kAÕÉ,ILÔrXoYê1zÈm%‹AÖ5ÒÕIq¸µ‰`ƒ$&j9ĵjCÅ ‚’ ºPmt˜ ež¡ ƒ0ëâ³|¬q]#ghëzÅÊJŠa&s9…¬3´ÄÄ!˜8Ä™šàšdàïš7%¨Ùæ#YMö¹_çc²E>ºŒÚ¶ÖŸÕdka Xƒ& ú 8$l!ÇŒ2hT)cŽzѪy9å8Oƒðhó«æ=m‘.ñÕ9kQì7{0V|E £#r`ôÄ62¾‚"€Œbд j~RX ŠÖÅåÒð·+Ã]Ò¹•@®QP™³Ä11Q¢((aT*r”¢ ”àÐõ rg8ÄtþÂÀw[´µ¯;î O翵Þg&¿­•ayaà¼Á€¾-¤÷§ ¤Œ`е€jûrï"…Ád±Ë$ªÜÏâ2­Ýcê.òXÜàÄ@°f›0˜,äÀÉ„&r¶Q,ÝEv-¨ÚC©ï‡&&¾þi]ì×Kãë ëIéü~èzDâ:)Î08rÌï‡&&¾þ)ø:¨ÚÐ÷C%)$%8t= œ¥5»I ‹²Û$æbqÇqo’ç­™ä9w“,“48¶&ID1u“ìZPµÝŽ;ê~FlGޏîDÛ•s*ûtõ ; öðd Xûb¸!nWÐDng( (#t- še5Ûkž‰ÿ>çz£Ô€·ºãvIÏVš»^S¬Éä X+1tàä@Ï6r ¢€”âÐô r«¹é¦1Tî¨wJ Á"=]”»<ƒ›\êF8u†’g Eµ£ÞJ•2Jµ¦U»|0³R•šZo¥Ö{½<;…ªëxt]+Ç<…AÀY©š˜(4%¢¢‰¬T¥ "Ô`е€j–×ÜÚ ü÷|Ë¿_‘œÎ`q¾Å}¤ØÆ>`.KHÂ\\èàÙF.”B”K@׃Ê1˜éJ„ O°ÝÚµ)Žuú’í¶WÌ€O_‹’aúaà Ä®BmÈ™H :JIgÒõå¶ÛFó-11]¬—ËE>«Û|nÛt«ñåê¬J4™0ç›0˜.â€éÄ&4ß$ƒ #t-¨Úîƒy¬¾¡}ª˜ÅV ïc3‡cŒÊll§ÈRvIýuŽBq¸É‰ƒàRÂø—Ú“…쥉€1Ð.)($t- š¥7Ûëlj‰uw›–v?À6í5¶tA¯º”ÕtrƒÁ\¹ ¯8`aVZº%…((%94=¨Üvo’ÂТŽn’óíÎ$祛ä¼u“,“$†E´84‘&IH@eÓÛ3&i ÎVÚ™˜(Ì´>ö«ÊP¸¹Íqx–vnóR,778qÌÒÎÄDa¦8 pSm¨´SRBR‚C×ÊYš³¥04©½å|ÝåpþÍ(—µ¥`¥00)r É±4JJ!Š¥e׃Ê>œ™“&rŠÖÉ[IoËRr”.èÞjÓÌ-Ÿgy r’‰‰”¢ åÈ”’”$Ì`Ðu€b–éÜ›bÄP°õ±‰Ý’åÖìÚÒå^ÂÜð<ÁTLȵ¶|x6Q4[›æ”™=Ót b¾á/ʼn‰ÚÌmi‹9Úµâ.i$´“âpcÁ¬îõ™âå›j‚å’¿SD>Þ•€f–ç\šfÂP®¸ÿ$åöduU,òÙ"ؼ-–bÄH1p bÑ‚ô¢üêé¦õÚîM‘šÒÑLq»Ý›â¶´³îmÛcëˆç ¦) K"Z›HS„ $Ì´åíS}N\n_8í ×~Ó©ÛÍéä]RäËI±ß÷€ œ>ðØ|œ ¤Ï§¤ˆàЕ€f–âlÔ‰¡%íÝíâ‰n‹ûÜmq_Û7›–-Ck"›1RþùxW‚š~y9>s›`|¥Öº÷ÊØŽ]‹/˜ù™[KO›%%Åe¡Ha@ÃE0¾R«Çñ[5 ÏÜRH@0(òC£}Ž*[5 :\‰@ ‰Mè5ºk›j¥Yb¢NÌú÷Ê2²íˆ‹À³ÐlìÓ[)Ú6Ìc> Á,4KL”‰‰ÊÈÔ† Í(„(#4-¨Úæã˜†Äð¼o³h)pÙìÆ‰üì‰Kº¶âÈíÜm*$Àyb˜˜8ð#²<2¤¢ÜàÐõ€r–Òlö(Ì霻=žqx±Çólö8¼H³GÁ´G!`NxžÖÆÒ)‚(nÝ›Ôk‘ÌA¦vùUG$²ÒeÌ®^8nïvÏGa¸Œ™0èñ«}³2f!DPêômúlÈÎÇœjÂ`¦\¸è›3éÂ=à9×®£½É°]WX›8Ö\S…8•ØFÎ5JA I ](gù̳V† ³ ÏÝPømï×»±¨4Ü^í/µãöâ¿›=-@•቉Ân>ºo±Wa¸å wòS©ãÞI[ºÚ >ûm¾³Æý¶5kÜog³FÂi‰ c"Û(Ö)dŽ’›ö||nŽÖeçVÍ11aLûmmæ¸ßŽ;s܇ILG¡Kf5Ç„iމ c›Ú9J QPJpèzP¹½»ÇD„w³NÞË»Nû4ݹÇ}Z«{ܧ½¹Ç„áÞÏÃù©¹G‰@ ‰MèeJ·0±ÿ°þ-—å8Òѹ٧³m`,Q=gá’@m`û1ÀþDMh#!DA©É¡iAÕVÇ|i†¼ô²Oqë ߉ÙçHFç[3–c7cJŠÍ æ[3‰‰—^È€/ۉ|m†BˆBRƒCׂª]ýçTeŽ»O4‘fÜžSmŽºm\nmÉ€°fš0˜'`ÀiÄr¢QRHFNÕ¦T=¶e5ØSÅœ„rä€#¹}™ZEÚ¾Œ_NˆfF.1‘OäÛÔ†2r’B”ºTîÔ¢&Œ/KK\ö­5k‰TtYÔ–HW'ÅÈUM¬j|‹–в&H!‰Á¡kµ,™§ÊOgEÖ¿å:ñõ Û^o8MÅ:Ûæ)9æi“08+œ%© 6I Q@JrèzP¹ýÞC·œÝC®õ2qt­.sÀGž'˜R¸72 û[ëuãçæ%3t ˜¥0ûz- |Àº´»Îöu¿_¯×+6¤KO[¯Ë‹'@tl#ݥŭ¯×]*·ùP–Q#&{½Þ.µo¸<‡Í–Í­Rlnod@0‡Mô:pTØDŽ…ÐÀRj|Ó‚ªùJP‚HbnS»ÁbßÖÇCnG*W«ò™Ká+áC ƒCFBRHj0èZ@5Ke¶³¦ÄDÎp·äg9kÚ·«&!]Ò¹¦!¼Æ›3혘ÈŠ²ŠjCyGI! J ]*7ì·•‰$&RQÖÉ{Éeí;®W.kß÷ðq¢8Êaf³„A2J¬RJgI RPJrèz@¹Ñg[{ï)1ñŽˆõòUÞ{ÚwOJçK&ûq “"Á±„É‘`¾d" Þ‡x‰„-ðIÀŸ! Ÿî*¸^þ%äÑ¿ÿjì*ƈÛZޝÛüâ?ým\p96¿»};ŠHðÑqbÞ}õ›¯ìJßé…U»ìãßÛ`Wµ‹¥¦µ> L½ùú¥%ßo·õáéÃøÛÆì¸^¿y÷nhðõÿûÍÿ9Ú¾m²Á>m´ëWbèòÍÿúÛ‡ûõiŸ¿>|üú¥½hv]çÃkoŠÇ9=¼ýÉ¡Ñøèä‡7œÓ¹Ÿ¯~ªÐøiõëöÖ‡oë#~®ìÞmA“á?ýÄæ‡¿ šýºŽ‡{® |üÇxúýÚDóòÒ¾Óm}åhëw¯>~/ù ô??}m×ÔÝŽýaH0ÛµÛ|צ?öðá;<¾LÁ÷o?¼ÿ’ô¿®këøW_[[c°þðµ]àz[@ð÷o[Ðð\~xûýïþàckïT­Ã+`,]—ëZ÷‡Öãn?þ!Ðéá¬f^캛ãáÓÛ'‡†QíÛ/uüÛþD³÷‹ÿ½,ö á°{§¼n^fõ$úû¯£õë¼>ý@Á¶aõA¶ßìôüáX[{¿8/[C?ާì¥ÇéÌÆlX–y>ºÀoÿyyúÛåÇW_=EKû<üãèµÞ7êõáÓü=©úm}楘 ÓŸ69L^3‘ãá»JaÓÔ~¸M»ÔN©~P¾zÊ1[~h߉ÿáû7µ¯ß·_ß~ ‘†>0~ö­÷Å}‚‡ÝŽ!ó‡Ä¿k#ðýý< qÖ‡ïžó"hþíïÞ½åî?y;Ûþpo€EŸ·O¯>¹öÑÀüðêýkñxûº= ¯yÙʘ|âà£ï~×<à;öÂèæ?˜ËµþŸÌ¦’èã<Çãé'PnO¯ÂáìW>>fN˜¤¹¡f‡ øùã˜úv(u›®‡‡†?O~÷þÇÃïÇôz ¸Žñy÷îçÞE±XØ×‘ͺæ3²UãXmÙxx5ô™Ì+,ûÃ? ó5w2ö?4ëoŒÿjHçNkýâl¼ëêç¦åPð¡u^›#}lÆOöæöm-¾jÿúÓý¶¹§kìþÒçüvœ¹6¡_~·1Ï_UÛ} üôßïe¾4¤÷~&´™ï¼gX̼= ßíF½Ëya C±½ûXÌúªîüo“-‡ñç>‚7ƒ† ÝÛ«·ïZ#¯µÖl\i̾jÏ·Ál ³Ñ k —mâ܆}î¿C2‚·¤x5ï<â£o^õðÃ?¬…}É éçi ªßzd{_ѧü»û%Ù>¹iÿåõ®Ï ¸YmçØ¬†„ÿøöû÷o>}zó÷¿2aÿ¿Ÿ~|õí5Ö·g$·‹-/>ýÛhóûýocÚmc9þÁûæ¥})î\æ/µÜÛCÏõ“=ã§?¢ˆ¥fÕÓ¯_}z5txzóê§wo~úÞüôæãß<ýô%%{!e¡æªýi6ªïíoû¬éÖ»õ¿¼zú±×#ƒÔ¥ò~9yÄö¦Ó9-G´ñwïÿ…‡Þ£ÃìS"·uzøÍ‡ŸGÜðñ}`l úÛ7Ÿ†T\ûð·æ–yzàCc¦Íc:üÅøçü…y¢­ÿGÍÄW=¬ü,*÷妹!ü0¤ûwm,Þñ—exck4YôcßV2A}1aÐ4BÑ~t[¾-cßmð>|:ï9}ì®ËÝ ‹võîÿË/;%w„öÌ>=|÷á#ÂâDÿü³9Ú]<Ä ¡G„ýþÕ»?üSõo’ͧŠÿ¿ŸPÍü>V×uï¶Û€ÿÿ-7 pç'¯¡mŸOÁgxÿß…#^æ;–Ácx"óJþÙW‹jÿý‹¸öØáŸz /^­+?Û5íMnÞ¢ÿ9†xZoÁjįßÞ-Üo?'{îHÆŽå7-ÚfÏW 3°Ù1>ÛܾOïÕÉö$‹-³ï;–ˆ6ÿ­6*cQÑîã<9ˆ­Ÿm¢·ÉÒ~õ©x¹éö`¸Í£ÖoÛžô³1µÔmñ!9Nša9 ýõðû·ÖU|ä¹id?³ —m؆¹ž¿ýâ`ÿèce-m±/õ¿m“ðÃw{Í÷]RK-€ð.Füð„Pc³áCW~óÖ²r<Þ±ÃbœG¬øðé¯à£y@{Uô¸èÚ¿-œ@~½° UoNm_´›n×XŸ÷e˜™/%omɰûoaùÝá@ã‡1’¾šÍéÚgcÇÌ«œ…oZåþÙÐßÎ’†¯ùõì뗥߰ ¯zï¦Îõ¸_û©åö¯G˜»ûîûá/ÁsZÖ¢Ð4=Ž øÅXN¶ó:ó ¾Uï—öÂiL/ížâ þ/AÚÅ´ ö|[^ÌC”c>BÚ¯ŸÖŽåçézFØ·Ïv€Ý+¶Š‚þ³z_¯¦gÇÖÎÓ‡}?Ãÿ¯ìÏÍ£¿ºÃÆŸ÷üÊi=‹:ÚœÇê>ãá7?ûÞbvðÎ2ö36÷–Ý?kòï°KFœ±|¾­°]ãºÿ©qxó’¯3|yu·Û1µ=×ç¹½Çm/>~9ëg3ÃÎ¥öõ¹¬Ÿ_’t"í÷¯m/µù*ðÝãÛÂÚ &Ýÿþ?8æ¿&ÕË)Ñÿ[¢?¾ýû‡Oøñ 1³YEü¹=üjLÀ_ýðØ‹ûáãG645ÂWïÞYèW4þ²–w¡á½–“]÷t…–ßüpç˜ÜFöÅö7ÓÖó“í‰ Ëgyúl_›c{.¾Îsk,M’ݲzJNÚ.¿úöÕÇ_=kÔv•Ծʨ«Œ¦-¹Û¹"Ë|g3-»ñó“+lö{Ù/¶ß¶àoè4ºÛs»ÓfQk0›î¼þǾ{zÇí Öð×à=&ÜGO(ük™ï%ìö1ýïö÷{åÏg vvM±¿¶PÏ\Í/l?l‚ÚETûõ‹qô¶{0à2`ñFOvxì¼yª¶Ï ýÎ÷¹Îe»[ím;{¿M¶·Ûl«ðÍ]œä Øõû:´Owù#ó^ëð8ŸžÝºÚE×,s©ÓkIƒ›bz=kp/Éâ¥",ß`½{÷!¼cBÿÞsŽ‹GŸç=¡ºÜÅV{ºa½sYV˜8>èý÷5Ñiù_Ü*?á¥ÿ)iem>OΚòÛs1ÛìKÊþg-)Ìß¾¥£‡^¿í}ls-ìà=÷‰:ß§pž^>—¥ÿ1·&~1F+Ç$-{aGŽæ½ýã÷¿Ãö”Õ3‰±Õ/Õ¾ÛëôñÙLéçtæÂŽ˜Ô}3o§3½Ûß}ž¸ Gìû’·í.Ô´6ÿX¤¹sFš÷sè|ÜN E áoãlÈ_qØÀý&ïõ—¶Žû3Û½cnáøû{CÉœ¾‚ãUïìžyö GåÙBàgó›Ýíÿ}>û¹°/&ßFH!ôïž t×Ç݃×ÏüÏÖÊÇíf!s!ü-¶>§ûª¶õ¹;iøþ­Å}øøòõG[ðÍóݦÏÜMôÇö…ñØ-ƒòþKZN¥<Ë~zÎô³UÁZ¶þÝx`?.ü=瑯¯ßƒìv—_¶Eý¥}½xðýôáÙãåieKw÷_NzÚ–b·Ì¸¨n–|ÙKlÑÛoµzý@ÚÙÏI7sÏySûø•YìŸãMñºþòÜŸ+öà!ÀˆÞ~q´^}äCûçŸÍYç°>³>ÛÜ–‰Þaï¿yn·6ìð¤KÙSÙw|Æ.Ïo{,~Í-ÕOuöw ^"£;¢þuZæç??ËóÉXcîBc?f²ŸŽX½üïa‘ŸîÃlÿá³õú—]0¾?Øý“'ýÞ¯)ýî{'øzøçÿåþ ßöu–Ý{ÕrYî‰>jÓŸÀgÌ‹´_÷?~˜ûì¦y±ú¼›ì‡¿xnbÚÕˆëfõk#yiXZà.û<[ì{Õ>™?ö4àËŸË€éhuñ=úl‡/_,Fxzû ½)^Õ/Ezî¡ílbþã«Êd¯W-ìŽß?³ª Gv»ÆC/#1EçüÃðç{‚/¤;ÆŸc¹zQóÓ¹ÐànO#’æ¬ü;øqáv<Ç·¥]Æã‹©™‹+å?<—Æ:Ý2^AòÏžãÒäâ2Ú…±Û9OÊ<úrYJÜô°¢áÞøøôêÝÛû¬|ŸiÈè4Wõs=y vSdñíª´sµwø/ ®e}aG“%íLÎi19QõßvªNendstream endobj 269 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4028 >> stream xœW TWº®¶éªRÙ¤l1Õè(¸ —˜Í€(jŒ+ˆ¢4²ˆ‚ƒ²o-‹4vó7Í" ("‹(‚Ò ˆRîDcÔL——è‹™<£™—‰c’÷—¹ÌñÝvËäå9ïÔé>§ïíªû/ßÿ}_)›~ŒB¡p˜¿ ~CDÜëÞãýâ×GY—o‚ î ãÓéâ:÷Ññqî‘kb"Ö¯u_ë¾tM°{P @ ûœ€EA‹ÇLø}P¯~1 ã1#.>Á?)yNJêû‘ºÕ 6F­Y³.pýï×'M}cÚ›o{½¦f˜Ì"f1³„ñ`™¥Ìh&ˆYÆŒeü˜ÌLf%3‹™À„0þÌlf3—yŸ™ÇLa0 ™AŒ#0CgÆ…qeÜ;&މg„ƒW‰ƒIP­)ÙvíTXÏž'*/-{È|º¡nC»'×±@M2Xd±Ueÿ´_Îmëy$m¯ZÑuZd2DšÛ¸Ÿƒ:<Ç- N‘á„ëÄ7_¥å.”C”†\˜­åÐÉŒNýë·Ž_‡¼þ4>êU¼œS¥uJ¹С‘Ž|ð[§¹·‚—ù½gØ}FÄ~·“͹ßLý{óU¸Ñ#N·Ù5ŒbI¾#)¬xUÊžC$ÂÊw•¸Hå׈´–‘í»CX-×e~=ôz]Þ^þPoÙ á¢}8Þâ´ûc”•>´ò‰&ucäˆ MP <­ãYŸ1Ä~Ëä°öŒ=­mõ‡÷eԊŽem¦mÀÑá£YÇÍ2ò< £x!w:ê>ÿJê:Ü ¾ë!ô'ñ»k4iH(rjaÿ¸‰9IÁ«Û ƒ“jN˜­ZõÈ:%Eƒ|^)=DšÅ‘w1„†5¤º¦¬ü¯@r¢a¤™V£¶·lуqË–iã]Æ §ê”Xbg ýèö½É|âL<7fDC¸j¹ïÍ)KpºŒÒ2€âò­š¨À~dˆ*Š2°­ù•ê-ò` .é}AGèh¥¢„L4þ2ÊoE\z²ˆ=Ü+ŠÒô=¸uµ;wÔñÂ'ù[ÝqÃ1_haibT\dhn,øCÔ™ÍÛy,áö´kéíØùkž§N´ùÍ9Ô"§”¯ËÃé0$7%·ÙEË›4…›G,`£ê MØÑ@Xšð%õ O I ‰3 \³ÁhÊ7W”4Ö@;¿?¹i]|\FT°yþú¹ g÷ˆ+‡–טË/+EÐÓaæ²C§Ó! 8¨½Žƒœ…»röW×dÃf]‘1§PLœ’LyOèÙó!àT·× Õa©.Ó˜–7ô%.n¾l‰(Ô“93h¨Ð)ÛP”ý”r$®¢2瑹¸?•Å}øÏ­UÅÅPáZŸ :±OÉn"3U[ö¸ÕòøÿbI[“— FÈsM­†:Qvd_‚mƒ$+)ܬB@‹¥Öá›'?|Å ?sB÷¿,çVt,/û3í‚LjÉd8qùÞ G|¬iw«f%'ø¢ÂFأˉ\êãFìí.ƒ3Íš–ÃRe+œ…ÎØ†8«ö:¨­¼6?¾ýLÙ›î¡í=¥œG»½3 7 3õbZH@ì;utTBlWöôœ¿5"ög[Q 4/=ß+äüfû®ýÎö/Y“*á]Vxð¯duâÿáûž*|_Z”ÿDo§¯)Ú#ã,ìÆŽ!ÒÙ“Î?ë3?ú͙؛U‚Ëçò#uwL{xxLLxx{Lww{{÷ ñ£rÞ-sÝŠKðóJù †©ikÞ¾é]GFµº¬®<óÝ{/üøÕ£udX£X’ Æ—–?x¦äùEE›sÅUaKzæUPZ'^3ǘ·?´>Us|åT$ߦ¢Ô¶=k7m’8ûO>ÄkŽÉ‹vBiêKw2ï™;©(¦: öôüeå]}¸â[PõHó2yª©ÖâòÖ´b-ì7Nøü¥t°ÖKy2è÷6<âùÇY8þë;Ï{ò8¸k¤÷ò¡‰bú݉æ50VÅÎç­¾üæ¿÷åß¿p !ý½Wýù7[VËžk‘ó--Š£”Q2¬¦½¯ªa>Ñ}É3ÚD2QŸñGjÚ·©!¼ –gO˜Ÿ½¢!°!çZÞ)ø zá*|²õÔ¶;—+›à teÔ…Õ®…áðõ WiôÒ¥tn”<(y»Ë׸¨LÌ5BAžø^ÀH:G|ºv»zMÕñ}5D£åŽ˜ãôúŽž=áY~Hr:‹bŠf鎢³P+×`eZCzÞÙ¹z_ȤœãÉJ§ºîç…_‘ýæ’to(rúÊ„vã¼¾øXVS[gÉS;²JÄ–¦CUàoõÌñ½fŽÿ,ê;HDÎ&ÊÃé®:N(g°ÖbuŒÃp¤å;tlK§! ¡wp„³pŒžªFîÝ»dtÜ2C¬VDnoa•ñ•mïQµ»ÜXµÉP[r5©ËôáàËê+ò¨Ö€Ï†ÜL 9Êé §¡º¸dk¹ØÑs¦² ø;0ù?ð$¶ÉóKÏFh„s–â–¦®¡§Ã·'g-Ï[øÆ7¨é˜òð;´Ÿ…‡Ñqšå:6w8CZÕÒ]nÄ5º{\#v¢07•60‡¯ãÙúîòíMÒËÇÀ 'wÂCcJt¡.6ðëã;:šš]ˆ¸8œ #oM%¥ïV¼Ó5[”|¾L¾L³ÒÜÿ‡jȰbµÌðXžÐ±#_Ìlƒk°“ÇAg¤Þ{àëi ª2MÞƒƒÚhïƒpRî}â¢&ál ÏÒì’´’¢ c%¯ecH9UÁÊ/««KŠ«ÊnB-=a:«KÍHÓ¥Ž#63‰Ѽÿ‡P¶C*ý‹ØÃÁ1ó±r©âÓúÚ»p"Îu©¬‚bê_ž—ab‡<´CqìÖ'·pâ-%Í%fš´rïeKë8ÇÿÃû(a‰ÆÿÝqa;çß§­ €<±C&Õ8åæmì'ºã55¬L\GÆ~ã’Y_ øËß•w~s"rŽXß7P=m|fÀ˜€“7nœînß%âk>G’¦Aˆë Z@otAoÅMôVâf¹ß¹ŽtÙüüg½—ÌHÃeÏî®Ds«ú³ug—„® _½gÍɶ]µf³˜Oó–¥éô…•ŠÍU›·nÿùjÄW¯ùT<£- ë[#®}ÆÇV³`%¦¼¢¥[¶@¾˜nVÄ&B†Õ×" §ñ|¥ªftxFqíËU¼@MÖ?dz°óbÞB…(0›7é³éØm*IÛ‘Sº…NN¦µXaQ€|ÅJàjKß•hÎ>·J^\«ê+«Xi²Å6KãmûƒíÀýf³ÉT\b*/?pÞÖV*;\]VeÞJa¶µc˜ÿÕsîÚendstream endobj 270 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1991 >> stream xœ}U PSW¾!áæ*ø(ñ¶X꽩¯UAËh[‹Î*¾Wź V!`HBŠÊªxÂC@” B%Q»>F¬›™ ¶Þ±Ú𢮻®umg­kíº3ÿuŽ;³' [»M2wæž9ç|ßÿ}ßÿGBÉ‚(‰D2ry|¼N«‹™º:m›)+%Ç·6QŒˆo‰c¤Àf±þY\0 •¢P™ç­!÷Ã`ßk2–¤¤Ézõö:½%'c[ºQ9=:zÆÔ©ä£Lµ(çOSÆ¥¨4:³A“¡LÑnUÆM‹Ÿ¦\¡3“Å å$V™š–ž’¥VêÔʵi¿W&®Y´zrÉꕉ k&Oû«WŠ¢Fés FSnJªekš:=C³}Vì´w(jµ†ZK%Rë¨õÔ|jµ‘ZD-¦–PK©8j9µ‚Š Þ¦FP#)–MɨÔC ’< R]’ÆIOÈ’eÞà÷ƒôë´Y.‘•ßgR™]ÌEp›qŽQô+…°xÁæ}C.A !ï=Á²ä”|m:§xt¼¨RËÍ¥ uH“ÙŠìü™ç›oð>]çBn=²ò›!™nß~Òr1 }ôÂøy¯OûÝü…[ï\ä®Ë£zzº/_ëYò.GБ2L!¸ÑbȰŽÎ~°z¹!1‰k—+®¹wÕdpXF[û¡êù?cÏìÀ4ÐumXG€±Bh…òÉÕ{@qåjWÉ!Ä8›»x‚³[øR^0 a_ p@ðÕ¸ÂXÔÕn°«>ΩœjOÙ¿´u1G:\ß}Wža²qeºVT…² 9¼ Wܱ£Vq÷G%{¹4ÇF”¼À­[wÊpp,×µû_GöÜ.B˜,mzä US™+iÜS«CŒÍ|´ÜŠôöº*W5w!ýj$ Íjùþd?AbŒ0‡A¤yûˆÄD`ÙÎlT\`.ÕìãJ“T¦ ÄÌCžò`†ü¥âxÆÚœjNqÃ3ûyej|ÎÜÅVzÜ×é_Ý»Öëåü8+}’«¯{Ï”,ñPë»…Û 7i¿Úƒ]ÆjZÑ=sÎGsP[;ÍòWwTÐS¯fß줥 µä¼‹œ?BÇÂx‚ 2rhÀà6‚ð·ÕNÔ„F;ÐÇèàq‚ûám´}Á_Q”ð½vÞ &RR²Xïf;5Uåq°M~kå-¬Ü4Åj›--õíûÏs®òTƒ˜Ûç2Wðxv)OF“EñÜkñö¡“RIF‹¹#\-ÈÍãX XdD¹*3£pçoûí‰HHuŸê~r FÚì»"@ ñ·ô•‚%¯*÷Ñfdì"éjä~¥a· 6 ‚¸JœöúôÇvèP>‡i:ŸÜZ´¿Ð¾‡¯,%²¡xJ¸î½âŒÝff]Òf¾˜}ÝØ[b7\± ÷—ª¬ªEv†ˆdñ. näÜY³—œnC Æà§á¶ÒŠ"D>ÆÙV­I¥-Î)­r„—væ° FgÉÓ«Ú·\¼îùü^“ÅU‡‘ U–®.««BÍÌ [z|š„ë+Ö@ÔDÛ/D-Š69TÎu¤«¤‘‘ø5^Q‚G<˜ÔÙÓ‡'†d¡ü?rÉÂïÂLVáNüpVìâ„/¿ý»põFï…õ‰ý ö $ºú¤âV°MÖSa2íä «—¡b´ ÍháçÂx ùâägè:údSU,óbfA¨ 8âÂRñSöód3kË;܆È@ç=ž‰œC[ ßÁC9G߸l;Ê•ë› šã8Rç6ÐÏ—©‚hT3ýxãÙ˜äMù™i,û…d™þïlžGÿ³¯³»»ÎÀaƒFà7åeËúëóþé?Í%¶]·`›ûbBà ƒ&p0öàáƒà<þByE4ž(6±.£S§3u:§Ñår:]/‡>±T¯T¬ ·g“©Eã ° B@ÜIÛ[ c²Êãè”›ÆQx\0<î¯xi@ÝóÏMIƒ´Žhô }óá8)Xc Æ´¡:Bý×óƒþ~>íÚ÷{CÑí—Ù„HËî7#Mß‘„6¤r¥yçÉÈÜ¥ÍfwÚö˜‘%"“¶ê f3êä±GžnpþA?}r  åŠî»Ÿœ;Õx¨0žÃùòÚ¾úŸM¿²ÅϰH…n‹R¶+«U£ÖgiÔíúŽ®Öö&{eÍß çh&ə޿‘¯T4þ•=ºí°ìEE…œÁ¸-_…˜±‘ÿ%üæÇÇ?žvg«ëø¢êÜšÄÄ,›¥x赘¾ ?œ†Ø+ ðB<Àáx1^Ãð›ðöƒ»—Žò+ÁÀÎÚœ˜ºIÕóÍ3RMB,×Oüé/^åL6Äç>k0K.‰QRQýl<ë̳[ ;óvìæð­ÿÌßU€ö¡’ÑF‡µ¡¥¦¡¶’ƒ[ÏæW×#ª=¼¸V\P ¿­+·ÑÂPo7T¶V:…†œ¨?`³••UØ—U‡†v9ËÊ++Êêm5B‡QÔÎŒendstream endobj 271 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 498 >> stream xœcd`ab`ddðñõÍÏË÷)14ÐuÊÏI‰©ÿfü!ÃôC–¹»õGÒý¬=<ŒÝ<ÌÝ<,~Ä}üÌÿÝ_€™‘1<­À9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õМ…à2000—00„0„‚À²àß÷5|?¶^û>ñZþ5¡ ×¾·_ø‘ô]L´ûëoñEYÔæJN,˜Ö½ˆCXaѪÅä„®tÏ,î+é)ï+ßÐͱ¥gñ"ùóì ó:—g”675·Ë%ÎIî®ìæ¾ñÛ¾Ô4]÷KùËZùí-×ê»ã823 ,"¦^*‘k]Ø6=§›#©«¸X^—½¢'oýÔ9ÝkfÈíÊÙÓ¹¬›ã»éêG{ä!nÛqñ»ú½ïòw™„]н81¥«¸\®+4²©¬›Ã£{çùï¥ßuØç®èY¿!¿§Bþ·Îe¶…]K’¦—È9Û±Wäw¦§/ïš+ów›ÆÅÔë×ïîx.Ç×0í‡Å´ïÓú§±]ãºÇ-ÇÅ’ÏÃÙÍýkQL˜×?‘‡çboOÏ$ oþ”ž)<¼ ysÏuendstream endobj 272 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1019 >> stream xœ’LgÇßëÕ^ÁŠÐK5óÇõ42…sn,ºí"AnÁa+¥Pª\ÂH7GaZxJ-¿AÄVô‚Œ0ŠZÝÌÔ™±Ä?ìÂü±9 Y²,nY¢{¼&efÉî½\rïû¼Ï÷û}ß…” DQT\N®ÁVe¶'Ìõ‡Œµ‘Éxi-%­SHëihž{8W° 44h”_®SNk±%­Ä¹±ˆ¦¨¢ [º­ÚQ[Ya©ã·mÝúJr²üÝÁ—:ø)|¶ÑtÐÖ`?XÉ…2>;%7…ϳ5È“•ü›À—š-ÆCå¼­œ/0ïã÷ægòùLÞ½oå'¤üÓÕâ?BH-Ô—™+«^^ÐTˆ2Ð.”ò (JŽ„”¨Ý£,ÔwŠ7AßÇbÌSE^QBâû-~0òX͆¤k«Df·¦ô¸ž¹g¾¼qKIºÝɵÿªbï’ø¦eVæF÷‘ýzrœ)qÂnÎÊLzƒà‡Sð9LºÕ‹[³6ôèNèúõþws8âø×Úgš'oqkZp@Ïëg~ÜÒãG IZÜɤ夥º&/røÇ…•poÓ“D&Rð«¿œ½Ùãã<¯«¢ÀfÑÔŽÎbcØ^ÍfI—ûK0l$,)T0–Ï šÄ:‘èÈÊßã±öZ(0*ês6 ¯Q‚\‡Ô¬ßd+¶X[ ¦aûXõxkÎÃÕž‰¡ÑᱩÀ%¸ì#ErBêû7Póil:‰·¨‘YÜuƒ–r±FwÔÝÛØÔv¤¥«HLu; Š«ÎUƒiQãóªO;ahvÿc²Ä&n"±D‡Ñf¬ÅìÅ?‡ô™xŽtªz0ÿÓðà(8J6xê"b›7É A–#?Æ´v*\‹¯É©ßÆ}rêl—o\/!†-#/FRO÷´È©O<»¶ÉÊŒ{¿‚~胯aÔ­f£ Òo:±fHjê¬ÂPÍ™ÓÃ'Oq1Oéúª%n¢f°yeræþœ»–+„z©8Gø€sÜ4 dC"ïj¬VÿŽn‡¾ùöؾ‚çq´Tû_•2lZÄûqºÂÎÛ´”¿J´0IîOÆôÒŒ¿ÍSÍ•š íI ¶2~¸ Wýê'½L¹Û™ÄY¬ª ï}˜’ǘXÄWnF‰¸-@a:ŒãeÄèyÀæIOS‹ Ú=®Ž¬}ï€S& ‘…D¡'ŠÖHxÑeäàOÀ€,8¾”'ŒkžSA¤t©Ã”êç[SwÎw¹q~ÔÚ‡AhîhWǼ7(¥÷c[o÷ JŒžYÎE+ lš(Ð,x"Ïçé辢Ѽý~og—·ÃçëÔ¬@è/Â÷:endstream endobj 273 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 320 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ûGïO]Önæn–ßW}üîÏÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000201012²~_Ã÷Ÿ)YŠ¡{Óù›N—3~_úùG¯Ø¦v•îkäìb_ÙÞ+çé­ÚÞ͑¾´ûl÷ñåzÙ³ºëTäRØõßì> „7»µsð•-øá<ë{þÔÉ Ø6qÝã–ãb Éçáìæá^ÝÓÛÓ×Ó;©§wòqž ½›û{ú'õôOéÊÃËÀÛ¡vûendstream endobj 274 0 obj << /Filter /FlateDecode /Length 1875 >> stream xœ­XKoÜ6¾ï½·X¸‡R­WEQ"ƒ>iÚ"úØ›­•×Jõp$­E{gøDíÚ} ØÃŠ"9œÇ7ß õv…táÏþçõ*ZïWoWT¿]Û¿¼^·]}ùãð&”‘¤ëíõÊl¡kJ³PÄbEIHYºÞÖ« r6Q%\d‚’^¸ "¤læSû`Ã8 iJ†›`CÈ¥4#…}Í)¹ž/÷Ä6¹‘+È&CÙÎ%¿Þþ't®±ŒÂTò ´ÞîVdWö¿tí>î‡>ؾ92/C)el_0Ø$2WŒloÌ9©”VSP;#]17Ó³ùP e³N锥!‹¤UéUb1éTi¯‚M,PòÆ;3ŸP,‘¡Ü¯7! Êà)“£Bê²Rø;ÁÕã#ñ‹CÕìæxPÝn ÌÉø‹eÜúºVCW¾;ån&C:Âä_»ÛiÉ¥vñ3$&ªªÚ.#JîÇ ±ï1åù`· FoY}kÔŠi;U¹eœh¯hÉLú¹UC +u(ËBžQÀ¹¶Uí÷Æ&«öÊäcL{•c,‘’Ü—U…#£ÝKzý"õçyŽåi’‘ûÆŠuKw‹œœ4]$W­JÏÅÞdgÅ¡c®'͇›²·£ŽžêÈ)úœÐf0c^vŠPPÚöÕjûùya°ŒF’¼3î§væpä’JõnˆE¸qŠAßve3LsWª/óiÚ´CÃæ%Ô«ö0Û¢SÕ‰ʺ˜¬î‹®,úSvèc/‰±Õ¾Žùj3™0ëé.‰sËe`ýbƒù¿Hy(á0€›Ù©Ï›é¹½zSäÎÁQ¢9ÂÍ-|:ó7GyÇ¡¾îŠ·P$„ÔG·ôƒê3…û5UO>¤ãº]Y_‚NàÔ»bw{ý¥‰Âîø0tK&šqA_OµESå¥'†ÉGfl(N]ò ДIjoy·U;œ¼R§aœFã•ú¿}d`‘†¤vDß]¹;Ê0\†Ý^F š¼À¡ïAÏ ¼èÌ¢T³ÙŸU•ï—9byjÛ]d¤6×J¸à§  Ã#[à*<ɰ…ÕëñKû ¶°€ 7Š0YÜðÉWç¶Ápy6yͼòÜ[¸þý°Y¶sÍbvR–fuâ[…km'ݦ[ƒÖ-›n´=j'Ñ©p"C×V•×7:…œânS³ªc3Š: SØ'öón‹G`Ê“”:˜ªn?ç¾Úû cÔÆ"óÝ»Æ`’#JÂôrÙùÔ’isÆ ýµ[ÏÇÆab©¿¦I¿üsš84åp>õMŸÎ¶xÍ[øãÌ%Ù× rÃR›Oƒ_›Ln„»…ª‹°‡{ôØŸŠ¹þß?õû P%¥ }UPÉM[äåµé†uGðP•õ·cç2;(o«‰g'œí»âù /š;ÚnòÂÜØ+Õõÿ޲OÂe&fIÔ1MÙ„!µ¼_W0wendstream endobj 275 0 obj << /Filter /FlateDecode /Length 10682 >> stream xœÕ}[%¹‘Þ{¿ûqÂøÁ§muŠ÷‹`ØYË‹YíØQ‚¡65Ý5Ó%Õ©UW¯fôÛýàf&“ÁŒLÆŒôbš®Ãç# Æ…—àŸnÔ¤oþoù÷ýõÕŸ^iÓdÒ÷6L9ßè˜ídotÐvÊéæùîæw7¯ÔÍwH[~}³üóþzóåÛW¿üZkã§cH7o¿}5cë£ÍT¾ñÁLVÅ›·×W——ûëÝë·x…ß¿ABmìäC¸ ÖNJY$úýå=½¶Úbüeº¹üöµU“Ò*^îÞ¿Ü}xýÞþÓ«_¿}õ¯ð?h’ ~2úƧì§ào´³n îFëÈ[û§è4ôA{&n|Îz ùÆMÆ:›n,° «ä¯ Þ˜Éç–(y œ|LÚV¢0¥´C2ðÉh½Y=Á‡)ù ÚW«³~r; #tÌWš<Kˆ”‹7ÆBKm­ÍÙ)…]m:úI•±œ‰Ò„#ÖW§Âd}­Îà¥RÎSŒ±rÀ‡)Äà»juAM”•Úø“'µ«4È=+­Dyrfß9 Ã*R´Ó¾E@ÃU›ã”ݾo“Ónd&cvHðËhÂF …»Îek*2 ßžKË¿+‘ä]›:±ö›½ìÈÀÚ½ ìäö»£ŠSܳ\MÎe£Wž˜ÃJï~º5+è0¿ã‚ž’³q¨`ê~d:"7ŽüöáQ{î;hmQk6Ø“zˆå •èÚ<`A˜ÔyÉlj”òê'x5Ù½¤÷ò èF õ >‘̽¬ï¨b§9Ë0wMµï¾U±*‘ŸÒ^Ø;¢f*¦Óäqrð›Ó’™ë´tcÛò*¥NÖVu²žÍ”÷¢—PPÝÚíXÕ14*=¹ý” Ffm?%@ËÙTULT`.¹AZµë´,ÓÁ¨S§ÒX(0‘™ñ킞DbÐ=°fo©G°ãÞŒûá£â›•t´¢7Á€uú ‘`j5µ ¤ß :º3àQU¢örOø.T¤°ï¿QTÕGtqöâ‹Z´\%Ê“7»1‰0g6«¶{Ú‰VÅWš4©½Î@ÿ A ˜G»W`¢&¿µÌ£gÜ‘c^­qó˜a€ßuDÀ·£Zsî:ã7¢Ìyvà}Å…(qd<;g¦d«‡”À6rž6hçÙ-l$7áÇ}ßôÁ“\iÀ2vz;Gýƒ–‘Ñ;TºzUû‰Bg\»Èxvtî&0‹Œg×)°VpÏË žÞËn7yÈ²Û oñí:šÄùv}u`ðçîº+yÀ’Ø*B®äãŒEJ¯ì/Á*6. W2cÑÒ+ÿKߪU®dÁòú]låØTC[OK¬§Ë§%s´ôˆ÷`fc¢5’ć´q;¹’¹FZzT#Xã½™íd9ƒ1füÓ*ƒ5Ž{Ã×SiÕ:¨×]É–¸Ö=åJ>ÎX¤ôÀƒË`µ7–šÑ F{4ñ³‰“¢Óµ„™ÄSÊ`´Çþi«M$‹`Ád'wZ2ó€– sÛÎx±]Ó]þ³P`Ü;/¹Ð±Œ;ãÅö\ºuZä ,<ã RõžC¿0¯%€aˆyu92EÎP toÏø§œ£ÍyÉ`â÷T—õ•T‰çž…ò^9&žqOŒE0Q¿0¯¹¨´ùL<ãœð:Öe¨Ù2®iP`­•©4‘sMX!W°ïŒgj@­Ú¨+Q`ªg±’juÏuWò€%n:-ø8#u¡?Ë0«ŒÛS mÜØë®ÛÔÌ"…Wægll£À¸’‚Ô•òš¨ÀÁ³ËË­v¶Vˆúõ&^ªÄ.w¶ŽºÑ`dG‹o@9§˜Ø£Ag»ÖIíK`R£>-™9JK*̽ï\Ô ™¨¬,³.Ú1Áõ‹s”šÜú:2`d™uQbó€¨_DXVâU£¨4ØØn]Í5YÐ"Ïy§ÚãFƒ©D™[¥jXGÇyè@Ó+QbœNƒkìº6)ÎçÄÝŽ”+/S¿†0‡‡³®^‰àKfIf24{#òœ+YĺšO°±¬'é!ÖŽ«ùPÆ“4¸¾”s¥I½'9ïj´ö÷ˆ,÷AW¹ƒÂ­s‚ ·ªâ˜~aé®T °±ŒƒXôˆÚˆúU„ÙÉ‚™·é c-·Êé‰,Û¯"ÌÓÉO©.‘ã ç’ ½zš¤Z3kÀ̆½è’U+ b—èÄ4`eõž™d‘Ì0²œwH4ŠˆÅëJ@a°°ÙŸ–Ö•òŠÜ€!Ö‰THKŒ® §%s…´”ª[”àô½SÌø›©2Ùvªu¿D‘] %õÁÄà\ή>«çsöT`@™ÕЕk½Îë®äKR«É¸’3)½²¿4–Ôû’‹–ñ ì1ãÇö}Ä jö•x²Ö)n‘uG~É~ÓwG•ØeV"7¬-ëÈÒÆûÈ;²” ì-³ÒJç¾ ~bCâLX0·‹:ÇÙ¤å`n™…Ö¾M`oÇ݃;v,-X\Ʊìš_ê},F½ ÆŽQ’Ô{±`q·’z/,îÞ€-[iëUBÐX÷ì‹ËÄuè_k“˸‹`pj%2ŠsÑ©©ëí@ä9wѤ¸…þ@Ô‡õ‹C…ËL«Áq`sw1âtíœíãúygßà‚{“Ëì¢ãšÈÖ"×Åõsהõ……ì-ã*z´‹¹2\ÆU„yÖ8Aì-cI1pq•`WÑ•x¼ö,ôQýR[³'e\4œFÔàB×= êûÂêq80Œ«H¥Û}ÜhTn•&s®"øÁ>U¯Äå>ªg$XÇÀm“´®‹W$¦¿îJ°$´¾"WòqÆ üÖ9ÑÐ^«ñª#P9ΫÜQõa=£í=Œ9Ù<ïK°C`ôÈVù¾dî"-=Žñ S žWW‚ø öYŸ–Ì5ÒÒ+ûK§Z'•+™±héëÁÐ2ŠzG•:w¶+ÁV€¥îì®dn-½ò¿Œïº+Y°"·tÚ¨SÆŸ¥Obqî,å˜mÆíD0:ºÇÖ—`w@çú³‚¹{¤ð 6°:c×§È®²Rõ5çðv|ËÎmÿwD™ Ý©Ÿ”ãô1m®‚3*õ6ð°ãŸÒàk1î)mxƒ©ˆ†ìJ°Ä·¾)WòqÆò½»><Òå÷+št=Ot1.,µ7Á&΃¥ëSí&ãÀ¶G ÕbØöL¢Á“ZÜI<P} àûu‡ygÍ+QfüW<¾e+øŒ÷Šg#r]šÁSZŒó ­¨v >iFÄ]žêIÀ1Ësx|@UA€ñ]M†Aɵ¶Ô/:ÌÓ—Ö7N¦Ì:¯8;tmS¶œóêA˜TªÓ|Æy+ëé ƒg¯˜s-†à*xA{Ñ¥ÎKÔý2³jŠG¯ØµÎv’ãÑ+Æ{¥3%B‡g@ª[%à´!ž½*²JpÝ•ÀÌ`díYAÑ´ð¨:°Ä~¨ÈñˆVº]ÑÿUü³5‚õìœÝ9§|ó9ÜŠQqîîŽÊµþîuW‚lËôiÉÌyZze™LçïJf,Zzå;ïyW²`E÷s¿ÜÀrÏÿÓvÑlE&ë \ÉܮܯK031jb–n{¢Ä9ÏÞ”ùSx”,3çÍ(˜éÑA^ bW%z¤ÌmìwD` Øs§´>0Éz¿N{“Ìx§ÄÃùW溊Å3ø ÉÝ}Ô¬æþŸ_雂ÿã•“Ä; 5ÐàZ¬äëue",%¯~‹|è ïÄøQ-‰)¡Ú)Tïä–j-!TxPÒª¥¤¥Šx!Ä´TkIK•ð`jh©Ö’–*ã ÝR­% •Qx¬¨m}-!T±p¾¥ZJZ*+mkIKep]´íc-!T¸‰ÕRÒRY\¡i‰–‚–¦¬1‘®%-•Çõ0Òöµ„P¡WE©–’–* ¶l9_KZªhËX+‚K ¡"b¹ÉiCó3.ni`S¶(Úào›ùâ–QJãÅ-ðäž9~ƒ;æ.ø›·^]¾ú ¿Ò Ë=ÈFû ü̬?Ó ‹å?³’ÚÀvt?s?¯‘þçÕ?+·Ô¥À=s±Ó'=U-Á£æ:/:/ž$¢–’–*ãiV‚µ–4TFã)2AÖ’–Êá.iýZÒRu=júضk½«WmôZ޽EWûˆ 5EkÉ7ª`ðÄbh¨ÖBåB9ÌÖP-%„ C‡D°–Bµ´µ¡jZ/œkÛH\²FûzÀÕrR½~S¬t¯àƒÎÙ@ø}Ѫ|Џ­/Ú/ŸÐ¢¢8ªîjäßàfg3£ÍÜìTÔZ¾‰ ôiiòåþñÛ‡Ïw¹­b-0b<4뻥¸û’íàn©U WsüùwK­øÛ‹ï–Z«uç3ÕëëªÐxn#G—Ë+ Ì{ö6dYå[iw`£m_ˆw`>@,š*5¸²ó»L9²Ò@ÍûUAÝÍkDm-è!ǬcáÁK³yür×}Úl—»»3îM®W/­õ®?ž9oÑ´¼†ásÌšeˆPd6Ä@Ö“:@¹{ÎâÆUí»aÖÈØ‚È]ƒ¤Mй¿¹ï´OíW: ”Ø? M€|%ʦ[{›Å4;îè8©Ì)Í^m$à”gï ‘9…·ˆöý1Üh@…$怑$ÞªÚ .Þ]ªû˜ÖøÈ.gwo¨«tIÚ¯tÕY?1Â;šÌÇ3² ‘³P÷¹¸9ÙÓàíìvh ™}ÜVÚœº™7„i«ƒâBÆžÈu oËÒk;¶!sûàí/n ·Š‘Q€T‘¸¤;¸ªnÙјaŽOeÕé?f8²ëv)8éÏ Ôê€^Ùn“bß{ÛÇÝ´6—ÑFFÂkf%€Â€Íb6(ˆÍò`³˜ý ª <جíóhÏ÷K•±GN0çT‰Íò`³ü~Ì\Û‰@ òܶCG4_8hæ¯eVp(#}ê £ÐíI{™í86K36‹rl–ÝÛ¬ ŒV`|2|Ì\î Êès»ë-»[^A=ði=0qµ:Y«µ×Ù´¶V‹q¶|„ø~½.+Iܾ‘ÊÊ€Ù !¢ø½Œä’! `´˜#3”Ûä°ÞVGXo‹4lãlQÖsÎåvÀŸ0* U€Ð0Œ¤\r‰s¶è< `µg‹(ÀàçluµÕbœ-Úlˆüg«£Éœ¯EÕvˆ–óµ:F‚ÕbNWÓV.ãlÑîƒÕbWÓVƒÕD,ŒãiQ ræ<-:fŒãiÑžE°Zœ§Õ m„ “£EkÓ¡?7X„–L‘v‹ñ´:$ã8O«GJ¬«E´MÓÅœF!Ca ¹´”K®5çεÚ6‚áb\-oôv‘â‘>Ødb»èçkQ=m¢ËSÓ Ùúh“«-DÎÛêØûp“aØ-ÆÝêh2çmußo«ã$Ø-·ç$Ž”O•‹q·¨¹‰™94Òœ=´ Œãmi¼Ž¸^w"Ï!š=áL ZÒ}¨¹Ú„iµ˜sžDh“é#MÆŒ$L«5еÉjÎÛ¢b”ð%— ¡Õ[ ¸1t·’ëcMÆqM˜V‹JmI-B‰0­ÃJÊ&L«5R¸ ÌÖÈÝJ˜V‹ËôÕh÷fËŽBûf+ì[bmfÕáàÙླྀQ™Rk2¦$eÅ-mu4}¨¹W Sjíå–FÚ3j1v«5I¸}ÆøZ„EåskeÝÇšŒˆdÜ­leÓG›ûþgÌ¥5X («Û£!c"-F×’‰”A2ù½è°eØÊ´o`¶Ì>Hè¸Ã8ZÙÊ>1Îí°œ¯EaBn2.®†3ÎíXD›9õÑæGµ1éÕ(DÈ©7÷Þn> ½­œûhs¯#RšMsÐ õÑæ~h(½-§ðBâ^p‰Ùv¸£Í¸[„MN™>ÜÜ/QàNCt ·}¼¹›”@ãYw«5o@”™“ºÇY6W3¸@“8g«k´ï£Í4¡w¶Jæ „É  ˆ<çmuÝÇlŒÝjô­ÃcŒ³ÕÉddFƒ>¦‚Ä@Ø,„טêêTIir0™]Co̺Ӫ4™ŽáZF×Ò˜’ ìZ¥D=OK8¤1äˆÚôÁæÐdfµÆ¼RL„ÐJ6ž?àÎÒÒÚ0]—.—Ô†y®–›3ìîÚG±k:’I}°¹ÉÁNƒY‡Gðo«ãfpb·ZX°]ÜÑSR›ÅãŠ#~[ÝÇ›óÈ‘ÚtŸÃy“:<’ÁÁVá≠ÆÙêq2ëmµzoXpα\x$ƒYÚ¢vdpKI¤Ù®OÞÌ´³3rù>c÷I]#Ù·xJmÖ:<‹Á$:¥@QsyN)&m:_Ö‚õ™˜÷R™OŒ¸ÒÊRŸˆ™‰2lîM¦g¹Ï¼Ÿ@xƒñ´:Ï9ZTƒ8¼ƒ<W§û0s¿:àð ·ƒHTÄHLTK‘0uÕ¶#â0?!³¦M¬žÃà®.QàY±Qß0ïà>e" 1×·ƒHkóft\ÁáI Æ×¢ýÇ|H©ÅÃŒÌ{jñ Fçj•®Ñþãaïa³cf2ÍÆ„ƒÜ©—fã×áQ ÎÓ¢Œ„/«Z@ÓG™Œás˜ i°ãð,ãi‘éæUâ-JƒÇ^<çò3Q"£?‹Vfú”ÊŒ›áMir-ÂdHçÑ(Æ`Ò3‘ñð˜ ipĈø@³µ2xÃï£#¢´ð(ãdu•ù>ÌÜL÷Àí’…>ÊdbZ<ˆÁ¸X´2ÌeÄœÔ"•aÖ¢½Äv=ÃsÞ#‰ÅœE\DÛº!>÷QæÞ1“Íܽs2‡ðÆ^õSá) ÆÃ¢Š&`º"fÐÚ®LMt>fxƒñ¯(Œéc̽|à)xƽ¢Ó ¯¹½Ä’éG0Fç´þêûQ"âÊê1~,¹(„GÜ-¦íÑ핇•¤Q-in§XgæœÑÕZB¨b¦w­jIK…­øöîP-i©‚›ŸØ¨Ö’– ï›ö–N-i©’. Ð7¢¥€Ð„ùziC´”´T˜›9´w‡jICå0·«m{XKUš“R4TKIK…‰UÛÃZÒR™9çúF´´4˜!Lµ£SKU˜o6TKIK…‰g4éáZÒRajGz¸–*"”›”þu·£¬ÅüèþÿƒÛQ*ßŽŠæo};j_[ÔVîY0*KÅØi“žª–4÷‹,¦‰Ñ‰h€¥¤¥ÂW9<ÑLkIK•c¤·kICå0]¦%ªp-i©º5}lk\o›,*þZKBÒå˜#*ÔmÖ”*˜P΀mTk ¡Â$9¹ÅZKÕÒŠ†ªi×O½÷dAhŒÛß{‚¨\M¯:Áß昲 KÛß¶»äô·¸bÄ^rÂ%¶¹ät½{¼üîéýÓû÷Ÿ?5ÎÐ-Ý@lh{Åz‰Jv¢¥ó¿}ýµ¦O1éË]ùî•ò‰|ÀÎÿòk§ *Þ€¦ª2¹>Þ=|ÿîòŧ—Oß?<½|ñî5¶´oH×ïq—ŸüþòíÓ3°¯ew¹Å?‘{éòa©:éÒååöþ|˜)Au”ŸÚïÛÏ÷ß¿Ü?=.?ôþòô-þ'Œ ‚wË!\°õåÓåùéóËýãÌžl¬¿0u¡\›x™^Ï EÕôö†ð 1˜ëÖÌþõŒ­ò凟Ћ—Ûë÷d~õú ”WÎ^¾zü»rÑíжrÇ]~ íûx÷ŒJÈÂË?Þ=_o_ƒMÊ9\~| ¡f¶F_Êo°w¦˜ŒÿÿIkƒÉð”­2ä·ÿüêíþýåíÇN60ÀS.P>ßÝ—ß¼F]¿Çk…@|zz¾}X`TdaBÎñò¼@c@n?,?ñ¡ [ùÛêË:6å'÷¹ù@êüKûéY £Tøû×Í"0ÐíRá}=ù mÌ=iôÝÖ²w(–UTî‰x¼<ßi|! 0U–Ú,öFc2ý”ÖøòöµA#ÕüûkÌí§4°úù:ãJg`ö<¶Ãð¿Èe¬¾¼ýÀÌð…5 ÏÞü®Ô‘¡øÿ>¿tCX¿úÆ[3Ezþ®ÔXú]jö±6©Àß>üø—ŽsdBÏý0—Ï ãî¶À}·àv£ò!úËŸ_£L©~V’|øqcÐ#öAAôsù|-¿ÕÊwgýÝ: 8 ïÛ¹yÛËÁö|ƒËÒ0«« Ï_,Áâ8?¿¯P¥áÀ:–§å÷Ê/š ?¸|ùú7_-Tʸ}ýô͆G[ÿR~tùM¶§™RüûRhŸß|õHzñrÿÒ΢—_,Õi´…*£œÎ Ëeî”ïÖ¹³6òÇy\tפÛçOˬƒ61Gû7‹9ê¥ 8_‚tùûV¤9Qqð ^g–‡39¸&…û…‹ÉY™æ ­8œt¶.ÆAZþTD sŽ ‰j…|øn±kÙQCóáöåv±~iVÅùÎpQ6¾ÂÛO+r³úððTÄ]Åpù3ã_m~Ìü&¯‡xÜA¸⩨Œïx`‚*Æ—ÀUopÓŠ/ñßQ¢À¸ËÜþ|¾›58øäY/ZŸÑ0ŸîžÿýîÃJ éóõ›»çå3ˆù¬ïgê÷·Ÿî>Írƒ»äUlšZ¿}ø<½úüˆ ¶T˜ò忾٠n?M×[ÐÆ?¼+­š^n¿y¸{wùôã§—»ëôí=~øâ_Î@ÿ˜ÿöåÿþòwÓË/_ü¢jƒÿrº_]¾¿}ÿÇÛïîÖF˜Ë[ÿôà}†þÝ?<Ü>¾¿Ÿˆü\§ ?ÿñîý§ÇÛëÝÚf°Ý Äÿüûþí¯ß½†É‡?Å•QÜkÞw]ÄpõK½2LƇ?ܾ¿{|ÿãZd.3s6ö¿»èíÇ÷ÍX<ß}îÔ§­ÓŸ>Þ>ß­•æbf—¼º^Ÿ7Ìožž?Ü=/ý9ÉÇOOµñçâãÝýw¿yúüŒxGãh ú+ÆL¼ÿ‰ãØõöáþ›çÛç¡ÝÿRzöEËždþ|ÿ|ÿøòîr…&¿»üËÂÂ5¬dù}™çÂÌ8#@°~åFÕ­¸ú¯8\ ÎŒ ˜Ì†›r| ¿‚håÜC¼ò …ãW™«›ð¿³bÆ ¬bXÌÞå…˜Šæº€|ÿ§W—€ÿ-Å0£°8aÁÛòvù›ú t­_¨µAò"È«€–'Ãg¦Ô¼\e[‘mˆÖ‚†fІ¨–lT«€nT[ICµhCUKªE@ªZÒP-ÚPÕ’ê§ >Þ¢À•ëçEOà ŽÁs´àê»æï0ÿ/{à(%Æ|Ÿ¶ Ëí &š,Ru‹Å¼¤Y7³ÇF̱G&O%ª“g%jæN%ªsg%j¦N%Z§ÎJ³Íœ•d›9 M;q*Q8+Q3o*Q7+Q3mŠ©l5oÍàçåßš˜&+¦¤Ív§ñLüØàE1¨5á»4˜®bù÷ùîÕ—¯6ÝçþGT¾¤ˆ‘ba^’0ÂÔ¸´~€pñQ\cÄ$¼DójÅMÉPªì!•*ê ¾~û®T$?¤ZkÔåÄÓ•-5Œ¨ÖA â1Ìy?ì…õxé72µb‰X/ÄõQˆuΉ…«,LéðúXŽ¥Œ°Î„p•g”Œ¬ùed)»RÉ,=À¶ë+–‹ %›®?¤rÑ/ÞÛc¬TÒx—$¿ñ+YLÓj þžN Êîÿˆh®3ƒ:Ö¸Ž¿Rår7ËàQÊGT.4³%]ybÉšu TyBZáü$Ë^vtCªµF¼÷q¨y1Ѽ7Ë”ƒGPÎß¾Qõ¹QӪǷeÃáü©X›ªç°U/ÃB'´é[O…‹\C(¯ñ[¡5Ãs>iŒ…iBì!ëñ0i–bÉÑ`qŒÀ”q(7‹ –ÓU‡DxàÞŠ¡B9õ3À:¯piû*•ç1¥ÍÂ|xC,aãO±æ •7åõ•x(Q•tŠå¥˜|LeÊõ;¡¯„ïܨxØ®KäG±D†Q†%”ú ‹‘zL믩’à°f%o™ÃÆW(Y³6¬“f EBÔ.SXN‘1ä”ó:†s¨3 Ægá€ÿG4ãµk ( ÞצÅÛr9à¿#¨ê*rP‹Û)ƒqjåËk¢B¯Ó¥ò0ÈK06 76 ˆ (|l> ½×Åvø®Ä±JÆÜkr,¼B0‚T¸4þ 3Ù€o+¬Ï•§í À¿YÜALå{èqV¬s}ñõeX².ʠαòôËàƒ™²€ÀéònÖQ} ’ŒW"(‘/ƒ:wôç˜A„$šs(ˆsŒ¸øžç¡u[¡D‘“ JäD ¡$\— É|V”+·oX…‹ãc¨99MÛA.ð˜;ˆ/»ÚCƒ³B5Ã@-Â'„ÚÚÎAÍl@Í/„˼G‹çëÇP"ï±ÁâÚ¾`É‚GY»dž¨K䯰BIW"ícÒèfŒ°ðíµC*Ì} Ÿ¤X’xU%Š1eX²`Á·ÎŠÛʳG#,‘æ’a 9!Ãè0ŒN¸ù7†Ê%û–´‹¾$a‰´³ KddPBž°2Þµ”vÑ•·—X².Š „Œ8Å*¯G9±NSœP­X‰}Ž…ï4‰¢ðÁŒ0Æ:_®Z–¾„X2»!Ârõ </XXPx"£¼n{`°W YÐÝ`qž·/÷àå³|ØôŠ%c¼ K¬ Ä1k޳¨Q–.Ã3ÀÂÛIZŠUŸl‚nX’Ö°æ4rÂ…ƒY¥EpÅ’‰³«\ï=Ärv>eR¡8¢ªaGµ0uÔ¬\6AE+R“ýŸ4kMëë¬Y1œ‰¡$ÖbÉÆgÐÇT. —·À-îwg9,ÉâÏ)”ż˜ZºŽ„¯&š#›¾AÍéˆ,¦£±b,Ñš” KÆÓ^”·kNÃsbÃ- ±@£¤ã…"˹Q!–dýJ%[hh°róo‡%ìóv™ò¸°ÌßÅ{©‡ÛzJØÅ k¯#6,‘‡-k—l€Xø¦·¸YÚö;—m…3”°íçP ^ZŸ*©YŽêÃd@Aêëj|‡þh¤ñºžÁ®<éT’Eް¶@ÃZu!V Ô9¨%PBmQ,‡µD±B¬õû¹¿±^„Õ 7É–Á`Íoó Ù¾†=r6(»dX[tÍa-ѵk›Ö,Ö<­eXÍdäTø<ePÍøp£¸Žõ†ÅQÅ’„E¨¹4&ÒáÑq‡ JÞCáý¶²^‰@[†úoT°Ç{j –¨Y2,QÜ)Ãñt…O;É›…oükÞKÄ ±$n¥ JÈÓVFBØ,çñáJâîÊ DN± JÈÒS,£KêE£lÉ¢|D¥Ê»ñFa~’£­r Ú;¡Ç«tî÷›šá©X¢¨¹ÁbŒlÅ…B,Ñ0ʺ(ñžePB¹9DzbYV໬Ýç@øÚ XD1Õû!;W¨s9^çÄ9T(Ùešá;MuNöxGgƒÚœykvæ…X"1aEU®µ ÛýñîІµœO6R¬Í;å|ëÙ;•bm~'×®Ù‡•aµ\e°–j±8ª˜ËY‘7nmPø°G<†Jè" ¡$¿ Jä ‹ ¤£S¡8¶c*\Tm9oFY|Ü SHgp«5Ò %ë JÈ…S$°Íx€]Ø?—Ž· W,aÓO¡,>qX"#}|ÍÞbnoS2²dÜW<Š%±a-ÖY»†–N $0O#(LÖîä¼Rø¬É¯V,‰mm±ÎÚ%1®R,»P²ñaYƒ»ª’˜Ng?ºýÙFdV$I¼3‚rºìÏ ± ”9¼ˆ°aIB )–lJ°¤ƒ(à Р_x×Òéƒï8žYÞ°DÓGˆ%™>"(á$`%_î6ÍâLðÒ¬ Ž¯0®Pm…œz[?ÀÊå…=Y¬¢“×Çûq ÖÐ`DC(Òølñá5[^ b,IÒbq£³b‰&µ¬]B©9m—ƒ $Kƒ6\y¤i„%rM…X/°b¨V(!Sϱ ΊÂÀA'|éPS®PÂÆŸcÍ¯ë ›…/Ã*Ý %qtePB> °2|©Ìk߸n4’Ãw|¤S1Bð`-g…’ ”Èž‹ dÆn!æbAøw¸UU±D@ákqÿsœ£Üšò>—Ž&Ñjs‘™Y\$RŒ5‘§ÙÀgÆxó*k\ ‘ùmØcN­H2¹’@¥ìOöS€lÉu(€’‰‚I42‰¯TI¶)uðô÷à*VŒ‡×ílyË4ˆ¡Dš¯Á:ëâ¦9¶/ºVÖ.áœ?ÇÒå‰@èã±>ŽLMÄŒ™C ³6,ŽY+–ŒYçí‡:Š›5??wÔ¬JäÍ4P'­y 2(‘©—A‰| ”LfPøÄ¹¸Uøþå¡Z[ dM?Gråù]a}]©C9öÞ–œä2iø¨b©Øfj±lÉn+ƒ’é"!–HX`n”&¶ž“‡ÅÖˆ®Žwc=DDIê…xœ²eCéd!”:>1d]p˜­@%ã•Jbí7$N®HçBÖ&™ˆJ ò²ÈÞ9„h^ìà‹–ˆ¡(|Á<‰™åâÉÉÊKÆR”ŒÈ &”v¢P}Ø®K¦ØXøXC–·Kõ·9,0Â:ÄJe^†%äý†Åñ~Å’qõ¼]=â&±Ð\ç GX›/„’Ø|”PºÎ±lÉä#l–6ýÉwêÔaY|–çX$1·”=Ùt^¡dbzåÕ4vW–Vù¼ËÔP­P"^É $\!å²¹+³‰øÊïñFqÅ’X !TðÇ'Ú|Ìx,³…â”Ö %2Qƒf…„ß •éò‚ÄQ»V,Y»6¬³v‰L K6@§X?áY¦ƒw†q”W;~ú#±&…3éŸõµv~ÔÉ5ÏÎþ?ýù#nendstream endobj 276 0 obj << /Filter /FlateDecode /Length 25338 >> stream xœÝ½YeI’öžïzÓC I€‘TeôñÝàRCÍÑ (@3“BKèj4¢²¢ª²'nfufÔt—ôËõ ÿlñ³˜ß›gJ‰Y–çžÅs[>ûìÏw˃»[ðå¿ï.¯øÏ”—Ëݧï_ýù•#ÑüçÝåî7o_ýúÝÒîêCË9Þ½ýîÿÜÝ9Wª¯we‰.ä»·—W¿¿ÿO¯ß$ŸïÿÍú??==~‹¿âCkîþýùïîüøãOÏ/ï?~¯õþ»Oï ùüúoÿ¾¿ÒCKíîíyõößïîߊ+?«¤ÞÿÇ7ëñȇ—ÇožŸ¾¾ÿüóç—§ËÃwïñǯžþúòíãËã¯×GÿÑ/‹{ãü›àþø›ÿý7¿{xùë˯¾ZŸ^ª>þ¿{ýÆÕ¶,÷?>¾ûçÇïŸôÙþþoô¦û_}þéÓ¿<½~~üðîéW_¿þjò¸‘ÏýF?ô÷|ú$?^âö>oÿñýíׯÿmÏÿÜ¿“nr‚Í¿ëüò´ÞçóËgÑxÿñ›?=½{™Ýá»çŸÖ˶ã×ÿ5þõáÝÇŸ>¼|þJ¯êÿðøéE'³mß÷Ý×÷ȯÖAqøxùaêóúô矞>¼ûYE»QKþ«ñ‚}trÀ(OVÇæ'º¾Zoøáéý÷?|óñ§O?|üø­^¹ýÍüÃׯéQ¿}ûêú&¸¾ðCºÃ´-ÍÍ~vþ¡–Æ ÿí¯ß,KLµTwÿD¤–ÔGŒÿ¨®æŠ‰!÷ ýý·Û_ô‰)}òÒýã'½¬ÿâñù“Ü.µØàQ~—[+÷?ãºÔg¢Ò¶òwÛg>ÿ´ýÉÓöŸ¾•çôÉzܾ'†ç×ÿÝîûK~h¾ÁÛo_Ýc õÍÔWvL_å¯ßþÉŒX[r®ü‹ßï^ïÚîþá¡&½x7h}?½öµ ÷²±èŸ³ÏÙã‹äv»‡§>,ýQzÇ×oJò´HþN^¤ùðË7¡{\êÝ›þ )ñõ»éÙýñžWdt®‹ÊýËGùßîþe¶ ®h)¹EyCÚ±“1ô®aƒøñ›×o01ßÿi7“»¡7ÚË>í.'e±_xhWÏë>¾ö¥Xi÷›ñßþì«×Ó…²ô Q¾K–ÈìÛb|H%zý¶ÝëöÆÃc ÷/»µýY†»ô5+ÿsi÷—Çù£?~ÇÂV̴ۘ™Ž7>¹~úÉ´÷­5›ø‹>Z¦~·._>uåô/ôžý” ½þõ°^øG¹oúˆ½ßÏÕgùYŒüîøßÙßÿæ‘G?Ä>ú Já5&(ääïßãóÇcï·có­ü~©ý÷Wwýöo~÷Ú÷}ݺBú¿>½ìWÅ…?­ÿ/¬ Y »+øRícý}ßa5xwÖ†ýL)ôñxÕ%»û¿à~ËüýÇOÿüy³…é€Ä$tý"'ä7ôìþФãòAþÈk4õ5°Óµï¶¼ÿn; ?ïgò{ܵÐÁô8]Å¥=D_Ьâ_ýÓ}®Ÿÿ—Ï?ßm“_ÍÖ³[üC¿©®çýŽûqÿçñTØÎŽ~ù‹œ}ýóñ­²<úÿXÚOúíþÛãº|¿S¼ÄøÒÇÏüᘾth#¸êjK‡°Ø¿öµÞX›PßÿtÙýûf·NG³.ÛÑÄfé:ÿ\ñÛƒžØw.ýáÿ5*jö.ýë“wî zï²^»-ûøüÜ{ëç?÷O?í^¼ï{ô®|eõ Kû׬¯7>»ß÷È~¢Æ™ÛýŸ®@û­ñ‚_@G–½ÊÄ×þ]¡ÜË]ƒÏ¸Iûôâaëªùx¦Ð–ÒM¿—n¥ùæHeí.{øžþcYÖççÃIó×½fúôáñY>¡…ý^úaó>¢'úÆÜßî¿}ÖOŠ÷?íÔóûßëØÈª;¬¥½Ñº÷“bÛ›-²í¾›Ú%ýçþ⻟öÆ {>{Õx\9ÝQI}-l –¾ŒÿHnÖü˜um}àvþ>>?¤}ãº3ðÞA1ï·~ŸÇÐM¿n²RîÆbצÓ%ꃇIÌkúñóeUÏÞ*•_ÂÆ<ëÊœ|’ÿσMùP§‡çxP’ßlæùù¨Zù…ÛýÏ_ÆŸÞœ•üœ¾A?¼¿<ÊÈóã2”-+ÇÔºå({Þ×XzÁõ½žÓ~;ý´3%ø4íªj'~fsê¸S×rè`Î%˜ÛÈŠ¾~(ó=|¿tPa×ÏŸÏú“€ùƳ"9$ì›yŽ}O'ÔÔ8íþ?¿®žüÃãeòýÑŠÛXjÑÏÞ§«‡àÉÖ ®Ò}8îž¶ûçq·u8ž¾{Äûow?›=Ý€0Hx-¶ïh\Cìãá'Kõô3ï'÷ûéñ_‚‡ù­*–ú wЇ™&itCÓx~Aóùøç»ÖûïÖÝß?ã/;5ø¶òÿa¢X»¢´Q"ëGÞúôýüµº¿ÿùéñÓø«ÿtÆüÍÉ1 Xüá«õŸþÍøüôŒɈŸàÖkÈŠ¦ièúw¹ùùǧõ’¿Y_òã7ŸŸ>ýËÓˆ?Ôûÿs}ÐOÞ¿àJ¡pÊæ^>¾àPÓåÀËúFßü¼nѶ;¾‘—ì42Pÿ}_Éÿö îÎÿ«OoúëõJ·àÿl"9›×üñI¦ê…ú’ÝÚÿðÃã7ïûv~ùlÞîÝÇçnö?ý¼ËfÌžßîûòþåYÇtëùÕß}x×·ì‡w›þýú*}ú«È™ä|Ú,Äîú=5ÊïÿEûµÊR–qÉñn¾è}ynCG~åÌ¢¿ó1LJ¾;\iá¡{¾úßOOw¿»ûp3ÆÔ÷Ç]y(Ý„ØlŸÂCNñ.ºÜ ó‚]CkðÍïw÷òñŽÿwòøzz׺BŠw¾æÖ¿ø®'ÝÂôwÎ÷ýîÇ»<”n7.ý¶ÝAÈ%aKw!aÔþÒß ï¾»?õWþÛW¾/Ç~q½Úú»‹‘’™$ý[Ü5 u')åÁUHêC%A_%ž.IÝb Þ®k™ß7vE‹ ú™xxÂ1 iI<3‰‹•ïZ0¾â³q›>ñý•®J\Þ~víGvÆS~ðã>}Cê“ãKêC·ÙLµšIÒ§FÁ,¾¦;û!ð,È£º•ûm2"|…¯MÕ%¾/ÁÊ×t§ «$öýv’܃rEÒïÓ-Ð.AQ,ÇÖ·7ÿ*Ñ:ÉýâyÁ}p F ÎµÐw–îО¨Åá~ý¾î¡²$ÀÙ‡¤[i<G)_ãèÙ­e-´t†»g‘nZ"5â'^†Æì§ [ø3»*ë€}Xû–ÆýzãŠMß·LÄ«Óëx S¿ÆAÑëx,™.Ñ¡h}Ë-˜š¾™Zâ7 Ø*}"2žùlžŽ7úÍ«®Gê Rû—öEë F|è*ýåc­¥âEC·[0;™VCèûµ«Ìú~á’þhŸYÂ/èdI¤ú‹òŠ -Ñhß¼Þ›Î[¡1‰HMõoñÝÌçM$ÝÖð}ª}_&¼ÙC˯ÀJ˜Åcâ=œ=¾¦/þÊÆrERyò}Wâü#|1^pɘbHº^Ê|… …ô­çqÛ¾qy¢û>§ä»wøš®_]“eZaóbýú®øßW"v\ÿ^Tt·°Òg.XJW$ýÎtÅE#áûöª¸qñò•>ËGñòñ…÷ Œc~0"?ý}Mà¿[IŸnž\xÿýãBè0Ë'íÒXs ˆ¾Ö\ÿßXt¥/1¨}×?ÍÑ)UúÖÄ|9ÍôZ[³AÒ =³@‰ô'¸€;Ij¢AëçåC¢UZ¥µá‚ªÚ•¯ó¸¦;àQ%8bœÇ^`I¥uèú$ˆOO»_YI_Ž~å‡J´^‡Kß «jí_ û5IŸV¬çnÚ?Ä¡ï<$qU’¤Äú¡†"eEµôe&Š=fzçeY¿ÂHB߃¿òªJÉ„¹#«€géÊ5¤AÒ\ Ür×5MÄ¿È|õ’âpMRhN—¾;Ï)¾$ç,IÈëèï1“ô+ùî= ¡€ÑPµÝ=(¾6 _ÓÕ_]ReÄ ÒqÌ-}–XÛä¶ðìdÕ¥¹Ð{ô¹HxÓ¹¤a8c¨³²½³ƒûÏ7δ LRÂ>à -Þ(J«àl­ü#RÒ]’¡Mû5­Ã>Yõxßë}g-Ðãý ¤=uXE—“+ §f¿k`žýæ€7è‚,e"h´ÇºCª'PWcÝ|ë/Ê«aó$&9W©X|¡î$K§1ÙR}Átc‹¿þá}Dú— ²æ’þðÔÝ<\øm°Æ±î<¯ôÆ´ »‘°¨9S]#†7„à ·’Zø>HŽÉ5d@Ð1p<4F¿Æ?ÈÖ-x ¤´»¢Ospºã<.‰Y÷²'ã…FM$޲?e/_—tsƱÖ°áý¨§5€ÕV·Xý3ÑQ‡ÕõÃç¾çH#^V»véû|É»õÔï-Šc-¾tM¿„í"ì™Ò>)ÔVÂNÃãÛBÐÕϯØ=‡H/°®žÍë¬êçgºCÊ») Ð [»:ø/$XÝΉ°¹»â}A¨ýýiܺa³`&ú5rNvIF¸·_aqAÒÏþUâ×í#GZ¨ÂúË$é3èš…ÏÒûïqÞÖ¥²ú˜I<Ý1”nU‘~ ±Ï5¾¢ôõXÀ¶éÓIª4Ä® C‚$óN 1ó¨• Êu&A¶ObéƒA $ÄþYðqJßtQ^'óë¸Ê£ß_™,¢=Wå³R®e‘ƒ%À”à •þyü¬®àhy²EBHr“þ þÊ_(qd=ög K"K`gгtÎ1\<80–^&ÞÍdsb!–´Òî\ƒêtÁñ]ºŽWª8Aý’B~[íZÃ×k’J¾€œÆô¤Œå`¿–ìW)–sÿRÒò>,8^ó¥xñÌoâþBb³ö1f3¥TÏLªþ«Æ®e_”dRuIa%ÚW²#ªÀ§cA?×ñè ÅD¿©dÃbuñGô‰%7¨ôÃ#:]þØíf‘`MbU$±|uðgš‡…Yøì×õ¼Û€i½Ï3AŸp˜%ˆ¾ðÀdàj÷-ž’ŽVs^¼Žß³ÍSºñ‰÷¾%‰ /©Ô—Gû—t}èysõµí—ú–"o¦o[yTÝ?•ÐØ§nzòWJ(ì% í¤WŠ%޵(¼½à8E’d^ΘSœí±OaæOtÄÑídp¬ŠR ì0ϯÓxýòÄúl›C’…7ì™y_4ÞM#"Ó÷dæÇ*Ê Ápôp‹Ð—¾+Ûƒ£ûˆÝ0“tý‰S/E±ôú¤PMo$x)d„ñás¡»ÀÐÞ û]öiå8 ¾”Çg!?§/°EÏ+ zǾŒY¹´ÝùH}ú#¯÷É IPl<ÐÝEõ•£cEtj%#;Áâl*¡Eל×e`ãºK2ÇOú 5òñ“Ÿ³v‚àu¿>_Rÿ/?ºÛ ~Z/‰„R£¸Vàkö%û½ÿÙè0uá’Lþ¯sâkÓ6‚–rݪä ÂË‘“¸H( K Å!–’e1àÑÐSpÈé ;'\¥Ë¿‚?ï6îC¿¹Ýäk"à` ,©ç’Ø­Jº1üHV ˆ~àánÑÓ£ —ˆ7\dó¿ÿ¤‰YaWûÝmoÁa2Í$Ý<¡u-X±xÑõ+cÿJr›rÕ§‹:Zº¾«¢±¢—ÀΈ9€0ËCR]T·îY+°áþ¶M䃯œÇ]º¢ò$©ú+Ï¥kâñÏ$°§ð6ÍËnSÝèºæªykäøe|BáÉôØuáŠ*îXÓƒ)VLºœÆRZØe£L8Ix»ô§‹wDˇ$¬v)XŒ/mËu‰çeà(ÎK’\žn¸è±}Ø7â|Ç“èMÏŸ—ZÕU%+&µ1ž­€ì“¼D ¿õžC”}¸ž\/é:×]Àx zè%Þ”ð®e®a”@‚Ø%¯XÁÒÍjÏ$ø‰,¶ÒB‰Œ¬{1wzt¤˜#Íb9N9Pbžœô°‡žÆJÌaÌXácî›J$2’ÌFÆZðFgkq"é[¤px^nÓß4–­5’*r[µŸòÂ\ÕÏN}hÿ(‰æÉ¤ÒæO^W&iÕ¾ŠåQF¯ºíqÆÒ°ö‰1aŒ•c,¡&ÅJ9Æq‰à9EõašÃâ”Á.äâvIâ€OŸ¾…bÄl#_I÷˜c k Qk¶÷¦‚¾G±{éâCj w&'ñ5<¸îŠs|ŒÒ`1×$ª û»ÚÍ%Øwд±â{ÎtuE*CûBG¨ŽeÔõp‰,ÔîLãd_?Q*l|Y•Nýþ‘^WOá-0¢÷3Iåè ¢øú¾¬Lá—ñ´Ñ#lZtH8`ãDït@åÅHq×k’>|ð>`ò@Z6¤ÛƒH91ç‡÷sñfÖΈòå6ÅÑy€-æ'Á‘ƒ»ÃÓ‹p£§gg,sH°ùñU0'ó »rü+^i‹˜‡%¼FÃm&÷˜¼pö"l…ʰ¾û° c?„‹„ÆÈKí0J|\S‘PÈß¿ŠN3L*A¢”ß÷Ab.ptÜc̼Ï¡q.,fÊÄ›IôÑåU`´`‚³håþ¾‰ÑYµIzKNþ!£€öÌÝ­A › »(‰Ó:l·.áøXN›H®!OR\šA2Ý Aïáؿý0°¡8HoÉlSŠ“ŒøçuÜ\ÀVuÿmàl)²ö‡m¯1^h ~ôU‹ ‚j—Iâ $¢3p6ЦÅ)I~D’ã#Â%‚¯\r¾"‘„aˆø} ¹pª9¿"Ñ7\Ô ƒåÖä¬Ç`$ò±œÆèØdîV GžT%^Iù.qù““>,#g8dï(;ÔvW„EòZ¿Dà8j(”8Èb>P꜠¥üˆ¼«‘ˆ…ൖQ|9'<ëø7z Ÿ Íú?ð7@›b¶3Ûq:šq‘è¦ÙÒMr'N7ã á“vÌJR¿—@DX×Yܱ_p?¹¦oõFO¯j’!„”_¶ «mó†²GËh`Á°`0 ö`¡§àtÞö—׎€Ì«éÑße!eáØ! £v\o×·J# Š&Íð-d•e9W»ÄS1Åâ®H\á¨gt¡~]CùHE±`Êq i"ðlr t-HãmXiÐ5Ž-ÔääGA02Œ¾e XµlŠà.0°ƒüe':x–¾…xâ„ZHâ\ú6Æ,2‘¦¬/X¶Ø–…•÷Bªá™qÌ´XúOy댓ÿåÔ‘~ ®]DíiMãþ2H}t}¾.Ì™$6†¥ôÁæ&^¬à@WüI·^3~•{­°U‚ŠSWhgn%­Ð‰³´D´JŽˆœ³]ö¶À¯e†Ï-¡ ´Z$j‹ö%œ$wSt6v3]×|MÞ»;o Qt;‚pv<÷ÑâË4Æ<‰C›Xõ$ž}-ä½FÅmäÜF×MþLy’w¶¹éIþÚ丿œ· È3iK9¥6_e%Ž2Ãp#w•Ü‚P5&ÀçnNº¥Àù@sWÿ•~ÎÈà8lˆw’G% )e„ìx(¼¬‚ºhò30²”lY>¤$K9àätÈ! cVNì3(“xÅ [,f‚’±H‹¶±ˆœ38žLAíþ+QÁ±TÆÀÀ;“LÙ!çrÃðuЪ‰Áýõ.Dk„PùcpM­ŒIb#Ù4º¦«86Y]q JjÄv}ŸVB_-¬q]ä?`T¼îpjŒ*H¬ÜÅ… Wä0ÀÀñ6H Â»‰U"2hbŠ€”ÛdÚKµ îÅ 2!ÎBÅ@ðQœ,¦–ZWØÆ . àÈ#¨R牢‚`"pp(pz¢õàe p>@´ð\‚Åœ I<ˇÃä€Ä/ˆEàØ.¿T È ŒïÆCÀøš¤,Œ|ЈßåˆjšI,Êâ¥Î ¬Pù„͆£‡Ñ ' Ö;“Pæ‹€N¬¬}fXS (\Ã8ög³;ȨF‘tZ­”ƒ¼ð*€ ¨ÿჀ©rÆo VW€2Ì0UÎðœÃÊÀ}ú>aÃδŠ!c¸'½4C×6Ï’E œ¤`×vïw,…<øòÈXO•ôÿÆ]a‘ƒËQ®I}ºâü'’3ø|‹êŸ ÿÕ¶‚`Re`+lµ‚­h8¢¹§’,ñW ëõíQ8럵’%W·1Ø}.4ܤb#‡dpÁgÀw©Je‘’Ý-pŒã_vÇ‹+ÌH¨Â‡%#zJ%wIÒHT÷¬±5PëÂa¹‰DâAkáœctg- ,†±H¹Õáp¼­­ ‰RwWªÜ#D”ƱaTÇHÐ0°"ñ˜8ŽÒEGAÄZÆ%H¡4“—cäbÚâ†fÄ¢ïª;ækŽ·ñèýîØÄQ;îS†ä½ì$Çi]GñäËŠ¿¦2!YÝ’K¦σF¿COløþ®‘˦$öò’ Ó-ZëS6wqðšÔÄOëìw¦ãÉí1Ⱦ ±­$r-àzéêȉ!;‰“iÞ¯»Z&+Ê®:»2÷+×®l»úOì`\šìF)”é“@e\¡È¾GÒ™“ÆoGvÀ›å¥ÆÄ“ùåS“‰‚í›ÈyåH™OÊDI¸–ƒŸ8á[S=µä˜@?*a/œI¸ ˆp„R4Ô7Eá¼9ÿ]y& ¡ÌëŠÄø1“øÄáÃÜ4`Ïk@©ï( ‹6= #ó)µ"Õ´‘ÃP!ê:ŸHØ_ìã'çÃ^½•é'õ‹ißòb$ÏS‰g fnQ<¡a §›¡’!ïÄÖõ.²‹‚¤9=±ßÁ"Ql‹Gn°lm”SÖµ™ÎXZü(o ômoùµ?AöŸñÔ¬g}@ë'Z_Òú›Ö'µ~«õmûk=dëEŸñ½»n‘]QÇ£P‚šr$RÓ°ÏG†ÏUäS!C±Š·Â>2{j–rV:'MÙ›µ ‹7g)§¦» GµÜŒ"Rs?·QvQ¥b¡üˆsEA ¬ˆûG08Ø!Yïû'Ýò\=|ÄLf7í1œ¸!²Ï¡f·Ö[Ñ5Roåm”z09OQõÅ‘ÚÒø¸ÚJ¨"Œ|NI‡^i¨©åž©–»û»Uj 5¡`$¥šoQçÏ)aèLþUÿUkåOF~ó˜tÄû¹$7ÎÌÑI®IØÅ„Ù#§éB‘§>|ë³Hû£pK ÛÊÓsÖ%¼•›×ƒGBwŠûÊ\¢'l NŒ%ÔZb€aÔŒ…E•|#Àök¼žäVÒ(xß|Ðã@Sòâ›Rx>ºÛR5É+çSëš ¹'Yøæ5rÚ·¶ò 6,ÈZ4q®—hPḌoaãÐ%Ç+Ã¥ÊDƒ`´FµeP|_Ù?©REË<<‚‰%†àój2+îE ñ&GU–a©EF°Í¥0|¯AÁ´íšL ¥0Ä!5qZpæ3¾¢ É¥—¨.Q39}b/­ihÛж¼Ð¶8W–VdqZ‰o‰f[•tRÚ¾0 ëcbä/xWž³ lÆ D<<'úì¬n"@ê[Ĉ¸Ö8·P”·„iN"EAåxØ ~[y™#ßKáf—0à[x®†q‚ëa!ôȱø}ù&ð}’ˆ«×Øfüjâ1FÕ[›K¨Î‚E*kó6Ô`~¿Ìj&õH¶fÉÖ5ÙÚ§3SPÂw+ñYÀcVEàlV²ðAçA8*àŠ’S DxºEîÐfúåšHgáR IƒSô ±˜ôµ^Ê%ʈuIRIS©I)л.©\F˜‰È[W¨aáÕb›HúrÅûäàäÛ[#ã0,§{&›$O?å6XsÌšlÖ¬³¦ßÑ:´ä9³ó(º~4/—Zf‚¨9S–hŠM½ã¤$Ò–MÚÒJS}yªdó„Ä”hœ)ìH^2‹a‘Èn kžŠÌ­•¿+…2Vô=¶Ó¢E¨Ù#x¿¢ÐõEi´Øƒ¤*̺b­Š]Ÿq_«U2réŠd! Ï 2¹Z@ÊÈD°šœÌ¯`4×Ò‚#†ê‡W„µ«1wÎÔ.Ñü:AÁ‚y™@x8yd¸¬býNL{ü*¢x‚ª+"Ôº'‰;©)‹ý°d ýµ²`ÿv aA¡ìtQÆÝV#ÕX×q>ª›Œ §¢Æ¸)6òX…· V„Z­êa‰t5©£Á@õË$;Ü'$X_9:amÊ8_ºdQs?2mÊPªž|fH²rSÀ¯öqS¿å©f§nj¼&¸>äd7BlžiÇ|V~˜*êÚ)«L1në^HòúˆyAâäîñQ®Öb‘„Ž˜4 œK’¹©’‰8›ü"øO"Š=­¥õð~©–6hIÅD’ÆJÀÏ*ãî)ŠAŠ„.0Ïݸ1ªÑ„*m1t]Ù fS¿©—Ê_¶'’ýº&ìN]O‹20zÒU±ÈyÌßÔõ/4W}6â&Ém¬0ç~ôðM…Ž»fÄfÉ^PjDœï´«ú"«–t`ñB†di“ù–• ¨ ßJŸpÓ‚KࡤP/¦(jîkëUì¬5Ù¥°s°ÊÊØ)D=^b%™ioB/'á<üLÍZÀéà`øo ‡5‰S¤2zPèJ*y›J7Škײ*05:.S“‘‘ÑÑ׎§L5>Tè®INÀËæLi)¿;ÔçÙú=Sâ7+ürñ`^*G$qüº<¼0ÛåÄ/„;§…ÅaÇÃR»™ÌEy–’Õ|â@õn£0 °k>¡é@¨‡÷%÷H,I÷†èÔ’BL¯Å mÍ©ˆÓ$NudÙH×—£cxeÇñÄ7‚(c‘p—R+óHÆéj4NS2çÃs£@­æÅK|ŠËÀ®ÂGŸVµªÇI®©=Ѓ¼¼ “øüTJÖ„„MfäyMU#^.¡ÅÊi$–É2¶]â]Ïœ@¡™ ަtÞBam=ˆ hQ6•Õ#½ŽÇ>SàÆÊe%œÛØ¡3Dž–üÓ„ZÑ3Ô£Ô¦@Ë/°¶%ŒƒïRÈå t²ú+@¬H’ÄN(( aæï2§l§Ð'éŽeÔ@ –5( ¬ÿɉ}T8†±bÆåÏf+ßFpíL—øÉâ£N¡ªƒu8”dsÝIf#ê,§ÌT `aˆw.šœøhZ)¯~¡‰§ÊŠ+ ,8Rä«lA‚®_M´ˆ«¬¤ÃUî±ð‘Œ`¾<-cUW]1‘T ¸Ð¯¢ `±É[K±!gA/«á¡‰±Î¼á#î;Ò»N©B[à¼E£ç‚˜YcêÍ$}Ç%Â]ÕAß§¨FÆ‚2úY F`™ÒE ÇdgbÍä7Ÿ’Mæ>’€{÷W%‰}­Ï³™L$\R×o›¥Hk(Ë£å} S]#¬Î.Šè5Æ»L»sÄC1æBa~Ïéc­ì÷á¡1À ;kP€ È{I¼yJÏt0DžÇQ%ïÄBÀG`æ‚2î{J²¯æ¾Ì+ÀM•¸­$·Õ擊t[µ~‚ Ûh¶-·aé¶Dާ迹ìAÇ‹H{Û–xƒß”JíªÒ, SF£.< ­9‡ c_R£ŽxŠd,¨ØÃ`e¯[`"¡R`Ô¥Zø K” F•*è˃<(²ÕÚŠ/p¡É†:%£„…(‚é›IŠðp6e.‰MpF_„·>ÏR9¾\‘,á\ }b¸þ|ÑJYïxD5Ú×W…£ã}Ð?P‘ F”b…éŠ$J(Ê àäHvp+E¼7o.ŒDÂÀxHæzÎÁ\7“Â;ô_%-\VJX›BŠÃ&20£°ºà&ò}ø)5B¦8ó·xÏÔzUóÊPD¿×ú™óåp$Ù3ëÌI'{tðÒ&Md]/c+ñ! C9IéM`4ü€Ñ¢)…-˜Cu(…G®IŽ4 Ó-ç„O´A˜Q»¸ß-9¼%·$ó†ˆÞ’ÕŸ±‹­-}°·o öºärV#-´3•~ •òX”ÐÕ;¤ƒ6‚h|¶£“ƒRܸç„`[ŒHï4–,bU2ËòÊ 7‘Øž7%ÖkzgÐØ9¤IËKZÿ\šÈ$—lj’¤:“Ú’” ⽂wï˧…XvF0!S…¿Ñ\ˆÅˆ$qq2mÇDI˜ öV‚$åŒ7ç:åëèÌŽ·QlÙ n ®›8±l`&¿pFV³ñ("mð´€çXÔjU°¦!jÑDQ‚l¾؃¶»*ÏC@¦saËŸ)½H—#â¶œðð€È‚FÂáxÜÞ8 Q¢äuß‘Ãñ…#¼®jJÙÖ"HP‰A;ž$Ê;hu ð‹^ÆÛc¦$š ³’EL$£ÛHçU‰~’o¹|Ýmá5n‘å}¾‡§[üúã~oÈÑ-ºáX·<얪ݲ¹Ÿâ€çyôYŒ°Ã¯ v\óƒ¤)&š›:²VâØ¿†Öä%5ŠÊSW 9r‹¨Žä„øgàZ‡ë^ò¨´à§Ê ‘15õ[ÈÅa©ßDÚPH$e‎. rZ78 *ü) ) "a²ATÓL€n@€æX¤)eÒ™Ê[rDåÏ$(Á VY2(^¢·iìÞ(b¸éða%mIܤdiê\Hå÷Šd‡{Dnç²gŸ4DœÜf4i…•›w:3 GÕVÐ9•ôâ΋_£C àEË0š¼ãkø¬:UA~¬;·µé³úu[ãnÊàm¥ü«ëmƒƒSm&m;­=~0 ìr­t‰0uJ±D ·óƒ¸FÀéø•mëÚ`ýcƒª~'•î¢6¹;/Õ‹jpz& ^AŸ:N@!£šç‰)¢Ëªv£äy¢Òp½1J„ôš*4ˆÚ ÷TὩ֟ô›¢à `©,½€¥ 043*ƒÝÁ­ú92¼ìÂy º,N³%RkÚ?ÉFÄ(ÊqT4KL7'áVŠD H.†×+(,ä£2 EÏ—x-«Ð¤ËèhªÏ&Â>ɱ„(rLOFBuS í¡ ¥H"¨Ô®ÀªŽJú=‘DjUIyKI‘E.ß§ïœËTIÂD,`æ$˜{’ß±’ÂGh éቩ¤cPf¯Âà %+S8â¬|ÓÀÚTÂì_+µ5Å ë&ÞM¼’T˜è´ÊÞUž½h›Hµô~/a¬í½Œ"“’ÕÛ¯¯›uJ‡Øçe1EUmäÕFgÏÄt3×ç`×øÝm†?JUMgÁD¬›¸eŽ¢¡ä1Ip6ÀÓØ wEY…àdi½¸DjôÆF"œ[7„t©— -K‰û(–3<±Ø”3ˆ–BÅ)¸ÀHM[¹ ‘%m6N&à×$ÜèÝ7íRÔÓîûÌàèŸèä}åmØE1 P·|Iâü)èr¼@à˜goKXI`TŸkIt¡r º¦¦Ý †WË k™c¹(…P ÀQ#4ŠäK¨$Ïo=‚‰ᜰ©•œI‡…F­¤§¦lŒfÇ"6ÂÜÁã- <“p0zíGÆÀà m& ¶…ìçŒh‰Ü¸VI€€Á`²ð@Ôº¹Îÿ,”ÁgµsìþE>'‘¿‹u$ì (g"iÓ*^Љáàn±¬Fw@qùÙ„¼À]€¿ça‰d(jŠ;‰BÞ’ ¼ÎDÔ[c'‰„?s:Ô³‚Ú”q qZ¤y9îŒRºVô }ÛÐÌ$•PQÕ߸ïæà©pi‡4h:­6•¼6ã×M\¿‰{h\È3ާ­öûr… ã,2}‰Äo0-ŽöT´Zùm\½"AMØ#5€ÆîP~ å;ÌShJN¸¢G/Оú;ƒßôü?•ÔE" txü²TY@rHtô1šI¨@Ž-g”´éŒÂu4¶I0 v+õÀŠÂïán»p·öKõ8î¨òlÑ*B+‰ ß;µ¥kOnzò¼çæGX2tv’à‘!F~¿…û¢ó wr}Ï%xQ.çŽ^DE+Aç‰Äsi7(måW_Çk› AFyÀ3‡ª ÚÙ—K•æØëiIüŒÃR¢ÄOhbÉ´, …ÐÆM-‚ôòkD*?—¶f…ä„OC!fZãÇÐpÝ~M£ÖU9jPžùUÖß@À8¯1ÌÎK“,AVy´[k¼þx«>AÛ¥ØÈS2]pm§\ÛM×tܵ]y'{mwß3L»ÓÑÀô<8Û(j!³WIaâ4H;,4ÉžµDš²_3â5 w†Âü 0/Iç¼Þ‹PBWD¡¦G J^‡*Ðý@~ÝgÔ AZô¡E(žÁ5ž#ÈÕX#åLúE"~O › è^Do%i§Ã-æú5BWîk#òꈬœÏSS²Üž“rR}iÞIŠ (K!®ù6]áÕQm@îO§b.fI X¸âÉ0˜™þe.àÄRhZÅÀ¶;2‚«f~æ@ôа’À3­/7Î33É1=b3(6Ébó06Ws&ÃÃ\œqå@:L÷Íò3¸Äô-*U¡²X¡VÝTii,QC. >]§‡@—ž¦0iË4O„ ‘*‹ÜIZðgÓ}¼û+S×5Ft¨’TTÂÑEÔçävEÒ¨h6’[6”)ÿª—'RÜë²ý¥&9Œä¼‰„ÂÍu\ÚUÏJHMG”ÀUQ÷…”'u¥`•+!r,1®ê"ë(ái2* W$ùQw&¤‡ž‰åZY4¡ ]ìA&ŸÉMÍ$ØAƒÌϨ}EÜIò¢:'Î Kº!R?þ.<<›Û€¬ ’nVøÁÕ³8.%/§ðúPC0FÜ;¢3@r\ Ø»½Ã={˜ª'R]ÕsŽ5Áu{44ÜC µ}²Œ™ot³å˜I1¤è®PNÓ’· ¤±0~2icD—]»×QC…ê-¨ž‹(w.¯Èƒ&ú 5cÉ#ú ÑŸžN…OŽl"Iýq*¡Í'kÕ¢Ý]‡-QÐÅG-A”2›\_wª¬ík{Ëšþ³¦Eí¤‹­ítk»áš†¹gºìzîT<÷Œ@Æ&UO‘@+Ò(lŒ{%4€‡­8µYAtL˜TUÇyæÓi{j”\'*ÔX8¶N)켩Æ;.‚›Gâºp£³æ…±,Ôy±dõ&Õã°2S]Ó7mþÁ€ÎÔca?'é÷¤‰bEýhè SÜTÂN¢êêVФ(‰µú7ˆåqöl<«*¸^xQb‚SFÄzAðewÀ–Î[h²Ô…³A‹æòÈL.|PLŽP`¸•ï]·!t®€d4ñ5Ê^4ÈWØ“rYyˆÑ ÓP”åo"©Ü¯iF3Sea—µŽC˜£¨C@‰Dý5'u\³7Í Cû¦Ë´éÓ™VQ…Wñ©ºHî3ê5Ê[ wµMvt\¹£1?héÕ?›â`ðIt*d²N61e“WgR^53,¥øËç"‰Ô›%ÂΑÇÀZµduO¦<eEž˜fYàÉ|öÔk…䨾|s²rË^Bª™ê5ƒ”ož­¿²¦‘È%šE gxŸ±„ËÀ»D;—[z ²m_ÖL)(†B‘*W„ùF×SÔÓ.eSG¿B,utä rØSVYr!3¹TmZh%QJ±q>HJ"5^à ó¡ØDºû,œf‘`- 5‡v!á®S‚¶®ÐÔÚúD[Âh«m%ä™úI[nJÅÕäÓŠsS•~¬\·Õíס>¶ÀËJ¾7ËhØi1èž2s ý6$X€;Öæ`ø7j0;ˆ ©l§>ãü÷¼¦xdg’ÀÄ]r ¯À£ÄXð™Ë<û˜sØ*sJZTlS#â/+(M Œ™Äš%Ær±Æ5€¾l4-²4j3\fNÕ»('Ulá¡îÇ…ã´Bô˜) Ö%4Ó§ð"FÝ9®Ç==¤åŒ¶¶sÄ™‚[¦b*Yl±‹)ˆ153“²š3 ›æ8£¬ö°f¢…Œ¦šh3£ñ¬V´šóŒ¾ý2/›°ø ‡•–‰ÓÌ.¾ÚÂÅ]ƒEÌWøh"‘EP¥öþ#KN•ÂëgmC‘Q°ÏÔgXÛ€ÍQ­ÒhWÔÔœæ¨eMwÉxÔй˜´VZÓT<$¡Óœ3}Ïœ,ãÑÏÇw¹m•î}U‰=eRa[xâ«zœ@èÖ H…Š SÜPF’Õèâ–y&aƒ³zMW?òÓ5ºÀMÔ3ÇG¨Ý^/¨' v‘’è%°Ÿ©gUrÊ‘Ãy×OD×ãî…'±£‰iYÌÔ l›ÛJÁ¶[°-&mLkÛþá å²jascQœy23Ò>g?Wêùé¬JdøŒúž íÌÆƒôs ï¤*ZiøÊR9ÝΗ8Ɇi9Ÿ0&PÖž# ¨¡\êÆRèFá#sÆÁî/·x´…5cMoYÛ~Ö¶¨Ý÷°=EÆ5¡ð24_– ÌÐ…YJ±SÓõ²ÒŸ.µ Dô§ùnÃáeUÈ®JжÊ|.ëàšàŽ`’h…_9)(.)SµÉ™FñnÃÆE½™òv¾©A´0A;„!Ó'õ„’Y¡T ”%rÂ{Q Ls'’$<_ã}¡AèÒ– =˜h/¶A&c$‰ër‘g”ŠÂÈ-%FV·›˜2ëŠÃ?4Uæ²d‚RЗV,)œ…--O_k/H¦QÓ IÞ_«bõôš$6 d!êÔ³ðèNÑĺ²/ƒ> NÔBI홤 q[%a4˜ö̦F`Ú(MH0ËÁ†›Åoÿ<Âê$ÁÄÐU. Ü,Ï%ÿ0`Ô–9Å‘ýç…2TŸ©‰ŸÔÑ›Zû3úhµ@€× ¯g…:“RyŒà)*ÓlžÍ¸¶õæ'^e&b‡Äq'®YÒ5I`IL#ÔÍýq9·…ÝÜ"pñAhd‚€[‘™­_SZ­eÐX1}§ßò&è[¿ ZvÏ™“¥Áiìž}Ís’8c$}Bá¯$ñ€U¶VÐÖššÃ3•Š#¨™¤®#ôÏZ$Ç&¢5Ã"!<+ PÍæ»OFM0ÕÄ['!Y¶µ¡Ýcs&ñ™Cø‘éM‹ä6ÿÂ4{1qŠcáöXëö€êQ­Æ((žH|’rÊ¢D³,£Àr&ᤅÅòð܈4Ô¢Z_4zÈE±®p A¥‚Y*®$#3Á‰ý1Îo2“dÁ$¡`’61a“gR¶{R±mªºmå÷¤:üDM¹vkNQ Ú·šD, +ɉû\„6Æ'Kq%)U„Îèj±[ëñ¸ËžRc=j× Ÿ˜•êÂmvr8E>©‰éCòVâÙ_.¾ªºŽ‹P:¯b|íÊ+j^ÔJg‰QÖÄúÌeöé@Y®I€ JܦH¸›£c×>ÚO¬Ø*aä?ŠªTÝ "¯e{g ¤ˆ£¿³°99i– Yí9Vì–wOW:’~g®nÊ憕6t0 qÿç ‰ 4i¾BSªÄ- erײßVb³èÇLûŒÏ¡ïeÚõ÷L¯à²«ˆjDêA:ºhV¨¹Ý¦Ã,® RºÃM¥¢AÑM W$Ò>¯P9J×{Àç$]øÌÃr’”Ž@¢üHÒ>V²d6âêÈäÕÌ¥:h‡ÆÇ\ ^á¬É?ØpBO™›äM;ôïÒmëuɉüŸM~1ÏH•%ER[LŽt}ÚKI-ËhMhê|£Ï/¸;±…ñº ×€q‡Ž–ª .é\AäÙŒïi PE†œ•ú]x¦8b|Ç _“*zG5ç n“ô4Ñ <¾Ì”Biƒ¶Åi£ˆÀ¨Ðt4iËu¢ó›íg{ÊûÎÙÞtçØÈ …Ù‘åÌ2¡ãO4ÛzÈ¿Wi²Šö|[¸ÒÏØÞ~Šo³…îIw/Ón·¶#î™>º-tI]]aÄÇ$Aá(7Ùh@K€È¥ Ì7%ÄÄt¶áH½¦CÊê׎–2ÞAk/ø‰dIÜ™2+sŽòq""Ë ×6…2>gBòPïw›âÍè¹pï4 ]±)Rļ™ŽY_qvH/í3DƆþØR$å[–ô‘Lx!ÇùÉÁ^ ‘‹U:œ*¢´¥—¶<ÓTpš"Ïs¥¡ ѡ୔rßvø]8#uRNáŒ&è¤ ‚ér²8(‹•²xªàÊ ²N!¼ .|†?âË'ô#N#µ‡G—M‡£8š›4)îUYíµâëÚ¡…óðDµ‰‹#N9 *û+’ªøõ/Њ4jˆ„j$GM8‘Xý9ѱVŸÑÞ–3ÓòjêÍ ;§að´,Ÿ– Ô’…ža5½¦L;*Û±Êvµ2¯Lw¬ÌäûØËe±±Qù±Ñ¡1%h9Ú¬ƒº“ªæÛÖ¾6•4.i¡ðD"O߆?ÐØDio¹žLÚ˜ÐùbÅ+QJöQÐÎÔ•û³C]É}&üé´Àò\?ÇcÈI§HÛMÒvœ<Ácµ'¾²ÌX–=Ë2lY®CÄî‹ïž¡ë’á¥qtoÑAç…w[9[´lúÙˆÿÇþ1pqRxjõPª ¼@²2<—#ˆšªejÒÚCuû8^ÐH>4vÿÐʬ³^ÓÏã¯ð¿áé3AîÄ4 >.Z‚—!³y?IŒ$JöÐFrQ§x mï‘Ø×PÿÙ¯;QÇ»LçÙ®»^Ìš:Õ«Ûvø¶]ÀM£ðI/ñ/ö·=SM_UÛ{Õ¶gýrG×¶²xžSZn¢þ´:Öêa£ªûñ– Øêp“ÓSR™z†åª<¶-IÉŠÚV¸Vðö&xEÅsG¦Êá&âžà;×&}4¤Òt&iK­Bmiy”Z!©Åk¡jÒ/2­?5X"SP.+S€P#æ«0Ü%Æe‘W_®Hjâ*3?Z0T&·E5tŠ[ˆéJ;‘H ˜Ž‚|jLÕE½ÅyKRÛäÄÝœHÀ í¸bVÞ¸:Žz¨ ò Q{Ç©ä®1}ŽÂÄ3>ê¬P¿C]Ú˜ÄSõ½¯´™I‚|A]g¡s7ú­P» DƒPgÅno"—?Õ]ñe-XØ]S5¨®ŠPÿ¥k€OZ¤Žy*áhMU»9šéÀ¥ƒÏÇÕ l<©È^¤@¬*Š[³¶èf%ÍàCäåÓâàÆHL7è¼Öhs÷Ñ éÐ)1ÑŸdSa®2Î-_‘Ðñ å$Zuaê¾A*ŒS$6í•í‹@ôjNÝ,t…Ê &¬xî?Og÷BUnMÀRöožÁ•Acâ·“zN:9œÛ4«‰¾˜%]‘8æ¡à˜¤è9‚_@ÙZ[0*:±„O t?ðMOغcòƒ@üzi„ÛRf.:-9x(œLr–ó‘Ó|cLÎTr¦,ßóOêý”–6ÀR ØÚrÆqU.ITª` íî$¨Œ§âÕ1ï fZ Ú)IŠÃÐXO²þzIÓÌ´Œa\at˜exP›}Ôw<ì•^†`k[BÇÃ+ß +Ï:¤›ÖÒ“öÓÇÕg`,übð1Bca6Šcà:Ò3ýœ Yv0Ë fYÆ,Ù)þ²C¼Î†ôNQXBÃyp¥@~B,­áúœF 3¿cܶ<Õ éhy:Žâ%IVðfj0ºò"úŠDb-R}¦ëݤWží§g{îÙ¾|¦uŸiîgûÿÙg: .Žãˆ.Y¸‹€æ]©obK£é-ì<,Þµíxvkòz.qaù¢Í›3õ„Ö&gd]PA»×†OÊÍ„&gú`f7­!Hh¶+µjSf’£`Æ´˜Y'lgR];ß'0`rµÇOYgÖ¦³fßÞ,´v£µ-­ýyÂj=ìQ뛹-ºŽ4nåe™ Z‚ªæªÍEi6yâ¶"JU!NÁ'ú´àÜz|o!ûÖo‘ÿ¶8ÀØ"ƒ/&8ÖÙhJP·+iÅaóÔºuänØE.wZIJå|QôÊ—1‘TV‘„#‘óLÊF ²TNÒ·Ò\ÒªFT]a¨´@Cûl$ûÙ¿MN²§}¸LÉ" ¡„%°¼–ºâËt ! ý¡9é¶Ñ:-3´±ö•¯íFâ9±€õ™–·¡Žæ#2MÌsŒ—f Ñá¦êWúȸ6&à6qKTí\R ÷á(!^ðgú¼Ûî𦃼í2o;ÑÛnõGëç.´tЧE” )!3r6HXƒŽWVàI?q!"ãýçóFüÞÝæé ”Ÿ!ƒµ²–dÖÑZ²ZKh;!½=A•KÁÀ~›EN!ê× «¬è2›HÀ70Û™$…&…¨¼ÔpÞ˜ðRþš¤w6½žB¥H§Á@'t”ÜÛZ^S jkHÏTžÚ~y¶§žé»w¦[°d‘ìÝ¢áê*ÖvTä÷¸&WEaU¶X6 çÂQÕL4“H?ÁZ4'b%<\áEÀpÇÀ”PÌpNØžÌ+†}Z¤³3;9^Ç+5^¬ìsc¦‚¬ iMa:!íMÉ}Z[’:áä6ù³QHì¹vŸ~²0 ܧÑÚÐ1Ü()“€´RŠú+žÍ‘8´HÜ©äß=ƒù=C~P˜›Ý/Šc-.Õ´Öa­¹œeÌ WŠƒ!Æ ’™)ø…if.©l¤":#=N®”PÏÎÔC1æ…ƒ–Ô{eY´ÅõÂ/º‚¦´Ì¨wf‡Äsëñ/:ÕñuÒ'vÒKöØovÒ“öË}l…Û ÌÞb·‰»‚ìƒT‘,\BZ’°.çÔh´ÏóÚèH÷ô'‹u‰[ÜYÜ‘.ºaàŸ)yµ…²¦˜ÖÜÞ Ô‘”,Ò…CßT}™µëæDê©5¤Ã´_«žÐ0€*š¢FŠ_FMŸÿZ„Œ® Ò´=E®ÙôQÆ’üBÜg)Úsû¶a=ð°y¨Fs4…™H”Î,Y¤œ9 ÂTõL%žË/«6æüÕöÞž"Yc¼—²­¶ÄhЗ.M AdPç¿T®ydÞó꺃,TWÍÂ㬫#åh¯¤ÇÈu뙲CSªhª¥fÏM@;-n6…˶nÌ\Üf@˜7Ž+ì–Õø:PbŽÎntKHì—¬Ííg’=üLç?ÛðDGÁèy7"o‰°ñpsÊ”Ø@½…LFäðʹ%Še%_oã{it´Æ_X¢¶C[ZrŒ†Šýö3ñqœ]‚oÏyÑ•$&ßEË,)¿ˆ‰[}4Uí(‰ 5Ì‚£¸þê&LuìÚVk*ùÿ\‡¿_V¥°G 4hE˜d¸Ê'&†=½ÇM’T•"pS9œ‘òvoPXY&×q8#(ÊR¿hð¸Ñ¦#ÆôõWžãÀðÕòh%\_’Ò¨8ñ\ÙOìêc< 7»hŸÖÀ©3:›õÙ놿Éu E ’ÙtA:5 ¢ÍQê@”—$(LþBˆ6áÌK’IÒ¬›ZøÒÿúyÒ h&9652]L_$Û:iÚ^騂éLã&ùJ_†+¹ׄâDSøl'xõ§¹0j‚¡q[VWòRãäŽ7IÛxEÀÝþjÓ\™tˉô¨áqBØZ´‹‚ÀZÔºÅÃtßÞMVÆ©”¢MDs•“tæ Ar‡M›¦¡Ê‰:ò,¯ äÏRã9DYI¤œÖÚ2p&I™ˆKÓÞaä[RçÁ‘÷åÕN¿ªî ’,põ7eY,QÚÐ ;ѦÎ6·›4À³Mòl#½/ïG»‹';Ýj£0¬N™.ÄceÚe­!ù¡9j^ù#’ Âh^ M‰‹‘Ki2òšEÉ¥™$3¡~]²R‚7~ÅŠQåuºph âëô•ºÿ3p.rþÎ$¼t¨u…îT7wXd·G.¢­Núl( î3.JÀBòQPEµ B«¥ `&k‰R@9è<Ð5£ÐîT™Ÿ-<rbÏutõÙåiNÊê1ÞA$ì«Ôe‘Ž·Ú<¹zÏFÆ(³­ÃÆŸ:“,Ì=pqI©ìM…()°’éBpPܤÊeÑAÉÌϸß§Ý:öÖù·‚iáKvw—oT]"D¥=QÈ èÅS5—¶RÓVsÚŠO[j GMm©)?µª¶ŠÕVºž):UhT¨E#ÐJï䬔´MV²¤4Y½kmÓ°n•3GØ©£Ûi¯$´Ú¹aT|¦ü e‚;ö @ šÐM6LpÒCMX3½ôiݤó•Äb´bóà¢Äh£=¹z……O.íàêÁØHxü WÓ&¯ƒ¢¢qÇ;ðh &lGÊ`ÿ<’8X¢‡ Ľ …‰@Ù(Õ$’e£]6"v&ŽvÌ$H‚A-œ:íl5¸ÕògÎKðr$¹á ï+g.Óz[“cÊvÎÔúØú2SƒvŠ ÉP(Y–¥3©=›<‘FD*S©ÎÕ‘dºd!LœK ·Gð^t$9ã®pÕß !±5J°€q³H¬ ¥C®i¶¤¦ãXùtƒŸê@²ráB¸e A‘ Žñ•UD}ŽÂ6‚Ê’G­×Ê Ô[¶âǺ¨H扄ÌÁn´y­K’­•TÛˆ€ Ü¡‚‚2qT_ ”áÀW7NòAcj\VÂ6+qÜg`) åÛ–)¦VØë䔇6äBſٻÂAd»‰ ¢wsЦ’~gGꢮ$T ¬ùë²{tu£ÈÌq“`…¿ÓÝÄ©þb¸ÀöA¤°ŒSÄ<–ÎÇRþiÁ¥¨Vw¿»n{Z’ËIz“X¸cÖ€P€lj µ[iø=YRêÌ£Þñ¼MÐ=‚P(^»ÌR^»ÓÒ·ç“Éz›â7(€ PÀ‚ N@L×ÃìrOcô_va"nR±—¡¤¶+ãÌLÂö÷:%’#"Ir\îŒ %mÏàùvœ™j'scÏYrвgBô3#:9…N:ÝoO)jÃûdE¿õ¦­ŠŠ0Z_ Ø1‘å;ÆÖ´¶n Ö'’è¤4µjܪ?œ`reÑ¢ö‰„óùko<KrÁ‘@7ÎX™ Œ •A$PÎ$Lh õ‘aNà°+ÔŸI€c äš6êC£8»¡L…Ÿ½›…ý‰lS™iã™CsšS-m¾¦0‘ ü°D±– AÑnQ@Ž}ÓAÄ@?Πà‡?¿0Î:€òD ݉™DÚ¨¦<ѰѶy¼ÒÉçî¹LÂø3É$ e2U6›e3^_Î’1ýèèG`.**\¼Z”š|Jå.¥ Ÿíˆ­7nÿ'•Ï™IÚyÖþì w¯[²å§ÊÐlñš-p³Ep¶PnRLw¢Ï÷Ù@“Ñ»i)9g̰†=ö ç¬çй¡/øŽu{œ»Ì•Õð#$±xúi£PéUàéœzÒª R§ðPà‘©¨K –GÖfí sªÓ´íOmZXÛ.×¶öÚÞ™¼ÉËtüíÙy<3û†§ØPOØŽ-#ò—i*,µÅuú‹A‘q†Xcâ‚Z7Õº²Öݵ.ñ)GšqÛè" ýË"¤‹‹Ø¾§0ÐÇís«ªÄQ€‡JÊD$È•gÄ<$ýT¸òŒz.0ÂHü?¢ÃãcZ€ŠD=Äõd3IæG•EjK °¦§²WAˆFbÁŒg ™iRËÉ‚£1Á¾˜‹ŽK2§'ª‰©Ü@ÊHbæfPL}E²ðVŽa.YÎüÃÀßäRÚj.3¸Å‘[¬ùŒnÑêÑnQïÀÎ[týoQú§ÖµÝ fÇœÙg&ÌeBa·ÒîzËRSz¦nRA(Ç–H–’&¦ À¸r¢ÁH´Y E¢„qþLçL8(q_TêÑ$¿¢˜l l¹DžØdF®Ä¢ 3á€èCØø…†ºùš„[c¡p°ŠñÂêƒuò\›]Ûœ×6ð=ôø½ž;¤ï.“BÁI-á¤ÞðX’øå*FÛ’é ªÝbá'xyƒ©·¸ûS)Éc"Ó$;• ÛÄW-õõ‘ûL;bÛÄØ4:>Óy)mP— 1Ä™^Ígãd ›e~fsp t´’÷ãÌ+¶jj×$Dæ´œ‰>›õ$ª}|ÛØ¸ Ÿ_‹WNˆ$ö©°Ë]`µ£;5à’Üã¯þZp°[ñˆ|@*‘̇´áuEv(cD¨`hàYð° ¿EÂʨՎ!¤”Äá”mÁ%r¯PÍÈ‚&ÄMÂmx6UF1Þ|*Lö…¼Kh3²ÇÂ? T»|×kŸB†Øî. .úTiæ± óֽ簣òl Ã’NÜži?ñz¼Y={*kø=n(3‡&Ò|M(\§Ì²TD±ê‘ó;EsgÉñ,ž%Ù³D|G²¾@#¤ØáT­ŒÑ«d[K‚…+ô_W$L‚›ÛZoÂÄÚTõãt§GI†ÄxM­¾¹oä3gà)C¥ÿ¾ÿSŠZ Œ¡YaÆ‘ìèÊ×â475—D2©í¿!athF!–VÐ{Éé³ =²¨…㟠—×hÓ™d?ü7cá¡ m£.èHxÐÁœÏæ€VW­}ç>êG›°lfJÉ{ñ›B¦,×Ê&ès¤²µ*`_Ôío”`˜©7q^€ŸC.¤ÑVKäð 7#{†@؆VðËL„‘³èG0|âQ)¨aŠ<2úP¬÷„öúi§XXÄ­GÎÃ}ž¯Ð¹Ù?Üñ}2yGH ªV·HÜ~iLæ›$µ²Â ~<àÅÐð¨—Mâ’J zSz€ ßém²N™¶Å9œI|˜\‰M§S.7Vÿaï\¾¸ûUÔÿV騂Â(®l"!A™DæzoƒI:…ŠðJ1³ìõÔ¶7Nš‡¦ Svp¡7¦I¬*”ŠpI Ï#\OMþþ…“ â°(iƒÈøK€%ýŽüøð¨0I5è +ŽšJöAªô²™‚H 3„aˆ#ôàËBI—¬’Ã'¬É"ƒ:³žn¢¼,*l†;¢Ë,m‚R³H6‹v³ˆ8‹š›B’ø@+3P_Cà1¹#`r¹!4X â‡A)ñ$•IbV"~b$e”Ò± •‚ ­#·%j½ÙáéƒÿÝ iL n%Ð0à°¬\0!'žSƒPMR¢LÜŽvNvuf‚•ª–§hª•¨J5Licã/œP,M˜µ ºê–>LuРCYŒUyÝ–L bd*UßnóMê²Ô)–aœ_œM ‚ÆÀnB»Ê‡€§\1Aô8~EÇ$¹!£•Wq¯Ž PG §¥2Òªm°) Aÿ§'¤ÇÁñøÑ âv»K¸ÅïJötü(ýVXd~ðá¢|‰\§švƒGè¤2²˜… M@´Køí … +'1úkPÖ¶Htb"Ù?û ¤Ý;÷r6„5ÃAí¡RMeWTÖ oÚ¸àG/ýŽ!1äÎ4ÛnBÍD‰IÊìŽiNꊄ²6ŠÛ¡l=%W”Òe —ñ+Ùǹr{ÌÀ~¿Mã(p¬ H*µÑFšƒmäZ¹oðêúÕR9÷F,ˆ°ÂÏ‚®&ûyãˆVľ‰ªQ›çÆë&}7ûdeÓ»ð~"•T¼b~bãKªQ} ñ9Uq‰)œV…BØjH¢‰dì‡HTƒ’²†u¶0±~CŽÍ¦¬[·8&²ÊwØ =¡FÜŽ5ø¦uËP¦¾€t¢Ü-Ä*·2RÊçWtBa4©Y.€7UÁYª]§¤¨»HN1 Höùâp½öþB9ï$Åæ% ¤I¢Gû·»éŸƒ{ gK­T1sáú\Ê@ÅJÏ€a¢Ôs ï ÔìñiI Äq›Ëµ– É"áë3‘Åžg[gó,)ƒçVöï7N©y’î´þ"{öQá!î¹—Ö­,.ïHúÞÚË ð=99=h›*‡€]‡ûÉ5e¦)‚ ;GKŽoxpW^¦›%˜dl¶á„‚? 5áÓC€õVå[QëÉPÃ\-”ý"ÆgiOÑW›7áÚï†c<ÖÒÛLýë#õBçEW)áGÓð.ñLÛë³ìjçNÉ^g4Qßa^Öò -å·¥¿J¾¡7ä–¦ÜR™Ÿ"@7Äœ–¼óHðÉ‹§ÄaÇ]Ö× +¤t¥±¾Ò›Ýr&/ Äzq,ÊÍ}‡á+Œ€þÉQÜgkuíD®TƒˆÑI¦Î±í‡W[DBü‰këv?QŽX3Ý(ƒ$²˜ ]ëâ¶)üáun±®Ë²£`‘gZ8®‹º>^Öâ²êÖý¢}‡cLðMò+ŠÚC‡'Ý«þÿ… û˜ºL“IgRPn°“RQÛ‘»çy5RC䜥(ÇcFJ=G^Âô™Ü¤+³‘ˆÏÔ΃"iQÛGASY ÄôžÚ{H.zwç›Æ:N”H 'vž"wµ\1OŠ8ôF„„ăIÌ«Äõ¹(Âwâ`q}îxqnŠBLA§\‰1H ¶/s»5¦žŒ&¼¬˜Z(?­üãø6·§Vicà•*#Ö%Y²‡£‹$ uÑ#¨•GÕ]^Æ£Ÿï"¯ý¯þüÊãôêÃL}š»åç Ÿ>úßOOw¿»ûðª/îÔÝ‚»¿¼rwßÿߟ^-wûÊÀÐw$aƒûžq õ7r°TúÔ=½ú§+îˆþ°0Ÿ`–Ý¿Cˆ)öMÓùÝ•|ê’újÓ_‚Kªæ—„r@ný% ü>PÇ_ÎXO)*ý!ˆ³ÜbhÓd{^ê0X}Ìçi˲þÒQ䲚_N:p‚C¬ëÒñKòΣý¥ ùJÿø%À]9̹- ñÀØvC}üÑÇ~V™_ÒØÐïûNcÝ]‰EI  îíΆ¶«&üÿ%óQÔÊvx*±/{ZÓDSÂõžú¦ŽŸÁ,·q=.ήqJ¥óS%Ï}]¯kñâ-èU"Ù]5îµJ’t8šÝkvÕñ-¶ï5¹Ê¾×ì‰ö½èX®|Õa³]VÉîªýƺ¬’ÝUû]tY%Û«[æ²J¶W¶Çe•l¯:l…Ë*Ù^uXö—U²½ê°Ä/«dsÕq9_VÉöªÃÚ½¬’íU‡¥zY%Û«®¯‰ÍUËÝ÷]Õ»åÿWþóîr÷›·¯~ý®ÏRØéîíw]±ÓwhÞ=‰;ônÝ–{yõûûni/¯ß8´.þ>Ò_~‰Ë}£ÿ‰Ó´•z–ôú ÂÝËRîQvÑÿ•¬ÌèïÁÌ”pê•|L%nŠ—í7 ü¯FAÿ×@¿ýÃÛ¿—÷Àªá=)þÜ·û`±úÁ~÷öÛW÷÷áÝûoŸ>¼{ºûýOŸúw.ÿnY–»÷~xüæýË㇗ÏxýöO¯~û¶|ÿpsLú¢OÁÒm—Í  \T»†_Þ½ ”ß¾~yÛvÿWú£û81”ûÇËÏü ÎÂýÓxý&Qúpÿ??=~–¬®{,÷OŸ¿ê#ˆPPÎ÷ûôéòøá5ÅÊòýϯ‘1 ÞÝÓ%HAb—ôßôÿ¯ÈèôéÛ¼18ÎZŸû·ÿåÕÛÿûû·?Уbª¥ºû'žª~îß·•|~þøÚcÒj¹ÿËûÛû^~ãî¿ÝŠ_éî?ï¾eûÇ‹,Œæîßmå?àY-¦pÿò¨ËÝåŽèYý+_~ —EKÜþJ¯\_BÚ?`÷Ç??ÿÌ/ô.výg?]ø£J¾ÿ¦¯,T²—Ö…ÆÕÜ’7¬ñþãwúìûËî¾»|ÞýÛgyÅÜ?7]ZmôÔ¯¤þ€§U¬×ö±Ç7ãM_drš?|&ú¿èDºÜ÷ÊwúZûÛÝKЂyî…%¥ý¼î®ûvò/¼ëÍë~>__޼þÑ×$UÖ÷Í‹/¢ÄÈ3Çø¾‚iæ\Ø¿Ëã§ÏrMrë‚~xýžâ²DZ·pv]ÙÎlì;ãI¿øþ[Z‰ø+è‡ÇñÀÙ>šŸ•öëÀ,¥Ü}Ïþ˜¯u’ÿãnO<>ÿüìö÷aœìZ|ëOÝN.áþgö¥ò?íÇ~w£Øm@´f÷ä5õ‡?àH³õu=ç¾~­?ó÷ßm6Ô~ö>ÉKôøþûO»úþñåýÇrßX1¡´Gûj{ù¨Ï.÷ß¼óú‡vÜ~“½ˆú¹ZïìCŽ=–üþ¢Oïûu«~ûy;4¤­I;?¤¼¤HfãÕ³¬[åˆÁu§}¢·å*3ëíÿÔ•1iñ|}ÿ« tòÓçÿñ·¿ê#Is|_ÓÉßü@®ôǘ¿ÿo䟽Œk˧¯ïÇ=¿Ò_§ûß}zú³ü²Ïð߬ÿâ³úÆ•f˜­"¼8Ãý¿ýCïÓæÈû¿Ôª‰Zendstream endobj 277 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ UB,tahUµý@p”' aèïKtèp'Ùw'Ÿe?\v ä#z|QëØDZü‘`¤É±¨j0Ó1ÆY!û›ïO Ø d÷ù®g’ÏúÒ”Uµ‡ÐZ‚FŠš'­R]km'ˆÍŸtF{8ë¦+Pjãì?•Í%Λ€kŒÄ©4-MrÇô{&øS°A|4˜S;endstream endobj 278 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xœcd`ab`ddóñõÍÏËÎIÌ+14Ð JM/ÍI,ɨüfü!ÃôC–¹»û‡ÖO&Önæn–ßw }/üžÇÿ=[€…‘1<§²Ã9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°: E°°4¿$µ83/='U¯¤ØQ±‹‰‘‘Ååû¾ ¿,û¾«œñ‡Æ›¢½ kæ•ts´±•t•Wµ–4øty5{w7¦mê^Þ=y]߂ީÓL?4ó@ï侩=“9ø¦ýpžöÝvZÿ4¶\¸å¸XBòy8»y¸7ΞØæ÷Oäá9Ü;­gú¤ž©'.›ÊÃËÀlŒ€¤endstream endobj 279 0 obj << /Filter /FlateDecode /Length 4834 >> stream xœÍ[[ÉuÎóįNì:à[š±ØîºWAX6`À’ qH)-ÍhD-‡q8ºì/ðÏÎ9§ªš}ª«IJ^Á›¬ë¹~çÒï]+þ¥ÿ_ß_u‹»«÷W‚¾]¤ÿ^ß/~}õ›?+ß´¡ bqýæ*N !\ë¥_¸N·BÙÅõýÕ‹æzéUÛuÚ6»åJ݆ šþõrÕµ ª3¾I^xë›Ý=iãÍv)]”ÕÍg›6xÓ¼Øíã°쀣}h>,¥‡o¤nnÇkïoÖãç˜ |äãØ¨õn7´!¸æÙr¥:¸‘pÍáímÚÛéæ?pï® ¡ÙñMØ.E3´jîwq{olsÃößä+™æ¾§uŒÿœ¾¶y•fºÐä#˜fÏÖxØôŒ®ìÇ›4IiXŠÖ—b¼~ŸY¥›mœh¥µÒ5w«åÿ^ÿË•P­ÑÞ/®ÿõêúŸ_4ýaýH€Í0^Áï0ydÔzËØv¿î78RÆ"ÒÂÂD(iÑ.WZy Þþ†‰½‡9ZºbÎÔÞ+¥ÉH?0¡Ý“·¸Û¨K0Q:•)´ #Óü6å—7Mïjô6@DÒâ•0] {r5½.ÕTGŽjp;`'nŠ1G’ ²èЈ†4,:óéÀ™qº”sƒjý88Êû%šü ›§ :cHȆ7‡õým:ŒÑÜ›rê¯KU[ W-ׂÜ%B¾©) ÒÚdÙ÷‡Œ•δ 3™sëˆôÍ:k]aϵ ]Ôº<ò®®Q6ˆNfyYo%Àµþ‘Ù¹ÍM&¥ä”8Dr!‰{tŸô¸ée#R€Gõ² .`HlLܬçV<¯@”`Ý 6MÏðÙ‡ P@‚;()::M„t€ø ã<¾Qp$è×ÕÑGfOúÍÓØ¤°qwé$ÞÒ-ðsæ¿nƒ¢@€¦17Ü !Ó}{»¾{ûjia®nöë·Û4³ ü…îüÀ.Ž7î“ÅÀ¢]„N+öÀw®0kÛYMLØî<ÃÕùÌ¥z¬ª‹äð¹ùz,¥G‰Âs÷ó*††À‰8Nb‰ÓM³;ÌÂ2ÄæM¼ÞoÙO@]º˜Ur gwûõö%$ÎÛá6V5?<¦]-JGÖyŠ-at Ã¥±ŽÖç{Ãç~½í»ýgbB]r¢ô‚Íâ†ÛEvLÔY8±ÐJ!l®ã¨fágî™ÎVa´ óõÐb]E­ð±sÆs ƒ„î¦8s'yZÑÜ墔ºmš ¢6Vj·Zy°tå’ÉBz2õlíº]úñ‡ e9)ÖuÏ.—…à•ÁãÀ•¥Xê@ÐêH³pè•ñ¶®«RèZ%'ôYô0Z¬’q~Hë—âà%ÆgÄõïg‡Ûê=@B)ÊÕØƒP×lÓ¿¯“Æ#ZbKÎF3V¶âó*®­b™FÆpf¥´=„ pÿ1Œ9í])hd0 …u@0Sä°F?ò,H´x1èIÉÙ<|]œ¡Q+ W[NP`ûdôß?]É(Õ¶þ~êÐ#æ|L§t<ËÂØ¯žæàÀ4´'z¹f÷&­%‰ÒQÓ°N 0¤0ªdð]«l6ïêÛCÀ¡FA…(só|\ê;4pÓÃ7W­3°@ò¬&Ò`uB'³;k—?;µK…s`X;Ás­%f`+ÂJÚr‘ÏP ³&i°.rQ¿bOŒÏ‡ N—ªÈ`ŽQéXÊB|¸,­žÆË®1æÏ‚øï°ï‹¼Ø(gv"9KØŠng1ëwsÌ¡UYmB뵸Ô.žÁMqMÁKì9Ás4¡À¬QjMÔ²€rÊ¬Üø5Ûã$E1:}ÆÚ%@3áß=· t1†{°µÃH‡`Ræ%ßúé5…øF¸æmZnŸ÷‚°ïaýFL{ÚôëÆCÉæÍ>å³S^Íë »ùÌ2e ÊèŸ3öl ë X ™W, ‡õ ©¿àøœ”h‹I´‹ ‹æå²E5Žžàw™É¶õJƉËî= õ6¨Ô\Á #2ìŒ3wµ[³@c4aR_¡„ˆ6ŸÀD|«j\—ŽvŠ'âªvÛØÖBX|¡Ñ;Æ8ÌÍÂ4›óžKbäШf)Á87Gë7ùÖ1s·R0sNæÔ½QÀï@e–ë¦îcàäÒœ)ˆF)‰hቷ¡éoÞe=ŠU€Z° tAsÚ9ŠÀ'–4Ö¯tat:ÔK …ÝÔÇ, ƒà±ðØv»æ¿fW¸MÁuŽU·~Œ:0,ö”NœdÆp&Fß”˜‚‡QRЦÀÎoPæi\X ‹·²MQ=dæùéŒ[QžÎ‘®§á¬ÛÆ:ž/"'ètVµ’XYÕ0bf¸`E®Ò™¡FWš~á­c´ýœÓëœg8œ ­ƒ¹%+u\ÅÓ*d'Ûäõ»@ôšè‹c…Oô…$öÛÝ sÓ·ÁG„ ˆ"ÃSXë{ʵÐÂC äX&²hAÎY®LÎ8<¦ºâYô´°†;Ë ký¨JŠÖ:rà+ž¨¾ÂVّ؇/•Þá$AÙT†G¹M§HRÅ>ÎFE®Ä{t´:Øý±/ð±ö«MŸÓ÷Ó9{Çû‘§ª†m^(ÌÝа&äûÔðIÆ"Jã×qÐ «HïWÝÊiºža›w}éꎌnL¥?/=âI«í°î×ìÚ¦’Ò€âºÖo>ÿÄàtÉ*œA1UÝ¥&í›pó(›Ål¯ÓYôÄhñ$aùM²À‡Wsø™ Á‡ÌìI¹GZr¯ ú?KåÎÎð5AˆÚäù8,J«=lò 8‰Ã(OÆQ{ˆŒu¦¤lþ‡Áñû¥RržgÒ¹ÛÝ•’À´TbþsÉ#Ф‚4š tLLû@ʹÞ±÷‰û'NX˜î©£À´,š_n¶ëíÝ.•,Hó$5ËtxØû³!hßâÂêËäîøðr‰ì'G‘ûk:ºϸW#$±þþ!š†æâÍÔ2ýÏØÐSA«kÇå%f’ ÏN·TM9qKüøJ¿9–34ÆèÆÏ *_DHÚ `ê—…À|zcLâ–AEC#ÞG´ß1+žmUÇ : ¶÷O·³ŒÄ~›Q(½>D@ ,`QQ 7÷6Ñá 'øã‡]´› ”WÄñ`Õçó}‡³µsXßz›Ó\¿¬·/ÁÊ=æR˜{*aiÛ!ˆ`/HÍ„VH“£î³ùå“}X®uÚ•}XRïJÊ%“1Æq¶ðð¥;*w¡hNÊ—TäúDSFòÖT0ÌMZIÙfhd)…e&{)cw2´Äl…C¸Jå̘œeÍy±ä§©PË]D®æY]äc…ÎÏ*œ·yÝ|X÷¹¢yÕO‰ÞèŽÍ[±·â/Õ4„–úØ[q*½»ªB0UFÜ+|_8Œx%Õ|ÿiv©h;“ê‡ój)€*¼/éYšæË˜ù®­g>¬m½XµÙÔÄ»ð„¶.¾œ-¸bŵ¨×¼ÖSïyS¾KmfCæ%VöÉ»ÿ0w‡5±x‚¿­ž TªMuÕí¨JÉO{YßLr¤›®Çœ’Ô@ÓoÚgé)„”6x>#“Rã¶a±’ 2àÿߥ¤Ì+‡„»ûô“(îÿ ¤q^ë"¯_J§ bJ¾ö®.œF´þØ÷ „shÇ:'œià× gYxIg>BW;Æ|eCXµþÀ‰ìÌúª3sÖ‰P½vi½'×®ûfÛÊ3bV³Jg衲ÌÁ8Ü—Æx®ôÇu­¶Rtp ÌÛi‘<í?`xß‘_ü÷¹–IŽy(ìvuÚ`-ÚÏAÖ¬¥ZÑwC…]óæ  Ši|¼¬¤\fåpx!Ç’Yr[+ XRP É|G­ke0êXˆ9΀!ÐÓ&áŒÎÐùN¶îEà†Ì\êëdèâY²y óþ™·fÙF­0 c.¶eCý8I}hìî¾°Íö1Í3"õãçÄb`š °òáÇî*IÛ׬_m>çãM*JÍêÃÒЛ,àCöŸSÇZ\ä++-d0k5Ø+ÆÞ‘ØÔ‚’Á¾‚TŒ7ˆƒæ¼¿“­Ð:üüþBï/x[F4°F Òæº…•º5Rùs6𦙺…ÛtØgt¾Á…Zÿ² ùT½7D¢ŽzÊv” ê¹ÀQä‘b®§.tE + >y\5› #E¨‚+ŠÌQ‘L|³“äUÚ†WŽøŒm˜CWø6…›´ðÏöPÖú{–]«YÁêØpŽÚÕ·Á™ ‘·^ïYš U+v(VÊM ±c¹ y¥½¬. V7jð ÂttHaŒJ{ÿ)—À*Ý͇}eâòYì§ŽIƒb îºœðÿ"«A‰ö¸f‡6›QÙæ-—Ä\t±æôÛn±T¾­•»§F7ePx¶Šc±ÞŒ¿È!è’:Ë»èfxé zðß“–ác*²ýﶃ ¦@'¨ÔIÝÃpÊô®‚ÃøÖM]rl2v'!~¿KK Y¦Y7´Öñ&ͱµF_—›ÿÞ¾}«k‚. v âûØ['ïÿáY»qçÿÙ÷q²‰ÉK<ï÷¾^D ¨¤›Wëmz¶GIQº`X‚?‚\ S´C¤Wõˆ¯xí«Ú¨=µKqi3õÜ+#“vc„fh}¾ÝØžñÛÒ—Â\‡¦îRój9×¼êlkÍ÷/#¢ÿëVs§çÉ€)~ô<±X2¡N‹²ÍYÆYÑ*åÂÅmÎÀ4‘ûœý7ís>’ì‚>gwªµ&Æ1,¾¤ÏY{}‘¨)'«_Ò笆pûçès¾@lÎôó…¹—½fÛœóȳièrIn®W`ž£­‡êC²5ô>ÚÃØªB©ï>ö2HŽMõM»£¥¤ˆµñ=êèÌðIO›)FÈ`R<ÀSä¶^šo Ï>λqÿ᥌Dn0¾T@/¶Ù³”´‚¨(V qg["ñ"âtÕ$µ`Ä©ª›÷OX*¸nš+•Û‘©ù`ŸÓÙæÒ·-yà7Dï2öJR<` ·Ú¬+@(½÷¼Ï5„æßž½4Çsx»ý´ØS6Ð…V:Q¼Rsq<9´ô]žM®:Ãñû“_˜Nvág‰'ј"´›5$Üçh'ãhÀÝ̦B…9óõTó7®Õ ÄØ]~ç·Uo€a‰ÃÊ*2㟦{jöˆ8dkÇFÄ-cW|‰\ Ù¹8†ÃUÝÊQ~s?Ó­±=š¿‰Î)µ¸‚ê)|:È/O|œ ß^HQRJ»ðí¤ôUåÒºµ”˸LJË—p.ÒOu)}ç9)=!šªÆ¢ù‹ºh†qÞÅ¢¹½ý+DS·‚òf_%šƒ ½øU©o'ž/÷5ù4- ÁÎ\(Ÿ_üÚYÎÍUºur¢óö´óKjfþO5Qµø -@²s¢ºÂâ@*ÈüÆä1è(%ØhŒj%-£z)ˆ³ÌY–! Ðíö¦º*d2¼£pŒ§lTãð§?\_ý'üýíh0ýendstream endobj 280 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 283 >> stream xœcd`ab`ddòñ ÊÏMÌ34Ð JM/ÍI,‰ªüfü!ÃôC–¹»ûÇÊܬÝ<ÌÝ<,¿7 }üÄÿÝ_€™‘1<£Ð9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ0\````ì``(a`bddÑü¾†ï?3çq†Gß·0~ïü¾…ùÇÊïÕ¢·¼ÎØØxyÙØœñºuëÌ™[r|¥ 8Ïùž7mâB¶U\¸å¸XBBây8»y¸öôöôööLêíí;ÁódKßÄÞ‰}}}&öóð201«g>endstream endobj 281 0 obj << /Filter /FlateDecode /Length 2525 >> stream xœ­YK“ÛÆ¾óž›*Å’:"„yÏ$Qªg«¢”œŠm¦rÐæ-É%" p%]üÛÓófp³ŽU{Xb0ÓÝÓ¯øi™gx™›?ÿÿî¸È—÷‹ŸØ®.ý¿»ãòÏ›ÅË(‡•Lç/7û…;‚—ËLµ”9Ë0ËÍqñý½îv«5Íq– ŽºÃjg9ãJ*ŒŠnµ&ZgZËÑ›}à +¡þ½ù°d8f)d&±RÀv³] Ëy[—Í&¢Q™ ưÛ÷cºÀ²þ2ÓŠ ´5BÂ;,Ðû,æ˜`ô9ÈGÑ69ºw #yq‰ªÎ^]Z»(rF˜ ×áš)…ÚXA7œ¡sÑ#w+¸ #XjÔ8ù´N•ƒ<"%–G£ˆh%0“í›ú¸2Ê\ãœgTÐåÓŒƒHN9 pBFuSÞ—§Äp•yK@ŽA‰Œ%ÎÛõPÑzÊ{áÃm‹¦ó¯rŠVœŸËø²N(ôñ)=Ùsò{°DϺ.Èm÷Ý{!uš¼œá Êmƒþ<µ­ßÅÄpQÊ‚7x%WX­˜§öHHý/Ÿ¶ÆÐd¹y»@‡]u¾EÏcg‡Ã=¿]­¾ž†&ã,ø÷¾6nBžÙÈc»¢¬ugÞ<…ÔþµRÖX@‚@¬åL£;wXS €Š“ºH_TÉã%vˆÊêÖ“½þP”VFí˜4õuë· ÞœâX«pð²ÜCß6ej±fx qh5¬Ñðà>B¨#cW!àºä1™ÀIºþ„„Û›ý~’ýn2Œ>XEo¾y×;mNQ³ðç^õ&¨H”{_»NT}ZOÀ‘®\Aøç2·‘ž£4–„‚%ªxê4µ[à{xí 7.¾{ë棨O;×îõcÒÖŸ‘΀=àlý:ž4É®¢ Õ2 Ô¶÷‚(ŽÙ$ÝEJ;!PÊCê½WŒ"¨Ê„îìRUANöX:›z„@íåx,šÏ3½"GÉÂú¶Ýàc=µo»ïêÝ~®éHáL<µéö•Üè°.†ò‘ºqÙä‹# £"“¦¤!‰ÑEˆeª>ð·Ýl,o~øç l"8·õÔWÛ¢jk8Í®»4§!ä[pYç§n?ÜÜøf;C¿s5!*Žçªì.Û݇rß Œ¦Ò8¦:–búÔBÁ} àDP[žv/ïjó/ööûò®Üº¶ïv@ í6OÖ°É^¶A4‹nÒíš„”½L¹ýDn>@}5XÀÜoÍHžÇ,wŸÎõ +m’qš4š=åÉf­p³ßÿ³B'àý¹–K*Mî'ÎQnÚ0™ vû±Ûfƒo,ÂøÙŒÊˆîp‡[È ™) ×ÂÍ©”ë‚IL4 wPÈF¦4Ÿ«ã-•ÝiëÈp)­‹ÚÌ1Ó"&Ã9‘9ìèM`ν¾EQ2ûfÐý¹Ì-w/9±¬¼gå3JÁy"1•Ð'³ŽÜãLÜØFLg~"¡á·/ÂÆUÀL<)ÀÊÉP#§žÐmè‡ÄªŸ6ì Ÿ¸œëüà>nðgjNâÆï‘ÌTVý |û}\ÿåU¡¶_¼G$¹q2éÏ`­¾GüuC¢q&Ý់VçÆ,Áïÿæ³-dendstream endobj 282 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1444 >> stream xœ…TmLSW¾å¶÷mýºÃJÔ{¯óÛY@&nº¡2D«d(ŒDÈùR[J .0*Ši{Ê¥ ш ×® üŠ÷Ë%ƪc.n3F·LpºdçÖSãn[ Ñ-YÎÍùqnÎyž÷yž÷UÊ0B¡PÌNNI7›rKsKËVÅèÓ Š*Œ¹–ÀŸÅÒ\…4/LšOŠ—q¾ *¨!¡FùÝ<ê—YèðL´o:ÊžA ÅçÆƒ‰æÒƒ–½EÅå\lLÌûz½¼¯åòrŸDqÛr÷ì7W–íßËå–äsÛ¢R¢¸Ts¥|¸—[f.áò Šs…œ¹ÛYÅeìHJßÁmIßž‘¶cyÔR{ã MIÒæŠä”Ô‚Â £‰ ¶Kˆ¥D&¡'¢ˆhb3±…XC¤©„V®–PÇZ…+,<ÌHªÉ:òµÒ¤|¨ŠRÝB}Ó^‡dPò…YWž™Ÿ¡OåMGo’¼RM„âl*ÚP sœ–µÐùÃ0³œÅ×î•"êŽÛaŒÄ EÏè†xúˆÚ?Ðå03‘±€Ç¼Šv€ƒÁ®Ý“¯ŸaÑKÐZ‹¼~Ã1+›`d;lî`% 7ׇ™Îo"EtC|,¢DŠ}‚Š'4 ¤/¹#,”ëËpTã÷¨l{s‹N‚±vÓjV@§,ÔêÓ2f9:Bõ541h!…VÁsY'ñBµ@™Q…ÊÿÐØMÝo°±þNPd·®gÊŒÒ(%#o•‘Í4$¢Aq–Œ¼ç ŠÐJAGgùH»"‚×½ÿºNÑV£\ßÿ3¼8—/Ãßá€M-î+áñ~9ž‚Ñ6c\ˆ]\­q9£GMâI¡hèÉ8‰9uÈ‹ÍÐAqeÊ‹wÂbÏtÔC3,qšV„Œ¨X—µÅ´¸ ­`P¸ìjò2À„ ¼Ên7Öïf± @ ,løªeݯë ‘Þ|îüQ:€óÒÙ®«0|NèSxÌã…ëh›O”Ûº´Ó8ªõÔ[êßÀö¦¢9Ð[Q Ì›KŸÏ‡ñ°˜W»AHŸîIy/Èò’!dO×xP5> _ÆÍËÀz»{€•ºÁ@ƒû>Ó-âxªÚàá*\í¿5WKÞ#§êá9iñ“ÒÛ@)Ì^Ä çQ¸M%‚EpèkVºœNÔò*¼±ÎU× #[¡«¥±µùfÌq:Tþá BÔyþ6¼(//> stream xœì½]Ó&7rxß¿âñ…›Þá«B  {#,…± y6,qÃ_PÍ&§µývHŽ%ï¯_dæ9ÀÓœ4— ãíÌ'‘ÈD&>ê øÇ§ã9=öþ¾yyä]Ž;×§ï¿{õ¯’³žðçÍËÓ_|õêÏþ6ý©=÷RòÓWß¾Šâé)¥úÜÎöTüœ®òôÕË«ÿñúÿøâË”Žó~ýOoß}÷›øâËû¼Ÿt¾þOüçýúƒýö÷÷ýo>~üæ×¯¿}ÿ»ÿúöï¿øõ¿¥ïz¿þwSöÇß¼5"?÷F¥øñ¨¯_¾þñûwÿüÅÿüꯇåÏýîO_ýÍ«¯þƒ›qסèí‡oX:O òë÷ï~øqTLMyµîÛçQÊl‘ÚÚõ~ûõË»÷ÿû'‹ÿâWo¿û‹wþë/~ý«n«Cß¼ûáí×?¼ýò‡ß¾}óîÛwo¦wÿ×Ûïǯ¿}ûýï>~ø ¯þÏéÀ¿›ÿüöÝÓÇ—ß¼}ïE |ÿö‡ß½ÿqZü¿Ä¿Ïôú7¿ùMf~I‘ôúÍÇ?~ÿñýO†ðex÷µüð»——¯¿ÿß¿Fu¿¤a¯ß}óÏç_ýóoÿSúó %ÿê«Wÿmdà¿6ëÊÐ[zµ¬{ý—_¿ÿç_|õÍnýðãÿ÷ßÿ éeÍ‚Ýãáà¿Äã3=÷ä ñú/?¾ývDðÝÛ?þðç_üûW©¶çVûÓ—´ã›Ñ#þê‡ß<}ë©m&¼þ»¿y¦=éõ_}ÿýÇï]ó—?Yþí?ÿöׯ¿þþ9=¿û0 ~ûáÿûÚ2+÷q¼>žëUï~Nådzýp?‘>SÓËÛï>|÷ñÍÇ7o~÷ƒikù“•îwÊe×WZÏ?Õ\ᇷÏÉ × :ÆhrÞ›‚ÑÖéú)ƒ>|³º5Êœe8•ž6B¼‘Ê}¥®”‹’›l’ó9¥v÷¶YPJ»ÒVú‡w~ýúd~ž¯ÿÃL‹ß¾›]caÿøg÷ùë/Vs¯RMjœZ•®Už×°!ÿiª|ôóŽjG%¥”cÖÕK;¶jß|üáOèé}ôZ·ÆéRú§©ò÷{zö#çÝÓû:¯O8ÿi<‰šz*}ó´¦û8?õôßZåÐjïKKót÷ŽYÐ*óÂñ©åOåãUúHÔ=š½·eôhçÚ[ÝÝkíÓÝûÊ7w·¤~¤Ÿ(83nc…/3Ffô|ß™QË+Tø!¹Zw£Óä^7éhýzïMÙß|üîË÷ïþß·ïßÙÚåÏg™/SkÃæúÖÿçÿë/‡`½r7Á«ö¡qŽ ±ÿÚîöœªæ_ýîåïß~?'ðßÎöþ݇w6}™ÏÆÏŸ°âsåÇ ÅUÖ˜‘~ûñOh> Zž\)‚òg{ÝO¦õèÉæäs$Ðbá±½ÎPñňî‘ïV[zýþãöKÕ^^íu]c]·Š¼u¦ÓöO›súuÜíõA´1¾¶×œG'çè½Æô¼ýðõ(¼òë7ë_†ig5]ýõXd¹ ¥÷úz+ÿá “1 l ëšîºkŠ*¬ò×?TÖÑj—#9½þø÷‹ö¿~÷{+û†íV^ý”Öëõ·ß¿ÿèvŒLýO[Süùº„úS,â¯ãz®G‹Eü² ûíÞ¶š»=Šžp̘¾.“~õÿüÍßürþòÛ7¿™ ÜEì<~9ùïß~‡…ú'«éó—3KCìùëï¿SÕËrîÄ¢þ§ŸlÐùýõŒ$ùõë_hpùò›ïßý¯·~±Ôý‹¯÷ãÇïß~7Zâ‡ñÛ/äâõúCçÛ—wo~aO0ëâvDÂVt£uÓ™îç3=]w+Ïe´zI×+ž¾ûôߟ>¼Mø=ýÓ˰ýéFPÿË«tŸçÓ0»?_ééåÕÙÆ@SÄxÿêï%‚ÌõzÎwü^s}Îi!g•êõ|ne•"g‘:S®ÔÕ rV©|š3«9«Tƒ]ê«9«ÔîðlEæ³Ïé~ºG+×Ò¶ŒÏ÷ó=†±kt¬3ò}ŒšÉFòÑ6ÅRóðõt.£ Œº¶ßòFÝ›dÙ~«3†Íçó5á¾Ïá‹ç}öçøTè*Ï÷IÆ&S{y ‹8«ÔyäÑ®EŠœMêl÷s:W)p6)XºH-¶ÿ±Aj¶<¹l¹îOq‡=Á}9úÇ=æã§Ñ¹òxl°g ×cYï¿]Ï×9–¼ñ[«þ[:âÇ#¸¸÷Æ…ì Ù‡D~¼(c2FÄ2¼ºFßnýT' = yìÃD&Z|i-‘†qgËOi(,7’ñW¿¸l)0¦Âç§1$}qÙ”MŒo~|û æáaÓSÇjmÖÝÜëé¬é9[ãfK&zîNýAïÝ«¡ø¹Œ86³|:LÍŸÿÖÆ«ai)KúŠQÆß:òdpn#ëXf9*·,°tkÎÉ—ZǸËvtjè¶u 5TÇò!r™áÆñv,qKò~¾F#G¥çz§{‘2¦‰ÕÖlVTKk'›±¿ah;½Ä]F«élä‘cMçJŠ~38w”¸ûó톎GÛhŠ 2G‘aÿ•ƒÓPdŒPÁIÞ ƒsÁô2æë(%ÎX&–œ(t震(”©x¬1¢ÐätU•CñÁÕ·ªÆÐæƒûäŒpœ` š1¯0'GU# ,T‚ÑQ(³)꥚J¨©í¡¦’ŒÆêÁ((“cT©œÆJjÓ;¢‚Ö» ÒeÝéj Î<…Nc¡p©¦sÖ"#,…FX¶èÖ±’ KžsÕ:v]=¬¨EEc’ª\ -Ö/jèMQˆsüàÁ¹J$@µßêÚëø——ŠÖ­%G‘1*øì08=ŠŒk¡Ä¦]ëYcÄèáA­^Ê2î ÎJ²±ñªèYuD%{‡®l½~Ø<5¢>8gpî(e)R‚Ó£Ôè’nN³õ©kŽ«§¡Ðèš!3Ââ…lõׂ3ff³8E®3FT’8ƒE;½NŒ£L·B6lxSµ+G™rZ‹8§Ek`oò–O/£žÛ†» yqj#*Q(côkã·¶$D1IL«`Œ|¨kŸkÿç¶éAIȈ~Aa¡ÈñÖÒs[»dÞG¡3F³6BeÄÈ4-ºRQçô‘½ž~T:‚1’Ð`”qãûx€lÛðf䩯] hÄè²e›qÆ@ßÊÚûúˆGÂøÑƒ3âq£)op JqTì# çÚ–Ý¢w­Í=ž!PHæ”…FÖ„ÞÖt‡ËiuÈ1óG¡BcFD¢ÐH¤œ; ýÅç½>bb…Æ<–ÁÈ^Ȳ9úMï†GoóAÆ«VÈF5·×V¡–‘c8½#GJ^¦2w ÎÈâ±t°gýQæ<†Ù=ÔŽ…Ê(4þ+[pºUdIУЈŠWTª'ï`Ô0n4P Ίwœ1kFñ2w³—RÆ6ÄÄÚc®œXsÙ4ÚC‹M¨9Úî[Êe¿yZ”užA™”»/ýqpŠ u3Úç1¢r–s£ÔäôÇR#,*Œ¦BÞ1ÎñüŽBè<ƒSUÈÃ’FXXè ‘±ÚT!gœʈÏGœ#£É8Ôl‹¢º$ùàÔç5£Ï±ÈF¡¹88E…"# ±Ck`dÕt‡šŠŒiù\–)q0ªjªáõˆJÓg˜7¢‚B‘zÉP5„;E¡”“Y=ƒÓý©Ú†ì¨i,¨;«¯>Ͻ‘Á±6à³|ȤÈà‚ñÀaS &³Óž|uzõ˜&§{!Ër_æçˆŠ•ªÇÍR#,VªÊàÓážÁÉMœ¥Ö!CMŠº ãrŽ'רëðáôµ Z{î =#0VÊÖ¦ÑY󌕺­J·æs¿•²ÎÚjpJ”ÒzÀÄB³b˜½SŽRþn!8=–šµÄŠû¼G`¸<àÝÖp}íÖ÷ubŠ>z_…Ø ï| ÐäÜ*ZrWM1½x’¯'Fû¥[Ùê;¯³Ÿ=Š·•®IE"}é´N²wíX :Õ² Ät·¦19Þ]ëz4n¯*Ye˱¼õËrh]s£=pa_B$Í•}̨%ae_by–Ô–ëàT,…ŹÒsŒ¼œ˜ËU°–ž‘«ÏNƵƓÓÄcµ(f<ê‚æ!¥z<:e„ÄKϱ×ÑQªú²Ã8õˆRcR4`ÆKÙâ5ôÔXâ—1~ÄœTZ,ñKrPÊ9±Ä/¶îôÜ+=–øÆÉàÄߦÃȽz¤XWˆØ¤l…ê¶Opb‰ßÆd®×äKü:,Žñ»¦Xâ—±ððgÏ1AÆ¿\Le|©p²ê KüšÑ›ë…%þh’˜5kŽ%¾ºeÍÏ\¥Ú ¡ÕµÖûÚ[£bAŒ©±–„õ0û`-¾@X9î7á½Ç<×y«Ö®RàŒ¸hiŒªBÑéêh"§¨Pôåv³ª`Ü5µ–ݾ–.Jà4-¢£ªvž*UÁ™«üèÒíš«ü®òÙ=ÛÅU¾8™«|U*‡Ì]U*‚ÕJš¥B¦Ü*UC¦*EVú3Œñ^à7¯þâÕ«€€¿ÿÿø‘ý‘}ú‘ý‘ý‘ý‘ý‘ý‘ý‘ý‘ý‘ý‘ý‘ý‘M?#²?#²?#²égDöýψìψìψì¦çO†ÈÓÓwøûY<–kiâ±g̼- OªÄcm2@kcÒèÐW,Û¬ïT <ÖÖœ {w>­µñ7P#â±6l'v0jîpìð¿D â±°ÈÞ96¥O@–ìÈ àt@Ö»Ó†ÇÆä¶À±Ä38öé‹=>ÁbÉ)‚UC«°X1²Ê€ÑŠ,@ìñÄ>m(¬@×ÏÀ°€x& +Fß» +%„}Z!XÙ%}t`/²¿‚J4XB> ð XI€¥⯌öŠ¿ž)üU"}€_9Oô`,¡×LÔWÐ+¦Í ½ªÏMè•ÝN諺ÐWv;‚¯³ç|=àëìy_gç#ø:;Á×Ùù¾ªÿ|ýàëì_gø:{ À× gžs…¶a¯L}a¯J±‰½|KàU¿çúXBÀ+•NÜ5há®bÌÕí¡Á®a…0× ±þë1WÑŸ\ŸþÞšWv¿s½>Á\ÿ äŠ8W‰q¥®MàŠøy¼u‡[Ñ´õiƒZÙµ²ÿ­Pkô¿ µ²ÿjU÷#ÔªîG¤UÝH«zŸVõ>A­ê}€Zgç#Ô:;¡Vu>"­ê{BZçbP«ú¡Öùx!¨uâ–ÄZÑ÷¨õ"ÛU&Ö`i Ë\€A ž˶f ­ Ê ÆYÁèEˆZ'ÆjäçVq„°>ý—¬Ò1V'…®Ò®]Mèªp]¡«i‰® ú¸ xHت$„­R‰ U\Ð*žÃ'²* "«RB`ýo«±â¬Êþ7aU=7 V€+\•P¸ªz pUö@Áª³V]°êì‚„Ug$¬:û aÕÙ‰«ªV0`Uõ@Áªê‚UÕϺ=“MXýo¢ªH{€ªLª†k¿Q%ùYD5)mÔ½­L@U*OÍy šÊÞ1ÑÔÉY&¸? M•†‰¦9¡Ôã(5}‚¥]ÀÔëL%+,•=jb©„d¥J¤Ï…9sƒDDy"©èuH•ˆ€Th™8*zÝ„Q0Tö:a¨êuÄPÕé„¡ªÓ CU§†ª>Guö9B¨³ÏB]êÒå¡.].0Ô¥ÇC=Žêìq„Pg§#„:; Tu:A¨jnA¨ìwA%ª)UÀ Ô=BO'§ª`¥ŸOƒ±`§`Üõ; CîßœŠó/NŸg ©ÿrà4íÀ©ÀØ8½€SäýgpStÁ6¥ˆVæA 5e¼'jŠ8AS‰4¥a¦è2 ÂKÙ?‡—² N¼”]Px©º ðRöAÁ¥êƒ„Kg$\:;!áÒÙ —ÎNH¸töBÀ¥ê„DKg'$Z:;!ÐÒÙ‰–Î>H´t68ÑRvA¥Ì|a¥J1a¥@éü½i9 Î}=¯ÝzÅIƒ±à¤`L˜4ŸCIƒ$DÊ®2!ÒÉ!FŠþ5!R1ʾ4)•,iÿVxôúýƒè(:áG%’çúŒö°obb£è…•H™[ À¸UÆósFƒÌÜ•ð§÷©~ÇóMì”–HÝ#Ç&ä´g_:±ƒ›8³5å‰ZÐo¬Öá”­UÓ¢A´×a%ı”š n¬õXEÐ^Œ„‚Í‹7æb²ccNà3£W¾,ü½X ±`ÓÎ\§ÝÐx¢€ëŸ HG^€ ¤ Þê-X³ÓîYÕžS—ÕP°{A׺튣Ùj¸FN‹…ߘW.+ŸéÒÂÍ¬Ú â?qÄO¢`qÑ^•65JÝYA^êçϲÅwàÖå{IS±5ØØ<9—íPñæõ]Ëö2ëIÈ|ne<ßñ÷Ñ-ÏT\´WàÀ±£hÌ.*ý»¬5» ’€‰Ô°;AÏšGÑFÛó ÏÀ1˜­E‹[Ô‘ZÞ0xÅÚMs‹¦D÷XM  £/ANŽa’îéÌ:‚F”Ý JÈnhØý€s9 ²3YšN39%Vbùöl¨1c÷zVëÏÜúÙFâ¶íx rìŒÀ§©Á–\•án¡~ýLûP|÷€n¤áßgt2qj`B£}-l~ÁÔåÛðƒv;;˜ÕÓMD{^‚œ„1ÆÃLëKA#Ên%d%4ì~À9C}×”ƒ/+gÎ/– ¶‡ëÂK¥RE»©ƒH¶ß‹Ñ^‡•çxšÅí…{Z*Qv$A§GèÖí,q’ÎËÊéϘ“ß?–bÙ8á’3ö=Ü*-ÒÕ{r°Â¦‚ûà–îªçϲnnkXì§S=FÃóâ1qîX´6°Ga{9>îÚí LJcÑàã5ˆö:¬8¶|îx öIº×Xdò…eЈ®?SVJÃîœ+9 j§eïËÊñmµÞÄ|Þ>± ¶TÑnêùA ›TîEƒè“}†œ ©¡úþßåÝ«Ót½V XI »t®qVÏ@6,WÆ3¦ ˆI|oã„Y0IóçS°ŠwNÚ!Þ×9{¯þ)´á⨜?ËÖ[m‡7öD‰€„?bt|'¤äŒdÖ÷BN[†r×EbxVÓ¢@´Õàȸâý p©É*æb6H€&BÁæýªè5£/‡_dôgÇö*ŸŠÙ|Ï´Ûy#(u5ˆ¶*¼—ý%Ï8ú´Êi„7À HÈHhؼ€g£¹ Fâ+†CqîçXº*xoÚ&áfpæÏ'–±¸h¯ÀJcëUïµÐ›Î¹#Á ¯ ëËøö©øæݺDoŠ—•ƒgþø›·Åò[¿g<Ãà÷H(K‹Vã“s×0“ âÓ–ecÅÍ™P€RÁîü²7nx>i.q0LwÀˆ6{½Ø¾´[ÚôÒàÌñ]D$Zh˜ô‰5Ÿ8ñ1ÁÔ`{ÛRGЈq½V‰CÏ(¡aóƒÎeD¶òIS̈(ž®ði nçµþvü²“®xÆœœk/> å¦ê Ü!Ÿ§eQöÁv:ÔR=:‹¾ŽåͱH{i4X•£®ÏÒþY=W¤‹¼êí½êú¤¼l×á“3màƒ³LŒç݇p¬ØK\a/+#^—ZÓÖk5“{‚ºuII{ª\"¡!©A´UáÈ€#T›/”UEЈo½V ɦX½ gq”gdЮCûRÂnîmšžmnµu'÷BË-2èÖê•OŸX½|¢yôiµ>–š}Yþ¥•7-^zd·™û³ºs9ñbç9³®¯´ÕàÈ8ü¼J)° XçREÐo^h"l>Я‚øùú²r°ót4î:#jŸ™†m¿ ¢¬Y ¢9lOŽ¡eS<åV¶2B®ÐÈP°{×F{qx¹}Í;9†qK†7m˜sÚ ]G¿+iôó⢽'ÅC—Ï=Ҍڃví¨_´Å7èVF§[Y³Û;¯fÚÁ¯.¾1¦Ä­y÷¾Vz:F,£ZÎ:ß¹FéÚæ]ëÏBâ_=äâ7ô í^T»ªD—ȇD×ç3a¥È+*`b³ÑJÐF¦îâ¼2prÅÀxv•}8Ô&L ‡y®rއ܆C10žyivT>‡CV/‰k7ûéSÓ>QøDÂFCÍ×ÕÓ§¢ñ0$šN°h -·È [P@»YÅôŒFÈ3IÏV/àY>cÍ-ÏĘÍÍ, »ë:M[µ÷±NÔ;¬m#šž‰»¨@žÕuFˆ# )A#òÅ zVÐ]NzFF¼e±7‹– a7÷Tyv¯?WûPv}Ò-0†ÞpëŽ~sž‹ò Ý'TO šÇâ›ýðévøwYNÎlüØñŠÅw'ÏåáÝ÷åáø[×ð‰ÖòPœXRÂWÖþ‡ç-À4 6/èÚýˆb0ꞈÚe­D,מˆãAlKDÑLD1`'0ÍXÅLDA IOïO1^é®3˜8˜€â¸ƒ9Ai¿¸¦°Ò–ŸëÌCqÑš¿ÄIS—¹‰ÚçäÅú)!ûP|÷n•¬ FÀĘͽ‰Úô®€ÙQåkHí¤™¶hÍ€‰æ¦¬?މ4B4’!_½ gí!Å ]ÇžŠÚ½?=+{*Ö¾§¢hyÖ÷T¤ÚÍ*¦g4Bžµ=7/à™Árm?Ä¡¡ê0:ð3„9~´uxiöü ¸h âDßo›“ÜK¥‘ƒÕ/ž_l<ÚO§*Bè/;_VŽ?Y{ãf,t}Ä)ø‚Õ?7Ë«@EžAh¾aœäq“›µÓ¬"H˜‰è² v/àZ|·º&-»Š´œŸ…L߸µýD¦Aƒhù&}ëÊÅð­(á­­¤†Í:w?LÐb`†m~ìÄœõ‹&èž×Ÿ 2 ÅEs‚&ƒ3lÏËôKås‚fõ” y,¾ÙŸú(Þì`âÄ›\kÜ LÖ{¾Ñ Ò­$úõ8i¡`Ò7ºØäœÞI¨@nÞÏ“D|sZh"Êo>бŒêÁY<öò½*‹û-»üìÇ6¤45LšΓãϽRÀ§}Τg½Ü¥ŒçÝ ºÖb7žÃĈÇ(Û«•(c~4űzT=„DŸÃ`_i<ˆMFØ)xÌRz“|“‘ôtõ"<«ÇµOѓӵo^ '}üÅy¬¦´ÍÐ5]Û =iÌc“¸`–b šÆd‚®m‚Þ} _Õpû%'‡©„ƒ¥iüˆmæbº÷\LmÏEÑÊEq"©€ÔwrÌEÚ°„ø*³üî3€r>뾬œ½m`ÂêÝ6èc¼ ­ÚóÀ&Hœ'R Dz&Žï2›lô.KA{[p[*%’’Ï5ì~й²<¼¬ ô’Ô”aiZ0F74¯(ã ‹²Ñˆf71 v3Ô0{M €Ld”Wà—•{6Šƒd:Ï-ùyäÌFû¾b•¸öIChe£8‘MT GïÇl„ 8¶lÜ} cy'ƒí]÷ñ:F¿ûo•¸÷Q4#&줄UÌÑÅ4oãî=ëKÆÉ‰U‘µo.K¯á÷ª]žU½+â±™µ¯ ºvÌDzjrbQ$ X4± ­ªdd#ì^À5ƒ*÷l‡ÉtoÙÈ/og6æ´Aà¶xËFÑÊFq"›¨@AäǽÊFذDyÍÆÝ:VG>FON…]ÜÃÏÉób>F×\Ök?*ß«Ò|’žœx–<*«=LË JÈJhØý€sù|Å@G-¼úZ]í>ôxí£-ëÚYE³«‰ P;«˜]FHâÜGÇÍ zVK>rNÖ9¾+À#¥¾ëÖ§í¬×*Q•®@4:'Ç¥€k }:ÎçNÚ@™åwà˜Éîsµ8¬ô:WëhPÍÕw×ÓµK˜‡ë\-Zsµ8˜i©3±¾×\M+$qìsõî»cßi$ÓËÂY‚à»±½a~ja @-¨%që@%×@z¦°878œ}¥¥Š™Áuùx|1Åw'èYXV_q¿,œvD‹c3Îåi<í6œ¦DÅ×S^šD(7qqbA¯â5¶ ÌÓ`¶PÑ È^(Øí‡SvÖ“ïk鑊ddß«f_[¤ØˆGßñ̃ ÝNàÓ”¨øŒD{^œÚb'(5T?wk9WÁi÷ VH"Œ¤‚Í :†ýÏ㑵Üá9±SÚØs ãñ˜§7í†Æ¶m àS6) }bã†8­Ç¼ £i|Ӭ·¨Ø*((A©`÷®Uß|ä»+b_ÎäTûÚÈ[Øß­¾YGmõ¶À§%Ñâ›<)ÍO&'¾Ç¡ÛMéŽNºÐ:'Œ˜´ v/èZ±3R«Ð+FqÒ+\°©ÕRA‡;í–J=%ƽ( é5¸<§#ß*~‹öA¸K¨Ü“e(¸Û‡ìH­öÄMÈ/+'¾…²†ÍŽÍ'ß8§³˜ƒv»ŸšGž»ÓÔ :êxójáÄ·„ÒüñKU8é5Àü.£Q|wžõìq´•&Eqâ‹8kß\±ZõÄ·¬ ÝNǧ)ÐŽ#LúÀ (¶ PÁ…/ XCЈ±Û Ø^е‘lggqnŸ%¬[`׊ÃʃvCžÝ·O¤/ÌÑ“À§4ÔØ¥:‚F”Û˜6†‚/Â5k0Í÷—Šc{,ܲƒ¢ç©S×´ZS@Ôü=]žj*N:*ðäÜvþßT`ŸP祆 Ý1˜ ‰S£¡kØ g5ƕ䧈¾,œ3F"ka™Î‰t||Ðnjœ)*˜Á¤€tTáÈɾ£œ RlŸÔŸê™°² v/àZÂŽïÎý¥ä”É’b¸}`1×9øÜaÚR€ÔˆÓL§ШÂJˆ_ïQƒíö®‡Óž‚Dœý½šh5l^еÛC9“k>ûªu]5Îý¹jlg^בɾqõï¨A4Wâ`Ñ' Xª­e%h%5ì~À9ƒ0ý¡Ò¿|Y8x…hìÛŒñÆq^NÀÛP5ÆB¤åEi}ž89±„ ‚±Ä¿ÒRCÐ´Û ZM›t-G0íóÑðŒŒ8Áš8¾JˆOøxÐWnç‰g\7>3‚ÑùȈS–¤ûéu”˜“ˆrK«M„‚ÍúÕ"ŽÚÊ=9ÖØÓž Ø®½Þ¾v훽íûé;­H«¯‰[…¥›¶ç©hÜÖ-+(!+¡a÷ÎŒI0&œ'@ ÿö{y¾Öák‚AZÞ6~·1U·åÕ̤‰‚LŽ?³<0ŽyºA™ šåwèXH nœœ@ ­…ã °@yŒœàÆfGÓäU á³5(M¸qr.”ÀP:¨Žh£L €LŒò»p,§ÖAÄ „×?ÅV3OÃã£S»á.1ª[²o¡ ON ¼ÒXu#¦ P°{A׊âÓµñVÏÏXö*Îcýø^°Ù¹«i•(8èDã½àd ·¨¯ýT…^ ÊJÈHhؼ€g÷H*hâÌ6çÑÊ“[CЯŽ0Α3[ü¾ÖˆðdŬÔmO+ÉF ]gw3fä É©!a3h´BA£• Úæœ³Ò=Å¡i÷ž<þR¾Už¡š÷|-ßÄeÔ ßÚC>Ò \{>î^еúb ê±å£ŽñT>ŽÝúö°Ý–¢™b ¨€éÆ*f>Â%lÝóqó~Œ©O-^VFl+²æ½ñU…}:”»’Z›·¸„}½»lLš46&‰ 9R€GªB{“d„$`$5l^г²Ìz/+ƒž5Vvã`ÕéXÖ;Ψsfî+-ǪN‘Ç €f£†Å/˜ ¿`¢üZ}€_-Âé—4 §Ñj;ýâ!cÏQ÷Ú0¢éò«+ï¢L„c°A0q‰øô~ÝËòëee ƒ´ªiÚ;޹Uë×öÖ°õ[Ó´kÍ.&z°±ŠÙÅh%d$4l^Ð3|‡;#FÆlðV×€ä‡LìuËÄ~[&Nƒ N j˜£ ŠL\B>}€_†c–5bb°½Ë6&êØa¬ç6&ö#oc⤰Ɉ斬?މ°A4qF|ú@¿ÚØ(Ælî;¯á¸ÆÄ~”mLìGÛÆÄI+`m¥ñPŠ˜ŒPHÛ>&n^„gÖ\yýk2fƒ·ºA+béXƒ¼t½‡—Í€‰€¡<ÂAý — œŸЫ¢–ðª(­‰úÑ™‡ fÍõ}O·ò0$ªòФyÒ_„KŒXKVïªBë{Ú@™x(ÞÓøeøå:"NÆlí;¯Ñ(#bO}û™ÖšñƒñêÛˆ¨*fÄh„$Ò6"î^гû!Å guÏC-.ÏÎkKijì‰x–‡Df¡<­f‹_uÏD™H¿îO3q´VӦɗ•~žëÜ<H×Àq¶mnî×a7×L¢9pÁƒ 8p°Š9pÀ ÐD*Ø|€_gÖñïá—è gQ&†c<è]]ì:·½·ýÊ8u D³‹‰BìA¬bv1!  ›ô,ògn³šœ˜é­ÛòµÒ<±žÛ¬úUø8¯D Hs—ÕäÄ)*À*Õ MV²² v/àÚh°6ñ–—•SÝÞU…áÞ‡tô>ŸÆzN+È3è Ù¢ù469ñ0% xØRz£ P°{AתE™æw“{¬‰ïå³]" z&>M‰Š|ƒÑüð`rüÃ)`Çaúò@FPBF†‚Ý ¸–BÉ®&:ŠÁœË·Vó6uµÜ94º€ÝA·öUÑìib Ÿ <»+˜&H‚&RÁêýº†F10²A™F>Þé ¡ñÎûÐhþ¬C£hd°ù©€#j˜##M MT„ïO‡F›V``20ȹNÒº›BSÙÝÖi;õrhht ¢9—•ybŸOETÀ©ŠUÌÉŒFH‚FRÃê=ˈ¢:™8è"†rÖ¥ ÝûF'+B¿] ÜÈ4(­>&Nt”W»FÆ¢·‡ç6Ëï>Ð1›»†Œ 6xB*2 yyŽq+÷à½t¤VÄÈ@{—}7k˜£ Mœ!Ÿ>À¯r!ˆšËÄÁTTp’§*]z¢¹¬&¡.Q/¤4ˆÖd&æ"jà\Å:ælF+$A+¡a÷ƒÎÕ‡qQ k†q®ÃžnpѸXïm\¬mEs\ÃZ½·q±žã"M „L„‚ÍøUÓC2Š\ªyOÆZ’Ñ´_˜6úz[ˆf2Š\¢æZ­ÉH$ödÜ| _eƒ1zˆ3Ûÿ^6Èê>½ì °´$Цh× šï'ÇßáI +{øPF(Æe½€k†Wâýpœ%99qƱµpœÞYí¼y/P³ÓzÃðø¹§8–¥Esã´8wÜÃòÌ\ê×¾i ‰C#w(Ø\ _9Âh÷^á9± ±7­Ýã\K^o¤ LZw¤ˆö*¼9±ÁXp&¤.«wÒ]ƒ P°{A׺DZ$?Í÷eáÄ}ÖÞÄþ­½«÷ d·“ñ–¿÷Š]=”èžkSè¨ÃK_QHCŠƒTGд[A Ù »pÎPËßÚž¾GbrîXÈô8MÖ®+õ,Ç¥S ßØSMƒ1È8« Ú«ðà4?9W ¬.8‰0»üFéGèWõHâpæ—•ãGªŒJãØvÛIßO¼: ¤[ÈôhžmSiì™û¦¢?M vî¬áŽÓgL£ô£ î×(sZÏ#µØõ79q»7îm•ŸþEo#mõ&¿GbJ$?vj ux rnÛˆ55$?»tÖ‘pºé´B´v?è\±M©g²C)s8GŽOé-Üí&lƒ”݇žI»©>.ÕrmjcT^8~ãÔP[ä3ëqv+(!+¡a÷Îz9 :¯8åtaøý /K‡¸ Ê-5ô™¤ê÷{L1xŒt› DÇ1› Ã( .ß>¢.ì/™&H€&RÁêýºm"Qm£òËÂi>Å{;yF?ŠÛåH»~MÉ"q{ºIé¨ÂK“m;ÿÔ/pgA#ÊeÕP°{A׺Çñ óeáœgtÓ/R‹ûñòïÉ#í–ú…+Sb4íy/HGVBœ‚n ÉwÏ:‚FœÝ JÈnhØý€sbb÷ÔÙÝ9r²ò;踮Å1õ¼ó¤[WÇHàÊ>þIé Ç`/œ;F~j°;Òf N¹c°€?Ód”Þ] _ ‘—øaáôhÈëˆÏÒGžtqancÁwíø½á–&]âÓ€…sÅCGŠQ‘58æ\P@BÁîü2 ³/ËɉE„7nŸË]À¨eÈyä¸ÇGùЉ˜Hs‰°p|15Ä"cÖÁeÈ´B´v?è\Ñb±Æ BÎXÕ¸\QÒ‡ÕU’Aº¡·î ‹s”'xrnûð}*h˜QCÓ´I( ›¡`÷Žåø”оI»Ã1q|ó´·ð\’Î+1¹hœŽk?!q'@í D{VBœ“/5”ÿUGÐsYh#l^еÛ©G™…3¨5ñ|”™w{âQf0®åÙfe}–YhÐ1ÞÀØÕÂ(‘ζ“ÿ‰ÈÔr‡oc‡©>èŠk. @t K fÖ êžU¼’ ‰ôsõ~Õ´Üçö²2h/«¥Ù¼ìl:Ö…>º„¡‹’t‹4½"ÎM¯ zE $A ©auná*ét‹—îÒh^Ù&·ÚŠ„² ÉèiùEÌj+Î=+Xü‚ ò‹&ÎxOà×xÄØÓPŒÙÚ[,îÇ4lmOÃ~ìi(š~‰A¿Úž†¬b:$pìi¸ù@¿òó}o~‘1›{KC]o-Çì²Ì5¢ýÞҤܺ·4diÝÓH‚Îxß÷£[í! Å UiOC]Ò=ݪ[ö¾§¡hùÕ÷4ìuKCV0ý¢ ò«íi¸ù¿ú…ÆÎ…qŽÒq?ILËU㜌ґÖͶƒ¾f¡aÒ˜ŽÄÀ,+ñsVÁwœÓI\º‡ËçéÍ zVQŒÙàk"Î[Ó±dw$ÕU¢Å+Ð0i„l2¢Å¥QKÌúž‹2rý1­½¶\œ Ú•·\œ·¿Ë³´nüä¹åâ¤é˜p,­›¶gòK&H"m¹¸û@¿Êž‹“ÁLj[.Î;ì•‹)¯K™AãvjÍ\$ƒ¹HÈ4U¡\”” ‘ÊæòI.ZsÝ÷ê™´ë|î›Ý¼‹mzÖÖí¶g:R DÓ32äY[7ËÎ*¦g4B0RV/èYVáYV.:–på|¼þfÊExv^Ï›À­\t¢/:v+Ý,”÷—³¾áœ&PB&Šùô~u 1û˜è"ç¼èĻЙŸ÷.vò~] t¤f]„ Ø…PÃìc42‘tõ~bˆýU Ç·Gyóöù€8è†Täcº’6—¹Ä•‘zÐ šOŒ“ãû£¦†Ø?5ëà«i…$h%4ì~йúŒb —ìNˆ5×®K%’ñ*[2^mOFÑLF1K(ÏTc3i‚Òµîɸù¿®Äg· Çw4h ÍA»@¤)ÑÈ3j uX q ö~4¿°{„ úÅNL+(!»¡a÷Îd¹½Ö'^KZ ǵñÖÒv­øS­Þk¦Pšã¯gÔ{ÍɉגR€×–ªB/6e„$h54ì^еæg ÙÙL®‘sÅøíÛ×â~ëAà^î ÝÎÀ¥§D÷d›ÅIq‹¼8¸ßZìxJ”C ½DZ~†}*¾{·ú‰äó—­/ §ùcù ïH„Ø#8h ÎÜ3xžiHœÃ#O6h­W¼“ã'•N ñ¾uÖ¡W¼²B´;4<øAçªÞ`·Åñw×ÞÄq·w@vDí¦–DóÏy¨aÒ^‡— ÇW°SƒmŸ]ªpaŽÛý÷ibp"<³óë—ÇÖ_VŽo1´g_ñ¡î´]´Ù‘°Íu).úÀ“K'í¨ÁÒíî³Ð^G^Nèé,¾y@·îè5¶Êìá8·ovôÆõ›æÇlo»-N»Dâív@=%Š+ £—ƒ â™ ‚F|ÝJÈh6öæ<3äÒ6mŽ9¡„gâ4ßs`í[|¨ŸÄ7èwɤ8ulpÚsY΄+Œ @ôG‚-œóÙ5Fùê+ÿYAб› šˆò›t,ÇÙå¶k0ü"Ãtt}ò{"|'^ŠÛ¹A»MKÂW­KqÑ)v‘Šq8°8~¤è¬"hw«®?Ã<ßì§O<·8ÇyŒ §Ú§ÇÞ²–vH® vyÄIÒ dZ¿w˱YdŽ“'#ÙQгô˜[s^ÔÈzý”}а{· ±ôíº7{—8ÍwZÛZØ\ï;g\Í Ú*¾ÒsY®WPè›ÝKß]Æò¹GßaA#¼n‚$hb”ß} c1,ì\âøõt¶ÁóÉï¹ðŽc»ëºh72@é)Ñt,Nº°k‰sÙ91SCJÑuXGJì\n–}(¾{·F[YíìÚØÙ79ņ­q}(*¾Rt@Π­Ö|øì!‰|Æ5\Ô úÂî¾É1;YÜž¶ï¥‚ ß)AÓÓ£t«`ñQæeåøæ;o܇| ‰ ÀeÙr~.«osƒÑÚÈ)í Š£³† `·´‘ v/àšXëmwÆ‰É çŽáǾ†0>öä@›A»™HKb<¸_m).úŒãŒ'çîÑþÔ`»êÓRGÐ^Çöó¡{£øæÝÊF;n“è0¹bNôχUqC7h·3 é)qGšQé¨ÃKOÒpù“€ªp!vð»ŒFñÝ zÖ#ŠÉ;Y9±ÓÚ×ó •h°;ófu¶ç툴ÆÐè™F¢½ +@ÎQ£óCÁÏ¥ª!hÄØm m¤‚Ý ¸fÏÚ)Vľ°£1gŠàËt5è.­ÍŸ hKqÒ®ß áç¸NÕo€þ Ü)T¯Ÿi/ŠoöÓ§ê1²ô²râ©ÊÚ6n–ðï ˜9h7P´$âcú©4ñ,q ˜3K©!¦Y‡ð,YA ZI »p®ø •ÐôËÂÁ†9±) úTDÃe§É(½»@¿ŠŸ¢¬ C&HÚYx×I` 'Dû׬ŒñsDcqÒz :9ÙN £…~¾UíøQæ¢ìn>|ªJŒT€œÖ°WWˆM¤[iU‰uCb¬ë#ñ ôL+q2Ü"”}†[ı“ÊþN£Y|s‚žùН±^VN¼wµÆå;¾Bkº¹mùl€º)PcP š»–'çŠY¨ ÈNe©7×L(!¡`÷‚®uD’oY&' ’³ë%PƒžoÁÜ̪wÔþs?f(.šoY&'^“H^£œ<ÇêDÃëR‹}(¾{· ¥\wyL½[ÑhäÞ­k¼Â(ÐO!ò.Ñ3 Ds /µ¤/½T…^‹ÉIÀHjؼ g Qä®É‰wþ־˶ƒ&ÐÌ]g/+gÐ=¦i Í]“ïü¥{T‡v È JÈJhØý€svãËú.s2Øè÷zéü ×‘u‰A£îå*ÛA¶õ"[«õJ]âº4"ºÑôJ ˜Eòª­WÝ"¼y ‰l–ÕúU?øU•…llfa˜}* 騽íe¼®¦, Çš²Ž5ea8vo;UÅâŒgUYž­^À³+®×ÓÄ<˜Y/^ò™÷š„[Ù÷‰9ŸûÄ,š3œ˜©3oè×Ĭêõ3ÌSñÕ~úTpo³|"ƒ>ázoÚœÖ%£™×Eã ‹½]¼"-¯À YT@³YÅâXc†_0Q~­>À¯| ·p,#Y>÷±Ð.„X· NÛÇB{$9’Æ0ÆÒ樄´@´VèVÆÍì\b käºØ?¬:Ð3Ô¹îs ïíÔÐ…f纷3;§vV1; „Œ„†Í zÖDŒŒÙÞyF^Œng]—ŒƒîH<* ­ˆ‘§„UÌÁEŒ&2b«ðkü›QŒˆ‰1Û{Çßzn+ûÖî«äçu˜'Éx‘Fc—}W¶ôÏpÑI\JÄøêݪ‰(­:öD´‹ öDÜ}j~yØ,NZ^‘A·VŸ¨|úTŽ=e}ªŸ¦`9¾ðIŒÙÒëŒ\ªR.ÕC)èö~tùnÒôJ ˜Er¬j,¤cy›‘e"›eõ~ÄO‹^q°d5 syZ¾ìpõ‹éÁÉÛÓòUý5ÁÔ Z‹^q°d¥.iYÇ\ôÒ JÈJhØý€s†K®{ì'ݾÎ+L|X¨EKE u}ðlI‰èÅEsÔ¾.OŒR>‡ V/‰C‰XÊÓƒýôé~ Å Ou Ûñ8¶k mÓ:Š–W÷>RÍf‹cu e"ýº? kWg›œÊ¬qy“ŽiWËJÌ€Ú®V•ˆ.Ñ%¢kM¨mr+“`iªCh›¬ „¬„†Ý8gÐäöúä48Ç»¼cÇòÕˆnsOóÕ—ÏÓ¯ž‘h(.šš'ÇA÷(̀ʵ›YÕK‚æEéÝ~:ÕE â ãÛí˸ЯõñÙ,úª $2 Hkäýž8.°Ž9rÀ ÈF(ؽ€k†L®Ôd ôü¼ ½®+ÆQm>Žm…˜ ™&^6ÑI¤€ˆUÌ^F#$A#ÑÍ6/èYyÅ gWÝÓîóaHÌœªãçº ‰“–[u£4,–òÅ'T/ŸÊ>$nö‡OùH~ó¥|šŒÙÖy‹EyóÑ·11§´‰“¦[bЭ¾‰ªBžÉIÐHjX½ g7"Èqcr¢ã[óz``È ¨²ÆŒ“§Dy&çDsè˜ïüR€±AUhô”‘¡`÷‚®õ¹&„k]CbÄWà]NÀ–µ¹>óIÿù<4$zqÑÜY?9þÎ.J³õ©\ÛêUýá¹*|´NÙÙbÛ¶zqðZËÚV—vz½€•µ¯>Û™gy‘8ós]öÕ‹žÉ+N쌗†Ø8¯*fîòîüN£Q|w‚žµˆ¡6ÖONì/°ÖLŒóù¬¬½õù,xM‰y& ¤Oµ8Ø/ Ø<¯:´·^VP‚VRÃîœ;ã Ö»ú4&2n€4îi¾WaЗƒ¶Z¯¤].q¾~/HÇ1{“tpb·/Î¥‚ Ý-˜ Z ‹ô©F«Ÿ-ù²rü€oܸ¡Ö->ãrZøsGÊÄO5Ò‹åDóKqâ^ÙY¼Ä¡‘T$â½4 vãá‘!’Þ¨Ýfò—…Ó}«©5kÅfâÃÍš¬­îùê‘?”Èg䌬€8ŽKMÍq©YEЈmí«­¦†Í ºv{øl›Ñã99Í®ÖÎŽªÃpõvÐnjÜ;%Š'™4Ž:¼9پÜìã×¥ 'Ý5^ ¿Ëh߀gW˜ç„eýäø)‡ÞļKÞ{l¾y“<ºtŽ‹×%0dË6)°ª犣G¥á*1õ¢Š æ¸mž°Q 6/èZöHÚõšìÅñ‹ÞÀ~²}+èùÀ2h·ôÄÍ–cpÜþ ¢¶9Ùaí©!£w²Ž f·B°’v?è\óžx\¾Wâeåd?”6ß~ñHähá¿a&í¦Ö8éUÝòmÑ@š;4Ä9ýéa ¶¯[uí%`%h%5ì~À¹Ñº^Yœ16Š'œZ+g@ýÞfÚˆ´z‹ÑS \þˆö*¼8ÉwøO Éo²UA"Ònƒ`#ì^е꫆ûhVÛËÂIŽ©x7#3 u¤™´êhô"ÑüII HG^‚lÉ»Tá$ÂÜæÏ2™AÞ\€_†TŽýÄÈGr ³Jüî‘Ó¦ _\Ç™I[­CÐÎ֔ĸkÉF$£/@NŽ&”«ÚFH‚VCÃî]+Çrù—ž/+§=£Á-l$÷Ö.€é†:½O5–yãû¤ÉñI§‚ÓïWP A"Ând!ì>À1kا/Ä¡Çâd‡]¼…[è`°ru°™´Úâ¸JŒU:¤/z<9~kíÔpřƪãâ¡Ç4B´š 6/èZv¨v[_VŽ¿ƒŽ Hšám-dÇ4Ÿ¢ÝÒËWySb<- HÚI†Ý«¦Òµ'ÿúA»_a$da(Ø] _=æ|ûh8†qâd_kß\âó_ºÙ ·h·3pé)Ñíó’EéÂì³5Ø£]_êQv+(!+¡a÷ε+.eî…kqz¬‘š_@RÆ£¸/¡ì[Î.ÚêµJ¯EÂ>8­‹Ñ…kqâa ìËT_i  Ðs[hb”ß} c50Éø®ñeá´ÃêĽÚqà¯ÀX‚v#MK¾*déøwèva0b.VYƒ+íA{ÔO ™ »ùð©ŸD3|qü \kØx†è1œÛÝ·èQï}p[wHÜ££µ,“ä£÷ä$_I!V1½i„$hchxð‚®\/Î=Ûâ`˵5±?O]˜ qã¶¶lßpiIÔÈ2(­Wñ“»®¥!0UÁ7ñ4ŽLŽÒ.„_Ö\u"0/ Ø…Íøéd˜]"W–÷ÎZµÜ‹ €]¨x@ÒOèCðwZÌâ›të6îûð_N9áîÓ6 ÃŒÄuÛNº‘ÜÖßo¤Š“Ž ¼9ñÈ#Ø„­‚Fxs]$d44ìNгQ ØâeåÄKwŠ µíaµÄ’°vÑn)PiJœG¤ˆ&V29±þ•†Ú— bÊcõ¡ ÓPn7Ù§qóË„—•/ß Wiã`æ;áªmÝ|Ÿ§^½¸Ä™™s®€$nÃ÷Ë«46 H¿Îm–’ …¡`w~5»´€xôËʉW'Ö¬¼ÊÉ“êܬ ö÷Yž×¾8ž˜u¡ )çSâÄþx*ÀöyÕ  ö²² v/àÚyb(Á.£ÉˆMBÖ¾só ·«º­Ú‹€4$®KC+±M F€ °‰HUh—mL¤‚ÍúUì;«¤“/üïs»­{X±ÝÕívÞÛÎÅÛ•EIl(¼Jc;€ôk¿€, „,„†Í¸eX庹c2hÕ¥›iÃè²Þìvöu«Ä“ψ¦_bб¾nsPÓ/š šH«ôëFå³µ×§ï|è üÊ×¶[çÎyGÇHË12`ÐnV±xV·s«§‘3æÓ zÖE¾§œxÍzçs½—vÐ÷z+­[Ú4}¸Ä¨ï^ÞôNš/j''Þ³JÞ꽨•”•аûçrF(9zˆÎŸ ÒƒCæ…Ý>îsÝÅhê[^ˆæèA;?Êsl`sð  ’€‰T°ù@¿š ¿šÒñF‹/·/ž&¸¼‘v;÷Ý»ÔV ¤¹8ã€cûnlU¡wš2‚26/à™–ë—G“Áßîì>ÍþåZZ«¶¤m/­­‚ïuÆÍ‘Á§FäÞîôv϶[½§‘KЧô¬>ä¢ô¬ï¹XÎÇ\,÷–‹öE÷š‹¢åXÝs±Ü[.²‚ů¾ç"M”_õÓ\,éah[¹ö¡±”åêx7³¯cå‰3§¦ÑÅÀ¸F÷PÃi‚Ò>0n>Яûa†ƒ~ñ¾nšgèøy‘(È<:FZŽ‘»¨€v³ŠÅ³¦L Ïî}’Þ¼€g†Tn™(ÉnqX3±Þ™Xžu!a' ­©(š©H3‰ ˜i¬bæ"ıçâæ=s$uõŒ zÆûEèY_Vnç¹®O;€*­M#ZŽA³¨@f÷emˆ·² ÀDùµú@¿š¢¿šrÑGkÃ5,Â{ÒÝÝκíܱG²{1Ds¼£5p4gs¼§”‘‡b>½€gTöh_<’‰ƒ'ªvowåØjËÅñV¯A˜÷"aæúP'ZeâÄC(†m½ZQ^ïÛ™F†‚Ý ºVH b û·ý’{ϼŒýÞÆÞöQ4Ç1Ðû©€£j˜ÃGÛo:™&BÁæü2r_1Šƒõž¡šëбׇ£Ñ•–/áÊqn+ÆIsÅ89±Þ“®YÇ\1Ò I¤}ŸûAçŠ=M ½mwDÖ»åÈÛØh硵e3i !b ¹¤#„ª˜cHoÛ=2’é¹yžù}ç¶É™ÞÊ\Ø=£8š)!Ý @´¢&£Ö´H¬iV¡ É ÐÆöÅ º–÷©z2¢£Ø©&ËЯŽ0×™œ^Úm°MIyÅyÜк"=§ÝÈ#Bi;“¸Œ4·QBvd%d%4ì~À¹Ñbœšc䟜·­Ûµ•Ü›¿Ý¹Èí.pfdˆæÀ?9>nK{jи/$pirNO>бúÜv¿êófÕÁ»ÄÂè+LZÜ*+è8èfT. HO·È[eEgÓ/Ø ·êóÒ*›pê<GqþäÄöykÚ{n¸t}^N·J/âÒð+I§’Ü~/FìWqì­WÚ}/$A¡aw‚ž¤³:™8è"†t®]Èî|˜¯ÜRÓ’¨¶ébj­N&º5° ±ŽÙÉh%d%4ì~À¹ÑfÛ6Z1bX®¸q»dËUbÊÔ&Úr‡„íqZ¾‰™4÷ÑNŽï„•,U…¶ÒÒ ÀB_ S·2/NÊçÜø&³y2Ή]nËI9vÒf ‹”¸Ÿû¢¤ÎÉ#^ ¨8z õó˜€ße1ŠïЭŽjà?ã² 9¯¤›Y÷q4êy-DkèžÔ}Ddsè ”‘'ã×ÁÉ]ÍÕV2°&ʸ¬K¦ÜWÇÍ”_ÑÚ–ýð>ƒä´›Ø|,“„éOSHÔ`Äñcu¿OU€F€Íˆ)A«©aó‚®eb»ýMüËÂ)'|ñÂíKŸAú ÚM=ý±WéöL“ÒQ‡— '.φ;>¶S7·˜É IÐnhØý sÍ~êï±^VÎ…ŠãÂ~%d· œëgD~A[º§ÚT@Ú«ðàØMŠýij°³µîYE^6P€6RÁî\3èÒ÷Oû¥¨/+çòýÓÖÆ>0•;ºM ø´U|&O)IœW }Ô ú@×ÇПò45Ø«õºÔ4"C4%`%5ì~йŠùÙb~Y9E{#ûéæÖvnz РÝT/»H4LÙÐ šóLN  Ò÷äÌ:t1¬ „¬„†Ý87Ú¬ùÂÉyY9ÈíWkãjK„S¤Õ;2!V”¸Nûln*pO„8ñwjˆLTEÞ°A°‘ v/èZñ`úñ'űû½‰cÑÚÔáO¹A»¡ËJJ¬CH¯Á ã‹’© úKŒYEЈs,"!!¡a÷®މGÒØ1,¶üZÇéÔ¾#¸^ÄÁ±cØ>&b?öD´CÐ$éiÅÒòª>&"-Ĺ'âæÝò/o—iY ̪÷`Öí§£a¿÷y¹W%¢kÍyY L«TÀi—Ủ™FPBFBÃæ<‹/s—€‰1Û{‹FyLDûZx‰h³¯‰—>:iDl2²®ÝaV1C$öDÜ| _÷C"ŠA¿ê–ˆí8±ûFðf§ ­~•-E‡Q* £¥ñªî‰( éÖýi"öŽrZ#&Uûþž73u7ú~˜–›!Ñ‹@òc¦ј•ÅÀœÊò˜rU&e™ÀI™&rRÞ|¿Ú‘Bø5ô ÷iÓ-Þ¶-·Ò¹mtl)#Ëèiùý¢9Ö•†t¬<—U&ªaVèWC å³¹ûfö…4œŽí{À›€¶*)·‚–WûöméŸ^ѹ —xßùÁ-C-×ïæ&#ÝÛ‰ý-µu¢¶jÏ´îqlç…´ƒÑì^b ¡<»+P÷’ ’85¦òôàýªûh8ô«ëÆû0û|ÛyïÃáY÷áP´«Ûp(´›U,žÁyV·ñp÷ž^¹%¢È#8—/SÛYÖÄtCûžˆ×¹%"I&"h¦ÑÙ÷D¤þ™ˆ´@iOÄͺu#ˆ&'åÛ¹_bÒ.\´-0 ]ùy(H4(M,`râIž ð ¯ÈJÈF(ؽ€k×(Ê5qhÙ‰d¤å¸f{q­mÛyZ>kÐ Z¾‰CßÚ¶GuLçh…$h%5l~йlÏæ9³Ù{_ë+¨ã¦îû¿íH°kõ ät Ø•÷­Ûª`ñŒw¡P‚&θß÷'žµÇŒ‡†¥=#s~ÌÈ\…ˆ†DßSRôô­ï)I 4uLçh…œk{Nî~À¹|=æ¤8³ÕË”ö˜“£‚»-v:Üš“¢åœ80ä\{ÌIZ!‰kÏÉÝ:WN,ò'#–èÖÈ}Y·ûÔC¤mw:W‰fWãN ¢±ÈŸŒX¢K–ðªB‹|A  ›ðÌÀÊ='Åa£ç='ïú˜“åØs²œ{NŠVØÄA£SƒÂ:fØh…$Òž“»t®<æ¤8t®í9YÒcN–¼çd)š Ã9ÒÓ9rè\Þs’u,ε='e%+?‘“ñrpÉI1QåÜs²Ü9YÚž“5í9)š9)2Š ˜qå~ÌI!‰cÏÉÍ z–KîØ[ùZÜ3­ý˜­wÖŽÍ—]/wd5ž'ö[JöcªŽ%а‚²v?è\ŸËÆΑ3£À+Cm÷]«~÷Üž×jÕšèH8* Íì“ã[Ñ¥€A@ ÚÈ.¥¾,}pÇþÛ«|•’á>£žÓ¶2¤§ËÞÅlaÃô÷oŸþûÓ‡WvøC9î§z•žþzüÿ¯Ž§ÿòêòà†R;aÜVØÙ¶!v1Þ¿ú»OeÈÈÕOv?M"­Bä¬R†û™’"g•êŸHŠœE*Ÿ)îOŸ¦“³Jùá«}•"g•Úž­°ÈOßYcOöþ¼yyú‹¯^ýÙߦt?>XkiO_};×ež®3RÑî;Ÿ¾zyõ?^ŸÇ‘¾øÒ—Ôå6êtj<qá§šŒÊ›àMÁbTáoÙ¨úÅÿüê¯_ýÕW#®³øôz° ÃÏQgD?²§½ÅÜdÚU㥥„ÀY¥Îd‡Ôœ‹9›lX¤«þØÖMv«„å¥]mЬ}__|õ¯¾¼Æqz#@«O_}óêuòŸŽwþïrÞCSFZ¤loâFM֯ѱ†ÑÖÏ^crALÀ@÷øG$¹÷¥ùi·gÛ´g€ÛúÕÇ/ü:¶R^??½ûðícA?2¢¼~ûæÇ·ßx*˜Æú4fÄzõ²5šGyùî¡ç<†dk´—·Þ}øîã›oÞüîyoŽýápφò‘ˆ×¨àûï~bœ™?ÿ­ 8çµà>/“aÃ_³L¸ü6ÀØ=v\θbåÒLS¼P¿|gžqlý<Å·W:#¦–Þ«m¦qNBÍ‘\ãØg0âý¶3ZÊ~ó‡ql.õš.Š÷}ÍÎë {mà¶=dv^_ˆØ+&+d{ÁºsìýŒï²;lW˜sr”*~vs|*I¶¬ê¡ÇɶÞÅ!ÇΩQÊ9wÇíj/uú& ç”(•NèÉÀ â¼{pr”¥KèIcÃۛוñØ« ‡’½B‹f·Ó×½Tîh ?µÜDü¸!cØQߣÁìµçÑ‚sÛ¾¿dûFR¨±ƒ¥c' Ùô~aëYxeKóÇd÷àØ®>Ó{"z~fnÆþ´¨©¦(túÅ9ι£&ÿžÇ#2Q¨³&Û¼Tç#̳ƒ4á1z\Ro æMë…Ší1 ?ôÐèË^ó8#®Ÿ l'íy»›ú NÜbí¯Ijp¼ñý ×H;Í.g4ˆíNÁ‰ ‡Ug¸ç¥.?uÇ9qÇ­=Ñ„œ ­ã¥°0ßQÊî*FÜFjyÍçÇôX§ƒæXX­Ë˜YQªÄí‘ÝΧD©Ó®n2FK úy û ÖÇ£`‡ŒŸú7z'­i~¿\éŒeÊD÷³ö­ãU`‰¶±û£P¤šïـጸª_~öŸqìëkëÏ~1‘3¼g§Öün)çÄUA­ù€aûJÖ>÷¥Š3j²cŒ£Ð÷º'RØ?g´Pú‘ÍÆÈqH;ì#Zgø6jψzsÜ[Q»o1ÎJölô·¾Î©QªœÈ>ÿ@(E>FPìÛ/uûÉÓÆ«m/eF#΃7‘.Œ x¡|aL°*ú%Z¢µ(ei錕(ÔÙ6½àXýfË¿Á±ÍÑ^(\sŽïBõ^W ÓQêŶƒ•öE¸}ßgŒ51ø^IHªïEvNõIÌZ+¦ ß™gM ·}?6n§P›(c;–Coöƒ$B¶ãèZÇjÛ©c… q‹ øË[Õ9£¤(TØœ\Ûìc˜ïG0FÂd/ó¦Ã"Ý õÔ¨ÆÞ#z†å:K$–½¯ô26D„uö¢Ïº ½¶wd^¦_âÄæÙæÐ`ønÈO[ÆH~6ÊàÜÏ`xˆÇâœat}¬ARò¯3œSPÑ¡Ñ@[Û«ÜãaÈ9·ŸàÑÈîElôºƒ“ãã|ÛxýÍ(LŸÑ³ ¿ñRv*Z”ºãKjëpÑ'*°°±©€sÛþgƒcÒõçRË*ÛáŒì…|{BxPýã„dûbÌh->Oô ¡¦Õ(• ›¯û÷p5.2uF‰BùÀônKˆ;ziÙKœݯ=JŒçŽî÷takxÃ0Ó“?ßÌ©³Ç9ÿüÄÂ9Õpàé–Ç1Q‚¾aš¿ pvœ‚>œ[E ¡žco³íVˆC7#|„+˜’û;igÿëC¡oÓ·=Óáe¹£Tï,UºJÅ`ÕGP¼ÔÉy»×8é ]WÄ­·Ø”Öb¸s*¾¸h2ž>-6[ËSÛ»a¥÷õ|Œ ØµÍ=!ƒ'6®tþ[pbLJÍ<§3F\¼Pα,œØdÐÇòdz1gŠBÍ¿ºpŽ¿Øv«Š3F\¼PÁZ)Û%^ht3Ç_CÚ“Êæå+ ÅÅ'Ω0ïŒ!-·¿2êGhFñB¶Ò=‚SŽh kµ`86`0Í5—e gsFÅ‚ßf™©±à?s´o>Z,ømì(ác‹¿…æv_ðÛ"·‚ ~Ûÿ“£P|¡–|‹‰Ë¤Ãü6:FMéhXã°7¥XðÇ×3ƒã ~ë,>äñ …n³äœXðûžo÷2]±à·Ì¯Q•]eƒN—CÏÕqÌCãX•_X÷ kÉ~Ó±qîëb¬;§DN“9ÙgϱÄöM#&±Ç4™í. µèº9Ùz=Ʀ+ Õ…0+æÔÎ(S±¬œXêÛ'„ao¥¾M5lé±Ô×ÃÎð•¾-U#$ç+})Wƒ+}{kàƒt>“¯ô ²½Áˆ•¾Õþ8•Ï3Vú62‡uçé+}{p‹þw^±Ò·>W,ôûÑ`îyµ(ScÆÎg¬s|AéÃÕàøBÿ8¾Ð?O;c=¾Î"gLŠãYËO‡9ŽuþàÔX·ÃÉÇßë윂ujT%Ÿýð"Ö[Ô×S%{ߖúޱP­ˆ£á^êºw×h"/5&Å+8éŒR'ž’²!2^*6œgÅJÍþfWØdŸS ÛƒË|[ sù:vI¿†ýŠþæ3Zö+ÌýÙïFìêï0‚àWf_ñ]b ~Ý4sXS|¡¯¥köK޽{É…ÒPèŽ@Ù½º¨(‡Du¾­c°õk\1u˜V¢"ö¿84/ ÕìnÖ0®0¦c¡_}n¿æOä,ôcÄ4NŠ…¾mxòu]ö+ù, 1@gDÑ‘¼3ÇÂ(ç¸ZÈ׳78ÝKÙ[Õèb9¾4ó~Þ_ÚUbÉåk¡«6{FÛ Q^ªçxÔË9>/ðÏÿ '˜l¡Rƒ—vØZ¦{ úí7eyJËÙŸ´“-ePS¥¾­BZ0b¥o3Z ‘æ+}[É40b©ß£sûm%fÅÈ=»„á\鄈¯óÏ#%¤Þ-=8}ÌÌ·BË?kž‹+8±Îï6nE¡3Öù¥ˆë|{ß¹Ÿ©íË<úe?zí–~ˆ³¯” 99úþDù™Á‘3‘i~Ô®O9Dzí"9ϵWúá®wôÜ#Ô”+V¸wÆ„fljz)u(?†ÓÈ:½²,{`=h-&1 ÆHâç%–Ðó“û‚eû<=VŸ‰Ü[”²‰Öõøço=fËðÔQÚ5–S~úX‰¾c”ŸÚå³î‰qÂÏ»ºb-}ÊϊŠºN®÷½ýX"Ÿ>9­ù¡>˜?cl±³p¬¯¤Œ•F‰´óŒ#Müô•Ëœ ޝ÷}{#Öû†Y®0íP–0-᪠Óf ˜v,cgHt/B<ˆ0­¯•#$ÀiS·m+{N;8áSâ´ÇYC8­¦rá´š.ÕúÓÖû©4¶ µØp± µ C÷ŠÔzJ 65tø Ôrº\Ú˜ &R›„‰Ô^ŸV¤íµ µñ@Hma~?R«W‹ X›ÿ5`íù XÐç‚Õ^@b…ÕÆl9ÁZï4ïw°öÜÁÚYþ9°öb=ÁÚŒ±|‚µ•• ¬e¿œ`m¾?ÁÚoÝ&XËŽ9ÑZ&ŽÐZÃÅ‚C´¶Þˆ¯ÐÚ‚PM´–]s¢µìš­MÍ׎R@U ×p צ¤‡p-úæDkZy¢µ'1&¢µ×%lh-'̉Ö&LeDkm%•hmlã!tl«\!ÛüÙVb«„lO¢Û deÙf<„ ²%Æ¿B¶¨Zíñ TWmù²= [> ²%ú&ÈöŽ×G±U·$b{fÀ|Bl¹Šdk»o€ ²MŒ­ [uJ@¶C1/Ù¦Þ°¯­#¿ÑÛÙŽÖH„_³u8 ŒŽš:âÌÖI#g„ÙÚÊ6¬!lk-zÛV{¶ˆ¤P[>),¨-€‰Ú&ôB¡¶ê—Bm9g.¨m" )Ô6­ü j›| j9±¢¶õÔ6âðYÔ6E¡?µM¡fAm#ÿHØö~„m_/°mp¶½í~¶·o+l â„m‰âLØ6c$™°í% —°í‰ik¶×ójË®9Q[ö͉Úr¨ûj[ãIyAmù&r¶|Û0aÛ!lË쟰-P…‰Û^7AÜVs¦pÛ3ųþ„nS8ÜV]¸­ñB¸í\Í·µM=i±î¯|«KØÖßw Ø6w„m3_ÂLØ–“°­úå„mo ¶Å³Á„mÙ-'l{JlËn9a[<-üØ6 j ¸zAm#Hµ¶²¡¶@Ôöþµ Em£gþÛQÛèv+j­ü9Ô¶*n[‰¦þÿ}}K¯n9nݼ~Å¥;€OöCÚi€ @Iœšír£ƒ:ÄŽ ¿>"¹Ö"ùU9¸ƒ òð£H‰¤$Š[RÞ–AJyÛSæmy]ó¶ûgÞö7iÛñ›´-HÛž°µßMÛ®à°ÿø3þÿÿ&m'·!LÚ^¬¾RÒÖ ;‘ÆÜÃü«’¶¶šŒÝ6“¶æ.­ÀÖ– ±½AÎÖ("sŠ”­¥_GKÙ> C¤lon’•³µ»vQqË7‹Wªi‘¶]›y 3m;X—¨´íÙ‹kƒÒ2i»Œëެ#“¶{Y[»Ø"6lÊÚ>’¯¬×RÊ6.@úµ¤líúq$q‘²µåãGÊvÿj…µö gä2™±=7¦Z™±µtl "ak§z‘{UÂvg/¶q…௙°Ý_¦†™°]ä}•°ÝîdÂöŽLØ(S¾öx™öE¾öÄ©Sæk×â9ÄeºvLTÃ1_;YB©|íµ1ÓÉ|­­˜‘ÁE¾v-QŠ|mÉé"_›e•Êׯû3¿–|íγ åkmû€ì,òµö?ªh‘¯'ækÓ#™¯M—d¾6]’ùÚtI&lÓ'™°•O2_›>É„­œùÚôI&lÓ'™°M§DÂ6}’ ÛôIælÓ'™³•K*g{âïHØÊ%™°•G*a+dÂ6= [8$³µéJ×Ê!•®•C*]+‡Tº–©l­©d­|RÉZ9¥’µtJåjå”JÖÊ+™¬¥S*W+§T®V^É\­œ’ÉÚtJ%kå”HÖ¦O2Y›>©d­|’ÉZ¹¤’µrI%kå’LÖÊ#™¬Md²6=ÉÚtH&kÓ!™¬M‡D²VþÈ\mú#“µòG$kÓ™¬Md²6ý‘ÉÚtH&kÓ!™¬M‡T²V©d-²œLÕÊ#•ª•K*U+—dª6]’¹Zø$µé“JÔÊ'•¨•O*Q+ŸT¢–>©<­|’yZ¹¤ò´tI¥iå’JÓÒ#•¦•G*M+dšV™iZ:¤ò´rHæiéJÓÊ•¦•?2MKT–Vþ¨,­ü‘YÚtHfiÓ!•¥•C2K›É,mz¤²´òHeiå’ÊÒÊ%•¥•K*KKŸT–V>©,­|RYZ9¥²´rJeiå”ÊÒÒ+™¤•S*KK§T’V^É$­œRIZ9¥’´rJ%ié“™¤¥Of’–>©$íÙ3´tÉÌÐÒ%•¡ÝÔÈÐÊ#3C›y¤g噞¥Cfz–©ô,ý1Ó³ðÇÌÎÒ•¥?fvþ˜ÉYúc&g陜¥Cfr–™ÉYzd&gé‘%9K-•œ…K*7KÌÜ,=2s³pI¥fé‘™š¥Gfn–©Ü,R¹Y9¤r³YU„ä¬ü1“³ôÇLÎÒ•œ¥;fr–î˜ÙY¹#²³éÌΦ7*;+oDv6‘ÙÙtFfgåŒHΦ329+gdn6‘¹ÙôF&gÓ™œModr6Ý‘ÉÙtG%gåŽJΞHÄ"5+TjVþ¨Ô¬’©ÙtH¦fáÌ˦G*/+T^V©¼¬\’yYz¤Ò²òH¥eå’LËÒ#•••GfV–ɬ¬RYY9¤²²rHfeåÊÊÊ••¥?2)+TRVþ¨¤,ýQ9Y9¤r²rHådåÌɦG*'+dN6=’9ÙtIådå’JÊÊ%•”•O*)+ŸTRV>©¤¬œ’IÙtJ&eÓ)™”M¯DR6’IY9%s²é•ÈÉÊ)™’M§dJ6YÙôIfeÓ'™•MŸdVV.©´¬\RiÙu²±¼—G*'+TNV‰œl:$s²pH%dåLÈÊ••?*!+TB–©|¬RùX9¤²ôHåcå‘ÊÇÊ#••K*+—T>V.©|¬|2ó±ÔSùXú¤Ò±rJ¥cå”JÇÒ)3K§T6VN©t¬œRéX9%Ò±é“LÇ–Ú[¤cÓ'™Ž•K*+—T>V.É„¬<ò÷ëhÿÌ»UâŽzÄSˆñS‰Ób¼-}ü¼ip,íÿÉ2µ±’Åá5ÒÉAð瓃­÷K=eàß)"~Þ•ðkg2nø²ƒfó¥`ü«˜ÕêùÌÇ+,”ƒìrbG" /U)ã=–ÄÜnÉáö t¶qãÍ—”‚”’ºPÎÌü€iŒH ³{6Ø»8*w½z@éô­Ý0$8ýKòd@8šð_sYÔKvÈ•Mˆa>÷J@©Á kAÕ⊯¼ÓE˜árx_~œå?σ€]Ò‰)¼609Ž6üÄøý|ÉÁ*F¯ÒFÀi—‚’ºPîŒ[X¿+Æâ´÷ñ‹gÃ^3mqvI±ß%ÅÒñœÉ@àï±Ìfá=DùO60Ú…e$‡¦U‹kèü†‘ˆ$Âø®÷ñé°_ë©Ãš]R”W‰à ƒ#Á#Þ*ÿÀ"9<2ó<諹RHF0èZ@µ7|¡ìð»`ž#BÞˆ -íkšÓåÀ·»¤ñd†(¬Îç(Gö anû?9Üþýf¶0FÚ¥å&‡¦•‹,¬Äe;C9b3 ïd?`² yöy„°‹Šl )¦¿ü˜{þ b|«•.ÿ =ÛCíRˆ‚R‚C׃ÊÅ3%˜ÃP0±‡d¨Ài`Æ’×b&Á&'€3–ƒH@Œh"C e ¤ƒ®T›ñŽ…eðÞð7afÔqôOØ%õÒé¤X¡ó*Gö aüô#9¬µÔv—6ö6 …((794=¨\¼lQVÉÂ`{ãx›k`T1”UòsF, âB61¬E21\â‚WÀl!×È””‘ ºTíÅK‘ò5aÂWž8¦§'¡£øZ\–ïé[ü^ |M¸ ЕØD:d $¤³6 ØãO[”èHBÛsõàˆš’ß8[ÅëO¼'Á ŽÂ º‘‚›Pp¤ ü;$į›Ôêþ ¨»[hDmL¯÷újÃõ´Ð(0‡ëé¡¿ç`°-Š ñ¼{hì:@1ûüÏ[¸˜0è{?°¸# ¾🬚'ŽyHaYA72ûuG¼P»îþ‘?¥r60Æö® >ä§Rþ®E DÀé_Ö®DP`‘RF±ÅaURÜ86 3l¯Dµ‘qƒR0n@H†¦D(fÝÕÍ01nFÖ¿Õ Ul%3Û[Íp¬_Ì0AšabŠø{™JQlÍ ?t bþIwYç'&Véž\.«xå:ì<=$Å»frÌu~bb•.XÅ« ­ó%)$%8t=¨ÜûÕ\Lo#*¢ä@¬~KÛoœ‚âØÂÒüçäbÄÐÅøsx‹IR@<ùh*ÅÞ»½±½y˜OŒWäzßz5˜=¨ëz¢†/`ÔOrEpĤžXC$ÆKBÉÀžm¿Þl0Æ×dH Ê] ªöÄjW& 6UÖÃQ ›.#æ¶lWÅœv~±•`mË»*qÀ®Kmh_&)H!¹Á¡ëåŽÃç¶ÓoýN„UBÚXQiwÙ[žÞlTU¶fÏxOCgœ‹áhÂAÌ´JãäpÚj6á +øwˆŒ_7 ¨U<½’ëûÄ ¾ïÆòµ¡¹À猛lIpdž¿'¸«µ9¥»Økm/HAÉ «½ÎxÒ¢˜"14¤óì¦%®ÅÏ·[âðÏü’á´Da`Gä@;Ciˆ”A”š šTmz6¨X"12¤§›"Šu‹)޳›¢]¸„Ó…1‘LMÈ)þ.¡iÉM jöžS3`$W”¡¦Ü.”šy²ZÓï¾K¢ •ù¹Ù×lˆvŽïG‚¹ÙLLlÅ!6“l{MI€?K@üº«½®xÈ¢„b,Õ9K„À%„\oŽ÷у#áŒ! ‚›P¡ ü;…æÏ›ÔÌ¿)oš#Ížñ¡DÑì±ÎÅÕ£#á¢ÙÕ£#9@r6‘š=-µ¡@ AI ] ¨æƒ:¤ç Ö¹#O$òËfPÌ3¾rÅØc—L‚yB‘˜8_œ?¨ PH Qìõçû~6aÝtžm¬ˆ)]íŸs(øyvÖðou’àÂ9`@8ÇJt5p$ØBeÐ`Rêì¢U‹g¶³4B6xAz)|Àwæ¥4ÂÝÎBa·I…a•F$& Ä…jC¥’‚’ºPnŒZò ªõ¬{GÖ÷å妪÷³rk¿š‰vYj©¬z¿ÄDµž8 šOm¨ÞORˆb”Ÿñ©? tlVð†(Ìë½é_‚›%/]Ï;v!-5]<—T¾8-㿎kK“}ÀÚ»RHÀñãS~(eéÊ«)% eš1ø’ù óH¥®= ˆ—_8œK+aL.þ\j¡¢DE?>5 ZwÍ'Œ\ ?[Êduç‚’‰Ó>Ƽ+¾!#ÁÌ&&&’â€daÞëÀt¢¤ ŸŸñŸñ¡¥'û4,ÌŒ.nÓ0n(Óðõ¶iø>Ê4,@Ó01œEñkN²dŸÓ0ÅÞ§á.?•Š7ÃóT,1qªeŸÉìy –—ëTl.çÝF¥ˆoùÄA0Æ„ÁÁ–8ààKmèhLR‚R’C×ÊÝþ K îÄ04ßþíR†î¸Ç£÷û‰‡HH±vuÏ^8Îà. B390t³ î”B”›šTn ˜*¾ÃmÍÀy‡t†øçøªo‰’áŒð DƒÃ7[ÈODA©Á kAÕûò§0êõ½OÊ~¹J¶çnöM–=\ —a#N4‘£F4j”:Çý>>Gí9ñ$#Sn‰‰Œ™uñ(µ¼×›9·ùî¸h¯ßªž3ç–˜H™‰RjjCI7I! J ]*wÛÇb5ê ƒ°ýÄE( ë¼ñ&ÿß?‹ÀïcN‚÷…Aàu¶aŸ2B2‚Aת½~^“ ʽ£ÇIܵ®0ym[ “öÁßx’A “ ȉƒ šÈ(ID%»TÍ×ÇåqéÄø‘°wñpØÞwàD]NOGçß/€üyÂ6ÂìîsÉ >ÏÆ(» ˆàð¡Dhfýu¶C›)ëá»|¢Ë”´»¶§•”Ù7˜û(s;–˜Ê<­Lmh;&)DA)É¡éA寇E&†u7‹Ä½PÅ"÷³[ä>»E –EC‹$›EJPF™ôø­EÚ¹»æôc¿+Æ/÷>vs°k$~ð‚+€.g<¦¿¿aoú9á %0 ¯MÃÊÆ0»¤ ˆäЕ€f–«ÌmîwÁ`#l=ì¶€².ëÒNú:öº·>íß}„µ•NLì„Å;eµ¡½´¤å‡®•óAJ%’0($²“÷R‰¤×|Y‰t¸ƒBÛ[2¬J¤ÄD!‘8 ÐHoQ°I2@RƒAתGLwZl ƒµ’õñ(ßÏñµ\l]ösù~ÎòÑOù~N°V[‰‰Å’8`1¥6´Ü’¢ ÜàÐõ rþpkY“$&VþÅx®At\®I®s´ƒBû~|/«š„¹&IL¬(Ä+µ¡5‰¤ …¤‡®”;·0©œ0 ÔJôëkïºájØ]¢åŒ3aé& uéM¤j”A”‘ šTÍ_n¬Á„†‚·¶!RðE•Œ%ƒÏçbâÆ 0 œ±DDr`¤Ð«-Š%‚’ ºTͯ(;a°€·.~JÒ · –-À5îÈÍbâ½ìýk ˜XÁ‹VøjC{IA É ](g™Ì¬1ÿ®,*Öl¹—0/N,Ë’‰L5)lÊ~ ÁZ–ƒE9pÑÁ6rYB)DA)Á¡ëAåÎ<ÃMLÁú-yB«+ u†{MT…‹âÁå/d@˜g¸ÂàVpD›¯ñ—B€2’AתY:ómó1œžìF’üöV—Y– îêeávîS39Î NÌOW/éV9ÃQ QPnpèzP9d«d·㿉‹\˜¼Ò­œÊn]×D‹·Û[ü\Ó[ ;¥Ÿ#{¥”ß’¤ |äÐ5€Z—?XPrǰ~ÿHžÒêrQãZMÄ(ß XÍÄSJ¶æ9nbâ–xJË6òB$e$ƒ¦U›ŸæHŒŒ 7gÒØpMj1Ç7f‰âêæH8ÍQ9ÐØØFš#¥ …ä¦AÏß1ÇëÁÌ0" ¢À‹‚%xåkÆ‘û©>—=±\JAV!†Q $ØBFÊ@ ÊH] ¨fÉÎ!…¡jW‹¼º65{x‰U=B NÕFä ÝÞÏ !D0z„ìZPµÇ‡2 B„A9‡uñS öy o„\ÏU1§ùÄ~U€U’˜¨è‡(øP,‘ ø»„ÆÏ»ÐÌg›³…ÁŒûà‚YÎȸL¸ÌÙö²}!xOÝ!æ kÊ.p>f 9cSQPF0èZPµ;`Gˆaxâª\ \Š\ÂÈ‹ë¯Eqã5 0 œaDr``F  $5t- Ú»ÇPfôÁûKÜy½s†»ú±úÜÛÖ 3ü'ÑÝÑF ÿ")(%94=¨Üü ‘ ¼O ‘º©ZäÞF ‘÷vµ™0ãˆ0d€(¡2ŒPÆÊÈ8ÒµÕ¬¯·öxb¢@Ñúxfý"oÜÎ Ç{{Z ä½Ç ‚b ˜މ‰Eqˆ F5Á GŠÀ?S@þº©@½Ö¼Ö( áFÖ¹O~¿_® g‰Ò½ãIRì¸ ²D)1Q`$(@R*Q’¢€ˆ`ÐT ZÏÇÚ11.ÕÞÖŽùP%׎÷~×’3¿8ïÕ¯ pé( ~ü5Ö…b¯•£ ¥#ƒ.?”ZÛÆ½e³„AT³¾e-Ü3,Ú%5,Z§=%›%Xa11ÕÄQM(*JPj0èZPµÛM9Â`ßo]ü”«Õx}fìRÂZñcyì…aeq@b@m(s )H!¹Á¡ëåŽ=,:Qo5®Z—­éR}ã¹5c\=;-@ÆH m ¿¦©‘}#¤#ƒ.?•º|3‹•˜HBYïÎ’€ÃÓ™Åò—F%¸ÜÔÄ@0³X‰‰$”8 IÅ&”Å’ $Œ`е€jç%äx ƒF¼pPÆëi…våçÁGЀ£{ZÙ„È£¢€|eÈ‹Tk|Ý-©švøºr@ðRC²q~Õ!“†d X#& : 8l!GŒ2hH)cyÑ‚ª½1Œ:yJLùWåä ONäÉ“]Ô:F%xÃÔÄ€0Ož„ÁÁ‘8à`‰MèäI2€2’Aת3†RkªÄ`I4&®«Å’‰gäšjîí»¦ö(y&¬E1\T‘WUlC«*I! HI]*wû`–NH–}Ê„Åw@rJ[VOpü‰¾Y9Î)MÌHäÀKCkN£¤ÜàÐõ€róˆ‰Nµ‰‰ÒëeŸ*QZÀ'MTz`·ßÖª41¼\Þ˜0k¥â€Ò6¡ÚÉ Ê] ªæW=Ûë7Q|WÌe¯Ây?V«òúí|œ…°KŠÔµ(n3¹ä ø¤ ³YIzrxž¶0FÚ¥ …¤‡®”³tæ[OÖ„Á¹˜=½—s3¾3“'kvI±2“b­ùg9›¬“µÄĹ˜8àÜLmèdMRˆ‚r“CÓƒÊMÎRÚ™˜(Ì´^ž¥´3žÌ)•öêà•À¯qN‚YÙ™ï üu›ä¯ÂN @ 8~|ÊO¥ÞÆËK„¾+Æ?‰õÞ}ìÔãöŸý!ì2ÞaL¤XqÊOÎò¾Ó!ƒk‹¥ ›CìBBBƒ®T³df7FbdJqéušÚûiŒÏÑñÝ §1 S"šÛHc¤¢8»1v=¨Üó¹† ›-ÊI(žb* ’çêkÈçékHÁZ‘ƒ9pÁ&rEBH Á kÕ,›yµà/ b÷‘3´óM© þöÜD©L»WòÝ Vð±›Ûõn•¢?„eƒ®U»b²+ªCÕp¥º$ÇëXE·H\'ÅS²t#œºCÝÀ¢ë®Ô RH9JIåšPîõ—ŽëJR,߸^ Åx諬$ß·­$í¥º’L˜+Ia¸$.ÑD®$)ƒ £4-¨Ú4 NÚÂ`Ê}íV{ÍÈx²¬ÌÙ¶í-³øiÛÞãH sÎNL̸â€Ymäœ !8eKFLÙ] ªöÚPöRÊÕˆñS†ÕŽ¿Éuø â.¹/S »¤þGRì¾PM‚wç ³ûëÉa¿0Ðh#`oR€BR‚Ç¡Üc ͳ֞%&ŠÇ¬“gÖ–Å;rYzfoÑfeš¥GlÒ³òLÔñ÷(+#{Õ©y@<þ¾+@­G;ã8®ÐŠ˜ç ý½„°ê Ë^â-<Â.æå¦”¯›š~OÐðsØcÉàð\60Fø-’ ºPÌò™ö£ÍÏ|¾+ƾ—X ?õvØõA»ËíùhÂÖì᯻$…¥6g2è-øˆ9-à'ƒÍï`È&vÍ „((#8t-¨Úí™50 ‚źx–oð:a©yÖÄ<+Ák"2 ¬˜ÄD  ¾E-¨F2BRƒAת{„-! @ë㲂Ä+‹eùo„6R˜•…`® ã @1ÀúPMhID@ñû¦›>Ëeþ 1±û, ZŽnùZdæl›»_•âŠWiÈA0óÂ`÷/Ȩ å$)(%9t= œ¥6óBÂï‚Áîߺ¸¾Z‘_2ðœ5G~ÚŸ’€¬ôAbbóOÈ ¨e$ƒ((54-¨Úˆ¥—Žw§³ÖÇoÞêOîšJO¹Yôñ&‘æñnbâtVpz«6t¾K!D@Á kAÕìå¨j‘DÀœ^¨¤¹á-Òbãî9Þn‚eÄÐœÈæÆ6Ò )…L6„”EW% ˜%7ϺY[-ëàY¾o⣪¹Y{f¤°I0ã‘(1 ¬½Zbb§E؈©mÕ$ƒ((5t-¨š/ÌËAabü Ï:¸>¡ÂÇaó¤ð™Hc‹¯]@ž&&úÄç€jB'…‚’ºPmuØ3ë’?1X±ÏxE+z]ë÷eÂÀœð{ZH{¤¢8º=v¨Øåã˜Õf‰‰Z1ëÞ·ÜÈWÓUlf&PËÑÌ r»cÂ,6KL”Š‘KÉÐDÖšQHF0èZ@µÕaÏlc& úüŒõ›†„Ͽ瘡|ïÚ _»$ÈAK  8&l"GBˆ‚2æ°?ósÔ,µùÔšUaPqj]<Ëm£|É>kVß-Ê·E0ÝÜÈ@°JV5§d©j€«’ þž"ǯ?T ^î䥮"1èï·”¹¼›ç¦³¬âÝîVxñî›ZüZË*„AQ„~Ž¢ òWU…¤ƒùC)ë§§‹$Æ•ºâe()Ié¢Õ~´Z´wad¡Ô jÅŸK+4PÔ‚¢€|ê—¦ÕZÛ’ü‰‰yȺ÷*IþwÇ«©šÉÞýjÇÛïr‚wV„9“%&æ!qÀ<¥64“I RHJpèz@9Kh¶;Á…Á•ÞÖËþ®ü¶³Ÿ÷G¹Ü<¨‘`9°=2 ¬;ÁWz‹®üfº\2ˆ€RƒAׂª]Ö×¥N”Á½û[-=íÔêhutvt¶ß•âŽE!V]b¢ NP%§6TGG!H ©Á kÕ,©ÙJ§s‘uñU¾‹y+æLÍf¯½S\¦»÷Ü#ꑃ`Îf‰‰Éˆ8Y±œÎ(ERPJrhzP¹±EÓYbb6²÷&ÊU€¯=GQg³÷<[©î{^þð{šÍ„‰¹H 0W±Mf’ ºTì¡ÔFFlCÞó(¯C.p~ìcÞói5@ïðö’aíc»qÀ.EmhC!H ©Á kÕ,©Ù.xLŒú¼¾uöžo]Fº G]H.xÔuc‚4aÐçd A{ë2Ã\ßKK9ìM ªö|ldƒà½ºø½Jp·7)ZôWÝÙ,xMLuþ¬è/ b790¶£‰ þ”’ ºPÍršíd>1”lÖg,¿R^еvçÞηßy†¹‘`©& $#©öÔ7v]·ùÕ(#û¦iAÕnÊr># ŽW¬‹¯òò;z^ã’úãñ…â6ƒK„u@“˜8_œ¿¨ ÐH RHnpèz@9Ëk¶ÏÄD’Í:ù½2 gÿ¿íz‘w¾‘+%Åu¸Å‰ƒ`¦é„A’M„SJÓI Q@JqhzP¹éÃYV‘¸fþ.Š–ˆRÓ¹ˆ¼F]V.ør{‹_ Ð"’.ùs.Ù@."! (tù¡”¥4{|&›å@k|¼æg|¼žï­ÅGŠÂ º‘£›ÈøH!D±õøØµ jk^hOÂpRºâYMZW¤¦Ë´v8iÅ=#ü‘áœÖ„Á¬DœµØFNk”B”ºTî‰ÁÔMbâ|å½÷ú:©$”—ôngŠv–p•aЃóqÀñ‹ÚÐ … e$ƒ®T»×"¼Å~"¹ïxE‘ý~>75’פXµM`Å~aºÉ¡mdì§¢€`Д b·d3a²ËëK?~¢Ô>½³3§·¾v Á@ â£0ˆnïèññÝ?ã#… Eƒ¦Ô²dfVWLÔ[÷¾åÎÛ÷õ(UÆïÚ‘½BŒÍêT†uÀãý¿F ±Ø«ÈXˆ‚ŽŸòS©E«B$1QàñÚ‹ªÿXmæY!2l½s4Šåç·cÉ @² UˆPTˆ¤ˆÇWK…È»"Ù1› ãÝæ][žTYðð)S¶0wœ)“bßl?Ãú Æý#9„ÿdt°”‚&)é¢MWÎ{l>%’˜Hgx¿™î¶èôM"Ö¾o!XÿŸ£0 ÌdEÁ\1L`ÙŽlé”A” ºTíF¾kÆ‚ÁäŠpØzþ¨éÔ…¹êšqÁ­íøkXÐ%&–|ùóXf\3JP:2èòC©ýðAÔ¡nÁø‘¬wnyAwÁw}?×Ú=¶z¢½àÓMMãÀµ`üH69Ä‘m¶ÁCÝ”B”ºTîòaÔ¦`|âüfÁd¯[Õ³ÖIp»©‰`ì.û1ˆíI¶À LÊ@ ÊH] ¨vxmg.ˆËYïã3À ¾JÚÇ}kâgXh¾žÂ€0תã«Ùä«]5ÁåpÊ JMM ª6#®ä¨ “~2(g$¥Ë¨­h|ØÌ²í…ƒ` 1ìurਰ7J¡‘…”ø¦•{cªcQxÁxM·wòû¨æ{Á#æRV…/L-Û/ŸˆÉ@0*¶ ÆkºÅ J¾³Ö„§ ¤Œ`е€j«ÇÞúuIÁ`V:ãpÍZçûÕ§µeŠGøÆpƒÁšÖ„Á´FœÖÐDÎj”A” ºTí±¡ÌVÁ`}Eѹ~g¤\¸ÀZ˜¨ÚNŠ× ®p ¬–0fÁüy, ².±RRHÄñãS¨eÉÌ·bF¼®1"%]¢Èô¬µæS1Î " b0D°… "”A” ºTíŠÈÂgÁøÆÑ{÷Ìå’ã(YHtÖ<ä‚ïˆ~d û‚ñcrˆ}¥šàÆ3e dƒ®T³\f~>ö]0Q´è]œE ŒŒ´Šæ­e‘Ö«üÈ€0K Æ‹“C5f,{”" Ôdд j3†2GMvúïõpP®–wIÏZñ³àËbIr¬a½N•«¥½]7H¡¥”9ðE*÷Æ`æÒ˜®líŠ\ Û6Ô£Âa—c‚µ±¹êÚšp.…ÁÊ–¸òE¹4¦ $Ô`е€j–ϬÕs‰a¸ê‹ã |c—qän…ã žf'É€paîVömd$¹ê›äEj0èZPµÇ‡R‰ž‚ñ<Íjw¯V‘ÏŽ,*–NmI8ÇMt;9pXÐDeÁÑW‘] ªv£D»5aftù]öbO<^vkk¬®º[[K¡íà¯h·F 7[ü97cl wkw}Í%¥#ƒ.?”²TæÛB?1ŒÜO¼®ÈþDBºÄþ³Þ«P¼‡›š8ÎØ/ B790´³Œý”B”›šTnú0ªÞ `¼ZÀ;Ù_׋j‚%Xd¤Yn°#öÄ"ðÎM‚Q P0^, (&`ª6 "Œ`е€j–ͬ— öȯ?£¢-ô;ë¦Û}ê¶{ìÛÑ æ&;1Ø"“·Ðl#7ÙB”‘ šTmÄPæª_,Ú×Ä»å2ؾå­W‡/I0(PìÛ ƒ‡„¹ìOL¬ÚÅ«z¶‘ë~J! J‰u׃Ê=°kfFŸŸ%ŠìÛ() ó®I ¿™òI€ADÄý1‚üC$ƒ¥céò‡R»%5kÉRb°Œ°Þ-º}‹Œt®CöEx…bý¿•…Œ`­CËqÀ2Cmh!B!D@©Á kAÕîÉ:11ÕîûVy^ðñ1YïûŒŒ½(ž6Y'ÌÉZLµâ€©Xmh²–¤ ”äÐõ€rÖ¹g7bJ·Ÿuàì ‹6nÇöU‡mÙúõ–ßÎa½4ƒF D@™sØ‹Tìò¡T¡{Áx¨÷pV±/)"3­:÷…‰ìuRøD“ £ ½`¼P=9x{6:w‰€?K@üº«½,«ÙBcbØŽ³¾+0콜Ðx<=4®Íýy‚…Ah$>µ¡Ð()D±µÐø¡•1’Úª%&6ZÖÃå¿%X¼ž[µý<Ë–{3Œ s§–˜Øg‘¶ajA5É@ É] ªæ‰µ<&,;æó.ÎcÁ—JÇ„ s×B‹±¯Åðvçïâ¯`ü”/Ä!`6ÁcBÉ@I](vžXår:KŒ«ÕÞ_ð‹U®æ³ÉkQŒa‹ü\€æ3b8ŸñçœÏØ@NhAºTëÆkÔ©1èí6KÛ{WWëªG7ûX®®NZ#­®zì"ö©RNJ5ù¡”¥ ÷R3˜(yöÞ½U=ìö‡«ÖL»ÿÁC)¦—%Â,h./yNQm°hZBˆ€RƒAׂªùë,- æØñöYÚz&·Ø.éè³´Ý^8Ö,M çXràÌ6r–¦¤ ”äÐõ€r–Î\ƒion1n ?'°N6s˜v’7o†vQ=i-‚5ç˜Á‰àaŽ˜ÛoDƒ%ø½—Æ@» ¢€Œbд jÓ2×5. qmâap†½k+qÒå<{\´D‰‹…AX#†=´a‘"@‚A׊½>ú(1ñýÎj'žJÁ÷= ŽgÃõÐÂÜ>­ŠâÞÜÜÄ0¿Ð)ÿ†'9ø'>Ù>Jðw Ÿw% ™¥23ûò]0ÈÏXŸ%ÿ6®5áãrÖzñ·51 ¬Ob"?CHߨ%x$ƒ((5t-¨Úã#YUF’µ—V|–¤ zÕ,ä‚= €‹jÄPµ«æÕDªv··ZŠÔT­iÕV‡]ùUÄwÅD"c¿g„&$:V Šà¥TÈZbǦƒ÷ÂA0S!‰‰L90ÓÁ62B)’‚R‚C׃Ê]>˜U9b¨\<ž¢5íã¢Î’øYàí—ºN݈¡n³¤uÔBU-dHÕ(#UkZ@µ-Ï£MlÂ`ZzÎOœ¶ÏH—yÍÚ«3ßjo{ Áš×ˆá¬DœµÐDNk”AQ šTmúP–å¾0X­[4¿?Xríõ¤Æ%¤uR\npâ Xë}a°\'.çÙF.ø))$%8t=¨Üû%‰a$xzû‚çg”|kb|Ë4ïrþ!X¡$1ˆïÓ¢ä;?£$e …¤ƒ®T[zžõЂ™Ñåw]п5-îR¶Äø‚gX›ý:®…ÁÒV?çÒ÷­IoŒð]·”Žkã.?•zb3B 2Ƕ‡ Óql‘ÎTȱ]­ íX¼Æ^9V.$1‘Ëä:Ô†²!’‚ÙÉlH×#”³.{Û¡¼0²¥öÖÊ‚ŸØäÊ}oƸŸÝ §1 ¶D05µ c” ¢ Ô`е j÷‡1&fF—Wc<öãÃ÷ÙqŠ1 1CcäÏakä/c”$ t²æû·Æh]uÕã ÆWµ‡¥>3=°à;æn-‹K´…ž0ÎtC‚\'&Vµb€U¯šÐºXBˆ‚2‚CׂªMÄãX»ò°D!^?;²¶7qá/,9<MØ%Æ Åe†–[þ"|5’ N?ÍÈ&Æ0»¤àд€f–Ç<êAš08³.¾Ë1ÙqÌRSá‚>¾5ÿ„uŽ–˜ª€NÉØ„ŽÑ$ƒ(54-¨Ú°`S!‰‰5ÄqÜåÉŸ%VK‰» g˜“(fÛ\'ÌEˆ0XCˆÖjC« AÊH] ªöDPÑ1Zbâ̺x”S²ãD>ZçhÇ HçU)Þˆ|â@˜çh‰‰c0qÀ1™ÚÐ9𤠅¤‡®”³\fŽÂÌèóòÆÅ‚Ÿà¸<ì*gMÇ%8 Pp$†±?gìÿ Ž@gŽ]~*uû0?#†n2â½pzÑ@.:ýl\íDûMØ…àô3aà&ä@7béh‚’ ºPÍ’™+¬Ìáï'}ÌêKªX[`šsÆ9âEqÀÖîÜ<¸‰Â~9 Âцÿ‚¿L99X[¥ 1Ì.ÿN¡ñó®5»l$óË‹‚‰'¬‡ËåíK KF—//ïö÷ÛfŸü½`~x‘ÿð‚¿ÇwäÏÏ.RHÀøy×jY2󪳙˜‹ìŠ2UMÏE×Él¾fHIqífhÉ@0'3!0‘§*6‘“dE$ƒªõ>†¶e]4ßóxá†w®?]ÿŒõk‹§ívA=i](¦›™8Ž6üÄ\±~&‡ÛWÁÙFÀb—‚’ºTîüˆö‰‰]£õñ]v•ǯˆç¾ó¸î¯J°Œr+ÇL sÛ™˜Ø4’ö”jA»NÉ@ É] ¨vù® ¿OL|û½`{$œŸ†/з ùñøÔsÖIqûf&æ‡ÝãŸ~'‡ø4<ÛàÇãB” ºTíA„UØ'†QÛ’Ÿ5ªÛ+G‹ûw$­“Â/MfÔ'1›?gLgô))$48t% ™å2ŸælÄÐUîx%E®dïT\ÍÙKZ'ÁZUí£0 œ¾& < èHl!]2ˆ‚RƒAׂª]HUjãI ÷ö EÙV.·,ýsA#g·Ù{2 œOa°o$î+ÙFîMqìÝÇÙM‘pš¢00$r ¡±4EJ!г›b׃ÊÝqÈ­ºaPµbì/¢£ªåñxxÖ½œÃ“ÖI𸹉a•½$&êVÈ ªZÔ«^$þ.‘ñë®ô²üLû’$1Q!p¼‚ ‚sD6ZçÜZʬ}”…„Yb˜¨ V ‰,1  I@Á kAÕ|<ëSzÜ,A#2#]†lFÂ:).·6q œc& z0(lBƒF8¨šCÞ”€f–Élµû‰‰cëáòÐî‚g}f×å|ZyÅyíüÈA0.„Á¹ƒ8à\BmèàBRˆRŠCÓƒÊ ˬ LLõ3HaÑßyyJ:‹O[ἕ`º½‰`V ƒ¢>q@Ñ›PU d e$ƒ®U{c0U¨* êL­g–¡ž×kQ¡êyÝž›IŠ7ÌM «P51Qg*¨CU*T¥$Ô`е€j–Ó¬7à ÂÀ…'R&.<%žd-†ïiîåõ¥’+aaÀAqm”H)’‚R‚C׃ÊÝ1Ý¥¿ o¹·úêÏ‚Ïrnè’^±ÜÁS²–»Cg!:šHo£ $ Œdе€j·/MªjÂP2!%÷ÔtUíÙ*fÁG¬ŠÈ@°T#†’‘ƒT»+Œž•2ªošTíú4IahPO7Égÿ4IK°²¤ŠwÄËù=Ã~D1ÃÞð{Z ƒõ-pýË&r…üÔGZŠ„`Ðu b¯d3`J—?5 ÷ŽH¾ä ½w$h@1–aîe‰-Xƒ–ô99pLØFŽ¥Ð¨Qîö¢”³ÔfßÖƒ^¿ú¶æ}ëžÛ%=ZõÏXPÙ×$ÈaKLôºhØÞº£vÕ®¾±‘Œ9ð¿Ýؘ³·2‘ÄDˆ³>.1rl‘žÎ9¶«Åȱ=-F&Ì) Bœ8 ª ÅH ÁI#»¡šõØÙnILùY?å˳±Ýõ ÑÚÝ#‹-Šý ƒ#Á<4LLœù‰ÎÕ†N %…((%8t=¨ÜõuŸÕ$‹j¯¬,9ŽO“Üg7Éýn&)P&) L’ `pjB&)!H!iÔM ¨¶Ü}ÏK ¿+&¾v´>žù1ä°g}ßú¹äØ#‹- {Ø÷. ósÉÄÄÇŽâ€!Õ†>—¤" Œdд j™"FIaãv¼ÎxxéD‰’ã8{”<ü&P1˜1’ˆpú9 Pˆ”¤ÐàЕ fo¼y^4F‚õ}‹Ï:‡»¤O™ÅÇ87³ÿd@8U†º=eŽÎR5Ê Õ(5UkZ@µcàhGªSú|VÍÞš rAš ZðpkKÕÕˆdä ÝÞšèÁ8ÏJ@©Ù7M ªæ§õå˜Fœ²X?å@tØkÇrL³ÖÞõàfÁï×Q¨S!âŒE?ÇŒÐ)D …„‡®4³”ÃSçµÄ`Z:ãµM[çS·9ÖðØkä¢pkÁš×ˆá¼œÖØBNk”A‘ ºTí¶‘,# Þú8{^b&p)ÃsØ…â6kK„U0’˜¨÷Ôƒ¨ ŒPHj0èZ@µÕa£Ýù˜˜8³.~ÊcDš:ÏÖ†Õ°Ý…b¶ÕO‚y¶& NÆÄ'gjCgk’BRšTnÚ`Öq#FÝï…kXf¼'^nŽZ 4–Žs„sÜ„A·ƒG…-ä°Q ,¥Î/Z@µ¹EpÉ¥–0X(Ùke5‘§Î•ÖD.›×f¿'ÁZi ƒu9pÅ6r¥!D@É iAÕÜlJdb¢ŠqÌö$ù‚Ûƒä.éÑê$Çâuì…ƒ`ÖA&Æ ÅuŽjB•B2t-¨Ú³]Fb¼--ZÎàǹêý¯»Ö »hcT€3ü ƒè  îl!Ã?e …¤ƒ®T»ÎÏI ]Å^¤¨AÒ.Fk®vï=FÞ§™[2 œ¾& \…èJh"}2ˆàì1²kAÕîJ]Bš˜¸BÔºø)—¸ûkÑ%¤ãžaO¢xÂÜÈA0/!MŒ«ŽŸãŠQ5 KH%)$âøñ©Ôº÷Oc$†¶dOQÅÖîûÓŸ­ãstc$œÆ( l hjl!‘2ˆbïÆØµ jkc~´ 0ØÜñ\Šö+Ï^68.èð5w\ûÄ@°64Â`?Bܯ ‰ÜÏPHF0èZ@µg‹µW~a·Ÿ£¾GµàY÷Ü.éÓ*wÇ ÇG:+ò ƒÀM ìl##?¥¥$‡¦•óÊ̦1Tî®/R-Á"M]”{=“3 NºN݈d`@ÁÙBQí®oZ©ZÓ‚ª½6˜¥~U”ŸZÏR >ìb´Z¾:^/<(¯G¿dXõ«‰‰òSq@y*›Pýªd ¤ƒ®T³üæl¡ŸFîwFpbdŸ_ŠýsÛm¢ÅŒã"q¬ØŸ˜ÝâÀÐÎ62øS QPnÿ®•»}0K(&"ÁÜÚ›+ Ž4uÆ’¹]³`¿Ý»p ÌX’˜â€P¡6L$ƒ‰¤D0éz„rs;<¤¿%&ÜÅz¹¼´à»¬*­Ý}«ëÊm™0ý-1á.âwbò7É Ê] ªvù`ÚEjËr¿+Æ?ðö>6s°«ªÃóÔ]Î᥿ßnoú¹à9av/IñQh¶0†ÙE E$‡®4³üfûNYL»s?Ûs¿ê¢ÒE}ëL¾–é»Û›8ÖĘ˜wÅó²ÚÐÌ-)DA¹É¡éAåæ§E Cƒº»EÛ‡Eg·È5`Í"Ë"…A‘ M¤ERHFšôü‹´Am•ž‰‰:MëcŸ3QÇ9xP<+=§ÙâQ(Î-æerÌJÏÄD¦8 ŽSm¨ÒSRBR‚C×ÊY’³%12©«åñ~eJR„¡$Âi”ÂÀ¤È&Ç6Ò()…(În”]*÷Äp*) Ò‰Ö˳¤ˆçy–ü¤Kzµbµy>arbXùÈÄD:QndJGJHj0èZ@5Ër¶;I…‘dã« ÞÒåÖîh óŸaqd@8U’–Ï6Šnã«éN©Ù7M ªæŸZ–zÏÄøoÚåKˆö<¹‹Ù줸ÝÚâçXð) ê5õsÔsªU|JRP>rè@-Kq¶«q3£·ç]…ö$uÕ*òØ"˜»ÛYüZ€´"FZáçÒ*ø§R@N šüTj~š!1²¢»™áÜ>Ípží´{Î+6Žd@8ÍPX9ÐÊØFš!„ ¤¦Ïß1Ã¥wX…}a´'^ gP·×+2È»¤‘Ç……æÂ€ ‚>ˆØü9#:ȘOH!Á¡+Í,³Ù ª3£Ã›%ÚËݯ£›â5òŽçdŠÄÐ’øsZH[¤¢€|äÐ5 ZO<|®[q—ÚZ÷¾yçí\ô$ì’^Q„#Šåèwe@˜·â&&¸öVMðV\Š€?K@üº«½Vw=¹óý®¬Œ®Ù6×ÓÞ¬8ÚÚêÞëv{Á§ÔÊŠ¬‹øs®›Ø@®¬(‚(("8t%¨ÙíØµ¹Â ²Öºw–ÊÛiOVÌZ›k¥—³Ü–)K„Uš›˜¨­%ƒ¨¼U¬Ì•ø»DƯ» Ðku×Ì«â¾+&*Ƭß,(›w<$ž%gó~[QÚ|ް32Ì’³ÄDÁ9° ŒmdÉ„HÊHM ª6}ó´01qØgµ¯åeÝaµ¯GÞâ’ŽV&iºW¹-%a ƒÓ>qÀi ÚÐy¡¤ ¥$‡®”³¤f·GbhNÏÑíññ§Ä«=Ú `…À«öH8íQXÀÞØ€ì‘ðï[·Ç®õ>’eЄÉ.ëˆÄ#âeÌÞ^J>—Qwa XcF {üíeàj#Ç Bˆ2–AŸûo†ìñq,®& <åÅSáô¤O‰§¯½wû¶a® yUg,_®r%´Q| RˆBR‚C×ÊYFó©•â ÐÛ:Ù­…àóÔt–Š_[«%¿ÖÈ­ «R<1QèM¨W *— ¢ ÔÁàC ªvš¤0´¨·½tmLJM^Ûl6ymO³É„i“ÂÀ¤Ä&§6Ò&)’RʪïߥuÙ3«Q&&LÊûªåµÝFyí[ì:H±¬eÂ4ÊÄ„I‘MŽm¤QRФ ”àÐõ r×G1Îzù*ß@]ûþ$Íg%¸Z¬ ™˜sdAP 0HJü]"ã×]赺k¶d0؉X—‡w<#ᢽ̵?m/s»Û›8Ö^&1±lUÔ†ö2’B”›šTnøHæç4‰‰¯a®=žNá×2×yéüžæ:N·§¤˜noâ ˜ßÓƒÏağ˨ }P#)HA)É¡ëAåÞÎt7aà,G<ž"g:ð¨xºÛ•Ü"xÃÞÄ€°¼MøJ0+¡…âlA’‘îÚ´€jVîÙîlɵ+Î"”|»Ž' Fé¹ëÜ[aÚu.¯/§Å‚•žKL$×ÄÉ7µ¡ôœ¤å‡®•»#¼hz†³Ó¹ÅãRœ½ÎHM—éíŒôuR<ÅpÎoÂ`~#L_jCœ¤ …䇮”³žxêùSbâôÈz¹ñ„Ù¬O˜œ8f†+1‘ $°Ô†R\’‚’ºPΪ ÛQ‰ñG¬“ßòAÔuyª:?>¹¬²||rÝgX~/Ÿ$&>|ZÂôí‰D%ƒ®ƒ+æ÷)¯Þø??í?ìíóÇöãoÿc¼õj7¯ÍçDM‰½yp'æ×ŸþëOÛ"Þ;ùîŸîWòÀ8ù²™ýG¡¶‚é÷­ÔÀõÿüi7þ«…øïOß?þýÏ?ý»¿Ý÷ùÃòº¯çÇÏÿhb»ö¡Ãku¿Ët÷¿~þþéïþð—¿þã¯ÿòË_ÿïßÿÍ?üÓÿÆ>Þ9öûùß\ï¶ó¿üõÿíçÿôÓÚõßç H?ÿçŸ~þ·÷‡¿ÿ—ÿõ?þé—?ÿÓ/ÿüÏ Ý×Ï~qÒõ“øåû/úã¿ùé?üüÓYÿ¶þW…µ×ñ¶¯w[[Ï"«Ýv¯ 䵕äy˜¬Ø?þüßÉòÿù O(endstream endobj 284 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 429 >> stream xœcd`ab`ddôñõÍÏË74Ò JM/ÍI, ªüfü!ÃôC–¹»ûGûOVÖnæn–?¼„¾‡ ~àÿî#ÀÀÌÈžžïœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡Ášz莂ñ˜2L<DAö³Ô¿ÿ¾†ï?ÓT†î£ß¯ýÎq”ñõ™ï!g˜´¯]QØ]+—ô½žímìNK÷øÔŠ*¹ïAì«Z§fÊy²Õvçå-íž)¿åOs‚÷]mæÒî ­òIß=ÙÞœßvðèô¬ ¹ßÕIìèªäáV3ý¡\ÎøýÜaæ•ß#!6;|ÿŶ¦er¦\ [qw[W}Åïò?ŒMuÝÝ•3Ú—É}ïüÍäd· ÂnÿïL× vü¶_!ú;í{Þ÷O¬|õÓ8Oÿn3³¯‡í(×n9.–|ÎnîSæôôöôôôõÌŸÀóf9¡§§wZï^OØÄendstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2450 >> stream xœ•– TWÇ'$dF ÔfŒ@q'q×VºVÔ­][׺[­Ò (ò¡­båC$ÂW²AH$7!€’¾A(¨h­˜‚ÒVG·Öžn+m-í¶Û‹Ým_ès·;ÛÚm»={æœ9'/wÞýßû~ïÞË#~ÇÅÄÆËsSw/Y¶0>#³('5ß·z¿7œçãçýpÊTÙÔfâCÀ3'P+B¶{ìn´q&Áçñ6Ë«åyªü¬LY¡ôw‹?´p!÷~T𦒮Д®KMÏ–+ ²³¤©»wH×EÆFJ×Ë•Üb–4B¾[š–!KÍÙ)•ï”&f<-MJXŸ Šß—ð@ät}·@„øñÝò¼ü‚Â"n¯;3³²sr—/$ˆ_ˆ8b#‘@$IÄ&âibñ±†XKDOëˆ"–XO„ÁÄl.zB@y<¹Ÿ¿ŸŠ¿ˆ_É¿&èôØß) š„ÿ"oRÉ3ø3¢$¡žàoüŽÆÀ¢lÖ£äM-™Í’›@ê~œ?E…V5ª+  ú*5–Ýü4´$)}¯ (é2B3tÀ ´(–L6kAÔ™­æz 5 _Â+­å`]X^ ”0 ²Ë|º…S¾Op!r‹±^ˆ‚ѧþÁßðþ}•Sá d«¢IÚá ¡»¼JNL´Î2 AåäpÅÛ8`EÚúô2Æ8)¤/ွþ r¬nßV î&3tUÑœ‡vó·? ǧEM›HÒ]Ž^úËÛS[¬ùI[NÀ¹fBãò.uð:Ï£®ó|ïj´KŒfE~Žy˜9Ï¢ â}ô 1Ñ61ì0lÈÛ*ß–R’É~ p ÿ¸~†à¨ù4{ÜÝ3ph˜Ûû¹üvYw2<9Ôtx3‹v ]}¬Ö%ºîAöó!t„WrÄH´ô“y¶ìJ—3¯‘ôW8ð»oæþÏ7]©Gó<@}>9æH¢b,ŒŽ\‘¹Ãù|.£n…pPh vhè§è‹µ÷à©ð×^ZŒ…NUÚ\ؾäw_„aD^ ¡g¢kÞÙâCÙî¬?îz\VÁOHwaê'Ó~‚“ÔÃÐéEoZ]Ç%èQò“#¼^[kÔ×2P¤U4W45´ÖðùÌÜJhèˆ×j»¨£/¯)ûBèt ÍÃp^§º!·[V›jKlXc‡—)Ö>2ùUÍül3cª²«ªƒj§ Hz¦ËhÚ§3Ëʽ®²B¯£èÞÞìgM¥á˜Ÿ¾qã’Å]û$çÔ­ºUcykdR©I‹–æ\˜P1´Ÿ]&M8-ÐJ žGªLÆ«Éd³2´¦ó˜;ï°b®{^üëíLqŒ0,ŠUŠ>ó¨\ˆq…ÐÿD/q’ϨȵyÛRw§»ÿÆ >$e±Å’´L%4Ì“-ù½ÚCÒ¯½‡{…%€ˆë={…™FBÓë ìçÝ¢ž‹ù¸Êš“ô5‰ïú>ÙëÈeÏ®züQí §4~ûŸAèS:…IxRXy£ºCqÞ…žË¶Ê)ä.·ÃN4£/Øz=ËëÔ}Þ1K*Ü%¥fî>wœ*È­¡Ò ]ˆ;BïC'ýéC­Þf¹—íCÏdÉBC*pV (ô}3`h‰Y„[B#ÐQZZÕæêÛÖ—X²€³Î‡"È‚bŸõì×ïß…îÆ7C-êj½ jÁb¶6}FBÿG¬eC-„Ù ºÚÒˆ„è½P÷Ø ¹Étûj|¥y®ºøÞ¤÷Å£ªxr}žF§‡4„ p8u`gOJ}P+âcŸÚyÐPÓØf;ÐQ²¿TWe4ê%-ç^têÔÈöe’ídœá MBnŒLõ dP+?(òŒ wŸieÌÛ¤ÕⱿ)Áž/ÝžøÌŽþ=g1';G,‡Ì>9ûS8 Pë«W\¢žó(ìrôy¸B×yg¡±ÅX­Õj£X¯L*zåŠÐ2ôà•‘±³%‰­L‰dò6M£„¨íª>üjÔ‹+ç.y€«0a_|ÍìFä~Ém2ÖÙ>v 9«è÷ys ‡ÐÞ‚o!ñ~MÒŽ; V“:kÚùå@ݱ‡â}öîÐ…Z«dI§ YÈUå*)º67+«ª$|÷ošPzQ ì‰~Ef›¤±ô ú>Ê¢¦2ZíqEQËÕä«^1²ˆo$½…s—ÝïÆ³?^ð% }ÙR«Ð å:¦(*1k3‡UJ{ÞPÎ0ŒÁó:&¤¥ ˜ëïM2ŠéD¬Ö¢yo„‹p"Ú„>‡ô¨¯³hÍÅýQ/W‡>äÊÐè”Xü\f[zücÉsøÅ[xâç*Oñt幆„,¦Ð]äÛGOklÒië¡X ù”­±ÛÝ6–™Æ §8QÌ+Ï}àDrgé+ N»SäÔmk;=61vr°¢-„ÞÍÞâæ2w6CψKY‰\‘Û™YŸÍÑûH|Of}…„néÈ•AZÕ½ ¨Ïè-Þ¬NK‡g¨ÕoâXö»>ü:šƒ#`%CÇ?RiPeʱ€ÃP­Í­Íe=¥ƒ@½yñ•·YÍ`n·äÀÁ#õm`á ·U¯3Vê`E üÔu• mÛÒd«o”à¥X(V&závs¯‰ î§’ùê&%N\»i>Cÿiïüµž‘ngW«CBKÎŽz¸>Ž„ÉñELuLw\E?ºg\ôÎÕ­´Ë‡–¡¦Oâ’ôLúеýW¹?Æ5þv8mŠÝâ·—8‹ JKŠ šK[ÚÍ­¾ô¾êöy*}ì^F5Ã>€äœƒdØ[—;„E(6Ôh®ªê·^=s²ÏÊš¸Cܧ7‚d‹QÎ!”gSvc½þL)‹K€Á 0ãïU“tÏÝñý¿ƒ{†îìŽ~ä¥s“ø· ªú?ƒ:L¥Ò—õm¦|iÝàö#Å·SÇ”?ÉÍ?ï‡öü _ þáðrk~yaªìŽùåTå;80*y[’Š1 ËÇã\ °ÒÖ—¥S¾qæêÿ5μðKãÌ÷¶¿<øÜJÀ8jç½3ÎG˽a⥣XY¼'?ß½§ÅÝâè`ð¤àGkÜ/œ PÒÏ‚,|dCIâ!lÙNïqxW5 ¹Íî²®@&@(šAM&“Éj2›kªûê‚‚\®†jsÕl¶X¬AwÄxçiÚendstream endobj 286 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4135 >> stream xœ­WiT×¶®¦¡«T$Úe ¨©ÂDMœçá:œEŒ ¨(3(43 (2 4›†fžš±@2¨ §½Fc"Æ)ƒ1W‰š˜{вî; j²^òÞzoÝ»øQœ>{×þ¾ý}{K(c#J"‘Èí×m ðwUNŸ1u£§w˜Ÿk°áéq´Dc$¾)ìÚû°×ÑL¥`j|z {LŽÎ Go  Ã(©D²Å'È. 02Ø×Û'Ôj†ÍÌ©SÉßùVn‘V¶ÖVk\Ý÷¨BöúZ¹*=¬ÖX¯³¶rP‘‡¾Vï(­Ü<}\ý¼¬¼¬=·Z9mZ¾q“ÕÊëÞß4ÑúOy½~@QÔx¥m@ óòà!¡a«ÃU®n‘îë¢<<½Þ÷öñÝääço3}ÆœyS(j=õ6õ>µú5ÚD½C9RNÔfjµ…ÚJÙRv”3µŒ²¦¶SË©ÔJj:µŠZM­¡fQs¨u”5œ’S,eNYRC© ¤Z”1¥‘Œ–Ä 7ò2º'Ý*½hi|Éd²É“g²Jz}„qdš­T9ø­Áƒ¢4ÝcúËÐfÆfáfíoD½Ñ;lŰSÃwÿI>5˜‰m  ¡[P¶Êu¹_6g?KG ô6†Ô:ÙÓðjC)[vdúÂ$𜗠bR’±Oð˜X%ýIv¢3+i—XXÃ)éjͨÎ@µšèµ1ÐÎ#úÅÕs/nuàpÌ_ž4û—Ñ/Šärµ äˆëAû{à¾ýwæ,Ó+GkpÇö6RÀ°mK¯^º1êëY÷°9‡Ÿ+Ëd×Óã¼ø¾ZÚ+%ÎŽS)ESû+R<øæ{3èKÅê-ó°”Ãã‘FÖ É:Æ!¹ìiÓl'¾ ßS,pxo"‡GÈv©³x$ õô÷'ç.æÍþ%y”CÅéÅ*I]ªë‘Š»ÐRLü 3ØtÊX,Ç#žNF24øÉHÎ-ÉQ€¬ Ú°}g„'xK±²3°=õc8Íp¡¾½öè±âFh#‘5õ;Á¼Rz¼Y@ÓÊÄÑB¬^þóeTÜcεÈOØ©?`ÉÌöÉ)ÜšTš7TúZfâ.¾oÏÿZi[º4¸Íã0ˆ~ö)ø%#ñ•³û) t*.´bÔ2Ȥå3ìˆöºN]óèçm°1yk£Í»)¨ï• ’3b¼TlG%Š0Y"> ¯/’‰âoÙY–…IÁõÙËbqˆ‰^–…Lêï 9$î,YŸÕoƒMBÓR+8ÑYF.-ši¶[@‡ s9ëѽV/%¸æûC°MÈ2¼ˆÜ?æ%ßÑßçùÍæõ¨8L6;Öo2gƒR^‚g)Cï@ý¶"<ŽÑË‚PˆI_Ûk T¿¦ÀW²ÿ‚!î•ÖR¹îN¾uè–9;ý"²ŠºÀÚÝs”Ó"r©H*c<ê/¨\«9 uPŸB…¡Àl¢JÆ®±Uç5ñh:ý¤õ»›ÙHÍà’÷„@FY[\VVPÙõ²$ìIÃOÿë:êÑ8½T|$º(úó­ùs¾²JÍ·$T#Ü„ò§g©óIÍ}úQîž¹u˜·g*7徬ÃpÂæB<–ôŽ$~•Žf”¢¢RIC;Šl—¢ˆUÀ™=‡âs¼ë3WçûgÚÂy¦¾¼ã’dZûi¸´„,H&´¥üÏt)hã"Ââ9¿*¿Ì½Ž¡Þ«cÁ§Ù‡?ðAbGüÙØ‚”*Uéþ‚0`voŸ¹z{óÓ0.¹4U ÎH†`b!)’ÇcèHHÊÕ¦¥•—pÚ,Ð7ï8%À¼8Õu‹€†t×(Ù«ä?]Ó£1zsöº…†)> s¤í”®+áa ‡ÐX%"Äú„ÉR§zO¶IaT4ûÙW¸^†¥Ÿ‡žîn¸x#½×"2­’ “ö ØÊ„¬N‰4û;¶+é9.Ë–ÎO:~šC_¾üO¤Ìàñ$Öwݞʠ¶˜Iª‡àA¨(n`¦Ó$c×…„L½&ýJѵ‘B½4%÷0/ÖÒ‡ÓsopzA¢ž þä3 B4ŒROßø]—–ra¿& ×Á7PÙ/xÆç h¢ )C¥b’8A!ÐJu4øÁ|…’>¢ÖúC,Ä«“’bÆã< lŒ“ S´–ÕÍPÊ t°z ÂdÃás›œï‡ÞÆ¿Zh£5Iù™š¬4ݶÈÑ—½”fˆxn’&ß í$fï iï²þ˜ÁêHsŽášvu~ D@BrÜ4\dñj"wi ݲö0”“j7PÂtÃÙf(PçÐÌß“¥šƒS,&£ª¤r6ò¦týém#éYÎ~HÒËÛ‹ä$½ŒØôÄ<Èmº¶ø)j¶xŠ›µû´)9`™éYyˆFw,ôÝÇ4%†” :œ$G麪»·Uò>En—{YÊDå·Šsa›è! ÑžpºˆCv4ÑÂÖ]->‡\ w3ßÞiR]QYRRÙæ ûùŠ#'J[éøØs:ïNã)KæÂb†]ºðÁþÞÞzBDZµ;2꽎.ï*¼Íã¹§m÷ìvvk:,Ðâü&M?ÑÊÄieÈ·U^ÛÝö=HKTÛçwÕ–:îvõåÐg4Û2 ÛýÌë{¬§›.Wxõ¼–¯´9M«â\C¼U~î~ÛÀ |£j”C”4š]¥ É+®l:&tS÷";ò´ÁkÛ{Ä =JA®»7PÖ sVþí…†ªVç„B¤AÉqã±Ö‚‡¥¨ê`!!X²ŽÕPF` R;CL2|¡ ²“ üÐÄ>#‹]cAœåèéŒ_D)ðИÑXQɳEQáqJÏÃ^§ÏµuvWóè=qqÍ•ãi:°$€µZ“ÖFÂÝ3zIcr¹''¡!ŠœDH‰OM‰Iá–9ù;ã°à4š‚|Õv²ùì~ >Æ ÜBJ¢*+t…•å'àAÖo\öû‰ÈYÔ!ÓòîÒ¸9¯º¯7|žö¹´÷áHAEÛýފ׹2O“…AjjBVöýÝ+Å+‰ºTK<íµø¦Ñ°cJ¿ž&>Z §|t ¯áÅ£i4:øÛ`BÖ„\°Ì6³%÷šY¤õݽRí Ímâ¿Ü6ÄÀ«ƒ^œª’ÔˆFRñMdOÜ-Ë¢¶ã!9•!Až“×ß"y‰Åá+Ä=g÷Ì|®;Œ$Ä<né{Ó$RzÝ’õÓMÕ"Žé':M„nÄüWú&þBÿe8ˆv7:hÌ;ñÌ>žˆŒzŽÔò+hÄ6¤D‡1l£Oˆ›rÛè Lå¢Í×ó[õ |Y}kýI¸.¹ûò£@ ‘Ìk4wê@‡¶¨ädJ¸hÎ^'H3“2&qRsAsW…ºã:¡½ÇëPÍvê5 {æôŲ™ãð0lñ|’¢!íˆ*ç×! Ž—e£é÷Kk៉Ǧù‚M¶!芃T­’ I÷w·¤èq¯\qØ[ؾ|¡ÓxZ¤üßùkVÑÖ| ™˜FƒèmÙEêƒù\rjp<(™Ðâ}•ÅÅ•Üë™äH%ºL¸ôæ­Ž‡hîC©ˆÄ$Å“I÷ñh?øó`Iü.A»îüëPZDÂýóÖ3Þz¤+`žËaU øô#аÉî—#%v-GNg¿.GšryMçþ«Èî*tÆuzw’Ád© NR”F×úlñØ»?šó¯ð)ð$î³jåâ^¹ñ<û86f¤Òclh ÎNÚy`§7laV<ÚˆÞ@C~<}£*ñãõõÜÖêm0 "uq¹ñ:(‡’Ì’ÜÂã~­̃+ŸÜ¬IhÞ{ˆoi=Z"6äWͰ³—Æ%'ÅÅŽŠÎ)Î.Õê9¼)_Ü¢#”þqáÀÌ„g¥ÐVRÃ넺Ür`ØîØû0!”GTß`ÅûKvL›lÛùQ¶¦¥¹šÓæÀ5`î!˜Å÷oý$þ¿®³Á}M´“ŠžË^M¿2Zþï¤Â<ýD~ÿÉ’ns¶ $‰¬IÖ¶ð¢1Í~4°×\Ê9Hªêw² wäA|@ªe±I|¦¨ Ñ…„‡éêët••wz§×HÎt¡µ]_tIÅh¢p!´=°Á«Ý%Ï#ÕZl-p9 —˜k线@óôxÎîLNɹ/'1äÒ?Š¥$ÃDnÃö‹«ówá’.˜1~{É®Ãî|£Gcü§‘ g£ ­w‚MÌÒÍËæ¹¬Ë;êÌm8•|=µ!5;ŽxøËaÌ¥ËLÓägq ç›Ü»}¿&d|ç12âÍzƒIÆ£Õ_j¤½«zßR,Á‰X‚’XR™dèǰ#Ç?ÑØjÊü©ëßnEvœ8â•Ö’±g>9êóûÇž2z kÌh²q1o!ñ·Ð˜§œhF_¸I¦–~ˆ‚ˆ !Å?ŒÒF¾„¯—¢Ù« v­¦³r: µÂÞþûÎÚϧ{½ü|š®ë÷yDßtÒÛÿq…ýñ?¹Âþ–]ƒ@x¯­JÒÖƒ²Ézéˆ>SÀ½¤;Þ=n÷ìôΰ–)½æØÇ­LÁ¤,Û¦e-K®†œ"ÃãÉSBWÓ ÍÐÅ,É',‰uˆÀFö>Ä÷×”F Iìyè!Ýw>/þ¸äʇõGÉÚª›]°ÂÊWá±U¸D„6àªT´)øÑ3SÈÒ!^ + MÅ…nóü Rõ³ÕL_)í3“óSÊj4O |¾‡š×ïò)úõ^y磛÷à‘û=s6Q´G ‰¦D%8ÆíKŒßH(Âàu²šŠ —ª+²¢OAVçNý8 Ñ67ÉVͬ|wöÖc^^]t¨6B¯†ÔN÷É™ŽËÀ|ujÙ´9Îïm\KèŒÃMBD =8¼9W>¬é*ûÇ]7"Ëò¶»hùÝ}wÍÙÙ±¤¦»ÈÒúÛwfìYÇÕÐ(½Ñz†cª šbuþ kLÅx‚ÏBlXQDuUI‘pÊóÃYdî°À ˆk‘麯8öêR$yøä瓉m+¸Dxo÷Žr'k¼ÿ¹øòøê¸N¸ÆÜjúñÁYÁË·ˆ+ö‚m°›y• hR‰’Hfm¨²-¢Ãœõ#©-PÀs»öE'NÖ|Ö_2ßÌ=?íÝE¶6¾¹¾µ¾\Þ´ÔkÎ ûé$—m«lG}¶ú9’>¼û‚[‰~V€Ã.ç {1ÓcÁ6Èq¯îuù“¶+×/m±ãô}¬bÉâ-ãXùÛ‹÷¾ø¨ûr†.¬ŽêðKÒ{xi8rz"AveR´%Yq1¼ÅC¨ «+ÊËÒfrééƒt€&:imÐú];ùä”T5$3IÚ$mNÏçˆæÌÂËE»"›]._ 6v 0¦Cti²óef¤iZ‹LMõ5…šLmºF“‘™a:”¢þ íµzÇendstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 479 >> stream xœcd`ab`ddôñ ÊÏM̳РJM/ÍI, ªüfü!ÃôC–¹»ûGÂ4Önæn–?…¾Ç ~áÿ)ÀÀÂÈžž_íœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡Ášz讂ñ‹KR‹2‹³sK2µ»˜Yî~_Ã÷ŸIXŽáHÙ§r¡ïõ‡#‹ 'üHøn*Ú½,zz销e &Ô÷sô²OïŸ6aÚ„cË$–MÛ6­{)ǬºyUÕuµÍõr¿íg~—ïžØ3±{¢äìæÙ¥µ5Õ]r­ìÂÝU½•}US•$~3^¯Ÿ\7³º[²ª®¢¦`wýÂ&ùcÓÚ¦µMo—ìd¯oohkh ((hHhè.䨙Q1göŒ™“§Ë}g¼^û[žUxAkWk«Tõäê…r³ºgNëÍ!¬Ð=»cvçì†ïlßí§7ϨÝ-9gƼYò|e ~8Ïúž?uò¶5\×¹å¸XBòy8»y¸—÷€À„ =½“ðð,¬oâ¤¾Þ &òð20Qüendstream endobj 288 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 447 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ûÇìi¬Ý<ÌÝ<,~( }üÃÿ=R€…‘1<=¿Ú9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐ]ã'—¤egç&–d0000j10v1012²ìý¾†ï?S² ѲNåŒ?f7í^™<±tjê¬Ô™i³,ùε¼{#ÇìºyÕµõÍurI…)ù‰Å³¾+HôLì™Ô=±sNÕ´ênŽâæòÚ–žæžfù™¿Å§,OZ*Y7¹v:Pª¢®¢:wsëÂFù5k7TýæÊïN娞Q1oöÌé“gÈmYºiùÖŵ¿Å$ºš»š»[8j'—/ž=gÚœ^¹î¹ó:æ4|‘ØZ¼)KáŒæ™õ³»9æÍ˜7[ž¯lÁçYßó§N^À¶‰ë·KH>g7÷êžÞž¾žÞI=½“óðlèÝÜßÓ?©§JïT^E9´\endstream endobj 289 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2390 >> stream xœ…U TTu¿wæ^@¹Ž@Ú©”P“J·SÔÖdšf’@¢®è€Ãs`x:!2ÃÌ|03Ðð•çðº‚A1äƒ]вcîZlÛ¶Û®¥žÒÎéáÊwÙ¿{Ú‹¶:n¹gΙÿýÏ÷}¿ß÷û~MyÉ(š¦ç<¿nƒ>S“±lƒ6¥@§É9 çÓâ™x—Hõôééro𓃟׉¾O¢sjð…Ù”œ¦7¦è£ôÙ…¹i)©ùêå>¸bÙ2é;BX¨Ž W¯Ñ$eè yijMÖõšðuáêôé0M¦ÏR'jS5ºdµ>Y«WÇŬÜ£^µa}\tÌâðŸ—uë7EQʧ³ôÙ¹yùR¤ÚäÔ4Ýca‹yŠº‡ZOES/R1T,G½DÅS‘Ô3ÔJêYjõµ†ZGͧfQ>´/5O‚NyQåt'£e:ù]òlù{^{¼C¼ ³ÅŠo#sŽ eÙã³øbŸÿ÷r™@€[q‹žÎŸ'1ëÀè*ë&†i&ØÜhy¥ŠÁj2“ŒkƒKÓóSŸ´±:fÐÞ€Þ–`ÙPU$@3¸ªÕΣ¨ ÆÅ ²ÔQVesHf äð:æ°ý8–c½’胟xû‹g@’_JÜè5‰É“AœQ|cžÀp±ñ 6ÅX>…ý¡ünmã&‡íÏ–èYÛW ®‡,2zë˜3®ŠÍ*ÒÂl5ÂsRž£ÕÍUÇà4ÚÆ¬¬À~êíÆÍëyR|Û»þßËèÏ(c·¸ÄM÷œÃWÏÉÅ]˜¦Ä {¯Â…ªÉ\2çJ ÷Í7À?ìRB2¼˜»M¿u«A›@ãÎ-Çc“`À¸{¨wôͦWa†2ZÒÚ5Uñ a%Àä%ïwã…îV¡¨;pjÛÎqabꔸøkâ·© QËŸb¸)6ƒïli»êZê/â‹`:súÓO‹¾(»ŒAª‡çŪ%h;åñ»[ šYÌf8Ÿ·úO¶xæ<ñ¡Tþb¨Dþ„§EÐy§ÎN}ÄE‹³ÄÙʃ™½ ë5šuù¼íŠ‚ûŠÜsžÇª«F9©ÿ&ÒR? Â%ÌP=Þ‡ ÞÆXmÅ¥Çf·µ·¶7õòþßÓuÉ”Ñ 7v¶Ñý£¸{T.*p®º ÚÓúRjŸÞ›ãŒl„qö`»ç"RµæVóU¥`jv/Ô6«.3ûÁUj¶BénÞj-/7™umºš´M¥GÆgìÍi/Põë+FËGËö[ÚŠêö¸w–] %‹rþy¢”·ÔÙjJ-=…*2—)‚ò†šªªæ¼£¦¾Ñéô$±¸% †?x_%ì˜Q'àó†À«“úî‰Ièâ.á%œ­×Ç1OëRRVÃçxìÅEY„ÏëÛ#© —XØ\†ûð3Ò£ ^Ëã9Ùû‡Þ;+Ñ}Æè½=ô ¥Ë¯ë|Uyíˆ ‘!KÿÇñJfù¦µQš‡Oðø›oþ–å*²„5 9’ÚcªxŽÃH{Ï[õ¨BÒîÅUTÝNñžÖŠ •“d±B:h¡’ìÒ¸Ûöfƒʬ&KÅÄŠ]æF°ƒ=¤S¨îäf«%QšsdAÆÌýƒÐb«/q“Àb. Ž ÷c£©I’#¤ë5h–þAhKºt=Í¢c$=ZÒPI®;KíeMÐŽzGÝ·Øüés”9ŒMÒö:G$уÛÞr´VÝš9·á¦¸q¹;ðÔøøäÍ ¢é¼òúXÆ›RRàØ>£i˜ú†’û¶4mö‘•šµºÖ¢Î®æ–Îá'¨º:¹z€×®P¥3qÖ§Ì«3¢R 6BË#¾Ê~ÿÓÁ“Ý{y.RãìIžï>Õô‰ŠDWrî%Oenûý¶þ7Oÿ —Ṏõw¥Þã«{ºéþs¸í ¹ø;ôU6Ábk‘‰Ï6&'صÇ1 üäèDã kî€jg¥¡²ØœCggë~áÝ•ƒ+ÈÜ¥j2‡(¯,–,Ouïpñ3BpçztB›ÒÚ½¬r%ó÷> ç烸…¢lÚ_9¨í‹å¹wžˆˆ¾OE˜ßêþJ>úß™DV ¾èÍps/Žæ¹{ê ÎZWYV)™P.›Ó\èî:ÐÜÉßZ7x“ïŸmœôÛoœÕ°9UÃÚð²‚þQ®íû••óë ‡¾Ëxƒg ©ÀóH="uß5R9k*¯©D9Ó…39ßs™¤Þ·ÞŠt¸ºµê Ø'upÄÂrÁ1â×ÊÞ¼ŽÌ̼¼ÌÌŽ¼ÞÞŽŽë¦{=Á4}­·{÷λY¡ø†ûãÿÅsŽÂ~ÛÈU"…HÑŸ#%ÇxñŽ’euäJÉÜ=<ùÈ«'Ï-åfý¸ÉDÉ®ÿ.6Ðßœ’ã—¤\ N‹ÝTK”è³WF>ЋÑx7ÞépTÛÁÉÖš¥E:Žß²4o!_ˆrÅIâó6 ø"²ØZ§£Võ“àX*EE‡þ^в(Æ€ð%³/³î±˜«-µª·6¢Œ,2äÞ²…,"ó­–ÊJ0³–ê=u >@úìrÇw€~jy|áMιÔ㦧ÎbúÌ#Ÿ>ý2†Ì+/¶Ym!V›U²Z–ø£LqåËCã탦<7¿£Ò¤ƒR6³£¨½«µ¹{<öðã룋’7ó†Þ¤Žh`CɬػUÄû' ÿ ý·äô¦ÿꇙ£5»U¤í¶÷®ýfšW&˜¥•P Å®]Í{XÉ;2QÆ\ý²ïdƒÇ–%ðþmbÔ~̪¯iS>|y¯ØØm~³ÀÏ·£ªZú8¤}Yû–Ÿ_·ÝýJ­½Áaw8küî ¨ÿ7Zkendstream endobj 290 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xœcd`ab`ddd÷ vò541ÕH3þaú!ËÜÝýƒõ§#kc7s7ËŠï·„¾‡ ~æÿ ÀÀÌȘ_Zåœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@œ§¡\KsR‹=´˜Yêtðýè^÷ã÷:Æï¬ë^¬cþ¾âÇSÑ]}SÍšÝ=gnMw¥Üïul•ÕÝ•UsºgékŒ‘ÿÓÉÝÑPWÙ]U9»{®Ü÷ulsguÏSÕÝà×>yüo‘ݢݳº6ÍåøÎÌÖTÙ]Ú]Ãñ§—½»¦»tJ%Çof¶)s»vÏâà+ŸÿÓqÛï¤é웹6sËq±˜Ïçá\7‡ˆy‹·…endstream endobj 291 0 obj << /Filter /FlateDecode /Length 1654 >> stream xœ¥XËsÜ4¿ï#3;éE[bW’%YÊPé„JÛ,e˜.g-'nýXlo›öÀßÎ'ù!9q ´“ÃÚÖ÷ü}Oå¯5É›¿áw_®ðúzõ׊دëág_®Ï·«G/H$Ö*T‚Šõ6[õ,dMHJ*×1!¡d|½-WèÙfûbµŽCcbéqȉXðËVëmºBù@ƒªPae yH×4Œ9Qܽ[*±¶€„"âŠÂWèõ&à2Ä„€à?·?“$¾dó(”ZϘo‚(·”@dàŠ¸ÏE\ÆÆ]KŸmbÆe, ªàÀ-JŠ^b`T1jê sлÖrÌ(“½‚;Ë0Â|PNXwç6¨p©ähÃW½"LPW›Gu7zøÎ9Ê«ÞNa¬ùúè½hûÌ%‘B¢êƒÿ– °@iÒ%“–ÚûdY88*„šÈ)G‰¯d‚%U:È ý0S^¤§V!¢³S ~@h f"…œIÙ;¼ÝÈÌb%W>þ…ñ8‚#¡Pt:<“•‹Á¥>à_àÒQ¯sºÛ„Ö‚‹íêùª¯ .0SšO”$²„¤l©$„ˆCG¦$^¡ï 9)ëzàu•ê2ßÚ×å¡®tÕ™o \(ÏÓñ…£­Ëƒ„,Óû®=E€[y¥“ÆQt h9uï—#'®ÕI[WIáØ;Ý”­…Â$ ‡Jýyµ}8s u5šà} G” $M/­HšÕMy,’©˜^ulŠ­—ÁÑßî1 Žÿ÷¹Éw¨{ÐO€“Sw°¯›æñ ÔÛÉn3Z!€ÓØl,DHŒÑ;HÝ. Xî6Æ»Í錈Å@té{æE§Î¦ƒnò:uzdòf¹â²NuáÀjzŸgù>éòºr0Kº€³e Ï© Žu‘·ÝM‘&Ô7¬?Ìö '#$óX8ŠqŒ*íÔýá_×…@½ÓùõM×.º[™³«úØÜÔu ¦Çó?Î_SA^&EþAE0´}ñÛ…aƒ9Åmï{àÎÀ²töw—Ç²Ýæô)84 ‚¶O¼ÄátU#ùÅÓÖšW½u–µº[$=Ô(8“Ww0°vdI™ïeœ<Õ×çyEú¸ôýç­n®êV/o𺯠>ty 7‹÷î¾Mš<©ö“Øû¥înê©Ïˆ;f©n‚_t’ž'ÿµ S%Çb:mÛ%MçêòmRuë0ÉêÆÅê#M×!’4ÚQ·Iy(têN³¦g6šˆ™²ãAŸ‹K–CŒÃVkÈe6¶˜ˆ…05åBŸðÜÌòÑ'XIìF0¾ÜéCPƒÉßáÊgÂÆ)wÅÛê}]¥í`ÇGÇB£[@xèW}Ôý~ussæĜÊ~jrËle™4ïwNøT ÀšÜ^¼t&ßKËé$OoéÅía1ƒÉY4¨FÿçŽ{ˇ=ÎlÀO Wœ™MnVAÛµ¿^½^Èkv M±êšºX4ýt°©*2åÇ‹åœ=³¤\„LÂJŒö™-륙%æ$z¸ßÇ +š&íÛt?Ó)‘Y­]šgо|êÑiX¯°ˆyfÝâtÁïó[í-37,yöâ™u-4Ÿ¤ÓÆ2fvstÙ¥¡«¿‹¦©›qÛ\à×·3VCÓÁPi²Ìc@(@&Mj#38Ž*Âòû9BÒA%ŠÆ39” 5å¾å6˜õËËP„—%ÞBcÀcHã0ŽY,g‚Qž`Ùæ0¼ò|èdrW©Þçî‘]q‚ˆ(¢!‰á64S£$–35ûºýb5QG3o%»ï û5U¸”μœ¡^Tcéç±uì³4RaY\?¢XˆÉ3ed˜-%Òè£ø2#øÌgl(µ™cŸ¥ÆsŒ²XÍTÍCæ5©¦Š cóPêì«aÿHóöÐw ™Ž%‹ÔÌ!¸Âû½ƒ^òÙK"è‰y•Tû{œ®ìø?›šYL&õÏte×ÅÔ¡SÔ×A‘¿ÑEnÖͳ±Ñ(Øx¥P" Áü%i®óÙEë¾”¸ b0I”óGLIøôX^iïnWg.8Ç*7}1`ÛÍ•0¼`ǧ$@ß蓇:¯¬À~¦ˆ¾øG¡„{nqs'öÿ„™ñgGêóÕ?G©Wiendstream endobj 292 0 obj << /Filter /FlateDecode /Length 3759 >> stream xœ½ZÝÛÆ¿§ö¡OqÕOTj©\î.?ж@´qŠiâ+‚". ÞIwG‡Šòùò×w>vIÎ’Rœ"(üà£ökv>3³?,âµZÄøÏý»»Š÷W?\)úuáþ»Ý-^^_ýþmá—ujq}wÅKÔB©l'ù"‹ÍZétq½»ú.ú²Y®’|+›G›å*^ÇÆæY®¢-}ØBÇ0R/W:Í×En¢Ûe’­á×0a‡hDç$¯ã ¥€Á“!à­^Lì0.ô‡’(©@GÄdÞ• zeíï A¨+¿+ß³ëeJŽô÷Õ®”¦^ûÛC<4¶Ç;_›Îg3# "N5Á¥×"à` *ÈÇÍ œ‚ÇnSá0¾n{pJ9g3É éç ¸•ô¨Š#g½«îe:Õu¡µhƒÎÆŒø½u»S"R\ñwr:Î1©#Þ}< Ø8Z@ízïYåÄ ˜&º)ç-jŠ/Ñ© †E.ÌÀù”ÓxY¬GH¿«zW»ëø4A!ÌI‡OÙÆcÎa/cN§Ìf¬ðôA9éêóL€¡8#õË‘„•¤Vig°•äŘÌ͉S<>ÕL’XÏ´Zö º!kGq¾qÌÚÊ$(”­°“_ePÔ˜Y˜uWí!µé±ø¸ÿÖJk½à° B±…wê¿©ØÌÆQ÷tØ6ND?ÿe€ŠÓ:Þ\‡¢1¯…X¿“òÂîNÂv.cu~RȦÝlÑçß´¤³aFsŸ“܃Q*È.è—èDpƒkdd›´wï‰V{ÁÐ;žDùó[ {ësîi3wþâ6Œm{齂X?q^#Üã²ÍØÃ|’²Ö>:»*tGÅ‹ uãr#£\ž„)9„§!7‚`ùè Ø™Ny›Õ™^ß ÙìmS¹-÷Ç7Ññ4 þ[±7L¥Õíƒ7Ÿbl>·o¢ç¨€ÏûÙIôt ÿ}˜Q¡B¥NíB›d­3&Þézš!!¤ÓxÀ*ñ‹Yž,®70g48H=¯J-\‰Ö…æŒw‚A¯%ÿœ…´,é{Ì¥ Á‰Ù2C‡¡ ¨è!5)ÚË\l$ºI +2V„]¢¸/µ‹±f¨¼ ]Xr„~)<-=H ëA 9{ ¼ý¡ú• °ö#® ¦ ywÅ ¦»æ´ßxÖX:ËnT®HF-do°g]Õ%Ct‹à¼ˆk¤ÕHɶj†ó^=¨M»˜\¢»Ñœû®Ð&ÜøH¸/¼ã‚jBÔMðôø³­æuS+Uúí/ôÔ`âþ>£I¤#“ßøPY ÷ÄZ‘«¯ö«i2üñÙj‚àó"&ºþpnO²m&7  §éï*‘ÑCöq':™¶[=ݸÍá÷g­,e¬šv C{ðmîS>Dƒ- ˆN×£Ç!·dw üö0ð¡”=ü“KöqTRqYÛãÜ»‹ µ&¥°„“«Î—+¸…@;0H§¿•™àˆA§«IÑ´K´ÆN„5½`œØïk\h6vãU¢Jÿ¶ «¡?´©%KÁsÀén¤í=¢¡›ï¯Ìj?Üì=W3u:ßcÂg90;ÄS¬?é9?˜ÑE.ºAÖ׋ꊥÈÂ}@/6Å øb0¼¦aï<¨Ï9,›â“L—]D§ø‡:NïÑึä<ÂÝØì§BÆF±€Ž}ä`‰èÛÿšÇm[—Ëë·ܰò“W½m!þ˜¼TÒ)—Ë%HøA¸HRgª­œÇ©s$gÙ:‹³Ü‘¼ß‚¸nšSûÐ4›9ª³ÀP–ðôïØ­#Ö……‹giµÎÓÔue˜9b„2¦èÊTo/§4¡: ™yʵÏIkÕýu(˜n€›·ÒJ»COþ |ʵr82.èÕ ”ã‡>ÃRCU>“üáã,ðbePKIJT¡]Ö?\¡¤N &ícƒœEŠËlš/"†vÎ4XmÜÞ@ä]‹…pÞÁUi™ü4ºÜ€k˜Š›Ë›!m™¸Ô¾<2~ÔÈ·Œqñï‹a~W‚C}?…çù8nlJåÀ).ÀÔ\hlîd~Æ%f­0söuóU»Ù¶sŠ%¸"î- ô"W %·Ó†²ÅIŽhF™žfÀ×#øÄ\gj.1§ÝTÉöm}F彈@GO‚{çh¹|5›/Ž"nùƒ ™ub¬³¥ÂådBù;×@øO-qJ“ãœsì…Ë•A‹_ŸµÀ©äÜ¢ÈÝn×XÕ®R×§ Ò„ “™æ5ÈX ç–¯3ƒi)+*äÑÇzLËöˆôçšTïóm»#›v-˜»-hNY» z{^3²ßØßà«™ùDRÛÂjø§> C5è’þœÉž15ì{_ÊF-F_Ы‹ËÛi¹µ=&œ…Áìâ¬÷%ŒRö}Ü>íœdÁÆá!Ÿ'_s˜Â0qºà'Oi˜Aaè|Iª_R¯aªóI×ßF¥ÞeÞžUXÖøUØ…Ki•2HøGþÍR %8ŒÊ…lK!IxZ¢N!îÉÂ!ºAN˜Ð?]àG —Ÿ%ää„z]Äó[¥°5"f´{åw1?¡E#¿~^Ê›Úïmƒl÷¾·_.Ô=|~·¤¸ éa¦³sc"©¢¿ÙÍLØPiÏ·2+Y¡¹ØòÄÍ2 ~6èØ´ž úqÌÓê¶ÏBÅø6øè¦§ø@$4q‰ ?Þ¦6[Ю¥ÌÐÆT^Ùœ$£ý¶ÔY¡ã4„&²Ty?÷ÚšÔŠJéz¦×yð¢L›â§²:©6øõÕUÂ:€endstream endobj 293 0 obj << /Filter /FlateDecode /Length 2448 >> stream xœÅXÝÛÆúxCô!«ôDs¿—‡º€°‹¤m|jòpçžDhS¢BQwqú·wf?H.ų£@q'íÎÌÎüæ[¿ÌÒ„ÎRüóÿW»‹tvñ˵§3ÿoµ›½\^<{Ë%œ$YšÑÙrsáXèŒRff: åj¶Ü]Ür?_¥“Tfäa.e’¦”’|5_¤xÆSiÈj„T[rš¤Š§œäm‰™Ðš’ÚÊ1I*$‰˜ë9ƒSxÄã'øH G`¨Q†4ù½û®RÁ„!É|a„L2Ãȧi·EÐR“M]U^hÊÈc¹¿¿œ/dŠšH«ˆ*˲ْõÀÄün¾@V¡H}jñ\ŸAÓèÆT0]1¥˜¦8M˽—†/dŒËwË¿_PžHaÌlùýÅò››ÏØÎD°Ý8Û…`I Z_ oL:1 .à”l=9È<ukó6BõÒ»ƒ2²ÏwÑUõÑ?ŽvÈ¢@x³ªïñ i494õÁa¥xFêÆãˆ|ܽñŸ9¡ìÌdT+²w }¨ü ÐHµµ“šeÁºÎ ýµS è®æè„}„EÓÆ0Ï  &„3\¡a•qŽ•Fû±: ¯ÖÃ/gêsc%çGÿYʘæ×à B«|¯y[7=äצÌ甆—h#õ–ŒäÂ@©È:ö¹§§ ³¢W³ÝöÑLº8¹+ó ˜#IÅÐ/ –‚ òûû&Bý>½èpÎmøìâðŽÜSEwGd6a×y›' Îw×cµ¬p-Ék!3ÈKÒü6$÷òRL1ˆ[ÎØÑúSÈ–¼J¼¨T’[ Knçx æÐÃk[`Nï56—u-0eÁ´6/«Èâ¤Ãð§¹aXùØY޲f€¡ÀqŒ•ìËêòBÈT‘þÀ‚µQ 2Š$¬´†‚!!ysTÊBèŠ ~BðщŠ2À;·ÔÐMUÐ]Âiàƒwr~F»¶D3¬Ý}æ ž(;ûùD@c–ØØ‰*JdSkðì­ Qß„Ê.±®“~x»ª Dë»Wó¯Ï:¬‰<ƒ.»\COÅÊ(ÏÉr;Ы Ï ÅB—ëŠòªSȦ*v=– 'A‘;Ÿë€PáO¡ÁŽÃ^eÂ:ð ÒÖOÙ[}™ ª+eß·›Q<û†E¶=&QBŽ_ZGîtrÎ̘uf9åIp:צËǧÝuæ-ƒ£•„ÜBØ•æP¾Ü!4œ×qéü-ª´÷ž. mñÜM4¶³0[ày×Y°¡1mqŽjEá婌|ÕD9Ýz!™ ›äÇ ÂhâpCšyÝÃ#>ê ·5¤Ý–á"ϧ—7ƒº*íØ8J°¡>!z÷¶ .‚†éwCü¹C…S=4xóñÊ xµ¼øñÂí=R¥RèYóôÒCÓlq¥”˜Zz¤– í–ž¿Á±ƒª-7ôŠáÁ„Ý:è•z7|þ? ,Wr&L \»'_æëb¿øùT4m[ì¦¬§p÷€H*—ESa.Y%aÄ~Ùä{`¿;Y.4¹šbWìÃwF^ç;K`‘g8WXø +d怿¡—ï¬Pû*ì’).{²·Ž(¸…x œ¤0À˜,è–ˆÞŒÙd¦ø˜Miµ :¸ é†ý´˜(÷2<¨õ³½\/µû"_ ë¶d»4)œ¸-IªÉ¿0daî‚’^G©5¨{ÏÑѕ­£ý‰¸µå1V¶Á€ÅÓ)!IûGÿ‚È\£¶_`χ#*ìÑ“÷͸<ñ¥|pËã=>’ò&¬–¡ˆŸMÀv›“¾:Ô²xH+‡màlÔÝ;vP‘™]Žòh>Æ©G¥¶ª¯F>±'›¼õâO¶!jã9Lד3L EG±Ð€žƒŒZŸÓéX„Š¡) ôO†ñÌyå-ŵ>öÃÁ1ö}´Ôáá—‹šb£–±¶uÓhjßA$:f=56ZÏÀŠTðíÇõ à-‰~fÙ¸hA!þ©0Q‹¿ùlãuk–>k¼öÜØÆ{Ö>jûî¥_ñ ,çØõ0<Îö KÖñŽœ}zÅvŠ(ò"½ÿÏ;˜Y"0\FìÏýǺ„u’; dŽwìÛ«P' y³o‹fUÚ¾tþ%pÀ°Wî‹g«ÿù{°vljR>Ðb“4ŽC“¿.üƒü\¯¯‹üXïþ wªò[² ½Mcn„·ÿÓ¤—=ÿuü|šâP4e½îû倌)ØÞÃz=Z~ºµðx,Šp®¾<&VÝ„¼°9ö}©Ü÷¿Lv ÂRtŽê®^Uò"íy‡ÀVå±½µ»´»eCÃÝåf”!ÐýÇ!U}ÿ F·óË ¯l$)énäï}Ù†ÉeUo6Ç¢$=Ôˆé–ì ~ªâÈoçA§¡&¸LÀé¹*Óò‹C½ÚF¢Ã ˜ñÀ² ïní܈Ê|6º6e+~‡_¬s§¸!OUëÝî‚lèöív+zw“k-Ó:O»]Þ|¼íÅw~€Ýª²=­‹ëm¹i{x-ßþû•—ü¥ƒ±¯dœeÐx±‘oóªºÂ‡˜3ñØÿy÷¾Ï¤ç½1çÖÃ&[ïÛ׉lAƒÍ˜Ú ƒ|[›M¹*!ÏWó¯Ah=ІÉY¸ôêØ–;;eP[ìëvô1÷ªiêÆ÷°X€ãÏ›2 *£u”ýqQ›~à‡î@•dÉŒ],*ãü ÂáT ÙS‚u^‡³Ï §*M´–*z¦gN#ú°‘öã›êCÙ‡Þà¸}fKk·Ž¤‰R@=b9~é#~SÂv é-”ÁöÙ{Uuƒã÷õý¢*?U¹­ëõUϳ Úþ`1÷‹7ß¡æ\F¸T äw&¼Ýf€,Òýã„Þ°ÊõÖö%lý©5‰N©ñ)ˆEx‡º´ë!bDëÉ “jžÍg #ŠtðëšÍæ/þ 2·}£endstream endobj 294 0 obj << /Type /XRef /Length 250 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 295 /ID [<8a520fd4c7c29644f13cd570bd5d60f1>] >> stream xœcb&F~0ù‰ $À8J+ò?ƒpø& ›-ËÏÆòp$ÿ3¨ÖmÆïíK£ñ;\Èÿ †z[€l>yPœ Ý‘bf ’˜Ü "lA$Ó<ÉzD ïËÚƒÉC`ñɸlŽˆdû $¹­Aly°Jîi ’kXåO°™@$ó°˜d“`qS°.™xdÚ®d[@Dr(Õø€H–0°i³@$û\©Å RŸâ N«¯Á²‹À.׳KÁ.Q»ó?Hå† °8;Xü-ˆl‹X‚II°øF°;Áþe?ö;Ø\·s{.. endstream endobj startxref 281997 %%EOF surveillance/inst/doc/monitoringCounts.Rnw0000644000176200001440000031374714712367340020567 0ustar liggesusers%\VignetteIndexEntry{Monitoring count time series in R: Aberration detection in public health surveillance} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, gamlss, MGLM} <>= knitr::opts_chunk$set(fig.path="plots/monitoringCounts-", error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) options(xtable.booktabs = TRUE, xtable.comment = FALSE) @ \documentclass[nojss]{jss} \usepackage{amsmath,bm} \usepackage{booktabs} \usepackage{subcaption} % successor of subfig, which supersedes subfigure \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} \newcommand{\BetaBin}{\operatorname{BetaBin}} \newcommand{\Var}{\operatorname{Var}} \newcommand{\logit}{\operatorname{logit}} \newcommand{\NB}{\operatorname{NB}} %% almost as usual \author{Ma\"elle Salmon\\Robert Koch Institute \And Dirk Schumacher\\Robert Koch Institute \And Michael H\"ohle\\ Stockholm University,\\Robert Koch Institute } \title{ \vspace{-2.2cm} \fbox{\vbox{\normalfont\footnotesize This vignette corresponds to an article published in the\\ \textit{Journal of Statistical Software} 2016;\textbf{70}(10):1--35. \doi{10.18637/jss.v070.i10}.}}\\[1cm] Monitoring Count Time Series in \proglang{R}: Aberration Detection in Public Health Surveillance} %% for pretty printing and a nice hypersummary also set: \Plainauthor{Ma\"elle Salmon, Dirk Schumacher, Michael H\"ohle} %% comma-separated \Plaintitle{Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance} % without formatting \Shorttitle{\pkg{surveillance}: Aberration detection in \proglang{R}} %% a short title (if necessary) %% an abstract and keywords \Abstract{ Public health surveillance aims at lessening disease burden by, e.g., timely recognizing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective, this implies the use of appropriate methods for monitoring time series of aggregated case reports. This paper presents the tools for such automatic aberration detection offered by the \textsf{R} package \pkg{surveillance}. We introduce the functionalities for the visualization, modeling and monitoring of surveillance time series. With respect to modeling we focus on univariate time series modeling based on generalized linear models (GLMs), multivariate GLMs, generalized additive models and generalized additive models for location, shape and scale. Applications of such modeling include illustrating implementational improvements and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or by treating it in a Bayesian context. Furthermore, we look at categorical time series and address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With respect to monitoring we consider detectors based on either a Shewhart-like single timepoint comparison between the observed count and the predictive distribution or by likelihood-ratio based cumulative sum methods. Finally, we illustrate how \pkg{surveillance} can support aberration detection in practice by integrating it into the monitoring workflow of a public health institution. Altogether, the present article shows how well \pkg{surveillance} can support automatic aberration detection in a public health surveillance context. } \Keywords{\proglang{R}, \texttt{surveillance}, outbreak detection, statistical process control} \Plainkeywords{R, surveillance, outbreak detection, statistical process control} %% without formatting %% at least one keyword must be supplied \Address{ Ma\"{e}lle Salmon, Dirk Schumacher\\ Department for Infectious Diseases Epidemiology\\ Robert Koch Institut Berlin\\ Seestrasse 10\\ 13353 Berlin, Germany\\ E-mail: \email{maelle.salmon@yahoo.se}, \email{mail@dirk-schumacher.net}\\ URL: \url{https://masalmon.eu/}\\ \phantom{URL: }\url{https://dirk-schumacher.net/}\\ Michael H\"{o}hle\\ Department of Mathematics\\ Stockholm University\\ Kr\"{a}ftriket\\ 106 91 Stockholm, Sweden\\ E-mail: \email{hoehle@math.su.se}\\ URL: \url{https://staff.math.su.se/hoehle/} } \begin{document} \maketitle \section{Introduction} \label{sec:0} Nowadays, the fight against infectious diseases does not only require treating patients and setting up measures for prevention but also demands the timely recognition of emerging outbreaks in order to avoid their expansion. Along these lines, health institutions such as hospitals and public health authorities collect and store information about health events -- typically represented as individual case reports containing clinical information, and subject to specific case definitions. Analysing these data is crucial. It enables situational awareness in general and the timely detection of aberrant counts in particular, empowering the prevention of additional disease cases through early interventions. For any specific aggregation of characteristics of events, such as over-the-counter sales of pain medication, new cases of foot-and-mouth disease among cattle, or adults becoming sick with hepatitis C in Germany, data can be represented as time series of counts with days, weeks, months or years as time units of the aggregation. Abnormally high or low values at a given time point can reveal critical issues such as an outbreak of the disease or a malfunction of data transmission. Thus, identifying aberrations in the collected data is decisive, for human as well as for animal health. In this paper we present the \proglang{R} package \pkg{surveillance} which is available from the Comprehensive \proglang{R} Archive Network (CRAN) at \url{https://CRAN.R-project.org/package=surveillance}. It implements a range of methods for aberration detection in time series of counts and proportions. Statistical algorithms provide an objective and reproducible analysis of the data and allow the automation of time-consuming aspects of the monitoring process. In the recent years, a variety of such tools has flourished in the literature. Reviews of methods for aberration detection in time series of counts can be found in~\citet{Buckeridge2007}~and~\citet{Unkel2012}. However, the great variety of statistical algorithms for aberration detection can be a hurdle to practitioners wishing to find a suitable method for their data. It is our experience that ready-to-use and understandable implementation and the possibility to use the methods in a routine and automatic fashion are the criteria most important to the epidemiologists. The package offers an open-source implementation of state-of-the-art methods for the prospective detection of outbreaks in count data time series with established methods, as well as the visualization of the analysed time series. With the package, the practitioner can introduce statistical surveillance into routine practice without too much difficulty. As far as we know, the package is now used in several public health institutions in Europe: at the National Public Health Institute of Finland, at the Swedish Institute for Communicable Disease Control, at the French National Reference Centre for Salmonella, and at the Robert Koch Institute (RKI) in Berlin. The use of \pkg{surveillance} at the RKI shall be the focus of this paper. The package also provides many other functions serving epidemic modeling purposes. Such susceptible-infectious-recovered based models and their extensions towards regression based approaches are documented in other works~\citep{held-etal-2005,held_etal2006,meyer.etal2011,meyer.etal2014}. The present paper is designed as an extension of two previous articles about the \pkg{surveillance} package published as~\citet{hoehle-2007} and~\citet{hoehle-mazick-2010}. On the one hand, the paper aims at giving an overview of the new features added to the package since the publication of the two former papers. On the other hand it intends to illustrate how well the \pkg{surveillance} package can support routine practical disease surveillance by presenting the current surveillance system of infectious diseases at the RKI. This paper is structured as follows. Section~\ref{sec:1} gives an introduction to the data structure used in the package for representing and visualizing univariate or multivariate time series. Furthermore, the structure and use of aberration detection algorithms are explained. Section~\ref{sec:2} leads the reader through different surveillance methods available in the package. Section~\ref{sec:3} describes the integration of such methods in a complete surveillance system as currently in use at the RKI. Finally, a discussion rounds off the work. \section{Getting to know the basics of the package} <>= ## create directories for plots and cache dir.create("plots", showWarnings=FALSE) dir.create("monitoringCounts-cache", showWarnings=FALSE) ## load packages library('surveillance') library('gamlss') @ \label{sec:1} The package provides a central S4 data class \code{sts} to capture multivariate or univariate time series. All further methods use objects of this class as an input. Therefore we first describe the \code{sts} class and then show the typical usage of a function for aberration detection, including visualization. All monitoring methods of the package conform to the same syntax. \subsection{How to store time series and related information} In \pkg{surveillance}, time series of counts and related information are encoded in a specific S4-class called \code{sts} (\textit{surveillance time series}) that represents possibly multivariate time series of counts. Denote the counts as $\left( y_{it} ; i = 1, \ldots,m, t = 1, \ldots, n \right)$, where $n$ is the length of the time series and $m$ is the number of entities, e.g., geographical regions, hospitals or age groups, being monitored. An example which we shall look at in more details is a time series representing the weekly counts of cases of infection with \textit{Salmonella Newport} in all 16 federal states of Germany from 2004 to 2013 with $n=525$ weeks and $m=16$ geographical units. Infections with \textit{Salmonella Newport}, a subtype of \textit{Salmonella}, can trigger gastroenteritis, prompting the seek of medical care. Infections with \textit{Salmonella} are notifiable in Germany since 2001 with data being forwarded to the RKI by federal states health authorities on behalf of the local health authorities. \subsubsection[Slots of the class sts]{Slots of the class \texttt{sts}} The key slots of the \code{sts} class are those describing the observed counts and the corresponding time periods of the aggregation. The observed counts $\left(y_{it}\right)$ are stored in the $n \times m$ matrix \code{observed}. A number of other slots characterize time. First, \code{epoch} denotes the corresponding time period of the aggregation. If the Boolean \code{epochAsDate} is \code{TRUE}, \code{epoch} is the numeric representation of \code{Date} objects corresponding to each observation in \code{observed}. If the Boolean \code{epochAsDate} is \code{FALSE}, \code{epoch} is the time index $1 \leq t \leq n$ of each of these observations. Then, \code{freq} is the number of observations per year: 365 for daily data, 52 for weekly data and 12 for monthly data. Finally, \code{start} is a vector representing the origin of the time series with two values that are the year and the epoch within that year for the first observation of the time series -- \code{c(2014, 1)} for a weekly time series starting on the first week of 2014 for instance. Other slots enable the storage of additional information. Known aberrations are recorded in the Boolean slot \code{state} of the same dimensions as \code{observed} with \code{TRUE} indicating an outbreak and \code{FALSE} indicating the absence of any known aberration. The monitored population in each of the units is stored in slot \code{populationFrac}, which gives either proportions or numbers. The geography of the zone under surveillance is accessible through slot \code{map} which is an object of class \code{SpatialPolygonsDataFrame}~\citep{sp1,sp2} providing a shape of the $m$ areas which are monitored and slot \code{neighbourhood}, which is a symmetric matrix of Booleans size $m^2$ stating the neighborhood matrix. Slot \code{map} is pertinent when units are geographical units, whereas \code{neighbourhood} could be useful in any case, e.g., for storing a contact matrix between age groups for modeling purposes. Finally, if monitoring has been performed on the data, the information on its control arguments and its results are stored in \code{control}, \code{upperbound} and \code{alarm} presented in Section~\ref{sec:howto}. \subsubsection[Creation of an object of class sts]{Creation of an object of class \texttt{sts}} The creation of an \code{sts} object is straightforward, requiring a call of the constructor function \code{sts} together with the slots to be assigned as arguments. The input of data from external files is one possibility for getting the counts as it is described in \citet{hoehle-mazick-2010}. To exemplify the process we shall use weekly counts of \textit{Salmonella Newport} in Germany loaded using \code{data("salmNewport")}. Alternatively, one can use coercion methods to convert between the \texttt{ts} class and the \texttt{sts} class. Note that this only converts the content of the slot \texttt{observed}, that is, <>= data("salmNewport") @ <>= all.equal(observed(salmNewport), observed(as(as(salmNewport, "ts"), "sts"))) @ <>= stopifnot( <> ) @ Using the \texttt{ts} class as intermediate step also allows the conversion between other time series classes, e.g., from packages \pkg{zoo}~\citep{zoo} or \pkg{xts}~\citep{xts}. <>= # This code is the one used for the Salmon et al. (2016) JSS article. # Using this code all examples from the article can be reproduced. # computeALL is FALSE to avoid the computationally intensive parts # of the code (simulations to find a threshold value for categoricalCUSUM, # INLA-driven BODA) but one can set it to TRUE to have it run. computeALL <- FALSE @ <>= # Define plot parameters cex.text <- 1.7 line.lwd <- 2 plotOpts <- local({ #Add lines using grid by a hook function. Use NULL to align with tick marks hookFunc <- function() { grid(NA,NULL,lwd=1) } cex.axis <- cex.text cex.main <- cex.text cex.lab <- cex.text cex.leg <- cex.text stsPlotCol <- c("mediumblue","mediumblue","red2") alarm.symbol <- list(pch=17, col="red2", cex=2,lwd=3) #Define list with arguments to use with do.call("legend", legOpts) legOpts <- list(x="topleft",legend=c(expression(U[t])),bty="n",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) #How should the par of each plot look? par.list <- list(mar=c(6,5,5,5),family="Times") #Do this once y.max <- 0 list(col=stsPlotCol,ylim=c(0,y.max), main='',lwd=c(1,line.lwd,line.lwd), dx.upperbound=0, #otherwise the upperbound line is put 0.5 off cex.lab=cex.lab, cex.axis=cex.axis, cex.main=cex.main, ylab="No. of reports", xlab="Time (weeks)",lty=c(1,1,1), legend.opts=legOpts,alarm.symbol=alarm.symbol, xaxis.tickFreq=list("%V"=atChange,"%m"=atChange,"%G"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y", par.list=par.list,hookFunc=hookFunc) }) @ \begin{figure} \centering <>= y.max <- max(aggregate(salmNewport,by="unit")@observed,na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport,legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts2$par.list <- list(mar=c(6,5,0,5),family="Times") plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ \caption{Weekly number of cases of S. Newport in Germany, 2004-2013.} \label{fig:Newport} \end{figure} \subsubsection[Basic manipulation of objects of the class sts]{Basic manipulation of objects of the class \texttt{sts}} This time series above is represented as a multivariate \code{sts} object whose dimensions correspond to the 16 German federal states. Values are weekly counts so \code{freq = 52}. Weeks are indexed by \code{Date} here (\code{epochAsDate = TRUE}). One can thus for instance get the weekday of the date by calling \code{weekdays(epoch(salmNewport))} (all Mondays here). Furthermore, one can use the function \code{format} (and the package specific platform independent version \code{dateFormat}) to obtain \code{strftime} compatible formatting of the epochs. Another advantage of using \code{Date} objects is that the plot functions have been re-written for better management of ticks and labelling of the x-axis based on \code{strftime} compatible conversion specifications. For example, to get ticks at all weeks corresponding to the first week in a month as well as all weeks corresponding to the first in a year while placing labels consisting of the year at the median index per year (Figure~\ref{fig:Newport}): <>= plot(salmNewport, type = observed ~ time, xaxis.tickFreq = list("%m" = atChange, "%G" = atChange), xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y") @ The helper functions \code{atChange} and \code{atMedian} are documented in \code{help("addFormattedXAxis")}. % and the respective tick lengths are controlled by the \pkg{surveillance}-specific % option \code{surveillance.options("stsTickFactors")}. Actually \code{sts} objects can be plotted using different options: \code{type = observed ~ time} produces the time series for whole Germany as shown in Figure~\ref{fig:Newport}, whereas \code{type = observed ~ time | unit} (the default) is a panelled graph with each panel representing the time series of counts of a federal state as seen in Figure~\ref{fig:unit}. \begin{figure} \subfloat[]{ <>= y.max <- max(observed(salmNewport[,2]),observed(salmNewport[,3]),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,2],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ } \subfloat[]{ <>= plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,3],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ } \caption{Weekly count of S. Newport in the German federal states (a) Bavaria and (b) Berlin.} \label{fig:unit} \end{figure} <>= plot(salmNewport, units = 2:3) @ Once created one can use typical subset operations on a \code{sts} object: for instance \code{salmNewport[} \code{1:10, "Berlin"]} is a new \code{sts} object with weekly counts for Berlin during the 10 first weeks of the initial dataset; \code{salmNewport[isoWeekYear(epoch(salmNewport))\$ISOYear<=2010,]} uses the \code{surveillance}'s \code{isoWeekYear()} function to get a \code{sts} object with weekly counts for all federal states up to 2010. Moreover, one can take advantage of the \proglang{R} function \code{aggregate()}. For instance, \code{aggregate(salmNewport,by="unit")} returns a \code{sts} object representing weekly counts of \textit{Salmonella Newport} in Germany as a whole, whereas \code{aggregate(salmNewport, by = "time")} corresponds to the total count of cases in each federal state over the whole period. \subsection{How to use aberration detection algorithms} \label{sec:howto} Monitoring algorithms of the package operate on objects of the class \code{sts} as described below. \subsubsection{Statistical framework for aberration detection} We introduce the framework for aberration detection on an univariate time series of counts $\left\{y_t,\> t=1,2,\ldots\right\}$. Surveillance aims at detecting an \textit{aberration}, that is to say, an important change in the process occurring at an unknown time $\tau$. This change can be a step increase of the counts of cases or a more gradual change~\citep{Sonesson2003}. Based on the possibility of such a change, for each time $t$ we want to differentiate between the two states \textit{in-control} and \textit{out-of-control}. At any timepoint $t_0\geq 1$, the available information -- i.e., past counts -- is defined as $\bm{y}_{t_0} = \left\{ y_t\>;\> t\leq t_0\right\}$. Detection is based on a statistic $r(\cdot)$ with resulting alarm time $T_A = \min\left\{ t_0\geq 1 : r(\bm{y}_{t_0}) > g\right\}$ where $g$ is a known threshold. Functions for aberration detection thus use past data to estimate $r(\bm{y}_{t_0})$, and compare it to the threshold $g$ above which the current count can be considered suspicious and thus \textit{out-of-control}. Threshold values and alarm Booleans for each timepoint of the monitored range are saved in the slots \code{upperbound} and \code{alarm} (of the same dimensions as \code{observed}), respectively, while the parameters of the algorithm %used for computing the threshold values and alarm Booleans are stored in the slot \code{control}. \subsubsection{Aberration detection in the package} To perform such a monitoring of the counts of cases, one has to choose one of the surveillance algorithms of the package -- this choice will be the topic of Section~\ref{sec:using}. Then, one must indicate which part of the time series or \code{range} has to be monitored -- for instance the current year. Lastly, one needs to specify the parameters specific to the algorithm. \subsubsection{Example with the EARS C1 method} We will illustrate the basic principle by using the \code{earsC}~function~that implements the EARS (Early Aberration Detection System) methods of the CDC as described in~\citet{SIM:SIM3197}. This algorithm is especially convenient in situations when little historic information is available. It offers three variants called C1, C2 and C3. Here we shall expand on C1 for which the baseline are the 7 timepoints before the assessed timepoint $t_0$, that is to say $\left(y_{t_0-7},\ldots,y_{t_0-1}\right)$. The expected value is the mean of the baseline. The method is based on a statistic called $C_{t_0}$ defined as $C_{t_0}= \frac{(y_{t_0}-\bar{y}_{t_0})}{s_{t_0}}$, where $$\bar{y}_{t_0}= \frac{1}{7} \cdot\sum_{i=t_0-7}^{t_0-1} y_i \textnormal{ and } s_{t_0}^2= \frac{1}{7-1} \cdot\sum_{i=t_0-7}^{t_0-1} \left(y_i - \bar{y}_{t_0}\right)^2 \,.$$ Under the null hypothesis of no outbreak, it is assumed that $C_{t_0} \stackrel{H_0}{\sim} {N}(0,1)$. The upperbound $U_{t_0}$ is found by assuming that $y_t$ is normal, estimating parameters by plug-in and then taking the $(1-\alpha)$-th quantile of this distribution, i.e. $U_{t_0}= \bar{y}_{t_0} + z_{1-\alpha}s_{t_0}$, where $z_{1-\alpha}$ is the $(1-\alpha)$-quantile of the standard normal distribution. An alarm is raised if $y_{t_0} > U_{t_0}$. The output of the algorithm is a \code{sts} object that contains subsets of slots \code{observed}, \code{population} and \code{state} defined by the range of timepoints specified in the input -- \textit{e.g} the last 20 timepoints of the time series, and with the slots \code{upperbound} and \code{alarm} filled by the output of the algorithm. Information relative to the \code{range} of data to be monitored and to the parameters of the algorithm, such as \code{alpha} for \code{earsC}, has to be formulated in the slot \code{control}. This information is also stored in the slot \code{control} of the returned \code{sts} object for later inspection. <>= in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) plot(surv) @ \begin{figure} \centering <>= y.max <- max(observed(surv),upperbound(surv),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=surv,ylim=c(0,y.max)),keep.null=TRUE)) @ \caption{Weekly reports of S. Newport in Germany in 2011 monitored by the EARS C1 method. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms that are the timepoints where the observed number of counts is higher than the upperbound.} \label{fig:NewportEARS} \end{figure} The \code{sts} object is easily visualized using the function \code{plot} as depicted in Figure~\ref{fig:NewportEARS}, which shows the upperbound as a solid line and the alarms -- timepoints where the upperbound has been exceeded -- as triangles. The four last alarms correspond to a known outbreak in 2011 due to sprouts~\citep{Newport2011}. One sees that the upperbound right after the outbreak is affected by the outbreak: it is very high, so that a smaller outbreak would not be detected. The EARS methods C1, C2 and C3 are simple in that they only use information from the very recent past. This is appropriate when data has only been collected for a short time or when one expects the count to be fairly constant. However, data from the less recent past often encompass relevant information about e.g., seasonality and time trend, that one should take into account when estimating the expected count and the associated threshold. For instance, ignoring an increasing time trend could decrease sensitivity. Inversely, overlooking an annual surge in counts during the summer could decrease specificity. Therefore, it is advisable to use detection methods whose underlying models incorporate essential characteristics of time series of disease count data such as overdispersion, seasonality, time trend and presence of past outbreaks in the records~\citep{Unkel2012,Shmueli2010}. Moreover, the EARS methods do not compute a proper prediction interval for the current count. Sounder statistical methods will be reviewed in the next section. \section[Using surveillance in selected contexts]{Using \pkg{surveillance} in selected contexts} \label{sec:using} \label{sec:2} More than a dozen algorithms for aberration detection are implemented in the package. Among those, this section presents a set of representative algorithms, which are already in routine application at several public health institutions or which we think have the potential to become so. First we describe the Farrington method introduced by~\citet{farrington96} together with the improvements proposed by~\citet{Noufaily2012}. As a Bayesian counterpart to these methods we present the BODA method published by~\citet{Manitz2013} which allows the easy integration of covariates. All these methods perform one-timepoint detection in that they detect aberrations only when the count at the currently monitored timepoint is above the threshold. Hence, no accumulation of evidence takes place. As an extension, we introduce an implementation of the negative binomial cumulative sum (CUSUM) of~\citet{hoehle.paul2008} that allows the detection of sustained shifts by accumulating evidence over several timepoints. Finally, we present a method suitable for categorical data described in~\citet{hoehle2010} that is also based on cumulative sums. \subsection{One size fits them all for count data} Two implementations of the Farrington method, which is currently \textit{the} method of choice at European public health institutes \citep{hulth_etal2010}, exist in the package. First, the original method as described in \citet{farrington96} is implemented as the function \code{farrington}. Its use was already described in \citet{hoehle-mazick-2010}. Now, the newly implemented function \code{farringtonFlexible} supports the use of this \textit{original method} as well as of the \textit{improved method} built on suggestions made by~\citet{Noufaily2012} for improving the specificity without reducing the sensitivity. In the function \code{farringtonFlexible} one can choose to use the original method or the improved method by specification of appropriate \code{control} arguments. Which variant of the algorithm is to be used is determined by the contents of the \code{control} slot. In the example below, \code{con.farrington} corresponds to the use of the original method and \code{con.noufaily} indicates the options for the improved method. <>= con.farrington <- list( range = in2011, noPeriods = 1, b = 4, w = 3, weightsThreshold = 1, pastWeeksNotIncluded = 3, pThresholdTrend = 0.05, thresholdMethod = "delta" ) con.noufaily <- list( range = in2011, noPeriods = 10, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin" ) @ <>= con.farrington$limit54 <- con.noufaily$limit54 <- c(0,50) # for the figure @ In both cases the steps of the algorithm are the same. In a first step, an overdispersed Poisson generalized linear model with log link is fitted to the reference data $\bm{y}_{t_0} \subseteq \left\{ y_t\>;\> t\leq t_0\right\}$, where $\E(y_t)=\mu_t$ with $\log \mu_t = \alpha + \beta t$ and $\Var(y_t)=\phi\cdot\mu_t$ and where $\phi\geq1$ is ensured. The original method took seasonality into account by using a subset of the available data as reference data for fitting the GLM: \code{w} timepoints centred around the timepoint located $1,2,\ldots,b$ years before $t_0$, amounting to a total $b \cdot (2w+1)$ reference values. However, it was shown in~\citet{Noufaily2012} that the algorithm performs better when using more historical data. In order to do do so without disregarding seasonality, the authors introduced a zero order spline with 11 knots, which can be conveniently represented as a 10-level factor. We have extended this idea in our implementation so that one can choose an arbitrary number of periods in each year. Thus, $\log \mu_t = \alpha + \beta t +\gamma_{c(t)}$ where $\gamma_{c(t)}$ are the coefficients of a zero order spline with $\mathtt{noPeriods}+1$ knots, which can be conveniently represented as a $\mathtt{noPeriods}$-level factor that reflects seasonality. Here, $c(t)$ is a function indicating in which season or period of the year $t$ belongs to. The algorithm uses \code{w}, \code{b} and \texttt{noPeriods} to deduce the length of periods so they have the same length up to rounding. An exception is the reference window centred around $t_0$. Figure~\ref{fig:fPlot} shows a minimal example, where each character corresponds to a different period. Note that setting $\mathtt{noPeriods} = 1$ corresponds to using the original method with only a subset of the data: there is only one period defined per year, the reference window around $t_0$ and other timepoints are not included in the model. \begin{figure} \subfloat[$\texttt{noPeriods}=2$]{ \includegraphics[width=0.45\textwidth]{figures/fPeriods2.pdf} } \qquad \subfloat[$\texttt{noPeriods}=3$]{ \includegraphics[width=0.45\textwidth]{figures/fPeriods3.pdf} } \caption{Construction of the noPeriods-level factor to account for seasonality, depending on the value of the half-window size $w$ and of the freq of the data. Here the number of years to go back in the past $b$ is 2. Each level of the factor variable corresponds to a period delimited by ticks and is denoted by a character. The windows around $t_0$ are respectively of size $2w+1$,~$2w+1$ and $w+1$. The segments between them are divided into the other periods so that they have the same length up to rounding.} \label{fig:fPlot} \end{figure} Moreover, it was shown in \citet{Noufaily2012} that it is better to exclude the last 26 weeks before $t_0$ from the baseline in order to avoid reducing sensitivity when an outbreak has started recently before $t_0$. In the \code{farringtonFlexible} function, one controls this by specifying \code{pastWeeksNotIncluded}, which is the number of last timepoints before $t_0$ that are not to be used. The (historical) default is to use \code{pastWeeksNotIncluded = w}. Lastly, in the new implementation a population offset can be included in the GLM by setting \code{populationBool} to \code{TRUE} and supplying the possibly time-varying population size in the \code{population} slot of the \code{sts} object, but this will not be discussed further here. In a second step, the expected number of counts $\mu_{t_0}$ is predicted for the current timepoint $t_0$ using this GLM. An upperbound $U_{t_0}$ is calculated based on this predicted value and its variance. The two versions of the algorithm make different assumptions for this calculation. The original method assumes that a transformation of the prediction error $g\left(y_{t_0}-\hat{\mu}_{t_0}\right)$ is normally distributed, for instance when using the identity transformation $g(x)=x$ one obtains $$y_{t_0} - \hat{\mu}_0 \sim \mathcal{N}(0,\Var(y_{t_0}-\hat{\mu}_0)) \,.$$ The upperbound of the prediction interval is then calculated based on this distribution. First we have that $$ \Var(y_{t_0}-\hat{\mu}_{t_0}) = \Var(\hat{y}_{t_0}) + \Var(\hat{\mu}_{t_0})=\phi\mu_0+\Var(\hat{\mu}_{t_0}) $$ with $\Var(\hat{y}_{t_0})$ being the variance of an observation and $\Var(\hat{\mu}_{t_0})$ being the variance of the estimate. The threshold, defined as the upperbound of a one-sided $(1-\alpha)\cdot 100\%$ prediction interval, is then $$U_{t_0} = \hat{\mu}_0 + z_{1-\alpha}\sqrt{\widehat{\Var}(y_{t_0}-\hat{\mu}_{t_0})} \,.$$ This method can be used by setting the control option \code{thresholdMethod} equal to "\code{delta}". However, a weakness of this procedure is the normality assumption itself, so that an alternative was presented in \citet{Noufaily2012} and implemented as \code{thresholdMethod="Noufaily"}. The central assumption of this approach is that $y_{t_0} \sim \NB\left(\mu_{t_0},\nu\right)$, with $\mu_{t_0}$ the mean of the distribution and $\nu=\frac{\mu_{t_0}}{\phi-1}$ its overdispersion parameter. In this parameterization, we still have $\E(y_t)=\mu_t$ and $\Var(y_t)=\phi\cdot\mu_t$ with $\phi>1$ -- otherwise a Poisson distribution is assumed for the observed count. The threshold is defined as a quantile of the negative binomial distribution with plug-in estimates $\hat{\mu}_{t_0}$ and $\hat{\phi}$. Note that this disregards the estimation uncertainty in $\hat{\mu}_{t_0}$ and $\hat{\phi}$. As a consequence, the method "\code{muan}" (\textit{mu} for $\mu$ and \textit{an} for asymptotic normal) tries to solve the problem by using the asymptotic normal distribution of $(\hat{\alpha},\hat{\beta})$ to derive the upper $(1-\alpha)\cdot 100\%$ quantile of the asymptotic normal distribution of $\hat{\mu}_{t_0}=\hat{\alpha}+\hat{\beta}t_0$. Note that this does not reflect all estimation uncertainty because it disregards the estimation uncertainty of $\hat{\phi}$. Note also that for time series where the variance of the estimator is large, the upperbound also ends up being very large. Thus, the method "\code{nbPlugin}" seems to provide information that is easier to interpret by epidemiologists but with "\code{muan}" being more statistically correct. In a last step, the observed count $y_{t_0}$ is compared to the upperbound $U_{t_0}$ and an alarm is raised if $y_{t_0} > U_{t_0}$. In both cases the fitting of the GLM involves three important steps. First, the algorithm performs an optional power-transformation for skewness correction and variance stabilisation, depending on the value of the parameter \code{powertrans} in the \code{control} slot. Then, the significance of the time trend is checked. The time trend is included only when significant at a chosen level \code{pThresholdTrend}, when there are more than three years reference data and if no overextrapolation occurs because of the time trend. Lastly, past outbreaks are reweighted based on their Anscombe residuals. In \code{farringtonFlexible} the limit for reweighting past counts, \code{weightsThreshold}, can be specified by the user. If the Anscombe residual of a count is higher than \code{weightsThreshold} it is reweighted accordingly in a second fitting of the GLM. \citet{farrington96} used a value of $1$ whereas \citet{Noufaily2012} advise a value of $2.56$ so that the reweighting procedure is less drastic, because it also shrinks the variance of the observations. The original method is widely used in public health surveillance~\citep{hulth_etal2010}. The reason for its success is primarily that it does not need to be fine-tuned for each specific pathogen. It is hence easy to implement it for scanning data for many different pathogens. Furthermore, it does tackle classical issues of surveillance data: overdispersion, presence of past outbreaks that are reweighted, seasonality that is taken into account differently in the two methods. An example of use of the function is shown in Figure~\ref{fig:newportFar} with the code below. <<>>= salm.farrington <- farringtonFlexible(salmNewportGermany, con.farrington) salm.noufaily <- farringtonFlexible(salmNewportGermany, con.noufaily) @ <>= par(mfrow = c(1,2)) plot(salm.farrington) plot(salm.noufaily) @ \begin{figure} \subfloat[]{ <>= y.max <- max(observed(salm.farrington),upperbound(salm.farrington),observed(salm.noufaily),upperbound(salm.noufaily),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salm.farrington,ylim=c(0,y.max)))) @ } \subfloat[]{ <>= do.call("plot",modifyList(plotOpts,list(x=salm.noufaily,ylim=c(0,y.max)))) @ } \caption{S. Newport in Germany in 2011 monitored by (a) the original method and (b) the improved method. For the figure we turned off the option that the threshold is only computed if there were more than 5 cases during the 4 last timepoints including $t_0$. One gets less alarms with the most recent method and still does not miss the outbreak in the summer. Simulations on more time series support the use of the improved method instead of the original method.} \label{fig:newportFar} \end{figure} % With our implementation of the improvements presented in \citet{Noufaily2012} we hope that the method with time can replace the original method in routine use. The RKI system described in Section~\ref{sec:RKI} already uses this improved method. \subsubsection{Similar methods in the package} The package also contains further methods based on a subset of the historical data: \code{bayes}, \code{rki} and \code{cdc}. See Table~\ref{table:ref} for the corresponding references. Here, \code{bayes} uses a simple conjugate prior-posterior approach and computes the parameters of a negative binomial distribution based on past values. The procedure \code{rki} makes either the assumption of a normal or a Poisson distribution based on the mean of past counts. Finally, \code{cdc} aggregates weekly data into 4-week-counts and computes a normal distribution based upper confidence interval. None of these methods offer the inclusion of a linear trend, down-weighting of past outbreaks or power transformation of the data. Although these methods are nice to have at hand, we recommend using the improved method implemented in the function \code{farringtonFlexible} because it is rather fast and makes use of more historical data than the other methods. \subsection{A Bayesian refinement} The \code{farringtonFlexible} function described previously was a first indication that the \textit{monitoring} of surveillance time series requires a good \textit{modeling} of the time series before assessing aberrations. Generalized linear models (GLMs) and generalized additive models (GAMs) are well-established and powerful modeling frameworks for handling the count data nature and trends of time series in a regression context. The \code{boda} procedure~\citep{Manitz2013} continues this line of thinking by extending the simple GLMs used in the \code{farrington} and \code{farringtonFlexible} procedures to a fully fledged Bayesian GAM allowing for penalized splines, e.g., to describe trends and seasonality, while simultaneously adjusting for previous outbreaks or concurrent processes influencing the case counts. A particular advantage of the Bayesian approach is that it constitutes a seamless framework for performing both estimation and subsequent prediction: the uncertainty in parameter estimation is directly carried forward to the predictive posterior distribution. No asymptotic normal approximations nor plug-in inference is needed. For fast approximate Bayesian inference we use the \pkg{INLA} \proglang{R} package~\citep{INLA} to fit the Bayesian GAM. Still, monitoring with \code{boda} is substantially slower than using the Farrington procedures. Furthermore, detailed regression modeling is only meaningful if the time series is known to be subject to external influences on which information is available. Hence, the typical use at a public health institution would be the detailed analysis of a few selected time series, e.g., critical ones or those with known trend character. As an example, \citet{Manitz2013} studied the influence of absolute humidity on the occurrence of weekly reported campylobacter cases in Germany. \begin{figure} \centering <>= # Load data and create \code{sts}-object data("campyDE") cam.sts <- sts(epoch=campyDE$date, observed=campyDE$case, state=campyDE$state) par(las=1) # Plot y.max <- max(observed(cam.sts),upperbound(cam.sts),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=cam.sts,ylab="",legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts3$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts3) par(las=0) #mtext(side=2,text="No. of reports", # las=0,line=3, cex=cex.text,family="Times") par(family="Times") text(-20, 2600, "No. of\n reports", pos = 3, xpd = T,cex=cex.text) text(510, 2900, "Absolute humidity", pos = 3, xpd = T,cex=cex.text) text(510, 2550, expression(paste("[",g/m^3,"]", sep='')), pos = 3, xpd = T,cex=cex.text) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2500,by=500),labels=seq(0,50,by=10),las=1,cex.lab=cex.text, cex=cex.text,cex.axis=cex.text,pos=length(epoch(cam.sts))+20) #mtext(side=4,text=expression(paste("Absolute humidity [ ",g/m^3,"]", sep='')), # las=0,line=1, cex=cex.text,family="Times") @ \caption{Weekly number of reported campylobacteriosis cases in Germany 2002-2011 as vertical bars. In addition, the corresponding mean absolute humidity time series is shown as a white curve.} \label{fig:campyDE} \end{figure} <>= data("campyDE") cam.sts <- sts(epoch = campyDE$date, observed = campyDE$case, state = campyDE$state) plot(cam.sts, col = "mediumblue") lines(campyDE$hum * 50, col = "white", lwd = 2) axis(4, at = seq(0, 2500, by = 500), labels = seq(0, 50, by = 10)) @ The corresponding plot of the weekly time series is shown in Figure~\ref{fig:campyDE}. We observe a strong association between humidity and case numbers - an association which is stronger than with, e.g., temperature or relative humidity. As noted in \citet{Manitz2013} the excess in cases in 2007 is thus partly explained by the high atmospheric humidity. Furthermore, an increase in case numbers during the 2011 STEC O104:H4 outbreak is observed, which is explained by increased awareness and testing of many gastroenteritits pathogens during that period. The hypothesis is thus that there is no actual increased disease activity~\citep{bernard_etal2014}. Unfortunately, the German reporting system only records positive test results without keeping track of the number of actual tests performed -- otherwise this would have been a natural adjustment variable. Altogether, the series contains several artefacts which appear prudent to address when monitoring the campylobacteriosis series. The GAM in \code{boda} is based on the negative binomial distribution with time-varying expectation and time constant overdispersion parameter, i.e., \begin{align*} y_t &\sim \operatorname{NB}(\mu_t,\nu) \end{align*} with $\mu_{t}$ the mean of the distribution and $\nu$ the dispersion parameter~\citep{lawless1987}. Hence, we have $\E(y_t)=\mu_t$ and $\Var(y_t)=\mu_t\cdot(1+\mu_t/\nu)$. The linear predictor is given by \begin{align*} \log(\mu_t) &= \alpha_{0t} + \beta t + \gamma_t + \bm{x}_t^\top \bm{\delta} + \xi z_t, \quad t=1,\ldots,t_0. \end{align*} Here, the time-varying intercept $\alpha_{0t}$ is described by a penalized spline (e.g., first or second order random walk) and $\gamma_t$ denotes a periodic penalized spline (as implemented in \code{INLA}) with period equal to the periodicity of the data. Furthermore, $\beta$ characterizes the effect of a possible linear trend (on the log-scale) and $\xi$ is the effect of previous outbreaks. Typically, $z_t$ is a zero-one process denoting if there was an outbreak in week $t$, but more involved adaptive and non-binary forms are imaginable. Finally, $\bm{x}_t$ denotes a vector of possibly time-varying covariates, which influence the expected number of cases. Data from timepoints $1,\ldots,t_0-1$ are now used to determine the posterior distribution of all model parameters and subsequently the posterior predictive distribution of $y_{t_0}$ is computed. If the actual observed value of $y_{t_0}$ is above the $(1-\alpha)\cdot 100\%$ quantile of the predictive posterior distribution an alarm is flagged for $t_0$. Below we illustrate the use of \code{boda} to monitor the campylobacteriosis time series from 2007. In the first case we include in the model for $\log\left(\mu_t\right)$ penalized splines for trend and seasonality and a simple linear trend. <>= library("INLA") rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01")) control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE, season = TRUE, prior = "iid", alpha = 0.025, mc.munu = 10000, mc.y = 1000, samplingMethod = "marginals") boda <- boda(cam.sts, control = control.boda) @ <>= if (computeALL) { ##hoehle 2018-07-18: changed code to use NICELOOKINGboda, but that's iid. Reason: ##The option 'rw1' currently crashes INLA. <> save(list = c("boda", "control.boda", "rangeBoda"), file = "monitoringCounts-cache/boda.RData") } else { load("monitoringCounts-cache/boda.RData") } @ In the second case we instead use only penalized and linear trend components, and, furthermore, include as covariates lags 1--4 of the absolute humidity as well as zero-one indicators for $t_0$ belonging to the last two weeks (\code{christmas}) or first two weeks (\code{newyears}) of the year, respectively. These covariates shall account for systematically changed reporting behavior at the turn of the year (c.f.\ Figure~\ref{fig:campyDE}). Finally, \code{O104period} is an indicator variable on whether the reporting week belongs to the W21--W30 2011 period of increased awareness during the O104:H4 STEC outbreak. No additional correction for past outbreaks is made. <>= covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum", "newyears", "christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X = campyDE[, covarNames], season = FALSE)) boda.covars <- boda(cam.sts, control = control.boda2) @ <>= if (computeALL) { <> save(list = c("boda.covars", "covarNames", "control.boda2"), file = "monitoringCounts-cache/boda.covars.RData") } else { load("monitoringCounts-cache/boda.covars.RData") } @ We plot \code{boda.covars} in Figure~\ref{fig:b} and compare the alarms of the two \code{boda} calls with \code{farrington}, \code{farringtonFlexible} and \code{bayes} in Figure~\ref{fig:alarmplot} (plot \code{type = alarm ~ time}). \fbox{\vbox{ Note (2018-07-19): We currently have to use the argument \code{prior = "iid"} in both calls of the \code{boda} function, because the procedure crashes when using recent versions of \pkg{INLA} (\code{>= 17.06.20}) with argument \code{prior = "rw1"}. %(the original results were produced using version 0.0-1458166556, %and version 0.0-1485844051 from 2017-01-31 also works) This means results in this vignette deviate from the results reported in the JSS paper -- in particular we do not get any alarms when using the \code{boda} procedure with covariates. We are looking into the problem. }} Note here that the \code{bayes} procedure is not really useful as the adjustment for seasonality only works poorly. Moreover, we think that this method produces many false alarms for this time series because it disregards the increasing time trend in number of reported cases. Furthermore, it becomes clear that the improved Farrington procedure acts similar to the original procedure, but the improved reweighting and trend inclusion produces fewer alarms. The \code{boda} method is to be seen as a step towards more Bayesian thinking in aberration detection. However, besides its time demands for a detailed modeling, the speed of the procedure is also prohibitive as regards routine application. As a response~\citet{Maelle} introduce a method which has two advantages: it allows to adjust outbreak detection for reporting delays and includes an approximate inference method much faster than the INLA inference method. However, its linear predictor is more in the style of~\citet{Noufaily2012} not allowing for additional covariates or penalized options for the intercept. \begin{figure} \centering <>= y.max <- max(observed(boda.covars),upperbound(boda.covars),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=boda.covars,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ <>= plot(boda.covars) @ \caption{Weekly reports of Campylobacter in Germany in 2007-2011 monitored by the boda method with covariates. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms, \textit{i.e.}, timepoints where the observed number of counts is higher than the upperbound.} \label{fig:b} \end{figure} <>= control.far <- list(range=rangeBoda,b=4,w=5,alpha=0.025*2) far <- farrington(cam.sts,control=control.far) #Both farringtonFlexible and algo.bayes uses a one-sided interval just as boda. control.far2 <-modifyList(control.far,list(alpha=0.025)) farflex <- farringtonFlexible(cam.sts,control=control.far2) bayes <- suppressWarnings(bayes(cam.sts,control=control.far2)) @ <>= # Small helper function to combine several equally long univariate sts objects combineSTS <- function(stsList) { epoch <- as.numeric(epoch(stsList[[1]])) observed <- NULL alarm <- NULL for (i in 1:length(stsList)) { observed <- cbind(observed,observed(stsList[[i]])) alarm <- cbind(alarm,alarms(stsList[[i]])) } colnames(observed) <- colnames(alarm) <- names(stsList) res <- sts(epoch=as.numeric(epoch), epochAsDate=TRUE, observed=observed, alarm=alarm) return(res) } @ \begin{figure} \centering <>= # Make an artificial object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") @ \caption{Alarmplot showing the alarms for the campylobacteriosis time series for four different algorithms.} \label{fig:alarmplot} \end{figure} \subsection{Beyond one-timepoint detection} GLMs as used in the Farrington method are suitable for the purpose of aberration detection since they allow a regression approach for adjusting counts for known phenomena such as trend or seasonality in surveillance data. Nevertheless, the Farrington method only performs one-timepoint detection. In some contexts it can be more relevant to detect sustained shifts early, e.g., an outbreak could be characterized at first by counts slightly higher than usual in subsequent weeks without each weekly count being flagged by one-timepoint detection methods. Control charts inspired by statistical process control (SPC) e.g., cumulative sums would allow the detection of sustained shifts. Yet they were not tailored to the specific characteristics of surveillance data such as overdispersion or seasonality. The method presented in \citet{hoehle.paul2008} conducts a synthesis of both worlds, i.e., traditional surveillance methods and SPC. The method is implemented in the package as the function \code{glrnb}, whose use is explained here. \subsubsection{Definition of the control chart} For the control chart, two distributions are defined, one for each of the two states \textit{in-control} and \textit{out-of-control}, whose likelihoods are compared at each time step. The \textit{in-control} distribution $f_{\bm{\theta}_0}(y_t|\bm{z}_t)$ with the covariates $\bm{z}_t$ is estimated by a GLM of the Poisson or negative binomial family with a log link, depending on the overdispersion of the data. In this context, the standard model for the \textit{in-control} mean is $$\log \mu_{0,t}=\beta_0+\beta_1t+\sum_{s=1}^S\left[\beta_{2s}\cos \left(\frac{2\pi s t}{\mathtt{Period}}\right)+\beta_{2s+1}\sin \left(\frac{2\pi s t}{\mathtt{Period}}\right)\right] $$ where $S$ is the number of harmonic waves to use and \texttt{Period} is the period of the data as indicated in the \code{control} slot, for instance 52 for weekly data. However, more flexible linear predictors, e.g., containing splines, concurrent covariates or an offset could be used on the right hand-side of the equation. The GLM could therefore be made very similar to the one used by~\citet{Noufaily2012}, with reweighting of past outbreaks and various criteria for including the time trend. The parameters of the \textit{in-control} and \textit{out-of-control} models are respectively given by $\bm{\theta}_0$ and $\bm{\theta}_1$. The \textit{out-of-control} mean is defined as a function of the \textit{in-control} mean, either with a multiplicative shift (additive on the log-scale) whose size $\kappa$ can be given as an input or reestimated at each timepoint $t>1$, $\mu_{1,t}=\mu_{0,t}\cdot \exp(\kappa)$, or with an unknown autoregressive component as in \citet{held-etal-2005}, $\mu_{1,t}=\mu_{0,t}+\lambda y_{t-1}$ with unknown $\lambda>0$. In \code{glrnb}, timepoints are divided into two intervals: phase 1 and phase 2. The \textit{in-control} mean and overdispersion are estimated with a GLM fitted on phase 1 data, whereas surveillance operates on phase 2 data. When $\lambda$ is fixed, one uses a likelihood-ratio (LR) and defines the stopping time for alarm as $$N=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}_1}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\},$$ where $\mathtt{c.ARL}$ is the threshold of the CUSUM. When $\lambda$ is unknown and with the autoregressive component one has to use a generalized likelihood ratio (GLR) with the following stopping rule to estimate them on the fly at each time point so that $$N_G=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \sup_{\bm{\theta} \in \bm{\Theta}} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\} \,.$$ Thus, one does not make any hypothesis about the specific value of the change to detect, but this GLR is more computationally intensive than the LR. \subsubsection{Practical use} For using \code{glrnb} one has two choices to make. First, one has to choose an \textit{in-control} model that will be fitted on phase 1 data. One can either provide the predictions for the vector of \textit{in-control} means \code{mu0} and the overdispersion parameter \code{alpha} by relying on an external fit, or use the built-in GLM estimator, that will use all data before the beginning of the surveillance range to fit a GLM with the number of harmonics \code{S} and a time trend if \code{trend} is \code{TRUE}. The choice of the exact \textit{in-control} model depends on the data under surveillance. Performing model selection is a compulsory step in practical applications. Then, one needs to tune the surveillance function itself, for one of the two possible change forms, \code{intercept}~or~\code{epi}.~One~can choose either to set \code{theta} to a given value and thus perform LR instead of GLR. The value of \code{theta} has to be adapted to the specific context in which the algorithm is applied: how big are shifts one wants to detect optimally? Is it better not to specify any and use GLR instead? The threshold \texttt{c.ARL} also has to be specified by the user. As explained in \citet{hoehle-mazick-2010} one can compute the threshold for a desired run-length in control through direct Monte Carlo simulation or a Markov chain approximation. Lastly, as mentioned in \citet{hoehle.paul2008}, a window-limited approach of surveillance, instead of looking at all the timepoints until the first observation, can make computation faster. Here we apply \code{glrnb} to the time series of report counts of \textit{Salmonella Newport} in Germany by assuming a known multiplicative shift of factor $2$ and by using the built-in estimator to fit an \textit{in-control} model with one harmonic for seasonality and a trend. This model will be refitted after each alarm, but first we use data from the years before 2011 as reference or \code{phase1}, and the data from 2011 as data to be monitored or \code{phase2}. The threshold \texttt{c.ARL} was chosen to be 4 as we found with the same approach as \citet{hoehle-mazick-2010} that it made the probability of a false alarm within one year smaller than 0.1. Figure~\ref{fig:glrnb}~shows the results of this monitoring. <>= phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011) phase2 <- in2011 control <- list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases", mu0 = list(S = 1, trend = TRUE, refit = FALSE)) salmGlrnb <- glrnb(salmNewportGermany, control = control) @ \begin{figure} \centering <>= y.max <- max(observed(salmGlrnb),upperbound(salmGlrnb),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salmGlrnb,ylim=c(0,y.max)))) @ \caption{S. Newport in Germany in 2011 monitored by the \texttt{glrnb} function.} \label{fig:glrnb} \end{figure} The implementation of \code{glrnb} on individual time series was already thoroughly explained in \citet{hoehle-mazick-2010}. Our objective in the present document is rather to provide practical tips for the implementation of this function on huge amounts of data in public health surveillance applications. Issues of computational speed become very significant in such a context. Our proposal to reduce the computational burden incurred by this algorithm is to compute the \textit{in-control} model for each time series (pathogen, subtype, subtype in a given location, etc.) only once a year and to use this estimation for the computation of a threshold for each time series. An idea to avoid starting with an initial value of zero in the CUSUM is to use either $\left(\frac{1}{2}\right)\cdot\mathtt{c.ARL}$ as a starting value (fast initial response CUSUM as presented in~\citet{lucas1982fast}) or to let surveillance run with the new \textit{in-control} model during a buffer period and use the resulting CUSUM as an initial value. One could also choose the maximum of these two possible starting values as a starting value. During the buffer period alarms would be generated with the old model. Lastly, using GLR is much more computationally intensive than using LR, whereas LR performs reasonably well on shifts different from the one indicated by \code{theta} as seen in the simulation studies of~\citet{hoehle.paul2008}. Our advice would therefore be to use LR with a reasonable predefined \code{theta}. The amount of historical data used each year to update the model, the length of the buffer period and the value of \code{theta} have to be fixed for each specific application, e.g., using simulations and/or discussion with experts. \subsubsection{Similar methods in the package} The algorithm \code{glrPois} is the same function as \code{glrnb} but for Poisson distributed data. Other CUSUM methods for count data are found in the package: \code{cusum} and \code{rogerson}. Both methods are discussed and compared to \code{glrnb} in \citet{hoehle.paul2008}. The package also includes a semi-parametric method \code{outbreakP} that aims at detecting changes from a constant level to a monotonically increasing incidence, for instance the beginning of the influenza season. See Table~\ref{table:ref} for the corresponding references. \subsection{A method for monitoring categorical data} All monitoring methods presented up to now have been methods for analysing count data. Nevertheless, in public health surveillance one also encounters categorical time series which are time series where the response variable obtains one of $k\geq2$ different categories (nominal or ordinal). When $k=2$ the time series is binary, for instance representing a specific outcome in cases such as hospitalization, death or a positive result to some diagnostic test. One can also think of applications with $k>2$ if one studies, e.g., the age groups of the cases in the context of monitoring a vaccination program: vaccination targeted at children could induce a shift towards older cases which one wants to detect as quickly as possible -- this will be explained thoroughly with an example. The developments of prospective surveillance methods for such categorical time series were up to recently limited to CUSUM-based approaches for binary data such as those explained in~\citet{Chen1978},~\citet{Reynolds2000} and~\citet{rogerson_yamada2004}. Other than being only suitable for binary data these methods have the drawback of not handling overdispersion. A method improving on these two limitations while casting the problem into a more comprehending GLM regression framework for categorical data was presented in~\citet{hoehle2010}. It is implemented as the function \code{categoricalCUSUM}. The way \code{categoricalCUSUM} operates is very similar to what \code{glrnb} does with fixed \textit{out-of-control} parameter. First, the parameters in a multivariate GLM for the \textit{in-control} distribution are estimated from the historical data. Then the \textit{out-of-control} distribution is defined by a given change in the parameters of this GLM, e.g., an intercept change, as explained later. Lastly, prospective monitoring is performed on current data using a likelihood ratio detector which compares the likelihood of the response under the \textit{in-control} and \textit{out-of-control} distributions. \subsubsection{Categorical CUSUM for binomial models} The challenge when performing these steps with categorical data from surveillance systems is finding an appropriate model. Binary GLMs as presented in Chapter~6 of \citet{Fahrmeir.etal2013} could be a solution but they do not tackle well the inherent overdispersion in the binomial time series. Of course one could choose a quasi family but these are not proper statistical distributions making many issues such as prediction complicated. A better alternative is offered by the use of \textit{generalized additive models for location, scale and shape} \citep[GAMLSS,][]{Rigby2005}, that support distributions such as the beta-binomial distribution, suitable for overdispersed binary data. With GAMLSS one can model the dependency of the mean -- \textit{location} -- upon explanatory variables but the regression modeling is also extended to other parameters of the distribution, e.g., scale. Moreover any modelled parameter can be put under surveillance, be it the mean (as in the example later developed) or the time trend in the linear predictor of the mean. This very flexible modeling framework is implemented in \proglang{R} through the \pkg{gamlss} package~\citep{StasJSS}. As an example we consider the time series of the weekly number of hospitalized cases among all \textit{Salmonella} cases in Germany in Jan 2004--Jan 2014, depicted in Figure~\ref{fig:cat1}. We use 2004--2012 data to estimate the \textit{in-control} parameters and then perform surveillance on the data from 2013 and early 2014. We start by preprocessing the data. <>= data("salmHospitalized") isoWeekYearData <- isoWeekYear(epoch(salmHospitalized)) dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013) data2013 <- which(isoWeekYearData$ISOYear == 2013) dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014 & isoWeekYearData$ISOWeek <= 4) phase1 <- dataBefore2013 phase2 <- c(data2013, dataEarly2014) salmHospitalized.df <- cbind(as.data.frame(salmHospitalized), weekNumber = isoWeekYearData$ISOWeek) names(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound", "n", "freq", "epochInPeriod", "weekNumber") @ We assume that the number of hospitalized cases follows a beta-binomial distribution, i.e., $ y_t \sim \BetaBin(n_t,\pi_t,\sigma_t)$ with $n_t$ the total number of reported cases at time $t$, $\pi_t$ the proportion of these cases that were hospitalized and $\sigma$ the dispersion parameter. In this parametrization, $$E(y_t)=n_t \pi_t,\quad \text{and}$$ $$\Var(y_t)=n_t \pi_t(1-\pi_t)\left( 1 + \frac{\sigma(n_t-1)}{\sigma+1} \right) \,.$$ We choose to model the expectation $n_t \pi_t$ using a beta-binomial model with a logit-link which is a special case of a GAMLSS, i.e., $$\logit(\pi_t)=\bm{z}_t^\top\bm{\beta}$$ where $\bm{z}_t$ is a vector of possibly time-varying covariates and $\bm{\beta}$ a vector of covariate effects in our example. \begin{figure} \centering <>= y.max <- max(observed(salmHospitalized)/population(salmHospitalized),upperbound(salmHospitalized)/population(salmHospitalized),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmHospitalized,legend.opts=NULL,ylab="",ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange,"%m"=atChange) plotOpts2$par.list <- list(mar=c(6,5,5,5),family="Times",las=1) do.call("plot",plotOpts2) lines(salmHospitalized@populationFrac/4000,col="grey80",lwd=2) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2000,by=500)/4000,labels=as.character(seq(0,2000,by=500)),las=1, cex=2,cex.axis=1.5,pos=length(observed(salmHospitalized))+20) par(family="Times") text(-20, 0.6, "Proportion", pos = 3, xpd = T,cex=cex.text) text(520, 0.6, "Total number of \n reported cases", pos = 3, xpd = T,cex=cex.text) @ \caption{Weekly proportion of Salmonella cases that were hospitalized in Germany 2004-2014. In addition the corresponding number of reported cases is shown as a light curve.} \label{fig:cat1} \end{figure} The proportion of hospitalized cases varies throughout the year as seen in Figure~\ref{fig:cat1}. One observes that in the summer the proportion of hospitalized cases is smaller than in other seasons. However, over the holidays in December the proportion of hospitalized cases increases. Note that the number of non-hospitalized cases drops while the number of hospitalized cases remains constant (data not shown): this might be explained by the fact that cases that are not serious enough to go to the hospital are not seen by general practitioners because sick workers do not need a sick note during the holidays. Therefore, the \textit{in-control} model should contain these elements, as well as the fact that there is an increasing trend of the proportion because GPs prescribe less and less stool diagnoses so that more diagnoses are done on hospitalized cases. We choose a model with an intercept, a time trend, two harmonic terms and a factor variable for the first two weeks of each year. The variable \code{epochInPeriod} takes into account the fact that not all years have 52 weeks. <>= vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber") m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod) + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod) + I(weekNumber == 1) + I(weekNumber == 2), sigma.formula =~ 1, family = BB(sigma.link = "log"), data = salmHospitalized.df[phase1, vars]) @ The change we aim to detect is defined by a multiplicative change of odds, from $\frac{\pi_t^0}{(1-\pi_t^0)}$ to $R\cdot\frac{\pi_t^0}{(1-\pi_t^0)}$ with $R>0$, similar to what was done in~\citet{Steiner1999} for the logistic regression model. This is equivalent to an additive change of the log-odds, $$\logit(\pi_t^1)=\logit(\pi_t^0)+\log R$$ with $\pi_t^0$ being the \textit{in-control} proportion and $\pi_t^1$ the \textit{out-of-control} distribution. The likelihood ratio based CUSUM statistic is now defined as $$C_{t_0}=\max_{1\leq t \leq {t_0}}\left( \sum_{s=t}^{t_0} \log \left( \frac{f(y_s;\bm{z}_s,\bm{\theta}_1)}{f(y_s;\bm{z}_s,\bm{\theta}_0)} \right) \right)$$ with $\bm{\theta}_0$ and $\bm{\theta}_1$ being the vector in- and \textit{out-of-control} parameters, respectively. Given a threshold \code{h}, an alarm is sounded at the first time when $C_{t_0}>\mathtt{h}$. We set the parameters of the \code{categoricalCUSUM} to optimally detect a doubling of the odds in 2013 and 2014, i.e., $R=2$. Furthermore, we for now set the threshold of the CUSUM at $h=2$. We use the GAMLSS to predict the mean of the \textit{in-control} and \textit{out-of-control} distributions and store them into matrices with two columns among which the second one represents the reference category. <>= R <- 2 h <- 2 pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars], type = "response") pi1 <- plogis(qlogis(pi0) + log(R)) pi0m <- rbind(pi0, 1 - pi0) pi1m <- rbind(pi1, 1 - pi1) @ Note that the \code{categoricalCUSUM} function is constructed to operate on the observed slot of \code{sts}-objects which have as columns the number of cases in each category at each timepoint, \textit{i.e.}, each row of the observed slot contains the elements $(y_{t1},...,y_{tk})$. <>= populationHosp <- unname(cbind( population(salmHospitalized), population(salmHospitalized))) observedHosp <- cbind( "Yes" = as.vector(observed(salmHospitalized)), "No" = as.vector(population(salmHospitalized) - observed(salmHospitalized))) salmHospitalized.multi <- sts( frequency = 52, start = c(2004, 1), epoch = epoch(salmHospitalized), observed = observedHosp, population = populationHosp, multinomialTS = TRUE) @ Furthermore, one needs to define a wrapper for the distribution function in order to have an argument named \code{"mu"} in the function. <>= dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { dBB(if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log) } @ After these preliminary steps, the monitoring can be performed. <>= controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM( salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coefficients)) @ The results can be seen in Figure~\ref{fig:catDouble}(a). With the given settings, there are alarms at week 16 in 2004 and at week 3 in 2004. The one in 2014 corresponds to the usual peak of the beginning of the year, which was larger than expected this year, maybe because the weekdays of the holidays were particularly worker-friendly so that sick notes were even less needed. The value for the threshold \code{h} can be determined following the procedures presented in \citet{hoehle-mazick-2010} for count data, and as in the code exhibited below. Two methods can be used for determining the probability of a false alarm within a pre-specified number of steps for a given value of the threshold \code{h}: a Monte Carlo method relying on, e.g., 1000 simulations and a Markov Chain approximation of the CUSUM. The former is much more computationally intensive than the latter: with the code below, the Monte Carlo method needed approximately 300 times more time than the Markov Chain method. Since both results are close we recommend the Markov Chain approximation for practical use. The Monte Carlo method works by sampling observed values from the estimated distribution and performing monitoring with \code{categoricalCUSUM} on this \code{sts} object. As observed values are estimated from the \textit{in-control} distribution every alarm thus obtained is a false alarm so that the simulations allow to estimate the probability of a false alarm when monitoring \textit{in-control} data over the timepoints of \code{phase2}. The Markov Chain approximation introduced by \citet{brook_evans1972} is implemented as \code{LRCUSUM.runlength} which is already used for \code{glrnb}. Results from both methods can be seen in Figure~\ref{fig:catDouble}(b). We chose a value of 2 for \code{h} so that the probability of a false alarm within the 56 timepoints of \code{phase2} is less than $0.1$. One first has to set the values of the threshold to be investigated and to prepare the function used for simulation, that draws observed values from the \textit{in-control} distribution and performs monitoring on the corresponding time series, then indicating if there was at least one alarm. Then 1000 simulations were performed with a fixed seed value for the sake of reproducibility. Afterwards, we tested the Markov Chain approximation using the function \code{LRCUSUM.runlength} over the same grid of values for the threshold. <<>>= h.grid <- seq(1, 10, by = 0.5) @ <>= simone <- function(sts, h) { y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE], bd = population(sts)[phase2, ], sigma = exp(m.bbin$sigma.coefficients), fast = TRUE) observed(sts)[phase2, ] <- cbind(y, population(sts)[phase2, 1] - y) one.surv <- categoricalCUSUM( sts, control = modifyList(controlCat, list(h = h)), sigma = exp(m.bbin$sigma.coefficients)) return(any(alarms(one.surv)[, 1])) } set.seed(123) nSims <- 1000 pMC <- sapply(h.grid, function(h) { mean(replicate(nSims, simone(salmHospitalized.multi, h))) }) pMarkovChain <- sapply(h.grid, function(h) { TA <- LRCUSUM.runlength(mu = pi0m[1,,drop = FALSE], mu0 = pi0m[1,,drop = FALSE], mu1 = pi1m[1,,drop = FALSE], n = population(salmHospitalized.multi)[phase2, ], h = h, dfun = dBB.cusum, sigma = exp(m.bbin$sigma.coef)) return(tail(TA$cdf, n = 1)) }) @ <>= if (computeALL) { <> save(pMC, file = "monitoringCounts-cache/pMC.RData") save(pMarkovChain, file = "monitoringCounts-cache/pMarkovChain.RData") } else { load("monitoringCounts-cache/pMC.RData") load("monitoringCounts-cache/pMarkovChain.RData") } @ \begin{figure} \subfloat[]{ <>= y.max <- max(observed(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),upperbound(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=salmHospitalizedCat[,1],ylab="Proportion",ylim=c(0,y.max))) plotOpts3$legend.opts <- list(x="top",bty="n",legend=c(expression(U[t])),lty=1,lwd=line.lwd,col=plotOpts$alarm.symbol$col,horiz=TRUE,cex=cex.text) do.call("plot",plotOpts3) @ <>= plot(salmHospitalizedCat[,1]) @ } \subfloat[]{ <>= par(mar=c(6,5,5,5),family="Times") matplot(h.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 56 * "|" * tau * "=" * infinity)),xlab="Threshold h",col=1,cex.axis=cex.text,cex.lab=cex.text) prob <- 0.1 lines(range(h.grid),rep(prob,2),lty=5,lwd=2) par(family="Times") legend(4,0.08,c("Monte Carlo","Markov chain"), lty=1:2,col=1,cex=cex.text,bty="n") @ <>= matplot(h.grid, cbind(pMC, pMarkovChain), type="l", lty=1:2, col=1) abline(h=0.1, lty=5) legend("center", c("Monte Carlo","Markov chain"), lty=1:2, bty="n") @ } \caption{(a) Results of the monitoring with categorical CUSUM of the proportion of Salmonella cases that were hospitalized in Germany in Jan 2013 - Jan 2014. (b) Probability of a false alarm within the 56 timepoints of the monitoring as a function of the threshold $h$.} \label{fig:catDouble} \end{figure} The procedure for using the function for multicategorical variables follows the same steps (as illustrated later). Moreover, one could expand the approach to utilize the multiple regression possibilities offered by GAMLSS. Here we chose to try to detect a change in the mean of the distribution of counts but as GAMLSS provides more general regression tools than GLM we could also aim at detecting a change in the time trend included in the model for the mean. \subsubsection{Categorical CUSUM for multinomial models} In order to illustrate the use of \code{categoricalCUSUM} for more than two classes we analyse the monthly number of rotavirus cases in the federal state Brandenburg during 2002-2013 and which are stratified into the five age-groups 00-04, 05-09, 10-14, 15-69, 70+ years. In 2006 two rotavirus vaccines were introduced, which are administered in children at the age of 4--6 months. Since then, coverage of these vaccination has steadily increased and interest is to detect possible age-shifts in the distribution of cases. <>= data("rotaBB") plot(rotaBB) @ \begin{figure} \centering <>= par(mar=c(5.1,20.1,4.1,0),family="Times") plot(rotaBB,xlab="Time (months)",ylab="", col="mediumblue",cex=cex.text,cex.lab=cex.text,cex.axis=cex.text,cex.main=cex.text, xaxis.tickFreq=list("%G"=atChange), xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") par(las=0,family="Times") mtext("Proportion of reported cases", side=2, line=19, cex=1) @ \caption{Monthly proportions in five age-groups for the reported rotavirus cases in Brandenburg, Germany, \Sexpr{paste(format(range(epoch(rotaBB)),"%Y"),collapse="-")}.} \label{fig:vac} \end{figure} From Figure~\ref{fig:vac} we observe a shift in proportion away from the very young. However, interpreting the proportions only makes sense in combination with the absolute numbers. In these plots (not shown) it becomes clear that the absolute numbers in the 0--4 year old have decreased since 2009. However, in the 70+ group a small increase is observed with 2013 by far being the strongest season so far. Hence, our interest is in prospectively detecting a possible age-shift. Since the vaccine was recommended for routine vaccination in Brandenburg in 2009 we choose to start the monitoring at that time point. We do so by fitting a multinomial logit-model containing a trend as well as one harmonic wave and use the age group 0--4 years as reference category, to the data from the years 2002-2008. Different \proglang{R} packages implement such type of modeling, but we shall use the \pkg{MGLM} package~\citep{MGLM}, because it also offers the fitting of extended multinomial regression models allowing for extra dispersion. <<>>= rotaBB.df <- as.data.frame(rotaBB) X <- with(rotaBB.df, cbind(intercept = 1, epoch, sin1 = sin(2 * pi * epochInPeriod), cos1 = cos(2 * pi * epochInPeriod))) phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 library("MGLM") ## MGLMreg automatically takes the last class as ref so we reorder order <- c(2:5, 1); reorder <- c(5, 1:4) m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ], dist = "MN") @ As described in \citet{hoehle2010} we can try to detect a specific shift in the intercept coefficients of the model. For example, a multiplicative shift of factor 2 in the example below, in the odds of each of the four age categories against the reference category is modelled by changing the intercept value of each category. Based on this, the \textit{in-control} and \textit{out-of-control} proportions are easily computed using the \code{predict} function for \code{MGLMreg} objects. <<>>= m1 <- m0 m1@coefficients[1, ] <- m0@coefficients[1, ] + log(2) pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder]) pi1 <- t(predict(m1, newdata = X[phase2, ])[, reorder]) @ For applying the \code{categoricalCUSUM} function one needs to define a compatible wrapper function for the multinomial as in the binomial example. With $\bm{\pi}^0$ and $\bm{\pi}^1$ in place one only needs to define a wrapper function, which defines the PMF of the sampling distribution -- in this case the multinomial -- in a \code{categoricalCUSUM} compatible way. <>= dfun <- function(y, size, mu, log = FALSE) { dmultinom(x = y, size = size, prob = mu, log = log) } h <- 2 # threshold for the CUSUM statistic control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, pi1 = pi1, ret = "value", dfun = dfun) surv <- categoricalCUSUM(rotaBB,control=control) @ <>= alarmDates <- epoch(surv)[which(alarms(surv)[,1])] format(alarmDates,"%b %Y") @ <>= #Number of MC samples nSamples <- 1e4 #Do MC simone.stop <- function(sts, control) { phase2Times <- seq(nrow(sts))[phase2] #Generate new phase2 data from the fitted in control model y <- sapply(1:length(phase2Times), function(i) { rmultinom(n=1, prob=pi0[,i],size=population(sts)[phase2Times[i],1]) }) observed(sts)[phase2Times,] <- t(y) one.surv <- categoricalCUSUM(sts, control=control) #compute P(S<=length(phase2)) return(any(alarms(one.surv)[,1]>0)) } set.seed(1233) rlMN <- replicate(nSamples, simone.stop(rotaBB, control=control)) mean(rlMN) # 0.5002 @ The resulting CUSUM statistic $C_t$ as a function of time is shown in Figure~\ref{fig:ct}(a). The first time an aberration is detected is July 2009. Using 10000 Monte Carlo simulations we estimate that with the chosen threshold $h=2$ the probability for a false alarm within the 60 time points of \code{phase2} is 0.02. As the above example shows, the LR based categorical CUSUM is rather flexible in handling any type of multivariate GLM modeling to specify the \textit{in-control} and \textit{out-of-control} proportions. However, it requires a direction of the change to be specified -- for which detection is optimal. One sensitive part of such monitoring is the fit of the multinomial distribution to a multivariate time series of proportions, which usually exhibit extra dispersion when compared to the multinomial. For example comparing the AIC between the multinomial logit-model and a Dirichlet-multinomial model with $\alpha_{ti} = \exp(\bm{x}_t^\top\bm{\beta})$~\citep{MGLM} shows that overdispersion is present. The Dirichlet distribution is the multicategorical equivalent of the beta-binomial distribution. We exemplify its use in the code below. <<>>= m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ], dist = "DM") c(m0@AIC, m0.dm@AIC) @ Hence, the above estimated false alarm probability might be too low for the actual monitoring problem, because the variation in the time series is larger than implied by the multinomial. Hence, it appears prudent to repeat the analysis using the more flexible Dirichlet-multinomial model. This is straightforward with \code{categoricalCUSUM} once the \textit{out-of-control} proportions are specified in terms of the model. Such a specification is, however, hampered by the fact that the two models use different parametrizations. For performing monitoring in this new setting we first need to calculate the $\alpha$'s of the multinomial-Dirichlet for the \textit{in-control} and \textit{out-of-control} distributions. <<>>= ## Change intercept in the first class (for DM all 5 classes are modeled) delta <- 2 m1.dm <- m0.dm m1.dm@coefficients[1, ] <- m0.dm@coefficients[1, ] + c(-delta, rep(delta/4, 4)) alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients) dfun <- function(y, size, mu, log = FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) dLog else exp(dLog) } h <- 2 control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = t(alpha0), pi1 = t(alpha1), ret = "value", dfun = dfun) surv.dm <- categoricalCUSUM(rotaBB, control = control) @ <>= matplot(alpha0/rowSums(alpha0),type="l",lwd=3,lty=1,ylim=c(0,1)) matlines(alpha1/rowSums(alpha1),type="l",lwd=1,lty=2) @ \begin{figure} \subfloat[]{ <>= surv@observed[,1] <- 0 surv@multinomialTS <- FALSE surv.dm@observed[,1] <- 0 surv.dm@multinomialTS <- FALSE y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=surv[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=plotOpts$alarm.symbol$col,horiz=TRUE,cex=cex.text) do.call("plot",plotOpts3) abline(h=h, lwd=2, col="darkgrey") par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ } \subfloat[]{ <>= plotOpts3$x <- surv.dm[,1] do.call("plot",plotOpts3) abline(h=h, lwd=2, col="darkgrey") par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ } \caption{Categorical CUSUM statistic $C_t$. Once $C_t>\Sexpr{h}$ an alarm is sounded and the statistic is reset. In (a) surveillance uses the multinomial distribution and in (b) surveillance uses the Dirichlet-multinomial distribution.} \label{fig:ct} \end{figure} <>= par(mfrow = c(1,2)) surv@multinomialTS <- surv.dm@multinomialTS <- FALSE # trick plot method ... plot(surv[,1], col=c(NA,NA,4), ylab = expression(C[t]), ylim = c(0,33), xaxis.tickFreq=list("%Y"=atChange, "%m"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y") abline(h=h, lwd=2, col="darkgrey") plot(surv.dm[,1], col=c(NA,NA,4), ylab = expression(C[t]), ylim = c(0,33), xaxis.tickFreq=list("%Y"=atChange, "%m"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y") abline(h=h, lwd=2, col="darkgrey") @ The resulting CUSUM statistic $C_t$ using the Dirichlet multinomial distribution is shown in Figure~\ref{fig:ct}(b). We notice a rather similar behavior even though the shift-type specified by this model is slightly different than in the model of Figure~\ref{fig:ct}(a). \subsubsection{Categorical data in routine surveillance} The multidimensionality of data available in public health surveillance creates many opportunities for the analysis of categorical time series, for example: sex ratio of cases of a given disease, age group distribution, regions sending data, etc. If one is interested in monitoring with respect to a categorical variable, a choice has to be made between monitoring each time series individually, for instance a time series of \textit{Salmonella} cases for each age group, or monitoring the distribution of cases with respect to that factor jointly \textit{via} \code{categoricalCUSUM}. A downside of the latter solution is that one has to specify the change parameter \code{R} in advance, which can be quite a hurdle if one has no pre-conceived idea of what could happen for, say, the age shift after the introduction of a vaccine. Alternatively, one could employ an ensemble of monitors or monitor an aggregate. However, more straightforward applications could be found in the (binomial) surveillance of positive diagnostics given laboratory test data and not only data about confirmed cases. An alternative would be to apply \code{farringtonFlexible} while using the number of tests as \code{populationOffset}. \subsubsection{Similar methods in the package} The package also offers another CUSUM method suitable for binary data, \code{pairedbinCUSUM} that implements the method introduced by~\citet{Steiner1999}, which does not, however, take overdispersion into account as well as \code{glrnb}. The algorithm \code{rogerson} also supports the analysis of binomial data. See Table~\ref{table:ref} for the corresponding references. \subsection{Other algorithms implemented in the package} We conclude this description of surveillance methods by giving an overview of all algorithms implemented in the package in Table~\ref{table:ref}. Please see the cited articles or the package manual for more information about each method. Criteria for choosing a method in practice are numerous. First one needs to ponder on the amount of historical data at hand -- for instance the EARS methods only need data for the last timepoints whereas the Farrington methods use data up to $b$ years in the past. Then one should consider the amount of past data used by the algorithm -- historical reference methods use only a subset of the past data, namely the timepoints located around the same timepoint in the past years, whereas other methods use all past data included in the reference data. This can be a criterion of choice since one can prefer using all available data. It is also important to decide whether one wants to detect one-timepoint aberration or more prolonged shifts. And lastly, an important criterion is how much work needs to be done for finetuning the algorithm for each specific time series. The package on the one hand provides the means for analysing nearly all type of surveillance data and on the other hand makes the comparison of algorithms possible. This is useful in practical applications when those algorithms are implemented into routine use, which will be the topic of Section~\ref{sec:routine}. \begin{table}[t!] \centering \begin{tabular}{lp{11cm}} \toprule Function & References \\ \midrule \code{bayes} & \citet{riebler2004} \\ \code{boda} & \citet{Manitz2013} \\ \code{bodaDelay} & \citet{Maelle} \\ \code{categoricalCUSUM} & \citet{hoehle2010}\\ \code{cdc} & \citet{stroup89,farrington2003} \\ \code{cusum} & \citet{rossi_etal99,pierce_schafer86} \\ \code{earsC} & \citet{SIM:SIM3197} \\ \code{farrington} & \citet{farrington96} \\ \code{farringtonFlexible} & \citet{farrington96,Noufaily2012} \\ \code{glrnb} & \citet{hoehle.paul2008} \\ \code{glrpois} & \citet{hoehle.paul2008} \\ \code{outbreakP} & \citet{frisen_etal2009,fri2009} \\ \code{pairedbinCUSUM} & \citet{Steiner1999} \\ \code{rki} & Not available -- unpublished \\ \code{rogerson} & \citet{rogerson_yamada2004} \\ \bottomrule \end{tabular} \caption{Algorithms for aberration detection implemented in \pkg{surveillance}.} \label{table:ref} \end{table} \section[Implementing surveillance in routine monitoring]{Implementing \pkg{surveillance} in routine monitoring} \label{sec:routine} \label{sec:3} Combining \pkg{surveillance} with other \proglang{R} packages and programs is easy, allowing the integration of the aberration detection into a comprehensive surveillance system to be used in routine practice. In our opinion, such a surveillance system has to at least support the following process: loading data from local databases, analysing them within \pkg{surveillance} and sending the results of this analysis to the end-user who is typically an epidemiologist in charge of the specific pathogen. This section exemplifies the integration of the package into a whole analysis stack, first through the introduction of a simple workflow from data query to a \code{Sweave}~\citep{sweave} or \pkg{knitr}~\citep{knitr} report of signals, and secondly through the presentation of the more elaborate system in use at the German Robert Koch Institute. \subsection{A simple surveillance system} Suppose you have a database with surveillance time series but little resources to build a surveillance system encompassing all the above stages. Using \proglang{R} and \code{Sweave} or \code{knitr} for \LaTeX~you can still set up a simple surveillance analysis without having to do everything by hand. You only need to import the data into \proglang{R} and create \code{sts} objects for each time series of interest as explained thoroughly in~\citet{hoehle-mazick-2010}. Then, calling a surveillance algorithm, say \code{farringtonFlexible}, with an appropriate \code{control} argument gives an \code{sts} object with upperbounds and alarms over \code{control$range}. To define the range automatically one could use the \proglang{R} function \code{Sys.Date()} to get today's date. These steps can be introduced as a code chunk in a \code{Sweave} or \code{knitr} code that will translate it into a report that you can send to the epidemiologists in charge of the respective pathogen whose cases are monitored. Below is an example of a short code segment showing the analysis of the \textit{S. Newport} weekly counts in the German federal states Baden-W\"{u}rttemberg and North Rhine-Westphalia using the improved method implemented in \code{farringtonFlexible}. The package provides a \code{toLatex} method for \code{sts} objects that produces a table of the observed counts and upperbound values for each unit; alarms are highlighted by default. The result is shown in Table~\ref{tableResults}. <<>>= today <- which(epoch(salmNewport) == as.Date("2013-12-23")) rangeAnalysis <- (today - 4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013) algoParameters <- list(range = rangeAnalysis, noPeriods = 10, populationBool = FALSE, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin", alpha = 0.05, limit54 = c(0, 50)) results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control = algoParameters) @ <>= start <- isoWeekYear(epoch(salmNewport)[min(rangeAnalysis)]) end <- isoWeekYear(epoch(salmNewport)[max(rangeAnalysis)]) caption <- paste0("Results of the analysis of reported S. Newport ", "counts in two German federal states for the weeks ", start$ISOYear, "-W", start$ISOWeek, " to ", end$ISOYear, "-W", end$ISOWeek, ". Bold red counts indicate weeks with alarms.") toLatex(results, caption = caption, label = "tableResults", ubColumnLabel = "Threshold", include.rownames = FALSE, sanitize.text.function = identity) @ The advantage of this approach is that it can be made automatic. The downside of such a system is that the report is not interactive, for instance one cannot click on the cases and get the linelist. Nevertheless, this is a workable solution in many cases -- especially when human and financial resources are narrow. In the next section, we present a more advanced surveillance system built on the package. \subsection{Automatic detection of outbreaks at the Robert Koch Institute} \label{sec:RKI} The package \pkg{surveillance} was used as a core building block for designing and implementing the automated outbreak detection system at the RKI in Germany~\citep{Dirk}. The text below describes the system as it was in early 2014. Due to the Infection Protection Act (IfSG) the RKI daily receives over 1,000 notifiable disease reports. The system analyses about half a million time series per day to identify possible aberrations in the reported number of cases. Structurally, it consists of two components: an analytical process written in \proglang{R} that daily monitors the data and a reporting component that compiles and communicates the results to the epidemiologists. The analysis task in the described version of the system relied on \pkg{surveillance} and three other \proglang{R} packages, namely \pkg{data.table}, \pkg{RODBC} and \pkg{testthat} as described in the following. The data-backend is an OLAP-system~\citep{SSAS} and relational databases, which are queried using \pkg{RODBC}~\citep{rodbc2013}. The case reports are then rapidly aggregated into univariate time series using \pkg{data.table}~\citep{datatable2013}. To each time series we apply the \code{farringtonFlexible} algorithm on univariate \code{sts} objects and store the analysis results in another SQL-database. We make intensive use of \pkg{testthat}~\citep{testthat2013} for automatic testing of the component. Although \proglang{R} is not the typical language to write bigger software components for production, choosing \proglang{R} in combination with \pkg{surveillance} enabled us to quickly develop the analysis workflow. We can hence report positive experience using \proglang{R} also for larger software components in production. The reporting component was realized using Microsoft Reporting Services~\citep{SSRS}, because this technology is widely used within the RKI. It allows quick development of reports and works well with existing Microsoft Office tools, which the end-user, the epidemiologist, is used to. For example, one major requirement by the epidemiologists was to have the results compiled as Excel documents. Moreover, pathogen-specific reports are automatically sent once a week by email to epidemiologists in charge of the respective pathogen. Having state-of-the-art detection methods already implemented in \pkg{surveillance} helped us to focus on other challenges during development, such as bringing the system in the organization's workflow and finding ways to efficiently and effectively analyse about half a million of time series per day. In addition, major developments in the \proglang{R} component can be shared with the community and are thus available to other public health institutes as well. \section{Discussion} \label{sec:4} The \proglang{R} package \pkg{surveillance} was initially created as an implementational framework for the development and the evaluation of outbreak detection algorithms in routine collected public health surveillance data. Throughout the years it has more and more also become a tool for the use of surveillance in routine practice. The presented description aimed at showing the potential of the package for aberration detection. Other functions offered by the package for modeling~\citep{meyer.etal2014}, nowcasting~\citep{hoehle-heiden} or back-projection of incidence cases~\citep{becker_marschner93} are documented elsewhere and contribute to widening the scope of possible analysis in infectious disease epidemiology when using \pkg{surveillance}. Future areas of interest for the package are, e.g., to better take into account the multivariate and hierarchical structure of the data streams analysed. Another important topic is the adjustment for reporting delays when performing the surveillance~\citep{Maelle}. The package can be obtained from CRAN and resources for learning its use are listed in the documentation section of the project (\url{https://surveillance.R-Forge.R-project.org/}). As all \proglang{R} packages, \pkg{surveillance} is distributed with a manual describing each function with corresponding examples. The manual, the present article and two previous ones~\citep{hoehle-2007, hoehle-mazick-2010} form a good basis for getting started with the package. The data and analysis of the present manuscript are accessible as the vignette \texttt{"monitoringCounts.Rnw"} in the package. Since all functionality is available just at the cost of learning \proglang{R} we hope that parts of the package can be useful in health facilities around the world. Even though the package is tailored for surveillance in public health contexts, properties such as overdispersion, low counts, presence of past outbreaks, apply to a wide range of count and categorical time series in other surveillance contexts such as financial surveillance~\citep{frisen2008financial}, occupational safety monitoring~\citep{accident} or environmental surveillance~\citep{Radio}. Other \proglang{R} packages can be worth of interest to \pkg{surveillance} users. Statistical process control is offered by two other packages, \pkg{spc}~\citep{spc} and \pkg{qcc}~\citep{qcc}. The package \pkg{strucchange} allows detecting structural changes in general parametric models including GLMs~\citep{strucchange}, while the package \pkg{tscount} provides methods for regression and (retrospective) intervention analysis for count time series based on GLMs~\citep{tscount, liboschik_tscount_2015} . For epidemic modelling and outbreaks, packages such as \pkg{EpiEstim}~\citep{EpiEstim}, \pkg{outbreaker}~\citep{outbreaker} and \pkg{OutbreakTools}~\citep{OutbreakTools} offer good functionalities for investigating outbreaks that may for instance have been detected through to the use of \pkg{surveillance}. They are listed on the website of the \textit{R Epidemics Consortium} (\url{https://www.repidemicsconsortium.org/}) that was initiated for compiling information about \proglang{R} tools useful for infectious diseases epidemiology. Another software of interest for aberration detection is \pkg{SaTScan}~\citep{SaTScan} which allows the detection of spatial, temporal and space-time clusters of events -- note that it is not a \proglang{R} package. Code contributions to the package are very welcome as well as feedback and suggestions for improving the package. \section*{Acknowledgments} The authors would like to express their gratitude to all contributors to the package, in particular Juliane Manitz, University of G\"{o}ttingen, Germany, for her work on the \texttt{boda} code, and Angela Noufaily, The Open University, Milton Keynes, UK, for providing us with the code used in her article that we extended for \texttt{farringtonFlexible}. The work of M. Salmon was financed by a PhD grant of the RKI. \bibliography{monitoringCounts,references} \end{document} surveillance/inst/doc/twinstim.pdf0000644000176200001440000166506314712411614017063 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5573 /Filter /FlateDecode /N 91 /First 779 >> stream xœÝ\Y“Û6¶~¿¿‚o“Ô” b!N庪Ý^âx‰«Ûk¦ò –¨n:j©£%¶ç×ßïà&Rjª#۷ƲZ\Àƒƒƒ³ó"J"i©ˆ§"‰ÒˆëÌF:âYšD&Ib# nl”EBjñ$:Å/¤&â"’ZÛˆËH%ô«"%%¥QÊ…À(Õ)Ú™(͆¼H3ô€~½š$ãè#2i&#d»dÅœd%’d¥L)@V +cÐU4 §‰Æ%jƒ S©Ubó4I‰°Ž\) §6ñ9ÍRP5†¥4K¤€¬i8D^l ÈZgDjXà Ù$ Má6õq A6 È(F@€@Œ4 ‹Õ€l2< s‹!F4³6M0i€lm¢0k8Ȭ0Fžý´â™%$ÂD@Î ¦”áY–à@;¦Bâ.ø†x@at–hÌ+‰£XLkB]мsŒ, *Y…….,X…h¦à¨ZC ¾²Ä¹Ô3ê „®‰á„"žd‘òä~ú)b/òõh2ZÀaŒ³ˆýºYÏŠy¾‚D¸óW£Kœ(òúËM±S´Ÿ-.£û÷ˆ“Íúj±Œ~šæÓi’€‰NñŘ1w‰Á¹Q8Îü¹Î“·5ñíL~qQŒÃ½q€1õíµ °¦ mlh3ׯ ¸SÖÏ•íÊç¦:ÜsýÜLj–ùh],æGë<úáá¿@9AJ¹T:‘ÿLø?’ä?†vëÏG¯ó÷ѧb}]&Ëe>Åígù—O‹ådUÒÂ= ¸—4Àu1 ç„×$´™†ññ×òº{.÷ÏT×ÌŽ{6¯éà`çž6e?%]DIû$\ëk“„óiãþ¸Æš¬î«¼¦C;Ù¯I=-\ÛpÝ”|ÂëãïxMSß?ñN‰Coìñ¨Æh/d œJüo¡±£é4<ÆàÆÑè³3¿ùk¬æˆwéSÊámÊyëkS Xyƒ×{ƶs tÏ4èb8O47u_m| 7/“ÛDæÕr1ÙŒsÈÌ“WÏ£'W‹Õz5^7ë(‹Ó4NÐä|sñ1¯£püºXÏòJ~T££c“&ÀOŽ‚L7ôÊ7áûr®Ê9(ᚤ–㋺]ym'Ï|e`äýRYŸ.6ó5y"ìYEõoø?¤Ù­û›ù¿þRæ ¬¾?5îG~Ccÿ$‘öç¡y’„_á›û§àr¹_é¯jó÷ÒÀx›Sš—ù|±&L¥GÆ0üªðºæ3ºæ6üf《p„¿žP%§‹ù:Ÿ£S²›Îð½È'ÅèÁâ3Ð (ðNb¸Vñ†öwÂx‰J3y–¯›åc <4²¸Áž.ãó| @ìÕÃÇqþy ÷ï7ßž-ÅrµŽ2ÏG8†Ñ´É•Ùn=y>ÌWëjžÙû¿ÁLjásÌÒ|3›Ñ|Ü6ûà™'{IHÂã)]7Øà ´$VõHŽ“¤¨ôjެæ70šòÓ¢ü¬(?J•öÌ=ÒÜ(}‡©©ÑöSå™-ˆAꇔú!¥~H©Ç$õCJ}穇’z(©‡¢=í¡è ,ŠöP´‡g¿‡@Ù‘Ÿ…ŒV¹{œ=ÿúõûó>q¶¸͹¸÷`1›DìÑ|¼˜óKòcxǃ§W£%…:®k0¯3ð¹Âgú6˜7²k×3õÏK4|·ïŠÉúЦH;"ßö‘ðØ¥S.gÈηjÇeë9ÄðßݦÈHë¯Â¥WNõPH¡)@3õ#°´Ó»>)ØŠZ@†ü/:•B„Î=i¦ÜQ&­oî¢kðŽR˜†;hiÑ’~Ý7¹ ÿ¢ÑÆÄú0žÖÜüœ—Wå)xŒxýv°‡ìû™=eÏÙ vÆÎÙˆ]°1/f‹9›°œMÙÿ‹¿péa—ìŠ!0¸Êç¬`°»fs¶``÷|™¯Š[ÌsvÃ9‹ [²[³õÕ2ÏÙúÓ‚mØ_ìû̾°ÿüè¸CòžHÀàg£Ë•3 àñ¥T»{ˆ”S‡ûïþîãb–#x´4ê3éåè:ß)OÖã“ù%ô9ð¢X­ NŠv¾Î¯ßRüÞ”³†ˆvÿÙùƒ·/¡££õÕù—ë‹Åleïå—›¸¡‚*¯@Ò•ÿ VòÏÓ#ÿ‹7óPs`F¯J°Â«„Ôy_ë¡GüŸØoÏäV‡ÉÓ6“§-&UÁŒ«?®1Sìb´œ\ÌX>˯ñ$+æÓb^¬¿°ëb¾YµX’€ìbIJñ$”I;,)¶YòNÌšÉPÖ|ûòÃã³W• $=\Yz?5WÂÅì°eºÅ–Ö~˜YRF¸o˜²–FN-t5Ì}­Ü28îœüI9?ëŒ;§¬!~ ÖЯ÷£êͱ¬làehÈ‘†È›º{”Má{Sz,KÛ=CçNæŒôx;©‡Ýd«Íy…r=xz„LVù+)®»ÁÑ9 Ð1‘À‘'ܧë2£Ä¥r)¯ ôK_å|Éÿ¶Ï0C¾Å\ ÎaÚLà©3‚ÙgaÏœ1|É~e¯œI|ÍÞ°·ì{Ï>°ß` G•±»`ËÑø|½$Ø•Ý/®¯GÎzº>Y>ŸŒVWÁ”N æþ“EõÕ•Y#îé³­äÕÎòéÚù®api´¥áý“ý¹Y¬sè:×°<ñmÝ™?$½ÊÿBÇ«â3[ÍͶÁÞT½W¦›ý'_.)Ë{ªV—YŸº ¦¯V—»µ×`MɇjÊï~~øá·F_[Þ;Úüd¾*ê µÂD8ÔQ˜Ó+U>ÔO )[úÛ÷Ýæy«³¿+[ˆÃ4\õ”ïw”£°NÁiß–+z¹Ô+Ú+ïHz¨ýGbá6Óvkò¯ÜA.9O:÷-)êr‹ŸÔ6?í˜ã¡Ì$Ôfbïø,H‡³Þ¿zøêù›F¯¾¿¦c¬ëþÈ0Ûæ(Á‡F†[±\ý‘‰iËÔV×ük«ö·}µù4}Œ"?F¼nùk2–dTÁ9tOZ²W0°šCz}CÏ„ŒÚÙH#À…]rÝ€ØáWÎ}à§ëc¤S½¼ÙV·qçP-¨û§ïùåѳÓý‘<ß–Õ# ª£û’º¯ŽÃ›|¼i·y§o“–Š#m¿êᔼØàÔH·Ã¿²×2tÞânaoãfp¤ÁͯÊà®âÜ:Ð+–ãÍõt–ndJ=«:»~ ;¾Ø®ÍÀÄÎû­Ì÷çáaUà\ãê¬:œ[¦ký“†ò,¬ç]Ü೿¼ö8ˆŒïë°(ËŠ.3ëmfæé@f¶UJŠôk¶ËAîWÇR4Nû²Úê63µ¼Æ3öž]+ÅÈÍ-QU¯ÁhiÛñÍJûWMñ>Jd»K15&Yt'ùüÅÛ§í®{3áehVçywr;^ÚàZ[qËj Ìm­öDV[ÙTwï+ݯÉ4¿-dOÝëÖ”û3‰†*âÒÔs©nYw bvƒ–´´¤Mö{Š d4»¹UÁÈ4¤šæ¤–ÖÅh6)•¬ŠKÜET1Ú´£µ#ŠàÊß5@úl3j•h®u?· eU>؆~89ûåìݶ`ô°giï÷±§L¶Ù³×Ö>e¶ïMVÄCyÂUYé•Qž\'Wœ3î• Êm¿í þmø±»¬JíàQ«Ç]NW®v†ŠÆ¥2J ¶Ì¡8%¬ý3ºÕ³¬d&…tæq_œ}Á.òuÍà“|†3˜eüÂ"_ŽèzÈ¯Ž®/&#ç`•¤€{S†Ù7E‚*:Ú°Ïò\ìEaÎ:ï†naÎÁÒ°+IUJÃb9É—¡HÂauêN¸? u4¡dÉÒ¤26ÂPåPLÖ§,¥9£b¶c$*–^³²±Ë«d"–™«ùŽ¥v9¹J&žó?Jì\eI§Ì$TL/[ÆKŒñÈŸ6ÞvŸ’0ÞL­Â²Ö÷ï†<ú¼~r¾¦â?aéDœÝ¥Ð©ÖD/?qú¬ôÂÎ̬Îl(ÕÕIÛÎýðê‘òÅÚa*¤tÖMZ] /ËŠbo]Êwb¥²Ú~–´Þ†UÅ·ýÿåÓ¦'mg i9TðAùʺأÌONû’‘Í7P7¡¤c+Ǩw(ÄÌßÌ2épØÒ‡dý-"28ÂÞ­tß=ùíôÕÓ²Ã>·u¯4vCmÙN†fì­ºÙÊÚSœÑüvg¿,÷¸ÛÇ»³M§¶Ýw}~­¥r«»Ô`ì ¤}Ì|Ùä5 šûBæ:RÞ'KÑ(ÛÔôÙãN†{'; ~]4 Nî ¡Þ½yðâüyð`r0ÜbG§t"ê¹Ë„Ý(ª nê¾Ô§+ذýV¢¬@Ø©›ö<{ŒOœIhGu<¤†ÕFÒ‡R¡ôÝæiÕbiÕáh—Ò|P\Ö'å‰cÙ­³ò^Ül_4Î˧Û\ J^.)Z[ÝÌF_ªó5œ¶Ú@‘Sê´¼[] Û-‘ÉÒlwn‰nr‰Hud¦“½w Ø™dêÈËϽ~{Þò›õº›»÷bí~\ÔÓ~e0Ô•RŠâ¸nôB¯›I!wZ1‚‘QvKü K±5'„ß~ú œøå_)ªÐILJc;ª<–VP°MãÊbZN!Up!‡EÇFJ&¸ì*”=R¾ß)iyL9€mJÙ4V‘HPð2hp¡Mœˆìû $­Œ©úºDJ%¡az ¤xy²5NÜÚXg´X¢à-¤¸¥ð•#"Â$ÒreÄ©d¢Æ¢†©g´ä7è…3ZìHrFEMeü¨“(¬½Á±ˆÂºAÊcŠkÊc…UFìŒ^°”íC˲=\fY¶Ç¥owJ Pˆ–!Ç´ìx‹P ³&uJº%¦"¥‰ž‚ÊûcŸküš,Å ¢s ±“e01ë4‰#j§Ö:ÿN(AÿÆ‚Ö_{”À} -§þû(Ýyæ k±0ÀA‚ÕSmL ðS:¦E2ßEê`BâÄ`ÞD+4ÖÄ”âÔRÆ23ßiæ2ÓylÈV á”&ͨVß )"TâV²Ä´¬.IŒ‹PL²êéØ(qèíÞ_…“Lbòÿ>Nwg(I¶êSHLä*ÎÈ&ƒ±¸Ï*|Mƒ—d1íø°M( ‘ªÌù ŒÅŒ)Ì„0Æ”ÿ>H™ Ü­*¤@­8…>?RÛÓ—Õ8‰DÇ”¹—ÊÄZw]ƒêÓ&¹´¬‹›‹”<ƒ³wâ2³ç{sö´jàŠDü¥®Öë›Õ¿;=;yŸÝ»Y.háu¼X^²DP£Ëüo³/§›‹]¢v7åyS•¥iÌi  ‹M&ÉÐÎóÕ?çrò>r&´GÀIJ8ƒÙwÆIBÅÓ.'%Nð¤þF8í ' Tèí1‡¦§WÛR×áצqb¿W8wØš'X%rPÂé²p_/ŠU~ˆ,dpv\µ(t5m£xÌ? Ã*Jΰh¾IN¨xì]}G~mÅ’WÚîæœª÷PaÕuX[Ö†¥vaYWû]Ó±!—‹ îø^éç§NŸŸÔµ²Ró½)ìîº/Ý­”šÂîV–îÿ4+^ûïÞÖ¦ÛîöúÚýwzkTËlŽ­lŽ;­²9Tþ*¬¡7^§4×Én¯ŒueÛŸhQÍvN›RÉ;sAnÇ'åhå‚dØ•¢™ ÚÁ³@pËnËh#L=T5M…ÓG<‰©üœ]×)Ø£¤9D-‘9¤²•ª4yÏ0‡Tï• •d•úéÓ§x4¿Ü¬>ÆãÅõAê~tÊi9Dœ ÚÝÊÆ––G@­f|è+ó;WÐÖ5ìãbµŠÊ–äþ8³¤½Ã-ɬéç:¡ß¾ÒÿØÇ˜§ŠßKâH°Ú-þ|È”ÙÝsâS…}"£œÙÀù»Ž ð€÷B ¶Ïb Ò £1Çöš\1®îüzrn”<ˆmD’Ò]ѱ Œ8½§JÄ:ùŠ¼Î­–†}«ÿ•œÆ+ÚEt> stream GPL Ghostscript 9.55.0 spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, spatial interaction function, branching process with immigration 2024-11-05T13:46:03+01:00 2024-11-05T13:46:03+01:00 LaTeX with hyperref twinstim: An endemic-epidemic modeling framework for spatio-temporal point patternsSebastian Meyer, Leonhard Held, Michael Höhle endstream endobj 94 0 obj << /Type /ObjStm /Length 4080 /Filter /FlateDecode /N 91 /First 854 >> stream xœÝ\YsÛ8~ß_ÁÇ™š2AÜÀÖìTÅvœÓIVŽsMåA‘[YòHr&Ù_¿_ƒ E‘’LÙÊxkK%ñÂÑht7¾n4åu’%Þ$BøÄÛD)‘x—®ï버gôå–~n¹Ã‰Hç¸Êd"”¡;*VyœèDf’NL"…W8±‰Tšª»D+qâ%ÐçY¢¤Cu´¥4zç\$Ê*ƒ™(oÐ3W‰æT´´TØ$Z+ôš´Õè 4iŸÑ#Ÿ˜Œ ‹,1$pÁ#5ú"1dr!c4È*1CáB'Ækô%Lb3 › ›X¡Ð p‰U–3<õ.³Äi´Á%Oœã¸‰óhžK™øÌ¢©/ˆ0 .*"LšÄk"LZp™ø#øìè1+CI®£F¦o‰LX ŽqEœ³šîW=q[&zºG<ô«ˆW’8Oõ¹¦>¨,· ‚Ó0¹sxª9± 4sM<à¿-#ãš8¥húó Á5ñÓZj…8âBÀ’ð”%HNhÚ¤4hÁp1Ͱ4*ªa$ÑMã2FAåhôždÃPë4ÜX¢ÌÒSj]Ò¨'Ê<É!Q¨²Dm Ê=^ÐSj)LE¨/¨=«©oj‹ÊM”ÒÌC}ÒÔñã–úö4½ ³Bsb]Ó¬$.:I­UÄM«iNSëJÿã×_ö`<žÌgÉïAP³¤ä´8úâ)-Ž<E<ÊxTñ¨ãÑ„ãÇ„LÆó|ŒÖeVÔeÇùÙ°¿?ù†þ¨Uíu î8ÅSç©Æ«þ’¢EÖËg“ëé Ÿ%DéZ Bž½šN'ù ±W‡G {›£…ß~Ãé÷«œš:ÏqÙ¤ŒÄËH¼ŒÄËH¼4ñ™!#3¤_1(±«A©ìNƒÒ‘X‰Õ«ˆ•;"VÜqLä¸Ñ+ˆT»â¨1w#2rÒFÙ·QömÅÇÆÁØ(>6Š3bËvV͈ÞÕ`ÝmÄg¿?ËCuöæÑáɻ׿L‡WóÉ4,½¡Ôó~,D¦ž\š‡Þ‰^’Rtývx6¿ Ž+gÂ7+xÀU<[|œ6­{X™³âKú íè°&/¾Ë- ·Üš 3l•hÜ)>¾vmà‰]º³ü =Z ¶:Ê’\GúÐѸènù”Æ|é qéŠ.¿ëzýÿ>Vš:NX,qì õ8ž_”—ûÄl0MÆø½¼ì³3–³||ÖŸ]°Ïìóç!;gìâûÕE>fCö…Ø%³ ƒäÓ|6œ±É8gWìŠÔq”žgSê™]åÓáäŒýy=™çgŸFáqyQ”˜²›å_ÑøœÍ/¦yÎæMØ5û‹}cßÙòéäç„‘2Ѹö°;õÏgÐû +û¥…ÏÐöcñðh8Ê%,J4ztëEÿ2ß ÚOæýÑpð`|>ÊQ‡g3(zPÇ„ ;™ç—oÂúXSØš²·¬ÈÑÓ§'§eW‡ùåg+L T~ü`<.n,lŠZeSâºUÙÂ!ÝlŠÖ·ÛÇŠ»hY. =& …+CÖ_“öâ^I`Ý+Ÿ¡,L=Á`é‹;Z¥éØ”vߣ&íÅe%íQÆó ÈÃJ~¯Já$ œCâ¾²ïK¢«E à¨)kxèàLP_ Y³MYÛ,]N¬8ö.Ž[ë·¤ïÙ›w§ÏHÐ'ã [ &¬-xº)xÄÝ®àÆlS‰ò)%—ÏŠ«U%騀õºè„˚蜰 ƒÐ\IùkIJ„X#%{¼xªáþQ» 1qM1Y;S%ë&œn Hïôå£wOÑíI<ÛÚ29±B@lC@¨P'ù00tmåVËÊ­ê3Ô«ÍEVN„Áp Åô5RíÆ<øæ<¬eHÇy€¿¼qeX3®eÉ{Àö!}‡ì!;bØöŒ=Ç‚ý‚½d¯Ø¿Y/,ݧì-¤³? ‡óáè,ÇémöæîSÊ>Mûƒ/ù<¬¹ñ¼Xr›ëýÙd„Ò²ç^÷G,ÿ6õ/  ¿æì3°5ìçù4ï£: ø#@‚Q>›&7@b@i}¯F×3ög jx`6üÆf#Â!ËÈàz|–OgƒÉ4‡ÉŽ0¡ Dä2RØSÅS W¶-ür|² ¢º©#ܯ–:–#Ú^)¸· ´TÔé%Q—•(?ÙFI-` ÕoL oNJƒ9›¦‚0E9Ùº©(¹?™B¶"-E„ ^\ 9‘¥ýîýHQjáø#S3¾¨d/PI©MBU™K Öé²T ¿ñT˰&T3ñ|8þRRî’¨‘ÍKCÕ qFQ^˜¤œß^ˆxÆs q•Ž1KÜ£( +Ï]"ÊÊ@Œ—çpÀdy®’¿Â9¶òuKŠ0nY–÷<‘ey©+Ë{ÄPQKÐ_î½²_â#·-6ö+D^5DÞè®E.œÛ5€Ø·×(Ë—lyqY³å°†[¨€ö¡…† ˆ¦ ¬e[W»ÄeWæðÃóÞþÓ²+³‹2R]1¤1h ³l€Ì’ÚŠûºFõÜ—Mî¯eIW´v+KÄË‹h‰ÜÂq-³0-âÓ´D–ÇÑV‰M­¡Ý›:X$›ùT«àÍ–¨Q~A”È`ÿ,ìž²)Ld“(nAà¢>Uœâð æÊ(‘Ê€ÖwFTwN)pJÃÎ[©‚ùSà”·ä‰ºTs?œR2KiWOjbm¼¥ì´MÆïBTsu‹;õÕ (9õ¼µº ÈR¦ J‘(¦mJÛQt¤Æ{!JÒJ¬Í‚(gSaì.ˆº½LqÈÐ˧Á4Òf£Bq,¡Î‡éÜ¥LéU˜MÛwà”…MkN@ m|BÎ ”Pp•zÚ’ô>%—þ~DÊ©T’§ÅÞ3f3쟪4Ëî‰(©ÀÚz,‰²³¶%Q=ÚræåBÒ£6ÎK¤$Uب_ðTØžo£½%„÷¿êž¼;~ó4zM'£þx¾ulA®pfJòjQÏ®;)C®cȨq÷.߬Õ~·Z«Ëµïf ºÛ¿?ú›Õz¿)P³) ñ^á" Ñ!œqo¡Œñõå§|:žoŒjì.š±>–á—ëæ!<6” Óf”»“lݬ–uìºÇ7n¬ rmŽiœ¾=Ú?þ°"–RÛQ†¦fVø²¹£*Wù“Óñíæ‰,-íZËÐ ‹eiuióKœåé|ÆW¹Íí©,)®hÎQkoj-“:ºj] ø¶àFHŸJÅá€åº…#°4bÕ”p¨ BNP†Ct\„]û ¾÷¤*0˜'ãâÖOóùÕ쟌ô¼H{{WÓÉè=LÏ¡…ƒ/ýóü_W“Ñ÷ÁhxõsØØ_xop ¼bEA¬Ðºp“T–Zù£qµâ6Uª Ì pV¿’(ù´“v¯DIËSïÅ‚(ÎQ´n¢v1ͳ­&˜cByØ?þsH¥×¨÷NÀ»CTÐR'è´åöJøÜ®¢IX ·WÞ+M®·ô¶¢If<…ƒ°šš†¥æŸ8žf\I-zn1 1å’5¡ü>'Sï(¯Ï§ÂvÝ1 4‚nÍr5ξhÝʯR1JÅ<*ó¨TÌ£R1JÅ<*ó¨TÌIÔY<Ƽ,ÛÓ±=ÛÓ+’Ìbžãò®ôm’Ìv2ÑäÞZC)ÅlAÛ¿P,Žû¾cì}kzÙ¿š]ô·1\Ò*8í0 Gˆ’£¤T(ŒVÝ) Õe?ÃûTëvlÌEˉ"ká½¹_¢\/´h¬šžB.¥YhÏdjaùÚ)M[DÑ´K½!@áE*Æ}ª°\‰Lt‡ä;¢ “†$ÿ’(…£“QÂPT¿{€,ÒðÞ@$JQ|ü€û$JÁX·˜>…£Â v¯Óå¼ÜÉæð ½¼±ÍNö®i,JU&ãC”}ËÝõ%ˆ¸ ·ßEß„ò:ÛÀÇ–W¬Ðq¨Sðºá: AH¼n'0/Wâ]®0[-.ššÞ>$ƒ!´ˆÂ‡´GãvºG#„iðÓBrÉqm*Ü^Þ§‚ûKï¯ @WlQvÞŠ¬]½þðþ—Çùèk>úK®r3yáZ‘Egš®»ä÷ÒÀdFÞX ß¢TÈ­]óÍjgYU·øcC.}MÈ뵡½zßEîpñ´8¾œ^!uªÞ³Åù‚NÚ£gtVå W4ÒÃSëªVlÈÀ,jµÒ6_JÛ—UŒ¯ŒWSúÝ öªÊ–ß‹>kžëç‹*yþr8¾žuM•«‚Ê!’L1d(^Þˆ!¯ s·>[Ï,ˆ]KØd)k\rÚ³l œLèmQ[˜º¼µRp×ÈBW¡ë›ªÍ ­üKÑpRè…+/ÜU†§S¡2“fv·‰65ªÂÒ&ÐlOr Ï…^övEp›cùµºHßà)êqŸ…wƒ p#¸ ooI«ã¤lF·mÈ÷ËO“ÑÒZ©Ú ÷[±œÞanÀ‰L§Z·á¼EòI-‡´@Ú°©Vµ¿#ÂY„æJÆíà•È+~@h®Í›îêVdXÉ€h%ÈÊ‹ä&B!UçGû\èÔgm¢2< "TA„¢ øgô^îý@OZU`ê¹ø›ˆZçÄKA/\Rr7!)ÎÒ²DÉqüžÂŠ"¼Pª’(%(_Çß/Qè8õ:¼Üü i1Ëô:¥‚É;å6Þ(G»:¶"Š8—QDíîDÝzqòJöôÇ!©ˆAîé¥gðk§Ou6mòŒ¡EÆ  ÿ­b ^*‘0á™è¨x\kxÖßæýO£<î}†SMǺ½]À–§FúÄÓ|ŒþœÄ†í³[ÅB~ÄžX×U½ 8dñ§"›qE;æl°Á…8~þœcɤ5ò÷ðN-;ï_^ö)/ ag“ùeØòcɬªâmZWh1¸~;jÜ™ú{ÕÉò‹Õ4ñ=nXƒ„ÞäÞQÇ”jÓH€YÝò m­›endstream endobj 186 0 obj << /Type /ObjStm /Length 3438 /Filter /FlateDecode /N 90 /First 836 >> stream xœÝ[[sÛ6~ß_ÇvvBâ~éd;ë&M7mšdäÞv;yPdÚÑÖ–<½ÛüûýHIÙt$Ç3;‡ Îý@Â;Æ™ðžIcp L+ËDàÌâOÁ¼¥{É· Å„è4Z4pcGý¼vhÐ_ü£ G}“ÚH&9gÒjþ<·hàipôD1%$¾àš) X’¦4æ’è§œ¡WŽi.é+ÏtÍXãS)8ÓÖk4ÓÁ`!™œ (f”€B3£=>Ç Æ úÊ2ã,uvÌN}<³¤"0K ¤-—‚YMk’’Y«1ŽTÌ:PBJ ziêl˜€ Ò)COsÔX›3¾ ÌYPU*Î\À{©@fî0©’ÌÓ¨R)æ5V •fÞBe˜wX®<¡áXà –TžAU`AFbs4x!Aë`À"©% N£3P~JÜÎUd Z"¾¹$´ÄH®ã[ð–"¶+¹Ãüôi‰ÜB&ú€Ä‰e ¡¢Á€‘Qº 'Xž á‰ïs@è[Ì^R?Ì! ¤Ä¢–$x¸År,æŽØcIb1‡âÄq‹9T6’Y¥b?Ì¡Lì‡9”ý0 èæPqˆ ÐÜc^‡94¾FKQ ,]”vH &§–¥o1‡VÆýåéSV>¯Ö5ûy(Ó„•¿ýó_Ì‹SUrqsyÉÞ±òuõgµ-v{;]U‹š¹æî§y}Y±§çÕù9¸zƹÅÕjüüÍ8—ô *dÁ6§Òs¼Ç£¦mÓµñÞÑ·—žQ?'›¶Ëí4‡ë|ŸWiì*½Ïó›æ[§¾f_Ý^~è,\8¨zgùahùoWÕðn³êý–ñÞ' ç-B„p&D^p|‰Öm:¨R‡¶î¢†RìGíPÕ9³#"‰•<=k±’®jÚ¼3ªµ—Vl’¨´â³4~bU^¥Ë”¡–uW¯•/LP^ýàz×h >‰Pƒב0æõž¶™®.léÖÂûlyOä~ä0ˆ…t[e{1_­ëè»b¿WÓx§š»ÄT½ÃTÛZä  êIJt“ÖDhi‘Û_ä¶Ü8S}ïœÚÁF¾x¢¶àlÄ?ëu‹àÂàîP….–F2…ïFæ“ T ÑlmìÓzék“S‰¾bû›¶æØˆYWdÌv}]û¬µ-"‚®ÈØ–ÈP° Oö‰Ì èá]‹¾‡;Y,–õ‹#7N³“o®.]}º6Zû޳¨~@+!þ±:›O¿Yþ‰qÈÎ!d(Àv„ t}Ëø´öIµ^Þ¬fÕš‚-‰ËÙiEÔ.ß>ZÕÞ-š¯+ê¢êÈkƒ}G%ô½Û.24ôÊ.Òe̶s¶‡–¶±öz4W™®*]õ-å±hiÍ!´¼K‰-Ã0-“$Ûÿ› ¤O#máÀ‹‚PJrA†\¼[kºQSq h›@WÃ}Zà[¢˜ÔÙº‘SG9ÿé"GiÝ.……v…s®Ká®GÛ¥ð`P1$r¼%j³¾hu¼@‹’CP‹‚ŽBAÙ•Q# k >vð…åéÍû:2‰X%2Ç¿ÎÏê$HFš($·ÿ×ëî1šqr+º½ýt·ßöËæÿw•XÏ"»Ð–Ϧ×ÿ¨æò-HAÒûE9-§uù¾<+«ò¼œ—W墼®VóåY¹*×e]Þ”ÿ-?~e$Žö„Jå‹Ëé©UC´ozb›·†Š*˜å]óöÅü²R蛼=z=½ªö3ûe=½œÏN(¯×àtä •“ða]]ýÂ`xZŒk1½ü--• ={ýöÍÏƬ§ÓÅú¾"æå€ˆùŽˆQ§QFå¡· PmnÅÛ ·&-NðÌk LH›$"¸èël— ûè1’ AìáBð“NNÞ|‡‰&Ë«é"V«¿ŸOoгê˘6ï_’ر줃Ž˜¤¦Ò/mEsr0#qNTÜmh3¡NnòM³ÿÜÜhÚÿ”ùFÆ}ètCä*AÜNÍmÚâLmÚ>Í}hÛÔæ¶ŽRº¡ýôܦÉS;nWç6múæ6íÆæ6íTæ6¾Íèät³©‘o*!©Óá•ù)µ¤‰ˆÊ+^0;LîQw¹‡^@­T{Éݙ訂ñ¶Q¶e%•jÅ*ÕŠ“nÉÔŸ¶ð›kªÏ«TÐS©>¯R}^5  ÍûæšÆÓi<ÝŒ·S¾JsiZÓÆbRvw¼ýÀ'™ž;ä6 âªè€……Õ9\i;ãˆÁáhLX< ȈJŽëBèp$û÷¡®¯×_•å³ÉÉëbòäzµü7¦/–«‹òz:û$ÿÛt1GOîc•‚W3>ì LÁËÁ´ 7B§ Ç™›ŒÄ¤ŒÁ¤ Ĥ Ĥ Ĥ Ĥ Ä4ºµ›YïdP>irH:HÖ ';ûSÀüùxvâàŠŽ¦0’ŽƒýJ€¯Y”;(¡9 ¢£áD`æ7 (ˆéu· Û-´íWãbüèéYš$m.Åóý"šS>টœ€b¤Û™N¿‹È¦B(ú¥C6"£‹Uûª~PÜÛ³r‚@@åþð»©Ôt/j·â@ºa‰I2-­Kmd5NÝ"xcDÓÏ` ¨CŸŒˆ¶_ Hf ,Ë×Î"L†Ë¶ Ê¿º˜ú§ µ“¯èY8ÜöÐ`e5ý¢…B#dóˆÛÂC{‚}YEÞo@¦C;FqýÈÇÊ‚Dúq²yÄÒ†~a–Ayëm÷uk‰— ­b«®cjôûB‰{iâaiÙ4?@.rœˆ5^[ÌKåJwE)È=ª3¿—¨{úõ®Ž~X¿I1©’¶Pa¤ß즆ûB¾1Æóð̰@SÁÆXÕäIÍë„©Ñš»TÒ›©ß.¾´#h7fÔÖÈ>ù=¦W9yyÊΧ—k,æÙ ƒTVZÜ·ÖßÖÓÍÙ´üBÜÑû'Ìúò ¹Æ¼þØïš)G?Уó%Z9Зî(p½ ý»?÷ݘë‹Öt]Ýr†íùüü¼BòDÙÒït©}Vˆ%­1€Qÿn—~$endstream endobj 277 0 obj << /Filter /FlateDecode /Length 5575 >> stream xœ­\K“ä6r>ì­OÒA·=ԑ嘢‰7  GXÞ—$¯±š¶7£=pº«{è©Çl[£öïÝß°'œ™H$‹lMÏ(¡éb‰ùå— °þ¶jj±jð¿ôïÍþªYÝ_ýíJÐÓUúçf¿ú·ë«þ^镯ƒµzu}w{hcj'ÕÊYYÛÆ¬®÷W¯ªë7Ýy½QZÕðUwXË€¹ª?×üÐ(WÝ>ܬ›:#‚¯úîxÀ.@»cêÞˆª³]ÿõú[TÀ– 4ÐW)Pâúöªêßw‡sßí××ÿ3ÕT7µSˆ _U{³q ÊWIYÝnwÝáÇ4þÝ©í”ÖUÛ÷ké¡]ãªãéíØìx—Õt¥š¾TSˆZ7:©ùýŒ~ €V0µ¤ß»ö†–KJW½mï³PÝ]”®½°>w9?œ~$'ªm·Ûµ‡›A¶ ×i™ûÅM·Õëö¼½›ÆTq3â´$j£¬ªmp«€…7^&u^ﺛ6o¬ mx”ëm±,0ӵ3bÐäÛãÃéÐî ›uhqe­§¿_öm¿`@p sßݬ ŽBUvyy¼ëß·§ø´œ]!uò¸Õ¸¿¿¾úóUt³:=Óüe0µr`þ0ªÕ.šÿwÛGÜŽ`ñ¶§ÙLõõvwû"/²¬ÚÃmþ®úúovQã¤Ï3QA×ÚšR‘ê‡ê“ç§ìL¬„}(?S¢¶Öž/Ø‹,^noF(€uQ?¬GKü"›X¨Þ¿3 §T¦zCÍ™=g»ÛH×ÔJšd¶!{ÌýýöÜo‡õ×Õi‹6Öh§*°=øSŠÆ‚A//ƒ6нjÐ¥»Ëƒ©*n·¡:>ä§¡z8oG¨XB1åê=ògQL¨ÁuKxz·Û–¨¶Mx «ÙŽAjôLÏ”>åljÔWÛê}î'dõ~Að¯ÍTA—Õ{0‚?^yØ|çdS[±Ú_éxøðdwõZàÖÁÖ+ãjc¡Õð¤h= õZ O˜¬†·pel±d”Z¯„«¥0<ŒI[ €išZC8C;绡mÙŒÊÛòv|¹Þ˜¦©¾Â]PFØ\=@¹pCn·ûîf³}×Ñø!ÌÚcœÃ(UŽAd´Þ×ÖʰÚHX áÖÞ¡xÓ(­Á\Û=D%E°˜£ Õ"6ÓÁ*8zÊjØê\<‡†±é·ûwI# -Á)©f*üBÙêfCÀ ¨vï·§I4@”I‹#q‘`t¦¶eJÎ÷r Á&N¥QRBèo‡Åª¾[oàëT€åÅq-¢ù©ÇŸ3D˜:8û%X7¶v6„‚V¸Ç¿ú 3ø¤M`⼬•D±þhT„²?¬}ôþS·¥©/¼õÕ-MX9ÑàW] Ø5@×ø|óÕ.õ úU?Áºà' ˜Öì´ùÏCñ]¹€¦bœÎ]ÿ÷žVœÙ-UmLÜ•ßCvlä{6\9Öæ?þ¯œ×F6NV¯Y9ܹ‰ª÷ë9C< ö º4ˆ¤ÐŸ¶ÇÛöt›L¸†ÏÔŸïÈpà:Ä é,!-‹ ðäÉe‰ßؘ¸Q@®Þ‰€(ØJpåÿ~˜Ù<­D¹y³Ó2€W*L©dàÐ_ê d¡˜v»Ë &p1M1@z1™æËB;$ΨJ22>oK+;îöij°µ–ƒ\ÊÙ¥%õG?D†Íö`LÂrüøÃâ0 i™oºP#©4°fÚGþêõ¹?µ7}`X‹±ÛF[+‹aÝ×Ú-¥¥¸Ž5VÉIjm PXé«ׯà6Ûªívíë8q ƒ¶êv8A\¶F“ Ðd}4Œ’VNà½À0HË îfú9+€ém!žõD{Æ¡Ôàû—mÚ]ÿf¹ÕömR4MN¿Ér®AÏ-0v1¬èÔ•í?ÅO€jV«*¹t ä'j²öB z•C‹PÁî=£°¥ên9¥ H¢]ʨȽ&+»ßÄÈ(ÀI4Aù™ÈIöñ0ÝrÀCa ]ç@ ¬\¹ûº½^{¶Ö@'1J0¾;çm)ëL½Ùz¶QØ j_íØÚÞâs€.^­"uÅhHÏaïÙ–ÝÌlÓT§ÁÈHZ”€;ˆcÌmsútîÓ˜Ì$“CIYºÔ^T”|1CMMa·÷dýˆ¿;Ƕà–›—á|Œ'Ù.¦ÞUË´EC¶ÿOW×ÿ”©Q”GœG;bæçwÌyˆóüŒñjJ¤g¼Ìã}GŽ‰ÂµãÓ+ê!²?è¹ÅÝ¢û÷¥O6ª†Õò8¹ v—RìÐ^J…ÀžóŒïgþJåÔc\=V#Fóê£ Äù!©?³Y¤ð›ê¥UÁne4„ƒ±jíîöÀHîvܪ¸‡£ÞætˆÅ j˜ÄF(B€ ¢ÁuÇRýTμiǼÿÇ!n\;u)Š`vÞSjÙ kÝŸ(·:nxßû"iC8oû, ±r¾‰‰+b¬•pÈà6†0Dh5bŒûsR„r>7Ñ)3¥h| cƒC’¨ª>gÞ^^!ÄC5a–ž¢bh|â¬Ô$(ñÐpº]_ô§ˆê°Mè5÷Vs·éÎãÚþØÝ–\²ï§†¨¦üPÄd+ý46¨ͦŸx+li1£mwgR ¿¦:û—œÄ–ä ¢¡ö£Ûš&–¾ aë7T kàÍÛ»mü @¥íáfm°þ„Zä·s.è`?¥ZôfŒpÍd™.|{²µyÒ—àŠ«ûÌ|ŽYò=õ¾ä6Áàjs5´ïØüi ?n>Ë™Muµ†T0ŠUyc[?¦pŒÙ†\ÂÁ< u¨Ìå}±…‰aXÕz('7”n2s¬•K­eµ£ÖÕgyÃ}|LhçŠQÌ2´€Ì~°ŒÏ³šÏã˜b«~¼ä'W€5vððñY>Sh(W cȕەr(Ç–C?Æ8ä&€eZíè¤L8ZØ®kÏùÈÖ/x ¡“Åœ­À Ý+>¤Àp9 œX€{“yfIw^,r0ðëR,$ßòC+!3OWôU…u[XžÅ%c«ÿSb÷ ìÈ:3 ËýŧA~H÷x–eq ã!5údFÕ”mSK¬Ë-Pon`I£ /ó6|áêkN!nG;üx#‚ý¨±fY(üK‘ÄÚ ôL,‘þx#’¼¸¢hD¸²’Y{:F‰áÓ"Õ¯KÄÁ,FY jùÏ<êX©Šz­¼3ø\›I`‘.Dj'­ËGTTSZ†çrÛ/¢^šP[‚+ÚDÒµUDÉðÃ"Ny´¬­OަSùdÊQÊ™n´TµàŽ;ͦ ÒÝÝÞù$¶ËàO’ÃRy¾<ˆÍtšæ>pu“ƒ––Ó÷qƒÅí(M xoÇxO»ëþ—gjÈÔÇï©§˜urš$„ëkU?Œ‡È¸Kl_ˆ@`ÏygWÒyqéœDC^æÎÇX/Ÿ¤ÉΙø ä÷ûLO‚¿ÀP‰5IÈ{'ů ÏIgÙÈMNcå`Ñof˜ÍX¡ñͤÊFµ‰Ç€±<1HS‘°þÇ&%$ÀÇŒþVeE$U!=iÏ©>Œu²,Rüý¢ÞÉ#BÜÇÚÇE1 È){~S*Œè Mˆ•m¢ãl‰Mø‡ê›ï~‡ÁÉеŒ>O6“ù?CɼRAØ]¦)T¸ŠµL lïB —sµÜƒóÅb™ñŒH]Ôïö”Òâ( ŸâÉ(ÇÑŽàKÃ=v9S‹Š‚'=fÓP|NŠ€…e~XÙOÜëd<Ë{ÝåaC<‡MÃþ‘Ïxß%×ÇðÛ^ä òeùüÏ×ë!#,Ï`ÆÒA"Mí•Ô¿¯Ñ¬ß—g1GÌ «ÛóìQƒ6µ¶r(¿|‰UYÔEäŠZ<bµ(v€£‡rp¬ƒ¤tÀà²w±và i¡ÂrÜwÅaD;¦Üñ¢<ÌÁõñT“5*O3fÎËbç1o£>&¡T¡›[Å2žŒœ`Ÿ= Ï+¥’)çRxgˆY$èž”µöE‚o€–¬HZ+±Zs,£Îyõ,›ðˆ $$êëªåù&ž7Ÿ3ÝûžE8¤ûî¸;Þ?ÒÁ§—’‚ £Êù€AÑ4vw…ˆ ûê§›òS×wìü1ùLø"“v2ÄLZÓM…r>§”@{àlËÙ œÇÏõâd‚?1IW9nhøsbš-“žâ¹Ž‡‡w…À‡Â„Ë¿ì>~GÊ ˆçÕòÎù˜¯<åK EÞ'BÓ¸ç¬O2¸X`P¨þ= ‚‘M$Œn¿ïîOíd5?3T‹7ùÌ0|òÖ€œ®˜%Ë„äF®T9C¾L$jºŒ<)µnƒ¯ W-<^µÈ€€ìÚñƒÎ·$ðf À^*rk6:ÌÙ*¿T&a`¬]í±6Mr¤oJÛN.!]QA.œ>9Dߥ‚›Ttš„”w,ÑÆ6©=»|\Og húsb§€2•T–Ä><zž2ÑTŽr úË&Ÿ†Ï©?t¿æÆN’ìrD(¥Ã(ü›” õ[[ M}öK[•À8EÉÈËÅÄçfOš™1wJ‘$©`KM]Ð;-^òCi>º_òJ:¡ˆ½§îÓ6† ÊúA6GÐMz@léëÁË‚Ì^†9S¬b}D8Öép{fñ-ðæ>µhì‡ãè$–_’1°*Á%'¹‹ÞþS4AŸÈUÄT“€&šÑpk™¥¼Ê¾)óu#k‹[>ïöÀmx'èEb»$Õ—RU­¼lÔªhøªúÍz#¬M—œfÄûÚyëÄËŸOå0¥É¦3¬p­„­Ëõöyɾ CÁÿ_’H°j1/ÒCŽWLñKü“κâŸÅÓøçoƇõÜ–ºÐ¤kËafàþrßGJ…ªKM•¼öÇÓ”rl$Þ¬£ weNg.rÊzS¤Pørw„Ý#¾³iévÔ"('räù0*C—M‹ð0›<5ªæo N^+AL’€ xK³2l÷«ùÍ^›¢å+º¦Jª™Žb´°UšÖVØ”~*w|Ç+ØÐIÒ$Š—êáÓ˜6%$YúK´ NP}ÆøÀ¹?ž?ŸM%XìoZЯgÈoŽ))Kªñ¨E-»¤ÊÞK¿*FþKÊj7£¬¥ëïÆý)ƒ³OV?ëç^KšyUH]C0X‰Ö“ÅBåïÚê1UßÑC¨Ð‹>E6 …䜖Ðè¿ðŒhç¸{bŸ6ßÑýüa/ÎÏ ßÂÀ˜+\@Œú¸Û%srmS[+˜\ ìóÞÖ^â‹"¥Èøâ©Tyø-£Ÿï ˜p©´ö@¹½›Š‚˜ò¡x‰n QÛ’xÃóˆÆPNtêî§‹S’««}»˜Ëáw ˆ›’vrËbìáb“^Án"TöÜÉÓ,57tŸ åBõ/Ò[ ÍáÑ!¥Ñhsªá4¥*]î:§ãaØÁ·Ó` <n#É9¦ž1ôíðÚÏãºrØœ å¿b!f¿å™Aº½«b~xPé¥ ‘î€ Æó’u¾ O†ó;hñšägÓÀžìë¸+•X‡¯$fQ€ÅIÅRE>Ä7Ï¡ô:ò¿VzðU<6ÁëaìvQƒÇuÚw³gáÊÔ ß:ÍE ˜ª1ñ`eœkýI¨=ñÎBç_¾{ð„Rîs®iΉÄ_]h,_^Ä0£ciàŽ¢£1¶Á·htšoSwd“ 2x&k? _¥]jÞLÌm×âù£I¿ R\[fg …̇Èi`æcŠøy¬ð—L:ãlçmIá•ç¡kÿžßì ,èC–»lXAã8Ôr$§iÌ¡/ìgµ²@€üpcû<Ÿ•‚ãÈA‹‹ Óü-$!b¸IÈ<ÓøûÍwñ›Åé >Í; †Th¾Ö ™5 æ1ŠUyºjATü~2®še3ÁŸ5—Pk:óÉã¡éSvñ–~¬‚âŽá…(ºÌä)þ§¯Ï¥%>Î;Þ•9QWF Å"E›Ÿk³œ=}9†t4f1€-ñœÛ34ÆÄÛ¬Âù!nñ%¿ZMemÝj%eÝðä©Û®YÏqŽ]HXø GÐ_˜ñ禿ÌQ+ü-Hî|3$w_Å€Îñп‰/$ªñ‡mt4›ã:ÿÎÈé´¥£tüá¡aê·øk#Åä0† ^Oý€‹ûšßÉS«àA=ôà¼}]ï·ÛÓ¿Þµõív)¾ú_&endstream endobj 278 0 obj << /Filter /FlateDecode /Length 6646 >> stream xœ­]ÝGrwò”èá`ùx°X$7Ì™sÓß=çøÁAñ%9äÎ^ÀAVwµ+­è]Š2IIÖŸªêî™®ž’+-ô ’ÓÓÕÕõñ«ªÞŸ.ºV\tø/þ½yÒ]Ü>ù鉠_/â×›‹»|ò›ï þÒö]/.._< ¯ˆ /.œqm¯ÌÅåæI#—?B[ßçmk¡‡ö—7O®šß-º¶3Ú˾o^eŸoè³r¢ë›ç‹%~éUg|³Y_ç_—ñ¡Þúæ5½ezí}³®tžPJ©¶s²ÙlK söÆÖ ýÞ¯_enãÛ¢Ù¾{-šýë¬Éê°Þ.¬Íë0±¦ÙîV÷ø¦Äq›øÀB0Žô8¯¾9¤QdÃ{æÝîò™í¾üO ¹õ9Ée[âÄÅR÷­µ}”oþ>lŽ•yKÛ*«;6§yÚÄ6:o£[©¥èÓîqxÝKejC›ÖõÆ¥¶_-–ÂÚ¶ï=¬.6gãûÖy/æxº@Êx¤ô×Õ• |ÁŹ4ÿ¦ €š®‹P¾‡-e+e§5¼Ö56”аóiéûJW°p¥ú8¹æÏ©Ëš¸¬É¡Ò‰Â“©Ú˜V:s‘O÷×±ui¥M+×~p]§‰Èõ¿‘/¼P.R+ŸÜÒµ^A§@ Ùâ$°ïCßÚ³9z?®BVÖiZ«aÏc‹ß׉ÎvÇéáz m«)Ö¡Ó¡§¥M‚³QºÕáˆ_5—/3źރ^1 HztÈc/ª 7ê¾Ø'Ó¼Û\]ïëÛìûéìaH׬ÂG8²Í³lÄÝ*Wc× Ô‡ fõ2ûu¢ƒ-|í4ÓŽ»¤Í]ŸfVÁ–´§ yZÓ»õáeœžqÍz³YßîP{烵‹¥™ÙÃÂþHúYõªYíqÂC{T²9¼ä¤¤6–Ïà-­Îÿ9h«‚ö§¾Ð©ITÓ>ì=1lÏÞÌìžk¡ZƒÇåò¿Ÿ\þËUs"©‰×§É†]Ãa:ø拜¨û×ø$hîçð–):œ.Œ =Ë>›õzDBÝ[[p™FлAJ†NU6UKIé4 ß„¹ÀçÎ5ï¶‘Àe°£°èP5;6›_ÎM“1Ëaß÷Í:â(­šm7|À@G£'»‹§Ê™êîZIЛBñ‘Wù6îÙÛ7á œì”Uó>Nø13gÞí³i—`DX é.²ay>ÒPJ5ûmÞïî:Ÿ)2нè,øI–Îl`¯œÕF`Ü0œ½ÐΞ*]²ÞÇ`«óÕ­høxw»ÛÎQä&Íϧ³ÕãÃxн's>ãíŒ ßÅÆ¢zœËŸÏZeÆcϽgïí™ÞÇds°'«™xz„ñW‰2Íýöv™ü–\ÆÍ[íâR:Ï%h1g÷ìŒlwU“\ƒeªŒ:Ó$}/šähU|¼I.OXäÎ n’se»ÔÊ·B£%$ZVkЫŒ¹qœ†Ùî’³‡õÉDw Ò;vn9ë“ ÑG\Í9Ç¿Ùî‚B ¯j½aÛ·|»0¥ƒ„ý~_™ÄŒª]íV|³¹Ë¹uÏžïIC"{Ëæ[æksvBÑmQﺊ–-Ù ¯ùž“7˰Ve%¸Ëš7sLÿsÕëÔŽŽJVóUÍj&ñ&¹³Y–Nïh\Y˜xB© ÃRò1A z}‚1‘‘/AÛ07Nñ(s¥ëFE,ºC)„0Öþ'œab àﺯq)ËÔ/ZX&Þô;A„ &TLQ1dé®3Íín}¾õÆY¨‰3|Ýêð25Ÿî+u Z}T²†=‹, ¶Åö~Þ¢1ma¥6ïà€|µH( "s½: h|Dõ`¹¬Åjÿæ,Í bS[IÒ•µio[z¤ÈdºzØúzQ ”ëZD¿ýuß`óäámw÷†4b¿`‚ü°ðˆk:?ñCÀ4Q€FŽè£ún}š®CnÑÍýŠ;¨Þ:xÍËÁ žÇwÀ`‚ku ×F£Zz¸sfãlÀ ÝWs¼â!N¢³ÍdLE~ÇC·V†ùz“£Ý÷ï#™ŠÞ~Ê9lu¿Ot&‹"¼ŽÅØêå"_âö–iÐÙU2k; »ðG:+®ƒc¶^•" ›=ÞƒÝç„K.Äëlçj.=‰1ì#ždÎý ²Žg'“G•à˜‘\'x]KÞQ¢ø9óÝðEMúòzä¤m²`™K£v¦%¹×º8‚QБ ü?ú%Ø‹òœqVi2ÀQ$/G†hé¼ Ûzç’ãYžìß”çªTf¥]^ÿ2­A$3"Aüð‚€4@ü^4«Â±[æ'n·ŽâØ—g'ÆW W:×8µ@O~ti—Ëe}ÈÑ 1ÜLs§ôSv ^Ìu[ʇ`Vá6}Ä%ÛQŸ¥)È8h)ÛMbÊɃËC‡C‡ªuÒ#ÂåÀ’àVYÙçði[#ú þ"’dÀ×IBu>’4 §“^€ï D³4é¿©Ç<Å–ØÒJ3÷¢Çè¤ã îé¶]²^O£ËhèÎÆ$\«…ÄPëØðªù×´j9£ÿeËPÉùýK—­;…£«¶û¼êJ»ÉJ…ÈWÚü]uLÑ¡Kù âo æN-:† Ý‹sÆï[©0RÈ(ý°ÃtÄwu·ìö™9'ŒÓ䣆qŽ®,ã +»C"ˆ ¨\ /wq¢¿¨Â/^ûÎTg'0¸ l÷·UŸWIoIr«a–¨"µ@GB3ëaµ?àOñŽ*z4àE_B/aÉ“BkŒ˜{üEq‚x8+\E¼š²¨ $ àÃÂ#¥ãb‰O~8=£Ý!»h[À€FHö ½¥1hÅÜQ¾Yu)"Z`ŸyQâÕ4ª„£¯È‰&Œ\M–Áƒu&ÍÑòѲF¿Ñ`Enȯ”`ö¨&‘¶/â{ €w•%¬»Q…KCG½«¢!0X…¬h‘LÝÔ—âÝíÓ@ÂwßñÐA. ‹£·gNzlÁwK”¹‹ä›çätÕ½žW_7\zd² ÷½Š ¾š".‡jV¹FÎEÍ=Oæ«ÅÝMÇcÔmO˜ƨüx=Å—¡©#'!Æùâ‹O-AÔL÷ÁïˆQ(käD¦·ÉÇÛšæ:ËÍ¢cB)´ßÃsŸ@R‡3,zQ":KÌ·Ì_¥š3BUà…é¾Ü÷ç»6 t-:HÝñ|«NVmCSÄ=µd†)Èß$° ;«DbIßëQ#Â7ƒÛwf 7 ¤eÊPÞVw8|Yç¹×8øyîÑBmq-ÀJO›O7«ÝÝþ3`¢šË! ÜM;°©ìxHÒ‚N8½U×àË€c ³* á%b+pø‚1ƒ<&Á!Êû÷!z 4¸A}‰¯‡åWVÏ›à¸ãNš΄v5v)Ÿ°I0¨' ¸h hu'pCÿÁš ã–xÕiæÂªÇ`&H¤RàÑ<%\½,’Cð>­@Ç™ t®>XjÅ¥¹S4wšñàa²Ð%lö$€}/\qÄVûu†Öêgϼ½`º*ÒƒJ³XÒwM=1{ AÑûB–•Õ줟Çw¬`ô ¸êÍwÃ0¡ëCv#¢¥&Ú?”ãèŘèõÙ(ÆN³’èÇžµ êxü+Ĩht×'GÀÂ:0ýTs4º kðئj~Ïæjê´î€,CžÉ‹ªy †´èû",;Éרº>”{ž,óÛZï,á5^‚?e›²Õ¼ãvuAÁÀ^¦È^ò1œg Ù¤ß ´Õ…d¸"èô< ^x»>7 Çï©/<)µÝ[z×ê^1=õØYËóy!Ú6] á×0SÊ[”XÔò%0bß«ô*ªm(ô›û2êŠ Jṳ́î*1&~p¾C†4d•Ì‹öûœAn‚Õ-¹ÈÈÍ-”æÏÉÜ-~VŒ&à1.ðpeéÑÙ±ÿe$(ø+ì/(ƒ=ׯ㊠ù9ú5KˆBä ãéplÆ¥’ÊtQŠí'¦°poæ¾KÇÞM¬%&Ÿ–Z¶³xâÆÇKVJ‘F{jÿ†½C› Ú÷eR&¨îƒb@|ð6ÛÝúWûQ•Þ¯.|—šõ¹´¸N~tEU?:¾ýh&£­~7ê²,y¤è&D9×YÝS.œpÍ1±Ü’ÁÃͤÛÕ.7G¶‰2}‰KêùƒdȹSDÈÕ¢qþÇ*ßÌý~M‰Ú“¥w7“Ç•ï9{r_•‘®oÕP¬0[-£‡d·#²±O‘¨ŸëÝÀ’Ç<=ò®cÆÅ×éc1ãŸ_—Ú™Å%”k½¶õÈ`¡¢½N†È`jY…ùVÉ„i,'5-³e|ïYVA§x}˼å×s•7Z ô­öÖƒ»ˆÁšÐèóêÄÐ¥¯MK–Ó¢J³¼eªu)Â>R Ϩ[úÀÔ($–S÷ªf $dé&2±Â4é,$@¡v3Þø6AsS Þ¢n•$¾¾Ýæ÷»E5·¬Ø&'“ž 3”~4¼Õ¼î~Sf¢#d”²T¡^ý)= \ª-Ðý‡~JÑDn½R…׿”Äykô¹CÒ¹aøï¥5RT,®3²þs€FMÔÙšg—”@*½D€$½l0™lwËw ÎÄù¾@‰' ¬´!Itûë ‘`×ß/«õÄA ”c0à‡ M¿[rõ&M(¾#–êɰGöCØk7kÕ1¦K›¡Êõã$ñ`¥ÎJâ¡v3OÀ(‰ÓGè¾êÁ’•PÇûï³iþº.ÎDVF÷y½—¢Lò‰ÕÂ&“ ²O*HšE²ª4ã›™dmÛ A>ך¡j7JmƒÍÓYÂYÛ´e„4:ChS¨é ø$•6ϋۤÁ$ H2» 5? ]1>‡è}Ú·ß]>ùÓ“pm€¹Ø=ôº‰Ž/!Dp,ÞpÕüqñû:б‹sY<ÉîÚåU÷é1›0ŸüCg­€9•|ÖO¨”&×k¯À© ;¤_j –V^»8 uÀäç™Çʒɹ LK„œ_^³ÏõˆÏn|uÔ•GʧN¡%Â÷ DÊÐ÷LzÊù¡o:@–Êœþ~6B-d¿faŠz”¹ur¨-ž‹2cùÁiHñQÂ1H¼ÈÍHoË$E‰¡hGõ°2F¥3A¬p{ßÓã =ÅØ†š]]è²DmrW…¤‚5›·y›é’GuÐZ¬z`Ò@Xš(ª€¹âF·JË`è|ðaáïr ”Ù_µúZ´¿@š“”ÜÏÃþL‹yÇ·O­´™ÏŠfo”¶–R­—¡°µ‚$žoÌ.f»{·jð{¼ %íšqöˆ±Åv5+3|c± áÅ¢jwC¡ß. ¿§ñ?êÅØ9M"ºGÏÖÃlAtËò†ŸÕ¬Ê4rvüIÙõ*œÂ¡œÈ   8!ƒæ’æ*¹<ëóÈêR.d´Ä˜å˜z·ŸLðwG‹¨ÛVÈ®¶àxxz "Î-Ì:JÌYÓÖÎj§‰ÒÁ J[€a…Ò‰yÛnš9ò P«aª˜ÞZXf•Ñ!Á[õϰXB4äàVYÀ·~®bN  Ì»¥…¸aI4“X‘ÉòÊe ó<ülLÏÿñ¼˜Ør3‰ÌŽIï•”€Ží+ÕªV˜m¤+X}hÈ!‰Öw ǘÁ ýñD+ÚìÊæ¡g§z¬„A~F‰ ¬óü~ùlów;PÍs$“Cž3ÍóÏ#s†'׈¿ã›âÖ8ŒÐÀ!|i ŠîY2¿¹ŽœB½ ZÇw¼‘Í›Í[…Û7¢ØeãW£¸ 0ü>ãäõf}O•䩞òŒjÒ!ˆ ßôlóï³ßÿ]êêÜÀäb¨m|Zdl±/T¹ÒU*éÁ£ñ¶U½¹ÆµÞˆàüWm*Ñ/©×¥ÊÙªÎﶨXZPTm®Ã²$¥qo4ès š•-áË8ƒžíÐQùý*,ñ7Ù.†Â/ñtèŸß>2ª E_›U4|”E¨Äæ 6óƒ%% MšËè¤+0®2\¬Jyœ#¾:‘I=dm_¨ÎÌäwþõ9^å`ÇDZ˜ð¦¹.µnU'éž=¢ü·[ô §”Éû‹°y$Ѿ‹¹v«Ëô.‘¸ð¾!óË@šñ65Ú#ä5WÃ]ñ”CÛ3+·chȯתoŒúÁgàCbfiøiÆñGL±¦FTý—µªÜv²Y³ãœ§ëÝÆNk,OG%ù?9*Á§¹£­æ‡$X–.˜w3e-†Š¿Éj?÷Ù¶n‡rÓˆs…J¹¼ õç¯ÄÐNfû]W „ð…%& u°NeåoYI%ÏSKÃ{_˜}»™z»šžpÒÖ™s+› ]EGdY§Bè,O6š6ûqöCt$M%Í—%Ø”º•_|2wM eCëÎpѺâxþ4 ÀÞŽE …¨#šÊ:MVÞšO¿V(œj­NÐ|a¢˜¿ro¶¸ àÙ½<ƒ26¬×1æÝS£Ÿé~z»ï~@´K#xÀ™JóGf»ËÙR˃TDzêmÚBcãÖûQuV8d)$,Ø6—WàMƯ“bŸ.›x›ÃÄÍýž’Œp"¦®]fj¤ 1);°Z&7„X¾¢üÉ¿¡`&÷Ùéá¤S—M-ìL—M¦F³A›ñ:™#—MáóÙË&U/çç¹)kË¢O]€ÝX³;é­›ÿ7oYMJ=hz`qænÁ 6Ch}Æj«×²H#ÚìÖò “`›†“îtŠ :»Œ õo`&Á¸ªÊ*'.DBbíðÔæ›£ÏÛæ{{ŠI)ç]Í%‚K †»÷f {ìxo‘ÏC®NGÍ™Ø!Yô5ÞqRd¬<ËðÙâ®"âAIS%í<6{;Þê ‚#4ÛO/÷ ª;K ªP¯ Öâ-§@u†7ç¯Ýšœ÷·CÿUÀV?4 Þb²s»á›ðÛ:Ët¢õ`(*„qgž6•b%G-äüÞˆÔðëÙX‰=e»uõ^j}ÂO³1ÿª’³ó„k¥ Ënþ › I…ªÕôgðÉÿUózÊ*ðØPÕC%_ëWƒ½Âʾ€Ã—•¬ÛŠnLšËwîWîÕ4 Jœ ‰“m¸Wˆ$)S''RaÔP²OÞî«/*=â‰x×{­Ç^=JÇ{Œ÷c£§ëñ~ì@¦®zÑ‹£[ã/|ëµè!«¼ê~6«ß[wÒZc’Ñ¡ÂH˜'‰/eŒôÏ5Æô˜aÚ‡\¤¡åcq&»ÅèC¹¬øW,^„ ¿«n/z*l/:3Ç\"ºæqâ-ç 7.~üüüòÏGrLnêÓ²ÿœÁÌ´Š] ³ªñEyOHèžóÅWÕŒ\ø8¦—×ÏS¥aòž‹@P†1VühîA°\ö}gDèð»c Sœ˜¹îf¢ŠÔ€«3’süÏêÞ—Ín.~\é(XP-ÓÍ@¦_Ô@&Lû¶~‹8Û«,ŸµnÈ}ú´F4n$Áæ‘;…¡<5“QO@ݣܛTStÊÂr²4*Ì‘3zòÿËû€endstream endobj 279 0 obj << /Filter /FlateDecode /Length 7331 >> stream xœÅ]Í$·uw®+#ˆ€Ø9Ø1&É!ÕºRüfÙÑÁlHíÀëdäCïÎîli»§¥îÖ~ä÷)‡¼÷HVñ±X=3šEÔÛÍb‘ïûý绋®þÿÿ|÷¤»¸yòÝAß^Äÿ=ß]|vùä_Ÿú¾iû®—/Ÿ„GÄ…ð¶íì…3®í•¹¸Ü=¹jþ´êÚÎ('º¾y±Zã?<Œóͳì‡Íñ4lnWk¥$<é›ß³‘ïWÒ¶½w†OpøPm×ùæwì—ým6÷«ü=‡ëôÛ|Ÿ1½ö¾Ù^¯¦ÐÌfVÍï‡ç+‰û±šOÅÞ¸MKQÍɇmÃ0+­•îÏ—ÿ´3]N;¥LÛk ßåõ“F­.¿y²ÖZ\¬áko-~{Õ G˜^ö0½Ià´UÍZZ/dúºWðSs‹_wöxZ…wZÏÞÙ·¾ ïüßY®Ê´BØN†!WÍ?g râþ}öù{ú¬½ìûr9Ó çù/â¬Ö6öÄͰ¿ ¿Áq¤g¥_Àd½q^ë¸MÕ7'Îì_xàÒÃ<¢ÙŒÔÐŒ{µi­Qi¯G\­î¥2q00tÛ».ÒÅõ¶ë/Ö¢µ xe™‚ºU^à‹¦WÄW¸©^5›œ*×ÓçÚyÁ6]ïâ ApèuVò×Y/»4äë&ŽÑ|ŒÔÂ?zŸ|m¸O|1Ûç¯VkaAf{ßüõª2=ð_o½¯O/ùzU#¸k½Rý¸½ë%½“Ó}Ï9gärßœ^ñçé{mÙ´Ãñ9Š==_2é$ôȦ5KbÓøõ›ªE6U¶5½¼÷ñw.ÅG@âøé½òÝãôk-úÖÑ©ÖÀ[ÃÀÃæ:“ù!WǺâQ­6q Àá¼ó…ëÖk빟|I/øÊÛÕÚ Oòõ:[Õ ¤R:ΰ6 0ü ÛN(þCzÀºfólµ&µïm³'-ë]úŽŸ{§0¢Ùía((…§+´RÉ §ÀÔÀIo×Ïè{°,½[7;øÔG|›qÚaVÓøý\³†‡OAâÄfÒ“ùðmEؾ‰;µ¢0¯Õ’ÃT&áO+G\J,u÷zT»Bò#$[‡ëöž¯çMðzWŠ3îâX¿ zž Þðóû%ðˆkŽCÅPÍå™äA)”Uå#¬K ´ÈÍõܦs¥5š®j%Ãù#=42«ièL5z/:ò—QÆÍ$Š•Í¸"×ì6‡×ÇiLÃö9oܼ:o„­ˆ+L`Z ƒ¢ýpBÜÏNÆÁNj…üžíÙÌ•2ÒgûÕ …+°©IHs`&ø¦°Õ}£®—êýÕKy}{ð°´/öý §Î,t4?§Õ/ÙÝ: Ä=CÉ…Ó*r#jØ·AšBN·Û‰Ç6¿¤åXd!\¼¡ cSs|K8ñ½C¾—N7Û 8»ì*s=7Ä £ÄÕ ®ECRøKtŸ^2¸J܃À$GbøT9÷$ü°d ±†v/ð_Š|äoGE½ïd¿àâÃƹȩ§ §Ây‚·¤ïÉÉW –VK…V±ùòeXb¯fçJ+ÝEûå]v̶q¼@yd¶ªôÒˆ> íù \t†ï¾¯,d~¶PwMA¯¶ªjŠhMêšB*ÑShŠRH-Å(Àý&7˲Ï_d1,íE Ò,½òx®‚s¾­î¢¼™ÈíCÎ’7ƪN“kÄCµ—KQßaѺÍb@šX<ØO‰ï‰€T¼ÄȈª9Vì-;sãæð>ÌÕƒÿð|òßP‹Á?zþ[î×Óèâ”ÉÀuÉMëtгý»Óa%[;p6·Ι×i²>Ò:Yì]ü¡o~“}œO¾¦ŒZ—Û+ KÉ÷çþ›Ë'|r>æâ°œëáÜ”r=ÚÐdæ”mëÄdO#‘Ïã´žÏêBœ|¾+ Ùua:œl›a—»Æ9¯œ˜w¸ìMÌ]µ1ÛÚ)[bê<üéäö|@yfg†“ƒÆÉÇìw›á£#೚/_…Y¥éEÎÂca1’Žš ù4è]>ek„§|ŠS °l·aÔdø¾A†ó=+ë\}©àRd#ìÀH!£^j.kÑ?~”ãÛ³ÝâîQ[ªÐpð6½(äFÇü²÷ ölÁSQà³Î’–ä¡”QU–´üjåÑ“½“Síõ¨ð؃)% aÀÓ¿Û…Yg‰¥Àˆ '¿àÆö:<уE–ð¶U¦,ºÞ!æÔh¾^µ!—ÙYúm œ 6+zAaié:Ý|—KWÅ-{ÜI ¦×|`ÿh5%`Ýòù® Ï’ü\K”Ýl{ü—£Ìé³'0^‡à¾Ñix³2duLSQþÚÐ\Ï’u|Ÿfô“{k Pz]h¿8J‡|® Õ&}´Í1W£Hø5÷.Eª°¬ýa³ždiŒ 1¾²ä5‘9ÆÏÊU"7d nQ™Oöj»‚P\c'iVAøòiPêÆÒ)p>y™gÂo܆³¿EÃ; KFXÙôëø„aÞã>Í3Ï!FoŒÇ¢ÇDeòÌß·Gðò«~wA嘆™‹±9-À J{¼¤PfǪ +u‹~)JŠx„¤Hg$\>ß©…µ¡eëæ2g Êû8d+YøûL¡ σFCG€erÓÓ¾L5סܳ0 äÐðëÂWdBp;›€¥xÑO9¡&ö=­ï3ý{žaXF–àÔ •rßû¶Â»Þ²$Í#0ÜÎ|ðý¡t¯µÄ<%‰#=`4¯á,zðl¢… \â¸Y‚~ö:Yڥĉ b'þ eÈK§a×Ê@6iàðÆ×äȶ@ÂZéÃÿ-3­­ kîZí-V_ð§ÿªð1Î…G¼'Œé|:³lÀZÃi{Џ‡Ii¼¦«nÍ`4ß_xt:y§ ALÑÏE¨xe×z|å:›ëúT¡œ U£2Šý¤.–jÊëlàÒ Àû„kñ¼qÔ?†ðB8iM.£¿ÕŒF‘î’ |>LñUý üˆié¤étŒ‹53:g£¦$\ÄÓ-ÚŸÁZ€É¨;DðŒs®( ¸¤oxéu kbZëqÐ 9©ÂŒžÿT[²–¤¢â4pYÌ´¿·˜]Á)ÃY¬|SE_x`<2ž—Ës[\')TÚaU@!Àq3wWͧá ¸›_UÕÖZIti°t!CÀjä±g„ªaáë†!†2ÌÎïáä] 僸E•Ç_„8„•aÖ“ÉzK/Ñó̳ï>œW¤ÃtPç“D‘Yr#¼ÌË)—¡ôÙŠYXƒf™räžÑCýݓ˹+äuŸ˜¿z`‡ð‚»„¬´ªñ¹éQ (!—`taù™Œö\rœä3–ðcÌwEåéÉŸš±¤ÄPÜȼtºT<ØnbѧÂ(møï9dćVÈ4”ï¹Ú1…ÚW/iÎêÒ§’%-½9ñâãq7Ó:'Oi´6JÀ#¢l"õGÕÔyzRªùzíÂzKÓn’¥7+ëÛÆ‘°µ Dç:_f=ÛX¹Ñ8{ÆØä[¹ÇlÒZ˜u ËŠ¸øqéš#ÏÙ¤žÒÒ„# ÿ’±.‚ŸM-6L厅kÈÐöôÅÈÐÒ˜¶¨·ÄZÑrNÇû2«[-çgx ‹ð*ÚS„¼Ûmè¦X¤îCÅn‹,šÒ:}ó>=â€ÇOÊòw°0ÁgIã›a3½úo†Ýn¸9L¶0üã•P=º%„è–òï¼3âTäTŸ”V“ýÁq¬´!e—Ý<‡ ÁÜ<”¥©y8FJ ž«g°àû1«t®8ã[ðaF»ÈSÕXˆK„hL}“1 ÃNÏk€ÔQ£ŠD?~ïgûzH>Ÿ1)M†…‚ó,ÅXî0«<šCî(¿LˆX¬¯©3Y£ÅÚM(É´nßGJïS:”¨VØdnéã{À›ï3| OcÄ3Å2ô/—ö²øå\À`¦äå`éKx*áÏK_¸V¬Ï†Š1…8[K{•3EŸü“¼ÿ fħ û˜¦÷gø#¢¤ÙVÇz(Ά€Ü{˜Ù Rä´S 2ïRäÌ ¡Ôyœ(êU<-­P¯†oyÜ4Oû=ѓ濗)[?Ë á·OT°wFµ×wšêÐò^únd^Â1.¨ôAjÃI¶ÆõúÒ¶_Æ»`¡ ÚE`,Ëe`%',*)è¤H  ÛŒÚ¥RS‡_ÐÖ„by°Ã;u¡¢,³jµV‚¼¦ß´?¼CÉœüÂÝžÇÓè{wä.âVóDNÆuÉdSwÊ¡„½QöºRÌ¢ïÑã:%ÚU¤Ü¦’ûi2#fØJ’mxÉé°ßÆ¥€Â+4Ù¯þ§^¬óý4ÝÌ·•}ðèÎ#ËÁj×F™%DÐàáhŒÐRtì<…z&:ò?Ù扃µä1bÙ`Ad_ø”Jm2+á!…ª‚#,¬r F_üìÅÊ s LOÛU9ÑcPüáÛŒG©Î«+­fîhÇ$ÜvŠè#C ¦S­¢NØ®]ŠëD+ÑŒv9ª¿^¯uV-Ú¯ðDH}x„ ôUèàA×lùˈ‡Vqxqû¼N2‰e'ü èeí;ò9šíþf½^×LXO~þ1Ÿ—>¡ËE*–oñ³ž'±2eÿ€q¯%jä ËÌ‘ô Cäý½!úÊc/Ò‡1+ªó`Nô®¿—îÑ#bÝ‹>Ÿ/Ô}ÈÈPÊc“ðSr1ö½+}A¨°üì0¿µM¯3ì<6‡ ×§™ÉN+ÒÜó†ŠÀ ž/ˆPøDiI·C{Üæ%ìrò—ùNµb-nÅÃ72p (­䀟n7øI½2­€5RÀòíY?Õý¯7Hø²¡^¦ šˆ!Ì²ë Æî»|z9¿0½,§Î1]oÀN”v×»Z¼ì*#Ø^^#ÿQe¾X'£á° #ì]H‘Ë»‘"ÒçHþfà ûàø«Káò_UÌVsèÉ"éÎÞÍF½[d#ÏU†ËUF/ ƒCÉÉ!i†怹þÒÅA}‰Åe±×¸ÖŠQ\®îRxgO7AN ŽÈ/«¾1‚|;9QQ†¥¬w¼ÑEGýråUð ¡­¨Ž{×±O7–1hH0cA0„`èµ£;Äe>+8^g}Vzoÿ0Œ€Ü¡¬+H!áE/×°ÂwÃnV"VÔgZqÛpÁö^·J„éYd1k±nyrôSêV»[ R,Åe,ê> ìŽpcßÇ zžì=Vzì °Á¬ï$uºðNŸ˜Åí°þ±„´ˆðö4öÞbmäfØŒ;üQP*f³JõÕ7+Cµ  ñ°ÝäåÒm¶‚ówÄwÎKñ#å£80É” s–É|=]ð[:aG±¤ÿT+\àEV&/óv»nŸÕVN Ù™Ìlj]Ü¡ ÌÖxb¶Jˆêí5¬O“¨XVùx&'ð~OiÃx˜w^ aé}¥“ƒê)›íûU°îª;OL|,pP¶ïz*(æ“yj®RÙiÚΑ|mxé6|¯CœޔÜäû/âôÄÃï0ó”Í2B4ƒ™;˜´ø"ñ;¢Ïm½>YÓt×éÍo‡cdÊÎ;ŽÅ5Œ8¦°oºî¦psó}R håpG‡×áìe#/Œê‘ÔwK‡\ð¼ î4‚ëi´½ÀÂ¥îŠ6ÎpÒïSQ–çv«É9Œì>¡lv,äÄlv8¼ö1Í–ÂAH nQ¶æÒÒ*|×:°Úù¼²é•”lGÊÈñ3©÷µP#c.ñ×ßfŠq^°:_ –ËÔ)bã×SP·C†R?èôà^"ʤÞMaé´PÔûpÌû 7Lu0>Z‡– z ÂôÅpü†Ú/µ¯P/~6s MS™É}ˆb—ßF5s¢ÇÀzý`‰>Ó¢/…|¯C¢O?*Ñ×A¡òùb‹’MÐYªôXž?í¬0·ûD]?~±XôÞž†úĪlk‹óÚD8«*f©èÃaâQh˜”ÄrPˆ›ËD– ì;Dzð «0$,û;pwøÂŽëå >?ˆ¾ò;w}¹ŸY¿E°Xb…T@>W¯›ËtõÚ;äþä!.%F1.ÄĨì”8›®yüÿLŒºV9s‘­7\ÝFü"΄c?ŸùW•r'é’ë·ÓéÏø5„o^OOÞ†¼ÌŠW"UT ƒeÜõ¦îºdPir££ 7]yÝc‚^…u„Š‹+ÖœxcE‘ÉŸƒì±s^q;’››a‘ôD‡—5h»„½0ú~m‹ 9Ïšâ§@v¿}3ºø3û‹u“ã‹Îñ_ï×Lý–Åè< Ës%ÀÒpvñŽ'²¢Éw=Ö2±ˆL†c¸À;#d¼ëiE A‚°áh(ëóa¬õËC˜„£Ö#ϤM«AÞvEQµ KÏ»{œÝóº¬Ãš×õöjž¥“ºRÏŽ~í8Ÿ<3ߘØÌkUâèÉÁ¾Woªw¡7µÌÈÙÚmÆs[_ I¢ôyÈjLë(l0œoJ^HʶrjÅ~J4òBØêͺ¡û›]ë6TSYf;¿êOº žoDuI+È·"8þчE”ð¡«þXq6Œ“€ ¾EõErÁŠÜ¹Û¾¿azàëÑq¥nÛQ2b¨SVô®`œó®®‚ÿ²®®„’Ù»?M¡ð°›"ä-V[A—Zá¬{Œã„(s„ñÂΡ9Ä­zºÎ!lt~E&Í >æ‘¥÷öŒ ƒÃÏweyž þb%1ŠËE¥ï“:Wœ¸”Þå>9ßê¿ò®s÷óQjqÁãôàHY1Jwº[‚–‘:ÛÍrˆ{'0®¸? ¿náYðx W–Ü£ñ/+¢˜€ü®hæµ›yœÓ¹¡ ÀÄ(ßR‚¢ê¾ØÏWMw»„kwz§× J± íSˆ‡UR »‚gíHŸo¶Œÿk eX Fï5À»4!;¯ "õˆ §³ ƒfó©&|>†7ñN Cdʳ̈́Ç ͉0,“Ÿýòvàú›Ð5*\Ì·|Ëâ{TF$aýjðN¶¶¸Ø¤„bê_α‹ótŽâ>Å!ØGQ6ivYjS„ÊÁÛ!k§¾¶ϲ«E‡v1¼PÕ/³ŒÁ¹êÀÍìMy}ƒéÊ®.dÞnŒ1&ë&øí¼·rÆÓ#‹W3Ô*/yÐéoRÔ+@¦¬{™‰Sp4||½aêLy¤ÖP"çLI×3ŠÆ¶ *1Ì'˜à.Ëi7ðyNíŒ-‘pU]×blž½ôƒ$\é:KðÙfîw‡ ²‚$}(;Ñ?&›¬ð~r1'(q½ÿY¦~ ýœ‡¡¼ )ü~¦_$܆ZË7±—prèq[^vZHZò›Òƒ':^¹2Ž.[g´ €áª3·ÛxSÇóÅ5ž ˆµ†´ê¼Œ%5S™¢M“[ Z*4 fÇ;}ÑRªêp”*Õ~­h( _b¼$úL·“AÜÑô·5(Ñ#Ãßǹ«VÊ•¼hê’?ô- ì³v8î«úÞµ6ô<œ>‰×w‚°.\Ûž¹8A‡¿_Ôœ6¡Våmq½>nŸ ;ªa#xFT¤VYà©@íb=g¯$îqˆ=óõuzZÀìO‡ý·Á¨*ª£Ò Bd/³4±4µ=ôÖü@”ž÷ãÆ?/ÊÉVbó­Û÷Îã&€žÜ·ŒI6¬ƒ†)‚ÒQn']% é²!=S¤¿Acæ=Iô}Árwe¬ÂKà¼>Е= °À‹C:ó@"uí+ü"ü¥%liÛ^Ôƒ£ep ´øg[ò%ÓŸE¢"8»#ç’¥ò9ûûZ/qŒ> stream xœ­X TTWš~EQï=—ðR,!¾*Ü¢F£Ý.i£qÁ•EEMU©²”‚‚Êf±TýÈ® Èd)D*·4“Ø“£1Ëô$štìØÌ$$vBðxéÉÜLì$gfΜ9÷§êqß»÷~ÿ÷ÿ÷?ãìÄÈd²1kÖ룵1³žó]¢Úé¸4Yò–IO;Iãä@¶=,îT€«\_ZùšÞzÇàš±Œ\& Þ³T¿716bwø~õs~~³}}éßùj]¢zÉ õjíŽH}B\d„Z³S½zFÀ õKúz1B=E£Öí ×F…©õaê »6«7-_¤^±þåASgüó¦~úÅ0Ìôc–è÷.[·eü*C‚ö€nm⎀¤»Âv‡¯ŠŒŠžõÜì9¿[ðÀw†7ÃŒg^f&0Ì:f3™ b60™©Ì&fÌlf–0[˜¥Œ/³•YÆÌ`B˜åŒ?³‚Yɬbf3«™9ÌZ&€y‰qcæIFɸ3ÞÌ'ÌhfŒl$ãKÁcœ™t¦W¶KÖå´Ð©\ÎÈÜݜµÎ*æ(ö)n±{Ù>ÎÈýÈ?Ï_1qÄ¥‘cFfº0.Z×e®öQ¡£:FïóÔ˜cþ1öù±­O„>Ñæ¦wk ë…ø'Õhý£|‰;úÙ¥í ²þNwûtŽ÷6V˜ŽÆW,˜2‰$gà§ñ ˜ôÙ±ÙY|¢†}Õò'h€zøjL¼‹‡] /É-‹%¯ Ý=±Š}‡ø)|5l³¥ÎB3|u&ž\ÇL%9ÌâìPŒîWÐ¥ëímöX«ÊQ†ÛQæ!I=îv,ç¾Ò½Fœ–„/ŽÍèÄ ÿNQh¸· `§Š¼ï¯áj,À):†öàœð!2Ÿv];S·H$õ¿œB«zÓqÜ?Z±Æ.ÃI8¿À§åýñ „¯æÝ$£Špbý©;p‘ïžû)™#,Ðô ôøh¤Í,οýå×*2?S.ß¹”ŒÉT¬ÁUì÷U ·¨N‘Ûʵ '’µøG ¡ÂmWÙ¯‹u‹T6lÔ²‹Ó´ÏŠXŽ~¬Ð¾`]]FŸicc0M1ðÝT·¦_ÁŽþQv-Õ±ˆä _oï÷È{ji‘Ä);ƒO…ü!Â_{˜òNÎ 7ɼ_òîc ]܆Z Þ\Í S¬8Gˆ‡SIÈë¬IuuÖ"]åR“aŧq\㻲³7ðà ¹4UJ¸´ÏšP¡k‰ÈßX¼¦äå¸Ä¿û%T¡<y¬EÌI.„Rà« ·FõW ‡2L~HÌÊN5ffëËÃòwM¦qcã›2Uõ™ÖŒoÇŠAšxâ§è)ï¿ãn÷‘zúì\ŒI »éPCŒ…×ô‘ ò)VüúºƒE\ƒå´Òñ(æ>x?%çyæD†u¯#¤šÎÇeƒCQ¸#´©$gN°ÿŸã¹™[´ý¥…‹³ê®ˆ‚'~Í ÿ7{潘µÁm»˜³€-ÍæüzÉÃÝNœ)íÜnÓ3 ¥ãØM·ŒÎ=ÄYõZûÐêP§u]L¹Ašf—I×¥IJÇ]&ÐÁï,ž®¾:ÓTnÓTd)&JlQ\±³ûMËa/ÄÀ:ØGû‡ËÜŠX2kÀ« -E'q>þó ,¯ðpÈÛôÔáúˆ1%Su<¸-®è5ú LYiªñäáð¬âM;g ¤kL¤›¸Êå9šœ—ž›Q™Y)ž‹È:Â`¥cÖ~Ó :+B š>é*‡¾O$æ«Á«„ò´ðdVxö‘ò¢xÇO¯jÈÍ/¨  ûгàDnÁ[ŽÝ9ÿ Í„½õÒ8«[ŽÎ›óÒÙjeU:׿@9ÔðÅu/y›ø‘‘™sµÍ‰õ Ug+I%¢µ¨*¿Ñ±k¾jGž#³_!r?änþù5Û¹“*ashþ.v²U…P­"Á8Bé;71r«ÎzáoÈ4}sTŠåäCƒÝíË9²5È£Wɱ¢ÂÏÀËÎÍ4Å€ô/ WYEc’™n2©æL‚£¶G0DÃF:ƒ×ÜâЬ§ þLÊa£qÐ{þÝÒ@~ÊDŸtÀp´ÀRP¨º ”o…VÃÖZÞ£ÚÑ]tÎ_%¾s7vR ‡‚«‡|œï=2NnBè]$—¸ÇEüï6îDå‰Êò“›®¤¶SÝû>ÇIT·©Ân‡õqaQ!¡i‘°Â.®æ>ñÒéË6o DXå¨Lµßü¬à4-ùAY5ú¤À®^M‰íegI) K3ÑkXÏßâ†P$¡Vé]»¬eòa:G˜²Ñ.Arvv†9ÛAç£äIltÐ9Ž¢§§t¤ó5&e¦ŽÉLñ2lô_Y©ù–œÆR8Ë[㪢£â ¡ç´ºóúGçNŠ!ióç^¯ÑR6U*VÙYZVWàH¹NÃ]š iÍæ”LÑx`ïÊ™´8øN?5=Уàª)Ì&“Y•|bymKR]ÕÙcï.#ñ_N«.Gžþj&>ƒ³š/ tq~vü#ž¹(õÒuˉà éb8íIŒÒétÊcx‘ŠÔ{,Ä›Íû²M æDà÷kØË¿ –ÜOKî~n/˜ .7&Ϝռt%‡ÃºGSóÓN€× È/>Z‚ýNž9ÐÙzK/´ÐÑ õ”6R6´J.ÔRHóåÒfÜJãvÄ'>ˆ¸ïÇb£Ä•€ò½*Óà€Hþ“M%‹66ÿ«ês(þKš¸ôTº¾Ñ+¡NŠ’ ;,ÒHJE‡z:`Íw$èj鋟ÄSâûc$$Û¹øÊWü)Ìã'Ï&j2áÛߣו‹•Ö6U0',~à,Ô¿¤Ýœ¼Û›Œ®S/S}VÕôÆÕüè€s‰ÖWª {™Ö jÀ¬n4¹º=„?Kñ4že‡ ã 9;9CÜ·z•!„.4ÉŒÞo¨ðuVø¡&êo»¨ÒÚ‚Ž­s8ßO"nDý½>‹Ïžï;¡š‰^J’ÎZ:rÚªZ+›OWÛi¡(¢I²…®, –Œ³ÊPÑû%òriôeÇnÛ2?"ßExqÒ‹šÈÃߨù‘µ—ï¹ÞëåÖ‹Ù”/JKO¿£9ñÕêÖ²sâ÷#Ûšñ¹î›1©YßâÖtg}.éË¿ã!ðŒd“&*k›µ!Ñ nL­ngÑfo"nxayT±Î¡J:N\SVu¾IËØ¿þ©ÀwWâZ\ðùëÿu]Cl©R»fC,¼™9š‚”³T$ sÊJŽ]Ú÷”9¤áÊŸßïŒiM)V5”׿°dgRŸÌŽxõÕã•U"Ù5M¹ üçˆB!3n^¸7ïÞÿm*ZÇÆ(ÃÃ×OQX–JmèD¿Q ©R ®PÂk±_‘™õ­ÿ—·áþã¥ïqž¸`KÛÁWNW^¨Ik -m7 ø/Á?::k[¤Nµ/bŸi—)Åœ`Î2edƒ²ø¤|Z/±è B¶ƒa «r[BTö¢²&hä;bt¢`\¬‰Ñμ¿‘6¹ó?ùÛ}Õ#xip¼Wq8Ý"‡Mªw·OC¶Ç>Mz‘«3çÅ&šàPŠHz^Vhð a‰Ì¡CßRjo•žèhf`ð–â·ð‰µí¸°}õï¨oíMpCæêÑÓCpK¥1ئÄÑóî’q;BŽDjDœÊ ÎÌ‘–z(óäL-¼ ïu4U^>O½öQ(M¡¹™& ×»nÛšä½BJBO-Ù–làS -IEÎÑ O=YlÉ).K·žû øþa)L cÂÖ3B%¨™®cíÕ*¡‹iÝW½'1tÎ'sÑEÔ‹qFÏ—8ö‘$R.øáDÙç8QŽ$^Ù±§içÎ=Q:5ª­ÍÚÔ!’.ç_]{ì-Ê=tw˜„èŽ ºopØå[ÿO/T„éd4Fy&êTD˜>:<¬Qßr¦¡ñ´ˆé6ZrÁeݲRì’㻸LÙMºfr?qøxüútô$Gÿl:¨ãß9h;ú#†mGÔ†¬è­âŽ–u@[v2’LÞM\T“6!i Mò‡¸óÿhNHg›253!‰¶2‰ù§:œoÄ}Zz(»|ºöHv¡8:¥T ,ÂWN—²ö‘(sG:oлŽW—†ÜœÜÜKNaAÉÇ®®¶¼ ¥G-E¹–¢<×Q ó_6Æendstream endobj 281 0 obj << /Filter /FlateDecode /Length 190 >> stream xœ]A E÷œ‚´RuѰ©›.4F½¥Câ@h»ðöÂÔãâ“<˜?3Ÿ¢íγ /nÑë.ÜX7Dœý5òGëX|°zùzRíE…ç+ Oh6¾ª ‹»‚®ªÍ¤ý€sP£r#²¦,ecŒd膿§z3ôæ§2  ™PHRÂcBQIRBÌ’PžzI€šfí]óØ`ß—ë5Ft ¥¤yyëðûÁ‡ìâIì ¢i_çendstream endobj 282 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 767 >> stream xœm]H“aÇŸÇ×m¦k–5J²÷}–¹ÔÀ>Œ£„©•®Ð»Øjsc_±½:G[6ÑÌžw›âGº´r+GÑÇEì." 2ð›@¢.Šîú‚8Û±^‹ˆ 8œsøÿ.Îÿ0ÊÎBãMMÍÍÁ¢÷9Œ.»g_y«©£Ónp¯"Mj Ne¥¶2„†3=é^Q2D™ý$}£Æ×ɇ¾uHq›ã|04:uØuÎç¶vX¾ª¢bOy¹Ô÷óF_¯åu†36—×c³òçY^§mÖòÇ\^I´ò¥.'o4Y v3ï2ó'Míü)ý‘V=ßÐzüÔ ýíÿýý« î³F»Á#˜ÜVÍ!“Ýä09«ÓluZBHfCLU%ÂWÐ,&XÄ!$—€²Ñ1Ô%…íÀi¸«ú‘µ¡¥{½Š’p É€ŽÚÔ™jÅ$¹)ÄãgW´ ?ñÄbäæ$ –ˆ:£UDI\b]v¥Z ]‹GYÕæ€7‰Ó„Õ±N`—åN"3d’K-Ê'gHŒû}1e€J5™îF¨f~3”ÌE&†ÉõÂáÁ[–jJ£Pšºs‘B øÃœ "JwQõ‡ £ýd@R{Îû»'úÇ8(i¢%Á ý¤»°?ä¾Ç‚擟VÈ.)úF…8™%‘™Á©”mEÍm_ˆŒÂé«×¢«Vžµ£Æ$ ®N­Û¦å´˜PÕçhrR­¿|¯nYÚAªÏPLràà_@kå´Žî¤Eô(= Ò„:jÿÎÞ~¤òà牌2ÁdzÀ®y 04¿dwC©ŽmXºBñ–ÇM×O’ªÚKÍ¥ò%Ê@þ· Ÿ^q 5"¹ã™;ý²û©tYõär.Q½ýÐáêªÆ%U²÷_¼ùyÅsš½Ü²WP›ïßF%…â–¯o¿¼^|÷~¾†Ê>pªàØ£¡tAâáŒ<™›Ìcs™¶µÊ5D™—‡†FÄáˆ8$Ž+•‰°8§Ç##!Q¹¡Ÿ6îc«endstream endobj 283 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8109 >> stream xœµzw\×úþ¬ ;cWÆ•EÍ,{‹XbIŒ5vEAì "½#"°”e—}Ù¥÷º°D°÷h쉓X¢cnbILÌ<Ü|¿g4¦ÜÜû»¿ßïþ˜9ïsž÷yŸ÷=H(‹N”D"±Z²ÔÁß×ÙÏnÜ7Pç ñêP¡¿DÐIxCêŠ /Ô­q–ÐM Ý,N ¹ÖJ˜ß™z¢½(©D²Ú3pŽ@DÐ6ÏÛñãÆM3†üjëa;{¬í"gWoÿð`ïm¶Î~[m]:Öv™8¹¸Ív¸¿Ÿ­‹›§³»­¿»íJ·5¶NŽï;8ÚÎw°wZî8bìŸÖõêEQ+fù­™í¿vNÀº¹ïÍ ž² taØ¢pçÅÛ]–D¸.ݱu™›½ûrO‡mŽ^+½|Vù®g7~ÂÄI½ßžeG- R¨EÔDj15‰ZB½M-¥&S˨)ToÊŠb©>”œêK…SÖ”‚²¡úQý)u›b¨mTgª u—ºHùRÝ)?ê=ªåOõ¤zIºHºRdÇ( *‚z.©íôn§bé`i¡ÅP‹X‹g–Ζwd‹dè¦ãÚYÒykç]Fv)íº¼ë×ÝR»¯î~·Ç¬Ÿ÷œÒóZ¯Q½õžÒ»¼7²r¶ºÍ^ê³HÞEîÑwP_µÄÚ¤àë—m"ûMïw ¿¤Ä€îÜÞ°{£Ž›Æ•#”g”ÿ´ýt ÷À¦A“e úáMÝ`ÇÁ†ŒrxÈ!? e†Žê>lа_Ñî­qÀ£µ¼°1\ÒêÜ— í!*]µû´Z*s“Ò#!´êÄ(ìÚö"bëN'ãCÿh@´Ö’§×™* ÉYÉzå!dm‰@vIÖèÕ ±ñu„·®3\ƒ½Àà>(SŽCeÈݲìñ?F(àK^e´B®"·«ÖlµPÓ—§WCèv1È‘†{ÀûÔEz•¬€Ù°a‹ÿRægš½Šª,}èk 딸”Þ¤‚ä-ÈÒ€,Ä-PÁA%ZB³Õ?]ÿàÒÅl'G½v—¥9àV /)ou¶zõå·“W†¥†ñØ}¢@o Æš=5-É6<¥ZWX®zŸÎ !›”” Â2<]åÈ)ɘ)6c,ÜŸÌð´§v6¸îkPøÓ§¡8¡Ø-Á¼OÁ‰Qᾇy’êá4ÔiÉ6&宅"È4¤¤g£AÈ]Æãx½Æ ­ Ä„îØ"b]k¸!"H@;ãD@CWŒ¨·BÊftöÑì§ÖìÁV%Z,‡ûS?ÃÒœGÅW/Á§Ìý·¾Ä}¹¶N>å²›z•‡²­œöHR½Çûdl²yÐò%î…¾’/^7K9<éd»õé‡9ÔKÆÞ|Tûö*e9n–Ï]=u0‡{Ë6$¥ïV¢ ´œf-ž4] ì!hU&aœQRÕŒv5Koä%G}†=ÇÝqï‘X‚{cùO£PgÔý‡Çˆå¦dÈÁœB7‡nÚì·¶ÀæÒ€CAà<ÔAœ*?Pyèpé>8ûC+¶TlàÆ¼Ú(ôÕ=ikX«­œ§}’\u€i0ÝX°=\¥ŽÖ¨•x*.Å Ñ‘„,ÐCªM©)å ÇÓd3¶¶oFý1d¨ ‘;þNW¿„BVg¸N^ß×Én0|ýž6«A‰œhä„>ª?ÿaJ ØÔ¯O¡BùÖ1¼äƒgBÀ.ië%Ï‚ôh¨cu\<~Óv*–³ ¯ÙƒŽ£hõžóHÒ2-Qê£@›LJ•(–.„t•F1ñÜÚYîukŽl'á x vEoc;´ M~Œ”ˆQ¶§^Å£ÑFÁ†2Y=¿Š š­Ù^Bò‘#väl1Ýysh8w…fáÁbR\OWoV¶y¾¢»…Yþ–ïÒ™tjd“ÓçÀ ®?=Fr唾¸ûû“g¹º•4pQ¥ % ¦Ù>Ç«Vïãül)®Äu{„_ B²T8ƒJäA²x¬Ü>/%™=E&(„éÙäëé6jçÚVÊT8ÔÒ$KG–»¾@SÈ ídm6m8A:ˆ·Ù‘ ¥œà,#Æ_S»ÌÝ;úE?•¶®F-rä€û#;<ã¯)ÜI†ÞEŽ–+‡õ,Ýnï±.<ÀaÅP`†¶SUØK›ÙüTv®†Ÿ»yæ$˜.æPÏs/Qi’ìiFW¥B9^%ï@I8J»‹®r¹øÙfÐHÜ÷~41×÷W•xþkàZú ;rðŽð ŽŽòØÌìe-ˆF]¯5z§iâ*ºjQçÐ9þ&“ ´ u&4Êd0I[mQ6Á1 ™gm:²¬äý(Ûûm¥ É&©|Frv(¡#9å24*W`%c’ù£P˶s¯ð)}…ϧY‰†¥°Ï¯<¿gÍÚ ”Ð[^ãS½e¶Ç‚-Qê$ª©ò¯ÔTf؇a‘¨0zVRv¥ÙáOšZ>O׃NÏiuá1Èø—î4™rj8hò91ÐÃ<:D´i@‹kËí– zÓdÍÖ ¿ëåæÅúóbel²¡ö4ôo„oÌièE³£!·V‰t÷èï³^19Ök7 ¥ÉØíPt“¡‘`r,ÀÙV‰.RõÅÂÀb«ÝGË‘#ÖìÔ†úÈá¤ï®˜¯š­ÎŽÙ rá,S[ÑxuJµóÑsÉqÙÀäBj±òs‚&&AL4§ÕÄÆi´nU.°“lM·Žžþ•¡ÊšÀ*õ'Q {èù2rN¿5ž®Ó'{œ¹»ÓæêRb‰†„%VÐ; !;59¹¸˜ÓëA_T|Àù ®”ä}è£O/¤½QAQ¼0Ĭ+o·H[ƒQ"a!îAŠÎÛàAŠN ýÀ rW.¦±fãüáuµfY»ûÜ/ߨáa%Üßè‹wÓ©á„ÂËðÛxÁ±ÝÐ]šmlÿôhÇ+ñHz:ŒC£?8Pu¡š³£ ªÛ¼”¸-Rt¯/H¿«íˆÞ}›«#{—ĵÞ5GVAß6tD¦U½ËŠ«¾MÖÜ·;VMD,+Lx‹— QR!ULˆ’ä§ ‰bi¬×e‡ÀvˆKÒhTCp†[ u.¤ØT4@)ŽX¢ ×d_=1$!Eëƒc¤H‹Ò'æ¹33% Y£[ŠÌ²ÂýW’ÅWJ¾¦B€,œE¨Qã­‘Åbdñ–µ‚›¹:c¹Ö&€¡ný¢=•mè·Ö:®âØAj˜gvð‰œ]uþ%þJvn趨ÍJf]·oùñƵϲ¹ä RÀ÷0Ârº1.ríµ—*áóyIQë,i«£9ÔPj(ŒC­Ó#ÀÔ”=g*†£MŽN´• PB"}Së ~íÖCARVtª:Û7}û$œ¨JsÈS^ÞKPKT>9Úod…Q¤FâEDôi©y? :Ÿ>E%^²ÉƒˆRgô…¢èŸ[KP"žÈ¸ƒGŽ­jn"׫7HòD á-ò‚éAj•—æ`*‡6ÐÐ õ[Ö¬fê¼ }KvTT•Tä$îÞ˜¬¬¬=š]ÌÑ3[Ç+Ýé5Ú÷µK|gn Z ›V5íQÐÅ+‡ö.æØÙ®)•·û—žÏûB‰ß9.g“GÏÙ¶iKí±ÓMÍhjPÚùÜkôk !´v‚°ß8}«@ ЬŒŒ“Ç¿ýn ÖˆOs€m„…Äò¦…@DÆÆÆ'à+ø„]ÿ¿LÅ94bP'´—¦ÅeFCŒïVâD‡{­Ãáök.˜À[åÉÖ¬VÈ%Kf—;A„>¤÷C³»öî=Z^Á×5æ]w`’¯.|a•>:™,›µ-MʈŽìG¨^:]1ý‡8ѦÙ@~~fI2Ãæ’¦´a°!9@¤Å5HÖ¶‚åŠ ö´ÁaýŠåIa@žT¡ç“+à;­‚¼f¨!!7¿«wŸÿäóaŠ Un$a]\ÜÎÃjIͤ •РەdóRUÎ7¡Ƚ‰”ß…ÍHO¼Ûáï6â –Mß²!"’C×èvëf––¶oMtÝ…ü¦µŸ‚ÍK–,÷${¿Ma>n^NÀ°î›À£<¸žØ51È…†bHÎ.høàtF9„ºÀr· ƒ¸mI  Æw”dTGøxY¸m6ª!QÄ¥Ï%ô“±ãÚMÓ.zä}Çíæeìp­Ç8p鿦wì0{ã.¬HÖa§œE_QØÌ[EÚ‘?ë¯+ØAÚºX]RbÌP¬S`)2j²’RHæUÔCñôè (Ïl“(‚–‡®ôŸ·lØ›‰¤ûÚ^ħd¡€©Ø^í»©ÉãØÅÆ3gÊ94W˜QqñxrhÙ%GÅB¶ûa½Ùâ­~(& ®ò¬XÐMT'q~cŸ³jÂ~4 Mþ²édæEG­ÒE«ö…h&°(¼ª¢¤p×Ç3ÞýßÂî…û<N¸Û¯uË“*“™T¶U(¿ Å~!}!ý‹º†§Ët Ø¿íœû gâŒZ‰ žþÊ iéØ0X´] ¨³è×ÃáJ¥P—L#õ?;¥F§þÚdƒ!#%éZ»+’Û®Ë^&Z½ács óÔ‹•AŒLBÒ— ¥ÂdOv:w ÛŒâcºÈ/tËÌ6‹^n”èòueÚdlgÚŠÿî…tjb².E-Œn{¤ÈŒIÖ¥“éÅJá(] ‡Ÿq¯æ[Šf›;à¸+ ‹×'Æ%©ã“8ÏÁv kÁuWH½ï¸u ª‘ PúÄéÉ;æ­Áäo¿ŸG’~¡ÇA$-V.D6r+KC#¾2íæYî¿Uٮߡ­SL¢MÜüLÚê†ÊÑ<Šô‹‹ð|<OÄ.ÄÝÅãÐ<´BÐ&npžá7&¿5 ÷ûå¡4ôãæûè͹8S\¾]ÇôMü*Ã(AWÞ—¢ÖÖžòz÷Ý«Þ{Õ@ÓïúÜÆ7ÿ¦#ø ÉxÜ1ô×GŽ0äCB>£‰ˆ† &¤ ¼²:¿¤œ{Õÿì­@y«ÚgpÏð 9>³fiµÔòÇÿÆopøùŸ[¼Q@âÐtuCÔO•ƒûn’™8Ö s¨¬½?j‘¡ 0p8À.eÈáìÁ²‚2e1eVhÂgäaŸY³´Jˆ†Ë cj¶†oV»8s,Vívv6„ö;oÞ{›n¦0eôÎ/ðŸ\7>Ü~‡÷peæ Q¢Nm]åNs׎:ïøÉC{ë¸e÷LR¾š¨ÙtäæK#{ão†j“a³}¤£C?È^NÚËPá¿«ý«¡Úÿtº;@ô‡<:iD'Ú·È>·|-OƒìhÄ%è8õ\ψ XñÇ£¾¾£ˆ¸´n÷ÊâGå·ÎÃ-æ{,û ãðG¯±õûëQÍK>¤!š. ^ªvÛ^ð°\Ýö¸Gãiõ®þ· ¿¬RâPa‚|^ð4<œ#u'Gec4dé«¡˜ÈBƒ‡ø$òsí)áÓ„$Ï­îþ2(› o¡&µA)Hiö ¶1ºœ©&Êf|'C-Ô&íÑÙ°Š•ÂòÊ ßmáþAe»ö”T™¸ö½!ÝÞû<šÁŸçÑ´*É—>º„–\’ ´LO~9¹÷áKó·ž"ýéµSço¡wŒxʦ4.Y êìŽm4·x :]Lçéà[íÒ8žH›tò„SNξ ÌÖ¹¶£2aWB•{i`–x1s×Ιì7#õè*nÅ)í%].+´/ûÔ æ>5=YŸÎRvŸä·]òh!U óǨ“²]*H/øZ6ãúðø/ 4ß!÷µrAEãÑ"$73EÚØÒ›â&-N Ü@.?¥$*™ŠˆÿˆðÀÕøŸùìÂ¥o8¶Oë ‹¿‚ˆ8}‚ÿ²0´Š—Ô™PF Ê0I[g käÛÅÉ’m7O”òФüÝhAd%•j@! aÊ6ˆĹúÈ ?Â!òó  O\éA·G¬Çd³óŠR²õ•Ä\¯ç{åáI¯ §¨„bÖ<¿òÙ•]³A6ÞBÁí$fÑ|…NŸ˜FüVÊõsY7éKEãé§â——ê£DãY¬ËRA4„GÅ¿<÷P!4[û×y%1 N¯òê}éôÍMŽa³}‡f;g6“ÕP­«&f²5.”.ð‡Ûûç©-ÏøW宋w}UîðSùÎè ¸‹ 9pBïãÕ»Óx b0y*¢|‹d…œ¡2aƒnлᠹÊÉ;ZQO¤–z$ÂÒ>'ûUýelRó]Öú6éO[×K[ý^ÍnËDCxBWH\P¼V¤Æ‹ÛÂØQЫóÌjõ0™Ç·óÄY:+Þ~Yt„nhgÛ EúöTm.‚>55 wyõ•Õ‹ªt–ÓŽÌx´õÔß à·¨û³²7½vÂðÅxÂpô¯Åð?L é9J&<æƒø:ÞªèE°5»æ…ÚŒ”o’ÎÈÞ’Ð?Ò•x‘V^­'HlsQà‰B´.%)t¸»ÎB…©ù"R=ÄÛÙ)g r<Œï+°²mž$¨tb` yóÉÏ %1ÇmhkUâ ±¹úô”\4UHU imiímÚ¯2ìä(|UtfVqÙ‚6ÔØª0JšQF³TØ‚nÈáNâÏO7~?µÀìav ËXïy‰Óᘙb×8cÿ´áGá|^z໚«©·à63%GNh9_µxçhßM°–›"¾Wƒ‡ð!\‚+§ŠQ×Ï2M°®DÏr„°Dl³É>×ó—Â%(àS©0¹/ïMÛi³ë•ÂYºô!ÜÒÅÀ[ìàJÈsNT0mù$î;Î[ô÷aù¹ož¤'Ý|tÍûùÞêØÏ†o¬Ù‚šM\s¢o徯 ñ ‰ 0xìù34qçNÁS$³»ƒ{`ËYow<†ÂڜƊˆ Ïø$Ði¹²Ë§êÏóÍþiS•ìexgí»+—â•ØK¡-u0#Ð2»ªë¤Ÿ\†ºüpÁ$Ac’˜I›²Í×Kn½YúeåÙk¡/'|0jè û^ÆíÕ|‰±úØØÉñG¯äÖÓx:Ô.&iEàf¥ïúmÚ ]¼.8)âu :ˆeTéPÈ}Y?0Ïoó–™…z*ky#ìeêJü‚½£6ûv!’ ß|ó#gFõã…PëÉëâ‰ÎT9?LXO@L‹ŒÓŠSE|®m›¥*ž(Ú´Y\˜(·'Hùm‚“f¹í°†÷é¹¼keH+t¶4ÇŠ:=Ռ֑uóûý«ÂŒ†p«cOÂZÞ~‚ä-ÖlŸ^órÔuêSL­ßééÁ¡Õ4Ë”ªKv'ÔôG=¯}“›¦MMP²) Õ+Q·.|1U(Wؘ¾¡4Þ ǸìÞᱩÄGéˆÏK×ÒR¸ì‚úS_À 0m̈(p×o%®Ü샃·ºn$yïprLJ ;s¦Î`Ðe÷ß]h*/ßaòŠòLبdK“®ŽDˆùñ{ÄŒ|„»Ï%h‰Í4J‘‹pO~.øàψ€ÀÀ€º’¼¬4R°õúd²ÐGi¼æ,YªŒ‰!û®eR5©ÙÍŸ£.ZÕ÷¿ùšIaPYó7ûLVMЬþ¬Ù6™-rÄŽÿK绯YΕÓÄõª;^Þ¤ÞfävºÂ&ŸòÆ‚]™ ç6™‚ûàþ¤ Ä%ˆ™û­’=¤ßý)”vÉrXkwxøÚo$%| øžSçG†;PÄܪyú à,å¹"wXëÄÄ!Úuïf áÊ\BÛˆV…kd¸$åjŠ™ ™v!ÅÚPy17'=íäKá*Ãx¼îï…•0Ä&6:³¸ã4œ6œÎ8•R–wïÀÔ9(2ű\)cޏµ§IÒt¬ôÒóã]9Ô©º5m/ÌZ¼ï“ú£'à ópü™qæÍ¡ßÔ´ËŽ©2íXá7Ɇ3\ð3²ü®ùn.úQ[×Û{â^wwiö@!sþrÓõ—VÏáJÛäòY3WO4çBóÙšKws¨çôªí‡}a™Yëªê~UvÑ‘i¯ˆéÔ‹àÿô$YÔ—rdÄôÇãW®‹Ø´…sÙâ 3ÜûëÈâ|cÓÙ2ΛÆÑon\±ÃI¿'€;Q]Èç‡FúÆm]pÊå.’“ÎbòV¾õP>eÛHÒÒX«"a#ø\Œ¨‡c jæáÒúÊc{sk‰³Ù½­pÃ2TŽwÊ’ý:ªôsäÿ\rï¹­zÈ«ƒËýü‚ƒýüʃ««ËË«9|ËâO×Ú ¦£a#‘ÁxßhõÁ…ó¦ŸLhÚä`²fOœl]Øê'ÏŽËTÅ&&$¨¹µó̆÷a©iå‰í…aùDagÌŒ;ãîŸLûìÆ™d‘‡ÃN(/»K¬ƒÏá8Ÿ–’¬S´9ýÓ.ŽØMRÚUYqYYú”ì N0´ªÓ2õH³in#èÑËïÏýÃø6OÒ¦ajõœÕá sÑ4ôÎåÜÒ“Çg âû¶a¯}À‘Üýí×ÓHòUU³þÑ Ùš½þÿယç ¬¼<¬,À'"(4¨4¤’/2•qh^ß?]kß&abr2ëÇ/¢qÏ‘S¸ä“vZ)8Ê+vTz„GŪ՜.)I'> )/¥&ý“‹”9b*˜ôÄ”DÕ”¸‹}ù¦ýµE•¢ ý7_k?&Âa/v†Kžœ•¢¯p‚œXcýŽBÜYy£€Æš½ÍF=QïÜŽçh êX»ù˜]έÁb°”x¯éÙ¸ûily÷¼·( ˜´CºòwOG‘äñMÈ ‡[*Ô}%²´G=']ŽF­Ñ¨µT¡|<ü ž˜8š¢ÛS§hÒ²|ŒØ¹ã¨S’ÂW>îAôw¢Ut#$ñ'VqÁÌߟú4ÌüWÇ>](ñܧú›ƒÖR…Çmÿ!=^;9‰[s3…¬iŽùü ìäÿë굄™3ÿx„ úÃÛ•(HþSž¿úÏĶԉGÏhÈ ½Ãió”°½wÒØ*.R'RÎ&I—Qâ|YÊØ¶'÷ö]ØUR¹$©ý!’ñªˆ..++ØõáʦYcq×5XÂaÙïGSR’þf¹o¢ñô¡ôh%.û]GbN@<³=’¼Ùœ,¿Üèú2ÿòóÒ²²9ý»þË6oP«u:И“.çömDÿ., j˃õèµ ~¥=ÔÐ%kô6Þy.¤/ea‰ã›Ê·\ß}fé%Ì”c/Œ^ß~~èSŽÝš •P§‰Œ…@ˆÈØY¨f:¢1ì{1zŸuÝ'E°Aþb'~Ãõѯ£GºŠÇŽK(dV’Ф¨ÙËÏâ¢4!Ê0J@Ј£‡ ¹±MJ¿¬!íääŸë‡8NkOÉk©`ßQ¢4±±Zÿã×Ù‰Ñ(ê{f\v^JV–Cÿx1;5RÁü4ó;:3”j” ¡\‘¶2­=åuž{—ovÓ$r~õŽ©ÀŒÆÌjLý[ÌÜÿÍd’æ ŸºåÈáƒ=™Ä1ÕòHm¸Ø¿«“ƒ*ãH'1 ¦ñ6dI?ú²éòѪíÀ½ÖU"öán£Ä¼ïäWÚzð56oÕŠoç±™ÇËâ ®;#¸Zç’µÀŒÁ ¥ÿ9òÐlí/ßš ášY”Èà¾"«è§÷>,¯Mô¯äz„…9…È/;Í(ã»\íÊu±X¹rs·ÎЭ«1Y/¢t½Þp¾[7S£!MŸf0RÓRºu§¨ÿOr%endstream endobj 284 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1892 >> stream xœU”{PSwÇo€Ü{UŒK ÞÛŠ¨ŸÕºjñEu­E塨±ÈC…EgDÑ`à@€òŠ ˆ ‰ z©­ Öúص*ãclסj×vÝí¶;ιÎÏ7ØÙÎt~3¿™ßùãw¾Ÿï÷Ì‘Qn”L&³êÓýÎ8ÝŒéÁKô;‡K¥q2)ÀMï¯n½ —ƒ§;xzô0%f{ãÆ1¸Ò‹r—ÉÖoÕ-Õ§v%oOÊÐÌœ>}Vp°ëž§‰7h–„hVÆ%¤è³ÓS’5qºDÍÊOC4áúlW1Y¤×iâ·&ÅíØ¦ÑoÓDmÑDG†EDj–G¬Ž^99äš~Q¥X¼+=#.>aƬÙÌ™û!E½CERQT4µ„ZJ-£””¥¢ÆRjÊ—ò£Æ¸)*ƒº+Ë‘]u‹t»åþ‘{‘Çt¹ ï¦éSxJñÆ}k*"ŠÒgÙ²W·ÆŠSRõJ^p<vƒŸî?` ¥¯ÿíkÜcÚ l––Æf'\‚3&?‘™P+”¾€£åh¥¯’@ùûZÚaþ z  ž€ÍÄ’x@Erh¤±C®x#{Ø0Üï?¢v@ù)@E.*Ô\.y¨.F·¯Kذ*ƒG9à ’?í—k™kHȵµ *͸vWãÙ¸”¹} ?CÎn]|gv{{§µ‹w}¥ž2v¦Ø¥qJÇÌ¿£ær¤Y¨QAO¶-éDb{JåÂÚm–•5 ²×žCÓ=‡.ª‚/ÝSZd¶*Z„GLTCN"ŸV›T™ìNDМڼ[èJrìµïåÁvÑ4Èœ6Ø“ÏÕÁ^`ÓÁ˜!“…–28bå9Óñ†ó)_B3øu`` àù凔± ߈™­üi­ˆ#E5÷BR¢—ê¢6†Yž’®_ 7Zxlw%C1RË”LÚdb·»|ùŽ´Ñšï3ïÜ?wyWH—Œö"®>‰ÁveŽÀD¤ÕœVºÐªjɃ<>¼j¡…Åæé²›drQœkËiëè´ž=™Ó`*ãOTv–öž-.THf–™ˆ¥ÈD–+˜Š^†o‰ÝgòÜ¢°ù¿|Ý|Z²wjê´¼]1 ¶^¤pfݳ˷¼'”Ñ.ùØqíp¾4 z¡šK•^`º ý‚$—lÐe§óxž!a¿üú…ÈÔ754Ö7±ÜÍý‡>~:'ÿú øŒ-D¥%êâ7¤@$öï;Âb9Ófëk@F‡ Ûú&Àe«4¦Ké@@ï:ôžÞjî¹´ G¨êöÂ>CIq^Ÿ¶jSN °DœtþàXTÙL¦Z‹2ägúÿß!ÂV®å9+Y¾˜0„%~?¾!8ç$²A!ÝQ2Š7²e˜£Ü¥Â±"ÑHƒÌQ¨N+(†…üGïA°ÙÚfºJ¿jb_×AËôš_Âç®ózM¬ëŸ‚žN uâç]ïp*¡ŒB,ޝæøER ®PÁ€nˆLìøÆ:x†Ø¡×È2já'ó·t¤:ÎëyŠUó»?æÅÐûé·]TÂ?¿C”©aqàúTgý~>·¡‘Eï~qà'X4iXTu–Ô†Þ® ¢ÑÛ]xå«"[è “*ö–g•—TW³Z:‰Xä"]}¿¶¶¼¬¦ò[hpuXH2s² ™S‰ÇR2Hv *ëÅŠ¿òçè3÷YĪ¿Y¿²uã4\á[]e`ûm>qšSòwÊú†ná´!wÿj 5WÜxâ¶½£®°¿L?Gh"„-˜Û¸êa,?w[l,fÉh¤bP…³¿}‚n¼U°1-9VG¦<öÍ­Ò7Àiöö3K×ã ñËyëëQª¹Á¹“#¾xøðb­™Çñ¡½»ÎdÁ&?EA´¦ ?³V×ÐâH¤Gñ#=¢ôž#ÀsÔ)³¹´´¬¼Ôb9}ÕÓS¬<[[Yc>ä¢6{ަ¨ÿœ„².endstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6874 >> stream xœµy XSgÚö‰‘x\ªuI%jÏAk]Zu¬Z×jÝ(.Up¡¸•}ûNBB¶“<ÙC¾„ Š*hµ¸[µZmµ­K§í´Ó™ù¿v:oòþ¯ßÀÖé5q¾ïÿ/.¸ 䜼ïóÜËs¿‡C Fp8œñooÛ™"|máüÍ©!q1aîg9§rœÓ†9_ä&³!ÿ)v{À.Œ~vÚÌ1˜qÈ÷y‚ËáD%nHHÌJމŠNõZ´páâùóñÏ^¡Y^ëxm ‹MÈH‰ñ †{mY°m×ö„ übŒ×œ¡WhDtH\¤WB¤×îˆ=^þ»¼wîòòÙéëï·kî‚_/ëç¿ ‚X¶N¸g}†ÄÞÉo¥ø¤nJÛœ¾%#dkfèÛYaÛÂ#|#ý¢¢wÆìÚÿÚ¢ÅK^_¶|ÅÊÙóæ/˜J3_bñáGÌ$v/³ˆ]Älb71‡ð'æï¯Ä«Äb=1ØKl æûˆÄ›x‹XHø¯›ˆÍÄbb ±„xØFl'&‰IŸxð$Äb*AÏc‰qœQÄr\ab8QËywX(w8÷÷þð2)?ñd#vŒ¸FZGNù_£ZGÏ]5†óís’±)ãæë}Þçù¿ß3añ„¿L|wbï¤}“¾ç3/¬›ìÿÌ3øÍ`U´Z¢ÑdŒ6ßVÛ¨‡:ÊÍLÆ"¨°É@¦¥Ú(8 ÀXXPv MðD™<»Ò##%/X’™y… o;ª‡vª3-@š ¡œf7"%Ÿà¡íè¾^ߢå„Äîœoç8'ž+¿Èu~Ž^â[e ƒ:WEÉçî2]SR\k­³ÔЕg:Ðpè#?Ûmß·b¿o¦˜’ŸŠi †(ÈHÍ‰Ï oÇk–ZÁX¤ÕÚTùÍŠS ë@(Éa2U9ôZöŒZ¡Q#Xr+ ËÌfê(Zb´›ªŒvAQ/hË‹kºîÜò¸.0}[;ZF‹c˜|H'ƒ¢Nþ¡Í5RO ëâ88½®®Ëo°ªþ*[…œbG£;hò-´ÖÔµuÜ5 lZ+@9Y ×+âR1©?¤—IR ÑÓfM£AÆH²ÒÙ9ìÏõh¿ªÌ•mzѦ-³Éuòˆ0Â鈸TŒ+l…â÷ Ò4 ý=Û̆³R?Ÿ]ÌAµ`¨u*ÌÚàÐC#Õ‚p·®*­b-ÐñzeXÁ µš­:vàËíF _°2­Jç.HÓ³¢ÔrM>¹¤»•í­ºÓ@+qNáF×5;:âฦ|Áu­@ |ø|S÷†4¶þ£Gð1yËï Ë¡Ø+¼ ^±*õÍ€Z%¢Ù©ýGe1 ™†ŸûŸPJ£ÏyhFü@Ç¡Çü¥k^fyëÉ»„ô‡ÍphïÕ'ŽÞÁ~ÄeÕKì0Š}žz³Io՚蛨Å­åýÁôz^!ç§iCøBÃn¢Â›\§ 9øßúÝXÂ>ÏòÙ쬙—·}ŽžG|ü©³)ï#|N›ë+ܽ'pᑎ[=uˆÛüÝvñdÓ O5ù¹w~EO¤9\óôÊc®«×µš¯5hM` Ac•‚$ùÔÛë‚oì(Ý 6”eÓØziå°|нú¬0¹ÀC;Ð.ƒÒèåí|ð²¾KgïÛ¹1d3Ÿ‚¢œ=­f-Îw¼OﲓÝÝ«PÅ ŽG´ÌÁ¹äz“ëÚ€€oË“'5ŸÚÁRÑ[ØÅ@²cŸºÙ Ôàñ˜wÝœ“(×äÊ„4¨e &¡É¦×•è³(o3]P˜*10é *scfÚJ Wò."åÐÀ2Ðx"jã7&ªÅL ­Qjò!ól`(ÖÊuT5òÖ×) ýQ¼l)d‰ÍPÙ²|™*—f§ôúu1œ)¼JÐjÍ%¿G žZ/Ä©sÖtô彌¹¸N‘sÿôÛÁ·¢ö¦åP’3áÿ‡ºÙdn´è¨«¨D«ïBüG 0BTŠ¢%L,(IqAf]¹£øˆ[%µ}îBŸp nw™s]Î$þS[Üÿ [´þè1=¥»áÓdA!Fc>äÐRÞz°@g(¡/#£Ç缫¹‰Ùª¼`,]ª¡ºbÒT)ww Z#`5Æ]k˜,%•µ1'ón5ï *|Ò‘¼¿ÙãÞJa2™TZ“ãñKcpE‹¾Àbòþ}´àz”çЄ÷¹ÎÑk|x¼º<´ ÁeN²¦êúýú6i¸ŠUÉAJJLÙ5eu…Ý¡G6³#C_ XsUÔ  ŽK»¤àOÆ&®š™¶ÃØ›Cõá8nC…¸(=5!;p{_Ô‡è•v4¶6×£ 9œ/iN*â[TÆü¸b©`Ô)C†Ä%´…Weš"McÑ€Tª i‹Ô’ø„àðÝy@Î[q újÐâO÷Ÿ‰ÍE¤T6Á?S¶×˜Žf|}»»­‘.H±GÙÀ :“Þvíò4Uë¬Ç,² XçíÃ8P@VŽ \ärü<Ðdɨ¬ýakw™µ¥f(57С‡¼2ÛPÏWñÚÐC1èp#«²Òdi:žÂÙÅKyÙOqŸ·=ªQ©r@$Ø{(ìôÿé}Ú´Ñ%jqÃÑÁuycß–CưX %šêl·4[,—APUå¾êöÝ0Õ‡ùîßÉÓvVíÁÖó. Å¿wݯe ü½CGè£ÐÁ`§1c}²67Æ‹éP­ªçmf+ÿÕunótdIÌj³[G:èèdŽâBaW£Ç:ƒ‡ª´ðbñ94ò÷\§Ô9†ßšç¦&§¦ŠÍr“œªIÒÇâù/ák`GøKzõ5?®¿EKM%ÏXƒ¸¥¾p€\xEx½Ñþo5ÖiO³_ý“Säà|ó=×5̵˜_ ÐËF1CÂ=.·ÛŒ]È+̵ÝÍæ\7›U"–ìôÌ\»Ó{7„Bt­¬C§ÑaÚ‘íö–ÚºŒ¢tÆÖø¼v囯ï|e§ÑHgœ¹ÁléA‰Í½ïŸ†%=Èk‹Î=¼ˆ6üžëÚö›‡°ØÙ¡i±¡ï¹7§ãX¶Ævœ>†Þ0Ù­G±:¸Q#”'bÔìd3å štÌ=IÜòw¼á£¢÷ê>r|F™+ŒÏZ®½ì4HÂqŒ%¦.¥9¡‹)ƒfh-jê-‰<šx.À±Ž¦›®A à ùô”÷§ë\§ýŸý:ª}J?bå1J •Ù[‹ÍžËŽbç±³–v{ß9|¼êÔQÚ¶¯-½õï¡Êúdòe±ÛVîò€ì|S,?F×^ìîéÀ¡¡6 4rµ˜K<Bô%W;×µ#:ò©(mž9ÏÁNFñDo£ùÕ×ß¿fX´V-”‘f•QžžÌ@* ú˜AÝÀÁHk •Xȳ²ssÄì_ÙnÏ{èÖÿ?Á1Yšåt+š‰h<Š³Í¦\PcóЈÝDsséð=´QM86bOÆÚéV÷ën‡,ý]·sÎ<@=xêÈý¥9J*ñõ½á!@f$ž®±uZZèôbñéú³'@ ‡Z(…I!ùÉ Ñ»£P¸ûà¾L)•vaŸ%ÈÙþìäÔ䀶ÔH×?:}S¹±"5,%o_~$º0gKú*_0ÙÅM–‚Z(!ëÒMâääôƒáÇR»Ojo*£*wž’Ôù}/šRù³ Èc4â}”ˆçé ¡y:"&=6†º‰ Ívn’2R†¡æÈò4 d $8‡ÔÉ¥ #jN?­a¤¡!XvÌç6ŽF¢Wp²xz:N>XuçxAk#âÑæЕT6moiòé ù§a)Ëž ÇyžëŽ4|ÿK‰{“8†:sí?ßàºîÿ‹¢HÙ4;‰— H²Ø?ô_òÜåìSÛÕ VðϤþBÑ®ˆ¼@µ@&Ñdå›sS‹8޵Ä1LÔB¹6Þ©S×A èÁd(Egƒ§–w±ÿ{]6ÈK@PF³Éæéâà—Ùéý—Åý6Ìßvºs¿íç¡ág!`Å´ù·Å´ÄTC£—œ×Ÿ‘;Xq®#±>oú™dvS:_·}Õ?’Y Tkʬ9V!d£Q©ä`ãíhî<ïR¶ÿãÎo‘|x¤ÝÚe®§ðšàýÉŠ{ÍpÌdwä‘­3Ø—f±Þ¯\úí`¯ƒ‘…?]©t^'Zþ=NVäÑêÄ7=ÿËA¤Õ¹–×rМ/¹®F§-ù;v†±R6—}õ/4 @‘( )¨¥Çø°8м³p Ë]ä·È…»>C£»‹‘×M4–>óÍW·ùÉ-_vŠ»‹nÚUÜwf:ÐüOªìœäèÔ=®‰üÎÐêйÉì 1r*æ±Ù ¢ \íúo}ÿȼmÒPEº@#ˆ)dê%%MÆâ¨$íYÖœääŒèÀÎô¶:Päa3–6Öã3^™u©«yÍh©¥Ívæ0,P¥.ʉWŠR ƒL+—–ÖÖV¶R?ççö:tgø¾àº„ÎfþŸ“ž3Ïáÿõ¬{i=Ðïxhšúh$½¸ž¹s#‚¢Ã÷fúbtLà]GõC'Bx7{“¶º¹ïÖ©­vç 7û1xG½ÍGçC ¶{ÀÝç¥Ê„*JԘ؀Ã;œÁÎa§/=ás§·³£°N_–·W‘ž#;†ç,1ÄA¢­ÒRX…­¹(¿")+NÖ–õà¯w¯Ý­ rPž¶¯ÆõWßµlB#«NеïïÂ[ºP°LF3"_“êáÀ1gó³snŠŽŽ£n£®gä;§ÿ±F­‘à·J r+ªŠÊlzª­:ã,8¬Õ•7W6w^¾ù/Ï8?I"Òì¸Ñgìè´c‚3 qZ¾œ<±Ìõ5߬6‰ÅeCeïŠ2ž©o®Ó×èëh}µñ8TÁ¹èc{ÊÑŒÃ×ÃmòÞ›7Øñ[öØð˜#Ãð˜ú3:ܧô‘ßBÇUTêÞ±Ó9DL¾h-9 A&9±cÝÅØËš~´Póœ‘|P¨øûÇ ÷¦ú9‹‡¯27YtfÀ¬k† ¯ü æQm A?þ8M:wâì䉣ß!a⫸C2‘¶¾®èPQ}½imÔáÎFÔFÎaç*qµ‚Cup5ejŠD(Ϥã—GÎE¨0Iá5¡§¿9„^1P½êÑüª\{|ll\lZizcs³£™<Os¸6pÐþë(¹åó¡QÞ‘ÔœìÈÓÏkÈ4Æ(u1%ÙÍÐA~öñï~Óà³.I#W¥Q‘Ç/áý4 {*¼+5Þw…°Q›exËÁß#ìïô%Ò&Æ®(QyžÎµ0eY6‘- ¢È…«g/Z»öðÕÆz½ ›½‡-yjwIص\Ãà©PaT™ÌZÕBÙ ëš­EmþWrO‰¹ËESЄ¡ãRp8YmpvùÅó›ÖF¼6w°§ú­¼ ìŠ,?ÖÇS)ÆHI!è Ðë)N«µÖ@ÓªÈ^5¨äru>´Ù)ý-ùÑùÒÅX[ ÁØ{F½ôixé80ª´I!—Îåå@œŽ½ÒÅØ71–Ðg«§­EWe@þP-Ú†ƒ—ÔVK–!v7V§/×ãÞ?é1V\ücœo.pÑ¡!( d(yr¶wfHþGþÈŽïÇV¦Ì€\Á;‡#O¶WÖ×Qe­ÅW@#÷µ CÇ5ð ÄõŒJì¨<à½7((ž’ݨ_Øw0æÝÿ§MN®°ª±§³ïݰ'7Q.TçÓ[Ø¢ç¢ßV!·|âqk\Çù:ŽPRŒO ÙZ±6M¯Ðâ>štZƒ»Òžƒ¥&- ƒB¡ÑäæQkfzË…ŒÒ]îl÷c CÉ)Së ŠÕ/”Åʤ«A ÄŒ ]zè¤C7süÉáÀÀ‡§Ý4ÛQ¡Á®²¢ ÁùòC®³-û9×`G ß´  Ü’cˆ²„ÄòÕjMÏ£ÛŽr´àñW—ñI4bõ{«Ù9+ØÀ-¦à®{ÇИöòüV±B‰*­š2åÄG #§oÏ“®ÞA~hlljÄåìËK–Íñ£CRB¼—I6õ¬P§Ãúni(?Œ£4dÔf×e9Òp&B#ºÑzÛ“=ØÑ-Ç%ì@ö hÓ© iö›·ì&OÌ–8SQ*T·ßlý¡µï+¸K>Ürj5;zÖŒ¥Ñ¶¶îÖž ‰#ϽBF«Ö+(°ˆrcb„ŠŠò{_}ó]Ûɬ 9RÖ]A§ò&öÙ¸R ”Ñ ¼Š>õʬü9¾tB̻ɰö6©?êTµáLV*)MÝ£öÍò9éûKÅ„¿¢1Ožl¬KG>ŽJ‡óœãÎõ\§°˜oT`•PJJeÉ“ñ 'Ç(µÇÑ[žî®'ëR´L¼")[E…°+××uˆ…VA¤-Ò GW±U#}úWÍ=©‰rê ;>ˆ³‘%ß`'-òV1r&6rH•Yl1•ZlT¥À|Ê¡Z%çS=#Ù¹*wV Ò˔֊"[µ‰jC³L ˜@Ðpµ¨ôI¹ùí´#ê®ãvÍ-®S‰Êù÷‚î.y74[Iu£·õ6Ë`²2òju%îÙ°/>/1+t £Ò¨•t`F ,‚ Ü*,UèU:Þ¶ZÁHÞdß÷Ô0©؈Í:½ÙLõ^8[€“xGe´ÿnáŒô0:h¥_Z$&ùöJÍwzK-ÙRÑX]).N PøÅ®ïÜüMÂ=ÍZ¶&ÝÙm?q“ƒf:Ó¸.×L7ÂJ0**7#Ò?2,8Ç”0-ªvUS($Â>ÙŽÝÕ=x@ºŸhI4‘œz• Vଊw‡`¶iµfu½üuÕaìºFyYB©°TY¥Pb(6ÏbWjÔ7/d·dz ™’²#Í-ÊÆCûÐó§Ñðî E`<*¨°k\-绞ËgÑšó%]\g> çCs~sF½ÂÞ’Zùç“}×à#òîÖcÞì°Ù3gG'XÅ”I¦Õt…±kÞÈœ 䲛︡GºŸ7R%è[þ v¼7Ø,§Þ¼’U"µCàÚkŸ9rpµ®ÕâU¿ÛÔyåöù/þ|‚úì­Ú´êLýàõ4½yÃqrË%þ†`.^Ü·‹Û›ÐÔ†ªÐÞyýC {K÷M3ð#JÀ³Œâ$ Îä‰Qòe¾=§*!ö`üÁ¤òìºÇ¡&êSô ¿:§2šè—ZšÑÐâhv ݹ$ùÿÈAEȃ‹Cäh~•òXpXr´0¶ZZUV^`µR߈›ýÅXqß½Ü\žG£ÑHj(½¬¼ƒârQê þ!Q]ì“T–Ú F*wÍÞ­Âò~¹A9‡žC£Ý7ˆ¸@ ßsœGÈÄųØ~¾Îd²ƒ˜Ø<+`ŠÕ e¦û‰“Ê)´›‡ÁúBòI ÜÍáþýã‘$Âÿ©|õ±} _½ú½òÍzÀuiÜ)+¨:8$$>2“J•Gá¸E²"Þ!´± ÔRj.nnêÁÙ»‘©È•0Â\ˆHõÕöæ•»Øi±s׋¨Œ™8›eK‡VÜÙl”x“8@%(RDÑâò_e³Ç3[v£ÉèwMÔEtˉx>ì÷¢uÙ[%)¥4jûÈ€ Cnqµ±¢j®KLM‹ÝÓ—Ó~£ï|‡ª=YrÆzæúÁóÓÁƒ lšô^Ù¥¤üõ¸­÷(&l”f¥*33!y`å5u‡©±ivçJÑ•ÚyöQçFS£†ïÞ4f$Œm×ãI)3˜ÆŒi/ÿ›uÅZc…³jÌsñßÙî0endstream endobj 286 0 obj << /Filter /FlateDecode /Length 253 >> stream xœ]‘Anƒ0E÷>…o€=€i¤h6é&‹VUÛ 3D,b,‡,zûÎ MUuñ,žoàÓœÎÏç¼l¶y«kú ÍÎKž*ÝÖ{MdGº,Ùx°Ó’¶Ó5]c1Íé%–ϯB–hÞý5^©yoÛAoù=”Ö‰n%&ª1_ÈÃã<£¡<ýÛòýžç?£€dõ¸ãÆApÇM¢žw€àE;TX;Ñ'TÚÄ 2¨ää–/[ÍzbíxPpŽWsì*p%TXå¹! ÂoDT 99DTX[ÑÎöZÁã[¥ éõQ£M÷Z)oZ¾–+.™~ÿOY‹¤,c¾§Ç€Âendstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1786 >> stream xœu“kP×ÇwH ä1Q+g%?‚NÉ´c3NŒ™86v;'`( K€P„VBÏ£ÕJHZ Ù<„„í:~ÈN\OÇ$¦yÙM:6iq;“¦ã%þà)¹+V»h:žéÜûáœÙsþ¿ÿ9Çòó0ÇeÕ{ö(;[˜Úuæë÷«Zº4JýB®Œ{çVäqOŠ€ÌWfíP,‚âüVH>} Ý~}ø0:ÿV„ãµZ‹ƒŽÏL~T©ë0éÕ-­ŠÍ7>³~½poQ4šÛË»”Mm:£¡M­Pj+v•ï)WìÕ… Z±N§U4ªZ•šf…®Yñ²ê ¢æ@ÕþŠöÿªfß§ËÿÊÂJýáF!¬×ïKPéRw+5*m“J­mVkÕ&Ê`ÂJF×¢nRj%jm§JoP5uªuZƒº]½@aïlÛßhÉÃV>ºéñ†z†=û0=V° lÜÓxgð ÂìÄòqþNç­Î{)oFT+²Šfó÷æÏÔœ(˜× ß”ÜU÷c¯^Aé+èÒ<{áš4ä 8)³ÓÞKöØ,}^»×ísy\:— l¾Ÿy”݈}14} ­x­˜DOøÜ´(èu™íÄ›”Åê±.S—iŸ"øQñðÃÓ±éÐÒÀ™Ž” Ú@íVSµæƒ:e£^oÔY4>{À‚( %"Ç"ñ‰ŽÆ“ÃCË&‰`j EAŽu{;œUÖ¦µ¬Ul³ÐÍhííáf¼!òk±vUëê¦5>ÇR½`"2Ç™ð;3'gÆÿI J†™÷ÊLÛ­ÛÛÝÍiý9:qzП Œ…Æ¢ÇãC£ãáh(ˆ%œ‡7uÏ÷q$Ë  zŽ×Jç+$ƒ0d4Bw/ùý³’^è¡AÕ2Òùg% r& ù}…Ä&!7š KîáÒ1ôêþõœ½ŒÒ CJ«5´Ú”ab"•š ›qægúi>qÛx‡¢‚±þŠ`óEûi 4¼C ŸIà8\öFû>Ûýöaž‚&ÐN LC2õÖÐÐXê:ô3 „ÖÖµ›VzI~·ÖƒùˆÎbéè¨výý>Š|òÉßõü­Öükx Ô“Íï¶ÿÁqˆXXù¢ðeŠ žáÛ¥ó[ †Ìs«€Ù#`.3 tsáeu‘áõÀ/Fá.„.©Ú3¯O쎴AQ`[”qËu¦!Ò°Z ^€l‡ƒ4ñÚ‘s6¾P ;@Gðd%tô&S§¡Êíò¹Ýà$lQˆÞ½}yš&‘9 GßNŽ_eˆT`=ô –-œBØKÛX¾ÕËp±,MC¸”µGl·Ûn'ùzáBõ6ÖK; ”¢ì6ãŽØå¨NHÔñuåq‚³ÔµGÃ4Ͳ$ª_8|}” yBP GØ¥~èÍ žÝ%àô€…Ì][zÀh†A9wA<8 #ò’ùÞh7rfÓˆßìž/6Šæ+ì º·_q¶b¦åû‚.Æ„Iìt¹ò£&·ü¹†ø·Wlé§(j€”g½âçjj·˜7Ž +D‰ƒdüÁa”k滳̉EE§3¨|áó*nß’¬;˲rnVœX•“å ¹^27+îý¯ä;‹’Ñ+ùü÷CNÀ±äJOâSÉìWɉª„/â×læ×uõ‘;ÿêów ·ï»POlãq¾]ç%¨­¹Ö%ãòÏ·ú}Éž“)oˆ›G…ò®¯­ªøå¡Æ±ß5º Wu§Îþñæ¿Ps¬Þ$ÏÕwIU/l[Å •5ßþãîõ[_ýö|çkåiÍÅê´z‰Ÿra"_J!Ö°†rIä—qcˆŽ2aâ÷·Àã§Ì½Ï'(—Ý }¥`º"nn’OÈX' lD˜0ÿÊ’E±ÅøàTïå%N`¾î,fħ¸Ë"î;¯@;c<Í},sG]Ñ>°C¿ËiáéÜ'2§UXxa‹ØÙ0}l€DVnYs頱ǡô~Ãå¢Ü—|*Ãi3BYVʉ%¨Œ/»ÁÿD8e•üSdNüÃcäDTŠV^ºó Zuˆÿ)™ýÏC]\ÑÒ)T2…O¥¹¹´(«B—ŽºX;å1S>Òµ¦²n/TCãéç?Ûýû_×±zÏÊŸl`$ "â/g߇«p¾åO/^Ûÿ^Ï% ¾ýtîy ͳ¥Ï%Å™ÂLY(ª}|[ñCP\” „":êè·Š‹“@˜abì MgŸ/þ†ý˜@È_endstream endobj 288 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2511 >> stream xœe• PWÇ{˜aº9D¥‰ÝlbT$"«Ñ$^DQ ‡`¼¸Då>Çáát†ifPP@ðŒš`¢¸k¨Ålbt¤L¢94ûµ>*ÙF“T¶R¯êU½ïU}Çï}ÿïÉ(…%“ÉWù%'F&yÍš›™™6j*ºÊÄ—¬ÄÉr ÂÓè§…Ö`/{EïK¶-ŽX=·ŒÅÀq”\&{?.õíäMږظ ·Ù³fyÏœ)íóÝ6iÜ|<ÝÞ‰ŒŠOV§Çoq‹LÚìöާŸ§Û{ÉjɸÅÍ=9ÉmSt\dBŒ[rŒ[pôZ·ÕË‚V»-ò X=Íó/yýa (jbrʶÍѱ ³¼f{Ï™ûFØ÷if„RTH­£–Q¾”µ‚ò£ÆSŽKM &RN”+µâ(Ê–z‹²§RNJAÅPd'¬–Yuʧ)&)Ö(¬'YW*§*Òyôqúó SÀ 2¿Úؤb»ƒ¨ÓšÅYFÙÁA<4(ãq« '¼ú„Œ!ã§OTf  Žy0„,7¯J±’žž´" ¼)åTÚ ¸pzM'œ:ÝÔ 'àxfKDKB4ãð«Õ "k,èa],yfÇ'X7èÄŽ÷c‚ ÙéÃD± 2 $O-Ky ü¤s–â/Ίkj'±µýÒ¿¿|Õ¹J[“%PX˜›Rư: %€£e‡ô./€jZËÇPÞVkæÙËÚ½UÍ»]¿W3x´±S…,]7mªï¹Nuuž¸‹Ê[¨€9i™jT)Oe£½…r©³:±jâoú¡Ù?uÖHý:• Ö¬LãSg£ìè VI%?WÁÒq_„Þ_ þà“ºÉ3Þ·t¼ ‹wzõ,:þÆçê3Ð _6ø©m`×uø3o¯ Ãrí»¹A‰a°Ìš»Ú>ø.Âeè¯êm@»«»ÍÐýš÷=«a¬b¤È`;-—Õ2LùB.¾>ÑO{éª;yñmCç÷®7ÄJ¯Qòóa 3RKÇêò½¸øÑùº¥õÍh‡Œzºvïú>~`q<ûxè1ÜqbŸ‰!è£JS–&‡ä­„LIK+”Oâ,äúzá¾ *½nb½äµÙ«Ï‚PdoO‹¦%®He:®ùÓÞÎ ÀÜ9þÆ|žýÞ\÷V° &[µZIIéŒH+GÙü œÒŒ¶þa–¡ç÷RÍßËÅP\¤‚›«®¿ÒtóÀ…+¡›ÞϘºÈÑVã¶VK£±õìFÈå,gúk:€é9Ÿé•¯L ç7lÑ¥••¥ë‹¡¨¬¸ m%Ôs'”7;—O#/ù&…G,®¿Ç)µ¡‹éHiLJÏ ŸõÃJ”¡Ã;?sÏsB«¡ƒ¸ÎˆNƒË†’fµãÙá¬ïæ£ê;'vÂ8‰M¨ íæß'Ô†ˆœ¸Xß§Y¦©¤±½¸ÍÇ^¹SS¡ÛU̳6€JuêÂõêRQZ¹±©HØ »Ü  (‡'gh í«4;¹êºÎÞ¯àC0‡Viêb ›¥Iþé‘é›cRCÁ‚>ʾȰ‹— BYµk{½ÙdÊ6oÍ‹+åÙ&ç9ÓQÌÏw¥ÿëy-âË̓wºÍŽÇnã’Ûɷ؉n„ô;KäËcÖnPs&+p\Ç9Ó±’-F.7 ÂL¹ÆºC»ö…0L ®ÒüL%È,ýgÏ£ü§Ñ™÷*WÁX—›èZš« ±¯¤VsnÀ~æzÛýÛu§ÀÏÂíµ°žùMbO0ù‰ìÖ9‹ªÖtSRRzzR’)½µÕdjåÈuÅ_lR âá,\ª–‰SÅ*âs‰™[“‡2öÖ;{€©Ø)Tþ¿wÌ‘ÜCA×µ8&­ýqìœO €)Ù±£Dú ?äþ ñ dQŒ4çÆÇíù’ttLÉÎ{nÿ Ù‹Ü9´Ú‹røú7ÀDè~æÑ-CÛn9VAÕ=ý™Ç½n2ù—\ú&¿,ìïÆ~‰¦u÷((á(Ò†íÊ}РVÃ6éÔNÚé¼ßá tRæÁ¶ÆFhØÇa;¶Ñ¿ÃúSD;)¢·ñY.™uïéQ´C¦Q|»“ª+ŒJ‹í€g«··{;c¹¡Ü`(¯4„Kööæ¡ÂP!®Šöc(ê»M!Rendstream endobj 289 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1071 >> stream xœmSkL[e>¥…XÁË$¡ŠçœdÀ.&øÇæ‚¢lr“1¤+…–K[Xé Ê(t´ô=§÷–Ò m¡…‚`‰ŽŒ8âe&ƨ$þ˜—ŸF£‰!.Ù¾²ƒ™gbLüóæË“ïyž÷}Ÿ¼ó /Sœ•y–†bÁÃÚlòA(Ø{ðý“Höêz µ?Žñy¼¶>ÝY¥J?,ï•©©++O——sõe겞ª­ êÅ’~¥öJ¿œ+º©úІ ê¼RËrªT© .KeâJÙCµH/R­Íçšš©º¦ ­o5—UüOcÿ…0 \ilðì4v«Æ²¹‘0æçY²€ßÖ f¬Á¦Ò (ü=žæ}ŠòQç~¦UºaIX’ºe®_·6p€;HMÏh—ˆ¾ñÉA0âC±±øâFtgïí÷ªÍ3²¢S>ÚÃ08§Œë—GÂÖ¯ÇW¦?Ÿ€NÜ•lÙ¥_h„X÷ÅR°‚§>­\ªl¯ß—ÿt€j€(xÈ—µc†4ºF«Û¼Ì‡¨”Ø”Ù+°”µµ%€³xΗ(à˜c‘‹¹ ÀþªITwÔQÑÃ5ƒuzÌBŒKz¥RÀU:ÿn~ ™Yû©Ø¼Í#ÙSG_YFm6ýŒÈ`ÓÂ( Á Xf®š¹§ZK$HßÒ¨Üê8Ý"§“ à#¨4:šÖß T6ÊÏIí›kŒ“½æaÒ$¶ŒÁ(~ ==uëÞÆAˆX€÷pdŠÒ¼ÃíûüTZ87“œÑ¸…ècù­¦QÀÍ&ˆ-ø¾º~åÂ'ø/¯,žUŸ—jkÀ¼*õÆÚa4P ¯ž1î¶$[¡”š‘ÞaÉx+LãÆ xýp: niŒ+ý.Oô˜T˨IBŽTõ²”Õ8­³HR¯Þš½¹â&–‘ÀHÜeì"Úµ¼µ¶´_ ož\4]R›–1²“}íÚð„øRxÕ»$<±-Ôè»n2ÎØrr}{gÿ£©‹ÍÕµ“*« xãgýßÛEÅÑãœbÍásÛ¼ã[ª,ôNyMªA+( )Hì=€Oé¸l"àv|I’Ý<긑Ì;Vé ˆb!HD4$[b}ƒÎVH ÍZîBÁ¨Í %`…™© ;ÄÞý—¸4ítºœL„ íX`KTÝœÂߎ!?RøñO]˘97ðºgçÑf¦«èöÑ;vµÝÌqðxü‘Lnæ§¢ÙùÙÈ4>Y`g.Òh8m§sÒy÷OyYÚ«Â\žH34mwxœé97-nÏ­ú´“qÑ~¿0Ãþ¡]Ûendstream endobj 290 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2172 >> stream xœ}U{PSW¿—@¼"jë6]²µ÷FíZqë£nÛmëv·V©[©ˆ¢b‹A#@!ä}óåAÉMDo ‚°Rë*Ukë£Z»í¶uÛu¬£«u;Ûz.sév/j;»3;;gæþqÎÜóý¾ßã;8–˜€á8þ𺌠©ªð•´D¾óÙEY²‚Ê©ròd>ûÎÎN`è¹ãúñ¼$H@Jâ±ÙS©Y¨ëADÏDÕ`Sp<§¤Ú@»|+eÕJyA¡J²léÒ_/ZÄŸ“äWK^Z,Y#ÝY¬¨ª(–K¤¥»$kg,–¬WTñ›rÉE©$_V(-Ù-Qì–d˶H6mLÏÚ(Y•¹éÕi‹ÿ'¾ÿÚ”–”JˤJ•\Z²K¾{·JZY!/Ø#Å0lF©ê•]»åEÙÅ˧½8û ËÄ6a ±tl5¶[‹=­Ã¦ãNpîÆfò„`‰Ø ü|,A'x\p8ñ÷‰·“N$}/d¦,œSn¡øŒ,X]7KuãìÏ.Ô_°,š' ˜=#m©sÏIwɀК±˜¿-ÐAEBSàâ㜕Ïçl“•’–±¼}[ ”*mIÅöºÂÔ`÷‡\ÞÎ’9ÒrjˆNŸ²²Ú¦1Qêçws í:«ìbUÔj‰0Léñùûë[c_¥z"žHø8¸bñø‘ÑCçhUoÏ–rBÍ6ÊPV0Y£Š‘ÛCH"gü€ïâ Ž6Wáè>hr[kv…¬Êݺj=jc8õ=!ê#4’t[e 6@ µT8€æz#à·j5rKÙëµd 7#éWB4ú4Sׄ™œÅª4‚^œyD~ìÎi4‡™,|vƒ8û}g}ãOŠÀÖêJh§–äH¡ÞUàÖa×òw0°÷}°,v-ʼn'ºLŽº ®¨ÍkbÂq·+B!JvÐa |aÔ:+¸k¨·ÙA¨w'Œ~Áö§6îw>"Æ÷@ñêͺ§’½‰|*`{y|ö£‘¶*­¤>[“³ •)Ú}D±Ç\nO˜o¸ÞÞh´—8h¹Ñ^I×9¡Z¬óXMVs‘­ŠÜÆå˜šKGÖƒ˜›Æýœ£¸óÎgþùÌØÑ½-TËËÐ †ØóÞðIðœ¬P´õåu1¯©†ÿ8Úu§íÕsúÈða ÎF_2Ú•iÖrʰèºOß¿J0nGwä*[Gs¯Fºñ±[èó[öÃñé¢ÑÜö\ù:í’bÒ¤ºŒ“/ «Œ÷ùP¸r"U3_÷Ìf;@ æpFx×ŪÕe¥*™tDñöéá3!rà\ =èœDgSo÷þ(û2^ölo³'aÄ¡ ß„49BfmuØ5&c5Tª}[OWÇþI¥åGï“,ºŽ_½¿(@GÇEmÚ&UyiÅžÊ&m¬³§½—ŒNTþGrTËóówa4Öwµ7´„ú¨¾Ë}—cL4‹ßÞ¹ËB)'1Ü Š/à!»oîê"°)êœúº=TÙËe¯ð½§‹m:›jˆm Ž}ý£éû'Éc¯Ü…¤»‰T|pŸä1EuÑŠ=åŠrMDÓÞÛÙÝIJ¹³"ãöC„Ë;¸aNÆý¢A—'Ò@ö^8zôm Z}‘ÞÁ/jÑD²ný¶5¼æZÐyiW_ÄÛD{uH]Z¦,’ *OœF PJ/"¡(8™€;oàãùl©¨ ½šÄ·šœ¸"T õznE*ms˜ÁJ˜¬þ »¾ÙGž@Oõ0è  {]N³Ã^å´S\êD›Iæ¨ââ:Ðè›)4Ó“ôW!šåHòGxåj¡¬Â îrªØc÷B¼.¯'€ÄlOjã€Ë=Ä'Â2E[•ÖNE×:kyG¾ ×õL¢M{‘W\‹Ü ÛòÓœ³VÛIÃöò?l¢ÜÚÖr1õ1Êåõ6ñÁûËc-[Ûúû™ÐØñ7ßâ 3Ý& äò÷W6ëÚºzÛ†ú+¶nÈÉËÊ"7d)kµ–¿³óRïÅŒø?1sm«&¹¹çì:°ð‘¬ ë£ýþ}a/9Š²Æ¬ç5%Øè:‡ÖƒxõÐŽ“Ã}ÑÙ>Øô.ø&sôøc Ž2»¨Ø#:Sq(¯°JQ¦ˆ*Û#X£ÏÊÈ íšæÿ7û­ ÌŸ¡©“|ôÝü‡.£÷?Œ'¿+bŒà¨¥©•ÊièA v4ãÆ?âèaðV¯Éà´«­¤â—™/8€º£‰¢Ñ*N8°n?$åæ,¸°â»‹ê8õÕöÛ“¶ NÄF).gT´jío”€Èy½÷óýMߎž§ÞxçxûŒAß®ÐúÈjórß¾¥„%£˜º—}¶û½ëŸvâÃ_ÞDÁËöoìfzfþ·œ˜[ü÷PIE‹¡u_{OgÈÛé"ß8{.Ä›àÚ™tŽÈ6nÖm¡ôÇe§–™—›?ÿ)à0oqÓÐ_|5týòܵ#h|CpqKD¿KçdÜ.ÑzsïÁžïdç©÷>¹Ä—kÓù9‹âÀÕìôs8;Ì>.êVB É Õ ƒm¹Š×ÀÂ?zÀíñûÈ#—NA ˆ+§¹^‹Ê6±ªÕÌ úöG<ä{èó$´Z8i®€Ÿá‡ò]ò–Lºó›søÐE{û§N!·˜Kæ–qÓÓ.®½f¡GÑt”v\³¯6J¡Da 4ã6zÃÐ@p;9±è±U\—¼5/þÑpÊEO +Ôä u+»2 ¢²Vawò¥idrb¶"e*¤Lët»]nƵ·Þr§¤ôÕb.·«ÞvÕ§Lǰqt×endstream endobj 291 0 obj << /Filter /FlateDecode /Length 337 >> stream xœ]’Anƒ0E÷œ‚ÄÆÁ¤šMºÉ¢UÕöØ ‹"dÑÛ÷ÿ¡é¢‹gé1öxÏá|y¾LãVÞÖ9èVãÔ¯z›ïkÖ2é×8¾*û1o¿fk¾vKq8¿tËç÷¢%6è°ûkwÕÃ{Þ>ùýPž{½-]Öµ›¾´h“v¤Ð©ÿªNû‰4<¶&Ù É 4ËNHµ—Ue'¤#Ô{1  µš¨Q çRMmÄ@´§>‰áBvT”ୌ̋> stream xœW tSu¾Î%4^M4Ò(Ü[Exøß<7Y+eß—tOiÓ¦M³´i“fO~Ùs³5mÓ´%Ý7ÊRZ‚@QEä9:ÏmtdtÔ™ñ=ßÿâíÑùÐÏ{žóNÎIιIîýþßïû¾ßïGðÆã1c}zºXž¿F..”d=µpþ¦œ¼òBqiò«GÙ væ8v¿šsÝtÝÔ§À$>LfæôiÓÑW÷ þ©È77™ ¶UêŒ6‡7‰64¯(.Q—Jòòåiÿºpá¢ùóñûâ´LuÚòikÅY‹•e%ibivÚÚé Ò^.Vâ‹’´¹ÅÒ´Ìœ|qanZqnÚ–œi[7¯Ü´9mÕ¦ [36?¾àÿ†ùË«âÂ’|qfŽ\œS(ãÏq¸iÜcÜ£óÏ®y/vÊýö(í÷ C45E;ëzï\z^¸“ÛaVƒMS!Ú¿%³²ÈUgŸêDS›NÐû€¼Yl2ÙLvs’«3*‰£¥qâÄ5T×Åg—ÿÐkò™Ì6›ÁD-›Ë òýG!GGíEzDÐ×§¯¶{.@„<žsä%ŽÏ=ù·bÎ…e_£Ù}¢v#—p6÷Ȥ2‡Ñ¼o“\ %¤’ä¿ò8q¼áS¶¤Íù¬>NŒÜ@obż9MxboS¦d½zneRXkʸéäK•;Kš¾,x~ŒV?Q±p;ˆ,P ªú.¦jÉ&uH%“–çì;^väìÀ…þzªóõ&4ÙáEWS?ùÉ•ô¿ ‚çí¶àywcämoˆi¨«m7‚õ~KM>hHy½¶áP[¼?iÄÿd“0CgŽï\㣱ÕBÄg3^§|¢¤±kJŒyJÝ—( Ó/À5Jã™{1ãÚ…¡¡`€vØ ¸T‹^2÷!© ÀQÌ´3ÁCPGFu %åÕY™}Ê?£{®½7ZKµ±÷ ws›M2yi¹J¤Pª±kvjN ·¡‰‰WèÄÉcG¼Yb6ãÚY’Lî0ÜÑÛýŸ¿=6ÊG}7S„±ª¨¼¤DV¢ŠT47µ7µS̘⟚‡z}ÁË;î4o¤é"}ø¿Cmà $Dþ˜' äàÁ¾ós¸9úÛ ÃõP‰/Ú±]ýupPaTXjhƒlGV¨‘U€‚ÜÓ?Œó“ä-z%É[à¬ë®êHú:Ÿ}k¨ª+“É‹”‘ʦDâP‚s—„8$qî“çÄ=;çlºóPÆáhðS-O\< d¤Þ"–[u– zþØÕs»7mÆÍ4 fÚ}XV±[d–JyYåÃWÿ4òMK² ­>€c”åúˆ›¿e‹… ´ÜávÀ%Jê€;-(»Ý¨ÚÀ½˜j·™+±yL³/àðD½Ôô/‡êÑ\  ZÁb0Yµv+Í=0ÖST—¢<Öc¼‰V'$èÚÛ ÝÖ ¢@²×@VZ N-u\¯»‰ØÖT_«Ûr1Î.hò¯ƒ–g4–l‹Œ¶[l¸Ó‘&—‘ :ýµÎ$z²6iÊÑ?†nE :våüŸølõ/ÒD¹\¾c?ªê`o»É¥ÝuX˸´¾íß‚õMÍÃ#'Ž/8ÀiÙà79í`wÚv[õÙ ½•ÕXì‡Ûå]ûŠ÷–® $9ÙY9šÿb—¤þjfâTâæŒ½c©˜Dò˜™ ×2!/åaQº·¥ÛúA%¬#X¬56­-9d dnODûâTËñà9Ì4Öˆp”ߟ|ÇG[F„meÍRiY™TÚ\ÖÖÖÜÜ–$`—ƒÇmW qœ]¡$Ø·~-Gã¡!ÝŠx®Ú@¿»Väi ôãž[_ÅhÌ2»Ä@íá6ÈæØÍ».Ñβ®3m¾V_+}-ó4â_zDÿèÎÜ#cïZµ`Áˆ&¨­k Õ»œ”› ŸîG :K-1¸ ‡›[™}}ÅÇ™»S~äO¸ÈûEü›k•B=ZïX9RYüòú<õŒÎjc55ö Ñ™ fЊ@ë7Í,¾6:ñôC&Hß&ˆ{^¶~G 5q>Úï^.=œ] ,-.‰ÉºBa7 \N§?·ê…ü ´N‡‹b%‹'øûß¡ ÔÖÊ©ßk0…7¥Â$£ÑjÂcÕ_~H7WƒVÇèƒa—¯ÎK¡/¿Ö¾ˆ+ ¸3¹Îg?úL.“Ñj5Z)õ®¬j²ÞknĹ¢¿@Ñ„${@‡CF}+džÛ“A¾vzjÁɸY\*7›{hÁès{ýZÓÅw©ð¶®ÂA G:ÎFinÕaá¢gŸÕáÝP4øÆÉCˆ×ù =ôΙ† ¿nÆ3¹°oÔÓ<îZG?ÄÃMÈÓ4•¼VýêŒ{dz1ô²ÐwÅ!5}Êm]UmE0àÅ/ÿ@{û‘à yï÷®°3z:tmêxI§¸~p“`!7KÂÍäŒq©·KYà·Ëá~%Rë6žÈzÎÁņÓýý}¯DFÈ5¡voùžìüœ‚=*ìÀ™gߎ:£¸Ÿ"s'šþâY\Ô ­UQ£qUàá³ÒVa®Ðç¨s ¥£Þ¨7+ýrOäŒ%v[²dÙèiiq3-T¸&Pí«$ïýM@á–—>Åæ"£”LGùBYc­‚r(‡ÛÅtáÉ+ ![КôÔI.ØÍ…]ı‹I|óŸ¢µB¦ÛÓ]µ×ÚjõCŠâžýçÖ¿ƒàux]ãgOÐpaÐÖz°¿’tÛÝvNäZÆvy^aC Ú•ˈy ½Ý`¯²j,UújƒNk¬"õkò„Û:ÖµoÎÔg)ò‹vlªÚhRØ” „\FÒ Mˆ‡d¯Â§píËæ¯Éµ*¡jyÞ²õ EMšnC½¥âðbk†OÇFŽ6êˆu0.sj,¯>Ç/vW:* dÖbcIòœµ&£áæ´8Á¾ˆ7# jzê]aH—²Ž>¿lûöü2Ê|NܾïÖö£W«%Õ°+þ×öS1äü¿·§×ß…c:^íNÄ£ Ç€<”ä™A]“Es‚±ÿ¾¶ +b)ÃwA^ñn0ýâÜç’CÀ‡‚ǹë­I‘ÎWïò´Öº¨+èË´ì'øã–J’³Àç‰þ×Pë?Óª¦8•€{OÞ‹¹»]Xù9Þ\Dh2ZPÃ…Çi4îö ¸-Ü !ìQ.–ìÈÎØ*ÃËÌ®¬Þkí¡z.ÐGßà©î#ÿšBzJ9nµÁ`Åñ‰£wSÇoÙ²Ò˜twÜátá±%qÔ:&Mjqtã¾ãÅþð:'Mæñþ£<ô=endstream endobj 293 0 obj << /Filter /FlateDecode /Length 10345 >> stream xœí}Ms$Ç‘å'í·=ඉ1¢:ã;B7RÒ.Å%ŠÝ³²1J‡bl-š½ýÇç¼ï¹GfFde¡ù5f{ÐȆòŠŒŒ/þüEdÖ?ÏÇ9ù¿úïË»³ñüÕÙ?ÏŒXÏë?/ïÎ?}qöì«@Ë®ŒÅœ¿øöL/1çÙœ§vÅ…ówgƒÉ/¾Cá\ÚÂÙí¬±¼¸:ûzøÝŸƒÏ¶”áuó÷•üí’Ëp}qÉÅ!w7/õc69æáòºýôF® Åç<ÜlT¡ßHιݘìpwqiÑèâÖMµÞÛ›×ÍW¯êÕf¸ÿVÿ,Þ ‡7M‘ýãÍýåcWÇݽQˆa¸ØßòJËûõ‹ˆúp›Ù®2ÿntµåÖ»ä ]ûhUxçRkÙ^s©'WÅ\êÉU1—zrUL¥ÚU1î2Z8ÂKMýïÃ+ ‚vºG.í &#aªœw²³OÏÎL60-ßÇ]¶Z!™]ôa.äá­v]KòÀ…¦|ݺ¥PÞ%ãºT=ff]•ÔpUM…¸$âQU~»ª€KnÕ7gÎ'pˆ¥.Èx4}!;b½ä£ûõ­²c0XGª)›ÝjlZ§5˜èñãiƒÙ­ ÅçˆÞÍ]?J–ËÅ ¸A8j kñ£B¾](u°—•d-0Þ!þhzîà æ¨Sóñ–µæ¾5!#|ðn~4;›ÖUã—»y7nu~5õ>àÒ£A\µÉÃ×üQ¡fÂ|Í4÷Êø¶kO€«•£¥ÑNW€ŸÅc?[5_3,<í6º¦tTW×¢7Ëþ4„€¾¸]OHÖuK°ÞÅà.M[Ü«ä§V‘â¸ç}Ÿ2œ Øþô\es4Ìͽ2œ+;—Á„¡ž¹œ+Æ£6¯Ü½àj@!âf•6€j]N–އ _®n„—…üô¸pcül]ü¬/¶Öa—¥£±ì]~o:°Úœ;g"šøÄRr>–|,£gM-À<™~î¼]÷ßÂÓ6ÂG?ÃÎÂÛÌ“â0’¸ÁÓqy ®8îÿj”\t`Ýôß{>Ýó `~éhÁu³æánÇhµj‡Ç÷¾«'Œ¥%ÑÛ½ˆenÒŽb€Ãm³U=ð·ãðÑ»›‹ˆgù86¬ªŠˆgá8.¶]‹p6{º2iÝœ²\B0;Žš«QNp2<ÌM5.vÜf„²~¯K!”Åã6wÊð2·”AÆXàRãR÷í–euÕíÙߥ²br‹ë¬ ž—JWÙ±¥¿j®¬/ÈÊà ¾¿ôز®¾VÖÇ5­m [Ž«—ÊÖY\¾¸®²c˺úZY_•bè.=¶¬«¯•¡`2]eLªûn[ú«æÊú‚” lGén·,GÕke«‚¬ ¨”»NmXÖÕ×Êú‚"`˜ÖÅo7-ëêke}ATfA+l;햣굲UAVæJŸcnYÖÕKe?GÆz2F:ù³lUEƒ—lóCŠÙIt=‘y¶©éfÖÙØÎ8›'²Í~Oe›ëœt;Û\—ÚÌ6yŒ_øà‰l³Ï]¶³ÍuJº™m®jÚÎ6×iâf¶ÙâÙf—ºmçš+~~"Ýì*ÚN6W Ãm¹®g;áì*ÚN7û"?#Ýì+ÚL6W>‘p6³ºn®fìDÆÙµçD¾¹š²ùæªûÛg»Íœsåg'òÎu©í¼s]j;÷\•ÚÎ=»–ogž}‘¹gWf;óìÊœÈ;W£½w®VÒ‰¼³ŸÞyçŠínçý@žÌ;ûûmgž}rºwöe6³Îõ½63Ϲ>‘yvw;‘w.:щœsPnf«öœÈ:W]ÛÎ:שév湺á©Ì³¿ávî¹.Ôåžw5Óly߆¥¿h"úÛ9ꪃÛ9jŸënæ¨ëz6sÔ&™;‘Ÿö©çvvÚЉütåJ[êjÖ¶³Ôu=ÛYêªMÛ™êºÐÏÉTWÍúW®ú¯\õ_¹êÿ—¹ê´ûî ¬(e$È"ê¿b’XÆJO±Jå¼D zR!ÝT…¥zC ÙYî¤Â œ”ð‰ÂQI£~ô;êæcr üÕ"Ô Î€ +ðbö=¤"´ £–;gGZ%£ä)§ÝXËà/ZÐl¯e@,qKFÛ›ÑN-“RiIrhoÕ'©O2\-ÖÐ’v>«%ï,:ÅÜ­¶™ƒÅ«¥êjá “è\bŽ£ïÆšÝ¨õ íÆ"W’2Å*@fR¦ Ö*Y-ÑwÖãê¶5,`È;cÔøW4ÞÔ&@ªa wÑ2EÞø¬‡d`‰â¨\ɉeìˆxQÄ´É–0ÃÉ1!ï‚–á¾8ÍÊZÆá5­pjŒ`&ff±4e€ e´Þ@,A7Ù-WŽÁX5è>¼ÉVwØ-'ŸÌ£0I ²ÝÉA'¥Kû ”eµø·¸ÞR¸¤`1£â¡mm¯!u6´Dö^,=±öµZg¬*F‹•ÅK=K N&š´Lõ«PDKõ ‚Zd¹ÂÂÓb!ÖÐâÜÔæPïîÄ%Å’…Z/ü™ÌGô´H"@KÖuBÖ[Âd!¾RÄrµ Æ…W=’–Á`ŽbIzôÈrì -p¹(ʱ#FRYÛl1ªl`L$*bð±,|0åÉ"MNž'–(ù˜Åä‡Z&éÍc-Ã1ÛÒöb"$=·XÕàµqÅ(žX‰g[ŠŸš ŽÅõ‡TJ!–z°.P EȳP{­„“³éÆ,ð.mEshBÔ"èIKЉ銢ŸupG&@ÈMI,˜®,,ª­ut,ÖA&«eàdè<'èg=!žW!…ôƒ% ŽÍG``I‚ZTT¬–±:I üµ½wåd;tVÐO,\4 ˆ %X+š×9ø¬¶ÙØ?0m¼hü0𣠉Ã7Š$IŽá(]i¬+r c®e’0$G-±–É¢.?,T#ÚxkZÈ…]޵É>ɰã(|j ´‡¬e0Ò-EA±8¹Å8msžr‚ Uô X&^ÊÄÚfZˆ~œ§†ÂO®bI |diIS{É¿0ÄÞÖF°ÈäÃâüh`—<â‚B Õe®jVI Y40° HBe(H‘¤à0hïÇ ~^Ä‹°Hh¡²éÑÚ`ø &(2/TðCPÿñÁWð‹Œr¬™çiµ †“1›«E[ÌcVDg®?xެ6smrd”c=L·¤ÍÑ+Øøä+D,¶‘AÛuLµ˜_*øÑBOô8­‡ÛbÉI"¯‡’ºÁŠLb K"ÖS!YuµLt À7ž4ŠKþ"‡1×'¦ ˜=.CžäL#£– *RT죅ðÂ…©-N\(b‰ûR…ô€Ð MNˆ›\ÁY…¿ddì .V@IèqK™š Ïã*¾2DKj—y+þ2º©E*ûƒET AÙ Y”š*ûFµÄQ?ÑW¹àÿ2˜¥¥²?X$¨Ä*û³dœ„*û³dÒëTÙŸÍQ–+û³dv¤ !»©½³¥²?X‚8x(ãÔ`¬ ò…P*û Wm(•ýÙ ôe<‰ã8µ™‡ÄÅRÙŸXÈŒAk+æ,é;c­G¾ƒ¥²?X²Œ½)çÉBÉ Œ¡ Y¤o-Š…ë‡QPÈ+é3ô¦ÚfL'ñƒÇ9‹™,‰W¹Jÿ`IâE@¦ €eÔ¨·®m.h%bú  ³w‚L ý+d³b©ôO”N~žè_Á¬“D¢ÉµÅ­àZB¡ Eš+ù+À§Ä¥‰ü• ^K%‹a"Ü"ÒÆ\Éi1#`Ìù+QB,ù+¸åÈ[—‰ü(™Ý2‘¿ÂàÃzÊDþ¨ÀrÕ¦q"…yˆ£e"¤×”ÓXÉŸI’0ÉTòçF„€Ì2¦’?XäÀ ,•üÁ’dmQ@wZfƒ£“l%ŽI”ä*ùs#GÖÒRÉŸ¨¸$¾ÉUòK–” ùJþœPX¶ÐWòç$ÉK%Ž)Id •ü9¦ Ž£*ùs<õLTâóÞLNNŠ•ý9¦D‡+ûs’ÐPÉŸcZLèO©’?X²¸UJ~j2е$¥øœ…‹p@Å‘T:±TúçH*ÙÞ\ÙŸˆ'„J5£ƒ^*ûƒÅéTeŽ<“1"[t“…e¦*¸KœôZÀ*L'JY?—D6aj­Ó¬,›Jÿy7‹ØÊþÄÀø’meÎÆX-yj.‘8ÆÝÖ2EÖ~vaj/™8¯r•ýÁb„g_ÙŸƒŸ Jd_ÙŸã&£8óvA?çj¼Ë¡Ò?G~KÿΡÒ?GæËI Žèµ ˜B‘#™•þ‰ôMlɱÒ?G’G²ÇMA?çIíx¯TéŸXØäTÙî”õV©²?çcЙȕý9R‚hΕý9éz©ìϑҩ¯~Ž,€2D.•ý¹€ÁàU„N§†$²P+‘|…¥@X4š˜;b"o1Jaн9°Ój* *V è¸Æ7⯢IrX”ŠK´¸JOgql¸Í®`šhHS{« DVüÏú „¯üÏ1:rüÏ1:’–Pù¦×Ñ›)h(üE‚]¦¥Ò?Ç€% Ž•þ9,N8%…îRÈÔÚâèt›´¤Jÿ¥hW%Uúç"å%*ûsB䨇\éŸK£zQÉ•þ9ò62ß’+ýs‰§`(•ý9‚UK¥°Dq‡R*ýs ñ.“÷ ~´ ‰jJªe$ÀRéŸ#Òð"SÙŸË\Z™–Êþ`_ÐPÉòˆV™Ÿ£–X§­ÌÏÌðc¥}Ïëa€Î¬øé®eUü„¾uŠÛs«øY¾Å˜F¢=)~¶¨$¸(~@ Ó+~Xk¾Wü°Ü‰Mâ×Ë}VŽ,jÃéÔ>DÙî[Ô>F–^틪&4j_vkµ/«ëµjŸF¼VíÓøßª}~çz±O ûFͱvZc½ï´>›VZŸ¯úÕ¢õa‘Ê­O•ßVë šÛÎZ,¥Z*Ù3ô0鿤õ‰…˜3k}b‘>T­ÑÖ‰ëÍbŸX¤9‹Ú‡C§ö)+iÔ>íp«öqë%´j_ÝÄFì šr.b_8û¢ŠC‹ØG^$RÚ,öI7¥±OV™íÄ>&é´>\N’Øh}£ @«õQpÖge†Z­n;­Ï9«­$>tZŸÓÄ¡Ñú(û¤NëÃw)uZþRoÖúªÐÞh}¡*{‹ÖädØ"õ™¨Þ°H}Ü, nÖú8Ó\Ç‹Ö7 Ö§Zm«õ)×hµ¾$ÜÈ}£îü7rŸ·oä>£«¿‘û˜”6ZŸ••Ùh}$ÒÔG¶cZ©‹ÏwR„÷¥>«ºÙ¬õYÅ¡Vë…^ëÚ{­oÔ|xÑú@‹eA,ZŸcÖJ}r² ¶RŸóª<ÎJŸ(|¶Uú(Ö‘£-JŸ£®ç[¥Ï•±–™¤>WöEêÍuRŸÕ›/JŸT¼Yé£Ô }ìBi…>þÚVçóò‚QcÑù|M„Ïc)Š8ë|>ëô/:ŸÇb ©Õù<®gž±è|×ó9ÎYçóÀ”1wRH¼wÔ7IŠ‹Ô'Ïu·Rpœäª‘úH¾C+õyÕÉ©ÏëÞÜ"õUѤ‘ú8­®“újRÖH}ðò[©/D EÔGK€©§”°H}Ô"E œ¥>ÊŠÖ¶R_ 4ç[©Oˆf§ôöVé³2±­Òçõh[£ô‘ƒöJÃ^/õiÖÙJ}\ýÒ¨â΢ô!çÝyßJ}”}/õU5pQú¼jÒG‚˜;¥È ‚ܬô‘yqÙ.J‰–딾lz¥[©ÐÇ3ºÆµB_F´%rú˜&…VçË¡ÓùèL¶ÕùŠ®’Eç+ºÁWe>€Z•¯ ÍRç¬òQ¢À³¨|̤­³ÊWØÛª|Ì%DÛœU>üäZ• ŸœuQùh‘2³ÊGί–Iå#YOÈdö2³È‡ØdÚf‘Ï‘wG߈|"Öt"Ÿ#±¹nùSª5‰|"»ˆì7‰|nDs¸¨g‘Ï„9 ³ÈçÈ&DºšD>±0 ›E>dæµ=“ÈçóEh›D>„+¥ã³ÈçLԣݳȇ&ÙÓ¬ñ9¡XaÑøÇFãS‘Å7Ÿc¤NÄçÈ•D:¬*ŸC°S]mRù` ý&•ÏñtƒŒÌ¤ò9nÔż¨|0èÆç¬ò!¼ZU6'•Ï‘àÈ­'•O,96*,Y§wRùŽkD>¼Ša“È'‹ϭÈG ÿ"òÉ+%B+òÉ6ahE>Ë,<´"IŠEä³YXÊ¢ñÁU¥ç‹Æ_•lfÑøÈz˜Á-YÈa³Æçĉ´Äµ Öˆv|Vø„ÃØVáC¯dcQøÈa¤S³ÂGöa:‰ÏÝ×Z$>a!©•øVƒ´xÒø\’›6R]‰Î‹ÆçØqߊ|Œ÷¹Ñøü(ºÚ"ñùQãÏ,ñyàyÁ"ñy+§A«Âç½zé¢ðy8Hé>u?}Qø,Ô2)|™Vá#¦3ÍZ¾à´ƒ‹ÂGV jÙ¬ðÉVdl>"°È\³Â’Ö²(|¡fÀ‹ÂÇP;… ­Â1$ci>¾á"´_õìÖ"ð!KTQrøˆŠd‹À­«êÝ$ðEê©Uø¸‘H X>ÙHt­ÂÈP­uVø¨ \…/R_(­ÂG¯¥pVø’-ª»M _¢D•Z…–Z…/‘ÔùVáKIÓ…YáKY3¿Eáãœh~“ÂÇe%*Û¬ð‘øÔ(|Ù©`»(|KG´YáËN· ‰§´D³š%¾Œ¥3¦VâËYnºH|ÏÎãNëyl¿Bc«`¾9ß•j^RK5/Y¿î£)Õ¼dýº¦Tóu[—RÝ @~äûx<\0Š2öä«a²_lóKab>~+ ÂÞñÕ€S5Ö½x¸SVºâƒ¾è7oï.ä¹$Ÿ†··ûÇ›ï/<#Æ|¸>-_>«÷ÁÌïüùª}àA8òN^H…Ús]í»ú,Üæ«UL¢ŽìÏO—îpA{“f:¾ß=7]ù”…?yÅ}«R mM†™E–I||ÿæZ^ƃŽ@šKžŸÀaNȧü«Ôì8~sñ?tŸ}e1:¯:ªé²¥I$›õ,3c€¡Ei½£¯[)Ri½XŠÑÑ’àV¼lF% m-($:*ÊaÔY5êP‰½£Šh©@‡JìuzÑœc%ö»#A0É)c-“…ÃR‰½ãYDºÓ˜*±‡Eè{¢l\Û‹ ìy¯T‰=·P˜DÙX,Ï+±÷"–³ž\™½§¸ÓR™½åÈ}¢rµæKèu¿Q«!óK%ö°ÈnA¢rœkÉ»’1•Ø{ªº$ǵ V;˜,•Ø{ÒøÄzl%öž×K=¶{Ïë¥[‰=,¢%jÇÉL–È2®{žwæÇÊê=/μµ¯´Þó4¢Të•Ö{J£*¯‡%i{ƒÚËËi¨¼Þˆ0/ Êë='r™Xy½§€Ì…CÙ8‰!ÉsG‰2-’Ö’”×{ ½@ÅD+Z¤Øj©¼Þ‹bÈ;åÊë½l±Š¥òzOi•›/¬/LHÝìƒ8F‰ºuEwâ>_n÷®ŠQB¶ì]•ÊJ–½«âõÜõ²wUêÁÃeïªYñÍÞSÚ1·{W|N@èļyÅ )‰ÎÓæ•ç™[Ù’›6¯<÷Š©Ù¼òr ·Ý½‚/d9’0ï^azÝòšv¯<}2˜f÷ÊsûdôÍ/›v¯d™øØl_yžkM©Ù¾’uší+1D·ì`yÙÈÍ–çn~ Í&–§¾Î7YUð«LžÀÏ[ÕNðóÌ+sYÀï¹€m$Ø2aÂÕ+D+:Έ:ŠŽØ"êÅfD%õk–’D%óï•;z= š¢Ã¶ªuŠí  RNÍ Zõ•Pœ>iÕ¹ù„§b‘œðTV'IÍŒ§Žë]†aÂS'ÇÑ8…!q¹.pŠ,ß-x ‹çbZðT–½€Ñ„§XäQÇŒ§Ž'h<eß­ÅÓ±(Îx # xÁSž—áâ\ð”cÉ%½à)!ùOyPÜôx*»@-¢ò¨±íÕÖŽ.ˆ*çóZD £Ð–Qƒœ„h!•²B©Š“-¤&9ÖBª×‘X U¥ïRƒs©)õ:j™RǨƒ¾@*×qj Õó¬‹:\µX$)j 2¶¦E Ò=ø° -“×!­‘œ»Z¦L¶Z[“•h­ž~n€ÖÊ2c²ÊrªÚʼn̹ år@€Ï!Ë RŸß\NÈÓ±=!PtÛ£9!@þ#è2c¬|×Bì8:¥H3Ä (ÆbGfþ-ÄFBi –Á—b¹ƒ.„m†Xz²W˜!–åØðK¸BP§Ÿ!–ÔA ´¢¡§ H½zú€P:AC,Ï‘keCÏ5gR‡²bK ‡JhàPžw ®C!£màÐs‡Ï•ŸŸ}ÍGðCÄì—¨ ³m‡ë &ܲ®x;~Ë÷M]÷Ý[|»wïµÆë+†å¼ÿÞ¿ Xûáú«ÛßÉÛ„ùÚäu?¾Ÿ{8ÕƒüS_> ,\W’Ø7|sqi©{fß¿ù¡ö1‡Ú\JiaݩÃÌ£Öé®ï—nÿ÷¦¯O½–ùQ:LÞ/ïPžú†›×uèl<1tcÁf¢Í'’<¼ã‹ûzª=z§cèãp__öœZ*Fëû—Sï;,)>”7ºáÅúž$ÿ! ßtsñRîäSþQßø<ÆÕ §Fަàû.ºl}´C¿¸up|A©¶Þ«Ú!ŒÚãýô>êtgƒñ`ø½ºA{n»Up]G9a`~-•^ò ÒÏóKõLÛ½/žûÂÃmÿbøî“®6—š{Ž÷v¶|²õ)d~÷ý»èÕŽEüE?me||–^^uod¯ufNÁlß\5`‘\§Ûz*Ĺ3PÖ `ÿÍÍmµ9ßFjÿúª~(ßpËó”«Ñ‘cß¼é.¯S[’¼½þõöÜòÙɈŒª6h'ÇR0£v…,Ó­ð mïM‡F»e¨Ú`ܾüþ¡¿VyÖ —uÝnŽçºnrÖ†nÖ®pàvÿêãŠQeøc÷Ý»É^†ÿ˜¯¾ø‡ ¼—ü}ÛÐOÿ¸@èx¹—Óe ÁÔ­MäÁG|¸i´ª8=|6 Tò˜Û[NŸœˆ1ÃØBòW¬ù/%'†ýÛf‰ÞÖ˜Õ/ê…˜G¢”±D©Kîa ~õŽñŒïÄï tô|è&o{ó8SŠ÷Sj –~äÕ/$tÁ««úòñFœóеåÛSM~Ù†£Ç› A)8ãý[MJ¢FÀ\†Éõ+qݵëZŽøß‘G03®ÂÜÍíí¾måËva¶%…iL³ßÛUK%÷» ¾£Œhýß6C w~‘úN~øéÍýÝõãCõa\A‰Øç÷o^ïo—ÇØòìÂ,é“ÔЖßî@–ÒáK˜oÖ"Á×2=@ðÍa~Ž}â_/&Ën?ùˆ»cËær aîOüÜHÞ"úŽ)²Ù2®;W÷7¿FQðì››»ïvt€ÀŸæ·ëÿøß5áY-Ï4¦¹ÑN~OÀñ6¾éùóû¿ý¨I Î#—c>ù¸þ 6ýéþª‹7'~û¤xô²ÀwS8`ºVU¬ø¼õ§™ ]†ï7s\¿oCÁû—]`xƒ4)pʬ¨CwÍ+é\¦®Ÿ†ßÜŠ×!uˆ3ÄsDœ›×¯¶ã _”LW0î+öË +Ü.‹?ÿ±g`ÇGp+e ßTÅ‘BUkã2ÉÐ X ÿþÕ~µ(º |šç9Á¥d‰üýññÍá×Ïž½{÷n·ýêíá»ÝËû»Ÿ±-O8ùÔÝD×!Ï%ñ]‡¶BÊÿî"J^nZ‚óŠ‘Wò™á ’gžýÅH_u+¹C¸¥T„ø/ë•ç“kç–_þA šHïÕu·Þ^3à˜ Ë¹¥Éß^Ï …Ôø­š8ü–ð,ñ^°û0]]£Š|Ö.Û·wû×z©,ÕÊ”bKÓoî*ZN)×&ÍåŽUé©P–¤ãË“”e#èÕ(1±9J^ƒCКeK…õÚÍ‚¤ñ‘P`Ñ?j¤ÊFp¢¦•_6ÓÙ§@‡Ã&71•>}Ñ­ž÷é×7½Ö“ƒ<×?‹óÊAŠr&üñ_MÃÙ¹RF¸‹cÎáÍýíûß¼ýf+Âxjè3R›‚æÛŸ¼>Šp¾›0PWg§÷Õfô2È\F³àãSÀ“UBèeÚs.cMxôú_lzõ°¯‰œ©Bâ0ñ¦S¶ lóSQ·‚¸Mp!eÈ’½lSÃ'hÌì)¸ô"OI=Åáb†?½B.þº®KErÒ“–ç¨C3“`†%àà„,sýü^À?bz¾}|'¤Ø¤¿û½£‚²å]|”?DG–³ÉF¸…ˆÅ¹°ç:€0TBüç£##R^'GÎ\ËEø˜JxöÝ=¬q°1©‡ß‡÷mÁ0§4 &—ÆoÈÞ¯Wt«±îláßO.xr ÈZ¼žµæ«JB¸Ncêàpxþ:ux<áÊòÜ¿I?\ÕØôdÒ“SC#:QÃDc?2X;¿•@&¢=çó©ÞéæäÏÖøgÆÓa™ßÀa?ùÓ'Ï“w?ÇMytŒÍí&NÁâOòQ>1B!|壓ùØGùÌIñE”NþM9&r}…S«rêÉI<™YHvqJ<~â7Y-jÕßd•ŠMè“ÝýíûÃÍ¡6S•üKyì×®ü²½ÝÍ•J ÀçT7„ùƒ¥úë³Ú×]prg¢mÊýÝɯöÓ°ô;l‡µ–;uq½Í7{ýVî´%ZžL¡F÷S¨N];„ç+[íbo¾¿õåõ¦‹òÌéì¡• ˜SP%¡yn㜠ñÉ×t‚™qÎø¢hT•U¦n¬Y6u1y„¤vƒî]¶šì°9ÛÉŽ¼Y >©½¦©‚ïÒÒ^QœâQ&duæ£~Ê‘ÈlÎMáÙÕ^yÍÑ¥gÊ8p³Xzò:|‡4è{‘»1ægdBFÇ åA:WØJ|'½·? ·d¿ó(²"’Æá/² „eüЊgÿP¡%•¢ˆi¿ÿxª- _ýçáp»u+†è¿HA+õÖÑ^ÁEFÐÈ]¤6Ì¡ ^¬ˆWd›gµ§ÃEí| E@çöR×f1)vçöý>þ|ϵhXÈ4È1}~e;©ÛØ™’:Àp“õ)ÙCŸNYhƒ§·UÚM²ÃZô”ƒ*ʼnªRϵÈ/póÍÇÅÊ/p©ê. Cš¸^ZeJ+A­ÿXQžùd:—Âmš7'¢Õmÿ;ç“d4ŠÐ*§5XCéÅñÃ{EXÊœ_‚î†q/r/{Dõ€ŒíBÎý¡ûõôG9DëŽÞÝ}:}˜Z’ëy›$aq?õÑ÷g¨ºÅ7]àˆ‘=ñœÜBð Tô<Èó73²¿¬ó†-ã»büjCÍDd’‡Ãã5óC潂ó‘Ì’º{)€ó• %õøý§Wûǽbù×Ô?e‹ÛÀ¢pÈ×’Œ~"€êåsðn}‰> stream xœµW TSgž¿!äzUDå6%·Ìv°u»:­u}U+Z[•*Ä¥¼ÃËðŠ " ùçI @x@aÀGAF­ ÖvZ§Ó:v¬tÚ3Çéô´Ó~—¹ìv¿(:º»íÙÝsöœœœœï~¹ßÿûÿßïãþ~Ç Þµ{_NVbv”41;Åòeû$iri¢Ì÷è96„ÇþÌý'~9—ôwù”X|ðýÙ¿ tj!*™|ï@ÖÑ­9¹E²Œ´ôüЕ˗¯Z¶ ¯ M* ÝújbòáœÂ#‡3B³SB_ Ûº'§f„.ÉÉM’¤'JSCsRC£%CÅQÛöE…îØ)~=jiØ_Üã£A<•“»Mv$?"1iWQòîIjZzF”4ëû–D$ñ:±—xŽˆ"¢ 1±”ØBl%–1Ä+D±ØNì "ˆÄ«Ä‹Änbñ11$BpoÂ@|óù=ï×ÍOä_õ· Ö.’KÈñY;f!Ê>{Þì®9ÌMœ{-Àpmž-ps 6°uþà÷¼‰/+ð*ÝAhþuü ¦]lç“ïùÓ‰¢Žß¶ze=Œ¢1»i/lqBÊnÇßDôuîY¥FúT©Êc˜xÎU§„`4RDš_gñF€lCÌ ´K@w|ëøäâxÈU0ŠË÷¥pÇD÷gk¤"<[Èê”v¹›ÇšQ¦Ð…žX÷7¸…ÀÍâxÜB9'¼ó<š h 9q!šZgªÓÊÅÙñYq1Ù‡ ’]o)¬¹bí©ê«õž<ó¶ë4 BŸÜ™àL(Û«–P÷wËí÷¢Ü,ã=æ º}=òúk·Ðà­`z;ФxizÃWœ?l„Cñùrû„ˆ~†{N) k¤ïƒU]ÏкÓ骇[õ7!ÁÌV«†:ª½d¬6íÿ4Œ«RkŸ,äæ­YÉÞTØ_惩©í†à̪·8¯Àè²÷¶­ñ±³&Áãô EžBO0ý1õ² eäA.,} ·(Ž!cA_eíDM¢ÏÉ»`=|ì_)ú{¥‡DŒ<¶ú¨ô@­ O#•¥ËTuW%$Ñ2pD«¸ŸS²ÉÓ—ITÐB~ T§½8í©Ó´ÊM@ñ³’?ð´Þ‡4éº “·ƒéPv3»PhéÌëHÀ¬ˆ'8‘ŸˆŽà=F ]WÛ‚»5ËtÎBŸŽ±x$ýB8€ÝÚÓŠÂD _MþªÀF½N/Whò´9Ž78 ­ÖÚ‰;ÃÓçJ·ÑÉ.ròЛç>9Çg¢'„Õd'Êjs;%¶$›Øþj]Í%ëÉ®þÛ€ü l…VJ•Ûê §é鯝M†*%F *¡D¡Õ*Ë5ºÌö$(.b"Ê¢Ôéµ9Íòö¼6õõcníÇG[+&&oj äŽiÿ¨¯Ó›Ë ô*]‘œ‰tÅz•,`04;¸n—³7qHï4 Æ®ÕþÖW³ê¡ô  …¨Â‹v¡—¯Û=#ž£ËpôZ ¬ÃÑÃåÑŠðTI*0Ðð'cãYä¡gIÜ#îYÿÏ)Y÷Fè­N.ú#ù&×QÀÍÿ“¢˜÷áôûöq*pªsæ/êö¡¥“úI”†¿‚iÕTÖ±à¹é^›):óÛbí1Û?¦¿>M`$°2LX‰Â•Џ²•þ&Sô«¦[î†ñ¦Çô!œæÜ€n¬ уåQ½ñ\ýM¦|6à.ö¢†ÏϹƒè\V3)¬¾ˆw_U¶7O¡ËóÁÒ…bEUÖ¾ìÞ̾؆7`lŠUîÔd5·B;¸š,­ÆZèzÓÐurØÞ ça8¥d%¥N= Û¦Û‘ŬÏÈ8 Š§håúc_Ê®†LÀ…Ómg)zs²®)ñlˆ ®?~“âV iå %3âBb ý¤ííê_]¼…Ö[gLDé¾2€~íF©<”x í¹Å`ë¿âHlcß*º€Þa÷x(†%Ó_ <ä™wjó»}ø˜=„êTEdZ\®4!S qp¸¥¨›„ÉäèFI"³ u ç/^´µÀtæ5Jš’TûTIx¾°]é塲IÔæáO î9DÎ?§s ¹W€Z7c“ì ‘¥ÛtüÏ@ua4SuË! ˜\échb(¿‹ßoþe‚Kt;>7ï ªüTói0ÝÏþ–],´xó+³ôùÀ¬Æoñê늵2¦²L_©RpÏpzQrWÖèÍ`f,­½àLÎO— )†,#vÏsxÈ–ÎLNóÒ_—F'o :BùpÔÑi®u,­Å ùPGJ5YöUOÚÛø y{¬{ û²¨÷ê°¡|J;ŸçSZ×½ž ÷n¡ð[É_Ó,»ÍkÊ@å ÓêÔqaŠTØ~ÙŠV·£5“ ÞÑw`¿’¤SfU–jòê Û¡š-'(zè]ûö¾M!¾“È# ¸ÜX‚(@OÁ 0ÖàµùÕ>oœâa V¶³Î›ÇoòÿÎTxXu¢ûJ¢Zî©z#™ /+â&¦/‹¸ì˜Æ­Ã»fðƒGŒxí´N¤É­ˆ]|cB–Ób°µ´1“lÀ@¢§ÿÍÏTj*¯Æf›ÕŽþ65Od ŸŸ~ÿ2½ }ÀôÁ5èÑ=ä¯Ò{Ñ‹~…ì•øZ¶ýÖ»øLQ²-¸ôm ªª>Ï|Í~+ ”r8“æ÷HZŸØ9Ø7—pÂ޾¹‘0ÃÝ':•;Eôf„B]‘¾²´˜¢OoHbä !˜Ö­Å§ û«Æªú­½µ—{†Ú¼¿ì…“pº¤9ÎV •º¢@™åB[p™àÏ XaÔøPTë*ö/^epÒO핟³O`kC¤L`r5~%¹ëC‹Ž·'‡|î©É_`GF0Žø&'!W†muéO7| .D•â[vÅLB/~jsuOì™hšPLìü ù}LGlòÔ|¡µWÚµ¶Á²ýE‹Þâf‰^"é†ìc’ÖbDë‰ÿrØ…Ïxp81Šny³Izù'¢êï\<7Œ êḪT[Xª•ióë Û MæŸ1rIÍhߥ¡æ†fÍŠæ ú‘q7ŽÄ¸7rG`$˜ö÷cϳK„¦Fug –Mœ:&‰¢g]©I&yH¬ß^º‰¢ŸQªâ$®‚’’#™êt´JÒ^¸«89AŒMqËVÅçÑ(0Íä?\÷{ëIÍpl;Eç‹Úߨ {Bd8j© RóQ¯¥Ó`6775uçôëœð%|r½î#koy¯¼y »×âÀ§¹IO)´*e¥BWlW4@ ¸ªLÍ·Ÿ#„Ú\õáBY™"7'(šG¼ 57S´^gi³v:=5µíí§á3(þm>unz®°\¼áÐRx"‡«/`»Þ\uf¨wЄ-þ5‰Ï{8¶šz˜g™b?ˆ´×*Ò®q¤<Ò“—Ð×úî£t_=Ýø±Öñ-δÀüX¨ý'¼|ŸSÒÄû.èf”öû`Úƒ³t–ª>æ ËпážÁkþlêŠ&ŽsÿcM¾é$tWvë:è ûµÐÜVÔš ËÑÊ4¹Î¼Ð žv³gfçr/ÚæE/{¯xÑúvÞçã|¶ í6þuÿ64qó½¢Èú¬ÑšKµï_ù=   áÖVÆQj½Ú~?"u£7F_FRA¥¾\¿O$ëÈè_ –¬*Ztlmÿ–sk´ç׊[U*wjCž%S©|e÷Ö5 /[âÏS1£Uã–CMvÝûa)ƒ‹ K8ßmö3c"OÆ¥´IÀ‰þî_ÈzÐ*l¢>ÐLÓ½ÈöäÃ^Ãþ»ß7~ _³ùáâÿt“iœ¹ÎLþ4öG$†Ï¶Úãþ¯W›“?uµùß1fæ„xB™woÞ ¦/ü¿ÞˆèµÉÒBsKqs.HA.Óʵ²Æü6ð‚ÛƒÕˆ¶?ù£ÏîcÆm.@âïxh§›â Bûxq?¾ã@~®6O›W›Ûƒ­ÞZW£xI²ç@¬J­×ƒ¶ReÑZ ¾øØ‰fù^³[L ÈKAÈÁÙ†.£HaÍ%ç é e{r7»µeÛ­nÒ;grîÓsü££ãfCÀ\—Á`4†j£éJ@€§¾Õdµ™L&‹Õ0 þ:Å7endstream endobj 295 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1697 >> stream xœ” PSWÇ_¼< *Ékį¾¼µÊÇ(âL»k­¸XQùP¤l@ù˜@ø’Ï Pœ4‹€N H@ˆYP³‚ei»2[[éPQwÇ®³muµU±÷áµí>FÙv¿fgöÝ7oæÝó¿çÜ{Îï\áè@Éö°HÍ¥ú¾‘û“sÒ•Ú¹In¹€[áÀ=/lœ½;{Ø ÄB;¯UJQ‰Å/Bán„P ج٤ÉÈצ&§d³þþk}}ùï/Ù„|6È U&¦iò²ÒRY¥zêæÇ†kòøÉTÖK£fö§(Ó“XM½?–‰ÚÅn‰Üåí÷¯Ûšÿ'b‘Z“œš~ÀMÀÚ×¼¼ßPÄ"‚!B‰0"œR‚&ž#™p!Ö7þ „#QAüMpÃáu‡*áfá¨ã"Ç:§—9]%_!cÉ|d[øƒCøVla+蔢ϧ€îô 7¾Ø&Ú¦ƒsr”#úóþ‘•^{7eé˜ê;$}¯.uR‰>ª+“ãfÑ^lcT¢3Ƴ`….€3zj~éV=8smðƒL¿ÞÎàüÿ¨åw@o$us?뜸…ÎÝrz”*C’UˆÀKð’U˜À,ùÖ=‡dî" P/EU´F™‘¸7?b@Ù‘sJÛ¯„!8 ïwŸé85`þ\„3ZKŠUiˆÄgQ°² …L L¨»¢ëH—ôĸv+·sÖ¥SÐ Yx|‹Ñ|[:¡ºÿ—umÑ€¥ ð-Ö$UyÁnØjô8ÿªýWŸ†ópÓ4t¯÷ŠñLP 2ˆ€5º¨Ü•ÁÅ*H…àæÜ™Ò1øŠù2|üÎhëý«GÃI¸\`öoˆ†°åYp>q=¶Ky¤›rQ‹m)"}C¯œ»(²V2˜„Ä]Y>@©DV>Û¿·ROŽŠ’ô:&EEöoÂ9~|ýó'èë™»6éðLØíø´ø¶;må2ÑY:©Ï+Û£;øVY …ƒI´-l6 Øš›–~86> ¥«çgXÂÐX¼Þ? ®¯¼©µÛtZN«.îÓ5ùÇãƒ<¼ç׿òBP vÁ äXŠ;ѵºR¨Ò.ãää³lž˜DBtúÁ.$„é§÷7<Œ{h¸ßúÐv#¸(ƒ?mZÝ6Ý9þ\£hŸÒkkÆ^`×í L:^ØÑmnëêMkÊ10£Ÿñ $î˜*[µY­,.”HÏ® ¯,ƒßTJñóH–ŠÂ½¨¹¢åìMÔP5•µ‡ ÷Ä.cð2Ìjp`1àì¯pZñ"U× ÿìéyÇ"£ n"2 ¹Ä}á¿WéË+*¡ªA'G,^Úƒ·öü[ìŠWÄ*JJª«¡‚ª0–mºP_Ç eˆíD!€ÄÔÓ–ÇFûcÖ.@nv!jÇF™Ýã1û{~_$úwÁ^ð¸{*¾ùžõPˆæ¶r›LHs´®•´¹L¹2.ŽÑ±3ˆ]; sOMáíº1±¸Óh²Ôß®©9"^@îˆendstream endobj 296 0 obj << /Filter /FlateDecode /Length 179 >> stream xœ]=à …wNÁ ȯš!bI— ­ª¶ `G DÈÐÛHҡóôlÖ3Æëht ìá­|A ¨ò°ÚÍK ÌÚ²¢JËp¸\å"aÃM¸÷Ç €»¿‹سnÚÜ*wHZ«¼03¾(xÈ õ7ªw`Âc³lxv8ñh[ž…D¼¯*ž§—|íäÒáñLDåæ=˜ÿÈ9S> stream xœuTmPSW¾' ¹×ŠÚvÌ,ÚÛ$~ôö2¬nÑÚvÚÚ±Ô Õ…¢]k@†oHî›/C— 64ZDQ+ÓÚA;š­.ºm§vÇq§vÚÙº±îZÏÅ´*N?îwÎó>ï¼÷yž9÷"F&aBó“SR´–ü5V‹ÎXª7ÿ˜°4U—WfК'ÙÇćÈKć¥Àß,ác b V ±²ž•<(¦? >7GŒ¿Ÿ™Cw1™L1S˸™Nfó7æ,s‰ùйA—Üx´äeSq…YŸ—oQ/KHX¾t)­Ï¨³+Ô«ãÕ¯i·š¶—êÕZcŽúµø”xõë¦í´©W?n2ª³uùZC®Ú”«Öè6ªÓÓÖ¤¦©“R×§oH[ÿ»âEd›µÛt]®%[Ÿ7užsê,÷¨i8Íþœ^ý z—–i-ô Õ¢§5Ϭ5Lž"rô¥ÅmÅ4wþ$gõÏåPÀ0L,7c®bᢠ©7M  r#ò"Ú‰ü¨P™5™¹ŒiC T†ºÐ‡’e’#Ò•Òs²ò˜EøÀì»’¤t†'žr^vh;ÂÁ RQÏ“&œ®*Ÿ±õù>ÛYG¸á0‡, Ã'dÅ1¼â8ŒÁ©©Î( cþ¸ß .àðÖ6…kó•¶"¨ƒ­icaM¾îÑmMNG34B½ÛÑâÀó3!Ò8Ò˺Š;s \.ôxªß”=¥€@ƒ›ð'aNs¸—u޼ÙgkÝÚ»¢§¸ZGS}Ïéwªp\dM.§â4„7‘Ätø3¤Lu2!ƒÌÝ\ÝÔ,@Wïi ž>L¹»Bð.‡©ÜÁsO´ûÜAŽª™s–áoEFyîÆ(žQ©¤P1Jrh猒]ü­ûË9ó¨ãg¼Ivipç {ÏÝÍ’?óÙÂïD¤â…бӶGÈsí¯æœ)>39ÇÏ|mÁÒnìŽëÀÉýá }ÎÕØ\oœ1dïÞjß§œ}7&\Âð·WyÙAD5wÎQ¿9‹$¶¨¼iI ÑPÃ×åâNñ 5ì›G¯¯!Í Nü@ŽçÃ×;Αú«•ÿÊ ÛÆ¶ô¯¢ÖÉ,ÜÓl¹ÁÑ(8À 5➉ü¸hgôÿµÕôÞÂ!ð²nš‚äIÃãÔОk<ë»¶‡æðíøÚo¥·_ŽWŒ¤ѼFÙªQ:jOs”L,,!KäÙ¢ªXý²apyæPíwÿ5aî€y—¥Ô\•¿ñ¸ö,~ê4¶ã÷ÿ©¼„/œÃàOcýaüF?V´ Ñrú lõ68+ËÀÌ„m=o‡;Òd$} ?¾à]^þýh?“ŠGùñ§Ðž:φð²c•ÿq¶B?ôpø,|µï¾^~ríÌþG×EO›» |œ˜Á•óÿf ÓïrA'×-¸¬Æs Û”úâŒ4!‰#,I`a9d¦Tï0^)°7 TÍ%ì®û~ÓP"$sÑ?±ð¬?‘*{«|ÐÜÖp¢x/pÝ.W·jZib9ϲÓJ'¾S@+¸^k náPÖ¿á#N¤+ŽÁ™Ãe¡ò·6‡k}½%ÀY‚ÕÍfÕf¶t-v×€,¡žÖÁŽ ©/áËŒó%„Ý”újÅGµ³š¸(õ´*9ù mUäRÎêº÷~zhÿ{Êþ½'O¹Æ8ÜÈbêéK80imëëÛß¾sÊýìÚ ¸Ø'ª‚—|ྠ3•÷É4¦Ø;3´Ëíwíty=þŽÃ±±o‹Ÿ>|+vÃüëîJÅendstream endobj 298 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 553 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6Ó JM/ÍI,ɨþfü!ÃôC–¹ûw”Ÿ:¬Ý<ÌÝ<,~Lúž*ø=ÿ{Œ3#cxN¥s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêauŠ Sfƒƒ73Ð? , Õ¿¯áûϸw&Cãêâ«¿k–½*gü.qcÙuæï~²ˆ.®œ]RW˜W4·fáê%+—È­ÿS"ÚÝ5³²¶«­¢U®:"É?¢›£²iúâùgÍX%ü»VÿÔ)‹û§HöMéŸÚ=‡ãpäªHըߥmýM3göMœÒ'·üÍEË»9æOª+)o­él‘ÿ-RŸ×ÝY—)Y—ÛV×]ű3ýЇ½ß%ÊÝöÃï„Õ?nB7ý 30|YDWO­Î.Ê).›]±déÊ%+å’~ŸíÚ7¥{&ÐÒÍÞ¿Y]KW´ö7ÏœÙÓ?s’ÜŠ3‡÷êæX9©¨¨®³¶«C^÷g…C@D`·dG~O¿|_ÿ¬é“fwÏ’\]8©¶ ·4-ìTý–sßy6~çY)ÇW¶à‡óÔiÓ¾,`[͵[Ž‹%$Ÿ‡³›‡{eoOoO߬9S{&÷óðl˜µ¨§§gÊÄþž¾)<¼ -±í¸endstream endobj 299 0 obj << /Filter /FlateDecode /Length 1374 >> stream xœ­WMsÛ6½ëÔzçÍàŒáûÃ3=8qÚL·­NÚ‰{`$ÚR"‰ I;Óþðžzè.J¤*w¦MÆÀ.°Ø}ï-ü1c”g ÿÒïl=bÙÝè㈇Ù,ýÌÖÙ“éhrå<ÌPÏ<Ϧ·£èÂ3î e&³ÚR/u6]Þ’ëœQ¦¥åÌ“2ã‡;GÞõЦ]›|,¥OG.–¿çÂPï¬nPŸ¢ƒ¤Œ9òj°Rmz{/úçÔóîCž'í•sd5Ï÷ag;Kr¹œåïcÔp«Á‰«.IžÿÙ7[E3#Œö·é ÈfýÜI©©W¾é|D¸Ï§ïGc¥x6†yg N¿%?åÂQ&!²îT«Œ„ŽChz7ï%¬‘f]@< “¦È³rÂûp¯0-È“åC®¡\Ì’bÓ3™'íÉUzGnˆ`BÝä4Ow0ƒú+K­tñoI³=ËÇÊ)ðTäéjPç¦l`WËBªŠ žf<¨y»¨rÍ)ãJyÓ­r[ÕÁ‡\oÃ:z^VÉqQ´E~,»Ü;*è"£Tßëx9K¶ýèR¥!Š»2Pf9yég\°Yö‘†ç±œBËlÌ%ÕÊ‹x® |¬Nô<ùùêUˆöÙtôzĨô©g›vGÙ¦œg–9ª²,ÚvÛœM&wËvqÿŽÎªõ¤œÿQÖ“f;AdÅÿ…×ÙK'I<ÁªþI4U@¾pTóÖiî Ê ÁzßYL4”yñ˜:@ÅdXOÎOã˜q(‚s»±7B ˜Pq…æ&€ï%]y@0Û#˜;>¸ª3#ëu±mŶ¬ñš‡pyVv˜B¬ D-b}YnZä§GäD ‡®ÉIÚ>× o°ªsO‚Õù÷e‡ûª‰à F‘ûƒ«ƒm$ù1Å*ܺ‚CµiŽòD(Aìd(WA¸è ì\XBèî€ô¿‘ËG\eÆ ªtjvŸ^ÿ@¯ÆUº­«÷嬥U}7Ù3¤æ·½í‰ôßqmMЭ^°½+Ø:ÑøMêÂxòaÑÃs±ÆpyP«ç§q ص˜$Ëíà³F;µ$/‚èD‹^#*úì®sàäÍÎÁ’Ë¿úýfuH£à±¼Ü¹§@‰$4©>t&†\ì#tá > \££Àº\W˦&‹Ý…““Ë0—s†™‘PepÝ“ê6ì y.q1¦ãnßåa $ß̇,P\IÆûÒ®duð<"ë †IÖ±SÓɺPÇd=XaoÔPÞi7ÈÑ—oá9uÐæ4Tú!R:i$0Ø Y-ß!>í Z ybÂºÔ ç#Ô•‹éüeYÆ^É@”~MmÓEåq1vÎü}Õ•gpQ´—:u^ÀñrÁõt @N+µCÀÈ*ôû|ƒ'zbe»ÞžC©T[ ë±¶!do†Ð´6kÔÒ0]j 12ÌEºœoz4ì‚ß[6h 0â§(µ&ý§YÝÛúGB€à‚¾®{ZÓ‚#<—g})Á·R*$çr 2m_¦íá½<ïÇBs.}С¯?îÞ‹ê¾Þ„ i s;M®wáu/54ÔøL#×Õmûiýº³*¿Þ ëKk†NvÄf”{iu2Ñò¾8[™RÜÐ5C+‚ñoB_€ÒJ((Í cT 6¯–g` ·•vò¾iã@J¬ï‰y€bÐ%ãŸñHãÒRct¦áŸ0kÍžàa¿×£¿|o)endstream endobj 300 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3428 >> stream xœ¥WkTSgºÞ€Ä­"U8 m÷Ž­·ÑÑ:j;zfºœŠHµ¢"Z­"ÈýjÂ%!är7! !$á–€DQ¡UÄ £©ZÀKk;5­vVëjíœ33m¿L¿þ8i…Óuúë$Y{­½³×÷¾ßó<ïó¾_1+” Y°+!ÏãÿvÝš‚´Â¼ŒÉg˃φŸ >¸üß‘ÿ ‡ˆ0ˆ˜ué¹Ë¢PûB”ÿ Úµ€ 9˜Í‹å‰KòrrÜõëÖmX³†¹n榋¹[×rw¦eðE¥yÜ4^&wçÚ„µÜÝ|ó0»’Ïã¦gå¦fsùÙÜýY‡¸’âö%qã÷í9°7é×k–ÕO·A<ÇãÇm+)EiâŒÌ¬ì½9¹ûò’ ¯[¿– ö{‰¥D"±ŒH"öˆ7‰CÄVâ0±ˆ#¶ñÄo‰×‰Äb'±‘ØE$»‰…D4ñ ñ<ƒ1‹è#¾ ) šúqXAا³tá;ÂÇY"Ö§³…³ÿEV“ßÌQÍ¥çÞž—ñLD`þŠù÷#¹‘ƒ‘"d°U@ïB‚'‚Ãh)Û\ÝžW¤—‹u”üpYŽH­ÁjwÚ½µ-´­mEÁ%òfÖÀîÔ qv6%Ì®/…\(.çK åI &5fQwWÃWKÕ4ºn F‰FY­¯ÒÐq¸G/‡*ÐsD.…Ûgiºà šï·?è¹á9Ýwqȇ:?% Ï•¥ÑZ±NedrwÞУ~㢞fŠ¢'v<,hB^ö·;Fÿˆçá¹x ¦×ŽÆ}‚H4Å åT¼‰CÖáY[ ΠY_ ®4ï;6¹Š*´BþÅl÷ó`,»ýÚXc²A §^ãJuZ¹ŠR+¡J)ËógºŽ‰7áWp&NÁ‘cË™åW>B‹.5)íB•Ê*éKVÌ,Þ=“Áäá<–¬è§`É,´­DÙè-z›„WaÇcµš…"ƒòð¯X(̆äÐÌâeÁ(fqéaÁûèoìñmþ­â}x€RœÈ÷¦¹º/×OIÆÙj¥ëúë‡|@ÖµèùZ¨ÒËèxìÕËÉfHÆ‹ˆŽ{¾‹C=§†Á §«Z„ZR%di³´µÉïž!–7èõ@XPŒ–±á³åMɶ${v-tA]m—ßÝí:vh€h•UVTPAæuéì-ÞÆ3#É}¿ÁËrÖ¥ ꊽe”Wä6ÜQœÐ^«€,È òÄ9åé(`?yjjœ.p“.eûqY®úàjô\µß÷®Ñ…:çízΑSùŒÐnQʼTÿXi¥ú ±†*KNMKRVfõYÁdn¤o¢úðGSŒòF_eùQŒ¹LŒL›e b^e‘ºŠÊÆ«Â×NKà#Öë¸7üЙԛ(ôŠôÍaÃŒÚæä-¥Éö”)7¸SÇP»¹‘ `ætˆl ~%¿²Š:†_Ó rð²?'Oãíî¶ œCshG/ØÀI^Éöe¬MÇì²Iö|f§ËL¹¯·û•ÖšµJ¥¾B+¡³–HÀQrÓHÎho¯³ûU/꜂èð6txúWÀ:M0JõÕ(Œ¢Ûï.Šþ0ØñÛÙ{m€ Ò#™b±TTiÒšôTÊ@ɹ˜ÔIËv Ò³|«òTgkm—ÕC׿ ¦ú³î±Å榺^¨!” R®Œê-œ¢âû“ÃÚ&ºó^}·Õ =œOw™4…Õù`0 ½ÊVm¯ˆôª žºT#Ô–“ÑM¹2ïX̲û³'»]”÷ð…Ê6¸}WÛFÉi IÆ—ž­<®¡ôå²$¢ê6«ÍÄ|é[¨á Ð5œ©S"RJÕªàd¾™aK˜Z¢W_L}ûœÝN[”mé—aÚÎØœÍþ†+`cì½ð‹¥ŒËÿ€ÉT¢Pè}ã‹¢/w*؃13¹Õ–ÈôTùVŽÈÁ/®ΡªsÍ=uý=i{§Ã-äÕô®´ÕGñÂ’'Ô2Ú¶P½ýLa:Í*U…ASQBg¯ò¥£ƒþV“™*[±ý•í ¥UÛèi„v2:ÐQÞ(T§v'f^Gs>EÑŸµÎåó(Ÿ1†Î÷Ùîòf©ªRkÐS"q>‡2€m‚ïPÈ×߸hlpYn3•ó”ÎÄŠŸYÿ'3hv0Åh1YÁÊ™¬:ê?§o•…×L±Äù³Ä$@Œ-"jUNü›ñ9£±™ö³nûu§Üî­½òÚ¡¡­x!³ûh¼,±%Ý[L ‚Sÿ{ƒ½íåËÔqVßGwÏÙÛ&)¦§4ì  …¡ÏÑãÏÂãÁ3ì<ÿ楊ø#jª2ßâQ%’¯O¹¿—ÙûŸXûðG"<»hÕà(AgÔ˜ÌVS 4’Ý¥v ¯¬˜—2È¿õþÙºì”ëœ}È6t}¿ø!ËÙõÔ½,¾Ú3f§µÓâ> ¤Ù[­×ëuÌ‚&I[g»§wª ¡]d`zEóÝÉÎ\Ⱦ‘v–MgÒÆzÒ‰²gt"ötÛ°ÞF»ÂÑzö;ñ+fÇoûý2êÖudÿ–õgòá@¿Ÿ4ã¨ñ ˜XýßÁ—_e£°`ÒŒ²Ëäb=U0^[Ê”ål޹˜Zq}ï=¿³½—æãp½²à88RPÄd¬1Ö0´·H[JŠÂÂ7 Z~íë'å@ß³—¼ŒÃc©è•©eCQÈÆž‡]Iô }F¡Ï&ª™\,3F0E¹Ž’½YTÀŒ`Ê*›³LŽn:úQ]Ç;ˆ}5æ^r_Âô¹„:‹þð ªbá¨`æÈemë°R§ÐÊ h7bÙg–&§àg”ùt´E+ÕÉËcûsßùê,úUˤäOþ¢‚1ÍÛï,Šþ&8ø˜í+\¥JÃS¥@ª«, M¦ú†Ú~¶¦a$§»ÊôaÿÅ»0FÞß3ºŠÂ»¦ÓrOÑX0M,š7­ ë2Êÿ„u«±°X®ÊÔKiE ÈANn¹¤ê ¢Ýë}è¡·ÃØ q;~CŲ.1oßeýåDjÚS@ßÿ[RLx'&[‰bz¤Uê)ÉÞŒ‚ãL£•Õ¶Ô6œ´yèžÛ¯»ôÜœ‘c',Û‡çäOº^‡ÅÞh¡Ú?t·Ù䨨õêj½ §ë†JqÞ̽ôQ4·‡Šæ¦7°;§+–Ê„>·©{zÒD¿{•Ž…]èî=е¢cqªýˆ.“×ï¾÷ÉП”›¤UZ¨¤x>¨mª7·[©“h錩T¢Õ¨´”V­­ÐU¤î1óMÎ_ºfå‹_ N«é1É jP»9Û_{mãñÍïYL¦z LÖ»¾©P#q% éx£¦Â&nuYmuVÚhr¶ÖX¯&?ˆó…?žB/¨a´øÁľ\íùÙ@/+c®Zhf„ø¡ÛR훇|ö›cfóåË>“Û’êjƒA¡®ƒøÉ@6l¾Ö1TÖ{4åpÉŽêè!A¹Py]Y<%Zò‰hgŒ1£?m“ÓÑj¥ÐFÕC $s¢=R]uiLÂpÞ…¯{å ~J<gÌ´ôÇ”KtJ¹žÒ–‰âŽ1g˜Ã5½0šhÄ žY.ø?¦CÎâþðš^ ÐrâîüãéÁ£)H0Ît`Ô6Êôw?Ô‰IgÔ4C»­Õ5Ô|¥õ “é¾´äìâ<¥s—ŸÛp\$‘:Êk´ È ÊÀ¯,€*u‘p³ ’ä3‡ŸÑz¥jÿê*>²Í,æ ¶èå´`ûä;š_zG‘’¿†–$W ¨·\s§¥Í>Cx¬»è]¦í]¾ÂFóÿº¯Äë°{áüʯыÌåRñz6^IœþbBѽ¿ x4mÿûèÉÄõO š˜›\ÇÑ&v‹Ä&.¯`ŽfTYÜá´#¹aml»Ò˜WóÎèõ޳Mhî´(èYòŸ›ïàP¼þ%Ì=$·É;ë]à©e¬gö?[€͈]ÿj¦öщ%)‚½ Œ8˜á¬0‹OÔ7‚ÇFÕ÷´Aœ€“roÅiéiÅF§ n¡%½“:´0 è0ôåv»¸;« “,Ç'öžöŸì£"UõÁôª£ÆÈ ̘G͵Ÿ1"æ 5'?fc½ÍqÕh¶˜˜Û£»6b>AüBêìendstream endobj 301 0 obj << /Filter /FlateDecode /Length 6529 >> stream xœÕ]ÝoäFrϳž’‡CØ?QÁýMÚ¸‡ËŹ8¸¹³'XsÒ¬–öH³r¿ò×§ªº›ìj6G’µ¾Kà‡Í4»›Õõ]¿jÿxÞÔâ¼Áÿ¿×wgÍùíÙg‚¾=ÿ\ßÿóåÙ/ÿ`ð›ºk:q~ùêÌ?"Î[q;eÎ/ïÎ*}qù=Œm»t¬s5ŒiaüåÍÙËê닦nŒne×U÷Éçú¬œhºjw±Á?:Õ˜¶ºë¯Ó?7áÇV´¶­ÞÐS¦Óm[õ…)ü/4…Rªnœ¬î {n--êçÝ÷÷ÉO·áiQ^ùÕð&²ûÃfdsܽñ kªÃq»Ç'%®[…,ÌëÈ÷ÕUc\EV|f>í1ÝÙpñÇË’k{.,e$’|i¾Q¦n­õ”µª/6¦§Y} ›PpJ­SÕí9?uÕõvÀ%t×!ªý))«//6ºëà©¶ú¶¿¿Ýï6×|O%ðźêp¿»¿€·l„6ôB4¥%¢Ó'½Ûû)¼…ôûçì%E-`¶óËß]þÓËê$zc€è²_'<“òI˜Ç²yºÖè<ëU»7ýÍY˜”¯¨MmœT‘IǦƒ4^peýʤê½wc¢êÿOýp×ãQ¢F¼çQ¦&ð/heÏ·?¾Í8,9z|߯/Ï~æ…ØœŸ*¼ Ȭ€IpDÛ*’`Ä Ó>}>[·J¦ó½¬^à¹#?´ñè&i#™ö„44‰IÃ¥—è)ã)y±`22D²w­—w|¢iOÈ{¯«?ûá¦Õ|ˆ_ÍJk¥ƒ³äëÅÍ‚¸à«¦k;<>‡ªdÕ¿Û¨n$°Ri#Tmt'=Ãm÷q>§­ ¼daºÎÄŽü¬IAlÃ×ðñ?'¾;ôÃ,Bƒ:´büyËÿ†~kÌL%u’H~Ѷz•Œ9ã÷¦ÚÞNËøgn·\{ÝàXПJóã;¤¬žˆÒ*«ƒ¿ºÎU—)¡dyj8ä Hçã…b98ëÃEä“w%Ë0mfŸHª2íÿýßœb Ìt¸m5ØþpÛ³×Eu«[àÿF?î˜ZЪھI´‹íõJ‘V¢z}êmq"8ä>N ¢vËݯ=}ô›†g@¥£nÂ×À¸D¤X Ø?—wz_ò“çB¤¬#¶Çá ý7LnýZ°³!WúÏÃЦ*Ké®n£º¯^¿~­KFØNŠFF£Ðï÷éf‡ñXàm:'[õ™¦Î7†9\15Œz{¿qU}{úâꢴ-`RÑMþÔvʼn*­ŠvU¹h³Õþ4¼Ù^ïÆþn·²®Ð †Í´0¦Ö‚TìåE ~K– ͼD¶VÕ°ËÔ³ÂÃU3r1F âbu\—«í~§v|†íèßbibð—±gÝœoÂzwL^½æ¶¦–Zû#3ÌQðZû'8 þ”,;%B‹pHïO~y]ãÔªí{¾‘ÀŸ]à—~ ÕÉ@ ›Ö†©†ÂTº–ʈ8âqˆ88Ÿ¸Ÿ±0‰B È8G‰u,xW@âódÃ/½o¤1KªËzF-抱_Þ÷Èb4ø°\«0yÜz’kPÈ,6 õ*}VK¾ÁIÁÛ¼eÑÀènrñ£O[‰.ú÷ô6txæóó¾‡éý_Z•œ–Àrû}ôæ­äjɧ}¯’“N£¬ir`ƒ‡[šÑÔ®CÃNŒ3!œ©šYç«0„Í¢MÛÆ„!/WfigöK³ /€ÌöRV=®–NÅ¥¼ê±@ùNVÿFç¦>ßÏnÀõì…ír9Ö q`èÍd¤qÎ<° P ¸ L÷fßÿ@– œ0ïÞYÀ1å4F¨Å¤™>*KN>}`•¯ª‹çûì‰6xnaw Êç¨û'úìÂYˆu:ßË ÎvíMðâ845þ3°ñ º‰âiac®N« ÐýÇ¢‘#¹t|ßß`ŠÑ[Wk£º‰ùû»4/°ï??áÑ Ûž Eöz‚1RR‹¸‚;—¤Z‘‘äƒùhºÂƒ¨ Öœ>ôu«ÝÄ{éŠh:ïë-ù@÷Ú¡jkMAä¿Â<  \x(Õß`G” Ьa5ûLƒ¢¢w2©Ëç0Ri®YØ4©L±ds´ iØ$7Y­°F*] ‹¶HÂgH #”˜­­³4EÙÓüïš¶VôîŸÈ.'d\³ËóÇÚå\…[ë:—ÚeTx%*ðJ:}Çÿ¯n‰m¸”Îp§äo@wKÌWTß± {%2ÞÔ¹ÑÓÎ=ÞÛ¦;µK2ųßýýÅFXŸÚ(oÑÕ­k[\Øåï,ì²n¦imcrf‰ïK ¡ÐM:|k`»ãÙ¨¿†Ð0½!ëÖœ£ëñ :Ås`šëŒ¯J¶Ë'Ž`¤‚søC~_Hsú ƒ¥JáƒBBÅã Š ‡kxºÝÿ‰u–VŸ€ü ½;ƒŠ\ÓE0¡…w¿sWN ¢@šœ ¹–B/Èg©æˆ{’R’j5KxŒÛð®Mg%óŽ25]#r/Š’~0zŒ/Ëþœ†2¬¬qôµy€;½†ðiü¬»éÒý¾x߇ãÛ™Ç+»Gije_;œµé·Ÿ!îxÄTMžüÊR.\GÊ®v.ƒIGÊUý¾nR¦÷y •{´E‰›ÊßÜÀé,Ëô¸Wói¬|ú+/Žp²¢:µ7Ù©ø¦p¤¨~²pðfMÿ¦iª|¼ÑöD¢ýPŒ¤¶<Ç…éLe©ž–%òü¶@kí³äÑ|·,mÌi%Å|!ä)t—‰=Sc´‰Ê4Dg-NÛaØíŒ¡Ò*Õ‡uÅ’†ac ‚0Ëê’°!ø×†~{S渪§âDŽû‡iåe3Ë]5F2µË¬mOÃ6‚r‡ø}%Îók*JÌù~´E!ß ܢ͸'æ ÿ„v—§ :C™#Êu>ʸ ý,@<•ÖÚæÌBM"œ¢Ÿ¶uܤŒÛ«ö§”zF vdÇÃ]Ø—0ËÔ~¯©,å°’g¦²MÜõ¸|15*[Ì®FðÿF 6»<ögl¦jÚiºã(é;!k›¤9BáωêrKùÌ‚K9YðuMÜæÆôyÆgiâÏØçÅ3?“±XÆ3³ïñì(x^ígg– Èý<ˆh„àY€²?;Ò"­Yut‹ÒlH´‚óƒ²È,+7N{k…àýîÃgLƒ‡ðeå¤óžõà çFfBÿ?ƒ3”‡Pêv&×?ô¨Ceo \Ø÷¼ö8oT; 9ZÈot©ýü™ó”*ä}?¬pªïu‘3o÷ÅD©lj¡æÚaªÔß&F }V…KÏJPÊÔ¿©«Òë8½½g Ÿ_„«‚BZ¼ ‹m°3½–N–>£ñôtòd¯ô‚_R{2ÉÕ/böXJ ˜Uw…zŸòÃö.-‹í9ÓÐCÖ™8*¶‹Šñõnÿæªú˜ãO†ÚŽÛß|»VìV‘.R«Æ!° ¨•Åšµ«…“ç›W‰ø½ˆ€0@Çd¿€§òΘWjÖ`r›£¶ÇýA¿8„þö–Éh„Í7y¶@éàO{YÛ-€%\†j:”Î4¤±bVEw4èo®þÿý¯µv™[¨($ÿ:¥"•ÉÓ®þ5Æ5‡c,ÝJ^ðñeuõ:,ˆfa®ó>Ò“õã½¾ô¶”?ò ·Xn†í­ã”ü+„!±j·ìÄUhI~ÕÖDl' ±ñ¯S(í0ާSªÙ®È¶rQ$‚c¸5„¥±^îÃïF3sW° b. ¨W„pUˆ=~M’n:m–øP­´šÙ§ã0†³` Æí*½ˆ,–(ÜŸ%ÅG¹CŒ03Uq² =(ËʶúÈpbŒD–h°.õ-äOt$Œ”Œ ‰"š'<瓜‡f­Svò1N¦«pOq 7„-¶·Gˆc'ŸÎs :¼0Ñ1KfÖÍßROmDÓÖmgXr í”´'sfÝ¥ÈM¥(A%3Ј‡z  UÇ‘õÒYÒëyqÑïg™ŸÄÕÀäs«»^YÙLGµ*†“Uâa • ù×xô`:§]uÏÏÒDªÍ¤LcݤûŸ©FÁ´ }Ê‚›ÙvÏÆèj¿8™ïåIÅxdüË|4ôèĺ ܾ隆ÏÒ÷Ê´´.×”Qr#dÖIrÅ‚lààÛÞ ÜÄî»ð}c£âéHCr^=Σ€éÖ$Çù—É·úvVÙyõ¯Šïãe¯¨úë¿_ñÚÚQŸO"ÛLfÝ$°WWØÉÖ‘=}U~kƒ]vyûV¶¨2nê¹ú²Ü)Qü¸*aE á77‚|o½¾œ«-éœtொÝU¢vàug‹.ô—”ùt[Rq‚m§#@ƒï&ߟ©%ð¿ûˆ¬³º8ð´¾\Þ>ç›Bó^)®Òß]¼ÊÊ7gM¶øNf‰µˆ;ê½fæ›khsÛ¸%õ¸‰¦ï×jR\g…‡±]hj-} i(!î7îTµ“ÅଠÊœA0°j©„Ï¢/L¡Ï$ÅNwäh`£uäˆú) e¡ÒƇ)³4“ !‚àîÙ>¹Ô×t. æÁXƒ|òÜaÀ;{èÍÊvýÝA•ØÄDwC²¬]®¤’ÉkBpULb1‡°ˆð YN¡ƒ¹LuÆŸZŸnñ;”ªÄ ¢U\»à4Âóœúíꕎ¾Fª,»1©çRJÄé€>™Z8ƒiÌcLxõÝ»Ýý8”Ø Ìˆ²’ÅZØ(ÌcÑ„AaöíØ†"ÜÓØÇR¡hÿ1ïAëvº­›úù:{Nh'&‡"܆ßijBѵ„vðdù®ì»´ƒ­' DË¿žW'2³„'=ôtöñ 1t¼»#\§…eP³ö¢à‚:§ãù#=ó¸ó§‰;ÉÜÃ>U…ÓEeà TcÏÛ6þ¸7A¼ùYÓôº™“š‰BÝ䶆ŒkÞ™·—_—y¾Ué˜ç<‡ø`·è¶Å %×$$AŽ¿ôì§fÔqZ—_â—éµ*¡­åÙ÷ãHà|ßSñó!â]ä²6–n1ÌKÌŽ}`Ý¥ºeß§ñÏG¯³è¨E9«õ©•…•—mK~,7}”ÃkÖP<K_¾!>¢­cL¬Eûk^hÙ]’Ø£ø(;ªkÛÎù…¥»±^ñœúµ=iò„t €X¶1Ñ‹j]YeiP†ñró{†è/@¬±€¨°ÚŒºÞ0+y|3ÎÜ@ù`üL%‹ÌÊ0Ø^d°¼0œD+!•zþ°Å®!J$„ýT›MÌ¢v½ª¾èïn@Õ®4J‚»ÒŠü6ÞÿAí#í2é§üÍÕ¬]dE†§.”Üàw\Wñ’Ëj(M'ç4–ƒRöûÃtÈûáËYì°pyþXú·g­@:@P‚{w&!ÊÄ[Tâ7û³oOÄi*É2E¦ïT­Ñ¬‹&fŽÓ~ù¥Ï±ìfµÏJ ÓÐÿÛ n)=2ÁƒÁôíðö}äÐ-hRTû›oÿ.´Åµ¸ø¦¿¿)éQ_S– aš´#fØÜîîwGðeïo/¦îºàÆ:L§ë%ßq¢}SÚBlæbúÝ0ÄYm(æÈÐ1{³û°‹½‡/ú½@œRŠg5†E0Z{{x;Ì[¤œ%ùû³ÿéV÷Pendstream endobj 302 0 obj << /Filter /FlateDecode /Length 4872 >> stream xœ­;ÉrÜF–wæ67ÏD…/FµXhäž GÑ’­±­n[bÇHGÈ*Ò°j¡P¼Ïý^.@f"‹´,‡#¬ùòåÛ7þ²¨J²¨ð?÷ïõî¤ZÜžürBÌÛ…ûçz·xq~òç7º†7e]Õdq~sb·Ѳ¬äB UÖL,Îw'ÅÛeUV‚)RÕÅf¹Â ëtq|hú¡möËcvêâu´òaIeYk%bÝ)n`eUéâ¯Ñ—Ã>€ýSxN·ö‡Èâ·GÔ\ëb»^N2ȬxÝ^/)ÞGòTtâ֣Šoþ.ÛÚe’JIÕçßíDÒŽ1QÖÈw¾>)ÄòügXA¸^Ôe ›pÅŠs²XÁ2-%®º(Þüïr%(/ëšín½¹ký³(þg5}kú¾­›¡yùö²Ø¼ßì‡¿Š²"¬xîjâ>ºo•,þú,ë‡fØ|,ë‡Û®]ûe¼?.ñ΄”µpÝ¿žœÿé¢x¶\QRUHñË®ºöÃq„@‹uÛÜ^ôré$¢Ø¿l»ëí†~Ø>ø·:<–ÈËå2Ggø,q8·LâšÖF.Y¥á±.n‚×÷÷ÁûkËùš÷‹¡ ¥Í¬Ã“%/%¬v,yb¹ã©hYÕµ«/ '|$–ãHöìÎHñ®·©kU ÉzsAÉ<òEéÛ~ˆ‡¯c…´àHq¸q'òã'Fï»Héü*ÜukhXXÓ†hÜv†á¦6Áâ隃!Š2ò¹>FÃ>º_×^ˆÂ „L´°‰ðB¶¯“¥¬å~”‚×Ô2pË™¥8’¥iÑjÔ éèΓį±Âµ=Þj.Š_ËåJ:%ùvp+^4Ûþ€O—wR[P«˜ñ»»ÀÜ…‚‹@oªµ(špÕ‡vÛÂc *G˜Õ·®æÅû¥/PQ ¯Ûæjn CÐA€ÒÁ{°îvèü{^ì–,Z<Â:OD0½Ÿ…÷bÁ#‘sšÅÛËÛÒ‹9“á¼€R±ZTìöö}bÒ¨ÙZãÒ ¼ÙiC;ò_3[é–>¥„–¡°Šƒ'«¸N8}ë-’…Üã:0Àðó²0}}~òÉuöbÑwò±a¼×DRèR¢Mß ™ƒúÑà”Ã,Bx…±ù”ð_Cž8oLzc{1†~ÝSC^¡îsàt,Ì]ŸØÍà!6ãÑ”1qæ7(a*æH ¡˜÷‘‰ë@ÀÃ뚀YÃC,0ÐôØ”Ýß@ÛÛa¼^låbKàÙ„ºÙƒŸµ]07ôieDaU·¨ÑÒÚ-ðÊ©Ùã•Áå É_ÉðܾRp˜7^à•ogÂWYüÌ•u”„’R{Gy‘óõ•óõ6€!2ëé ¨ÄèA:ŒÛØ¡}Ƥùà`bsöhöGI–¡ˆZ¤¡HÝòî.²)h™à p,ü¦ (Ì2CY™>¶{–Í”²R’°yìX” vœÏŠïÒlÛÁP¤ÐP#]6* €(-êhQ ‡I$¡Íµ‘Pt}×Dl™Ì˜*4˜+žµ/”ÈR¶ &B0k_"‰½Þ¶w±`þNSFÁ`i­Â£ÐäN¶ñwZ\*i™Þໃ¥+áŠúèÔœ툥~ÑÄn˾>¾hÖÁî0ó‰]kdÉÁ¤6q­(_~¥Ð­ê*¹ÒåTs«‚¯–Úä_Úˆ7Ä ;cük‡,ÛÅÐ}x¸ C)#‘<¹V(zíѸb×^©è­Q$ „˜ÇA^ƒÁ $¿èd[$¿Æ±.÷ðw~Mä}h"u£¤Sk. Dœ)’¶K²/r3mõð\<3ú×àôf0Ô‡Û`šårµœé¦ÜØE—ãø¬.“Þpð7DƹwÜÂìå¸ m?;Ƥ~¢éÐEÒÞïÚ¾oC¿Ün­˜€Ë’F˜ñZ•@ëð¹;ôŽÕ¢PŒLb›Åðï­ØU*~í’ 9²2°ÆÆÕ-x†‘hÛ!6wA)gpµ‘Â'Yüeï`0ž•V+DöHQƒ‹0·´þ3¨Úó ž“<îÐÅ1ˆábÈ´ÑŠ j -$’Þ–Åp0@MNÒx4å#Ò•¨¡¥‚Ç#ÞÌf+èŽÄ$"qŸI[›µ[Fµèð·ÈDtxžÄàïme’A¤I…TÝûHhD@ÇÌP@âÓLRPFÒSžºUð7}ÄñÞרì…lUKQøµqe)‰XRHžÝam|Œ¯ÃuBV, -m‚¦bV…Ö9’8O"ž¦Ÿ©õìn:vg‡”uA8æ X§Z¿…N¸[:‹Æåª¨©ËU%•UíytR`Õª¢ÅW¶B¡„IPÚým·Y·›ý’U6Îzë^;š-FUë°£Å( )V%¾¢,/g„9æªÜÙV_îËØ`¦J äô6xVy¡¥Ù;[.ãðrpøW-p\y–z`ˆ«ÂçÉ™0c펔Ô8Oó›ÍëIæ°©7¡t;‡Ne35³°h²nŠhC"G¡·w‘5Ûï- Yúªkv›ÅE”<ÁÐÛ[!8$àøØHM·1Îß겚ÅîÔI6ýc£»kœmÁŠX]P^´®¦Ž.ùä d61–gÙö… ×BX*Y×óB¿Û5݃oLô$ÝP÷6ëïW?o®‡©ï€Êçá]o›¾÷5yqLÏ’Î@ñòpèÖí¾6ýÙò‹"JYcÆê—˜Â0«FĻƣ«h)Wv釩“ù{=• ¸”b:\2£‡i~MüÈõ1¾í§+ßu¤Çf}æß©âüÍ?¾6ûp1.à=bûÛ©˜q6~¾x† žo›M3}~¶m†VÏõ˜)xuØÃ+‹7Qسð‚c YUSOäÙ¼µ/÷›íö®þoÞjÿ–Ïî÷íÐ?· `îÿ\onúGÿv¿»Úty~ßΞM]Éä¸ÑúJOËf\Ýã jíˆã²“Í¡ñXIf{DC‹)Þ¤îÐØIlÞõå`ã"|ÄÈ”âèí)™0~·Ý ê£óœT½n÷à܉Px` þhØ$k Ã‚ÛÇâlj71ÿîŃ;ÃoŽr ‘U¤ä­*¿M7›]³ÝœAæ1­¿¨Nh¤Á ŸÏHÍGâ’~ðT§Å÷åÙDiÁêR8ìÐUsì©rï^†Õ„}•¨!þ³î–ÖˆÿˆROOì”Ôæ*ÔUõx•×Baìé쌇L ‰ðÜ%¸¢" ª§#ºÿí/Îâ0·“ÉcHHœß/¾p‘AhEIY¥å˜ÎWŸ~Š€¤>ýv¦šHê* àÒç©HnÛQJdTM´@qÔsZ6Ò"ÚS"údè ˜EïàpªôSt¨t@ßá è@Ü…kUŠJ'fÝ:–d¢±3j ’l~eꮘ íì#^{2éc˜ÿºù)§à´ÔÙõc8$Û#²'Ýùš•kÞ!1 ÚùûðÓ¦)„äâÑÕ¸ sP]»ÚDšGp…ô½OÔ’œ²Íú!¨ãWè 4Wu€PÖ$ÁÜöèã¬e<œ{XŒ‰*S³¦£…Å\Ü\C$ “þxBq´qíq–€ûá:,-Éiý^™‚ÄÖ¥ÒœîUjp²‚+fªMÇÒ矗šSŽp^ØL’ƒP-X1µuöî%«gùS•Œ¡È(w$¼¤”{þÚ.W„A0pß-1šsp]#¿:®‚Þ™e„b=Çl¨•- nÊ3çKù·TªØt$äÊ а6i–ÉâÍ»0«¤7·ŒÀö׿ƒf–Ä*oúa³óϼ jù®P-KÆGK}ië´5ßèâ]»=ì"Jú;v)J÷|(ÄW[1n†e¶,ÿšÎŒ~Ù‚š¤ [³¶¸"ôõ£EÇøíñ¢u\ê6’?÷8tKmûµ+€¬<…âzçÛcó ¾-Õ,}´Ja SÚÃôwç]³ïo0‘Ï:9&Ý«]dy"áF5Ò†ÜI¡Ò r— \}¢éˆ¯ ÿê7 ËJ·øqÍÍæVe˜€BTß÷QbA0ë'¦«€S!Q‡/…µK”VZm;ØJ4ƒU ‹¾ *BúÔ®âþŽë™i˜dëîe{ ²CSÂÂsØíÑ…Áò3Ó…Ç nŽÈd²,×ëK•˜“¢H&£vîˆÖeñòM8ãhºXæBšÍÉS™v2 ‘ š$yÄaòáuE’öÈ܉x°ËΘ'&{3³à‘Ã.ºΉ™´`°Lµé jsüH VóªöS\‹ý½)©0?¡òç7’‡fΔSýÍW+HÈÜZ¹²¨Ê.-U¥Õ)%Õ3V¦Í–AK¦ ž3-Ä&¤G†'âè„kÓÎl\EÈý¬¹ 8‰«§¦¦ZÎL…)Wî<4×§ÀßÁˆ]ôK³Mgâì&ˆlpô$7…5uf¼FÐëq‡ßZÌt 3­EîFqƒ‰í› íÌÍæ¹Ö‰¹¬„ı{×;(„9ÿÌ]SãÑPf%I©±®;®E‡ÁÏÞTÌ”‡m oy|@ù‰1ÏO-FBÄÙ²œ’T¶€G>eŒJ›Qºž+ÊhC] ˆoܸ%4Ò¶’ á“9Wz…5q¯¡¤œø%ƒ[ê!ÃÊ3eY=ŒA¡b.ü2‡/5p×§ãn aU êÈR€b∥ÀOC:³TDþ˜¿JEk9N0} Ÿ4P¼[f0€‚ê¼­z’FøÏŒ¬rЕ9§.%Qµúç$7ÎùÜ5j{Õú÷Yͳz—‘/È—©¤Gh7ã­ØÜÎc·]Ù™¿TÜ+¥ÖÔ‹x2Z1^9Ås’»RÇ ¤­á9ñÀ*‰¶2•¼µ?¿œì=ìØ›U¥Ò^ò‹ÛœÃ‹ôÚÍÛHa ï–Ú6L1<6–G§Š“R3Ö·¯¿ÂÛŠJb™SS„µã¹1:9ï­›Ñ[6ó ûû87‘Ë" à—%Wñt†-gn°”fãÔIk* Ò0?N+š>ô¬q¤¸v›˜¶¾Éüñým»“ðâa­*úŸð?í èy›ÌÒ–!£lÕÞñ/N*úpºÊ‘Iî²Lä{tl˜¹X›ÅHeây Æ±Ñ ©ÉÐÚXFb¶º²Cêë|]ð¡y—A¡üÏF7…›J@»¥é¿£ýÆaYáåÇýƒç™%ˆ£¤˜‹ÆL3VAp9Ë]Æ5Ùù/,HJåãìØäÔ!|4@q ±½ŒÍnï¸3 }oŽ]¾ëÝœµ:x.ÎË`†Ñ*{;‹ïV ݳ¦IXiæQvqçMxb'[Â>¸Ñ•Õ‰áîn’ÕCg’*b‹ƒö¯© x‘ ¾Çw N›Ýpó>ge+’ÄmýÖ × ´ö:އÇJçýTÊê°ôX©*%èz$Ó¬Œ¯¹8þMÓíD"#.£zÊÁ¦ZAnÚ<¤Ã'I³£;€wvŠ™$T3¯lbyZwJ3‘(ÿuÉ“­r좌±í‡äâ½õÚÏš*v'¸®MNã=í´ &ösßa€‰øÏš!÷R¼ÙðEï¶”‹¿³È>=”S8pÔ ˜3ñZ8ßtü“2Zûu1?dClK?Óc:Ä9ÓCñgØŸ’6ï´d¤ÆÝ|TêÀØ6ÎÒR•(XôçŸvÐ‰š±ø¦Ï(á\‡O ŠÏ_|žíþpÊJ€Ÿ!‡eµ ö’µ×¤T•7ן¿ÌCT Y¥'%Ö•éî?ò9LáßþöRJ«²¦7Sa\#§€ÄIÍá¶;„áÚ]bp±“ ¯L…ï±æ5 †Òf·ÕªØ•üØ÷;'?+)ÜÅ#[2{bxÌ·(ž6]æZ=ŒŠIÆ.Šg߇ÍŒ=åg¯ÈJd)à@yIDú'COH_„1%é/mî*´Kè‘ÑT(DFœÒ³WlŲ¨(b*ðI> stream xœµZKÜÆ¾ï=·, ˜“ì0ì'»$@,?Ž­rØÕ»Ã]1žŽIŽ´2ü»sNU?ÈnNÏH–`é°²Õõüªª^9Yøßý½ß^‹Ç‹Ÿ/ˆy»pî·‹Ï®/þú£Òð&×…&‹ë‡ ;…,ˆ’y!¥(sÍÄâz{q“½Xy!XI ÕËþP0NewÁ‡ªšj·\1Fa¦Ê¾‹F¾]R™kUŠxî '°¼(Tömô¥Ýk¿ ÷éÖ~™}íæÍ•Ê6ëåôìÌae–}×Ü/)žGòx©hÇ'…e_ÿ/¶±Ã$•’–/¯ÿ ¼EÈ;ÆD®9°ïz}‘•ËëÿÂ.„äZŠ#Vœ“Å †))qÔMFsš/W¢€… š}^ l_ ø4V»õ¦Ù=âžk-3xá>“ìµ%šy4kúåôãPmš_ª¡ޥȤV—lqýíÅõŸo²k{F®¨6be¥†CŠìÑqE3àL¶‹Mºjˆ~¯'޹ÍU¸yÉrbqLª÷ÍŽüü…eVL§¹T±Co²ön¹2ÒS2ûï)M¼õ`X¦(ÙRZ:šíhHíÎTεò›1 „À²Ê?–Yßl÷®m<ûx¶iúÁS:kܳ Ùð*&Þò[éh6xuútÈÎHöÓ’*"añ€µß¦ÌšÐp»Ù°éS}Ù™u¥âÙÐ'¹G 0 Pf'¿×õ¦ØÇs03'<0B;$ZjÅœ¦\¬ËêŽì‡Ç®YàŠe.)œÉ ùOR©ò’J-ίÂ8"7äçm5tÍSj-|Ó£~‚KŽdrÒQ¾F…ž½î`¼ÖB¦Tà~8ðX+šm£A‘Þ´` (BE$ÌÞNóÎÂѾW©I4Üx»ÛÌ#†ÊÎØÄj5m7›aW¥pâ¦?„ ƒg ¼hf½”%N€i¡žš%,i´]•Ø&DV5›ênæŽÍPðæö°.btFqWZäâƒS/M­”5Ö‘…áÀ8}͸õ35ø œ·„Ö($ú5zëð†ÞG Ù<3cý3¯h×ûo–èa¥l7mz½T&äÀ1çgO†§úâú⇠ÜÅ¢;ÔcEõAâq YHðÂZš¨žÔl·ìo^ŸÀIëÝi‚9¢$Hèb¯ó§àÓ[ÕA<ûpF4¡O9-¦³áÈâæ¼L3ýÈcØ×ïµ­šSÖ03bG¸õöfïa¢ˆ;\¢ ¯QÎÒ›õäËQò "ââ Hê+“Ôˆ6¤Ðô¶\K˜Sú›‹ç¤ saëñ ¬åàeN„´Âü¼é4¡2ÛT†Õ„•FND¡ßòîÎŒ°æ%`„‰ÓeIé$/…S!0Ѧ~a†K&!¦= ]u?'xa¶øÎ8<Ï|³Sóüje”³ç­Õný­Ê¢½;X”—”áÈïpì'à9~7ñ\äœÏG~sÂsòÛ¾8ËouŽßTCLR–ßû®Ù!nPŸÊnÌ#À=ÐÛö´”…g‡ýÚ€.B6Rð:¹RÀ$"ˆïÛº»¯Í),þ$ïõ‡í¶êÞ"˜*Í&¯ê ,…Raƒo?áF…6Ü<솦vH€(œƒBôVÜÃÝÉÑ~á© À€“²ˆ5EÒ¹ \µ!U[W½ß´(,ðÃHåþ?I)Ê\hèëáE{€£ƒæ& ¡¸ÇˆÿúWí› Ä’Píš­aµçU¸ëë¹J”õ@aÿe×n_0CJÿþá°[~Y¬×Q¢Ò¨@}ü›wØk*E#€T€Yžr'2 ä —>ØH·ñî 1y\åˆTdöÕÌ‘ù6ò!s²ANœÄ-ʈԂçRx©ïÚÝê±ÞÕ¸Z š!‡DéñT`È·?ç6{ç„aJF’ðyÓD+8–m̲¡M‚aÊøä=“ð–út2c)8zVLªœ¹ÀùJeü·6-!÷b< ¸9`Ê °žè°õHM`H-è{Ÿ `Õûæi.ãò½œ5Ïúvë…ÆÉ>WGÈ× $ô$b9…þiÒÿ]È€ºx ¤²ˆlq›j"G²`?RdkØþý¸íUÿ¡¶„{e¹!úê›Ýƒ'Añ ¦žz$™G$ƒF„$+UŒ$CzEÊdE ý0’íGz–×þ‘H z=’+fŠ¡"}¦FŸ½¡‘ \z¬Ó¿rL:ôʈÞB!½¤T½"é5ÿ}éå‚ç6¤e79ü{ 9ÀQír=ñØ©ùç‡l‹¡f„Äå&—ÝBÞk²[lðXïMìdˆ§…>‰]š“òýðÉ̼+CÙ1:’Ñe›Ê@"ÜDòˆÎ¾ڎ´#ÝvÂýmŒéÓ0¼D„âŽb}}ª€Ls!éX¯½u¡ÇÐÍMÁÜ0PèÁðˬ¥©Îz©$ªB ˜äêÿ1kc>5)Aô LëÞ³2¦GïFqÖç‘ÃT<çDD™DŸPr“Gw™$U³î¡ÉtÀÒÑ5Hfœ«4™u`B“HìíìÍáÈÒ\=õÈar·ž@‘HïpF³k¢L}W°¹“¶·Û¹ùTÇ:o7‹),hÚô¨mÏh“Y–ûû£c_²JWžÕ¹,ÆZ€3Ì݋өIà¯="F_o\A‰ÿ…Ef:þ’ét'Œ›ÚFï±éd§p+`¼`üæ‰;ŽóÚy󊃮©óH} ®§kN¸°×"ò`ו’æ…¢ÞÒˆqÉ\¨#¶¥Z9ÒA§ï`–OKAcœs =±z’í*¸¬DTüeór#r`ÿŽ#@frAýV~ôý;D†%¼ Ö»Áã$”ª]àNgµ wü6¼¢7Ä×Þ"µv oV ¼k©ÉÌg© 1etìqö>;Ûñ¡@Bß´"6Áû\Á¼œ9ÅÁ Q*Q-Ý1ûä)†r¼¢tÜú™’á«©½ø´€;v1ÿ6µt2èOP¬võÕÔû~ªžz?]„Ó/›Ë«Tïì/Swã ¯ÌoM³Ëk×w¶ “›uõ¶yy5íó6=v}~èºz7LCãî° ºÃ9íê{0ôº§öFeòD—{øáâÿ¾‰`@endstream endobj 304 0 obj << /Filter /FlateDecode /Length 45026 >> stream xœ¤½KÏ%K’¶¯_QËÛ‹ù˜ñŽÜ p!€RZZ3MöõM“3-ú÷ 3ss2=ïé!…ÁtÝŠŠ“Èx¸›››ÿ÷ŸÇWúyàÿìÏ¿ÿþqüü¯?þûÄÖŸöÇßÿü·üñoþ·†–¯ó8ÓÏ?þ—úIú9ÓÏÑÆ×YÚÏ?~ÿø-øãÿµ:Ïó½ó,_9åsýàÿðã?þöïþp|­Î|ž¿ýÓÛÿÿ»Œtœ¿ý釿œåhó·ïü{ýu¦Ùço÷§÷¿ý7þªuÎßþñáú^¢”òuŒüÛ÷_þðwy=ôlý馺î¯ü§·ú¯öëôÛ_þ‹þó¬é·ùoo]þó_ÿñ/÷×Ë5¾ÿ›nÔzûí/ÿüŸá—÷ýÍþ¡¯ë­ûä‰ç:û«ß%ÿv½òõ²ÿüþdÿò‡ÿóÿþÇ¿ûãÿ°>Ý\WJógK¹}åñ3ç£éþùO?ÿŸÿôñ§óø9¾ð!_Ÿ7åkôuÁ\¾RJüÆýÇï?á+ãßÿÏùÕ×hüì9}=£ÓüíýËê7i¿}ýüÇú/Èç×yÖúÛŸþþ¯ú‡×3ã©Sî'»õŽÇN}´¯éأׯ5Fûùÿ¬‡û÷ëÿñÿËTJúÊågGþÊígš_uêϺ®Ô{]?þñ¿¯Nõüù½Sû9ÆøÍ;ôù•/j)}PJë½½ÓÄ5¯W¹ö¨GûJ=\¦Ìù5÷½êËv^/Ójýªõô5g¸LÏù+îúñÕnïtë1ί#‡¡¹=Í9n—©åë•Zjk®†+]†°•õ -\è:@­å¯y† kÒ—<½ÓH_åãµyÞ/ÃÏUNL2ëÔ¹.úé2=÷¯¿úuîôÚð—Ë”õNÇôÑé½`î—Éx©Ãß¼Ï5 _jÇZGñs]î5’VÊýsáÅ»ŠQÆWÿ[~´þ•⇿=ÓXË®ýï5εeÝFèú@s½C‹#tý^;Äü4B³®ο±.æúzç}]\Ÿf¶¯‡çúÙϵó­Óë><·NëÎ%Ïšæ_k öNkœqaÜ®Ôί?þõÕN¬·øñ¯ƒtžý¾•…·ËGª_#ůºƒu*8·ÃíÞWý:ZÒW#01åôNcÙ5\èÖiÍÎvûü—›Ó1ÖJ÷º¼~ÆÉ×âÝ®´~ò°3^Vl^ÛÃúŠñJïë1§¹Ìœøþ—ï–×7¹oñ“ä´ì8H ã2w§Ò¿Êß‚Üê׌Cpý¸y¬w3à²Rr>Ó׌Cp}»²,½ßî:Nk·øõúu¯ï_êøÊ5,îë«•Þ¾úm’\¿Z™5l8‚/OS×?öôé25óÔúü]k9o—‰›q®mwõo]iô¯?þe©Õ³ÞöLJ µT¾êøôfmLçtëÔŽ¯š>}®¶,¦ûþƹÍeP~üê}YL3~õërí¹Â,ü°5ôe1ñ7tïév™h¡ä¾Œ¦§ñÚi™¼ñ輜Šy¤õžñ»__”vÛïŸk´r¿L 1–Áx Ë!”ǹ¬ÅøÕ¯O3óÓ·šËc‰‡øuÎe-·ºõèøÛçqù׸2¿ç¬Ó6Bð©~~¯®®¿Z~É!¸õzµÀµó^kéb©¼õò–÷^k‘b­¼õò–÷^gãzyëå-o½ê:—±`^½vË{¯åDÎk/oy﵎æÛµ¼å½×r½ÆåwË{¯5Ýòµ—·¼õjGçÚyõÚ-ï½ðA¯½¼å½W]Fõ¥“5¼÷Y'tº¼ány﵎è~íå-ï½Ö¦}\oè-o½ú:¤Û¥×nyïµNéëµvË{¯uL·K'kxï3Ê¥ÿúþï뀮—wÛ-o½Æ±¤Ë…vË{¯µàÊå©wË{¯º|¦k/oyïµÎéÛµ¼å½×,_—Eè o}æÚ&.î ï}òAãâ­“·¼÷Z§u¾^Ê[Þ{µuä^{yË{¯u^§Ëûí–÷^ëÄ`ðÖË[ÞzëȾ,oxï³íË…¼á½O;n×±†÷>ëÔn—·Û-ï½Ö±}\{yË«W>ÖÑ]ßêÕòÞ+Bo½¼å½×:¿ë¥“5¼÷éËÔ¾ô±†÷>ëô.×NÞòÞë_³\zyË[¯´ðréµ[Þ{•zÝ?_-ï½Ö)ž/£°[Þ{ô5®½¼å½×:Êó¥“5¼õYÞÔe÷Ü ï}Öqž.ï·[Þ{­½_{yË{¯u¨—'ß-ï½æò¨®½¼å­×²}n×Ú-ï½ÒyÙ=wÃ{Ÿ2/¼wò–÷^­/KæÒË[Þ{zÝC_-ï½Îr¿–·¼õªË–œ—7Ü-ï½ÊñU®½¼å½W]öòŽ»å½W„ÞzyË{¯Ùî×ò–·^í¨×}ôÕòÞk¹%ã2MwË{¯š˜¾õò–÷^í¼î£¯–÷^ø×ËÓï–÷^g'úúÖË[ÞzõÔn×Ú-ï½Ö·Ë;î–÷^-lxëå-ï½ÆqÛMwË{¯eu—i¿[ÞzcoxõÚ-ï½–Õ5/ï¸[Þ{-ãýº£î–÷^Ëîš—wÜ-ï½f""ûÖË[Þ{-»ëv-oyë5—ã/ï¸[Þ{-»k\{yË{¯å*¥Ë;î–÷^W?âݳx·óƒÿqû²ÿþǿξýWXQÿʳú_w"üëvœÕ|þ GÁœ<[×^?ŽZo’ŽZæWYÿþóï–AÞëZ^ü‡¿%üKYóâX{Êû?¬_Õÿ©_õÿ©_ÍÏ¿b$ìÿ÷Ô)ˆŠüÍ©óÞë÷¦Î[ŸSç½×ïO÷^¿?uÞ{ýþÔyvŽð½[FBKùÝ^k½¡È—^4õû{/kyïÕeŸ/3ðÕË[.½’²·^ÖréUrE,â­—µ\zÕy¼wÁ_/ÿÞKƒúÖÅZ.½Ær ×öÖËZ.½ÎÊ(ç[/kyïåcüêõ>êÿCK:-;ódÙ#k´¹¤ /¯WhË‹ãzkJZ9õ½×dS?äÊû»uÙ°,ß~Ÿn“r¼hªñÞéáNiî¥ü>±(/Ëÿ2Ë*EHèä•@ÿO¿ýçÿô# œ¿ýA÷õ— Àoÿò§?,×§ÂÿíŸÿѹ3•ñÛ¿;áœÆTȸÝoßË ÷úÛ_ÿLú@/½¤ß~ý¿NJè¿ýýû…þò‹dp®oþ›~\ÏüÛ_ÿåëpPŽ5!ÚûŸa,W 4‘ŠMñm8`Xw„—sZ.Òk—ÿ7éç_ÿò»é¿ÑwÚc]úš|xŠ y®]vÅ\Ò¶«ûY¾Æj<–¥=Öÿö5kÿù¿þޏÌã‰-gýqÂø^-ko<ój èÞ/ôi@·:lQÔ²¶ö±Z·d¶0âÝÇrØSfKeœ³Øü'[Öbí -q¶è¿VKÃû å Þ¶.Ç@ájikñòyÖÈ÷¡ÆÙ:‚Ä×iëî…÷*Zµµ œbýj=¡:LÃÕ0îB |ï²ZÖŸM–É·^Ëö‹Ú Àõê œýН¾n™ö­N ‚ÈhY“¥â×çÑ"Ö†õÎäï°£OØÛÕÇbl±††{ö¹ŒÚ©±Þ¡°¥ÃfK…ÉØ›Ö‹w9ëi:Þ-ˆ4=ß¡>½#x¸ž/Åþ¦Á¯þño¬‰4׳­%˜óúßÑOL¤2×ËÑ9°ƒ–¹ ýÑÞ†µt8zkYž´Ÿ¶î_!qto)èÓml×½ø_½·‚_³eÂY œ±M´‚ÕN‰.¼¼_\åÈz—Õ°žþgÊ×-3d[·®øô¶7nÔ@r8Õ’­OÎ…yz[/Åcpõaˆ·š]-K^Úuå[65$Þ| ô².ÓóЄ.cÝôÀeÖ›è-×Xc®†Þø«hªw-y{\a¸¦{3Œ¹>CÅÇ´NDÄ_øâ8½²5h„akâcõÁZ]Îë÷¶¹Q+¢½x #}áL® ¬ ‚aŒºŽ"Î3 ³fýº6.ÕÖÄÖR¸K€êbkh×ãfÓ\š„ßà]¬KãÞå¼JÅB[-e_·r¯i½ùÂ]/ʯ‡ ¤-!ÑS_skhØW ÉFáEûÕòùfAª¶À*†O¸†R‹»®Å}²eàâe™@Šƒs-ëÅ®Ì[UûðÈYÿÌÏâûB³|Þî{cÍ;DÃ~\Ô28Mp=ݹpæøiS[—ÆgëM& Ÿ.sV¼Æ¯®Í¬ÙÌÎz§Æ8 ¿®vo\'[m>9§öÔš©cüúzKûÕ ¹bµœ¶]ÖÉ¿â̳¿r÷ìŽ-¶\&ÖžnkÉÖ©c)a×ᶤ½yêU{ÕáÑI=ãí§~µªºŽ7îèëõüÄ8ºM[<@Á…KµüèU‡Ç°M bk•doA &éIrû -ÙÑìÈÁ•¹-.C¿¨ËÁ_/+Ïg=ß©=pŸ>½&~Í&›¦ "ê2U-ŸâW#kWd˰+'M–Òm/µ¥†¹’².£3³GNï$)°Å.3øQЂ…>³Ûz¬Y§xAJÃŽÝÏvõ ‹ÃB'?~“’ÎçaWi:D–Qí*tƒÖð™ Àákžu[vò¯]Ú^ü:QöQödå“6NŸ•ßwMªrüBÀO´¢ B÷çòÄŽ‚–Ä}æCëÜEæqh×]ŽóÃ>ñÕÀù +€ƒXZÓ€ .!´¬ïThi˜4ìSpR®—­¶(Ëz(NºuºžºòXZ#õ´ùS²¾ò(Ť\°Üóµ9æ³p޽†:O®ÇÕbçõÚY´ý`åè“e ç»“+Ïþ†Þ+ë%¦MÌåkåÌd£—“ÃoNckŸ«Ü,lj(:ƒ O瑬ç…FÓ(Ù*Î냵‚odaËÐgZŸ_VNn wÚúU#ÀÖ‚Ç÷&¹Zº¿Ó)cqy{¾ë$ùdÝÇ÷ãzXd$÷r­6;šÿÅ·úch…·ÙêÚ·°ß¬á³­ô˜ÚLÖŸ‡& ü‚¢>´FjÁ c­)Õl]çY+:C´˜…<È›Ïx´´…’Œ˜Õ’»hN•F×dµt;xÀFÆR‚s¢å[4ÙR’·pOoJ¿J§ö¶ì º¬oŒ÷¬>µMzZ] vZ Mä5€ÍÎ\†çך¬ÉV¥L\˜º:õÐÂÑ™Õv!mªæKwµÐb`‰?ª4 ad68•Ç?v»V½åÀÍ'ùØ6¤ØÊà\µçmôÃ65`;&`&´ÄÖ¬Y7›† #䊖µàôaÑ‚;”ì…ø‰ã§ã±Ãº°ùqEV¶óã2×^Öø›?ˆ¥±>õ²×í|¤¯—ÑbF.Ì!Lö®_u™é°ktá5:}ª‹Ì‡±¶ÚeütRÇÙì¢u§ºLmKˆèãLÅ<Ö—†å 3`ÙÌæb[Ãö†-•7–é‚«´d3ñ6¢¯5½æ $üïòÑtH¬}ƒ„ÒxHäe_¤òfö¯¹­àym|Žg‡ŸW4qùÃhÑUÒäÈbU›\äwqÕß[2qYÅ¥VçÃÖX£ÅÄ!eK·èàÚÖ¸Ù æ½/`Òµƒ‹:¸kֳ؀"õuØ,'—YËO¯„ °e ð¬ˆÍú…›<;ünø,Òf¾ƒ†Ýü–Fj7[tÒÁΖ#´™Ÿ"þ6•>.útÈPí@T0ëRÑ©¥™ŠÌv˜Û²R«:IÜ÷]–™»«¥Ú §õ2œ g6s-­—(œvéË.£S‚h¥nå^Ä›Â1IË&†•üš .'L RÍP=&Çb99ÃPŽû1nU|79ƒal›Y\Gš Ô@Ì`=N²Ç9àÖÑ…É6cŽõæg5_“ïy(€¿Þ³˜[vTÙ4ý8…A¬_Ñ•â©u‹ë`!g{ÜÉŠmqèd¥ÂU×p§V_ÏŽä\¿Üǽv °°ù íOYN}â“h)À¸B `;Lä‚„¨‘¦¬V€?v¼îškœÍïJür4u³Ê ½ñeÈÈðÂNŒs ÈÂx6¦Ÿ n`›åM9ù¨fšÙÑ„¾d6ö˜Íc½¨LÅ' 8XÉÑ’Æv´Ç¯ö:Á50>IKÒ;Î厽1Ãf›Ø#·ñ€½qöâg<¦+n;yúÓ¾¾åG3ñ¶«?îüñt'H8dΡxV­iyÐ3,f¢o×GÙ–}"„6šï›âç®;ï—q7yš‹:›ùeùZXkKq3.ØVÑþŠ6Z´ã¢­÷`ÞMÆhUFËó~Ô~X·ÝÜDBÑ\¸0ºS\8’@ãîßÌnjœhÀ›ÌJ*¶ÓÕäVR3Û»Ô ßÂÖ¯OCß»fFvàãÎÍO–¿©¹ÿëts‹ÈP޾Ÿ$ѯ“ÏÍ-| ¢ G¶½P1æeÕ¾Ç'ltDTh v™8‡Í¬DÂì¸Ó?~D€–6m/„ñ5 ÌÉÁ@á9„ ñ«>ìLˆÓ{mûYÈŒ,N˜üë:|³Y†AZK“m‰ìéE¯­ ‚_ü8g`ΩÙÑÖ›h¿j³ÈŽ)‡ MÃ`U™ò½‘×y ! Z$‹°ËañËÄqt tÖ9uVÍ®0Œ™y0"ðËq$5¬¦ˆ¨‰ì‹*‹z›*ð,ÕŒ³‰²…×KY°Ž+ ™Ðäio«›“0ûþà†áêó»ó+ÌÁ8Oã\Žó=®‰¸nÂÒŠ«ï>Ð.¯ Mƒøù•ñM»À<^¸›ýTl¶ )ƒž[òã¤cÇïj±À¾2¿Þé³ûú=?z•9 ã@ ½/1À ÕžÓoò8Ö©.S«ñ¬] þÍRÜ‘Ïõ B‹Ò²Þ ³›µ#ޱïYíI•g@?פêfúÑv^-Žíë7âðÄøh'ð¨©ìX—gMf®§L|¡Ÿù´c6ëkdª vZ›BfK68+%V'PÁ&{K8+Z4ÏŽõð³èÊzä£Ë>s±yvà´ÂKdGpFC‘,? Ý¡¨¿Ž£þÏÔXœÕ/Œ3þœÉ½Isµø^‡˜ç úž¥í³úÔ½AŠÕrZ|oá¦m­=P<8åŰ£!ɺXNæ)€HqHvi\†ðæi}±¥*hiQþa!U÷¥V‹!Oíüj>ì4È@nœz¼lØB—á·Ï0é>ö½y"¬á:dÚðV|͹ÉË)!³új–avÑ&Ǭ ³žSÐÎYàN'ˆŒƒÎØctö’ÃvÆâä†ëü4¸ºÔßq®‡XXˆ—=ÄÔBÜ-DæBì.Ä÷"xýpG<å‰[ãz¾bÖ{ Ž–dÄχÐT _=„¸b,†Êb8-”ˆÀE7"@’æß ´d ²~¯ÀÂ]'é/ËJ6 Ngøe`GèÙS•Ó…ôºìã @¢Öî`IRH‘{ý*`Ždc³EfоRîäb°å0¬“›§à†`ªàÅ-ð'úsÇ”ŸáK¡ÁÉKÙØµmÔîݧÙm.3†ßj½Õ˜r. Œ8D-‚«Ã?‹‘°ZNâBD¡“áñ{(oD‚#Z|”æ,«0$PÁ’È=;òØ·5o›×NfÑ—Äçåð$稜DE;²‘´öö¯–=m40õا‡f0™¶C!¡n®>*^ºè2…oÐóF´Œå¤ÇykYƒ†è°gxÑýÖrpó¨æœÕIóvõi›…¡ó Œ¾:5í²S©j=µˆÙ•'Ñ+8¦ì 0?a¤ð\Y¯.Ë6“´Ý‹äløê‚%‘Ôó2î&·5Ÿa˜Aãaؘ^¾ßÇýûæö?B>ˆC„!"TáŒyÜ0‘ˆ™XÎûìYV‡vŠåq#zt¯n†Vúãlqþ=ý©Å O{‚{Ùé.gÇHaÍ…;¡*’®ˆY‘¼ ^‘‰b‘L gw\çÃvŽÓè!ÒFÀa®@Ýj9üýŒ*t"6“|5’ƒÞ‡“\qvÂú¶7)æƒW&äÀ7]ªÚP7ù¦Ù(fØýè‚÷½2u$Æ=÷ÊÄ. ›Q˰‘IÖa°*¨V1@¸OsjXHx㊒ªF×¾ÍmfB0¡ÝA=GsòGå¤w$î7iì;AQÎu³C§I#ÊQ ê…aÔ9–}“âî6ðã§]gê‰×íÆ : -q¢ pHl¸²Œ*—‚_Ò(yÆÆbô¶“w_Ïì êíûD‘ñUñ Á,™„~0‡Ó*6«»\{ÃYN äø.Èè=͹çËÛ•ñÜpÈ™YŸ¸Û‘4ä§µÃ÷ÜS;<7#±Á2¦@wêrd7Gt$IG"u$[# Œ†æ[dàê:¦t7`±iŸŒ¸äœçØ@­®Æ5?×ÜŸJ·=¦>…{wE=°u~‡I1ìøøˆÃ_ÆÜÜ0Äv§µ½ô÷pŽ#8ô*4ÂŽÕ2-¶„… >Û”ÓtÿšŸù#`.Y/Åæ8ïu¼Ûkˆ±Á¬_IÇ$† áA†… L­Ç2²ÁF`q‰.â00˜Ëü´‡„8›[ÓI/Ìk yX¦Ð:e:ïž×´ŠGá©>^6žÇ0ûiÚI¯…S{]äFëx¢~vH$D’Iä¡DªŠî N® N‘€ƒÑ¯âsŒÐPï“ 4ô šÒÎÃQV4°±A•Á(· äSœ2Æ2c¼3ÄD î‰)Ùt‘qYyUÔ{8ëÕ"”2,æúhŠ ÁØ…CŒ°¸™æ‚ Ò™«…x*¨;ŠINàYìÝa"ã:òfC¥ÝèÍCGàÔÆÚ˜SÐÞ¹cò _ñÂÝV5¼T‚`¯ømΆ^9Í‘iиŽQX²â!gr†Èí«;žuÊ€ñ,"AlézÿrŠ<€Z bêv v#7Ü/Ãcá(„íÖœ'Eú[ÀeApa ­h4.ËÛ¥W—Ã.ä»ÅQiŒ£³-šf-òi¶¸G~vVÏ!†Ñ2œ&†÷ÉxœÃaeçpËÎqÚŽÐ@pPhÿfõ1 òTŠ^Ù^þ|›$r©Å‚>½øñÊÃì¬ BÂ.ÐãÈíÐÔgÅ“ºÝbˆàÉCiË͆ᒧ:}p¶T½y±± ÊÀ1> ]ÃËœCßA% F\Ö¡ˆ¸ñÜ0cahk€“¢|L“ujäÆ!ÞµG’™Ä>YÉŽIô"‘ü–§Á œ[Ù®«qâ^ Ցɵê´ZÛóÐûœ>±:äÞ®–n‡êmò}æáBU ߦsCê€ìÕs{µØo´›¨Ø\ ÿ@#ØÈÄØ \€ßâº)ûU2]ªÆ…j» w6ç´SN ÁýägÕS/q…K:ø–ÙZRhÀÞ‹µ$ªT!´§S,µ©á—B áæ¢Öc25¹sºk˜†tE1þ僡›áÎ#ù~ýö­¸Ñ¤“±vŠ;ø- åU¦IŸ2ÖÀ#C—nî æƒQÃÆ‚ óåŸ}õ¬@QlN¸%»÷17qY-©6Ù›ËÝ@t¥¹ó€2D$"€©Øe†WÍâ àbvK=‘uˆÇ‘£r*ÜP°ÁYöŽØ7Ô`1Ø8»ÃÒÇè×ápDÒ©aÃâíuà™ÅܸI«-m»z­2ÒÎìP†¦›ÍNèD‡¤uÕsL·¶Á)†tøE:§íj9m„O¤î )ð Ø‘p»µà'5›3 x4úW‡ë·Ý‰C÷ûͯ;òö‚eHâ8·ñS¾ÏôŒÁ5Z]–}o>ÆÂvÈÂ“å€ ©©Ëd*–“ÐÊNWáî(»J t[;²îŽêÃwãéE._àûENào0r ƒµø`P£ÓrÏäÌi#J€vóa#꨼{ìŽÆ<’­opŠѰ ïä·¦ûIµ Ñ7_žÇ’+é.G:äïÀ1bÁy(Ϊ€Ã/Q\Ë}-FUÒ¼ˆf-Âvª&i¤Jó5/f…œì Å±sÛh-:†sŽn°âQ4YÞîž­Oi;꜕ ”&³ŸÙ2p£Û¶ŸÐЇ³,îAç§Àt ^Çw ‚øg¸¸¨s(>±Zœ¿#’óŠXÛ,”r𼕣‘S𠂯ᱰøš¼rcŽ¡pßÛ[\'ÂGƒ׃¥thz‹ˆ ó ]à*ãèN2ÀsÓo´‡2ˆ"šh)3fƒËð¯…X$kÙÉÆÓ°ŽÏGÊÈ©$ðNîÌ”îJä·DLcÆ‘I›aÑ6ûƒ]lÿèD"úÑ ÞÊݨä ëü{®Ô¡„ÉÒ}ö¼}í€ ^”[Ð!NŒÃ8µ§ÃE\‡I´Û4wòç4{ØâÈÍw7,©r¾‘nèµÀ˧Ҩç©lñÔ6£¯ÝB›d“Ü\{µÄtÓÙP,¡âÜ´’ÚB¤6Xzj*›þPõRûÓZúކ›Ò,ƒÕÞ-à Ùz§Ûu’oÜ}ß•10Ê—4â=î8´%Æà-°?µ6s§¯ê³ex…ᾟºæ=~7äõEè’Ø]i†òº ‡#Þ’j£yMh¦DK&;wÈ?DBà †bô¡Ò8^Wé¶ ™! /žimìØ†bVfbtIÌ®FñéŽ.ßñÑßß² ¼rlG“ûÙ5ÚÆ¶¸Áq ö {nÁªÅ'$!¶iQ²o¨ænd¥ÌÅSœ“Fä ¿A£{Ân3G[ ´êº?ñƒÉÃo«t>&ú骇à)\ä4²L~¹ j>úÈ©¤ë1ŒÃRö(ˆ÷2”*gõÕT]y~:Ì”3€°‹´wŸÁa¨×ðr°8¼ëA»ás; ÙÀ‚ˇû¼R¯ñËïÔñH/  ëäèTHØ-­ˆ£ K©Bd»·Â·»—Óó•°É \lSÿ”ú ˜3þ«½¦Ösä"x½ìHõÝó¼;§7gGQÖš5§Ë‡ ¸"ÙnaÚÊáÞ¾‡Í¿º†o¿"¼1ü(ŽO^$¾kŽà޼Ʒ2ºžÑ=­]ô–ZÒPºÍO½Á³΢…ªÄ)˜Í¿ét„×ìׯ÷†‚™vz®Ž1´tñ ÅE¢É=¦®o•ª‚‰Œœ(©°g©+g#Dª í CW¦eá–®v9FΛÕh{š»%'Â<ùIåË2ÒNÛÞ’hc¢mLÆ}HØI½÷ÄÌ»ùÞyOý3’®NÙ¼á%¥¤’®Hƒ¶øÝ9îM@ÏÀb>V÷UˆtàÕ‡…Ø+ôÑÈßÝSI#Y;ÿævëÏ mn”Ü`†øfZ™“µ%õ²áœEÛ[)Ì.䫃K¤OdeŸ/CS\Ç-@¯x=«šñ±å9œ§aÙQàÏtËÌ8Ïñ•ÓÓ‡çðTBó$DÍ/$hÀ¸pBD"(p‹ˆm\±;6ò„Ÿ<`,7†ß@@G?=ñî%#tûºÛ^½2¿åR^Ã&ß¡•~y ÐG’ýÿN¿“È#Ïü‹þÀWœö c¥n£nozxºi@E™¨@Q ,–Ht \˜{<ËNò 'êûÇSŽWÈ‹¹bùd1笋"SD ã3É+©n\Å_Òð14¦yúr¡ÙÒÿœ¨H›2éæš˜/ùwþXíEaî¹_Œ­ÈêŠÌ¯À ²'ŽYà¡Ý¨jŸäK „ÐPØ¢bm«X6 ƒ~+cë`°1«úÀBjÞ‚ÚžØ'»iΑoØß„Ò&9zrmÆ¥à=•,ØHÀàeL›ä cÖh#¸ªºØØÅe°µ:ñ#O=:„È/_ÜÅbL•®+)fFmé¾ÅA{@™p¸w®D2XK;ž]gÒÄl ÷l 0Ã.š xb”@&¹»K7‘ÈÜ6þô{ÏŸ}ȱ½çq²…î &Š¥Ò4ÜKróëàV1\^5Sq‚i-¦ÅRNk©ö¢QL5 ®MÖ»lëïc„…ãd¼sm£…û8[$ò†±MUÑ‘Ò-j—Š=CAb?^4$y|pn`¸bíµqÿ~¸ù_ú)ÖB45ù¯pRÓ°µ—æ?"24š;ì_üø‡ºtQüŽnY×¾+ÖÅ¡_iĢѣ%s½óe†Â|%=B®7†'kê)Кaà œË~6$.,Öïß#ºÞ¸°áhÀi6”~d™‡‡y½m¸|ë¬ÚkÍÁfCÒÞ+´O §‡LUìÝœ ûNE¥Üx'q;«®¢uh(†o~ÚAHBóÃÂRxGR¨¯,0 ÅO°àM}¶˜‹^]³¯sì·>ƒ=^^áÀ ˜*H7;·Õ²k»àäà ÃÒÄf'©SÄÚä_âœc„¼¸>"ì˜+8¹8“¤šT·ÊÄ¢ügý,ÙkH~ HfKÙ.0Ð  ÓGg É'n8"‹ì°_YÚ• y‘n÷r[è&Ìø,4|W]¶Æü2G!÷¾².‚nƪŸ&øêÙkÚ¦K§ šëô‰eQ°EgèÛ }ŠþD¶:*]Q¤E¦lšùË\oÍ„©Ù(G ¨ §L‰õ:¼Ïiö9K¶h|–î Æ9i.÷mRK/$qñ£¾_ÆÙ{]P{ã¡>Ç¥€fËa(«‘«g‘ø-üöô>7^ø-Énž|7õÓd)† \¯Í+NÒ"ÌQ¨9Š9?>Qè¨üþ äƒÊüƒ}Õ»?û)õçànÑX†ÆI„Õª9}v¢~5f°ü(ü fÀ c)LÂ’ Efô¥‘ÞSÐ*j±Ei<KÀ+´CÑ2ÍÔ¢åšhö‘$€ÇÍXÀɸÊôÀ¤öN´l™Ìû6ÚÀÑNÑèwsKÉ‘ÐjVÖlCÏ1UŽæ·1UŠN'Wa]éP𡲑pm¬ö`Ü? “ÕfíÙe•o×Ùô“ë2þ~\êq;ˆ[FT¹ŽJØQ-ûÎ6y ¤ÎJ¤µDêK¤ÇD Íà KàcìT°Ë–öÉ6¿F¿%ÓÏè#0<“eÕ€ˆ Ùšqõ ~ºwn(}ܶ&ÿ$ƒ¿¸Úÿ½ØS±°XP,‹…Ébñ²Xàì^íAkàA jD]ƒ{Ü5ÆfCüö“Ó{MÒû~Lä‹É~'C µÐLù“'ˆÙ7ôFÎ`6jÆšMäl60Š‹m.ôÃÞØ<ÆÌ„Þë%®yôéo‚í}ÀÝž16Èé¾AE*)¯\¼Ø ÈJoóºú²©¸r³è¡¤Qƒ¯úÍ‘£‡¶ž8óS¯.^`*œÖèx8y¼Óéšî!ò’Üd{Cõ½Ê`ïr‘akÐÍŽ<¬eJvûØ; Øu‡µ’ÅLŽvªÂ9Z$¡Ûì3{bâðj߯`}ÂrCb€‰™DÄFÓÜ`€y‰$9ðLšZ³áÊag¶bËHÏ);¿ÓŸ)Wf6°i˜¥­¦t2Óxî€N’ r"ʤ˔ nBX³o[*ÝѺ ×_ÚÁ»ëí…‘3ó¬õ¾kÍAÁ‰Xäô­­SÛ©{bë®Q#¡ib1¥®…2v] c$7äݤ-¹óöA?®VPfY`¨d# ¡´QˆìIƒh°—,´ʬi¸yõóó9v›<žìŠéäœl%ÀÞ%˜ÑÓõŽJ®¡HË\ƒd`Æîâ‹Ø²3!ÍÓN–;5ä‰=&‘ƒR³ECvúdm’¯©cgŽN±&Šs‰nã÷bê³ÞB;•²5ïâ eN¦òo@%œP5À$®JVN~w &žµ¼¸®¶ÐV¼(náò@Y;9ÁÓ"ùÌÒº ²'ãîÔ5H®bP±3Q…wgÁáy!kØT£*°uŸ½ %Ÿ¾œ3 #^Ûè¬þ+„÷ѰåÔ: ç‚"zÑÖhæÖ~ñÏ%%®õ’¿µ²£žvÔÜŽ²Ü7Ùî»®wÔþn¢öP,ÙöZ@ÙSŽZ¶C"p\"&re"&0nbyçP:–‰~(%ËMßKRJñ¼îßÚ+¸y<ÐÂSÚûæ_#Atû¬l][‰°Z(Hj?:´S$]ÂæÂÛÁóͯTT@ÙóðˆUS~NêUu—¬‹<·CäÇŒÃ.,½Ö÷ˤ¤>ÛÄFr8v¥|8ž ‘’ö“§Á†MFì·ü­“1ðÎÂŒFøª ·7X@æÒ&é‘ý‡m3n­÷í÷D5Þ¿Å É9·äám>,Ò°ŒÃB{AØ.⎒™úLå‹Lª$w€›!ZxÂqUÞMñ€VQȺsµVuî­Í×Y½háÓMO9p>¢ƒ˜èè_èî.}²à®FÁ÷³á‹`€D#%2ÆÎÝj‡Å…§súîqÚHNˆ¥9¤„³el—‡è[qÍèjáeÒ‘ô«ƒ'= ACQ¥Çĸ°ÅH&Kš2Fn±Jã3 l¾Ó‘u™]ðÉaüÑÌ{’QDz£¾•¿MS–—åWî Ä=3[’«sô=\7 îϺ6_ùEZ^b“5P±Œ’P l¾WsÚµIáz»îm}?Þñ€6@Ô1ë^äÓˆâóáTÄPÚ»™0û&eCCv‚(•Ná+½ 3·Û†|Z‹-QbÝ©™ó@Êk>b^ü)‡ožžÉÈV39)ÃëG€3‹+˜wò-ù+×aϲ Žâþ`\µ!M¸Øu¥lÈ$6Ióª-1yJ]؈ÂV7³û~G7þ0¸†oe1Sò,›6fpÒôL§ª4ž©øÉ/ùõõ³íú¸— o8ùªgõý¬yu±‚vVÔ׊\œŠV¹î8X„Ê`3ÀGœBÞ~‰ïoº&§¾àá’Ç0[ú~’žd®RÄÌ@ò#ë3gç%©½ÄÑR²S¬îÒ…õª|Øp!;‚CêD8«´ú¼ðø›°Ø‡cŸˆb©8rªÕ`Â(úLÆn1ƒL7Q“ˆ´ä¶ÌáOqa»<1b"k&2kû&2t"‰§3››`„U%B­Plçù–PÀܳ´ÍÃÊÐpœû¥LU,40ÒÏ—H ¶æì¸*fV¡ÃwÎV9ïÌTª/Ø[ÖÐßçÊ×úߪÝÇ´œêüœb%9¶½ËÝx‘+ùœƒÀK¸"³!²L²³ /üCö [Ü¥f-eh_-]ÅÊ.˜ÁÌÏ&q…þ.LØaP?z¨¡Ê,ÄJ ±ZC¨è«>„ʃOuf&†úϱF4–UÑÉR•I¯svzç]=p³"+jõG=ÿÍÿ¨ØTý¢þBÔhˆ:Aë!èA|*{¥` éBÀÊ#[Væ«„œ–˜÷rÍŒqÐŰÿ~ù~ ÄÊn´¤Øb¾ŸI¡"Z¾™ò8²1ºÊx‹‹ÄW9²ŒÉ¸CÛÔ2¶ ¬$ˆ]t³·íæˆÿ˜§%÷²!À¼ü¢äûWæDâéß0PæÀˆ°ÛÆN¨«™âmJøÍøgȪø~ƒœN­E: Û…»Er†ßüÁ3ºyOéY£QUêªP—Œ ù6†…|†rŽg\~õñ¸‚v/«EFã:b9¸éh½”ÙbµãX9MŽ„³;'-ÒÖx ‘+%Y, iTRÚ”%ì¡_™Š1u«µ¼Ä缺f9xn©x,¬Õµ¦ F «…<ç-<5­ÞXÛŠQÌÂT9V¶H;½»TwA%O¦McSÓ^$¯ÌìC <–[w«§öTs-”e‹•۪厵be‘Ç䢾“[–ä ÔDÔÒµ¡áÙ­ä ©ŽÚåWÇ.Sl;rkѶ¼¿ã}à?Ã! ïOZAb’±<•m?¦ ¸£lȈ'As=—%êŨöRFAí(*"EÕ¤ û”37²w¾‘M›óçn!E#*ZÑ‹ÎÈó \ÐYô®éô7R^>)ˆø­ Lâ‚` q•)ÈmL›÷íPÙk>”iˆ¸ÿ¢ÔS:8Ëa=ÔgŠzŸVŠi±©ÈŸ[fºß»%`Ž.oÙ„“Ñ¡ca¢‘I>vË~¯“†„H»×”í$ÆÕÂó¾AX²úŽ®,¢j+ž"v/.$[„½VW…©œ$eÀ6Õqáê"58 “1(¥thXL“´ÛSzÍzÀC” l¦øb˜ E*õmÖ€Ñ_>|ÿcŽá)’«åÛ'þ,wp_ý~h}(d|¯uË!?–LîÔ^öâcTŸmR—ì;èD½IW.صÐÒvæ>%I#-„Ú)Õ=ßqÚ­œ}~$Ö*¦°³¾a_Zjͪ“¡6XTª¨ˆ–'NÄ"±PÄS1‰»ÀíÇ4‘KÊÇ÷§ŒÁT˜‡ôw㫦Ó‹ µÏÊUn„!ë¦W’%aÇ}FJp,÷A¾Ý/Ë¡ PŽÓM9Äuk‹B5)ýÀ­3ˆÃ< À!FnÏ HBGÂúdi‰—âd—¢À+‰ †EÇô’˜‚²TBKLu‰é0!cæžSÓnRsîé;ŸéÒ"| ްÂd¶ˆ“™•UeÚFZ;µƒ%Ê~eœEˆ.y,ÐPÈXß(³ÿ¢mY˜\•QØAÒÐc8¨!Ln-²MêömB^ùòÿýÈ¿óÈ#×ü®X+wÊbìó¡àV7½OË C\“½E³p—åxFæxh‰â“Ir$wËl\i½aLj½“—5=G'·ChòØõ…jÑkuÇÜoŸ“¾ à E¢x5—6„áNë%|rxë:ˆ~…_}æ9]ãüßâòÀÐJ‚“)>€6ãµÛ™Åöʳ=5××<¦ –ƒ›nGÀ TÊ“f7>C:ÎЪ­0s×瑆%xðÝ6GVïÀŠíT8bY}ÜŸ÷ Ë<&UW›Çá¾5O)îT1” ñçÕršÎ…ë9's;Ë)Ä‘YÆ28¤ŸvFÆ 3·üOQJAê^ºê=wƧ¨åU[ðûÇ“þ`Ô(dÑ…Õà³»*ošÏiyÿ•šæ±&KLRµoÀð‘,6^V¶´US;mv㜀%J¯0¦ ”ÂgµÂË3‰ïr¸_PÄmïy×å„)Ÿ®ªŠ©‹“·à4¾ è˜Þj‘qŒµlŒ YhëÝY’¤È"2°¥*×÷Eм :Z¥¬œ…—mWE‘ˆ*nW–Ådà ‡¾¨ÀdÂ_2.¬<;ÓÊGE]ã¨}õ‘ƒ†rÔYŽRÌMúª  µQ½°•‰ic‹îã^¤ïý›‚i 1YB¤sÓ¦ à•ŒKoXÄ;plŠI>™O¶œæ¡!£¬üÃ¥mM4:™'/Ê8«Oøž5Т†Ë”Ør.Éß?D”£ÎrbnªÑ`£Ù$ÁÒ“ëƒ^ê›(:3õ°Îbûº΀ÅkºËyJrj‹»2XÌ¢nº5<³xM‰QU2zîý:–Ɉ¥4îå6bIŽÇ²¡´G,ÿ¡”ªNØÆèÞ] Ú>üWí`ÙǶK®ÊÕ¿¸–=büâR)–MŠ¥•Bù¥X¢é¡ŒS,õËAÅ’Q÷ª–~£Ô\mꀽN]V¤áXª“©°V'ž{¶=tgseR»uø­fø‘]p/J™Ú<7O©Wø•W‘–- ;À2ÌaËÅè›÷’Ö±êu¬ŒŠgß VÙ>=Mu5óPÔî €$¥1°Å¼«“~溓J2mUZPòMÉÊåeÕw±Q3§^øðÕÂUÍ 0lïÍjŸø‘Ãò”Ù<–sKÜx6ßa]â¶v"ÃË{Ï[ÅŒw`eEË/$~Ø?#(л>’%ˆ}É­–î¨\øN–›ñ¼|"$WY¬&ÕAÚµ>×aÿ¨ÐŒ:~ ?žÊ½ù³^6§‘Eêi?’mf”’Jïõùx²Y}‘ùÙÜ;È53_Ù$"±é•éjçB‚¤ß …sô0ÂÝÞr2r3§xdÙ÷Åò?Øâëñ!¡4äœÆ´Ô˜ºZ…‚"‡×Õë8rMê"3ç¿ã 6˜1ÑvêG.»žµTxanØ#§Ãî~8z¨~ÆÜdRNŠ'ÒrT bìí'œï©®*©w„=œj=ÀTÒeɱ±,DõeàrG£ùŠV£½QüÌyú–ðö¡¤aS“rv'Q›o㸠i4¹zÝ­ûÎî×>ƹ`ncÙàV:òzåÏ™3‰›ÙSòTöãøZ¬2ÀH •CžâUáØ=³/!ÊMOÔÄÎô¦·“įÞw]èÕö5ë >¡áÓüd¿¯y©y0eÉòB0V]nùsO9v1/æêÅ|¾¨;µ©ô«o*È$—ª\’[þ S*/›JJÌ ;,Œ'Q»üU½R»-Ë¢¼|½­M„Èkù\KñßÍÕBêu|=FMŽš¤&ñ*„oS9ÂxCh-ÅN wŒ2}šD>€o ŠY]ÁóÊpC¤=ø& ·ùôĈ¬ïÇr±ú޹ E-v»wUåC,Ò'éºßÙž†A ¢~ïË(+ü6LQ6’ë‰aœ.Ÿƒó¤²ðl2Êyu]½ÓgSh”烃êÑšy0x“µûØÔ~I%IEÌE'ÉçÓYfÞ)©è»[”aªN$*{ì4¥ç¦m ™‚Ár÷}»øpç ÑGªÂ÷½™\Gý3†q%K}¿ð^€s;lÁ*NíØåEE†ŠŽvÕXï;‘«& Ñë«"º@ãX“[7UµÒݸ¹ÕAª•ë©Çšë±.{¬Ýë»Çð±N|¥=¿b2çŽ)ÒüfÆ—÷‚ªK Äç02—¨¥}ªò¯O µ;‹íñ'¥†*‚þý¢©pR˜3Òe` w1Q´AÖµë~Pß¼ T¬ð©ÆS¤ß“I ÷"êY\ÿ6³£sY%w8ÒáÚE£™‡Óq2Œ~Ú:æ•)85K£ØÌÌ(cÉJ¡t“µ¤¤ØuS³4iù,6뢘݃à]Å« bÍöÚZUFlš~ólÉÑÓ6—ËWxe«òx¥&} G³äÆN®Võ«ì”F£Ùý…dõ (ð¬–íG¾7ùÉ•ŽîvÏVrlûãÌ,žÛN˜hê?·ãtXrÏK>1Gèå…œJӦΕ¬ò«U4oÅ{‡s¯“Bu^µö#C:/Ãù7Ò.^QžíhÊ»ƃh™Y¡Š Á›ÓDä1MwÏtI¥³»}Wˆ 4ؤ–™qT)|Œa» ¢ý•jD§‚Éòtàr™]ß»ÏEß—ÐoòœAhŠyŸvŽtQ”`L¶Íu£Pú+1m$ò´™Þ96Ót.qŽ„#=fv¿è»*y ÐÕ>‚"HT y C„PE gÜz ƒp½}WƒŒœ;eà-ÄTrЉî¼iFP÷A³ð®jt£6bÔO ‹wÆ •òge IUÊ•¤4» ¼¸dHÛbEÎ(oz ÂÛU>’ü1›YüoXñ…rîbÛ®3B5£k*ã%˜ \Ó®G×µ„íµãO^2-¬ܽÒúS5öX±=²ŸRwUäYE.VaBfŠ#©s±²¹‡ò/Ãó÷R•⊌UlälkVI–e—ÁÅ‚ìÉCYSGdË0-ÒtN“Á/ÈsÒúç¿‹ô˜wIN,ÆF{µmYÙ,aaÕb‹o^ Äýcg‚dÇÙyõÀ– ŒªÈºŠÄ¬cˆQU±Š^"­@”×e7W®u–Ü­õ!MЇ†ÄËÓd÷6öÉw8_h¨¤ÍX%Ä,}eÆe»êlV5Ä4êZ·ÝâØ–œ}8ȘF¶j$ÁáèQ°;2Û—¼¸÷׳ eš¨*IÜ æH›£Ÿ¢eÑ™`Õ9ü”?Ù‰Y›ÛM͹ÐU2“´¤¼âU•tpM^wZÒµ”ü5þFÌF«Q®&JÚDÙ› ŒÅs‚¾ÎUƒ/Šô!éuñzZ—áT2¨äxi8')DMåá€/`e’„²­>}W;ôÞÃ}‡Ûu>§²ª¾ácåºTÖOH͘"MHÞÚT-ÁúÜpv=eƒ)vÿK®œPžÃcFE Óh1…ÊÜv~»EvÕÖ­^À%nóñ(ˆûa9Uø-“àmÂÙ}ãï* €Ö*}v9fT.mïGŠ)ì<³JÃfÓÌ£\cê¶+LIcA‚-½¹Ö¾“S¿ŠÀ´¼Õé®_â³u™šè\¬ÆT–UI   ä©Dâä%Çb¶@L(ˆI11!$/ć‡$ˆ(ÜÿP+ÊjS)e[g6u iPŸÆãDSe§æi ‘Oz9AS§óÀjc·Pœƒ¤Îìæ6öà¦RíÓ0ò“Ë a,fÖod³_¿ÌßMs¾ñž{“Ýi!ÔÃq1dWªðj©SNUÂLHÜáQV‘`鰋픇ìl/Ò'ºèji®–;К'@ç¤V‚!6RE¥UÆé.D²”Ü¡¬°_òß»œîêc6aÑ!„RŒuEØ>¬Â+ýáû‰L_"ëCg¦áñT? ¡×þv4—·BÒžñ:‡ •|·p²Õó<ªJÁ…zp³’!ø‡ç…eƒëñÈF¡ R¹b·Œ9N/à™ÓÈði–¦ÍÖe¡ž¤_ãÎï¿RXnµè<»es î„“?k$èpöÓrM0ZïäT«,‰Ž`iÉ>~o¿Ú¤ß®“‡Å¨B$‡˜f[5 }èámîÙƒúXT(kœ„ °s³§Òµak‘Jn¼Íùž›I;èUºOÚ:’‚“s0-âwn·c2Cõ¶¹ó†ˆ#¤âŒG‘Ú¼bu—Ïœ7»ù ‹“êhúdAgp}ªQ“¥/â›á˜$Љvùè)×»W'Š\GŸGhN[•ŽQ‘"¤#m2XvΟ׋ÁĦëïÂà”KâÚIŒU74ms\nõ í,&“>¶Í6J¹°TŸ'ëò)à ØAW¨ov*Uú¤aygà§Ò0LÏmµ°¬ó£¬è[,nw¯ßVº.rz}7:º±®Ñ"Ã2—Ø„—¤ËÛÂéŠ2EÉZÎ,G¨ZáÔ]ëHìÐÎḑUËVÃKŽ.‡JQ½ÛèíHcQîKj ¥ô«T2Á‹‹Y*¼¨O,’'Œ™wÂ>Ø/íU»•¢<%f÷¼!Ë£A²‚2ñ¦ò ØGKašDƾ8p‚ð=³…Áò!MçÔ_»òœ‰gÃRH`Z’?$ìx‚bIöC‘'“¾¸ŽÂ&]é?GvägKÍÂ$è±Õt-\ÕŸ¹•¼ˆ‚i 4NjF ŠÑǽjc`.Æîb|O¢|.Syœ¦ÚgaÅ“¨RÁÛgŠåá®ÑAx½OõwÖÎòVUò6šŸ¯åa:&`u*ª0²48à?˜¡!«—e§Äê¾ Ë<•ì’~UŒ2ØÚfžU;#ášNaVD)VÀxÙ$ðM5¤P„ O¸óÍϘ‚,J†,-U(©tqôT‹(Cp)«™¡¡êñ½0r¨üguê–£pÐÖ¦e*§Wùå(Â̱pFæºP1çÙÌ€Òut›†÷ Ìr‚lEÏ¢¯I³—Ž$ &4¢lŽÜû[·P\Ýð ZΡc?«r<õ­KÕª{躲w%ÕŠÒ_uä’ò‰fóšM©ñÝNt´H¿Ì·É.Q2žèÃZºDLO·ýºáº vÞç³çTTš0Ræôo¿ì„{Lòò”{6W´´$O%.`È–©Ä •m/¼x¢®Z\ˆ>YfMß¡·%—U\zqyÆ%«€?T ¿W¨8n…H€Ã™ˆi'dr½ŽéF1®*Úß?•¶ƒwTì¢Þ’$¥î·ñÆÛ!äWˆ«™³Åj|›¨º¶™«‚bŒ« —9°aÅ'G0Á+±^z3ÕAB7ë}Ç¡RÝ¥CP‘_‹îŠC?ßä1‚F1¬Åòµ!é«ðqMŽ5 Êo¨‰ƒ YR/­[ ÉÙFM€’8$&Mq`’iâÊ•Á­œß\[’÷ õŒGè*¢[w §0ЀÄ(Ô§)ýŒà°Ì\síây] ûœR|n[ýyêºçáò†*;Ã(ù4A%Pd 8ß´0EVäWø¾ŸŽû»äó÷£,´¶”Ž1CÎlæ¶Ãwùbqü4¨Žgp©ö2ÐÒ¥ ?[WQ,»i-‚e6¾%R«;Í; µ5§dü“ÝIÊ;O°`ãMd—þ$pþP‰ ŨÎT,]‰@äÒËh2 `rôÕ ÌÔ4÷‘†ì=ŽâºÑ5(aÐ./¦5Ù%àLK=o“ƒç!˜¨»ýañÞ4,¾t.¢Æ“^FÔÔˆºI9¨ýfÅ€“Õ™ï/D9+í­8¢8Òð¦ŒÄž„ø `ÜíP ã{P¹œ“Y Í)ÛŒzÓqÃn Ã®*xƒ ¦çE¶© «z\€rg{-#.¿¹¨ùû”0?Æ+³ ùQL[RyRi3¹²›šÈG¤‹2Ñ·Z¨RÖÎ-ݺ}øÃ/É `ܼªªÓDªÕÅrF—Õ²‡ó&w´—î[š&o”]Þ1©ÄuÖ^¡jÙY®ã`âF){æ[Lœ¹õ!û>$èGUº¨\÷¤n$›¢¬Ó]úéÓºªÑR!ìPu×jÏÅ–A5Ú&pš9;´qÀ¨%usT8¸ fÖU¥õ5‹ª÷Ð4RD“’Ǿ5¥ƒñK¹@"ÅçðÁBºMiÔ¿¶vÃÜë&õE]*GŠîè0UHmÛ³²wCÝ ýH0*]×Úl×ä?”®©ï[ª© GÍݨˤ{£ºoP*ÁÜÔ[:é·Œ÷¬ŒÓôe{ŠÄÅh]èŘ_Œ ‚‰†äii<ª"£]õ ÐÖ qè?éÒÇØeMgˆå÷ŠíÚbèa?·Ç%±• ¶EWI€s«fCL‡ ³Iµ!ñ6&çÞx?=.”Àïßc Þ˜…‘}ŠQ÷,h£Eý´µP¹3ÔöŒe€Jß« Ç‚Ã÷šÄ±lqRÀ™4F£Ý•¿°&`5ÓW(1YU•sËâ‡ô¾˜³…ðH‡&% WîazÄ …bgò‰[×,2\TÆVÕ–¤4®£%#ˆ|+ÈõX%”I‰¥Tb¹•káªuVÞÅ"×ÁÛ(ݶ3UføÞWÜ£½r5GÌ'óÉZÓ<ó;¦Rjk»ŠÉ]TÎÝ¢ï²m%g1É^j@¢|®“Ç™ _–íñR)U5(i·–¾‹âdeX÷îµë¡ÈCfÙp0þúæŸOQw€ªuã!ªÃn5¯ý°Öm§ÌµUlJ”ŒÉ”‰ðÓZU~üÙAO³U/­€ ¢JÛ0ŠØ@7×Ûü"AèSºO{•´æVáú˜BsþÏ¿cÊs3¹Î6å ÏâÊùkªÊ—Ûwø>ª_f*d ú“¿O)œ£ÅŒÎÄÇk'(§*mSeûethLíÅ)ÔTC«˜Añþ>¡×̧o™“ ¬×ê„ýT¨3šœ²^¶R‹ñïæ¡ª‡GG“Ê༕;3Gº`®6˜Ø|Æòv2µü¸½(Ö!mžŒ"÷"šwÏ Ôrs‰"1QGæAk&èÑDÉš{ÂWL ‹yc1µìž~ææE˜f-ŽÂÆwñã(ü ¡Ü•М²»óðmh¨«ÌVL~…•ph’çKÍ(œŠgyƒÑ˜#ÂÝ7Úi2ȇӒ‡T{“åc[Á·äAsªú ÒÛ%cÑêXØ:¿¾K<J¿™*퀧¥ßœB™Î“žf°µí bgáãJ“IÔ—“,’J›^]†% Ҿ׳áûùld¾Y¡ÑL·œ8˜”vsÿÄì>¯†] ŸGŠ`Ûê…âô¬ í“£)Km$¿ò:SÈCkFÖ:íæí™ÜwŸºù8=E¾R@•ùF†¯Ù†¯º@åñÅáK–‡dŒÅsø¹SÓ‰©´“Œ`&§âÊ0@~¾Š_ß'…“·nÅÖ×B”3€0}Y =ðclÝ"+MÛ@*nÀ’+¬®âVP¥žÄéž!¹ÛU2ƒŽNßh½¼HDÌ"¨·€Í=Àww„/‚€( `b¬C÷P«î^Ïîƒ ‹"W±È›ä¾DÎè°Ú Iä2(ñÍ™ŸÍèÔÔÛ(I™'ö«#ëÊsgÎU¥žgÓÖDp‰²½£€|{v¯«ìû‘Ž)«¶è'Ÿ¡|1üz¯²£+SÇö¤rîú†‘•¡¥3ûždÉÝgµK&ÍxXAÁ*d‹þ°”R»LÜâæqÛ_\½Vu6(;½cÖÕ}¶Je†Ð½¸]5 §SÎpטDr³gOE‹É9Sü%ª>(ÞÕ Qä=+Õý“-ó\$Ò’vå,HÞ¢E“:€ju,Z–I…˜¨R©«JÿÑneÐ #•râ Ë4¸Q·XÑ­ÊÁ­‚±#¯RUßrVAò*Êb=HgEy­(e„£Ôp5ièÒ]‚¦* ·­6<ôè%`­äo]²êªÌÛø~Nr¼*·|+cˆÒ~Ók|7{sÊË^'„†d-&2r¯$acö–ó­£À ´Ó(¸Ht¯,µFl™•a'Û”´ë«öèŸÒ´C¬³˜=wçkDJG¤}fHàŽDzI,Ž h…<ž˜êÓbÊÐ%§Èöï.ÒÉà ‡í[éÕY“ ’<¦cÁCå„ÎM–èÊÌB5ñ±%,N&ÜõA¶]ßq>UÍ{còX¤<2*v.ZòöLã3ue×ç].ËÆk¿ž‡ åô$™PhÀÙ—ôP˜ñ¸QãÆÅ¾Zö8¼Fs.ó£>¦§ ¬¡J+’vȱoúÎVFê_–ú3¨‰±ºœž¡hRÀ`ךU× š”êQOwÖôY>“"ú[Å7jÎEv­€Ì¸u–˜Ó7’«ÈÕ,·qî4·ÆgVÝ3=§.jî+"•'ä:K«È:9Tí­%i‹+£ì*·—ý Æ\#\Ì4òʵ^*œjêEo쮣RM{…–0([Îô¦Oô;F7™£(¹e™‚rS¤"DºÂÁøŸÆ¤;Cµ„¦‹‘¼{°/†ïÃO|òkÐüû1°ƒï1@/Ⱦ5å7ÿÒ•‡µØeÀlÐX7ƒENzxù÷¬ýŠ}´Z=}ýÈZ(x·~T}¾²ÊïÖ4z¨ûk‡òÁCÆJ›Œld¶˜Õ~'Øæ|б¡ÎK#N…ôX>φŠéÇ8hm´Ç—U-ϾóZIùáû51R Ú׿¿¦fcwbĵ´ƒ5ÖªõìcÍ{X3œJçéô¶aâùé°X dTâtèv¦\Æôsši¦(!ÕÌE8 y!³à1ùà– “¤ÕÊüßö>#:µç‡¯ðÓöW(®‘n9O×Hp¬)¸OÖ°ïP…µ¹¨ê¶gw§ºw• :¦AÒ)}cXoj ®’ Ížõ.ûíù·ñ| ¼_Եʬ{ÓKC§ótV"8"Ø2˜¿ÕTqYV ¨5B ­çÉ^X»Žˆ¸–´ìØ"K=‚d €Qq§ìî Lüœ•ãŸ6©©VkQC“©PÝP¡‹„çõÈë4½XxýwT!¢rÄ]]âSŽÉ•}óýì·FßöÐud—¯ÊˇgŽá{œ6=ý›±NÉ,XÎM-W¼ZQ晊h'/V³¿FR‹µLç&aŒ%ÓIgHö é"жq+]99ûÍ‹œ¨eƒæM¯q«‰@ OE‘›zïü¥Çß…þõýÄ{ ‘݉f·Ãâá4‰õê¯õìcÁûbiwÙS‘C¥ujcO±‡_5(‚ÖÜvõæ.×\©Cz'õê—|ê¤múh Å}JV*ßÁOžÊÖRÜê(ƒÕ½§á “æ5£ÅEO´ûáb¦@`Aî< r ™y*‡rÄZ/[ÂÓW‹Ób†Ò×:m Kú«eõl©^!š¸(ãÜ-ÒÃBVƒåX¶b7>É"["­ÖDlXÞr ÍéœMl>h©û-¯Ã÷q²âVgr(ü6Y#è¢0~´ê^ä lê@ºöQk‡0ØnlÖu‘’¸kdÕÉaʨ]Y»€•]ðéî^J^¶ŸŠXÙk¦¡…t–ì%mšê;P‹In üŒ¢žbsŒœw”jà“"­YúkÝxÛ©q…"4ÛçüM†݆ íÕ‚@DT´ª÷Qÿ®ÛNñ›l_Ä®“”Ÿ²ë¤AHEÄžæ:ŸiWŸòûÁ팎iô]üÿÙ_.ñp[ÓuôÅA†(‡µá¨4Õˆ‹ƒ øä$Òw­É#…C℈#›¿gáNŒD79¼›¿ýa‹œx¢NMòl¡dWq"ÉTáð°IÊÔ´ewÚÊV† é-4œû½‚ø+ËöîùÆÐ¤(Ñô–&.…<‰ÇÄø{î|H¯ªy:†ÃšÝäzLÏpˆJ~ŽBWÑ“­~>ÌLzñÓúH8êmpRºV§ÑÛnCú9:x€ßR‰*bWûœÊx=׊˜Ñ.”r×ÎYÀ:U &º_âŽÕôo’9AS'ˆîDíë ý$¡}‘ØŽ‹'.°¸ï ÕäœÃ©ƒ§ÃÔM‘¢Û³yY8󨟼óË×ùªâÕuè¸2šwšÔEf¶LCyKý`BoC4@n 1Ò’}—‡ó-žñœüãã‘äZDÒh"kcŸ9—0Î,F¥½WÉ+ÒDzÄÝaï’°™Ý™'©á Gü YdÞ£|”‹¥³by­P‚+–銥¼p(Š![5ö‚ƒû BñéñÄëþsGºb00vEo>¨‡û\M—ú@&á¥(9EHÌ(—€Íz=§M°lR—R›×GQê¸cv@RŸ— (†ˆf%ç£%ï%Ì‘tŠ'+ ñ‹Wñd9L&AŸ.k<ëæfšÄº‰®/»é­Fï…L6Üêˆ<• ¢GQ)j'E}¥ÁÀÎjqiRJa’®Þzý0<¿ŠKÀ‡:§ö}˜Èb‡ŒªxÅ÷$¹ _ü¨?õ÷n4Å*Ÿ±8kÄå¼1«³1M£"¯W|¯îûT¸Ù)T¼HáSth­y†ô‚ðÀV…;Š_DŒ ¡e6îR(›1¥-Lá¢é’ìO­y’©Xù„zÓSË.mi½Ûu6 ¬V)ȧÇé"~1&A¯ rU‹ Pšb¶6Šv-5¨pžÀøeå°§ìî€r\kß›&„Á'l_†ûñ N?«xþ—í>?C 1#o’}QÓïAö/íÀœ•¹ñD5cRwzÍõ |€®´ÁïGja`F‚b$1VËÔô@ˆTD0#à1ncë1þ³Pc¦jÌf¯1+öL–е_â:„o“ýü‰`#¦ürdM†‰+KþV¶GàØZC³YµØºUÊUÜ“Óòôg/Xú¤R”Ì£Úùƒ"zTM‡[úÎéšÜÜ褗Ô%¸™¥7Ã.&ßëÂD¥WeSäi›vŽÞÙÞh ü&Ìáá Žò¤]*ð:~Ÿág±ÿhg l•ÐÔ8Rý¥Âç¢Ë0'îùš²ŸVD lÔ™žv^ŸcžU·Zèö°Ð´¶§6e²¿øü”.jª²m-• ©ž§µÈ<û"ŠÍšÚžæÅ:Sd¿áö•)  ¿ZKw Rç!ÊUñE³%UµBZï€Þ©öH4h8S ~X…íîïÀ|½y#À½~圈¦Ì.^XÎ ts3F°º6w“Þà Þ© ôD}€XèoE°h ëËÞáúA·?'K“ÄŠø5‘Ù@Ø0Eø2´^PJzѹÊN/_¾Ãêk¨/}‹.? 1¹¤Æô>¦#³Õ°9ÍÂ[ÓbŸ©üvRI‡ v£’‰ö4™ÍS¼¾§j„(™Ð`²³ÓŒ…WÁBù‘´šMoú¨²[¼OŒËu>GSÂ3]æ=ÖÕ©Ô3è! YìR‚büéMÊk!zÛ©Z4}Áñms˜¯ÕšDçѧŽ×$í¤öØT*’›f†¡Rùa_Õæ È XiS‹äÕPë„ ‰…-8»‘\rºQÓÆÈ—=¯r^YøIëwíÀf§Ð$_CS<Ây¾§Åµš…•¥HàÅ<ô‹)À&iomÑ0k•Â@Þ:‹ô šçz!ÔGb—¡¬O:­QË5è½âŒ!ù]EM~)Q™ÏŒ;h£Ÿ „$סy( ˆ„Ò"÷ê#Ÿò¡^™CßO‰E1÷èA+5ê©^WA´•ÒH®2ºˆŸ2Qœ„,Ã+•}…4þµQ¹á«XÙ•Ä;ÚÜõÞ2æºÿ’F¢è£UWÂxOrêîókr]Pré–mŒ­p»òÓÍ[S®Pßö…å\”:-ƒ#Ëý•»Mà¥ê2. l¦g6wÿdU{^¹Y6÷¡{MWé6˜I>SÀÉc ÍÃÐ2¦A3Ïç°p ©Â,…èÒx °!›ksw13O%|Y¶ÀpÞÚ¾ÌuüÞHçïþê÷£O{szƒW=çè]‡šW €§¡ÔWÃQo¹°!Y¶fåàžÝ‘á(Eƒ®`PŒâ„wëÿ¬ë “Tšn'Û³çNa:#aìÒûÿìঘ×E>Ö|¿ñd-Ф’“¹oã¥+ƒ<Ñì‡ÓŸ’×lƒÆRUÇé<í ÐŽœ–zž–Ö7 ª p%«ø<$å4^)ëªVÈ™iÙçrc8d‡å£‹VCé.u 5EcÝÑX›4Ô/ 5N?™ ×8×÷c,l$I+gn¦5ëg1ÉÉ,±äb@þ û ¹ïù0þñÅï ¶Æš®±ìëCiØÀ<‰ì”È`¹G½ ¸±qG²ú0®Å@eáC•q™†R„6Iê!’jñqEö(¼F¯c´‚û­WI >·¸ìHGƒ‹¡–û7Zwµ†Ãjwâåí‘·zÊU#ú[0'uzN‰2$Ÿ/yrHÜMFÄsÁeA¬8õÍy0o‚ ͤ{]²‡ÒeA":ªHG¥é¨F¥°ïrÙŸœÖtH€.'‹}`Æ&;ßmâR±DjƒÛ·jÀ ÿ€YLÚô./ —èaç¢L\¶x†9wI­ó  úà ¦H²y|U2øÅ­iãC!Þ^†|%ß_Xç î€9ÞñˆF?¹ûu±d±KØeL¾ò½Ù1âT ÞÅ4G÷2\ŸÃâW)˜o?Ú,*ž(È:¥TóëM÷%m¹–h)k"ZnáÖ’†©N}™† @qV°Ët&õº§®Ó< Ö ¹ cSKNiN¯ó¨g4oîº8ÈW?‰mC‘œ“t¬™­O;õˆÙó4a¤‘8Q“§K^/ó™ëru¨¿Yß‘Èã1>x`=ÚŠ\—ȇ‰œ™@«‰À%0å·k%ˆï»>c¯..ËÑ‹‡T I‹E¼ép¡˜û² 2ä"6ìáö+E`Y'·Ðg=ÖjG2ÿŽ1ÖP˜ÄO#Ê@í_#ˆÄÜŒ˜¿ÑNm Í'#d€äÝ[ßâÞYÁ½¸˜j¬më_<ÔȸÕÑ0—ÅǺ4¯ò}(ÆúcöSUÿ”rÍm%Ânx“ž‹òtOv7»(‚÷.SÊCÚyLMH_¿æ·w&Š"zmÏr˜Ï„?$ÝþdéÞ¢2mZí# ؉”®Í[ʡҽ¹ØÉìR0D-—Z2'p¯mCŠ2ºXôb“¤¡©cjhI‚D¦҂peŒøsy«ÏÚb<ž:Ò³§S–êsëd5UBºØ§ÅHa¡É2T¡¬a~ï`;â&F…º¦s†tϘsFc^)˜ëJJ;EŠ…'û銀Æ`y ã<5þÈùGž Öa§Õí’ãi˜€ndž’äwŠ-¬h÷-º¯¡û2™5:‹âõ÷×DLÙK'ó8 ÿúM^äj+p«Pâ«JŸ±Ny?ÁoîSø”Ò<ó´Ü¡1Æ”ˆr8ã'3jm’m‹Z4e•íM¢˜&ÈxBÔ„oZ»·—ø S)‡‘ÊMU펦ƒÍ n‘ÑÊxzfeð7È?[9‡~ê¸ß®¢ô4cÊé'I-ÒB)»R‘zó$ßÂ8ôlºsGbiçXü9Ô‡Ž5¤§ëC BÞt¦I~ÜâórV0¡'%y~+_{‚,Ý-4Á”VÈV ö!Ôì:^yàS”ÓÃê²DëbT…$3R$hÇ•†iMðÊc+ “^ñfèuñͪWªYu=ý$=²]-;Œu 7µ{.¢e¼SεøÞ@W¨ §Z^GçźºHá|ÿx’ˉ’:Qv'Hó$«a€½Ç ff8œ †âôTššm ti– åþ’d @&u0Šu i;˜Êü%&ÝüRíÊÙü ðv‹½…©ü¤Ó[îÂ@6Ha ÁߊǤ| #„£©Œä©¹× ¦‡$§˜r¥b:U%]ºu×Å!o‡Õ"^,ðzÈ3œ^ªòAÉ)ª=]_s£¹Kj˜>dDIþ(%‘vò@MÉ Bë !¶N†xÎF…Cü=]X1¡ÖS±¬‡‚ZOE·nu¹„Cîh;»Ù3г"Áˆh «TzŠá&š„ÄCé”×êûµŠ®ÓŒDª8eÒæ\Çøs6ñU)Š‚SŒæeÔë± rÓ2Ò†›P'?àk£x½y2¨’V÷8­ÿâÒœz ÙˆÊ{ùü(U0M+‹tNÓ>ÃìYºaçØzWAë®›õstǰ0RÊÅÎGmf (ÂGM÷!öP’u¥³“Åv_μ—Ð¥Òs£â¬JÏÒHˇš.d)hÍÖ,ôÇD¬j:îAꪩÉÊÂ)R“U4ÑøXCU–ß^™C4M*…AfVÕߨö]ãëÚ~£Ö ovýE_Vô¥ÇAy²¯`z½ë^[©*Q˜Ó6#AtKš_ö†Kc»z:ßK§pÑ£jÀ›Hk‡ûb 8Œ¨`,*¬^A>¸ÞR©ùx P¢9î€2ê“A6¢€é…f‚Œ Å™L€¿}x×ktâzŽ\jâJÃQ¦Påi’ aPÓU3¨¬½e°˜œñùT fÌß"ä½Dmg1i[ò]J¤úVã„8`­ƒŠÊ &îOw‘s6ˆôo\‹¦)Twz̓Âd—¨3òâ—fÉ• €*QÅtR<­ˆ˜èžÖ5ñ Õh؇:^ë!ˆê~¥LˆDÆ&¦©î2«†Õ+ðSÒ—ÊÙðø=¡s@úôÄÐytQœ Ëž¤ÇD\Žžd€Ôqhßóm3ßZóí·¾C‡àŠŒ“ÉC£Šq¥T"#6¦;‡£´ ‘+D =6BI:·±·«’R#‘š¨@_ŸšŒÒ— ­ ’åÌÊ ’t?/UFz$¸ëDy{5Ø4#yâf÷€/Í Ågo‘í`ýšµÐ¿,Å&¡öi]Î((Z'V0ÍNlˆÏÖÍ êZX ,G!TEÛI©æjÄ–l’ì€d 2°š§€ñ=®ÑÂEÐ[`„t™: >$åÝ“,b3|HŒßñáÄÈ£J?CAgŽ ÐÎԔ̆n(QÍtB4`q«– ¨¹" ¶hwÜ3Úï·OìrÜ&ƒeúȩօKwN:ýƒ©(Š×ÁRª•<‚%ž5-2QÓjipI‚@7³äHñý èvª|Q•êv& vXyž­¦Œ]oß÷ÿ=F@ KR‰¶¢_À¬`“Ìo1a ÐUdK1Ï×îñ\ëäY¨›JÓ¤» õYU,]ƒÒÊœj'‹D2£ tg0È”5Éñ­r?a)+ædô$À†Å»æ~oéœ${ëCQ]Ë™\ÑÝÕe$Ûµ2öQ»cÐÑÞÆ¬H/zšB¨Z3äÝÂÔf®¨Q@˜’ ‰kêj!%˜²Í½F Ie‰f‹‰;M’ÉPeftb[QIlL)q Çàú–ÎUÅ{•¸«WÀ Mä¬bðǰÍä «‚û¨m3¸e*Ò8ö±Š0qbbS…Ìà/fR×Iÿ˜ÌŽf³—=EöD@ÿÒ*yL‚ZFüÈÏ,§§aU4:vBDS!HÙb`ŒNZ'›VºZD:sÃB³ì¢böK¢bŒ:_tÏêºÕÞÖe±l dÕ½ôº“g÷î$·[TT&l†{­ÜlTí¹AÙÛ‘8ع˜LäÂ>6&¨¤n%«IµxØã‘ J ÀeU}Cr ɾØì Ò®h}Uóh¯û‘ÛBv½^¢“Tôª‹^™±W”*ˆLÇs¨’Ä‹%ëtxíi;@ã:Ä®GõöÈ_mÉ·­Æ}ØŽtË +B‘ןìÖZÑ]/Ì Y?‘ަ¿r@”¥êH $û¼¬Ÿ—þóò€«„Ée1ö¼8=b¶ÄÀÒ’OßeUäG jcS´N‹ù‰GÚYߢ[æÚ8ë ~°· vNÂaæY&5_ YYv)¢è:F敊XÂf”ÜS+b3¡ÁÞåe3€“²ÞèÚrGD:Š {Sý)„HùU5Jz·‘ L}ä+—¥VÀæBXõlJƒËrWînÎß¾{B.ÑöÉø aw9=Á×ÒTV·­£ô­ÄñEZ•RfU¡ú(fɦUš|¡J^2×ðîÙ|ŮɳwÆ:wÝîz<TA•Y-²b’Vãb®¬aa ó‰ìé$P É²²@IL$Q…¾¥†Xdìë–H|ŽÙ2@/8q!犴൚[MŠHhé帬ßW|õÀWú*Ä•ÍIkW¾3 › m1WMY¨—Y‚#h/…©êÅ%fÁä§HÞ²™^.Ñi^M]T•8!¾¤%? * \ÊRæ>Yy"5“l%¬ZûGeÐDœTÄÙ‘zÃÒÎpS΂ò'ÊÊ$'I¡$5êù´{/wç÷î<á/Vÿ®.º…÷¼8Ÿðó"N0‹U‘°Ÿ…þ/øuhõÌGÏŽôuÙ®pë+»}õ÷*Éhˆ‚»¢zgª•sìa´j;‚ãzÈî@–ÝI·{uw—Ðtg1z¦cG†¼Dtº"ç‰aŽlÖ´(“r¢’)´î6msrE"¥í²‰]H öZº Û©®!Ø_æ’°𒀆ãL«rDÍ#ãR­¶?KÞTצ-©º#ˆr<&kÏÕ€­±xœyš ˆµ™sÔ´( Qþ^̰”×)õ驊1+‹ÌN2±CZE§£ˆÈ]ÇÚ`‘6åUÚ>™kO0"ˆëÕ.í¬˜ØÉlÑí’BîcNO_4Såú¸R¹q1º,º"½Œ™ ælTnÌ›>F4s0—H¹õro^n 7–kÕÓŽT훌–Ü>‹ë@¡]Jöñrsn-#Ÿ‘Ö`E9®R¯)0_†/nôr¿|YJU­%±Ã¼¨Åeܲ.³«¦/ÅW=‘²!GQáÈÛõÒ.P[UŒŽ3‡ªÇ³ð¨ÕŒ—ð±J|ê'NM6©DÌÃ…÷ªÞÒµvV·EwÂUäÇ#Ë–*PÔ;Lʹw:÷nè7djm 5^X®ÕµßsÇ<¿¬ç ] ­†V¶™gŽœfE›7*†£ c£Î…Ò~`ݶ²ª¶À¢~^ ß»J¥.#×Þj¡BôEÖdÄßUõ]6ñ•ßš¥0YÐËø %0`Q#‚E#Ï–>wé:Ù”N÷ayÕ—`û*­ŒÙ%XsÅ»ûz`gì|„½×°~á˜`h2ˆéK­w­Î´@½\ᆾ@|D¶‰}ˆªpÀ Íà7çа\G–T1Ôyeø”¦Êag»'6®þ¤W³Z ¯S€ˆ&.6jèådØéí®ŒM•»©7DÎM¯8/A‘LYâ¥ÙAÉ *—ÊÌ$þIB!ý:ÌÉW>Ȩ*$9ØŒ”"Å âjC+ˆ\‰þ¡2+J2 ”uÃi²Þó*W“!×§ùM9N,ÛIЏ¢_ ‰_ZÈ| ¦ù4QæøíÉö™Ùl)ójýÀNn¡W,'’îôûLJÆ0¯ÉþA\ÐVK7"â•j§…õÇ‚~¦²W™$þ¥Z¶Z9”KÁ2¬c ?Y‹ð§©5‰.,¼&ÊED¦xýÚ3Á{qCÖ1Ü-³Žìî5 1§2Öé]µbZ;ÍýÍÐrÓÙrzëÎeb]{3ÙZ¡DH‰:›õ^”¬L@7Š(™¥¢{|k‹©©L‰€šùaêˆQGV&͵B\¸ V¦· UþhkI°3ù3ñ"íG دX¥l…{¯ÍÑOœ­ÜWŒå›NBÖHÏçêþœ#QíÓf ¶Wy÷JðT¼×’wv]‚÷Sx.ô¶ ½sÃoyý¢à”VõõÇ!±àXM‚¾Pi ¤»Dø ‘ê²ÒžæZc¢ÙÝ m¶ Wµ|\­0 ¸â.ÿ4r…tΑÞ]²Ú¤²: )i¸I¸?›{ß–ÔjrVQÍöò+ñ§%rîc%°"øWU¨lí÷C"C¢å©œX±&Ê¥‚g{ƒ‘B·¹²,¦ÐÎÕNÚDj\'eX/wFÑøªûIŠì…mɰ9‘=>™W=Тˆe_ŠcQXC$änV¦˜ï¾ÍÏE‰8Žâêi°=Uö wÒš½ì¼ré$V=ÃÈ~DAÌ¥W1 Ø]ŠŠú:X˜+RW• ”ž’ôG):ÂùåDG¬pÙ,B¬÷8t+gÇùÌx+šÞ®F™Ž >¿‹‰»,__HZlÒžUãC«í¨ÉÍjm}eK” kÇ%Bü¶IY*ÞÜ·7° Ãê­Öì±ô ä¤~Ê8jW¡n™$]j‰œ`éïµ÷µÑe/û-¶£Gv Q~Ïji–4§‰ø $ùžm&á3ÕúùœÃw èN$Ýë¨GÆï³ )Ç¢,âÉ ah›ŠóÇBæà¹Z0IŒ,[Ø/™TšæãRˆD-àvmõjÖíD0îoü:¤o•Kv6!cZÁ ?É,çÅ “óÄ-¤½4õ`T)&Í4ȃÿcÅ¢¬DìÔåG­*ú ä0©"§æ8“L›¾kô”Ö¹X}{&᯦å>uwÙ½×ké5]®‚ªV¾içQ¤bfì/|i‚@½o¡A™ùÖ^æbHÖ“ekrd]dTÆ5M²DJyÛVSM3z&7о"'åå¥z *  ÚFâ>ê5ºv¤oYL¼ÑÃ’õÄAûZ‹¨, ܧ(0‰´ÇtŠPG;“ó–hÎ4Íûªyï5çÏæ=Ü>o}ÛõR»)–ìÃ2/ùrX!L«àÌ {›Ì åY!·bÕ:TÐðÅŠ'q,kGÄv\mÇæ¾=)<ª|R­}÷%!_6ò¥¥«Im"tKàbÉž,`zEí¤¶ ,1[Zƒñ X”Š*-õÒÙÜXÌÕAjWt–¯Ló…EZ!yȯd6P;“¨²WS«©\˜E5Ù“áj[cå>k6ZVû,jPÚ²…÷£X•vÊDõšÒ]˜“ù#–À"ë\)-™å:ˆ Ç"UéúᬑIx6ê;úö‹†~«þ(9«FJ`ƒóÌ›fÎb‹‚v;ôU(Hã qÚ‹|‘:€HƒÔ Лúyã?³¹°n@º$ñ¢("žÀªY/Ç QØG’):˜ÉoÍÌÀ6Ä2÷ù‚ß\»‚ÎYçSˆºõC¶+Ç>Z\Üò3X¡¨-b|Éb¿YH}EC<'00E×É >jSæ³(eféœ1Ï›¥´µ1ÒÔꂘ7~FÈMbðd L/©lºw†C!›PáCaSÆ¡i Cl«÷æ f[A¶å;rÌ2fIÃK*ª„Ê4dSBÒD”–vÀªHH¿X_ ê&÷TÌdИs½»@·Ï)Vä ºÿNÒ~"LUÑi®ËÃD„ì4ÕÇí£Ñø¨Ç [v*‘R[1þEŹN#„ÌÅRzðN¤n–f»­öY\ƒÛ›Ùõ|AÛ¤õ¨æP[g|G ^cH‰ ´ cÝ'L  †‡z¶NíÂVÓ—ñ0CE¤n˱%šÆ‹˃ñî>4ÿ1úÖ‡îe»a eg—V(SûÒÙA‰Ÿ2 JÈi¦0YA#ªˆU^4!º<ãˆÅ5I{ÑÀßEµ;×Â{»zÿWçë}d½ÕlgF«ÓeVïÃÐÛñnVð3X(9Q„³@ââx·N6y²g);"³ã:;:ô@CÖëÌö …>*jKN¯Ñk:zÝÇmau5ˆÒì³kø†…®ÕZý›°ô$`0ѨnŽÌ#~®ÌGnÊòÚ·^w^¹0O•ÐèA²=ö‚xÖÉìC©‚™AòbCB>,©®fj •<‘ŠºK ꈮÖèÊ‘¾b骚ÞÁi)\ÉÍ´°OL™ráK6m¬EÝv‹y¨c‹ˆ—óLñåj<}‹Ù–rˆêB‘‹°–[jï‚2(•Ï5rè Í®íËÕ]IXìr‰5©17Ðõ&»ðÚƒb/×?¡“I—Büè‹Iœµh´j¾+¥ÁdA&SHf©C¼S0v"Çž¢; ñzª¯/(ºš£/KúÒ¥/o¾^Í'Ïv£`QÞó*Mòd“x÷ëâGý)Ò Î³zïVoïê-`½¦ç@÷³Ó­ç’-P6ËæΣÈí˜Ó¥H¸u0å/q¶OÆÐ¢S"îÈ“uv»û¬ØÛÔh3¢9¨ÐŽ-¸¬mæl¤vž±rÏ×#óF;ÂóH=}rè¨@Õ!¬.8 á.tD%+dAL“X˜UäÙ¬¬¤–8q!ï¢ÄÙlÿê9X,ÐAƨ2<Ôµ}í{¸E‰4j-Læ‡W[ÑuSç×RhÞ ¥·Y±rò K¬h1°†Qß@H욇s§·ôÝýÍHåt „Úw’fòNa¡§ d02 u…áê±:ɬOØs‰{¾ñÅ E,]rWÍéÐc—»:(aìË9kð„ý[po Ür9O.:ÿF˜-Y-ô|ó`Ô`ˆA÷QÃÙ‚RzS¼8É/, In%ÕeÓ˜8j wÜ¥7¥ýöOçZÑ`¥ƒ ‚G±rò ±!°ÌƒÏ<@ÍU,}Us ‡™YÃÌKgW‡|K½AÆñZÏ=ÒÙtRœ½¾¤ì"U×å®&²Ñ‘f)vWq«rî†àÌüñ5ÙtH?Ð Œ™šÍréEV!Ú´zzÊ׺-¢g•öòjá^Q|¤:î•É茦áâ‰V’–ý3}“d‹üô¼‘bºþTÔ§=™‘ï kå;[¥Ðk.Mvæ•þ.µÞ?Œ‹¾ek!‹f×Ý'–¤Qä¤èÌÛTÁB‡¥ö-i…ø‡v)UŠ;Zø\”sL‰Âœ ‹’X„»ÌLà÷Ì ™*0±ÒÖfßëôíPß2õöÔÞÂz`s휰{¯ìÞNûjfW_j™‘ ôÄbÉ6é§…Ü ß#ÊB6õS ˜2¯{])s¶(áè˜Ø +Gk¨FÛ¹²›Vá#Ø¿RKڢݘ€&6$#’±%1»×\~âÓ¸—äÊ#Hˆ£V.=L!Wjõ¤÷¸ê,ÔÞõµòa[Ë߇õ~ßp}ƒAoÁ)šTOQs—R³BÌå·f"쌷CIÔ©”#Th;¸±`ðTS²…¿OÆ=Q­´Pé2³"c´ßQGcÀ[U < AOp„z}ãã+VéÀÄI±Å°Ùøy5ÇÂÀÞ¸ê Çj¥sØÏÀr§Þ”[`3Mz¡©D¯¦è;ÕAqf5EÓ¥ëïáîºÕ´#w6195[ÆcHPôã©{6Çõæ¹ÜQ®S…v-M×ôô}Ѿwêû«Úo[:ûÍã?(°RYA³3y†s¯òÀúRô°Ä%çÕp8´/‘_ÏõJîk=çÞÕÕ;¿”j¼šS¼©âxåœ^]Ç ð´wUoVÑE×Õ}ÈÌôìÍÃÓ±@=ÚÀwØ\nЧ›ØÚ v^Udœ6 E„µÌ~p8Õ8ÄØ¢ :7÷y=Ûµ½Ò}ØO-‘sÇJY ó’é¦ uõÓÂhêð³‹KÀ|’æ¹Tt¯&íô¦û†ð{¡LB,…ø/±Údq©¿˜…!v.õߢ”qSU[KlŸ9¥ÓkbèmÅ—+O bV%5ÕÖˆ¡ØÂâ‹Ü¾žèŽ)•]î3gÚ”*”63FŠ‹}Æ €‹eÔR4ø[È™=¶¨mY„x/†ˆk•1 ’ÅŠlÝ».,¬4;„Ê"?AlY#õ`”=BÃÔ“µç¿) gÀÛÈfßÌß$qnYcíùO*—Slùç;t ì" :òYÝÝ®FïȿDž¹?=½œö>¯G\ rØ_ƒPa%ê/”+“©I¥Ð £„YÅ="“òu͵±`ZõÁº<Ç¢’î#’É#¦/óïpo†c Œ‰Lµ0ý$³ÊâgóGà+aL:o-ËÄ9:k±VòU‘¼7Ù€´£‡\õBZàþH°mŽôæhq=%LÄV$p]ïd/¢–žTÓ^!Qš5[‘èejÊ*€?çš7 ÆË°µ™'öá\’2 ņÄàpßHjÝs $áÕ&¼"…W­ðÊ®{×Ï}m6ýª,$é4•RPµ<›ËʼnÞ/Ó[jzÓo 3앵ý4×s»š Úïk~‚þ+u_r ”ÕCËRÛ¥Qã¤l³†j@ eÖFÓÊŸ­îí’ŸØ ’—ù At‹llv³Š"©ÙH¼Ó~_ Ð1Uy5j MÑ&RÇ/puR$Õ$¸YÃYvYø•‰ý Îl†Éʶ†áZ7Zi*\€°KK³¬Õm† íˆË­èÓÞ×WäN¬} éáe?FÒ ^>Ä “ø¹/eÁ‚O³!û’чR%A|mâÆ&1‰† ÚèT ¡4^ìÊ߬ùädz‚ëtûf¸#^¸™Ž¿é9žžê¹¢ÝÅÙ­Ìò2¤‡Ì—[¢”x$”$0³hÈ‹‰‘$…â&"( í©LÌ s騌ž—6˜6ÒÛÓV²Âç,D@®‡…ø] °¿Àë‚_ZÔ¹\²áDÿM4L¯Õ©Y#‹Ñø z=¶˜k²a­ÏtÄ:& }¾¨úb¾ÈkUx÷‚Nô!¨!{®Ò(@ãÎâzYm¥X}Õ^ëÏFµÛû¼&á´ì™ýÍHŠÞ«Õ·zö’óSv>[53)<)¶úy«âv²(yÀ¯qÏÒé™<žíãAW¢m#J{gbd´å*°2\'mZ£pâ):”-²‚”h‚vl‚ |\Ú<X‚ÑdnÉÀ3™š^ßë;eWÄü$X(Ñ©‰*? tŽªLk¢$¥b,iZÐIš+Zt_¦l¸Ú)ØR{ÖÍï\c[³ýÍHé¬Ô|Xq|um§Z„<&^  G>J],ˆ‘@©•W+;jm~(Ì\j½6*6¿ÚÓ•(΋"Jq”üV2ä¡+é ª>½ñ„àˆ 2ƒ'<8RD¯wÕ#j[5û`­Ä^õ}оq×êÛDWßek½kh;Ñ î…ø²2Ñ–õ[Af>ù¼Ë#–Ü|3ŽÎSÚÛN{kêÞ¾úÒ©©¾bÈ—LJê­¹Uv­ü•\K뽌·ÈÜ-k%,trÁôk}×Wzûjð•Ë_f¤$R ¶$ЦK½‰ËVJŠ ã4g¼øy$ÁÒmᮟ ¶‰¤NÀ0)˜–†ØÂ¨¥ûéëÂM[܇éú ¥ï³~_ðŃ.ð‰‚ïÇøú£+Qº"f_ç¼`ºØ Y†Ú–”=‚ƒ¸ã§g´—÷SÔF véÅzIÙ•î~yŠæ\Ú+ÚDo,î@9×uÏ}‡ÝuáœíÕê¶‚—’ÐJv ¢À &#i @á°gLÐbe9ÌSå´‡-jqÕ^ŠU :O“Õ¤«í«9»Ïë}-|P/—ñ䯔lŠ9PN)Ñ:C,êüçüUz–«Á{‚·E¬öT£Ÿ€w {µ>5+?d5Õ5!—#Hik1‹Ò‘m¯³ödñÊ¡%b4F òž+ì~×LíY¤ 8 )Šlìf(àAÏÂ÷5:ýc¯¥a„EQëSý›!À±hþ›ˆx×+F·OF’ÀžLcͽ¾ÿwA÷»S×E—¢ÊÛÞXnBae¶_º_LÅiµÚãûP¢ÚËX;©ëЧAÉÈl@U®4:'{~1,:´þ>æ^8~†çpx#è÷¨Ï èÙW¹X»tïÃå݇¾Ç;è†Óù%à4rÓÇYQ‰Š€0çÄq°™2?¬_å­¯º„§YDÔ\РPN zEðe"›Ž]ÌX!QHQ ž%PÕ—E·ð6 øD‰Ñöêî×Ì TíÅ UŽœ„Q8Ù¯³“–Të]ª +÷G-ÉoB’ m Z|ËÄóö[¤2ë´×]ÌõTÑö7#’`ä—¬kê–ás¢TÄd¾2’à¨Êï2f?èšÙÖµ') E2ʺž¥°ç­‘»ª¸ÖBå±ef“'-Ö©ôrßM÷w_w÷µù¾~¯Ó\c– K¤óSðž ü¼kב.[Ôyá'Ç%s{[ýý¬½݂ÕT*T”Ó¤fß±¢_)–`ŽÐ #ÿ4»À‰…«b5ßAÌ×Ñì×Ù<ˆ ;c¸ä¥ÝÇçW.‹Y ª@/ÊãXn³:6u•0åÖH‘„»¼=ØAJZLˆÕ{q°«˜DµÀf¤Óýðu ¥ÑìÞ‡ºá^tÊ«x{¥ïN üª¯×†.û¶á¡þá¹’žOé‚¢>nº`؃")¡Ð’ÔÚ|´%°v²9Ú‚‹ì£ÖÛèj q„ ,½.S¤%ŽYþ¥¢"Bôå‘‘”NŽé~úºD¼gAÄʾ0ð!?³qñò#€Ùè¤ V £M8´…EFA°œR=P*aK=mÅ»¹H)=9J[@íåü¥5Bù&JP‡ú6¹>ç¨Ú×_­ Æí-rC¼ÿxL>|µœ¦}D{rĨwÊñ«”( áߤì))[‚†A%¨Ð@ÉÆ¸êV“¢w\&ªÂyLø&$ Ö*UïÁ†c6liÙ˜M¡YÅ µ;o]/Ûjí>¬èú.ð0ëì2ÓEÀ‘’1*ŒÉ»öµâ«Œ±HË0K7G»/Y(i2 .”ÞŠs»–}“¤éÉ*‹13iY2Wyå,P=qe×Å'/ê@œ¬6\$W`¼2ŠJ&SêÛ'w}×c›Æí£TÏ‚¤aO,îéµ>e¼ŠèZ÷DtiVhÊ>hE¢2i-0êºÔnü âZ.3Û•wå »ã@Î §÷Ëù d”DBf%ZcÕûFáo †ÿÉ:"¹âA mÌçc5˜\AGøÏl³”›Š„èê×þøu]3, Ë7µêL‰@·">Wº`*ÃNE_轈±Ê¤ ‹PY›ìhD:gìw?u½Lm2ËhãÔWÖjÁ *#EÊÓv^MÒT¯7­Mf¥e+—ÜÂb7sú­ë¸­õßï…íí²{ÛhA]ˆµ¼[úÏÐu­eY ^¼R;óï+QÙVËkê}y <'“ç•ô:©='Å׋ˆ]É(G`"™+禾ye³¬fŠªÿhåBÌV$O“19Ä1GØ”¼ÈîÄ_r DÅ.¢j¢¯Ty› Ó.E€’Ð8šŒ/Œwwˆ¬Q¯A‚«[ð¨Bó•´¿uÝ5 ý¡˜üþfàfê O!è(Ä£h%à‰5Ú{`¾Á ź"Äx¾Òæ—®«5Bàþfàÿå-Âzy½@à@DÐ z1ÂN¯ðJà¡EmíCd—7òSÞ„ªÇƒ] ¶U‘\Je»JÁC(™Õf×yâÜÁ /MÃj•6…*‘¶Ù*É!E_µ?s­³ ƒ*E§ xQMÚîž!àíÊ–;¥ŽÌèc*Ú(±L&Ë7?ÚÀ>ÂÒ*¤}”_¹GO$ìÕÏfUXŸšŽË¤j`,¨‹Ö²XñQþZtF¥‹Ã°½–¯Äm@@Rû`>·ðùGß—zÉ6âdvò%°«5+ˆ®ÿ­¯ï,µb²°H>‰‡”± Œ"~–¬X¥P cÜw§©¬û… UDê!…žUyJ2k%} 1mZ~ƒU®T£ù>ã1³ÚÈÀ§=ï]ù‹ÆNŒÂñWŸôÙL90£c¨cuQÇ®4Q:؆Ül…Á å4«R5Ô˜·ý©¯$$Mj±ÓU´˜°B ©ÓƒyÐ@YUº¼ºœåê=·BzC±=§''JzmãT°×ãSr_‹õÚGx0çY?Лuš´^·ÖÁÊ.ÂÀ•¸(ñØåTµ èWZ_ D“/²af£}Vöz±JÏ*‘gÉÉVæöÄ×À®(Q~a:É‚\æ©‚¶¢ªèÝMegú,W!éФ¤Ñ5}ˆ%À¾Š®l~ªVGÚ>ù>îãº^oß:´Ö›îû%…¢é²ïÃN¼°0y×Y ,yLtÖ@Sš…L}ÊDKT‘Oa5zXßÐ×gÐöF4kîXc† cúþ‰ï±ô}˜«Ø±­ìッ~zthW†¸Òx™êMPV À£"Xi6í`DOb(i6è7Õž$([–Ë*Á£Ø‰'6VÐ*Ì:}èQÍ_švˆì~Hð D`8ªº‘w¶âiwù…³š×JsrjŵN•íÕf•ïy´¶—òòCN¡hØRê•)ö¡z…W¸”¿(ÑõC½E Nòâ¢á{,?;¥- Ïç0+mAôVËv÷BœIÃßæ*û‰~IF éN|—us±'£f(¶DP¸ÛRÝ®ØG(/rT#F²  šê SÈÄBi›ŠÝ0»I…j9%(Í•bÄÃîz^•d·ôe!õ‹½¾yÒ$ÞMI¨‘-ž­16óÂÓù$šRwâëÀ¶e1îoDÇÒñz=÷·§G^-²tR”3U`@Å™4¾×–&ɤ°¢e¯)± åå 6ç¹Loѳ&vã¤ÀIŽŸˆw+àqkšJDÅÚU½Ae¯Øa•-zP{⯈ªðsãõ#QLX‹õiÕ™MdÁ¹ÅœäØŽÖ^.ÖMÐÓ”1ÕžùŸÜ ÷7#’tK¢Þ4®Ã¢¡9cG¢¾$±4mô}LYñå«õSó½kЛ¤òÌ9½$fo"©,ETH9S²˜@¼ Yvmw£r2êÎsýaµ˜ýçµ¢ñH‘Mr ¥;£âö7á /‚ï‘s=¸î*hŸfª(Sö©}†¼ê‰£¥§ŸºKO5mê}ØÊvi¦ç)öÝn={K.ÍkG@÷”OëéIê# _àqý ¢u¦_„ó½ ÊÑâºÞØ Ž‹^Ç­F6g¹NÞ[v¥$ï‘#9{†žKéù–ž“Ùó6¯–® àá‚)rcº.Bëdpá)séZM±;ªŠ{L„Ôw¥R“"M BØMiüôÍ[«P£jy˜›žhsžšà¶ I±=—ðüþÄD¼EzÇðÉ$ÔÒ+{ð¥Fi!°K÷N†$s•5S˜Hð…Ä—µGÝ‘«?KŒœ cLé-‰:Y¬ÚºÒ‘Ì«q0Ú£Îh!±g±pÃÉfy2úóªQCƒš\’5亣êÉè½»ùÀÝ™¤Ð塋˘ëC”þQ6¿SÐÃdÁÌ[5ùÂØq”‘ºó\güyetXu “¼§âë³îÍ qFQÅZ­B4'ù 6EV9Qà媔è%Š»ÊØD Ã|W(§£ôþéÍ¿¾‰òºÃí?«y>†–üÏóÇ·ÿüöÓ›c‘>‚Äüö§7áíßÿÿ»7ÓÛÿY}”3ÐûÇ×xLs‚x ÐU8æÆço~ùÊ bGFúx‰ºÛ±vêM~ÿJPf¦Yz VØxÌgíC&rعˆ¨ó¸ˆþÀQ<‚ôé@t:ŽKêôðGx ¤û¥>¹ãæEê!øß#ÁQ`nž fûc]éì‹)i®‰%ªÉ17GõO¸ÆU¬>lËÓñÂê^)%-ãÙ^º¥Ù«žë¾ÙèöʹF{õWq¾®Á^þºF¿è¯KP+«îÕ£ý¾¥Ù«3û}Ëy¯n€ì÷-罺Ѱ߷œöêßý~ßrÞ«{×û}Ëy¯×Ÿêi¯éíǦ·ø?ýÏoö·óÍ›ÿòÿ„‰uÌNÇ0ûæûã«—]Þ¢@³@ §=žÅ7û›_ÝŽ9fz÷> N»”bùw凉4-·dÿk³[‘ °™—Û&ÿ6KYi»Iðî_¾ùû7ÿã›cbú§W¯,Oo¡Þ>—æÂàXu|óàÙ3/ìÛÛ¯ß!t$ܾ}÷î=j S·¿}|ùøî=þm]¬ôö€¿Ê?–|{ü$G¡Xn¿9ïöøÝé_š¼zˆ7Wóãq·È€Cwð³]Øz ò¸P<=všð—êÕºµWõÛw§kÿõé¿<|z‡æÂÐܾ¼|ûîƒÆû__l·|ÜüïäÌG°t\ØçãfÐÏ[¸}±›?þ4¯·?ëC*¡>£°–ã\õõMñöðÃÏÍ¿þðð¥ùûwÜwKxµòçÛçû­é#YÏØÑ|,ÿžÅíåËË»o~çžÛŒõåˆs'>°Ï¿Ö7º½?>¹æZô ñοÜɯå=ÁÀíÏØˆnúmÿÌ·wD‡·/¿Õ—KsñõæŽGôÝióãË—çÇßœù‹½ü#gEÌœŽy /vîX&ßG”+¸Qn&~8>[½Âíå,GxW¶tû|üÜñŽœóöÝǧÇO?Gáð¸Ä‡O¸”ñýøé{¹š#MŠéöñùã§ß|¾  ù}Á˜üþÿz[ÇÀùããù~ÀCU HÜsœoæHN¦eZoÍûQŽKë¼m·‡ç柾ãiŽLö¾ÛG=}ŠÍã|øò€\u•A$^qÓz¢ã*~æ@|BÄÛ—#·åöù{=c®#„{?=¼¼¼P,,› Ð?>~w\âÿåh˜¢ÙœðÉþâ~ñzçõ*yçáöýióN_ê'yâÇŸ¶™÷qŒÈcêþòøù+Ÿd,×#àÕ~ùéñÓË—Ç}t±GŒ}{Ñ.¶y|ÖPŒ·_Ÿ'¹î’nçùJ'Ÿce(Ç%ò]Êip}ïAž˜Ãüö½XJ¬:å}9Fwtd‹6=—c,7çùûÓhùü¼ã¬kËíéñ÷2fCÙÚCžÏ#ì3O¼ÚŸ°}§¿‹Uå<Ø¿oG&îg?ðfƒÙÞËýæ‰}Ô«+[óN??ßï³Ùÿs;³œ¦“ößžôÌÇ8~ä,•ÖcH7Cý|ÀËã1¡#-M3f8;vÇ3@³ýÜšÓ<½Ü÷LJ"Wž’ÞîN½S½!yAÃýÛÛ=¢(⃄Ù¡Åi`Zl?ÇùHÞ‰_ôìˆ-n#YOûŸOd`Ãù|G¬r¬Ôï%Y>.û›î+•û<†ÕþðØ}vï¡2“qXo:—><ëJŽDºíÍàÔa*G€pœ»L·v€g”øg|Ϩ6FûòÅY)Gæ¦< „\íPÝùQ‹÷ùó~z°8{Âõó4(ü0ÝêsÛmýôÝÇýX3G³R>ÜX§Ð‡W>“áD [Ÿ-œ&ê×~„ªþÈS34³ÙóÞð±êþØÅhç°çôý¶¡Àçg®*ï#t·ŽQwžñÈ啿F €0×ç?rT%G8ñŽÔ9r÷ÐMÙ8ún¿Òs¥ÓŽwÍ“=÷—Á©€‘;Ò"Ýã_ì$¥Ùe9íòep«ëlçÐSÌͺtüi9.ätÁ¿ºý7D1³LéÍ—ò§S81ŠdЗ©kœ=Ã|ñ ¯|¼êPhÕ›mìqâwc¯}eÈ¥f{Ìÿað 2Bíã=¼–dÇßž‹¶#Ö=íxzR¥±ÿô£û&þMO*l?ã³Iè›­÷Gõí»_Øz|¨ Í{ÌW¿-yºe¾½œ?§‡/Xçä˜uv‹n°EO¿Í]‡td¿ŸŸëñ›-“ùöÛ#žÚSWÚcúŽY>R©§Æ…iæ}ž'éóäþé´ÝN»$Üq»€£J yC²ÉêåñáûaÞ}¶µ~¶°·ržåÉ<ÇfŒG~vç»øÚüеd©ÓÀÕ%oñç_òÃú°Fóý’!×ÜÍ»/6¶u˜ûÙkþã;‰cêÂ?¿C‹é¸ó̲‘ãþÍg&€“,rnÄk›ƒ_ £hu.»òte´âÏ}œ,Ç J{}¼¶àÓŸõ˜#)hð>m“VÿíÕ3Ë`sÍ© a^¾ Æ„%v_!(äO6çõÃ÷ÏG4”àòÕÉù€ÇìÿùISŽù_ݲÝþtÜWZe®9¿•çÏ;þa‘ì®yà¿‘CÓñÇß?üpŽé59oƒD(p.ö¥á•BZ5a{%<áu“Ûñà1RbiC©½…©øtKÍÛíüÊ^‹~nOõL¥‰ÁuzÓÑóÉY¾ýñ]>V´çG«ZÕÓÜ÷Ñ‹X×˰ë½ÈïN¥Ëè,7ÙÒ=7‘é°Nº\Ûev|*÷‘›wiÌóþ‚bx¨ÇûÏç\îQnd|ÑQè)BëψŽ U‘‹¨Ðžó³^Ëñü¿2|pQ¡œ MAÛüðYç¶yã_Ü[ÆÃßr3tð«ˇ¹äú]üðüøÝèáA×¥ÔõìØå=L ·¥›_úP(Ãw·JÃèg„&`[ÔÙ¤/ŒÓšãA€Žwä};K`a R ÅÕ7¤¥]Ò©òù<‡×¢é¼~ýÉG7×)¥}wƒ¯ÕÖ>\ÔrTï³`«Û!Ë%p›ºò®æ¤˜²ô|H[žÿ¢§AAô³Þÿ1öšbl\ŽÐïåÅJ-K7Œb¹ºtû鱂ïEe.„¾VÔ˜Ã%vo¹™dl¯´2e…]FÎ_«øèÁ~ººïxLOà| fø; ¤Æ# »A¢-×:¿^¹…¤z½å¢:øÊ¬Ñ‡ž¿`æŽØK?0à§ùÖ]Í“üúlt—ÙD"Qa ñÖJ¹ãc;ë0\[~fæÜLSÿéôŸÚêSCɃ/(ciØþo¾ùkLà/~ðþ–dâåŸ÷›w° šŽ­ú¹ñU?Å¿¿š%–íÇlå°ÌÞmþwT³ºçóù~%qìÊBw_˺?†?ë­oA£ÕTäKy`™?n[ Í+{z<• gtßëÉÇòsž3¿¼ÿ|¼ï_]±oï}á»` ¬±øq<>=5³ô—çÁ\#2ìEÉéB“±gÁÚ–ü9úÚ–œ·¶àùôÄ7 ùO].ÓÙ²o(ôÒnseMtݦ&}HŸ$2+]¤­—7—tZ¢¿¼ô…Fl÷Ó*ö]´Í˜@l;ÖÁ®3ƒéjšG þ~ú¤W•–¿tz“P÷ßÖü±—SÉ2×H0}0-¿ñý„•‰Ï.·‹Í1Œöf¨7W¿ÖJ4¿t³P³ŠÕh‡³PóèuÈl뼺!ÃæâæÞ‹µ‚~ïí*õZÿøÕRÿKóÌž­¡ºý¾ÓfhŠ·¾îàòbр緟~üööW¨lüÕ·ïF0îç×r©ËŸšÁŸCûS_^ÿ)HÈÌË©/'÷´õ«ÑË©¢4¨'X^õµzÂñÇ÷þ‡X®ÿ$à­®8(‚‚À3WÁ’Å6òÁ/ß´ÿÁËÊ\~Ég'¸„O¶"›Üz´<Úû™!PK-ôÃ_×'zÚ Bó©° ›Ø\NC¼Gš—jÔJb­Ö¡÷>­¯\HIrRmº¸«6½« jFë§ûŸÓDhb}äºåò™¯WÏ·qá3ÿÍçO(œ|A@"Qù}‹Ì h8ç`sÂÇ?ýøùÓÇO|3TÛ—Ÿ6ÞÙì˜þðr¼ŽO÷_8¢›û³ß~üüÓÇ秇ŸÞýçûŸÃù/ÿ€¿È¡òß?|wüäñÇóPµ‡D‰ü> stream xœµ[ÝoÜÆ×SûÞ‡CѼVGs¿—AÀ±Ä…¶²ˆ‹€–NgÆwº IKÖß™Ù]r—äÉr•¦Žû1;;¿ùோ"g‹ÿùÿ/v'Åbsòë £_þ¿‹ÝâÛó“'g ÉË¢d‹ó«7…-,[eòR¨Åùî$czyþ ¶e<ØŠœ3^„óË“Ÿ²Ë"/”´¼,³ëèù’ž…aE™­—+ü£…²Ù®¾pZfµÍVëø¯ÍR¥´6«g–poh !D^žíöË¢­Òs›ºu·õuôjãg³låKɲö ©ºz¿ê’5v·‘Ò*Û7ÕgrÜ7ó/4¬ûp‹t•YváYºrºlSÖ.ÿsþ÷Éý¬ÏWBåVkÇù7·Ñ3Äùul¼Ž0¹,Œ»¹¬¾îÖ×mÝݶûÎ]tº«‘¹T¢¿èŽcÜy+z–°„ÿM™ì»zó1:HŸiyq~ò¯'¡jÑ|©dr Œ,íÂpžº$ñ$éôË~ñz@µæ<^ï§,‘˪?›ÈÞõ÷»¦ƒç…L®´AÔÈžˆ`ÌdñDš/qMAÝÔÕìűÈ´á&ªÍ¦Yo*#Å%lk³¯ñQ¬±ìí¡ºXÿqVã¹-Y¿P,z PÑfÉò¢0…M•hEk®d¡sÐåÅŠ‰\É’»µ~ý‰`×/K Ȱ¬ÂG ´©l“X‚ý¦9e)4ð­:à«RXËyö>¢ uÝ-ez©róc¡Oß´ ÝN%ØŠÕú×¶I‹êßo4ËwP<«•ט¶Û4`”fTEÈ\hÙó5_®€:ñùûÔ$'¤Éf¬ž?îQ¶8¡Gâç „û&>"ËêÖO*‚}f(Q×j»½óÔ#þoÞ§LZqfsŽÖˆÀZ/LÍÞ‹7 cÑBS)ePwMÛ˜„¶K®°A#¤·Ð0Y˜trÕ¦Wî­m¡HuQ”Œ)D¿·`)7o–ȱ²ý|HàXP¨€Ü#k÷a‘Õ&%³ntÁa|äGLÂÖK£ÛpÖe¢"6ÕÝ2¸»;¿»eçlL¶Ý»£ÁÄÛœT–éÜZVîÕÉù_~ÊžÆ~z?>@ä™`Í–‡õcÒêj“,ÐväŽq¤Y‡¶Ð¢ìƒz¡,gÆQˆcØ Ïðw°³WF9 y}ÌŽÿ>£Á¶ô |ñ~}ñálÝÖ—«í?›ýźmçÔ™1j´ùíÿÙ·I°á R m€mÖA/óß&y™kÃãõàËSà3sFévd_Q\¸Bµ§ë*5\c“8‡Ö]ãú¾Ù9œ²ÒÒV©+ð×ëÄc®¬ ®9…Sà4Á\x8ŵ±Í~7²åÞ"ºåâ{psœÅ:æŽçÜ®û£m¦[B2\K:zKÖ‘Ný7a?° ïýP!еy¢oÉǬSOS¢zÒú‰¯ºhãÎ-v+!ïSrGïâ?ºÖok=ˆRj½,ÉÄjw7ÌH´ºíšd›x9g§hO°ScØ@¿ã¶Õ Jœ„ \¨`wR¯ÜÔt–ì×ÁYÒÕ¤ÐÝ[I¾NDÆ×=Ë©¤Yü!¦=»K?› üC"¿*¹’#cÚ‹ô`/ 6Îk&&ÐQj÷qü;Œ‡©Ï^~Gƒ"AKÉôt"<;âôol®‹–¬\h…Z¢yùÀQE ïJ™1À¤Ëh«/ÞCú2莤}fnÂ]„í«äÆx‘‹·ËÜÃb© 0›Ôœâ+ŽNÊ@xesFŽ͘§ ´˜Ù›z·ˆ‰µÌ>zœ ÔD _q‘k]ø•Η$AðAâˆCxÛËî`ñ<^-œà*„ ebw7Á ºq­ß¸­AÐÜ_  ©…8ÂÂO¹>ÇÛàyÇJE{€T¾|ýÜ“ ÷kÌ]‚>GY€ötùxÉp}€1Ê–9>¨{z7úšp›:AõþáBXƒ©–œÁå‘ë“?JÔo–ÅDƒGîÿVS °½ñº\Ñ£€¨‡)ß.ƒTªTBö»$ëá%Ö«fÍ'–=ÛÇÎhð†! R¼1ò+7¤>L²T«.=¸(û …H}ÜÎMÓeî"\¡ôy#ZM|6*)éÂ;Z_2Û 9QòÀ©’… ÁjœÖð(|Nýf‚ÂÒާǵ „,xÓõ€ây®þ6çÓ<¢LV? £C À_¸·bZ±íØ ÒÊpÇGI–ƒÅÀ˜,n +™V=° ÐÓA‹>pÁ':ZD¿Œe±mö~Œ!5Áƺ@/¹ÀmòWrÕÝX¼he †+r´&Š@àwKò›©<6ž@¥"îBÓá-ºFPJÞq°ùL°‰?0‰éÉv`ÿûÞ0ÞzVÀÅ%áyøÙ‡x†@.gÔ% p×éz§ô¶»Úåªh:(ÕúøßÛÎó­$!%$ ’Ÿ gköv%¯ßoÍÁjà9·#[Ò3ãD“ä ³[BO.žÆ(;öÁØϧ²ÝŸs©ì%uˆm¦AŒ$î b0¬#LÉœÀC½$Ö³«\¦V GG»Äãª$ÌØÖ>²÷üIÈĜ§™Ó¶ë©ÖK2Ôºd‰Æ_åHÐÇ¡K¸ð$ßÝT»äZœ¥tˆŠŒyHL€ì;°µ˜qt©!Õf:¸Žùÿ•2—ùÔàÅäÅœ›ÍäœOl'óMF#`6Ÿqâ†QTm7û¦Nbçߺ˜Öô«õUÌøS‡4ɺ<7Sø÷ð€ #AÁHàÆeÙêQšç‘@‘!P´ Å(/üx ÈsQZEQ ío…!ЉþM€¢ßà ™¬ûX ˆNœó”¿§.˜Å¤Å=á[Ÿµ‚ê"‰¡Û 3eè€^v^(Ùó$¤NmTëW+1EãÐ$iHæÊg)ðîB… Ûî7M›šq]B ïÓãêÃçëIœÕ%6îÌ‘³ˆ{”„ò“t'ÎV=°`1qOýÖÖºÚž¾'×@Ô•~4åÚ›½U¡Ô6¹mZ\Žç7¦¶J‚‹iu—H˜ '›a7ï£F{·Ãœ8Ó‰€‘D…•Œr´÷':…DOÙW’ãr,¼syðÞ¨FqÅuºJ>½µÑÉ[Ë’ùj K× ¯àÎLA#T.$+P°s-àh w5×’¹¼‹x 3*0R¦#¹86Tƒ‘L éIL–U¹)•èëa#bꦴ<ûêëÙCqˆ‚!¤H•.ªsÅtáÃñÊbB%ór ¼ž9ˆÊ¥RC1•7*”'«¯;]]:£nHë·DKfô´‚ÓB¥ûý"6þSÁb‚ ñ$öÃWŠ»B>k¥ý<°v›$!åãÁ ¨Mn8]ƒÝ>Ñó˜Ö@.¼PñzNd#›ü"2í7}¨9Cô‹k!7tg»ªùàyˆØBôŽ,|Bæ.ŒgÇ%ì*" JÐm®HL<Ĥ@÷•–]z@h˜7æp­( í…·nÂ&æXÂÅ蹄KŸ”N.tÚq?@BzÝ$!oæ{{VŒtO©KŠ“ÊQIgZ<ó€£ÔTH¡ø°TÔ„2ñj%ø`-êM:l?ɦ·UuÈ‹®t<å€E‰!  ;ñæ8ƒ±QzÑ×øŒKŠ£,×±tw; â¹U„÷½1(ñŠ’Tm}½Ù&{Ìåþ%ËUÉûlññVÄyª„(ÿHþ¤ñ'*fBSj&ѰfÛH«s­Æ­w}z$A·UãcÔ’a˜ÜÇ íÄwøþ‹¡Yaš>£FÍSÓvõ®šº"ß:ÅÅ=Ž@ÎfµuuUdÙ­ß |Ò.ˆÁ=Õ¹íWþ¾„|%RÓ}Ë\™¾6yöo¦ Wï.ñöüß*ûÛjx/°´~‹£®êîçÃþvÝl«ÛÓ0Fg×~¶"»÷uèÒbëZ¯/?;¨+†çh œ~Èçùð&¤”rU4Ü <„?ê_eÌÕµ.©j7!‚X°>Ô?¼îêõåÏõõÕúÐÆtÕÛuF'¤]º,v×>$4§&p[L‰Û$ƒA ‡ò:»«S(¶0 (qmzÌ%qÞ9a²Ì~9†©ÓnXÈg€h¡i†û×'”®oÖÓ"ïá9ˆÂ‹C|~öfj›nâ8Œè9Ò£AéP7D2Ÿº‘ Ž“n3¶/!ÙØÜÎõ4¯ï#X™“²Œ°l¸Š—›VŽ‚­†úülÉÀì×©Ï S`Ôå’ëPüÑâ3ŽÁÒÌ?ù$%Hˆ“«Þ÷ù9°<û£!—eiSr¾ˆà^ˆ©¤(jݽ‹Ôª/ûº×üfèÊ÷áy‚Ã"§çv·TvsÌÉúEzF³³b¾a ƒ >Þ[¥QI¤("¿ôW¥Æ9â{éÑddƒ¬~YsFí^+ O—&IüÄWŒq‘ÄÔ4†(®HÀY²šb¡|¤K¯‚?¹öqX@«;€1”Ëê{Ë ý­û¦Y š].†DLPp`XG¨x=€:éý’›æ"»Å>#]ùr\䥊‡NíÄ´‹\ƒ§›eèí ë¨(î­ÀQºîÙúB Ì?]–œT3ÆKE±û8Qäˆ)¦F&„¬üqH˜HýŠÉ’8=j²=D¶.´qYêAµ«¾'W;û!\%f ë°úQ&a}ÓºÚèS˜)ÈÃתé;smò¹ÅD%úú†}§êPûèŠßãÏë¾ìRŠD£“)£Öç^!Œ›Û¸¡Ýù_°Vä…ë>»§Ô: yùÈ„A…0õ˜ÓžßIahU>ÖžÜúfmW n.âjrTô2ÊÿøV? h)âH2䦷39*-|L’.ÅgùpšL<»þRHßUﶳåýi}³¾îÚ?š‹µÇ¿ ß 0¶ˆÀîúÓÅöãe?NÇp÷‡_½€nB‹Éu„s¿{úê͋努ÈÎÏ~¤GÐpžûáé7Nö8% à:*¼’ öEI#9C3FTeâHÿ™_ƒ—9Çü¾k?é´ÄœÄÍm·oF6¡7çy•‹r¡žysµ…2gB¼Y*lu˜¹57JЏš¾QÎáqšª¤ácûr è&ýîÓ Jµ<ô3RlOò­iÓJK‘k¸ñÃÓYX¤s.d_œžE{BÏjD…о_© Œ•!%\ü<ñ8ž±‡‘öIóÎ waežíöâ·õÖ§¡ðË,¥D‚¥êØ]Ek®ÉGbõMïñƒý‘XŸe>H”íòÌï‚IO˪Rçè,f æÊl¾>s[·=I£:Ò¸Y9x)r¶?ƒy%½ëåT9G¸|6ð€a'H©‚aWIEüx”ð)¤JtbÊõ8$‹^[t.Ÿ ªË¢Eï_¼ì%S’Åæ;r_°H ·ê·Õe"GÄ í»²ÀOO}ÖÐå™sW,xq¶úRÜ2ùvöÔ/hÖ ðÊL]43a¤üŠpÉg´Jö+øjhwN3 [Åd_ŽzsX*F¶×W`¸.)7þOwi† ìÔƒH _Y:gò ›Všëö+Ÿ1—ùzݽßÓªLËìrgO÷a·Íß d¿º¾þxºÄF^ :â™`Äiª‘®~ë?BaÆæpÜR¾3Ô-ðÓfàôÙ¨ü2ñ_,בáÀÒô³aÅÞå ÐŽ@ì>µ/œªøßWÛí“gg=^|vêçÀ°WG-EòÂBúeÜAñíƒ )]‘pšÆV@¨Á øÑ¾És…µaN0×kÖóê}d¦Q¨)³çßžú? ŽwMÍ`× £ž÷3DvF©Œl?þ Ó {Fƒ]Sûkü°Œ9›öª·`1Q–€\ÊAs‰©tš'Ó~’[ß‘h¸ëvø»ŸhÔ£<¦X©6ª÷ÚŸ;ƪGrnAy#ø:D).ìý¢îTcƒá'Ð1Z uï]»£ >½ê§W0 •ôfýogï˜fÒU6é bœ£2®¢æåì{G•åÊPbþ U_¿š/[€+MKÓÀÐ3régëðÃã‡j,=„ðÇÊ­ÿ¶Ñ}OÆr»’§Áñe?ž½Šz¡rEé…û²v6Qrì[X”6·…ò¥Ê÷]wøêɺ¶uÞ€:HŸ2»Ú7ÿ }ÿlö¿¬/º^> stream xœ­X XTÕÚÞÃÈì­›ÈÚC¦æ=ÓÊ´4“ÔÄLT¼¡ˆÜ†ËpnÃÌ|sîÊu˜(– ¢)(å…“ö[”i'-ËÊS™'צåyú×v9Çszþÿù™yàaÏ·×ZûûÞï}ßoDÔ('J$¹¿º:P–°`V`DTªw®•<%¢3–Ií>ºu ;F76qì/.ÛšüP…ë×T·en§Æ—ï>Ý}¿‡Ôãul&û‘çÓžIž:ÏFÏ~iÚëú‹Ø‰§€G›xa“J4”2žÏ¤WƒÚ’gǪ!Ú[S¥Ý•Y +*ÊÂqw¿ôÎM‰^¬gäô“ :9k½y:ÐÉCXŒ%Æ’$õF•’><ÜgЂÆ'>’89}ØtŽƒ½Q…«%h ºâì*\žlþ%Ÿmõ@£Qä «çi68” çLçЪؗb¨Ú³aÛòl£¿)a[ñdµ³œ¾`)Ü(Ãõô5¬$ûôë Gá(Té{u O¯TÃò§YËOž8÷NÕÆ5Îz`¬ë/N¢k”Ú.L·ŠZ¯¢ýWÅB:Š‘"¯Çoc7ÌNñÅžØýöT䆨~@nÜ3)DÂëÊ­Š-[Ta°¬)o$ué{ÉcvB¿õ`Ûñ·jöC?Œ«i 3„@˜c/WP©üÐ,^ÔKÐØÄCKÐNi9X²s 0_Ïà™Øå¥IÀ<‹Wö¢½¨ù÷~úÝß—àg›eƃ¦ ˜Z(i¡z7Xr µÚü".dIxj øàuø9ü ÅÛÑB<£…?¢GÑhÉ3^Ç£™VtÝÞÀgÚ=î ¢Æ«^ìTa/’K‘Ç´ïñ˜µR·GpçhöžêHëÅÒ¢m²»Ñÿ1­ è–¤ŽØwAc‘Ó·ÈKöÌx,Y1oahD˾d.§ŒPÇ DšóvÇÉú® Ÿ~ Sä4SHÍOwÕóò.;ï|îÅ£…qÒöø¶Ð5aa«S8ým {O|@y{U†ã€X;½T[Ñ)CÓéƒè $áô´NŸ• ÉLbCfSCSMçú‹¨<’R[‘ÄŠZEÇQÎq± AžR8¬²¥6Åì*{©:©diô3íM]_"ªì9¥‘3äBIu5”Õɾ½—irs8.?¿H#o”—Æ8 »4$®:©)UÖ!?Px<ÿxÞnmcfy5"˜yS {rÒg}¹œ¶\_š L6dȰ' ù•¥CÝÎ\ZQURÒµýˆÖJRèÖýþy9°¹ÓB–G¯ª<~TØO‚Ý‹ý}ƒÆIûké—äQQ¯Àç{8Ô†&óx2zUAëçGOš®e”4ûÁ5Ü*Á£>IéåX§óû.Ê~mñ³<êàEÈ÷::w]<”8žO¡ëH…FºÓXq‰kâ%¡Ú ØB^AjbäMô%£:R†³ñ9”ýŸcî6Ò‘:õb.E.9l:E:àœ‚ÃZæþ¨ÃÕŽ!èTw Î]¢aßëÿùeÇdÑxÆo XFÏݰÊï9Mw‡þ:òÉ%ÐΕáé4øCØ‘èVÕÁÂ7ákj=Íž“ ÷[yšð$/Š&Iy:\«ƒXˆ€l'ǧ»õÕ‰ ‚<]‘¶ðIlòž‚l¤ÉL`òiá-OoÑn'ü'‡ˆsÄ·C½¾"Û¢® ­&Û{N‰ªŠjÒÍ>¶7 ŽÜEÚXcò‘Ó¤at•1HŠò.É5åÕ@ ˜+Ìå·Ð^ïñ^sžY]>5`*7—“úØ»ñÌAsƒá>YUûP”͵zœ»ž|Ÿà T(úBzJL«aCT­åMH¦#ô`äÞM5€™¿,l•¼!³ÅVWßÒZ2[ËQK+0Çû#æÉb鵺%šWâü¢S×C8êÜL<ÿé“öjŽ]VÒÕ=Áz®æŠ /=!e­Ó—Äoݼµã­wûÿ Í*%ÝäÄ)H:÷ñ"ÁJÊñjÇ^h¡w¡…$ü||s×.¾££ùŒðD‚6‘¤"2†³]£«* ÙÎÊWkŠV½à½è»B‹Îe>PYQÙäˆÐ%éCÉ"°ÃÿuG~ÄRïéxô†5º4 Im%ÒÓ íЮowp‘Ò¤Ý å¤fÕ5{šù–6kÛå)Þu© ƒ"Pçå$;ÔªËØlè&ë¾o Ί¾¶vZQd—èÎEd%\ ݧþ€]VlŽNLæÐyz˜ïaïî ;Ýy†ßú–¢|~e;ƒ6­K OÛ._¡ќܙÝëm¥‰"*j;Ž«=ÝðfrKXË6cÄ1ÃyÄaÖ~^PóõŸ|æÅ¶ »ïá3N+‡P€Ü 0’ƒÑAƒº8¯¸` Î÷Æ£PMá%Ÿ–hpÀM¬ÕB ÉÉÌa¨ÓU&¢¹wioe@꺄þࣄÌ*­‘aØe°ïêx¸%½6E™‘•Úyâ/ÝoŸlæÐJáùŠ–=Œ>„~Μ%ôƒöÙju\E[oˆ…ÑXi¥´jÐeq)˃’B€YµàšŠæ\é9]Õ§SvÊÒŠUÙÀ$Õ«ZZvóg—˜‡=gøbw,½=ˆ½¬=dá\^ üˆ°Ðdþ"/¬üDüóøð~A’…P˜SîxãátA½Þ˜Hîy“d˜p4t"lšLᤱÚpŒ(S¾Ï†ÉpÔ&ÚiƒéÿA•ä˜ó+Á§J,f 2 ¹xôÎwÏÿJD§MçIK– œÁ…²KÎ7Z¡ å[;>EòP~õå‹^¬o‰ÐyŸ›„Û4»>àwÁ1´¦4´w7ßiXŠÝ¿Ÿ‚Æ~p¸»alÍN¥×(ÒÚi kÚ*ß’>a„7'u%uëÞ!pî)ímy³±ý ß ]ðfš-¢2 ôNà":;ÓQ”èf´øž7Ñ^®J™¦4?O[X¬çb&ÏÕí„M°Ý–Ò{Lºt@ÒX ?}CŒ‹Ë¬Çñ8ìõ÷'+r=v§I¶=,ÅÅ š}½Ö'át˜{:¶Z8†t¸àÌ£b^IL™óEøÂü…;Ipr•ˆØ̱g-xB†éä—ñGÿA˜Ãã±È™f=¿>99>¾9¹­­¹™˜/áBª]Á£@;ʰƒ-°{ôü4€æx±^”PŽVK¡?íPrÛ¶“¡þ5󼟯O€CÌù¾¿"é‰Sª9SºASyψÏ»–®‡]¹…z}n!—“Q^»>³~ý[³€aãÔxôü9“õl*ÑÈoÝ£AcŸ¤[t{cذbã’9‹1¡ 2=i÷œ{nL%cóÕx-­‚‚Ê2ƒ¡²Œ«Ú“—³÷ÄÙ5—óŽCæúÉ÷wdÂd ÒºL|S°"U¡TçÐNu¶KªÑ‚úV4°}+A÷žbCÁ6ñC1°s"·C.ÙoBN„ÿ»üÙOÑz"Ôt8ØZ –zs¹Ñ{€,PŸP0÷EÖÑ‚IÉ/)L¾Ð@  Ɇ¨£ »ODkÿöÙ‘7.˜|x:š¸šHÀN&o"²úÊBbYÒ³rò ðcx¬·D³ü¡ƒÄ&$Ö:€æz ï&öªMÝ• Ù>yÚ\¹#„29´¶Uës0„¿èu&GêDÕãGnþA³ïý[|Ø­?æ@8$ƒ™ú”Ö‘¹/Êñöb‹‡°þwp ì± ëÖœ^¹e‚l S¬Ë}'|ÿ|x6®OÛÂèÿ&aíÿ«IÐŒ¨ß:}rÏŽeÿ®5~ þÓÐaîJµyXEo^EÕÄIÄ£¤p^{5úí_¿Øü:¬“·Îˆ[®Y/‚¿qz÷ =Ï~œuþƒö®¯ÚΗ~W˜g*¥°æç¤aÉKyJb«üªÓ‘sÞ;p•¸» p¹òdý{:àœSÕÍ®†EðêÈî,ü€J„T—ÄÂËãù8z¶¶’èé)Úª7*¹Õ«ž$þ•x‰:8}-Ì]âõ¹³¹86¿€ƒäuÝ̑Ů [·oñ¢ã·QÜWba;Z&UHt99YEùË }2x¹ä»¯Ñshâ™^¸åƒè™WÈ|L/š3gC·ÆÒØV»¿-­Q®Ñ‚¾˜k¾8ÐÞÌ­}3—O^üܦõ2¼ oT#)>+Ižý2¢ÐÄ–$;b¾?kõèF¢$JD¢s·¼Xµ‹KáÚòÁ 7öúÞc.={úñǼۘÞÚÚÐÐʱRû’kb¸–®3õ¤s?­]¹9¾h“2B&Ö%èöZ¯N©ƒ‚ ùú=¨™œ]°›ë‘\;°l&ö\’>½d0T¶_c·B³WÙ Œß6÷ÆrÄ ÷×o9ÆÈë×(anZ‹(ZcE~V1Š>“$u…E§'&&Ö%2[*8£Ñh`ÀX”¿2þµM¡Dœˆ?Ó0šÒ²òÏ>D.Ú<þÿrÛp²ôi§WÚI­ý‰3+ò–b£{€¶J[Ç($±8‚0’¹iשªÊ²ÒËPMh,R2{áñxE.ž>j=Ò‡ª¸c4 'Óû>òEAÞ– bßî«)HyÔÏ%F!ÂC¿’{B³’»µ•ÃjM¶’kÊ„ßÿ·oPîÜôh½Zr󓛦«^ìÅÿÿ/RØ™x¥à!µ¥5$&¦¦%&6¦Úl 6-ÿ/×Fª÷y¦µ*A䚎\•ÈÕ‹}¹„Æ8 ±®’B«ÏŠ*MŒpÛVÓøAeVåbb ʤֻåJúW,Žà°OúÈ Ë‰C-Ý¿iµ:¦¹XÇ[<ôî¯ÊäDãñùYzG‰|tzý슜$·¿Þ×ßt (ÙÊí(.’C.ßœÙdk¨³÷~~M@fäFNÕÞÌ<:ø1vþƒãýƒ®Ý—ŒPìŸF> stream xœ…–kTT×Çï00÷ª<”˨½3¾íRJ¬Ö´]QD Š ˆ¢ Èk`pFä%*È{öÌ ÈKå-(aõmâ0Á„°ZcVlk—Æúª5]Yîk«éL¢Æ¬ôËýpÎ]ûìýÛçÿßGBÙÛQ‰dâšÀõúmѺåêm‰ó}¼Ö«5;“£Sl;³„ÉaŠð+)ˆg#ÏÀQ ŽöMsÓk' Á#ÆSR‰dSr¦Ÿ~{fJ¢&!U¹ÀÇÇ×ËKüþV“©\æ­ ˆŽÕêÓ ÚDe´.Nàè­\«O•sô:eŒ:!:9^©WnP‡)CCüׇ(W® ùµ÷ÏæöÚ"EQn:½ßöCêδè˜ÌXµ&!1y›7EQÁÔ jBm B©Ô&jåGm¡–S+¨UÔ{TH­¥\(¹ˆ²§4Ô'’`ɈÝ»?KçHMÒûöÛìï8D; Ê|éqt*}™~Êä1G±Óù;»¹ x<Ä÷ðz«ë=”á"”¹³ÎOäWà!úºá‘ú…Åé8ã{¼›ç ¢¯–Cœ‚\]¡¢ÑÕ‚®Åâ¿jš­@é þüá†B_Ž 7],ÎBqA¯ÀZ%ÇÐ ƒÐM*hQ/Ç©¾÷È$"k™IfÜ_‚,z|} •q«”ƒ 6å&æÆÅ§j ÔM9§ó:aº€‡s•Ý'šO@tê*´IŒXÆÈb*‡þû^B/±žÿòîìg^˜.oÈ7eíÙYFŽxL_³p¹û`<—Ð_0wáxȾQÓ7áod–yW9ÔÓj2·*PK×CEæ¾’’üš}Düm(롪Jê‹!Ò™çe¯!õ§ºövƒc¿ùç*ˆÛD¢Ü´qËÖä¶ãÖѬ[{Ëû-g&_è]M\Ä $¶nYÁÖÍ[HÝBgw6X˜!ØË/·†GDVíäŒwebKÞhd·ÄZìÉ¿+ÅÈסÃÈÈÒÅt¤·µu4örb|ãªÀŠ5;$#OFjF¤ørèOnß]“Ô©)9 ª ­„˜ÁÏMõ·÷¯N3s¦lsQ0G`³â«Q¤yé9ù{¸¬Jý50~¾)S·ÝQ½WÑ¡íÎ;»¯7op/2Á‘Ù‘~:þZWtÐhÉÆ© "¡3`_]¹ªë¸ý¥+ö[zõ§àˆÈ¥ûóë6…+©‚^œžŽù<†¤»þe*þkñ:<Å¿£³ü¢*”Ý• ‹„¡z;Љ'N¢¢‹ôD6«ˆÑÐlûÇ䨌P7Ó†¾hûl€{Ñ×ë6¾ÇŠ­¼êâK•$ÙTBæCB h¶Š¬~É4”öKX»z±éCŽuÄÒìÉWw÷г?Õ?jý>ëæL+eâ.Tmš0“—faªœ§SJtÆÐÂVón£¢ËOsJŠro“´¹hq¸ÌˈK1±·8¨®Ò8ýù˜ÊU%‡Á³J«Êãü֣찥lDuHîN±µmk;zY%Í8 L*¤‘CC®9Ǥ²@ 42˜L?Xz…¸$÷’ù[»2޶w4žêH­®±ô€ù80­á+šÌ(&îá0Y|_{}ðd×™F. 6ÞåNɪሂ L¾0`§.&õd7Ú¡Gu«ùGˆ‚›×]”|¯ ©¨‹9z͹N$áqÙÛ9ì¡_ÈbÓóGçès|“¡Wמèôø&Î5`’‹¢ß’­ÎNL2Ä‹¡mØÑÃ`#ÝÙ×s°¬pÜP­®N‚ˆe^p%*«p…—Ô#-ý Üó\ø#ìUîù I™‹àpé5²Þϧæí4ìMóÔ‡kò² JLE¦CeM‡à}¦Óp$Q¯ËˆSuG^üâü0_Ç¡¿Q^k.ÿDIæPUz°ÔX\R¹LJmfkkmýŽlœ'ƒµ+VÀÕó{ùÝ 08< ›¹‡ÏäqIaÓg«Ïž8 µÜ}Ù¾¬HÅcpè"ˆ÷ó57¿6 9vÕrÕ‡1F¼-cû^½¬ç2n~'‘:ôñŒ›èã:€ó‰3Rîl ÖMä…Ù4{™,³ÅìéÌÎÖcXø·üT‚5J¥UÇFwiúøŽîQG'ܱåüÀ趈ù>›L³Ão$7štiè_œQß×ù¢Ö¿>y¥Öåáq›¶s·ß±hÁÂbtAŒí ðø—žoÖŒþ/ô‘ ¢·})ïK芊JHˆŠêJèëëêêãœsª„à Œl¬¬’ñcqÚ8n¬ý½ãp×i)5™KMåå5C‡ù2ÓÉš²ƒö›ªJ(êSb«—endstream endobj 308 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1576 >> stream xœ}T PSW¾!áæÚF‘ÜÍj—öÜtÚ¢Ö‘Zi©ìØ­#µAcÝBK‚`˜„HH*„þ„‡B# ˆ E‹¶:bUzÛÕ¦ƒÕ>vVÛê¶î¨m÷Ñ×¹Ó™íÕÄWgÚ™;wî9sþûýßw¾ï—P²J"‘D¯NK3ŒO.Y”Y¸ÑRª1ߨŒb$ƒÂCÒ&bÚ~’F‚B Ù‰åK•Øs£ðšÙ”T"Y·Ñ˜d4ÙÍúºrõ’Å‹ã-߉j­]½"Nª)(1Z7—èÕÃuj\ZœzÑ*nêÕóµ¶P§)-R‹ÔÙ…/©s²Vff©“3Ós2²Äýº­[kŠ¢†$Óær«fC¡>kE¥SRk©l*‡z‰ZA­¤^ R©§¨5ÔL‘%£¶QXRa‘ΔdHæ”]l¦ñè¬ÿGDtPÀãi~¯ü*ˆ³ƒsØ7çj¨ ª‘×ÒßäIL~µÐV‰Ø³ãÐY€Rèê20ö@'7A¦µwVxݹ†nTrZœB³C_O>É{‹3©ÒÊ}Ž ×òB7/y=ˆßJ~V5\µÕU •¨ŽDÇÖW—€%x!^xSÿ:ùNþ\³¥Ýáfvû8ü˜¼úö†­õN䪫³»êµûóº4À•š ’LVვxÆÅ«_„Q‰™ÇKxüQ˜v‹H{®P†KU8ê™oY‘÷ê¶íˆýzºîåûóØoò-¦ý¦qÃ0?\½ŽY.õ ““Ÿ_^tiýCÎþáí©©ày~Å“(ïàñg¼ò«y?‡5 9x¶ ¾#³û^Þߕއ˜Áá‘k×[^)ó u·Ë&ûÉM®››øóÀ*’|ƲT¯õÇl܈}¨áÓ†:X¡&ûOEz]Ü*Mà|jèt½f¦lVîQyXözÛa¢ )|Ë5 N¬èàn·ö£¬¢âA/ÞÉj¥òAq X*PSzæ¶r`ž…I?‡'Èo+@>¥wÃ@I1”ÛQb‚¼Ú–é2i¥ãÞÓŸ?ùïÁÿ…éwW³xI—`“ N!V5d½FdôÍ’A±ä(½žð‘M´sOÕÔ¶{Ðå-†pÖÚWY“ë .;ÓD¯Ã|äQºsPD7Ý@WÀϽK®¶éº]ðÀAðìômß×}ªyqÓîšVcß_|/z¶€ðÁŽñwñµ¹þÀm/:D;à§øxåñ ¶‰žÈÚBQ(³zÚª6È?ɼ@b4à ¦Þ-ým£žCn­nwŸÇëÞ^€15ï7‚ kiÖõ•«6B2Ãn}þLúÕ‘Ó­ûßBìòbßdã¿_D&‰ßª *´6†­Ôå‚+&#dâÇðÌ»Û/…á•ã!¯n¹Q¡vtèïåŸéªníØ`~b!Qrl=‰º¼àÛàáƒý½"ºj^Gï‡BHbñÓ*v4+/qyÒÚ¯|5=}.x4cÝmŸ^:§p ¯œšÆ½ïÏa/ ¹X¢jkì/µ9ê·8ymjƒ –BÊ™­gðº¯ÆñŒ”k$š0qóÈ,¢üï…UG¿ÜÃ¥`¤b—‘^z×¥àäøô%´¬gîA®(±îJªÈïoBZ˜ß||)Ä̽CðG2Mè;vÁÃ!.ìb ~UÀê3›­V³Ùg |¾º{Ð?'NK…¼Tä¿áj)˜°µÄúWöÌÕvïƒ7™“ÇÎ~|¼ aj¶yjöÞ2ÜÍàU4ÖijÑ_gîЉÚ>÷\|ƾ mî¦Çù½ùãÊgÀ¸ÛÒa#““Ÿ¾ìé¤ñ/PSWSϦpøº™¾>ÏÎC^t*ÿlý„˜¾Èsÿü’»wŸ˜ÂÌg{Lh•(‡R„åý€eñ:}U‘ 9º,^†W ÔP·a/Ž4U€=fSH¢æÈ´¼Ä–ëóМÂáÕröØçûO¼±w§.‘:yå-?¼çÐïáfÕz…$/^ÖÙì¦ùû‚÷£ûdÙFÅ PÜ?ÔÞãö¸Ýîf·¯U¡?Ålx^ó´+fRÔ/NhÛendstream endobj 309 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 310 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6795 >> stream xœYXTG×¾K¹{Ul¬WŠæ.±Ç{ÔØ@EAAEEAé½îR–Þgé½÷Ž#v¬X5q­Ñ$&Q1š¦É÷%ÿ¹fÈÿü³»´|É—çGçÞÙ™3ç¼ç}Ï”Ž%Æoµ²òóõ[¸`ž‹[ˆ·S êá ~’€Ÿ¬Å¿£ŒÃø#o-u‘ž6ÒÓ¹8yÊÿêóËÇCùX°Gi vn~ëýüÃ=Ü܃M-X°xÞ<òs…‰s˜‰Ù|K§C^~’ /'ßÃ&–ó­æ›XûIÈC“Y~¾&Î.îNÞ®&~®&¶.{LvíÜh³Ód“Ͷ]Ûw¾7ÿ?ÍSeeêkæ·ÞCÀÆ@ó MÁ!¡§-Rç­a‡¬Â[»lsÝî¶ÃÝÆc§§­×.o» #-ŽZ²tÙï.Ÿ²bå´é«V¯™õÞì}sæ˜7ßñ}ŠšBm£¦RÛ©iÔj:eCÍ vR3)[jµ‹ÚMͦì¨=”5—ÚK­§æQöÔj>µÚH½O™S ¨MÔBj3µˆ² S–Ôj µ”ÚJ-£¬(kj95žÒ§P"jåH±ÔDÊ€2¤´(#J›2¦&QºM½Cq”˜A¤FQ«(=j4µ†C¥ÖQã(k"J‡Š¢xTpZk¶V³¶@ÛOûÛºº/éô)¡–ЃÑfä#&81ròHŸQFyèMÓK­=:lôçc>S3Vk,W6~Âø ú&ú7DEULÈð=qþ݉·&¾1ð2ø_Ã=†×Vu³ÆÎÆ_Oš3©~Òד³Þ™÷Nè;§9·™Ë›ˆÄâoLÞ1139d’brÚÆðÕHñoÿ®DÐÛ~€mÚ|b3‹Š’ò£³3BP$£ùJø£2¹7òE(Îî«2”¡`”˜“˜‹¢ŸzTÆýB—×¢æ r×ü[–Ñ5SuÝ$ÈÛ§•‹¡ËêQ³¯†=,6¤?OuÕ;CÂV¡ÿ£l•¢S|^3Ûˆ"8Gˆ¤ÞsbÕf©”)[QÉ!ÎŒŽ$ËÕ£bñ)Üã84‚Åt1Y]õI±#l¤EMo=±Øo‡%‡…êy ªyóÔóÄšCà ÐÿV ‘Ê}êÍCáC)÷ÝZYq³úäÔÃÜ·~‚µ9JËw*7ôÉü‡í›F‹‚A÷zïcñBèd½,fsÓÀÆÓ¢GßT[yŠ«ðǬýáíK8,‚Pàh‘Î7ÍfªýðH!¸¢„:¥6ïÞ,ŒŸÿë`ù³ðx,ú~.hÖ÷?€>gžÃηZgjjõðÕ··nݽwÓrGˆQð¹ Á1%\# HaÛ„bâ‚‘o*—ðÞÊ gÄ,Xú̆÷žýÖ{ýò•ÅâŒðôˆfÄ´£ªJ1ˆ…¥¨Î',)6!‰KMF©Qž*÷ ³Ä cl‰·ù yÚûBe1TÀû ¸­‰×I%˜§ò‘*ÛÇ.úéÝ}aÞœèuSj±ËŸBÕ×ø_CåLw:ˆkE ~üDbó‰s6Zn\íþü,w_(Ò¿võâWÍ–pê€ñ2…à‰ÊÉyÃà K–ÂllÄaçÕKÄÕ}²¡Y žƒ ,% ã;ðXÍ9¼ìt»±f†ëÚ—5dí#Ø–m "´ç/ѨÚÃ…»pþMÎõ6Ä;:Óçb÷Ýlк}º£¦JŒ½ì…‘µð!]R§‚ù"~"kc¿b…©å/ï(¿xxj…æ¢G5â ”§”û‰çÓ:Ù^¡f«P gŽ+! „Î(¢ýª®à^õ¿‹pæ°8Ò¢NHÝMKQÈU,‰§Zó=¸¾t¤ ¦ª“7÷É|†üÀ‹i‘V[N^«xXÊÁ<%h+Ñ7¢|?Š­Œ>¾|Ï–°­¶Ü¡è‘zE¬EžìKܳrhÅt‰*Š(RŒµUxŸöݵ`4'*“Ô!¦º²´¡3OÕ·à%L&ÇÕæ£øDvÀàñC&¶õÉ<‡n¾Úª(ˆíÀ&Óë‹ÉäUÆ0G ¦Õ=”+´yGÏ¢c¶Ê+kS¡¡oæ¦Bô1SßÚòýWÅ>œ<<=¼¥?”êtJ–%¤rŽUŽHJBýað ·÷ )wÅ…v3®®ž öï,xÈ%•' F.ñla lÎ+•wr]nS šµ~uV¬NRX¬€“ ÁQ%Ô“Ó'@ÛLœÆáQCΙëЈף´KÖ ï¨à÷)ôëa/ÞüÌa¯Èø¿¥Ýzìåš–àm”F'UÄU%Ṫú¿ÏÁ¦à·™±(!#„?ˆ dD ¾¶n©‘i ÊÊ+‹ÖÕ…•r¢þáaNGu½9†™bxŸß§;”ª¹¯„ ^mÞl£/JŒˆM•$p‰QÒý¦ˆY¶þηgI†Oªúʼnåî²ZÄÔV•5ÝŸŠðºmxòb¬÷ÝtÐñ‘ŸÊúÑ´B¥ ý+Ý»¿è†Éä—¨†Ï$h E^/¶ªR´Tn'‘¼dY\Àfì`íç›èK’?öÌb(LÍŽ­ D2ÄìT{J,j"ÙßÊõÉ„^*Ôˆ²TÎàžhN#úT³x€\Xpà&¶ÍŒÊ .rÉJÈŽ/L(DE¨87·8#ûÈ.¼ÈÈûhÕjgŠbŸ úC‚.%tøu²W‡j\-„[ÐUU)Ï@eFGB”ïhÏøxOñá 2×CºßÂ]¡’´näQ*8~,]*Q 3ÀA·U."QC"Âgÿˆ,¢=›œKÌ!e™X”ǽ˜ý[÷ñ†¦FNdí†dǸ~ÉÀóáVÔ¾Óaùš ÛîöþpçÖ›];m‡`þªB»‰Bó4@|wXu}~i4ÞʧD·Efø#£MC­ë“~f ï'§ak_J‘{iZ=2j.Ì8*æ³ë„C C×?»ú"þp?ÈÂâS¤ \Èž]q~hZw.â)çéª Ôô–ŸðD×õ›®J•6Jج ¸š¬ÜqÕ@4Žâ³yC¶FÚ²+Æ>Íã'ID¸W˜4oúeËbzA-ˆPùâ¿B¤¨É 8‘]€J‘Q]R†*²%ÅT‹ã‹ÂŽ$,/oÏû2ûúfÌå,Â.YHä¾g†q%ir bbhY’&ÉS2’ħézÑ ‘¤1öRÜyt]BÝèQþÙ¢ËÕ•/Q/j /°ÌÛƒ6¡]ý»= r¶Ä¿¿ë¿;Ù?ÜüîÔ]‹þ3%X(”•¤*úž¯xŶ’›ÔÊ>i\|ªk¸:}ñʫᢛ‚«dŒè×O:*ÆO×>Á#9¼q8ƒšÁ¨a<žI‘ÝŒZýÑïÕ¡(ÄÉY"Ÿ ¯2ŸÆˆ#ˆ¹QûÉQÒO¿X{‡ ¸õàyõ¾<¹}ß 5?x£ö•DYû‹“)U7ž2,õtq=,MÎjŠÑ<…¯fCªýüBBüüªC««¯ô/ܲTžQ‚XérË@äÍ{ÃJÝt;]ä|Ì?guùÊrC§B—vt†9ßuö.Œ,™çÍe„$V´.†šþ*)Ü'žsnßUè@8[{ݪe›O[|$¡¿®¨¤1ñ+Éc»ƒÛWùÙg6✒§•§•¥•{õ·ZØPÝkUg·æqÇ|7IÃÜ{ÞÛ_\&÷Wyãl/¾ÙHüáÉë8²¼¹ D.) &öÍ£Q8r p÷wñ&U©/ŠNL'"–Žr˜Æà²Ðàp_N·ö'Ô Ó?½›œh‚œÿáo¤QO•/Ém>iX‹;I#…fCRxŒúdvî L‡õº¤1üsC«!ÙQ„dW¾Ý;ÕÍCŒ½iü솱 ÔmÖöÌV‰Ñxž« ¿j̱’ª®>™ý°~~XÃmÿ%ýÅ…ß×\Þ©½5r°(&x TüP 1ä¤eüãþv–ÆÄø;ÚÄÂÎn·å…ÿáà»fUMÞÒ¬¶ìO³^Óxì³÷ß¼yöÆrðºYø7­[sU8q@ÿ‚¨N쉤©c‡ÿ£d±Uè_ì†QªoQ_¤®´Ü8H"e,Ћ|œ£ûq‘GüÊ=‘ò‘…0¢/›S%(l’—ÆÐ*ô‘÷ÝBû9â¹ÆËd1lŠºz;ÏtÖ‡[rX&”ÉÃ?Mú‡)*;ã¿æ}ú°$–´ÀÑ+>_U¨œºjÐŽøi¼u‚]š©„oîû´ì¸š`GD Š% â~¼?ÉŠÔˆ(+­"á’o2¼L^¥é<QžXNßë«Ô=rϪE…“òH–_™‘s ¢2‘V1Óá“§æÖ£Ò,Ö¢¬ö{|¥aAÃ`ô‰dFñc_•`XO¬…ufªï ­Á :oÀ,9óϲÄ#W¯¶„‘0 f(_?¸ç=<³?gÆ(`ŒDId-ëþ@/àËhSH££“8—ev1ÒÔˆ´ÐTäÇ–'•Ttf=Éõ­\ "ÓÌÁ ƒäŽ6œscß®¢vwwäÍý±VÜÛÛQ{aÿ®)„Îz!PéKø!…÷îdëûËY©‡ãhѸkçxxâ#zu£ûôÍ/ŒAoÆC<\µb™kcLYUMYcaRQ\WrúLËeÄsÏ:Y¥jÃâÄü” ®¥å®ªÝ¾}ÎÍÁ'ÒÝ?Dì˜ê–j“‰/£Jdî4-Ê}~óë[ZSp&@œ••Cªl¦VZéµèÇ„0 ¾yùJåÞž±¥‘¥1‰I‰ œ_@„Œ *>/ª0ªHRåü‘_Dp¸$Ò7…1%¥ÙYÙ9\sc}i1Ê'âW]Uz5 ÆÒš²Ê’¦jTޯݔ‚‡„÷Aw©«ãaŸ&«áWº-!׃ó£ƒPRZ”Kñï†qQ(Iϼ„²0e5L-7áØ ¨Çý7¬f-,¤!~ÑÕø¶EK‚çJH#xòöç5?á‘îŽ !ÎØ@°{­jÚ3!ÎKŒ+„a(¸µ<3+?—khí,¿J¢yÊÌòà Û>ðÛ’{Ù8/7‡8¯)¸44Ò'îðò¯7‚Œý´5ÚZ= ÓC;ý‹w7|ÉŸÛ‘ˆžá½` ôâ^¬egîìÀûß=yŽŽ Ò˜¬$ò•HœT.©¯«,kîr»4›äŽ1p,蘽æD/@ðÓ× GÊÕ¥6ë-w)$\lmz-*fz®ŸûìË‹›MUûç‡òW‚“Ê+ꪸ¿oÁ_щ¥a(1(D*vêWžŠFÊhlŠ·z`„µòl/++hâ² æ™âZeyz:ÙA¼7|‰\à—Úp‹ïa/:gÆÅ9'ïærpT-¨'£ÑG(#7ýX&˜Ê/d^F™¾B¿¯ ]ì•¶ªvÕôÌÕ€þ¡å5Óª/Nu¡+Ì“eñ(¬÷Áª•6§÷~À‰î® ݲ}ñìW‹a<è¿|þ#·ޱ6VŽfœ¨ÍÌêT÷…?¾²ÏN\Œ?fÍ-v.çD6Ë-º•Š«7¾}ye«µš¾„3^Ìßd3ÎxäF!)òÉp,ÂŽ†òÈŒÐFT‡²Êåe ^ÿy†æ +z ƒÄZ µ7Ü5ýJ"}‹…D¬­œ‹µg,'1¤Ÿ/­ Ê:Oq±xÜêYsE»ÉCK3³²²QSV( ÷ñ*ß@C’ŠãÁž[ýˆµÝe³|åîO<»Û}ïDc°„°Óz8OºÁX2ËÆ `?Œ×†Ç¼ÛáSïåèííÚÐz´®¥…Ã×tþòŒ|òêMÐR€à¦êc-‹ºü^ãé ¶%Ÿ“•î‰OŠFQ )wªj ;ÙÞÃ#ó¹u±æ#8!ÖŠÚ²™¢ lLÁ*oG ²«#Ïggæç¢¦1¨Lç–|`ùÕ5ÀÄp®ª ­¥Õ•rG…0¦âüSt‡ÁQ°µÉßý:Ξ=Ö“ÏÀš>íqØ¿%†_á'Q'Е“—÷À”Hé©=‚v¿©Ø\ø+ìãÃÝûì]v¬[ýñγ]G¯>ä@úš-,“%H‰Vàú?6&Ǧ&¡#iiDEmNyA& o7eæ§g¡£ }¿±\¯íÝëºÝÔ´cû¹s×p¸—Ïe¥~ÑÑÒÆ“åÍEEå>„-ÚúTOýÉÓ†“'+ +üÕtéþ-‹*¢rcrð1°0ò£ §(UÕH #âRÒâd~‚Å%FÅ#©"3óà)v1,ŽËH#Ô]ZQX£†¥Ý'w|8¯Ï¶»"ò¡×´Ì¹»·¡B1üN¶¡v1ž«Ó9ü;íIÞu¨*œ×tqy§¶®±¨(¾ 6?CY^Š<1Òè`)yš †cØ“¿1 jc‚+¢Kó2äyÅ«2W}¢”Úð«Ê$uà…û¹Ý÷×u!&0QY•"†åXP‚—’Þf¦+ãI " øP$Ÿ-©k‚ƒ$òT.†°O´ùýàÉ¢²è¼Ty`Ù¦¶€b ®æå  &5âð¸õéõòOP“QjóôDžq¾r‹ôS7dy©(I¢Â"¥‰EÄ ‚í˜Ú•ˆ$FÉÈ÷ãY _£8äÙÖ†ÚòšÒ>I­ç®•wœ"ÒQ.b*‹ÊKTçZ®x;•£ÄI’Ýý ;÷íT˜;ìÖÂB#'lzgÇáÀb¨"©½#PU%|8ñL»»*šS`*=Xà©xŠ0šüÓ½]ù)x*=X­ÀT˜",l×Di²†6¼®c‡?v<ìãåÒØ–#OÏá"­öGD'Ǧ„%, /kýåhqCöËHt.;±o·ô·BÃjÿ¹LÅs‡-ïkUæ«q¦1ý.=dê]ú?LSSÏ_yIÕ˜}¨Zþã*¼ëÛ™êlIˆŒJ$*ö‡yBDBñFa%á•Õ9%EÙ|õÖ<§TŽP®Ñ˜˜~}¬.È, #•£¸‘:¶~z#Þ¨£¥ÙrÕWVef¶ž^{Uzf޼Bž©-_o4EýöS­endstream endobj 311 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 595 >> stream xœ=ÝKSqÇÇ3ÏNsÙ (²í\H©Èœva‹,’ &91Zu³æÑ6'ÛYólË—©eÞ%D„ð=¡‹o õŠ|›'(ð{l¶½u)¡²+.„êÐiDëÈ€©!m¼R; ªFT —«ßU/k߸w™ìÇ\ J$ Q)R¼ùÍÌðmëî#ã­ñÔµ âR V%J!Cmå÷VrDr0ŸRXL3) ¢dwÓFHBtZb ÍL+09¶²Ø *^Qñ•ú­—ãvõ§N0‡·¹— ®#Élb¡ëiòØÔ`ž‹-‹ä±©TÚÚ-ßÜŠ¬ŒfÝ[—1úšÿòp‹­äÔ:1YÈöò È›“£î²ûÁ¨k¤ÿòâdW wânéUfÞÂúØÆÝµµÔœ„«ÁÕý,éÄ÷¹9xñiç˜è'MRE¶9Y%˜f5Ý- ‹#º/à $ Vò}b„aè“%ö^á¦&OÈ¥Ÿ¤sé\#Òúù [ÇTÆf‹-3 ¹ó̸jZ­°˜ ͳæ}ê¤Ù¬Ï~„þ ˆendstream endobj 312 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 454 >> stream xœcd`ab`ddôñ ÊÏM̳РJM/ÍI, ªüfü!ÃôC–¹»ûg÷Ï8Önæn–? „¾‡ ~àÿî#ÀÀÌÈžžïœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡Ášz莂ñ˜ ”„@ö³t\ý¾†ï?³ô †î5ß#Öüˆ(güÙ-¶¦ŠÝ§»qJýêßu?þI´Íè˜RÕ]ÙÝÑÜVû»øÏC‰Æ‚²ËnŽ,öÕ}ºçv¯î^Ù½§ƒc {|OáüîÝ“º{'Lßõ]Pâû¶Ã¿5&Ôw·vwKæ†wçËe±Wê; Ôs´Cò÷‚ï³Dw³}ø~›•ï?“°Ð ?V¯9]Îø½þó`±5ì:Ó7ÈÿØÏ¾¬³§@.)9¬Xdï²îƒÝG—qü™ÊžÖQ¯#—‘Ŷ¥ïa÷ |Ô½¥ƒƒ¯lÁçYßó§N^À¶†ë:·KH>g7÷ò˜0¡§wòžå}³–õMœÔ×;aÂD^åÝ»oendstream endobj 313 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 323 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªÿfü!ÃôC–¹»ûGïO]ÖÆnæn–ßW }üÄÿÝ_€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐÝã3000201012²~_Ã÷Ÿ)YŠ¡{Óù›N—3~_úùG¯Ø¦v•îkäìb_ÙÞ+çé­ÚÞ͑¾´ûl÷ñåzÙ³ºëTäRØõßì> „7»µsð•-øá<ë{þÔÉ Ø6qÝã–ãb Éçáìæá^ÝÓÛÓ×Ó;©§wòqž ½›û{ú'õôOéÊÃËÀ¿]w£endstream endobj 314 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7328 >> stream xœZ|TÅö¾!ìå‘’ë’ƒéÒDš41FZ"ÐC€ôÞvÓ6Ùlv7»{’-ɦ÷Nª¡Ø)R\@a©ŠÊ³…§OàùÔ¹¾Áßÿ?w7„$>ßv¿¹sgΜóï|gÀ<ˆrpp³ÆÇ'&:fcd`tâK³gn IŠ ŒžLæÝø±ƒøgãqÊoƒ~ó“#8 >9vj„3¿l4j‰vŽ¢ü#S^‰M‰ MtŸ3{öÜ™3ÉÏEî{RÜ=g¹{&D„¹Fïs÷žå3Ë}mŒ” †¹O‰vßììî´Å}ÓÆ6º¯Ú°n“ïÆfýGÛú RåýZ´gÌë±ËãVįLX•¸:ÉK" LÞ³&e¯Ï¾µAë‚}CB7„m ÷‹Øå?û¥9s3æÍ_ðòó Ç/š°xâÒW–M}aÚöé3vΜð"E§ÖQ(_j"µžšDm &S©)”5•ÚD½@m¦¦QþÔÊ“ÚJ½Nͤ¶QË©YÔ êEj%5›ZE½D­¦¼¨¹”75zƒšO­¡P>ÔZj!5šr¦Xêi*€Sc(Š£Q®”#õ 5˜r£DÔ³ÔsÔ8j(5ŒN-¥œ¨§¨eÔj$åA¢Þ "Ó4“Î b= ^5ø(Žv¦;†øùŠ98ôÕ¡µÃÆ ;>|ƒÓp'­~êëËGY>êÅQ•£©ÑÎnìLöÂÓuâ±âKcBÆ|ïr†[ÉU¸†?3óå3?ºE}zlü³ŽÏêŸsy.ñ¹ ãƵ¹/xžz~åxÑøõãÇÿ4aÙ˜8c¢tâ÷“¦NŠŸT=éô¤‡“§ ö|-Xþeៗ:´¡u? u޼®EœW¢)”Uú$H‡0¾šÓåFB4¤AzzTÃÉ TÚLUv–6CÕÀü“®„z0¶[¥‡ÿÅ¡´qBHA骎ª‡JaN4’9 ‹¶ˆ1G£aè’Èf:oñ³8ÿjE~Vv?_Ú"6¶Æ“ ™ú J¯xðöRp] [Â’’ÖÚfÔ—íuó¤Ó ž,/XP Ì»´?>/ è?ˆæÒ¥¶={—kA+Dìþå_8îvÌ1Yë‚°”Û×ûZ“íµ™=¯1vë$´ËâüÐZb+r²#ßãóÑq‘5ø£Wª.מŽ?Ô gfU¾8}–‡Çkðl»Yv¯ì»O>º ×à¤wúla1¹…/°8|gE?[y3Z*6µ'€$âÊè„$ìÙ°ê—4­½ðó/ÝÀ|xdçâq¹©º´è}¡ºãô円(He–J©Émj|ts`õÀbÀnø™(ì…ßèÆÏ 1€xØ]ö­°9Ž· -è²€…+Öxë›V¥õgâëQ_c;ÝHÏŸ‡í°=e_$ÃN¤ö¡4è8`uÔœGÍ †UR­F7ö¼<€îD{:+ÚÀ9}_ƒXfåÖ“šž¶Ø{…Û+ ½Sp´ø:ÇŽ–Ÿ+¼tò‚Û xÏ3}ž¼Ìâp—À%wµ¡Sâ&4o-š†]I°öôÙ¿ ˜Z ’ú¢=4r!¡AîMh>Ù6]ŠG (šNßæe¢h‚‘ì*ÅLݰ8bE"kƒUC¼£äó°É—àÛè{ü)›Z¥7Ô†¹…‚&U”´?¸qƒ Ãf@Hð¨[Ó .É®†:†}‚#DÛètÁ.‚Ùz³h ] ‚³fòcÄŠ k-"€Ù|¥ìÛ²»·­ŸÃº mËä^= ’dABþOlµF£ñ¦Ãâ²n}1\C!G¢‘f®äp5Ap’¹ÐÊ=š´NèC­¾ªü§¯Ò“‰¡ MSîa° É‚ÒÒìÅfMrNR¸v‚¡F_MalÍ) æÑPb²=Íl®l±ù7ª¿ùqt;˜ÍÆ6¦Í —­Hö• ;•?Âë«Õo-„-°:Åk©ƒc­­F²¾Ôß#_Øèeñ7•7Ùé%Ž%ƒi’‚"vêßËoþ€žrÓ$”H êÊM=„ g4غQàòÃ…½Ç_áUââëö“¹>Ýÿí4û«p¶ðؙգžÐûÓo¢pûG×l®ÕØ\;Ö>KO÷:–ýÚîÚ'\‚œ-(ÝâÈ'¢ÑâŠáÑ5‘F¯b.ÚàUœÐÐØÕú=ü ÌQº8mª.µzcåòlIŸ*™F¹§&’/Eª´Jí–;•¡Ø¬ Þ>vÀ¦¢Ì[Œ¶R[vt¤Mã4i9ñ-`†òÜÊ®·CNj›Í÷þVpÔÎLh®½cqî¶¢ëâ6žoGJ±±ÅîúáýCó‰oرÃzD5 ) hæ?Ý"ÖžKÔaJ—jÈlüaI@)—„Eµ—vìŒÝ¢°W$^s»¢ápŽ´Ô“Œœ”£‘vº±ŒÝÇ »¼-­‡:0¶ºÚx™„8Âêkõ³Þ#†æòáÈY¬¯4Ô„B8¨%šT¹oV",ó CÃî>„"´°8Y_¼f™ÒÛöÔ 9¤!^"òE¢y½HhÀvß¡÷`MÚôó!×ÁõÜy»¬»_åúIÌbÎ÷äOöŽœ7´<&ŒxÏ4ôß{ 3è0¼K„Civ*%Ô'½ß`Øñ„MÉ[nä¥4ý'V½K& ¸ï?ކ÷ß,žfÏR¶ºJa ™Þ?ÇO·ãÓOHbg´ͪC³\ØX¾´Õ0»èÐížúCQÁa"öÝ—ÒfF¸-S»±í]T÷˜Kþ0{76§Mÿ(xó0¼]x¸™aWGäÔ@¥Ûuº\0¦õ ý#qª#ï/xÔŽDÊæRD à†ýùŠ<œCf÷>Ðóš°C…„Fª1Úzmuä/òG íï¤f¿Œoú¡›¢æ‘Úßù-ôY|ÏV 5àZE[ÑŽ<Ðß¹–>>Îù·8ü mÿ;ÚîÈ_ã'ÿ&ZÎà!tаÙ´ª€9FOÁÇE:Õï©g_Ð…BÉzY’Z¹?§”2:Z‹Ž‹ŽõjÃDò´ï25ÐÜÍ%Bú¡CF³¥ù¹Cwô¥ùµL.ã_‰‡æe›S+¡ºÀT^P‹Ô͵Ëíî·aáªÅ™ÝÍ׈'^…Q©ErEW÷~‰'Ân˜™žê¨ª´zrüýæü®¼‚ÜÜê¼ÒÜB4ŸÀ‘ÈÌåx…s[Ó¦3¬|¥ü„÷?ݺàBþ‰V†õˆ¬8ª;àÖLœl‰gü$Ö$æHSÈÄÔ}» ÛÍB;LÍÇîv¡I†Þã܆¶á1h›‘ü1 msa¯óÚ^tì¥'£ùhš*:DôHS|< i-Ÿ=™ó}ØhÛÙÕ~6ûŒ¸'*õ}OÅÓñ|Ñ^šÝßïÚ  D¯h$wŒ$»·çáÐzˆÿ†‰œ;¬‚ôûƒÞjAÞš- ™4ÒI'¸v€¾ÚØ`×S}åTÚt¢¥ WKž#B )g4œdÒ?mñg>Û&ª 5vù ÕHù ²¥ÖišåûûnA”wÙR+¸ÿ ïÔG àdËZä`á·[œï ­Ø|ïºÛkoçÝò·h+Qž¾ÿ#ë(V*9X‘’)à½J]“C*Âhj3RZeŸ¦ú³úhЬ¦ì¦1¬3¥&湱Ɠ­ômü›>K§pØ÷rj|_°6]oÎ+!p¤ é•ñnì»î± MɉS6í=àâLE(ßNò˜¥Fõ¥K[9w MFbcs4¨ˆYZ¹4;#vÇk°Ö])û®àè4¹‘Ì::…:´BVO¶®Â¸Ÿ)¾>vö€Exlú\)vútr4ÞÿQ_уøETNv9vÈoÒ5X—@Pqm¶tíðFz²¸)x—"‹–G ;² ëLªúxÃ7öz¸Ú€D‘‹ U¹7†·ûÀ:>çã¸\Z¿³ ûåeóƒ JCv‘²J ¬ ¨Ô`B,2Õœ$l²äQœ}× õÉeýÎ׬ÿ²Þ!øKïWV¾âMVVbñœ˜ýAå»Á;‰-èkÂx”䯴_ÜNѦ¶ý ë¢ÒÊ=©˜E/‹ÙÎ ß…ËÜ–Ãö«eÝå?|ñѸ7*üžÔ–ŸN# ñè·ü§!ø|L7ÐKÅ žÌk”í2},¸®X¹í¸ßà/ ðg|Œ(—~øH“Z®k×(Ñ›cs ýü~ò!zšPn,/éÅS (4YÉQ[6*bÀ¼Þ×~Í ãt ©¦®*Doÿ<œ8gŠdØ.΋ЈòΠÙIGJn]"UÐU—£ß× ÕÐPnlî±mi,¶¦*‘dðQÞC\~Ï÷[<„0Qâ_h~¸¿)Qt+Z#Ü-–ûηe÷/goö[9]@Õa¤ýBÿ­+›mü˜ò!zíÌ¢W?Œúйììakšu3QïXáìz«ä¬­)¿ÊsbC¬uÈa›Î?Œa/í+’ETít› /{È(w‡%g¤e$©£T¡…ñù™‹vÉWiå²ù߯EOƒðr¾ô+S—âýMŒ<_íKÀ¬ ³!”yéZY¥ŠR}-o9P¹C©©aÝ5Ú¼ŽÄcnwá«kDæ²s|-9û3›ëŠë ¥¹¹±µÊB¨€†bB^x;v$Í«€?l‚°#æ“ ûñ¨3…Çß9áv :v“ÅX¬ X´{ LUoç¿£¯,kë¬n.7Ãu²)5¸›”0HŸßG8Øn©ÿëU+Zû§ÅRÔ_¹¥*ðÅãàú—ï¨ì¥ ôm]m5ZƒuËùÎ{bc›p‡“%ÜÚEé²Á©ï îÀTá…¼u]öþäšÌ¢k]û-ù‡K¿ö¹‡Œ­È5IÌ íå-ºŠ`º)¦J’“¤ $ý %÷VG•F0ì÷ò¨â†´· Ðùqþf úIœ½Íoýl`^·½yf¿¦îB‡oööÞ ½ñÀé­\X+¿»WHï£öñøI(²uëø© qô±¶f§nâkņæ”Ú⋸¤œuLeR34Cc­=ÿlôãü¹5Á*l«A‹Å…£ßR”„ŠË÷¨|¥’Û[ÑYpÄ|üÌÑ«€†nfn¤.©PUÝÓ×"®§©L€ìÔŒ¨ÐNÿbRHaîÒôòÕ^Ÿ% ÇX®Iõ™”ð‹ÿfߥÄí†Ð&†­ jÒ¿•W™W‘WÑÓ'a®§;fXc-˜KKÛ:£Î¦]nϾ¹cïöˆ¤!U#VpW]wp7zÚšK\Œ~_ãW>öÔœþ<†ÆÐ+ÍÔ¦*ƒ"B]Ã" F¢!3O–ǰL®>7/7_èn Ò ‰«K„øÔœèŒW„À&ÁiäTt‘(š‡üÿÕ•=êÎÁª ÚŽÀs$q©/«ß•‡ŠlU8ÃÞÏôìwãc>É!Wôü4†¯ ¼ÿ°µ]=àÊè Ó·87¢íx!ùºŸ´}-ù‹?ù²§]Ø“|a/¶"iÌ Íh<"êì…Œ‡¼ÕHžºáYúÜn.ûâçÐÏ=Çñîoé1›ùÛh™öq†ÕP‘jòÌ­÷‡Äµ§f•Ô6ºô‹»7D¬‚º‡_±Y”ý"ýq̆õi NI‘@K¬HNHéwþVï…ˆx`‰Ø€ÿžâîáï®›aã‰Ê_Ïô4~6…ö'/­Ç÷¥xäÕ€ëøén5yÝ'¯ý‡6Ø‘ì½VÀcú¨¦> ³óÝ{ë+0ÜW”=¾¬»p >.ì1¾Ò®,Cà0Rsúj".æ@ìÎݧ舯 'Š0B“İ_´è¥âÑ{–x!p!=ZÒF wz«£°d ZűǺˎ9ìVE©rï}XÆ%÷eÜ›x¡¬›L‡ÿ1]8Mö—|4I Í;ƒæ…¢y.ìjþW›ª³¹})ý¸xhïHkýuÊÚ4uŒ«Ž6\”¡m`R×%‚‚иHAU.Á;Ò}ˆ~Î5æUå*åݹ—8K{»ÅfÒêœþ¨ZZOÚiW3%Õ†ü{(£èÐlï*Ç)¹Z}|#ä“çõPÔ‰æòÕËõvˆ=z¬–è1RÞ– <Èv§<Òv‰×~Ž]„f h$z†´‹Ìê"q<žº{…t~»Ð°4µMþúþ R\O¾€§ô g„:£7zîB7ö‚h6ý _a'Q×dÈÎTfú/Ø$—jÖš¦“hÕ19ñê2"4ß2?°üÑbnö€âdè(!QøhÓ„ÃbCcïÕ´&YÃ`}ù8¢n¾èÚé3K>¯FNsoâ@ á¬E²ªàFyie+ ÍyÅÚ’ìüÚ÷N¶~@ú°îLŸ+_á»ÞÃñZNž­Rkd=ÿôƒîöi9å”wm³8_êÎí&Šs9m8oBžââ«ÁçÖ¶œ³ëŒùTÉ ŸKDáa'xe{æJux­¬Ú¶¯±9¯4§P£ïj½*Dó2¼’½K% J ދ׆h×礃:º‡qÞ£Yó}8´:k}ÖÚÕkfÃ^ð(J9b2˜HK]Ÿ^Ox>>]‘>ç›õh$ xx—Bb%¯@߈óÊ3ËÓˆdPª³Ua1Ñi2‚:¥Y^œU’JúñXˆL‹OMLOÒ¤hÓŠÓÈ~EOÖîln./…BÈWee”K:xZË+jËÚkõ•=YMYøgI´¿<tzçi=Éë`¾mòWh¢¦vU M Mb©K•âCøßœ¹×  Œ˜£Ø3¸Tü”&®‘4ï®o‚¡À|¨½Æ™O”|@„êüGŤÛ|,1Hâ÷J Cóãܲ çëV¥P CInM³åVÉÍçVÔ|Ùtê˜ùLéí×o ¨L[*[¬ØÐµõfÃ^_*ñôÍðH›vk®gøõNù?˜PtHœµae€'A[«'lz×|Ú|ââÑÏàÛ®ðgÂðA±|å«’ç~ aãé"k¡Åzá;¸ ï­É²µ—è tÄÏà/Š Dd@2DÊs$8€Ó¦ƒ¤™Ä¬ ÒPAJ%Úýßgظè<ê"uv¤µíÖ%‚Žjô‘øRMµÎT%²PŠŸJÆôõ9„„OÀ'GâQ3¦N'ÍM.7M&}…ûqD¥Cb*©‹¦åBÆšˆF·£mŒ÷§b…ßÂb¼Tr£ô›/N_ƒ·¡>±Xڸϔœ¹\0¥F‚^¾‚&_A H«Ð6±©32ñ¢ßB“EGéb SgÏ`ÝŽ†u%¦ƒk$(¢5™¡ø)nâ]Fg’´S…ªB;Ib.Ñx2QMýÒ!x¤N  I)J­V(Øo(~à~ú³Ÿô$ü¯/±°äD›¡Ñhä…F;ðcøÁâü®¸Æ‚¨Hu¤2¸1® @K+‘8[ð¹?(„9É¢"¿ùlôª¸àXæ}ìÞÔöqí9Gd[äÙÊLM†&±DÒ$ðx±©«äÓÝ×0Shêêé"!'^“¦ â°(ãÕW3^ËIÈÄz92§s¦ ZÕq“¡¸ÀPgh–THI4ƒs”;e ß]†h¹*ØÖ´ ×è úrÓ9W}ôuñ _±_áŽ7 ŽýàÐ…Bæ—G.bÅÿ^ò7Q4w1£sWöáK¿ë«äYù¸yqè ò*Î/+ÐW¹êR‹ÓȆ]šÿÞËe©Ò³5ÉÚ “ܬDÇqW¢ÈÓ™I½©)6ÔÙ\áåöþïL@,\žáû´ ‚mñkâ‡þMÂÑ.„#Ï “Âà“ ‡“IêÐ.›¼OZÛ.0vÚì+GçÄy%ª"E>>Ž‚¸L³&WAHI’™“¨I.Ê.T¢BìÅá+Ø+S)Øçš“X‘YNФ!·ÌÌSh/Wh*%ç±(\¤xlç•© iÅxЗ ȵ ®x`AãÐ ßUòÊr t$I¢K0·›¥xxëKM[{~´±˜F0WçØÖú†¬5…W†G~ûþžëÞ§ˆÌ’ê²µéf¥Qƒ&c‡L<_î:e‡§ÍNÍR¨µéºì> stream xœ]O1ƒ0 Üó ÿ Vê‚XèÂЪjûà8(NÂÐß—èÐáN²ïN>Ë®¿öìÈGôø¢Ö±‰4û%"Á@£cQÕ`¦}*Œ“Bv7ÞŸ@°Ènó]O$Ÿ§ó©¬ª-„ÞÐ4RÔ<’h”jk[Alþ¤=0ØÝY_Ú¥VÎþCÉÑ\⸠¸ÄHœJÓÒ$pL¿g‚9+Ä/¥S3endstream endobj 316 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 335 >> stream xœcd`ab`ddôñõÍÏË74Ð JM/ÍI, ªüfü!ÃôC–¹»ûûñŸL¬Ý<ÌÝ<,¾oúž$ø=žÿ{Œ #cxz~s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æ/,Í/I-ÎÌKÏIÕ+)6d```Tg`ìb`bdd ø¾†ïÇÂï˾ï*úžûØþ¬¸pÂ÷ã?nŠv.¬œWÒÍÑÆVÒUUÕYÂ!<¡ÛgŠWŸwOq{Ú¦nŽå½ëÈOeVè=ÐwhžÉ=S»'sð5Lûá<í»í´þil'¸.pËq±„äópvópoœ=±&ÌïŸÈónAoÿ¤žy=S®™ÊÃËÀü~×endstream endobj 317 0 obj << /Filter /FlateDecode /Length 5088 >> stream xœ­\[oãÈ•~÷o˜Œ~Y*°¸¬+‹ì›L2™`lz äa,ض[ÃXjyDu÷8¿~Ï9ua"%»ãF?4%‘U§Îõ;ú—˦— þ ÿßî.šËÍÅ/‚¾½ ÿÝî.{}ño ~SwM'.¯ß_øGÄ¥—­iëN™ËëÝEeW×ÿ€{]—ßÛ¶5Üãàþ뻋Ÿªß¯šº1ÚÉ®«>d×wt­ZÑtÕýj:ÕWí†Ûüã:ü脳®z¤§L§«†…%ü/´„RªnZYíö«µš±K›úu·Ã‡ì§MxZTû÷þ²Ó¢³[úã°_Ù»G¿‘±¦Úú->)qß*ü`a=ØG:¤««ŽqYñ•ù²‡œ²qõ÷ë?ÍijŽ<_+S;k=çßgÜÞ`³VÀf¦Z ÚÂe©¦ûdÕsqÁ÷°£‰lð_Ò# ˆÄŸN;UìrèoóÀ¼üTW°‚kª{d \Ó㲺]!­ÓÖù´‚{šFÉBžO+§á{a«zµ6 ³Õ™–ðí< 5>qü™« ¼Ñ¶b:òþ”*Ýæ{ÀA?2ñVéL'8£TWà¡Ð-1Ýv¨QÕ0N\îÇÑ/$Ȉ‚Ž÷¤-BÕFwòòú.®óSµíGÔ<2ïDÕã%n×V»þ×a·"SQºÊÉÞ…ûõ×JTªÁk¸¿Ó̲zR!tõ4ú;pù>çÞ]xÒ˜™Y‘> /°/Ò'¿¢2žWa…í°ŽLìwáÀy`ÐD^d„«d†rzØÅk »æÇJÉÒã*h†'ŒìŸsÚÆƒÁF}?růIl(«ëŸ3[Kš§šœ„÷’‡ððiM[V‚~3Ñòe¸ï%Q ‚ ²£Z‹g%©¢Z8÷±ßðsDšZf,ûD«$¦Óeõ}ϸ9ý‡¨ÈúKÕ)¶Šmú1‹¹úÇ­´Ü÷JÞÑZ—;ZeDÝ*åcl@ᯕMmŒlcøû<€7ñ$é6;/w> Oôdhb] ‚Æc7p~ é€d-½\'cÆÅÇWªÖˆÆcac™Ÿ>Ü…û”:? }â'èZøV¢YŠ%†L¥»ç1Îû¶«>ÃUáÞðhqp´5~®·+ÔQôY½ç‚‘ð0,ZV=ôÑ´NFÎNræ@–ãæ°÷Ž©‘ ”Q 麦ôÇ´”%£eqÁ;düA•ë˜Ìˆ©%qß‚F$™4x—‡âª6L@‡}îOD;®¶¨$&ú{rr$£)F¶ì#—sÿ.Ûd{Žq'F# œ¹î'F®5XÒ-‹ô›õ!è(Ä7À@›¸Xþ‚*¡Úx:î†qä0”Q†¹ž…h$·Á­… ²öbNççAêu¼ ¸ÓÃð.óÛ¹3:νš¥8Ì‚ cÛ>óÓ²òFsÔz7.èç™N{甹sQ°}Ðx6Úèû'¿ŸÔ UÔÈYS;#dpf÷Ÿî?—`X ž>:´=¼ w»þðÔ“Š€“¹×­â.ž49 ÜHn@Y0sp93þ’%æÀû]ÜgÎ%úàà<ªÒ/¶ÄzÁŠ”@gv¿]­µ(®“+óÈ6÷²þû\`’½3èC¸ø°‰[€ên *>†ÛŒö˜‹®ç2Y[°«]& À^…N¨ÀKyØ –NJƽ¾D.%þO°DJØœÅ;oÀÎIY¹þ70©Ð€8QÐ DÕLj«ÂÑìÍB0æú+€r+LÐß¿-鮩[Ù*u÷*Ú¸è³æ?¦ï58)I³·}Ú$ÊŸ”Ú•©-×íÖHQ‰°“ ò¤"ßóh´ëýS,ýéßÇH\F˜Í58¿ƒÏ€…èUµ&s¬~ÌÚ‡L±LÊ)"­J×JËBëfJ¢lT’éûBIH7À'Ý€„ö„nøß¤; g¾™qÂÀ™¿Á…0Y+Ÿ(6§áçæ“©9)û]?¤ŸD•®€ÚèL)äu‚ÃÞ'˜ãc^hÃò€_¶ûÍz;Ï­>„À‚X²¨ Ú>DÊەljŠ)ÆÀ’/“ŠvÁOáÚÊ`î…6‚USÃ]oê«eÃ4²66"°Ýøã°{Üo‘H%âégàžq‹)Є5|h¨ ¹ü3G/F̲Zð…ÆºZ[‡â'ÄT¹zŒ3ëB…‚~ÈcÞ—'­ÚÚJÉ·f•O/Fålõ@yÉÒô¯kQ® ¾bÛ_{}7…]çr"ê”TªCô¦ŠvàÞ4ödÛh@€á¾M%b^öcÚéCН“ÈF6¯á¿°º–½4ÀÕNtžˆÖ†´E÷·¤ã”M»b£‚×{ˆBKZÞv a§µüõ: ΢6MËRÔÐGH(êÍ=Ûï‹9FÅWÙF¨‹>ûUP ÍðÛT=º;Ö¹ïöþ¡i#iÆŒ–—¹óÝ?dR/Ss¯ *³|™Ó%Ç`²Ót¸u(ÁÊHˆ³¯@µ¢‘„iŒµ²IqÛXÛPÙ·¬…1‡Yªº¡n‚H¬šsðµ#áÀÙžc¬¹½_ì< €”âj þLÃeðgÅBCÕo#0ðf’Âû4å:<„‡dY‚áQxÂûˆ>< Pí4S¢íðÍ)ÁÝ…çA‹^•Æ›”Å àã0KÏKCeïÓhÑ_U‘£Ä˜þ3¤öÞ™žê¥÷^à¿ ‚Ú]bcDZÒØ2LjmÞþš„& Úîû»›j|÷»úý°½¿©ÞŒ?÷÷ã2C”7wºãwõÛïúcŸ~ªzìo½Ðýݶúϰ<¨Ö›ñãá“ׯÛû77«›Õ¢fA¦)Ú®^—`IuÁæ‚%ðÝQ5™a¨¨=ª›´g‚õ%3ÊJ(Ô²éŒo¢ž·®[AÄÑ~|¤~æÿzp:"—þpèw÷qSÈ©™ 1¨N³TÂ'M÷œFy>@f¦…ŠÛÞÄ[‡Ö’²µÕºÜ;Æ&¤Ò·¨0v"•F­)ªàÇ¢…xÃ*ûXÛE«?¦²ñŸú©ö‘ir*-›JPí®£:†®â²‚-Êz)a¡VK¬Âf÷”j5¤ºmuª’öleû˶I˜Ãýw‹¥ueV%÷YGúìiŸ^¥ª6@ÿw>÷3Ž|•^;¬5.û ž7tWp;ÊÀ7¶,øZ>ާ˜yÕ)äöÿà¥Iè\fI#NÅèPSmçµBÜÓæ]üðïÞþ1ÖKs¡–vÞ>ÄA™¼å1. &™\Ñ2ªC˜— ­³Æj9DhoÙ­'R°Õ¶ˆ+b)“ŽlÃÝ")x”D }¹\ò8޵ÝQ*YÎá÷XXš•¥@ š¶HN©Ñ|ÖŠ–m_8jvkÜ3âØÚJŒÖrÉž’BTýzË,&xVÇíh»Jb<žùl^„9Œç0S#Íß4^…§Ë;Jçã€ÛDÖÙ²³ç“w%ËêFÓ¸xª"¡º¢ãÉØî7¼Ižæåº”uŠŽ—ºÊibpj<òGêlxJ~ˆÎÆHÞ!9Ä]5§ö×þLÑèÛ)SÌàsbOÈŠðõ±?#ö1ðqJ.ÔUœ Àe…iQ£PCú Aíïî?ŒÃ1€„Õ±„dŒð« 8`K¨­jh!S)1¹F@xôߣ¨AU4 ÜAV‡â„¯sÅ5=Ԓϯ*ñ¦©ø¿–Ö¤Û¨Qm³5»¸¦z~MÖ„ô©–8)×fØz‰Æº®ýQü>ˆGôˆ¡.Ü+û+-ÃU®RÚvMÜÔH;1_o¦OÂ6­™d(H×gzZb$dü’­)^¸¦ ÷9ÐQŒÒ²Õä WkÃ}Æv Ö°š°ò)tíšÄο°¦þ|$L5¥8¡UÆ2ªwS,C_eد®…Û®Â-9k7˜VsYZHâeŒ‰ô…Óý6/3Q‰†påðL Þ n1Ïè{kC¤ðŒ’/œîä… fÃð=6™Omœ³ÂA’/n!Þ*¤¥PQ¶,š|Œ`Uhd-¶_Ði-ÉÄÖÒÉ ¨œäeûØ;•GlÚ9*~<Ó¶C3Àü¦ÈÚ2Šnøpb…`Ê”¡KŸ­ÏÕ4‹E¸l¢I+|Jò—ý1nn ñ`v£¥Z)ñÔZ +ŒœYW2È…É玴‹¶êÌ<äO¶áœ8Ð|s¦z[6€/-©ánŸ *| ã ÄòÙµ;Óušwâ9;Ì Ÿ¦ æ¢ =€_ªÁH‡—~”‚®!SÈšEã8äSh²óÐÛ1}Â)²C!šÉ£æK»`ª0_úÞè¢hÔ Bõ[lC…fþSؾÉÉŸÛ?ÝcøL/ý,L„Ÿ‡1;òihG¥±µwŒtÍôõœ  ˆ‘ä ¿¦I/#„»ØÞ±3—*½Sgµào4™ä:jV)!)a ÈH,稯 àoLwÇV¸)fš¶Xyðݺ-*âP¹¤¾å¿Ð%òü›+gË©´…F6ýséq=×D:êÎõFÙØc_¼¥áó%5éøþ…Ï®3«Ç(;#ÉóÌç*Ïz‚4ÙúÙ'MàKYnÅxþ€¢Ô‚úÅÑ¢ãÐDޯ$)Ÿ(ÇÅr!û›À{ç]ñ×·ð¤éj y…è"ßøsÑYaŽ˜Í2¤.[ÊT{ºÇˆ¥Â‹?[ð^ÓCB¤éÑDó×i!Á9…íòe%þŠ. Î,€^3æRœ#¥T¥-¥ë׋UAþà}^¬ZSŠ• «e üÛÙÛeº¿¸•le­µøÚ2ÕRG§ ™¾f \kmYÈgN,:Û8£ñ Ó”ãA_aèZ)ó‚²_[ëé-’Y%Kº†ÐF^ßó•,ü¥¡p†‘ Ò­êc TÅ©3Q±l/[¬¨ ÒМO.;KÀÉv®’ýÀ¡'NÏŠgÙæ`¬žRH o¦8,õÖ¤û Ëe9K¬4*b¾ìÚêaŒôµÙÚ÷@ü֘ÞèXÄ·€ÆTÉkëÖJQd‡}êªÏ4ª§è°,´Äh­Ã! {Û2àcŸiÚr¥qØÄ Œ EËéµp:e`ç“aO7 â“im;ñ9ø˜4½è§Ù!ʪhõ¥ Cÿô‹_õÌÓÙ@)Êü9ŽÉ ôq2édΊ‹ÆHÅuO8‚ƒ_>–È…hmz¶ûC2.ŒÉ«u[æ®7éL„U €tœ§%¨µ-¾5”&M±Bí5{žµÒípµJÈ€Mw¬DÓ.&»'`©Û®{‚¾ËD®ž s±Õ6 «žé·]Zzô*ÿ–)^ØØolÈ‹ Ê݆Œ=?€o+å-#LbfÔÞƒ©„›÷sG4ËáH\que´5Å‹±"› WŽWåMÚE‰‰ÚÙöEÑF¨i2û)2 #úw²¬<»?ƯÛJÿ’é¡ÌzüCvޒƼ¸gä7.ËDbÊ4å ×k(•˜å☯áû¤é|ç⤡$XNê9*ôÌ?ÃEšvz¦ª1SþÜ‘Ž^þþq¸ƒPÿ»@×J Q¸úø.éHA]Ú8µšLp¨õ¬ßËfKP4®‡µ³Mä{gO §ä(U ¯}é¶E¸œwð5{©ŸÈZC~¾€©fkôƒ°/€:Î,{[méµ’¹­:ª2fe¤S©ó6º\êLYl©ÜÑíiÑý*ÕÕmõ#k-)޶§äŽDãËzŸŸ«†Ö_!e% Q¦Ìk(öùtÕÝɓ٪Ð:)”ůNѺG.™1ÄWe²ˆ>†»Eù¢ƒO…NM@ØÏ©£Q­Á-HÄóEj¹J0fÊœÂÁ9ù×r¢PZË¿ÑŸÚ #cÒ©ôâ¤Axû{yÔ ¼ 0YÝ_/þÔÁendstream endobj 318 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3416 >> stream xœViT×¶®²éê•¶DD»   à€Q eyÐ04""ƒã¨ñ ¾¸‚SŒ¨€& ¨ˆW18ÅŽƒ BKl•š»«ßiÞ{§áæfåï[«WuªSûìýíoïoÓ”Ñ(Цiã€Ô¬üÔ¼Œä$ÃÊ·¤ù©£ø©„³u{uEB~š …LÈĨ|ªéÀØ?Vާ4=ßg›}LäŠ™ŽŽN¾ksŠr3ÒÒó¬\]æ¸[­.²ú÷+¿ÔõiÙVvä&?5kmŽ<5;/4C¾zÃz«¨¤ìõ}øÿ3EQ”k¶ÏZß?Yîzÿ¼ ùI…«‹’SBSׄ§gDEgfÉ]渺¹ÏgµÀÃË~ÖÌxÇÄÙFÙPá”-AÍ ì¨(*š²§b¨å”µ‚ú„ò¡b)_*Žò£d”3µ”ò§æPTåNÍ¥‚©*”š@™Qbj"ÅQ“(sЦ,¨)”„MUPÆÔ"Ê„ò¦ÆQnaʈi¦:‹¾=J4ÊyTƨ‡/A¾ Nð³à7£éFŒ^  w 0ÎLS˼¹ˆrD¥ì4Ö“]Ë~ÅjF/;Zi<×xqó˜9cÜÇœ7™nâe’g²Ã¤Á¤{,=V:ÖΘòMHÁG>LW˜©:¼{ao¹øG_ÆéËz¡N$nûW‹ªïn]r°ÿoo%êj±“ˆ]¼P¬<чՈLuÎH ûÔ°ImÖ¥….m¨Ö\ü¡k¨™ûèÚ±óuÕµŠFti’›fW³bþÞ™³M§ æ‚¤žM9÷ ±XÉhñ=6A€¨U}y²ðTÁa9JFÉÅòu¹…Ù_® ›pû @$þ V&,òŠKðçó:x§ººšúp’¯æ°½›5öÃ2 Ìûç`1Í}‡¤%ÞÜËo< ðvžÙbßèÐJMukòÔü š¾ªèxÄeƒ»s'vG3Ñ¢¬˜°@ß4„6©±m÷»ñ ç‚¥èÍëãÃ:2Ûc·flÊ–‡…dx'g8 AÖ"°n½¾1û´´"÷ˆü@4kpµ“wè$87p¾Öo.nkÆÙ\/œbêc”ëÛ S5@ƒ'øÍ…QX*»ø¡ÈÌ”¶K$vòfÄm°1˜{qs!ž€Ç„.tqì†q0îF÷sCHÍßVÓϵüT­àù$8Ë@0A@‚C¤ø,£²äøÛ°X¶Op(ùØÛJGR¸W Åjz@+€eðŒã§«õÓ¡˜wQë÷ Éy…ZïØB¡J¡b‡Âì> Á\|ëþ¿yrRTf- ÚÅ>‰]öo/ÙjƒVgÆ{±âðW"S~×Hž®ôö~Ä›r»ßùÿ„ÇÌL;xÔ¥Àx¹´³ð§âò|´Æ"6î3Ÿ•©‡ŽçK6ùêÈŽÖهǶGÀ4‚ÒäÞ¶·Ÿ^²9)õ<æÿ]öqTc¡¼tºý^uvô‰©îXžv©¡BMד„Æò‡ox@nƒ'9ÎÂK*®¬’Ä7f÷£üc˜ ‚îÈY É+fØc£gع"߼Ȅy²,DØœÅy0 »@ìo5]$åÂV‚Æ™¼‡¼C;ý¬Gû sÁv¶õóÿEoÅÄTg·ÿ~ÏUJT¢/vmÙ½±i[Kk¤€ûD&<Œ5iÖÖûz?6òù“ø²¸A$¾l%sLºpG‹èíEîmQ¿KÄ~HY¡¼ÏúˆÈ¹H¡“)è7/°\'çf É_2ááÜÐP; ù2á,Ûë½°ïEn!X_&4dx mÌÞb£w²å„3˜ôNV䯙'²ó%ó–wþCï,v•wé ëúáP€ÿAÉmûz'ÚØìÏœ’Â-‘Ö¿sÞ¡RÒ$ës¶Ê¿^Áö2û®­êDì“‹kc¥D»ÓŠ6ûoÃÆ›Švfn]—•ˆüY§»aÜm*on•|s*¯}ì©ÜÏb;ðçÐÚísó2²V‡Ø Ô3M׫+IŸ<º¯òûWœ—á~ð!R3‰Í RèÄ€/.Å!X!|Å€$‚9N2ÃÅ­àC:Á›Ô_4’êKh&à É߉•¡š²Z‚d€ÔŒxÏû€¥¾Ÿä„§H¡Jv¸ŒÓŽ”]ÈßËŽß…³Õº‰ÒÉ„x†Þ O!0º2 Ó—g.(^STœŽ,ŠÑ{Šö±‹EG·ÝyU ªowêØ‘ãßÕA±Îtòªã )LxËí¼¶åÇ‚ª4ep•©kl„}°×€XÄ®Ç0±T:Ÿ)ž¿*ɱÎÑa<˜7wþªª_íS*ý{¤§ú¡‘ôs%¿„ºŸ`Ò›¢* wª+¦±'–õa¬4T´]–Š7-}$Âù$nàÆ"l&ÿˆÇFxº9‡>S0½õôWÉ0 Ì{¢á%n 1ê¦×2ú ¼Vh7$×ð†«×? ÞíàÞAó¥°™CÝ_]Ýt>£Ï³q&9Þnà%xÉ€5؃IO;0e$¤¼¥ ih9Zybm}Áé/Oïnd÷´sû[ïô"öYkà,é0÷ybÖò!­!ew€ î®fÎûþüþ½h÷1É}Qá¾-%¤Ú¼?],u•ù«ô =|Bÿ°L) N ߪé_µð|P@úãmŠ˜èòÑóçê/»‚î±0ma¶•àæ!¹–á-à[X.zÞïé¹<ÞUú§VhiU‘Jj˜B=D( 2Yyjû&…äDQi.ZÃŽÈ¥&øúŒ%+ó–ÅIà4)ÝÜaò¾ù`v·wIŒH ôe=Œø­Nn4ߺ—!ž9zÛI«´<­ðZþ ‡vþülrï¼z<ŽÀçnï'»^‰z+…Àxíú‹kP¤JÉOÎÚŸ¸5y¢åÇÒër~øâ\ÉeÒ:K}Z•ܰ´7¨ý¢¸R­<¦ ÝAQwí+ð2åd·™•¨…}Ô¦ü'°m+K$¦˜?$7ÄûèoHŽág.>÷ç ¢‰ï=¹~«ýö¹Ô 2<0,oU§–ü4Ñ˘ƙ²¤üð8IVKÒ ÄŠ]d(aݧÁ죑fË¿è¤/ @Í€*ui\ “¯‰K\–çˆðïêÆ8ƒ8ØV^&Ü•¬i¯ @¬—Ñ«+ø¼:Ñqæì„7ñW_ð€†ƒ$ÙÑÔèÒ"DYXP° O-b—N-éã[÷=üÞ~N?šùöæµýMoZ&ÿvýÚ#ôÝ\ß’t>©vÅ÷h 2Ÿ›ºeå×d¤bö*¿©:x¢¼þMˆí¾áñYlpšÔ9ÛÏ[å¿»ZðY#-×t˜ñÒ¥æâû°ú¸L óúÚJw—èh‡å_I‰pF”¦ͬ‘ÝO$âi÷RÓ^¤7Ì;-?»[ñcÃÃ)0~ácl‰m>öijvI4LIý¾“Ž+.ÖŸ¸ŽØÎ+ ^Ÿe¥l”®ßš¹3t7;<8wÑÐMâï_ûjÀ÷C—5Ÿ$ÂõñÂÙ"hìâp.¹ð`XD:¡¿œûiÞ“à‘£‹åô£˜åúI§ÌEåÙ£-ˆ}Õd=#<ÄÑ;á|w>qú`DéÚ²ubdu§mÞ¼°šýOMÞ,_-­„8!\îvBÒÞ!ÄÜA×@íkAxpG±ñP¨ ©jëÚêQh˜#0-êHú9¥5äŒa2µt°ÃVØb`L¼×pâúeéneo‡BЪ Å*&ò8õí¥³]ÃBÜç-¿ùú×Ö»jrÜS¨~WÑüøƒÓÊøBf†ÑÈ?™u± úáSl!µü6ÆAÏAØõzC†¦ëŒØÄÁ"îÜ”à¥kÖ`2–¼ N_"ãKþ4¾OZœÎ½ó;„`×`úÌÙhFƒm”x"C9v‹Ã^n˜‚38ý®öý3é?{‰ 8ô–@è[]í;ÂŒ§[¦¢¡T% Þ+8œ É2œŒ“e@.* Kæ/`Ö#('§Cè/Á¡¾ï†jm oÑ{ºÿ½¢Þs66ïÓ¼r¾ìDÌ<Ì<5ÖŽéÜkbÒSj2–¢þ ªcendstream endobj 319 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1361 >> stream xœTkPW¾ y¬IfA“µŽä!X*¢¥*…Ä¢ #"¶Š&„‡P"ŠŠƒ¨Ú«Ž*Ô(B¬ÈÉ-Ø¢ÏÜhb焆…³©ìë6&=OŸidýøC~zvN®!ÝhJÐR·æ±‰ZcëlýŸø ÐÿƒFysLZ]Zº>Û6‡7¡åhJBÑ(Å"ŠCñ(I‘ É…¦ O$åA¤FGP?µšªw‘¸d¹u±ºÊ\K\Û‡ JÐ Vw°… IF‹¬Xج—¼£kf^6óáX>Ô¡ÍÞÓ°i©‚Üç3‹A7@èè7'èòy?Šyá)©F¾À ¬+ظN†DúŠÄÕ3‚`>Dþ¢a©ÿ(‰R$Bfè’jº_r종kìÏŸ_¶ÿ t‡û¦ðb˜º;qš‰‚™„%3U!vò³hn‡ö׳5‡KN+žˆ ìû¬ÓÅe•ÐåäÐÍs³pá ”áY,‡iüÜÉ*&¯fo%®£¡[ .‹®?â·0žH‹à+2_«ùÂŽi[]AfAñ®]ÅÊí{0V%îñf ’WáYô¬qO{l§®\RÈ×àœÃ{*vÒ$’W(00óu)1댧ZÛª-_—+.–6›ª,™2NeLŽsüÜ xÈìïðÛd*¦ÉÜédQ Ï€pðzx˜ %ñíˆÍÉMÄtŒ¶ïÅ•c]Ug•• ÖÊVü®Ë­Œ¡ÇžláBa„[dõü|EÎ=íâ&ë0ð•‹6ÚRN©ùLñ$ÑÕ‹›’•òƒ«›onºé;ˆ;km´<›LäܘoºÔ3”ò/Öªcc×ÚŸ>»h¿¥p²…·†Ác”âNB>s°ÁflÛ{iwKæ“ðë„â±gù,þm:ƒÛ“ÁQ«’(D;4i[Ö`ΪÚÖ°ÛòIíËô¡a¦ônck/îÇ-óÚ¬¼Í>µôƒ”pnWÇ;Œ°N‰?€”?U9b-¯K¾ä•Áyñ—Û¿.í%Qò ,¼ä=ÿqëÀ@Óùž®ú\‚¼ËÜlj}s2ñŸK{ R­ËKÔ*6_Nª_‚iyh<ÖmKI¤Æm$áÊøÝ9ENsÒ8íØÈ,ÄqYš©«¶‡a¢ÀDVùι¤6µ=ã.Â}Ö ×[¯Zb˜‚aòÎú«ÚAUó<^-¡  ×o«ÊøÜPò>À öEwj &ÎÀ9'v46ìý?Â÷Ì?•Õo·Ö¶b~ÕÝØBA±³q1Wȼ,ä÷ûQˆxkD´†¸c:ÄIƒ”+u|!Åi±R2Ä&:ÑR}òù÷àñKS7~Lô ÄŸ¼ýn8™¥Ø¾5âÛÍý½-š˜÷òŒd(ˆ$2#~?ñ¦¹|§ôãÃCá#Hà?¢j`  nü›—ù1ÌMfj+ÊÌeÇêëªÚq' ®wˆñœOê3š~½B>¹^¿:‡øŒ„@ø ƒÏ=}wd‡Bþ˜øÀV¦·=}UÒ†´„eš–k¶ö–>¥|ä9ÇØÛS«7¬W«5·¾mïäÿÖB^ˆ4Çz†¤¾Êˆ Õ‘-t7ÕpÍ¥°¤<ë¸<'‚rË$P–KÜú¤xÒ©endstream endobj 320 0 obj << /Filter /FlateDecode /Length 176517 >> stream xœœ½ÉÎ,½²6ßO±‡ç¾Ÿ“m2§ ‚5°u du%û/º6`ëÅ=6W4¬L.VÖ.CÐùïÇÅ6bEÃ`Äù½ý„ßþŸý÷ß>m¿ÿã¯ÿò+HëoûÏ¿}þþïþñ×û?·£·üÛ~ÿãø¥? ¿C«?[ý½—ýçHå÷?>ý«¿ýË¿o?[I{ØŽ¿ýû¿ÿþhý»ö·ÿõôÿæÿü¿þÓ¿ùÏÿ‡”bÿeûÛ¿¸|ù_ÿëÏÑöríàŸþü ýl[ûÛÿxù—ÿã?Ÿú~œÇù§çƒÔ¿ý3ûM9rkûëßýýõ‡ôœ{Ïéoÿâ?ýÛ¿G¬§ækW—ÿò©¤¿ý³ÿ÷üÙ_úYµÆý_ÿã?ï{W¶óÞ¥T~ŽÜ·ïÿݯ¿…ýïÿø¿ýúïÿñ×ÿÔwþˆù§wñ;¡ü„ð;n{üÙóøï?ýûßÿËïÿ|{LáØ~·>úVóåœööSCþ]¶$ÿíõ·ÿç÷¿úߟÿÃã‹ÒYý‰¥ý.Gø)M?û¯ã3™eþI¡ÅßÿwïúŸ÷ÿÿ¿B®}ÉéwÝkûií÷óÕÒ¶ÞUúýׯù+Ô~1Ÿ¿ò–óWmË?¹œ¿ò–óWÇ^öpþÊ[N_Å[?ÈÓW£åüUŠá'\¾ò–óˆ)‡ŸZ~—¼ï?QFLý¬üÏË'­ÿ|¯ãûóüI µbåö‰ÿyù¤t¢é òOìO|rwúõ§Óeª—Óé§ôe”\~r•SmÛôè;ÕçšPcÚ.­û®­ñÒjŸfm¢ðÓ.±oÆOç_bsk—ó?}5ZN_ÙiŸ¾-§¯ì´O_–×W~Ú¯¯^-§¯ì´O_–×Wßîyêã”>éPêaИCß´ÈG€=ý-Gÿ ¸‘Óå¯|ù²¼þmÿ[ßÚíï@Ùû˜ûk8ÑeÌÛc½æøjæøêDþÕ‹:ý«3ޝޝN4 @ a;BÇŸ.H:ÀýÄèxÖ·ì§Ö½ÿoÙÓïú¿ÂÞ<µßµ¶†äí'myÿý§ÿë?üê€ÚúORÿIÿß ¿Ëù§~øF+ñèÿ›»Ä’_µüs×_mµc¼=\g˜wÌã2Rÿí»‘|~7¿êëê[Ó¥²,,t<ºÌñôË­ñx­á·-øUì¿þÙâ‡_õ׺í?ußõrù§ßÐòÇjï>šçüZé‡é\w¶ÅòoÇjµü”cÅÎr?9|µ?ev‘EŸ¦sYÄë¸þœD©{ç…÷$?m²Íí¯ü$Î_øÆßõVí ÏÏQ1“#—Ëæßvlå§}è>n][ü°˜¸õ á~´qÔ·SzsÔŸ`}ÔŸFºòsŒí'ÅOÇægÛ•Øí-oúÙž>šIíͱùßu?Îö¦û×ÙÞõD¤{ä.ˆî´žøÑm•òaJ´ãNZ7£½Hë¦çiÝ~ä´t7Ü »ž¥|ØÛ3””œºÔù]sߨ®üM†ÒÒOž~µ¢ÿ«„w¡ói¬Ô}i uw¿ZŒóÈín'åìpÛ“³ÃwË3v¸ý‘QþÝèNèwý B¿íÈ ýþ##ôÛáœÐ¿ ‘A÷_mbŒÝð«éÃtÒ¦–ã7$[¶øÓº^œû)å©ãÁ†ƒïN2 6»éi¥F»ëœUgµ»y¿gµ¿º0µ3ÙÍüîÑws¬øa?ÎsœùÕHΙw?rμ™ÌàÌ›~^œy×ÑàÌÛœ3ÿü _Œz{†{ØöÒÿ7†ze×/FÌúÍi¼¸÷–Éœ]·úþ€÷ž~óž{?t|åÂÓÏþáWksqpýݤÞsýÝ,“ßNjqØ/Vÿ0©óî&¿›ÒàéOüé\}×µ3ñí7ÆÄ7£&¾éçÅÄw &þóM|ñô=1ƾ8û‹ÑOß­u0ñ†¸h/&þê «S'“VþTCu¾>ÿj%î¯,äŒþÝXÎèŸ~u]—3ùÝ û¶³'ɘün¬;ßÚw+sžÿnëoÇr®ÿÔõJ’ßvl<ÿÝB ¾˜ŒcÂÝ8îú˜pÿ‘ÀW46àÓº®|êp»4‡€ïˆ~0s'‘2ý꓈>ÿæ­ˆþÔñÎýð«I°;çÞLhɃλ_,~ðíWë|{·eodõw# 6þb¤ÁÆ_ä|ýÕQ9_ÿùì_ߌóâë›~_|ýað+ó Fÿs"y±ùW# 6ÿb¤Áõ~³ÖÞoç—kü)bëtø«?Îê8`Ü÷d€qÛÓ[Àøô«3¹;\ÜN‡YØÀâv$G‡OÓYߘ}šÐ ¾ÉÑáÓHkÕþ»£1|øæd îfçpðÕ\>ÜöìøðÅ1 t¸›ÎÚVwŒøê(F|uì%¾8‹ßÍ/åã'~7Ò C:óù5•Ó¯>sñ@™¯Æ(s÷«+w(r×Ó@‘Û4n†»÷ô}Úƒ Ü8p|Øí7Àña¤IG0àøêˆ:>Ìo¡XÜóŽowù…&_Ìh É7K!Éí'Ãõ…$7c-”æ–ü9õ¼°äë]xò1 Õ¥s[Æ#ïäù£?5}î:^YvnÆzãztè¹ÿå‚ÍÝmmݨ»]uû‘ÔÝø‹¾^Þ@¤¯–7énæ@·ßÞ|}RC q>PÜtgît3Ô m>Ìg‰6¦3ÙCŽ6Fš4G›¯ÆXóç,úš»í°ò¡ã«`rX ³ÒŸAú@™óoV0ËîXóÕh†3w£½Wonåpr;GÛž=î?2ô¸î^½¹íÞÑãÓæ®Ñã¶kCûo=îFw°øšp`|µ¶ ·srȸ›Ô@ˆ/wàÃmÇŸ¨{}Ëñi:WÀr„ø°ý ‰Zø9p¸±3Ìê9F þ𛵚sþÕG!ôB¤»±øÜu=Ðæ«Y´¹ûÕ@›K[4Ýv<Àçæ£û˜áOSš$îÇ»Qp¾o@Ô×ã9nÝížãÖÍ”nÝôó‚¨oÖö‚¨»áDÝ? ê®§IÎÈ/ˆº} ÒW«ˆô5å:"m_û?ü©¶c˜ôéWWtqL:ÿê­éõ©ëµÇç¶ë7 ÑíHŽHß­Ô!ê›é8D}·pǬÛ_9<ÝMç^aúnROßçu;ž¡Ñws2xº›’ÃÓ]Ç÷jÕmïQ÷DÝÍa@Ô'òZû‡o»vºýÈAêv%ŽI÷=µã§äÏ”2;Mlu¾ÏSçï=¼¶î~5Pêôé„¥>Œ¿rÝvÌ*™£ÔÝH¥>Lg}7þÝ„N}ë NÝýjàÔÝ„$Ýõ4è®§6w=9ØÜ~cØr3ØÀ–›~>`Ë]ï[n?rlùæä^`sÓõzæpnÆ{ÎÝGpî–7ç«å º]Þ*ÈÒo[çëö~cÞb×éwŸ™u`ׇ_]LG‡²›.ëÛ¾i`Ûw#9¶}i}¯û«mwPöÅJÝüæÞHü´G««üO3|£} Ìýë«ñ#ï~äùí”pÞtþÂÈ›Þ_yû‘cä7ðÂȯW70òny#¿šÔͯ'5ô»ñIoÇ›ƒd ËѱªMc}4@?þj†—ßü‰®ixøq¬ePóíh€_.ÞðË "ÞOÈñ«}5D¼ÿßýèïR»Î`ë¾'C¨ûž ¡î?2@ºÎPäÓi¾we•þoèßIæ•&7Ðäæ—oÑäô›?Ö­>ÌqAŽ&F[ÚŽ_­k€Ë‡ß¼—»ù p¹ëz É‡ñ—©,îÇhr×õ@“›ž> ÉW3wxùâˆm>ÐÂêyýGÂ{kÞ÷¤Û“næð¤»ž&}ÉF}k~âô»æŽ÷ûŸ?Zɳ5ûßu½†(€Oã-Ü÷ !‚t¸ý•óûítœß?¿R&¾›³³ÿítœýo»vö¿íÉ9ý¶'cìO Y½múxÊKÖþb›Sß t»xûËÁéwSœ~?‡¥çÅÙ8÷ÿ¾e£•Ž0xûæ—oƒ{.¿ZËò2ýÓ,ßÊúO£-Yýúްú‡_-^H|œÝ2tðã^,Rƒ8 ÜÍqðÿW“€p×õ„»® |½.ä ;ßoÜ;Ø‚7ìüa–+»÷ö7ƒs¿:‘ÁÊ_Lg0òW ŒüõF;#ßMÑùö›) žývF/F¾îÅÈ_Ò±3dm0pßMkéª6¦<ÿòÏ™ò~¼›—&Ç[k¹ßç¼z÷Ë÷Zî§Y.â-?Ž4E?Ÿ~úÕJàÞÎιô¶cgËïNÃÙòûÓ0¶¼“±åWSr¶üzFƒ-ï†lyÿ‘ù¨¾£´Á¹ý»üÇùPמ~õ'†ðàÛ£­å»ÑÞ)ÊŸFZKÖO¿Z9>Ín-SoGÌyû‘sãÝøƒïzÜx×Ó`¾»žœÏ¾ØFg»ovq°ÝÍ8/û@«ïÝ=w¿|±ÝÝÜ5ü ÞºêûŽ£ÉÞ|t¯ žùÖ•r;‡A§w½"w£²½ëxí]Oï…È]×NÇ_ï­Só7SÔ|3Ú‹š?ô|yüìtüÕla»øµßŒ7®}ôÖ pÿ‘SöÝpƒïz„|÷Ñ;B¾ý=!ß4ù®ëAÈ7=ÝÞ¤|Zì2RánJƒÜo:~Q÷MG÷.ÝÛ) b¾›Ã æ[Âñó %ßžï*0ìü›ÕÖ®#U>´¶,oÇò£¾ùæÖ z7¥qÜ7¿¶ú›]´ý°òÁK¬á‚ä]ÙM(JŽs ñwÝcF9Õ'ZŠ<“ÞCÁ ¿zË~ê–€ŠšÒÒ×ôW{“–k?ýz`fÛφ¯jP¡ºP(ýϸ!ùZÿQ+YÞÖ Õ-Ð’õ9p?•–,CÕTðªL~•~**À¦yî¥å@`]G¸‰ÿº-s9r”•ýË Å®‰´„–¾“~str”ê“ý_ö¢-;2 ô1hѲéûÚ‚tM»¶TŒÙ[dÖRðM_KŒÒ’âOÆ7X¯Ž…úö(´ÙïHÒr™ î__zA}Ê#üäC¶°èŽpÖÒQKLÙ[@Ú"!»µôi»n¡–™/GAQÏ2Úž’{÷-ë§,£í}qî5¶õû¥¨5Ž'iƒWãÝP -5"2ªwˆ&mI?ÖÚM#¨þ͆)ÖÃNp/A[úÙ6YÆÞÏòÀûT£ÞwXJ¡ö–$‹ßCÅÄú¯ J¡ekB-¥O4éè1è7{Æ,¤¥€þúm>ˆÑ –`}]ýTsÑ•}“lµ3ë¡£wzQZ øö4çªGðm³ç•Î@Ý: BoB1Rß½·§ETÇ7&‚ûžmXë¶éŸÙªŽ0žt²KZ‰ n Ú’´xUßݰ#è”qóml¢Z‚±AòÍ}£Ã£ã?Äö" EŠž KîZòjßœµ‘NÞŠEnJ—Ì礼ƒ|SµŒú–m hÖ頱댷`ecƒV_2%1îÌÜý j Xa­]o+Zýœ~"në{€ŸÕZeŠ{ßÝÂÚU´&€Ù)C.½wEzÝû1A¸ ê_ÂÏšÁÄÞëxu½ËŸà-¥ÓŽÚqø1¶Ù½TkgCû¤Ï_ìɶL ˆÐØ s}+ zˆ$WdˤÍä¿Éz+ÔÑRu'Ð H{“DTÿuî1T6pWƒl;½ÙqB ìt>ÏÕ¹ יط*tR”…våØc2”r>~½kCßÐCÏÀg\ª÷Î)";Do í Ú„´Xá…¾ÐPÝk3¤ì£Êà8`¿RžÁ!*§U\]@fvJˆÕ‰ iMÐófû•¤¡Xu øEëËF]A:@ rR¶¦~vº¦‰ör®è¹R,È:§AÊ—¾ÙZ²¤˜;dŠ´(] %\·µ.¿Ð A2òI“†#]W9ë#a+¸C[:¿KýøfÄuDXá«Éô¦«w“erp0«›Ö¡ï  sôCÓ’÷ú‰üJ´„>ã2dú¦r¥%;è²]{6ý†¤<6¾oB®J¹E®£óªj/M…q8º‚E ý;©DÐ{O¾kY Î¨˜wíX5×:„DUÂúžeÁÜÝØ¤…}ÇÜ jDKÇJ)s :g@w?ždê^Ä>tNp¦Øû¿EìGïN¹¶mI˧wb¶~7-xžÅ¦•±£¨rŠ·RFÇå¤ä”ìG`QSp®Jçï.J.Ódê…ž+r!ŠbªcÂ$Ò…N$„Pm™8€ JZ4–Ô¶YZ-ZªþеcÖ /z®|pTSS„;y¥-„]ÈX´ê+®1Õâ²6Y‹¨žI×—»Ù9ˆHéWõ;> ·•ã½fÎÚ;kølð^ð~ñž²âËÊ1+Ð} e¡jÇôDéV©‡½Ã£iKTa£Š¢t¬ Ý»$¨§'¾Ö‚'M™µiV¸ l0¸1È~ß÷íÛš·ÈBÔEÉÑq×ÁTž·.á!i ®G®ZËÕÎ{.mA¶g[Pö«à›Ç!:Ÿc©èGgÝ’0‡h?õ¸FçÁ—1x™ãj´VÞÅžñ¾ÒÖ³9ÄŠ+W¬Í+q¤çMzàBQ$erú½×*‚ŠŒ³Û±DçdØ?fÄ{.å9É|Ö Xw€þ¯&ÞæŒßò§õɇÁæ =#zר"ÉIA ¨èiýÄ0 ›‰bK¡A‚…d‹§.Ýd 0² ÆF–$D&1ó˜‡z®&Ãóe‘;KeÜ á^7=Mƒ?¶ÍÙ~gŸp‚HÆPÂYÆâùDjϵ*Ë&âlF²©¹0G&+™µlú…­ÜwÀ ºó¢þœjKy(=»„#Bgf`†a¦"Æ#æ|ЬŸK›¾Êùä2 /,Ë7áÇÖµiÁî|:åasG9›!ÐFZ:Œè)+æ.mLÜÏ:éBmeÕ–a€ww™O‚Ok>чºI6©xw 'P]°šg›«ZA𱋔jöÛ©¡äP*ìá]¿±í9z?ux[ªrÛ ÍipcƒKßOí{· 9»w$)ûáùÒýhjÊöÃvêíö „eïÏWßT‡ìf‘ ßú>@?CÇ6énc¤P]·–ªD`ßÃû_t@Nu½pÚœ‡:µ`4Ç]èû©¶YyUüK]XàŠ‰gZ¯Ê>D ¦õV±±N-]ŠKé°.‡«yØ.c™]!AJ<€á;7Hb‡53ûHu/lܺ£Õ`ˆŽj4Ò=ä|aØ6¢És5EquÈLŒ’`ÑËl£uv¬Šî·Ɇ5†6Àóõ&¤ªîY•؇ 4Œzõ醎-u >ˆ"¿ ‚cè”=Lø`UÁ¬›,n»Þr¸ŠŸïº ¦´ÁÃŒoÀ/+^wî(ï˜PzFr`U—°þü¨Ôí©HÏ\TYç|4ã{\+õmNã lŸÂpg9í˜Ã ª&I7ãÒ»¸'K»Î£ý˜ìƒXj~,…3v0;àŽEÇÑáº59çó|ª"¤6Ën·œÄ +†a¦bÆ#æÜ»(Möm3/x§ÀÓwÖ®XÕ¢³ßú7Zr¦˜‰ÚUNÀoHŽënébQ¦üõyi5·Í±¿¯¾êPveÕ†Û'©ˆVÌÈoW©ä•ܳ m"ÿ‰CIJ¦$5Ùìl½©å W&–¨Î' ºì²øë—àOâ%Èâ<ùÌg6g$`´`D!ÔadZ ×ŒpçÏ¥ÊÈÚÕ¤~UÔ†U›ÖgDZ+ì~ ÕÊËVßõ.ívÑ6÷¿°&ÁÚÆ¬‘<äž+¬Á*”†Tn¶N#Ö;I5]¨¯À>+Ÿ*¯"(á¶$äX.4ìY g`a'À2L3’3ÚÏá¡¶Î=!fF"ÝÂcHÌNÅB­ùI½…BkLAú#SSSSa_Ïa+­Ã-³%]©¹ÝúT)ƒÚÜi^ì¬Ð uHû&‡á:²}uî%ZöÝ@8kÝÖ 1ö*ÈËîEÀ¤ïÄ6>2ÿmP¨JMT^Á™Ó?•b„!ô®d )*CÉ/.‰¢^S&Ä"HÂ.0Õ-¸«a }9ÁÄ|¶²d¼Ú×\©÷¿«_ÏV!nùB¯æpµ Ò?¨³ ·vpVÅ=ùÕkGX6\,ë iVY›~!Ìö«¤vµª©ðZ%Zpj 1ËvÓ¯‹JÙÝØ¸û‡ŠŸpÏ¡£cTìoT‚c¬ï¿1!¼º2pMéîtFzhWê ö3Þ¥®õfúŒ©ø¸krì°"9¾wñÏu4ÚüšºvÑÙA5IBmî îr¼È7~i_ò¡Ýæø§rÊ]š»º’úü¢é`øFùíŒa§9ÄÔŽûngÁø†™M‰“gfl<—Ž…à,%ga²7+™4‰-ÒðÙ `uŠU.V˺ÂÐì¨ìðˆ*V”3c#ãçcg~ÐhÏÕŒV³žõMRIYm]¨¶¤ý²‚\Õ’Ç;%dçAÙ[à4pG*9é•MÆ‚G˜˜×ˆç³yhGQ@F$þS¯6"‹8Ú›À{o7F,Xz°„a)Ä’Ê„T5«ÛPÊ»[ÝbÚµÍCN°á ŸÌ)Ô~œèþYB,¤ –E³°"i3/õµ*U!š”7_ŽÝmÀe¥æt&vzÁ¥ç»ß8 ßYoØO<°¸ÍÑ“‹rIÚ;J‡…c½TF쌨R6rÿLœÖGRäÂøÆ©~xP>i;¬±Î4aúƒ…Ï•/‘ݬR’ÖÉŠ)+¯“–Ô)ˆÿ1 6Tú«ÞòM¹«¢z'ÁMD¿Ÿ?L‘ot¶ÝN”ŸÔ—WIoRÎî·›ý¥ µ¨.’žz¶rë”<Ö¤&ÑËÑÔ P1°WUvšà€ ÆLZYT;p‰ƒHª]¡D—ëQŸpYcA ÁÈê© ÔI9Hìça문FǸc´06½™ÌÉ#WªUFÊ)š:XÕ©™ ux‹^ífÑÔNI°”p£~´ó¿ê@#g&-¦Ú5µ¯2¬NíyW,÷ío6ú®á\R5" îz|¯pp‰T,z‰¨·Rû–„’JvÇõð̲=_›‰½>Ëâ™f˜ŠÕº@Ïñu¡¢ZDî'òЍ½eøÚÌY„ òÖÆ…×!þåÔ™ÈôÔôzksLò›pù•]È%ýŠ üÝÒsg•`zEF8U»KèCc2"®ãâX§ëóðm§]I¥6ׄ¾ê6âÑèî®ù‘oé"’ï*§ëLý ,ÙÀ „ÑßÉIl‡¾‰ ´À÷ŠŽºfµ‹¡Ó;ºÃ­(*¾(Ž];T‡Ì™roÉÃŽ@ VQÃ>ަâ€EÀ£ØlÊðŽ6‘f»_¥ ÎAì2ªëKí"ÄÈTc{x€´x®æQ’Qß÷OG´¥J$Wî‚ÅÜtUU©¼y¬Ë´{v y j¼dWÎܪRNÊÆ|_À«[æö-I °#¥Ý0T=‡ªA¿š#¯ƒ×Êûe ¤¼%sêÂI™³2MNJé'äa-=¿6™ÌŽÌ²ÌÖ Ögx ™Q†¢ö3š?U³]Miƒ7=‹à†Èž’b÷æXLzA®…${¼güíÐ(‰—j··¤ÜR~­[¡£®Û­ô•¸Ê5$ŽXdÍRí1£×sp„Mã N«rÈKfêʈãÚ0©ºß¹ÑôQ¢bÒ¾¹ÑrDÑO:FšE° =:LÃÚeÍpC”¡s‰óº—ŽŒ•]†}¯)Q§wKgÏôA ë ¬WêAÊIÖ5å}?)=òà2Ã,éÐ5û=ІZ‹ pkN# Og½« óÛkb ž–0I®±îsÉÞ¬òM:!+ Å’”OÒOg –]³¯MF6+Éòœ !ÙL8õ-åqNÔËôÍ<@l2±óÙ‚Ica­†5ÖŽfÈ–×<—¸ç/Šã:Š¡_„4‘æCÚkP¬d13½3O0ß0o1ÿ1³²0Ufk† žY¯^=œÃ$ÊŸKõ‡U$Ò¢¢\(§®*äeÈÊ*ª…"_8:fa2„0̦ÁÚÈBc™µš±ïsÅá  {U®^öÊð=ÄÅ “¼‰–Ìl‡K#ÛüóðiœÕ’^,àX² œ!íA>ûçÒ¯¿«–š¿.ëS‡Û&u½¡FWq² »_DÌ—}°’¢3ü”fKÜõÀ;)I×ÏRâYÊêÞ{G=€e“pˆÞRnðø1Z‹jŸÓPºÖlFv;’§Þ¨à]ÇIWëzyÔ•)M ’^Œ¢o¦˜Å¢®:+饤êy¨¾eסtxˆ08»’h«ÁMEã;þ«¢¼8³ì-]Ôà]ñ1©ýÞá{£#åÔ³Ž&jàžu*DÕ8&ŠÇŒÑBHu]IgÕEEí¹í4Y$jÎE¿ÉÕ¦âÝÌK_mo!^B‚Zµ„Ë¡È)ÂIz)M¥Jð(´‚¨‡ª)#!vZ¨ ªÇ¡Ý$¸Suzú b/Š.Á^4n—–“?¥ÃËO Í'7-\©¹*#㙲šÔOGDˆX/³áQI¦ZËU×F¶ÎqWÕ Þ ½ê7=¬âxh·‘ b¤³úXˆäWlA¬³b¯¤²Y^h¢!è›Ô¢ú %/´ûaè©O›¡t= çê é˜gB™âï}÷GªQC€bæ¾JÈ’Šá¸âYd¡Wk0¿Þ–cààÞ -¶J¸-T4˜ÙÃ}Ñ?–"ª¦?kÅI‘rÉ£·q¼é¢cïk43/De­n—_Áy¬¿ªYõÞcxUÕá%-‰%ô»ç²o1GZ¯u±´eQ?Ùvã¿RÅoõruã¡®ÄÁ¹}.’+–2+‹¦p÷ È­Kñ—O¥o‹Dçìƒ÷£Ç&{LjÁƒC ë‘ÌER¨&^u·è „¤]'µ2nväö&Ù2ó!Ï/¤Eß$ÉÀ‰&1UÜ:À”ó®šÀî r|[ô•GÑ× çm?á”Ó¬ Å´±æÏ?‰R3Ú¯Âíå¢J×äñêÅêPQ~†Ä¸ â 9 ]BÈ/¼ÃƒöC‡2©«ô"Ó1c3ÜÜ«)Ax ¹ëïW&ÜO§¾¾0Ý^¦÷c)Ò"ÏìMƒK—Î&'Qù x®ÈdAJLnL’L¶LÚLþ›¾ßAÔ”ëM‡PåÎ|دp•TœE¹€ïpwB†«i7ˆì¶ *X@–ɲöl×­ð‡äË,\ÏͶG65ªiÿÄD|Ï5i0ùgE€•FOFXæ-æ?bÑ{’üD¬Ë¸[Ü éÁ aΟ•‚Yqx²þ\êó¤òS°‡QȇáQÚ®Ö‘q1‹jç$ñI%`œ”tÒãYÕ·Ã…GÄ ~±ºŒŽàƒ…nóXD2}¤K—±€/¸ˆ)ä¸C¢B¦T¦f¦øW,9碩³2Oê>à CÑ Wرë5üó×êª~qSC·9êý‡×Êñuòް…¡†Ðˆká¿`ë›,tVÛH³Ë’¨¡7xP6P¶Õ•¢¬éòîI °ëY}¦¦[å ›×E}Ç€— ùð¬¾ÊæJªj ½å°0Giâ%x½Îœf§3n’h¤·35abf}æy˜ÏIô‡ÞõfÂxxÞvw(å]ÎQ¡’3WÑIñ0UÃNòTu¤HÁ'à ¥˜”wI´Ùô@¹• :=³æ¯ÖE\vã¹Þ0½©Ûú(1eULä¬êT9Ø{Ö½˜ìÊÈÅ)ÏkcÍyãZÑÚÇ–³¥MÌQç¸Å÷ٺ?¸LE×#'D‡´DÏo˜ÛÜ’¿M€ç ëÊÅd ì!¸ä¶ìqAÓttŠ—Ãx.©è”gu€ç3~Ì'ø\öCCÍt©åAí’h& È€$öFB@!R‚Ü+V=53‰vÚ¦:Œê]~µÙØÇ¡X´Ó“ gIÏ”ŽÉ.’o3å?f)ý\ê ¤VðŠhÑEØ—æ’]’5lûa‚Ùmn†1DN‹mY@,¤fÉ`….jN-Ä(‹ÚI}y}®e-ÉcŒæÃS&H2s!VõµLo9,/SÒ76³ª¦£EÖPüCÀ Œ# 5³ŠaBo:ðl[“sÂÚì‘q‚$¾ëHâÁ4,3Y¬²J¸PgÍ’u Z#*£î Ì ì&|_È–,K|áÈßhH²k·¦Ñ^÷WöÎÓÎå€3Z´¸¤PÚ-J÷ì$ ì-ùuØ•ë¡r¼ˆk/ú+Äâ'Rê¶êf0€ ß÷‰¤’ut<ìKú«Ë| ¬åN9ôù‘)"f”ü°wÇhêé]^ð“}¿ô¡So).ÅÕÜ+ÈI{˜j"àÜ[‚qÈ4´i•gìz.1}ÏÊ"›ºÀÄߢ35Lv¬§¢ŸìøX¶ùÝÔ‚–fÞÎŒ'‘ÍZ [ÅLéÝ4çµ’õ¸ÁÍE¥í†˜¨²†Û 4åçrY‹¥“È;T¿»§½À`HŒ‡¥"óƒá!‰ 2Å™ð?€´qÔÉõŒ ä<±î :©ÉiiòåY.Iw"of™,{‹]•£ùõ´“£·lþŒ•°†Ã7—±zZÁPYâú¯SZ†â(»ëOMð  xΦ¤´›üáÍuM= ̧"A°[D„áo6¸éÐPÑtåŒ9èüêq‚S©$— zWWÝš£çn»lêz”ä™l¨iÆ‹Eñ›ÃÈ›ÌqÈm×¶•¡)2qU73×<׌EÌÇ ÊLÌŒ^]yñô$ˆE:ÀU.o‚‹Î“œ©bV´X›ðãA36' \JæÆ뎓7Ûxb F¦çjkWwApfFR‡ãÒö!¿£¼¡(mTRÀ=f‘_ÅaºÈ]]oIN&¥èO6#%y’¤CÛ7æ0‰23¥37,Šs>ðilØRr–¬tÞ‰’‰ÖìÀØÅøV„\û¯¢]%!¨\Ðbv£µ$k ’ y`'77Qg¬¡ï =tÖU%03 ûK“áq`•ž<9 2hî—Ñp;.î‘ͯnqƒÞšî길£åiénØ¥YçK‚Œ¨vë^U™©Áï¾­¢”‹’H’Ë¡³¾‡mÈ¢îªêhˆ’ÚhãF`3Rfã1‡­3ø|äIvoHîÜ'/9LÈG!ú)©a—•×=6_Ì¥ëçrtš /‚äq{Aî|;,Ñ7]µ$V¤fý‚U¶ÌÉ•E;ø C~jË®z¥ÅGEã휾âfˆ2sõµü_jX‹†=.Ÿ4Í7Ú謱ÎZíBóTcÖÉQ´n-mSæi˜ð„ÜŒî,³X®±’;Ÿ0Á‚P˜˜˜³˜û˜Cg.½÷â|þZøçÙQKv)Òsïš_ÌTƒÝ²nž›Üü=žÝò±©ÓðhêÛ9FÜ]UÌ—#ü £oƒKd†Èh7Xà5’…aªá~Ÿ¤$SÜÁ½¤~ž%ë­VØ=‰. %«Góg•ø•æ¾òôÓÓX5»æ*Ðl)O ‹–3˽¼z?šçÕ¨Ы°I VЇëï–CÎ_L`ãÅ!Y,»<™Æd;³qÍøìhŸP±D%&œKÓ܃»§§gÉ~îµVÝàœ‚Á£Š”;æy´ë´”aTiP‰¿I]EÒÍÑvȤ­IwêOp!! G‚ãšÎDÏéz¾Ï% 0t®ÉšêÅo¤5s^ÐÂX&g%+_ò¬¤àÐÒÔS\Œ‹5ÐI-28irË®Hxì!*M`¬Q"˜F|Š„Á XÃD53U1å1uÒnõ©d‰]GuI8sǃ&üÔàº*Ù='–p¸kŒå–éðXõ`[º½DÄ•ÍWHÀh±@º’\àcá"»ôˆõˆ;‰¯GÅ'ɇ=ÄcŽrz.¡8XŠª(èjñd†B¾Vaas臗q¢:¢´˜'pu…½ŒÏL¥LÉŒ 3|¬fŽù]ÄsèŠÎå^Žñ¥8`gŒ”Üè“4AeÉ€.‹²|oçÜrÏ_«ôsœ¢n‘Æn• zÊ]%>Y§½Q±ÌÔe¼ñnj~ÉêJøoÝv3ô§Øh±)þXI¶LnZhqk#™£Â^±×½jÇɘe€úwÜKIÚÃ/K3iõ]±a´è4°'Õ:CõW“xŒ,:„óx°|Nè'/ø/yؤ'ç´œÓ^rfÌEfÀ9y O‡§ÌË¢¥×Ãòd÷þ¶Á0^,0…ð”ÙˆXÙq&îe–:ÊdGÉîæ|x"ΩEÌÙ9ãà"+á"s!g7¤$x”'2éM™ö8oļWŒ ~ŽUœÃqÍÄÌ, jþA`ò\ë+ML“t ?‰,¾zâø%â©–ñÄEkEl£P5@I"ž¶!õÙb  ±pû_óž!! P-v‡ý‰ æ(Ô[7{Á²‰‹KKÐÐ!VBŠ‚ûߪ&::ÿ*hyÌp7#,j¡.úÖA¶ÂIS³êmÍK°àéá”›l+’ÚØ[FHµà¥bEÑÁ åIöΞi&Ï…îÂÚ O™—ÅXEp6+`+‘õHÖ5ùZ…¯^øz†¯pf%MÔÉLŠ$,Ôg­M.Ð¥Å]Np“•}ä“vø¤FOŒ¡Ž½‚Òfr_;>g+HO®a¯îPÄÅá˜j’ï¼4u¼uã¶e†ÑƒH.TÌÃèAìY ô,R$¶ ÿ¡yòP¾cG‹,®úÚ²HÉíñ‚ ‡oÚÐ\N3¶UÈ„Åê3‹PZ«Z/óÔ‰åÏ’w¢¥ékiÉ@&{YPþ×3˽cA6ICÏ(žÿÒÆ#J l”–Ã,KÉ‘PµÅô±Ž\»ì¨ç®šéBfäï¤/ó1µR´—‚T²Y 7—*¹é.U<ñ<¬þ†–VüwÇnDXìÃ]:õ;h¥¯º ‚CRÂ`‚¥HÎ"bɤ’ƸÐÈHk»2 sqÞƒHç¹$/Ö­ú׬£ÁH†–4ü9¢‚ŒÜVWP<,EKÇf m°WJK^Þ­¨“±3zô…y,_¤ å¸QØòêĪø¦l¹Fé_øê1ãÃs ! 3E W Hcmž%K5–|“d‚3ÙcÖ>~ƒUžö³‘ßq`²R{kž^ÅÀš´ŒëŨJ&ê§z ðfrÎsÎìš¾¼ R”]EOûPßî!.”j/­wñÌÄQr„1ܳÃW³å16͆fÌ«Z¬œw‡6°š„:‚“Wǹ<yÕ/ÏÌ6²uUç.£e×Çiidð•[¾Þà å´5æu9»²,ù³><Èö­‰±—ðrèhºaÙ3é,Fç.VA+]ìÆ¼aD“¬™,DÉeÏn¶k¤xðyóTù5§;»ã.;rë±ëoò>hŠÏ¥^ǨÂÈÃèĶI¸NišQp¯©>ÖF’¶#*.·0ÜP}"[f²eÛô¬<_ÜÜ÷–2ö‚vw™Ob>-¡9h¸½Æ¢"èvìîhÜÓ®Oj-A_ û¢Ó·aÞÞQ<3Å‚r™º™˜KÈ'ÌncCÜbRÓ-<†ÙÐQ¥šS½ -DïµûsÝ.Søí½hìy¾´p¼æðBªö¦(»Sn?äå–|cQZ,´ j“œØ›að ˆFysø›0ÒkWº/©Ç ç ù Ä °&@ŸŸ¨`A)DLLo \e}«wvÝs=‡¶[vÉÔ'ç 1CÈ·`cí]¿eÏy†Ý/zep¼µ;õkÏZ¤ÑZöªO“­Cm—×8ãul¬ßÄfHÓô³ Ê…•h-¢iö ªL ÊÜV¨Mï4‹T¶·o¢>œl‡Ñôª@£k –NÕJ¹SCV³ÍÉvéÂve‚[%.71@Óûrh1 ›aÑ+eVËQ¢W¡¼ƒÕJ*`j=b¹‘+3·³Dñ(ÍéY¥¬£Ê>ÊO]/F§ùÑ|ÎXÀx1Ó·’×hÕ|x¨ž!|ƒÌ~Ú‚löræDÔû‘ç½–XVDÚíI[’æÛ܆ô¹nŸÕ©÷û‚di(á*Ò² Š°ÿ>eÞ€‰5h hêíWöâ¬÷1‡2§·M*M÷ošïΡý$ÀöK‹þl)¹«²}‹š=©  %Xú§‰ÄoÄâ–sÒ7’¨úc–ôG¨èb±‰Aw§&¯ÞÄ #Êa¤iÊÁ¨â%’‹œ2hàtx£ìùi/žJ’‰F\{C+51½­h’é–h›à}¡qV2‹b‰öÔ{U/#°+‹I¦ åÃãf"`B™‰éA'ú\Ÿ:QO‘—ÁKåí í…5œ…ÄškS|Q¿¸Ì§È޾YDèPúp,Å qLÑ*îˆb“(Üz‘=1íC%¯ÜÒV‰ajÕT ²Â“@¾ùµ.«I–›¾åO£X{•‹úf/þtÞj¨•][6O’†oähúÁš×¸FU0Ž`xÐ4YÁ)À ð+À¼OøÀxʘ põ+pIŠÅÝ´ÅCCíöhnÏiGíyv·µÖ ~Ž[mÑLÌɤék»>¼˜AÚUW©#¶-I„‹h8öZÌ ¿’E\‡9äNo¸-GáåéØÇ3ø¬ÊÓ(3'¯2›ªJ–™­EõÆ_FÖpqÑÖ³%¯{iÕeÒ®©Z6^Öqâ N®Áϸù©7?§'ãüZ^´?渗ç24†Ãg(Äf†ƒ-S ‚4ªÚ毜x0&$žFXnÝûbL¤¼Ö•ÌîŽ^!vñ¾ŸRp*NAÁYSLlWîlÍ ‚ªxÅë(¡ÜË1‚t‹8 %¼Þb;‚\"sá9–´@ŠŒ(âCŽ‘ÒR²½¶¸ÚôÆxÔ[(IÂÆ¤ÅÎJ|ó¥Ú½˜pŸ¸‹ÉiQZ{éú¹ž§¨×ÛE†Œ¼5êu¹ÑAˆz£›¿–Ûìb!z¦î¬Å鋼Y°'¨òîUZ<óÖ&®0lªqÚXGö'“(= ÃÕi9äÂu鎪ûñ*SÕôÒ y uÚgÛ ¹aMÕJ£!©²©µ8"ƒ2îë> EYÄ…Ü!7û;x½:Ø ÕÏ.9o`“øf$½±xeDŒ%í1_5Z4ë—xÁ Šf-½ä!5fýÉ®ÞàùÄá+?­r¼,W¤¨OE^5kG!½ ‹WpÍΰϢA#äFÂP-‰†ZP'Úâ²cV“9½jáLËX,•vc±aU Êõƒ“%‰$NXä,ÄRRÔïOôÍ8í»žÅúžKxde˜Õº“"†<Ç4ÚjF aJIS8± '_™üAýÔÙµäO‘ Kˆ¯+ÕSš q÷Æm|£f âîcõWDdÐd`%P`Üp;ÊéiÊ…•‰ÙxÀ˜±À"g&yf‹™uäÖ~®\ßìg:_..龑n$§G'¼ ‚„lÖ©QÔ½esÑÐ$VVî &§ÿƒ4çú„oJè.àzYÀ· ‹ž /‚JPÌhͼÎxÀ˜±PßHÅ›µ@R% ¢(^𣨒žcS!ÝܶGÂ6á-ưÌz::œä¦¶ÇÍ"§¢§y»tl™A/’ò¹”¦$p™™Õh0)¤Œ,–šM¥ª#1hÖ0‡:rÛ—¢aòD Ùb#Z4–@íù£h´„=ƒJ›Å DËb)ðÚVݨHI/Îc±GX¨ÚÒgüòG íŒ#R=×¼~’oNü‡zj*}݈D½;¹ŒÔчzÏÓæ ³y‚‹EÐ:i+47†•g&´oöj¦¬æK.xiî våپĖ–YÏ¢¸ðàWsöÕ¨qÑ£MCÝ” ea$Cä¬þ¤©šwÛÕ®Yd5>—–%[Ÿ •Ô—…ŠCz#ë–LL(|V|ž|æL Ú¡Ä’œ|r¶³DÏ%ßk1÷1‡2³iRÄ%"ñU–!>^í˱Ô<›$f3È“@ê–íÑW"!¦ô3 ¯£þ̰ wÁ¦xo™é{Á3Ÿ¬™ –a˜¡šáœAAŸ¬¦¶ªF«ö¸" jÝ7S¨$ôzTbºtc僣è­ñ Ñ“A£ªÍß ãZ&i0ƒvïXSHŸäC«ªnãIß¡‘v)G:Ÿùƒð¹:d&êšG_̰e{©”üEa ½’‰ØÄžØ1šíà¯_+ç5;¸g"4V’ÖÎO üãH”žoˆ¥9-¨;šÞ\yòÀ-°LJäÆé"ÛE£¼ÃÅy¥ñ> `âkUŽ!h,¨ ªgR}`ÅÓìô(´VÇ+ˆërÌGuÙ¬çj?yËÇBÄÅÈšk¬¡ÃzÎB"±¬Áu?œór6î<¬ã¼©Xm£švÚôàö62o‘}ÍsôU äGæišÒ/çÌs£å¹EÅ«k}‘>—„Ì=ñh<£M^Ö\›auì*Ô5åå_¿‹K¾á˾P¡k!º8šÙóAZÏsIÏÁ3C0ÏÌlue;æK8¬äƒÞ—U Þ¥Ðp‘Ñ‹¶€$¦%Ëÿ…Š@j«“ú˜}ÊÏ_«‡0ôXfñèùíÃè“MBf =Ëä—›¤e±"FÊ+t‹;\ºÔXÜ{w}rÀ?ü×$±ã‚c™«‰óú€†GÙD†Š4!˜‘Z„H™M´ ·0ŸaʤƯ4ý…50Ë"W,ÒHê±`œ…ç»p6úØ,$ËqaŠè+‘«Žµký’‚£µ¸Õ¨× =ë ÒÕè*ž˜0 ãŒ< á¥c{ÂxþÙsÙ³> (H9aq´I¹ŒÄ–QPZ¼¸³äß*8‚6^#¢!Žk‹8AiãPx®v´4GMRHQãY¨=Q[Ì…„lʽ!çñz@ã ÊÈÔ ÐŒ²N¯ûAŸ°Û©>µ|ÒLXJÊ>Lf·Ì½ó?4ƲÊɳáñÔ¾¡ã¼{¤m“ìÖE.q-{—ø \ÚÑ´ ß„:ÞÈj wA¶`ɺëÑ­ÍÕ9ÐYñy25¡Î¥µX^Éëº,NU¯ú9š œPˆ¤Å"ÊÔOFéÀãîqA¥Wð9ç¬}+ßâÚOÏ«š_Y|Îrì~a*o'e­Õ®¥1–îG2·;n p©‰L×–C4‡~‚—­ÂÞË|¢§ƒXŸê¼CóþXâ[½¨Z²ð©§({vl¦g[®X—¸›ˆ“ÈwS9%w¿Å?9Äêj#Á¤>¢ÄôŽêa kp™#OšwÅx{Òœõ^ºógZ¦Å©›ž¸sè´`¼-å{¢q¼‚Ï‚^•צœ@Eâ-b²®±ƒáe@Ì•|tZ|¢‹Sgʘ÷YbÆ…öÑXÍPWu=; nÆc ->8'1 ó˜I_ÐS¶Øý¹£ÅX<ž2‘Qö4HN̓=•DR!œ^‰ªÓÈïÁ^ '‘’ŹSìiQQ³ÿµwC0Æ¢Y”v|Y/WÇë£Cb$MGdû²kzЇt€tÙô³¬É=róGhš¤#û^¡n%>À»{‚f)9†“r:'=»C1˜¬?zlúäEb»tÁc¢æù«cáš ª»Q;ʨUµ‚ýJCçËHúß´–z¹§0Ûª=/x—”h±çwöp³Œâˆ? ¢d'/V;Y5­MÕÎꯟÌ%ZÌ07¦Ýк"¨[Ÿþˆ<Óáu Â-nïÅŽ¦šè‘Ì5H]¯†ç)ò2X gMµyÒø )u¬ø1¨-€Áq ²3?Ô·§ÊòaÀ‚‚k­^ªÞ+D.KdÝðžÂõ 3¾ á©ËiPŒƒåÍ*æâÚ¼$#Z2éígÜM$t‡’5| Ó4;X+©ÈB-åèyà1•ÓÐ2ÍD€¼›%ÈåK{Ë¥ Bs­q>hß=ÝcS¶u_cSC°G¢î2‚;/‰Ñ$Ó¨ÝRk0&ŒWK†²™ÎÅÝ!›ú¼p{bÉÉíJ«xí/¸ù½Û(Š¥.sPŽ9È»®.Nk¤é¸†“¼Èìßä2')ÔäWžŸB£_[¿R4H!}…UÒzfÅèAð\`ÄEÔÄÃÃá:”» ä3²B#&¼¡es÷´¦q;ƒ™¶;þ~¡)mäQù8©¯'¡|îx HùlÛ—G•ÐC_ã¦4Êàíš-Û»Ããf"`Ba]“ôQRYZ-)¾30[ÚS\×ó×2ö«© ߎ1&èZð ÀnZ›—<Šrú]:ò¥–DÃYÆ«¾öZï#‡žëHßZô-ž[ÆÍTM[#hS³˜f„Ý›“íPÖn¯êÍʶÈöŠûÈæò8¬…"49z# 9 ‘#çø¹ö\Έg½X™VÛ‡Cêbs/lò«k‡}?u:¦rì*íÞƒfû\žŸ'â… ê¨Ï­‰ó+Ëj”‚®/Þ·!ojÑË(9K@’,FIÐ’rÊ>ŒË~óyЙIÒ_}§Qôè©Wíbý›ßcçM-€æ5¨N,éiÒjH°cQ$—~íZý ðÔÔŒ{Õ¯òòg‹žilž^ÖPm¤NPRCèP¨z(¯Ù¯êñð’*ÁvØR,†l00•6MuËæ±oGÓÃÍîŽoMõëR½ZxÓ§

,>Кϛ*ÅnÊѧ sYštf.b@âÑ3«3Ìñ ž|¾ãÛ‰·™ÿy¼TÞ Ú0¦0¦B¦Ô…YI¦'›§ì¦ g¡±¦´Ô¦f‹´2ÖÄgx|üŠ(Å,fN^ûDÔrN»º Å4‰(‰^åÎÒ=¯Ç!·r£&o;#r‡‹ŽZ›"‹ü*éÅWÑn¢ýÈ/ææÁmBâ¶„—YòëD”hRÀzìg›j…e÷®“–BÃ~ì: Ȥ•×9¢³Ý¥÷oLƒswܲƛBv&mIIµ‹då¾"Rh kdË`>MYVôÚº$MjÞ—0hƹÌ9„¢ pXJni)ò#¤¹é:"{U9#è£L¹ÚÛånø[¼lYûm»Z%9 [ô5YÁ]ºÌ°K*ò‚¤H‡¶ÔC¯lß¿Ñâqy·HˆþMÓmoV@¾)Á”mù&nAàÍ2JÍ ÐýÒà…‚Ôd’Ϥ¯BoRÁº¥øºÄ­…7Ô:Ç®èU} %í}›;}³R½eSæ »â–Œ¯—bE¥{ŒQ¬Š¤ÇíqfìÑö0&y,-Q‡J ˆ y°¥!»hÈú’µ"A÷- º·(›¤ØŒ,c5=u®SÊXŒx*i3[±ð—y»”q²†9çÍéÕ*d óàÉ"i¥E4Õä†h©:1k°õR%nèOæc Q 4˜7±BduõTÓ¦¥|²o?Éy2'i½ù¦H^-`´ —šn²Á‹/³2]½Ÿl o†Ï¼nÝ‹´émˆ>Fܬ<%T÷wßß@È 3YïESÜ=W)ʈ»ºÁRbeM=wIî›f†)1¨>~Ø+Úy¾!šwX䀜'Ê©«®hWÛ•;DœÖQ›©ñQ@ÌM ´Æ U]Ml&ÝÁªEHñ£CO¢z¢¶Œ´h ;Ð3j?UðE€ÇZ½¹Êm=¯ÁèTSºÉûñìt*Û:;Û¤‹Åˆc[í”åM ®«£Aþ.("ÁÞki²’8$”f¹Å²- ±z;tpµôÆ)ÆÅÁ‹W¿ jÿˆE×’å8ú¿É7‡Ñ·´hpéfžz©‘55 ¢;‚vµlj»Â‰Øš/Kb·TRÿ¥RS’\DÓˆ#*A}>c 4ÂEÍ“³Äéhô¸ WÙ’BEÔ‚‘׋èClD5ËZ²â°_2),ÈeARU_SäÝr0 ±ŠZÓÆvzeT6Ës2ÏY×!Og$„*+Õ5õÃ*·_‹Ùsç~Vcñ|x΀¨C•³¼B§z‹^DÁÉghÙ5ËÖYŠdå-¸,ð–]½i7awÝÓ¹.H÷Féº*9ý7‰Žlæ›ÉþÖµa0‘EW©y¯CÃRï 8ñàEÆîÜ…3(êÑYÁìÅ ×’KÏ¥ìbùF"i° %Qi÷p%9i%é¦HfÚìÙ‘T¯| ž úh’Ë!mž"5Ú®¿Q'ÂQµ²YÂEÍð‚ÇJ0WÑoôÚRU½ ±ýªY¯Ó²¥½<‰ÅîyOQmGª–n™eøƒÎæ¹ãÖTÁë‹0:ØÍ¢:š¹+±t½ô«©CU‰¦‰@°¹4Ó~u7p¹^TÖÛ:²Æ=äQ»››ø¶üþ_Ê=^pÐ~$I‚pVÁDö¦Ú§;eVzëv³t™¿ªWíüùNƒŸµ|²Ѝc¶ª¬E!Áúª=…”ÍLÒàa "ö¡½°>3 ‰… aa#aêEdë'YrY÷u†1c øŠ:Ô,d÷¡fÛåAXþ\Ë(VX}"‹Õ°Ëq­Î“u_Æ`‚i6WÙ¤e³—Mã…ùL&6ëГœcA8 Ëi`Ï_ìXy)¢&YB[DPÏ"òL4ͤŒ»?›ÑVL™šf§A‰ÐÞv—5pÍû•µDËIâ×ÖÇ®A>¸P/ÊÉèH¿y8*‹tÞÓ{­‘5KÖ>g õA³hÕ…]ƒ¯žuÖX§`½ƒu¶hÈèáæÃàãC]<éýlù0[1Àc:ÌQ¢Zý“¤ÇËÎz»  hXc7 Û®¯ºú7K ÷¡:.²>Vd3Z“ë‰ûw3TKjõ›:ÄÍ$ô°¯4×¹D>ìi-^H±Z2’u81zÍv&›¢l­²`!Ard5oÜmäK[øÛf—ÜÂÝ6Aìs Ãä¦X¸2ÈÝgpPªÐ‡ ÅiV®XÉf!ð ™ý\zøØ HŽBr%ªå¾æí5bŽÅ=~ Ûì•cÏÝÊ»GÀÙíÕW¥U À$Õ¤xÖ3,îP 5«ë©ØUTçP)5>²…3÷-8tfâŸ0^0¤êÄêÕ¬‚=ˆ ž¿V>¶Ù 7ëøl,L2&Üeë­.*‘S¤‚¢ëÑ6TÅ+ó¬ð³QÀ†ÃÌ#ÌGÌkæÇQ,7‚\Ôwz6A_öIP€ù(.¿R|Ól¬ˆõ“¼1Z˜˜” S'.hNZStbÕxFH²¦œsíGù-ø*§ë,Q>£ÃÕq+|ˆô‡QGTh/ æ^tÖYÔHù™˜r1¢ƒëKÍŒ˜Õ3tæOáÖ½E/¾$Ð\}ÚQª`­ŽZ¦·¨iƒ ‡$84Rñ8žÞb±ü{uè ö¬Ë­Žè¯µ[7M5ˆ#™V¡o}›mþœ¥æWØu‘HYüAç¼5º]Z±DY4½eÁ¿J^†dä’¶lÃï*š`êÛß2cxÕCVõ®Y‹VÛA¸~ÐÝ;Ì)X†»Oªnîæ~XÔ4ãþVuÇVŒ†-ëN(2NK‚Ó—êø94×^„¨Ü„yšìIºy ðð\ž,Z±ò)-UMVGÉÉËŽàÙ#)&„$4Ù¹½ªéŽ•á-i4ƒ•8}Å~duÓ˜tl¢dKšis•Œ<%k‡›ˆ—íÒ š¾çe¬@)Û‹ôWjŸJz“æRA(¹*i®qF*ý3 âaæ_¨›:”Ã1äYµlù’qÌö39tWŽOrŽ’ÿ”ˆ`A'DKDoóÏ;üÍgìf|_¡ùÄ‘OåÚhYtƒR}V’úÒ ºWðÎ"€ÅD³´±Ø®F Çõ‘]"ê[P Ê; ´h2HÖ{‰:Õßäb1¤Å4˜ô-7ˆÇî%;XÁë4ÓÒÇëY°Ì`¸"D#Ð#`\c0ƒáC#>ÉáÈš˜/ZÈNW>5ÂÑ•šcí©ÅRó=ECÒWºrE,iwLµûþÉgÏ Ü acˆ¨¯ÚK•Gú¹@Þ÷tXÏåÒ™/È‚Ig¦®h_¢]²Oø‹K~X8ܾâªQJLŒVKH³« M^à 'ë¡Ï“ƒ©ŠY%™iýADð\묃Ìz «2US‹¼A“  ‹Tn}Ko¤É•ÅgÿxiÕ{ɪ —VÜÐB›è–u±³kÒ‹­7BÜìé¸ýÊ^KÔô†˜aˆ©Þè·³òºÐogx¡ß^wý¹Ò1Y¨‚ÉfAZL~L¢KI=Is–ø ­€¢¦$¦¶‰ ͯ]ªfK‰ªøíVºe³§•*¾-!ÈfŠŸ¤Ê—Ä"Ù4­K?&›åÿveë©-ž›@eXšÞÔbwÈš–qÛM [Њ›¥X›{š®Q°¨´’jtˆ3<;žäÅÃ0ëN?2UX°«ìa×Çý«|*RÒÿLV“ÄÑ|³J™#q¤è@ز’Ü€lêC‚‹”«RŒ)ƒäOÍVêã%M65Ý2.¾z®š¾Pbõ›Ž7QFÏÐôÉò>›q}Ýß·dH$¶ C"Õ‚$CÑV\EÜ͘è=²tT”<=ž@Y€-[r‹Ûô-êc…ð!¾Û[k'‡¦2Ý`!ú'å`Ö˜:.£rÖ{q$½0;Ú$ª[Ds ZÁø¸†±!³-Ñ×4Xc7¥ iJÐÜrµ Z ãwj$7r%Í[n¡Xú~20‡0‰e\*ÑÜÏQ£[ð:ip•œ$\—F¥zK xf:ö‹‰±«06&Ùàä0Фá`›MßÚàtó3Œ-`¾ßr‹£%2«Rå_zg"‡ÐÔ‰&žæ [·Æ ¹ÖMö×…? ‡âqœÊrõ“Òc{x}³Yú®6ÈÁàšË mCÕ—`>õCÓ±%ïwfò,À‚…A‡i^ pI&¨.`éXí«}·çŠ8èxwßï¶ïZ˦f¿¬mêÎØëˆ¸:4a˜–hq&)«bîྕ „¥+­O‡õN€ÍâŠ%ÚR€]ý¹Œ¨°:È*#©•¬z²zº2ígËì…aO ;sØßÃ>!fu†† ††ž°Éך¿;fÁeX'T^*N¬-Ô$R¥XÝZ)Nˆ|ÜÄ®éÐW ÏrD‹A,¦xÓhcY2°ì õ¸«¢Ç Æ8ÇPHhÉ€:ƒî¾5Y}Å(ÆHW5Ÿ^L:ykò¼†´+¬MÔ½¦ü`ëQÂIvnµŠkQðøé'~Våv ½ÍÐXê8·ê¤5y»<Ú9ÞÀe7Ѭr!mËx\GIåÓfëÑ€¤„»Ý$ο1½ÄRâ yš¬ÀWGê&ÀòU.€qcŒWs| $2[îCY?ul“ÖÌ x uh*ñ¢UÌ䵿ˆÁbQSÜâ…aèWÔ¯ãžíÒE©i¶G¼Íjn5e·V“ îÕ¦Þ‡Ó\ªÂ[tϵ ÃѨG‚ÖhÆÝ›TþÞ›½¦<ޤ• w)‰øwp6²§ê'»&MÝ]´§lñHr\&´5Õâõ¤T`ñÌ Ìæ¤ZðšÊ¼GõPƒ*º(ê<ËnÊY9û‰gu2I•ù4ÛªLWß Qã š¦L´ 01Ué–lIs§½z öä °'°û+ <ÍÒ1Ç2•¨Ã×nQå‡è&©âŸÕtòº ÂH3ŠÐÏŒÆÌ¸bØ™© DhC5‰ª>ƒ¦Á7 8Óº‘äHÎËï¦`]@ÓóC­·Ú©¿žŠÈ–&«ä¶Ê0Ô¡6IÕÍT™f†\1mNã„-@;j¥ÐAa‰ ñÓjž>Í×öæ¾”.i{uŽ <Øò­^dE{ŠŽÙ§­z§ÌÒžÔ…Ê@„yÊšš–Ší špQÈ?®—Ä«æÙô”TµY‚£‹¦x”%»š¶p¢C¯»¢ØÌâbçØ‚{‚-"êØ¶ó[FL¦Uפ/˶Gl x.¡áŸ$Ä,D&)ÃbHâÿ ÖCµ°‡/óî­v˜és¦áÇuןˎçÁ—r’d)k:¬ ‘ÂIJ€åË” ÝЯ^ŠÎÓÎ|±‚†(†±,µmOH“„mwcô¤yפ2ÌÚÁvŠL*ûƒfò\ƒ.ãC&”av餷hTø¾e×Úhæz'àùky•M·Ý|!Ηæt±>_§M÷m|%·Äì®ÏØ?‘“ãÒ™1û;Ø%2»Mé<—Äu%>:>8>\ “à&ÍeÚÄ·-)X¤M»-uwTßÀíÎo©cuõš¹…“K¸fYöW­Bé£xQ(vN÷ ³~.ènqW½|ÌÙæ œåAx°½ì0·¶¦ž…°«y-!B”8—4Ö1HÊ“"ÀªÊ¤ËÌŒó˜§û\®ˆÍûÂ28‹gÚàlš¹O®0í±UÖw4³çøÉâsm(ȤM,4ÒJXs™Ž™Ò²†rí‚" f7ü¹{B+Ý¬ÒØõ{ÕUÞôâOS « ? ÑKî:˜c–|²j2öyîö©+©œÕáS³æh b’H‹'Ö‡Ù"ªf ®EçYß×~,å¡y¿^®…»‹v·®–ÏüMÇæû¡Ž9ñãZ¶"Ì{õzz´G´‰óG÷{ñ*µVMö°Ëð€+¿(†~òŠÐAµ!©#lõŠNJ˼Xå^RvC“±]V¬Œzp3XI:ü-S­Å¡²‰d÷ †U|3¥½’êÃjm1¥O+ ¯hI(›¾r„{ÔUjlyAêÒâs²Zyá²ÛŠüÍŒn„q ÿ¡ •ôù ^+t›ô ·mž‡Ë áìAr½b&{¡¥]žç·JŸ¸Õn6 ÜlÕ š¾Åfoa$'Mæ›­¯¢ÉcM³-æÐ•Ñl“9Âv÷U½ #™v‡ä(éWÊ +<³FÄ*iU¬x‘nVìB)yù•–M5ëVÓp€[HrØ-!Iµ¢ž»—wwÒ–â›w¹º}ØKR\ª(ÎUÇW…ɧb—\“‹fƬwœÑÕ_#2”_²xH¹)o„É$mX:‘›eÜcÆÇç B0ËPÌpøÀ¢„­ÌвW?ëÇ<Îs9ž./©jèÒCðç 1\ö‡Jqù E$*K4m–¬ëReã)z™æuêîÙ»–×ZÒ¤R ™êTÒo¨´gÚâ8Mœ®ŽlhŒ’Ü(6;.€²ªÍAõ;¨ÄW¡B!s-ÄS$…9MgRâlKœ‰Àr’جeQ-»…ñ«d§Gâc++€›ë‡¥ÁJãjs³\qž.··X’<€yÓŠxÅ}¦MóžÊÝ$ÇÅHJ¢ÇÀ?+²U—.›å.ÑZ;'ÐA®\ÞHŽ8X±ZH)ÎK™e9ûìœÔêòHª"«“ åqB¹çRN²,åÕòŽð®ñÎÒîó -NqQf‡*ñP±Ö''…“ÒEI+5¾Þ“L˜ÅK’>v {ºzþZÝñýßAñ=ç]ä¥\£¬“²ÞÊŠ é:,ÓYî³n@ú”ÒR‡ÕsXö§cØ—aCQ8¨³ˆå™oèZϰ£¤ÂGŒ~k‡lÄš‹ÛÄzÓ¿ˆRJbšž4z<®øëA¸ñ؇‡¥ j ¥™l­Zâ¯ÊÚ­’+üXK?\ªjQΊx‘ù•™Ñ{ð“ X[ºlŲ¥ËÖðÂÒEán¹.Xó öJÙ‚dËPýSB•Š® 'nX‹A,¸~×»q•£È¸(÷´ÅIF£ÝæËŒ‘#Y^ÇúÀLŽ’§XÓ|W ²–K°ÛK6i‘—¥Í\BÀ}„èÓ ÜÊÕ÷î"ûºl݉¢!ÍðGIÂ6™²\il»w¤™„$Í-Ô´ÇÍÜÔo¼È(2¹ÊðÇa*ˆ"‰bñ™sâÛÜŠIíЗÉÑMzˆy\Ý㉪^°}àšFÒXÏPç-LÆú¹.K—zíé¹gDt· M"_&ñ ÅÝQÿ[Å“JÓ¡T00-ˆŒ ‘‰• z>ù€äëEé°Öå>£Ê·’ŽLZ/ΊÆß#JEáŸH,Ü^¼vsïz JU«9ËÛË> xåð’é»d“ È­—¥¡™zÂh´,5"B¦S¦e¢wæ‰ikt»6­;,·^bš®H•É™IžNkq Äî„ »Rå®Ï„I7Kq ΖGIU7¯SSU‘ù5"&RÞ>Ä*w²5ö –™ïÀh9û,¿Zç¡€oê>2‰Š@¬øµýJãøkÏÏc”´ÆiÞ,Qœ3©·ìžÚ “õW#é&±Û¹à,£Ùæ3ôôq߇á®'®©i3›TËšõ%¤`¥¯%)M'‰*•M4IV’§½¥zÚ¬,8SSܬԄ/3éÃô¿h-3¦$z“ei¡§‹µ”S•ˆ®¤õ–6r{I0ª|c/볤<¨HõgÉå¢x–Œâ:¦uÌ¢5wµPô<¤u,hYƒ>Ëè¿CŠcì2ò‹éP Yë’¶è,)p~²9Ð{?’Öº"…ž¨Ôà@K6ûn]g„Xp]—ZDiTY; «Ú„šîbn>¡"Ò´ãiR9ŒX<õäµcKew¡ç’~4&áx½eó\b¨¤Œ~4SZZ¶_”à»$a“#ôTpòJ¨~øƒø÷ÑßS1õJ*NáÑ*c©8…W«$ü–µnQi±4ÏŸØä–¯¢XŠ>†Êé;”Tïo$ïg§éâyü4Ífo –cq&à‘3#0³$ÑòûtFK‘ú?Uª÷éÚ“<«É#zÏ»ì4uÍ‹ ¼Ø0–‡Dì8U›¼&ªÈ{m™AÓ þnžé¼_±ûaOà¦M¶D› {jbÒ£(Ïá’d×Kž‘ J æ]ë£IêÉc´÷žVÖ°S Ú’NTä·9f©…Û[²EÙÂù%Ä"ÅŸV0þ¼%¤ÓÆ­ý»#D@JÌ;3NŸ Á”ÄT€¦ÍôtÏ Îpð&A®b ‚ñlØøÝ?OMÛzÃßid¹5¿²DnN±çwŽx1·åk_âÞËà¿m¨¿_Žý'Û~V«ŒUM&@MÓl²MÅ? s~ß2ÇUƒƒT;§ ™{Òo7ѰíG´ÂZ/mÏl5ñ\íaX–žªufüíÐMPÜ0÷ûõE¶WÔÆhÙî|l½pÌFáölJW´qðD=ºP[°4 ‡Î…¿_u8{JÝÞîvø”þ~Áƒg߀}‰¬"yøö6Û‡¨º"¹læ,ìÁOéL^íËfbßm<·#û¤ÿea؆<—– _NÆ®Å4«\ƒ¥àØ;xùÓ¼O|‡£Ûá,”‘æ}÷ñÞ8 { k'[_æ»x$ŸDÅË,\œ‰í×P%à q-÷ÏåpÙxAìG¶9R‰8ÝëÔé¿¶bæƒcϪÐqŠú/ö:šÏJ0š'ê@ƒsÇÖ„2‘wpñ -BQª8ÞÝ/@@3>Þ‘ÿ²[Ù÷%qÖ8ÉÖà¿L,Q¾7»£ùyhŽéWeo[í}1ÞÖë¯Kú{Ùo öíþÃ@ìN³‹›™ˬmL5p®ÄOZ´KL\T³®Î±¹Ã `1ždd½^°ðÛ¾-¡y+¹ëgÏñ¿ eÏ}6±§gõ/¸5”îf_^eÀæ- jø'þeƒ±oB¾lT¶ÍÌ— Ïv‚ØO_&÷³OB_&ª×{z‹|-æûß1ðÙðåðî5Û“+uûBÕýÌnÐVÒ¬ŸG8t¾f5¡Sìs3~ø¬h¶¶é¶¤Ó—4¸³§u¦8r=ž¨ö¹=‡}\§–¹R}S”áýhÉ#H²ù~q¦H¾°KL, ‡c±¬S߀ Xüuæ‚ÕõÀÎç×›ÓüsÛǯ ès‘Ýâ}±þ²OÚöRû~kÛ“ýÛ¦Ÿß¯G£ýø´±®Ê©º4lÚ½”ù2KÝœÂë‹–•Ø›m‡m?tB{Q*8ºÌ¶ÃÆÞ× %h;eݶµûÖwßï[èm›½oÅ¿l×÷-ýî¿Ø}ûä¼OàÛ$¿/_‹÷‚´”k¥8rI²ÛœÎïG(z{Ü/åå Úà©ýAClËÍëûþT¿}ÎÛ'¿O _¦Žmzù2mÓÔ6“í‹ò¾pokû¾üï[„mñØd’ài½x±—n¯T³K ¦V+ÀZˆ€ïR¬·fŸ›p=‹ßÉw2ü„m’_‡åàÚyÅc;mp?“9ÅÉÕ«Ük_ñB•¯÷CEM[È߯>ŠÍ±û:¾øCv¿Ü¸é¶:§ìëÆ¦²zPãdÌ9寎'^aS׫ŸuÙbê:ÀÍßáÓ&ÜËk¯ÙéÀ~2ƒ±Öþ•)!Í ßýã80•›ŒCmKa"Õ_áãÒ,ÔµÖ¸ &¼|øÇqOtøêK LÌÄAX g¼÷ÎÛþúå¹Û]{»ûowîù}³¿öCÃ~°ØïÊ¿í½üýþî¾^îooÿû Ù¿¢íKÛ¾Æý‹5Ü™ª +E*Ò&$üÌéK‡bjlÍ¥çH5a\9ß' ¸§Š1 =#Õ`•‚šÕõӌ•VX"«_qÿ2ì'#¥!8EÈDÙnFZɇ§½— /Ÿ] [Ç«ø{OX^Û/YÔ QÚ$€Vbþ´—‰X,Cÿ:ÁüÛÖzÛh00àþ‚²oå+?D–«Ã8F X¸…{ˆBosQÔÖÍ.K³2\MŠsrçSëJù>"É7b¶_ç¶+ùÎà 7}×·á¶yü²ÁÜ7¡›slóŸí.¶/n¸ÝU·í¶íÓ¾Ãzï¾»ùwgüî°ßú_ÿÛåÀ~ðÅÍÿò˜ý~õªíž·Í9·ûïvßîÜ}…»?q÷9î~Éݵ´»ŸvÕæÅâ7E ÈVÝ“ÖZ¼s/‹BžÿeMÛ×½}mÜÖÏ}Ý—á}¥ÞWó}Å»DÿÑ#€ g=gßEOÜ©pjĶ s–û׺qUÈ)&TZ´¹ë¿¸ôw·ÿ—«íö`¿`øâ#Øü»¯a÷Gì.‹×Ø]¢«WãÒ¦« ÜÃÉm»h«7®í±ëñb ö –Þã§8±ÓÆE°8HŠnvY7ÐüL½re¨áªƒêa•­b=y½œˆV×,Î y„ƹÉÑõêÚoaï“qôh‡n´7E>ZCà <3­ª€ÜœVÈùKOôÙùcœ±ñ<ÍäkÞÎ×ìV\åÛW×5_O#ÜàwEw®ù£sAS¶PG% `ç^ ymì^ E•¥/¢6«> =ëE4+pD+Û6Z¤Ã`r`u$m´ƒëÉVÚi<퉥níØñûãµc›•2OÖ‚7œ.ì„÷4*dKàÓf±ŠJ˜ÎíGÕžìٞϒVG$gðM¶Yuáä:PmàqU+!ucamVêªq’7oN ýÖ²Yñ+/t<¾f™ G}êQQtî\í—ͪoY0¸µ[SãÓâðÂÂÞÎ&a‚ÀÑÆ°ãš¥YÅDA*7l`нj?4D 4 -õ2¢Ü.Z@i.tdVW¼‡ ”•†jï|=2¦´f±¸ªDy"â²YI A­„7Ts½¾¾0ß^ªýÅÛ_Îýþò’ï–ð UPƒîÓ[&ùrj¡©ƒÓ€Ÿ·Ñ¬¢†`qŸP“ŠW´Ê@ø™/>Ÿ|Ä‘ì“Í>!í“Ö6±í“ß— r›Cß_éþêþ{¯+¿_—žÇÚ´/^X:¶Q%€©yaSêåƒ:±Âiúò߸bV—z:¯3ù~nßÏöϳÿîxûvÀ½ð&Í×ãFÏRu"»¾ 2S wÀÄ‹Á>õ,Žä—éŒ=§§ ÌeBÓ$úd,¨1EJ)¶ñ-{9–÷f¨x¢óÙió(QÊ£p¤¶Ââ1æãà*œËS{çžt %û_,›Ô,ÏaøŸÛýûuøe§ˆM6:Ód²ÍìÛìÿçV[£¬<¦~P2–uÖàÚƒ"]ÝVܹZÔ¬Vš}c¿oþ÷Â~ˆØÎûQd»²ûrW°ß'˜KC—9ù(Нñ‰ 8f(€±ºx-4¿vÍ_6Ö_6ß_–ám©Þ—ó÷ª‚C>ôdwvZ€æß•›ŸS;ÂÇ’ñûuAßýýõÙ^±ý5Ü~ /¿áþ;ïÏb\û}_"í÷Lû]Ôû>žs¼¹5/wÐÓº*uì‹ã¾~¾Ø} Þ—é÷Rþo;?|?c¼Oq_ ãæo˜~[ʱÿI<+XR ‡¿öHû>êË^kßí{¶}qÜ·¹ûVxÛ.ÛR3ÒÄjmëÍe¹®ÖÒ¡ßÕ~éV«W–·|bÛÐÛ¤TýyÙÚtßtSáV;OD¨ÓÐ %Reƒ‰Ü¬à™®Ú °!nŽG§˜+öçtÎÏÅ‹ãù{lÙ º6¤[¨µ*¨Éý ùo;"ý~Ý!}ÙEí;­ú"~_|Ö Î…ÐêýÁ•N–ÿ|9 oËÖ·•m_ý¶òµ€2×¢Y¾†ÃÊg¾s­øÂnÒ«¾tž“-…@2 P°ªÐ¾¾£Y³üÆY`fp3îõ :_PßòµNsD J8ñó°"2ºbyÀ÷Cú׃ü~اÃ2D½ªÅëLŒ°_.ÀM¥kÊ>~Uº%0*7Éry'ú,k­â5€qŽÇ]5öÞ"´Ý}ë®PažäGtÍÌ ø_ákøl«{¨*¼÷¼oËU/ÏñpŒÏÙïWçÚî€{yèÞζžB•Jùâ¶sæ+ðMMã$aAdñà'vµà ï®ù /tÿï|2ëj5+ îá­ƒG 3¢3»Þ›Êï…ûÛâ¾oöMÂ~<ýr„ÝŽ¹ûQx?.9RoKʾìd ›ç„ÎÛ·oôß6Oý~=5î'Ëýô¹ŸP·Sì—ÅüË‚ÿmSðÞ8¼ƒ¶ëÊ/7šû­çv1ú圶å¶ãÞ~"ÜOûÉò‹ëô5Ó[ öc[TÞëŽ5€Pkoü²ÔqyzFÆ/ˆ¬ÅßÀIÏò`ï†u­µS ¨åÝ?‚à­Ú¶Cupƒä :˜°P'U¸³Y¥p0âZ}§á óÅȆ–£úí…tãfi‚ý±©Âž x+,ùb€VØÖt¡· º³åH~ÕÅPË^Õ½ˆmfÁñÚÀ™1CëÀOí| Œ@­€ÍÅîd(aÅÏÄ´ ­¢²¹"Á‘ä)œÝ›aÎkÊ>O>ãçD÷ËË/{ébd]»”¤{l‹tºß¹¡èz‹ŠÄîºþ¸I|G#Bqß7ß.wö  ý’h¿HÚ.›ö ©/—Vûùw?"o§èý ½­û:ñ^Kä10h”WbMÚ ã©¶ÃRùÖðŽj¨jü¶ìײémç£có`å¢Ëâ§Š·²ÜËËÑ—f¨Œ/N2Ž×1|Ù#?f¼{IÆW ÔöÊz̹b骶Ǔ!#}ýJó:¥êªZhkrÂU ó@Ï+!ñE@8"T¬8VoI5€ˆê=§\ü¼Ö™f=lûžs”;ðϘ%T'Óª H±åB^–Ô³AéÔÐYHÂÅtöFJ½b{`1 x4vÀ¸jÊtÓïo{ÄÛk°=Ì{Ð\»O/]µÂ#G¤ÄYÚµAìhÒ}>Nåq®±¥‡Ép-Ÿo©+rý¼]?tÌ,„W &O[Æ|mœÚ×Þ¾Y´[½lýþòn/øþ|ùP‘2 QKC«y|Gœœ3~êï"½Óði—@ÃÍöþ~ü>mAM>~ÆÎ-G(Í7h‘‡qçQá;9JõëDÇvœª/‹ïÈ&øƒ˜AÿÙžG·ù÷뿃pç#.½N¢T曞ÄÂ0À£õ nÄ­1ð•®Tyk5ŠA¾+H~©2ù.¯xË0oÌMN»8Ïþl÷܆pt¥(!x!øƒC§9¨Âb@PîA`%Q›¾²|>ð"W ˜ËçÃbDæ_VFÄÙÉÉž•cœIîÔ&z›DþmoÜï×ïŸ#öydŸk¶éhŸ±öYm7zØ>øý² +ƈªìæ/³_µ%Ï*9¹] VIñÚ¥­¤‰S“Á½Zê3Ù?Ç÷'û§g|o·í©úvåÄ×t(ª-Ño5?ÉoD³:2ž[:ø{]‘7˜ot§|Gv&4O‘ÕšÑÆ¬Óma7Ý:‘Zœ˜Y“U¡ðe—Fæçn»/dþžÄØnV©Õso8Úp[ÓcÛ_S­€¾hP7çô0¥}¤ïc3èKnÊ—ü•=ÇewÜC"÷°ÉÈÌf‡<6êô“Ù9ðRÞÇI‹Ûps®Jsê©ÉÐPÌl·kg¥g<SüίPÏ_ãðöÉf*¬’¡ÝYú u[ʨÏÙ§ØfF%œCÏ¢ËF»É0ˆûËaÚî}a­¯ð딌 /ýP0*rêÅ<5pN>A¤™)saÁñõÅm¼ÍûýëØ¿ý>ÛoøåwÞŸÅþ¸¾=ÑW°ì;žv ¹Å)ã‘þôû5Ej{U÷Ïkÿ÷¯´ &¾­Þ¾.“ß–Ò}¹Ý—äÜùëT?ðL›©¹m˜G·gêòžÝ¼g@ïYÒïd±Û ðGYxÿl;Bñ:q0ÞÓ1<ü¹"\±Ú陵…»m*V\î‰B:V—³ã™X½ÎPñÔÈŽ¤Æ©žCðmS¸m÷Íåþp¶ç·?â}²Þ&ômÎÿ2Yîê>é¾'f…káÕm^ï¶TÚSý£Pì½*U[fr%ùéŽ_·MLïl¶! ä¼+ÄTüÏ»k…¸­ÛËßoÐ}ºïc_Ý}'\~—WÇöîŠ\o$ ßj½¹-RÎz æ§ÃQâÒû8ù£×ËÓ^¾ü4ÛÏ·ýÂûCxýXˆÞi˜ñ׫”°cxù¿Ô鈶`±‘JÇÅúXOmkW6mcn8|WôÚõ1fE-øýùl°cìsÌ6 m3ÕvÀØÎ _ þ2¨màû³ÿ€û¼=‡ý½Þ^ýýøòšdç9s'?U»¾¦R+íÑìT¢7%›masœ3FJ<m}b‰±ðù ëÙåÎ@óC¯"o<Š<5$m$aB$^¥Ù—&ƒíÒÔ§'BÙM¹Ò*œ6cr€ÑhRæoÀ 8Û`Ëõ,÷¹} º² aë§G¬ÔjÝù0axŒ`9XwY–lC„‡4š—ÜTôæq…ï¹_œem"ž‘™ƒ­ŠÂ¹}é:!áí³Ð{¸,EÀQÝY_àçEŽ‹;Õq‡ÇT<…C]Ì}¾†œ 6—#mÁ6_’AVör‡ïÎiPnLtî§Â7m™@’p|/íöÙ“üõ™9­/•Ð{spüÆ,`]hl+LöÕeÆ{` E#7ù,º%V$Ä:ô4¿ãô¨×€ .Et ^肇TÄÆ°‚VV÷f™CºØ¸ûµ'n[ ÅÙfµÞý\~cBÜB(ò6ñbÙÖ×3BÒ=0¶D[bÞZø‡p÷ðœÀËëŸÿl…Ú#Õòw»÷÷ÿDöÏhÿÒö1ÌÊÝCJXú«YÜA h×”³ÍJïy˾‹H°à ½Ãv&nl¤_Ëæ[Së¸>¶¯Ç§.ÇG±X¹“sÛqùŒí¼=þ I,©úÆÎôôÌYéHñIsÞr5'C¨ð11Ìt4»FCâÒðMˆù}ª’ÏJl€^)±¯¬Ù|¯‘ÖKT[Þ>—ý“z}uû‡ùåÛÝ?ï÷Û†p ö}ú}œ¡Ùžl¥7»ò^Ï+ ³âΡåâÙüòyX¤ hA šSóN/¤üž£¾Lc_fºm6ÜgÌ!+Ègkñýžƒd^6™·¢sa\…ÍÁyæ”Ñ»|½¶ Ãz–}%*R¸¯’]¦` JÍ ¹dÄhÂûâUZ.À GübÖ©×@èØb²,Ó´_ð!ô=ÁøñM6o“1/'ÿlO”lvBÐǾ}¶û—½ýû ñžEþý¼1~çipÂ"ìÈ _ÐÞË;$}Y¶ö¥­rOd‰±¦¿íK¿ì]·é{›á·5`_%¶…D8¶ØhEï ‹ÌÝoEmPÀ‰9uL·½òÀ¯C®Ênm‡dÛ 'þ½>$ö ® §_Í™C `Ù¯-X†•êÏïßáw¶1‹\ëêØuÈÔÂV-#„nˆN t7;\øò­mwŸºÏØ#ô\†õÙA†xÐæñ°à0»qÒG×Ý'“cE€/úçTþ£vÎs£D!“Êôn;þþ9ïŸü6+ìÇ{rÙ' ÷õï½Éüýzx~Ÿ®ßŽš}Îý2/ïs÷>¿oKÀ¾Jì+ɾÚì+Ò¾jíO|+ö7g»¾¼Û[ú~·÷üˆ|Û´oûú}ë¿Þ'ˆïçùý¾ŸÕ÷óü~æßýßÎóÏyó÷Û©a?WlG/Ç“ý³ýªû/¿ÏBûLµ-ëË¢¿o ¾nÞ{‹}OüÚ6ï;ëo»ï}‡¾ïâ÷5h_§ÞkÙ¿Ÿ7´ÍïÏ­ê eµãio\Îoؾç¾(mëÖ—¥m[þ¾œµ¶óØ~fÛÏuûÙo÷Fì‹/^Ýó±{G6ÊîeÙ=1»·&1Žñì#2ÞˆC;(Ñ\´a½áyû€ùýù‚2òÆ!Ù¡Jv4“/°½odß7öïæýâ°Ýº»ãw÷ÔìÞœÝãóÅEûvân^ÞÝüòXíða;ÂØŽBöFuù^?ÞâüÓ #íz¤_Ú \[¢,°™)ˆÍÐoŽDJ´ˆ¾¹ºgzv†ÕÚfD9½1|þuA6¬Öh_ò8sc¢ëÈä~Áȶ9ª1Y0i1}`Wm¿äœ÷ {;…ÃÍËrç–ð:äæEB7¤Šü*÷˜„£°7}±…u2.MLöêä‡ÏŽTÐ x.ÕòaX{®°¼â5“gN”hº9^*'v}¸;$·ZÒ¬§Ï²2-*àýùÏ»½Kë3 Ç®¬­ˆò(žMsu¶²ël¥?ô¨p8.lù{©(yUTƒÇP”÷Ç—îïns -Ç+i5yD.¯q8ßÕqF¹¹¡ŸuxñpÖɵçGòaŒêΗÒ^Öù±ŠñØ9^ž¥ÚiÍV!Õ`C¬Æ} 8ýï¸æªQrlôÉa\áÖ÷`+ž3š…ß³lÀ²€ïPâ²þä¬,ÙQu»G­gç&­D-{Ë3¤i^aÁíØ¤É3‹*…aÌM#`H´ï#Q¨¡ôþéT?ùq°ùý~øÙHû!ª°ÓZšwN‚Pa¯ùýìÏèý_£äâ{®áG*‹!„¹Å(Y F*>¿íŽ–Ýó>áýã‡Eéb@¦¿²÷SOQâÑoÒãnæ Ü”mJeuòW[Œ¾7S(gîÈœ¨FÑŸŒ&ö”4+‰ËÏ£)è½#¶rZª‰G…ûšf¯³«>é‰I&yD ·jºÚ!01NQo³m¢2UòDúQµ©£ð¯WèÍÁ®q“ªZXN.Qõòºwehj› K˜#ØÄ? FŸÝ«m“Ã6{ìÓË>íÓÔ>•íÓÝ>%V^ݳü~w4w=æ_¾«—îÿµdµ;O3&ø&ùx@‡ë8. “N¹ý2ó@Ž#{6èöîïéþ.yßßãÚ¦ÁmšÜgÒ}¶}ÏÈÿ¶óÿïWÁÛûð”àèðg|ñÈÔì  ’¡@Ó¶ÖFÊvЕ­„uÑçî3-öç°?«íyîkÍsܧÉ}&ÝgÛÝ­õv}íî±Ý¡‚’ËÀøc€2!S^Ž/[’}×b¸Œú®þC$¤Y`8Ê\í{;5»!‹°Ž®zXÓ,\yøî«:üNeN[Gó žñ« EsNF¤´ï¿Lmûô·O‘û4ºOµÛtŒJ ÷žWòp/–ýúÅuSº~п_÷èÛ6~ßé9 (Øü~¹´\2¶¢²îùÕžo6oãú²mËÕ·%m[ööiiŸº¶Ùí5ÿýÛ&‚ߟoWeïë´„[>ûøRf¶¶{†`Ï÷ƒÏ·³Ñ~~úòüÞsö>ìSÎ>-íS×>½½§À}šü·Wt;0Á£k¢6‹*8‚RÁí,Ò;¦ŽpK̰âч6WMŸvü@„¨ø¦›s ’K² äÖQ½ £¥QØiõ€©X³ÈD²WÃ&‰‰cDÇ!d„~” ³VZì¹µ½9Ýw Ûl´ÏXÛ”¶ÏyÛ¼¸ø¶#áûÔ¨óæ°Z‰„›«£l¿ˆ¿rH»ªö=7=™Áùàæþ<÷3ê6ÛïÓÁ>eìÓÊ>õìΊç°:ö¸ÿ¥ƒQ”V†RwAÛþË1ÿuB‡;ÛÎæW˜ïøþÖ¿L¯)ãÛ-ýv‘ÿ¾ëÿ/§ø× ýë)þuÒÿzŠ—Ç»bNN®ûjü»®k¹ ŽZü ´™$ó °¨ÅÍ!ÉÀ£Eé y+J#“·â9&mׇüË{%d/O„tëû,~ r"‚,>JG¿Ä—ã¯CïíP-÷,.§1ŒÉÁçv8„ˆÚ`”Éä·É߆µýõÛì?Þ—yzûö÷ùaŸCÞ_ÄöÑüÛ\q¿_Ýu­3} g¿©ëT©ò&‚,»»dN+ù¯ž¶g÷2çÛg¾;ë^Þ¼ÝÝ÷Å%¸Í9{pο³EøìA@o7¦ýžÏÜG\®mù‘{åžgÙ —+ ¡áž y¡ÂŸ°ƒ…‰4p=_í<÷$PjŸîyï÷OãÛ×óúÀö¹=ëýu°I›Nw:Xí€Tâºä’Ð[õN$ý÷à‚Sz0¦ç%bý•õ¸%F~ÉÜPß9ª[ë—D×} Û0¿þï_ëË÷õú¿xÕwÏûÛ;¿{ð÷ø·wˆÜ¿-çä÷ç[Jèž6ºe–îɧû£Úç²·Gõí[làž³§Í¼SkþýüÏÏñÇB6Ïûßv^ÿûY™í“~Ë~ðá¡%p.¬,6ßôH¬”@úc…¹UUÃ%x]<5>¬…s>»©Á8ëÒikáV¸„[éžãøÜƒÅ¢Òè–pzqs*΀C®ˆ‚2ò€¤⪭‚¢??ˆè½¦„Á¸†I³´p¢;¦‚Î>H~¦.vCÃ{›ÑØÞ·%Aû]9€ÌL@´Vpl$³äHÞ½6BÄß æ£yÐè œ€º©àæÙì´µp\"L”†ç 00»y®‚ªH¸­šœb“L²jc˜tT÷‡ˆkg§ï~íÚùZ%,pQà$z0y1{6›W€ªÎH[7Á%ÜD×ðf`. À"ôï¹wrÓ…€ j%ƒ÷‰‘ôÝoÍ: ºDîÜѺ§ÙZ8¡ SCÇ>û m-ÜŠp»¥á9Œ­ òÌ!˜à-NEîY2´\œÕ*°ÿ’aÿa¹!9áäÏ%.ZœfháT™ b;f¤1SÉŠp»¥á9Ží@áA¦©â€œ€¸dyщg¡a†ð¤­[‹?XÒ CÊÛ;ÍÐÀ9w \ûf¤­L·YíŸcà R€ŒQ{Ï Zž\¢Åßk“!SÚ¯'Ú>ðŠ`‹B«¦† ÑZˆÓpÇ254œ;f¤—i'$ÜJ×ðÆf÷ ¶Ñë½éæ58É É¶£¶Oé,0—†½(">¼léëŸ/fs§ÙÁçgá$[ȧ†08u@ÂĽÿsX¬æÏhj¼”$\‰“¶pðB$«tÄLvmb&;{Иê”létô©9 h‡,Hl…fÛô©š4f]uîaœ4<ÍçÇeàõ'ý'fûÉ\è3Aмi ýIˆ[Ñö=p‰BÀâÐ4ZZ 眳Nô=û m-Ü —p+]ÃsÛÕuºÃÁäwåàX— $uÀë _W2¸ß–‚ÆdŒHÂ)a±WeÑ4ú@ qü˜SCÙgöAÚZ¸’+¥á5#”î××[÷998z¿ZÄ2óåžRþØ.±ÀSâÄÄ?5øòNŽáyB‚ Jí~£¢ÑŸŸ°bJÈJ×ð‡ÞÉÁÈSs¨5¾“â\€õHï(…«r?Y`O´Þ°´Je¸§ÙZ8e™¦†Ž söAャp‰°[žãàbÓÉà7YñNNÒºÓ9NÉfó ä í#ÈŠ ¿ËóÖAC¿5pŽÝË@?ØáÏH£‡cù³[ç­ŸöcL½ úÐâÒ8'Á›¼˜"Ò&pŸJƒ.úî²[®ß*ÑàúšœfÖ"8ÝÔÀá샴µp+\­–‚Ç ð>ÄS‡ª:ƒÛœœ n(Zæ6(1E|6V‰JÄÕÐà4»°ÁÁFijàÆhöA}È —p«¥à1¾ƒ×zÑW†|¸É1ÿ¡--œ ÿýÌ =ݤ±0ÝôEÀÎbm6w²ú¶yrlYRã‚_zj/þl½{sóŸ·íZ–Gì´~ƒD8P2\K[½dïoŒÓK"XKô* i …8,35T8Þf¤1"Yáum^Wí¶1¼N~!âwå AjªQm+îuÛÜík Ò^v¶ Y†‚I£ káœ@Sƒ…fÔÙIÛº ¥à5 Sš`ÐpGü»p*nᘀ׶¢¤G2 Q¬–¤±Zúm;%êQ( A³´pÊON `·tRΑ±ü=Œfó× x¶T- óëgl£&Çv å$ú]™ˆ¾#aÖ¬™þ\ ¡Ê¶A@5Äõ~ÙEÓo ()[v*¼û$Lš}Ï?Ó°hý´œºÕèÆÅ±0ÊÁß4+ÀXR†3ºm¾¯ í}ºˆô>%.¥ICÐè-Ä)À0šì·.}¶n…K¸•®á9-Vˆ¬v-8ùä›_€²U+Ó¬î¥ä@àˆh,W¸Y$.Üü…§ÙZ8§ðûs U!f¤??Ó —»¥á9~^½së9p2û]8—ù4áÖKŽ2¥†ÚËpµ¦níÝo«8B“ì œc.œÙ¾’fö@.Ùàa4<ÇÀqUÔ×Àå~CÌKp*êcÞ´ÝMTx¯“Õµé9hëÓ¢xV‹·üÞÚé"¯ãÂá6ÈØ1*ÔŸºÆÂL5zšÍƒñ½ZÛ©ôÌM·­Á1H2;éd>UCM¾ˆ›¾Ú)ÚŽ®àêS¢¢`ÕÔà4û@ ç ²ÞÔp²˜}¶nEH¸ÝÒðÇvভžÑ~Wð nÚ’°®n£+xŽBgþ‹ÓÇ‘äxšœj{Ð{õ?é‚f(Ò8Á ›Ñ%b§† “|OÎÁU=$¨ÁÜÂ%Í>DcOB+\­t ¯q„?ÃÝæÉÝîV/ôf ʹ¡¸ < Z0+³½§DB ÆÔ4º7s¬—?Scg¤åÍè‹„)ÏAhWx1¼b¤/œKŸˆÂÀÛ©OHAà¤Ñk&¢­$Ì.î#©aÒè-ı$¤•¤g¤å /«„[) ¯qpNÌHù®½ÚñNN5é›&XpoE’GkA˜RV‰baS“‡ö»Î°„Hû»7¯€–›Æ$*\ÂMt ÏAÈ+*ƒå"Nåä˜/nøÎDAb`*)k?7ÂË®#„Kd5º§ÙÜ€3쑞|?„X~öAŽyYáa·4<ÇÁ±%A±Z­; Í–Q OÎÚHÍIòFr#Útª´Jgm•8ÏÈ…‡§ÑœIÎÈr&I‹^Ì.H£ áaµ4¾Úß…“Q²Wmì7‚<‹· 1ñu+‰nAÆSÈäwÁòl~tyÈÕiLû2!$Ühix‚ç¯ÆúdRËÏÌ9ö|í+±RQ(tN\–\<‚¶ ¡#noJ@Z4ˆVÖ"8€’ §_J³ÑèƒV„DØ- ÏqðmlCÈžƒ1ðYÞ+<óœ¦d` }¤ µçî«Ä¨Œv N£ 4p6PSAÇö~vA›áaµ4H[ ·Â%ÜJ×ð‡ÜRxq-õä7( ËßÄ@:·]sÚ>¢'‹X’†Cj°¬¬K$T: “>é„ Æ@¸b(05ýSìB4R4Â%h¡š/ÆËŸ¹‡« ýZ8îÕkô“4tto_U_46´•1?!¡èZ×tÑ­ÄäÜÁº†ÒäHU¤??Ó —+¥á9NdËõqêŽarÞ¬ÊîF-Ë·#Êv§ÚÄëQ—¨Œ AŸºgpŽ=† jh`Ç£Ѹq¡!!+CÃsüÀNä,ác@øÂÁo›zaÂ|?O:.ï¯ÞVÑpÆ ŽkJT†6…† «n8'·SC¸÷ìƒ4Ü7²Â%ÂJixŽCáRpÕÛ5­’,ÄhV`8ž=c¿¶:¾8&¢Žˆ“-„Í.¨`’ì¡RαËÙ¾}ö@=È—p“Ùþ1NÇÁ MÇY#H@{Ü4«‘•q°7Ë)‘öQ'¸%§€Šo…‚ Š“4\üŒ?M+‰8õ‹´2` ÐÀP°Ø¯-Ô¥%aØoó»p/«ì¢þò:'’Ð’:U`?Ý8Í.ÐÂ9g\¸ ¬ÔÙ(Ŝ˟Ãdµ~Aóá¡Å‡òß…sd7ß¹ƒã;¼ê¤aå)pvIŒÎ–kpš} …sP½mjó >Hk÷Yn·4<Ç¡{µ(“ƒV Á¹„ÁjÿÝ]Წø]ðíÜôàéÔ|Lud¦‡‘†ƒ¢3iBÜäÌÖA'n‚Q¹3ñö•“è€4ücù³ç­Ök¹b=ÓÂKò ÏĘ÷NØ2+§‹Ý^gÔŸh¬<È7œw¦§³–6'3Þ½yÜîy¤±TÉ—‹¥aª³°€}"õï¡£*Ûf¸tleƒæª_S´+ªÏœ«„Ö, D²È‹XÕÙ¼ –uvPí:Mp‰0ZžƒÀÀŽ| \–U&ó‰q"õ YC¶ µgqOCÀ mAÚñâ"Ëà¥F(p=|~Òí¦‚„:¯ÑÉÏÏ4ÁÂf)xŒ‹#ÐJ a\Îâ êÏ€ mO8É:ýaÝã!ÁÓ\h­>>? ÐC¡!óª/úýù +B"ì–†ç8â^ïÒÂÕý^KäÊJÚ×0ì HË]ÛV‰¡Ë0)òÔMqpª"].|¢ Òº×K«„Û螣ÐÈ’îw‹,.F*X«¡*TG_N¤·u>$tºp A'-uÁá55TÄ*D ??ÓýÝMôæÏAèò ÀÕª7ëîËH…+6Ë7s^ã2†´B0úCbð‚Ç5]äÝÃêCWEutìÆ‘]ˆ–?8¯224\âE(pR{W§“;Õ:!÷zê'“²,p ·Ð5<†À¬5{qnŠ/Á¹lgvÓ„m´º³F2Nä‡p çò÷{´¨ƒhtáVkᶈ…‚|Á‡=ˆ¶2!$ÂDixB3½®K[UÄ|púÁ¬Œ3ðMnÊ3„Nc¦/J`•Ä9x)ëœfŸŸ…£ä ×`˜¶ôA3½¬ ·[žãP쥪ÓYÑPÁèÌO'—Ê KûfÆhÒþµxšK\tË„† ³¢¡œq2Í2XÂa_º õ\F¸„飠ƒ#3=Ý¢›#B‘·7ðkÌÏmîãlþ‹bNˆ”V‰‚¢ªSCÐç_:,œÁ’­SÁ‰X”ÙéÏÏ4Â%ÜH×ð…rNÀ“Ø>Œ ”“s!§ª– ¶™öÂ…6fo§uåW‰ÆBA¡!è"ÏYp*°¼¦–2˜}ƪ'+\­t Ïqð¡/1$</ NÁèú5;€²v“!Ú~ÏÚéSr‰Ûl<4w‚ÚM<8å~ofëÙæS?iHkdi•»¥á9ÝOâÁÃ=—éF Žßª´HÜ&&–/$­+âë!qiåñ G§¸ÒÇŠ8?SÖöìƒ4®(e…K¸•®á9(¯*áwù]9UiÁ×_.è×#µ­P§¼J\'®!è䉘αrù^²À]˵ôAZî¹¾J¸•®á94q _Gm[pÚ¹>ö‰hÇJBP`Ñ8l±uJ ŠÓÔàtpàà(ãÈ5Øpé¢x4°Û ¿‡Ñž°ô„2‹N¼Ž¡¨¯à\¼vef+kB «ˆþX’¢wBÀPâÒÒÚiê·Á9‰É!»ŽÙéÏ ð?‡½jý´?.õ<¦U¿Ôë~Å9x©ÕÅfÆË‘Ö%­£íÐ58Í>t`!ç$*‡kèp‹Î>Hëj¯­a·4<Ç¡úJp>? 'Ã3" (zdqÿêÃikq¨î”K„ÝÒðŸ•ÅöÙÝ[RÞa0Pé&/¸ÅÌë`F8U¾ïÐR+ÃáC¢!Paj:)18ØiEÅ9û yCV¸„ŒtAhÛ«ƒVM,X¶pƒuî]07B¥•pÔ¤±‡=˜ë ~×Ù>è$WgpîÉ!GR`¢KEnÿæ©ñkŒL©„ CfŒÉaÔ˜E"ð{&ƒ4‰Fœ D…„%u. œô™Í–ê…Ô¼aM«ƒî›0Á%ÜD×ð„ Su_ N•_Xp î¥R¿X‹¥Â7tV rÚvÛ빸„ÁZ?®!èSø 7[Sƒ!AÖ¥Ò66·Â%ÂnjxCþÄ%JZëî¤rPvºûhˆÓX·Äiø‹ü<’*;ƒæN4¿XšœL¢Z×Aß“ë'ýù™„„LOûµñ­@A¿§'Ù1ü=̇*¥Có!il{ 7)s¶“†I;LOp†Ð`IjuéƒôçgZ! 7R žƒtÙ)tÕî1~W޲ÅS§k¤§ÙBþFFƒ×Uà<”."Až€ä%R…†Ætqõêó3-ПÝ@oý‚œôB kCÁé'þÎSøR€'aÇHbÆÍ×(¨88Í.ÐÂ9']C… 1º ‰«Ùàaµ=:Ç9çˆâŒ ­*¡>”],R®,w=Àî³b%ùhJÜ?çy.œŽÛäÀñ75ðô4ûˆ[Xn·4<Ç¡æ3°T½÷œh*ÀÅÅ…J8½7ÿ­A~"Ú?ÌÿgŽiW4»øü,œÌ*×ІÀ{ÙEŽÝë6¸@X-ÏQèóRtËJß›+‹{*¿Cá´ê3“Ö-_Y%®CˆT¤ât&ÇXþÌöÕ²Ôiݶ]«„›(Ï1œ~ÖòV†Ãég-ppÎÕFwžŸÛAwéTÛCâR.ž48Í>ÐÂ9']Œ®!ã<6û ‹0Yáa·4<ÇÁgV*ƒ+X¯èwá°bÑM_ÌO… 9,Gï´ý¤õR¾«$¬>ˆdøjÄÀÇáÍŽ”C¿H§ñ÷°XÍŸ#ê!#ç,”Èú“ïýdIƒ e9£~cÑvò³””UâþõìX‚öXµà¨Äkh0—íµôAÚZ¸.áVº†ç84à×™,Ëé»TåÇtãªj-}ý!XPvŠ*y¶vZú?? ǧ—ã¯n`K=ˆÆü”–?‡½sv[ìDËîPMžgÉU³heΊVZ™±ú9­»Õ´JŒ¦hKip]hª!£ha–‚~ AIA~¦.VKÃc|Í;n—ïtµ‘´n{Ø™'‹ºÇÃÎ}-žœÌ˜×#v½ÒŸŸi…$¦ÝÔðG|i˜£rõ"眇Rńި‰¬>âÿyÕ5…×M ƒDº Ng¯¼69‡JmJCZ;ð èê?i ¡¹jø4_ë`Ü]ªñ𜋱UWáO{o[eÎä4~ÊÜ—À=¦†IvŸT‰žî&¥ÒîyH¸•Ôð‡®_}–.eÝ'Ë“:ˆCmýP!ªwŠÄ}*¡¬Càb=ÐPà4»°Á)ܺÜE Ð,ПÃdµ~èVjUo RŠ{Ü´*ÆÞûènÕr/ÌãN8Á…R)!a(pGŸ&- ÈÉÉ(§75dÜ¥Î>H[n…K¸•®á9íâ‰mt\^qräD½"yïËY¦ê"&Æ¡"Vv¢/óϔˊ¾CaGNGDçH’“0ŽQ„DrBÀ ”‚×ÌÆ@?+ØŠë”…ƒ]ÜMaüf€yXdYjA#Ö Õu¦DA©ã©!è“÷“3pi,g÷œ]4yÙàw½ùs f†SíÌø]9,»ŠšÜæPf¨Ü$ àbï8ÂòoUõß½aБJè‹ÍFù5O*æíÚS”ûöÎ]Âs Oóµ—Â˺ú ŽêØA½Ê×X•>–{ÐÚí«3ˆ§§ÙÇçgáÐ÷¬dÈÒH9 êò÷0ZÍŸƒˆ©þnz½|ªç*ZófdRñîi¸Akª? ÃÓ‡]Ò4û@ ç­þÒpO|W[ú ­©~<$ÜnjxCûò•X²rá4¾ì\’†¾Âo¡Âi)ZË*aգΩ H9å&çÞ ?Ñ>úÞ5{/˜6„„›(Ï1üÜІõ<~œ|ÐÏcȃ\{ùc FÍ“ÖF'O`¦Ù>hö Å9¥é¨r†J·tR;æ>ÿËËõ€¾°‹GÎŽÝß…3àJ@ܽ¿j‰‹ÓËq¸ šíîž<9'÷ž´0Ûïóøù8°‡Íjÿƒ€`|Y‹…uS$8È'ȶԙߵܟ§-³vSXƒê®›¦@A|àTôáÀ"Î)È£žJ"nˆº Ùàn£+xŽâ™гoêƒÃò‘¯„ÔˆÙ”Õˆêw úw A»pÍ@²khÚ‰zÍw¢a…K,Ù gúó‡n`‰¶hyO ¹™Ä(¾ xyŒ›h]æU"ØÞº‚ K„´9çø»DÉYÚ“£Òº„m‹Ä4 ^cˆÃÊÉ¢R*ÿœQ\‹"rX¥®¼ÜC ¹Læ=KÛX48Í>tX©*ŽUûz—q¨Ü‡ßuîJp+\"ì–†ç8äȹìèzÏ*•ø]9ƒ' Bôcó‰—Ž,§?¼^Ê«„;`]CЧÇÝ;ç`|Ph8ŠœEêã(á/’.áVº†ç8Ð!i.ëÅ1’ê“Uå`²ºX¨×"]PŠô‡ u•ÈYвÒ4úøüLN„Æw ½(„O}þüL+\­t Ïqh ’þªDÖa“Œ‹èP–ä‚g}¿Ï¬ªxè´6 ã!¡9A‚Q28'÷ç®Áã’¼ˆ\ +$VSÁsÚ#ø§š×8©T–sËSŸº·ºÜ56ûÚw úäã¶JX6åµh:+'8†E‡ý°4ÜÏŠŸêƒ´¢`Ò*áVº†ç8ô뙤—n‚C ª{úb8ËŸaÔ ®œœ¶é+³’\HdeŽº§ÙZ8‡E{Cƒ¹I®¥Ò˜Se…K„ÝÒð‡®0‘=‡–Ѝ8£)•¯°èéuèîñ·¢?ô _«DCaÚPà¤ÌŠî]i|jÝYò=ô“ÆC–!! ]ÃcëFÅÌvŽeKôØè/ Ù/ ÐìÂÁÍDQ’† ÐlçÀÑ95h¶úX@³eEH¸ÝÔð7úæŸÅ<ž °pÒ¼®ž =°û»´Áh+œéЖ &™é{šœd V³}B=¹ÙCR}¹iƒ$ÂD*xAŽ‹XÛ5ðÛA <¥&1ÍV؇806Ço·Ðº¶H(*4LZøíÁ(ÄÉ EšÞE‰’An„K¸‘Òðƒp,…VŽ ^Mn“ÅÇãª-!ä/ KÓ Òâd,w7™ ‚ö¸8çdŽ 4dû]¤?óWóÞù'™ížÆGh@õà– ¨žÂÀÈ€¢šê‘A~èO¸V–uFb{'Ùûää¿:Ü_~,¿¼'PV09{¨À2]I6ƒUý]87 œïfQŒ]áЩ)úÃøéþ€bjpš}|~ÒצÕÎ>¢ºnXámÂH@Ãsu~*[h8Ö9Ã>p…4o`:»çŠò '÷°þgÆƒÍæA«RQ0FÓu˜ŒLD‚ûd|ðîãÏ2Ï›?ìçãr0Œáé`“CHV ‚jÀac²W k\žÖ.䥄D?ŽÙ\D$K€´ØA@w¨agŽW¨îž+»„çžæÇÞpÈ6Ivß‚“Y<ÔÖ »JK÷DÍÌåK“ÖªU [“€h% A³­Zä`î›,¨þ\ú ­UëzH¸ÝÔð‡WÅ/f^>Þ²gÌ5°BƒUg ~Ó“˜¦¤?¬K[‰~(†A‚fxhÎIB¬’†Fh¾è£9v_Xáa·4<ÇÞm–U0K /¥Ø²N•Œ$ ä=/WÖ3cÓô÷@Þó@4GÉ›åÊœSTQR ú¡²Ž’§šàn²B9j)JûÈgh™V´ÿ?"I€ÑÇ’$p¬½ 'I‚NQïMœ*®{Ú«GNk×[²Ò5<Ç¡¸Q+Ü×p©ÄÀQÒbsNB²LÃUAœ&‹6¶Y˰KW‰Œb¨SƒÓè œQ9÷ºK³éK¤­…²Y Ö!0žÃ m)É€Ðþ]9@‰ÏVCä<™mk5ûRcaÑkÑ1%lòª‹† 3oÐ&'g~jH@ˉ.’ÐtÂýÝMôæÏA(ÿæàÕä½3N`\¦q”ã:±èè=$eIqA.‘7äœfhá^w††ÌêÑi¬•ßäÇz¡ú„°a3Á;2 ~WNã©ôBj<²ÇNìÍü¢±7o q  W††I'!¡'1©&4Xžk^ú ­^[$ÂJixã…T옣+RqRqQÁ³üB*ÎT|-+Rqy æh "Ÿ»†ûéñ^À¡ŠK ØÉ —°â¡ ¹Ç8ˆ¡Rñ„«ÝÛ\xn“3p0¿Õq¿ä–÷ÓŒÄCù1<¦*øßYkw6Ú/߃ÓQ‘t*踈œ=¶nBHÈD×ð‹ ”¶Ýé‚Qá^Ï6÷¦ î÷Œr„%hsq^¬B:*†§‹ CNa)X×P, bvÒäÝÿ»LVëÇ8×[-›(=²(ă²;Œ“?ñ¢,¦ÇnçDÃ?V‰ÌØëдG§*4ØI1/}Æl/+\BFº‚Ç [˜8Tq3ú»r€[jp]HVZ õ¡ A$´ßµJ´D(?)2ÉÊà¿Ã[—SVÒOúó3-p 7ÍŸö #댅í‡ß§y~t-‡›ÓLdFºZÍóÏæBÉKã ŸbœÓ«‚îØ^(˜¡?p2½pó¼ýsÛœ—Ûl® ú.ÄJG6oî¨HAëöܑ͛Š_uÑà´ÃW:©.oÞÁnªƒîïA˜àa±4,#à~ÞVk;Øí)¶óbX–®€±€$(Ôd7†3hí´ÏEàÔWííE³È;#ó‚í- 5ÛÕhk@ B ,VûÇ¢bà²,Õ VQ½`|x¸°ÓpÍÌí&m{¢‰M «ä²(pòà2àt¯*X¡Ö=qËàúI~¦.ẆÇâ°\& Æï†õœÑØ‚§¼^}Û4V‰œ˜©Áéyõœ"ðNi ˆÆì#@; —»¥á9a-ùîÒJp† ûâPH¬ó#èׯCBÑÆ®ÁiöñùY8•®'×p?L½Òƒ¨$ÂnixŽ#ÜØÌmžõΙõ×+ ž9Úk@}yÔxgf@½Ó3 Þ93 ¾¼ê=G{Ô_‰™£}\ÞãPÑ,„8Wƒ'd)÷`0ë êÛýKž¨yg%8ÍÛ"u°2&Úh¸o˜‚.ªåÐPP^]ˆFe.n¤kxŒB1`E!]YxR“Ó‰>©p÷\q'Ú‘‰ìIú舾J¤¤°1j˜tö[çœ]øÒ`‰Éi郴½n…$ÂJixCe°9miÇÝáäàêµ›Zãìc›?³ØîDD«ìCZ%*ü,SCÐYÛÃà4x&¦Û/]€üüLôw7Ñ›?¡ya­„‡*9§ÙQè¦Yð¹Y† *B‹Ä¼ÏÞ¨,) ‚N^¬È9 Çå©!e•#b$1õˆ®à9ŠçvÊ®ÛÓc;u„Æ©í¾Þ„“‡6°DøåïÀ­¬ºa /£uaEÝP_¼ænônŸ4'îð/¯c윓UËAÖcsÐ è‡ÓâùôU‚°SƒÓìãó³p*ïc\ƒyÃÛÒéÏÏ´BÓîª;ŸÇ8ä¶Ï,MŤÔß•c¹Ôé$Ì·g¥:nÉšÛä¿H\ ¡‘‚ #Ö9‰üg¶o~Q š‡r† .á&JÁs ¯{–áàqÑr2*?p:“㢥û%kàH".Z¤!îUâ^|¹i9„óîÀézÞ´¤+nZV‰å¦å¨ÞãPĽ\vúsp½MVžK‡c`-[¯4NÃE%Ä%a™ôiÑtr©â OaEHÐH)xBI~ MXàO&ù9¥á³…p– á;“þÌ ÑHÁ«Hœp;N A+*Š5«õ,x01˜x¬Þ]Xu0a¼:XhUn—`@ahpš] …s˜†N¦aE¤­…[ánµ<Ñ|Üî?äwå¨Âßq1ÕðR…?â/8x¾‹x.‘=¬Q‚N^¨Ð9½³ŽŠkP iôAZ}u•p+]Ãsô‚0}­ZJúRƒcPKæqÈ•hjXiœLm‡§“ OSââòãœfhá,ÇSÉ$½ÙÇé‰a…K„ÝÒð‡êafjO¤0çØ±={«t ¼2Z^öCu¥¬¿™›úZŠ–jŽ0cÕH¥çÔ.úó‡D˜+ OóuOSµ®ŒÁ ÆÅøÆQYpÏ]xæc°X%é“0ê*qu™»† Ë_5ãþÔçIê³ Ñpш)!#]Ãc‘À 4á³ N˜&3ªK"ìâ=“VtÔ˜–ž‚”mµŸ´{¬‚cÀËןP`9Kcé´~ºsp Õþ5†8¾cª©Ü[pV§àÆ*Å ¢L­Ó~zYúà•˜·wš=èð’„ET!*8P|&:8TåÝ ð?»Ájü€²=à oa@Œ‹É¹þÿ$zA…W ™¨…E›ÖJ ‰!ø×tÑáqràgšNCX˜]€4y·AÕü9í…ziáhp sŽãžJƒÞf¤±Y”.vKÃsq³Tu‡Þâf‰eG²ÄUºW“+$1íÖ)â9‰ë0iîªÄ¹T]ÈV{·E²ÕGÀþœ´š<”\éPlipZ} …s’­^¡Á*ÇŸ×ìC´íªdEH„ÝÔð‡‚h+!º®®çæ):ð`¥{>˸U/¼doºŸ¶EóXX]z*­.>? '«È5ØuéÕ£ ‘ŸŸ°!Âj)xŽ‚O-MVäs/DndK¦F¢DE¶ ÍšƒÆ6u þÝN\ÍöAtqMNCäF(hx©f¤­Lp·ÐÛ?Ç 'ãÅSÁåaqp›âå6y{Z£@j<ÆÝHÖ ¬$,zc,H{ŸŸ…“Ÿ5¨˜ãµ¶#qF6ÄßÃh5B›E,|nf‚¢G‘ÕˆmÁ–æDè ÓØùYÀ)Pà™ŸíƒvO\pjc0…0Hbö@;Ešàn¡·ŽA™ˆëÆNŒñGÁQìWä>]ÀYJ¶yÊWЈ¯$nWHÜë'ÒR#¾L4û@ì—s2‚ˆBC©î7!a…$¦ÝÔðGds\Ë]î†Üá*¿+ݳ ºÕÑÈÑ&í\¦„MêÇ55Í>4í“SYMÅ5 ù£Ò (èç*ávSÃkzÍÈd›ì¬NqÏ^xWpû+/#îŸãïæÞKó Ä'3ê!䬗S=ÆÛ(\Bº‚Çâ´ÙSŸçÉA´Îy e×ük'A³zx°Ó*!ÇzhÚ7Ïáz·ÜóóOh8x÷}ó¾WV„„¬ ÏqÈûq¡‚3½·"#4Ûâ1*Ðå2ÊwÖ XÄì¨(¬.‚.BÚ Žáé@BNÔÄ}Æ*!+\­t Ïq(Su•¬^,Ae&g04¼5–˜M ãê‰fSzY–Ú*1.25í 2ÎŒŸRÕdŸæ5ûýù +BBV††ç8¸9'‡7E\9çR¼Ô ß]+—⩼BåW^Å2$.œ»§GD\Ç㥤ax<•úqåV¸DØ- ÏqhÏjNlrÑȤU]ÆqG)¬Ã®LÚ*Ѥ!èCËEpø¼¦†® wï£GX¼[án¥kxŽ#°l¿iýŒ–NÎ(~‘†õÔ\o’.P’Ú¦åïY³¹Óìàó³p Ž&¡  :×ìôçgšàa´4<¡h ÞãœVñ• ìαšÊŒÀ_ë´Ó¿ùµ /†D#þA_£KT¿„'Ùƒ5Žy-f{ƒ4)K¤0!\"Œ¦‚çxkV2“WbE¸…#AõÊsS6Ϩ…l‰VèTzHxi*292¨s„#¨ö3x•Ùƒh[iq 7Ñ‘ cPŽ-n‚ÍÓϪNNWƒu&7sYt‘¡á LŠ´m–ì–á!1pI‚NDÊ ±;¦‚ûó©mé‚´œÏm•®`BDxÔjüÍãÝ…Íp Î9rÒ”•YΠb›W‰ ¾©Áit¡³C@„EhÎY™åµ-]þüL#\"¬–†Ç(ô´šÝ[œžhë´Š>ØO‡O\Y´Ý€xΠñã\?$ÆÁô.×´çÙN‹>„eÑF‘gF¸„Û,ëçÜQv }{ržpµßR0’¦U-$¥JîÿBÂÖ®E“§—«£ ¼¤Ñ¼±òDtм6E˜àn¢kxB‹ó@ZJ§]uü®EÁ†÷ŽÅYÜÒœ´n+€4¦€a”EAЧò;ç|ðÔp rÉ{¥e¤,v½õsœâ KÍ™W–Ø¥“Ãj?­(<8éµU|4NcÊF`ë”°S|Y4ý®RœB?Eh@ní5ûuDÄ.!+CÃsJNJ6Õ Æ*ëÏ:£ð¦+‹ÚT`"í3× qz¬ðNO‰AG„kp] 3N•$‘‚“IÎÑiie„K„ÕÒð…<Ã…iã×p´7q„¨m™ÈY®(àÌtÜr9 ·-jdM‰‘˜("ÕÃçgáœXVÕÞµ½ÑŸŸ°!$Âh*xŽA¹¨^âVSý¬Š‹B/H Íøu6FJuA‰C•v%‘-þt*yj¢úÄÔ­3gñП}ž \"L–†Ç"7; G§ß…c1t™Ñp§ ’E°ª™Ûý¤¯¸§)1XâÌ58Ý<[fr ½ ®¡r˜«ÒІ;W‰°[žãˆ ¥!¸²#.”ÈDó¾N-Œ™'jy:­‚¼H`Ú8§†IŸ¿S×=5”J„Dî”ú*áVJÃkŒ?Â²Ò ÷õbü‘3ุ¾.>r¶£Ü4àøB!‘p&}ïtr˜ð15°æìãëcZ! 7R žƒˆ ŒšÓ\ð¿+GWl¡SÅÞkh5ÍHgŠþ\ŒV¿Ýsúôê Î)C7„l_*®Ÿ4Ã=Ö?Ë´âÅþÆ?o5Yo½Õ¬?])²0Þ¼sŒR|~))¸³TûI{)¾àxäçµhå·÷¦Õ¿.¿X•€[¨ö¯10úRlBNr*NzOXµßÖnòõ´ùXå#ºD"ò´4,tâO19©Óóãn½f¤??Ó r¦•ÔðGDµ?/Üce)iÁ‹ Øc•D}À_«„WYu N?`‡B—«võ Ìñìã{\V ·Z ƒ#¸Póž,†u§òf’'FŽn-î꜖ϯ¯ ˆÕSCÐÉ?çÜ«^ò4”¬CõA}È I„•Òð‡|o"[Î WÂïÊ»!Π…óLLÍéÈxsž4ÄCL‰A¨éÐtvOšsnY§†Ä(Áè#yaXán¥kxŽƒ{ÅFØèn0 « NS\Õýs™ Ù.ŠÞԃƹ…C` g~¶:EL•8©)¦Š Ò©€)õ@!Uiù³[ç­Ÿöë,VX>ñ<µMœBgV^q´d×?(­sQŠ4ŽJØžM‰+ AJ‚VòàäH"4˜?æZú m-Ü —p+]ÃsÛÆ£•çÆƒEXò3Ÿ×Mißx,s£!Уeãá…ÑçÆE®¡°æåÜx4mU —X6£ÿyCu2ªj¾\¬<69¬êrÓ,Àn!ÛªCê2ý¯ÊÐäÜÿ^²bÀÏp%1ûŠºÎñT0¸lDÖ0Á%ÂhixB#úp¦³äwå4ff¸Lé ÚÐ~Tµœ¶ Jj™íƒLLÆœœÖÿÌÖ ¡¾ SaöïnZ?­:4 .ž7œ¡š 9òºÒýÏ+h-2i• >ÖÔt‰¼ qìEÕb µ*+B}þüL+\­t Ïq¼\ö‰G ‡…Ñá,Çe33Ã~yî&î«D¸è¥!è$wîê²ïíÏÔÐé«[]örò».±¸ì¡á9m?N&E²DÎop¿{é7lª¨2T‡¡ùùñ,û)@$ˆ©À‘!¢.Ïäxi ÇPÎ9º˜%s܆)V{åŒÇ(øÔ’âr›~ŽeŸéZA$ýänÁNÚzªÊ§ ØgRN³‹ÏÏÂ9xó骢³ÔEð-·ÁÂj)xŽ‚ÏŒ%Î"°…àxȬûïCP MÁ‡ƒ-\Iñ’0ËE“i©2×aS)J5zwtøÞa‚K¸‰®á9"eAQ'‹I,„Ü4Â*šUL´tÛ=WІÜs"´c‘¸Ò, AŸJûqŽ  rš]4yÙà—‰Ñü9%#,­Y ¢èÇvÐá&ñ`Æh^´Ó^îæE  NKͤ~]»’SÿDc‹A‹vÒ&­î] Ì­Þ¶ëÛBÐK·($F9ƒ~d &Ï¥8±¸çÎ0aÒøPgge5×ôáżœÓXº;4¨ÌqôAúó3­p é ƒP0ŸlãL8ŒÉfÁ ;æÝÙÃ<è#2óLí±JäÄ ;×ôépÎiá0\ÃmhêK¤ïRW ·Ò5<Ç’I)ítIrPÀ[0„`VÖvl#ý!‚d›vÔ/m¶Ÿ´ãÎg°‚­+IY4êa8–›àn¡·ŽAð34mpž_ƒ×žU¼¾LXJ§Õm_%m95êr©ì^aHC€×8ÖåRÙ…VL‰5€®ÿyƒbgÒ¼UÉÅþ7 Õ°P\Õ¶i‡`Ê4-°gËèïbºgó “Rù‚ÃâA¡ Yñ <{ýù BBº‚ÇFuÀkßá`•Õ:CÏošÕË%®®*éÒt@†9‡5€§†œ„I¦>²cÇ…!!+]ÃsóìBïÕÑâèò‡!àe9¹ŒÎŠ]@ã Z‰S‡þÎÚ³¹Ó݃V&‡!'óàƒòº³Òë±Å%Üd)xŒ@›D\ñ!‰Ež&§¨ :ã™ÞõÀ+ˆ`Ò†n¦UÂòNK‰œ¤Yôü3›+ˆ8: ýù™&¸„›èžƒà|ßNÞ—™£XÕÔĹ SŒ¬ühfh «©%^É‘þp…è«„ÝÇ¢Áiö¡Ù» “ t®ÁF0–>Hãü&+\"ì–†ç8t+‚ð8H~¦.áVº†ç8xW›“ì"(~Wa ÑÅÂk»°„\O‘¸úF}•ø{A>êl´mÇ2}!!5äÊ{¨Ù/wÝ—p]Ãs途ß#ˆêHÈÓôu bœ.¿û,"5%ýÔ¡!è¤ípp,£3ý™À^£‹!0ذÕü5íò½ÁÝQCDY‹ÒE‰Á«i3LÑ:Þ¶U"c;àíEQ?ÄÅ8‘#àû¥T©ï#„„[LÏ0&Ø<[¶#ÒŒdåjnŠH`VÒ¼©@i/A#¼·r½ ÔV NZ<ŽIFût))G=ˆF80m 7™íÐE&î]Z:N9MNG ï…[J‰Á¯Gbqr¬¶Ä(ºH,æ ‚ôŠ!α°»þT{›AK™=ˆž·Û!á&JÁk  >.ÂÓÑBǾ| ='â›×ô‡êç"™«íŽ)99(÷ #£‡á’nB¸Íjÿƒî#*¿Ýt .8¹ðheÙhF>T«ƒÆu„ÍSÀÊ´¥½ÓÉc†'§è†ƒ Ó:£‡ä!Ãn‚ „Íjÿƒ<Ž(’Ëê:ÁQš…×Dš³~²g]pÑ<cS=‹h´¥¹Óì@«ì§ŠéŽRÐç=†'V&„„- ÏA‰¶ 6Tñ8ÁPàdÍŒfòÀÊz?––ñÐK‹“é«Ä)´×à´‡^N'C+£‹½ #\"¬–†Ç(øÄÎί¸áÖýwáX¡TÄ}òé¦}ž¥ñ3&ýá3¾V C*-‹§Ù‡9È}œlUmK¤áÚ–.vKÃs|hU{æ| X,8÷éÏâæ `/Ç} ±ä-˺ÃHÚ~Ò¦ †@:ÐÔàtöÈáÉ©¬²áî ¾Tïƒ4be…K„ÝÒð‡6Ší¯.ì´MlùYdsÄ]KÑÄë©JÏASÂÚW AŸªç Õg U SÞilD¸já¦6º‚uºgɼœX¶WN!€ƒÙö9ï@ZZ÷,ç*q¿0¹-‚>èÀ˜œNèÐÐ }tÅ—O+\­t ÏqH&Áw³Š ON£e>$ËèëÊ>Üç4š@„%q‚–† gu*q ˜çih§*`ªæyòa…K¸•®á9îìí:¤[ ^SUp†WJ<‘¸fáóÊïN}˜œ_–?[ºrYZ;MýŸŸ…“X«Ñ4NAÞAó9* 7Y žC<œˆ2ý»p.fXRÃNÑ FÓyƒôG¨«„û/ D²‡ÏÏd$²{s^ÍH~¦ .FKÃsΩLN·4@V¦ Ne=Å®µæ$‚F'dªÓáäU‚iySCЇetNæghÈ€äž}Fœ‡¬p ·Ò5<Çn¼Ñ _õïÊ)Lðï¬õ`N‹n+ä“Àým£V–¿_,™̓Frkíÿpö.;Ó$IvØþŠZv/¦á׈-BwЂäBhŽ˜#Ur†ß^~ìâáÇÓ³¾YÌt}þGúÕ옹¹].ãqï`Óìý}„ÍÓû÷)ø>Eïá¹uÂD%øŽŸE­·”MBŠ‹À†Y6 ,i‹™Þÿ†‹$ªÄÜ¿Z2·÷`Ûò o‘§”Þ|YàvàcØßø…ÍâúÂçm=<×a‡¶ý~ªýì°÷LmÀ51iF}Þ•ŠؾœüO3ú…Û¿ÃѦÞ~îkÿÿuk‰ÝvÜ-ÞFпÿþëšBÿ¦lGï๠{•°’[òšB½E*ö­ZdyõS¯‡Ù·­YÚ¿hŒ¯õ/ÏûÉŸâµEÞâå²°k®½SŸ¹¬ÿûï¿|×:½ÞÁsþfVL$ž€þ-:ƒþMÐÿX=öU±iá 5áÕ"&ˆ½D© AvÈ@\b‘¬(ö·=÷÷/Ú4ábÓ{è[••«%‰ãêÅ&nC$ÍC}ÍÁþݧè?.¢‡ëœv3ˆ½,ôéE£¾–Z)‚ÓrJçëo󌌷Žb1ùö{ÿ»zú½«%Ù…R;¨bܹFпÍ!á¸}Ðçl¿®Á2AÀô"ÏÑÒNIè„`EΗÅÎî[fózÿ¢T>n=øß:„ä[÷ñ»z¨BŸ×ú·hõ6 ÿÂgm<aÚá®æØ,‘†ï[KÙ¬šDVÏ-ÄášÇHýï¿k¸Tx|!ÉŠ®üoÃlڢཇT­¸¡›KH½Ñçm=<×µýÇ_ÿãrƒîÉÓ¹KöÖ»œ¤ Òÿý×üíÿí¿ÿB„qS/ÿß_ûoÿ¡ýßÿõkûímc"  Í2hóާ7«_Ø6ù_ÿ±ÃJú SØñÿSþí_ÿÛ¯€È•ãö»¢lHèºãwÿç/|}´‘ð¼ÿ7T`ïý7ùúMãs¡ÙÛ/ä¡©~¥É¾ß€µñþ› Óùùñ7¹’¿ý˜—Îñÿﳓ¢gßšÿ*`vùÙÞNïö»]\Üç?«Kjhû|³Ëýg1¨%`ú»Ü†Øx¨TÅâ2ÿMjÒJ~ó8Z Ô…oò›áôßý7aÇoNŠú1Ü>²–ÇWÔ“$µ‰½åSW“¯žs¸>šÍêÏ}uoÂÈe0›–‘çí+ky|eÄuûÊZóR¢¸>²†Ç7vš·¬åà ý«Û ·ßþ[ƒŽ}ÃÁÿfÿó÷÷oÿîo¿þ—ÿm?·ßPM,6ø7á|ó[xj2(À׿øíoï_i$ú׿Jð.þí¿¢1܃5¦Yc™ýüà/wH'M³iʘ&ö˜!DN‘ÄÈ)V0»ÿô—ÿ/ÿô_ÿñýOÿí_þõŸÿåŸÿõ¯ÿçŸí¨ùþéŸÿû_ÿËßþïÿ·†¡ÿñãVd v–ðØ"Mœá¤©©:ÔþËÿñŸÿú׈©ÿÿò·¿JÙ™þò?ÿå¯ÿ€ÿŽ[ùË?â߆Yÿòï~¿†ÿ¿"²¿µ›ÙÿvhM â5ô>Wq9€â …’Úÿ÷Ûú¿ßÿE÷Øv/, ”ô³ÿÙ?“YNåGÄ=y¿Ñš7ˆ«QR‹R{ìñ‘·Ü¿BÀ4¼*®¯¼åöUBz³zÞ¾ê-÷¯B¾ã€þyÿwÔ0¿å ÷ùàA¶ œ²Ü¢¢øä×ÞòøêðÊêý+k¹UP²^‚òý+oy|…Ô1Ø¿²|õC¦•Ä_(F)n—8ÖÐî zöNêÀ_q{´Öª­áÑjŸ&mª°ó¾€²7 gÁñ €ÛG½åö•÷í«Þr}åÇ}}uµÜ¾Â‰ß>Ñ?oÿ®ç}û®o~ºÑˆaEÚžЧBÚÛVýCB~Öºÿ%ÿkßê_Úˆ÷¿ÒãËüø·Òþêh‘PvžN˜)ê+|#ÌþU'ÌþÕ0ý«‹0ý«;aö¯:aö¯n„)8æìðIT›)”ñØ%ޝÀÐ2_¨Þíÿ+zGÓ¡µ¤Áý£í?:“æ YöäÃ%¹‚=>j=ÃÝ>ÚŽñ#nÑSBð1"È–=UTÑô%—ìÃùÄo}žø²'Ÿø¢'Râ#Ü^ðÔ¹úÕü„åîYÖ“JMÙ•gžU÷ oAÀüõG¾å‹áxy¾½¹HÁª)ñ| `Ûóû/GÚœŒg‡°î+ý¾ýj8:;€Õ §kKòòýe¼´G)àóå£*¹x–sèD°ìɉàG;שâÛ)=î” ;ã—±¾PBÿ<:UÜ~ELÞ‰`ñÑp¡¾H`1/$ðe´ÇBÒ´ÀXÿoï”çªå//’[Lê"¹UOäV=u’ûÑt’ûB·sºn1Òœà`©„ù~^MÌÏE¤Ù‡HDº8Zöäx¹ìÉ™`Ý“Ñü²'§ùÕGŸo5~'ðo]ßÉÉ{Õñ„)Œ´—ÓqÒ^MgÎ9NïËîÞWÝwzÿÑnwz_ŽïþóåÁÖýmóÒ·õ3 ¶=¢àÙ™† ýIŽ»ý’”­Îq‹î/Ž[õÔ9nÕSç¸EOŸÅÎÏ÷ óåâ— ¾ü2ËË9›.Fºøò'Ë¿øò˯žEgÔŸ,ýbÒÅX“®ÖÚ™tù‘óäj¸Î“«žœýÍù6}[îÅ‚›„Î)»sÛí£ÏÜ¶ê©Æ Y-–9K®†ë,¹èiÂmΣ‹®?(•Χ«™w–\~丘ÃÅr?YÞŃˮåVu[Œ1Ôª§ÎP«ž:C}YîóŠÐ9l1>oRg¹Õ„œåV+KßÖþAvËI5¤üAér–»ôQ¥\öä,·þÈXn5íçÁU×ãmÈ9ðÛHs)¹\„sßú#ã¾ÕøûV=uf[÷d̶üÈ™m9œ3Û²'g¶œHç½o¿™kœßÎqvÃZ®Ó8oÕï¾ Ro-Êî}eËž:_->bB¿óÕ—®§|µèxÁW«•v¾ú2Á^æŒö“ ]œ·ëâ¼E×ç­>ꜷ®sÞ—•<˜ÊñËž ÍYñ';}±âæ×YqµpgÅ`ú¶UsîÍu·r3’qïƒT4_d,~ÿè£è\öä,¾úè3‹/Çw_Žï<½îÉXxÙ“³ðú#ãØÕpkCå6ª³ñj¼ÎÆËœ¿ÿä6çëe×ÎÈߺžIÔÕo&ÎM‘~ÎÎ?ÛãïÕpãÒÒ× Kùøý ‹~¶Y™æ;öÙtÿ埰<9ûÿx¼Ž ‹_^°˜Ô«ž:ühy~¼¼‹_~6*­fù9~2Þ…_våaÄr ùò›#Y¾Ìï>RÇ•ïF›ŒÖÁæ§g}ÁÍzžìMyÁÍ—yÎáf1œáËŽÕáæÇ”ÞMÚù'õ÷T‹_]˜tûh¦8=oÓ“~4¡ŽG‹_}@2©/³|Ü2³~4Çb‹‘ÖV·åvwÌúѤ:fýtRf}oöjõm³Ÿš}Ǭ/s‰ŽZ?˜aG­/3ÌŽX‹‘.ˆúÁt:8-¦sáÐjt‡UGéÛÊ;ÎüˆÆcö"áÐsï²úh­ûÜùçuŸŸçX³úåçûÐj–kÿ´åö9¸¬ºï8²ìÉqdý‘ÁÆö¼CƪëŽߺ~JULjo¿zðºáò#Äj¤Ë•: ¬?2Xçðm%SMdÙsúºTƒ„Ÿó|3%Ó`¼§L´dÑãW?³­|ï.é;*-~sÐbJ Zuݱfù‘CËbü E=­É~¶¼Ž5«™w¬ùñ¤:ýdR-Æ»è …êF‡ M©ƒÐjJs]_˜³ê©cÎò#ÇœÕps¾°ÓS—sÌù²GO JßÖþáÝßéGøâ¨„,®mø?…ŽI÷ß|çÇ£ŸŒäxôí7Ô@­æ×ñè'ÓqxúÙt¯–Óq¼Zu½Æ«u÷O«î;<­?2$Z ×çGÕ‘hݵÁÎò#G™ÕøeV=­-6ËîzÖôüˆ•:ý€v‰–Û–¾mÇäáGAçÇd›¤<Éþ}¸;ÿu°J~ |uȺýòû¥©CÖb¼ £–9$}ÿùšÚ1jÑõgãÐrB”º@éÇûÝAiÙ½ƒÒj¢”–9(ýäx/”Zt}Ò¢ë ”}ð!v¤ZÍ¡#Õj”V=uPZ~ä ´®cЪ'ŸP½¡ÐNÒQè§tz¡ÐŠN=^tÛ4xxþ‘cÓí£¯N©EÇ TúÁH¤¾üæƒ"µZx©L§CÔ¦Ó1k5ŽY‹®¿`Ö²{ǬE÷f-?rÌúÉá_˜õçwû‚°Ÿä˜¶øÕL[Ìñ´E÷¦­z꘶üÈ1m5\Ç´UOŽi_6s†i?ÞIǵÕ|:„}™ÐD‘ò\£SµÍÑéñÑŸ¾æ­»68úòQ¾ªZ~ßÑgÝ“ÁÍ—]Öú,{Z¢Ë×Ý|<¼)ØüF3Z¯Øh9%œeOŽ0_zR@YdرΰcÝ“aǺ'ÃŽ/)v¬‡3ìX÷¤Ø±î(}]™qü³ó|8†Ÿ((ßü)äº``1Ú_¦4ÕJ–“ºpa5~Ç…/ã?oe(ãxBÿáJ;füxû;r¬–ßAbù‘ƒÄbH,zº@bÙ“ƒÄ꣫á:H¬zê ±ê©ƒÄò#‰Õp$~Dpι¨r†_-±ñîýW$ÏœMW]w6]d\¹ιrÙ“så꣥sËzΊ?ÛMgÅU×kV\®ÙYqý‘±âjo ?ßÎΰ«ñ:Ã.?r†]Í¡3ì²'gØeOΰëŒa¿íæÓ_«óbÚ‘xî#õ̤èý7^‘^t±æ—é vEçÕ/zXœu#-HÖ é¬»˜Òź«ž:§.{r¦ü²oÓ”<ëñ;—.Æ¿˜ò§»y1å²{gÊÕG)s¸˜rÕSgÊ/»ù•P™åO§˜èÌtûÕ7í«³Òb¤‹•–9ç|}êû°ìú ï¬&Õyg1©‹wV=uÞùÑò:3­ºî¼óå´'It~6‹·~ºÛo-Æ»xkõQç­Å.Þú²¼9Û ²D\äŽh?¹ûktƹÿîÏK¡Õhu¾Mé£3ã'åü´œ”³ÎÏ'åü´šTç§åœŸ~¶<ç§e×ÎOëŒVãw~YõÔYcÝ“±Æò#gåpΫž–oóËî?GjØQwaaƒnÎv†YõÔfù‘óÆj¸Î «ž:+,>ú ‹9|²u,§Ô9ãKÇ8cÕuçŒÅGŸ$Íj:£,:¾eÙ“3Êê£Î(_Ö1õ×ýº±C ²sÍOÆê Q$RÿÂ÷þñ9—¬~Ù¹d5‡ÏdÙµ³ÍÏgîlómR3¶YNÉÙf¹ãÎ%«ž>_n¾ýê©8ã¬&ÔçÇÙ¹éÙ™k9%g®Õ”:/ýˆ¶:/ý|µn·X’@gºÖœ>%“èLwûè»ì ·øÕÅp‹ñ™N:ÃýhB¿úÂ_f9åÀͱ³äOFr]mtgÈõâ9RóbÊÅ”¦.ÝΧ_6`ˆEqý²Ó(·å¯..ý2¡IHÛ×é|`ÚŸRÚÅ´‹_vcã’i;lh÷‹PZ|ôÑuæñ«&‚åøÜ=1ûw‚ÿ2ë‡Næôÿå7Òb~KÚ_Œv‘ú—Å õõ”&!×þ²|™åXm@'öÅGØÄ9`1©þ>¶¤@g“œOJ(E·ÿÕGŸÙäþ«?uíì¼óm¼§!Þ™éß0ž1Ô·ñf µÜ8çŸÕ”&$nÜóm:sÉññŒ¾ýjšÓá'ÖéÛHsFZÔiý‘ñÌÉ£3Ò²{óFYõ~1Û.Uº×2iõÑ‚Ùn¿š!õ‚ÙV“ê¼µèþ³…áÛR¦|µšN竟Lçâ«??‹«¾Œ4(þáü:W-æw±Ñ¢ë‹k=­°å:+­æÐ¹fu~ÿI¨Nÿ)ôÜÙæþÑŸàã£Õ¯:Û¬Æ_³ÍÏ&å|´\¯³Íªëµ§âÏ&åÜôãMèõ£ñ:O­Æë,´üÈ9f5~ç˜eOÎ1Ëžœ9~|0c–spŽYRlç˜xP†4÷þ¼`õ«‹cVãwæXõÔyaÙ“óª§Nö‹>0Œ“þb•ÙÍ™ÜXwì4¾øhð£)u>XŒöY[t1ÆÀÉ9 ÷SÌ“óý£?/V¿êä¼ßÉùÛøóûȪëÏ:ÓrÖNð댶Wã¯.ïßV;#÷ÕXÜ´!Ô2'õåtœ²¿uþ—•NIÿËHó'ËŸŒÔ9á'çpñÂb~k+MD}ѯıüÈiáöÑ÷Óèıèú"ŽE×5¬>ꇿn­l®ºï{`E/çIÕsÛO"*ègÃT´ e ßz:ø¬»¬íÖ‚‡·‚–åç¤Ecñ«zH˳Ÿ?~½ÚÌʉr¦m¤(õT…Ðþ ’Dý¢é•]Ü£%küc á÷m×–(CÝEùUø½ ²bÓ²³þªÈ–PJ:µõchÌ¥ç.e©aÖÙ¥Ôè†Z˜hØ@ü´T™E ¶¦ûÔ¬-åw”Á‹"]ѰKäaF2™ª \ÔZN‚µ N]ë=iHûïŸäô{ÖPæ•vKÆÃâ4;ݽ¶ðŒ žûïé” l›³¡'œô)ËD€6@3Ú°#ÍMÉGB‡Ò"‘3(5ø†Þú•±ŽÜ.,8¼¢ÊXG‘òëR†]·ý8v)Ê£‰Úà.·ßwm©;âÅ[×0ÜkKø}ÇRÛMȈ©}³c†m=½£lÚ‚“–U RNL1%­(è£E[¢,ýmóp8O÷"-{JÉm̨£ãàðMÀ‘–vÆØŽFÒ6VM·Í9à_¤e³ ¾®]6OVšutlKÂöȼ¤çbtºC†ÞæŒ×­Mûyn³æƒÆ@—¸<¢¶m»;*q$-Dñ­dØH Ô²NºmÞ·MÿŒV_/£Yú(Ÿ]ì»¶-Óö&*¡ojüeôv9´ì@º©ƒ »R‘IÎ ÖÆ–6© {s6Q­N¼qu™¨5Ò6|Û±Iƒ ŠÅË'YËþnIÑZŠò ˜NµoV6q×BÀS†yvàêFÿµl@-Ú¦×e«Úˆ(á¶ð»L§¶5`‚uºƒíGA¨«¶IdmxôbœÕ¸žáRUû€6ˆ_ ñhPE\= “Px»n›ÂAã‘h]ï¿Ógþ‡Òf iCéž '´gì…8h¤çœ$gdˤÍäߘLSB#½¢»qü~EÐ÷'‰(öÍшüF=†N`kn£9=Ñ֢埧£v—ŒUä ¨Þ¾iÐAÒVìðP”e2–²~ÝZÏÚAŸr>å$P]£Ô—þCÕf ZP¤¥ÚÉ7Š; $?°zîÒR­˜|4Á¿tk6n“–3Eã’Z³äh@Ï›m˜Ê¾ÚŽ$E_„PFãÞbØ”tñ„š—­« mó“wžBè=T$Ë©ï"4wœ¤´DI†@5¨Ùät¥å,Þ  N®@°v:‡}SµK¶]X>OïgOzî`m‰x0Jc ²Ln5:*&Ö«Òa£ë'ï´¬AÚ …EŸ´µCÕjÑB˜(±Ž9gß¶å"^ލÇ#*DQyÓTÔcçð 䛫Ö¦¿*’Û„D £šhô±øŠRñhhØ ÁÕ~…Ýýƒ:V-Â40šjahÕFªÆ)ˆºŒ¨ÞÕˆÿP ¡1Ä!5.wG‰S&Ö¾‰øVZößé%Ø•1Ά”»Ñ(B9÷lÿ%e„Û hÇÛ©å1)ÕNp‘ôVï½Í¯ÈtÏQa?Ú¯À§¦åTØ8ZKÅþ1.S·ùI ï)µ0E1Õ”ÉÔÛDÞ®e–Û™èJK›Ù¡ªZ0=–”·Qëš-ZŠþŠ5ä‰}×uå>°EÅTS†O‰«ò2™âêМoLZÈ>婢ýÏN"˪ XÊtñ¤ì–Ï…vNq’ptµ Çà ¼ˆÖÞSu–/‹Ã…’/|1^^Ÿ÷ÛÙ¸(t¥¦öH²Š^Û 7ž@ÃDÇ.àˆÎ™˜_˜§F¾cÞ|Ѭߟ.÷§ÈhÚ}‘ UkÙõ¦u¬³ì¾?°G ¥Ý5lŠ y¥ìm[ ±™b`j$dâžôÒ‰îJê-Áï ï2ŸŸÖx¢/5˜ìR‚çDO ¹àå™¶®iɽºÉ•¢W¸F>§È‘°“´QîäÛž&²pw©tË܇›Â¶ëuq]gôìû­}[…êýHjmÀt?N½ÐîÐFtWÛ s?7_ý©ä~ºií¬2ªtlsnбö½ØUù° ™œ&øÈäŒ#š0âÌP‰‘kD·Éó÷\oô«™VUX ;è7¥¶a¸è`ý±ö#ÍVø²ø¾7xˆÆqº1†µ Ö8F­äE(÷ž"aݬ’â~CËÝÖº[ i ¬¥²&;bì‹àò­B 愽iv²$éXŽÐÙõ]µQƒÊÿ]­V5‹™®5DŒ…ÍáT2³'ܬò*NTøÄ4¶2Ù¯‚Îxw¼«Uï ×2Ñ‚c‹xß}ÊXULnÕ®ÊÖm÷N{ž­ÊZm‡ƒÒ Þ˜!ÒÚ ¸¥y³¡Ô´òÇ󔔟ô l0qHÎÍmMÅ*uµ¿œ·[`&4ÄèEWÜ ý` CüÊΪèÝd/‡[¬‹ÜvÚ7þ’˲¢±K>x…žlnà<’¾Ž†F¦¥£_H¯bÕ‹Õ3øìØa™í™cF<#@2†2ÌŽPü¢ÁÞÓ M&=ª¤™²ö:ÑpŸ0kÈUM"{Lþfrèð¶kÑb=ßs2ÍПpv¿cÌX„ÙˆYØ‘Næ¥=EyFy«tØŠÌéhHߤú  ‡‰a!ˆ…•Éèk6VC;åšÿš„¹ˆ ×-ƒ‚‚ífŸ j7Nq$XFL䉚‰4Äɳ¬¦…ŸKm>§ÍWc¯0]¥Ã÷v$ö2ú€¥÷ ¹Ü' ¹ µ…­Þüy„[ñ0ª7-WºÞa.Z]k”]ʆnVEÌötÄ °ÕT«ÓwNñÓ<øð™@Xãa­ˆ§Ô_d2|³Uqfxd­’OÖMY4¥H›Z"C·bÏÑP\4D-mÛsTI²Ì˜ bŠ|³»ìŸ”Ë´¤þ”Ýòa9±Eµ{ä(ôÖÓ•7¨èž ¶Sß|'ã3껕f;»óÐgcަöµT#?ð*/,¡SIÖ÷”àb=¨^nÌi!Èó²x€*5î„MR)QqŠ:¤ÆÚ}õ‘2Ewc©ZA&5²¬þ7l›)‰O„µè3R5ÛW=ÄN^eÔtRuH[«M -¦ÛzÅJ õ‘¨r Kg0—x{ŠkWTõ¨j^»¼ÃEoC7xO<Ì-2åèBs89»Ü>žÐäÚN>´xëÄ[Oµ?¯È3[¸žWDƒHT¯—8P[Úƒíœq@ 6{ý:ÄÎáaoÕ‡¾umJþ,žÔR!-bˆj=g;¿Þtè¹õÞ½½à]• é7›zC¤Æ¿Gp!žd¡®ÒÃÊ-§N9\+[÷P£—@z,ä÷D~s¤gI~¹_7Å]/©ë4<Ô]¯Q”ÜÎÓ%Åö„‰\ô¡tà²OS”pÔ|õ5CMZ¹TÛgiQ€pÓ8LVrɃë•àÃ)ÏãÀ˜CM©Åf“»TÄ_õGv™«êwx;i™Yê.|pq~L~”Y/bÚ÷Œ¯Y×”AÖ'å¨t²^Jª+ÛŸ†ÂÉe‘/”tçï@²“"hÊGŠh’ˆvB×Lû̃1²²Â +=¬Xýú5zÁ½‘›ûÑ‘7ý̳‰tÖ‹HwbýŠÉy wæ‡a˜£˜ë˜3‰yùò1¹  W¾äŒêô,0ptK|‘ô~O5ÖŠXsŠú”¡Ì]Vfn-ìú2^òø"8cX½˜© ¬¦ŒªÌ‹˜÷=ao6” –²´°1† ¶ïv¾ê:õMîµd@zcú©[2îÊÆ(²X¨±àcá8ÂÙë×h©ϬùõPÇè¶=®ˆÏe›o6Ÿ!3kêmã@Ì¢“D³QC` ¿GíºlºŽKùA¸’]qÔêW CkÌZÔÅ]ZTáFÒˆÈl7ëF»‡.µ;núYÞ•?pÒw”F½rj¨cÚ˜šZå´LcÓÐ5ÑÑmËžcéøêQBŸ7Œßð³uìPä¯A5\X°,¨.ªû®Ø•ôÚ¾K¨Ì`†‘CÏ:ZPJ…àH2ZØUÓ<“Û¢9ZonÐE€¨å¨•¥¶†g?ÚwRÔ»†–&‹³m:u4nÀl“x#5¼¢Í©—ຠ~ŠtRú8½VíîŠV9<IÙ ‘BTë+݈ŸôVõ*‘<:§î꜖bñ£o*¾8Ñ&w–{.\iîàA#—å.Õ Ÿ TïÔØR„¥¤»j-M*Šš /f%óCu'X‚jÑ¥žz^Ù]< T˜ RI\Š:ãHåòcJù3î`b& *šR$ A- y fkÇHUc¸õ̇­ÐíyžÎ{v‚tÈLP¥¡ ‹YÅTÍÓ¬I5©+KÌöÎ/§%ÌìbK:ö3ÚAMùM^IͶf„['âæLAµÝ:6•™Ï?ýd²¨›èŠóYÝ-é¡ [TµÈÃÓ¾9Tm-…Ü¥~86–è¾g?óª:Äu''¦xÑïÞÓ¾yüÉi¼ÖÉ~ðžíúÍVë|î7Cw)‚%d·"u/Û¼þԟ” K<è< !Üâ¢SÿKt'ewN-áÔ—RU/¥e7£º_éJð[lL „µy¾‰¾ÐMÞF¤E?Ùå*}#L™Îy¿$<Ø&Õ ª7Ȥ£cGUÝ óm¤Fûb~;‹D1µì°pP&–Áþ\4Œ°/¿µºanúnÙP#ÿÞ¥ÇgÊ(ËH¼é+Ó|V‰¢#™ÞÕšÙ˜ ²€"ˆÁ„‡Þ,±†Ó;– ŸÕnúøä0ÝBÖƒ¸ç¶–¦µ&—ɠʼí.G¹ù"BxO‰… ЉnB˜D¼LàÌ»†ôÀ}Ê)Õ2¡I—nö«Xœ“7Ó6R±Gs!ç¨ 'Ýä³êÛ]= 4,VU}X¥ã çÓÇ3l.J ØÙU”cŸã^ì.@¬ô"øžÐ(îY%˜¨ Œ¢Œ´Ì`̨̄fÞLªw®©Ü7C5÷VY²³ôg aÔ"^¤¿¿§*>ÝØí‡=ƒÈ{ˆ=Œ²°§\˜Œ•Yp³pg€uVËIugõž¯vİ‘ò¹u \Á +*Þf¾‰|%zºÅ[ç,7âÍy[>Éú’«iØ?yt+Å¢¬ Rõ´Øu1Û"¼8Éî»hÃÖâ™ú2-©ð¨ÆV—×Âà ñ"5îýIÕ{jƒ¬0²RÉŠ'é“{:ßåù¾Ï6¶ŒjÖW_O[á{nLdƒãÓ"Iîº3*}’ñ„ÎǧM~þœ<‘ò3êÃô)Œøð1mEº9vs(«pšÂáž›Ÿù¿°‹ÌÄfpµyAsU¿Í­ó²Eæ#\‰apW]M"ÿ[ß›ŠE$I€&+vsÕv‹¾S#›’ždÆùŸò³-#í_–ØÌ¤2†‘m6:6‚…®³A4‚Ãõ7§lbÆT²S/“,Œ~»*ùIÔ€²7ôu­“Mú£$íª"éËZ×›ëÝ›†llÕMK¯HI¡b3C1­¥ª®§Èb%q«=q ¾·`(…%äÈ2x2P2Õ:A½¥ SÖe<öã=ݲ(vÈĥĄ ÿZM¥ÊÁb[â§ó‰Iãºêi¬9îüK B÷@$‹$Tl-’Ú¤HŠ#tì ’ðP÷§1&äéÖsÕE¤%XêÃ֢ΛX£3Ü=œ”Mªä€È°‚XF[Äs6:Ãça¼çtø ÓÉÑÌŽïqÄ/:À÷´§#ª”š‰Yb]Yàꉖ/PPný§ Vé°Ë±Þ‰¶PoWê*[ºýýÁ‚è©ô†ŽÍzpÿÙ{Ös>4» éŒßÍœ·EΧ‘<ú¬E’~ ÊϳÊR³ÒeŠæ§Jsœ­c\*5›O‹¯d‘S­Y ÊÂ8z>íô4r„A|s¥å4ûØcÊJ!ª÷|‘ý0>9Ì _å ü%Z-». ¦õž£P^kŧþtøÁâÓ-x1æ]Ù4Ô»©«±÷9èMè,x¡Ç†Á›X;9D$m‡+«¹ýK¸"ä¡Àl»†ð÷†=j¿ªÙ$ø÷c¾ýdúSk9í©šÙn‘j‘Á[·„¦Ý4ya•X X -î*iIƒÕ }6JÝ«ˆç`þ8Ó÷ìÜ™6&ôÃ4?á Mu‚\8òUœ÷·žX ϶ˆo Dö ÓYè³`eЛH©Q’±´#xBû=U Xɘ¬j\xQsöæpI/‰6w‡‚l挷yÃ"MÃSæ{~6$Xf’$ÂÁa¯*mô†ÅR•ï Î¼H¬¾§¢—Å35™M™ä#‹P³âC‚=ÂçOaó†Bªµãæ$kÈ—@PÀh1AQå0©š4¢[ÒwŠ0Þ-¬È$ä&ו=¸›ÍDв¤eq¢GŽª&ëD´ÆV‚_hÆpÆy–,/X¦øºá bhRÐó]øvX6Ýü ò©UÞh‘ˆÃ,QùF(b%Ï1>Ä <Ÿ¼ðü*f»[1å3o¸‰"aÿ™ÝP‚;®Œ^’!Ó0…í]Âr²øñ%WLvÌ(zdàöÀhÑVzs²$ñê†ýv­%»<—üÒéëì@gd§)§qØ´Ì;v½g°éêÚÜ Æ’dJKÎ>ÔÔèjKÁTöØD^á0$46yQ¥Œˆ´T?âŠ^g´õ¨NwÊÍEe.°y¶¿hÆïéªxá$òN“E»?éÓV`°]Ü#ó)ìÄÏÚß›ùH¥C²¸`º²±’vOöaæ9*MÎ<¡È)Õ”ÍÔ?RdkÁ\#1×ÚŒ ‡Z| b<=Ö.‰{Ñ“2œÒ‡¼ŒH+¿iU „§¦Žµ¨Ž\kö 2—`M…óÜ;Ó@’ò­#"Ž¢&M‘¤I?L Mɺ ó¦„;šé¡cÁg¢2+&ßàfµ=ŽÁEÜŽí ÉÇæÌ«š,œ6‡77™¯¥‡lEî:©ƒ¦ñyæ=g+b=âNf`fòrèÒ³%-i!ŽÇT)8>,>P:ó Y’ÅŠØ/š³lOU|‹ÑLÅxj=p8ý‘ ÑpÛ-¶ ᩆ#îí Én;j—ÝQÒEçÃ+.DøþdùUè™~k‰N)%èOL nâçªC+¢ Ã4Êd̤Îì09):ÍñÄ_¤­aGÙp2QwGR&jŸ@Ã×€oEÂ…3RÌ$äbŒ¿è>\Q¢5lâ§,™@uƒ‘³èÔÙª/<럤£Š»æÖo_I†ÚÎéÉ3•”F’Çc4<‘‹•dóÇ[¤>³îê¶x¦•¡‰ŽþPV«î„=U ùPìí]‹ÈB§ƒ[2è0æ+‘$¯C†_q5/µ ×$ÙTUÎ$ErЖÒ=JAƘŽ{j¶ÐÝç„ÈÓèV~6±Õd4Sȳ~Ò „=Ð?wÙ 2®ßóáiм ^jP÷Œ,v^ê‘#[oîI¬!JÔD»` „.æsÙ¸‡/:ç·¶ud×wJ4æN»™^+3Ò“}ƒö]5U¿iŸªa÷Ø'5s®‰ºê¨Î²Ê;èĬ4—M¼3rRlnˆÆŸ±_Ý ´ØY`±P#í–ŽwBL%LIÌXÌ|Ì #‹Æû0Á¿ÍÌô›-ÝHIÇ!IÇL18,‘àæù±ÉÜÿÒÓÑ\jÉì†ðBO’„Òý—øÕ‚ž ºÆß:›È‘㮳Àm,sÌÔK;Òuµ4š»d¯à‹¾Y_·Î’åk¯žTæãð KüH“aybêa(›¢™ 4uŠx®eK™uÙzõ©l?²;2l›½HKÙÕ[jÏê[±ärMÝ—DqÙ2Ð×âÙÍ™o×|-Žb*–‡Ä$4^ímÙ‚³˜ìéélUn®*øL«ÈÃcH{n@Kî÷*u1IÝ~Ç~uä{·‹Z¢Iw\TH’Ý«v £‡õ<ä÷Œ˜Têné^R¡Ö¬z0täâòV2öÅàŽµEQÂdœÕùv®ØJyéçpODøâÐ{¥€‰PaìþÓA ½{vSÌ„vˆ¼˜™LÇkÓ­¬}R\$Ž\ò¢9¿µ¥JêDÏ7ŽUœnÊꃉÝV]•Lši&ÇKV ì>„l0´Ð+%CÛþ"É®72àÈ¢ÌÅ|X|ž|æ#]ˆ¤¿»>½ͼ£ØƒŠ¼¬Økæ­E~`ì+ÆþdäsÆ~ipöˆÒbuÂØ3V¡2-3BˆLp†ü€ÙW˜êÙñ~pS{Ñ^¼g~|_?Ü¢lé–8/KÖë†EMZ±ç³‡aI|ª”ù& ݃ùÙÃk¿éY*˜/Ü Î;ðaÇ»X4G:ÍM´GŸß  >bYb3¥ŒÄduûÄn}ÊûÐ[WޤïyÉÒMï&Êàš™ì΋±E}–kË)ÝcL¯Ã)§&o²Lî46¿Ì ³Ñ>>ß³~&CÑtxʼ¬3*v)p4êÉÕÝ¿å“=>ø®™×âÙ£ñ4-Þ÷,DäÄ$ÇdɤËäÍî®ì;ºÍJŽ U0‘îªÊ®ªsuX”õ¦Ù£ð»£LÏgr„|8ä´;qì%ç_r†×˜(9~DŠd?²\AÏEéBŸ¹çÞ¿fùé8‡Ý$Ïg‹¦ŒÒUg‘™ÚfT“e¯Î=¼Ê…üŒÑ{àöRQ;<‚¶ÑbÙ,“;ÃÉ$Y>-Î(ë,‡8«â caÀ1ô<ÏžxJƒ]û•d•P³”V±÷½ì±GRýs/Xy䬚@ÎfW¢„8ˆg¢6©ãI/9+&gΜdפô‚<#ž5¯ŒW¿Y>íT<ÿ'ÆXS‰“˜Û&9ø4‘%»ã„xcÒ<‘÷t‚ï_“Œƒ””p’·sr ŒþiFE±Þ@±G˜‰°ièìžâ»ºþ$—àVöO|`̉ŽW6Pˆß—‡9D¦]ÁNe¥}sDb¡‡ýŠ÷zÏÝ­ŽÀÄœÀz5éÞ¤Ÿ¿èh?XçÆköä*>’È‹6é=ÝHÞìÑb?1ê³ÝŸ]ÙÍqâ 62ó ìxô¯KÞs…E‹ ^ÈT&²ôâNIâä_•ÜC`¤¤ÄÖ‹[’Ôÿ©hžZDQ–ª~SѰ…11Ú¦¶é8ÙËRðÐÁRu{ºÔx\wñ a¡Ÿ¨a½k?¡ß@Å%êúUÐêó˜aµ›â®uió›™* Ø 'MWEö=11¨ÿ+×¢kô®ò,ÕeŽº2e«§ÎèLÎ(? ‚Mð=YCUQq¸Ë=º_6'l=EV¼¸ëøAýøa™„‰‘ѯJ>@Ù{9µ„Õá—:¬ÑÁ[[äm«·Ô&»½—™ Ûƒ>ží›(à¿mŽ5§Ta•ÇüÝàP–qs‡˜=gŽ/ž¼Ï|t^|¦|ìLÝÌ#—¼ˆßìZ¯ŽWø¨® gµ4ç ðboÖg£š—x?˜¡Æ$êî÷M­ÌšQžlï—ò–¢Ý’ ê™b+Ýe{3r­ov8Hå&Nm§Ùw¢¾³•þ${HD}ì*N‹N”O}BL=LaŒFŒXŒj#ò½È`ñžªi¬ÊÝ=V'ªâˆW„h zŒ ž–u Ö;ØX71è‘ͬ‚£¥çEÊÉ{¦¿°ŠÃj­Š±j¢Í ZØLSdm’5N~gá·~¯á7QQ³ˆ;xª 2µjè«&ø—·<‰½,מp 1xxi†}É2g¨‰/ãýÞýèùž‚,êj+£…w¤+³<¼$Bì÷<$#Aµ5ˆ™-Z$Ò(NiÇî—KL-a¨ÐMzp3©<˜³1†jV>’»—a²À8|stýå6e[†D&d(V‡šS6yiÌ0xO´ ZêÐq¿”f\©ÍäšÅ˜˜¡xä³Ô’oë¡QòÑ£-³QZN»cJIì¨-v—VëY>«W)ˆ#8»àk+y+,_…8ÇæÚS-Õ,¯Ø²rÏE¡´ˆoÌœóÜ3/Ë )à¡q£ f8âI$o7Ø@2VøZ˜IN½TÀ7žhøÔëYzÇÁ&‚59aðZ<9@µ_igãgHw ÊíÁ¸¬˜â aãahL[\àƒØA,‡VÞûƒ6ÌT¤ļ§³æ•MW?ìkÞõ0Š ÈâÓú¹rž¶Žøãà™´Å-l„“#–¾ô+AŠjI´aU«;ruC<®%³v‹Ú¦ ¸¸˜ô¨{„ gd¼é“ÆÚa5¶'Þ$9ìt¬þ+¨Ø0ñÛ>—]ÁõØ]9},Âò„ªGþw“›² Ã) u@T’œšˆ!Ë+„,ìÔ´Emñ‡×ÚÕ¬ÅYJÐDýUT¢JuÓ#-†n‡d!÷ìÎ’s$ã:®”XEìdu]HE+)ø³´ü—ˆ‘Ð3VgÜæåPMhí⾚Ï$Ï¢f*ŽQ'À*¢''O¶$#Q†eÙæ“ÄRžå1Ey.‹ jÛSznÜ Ûsx¹bl¯ŒÞ“Ž ‡c\ø  ÷T¬3I3ÙOXƒ…ê 覴Iô;Òø‹ÀUX¼ö2²tTKÔ e„E"xRñ*;RCw­$"Ëv_­é7±6¼ƒ ȉ¼œÈÔìY°ÈÅÊ‹¨ó=ÁÛ&nOôÒ‰Ô`Œ&U‘´IÒÔX›cö™°ØÈ†/"¡÷”ÌXçšèe¤»m›B2´§nò9tWÍT³îêÞ}”aÊÚ±¥’„;jÏ b†ÌÀCq¸’c2¹ô÷s±Y [rž˜ìçÅžŠgÀì)®?øëEHñž¢ #£#¡+ûÆrŽeá i„èrUad¶¼rc:§çÍRÇÎÐ!ZI¹›-‡JgŒWó£?,ã,ÎÒsŠW“{žµF2ˆËN°Ñ׌ěXXŠiQAâpS6àˆRÂ:CÚ„)kΖúøã„xμ.Z;ïÏd‹ ,¨@¶Ï‡U Àä*…$¶›­gü*îž½ö Y;ºêÒD^}ƒÞçöXR黵ËrJkÜB²(6@#”2x¦»ÿGU‹Xò„<“áyм ^êd;xËFÊd5ÉD#ôÏ‘VÔÕ|w÷z³*fTÿ6û<›ì&f=2ý±yp° ¾hŠï©¶ÇèÂÄ(ÅH¶K@xFîþÍl¬U•´£;n»ÂóÑ«¿n’ÁS¶Ìmµ§òÎvvC¹f€¨Ÿ6‘7šc<0“¨éP—}õa‚Ûuß$*B­Õ÷Þ6 2@ G%q½‡œiûDôƘQ/Q8ss ™ŽÙºlЋJËö#Íë$1RnTÑ/Ö÷Ü•‰þ;º¯Ðs»ì&`á¦Yè}içˆñ¬–”Ü|‡R$áÔo6kÉÆº›±8ªáîÙŽzªà9=¦ŒTÝ™:Ì*3;ƒ?Áñ± Õù‰&ÔBE$Wv ŽÌ~¯¶Ý KÎ ªˆ\ÊÔËhS›¦oª¤›ñ jØ01·§r+C-ñÕùôƒö¬µoðTišÃT*==¾ vâ›pÞ þG"Ž`*Ò+ F ÷=Ã*áümNTÛϨkbu®ò®¡—í¤’d3¼Ñ­í’q7”U m~@öäBJ—V¾ØÎˆŽ s$^&𜯋‡Œ UŸk¬´”ÝepòúÉó ¬0QP(97«ÕžåÁDžkì2žÅ¦¦T§§Õ(ü1S{¡á¡ëÉèM&ìÆä%~ž†cA¥)—åW›îr]ò}KÙû”=TÉ‹ÕìHòø“;ÜÎï*¨~íÆ[‰Ã‚”­°SËHPLsºœÐ.Ñ7Ã<+¤ŸŒBY¼Dõ!Ö+–å3ÌÛ”˜É€H…ÈéEGúž;‘“Ï‘×Ákåý`E†”Vˆ&J+V“§}~þ'—rÛ™¹öŒî?!ò""G#vFš9,‘S{jO¼¹¾}©Þõ”­†—4äSTCí©ÕSd]Vó,WM {øš5]´ýU½‚ñ­L[)Ú²yÚ5|#§ÓpÃdy•ôÊõ£ rÒd=›Àˆó3QÀ@A :^dΕÌg^ÂåÔ:’çÌJÚÅC³£Õ`VÑç–ZXTÓv­VÉÃEE±'tM‹›ÁÔV"!UZJ÷ŠKâ#ªŽ…›Yäñ•xb«g¥»„¿ÕqoƒuÖUUê…ìà¦'æÃà !|b³ïö „Þ‰í5,%‰ø]dÈ‹?ÍÅ´žÇY88S†?#Ç9´|~>‰{bã_ä*óž¹Ó°Ë {åã<'BÕ«„yˆT½ª_ù;p&»Ko9üBì T¦\ëJv ^zv’)€³ pf Î>Á.]£#ÑK]‰ÜÖ­éXðU“yéu&tŽòn`3JHƒ×;£guÉxòÛî^¨Æ€îƒ|JÃÙ“dêý¬–£»¼V}aîE RÜíÚbRåT ¬×–Ÿb/wY9¬ÊÜr}¿§ãóÕË$W…&›u9õyÝH!ìâ€èÄýÄâÈ1›Ø£´5´x/ù7ÙÒÒãeåý=yÄe>Å=I^XsÏ!ï²Õ³' èXöâ*ƒUõ1áðòì´É¶9ò‹ M›%ZIÖ÷使4¡Ê‹Ø”‘>°ÇÓËcÂfxÜ‘Ô9ðJÓT}gÚò-Øö ],ùYû‚G„jò01‹Ÿ~^97³wwOú@€x‹Ó×|[Ÿ¹²3FJ1¨·"®^l{™±ƒg8ÍXÎxÏ2!+›‰¢eù)2üÌ3-óäŽQ/Íñ*­3¬c¶Öq;†íBB€¢/Ný$X„LÄ ‹"¤æ·Í2Ñç¦ëA<ï=EENÆÖ¢? y<›Ç0ØlB¡ñ_¿F×esŠ{z7›¿ Ê^’âFhë§X7Ësá"ñ:潡¢¼èì‡Þ ”$ •Ë’œ½ÅŸ•*°è˜ççc(»Ž)X–,Ž*r“âÈ­åðôp œ@üк<|Rï¼È©hÞnì4$ì)CÉÒTµð²ú,=< ùhH½†¹úÃÄeA½Zß/ãÀÍ£õѯõExÿš†+Œ 1«¹Euô©öÂ8)¦+&¡Ý‹œÁá¥j‹jÁSÌÔæC¿µkdz[þÃÿýkê²OÑËz©÷'OÍØŽX“ÙwpO ¬ê 0 f™0B·„;Öó!%άJá–»­úk@(Ø›éxì/:Â÷옙&}Óø<ÇrF kЇXwE`$Ztñ'×™Æ3&ÛÈtÍÖí‘ d§óaÁrpó€“oÈbˆ6‚S ¹ÄîŽZ¨*vƒ« š\¿b+=:ñ¹{ÚzlÕ{¶›¼á“C!âbdý‚uÖSH•amg¢‡XbùÖLÑØó´Žó¦Âõp÷@˜×Dþ=]GRxxÂ_u9ôGf]Ó†³[|“îÕ^<ÀH¯‘>ßS掆‘x*»<ìgœ YG¶¢2Þ2Oc@µà‡ ~ûà÷~C¡§ ~-¸òE:Ï{JÇ¡0§7 ìFü–3ÔÄ”ËØZ0,ˆÉ“M‡)µ¡'\´ÓÀ³Gzé‚sUœÕlVÅY]Ÿ¨âOÉ®4c`èp]™]iX©fÅ{TÍÍm¸Üª6ŠÞDœ¨‹£F9Âß”´Hå&±Î’¢ÁZÆ …¾È´üþÅq1:3 ¯ù>}»’Э…Ã69´“4,VÂHQcenòrË/üúÁVöÑÿ"äŸ^!™%'lˬMìŸwD!šX—[=nó?ÚJ@©Ìg°2jñ3Mr AD²ŠÅI<Š£àüp3o}“‹!]'7C‰pjKÍ×öV×ql<ªš§VÔ€6ؼ~÷žö ¾Àø ¨kŽ9÷\–‡PZ¼`´ÄLgX¦ˆ Tþ|›.ü]`Ó2>=¥Ô{F5<KH5v O®ŽÕçž ¬žâ•a†ó@õ+È=Í/ðÚ-ò›£ê¦±ž¨äu•½–o“›òP‡éTËûKûüR7Ë*ç³Û]ÖLLP]þPßÌ$›‘Ü¿ô”óõhìx°P|³ûS ;tgM^‹–uãƒß8'GÁÇÅGÊ$U…¥ÅR>—ežªúò—Õ ñ­.fÁÌŸL-†H㯔àþ÷¨ÿ¨ïðßλv­Ì{¦ÃΫ˜…Êzîþz*1*²ÔbÔa%ÛÍö×*¼p­±Â(–T[ØYt>ÁSG̃ŒÎtÜŸqw”8jˆb¶Ëö…3ÄJ5ÅŒ/g¼ËüM¤IÄ»«°Ê§ãÍÁ$÷¢3¤ Ûîò Ãdiq¡ƒWß#)Æ[¨sÖêÒï>ÃÍOÝ”Åm7‹Bä@{âVø Ëk¶M¦œìò„R™šyKi×ÇIßZªG]T‹ÆÞý1Ó%«QœE— ëiÑoÌÅ{“>¹þêM`Ø ‹ú:5£Jªæ¡'ÉÐàuWåQ?K›ómÓ Ñã{æædZ{ðdmÞM<^ûáË/'Ú´6“Z‡æ0Å™¬ƒù~§nTrÍÂû¥Ë1Íj€2Ú¥KH´À¡ Ìc†*„<Ž‚Žjrš|âLã>‹xÖ˦u“‹ÞÛùé|Ÿç`g£ÞÌU£Yäl’Þ%ÏÓŒd(Ϩœ”Ü[ìi2M‡gÌÔ364H‚ßÁ†J–©}¿EˆªµÈ³ó!Olxq¿ ¬Œ‚ƒ^ª"J/bTÑ{¤]´gU >5ã‡dìˆ=¾H¶/¹f®0Ê&SÈ¢æùH‡GžY¾Žä{Mü¡½ý¡ òÝí’ÃAáðÂ’ÈÝMýF“T´CKv· \ÅÎCŽátç|(ëFì‡P§(ý»ýJ=ås¯pV±ˆäÝ=×àÇ.CO÷ ŽÅÛd=èÎ"6s¯²“»h•»S뙬‹Öªzfñx'©WzÜîãf(u?ñÔ}ª9ôgj„!<[‹º+ Ä&È]óð³)ò2XífÕœÕwÒðII›(r¬ì1¢1ê122z2ÂŽ(üR‹žjÇ§á ª{ìXjñ:·°ZÁ]‹?ºÙBHs· Þú±ŒYÍ`}º5ÓÖæõaÈ’Ë? êXô$B¯&YýÖ`ǰ«¯V^‘¥ZVÒÇÐ}6·Áe:š‡ÕÍÔ| sâæw…þÖ/÷›zz‚Ž(+(Cèé è͆Aë·âE:×{®—º›ä:UºyFÿͨãìÙ 6›Ðq ߟÙò6ÏNb°Š’á”_ë-“‚H͹®ù¢}·t{VÆu#ã¡·¿Ò-ˆ¶Í9Ù]ÏShäÔ#u’zbâÂj‰‘B´ërvȮƮ¬vÍ?®w¬ÜK†Rû6£ž^z8®H]fKTUÓD0Ìó&´3’×Hs®eŽd®eΞq-rX%•훚ï-'!Ìœhõ0ÏZJÂÃTêÆæãT¥«z°þб vÏ*)^¾ƒÓ=ñuæ1EbÌBÌfÌÒÌö Ä¿S¿sÕ4ý,¥¨å4¶”ê–Rzæçª˜§I<³™8 ÷l?ΨRiÙá!Š·¥ùÒákÂçÙ±=…> 8uT•ʬú3}ìhj“g»ýhÛŸÙÿù€ß$ñ!n>=µ¶w Ïk½rØi©ó“¥ˆ}ù vI2O„7 xV¾FíE*‘«MO“×`ÐX|G£0=zð!Ìj  "¦-¦"VLYyeíš´<ÒYU$u’TÎדHdÃÕ$oŽNÍ­on#s‰õj žYEËøµ/qS1µ¤þA²fµÕ%Hîè‰Hm¿=%£:p'mÛ¶T/~Lfáɨ)úÛM/ËWVYMdšfº'Ö`îy°×K}’p±MQôlËÔäMq÷§à¦Jà9w´äý9!}4hA6;¯¼‰ÍÂßÕý¬ž}œ6vLCóìh{Ü…Sì9«w Hˆáßý0wûRWi÷Ú½ð=8dp/ƒ s ÞO㹻ߊ£ÅÓ‚–ªÚKr;Ž[¼>()VK SµqûW°“§öbç§Ô!h-ѯUrìµ–«¹fŽ‹ÇÞÁŠ(š\ÉØ= bõÌq°2VëìÕÔ¨…½°ðU•ÂvõèBx  å*É{6ŠbþtæâămÎ=Åw;I”zEÍ=Øqåß?è„nÇágSäe@5—ïÝýT¥¶Ÿæ†í^„©t.®JWúdë÷œõ @d¢j©ö|/j9kÃ{:tŒee Ç¢ N1Y(íEÑ4)éèõ£ÍïáTN„Ò¡Ãá‘íáöèG³jòsZ±×ït¯ò¼äÒ=˜¯Ê„¥/ÿ·‚?ž+*Ï*RŠ RüôäÕUÝRO_™gMSwÿÂ%$ÁA½« ÒàÏ_t |PÓÜ%K§A|‘x%àk˜Ý{6}^!mïSSŸe¤½'-’¶§ÁæášJ•˜,Íýê tXžk_4@2ôb ŠnÅ]ç| Äè^& 5rÔpØr/Ô\Ù)f)AüÞ!CížÚK/ümÊýYÎɶ»„Š ÕÖÙk#iÁÕÖâ¶“ì: Ÿs\ïÐ’Ý($Ú)–å%±†ušÏRU™vÉtèó–H'ϵ.^G팓¿2'Aœ"®,'IìÔøÙŸ Ð>öü7‡ºº¶™²§Q¿±K穾±TÏ÷]ÕÎkîµjFäM¥§³™qTÿf´¸yEü6¥csÄznàU•îR ÄIP“` =‘ŽzáÅÒ ÒWIÇÝv#zj‚*¥M¿ìÎŽúÔ98þªHlß$ÿA¾Iåy%ÄKðÚø™vAk)¬É°¶3jD/€÷ #Fì^×zt|M’A±-£§‚Î’J¿µlݦ¯þµ·oP²ËöÇÄ(ZK/ŒœÔÆc¹Ec¡c%ÔýKµgBÖØÛó-Fp…–íÓáñ30¡ŽÉz(«ª¬Í’Â;²国ùn½Mý»ªÊîíì^aIu:XÌ@—ýcëù0åéß±{€%ÑkzZñª@êÚ½>pà©ô<­YcjSÝ<­fʦ#ìîÝ•4Yi:vÏeìãªë¬L›Îóæâ‘ÍÆaðÉ^˜ìÈ.„ìfÈ®ˆ£‡Ü‹F{ÏgD³ž¬Ì ë¨Ý5ܲgñ§9‡ì=ì[:ñ?eÕq_4ã÷ô¼øLÇ.”PzõnÍ ˜®tªQʽ6qwùj1¨¢Åf=J@’,G'²–S2\ЮÓÁÐá½ô‘¬¯?–pQ®>çfÀr¦S/‡×@!˜õÐbé “ÖrDX|Ï·|ëX{¸¼-cÔÒôW“Ž'cÓü²ºf'øƒë¯$4êÑ\î ±TÜÿOÚÅvÙžÆC4@èN&»&8HyóÄ’[Õ#Nn‹^©.oõÄOßm Â`Dx5"Ú ôF`dðdÚ‰“-;â²³îÄÑ‚œ1Øaƒ:Øñcð yÑa ¡¨e9E7âE°)ôÌœPñMðHx#åS•|óHÀ‹rЖ+/x2%Ì|ªÔy¯}ãÅCásSTc¶µïrÒ¹ò¨e.í[ÇÜCÞä:aþ]Y¯t1x¹ú¢× ÷&Æ+v[xqº`‘ÄbkBMDq#QÙN(›©Ÿ9„¹hä4ñ£#\#žè ¬q¢Ñß2O£!*#Û),x1»áIš1…Û.c3¢æµÍP•öÍæ¾¦ê!&J[ê¢;¡ž—y±jò(èEžYChbñ¨ÌÙ=ePÅ%ß°èExq²36u¹_F‡Íè^Ž7º|k TÄ´¹õN\rÁ9ÍÌá/Â$i3U5‡2ÜÔE5?l7ºÝ9Ë2´_—"Igý˜©Öjé•ÙÆ£àã¢ú¸m¿ÎßEILæÄW³vw/«ÌœÅÜÇ J,Ì\ÎH0¢Å‹òýg¶fÖgxà…ÒVðfq12‘Nî”tïä»)›(X¹aˆ•¤©"5*[¤±">"ãëWB Þd>rÌ“P¥9%µ ʽ¤¥r ¼ee å~«>¡IgûD½‡á“"¨"?R9ËB-CÝ_âÆ±m>j«„aYé$” JÊêï© a®ÞuÒhتÒëš ¬Dq6²Ù‰“=Ÿ·oLos³vÚ³ú—BhFmI’"¶ð]—Å5 ó;lË*žõn§IËÛ*BØÔF‚@ü, æ3jCì-E~dX4v#]G䤊*b÷ÚÔªê±Åâ”S„?¡L)+~§£ò¡“,Ú WVð—®4ÞÚZ¬"\ õPµß‹Þ·o´j\ªæÿо©ºó‡Õoòaж|áP¡Ê¦(9ãtËN%†X‚¦-i«Ð×S0¯x%Ⱥv½ë ã&¹OϹïh fE߬¢EýTî٫– /fˬ’=Á¨€çÞx£g|"†Œlc'i :”2h›qþ]GÊ.’¬&X4 !Äd~Ï ÿ%V¸†®J—»"^€:8jómàªCífaËæó2n—òNV¿æ´9iìšZ„™±eQ·Ô˜,•мˆ‚å[H(°-Ûô-%¡Öx’ ÙBkÉmXj1ˆjè)¦HK7UìUÛïÑùBVÁ ¨y¢Wð†„ öÃ#6üÍêr¥Ý†B úÍsݺZè§A–Õ N áv§´²g ²Iµ~$P1UËMš¶Ó ÜÅnü eëår…ˆm]ø®ô…™Á ®db'°hÙqÂ#š`XDhØ«©ŠöžÝZ4~ ÅÓz àU‡7oÀöê'”6-Ôšö£vÉu«–!ÅN= 0ȉ§«ªêØø ÚI•ì/‚;Ú6}°Jî^=®ÀÈTó·Á¡$'S _;³Ï¸TµÈ`Wí5†¾Á@_œ»Ô½{.P&2‡Å‹®Qº¡ŒÌYtlsQ?4wÌÕñV‹ºùW3k6=@œÂTY};’~s:yo’mSü‰«ºÕŸÑ\;¢m!Hî<Ô“ÃHe×;+¼=ŽÃW%îZxî7ÒÕ:Èr¬û;l³UƒeŒþ“ø´”ݪ='£4¸™ƒÊÕõ©É)U5²{¶§µ†RLFk‰ Ãþ&Ê”0¡¦¨½jðDª–nYUÔš£oÇ)¯EÈxYu¨ç”•èΠ>>Qý­La—qûÕ¦N–wˆ»á‘&“á ŠjfiŽ;L#´}‚’lˆJÈ–@¹6 SЦØÍ¡+/zkÈÈa¨’nØÝš'ÊÍU®QÉißøm¸CÈ®™Ô#;ά`‰l¹IÉ=wýJwg;4§îæ*¯Áð(ƒr *× bG&¨~‘HzOÅ‹6’~¨– Mmj/–Ž¡"Gý±t#usÜ¢ýh“+ލ>ºôSÓ5@‡Ñsߪú à7ª¢¬‹¼Þ à@!Dcc ÃD…¢’ä¾NÃ)rm‘‡Û®†ÔÕ^›™äݨ¸·i}=yÂ;óTz¿èhÞÓãã#>«êvm F‡«M÷<|åúhoR %·d§U¸N¨áR²é¾º0î󶎬®É+%Ô¼9Å¢eOþí› ˆ×œ&%½ùí M+B8È4¥Ëà`!gwn®„œšd/v-7lfWÁc¨*Ë{Q h¿ÒL@QÁYDó©š§[cf*«u£ ôX€ùS/ÒÝGýžîE|Ý lYY«?‚óUq rÍh ê+,â@ýkW[X‘!ÁB„MJ L‡=´µÙTáßtî}Æê㹩HÏç êc·–aù{. X-ô&R¬XùzœÕì0Yçeøeˆ¦«*]fù¾Ëwâɽ™îÖ¬:2Ž…à((_£âõþ5³<°u"j%$¶55ÆÁéÓ¤rИr<ùÙ„ödJLW0÷]]±¡$ïeˉ_YËn¹F쥺A™Årj1\iI:ºÞ E0×øYYd…’”ÎQ/}‘žŒ-Ëæl]v_Ÿh!‡íTº•íld‹c{›ôF«™ºÚª´â8¤˜øŽz€Ùh¡F56e{{jì©ÅDÀE¶ræ½ Ž,Ì\ÎH0A RšX±•¯×HOï_3«ÞFÛß&·„ñaW/F×TëÍ|-BSXìá°$—b¬Æ³ªÏ×¾20¬fÖ ‘t»åý4gùPÔ©ºµhŸ¸˜eâñ+µ»‹,N»e~ˆæ–cpã4NZNSqàYLˆÊ5·Nt~m·%| E‡t~ÕRœ§«àVÉ0k5{¡‹]%ßáבg7:á,¯<ò3½¾²ºôf!¯ž…ùtKx2çœNQ+ê;¹š°ƒæKÁBõƒÞÍzŽÁFN.â¦ Ž²{ì4Æ0ýZt6‹Ürú‹‰}¤þ®q¨gËM—Ž{ÒL-ˆ£«>; ôÜ,~[¬ûâváA›ãÖèvjR@¦ŠC+m›¦{Ü£Q €_ǯ*’ âÄÅê4Ù‡̰«bwX‹–ÑA²®]{ÙÌ ˜»yÿªhV39LNj˜q‹…C÷¢7ì»n…‚â°¤.0%¼°ˆ×!nÓt¨bÖ•ÓU­äæ¦HˆT²J"lHš©™U”̺lúry„{rN×GYëÙí×’s·²Å¢©HŽOO¡Õæ¬þ7èÙ ž©“Ú_U› ZìV8Én†Ï³]Ô=×ME2c%ý™]LsÙ\ËAé9ï>˜:|¨ REI±‹A8íêà.+Þ>g—ctå+/_‹ùêÌv\²x’Qt´šNè`B+#=1ÍÑ.{üÎ ¼à'p>°å[Y7ZêÝ ÂÉOzóÄïÀ³`AqXB?}•õ…—š9Іò™ –¬>¬%2«O½øšê¯r2·ÑlªœM7vÍ÷Ú¢¨N(häZÁ9C>‹„Y#ª1ð8Nx‚l~ŒŒú,Xzàn+é{ÍI§ *M4„¸½h/Áª#ƒX<|S¥%j¡ ¦¢¯Æâ6W£ï×ønÏOûüú?±µ1€1ÈU£•­^ °($W‰}Ûºž¡IYsŽÏT“Ø_D艹1ÑEF}…T¨ïõ¸(BÉjÖ(–X¿A·Æàåâ'ÁA²e„F±à–žâÝdQ†óaÁ­á45Òò*¶–"é-àᥟ4Þ-DÜ~d%~bbbªjî¨ÂN´\Ò„'jîs×ß3]s¢TÁdC¤Åä7!Ñ©¬ä9Ëü‰^Àº‘ ““Û@‘fÓ†½™Q‚>öV”e³HJ‘à’Žô´`Ø´ÅÐW4ñÄÔIç¬ Uãzk‹g!P1‚¦ò½Ø•;DM¿¸UÓ ñ°YK쎷ž».³V#ÊÙ}¬¤ä\ªfwÃbc¿ÚÝ~eÚ\­åb%¾¸}¥¡½‰h,ZrÄ}·j˜=I¤èB’FÁCfêWSX)Á媼Ç#Aü ûvqw§™¤^Ž *Ý1D2%n–®EÌøR™)X[ù•|]˜ìɪ=Bît )ǃíö]´> Ln¦±kigÄV%ÓØ-¿âÕsÕ\…’˜Êà¥Î¨Ô4ïƒScÅÑd:Øs?Ñ"ÓÓ"Ó댫²êÓ˜¦xؽ¢õds&MÌãI’ß’eó1G0 í‘5´B„ ¡ZxµÊ”¢9Ÿ 'âÔH‰`lÁ—Ñ9ëÃ8bíZmr•—ƒÙUµ(ž~ú¥C|Erp.+7æmp³X¦¡à-Zñâìjê!ד#[nnXwú~3ý3ƒ0Ù‚¡wunAÒÏÎVr”)v2Õ× ¤àµk$¬…æcïa|±äË'9ɰ ûÚl_ƒÓMÝÏ@2´€ûôÕ·Ì}ꬪü†ÌO“›aû¦pBO’rNªQ ^&+$z0ßåf¯»ÕÎJ£Å„hߨs±´8¡ìZ¯sß B‚>Jq—Ýl뇥_‹ÞóÈè0˜ƒ ƒÓÀä‚ΰ$¢·-¤«Ú‚‹7ùUu;ð~-ZS’¿Úžjި٦I‚j (ûauNŠ›†ƒäó’¶JñÃy}e,¸X¸ÍDÙƒÛßS@`И˨N”ÇQ¿d”ÕÔé-´·Œ6¶ÛLl;lÿa³;CÃC ÃAØ@’´ÆÓ+aÓ¦Ú½žÐQI¥ÓCƒì¥A’V_~ÔÅ%ãà)ðôV©!É*ÏÒuM„!«\ã‘Æî ú$bµk×ÝoÛ¬5E2…žšE¼há²#Ý?DÚK)qs.RŸ©]—K}{ôc^kšìñ¨’ ý­¶Wùªñù£â ¡%Ý»5]êÀ›ÃϳóÌQHPƒ>;âA ¸tê~ˆ$®Åÿ°*ƒ¢Ræ{¨kŽ"o–+î „ãÒð–·SÜ÷°ÙŸ6x}(SØ^5É&UË’=Ðnû¡|“ýQ~ÛT€ çŽâȶ­\=âc >='Ô-é!€P•˜P#7kQ5{ïÌZÒ =U,âTp G‹ù IzÿU•š‡` ó =cQ鬸fÞ÷{AîuÌȽj[‰=3€æíABÅðý'Á0ª«_¬¢ñ]5©W.2 =¼¤˜BäúŽ\½rˆ¸E9øÓu€Ýòú—èÂáI¥3*~n|k‘BHÇu!‡u°*]œ=jE4ÜãtO¤ ?èÆ.²Ic%‘½ö4ÍTóíáÔS÷ÂJr0¥›YGõ ­&ÀCàDøÅ7C«¢1–ˆµÜÔ fjÐs©æ >NòÍnb þ+ðó@©›Ø}é°iˆ¤ÜÍON3)¸Œ: ¸q˜iÂp*Žpt'„ ÍÁÇÊñTîJÉO=«ñ`ª ˜ÅÕÓU²ÝbU ÔÐlk‰ ŠÑ”ñ‹šL[6ê#ÔŒO žÄÁ êŸäÿ¶K'”“܃KÔ][J?šƒ¹© ñèÎÐE9Ä+jÌ0˜qš°œà~̉n8ú¥8„6Bµ œêj3eª1ZŠ¿Wáž…¯0´ßj'~EÈžF«Ô/’C¦kNRi3f¦‘g<›Õ¿c™¿vÔê }Á5òç(¹þ4ÜQ¿ëkÙɾm¾¹òXÓö¢wSUi=jÕèq¿>i£Ä'•`¢6L´‚¸éº­Û4é¢0A˜/‹Wλ³KTÔÝ42ABà´3‰u¼i"LÙ`qÓ‡°C£¬þP» d”êÁØd'¿…6b•Å5êǺ-¨íAï)¼³`1Á¢„Å I¤]«†@Űp˜q'›Ìd:’ò‹vþ=ëšGg‘9JUVyX+bʼnå‰ –*#í¼F|x_7h”Ž´»VPÓÀ²9ÂO.7|ïH=Šu-'0¹¥ˆQÑz Åc·M“R#C° ëýÐ~M]îjO(î×€oÄ8-aÐØ³Ž`’Ûp°èÁ­ª—cÕ¼þ&‚´Ô’Ý!KOûU꾇rEô’âx¿‰p«v>ÃX6~Tc×µ FëÉ éž]ºòøùÈoh”ù<­OˆÂØ0Åc‡fˆòTOßS–Õ\R…Y[>õÑ®z)ñó޼1ƒ!†*†³¬åmo“”y«ñ»ÆuÈ ÉþÁÌA†2•Œšü‹æòžÃ/AäIF°a®i¥µˆyÝ’kq¼ã^½È>ðþ5}ïæ7q~7ç·õñù^ÜøQŽî&>ùQŒôF$93q„M%£9å5RÏ{J`òÑÐéñ€Á 2žI Ì¡ú¢&–:”ÏѪäåFÅ!+ÚY«ÃÂé÷N³G“vŠÊ»@…9úÈîš91l÷¢ã~ÏHbòÜK/ÂüjÌY8ÓeƒèÂCŸDÌæ­ùi!÷Jú -'•ø—õ V9Hæ“ZÀš k7#½hÎïéºÆ¥Ov‡òipÊ ÎÊÁ™;òiîjÙC´²º»ž§ïGsë=·®4“vÁ é(¬ÇŒ§‡œjY½¿$«©ä{D&W¹&Õ“hZUéà ‘=béE% Ÿx.S\¨äv<ÿä¡ÂMÍrTVÍ{ˆ”³–ïôÙ[Žj*I:I…NqC(ž}å.Eû,»+EQ½ÁÖ÷³ËŽh&2ø¥{5oøYæ<3H›ïGÕp{-e[Ñçh$ ÎeºI´‹“m:4¢˜ô/8{ÚóyÄ%2Š- zÅè *î|^\Ÿ$å_4ƒtóªWP+ùX·nsÚÕ{XÝ:4È„Kvà<ÄPR{ÊC16äãÊ^xlW‹é‚Zu6HK[yjˆä‘zjËSC¼„EzÇÅL±V„¸[“ÅŒµ×ÄØGèC%þÂ}Øò¶&õ{jRªêÌÝM ’”ƒ”Æ–¥A õ1ÁýP:ÕW~ËÊxH‹—>;î—zx|Y*Ç`†Ür•V¾vØTÞ¬F·¤oa{0k™÷ôíXÒ *¦@ó¼ÍNn2Å “žb+KÙÓYlúV "´ýãcà£âãä#g²èfXµœ`éBkÏd*XqöÓUmp(›{®Zˆdo´38µbÉaq‡·­Ô½}lv7jt 6êèP;XôG›?¿ ðË?çÑ‹? òÃ!l,UŸZìN°ir5%²-ÙØ`+Nâ§™Úv–¢£ž‘“Ì@U¯_ãcç{ªÕ ŠÏ Í4'Ö®H#­Ø“Sô-([.虼<Á™µjlXá亩”¨žp2Iª~V¯3­²hCî›wà}ÜK]ª9ÎuÉ'•ˇj˜\1“«j"ýÇ©×ͳ‹‘*c'¯j…"åÅ$$,mX@±Ý‹Ðñ=EPFYFbFëœÔPºG´«À~zÚ_¤Ž…ëȽc;R³P„ ¤jἓòï\"~r¤,å'ši ƒ`•¤ÈÅLÍVH@‹cÊj^V’8/bã÷„Õ1f ÂÀ3ýÈ3Æá£áã›1 mì,üI?eƒÞ”ô͉NJzëL'}nÈ{Š6ŒHŒZŒl ~t…ÍöŠ:7»³…øm@/L)ž¢)Á,WÒqyPHÛMñ‘‘Üþ5ᜠw1“2±Œ5×óY‡g=Ÿï¬ç‹mJ‚V7l./YÒSýfF2©kP³+ð-‰¿]•äâ&9(ŽËæT5ñÐiÕ‚%…Z¶¤5õòM°€Z·“oZ®«ôûÞsn¦»lrƒGö”Sb´Ùž¼ fùæ8œûŸ¿ê…$ÿ¬pžÀˆ–ïŒÕ… )Mfwx†³1#Ó´¸G7=qú-Mº%NRüOÊp©*'POÍ&…L²Ú ‰vý2  Ð{:ÎØþú5æ zÿšå¢ «œ"p’FS R&¸ñLgçδÁôSD7BØa ¦­Lù,q'—¢Tœ¤Šò+½h´÷tB4gæ‹ ï1Þ9”÷“¶œóóAÏ?5gM6}ìG>J}8‡b®IÉN·h…hE?Ý`Ð4s ŒBŽõpSüi±›Ùƒ·ÝÂõ¶j9OT ‡õž fw &–’ )N¶úØÜ¤Oœmßí­Üc¬‰ ^ãÏÞÓžytžá°ˆ§u³ÛUîTvÐŒ T¿@$«qp}î^‘ì<ôˆ°ðbßhò;ää2“×¾kÄ¡A³;Kˆ•èoHFçp嵓Ò:íhܲ7ìàk\Ö{zzãù0‘`Á ¿âÞªÒƒ¢s0òTí[Z޾]‚êe÷ûÑ!Žˆž¶Ú0¢ãÓKŒpéž¡ŽËìø¤†Ã¤ã~#½§“¡ùò’ª:Z!ÃÔÙ!¬)ÃE‚¨â‚I\ÅhØ-©¼ô(ÍñVÍLRC52©f¬ÑZÞ1võ(j^ªˆdw¿Ù51Á3e$lúI<­¢Û©ñ’¦Ý T7eVЃŠ~P].ÂåEÆ$† ·(¤*²:ÉÊãs塚d™:‘»´#¼k¼³ãîó ÍNqRš‡ª÷pR)Ÿ*'i¤“X„iŒ{¸D‹™hŽÌÞ‰Þ¿fIôÖÄÏQüdÅ9F'yH9W)©¥¬º²6C Kt–ú¬°ö°Yñ³Ò÷bÓ”ØÈÍa¹øGç›™ƒ;ñ°£Ïø\÷"ÐzOmÓŸâ &ŸY‚“~ï?¡ªR¦¿¨¸ Z P è%ÜQÀ}ƒÉ¸Û8ºk*,qc ¨â¹#±32^™Ô'èŸSã…Ž®ÓKm@0¼c‡2PW…Á.Ü8Ú¦7Ó‰žôrÖ5':_ÌÚ’âº7„gÓtQÁF` ‘Àú=rV¶¥IXÈ€ÊíÔŠÎ1À±ûŠÜÁ ~¢†û×±F¯ÚöÓÿz<û#lDÑü'ä>Í¢…èkFžued 7VfÇï®ÇÏQñ¹?}~öµÛ³½uû‹¹½»ûëèÜ®ª}¿•°´§e=ñùãåÙ_°ý%Ü_Ôýeþ~ì÷OÁYÙ^ÂÖ~ýÊöf$dyÃèÊ7#1Š®±ßÿ(ƒø¸^½Èö­Ò6­y9=D8m¯(c7 &XÆZTÿIïNEró¥ÍÉÉèÇ„µOjÛKøýžî¯ò×}ÿ$ž?°“¥ŠqùwýöþxU÷×yã÷ǵ?Òýkß'„mÎP¾Eյ˿ÑSXCöõgÙ}’°a 1Íà‰¸kl-¼-Y°©€ýÒÚ MØlÜŸµdÁL‚®C­óð(¶ªøZŠtu;t6È\޲•,­Y&9÷¶ÌFeg»©l2§£Zn ãeX×ýÝ݃ð{&Þ´|è8 Ô·{?ÔP–LsØ@6TD!ÄVA¢AË<ÿ˜s÷<ÓÌ®+¯µ]‘Ÿ?!S3N¢«C¥\Ä©Ky‰[C3l‚‰ –+e”‡Oø¯féæ‚¦ËxÃïïYàŽˆ Y±gn†\ÚÚgžË[a³ ø¬`ýÐV]d“ î?Íßd A©„’lK½g…¡Gj…j†qŠŸí¾:§A`ô0.–g4Ÿ ÆÎp!ôpN—d½™ˆC˜3&ñMà.úK¯pðoÇççôã-CT^3ć&$_ìÃ[¢cÃ~ê‘Õ*êÞSTÕt ¹ƒï崄 ½ÇYü~íJÀ\kVc6 Èk^8{ž|ëåà}›ßfEVxÐÈÀ¡k†y(dý]³Ò{Â$Jg³_eü|}½âûg°*¸Íþõ7ð õþ8t‚b´ìÑÅüEöcØ.¡4>zÚ‡ê±7~úfξ ¶ƒ¿g™f¨Ùµ;g´r LF´®†Îø_¿±`:Ù‡ªÄ/Ž™!(—Bc?Í'`"§ÜjÅÐâíÃ@_ç ”—f¹KE¬‡ÍòãÇ^d߯l{šûží±5ö9d›f¶™hŸ­¾ßÓbŸ|y~¬áÉg×{.±Ùœ©ÝÜ0ª–›Ãšs6ë×~Ý€¥Ù{vÆf7ãwOJ¬´ ±Í¹å̾²2ž=,ÓVûñ@…ZÿØzØ·U´Ú•ê{£ŒuÃcH¬ˆN§ï¬ÑÃñÛ ËÛ7ËcâþÜv|\´º–½4¶QC˜XŒ¿È‹è÷B»/Æ?ì}Qß÷Sûžë{_öï{êùü:í§§í„U™òvË4]¬ZÍìZ³¶S•W-)ß÷–௜´Ð¾ãŽß ZÙXl~ |‚Æì{Öm_»ï}÷ýñ¾‡Þ÷ÙÛV|Û­ï;úî‹ÝűÏÊÛ̽Ïî?V€}•øZH€ä€sL+űMR>8Ë%Ç}4ómGa/µÐä„15js@û›sð÷7úë;Þ¾õm>ø5g|Ï+?æž}~Ú¦°}5ÞWì}UßWþ}w°m ¶-Æ#æ=á3m·Ù~XÀ„öX7-{,[€Á¹ 4!ã¿•oeø £D† «@I¼h¾ŸKà¢â¡Ü6‚%l\÷Š—¹üzITõ±…üüòR잌ÞŽÝ#²¹ævï]FÂñâœÊé䦲zf¹q2&¢ I Æl†CÒ+Ÿ}Ã-ŸK‡¸£ùk\l¾^ºÍöÈö‹-®}@ n™ÃäŠk+Èc4)³«^ãóÒDÔµÖú æÂAl/®®/ÿlèV@I[ӌꆸÁ˰E3{;àÒjÈz£KáÏ‘cçiŒ1/’‡=ífÇ`U³½ 8ëgóÓžð“»"›6O}kß'Æ^¬Y<ñ°$4ãxô¬ï^ (E»ÜQ¨Í*hKÁÍbŽhe»F ‘t°LŒË"(„®bÛh—ñ´&2”ìW=dùy©îl³ §3`[ðz[t½€I:·3B<6¿‰…@)qt>¨ÃtŸ}è9ñiA)±¢ ¢?›Ur¦þ o• §Oµ˜7\gÍ*d5Žàþ!mR«5°€yÙ,ÒFˆ (@Ý,(KUŸZbÏ «ý¢Iu1xÑj‹Ê¯©òMiqha1pȃÓ{ 9ÚZ ÊbLjô¯:'ÍJ½Ð=7‰V_Pš+}—5¢mWe%âùZddI4 ÀÕXÍ“k ¯¦`ë`‡ä ÈÛ›òãeÚ^·ýÜÞÚ_oöþöd ÙKoT¶²|1 €„€OßÏCÈÔhR$ØÜçããk—Qp¹U†öï|ñá¤#>þ oa=X6·é`Ÿ2„0Ýß„¿cv[rØ"0|R³ÔfïáŽ@; á©Gî´9î ÌhCjøŠš…'ϺvU¯JO®÷ÀË5ê¯ì5Ð ÒâÀùžúFD®Ó'Æ#óMé—€?ì†Ë¶&•ïëÿèȉ –-/ Ç\ ¼•jeëMæû®•6ãά!=PóûãѨÒÞcŸßCÝŽí'Û~Õý‡7C9~Wvà,…ã‰>vTçàDFÆÁX¬R¶Ÿí…ë„f&7à©ëØkWeƒ¯“Ðk/àH·êÈømuÁk™ýë7†UããX‘ÖPy•ÁߚŪ¬Û>Aì“È>Ñì“Ñ>am“Ú>ñý˜÷ ôû+ÝßÝÛšòÙï%i_³NK(k¥9@£¡;›ã£XJéÞfÙ™ÒÏÃá†Y]Šî|Á÷sú~–ÿ:ìïÞ€Íc°{b`7xº•tK_Rs"÷;½ .S±EÇñÅ`oš½nÒ.n3=äÿÂLP&$M’c¡EBˆª%® ìëÀþ§8æ$јrnÄ—9RBX‚£©ü88„Â]æðŒÀ«q#z]zcm³« GèÿÚrüÛ¦èÏÏß¶7¤«õô{^ßæþ¼%Hø:{„{;«ˆzë8x@“®j/Y­ŠµVš};¿íø÷CÁ~pØûd»£ûqG°ß#˜C·I|%ÖøŽÓ0ªÍø\¼ªÿµUþµ›ÞwÜû2¼/Õûrþ½®àh=É=œ¸Ó¶‰óŒrÏÏÊÕè¹h|~-èÛšÿãýÙß±ïá÷ï³ý„ûÏüãQìOk ÛåÑ~Á´_B}ßAÀ[Ž7·¦åžzîAÿ¯Åq_@·5v_†÷¥ú{9ÿ·~ž0¶óDÜÐظù—c’%RùèàYá~¤~¯¿í“¶½Ô¾ßÚ·dû®m_÷}î¾Þ÷Ë?öÔ'ü,VŸ[ï.³ƒ[3ofü¬ö[­^Ž>£ìu³Ì ‹Xó7G>”5¼ÕÎóâÝZKŽ™ _+¦ûµŠÆ›ã)v¡r€ãU:°óë|žºÐËlY º2¼èÔ´T¦¡ £¯3ä¿íŒôù¹Mú±•Ú·[®|–}áÅ.¾ŽÃŠõÅ{~`Ñ0Oår|SºHpia—,Gw¢§²ÞßÂ#\‘VÝ·ˆ$=]=|êVç×jÐ1¤1*p³GX{„e[Ž‹Jö"„}܇÷òºoÙç§Gm÷ºíž¹o[ÄK¡¢¥œð]&FùV9Mœ‡;Æ{ç6Z 7Bp(Fh$>æò=ð¾ÙÚq Š´{8oùØx¬Ü¿V÷}°ï~œP÷SìvÒÝOÃû‰ùÇ©z[QöU'3Z¸h¿yDÿm³Ôç×¹q?ZnÇÏýˆú㻯æ?Vü_»‚ïÃá°ÝPî·˜?n:÷ÛЧµíD·úösávtÜO—»Óôkšß‚}­Ø×“ï5¡‘@4jÀoü²;×ÓËuüißèåSø(âÉì¾±,7> -ž÷Óàw«| ÍPëÜ9j¦ƒËò)ì›Vlg[€+®C¬«Ó Øî(c—5"®aí1 gùJ°'(Þ ë½ðÎËö]€- i1Îuú âWZ~b›Ycx a»Ð±=Ö2nƒ5Á¯•ý¼bñÉÔê.AFZü¼E8Ð(¢çûÝè*ùÏ\æV5ÔyMøÏ§É'ü˜ã>¼ï²÷  q'vi{¢ì”{oÜ¥ˆzÜ»ao]ÿF¨$>¢+Bo¿ïk~\éì·>?n†¾/¶û¥ýêÇ=Õ~øýq@ÞÑ?ÚÛ °-_ˈü”’$Ì€<05Tƒ%PmW›üLÄ ÅÙÝ­åÎì‡Õ± Š7²tËà½m5¦žK{5ǯÓb޼ ö$ï¥ï¿rJPï+é[x‹¡ò¢Üx-îEÞ_VÀ2ˆ¢nF-»ß`Ž«?¬tTÀ#ƒ*ïÅ)Å]3S–/;Qù À“‹Ò:Rª ÒT;ñÀÔ{Ó¦ÑI(V¦ÒwF·±žPaGÚ£p<:*tV‘ Íü@qÈ[DTÇÀçÇCM™ÎùíÁ}?ÛýñoϤXL6WG±yµ@qñ׺"Ó»N”fÚÇsT¾&Ãã`a2B²œfÀE´µU?tðËIÆÀ3­þâ£#jûîè—-»½û˜öqÿx_¿ßéý½ÿñmtBi€—Î[ã;0²—ýê˜,oNõç`îÓÏBi½DŸµSÚŽäÈhùà9åˆÓ£y-ÀÃ@èô{fÔÚkæ!ÕÏU€Ý îE‰Ì]oVÌG?ÎãÉÉQôx??ßõýsèD5¿âÐ^ˆCu5ßâ¤\‰¾[Šç„¦¹ªlÔ& % ¯¸N~V”Ü«Nn•os󯹧±yµ ]Û2œ¼ê8½˜ %ĆNsXye-á¼0à›´’\??ý}zاÓÌ÷L´OVû„¶½lüþ ëæD©vÛ‘ØÏz8R€†Y J‘Ù•E¯|ðjB0l©þŸä÷gûGf|s¹ÛÛ¡MJÁ÷t(z-ÑS5?Ëœ–fèRžGzñ'‘w7˜Td¨GtÙ!МCÇéÛ–|ÁQq$¯ò–ÆÛ >Lùóhò8ùÁßö°ì[!–v3„#O³5dÑfK ÿëŒç=’ßžÛÖÈ.| þ*]ÿ5ÐïßâÛž(?²TöL–=¤q{ÜC#¦”fn6b±$» %x$ZÜ4!ÜæØ% 9'ê 6ÃêSÆó'eàè3šóÃv¶>œ­Þ[GĉÉuÛÝ“ÏùÇ`‰ì8OãDïϓϢ»…¥KG€åU&Ö®œš Ümï<—qsŠð”a3eE©âMª†e~Í”p¼'{ gþþsð?~ ?âöCïãÇóúõHŸ±ß1³[Tí¿×w’Óççk¸½ªÛ×µû'jP:ŸVo¿ÖÉ_Ké¾ÜîKrnümªð2ךÕ~ôÃÚwŽòžÆ¼§:ïéÐßaÿ¾ç9Ê@ƒúŒtFý±w‰«í-½.‡ 0G?ÞÀ¦#§…cÖ‡{ ëå* §ÆÂü¬jxÖj•§X JMÞ¹}Oø½kÜ7–Û“ÙÞþ€·yzŸËÌ÷ûT¹O§û”û5++6 ïmóš·Mazªk`oJÕ΃÷G9ý@g. Óâñž¶Šâõê~²á9âŠf׊f{ì.?¿v ?v©ûNök«»ï…kçox)ò„Ëm®ôâ•É‘…qñkrÜ1 8‡Ú¤%þäÕqRü0Ûo·ÿ¾û3øú­­Ó1Ù®X‰_Çå%ÿ,©üÄÇénD»§;¿èc9­-=Ù#¨˜ÿ¾·ü8ä?° >¯_ø;ÄÁ>Ãl“Ð6OíÇ‹ý²ÙücXÛÈ·_çÇ/¸ÿÊÛƒØßëíÕßÞ¯ SéÌ+}½FZ¦{ÒÏÏ}ë¾·M¼ô²Cˆ|¦ é8„(œí$~¨Ážûþ÷ä Íáêï"óNäòJ|,¦ærwho<Ž'a?&¶øv™©Å«p#vžþÅÖCçú7¨}Ô6%/kF6P{=â%°Ql‘ÕÍšÕD žŒÙºÙês*)s‡W«¿þŒˆ‡;bÄ«mñø•ÅG±Yìîé³EWçgÜ´Cqq?r6dŽg# =¾¢Ÿt;düÛ^ÌÂ~l–©BôFõddk–îa>Gáî0_Ô8-¦½3 ×´`T„¡Ùz yiÈsf?üðùœ‡»>Ž6ä]«*ݘÀb·ù^O¤é˲ªfzbT¹%kzFi¦óö[rö[4{NΖ¼AB¾ñýà=øñ6od·è§9¢È±`)L)~(ß¿áý3ß§‚mºØ¦”¯o¨ƒÏ<#N4„0á¨Â÷Ò³/O?–°}™c%2b=XÛ¥þØÉ~ÏåÛlÿ½üX0¶EEðrЉ+>4{KÒ•uv·ò¿Çáw9;ÌÚÅö8ñïû{@R_ç‘ý¾Î¾ d$¿´hn[ª?–u›vDÎ ¦”±®–—ŸZé*ªðàL¡‹£{owB&ÅrN3[QêAcß—çD0ºÏ¾A%¥Œ³ÏTßÞÕéS™ìÁi§²­qγù?r"Ú}d-¼?¾êýËß&‡}þØæ˜}úžªþ}í:?ÿu¨þ>xûpö)øÇ4½Oåût¿­û¢±/,ûâ³/Pû"¶=óýµØ_ýõúñ n¯éWy{Ý÷]ú¶‘ß7ûÛ`?4|+~Ÿñ÷³ù~~ßÏø»`÷ü:ã?§ÏÏÏ“ÄÓÆv"ùqjÙO6ß?ëþËï“Ñ>aíkü÷.`Û(üÚL|o8öÝò¾¡Þ÷Üû¾|ß»ïûû}AÚ­ï…íßëßæóúF¬úhµájþÀÞÜñ9w Ïïh_¤~,dûb·/ˆ?NbÛim;Ðíg¾ý\¸û*vÆŸÇîÙ}'›e÷Áì~šÝ—“Ùˆ8µÿBÚщv£ äè à·0Å?<ñF6H’ µdÇ5ùà»ün@À»Ëö‡[wwýîîáÝ—³¹{6‡ÐŸÑæåÝÁ›³xsiíPb;ÜØIöñòÏý‚¼8„så*¼¶VRfË<ÚFô”mm*‚7ü'?‚uiäõæº~ÕËk‡[*Œù°E•ç‰Niû5ÞBXÉxlGäI±xZ³Æ^„-q¬SõAïäQ£æ˜Ý›:ç ëNn€± Å«Õü£*|‡îrq!*—W¥Hæ*ÃppHÅ¥q³V¢ ½%8À8/¼Z /=»5 ¹=qzñjauÓ%Nj»]G GD }ýxòÝ>Ž8ŸŸÇ ý¨´§*;í8¤9§Š ;Îÿx ûcú~”_£ê\Ó¦Y§«Tñ¤l›'·JÖRqŸßv×Ëîžù>ìýã3‡Eç`Ħ¿µÍß½ÊcçÄ©‰'1§lx29ùtë»ûbéÆá tç‰iŠ¥ ’eìj¨‰‹¯£)"o-/g™U ojä°b•}DøÊrWE&|Ð'§%˜´‘#ò2yE׊u 1Œz‘sá“.¯YŠTíõíü¢Uöu!‰ÞlS©*™5qmªÃ ßÕ®™!l®¬aŽ—Ü?ƦÕ™Ûæ†mòØg—}Ú&©}Ûçº}>l:Àº·ùûµÑÌõ˜tPód Qä¶Xb%Úeß2[Ió¦Ð'y jå—ž¾B(RæTÄ0&(¼–ùã ü~K¿^ã_ïù÷ ~M€Û¹O£ßSí>ÿûv|~z vwøADtËiÚ³µÙ*ª‚¡¡¦­Ú¨ïŸ†¼Ù/tzµÇ¡³?†ýQíó{`Û¸M‘û,ºÏ´›skw€ýp’}ùTPm‰u ]n^”uÝlüØŽì;–oP½F¹ IH3Î_W.7Ùü2Y#]µ0°–Y󥯒%1êåw,sƲóX!;:õ“ÆI Öž÷׬¶Ï|ûì¸Ï û,û=³(bÇ}¿Šïæäì¨÷ìùskõ]?æÏÏ­ùsë¾oí÷íUzϾD2Bö6ïÐij3æ—Á߃ú5ðïeê×J¶-vût´OYÛ¬ö5ïýÛf€Ïë×¥Ùv±fþYDãšó”½«p'†÷ë¬óë4´Ÿ˜~<ºï©zŸF~L5Ût´OYÛ´¶O}Ûôøo;£è¢ƒ¶d·¨ãh*æ DÆG@•Ø´b©W÷԰þ™«Ç¯ ›á¹àưùjÉQì’ËTr\¡ñìx…¢YÇDÊX3ê5qŒ€Ü] I-^’wg7§Ë÷œ~MP_3Ø>ÅíÓàv¶ÛNßDå0kÕ*| {;­d²í®üMËP±»ÒéœޏÝã~Ý&÷}Øç‰}.Ùç›/ÄsLŠ{Ü€+x Ñ”÷VË ¿Oê?ó_qzìØÜüÚò»ûݾ¯oûÇ×ÿ=Cü¸žßnð¿/ùÿã¤þ} ÿuRÿ>Íÿ8©»Wû~)³O~|øøêº®g¹à]Õ=¥6sØÝ>»¬»²†Îr¾4aw–¿šÃ>þøÞ÷9aŸ7.®ëCÐ#ãà–ý¨gÀ[U*™~Œç ´|<âïwX¼‘½–gj§Ýwxüæ÷(¼K|4þÂ1þÞrÛä€5$Ì×dàCóâöv…Çít¿ò·É?†õcè_¿Íþãý˜˜·¯~ŸöÙcû¶OæßæoûüôÉõ†‚žüVî’¢H7d"Ôâ—Eª©lG:݇lÏnû„|æ»OîËi·{õ~9þ¾fœ=.gÝÙã{¶ og¥ý Ï H\¤íY’[&åžmyÏ»Gçj¥a4\(!AT°GÜ[¦9p+Ü›sýë(î5`¿_þýûØ?¡í+ÛŸæöÀ÷wâªL™ T§“9X·âá/io:x ·¾sJÿm1\p@w¦µ¤%zý+ýqO‘ü‘F¹å¢îùªß)­{ÖëQì#ýùk|ÿb¿¾´çÇøÃ‡¾ûÙ¿}ñ»¿~‚Ûåþm(Ÿ×ÏŒí-…tO3ÝSQ÷çµ=Ò=roîû¸E ~¥Èì94ßy6ÿ^ÿïuü±ÐÍüÇ\]åÏÿý?Vøûà]±÷þ¬„d! 1Q~Í/Vô›•ÔË*a‹'Ñäɸ7l'þ®ææfNK¤ß¯iBHÈD×ðÄû)´ Dóh¼_™œɃÙ`ˆPæÄ÷³ÒÚúMŒ2‰TYäÆ58Í>ÐÂ9˜ÒCƒ½½÷}ˆÆA+B"ì–†ç80¶Z×PÜê³p2@E²¥ž"Ž'ãÖ4WÞ:‹¼»­ÌÆYæ\Óì-œƒÔΩ!Ù'º i Ü«¥à9 >5 ‡?y…8X«Þ9¶ é÷ïQå € ȆãƒËVÒö‹6¦©…„¡EƒÓì-œƒïvjè€Ôš}¶n…K„ÝÒð‡­XYŬ:E…ح΀³ˆY(d8‹åptüÖÿ¦ß„±è«„ÔÔECÐÖÅû5,Ì 6òat!]Јp#]ÃcØÁÝwí^‹v2:ÚÔ·öŒÍ%6“|ã”Wû@4õT´õ€bœV˜ Nœ¥£’ï×4ÁÜDWðÞÅ+`ÛªØeaÀó™/_œÙ½§½ÉN0GÒ÷[rUD …€‰¢}ÐÖäɨ\ ¼}@¼ŠD[Z20Ú?F€AõÞœ#…¤®Ü…O‡ þËèÊ+5Òw¯7þSb¹† MrÁ¹a45\œH£ÒÖ­p ·Ò5<ÇÁ÷°0@È ú„ƒg}HKöP’Ô›ƒ²ü™Þ‚Ù:hè¿&§c± :œÚÑÉ÷kàn +xsâÉX$ ÐaJtFþõM ?ŠJrcŽ£H¬J™èÝ. °‘Pà4z@gq*0|Ÿ=Ä*&BÀm–‚Çô&&œæ{k„¬œß$.™oQ„x%ì°*/ <¥‹ŠÕ„'Ù8'ý™­mv¿ý¤MÜ-p‰09ýù¶Ÿ s#š³]𔄅Ù9†1~ÿôµ³·ÒÕHÔ]rÚVM‹5\z§ÿÔÛ;ÍР‡‡µA‚ Ù:{ m dB¸ÍjÿÇu\ô¤Œ““àÍ•ÎÄ›n´“yíN[·)1Ü% ÀpQ ’=@^ DÎæB²f¤­›àa´4<)ã$.l3¼FሑpU(6Æö‡y”N%ý~á0¯åb¶kp]¼_ ¹ÉSE1ö¥ Òï×4"$ÜjixŒ‚O¬ë×Ü,Æ]8ÈoÊõRü5J³á£ö í÷BõpEâ…‚ ÑZˆÓ9 „†5G$­Ûàn£+xŽ‚¬£r[5BßœÓ òÖ~ŽLÓ›FØ1b ÙMô›¾ŠºJ\@HD«÷káÀm |ò>dG¢­…¬˜n·4<ǧ6.aëZHfȆsŒœ0ˆòg/¹ùmúô›±4e•Â…u A£´päX¸Ù¦†”™ÙikáV„„¬t ÏqpuN‚ý®~á59H“E K%ìòý} -µ7HcõÌËŸ ±'¢uÐ÷“SàŠSó‚;…©´‰«{pë¼õÓ~>¯Fž‚`øÏÊ@ÌÈMÓArŸûñ dÉÝ«ÓoÅ!<$ðØ¦† ­ 4ã@=‹©à@œíì‚´µp#\Ât QðaYœPõÏÊAH(îªP”€øb¼mOAã÷dÝÉÈ%l\CÐè-ÄÉ€¼Ÿ²msg ߯iƒþî&zóç ¸™j@D4¼ÏÁÍ”3p=v“(WP ¸ G|ÖÓsÚ¶:ßë”°¬¥¾h]X çœG|×p&nǼÒ8Ê —‘®à1¾‰PÇ›ÞM˜ï'©®>;Ø5Ô}½iÀˆ¶÷äÔáÐ%±iCCÐYGüà. ¡¡ ÎhöA}È —p+]Ãs\ËFgˆÈÀɹä:#Ô>î¢I¾¹c¾–¿3?Z;™u¬rÆå,Å+ò–+Ô‹†ƒŠý»DØ' _#à¨*¶Ì(¹˜<œÓÍÝebõ£Si£wQ4vr¼˜‰Žð‡P R=`¯è;¼GûÆlŽèA4œ>´!$Âh*xŽnsž'¦Ï¬Q㜠A¢¨H‰ Ï…{’j{8mNˆÆàƒ)ÁDÐà4û@ çsÆN !W³ÒÖ­p‰°[žãà™¥jûL•ɾ“s¯t6—öB¬fó£álÌ"¤NÛ¡¢âRlJ4BهµÎ%!4Xøç¹ôAÚZ¸.vKÃs|nE_ÇÿY9¸|t6JxۮͼOU_7é7¡X¯U¢á, œDïW0ìZ¨yîßì€4: .á&º†ç 80 ³¸ÄÊiö³rPži÷ U+ÁˆŒÝ‚† 'À)a¾¤hN"ó #²!Ul6l¨ŸªI¿_³s—pã\ÃÓ|¾‡G"¼^¥ 'H„ßdÛÖ"¶±¡fDî6Õ í9Q z‘´àÔ4ÚA"8y6/ˆ:™¶n‚K„‰Ò°Œ€O‰Uœ[¸UùLŽ¢ãµð #‘iDh÷4^Žlù2! „šh/Z=¼_ R®`ªcö úýrB lVûç8®£z?™n\‘˜Ô¼ 0âQ¼ä›HÅmù{bÑ“hôÁ5vrNî\CÁ™øz¤ß¯i‚K¸‰®á9 ¬ !_"oÝÑQÕ+ vÛ§xï. jªå ß¬¼]V‰{uÊ}Ñà4»°Á˜äÔPQböAú=ˆ‡„[-Ah‡ŒHÜ`"Öyá ,‚­#˜‘„û¹JÇiìøtYè—B\CбƒB¦†Ò¸Gñ>Hc*+\"¬”†ç8â#Ãïu±þ³r€hµ¡ÍÝÙydN¾¹˜_«“N§‚ H'§#T`j`Åò肤¾²¼ ¸®à9 ]É4:mœƒ°LìÓ-Do0èÑœåVO 3iìºY•+$,1°.H{ï×Âɼ¬£ µž#úpG§pZ%vKÃsZÀ©ÍÏ©‡®q±— /‹[šh¬_eùsf¦O´vºÈ ¹pp¥æ/q.ÚI¿_Ñ}¸½jý´Ÿ+؉Ãv" èga ºßMBW³*ZÕv0‰)é¢m…I,Í£™‚NòŒÇÖd“p :œ}ƺ'+\BFº‚Ç xit²6Am¼2 9)7 †›Fšk¾6}NÛ•NBÀè"ûß©!h^9ioþ¬æ™¦³ÒÖÂMp 7Ñ5,#àѲ²L_˨UÿY98Á`ëhËÁDR‰mPEÃi¡ª+.ÁD”©!hôñ~MN‚O`jHtSG¤ß¯i…K¸•®á9Âo~ÏÃݤÁÓ×Üp p‚¶“y»¤qC-¢)0ˆ½éíƒ>ÜKêœqG¡€¨˜³Òº«o‹€[èíŸcàtx!K½V”ý¬ àLß4ÎÛÕ.@\]3É‘¸ îjã š¯ƒaš¢mþ5¤öUâD>Jhš`Æv J¦ N«K¤ñle…$d1›¯æëvˆ2Ø“pǦŒÜtaá@´=®ÒèF—o™Ù5.Á:ESƒÓì-œSyÓé¬VÈXú m-ÜŠp»¥á9yl*`j•Åœ p¹IB }×Ω•Å EÃ_ÃíNH´Ì“­kºðæÇ9ˆè+&A ÀݯWôá4ü5°bJœ»‚Ç øÌ2|>µÙs¤÷Ð9öÙ{'øM"D>£¬À_ üð‹`ÚC“ì œƒQ­ûàu®ë'OW¸D˜œÿ|Û/Vï}~’p.àQÌÚ8\ ˆ7êF‹~³ôO[%,&qQ ’=À%\é³yC“ÙiNd‚K„ÑÒðÖÅ 5 ®¼>N£ƒøâR¡ oN‰ÀžX–q ÆìSäOí¹‚ÃR˜¡Á.SSŸ}ˆÆul^“$ÜJ×ðwÙó7ñïgåàšmGp+Ä´d«ªG(0ŸdÈ[$c ¤ÀI¿™vFERÔl^qK<;¨~1&¸„›èžƒàN¾ÆÚ™vìåaY¼ˆÎB¡l;UÙÍEˆ§mÞn1‘%Г‘ÕÞit`òÁ8löŽöa_³Òˆ£.«ýcñ´°ä¶VÞ|üT§@Å*ž¾k§õ´ÚCb0YÏ5>ô¼À¹8¸ËLLcö!Zì\%ÜJ×ðÛÒÕ‚Z&ŸI3Lüþ(iÕ|Z9ÿAšq/A¿™ÌQV‰ÄäªÐà4zx¿¾‡P«]ˆ¶2"$Üf)X‡ÀA˱Zq¡²Îd†Àdà¢Ððí«ÑƒW‰¤­ÇÆ`–H(p’¼_ çþ‰ÿÌö¹8³Òï×´!$d2Û?Àé+=]yær‘Ž|k€L|̆ŒrZÁAc•È븧#b&½©à¼8Õyçå“¡áaµ4è«߅ƒ@ÈP@¤–ÙCQ0`˜àa¡Ú?ÇÀCWf:¨9Pˆ³29€»CùúûGºi88 º*ˆ7 3ôõÏ…õÜ¢yЖÉIÀ ™ÊÓª&îýÇŸeŸ7Ž@±_ÉÊ5Õ•›'N‚K)ð­-´Ë®bR´b¹ŽU¢®ÍëÔŽï$1dë8ÿ̆\IS5i}©s—s¥ái>Ã6ì&ðÞ¡Vjù¬$àTáÀ‘›sšeuÛç-ú­|ɇ+K…† “BƃCܳÐ`E ìÇ÷>D#ЖV„„[éžãøò¬¼Ÿ|8׎,çšnÎlg>kï'é{HLçÚñp¶¼>\ükÀ䛬JJ_ýk'¯(§.þ5ixŽƒ¯â™y×|Ó€ `)ÁmõipXiŽæ¤–¢kù»¹:—ÖNÎ&ÆXÌÙúHŒUsõ¤ß¯Ù¿K¸}®á9¾v?}1ˆ(8×_™×XQlyG\é7“BÓ*1.:\CÐèãýšœ¢È~×`iöK •{Ð׿ËDoþ_Å‚[`¤+0ÌwrÜz¦*÷‚*÷V •ÁV¬ÿù`ÄÐô©óZpj‹M q¯³ÒH.áVº†ç88¶«115ÑONFL¾†›¾I ’Ɇ+`¯3Is輫?éèÑ8hª‡¼sCíÏÎ]²ë?=àÙûw0˜í¿À»ÊÄ áîVv;7ͽ²6(\XÏ í&1ž!\ÂP1ë¢!hôâp15XðºôAÚZ¸!!+]Ãsºù*Bu¾X;}r¢0²UGeBûÊíR*±$î¤õã·pÀ¾4wšàÚË9'ž ŽÁ<9ï4N2Á%Âhix‚­)ï¢ügå ^)®ƒmÎ\ôm‹;&ýVÁEà‚3j¶:ûCvNG&p(°½W¨ï|VêrüÙÓt½ƒ¬ øl–@wŽrØÃm•_gël¹ß3¸H¿Y`q!1ˆò«öN²ƒ÷kᘩ³ýѱQHãý£ .&³ýsÕ%à%"8wßÅNO8@V¤É b´¨ ÑèxS¢’ê¢ÁiöÎAÂçÔPp÷=û m-Ü —»¥á9Žð±™WÎ"¸qï:9–T›èd³]ªÅp7y£s ZIçC!"SƒÓìC^6ràÁš.Lï³Òr´µU"ì–†ç8”©‚»Yx•BJ 6¤¦Tº‡îù¢vm$‚ ‹j]JÀ*u—Eiï-œs*Ü¿0IÿêÌEN⪬2±7Üj)xŽ‚od&P³…2X58¬ºzÓBv!h̪Rˆô›ó*Q»058Í>gâ€4N ÆoK¤ñqÊ —»¥á9í¨’ ¢Nmr D”†ƒ1 "ç‘{ÐoBÆœ‹ uSäO-8vóg}¸f£Ï>H¿_Ó —p+]ÃsJØÆQY™èΡKy“pæ%Ž·3hî^Š^‘„Ë¢!è䉼Îiˆ»˜ó £Òï×´Â%ÜJ×ð‡ÆÖ¸ Ú.šCÃ6ÚÊ—ë ú´Ðë¦"#¢a(‹d„DBW(‰ .:Ñ(o}F~ê'­é¾J„ÉÒðïV˜ì|Ï+Øv©‰Ù\´:@ çà Ù¢·¤Ÿÿ‡'›½ûÃ\µ}𝻰BK–4Ì›0Ò–S|ÌÅÞü”!‡ˆYé4 ƒK6ºDo* + N£4p¶ßSå!÷¥ ÒÂ9W ·Y Ö!pM¶{²GÛLƒeGr“ŒÉ…‚ª¤ß5I‹ÀuYÒÛíÑ6ÁI –q‰±4ÑCòh7ÁÜBoÿƒR|[W¯6˜%59–ɧø¦V i+“ÉNêüz.·‡miî4;P’/9Ȇš  ðg¤PÕ‰i45| B‹×¡…~°ÌYp {•Á/E›‹ö™Èa 1eœùߋ̛‹VhàœÂ`')°Íuõ úý ¦„- ÏApÆ8˜ÄnQ÷gŒàT,yvщ:mè"Ô@‹ÄÝêIxWH¨‹8í1éÁ©\¸C;£‡ªˆô°@v½õs\¼,x¹ð–'Ó{@n3ØΪðгFå¡lº’ºŠKJ"ŸôŸ¹† Ñ|çôÁÁ. )Ñià}Æ¢Ð#n¥kxŽƒïâ茟%ðægå t†…ð›³õÀã°8oà[’F: byBàdàO´:ùîÜ9„È -óà=fÁüsX§Ö_ö+ˆ#ó¦%+‹~r̳8‰Î€Í‚$y Ãâ§(ˆ³m•¨‡*üJƒÓYYî §02Ì5äƒAVÞé÷kZáa·4<ÇÁ°nªZ>àþ¬œnŠÅ~ ßi±ú¨õfä; `çßYN5šÞ¯…s`ä ¬È9‹½ÑÖB&„D˜( ÏA0£¨¡, 8ŸºTº¡4”ÁIËi»6¶ô…Ub°pth:)à<80 ¦n f¤ß¯i…K¸•®á9…©\|© Á28V}“VÂÅ¡Å>ÙýujzWª,/”ižY§½½Óì œ“8±IÁyñFÜ{ y”&¸@جöÏ1„7 éòq¸3€ŒCp:¡½Éµð¬~• å¨«DC¹Í©!èòw¸; øà¼þL:·E¤å8V‰0R£ÐÀD/éí!vKÃsxf¥#«©^Ùqö‚SìÍÎåþr TùbÊéM£b³Ó÷/Z¬Àü*Áú¡ÀÉìa'““ì'ö¬®0{ m Ü—£©à9í+ñÑs _‡s]ehœYÎó×9©ÝßXX¦s*º„¯Cœ4èªp ÷ÜÕÙI…s—UÀmtÏQð+c-TÔwrJp˜vÕ3Š;c\+¢ÓƒÆÇø\¢4Vˆp AŽœâœF€ÔÐpïøÚÒH“wôw7Ñ›?ób­tò·¸ƒ¨•(’ã€ÕL [Ûè£7šv+\¢Ì‹ahxŽC——*þT/N“c‡òN|Ðvqû `‹´’ž \‡Ê:HAÐì¹ÎÉÜA»†7WtQ†'iº .VKÁsºBbÀÈ`I…ÏÂ1„ÓsbysL(.TBúM¬ï²JXêÉl/Šúq}$†ÁÏÆ uɦzÒKˆKH„ÅTð€µ–i?p?ÿY8'@ûÙ W~ƒ9„9èwàž†@»xùãífhàÜepêàvÅ{ý~¹ SÀmVû縒]'£OcúpÎe±…¥²¢Í°šl ü.Z+Óù`±¤Ð ºÇô19Žb×€+ôkö!‹­‰°[žãàVxh/Pš»œSneƒ RÅíL¶Ê4Ø T¿šxp’pü8i˜xrM>‚ÉA\ÍÔ`ëìÒH„“Êþ}Íæ_ƒ kqð¡VC!ç]ºs5Bd¬Æ€ßìFï°¤o'߬¥”Viä¡ hvlçæ¸† ¾£ ’ ôé‹À´š ¾F!¨‘AH {œôo (Øà!üÅ^\Õô ßâ…PÝ¡!èÓq˜œÓQ/r€ÉHÒ÷.@j“y-w½ùszdHZo§Åa±‚ip°è–ƒßD;+bËŠ}µ(ALÏì"ªšK¨ ¦k˜tâ¼59‰`S±ßfŽ7­DX) _ãàwÖXJÉÐryœÎ…¢07ÝPÄ5€âû©WÃó·­þNY%®ƒ` ®ÁéîùÛ“C8€ÐЙ}tÏß+\"ì–†ç8”…)ЈŠL†ÏÂiñK* ö? ø%†^9‚V¿}•0|©´hpš}à×pâ"¦†Â‹Ðèƒ4n3d…K„ÝÒð}÷ë‹c»a{ÃÕ á¹é.Bx]Š(&‰+,ì]` ÍT40'ÃBmMÀTSFU8•Óp]Ác òå³^“V÷ÏÂéR²ú}ĹÚÖކíÛ%,p*p2vÁŠ’7'VðìÀ¡„§ ’˜FSÃ× ±ÓoÝ[ v2n (næbY®ð¶1zn(X¡+þÜ‘J0›‹^vÁ6…×øe©ü£ûǽÿøsX¬æÏèdvr?q …sXÜ즎RÍdH•Nãܤ’¶! ©ÁéÓ1-&'óÊ5B¬ð>ŽÀ´p+\"ì–†ç84뫦Ú9°j¡Ç¢n3WM¨Ìc:p÷à´ÖݺJXaöEHöy1°øÌæ™`‘Ñi,+2AÓhjø•…¼­$)÷'!;ÄוïC>üËN¿‰1|¬ýd™5)2ù-‘s*/¢¼}ÕE”÷@Z®ˆºJ¸‰Rðƒe•àr/œîƒsáÕŧŒ`™ ÙÆøÔíì'Z{i•8•†ãœf &Ø>SC?÷â}~¿¦!ávKÃsúÐ:jÖ\GòhÅààr [ \žò#æFG˞Ƃ¥sJ”J¯“k:yÌ¢8}t"}JƒmÜáIT¢ñiÒŠ•¡á9y½;ÓYË¡ÓôäTø¡,Qr`[>”jY=tYtÝŸ|Y%r!Ö«kúðã´sÂS. áiW¤áø–.áVº†ç8§#@‚8&ǹZ¾4¯7c—L¿5iÏZ%*¨SƒhõÇ9‰ñØÒ€ÊG³ ’&/üïa´š?!ª-ža§‚C4nÈ‚Sˆ™?Ù^DL“†G…)Câ:*QÒ0é,ïapÖx 7?K¤ß¯i…K¸•Òð5^11L¸Z=ÄÁ± i»ý)˜¾,„ tƒ¥DÛVÜŽíSµÀͯA“dhàäcEû‚°€ÙiÜHɆp£äN>Ç Æ”.»a¤58 Oº÷ƒð,XX.fWV@ǹJØ0/‚>•7œŒ{‹©AÞE~º ø)½ùsr„`gþú İ×ãJ‹ý ÞMøßIé!g¯$  ³§48­.Þ¯…C?«k0'G™]„„6øßÝdµ~Œ@èÈ&kg«ÿ ŽýÛn‚5oº¸ïÉ«n‘oËß-±.Ífï×Âa„t( uöPåÆœ&¸D- ÏA(í¯qÆk]µ¿ƒs÷‡ô¥“åâ-ðØB³ Tq-¤ßLÁ=W‰Tp›œfJ%'1 Ë5Tx0fÕ&a…K„ÝÒðZAlj5!&YMýˈoüN‘BUY›H4:‚‹B¢’gj:’¬œ“ñŽM ¼’˜}FØ‚¬p ·Ò5<Ç¡ãtKQíœ`¨ø“lí– ØM+Ͻ¶õ$©ƒñXþ~¿•ÀŠñæNÕ´Y8™ií® £*Îì!«nÎ4Á%Üd)xŒ@+ +Ts#ñ\œšââÆ°æ€ùŸxÚ0§hGÆ*a˜®‹‘ÅCÀƒ‘ty¥æy,Ó; ý~M\"Œ–†ç ÖkÎ{³™<69LˆÄãPaL’"ý–sù;ï0gó Ü)8¹óÒÒX6b^z íל«„›èžƒPÝ\Ã×ÚO:{=\©Ÿ‘¸éwÚÖÎT×)q!V`jZÁ`Áh@Ž˜ ìJ½-]¶n„K¸‘®á1 ¥œ<)9Z8•Êæìb¸ØÀ]¼³5hä ž}J\s y‘k)IëŸÃb5Ž€AVéR9ŸNçéäXœïض Â’é¾¶{‚$ Š‚C ø”ÆöN&7›¸¯£ý Hðèàfø´ÀÂd¶Ž@ÛDbñ…Ê|:ÇæÄœ @ÊM7^¦w9u°x›k°ò~ç삤5pB@6º‚ç(x½éU¡ìæ“ýäT&Ëx©v±¤ËýÆ•4ðó0 O‰ 7SCЇcÒ:§"¡hj¨¬}~/Õ¬\­t ÏqÈuš c‘„÷Y9§»éNØMí¬­.5wn¾÷nÄg˜ ™SCЇ*AÇbÁd 7Ô¥Ò˜Je…K¸•®á9Žx#BWÌgå ·ºÒÄ|áÌ÷rÂ&òÍReù»}7Kk'Ã÷#†Ý]fkzb¦úéûñþCBö¹†çäö«Þ´ä±ëÁáM¶oÚ¿#™Þ® äèëŸ{£#Ì›oþjS]ðÖ]V—˜ÀÎáI!wÀùWêBM \þ‹|óúiÌ?Ûk‘–ÆNS½.†ÈILùUûF7rèo#²Ø¿ „Ájÿ_@»µ±ÃVÕÏÂhDC°xp½€WúÍú™Ç*‘°‹š‚ö¥<8¨ÌSCϬî}t_Êà —‘®à1Eâ[b*µTÆá‹FlÉMvFW¼½ˆ'ÆñA$GÍŸ«Ä örhúü«¸}12¶òSA&¼zt‘€=Œp Ùè Ö!h¶t¼ž]•ì‚“C_~ ›†³ ‹<­¤ß,^:V‰Üè¼u NŸŽb59‰!@®ÁUúÒiŸ“V‰°[žãTjÔ³:½®óä h ÐŽI,ÛlQ-È7a©ó*À2KSAОÐs¸ ˜†z‡Ç† .à6º‚ç(øÔúà\£z³AjоX$àön_LÞýf V[%Fã¤í‚N¤ÈK3´š· å;¢Ñ@5¢ !á&º†e\’»2íÊÅœ‰`T€ÃävkÌÂ!¯ªÊrÔ mµΞ梋§Ñ8£0þÛ”ƒñßÞikáF¸DX- Q(ăéHd„‡3#ì®Ð¦ŒªlGÒÚœ‹À‰{Ôh?éòWÙšb䡬lŸQ¸mv«WõÕþ9Õ9 ýYuŽÄiðŸäÑA‰m?é¥Ê5hÌU‰wõ.aÞø±hpš}¼_ ‡¨i¡¡úböAn)Yáa·4<Ç¡d\e4;•2¬/DN±, {mìâzdÖì*-hä‚nt‘0¬ò©ÀIA¯8}8Å[ðEkS¿è÷+, ·Ð5<† ›Ù#Ð ’ÐìG<°;Ï,ȪÊKùÌ:æ¢ß7(«D!Ê-›;Aíï×ÂA… omˆ³uLý¢q)K ¦„LOûåÝhü^­j½b°lUÆBÐç(«1ªü­ŠXAðAZ$,Xá<§† “¼ú“|Ù©àÄ8»8Ý­F¸DXM ÏQÄœ°?Ã4ñ9£© ÊéE“È ð›N-è·PÓV‰{S=¦‚ ¿ ë }ñn?Z_¼ûý—G„’ ¥á9eì$º^‡×Ýžœ‹¡!ö™"¡ûêÊÉwîðºÛ^‰0$_‹Ð´×ÝŽÕl:ÿÌZ†­Yg¢ñêÒŠp+]ÃsºCˆSm§b/''!rò¦™ ´9¤„‹~³8@[%,&hQ òTTäd lr6?V퇰×Õ9ÿ涪áÓvŽg¨²]Êa_89Àì.‰n½›F‘ƒbèÖ¼SQ›’ÎS7b’° çeÑô¡x°à$;O v-×—>H[ ·Ba¥4|# ëÇû´ÏÂé¨Í и¦êËÀ+nJ%ý&¼î¹JXpÓµhpš}—œ“xÅ®—t³ ®kËßÃh5"Žþ€UkÕqë‚3låÄ9#=ó$…ħž·.e¹ôçÄÊÑ<èêÀuÁA8ÑÔÀôSu@Bލôø³Û§æÏp¯‘{Üìò¬ðäœÎƒS&€¨]À Ê(8µ9mûó˯'Ë©!èä9ÓÎéG'×Ðñ»Ï>H[ ·Â%ÜJ×ðG„Þ0’F•'‡…}÷× ÿfÔ¹º‚ÆI¶`n§X±-‹¼†IGiàÉaeßÐÀ¿³/ <­ ·ûd¶÷srÙà>¸Ùçp qNËü8+p}š} õVˆx%N8º‰0ÔÐà4û@ çÆœº«†~-}Æ4*+\"ì–†ç8”Éx¡%¤[|# Uˆî:à–¢­iÛ. N³÷kádf¸¹†ÓÐ+‡å˜†ë2C^,BoÜ«ˆaˆÆDÂ×+$*G¦† ³»dœÃbhS‹ŸÍ>H£Yán¥kxŽ#öV§¢Õ{ñ½Õ©x{ÂÈ|õ«<þ^AbkEüŠ) ¬@W°äðuá¸9§ò*P,¤þŒHi_u,“Õú9ÍBÌ`I„ÏÊ©¬T{K#6#ÑsYkAËÓ—W »Ù“<¼(†¬‰0›bꉩQ€1íKªÖûA”ž±DƒÛ™ÏÂ95# öà†¨ ú"߬<3·¡Àivñ~-œS ^Ѐ¯´wïÂɉI;Âj)xŽBI^*·ñž/™PµvšCdIÆå`Áq.HÄ%¨2® œ¼õN«"ÃÂH8\‡–Gˆ¼ZÂ4AÓf*xŽA—±”®¬ŒÚɱ QÙŠï`ë£2:hJïr¬DP]$êQùëRÁ$³'À8§_QFTí{QL§zè%b:eƒK¸‰Tð5a¤g¢Ý·á/¢sºª ]¬±Þºª DD}Òof‰‹„! kjºEèIpŠœÒÐ9Õixe…K„ÝÒð¯œÍŠt¸ã[8„ B,ÔéÉ÷Ol×ñ¢ÍϲыĀŸÚ5LúÔf,8wË Òp$Þ€z¤íãVH"¬”†¯q¶=Öu„`|ÆHÔÇ6:%^!ÛŒ[‚~3£ózH ¼N¡!è¢Ð×à\™4Ï>H¿_Ó —‘®à1`Nz…[Qm§ÉA¤E±ù½X.Ýþ0¤.ÓÛò÷Ä#²·v²¨¶S0§1[› /êIcqPÿ!áöIÃsœ=l 0·åYyÞ\8,ñ^Y5 vžžP½h×ÉË×cCÚ%ž55]uÛ49ÂÅu |ù³Ò ñ>‰i%5|Cù´u ó¡±MNe–3e»Ò¤ 侚ÑÊŽ½V‰‹–…† ý&-8 AÌSƒ\¥Ò¸–‘.áVº†ç84¶ƒÐñW…Ÿ…SqŒÅe@¯îÝßyñ²uæH£ß¬c½$ˆ¯?58Í>ÐÂ9E¿—4”ƒ¿†÷QTžoZn·4<ÇÁ}¾ÁVýA}òÊØK1΃µÃRjª¡Ò¡z«ž9mo‹¥>­¹2AÀ58Í.ÐÂ9‡=½Ð`×0¬®[ÁáaunEH¸ÕRð„JreÀA¡Ž ïü‚CØäëê¬)WNͶÓi¡\‹„UÙ²üW×0i/œD/dhHüm¢ä¿^Xán¥kxŽC³J­³8º…ƒÓ™‰{ÉËž³^ÜR“V¨ÝX%ˆÃ95„‹E9ÿL {²tòýš6èïn¢7Bø˜—^P  Va:,‡ÚÉôwrtúM€Ì²J°ÊäÔ´0'Ç‚¯ëŸ©ÁàòÒé÷kZán¥kxŽCÍ~œSužvFåqº#@…Ø3nð»8ý&ú¹JŒ# i !èCÇéà0¿ej`~Ëìƒ4bœe…KÈHWðD¤ ÃÁºŸ…c>¡Äߥœ0 óߟi«A+]8¯Ì%œŽj“ƒ©cj(¨ª6û ­ÍæµHL»OE|ŒCÑÛ¬"b±ÏÌØ NÍ9U×YÅ 3øØU ÏÅjÏœ‰A”t×à4û@ ç°žBh°kØs郴Ž>m•»¥á9ŽíbŒjé¨íøY8WanÌÅÜ»ré5²J”Æ j\ŒU– ]NN²8éÅ@õÈÙ¼£\ä쀴uà&¸D- ÏAÐrUUý¼¼\·sf"„üBt5/”•þ‚F8J„»b#R4’úͽœ‚m5?Þº~Ò .³ùÓ~ºOÝÜ"ƒ¡éÁ+;4Æjç7i¼¤òUàv‰{…A"°kºè¨:9“®áhB¦U¤ß¯iEH¸•Òð‡Æ†x–Û®¢™qrþƒh´ÎÙ6ÃŒDx Òoæ„§EÀÛÒ>袉18¶k®BÁ=ÓŸK 1, ?»yÞø9ÆôD ö“ÈŸ c(~é-'F fÖUr°OZ$PK.8IPÎI´s¶>ê9õ‚ýœ¸DX( !Ð g3‘Õ"˜÷gåX$ôMü®…hÞ¸ê@½¢@†K´JþÖ® HNEhc´¯ mŒH[·Á%ÜD)xŽA¼Ó±€ƒ™™Î!f`)æp0ŸhƒO¥˜¹5È7 R¥U  Ü8]¦¹pNóÃL Œ.Š M\ ¬–‚ç(X:XJ¡+x{áTæÔˆ¹û¥·¹³rB¿bHÌãp ,©‹† O tNc¥ùÐÐN‚ÖzíôÔ@·Â%ÜJ×ðw‹©²¶YCåÍÏÂé‰õ“Bìááôì«fî+_,&KP<—öN·î°HÁÏ3TT¼ž=ÆæR!ø›Õþ9Ý—Uº,rŸ•3"¤e´N€~#äî‰S˜à“Ì2Z.Ñ÷\CÐEÕC&‡Å>]ƒmû±S¢ß¯°"$ÂJixŽƒó¢¡Omˆ.Ÿ…“NsÌZjzk¤%N]N ÷¬/·íÛ¹4wšLÓ9Hzœ @ÄÌH*M&¸D- ÏAð¡™ÿà*8³ ^0XÂÎ6u R–¸³JôHÝ(^Ïj×÷U¢ Ýzj:¶ÍÁa »Ðp~¹.}ÖÖ2­n¤<!ßGÅ ~‡#tÆE06ªŠÈ]f=¤OûêOœïøBCÐÅ+8§~74ôú·,]€„ßC6èï²Ð[?FÀ³Xâ#·› ÖëžV’ ➀*!…È7ËÇæåïEÁ_Þ<褊ÝÁa8ÜTÀx¸ÙCQ`ú4Á%ÜD×ð„¦Ä ‹¥eË0•68äcþ®ŒÄɆÜ6ÌX¡­¢ßQ–}J° úÔàt÷„ÄÉ)H E£î5Gà —»¥á9ޏ£ht÷¸¢h¼Ô®º ÐxÖEÊA¿—s©$âDH“,ßGÆóX·GÓíôŽÍ¸„Ûwüù2^—'¼`6]žÌ N5å¨*ã~ U¹ØËvžAã.IË‹ÄÅ]×ô!ñÂã3dà£Ï²ÔÛÕþ9.ΙH´†…ÁšÁ)<ÑYTÀv•FhnÕP/J†«53M\¯DÊæN³ƒ÷ká$¡oKAb¶[ô<.Lp‰0ZžƒP¬XeˆdÏŒÊ\8AÌV’ñv÷¯v!vLñx¤Éu©Ð½$ pQàdv01îY¿ä?³¹Õ ¼–H¿_Ó—p]Ãs±2æS»º¯dÎ'ס«s2¤-ž¥­Å9-×}NN²@‚‘¸yó~q‘òHkuî«D- ÏA(PŒ!`8'úÉŠ°1]@ŠsQ_ Qæ!Qf75}òå †P\C ãÍ.zr—Šán¤kxŒBqÈ­¨…—1Ÿ…ÃÜã|1 Ø6uZ7©c•èŒ N³´p?×Y²7ú=­‰°[žãÐñNïû í¹âœrò$U;ççRéo–ã$NÏ@õš¨^SÓì§gç$ž¤\ƒmdg uU—?‡Éjý‚û†2vý‚}rŠ*—²4¶•úðš$¥dŽM‰Æâ`¡!h¿`N«,]ê¯Ï£æìa…K¸•®á9e @Ï´û©Âp1çŒl7= ÅK«/ÂâÉÏEÀÚlî$õCÞ9J}gó~Ef2ô÷(ä.BÀ fó§ýôtzª~ ©â³r*!×ïµ}éi †Õ¸IÑ€4(,Žé6 _‹† O…¥Çqã]Ã\è$œ#²Áÿ.½ùsºYOt>݃¥88×L7]ñ1Ø\Ž…ã`Âü¨^Åp @ý"1éåœfhᜄ›…ÐÐ/Î6ÞGº!n…K„ÝÒð?2óÖF(ì=&çBýy ʶ;‘ãªv¾˜UDúÍxÛk•`ÑÔtÖ]|p.`\¸\ìx•úpZ9ry•p+]ÃsòP¡úa½¡å¡rFcDe>F/œÄ¬b ¤áp:F/‰Rèt AŸŠÉt†_~º¿üô.Hà &#âzTFÆõé:Šé¢j„ÝO-|Tà0çÍD6páÑt’…8Í…‚ ‹€ƒÓy‚ ] ¸ê¢G:·ÁÜFWðE±,ÈŸ…cøW…A,U(‹Ç`€IêAãÃ鄊•„…¨JV‚f b!'!W64$$¨Ï>H+ˆ¥®a·4<ÇÁ°LK6³WÔêÑC,8`õ/ [BCxµÓaÂO»häébÎ1TŸ?ÑÜ0Ç¢Ÿ4@›h@È<5Ú¯√£×´Á…‘J}0ž¹­ö°ëX³_í[’_-{2¥¥½ÓìáýZ8•áVR`›½séôû&¸@جöÏ1pZl f̼ ÿ¬œKû‚Ê=Üðg‹³ô³€{azžþnø†citÞnp 2oü£ÑïW˜0%d¢kx‚˜Dg¢}>8XÙQ`›EAïkxÇæô›Ð›u•Àµ]´Eýï×dîílÜP{aª'ý~M\",¦‚çxj1¨¼Æ2(ºpè^µœ¶ÓîÅ 5ã‰C=!Јº ‚VáœÉ)•·®®Á FÊ삤òêŽUÀmtÏQè63ÓG„ØÏʩ̕:º®Q“OIë.ÿ\%’®ÀI¡Ò£TæJysÄÎ0všàn¢kx‚³;*[áOU䜔 uZ u: °ðdy»|ý&,àñ ¼jhpúTµÜ…ÃR¡åf¤á~.vKÃs:D‰O\&‡µm†Mƒgd‹S…5ÄDëÝW‰Šjé¡ÀÉÓvÄè¸æšÍ»§s©ƒ>Ó¹d‚K¸‰®á9}g)\®péÁéñ—e›&ؘD§ahTì”@ͺ©!è¤}Dpz×·, aF³ÒÊyÍ«„[éžãP¤‡ g±ÄÈgå <êa°6“YÝ)„~\*÷“¥#³:bHdVS AGépŽ£Rø4$¸Gg¤ì!+BBVº†ç8T$N9]?à+ÄŠ„5Ä't¨h-Aë\œW‰Î‹‚Ðà4ûx¿N&x€k°xžºôA'iYáa·4<Ç¡r;'ý’9óÔ¹pºÊÙT¢p2Q>[A§¤í¸Ž.,Ø ‚v\šà$ÖÁ –E1{H‚¥ ôg7Ð[?‡ Ã4bÔšò"ýoáTV¼m¨‡¢\<ç3hÄ;¡fá”è¨i85í €Áéô*„†¯Btѹə6èïn¢7B7Ñõ¯\ÑŒRwF؉½Æ–dhžl‹@·×¸” ßôŸ«DÉ–¿ v6Ús­&‡©R®ÀœN)ÏD¿_aBH„‰Òð„؉›lEäN&IÇñw 63¶ G*Õ5¢±’­FaQP—X1§† ³`„‚s1úÒPÊߺtòýš6øße¢7BÛd5 º¦»#8#Ö½²|…åiq‹Ðþ-»uäN‰†‚©ÁiöÎɺӖ‹ÐHK¤µg;V‰°[žãÐÛ˜¥ÚYñzrî}6JgTÿEìJ#›G)H¼+•7¦À`˜«+pÚ+I/œ¤ÊÇÔX–Õ»H^¥5l°Z ž£àr"i£^×%×@pË[XŠA𛻏W —ÍãÏ`ͳ¹Ó—ÇmNNá}¹k¸°­W$0ߨÿsX¬æÏ¨ÒÉOÙRÁ œÆXì XBìÞ j¿Û™b “r‘ÀŒ85}ªô˜sÎÌØÐ`ùÇ9ûm-dEHÈÊÐðý¥m˜ H‡ip ¡bmÚaº"dK¦ýåX³e,¶i.-­ƒ>hÖ9©)¶(u±ÖE;i¸JÙ½ ¸uÞúi?çŽE½‘Nð·Éo°#”ÇðDz2ì@´}ÔVz•H e`ó Š#X8§™©³u«Ä°qý¤á{”.áæIÁÓ~½ƒ™IL|Ý? çÞÁšw©_ÝŽFcÅp˜Aúͪä}‘°šãèG‚fï×ÂAŒ©ÁÐñÇÒi¼ƒ²Â%ÂnixŽCǰDÌÏ Ü¥ÏÂQNç°(Ad^Œ²8 ߂6Y* œfïש r 9ÑI¼l¤sîÕ Õˆ]CM¬Fì}Ö F~HÈJ×ð‡0Ó¦\îŸ%qhbdһɊ rå5—t:^FbÀ͉Ò8®!hvÎÁµëÔp—köAÉ[²Ba5<Áq1 ¸-™)cÁiÄ|¸žÆàwÕ€r!äÔÉ8ˆ)12âRàäÉ›®`˜w¨9/^Cÿ%Èò0@wû¼ùs ¿`¹?“Q ¯TZR]c…(äBâMß3þfžókiè45+‚bxEóÂ<æÐ^<ƒ3:w 7V ¶Ç²e]¥_³HÐ×výñêSx¿K\³è§pšÅ'AÿAfâùFs¢ß‡~’ZµÚ*ຂÅ~Ź"®š_•ëpp, ¡<|φG`+-®2ΠüC4ŽYYìÒà4û@<’sP°34Xr_­³ÑèƒV„DØ- Ïqðrdmâ†àÜ3âÔƒWkã n@=yù&ÚŽ'¯çB"ñú.4ˆ¾"útrŠ0$¨áb$hôqEô©[a·4<Ç¡çvÝ Bùgåàøàœ‰“)¹1E žº¬£1^Í5=Û9×E¼ii°ðÿRf¢ß¯°"$ÜJ×ð‡JÞ[_•v ¨^ð­Ãñ82 Àö¤ô™ì»ØŽÒ°Sâ:yq$NÖØÃŠAX…hÞµMöH˽®a¢4<!ÀÙÄPƒÑTÞT¢=eâÚ"íÀ`‰„{ÛÏ ßôŒ”‡Ä`ªƒ4ˆö>ä¸ 8ή˜HéŒ>œ~¿ÜŠ˜vSÃ×8xã\X­¾áA  àäM¦fEÛEØÑƺ<¢m™íH÷F[v×´ê&‡ òÔpe`öAÚZ¸.áVº†ç8ø±zácÄ·æŒû![r üƒ¨£s¯¦Ò-Zqþã!Á€…Ðà4º@gNª® XÚ£ ÒÖÂp‰°Z£¼«eØr¤L‚àtÜËŸ#1Љ<Ž‹HKM ËyÏg}•8YÐ#4¢(š8VXÒÀ°ßÙG.Ï´Ba¥4|CNE@ÃѳÙèTÇ®5ôéàccMîò—~r÷'–øSÊüļӧƒGLãz£ù‰¸©PNRßäXÂX)xy´UÅê19 ß>rX‹ŠNÕÊ$׳,×Ar—èLð N³$Ò:ßþÔÀêϳÒʤ-«DØ- ÏqèîxßÕŠtð(^XàâwtV…j™Wý­»ç²J¤Y™ œfº}&‡I¡!#5öAZ×Ïc•»¥á9…AÀÉï#»nÄ‚S N×Ì@ûƵÍA¾‰=t¬÷´ÆH/)pš] …s«^»†ŒrWÑI„BÈ«¥à9 %ÄC²ZAͬaq,ÉÐrÓ˜e÷­€ÛÉsÉm&7Š{ÕÜIꇼsLq4oƒ‘P®¿9v¦àa0›?í&oI/;n³æBpx(µ•Öî¯ ¯bÈŒ¶Iý&ôµJ¨0Xhú:npîa«¦†„¯ÙiÄÌÊ r¦•Ôð=Ž€6b`㥉àn°BD¸ÇÊLâÛûnÂÖþ¾JXu´hpzÙM8G©–®¡£˜Ììƒôû5­p‰°[žãÐf¿"2«zn¦3ZaÒC—q¶B¹á¬KúMl®¶J$¼ùSƒÓÕS3'§°F©k¨‚}ò>jC¹.áVKÁcœ{d+W9Y€ÑxÓžˆRbŸ L6ÒòÎ^‰¡ÕVœæR6I–fˆæ €i³ÒØjË—‹¥aPѪÒOÁqOü|7Í0 K>³‹ËF¿œÔ½iZþžu é̓>½öŠs˜Œ50kö@oƒLp 7Ñ5<¡ÚUWŸ¦=3yÑ97UÙÞàûÝjrfhVkÊœw¢ÍÝ7ð=O ûz"ÙÃû5¸êšÍ“€Í½ÒÖÀMp‰0ZžƒÐËÊeàÏ©ªpz²ÉÁœ:|ØÀ~/×.‘¿}Q rv†ª“FÂöA„3ï`Öv\"Œ–†ç t݇µvS49–äË(£ý%gFÚÙ'ORCiù;+0Ïæ¢ÕÁûµp<\ ,øXzý~… !FKÃs }€OŽá UqŽbò¡J—¡Všå ú½&J¢dâŠÌàìAÁä¬9{–Ã7ý¤õ€Ë*&ç?ßöë-<ÿªäÁÓ³ÅÑ:‘ Šþ6è›a)ÐoÆœ‰Ë¦á©ÁivÎq4dá}z¤ß¯i…K¸ÕRðD<«®P†?ÇÊèa5¼Ú†¶@ˆÇÓÉ7ñÎå泌¢–š;ÍÐÀ9 Á ¡ ñ#zH~Ó&¸D- ÏA(8^\J'Õ”pÎ¥WÙÜ.M5ÝL—® ñyËŸ+ö³uÐ9"þı’vÁû-¤»²H„•Òð5yî3=EÀ®Ÿ…SýzÓmÂSÉú…j ¿iG}Ë0ÌX48Í>ð¤ðØ©¡À»4û(îÑ +\"ì–†ç8”AÀ:Rçr2ÀÖZ+Rbþv‹w7÷§a¹0ò%ym‹KX%ˆ285]TfÀÀýSAÆùì‚4b4e„K¸‘®á1 ! `su¿LJË\8¼»3(JK,)ÇEß‘7Rù!0èJrA+c28y` yèîŽ]ˆ„wŠ6„€l ÏQ(V °žAiB=NÅíY¶‡® Ë'®ó3ðH#\•)‘P¨djpš}üÎÞçùrÝÈîÜ×ß0‹ZÖ[¨L‚à¯Yº£§#z×ExÑí…]’Û¯ÃW’Õ’þçœÄK½^á|ä½¼$$>øñ奸Îu­ël–W({Ê£#âf ýyááyûmû$ÃC ˜×FÏðËó‰xøá?\•€áQߎÓÓp[ QælFS.z‰ìæí›± –|‰(šƒQª†þ<0bº­ K¬o‘¡”ÕWÃn;&ÁŸŽ‚olQ}!‚Ê>N»7Ž6¹\^E´àHY}=¬Ž_N`iÔÂr \£䈠QA¾_V,C[=/ôóV@É(öƒñ…i¶6ЧÄmU.Š?°×|}ý}½€•ÒáQÞbx*‹¾´ °Jkaa¦h ! Q5ô'ÁäæŠ4c$ª~ÞŠg>åË÷.b¦ë+Ñx%½Ís‘ßî>5DyCæ|Sv_Ûj@ökkeÏÛdr(JÕПß7±2úZ7.liÊù¿¿ _F§w;•ým–áÀûbTÅ¢¡,¶¸¾¿T²vØÊü%ƒ!²‚þì¼þáËÿø²Y‚º2ïÕ;ÜO'À_lõß?þöëüú»/ÏKÖú„ý¿¾¬_ÿþùß¿|Y¾þÝ—Íö˜²åÊ{‚­6}p]}Hy}Ú02Výj%«ýÿóôþã?©¾5íù:ÐiÈ[YíÀÿúÅì×ÓäóÿÏ×ò>¨â µ;ho=cŸg{âËÏ_lçxÞæžßöó<~d»‹?=ƒ_:èyoÿjðýÙŠÙÇ5;È!axÞ¾znâë0O¾Î_8¬ØÇ°úqëóèÀÃ_8îÜí´–ç—´<1Ýq›åÛÍ?ùçÔžF–Ic÷<~©µú<àü þ;>lŽæ<¦×Á§eÓ¾OëÿÝn-vÛ{sQé\¹.Û÷᪚˜†Â4 ê/2½#Çú“iP¼J_.*‹WØËE¥ ×E3Qè<ü:_&*¿p‚r½ÎpùúÏÏMd]ì›ÿÊÿüø|ý÷¿þòïþÃz/_çªÞž.ü¯ý7cž¯öÔ?¬ÿižÏýùòí¹JúµÝTŠMÆ>Ö_ÿÆÄò Å:ÙáWv®hÁÙ0çÓÙz‚³À~eî†ç²Û¨¡NŸßÌÝ?~ûÛ?üü›ß~~þñõüý~ÿÇŸ~eï Ëu~ûÓÏ¿ÿÝOÿé×ÿåoýÜMÿá?ŠÝ»Ò}›­ ±dîçRXŸ“7õOßþËOOåÏÓçØÖoÿôÓO¿Ú|1Öúí×?Ùf K9¿ýï?üô+K¿Ü×òí·4œç·¿ùî¡xk¶ÿíòt»Ÿæ~åܧ_=÷˜e{^ÌŸâ¿ý??ÿ󟽥í\—ûÛ­"Û»¦îߎÿû9C{ý¹¿ý­[êõÔñí¯ÿü›Wá9Ô ÷¶ì×·çcbMOHx·ð{†]ÏãÛïÿèÝc´m’Ÿòå¿oúo¯ƒ~ y©ë·ÿë%ÿéOlóZ¯ãúö\ŸÀ~çÓs­~ë=¿{þ¯?ÿé§b}ÏZ¾ýo;¶<ÿ^‡hìs|ûñ®§«ô_ÿ•çºÖoÿ¹³u…÷ýñøÖãîÔÿþŸ­í€ú|ů3úýOŠãâ X·>ˆ?2†å9åŸ?úý¹’ü£Xœ¤}¡õÛŸ¼ºû9N—ѱöõ}oWôs=—Ý“5רKá¹€Öóxõ ž/þyÄô]ƒçaå ªçõeCšJ¹.çÎJ±»Gv…b¹›®ûð¥Ÿ/—”—«X&èÒµ(åí²e‡}\RÞ®Ôí—KÊÛ5œÑë_®ÿÓÒ÷xÝŒXü¼¡-v{|º~W°û㯞;¸ípì÷EV¿Za}òûàËv5›Ý÷â[]Gf§·_Xˆ(Åéƒ+3Wõ~¸”Îešz¿]T:—åί]]TÞ®Í+o—”Îe »¥t.žÑËõ:ǿ䋉GƒoŠù¼ÕÛÆDçy¤of}3Ç/~3ëû›9~é›Á%µ–Í€üw¨g?Jÿ=¾”íEgÛ;®Ï;²­^©åôgòŸñ ,¶èúûi?ñçKÌÙ÷ýù@¾oÏ}OÚúÖž©FÙ|–fn^Üðó¬*ÛC¡n-Ï“.êÈŸ¼­]z޲,³…?‰¿ùóç'K{Þf¿ýù¹}þüÜw{*ß~ûõ7?ÿ럞ۢ1ÿïåøöóùÉv9x> ož<²ÿº¢6xÛßåž›ÆÚÝéâgrbgÓâ,|»ÐVcìÖÂs8nWì›3Ͻáb\O FËŽ÷7S0ïTl¦Ãï&ëµ8o¹<ÝG5eõy›bé$þY-Ùbµ£žk¤à¨ê½ºb´¡ž­­[ÞJµ£@Z1åôábi <Z?ly ”Û>Ší³wùQ÷â“~Å`Ü›{lõŒµn$ ´~o~Õ[ú½â¨ê«éŠï€Ïî{p”ãTëºçÇmå¹úO;çb¹Ê·FŽ*ϧa»vyë…P³b¿ÃóveõŸ9· ßNY°7E9+[/6‰dWĹxVOú{>ó8ñíŸ_µ£Nï'›ºI±•[޲-†ϵ¬øvŠeòZëöŽÖí¥Ù®Ë’ûQ+vA-žÆmE`JUë>|mGí|Ò{³²oÇt~m›ÌðÖ/µn/vmØr»‚£5*6¾xÂçfܘKÁzåµÊ”Õ'Í‹%x Z7 J…R}±b£{ŽÂê“rŸ¿ç2Aë—Z/§¿t›n_qÔå;|l¾å<÷éJKÚCë¶O¥Íû\ e$}[dëÿýÚ(¾žÑ”]­Û‚\›´Ä\–Òf{[–;¾í`ë—ZßN¬|ò5Ï8êÂ-+x"b#ÐÖúó¦ËkÃx’F¾±i\ìw´G[±ÅÖºM:¡õj£½vÔqòÚ°»Œ­m}nüv,çÊÅÏOO­_¾^m³a:\¶™ª­+ëÆkÃrÝ­uÛî­Û]ÆF·ËvðÚ°©FËd±MÇðíØ]ÆZ/»Z·E6N\΅׆,¡Â`|øvŒ$à­ß¯ K<²µvÛRymX*´};ÛzðÛ±ÔLký©š­Û]ƺ ¶P׆âìÛ±T\|;ØlÏ;§ZgÏ­uŠáíÛqÆ’6‰â­ßѺ¿¥~Ý8´kÊí‰è›,ðíœØ†b«›Z·gº]µ^çæìÏͦ®ð휭ףòÚ0]õ‚tþ>Ù[ t.O8è\T×\÷躜NÿvIé\eü ¤ ®½Œ®}ŒþJ¿Õkò[½öñ¥t.gDt.*o×í{S¼]R:—ç u.*«ŽŸ„”ÎåäÕÎEååºèür…Ò¹|mFç¢2¸Ž{t÷èò„”ÎE¥sÝý(KSW]GWë²”—>z)«z÷í¢Ò¹|Mqç¢Ò¹|ö£sQy»Šï>òvIé\Õf·:•ÎåLÉÎEåíÚ<-šÒ¹Êøû’Ò¹¶ñ:–Ò¹ŽþÞД·Ëö¯íL:Ï:^YR:—ïÕ¹¨ ®ë]×ø¹çÊຮÑugh¡þÎ&epmɵ%Wéßl›Ò¹†7ͦt®£ËjÊà*ëè*ã§z:(hpÕñSµ,†Þt¦{Íy ¿Šsœç*¶;íðû’ò×»®}tIé\gÿŽÜ”Îuõ#GM\÷>ºîñ—x }š¦¼]÷6>ät®c¼¤t®™;/•Î5̆5å岸»~|S:×0NÚ”ÁÕ 5¥sùbðÎE¥s¿ëP:×Ý4å¯w­ËØâšÞ…]ëïp¡t®ñJçÚú7Ó¦t®}x‡2ºîäJÑ¿´PW9GWIÑßÃ=5”·«,ý>”ÎUú7‘¦t®­;hJçf$šÒ¹ÎáþJ纆{j(ƒëºG×5ÖµY:sç’2¸¶Ñ4ž¡ŽÞ´ï€VÇïzKóp±kz¡t®»_hÊÛUǾ`(«Ž¿ )ë?y)ëï8R:WºKÔÉ]bOw‰}r—ØëÐw ¥síã½WJçÆšòopÝãÝKÊÛu,åXÒßûq–¦ ®¾JçòõÑ‹JçÚÇ{”Îuײ”ÁU÷ÑUS\÷Ð'åíbîâË%¥smã9Jé\u¼ëJ\Ã÷,¥síý|BS:×Ýñ7åíº|ÏÔ·KÊÛu/ýXlS:×:Þ¥ ®~T ”ÁÕ¿Û„Ò¹¶~Ö¿)«öó‘My¹ =ÑÿzBé\ÇðJç:ûº¦¼]ë2Œi„Ò¹Ž¡ÏÊà:FÓ1zÎáÊàÚ¶Ñ5^ƒËGß.)«öãeMé\ìrS:×ø4¥s Y?My»¶ñz¥s­ÃgJ¡ó óÏMé\ûðFÊÛUÇÕ=¡t®2ŒÐ…Ò¹ÎT×™ëÚ×1z)«ô–ñ—c»ôŽóûÏ~ñì)§ÆµºŽ®:~Nû=ô†C\}O1”ÁÕß½Cy»ŽÚÏÊ5ep]£ilÏrp“i|òز“þ¥Ðy†ê¦t®k¸'‡òvã•~æ+ý¬ã¯TJçÚ‡>u(ëž:¡t®ë{ÉPx{®ÒÏ÷4epõoñ¡t®cŒJJçß¼Cy»îu¼ÃHé\ÛxOËsŶ­ïŸ_¡t®sèù„Ò¹†Y¦t®{|2Iy¹6[cÒ}¡t®ÒϬ4epõ½åP×ê­Û2®Ë ¥s ¿1 £çH¦ÔÞ=Öt§šÖñM9”ÁÕ¿‡Ò¹†<Ó¦t®cï ¥s9 sQé\cß;”·Ë¶üí®ÀP×QG×1~;eëç%›Ò¹jj±NZ܇ßb(ë4Lrç¢Ò¹®~&@ÂÛ³•¡çÊàºÏÑuQmãr(ëJ-^“‡¹ÿ¦¼]uœ ¥s 9MMé\ã3#”Îu £5¡¼]ö&Þ^R×pO’Ò¹Ê÷½ÿ5Jé\{rí×5Œx„Ò¹ú{+Û± ½•P:WÖ’‡Ò¹¶ñ7-¥síCŸ&”Á5|žR:וâº&q]߯єÎp|k åí²÷ðþZÒ¹¶ñ®•W.¸6ÜM¥ ®þ½"”ÎUÇ;”ε}²P:×1Þ'¥¼]Wzº^“§ë_ìêg0Cé\éézMž®×>ÌD…ҹƱÕP:×=¼ñ„2¸Î}tã§zïC/)”ÎuŒW½”Îu-Jé\ý ޽N[¹Ù9$tž!+·)«os¡t®½·ìã߯¡JçßÔj^ýàÚYF×x'2x]߇åí2ˆ^ï’Ò¹¶á®Êàê¿–P:W£—Ò¹öþ-EÂÛ³-ØW(ƒ«Ïj¥s•!C"”ε ý†P:×ó<ëM:Ï=Ü­By»ê2Ü;B\ý8H(kÞBé\ÊŸ¦ü\ãTÍëŠíIÓ†Ò¹®¡ŸÊÛu”a<8”Î5ö²Bé\uü-)»øîŽ}ôRW?_'cñÕÖ¨÷¦#]7t\£iŸ¨ç:<Bé\CþnS:רÏ¥s]ãg*åí2‚Aÿ™Jé\cO?”Î5öBé\ux_ ¥sCo3”·ë^Æ«^Jç:ƺ¤t®sx†Ò¹îïCU÷ø^dÒ•Lé)v3Ï¡¼\{·ÂÅîïëП¥smýzÓ¦t®ñí7”ÁÕ÷RB\×5ºÒÙëðvIé\c¯ ”Î5Î<…2¸Æºrv‡mÑÏM‡òv•u˜7 epõOêPWÿk ¥s•áÊà:FSн O‚P:×8nJçrÑ›2¸¶ktmãQŽa¤#”Îuö¿B ƒg?FÓØ0­¿—†Ò¹®¡—J纇»w(ƒëÅ´¾ŸÊÛeY½KJçZ‡¼€P:×øþÊàºGÓx†6²Ñ{¶ôYux£ epÝÉ•î4Ç1ÞM´ûÑÆY—}2ë²ÛþÛÃ'z§‘#fõs¨¡ ®á÷*¥s}þ‘„Ñs$Óxx´á—/¥s ½ ƒgøEŸ“_´igr¥ó³5÷¼¥ØF®ýg(k|ƒ åíº·a¦$”Î5fX†Ò¹ö!· ”Îu ïP¡t®s¼Iy¹ŽeFCB\ý]+”ÎuOýP:×5üòC\ý}+”Î5p@š2¸ÆsL+fËad¿>.)kà€4¥sÕá=>”Îuö½ çú¡¼]e¼RCé\µ§Ðyö~åRS:טÇJçV@6åíÚVû÷Û%epõOêP:ר ep•:ºÆ±Óú{D(k`“4¥síÃ31”Áu%×8û|O¢¿¶¤t®{ åíªcöT(ƒ«c ¥s «3›Ò¹öa*”ÁÕßSCé\Ç0Jç:S\ç$®aÝrS:×5Œ|‡Ò¹î!"”Á5Ü•ê䮔橎É<Õ±×!&”Î5Ži‡òvCßSÂ_íÙǧ”Á5Ä4™]²íƒŽÁu¤·ÎÃÆ:…Î3Φ“9ÇÓ“žR:טmLÖµØæI}$”ε}®P:Wúõ\“_Ï5®¥sCR(o×ݲ Øý½ö«Æ$ ž!j)kÌW åå:—eè„2¸Îä{Hç²ã5¡t®q´0”·k]†lÈPF×\÷èß¼Cy»ŒûØ·(åßà*Ã+”ÁÕçG„2¸ú§~(kÖ‚†Ò¹êð«epõy¡t®ñ}%”·Ëú }\RÞ.[üÙ»¤ ®~Ü ”Î5®„8'+!Î:ÎÕ‡2¸ú™‡P:×8&ÊÛµ™O¡t®{¼¢¥¼]Ç1< B\Ã5!¥sýzø¦t®kXSÊÛe”¤¾.)«ŽWô™xå¿·s©WiZß{ ¥sÝã-åíº–aô ”ε~Lëøn”Â~Ì3”ε Ï•P:×1Œõ…2¸†kPÊàê×ì„ҹƕ=¡¼]÷¸²/”Î5fs‡2¸úyÿP:×9þ¥t®{èá…òr]˘JçZ‡q¼P:×6ônBé\=¤)ƒ«¿K„Ò¹Î~OB繆'h(ƒ«£kÌ*1Âb?^Jç*}QBçÙ†7ÊP:×1<§Bé\×ð\åí*ï£)ƒ«; ¥sÝã§%åí²÷í¾E)«ÿ@Ç_´‘ËhI÷?ÛÏiø¤¶<¶h Ãþ÷ÊÛU»¾)Šý߇u¡ ®!îš33.l<>¸ÆûöUÇÕn¡t®q§—P:×8§Êà:“kìé]»Ÿ‡ ¥s)ú3Goÿî[”2ºÎä¯õ}`57¥s­Ãs.”Î5f-…Ò¹î!Ó4”·ëç/Cé\uÜoHJçg®ÉL€ñ‡+^Jç3sCé\é—xN~‰¶‡j]é>óôNƸŽI\cŸ,”Î5Že†Ò\ñî(¿° Ô¾ï¶ÅÖ(qo;…v,†pý4Š;„0¹ä?ÎÏ â…&iÕRÑ>/ˆ;”pA;lâæó‚¸C+4_ óyAÜ¡Ð%í¶ŽÉçq‡—´ç©2yÎ…ð@òA>/„ûÉ­Bþß·¶Û‹Ðç…p‡B—´C± á….iWÄÎ¥3Pè¢ötg–î.ÀRQì¸C¡KZUì¸C 4zú¼îPè’v*va Àš¿R}^w(áríö„‡Ï à….i›¢'B˜\ªŠ½zÏÍÀ MÒ®ˆœw(tA³Í›ùEZ\(3îTd¡¶EÔ˜¸¡B—´=âÆRN*á‚v*nÜ©ÀÚ­¸ p§BµÕÁçŸp§.h¾iç§Ü©Ð%­*zÜ©Ð%í°;Ò§Ü©Ð%ÍŸp§—´²(zÜ©Ð%mUô¸S¡KÚ¦è p§B—´Ñ àNÅ]M;½îTè’æËB? àN%\®ÙrÝ .Ü©Ð%­Ø‹à§Ü©Ð%­bÃï¸S 4Ÿæÿ4€;¸B»=îTè’v+zÜ©ÐEíé<2zÜ©Ð%mSô¸S+´]Ñ—B….i§¢'À ]Ò.»_~À \ÒvÛåX.ß J¸ EO€;º¤UEO€;•pA;¬cõiw*tI;#zÜ©Ð%íŽèp§Ò\¶7«ø¼p§B—´-¢w‚;…0¹´+vÜ)À#é°þÁ§Ü©Ð$íRä¸S¡‹Ú¹(r&:S 4_þñiw*tI«Š}_£ „]qàN…i§-Cý4€;º¤ù$Ù§Ü©ÐEÍîöˆÛB›M~À -Ò´'¤îTè’v(nÜ©„ Ú¥¸ p§BµÛ7Ðû4€;¸B+Šžhv*tIÛ}¯ ®Ý®äO¸S¡KÚ©è p§Ò\®Ý=îTÂå[ç-ÝûÁL’Šb'À MÒªb'ÀJs¹æ¼O¸S¡KÚ¥Ø p§—4¤„|À ]ÒVöp§B—´MÑàN….i;£w†;‹n¡`ù[ŸÆo‡ ¥›Q ßN….j¶}ݨÐ%Í$? ßN%\ÐjD |;•pA;»C{Q¦…ŠÃ°? ÞN…&i7{‘Îog*òiðv*²PÛì×õiðv*á‚¶3f²Û!Ð#éTÔD·S¡KÚ¥¨‰n§—4[#“ïEéBx ENp;º¤Uö|n§B—´/çn§B—´3b¸ ]ÒnÆNn;x$í«ýJ? ÛN®Ð6ÅNl;º¤íŠØv*á‚v(vbÛ©„ ÚÅØIm‡@¥c‰Øm§B—´¢Ø m§WhU±ÚN….i;ûì‚¶S¡KÚiOÔOƒ¶S ´[уÈN&JÏS=ö^è=Ï{,È ‚@‹¤ª¸‰l§B—´CqÙN%\Ð.îÁ,d;º¨=EPº¤ÆNb;xBÚØW°J¸ íŠÀv*tIÓŽÕ¶¿w¬nÚÍþ¢€íTè¢ö¼Ç­lÀv*tI+=€íTè’æË? ØN….i‡¢'° \¡]ŠžÀv*tqãÛeQô ¶S ‰ÒªØ l§B“´M±ØN®Ðl]ã§ñÚ!Ð#éTäĵS ´[‘ÕB….j«oˆúi¸v*tIó”ÂOõS¡KZUìŽkG™*ú»k§b¦—v!ò€µS ´‘¬ ]ÔÊŠÈÖN%\Ð6ôÓHíè‘t£¿ v*tQ««â&¨ ]Ò6ENP;¸Bó7æOµS+´ƒ±“Ó!<.ÅNL;º¨íž¾ði˜v*tI+Šœv 4QªŠœv ðHò1¢OôS¡IÚ©Èw<¨Àڭȉi§BµcýŽ Hi‡@¤M‘ÒN….iU±ƒÒN&Iz½i§B“´K‘ÒN….jçÂÈÉh‡HÞWû4D;º¤m9íTÂmWìD´S+´Óî Ÿ†h§.h7c'¡=”®U±3” ]ÒŠZ  ]Òª÷ƒÏ!<Žˆxv*á‚vÙ§ÿ >;š ÝKDîÓUè¡´FÜHP¥B“´Mq¿…ÁãhêOƒ³S+´SqÎN….i>ºÿipv*tA³4—{“ËzÝT­0v²Ù!Ð#©*v¢Ù©Àš§œ}š ]Ò.ÅN4;º¤ÝŠhv*tQ[WôÍNÅ]MÛ½ÐìTè’¶3z¡Ù©„ Úi}¢OC³S¡KÚÅè…f§Bµ²DôHº¢B—´b÷ÉORWUôL‹¥Wh‡¢'šJ¸ 9˜áÓÐìTè’v+úhv*tQÛVEO4;º¤9þT®;”ærmÿÎñ“‚@¤#b˜J¸ ];–ÇS —kuQì³S+´¢Ø f§B—´Êþ£ÀìTè’¶ÛoòÓÀìTè’v¢×`v*tI»­ÿði`v*tQÛ׈ð *á‚¶)z‚Ù©ÀZUô ³S“K‡b'˜ MÒ.ÅNä:º¨=ë­v.(ƒ«Dì³S¡KÚ±ÌN….i;û¿³S+´ÓÞ> ÌN….i·¢'˜ ]ÔΕ}`Ù©Ð%ÍAŽŸf§B—´ªèwÞ ÀÚ¡è f§B—´KÑÌN….j×¢è‰\§B—´UÑ÷ÊàÚ"z€Ù©Ð%mWôÆfg¾üüÓÀìTd¡v³')0;•p¹fI°ˆ›`v*tIsÈܧ٩Ð%­Úr€O³S¡KÚÑÌN%\Юˆ`v*tI»=ÁìTà¢vÛÛ(¢'˜ ]Ò6EO0;º¤í6¦þi`v*á‚v*z‚Ù©Ð%í²¤îO³S¡‹Úê‰`Ÿf§WhEÑÌN®Ðª¢'˜ ]Òö)f§.h§¢'˜J¸ ÝŠž`v*tQ{Þ8÷.€Ù©Ð%mcô³SqWÓvF/0;º¤ù›Ô§Ù©Ð%íbô³SKÚóX@ô³S¡KšÏ |‚ÌN!L.UÅN0;š¤íŠ`v*á‚vÚØÞ§Ù©ÀÚÍ~¥ÀìTè¢VWÅN0;º¤mì ÌN….iUÑÌN….i‡¢'˜ \¡]Šdv 4A²gÚ#˜ MÒŠb'˜ ]Ò÷i`v*p…æOŽO³S¡KÚ©Ø f§B—´[ÑÌN.i–žŠOË“X¤Å…¢¸Af§@¥ª¨ f§B“´ƒýIÙ©„ ÚQÌN%\®KD 0;•pA+²ømZý¬&lŠ›Hv*p…¶+n0Ù)„É¥™žd§&h·¢“M®L.[‘–PìÜ> ÆN….iU1ƒÆN&I‡b&Œ MÒ±ði0v*tQ»X@b·"ÿ.aUÔà°S ‰Ò¦˜‰a§Sh»¢&†J¸ Ššv*tI»‘Sv*t¹¶Ùèö‰a—Wh…}vbØ¥Ð%­~Çv ôH:¬Wû »º¤]Šv)tI»#v‡°K¡‹Úº2vBØ¥¸«ib'ƒ=’vÆN»”pA;‘á)»”pA»;ìRè¢VöxÁ`—@¥‚üN!Ø¥4“k5b¿qX}…NéPä@°K)4`ûBx ÝŠv)tQÛVE»º¤mŠv)tI«ìñÀ.….icÂu†Ò\®Eîi•©bý›°êRà ´ aÕ¥Ð%íTìÀªK+´+à„U—BµÂükRÕ)Ð#iS쀪K¡KZU쀪K¡KÚ¬T2Õ)¸§I#'R]J¸\ÛHÛR] ]Ò Á:DªK¡K™BªK ´]±{R.z$XA& º”pA»;ÖÊJKšÍ#vÕ¥Ð%­(vÕ¥Ð%ت³L •C‘§.…&i—"/¼¡À%m_¹óÔ%ÐD‰¬ áÔ¥Ð$mcF'qêRè’¶+vàÔ¥Ð%¬ áÔ¥ÀÚlT.ˆ¥—ŽE±¦.….iE±¦.%\Ð*V ¦.%\ÐŽˆ½â—….i—b÷™| ôH"gC(u)árí\#vÁ“B—´-bw”ºº¤‘³!”º¸B;™ÏI”º”pA»=PêRè¢f÷Ó—à¥Ð%­(z Ô¥„ Zè=ãX ]ÒŽˆþd Ç+zigDïó?RÂíŽè“"….j÷Šud$©S GÒ±óÎso¯Ø¥íгLTà íà:2‚Ô¥Ð%íb6'WK¡ š *#v‡¤³ ‹R6¡÷(÷šu)4IÛ7熨„ Ú©¸Q—B—´›q;FeX¨¬«âÆ )4IÛ˜?Kˆºº¤UE޵&Rè’v(r@Ô¥ÀÚÅ5p„¨K¡‹Z!kCu)tI+Šu)á‚¶}gUÎP§@$’6œ¢®",NEí u tPº3êRÂäÚ¶2û”u)tI+ˆ™u îi ¨K ´ƒkÈP—B—46P—B5Ctzì¨K+´•«ÈP—Ò\®mŠu)tIÛ=ÐèRà œA<ʸ&>] ]ÔöE±Ÿ.%\ÐÈÙ>]J¸ ÕˆÝñéRè’v(öŠK?Zì’.fžž.%\ÐîˆïTè¢v¬Šðt)p…¶q áéRà mÿ&€H§bǺ)tI»¸ Žèt)tQ;ÁÛ9Bx •ˆo÷Tè’V¹ Žàt)p…¦\k‚Ó¥Ð%íTì§K+´›±ƒ›N!<.=w?d›.….i›b6] ]ÒvæÌ›.®Ð®##6] ]Ò.Æj:z(Ý‹b4]J¸ ®"#4] ]Òªb4] \¡íŠÝ©éh¢DÚ† éRh’¦cžg2ú„yžÉèSæy&£Ï˜ç™Œ>cžg2úŒyžÉèæy&£O™ç™Œ>cžg2úŒyžÉè3æy&£Ï˜ç™Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œ>cžg2úŒyžÉèæy&£O™ç™Œ>cžg2úŒyžÉè3æy&£O˜ç™Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œ>cžg2ú„yžÉèSæy&£O ç Œ>ž'0úŒyžÉèæy&£O™ç™Œ>cžg2zžXôó<“ÑgÌóLFŸ0Ï3=cÏ,úŒyžÉè3æy&£Ï˜ç™Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œ>cžg2úŒyžÉè™yžÉèSèy£Ï˜ç™Œ>cžg2úŒyžÉèæy&£O™ç™Œ>cžg2úŒyžÉè {>`Ñ'ÐóFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFÏÔó‘‹>cžg2úˆ=°èSæy&£Ï˜ç™Œ>ž'0úŒyžÉèæy&£Ï ç Œ>cžg2úŒyžÉè3æy&£Ï˜ç™Œž¡ç Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œž¡ç Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œ>cžg2z†ž'0ú zžÀèèy£Ï˜ç™Œ>cžg2ú„yžÉèSæy&£O ç Œ>cžg2úŒyžÉè3æy&£O˜ç™Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œž™ç™Œ>…ž'0úŒyžÉè3æy&£O ç Œ>cžg2ú„yžÉèSæy&£Ï˜ç™Œž©ç#}Æ<Ïdôó<“Ñ'ÌóLFŸ2Ï3}=O`ôó<“ÑgÌóLFÏÐóFŸ2Ï3}=O`ô ô<ÑgÌóLFŸ@Ï}Â<Ïdô)ó<“ÑgÌóLFŸ1Ï3}=O`ô ó<“ѧÌóLFŸ@Ï}=O`ôó<“ÑgÌóLFŸ0Ï3}=O`ôó<“Ñ'ÐóFŸ1Ï3}Â<Ïdôô<ÑgÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ3ô<ѧÌóLFŸ1Ï3}=O`ôó<“Ñ3ô<ÑgÐóFŸ1Ï3}=O`ôó<“ÑgÌóLFÏÌóLFŸ3Ï3}=O`ôó<“ÑgÌóLFŸ1Ï3}Â<Ïdô)ó<“ÑgÌóLFŸ1Ï3}Æ<Ïdô ó<“ѧÌóLFŸ1Ï3}Æ<Ïdôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“Ñ'ÐóFŸ1Ï3}Â<Ïdô)ó<“ÑgÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ'ÌóLFŸ2Ï3}Æ<Ïdô ô<ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ1Ï3}Æ<Ïdô ó<“ѧÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ'ÌóLFŸ2Ï3}Æ<Ïdôó<“Ñö|À¢Ï˜ç™Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œ>cžg2úŒyžÉè™yžÉèsæy&£Ï˜ç™Œ>cžg2úŒyžÉèæy&£O™ç™Œ>cžg2úŒyžÉè3æy&£Ï˜ç™Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œ>cžg2ú„yžÉèSæy&£O ç Œ>cžg2úŒyžÉè3æy&£O˜ç™Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œž¡ç Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œ>cžg2ú„yžÉè{>`Ñ'ÐóFŸ1Ï3}Æ<Ïdô ó<“ѧÌóLFOØó‹>cžg2úzžÀè3æy&£gèy£gìù€EŸ1Ï3}=O`ôó<“Ñ'ÌóLFÏØó‹>ž'0úŒyžÉè3æy&£Ï˜ç™Œž˜ç™Œþ ÌóLFŸ1Ï3}=O`ôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdô ô<ÑgÌóLFŸ1Ï3}Â<Ïdôô<ÑgÌóLFŸ@Ï}Æ<Ïdô ô<Ñ'ÌóLFŸ2Ï3}Æ<Ïdôó<“Ñ'ÐóFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ@Ï}=O`ô ó<“ѧÌóLFŸ1Ï3}=O`ôó<“Ñ'ÌóLFŸAÏ}Æ<Ïdôó<“ÑgÌóLFŸ1Ï3=CÏ}Ê<Ïdôó<“Ñö|À¢Ï˜ç™Œ>ž'0ú„yžÉèSæy&£Ï˜ç™Œ>cžg2úzžÀèæy&£O™ç™Œ>ž'0úŒyžÉè3æy&£Ï˜ç™Œž™ç™Œ>…ž'0úŒyžÉè3æy&£Ï˜ç™Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œž°ç}Æ<Ïdô ó<“ѧÌóLFOØó‹>rÏ{*úŒyžÉèæy&£gìù€EŸ1Ï3=aÏ,úŒyžÉè3æy&£O˜ç™Œ>ežg2úŒyžÉè3æy&£O ç Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œ>ž'0úzžÀèæy&£O™ç™Œ>cžg2úŒyžÉèèy£O˜ç™Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œ>cžg2ú„yžÉèSæy&£O ç Œ>cžg2úŒyžÉè3æy&£O˜ç™Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œž™ç™Œ>gžg2úŒyžÉè3æy&£Ï˜ç™Œ>ž'0ú„yžÉèSæy&£'ìù€EŸ1Ï3}Æ<Ïdô ó<“ѧÌóLFŸ1Ï3}Æ<Ïdôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ1Ï3}Â<Ïdôô<ÑgÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ'ÌóLFŸAÏ}Æ<Ïdôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ1Ï3}Æ<Ïdô ó<“ѧÌóLFŸ@Ï}Æ<Ïdôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“Ñ'ÐóFŸ@Ï}Â<Ïdô)ó<“ÑgÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ3ó<“ѧÐóFŸ@Ï}Æ<Ïdô ô<Ñ'ÌóLFŸ2Ï3}=O`ôó<“ÑgÌóLFŸ1Ï3}Â<Ïdôô<ÑgÌóLFŸ1Ï3}=O`ô ó<“ѧÌóLFŸ1Ï3}Æ<Ïdô ô<ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“Ñ3õ|ä¢Ï˜ç™Œ>ažg2ú zžÀè3æy&£Ï˜ç™Œ>cžg2úŒyžÉèzžÀèSæy&£Ï˜ç™Œ>cžg2úŒyžÉèèy£O˜ç™Œ>ežg2úŒyžÉè3æy&£Ï˜ç™Œ>ažg2ú”yžÉè3æy&£Ï˜ç™Œ>cžg2úŒyžÉèæy&£Ï ç Œ>cžg2úŒyžÉè3æy&£gæy&£Ï¨ç#}=O`ôó<“ÑgÌóLFŸ1Ï3=QÏG.ú”yžÉè3æy&£Ï˜ç™Œ>cžg2ú„yžÉèSæy&£Ï˜ç™Œ>ž'0zžXô ô<Ñ'ÌóLFŸ2Ï3}=O`ôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ1Ï3}=O`ô ó<“ѧÌóLFŸ1Ï3}Æ<Ïdô ô<ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“Ñ'ÐóFŸ1Ï3}Â<Ïdôô<ÑgÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ3ô<ѧÌóLFŸ1Ï3}Æ<Ïdôó<“Ñ3ô<ѧÌóLFŸ1Ï3}Æ<Ïdô ô<ÑgÌóLFÏÌóLFŸ3Ï3}Æ<Ïdôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ1Ï3}Æ<Ïdô ó<“ÑgÐóFŸ1Ï3}Æ<Ïdô ô<Ñ'ÌóLFŸ2Ï3}Æ<Ïdô ô<ÑgÌóLFŸ1Ï3}Â<Ïdô)ó<“ÑgÌóLFŸ1Ï3}Æ<Ïdô„=°èæy&£O™ç™Œ>cžg2zžXôó<“Ñ'ÌóLFŸ2Ï3}Æ<Ïdôó<“ÑgÌóLFŸ1Ï3}Â<Ïdô)ó<“ÑgÌóLFŸ1Ï3}Æ<Ïdô ó<“ѧÌóLFŸ1Ï3}Æ<Ïdôó<“ÑgÌóLFŸ0Ï3}Ê<Ïdôó<“ÑgÌóLFŸ1Ï3=3Ï3}Î<Ïdô püã×çþútP¶¯öÜ9®ëëúº|ýÍ—çÃxúÞ÷e5R”­±&º¯~;›bµÈÕøêr½Ûzê|~Og”óË"H·½ü8`—é:Ží¶¥?¨õ¦³©»cÐÖ¹É"›zÍYÄ×M¨äD'hÞ^\}ð¢ØGâS^Žªµ¥Ÿ†]¼qHõ¶Ý\ØÑ°'ž8èÇÆ¹ :Eƒ;=t½ÐsRÚ‚ƒ¬«w.æ¯ïë½xB–ø<<ãôT*ÿ×£òÎqºpP%«ža¼Þ¶êœ O-´Ìá=|:äërˆ †˜ÖÛ(aÆ 9ùwªÓá„æÚ”eSÏ?U š¶µà [Pp qâ ßG€°£éà Oßö5îÌ›+‹BV¬A¯.ÜhÚ>V¿Š%Ì:Á>W?hEIñÏÕ…âsÝå^È )–³è+ 3]}u¸}-·w?}q³5ljÅ!Z ¼œSÖ˧V|ñÚæÂ†íCõë¡­½n\¾¶ÒsíSuëö¡.8¨.H©·OíüöOÕ…cãÚŠ׃¯Àò|hûTqÑ`jË“÷%C·§q/¸|5ËÆ¬j¿ÊVpÛ÷OÕŽ»[Î.®‡#Ðþ©â Ýׯz&¨_6Ô¾{â$'nŠ M{¢æA؇§özÒî €ž§ÎzÓוº:[Çsµp=ؘÝ×ýsuaCÓö±âz¨ÏG²ßH‹Áõ`·#®*aúµ"Ÿ׃m à¹ ÇÆë¡‚×º|‘örä _¯{IðûTýëUûTÛ\¨Ý›}¨¬ÆÞì9φëÁú1>ÛbŸª '¶׃Mdž7&0p=ØT£O†œ€~9öà¸7®‡ƒëx*˜l¦WÜüSu¡â¥Ë>T\6x탇¸Ÿ»”ã~7ÿT]8ÑtÝO^ÇåD¨Í?Ut_/±OÕƒÛyÓ7A–ðºñÒ‰ëÁuꎗ/MÇû‹³µ¼‡°qÍ›IœìëúõpžhÚ>V\öê/Ægáõ`/b‹w€+ò×êOeŽF<7)äù犃6ïÞn‡/°òn›5l*®ëäØõàŸ*9ñ¶ç2âN|äYæ¶=Æ#ÏÆ–—óýȳ1YGŠg^}z°÷õ~æÙhž¯¼Žgžç‡nïÇžù8|<ölèä8ß=Ûžaíž{–»¶_ïçž¿£žïç^ñãÁgÌøëz?øì½Àç]âÁg¹ÞgŽ'Ÿõ&ý£'Ÿõ½öóýä³¹îe{?úl>·^ïGßQÈ?Gß¡÷ÇxöÙœÑy½Ÿ}Ædõu¤ñì³ Ï Ž‡Ÿ=—ëýð³Ñôz¾~Œ¼·÷ÓÏÆ·ëýô3Üày¾Ÿ~ge¶y<þÎù;ñø3ÂÛr¾6.¶oïçŸíq_ïçGA^Ï¿K+Dâh,¦r½NÞ?ßÀ«²×Ï@CÞøµÏ@#Äøµ¡g ú¦Ûë!øüB8_©‡`1u9_Ár¯|‹ÕSÐ øYò)èăý|=}åÿ²½ƒ¾R¾^¯Ç ¯/÷kCÁç¹½àÚÐs°­`Žç ñ%qmè9¸¬Ìx¡¯ ½ÞÂŲÎ÷ƒÐx¸6ô$´¥x¸6ô$4"® = m-® = mõ® = m® = mí ® = mÝ ® = ׺ðÚгpÝ™ÕÃÕ6!¸ÞCã—àÚÐãÐòÄ×îyhYÕ¸6ô<,â˜Äó0òtãh¬¸6ô@´\N\z Zî#® =m9=® =m-:® =Ÿž"¯ =·…\æx$n+ó/⑸Һ♸m•׆ž‰–‚kCÏDË Àµ¡‡¢eàÚÐCÑæÞqmè¡hSÕ¸6ôT¬ö&p½ŸŠ6׉kCOÅZ^z,Ö,Êx,Úì® =mû*\z.Z~?® =}$ÿ|?}« íýh´1`\z4Úˆ)® =-_tíž6ÚÆ·Ùøò?¾<ýŒo™«¯÷[=÷Xÿùão¿þǯ¿ûbséÛó@ý__Ö¯ÿüï_¾,ÏËäfxoƒ Z#>,ДÍTl’PŠ ¸ÙexœK~<öÓ3CÛŸy/‰ÃUFvD(‹}­[ _Ô fWûúsDÌÃû3øñ|(ÕR ÛŸ>fÜ„Í vÕ® +­~w¬#ã*ÿøR¹«9ì‰óª€EoÀí(ƒÌÓŽ¶üöãU?Êv€" #"d ý)ØYm÷æþcðt‹¦œ|ö¸ýl;­§¸ƒ’€âóYhÄ„üûé»Ü´ÃUFv@(»lìÈ!ŠP¶#‚4kèO¿®ƒ½ß#À¿¯P,qðùô-KÊ 9 U»›”åçóôü”—a?FR*£ ;@ÊâèUpaWŽhe;€1„C1ª‚þ,üÌÊZ9þt‚0Êá[/T_0aWñê}üêKî(?ÍÚCÞ¯{9ê‰ëž°Èü*—GÖ;´+YM°lG0ˆp(jÕП…Ÿ™íšµíX»äëþšbO®òµÚÚóÀ:œç¾\mG¨ëŽòÓ®e¯ûsLŽzc¦jPmøTNŸ1Џ*-Ú`ÙŽ`áP”ª¡?Ü>JÁ 4˜¦Ÿ—rû€ÔSvjŽß¿-RãÜk”Ÿv·ê¿ãæØ±þ6jPmØ¡økYÔ`{Ö½µÁ²Á(Âq³†þ<ð½-óº¹b(Ìz®>³W‘pü¼SV›-»¢hé†Åza¨+ÞÆUËl‚_ôÆ‘§{5XÒ}=£ íÆE­ ú³ð33Z]Ý0Ïî_ZØŠ­®6poÅËžØu½vÎQ{ùiÕûå/‡­3ÛÛñ*zýö³aû¶£çÔµúQ¶ú€ ŠOt'à·üãįæõ[~(ÖÓ·‡¥[úòT›à±‡«/ãEÙžŸ÷Ž!#:lx´QAÑÂs@(þ*¯£‹c“[ý({€È¡ýð>~ÿžüíûÄ“ÕW5e÷|›jy:•;Øe¹/ûe{zr¿§pœþÔi5¨Œ6ì)‡n5«om lG( 9¥jèÏ¿®Íßÿ=[îÀ¯KJñ+ºÚ¬«çOlxjX¿é8£l×þîç0ØëÃúª@e4aHYNüYÁ²ðçÈPö0cC1ª‚þ,üJ´7•‹cQ~!JXqǵ1Œâ³òoÝ|æaSñ¹L|·¹£ý}ÇB‡8\eÔï@±N³ýÇÛºÐòj€e;€„êø.~?%Ûyö,´ñåu/Åá·Û‰‰Gß"Ò~ÊþqDÙ~,GŦ‹rxÎf«@EoÁüì–bwfnï ö1¨–톆5ô'³ xlƒ Ÿ¸b±øºÓͲHjÛ°a;‘£òÓ¢n¼vyØ,;ÀvØQ QFv„”Åß³£¿y”ÖËvVŒ""‡ç±xü;wQmÊáY(Õ³Ûw0îŸûM%ÓDe{VbQwsÜ G *£ ;BJEo$j¨>ƒÜÚ@ÙŽPr(JÕП‡WFnõõÙ!/Åw«ÛŒ¡ŠÑïÓ3ZllÇÞ¬X¶>wAß:åD^¾jˆò‡B(«Ø¢¬jm lG( :"JÖ0œ®ÃS^Ç…¬€¦ØXjµëŸäËw4Û,›Í®$–ýsƒ>-Çå0ŠVƒÊhÃŽ²ƒæ5ì>ÛÚ@ÙÄŒBE©úóÀ“ãØåò'³”Í:æ›m Vvløqú{«6òð2ßl}ÈQŽãĬ@ÅÂ^wS°›L«`]8ˆÎ&Vöì[r(FÕП®ÈÓ¹ÄX£äßZ(Øýd3z³ïOVUhTä=ŠvC¸ñÈ`[ÑáeDMøåÅ62ÜürB 6€m‹4Ø‹ÖccŒ ú³À3 lLÏ:ñ;c;¾ß.Ó@Ì -–Rq—(ÛC殘Óq`ÍaÔeo¾ Ö~DÅW¥¶&P¶&„ R5tg¯ìtܬ|eRv`èìçâ9@£o6Ñ`? –ý;Ö$ªÞ>æPm ø¹GÙ¿€ û#Ða_•gª°†(£ ;BÊéäñVÃq`¨Km ì_£CQ²†á<ø3Ãz,ÃGø‚í¦> ]m]®&`¯ájk]kýWæ7ñf°ôËúª@e4ñãKSòÚj°©€µ5¢ÿʃ ŠQôg·ÍÝÇMëïš(o´TOÙôßÌaÏÖjI¾e{¼€× Ç…´ý¨e´àHðY·¨ÀYÂGk‚e9EáP̬à} xHノ‰'M{ÚþK”ÅÞw‘bŒEm6ùeS,Û#ôZ‘î*DžɈ¨!ÊÞ†A¹·l¡`•EÔÀœðhe;BQÈq³†þ<0šcCy'’Øðn …¶b¬V< × £;6Ò²´Ü>׎Tö¨Ae´áã?TŸMh5,¾3gke;BQÈ¡(UC~n–ÇàY;ËÉÑœP°²>ÙÇf|ñS5(qÙ¢ü4»`é]sTÔ· TFv[âºÛ¬Áº$6X£6X¶#DcTП¾µÂ®ƒ]PÀ¯6SîlTÛÜ¿EÐ{Xöom#]›»–W *£ ÿ֨ػÛWUPîÃ!ÛjBe;A4‡‚dýYà½Ìèˆ>¶ÅÝ›²úõ¾ØÑתú å*û{–27ÇY9{ÌTF>Zù%“¦¬ßhwµÁ²¿™!Šp0ʨ¡?\ö¯·Œ<ÉB)~õV#±ßÝ¿óË*ÛôºcäEŽâ½¨!ÊhÃŽbkež_Šj°üi{R© –í‚drD”¬a8Žt{F£ó7|oRN¬·Å‹(¿ö­Ü ²9Qö¡n¬Q—ã´ü†­Õe´ácÝTv‡k5Tç¶6PöÙkF!‡¢T ýy`ÄØ;غÛ×!잎û/Ÿkôœ7?ÃkËa³qÁp” »³†(£ ;BÊæc­†Í[[(û˜£ CA²‚þ$ð¨¶ÕÞ6Å,xTK97¬“)ÜUõòýõ|eÒrDÙ¦ûM‡c÷ ¢Ñ‚ C°‰g_ŒÄÃmS³Wý^4»àߟïÏ€guû«šeô¬& bk1²lsòޏó6=ƒ„E?%O6‰¿ïNòoG³Ìú96îʵ1¿çÑ×ò±–ý´<‚0(dUП»Á¾ åѶxÛ„²/½ZKoº1xíÓ‡6È`™“šëõrÑÐj`™mx?˜Šá-¾F6ãï’l‚å_"ˆp(lVПºÁ×Mņ²Òz™÷A€‘/®v#Úï(ÛäþZù’KG)x#e *³ ;BÊóðYìÖ`¯ Ïc6Ú`ٺŒBŽˆ›5 çõ ô¿-Òò…ÝM9ŠX+&í7§PmV¾±¤ e{ŠÞèð¤£Újˆ2Ú°H¥ì¾˜´ÕP}±HkekCQÈ¡(UC<7ÜJ-ï©QØ=´ÁÔs«ì^j98ˆ~,û©áþ-‡­¼][*z~^(#Ÿ¸½yþd«eŸ5dr(BÕÐ;Ä@¸:÷@‡˜Êî7oïŠ ÌëôU¯KEt“Úm©øú:VeÔή0 ¾A&.¾‡[«eöƒ½q9œïÃçqå "÷kŠígŠû§Î=½\_ Œ½!Xô¹¹³u2T¬=Óñ*¢>< áfb+ذ=¼Z`ñÇ—! Œ0*èÏyG«ó¸Š­¦÷;b€ã?¿q‚ú­ûò4$[r¥¢çÝH>“¡úŠûVÊÞ‚§)QÀbû¨À¦£íU‡-°è·„…¨ ºs@wÆ °†o÷ÞËvû±9Ésò†Ü·dk•}>»h„ãÜ‘í¢Tö|’†ÂyqZì„&X¶#D8£*xŸB –VŸäºß¦gíû8¥íTdù –#b#™öFÇ2Fžõ-Çá;¶·TF,ueñìû¨Áú‰¯&PäX©Å ¿+DÞŸ:¾; ;¶•S<¤¬À‡ÙËÄÎÑRÏñàSŸeï”VOr Ç ìdÔ 2Úð®2Á”7'ªÁØöÚÚ`™/Eûùr0ʨ¡?œÛê?>!Ç>/¥b£$ímžfé逛ÁÂ<é¢*Ñ\öÄÇŽ%•QƒÊ›RC)ŽIm5XøÕ„ͯøw…¨Ãû“àxén£ÏwWÅæ{âÞo²øÇR –©ìã¥ØáQgEî­•Ù†AåòQ¶¨ÁV$û°:Û`ÙÇKE87kΣUå Í÷F6fSvßµu³ý–='ÜæÎ}œ¨€–Œ2G’ì=%;°Ùª€E´à~ f«tø†‘ïhe;@!ÈA³†þ$øú¼`«z >ðú … :ªíÔâË-WÏ­´ÝOì›GÑ^…—ƒQþwÛ¹Ú—kòp•Ù€¿mKAf¥*°•H¥´X¶wg†Ž5 'ÁyM .Û;¨çô5åØ¸Ô 4nÛ×ÇÞN÷³|ôã¤ñç»rY$W pÔ•Šá‹¨K6Ø ?¾´öõgŧÃû3àè^ÝvnÜÝ{ç;l$Ìõû ¥4¶àв¥­H5—£ÞÀT *{~…²c)ÚšX9mÚ‚CAª†î,ðumŽçó¯;ºSRè[-`;»³Ì1hfƒÓÝQƒÊhç•¥,XCˆ|GgD*ó=v;^Žˆ›5ôçC¥pÙ[Ñ€+…o‰íÖƒšÄŸ<*{»žP×–Öðª€E´À! /¡·>Ø}µXæ À±½ Q5ô'Á—Lð¼+ç †b™W·½FÝ ßó1Id™×eëËÙ ž£9ìã9 ¬Ae¶á¯¥T.öD öâ¿•ÖËþ’‰(¡¸YÃpÌeÁøØŽ«1ŠÏ߬zûû#0Àö$öïeâ^Ùp¶+k5¨ŒK1Šl¸8¼:¹5€²¡äPˆªáux@ÛäæW_á„! «ÏÖbûÂøCÞßG«ÏÆnQ¶G§¦_† ýð¨@åE¯ÀRœKìÏZ¯ÀÞêím_-°l0†p Ä8¾;œ•²'ÑÛNÇŽñ” ß1àyJÔú­ÊÖèÕ[á8@"V*½â„²L¹ªÛŽûÕÂÂ7œW€:¼?ô8¶|píÊÝ”«álæÉÆ v£³•“>T‚²Ï9ë²9ÎÃ/ªAe´ñãK(ëíY!QÃj ô­µÁò/E8eÔП²Ò•ï³®¼C±5£ö=/Һʉ+mÅJf–í#]}¸¥9ŠïqÞjPmøŠ*Ö·o5Øzgï² –=™QÈQ²†á<ð„6úi+I oÊÓß´¡%[å‰ýlª=ÙÓÒwðAÙ'È 0rl7Wt°•}¡XJÍöµÕ€D¥ÖÆ®O#¢CQª†þ—Èac¢û«•/-i åô¹È¨Á–ùâ\¶Á2—ïnûË¡(UC|á$xæ:ñîÒ”ûÀ »8úÍ‘à~Cß ZQfö†?„cÇÝ$jPmø œŠM5ì_£† [ðF,û+'¢‡¢T ýyàÜn$ ߬Iñô ËPµíR/£ô©ê0£eOÀpp86¾´«”Õ†!årˆ¾jxN]P*û P券YÃpø½îÓüÈ~åÂø§Ýš}óöËaª¾hæ8¢ì¿nü-‡-ÄyUÀâ©Üg ?ãpìÑØ•ú!È¡UCH7=£á«d|À*”sÁ.f÷y3¿ßð9Û}y‹– zŸ\!P|@k©"ÇáQfvmI¹05¦ l‘¾¢Õ˾D!„CA«†þ$˜¤s¢[S¹dSöÊÑeïj?Ý,;1>ÿ²GùÒCÖòr\èÒF *Wæû6eÒߨ¡`p*Ú@Ùßk…ŠR5ô牊åÄóÒxµ>Pʆîº%Rûx³M"Ú¤V ¡ÈTP¯æßëÂn®2ðiy*+úêQÁ‚¾|´°¨·!È¡UC茀‡ã{`aÌ;›´Þˆ YÑ!"uݵÕÅ!ï¤æàìOT 2šð%³TNåj5<Ï,{ÆG(Û BŨ ú³àh¾§®o«­šRü’©¶ù$ÆnC¾çÖeë61gk[ íÖe)5ÅF¾F†¦¹ïÖË>" ¡ YADFÜØS«î|³ÅÐiDFTOX÷ÅÌtðmͼHd„g‹óïv{º^‡«Œü~@eC‚TT€-[ (á!È¡UCq1.` H; ¥ø–2Õ{lޏ=©tžWe¿‹†ãôe{­•ѯƕÌ[Чlµ’%•ª –ýjDáP”ª¡?ô±nlÃäÛ‰ŸÞÇ åFÀÍ-Á}D_ }±OdDÆ¡ü{A¶“oeoÀ) TïŽ ìR[·ÖËžyäˆYÃp|ïÄÎQ¶Ó¡Uù¼ ï”Øh¥Mö]x‹UÙ_%ìs!ÇVTÔ 2Úð#¨ìX58ð£5áEIb ü»BÔáýIpý•ƒ–}Éߨ¥&ä/¹Î䬀øòÅ3Ê&f!ÃqûðaTÀbQE‚uö¸ØÊ_ Þ™ÕÊ~^ A…¨ú“à€£'vyfövbÀ‘Jå âæË´…|sóÞ¢ìÜ~GlÛ—ò|Õ 2Úð!G*Å™Q­ìfßÚ@ÙŽPr(JÕПÓ$JÙvnŠqºôú6¿1qHë{UöÄÇ6Çå]òVƒÊhÃW§BYo-G ¶»óÞš@‘M‹Agˆqx~b¶íCå’o\¡`qîfÙs>Éhéw¾*¾0Uââr_[—¿¼+ðª!ÊeÕ¢”µpukXLÚÚ@ù9"¢ #¢d Ãy weï–@x,È–x)ŽÉª‡Ð*6ª¨¶9•õòX¶[—A•¯æ° —lZ]5´²€ ¡ì>öÝj¨>ßÑÚ¨œiQÈ¡(YÃp¸ ŸïþâVw˜xo ¶=3¤å¶ƒrzúbhlÿÊ2Ö˜FÇ­êXC”N½‡ÂѼ¨aóâÖÊ~Ñ3 9¥jèσ·þ 0ÅD5¥ú‚‹Í–tmÌìõÅ'¶±Õe¿Cú€_sðí|Õ 2Úð{$H[ ÅõÖÊ~“dr(JÕП®ÉÙ`ÏÍ…›Ó4åùDìMÙP@@:HÎQg¹ÞôÚ^†ŒÏ¨@e4áGP)r—TÃê,¸hE;@1È UAè>‡Ú9HÀsòCÀx»ù±Ù`Ý«DÙ;wørÂÁ//jPy»É( a¼@,‹&Pv˜ƒ#¢f ÝYpz°‚¥yûzÂOSl!úY9¯ÅΟ¥ Ø´—Ov¯L©~úÛËëϧga¶ÃYfn§r9ª‡S~¹Zí,ûSí‡Cëðþ ¸Îlóqõ½Ð>/ÅóÅ7[¥îkb·Ê%a8”}`½¡pØFˆG«@E´Àuø®,ȳŒ äaF‹25#9£jèÏ¢ÍPŸì«”˜¤>£·‚b®’¿9‡ì£ñ(k’úíxzÇþªAe´Áyj( ò!UÃhM´²æ©ßŽˆ›5ôçéëÈ;H¿ Åæš™¾î™a¥n·ø1•™¾îœ^9JÁ0 kˆ2Ú`úú¶r¶™éëWådôÕÚ`™éëÈ>ƒCQª†á<ð½aÏGOû¾°ªGŠñ2mdmÁNl–œ^}ÄA–}äŒ+Cä(SGYƒÊó<›²c—£¨{Æ´6ªîR%k΃“3N–óiŽã!RNOŒ©« ÖûP˜¯ç¨Åö’ˆ¢OºÞžÌ†õÀ×È ¢|sÊŽ/!jØ ÒØÄ.ÌaÄ@CÄÈ †³@GäÄšÒÕè¿Þ‘ð<#êèÊê¾ _ÁÅ‚,;DË¡ä°iãón5DÙ›ðN*ÈnQAu–]ker^<9$kèÏOêÊ !v²‘šr8Üè)[7Û÷^»¸ÐûØ¢ìÁ6(× §¿8·ãUÞ‰/jJuºQT°íÀ¨…l¤AE¨ãûs h‡àÜU/Ö¡€¬g”#€ ?›ŠÕ‡›Þ«-ßÐî帹‘¨¸êµ:àߣ[Ê]Z (zR9Ç}øw¨ÃûSˆÑ+ÎÞVBÇB© ?ÛÐÑé Öyðîʵˆ>ügáö¬Ae´Á,W,ógÿÚjXA0Ž6Pæ–G!‡¢T ýy r\1¸DF†”RðÄ?w .— # Õ(û˜£#AÃaùÀö[W QFÌ9veqšXÔ`ÃSŽÀ`,ÿøQ„CQª†þ°¿•`ó\•}²|ÃBŽ‚”VE´ðãKS,!ØŸ#¬ ìÀ²/zœSB0÷tØ” Ò]¤œ>ySlýës!öÖ·œ˜ßbÙ<0ÇŽ3dQƒÊhÃÓRÙ™Ùj.¿µ²¡(äP”ª¡?\Ž×…åÞçКR‘4c«ÒlüËì,¶žîeŸTð¥(Ías°[«!ʧ¸šR‡ˆVŸ$km¬œFkQÐQ²†á<ð ^ØE}îÑÈ R0»P×ÕÏ|ežO_®²Ïd¢?Žº’`ÊTF>òK‹;[ •ôOµQª(äP”ª¡?i<íg[´ÉxSn_Fà(7_¦ß±/ž¤2ߟ|£96OWj5¨Œ6œaC…¸¨áü"Ú@Ù™4ŒBE©úóà´ÌÖ)üB(×·¬K/A•רm¤¢ßïüe6 ¶‹Á][Q>…_åð·‚Vú‚š8D_ˆdPŒ¬`8 &Îa _»›a72Ò°'÷óU;ç¢Z®°B'Ñ-–lµ¼u‰E5DyùÎÌ –ãis¬ÀÀÇ« ”™6w½ R5tgÁÛÈéûkñ¯)÷bëÆ}š«ȉó‘{Ž°Ì¹IåѤƒ+¢Œ6~|iÊÉÙU¤ÈUN¼±”9Uç!Ð!žåëxè6^ r\mòÑ“^B9@Þ.<¦ž?à©lÚ<Š>‚xøÂ*6Y ¢Œ&~|iÊ^¸U È…‰&Pô!GÆ ƒbdÃY ]ÿÄ›/Óöl} ‡Ïd9ž®x6 ·¸k ²î°‚¶œÉb¬!ÊÞ„@ÁnsÜOÏ+ظ£š@Ù—§09$kèÏ‚ ØÎeß}›ˆÏ[Á––Ýdéx¶å²¢KaÝ<–=‹Ë©ä°¬£òª!Ê —¹„R=û¨Õ°ñ=ImlzOŠ(äP”ª¡?æ`Uä®_ ³›â9_µúyFÕáùRþVÙ3ª€Bä¨'6ñQ Q^8  –<·Ž ‡ÙÊžƒÅ(äP”ª¡?<Ï.¬ëÚðÿ¼”Û³7» Ṵ̈2@Àˆ±ÊžÃÂÕÈrc¬ZmøŽÊ‰Õ`×´Í« –=±†[’AiQ¢†ñ<ˆÌ÷>¥oªƒÜ¹P,æuH1×àX»¶hÈ·à;µ€­ÉYÞŽÝ»½­•wåÎ…R}5M«[Vµ6ªrç" 9¥jèσ·ÈÜßêK±y‡á^a–›s&HÄ`™÷HÿyÓaׇo‰ÊTf?¾4åBÏV5ØÌNÝ[,ó&é¼%97kÎß۽ȴWž[(²Ò,Äô«Á"·M=œ‰ˆ²Ð!·!E÷YÖPÚ- çJõ͸Z ›o!ÝÚ@Ù—1 :"JÖ0œWè.¸¯ƒ"ðy)'¶e2f«/вOhÇŠ]<6eb=W/Ì’Ã6ºZ_5¨Œ6|M/®v<¢¢ ”íE!‡¢T ýypôCöÚGÑ”çÛuÞÀì ÛÑÔse±ÖFeŸÕÜ})X8°(jˆ2ÚðÅeTΊìYÖ`‘9S–m°ìó ˆBŽˆ’5 çÁyЋÚC9}À½nÀ ?e°³,µýç†É/lZTQ>Äk eg·j¨Úh¢ ×1È YÁp‘ràÛQL.Þ÷¹~giÞS÷l€k²Ï`Ïp؆ û«•½ &¸€I•VÁæ}÷ÖÊL8ð äPª¡; Òk,Œº1Î/»ÑU].² ìæd#Ü厲ݚ¯…©Rt\Øë%jPmøP,aàrj°|[ÿ¥6X¶#E8eÔП!½ÅçtlÉ&vƒ eûÜéƒöð­  FÑÇInÝ ŠE*— rJY±•KÔ°b«5±j5eÄ ƒbTýY0µãoÝ(Á60<0‡ì”ÍŠn¬Í1û}efê8e“Û®Ï)›¬!ÊÞ„u.$¬Î?l,¾sikeŸ…cr(HÕй+àªXâüy)Ï=ö8@t(ŽEw0ØfSåŠòìýásšr\žWÜjPmTáŠ-¤>¿¶Êþj à¹¢öýo NöáG§ÿæþ•`È…²U.q¨L³Á,žž¡2;ýÇÛÁ} ¢•ц§ŽS±á›òµÕ°øß­ ”½ÓÏ(äP”ª¡?¼©Ùç@gùð!þ¦øMÔw*_Frz.ßá[ìªøì ËmCÙ1—¤ ¢¼3ʹâ]N5X¯ånM èïvŒ†ˆ‘ g qá¦65äס„sÇbßµpålñ»²%%û–¨({`Épl¾¡Y«Aeo €]U[õ&–„MT¢ÏZr(HÕÐs^HK;/Œ;6åXò:*;”¢W¯²ç¼à‘Žç½£ì¯T>cû)ÏÃÏnüQðd´qÄöŠBE©úóˆsóÅlÏw”3~ÇÎDÁ“@~$¡³ìç¶yT8n¤±G Q^¸mH(eVD5¬Nikm ìçÆ(äP”ª¡?üÔ®“ô›òçB±7¢ëkƒø×‹¿ƒk/ýÖÂ:Vd©†(oÊŸ ¥8b¢Õ°";.ÚX÷ƒKr™a§(YÃp ç;¹m!Šdƒ¦øö²OÙ§­ó~ú¢ÌWÙ¶Ovpé0–âëxÍ@SàâÛ8¼n˜€V•ùe Pô§™/«j…²r ÁÚ ÿê;{o6Zë»Vy‘«ÁϳýýÄvœq8Ël€‰/®\Ø@V|t}µÀò/B8´jèO‚yî¶åùóGŽ…Âƒºb›Â ë¾ ÉwSŽíûUŽ—ã¹A׫•W儲0E@5,L!PK$( 9¤*èN‚¿±Â¯ç:TÊz`ÜÀ^í +xkÝI6aÙ6'¾2:,ÙÅ7c QFþƒb«ÈðˆD ‹A3Z(þø1èï Q‡'¡ýâ@¢bpŸûlŠ¥EÚ ímÁÞÜÏ{V¹°ÂÝi¹(ûP=úAáØwl´¡TF¾ˆJõ¯®Õ`u¿šØ0ßbàߢïO#s¤UÜX¥ù e[ ÃÚtGãÚk"׊`«çÌïfƒêŽ×•ã9j@YmøT.ÇΪ†b«Î|÷´¡²Oøo!£Cq«†þ<¢“_9‘Ž«1” iödñô¿ ÒÝ…±•ÙË÷-I鸱=rÔe´Án>”÷ÕTFke¿çÔHBtGÄÍúóˆô2Oë¯+–Æ7e÷ÎZõm=}»#ßrºz×e®‚öÅrºU båœ@›'^¶ÃAl ˆÙB #Bd ÃIÄ2™R2B2O(\ëekTŒ|n™c7±œ»Š\&s]íï›Dëð(£.“qe¯mU†ÿÜ^- Ìe2"kNkã °¨˜Çÿ¼”³âݰ÷±-‚q‘,ÿÀv¸&•cÇöÌQƒÊhãÇ—¦ìïF ¶é}yµ²¯¿gr(JÕПî"Hïñ­d±6^Šsnl|¿`7C[ÚSñæH ËžnƒlÂÁÑ™¨å] ަ\Xc§l0d/­ –}NQ„Cq«†þ<˜Ò³á²ÆÀÉç¥Ø*~OùÅÍ #'¾ ¯|Ñš¿f¸Îoãxc¬¦)‹Ãvxüe;ŠnÑ‹ÈYÆ£]†Ç÷gsÕ¾¯Îv|¿5WíBm„3, t€…O$ûö4(s®Ú÷6‘£"1;jPÙ›à\µ OÅñª `»Ïh¢hCÐB©º³À¥xTàÍlÈ߯D ·#öbå²MD{ª˜-݉¢?œ|7”fàbé¨@eoáµÛŸZþ¼cÚ ˆ-´Í‚‚ QtçÀŒ‚60En…rcö5–IßF·¼¢ì—>3ºäؘ‡¦TÆðG¹F:/ D(ÿøÒBC!ª†×pä´`ý×ypÂ3” 4.›’õcÏíÔ¦37xDÑîܧ'4Ãs ’TÊhÂN©ÀqE ˜ý&Pô‰6Æ ƒbTýYà̸îÒþëwŒ­ó ­A,`wוäíB€’ψ¼;2 ¢•½ ?€Âz`“U`“žÇ« ”í!‡‚T ÝYà½eå·ßy?MÙ¿ƒ: Ÿ¥ëŽ÷Æ O –ý­‚ï±rT<¢–Ù†¡ç ¯”ޏX4Úˆå¤E8·jèÏï.T;{+ ã0¼/Øl~=ñb]±­ÄXüÁ] Ž—aÇ„sTe=B¹øèb –@å C4Á¢À UAœ}÷¿ëµ ß–‚wltÐ/n€[ˆ‡¸·(ÿÀÓÁ‰³P<‰¨žQC”ѳŒ ø²Ü¨Àfdm ¥š`™ï×ñrDÔXØÛŸbçN8ÄŽµžM9ˆ5R.¹YÆíx•MbDö0X6Þq¶ ¢Œ&~|iJÝ‘#È 6li-lÚô.bC1²‚á,È0ÑÈ¥…s*65j½°ÓgI,ó„ñƒhØ]ˆñŠ%ñ¿ŽÞ[ÝÞIô"¶·ã ŒüªØ‹þÀ–ù÷ˆ”‡÷‘3ŶâÞƒOS,KÈóÚ<ùlÂ×23lújWñG }ãïOí¼_‡³Ì~|i &U¢»ßÛm[-°ìùµ… PèPЪ¡? ö ‘ ¾ØÔÓ½©‰ë]³u××~Ø(Ñeö·òrÜèƒF *£ f˺²úêÏVÃê‹ËZ(³ƒèQÈ¡(UCäïpY´mS‚ým¤TÛ,ñý.Èdµ7†À•¿¾ûÙ²^ƒÊhàR°ÝwÔ°þ\]ɵë¸Ü;ŠAq”ÇAkç¿ýF uW݃xŸ-q ¼™MĸÚQÖp”¶ðž7™S­ŠÈXò]pºGVÊÉfGq©ƒNÛ! c8þëK!ÒY®² ϤII ›ÒÙÀ$eIz˜É’âRÃQÛÀ{"Ýœê$á†K) úˆú|$Ï æëÅñ%^®ÄbJˆEwjÌ[[H0ìn·”’(Ã/ÿ–庤‹êvK„5£-¼g¡åâÁ¢†rp¹IÈôK "2¿ÈÌ‹:c½ˆÓ¡¥Õ-÷f!ñ!比øÞ¥…ó&Ó‡}k!Vê¦á(má=~£G:Þæ]Ï‘”pmÓ£IîÙÔgô_ÀWMŒ´<öuO¦W0¦‹a SY–…ß7ø*›bdŠ0+8FxÏBµÆMŸ}&Rc dqY0¦TK2ùH óà‰¤}c¿£(¬á(má=>!#é­POWöKr*I¼N²s—–uûä…i¦Ô?XŸm«ˆÏFŒå%u’\,­²…ØìÏsùF£H Ç- æ¡¥ƒßsæô|7ÉD¡oš3¾ç'¬þVá¬a~ÈÙ|k üš—ãaú™”D6ãùoYˆl‘{óAŒ•¾¢°†£´…÷<”e¥í»©HË’r`©†¤êA–¬Ä…ÁLŒ:}4~NHQ,k¼ ( wBdhóðƒyé@øù8‚TpÈ6ðžBÒ¯¡UG÷OÓ¯A2X{ÄgÈ8‰€HÌhì8ˆÄª,~þ‹!Vâ9ܘĽIÐÙü[ã—é€XÔkˆÀŽPÞSàM§ã³¦JÉ-r ŠÆjÁ¬†"Ó»7’x;“·Æ}œdž”……ÕA¦¤pC–¢×Ô½ù Ö>¢°†£”…?óP*›¹Æ}2)ÊR’§ö¿Í þ4b«dñgàT‡Öh蕱,Ó‡Nx!‰FuE›¯ƒ}ù Fª¢ðÁ½£”…?óЯÌ%áxß}w‰ZI_*ϾNvS¿‹2NO§&*ñ–Æo¯5:-,|(71%Ñâ'^ƒ¶0Ø„6} ·©Í(¬á(eáÏz’SR2ÕÌÙ‚/ù¾Ò… þC*(Æ4ðž…R .PuÆoŸ Ä¿/À…ËŽs”¨wuÐ ŠㇵA÷¦ð{d·k3` ¸‘ ê ®9¾’1"#™@!XCzü>ž óü¢Æ.áV÷zIp¸=AÏ÷‘8Ùž7¯oˆãÔö¼¸/°Fì\»±ÓôóY’‚ÂÆ}ð˜0?ŸåÛŽMÞÁë•Å~¿ñ’hLô°¤s°]jmâ—r¤6u³Ë\j9œq_6 ÆÕì2)ù†$D[ˆ6º›‹CXƒ>wˆþžDžæàçž~ß%¹Ôv8Þ› v`Wbÿu.w-Ž|5ˆésý¹s¸°è0§ªS:¬ÈÀ©Ööpf×b‡ÚÞ“p¸ÿ_£ê04·ë5ÿh7úöwÝÅöOâîãZîߘ‚Cõá4¯íz.ÂÏ'ƒHs®á[ðÜx¼s‰®t“¹Î– ’ÕÌË­õ&¹o\ë‚©Èõ¨pªTÑÓFXÂT†´ÐX„e„Ø«¹·ž2jø3 å¬Ìï¼9Z‚Á·ø¬—šB¸ñé)ŠÉT%´FeÓºŠºY0îº9Z$“/ ÷BËEÓÍÑ Âµ,¼f¡,´ÿˆ\ÛΗ‘Ž;Å'ÃÔx6SˆË§Ù«TôÜ5îKýWeAX.0B’‹ Ѷw_>„ÅY3v Em¯I¼’Ó㮉-)駸x™·MäâÛ ñ–œžJ=O Æô±%§ƒ0â\Ééñª›‹ê¬\ǠϢ‡¿'!Ž'eE;3}“°ì·Zåó“yç=NòÆÊTÇ@œ—×MãT;%[H|˜´Éæ•/ Ì;_>œ™¾¢°†£´…÷Îà4üOøÊ$Åf§EǾ¢LRIxT×£¿7ö‘yŸr| òßëã¸ø.ÛhãÓ/¢”DòÀ¿>&omž7‚ò/ŒãÿL€ßÀ›göÑþ"i‰%qɵ»,.îº6"_›0î‰Hè–ÉÛn@ë¸$’d\¼óñðÍÙr0´{[!H#ã“…?3à·¯ò̼ ̱´ä»ûç¶àëÂF%=-±ÚŽ[¿ù³ÆÌ2`|Š­mIxù½, ±‹ÛÇ#\aÇhïYð¤°c[V"—͇(f︦‹>Aî·IçrLÒ_ ÇÞ¹›Ás.,ûP—$(þqt¹P œÆ…ŸOºO …«Á¯àu$s¢b-NÙÔ’Í’ÈŒÓé±#ŒË¦! (b¯ì §X¥4ÞBß1Ìxüëè´¨µE ÏžG¿' 4t=¨Á z(ÅW’èÅH¶'Ö“íÖ.ô}0VNFÙ4âA5GHXL0•’£²!› L¶`NÂÏ'ƒH Çh ïYˆ³›µ7]Q¦d  å·¢)ÿ Lá¨ê@Ïcm4æ½iü^ñe.‰é…°’4ºJ u’YÜ>ˆAÛÇ ¤1ÊÀŸY(!ö${îÀ¡øw“ÌÉ+ÛHF•jÇïü®ab,ššI#~ñu³`L¸Š–¤Gšè2Ðyòž.ˆŸÏ ÂRÞ³PMðþ…‹¿Éï&‰ äÁôt44ç)ò÷™%QjinŠ~i!±ŸKr‚úzY˜äHÄ(TTÒÈ(eáÏK2ÐpYˆ>O}óAü|2+8FxÏ‚ÿjJ?Š+à›•Ü–δXÄß%®¤;23&9ªû!»Axj(m*-ÓÇ“ÇèׂtQuÞŒ÷r! ‘ ÒÞ³P."¯Ð£±Y ,Qgí4.ç:²3ÉÍ:ÔëAsŸ›{–aùÀ¹$~›i!(~®±|£œ‰Q¤†ã¶…÷<¸œ*SÍ3À–m¡ËÖQY‡\ì ?$Fi‹5:¸ú–cSë, ¯„Ó‚hnÒGÒÞd©á(má=>!ƒ«7ÃdØûî’›¤[WÕ.nb¥é\„O^Qƒ"«Õ” §L´°áƒ×àKL{í_ZˆE,XsåCÇýŒ"5%-ü‡H·&kº.)—dèâ,’TcÁ‹³ößH‹ov„] ã`C0îº?\’v+k_÷övÑtE¹b°‚c´÷,¸k¾ŠHŒbÃýÝÜ“GOQ¾<òn +w *ÒˆïU–……Ã^RDS¥G´Î²²c.Â8#b©á eá= ñ6¡&»Rf&¦d¢›عwð¸n„cð6jŸ "jYHÂŒ§ø–„émi€ÙmËCþž;i8DOA-býûò4•:[p¡…h¤ã«r±|úŒÜ=ñZ´/Šã2HHÏgIâ°¢ü[¢Ntóˆ5¾BàçŽO£ßñs­xãT¤F¿¥ ZÂõz¯‘jÅüèÈ/¬ç$ƱeªÊɲF½q¿íñ‚Ó'güB鯇c±¾ì†ºüóãŒN£ÿÄϦÚÔþúˆ¾»äfùk#Ehùíÿb+ôÛp $`ü;iJýù˜êŸ­á‰mrR2 ’ú<>z`´Í1Xt5¡ ¼§|qÅ[&3XÛ†‰5öÁD‚ÂÊQÓu–ÄX×_ÌE°ÆœÜ[Ù‚°|<Ÿ%¹Ø!Ù›±¥a“3ŠÔpܶðžö[õ•8rÁ:% ŒÈæÂ¾‰Ë¬£ú[XU[ø“Z#¶‘s³`LØ jÕH_¶u]¨i–áç“Q¤†¢L ïyh‰È>#ñÚnÜD[›7p9h™}óòç¾™‘+Œßà’,ÁÖ# ÓjÃ$9A̶,L²²¤)î×…5%-ü‡ŠÃØ üÈÉýn’ v‰~pcúÃ7ê+â/×kâˆô¾Éå rhÁ& ‰éÕa^Òa!¾,4ð0B’¸ÃYø.Äø=+ id”²ðgœ[aBÐ=ùIÉÍçH=xÊr²‰ÛQÙÒJ¿5æ}¥Fg¿„´øÐs$%ãàSÀ:hÞ—nfùŒÂŽÒÞóÐiþÅgÏ5Õ¿1%¿gpüÛG¸”¢²ÇíNÄ[ºdjü–ÁíÜ,Óô%9y% xÊÆ‚Z>Œq¦Ï¶e©á(má=þÖjãY8Oã™)Ùâö½ãüþbߪv3¨^N[Ún)pM· Ó>²Á$‰*¿AJ”LÂÈ‘f ©=z ^³Á“´ž÷TŽ‘%W´t JâE*²ÑÊ "ÀCÍt¥@Žå/(ÏgI~?ÈJAˆr¡’ˆ0à°G¿' V-Oþd—HH$¸¢úâ䆹aC#5ÛaŠ„dð)œƒé‘iA˜.0@‚‹%6pÆ>ç\.„õ¢<ç¦á¨má5 5`¸ÄFuû0˜\Cà÷M%«Ë«ƒ ²ŒÄàAëbÕšâË,¬’aûÀ¡¿%‡È,;Yµ.æÖˇñóqK#㦅?óÐÕÉÃ߸ÿaWlK&V_-Ú²œ òcV šJÄ8pªêÒ ¨Òº—…Äô÷ž$‰&i¡1•7}#)IQH#£”…?óÐ>çþ‘‚z‹—‚“ý=¢ ­"£, ¼|̧ÞîRãÄ¥ÿ²`LÏgIFa®Ž-t^Чî+üŒÂ Ò^“à÷‘kËß~£(A6%¾jàj½å/UÄ „0òŒÉû–\/ ÆÅyÜ)9ÄÃ$ ¾k Bìyƒ?wˆþžDÒ 50W  ó»Kn’y)Å=ò…§ºlÞ u<oŸT`˱4°ðÁLÊ%9Šj²h!.|Bu'ÔÕy.…ŒQþÌ‚_Å‹À1yôaxV®†"}¨± WT\” âlb²Í‚âðž2˜©( ™d¿†w<}Ò~×ãi`({üZGñ¾?¾ÏdP´`²Pú`,D:ÞÑÄÃHŒEª –Fy¤-ÃÅóY‚ªºe i¯j-w³ÂÒ^³PqÀÅ›¬|7É}é‹ÏJëØè’ªn `^øa/œø©¤Æ]Y(l Æôñ|6ÉÁVîj‚Û°¡Ó‡1~Ž3Y¦ ‘qËÂ{j$¡_Ot¸½ÙHB’N"ÔY»ªØ"%’pù˜½]óÙõs±Fg/¦´`L:ã‚„M¬—…¸“›bÜ^+ k8J[xσÍÆ÷Ô,PL 3¿G[Ùê½TP6gŒ{¹ £_ m’‘ӾȳäRv ÄuüjìA8(†ÔpŒ6ðžg6æ•—/“Ä,Am 8ôqåvã‰<׸ÛFU$IËSãnlß,†ô€í°$Q0’f>ß¾¹ F:®‚°†c´…÷,t¨Ãlä¹’(!%û=hxcÛmê‘!u]êTn¦„8cÃjDB)Ê&e!q3SBJb ‹ö޲PH„>Š™2 k8J[xÏCÉö\Oݳ òÃW=Þ—“ü±h·Ò#uùÔ©ÀfÀË€q7ÁlJbm ‚?6TñËfú\ñyð+~5à }V:HXó=Š_ÉûƒßgcVã‹È;Ôˆ¥éXæ×J’qu(Ò¥K0y,„ø¥åós˜ÃßSP½‘Û„µ×IIG@»D>Ó:ÊÈQSïÄ™¬{Ý4”É‘Œéãù, o%–…ÒUÓ$¥»¦ÉQXÃQÚÂ{:ÊÁ%ö™É 4Þ±AÖ^Xÿº¶ƒ—âWæz”¨LÙŠøÊeÀøÌT”DÏE˜„“-Óƒ0~Á‡ˆ%¨á˜5þ=…<0ã±cœºKJI\"ÀìÄ™ ºñüÖ ÉºÂØÖÿîM¡«¼Xã ‡úÿ,IpÅ—9>ŠR6ûä+}îð<ú=%¯tÒH^‡s-¹vT¬ê¸È¬’‚·¦0òP1[J£Ÿîê¸Z‡º$'Y¤rødwœt@ü|VÖp|¶ðžGJÿ¸Ü»Ê’ûd穃}I¢š©¢‚.!V“mz¬ÐÜÄZŒéw^’œ·òãhuÍWºÄîœ1¤‚c´÷,xÚöû·D¨xá°Í‚ 4Áí¼Àw9:ˆDÌGgŒàÖ¸PÇ·,ø_$ÐS. Äcmn.ˆQ0­ ¬á má5 îÂ&‚Ø^ã» Ç=6‚8ûaŽÇ 8Y"~ØÏ(z§¤ÆÝyÖd Æt=•$Ey¶p £üòAŒZ|Ea i¯IpÖkÚt|7IÉos^•©WpÜTHa¬íýÜ5N®zÒ‚qnJlI”7žÿ–…¨mØ\he úÜ!zø{|6t+ûm¥/U¥$øtpB ß>H Ö”Çk¦Ž[cÞl0e Æô’`»Y¢àØ|ãª(¬á(má=½‘â`iÈw“ÄHü#ë\¢Æí/NΉ•ÚÚëÒˆ“4œzËBâCm×6 „má÷(mÌ;º|®®žhŽbidܲðž‡rWÈ<Ï›É+’ ö¡GWSö©Ûã‡ìî¾iè:-wŸT§¤éïe ±w›bä¯( id”²ðgâæ`UR?Ñ&ë»I®ƒmÐ:è…~ø$üÀ÷Ç?q , >ÃeÁ˜>0B’YØÍ©/Ò±ò…5¥-¼ç¡#Ž[ê­ Ê¥~‡7Þ&‘„~ˆ“52Âø¶œº÷—ÆÅº›´`L:R˜J¿’,D~ÖÃò!ü|2ŠÔ`ià5‰$ÛqlJ;JICÁ JXù/]Ø?ÁÔ³Ä*¤uw]h˜|ÖŒëp‡…ž9õ¶À÷»í?•Ñ"}î=ü= ÕÑ’Y“³õ»I¢Ñ ŠVoæv’µµEcð>6×GÀãÜ4®NÊl[06Sì’Ô[£d!hYææƒ{Ea Gi ïyˆl„µq!3Ä5HAÃJ(¯ÿ}Ñ›—ågOŒ²ÉÎRˆ¢Ós3`L¨"“¤LÒ¥É@\e”ÍñóY1XC!zük \\ÝØvâbüba’%¤¹ò 7±…\…õ+ÂØ.1ñ)5*JÔÓ€!=`€$âI$I€¡ïøy¨á¦ îfœóVÒ¬çÅüœ[¼¤q.S™KÃK»¡BK31§“+maaºÀ¨%(ë^ʺ—bü"%+jT½'!&qtÆF&Mïd—ÄL̵°ë Ó,QtÁüŠËÙ\Q¥¼)ôóÅõœxªeã’02 tœi¥ƒ>´°rúÜzô{ "çu”WŒ“$â’ÜH{Œ¾—}°Xłݠ&ÆS˜]sScò^Ý é纒W(_hàpsw¹8²¹»ƒH Çh ïYˆÓþâ…Û%Ùw“4Ííz¹ÿž£‡çñª2~Øu”Mc6N·cúx>)‰RØHœ°…xÁ×ò!#Ej(Ê´ðž‡6Ò…$õGeÓÌ%)…å|…¿ô¸ «(k‰q°«”]kô.š{Y0¦ç“’¸ŠsG["`Pʇ0΂Ej(Ê´ðž·Ó“õ¦×Pg n%ÞžL ‰ÊþÚ;Öˆ «8ÛmiÜLEI Æ×ði¼%'9i¡N~¿ìCøùd©¡ mà5 ‘ž]¢Q!ê’tôñê•´•uŽA>­HÔª‰QQÙXQi«¨¨,7ÕŠ. !ËB­håb•Ũ+}î=ü= ÕI°²²!Þw“G-¾0.¼Xôs°«0rAùæI ôÙBbúxV±Z,!ì.e!šA_›bÔI( id”²ðgâŸÊô<ÔmlIðnhgäŽ,âú½ ÁθʼÚ9@“²4úî- ‰uKÉ`éQZè<ƒKÄ1ÂQXÃQÚÂ{¹A†ó3õï’D*ü©ýKô¹<ËT{“J¦hb=îPElèF27 Âò¡ý %Ìl´…`û)}ùÖþmh­‘qËÂ{¼š8¬èÝûÝ$ûÚça…Û“s²"0{‡ˆ¤‡§Ó©ÑéômÀ˜.pÛ` ºÚ¥è\ˇ0 \D*dÔ2ðž×!¿W`W!]eAª%̉Áq öÉ7:J0á݆±Jˆ&g5?š€ÑÖðÄt ªH‚øóß?P8·ë@XÃÊÀ{ ùelºø&Á}JFçW««ò?Zz£{%æ—qûx^*èùͦ}!iS\˜H¹ôÞ–õªGÔòo Ççáï(¿é+¾ï&)üú•C¥¶C äŽ?\Ž•kÓh3OÓvxd±$± ¾µ6*¿d(9“ a©Ý÷¦¡ÓÂ{¯ºè ü'WIJ®ÉŸÌê‰Wý¹J– ·ªh®$¢mLû[¢RŸh° Lç/Ä«(:  ¼§ îfæ ­¢è”¨¤šV4²¶ÐÈ>‹¢#³«_KãŽ?ï\gQ´%Ê#²—<ÛÅ*Šv©¡ eàÏ,¸¬Š âʤ+v JÉ<¸Lšl6›v¤$œ8Ê6Æ¢«€¥A÷Ë‚1}€ÃM’^Yíc ËqŒpÖp”¶ðž‡8f*n¢Ó YrSÒ¸¨îº’›¼Ð?|³ªg:=²ƒ–BÅžd0¦ œ)HR.u8…¢ítAø|V RÈeàÏ,ôX$×sÃ¥ÝwœLï úÝ,2Ú‘t6õ~ÔÞáÚ4æ U–-Þ‹ŒSodè7ïì‚øù¬ ¬á má5 žé4VpèÁ‰™¥¤°ApvÊÎÃÛxÿþ¬ tF8þ ÇdKcÞ¤Azx>ÄY.N4< q $Â1@!¤†BL ïIpÅ(¶¯¨Ç·ñ&áW°ÝÆ9aœ)ai†\!Á‡ýaÀG¤ÏKâx8äðÄj:¸$qÈÔÿ¥Èp‰Ý—=£v’!¤†C´…÷$rÿë²HiÞ¾`¡v‘L(vñ`ÚU-b”>µÄÚ½\sÓˆ«¾s³`LÚ½P‚Gé²0ñ(]>ˆµAÖpÔ2ðš„ö›(¤ù-û‹ÎáRÒøXž¿_ÊQ¹9AO§kmgšJE׆¦aŒ,,™â{QK y§ÓBUm.ñèU úÜ!zø{ü‰·Ë™L.ßM2° Wa$sù}ÝÙé%É]z”Z_mÓ'ù˜mÁØü1KÒ°Ž_*ê–ª ¡…5¥-¼ç!Êfà´¨á#g3Ñ·Q' h[Ð}‘´ùÀo¿ts6Ÿì¤ ×ɧ ÓJú$¸°µIßQ{Œ !³ ¼æ Tõ¦óò3~ßMÒ&ÏË™è^ïÞy^~ãÑkü°­å1–ÆÉ*mYHLX~HR.v÷´…È[ž›bñg" k8JYø3ÝMƒ m¸ÂOÉœl]7º¨9+>òó4­ðKð‹ŽM#–s³`L!I?ÙüÎ:7éƒ SEa Gi ïyp}Äo½7X;Ax“Â>(´+tr°ž™Xy®³lÁQqm|j-I)Je—…XðÝ›b¤ª+ k DßÂW~6ž5øô'é!,©Øãbó„þŠ­°Õy²¹ùA¥ÈpµÆÝă- Æô IŽÁFT²M/#³Í>„µ…C“Fk8J[xÏCƒÙÄMè%é,vŽ‚qælèÜÄvCŒ|_þ¤S£ó'Œ›v¸K´‘Ð5…HåtU»£°†£´…÷<´}™ìrùùܽHpóÅ?Lôt‰|W¯÷’øa£Þã\ñ0cYH zÞPpˆ0Œ"oϹ~>DjdÔ´ðžEò•T¬ú³l"%ì„Í'ŸQ|s&ÆyNϧ 4ZðD¬ñ†Y4!Ag%poª™°ƒæ¢ G … PþLA¬â•;볪ÅzJ®¢óZ.­ñ·ˆõÌår¬[Ɉ5Yš©Ñ2ÛÛBbúˆSyKf©, ÜD,Cé%+ k8J[xÏCl¦ÈgjÑ'£ðÚÖ’Á2Cµhæü¤ÊúŽßweMj´ÂN¶`LÏgI—èi!ž¥eóA#…42JYø3‘d‚)£õ³ð\gI.VÈD óÑÙ=Y¨“7©ÂóÀkÛ4¢EÐf@ðtK# fe ©‡ÕÚÁX•† ÁÑÞ“È4rxªè>6Éíbìb‹’¨/îrqÑH÷m0xôùïiuÕmxb‘q,ÉïeTú¿eà÷¦:ëæXé2—F†( &Ám«&±e"RJN&¨Ä¡{×Î9®pΉ cä2‚*si\\“§cú@2£$bnM ¬Y>ˆuôßë¦á(má=ñÝñ½xÖÁš—%iÈÑÅà :˜Ë|Rm/W‘Zcìª` ÆôT|I nk—®—b=…5¥-¼ç¡, Ý[â°ú» Ômã`RùXð˜÷;1’HpŸøi!ñ¡¾ˆÌt^.òü:ƒ°F) ïYðñX¸DŽÚrþ£¥äÂé÷Ãà"û¼^ùÃ\† cçÄ…zjðâ|Y0¦ìç$™ÌmO ƒ½ØÒÇp·¶ŒÂŽÒÞóÐàH»´Ô_’›ùʧkÑsê¥ÏÄb‡Á!´5P á—à‚'Öç90hÇyÙHÓÂO¦ ¦F' ÂÏ.4óžî’“-ý‡ê('ç_²nÿXþœeˆk¸ñtGè”(o/ tö{NÝ¡3k8D[xOB9Þd‰Ãd•ä-‰þاh•â_b »¢pJXüwÝ4Î[{gY0¦ŒDr[ˆ’~/Âx02ŠÔp”¶ðž·œhbù{¾ÜÜM§ ²qQgÒ³¡v´—è+Øã ¡°”ÞÑíìÜ,Ó…r|(9ÀÒ˜¹-ÄÏgEa G-¯I(i§±·\, ¸ã´„=é[,ƒÀcs³, Ø™ÀtCŒ áM.k ž{¤cú@ž%‡¶K²Àæ›éÂÍ93}žAkø{\WݬøŒ_(©t,‰_1²ÏãrGw4R¨Ü •…êh+0±p– Œäº˜. ñCņŸ.Q/ĬQËÀŸY$ûó@5Îaêg—q7¨‚ ¤‹”¹%~ÈûŒéÖḛ̀Ïቨ΃ È<|¨±ŒìX ÿþØÁyø;·™¤›&Q2i,¹ÉérÊŸ¼Y“[>t!¼]µqÝ(X‘´{nŒé#$‰RÄË B– â糂°†ƒ”÷,ÄJ8ÈçÑPlv¼ Â4¬ —nÁy†bð : ’F½Ä ‰Ù¥¤ÛBe×ñôAŒãcE!ŒRþÌC…rS敜G’€äÅU×ñ(®Œ>=ǦQJ_ùµZÇsM’q#Á£G%•‘ídžÅXÃáÑÀŸøÕ‰œ¨e’_J¢•/ny+¿ûÑøÇwï aø±ƒvj vÐN Æô’ôèDz 4],ÛE»| é ¬á eà= mXxÜ—ï‘$)¿ŸcWÞÐ…Z’ÎoÉ$½§0޲̵Ok(wS„åCH.nºl!8ß®º|kÃF4k8n[xÏC„ñäuAVÓ",i:Ü:xÛ¬ÝÅ#Œã1´ª\•ׯiÁ˜>0B’B~É´p`2}¢¤XQH#£”…?óàƒþ63Ì¥jž”œäŽ‹j€ õC”Ô“ÕÄÈ€žÛÇÁpæð…MN³$ƒ×¯N–˜e}1ÓØ?%+¾!¶å÷ Ôp"ºB ,R¹‹‡}Üêe‘ƒÝç/Œ›<G.¸ïº–C:À±–$Ý1–`ÞÛ<†¾CÐçŠÏ£_ñóFV´—Sþ½%„sg¹x2¤ß÷)"aܼò‹½ëw|þžr!î½Ïáw“tž^Æ“éÆètØâä÷ûj|ØNfåçLZÃÝZqI*¿¨i ð°3=õ´Z!XÃ!ÚÂ{ùìÀ·¿2ß(ÁqsñÉ1N¦¤þªA¬ ¨çÆ9×ç]7ÜnLûzl@rjEh¿”^7Äzp k(Âs-)Ëæ!žñãb.øÕ¹«\’[µ^y舧›Œ²˜Aù® biçè½Y0¦<ç%9¯e!ž u¹ Äsž1øs‡èáïIˆ§äB³žVU?fAðù\Ù©D‘vÛAïkŒ³Î®–AÒ˜dNO Æt#,‰wsŒ°…ÂlÑôAü|VÖP6ðš—×·±L),f´ä÷¯Ëþ@vp‘b6‘‚p%@†Â‰ßx~|2Ñ7‡ÓÁóI‰Z…¤…X¬LÙçÿcJïþPÁåØwøJ¸IéTF& HR{®Î»úC3I`’6ª•Lè‡ÑÖ·mŒ‹3Sr •¼ÓB´‘À™|kÀGÒp”¶ðž‡òqxrœÚ:ñµ¤Uøò,+X¿qžÛN¶Ÿ$Ö™`Ù5F#»—-Óòq$)çµ¶ŒýcóAŒSDEa Gi ïyd72üîNº’”Ä™ ÒöVõGJŽ~Ö"‹P˜§¸H>Kèà96 Âò¡:oH®¡jdZˆ3AæHÓ‡0֌·,ü™‡¸À„X㞬’O×’ßb¶øíüO5]¤"˜lkAŒ«¸­Ej #Ü/H  `šg@ÃëUÓq PVp€6ðž÷µò(Øy÷lI©¼Õm‰ÔS.šÀ=*_ªëã¨jÛhcÚwmúÊÅkàòCŒì†>ý/Æ—ãßP †JVÈ{ªÍŽ%•W4¿//RYõF¯÷ø6 ‡Ûren4êÌÔ;X–aÉú¢´ÉGç\>„QRÁ(¬‘qËŸyp]Ïê‡)^;ÂxR‰­]È:D#Œ½¬R„¤®ײ˜b„%ãÔsZ¢«ÐØ|£‚ß5Ò@ˆ¾‡¯»æ‰TÍ(‘d’QJ&júÑÉw2ƒ(®/@Ewf²aU¡¼5¢F_ ‡SŒRÒQM± ´ —2öˆÝ‚Bàç †ÿ™‚.Ðb¤`IÁÍ;„4襜Êמj’S~_&6•FkÊ×ÖðÄǺ£`"yw8¦^.ˆqwm;<ÅÏGÅ=xÞuv%k§ä÷mª7IýÔÜ!¾Î¿w®w„cKT‹. ¤Q/]XÈ€1]<Ÿ%AÓðe``Ÿ¿\?ŸŒA "Çÿ™ƒN eó6]Ž%çE6ÜJ¢<°Nµ>W,…á¸×N¸kÊ/¤$þ¾ËÀ¨$÷“B|‚2hŽÏó';Š¢ä»*ù-hûofÚß‚§³ÈÛLµXá¨Ð7k„Ò‚°¹p—à'@ˆíz.Â(èa©á¨má5 µÿ!Fa‚ûw :³©oö mÑ<Ò§ƒÒ>Ý'±Ç$PôH9—…égq’0‰> fv¤âç³b°†BTþ{ ¼N9n’Åǹ7©Ò-ùý&‘Ó þò“ ê+X~Jb¤, 2Ô[£«¡½ ÒØü$a‡Òeà÷ßkóúAŸ;@OAYƒ»ÅH.ÿ¾›$®nT‰Ü‚ûæyê†cdžTY£\$Í’…Äôñ|–„§+ËÂï͈̓}?Ÿ…42JYø3Ñ8cWý[pݼ5_’ ¶1$³¢<íâX®¼U<‡ó ØH–F¹Ù`Š éútd4¯áÁ5{oˆ•O{m¢,ü™„2HÁß"sö`;¿”ÜÊμÅËÌ:Ãè O’*/܈Þ±)Ÿ,,|¨;_J"i¡ó!’>ˆq·§(¬á(má=7X`Ç>Õ`]ç‘öSÐd-îÎØíOä-nðÚ®ÁÆfÁX- ãŒ5<.œÏͱ2Ê®áma›ú³pÆG‚ëÓ-¹"í¥óµ²‰.Ž+6SƸúU‰ž5"Ñu”ƒÐ— øÁB]Ñst.º·­K!C–?Sà´3Å®9tù•’“¹W ò¼¼½I†yÀpJŽÞüœ½k¸1`À™÷º`GÒøN‹t@¬'("°†#”÷x]P“^ªÝNI9yú<V7ÖÎîõãæ?1ŠØ.º4‚q¢mŒ¿g-‰g(ίeἑœ–>„qfÀ(RCQ¦…÷<´Kf¾^¦S7,‰BÉ`ídíÑ,6ÞµüC b×;X g…“ä|0¦ Ý-C)Ùåß²Pø¤IÄ1BAXÁ1ÚÀ{º~eOГDˆßMÒF¶ðR¢+ùòÙtTש$¢OÆk06ûâ’€tu ârabÄŒ‚"I[ÿÌ?¯¡Ã’ìkš’ ñøîót…]Kc£ƒ­ìk{­{׸cq¸ fWS ¢7é¿5:ÒZîÍ>±~¿ç®áeà=Ýçiߊ+·-éHÂým±“+zœcCŽmàÃ4Ì8ßôçõ`‚‚†'n%ë¶%©<ÞIe¨n[ˆq§¤‘!ÊŸIˆH¼*\[•%aþÛ³ž·EŠÅEŠ{Tí‡ß“¼{©qá0yY0žÞ¬¤$’.®ËBÜ6”ÍqŒpÖp”¶ðž‡Š/ÉsÜð“Û0KYn¶ZkÑ'<Ž"n5{ÆE6Kã"qMZ0¦ì«$aµâ²p°=}ÇGa Gi ïy¨‹ Û+Ç*§‘æÍ’ÖØ¼†¤k$ÙE'óÂ^ÓÆ8Üë85j¤ßÔe!q5ítJ¢t‡”²í7ǩͶcÐçQÃÿLB‹_6\/ÙÍ:%“_øX±àS¹¸WgSwᇄîµlƒmáÓ‚qv³N‰²sÓ‚zU§ìfQXÃQÚÂ{Ü žÒ]‡Ço¶}–!Ð3¶…ñºÇf)6›BÄ–Í@b÷·$I&o®‹Ñ>=?ŸŒ!5cxÏ"3-™,{²1Æ’Ä– 0Ó’½˜;{Y]Ü‘ +Ó²í7™³Ò‚1}hÅ~j·}*Õ éÒ±R-Ë®á(má=]¢Wö.ìÉ­•3%ÜdbΪ¼ÜõáÖèƒI¡¶8¹µ,i&K…ÚÔFZ>jËFÓŠÂŽÒÞóà‰itXBîÊ$'Ú’ÜÈOÃí:ú1ǬÓY¿ã~å@G?+Ä‘UÝ _¾ANɉJo˜]ÓƒðóÉRÃ1ÚÀ{ÊÝ#—G´SÊÝ“äÆÉeVºpÛ^<}Kb\,\<µŸ¿iÀ¹'IÐ6”i й¾\?Ÿ £,ü™…¾Ü¹F1uÕ÷Q’“ÔN‘<‚f7 Ì"¹dA|¹ÈO‘ §§Ë€ñÚ’U ¾À²ÐÙèÄ.º8IV VpŒ6ðž…ÊLÁÞPƒÖðf•)ÁBèÈý¹IÛ¥‚Á”Xgb®·kiD—Ÿk¤ƒç“øªì¢Ñ±yisÙV~`¹7 ‡, ï)ð©_xêRGá!Á’L£ö †™ìÏs©zt.ä £¸7 Ѓ¬ñ‚C¼)èhG²†7¼¾—b°2+8@xO+ýJRݨ&81­”ÜŒ2ú;âñ .4€dÿlr… Cd_ÿVAWÙFÓþóYT˜zxgiš~>é?5ŸÆ¿'Àåp¯j0&Z`K~»T¬Û£·Qo\cßE«ã;ñÃîK³n‘ Ö–B{ÀòÙr•Èö;q±&ÆX Ì-±FF- ïYh¡q\t1»$u¨-”%n^ÑЋð¦»YtüÁ2ÝA?zoŒ‹ŽX—ä@ý²ÀçÞòqènvEa Gi ïyè¹q(òâK:8ÿñ³¼°°g6ÖÅ’BdwwÒŸÇs`”5<1è9 G–ø¥ìˆŸÏ ÁÑÞ“‰¢Àzl„¿K0øP.|Ç𠈓§r“]ø!'â¦P‹Ò½d 1=`‰ï1¼SÓÀoA4Úæk|Å` …¨ñï)ˆ´_wt£* '%q·û óâ*¾Læ{ ÓÆ ™|ÓZãB G0Õ)8–töÆLÍrцSp„5£-¼g¡ë–F¶‘¨ Öu‹$ ía:ºÉM’òƒ©92+ïĹ6çXqªTÚ²˜>pá"IAƒ™eáàåaú8|»˜QXÃQÊŸyðPxÞdù-aÙÚ$%Ì= ñ¼?ž·àH¼Ç™Æ ºa+òU–ÄtZÙòA&‘V66Ä8DV ÖpŒ6ðž…Vø/¤´Ür¦d»pfÆ 4»”àŸÜøùd&bj(SQÒƒÖ–4÷e“ŠlŠå¢*ßb!Œ±¹ïÚkNÅÁmi”LÔ¦lJ&Ê\ siåÇîl'Y¼‰±DEâ]jDºMËBbúPB%xdÓB4øØ\*1èó šÃÿLB¤é¢fC½ãS2;w©QaÆŒ›Ñ¹Š;Da¬‘øZM1YiÆÃgP) ÚzqÂBô€87ÄÏ'ƒ°‚c´÷,4³;»Î²³ï’ ¦õx4¾gbʧ [d§a¹x>KÂÊ6è—(aäAk¢T—†£¶÷,”>pðžú¾Éó–’x "áDýc<…°/¼¯~Øšýº6èW:–AyÀ)% ³IýBusºEƒHŒZÞ³Í=:kô»ÙðÔ’«’ܦàA[ÏxðRÐóPæ`ö/=7Î~biÁ˜>b„%A.xÿ[~;¬vm>ˆŸÏŠÂŽÒÞóP'šÆJŸ«ëô#%7û?F[ˆ¦5.f/t52Æ‘(ëÒRãV1‘-ÓÇóY’“½Ñl-LÏåCµŒ"5¥-¼çÁ7 ýÂ@W£ï&é$_jÈë ‚šÁ¾Æ?hË—F#ix7nn¤”’Ê&!i§ýËGõO­mpÅçáïpc6¹­§úKÂ^Y=Z-Æâ¹f±ºxÊ ¬+•sS¸y2ŒÏÛ{­”€5ÂãŇ”’1)C°FÍñï9ˆg -î>'/-‰«mvùCj×À‘Âo_…•¶1.;¾ ©qq#l†-O1R‚õó2PÙÁ5]T±À¯ ¬‘QËÂ{Ùܤ­¡ªN=%qvwó ôRc?4ÿîƒ:›ö®hNr´MƒÍS–cúx>KRx¶ŽÁŽWöAü|VÖp”¶ðžßgýbk¥–ª·,Q )üëïÑãÀÝ0–Æ…nË‚ñ¡†‡„Á×w¬†ÇRï`9ÆË!¤†BL Û tÇYE†®z–%iÈ[ïÁH€\âøµ_lÙ‡rb|ÿ/ö´Æ5ù·㪢“%)Î:…CYöAŒ{NEa Gi ïydJ&ú¥×©LJû D:äšð†^‘0y܉•“Y˦q3ë1-×éRKÊÉC¶PØ` }+)QXÃQÚÂ{ú*²[|i&šM Ä_…¦4KÒÈÆOäNˆ/cQå‹"Ù¹oŒ½¤%•,±i¡EÖ.Šif3+8FxÏB×Ó‡~ï¦ü}¸€½HGÔ&»§ÿVeµ&Fþøä͉4â²OYXøø§ËlÀ›Ã~€™c98DܱB°†C”…}\wTžˆ7ò¨7ÉlìÐÉgƒ×Ì‘O­ØH9~(ã áú¦1ø´N ÆÃwP)éƒYc¶ÐNöгæ;¨ŒÂŽÒÞóÐŒ¥š×=ÔÑÄ’;ú;vVrÅEjÁ5$ ½Èc[UyS¢ØøÞ4"gO(Ï'×$Y¬†GzbéË0~`ì$g‡lï)è ây©ÜÔ6´k±ðŒÅs”Vnª×…ëMO0väçúa®áÆ-ëM-1‰ 0•ey(Ó&ÁÑÞ“Ðú¾²o[T’qy/AT9Æì·_ÿ–‹ËÅ!>—„5¤-¼fÁ™ qZÉf )¹Ùë,V² Õ?Ø -~ -áþ” h·Â fïeÀ˜.´R‡äd³4[ˆÊ€Hx‘ AüŒC*8FxÏBÏzЕá÷Ab` *ª9{œ.+i¼åƒ_u&~HÚ‹>²ÖˆÍ€ àAOÕç¿?4Z–}a<èÕàÝŽÐ^Se‚Z—)Nà”T)ĪˆDMªzª½ôysKd 7.É¿eÉqòæ\bÿ‹žò ü|2„Ôpˆ¶ðžDÒN(-Tßä%¹N¤­Þ<6¯]… ‘3RGb‘Oµ²iðÖkY0>ÕÓxI&³?ÒË—©¾É+ k8J[xσÿh¿?uð EŠoCRJnîb£/E Ž7~+Ι‹û»ÆT˜ƒ)6`LXÜKrV¾‰mav¨ÒÅT¾îŠÁ ŽÑÞ³àBX»OPÓblAéÜ7ò º¢`ëÐÖVtÜü¦†6Ç9Üö1€‚~O<5m ˜ã¬Ü.„QÓ¶^ůͳ§r¥$7Ï“½co®fQ”[áÎ)Díڗħr-‰6Ï2»gzØ6Ï !7ÏZ›ç×4/°¦·¸%%°Ñ@*þóÄ›ô`îÏIÞ…µ!›4~û£¹ì|Ò$n-78,Òů~Ù¯z ¬¬ámá5®8.,»*ÝÄ–ôFæëeÕbŽ›ù7„Q‘ÉÏ£¸€Yœž˜P`$I%1B('i9ìk…` ‡( &¡g˜1k°IÞzfH2uú˶ ¿wàÁ>‚£‘ŠXûû¹kàÛ± ÒîÔ(è9=tU›’ƒý6ÐY;Ÿºké3„Ôpˆ¶ðž„ª„›’m±·øn-ñ¢i êÐ{Tx›:=ZçŒ]£Nž%Ù‚1}<Ÿ%Ñ/-È™[>ˆŸÏŠB¥W‰ïyäù68vؽå»IΩ6®'ÖÝý`~kÑ ÎB¬Õ¬É ÇciÀ˜.t¼ ɸÔÅÕ힊º¸Ò!Jƒ£ ¼g¡`:©‘´Ë` îª aÛÅÑu\Y¶Ât&a×ÿn G‹iÀøRC¹DêÃùÏããܺÌå@X9J³lÑ^sÈtõXBùØåluWÿÆ¿1ȲyþŽ&àMköƳñß÷§©[‹3Ç'¤}%«CÂê¤Ïê¤å€‰! APãßàý3›4þþ|‡h!Srq±;ô…· wQ\ GŒdÎZ7›bp¸­ã®Z’x¿Å”<<ÒSïÍ1Jž‚5Ÿ-¼g ,ª†k¥NBÌï&‰ÛÄNN ,§;®MQú+a 1y55÷KiÁ˜>ð€“¤Š|Ï"¿»m>ˆŸÏŠÂŽÒÞó`ZŽy1npà}?‹©#švD¦ç‰%B…^ÎóLüd—ߥAŠ^²ùP—à:™ì¢ÁqYTÓ¼`¨Ã}~¼±x`ô;zåwÊÅÝw“°9/²­c;T+ªÞÇÍ4Bdwð]ŸÏBÆ[O|˜Á’?˜9Þv ¬|ïˆ 5¡ ü™‚v_´ð7ŠßM2ÉÑv“äk„¸M¸ËMsbƒŒÞq’¸¤ìÖ(è`‚YÃó7ÒñóY!XÃ!ÚÂ{¢ƒ¼Ñêä+ k8J[xσë)öÿËÄ+)ù}eŠ–q ¹ENÈQ#‹äÆ <5Ÿ²`|™y%%ñ.FÞ -ÇÓ=–a”c1ŠÔ˜«¯,¼çÁ³©[®íTÛÏ”ô©R‡‚Ë‹`3ŒÌPıo/XÏ,ß“ôˆ¶`L(Ú“¤¢ùŲPÙ» }Tw7È(¤‘QÊŸyhà îè_§Rò[QèÛt‹'k+êîˆ^æ’¢¬ëø £îÔÏÓÇ–Dfº.Vaaî"ícøÕ—QXÃQÊŸyhM<’«iM,ÉÔúÑxmI ƒ›õNŒ..D—FÏÒ²`<Ü6#%}r l ‘Çpm>ˆ±&VÒÈ(eáÏ<ÔFç?¿µäÍN’Kr2y8î‘Üt ®Øx$dŒ5y‹R£òªÊOwy]ÅKÒY_õ (h†Òƒ+y¹Ä %ð3°F-ÌÌ•…Äô#Rràn!-TÕØÛG­& vÒXqÓŸyð½ÖQ3T&Òj¿KpŠdè¤ýD5eCbLK 2‘ÆT^k°PmY0¦‹ç³$ƒÉri¡kñnÄ ¦QÖP6ðš„èûÕð»ß“Yýbã ¦5C«,-hòŒ_wTÖï ƒziÀ˜.0B’xÜc„,ä"³ Âà¬àmà= þÌÈž R<¦ÝKnÆ–pîÎWÇY?lÓx¥QeÛ‚1] 5Çÿ.i zã\s¹Þ2ûS#£–…×,ôüèJ©GâÄw“0uƒ@30qšsø‰LS>D³ym÷É”y[0îæ|HIs"“,T%:ÙñóYQXÃQÚÂ{*–à±g0ÿ+áÃ’ŽË]Ð:ðÑ™ðÁF=„Êv"ƒ6?¿ÞÃ-HóÏ'õ"[œGÿônžøù,ÿÖp|¶ðžxsªtºÎõSï °ñzûqe]Û¹<8ÈLúoIäX¡{—,Dmïæ‚ßˆõ¡‚˱ïðuténfßMr7õübL+r#Ü uþ.øq5£L£ÓþóY’¨Vþ—ãËtÊ(ì ªPæê›‚ãÓø÷x¶x¢ž,èbq°h8 û¬\ÌïŽset½™Z->,¦Sã<Δ«±›ac‰N¯îó'Ä`VÖpˆ²°Ï@<ÕC]ù.uÑIÉàa]t•Ö=òö[K ÑXÓŒMãDg‚eÁ¸{”’Ƭò´Ð iPìƒøù¬(¬á(má=$G¯ú¢žKRùxBåØÚ6>uÑCy&~Ȥ-kðvY0.êɱIø€K N–Cm?VÖȸeá=L ›"kg>©%Áæ>+7ÈÞ™.Z; ±OõËÒ˜dCH Âò¡ì02*\\bÉBÔxuùÖ | Öpܶðžß_ýÔ.[u‹KÂÌq4VÁÓ«òD¡Dÿæ3ql:Nç¤ÂupÍeƇJ Sk¬‚zÙÊjÓƒðóÉRC1¦÷,”€‰¾ZqÂÇÜ·ÜH øÃ·h ÓDø~öÄ84â²Ì ñ¾Öø„"ä_’hm‚ LŽ-YÛ#S!XCzükºÊŒÕÛïRÕ[ׂ^È9Zxñ§=‘õ©Ù¦°Fʹiü~!è'g Æ­š9Ö’Ú’Ä ùíŠAŸ+B~Í@mØlÇ·–åéÜ_yƒMPâk‹D“›wa¥¥(Ü× «¢-ÓÅóY’÷ÆËÂì̦´bü€…5¤ ¼&Á×reN`­Ø¼7Ic[ä2ОœÕ)`ùG#Î&O 7ѨÿŒÄXî Õ¯I#ºD^›cúÀƒ[›. lœ¹|ãüPQXÃQÚÂ{Ü0ßCÇ…Js^–F£7ZyV$1÷É7‡q¤cÇ;¹o•ÝaÒ‚ñ¡,ä”DÞzðÊB#/wúFŽxU»Pj8J[ø3>¾~"+GˆKr²¬Ný£‘¥ ³Xeß5ñ“M¬—F<$çfÁxº·LJÆDð0øæNÄÏgEa Gi ïyèH`þŠÝ&Žj n½*,oØ¥zä¹–±n®¹ið¬lY0¾Üã%%ìC½,Ì) jù Æ™€¢†ƒ”÷$ø[;†ˆíqŠõÝ$¿-Æ=I»Á†8ÉBHÐÐçÙY'_ÌÒh¼íN Æyv¶$X- q6°¹|>+}žAkø{Ùܤ«d¹ÝÜ’à‡ÓãMÚo¤LGë‘™„Ëþqc^k7¦ƒç³IâÚÂÄoIô0½×Ç[Ä[0¼g Kç¦*ÝhzûÝ»¼ƒJ?žR«g‚úå¼oL‡©q«}-Ã.ÝA‹Â40ÐYw¹ V'‚°†ƒ´…×,ô\dC¼-É‹c‰ˆ §Þ=‘^ØñÌâíŒ0žrì ‘ Ë·4 H¡/Ae£á^Ùi8㡨¤‘!ÊŸIˆ²”)Oã¬L ^’ !PÄZšëæ5”;\Nhèî)` ÷°ãÓ@)ñëÏüú³á¾<E¾ e¾@_óà"¿ž|Ѹ+Á&¹y±½p»>yñ|wâ‡û܆Yc¢ŸÖ²øðÕ¬%­ðjÖ*šž,ÄØC+ k8J[xÏ#ÓëàñÙu›1½j·YÁ×nµœÌiˆ“•;ñCÊtÐ[C] ÓBâ#IÖ))Á]7ÿ¥…8Dkcù~>Ej(Ê´ðžáfeç®ø%ãÙ˜’¨Fˆäâ àɈ‚¦È¨Áë¡F?mÆcðÜ4nž¦cúˆ–œH¿O A¬‰ö!ŒŠ  2+8FxÏ‚Ïþ~1 騼T_’‚õ Én¢xí>gg–SqÇÄ <¾vÈ(np8+Ö’¸)Á¿%‰N»—}aÑÿÍ]CáÙÀ;~Ü·ÿÔS˜C•‚v°ø¬Šw·]lÔe ]úÓG't”¡X£ƒyhY0¦ œÜK˧þoY8À?³|ké†(¬¡ mà5‰¤ðpIäè¦ð`㎉sOÄéŒ]º?8Ì‚~‡Ì\ÁÐ;i[HLÏgINæLØB9ËrPN^‘Ê??spø_oè‚Û¿ÞtÎmÁ@vxB&²Xð>4Àže¤'k¬ñ{ႆRÓ…ÞècQ_, uò•mÄñ8tÒp2ðžßı.¶šï&9U-8÷åÊÞ¼üî%#elÓÁNäïB®d7¦ƒç³$ƒ—~i¡“™BÝþý±ãóð÷ ”UZYI7ŽL*• ÔÝ7K;Zf÷È>û1Ýgl¤–Feo_[H Ïg jc&¯ ˆÑ=]#3ZAH#ƒ”…÷,øÏuŠ ÷¼ßMÁ(öd«œH~AÿÒPÆY¾ q´ƒÝ¯ $ž¾ÄHI,Rîi Ö(uó@Œï„b°†c”?³P…ÄÍt¤H>Y!qg­nÜ=©F¬'²0æYéK¥¸º7…ßÛVaHºí‚D¹ åÚæ€• ÁŽÐÞsPñV?¿w[ÕC>%±Ð,>ã -ãÒÑŒUvìãÀA!ëÿi— DƒÞkèœeœ¹ÂônG¦ñïÐuÌæä‘ìxðbV’Âfd8`ÅÅèq’n·]̰;\í¼¸[µÆˆ³Ïe€Ptd‚Xôxlô”mY~>é?51†¿ÃäT¹ãtI‚eM>¸sÃin¼zN\âò›ÇüüBÍxŽ&”ùç“‚k2UA£cÈö4/ä?5±-¼g O€‹‹“}–g/ʸIÉÀo¢¦ÿãN|òüµP€Ø›£lğljæ¸×ðÄt€Õˆ$ñÉѱਛybdÉ¿5_Û­£ÖH‡…5÷ÜL4Œ7 9ó®ÿÀÛµB¸ÄÏs3¹DŸG9ò± OLëÏgIº‹’d ‹êæ%F Ás>wëÿãm0 J¼·¾›„A{á79ªˆËÅlgV]"!.ú1X#2¨‘Õ*‰é§™’´ª 'YˆsµÍ ®¬‚>v€ýž‚j¦t®_ÅÊš)Ÿ4vr©ü¾úýfv3V¹Ç­£Æê>gìÙK£N^Ê‚1}`Ë. ~Ë.Ë…O+id4ðgzéò Ç6ƒ/]Iâæï6æjÆQ®ÛëÅ$ŠËUðqIŽD kDJí¹Y0¦¼ª%àYnB–¡"Ü…5¥-¼ç¡ôVU'a'?¸%q1Ç µ€†6ŠKMŒÊÍckœ“$û¶`LøvIrò”ÛŽyñp]>„±a©á(má=¥¥Ü8>‰•¹SRA‡íkG ø¯Á0„¯ 1ÈÈF“§ŽÓmÁ˜>p×.Éo…Û¤´p¼{·bm¢û®á(má=¥J‘>î-øLI°» eŸ7 qóψøW?fb¼0ÕЛڀ`ñ!»þÔ9<öÐñu³a\2„Ôpˆ¶ðž—„…ý>â|Q–4ªÇ%Ooäê©_¡È4"÷Ο6)ÉáÆt€¡$…Gêi€GÔËÃ1®ç¬ámá= 1%žlƒz¦Y‚%x½xÒ™vHñgú½±J~ŽkÓ`Jÿ² ,Èž—䪢¥…XV&´«wkתßQ¤†ã¶…÷<8·¸w+™rÿÝ$ ÇŽè'Òk&Ý÷øn³&Èyþ…ÿK£•3ÐBâLôOÉï¹vßÿ–…'ËñóYQH#£”…?óàòÔž`ºëxJX’ž¶ˆŠ#ÖóöÃ]‹<S!Šb޾ $žn:ž’„äe¡³ã¬]Ší1XÁ1ÊÀŸYˆ’¿0Ý-øhÈÈ/Ád—xÌàV¢ÊÅDóÎD2k¦Æèêa$ Æ£:SE‚Žü‹e M¥ªÈ±‰ÈîMÃAÚÂkʻ͖ÏG›>rºØ%ªFIüð/fï# ll3¹h –}¤€Ir‘‡ïjⲊ‡€­ ã_—þSCñzô+ü<0Ä£àÂaÎw“ü¾²¥ðÈ<7¾ÚÁ1‚Gñö‚Ìn”FíêaE ‰éCG†°Ô²éâ› @"~ž!jøŸIèŠdé8ç{,%'/˜‚ïªê„µÑ´f‚¸b(<²³Â¸xÄgÆÓ-9R2À½,ô  » |>++8FxÏBŒZ̪ñç&¡VQ­ ¥%ñ׺Ôù”ݤñP7~Hžsì¿X»Ú‚1]ˆ×†‚ßT¨š¤ áç“AXcEM ïYðŸ,˜ÃÑ0ûºï&9±óûá›í(¯Â?O¿ÈËMŒ“--­1ilÁ˜>žÏ’ –®§…ÎJ¿ôAŒ4Ea Gi ïyhoÖÀƒ}¸Ø3%$0øí”@¹„6¯µ²ù Ü#é'AZªêALHLØ›Q=g±^¦ÔcyÆ‘cH ŘÞ³È 7”†ôS]ÄR·Ôqórã‘ÉŨʭà&0~ȯyM£“†Í »©+SÒø³IÑs`óÐXf±BÐçÐÃßSÈV¸±Ju°à·÷À}c˜¬¬^»^øì‰ñ59‘œm…èórmŒéáù,ÉÉkˆ=Lë˃p P ©¡=þ5žKU>o" —yÌ)‰°ÀiuÀK\â—Þn²W7$ý}ëï¶) ¶ôIÆt¡óhHNrèØBV¶ô@^Fà G¿§ÀGb¿},\•[GÆq…'ƽ³â«¶ÄniïMC‰…i@˜t ÁÅnÍ6ì}.:«-ñóq ©à˜mà5ù‚¦6º4µØ‚`¨º°Y3î8/ívÏžøaèkS¸Øù1 Ëž’\ M×x4B¿—alÑÑiIC!køk\B•ÁMv§ýn’(>‰UMEVLa{ZÔ è3[âF^ü½kt\¦Ã숛’rrYlQz²y(‡é‚>w€þž‚n¼‚i7[–J™(ùG.ÊØ±îf®1î»ÊKðƒ,²Äô€’D¢E¬_i òâƒÉÝ„qßÅRC!jü{ \ÎÊÎ3]µEK2Ф>¸È…šTž±^‰² ϾiÜlŒb†ýv>NJÔ)Í¢¸kóúAŸgÈþž¦5cUuêX÷”t¾KgkJÅâ»vjá6ü.žƒI©à•Ÿ 77ÖJIec¬´PØ8Ë.Ške VpŒ6ðž…8ÔµZkàÕwcR6Ⱦ¸òCÂt½+);ܦƬÌã±á¡…Û& ‹¸ ®üÒÅðÚ0ƒHŒZ^³ÈW¤«D*3[o§¤ðÛ¯‹åc‘Io•xÉûÅuo¿×Î=mÀøÈÞÛ’€ItüK íRïmùÖ»ëÚcxÏB7`¬ Œn×ÌZÎ:ÁGÐ«Ž°4^Ñÿ~÷X—`ÇXãÀ¥bZ0–œVK¶þ¥x9õ{¹ÞŠSÃaËÀ{93Pèt§|7 KÜq³ÒYøÝºÀR"¨‰õM!ÂFzš $¦ M –2. ,eL„ºÝ«»‚c´÷,”¸1qŒ2’X0xñÿÀCqÇ– Õ Ì$B‰ÃкiT$/ Æpñ|– ñ< T$l,ÄÏg! RÞ³Ðb¾c‹1o>Xpb7‡$«YùKŽêÕ"±R½®MÇ0Ë€1=`-oÉbxY-ÄJôšuÓpÌÿš×QGK¦û‹c–ܤ¾*Åe’Éʰ/"Æày_Ðh¼fÈáÆtð|–ä¼xó& AùÓ– BR–õ¡ƒóØwø*¿¹Hòqú "%úËã±G’7/üXƃ›¥K©qr”ŒO_A¤d^ÿá`^âOo.ˆc€ƒ°†ƒ”÷,øÕvbçcù»I‚î©ðÂêÒ7ÿÆóu„fF»ÆlzÈ‚qÑÚhIâÉ\ÿ¥…(,À¿°|ëâíÚ5¥-¼ç¡R7]¥'7*–D÷MLS©dˆ¾ª¼g<”8‚FÀuÓ躨´cúÀÞ†’¸6c,%Qˇ0È~%£HCQ¦…÷<øè8Áà†îÈp© ICÙݲPÙ—&}Tw®É(¬á(má=®ñÇ©îRÅ9£–ôƒÙ꿟ù ¶&|ã{œ¢—1ùlê’7›À¤cúÀ*_’Zù"·f¥b¬ó…5¥-¼çÁ+–^Øp!øÈð{KIg!üɼÉ?ÆàOu½“íD¬qr-—Œéãù,ITHÕËBô›b¥š! k8J[xÏ#ù² jwчñ»I‚IA Òˆ5 /Øx=oü°EZ4¢H &, ÆEÝ—ä@M}Z˜A³z.ÂÏ'£H Gi ïy$ƒ™¶\€™’ÆÖ®àoßUì4/ü$‰@*ÜlO™Œ«ë/S4‡-Y‚«–ÍÃáòËŒÁŽÑÞ³ÐIwqiŒŽ[K"€Ájòày>p‰/Œ£§þßÜ&¿$iÀ˜.žÏ’ˆ À¢¯jß<«ž1XÃ1ÚÀ{º–ÐáÓQcƒþÝ$‘Â;t¯(¼IŒ f½ã–a°…Ÿ5øo• éÛ-J@ÍŽ³Aˆg÷Ñ— atú`ÖpŒ¶ðgJe¹Õ$C{Ï%¹*émã2g{ØZ¢é<[}hó‰Æô禶çfÀøl^rZ2;™)e€DYËØ^q:k8FxÏB—d“)85 ßMgb¼#ë“é”õäÖ¸ë’ UÖˆ/}] é$) ýlàˆº×åPWdAŸ;@OA­YȤwK8ßII\pzÀº‹ß|dj|jr!ú“ÜìÀaÉãç´ ,zQœºáŠ+u[fÙx ؇ðóÉ(R#ã–…÷<øºnxU Sƒ ³))“<Ä£›z¿\‰õ*­»ÆYø°cúˆ’ÄC¼hIPñ˜Çî,}ÇE‘Š2-¼ç¡|¸Æ'ZAÍ÷w“ùû¦‹ÏŸ«rW…ëѪ"ðW:±nHHÚÆ •™§€¼Ù9¼“';?G ÐÞS VœØW±"%7Wæ÷5¸;Œ^w^oêñ~ð¼H‚~ðýxøÂt,9q:ãñÇÉu½ƒ‚¤†#„¿SPµ}!a\r«Ü^’y¨²å¡?̬¢×Ë%1.æN¶.·FeJ¯-$¦ìþ%é• ¶ %núhæÃÈ(¤‘QÊŸyè›H¾yW–fÖp”¶ðž#¿·2*¢Ã&ÉRÂ~w×'¸L@çCv?áø™OóIƒEiÀð`:E *ï*rx¤#ŽÍ1ò¶‚5¢-¼'‘äá7²¦»Î,Ií¬$¹É3t·Êô>žP‚>µé|2ªÙ<0qwà’|×yxô‰@)ª¬ ?Ÿtn Nþ„Ÿy‹J7'oì³Ö##—Wý7xEâ{€+Eâ‡]²ú¹iÔ!î[Y0¦ e-BÌ È—…x—ÍqŒpÒp2ðžD€$9¸K† Øa°—Èä®)®v.î㯙ø!3,vöÖ¸Q÷–ãé@'HXˆc™zô±ãóð÷ Ôù¿Üz_Sû–ä>IPÜÙà òÞ‘p-qjPU´$ ÅĔÁ\o¾eºâhªNBëËkS`½æ2`\U;´$…¥`6p øhy8Tž´b°†c´÷,D…Ö™_q §¤ìpT—âïÕ£¶9‹þ¢¿øÁŽsÖ¨';ÔÙ‚1}`%qö ŽYè;?؇0Ž"ªŽT!É(eáïˆñKSÖȸeá=¦Oq°^<#HÉ8P†²`e-HÕþ½AÈP! úóJVVküæ„ãx[–Œäb½½-ô‹)ö!ü|2ŠÔpܶðž·Ò•õòI*¾»äfZBÅIQR!œB‘Õø! 9zvZc íײøp ²$ÑÊT²õ8±ž·a%Ô禡(ÓÂ{ú±1Ï„I,4$h¼£ª»^Oà M£ŒçeÄ8©q&05¢'n²`,ø±I5TaS¢{Óæ‚?6ÆàÏ´‡¿'¡”èŽ%ÊuÉ–cÉP¶p­ÌyŸJWn7²¡ûôgýdj½Ó4Ô%iÜçðʬȴ^7™Î­áàlá~žÃõ)üÛçp}&>Hö±z:Ð&ÎÈè_Süû;¾ 7¦Œä¼õe …ó·*ÔA_‚ç“þócÇçáïè ¿üWxv…æ­Kp³óÉò©øK “/S—Áæ<õ<‚¤Çª˜Ï/XذÓURò{ûÄÊ+-t£^>Š;`gÖP6ðš„Ê;OÈ#yYìö’ÄR'Ví¥ðŒ+–BxùÐ#C’¸_ÓÛ7tQª…ÂQ’ì¸ôûÝóÏåÏÿ¸9ܘð³äøeWÓ#G’[ïõ|è‹j’32¾2|4`XûàY7àÃŒahK-M¯UÓãVkûïä{dD”´ã55Y ’‘••Á ï|´Dhô9Cõ¤/'·ïîñvwë¾£—4Ö¦jè%‘ž7z˜!•3|•i@ó@i Õþ²Û®¤ŒáJP;ŠãðþÑsA”v9-Õ¤/'7îæ®iXÝgÞiUÀ‰¯f¶“õ¦M ?’~¨Y¢‘]‘h)qgÍ>Oº9ÃNDõõPp*è?®mŸ,€Ö@3]0 sÑ4¬“ Êeb Waa®3°VR¡ç?•±¿€t/ЄÎm’»»L œÞØŠÝ950:H %ùFNm€Öõ$œ0óѬ³ÀCª2°ƒ*Àm"C6“$UŠ\™µË[) nh´â*1ÍÅ$0¸£aBÞÈL™»¡`Þ‡›­u tÂ$è#Ç/S@ 8ô Ú Ÿ88}‘©iEqIî¬(Y"ÑiYIªÊ$p467¢£wâNP¸/W u$“%EÜ<àçæ ^§@@ª¤«í0ÐëÌiZ]$Kg…*,> Èê-Qõ¾À”»Û$,ŒNƒÜ, oœ]sµ}|z»[­çôÁ$ÌE(¸™_[ÒP~8}‡$·rÙ [Ekļ¿U²ã½"hQRB”Ò$r@`Õ4mµèƒÃ×ÐßXù˜l€Ö7½0 óÒ4¬óÀÜ"[H·+Cç”-ð‹”Ý"q‰Øf¤ô’»R²= È+&L HÓ„þ&É9åMÒ•°åa´^=¦&›„ym ÖY°X®ù?Dô9GVÐh‚(y¥/¤‹V¶¥·ƒÔ£®„2 ÈÍÕ’wx÷*gÓ|^W 5¤òÊ£’—“»àæ¡)XçÀ=åÎÒ¶€è32*.äÍ¡(eYTIRÁÒá´¾•ŠêÌ®w F«‰)_ö÷Iw”T He2úrN˜„9i–Y hQ*i4í¸É òÍ·ÈöxÈ­7ˆ£5»µàíiìlë¬Ó-l\¦Ž½òÍMƒ¼…¶ƒc´Œ .a~›†u<ØÙÒ5ÙÜŒ"¶YÿÖÍv?ØÕ×ûÝö@M“„Ô§‡IƒÑœ½5= 7 zWÏaÃhMTR/†¼Öyðp]â5X17ã´„ÜGÍG VjÈ"((¸ÑLœÉ³DT€ž¡ÁhØàRL9µ0d¡ú†G3̆Ñz¼®^¸„{I 7óÀÆ9U,j䉰mã(Ûq³4/”<³£yyCD"—Iô›in4 0b¡œæorÁÖÛl€ÖØjž>6ÿlø:Ì aÍ!`šq"Ò³%¬’3‚ U1Рe} `Lbr³ip6d„qäº 6tÇq R'(áNBÁÍ,ˆè}½hý:qÅ.ÀCh}‹à¥É¢´B!ÅÔ%¤ _œ4]ìPÍ9sw DowÉÕÜ “0/MÃ:ÖÜ¢1§À¡;‹s˜å(Ký½ï‘†u1h´.*¢$™@ÙDFľÛÁ"m7 Ç¡§n´æ€Ã— ®`…/¥HV è^íéòŠ,Ý= :6†ãš4_½i’u!Þœ›-ñb lÀcY2D¾ÜQ@‹'Ž™ ÍL™}– ¦áf\„d†Ê&e:'#r–Ôzš2ÖȤ/Ž5$Úá|Õ`4l\Nƒaæ©È ÃFdp{xaæ¥iXçƒÍQHŽååuâ`kß*,;ß•=(Hë1å†Ë&!É]eÒ`4lÈã0üév”»ÝpÜ “0/MÃ:îÐ2Ž~%«bÇd^ôýQzsŽè°\5}ÕhÝpiëŽqÒ`4lèröŠ aÓ°ó,Êlì~Ze^˜„yiÖyŒÒ/#â{3N<ð-È'²©J\Q¸lE´J ¿Äš*Ú6™DÆÁ‹k0zov„íœÇËÔЉÆm€&$·zaî75¬óàÜ*„éýtœ*/‘G=Š ¥ ƒTGwàx˜@ÙÜa HÓ„VsÜ`ÔPêÓy˜ y9¹.`^›‚u áóGöˆà£áh³$ômüu®'Ão³@³‰QÓÛ[–ÚLN&©@$±º’L£­³]tËx§[$]6°CI“xmO¥)²I;Lm¨©L6/I) q’èÛà2) 9+£åîQ}pääúA]K¸‡Ô°NgcM»*¡¬#§»z¾Âþr,—¶"AI½ö…9vúyÖ¶wô`Œîé\÷tn´.M­%%ÌEÓ°NÏEIç¨XT‹sr$ÊoìÛ½£C+i­ Bç—V˜4l!蜨I+C7† к:¥&a^š†u¸¢¦y«ã4tï:kE&hz˜(/ôêáa£¼=ãø8õÑG ý—ÓàT´î°ñ(&úAËsÀ$ÌAS°N™™Ç†rüÚ[åÁÞhƒ£iJÆ€è-fûÎ)µ!!n(z=8 tœMC-¦ h.Ä„#²¸Ê¡F(àNëø›9°xíÚˆÐq8 â êD@>kT £µ3]BžÜqÒ`t&¤ýà(HÇP+êœÌh­Ý§&aNRÁ: œ&E­WÐ"H¼ #f…ŠÂ³MCÌ-¢Ý{ÈN_ÐGó M¢dÀ™™Ò´ÁŽ9Ê‘¬¸rçR-DG… Ò<êÞâ$a~›†u¬—S´ÝûŽŒuã„ÌÔÖ (®·‚PÊFžôK蘄ùh ÖY=>"Ѧ±¡•sÚ¦'Þ Ð”jù'i W‚‘ÐfP—Ÿ÷‡³Fpm8iÆ9ôXÃÆ¬‹4¤/'÷À%Ìg*X§@øVÔl¡à„zpöŒÔ/É/<UÑfŽŠcú˜ßm–ðiÈŸi4Hª¿œœq ÉµÞ+ªyL=if+¥4I˜Ç¦aoÂDôÜ„Y ÎŽÚŸØŠý‹Gn™ `ºJê-ØðºáçRõÆp§aàrœ 5¸¦@Ó•â°@Z¾.º`î"5ÜL‚Oyæ ø`¾q Ž´][öLbæòR"­Qv ¼¹DÒ­¿& õúJ#S‡'­p@ë>L›s6|uŸÅ Hs—è8»ž§açP¥¸K»ÄêÁI’ÍÔ¾¾þ9Âc¸ÑGµ®'Æ©‚ñæãŠ‚G3@š‘:ñÀ%ÌC*X§ÀPpA¾Â×™Ó–M…Œ’¤æÈgÔÞm’hŠ>†;ÍÈçà”3º† §4ncc=]°Í?¾Î{•´3ä»1ÃypØv*káà.µ3òʹ1\˜á,+§˜'‰ªïþ¡ÁéÎΑ‚±»¡@2ÅÚd´VÒ “0'©`;‚TìwCáÓ9»Ö[ëj&ó¼¾E,vŠ“ºBß\Bµ4)0:X«cçlt ÒwýÈn‚¤þ|რ˜¦`« "°å „bch]Mk•„OY|IÁÌ’`£u[‹®K°O¢kppöÎ8ðŒsÚ¢¶ ¤™+N¸t Ë,0±¢ Ø€"(@· ñÀû½oƒõ±ÝiüBëœèKm—‡Æ¤$-ˆ<2ýlx•ê< ÖZA¸àæ´iX'á{ËM+ùŠ$_'×ɲ«ÓÄÒñŒÛ˜VšÙ‘Xw†sæ»VCƒÓ°Á½¥röêTƒTí“ ÐÜ[ª”p/©áflr¥à²-#ð5µ((à¦îÕ*ë¿HëQA>N -™l¸Ñ%è‘qr!dw•!OÚL û&A÷lôâ>Ukw—2Ô8GúZiý]Àº¹m¬¾cžšv0ÖúJÈn=¤¡Ái/7sN¸§i(Zûå&ŠU›™ö¹¹hÃ×I`ã%‘u}›×·ØwƒOnÚ+ Œ›˜>TzÒš`¢ÍÌ]BJ—œV:€Œx°‘Ä€ò3úrN˜„9I ë,<…VÐÀÀÆAÞj§qb ZH fmޓđ§áJ@»¦ÏfÀü @‘”‚°0©­ 4nî.5¬î#Ѐ+'ɧ ´'ëOBƒrò”ÐóH*íµÙh¹¥Ðt`H¤ƒý•©ÁhØÐäô×ÊLò‡ KŒ^˜„yiÖyð¶³7OÕ­:­}bBk=5FÐ+[GœÆ¶t”Nœ>xâ=8h>à"z¸hÝ Ü —0/MÃ:âtWæÿf¶ NF:ñ#êOHËZSº†ÑzM#~MB^¥uÒ`4lÈãDíj54ì¨åw y5Ô J¸—Ôp3ÖK4Î_‘u® ]ÚËCÎ åŠ(8TC®i­@Ÿ8“ÐD§chp6.§ÁéWCr \CN‚2 /§á…I˜—Ôp3,±ÛU„'$£Å‹¨IÝÒöžôÛ“·ÆA9R‹€…q‰ÐõÙ4‰Õ18 ®!â ç6@kè‘^˜4Ë$ˆˆ¯Ãv 1¢^Ø9mÚ<ƒ6$ù 0+F˽Қ)žÍ|Óà4lð4M9uGÿÍ6švÄÉ„’á§üÜ\´áë$EDG»$GâèÓh¤·&yœÊZNºÄMy˜Ë“´Æà뀿®ÁhØÐ@"9H¤ Ã1Ù­ ªôÂ$ÌKÓ°Îc,„%16(Lêuâì(9¬%gUÖ©RpMÚÂÇ$Ѱv FÆ-…5œˆô#jØ[Cúmmká6I˜—¦a#åmÀR[+;#KªíèXÈsMNØ’ÓüÙÔY")¬ÂÐ`4L"L9,ˆq ;ШÜhzÐ “ “¦`™„Ìë»ÓÿœÂÞ·©ýûææ>4Ô®ùåñî?î~: ÞIì¿Ì_Oáîwýÿ?ž¶»>E.£; z¢k…Ȇ–œOzˆs+圾³ŸD È€!eœYªaE2Ig’R˜1Yb¿Œ3KI L@]Ê8³ÔÍŒ¦9NRÛÝG¹ŒÛüÇ.×»x8ýÝïCÛîª,%>ô+§ò£éCûzE¥ñîázúþÜ7¢÷oBD¥Ò‰]‰¾D H3QH¤Ü‰c|Ò/êý>üîôý[Òa@ú’¤l•1äè‰Vÿåêý†TÀR‰œEª‹0 ±È4, &!rf)íí ècJg‘ŠhÎ:I‘³Hq>“Ô4ÿäk‘¯ä|7‚nµéAz_àn_/Ñ×¢Äÿýµà~ Š7oÿ¼<ò©ÀØÓ/RŒó/òÿ{Ç%Y|ȱú&@ÛAfvþrÿðGŠ ta—î[¯#‡Ò/FÿMÕ¾¬yx:? ±¯/˜”œi³ÀñÔßRÛŸÝßR»ËÁÄú…:ú2¸«•Ïÿö+5Òô-õ—>ò¹^Óïþì•ÈÂyÛ¶¾±œ®E_Ô¾Gí?uý‚ÿééã—ûþ-ç¾®ÚÚùåñþðlõ\ÿ^¿¹®è˜ "d_•ÂË—ÿþýãç§÷_Þ}ú·—çËãçÏ?œŸ®ï?<½þ×ÏÏ¿>¾|z÷ë÷˜ÍêÐ.eÚ'üýùíýA ß¶ãüðãäùSâùSÿ[>8úRñ8˜„^ßÌCÞý4ïe¼g•óÏûÓó+>ضxþ<~¾ßËÛv´zþõ3Ƕr~½ñIrñú.~¯ßºD‚k±õå®Ñãåý‡o^€þ6ê/»Ï˜NN”êåèËè~ãô·š|õ*FGÒÑßßzq$a¿ìç×—eÚŸ?LbÏ/×åÒÉ5‘¬Ÿˆï[>h²k>÷ïqÒñE>ê®îùüîÓ½¼%ë&ºaµµtþõ©ûe݇wüó8Î-ÿ5}ÛÊù2žÝü«å›º½Â¹¥®wQ¥Óï;ØÏø­ïŸs}ž…^ß=Íz¿y}rëzwI: åü' ñÜG*÷ˆç_ô/a.^^Ÿf'>Žkq{#áûË7×èåeQ÷ùç.(“Ha½~ó5£EŒø¨¿]½súêêá_Oóýù_îEIËõüüéúüñùåY½ï·ëù—7ÿ>©º>½ü´þ$ª8ŸûtßhŒJ&ò(wÄÞŽ*7„`0îâùU$úÓ½?@~8¯Jdèz™~áýöï`zû¥« y}<¿À°øógï¤_žÞ½>õ É /ÏW~Ðây~&ή<}˜î¿«§×~ Ïúá¾?¿r)_=»àê~~yúø£ßJ¿ý¸‚oá«Ç•}¡Ù¾ÎÏ_¦ßøÇë/ùµ)‰¿méüîúõ½Á¾Ÿ?/r?M*.ó^äÁô&êaJ½üòÔ ø¬? ~óþ„ ?fôv, ¾;ý/ ]1#endstream endobj 321 0 obj << /Filter /FlateDecode /Length 3807 >> stream xœ­ZÝܶ¿§ö±H[lá:–,~J4’ë .â"±¯èÃ]È»{g%ûqÑêξ ÈŸÝçÎ I‰Ôj/ç8ðƒo%r8ÎÇo~Ô³"ç³ÿùÿ›“bvyòã §§3ÿßb3ûüôäыʓÜ–ÏN/NÜ>ã•É 3+u™[©g§›“3ör^ä…–%/,[Í3üQÁ¸Š½Š^Ôû®©·óLJ3+ö<y;&·U©SíCœ 󢍨WÉ›Ý6’ý:^§]†E ûÒÏÑVU[/çÃ’¬@²dÏ›Å\à~ŒJE%+®ƒ*’}ù¿xØÚ 3ÂQ~{ú/°.bÛI©s«À|§ËÆùüô{¢ÌŒóÜj-pH¦Ÿe0®2‡1™ó|žé$‚}^ïiEX]úf²ÔyÁÁ^o’îM½¹u¦”En‡?¿:9}pÆNçîE¶›gÊrZ¥Y¯¯£í»¶îVøž)Åö¸’­$„uu×À‰.`¸U |Éêµi­fM|:ÇÜ£MN'ž²ˆ‡­¼‚J³7M÷z8C¿Í*ñS)ŒôÆîÞ4[ÐrãLžD±yåž¡;h ’¹`oÀXض6°èš¶ÆSíQ®7(‡b?`7sQ8°jºgg&N~´Û£ãUR±å1+­÷Þ®U0¥€6*Y÷ú`öàŽ™e^Tà_\æZYáv¼o6W4KU‚7Ž~y ¬„Õ@µLç[!±…çR³?\GÏ·MŒîš‘œAÉ?â\Eüìù?ÙŒ©»Ú¯¶¿Š^´éA$¿¶dw#aõäyPV—è^ñòxîJ\°kâ|ƒF}zzò͉˦zÖÏ¢©Ï…,*µÊ3S•ye-¦Q&ÐI½Øw–g@¹ªŒå1H¥*1ÈÙ³°cm|…,oF»ƒqIa¯¥¤X„?e¾¸Á,¤ eáÑ.†ç;p+òj%y𦓸pN‚Ç¡§´=-† ŒµqN\ZÚ¢sâªrNÜÄþެTF²õuâ©é–…¦-{Sô.OÏUê¨åÚf»q—íý…-ÓHIÆù€ê3I‡ÀÉPìt¥Ø.öê8õ®kr9˜£¨Zͱ}}~68¡™cf°R°ŽJ«…ÚvëåYÕ8üÍj¯gª‚jB¢J×ÄZ®›$2@OŸéLdZ¨*¤éNYa®ÓÑŠçÞb~y—s´Á=1í(¦½ÎçÃî 3ý§÷Wþº^9Ëöˆ¯Ò5=H|†n/# $TŸ{J™p¿k–Ñd*8…«àïmB… ´¾p`.\ù àîÂ/ ~u1‘ ] ýñún7q£’ó»õ`Áˆ,T¹à¥¯¢Â•O“Z+--õóO€H ˆO'%rûP¾Ü2iôTIè¾"ˆì™I.õ¹Ø»kòz—{Zòú²¨bÛ¥õ¡Þ'9©^7]oú[Š„ƒ‡c}sX[#üB 2¹³€£sÐcßÕm7eŽLÕ”ºœ§Unæõ‚ÒU·Mý*®à+iö>âž·»Í|J còR”½—-¸é„²ÇH›$×Õûë Gô%ÙCpöQ,²Ç^Î`s F¢­òB‘68¹®ö2Ó>;÷gá^ÂÙ?^¢Ëâs–EÏr}>HrX¾‡× UpÄî\Vm³[M5ćŸ/PæÃ ‰$KÝÔí°ú§ÃJ’b’êýYæƒ ¢T"¬þk;G™fjçÂ.©ãïtP5š Yï2„ÿ-ÙƒáÕUvQm plB²Þ\„DÃÒ½vPW?Ì´Øí£%ôñ%¥"‰SÍPÖ+µ¼Òéñò»òÿxðÇ žW•™ÁJ¹$K`íË$¶ÖXa œ¯V‡•§‘†}MeB¾ëé¬ç‘‚ï¬Y A¼GšAÜE¸ô·î¸°ãD¬€,û€W@º0tb,Î ßÖ;CÒ¹ ?Ó®•Z-| Qçù”¢„"áαv’cbÁ/D8a¨Æ‰v<* vA‡w0R•Øj–£Ö¦ÝìÃòb”ˆÿr ~§vðÓ!§¦¨í~Å2'ŸË8”B<“¡>i~ «:AIX½%@ƒ†hGRŠP]r,¸09.q»t×i¡r¨LëQÇFPÒ­à×Ã8n”Úù²­{\•‚7Í‚þ›JÔß*uh_¥Âtœ­›&›Ö©kQ‡a¡€àŸ°U9hYa\þ}¨å9 §™Æ6Ó D¦zŸ>Ô¦ÀÉ;cX"Am혡ÎoºŸ†ÌGCî›f_Ǽá:ØÀ6"BúaÜ\µûHjü¢sž‰‹—#E\$ØÕÊ4¿íŸÚ¤-a¶‹g­oQ´èÀ‡ÇéK±GÛ£¿ÛÅ6èê&h nÜÞ‰gl‡ÁvÙHò*D‘Ðsøy"íýÄ¢:H„NC$¯Ú^¼IóÉns5Òbx÷6HÑiñŒæ¨µÈîhˆ¢Ô÷¥Ï¦gÀ™1ÅH³Ù,/šî»n&P3Š "u¸#Blþ]ï4[]5# ÿ¥ø5¹$:, °E‚¾ ú»ëm׬–n=(B¯(ù·fŸo×—«Ëö*F”i/¦r^–AÿÎ+„óV»Æ Ïœ§ñ6 ˆ„G^¦ÜM¯&ØK\Ò>a/×ÄQÁh«“5ê}/Ì3Ãð«¢9^=öÃ6I±ÁyÞl +9šÅK…:{ÙîbQW~–4áÐ`¹ùÈ=ÄY¼Ùû¶ 8.TÒÛýðRŽö|@ãöq“qåp;—ž¦˜2H¥„É|‚ýHò]ÏcÓí†.3ßkÒ#þ`TÊ{ê¿ó'æ­‹pûR–njN…31­FEulb7¸C¯Ç!Áít-GÉil·°†S %ñ{^M,bZe„ÜáÀŽéõyíÉœ íÁ [bZN x?13oD‹¿Ì‚ù†'=ý¡ƒ§èkíšrNð˜* ý U`qäTÓ‚à[zd­ú¼«ÍÝuVHKuç´HŽÁ§•¤#s’S¼ü n9QS5B ÞEíýéZëŽr”’ùA¥QNêèè f’Þ<ÚÞã*“VçÐ0s|ã †H[æÛ'b Óy…,d)Ø'ÔÿZWÍs.ôLqÌ6å{ÀE® áH‚Å©7Ǩ~AUÇzÜFàzTuê;Î6\Gwzô²@Ê'†kiðçäš)øy™"Áë;Rµ[@N$,…J§ÄðuRÎìþ†æIål6u{{„d+u®KH69Á²í¯iþùÝÁ:IÌ€ìI½^?žäá‹íiö{@%ñ[ ’ç¨ä1TÄǨèö)J ?w*EìÔ^x;>Ù­..šE³ÚbÌ~+@_¯ÍS:¼}°y·…Ù}ÍÆŽÉ+«J·ÆÓ¾Züì–ù`€§m»k2î§Á7€öWÛ¯ÛsöÙÏ?ý¶”¬f¤[íu~Ξm»U»X]uȘ Pؾ4•Äk,\V0D'Üh3S•É…šg¼ÐødÐC¬2n"ºðÁƒ÷ªo¾ÎÇ”$ÝUeÃÙxFRh0* g…8*$ŠÖ×%)˜‰\ˆJãë2¦,Q·ì@gºCy0¬8p"~œ°—aÁ#Ã[—Ó%ìY–¨%•—m£QbP±VYa¢%Ä äç{*$ua#…*>(dÀ|ƒB<× =TˆeY1Žz½l.·ÍE;ïr8+Bú´?¤ …2¡,~äëaœP ŸHh9ý\–Ƥb —7áÞiR eа²b|JÔs.›î¥Í¤2ÉZ÷ÒfRar®ßA™)8‹óݺh[ ºè߬˰P~Daï;¨3 ÛwOÿxöäq-–3ÕºåȾպy½Û-é,³Pƒ§[náæ¿qŠH·ä÷j7ê wa É,~±¥ÊrÔÎP¨øE4\¿Æ¡JºœH'·ÒÍÍ\ã "ƒ»aï¡ã:DUœP•Û_A¤öûxÞU©y?¦}nuØX%z»Õ©DKØC"‹˜6zê[–¤mÀ»˜.´~Ö3¤­–ø€kŸªpsƒÇÕì÷®ËåÔå¦ÌÞåèN5ZyÛW{ºÂZã‰Þ“q|ˆƒ±“¼\-AèˆýkúµËç®dEý‹Ð%™äu;½5{åV0¼×A;>x]zßq¹Jj¤Î} ¤•A($Ëë½ Á½Þ]¹é•)ñû~(Þõ4½Š‡ŸM9KñГGBz‚fcŒíi|¡"§ž¼Jɨ‚Ðü¢ˆˆŽÔY9bFßÒ$PpÝCóqz0SØè‡1wsánºö•†Ó/bøñ QI=Œ³‡¶,DO÷ÉãQ7Ž˜Š1#4€výUßÑßNöê‚W€ŒúoNø¥³áÏÕÛ«s( «‹Ã¾èL|Û7G£/^ª2E(FŸNR"W¼ÿ(FåòïT²`K¹éæ‘Jè»Öóá€ñnk •Úºn©¥t;ò$Ü& ¦¾S4»›4=P ©„2ãÛÇõÔ}™¿>8ìÀÝ7ƒi. ÑÆŒ£¼m’ß7îÃ5!ë]¿²›¦â°5§ÍAal/“Fz"ÅkˆÀnÒ$6ÃR?ZìÚv>âsY¸ÎRÓÕÇé‹ÿ<ļ0¹)U3¦É2…¥¢°£oyÇÁÜ»Ç$=Uå%dðáëø'¿–ÃBg#î}>‡‡ðûþ1¹ïyaõ§ÿLÐÑ$b|¹4¥nYËh›_®'ù´ðá÷™ç~zâÛ> stream xœ­]ÛŽ$Çqõóþ‚l ±€áj‹S®¼g –K¦.†ØäÂ~Ø•…æÎ,9âÜ4=är¿ÔâgGdDfDT÷,iQ ÀÉ©ÊÊKdœ8'³¢þ´[f·[ð?þ÷íí‹e÷å‹?½p­tÇÿ¼½ÝýâÕ‹ø¬®P2¯Ëêv¯Þ½ [ÜÎÕß/ó’BqË:]í/ð— ×Õé õ‡Ãñéúp·¿ÁÃuú¹òÃÞçy­%Ù ?Á¼,uú7ó—û;U÷Wú9—ý!yú ß“ÖXëts¹—_ZÍjÓï®ßî=ö'G[•yâMoJ˜~ó¿ú²º,ûœ}ùý«…±K‹»Ò¼F¾W—/&ö¯þ—ļsn^SòxÉEŒnw×Õœñ²×S˜ý¼¿H Ô¼øéwôˆVxü=´j_]œ.¯n.¾8±5q]œsÓv¿Dø3ŒåOÚmý/oŸ®¿ÝãiiãJš7=^=àï+Xª/Œ UPãôfÚã ~úêż åšvÏ/S;Ô}™úçEeqsõ×éäÑð¸Úÿw}+ÎaÒõ½žÞìy8·#rèã‘’éo+\J´‹ü»§ÇƒPóçKÛwjDïoùk˜ô?mobÛ¬¦ƒ±ÎÖ-Χ÷×wà§ni‰Ú¡ˆë\׸ҕ¯§û/Äúþ¸—çig°±“c›Ø‹¸”9ƒ½paNqõT߷ׇýEDÛÁ>|…7®¢3¶}® ¡ÎÝuá³å\ã]ž¯£ñ·ÆøŸô‚Dã‡F8ŸŒõƒ/*aiûÕ¾Fr÷Øä®N½’­+)L5N÷mQײâòÆV˸¬â·¿û—VßtË+°ÓëŽÁÇZ‹Þ·5·„¤k»×èót¸¾£?Á >ÛVm_÷77÷´hsžÀ,ÔŸ¾Ä;°#y ¤Ø}{FþˆÀÁÅ® …xG®¬úþØU³œçZN­4—Gs·¸s° y©&ùðøAfÀôíõÍÏ8ÕæòäÂ#c©ÃåÞ»ý¡ãe6Ëóî¹ }Ú³Óýð@³ŸêÆQülOækv·â gF—¸TßÑå³Ôô±ÕôÙò‡«o¯î`áQtö/ôŸßL×·—ﮟþðëÃ7Ç#Ä'àÒð ™c9WçÓáááæÃ©ûùÛíáñëc«óêáúßÜ=]_]¾Ù¿¾;Ü^ÕoöížÔìåÓ‡‡«—¿W%·W£m©KW|ôôÂû1;Ž_À8gBò_’ƒé—Q|áè2ðß.åÈIq…>úýYÄŽ³_±ÙgÛ—%òlÒÌ_>g.w§hI¸B»[‰ XLeãò¿Ý§„K O‡›#Þ@Ðh*Âņ5­‘@F,ÆãhÀ§@¿-Ä´GÄLn¸5£®{jaZ]ka+ÏëôËÃãÍ}¿¬NÇë[rlÉ.ö›ÃX'°âÁ¯}‚¾5·µýþ«çÖÁ#†5Ý“OÕÅÒO éÇÇ 1¯sÊ»Tà ˆòc£†XÐ-GUÝëéºÍgñuº‡r±‡EËZ±wlÑkiYÏw¥}¶Äô=ðÌe>²]¶nì0šË.éö58ðüˆÅ°œšu<¢q°ÞÿéÄ‘·6@À~<Üê;oNâ›Jtå4¾i('€ÕÊcRõÁÔütÿtý–ÿ xFf‰ 7f‰4"³Ããuë7Uf—ìýãíᆶFƒÂ×ǧÇk½²tÝ4_c–È}P€ÜV,@5øêÍ6ðŽPòð]_R!nð“.‚1¹¹þšÀ4o\Ï͵­{², 'ü#…+>»ø0øÆ@žbF@Æ…^0òÁñX[àC«?Û¹!ëö-6xxfŒÙØcˆÈ¢wsh¡'3nmñiúxèæˆ`ÀàÅÆv·C† 7±gô†à@¿&’.TÇLº|èóм¾43gî¡è(G}ÚŸë`€X21òtwõþíýÕ»³Á9¢Ùè©ÖÇ2LJY›¾¢È¼M›¯¥¸jè;óÛ­æ‡7L)ÏI«†èzLy ^¯«³ ÄÕ¹BDC“÷ÕÕÍÛéågËKÎt4•ÙÇ<Øæ9-ÁC´ïê øàR» ” ðÛ;¢òYOWÀ¿4åOìˆÀuy ýwíGÂ1èˆÿÿW×fò Ùþñ(å\šcð;0 0êµáTü8å`}§ «ƒ°Ú’¢æCÀ`Þ³Á¬0õÇ ¶y³„mz<Üô;ŠýË_3ì'OÇ óRMhFÙðãtç” ¼ €õ݉?¢‡ž ÕÔíò·c—ÌÀù¾'‚š!üñ}i!ÃSKëTÀ?ß±ÁZ«q­7÷Ä3¾”j¿hYX_4””·áRó—ó'ç½K¯s°¡àðÜF0Âûé%üúî¥Dæ‚ÁéeÙlìÐ'ÔÉvÀ¾Ó 7$m)9î¯vÿµ»{¦·†’vïÁ:wþõ WDåt;ãm·/bŒK/¸yñù™‹F‰[^è*X—qvE]5JÔU:uQ/Ð׈^ƒ®i”¨«6 •–«k>¶Fݺì :½B!’ô0fÁ•¹DÖŸ–ýEuy™aªü\* 3ð'O?£SŸ‚ú9."¬AÐàpVB¨è8qä¸$"?ò‘Æ÷ÌUЕ*%æª öV}—˜«jX±~u—è«â’‹}b/1WI³Oì%æ*Jõñ‡ÌÎÀN…KuΧê)‘§áê§ 3ÄîqÚâ¯.–Ô~ s.Sl¿žx²ð®àaWX?°EC—,Õ-2ÛÅ¿@ˆz¸{{µCg\JàN¿Û½ƒˆz÷Õýñi÷úëÛß·I¿ppA ¥¬D|®[}€ñš×dÌK…ÊvЯ¨-õ/é*lv·5ΣÂS­ {€ Ÿ©¯÷ yEš}|>µ‹þGª“‹ü\`×òNjYgWÇPF¾äÍt®p¥=@üî\Ôz®a?Xsaß3gͽÆa¬3z²ß×güMÚgʹE@ÞüÄ*UJn l ,¹•€‡Áô5|MpX²‚É9.ñ©•D×Ö–¸VÏ ”6Ó5íW ’1á¯Ðx%~ñ䘱$ÇV’îQIL­¤.àw¨Ä㣽[êÛ]ˆj­FÇG*iKâ°ÈÝ„I ­F²´»ü\Û]P–K%­ãÞÃ"¥n¶æ5  Ý&ŽãàÃây¬öK`ô¨ÐÌÚJ`ôÂJ%¡uà™Æ Hƺ&*¡GG½ŒwÁL®­fb¤Šغé wœð‘JèY‰ÒpA$š[› `ë&„nµµ0Ãú•JB® ؆ fµ´AÎ9POqž[Œ_3 îö(†i´œç&?Ç%m DµÍ&œã‰©0‚m¼À?ÓX ý5³pu´Áf < µ¸ÖDf-/­W+4£pIkš_³Š¥ð¢ùµáZò\é3¸¤MÌg$«XÒœ|+lõ@ÓS+ \Ò\w@ l†‹)‡V‚ˆíOP `æ_[ Œ`3Œæ1±-°PƒZZIÌdPÒšƒ\íÜWƒ6ˆv~g.íáhƒžK–öð€›Äí.°‹VO€,íšLK&’K–VÚ ow'hw¡ ¶(gEƒpqå‚vZ`j÷À|´¿© … еÏýÎ C9z·öè ã—#•DºÆÍ"¬ (Z [©$¢¡@ÈÚ tn×öôãW¸$¶£ Æ•JhpÐÛpU€Ôv šàÂ%ͽÁh•f¡2ô4Á6\P’Ú]h‚Kšg hƒK» f‘Jr¥ñ‚’Ö䕯¿xžˆ&ø¦ÖÀˆ&ØŒæ KÊÚÌKÚ%w²V*ðT#ù¦ÅµAê'Øxn%ëÂAU¤>€«<^‘Æ4¢&.i½Šh‚žïj†Ñi¼Àµ¿r7Á |+lv%­^lWàKb« Ðq EŒ ‡xƒd,ñË|£»`›]  Ôú€&Øì¢²gGµ…íÂÏt Œ_á‚mŸ É©@á ´õ0pKZ¦ÀÆ4pK,Çš£FÂ2­ˆ„ f1e„)ðÌ $La`#a 0E#!p,®¹#aÂÝ¢‘0A(™ &`‡tMGB[zVÃÐÇ@Ç`˜àîæ&€£¸j0L5~Õ`˜`ö¯Á0äUƒaB 2`˜ÀO—Uƒ!ă<> øWo°pÅ`Ë`!Qs‚…àÐY¢»2P«Çƒ…°òk4XXG ÑrƒCÄ“bÀbiÂÔ†pm3TÃ6í âŽÁjÀ0gnÏ@Cœ}oÐ0; y5&B Qëª S"?À0±É Æ•±f€a,0;F0ódÀ0‚†ñ qmi0Œ¡-C†Uˆ¢Á|…D ÁmQ¸3Àv¥5âî2]ÓÁ°…Å«CŒ)Ûºhˆá` ­Žàoà!†qÕk<Ä Íe‡-Dó‰Ùijÿø¨AÈ2ð» >ìp1À!£p\;ÿŽèhŠGhøD WDÄhò€âŠ)®X;v®Ø!C¸"C†PEt©YCcÃŒUCãÀ ¡Š3„*BPl3¨bÇ ¡Š€Y##OTq%+VÈè˜â 2.d³ &kB‰Ö(¦È$F1ÅÊ„S˜"3bÅ™+¦X:›L±0^ SÌdúŠ*fŠ¢UàØpÅN‰…+&btB™0)hdRA#+’ #l #a® c¤!ýüc+º“²ƒ¦€7ÀE+²â¦®7¸Yجp®)*à䜬t*àt´ž8; p¦.àLƒKvà„½a—ä±pÆÂŽ'„ñ5ì(¨†]6ˆ²:kXYåØ „8[©•£ÆÎ¶+k°ü<áÅÀNd»Õ€gì<{d/à £Â×tðªóOÈß x"ÿ5Ø9t^QZWŠa”ÒZæÐÚçF„ÖÄ"³(­û+¥5ÌÁ@'¸õp¢´’z­•V 5t.+«×¢´VŽ5Dií(­™ÕX‘Z;Ù©5Rl­¤ÖÀŸH­aÞ(­žÝ­(­Ž¥MQZ{EQZ»÷ïЉޟp°C'–0V2t"2vô<©µ°#©•ã%µ:¤ÖÄG¤ÖDþLI­‘©­H­4Dj Å’dØ%–8Ã.õ8Q[Iĵµ#‹V[³·Ê1°Q[©=‚ ¼Ú‚2?1j+¾¨­+‘#¥¶2cQjëÚAu¨­uÞˆ­La”ØZÙDl­MˆÚZ(^Sjk-Q[ÙA(µµÐ0+ í0& šIS šçÚšI‹VÚÅ_ÁÐÜ)èÀÐD Gah—ƒCÍŸÂP&T C* %8Ô J…€hHÑ®"kmþÜ€hÚ®Œ8Jp-è´ÌÖcaî?@1c b@1—Bæ3@1çBûEsbùk€bŽ,ÄP̨ÁšÍÇì;ýè ˜CòE¦•e‘\kÜJ®s-ÞÉÜ[É¡ÝiPLÛ!kPL± £Cr[PDqy#¹¢óZ5(¶©t.r‰ w÷4$¢(»l×ÑÛY7Ë'×NxEqõäúq%GŠhtÕ€bu<7 ïz *"fƒŠÅÍÕ€b®³ÅÄ®V&fÏX60Èÿê &&æf‚‰©ï L$ÿ¢1±3rÁÄ¡”PŒ]h 3¼\v…IGK'q‡ÁkLDÞL”sÐIˆ§²e”´ 6è$¸4 b0E»ˆƒNŽ<è¤g‡¡äÖÀ¢¨È­^£!†R9i4ÄP*†HiïvÐI—i'Hi­‰Ü‡ÒZ#×,Zk`Õ[´VŽ…•Öê: ZkçÈCk…`Šî­µ+«¢µžÑZ3›€ÖZ)Æ­5ñÓEkŒ˜¢µöhÑZû´h­}Z´VGÑç€Ã_ 8Äø*ÚÍÇ_)±u¥=^¥¶r|¥äÖÊÈ&rk¡6+¹µ0"‰ÜÊÛÔJnÍ Æ"·v!WäÖD†ªäVÚ¸Vjk¤hA©­±ƒß[9à8Zï€Cð^-Ü8ìÛÛ‡+ûdC0£"©¬°ìðPBÅ3=¯¾&pDÕ°È@—ŠÌ”–ÙàeбïGŽJÞW;”´7+”…ÁpÈ„çg’†KǾCéØe‡ †FË´t w %š—KX{PF/¬D| ¾1$†)Qc%â£^'9T •‘V¥æÍå „‰'¸ü…骡"h¨D|H–>bD’4V">x»; ÖRìI¾“¦´×L$Ei¯iiñ5Y¬Œ¼„•øZ9úñ•µ.%¾FÞ‚ñÕ3 ‹øê T"@¬*;@TzÞ PÒ+<ÈBå`Û"½:öo"½r#PÙL TÝÎVzŒˆö¤ŽãMQ^#K›¢¼òÁ&¥¼:vÒ"¾ò9&AK0þjÅWh„¥„î-—ÒÏî ñµRñ51éñ52°ˆþúDí€ ú«gEYô×~$Iô×¾ +ú+Iö8ÔÖÁ+³>­¿{Vf–†Çè¯Yã%úúâ4^b §Z€%@XöþJ€<"ÀFæ·"ÀžQ`ùDR`ù,“’`ûVŸH°ä \º“½I¦Û .]?¾3à’é¶‚Ë¥Cá€Ë…ì@ÁeW{…>òF•¢|$JÑÇu —cËPèc—„…>V’£…=Vî„°G&àŠ=v.챜°Ç¾ÂYGþ> zŒšDÝá¹_o4ؼ´ÈO£'†” zb@náÓ3Ô|.¼ù,,ª0Uãg«Áæ<Û½ËD'¸DƒÖñ9“¡Àb{Ò•±ÆOßéžœte¥ràg?Á ÒVåÀO$ç?Ýbг».AOpT‹Ýº\:aè¹ð1AO$ÐÕÀ':˜¬ásèw>G49à³ïÞ ôìþ<Ñ/ÝÁ½ÀjÀsø…žý@ãÀÎávŽˆo`çXó;Ûæ9çÚöûƒ†Ï¾ß?Ðs,ðžCOèÙ·sx¶Õ¼jðl«Ù€g;òhÄW,‰<Ç‘€žmñ®<Çâñµ«g"¾võLÄ×q,rˆ¯}HÄ×.–‰øÚ·…D|­[®ÙÄ2s´§mYñµËg"¾vùLÄW>_)Ú+ºA«½ö—¢½v=M´×®§‰ö êjµ×Ú·zv…Mг+lê¤kÜj¯}ŸJi¯‘§B´×Hq½Ò^ù…Ò^cGØ¡½Fž@_#Ÿéñ•Ï„*ñu” ñ•w¯”øÊçFE{ |œE´×ÐuÕ¡½ö³¥¢½òA,¥½Ž’!¾òùSÑ^Ó4Ñ^C×gxö}Ò•N­ê£®!Yð%ꬫ·G{*ŸÝ4g]¹DŸuÝ g/ôìça=GÉ@O>."Ú+Lj-4LKd« cÁØ]¿ö‘xñ1BCæç IVBކi6ÚëŠ&4ÖÂ=à°BôLêg‡Ã’:1d4,ø&ZÕh˜«cÐêh˜±:§Ñ0“^Ú±0/Ëæ Oª|VKt×ÜÛ;t×äø®¡»†Nt†îŠoÄ2‰¹2‰Ši1º+ž?Máîdà0ÂÄFË&KǤÁ&sßælh*鵃MÕr°I¸»Ú÷>bío‚ 6™ha ›[¼ú(φLöý\!“,¥(2Éç2Ÿ´o}àFmÕpØÒ¬ñ´MØI…L:+ºâ)å¢ÁÖŒ'4’6`‹ìg/…F. rò¾G'„ò¾GåŠå}>¬hd&(Ù_Qû1ŸÁ";ûé»…Evö',²³?a‘ 7YXä²}ᣳ?Ùƒ\ÙóËd=Ùƒ,VÙ_Q™ùØŒ°H é‰LÛ>V> ¦Hä8¡3Hd§ƒB"Y 4§xhïPŸâáã¬êO4(8ÞuѧxŠ9ß*ò æÁ `ß 5Ò‚`' … Þ€ *á_b_šBæ ¹\—“ó­ejI¸- ¸öc=WàÊ}ד>:¬óæ}fíùV ¼7Œ& Ôž°ê=+¸FÔÄŠÞ Œ0’è#6™2®™`PÆZøXø Œee…pPÆéT›lPv=B6(›­lPúUCq]ûáÌ!¹Âà ˜†ä:ÀklPŽ8Õ;!ý%¼±A¹°:#¤qåSYJtåãè P¢kÙ¼ À´n޼æþvÇ8òʧ(Á^ƒ=µÝöÈk`Éwà$ '¡YÔõ“öØWBðf»A‰ cOíø¾Ñ)§vNÞ /^ʱ–Õ±~GÛáíGulÇo^ì\\ŽídÖâåØNš­ìŠäÜ%ÈÉ(ÏB£ÚqìÉåÔNß}ÄQÎßtâ8ôÀAQÔp96ƒÔ¡ÂäIí°û—3;ý¬œÙI³Ù¡o,ʉ®üɉ~¯)çux“G×áM…•ìµVºÎ"VŽ÷V²VXɺ€y;r±'^»K6oGš ÊáÍq Ví@¿IüY(#¹[sZ'˜wAš˜`ö'åJaŒ¬ šã:Ùbe-ý€«>®³¡Œü¦¢Œe»?Ù%s\‡‰¦:¯“7œ1ŸpÆÌ|P8ã8½ªÎ¼ú \öS>ú¼ÎVpíç~>zæ•5Yuæ• PŸyM›ã:ü%k .ù¬Ð÷è­<'ˆø¸^Ë­Õ5±í–ÎII£¡½¬¹wÜÒôÞ·(£—´¬)£¬…À·èïøô,ÇÄŸK7f: MsÖþ¹.j¯ŠÞÚ÷@×jÛ”qÿ,ë6q‰mú•`E%¦UÍUëVQÁ¦U™FJµ*÷‘Âáç}á¶|Ï6qôÙµÑêâ;î¥-0=î…‰¼îchò¨îc`ÁTÚ<^ófÿË) dpÁœâ-§4'Âût]ÏI !HϦ¿íOð°¤$þ[NpÏUšüÓ½)û ï°gnrøâK¯*MHvêþÂÁ"Ÿ*“Ï àrl9â93ØøèHKüRÌnÒÇbj׈9í§ƒÎqŽ™Pcm™Pc®¿Ù|aàÏÍA™ÚlÕ\Näõ#Sef˜:çM½~q?*[&íã™ÅOA´Q[²I!¯W¯õT4œa“êöðÔ*š}JÏ ú~€Éø¯VþD =çñûÞ$÷¼û³X7ªÿÐo”®¸µ4ž…[jeøH2sÌg½â^ÐÄÀËøÄi‘›Qá70~hµáWô“ôÏ÷æ·ëƒ…Û´„ã!lò[žIÖN áh¾€Ù)·Û, B¾õOR7·òúñ—TÌÝÄ#´§LžLnúêü‡šŸÇKb<÷…‚çç’⥧kczÜr̼nsYÛï7Ø_˜ú9`æñ4ý3w,B}žà~dDþÙz7þYÈÕ†>X›UÙß§3¡M·ŒÑÓãÁšç‘µºé¾9˜ã‘¼B +ð^Ùð“¤øN®§üíwaòˆAÏ~OºâÜ5M§‰Æét¨ëULå~¼çßÖMØïLh]×5~‚î)ÍÙ¬´ÜŸMËÓˆÑÒfis#*~^àFa“ÛÿÍò>Oæû_öª³N[þöyßu´Éz£5mÎMßÛë#t¹@ÈN^/…xÒ|¡å¬…¶¡šn_n³’o²¾kos½‰S·_„°k?€Yç_í[þü؆  ¾¶ýÊĈSn„ärê–ÊÚ¾öô †”“ÎÑc¬·ž¾û Öø9áðàÍH¾Éù9müœ‚“÷¡~¬n´ä9tÉOϵßéyÊr¾’d´§/‡;„Ma']Ý!w©kËK>ýW”Õe0^µ¸þE£Ëól«¦´ÔÝ…ª‹¿ãö¥sÖ!7óØ|ã8Êý)û@³Éä=Ãaû— 6ɪ7dj“ï}©°NRŸÅ«‡ã|ì±µ§è=µüöîÝÙTÓкºýxuÖG‹ëGIžƒâ[§ e¬©sMnovó½z¸¾<<~ùùÙôô¸üîÙod}/lÂMD»‰[9,úo(õ¸‡µ© XÃ:¹„–Œ+<+IÜò—!ð«-Ïeª7,}Tà]{zJàíþ¦ábuyÝ÷ï½gfÉBÓÿ6oYØendstream endobj 323 0 obj << /Filter /FlateDecode /Length 3510 >> stream xœ­ZÛŽä¶Íóü‚ ±€¶3-‹WQN6€Û‰ƒ8€íò°mÚîž^eû2+iöò÷©*’)©gg×Á<ŒÔ¢ŠdÝΩ¢^-òŒ/rüóÿ7Ç«|±¿zuÅé×…ÿ·9.þzsõÅÉʼ䋛Û+÷ _X¾(t‘•R/nŽWŒ«åÍa°-ãÁVf‚‹^¸Ù^=cß,ó,×ÊŠ²d§èzKײàyÉvËÞ”2×–뻵ÜËV»øîŽÞÒ¥²–Õ3"Ü!¥ÌòB°ãy¹°h«ÍܤNî¡>EöþmÎηî²TœµwѪ«Ï«.‘q¼si£Ù¹©ø¦Ày™`@Ì#,®«d]˜E°Tr*¶‰WÖ.¾ù'¨œ+»(A¢0¨òUÐùJêÌã4ÿã_–+-TV–‚ÕÇímÝýzw~³kÕ| q^ cîï¶U·[‡±¯îÛ¶®N×a°fp{î${ê_µœdAøš­—×´NÎA¼â_W7Ÿ?c5ð<Çya¦jF-twWÿzêêÝö×út»»k°‘„¶«š.¼§c›5{²ËÖì»S·k6»»n½|vÉãU¯L&®Ã­Ä—h¼mãÑ<Ó×Ã’Ã`Ñ6ñ`‡õr½ôÖJ£ ]œ=håf ÖËse:j©IT“„Ä6Š›ûÈ6ñ ¾m²ÜHÖ½ˆ^¿¬¹Çñ¥.¬RÌù¡â†uõ1ŒA§U(ä¸Éê䯉ƒ¾­Ž±ÿ’‡ 2™ãþ {³E¿-0ž(,”ä©À$þëO/Åì6,´Hß8»­iaÙkºB{%oÆUžÀŠr¥ ˆNo;›Ø®,3«}ró>H905±ä†%9ðõRÖsaXu¸¿´Öi¦“Ý.£Ý4ô;kσ•Tš0šê¸¢ÕB>áY!ìbÅe¦U)ÜôašB¡o$wM›-WJ)2ÐÍ‹tmR*L©iznÁ]ªnäž.Ói9YW²ÃQ^ ¹Ìˆkt >4·fSŠý†&ÆP™Pà‘aì'KLeYhö§yÑ2S¹("³…ÅŸÀ„¿8ó¥‚W·@ÓOã¡[?4‘©3S…ô?ã )eXfÕ$jør>£sk3@XÉ$hsšÒwoïÖló¼>m!ß}ãÍòdHgQ6Úœw·ë1¬—Ï\¦ôIo&Š'ëåÏ—R¹‘˜ˆ!ÝžO·õ©›ÈïåvW5ÇYܘ_€Màþ†h”¤ T TQé*ñÞAj‰Lû›\²Ïœ€\¦‡U}æ"(ȤýéÈ/q@•“èá.@ÏuÎðͼG¬°‘áU‘©’'¯æ%¼ª dpQ9‹Ù:hÿ§(½ŸG1VÓp­²¢°>?AàÌ8-\* >é½³?Ü’ubUÿ!¡8»à(ˆfÎYwv׈m;SBÂ4h ,dð®^r0P‘ªº „À‚s^°*ÎÜ[¿"ÈóÕ¡=‡É$Žåž°L Œåê!L,5s‹,¥`Šk‘gòi”ħ¼\Ø€NS4woìüJ•fž2ê\‡ ê_nW0áIį_ð¨ÁTKsÍ¡ò8a´ç‹ NtµÇKS¦˜qxî«-æVÑìCá–pk sy¡‚^z>2¼¼º‹ž¼0¼@ ,p½iëØsÎ-H°*xÌ[ù\7Ó=’'6otjQ‚=ï)þÎý˜Ã¥ã[F€¿´ê‚…ð0Œ ·­­êóXÐbå/ÉEÅ’j›¢Dz…:qL0ÒÉêPјRHCæ…%ó[ëö¶É™ßTý„ïÚ•”JßÔgîNj3¶·3D62Nš–lžZÒRŠ·ef´Îû´ôa)êùlÚäÀ¨LÙW£è¬ÒP˜| † Ç3Æ Ý™QžÇóÉoMC¶ÓDW÷”ta‡×€ÍݘIyÑiÒñV”F¥™cÌHa²æVS”“Ê%{¹Hm12÷TχY$„ÖëˆçŒÊM¦¹=ÅasŒ)¡bìí¼!eÙ[ Ý›N VW±¶ab¿Á#‚Tö»¹µÙLÂôk{:ëWÁ$WüA—nòK7dÄÛ”‹ž¶ ~±öv>íNÎ¦Žœˆ¨—¿¹&À‚üÁZ”OkÑê¹Ë¢¬<ÄAŒb¾¹¹úáʵ“ô¢ùÐ6Ф!ý(äÇP/I 6½Ø–'x&´Žå= ”À„ö‡º%͆šã™†AñÛ¦…ÍÃøŠÌ9â}Ôƒºˆß>7àÛªÄ`Å«‹Qk…´ß¯Û!Ž“)`ƒô‰ªËÇs‚)$¢€"on´¡ÄþÍ^øI„gL¨>®9;ߦóÙå>b;@18Ýë„¶IJŠëÜ„9–•ÂŽ£ç`nUŒà«s(™Ý#¡ë¨È¢ 5¦•ªM2.VÁº(Ø·uÓvÈ÷¬g’Ha=¾* ÄŽ¡8ÈõØw9äñß_2èÛúùˆ`’\¨U«X¯ñus®œMܼð3bÒ÷*NX#®DÙdéó¼bÑzáV=@6«9ÿF}Àd û‰½œŒ¸°[…°üìQ)8«ËY{ôt´…±)mAyñâ/& gʼ Â„˜Ë0×ù>ØÑ0ð•6vÎã¤UÌê(8‘oÀ„-{}§!ïcéSò¿srÞL4Q`zY˜ôbYçæHÜÇùõO—Üôr9—0!ss>Ct0‘N{åý²@åµo²rRÛƒRÚdœÓ§žª‰Côµñá¼_ê—} HÂþPlj? ¸+ CÔÜò¤²%²o  ÔjDö¤8NFŸñI…« ˆ5Uxã´[/êÔ*5â».=©TƒE‰;5¬_0xàXK4>†µpˆâ¦5âcqÍ)‚®]£ê Õ¦³ð¶~1hå¢ÙG…mªhççOÒ·\;¤Ç ç2”ÍqªWqüGkz‰CrŠÐùn( P®}ë Õ·Iq냠À‚íƒ;Í£ÄðPx#NAòŸ¥‹»ˆC#ü ……MO¼†…š©¯Hå@4“ó&ôܘ±BZyòjPz8V“êc5¯ ëê\šƒFàÖ4ê{ǃ/ÈÉÄ—“Å:#ÁNûæƒäW±àä 8båE”?žST”ÌÀÜc­»£ÂÂm–ÿ  x=´r”•°zðØ$Éa¿ g›…?žhjÆó‚ù8qÉ-—¹~S‘>ׇ‡a/B{?ÿ©ÌPñ¾><Rº9)¸ƒ\<üÁB,åu ©Ú×ü–Ϋ›Ø,JÒ©2üáê!'gëendstream endobj 324 0 obj << /Filter /FlateDecode /Length 14510 >> stream xœÏ%¹qçï}²¾í]üÊP?'“ÞÕ²!Û2d`-õ‡‘wQšîé)©»k\UšÑì¾çoÉÇ/_õÈ2æ0ý>õÍLf F0™É¿9ÎîæÀýÿ_~|uܼõﯜқþ¿/?Þüí›WýËÚ„œÛÑÜÍ›¯^Ù!îÆÕ|>òMIåÜBºyóñÕ§_Ýç#…âŽvzwû?ªèêé7Ëîžžïï>ݾÁË‘õôϤüþÖçs«%ñ ŒÂù8êéô—‡O˹¿^¯óøv\$Ÿþ±“Z¬õôáíí凞9Ê™ÃéŸï¿¼õ¸ŸùTtÅ£(áôÿo•}0Yö9ûòooþIl—ŽÕv!¤s‹b¾7o_\º}ó[HêM;79Š×!ºsöáæµHkÎP~qzûÕík—J:îôÓŸÿÝ-Îýºµs(åæµsç–’3åýÇ·_Ý?ÿŸwŸÞ¾û(7ó:¸tà¨xû:ù(†õ'×\ÎzŠyä/^½ù«yì?ÜýþéIkÈg¯—lËÁµå¢/G¼ûÃ7ŸÞ}’jӸîÈŶ\±mWüæá»w+ºã8¹£ÚìÐã ûôüî¹·¥Á8OÇ…pûRHóòÇ,ÁOwwÿ»[_¥Ä±Œ&ׂTõé/Ÿä¼^ª¦¦ÓÏ×Fö•þ;VßÚéáñãÝóýš³œ¤Éa÷xÿÌM·ÿYΔÚéרÀ_ß*8=ý~9íû÷½ùÑÇzzz×o……߈¤‘¦¼÷‘û¹¶6à¦=Išéqzøª—MÚôó×ÜAåïç#Î3fwzÐÃki§ïÔ*0_äõ‡;»„¢é%L§oŸÎöã8òË×IÏô‡~Uiñ܉×^t²?د­!„sŠÍD«“.‹¸#—OÒz—êé ù@—N5ž¦0î>-:ñ1ª#ã6Àš+çf"íhK)éf>|ßO]Ëéãú”ü3¼t²î\`ÇRazwz³Ù1FáRíǯrú¯Ÿ;Õî³9'="i[$ü‘r…ÒÛ¶áµÍ™Å]Jßúòö?ŒÊÈŸi£]|ì•}9ÄNÏk¿½ÓÄÝ­¢ä¸Šè˜GjRwO÷TåÒ_Ó‘4ØûkH¨ŒhI)eñÜ«.ÿ&¢ýjþ­c•°Ï.„K`ü»‡6 ÷°‚F½RÏè±&ÿâô½lâcîðO„?ñôÝ£4s\UÆB?G…¶ù8ì'=ïñás÷óÖ.ñÒ°³ÇH|c®œkZoì¥û‘þSrœ÷óy·µ¸·9J^G¹Ø‘Q2¨$;WΣ5µêoÑ‰Š„ {l©TâÈb m–ýN:ÒË…wÕ¯uÍ¥qKýdÁ•Z¿Š‹£û|ºêC80DëCzö¼Œò\_-Á°Ä3ýÞ[„»}Í‘»¸‘ÕŒ å†ôõ˜OßÝ?i™“ <<@PP~ݬ ÑËI¨ ݺ\÷nÜ_<½¿ÿv?›_5y¼ŒÀGý!ØÚF‰ç$V}=ÔÖ(e‰rqéq=KñDNg‹"`ŒÐÂéù<ÚM¾±€Ök^ ™XË3(•ë©S‘3þôÏÖnKhâaP†§xzû‰H‰ZUoïïÞ7‹Š'òâ=ï¿ÔŸ±ÉÈæ^Œ„sòi\´û®Yümft'è×Çî2JF÷|ûRÇO.i]ï²§IôþüîítZO?z©§¸#ŸëáFWÑX6 ÎRñ/]ÄKö4ýÂéù»ûO’m~|éÔ±ÉÝ·0OÝûX¨ùôÛ?2*X{}îeÙ›îƒ"y‘ÜÑPñÔh×1Ò>‰û{çÒØÊB.É`˜úx—äœØãË~ñ·Wc6.Ý„,ê.ð忝_{iµ¸­_\Gc6Sy²ÌјU%º÷°Å¥å!Ï~;Tªñî™ÐHï%ò3Kå1Ä/™ð©gFHm¾¿Ì%Ü=÷bl÷}gƾ¯»"D–tgs¸ÝÙh”#åî·"¡ÜNÏ1¿|¡A]\ä?(Хψ¥5cÿLJ™½IWþC_§XÖÆñÁÂA½“t©7„qWi^Ôö·wõB^r«·Ë0}Ï1Ž4›KvWëLó»WA3y·ºÞÕÙ>qÖu Iª}•ãá/ÁkœHViÐ}É£[¼PÉêÑŸ´ÕŒ©,äõÑXïžFI0FÙÅF~µ&!£‚÷üJØž_á4Áöúo¹ÿ½IuÕß-Èpûðˆ#6Mr*¸k-‡dk?>Ì owO G—02Nü’A½Úýû¯Çhÿ<î¿Î.)ýM‚©_õõÃ2Úÿ²œðùº›Eƒ±­Ô¯G‡¦*d·t:uM§Ÿ-ו´Ú¶ìqÌæH¹ZÔæþÃa¸x½0b9¹ççwŸ¤5~þ¡‘ƒZLsP{¤–õïkaîùoOÝ^î…üOí,ÀUÄ[ý@€c•Vú’ë’žýí=çµ·9™Ku[ššý¤ŸOÖ0¥x®’¶¬÷ÓóÃã^ã>aNÔ?ûëUãñÙiNõílýÛïû±/ÏÞØM¯=òní’žübˆ!ýäÒL=>>h –´›ùÓOú?%šÿûŸþâW?{q²”³o³Üÿ±TOE_Û$¦Ig¹©8NücÔCza⣛jXÇŸî¿VWMËçC+ûíe0½{¾ëz±ÓÝã•‚aúÇq^ñGsÌE;ÝݸÛç¤.ÍÊÌ-^ÍŸCË=¾ÀP YÙU΃ŽÓ7xD ×q9Ò¿?×Þ©_ÄhsE¸°{!Uà˜tC€^ÜQı>ôÔ=™ÃÙ$4»[ËþÙûœðnm·Û„ówz_GÉú d‹?µô”;òtÆ(hyyxOí³Ñî·s¸°{•Å¡½d×ü™„!¤" õvÿûoÞ"þ{¡Õxzét º‰% [íò7ýò.ò£˜–äúñæµ÷çÃwgõËÿqyÈpõøÂzþé¿¿¾h¬Ø¿Þµ?âtq Qg†2þéNo~ù¿~&!Å‹¹[8g×æÓ¿¿§É6r§8ügo^ýË+{ä—n?ÿ¨o¨Æ£>—ÎÑ»›xij‡q>¾:éë~Ú?ù|r’ø.§û³­—þmO!q÷té8k4÷R{‰2¬Ö#ícñ7À~fJ쨗)1 lí‘äçZþ‹Q wMƒÿìýÍŠ]þýç#ª3Ì•úþlçá0×, ì¥ÅºäÏþ¨7å\ŽªyÙéÚËËåèñÇ99ñ¯áìR:Ô¿ž¼ér^t2ÌI12ÚØéw·¹Ÿ&ž³w£Û~âú•¨@r L¡8$©Ñ®ôË~¥H§*J‚g™)›î_»ÎS òç‚燘@ Í„ÿ» ©-ˆ cŠYŠ÷ÓâUû/T"8J¿‘_Ÿf×¶uöÒÚh,O3§±jà‹§siù˜âÿvûÚ嬑Ñsÿ76ü®Wáv‡íœÓ< …ËNåí$pÅ2Îås䦦ÐqzÛ÷C•$DëÞ¯¾àþÖöywúîëû/¿~ÑÁýèùáùîÃgx÷þýã»÷šè›(³^’˜)ǃÆï¿y÷ô¢Ôýï®S”8¨Ü$Žj7Þí×q"õ,Õæ¥o×›Çw7ÿzóéU“vUÒÍwâª$½ù­8·xåêAú& p—ÿ©â…¤xåæƒ娛àE+ DÊè ‘pœ%: B¥y(Aã“ó´v–¶ ¥”A4eÆlD†A^Pfî=$ù\M’êYMðòo'ÎR9±sHE+‘–…âI‘iŠPάO‡ƒ’*”3R³iª0ñv-˜Qn3ªÑ4MŠ*gFøõ<íÀ )Û/)ÂaÊMh0 *#|ìDÄ0„„ÆIÕ`>=M=;ÓÀ|â¿ì2°ž+ ˆñ$PGôø¿5c8¤–ƒZ¯%µ£·Ûï¨ÁzIHFš­Ö Ј“‹Fþåa×ì爈õŠ4°ZB¿qO~G½[±]-BPO&íäÚµ4–¯¼$Ò q”ÔA0RqÃõ¥õíØ×Nîœí(ØÏû9”&`XT"ö+¸:,êŒä³[”R¬mù”òˆÇD-+‘âÌböÃ4° lç͈”å½L«T2 šƒ€4Š#·ãº1‚'Žu\\,(†òâOÑß@`B1Fɽ‘$kKÒ>ðˆåk¨E%S›6#ó °ŽC‹WÒÔ-Tié!*Q7ñôýñô+Áñê½$ì F QkãðüŽþp}PI…Uä4náÑE„ôò‰#ºˆ´“dGÁ‚‰,¨N/"Âê.¼¹A`AgÄ'#˜A'Ök ‰° €úfÆ_¥ L¦Q¿í³D¸ ¹=«P±„»Þh·aA¹x‘ñ4w’1@ûbž‹ðzqŠ] ÍU¯Ž§OJ䥚qH a éçEo4êJ†îЊ)!¼U]-ê²>Ì@Ä„ðD+‘¢€Z@S7/$Ž"Â8±ô|»T‚sÉL*º†£·Ü¢"0¥e ™·ÇJEµŽE{BZ§ &Œ©’ZÃH˜`ES+'½« &ó^VÅ ôh`¡;‡ F&ÑŠÇHoCBÊÚ9äZþQICC•^{ÏOxŠ^"G[K° |gŽ(aµj"”Ùuÿš`Bé¡áèÝ/ÂÚg13f¤¢Š#§ÉpüpDr36ðJ^ŽÂ¯&„ïÌ®#ÄðÇösÐþÐyÍód˜¾=ÒʋŘ1 ®A`BÕ‚N¹”†9 :å~½õ[âGOÏ0 \gRJa\ê}-Ã~(°dÍæeN#æß~¶{ó9EboEì_ÑȼCý0„Im4*°¬îåÿšúúCø¨×.0Ÿ#"æƒ#BÔhg pTD[ñ‹˜N.è› _¦‹½eÙ9P=ð›ø‹uÚ ¬û¢ûë¸]z•˜m8ŽXÄtn3uë±\{»rMoºá¥ ,§1_ëÞ¥Àtðè?jÝ ÓEë‡ærh¼  †àùV˜Ž€Xñ&Ê`õˆ$ªÏN]{z^#>¤ oJ‰-¦A¼£ñæÑï²Âxž@µhó8ú˜]á;5ÚÔHKI³hs†nÖCi$±2{"‰ê¯]0"ÚD ZG‚h³`.ÓÎ#ö;ªÝCÑ«£æÑ$¤UY7@bÑfíDȦÑfª½8hNˆ6«ôw+NƒõݺmPш6Q¿vŸÈBm"Œ6›.çQ"Ô$Ô×># A´‰Œ _ D×^:i°ÁJ`Aô–-ÉôÈBB+l\j5Y´‰‰u+ssm¢&Ì<° ž¹ÙQ›Z´é¬Ýä!mŠ›PÇ&^9h´¹€fѦØ]»™ Ñ¢M×à€4D£ÍrX·¢‰fÁj¤Ñ¦OæKÒu@®‡9iœ<¦ƒ9ib#™i°:– ê¢4gå å4µ·&±S´hS¬SMRm–q⪙—¸6g( A´yÄ0ЬCPLêLr8ø£–~ÈAlbxÑœOSÞØcl3>ì ñ6〙ҢÃhµ.­‡kÎë¼IB’:xØ^Ó€±æáq,ïE£8z;HA’ØV È@øLô<»Œ‡¶®•Œ45ÑKuØ’JŒk‚˜­ ÖÄCN»+Ï[”ìÚb<ÄšEF¶f—ækN(ÙäD@_$µñª…š±Yâ Ù€†šbŠdÁ‘ è,䱿‡DCÍ–-‹’4Ô¬¡Û ˆ†š®X4ªS-j:g9“Žîjú>-€h¨‰ôØÎââ>õ.„ÄBM×›…GØŽâ Î˜mW4Ð,nXCyP'îÏvi˜/X€¨iV@¢q&âMg¤Zœy!xÀV™43s¶IwíÙ:X3GâÕkÆ~ßx©¥äeRCc˜Ð',ÌöC+ñx$ ˆ3›¤Önð´§ÁKyoÃo@¢q¦h)©Æ™r”µQ¬Ó8Sªª“ª#åÍÅH²83÷Ù¦€$ ƒÈÑÉ@¶0³ÅÞ‘h˜Ù,¼P,Êœ@ŸOÂ)x› H?Í‘«åxË-dJ×¶á" ý€ÿñÁ‚LIƒL½$^+×;Y´‰>9KÏ ’1ÖûT„ùà®sŸvH>à‚0ßì;iæäÓa}*Âzp׺z\‰XÏBÌá #¬‡(T,€¦åÒó+¬‡óJ·›Bî¡>^Ü£ËFtêE=š5äêúx{êÚroÈ=R3ŸdæCî¡ÙnêsjB\¼x©ž$j˜­ã••öÓÔ£Yxz„žz˜mì‡G\ëBH=4ÛÎE!áÄ^ÝÈ;’æ„Éf%òøä¨Å@Ò a¢5a¤¾{‰dXoH;eâ ìè‹vL-²õ>5ô;Ê/«yP 1²„™%øîku8uÙR!š†Z2lg†ñ4¸J Ég"ܲ–…¬#0(g¦Ñ@‘uhœz¾ ¤š‹—ºÔÜ. í@œ™1%hGÁ~rñ,¡5-ü fnÁæ…òDš%öY0!Y#Í Aâa‘æ ,ˆòHï5 ÕâLë$ 0 ³ ß%ä:«9æfÌÔ§³$öÓ83„>öÂÚgÊh§÷+!Ìì³ÌJ ÂLi±®wg”cú1"«>É¡q³ó€×îb¹‡†™¥ŽW}Ö!šÃF ä}1´ÖÓ¬vׇÜC£Ì£'°BŠF™èÎUKŒäh%z¼/ÖÜ} ÊÔÔN Xõ}3œ¹Ï¨debÕ¿i`À`Ѫ µ˜JRÇÛçÛ²2mšFI±(Sz¸y ¤êjéÍ­Š5ÊL= H?4ÊÄÈjôö°ÅÙyj²©ÌÛiÕ ý@”‰)‰d·ŽÙi=42!H?ôÁDŸ·P4Ê<$o°¡釿¹:7§@cÇ)D‡J§QÅΊNŠÎ}o³-© R{h…ÔC]ÐB4Ô.ìZ°ž3obCü«ú Æ™a=Ä2­‡ßÈ<í«¡» ãÅ…DdNC+Ët#&ÅKo4)ŒH<\oYªºøÜ¼MˆE$dÊ©DH3t!AF¨wѶ‘x Ê̵YHÖ(sú­x˜—o¬·F421r%9ô(3™ƒ‚Çš1W»Í-ÊÌélçµ¹E9¦!yGÔÊë1yD¿E¹’lA&ò==¢ßj oÚŒ”>ŸyX`‘|h”™ú¬{D‚¦ó™1[•Gª“=Ñ@DH³ùLßldŠH>b4RìêQçÓ4õVï‘|$m”În¹‡³Å`×Fç*öÌ¬ŽˆDÃÌ’ÍF6f–ÉGäfÖ8® Þ蹇†™9öªrMCd"¹Ogö #"÷Ð0SzˆBŠ…™¥ôFŠäa¦;zlñ ²hÒz„ýnt‚µ›\”ÓD›H‹Ñæ"t.×\$rØOl’¤I»Þ@6P4Î̈oìÒY»¾ºUgW‚õ"XÏYð×A³0sLlDd¸i#Înãka’-̬}.;&ékúÔêh½Ý#óÐéÌ{÷AæaÓ™¹»ýóyK4ÌÝ õp‰>/•æßº“Gê0SÇ#Q#}è®'°ÉÆðñ$5&s‹ŠÆ™˜U¶Vœl†o3+©gì†oAò8³¥Ü½V*ÍÒÜ‘ýÊֽழX‡Œ±`’"»"µÑ×¼ Å Ÿ]ô2–Ë|„‘Š6ïNpkÕ…¤þ ãWxþ¨O.ª YTèém=×…\T’/ë|äEu!‹ ÁI[E\4ûý¬wxQýÐêFKnôÁÙº¶±`Y‰”“SX„‡ÅÇíë g[ã)øºr|—Oã»ØN.õ_ÈÅNžþæñ·¹ši®eê3-'ѹõ+¿zQ-‘ì„TÈLÅC.ªNH¥òªêdUiz‘㢄T½¬‹j)ýŸdô„Y©¸€™÷  T%Ǻ6 ˜±T¬ê—Tº t1uèW¥ï0¬ÊÚaœË^ÿØz²?ñœˆE4"q‡µ›7÷ßÝ|ñöîV?CRêéû§ÓV€#^ãP§Ñ< ÆWý Ïéçc]Þ,+欇£wÂeq‘(Å¢¼Þ«ñ؃U ¬ÒÙÂU¤€4îà>6 ©ô\RuB*L_Ruª¢˪2B*LsÈklÆy!U²AiQuÂ*íJ¤2Â*†$•ReÙU'»*¤]öÒKòqð;ÙU-î*R›½YT°JíÊ«4'•‘]•ý®Ê»U‹®"•‘]…ÀU ¬ÒW¤2ª¶·œNH….}'¬Ò‰8RaUÙÚ³Ò4}2¸Š:a•­YYUFVU;l ÏE5È®ªmWÕ¶«tö™TFXUu’bU!•³5Ž‹ªVe W•VŽZ&a•.z#•RÉ¿¶D'¬²Ù‘UedW¹¶«ö¾æÓ®ò»½°>g;—Ré½Ud€4˜ äëuBªd+«U'¬²çŒ«ÊÈ®ÚÊÞ ©lÒUuBªªK³WU'¬*Û¸8«,U\UFX¥Ó™¤2Bªf3T‹ªVéDRYT³Ën=×$»*¥]•Ò®Š…OªÄõ8É®¢zœ„Tž/ç÷ky]0HŠó~o¾îšz¥ ‰}÷$¬Ú,> ©luÀªê„U™#ˆIH…¨‚ÏÕ «KÂþ÷H1Û¬©…LBª¢+EVU'¤ªÛ˜3 ©Ú±Û¼Víeo×eoÜÚÖŠú“‡E2«Ê«l†jU!^~¢z„Uö pU!ÞÅ¡ „U‘}Ù$¬²•¨«Ê©ðé2ú ¤ŠŽÇæIX¥‹þHe„U•ýâ$¬jWçj/œë?¤J‰c†IX•·Ù‰AXU9²˜„T9noVeŽ5'a•Mû¬*#¤ÂGðØª°Êæ¬*#¤ªŽ#ÄIX¥+ðV‘Ö$Ž&aUæQwRµ-Ú„U~ïÿ°*nþhVéCGRa•®$•‘U%CžÎ_Tƒ°*nãé ¬ÊÛ>«ÊÖ"!•Û²µIX8#„U™óIHµG·“ìªvUܯèýVƒ°ªpÔ= «êVÛƒÊVó¬ªNHmÕ¢ê„Ti‹I'aÏd ð§kÒÞ;aUÝ¼Í ¤Â2n[ª›„Už3§IvUò»*í÷XÂæQÙU³ ²«ò•*_©âÞæ;aÖX‘HÁ®iiµ½-]¥F*#¬ªœ—OBªzlÞyV¹½~:a•ç,lV…½uª¸×ƒJüúv®NXU·èlU…Ç•4Ï4 «’>^UFXÕ¶v3©à§¨7ª¸Åƒƒ°*íWì„TxO”DHƒg©dùAXÕ¶HiR¥c³ü ¬ò[D2«Ò•*]«J9sz0©ªÛüà ¬*[ß„Uýn«&»—„Uaù!þM¥„TxJB"¬Ñ7ŸId„UY×m¬*#¤ŠnË'!• IŽŒ5È®juWµ«sé R!U‰Û˜1©jØFôAXU·xdRIVK³_“¬ªÄÝ"í}"9¿Åwƒ°*ÐÐHcÿ^E°*l™þ »ŠãÜAX•¶ìnV•Íû ª="K/Dd)„Íg ªx,R@š´=!˜„UY—Å­*#¬ª[O„T9n‘È ¬*Ûè4«Úæ#!U‰»M;a^T&‘ÒÔ²·‡NHÕV­ªNXU¶,dVµ«sµ«såãÐÕÕ ¬Ú=È »ŠgAó ³ Y²/¶ü »ªì¢²k?ÛœdWq2©ü6 tÀšÄãW¬ÉÛH8©ÂîaUÜüã ÿ ULgž2„T)ííäJU®T{í¤ÄϺ'aUÝêÙkÚ–‘Bª¬kTWU'»ŠGòAX¶©AX•64«Ê6^ B*|V€DX³<ƒ°jSa•½¼ªŒì*ž‹„Uuoó°ªmYÖ ¤ªn‹¡ÙU<;«?ÍŸ„U‰×€L²«¶Û ©ZÜæ;aU¹R•Tm‹¼ÙUume/XLCׄUqëûƒ°ªn³ƒÊ¹­g BªyµÜ$¤Â j>W'¬ÚžwuÀšÌk@&aÕö´uRÙ «ªV¥-ú„Uy‹¼!UÞS'»*å]µ­ xyŽÞ ›„Tøš%Õâ ¤’Úð|®NH…]ÉZƒ°ªð³ãIH%‘&Çă°*³M; M:62«8ç`×pŒ4©ðž2—¼Vm+—&aUÛF•AH…/<ðvB*|/—íÞ «*¯4œ„Txq•¯Ø «xµë¬)ûõ:aUã5=“¬*| ™æð'ÙUì·aUãyIHå¶·û&a•ßZÄ ¬ŠülaVå-Š„U…ŸúN²«jØUõê\ŸëLB*·–:«¶•e“*8ž‘„U‰gÍ&!Þæ7ã;a•?s`MÚbÊAH•Ò^×°*o1ø ¤ÊÇÞRóÕL‘0·eRƒ°Êï-µVå«+殘7>«ÊÅB*Ä`Ü;aUàùäIXµ­)˜dWñ¼À »ªÅ]ÕvKؤ*W#¾â¶{¼Z{ l/W».WÝæÌ'ÙU)쪴_±¦ýŠõêÙ|ˆm[Y5 «¶u@“°j{;q’U…Ï•pl6«üß Âª}ä„TýÛ1‹ªVícö ¬Úž}LB*¿×Ð ¬j›í!Uð¼þ|VmÏQ&aÕ6ÿÑiâö¤hVíþyR%·yÂAH•ãæq!Þ¬'‘ÖÔmæsRÕ¸Eôƒ°jÏùaUÙk§Rá=—«“U…¯`ÒZýIXU·s B*ù‰ú$¤ò»O„Uu‹7!UÈ›íaUÝfH!Ut{¹âÕ[YÊ8ö„UûsˆAH•Ê6Ë0©êî-aUÜF„AHÕÜ^Û¬*|ד=Ü ¬JÛìÇ ¬ÊÛ¼Æ ¤ò…W NBª°})dRŰõŽAHuU•¢*0Ž„!&£ù;ÙU½ ªÄë”&aUÝÚÄ ¤ª~ó&ƒ°*îV­Woá…²¿;< «¶µr“°j÷9ƒ°*ncã ¬J{mwªm ê`Õ`]g%ƒ°Šß߀4nô!•wÛ˜7«cR…ÝG ª´yËAXU7ß5©ðÑFêýƒ°ªnó~ƒ°ªmcñ ¤JÛj“°*nýgVí™× ¬*ÛLÖ ¬Úç!•í)±ª:!UÙÞˆŸdWqô—v>±Í™ñ ¤ªû“§AX·9•AXµ}«`’]µÙ¾^­:QÆ™Ä ¤jûó–AX·ùÛAX•·¹àAVVÛðlÉ ¤²MVU'¤ŠÇötmV¹mgR]=n/<ny½!UÉ›O„TØÈÚê ¬ªÛ¼Þ ‹*Çöu¯IX•yæ’]µŸëj>bW-ÊÏ&!•ßæŒ'!Ut<2 «W'»*§]•w{áýd¾ÇNHµ5ã«6l;\’$ìqnÄ÷3ŽM•÷,ýÄ»g{vBª²='š„UÛ «øÂ—+"¾Q¸ÍtBªzðŠÕIvU©»ªì÷ض'Ó“¬*ÝX“®8«â6®B*wìªNXå¶ñdVm3“°ªÐ³þHƒ>@­oRÅm­ð$¬ª[t4©ò¶®uRíO¦&ÙU9_qÿÆÜ$¤j[;ɪÂ7óé­–IXùÉÁ$¬JÛH7«êæ!•ß[Ä ¬*[=Bª°­ž„Tq[: ©RÛ<Î ¤Ê禓ʶ“XU°j˜aUÙbÀAXÕø;8“J°À÷Ø «Ú•ª]©ðÜŽGÏAXµ}áfVEž›„U™¿˜1 ©Ü¶2oV•ͪºEÖƒÊç­§ Bª8îì€4‘ßQ€5™V`ÀšmæpR¥m®RÙ. «ªVùm$„UÛW&YTº‰Ãùؼnä€ÍCy‡3~c¿P£¯ðüò²¯ƒ aºá´~=ÛVYGß²]?†®›õ¥þ9~ýv¸nî¼f›;ûÃvßÑ/aëæÎR¾¹ó…è‹•4}?ˆî·¼v`C0ß7Z×?§BÄš4‘¦»«.á5Ÿ'`W4ö¨}wF‡-Ýßy!ö‹…$o;qÙŠjÙÖ{©ïø­1\-tLlñôB|²­÷.$Ø‹Z+ɶõÞ1vUÆ”“mò|!E_([Hò¶ùÞBªmò|!ÙÙ®DßLÁ¬¶§7æt›/ŒL²Æ iºí‘r¦ƒ°¥dì¹§›Šzlç Ç·ÛèšHÓκo¯å-$ØÄêJ²m}eŸëÿ`SÅ£½•è®v+I¶À{%U'’íeó•Ø ìƒi Íþªæ·ËosåÐÔ#¬À“ 0W ›«öÝV=þ˜V`ùø šíº7 çVÛsï²íwU‘DD}‰ƒH1çs!ÉÛ~W ÑÏ6­$GÛǹûÙæÎÎÝ´x%b4u> Ñ݆WÒœmí¼û‚tkÁü°Ç>ZˆWR5§X>ëT™èÇx`[á®$Ø+"pЩÉskçN`¿À¤œ$o[;/¤j¬¿æþòfP]×[‰ûÂöB`ÁÀ$Û®{ÒlÇ•ÛuO÷VóØÃ·.¿jßÕÙ~ÂniùiSã§·yˆñ3ØÇX±U4`‘ÖØ^”+Ð]ó€w+›ƒ¹€l-`!‚îPé±c¯nã|!0•#b¦&’Ï,iöE‘•ØóB|wA÷LõXQ†xo%U×i,Ä>!¶‚fžüB|Ô@e!b;,ØÇcXú„ä¾ê$°^bRtZf!Éz­¤j°´>u¢ƒ´ûÆÕ`¨²‚jï-/@÷îZ@Ó €WPtwO{«û¾¯äuk½•¨ûX‰íUI¤ÙÖzâ£m­w!áèÞ&ë6µËˆŽ¸‚¨_'\Aé®fŽ~W´ÌÀjѶ+ÕíÆl/ºLv D`8Ù¼ø…`EcRlÿæÜwh÷XÁ£û7/ÄÞtYlç™4ÛÀùB`;GDl§8§h{+ Éô3Ú2—•Ø££…ˆñ2•lJm!°Ÿí®i‰n艔Øwpžowf&ɶO½f;/¬¤ØÎøƒöd|›C÷O]Hµ-œ/ÄY޹’væÓàñ…H°´Ÿ6Ò»<eÀ•/$ÚBΕ”¾…ó$ɶäY‰½f±¬°ê.ƒ©“¦qäBŠn¸’jÓp+±m‰:&ÅâÈØ÷ ôØ­73¨G^ˆ³•Z+iG^LˆÀ„¶÷®wt·Ð•D[î¿’¢qäB’î½NDwy_IÖý¦=²Ý…Ñ·¾Œc!° #Ò7cX‰-•[>£^˜óA®ô}“‘a`ç•TÛÆùB`Búíº•xýÖàJÂÑQB5*IM^HtN.¤tO4‰½ŸN¤ZD)·¥ûcË^(/ ©›Ÿ¿K´=œ'¨‡má|É|üÍ>JŽÄÒv•?tð™?‘XàIÆJlèBœ½Sº’fÛ§^,—lÛqÛo‰|ÐJ’íŸz!Ñf¨Wbû®-$ù3Ÿ8Õ¹…³íSUÇ΃ØgQã"°ƒÔ·O¤Ù:×\KßÐLÕM‚ìB·O]Hí{8O &­ï :‰·UÖ9GÛ>3 Å@4¹lÕ¼L¦&º÷JÄ€ºƒêBª—ð‡nÂ>^¢\I³óBŠ}äp!õ°s!¶ì|!0!†ÜžûæËH24Ƽ€j!æ.X„yºÑßå··•lX—¨q‹¾ ©IìB’íß|!¶ %}¥qI·ó&bŸjÀ'ˆt˜×WSfbÕ í‘jýVbË3ÛÁ_ÖÖ·´Ç^½_N‚CÌ…Ø×ûE&¶ÜB`Bê;ÇäžA²(óB¢³(s!¹{ Ið½ìʤh…·~û›æ+i}çIн°jÏWW¢Ÿ­_@_Óðºt1bÕ/‰‡Î,¤h],È éü…øØw¶µiHý;O+±ïž/$Úžh+±7¤’ìùöJŠÆšÅçî‘xhN»F?1OQˆÀ|‘‰mù³f‹óré;t Éê‚&È}%ÆJìyÈBœ}ku%Õvq¾mçÔ÷¹È=tç…ØZÔ…À~މnl½Ø}RÑÙÅa¾ÄÄ>ú±b‹IRíÔ•$‹5/¤Ùæ!H*too!Ùæ,'A 2æ,)sβ˜00©sβ˜P'$²Íå¤ k.$i¬yX‘W˜ØšÆ…ˆkbl2`/¯^ H¿«šˆõ4Μ Ú×ö`. é¼¸fTø ±ýZ.D¿ ™ 2/ÄÙî+±Ý&âí+PpE¯Žôcx A’MV^H´wDV’Ï|šäû|e˜ K¥mÂr1žÍX^ˆmx¶b¯ø.ôLì<¶­Öùˆ€ìCw_H64I³õV+(Ú@ F&UŸJ—ñ¶ra!áàŸ¶hf!Ñ6êX‰}Žc!b?§“h}Wq!jÛ•d[Ú¼{нØÏ1±Ï¤-D÷‚×o;uH=j®$wÔIDê/¿’¢¡æB`?U<^·ÒiʈÔCCÍ…Øg6lëÅ…À‚‰I¶PóB`A-òÑw›Çç¦4Ô¼þ±å•è{ j¨¹f¡æ…ô/ôbF±8%°``’çT¦ä c.s2'3;ÁZ‰ÂľÛXrÑ 0"ÑHóì+ûÅÀ|Ž@ÖAü`<̵d‹( 5/¶‹Ll ÒBнr¶’¦¡æÀvš‰éH;,Ô\H¶Psdj.ľ>°g_èZ‰í™ב½oÏ}WÒ¦ êæ# ›3±Wë’|ŸÍÔ0AIéÓ™“d}ò¾[sºbûÓ­¤©ZHMý¡T°`=zX01±ïü^Ò{(u!ö¢…8ûÍJôSÀøÚ¯Ó†‚Äo¤™º`Ÿ_H´ §V’ω Ø{GˆFŠ6Ò…dÛ‹e%¶ãëB`ÁÄÄÞY,Wu¶tLìÛQµxËOûôÀBú Þ+±Ïe[˜âm ñ•è—zóy"øFbc’Í]Hߟ±_öKD²íµ’j~þBŠ}›{%Í"Í ýntfZ§›#¶WÑHs!öÚò…`™ŽM)\ˆ}œ|!° cb/‹ 4ÓH#"ÑHs!Í"Í ö¡õ…DÛRk%Yrl[o·…×Ä[db S’í¥š•TDš  "Ò\‰í9ɯ^7ï±Þä¸Áý_~¼ùÛ7¯þú—âÈn |ü›¯^9Üàs%‹1°hMþþæã«ÓóÃó݇Û7¿}õ³7¯þåzÊãŸx|@íÅY\àݧ·ï>Þ9/ñ/Ÿ=a97×Sâ[YÜ6öÓ<¤^åœ_œþþþýïoñæ¨DöG;=¾»}‚5µSú›Û×Q¿ÎëEöü,‚°añô:,_§?{ÿø°žãÓòï·Ë¿ÿ¼RÓéþÓ-¶¶‘ª8ÓJtœ+ûtÿ •?õô}/ÖQO߬Å}¸}­+¿K;}¹ž‡NúôÔ¯ÜüéîýûGúãû;.Á[»R‹åôp;Îýí-¾b#Ÿø±—ÊÅÓÓZ¬;+‹¸ƒìËIMŠUñtǶ±R‰5c·‘ÝéáùëaÙtZîÿ›©à[;ßþÛ›zõÚT­¿yí±çe¹yóVêöÍ×zµX%3Àaâ¤Ó8V‘OÏ÷ï®êÏq[`å§ålk½’ Ô.T¼V3VÔÖðǪ3ºÑ£šõÊÒD¨:>öûO9>]_|œ—“˜_,÷Ë;¥¤_¯õò4°Tҧ‡þ«­LaÖÈgÜNoú G¿ýL#ßÛ’¥@Ý,‡Të×|@ÔÒFjٞϷ¯‹cùôó~?DZµÀ?¬§ºÿ þԤϺrº¿E”éR>=?iÁd’¸˜_¼zóW_H­?’ßËýGwz¢º¼{zXëüîCïèßër…:õhÒ»Ó$(:=}xЪqÒ«¾GæÓg+R:åý·Öø½Þ±‘üéY:/‚.ꓞª@솱¾âÍfi=ÔûÞ¶bɧ‡Çç{¹i»1ÁÃWý&b»ª6ðCŠñÙ–ýÖª£Vñ;Vì£Õf]Än(Ž.’Ð,Þ­^㺈^XÌwÿ4,ìOw½xk»í§zœõ/e-`ô¯"aȉêùéù®÷ÛPµ#I¨cÊè†k•CJô`¶—äß{4ìÞw8¹‡ûïú/±æÓýz_®mkª<Ý©ô,cGýx×}»4áß®’Ç®¯BãÎóo¶ìbŽ»ß=õûpþdc†ü˱“¡4(Ž“%TæÞÖð)I¾¹­Ý?Ùý‰9¯ÛZVç>ššÊ¤_Ðå¥ì&¥‰üfuýf´túöþi-¢ôÍÿ»9«šB4íÿ$øfíåÛhða޽IŠË…v3F>ë>žGªîû¯–K|¿6·÷Ú:%h©´`!¶‡ eß}}ÿ¥ ŒØ6ï8üé'ýŸ2 ÿh„E¯uŽ8ðoÄÊfÜSs<„G’âöSßê®xïâ:nK(t×ë Ôü¹¨@Í!ÑWã‡6@÷€íÿhÎ]Ýendstream endobj 325 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1835 >> stream xœ}TkPWîa §¤3‘„Ø=I6la)MÖ µŠï A‚02¼§™afQYÏð~(ofˆ / ¾xT fjW0±×@"!ºì¶VS›¸ÑlRu»êæÇö€ Ùlmw×­º]çÜïÜï;ß‘®.„D"ñ~+<œSs!Q‰Iºôølç?ÁO"¼à"¬”þë…Fá'7ð‚‡«ãªÈ™—£X/´Û›J$o«2¶q™†ì”¤d­bmpðºÀ@q Q$[ƒañÊ4N¯IKQÄ«*‚ƒ{8½ø3Eñ*§V$$&ǧ«œJ±?ñEô¾Qû»¢"¢#÷­ ú¯ªo ‚ðVgk´:}|‚áh¢*%#4ˆ "ˆ}Ä~"š8@¼Cl%¶‡ˆÄNbFì!^$¼ˆåâE WÂLÜ—KºÄ¹ü(5H¿r7W·D·?“Aä²hYê]&XG>‚÷ù犜ZA g{ä½™`bâžüîÐPHLl^j"COØO7%0›É|ÒR; Äޏ…ú-Yo‡g&‡¶t翦ûFFê5‘ Ö¤ÉòÕbœÝ·z.Ž]„ŒV‹¸Á‚Q ä-džވzK}˜é–ѽ'kRìJšæAÙ¿`ÇÆ…j&ë;EHN„ÄRäNÒŠG7gÁ”©ì…g²µ5Ù8Eü§˜B:‘…¡±×Y›Ñ”U¹ J’ÝŽ¸±þª¶Ú»+?`ìeÍPÔáÔ=,ÞX‚}c`Elžpf.:Ä˧´; ×o‡"BZÈQê)º7/é](ö‹Lè½4òè<ò¶øù°[ž]öû­ÛÎ\e&ecc#×'Æv½æëùf^ØËKDŒSN 8Èc0I执š+óŠÙŠÑJp¯öå^/H)Ò‹œvê¯fMjÇ 47à=¨,=[QU ”H’Á™mÌ=s¢æ”˜Ý)RŒVâ|-%åfíF“Z§Td—Tµø–ôe׀⠹™Êî#W'Ïv²h•°· ìPQú\ui}X©'²Œ99ñ9ïädmZèNÁò?ºs ©kQÚˆF”àå,]ˆ½î­FÄÐ@Óûï‹‚¤CÞæq3â×Ðz9Ýýî†Ð‘ŸþýüÍ[ã£oGÏ›Éo O^òÑmT;-Ž"‰¼ÍT£Ë7ƒî£‰Ú °ÖŸ×C¡!²Õ ö-–ãek^ÁîØû‡WÑ3èù¡{íìfô+9®%[þúÉÅ?Á$\Ž­ ¥žŒ9äÁKP˜¨Â›Â‡òCÀ´iÑß0Ìú;ü¬:šÞ9Ð’…銗 “·®[º˜²Ì6cP-çêÆéÔ÷>(ùûÍ"}×…#"}b>óÒsãW O7ìÀËÍoÇ Kc¡Mn×Ú8N«å8›Ön·ÙìÌ¢yýá8"ß zdN"ˆ {\fäºöøa8˜À””çG‹H=©Î¢è™Îb=üRç­k…>;dɺÇ÷¾G6tˆ7aÑv=r÷òð¥Ö³ùá ΓP?®î³ŸýŸys óÈ*.’Áñ¯ÄW*hÿ&ïÊ€ã†S`Îg4Ú¤<%P/üˆè׿{8Л¥ªgÍÕ95Ù@…ì^‡¥xéDÈôè·(ô #ÞŽWb/ì‹wâÈ?^¼w÷Z4ò qÑ ±Ê±/fbM‘¡s4!Z‚#ZŠî|"ïOïHSe¦§©º3{ú;º{˜eu¶:ô»ú2 É/rg–ºîç<–€‡û…ÆZ‹¥´´ÜÒTZíáÑo+-«(/m´Ô8ïáIÿØV(+endstream endobj 326 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 336 >> stream xœcd`ab`ddðñ NÌ+¶Ô JM/ÍI,‰©ÿfü!ÃôC–¹»ûÇ—Ÿ^¬=<ŒÝ<ÌÝ<,¿oú$øÝŸÿ»3#cxZ®s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡9 Êe``` b`0f`bdd‰ú¾†ï?ÓÌÇ Ê¾Ÿ?ó}ò1¡7/¾w<ê~$.ÌñS@ìwÜ÷›¬Â_>.¿|ù®Ô§ß÷+Ëýžð×ëÅ÷óßMؾý>ÏZñ£_ÔËÏ÷7¿Üoõï“¿«³}ç8ì,ÏWºðGÀœï¡ ç.d;Ãõš[Ž‹%$$ž‡³›‡{Û쾞޾žžž S§òðïŸÚ××ÛÓÓÛ3±‡—fƒlendstream endobj 327 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 328 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 420 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©üfü!ÃôC–¹»ûÇÊ©¬Ý<ÌÝ<,~ }/üžÇÿ=[€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°» U4±¸$µ(³8;(ÆÀÀÀÈÌÀØÅÀÄÈÈ2÷û¾ÿLu¾o:ËücåwCÑîu'üÖ;!ñ]óøì‰Ó'uÏ—\X1½®¥³«¹^î·ŠáÌ諾3XçǪ̂¬ª®«êèmèn—›ù[á·ÊÓúÉ=-Ý’uõ¥eÓÛfµÊ×òÿ­é_ÝZßÒ].Y:¯~ƤޞÉÓ徫> stream xœ´½[¯m7r¥ù~þB¿$úaŸnkÕœ¼³€îÜÊ¥†Ò~%eZ.-)KRÚð¿o/cÄÚG*»Ð0œ:ëÛ\c99y ’ÁÿþñzÜ/ù¿ý߯Ÿ®üðß?Ü“~Üÿùúùñ/¿üðþ& yô«ß¿üÇõ•ûc»?Ö\=æ_>?¼µO_þÓHÛ:¦­õ1Ò´‘þËo>üþí¯>]+§zûþýÍüw¬÷Õß¾ýô…|èñÊííùÝ×øñ‹ýÇv·ÒÞþ4¿•{jíí»w$Ö_¦DŒñqÕðöüñÓaØÜryïG—î÷ßýúãþöýöãÖ?{ºß~þ$ùê—ï~üâÒxþiýP.ùíÇŸ¾ú^¾äwßöÊпšØÕß~9¿ÞX™eBË~þô÷_þõ‡¿úòÑ'ò(öþ1çR¡}ŒyüÏ]KúøÓ·ÿöãÒcbÍÿe<À¿ÿÿOã‘ÿçwé·|­\W•¯=?¤F‹’ï?ü×wR’{‰{¥ ¡¶G‚DPšVÒ£R¢M0ULù~ÜR‚©Òë#´}Jåòc9ÄT¿Výï~}¬©æVùïR‡9ñcnéÑr7à÷o×§/JÅŸï·|ɇ+J!½Ý—|Ê5§G¬owÞŸâ#•·@ ò7}ªVì#í• ØëÕÃ#v÷p,Uªf„RÅ;…>l¨íí_þûY ä_ÈWï4Þíñî–{T®Ô××þÓŸúéÛ~ùøÃ§ñµÞîôöçç?|ûÓÇÿðñ»þð)ކâºï·o¿þå»þ4²wäí[h4f³ñùû•¦ã‹;^å1zªžá¢¯x‹ÝW™8©ZV¢©&ϸï¦Ì*Ù© W{Œf¤ª£DcP2S)+£ØÂLuŠ—”¬T›Ù QÃý•_e£•:©ªTÞCvªÍ@«y¡F–¿gÑf 2úiIè0³hê Ú”ò,9VZ ¬­x«6­%:­Ã̪”æs'³6K£"χ\G¯5Þƒ VšƒJ;iFeÊì4™Ny¤èt‹òèmƒ³h3Pj;9¥Ì¢ñ ’³h¡®ÝpÖÜçÓÜd§ÚL›×ÑC–Š›We¦5ˆÔ/Ò: ´òãEj¢Ò£,ÓGÿT²’h³ZäIÏTuZ°ÉNµ˜ÔÒ“ªNKÉNµj¡T¬5Æ­ÉÚµ»™Zú|g7Ù©³Î¨ÖQ~•;#e£ÃÎ+Q~Œ‘é;ÍF $ƒE¯´™)µe*µ›ú|Z¬´ä¯ÝÔ\þ6­6Þ»à´S«Zž Zu(•ÙR²ÒfªÔÇ é”6걜4q¾Ø ì4 N|Äât62‹zzÜÅY´”SÏóiR9fuJz _?­ö¨Ùk-†võG¹½]‹¡V—Íi-fZíºg›ƒZ‡™–æ´”iÛ EÎâFö¶+>rä7P™¶ Bjå–á0kcš4»ØÂ, -Uc‚›ªƒ@£Í§Î2‹¡=}Œö¼=‹Ö=j™“ÚÈlºÓlGȨÃ@)ƒ™;ÑD`ÓèJt6m†JcÚ½Ôb¨ÕdŒä´C­1…z1k1ÔꔽÖfVÉ®%> jÔ %¹*u˜ÕÎ1.J¾vfZÞ˵êÊ@+?bôZ›™– i‚ÓÚ ò(tŸÇì¼ÆÈçöuk3(ûAjre¿h¥{¶—¤µhñQöõ0«©c|tù×ç0ÐêøVîT›™ÖG…â´6ӑ̘»ŽY(dB¥ðèþýÙ ”â¬H¤´Ñ[µ1Ë•ÆVÙ(MHuãFe:2þEcÐÃl<ÛÆxË gÒD p¡Ì”Æ¿Ä’Ú ¬ª×ô5U›Öè÷ƒ×:Ìì=zqfmdJmÕ RÚ ¬jUj&[µh™`vs¤Ã@«¯ÚAZ‡Ù3ì³ ¦G¸Õ…Ñ]×Êua#ÔÉËEABÝ3UŸóP¶i3Õê£ïõ™ê0µª_yìÍ*E§¦÷ÑŸE~g²w¦_}ŽñQ¦or¿ÇûèZ…ì…í½¦šL[¾.óÙÀ-Ÿ2ÐZõŒµ»By¸æ ËaX5ˆr¸™•Uh/eu–ù2ÀÅ2?Ètúº’ÎB`Qœþ¶h3S x‹¬´*•G^i1Süíòvæm€ÌóÛƒ f¦1ts!ÐÉ0MÝI62{2LS5Mfwš”^t¡=çòšªP[×óèã\«¢Ì´ržO›´63«F›œ;[uæ®ÜóåÁÜmÏM<ºÉ=·Ã¬v—ˆ#6MU¸ ‹S÷Z‹Um94Ъ…@Izÿ¦lfJ²VXé -§¶¦]XNA‰ù›/ðìÙÉü͵âÊLiìšqe u?²—º™•¶Æ;QÂV{¦ªóI±ÔbÖO‰‡Òuž¾3\£]ïܧ;JƒÄ9B)c U¼‡Ñ˜iÝ÷¬¯¤µ™æpø¸¸ÜÒ„‰¼0[7vfþáê—÷—3­1¿èÑimvIÒ]‡iïkõr˜Çì¼îÑWð°ü Tº½ÏE+¥ü*•Ðk6Içq‹1ÐÊÓkÎZ‹¡]ezaخʹ´îÑ›Ýî)*­.+˜Nk1°kôsWqvfy$¹v]h…i)kÌÑL•ÁÛu˜åqô‡ñvy< ´š÷3­>GÛ¬µ˜ÕT!=ÎÊ@+Ü«TQk3Ð q¶-¤µj¥9Cg­Í,²þëÞìàì ®•8 µFïáËë0°«ãÓØ©ƒ<ÆèýƒÆ´•¸eÇzeêU¤àZÂNµjÕÇÕ½Öf`×^ »h@R¥köܤu˜iGq­×aP^â t­×a¨çL•µ6»dÅ™5”VZk~TZ›¡R]¶“TÅüÌT}ú"تÎþ‰I|û|hÑPõµþ0³K<‹·³ë0ÐJ²¿Çi-vå2¿Gvfµ>ï·k}~y³Çèß­u3­fËNZ›ÁÛ8ÆD·o 7C­ôÚÚo†ZíõÍ>ÌZè1'½Ý¨ä0+Ý5Îa Œ•ÑÛ=†2™§ŠL'Ï'¤³ZD„SYîjó~zc ÕWöZ¶ìD< 7¤¹•Ž=—†TGW<6=,jùµ¼7¥Žöf#µh †¼E©Î %gÑA¦SÑÉ,b*m.’ÊB¯¾úEÊ×aöÔzÇ5Mƒ×*~Ôpiu_6³w%Èî+÷Þ)ÓwxL£Ñõ¨‡YÛ2æ¶s ‡m‹2m§„×Cfmq}PÜ´×ÎÇç1±£Ý ŠÎ|…±­Á£ø¤‰¤ÍÚDS V¯ÑwTsfwÈNµÙÙÎÆPPöKàv>c¦5ÆxwrZ‹¡]L0Õ¿C+ÌqkMFZ²åÏkMFZkÅ™µ6Ó’•ÓÅJs)…ñÇæ”C«dspwV-†Zq­¸ÖajÕHgÕFV¯âê±^dõS6º±ÂaP×c~Y)³÷f±’Þ›Íà“‹{³÷yŒÛŠëû³¶AHw}Ÿ2mgBº^z‡Ã´õ cØv±?MÑiCÃŽò°+2ˆçWFJ¼§M*e¿§Í˜úŠ„çwTZå«6­:Gv¬µ˜ùCCZk]è= ´d­¹;­ÃÌ.Y#vþÐì´òÜe‚…µê”e9é,f:åžÚ”ÊÚFJ›™Ò‚äÆJÒ =;¥ÍLi¼RÉ)mJ²8ìKi3P Ëi‰Jý˜¡ùu$C¦³*édÚ[0@õÞgE¦Ólk'YÄTúü“ÊFª"ë <þ9ÈÊ'^~MZ‘ÖÇù/^Ó2fJwÂ5—j3ÐcœÔB TçŽCVÚ ”ªßU ÌÞ¸VÀ7N™®fÄÝ®E §gŸ•6¥¼öTÆý’*®Ù"im9-­[ù1f¥•Úý¾™Òh=.ç? ¬ÊmÎïȪÍPkÌ!|¹oZã_Áçð0+­1ÊÍ•Öa¦%}”[ERZk&ÁZ›V~x³6¥2Gƒ¬´™)5Z9[©6ƒÒoœ;NbÌža~%P™¾Ï±G¿q*å9W`¥ÅT)]sÿ3mb:iï)Deš»´=•˜»Ã¬¤Òx+¯Ê%¥LK]Èݹԕ™Öõ]nuR™i r»·Ph-/>kmfZñÂÓ+Õfz.c &Ë8•Ö*#+mfVÉ™.×b%/ã7Þ8 µ–Ç–µšŠ¹Ã±ˆ¨?¨ŸH%à‰•è0S*k4JR‡V}Q)­î÷g­µÚÆZwÁIªºÆ¬¤u˜i6åòyÜÌÞç_žƒNïœdË<{'²±uc·ИŽÓÓhQª[)9ÌÆüIv§»9üa Õã˪‹2³«'BC™æ0Ë1^ÕUtJ*_ÜX­Ï¦0çò$°ˆ}9ÙIb!{fB²{f‡ÒË®€ƒP©âг¦ÊlS‡ê°Ót¬5’HÎú:¡´FfY—qï¯2P*/c*e U°×ÑT¼¯#ËÊ_C­>G4¬µ™Ù5F4Éг²Š—÷w*ÒZ›Û-fÈtú#8™ETe ŠÜhX‘ª¤°ÞIÙò•2ŽjwªÅ@©O×5)-„JëL+-fJ£ÁŽ®†¤y“-Åì{Ud:Ñï Pd:{êàÆ„™¦Îí夳‘é¸×>Ó~Îss 6i;$€ÏÎd-Z–½Æ®E; ”J˜5“¤6C­0[&ÖÚL½+¹dÜ5¿SmfZcD '2VªÍÀ®šý^te¨Õ×j=iu·‚ŸÛò¥]‡™–ô ·Ó: ´²?Áf ´*ž‚Ù©ƒ<Ž)it{:”Y}ÄïRfZö¬Tö$<_§²<öå)¡<Zñ­èv<äÑïùÞW™åQÎXùJ¿™½7½¾¼éû7ï³Vd-K‘}®{9L•Ê}Ûe¥Ù”Foä0PšnlVÚèä­Èf=^ý:ÈJiŒ§×Ké0P*«E¥…PI\·Nh!}rš«QÊ@©¿ì^RZk…žµ:îµTá~ÙM Lk§DYàCg™7X.·ž}*åGðJ¡RÆHšv*=_§²ü¾;¸VT™iÅ{®ãÖf`WLxjv§ÚL}ç£bÎV}燙^Hå3ˆÊX«ÖW­ZY«®%Òª°È4Í鮤« %½¬}(ÒõŠ"ûâ¯Wlk%ÍY­}(ÓU§’$4-:m$›,M7¢‰&ëEÞû™ªJ[rÈNµhU9)è´C«æXΙµ™åpÌnƒ[ÝÙ KkâVw”i¹KÄÌ徑=¿’{~YM³U¾&fJe6¤´(5®Õ˜)ÍL±ÒF¦´ýg¤t˜*ÉÆ §t)%Ÿ»ÃP©¿á _)ëp –öAöÜÊ:IAÏí0S*ðí4^³™¦?¢³gËטÓÇäòu˜êÔ¹gu6 墉:í·)²Ö·)›¡Vœ-7k-†ZËSÉZ›Y»9ZÕ—ža3hƒkÁVYSå•Zqåp§Z ú¾aìPX©³~´]þ„‰2ëÛ[wñ! éh£¿¬ã–1¶JnuH™Îd…¸xÊlV\F+w¹Y±2õÜ•1 KÎ#¬Lµ$ÂJraeªU¯ŒžÏ*£‡t§JÝkmZåѽÔB Ôо5ô•K*Ù¡à–@”™ÖÕµà´6³’¯£\Ρ¨LŸ¢ð jªŒs 4ã|ÞŠN½ªq/çY½R¤:qmyFƒL§;Úu%_‚+f£c¾ØŸ¡Hm€£»BÔ_t’³(øüÆô ®)ãùÊ*ó±Aš?¥Ì¬‡µèä×Ý[Ê̦Aàl¥¦âS BjxÕªTR£Ãmި‰Èר¥ÈtºßQvXTúô‘åíìļñ™ê~™ )­ô2/VZé‘ý³; ´f,+§µhU< ¥© ¶ä*Ï÷i™×îvÍb*}VURéX£%‘ônn}˜)õ˃5¤öŒnäroÝFÐ&õô2·> ”²ÛS±‰éH„Ûé¦:íJÞ+­èäL@â’Vd:Å{B‹:îÖØ©6Ó–»ÉÙ<·æ¢Ì´˜P*³jt |*ÓæîN.΂!ÓI/“xmªI„0ç%?ÌtäÔû¥1‹¾”³RŠÇ;UÇS“’*Ím ØU¤½.Lc+‹m´Ââ‘Á¥Ee'z\(Ò_Aô8c¦Uî9;!­ÍÀª’^Vb­Úfé‘Öf %;ŽÝhG™•U‹/+ü‡A¹·‚« ;Õfö [õû!6²ºÐvËua#Бˆ n|r˜)uÜ(µÓÐ~ª‘H"øµÓÃT©Ë0Š„6ºó×)ÓR’èݾ”V_ñ0H«sŒ O8•iI„'µ‘)…ð²×î0«}ÌE8ØÆA¨´w8ízTñžÞ$2ê0Ó’H9>‡V™±'Xk1{~²låàA§½“ n-ç ëñ$È@¤}yO OˆíD O’Iª^úre¦•ãÚZ›ÙlÑJ…Z¯§3”]ée\§ ´úŒ°ÈZ›™ÖöZÖfVîò(ÒçW:OÜiÜ9ˆ>h‰g°ŠTgLíy» Ô§_N:+° U¬Ó;Q(^©â›&©ää«÷3­–æaÒÚ̬j/#éƒP©½ìRV­¹?[µ´cççÁ‡V_1¶Hë°cW¼.Z_—TÆŽV”˜¯,¥”šo‰•²r€Ò€Ò½æF¤´™)à4»nF sidÈtº›+‹ÂµB"£E›™R¸ápÓNsè™fǵ‹6Ò÷w’Ê'YŒ¶ Jä…Â+0Æ@«øS1ÊÀªºÇZ¬Õùô] õ%ê¬2ÐjÍïx2fvõŸì:Ì´zõg©V¼ÒlGPë0]›œ$óqLcgÍt:׬aÍÔh5¿fª íZë l×fšG9 ~»²?ÌÊ>†µŠŠehí½G¤µh%ªq;Õfú> q]ÄA ý‰SehUÂSå;ÕfVZ;•Öa¦%çY½Öf`Wî¸>¿Su\Ç—Tåò碙ÖxóÜ*¥1ÐzY)Q¦íàü#·ÌŠNË,'Ï3Oæ©N-Þ' ÈtêÌ.éld:xøl§étª3Æ1¾(ÜSdc—(Ž67¦: ”ª»÷ÂZÔ“ë7’îÉGQ:Í­Á+B¥Žã¢ªóÎÅñú¼ì\Tfõ2]·¡ µhe~§Šný'öÎVîT•bHÐ|Ÿªè”x?Ãgp ©Îc½(2ìNà2 Û+5 ÏÓí×\ ©Ž,á¸|¤:œÎFV'ål?øävªÊQg'Énl~˜óÓ¹“tÆt~%n>•gÌ´d åÖ~”Öºý•µ3LŠë6ôÁ(SŽ^ØŸs˜ùÃS,þœ‹2Ôjs‘µC­5c­ŽQ¯$UZ7±‘Öa–Çñ¶²*â­f;Uóy< ´ÊÚ¯OZ…÷ðÒÞ±«y»Æ\ÝݲdÌ´ò…9-Ug­—3YÆL«\þ¼’1Ó¤ù±1mµòµ[hµ³C"…Ü®Ç8 µF©Þ©ߌ9I¿½V “cQ"‹ÄFkÄéJ³€ÊûéšµÄúˆ|–í0XÿÎ÷-VÒú÷f¨u¯»âHë0µê^ÛWЪƒ@iÅ?b¥ÍLi…Õ ¥@©ÍPVÚ •ú«Òah‰‡µ€%~=;¹q>¸gw*à4 ”ðfÙ*á­¸3UY«íX£6C­âo·5¦Vŵ ŒVdJñžs9RÚ ¬Š ï»Ý©6Ó÷Oˆ‹¬kŒ´ühFiõôªÕ©GÍãñÞn•Q™¶19Òøy§ªÎÃ.1].7òV¦í»æVI”VÇU…ªãêÃNÕ_´øÜHÌâ&äì P’ ñ^i3PZ‡0Ii!Tªþþ4c–¿|O/åï0ÓÊÑßO¤Ì¬ÊÅŒS„Jý¥¯?Ì”ÊånWJeŵ#¥Í@)Xìž$Ð΃\âZÙ±ñ"S)~oáAhOG²Suž_æº6…£ÒF T“Ý­ ”Ò«RzQªHvª _”Dí‚ ;+ÍF ÔVL8RÚ ”â‹Miyw ܵÒld~ ‰zâ܎ץuš?;dL}'eŒÀ=S)S­òzw¥1К[Yª@È™¦»¨ŠÔgÉ€Ò˜Î}´Qc¦tÏí8¤´(5.Yäíî/>YeVNâ½pO™iEºKk¥:Ì´âKdeeZJÌ.ò¬"PJ+9)mfJ)¹›"¡Rõ÷¡*3¥|CÌ•f#P’¨Y®v*³’:‘—±¤6ƒ'(窒{‚›Ö¾a‘´3»Jõ·ÿ3-9eêÖË»$ޝY›¡V|¼Hñy¤(Ñ¢‚›Y¹×ê½³±RöùÛÌ”$œ mrZ»";á¸WP¤*=¹¨t†TG&\¼WO‘é4ïß?ÈòU¯ú²»_™–u½ºÎ«Ìž[ÍEÕ˜¶-BjæÆå0[Óª;®i)Óõ19ißÜú˜2Ó ku—´6»¶•ìÚ ´ÆèøŽNk3п¡[Tfå•^"Å*ƒ²—˜5nõH™=GÙãìö=(3­Ü^<þ‡]eÅå$»³5¦õºß׌xû0ó³ ñ+W‡¡ÖíïpW†ZýeEí0Ð Á¿oYC|YwWJyEN"©ŒÑ”fª¶, ­öbÕÚÙÁZ wÉÏTýÅ+yhÅ€ÑÖWªÍ@+<Á°S<é°S޹f ´*®íTÕí’îñåä»2ÐJ¯ûÓ­^Ö2•YÙ®»ø0«óéõíI/oOÊ_!6›2ž´ÑD¥y¥Ò^¥øŒN—Õ?ÃÃ@«û(ÆL+_¯õa3(÷üýZƬ>ä†d§jøMIµ÷–‘Öf`× ~ߊ2Ë£ïØ;÷êñàöíÌa¦"¡ݨå0« 5¹èÿ†´=n—‹ÿ£Èú!Õy“”iß'¤¹ùa6º—XnúrÎ9z+þ^e6™ ÜîQe:;žQ ÏŽ•™VﳄIë°£•®1£)½ÇØÑäž5´”iÓ%{ÄåÑØ)­tí}VP\ÆLk´¬±:­ÃLkÌZrZ‡™V,þöeGYÉ .›VšážIj#³*ÍÀldÔF¦#»I½M‡™RY7“Ôa¦UÖ®4Ò:Ì´êŠ÷BZ›i$ h§ <¿JrÖÖÍøŒ™–ÄŠÏNë0Ój·ß‡h ´Šó *¥úxª4šMóp'{J”YYÝí7ß©6Ór—ûaV¯äD&;©¥};;)fVÍ=À wÁ³ –ˆê‚Ünî<±ÆÌªx=¼Q™R¼^ÞÀÃÀªøÝ͘>?¹÷ÛEIQvZ÷4ÃИ](ÞÚy­•Ò LKJ½ð3ÑŠdÂJÝ$Ʌر°ÒF T(šìJU0èìL”Ý]!ŠPiE‰e¥Â+4“ø"_ž^iÞó¦ ”êËN~cfÕž7“U‡Ö:{ERíÁùÛw‘Rsž·$§ÖœçMäptÄ—Ïáf %1ÔFfU/øv¢k&jƒéÔé³weÅTG›ñ “ŠLIΑ¹“Ê@©úZ~*½Üe¥Ì”n¾J(Ýk—)¦åBö«‡ÊìÙÍÛx]ƒwhEºùn¥ŠtCÞL•^Ú)eÚâÉ/Ó¬T›Y‹>ïsuMº2Yɬõæ‘•2ӒسÉimv•uŠìÚ ´Ê˳Öf %;<½ÖaV^rV5»òÚ Ê¾®»(¨ì³:qFÑX'6³Ú%r˧hþÓ¼•|†L'ºhj†L¯(Ò48Éý©n÷±3·Ir÷©»H™Î¶RÑ9M¶¥žüýëÊPiTa¥…Î p€(Ó½kIÎÁ¹]pÆö.¸º»]ÑÙ-˜â=«.ì4törû8LÆLévw;"%y·½Òd¦´¶5ÒF ”æ©mVÚÌ”²ÛŸi”Š~eÌ”ªÛŸ©ÈÊûöñ¸ Ù“»WlXzr‡¡Rì/J±{%·ј)õ™Rê.oòò6ÎÛF¦\‰±Ó,:Éݪ¢tÖV@ÒÙÈrVÛ@9Û Þ‰z»7å0{ëäÞšÛ½u›Yk ÄuP†Zyîsc­ÍÀ®ìïPyÜÑG)›¡ÖÚÑÌZ›™])>¼Y A¥ïM.‡‡iËSÁ3R;ÕbÖ Ç„×9i"ôé-À>Kc T×*IU>?–äì©‹8aÌ´öYÒ:Ì´ä^åæ´­¸¢ù“Väÿ“To×fÚÆœ ÖN“`¸¹ÓD+2 ÁÇwšÊ^ú$'k!VâNÕ!¤¢$’p$Ni#P*k=”³r*£ðìT‹A­*ë–4ªU‡Y ­F‚Y©3-¹º:­ÍÀ®zû¨¹Æ,rSÊíòx˜iÉ^ _­„^íŠO'9dëÆTŠ´.H¨kž'd£E¹}ÚMj62ñ™‡x› Jô÷„*â¢q+B¥îO+S%9ªÛ9g™’œÔu;•’¿£ÃÐ)k|2ÕéDŽÅvÚÓ^ü‡™ÎÝ ŸŠ@i߃MJ›™Rðûñ¡R›~YVÚL磣ð»t™Öè™n7UZÅÇçPfó¡ñŠù½SÆtn•Ò…¾Ù•ê0Ó’ÌÍk•™V.~–1Ó*/{§Œ™–ÄCržÊÃlþ(gƒ›×ZuE!$­ÃÌ®š|<ePö5{ÕF $qý|ÉfVÉüÆÍj•©V–í×®´”©–XÐT…fîóôUåÒR¦^€¼WÊÑ  Ì´îÙþ²Öf`×ý]PÆ,rþÊծìä¥-ïnæ®Lß 9}ä=²‡é{-‹ÜŒû PŠ¯Þ³ÃL)É^(¥ŠíêNUyñ myÙ0›AY%¿ûþ PÊwN¯D›RÆmô;Qa/¿œ[ɾ^fJ2^ñuô0к±vhªÊVÉúŽ“ÚÈ”êŠOJ‡R{x£‚’jÞ›±fÏo{cèù‘Óf&ò»ïRÏ~'¤1³jôèÝõ‡YþäŒGuþ®ÃL«\®"Ø›;ÿ^ü½¶Ê4oE6âðˆXÑéáËvf@¯Huî‹EægUØN TØÈFvrWns>®Ã@©8™BV4·kQ”Ëý:†:Ì”äp¥S:Hm éÁŸM O1âé·•è0ù–=kÅ‘¯2Ðêþ\»2³)].âŒ"PJ·ß¢ ”‚ŸO„JÉËPÍ_3o'ÈtcÈBýì4…ÏÛ ÒçXƒžÙf¦$—g8¥ƒÔ"¹„-±E™Nq·F2în¸3d:¸h¡i å~Ïêkãf¦$T:+mJcvvù÷}3Sª·»Áæ­ú}½ŠàÉ×—[é”’ß×kH-’¦Ôµ@AÞÆÌ¬¹ÖU™µˆ=ø=ëʬu­n@rK`_9Š›æiJ“É$S‡SFl tËá—Œ[9”@—vËu˜ØFÀ®:J´¹G dð–£(´DjÄ k°Š/Ði5jÎ"¹N,E›ÊhàîLB‡ E‘ Ú€”2ÕTBV®°U›V¢#fO hUJ§ÊcŒì4­Ä^£ý4^õ ”R(w%¬Uù"#dWÃëiŸ@Pko­CP+­p9 µ •WZÇÿ¡¼6a­uá&jmBvÍ“chÖTZi­úAimÂJuÙRs³S­±hU÷þ‰ÉšËa÷—9`]¹Ö‚v‰oñ&»!­}0 ´!»òÚ"v‚µ>ï÷Øj}~çÍ– À*i‚Z%àá‚§zÇ¨èæ–pÖJ¾µß„µš³ÁZŽ.Шä+Ý•÷n°ÑÛ]3x@·÷Ú»¢Þá1‘^õê;|¶-cv‹×'<@;%¬Pq¶ÅAöAaS|€®9ÿ§Ø|žn4`ÇD' “‚—‹„$À® 12jVì;Õ=\ö‚Zc”w'ÒZ„íbö|ùÞ¿IkýF­IœViMâ´:$~’Q6€Jâ ‘Ò"lÕKö ­Z„µâZs­CÀª1”*dÕX¯â>§­õ*&Ès²Fc…C¨®KÐv®ë‡à{#‡O ½7›Ð;(&zÁ÷9V¦Ûaú>%ÐÎH8îÖOn¾ÐŸ¦ÀÚÐ8ö‹ô#¯¸§„{Ú°Ræ=mFÀW$,ßQ i•«Š?$ØùxA¨\r —(?–¬6wÒ:í:áñÍ®M°´Ö± +¬õ™u KS‚:û´… m@J¥âÆ÷§Tªë Sª/WULF‡s” R»h…L)Éò0—Ò&¤–ÛÒ”‚÷cJ4Œ›jyóëHásP§²÷YêÐíúUÖ` ²¨ÈŠŽÀò‘Àô¢õqþ×´Œ Ò8ì ÒÂ@MO¤TùZ#¤äŽA)Á7N $zã”ÀjF ‘v( %w]¸RZ¡qP*ãn„•*V¾ÆB å0]¼òcK+5:骕ä`ŠV‘”Vâ ŒV~°YRá#¥FP©¹°KJ¨´úÍïà3ìW•Àû,'ºi=âVÊN (¥kî€V¡ýuÒåÂgÜ¥í«´Ü‚%•ä@&Û4¥.ìÆÃzFP+ÐuO ¨*_Î`„´–µ6A­xññ[%p.#Ìë†áXƬ”04çZ•o¾JF •¼Œh¼qk5¼¼þi„µ:mT€õa³†úp*•5©CH«º•Òê¼?Ëi¹OFP«^|!‰Ô­ÊÅyÜß¹ž;gÖ;˱îŠÞ‰plv?[+qº\[i¥äó§¶.6±1ÿ!¤Õ]Èp#h—\üN~ŠC ‡r¨…&~°’Êx0lB…9›õ¿Ÿéìµ|fÂèÂ+%¤ävÀJלŸFH©Óí HI޼“ÐP#óíÂ!¥âÆTJH«`¿ó4‚m‹¯4~9„µ:£5‚v…Ìá•`YÅ‹ý  ÄF»Å  NÇ€(úTÒÅ£a ’¿W@ùJǵO#¤Ôé ¬´N5¡Ò"¨4šìH5üÈ›l*F߫ԉ¼/@êì]¦ƒÛvšJ§·  ½öÙ­áË•–¸½Z´C‚:6C`‹&¡ µh‡’\œNk¬‡°V˜mjmÞ•\2î›A­šðLÆÓÙU3ïEWÂZ/a7‚vµ›/a7‚Zmß­CH+ó 6#¤UñÌÓåQ®§=J°> Æ{„” V§ÝO#dW÷»”`ûò•@!­ø¢_v<ÈÝ›Üû*Á<Ê)+®ô›à{Ó«{ÿ€÷¯WÚg­[¹z3Q÷r(•û¢x Hi´ñ‘|#‡R Sð,oEáÂÕ¯°”ä‚΋V­!¥uã(¼¾Xeòqì&jT£”Rw»—”ÖZ£G­Ž;-Vªp»ÝJ vJ‚æÖ‡ ’\_ƒ³F`OtVTµI=¹¹õ!¤”iOÅþŒ:#„‚§)v%öJ+°œ JXÒ P§°ñ¶ˆ®­~–[®Ö†««ž@Pëv—Y)A«FÇ€§2 @îäžl- Î ‚h2ɯM5‰F^òCPGÎÝ¡ÿ÷R3¹È¥t–Rì8ÚxÁ¾r^B]åÐë2²4¸²ØÒºT–•Xô¸ q¤ÇÒèqFP«Üs~Z›U%¹•ØCH«¶Y~ µ iÉžcí(Á²jÑ­ðBåÞ ®ƒ>à3l•÷Cl€u¡u…þ4@:SÆ'‡ RÇ­RO¨$1xíôPê2¡ý™têä¯S¥$ñ :¾”V_1@«ûž=_¾·RIŒ’Ú•Bp{íÁzÐÇ\ƒmÀJ{‡(½\ ºe¦6J jÅ}¥—iEºäk§*3új2º5çü`í„9 µœ°Ç“04€:úr¹8ÑøI *Éu¹Ô—+A­ñŠ…§œ-:ö|ùÞNåOg(!»’×)!-ºžù µ¶ß´6Ár—âø@<¿Ò)*³БÈï8ƒU:crØý™êSîôñ!¤³B ‚PÅ­‰Ba¥ŠïÙJ%g_ùÝ;µZÂÓO#hUs#éX©¹½CJȪ5ûG«¡An£žáÒê+ÊhbvÅëJªÙˆi Vi7ŒRjÜ+±²rèùò­•èÎ|ݬT"„i´nF tadu:Í‚EãMê,Ú• ǛžÀ¢°ãZ©EÀû;\½óbmAœW&ã ŒÒ*|*F YUé¬Ô0rØZWTV°j¼h\ 5—–_qE¼°«Íÿ_”ëž)v£ó%F‰®ÄÀ+9En4¢žÒEËT`žÛ8ƒG€ÇÝ€ù€ x5ÛS ®x†©lMa²`MÁiÍõ$ÒZ+LlWás,‡8­"½imBvͽd×"°n2YÃ5#¶¯|­ož5#¨Å R‘]y®<¡]›°Ö¼è‚´a­¹o“´6ÁòÊ3î–×"\öyµ=Pö‡@í*á‘°r­ÏXGK\®z­£`m/yz: ¶oBïÍ`t¢Ú¾ƒeÅ/wpzŸËŠëïs¡Ø+U]Ñò@kÒª+:h‚í ³çË÷4U‹^«E¯µ.B­E¨ý/S§öoÖZí j-ÂZ•c¾Áv™=VO#ØÂËã‹ØÂo@JmI¥CЪæâT!­{zQëv7ZD @‚]Ы¶@£+¨³®º2wõU”«â©knþÌO”›âuñ  J_Ž“9l‘%Ù€JGö¹PálåXy g@êT:ÿatî›n6:£[ÇÁÕþLùº“Ï×&¨Ö61:ì ¼Îjtb }7 È¢ØC¨„”",? RºxEÄÔ£°÷LZ=:<„Q¢ Йz%¬ðâÓ§Öêx‘爭iÅ#¯A­1U¥}7JÈ®ù¼Öª|¹§´«,ÿ"Øuiõ9ÚB­îOßÅP]ÔY%¤Õïx2‚võ¡ì:µz峊F@+^i¶$¦u¬MNF×½±5ÓÁê\µÖ5S#¤ÕxÍT ÛµVЮM rü¦²?Ë>†µŽjeiíÝG µ i¥ÀW÷QuRä§Jت„çÊŸ@°´v$4(­CPKN´²Ö&dWî¸Bÿ‚9,Ÿ‹6‚ZãÝ£UJ#¤åVJ”@;8ÿˆ-³k™åìyÆÉ¼Щ…} P§ÒóPŸ=€Îaì)À±‹\†ÎcªCH©Ò½À¢ž¨ÜŸ©¤{âˆ"JH§Ñ¼Vê82zç/טÓÎE%X/åsŠ¡„µhmþ ìJ£ÅÓ•O#C¹§œúTVâiü žÁ1:c”÷¦@L'p  N† –O¨Ãk®@Gq(_€NÈ<?ëä¼ZwB±¹°LcóCpœŸÆèˆNÒù•ĸñTžÔ’Q­ý(!­´–;“eµÊÅ界 Ö`ó¸ Õ/fÏ—ïíTaÝÜZ‹°VÀµË'¬÷Ìž/ßÛ©žv}!­Â7‚!­Š7{=ÖÚ;ŠZ{)¶rE¤vâlsê:½mÎ&ØzÕ ž &ãÝšP§òœò¶¨áŠÉÓ*ÉÒŽ ¥ÿDzõO¤)v¦VŠËJñÅ;žZvÞP%¤Õø¾O#¤µ¢¡Ö"TÚÚK5á¬Uýâ8ÒFP«¯›!@ëÒ*söŽZ›VqÞq%¤US i¹[ŒÖŠï€Z‹PëÐ;G 6­V¾v»¢­Ö!ØcH¬›zŒCX+`œê§Ö ëœhwr,Jl‘Ø`øXiTqƒX³–hϲBëßù¾ÅNXÿÞ„µîu[hVÝk‹Yu)­H¨´ *­À ´)µ¹ŠJ›°R÷Js„%Ör€•øøìäÂû@ÏîV2ô|ùÖN”ðnÙ§ªQ²:Dca­Â·Û«âZR6«@¥xÏÙ(mBVÅ„7Þ>Àû'Œ"ëqZ<šQâ´zòZÝõ¨y<Þ›V•@“# ŸF°M–¨.¼•@û.¬Ñ*‰Ò긮ðBZî܈èÁrâ›é’„‰g¥MHiÃ¥X©òýiF0ùž~Èß!¨•#ßO¤­Ê…NÆ)`¥îúúCP©\tÛ¸R*+²(mBJÁ¢÷<í³‡r‰ke猇 Já½…°=ÙÓ*Õµ-Ü”6 ¥š8v·RJ^éåÎòÁ*²§Tj„Ýy ¥¶¢ÂÒ&¤M@yw Ýõ4€~ ‰{BnŠ H‡ãu)`Æg‡Œ€ï¤ŒQx¤Ÿ@@«ø»+ÖÜüˆRB@î4¢B*Ÿ%£§ÿÒJsgŽ6j•î¹!”6 ¥Æç’•PÞîî|²J°œÄAO jEºMë µ¢‹¬¬jB‰™"Ï* ¥´â‘ƒÒ&¨”Ý©€•*߇ª•ò a0ŸHIâfQíT‚%u"/[ImBOPNV%z‚›Ö¾c´A»JåÛ –œ3¥õ²CÈ.‰dÀ5kÖŠ'åÏ#E‰ù n‚å^+{gðJ9z¥Ìk¦EZ¡Ðþl­]‘½pØ+(•ž(*Б)îÕS€:ýû`¾êUÝî~%PÖõêW >·:þš1Šªh[„ÕŒË!¸¦Uw,$[ÓRëcrÖ¾Ñú˜Ô k}´6!»¶ìÚ„´ÆøøŽ¤µ i‰çÖ•`y%)V •½D­¡Õ#%øe—3í{P‚Z¹9ÿ!dWY‘9Á®C0·„óxjÕ†QmŸ@P«­þ´A­0Æñi…Ge© è)¶‡žâ&¨Ôä†9ª©JÀ*ažâ!XòMb~ÒS<„µ Ö’§Öò+ßJ Fȉg^<ÚˆyV×IX[ÓÆß0*ŠБ+ΰï:€, î„·TŠ|ó²°htÖ[Q¨SøDÒdQ¬Å_ )Ñý¨úìI«Z˜=àh¸Éª6õ!¥@÷n{äb ÊÙ¨Ã÷)`‹ Þ ý4BJ•N*`¥îæU‡ RÆK½ŸH)g>jf rÚ»Ñ.=%¨%3.Z>­*…î§V@Jãw"+‚VÕÇ`ŸH)-ß/(-‚6Õu=¤ÙtÔ ׉>y¨ÓØÿ­u:ÅxP@ï‰ÜHA¯ÉØ*µÈ÷Ú!¥âöú‚6IÐLj•€¼zú/išædܱõÄ‘¾•€N¿\›¤Àìé{ ÎgT pÜñ UÅxQ€u¨ï¨ÏV‡!¥ ÍŸX©qìS#P¯û}͘V±A?›0^¹:„µn¾Ã] ku·¢vi…ÀïÛ˜Ãݺ»RÊ+rHeŒ¥´Sµehµw¬Z{;P«áùª;¯ä!¤Æ[!­Xð ÃxK…Œ¹f„´*®=°]îä»ÒJ~ú!¤•‚[ËT‚e?ú¸N-ð!Xç“{Ò;oOÊ®MÏÚ<8¥Ò¼”?£Ó¥OågxiuŽ`µòåëÃ&Tî9ðýZF°>ä†ì µöî2ÐÚ„ìŒ÷­(Á#¨%Ñâ3i‚Zíæ}ˆFH«WP)Õ‡ªn4›æñNô”(Á²º/Úqþå.,,÷C°^É™LtR@Jû~vP:­ =À (wÁÓ O#¤œ'ÖZ¯µ*Å˽‡UÑEw3ÏOnþ¦()J¬uO3LŒÙÒè¯Ék­„”VhZP*èƒß‰V,TòÑM’\‰ *m@J…âÉ> RÉtWˆVZqbQ©øšÉ¸È §W{Þ”Ru;ù U{æ VBZëìHµ‡Ïß¾”Ú‹ç-ɹ5ò¼)¡Ž®øânBZµ‘¤6@«zÁ'ñ4‚ÏO6€ãã[ŸY§Ïþu9n†7L*@%9IF' ”RåZ~+¹»¬” ÒÍç«Ò½öyÒ!PÞ!d^=T‚ÏnÞÇK Þ!¤éî»§ҊɵSJ Å“S^0ªyÁ}ÞèJMºYÉ-¬õÆ‘•Ԓ賉´6!»Ê:ÇvmBZeŽåQkÒ’=ž¬u–—œVÍT^›PÙ×u”ý!X'Î(ÚêÄ&X»ä Clùèè?ÍËQÁ÷au"ES3€:xIÑÓÌG’Ü J»oŒØÜ&Éí§t˜m¥ ãs˜l@J=ñýëJXiUA¥l8PžóP*½Xƒ5dO ¶¯k°Îû*€–\ÝzáÎr# %'ánŒø ö®%9 G»àŒè.¸:Ý¿®Àv ¦xϪ«» ؾÃÁnŽÃd•nºÛÁ€S’·›•&A¥µ±”6 ¥4Ïm£Ò&¨”i¦R*ýÊ*UÚŸ©Ëûæx\ðÉÝ+:,<¹CX)v§û«í_4‚J}f”úKÞäåm˜· P'$¸ãi€tݪ¢€tÖf@ÐÙsVë9Û„Þ‰zÓ›r¾ursÍMoÝ&Ø£³JX+Ïn¨µ Ù•ùÞ %”Çò¸ k­ͨµ Ú•âƒÍZ€r(½o¢-gLOI=`+^èô4=ÃDè³4BJu­RTõçÇ’œ>¥ˆFPkŸæ­CPKnVn¤uiÅÏ´¢ð?Ye»6~4æ!°ž¬?qH¬u*„`‹:FK|A% HBJRY+j t–S©‡çi„jUY÷¤A­:kh½0ÌjÉ Ô•´6!»êÍQs`å®”›òxjÉn ® ‡VB¿öÓ–¼ÄñÂ1•¨ ìçÉàhQIͨ3ñögV‰|O¨Ò)[+u> ¬”ä°nÇœ€JrV—v0*!%¾£Ã€•µ <™ju"Æb;ŸÙžæü‡ Îé†O¤´oÂ¥MP)ð~<¬Ô¦g•6yÇè*x—®Ô}ÓMsQ%¤U8>‡œ—Œ÷N¹UJzgŸ@PKº0š×*A­\x–Ô*nï”Ô’ˆHä©<çrŠ0мöÒª+!h‚vÕÄñL”PÙ×Ì>ª HI"ûqÉ‚VÉ ‡fµJ@+Ël*-% % Ö#žF°´æù«Š¥¥¼y¯•›@ jݳýE­MÈ®;ò]PF0r‹j×!XòÒ–wš¹+7HαGöx¯åh͸ ¥è½g‡ R*É^)¥Š-ëæ/µåe³ümBe•x÷ý¤”î~!¥ŒéŸðù•Ùžß!¨$#®£‡Öõã µd…‡¤6@¥º"àƒÒ!¤ÔlÔTRí›3ž@ðùm ƒ”‹ä¶„€:…n6€:n¸3€:¸lñ4@9+O™= ’lQ騴)ùÙÅïû&¨ToºÁä­ò¾^ôä«»•N )ñ¾^`‘4¦Ôm@ys³F­«l{à=ëJ uý/þû‡Ñ<Éÿíÿ|ýüø—_~ø“…<ú5^ó/ÿðá^I>Ê5~”ó¼wy~øýÛÿõÝÿüIN~ŽÙîÕß~úöÓQÞëÜßîÿøé‹4ïo_~÷<©éíëO_ÈWz¼r{ûq}?µÐÇ÷VúöãÖ¿{ìo¿ü#ü ¤ùáÓÜx—74ãùIæ9wŠoÿðé 9¬=ú)ù–¤hw+íí'‘¯ÜùÙ×Þ¾ûTþÀ?i_ÞöçžZ{û廞6H^(ÕÏÓÊ·¯~؇ ­¿ýLVÒ¯ýq[ÑÓ¿ÏŠQúç]BwxûÓ(ˆÝ®¾ûqü¡I)Õ·oÞùêéÄëØ×)ùW3ó÷Þþõçǧ¿ÿò¯?|Q¥šŒ‘òég¼Ÿ¿üfÔ”/ÿžó1¥Ž–[¾3ª\Ã*$¬[l£Úï¾ýéûùôå?½TÌ‘jüs%úýÛÏo±^ý‚¿·óz1~?í{íNñÓ§÷ ‘SÍñº·!ßþé»o¾úå«ÿô_ß³FšÏv‡cÎÿ —·>’·¯þøÇŸèoüj<¾vY§›jäç*> ü³Ô÷Þ/÷Œ˜¯Áh*Þ~ùù<½0ÊB·Úåk©‰šÄ³‰!T}3®ñ-{kÇ«ôãO'õíç?aX5q4-%8Ãþã.Ô{t©rÚ>)©/n`Öï‹ óÊY\ó~úBb4ˆ…ò¼ÿîí»ç7£¼ÿB°,㶷߉=¿;`Ø÷õߟñíÿØßo÷Û×÷ö»ï~øæ»¯~øéÛoöÞ~÷ÍW?ý·øþÏßþîï>è¿~ÿÝó|ò"—¦Ëoáú»O÷ifç–ÐÑ/ùøòû³üç?}õµ™>ä¾ÿ—oÞ5=üÅü ÑýßG•]Pã©þéÇï~øåçÇW?ýñçó­fß oß÷óøÙ?}ýöœ“û/,w‡ˆÿþBÔòð…ðýWÿúãŸyüüõWßû_ýtÊãýÛ¿8iÊÛüãù1úÝ‘e°îû¯þáÛï¶ï9¯ßæïÆWí›ÿíy´$/«y¯x¾ü›ÿ÷¯vNþêËÙ)Êm‘c~{K¤ð1„Ñ–…ÑsüéÛûñ‡r¥Es=㨠ÿéÃõñ?¸Cšþá[ö_ófª,{Iƒés_S¹îÓ3ß3òKÁTJ •œÚ S)±TA¶9f4ëH#k‹c®‰”@*—Ì¡¥º>þñ³ãŠ‘îã< £Š{¶õCCf®Ò>Ȱb<ÇçêÔ[–‡zW ×*uC>HÄ¿ÞÞî¼?Idñ‚âß‚üMé}Ëéc¸äzDYÜ`ž…-k¡ð4²9M¦‘°wÓl€iZ‘èÜ–d}†1´J¿t¦ÙZ°øßTÊ—Q§.¡¯æàmò—Ruå"é1™\ô…D©È9ï¿Ìz½¥®W],¿*„™®IÈ¥A¾mMyÌNäOs8¿püB ë2•Ïýã¨Fœã4êÿùóó¾ýéãøøõW?û³¤ŸpVW¡œúwK¤²:Þ‰ç‰íýzþþ£l€jc˜.ãƒ2¦ç?~ë›÷^Û1^¿åÕõ>È\`(þê³×D¿òð5ͯ<ý“æW¿&‚ç=Ú•>JŒ{ÿïO¹_¹Å&édCBE•Qpâ•ÿþô퇿ü0R‰#+Y*é Æ´KÎÆQ NªZ¤Ny­[\¨wÑT}˜Tc„|*Ùr½j%Yaõí¤¯ò˜´z- 4’Í®8&ì-¼h•ÚÇüÊR*–~;Õ˜¸]íå½]}'û - ÛZû‹–+Õ$Δß*Ô¹ZñšH.ëÓ‡˜òÜâ¢+¬T¥:R9È´ô$jÍ•è=¦^J¡éòoÔ­n ÛàKAöÔ1µ=©â¼Rµrß’ëäÇàû¤’%ê—DÞ,‰Ìø›¿×dzøb{sêd¶—kÃõåàjƒ¸Ìê«–3«È{¯o"?C‰-rÑ‹8²\_Ì*3Û¯?ÃÒ²«£ï=Ã:ºí×u¹ÞÓï‹ÔYU×—ߨUn9©¿™J®©¯ˆ\˜f_[|¯H–D¸ÒKA¸<Êûûµºâ’35ýæ/ÊI2~Gx‹ ·šT™×¶{)×:49˜ñZ}”uHÚ<´>Cˆx-—J®†®¯Z®6˱ÈöN¡rAHœÚKqy­ÑçݯEïÞê¾¶¦ú_tol_[%ý1Ž¿Þ®ª¾ó€Âµv-½6ºmöJ'ÕrÐúçÈ%®2Cì¿hÑÓrÁ]{íWø r‰bÿ­~%È9•òÚÃry…;àØõ3q¯h¿þ°ÃÛ{ï??Æp×ìªê;1Ü}îþ -4¶×÷ÌDó†ë_oăÜýqu~Œ3F6kÍeÁ_CE‰×‚ðRméöZ.‹ñʲDüÃ<Žóqoãû¢— ^-½ü¢×ª—¿½32 3xÿ«–K%{[Ê«–Ëc —ùõ!PÍýÆÇ˜ÇÜó%•Ö{­„Ôˉð|¿ÖAWo8¼ÖAg¼Ä©}§P]AÈJÿ;…ÊýY˜›å·zÐ ±ÃoŸGúN™º[xûkt©dÁõzm-ùÿý^“ßšÒuŠÿ¡©ßœš9gB¿î¦ùõû¹9‘Ÿ9½?'ò©ÞŸ¹TŸ™¹~ð3s"?CyNäS½?'jrˆ?jI|fNäízNä~ñ3s"§õþœÈÏdÞ¹2ý̤È=ëÏLŠü|îýY‘Ÿ£¼?+rC×ÿÿgE^êÝY‘WzVäRýOÍŠ¼Öû³"güg¦EîYfZäžâgæEή÷çE~þñþ¼ÈÄgæEþߟ¹Wñ3ó"Ÿêýy‘Kõ™y‘Oõþ¼ÈYÿ™y‘Oõî¼È'z^äS½?/rEÿ™y‘ŸY¼?/rû3ó"¯õþ¼ÈêgæEþߟùÙÓûó"7LùÌ¼È @>3/rƒ™ÏÌ‹ü/~f^D#±ÏL‹ü¤îýi‘3ë3Ó"—Å÷§E~’òþ´ÈÿàûÓ"ÿƒïO‹|*ž=_¦@ß¿GÜ·¾ÿð¿6{r™üÌìÉÏÄÞŸ=y­wgOnLú™Ù“ÿÁ÷gO®¼>3{â÷ìs³'?—yöäµÞŸ=y»ÞŸ=ùTÿ3³'g×gfO^ëýÙ“{Ñ>3{òóµ÷§O>ÕûÓ'gýg¦O~’õþôÉk½?}òZïNŸ|¢÷§Oþߟ>9­ÏLŸ\3¾¬þåÃ5ž@s˜0¤ëÿfÏYfí²‹m®×5‰ óØï…´Õõ„«_ˆ ˆÄ¾8§ÈBjZímœ'´6›¯­c’<‡>Óõ±@]ãÞ<ŒIšL¤¯#­·/Ÿƒ‰27¬ ió2ÕAú:Z8H’mABÒ”&¯Ûøv©‹ôõƶyÕŠu1è ]zéMæÒ\ß›ân9k=ûy94•ã578‡¹½¿,rKÑ…û¾vÅ10Üë6» F-»Ã<&@.D‘$r%g›D6Ç|J0•°tÓ¼¶;È5ìa¥IóxeËÔc=d~kôœ£§’çvý —~§•FÍ5!ù±~|t I¾$[e–pYãº}#÷$ó®Ð0oÃÞiæýN³ÛYÅ%Dâ÷Úó-DÎ¥ ˜* he¾÷]c¥E,­þÝó: qÏÆ¨É¤þ^ó|#åBäk~%†˜"Wß+\7(~€[ÜÌ(£ç™§W6‘ú(ñ#â2{’Pqý°´oIH‘qá$²«ìãìšÒúí°ìk»ì&’éÑti’¹?ȼ¿í4uŽfX„¦Ï?´²kc’6G”{XÛ@n¹àM&aP…ŒG)-´TÂ{)—Ù©Ê)û]ZãI޲‘-a§è³õ”­ëå•ËÄä]!H©M’W9ÔµÓykƒl[o¯ÔÇ8C¬ORç»:ër>Dêð<,»•Û|Ãå0몎i¼Çq’º6ÇŽ9ó5ŸU,á”—´ ’-¹®x)˶ÿQ^±Î0„“Ì«Œƒ\Z:Ç5÷¼JH›3ÁIfø«AæÑ8!÷ ”¤ò®0ßi•iohn’5‘ê–ò(;é5äˆ]Xiòz©ä*̸”åbXMÞÈ fôÛ ŽŠ´’ÔUåTÜ*°,[¾gd¾Iòœ½évIä5’sfëýÍ}U¹s°Neé?¤]Orη"MNÊóþL!aÞ‚=ê»&Y]¹Ô™¾ÓÄùpÒz2%L?Zgv-YÙÖ+_i§»(±-ƒGÛ»Ú?ÙB/%šF‹»JK¶Ë‹b^$¶~:Íc#a_©ED&€,W—< ´’ŒW¤NÒWó'ÖeÐ/›´òÒÍ3Ý óÊ!e6r³ç_ÆHnåóô=˜ÝçüÜ×Ϥ¾Û¾¹U{€œöë+û²å+£=îëwëòûä2ßÙMfG/‡…è³CÌCìž/YiëÉI› –ß!·¼ßÞÒÊJÒçn’:m‘»ââR?fXI¤ó Bò®‹²1J&etl9,2£8¹idT½Ww(õ¤ÄEfçW–7q‚U9ËèÙj]UØo¯8s²ü–¸‘–ò0Uš‰Zýˆ_ž_•‹;–r\S@‰ë¿F/m•Cß×Ög½ ; viõµ,!q‰×ðEIJ»¸$þ¶Äz©ê}ÝØ>I¯a—BÚIÖzD/gö!¯¥;– ³kü"”"ZÞiŠ4ëv½¿=\+W+.Ô$q>àÞÓ¾ôyöAHßå%fó‹´‡/¯yük¾‡/’¿,äN» ³FùþÛ]{ø"±GÕŒcu _Ä)(^škÝ=É<£%vê¾ôQîãÙD¹Gr _IJ"¿•òêÃuÍ}ÂñÊ×¾±,ŠrÞ}Æ$²Ü Nº´ÒÈ´H¾Uò*°AŠ4écøy­ñË óÄÿ y_Æ\3JG¯¶çƒÌk¼Æ/s>*ÂýZ×1ùŒbê y _™U.ÞëjÐIš<”Aò¾L2ªu¼g} Ró+ÃÊkɦ9ÞŠ1ó.‡$ e5€“ŒÖ(J”Ë]ZižF¤¬áË s@Ç\d½Ãk*„”Ç*>™»Ë—ò½†/cT¤æE9(ž¨¢2º¸¼te! ¬N9H×ñ“cð¾& Ì{%(«Sž¤É—äFÞfÄÊjüХŨ×wúŒ;% âÀ„]¬1\a `™Î(žÂî9æcª»0ãsæ¼~«ÍE´rØ…%3Ñ,yî|*‡5Å¡„]Z‹Qž\X7aM²ÞDq=Î!L FISë 2oÍŒâ°è;ÍlZm;JM×õ”åžxmõÈÌ+J€µ{ KÀUm×G‰l( sw\ã— Š€¶KKÊ$‘±ú’•Û?&ikø¤LD%ÆÕú L(M‰ø1óÒÍ3(n”˜Lyýtž_¤­æoäh¨„šÃ—Aú|ueU¸.å96Žâw¨+IŽË(>…¶„åv!ùRݽÅ$S¦¶5| âø™iÚöU…8—×¢„™™£— e".ö´F/A E~»ï©GˆÓ£ù1¦ÑòÎÁK׋¼—éêkð$ú’<ï4ži\Âypékðį%MHkð2ÉLÖÜciÖÄE—°8ãÇy‘}Y?>Š¢È§(h™ÝD™þ¯ÒÚÑxb’³·ó·§íòKyO?æ$SZâyÏùaÎÂÖ5ä+‰<úÖ3#o±DÂõC¦%2Ø/B’.d”fêkò1A/­û'‰R®ó6æ¸À¼ z€¼›½H%J`Œ´¿4݆ƒä5t â!½r”£¯ù>d4DQÎÙ”ʬhrnYÖäÕªå˜WÃ'$ON{î1I×È%H‰IÛ˜óµzâ 7Ö—Iònù¤ %Û2]_uq:UòÇyèµ~»Ì5Ûy§ç.¬2gÚ1¯h›BêŒi0oÏÜ¥µ ;Êi—ÕöÉ$YVÙåf̸”ÛtÂD‰bׯ÷ù«óÊ9tYàøq^8¹^^q?H$QæÐe¼Þ³e‘ WG,Å$Xžz̃1’-™Ã¯Ú¸rŒ7õ^C—éç–Š%+ì«Àrž×ŠF™±·¥¼r̼¯4eQžW!®¦O¦´Re]o6ÉìXb‘ÑïúuY©ü8o ¼ÓU ”óÏûJ?ÎKüÂÒmóªóÑ’„ÝË<8ˆL«{à2w|Œ*G—WW‘¥s“oõº.R¸’ózmOÕœK×+ë­‹r¶Óщ¹Qht]Û½ž÷Öõ¯ÏŽÝë£Uœ aà^¿—÷ÚÜëe ^Á½^öº‹¹×ejØ¿~Ïé ú×óZ×ÿúlpÑ¿.#ÛNþõºw\€ýZÛÀ¿^1ÿº ÷Ù½^ÖO{½®L€{}­È¢{}MÎѽ>oZ$ÿúZ Eû¢ƒýž­;:ØÃ½\ùæ`sòŒvñî’}]TŠþu #‘п×” üë±/7½ù×Ó¼wýëë¶Qô¯§YÜè_=´,Ƀƒ}Ý vyU:Ø%ÀÛeöï ýëâçÌè^}ùüÔ½.;°dÝÁÜëq;‹Ô½.qÔ¦C[Ýë³Íä^¿ÂrV›{ýË)oîuñd™oýž£,ô­Ëmt}ë!­Ü™o=®õ!ð­Çå»ßúè–']}ë2S(ä[óâZô­j1¿e¾õt/_±ùÖÓ|¯Ñ¹.ƒûDÞu:s=ϸ±è\ÏóÕGçznKÆœë£~Ío™s};öÁ·>sC¾õÙN’o½Í†à[oõôõƒo]FœèZo«‰×ú¼œ<ë©ÍK‰À³.ÞÞùÛêYßîôЛgý Þ³.þsçY—ãµäY³«EÏz¼æJ8¸ÖG-˜Îms­Ë°9’k=Íî]ëií>׺„ëLäZÏ3°¸Ö¥G”vÖ\ëâã•ÖÙ\ëÒGŠk×\ëY<æW—U`ð«K@¤ɯ~­]àW_‘¡_ýŠ«ô̯~ͰÁèW—¹p'¿ú½ú ó«ßëý¿ú½oͯV=¿zœ=0úÕãt@ƒ_ýÿãîÝ•l‡™õ°|=ÅÎüŸä/âBL­À‰#K¡Ë™Fv©¤Àoo~—n€³çŒ,‡'Ú»›Fc /@_¾ÆáûåWGÔsõ«÷"Oüô«Ëÿ»:ÖÃ?=ëØg——g=<úéY<߯žõç==ëƒð­«gýØô»LÏúó–xq­ãÀr¾\ë‘ŵNXвºÖÁAqºÖݼxq­Óõ¿ºÖéÖ«kˆ-×±ºÖ±Åi/Ϻþ®žõ²‹3=ëj«»zÖ+WÏzxè§g‡óýåY—Gfõ¬ãe5^žõvɯ?=ë]÷ÍâYïûâY×S¸xÖ!ýr­Ÿ8[\ëðS—k~jºßÓµ÷/>Í‹o½uy®§o]-HWßz‡7cu­ïJÅ[\ë»’׺N«k}èO±¸Ö浸Öí}]\ëòs¬®õSA®Åµ~ɾ¸Ö/b±/®õKñÉéZ‡ƒw\«kQĦkÄѧký*Ü¿/®õ ùRûêZ¿*]¡ÓµŽ~xXÃt­ÃGŠÏ…]ëp‡â»>]ëWWXdºÖ/}ç¦kýÒ͹¸Ö/õ Ÿ®õ뤫qq­_r+,®upÚ˵~Á;~-®õ Ç- v­? ½OÒµþìÀvnõþìùå;Ïz…v»ÏúÃQÊ`zÖé9=ë<Ð#žõç T–ô¬?[~n:Ò±þ0ôžJÇúÃÁnnúÕ™jI?øÕwéV¯nO5ÝêitÜ wdQ"ôŠƒ7(î*d@@†oè—ˆ±Q/ | î*@LãÆÚvt8kË‚ƒ=DôÅÜ×¶é|É_¦Pfè(Fk æ´O»£Wyœú?¶”l8¸šSø‰¢bî(ž¡öWWÑa·Ãƒo: Z塬ޫz7ß‘Ì:ð—kGü|¯?%ÿºåúÑ/¶gQj -³›µÛÎ6…Ø«cUÜR³9\窪>®o½º.þ¸ Η“Ìg¥÷µ]žÑ~Œ?âcÀmI‡ 9<ãê¾KÎMwRly"îðCáMtÀò&™ÓŸo1:îœ%áU+ü)ÎJ€ú†’^n*:žü9>t*|î?‡„ÝÓ'‘æ*w/y- Ë|þdfzÙ*[•ÊüxN[û?õ v†ìËQT}D.,ø9 ùh˜«UÉpá ¾&€Þ"“¸ˆ3m/pÉuiV~vˆ:íäTºs˜‘\5J.kåsœ£ uÓ§ð NTÍ¡ñéÆö£Å!ʆmн§÷u öÞeß.™cÏQ<ä7ºò±Î:´ÁjÈÑÇw–ó¬ÓÜÞ!Ã;ŸŸ$à2áÍT% ·B9áÙ£ó §S‘ÈÅtb9Ï´¢ÂÊ’‚סæÁ¦¬Afw(¤{–æi¿¥±Šý»öímèˆÀ„9¾ûPÓ½ÝwíÿŒçîVŒ?æµ¼ºÊéš%Çý~Zˆt»ùÞZpâ\­_oÀûÉpé©3h£ë!K/ïúù>¬ì'Ü—¿>-r¬0¥.þ‚€½FÉ™†ã?ׄ­>ü›%<ž­;1Û.nþÎÑÏ]Ïp#úÉÏICŽ +’ìåiÝþͺõP³9PYíÚmÈÙ),êþs¢ dCñáäY«¹ž‡/ùÆ}âaÛ.VC*Ra<ÑG¬†°ðÆ`᥃õ3J±6b¨emÎqú³-âX8wê.es³¦˜ÙåÙOhQqe›‹b ˆ|JÎl cñXÀ5\Ä0éça¯LÆpŒÜÚg¡ÃÆÓWÅpÒ¡ëöƒã1©^ö™–îEÊ“;ŠƒT =ÿâÕÞƒg£ ÄC¬§((5úzÃݨßè²Å™ê¬×ЯW”>Ž—€^vð#4Æü;àOÆDõê sc—Ô]¯jS©Ø³Á÷/SÕ‘¬â};<Šf+ÞÏR|ðL†^uȧc†ùæxDC%3½Ñ¸/­ád$ðìþÐçðÆÑÍ?8Ãñ¹,8ر{¶à È ?úyÅ@oîáØfN ý²ˆ(æï…äÂmÛâîG¬»ÊŸºyé<“·­_)3”­»øóÁF‰ÉuÞnð:WM~òLAçé®G¯)sNO.]³ê)ŽXÔ.Âí O<½*Ûu»äÀjÀs©t56í3pn—c±9 Ðà) Os8y¬1É î=x¯›8…+‡ÃÏ/³ºéP¹ÅïŽæRt{u'v4lœéÒB–•–µovº]~:a!\Âeð²p®GÒ£ÞÑ»’½(S[Ì~ÐæBC4ödª¥Ì%‘5©uíÚ{àMP{p6ºIª<¼ í‡èðhË—?œ.V3.åÄ©·8'oܘ¥+¢!~<àÀ¨UnR;óæŽøáwîÕÒsÈõŠà¨8x àoŒ¸´þ€:2¬Æ{%¼9½Ÿ°‹™t=ö#•.sDÒuâî4§iöˆlŒ àÐÒ1¨#±{Ïܰs‚? ¿¶Þɇ¢ÔüLÙœÁ—SCŽ·>J'dZal³*³Ó±é¸ôÆŠsïá‡ö€mz{!äçCýÁñš )¸IÅàöáaÔ8Cb£0Áq\â0i‘éŒUœíÔó¾N¸^Òfì'ž¿utë1BÌ?$NEÌù;7mïj_°ÅQE¿ K7†8Ú”Cùg1êdÔ–ù{Ö3ø-mx!ëÎ?µ5|8v`ò„âÀYœsh×6¦¼Ïqà†yoþ=ù¾,Ú0ë¦9ó¯:®žýÐ isžØ³ReJ×)''Ï©p+že‹Uø×À¿§~@ü.é>)4{y¨Û9ÄÎÍÇÿª7‘­ON9;ÏgUç pÔÂGYsuÆ+Ÿ Aüògc+›v]ÕŸØCÇvé÷ç wš2 ,òÔ^ÆŸŽLDM¾U1Z—Ÿÿ¹%ùýï¦UߤüÀtÔ”øºT†ÁJý<¯à臅,fâCß¶xèY…3æµûUÏ`+Ρ×á·-‹o° à¦Â[ó:7…3èKÀ}|Ã߸Ëi¹þÒü%°^Ô1\r>) ßððz>Ÿm5A´”´RS¯½è¤Õ DxèÂŽE &ç"û;#ˆøëžÎ\éÛqè¾Qèáà«…÷Ë»83Âjt)À+2‚ƒÛFõ»`T†6ÇáJaEÍ©“2t«ŠS†nÑíô±åÇ®ÛøÒaÛ_iøû|ü>¹ãì‡9>ð²Ý#p¶àéTž78h艇3ήđ9õwR‚U§šºòëÆC­ªbµvéè<¡Ÿz:Ô¾N eûheÿnŠÆtlICæ” 2 aMSŒâÙxtùûøåb—\.j_ÛmÜ6Ç¿»\àT{˜¤Îß&œ윉Q‡!&#_]¾ëˆÀWŽn|Séô(ÕâsÄÛB^$OãiÆ»DN%|²‹ß7úÓíÜâmrÚa€táܹllI™­)ÈÓñ%áÙ†Î$);»»#‹ Á"ÖxÊ!´)˜q²õ 9E~%£’ѯF¢ŒnHæ( ©v•¡ûúcL÷S?'W¸RÔ?Ýy„G«øÖ:7ÿÀønlü³¨t #u ÷¹íZÑ}áBÄžcŽÞ¿¡¢nç%s;®áàQÞº VY"ÿ`p¥gwìw5–S©nÊøÞ7õÓDœ§åS:š¶DCn?¬pl¿£ºRlêû¥ô)î§x”è(gl éñF¦\rÈÔß.ŠC‘+Ý5—R±Pu _ÂclÆ¢}U{ÊÍi¯ÇQQ©…æc×n±ã¾q«êþc´Ï ƒ¤dôíŽü#]¨kc˜×þ†‡ÃÎð”%$DpC„Ì-ãॢ0—_°ù4¬;~þú}5ÈG;®`ô¦d8%þƒCn¯z_ìȳÖÛǸ}ciÅ»ÿ(ñkžUlzLð¹&ç*~fñwÛ™zvƽºsý•ø‚ú~M«nÍÆÊ­ŠÇNß+üµ•·k³KÎî;ß5Í™pûsU%ÀÂï©GûÔ‘ ýÇôKt„¡ùy…ªö?ä¤êÜWwû äŸ=ùC2·qÈùò¥G¢Ä bÖÀ™ÀvÑgá|ìçûЕ-ÚOï=ަªm ZîÒ[é ¯£ö\Í¥»ßÉøÞ±é\ÜqdÚ QýÊ@½Ncîêq‡ÊLÇý<µ%DSTÆîöS狎ó¡O§=ß[*NLÒ²»Øžg}1êéL_ÇÃ;®U»ôUf.8sóëT‹\Kð€”å VÑÖH¿bب‰èzØøaî'rßõ ÂVxðàØºü£¿…i§Êdñ+–p ¬ŠÙâ¨@†õyñĦ˜‰óº±Ã¹õZ^ÏHÕ„«J·ާ§ñx6É<ÃÓ•Š2ÀÅźLuÄ_Š5@ÃÓ_j׀䡲ǧ_ÖéNÚèa ÆpxŠ®`Ö”úÖJF,Ò¸y£ïU?:ö7HEŠ¿açI,¨qÅý¨{ª–îTÌŽ·LQq´`³p9+?Ú <œëŸþ$TÁ™ž]çŽY$Un#V 5'Qvì”Y†µõxx !€i‘­4Â}8Þb¦Í™Êm)xè³À Êý?ÍÎD*rÄ(<& dD뙩0§óäÍ[ª¯;65ϼœãÒ±ÝHdö/ºf"Ì~ÄpqÝŒ;ø7–³œµÓõ>§׿ßÔ‚+ð4I„›a2úoÆzÚ'äµ DEÜ­´–±öñJúÃ,ö¯£ÇÌ⮪´Ÿ¾Ý2äÿ'g( ´ùþÕ¯KÕZ²öŽÄ‚ÙÍ©âÀ§ÇiàRÁO/Xò!æÔF¼Fpœ½ÄÙü‚B+¬çò QÀ¶Ø[¾ z6Ntx³ö!ŽöžÌ}€æÍNÃŽWÌóèìAµ(•S1&i#^Gבô9I®Œ%:làýÐ{õ³?â<àèK9î+D¾ÄèŠC ¤éé€RY.¦: Ì®šƒôƒïŒî:´ŽAÄõðù:™Œ-H2@ÑiŽÅ ¸êäÈÅ´‘»XÝd0KrW@N?’9·âeë{òD!s8UÙéA.CÀàTs |`: 7BD|èô2Gõ`ÇOQ]–ÕQ…Øw­J§%¾Rº8zX6e[±ðBo ¼dø×T^p: 7™æw>ò³9»¶›®àêþp`§(ºf®“gDÞ!ôsÀ£€ŸO‚`Hk¿t“ËKÉLo<´ÍŽƒvÊ’![g´S©Š;µËn!¦§ ðˆœKwnajƒ\(˜*z²åÆC‚ÿà5Î<¡¸nv!ãÀÆhq"vC ¼cÝ• áá)Çž¾Ö‹'´P"¯@4bÓÿ~Iú;èÿøßÔcZ*ƒr½ÎÉó. ¨/Òt¹„uaúþ0nŸ<[SÁ¤9˜Ã¢Ï¿G5¼'}¦ !&jü·5ÜYGìÔ¥I`Å»ëu?‘19¸Í™û§z8ü9 Ó©¿ò¦±€ê wHÈé>5­9îÏÂQâvhÀm;êœÃ4FØŠ”H»­á½Ž›éW?ý;jl±á@ªtÝ™ó‘n>;Jl«÷:ϳÓq@<“¼ñ2dÂîØÄ Is ŒNgNÀÔŸÄ9§‰aC„¡à½ ü•]À.'Ë¡,¨àìÌûP$AåňTÀ·´õ¤ï×û±Jpk“ãMjÊ›ÁàÿÞ˜j;'}Ò‚H“­à½„÷ÍËûwòú7Þ«AÉWÆÄY¢ë°˜³±ðH·‘Õ)ÑUtŸ’Þ$n²(m=‡—¢HJL šw¶MH Y ¦ù¼EŸÏ*c•ÇX¾p’á\ç:\`²É-ÒŠJGDã}Ð\œ—Îæ¡!iLÁfœòoZAEõÒÞsŠ 1BFL‰024¼V¡•! åd}ÈÀGñká\ò» áÌ5|>GàDIßHIa¢Z ¾í§‚ 5‡~òTà¨FÎ ÂKL«¥àÛ*¸4~,úZ9 cÑK¨J†¸yÞö¤ol••a—E81¡aÒœãþLŽ¢L ;jsÑ÷gZa‰´Ò¾­C‹Ã.®‹•'毕à mGüçEV ÇWNÍ DÃ[„DÚLß–à7'"¹Bº)g¸öÁ¨„`AÓ^”SýláÕÂ4ž„KØ`S‚85SCК‚#‚Ã.iSæ œCôý™V„DXm¯Eüövq¿Hú*—›œSª î`IØ=Ç·õ¤íõ}‘hêâ–’æ÷grÊ¥ôýÐPv¿Ÿ<‡h¾]lEH„•¡á½¤°ÄfàtÆ ¤‘…£ª'ÈÉ.ެºŽ oqãë;cls¸iëÇ€àœ¬,OÌ®Ùç ¦ïOš69¼VÀE¡JÀ=,ùZ8€éQ+ÁƒA¹†çî>Ó·²‘ǾHìr†‚ 5$GÀ© «&§aDH¤ÕÖð^_š|e'Îׯ…£Ž—<d(pëð…v: LÂõ¹ )ž?AÝCAК‚#‚ÃHÓÔ j¤œB$„ )V[Á{¿7Ñ-‹!sw}or.BÀö¾»ç–:Áu”»Œ$ñ¬IGqªŽ­)0"9,®™V‘æ"1 l´Ú Þ«K˜IUù¡…K›žÐ:Þí¥ô(wÄoX #š§Af6O‰]€à©!é*wÇä8U?5t&ÛÏ9Dó4h+B"¬ ïuüòúl|¼‘–~ècß#amŠz¡¼ºÐGem¦ùô3š—U4SAÒÔÏæl:†Ðs’ô¯Ú‚¸^–¡‹å|± c+rêô&ppäå€o¹qÌ!Í×@М ¦„K!SCÒUOìäã…†BxÉ9‡hº™m…%ÒJkø¶® 5 <œîüA¾VÎ¥œq€HqÏÌêæ«óp*§°A()¡´è©!énK'GHo©A•ósÑV„DZi ïuh½]ˆÙܯL†Ñ‘”HJÇýP@XFÒ Ìa/‰ÛI;0˜ ‡õ<é( ŽzÓtœÊ„”CÁk ?ø +“v#9ýká`‡÷§z*( ›â¦áÊkBy˜F¯·‚ 5‡ðS>ÕË ‡ÝÓ_O“=ü½¿0ÕUR½¬ô NeÀ^”HÿШrï@¯W·Jlζ\'¤Ã´&à€àÀÕ£…j<Õo„ÏùC"-®¾›ï¸àæ ìÁBœ¯•ÃZº‡VÝR¹6Dà á6Lâ§,*mL¬æX$Í)øã›3£˜à„¸æ"1 l°1¼W¡£ûA¡2.úµpZÍ&? ŠR0acy\Ðwâ ,Ì;‚Öœ¦;(4T— Å¢ïÏ´"$Ònkx¯C·­*˜ˆ’„IrP¢UQW»Þ°˺: X}X~WÊ"ávR©Á´ç¸? ‡uå©¡œL Ë9Lc„­˜a·5¼×á$7t®Å.÷mpºb¥ø©&P¨@ê-i¾ôº~Y‚us¼Éæüd9{c8RóýU§ëœ?.‡½ý¶ÿ·€ŸÞoõbÞ×Âa%úC œˆ»ì—á$dÓÌu8—˨û8rt’RŽRc4šàíS7I¬2&×õi¬ÓjÞÆÿí°%dà¹lž'G¨ ø€uî–éDDô0wÏÄØkç"±«1rj:¶¶ ‡~RöÆsŠØ=O#R"Ì–‚÷*ôü¡veg‰Ð)DœÉQÇeÖ~U=¶¯,Ñ8“¼•ß—ëF›ÌñAkqåSAeÍPN òþL R löø÷ôì9•Ë9@_“qíªAts—ÍuaœuÒL±>)$&JL Ak ËÌAùaRÃ!r%&æúþ„SÂF†‚×"üëU( ÏCÚõKQQ:0’àÁ^B¿j­MûeêMJ\Ü饆¤‹ßÉAAý35T–aÍ9DóÈj+B"¬ ïuxq››« á© Ï,Ú­€yFØh#å /âÃõ`¦™‰¤CdJTuHL AkŒHƒ"SÃ`¹úœC´³hEH¤ÝÖð^‡?äBª¨ª×ç`rÐ΢ w‰D°ƒùaWSÿLÑxí©È>%÷ƒ´‚I¿’ãhG* :äœ$&|= Œáï%üòE¸Ôû†#w~’s0Û´±hðR åD­;“,Mâ“«(i^/ÅÈä>iMpq§§•æ ¢á0 |ššF ¹úÛ"þ>"Cƒ®Ÿ¡ ¦É9‰‹êÚê|m×»†Ä^ä AoæÑh¦õ{žsˆ¾³Ä7Òj+x¯â·¿*J×¹µÙMŒ.¨VÉuÒ }É÷4Ý€È1] © éÍ^êäœêá ÔÐfÎ š^@Û61Æ¿–༞®³ê`ºå×Ê‘O[$YG|œM3å† SÂ[§P0陸ÁAÙ&uZÃÞœŠï9Dߟ4Âi£|[…V<d=5"o­œ®®yh8 «&Hu ³7ˆh‡X·ºJ*+5$Í98œJ?ëÔP‰0ç}¦!V††÷:þ~ ƒ?qU™ôšÖ‹öá†jè*ò$NÉ[Efç9¯_U}cxÒÅq¡ä äÑÍñ‚ šˆÆ€° $ÂB+x/AÄË]QdDPÞÉ©ŒÏwäkÅ|cŽÉE¸Ó¤oÔür¿7%Ôtd*ZS`DpÔ›aj@ÓºÌ!#lD„¡à½Š8×2xÈL¸ÝçZsŠN78cª­‰üö8ƒ2ÛNô-,DÖ<‡DW;—Ô´æàˆàljÁg ÈF®ûœÃ4O›[²X"í¶†÷:¼‘iE»ò» âK²Œ¹Tyð·C/mÂÜ‹¾Uú\÷EÂåÔtÕ3ÚOÛ—9…èû3H ^«ˆÌyõYBf×YuÔ3çÄ>Ú72àtîê–ˆ tIšg=¶ïš—Z±[AÒšâþ,v‚Iƒý¬æ ¢yä³ –˜VKÁ·UüR‘œšëTÉ"¶ ‡>·M ãeBÿ¡O½‰†;k#>EJ”0ˆ¡`’Ýúä öŸ˜ †¶B1È­R˜àëa ‡[ã^›0lÔ½‡³É ¡£¦µƒ‘¥Ž¾Ï(O4I;®SG€9<¨æ˜W0º"*9ºwá#…~ÑtÒÈ€óBÁ{нª)sô8úZ8MHfÈæ:™$* ”@·J1LßB$Ä‘'}’SCК#’£HjèÚTç¢Ñ¥!‘v[Ã{¿%îW×Ñœ}S€ž¿C½…Iªü½‚¾…K{ŽUÒ9Þd/v2ÉáM>꜠…;,4Ù ÞKøû‚½qÓÊ©ÊÎÉ©ü—»«AÐ>þÛQ KÜAÑ3þ¸H0³=˜Ô ”7ƒAš9§E?Ioïh€¯§Åþ^›NÀ½jÊLñ «qN¹Ô¨“áB‹¾•}‹Ä®³PjHšs8Yš4sÝÿL B™sˆæ¶"$ÂÊÐð^‡‚@c§fsøhr:OŽ€m/ô±#…uZÒ8" ÆŠ§¢“9\D¤ˆ‡­ ˜U¥à¤ôhË ¢9…M‰4ÚÞ‹øåM§¶ä]Í#¿Žú$prïûµp­È\–½^CÙ/Cå ¦ou¸Ú®EBl§† ÏÀ7šn±§†s[&87½i¢ì×Ò\|›ïÛ›Ö ¿ E]oáˆÕµžìÊf@A±œhsi.WµÜÉÑAS;åƒaˆè¿U#Ô“ò.‡³ûrØêÁ«é¿ÕM!vÍ$²&ƒ…#Œ­Q…ÔG˜wÑ„æSÿÆ”Ð6ijHšsp„9ƒ„SƒªèæQg7­H [ÞëàWo\N=h—‚.“ÓÕ©á ž^:1íåP½’¦öä63%ŠÓ#¬!iÍA¯pp:÷ù©¡©“SÎ!šéo¶ÂÓniø¶WmYÍ­xur¼ƒšWw9ä¥ü(Aúë|ÎË;“¤æè ¥ß;ÈáÆð÷ÿTx?|èÍ€  °Dhß–ðN:í5aS9Nr”ÄŠžNôÙ\ŽÑJM5}«—#3ÿBâd.èÔts?9‡cì¡áùf2hsˆÆˆ°"$ÂÊÐð^‡QÑÁ½é :•IgB1^¥±|;týì$ùrÐy:®ïUG6)íFgO›Œ7îX´‹¦zÍi®Æ¿­ÿÍ=¸]ÙEOÞä¨ã[c;Þ¨Jô@@€Ä›v,º•E¢"}jZsðæ6ggêÎÔлš§Å¢1"¬‰°24¼×á*Û£IË?‰„e@¥ñ)à³`œÆ…ªÃ¥þi|FXc/šO•[^„Ä)äˆÔtón+9Ï1•s¡¡îF³ò¢ïÏ´"$ld(x-B MmgÃŒTg%§°¨#º~².‹1莞†F7OÓ fö”„˂ւµ¥ösÓIJ•S"춆÷:´8xñ€­~©9Þ×Êaí#›¹g-ê’Û¦f´E5¯ c¹ŽLÍ98Ȩ7㼘ţOõPJõ¦ïOLŸ¶.¼í·/÷`-3[œh¿99— cö ¤£ÛrÎl“¾ÑÆv›!q©ëHjHz÷~sr\JʱLPêóü¼–ÆyàÛ|§Õ)=^œMÕúɹ”Ûq%žÃÒ§¯ËiÎÛD×¶­L‰Óý¥Bäw'nN±§†]Xa9‡èû3­‰´R¾­ã—¯B3¡¼ÕEÄÁ©zß¶ñd®ìµ×D<ϸ†$u´Tߟ…Ã>A9z» Jiå[8SsîHk¥àmüßç<€ñxÚìJš´Ù©Ø‹·AëtuÀ:2ÐÑíJê~<÷UB-bSCÐ-Rî'‡/¸©AíSæ¢ïÏ´"$Ònkx¯ã—tB|ƒeû_:Øšq¶,¯jD;”‚‰7Þ‘´Ë§öE@­„§‚ 5$§« Æ ž=Á8–Dû»IB"löø×~ÀèAûqàÛðfúšŒg‡‹Û¥m-`µ‘ÙïG9’&äÎPúGHÉ…†¤5F$‡]?¦†Ê[vÎ!š(=¶Âiµ¼ñ›Of¸Qοι)¬>ˆÑD¼¸ÊòæÎÇçQDÎEàÜ ‚Ö 1˜3X#˜ Ð7iA´“øiCH„¡à½ ÅZ:‹—*ÊDt*œÕ)÷ÝãT¨G9‚æ¼çM‰Á.>SCÒN“›oÖRÃÎŽÁsÑLR°!V††÷:~(ôt´Ç<¯NÎΰêCó9gCÀVq9WÒ(í>Ð0%¾¦† 5G‡MA¦†Î½úœC4¡DmEJ„ÝÖð^GlÜ®¼ówoÜÌiô>vvh*º×OíÂÊ#OÊÁNªy]ÝÍæð kbMð¸b´pB¦zÑÜäyþH‹ÛŸïæÿšG¹ë¸YBöµr”ß‚Å<^b»T„Lɬh枪o ‰î#mhHº Õer¶Óy“Ö°)”Ÿsˆ¾?ÓŠ+CÃ{?¼_Q׆|>W•'ãd:»Ò7å÷asˆ¤¬ž.*ï!ïc‘¨ÂX A 79, Ÿ êÆç øpi‚¯‡Áý²ß‡|õBªðg9Xœn¼¨2ÔO¬+tUöÖš>=&g.„虂ÖEŠRCSd(çaEH¤ÝÖð^Çÿฯ›±i+»pÉÞ„h7ËÀ“‘MIÞ—'®^n޲LŽe8MÝ£‹z”¤zÑ÷gÎa_hx¯@žÄ]jHÎä2§ªO*’nXÊQU>†´œ–$¹èWX„³› ‚ÖNý‡ÈIS:*ÎHÝŸi/§Éý^ÂßgüKÍ:kè¼É9ôK¡‡2\ Å-9Ñô±%ÉÚV6pÎCïjM"“ÖœJ¨Ô °t̰;<•øršÌÑß—ðÛù£lŠMœÍA“sÐáuª:šÑf92»Áä­vàcÌëÕyh1<éæŒ ä 3¶ý™ Žî´JÏ úþLRÂ&††÷"è’ºÔͲ¡Ì„‘ÞÉQ2ËÜ6ÂÉ!±¨A‘,¬#öì¼®QZp@pÐîjޝ uÎ D³¬Î„DÚ,ï%pYýdÚW9ÕFåkátÂú÷~‡]l°5F©Ô™4N;3úSóuŸ’Ö÷gáð$55¨YËœC46ìaEH¤ÝÒðm\ªÏ7÷-¡q2Ø#†5˜t Ìù` DL»éy–ìþ¾O “.ÊÕMÆ`ÃЩ@-Jç¢]HJ#B"Œ ¯U¸nI˜ÄÈ2@r*+·Ù£‚õC>×ð±#½²Bž¼×RAš‚ÓŒ {¹ç $ïÏ4Á×Ód/áï]Ë9G äà6þÓÀÌòüÊ{…M“’4ü0Ç%,Ì@““s*R3ÜŸ…ö·SA_NQ¤/‰´ÚÞ«øí\xÉ Nd8¥ª%çR´85ŒÍëBøu&} Ál/‹D‘3>5$½g!Kp65À¶´¥gñŒç0ͱ¬‰i¥4|[Ç.oÁæÔKM®¿VŽ^Ôh²Ë˜³ãضˆkÑ·ç”›¡h­aÒÝ.ìÉasÄ©a°SßœC4V„DZ) ßÖñÛÖ­3e–ïWœüü‘׌­Suãoåiie‘8Ž·† 5‡½¥Ã0óW¤¾±ŠöxÍaúþ¤)a+SÃ{?³«ŸÆö9ô ÎÎÍX:C4q´@[Ë„šÀ7l×IJœr.…† 5G‡}f¦­Æ2‡h¬GhÈi·5¼×ñ›{ÎXå! :¯&‡h’ì„Kü±Zåp~Ží¬¡MÛàá1%Pãr-’îQ°„ΨÓ6¶msˆ¾?ÓŠ+CÃ{?½Ž??•‰´ ƒh(CÒ3ºÁ·ÍæÃzB7Í?/×Ûÿ”8;ï¿Pde†Õd vëœã;|ÎDóelB"L ¯5ÈÝqÊëÛØ& ˆÉÑÏÊOü¼SõçA ¢„¦1ï.ðø)!ïvjHºGL!8…=h¦Ô•ŽeÑV„DXÞëøõm¤6h×µyÎÅ¬Þø°wQPâL’ï"}ãúQô‡ŠáAk¾ŠÌ9Œ †{ÿÄ #»… !&††÷"~À`Û]}TW’NÎa5ƒ "~C&úЦgÑ…¢)¡Âìdui0à‡û3G%¤~Ñ÷' °Ïãß ðÝzªf wëÉhé³/>/úú˜†ñ|ØZu¹¦q']ªÜ ‰kS)HhHZsàu™vž;Y–9Ds[i·5¼×aÏ#p~õE»äx4ìš-j"ÏHzúLÞêá|óz=¼]ô𠥟‚SÿI/•Ç?ç|v% DÓOe RÂküËþß¶znjT{w3ÉÉaÎP?†€¯´ËÜ:5I2m‡~¹V æ§‚$»Ë{’ã&Ÿ©  ,g ɃMðõ00†¿— ÿÿ¶i£àÞ×Â)B@”¥úOÂ'ª¨g½iVŸ]nÇc‰JýSCÐRœ!„YeÓÌ­†Ä·DÚm ïuü°ƒ²0÷žcr)½ËsLüõ&ˆüð í8&&Wty½SAКâþ,œ.×rh€›kŸSˆ´ß¸‹@ZmïUüê)Pi£ìMÎQÝlDXËÀ•c·‘&”Ó\0ë‚ ‚S¥“Ãøw“!$ ¾@oN°boši´5¼¡6ÿ6hþ}¿2ôû|<äáFÛ2ušþ@ßÖ’†7uB¢ 05$m“ãt£aÝm„=Áò4!$ÂÄа¬ÀzEm~RÙ何n¿Ææêÿ‡S?¶¦é8<ùþO‰Æ ïÔtwÑpr„9š vWïÇ¢éi´!FZÁ{¿4H`§dYðµr†ü‡…¯m뼟:î³v&M÷ ²•SâÑÅ¡!éªØÓä(³tjÀB—)HB>lðõ01†¿¡ê Â7`í׿íèäìÊ)»`v‡‹ð·Ióo²q7’GOÂÇÉ9w¡#Äpd£.úO¦¾ÆÅð·ùj¬„s0Š\9 ‡éØ'À©Cï7àv “vëIÃCÚ¤J\* Icƒ$oXް†Cþåœãpeì´"$ÂÊÐð^ÇðÆÿ¶Ÿl*ûµp.ÖÑñ}Ð¥£Ólðõ01†¿átÓ]y>H¤¨crQIÙïeæf!f3\"1ܬ¹cS÷œ%æqO AkŒHN¡Ç!5t¶ïœsˆ¾?ÓŠH»­á½ߎCµ‡HJÑc69ÚBÁ‚Òï‘­4Xùgš‡&aM‰“I½SCÒÝOÚä0Çgj@ú}Yæ}¦!‘VZÃ{¿öJt÷÷+ÜÁÁῬñïD]Æ¿¼ßÝOÞô­þg½,H²ï‹Óžãþ,¨B`œXE=ëEߟ´bJ„ÝÖð^Çû΋Q½Š¢)†p&çPì°‹D€O¥ŠŸf¢o!9Ž}‘@‚ECÒš#‚f£ERƒiæÙj3­°DZi ßÖñkç8J¿?78;}’„éÅùv?t*Ù†ÐVD߆«‹„Z.äx“šàþLFg¯‚Ý‹ºä„þ^¢Ž °À´˜ã¿-@•l—óÇîâÊ䨣tǰƣ©å¡³ðwœÁË>¯ë0?‡=\¯¼p˜½éÑèDt,êE3ÿÓó[bZ\þ|7ÿ§€Ô¦2ƱG×äàŒ]î'2FzØçâIƒ!,œßËPlý='q—Ó<~/à·ÒÆ NfÚÏ&GðiíR?š†—P˜[±'ͺ,ú&§DWªkjZspDp„•v”ŸsÑÂ>­H‰°ÛÞëø! S»P¿‘nÌ‚†ÉAæNÇ‘”É‚JûÁ•½ºDÃ5ÛÜÏ+$À5æø$›“J’£¿m*ï1g yY—üý^€³ù¶Ó•á,&ûZ9—ý.êqÕ¡¾f-iºUŠëÑ-½âµhHz÷}rTš*ëÓç¢é‰±!‘VZÃ{Þ—Ú ”}ŠurœÐýØi•!èZBûפ±k<µ±I‰“§† 5G§ª;Uhè|ÁÏ9D3¿ØV¤DØm ïuüâ«èѰ nªŽ2c¨„Û{0 VšõÎ~A²àé0z°€æw, ‚æ Œ®oD(xΆ{›3ˆd…”M´Ù ^kP®beÔ¸ŽÚܪurNôŒç<‚lŠÑè+êjòV“,øâº:’ÎáI;¢99ú3ÇB Í Dc@Xa¡¼—àeÉÓ¤s~ÞŽï UoUâ›aVôß1åU!´—»î9:éfT‚ä´h-†ÑM]{B{‹ ±œ=Â:Ž~ïâQ{Æ÷K˜A“3ˆ½×q.vE ;¼àÜÒ’f¸\U¸)qÈ ‚Þ£QõäTut ¾sˆfÕŒŒHxö°Ú Þ«P„e°à²ÂÁªVä“Ã4rVrÀÕŠ£Ês s§Mޛ–èît, ’nίMNcúîÔÐt‹Å-îÁ´!ÂÆPð^Åh3Ï ÃU„ƒŠÉ9GåK÷6Qïã’ÿxÂ"g…yõ)qic’Ãä¨ ÷ÔàÏDÎ!#Š+CÃ{³Ébßû`÷­¯•£íÂ^¨®¢ú]*çcúV—7<Æ)tŠ}ÑôîÎ5“³ÙÁn p ]Ë¢y®°)VZÃ{^Ü©x´ŸÓ_.9Àµ¶o'½ÿÓ©^Dß#Éñå0¯t8¼æð¤{üÙ’£mÉTЄ´—3ˆæ^Ú&„D˜Þ‹p¼áùF‘V¸!µÊPgUw=?]5ix’£6…Äa8µÐ4§à€`Ž$lÊrË)DcDiµ5¼Váœ‚Ý -·”É9é>÷¡Àx÷–qsS9T1%.ƒˆZCÒ¹« Nõ¾04T60sˆfÎÌÈð>%ÂÊÐð^‡‘bŸ[‚4ÂË~­ö̧sÜzS«ÍS®EÓ·Z\Ÿ $®f„)H2 m'‡>¼©À©¶9E&ã¦!‘6ZÃ{N—¸ˆWÝ”D$;fw@®â!-Ï­Œ $¸jðí4Í#³ –¦ÄÉ”øÐ0éæ,§ä ÖKzøàfN šõ’6Á²o\^†k)ÿf&ÿz—t +Š@ìj§‘œCB¯èD²1-œgð3iÂBÛC%X¤aÒUÐ#“sF¶¶†ƒÈ9sÑìb+,‘VZ÷u(;]I>lè­Ãøä Aìü37œ¼hµW“&À!‘0JkjHºú0$ÜxÖÉÎ9L3+MV¤„­L ïuh³\TØo„ªw'gØ!yqÒƒá5•AsC«rò”h¬¯Ÿ’..ßMΡúŽÔð}rvõá ;k‹ç ¢1 l‰°1¼Wáƒ9[U4bf¶@iGXÄ&¢·Ä<#C»ižÌÌØ^¬’Þ¼7MŽ‚©`[rN!úþL#B"Œ´‚÷*~À,.BJ¨É0WrNþ=€·Ê·/vþ†xC‚­i×ê^‹€üÂSAÒÍäl—Pë­@PqsÑ÷gÚac(x¯â·ôÀçK‹­z}ÞÂ}˜œ¾Xа5¯È†bö‡@•Mó·)sÁÒ×Ô0éb_lrÐûŒ#¬A½Ïæ¢ïÏ´"$ÂJkø¶ã‡WãQgNÎptš;’‡–Ÿ‘äZ’Ê* j*Hºdr¯9   H@r†=Ž(iCH„¡à½ ­¬©ª™ù±ª7KΡÜ[øk˜–!w@»+mc‹ŒwõV›ÈY_Y…‰’ŒíT¢m vL0ÃÜaBH„‰¡á½ˆŸ‹ÍÎ’€C_ ˆ»—"o{OÌ!6a=w=r)f‚­O IgNòä裑6•uä¢@¤!‘vK÷uüö4þ[Åvt® º#fr”ÆÂl=áÄp;Èt>f(E" óý˜ÁÈ,^˜Œ•ÉàKaWŽËœ ²`¦ !‘F[Ã{:2ÕK¢ÆŒ¯•s  nq|»›ª¯BÐ,™9Ô¡-$v«¦†¤›ða&§²TwjŽ×:‡h~elEH„•¡á½Ž\»}h* µZ™œ£*y¨14ñÐìýÚÕèÍc—G/%T¥75­98"8ªrK Þ ä¢1"¬H‰°ÛÞ똃,}Àâ×ÊÑßX<{))}×™4wƬúžǦÝÐôîÉ!RóÔpèo’sˆfÖ ­‰´ÒÞ눵Ômyªuyr¸ƒàƨx\Ügü¨I3ä±¹E­%v½ASCÒþÂLNg8ejè|áÏ9º?ÓŠ+CÃ{¿¼I±µ¥ ­ z"`¯«(¬r‘|l šM M „RA’ÍU ÉQþÍTð¬s,3¼?Ó_cø{ ?xÍV¢_ CŸp¼ÌáVô…‡óõIû}Ú¦£[*Hººì-9ø†_R?ñ9CnÒ†°‰1þµ„ÈqÕùòèF½òî6˘sW=ºJФ=*жfŒE¢3*™ ‚4ཨ¦0nŽm*fHí-ÊrþûBÃb~´sÛ’v¨Îxr†ÚÖc«Tw¥E¦“ÚF ¸b»ÕÎE „©!è=0º'§ºÝ5ôK91GŒî´"$Ònkx¯ã·} ~ìYë;·àðaÜ, ù.AÙJÒ¬B9˜Â™;[.zxÒñ䨣HÊØ¢Ÿä=¡¿âzšëáoó³Yˆ;¸Û°Hgæ×³+0€'‚§¾íŸ#I~~µ/^……äñ&¥ÿþLF`5{ø¦ô•пE~Ka°Ç¿ìO$5Ú¾üIÎÉBe¢>éÒ“„se?’欅jC ú£‡‚ 5…Çâ54Æ9ËrÑ÷gši´Æ¿×ðÓžßÞŠn†ª×LÎNŸO«ÜrU "n‡Žçˆç˜æ_ŽÉS¢ þ$Ù <³pŒ  Ú¡¦01…hþ*6"$Òjkx¯Â™W—à#ÐZUþìɹ‡Ø¶‡¸ˆÛúgÓÄ™R¤1%i\Fi˜ÈdB(ÊáÇP|!&8FD 8¿Èiœ†7߱ʾ–­<|rÔÛTì÷Ja€=’`K„“ûâ¼ÜÙÂbOº9<8HŒTÓiØ.ºô5 kþ¼lûrø{Þ€¹%·§¼gɹ´µ)—sPx´ê@DÃ7Ø46GÕXC!Æ+mÑt·WsrØ4vjh ¢Ï9DcDXi¥5¼×ñ[6õ®F¶€6W›ÏÉ*ªÓš}Lë}«˜ í‹Òø¯ECÒÕjrš¿õ¡¡±ãUNÑÜ+mðõ01†¿ñ<#­ˆä°GÝ{pªrÓš0®ˆíà>!Ø#мÕ&$°Ü%DE{´&¸? §°p=ÆoÂÉÈ 6¿[¦)6KÁ{ ~µt‚©Õí¼ôNÎÅÄvN(| äV¸áOù–Cm¶S`5q*ZSpDp—L §¾x ‘÷gÚiµ¼W-&S`·=:³NÎà—U"¨!߆ú®QfO’¹Ã,øYXX?$MÉÁ)˜|¡i*ûœBäý™6„@Ø Þ«ø 2d'zo0ù”&çä1˜¬Ý¥£ðµ1T(ÚÜ5† û±Hꤓ’vgšÉ)B¯J x”eÑV„DXÞë`P¢Twt ä0ÎŒƒ¸ŽM3𾯇&dNЈAFIiHà[½/‚Êæ_¡©¯’¶L!#ˆ”«­áµ E[šð/ág>°›s½‰[wšOÑÞ’æaº;Äf‰~(Æf&5ƒC'»“ÀÃ÷Sçû˜@4?/6!%Âhkx/âÈ©]m/jqƒÈ…ã¢ãù‹ÄA Hý Pƒ0Ø‹Ë'wO9:i÷oœœ ó9~c‘Bêß²&"æ°Ïãß øísXØÏ½œÅ"’Ã&Çì.K/+rFq¢ƒs²$ÍóÇN uš’Þ\^œ>”0„À3çaEH„•¡á½ž#Hˆ™6´Nœ8`Ucóuúc°'ÉóXrˆ¯|z_†­ 8 8(Nã«Ü³9hæP| %Òf)x/AA–‹«u\埪mL†Ç-‰]Ûær­¦¨ê¶e¹#~S¢ð°ã“t.vÐç! §E­ßôý B í³‚÷t付ÉxA_+GýÖPŽEX—Ëë°"ILж'm(ƒG¶Tt¸ª“#À ©߈>§y¦ H­àÛ*~ˆm—á‡^Ÿ“ƒì}þöÄ1fVžî‡Ãö}¹cäù±Dø¶BCzÓ>O+·§äóÔeÑü‹ÛŠH»­á½Žß<.Ï `>ªqVrŠz‚£Pr3ŽdQÈu$y d±œËõ“ûÊž´&à€à´¶±œz*˜÷è Lߟ´ $¦Í-Ò‰—%ü ¦]8«t‹{çäÝ+û¼:{l•Í ð\Jœ‚• Iwç¦%§]ªÎ vsÑ÷gZaehx¯Ãñ‡ÒªB8=“Clê× ÂD«€§¿*)Î4ÊS.‹DSZ]jH:}ÜÁ9”L˜úœçG:¹ÃŠ+CÃ{¿¤Q"@g~á§ækå0Ñ=ÔÓ‹m úPÀ@´;10¤Ïƒ!‡Ð´?p“³6bj@Át]æíN ´"$ÂÊÐð^G¦0ùÂd_“±³ÀœAÿîFÓ•`Õ®Óíă}¸T¸ ‚Ö N<g§9¡ð u™A´hCH„ÍÿZ‚(»…ks3èÉé §#I€p‚ }Œ}èa¹ÎHùEH!¨½¾hHzs¥FrNÅCRƒjYæg´UK+B"¬ ïuüt¬×§¶ Òèkå\D6;–ÝÔÈ£³ïã•4ÏéúySbWŽKjHÚ‘……ÃcåÔ€cåXæÍ£½­‰´ÒÞëøåû¼Yf©Ë‘ûµrèå<ÔS­¢Ò† ƒr&Í7æTùð› $¾ãä¹…¬ué_›œ×Ò4üf¼îÕMb;e‚˜:ý-ÀùüG[ÌÂe ר¬8ÉáIö¸³“£Ý^*pŸÁ˜AäýI âzÚçñïüý=ü7¸Ä_½ØŸ=BfÊÌD³@" òà);“¤Cb¨t:ÎbÔ;+Z30½$(˾­À`1ÃõžiBØB-@v»ú6 ³K)“£cç%‡ÓÏXb>6¥ˆ¦ÏL1¹)¡^jHºØ©šu'O»Êr Ñô²Ùˆ#­à½ º/¶gG%ðÕ zñ'‡˜°ÎHŒÚÔ­™¡XešÁÖÓL xDë¢!é®ßbáðîš 3ºæ¢Ÿ°!‘VZÃ{?4 “ô*ZÁT¡I&ç;bëøŠÌdžv$} ë‘p¹!—v_4$Ýœ!œ¤9S§5 ál_æÍ9lEH„•¡á½oI‘„Íà~ë&9ƒÅlÜ>Œ• Û g%b߈擈ŽSB=­§† 5ó}‚ꔩ¡«ctÎ!Ú›XZi·5¼×ñ­ŒàF²O¼ÉMeç¡øÔ9–ÑkAHD‘@hZs¬e~ëÌBUôÏR…hª–V„DÚm ïuüÚÝE H„)=•/¹qhˆ C¤ß4â÷1ê4Ó9½4%N–c¦†¤Ãœœ*7nj¨róæ5ÁiEH„•¡á½¹ pNá!l‹^¼ÉQ}/Ê¿TZê>èýW’¶O‰rS‚BSCÒ[4ã ÜhßT«]AMä?­‰°24¼×!ŸÍy*“ ¸[V2†òö.ívYÓˆ/ÙsÌ>¤éO)Êü³Dß´£ “ŽwRrÐ}ƒ#¬¡6å°Ç5ÞIiEHØH+x/â‡)jÔi+>ZLްjÍù+c¸j­&}+s/±ÀÃv-’.Þž$çù!ج"4q¢-sˆfæ«­‰°24¼×áwMUŸm”©¨ 9NQbÕùZïgöà=“fæÝkS‡}Ñ´æÀˆä(-5 ù¥,sˆæ³j+B"í¶†÷:Ú.»¼Zè>°)“Vºu ¬ªmGUé9’F„䨄H‡ÒÌRCÒÝ=’³yjØX7çaEH„•¡á½Ž_k&}UÏç–êÝä(g?éy>¯›júO¤ yfa{\Ã^W+Hº"'9ç)7ž5 ÓB+9…I> ²a ØÆPð^Å龨Òaƒ&¼ú…ÃÜ¢,ŒCxˆðÓž($IãŽÚˆL6X•“ &Ý%?9‹RÁ¦.“9Èqiƒ%ÒF+ø¶Š_“ÖÔèåB NëîïÈo-Ó.¥±Á-òvr«ózF/ðð k$CMŽzÇ¥õ"œ3ÔèÓ—&¤Dm ïEè(|*øŒ¦2*JKÎIÈV½£9Ñ)ðÕ‡ž4ß•yÉ!Óy›ãƒÔ”7£i×Çê+sÑ÷'-4Y ¾-A‡Œr â ¥·|ñ$G·t’±5ûŒáèp¶¤qhÊAJ ÄáW AkŒÎq±65¸;BÎ!šÇ[aehx¯Cß|€I§ïŠ=%cWé"’:¹€=<”bv&¹ä ¥@'ÓTtßÝ$ÅE VЄ3´#úŇ )6[Ák ;ÙºçmÛ©çkåœØùubÍâiô¬v8αk2Mè(Á|¥Ä®æ©!éîŽÚÉÁ&:­¡³fÎ!šxV¶"$ÂÊÐð^ÇoÀMM6·ÃhM çÔ³ñ-Ž„˜ö‚WKš·ì)Ïÿ2>H#*%c(û-‡â1Í †›Ò‚CÁ{ ?€ÜhîŽ7À×ÂB:@$qà ´‡Úå„W´[òœ}•`Ë’©!hNáŽwÈ‹é[±ò«.5ºƒg,sÇÉé„ã›Ú¥¨aÌÑ\»1­‰°24¼×¡ÆNôŠ£:/8‡’å„`ƒŸW¹v„#úV#òí\%˜"™ ’l‘¹œ&8øTÐöEs\ÎÓóZ˜߯sAÕ[FìNúj&çT 踚‰°ÅØ©“¨égÒç»ÊPu\‡ŽE¡ ébßDrN"­E÷e™Á4؆”CÁ{?¼V7õz,Øøð%39Cpy¨ Æý‚Í1ZO|x‚&ÀžÀ¯R¢ ,+5$]„69'¡~SC9ÊÏ9L&VV¤DXÞëø @´°Žèy'íÎÍOʼ‰8)D $nìõÌʤ áä„›¢.ˆòECКƒzÁ)¬¹N èy~.sˆÆˆ°"$Ònkx¯Ã¹5ì£M¤ê³â˜8»ãûµàÄË.3•Å4ßhè0œ“ ’Þ i”œ6Ü}F ZUÜ>f}¦ )aCÁ{ª½„H=¤Nü“3„©u) tœçqXbûQÑøE·®Žb)qòM&]}âOÎÁWP*ÐS5§M°D)ßV¡Íy‡ÐÔ_ »ö*¹SvåØ]»qD³ìasyçîJŒÎ»-4$­98"8UM%CÃvú]å9DóÝd+B"í–†oëø¡9vgÀ²Ày9K88:}†XÐÏC^ÎÌÈ Ú9¼×X$˜ä;Ù£gO06Þ¼99†}™@4SomBJ„‰Öð^Ä¿þžÙ7|Ðáù0ƒiô;6€ì²€” ´šŒš¾Ÿêg4%†—¦† wŸÞÎßõÔ°óü7çØ}BœV¤„­¶‚×"œ¬°éÃúüv‡êÓ‚ƒÏ讣K%¹ÜÕèµÍït"¢Û¶ Ò-!«©!hÍÁÁ‘;5ôÍùž£GUZ‘a·5¼×ñƒG£ h{F× — °^A$*…qŠîA2ÔÀ£|^o <ÏáAoW ë$§'Æo›°sbÑÌá±)6KÁ{ ¿¹û‘ž‚Ôd8ª<49ƒGÀ³(¦þ|jA åõ<]›x­ªr<&]\¯—ôzú3G?Ž>å¢éä÷Ü!¶YÁÛøŸÊºŽÜlvã´g0;•eºg/†ÑP—£{öŠ »¦¦¤)€ÂµhHºø žc:¥l3Ë2‡èû3­‰°24¼×a—jaÆÑ³¸œ~’œ³ËAª>…}*œI§î‚äk—ª“b`ÐRMñà°óbŽ>Ôy1•‹&牴V ÞÆÿÓGã¬~Õß09BuiãôB•ãM;‚¾Õ(¹–Eâ$8ûÔt±‡19®%O …ósÑ ìÛŠ+CÃ{?$.þ[}Á²boWbä»*ö‚ƒäBT ž"ت §‰æ/±iä1 uxJà|Õ´æàs ÿ6SCaãï9‡hŒ+B"¬ ïuü–+…ÜÑ"h<µ§œCH»Ê8G$|ßKÒðw›9Câ`’T*2*õƒÑÔ¥ ‡ 2|N š9p6!$ÂÄÐð^=ªôù¶¹cräŠAî]óýÙFwäæ)ÿTØ¡m«¦öÍuÑô暌äTî´§†Ê­õœC4F„!V††÷:þ>#ïEÅÏÑóryMrº’<±ýœh \(žÙw&Æ <ÑÁ>ãSbíjjºÙǽpö–?Sb¢u™B4„!‘fKÁ{¿ù©Š àÊÞ8E’Ó7Ÿ»Îˆ®3ñûdúl5[(…Äó¡>–ñ&5ÏdÅ%b8Œý$ïì„“—Ã^~Û¯)„ÐUlÄþD“q ÖÔy®]0ð ß þcšõK„©žü9§‚¤«;#'¹\!èi×—D³d×6„„MŒñ¯%h/^Tî΂p}*‚ƒ¢q¼”+ãy=˜~5=¦ño*±O Ôò¬‚Ö÷gr€@¤k(òså%aiEH„•¡á½ŽŸpâ‹{4\n™œ¡NNðxíC}$˜zmj$š±?‡/ì~15­98"8zÙ§ºÉç$!6øzíáïEüòV70»Z1¸äà`†»æRÝà¡PƳµTõ#‚Ü+"÷ %ôºK IGèbrÚJnh¨BóÏ9jÔখH+­áÛ:¬êêï ¸H~6&ç`%`k;û¥A=ä +§Ž( AO¡`ZÕ}Qôp¡Ýä Ûòø35`ã7gèêV4-ðå00F¿—ðà /p —fãäh'²oÄû~>BLOjÀf,IÞ*Ab;Ÿ(Î I7P’ƒÃ^ù35lìnSˆä¶Ái£|[Å/¡*äÌUVƒnÞÕM#ͬîÄ2€´‰0^†ûž4 J7¦¤DgõýÔôæ]]rž;úb kØ«_Éžcw‚Á´"$ÂÊÐð^‡{¢QKA9ÙfüusNâ±íX¥ÛJ¸S(H;kÒTgc²(UokHZs¸ZôYÛ Ú®ÖfÂÈ9†±¦§–˜vK÷uÓe×óÛˆ‹ýµpžß’žÏRTsօΉwB¿’æ[ƒS"€áBÃg4îJ®•P·Î!šï2[aehx¯Cy —î¤Bî®Q0çh¬Y»T“„\HBñ_Dê2é4†kr˜¦ÀM²Æ'© œÇ ŽzÃ¥‚ÁÞp1)g1(YÓ—Ã`þ¶€ö¥ªÛ(»aFÿäêv »çðýÐÌi뻚lM#NBû"q?ojZspDp˜Ó65ì„’˜sˆæNÖV¤DØm ïuüV}jçŽfêg›ŒcfEð­¸ñ§EmÛ$oWå®×O¾ès|ÒU¨kÁÀV€UÔ@k©ß$Ñ2 l`Ž­À úEÅ^Å= “qF%ÁåMgn$D‚¦‚I$Sâ¢ó6$éÑä ¦Ãê+P÷ö9EÚä4"$lb(x-«Â³ ÜåÈžœÓµì£ýì•| ªe‚õ>* Ê˵©ïD O:’‡“3”ú›†Rƒ5ÁˆÌáœ?.‡}1ü½‡¹UtÄ€¥ÃÜÁ¡+õž,h”/‚õ ØC™fÔº 7$†º„‚$k4Y ‚¢F¾¡D-3¼?Ó„¸ncø{ ?äd\Ê.Þöj”šÉaxº3îÅ$ ìs;Ãb=Hà l—Ü+¾.Êž´K‹&§ss3tVú̺+¦ –H­áÛ"¢ùáðÊQ#ùtr”:ŠÚˆŠ——Ú0tÔNœ“f+‘ÏÆ”@¶k]4$ɧÉ)JM jÌ0ç(‘|šV„DXÞëøec? *9àRW§ìäTõ„çEQò™Í"p„îNÙpY¬ˆ‹‚ 5l‚#P”P€-Ì2I¶©´¾ž&{ô{ ?ô¯8Ù;”ÿŸÁä¸'QyÞÒ}8†€$,šIÔìnBþñu ‘_eOZ`@r6¶öŽñEÈh9A ì´´ $Òf*ø¶„_þ ¥ª½š:ZlpNæù<´ëåVr¥ÍFe¹Üõ äð 5ŃSÙ‘QÃs„¦vÑŒxþH‹=ü½‚¿ÿžÀê;]smô³à]P1‡:¯W‚t4_#0™Á :+=çe¬´-£ƒ䀅hŽ¿"QͬÞ4;jþ”H‹5þ½€ßpg/m¡ÁºÝÉÞéÆšBW3½yðøbš±M ºC¢Ð'ïáIt;4’³3[fG»öE?IæWÛ]Oã<ü›ù?ÔiT5)ƒkµ^Qh#ޱÀ«ë$›±Àá;I»Ðæ%pÙ2$½ FprêîŠ8)ˆƒtÌ0ÚaCH„¡à½Š_ý6êD`æ.·Ï‚p”ü0]ëhB̼FÒöÚœc‘¨ ²„‚ 9Áý™Œý¤§"†ïUû´˜`Ì»4Ái¡¼W Ô›VÕ,ïhnÙ;9Fð0Ã/ÂC첩uuññìÎ7Ožñ§‚¤›ë’3Ø»bj7 §ÉŠÛac(x¯B;ï];)ôòVºÔ䨻uÛéÝ­×ÉEç¤îªž ‰cSQPhHÚßÓ…Ãc_*˜÷œbŒpw…!‘FJÁ{?¥N³1K-Wt›·€SÝçkäqÝd‚fêôP™]H<»H<©!él"œ“-2SC9ÝGÎs˜ž­€§DXÞëpÛ¿K)ÆûAÀ±¯…s ’LÇîŠj­3Ïä&yhW’s\/LŽÁAJ;O f ,GB/Kõ¢yÊ×ô˜öºaÄÛþßR4šÜt M˪žC;î¶êŽê€ÕåiØjñý,ÚU=‰]¯¼Ô`Ús`DrXA”pf¬ûœÃ4ŸÄË5}–H»­á½ŸSE1&9T,pP”hÈÕùsÛž4ÏÀCÞXG]4$íúC“åð¡ÚÃáêlË¢íA¦ !&††eÎÅ4~N$-нÉÙ hçh³½@D‘¼gAQ\4õ}âN“ÖQîCñIs¼í9AëÓ‚H›¥à½Á<·3Ëä{uéäEgsùrÇŽ¡â}¼ïL³X_ˆÆ)QTž’®ªÿœœæf„¡¡)|šs´ÀáI+Ä™VJÃ÷u¸FHÑÊ­†NNeZqÇÖ¨±kG©Z)I³~Ç©!Ñ”8˜‚Ö¬¡N@XÃОC4 [iwÀ#¼ÖñÓ‘IÅžFWýZ9ê„…w0n÷²±» 0eÒ<ÒtÄ k§†¤Ýûyr°š¶S?UÌa#lEJ„•¡á½çCUµFFIRÕ )^zÏ™EQHDytB:™º…†¤«OÉyN­Ìä ÚWÏ9ªû¤N+B"¬ ïuü–gñ|R˜ÖP.%%Lt{¿\%:\îÆ4É[%ém¹~1@9Ç­îÏÂÙyC† ;÷9Èû3-´ÙãßkøkãA†hŒyœ“M>z¨é ci¥Ê•r:ã¸#G•É)Q]ËÃ>ŽÀ¼N`’§‚ÁcÞœb½ÓÄå4X£ßöÿ¶?;”ÖËin5g!M]½ÌªÛ‚îÜ;˜¾UÔÀöj!q¹¿ZhH:Ê»’Sº›“Zæ⭜c‹ò®´"$ÂÊÐð^ÇHR( d¦zý§ „“q0°ÿßCJp*° [b¼ŽEBùh9>ɪp|2žƒÐEyG e[fÍ|6™a`(x­À ívãº'×Θƒ3O3ÄêØ…  ,¨&l¤-ú³oܹH«95˜öÞ‰S•Ê$å<]£)Lߟ4"%Òl)x¯Â_ÄÇœAø¹K©³“s2}ñ¡/õm=YšÆ´\„dM3W³R¢2@85­9îÏÂQž]j@°¨,sˆf›k[i·5¼×ñ‹›tàgøSÐ4¢p FÝ6–þt ‘rÿˆFCÏPdxÍ™FÖ þÇ"QùœDÇ‘&«‡†g×CŸLÌ4FÈŠ)V[ÁkÚ¡VôžÕe&ï—*Ê™ÇÛ¼—6¨Ÿi×ì–±H(05]Ýüeá°ðdjxÞ¨£Î9Dsl+B"í¶†÷:þþl ìüÜ Œå3 ‡“÷áã%›ž¡é.Ï_&Ù¤÷ä3çë‡O¸1|ÒÍšä òíÏßi꜠­jZa¡¼—ðk`eßUÞ¶ä\ríD±dV6h»Ø›Æ[}(š™£+‰'4$½‡‹-9›Ý—½xhô‡'þJ?6„´ •¶© HÍpN®F(ètxæ $!&øzšìáï%¸g×Õb¼ÿSi˜É¸ÔöëRÈC&šõõëFp\G%å¹ ºlrá aÒ_äöÌ Dc@Xi³¼— 'þ±°ýò“—œÂÈÒÂpÞDšŸm䀜Iãé?5 ‰Ë ÂV¤fðfvØýH<ŸPtÖe’ܘÚ_O“=ü½„ŸpÜw¹«º|­œËY—FH?Øi–Û+zÄŽìn[ä£H‰@e Iw§‘LŽj¿SÃó‚Øû2‡è{A—‰´ÒÞëø-JáÄ ÕŠ“s¸ Rw’Xت–ŸòÌšéÂ6ŸUü¸‡† 3qfrŠÜÍ¡a–‰žC43Æ£)º2†ÝÖð^ÇOÍ 0Bp¤æÆãÁ9‹DÛd¢ç©h¶Y¾¢]h¶b‰±%5Lº;)9õR¬14T!áå¢ïÏ´"$ÂÊÐð^‡¶ç}Ó ­<ÙÅrrpÌ|ÑÍndR<䮦f$™-zÙ©£ëµ©©X Z€!8ØbÎñ]99hÎ` B"m–‚÷¼.à\ DÝ{µ®àœEU/¢¨c'27T˜Â.zS¢°ÙâÔ´æàˆà0ƒvjLæŸsˆÆˆ°ÂÓniø¶Ž_ó‰z„ à¦ÇÑŒ½é¾PÓЕg ©íHú" ê Cï‚Ö§†¤{ôy™œî4okè›ÀMbŽž}^Š«¥à½Å2F¨ºÁƒì6j¸ÉAw/7ô6}«øµ/nž‚6Òb’]›¡ÞÏ ZÄÍÓ„”‹­aYÁß§ `ñ|~0Øõµrä²¢Qààñ„mcOGžãÐ1$°ï,‹†¤kÄ‚3èC›CjsŽÑâ V„DXÞëÈÅKnŒVÔˆ{áì8÷˜þ œ³Ç)džh(VAþ„Ä1äØ I5ÉžœçMxr„5TÆÉçÕ‘ôiEH„•¡á½Žß³äühˆ¹ÒM>¨çxÞe›|'@Í9äW(%i{"âÏK ÕV¤‚$}ØLŽ?süàÙoÎ0â´™6X"M´†÷ô^îÉû¼‹U49ªta~é%4߯¾éAã“VØ3{J ’®.’Þ\”œ˜=SÃFÌž9Çæ¦šÓ K¤•Öðm?$,€ÈÕtrL†¸ž½¿:õª¢ÞRuŽšO¤ Úž8¶æhMÚDÕ“Ÿ±†P[‹æ‡S3‡@æñ/ùC‘ÊÀ³  íG¤dˆÓéü±)ÍØ+Ìd–¨i§d´k‘Ø Ñ95$½ùÜ”j´?SC' ×œCôü§DXÞë0€ä*õqÚ›‘¤9º²¡‚ªf¾º°GÔ;_—›½JâØÚ-âp q*¶ÏÇæ «>\Û›s‡@koã¨DLÛ®P tÞÉQc5lÛ fu¯áèÈÓ0“õEâ ÄÓÔôæG*9ƒ¨SÃPc¢œcD뢴"%lehx¯ã·â®Þ´ÃÞè.œÁöäž{ìê_Éž4|kûЫ $àkª‹† ÷#ú &§É_ú¥ö1G¿¢Á`Xi·5¼×!êP³ÕùÑ“sÈSéÃ9+Fº¿%é[¾tž‡SÂgÖ0i`%ç°ij`ÑÈœB$>û¶Á×ÃÄþm?•#v'õcÕNŽZ±Åõ)÷¼ä;:¯¤ížê«„k¬CÁ¤K ÕG8úSÃ.ÖœC´ýS‹@ÚhßV¡ÍÍ6ÜÀ¶ !3ÉûÊàIáuVT,1 š›0ÁW¥Ä)øïÔ´R/‚TÅë®>Îs‚êæôÓ„Cò‚ÿÁÑb°œ÷Äûká`guèpÑéܼ}P¾‰M³i.öÉáÑ­!iÍáÃ…8z=¦ìÅŽeÑ>\ЊH»¥áÛ:”S„†uHÐfáÊ×ÂP= ûáŠà7t°UÚ‘ô-$±U$}Q´av'gc3ŒT >BsÑ ûÛ†°‰1þµU@10%Ú®%§ á’‚úÿv÷-Mº$·uûþ ^Üï,f\Y™õòRÛG8dÍNÒ‚þDIc³Iš¢íпwá<€¬f«#´ÐF ûÖWU™ +võIÁ–8žâ©"Scoìßl Æôç¾%dìH +[Ö¥âá(¬‘qËÂsŸdEwÞÆ:Föo) €o}W)#x†b+ïHŒåòJãìÈ7H ‰õoIIð/Å'·-°Wù ~½UÖp”¶ðœÇWyÞç¥:÷EÔ’l¬E¸º2ãÃÄžLO<ÿÞʆU¼¬(­×ð‹û Y²¢ábŽ_QÔPˆQ›¯¬áiàòºmÃ6ÜÎÈ’MÅc¤ ŒÍÂS +±ÊÛú5i° ¤,Ó‡êÛ(Q.ª-l§6 åƒXnˆ"5·,<çñ§wlÔwã]t­:/ Òˆc„£°†£´…ç<>¹ccËõ—8(zŸ$±å)xAOiBñ^?õ„Èà묇´BP ï5Üö1À’¦$AXq•Vq«fyÝküs\k 9Bð÷4lP¾Ï¼}A%˨íñ—Ú#)Ëÿ;ée­Ìlûd ±wES²œâT“……å¸v±¸\7c°‚c´ç,DË·°)åÈqbÁüAâû"6awæT.‡¡r.·º¼²GŽ6ì}2 ZlÏçð`ô›¬wÖ!–w]Ïh5ú½/yÕ œ:Ì2DÁ‰ª©èê¤Uk#§O0#&TÕU‘¥Âg9>aÿ‰úDZ¥JÇ0ž]+Ó!^ŠÀ Ð3P’tð9Šx¿¬I_hȸÇéÖ†$W4lÄÙñ‹g…û+ÇaŸp(]4%ù·9>VH×䀂5¡ <çðåñ6ÉAƒÎpÓñ¶$±/çÆ$žöè.?H?*übwíëš5È_j†ô€–,l?oäy+Ä1ÂAX#£–…ç,>#ÆæÒ8êp@3I†V§ö¢‚¬Ô¸C_¼ ¶6iìd8M ‰>ŠJr²ÿEZ8Yn’>ˆ±fVÖp”¶ðœ‡~‡'èÇÖ(,åïP‚H¬Ž”f4 n¸¥³÷Û…æÜÆ¢+YÏYã;`Z¦ ° q5%AQ>z¹VùX‘µ,ÿ^‚8 ‹G°›×ÇfX¬$ÝÞž7ÔöÓ6+\\›Û€±ûÛOv|°8(['Ä1À1XÃ1küc _¬"¢¬=6¥*¤´E£_<¯Ó¹Qf{$RYS#ì@-+ …7e*”„éÜi!¸À¶É1Øè…5$ <'ÁMàƒ5ZñÓ:øicÉÅîu×¹°+è«âC"J[ÖÄxØ]üqYãŽb¿& ÆôÇ©%¤H ¸_Ê1|( kdܲðœÇgëùÆwIÛy·–„Å 7æ®{ô´]ãsº_|_cEOñÔ§ºÞÊ‚q#ø$AÏರ€»|,bë®(RÃqËÂsÊùb™T‹8’ñ¤¤/lˆv¯÷Ø<èƒÜ‡ñ(M7»—Â…ž2`¼&½bJÉm¡Là’‹–슎Á µ ¤dì<Ý·5u°‹ìú1XÁ1ÚÀs_%>í‹Êâ/ç—d û0C ¥ö(½ßÉé+¬óÊmR`RZ0¦‹J|C¥=šþÉ@g†fz ~½U ©±d1? ¢s%Š?ˆñÇíÊ‹ÆN*æ´`ܯL*´+ù²Àç{ùèÍÕ]Ž"5·,<çÁÉEÆÙÕx°¾²°Â³üE§Â“­2cŸ:Ž\÷–8 ¸Í\£«W£,ÓGŒHICi„ ¤\Ça ›ž³(œl\»*-¹‚@+ÒPùpC¾ƒ%fl‰_$ÇD§pk4²4Ê€¡<¼Þ& hÕÒÀ‰ÖééyO A×+dÿ0…¯èؽ­G³“é¤)A~ =Áò|Ì(Ź1JCI`‘g i!qóù°%,„. +:\•b¬" k8J[xÎãOQ®‚-àáŽsœxQEyËVAr=Dï·íHŸŠñN*…k-G(<²ßœ$"° åaUEhÅ` …¨ñÏ)|Ùš\Ãkô“TåŒ'ÒSoŒä)l¸z´ÄÈ÷!óQj´]!mÁ.0À‚B;?зµ<#E1¤†ƒ¦ÇÄÁÓQ_QÜ@,É¡^;úŸ¬D!ΕøÅö©‘þZ²”Ó@âÕY6–ì,wJ »HìƒX‰sRpŒ6ðœÅgù²d8À7Ÿf-9Ð;"Y£( ¾ú®•Ù¥ñ·f,v£Scà<´,$ÖÝ]’Ü&e!š=œ“bd“* k8J[x΃ïèavöÇË^’|Ù¯yÑü¶ï S$òeϕĤÀÒÞ4 \¯û’èu- ù:§‹éu¯R!£–ç,têrß©`@[´VJ‹]b×ñê¬õÇ©ÔÉö°ÂXf¯ÓåkcQ‡'^´PJIôˆ®2—´Nêöo …çÑð}@ ¬5ŽÏ‘’7I˜RûÌñfZc{K;ÓHë'ÆÎ4YJãb©€-$nÞFµdÛ±ÉiÛ<¥ bm—#k8HxÎÂ;ÙWf•4Ò”Y‰EÁÕsáˆ'¶ü@t™Ãç{ì›ôIcáæ^ï~À—œea;Hd›šÔgVȨiàÃ,¾Ú=lhF×#Ñjá 0%(Ϲ1¶or{åldÎ~±Óß¼…s®‡vXe!qç=W’ƒ|Ÿiá ßgú ŽŽ"5¥-<çÁL§AÚhðÊ‚m š²[6Vn¼+?†N„•„Ô×Ic;U{á a¸À :²Y4þ¼.Vc˃°Î®æ”šsøäû…ÍWî[fpŽ%`דÄ=zMÄæu|m° wUQ:¾FÏYƒ_.¶PxpŽÄ ÌŽ4¶Øõ/E 2k8H[xÎBcl( äD§Æ†ó²`¼œÎˆ‘§(RÃqËÂs_-íÙ¨ë~ l_’e CadÃ3ÜÂW –lQZ<ò ¥k 1MCÝ’Ž&#}íŒÙ8q °okd´4ð žu¼÷ï5`},äš$ƒ¼Û;Ö\Hº]yÅ›J7Þ†”äÒÀ /Ç.$îIAÇGu ¿—”±>IĺOghÏ)|¶Ë º¨žU»¼–\è-ÅVPÛ€[úÆXcE§¥1@sUoªs* ΛÊÂÀySù †EaŒRžóøâ6 Î}“ñŸä}’l<*ïQ‚ 6¾»[[䪿Èô/+kò5Y0ö0I°* ü‡)þ‡ª(¬‘qËÂs¸cDz0MŸ•ûï“$ÚEŽ•ž,ýñk@Þ>18™:K¬ë‹/DûP—«Ø½+­Æöw±rT©áeá9…OX»‚8éÛºqßö½€_ëêì…Ñ©DÆ‘˜t%Óå2‡nLûâ*¡„꾡47¾ÞÊ;¯g°úŒý«£³(ÿÂ6ÃΪ’\‹HdtŽs î8\+¹´/ŒÜÿogóiÄåÖ²˜>¼%쨓ÔQ'}k™Cþ!idܲðœÇ'e¾ÇÆ-°k˜÷Yr³þ`okXÅ DwKˆšÝ3Î3óúÕXâñ‰µnJIµ%€%6}öt ˆ_F Š0Ç?ç ¦ ÷}Ý.VG–Dä<Ñ3»_ìiÈ YBUà32¯ï ‰ÉÑ‚4u âܲo Ûú¶¸5²Ý§†¦gü_TpývµÁjÉ’¬MÅ Ná“-³±»ÍÞ”ïV,FgŸ3ìª(EþJˆm6òõõhµvNÃ7÷±°dC¡2°aiQˆ±—¤RC!ÚÂs_í,èpÚâ†!orIP7¢úûŠBvQDŒb•ŽÜÿ÷I¢„Ê}½Wy7ÞX¿¢e`òGÈHá誈‘㮂ƒI‚\IJ}̶rAˆlzÅ`…ŒZž³øä”I]î8ø>K.>N&³å ÊC"ß.[²€¤ORîr¼¡š–`á º‡G:Ù69 ÆW#H(Ï)¨Ñõ±,æ^â¨ÑuJ6¶©>ùbÈE=¢ý ødˆãüæÄ[º4N.bÓBâæF×’ì×Î6Õ²°ß_Bhc-Â1BQ”£L Ïy|õt 2ÄÆ=ÂoKŽE½N~É÷ãý0ˆòa¬©ø…–Ñóè* ‰éƒËSIo8[ˆoL>ˆ_o…4*nZø0ÏJÝ@ÎFi}Â[Ò»è|YzLúìÊ4A[‚¢¢³Å10^/Á§d¨S€,D‹ ³\¢:N1X!£–ç,¾ú Šªê8CÞW®:' HÖY·øgŠ}ðÉ_‚ñrŠå_×O5ððÄ«s±-[yØX’ˆq ¤¬ámá9 2òïì*¼°üû$¬„9Ù‘êÆ;Œv.~‘ýf ¶>N Æôñz›$9@¶ÐY>“>ˆ±}«(¬‘qËÂsœ Aµ~q9%d žuð1o§Áˆ(ˆ¤®Î®¸ºÞðô«á‰WçYÂ0Ê@üî³âáRC!ÚÂsŸôÁjàéoADºï’œbÓ½¸âáZ°ï+îãx‚¬pVwHYHVÃgÖȸeá9*&ŠWkã\YLD [EEA uî› ”4‹{híæ¬iÜLHˆ) KüRÐYr=ˆc„£°FÆ- Ïy|ò[ ZHqº-Rí[ÒÀæ€``eÉñkôpŽDy0~½9†ÒÈ ià1r\¯ü(†èåd´${#‡ôº“~dG/8”'ƒž„Í\ ”èËÊ‚1}`„%+_k¶0ά²†bÔ@+ kdܲðœÇ'¼.lCØ×X3Ç’,«Fß©¬š|mÂoƒ©r<Så¶0}`„% di!î¿còAŒ‰* kdܲðœÇW½uH0Õƒ‡X3¶¤ã2+Íûþ,Dï{Nø"“Œ5bÅ;¤ƒÐ· ’ikt»8Û'†}`…Œ˜ãŸø$gc|Ž‘1ç½$Ñ&,~Ö “×]é=Û¶“í€)(- µ`¶Ayx½M„Ø@tç<Êaè+_Ï5ü9±I6ædµ¶êÀ©$úá6Tsõ¶’ö\»ø®7­a»&Ž„Ä4Ð]NR²àœ¿ D¢æ˜\cW\AXÃ1ÚÂsªŽ»ö è%DI.’A, Ëò¶•dÑ©þLŒÜQlx•Fäno“…ÄÃt)YHa }'Y„}¿Þ* iT”´ða_%_ÜJr¶—MI¼†Q~ÌDˆ(WÞWVêÇá0¾®¹{QZÒ& Æô–t}°Ë¹°¯}œ‹{õ: iTÜ]k†Ç<>Ù‡jd©ì‡:ÍZ0V²EµbµŒíŸxÐí†ñª^Ù¢I—cS¸O£»xu'ÉŠÝt _/öÖ²yb¤tÈ¿5/‡?¢ÿⱊî°Xùvv»ž$Á 7nÚEÿ,ð^öÄÁöÉ=}ÒˆO–lÔ•Ÿiߘ5ºG¸e0ÔáÜ—Ç>#ÿ¤ª¿ÜJˆÄD²ØZÜšQ±’,=öRâèlåù!ž"¼Í|½#¿ G Ò<Ô%@•QÞù}”ÖwA¥{kdÀ4ðŒß;ˆ¬øh‡¶0&‰ºdÝÏØŠŒßxÅ.ù¼…±HÊ–ÔØñoWka’¨c«-°mLùp™ŠÂ¥,<çáöÎ;t÷jšmJÂnªÑ=y_YJ׆ÞvÆx8îhjœ+ºã•…Ä›Ú>”da7HY8OvSµá×[F‘¥,<ç¡ÉÝOÌC“ÛA},KPþ¯Öx°Å®zEŽ^B½ßcï k~=>¡9†,é¤|J =9 Ò»d¼ìð<úÃ>«bdçš`ÍäŽbJ¾3nÌ#¬eðãïR/a$n<›M œï¥Á®í²°C\ï„wv@Œ#~…` Zž“ð÷(z·è4µ“òÚ’ÈÆGÉ3ÈÀƒpúQµ&ÆÃ _D¥Ñ@i•Ó¹–trÛÏÊ1Òo…4*nZø0qÙ\h䳯¹´$ÈV0ª VåÆ'‹±Y-cŒ*æõg©Ñ6u‘aùÀKxÜf Ñï€UèCTŒÂ7-|˜Ç—U}¬¹Žä¿ƒÛ)¹ØÐá`oðH ä>3ÒQqÇJïÔ¸ X%Á”dÁ™gZˆ&eçäƒ8F8 kd”²ðœù(¤Ò¬QÓsŠHÑö4Û˜N¹ÆY:6ÉZWÅA×GþÖÐS몒YH<¸ñ2In¤Ù†3²ò±é­¢°FF) Ïy3ëþ ‚…ÿzÀ”ä"‡½èå"ÉŒ‘P½'†ßT‡Ò8Ù+@ =bJ²°xÎvžË¤ÝIq…4*JZø0l±¡ÕU4i½† %‰ì¢q©ejŽEqô¾Jxÿ>Ѐ«Ï 8ãËñ ‡ %a‹yXN´˜—¢PW¾œáiôs,ŠÞðå»vfÓ¾—d0Ÿ¥ñÁïkë5É e3F•3ž¥ŸíÛdAX>TGM ªxÒBN¬[ù~½e©‘qËÂs˜ˆïÏØ–:Ô!%+ZÔŽà@ìÈï§o¤jÄήptõ“=`­*ÚdÁ˜>bDJ¸£™~y¤âá(¬‘qËÂsúZïÊa$=öý-ÉEÌÇÃA÷ÍÌ’ÄsŒiô© 4ûŸxiIbÛÀ²«=¾Þ2_Ï9ü9ƒ¯Þ ~‘ËÀ´”ì¤ëî:Ód]ltëß ñKû¤­@§ñ†«n,XY›Ãƒup²øzKÿºìè<úÿ'Íã£õ«Èl{/I»ýq>%±Èfëoã—2iÒp«-ËÇ”èŠgCÿ––«•ƒ…uöÏk.~ÿ«|®ý‰q·°…%Ū#Å¡ƒOPÎ$|ñ®IádS¸4`L: £d冋-4²Úa p ©à¨eà9‹O6·ÖxÌ¢~Ÿ%<„ßV…Æ ‡X÷o ´‰ñºß§T'ûMÚBb=·&ÉÂd-[Øñ )»ž)…52JYxÎCE$—š¾´Æ#ßI‚Mÿ_lûr/áâ¹F-qdë,hGV lŽi¡påYJÒt§…žò±èXQH#£”…óø²ä{&ëBöÆ÷YbFŸÁÛpƒÕ„*†\׺¾á±SÃ/殲ä^:]ßjÕXY/¢-ñ‹œ‘± ”ƒ_ei!qw¥’%÷ðD¶…,,쫞>ˆ_o…5¥-<ç¡üÊMe[ô/à9ZJ:k÷=òÖÀƒeY¶ìŒ‘½M»Ôˆó¶–…Äôñz›$Ìæ²…ÈäF%¡|ãHŒ[žóø*-E’ èNÂX²³Ýí²µ°fqóÊ¿!NUðÌëQ°N÷,~N ‹Ÿ=>Î=÷É1ÎyAj8fxNá“ͨ•‹€( "ñ~Jªt{ìFî+ '{ Ün¨9ÙÊÐC­ mÁ˜>^o“¤“´Á:³HÓ1jH…52nYxÎã«o×ÈœFÅÛ®O»”D¾û\v•qCoÁŒ°ÒíÆ>k€_Ýã…hÿõV4*¯Ñä[–q.»ÓwÓNǾOŸ‘‹h‹MMsç[|øâl¶ãl¾8»eo&±ÍŒ zû¤Á-Š4`H8¯°d5Êb»uò¨f„ ëX£ñskæþ§mHä…sk&%7AzgUã}Wc¤cŸÎXÏĶO»‰e!qSµVJ7‘ÒÂýßcL>ˆñ¤VÖp”¶ðœÇç¼ß'º¡u5½* »cÆulDƧô6# 9âÂ/³I›5Èúe …»vËRÒX!öËGÛÜKÓQH#£”…ó“tôĈM9n³¼Ï´÷So™7FðRÇo~óƒÂé­®÷å9 OìK¢GéÀˆ®sÇ^„ÁBÄRC!¦…ç$¾ZG©q0C21¡$lGéžc¯vô™¨rY¹}æË;~ä5^o“¤ë¸DvV§bl#*ŠÔpܲðœ‡ê$cõ‘Mçg%Ù2’FÎÄJÚB¼ý–ƒ¤é»KªÏ¦äk´]Dì²`¼)Ÿs’àQQÆÁ,ûÊ­(¤QqÓ‡yè_îØõëì"{( ò-ï7f¼KÑh$§Ä/žøÅº<¬qu=3d!q×3"%ÿ¥fµ”g¹TÖp”¶ðœÇW/<žˆûí½Áì4tx_G ›; ž +±DÒð‘ &Û\ °˜ãÁû4ʃðë-cHŒ™žs!š€’œ”t)ÙH»h¾‚H޾šò¤"¯jÅ6z*¬lžŒé#,Á¿WYˆWñQ._Eº µ †ÿÉùËç‡ø:­¶DUQù c‹ÂàÌBñ±–_ñÔ.‹§ {ÕUw‘þ¤dcô° ’©Ùñü¸µ†£´…ç<¾ø â )~'é0K è’År2*±Ôeûꆱ¸@ )¸ÕÖæAË%w%rtp“yâ×[ù·FF, Ï|’Ë“¨V,§äâ™#ÏPòͯƒ´bo‰EÑFi´…T7¶PxzIØb/-ll±—>ˆE(¬‘QÊÂs_l:Ū2h¦š˜”Spÿ\"IlëlÚV2Òo£ñ”i5gý6À ;i€d¬,73j—se¡-<>°æþt…5µ <&ñÙoue³´ÿ÷I¢–ý`'œm³ã½…V9Äøá8vÒ`¯&9IA©Yïd{LÝ$'ŽÀ ² <§ ôØ8¦AÅÔ` Å$5 ú0€< “Ää@;cÜI}ìSãdÏiH8”¸X’…›Š6óòøz«|Ýjøs _n¤-äkW¶Ù“$Ê6þ‘#Y)¶þÑgï½›±¿`ÖIãÚ™òa Æô– >’m¡-j£'ĺSEj8nYxÎã>÷8Ù}÷ ÿ$¹"§)hh”6Êá½zbìšµXð–F¤L ™òK°Dì5|gIm:Ø]t›!X#C”…ç$tr…Á¼xâQñ>I.æ¨nl5ÕâôR2Ç£ ©kƒ5šº<Ø‚ñ™¨”Î!-l™>wÏÌ(RÃqËÂsÎFìI Q’¬<[ã¨;A “;„‘À ®ëÒhLI ‰›i!,¹?F™#- G'ëƒ}ݼŽB¥,|˜÷£Xà¼"C—G†)a:cÜP±ˆ"°ª W £ ÍbJc@YH¼šwÍ’`«Ž[̲&¦bÝֈŽҞóà>âÁÅJ0¦€(¡$¾3ïÕåÊ7ÕE*¼ØÚÖÄXŸr}”ù¥Ò‚1}8e¾»Ò¹°¿§}œ‹¹$…52nYxÎãzdÖŒÝÏó[)‰ô¤ý`ÁèéKQÀ©Zë•øÅþ‚HÁN“ Ö¶ ,¯·IÒÔ‘"³é<ʇðë-£HŒ[žóøŠ¢ô_a§È¿ ïý±‘I’<œ ?5|öØü¹°þc¿^a,YáŸjš”Œ—!¦€Õ ðÎ.gSކ\œ.ãÊ ¬‘QËÂc:¥¤’ˆLÞ‹+IV¦‚Äç9yvOÖ‚E÷žøå®@¥p@-}2`LZrP‚c4ÐØ».=4`f ÖȨeà9‹ORÖV%E™ðå\oJØYÖHDdÙpäa#í* ‹#S{†²¶l ñ¢i¦D™Š6ÐØ0=;Óû˜4£ p*šÖ‡ŽMË»†?Ãÿ„˜fÛ±;w,Cÿœ%á%vdƒžÿhh˦NgbLÌ¥q¬¤…³…ÄCÿœ%A‡Ä´ìø½\Âcðõ Qß“P>MpöÜ¿…qè#g’\lÒü/÷MGË (ÐR’…qƒ'Cisµ,$Ö×È$AñVYØÉûŸ>vWeÖÈ(eá9Þ«ßþóÛLZç'TìE)²¨î¹}ûïãßú³{zk Ù²ƒ‰?Ð%8°Ç»µ†ï~`ÞÜ¢¿üz&~Ý#:r^J£#q¿,ÃHíWŽoe``?¯\Ça i YüÉ×ãL}Ÿgýû4KZL³žf™šDZ0>Øx¯;zÊÀÞâþ)ÄÓ,SÃAÚÂcúÇÿ»·ÿýÖ0ÛoúÏëýÛŸýüöïþ{»–oG¸üùoß¾EEäv¢Úì¾O~~ûþÇüý¯øù¾ÅBö~R~û1š=l÷ƒñç¿yûþgq%¦qÈ}ûù¿¾}ÿ?üÛ·ÿøóÛŸë®ãGi‹²ÿxË•` ér R³X6FOטÁ¯hã{ÎhÒ²•FœPžWYHÜÙ¡} ÛsX‘Ê^.VåºWÖȨeá1‹¸y¶h6|!áâ´ãI G¼ú‘91ÍŠ1²•‚®Ç¿[Ÿ†'FÃÛ âä°Fã}UÖõ>+ﺞ±rø;'Ã¥EC¶ ¦“‚KvÀ<¸•…âªMejÄÉUÛËBáE?q 6ÿ3ÊÀÀ’¯\cV ÂRž³ÐÄP¢ jÌ“àD’ðm9Œí~U”ËýâmA¢)¯5mª{`bXÆ|$ØP÷]£ã4ÙÄläYט†?#çd‚ŠûþpÞÐ¥ü½àÿºb îž)^·ëòÙDѺE’p4©µF¼-¢S²-ÓE °`Gng¦°>MK8æ¥ RÃQËÂs1±ÖÓ)6V$ÇÆ¿u<žšž@íºïéx­÷èûˆÿ9ãÚî'’¹%;2¾Y¸-Að`nß~ÃMûX¯~"Á ß|´ò›·¿'{濈íØÁÞ9]†SfþÔÕG;¬DÐÿb¦ÿyÿ¢Q+º!Yu#÷¿è_~_~øÏÞ޾ߺoÿëý‡¿þù¿ðßðÏÿIãÛò-ÚkÞO†Ùzp܇MÞAóõýüÐýþû·ïõÃ?FKkßÿò~Ý·ý÷ßOÿÿWüåW¿ µØìí.ýñ×?üø<ïõÃ÷?üvºøGl÷ãîŠbÒ;¸×3¶lŽo?®qÂ1âEú—ßÿÓ/÷8ôhËõý¿VXÛõ}ý÷?üdµ÷÷Ó÷ÿö¢·«ß¿?‡{mÿïçK¿,?ÆØË±ÿÝßj†÷,þø÷Óè DòÇÖóûÿû!²ß—¾}ÿFœÛ÷3 øís0þ8÷«îŒáq¼¼~ÿÇßÿðcüßû)ðÔøùZú÷ÿûË㊼¶þð7 aôï¿ü–“¹öþÉâOyOì1ø=ˆ>$[ÿþ»?ä?ñ=_Ís°ûïõ¿Ÿäy[DŸ¬~«Õ¥_ÞŽfkÿðËïð§ùîþÿÎîR(endstream endobj 330 0 obj << /Filter /FlateDecode /Length 5562 >> stream xœµ\ësÜÆ‘ÿοÁWÅÒ¥*Ø‹Á<ø.©’ÏñY)ÙI,ºrUbÊqW$¬}Ћ%mæÃýÙ÷ùº{f€é°¤$ŸýAÜÅ`¦§§¿~Ìþt^äâ¼Àÿý¿WÛ³âüúì§3Aßžû®¶ç_\œýþ»ª†oòº¨ÅùÅ»3÷Š8•Í {^š2¯•9¿Øž½É^/м0ªE­KüPÁ¸*{=hºcÛìK¥$¼Yeß°‘ ióº* Ÿàð_PyQTÙ+öd¿‹æ¾‰×9¬Â"6ûÚ¿cj]UÙfµ>ÐÌfVÙ7íÕBâ~¬æS±7•}ý¿ñ°f¥µ²üÇÅŸw¦ˆy§”Ék ì»Xeõââdz¥Öâ| _WÖâ·o² 7£®dMLT¦Î ]eÇv멨P’-;öñв{™ÝÆîø ÊaîËì«öú.bÄ!Þ%’ÿ§‹³¿9A1ç‡yá› "E—ª:/¥žÔ(!™lpÓ~ÞžP¹Õe<á›ìr² FÆžN²–*û¹g†ÎŽ7\D‰»Fe[#YÁŸ¥äc6~~a²æúšñ(»nŽìóÊ3W‹ÌM§…Íî¢Ù¶HT!´X¢  ‰ ú°ÜþŸNÉì*Ótì•.p@¬aÕ¿·BgŸEìæ4ôHzWk™=ÜN“†±º¦3X •]K'³íÎéP-AWœv äuÇæŠ¦U°›÷DZ!ûI ®üpm˜ÆµÝq}h¶øÔÀk%l:üm³ŸÝ\*1›"„îÔš jœŠk%`AGµ*qû•Û9<³‚¿ò[?W]—ü ’£Eš ÿvÓÛ{Z°*À!}ÚÎË|+lMò1AÊÁSg³ï§½wK 53ÖFÆÃ=Ê`xðí:Ø›A#@´ ±Ý€]4›p°jdRP4H ªêüâÕÙÅ¿½‰­‹3e‡øØ?ݺ°.•(Ïm ;,…3òí°`´ÄÏ­D®”às“¡Ñ¨½Áθ}y;£´³3Ú:†§Vß´Ù>"0ë˜O:Ü/ŒÁÈíýÎÏe`Þ6ÖÚØuí{™ûyáýMÅ6dl®êÚ;œ¿£íM÷\çfõ>é ¬u¼ +×ck‰»0%œ9I'¬¬ËD”ïGJgÉpN¢DZŠÅ~̬Ñ0 Âä LJ†Í¿}t¬·óš{¹@ï®k’ôŸoæŒß!uÜK)l.Ñ53;—žª¬ÈÔà&¦ÃGI£­ÓßèÂg^ˆß·Î.”Fw~ØuZÀ Lû{ÿ².a­CÂ~ÔYz §Û¢ªÑ¹º™K4JÀY8¤µI41°xØmýØÙ:º,ˆÌãtqövÑ–Ùƒ«è³Þî*ÝOâJ¢ë•æ¤è¢‰$·Ù‹~¢U4`Ù›=ŒÞ*:ß¶ŸÏ}nzØh¸iâI™ª_;üZuâØiš #ƒß'OÞïcaIÓ> p×/&t,]ׯØ}Ó¯2É­|‡h’#ù…}Ú2ÇÑ~™²Ž tE«L™8%`ÕÒ[¸›õæö2{v >)_ß¶«æØüçëg`¹' ŸÖ¿•; ®JœhÙû1TøÀ!]ÂKF„ýúÓÝzþÑSÀsÛÆ©IEJ—ÈÉDSÝ0‡÷íŠï\—7&ŠM+ƒÒ0‘éÚë'*à¦~f!F‡…ß×q%L¼…ivþk]'èÔ‘'Q. | ðèa!•胖a_«YczÆœÞ*0Т„;Ûóà,Æþ‡¾· ަ̓¾{N¦gÆO;Ï`ù_oðÀ׋ߎÄHÃ4µîsÉc´# ÎðXN ØCŽßf_-ÀHÕ8¡[YïãÇ{d9ÅX÷Ý^éCž½ŸLÈÁúÛÞã×(d‚È‘˧³¯Xqèð[cù0=¿D‹äýq´U8=Ê„_¸éÑbÛì‹å±Ÿˆ;s"ü>Å8 ZH—!0Éþc‡ž½§ Ž6@—òÓßí0Á˜Íþ•QHä%€Ú³OptÌ 8%RðP$Þ£´Á4¢ˆÊïV÷VÖÉÙÛ`/Ë´D&±)2ÌR8Ôëü!I0Ö³#Žèz!&~íŒÔÀy‡çØ¡(2N%ŒqÓ!v‰Ÿ ô$pǽh£Ïáœr)}RŠiL°Û̧|d˜ *“ÛŠ/vËùC0þ|ß\¯=«KRˆ‰Ml$¤U+‘Ðñßmï©ËL‚V->a£º*òJÅ °þÜ9U¡«sTmð¦ðÆ¢  ø`Qétá»?‚‰“>KoHá>ÿ¼kî×__|óê2s@ уJýl€(He½ñ½Ìº»·Ýúx ‡¸ïþguù€ãÃíÚûñ‡?„õTöì‹gÐg°Eíî¸>Ü£ût£Mƒã¾ºÌŠçÃ<Êšè]DçÝmsÕî®ý(¿^âhÜJBÿnÛüQ^ÙËÝ»h¹“¤¹Œ†nöûG3Šì«¯^ÿ)\#ÉÇÍzØ}4òÙW-™ñ0òa&;¬ŒúêžÆ\“!?S¹M©rÑáט’´—ìÿ†}ºbβíä5:*K3Sç@} –Ÿ}í"«¬›J"ö]œØo§Ý|¡r­¼ÏzÔ8ÎmYõÎÞ…yHcÅì➢ŠÎfÑeZO%7›Êh)ØüL–‡æ±†`;­U”óþ«I!h,D^\ ›Û¢òi¢@rmàn·í‘—ÖZ”ÙÖ€ö!~Ž… Ë?€€®k|œìäo3bŽ÷qp@®,Óu„*+̵m⚎ò1‘©–¢,·žJ,BHT>t¨½mSÃá6’ˆŠ·Ï…HÍ. 'EâC ›QVº {«\„T#žš²A•ÔBPcR%ë7ÃPRªT£N­wÃBiÖ~¿äº°õ±•ß±?P(±SIHY»= D“dÆ2ø¥ù ´ë +³mxÃX&ù¼€ÁpiK*Ú°`Ø)ž ODi kK™âõ6 ÿ–åQ1£ä^’ehÇÙŽ!Ñ'kÒFž3j6ó×9±;ÌÍÊ¿®a‡ñƒëkOp¡%äÞÜ2Æ1×Ä›çm^ÍùlÄNoFÚ lážð%wú­bp¹øô@G!ÄTêÜ€ÑU`°)ÐuLYŸCp™–t™›º,ƒ'\£et$x†'òi¼KåÒà Ä’ŸPÚÖ…s“lí9žXErÔ×Ò¼ú­Ýa¢SԮơF1NÊÒ8“ãN_±ì°k¶0³i”ƒKr/‘õH/‡lÇnƒ‰‰¥Ôμ_ úç{b-`O6þµŠcuBÐÚyÐ.ö…¾)©TfÞPQ®“ÓÍs]ãJà¸td£Qê“›­ƒÚ¢ 7P‰.Þïü«zœ3‹Þè_о†ƒ”kñ¡>³ ü°Þ•à'´ÿœ5¾d¢io‚g>1›ŽÜÚÕ‹hMV8Nh ôå‘ÍŒgÇŒÛù;’bì"ªžãÅü¨KŸ·úL‹0è™Ïu©sitoY0S‰Îëa,ÒH2—›ø•ÿ°Ó¨ãÈ=Ÿ ¶BJ:F‘›Òrj/X°¢Ψ¤ï˜¬XƒÄÙ”ò8U–‚çÒæ Â>oïvˆ§°³ 'oiß&¦,Btï»ÀØâìüF@Øx¨JPfš‹ 3ˆüqT’8Œ²q Y Z¼#Å™BYVyiSSÈ z{ _ÝÜðÀ¯‰K„aܸ²Ú+H,þn5m"¯©¥Í5ôŠR¤Îôw5.³¦|ªQ ‰–I§*0aCAþt0Uä`ë mØœç‡uO-¦=9ðƒƒ´àÓ¥.§8I*œ74Oê(lsG˜äOèË¢ŠD.öß±ƒ¯êëÖI¸¦j¼+V&·²fù‹ì{G¸•1áÆùEØàeVøAŒ unkv—ýûÔ<CÜ"äÄt9ç)e¦–‰Ë9°2r쎩ÄJê(íÕ9ÖDMEÁÇ·QÑ25Ï܆©Ç­‚ô=Öí5;#B$ô’M¤ƒÛ/´,[/õØBŠ·>8”ž„µUÙ«ÖÕÂP$‰hÏPEø*ü¹jw@g7 q%½Š•”¸6ysLöò›/½˜‚¨ŒS«N@r”ë*ÈÐ6tµ{•®ä‡_—<úy;Ä­?ΡÉ4úVÒq›Ò8§Ð' £ë¿ÂfaתQP$0ݲP„"ŽŠ0K#k§¶Ç°ø8›Jc ܤçž,ÑC•4Ü—ÕÙñ l·ï\ÏbAeô¸ŸãÈsvC¿š&-ixM.ÔG( ¿¿pï`b*Ž0œ¬+¦mÜKRÄéä9ò•½Ç“%ð`ÓLŠ;ömâ3é°ÑYˆºDó(Ð@1/ä¸; D½(-ìù¾ï3K2ÍiO d8úÞe :ÿrw³îY‡ÎÊQ”¦þ7°‹wS“è¤cƒhG¸áÿ„í=ˆ 6n˜Hµ¹Õ´B"O =[dcõÿÓ³r¤•£oŸP›Í9)ê!W©å‰€ZrW*{å+¹˜#?ÊÆJAÁMøSÃZwFåZóÙìŽAĂ٤ 7Ï…ÈGÖˆ!˜(lnŠêƒ’*nÃÀ”Q+~¯N\ºø”ª{ ÑO­c‚1r/›]*M^©’ÍK‘ÚÇgu„¨œã-õK»ù8„%'KuåÛgé}3ôáŽnLôáJÔÄ}Važ-±ŠôòÒØi æJ6‚ÀÊ)oL }_6òMÆTòd:ÕH»Ž}M2»wú]Œ÷í’rÌL6}ËI9[PÚÇš9jÇŽºö㘢¿¯°åE®mÿ‡¢žEòdG=/m±‡ô0?÷`·^PÇ…•Á{ÆMTÓúPx¾+³ÿXÏWðè2»Úï †‹ß¸jØåÂ×ü]F=µ0£[߆φÍÏ.#"ÞŒé±Ù£^‡°åÄÔrÝú˜wëõê2ÅðÃÓ1n?PRb¾f„Ñ#ÖO¢)@n¶{x4õMlˆWÝä3Λý~x${žì›ø–òkʸ^e†HGg7QIÞðȓ˩´‹wvï©Ü$„Á‹)}½&Æê²¶¹6qåø’ HØ%P(ÒµöØÞ·¾_ûÛJ‡V\-Ãì.Ëâø¡“üæì®YUœKñ{S¿BG–69¸Žs%d®ªrÞ§Ž¬Ë!lO}*‘:Üdô‘A’ãøHOU!¨ÈÿýZþ´h0Mñ¼ŸèOE©'FêÅÃßÇœM2„>G3‚ùƒt½g¾6L²î}{ËÏä탙›l£zÍjŨe(x±Ùî‡>•Ô¼=GܵœÎgXIë\©ðaQÑý¸ÊW¸0€(lQûn†rú>*M…eðÉÆ™Ë¡(vw»ÂÈ\/…ì3 On›ÄRÐué.ÜM8q·ÙqÂÛÃh?&™÷·c1ž¸Hî3H²và ;q—”¾G(ñ^ÃÚ0FRºª¸‹æ…C23Óm›_¶Pz„-¤ ) ªÂ07Y£¥a¹Ãh_ËÝd‹‘‚¯,Bjw}Ûå“MWKfoÔa\EðQ&hº‘,‡€¬ŽVšL"î-¤è¹ë樫>íª`ç™ë¤@+¹6wïAŠ‚Î;y±œˆf¢røå蕬² ¬í˜r“n£F¯‹8jÜHké7qOõS4‡¿ ö»±QÂõT ÒSUÙÓjÊ™°à„ßLYÒ k´o&/Pw~FÀôMLÛ/í¦õ„»†UPJ¹`â¯jNìŰ%mÏY.ÑO/Æ6}–è½>¢G®|rò‘²:¹Ñ†:97ŸÌUq¦zÏL'C&]òl&È@ØøAåòÇâeYä0±ô½Þ¤ÍÞ €ÿÐîÞ&ÍÈWÞS\ò7žÏ ˜êc~¹{÷`ýª¡;+ô+§a‚-χL(“Hf|>i'k•[Q?­£Øä:*ƒqƒ²óÃËt¯¿TOü9¼1C)ðéægQrR§Õdrz¸ô®ÕÇÊ3­Õ $d`Ä}{½[ñ”Ÿnw¯_~7w3¯¨èj·¯[-|Û®ÍKSF :åÞNa±¡ ´O·r¢ÄJQ§»9Ý(»)•ÖãÝÜÜÜèð^ÀËs›Ò CE_E¤r½UåçGWðëŠîÛñîHf¦§›’'«œe^Z¡éÂÅÈü¤` gPõ}Ú#Qó}AØm ALR äú%C¤V|L/x3ùi AYoÆ^;€C’!#ùtß©/Po&*Yøs8-ÄT?˜ÌÆ?-"TÌ7]­ªšÝÂ|¼å¢F•*5/rFÖË ¹é ³¼©b“Ô$\DÞ°$ºáx•‰ ®îpÔÜᘩÒQϬSÝþK€y)e ]·0ýÒ‰V§ëxîâ 5ñÝ. wËte¤i8àµMsäuèCpiá"­ÐÐ(+’ú Í[ÚQ2c¾]«·ÕÏÐÒ»ØÁh×H†ItŒ«UÒƈQ?õ’GC‡ñõ<¿Å¾97¹â>*Búñ¬Àá£&í~OG(LÎLšPê€ ¶íæ¤îYˆîMdù6Ò²aºÈRƒòö®Â¥´×5³×Z»«’w¨.¾Çžñ"áM·ù‰j>TTtá©qeøÊÞ­Ü·ìhšMË$nªaÞäõ ¿Î‡ÜôåTû)£üÓe%„{°Oüµ)]åE}J3-¸<)4›oþ¾¢¥±'Al”¨æ‰mf|Ó<2¨Á»Ãú§É{z¢¿Í‡w7ŽÍá8 n¯.3 qRtÓQø‰†> stream xœµ[ÝÜÈqÏc²ï÷äC00ÇÙ᱿»/V`Ÿlèr¶nƒÐ5;»¢5_7}ì‹ÿöTUw“ÝœžÕJJ q9ÍbuUuÕ¯>øË¬©Ù¬Ááÿ忢™Ý]ürÁèî,ü·Ü̾¿ºøö…Â;µk›]Ý^øGØÌ²™Q¦vBÍ®6ãó«¿ÂbëÒÅVÔœq\Ý\¼¬þ8oêFIË«¶Éõ ] ÃW­æ üÉFÙjÓ-ýŸ–Ym«Å*ýkOO)'­­º ÿ ‘BÔáÕf7_p`Ú*]z©§»î¶ÉOwáiVíný¥“¬ê÷É’öØíÇŒÆfï_¤´ªv‡vOr|o~Ð@ÞÃ-òåªc| ¯rÊ9ÙCÊY?ÿËÕ¿_üñêâ϶Övö´øÃc¶©­œÁ°:Û\H+]Íôpg}ñóCºvÀשª—u£ùÌð¦6¡¾_Vè¢ ãºZ·´&Lu?_XÝH™W¸Z°êÃñÐFmZ\{6ªcqÕ¨UB»Ûä ©PæOÇ×sFPƒÎˆÖa”…ª%Y r` –‰Tá΃r°É¡µ`ÌËaè¶°ÇxëíîUû7\à_o÷7-jP5Òâ>ûnóvw[ÆÀ>y~qõ›—Uÿv³i(<æˆÔ»åîÝHª½¹aó…n²U»^׫_Þ‚a!%|üñ}µ^Ñz‰ë—»Õíºë5­=…›ÃnÏhý·/ßqƒ¢1µ‰Ð1­Vûé¢}›ìc41ñLÞN#±œ‡amê—¼%v›€)Ì!ãra _ToÚ»”o²2S™6C0n}Q©În3h584ÏDæÐî„§¿Kr„èh™»Çç'ô¸rL.p½"­k×àIÛ7¤6«xºõ6¥“^w“C˜÷gä%ÄÁy†ã¼:±OŸ ÎþlÀŒ[ª¯†|(?,s¥q hT9J»àîO_DÈ:ƬãsFjQÑ1wbsvÛ§bZCÄ…ð-¬0;C{Q„á„0ÌvYž¥Ìì=AÅ4š<$D^çÏR‘Üæf˜ú¥ \¼ëŽÞ8&Ba63UŸßõ:þò°*5ºÁuéw 0 ŒH‚±œtz•ÖèáÐÿjÅP„è‹!ÙàU‡YZãOoÞíüûÁYOäæMÀï˳bhã[}ÉùÌn½9¸ºß§6FDÀðÚÒ¶/oÜ]jqÑÊT´±»Cо‡½{Œd7îËx- žÓd¥&97qDd† 8£øè¨J0ÁÂDÉ©¦òTA!mß§™G£›ÈUpDxme~‰meP÷ØzC—hèá‰F£ŸÇ÷™.\æÚ9D6Á¾7ëTuý±ëÁ$ä^Ï/LÖj’£½‡wçãdð)ö¯"“aÉuÖdddÍ%PÔ±D%éÃäõåH§zÒFeˆÊÖŸx†[µ`¯Êøå° DhšŒƒ¯9s"³M`E'KM­¸v1óùW¿"#Æk¡‹ ¨hþRÚ¤¢‚ÙYþ¾ÿ á lJX6%ó²BS‡_Á>Þwé‰$ð áèA0ŸÀ£q˜v‰ê‡Ì>ú¾+…‘›ÄO‘ýŽ)óíÙ)\œÅ¹—òÁJ(ðÔ%ƒd¢©MÔÍmIVº†,Ð>‡áC™ Ò˜Ô…q”œ= —nr?ìs1ƒÕˆ´HäjèifkјFЫÿ>¼:Ϧk äl‘®ü»Ò>05˜ŒûÈL·1t†š³Ž]ñ²HŒàX™JW>)x©d›QÀEr®Ö9â¢_9Ó\ùâå+ž€L¾ñ¤Rû‡bµ¢ ß—€ MØØTWi£€€Ç‚= Ò)²y1·DDRfù!Öl…†ÚÝu9 ¥,b±3ƒhë* ' ) Á(†–û±¾ë;jvøŒŽ…„ŒÜ™¯Xý˜À{±¦õ§y©¸$(y\÷ ŸBQ1„)£<ê”ëOe—I,ò”çà¾L Lj §2º¼ñý›ÏeUSé?/¹ß99+ØEÑ,w·ä¢1¡Uz‚Bˆdê;žÚ ÒÞRi¥ùùn½x„A8é¿‹ñXfÕfk0Z»bT€¨!¨¼ø·ùBqIIZ·¹¹íŽÿÁ%DÅé\ýv1®ñÿë¸vµ½YA’xÖ2Zí;ºŸVèéi˪¿ï÷«ø§¨þeüàçÝaYjÀ*Ί•ÀÖm$,Fœ~¨ïã×â¥ôrwXõãKvøxù›ñòºªÿ´n·»ÃæŸ~ú¹Ž,ûÈû$>ºøõÛm÷á××s°„pŠòʸÖâ·ñê_9ì(VÿéÓpÔ຋vݡӱ\ †LÙä§” GÚšœ"lMVP´È‹›ü¬w' = ž0tê$ˆ'7¼»C;dâ¾x‹ö§Ö(ùOjd8‡Ì>ŠÔÐ1ÐÀyäÒñKä4æ 7{ä d¡[“øbÜàÝz'1t wÐÙšE¤ƒM› \åNŠv$d£±q´XwoÊéþº›VÏB~‘Ò‚Ms»©R¸Ì8Àacg இþw`ØfX¼иaÇí­€;—lñ”’Az!\„}F¾âM„ä+¼ȇc27{!„r1FRÔö±™áÎCmŸ\LÁÕÄŒÀ΄v5š¢ÇïŠðH$F ª-d* $¦›ƒ¬I„á˜:Àëj£9c‰1iÄðç !OÀ2ªòy‚ ¶Ÿ'³X)Æt¢1,«Ç䥜3}z’L°ƒ¬eqŒ”±¦”z¥öXN Àƒš!I*KƒÌÕP‹EhGo˜ylµÑOù|ù&°©|U‡ÄjOK Ë‚Nb?q†9ŒíDdR×k#qéòN”ˆ%(eå¤ÅëÃ&‹‘yLØâ ÔdPâØ3Ç›a!pû®k‹M40 õ’e§j³\·û=Y¯€ øIGŽï‘Àï$à™ÚŽNøl5ÿ$„ ßm{•î·€‘=)ÿc«.‡ò¿n$—Åò?Ã{déT¢ëâF„¢°”æê¹NbTî° 9fódH%­(U3;‚ë(jÿ=á /òFóÒŽIÔ˜V£G»éó´¥ý ”µ`t1ׄɇšÞƒ—øòÄ…Á¹WBÎ:ÝÐÜI%¿®sð#`Ø ½—±œû­T´ÃñŒå‘O ïKëÞþþqOÑ]) `7ëEB®Œ¦Ýí¦–2ºÂ»Û˜ Çø÷Í8m‘;Mà,ü˜L”° dõÉíKØåi¾\ÕÁÏåªùC›¾}}zUý|®Á²;R±+^ÖT/dzv¹}§@)ÿc{ ÷¼–¶ËñýJÛÛi IJКɌå÷Wƒ]TÇÝ6¬áóQ÷E¹³Ö4b#M¤ ©£4í|3/¾G¾•/’cý9Etr‹6®È*à"İôSš…²9iyj%#8qp ¿ ‘a:2í¥ß¢ÌPÅ”èCZÓ¦áe9ÏæÇQò˜‘äáŽj7ßrE"­(M Ím«@7l:î1Ó8'áÌ©ÓÁñ6ÃòðšµÜ#²“’¾NLFAR#)M˜†žê@wš´üê®MÕ Á.®¦öDƒ† 0ÅãŸ-,Œ–5,+yT(ûÁ£îžƒv>ª¨ut¨r‚8Xćs±Ýæd(€û¡€ã!ËÊúõÄvz¿ôÁñ¡"Š « ŽÝ€aš²´E [AO´|¯æõ* ;iA–ÀÍ9ÃýñìN ìóÑ¡i ºû@Õ1ßXÆkpÏcYJ¤yƒ_MÃg8¹òC<åRðb\w…ëhxƒi¼/¤mT:‡= 0Zää,[óß‘3;Ál“éŽ"²V˜6&ÆåÕ‡}1›1)R[ öê(“Œ L<`½Û:êYþ´zR…”uYeÐWã Ä#Gà›a;α…À'M AîË"þË&Ìè6è6Æqé[ ïýè‘ýp MÖFq·SC<›š®Ó O\—…*d ®‰‹þÓˆy˜/Ã9œ2©7²|1¢åÊ¢u)½—§Ó‰´ïÆž œt¹·K-ÿ" Ì1Œø¼1χ~ôƒ×}ž;{¦Ï‹¥rÒq9송„a6ŠŒH˜êé( jÑIÒ¹–ëy#gÆ’tóvk^Ó þ**Vås)·á!CÉçë>2S˜Å&DÌÒ±I Ÿ`3\çéûÅq˜D¸?W†¸Œ“®ìd<„èK[²*CÕîò G´¥ÔûKÌú:VÚ9¶)‡§?”­ ú¤ÇM%"USüµ®˜ K TÝÁäùƒððÒ˹Qª &xË3Âó!|@ÏY¦ÅXÇÐ MƒÍ´ ï˱µ# ®nÂØ‰2¼m<¥ƒ·;7±Fß\£®d•…#¹LKa§³ßñCžØŠê¶IFœÍŽ{ ³ ú¯ò²ÍØÛ’U3>#òÒ¥ r¶è8iEÆo4wູ`¼†è½\„i·î|òwB‚¹Zmÿ^øÅ 8kèíœúç¨(]=}6_0Íða'XÎÓÙNÂOÿÒG[Œ3ÈC‰i¿“×õ³kx:¿ZÅ~˜­ck KÚìJK^›8eô²"s pß¶ƒ?ÙW˜Ïál:áÄÄ;Ÿõ¡O®æ£: ? .¿ó•4 ©é7¯å€‰Oa_ÔWL< +&þoˆx×àIiªWŸ¶8ᾢщ¶ïÏÑî´ZCÔ´ÄÁ{ €€Ûu¼-Ìôë3Ñ´¡Ï|Âû2l³†ôè˜   Kú°=‡UÖ§ÏF1„p{ya™µ%6>2«žj<@D»Ï©ÇûÍI–›7Þ_×gZviLjg2Œçž™Šùìá$ ÑSnmÓñóŒJqÊ(ŸŒ<6¾tEÚ)ÌšS(( ?3>+„twV]ù›KÕF,Û1œóã÷Ž3Ëj£†ACê\OçyÊc L`u)>ZIêŸ/þÌÇöZendstream endobj 332 0 obj << /Type /XRef /Length 260 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 333 /ID [<6380a15407881860cb1d936d0b859da4>] >> stream xœcb&F~0ù‰ $À8JŽ’XÈÿ bVË€löo ÔòXw4µŒ’øR‹®ö2`:¹l8šNFIì)ÄzÙr [L”B¤@¤ì[)tD2²ƒHæH©À"9öƒHiSÉä"ÙCA$—ˆdí’Œ×Á²³@¤€"ˆÔÜ"y‚Õÿ› &Ù&‚Ío³W€Õ€Í—: "…ƒÀ&€Ô0n—u"a`·]‘œGÁ¦õ2Î»êØ´µ`ÛÀä\°~ƒÓÿk°ÈJ°9`×òmÛ»H2o¼¶KD*g€e@öZ‚ÝÌѶeØÞJ°9ÿ@²l`õb,`מaT0' endstream endobj startxref 485404 %%EOF surveillance/inst/doc/surveillance.R0000644000176200001440000001602614712411552017316 0ustar liggesusers### R code from vignette source 'surveillance.Rnw' ################################################### ### code chunk number 1: setup ################################################### library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################################### #Do we need to compute or can we just fetch results ###################################################################### CACHEFILE <- "surveillance-cache.RData" compute <- !file.exists(CACHEFILE) message("Doing computations: ", compute) if(!compute) load(CACHEFILE) ################################################### ### code chunk number 2: surveillance.Rnw:155-157 ################################################### getOption("SweaveHooks")[["fig"]]() data(k1) plot(k1, main = "Cryptosporidiosis in BW 2001-2005") ################################################### ### code chunk number 3: surveillance.Rnw:217-221 ################################################### set.seed(1234) sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) ################################################### ### code chunk number 4: surveillance.Rnw:223-224 ################################################### getOption("SweaveHooks")[["fig"]]() plot(sts) ################################################### ### code chunk number 5: surveillance.Rnw:317-320 ################################################### getOption("SweaveHooks")[["fig"]]() k1.b660 <- algo.bayes(k1, control = list(range = 27:192, b = 0, w = 6, alpha = 0.01)) plot(k1.b660, disease = "k1") ################################################### ### code chunk number 6: CDC (eval = FALSE) ################################################### ## cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) ## sts.cdc <- algo.cdc(sts, control = cntrl) ## sts.farrington <- algo.farrington(sts, control = cntrl) ################################################### ### code chunk number 7: surveillance.Rnw:348-351 ################################################### if (compute) { cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) sts.cdc <- algo.cdc(sts, control = cntrl) sts.farrington <- algo.farrington(sts, control = cntrl) } ################################################### ### code chunk number 8: surveillance.Rnw:354-357 ################################################### getOption("SweaveHooks")[["fig"]]() par(mfcol=c(1,2)) plot(sts.cdc, legend.opts=NULL) plot(sts.farrington, legend.opts=NULL) ################################################### ### code chunk number 9: surveillance.Rnw:375-376 ################################################### print(algo.quality(k1.b660)) ################################################### ### code chunk number 10: CONTROL ################################################### control <- list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), list(funcName = "cdc", alpha=0.05), list(funcName = "farrington", alpha=0.05) ) control <- lapply(control, function(ctrl) { ctrl$range <- 300:400; return(ctrl) }) ################################################### ### code chunk number 11: surveillance.Rnw:416-417 (eval = FALSE) ################################################### ## algo.compare(algo.call(sts, control = control)) ################################################### ### code chunk number 12: surveillance.Rnw:419-423 ################################################### if (compute) { acall <- algo.call(sts, control = control) } print(algo.compare(acall), digits = 3) ################################################### ### code chunk number 13: surveillance.Rnw:432-437 ################################################### #Create 10 series ten <- lapply(1:10,function(x) { sim.pointSource(p = 0.975, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)}) ################################################### ### code chunk number 14: TENSURV (eval = FALSE) ################################################### ## #Do surveillance on all 10, get results as list ## ten.surv <- lapply(ten,function(ts) { ## algo.compare(algo.call(ts,control=control)) ## }) ################################################### ### code chunk number 15: surveillance.Rnw:445-448 ################################################### if (compute) { #Do surveillance on all 10, get results as list ten.surv <- lapply(ten,function(ts) { algo.compare(algo.call(ts,control=control)) }) } ################################################### ### code chunk number 16: surveillance.Rnw:450-452 (eval = FALSE) ################################################### ## #Average results ## algo.summary(ten.surv) ################################################### ### code chunk number 17: surveillance.Rnw:454-455 ################################################### print(algo.summary(ten.surv), digits = 3) ################################################### ### code chunk number 18: surveillance.Rnw:467-495 ################################################### #Update range in each - cyclic continuation range = (2*4*52) + 1:length(k1$observed) control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Auxiliary function to enlarge data enlargeData <- function(disProgObj, range = 1:156, times = 1){ disProgObj$observed <- c(rep(disProgObj$observed[range], times), disProgObj$observed) disProgObj$state <- c(rep(disProgObj$state[range], times), disProgObj$state) return(disProgObj) } #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { data(list=name) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one one.survstat.surv <- function(outbrk) { algo.compare(algo.call(outbrk,control=control)) } ################################################### ### code chunk number 19: surveillance.Rnw:497-498 (eval = FALSE) ################################################### ## algo.summary(lapply(outbrks,one.survstat.surv)) ################################################### ### code chunk number 20: surveillance.Rnw:500-504 ################################################### if (compute) { res.survstat <- algo.summary(lapply(outbrks,one.survstat.surv)) } print(res.survstat, digits=3) ################################################### ### code chunk number 21: surveillance.Rnw:514-520 ################################################### if (compute) { # save computed results save(list=c("sts.cdc","sts.farrington","acall","res.survstat", "ten.surv"), file=CACHEFILE) tools::resaveRdaFiles(CACHEFILE) } surveillance/inst/doc/twinSIR.pdf0000644000176200001440000045323614712411613016537 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5132 /Filter /FlateDecode /N 85 /First 724 >> stream xœå\Y“Û6¶~¿¿‚oãTÊ$öe*×Um;Þ»ít'±“™<ÈåV¢–I;óëç;Hq‘dvGOÝ›ŽL‚ ƒƒï¬)2–ÉÌØLe\I“éŒke2“qkUf3î$Ï\ƽá™ÏŽg™ÖgœgB[”E&…—™ÔG•)œ ¡L9gѪ@ÛL+‡£Ë´w¸ÏgF3“ –ç©ñÌ ¡2!2k4Ž2³^Ú —œÐ¨×™Óh\˜Ì9ª·™çĸÌ+ë2á3ODK9èåœi²ÐóèJJPÍ=†Œár)(ƉÆÀ% „ƒ<ôȵ‡Z.¼FÆ*•ò™BËRƒ -K«0P¶ó#ƸŠŠI](ME#`'WÊÅhY‹›Ñ²r/ÚäÊŸi´¬¥Õ™FË`¢ËpâNвA·`NÚÑhÙ(t Ú¸1 Š¸m¬c‰Ý£¿ÀpÙ e+À0„[Ålf8L2Z¶-EÓíæ'\2hÙqš™aвS£egÐXÏC•E˘@\¡IÅ_†1rLªÐ²× CãÞ‚ï1g3Ë8@ASÇ8=Ž9fw:L*“à€Ęˆ`Lv'€GjóÀ¦LpÔe‘ààôÿ|óMVœ–›Ñd´eàËγâåõf>[”k@;”_Þ¡ báû?ß—Yñ÷Ï—ï²{÷B'×›Ëå*ûfZN§ŒiÉàÊŒÀ3fQ;™ñ±lJÆPÅÔ$Þg}:⢧ºqjcï7.µEmªtK÷ŒÓµq£]jSnŸ«î«ž›šTú¹‡­ÊÑf¶\<mÊìÎÿƒ½ŠC&gÃÄ׌ÿ±¿}•îÃXï¼}_¾É>Ì6—Ù%x²Z•ST?/ÿü°\MÖ/e¤Î­I×P¶:ÑFtM*ZÒ= zÿê:Ÿîoyjßé™ÐO|ç[Þ„g+zè¼Á+QÍÛÒØ»‡¥ò´Q?nŒÓ6úª®U47q0Mc’ z},½ÅM=žCtM ÓØ?áI4xWÓhct‰_¾ASE?K}5æÏªíõ€Áé–ßa~dcÜ"ÝÓœ·»½mQmÐç<4Æn·}5ykJ`út9ùœ_­–“ëq Ö+ùlʯ•÷*Åú`y½ØQ<ŸA©üNiaþå"e¼êcIEMíE,ª…c<ÈXùK¥È£n¯Ôøb±ÜP/0ká®ÓѤ£MÇÔ1O]ŠÔìt<¦¾…¬z{°\lÊç6^ƒÙ™ÌF÷—Ñ=­½Î1§xî<=ñj´Â•Ù9/×ËëÕ´¡–Ä‘ê€áñE¹ACÅ«‡0²òã-Ü»×d›£ mÌVëM–LÞ‹Î}ËÄÕV0=ø°\oê (Þüô3LnÎÈŸË5ìøâz>'²Ï¨sç+ËÆìhKxÔÀpÈÐd Ûé‰Í«Èu™®"ÏUdoŠäªHŠ£U|Òì ³c–ÔÑfÉÞb–ê¡êH£Ž$êØ–ŽÐ~ÝúHt'±¹%Ù&N†‰“ab7&ÒfâXL‹q;aŽ5‹AÜ­ËðtñàìÅÙÓ“¯_œž/¯F .îÞ_Î'Yñíb¼œÌïÈ ÍQzp9ZQ€z†°+G‰‹­ˆÅ{€F2*›Ð3õÏ+2b·¯g“Íeä¢?ôG‘€ä22ÈÈÖ¯q—ç £éß0Qá ž´ úŒ­×Ä 0=\¹Ø”W?R€Ü©†4ödüÙë—?>ZwÄîž—ï®çÓ­˜»d±·b 'æI mÅAé01W†é—fœµæSPL?'ÛBË"ä|ø±ªŒ:R[Ct¿­úƒÏ‡¹¢XÒ,×sèp µ§C4<£,‹µQf=Eèô •Ye+#å¡[b'†óšàíÐévRÕQ2S_C£²ˆ¤sR=]—ðû$©°£ºFÝÓ‘~Jý_T&mÐ »‹¸ÓS-º­ZtKµœ@¹<€zù¶xT<JæYñ<(š³âeñ*¨›ï‹Š‹×ÅÏP<£Z“¼-Þ®FãßÊÍŠÚ­õÑxyu5 Z)ôW”‹Éh}I*ŠþŸM5û:k¾CcýZë¬üÔ]Š‹Üƒy9ÝijØ5´´Òj¿¿_/7åäí<ÜX⽡OIû­Ë«Y¤{]þÖ³ÅzN·õâuMGÒÅ¿Š•«eKQgw)Ê»ŠÅZø¿>L@GUV>G­*÷k°ÁÚ’Õ–ß~ûí뇾:”Úâd±žm/l•¦ò}¥™½ZiR¤5Lij[¹#tÖüuQïŒÿ«ÒOÛÀÒIcíûSˆ”ÆÎPW²ŒwMɊņdE3Å `ž0QWamÓ¯ -—œ³žµE½6ôÓïhϤEÂÐÝè)Þ¤Á*”>ûñõ²ð§ËÅr§Ý=&©ú`r]0‰Á` >(ý«“—[ãÇ:¥a­ï¿«_ÃZÔWWØ'Ú9ö¯Ù_þª!–]fåMñ•õx6ÛÌæ“§¤ž×¿‘y­*y×ÂL–s€kkh~¿̓+LÖ%š–w”Ù.W}3/×ë–l]ÞÏ¯× Ó‘ç¶c1)WëñrU2ÂWÂ/»Ö#ÖjiËÛ¢ïXWô÷ á`áן~%úÂÿý·'÷ÏN*'ö7Ô’ô…?eàšÂÏ ¿d6“Úõ´yõGõͲUpÃZ­UàÉ)w:ÀoƒÅqžž³£ Œ6-ÍLqï´4PÛ!6Ûsê¿*W´ hu­Ñõú9xº ~ƒ”"`€®™~¡U¼ž·GÖ¶áí…bO(%?ï4ãw½ rëÄMÛZP¾‡Äè1ÆŒˆQ×Xm,ƒ“¡šÒÔ¸šyÍ{Q5Øb·BóÏççgß½$)m.c_»É” j’¼än¾ˆ²Ë}$/XÀ”àCz`w ‰–|CÆ­´Ôª#eVú±#Åzm·K©]OšVbJ»Ý–â­|H¥3Åw‰QˆHC$Mp¡³~î¤ yfÚ¹“§7¬Ìüý% ^nF5º§ÁÌGWo'£bq]ixÂ4ÔôDw”3Æj-¤–zîà¹J3Ôxþ®†¢šïsÐú Ï—xú]«C· Ǻ‹cÝ÷íE7!B«%qÜZ~èàXøýÙGGû$ !ÇyB:gâ&àU¦Ò½ˆ C%yý4!¾[é¢ÈÐöÁ¥ÚàRMpE·æ4èMÂÔ49Wч6€Ô>©XËYØTѳïÕ¼lÓh't(€ÌàlÚ“×??{òäp6ÍtÁ£X<½Àp§ÜiÎë\˜mh¤*õ±+óÕÐYv¿0ô¯›ŠÙ—pÒº«•)=u³„Ìx¶__MçåGòl£O[{´û\TòIAep>?JP ÀdÖôÒ¹”Ï£X½E=Ã5 ÷Ãb(™û´ev}<>øìäñiÕñ.]V§ž·k8¢Çnhé‡:—ZN$ŒÀ2¨Î =ÙüµŸˆúЉ¾eþGmÜ oÍ+Âíj4^Á !Ñ.´msfÛ(çԌ֕6è ͘]Hë­ìðãË'/_ž>‘të·7%¢•åǺ Û±‚ YÖ5˜»PÖ0˜ •»‡èC{{+`볞ŽãŸÎ¿·—C(~±á×…ªj!Uõ€ZïÏÞÅB€cUJnëêÅu¡®Z_ÃlÓ¹Élý~>ús{aS~l'ç¬ö»M8K•\Ò.Ïž{¹¹Oƒl °Å^ ÚöÅÉO¯_?N}^üyõv9_êºoÉe/œA{Õž@µÝhìÿÛoÎR~úqcþóâ£ÃÚèMtòhµZ~ˆÊöíhEY&ÿŠ’P)¡•õl»£j×'ƒ$’ö”õè)`ß‹Á?ž¡zX}jMb¹š”«´3$õ x,¤ÝJi»WØ®¤en)#®|ް·Ú¯tN[û_àª&oF¹<$P”͵¤ŸKrè5f_Ì¿UÄ…/½í/6bØFîØ(iãWÚY”6êØ{Òε#ì=2·Ù{´UOÏ~xôøMeL/æ£Åf§¨—탑]—~ø>˜¾«Üý®z:B×âž–°Âx°ß]«Õ¬µVÍö®T³Þ:5k­Rÿ§ÕÎËßNõGù”fT­ÛQ5-l3’u.r’‘»7¶¼¯ó‘;v°˜=Á·•ÞË@CGö’7ŸžÁzp°Ù~ôÓÏOŸœ¥\þ~a½áªš<ƪZw%j× ÖþU¥îŠÖÍWÒúTô[bïý<«‚m*þêêÙ‹â¬^7{CkfW0üëÑbÒ\={Û çzû3ޏnö©%³}Ke{—Æn±0Pmè¥ÞÊXµõy+¾‡¥i¨ôÊi q3—&mdoº4ðís/£ãÓ8•“ÕšåÐWBsžË\!²äÑ›$j¡lM“µ8¸cÐÄ«BŸ:BŠœÖ;àåƸC,qNo«)orÏáúyraÓ1vr| ¢,Ï¥ bln5ÜërkéuB–­9{;|d+unx(e&È\kL¢¹÷&“ÚäJô‘M“ ÒRÒÑÑ»–¹¢ °mÌš ö¹6 ¢À·°Oû&D?þ"+~8Zß0¦lC¼tçr³y¿þ{Q<8?9ËÏï¾_-é5¥|¹¢¼Åø7xôÿ»™]Áãy÷Uðô÷’ïà'sÊ9ɱCOqÐgVܪœÙƒb0Q©hRÎåNó/K“W9…ÄM| rzšj×íñÙýgO^}ý¤œÿQnfãQ3ÇREØ['­ŸŸÖ¬ç¤ Ý||(rÒôælŒcÒä]¿ýq’bçy·Tíöun0öÚØ\õǶçaƒsuÚ Û˜qVG[5…´!ºÚä\µÓ^êE”€hD¡X»\àfÁ¹zâŽ~ÔvokÛiÚF&11Óp’¶ÛíÃ&!ÈrÙÛx¿Çýánu…Òñ}z«†}8ôwÀÓÚßñC£•OžÜ´íãF;IûÙÝM3ê›$ºÞ¹5Z´wEkq7Î1Í`oRdcqø޼ȸeHô\ÒÞ*Ú– œ;8|rñèìâÕ×§÷OéÍËASbeJºèžK¸ý…PãZY€X¬Ùÿ´Áqvˆß´¼ïÃÓn÷V’:\8ÄeÒ‰Ëzß~¸¿œ¶d ¡é9Ô~"ü!áZ¿ÈmŽA ¥s'?³÷³‡$)dpUk’(•êìhêºÓ~KRxÕÀiVÖ÷}i›»ðy ?~ƒÓ ;|/"çÇåÒp‚#:#'ÆëœÑ—*¸Êéõ;Îlîú24 83t¹¢IúÈ·›ÐtN/M«43çôÆ´æu6¦¦}z¥ª O¬T×éÃ)¶:W™¨îQ¨êÜe"­sMF½:ôe—tn2Y=K_z©î0e¼¿¿îV+*¼êë¶Èå‚aæék*:§·»Ž¦Å”Nï J°}<§µ<…ø‘É/édΡê„CÈŒYqÛ„ÎN5êºKÎiéÆl‰B´%€¥58êš,g!ÔBÂ’~¼Ñ¤+0 a¢1ˆÙ“n ZÍgôc ͺ˜ švîs ñ3ÆÀ„ ÌXÞjÎH[üº^ç08U3ÎoÆw“kÍ€\ú„JÍw8ŠŒNý—È®˜ oÑÑ÷Ë TŽÎ’ŸUEx ݼ\oF›ÙߺÐ9Lšº‘i£ ÷‚Rì>×ô8˜j@E;Øç¶,0Š€¼ã*W·à¹ñ–ë“pLi• HáîØTH þ~=šàú2¨çÜÀ*H5}¢HqRÆ<¬/Ð[IƒsƒüЇ³é´\• Úîñ°c5nĤÆckõ½·jaótöߨí›lnÑËÚ{ôh§e{[^æ\ÖÛ¹—…fÛ;³îV@˜>–µvfí­„Gü»˜<‹—„X²ð …P齊 ŠÅ5}?(¥³¸Ð{ÄÉi¾NŸµß§”ÄWü)f+¦ÓŒb:§ó}Ö©ñÊý‘hbs;{ß1ÍrôѯÆf:Ê©W;éâžÅ¸»îHdÑþÐc²ž6lߨÝè¿`RBendstream endobj 87 0 obj << /Subtype /XML /Type /Metadata /Length 1679 >> stream GPL Ghostscript 9.55.0 individual-level surveillance data, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, branching process with immigration 2024-11-05T13:46:02+01:00 2024-11-05T13:46:02+01:00 LaTeX with hyperref twinSIR: Individual-level epidemic modeling for a fixed population with known distancesSebastian Meyer, Leonhard Held, Michael Höhle endstream endobj 88 0 obj << /Type /ObjStm /Length 3697 /Filter /FlateDecode /N 84 /First 773 >> stream xœÝ[[sÛ6~ß_Çvvw Óí¬'iS;É(÷tò È´­,¹6ýõûð"Фl*VÖ;L‚ààœï\úÀRR&ŒfA0å< ’aYPÌYÁ]w,&RsË„“’ÇdêpôLj‰.“6>”2éà z£'D*™R‚n)¦Œ1å-zJ ÓBÑ3–izœ8¦­=hè`N3Râa‘2£|À‰`ÆâU!@i A…bV*ͬÂƳV œXf¥·³žÈž9šŠ9Aƒ~§4Æ NÓ˜¡³ ôHpÁyLGjæ‚ÁXÒ0/ñ†M^YzÆ1o=ã™w)æãXŠ˜«ñ–'xI³ JcP¥À[°\(âªF‡Ê€­D÷‘¡ˆ’ØA´¤FRO¸„‰ z' à³ ÚÁUv4¦†*ùz+ù>ôÑzp´D?Ñ:Á/à—áçŠùмb[—íê¾-Þ)æT^SóÛ2+é5‡n2^mP^Éa“ZYr[•T¨’"¢Â—”bF.-g²¦ä`>_ä+ÐB @=ü‹£(²<ªò¨Ë£)¶<ºòèËcÙŸ-úù@Rç˜ÃЉPbî8;™Žï/þÄø4ª †“AÑ‚C*êI—Âe«ÅÕr’­Qþ½E¥)E¹˜¼Èˆ©ÉóÃGàñîf‰Ó/—uu–µÙ/[üÞp cS  Åó— c7Â% @—l"NתP Ë©64DÚF¼4<…EnÑÖDr/6L…‰“Rë& Í %ÙY=üýñ*‹œMÞ¿æQ.$Q ©ùÍô$?'L¡#.núÃTâþ¤·õz¿ú¥uoÕ±xfýçœØÚZ6îGNS²môÄ1ñŒ†NTGUÑ‚vIz 3 ¢«Õ]š‹ÄÏÄ9WŠÑÌ5cþÝÿˆ;j«µšøgX•ñåÏÙôì¼jbd¾K’Ÿ“ãäEò2'“I2YÌsü¿¸''I–dó“ñê<9MNaU’³ä<™&Ÿ’Yr‘Ì“EˆgËl5]%‹y–\&—¤o³ì4/Ζ4br™-§‹“d™¬’Uö9›'y’ÿ±H®’?’/É_Ùrñ}TèHì= ›<šÏV0hê÷+ÓïyXEšÂ‡âæ£é,ƒß¥“ KOÇÙ5ŠùK>žM'ó3h?8q<]­ ¦Q›4\y‘g¯côÕз†ªvlÀã·ïŸ¼{¡ŽóEŸ €®Îæ«éúÂÚš·mAi÷k[@áç@[ Í”ô<µíÚõ=®Ÿ¨Îªç×ïmöÒ|nýfñ¿\ 7ß@nѬ‘ûK2nÇÉ8p ª§€&Á²·¼@ÙÀ•—S›»g‹»È*âX“Ñrn@l›Ü‡"ŒéEXò¶œ1¹ÙÜž>öëá+ ûb<_í 7/;£‰jf5Þè¡Ap³ˆ²;BCÙZlÖB5D‘Vr°Æ 4ßTö”YêôvK ¢-†mü(† †êù›Ç~ú¾2)‡ÙÅT¤;²?¸ö˶º#Æ]¤F”Ppi¢8¥ó¬:z¤)tŸîÄ#¢GŸsUX_ÛM’c8 Òº3h]å.“ßkµû¼¡t©¨•NvÌ:nz$Ä=–ma_/ƒÁš·Í¶¯5{£_ž=^û”b¸¢wºGôº#ú0ÔҫеÆÎÝhõu Gé?•^èzu”1K >*k­ªáPªnb¦c½ìƈÁšñElÖ0ymô¤4ϳ“Ú2oBÄTŠŠ›¶$ÅGœPqˆPT(Ûd5"©½"ˆ3;9z÷èåÑÃÒ'¹£ypª#íÌ`ŒˆŸŽk}×7Ÿè>Ù|§8ïÞ£cׇ«M®ú|8’)¹nàbäó·II;máA·ñ°U0áà!íâáÝáû'ÇÃãq~þâËÅÇÅlåû²D[}k0ôa¡Ú>O½x5Ÿ¢ÛŒ‘¾¹n¿[°?à–Õo¹í宑¦Œ¸nõéŒL²YvW’éüt:Ÿæ_’Ù8ϧ“,_\6ÑcõÖ\‚j†)ÌFÓ±mìÜ Ä¡&…¯a‘ÆèÕ³ÇoŸ”!ÍÎAF_ŒWUJ¾"ÆÓß0Æ3>ôIÀu¬ù6† ä½÷ƒƒ¼ã‡‡Ï_—².zÇx÷³“ m­òÍšé¢[Ó¡eˆv"7”ë´ÂB˧¿µÁñ8³±ôiL×e¸Tm.c<»<'³|Œ(âäÏ䯦ÆÓRÊ6•§{8uØ\e|×qæ50ªïä§êûÓ7Ï_?Û40¶·–Xe?×y ÑŽ*ÕPUW¡# m7¢»¢Ùk”û´¾-Š´ЩßÜÀ’¡^û&,–'Ù²$-•Ć(e™Y• ¥2³QÜ!q·:ð°®3²I|ÐHNٌӞkÌI9É-"Wg§Á AMçŸ*ââúÂõ4‰ªQÒd* äñáð¹ H›eŠ£ KŠ#T Ms«áÛ,iVÞK–§99ý6O´â)¼6–Óªžr)— F[Ͼ#šœáš¦à¸"÷NStBàÆt°£S`Çk WqZ7Rò,“4Þ;_O”O9­ÝJÈ,®‘¦ M4JîFx·5­àûÀS8TáÁ(ÄP<ŠLàˆò>J©"J ÉÛ‘¨ƒ¸d÷‚%¯F¿ÔLòéb^\úîb<å‹VÙG~‘}É–ÿ>_ñ“ìû¸‚·}JbÃDä šS“SÓ@’u\…þHxÚ÷Q,7ÒWKVUâGRÇ­eÃÆ]e#nY(*¥Ð©<—qŸGÙ Õ9m ¨Î}ÜúQ4hwBõíh¨¯kZd+Ï¡CUGÚ3Yud¨:VƒÕ»´c¡&ÉX¦ês7”PãÖê–B¡À”Ž­”<¥ÉjØqÌAKØoš»çV›omúiÒJÉjM“![©w#ª…†°!ço![@_U/ƒãÊ5ż^þ/;¢í;ű\þWåò¿*ˆi.ãËʈÜ~¿ÚNËøûƃ´·Óˆ€”¡[)|ùNø/sG U¥‡£ª‰ò‚[˜Œ=Õ¼Žs*¤#”à´ÝÖ4+«¹Cd­q¤Ý`Ê9(ޏ#mÆeHÿ ½@­ö4jZbäšß QNR¨š(#`j¤Ú¨ÿã¡Ê=?ª4"º4"º4"º4"ºÏˆˆ}m¾Æˆ¬ Üž?«ê¨énk ”˜µ³Õ’[Íú¶Ûiµû¦5ï¾õéþVʺëÓÍ_§ F”6Ê`TZçÆÏ“Qc‘¬Ú7±±H¶Yéö×Uº=d­ãˆ›™³è,‘m“ÐÐRÙ¶”¹±*íG¬çy~¹ú!IŒžòѽËåâ?Ðy¾Xž%—ãÉ'@ì_««åçéçñl—(VP‚ë­NqKzi‘¨ HÑJr†±û >Ÿ^dËìl§\ÃC +Ú¥óHv#}§AtU!åÆÓYDoÎwÒwäšR)Ú´+9!M§†{s+OÕ&I¨QÅvN¸l‹Ð°“PI¤èH L™  ± ÛZ¤Å·J=Û4µ7˜Zrë.t)"o³.鈔/Ð6eÈÑÇûã’Ö-š@ Àé¤ä)ÈÆ¸õ¡®P6§ Sq3I '£öædüW8™¥ˆ´Ç½'ÜêÏo‘ô]ë¶×ïÕ›G÷߯íi_Y¶ ñeÙÐõtºíéTßBîzõ®ªãnõ}»í—úýj‘gdògÏWbX¹V!¢êî…ª’ñµÓÙʤ^Go[^­±AÑ|%iÊÃèK…°Ñûõ²þêb´Rw«fTöMÕ‘e·>îlåÞI"Î%#ü+TýDir‘-k¢¨ÎHîçCTÙ,à %2(Q¦#” ‘©º£êp•ŽTDUéÈ7 ª'G2H¥íøCRÉÕÁªD‘”îH¤ßA}ë´{QÁrúÄ¡"Ê8i¸ÂˆÚGöûÕø×wŠÃ´ñ;)5×ðãâ•4ªoÝÊa¨ÐÜÂ!´êqYÔ$ÕkwISµ ™RùÑ”0j`ˆ±o’‚BúÖ«¦É9œÙQPÌ6ìF ÅtðœêÀmšR00ú%îlüž1XQ¼ž’ÔÅ[~Hdˉlá½6‹v_ñš­¿¹ue±ÃÀ6ÿ¶„²¢¦bš€ ±ôÍžæ)\†ÐoÅŒÍÊò¾êA_UÚ9¡œBÓ'‹´P©ºée(švôʸ°+`º|PÑSѾŠ}â ø”„Ó¤jH£O@•¢%Ö¸Rh÷›®5 °Ré¸Êfeধ ti HšÓW¹f•¾Ä“€V*.©¶²’8tnƒêß*_i‘y«Õ³õ@dèšßáôô4ƒ‰!›òí6in !nÕûôXµs/î\\oÚ#Q¼¯{ýš¡©÷±¸AhO½RšÖJžöÕs‹Uû镾*>Ûêïð¿•8|endstream endobj 173 0 obj << /Filter /FlateDecode /Length 5604 >> stream xœÅ\Í“ã¸u?äÖ¹ØW.{PùD%#†ø6eW6©µw;UÞéTR™ÉÓRk¸CIm’==í¿7CN9ä½€(ª§;^'5‡‘(àáá}þÞØXU%[Uø/üs¸ªVû«?\1zº ÿÝVÿp}õ·ß3»²¥ÓZ®®o¯ü ¶²²Ö°•ѼԕZ]®Þך~½”U¥‹æ¸æ¶¬˜ÖÅÐÖüR1Slïo†ætô“ÅpÂϺtÖÇÝú?®Ëò*]¶ªJ# ,}½½*†‡æøæõ÷ëëæì U:`É{[ÖUY™Ê8a äÀ•/¶»¶9îã’¦¸íj?N(¦M±{@¶q¼8u—ÀÙé6Lq*å’§\2Vr¹\â>9]¹Èß]}³&¦¸)>Öû‘¨L·$Kc‹Súûîɵ’²Ø5m[oâ¼l)‰t‰ó¼fpDzx_÷»m”¿)¼.¼üë ?΋»û÷msS“®>ü J Þ°ªtÊò@gK³u*°Âu©ù¤•ßœî»cÝÂ4–"¼hµ¥Ïo†zX30¦0=47kÅ5àmœ¢Š7§Ûá¡îüo`T‹"`\–Ž…u‹Ÿ¡>¾½¾úý•7~µê^hô\Á,F«j°F2úßíÉ`\ÅŠ]÷ …!€}U|·k·¯¼l*0»ú¸¿ßýׇÖsøy!#”«™H)Þòþ„%s&#ËÁeÂ/¥h€·¹ÄFÙâÍ.Æ’’-ä»uøÄô3üHÊ/>€! Ùs¡Š4Þ›4Zžó–7îï÷û]?€“ÝòŠ—B³uÞ»Ýí®Û¡ë`l·‚c¨Ô` ·¿OMqßÃ/F*§K¡¹ûr¤Ò°9úD“† »v—F®Ý‘‚y uJÈ$Îg o†–!Ï]xlÀ»ýd#Ї8‘ñâžVÂ`+'S@aõŠþõ•Ã+°´ÕáJqkJ£Æ'íÕòí eJ¥aÔø$3ÍGO2ZU>¤spÄ%Ãóbâ®Ê,ÏÁN´s+íªRrA¶œiCTé4Hc –1Ê~ ’2<œ-^·Í§õÔ!-w0»í}ÝnÚݧµ@ƒâºØa`2ªØÝ5ÛÝ •¾0­ÁÇÅ”sŒ¢ðu»žèº¸˜†ðK Œ)°Ô iÂÏÓWŸ=NƒŸÀ‘+îàÚ¿»o£‰ÐRà9ÍðÁ3ô1<­i’bÞ.p-8ÕÄڀɅ(V)¡¼½£ä€1¥8J³*G‹ß€Ái%‚ƒ½ÙA–¡™`eM†¦ŽË¸âwĉ6ÂAćø‰bÒÅ»4(~1ˆ ¾B/­X¤+]'Wˆ2Gzÿ‹g0!W!*—‘³;PšÁ‡Jøö«µõA kv´e™Õ¶ØÒ†!èUøÓ °uXÓóÍ7m˜ãÌ+>ƒ\ðˆ¦²aÝæ_ŽÉoŒ«"ã ë›á?’"èÅ:É î °&¯•o“¥º6[yŸ-—®µùçÿN÷åaóxÊ æf¬î×K†Â$¸è ¦T#ˆ¡ßîNÇu·¨)mÆù™F6àÑ8ð’‘B‹rðäI±4ê P”‘è9Ó*!Êþûý‚ò¤`©ò· @WÀiÊT0p˜Ïe´LíÃ:OÀÙ6mi·l¶Í7 w˜‘;Œ,ÁÈ ;}L­ìÔÂÖ@µg–ƒÊèK"ö'?ÄÀ ʶ`L˜ùôõ©¨,ôÊiL}Ó¸£™Iëƒò7ïû¡«o†•e2mÃfS¢°¥4€LH×~£Š CN"k­ xr[|Z+勎ºië÷~ã¡iqƒ(¶J’ Ðf­7LšN`-ÃÔHbìv3j}äÜ&ä³™hϸ”}ÿ|LÝR`+§¤ê¡ì§ÁIý/‘®Â„žk¡¥<5éø‹‹wþD5-!x—ËB:àc6þI`¼R°‰Ú°5t÷É*™¨†{„òF€º] ä6lCÎ${Ø„üN")t‘Ÿ±XÍá ÛM<&ÆÐr‚äRícЕèõÒf²†|G¹L'×N¿Kiõ4;“gíÙU`Ð)FúE›Év‹Ï!t¡8NøÙV̆ôtŸ©ìfAMsžF##jžj×XRsøÖaMGfÖ‡Í!¬\T‘–Tte††‚¶dý— ¿íýXðÀ3ËbèO¢ ð°æ.êŒ[4„Qý¿½ºþë·5z„š¤!äÞßeÎÓœ6_4^i ?Ÿ{˜G@LH\š|{éBÍE!xó+ñœ+sH­x¦¨¤eqs1عÃ&ñ’Sç%Ö»ß/DTø4öÒ­û,¢ 0 6Äd¾cCb¢‹;.}¶‹~Cc"µê$ÙM¤”„tP¨;·ºcÐâ¹ÛåV•{8ò iNºÐ°@h*ga„2¸ \sJÙï}}„ÅT›yÿ§1oœ;Mp!‹`ÉÐǘ‚®µïЯ,@n•ÏÝ'•†ózˆ´ 8K÷ˆÒÌ×½QI2râ2´˜…bÌûÔ½"F¨43ž"20žŠT€·07‰¢b½mùy „|(Æ@©€¨&„èš%¿+1KJyjè¶ë³ù¤i°†QÔ„^cõ3·iúI¶Ÿšýñ’KÃÜÁ0ê€)ß'9ÑÊ0Ï \WX Ç¤<ÒæyËm¶nû¦¿üÁ8…’¹Z³4õ) 7÷½Mžq‚J7³VÏ&bì3§ÅDVͤqæÂ3 Òžõy¥Eœ>‹Ö~q‹-FÚ.㯒!Ÿç¹Æk*o£î.È ½l¼Â)ŠV›¤û”_Ǭ£EÌ:g:µ¸ŒžC—»<¡Æá”i ,ô&óúûðœ™/tɳÇ>Ãk¦¤q[Qï:·òáÔ=úß°ÅC6F €ö™Êg²Fz’ùÊçW|æ¼DIêâcj§1.>¤Ñ)ÖðâÚ÷ª¹)ïrá'‹Ùïâ`:,“)Ì!à®OòÇ$ ô”A)¶ ³#ÂbAŸ=ª¤è•”G¢3‚A“‡• “Ç,`_“Е^Ï(J«#þ ˜™v€p’y.|ZI%Ð%•ÇÜ'aöÔè©yÙ_†kc)ü“Ÿe•ÖmP¯Y¦—š™YºÔI÷ì§K­ýÌ·žÝÚ‘ å£|%!2pl‹a/*é0‚—ç´}V2‰LWzaƒýY]BVÍÈr ÏíO-PÄ~sÎèÛ‚zèÁ€.×mjï3 ÁÙD̹ӱ(Î÷¬HÙó†t–}ߊ·¶d,vÒŒGHS~]ÌÞ½fpfŽÜdUцÛÐJ¡ú õ<úú ! påc˜jg —ÊBù9/ºb ½-Îv¢ÓÊëÔÓoŒŠøtSuwè!THæO?S Ïö„ª*1OÙ„vú™?r¬Î2tä6ô”`ïY~iS¢^® ’FìL•È™³‚û©šÖKÆú¤u -æ…"-t¶y¯( Êy³£fåËÉ3EÒydeu:hDzBÔc"Y<Œ¹ïÔ}¤’NPáQüëÚ¢s*•+Jëê°R§•¬¸¬Ê>ç³ÉÚ±‘,x0&nádút?ƒVð¹ çHyžyeñfwq9­w§P|J-¨ÀÁñ]ÏÚ^%гˆ”îa•?«Ò>ûT~f&‡ÔNÚæ6ù†(ÊØhk¼e.Ô£~bVæ¢@Lj±µöüÔLËñÌ2†a*ûIŒ4(š>/š?æ}ªCi´àç¨Ýâ Ôn5M²ÎA7ke ЇW Í®õ2¥ý°žwÛÚv³= (EfÄ£-fªGŸÓó¦åbÌp1ffq(/ùû«YTÒ¦â,ó}Œsàóá4w„ Ÿ\»3Ã}¾ñÀBóó0. 2húS‘éÔƒ¤Y’¿Îü@mdMAå%ß>IÿßÕû™š‚f°XL7˜’þ@š²¿+˜… 7ÂJžqÀL@*³ÒVá|óŸÖ€kwÞ›„%?œè‚G…WA¶ýâi‰T¥ÔÙ¹­dœòªOàhÒGÜHLŒ]öpÒ¤_Ó㟩¤‡#RŒVëºZ¿^[é³Ó£ÐHqÎ7R@ <«§iÔMºv =c‚Î+ßäÅ‚.ã(¥´phèÃÆççl2 w©,HøQD‚Xƒ´AK§Yé|B {þÛþUìO=+šs»Î6?} •!ך§0&õ“À3Mö…:ûJ¸3š‰?SsÁââ0ƒ¹Ç‹ÃŸ…qø/3qœÚÓþx(÷FxLâ6™¹É~ú|“~kb §¯±&Ô±(LjBÃCM(ÉRÅuQ#ŠŸÔô¥ïcm Fñ>>³H:³‚ 4=JÌÔ¶!N³qÁœÛuÊFÜ%Mv:`Es84ûnªê=Õ2?…„@§J3žBƯOžBÂY Ð}v ÓJ± ÓI(š TmàU¨…Ãé-DVˆ#ã-‹·8â½ m=ÝŒ…¿6áðD¡Ð6·Ùê`{ZØ Åt!èI<æÊE¼¼’{ŽF)ñ ÑXŠùÇÙá‡7´±ù€õXçÏr4¹ÐEC“tÍQ>WÈñ•”3±°Æ—iÊ„]fûnf>C\Dé'ÌD;iZ$òãš—"Þ˜$A÷CsX’4„Ë\Ú·ÊXè¿°U±poDVRœ]áE&åâUÁtþŽ™5³íáB©hß&2h›šŠ#S©¨óàu©~l‡øI»$šú3Ή¯ôv^òãÂ(v@ްWƒÝ6ÝòӤ˩ƒ¢xÒA÷f`lEø36K洮 ^„ÝüÝ0ìÞ?zþù»õ’ªx¢’*ªšZ$Ô€gþx€šÓùò—Mðó2÷ÎÃê[sºJ‹ç¤uAÃOáDÍ›~:ƒóœG».4þB¬?EHy=êl¤ H9ej Eù*^´X}e÷„†Y¬á–¶Ì“ÝÌþ& ~Ø‘Æðï÷ ¥v$%r$Ø&o!QÏÁn Âlc'9#òy–>ú°Øk僚~rL¾Ó>ÜXjFýû.¾ÂE›qOPç§¹µÏ X:ÇŽ.y §ß\̽œšÙblíã péþYq¿°y&s›þ*Á]Ùµ !7ßþŽ1ÂWL¯„¸lv:… $ààÛýðÊ_(Ç$C·jiŽ[€ÄòJÏ`Ò¨R?„¢vD6¬Žœ¡Ñ¥«´á²ºO¨º™4¹=d_2V«¬?ž%:Âß‘§{ŒÓ¥NþØ ?G?ÑM5hÀ©ÙR/Œ1 »°–tIMª‡!´±”îû™Þ<ÐS„·³š$`;éO‘‰9ˆ!ý´ÃÓåŠ µØOeÉ]Ÿ»‡(Pº!5^C»-)ˆ¾ѽúÐX•Î çû_rƒ =TnªðÞÁ,\á#žpûL-³¸AÇQä¬ãK,ÒŠ"OYy üÙºäÔ: soϪK .!.àt(ä_ÿ Ó~Ç®¬?ÉTÔP= M´á<<+“uíc^¯Zì xHL8ö’ Zg?GªÍSw¨[ï©‚€ç…‹¥™ËŸ3 h!ËúV—r|È¿Ctrm˜®ë[¼TZâ}º#R4a Mi‰RX^‰U:П ÍW•%—lúË´œ¬Øû!ˈ%¥ò–ÎTñFäÚ×ÃäË%[ÝÕ¹aå:€ %ZT™‰Qõ9âýP{4C1,ËVÙ3DjQ=i•¶…\±@wÞ,ˆÍ,)bl ÕùùOö€-J0Ur-ªYRœ)%Ч¦5àsF÷ÇóàÕ´ ±´ ‡ ²r¹1åëáÝWéh)¤`ºo°Òv¬ r‹´¡ž@=IwwfPoÙ¿ 9ã[,Å›%S7P‹áÕÝê ÃÇ1—ÅT±eœÿo[V•Šët©—_¨X¤ëJ£mF÷%7*HrÆJPi.êpNhŽ{L˜åîY_€ *‰Ï’)š†6™oðt…0äø‡³®+—ÅEúg?ð¦,ñ²TÀ¹©·¶t/ Q:ú{Q4 i^ŸRqu!Ç‚wU$òü•—»ÉÑ&*âí¨ê‹Ôg®%ŽøFO‡ì |ÜÆñÌu¹ÝÈ* y'm7^èëJ k]Ì ?}·þz)‡l„-­0ŽÇ„öoÿ]„®0ÀCWÐ÷ÓЕqµJþ8Ì{†?/~±ˆ˜- h%ÇચmDV:ßHµ´¶Äw£ÿq72¦âœ µ®\€Å_-h”dÝœù‹Z¨þÙ´À9¡¾¿ j”š¼ÀKÆ$¾-|³pñêß’ÃÝ ºtkY*aÑÂ8u]‰›‚i§ï^ŠÒZ1Z6_”’–*nèõ‚ À–?‡‰:[p-“¹T2"x€_Mš‰APŸ€ª™Q¾û}\V¼Æê /ªÁªôR+DëEèR15•rÏÐçvY>Æà‰xfE?,j®qÁdäýçnhJ¼ÚxxXТ+…‘B@ë[hØ/X“BÃɆ^èôÆ42«æPÖb±ÌK Eˆù— š³ e[©tí‹60Iòa1˜p7ß‹6 JãXÅWøžp¥ýb§%µÁGken·Ùõeл‚ùu7’®¥¬6T¬‡¬Ö$8q1\âMlÓI$Jg] Œ—±ÎÝmvܬÇ7kþß ³Œ U¨’þ¤Ât&òsI?Q÷“:Ç’9êw¿¨„ðÐçBýN Ž?Y¿Û¼ŒlúÀ‡ãO´Š»8£~x¥Š  å%þI§z›&EAZ÷¢b—Á.dž‘/wž˜Ô^‘™{aR“Üsü?ú ÕâM ãŒ_o;ȽЅìb7z<ìØ˜JRoýzÔIsxH“ŸXf÷`(„7³:\qe` f|òÔÕÅøÇŠLvÛá¡1ó'ªš©é¯Ìÿ¸ø.T=H¼)iËßø¿C»¸>ø÷#Åô÷uè3TÉ'¼ÅY¥Ñf©–Æ?Äc·øQ¾N¿KE|=Q•å¥)VP¾"(V!¦û¿ÁÐïÞ—‡Ýã®ûûÛú¾ÜîÆí÷WÿŽÃ€eendstream endobj 174 0 obj << /Filter /FlateDecode /Length 6270 >> stream xœÍ]ͳ#·qÏyCrHå`WŠå‹‡Ér2øÆØ%WYŽ\Rl9eéRµ›µo÷=jÉ¥Dr÷íêÏ9Ý `ˆÆ`H¾—S:,‰ÁƯýèÇY׊Y‡ÿÅ_mžu³›g?>ôí,þój3ûüêÙ¿£4|Óö]/fWož…GÄÌ‹™3®í•™]mž5r~õ=´u¬­Ó­ÒÞCû«ëg/š¯·ó…ôm'Œo®ç]ÛåD×7¯ç üà o}³^½Ë~º™/”RmW¶ú!k³šìk³z•ÿ¹Où^BŸ{«š%~”mïM󋬧¬«ëØÈXx÷BÂÄ­h¶ù0ÞgŸ×ËÃj›^ads·:ܦ|ó6ŸávN"é Qz@1é¬ö‡eþ@˜’•ÖJǧ»ŸÿÏÕŽl‘Va¡Lë­ kÞ ½ì2s¤ñ*ÿc»‰“ÕþØ¿.¥Ù ¦Diâ$´WÍa‹_ÃÛ{ÝàÛænÏc£á™ÞÑ+è+¾Ã‚d„k¶ï¦Öòõ£¬kûv¾°ÂÑB^ÝòhH–-änx>_èΦìôج¢E¦¹- ýCâ1Öœ:HGÁº¢ |ÙQþìV|Ÿ„b?kMª¿þýÒTÍÇ8¶ÌEçZcô˜Ëäkû o½2¤¯Ç–/\ƒÝÀ PšæÃÜÐúÕò02¨&,õfÛݸSÂ×öž囩Ç_åé v ù3»í&þF‹uðñÀ¶ñ.ßàh@`2Í~ûž,’qÌ×Ñ$1ɰnи,Í6˜{ü $³Ñ‚L±exáâp;Elv›íŽÿ9"hL‰Æˆ¨ÀQŽ+×aô ° ôG߃i=¬>V£Y¥Á‚¾AsÜ:ÃPéy-Ï-$0ƒŸa³º(ØòðYa„ÅœqLrù/{öWŒé8€ì2ªJ/îð]! Û| oÃèÞ2¾¸‡`òXKìÈOA¡Ï‚;¬§‰ £ ÎA/ƒÂ‚´ù‹wœ"_x³Œ †bñ'šôÅcK$Op2sc*9ií‡H]âU* ˜t1Üàoªº„ÐÖ1{ÿ"†³i vÄ_†¡Öì$A·àö'¨zfZç#aè¸ë¦aÔ a¨èûŸG‡`ŒÊƆ/š_ázöŽ°ß É¶JW]÷誻‘»Jݘr›íÓô®äBÌ%ºç•ºrå–õàšû/Ī€Àn¯„ÝÁz…°{¯ˆ¿‚c–Œ"¼iê…ãq†%ä^x•¥›®ŠÇ×uÄDa4ÉRóY²`3‚LoQUÙâàw÷b- ¶éX˶R9j¡ Àý^&™øæóÅ>w¿§QŒ¼C0†€îŠy‡Q￸zö—g!igf»{'ë š0;3l™R˜±{q\Äe®„» WÜÝstI,­ð+£Ír„{œŒüi™»¶7©/R6V^‘øz¹ûþê@é€(R8ÿûN\: ]ö|âÃølóíÇ4& ‚cê)7ôÿå|˜ˆ-'2|®©5¸¶Ê èÇ»bÚp`>½ hFqŸIß|—A¸Õóšnä¯bX¸/&b Ìz­§Ca¹C¬¤3àkšÂŸdQÿ:Ê0O/s‹9Ó0l5p­·õà¸6êè8íéUð®°u°SÀÖë!rþbÛ '`:yÿ«½ãÊÎ<üíUïUWôoëám«E7¸B†íLŽu˜èE²ˆO}š´‹t%ìê¥êÙÿ*a†mֱ̠ 3/'¨S!t LêÅÊLHaº¶æ¥ “ dž£ÌY|XèZ¡.–qU]PúŒ.0tÜî⺀T/€þLË Ô´]ÝSn»µˆxTÀTd Ie³@*E¡¢Î:uFg“ï²Ð§ÔÀˆ­Á÷3ÜUˆ Kȳ®r ”ŸŽLÊc”cP ”ª8iz$:þ)¨YW‡¾5Nuà¬ÒÌCáM¸ß¤v8V²ÌqùwsªT°`qÞbtÙudK®nCö§„hܽ‚LÇ?Õ´ý‘¦ÑÊÉ3ñkBŒ_ÓÆÔâו×]3è“6.xÍðì¿\ýb*!^¬$(µj=mhÐn—þ:K0›Hn.U_@õúÓœÜ/Ðwä­XMÓ7á»PX?Á^=ãi«]KÍ*°¸·r!3/À: Ð{tŒïãò”™¯ó‰Ò:Böà*&{~WáV=¢L‚k«Ôine2Æ–'{6þÝj2Úp“V ‚¡ø½a¥Tœ-k””ä—j„z’eÅ€†GNçêáWà¸þ -´rèZ ­L¥vV©kÝöª«Á ÛÀ”§Xú­Šˆ:¹kSPÉ5_ð~fB+Ì÷¤•## {R÷H‹³~Aëp•$lí¬>ë˜õ¸>~™5 ©aìÂ=AÙuúEyLßSÞå‹l£þÈÔ3¥Ìÿz ÿ‰9= _™®Ã>ª™[{ßþt'[XÞ_áüPFç©{N]ñK”èÝnuà é ,IÚÇÏ逬=ßÌë1š&ˆ†ç vóEù(lÿ7LH1 ß‚’*L§—Ìrµ àâÆKfï$›Š?X æ"J¤M‘^.æ ƒSCZxJ`*…Òfe(œL™ÓÒE„DT ƒÇ°Õé†'LÊ µ¬g#iƒsþ}ý­Òj¯¹L¹_ôš€2ü[5ù+Z­bÙß?Öv¨ÆÅ¸ßnC+ Ì€ÔE$Ý[]l+Åâ8»ß4¸ëOšv¹«V/Ë ê›­‡qƒRô­h4óé±­¼Þ˜±®@ô—o5Þîm5%Îíµa#] ¯Gì5)Ûk57ǵ¾Ã2gP|‚‹¡aÐü…¡Z|RŽ2ãÉgHá°Ž|x¬ùl".iD²¦Sä‚*.«îü½7ü·ÐÇ:ˆInäÖd’ZPmoÞòg¥>îXPÍÇ»ä5¤ì_6ªÌǃ“5äã÷yíR ʆt¼ÇúHÃå¡Êÿ –i UnSü‰Øß²Ô}¢^ Ä¥\Jþ½àQ}ô}޳߭xÁ>H©f·\¯ñL\=øèõeJ>¸Ioð'×Íç[6›QʇÂÙm =ö͇‰©z:T€‰ ~5®NV¥ÈXÏ‘¬R”֠쯱Ȭ› æ–;rˆ›?oQà$a]ÄI@ÛÚv~Ä­ép©ò…`eÇÁCS`nRR)ÆÒ(ì'È/«¿3U)âjø@gu¡V#W8J,'ÏÂWII«y‡v¤µÜ¤–á+'ºþÂÔ C€%)8)(¾Ä¢Giþ#©BW¸ ÷‰Î’hŒ}H `‡7!ø,E´@Ÿ ဩû× exä±!.¶‹õ8#Iµ7!þ‹Òë éýœ›¨Äl ‚=Í"ÏXiÑ¡cx‰‡Ñ\RÃÝêÝþ°ª–¯hÓúÁ†þjËvUk­+b›¡Œ)·GëÊ—30í_¦-"l<%g)²¿Ì!›E9¶© X2߃u‚*˜šÿ*Š­¨OgÓ> íÃn¸ÛB½ ˜¾æ°¼Iíuâ^«ÉQÅ´%¸•!"dåïr¼õ±¶ÃYö@>—Ù 'EŽó‚V·áåj?÷®¥Ôdìµ’\K3f1ƒ<ÂlPH´„øa‡§î~|_†éëw)òHcÕ??œW}ÐéáU<ôé! ­~®$Ö¨æÖÔ2‚‹a"¯Ž¡RzàQëa¢'ÊÕg¸ÛÇü8ÆJã|FøŒ¥-ËCqr‚mROÄJèñÎ4üpêaŸju&›±£™Zý`Rd[ )ã!lEÕŽ$fØþbBuP'PVï¢ÐtÆxw(•#Ùî\z)ˆS=4ŠÈ!C]N 󇹴-†}džÄ*¹ü.;L]gsI/;Å—æ\ÖåÔ$ÓM• =ð’4áeX ßüþ«? jÊžüXÆ¿³WÄ­êC@òM˜êÃ]ÉÇh¶!€:† ëqYcìÜš'a\°´@,ÔLi‡QÕÀ¾ [‹JYßWÔ1+ó’ºcYpžg$Áeù–ívµâ¸>›ùêmØÈÚ„ ʶ‘")=V´Êõ3L8%AŒ…Å¿¿ÛÇ—‰°_½ ­Ë= V±ÄFÍRv$ï4ØÑeãb¬¡Qn  fÊglóÛ¯¾©’MÕŠ!¦õâr4Ä5霮e¤V*ø $8ÅíéŽÝ7ÀÊ4ø>K î|™'D-ì&‘ÃèôBF¨ˆF¿ M­!-9±§äÔ­;Jv­À&80@ó_ï^ß<ÂÁÃXQ”õú‚“ÈdáãÛåM©@x`$³ ü‰Â[ `g}â…åëòd¤Q´¸¥ƒ ÞsÐç}ìÑû¢¨¿—d‰FY7ü¾P(®މ”—”| ìðD¬C7Æ\zëG8ÉŽ1 `_n‡wÜ ŸØT? ×¹pîøüI¸æküåÿÞÛ ¢¦÷Õ/j{Ë”ô) Øé¼„êY¿Ðý#4ßpàãCYeé'^Ôƒ±B5¹·’êýdí‚$­;ºËçtúp ýèÂ(繜چG/<-k;-5útn ‰ k´ Xã I ¨JáÓÖ|õŽÓŽ_Ïô )÷U¸¯ðp›&lk–)îò.‚$”qÈO¢6 NiÜ‘šnõ”ò­TÅ%;ÅÅ&Êê‹« R¢âIª ÎÚEwÃtCÍ…“H¤âìÑ´ŠsD³ÞåNÝótùŽi¥(£@ä®RÅö‘—DÎÈ-èÏéPçP?¼Ü¥"oW\e“Óô"šºH·GM†áäH a™“pðÁ+Lmºý‘eWiúx±Yf¬ªÕ‹àh¨3Ñßcñb™Î® Q}QlžËÿá T³Qhçè„m~7¯¹×Y<£9C§x u0«rÒ½/Q;‘§z_^›QFðÀÆ'.ýŠHÊëçT;ޏ]x©›0<¥3º;,s ±îÁø†0;Ó"æ Ík¼ók›1ÀBY ŒXy ¡€+õþxüc¸‡KOŠæ[wt•]^ÎýñÆÏÝÛt¥™:ãÎÓ4 «Â l¥÷å%§‡Õ ‰:.ÄÙ÷Ù5­‡Ì`Žmï)K"nn[¦“wh)<[Ö%­}udTÓ YwµÆ˜òmñ ¸¢áYؾ•Çz{?q땟–™îq#Y¨S¼¨UR¹Ÿ'»¨u¨ƒ]Á¼QHIý”ys*¦Ý •4ml]á·XAƒ¥_¸!$HÈ¿‰uR/IÎx‡ƒùå—ס©ˆ§*Œ  v÷þÕáýîõ¯£—9ëX(¬(L%5¯X]c?µ3°ÏZÝcñFþRuèŸÙn¾KwAifB¿úfqq^çšOIÞ.\o„C'Õ"´ 9Z´˜Ïjñèt]fÃ5½Ÿ~à@šG5Öáä¼KEæxñ—qá:eì®v°Û¸òÖæxVvÏWU³_Å*ŸxýjêE«Ú,Í‚%ʉ'¼ÀŽ—/÷Tz>"îa °n{7d·„”‘ièpßÃÃn[KÏ—'øàk\ᄌ>¥F™ØBãíÕÐmW-•…PY`ãZçÙÉ>¸58Npq–ûôÎò×:? »at£¥"´*èŠxΔ0¾A¾ƒ^E|/<ûå’Ÿ5]¯³ £ô„’ gŽË=¿Ña?¬9[è dr~w„Ìãš`X”öˆ= HÊ£‰(Mn™N€~HWÿEvM»“L®ŸÒ®ÐÞwñ%ª¸»`¹þôÓäC×qÄJ³ÓG?†Ð—”¯½iŸ"€©è°¾8î[7o2@®û Óòýøn 9€Ç7Û$Sš1ûþ˜°§êèüq6¾§ {‚6Ö³~%0²Çr¡0Ž•‹2\hA(Q £h‘«ì2é›Áqˆ%9C¯È½#î&fÐÅ£‹xÏÜØÕ ,¦‡­ï&±üù ï¼ô§B¿.Í¢ã'xV,QÖaÅÛúepÕU¸ctS9bÂæ7»’}ü¿È©yžrã鉱_;KòÈiVsµZ¯yeÞëêÿÀô­í\êí\¶'BlbEβ³ hó ¦°C—ßüØ–ÔD›‘&½l~y ÝJ¿ºýåËy()Â\¾UÉ×ɹ}½¼~Ù O´×ožã†¼Šw±—x9vø({¥]ñ—gÿ*ñ’kendstream endobj 175 0 obj << /Filter /FlateDecode /Length 21002 >> stream xœÅÝÛo$IvpøµìWûÅ6@, ¸h-©Ê{¦× ’V‚d@£cfap»{f(1š³MÎÎŽþp=;"Î%Îç°/³ ‚¤é£2³²òþ+þæêr;\]ÊÿðÿN—«oN¿9 5½âÿ÷:]ýù«Ó±Í9¹=.ÇpõêëýÊp5ìëíe½Ú–íö˜–«Wéôåù¯/·—eÚ†Ëq~{}Sþ±çÞ~þµùÁÝÓóýÝ»ë›ióoî翇æ×ãz{ìÛ‚¼ÿyù…éörÙÏ?y|gÆþÖ¾Îû7ò"ëù—ü;Ë1ïûùáÍuûGyÎ#Oç¿¿}=–ùYg ^ñA&e:ÿòßlíj븮ãö«W›—ÝËnš–Ûc΋ïÕ›Óy¹~õϧ›y®nr¼¯kI¿Çù±NÎ1Íçžò«.ûíe˜Ï϶ò¶ä[þçùáñúfÌËzœ_ÓSžèóÝó=/%ú•:TYÊù¾¦_?¦á¥aí>~oþñKj°€Ÿn¯o–!¿Þqþ³w-§4_ì/¹v‘%t÷î>Ý=¿-Ë©_’sæ¨÷åù ÏPž×t÷ÏѼÈR  ¬ë\iÍÛùîáé‘—çeÈkçÍX{¦ÙÎé6¿33ôþ‘*û2–ËÓ±ŽÓx¶K^ëmþÁ1Ç<дåÉYó~ä…:¬çßÞÃÒû¡MÍó·îSÔÖ¨›q. r¹º¦Ûe>FZ°ÎÐTÍãv™õ=¢jüñ{ùßùS0,ç§ç²Ðͯ=ÕžWƼÒüöº®fã|†Ú{b;?ß§·ü)™§²äÛ+ɇ²¬—T9Ê:rŸ¾3«Ìƒ]8ñŠ2ÜîóÎ+JâUeYn‡}”Uå ÖSúx}¼xZú7 ÎƲyÛ0t›;sߨ÷ë¬cN篯Íë=/‚ƒ–ÀXÖ+y§øWaS‚ëÖ3¬8º8ç¼6êŠi§éþùöšá¶^¥°–År3–5qººóoÏëA‹ç‹?ÍŸÕq. å\èWçoï¾yûððøúÛŸ—Ÿ,ùí=ÿîáî×òéü'üûpþÙ«ú¾Ó?§ó—oî~|úÕϾº®¯ÿ—¯NÿPö1ë1äᯖáRÖૼ.î·ûÕ0ç÷iºzÿö꟮޾,»˜ývÚ–«_åÿ|sšoóJ–ÿõCÞÿümþß>]n÷q¾úk3^žŸy¾J§<3—Û­%§l­Þîƒmq­}›o‡Ã¶8±­²¤o—Õ´$©­ýRÖ~ϤɺäOúNÓ5Î9L‰Û™.%ÚLIh­9'ÛâĶæ1g¶ÄíÔwi\.eç¼þ•â´Œù=:öü>È{¼%åíp³Ý½ä‡—Í’7&òž½´llçåe­—m½´llçCÇIð\m·åXÈ%mûí¸ÎWó1ßÎÛN‡I—ë›m¼¼ÏcùïË2æ)>Ïæ¿Wóßû¥}~üÚÞ¯°›Ö¼ÝîûLh냟 m}ð3!-;]Ÿ²äÊR»)‹oÈkäš°ä=Ýz´E7_æñ6oã–üßÓ¼/y¹ž‡KùÇxɯ¸œ‡%\`ñææ§JÞϼvÝŽËr5oëí>ñD•­ÞUÞØ]ç÷4ºæƒØ§_Õ)hó’WŽüYYò2ÉÛ‰ü[çÿý}úõÛ÷W__Ý¿{sÿÛû7ß烒²ÿª“ýÉ[ÊhøåcÊÏÝ0®Ëe.ǦfcÆIi}y•w}Ë:æÏG°m³|ä]k}ñ|*‘O.·kÞÑÞÎëvõEÛ¬ó‘çz«Ÿòi»ÍKUÚh–½¬…yß~è?ë†ÀåçybÆ¡«H¶O4³ù³›glÒ„Z’å·oÜj+oçòäJB-ÉÖ<õ‡¼çY“¤¶º¬´æ|P²u-ÍZ¼cY¯—IjI¶Ì·y+QZ[9èЄZ’嵈–İå³% µ0+­¼´¡ki–߯¥´Æ|lzÞ÷®¥ÙÀË~ÚËvDjaV[yûäZ•ÖQw¯P‚¨vò‡ëèKœå!½‹sÞN-¡=$g¥MK~ŽÛeÔ„[’]xÉÏcþ½–PK²üy¡%?祜?¥’p‹³máe:çcþqÔ„Z’­;Ïã<­uÝå„[’ å“Ä­aÔD[5ËŸžÇœL«&ÚªY^Çy§ã6!JÂ-É.eLn•Ï:'ÚªYþ„ïGm•]Ϊ µ$+K„Æšórj · ãVÙ/ö­šåõr¡yœó1Ç  ·$Ê»^Ze šPK²K}¸uŒšh«dc^O.+µê $Üâl?dIääX5Ñeãí6ÕÖšçzÒ„Z’åõd¡W\ó”îšp‹³¼žð<æäÐ@K5Ê1\éämË2kB%Éòœòn‘PÂ-ÎÊV€^o«k»$Üâ,¯<‡ùا|8á–d£ÌaùLLp Ô²üþóæƒÄ²5ã„[œå÷Ÿç1o×çYji6È<æ%^>Sœp‹³¼?>¤´k  Ç*s¸—k"šp‹³üîóæŸÎ-¡–fã팥`'/ ž¿¼Þí«&Üâl-×d¨•_gЄ[’]hþ–ËZL9¨–‰ç¯W–5jaÆ­Õ—J”×¥NÓ2Ò>ž*I–׺ –©Ì;ÿ›*’Œ¼ò {Ù1pÀŠÊ¹6½V>žXZB%Ɇç¦M&Ü‘è"s–rÊÑ'Ô’¬qÒëÑ6VnQv)ï!•¶ºƒ¡€;6*ü^”]•íH´×­r-å÷¾%Ü’l”e“òÉæD[&«­¼Ý_úd¥•?gÛе$Ûf^žù‡ù`ŸêH”GÜhÚóŒ•=6'ÔÒìÂËsÍ'ÛªImi–W²¹îyW:„Z’åw’–V^¿ë6‚nq–×3šÃµ¬‰“&ÔÒl(G¥•ÿk[4¡–dãÌó¸–cÞAnq–W6žÇi¯ŸZN¸%ÙEæqê^ƒjaV[cýlc ²Ú*g^}‹³r¦OS_7P©FËqÔ#ØÚYÊvB.q–îö…ZyìMnAVZyÔ— ª±\bÀŽjg)ŸÐ®YmÕ=rׂ¬´ò#µ` ³ÚšÊÚݵ$ÊV[;^nq–?* -Ñr¤°kÂ-ÎÖz‚]ZùHtÒ€JÕÎPŽ®»’dùø¦ê˜ËöBnAÆ­üw-“ÕVý4u-Îòg“×™¼ÿYM¸YnmùS>t­.«­¡üWׂ¬¶&šhAÆ­iñ­šåyz¯·ËR¶‰’p 2nåO¼kÕlÚyØò^¶N%Ü’là5b»ìü{ƒ®]Æ­Ý—J”·>OÕQ¯õqÂ%ÎòÖgØ¥µÌšh‹²‹,­ò_‡&ÔÂŒ[Ûê[&«­±Gt-Î.£,Óœl£&Ú2·öÙ·J¶ù<øVÞrJ¢-“ÕÖTf×â,ryÉç}ÈÞnIV·¥Un,šP ³ÚªÇó]‹3¹¢X“u…+Š}Æ­}ñ-“ÕÖVßYlq–·ü•믃&Üâ,ï9všú¼òÍP ¢Ú™hn YmѶ[’òþLù¨nׄ[œåO¿?ùÓµ šp‹³üÿyÉ—Ïࡉ¶(di壂eÑ„[œåeËKk¢­'Ú2Yiåsè|Š-ÉÊúCÓ5ÓÖŒnq–?•¼$Ê1í¦‰¶(eIäóæqÔ„[”myç%QήgM´e²ÚšËÀ®ÅYþ$ðòšiËÈ · ãVY6}‹²¡ÜwK.y±µÖ-6¶8Ë祲Tëñ•$ÜâlÍgpT:ÊŸÃQ^/z½rõsÖ„Zš²´ò9@>›—„[ÕÖBKZœ•¥&¥²™¢@;-úäÎZ.c‡£¼ÞóÒ\êÕ>I´e²ÚÚhN Ymíô.@ ²Ú:Êu-ȸ5-Ê.ò.—3¦]jI6Nü.¯õDîp”?sü.¯S¹Â& ·8ËŸ9~ÿÖ¹\9„[q«l]ûe#¿;y«“YîP´æO/…œ,«&ÚªY¹Ë3¸ÝΣ&Ü’ì"KD)àGù3ÂKa[Ë•>I¨%Y™:j¯w $¡–dù=fjúO®ŒøóòPJ_‘l(çµU?u’p‹³¼5¢š|d\v PG¢i+ŸT.M£&Ú¢ìR®ë×ÖT×}N¸YmÍõ˜[ÕV½¦Óµ8+W—ë¹Úžy§M“Úê²ÚZêº-Îò:KËt/Ç–‹&Ü‚¬¶¶ºÅÁgùòØ©Uv$á–dÝ!ëþhׄ[qk›}«dKYn4]ýsB-Éòš1Ót t?›nIv‘å•“£%ÚªY¹zɯ8—{m’p‹³|–ËKb¨×–$ádÜÚ}©Dåªñ z‡™-Q6èrXë½xN¸ÅÙ<ërXë…mÕ¬\&¤UŽ9Ñ–Éjë Ñ¡%Ù¥,Ò˽LM¨%Y9ÒÝ¥Uï™S¢­ÝÞYË1QÙŠ™;ë-»Ô»F¥5Õ«l’PK³A–D>n<M¸EYyÐ`©µÔ=;'Üâlßd˳‡‡&Ú2YmÕ«!]‹³í%1Õ;’p 2nå³0×¢l,gµUïÎK×ÂŒ[eì[&«­½îù±·ö µc«œÑ] ³ÚªÏŸt-Èjk¯ç4Ø‚¬¶Žz¶‚-ÈJk£5Z˜ÕÖì—fµµÖãlAV[[=?Àdµµ×½5¶ ãÖØ/{ÌJk¿øå…YmÕ]wׂì3Z[Ù’u-Èjk¯W‘°YmÕ=i×âlÙdûp\èó¹lmû€Ym õʶ ãV9ì[&«­‘>UЂ¬¶ê¹UׂŒ[‹ ²Úšé“-Èj‹®eb ²Úª´¨kAÆ-?õ«›ú5˜zÉ.¼M=è4îØ¨vŽzŠ qg_]§Fe;WÖ™¼“¸Ð{JIiõ·Ê›¾e²Ú¢;0Ø‚¬¶Öz5[ÕÖVîÆw-ÈJk¨Ï’` 3n•óÓ¾e2n-ýÔcV[3m  Ùgµ‚Rסë|X‚¬¶öz[ÕVyÚ£+Ù¨tò1ÓÖ„·Ž~¹cV[s½+Œ-Èj«>ËØµ «­½|bºdµU¯Ïw-ÈJ«¸ ~A`V[åÂmW²Qíì·ýDAT:åžC?M˜ÕÖP¯ c‹³‰Ÿ¦dÓ¤µ6leŒ®·ÖÁ·ÖîëÕ ®ÅY^²•êãOpÇFµC4 c#é¾stºÙÁN‹¸³Ï®³Ã4ç­âÔMDµ3ºi†è“;í„mÇFܩ촨vê™TLRõYz¬Ø¨vv?Å{7Å|ßv âNÿZqgó ;œØŽjg¤`Û±QíL·ÝB¶ 7ÜOýÓ-\èØ¨vxÃc;6ªú"vlT:åBQ7Dµ³× HБˆŸâŸÊóbõs;êSü-f:úÈÉbn-®µÒ1*´8»ðSü5©ó{ѧøû¬´ÊÝC×ÂŒ[K?fµEgçØ‚¬¶ÆòÌUׂ¬¶:’€–d2Syʰœ¥sR[’ ù˜“¶CcÕ„[•Ö@gÎÐ’lg]“r;J.Ùˆ;kPZ»V>çÚûd¥•÷ÆãÚµ0+­²ˆ¡Rƒ¼ÒÚ7LõY}I¸Yi•=B߬´–¡lРQíÐy.– +­µ^'Çfµ5Ôc)lAV[³ŸCÍþä [½ï/ µ$[YNLÃAÏ pB-Ìrkê=GhuYiåÏ{•‹¶…Yi彺kaVZ;=Å-ÌJë(b "é¬AiÅÖVÓ±YnMºZa[]VZ券›ö.+­r»u-ÌJkÚHgÚf¥•פòt´0«­½h®Yiå-ÏØ…Y:ÍÓ†3Èrºe£;z†ÓõYÜê\r ®ž;öìͱ8tpÉ)8j¡ƒKNÁQ \r ®¶óÉ8tpÉ)8j¡ƒKNÁQ \r ŽZÞ¼E2\r ®¶óÉ8oÞ"‡.9Ç-ppÉ)¸Úê\r Ž[μE2\r ŽZy‹dœ3o‘Œóè-€qàà’SpµÕ9¸ä·ÀÁ%§à¨….9Ç-ppÉ)8j¡ƒKNÁq \r N[ÆÁ%§à´e\r Ž[àà’SpÚ2.9G-tpÉ)8nEæ-’qÆÁ%§à¸.9G-tpÉ)8m—œ‚ã8¸äœ¶ŒƒKNÁQ \r Ž[àà’SpÚ:B˜7/ã"óæe\dÞ¼Œ Í›—qyó2.2o^Æ…æÍ˸À¼yçÑ›ƒq¡yó2.4o^Æyôæ`\dÞ¼Œ Í›—q½9÷Qóɸ5‚q‘yó2.Po½‹óèÍÁ¸È¼y¡7ãóæe\`Þ¼Œû z `8¸ä—ÀÁ%§à´Õ›·HÆ9óÉ8tp©WpT—œ‚£:¸ä\mu.9G-tpÉ)8nƒKNÁQ \r ŽZèà’SpÜ—œ‚ã8¸äµóÉ8oÞ".9G-pp©WpÜ—œ‚ã–3o‘Œóè-€q½0Λ·HÆ9óɸÀ¼E2\r Ž[àà’SpÜ—œ‚£–GoŒ—œ‚ãVdÞ"×›·HƃKNÁq«7o‘Œ‹Ì[$ã¼y‹d\dÞ"g\:õ Ž[‘y‹dœqpéÔ+8nƒK§^Áq+2o‘ŒÛûRSpÜ—N½‚Ó–qpéÔ+8j…æ-’q½y‹d8¸tꜶ¼y‹dœqpéÔ+8mõæ-’qààÒ©WpÜ—N½‚£V`Þ".z§-oÞ"×›·HƃK§^Áq \:õ ŽZ½0Λ·HƃK§^Áq \:õ Ž[ààÒ©WpÚ2.zÇ-ppéÔ+8muæ-’qèàÒ©WpÜ—N½‚Ó–qpéÔ+8nƒK§^Ái«7o‘Œ—N½‚ãVdÞ"g\:}²y‹ZààÒ©WpÜ—N‚ã’upéÔ+8*¡ƒK§^ÁqË›·HƃK§NÁié' · c\:õ NK½y‹dœ7o‘Œóæ-’q‘y‹dÜäZFÁQ \:u ŽKÖÁ¥S¯à¸.zǭȼE2Î8¸tê—¬ƒK§^ÁiÉ8¸tê·ÀÁ¥S§à¸d\:õ ŽJèàÒ©WpÔB—N½‚ãVÇÞ‹—N½‚ã8¸tê•ÀÁ¥S¯à´d\:õ Ž[Þ¼E2Λ·HƃK§^ÁÕVdÞ".9Ç-oÞ".9Ç-ppÉ)8nEæ-’qÆÁ%§à¨….9Ç-ppÉ)8m—œ‚ã8¸ä·"óɸ½/í/™7/ãóæe\dÞ¼Œûˆy‹d8¸äµÐÁ%§à´e\r Ž[àà’SpÔB—œ‚ã8¸ä·ÀÁ%§à´Õ›·HƃKNÁq+2o‘Œ3.9Ç-oÞ".9G-pp©WpÜ—œ‚ÓVoÞ"·¾$ã>bÞ".9G-tpÉ)8nƒKNÁQ \r Ž[àà’SpÜ—œ‚£:¸äœ¶ŒƒK1o^Æ…æÍ˸À¼y™7/ãBóæe\`Þ¼Œû{s,\r Ž[àà’SpÜ—œ‚«­ÎÁ¥^Ái©CoŒsè-€q½zó.Î:¸ä—œy‹d8¸Ô+8K½‚ãRÞçÐ[ãÀÁ%§à¸.}̼yçÑ›ƒq6o‘Œ Í[$ãzóɸȼE2nw-'ãóÉ8oÞ"çÍ[$ãœy‹d\`Þ"çÍ[$ã¼y‹dœ7o‘Œ‹Ì[$ã:óɸÀ¼E2î§š·¨åÍ[$ã¼y‹d8¸äµóɸȼE2®7o‘Œóæ-’q‘y‹d\oÞ"çÍ[$ã¼y‹d\dÞ"çÍ[$ãú©· ŽK½0.@oŒk.9WJ/˜·HÆõæ-’qÞ¼E2Λ·HÆ9óɸмE2Λ·HÆõæ-’q?ݼE­Ã8oÞ"çÍ[$ãzôÀ¸Ð¼E2®7o‘Œóæ-’qÞ¼E2Λ·HÆ9óɸÀ¼E2Ρ·Æõè-€qy‹d88+ã>bÞ"™·HÆõæ-’qàଌû z `\„Þ×£·Æ9ôÀ8DoŒóè-€q? ½½0®CoŒëÕ›wq½0®GoŒ‹Ð[ãz `ÜÖwŒsè-€q½0Ϋ7ïâº)`œCoŒsè-€q=z `œGoŒ³`\`Þ¼Œûˆy‹d88+ã>lÞ"š·HÆõæ-’qÞ¼E2Λ·HƃçÍ›—q1o‘ŒCgeÜÇÐÛ'˜·HÆ9óÉ8oÞ"gœ²¸›·HÆyóÉ8ÞçÌ[$ãóÉ8oÞ"7÷sˆ ŽZèଌû y‹d\`Þ"çÍ[$ã¼y‹dœ7o‘Œ ÑÛÇÍ[$ãzóɸÀ¼E2Λ·HÆyóÉ8oÞ"˜·HÆ9óɸ޼E2\BWþIæíKþ“qyR—áªÜèœòÿ½äsÞ/ì_”Wg'¤e²šWg? È(âì(-k£ˆÃ4㞀8ûñl™l£ÄÙÍXËt,q0–fm,q8–d²9g7úšéD@œÝÍhfÆ"‡cqÖÆbcIÖÆbci¦óÈ æQ³68‹³6] â`ºZ&èAœÝ-›LÇ"‡ci¦cí|ÂhÇÒLÇ"‡cqÖæ‘DÌ¢Dº´ÄÁÒÒLGbCIÖ¦ŠALUËdÄÁj&jâìá\ËäÐP@œ=€4eЇ3G¢-’SAápö„±er"+Ξî¶L®M±†³×¯Z$ËÃÁ%5Íô¢'c8¸4ª™Ü7` gï-hdFšè¦ŒÄYé ãK;’Dr+ƒ!ÜðÐLo‹0„ƒ›'šÉvpö.ŒDí–38¸1Ô2¹{Ä n1i&w«XÁÙ;Zé 6RppN#¹UÇnèi¦·ýÁÁÍAÍô"#8¸Ñ¨™Þ®d75[&·>ÁÁ RÍô6*#8¸Ùª™Þ’e7n[&·wÁÁM`ÍôV138¸¡¬™Þvf7§%k·°™¸Áî–Éíð.Á–ÞZg7à5ÓÛô áàf~Ëä–?S8x0@3}|€)DAž´ÐHÚ` vh¦Ï0‡ƒ‡D4ÓGI˜ÃÁ'-“‡W˜ÃÁ#.šéã2 âà¡ÍÚXDâp,ÉÚXDâp,Éôa&qðHff¬J⺱8kÓE$§K²6¡8K²6]„âpº8k41ŠƒÇžZ&G1ŠƒG¨4Ó­ÅÁãXšéC[ŒâàÑ.Íô0Fqð˜XËäa2FqðÈ™fúø£8xÈM3}ŽQ<0§Y‹PŽ%Y›.Bq8]’µ±HÅÁPµ©bS¥™<ì'(Î>Ø2‹T ÅQ›&Rq0Mµ¹cs§™¾ƒŒâà”¬­ Œâ`m¬­YŒâ`Í’ÌŒµ»/Ê׬M£8˜.ÍtIÅÁ,J¤#1Šƒ‘4k#ŠÃ¡$kcRÁ±8ksxÀ§‰[œ™±þTر8Ó±ÅÙ±4Ó%/(Î.yÍtû (ÎnZ&ÛAqv[Ó²61K²6Ý~ű$kc­Átqfæ‘PÎãîÆª*‡¢ÈŒD(GâÌ,yBq¸ä9ÓwQPœ}5kc1Šƒ±$kÓÅ(¦K23¡8‹3kï—–d0Öᦋ33¡8‹33¡8‹³¶¼ø6-,/ÉÚXŒâ`,ÉÌX„âp,Î`¬}ñcÕ¬Í#£8˜GÉÌX„âp,ÎÚt‘ŠƒÉâ¨Ä(F’¬M£8˜ª©ßފñ83SµóþÏNÖÞíÅÙí fºÿgw@šéžLPœÝ•iÖÆbcIÖÆbci&{XAqv«™>™/(Î>¾¯™RAq hfÆ"‡cqfÆâ-#ŒÅ™‹n†áXœÁX&Á–‹PŽÅ™‹¯`,ΔN‹³À¢eÂ0„ÅY¬¡™’aq~hfÆ"‡cqfÆ"ô†cqc™¤ké<2ŽƒyÔ¬EWþp,ÉÚXÏ‹³¶ìÇÁ²—¬½Œãà}”¬­÷Œã`½—¬Å·Ða,ÉÚt1ƒé’¬Í#ó8˜GÍty1ƒå¥Y‹xŽ%Y‹€ŽÅY['ÈÁ:!hNù‘9ƒ”Z¶ëòb"gX”fЧ”Èb¥™r-%ruiÖ€ØÞ{´˜Q˜ÈÁ(œ™Q˜ÈÁ@’Yþ!9'骑CmW£Fò„ÈY¸'Y‰…œIÐ\›&!svš8“‘Ôǵ‘4Ò‘”Ç™‘4k#±Ž³#qdFb#qÖFbgGâH—“Ò8³œ4k#±•³#qÔFb#iv(f#gÙ¥fŠ7ÆYâ©™BPq–‹j&¦T\œq§™‘ª‹Ã(²ã‡‡"A®‚â,…ÕLÁ¬ 8Ëj%S{+&Îø\‰ìH‡›[”µ‘XÄÙ‘4, ΢aÍ ˆ³LY3±ÌâáŒwÖHQ´p8K§[&ÀZ8œeØš‰! gœ¹Ff$º»‡#qÖF" #qdF" ‡#qÖFÚ{C¯‘‰ ŽÄ™ŽDÎĉ‚}ap–õ·L¾"@œý"–µ±V›pkµ¿™ƒÃ±$kcƒÃ±$Ó±˜ÁÁX’É· ˆ‚3ß” ‘~‚ 8û¥ šéW3‚³_àÐ2ù2Apö+#4Ó¯Ÿg¿¤B²ö…ÂÛì×b´L¾<£K°¥_Ä!Î~]‡fú¥‚àìWh¦_#"Î~ÙHËvG:º°_\¢™~½‰ 8û%(šéW¥Tg¿M…‚6 #8E²6 #8H3ùòApö+^4Ó¯”g¿xF3ýzapöKl43cÑé8g:]láìdi$s(ÎÎaËÚHôˆ*%™ŽE†’HGb #IÖæ9ÌŸdm,q0–f:ULâ`²4Ó±»ÁX’µéÂ[í=dï¡dúÕG‚âì$iÖÆbcIÖ¦‹QL—dmÅÁ¡‘ž—„³'&𵑸¤ÎŽÄ‘‰(ŽÄ™žw †³ç]šÉXŠáÌX-“±Ù±Z&烊áÌù ÉøÜR1œ9·lŸ¥ª…kg©-’3g¥pæÌÙd|µB)œ¹ZÑ2¹ò¡Î\ùh™\‹Qäf®Å´L®ëôI×âkDbáÌ%"‰ôj“R8sµ©eråJ)œ¹re²‹Îaµpæ"˜FrmN)œ¹6×2¹Î§Î\çk™\3T g®šl9d g®»·L®á+…3×ð[&÷”™{ &ãûJáÌ}Š–É=±pæ–‡Fr÷D,œ¹y¢‘Ü/T gnšlùc gîcš¬EÇ’¬EÇ¢LŸ Q gž i™ëÈEfθÌEΛ¹PÃy3h8oæ" çÍ\¤á¼™‹4œ7s†óf.ÒpÞÌEΛ¹HÃy3j8oæ" çÍ\ á¼™‹5œ7s‘†óf.ÒpÞÌEΛ9¯á¼™‹8œ#s‘†óf.ÐpÞÌÅΛ¹@Ãy3i8oæB çÍœçpŽÌEΛ¹HÃy3q8Gæ çÍ\¤á¼™ 8œ#s‘†óf.âpŽÌΛ¹HÃy3ç9œ#s±†óf.ÐpÞÌΑ¹ˆÃ92h8oæ" çÍ\¤á¼™ 5œ7s†óf.ÒpÞÌ…Λ¹@Ãy3i8oæ çÍ\¬á¼™ 4œ7s‘†óf.ÔpÞÌΛ¹HÃy3p8Gæ" çÍ\Àᙋ8œ#s†óf.ÒpÞÌ…Λ¹@Ãy3i8oæ" çÍ\¤á¼™‹4œ7s‘†óf.ÒpÞÌEΛ¹@Ãy3k8oæ çÍ\¤á¼™‹4œ7s¡†óf.ÐpÞÌEΛ¹HÃy3i8oæ" çÍ\Àá™ 5œ7s‘†ófÎs8GæçÈ\¨á¼™ 4œ7s‘†óf.ÒpÞÌEΛ¹PÃy3p8Gæ" çÍ\¤á¼™ 4œ7s‘†óf.ÒpÞÌEΛ¹HÃy3j8oæ" çÍ\¤á¼™‹4œ7s†óf.ÒpÞÌΑ¹HÃy3i8oæ" çÍ\¤á¼™‹4œ7s‘†óf.ÒpÞÌEΛ¹HÃy3i8oæ" çÍ\¤á¼™‹4œ7s‘†óf.ÒpÞÌEΛ¹€Ã92i8oæ" çÍ\¤á¼™ 5œ7s†óf.ÒpÞÌEΛ¹HÃy3j8oæ çÍ\¤á¼™‹4œ7s‘†óf.ÒpÞÌEΛ¹HÃy3i8oæ" çÍ\¨á¼™ 4œ7s‘†óf.ÒpÞÌEΛ¹PÃy3i8oæ" çÍ\ á¼™‹4œ7s‘†óf.ÒpÞÌEΛ¹HÃy3j8oæ" çÍ\¤á¼™ 4œ7s†óf.ÖpÞÌΛ¹HÃy3i8oæˆëÀ\¤á¼™ 5œ7s†óf.àpŽÌEΛ¹€Ã92i8oæçÈ\¤á¼™ 8œ#s‘†óf.àpŽÌEΛ¹€Ã92j8oæ çÍ\¤á¼™‹4œ7s‡sd.àpŽÌEΑ¹@Ãy3h8oæçÈ\¤á¼™ 9œ#s†óf.ÒpÞÌΑ¹PÃy3h8oæçÈ\¤á¼™ 8œ#s‘†óf.àpŽÌEΛ9ïáz1j8oæ" çÍ\¤á¼™‹4œ7s‘†óf.ÐpÞÌΑ¹HÃy3j8oæ çÍ\ á¼™‹5œ7s†óf.ÒpÞÌEΛ¹PÃy3h8oæ" çÍœq˜‹4œ7s¡†óf.ÐpÞÌEΛ¹HÃy3i8oæ"çÈ\¤á¼™‹4œ7s‡sd.ÐpÞÌEΛ¹PÃy3i8oæ çÍ\¤á¼™‹4œ7s‘†óf.ÒpÞÌEΛ¹PÃy3h8oæ" çÍ\¨á¼™ 4œ7s‘†óf.ÒpÞÌ…Λ9¯á¼™ 5œ7s¡†óf.ÐpÞÌEΛ¹€Ã92j8oæ çÍ\Àᙋ4œ7s‡sd.ÔpÞÌΛ¹€Ã92i8oæB çÍœãpŽÌ…Λ¹PÃy3ç9œ#s‘†óf.àpŽÌEΛ¹HÃy3i8oæ" çÍ\¨á¼™ 4œ7s‡sd.ÔpÞÌΛ¹HÃy3i8oæB çÍœãpŽÌ…Λ¹PÃy3ç9œ#s‘†óf.ÒpÞÌ…Λ¹@Ãy3i8oæB çÍ\ á¼™ 8œ#s‡sd.ÔpÞÌEΛ¹HÃy3ç5œ7s¡†óf.ÒpÞÌEΛ¹HÃy3j8oæ çÍ\¤á¼™ 5œ7s†óf.ÒpÞÌEΛ¹PÃy3ç9œ#s‘†óf.ÔpÞÌy çÍ\¨á¼™‹4œ7s¡†óf.ÐpÞÌΑ¹PÃy3h8oæ" çÍ\¤á¼™ 5œ7s‘†óf.ÐpÞÌEΛ¹HÃy3i8oæB çÍ\ á¼™ 8œ#s¡†óf.ÒpÞÌΛ¹€Ã92i8o漇ëÅ\¨á¼™óΛ¹ˆÃ92ç@\æçÈ\¤á¼™‹8œ#sžÃ92i8oæB çÍ\Àá™ 4œ7s‘†óf.ÔpÞÌyçÈ\¤á¼™‹4œ7s‡ëÅ\ á¼™‹4œ7s¡†ófÎk8oæB çÍ\¤á¼™ 5œ7s†ófîÓþ¼œq˜‹4œ7söÏË]®ò»»-úgææ|¤šÿo>̇ü)„?3'¯ÖÈ\ë¤Åj®U>ëÏ̵–9ÛÂ,2g[˜%CæL«1:Az Ñ5Ê×eÉ9ÛÂ,Dg[˜%CælK3¥|‚è,øÃ,2gZš5 ‘9ëB2÷9fΨ3&s@Ó0KÌaëóþÌ\Ãp™ó°Nåw;þM]1sÖ¦I¤èLÈœ¥i]– ™³€ ³dÈ´ K†ÌÙfé2÷™f®µDÑÙdÉ ¹®5¸±¦Õ·¦[Ìæ Y2l®k­8Âæl ³dà´$;š®ÛÁ†wQ2nÎvl”Œš3ˆ’1sØiQ2ˆÎvvàì*æºÎóÅ^Îv JÍËAÇFI¹\W¹b+g+¥&å 3tK™tl”š’ƒŽR3rбQjB:6JÍÇÙD©é8èŒOe×uvì¬Ýï¢ÔÄ›í@ôÉ2qбQj":6JÍÙF©i8Û‘Hi.k8ëw1J ÃA ³¤J%ÕpرQjJ˜¥†á°ÕÃcÁpÐÂ,5 ‡-ÈRÃpØâL³`8K»,5 ‡-ÈRÃp}k±"Z,œQÓ--βé.KÂA ³Ô(´0KÂÙV—¥Fá …Yj[¥Fá …YjZ˜¥Fá°Yj[¥Fá %™r¡pšk&†\$œqæ%…p¶b“ÔTl”šƒŽD‚ÕÙÀYÑ.‘Ru6pÖ³K$R]œÑì5¨.Îrö– Tg9»f"Õſ͎Qjú :6J;AÇFIé›­p¢&^à›…ó]–|ÖdBç¾Y`¯™ÒyoØwYjð [œ)°øf¾f ì¾Y†ß2öß,Ã×L½À7Ë𻬶ˆr`‹3eøß,Öï²Ú"ø†-ÈjkÆÚñ«ëD¾Y÷Qí|ÃdÜZfßZðõ¾AK2ý oö‹4Ó¯øf¿h Ë¸Uà[ß*Yû¢oö뺌[e;Ù·(“¯#øf¿´ Ëj‹à¶ +-¾) -Éô« ¾Ù/@è2n­«o­«¹÷¤ðÍ~MBËä[ ¾Ù¯6è²Ú"ø†-ÈJ‹ä”8Ò/@øf¿&A3ýoökº¬¶èlAV[ß°·ÊÍé¾e²Ú"ø†-ȸµºWäL¿ÁAà›ýš‡.«-Úša 2n•[.}ËdµEð [qkŸ} ¾ÊTá›ýŠ.«-Ú2b‹3ý !mök*ºìc-ýš oöË,º¬¶èh [ÕÁ7lAVZ ß …Ym|Öd‡r/‚oö (ºŒ[uKÕµj¦_@Ñ%ØÒ/ øf¿¦¢Ë¸µï¾U1\ãÞß, ×L¶À7 ¹%kôUà›²’5ú*ðÍYÌJKà›maV[ ß Ym1|ƒdµÅð Zœ5’+ðÍÂ]Ìj‹á´ ãÖ²ú–Éj‹à¶ «-ÿ ]VZ ß …Yi1|ƒfµÕO[ß/cV[ß°Yi1|ƒfÜšFßšpº˜¾a‹³Fœ¿„–¬g¾¦³Ôø›mµL@¨ð7ËF»,5‡­µûSžà,.í²Ô¶ KÀa‹3%¨‚à,Tí²Ô´0K Áa ²Ô\ß:º!8lA–ƒÃgŠ^ÙÁY‹Qj®/™,5‡-ÈRƒp} )®P¸¾µë gÁn—¥†á …Yj®o™,5 ‡-ÈRãpÐÂ,5‡-ÈRãpØZº?+ ®oÕLQ²€8K—»,5‡-Ê]gs—¥†â°%™gAq–AwYR%ˆRcqX‚,5×·Vû¯²8Ë®»,5‡-ÎL ‹³¬ºËRcqÐÂ,5‡-ÈRƒqÐÂ,5‡-ÈRƒqØÚûWd-ÌR#o}kß~J‹`¶ K Æa ²Ô`¶ K Æa ²Ô`´0Klã°²Z>/0Î"û.K Æa ²Ô`¶ K ÆÙV—¥ãúeÂÕÆYÔ®™(s†q¢K¢Ä\Xœ…è]–‹Ã–dÑÙÅY­ŽQj,K¥Æâ°ÅY£Ìâ`HÖ˜³8À˜¥Þ°Ùg´vÿg™0KÅa‹3•(¬â¬VÑHq £8 4’5hÃ(8gÍì°‰³®G#Å?Lâ€IÖ “8àF’©IbgÝ’D 71ˆ¥™B)qÀ©$SsÅκ,‰g±˜fJÊ„ÃYx&™ê4ÑpF°IÔ˜[„á<™ gafÊïºY¤'Y£|˜@˰@æp€5SbÈ  ¢d+2ˆÔˆYj$Z’5 É$¥d [2‰’©™ÂMFqÀ;%k”QPQÉ(eìT3ũ̉JÖ +³8à°’54Ë,h­d à2Œ¦«Ù®ó¸2æÝÍöäydlj¶jV¡öÆ ·$Ûd1ÁVÙ"ŽÒj–J”×%™CºòÇ —$Ûu ÇqÂ-ÎŽUç°ê8¸T¢õRîãY' •$ËïþÊÜí4‘5àŽD•k5 ' µ$Ëo;Ïa8I´U²±œ9IiÓ@;5†²_mNnI¶Ëü…“„[œå÷}â,N.Q”ßõÅR8I´DÙ¡óWïùJÂ-ÎÊsÙüz´Eâ„[œ-³Îa]’’p‹³<§<‡Dá$¡–f»Ì!Q8I¸Y£pØÂ¬Q¸®ÅY^Enë¢ · kεj–_™—*Q8I¨¥Ù!K•(œ$ÚªÙ±ÉR% ' ·(ËÿrÄÜ0œ$Üâ,¯q¼$ÃIÂ-ȆƒV—5×µ$«ç­ÃIB-ÌTÄu%ŠÊÓî£tÖ–h©fy§eÊ Nnq6×s‚Fâ$¡–f[=¬âäŸT1ACq]…3z’³¡8I¨%Yþ ¬4EUÅI@%‰ö²h,N.qVžw¦×#' µ$Û'¦PÌâ$ágeM¥W$' · k0[˜5‡-Í6^Z ã$©-Éæ‹°*¦q’PK2z’³Ñ8I¨¥ÙÎË‹iœ$Ô’l:F:N*q”ßqšCÆq’´RÉæ‹Ì!á8I¸%Y‡ã$©-ÍòšDsÈ8NjI¶ Úc' µ4;ÇIB-É6„Œã$¡–dû$hpœ$Üâ,¿ç€ã$¡–fü$kõqòÏR á8¨H¶äõã°PN’Òòî-Òq`áÒçýA¹»·HÇ9÷é¸ÎÂ%'á¨åÝ[¤ã¼{‹tœwo‘ŽC —œ„£–so‘Žë,\rŽZhá’“pÔ ÜÛçüA¹¹·HÇ…KŸÿå"÷æu\àÞ¼Ž à›Ãqto‘Ž‹Ü[¤ãœ{‹t\àÞ"çÜÛgþA¹¹·HÇy÷é¸Þ½E:.ro‘ŽëÜ[¤ã÷é8°p©—pZêà[€ãzøà¸¾8®ƒoŽ à[€ã¾8Î÷Çð-ÀqGWéQ›ƒoŽsð-Àq¾8ÎÁ·Ç9øà¸¾8Î÷Çð-Àq{ßq8®‡oŽûið-è8øà¸¾8Î÷DžKNÂi á[€ã¼{‹tœ‡oŽëá[€ã÷é8çÞ"¸·HÇy÷é8°pÉI8jî-Òq‘{‹tœ±p©—p\².9 G%ïÞ"çÝ[¤ãœ{‹t\àÞ"¸·HÇ9÷é8ïÞ"¸·HÇy÷é8çÞ"‡.9 Ç-°p©—p\êá[€ãœ|ó6ÎÁ·ÇY —œ„£X¸ÔK8îX —: Çká’“p\ —œ„£Z¸ÔK8.9øà8ß×÷ÇY —z ÇïÞ".9 §-cá’“pÜòî-Òq`á’“pµÕY¸tê%·ÀÂ¥S/á¸.z §­Þ½E:,\:õN[½{‹tœwo‘ŽÛÝX{ÿ%u| p\äÞ"×¹·HÇ¡…K§^ÂiËX¸tê%·"÷é8cáÒ©—pÚòî-ÒqÆÂ¥S/á¸åÝ[¤ãœ{‹tZ¸tê%·"÷é8cáÒ©—pÚ2.z Ç-ïÞ"çÜ[¤ãÀÂ¥S'á¸Óÿ¡áNÂqË»·HÇy÷é¸È½E:®wo‘Ž‹Ü[¤ãÖ¡o G­À½E:.ro‘ŽëÝ[¤ã"÷é8cáÒ©—pÜòî-Òq`áÒ©—pÚú ÷æ[qo‘Žóî-ÒqνE:.po‘Ž —N½„ãVäÞ"g,\:}ؽy÷Q÷é8cáÒ©—pÜ —N½„ãX¸tê%·ÀÂ¥S/á´Õ¹·HÇî-ÒqÞ½E:λ·HÇ…K§^Âi«wo‘Ž‹Ü[¤ãz÷é8ïÞ"çÜ[¤ã¼{‹t\àÞ"‡e$ÿÜ»·HÇ9÷é¸Ð½E:®wo‘Ž —N½„ãX¸tê%·z÷é¸ÎÂ%'á¸åÝ[¤ãÀÂ%'á¸åÝ[¤ã¼{‹tX¸ä$œ¶:÷é¸À½E:.ro‘ŽëÝ[¤ã¼{‹tX¸ä$œ¶| p\ïÞ"¹·HÇy÷é8cá’“pÜrî-Òq¡{‹t\ïÞ"çÜ[¤ã÷é8ïÞ"¹·HÇuSŽ[Þ½E:,\rN[½{‹tX¸ä$·œ{‹tœ‡oŽ‹Ü[¤ãÖ½o}Š{‹tX¸ä$·œ{‹t\àÞ"çÜ[¤ã÷é8ïÞ"çÜ[¤ãB÷鸟æÞ¢–wo‘Žóî-ÒqÞ½E:ι·HÇî-Òq8éFÂÑÏ÷é8ïÞ"×»·HÇÅî-ÒqÓзŒ„ãX¸ÔK8. —z ÇïÞ".9 G-ßçÝ[¤ãÀÂ%'ᨅ.9 G­À½E:·¨åÝ[¤ãÀÂ¥^ÂQ ,\rNKÆÂ%'á¸.õNKÍÂ%'ᨄ.9 Ç-°p©—p\².9 Ç%°pÉI8j¡…K½„ã’µpÉI8.…KNÂq ,\ê%—¬…KNÂiÉX¸ä$µÐÂ%'á¸.}ؽy»7¯ã÷æu܇Ý[¤ãÐÂ%'á¸.9 §-cá’“pÜ —œ„ãX¸ä$œ¶Œ…KNÂq ,\rŽ[`á’“pÜ —œ„Ó–±pÉI8mõî-Òq`á’“pÜ —œ„Ó¸·HÇõÎê¸Ð½y¸7¯ã"÷æu\èÞ¼Ž Ü›×q‘{ó:.ro^Ç…îÍë¸À½yÀ7‡ãB÷æu\àÞ¼ŽsðÍá¸Ø½yº7¯ã÷æu\äÞ¼Ž Ý›×q{ó:.ro^ÇðÍḾ9¸7¯ã>ß·õí%÷æu\àÞ¼Žû | pœµpÇ…îÍë¸Ð½yçá›Ãq‘{ó:.to^Çyøæp\äÞ¼Ž‹Ü›×q|s8ÎÃ7‡ã"÷æu\ߎ Ü›×q{ó:.‚oÇ…îÍë¸À½yÀ7‡ãB÷æu\àÞ¼Ž‹Ü›×q‘{ó:.to^Ç}нE:.po‘Ž[\ $·"÷é8cᬎ Ý›×q{ó:.po^Ç…îÍ븺·HÇEî-Òq`á@Ç}ؽE:ÎZ8ƒã"÷æu\äÞ¼Ž Ý›×q oŽÆ…³:.ro^ÇEðÍá¸À½y¹7¯ã"÷æu܇Ý[¤ã¼{‹tZ8ÐqÞ½yº7¯ãB÷æu\àÞ¼Ž à›Ãq‘{ó:.to^ÇîÍë¸È½yº7¯ã÷æu\äÞ¼Ž‹Ü›×q¡{ó:îEúæh\gáb÷ö§ßœ†‘žœ×µžÿLKž áØóæáêýÛ«ºzwÊÿyäÏÍÕ§áêoóÿþóérõ×§¹-ö8Æ«Wwzõ?¾<ß¿ûúz*;y:¿}ý|ÿøýS­•Ÿ½›¯óÑá±_Öóo¯ó‘Ï‘úÏoß´û°ÿðâ”NsNnK>À1ÓºçÉ-÷ùò&´Næ_Ýóýu~ùeچˑ_ñú¦Ü¾,ûyøŸ×7å|ø2Œç¿¬yÏ+H™|â±/ëùñÁþnžöwå·ËCyûùñkþïi=?kjo)Ïÿ<û:p+ÏÖ/ï¾É?+Å=ÿ`??<<^ßÔ—šæóëú¢Ópœ¿•q‡s‚þÝÓüû‰_è2ž!ÿÎLÌýœ²ÖJ÷¯yQÌ[~“øEó¼@ë}¢W1³»³[že;¿»÷<Ú°žíRK5ò‹üšævpBÞó|G}ýAYÊu®9ï¥y]zúÞ¼MO¯y”m^'ò(1ò ZYCÛ¿p þŸŸŸSýlþñóÅ~üò!ýmy^ârõêÍéüþûo®_ý³ûŒæ Å”·Sµóå9ݽÿ—'^4ûîVªúòó½14Á¢Ì¹uÜøƒZÎ+Ûó}ê>6Ñ åöiçxþ›húóþn^æ;·TÉg Å–kiÜä½P9¢¿É»¡y͇ uN¿øÓ뛥lÜŽñümÞäþëoÿïëÇÇ÷ožø'ûpþ_7­õô}Ê‹çǯZý«ëÿVáþÝÝó[š…ºûÍ»þpØWùîáñù+÷Z?/…¼‚æÏêïî~Íÿʫӟ´©øÙïd”éüeúÕÏ~.?šÎ?¾ø;?ö¿#ø?ÊoÃp)[ÿów¯¿•—7¿<ž‡åç-¿{ú..ý¼ÍÛë·¿ :Ãùé7ïó<§ïžï¿{¸}ÿü£__]—ÿÑɳ‹ìáí7oß½ùê,ƒ‹€Ÿ=?~÷ðöëg]Çþ 8G4¬üÒj{¯¿âù¢:ÿ¼-Åý«k3ÆwÏ·<Ón ši©„«i(#•±‚7äùþ¹l é—pf™wÒo¿}|ÐéÞÎO÷ÿúög¼èòç"vòa[^Åé³SNF–«›rü”ÒêJ?åMËB¯ô÷ôá\§õÈÛ뛩´CþìÏç·ïß¾{ýÖ¼z]÷ë«ßèËOåŠÎ /?Èä­ûŸß=ÕÁòÒó¶þ5¿L~Ërm?¹Kß=è«ôÛ®q׃šW×uÇ›7Oe>õóqÿ‡ OÏïïÊδçÜ¿|óþÑÎXwô<•G)æñLÛSýðæn·‹}ÊW¼ƒÜïìIA^Yø·ûü1Èêù?Ðfr¹\•cºKm¬·ÃZNno†Û|r~̵x¡"NIÁŽãeº²Å¼ÿŒ¶¼·c>ÃÞdªóÎ{*¬"oØ~ø·å£4nCÙ&NõÁ|ÄT6›%ß·Ü¢…u¶|¨\Žæ—eÍ«Äã{ɧr>¶Ö»ÀË1“ýç[î—œÿúųлr0_žs//òüþþÞº¯—yœ÷®,oê”×9iü‘=O/îŸa]{ÿΜÔÕ¶¾f>‚)}gxp{M[ðâ/K·ÿ þ\D›íߨó=ø ûæ—>??üHt~9]èüò‡²²ó©zþí²O†ÏÓ#Åå8Â~äŸ%ß ÛílaÑÖ_ =½V^¤÷ßÀ°åí(_ØœgÆí kž?n/ŸY¶W°?¹ÓiÍ;^šð½O§pÁ\¼¶{—çpž¦¼¾óU„iïWÍöâï‚ÊGé‘Þ¦å¨×0x.¶ó=­ì®È\ø‹<ºv*dŒzi¢ßšc“rE¥~ïâ K~ÙÆ|Ž\®ÌÔßX¶—¯q|ä*O-ŸÉ¥«³®7õGþŠÎtÌõõ®‡¼öS>2~ªÛ“cÙ÷º¬ë4õ—(èÊÙqú}HYêyQÙ_,§ÿõ…Î:‹Ó]®ƒýÊï¹/w†¶áj¨}ê…ÌóðûìÜ÷ríz±ãñÎ}-_ ‘gàÏž¿íW°ɺ–7ó¥oHY!æó_üÍ_ñÂÊ' ¼‰/nˆ6ñ5ŸÏw´}›Ê3u#oßÚºÉgz‚CP¹ZTÿîË3þãÁ;Æûh/V¾ a™Ù‹Ý—½Á4Õ3…$öóCÈ‘ ¬Ýås2ñ1ÌS¸¯._ª²®óÕM9\×:aÿ‘wÄ+ì±§uwÚcoÃ`ç÷ØåùIÙcK‘Ž*û×.{ìA¯Åcå›q’¥‘wüy ”SŒ|žÍÍP´âvHÿÿÔe1ç È>p½›§\Ií˜êìe —Þ/£w©lG·ü.ÙâïÂÇiÞ6ñþ¿ŒæªP¦¼¤a̗ב¼µùØ:²¯¬ø_8ëø‘…³ÝÚþ:x#Ë#Û [©!žƒ­~rìP/-¿éè·¿ˆ^5Ôõ_õcë͇>…: / ÷ù¾„‡é—°n$Æ—p7¯[C?k ÿß–ðð9 æ háµ®MCyh®öþS°PnÆÛ¡nboê…}þð–àæ«ò¹e»ý¡å¼ yD[¼ÿE0‘[¹-½OWö¥?"÷hse_û½û±;Åî\îã¥wÌÛ¸ÁÎåü‹ð¦Õ~»\ô¦ÏWç™^¸Þ6«Ë |ÃŽ\ôþá[‚H'ïíŽ+Z‰ÊÑÎ4ïŸq0ñ.kÝÆ\öõÊÿ0ï}0æÎ¹ä°fÈ-»ô¦Ûüiӣ¿©G¬ySµ­ÑÕ8®ú”©¼Aò‡í2OÚF•ïÄvy¡Œfµ|yÛÒýÁÖÙø P9@F8vž×z“Äßk/W;Ö%Ÿlß¼¿ú)®¿rÌWLžßçó“½^8Îþc¡J¥±»×ãJ=¯?ççþòzž‹N§žX–ïQ(g/>°•k<gdº”•é=ÿþ0Óseé)…þ:Â'Ü †»|å§üÁ”mì.NÂóåAÂëå‹rb\ÎÏž^<¿ë®Rž~”_ÛáÁ:c£Û±m)<– %.'ÝO|‰ôØá ŸNãt~|àÁàGÿ´·z./3òâùØ ÷þ^®» ‡»ÞTÇÊÓN'òs}ÒÁŸÀ–ïãZò¢ªŒyî膩ü9’óoû÷‰–Á¡KšßO˜¨îv9}èZ _m›F}éuäK¥åô|ÈýÁ«øu¼þQ•ÿ]ãçKâß¡°®O=\–+Ï?˜¢ S¡å0Ø õåo‹¹³¯1TìÃlrõÀm|irË1%Ln}h«|ÿïä/¾Ô·dÆ‹’ïa%«­¡¾qu[TGúI—4qmÍám]ê¶óU8Us»n2͸n"+êNûòßî³ü|ß¶eú±­³2—Oݺ—ÛÊzgs™»cºûÝ}º–©Ámy½ÐS¶@÷ÿBO{­ÝçâáîxÒMÁ}­OÔ_˜VºäSö—³œÊÿ~û†½|ãg>:Üo÷üîÑŹ_þ›]Öõ>G¹H•7Xc^j¿Ï-ɱ¨àíÀ—+GHtìÃ7©iúfùÕ¥Ûêå͘}<òÿ¡b8^endstream endobj 176 0 obj << /Filter /FlateDecode /Length 13414 >> stream xœ­Ë%Ç•Þ÷½/fg…YÝ2XWïˆYÆ£‘4¢a‰„µ£Èn’%wuSUÍÑ蟵ωsNĉG[â@Ø÷W_FfFÆû‹ÇŸnŽ«¹9ðü߯_7ß¼úÓ+Sé ÿç«Ç›Ÿ}þê'¿MȵÅÜ|þõ+ºÄܘ¯G¼I!]‹ 7Ÿ?¾úýå³Ûãz—ÌQ.onïðG]¾|©þpÿüááþÝís®Ì—Oå_nm¼–œÂÀÓ'x»G¾üzøËûw*ìoõ}ž^ËMâå|M(>çËÛ×·ýG ÙCÈîòéÃW·ß'ú1¨áŽoåQÜåÿ¡eoImŒ6ýáó_Aܹ!îœ ×â!ú>ýêRn?ÿã«þüÕo0â‰ð1Bôåà’ý5ÉžÞÜüîæÝ«w´öæÏð~ÿÿ#|³ HÊM,Æ]Sºy\È[ Å^ó¤|ÍÄÃqGŒ¿†z‘/îjÖ”xuŽH¸&³!é€ð²GŽpaKJÂðøŒµ#É\kÀ!8x‡õ7D™§P£½F³#"ÛÙJÒq…Ä»%ð%˜øk¶{Ÿ“HvW¿'ÖqŒFˆ7—¶ÄÀ»"åêÝŽ9]ƒ©ÄškÙs ¸kØc¯¦>] (óžÈ[Æ`ð_räÂ1 ýjÊŽ`LЗ‹¹~˜ 0sø«;r”Ò.Š×äöÄ^S&R6?‹D¤%çwÄ‘ÃLe{åBrDììí˜À+¦-ñ†~fºõü3cH•À{¦-„nÔ‹VPÉħ=ÉWCáb¬›=©Z&vObýo%œ»6Š&Pn¦3r$!>·Àüê÷r;‡\®GÞ“@ì))½j‰°!Q¾ oö$É[@&Œ§Äg"žCÞ¹;”¿'$KÌCÚ<'ò„™¿àŽD#$ç3’ù Ë5…=©é‰ãRuKC¥ê–ÊPïÚ²%PnFH´?D Â?'ôªäpJè*iÝžû„¿2Ïǘ·[Â9×C.ˆgÄRÈPÒ[wFŽNÊ–@ÌsÎ þÝ–ô؈*ä‘ÀU‘B†|žÒᯠyïpgD®J×päš‚-—Âñí‰ìϧïä$àpÊ…BI[Ò¿LJ×èÏ—X@Ò kòJ'çØŒ4g„ÓÔ¦rÕJ8&Š¿sF8 `Ë{†úÒä3b™Èîˆg¥d8#”2ÔAÉžÊGê—ÚfÙÏWÅ~¯…pÈPž»rF¨ŒEãá»cY]ΕÃÊaãÎHª©;c[ÎHa‚¤3"W9jŸm ßÊÏéyáÃîÏ)±L :”¾È53‘4—ý±ùÙR›ïo¸NmÚñŒðÓ‰éŒð—ó[€'„S€µ%»' íaÆŸÿLÛŸrG(N€¼[¦Öé–H ÜºÜƒ  µ„Og$6üáÌ D®2µ±ro‹)dKZÚÆóà´ñè—DsFøƒQ÷t 8í@í)϶þp@¦o«ˆÜ;´ï´×H8%üu_$ý*yÏ•pJ2¥-M8äÔòÍJ86 åPüá»Cß#¹Ê`š:!¶ yCè- ïáN‰ÜÝÏ1¦ˆÜ=POaK$äH=  iiš;Sjo¤%ݘz^ˆ„\ÚU+‘·(ÔSØy‹Ú;!Ñü0᫨Ý|Bø*j‘œ‘vU g„ë5ºþ„p¬RMyBä*Ûžp%r•moº’ØH>%ùcdž£^ížðU~yÓN¸m€c‹aO¬”)POsK¸D‚f,¥ð•ôs{™XI½@\Ø}Õ9Éí*Ÿ÷D‡L½­•ôËKÚP„¯*ÜÝþÊùàÞè–!&œ’vÕ”¢á»gC#•[Â1–í)i_H#ŽïžÐÕ|™ÃãŸ;Âwî£Hõl·„Ÿzßr÷•pÌ‘WÂù:Äò)Éý^ ‘7Ííª•ÈfœÓpBø*ìéÛ3±=ôΈ\åy\wGäªØÞb%œ¢°¿Ï_…uÈ i©÷£ˆÇ9[¤DÂoYö¤_•ø w„ ? ÁýÁžÈ91Bl<#œ»sæ±Òá:ç¼ Êq'€Sw1íéVÂ)·¸ö–/‘œN ßÜ¿@¸/¡½åJ8¥É3àšZüÅ~ºÂcÑ+i5Ù{èíHM%@ ÍØ’ØHñg$qȶ]µ¹ÊòÈà–!9‘À!˨ߎԯWI>67N ßÛ“²Æ ]ÉÁášG²'Fˆ¼ÁLlûzGžWÒïy´sGäîiÿ“ï›xÜl%Üo­Džd%^‚åo»#üQÌÑÞq%üU€¤SÂO(sc6ÄH\ׯaVÂi'ìù3’ÚUå”pº6~E‰Ò®Zǘ £C1¾*¶ñä•H¬¦qN«„ ªºþmP1TuÜ b¢U´zM«„ ª8‡%D«¨‡­UBU]Ã6¨˜(¯bSªFÕüô ªº’mP1Ñ*Z˦UB•›Z ª8ßQˆVÑJ4­2¨êZ´AÅD«h5šV Ñ* ’úsø{]»5H˜ ªºzkP1TumÖ b2¨Ò(™R1¯gÒ’°¶’h¹Ò 2sÛ•×+ "&ƒ $ "“f¬Y™Ty-ϦF#“jŽƒ°‰ƒ0µTu¼vP1Ñ*Zé£UB•›Ÿ^È òóÓ Tiþ:B&Õ|ǵeÍklUÙ„U¦vH#“*æYçïHî¢V ™Tc«³‘I5¶iTfNƒB•]žËnžËNm­F•›Z° *¿<—ß<—_ÞÑoÞ1LíÉFU^ž+ož+/qŸ×¸§UZ%dRMiBÈ 2Sÿ¶‘Ae•ݪ¦/”7_ˆÖv *·U•0«ÊòŽ~y.¿y®°ÄWØÄW™Zwh­àÐ*!ƒ*L-ØFU\Š›°æ¶i#“Ê/aù%¬ºcP1Q*^a¡T ª0…ÕÈ šß±‘I5‡·a•E5·øyÄ b2©æ°ò&¬²<}Ù<}YÂ*kXu!„1˜5qmBr‹jN¼ÖaP™5NiµÃ ²ë·¦õ“jîÓðЇAå—Þ¯yTL´Êαeר²sª‘IÕòì´faP™MX¸$a4uM b2¨üÔWidPÅù~q½_šãSÈ ÊSO²‘AU¦>[#ZE+ ´JÈ  ó… ª´„•6aå9¶„ ªºÂ`P1™TÆÌª¹ÿÇ« ´JÈ 2SÏ®‘Aeç; Tnêq62¨ª{;¨˜h­%Ð*!ƒÊ-*·U;«‚UuEÁ b2¨òV^âYüZ%dPÕyüƒŠ‰VÑ |­2¨êüúAÅäoPÕyøƒŠIWÉ æ®êdP…qdº“A•Æös'Ze§àN´ŠæÕi•­¢™?Z%D«hîV Tn¬c;Tu¦Ì b¢Uu²Œ14qk@kÒ¬I«fGêdPå±éD©Ä™ïªFºê7§þ!t-±½aãè8CχiЉð‹Ëý·¼Ij¹ü3me uy¼|G¤ÂUåòðZýwBMšÖ—LJ¯x/ÔhøR=½ÿîöwRµ1]Þ?UW±ÿõÚÆ?½r8ÇK™¿av ´^¶ÇTÀYz*î0¦VU'ÝÅw¸ëÆÐs뤫|M¤¿`'JåqJ—Ω(Uòa¹ê¤«æ7Òïø£æ 8œÏ„Eß0´CbµšyÅ?}ÿxkpŠ|Š—ïßÞxø·[‹åMr—77¯ž?<ÝÞ Ã/o Εˆîòý8Y¢f?±µ(Ã[Þë²ìšà-Uy¦2L¦žo‚®E>ç0×c,A‰r%<±Š˜ºi­‹PI' &òdCi ZHPÄ  tÅï…>FKí"¶KnB6¼ÂÅL¶w†È¨¹Â¥£.'†·©FS·z™&Ò"â꣯ØiÅÁW_m+4ˆp£ˆR_m¬qêHá²N°cR·Ðuº÷Øp‚†pý =²ñPϨwÙÁ»Àå;õ pØ“KNhQ¾mEz+4Ž‚A½ë*"¸ HÊu6¢«{`Iãë<$Ð;³HõÚ)C‰™ê=oi%u„O%@]ƒè ëÜaå–ãðäÔ ð8[뀀áOÔ˜òî¨ "”64íÌc9Ÿ²M¤)m÷n?0œd¨NòÎ×Á²èef«w±ŒÅ€“bê;@2ÆF` ²ûµ‡”‚y3ìJ×pàKàGŠ"²ÞÊã åMáà†íA–NJs¢×XÞ“õ±d«yÓû\§DHøé‘Ð `„X§¼éƒ1ø‰"¼åM8`Þ„¡-È} ®nŒX“Ô ´<âôËš7!š æÍ˜p8ÂÉu‚rL–÷çó·îàx]µ‡D^gÌ¢o~Ô` Õ왢¯ÙÓót˘R¡ì Õk¢É°M —ýa½ ñ˜j\DÈï˜=yûM 騲#nY³§Çi1˜=ÑP«“Þ=NÀì‰öLÍžÒë5¾G[³'§& ‡–nGN£ì™r](qt¦ƒþ.fO3¨[“×)˜=±SLÙ7ÔÄìYÒÁÙ³îÑèq‚±¿Ò5èSYÜ[Ÿç¼{Ü3«àç†wyð8úŒ{‰â®\ƒ)ïzîk±Œ„×­!sî,4:áLüº#¿ÇñÜ_¥m2ïëúvœÉOŽ6ÈïuóúHÛÙûºDçe:CSÓ.¬‹â}¬Ù:žVäǃ²§´eusé¯è¨ Šc·`2:rÁH¯§ÔŽ"&J”§ëN”hv:EvÙQ„5¹×ã(‘†™:Ñ¢i$­%r~dêdåE”'Q§~v2ŠæÛ…õve†êdÍ!•]Hóƒ—åÁ½Gª:Q¢0M±ìD‰põÌ(¢EqòêD‰ g ýÂN´¨.îDL´¨žQ0ˆ˜(N,4 º‹ÏÁÃîD‹Ühaw¢E“7݉™c´G;Ñ¢º{Ð b¢Eq4m;Ñ¢4:‚(‘5óƒ Ñ¢0ÎŽëD‰ ûŒ%A#ZF¯%òÇ|;!Z”¦Ò©%šç:Ñ"¿ˆü"ŠÓ´«N´(ÎB'J”ìT„5¢EawëdÍ!…5¤8«hQ'»u¢D9ÍQ ¤‹°ûb‡ÈlD‰ÆB.O%\Ɖƒ€–ŒsƒÐ?eîF´¨Œsp:Q¢0MdîD‰pÝà(¢Diη(QãŒÕN”¨¸ÑÊëD‹üè´v¢Ea´’;Ñ¢¼ˆò,*Ð?lÖN´hrú;Q";'ÿF”ȳHˆ™)Ñ6¢Eµó2ˆ˜(‘Ÿ¦Av¢D8EmøÀ(ôA&‘-šÖŽu¢Ee´a:Q"ÜGb IˆA_`Hs´Ä³;Q"HÃq'ZTÆùq4‘Çmt†üÛ‰Åiܺ%2f(ïD‹ü8“¿%²Ó´±N´ÈŽù·-š*çN”ÈM³›:Ñ"3–)(®¼/ƒHˆ…iA'Z4ΰn@Ip? AÂ@KjWvÐ0Q"h°¥ñõ…tŽî +ª:Q"\ž2Š„hQçw¢E;§ƒˆ‰Aa•F‘%rÇh´v2Šò"Ê³È •aJâÇun ( -, <Õrž÷Ñ"!JD[.k‘%‚fýÐ™í¤‹pôl¨,:Q"Æ9(‘ËSZjD‰üTzw¢Ei¬:Ñ¢2ö¿:Q"hs'£ÈÙYä¦x 1Ç„(6 -™–’uÒEŽöÞR¢F´hš܉áž!Ã#5¢Eq*•Q¢Í¨AÃ@I BLêN´Èóy:é"݃aJv'JÃTv7¢DаúL(Qq³HHÜÚIkh‰›Þ­%‚0ô):Ñ¢8§(Q¨‡Fj‘%JS¦“.Âq ¡ÞÉ( F´ÈM¥%rS#½%‚.ÉÐýìD‰Bš¾\#J„[o Ÿ®-Êc[·“QTfÍt³lÆd"@Kò8Õ‰•ùy„(Ѽ$º-ŠãjàNº(áFCZjD‰Ì´®¸-²sHB´(N©²%–ß(¢Ef*½Q¢yO'Z”§R·%fzðOõçhæ0„(QÊSC¸%‚Rql¾6¢Eñ:=.Êó<ìN”ÈäY$D‰ìœ‘Ñ¢i(º%raœmÚ‰ùiaY'Jü,¢Dóô½N”ˆvšÕ"!JTò,ÒE8ƒ}lè5¢D6O}¦F”(øqÝi'JËôíQ¢bÇnz'Mê&¥:2;Ñ¢4ö:Q"wEB´ÈÎ! Ñ"?–'hQçzv¢D6ŽMÆN”ÈM…N'ZdÇŽL'ZÆ2®-Jc—¿“Q”QšEy¹]žn÷ÑSMö³æ°í¨öùQöØ0áJÎ.17ÊcÂ*fÐ<(¤bƒŒ ©„¹Ú-UR5V0õ(‹ŒISUæëzXå‘1©ªÆpmbä%&R ‹u=¬rɘ°ŠYª/(YJüvÔ¥²$ç©+­®BN7Ê"cÂ*fÅóˆxdLš ®/öüPd’1a3S×õ)—ŒISË<ÑMl2&]•i2P¡XgŸŒ ©„ᨠÅeLH%Œ¦­(§Œ ©ƒô}£œ2¬a­E ˆ2¤½ CñÎFV1Ã9Üïì”1a33“м2$”¯”`Ä+cREA.äe–1a1\qåÊr˘°ŠÎª±.vR ³uðDùeLX%,a¬)ÃŒ «˜aIx£ 3¬aäë:ce˜1!•°`pðS9fLX%¬v²•eVdÏLe¬•Xï¬<3&¬b–j˜Ê4cB*a¸f‘bž]3&¬bVêžžÊ6cBªÆ2í˜Õ|3&¬ª,⸬§˜'ãL©„AåiYU3!¬bf-—Ýl !Uc8£ñ¦{gBXŠ몦*4Ue>pÙÍî™V1£±þnŸ a³h¸ìfÿL©+\v³&¤ªK5q¡ƒVÿM¬¿rÝf²¹gHÁ¨ÔIBÍ>ÀšŠ í„Ôí3!,–¹ÄfÿL«˜Aþ²5®Ù@B*aÖs‰ÍšR s†Kl¶Ð„ª±ºËr÷ЄJί©ŽM4!¤†+ýoº‰Æ€5Œp6Å:™hBXÅ,.³ÙEÂ*a…Ël¶Ñ„TUc¸§«ª&„UÌŠçR›4!¤bfÚLìNšR 3—Úl¥ a•°Ì¥6{iBXÅ '“Õ˜g3M©„á42RQ~B*a8Íñ¦»i HÓPáV »iBXÅ wæ h V1‹uÆ_÷Ó„JkÐ5$b” —Ùì¨ a‘°Ìe6[jBH%Œ¦ðuOM«ˆáˆm-³ÅTR{cÑ*Ùîª a3\ªm5!¤j,S™-¾šV1Ó³óM7Ö„J˜wTf‹³&„UÌp%H¸éÖšV +ØÖêÞšR ý-XUÍ5!¬b†“&oº¹Æ€4‚²£vŠ˜kBH%¬Tz³½&€EŒ2•Þì¯ !Dj¥ˆ¿&„EÌ(ö»Á&„T¬¥Ò[6!UÕ˜;¨•"›R5–¨ôM«˜ÑþÜÝdÂ*f¸ãKM¥ì² !•0(è†ä²1 MC…JoqÙ„4Uek†Uè³ `!¨Ye´ £b©o)F›1ÃI׉Tä´ !Uc™Jn±Ú„J˜©3à»×&„TÂp@U±Ù&¤ªs–JnqÛ„J˜?nº×VÒßHµÌ£iáÙÛé¦mBXÅ êÙÁiÂ*fÉP™-V›R5V÷ßï^›¦ªŒ–_t³M©„Ѻ‹f· ¡ˆ'ôPŒ“Ý&„EÌðèǪb¿MHUu–¹ÌfÃM«˜Õ%öÝpc@AÎs‰Í†›V1Ãýèê'$ËM‰Õ¶»å&„DÂBâòš=7!¬b†K]j¬³é&¤ªKŽÚ(⺠!•0\wzÓ]7¤i¨î³Þ]7!¤FçK5ßM@1ÂeFIûnBXÄŒöÈìÆ›R £…ÝyÂ*a™Kl¶Þ„Jíaؽ7!¤¹±ÔÔÇæ›ªj 7ûr¢Â2‡IS+u±£¸o XènÜ×Í7¤”—×l¾ !•0\E£Ý7!¤V —Øl¿ !Uc™Ëlöß„°Š.éJET¥&B„»†¦ZpHÃêW*¯Ù‚Â"f¸»Å9ypBX%,syÍ&œR ãÛ‘WòßÔÓºÿÆ jŠuì£ûoBHÕØdÀ a3¨Z©¼fN«˜åÀå5[pBH%¬Ô÷݃Â*bد¢òšM8!¤j,s‰Í.œV13‘[&©n˜O?IRÔ«^ûpBH" ׇÝtŽiùz&B÷ᄪ±Äe5qBXÅ ÷ª«qÎNœªj j×T㜭8!¤– —ÖìÅ !Uc…Kk6ã„°Š.ºéfÒ‚tL¥5›qBHE,Õ]ßµ'„TÂè´nÇ !Uc™Ëköã„J¾Cy6ä„JôuGNHU5†½âú}Ø’B*aáàÖ {rBHÕXâòšM9!¤†'ÝtSŽiá9(SNª:ÂUµnÂ*a…Jl±å„JGæ¦ûrBXE W¥Vy>ÄK‰Ýî/Znº3'„UÌð|iRY>•©ËTj‹7'„T «¥¶˜sBXÅÌ{*µÅÂ*f5‹‰7WòßêMŠ3'¤©*£3¼º5×OõúL1Ù à@†‰Ó¦£ãö¸øm¬·ÇÅo#Õè¸=.~©FÇíqñÛšÊî=¸»¶zp;wmõàvîÚêÁ­ÛdÀmܵՃ۹k«·q×Vnë®­ÜÖ][=¸»¶zp;wmõàvîÚêÁmݵՃ[íµÅ‚ÛØk‹·s×Vnç®­ÜÎ^[,¸»¶zpwmõà¶îÚêÁíܵՃۺk«·q×Vnc¯-ÜÎ][=¸­»¶zpwmõàvîÚêÁíܵՃ۹k«·u×Vnq×Vnï®­ÜÎ][=¸­»¶zpwmõàvîÚêÁíܵՃ۹k«·u×Vnã®­Üè±i÷mc¯-Üj¯-ÜÞ][=¸»¶zp;wmõàvîÚêÁmݵՃ۸k«·s×Vnc¯-ÜÎ][=¸­»¶zpwmõàvîÚêÁmܵՃۺk«·u×Vnã®­ÜÎ][=¸»¶zp;{m±à6îÚêÁíܵՃ۹k«·±× në®­ÜÆ][=¸»¶zp[wmõàvîÚêÁmݵՃ۸k«·s×Vnç®­ÜÖ][=¸»¶zp;wmõà6öÚbÁíܵՃÛÙk‹·Øk‹·u×Vnç®­ÜÎ][=¸­»¶zpwmõàvîÚêÁíܵՃÛÙk‹·q×Vnc¯-ÜÆ^[,¸»¶zp{wmõà6îÚêÁíܵՃ۹k«·s×Vn5Ø&nµ× nç®­ÜÎ][=¸­»¶zpwmõàvîÚêÁ­öÚbÁmݵՃۺk«·q×Vnc¯-ÜÎ][=¸½¶XpwmõàvîÚêÁíܵՃ۹k«·³× nã®­Üj¯-ÜÖ][=¸»¶zp[wmõà6îÚêÁíܵՃ۹k«·u×Vnµ× nc¯-ÜÎ][=¸»¶zp[wmõàVwmõàvöÚbÁmìµÅ‚Û¹k«·u×Vnã®­Üb°MÜÆ^[,¸­»¶zpwmõàvîÚêÁíܵՃ۸k«·w×Vnã®­Üb°MÜÎ][=¸½¶Xp[wmõà6îÚêÁíܵՃ۹k«·u×Vnã®­ÜÆ^[,¸Õ][=¸½»¶zp[wmõà6îÚêÁíܵՃ۹k«·s×Vnë®­ÜÆ][=¸½¶Xp;wmõà¶îÚêÁmܵՃ۸k«·u×Vnç®­ÜÖ][=¸»¶zp;wmõàvîÚêÁ­ÛdÀmܵՃ۹k«×ݵßßÔíšc¼Áqlˆö?Ü7¯q›eHdÿ²Ùq<à6üG'ubÙÛ[TúVËÖÍXëÔ¦GÛº9ÇÌ;!ËÖÍxxí„Ì[7çÂå_Ûº¹ž¨C;5óÖÍõÚÌ™÷n.¾îiÌ7—ydÙ¸¹HŸ¢mÜ\Ф­œiãæˆ#*uÛcÞ·9b’¢yßæˆ ƒ6Bæ}›ãáyÐNömŽxüm„Ìû6ÇžŠ6Bæ}›ãfŒÞºúŽ7B¦­›£OL¶nŽÒ[¢Íœyëfÿä yïfSuP[7d­ï [7ãáéu¼mÝlá©êN«mëfkÊjmëf‹ÖmæÌ[7[x,C›BóÖÍ6zÚ¹mÝl¡‚ eëfKƒ°jëf‡§±Ófμw³«ç÷­›6(ÞºÙË!ËÖÍ8ÐC!ËÖÍ®ŽÛ©›áÉy#dÙ¹þDí›¶s3ti$°íÜì=·5ÚÎÍ>ÞYvnöéàeëf¨Æx#dÞºÊ`ÞY¶nh™Ðfμu3gOû ËÞÍͪµus™÷A–­›1³ÑFȲu3öoi#dÙºû©´²lÝŒ™6B–­›# «­›£¼²lÝŒ¹6B–­›¡OÀ!ËÖÍÐÄâeïæD{óÆÍxn6m‚,7£wF» ËÆÍ Gh+gÞ¸ñaßflTÑ.Ȳos*lŸ¶}›ñ˜XÚYömƆ9í‚,û6gx*Ú9ð1ž=J» ˾ÍhgÐ.ȼo3žH› ˾ÍèÐ&Ȳo3žpO/ÈPªPKCN/È–§MµÓ ²ãAêv|ö¨¥ÁÕ`ÄþeO®#öŽ¢ªÁˆ$jjp5‹XÀR Fì U ÆzúbVµ`Ä>eOªëeO®¡¥AS¬Z%ˆ=$Ÿt%ˆ]¤š;[%ˆ³wòßt.žn±¶Ïeû²—Ï™ Ñæ°#{ùü£Æ}º×Gª=­~¼zäcÚ ÍæÒå5ñæ/ONvû^ýûþí3ÒVŸFHðØwuvƒ½ÿB„zÜCÏì³-åòþùC;?.9?®ñöý‡gyéË×êïŸÃå¾U\ÞË@b¢çö‡~nœêäS¢>üùáÝg¿ü-5¾ šõÐ"áï/ïé»âåõÉý.oÛzã£>ÞâôW/:zÞÞ®~Íoä.ï8 å0¾zÅŸôå÷r˜äÚéS5©AÉþt~Üø¢íä®zˆ¹…ÿBežÜå1f8Ø¿:\Ÿß¼yýÅÅ@ÀW­M%(Í?ÿõ«Ïÿû(þé/ÿé‹Ë·÷ß¼yûöýWßþüáÃ'ýoÿ߯Ÿ?¼ùŽÃ«É¤?ú™ðíïÐÉÈ1ѽþúöZÞ¡^t'²ö4(Ó÷€4oÝ/OÃåq›%ë´£ÅÉ/$q%ÝEç·¯tªÃ<š(rF"Qåx²N†âáqÈ“pqøGÌ‡Ø ‡KZñáå<‚ú/~€;Ò¯.TWP:‡g†»à'Rïþv›§ñÀ)h³Qž~÷þ÷ï¿~óíû·¯w϶‘\=ÄÄûG>«z9§r}w53Cûçò£îH˜c»ü™ó5¶ÕlºÜ¿&4Ÿ/ï¿ævn)·è3dˆÆ§ùñòßΞãß¾Ü|”VðÝYì•@¬Üaó+pVøáùý~ê¯ôWît÷¥ºìþyøü­J…úçpÕbþmKNPœs±æ¹T¤ptQ¶Iœz-â¸(´ðÄTvC%ñ4<í×*í xzšŠÛB«ã ]a7 Ò™†õ¤öæ¤`òWÈ‹”©?{x¼ÅÃáŽèé¼@>p©,[HxxŸåñ™þPE`ÎIe®"(°Õ‡ŽÀ§÷üˆŽÿª.úðaúBíšmæ9°iÿqb°.ÿuâ3?b‰—‡[Œ©âì¥B÷çW>Yó Òz½›3“î5ß‚}hUÎÃýpÿ€%ÁT†lûãkPWMLscqzâã:ñß¾”MÿÖÊ[žÐW·â³3d#ZôºÑ:\¨ÁÊià˜tc†Xù¿¶úgƒÍ§úJ¢*XhM~q ¹Ð»z²çåó—€w;spÿZB¡@ÉWª4ÊKÃg¹¢€‚°Š‘‡¼r”špùö•J9üš80½‡Äiº3õÒçÿ÷ð]ë)-"‡v”6oßê’úùÃÓ½®­Êå,Qön¤‰¡–|ä­Ò¤ÃÏùþ´m”}áØûöÍÛᄌüƒ|ê+Çæ?Èi¹SÆá¨àùZn»U$DÚA­Ž,Üx¯™ guÓz|hÊBàÍÓ›w_½yîd__f{M»8fc9ÔŸßfjhÞó7± ¾iëãRu÷€é«60óåן࿱…æ/ÿºiÐñ_òÞ^>ÿD®ö—_ßëvÉ7”K¬vsùôþéßûý~Vÿ …²…^:Wüuì1ù-Íþö,h®¿¹ µ¶L—ožèŸ âîùRv¤q <Ó§ïé¹íÍ[?¡:«ØOß@{¸†a Á½ÆÊG‘ &>Lq=ýOoq„¦ö¿¿ÓAAÏ\î_øó¾ï³ibÑIåU5ÖM™K·ztüô0ÄöØÇ¸û?4ÜqØñÓ=½½ÿ+_;Ý¿Ôægÿ‹óF.—’ò»‹ÞÞ9ìΪƒç±šÄŠê…ªrÊQ\¯á k47&(AUk¯ß?ü#H D×Oð¦ðhXäCºwøol«sÁ_+ŽrÁGr¬„躔ÛÓ.ˆþ‹ÓOÅ_gðã_î¬ÁèãjPZ'”•ÞÖ~N—OùŸÆÖ4|”ZåÝ¿•+Ó¥öˆÜ|×£¬¶Š©Õ ’>> Í çë­qT«ý—m‰‚ãü˜ÇL÷³‡÷o>ý5þ;S–­ÕÎ]©Î€¹üݧ˜0û–ôâð ……£nÃøµB† JíÀ˜|‡Œý<Œ‹|Ã/÷Ç!4º‘©½0úƒóË HÕÄòBÿyj­/#mœ‹Âªc0õvPÊm†y8§ÝµAñ5’^YeÌs­‡¡?‘zlc·Œ(WcÁºÏÕ ´ƒ$ÛH†…:ÃÕ\_)zêOa7¥Ž¨×z›²zB—åëªýþÝ»‡wßð3·(wùeZ¾¼ûúj„¼«CIŠÍém[ ®¬‹/•™×/PümËŠ¬;¢kQáS¾¸’þg/ý'è.»Á©”‡Éz1Ay¸Ô$1}[uÑO>;\¯âTä)ä/.<&´§B‘ âÌý˜*Wˆâ¸<úªGTUz ï7¯þ?ÞJ8endstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4028 >> stream xœ­WiTTW¶¾EAÝ‹¢"7Åô(8^;tŽD Ed’©&™ª62« 2 ‘©œDMè—h¢ÑèË‹št›~ ‰Ð¸¯zõ;011ë½÷ã­³ªÖ­SçÜsη¿ýíïÈs3F&“Ûà¹9"Ì?|ÎÜ™Ë#B¤®)¢£Lœ`&N”Ùù´è‰—XÉÁÊüò¾Ø{Æcì8\oÍÈe2Ÿ=á+"ö'Dï Šqšëî>oæLú½ÈI“à´|–Ó:ÿ7C"â¢C‚üÜÖÍòœåôzDí všî¤Ùäèè´e¯ÓVïU›½VoÞ¸ÕË{ú¬_oêç_ ÃL _±eTt̚صÚ8ÿx͆„7=öî Úì6gî¼ù‹O˜9‹a62“/fãÊx3[˜­ÌtfãÆø0¾Ìrf;³‚™É¼Á¬df1«f5³†YËÌcÖ1ó™ Œ'ó:cÃðÌKŒ’qd>c˜±Ì8f:Œ1gb™^ÙrÙ%³‰fGä³å‰òÍ7™ç˜?²0(lUìÖ—½Ï½Æ}j¹ÑòýQn£ÇŒN²rµ:<Æ}Ì×c…±=ãÌÇÅ[»Z´>;~íø»ã¿³‹Æ±O,À„u¦6S”Ñå(Ã](³ã Å>[“–²ßjÞ&f+<ƒ– z4Sð#KŽX¨Ù÷ó!@E>öP³Õ†ÛpжO ZÇÑ)Á,ÿ 2÷º¯©Œ^*ºßû/¹ê]†®ùŽ«M2tÅqø%N?‰EO%|»ð&Sˆ.u§À®wÁ=2_\¬ìsV‹¾ \tÿ›ïTd!~®\°‚X d:VãZÅO•K¶«N‘ûÊ Á‹ + øú)вŒ0»Tcÿe67™Io_6ÊÑ KÐJ.Öa„gÿ@æó'[b×;çà‚¯~@X)ሒØZ>¸ïT´UíçÊMð.´ì/‹8¹|À£è‘m&t5Šœ)¢Å¦ŸÂ—‡Vv¼µø9F+Q˜õ qôò yS¸Äò}䵟¡,øè¶°µ±g£þ N|ü9NQ+[âºÂw½Z]u!TÀ|–éâ™îÒ6Çë=^ÄžžK¾k%ERì£0º /N`lLJJÔ’8Žx ƒ‹F [¤À-8B½OE&d+Xò Ú´s;9À7±Ý_ÁÇÁg|ê5oQÒ8É®%Kq%fô÷ÿ„œï$.Ye—Ï)¿?{ø¦”+ø›dáo)q—žªîC =×|\ÇòÓŒù8-…ÃÉi ÓÔÖË:ºÊÅn&݈/7àÄ†ë ²Öxð†\œŽ*%\Œ4Æ•kšƒó¶­/ÞX ¹ëß@%ÊóVE„ìÄ(®rªU_²(]©‡„̬䴌¬ˆÒÀ¼½À…7 ¶“Ð:¶1CU—aLÏ…öÔö(ðç^u­ï†Ò¾!ý¤>ûpZÈŠQ–‡´ù(=)¼Uq.è2”ƒÃ_‚oYçXzÇÙüˆ2ÿNÓiÇ÷‰£ÐZÙíïî ÝU ØŒ.&â‚Þþ¬~šß´iYÜ>š÷I£ÂùAÌí;g¯Þ¡G—GTJŸ3aùPíñÚËŸ<°59‹}&6\ç{is‚p§ åä–¿Ø/˜­7<†ÚC=ÅÜÏá=rî·ý”®éÆýRHÕ]Ï%û)ÙYÏ4hS‰æ,o$¿ÄÓ—]ºëõ%Ë2k¯¼=~ÇòõÏÿ›ÂNý(üq͸o²+ÆŠ Fè8™D´³5sJ-s»W7üi› {é–Ñ|°˜«ÙÃ#è¤í´HÂ`¶©›)ÕŠn&™ø¡èª”fé@ÿf°W³uUiºŒ±$ED‰ÍWLŠÝ*Øá° "ék?`qå Ma¼!£J¡ÀPxá?íóOä|’òÌHYàIýÐáºDŠ£‡¶Å¾MŸ@—™¢šDŽ[-Þ5)¢u^t º‰6çÈÑÄÜÔœô¢hÈÈL²_J6+¤Q1ºÕtTøA}S‹3Çç'ä¦UC1åiÁÉ,· ¥…±ÒO‡*ÈÉË/§â÷Ô>¿,'ÿ=iwf“þB3a8ÑhSO££‘bsNl­RV¦ÂaaC6”B5‡¡lïò÷‰³7•±À¿)¡®¡¾²µ"­ü@±`,¬ àntìY¤z“%sɼÝDîŽ\ÜÍOßî<{RÅû‚úïB—¢²ªTÄ-•3$„¼¡1žÿ+2߆c@9ù”Æà[Ó*–,A5rèP|¬°àsp0±³uá †ƒƒš­¨¤1ÉHÕéTó§OÃ1Ï`ƒ­t§¾Å¢;ÙLÅujÒá´´…@çüÍPO~JG߯=š`È/P=B ”G µ¢ÆðÕŽè¦c†ù*r]ûŒ¸µ‹jKâê4,®g>$þ¾ìˆ×„px‘}^_ÿÞÉ–U”U”žìÚv%¹Jª0ðºRI¥â· 6G†úíH Õxñp'i«ËÅÓ—Ê;Ñ¿V*5ßÿ"®4-9¬Vú+Ò<R`×çD‰í`Ro] ÍD‡©}F‘ì0Š×M²*”ÉGè¬Ë|Fg¸‰YYéú,‰ÎGÉKØ Ñ9š¢Aéì5Dçk,zºf$ÏHrÐî ñX™Éy†ì†håŒÑ•a¡ÑÚàgýÿüàò³' ýóŽç\‡±bU*»Y+­x«q”\ ¢á.I†”ƒz}R†¿Íl*ý΀3Îõd£Úå÷è2@¯ÓéUYY‰‡ Šóo>P[ÙzìÂÂæm%«hAdÉ„ogãTœÓˆ\>¥‹ù+“ž4õ‚ØO×yZ4"_$˜ÕB*¤jIÚài{’&žN¥<Ö‚ ¦H}¤€X½>23A§O.F­¨6üçP5ül¨ưûAÑ9á¹úl¨âÄ+Ù,Ö>>šœ—ReWt´ž˜ÙgK +ê ýÐL[?Ôý,sâ(JIé$ò¤dZ'~ù³Ð‰,ozŽ0d[±»ÞƒB2iÊ<âD&ÿðt¸r¡ÂئòaùeÍùº×ý}÷:k@þCj ªZUW{òª¡Î&wK,ÛHëz×ã«FÉjLé…^;þS1–bâ¤Ôg%¦ ‘ëÖjýèB®zt¼ªÂË þÕyPÛvwç•§÷±MôO÷?¸âô“;¾‚¯œ(SÍF%IU:²Û*[*šNW™¨¨RBo—jµÏHÚb´Q†ýß '‹ÿTvìí\éNä{'¸¾¦¾CžþN}~Š ýÛÿa©±Ø ×å ‡RR€–{³)á­ª–g…a Ev6áÜÞ»Mx )¢Ù¦ñÁæ\>÷ÀŽç±StQÖ$4ù«5Ú­ÀÛ05š€B_G"lyuUh‘¦3Xu >!ˆŠ­º:°ò ÇŸî³ùe¯ëkp.þâòݯ7ÕG•~5ëaDÁnÈÈVç'µRA+È>Q|ìbäU8!¥ñ•O?î oI*RÕ—Öä–²2²2!‘Óë­ã•Ùã¦Ü ó¾€™7ÏŸ‡›_};U´æŒSm"ö¿2™Øï½Úzí8¡B…â“}TÃF¸Ôtc„4¿”Çoå…§¼±2L2>ß+~ÅŸÁ÷~× ÿ/Nxµ“dÔšðŒ[L6’‰CKt®Cg;¾âÉô*ËŽä$ÆëÓõBÆöPm¬‡´Žô¦w§Ý!Œ[Œ·á2÷hÒÄS´P(ø 3Ð?Tôÿ1bÎàh¶š’ª"‚!ÖÐ¦é æø® KôUŽ?–<<®"Mâ,åý|òGXb ŽVà‚œE^’ëY8âÕ]_¢‹ •QÂõÛñµØdkò_aùwÉ«=ÏÀ›PGyM"o¿]ü‡²#¸q&d_€¦9´µ£ÉØ&P¼“L¸Ô„>íèÑ.{ÿ!z=ì|({p‡þËó!‘Õ’‰öÓª²nÃq®ËØÓ×÷ÕbW)ähA_1büÐkÈù¥eéSRõQ•ÛÛܨÀL^:‡ÈÖ´ì8~XuÉçTzÌ£Ø]•öXb}ørj퟈ù<¢jÀ)G}9äÄ=s^Ãî/;»°H(..ûë#Õ3xiwQ|©+-”,M­É }&7ñ5¶VŸ• ƒCIéÜh¡Æ3DAd’ý@U¨~ª2ÑÐÌ& @À[#¼¤pº£‹ì t‘c¼È);ö5ì ÕhŒ¡mmÆÆt›¿Ð÷Ü}þ!ÚJuv+Ú"ƒ¶[$wxëÿéjÏÏ ëÅqÊ3¡§‚#‚"šÏÔ7œ0Õö…¾áÚñÔ¤¾ô Z¹šîI÷e  ¹V%qµ¦ü†Lâòˆ¥^wTQ{q Ä5¡)‰ÑÉñÖuÑÍÃxªºõÊ®÷¦Pøf“1ª)¿”ìç2“¦ÄS\ÅÖæéƒTäî y+ŽÆ•½²ì–ãu\©ì%ݳٟñÁúö‹PM*½ q÷É¢…iÊF £Ì·DXY‚ÕèúœìœœlCvA~ñ]+«ÎÜó%G …ù9†Â\«1 óß¶g‘1endstream endobj 178 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7902 >> stream xœµzwXTW÷îæ»rÄœÁÞØ5{/(ˆ]"½#"0”aÖÌÐ{Š"Ø{‰=QcŒ%b Æ|‰%11ûŒ›_îÝhLý¾ûÝ{Ÿñá3gÎÙë]ï~×»ÖV@™šPÀ|Ùr;?'_›±£í\ÝC¼W‡ðV¾Ÿ ÿÐkÞÈ ±fÐU]MOõîoÎÏë…Êz U=)¡@°Ö#`®Ÿxàvw`ëqcÇŽ=šüjín=gŒõ'/¿° ¯íÖN¾Û¬—ŒY>Æz…_¹¸Ýz˜Ÿ¯µ³«‡“·›µŸ›õj×uÖöóíì­ÚÙ:¬´>æOëzw¢¨•³}çøÍõß0/`~à‚ …Á‹B‡. sZºÃyY¸ËòÛV¸Úº­t÷°Ûnï¹ÚËÁ{ÏÚ±6ãÆO˜ØkÒä)S§}4ø—¡=‡ omé7êƒÍ£Åc>´â(jeK ¤VRƒ¨UÔGÔ`ÊŽBÙSC©ÕÔ0ÊN­¡FPk©‘Ô:j5ŠZOÍ¥FS¨yÔj#5ŸúZ@¥R6Ô"j15žZBM –R©eÔ$j95™ZAM¡zQæKõ¦ÄT*Œ² $”%Õ—²¢úQ"ê.ÅPÛ©NTgê!u‰ò¡ºQ¾ÔÇTwÊêAõtt¡V‘tQ¦T8õZ'xb²Ùä©pŽpŸéÓ³.fJÑ4Ñgô ú43˜ÙÁ|ßÉ©s¯Îº.«ºJºj»™tËéfèžÖýY= =·õ<Øk@¯|sÛ…½Ü{Xï¯ÅKŧû¸öy`ae¡–L—üj¹Ãòtßi}?µbõªŸ?üóßqrî¸ÔRú£u¢õõþ«ú× è: b ß fЂA·¡Á=<pì‡öE5Ý ± Gëõüæ0Á©>œ¶…È4Y ö6˜Ir’Ò" ò„HìÒú$|Ë.%ãMÿ¨A´ÂLO¯Ô•kT™*µô²0C :‰G«ÕrH´ô±Λ®Ó\‡½ÀàÞ(CŒCDÈÝ1ëþ¿LFj(Ðófz™Ö™\C®×,Ø*¾ºž^  ÜÍ {Þ».²À³xÌM[ý–3?Óì5Ü_fæM_Oß Å%ô,"oAfdj\Ð"”¢e4[õÓ3—/e9Øq8ò½»Œï>ë@Þ®jQƒÞI›Ñ¹gs^Z° R´T §ÞÂÂìgE×.ÃÌãïã>\«‰w™è¶Zæ.m-£Ý“dsAÞ|?Œ,Ÿ´üKŠ{¢â¥&c!‡#¥¨Fv˜C=Eìígµ“ÖHËp³xÞÚ©ƒ8ÜK´))­FŠÊÑJš5}Ñ4f‘´;¯éø±ZAe3ÚÝ,ä½§õúwýF`î…Å?DP·ž#–›’.wpq Ùâè»¶‚c‰ÿ¡Àpê N•¨8t¸d€ý!å[Ë·Â*peH¼7¦P!zÃh½àÌ+Þ·Ð0EŠ3!-Jò%‡ZOÅ`Vàu{Ðqt­Ýs ZÆâ!ÅRu$(rÉM‰ÅÐ&KL„è8nýl·ºuÇF‚%¶Åñx¼» IØ­@“Ÿ#)b¤í9Ækôh”–·ÔGêÌ__CùÍlO¾y‹;â6áäÆ]¥Ùgx1«7ÒäŽÒVwù2Õ ³ß²:ΠS"š¾uùé9K§ôÁÝæOžíâZÜèÏE–€ ŠD³½W­:nuóÂxlf\‰K? öð¿x•?‹ŠÅ¢8,Ý1/'Ôœ"â%ü›´,òó4Ë|9„q­«E2b¦¥!³Ý_¡)ä…6¢VËV/%ÄYîLŽw‘G㯠™ ½q޾DQ/…†µ¨EŒì°²Á3ÿš<&"4qhZ)Ú°p‡­û†0»UC€ÒN~/ÝÆ£—¢‹p-äø¼ý+3& c6{œ‹ê`O3Ê¿&äËðqJüÙÚulT¥ó¥Hr˜#pÜëÙÄ\oÜ_¥•â…ïkæî‰Á+Ü/$(*ÒË0sV´ u¹Þüަ kŒÐU7*:¯¤G“IýZЩÓè„k”Ep Äc‚çàYGË~?¡ŸeyM’êPa h¢Ì{gƒâ;¶…X„FCÅê|,et"?bÖzþ>%ïðù‚ +HÔ¿“ˆ×W_?²`­yŠï%®ö®Ú:Ç}ÑÖH™å@úWr ÒìƒÃ°Oa©¥g'eÕIÑšö¢©åË45(ÕœB Œ_É.m¡.»š#ªÎ=¬G‡ˆ*ôkqi¹Û¨Cul=ÿ ¿QܶØC^¬ˆUijï@ƒU#|u FïI³v£ §VŠ”èï3ß19Æs$7¥ŠØáíPt¡ ³ÏÇI«@@É´ê"¾‘yÍä|$øˆ;µ¢Þb8é³;:Û³z[ºSº}Ö¢8ÇÔ–7>B&)6ÞjN›L¤IhÛ  IÅ)cb®•ΰ‹¤¦»ë"{|¿Šiu@¥üóH†½©M¼1·ï:—“ÝÏ>ÜÁ)r”É1ÀDA|¸K蟕¢Rqj5¨ ‹8T–}@úôs aÏÃDTP¤žܦ+“Z„† ”@Xˆ»+\`¸k,½«é'™›t)M1ë·o¨m˜õ5çùÆ-æþA_¼ªN #^'áqØ ;¡ x<²»y¯ü“=Òœ}.YÀd@zžÍ¡’S® ⿦d:ôQŠÓ£eaæ?]#ìK2ø=D=ÅgWÓ³}\ÝÁ7Ò£z<ÐX*&Š”S}¬‡'2!4«ˆ«D¸Ç·Ñu7*o\æÚëãE=ÚÓNþ$έ}ôAôÇFVñet:ë6W¦y(fƒ+ùÌ ã]F·±Gá(êŸïùMDµš/H­Ü · –ð¨ã(Ày}O»ÈÊ´2ý=Ú¯÷nzWL—´ÓùqiG¥Ñì~<ô·m²€ž°qáœÉ‰‡OplWôfÛ¿½ŠqR<‚žcѨ3*/Vq64Au{¿·ׯEˆõÑÐÓÑk²îråÆÈ¦“¸¶Áô¶ÈÊ黚ŽÈ²é\€qÕwÉšànǪ‰ˆe†òêE|¤Oáâ'ù*ƒa‚FâM×+³‚aÄ&%&Êãt 6EÕòH°,o€BްL ð•ÚÒ›¾Éòo4#Ij¤:!ÈÉ™ÈÝ‘d”쿪2¾Rð5¢dê€LC´|¨Þ¼™.E¦?aYÏ»¬Ô+œ`<¸êÖÑÏ!ÊCÚº‰þp½ýŽ ‡…à~ŽaÈÞ]^çWì'eç…lt”²0û†mË7¯ßÊâTé †= ¿’nÌ…K\{í% ôyzA¡a¶Ð`ßj 5ÆC­SjÃÁä”5gH†¡êÄl¥R,+ ˜D:Pá¾íÖC~RfTŠ<Ë'mÇDœ …вɓßÞKPCT>ÙŠl/dŽ‘¤Dj⌈¨SSr@u’q}²ÌxÉ24F”:¡¯$…Çô9µ%âF´;õ(ÿÉ­yõmärí&Ùej0ÄBDLL\<¾ŠOHÐÿË­8—F 2A‹qIjlFD[úl#nÁ›®m7¹íÄ}[Á½y6¯²`|Y2»ÒÂÕÁU¸/š-Ù½wïѲr}]cÞaC–ä£ X£ŽR‘e³Ö%IéQ}É£äËgHfü›I²œj yyÅ*†Í!™¦¡°Iåo¤ÅuP)Û¾ÀbÉ&[HÚd·qÕʤP O*WëUåðBBÞ?+DŸ“×´U5>ÿr¨$]–AX»Ë_ɰ R3)M4(w'Y¾U• Mè-rk"åwq3Rïv¸Ã» E3¶n àÐuºÝºµIKë·:ºîb^pÓú/Àò­GS‰Á-ÉÖwK¨·«§0¬Ûp/ ª'vM… r¦¡TYù gN§—ÁA¨ (s-wÖØ3ÓÝ`F  ãÇu”dTGøx…¿Ûfûµž—`þl¬VA"±Ä3ÞY!í›mW' êdôëƒàp…”¯SÑHþ?&)Q)„¿–Y IOÎBJC7‰ªõ†èíF«×|FêB| õÆÊ`Œt|oÒñ„ü`dK2‹;‡:b†ø˜Î"¤ç»fdµ‰^N„sø&±ê‰UOý±¨™‡"áêÖn±2H‚ËÈ4’Ô,ú­RžÑ£Ó„ÕÆbI -ºjÁºòeok%ÿÍæ¿GhìMûÖm-w0¾zÀp,ÆìóaHtùàžjt1ÙTHl á$Ûɰ }¶„lµ"ä.ÚШ8 P¯>_u°D¿·æÔBÓ.ý–¬dUáL›«h—´J~j%±íõ§“w2ê÷+Øä/mIã×|~l¶Rµƒàý±w•(Š•yÊR…J ;˜Ö¢¿Á½€NIP)“åü¨Ög’Œh•2 ˜\H+’òGé 8üŠ{G0Ÿ4§­÷Œ½ÚÁ°8uBl’<.‰ód1°\v×û«PÇ j‘V%/ž‘}Ç|8ˆüíûóÒ/t?ˆ„EÒÅÈRŒcD©høÝ`^eb«mÒvý)7LÑm¢ã+¡Á=£­x$é—à…x4ž€‰»ƒÇ¢h ‰Æ£-Ü \1.ÄLþp$îû5ÊEÙhÈgÍÑÀy8ø|›Žñšð ]+@¦WŸ>"ƒ¡‡¸Þ­fÍüIkús˜žî}ßþ‡Žàéq'ÄÐ_9r@“ñy\tbx2ÁùaUyÅeÜ»þgo9º¤7¯}4¯ý+ öƒ)/?ö5þ€Ã¯ÿÜâýM‰E3hÔQ_½”ê³ ÈÎϱž˜C¥íýQ‹‡þŒsì\ŠìÎ,Í/EP]jŽÆß"»eÁÒ2>œ&.ˆ®Þæ(wvâX,«qrÒ„XY°àcG­«.Tµ+Ü<À;ÇUf»Ók+¸0s_¬FÝQ矎ߩ<¾®’[S¹ VQÛ ñ*¯äP=TUZPÜàר(æÛk×n×GÔ–JëöÔ¥ݶ¤F)KLA4³3':?³(­”Ãó0%¥×®À¸è`?`&ÀËÒ UužNÊ^–e§—Vî³z Cƒ¥È¤µ‹ØaÞúáC?yhoý ÷‰è2…‰Òw#!ËŽ½ùÖÈÞü‡©Ðdp´pg”èÑÛ B{*øÛ¹ÐßO…ö3úC=:©E'ÚS $ÏEÿ¯Å©%ƒØx%'Ÿç îxä·Q÷$á—7Ô¬.zVvçÜa¾Ç¢x(‡?} ¬ï[>Ôin´éܶñ-RMç/U»}¯;xÃ"X.® {ܽñ´|·Õ‚û•RÂ/š†‡q¤îd‹ ²µšLuó™&âÁ>ø|û–ðnB‚׿™F”M‡€€·81¥AÊ iö,¶6bt%CN”Mû.~M-Ô&íQZ²’ÕüâŠàrŸía~þ¥»÷Wê¸öÜno¾ÍÔ_Уi•‚3—?½Œ–]ò‰h…^.¾?¹÷ÖK–çm;EúÓë§.ÜAiñ”-©œJò¬Žmnkñâ•ÊèxÎÃΧʹq‘6áäñý§œœsÇ_š•x<úúΊøÝñ•n%™žàÉÌ[?w²ïÌ”£k¸U§—•uÊÌ8P¼íS7µõ©i*uV I®9©ß~Ù½…TN÷ž#i»TŸÿ5ÔŒËÓã¿,&Ð|‡ÜÖ‹yG!¹a¤5½%vâÒ„`È àò’‹s¡‚)/öó  X{Æïì­‹—¿áØÞ†¦qúÿ¡h^P§Cé-(]'4Ìæ×‰w'H´£m¢”‹&æÕ ‘På™T’2fS¶CäÎÅ[Ô¨ù‘Ï+h$˜fkÿz_ 4ÈäݾzE_>}»“=„[îØ™¸ƒk3“UP¥¬"fÒ¢ç/ê·÷ÏS[^éß•»Î Üå]¹Ã/i<`ÄG£6áÎ:dÇñ½þWïFãþˆÁ䩈~ò-pšbÈ€} ºI×ÀÁ¶*'îhŒz"$°Ô##,ís²_㿌MHôÀ« 5L"ý©a£ÐàÛ¶\ï$bÓ±ÈhO(Kˆ ŠSÈ“äxik¨Ûójyn[‡Zutĺ+5cÖxû£#tE»ZßHÒv¤(r Ô))¹(ˆ(É­¯¨úÌØ¡ g;üa&Þ&€G §þQwºF>žµå½ùWÿáˆüè_‹á(˜¦Âó”2”®Ô×éÍ ßY°ëÞÈÛòIòVúÉ- ýSe±'iååŠ8‚ÔˆVg žÀG)““RI‡»û”·!µÐˆTwãí씳PÙîÚù,m'ò2¥†Í_Þ|ò$'d»¡M­‰&V“¹ NKÎASù šÖšÚ~Ѳý*ÃNAöüƒÂ³û3ˆËæ!ZƒD+hhFéÍB~+º)†{ ÷<¾ØüýÔ|'°…9Îc¼$Ì€`V²MãÌýÓn†…SðeÉ絛¥Ü»Ì”l1¡åBÙÒ]£ì|¶À6X© ÿ^vžÂ'p®¦Ÿ*B]neè ®† Ë´‡™°ÌØf“<×ë/‡ ÿB~r½m£Èª—òçè2PsË—Ž/cWLžs¢œiÍ#qGÛp^F_ñö‘Ïã¶I yÒíg·Ñ‚ŸЛûùùÏðû†w@sˆkNð‰wŒÙ·˜¨ƒ‰^¿Bcwþ¼´D"›{¸;6›ýá8ûc )¨Ín,/÷ˆK¥‚+½rªþ0ßìŸ6UÊ^ÖO_½¯Æž™ÑR1<-2bWyƒôƒJQç.êhÌS3iS6£™b¸¿ìÎÀ’û箄î?3rÈLÛ™žÚUúbmÕ±M°‹Ó½šSLãé›è¤UŽRŸÛÊ8ePR<Ä)ã•ÃÈÒ €; º_¿p8î·À×q묂O<¤µ z-ìeêü‹}ƒ¼"Ç~» P÷o¾ù‘kCõÕó!Ö“7Œg)SÅú¡üFbjD¬Â8UÄç[·›y£¢ F›6› 5Êí R~›àd›ÜvXÃÇô<½+DHÁw2k‹™<ÙŒÖk‘Eóüç~•¡ZM˜ù±¡-“^ q‹Û»'Á|³u™úS·Fx¸sh-Í2%òâšøj+Ôãú79©Š”x)Û‰R½a±ÂSeB¹Àæ´M%qšDã—Ý;,â"¤ø(q¹ijMj2—•_ê+8ºÍéáùnêmÄ•{€mSÐ6·€ÍdßÛÜù ÃΚ¥Ôh”YV5º²²:ÏHøÍR¶D2ñÚdŠ˜¿G,ÁÈ›øZ€–iÑ,­9óÄçƒnõ÷(ð¯+ÎÍL%[­V‘¥€:2Ñ+~î²åÒèh’wŸ’˜’Õü%êÌ¡5}þ›Ÿµ!É(mþfŸÎ¼é šýÄï‰ÛJ8³UŒØqßcáB·uø2šø¢žuÇËšäÛµÜ.Øâ]¶K›¿;£á¼ã‘)¸7¶"X.F̼o¥ìi$üî_H"µQ‰a#¬ßéîc»™”ðeàs^ž~îA!s§úå“üC°\ϺÁ:Ø`Ü8D»Ý®&\™Ghnˆq¢w‡¤œÄ"&Pä‰I±Öäg\ÊÉNK½9ÄR¸ˆ°)gƒ­<±[ÆÀ–C‡à`&wœ†ÓšÓé§’Ks¸ˆ¬$Ã8–+aÚ"6ôÐ šŽ•CŠcÆý1] u²ƒ®M;J"2—îû¼þè ¸Ê<wvìÐi³Ç„«·4mâ²¢ëu;WùN´‡aLÿýŒÌ¾kþ…›‡~ƒÝ¶¶¸ç=ÉæÝ‰{ €¹p¥éÆÍËkçr%­bñìYk§Nœ{±ù\õ凇9ÔcFåŽÃ>°¢Më*ëž>(½¤ƒ§ÈF·×ˆÉÔ“àÿò$YÔ}1Òbú³q«7„oÙÊ9o v‚Y îõõpdz¡±é\)çE㨛WítPïñç¤WèƒòB"|b·-:åü‰IgÑyI?|*ž²}ii,d°¼/…×Ã10jæá’úŠc{sj‰³©Ù^°…a*Û+yÙæ¾Uú5ò{-xôZˆVóÝÅUAe¾¾AA¾¾eAUUeeU¾cú§kí?ijB‘Ã?ÿXCšŽª¤/ÞÒ5E£.M•¥NO#îgÆÒÙñq¿õó{ˆáÚk±½a-h‘FûXk~æâÝO:4í"²ÓY°'N|ÅY±²˜„øx9·~á"ÿ90–ëVŸØQšGÄ{æ¼É¸îöù´[7϶ Ó\8zBzÅíXB| Çõ©É*¥¤Õálb‰“%®A–›™©NÎJçxAžš¡Ö@ªes+I ½òñ¼?<Œkõ  ¦ÖÎ]¶8MC]É)9y|öŽ·múÞ‘…ß¾|{ڌߙW6«Ÿ}õ š-ØÿNÙQxÏŠËBKý½ÃCK‚+ô…ºR-èó§kí‰ä'i”¦ÿ^—ŒòƽFa‚ÏÛn5o/.ßYá#—sʤ$¥ñI¹ÉÕiŸ_º(Í6îR “–œ ›2w¶-Û²¿¶°¢Ü(pÿÍÏÚO pxè›]a‚ç„èŽ×­ÞY€{!s/´ Ðh@sö¢9¨ê•ÓñœD<Æf!fWrë°I4[7# w;ÍÎã–d“š¬I“þîé(‚<¾ iÄpG†º­Ff¶¨ÇÄ+1ÀÈå H* —>vLÌÒL7Ò£÷ÄæQí€É“S3Ÿ|†ØO¸ãÈ$ áÁŸO’ýÑ…º’øºhÖï”fý݉RgÊx¤Ô@ýÙk&ãùÖÿïJ‰[};™¬inÛÑDèÉÿ×gÔ{‡³fýñt"^ö‡ã ¶ ÕŸü§<÷¿^ÛRg<ÕFƒ¯iKN· ÛÛ!Íc#”FÊY&)“ Ò8zDf"¶õÅ£}w×ÅsÎIr?ˆ`<Ë£ŠJKów²ºiöÜepXôû©—Pƒ„¿¹ùÛh}(-ÊYŠK×ì¼§¤´˜ìG•ørP£ËÛý——›š™Å©§û­pÜ$—+•ضé²ïÞEôïÂJÔ‡´…åN‚zö^P¿ÒîòDPªÕ–^¹Î¤åe`ý@é¿[®ûï¾3óäg‰±§Œžß~yè ŽÝ–P›ž¾«@ÎtD£Ù÷fÔ>ê²OˆÆcøÍ.ü˳_Gp1žh.w í9A*¢*d+>‡ WÑ„h(]+>Ñ8ÕHk[Cè·å©½¼œüsu1NêÚ·äÞBÈÛv”…Èʇÿõ뜄(H0ê{FlVnrf¦†Cÿz3'%RÀ8é7YØÑô¡­iàªÐÀzˆë<öدttMLà|ëíSü…™µ˜ú·˜¹ý›¡'­'|bè–#‡þõÐGW‰#aÆÑ€\X«ˆ‚Xˆf0·#3úÙý¦+G+w÷^Êا5ZA[ÞÉ?¡áà{lÞ¦×ÎcË6ÿ#‹ÇÛ¹ì ç‚kŠ×3w"”þ?äÈ@w|Ð`%Þ–a’Q˜Àà>FVÑ/7|RV›àWÁuÑòs oVªV¤ï|­ ×ÙtõjÇ® k­Jm,DijµæB×®ºFMª:U£Ñ¤¤&wíFQÿZ þôendstream endobj 179 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1659 >> stream xœU‘{PSgÆO€œsTˆnÒsÒN¬Þ*íÖE©‡¢rQjc1€ ƒ&Ü“ˆ\ oAn*¢HR‚j+¨µVw]-£eÚNÇU§¶uoÝqÞÃ|θaw¶3;ßÌ;ó½¼Ïóü ååAI$’Å ï'éi´«VFÆéfͯ–ŠK$b¨‡ø’'TÎÝžK”‚·'x{M…ÒCrÌ÷ôŸ՗ò”HvíÓnÒå rd©V¯\¹&2Ò=ßTeUqQª­šÌ\¾07G¥Ñf©¶F½¥JÔéÝËU„N«ÊØ—­9¸_¥Û¯JÙ—¦JMŽOJVmIÚ–º=yYÔÿ{úýGQ”÷Æ‚Â"MFæª×׿AQ¯PÉT •JÅQ›¨Í”œ  © *˜òqg£¼¨"ê‰ArÝ#Ùã¶ç;ž5^K½é © ÏË^xîË£@À0AüH/™» ¼Ææ9iåé 8 Á:8V}ÔH,Ïÿd:b®Ž¶DMã« ®À§æ`ÕÐÆ7œ¸„>R´Ó×I˜t…š¶þc0ÁafÉ·xTI 4ÒxN*{!™íœ×û‡ ž–?C PVв@E„˜(z)/§ìŠÏü ¡ˆC)£˜!¨–ª™6ÈâÉwÕ Ê­Ãpœnᵸ‰¹ó Êþ†ÃÚŒAýÀÀ }„sŸ¿ÖA™sâ’Aùð]¬¸¨0ˆkP¥„1½#ûLÖ@nÓÛmûm[[A`o<î{ÃÚ”FÎrÄRc¶{ùï˜nh6«C—ß–Ý” ì!$0³'¯ç0?’=lú¶ÌiºWÛÙ ÑPürþÌXWÓ^eÀ‚©ˆ'ÆU]¶z8içæÓ¹_@ŸÃ(À0Þmò‹7(Ó¾0Y/ÿ iµ€ …@ÅSQ޾ÊËê4fKn¡nÜìåpÀÝ Ãd5S¾;"ÂÌpsùôÓª¿ß½ñê '¯˜œ‡Üv#ò~\€YH*Ôâ¥>eo9”s‰hƒ^s™G›o‘eIDvlMºÃÐnÐ~ᬡÓ\Ïi´œöžCËç0›ÍÄVd)«¨\޾Æ?'Œ^8Å)6„=ÿâ&éžÐÇ“=È(ç—G—¤e:Æ‘ÂÕí—¬nþå)“SôwâŽù~i@ôEÿ@Ežø •ù3Y÷V_ÈáCâ/øùSéèîìêèf·ª–úh .ûí1ò<ñ5¤ägi3öTæBoª¥DìG¿A7üTôó§ç‚”d/]$¼±¬¡¤¡®¹¶…UÓÙÄ&è–ûmm õ­MßC§[ámÚXl(1/'^›È lühêÿÈM00i´ ͲéÅh|/¨¥êÁñß–0Ú%†¸$“n=ÀèžîüÛ”€TŒ°ûÌç¹q¸ÆþsåEB>~ýòô®„Ùt.fzld‰Ri¨Äµß?DN…3JØŸ“®%¯ýTÚ¬ë„!öÎcÛÈ—2¶pöç‹”1‘¥IË’>Ÿ½<æèáð¥Øñ‚OKàÃ`Ye«¸½?²·´ÒÂB¤q ½RtÞ À{Ñy«Õb©o°ØlC×½½…¦ mM­ÖãîÔVoŠú7—/2^endstream endobj 180 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6627 >> stream xœYX×ÚžvvDlŒ#Åd–Øc‹±EPQPÔ6TP”Þ{]z?ôÞ{ FìØ‚â¢&®õêMLQŒ¦ir“üß$‡<ÏvXRnžKÙåÌœ=ç;ïWÞ÷D”Ž%‰&mµ¶öõñ}{Ñg×`¯CÊ‹³„©"á5-áuí.ýÕJŒô´‘žÎ¥×¦õè Ë&AÅØ6‘Ò‰v»ú®÷õ pwu 2Y¼hÑ’ ÈëJ§pó…&V‡{ú†zº›ò9bbµÐz¡É6ßPrÑÝdޝ‰“³Û!/_;ç=&;m7ÚØšl²Ù¾s‡í› ÿlÖ𘢨­f>{Ì}÷®÷Ûà¿1À"pSÐæ`ËÐC[œ¶†¶Ž8²Íy»ËW7w[;Ï^Þ‹ÞŽZ¼$zé²å﬘¶rÕŒ™«×¬óæÜ}óæ/XèøEM£¶S+©éÔj5ƒzšIÙP³([j6eGÍ¡vRoR»¨¹ÔnjeNͧöRë©”=µZHí£6RoQÔ"jõ6µ™²¤–PVÔRj µŒÚJ-§¬©mÔ$JŸ:@±ÔdÊ‘â¨)”eHQÚ”15•S4õ:ÅSRj ¥K¥VSzÔ8j<52¥&RÖÄ?”M ¢J­×µ´ni›j_Ô1ÐIKÄAâgtý»dŸä ³“©C©Ñ}S÷ôXÛ±gôtõŽ£Ç]?c|Í„)B'<œ¸nbõ¤ý‰úçØ×ؾÉf“+¸ù\6wwJä”>#ƒÕ§ ·6M6J3cìdüùÔyS§~þZÎë ^yý /â7ó9R©ƒ´Yú…‰Ød–ÉtŒj‘ü'¹ðF¨¨ ¶ Ûµ…¤V•$Æä$e£(„Ç Õ†ñÇd^ÈE¢xgB!ð.‡ûn®ªºQ{ê"êgîm{ŒµyBË”›7 riÓ Ìo8é4âk¤oC7çäi9—Ÿ0‰f~Qkí!­ÁpöGv,å1 !ÀӬέæÊý“äðP.º¢€…¶à ^LZøë`…sð$Ì~3´@ë›oAŸ·ÈãZ›š™Y?xñÕÍ›wîÞ°ZÄ£,‚0òñLá!GÎÉX‹ê¥Óp¬ìÂ*XWcT_«Qy»žœ£††9¸OŒ·HF®ÁXº¬A…^¤4¶Ð0úÄ5ªkJ‹cåB¾\t\}dË0XÍu¢Øø 䓯'¾¹*Ð 1‹–ýsáÍ'¿ \ûðÀªRiVDfd+b:QMµ¤’rÔàž—˜Ì§¥ ´èæÕ{ƒ9rlcl…·y‡)À|9ðL¹!Ã[r¸¥ŽâS 0!^2¢”`MXüýû½ÜyöeKZ©óx°ù¿°Ý}èd|;b@ôÝ7ÀJ-¦ÌÛhµqÛÓsü= «ßwõÒõûWÍ—j~¬€JrÞp¸ÌÁÒe0ñØixõ2ií ,X3"˃ÁS0eda<æ=<„ÏŠíÔî³.ÓU¨ÖÝ E8ó~-N6™ó1‹'~=´n骫‘bOûQ>{Wí¼X˜ÂÙØ¯\ifuûÙóÛŠOœ^k©>ËÁQU §û †¿ éÝÜ€D½UH(o«! $N(²ó(ª­â_ Ý‹tâ±8Òl7¤í¢ÃPðQ¥/ RmI…îüàMR¶ʼ58RšÕêÈ+h—Ž*D°@Ú ô…»HˆÆrÕ1'VìÙ¾ÕŽ?*aªVÄZšý÷¯ÒŒ TS&°¶2Áf|Ý÷-Œã3+BS[]Þ4´™‡òGô£^#ÇÕ¢…$nØàI;e£·Pú»Á^£ÿ‹×È­¬Q@Œäñ]9TʵG˜Ä¡Ÿ0W㙳©ØÐ'{S1ú€iloûæ³Roÿ,>#"3¢m(ªtL‘%¦ñŽ5Ž(Œ¸úÝ •®oýñ\&íIø$íb\\<í·-zÀ'W¦ù#Fé.é\I$ h-(Ïè*æ{\/¥5“h^ÜþÙ9u’Â9œ’‹Ž) ‘œ>¹VeÅÅc5`ž c°Žýþ]ˆYµ(’æ >ùÏ£ÎëA˜ªfFäÆ4þ1gC’cÝ£x·ÖÃe‡ˆ‘z3ðTl‰·þ„`ì•­uÕÒ`ªÆ VKêIŪo·Hy">_LÌØ ú\%ªqóH‰àÓ­m₳]lB<¬Œ@W<¦G¢råR5»(ëöSœJÏ»åzïþ§'øQÕ[ôDndýôVu²'GŸ¹;`7pøãÝîh”hF,„!à†Cè?—Iõ!í”Á­°ÐBa Ø(¡ M‰¸Œw€Ç´*ìþÀ­î4ÛóöªÏÕ¨£‡:É_gÐó÷º» ›»xv¿gF ªœz.oPã:ªìÛ ‘)¦P£òã˜&/”ajÔøØV„ºrQ=ì} {µ…Ta†Bš¤f³Öý n–xŒÆàã4èâ9x"^&>L³ #×aŒ:¾B—ôK˜0€'ˆ}‡E¹§Üe¨ªÜ—ƒX."l–KRàOZ¬þšOƒ¹t( !õ©ºÿîÿ+óƒHIÊ=”\Iâ›T¥Ð•I‚¬W¢9örM2t Ê\4#A¦@&ßúŽraŸ\¿öâÍÁö°Æÿ-íÖc÷h—¤ðD/£t:¹*¾&±j!$6ü}¶Ñ0 ÿš‡R2B(àè†Mô±sM‹JgPNA‰”5m¯ àÙ“~áþ‡Žîyu ‹²¥ð–°OÜ:ªœ)¹ìž´qÍ>()2.-4‘OŠÛo†˜åëou®™døÔšP¼4íJV˜úšŠ–{Ó‘6ÝŽ_[‚õ¾ž ú =ú}ÅP4­”C¹\ÿJïÁÞOzá5òfÀÖ Ù$šB'/È$íÊ„d—)ƒ…·%Ì›"‹÷ߌ c\ã}’|HòÇ]Åi¹qõH†[RR¶…d;?(“x*£†ÍQ‚Á?VŸ†ýX½¸†¤èÀ l—T✓˜›PœXŒJPi~~iVî[|‰Éô§•K¨»ˆ¸Ç#x¨AÔ£€n¾ÝÜUdrƵ¸ =5ÕY¨Âèh0 ãñ Ú#!ÁCz@2"!S‚oâžÐôTaä^‹ªxa]›‹ªQ3\ƒn)Cz4‰DkHDÈýYL{´8•$l,šGÔ¡”ÍŸÍý¥÷DSK3ÏnsE²ãüeà…ðÇvÚ:¬X»aûooß¼}£ÇÖNæ/z!¤—…áâѬè›Nã­BjLGT–2Ú4ŠN•„92úe_ ¾4lL-q+OoDF­ÅYǤBnƒDdèÚ¿®Ád¹>ë' ²ð„Ô°D>xÏÎx_dŠLÏG~ÉÀº¦ u½å{<7O²]xü³€óÏø 0ÃUté½¾o#Ò®Ì`Fú”^4¯¹ÁUN„4cklâ‡Oâ5~` [k›àoQÀ!k´!vg¬­Èb´ÔÄœ¹€ž Q?ºUt¦¤¯­ø1z€:ãËìŠ÷˶1Ãa“H…تøî‰¶`)\殽‹"ß]{`)¿k¶Fµü€ûg¢Þz EÏ‚~?*›ÇŸ¥}ŒZù”‚#ÕuåÍCg«RUµ.%H0å^˜=Ãý7á œfoØJt20÷ž½ ¥n×A‹yüú ýíI‹]ª¢~ Ì®|x Ö]ó¾¦ßr5La£€Í ÿ«)Š÷®°)!W0äêÂÚvÆÚ§»àY]ª(Ò­êÀÔL—¬ð( “²"*62>ØÛ¹•Ī3ÑÌmŠ5^öó6˜ “îÿ‚gÍLPWøù=MÑy‡jßFÌF:E£„Ì(”„bJvZlliz-2FÙ™¥Ù…YiÇ‚zóüÞÝ)»ØµÆ·D4××g—däúÕ%"¦¢®¸EŠ7cmÎÆÑq÷ÎCg/ñìÍœ+§N]¼|bÿ.(Œ9GÓƒ³g›ž­–ŠCŠj":¾ª^pí¤‘&ŠØ;OHs‰ðEg.]Gùñu|LKP¬ˆaþ¨«JÞmüåºÇX—Çÿ7ÙêñˆHéVÔî˰¿Õ† àCÆÈ yWyVx7GEÌõúŽ‘®þÃÙ;¼·ˆ_wivàù©ûF*ßýWúàþÊœXIˆkˆû§ ‹Z+¸(©z¸A1TwQÉÞ ¼SçÎbRµMW/ß|Æò³@)HüÄlYsÒg¡KwܱÚ×>»é0¨)åDzezEz¥çPC… UUmni{Ü[yƒhæîÓ!î&…ÒO‰Æ¹0|µ‘àá!è8r‚…:@H5Éx˜2¸€FÈÙßÍÏÙ‹ˆ>“•I8"å1ÍA!AÁ><¿î{Ô 3ß½<;9CøöoARèÏÉ·¶<ª‘ªfs Ó\£AÙîQÌFu´¤?0ücÛª®acI [ûl{mUÚ|ÈÇ^4~vÁˆ;Gu G /ÇóÅð³Ú+ ô ÊìGµJ£ÚjûOéOîÃXü–úÁ¥ -ÝÍIâTº ˆ%'­ 5­Ü¨B‡¿¦M,wïÞeuñÿxøºU)yÛZU–ýaÖKOxòÖ«WOžÃ^¶Jþ¦srjñ”azv¢*±§ž‰5þ“"°“ë_ꅱʶG(Q W’‰Jz±·Sô_>ê¨o¥òDÞ²À`†ý´5-…OõTZƒÞ—â~‰kÈPxªF™,"…M¶g ûlw]i„e’°áBòà“þaŠæYil> §õQrà¶™`€µ°ÎlÕ£¶m?bÐW` V¼E‡çXaÝ5k¬@æÀ,ÅËû÷n¿‰gáx9ŒA2YkÛr‹„ Z™zaI11ɼóòݱai‘é!iÈ— ¨L.«êÎ=vŠ\µH¢©NÙ#(Bèmm8ïÊýºNRŒ:ÝÜ[ ÿû:I rëìDÅC»¦’ú0 ’p©‚W7×8$¿Â|yO³û.|ûàäq†}q½÷ÌOŒAoÖ<ë®^¹Ü¥9¶¢¦®¢¹8¹$>/;s¶íCÄ<~x`ÉFû÷,í¤Øo‹OHJF2#eëó9ðœf™aµ+‡Ì`/×?5°} dt‡‰ >B˜sèÎþ>ËÖÞ÷›¯ ËÌ}ó±ëmÜgáÑ «VnXšT˜šÅ·µÝQ¶‡·Î»:xG¹ùK=ýÒ\ÓlR¢òa”™ÁŸ¡Ù—6¿·Ívë¢Ãk‹ÎúKsròˆ*dêê‚‚£<÷É@ƒ/ž¿PÂ!XÁ®<ª<26)9)‘÷öõ”‘9¡ º8º$´Æù!ßÈ ˆÐ(Ÿ`ÎD–E–åæäæñ­Í奨°IILItuÈQÔ„šËë*ªËZjQ嘡äÂëĽ÷{û‰L€}j¯ŸéŽÄ|wÞ—DÉéÑ¡8 ÿfÒP(ãQØÆC¦¬GÑÏfM²[õhèÁ¤y‡h€ÅjlÛä°L.zª€tO^`Ãý°ö{¬ëæ˜ìă $ŽzTK{$Æ{Jq•$µWfçæóMíÝ•W‰7O›[½»aû;¾[ò?ô%àåçðZ‚ÊC¢¼ã¬ø|#èÀ¤—Ï@[M6 Õ:ý¤Ñ¿tgÿ!åß»‰GÏ ž°“zÉÖÚ½;ÂÉ/…7¾~üEå±9Éä+‰€XÚØP]ÑÚãzy.Éc<;à8Ð1ɳÏ@ôýç GäÕ2K›õVGzä¡|\}f=*eú¯ÿ×§—6›)÷/ ®ÊE§WT*nHgãÏè¤òp”€w&=4TÊ«šy¨ ±ÞêŽýÖbdÈ£³¢¢¨…Ï.Xæò¾êÊÌL²ÃP¤Êá‰T…òY²ò=óÕqúÀªÏ¬æ“¦Ó=è óxù#<ë½³z•Í™½ÿöçÙ;¦![v˜Ï}±&þó§ßñ+à8gcíhγæÖ§{/öžû÷£+ûvKKñœ…¥í žµYaÙ«_½þÕó+[·©²øS8+¤Â .ë¬{~4 C>±YŽ%ØÑ0#*+¤5 œÊŒ ¯€ƒÿO\3gŠG®!åÙ99¹¨‚©¯öðö¬Ü@´§!ÉžI`ϯyÈÙí´Y±j×Ç÷ŸÜé½{²9(”$<Ó~¤ lƒ±2þÉ,K˜$‚ý0I :\—w£§s€——K«û±†¶6÷éüåùäÕ %Ñ e«¼ŽC=¾/ñÌ&ŽH:RÎËÊ÷Ä%$Ç h†P~SM}q×C»»X·ïR /É;K°Vô–uÈ æb V{18JâëTu!7»0Õ1Í¡ñ®)V\] L,ï¢T)m­¨¡œ?&ñU¾D· ;8›Â]ï£ èܹãý… ¬4àЇý[bð‘|}ÒíQ‚¼¢¦õCj?Lïu’dÿE™ðà,\áéÝgïüžéšlÏõ»ú€‡°—\eTEh`b)ï¸ñ÷)qiÉ(Ñ(¬<²ª>¯²(›‡¦_7efæ <£‹ƒ¿p÷]úöîuÙafÖµãüù®¾û<ò9Ç0ߘ˜°æSÝ•­%%•Þ$Á;•WýÈÕ¦S§ªšŠ‹«üUÎí+UEçÇæáã`iä¥(¯$UÕ…GƧ¦ÇËxüŽOŠN@aFˆÌ,L„/±³ai|V:©¶åUÅuª°Ü}ûñm‘!ès.¤ƒ&‚@æ‚ÜÜ:P±~£‹;P§Ï×éô@1<þŽñ ÷º”,ÿ’.í"÷T¶@‡JŠâòð—àl(+H͈GLdXLP¹š(…ãØ“ߨD•1AU1åY¥<<†Ã¹*³•¦˜‘„·ÜÉ¡²Äìðb<ñó`„@½:R0þª¼(/•1ùÉÕþ>ø 6Äxì™·;÷ò—ÌØÖ#¦1§:_u¢÷Úð³Ò${à™Ûù]÷L{šU”˜“*…XT†—}?ÛKñÔEQ$øP“ÚÐI.(!†ð´…ýàÁ¡Š˜‚´Œ€ŠMþ¥@õç•ä¡*&µæñÄõ™¡£Ôáá<â}2,3ýyL]—¤¡DdV”TB`íÀÔŽ˜Äè$j”‚|Žó0ñnšº%ò1ŠG¨£ %ý£´F^îîR}ûPSd&ÊGLuIe™ò\+ä¿N'‚,€€ºk¨(Îÿu:ÌÕ[ªà÷-¯Ü¸£> stream xœ­˜ XSgÖÇoŒÄKµÚbo5]îeԶتãÒ±v±Õ*Õº""j•b ,²BH YN²@Ø—aIØA÷¥ÔµEÇj[—ÚÕy¦3ßt™7™Ë7ÎÀ©¯Ï™ï{xàp—÷=çwþçÿ1~Ááp]·~SrR¤hÁü¹o§G& ¢½>ë~’ã~jœûinù×ÂRì öÙYg×ß@ ¿õ9:°›‚ˆŒYÂ Ñæ­;·ç¼tظ®ãLçéƒ-Ý@jÚŒŸ;Èpzæ:9èùÛ\ÏÏRJ_¤7C º’|P‚¼€^·<âÂÆÊpà³Q¬Í`eì’¿ÌB4 C´û ¾ªP¥…†ÙÊ.e]»È—D3Î4 ×Ð8f諯>ò‡Ž^L-‚†ñ&ÔfÔWÑ£Ûb·8ÑœQj‚>àº-¨›úKС mñ-ÜYšö@¨@¢LfXÞðNE¢B£ã`h•¦BK#ƽ‰qA›_iƸ—æƒt+˜KÌGQ%Óžµä4DÅéà ‰(ÍfØ)ìjJ–¸Èù·¬F½Ñ`e Ö¶3WO¿¿d“02…(ZËLö¨Áéá`fVßàz*Ýk(4ó•?³ÍžPLNñÐF‚(ƒYÒEA°ˆ ZüܶM+#_rÖ}8 Ú}¸¸Ý¢Çàü÷»«;ÙiÌdwıCÄ2qÝËÙÔ½-Z &½™FO»ûðJøÅ ƒFŸ,¡eÍ©íÛd¹ìCìöÙÅWz;MLÖR=d½&Щ×êÈ<¼Ì³Æâj7B+ÓŠ+ß5Df9:L)7¼ºÈŠ÷Z;‘oõ>¦áôÀá^°Â^]ur‰¤DbÐèÔZ‰3íp%™è‹«8ϳorÝR÷êèÛî·âÃ3$´üXLÍîÿ°ð[,ÍV}Uèýˆúø&h‚Zi‚\#„B2¯Xì¨v–w{Ë\?è-óN4àäœñ,âzÂÜ©Ô^ht¨ øÃÛy9ùgÚAP(Ô¹ ûÄpëýY³±gŸz˜8 é²¸3U&Ÿ÷&XËŠÀPTÁœE&Ÿ¼óŹ)9j ^°V©Sƒ†Ä7aôkLô ”‚ëÌ&¾Mš<&»Î^)IÃÕ³”w•Z[GR|y±'¾µG#Ö¤3:‰÷åú¢jƒ·vÊ>Ã’ðî54oè0Îÿ¼“Èï]®ûi´€‚ÛK«£Š“ÍñVè#ë놮5væÇØh¡Z‘ù¤ÜœS_å(íˆê~›õz!ìõóÒ&½?¿?BIaÊ«³26šŽHè#&ØÓP“W–™žœ³sÃ`üoÑó]hò€÷ÝëF”žïDaY¸nNq‘{Lêe ËVÐÙÛ£—m2*-Piib.£Ã>·xU¶±X½ÊëDEå`À¨Ë1å§ågâÃ.òYÌ˹W×x+ØZ-)?¼5úèSëéÎ{ZøëÓ'¹îÁ{ïÖé2T´4D¼Nd*4–¾ûê5˜q¬|›¢"+I)Rhé7ÙþÂlÐäñÅÉ¢¤]@î,Øßzºõ‹†!ÆZg*‡òðngļ6@5Ê¡¡¼ˆ¶:?¤Í¦IÝ“Ÿ"aRS—Cùâ èø±¶––zº:´OUP×Pá¬î*=…㇃•o Feâ]w0}YC•* k=Xl–¢ =éî´ºÌÅ€_W2"PêèH D1QaŒÇt„ɶf¬$ZÌ Ã>5Ü«Ø] X üÌÈ–[´/“½L/ôiz€´xKËÃX”æŸ.?‰|?çºóÝ“¨v™S”ž–žžgQš•t}ªQˆ›aò¶ˆ*?Ü:èºÝx‰6Uš+0‰‹³‚`9ÿœè=ôÚúo=ÙmϰŸÿÆ-urî|ËõŒó,¢ŠUFÅîx è°ÃˆÃí•ç‘$—òªÀÕZ»Æªƒ\P{•’%‡ã¦‹—m Ü QРè5è `²ËÞÖàÈ*ËÔÃ뫎GŸ»óÕ•/í òu'Zš,Ö~àWؼû¾;®,õ N—¼u­øœëYÿ ›‡hጜ¨Œ0aÔ;@†Kz÷ëëmû™}è5³½¤ŠF¨)S05›X±2Y—‰y”'.Ù—ËŽ;.;¯Ó–Óƒ†+œ} R!Vc+¹_S.h/k9Rדòœ‚}½-¿mêFóàyßÿ‹»ý_ƒ>„î«)¡RP¨£Å}ÂJáO…¾cÝ¡ƶ­3³ý§¨²«Ä”B¸þ•ŸurCX$è”Z0—øtŒè3ž.®']t¼^f‘9ÙièOÓÑ:4woÍлï›ùV}‰ªH‹Ú¤ÌLÓ@:±F¼nUˆåÅ:S®+-)dçäJòØïÙéWÑ%«Ëj=‹ë¡ªmJƒ26J1L4DcFoü×ktW¯º™èÕ`³cÁfµL YÁZl¶ºLÕL;š…lÎX—9´¸‘cuyÞBóÖRG·:él‘›±¾[±žß«%·ƒ&¼‹R°QÙ5fTb™B}µÞk²˜uM¾N§¡2\b¾¼Ê”ùè€aF§É‚XþKûV}ˆÆ#_ô<¶l÷ÛŽ´ÝuWö·7#c©CEmsOW[÷[»œ/ŒiG˼ óûãIÀZ8mêÜ‹4Ô7nZo6ü³âPŠ¢ƒ‚ÿ•ºg}Y˾¼|W8Û¥]&Ð,zÆi*m„J²Nb˦§šd1ª°^Á‰ï¾üö £D]WûG lä-®;á;ʤ°)Ô:]¾‚^>w¡:ÈдþÁcß;2ç·÷ceè×VD…« ã)±Iö6ÖÛ»Et®½çzÞ{û3ôØ?Uà¾À•;Ǩ|ÿ¯¯q=×ðÙh,çÖQíº+|pÊaØÇx y6ûõð™é!îA­] {°Õåÿœ{l¸T+Û©å+äºl¯3ji3‚ÛËö{‰1+UêeÌ&ƒÖ`sQ%â»›¦ëy§‡¿5䀲øe`²˜mn_Ìþjøì?‘Û‰éëbº0¹£äÞoÿG$°¸~Y *Ìõ šéz@7²y¹Î”ÆH¼é‰Õ™ÿ–óI|нŠ3Ï»€ »~>ókä¿íî*é·42ݼøÀx°æª ΃…ˆë^;ƒù,¸ààâßæ:Y©_±/Ãn:“ׇ–|k,²goŠÀ«ýsÏ’ øÂ{‹ëivShÉ3`ýØH6šÍgsÙîø£§Ð‡2Š^¼‚Eñ,Ëü5,wað2 ç‡\GÊ‘ÿE4™9vçËoùÉ¥ ö o*:½eWsÍ-v¢¹ŸÔÙ9i7Ñlh·z¦R}Q{£f§± ”t&;Îçm/DY8ÚÌޛþ²õùQªL¾Bù 6Ê+ZLåõPKÚ³K$iiY ;û2;¿ëEq¬(¬Ïu^UÉ©Ky.´ØÚi;Ö|+ÔiË$I…Ò=EfTçW64Ô¶{QãÈ€ ËÎâ3Éãø+r»¨›«FN®ÇàHò¯„ÓëlË™ÓHïƒ~ÍC~èÉ?#_fQ#Y¹³cw%Ä„‹ƒ0~¼!Ô8vÂý”wñHêÚ‘s Ö©µv÷ oõcxZG!Ž{MQnVE#ÍJ–®©iisJS~ÈxvÀþjñUWŽôõ––2™/ÉÂU™É~ôŽhìò RlµÖÒ:ÜXÊ jR³¥1ÑÙ7¿ÿèýjh Ã}lÃRŒh¨ö#ÛÁä[w€i8¾¿oéTñK F#õE…Ýrç“4Åînösës;¾Éõ¬ÕQ–B“J¡U)µtz`xr`O…öKôò%ô0 ´Šü9¤ÚÛ­–:Z¦”Ü\7ˆÈ^ t±;#¶‹Õ³¿yFëR]^äæÈMÛ%F¥¡YÙš~.Á¹ôÂ4áô×·N\ò«÷^a'2¬dxµG&”ã.O‚ž×ýÇáTÈtŠÿ! ·Ff.®Ÿ¹¬NHHJ¤?Dý¨lÀðmV'Ç—Ê‹skêʪlFº-¸wè Õ®ZWßÙ‹ÿëÀå“T"ÃŽQ=fGG~îlÄiûbÚÔ*OüW”EkÎËÓÊ4tNH’0È$M£Ëa¬7:ã^Ó~¨ƒ“ û¶V£C·áCòêØGi¶êèö™š P`ÀŸüßÞ)ÓýK|ŸG•>ˆàí;*Y!ÕHCùµÄäÔÞå§…go¶ü`¥ç¸ã(P©ç…†&‰ÂÓWù,ßei±,¾Åà‚ Ï}sÇÄb$A?üà‡;yàÄ´©£›?Í(åœ!…Tßè(k-ëdΡ7Jš x#ü± qsììÂûrq«ã둾\˜¾G.RŠ™¤%qÒX5–~L}ÔÑ;­èù"zª£;ªËµ' …‰ÂŒÊÌf—Ëé¢G'tNÏü&Ú>„váRlG4+{S]iN™qN“Ø”X\hT丠—¼þñç·î4­ZžªSª3hÔçÇÙÍQ=:(â{E…:¼€ÞóÁJ}n$SXþžfß2˜Â˜5vU…útúÑ\«¦*Û&µe@<9és —-ëøn¯©ÑhÃvÅÇV*™Ö’06˜5Ø•©Lj³Eo(±Ò¶R‡«¤¬3ô\îQ ±úpÑÈG˜¸kÄöPû8wð)´u,´…*(ÔÐÊ´œ@qd2ðÿ£¾È>:Œ[Xaäò·tÄìªml(£«ÚËÏsî‚ScÆÜ32ëô<à¬óæÆÚá»v%ÑŠ a5;!¶í¼óÿ:÷<†ÒºæÃ}ƒ€€­¹)J‘¶€YÖý;7ýríz™†P2&Úq’gÚÔ[(í,e—Ô% w'íN­Îq´9[[èß¡O¨½’Údzj° Q˜˜^™ÕÔæt9ïõÐe™(ô~—‹ÒP­R‡0:-A$Ü›_W[i+2ѹ¯‡¯Ý-ÃԤƨ´T£)X}'z×{Š@A'9Ÿ"3×ÓvÊ`6Û¡ˆôh6Œ—…=½:O«*{'@V¨¦Ñf^ `G\JNΰ»WØÐC¥gèäDú¡ñ›7ïšä “&Ú˜iüÕ]Udž4©« ÿn1”ëM5îºIÄß{Wendstream endobj 182 0 obj << /Filter /FlateDecode /Length 262 >> stream xœ]‘;nÃ0D{‚7õ¥ Û8‹A’ ÔÊPaJ å"·Ïì2N‘âxÜ€ÖçËË%-»©ßó?y7ó’¦Ì÷õ‘#›À×%UMk¦%g¼ù­ªÏ¯~ûúÞØ`çâoþÆõGÛ”«¦„â:ñ}ó‘³OW®NÖÒiž©â4ý5®$Âü\ TèBCÐH….´Ðf D)Ð Ú!'XÛFhß’bm/ÙþH ô:R¬Å ÅdÐé Ó±'ÅZœÐ‘è(ŠÅQ—G]ö¤@=Ô!ç4ë$ëð^:ˆâ½Ô‰H´ gÒ•´þ,ÙÄGΜvý­^_ÿýÞ¶n’2 úAч·endstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2787 >> stream xœmV pç^a[,Ž9 U±ì*¡PÂ`†#™)&M œæŽÁÈØÆ6¶lɲdɲuŸouY—åC¶äøæ0Wbˆ Ä€I¡%i;%aJ M¦¤!¿œŸiº*¤3t:;³3û_ïí÷}ÿ÷‡ˆŸ@p8œ™ïlÚ$”æ®— ò-]’²=ûpiP›š}‘=!:'® Çã» )’â/ÌNŠŸŽº†¬SQé4b"‡³»°\c°1늊’¼Ã¹RÁ²%K–§¤°ï‚L…`íbÁá¡#Eò’#y¡(K°añ¦Å‚ÍErv0O° H$ÈÌÎäŠr;²÷v¦½µ=Mº}Ëέi¯,þÿ >?*,(Îff³_ÂÂÌ,¡¨” ˆék÷JK×Ë˲ròÒò__ùBo&AÌ%^'v»ˆ…Äb/ñ‘Jl ^%6S‰É8 ÇNÌ`!â‰~ŽŠóhB8Ž÷·ø†„´„¸Î‰ë'^ŸørymÒÃÄ}‰CèØ”'|¯! †Qg|;*àÁ'Û.-ôÿ3ôÝ-xHÞZ'Qø·L rBÐÖ:ºÞêµA%˜m‹ÏzÒ•¬Í²êW©|ºªžFã\´ %¢Ä¯ét—·üµEx …çs?BŒ·Ûî8 |Äã~Ѹ5ƒN÷y –-ĉžÍ­+-caÀ°»êo Îd´ûUhÍAšÍö·6Ûq›ªc|9ÏcrêÅ" Sùë8¤±Ê4>›«ªÍ*SJÅfU¸O@çAö<à7_Ð ~5X(<Ý"M ðÙ}rªGœ:‰—FSñŸ‹C>Xá×LŠÊ6ËJY¦g—h4Ý~nI¨ °'é  d`WÒ2»Ñ¨òv»»ÑKÉ®ãðxƒú’ƒÁööc]×]|?ã¨'§üÈÉ›MhÂQ~Ú-ç kh.ϧ³Îfј¨ƒsw•ä)ÓVk²W9ëè[èlÂnC,o-(èåÜô²«ÜdÚ§´ÙruT^žÂ•k¡Líú î:ÜkV‚‚ÜÙ—}áÑE4ßC±ð­*M sqÕ?ˆÅÕEk3WX¨Š´²TáÓ¸áÀO7}Ž_Ÿ³†ïŠøúØxõ^•IlËÓS«ñ›ùÐʵÀß­ìýàè§-7è@»+!rðHïÞE9xžNð1öZÕüy_oÞZÛ‘Ȩ¢sÈ6Á>rÑ É…ÑžÁpåÏ쟄nˆDj;ëzª¯Ä@:å{F7ú<Ä è¡Ta»œ’ÙÍNðƒÇî±W¡YÑödoÃ÷)M4`¦q²ó †Ê§¢=Ñ e&°Zu4~ñI.Ç¢]|©Ž €ƒF3h–%Á€PLbWþ„çcïÈ£«h냸ñÔ(É.®QJ$âÒJ·Ñ«§üšf1¼ y¢WÄ{Ä»rs÷™^Ü~ñhU‡3HŸ@«\a_/¸ù1ÄÔ ½Ü@Y é8Í 6Z  X“tWaA+áV]§«ÿ šJûÛÝAh ó{÷ý„­_öwt?…P¢)2(é œ¨ÞÙä’k¹·ëÎÀØÕ²ñ†±né+-#]w:Ñ,8Ë‚8a¥™ý¡ê{Hx¯:Ìi»®Ý‹ž¯³š V*_ZÂÞž¬òή°;ì?Ew¡9î–Èý1à»  +‹Lr ”åþ²ÖpgýÀû[ƒyÛrwIÕ”dt§OäÜí˜'‰åêqؽvºëñhs¡nݶåÛ9X@—oÊf€¤ «nv…á(ÙZêQJÄGöŸ—Ÿís;¨@NOÖß^D¼æ¤ê)(çgàf\ÔôœZ•[3,¶´4<½%è—ÑÛ þJÕ"UIémFT’j/Ôœµ´”E¾k½¢ÖÀÇ“ð4ü+ìòãà £Ñj´™Øœ9ü†C_D‹;м{õaÎÐ}tüÜø4Þéý‘̼w )£Ì¢-ÁÓÉßqË4ìe%JrW?¡ •Kvß («?íðö@ QÊÄ¢Òì§JŽ|ØWOu^‰ ÉLÕK¾û“+(é_sý—lVÿ%gcð¦;à ÕÕ4‚Z ¤È0ksAEJëÕ¡–¶pkœ=úgÐþâ糑“#q¨w<×PQ+-.—•M‘öH;å}"{Š8XT&JñNþæ=¬É|‘fw0r™îÿ.Ðv_+ßÓðß›Ÿ’ý¼l ´³RðÔÁ™AfÖÒzñL–ÔŠ+óAF¦wåž}Ћæyc”(í_r”ƒRÇj,.z©yp#¯K”FTÎe‘·ë“‹½ym0Dþ鳿>üËåƒ8þˆYF @ð1Ž:'u%8¬U:“ÍV¡¦ÞÝ.>³»yKø œ„'âɯíOE_Ô«VÁ þÒ)¯lÄqa4­ÉÕĸ)ÆÉ°U‚ô“ÉÊ7ÊlNÃe`!.³ÛÅ0ÁuîâÉm×+.±l6[ßøhZŒõÚk1Ö}ŸGÿA´ò>]‰‹¾ÄBª¨+‘J åÁòHkkK+%ÄóXïfËyQؽwÞögpy&䡚/Ÿ¾< d°Þ,”Z4f%òdRÙ›ïnOck¨@ám¯ªia ¢V*–ˆd‡ ”žûrè›æ©¼sî>ŽC;†xm%M"QI‰HÔTÒÖÖÔÔöl^-C;sÐúpÊ`x£’þ¬|¹¤¨¸A|,Píôú(‡Ýΰ€ÝV±&wK~>­a­ŠEÀà2»üŸýMŠ1¥xæ‘ÇoÅEïŽðªŒ£Áb1X(žl`·À¦FVúJlD“b'Ú|VGŠÿèèÍô­äGÑÒÅçÖà98ÏÅ/-yóÑ•O"—ÿ@Uï:V0äPÇp-SûyËßxCsÈ-…ƒWϵ ¢ó=úÌï/„X3üðÌßäÀ6¶ø²I½ÖHà52´1Œþ®Ž Wdz4ï£ÊfΈ6 ÍžööãþArÆŽj{ 0 :4mŠpq§°>p,Ásòðl¼ø NÖ;ÍnÊÅuÓÁ8¯£Öäºm§]‡‹p9ô~ßÙžÞ÷‚CäzO½¿4=+7;?½,Èu™Ã7kíµ¬; S'š~ñÐàwÁÑŠZ±WåP²ÍC¹UiRê²Ù"½AgЙä©«ƒ Å6+˜XðJŽCws³ÓÛLUk}•UåäŒW}2§T2 ŠL…¹ åòT&•¥J¡§Ã{Œ5îjXý–X HÝIxdãl«1ÕÅEmf¬26§þ7'ã6ܪVPÉWÕµµ^¿ÏC!#ê=þòYœR+å×–ú È0×Ç0nV׬ҾÆ„£SNp¢Ñå¼X›¢—šEzj#–ãE8ss¾Ž¾œ3kéZ½UÌšµÆÆ6+?™µAn(¦6c«æ@ÛϹ© w,€8ýß~…’ÑÔV4¼ä”Òptß_ ÃÜpâÈ TbüŽI“ é…0cw8¼öÚ SÃ$%53]¬¦ÝŒ=à¶'M&ˆαé‚endstream endobj 184 0 obj << /Filter /FlateDecode /Length 233 >> stream xœ]1nÃ0 EwB7°œt \’%C‹¢íd‰ 4XgÈíC2I‡ À³Åoëw‡ÓñTòj»ï¶„_ZmÊ%6º,×ÈNtÎÅôsXŸ¦3̾šîðéëß­’å”þågê~6ý¨úÇRX"]ªÔ|9“Ù;‡û”ÐP‰o¯ø[º1¥çÑÝ*ÎñdQaE'TX'ш kd…-*ÎñdTXA”c@£@¢À£ÂêE94$84$yØ¡âOÖÖAoõú}¹ TõjƆkkTVíSû’šr¡ÿÊëReË2æËfx;endstream endobj 185 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2186 >> stream xœ•Uyp×^Y¶XÀФZ)¡»‚¤ §dšæhgÒ—í`ÌmcŒm|ȇlKÖeY×J¿]Y’uÛ–mÙ²°‘Ø@À%P“@LÉh˜†20d2ÓiŸìU›®ÐiÓfšÙ™ýãíîÛïû}Çãa‰ ÇûñúÔÔlYþYvQAÎ+K2ró*‹²ËÇŸ<{†›“û)_Íî»>š™É|HN<3gÆ¢"ó“¨èhçŸÇÛR¤X!-U”äåË$Ë—.}iÉîþªd¯Bò›ÉÚìœBiuEa$»dŸdmJjŠ$MZÍ-HæKK${só³‹öK¤û%™¹[%›6®ÌØ(y+#}ÓÛ¤üWlÿ¶ˆaØ,Ùê5ÕërR÷(,~Ã6a °…ØVl1ö&–‚½…­ÅÖaë±4l6›cŒ%bjž6!1á ÿËÄ̤_$}& Ʀ]ÃïL¡èì¯yÚ>L‰=E›«yèzVè©cŒµV³Ê@TïØöfàUZ4hóØ|äu4ô… è… _5äRAšW€¸Ué®)0”îª%ŠØÙI‹r ÈÕ>h"ï ÒYƒ±¼.ÔâôSgþvÍõ³¿æçŒA]ˆ¢î(olþè2!XýJy…Å*'Ö A™Í¸Y9±Kcô (ÍV+¥!ÓY*‰½!8Ô®>ÆuÄ-šÇ_’ßñ%ût¼§.×¢ÿ5ˆåZ›m:_°¡ƒäeÁ#SNÀþIb”˜²Š±ØÀvÆAÛ?D"tC°Ší¬+R@ºU¬Õ|ÏÐÓ±‘ûãºxˆƒLr£îã&û{”sLÑWY¬J‚%j:QO±ðBË%0j f%ÉŠãuy”ŽcQQ rS}×eè‰HßÚgñOÐB•Ê8¢†ÑÓà; 6ÿW/ã¾ñD˜l\2ÂC3¯£•#hãWüѲ&üd˜+¤eej‡Þi"<º®rØ%ÒÅÒ-Òmò·¾» t9ìŒøÏ‘”èh÷ €CÜQíÐæËwj‰Bö©º\m”ˆÁDëÁ„Cé«krv5þáThøÐm¶¹ ?»»kçü½ì\mÓÜà£nþl ·ð€K'«ÒË rß ŠÍ°ÿÙ’k¿…+G‰È¦KÚ¸Çî4÷îE? øì±§&G9ÚúÕ`$öѧ²‡} Ý}M~·S|ó<Â>‰¶êo=^ß@ûih¶:Î.PBˆA ”Cm€} ·fPƒhMÀJ6X- euŪ7ˆ(Êl6QñÅì)ÑMtí»}hRM(Øôø Ö¨%¸=Í-Ôp&lD1à‡³ÃÖèÔd¾ƒ^F?G¸%³ÜçÐÌâÒýÖZÝ`u£û0C»ˆó‚û@Q>À¹„NÚm§4ê¸ßá ÞF5ù±ì¿]:§ÑHQFñË6€oÚýx°å¯'Ož;Ý|¼pÂ.ÙkÒA5^ÖûìCõ/®éHg籜UYÉâá_!>ZþéW¾ñXÇ ¦LÍUè2!Á ¥@¦:>+þ¡hy좹Ãʃ˜}F Ð|+¦?Š;´ÛÊ*W[ÄF­Ua´ëÝõ!Œ7!@¹&Ùxk™G; ·Û@ 9±w’hÁçqdSÒµ~ûÁéq¸b/Ž D´•¿ô÷u1´ŸËíhÿþ¹ýGÆî‰îÆ £hÞÝ@„wöºõˆûht–ðäŽöë•/u2°”²ü Aµvª ?¬ˆ‹äÏ«^Þ b ª@î=áàvVø+KKd¹ÙÒÓ]îð}WBèIÆ} ‹Z¾iÜå\ãfÖ7Ù<¯Øçi`<€Fʧ7YŒ”‰ª©Ó*8dÍ궃½œ¼‚¡Ét#á}ÞÝ«Ñk|44š(lS6ÊÊJ*Š+•¡ðÁö."¯ºõ6ƒÖbÐQ„ìõ½{s×jííÎf_7Ù}»û¶+äí†&ñéœÞ­ ³Y‰æ_‰<<ÑÙ¸ßm’ê¬j]1Yºªt Ç}¥Ø¤2q.Æ·Î;óùQ$÷¯§|x±?M@R=D²~l‡)¨ V—IËäy{W8&²Ùa¡ÍË4@€«‰#æ¦NýÔCÛN¢ëêÐÐiÀ[½êjŠ»È%ñª´íkÓ@¬U½…îÔw‚ oWøªJJËäö—ÿî"J8Œ’»8 ÞÏÂÀ½@åçÅš¹so’¿Qa&4Ye«³/3¶uúh¯=DÒõõ\‡þñ¹æ­Îþ¶ž¯ïì{Çûßx©Ý&ìà4¬lRµuvµí©èÛ¶aËîŒ bCFy­ÒðeìYÍØüÜ+v³Kk.¢,2b£¹Ò¢³‚B¬öƒ÷]0ÖQ`1qI™¿bV;Pküê`OÃ!=qeœ5~ ‡ ®JÁdÑQ‹š+Ô·÷œ?îúˆöþÆ÷Ásá;42U棯]µðÇÈǼÆu­x%;7p¥Þ 5´¹;ÈÀáA4 Îá7¶ô­X•‘—º‹ÐßZ×¼vBš2s…áý‘,ȇòªš‚Š,ÝVŽÀ¤èõa'á=Õ|áàaGy¥Â$× «^ÛÏ.4«Œå\É‚z_sÀëu6GC½5ôg‘-à>l ØÜŽvÆÍأÃўp´!xKåÎ £¬vYÌ&«ÒM5†b0ýïüïŠFOüð¾Öª¬Ìlvš|©+£ Ç3NJ¾øÆj/<‡âóPz„ mÂ˃»ó«¥¥Ò ´¿=€µêŒÔTÂLY,Ü4õ F§÷Ó›h:1»ª5¶Âíñ ÒVAdÆÈLbFb¦4y:$Ï 3 Íxé»ÃÇ$'wÛÝ!š¡í6?mOž…aÿÐãþendstream endobj 186 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1811 >> stream xœeT PTé~Ãï)È5Ž `Þ›J\דˆ¬×&Çz­«AP\]DDn¹EF¹f¦g—Ã!ÃȨ8°Á㱬+nVÜ$$jL 1b™ˆ®²âî&©~ä·Ê<ÖJªR©¿ª«º»þ¯»¿ÿë_BÉÜ(‰Dâ»yKLnvbNð²¥1)i…Y‰¦£ó…@‰0×Mø?•2U%)xȆæÒ¾X^íMI%’ÓóßËÍÓÈHK?¨Y¾lYÈÒ¥¢]£Ù§ÓDi6%&eæj 234‰9ÉšMA[‚4?ËÕŠÁ Í‚Ü;”ôĬTMnªf{ÊNMì¶u1Û4b¢b·n[ô}ý7@Q”g^qʲwV¬\µ'tÁÂÅMí¢ÖS>ÔlJEÍ¡ü(5UN±Ô j&åAy‰ƒR2Š—ÄJ®¹½ëö[é|éw²2Ùc¹B-ïWx(â±ÏóµÛbž";\¸Ä!ø»Êœ¾ÿ¼…íc~Joáf©P¹h’ÈB µì­üšÌ«gÑwô Ü«tzOld³h”ñ(7È]ôÆ ¸ÄáOé&úHÉ…Ø{À ûß_ Š[=‡ÌZ·*")Å>Ç–uì ÐÊÙW{{®Þ½BäœØ‰×0.pá°h| f?¥A°ÍqÑÊ­± ³ì!¡>}öì`÷ Wÿ@Û3ã¢óÙ¦|Ȇ–r3“E+5]ÆÆò’(©,¯Õo U‡~SÕ °úC[[“ÝÌ(m.šP†"ØmγøgÑ·Álº5ITêÝQ`ܽÕX"Ò ‹Ë|žÔbýðB¾ÆÖŽž¾›¿¿÷¶º±ÂVz¨ª*Í31JƒHÅŸ„s¦ÓFÏ×’Á|ªÂ‰Ù]éœê©‚îªæjKm•Q_mdÓçC%삤ÓÏd#ÐÏ`¯ÂÁC×dì×ć0?ž'Ú€,B=/¡´“{ýU¤RaÅ…ó]3 Læ<C¡cJíœÃÆ1©°ïªà~íýô?ÄO¬iO„(ˆÌß”¹¾6~áõÁa¿x÷®v†à^×Åç½·ŽŒÂŸ™ÕGU*>(]“½’a«S7Q1 OáüF‡:ÑýMNèƒ]ç‚æm›™éÊ§î ƒóŽãÌo¾tJ0è©xã©TˆÇ0<Ø<ú£®'¿¸-â?ù|ñü°¨°ýŽâ—ÝÑóén(e]ƒ#¶~`®6Fç'pÙq†¦jS±ªM5&¨d* ƒ½¨xpfÃB2w}NÂÞðŽéÜÏk]8ËôçÙs 2Ë–}õ>JÐóÉ“oY±'Q:.¡P+Ákw¤B&®Q¹Þâh;XKª p¸š%ï2äYØùf¬ˆ`‹²ügpA<×`ÀÀ¸ŠècK?÷Wz­KE 43äßÏŠn/á.ú­{‘{ªÈÁk}?,z¼rUý”³½…XŒW¡ûš—„ŠÛ[’žÆâ‡´’éÒÛûjzÑëö›Õp¤†SΠ PkÐV}¤ÝŒÒJ‚ø†Ý]Õ|€èŸ]P Õ%¤uPÝÚ`á­õlKû™¡¿ÀgàŒoÔµ§Z’Eå¤CTAbArj~¹SÁ·7ýÊv´Á: 6ñ;IRYL÷Þò¯„=—/Ã¥fö* ×ùëCõÇ[]ü1FÝtTÜú®é2ÂÇE¸V+æ 'Ud ®$KÈJ[rH!G(¹çkéŒa ýÏcÐyÉçSK¥S)øRe/†2öÕ„¢¬´ÚNhã„gжN°sd‡LÌ•²¯ž)JßäZ9aBÑ:w¿æoÑý«T+™üBŠI x°ê >蛉рK#Ïb$z¡mºEži¨ãõ•Áˆr+»“¸&RX¡-dÖu"&^65c­çþKDø È«`´gmGyz­øM%0úº:½Œ:îÅ‚_’ )@ÂRÉZâM|˃ Œ¾¾ÎÚ<þ;TÞ`¯¢ÛQ”ÂCæ [Špä<ŽˆdÉÏOóÀ¿áôbŸ¢:µZ(½>ÒG—ýgv=EÛíÐÙÊböÒo¸(tïu`N‹Õ¡pͼåÎΔmßžà1<Üf‹Ùb17X,üMçoµXyž?b­÷˜EQÿÞ;äendstream endobj 187 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1141 >> stream xœ]Q{LSwþ].¶—¶0Ú®ooÔfÀÿ؆n N@6ú€Å`< ÈEVäQÊëÔky (Ê«uP7Ù0YãP$ÌÄhœ‹²%nf>’Í!¸ßÅŸ›+QÿØÎINrΗœï;ß¡§¢(JùQ|2¿'£èäìܲŒ}‹Ãq%ú{ˆ+i ÂBÛBÝPРðœô÷¬Pa^‰Ó^à ¾ˆ¦¨¹ü¾¸|Ÿ>7¯”  [â®ïr™åÜæP..#«€7–蹌¢O¹¸ÐøP.7º‡z.ˆ/â2³ó2 s8>‡Óeïâ¶§lMNáb’?Þž˜²6ôÿ²^õ!YغðõÞ ò[û BJ¤Bjô:òG,òB5H†6"¹û2ä‰jÑe*™zâ‘èÑë1GKélº;}ž{¨£Á± sPãwñÀ]Z¬ÂW5ðWÍ¥ü‹é¿Fô뀨`wHŸ»¹9vÂ6!àôצëû'á4ܱNüqòªp.1á]H„u¦êèª|ÐCt¯a¾fÀY¸?|6e›ý±sNÀ•}a]:ˆ‚æ98ÅQçE#…M·h1ÅÏ™' nê:©ÏJíÍæb63kGI00ùR;œƒïì̳NiN“)˜ÍË—Œ wàwþãM¯–ý„ÍÿîTMÎÇ?LŸÇ~—ªíâ^£)”4ëSMûÕGB0$Z‚W`Ÿ^ë)goϲ Óç§à7Ëo%«N$Šaái_ì±XÇ´êü³©`b_»<ô-0÷Oo|{õæH"#ÞZ¢"~KÔm¦hÞ·\ÔJ^ºùù5Lã±Ç;0 êë³ïϥ͙gmsKÕ¾H<€#5ðó¶oôßrœÿn3êàšÛë¦WsI‘9CÃ#}ýÇOô”™ÙSS7…cÀ¨U“Ã7ê×l-ʨªÐî),mNhÜßRßÕLUe'$·&’ViÕçQ~³CÕ7™Ç~94àÔª§¢FK ŠùYÁ³ñX‚—Ý¿÷ˆõyN®Ad“»åálLSXîqÐ8]”kN÷óú²b^o/sœè·;XáÙ³ñª.¿loÑÛÞ/޶ –6â I驇ê›[ ©ë8dé¾>ƒåîÕtDÂÞ.á¢Î/ì¤Ú°¨(Jöo/Ie ”–öU» ”Xû`@Kò<Œ‹˜RRitcƒ‹˜—Ä:èÆÜ*­G¤Üð´ÒH=¾Dã'¤NGZÌÕÝd%Öèqà·c9^qÆÕÓm6ƒ…±4¶ÕV¤îª«gÉrÂñ$ˆHé‹ýßdÚ» KûâAâÌ%îg4cÏTÙÒÿpá&7Ù,hàa–ÄcYÚ½°™r`j›64Bs—I‹9²l”|$È×DNüwí®®nYt¢A8ØÙ;q¦£ÅË1çÀ±€ÌK¿×SÎEa_‰ q<åþt‘À*¥>›¸ÅŠùÎv›Ä)»!gež:^á ¹Ã¼‹ùpû´Bá¬v¡µM8l±´*¼úë(endstream endobj 188 0 obj << /Filter /FlateDecode /Length 170 >> stream xœ]1à EwNÁ ª KºdhUµ½;bˆA„ ½}$:|Kÿo=Ä0^Gr‰‹Gô扣#aõ[4À'˜1ÙrëL:\fщá¦Ãû€çàîïzñl›K}’{Éx kТ¦Xß4ªGT Èþ­Ú½0á‘”9Y„^T¶RUaPëg°\*L'7[Œ@©‚W°Âã~ >”Ïb_ÌÃW7endstream endobj 189 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1190 >> stream xœuS{LSW¿·-·W­LLº€»Ò«3qn“à2M–8 Ø (á)Θ(¥ZÚR yY(½ßmË£ Á‚lS‰Îfs«Ä×\6眒lÙ#™‹š]²¸Gæ¹õÝɲ¸ìüq’ïûýÎùý¾ó}‡¦T Цé%Ù99ge†Ëi´Ö˜mÖ5©«óŒ¦Z‹Á1ƒ®”Ÿ£eN!/U]ÆÅí ÇF Õ.N»EÐÝgÐEÔš.¶»}ƒÇ>þü뛿l±ÙfS¥“_›šºnõj²oàKøÍ)ü6CÙ>[}Í>3o°–óÛRrRøí¶z’4ó/ج|©±Ò`©àm|q'_˜Ÿ‘—ÏoÍÛQ˜›¿*åþ°Fë¬ÍfSMmU•ÁIòN£ËùOPn®±[ ¥"mtZŒ3Ô'ÑÜÉ™Ðø/È8ÌÞÿ (ŠMÈÝYi¶ÚQ´H-Ñ^ÚGûénº‡šGÞ˜RQMÔ=ÚF÷Óçfå³Êt<þ±¢ðŠ‹¦×qju=î~«”×Oß× ëѧ¸Õ6VœªñôЬ» ÜþN¯ ›¨¼Pp+… Â{ –‰5xëq– ]Ðź<ì…¾@òÏ?>@ºëÈt-Eé€ÒØøÇ*ŸzÔtñáÒ0ý°qº]ë`›ôÛÓ­3kðJ`c¯2è¾üZoÀëøE©#€¿—óežA  ýž)¼ƒcÒPKÜôcE‹N¦c"F±¬v·(@gÒ %G§˜øÇqcÕ÷°ë§úí M¦çÑ—D¯üùe[±ºªîàªj\@ï3r|¯·v'@·'«ˆ&$Ê1h ÜiÚoíÿ¡d¬ñÚž‰D/Dq.eœ Š]b¸à€|dº216ûÃÝ ›àTÃÄýÝòÔË"ó^„Fu¥\BBmëIé#¸ž“£ê§y»"J$ÌðH‡pýn¤ç¢ÅX¿›ðGgxïsÌMÒº3¤u§¹hšBàkó厭ì¿+‚ x›E¿«á „ÜïXî¬;ÿú¤ž¼ôÕД¯ß;ݬ\¤†W¿¸è•$`‡EÉeÝTa)K6Û‹òÅ­,îPãT5¬ƒ½Å9­ÍVKæÞ–Q„&h”Ä·ÚþÜ5™Ùll½vÃŽ³Å£µ#ugýž³öq`‡%iX7çtnÈfNÿª…Càü®@âòÉ’Ÿà +“+"ðÙÎsµ£u#oŒ¹»‹Þ­Ö%ˆ®è têN5"jÏÐ ï0ƒ“Ť¦,hÚŽ¦Þ.ºZÕ»òô ]­Bdc¤¦ÙÙ/š<3NY—WÿæÄ±’'ÆÏ"]cQ‡‘šnÃñs—õ¸vìpÏlõOÿ=1{‰‹¾¤¿à|¦…sS¨   ȹh1 ¡-(ÃG€ z µE€ö¶ä—7ðX—‰MoâD'N¼°ûC<‚Öà¦ñò“€`k¨±ÏsÊ”èƒnrt”ñõI]¼;(¯è–uAŸÄ„ç__<_U`ÓÌÍ‚ÑAo¯Ô#ù}½¡“MØçïë%+  š…õ 1eÀendstream endobj 190 0 obj << /Filter /FlateDecode /Length 198 >> stream xœ]M‚0…÷=EohBºÁ Q/PÊ”tAÛXx{û#Ƹøš¼™7™y-ºþܽÒâæ­|àJ•6£ÇÅn^"pÒ†0 £–ëG¥WΑ¢»÷|9¤Á€*뫘±¸kR‰å!iG\œè…™´eÉ[¥8A3þµê<0¨g€’ñL94A²Š'ê*HÌ)šÀå1Èzà ¨Òê}I¼"æÙϧróÍšB§P1‹6øýg]œ¢ò­:b÷endstream endobj 191 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 724 >> stream xœußKSaÆß׳Φ®eÒ@KÏNQPþH%1Ä,‰@ÒÂ)«ËM?pžå¦;®6u37ç»íœ™SÏÂ_-J¢;y›tUABAЕDнg;K;jÝ|/žÏßçy ÐäaÑí–ëP¯Ù3`sØ]—+ËÚ˜ža»Õ¹Ï.Èg \’#—H‰ešÒcHO ½æ}:Tˆ—Nâø .Z-¬o"*®49xœ}=½CtUeeuY™zëh›‡¾QN7[;ûœ«¿¶²]tsyK9ÝêàT±¾è`iÓkµwÓŽnº¹Gw˜o¶™é[mw:îš/•ÿ'àÙfuvÙTÙéà"ô8ëãd‡­vÆÎ 0ì€ì‡à¬± Àià/ ‚Zu ­`ˆ€,ܯ ò”âqg¼ÄE®ܨ°ÆL½VD‹‡Ü^j·FëEîåe´(RØÂ35Ú$ZQ™ÇGíÖk}È£²•$e؃ÆßßßvÜŽcÆ5WŠe].–M¹ÖÖR©5ÕBä~ø¡ÓÍ*_A>*»AúFÇ-!Ñ$oâZ62Þ„OJx’ƒ[#2Mª !>¡×ë·G°fZòA¤ó“Áà„éiÅfݧÝï0é{ì÷ûgü¢)&;,u*tB0N-’øˆ°„5Ÿ·­óžG‚î0‘Rzè§-x¿}‡Å¢Ñ™0šBºñ@`|,>µ0i’W•Hö™ „!4Z<>˜ã£(>GÉ›89Ë'4_œíÔ¨¥¼TV"}ÜÑR{9ÉW SRëï/ðõ-!á7PªI…FŠöÇ>­“üûÀ”m çq ÎûŽK×üJ-©Ô(çƒR¯\Åç”\kÂWþ>ò'$!]øòÍ*)åIùTa9uMŸ‹ôù«±øl,šˆÄcÑçzýj,ö„çççÄh4}]€?é.]©endstream endobj 192 0 obj << /Filter /FlateDecode /Length 2152 >> stream xœ­XÍwÛ6¿ë”rëAGð½Æ÷GÞë!I»M³MšØÞí¡Ù#É6JtHÚ­ÿñ=ï J€,¹Ý&ÉÁ¤8 æã7¿Áç9­Øœâÿøw±žÑùåìóŒù_çñÏb=~>;9~©ul~~1 KØÜ²¹Q¦rBÍÏ×3Âhqþ„M&l\e©À%çËÙoäuW”ÜV”)K–­¨†QGVE‰/–YmIÛl’O—E)„€%¹Ðu"ÒUµnéëuQK`ÿì´ 5>òÊYE¾M4ý‘©ZF!¥aï’ÃÁ5#]jÆMòÜÖcÓM[(N~oÆ«I%ŸÒv…÷¡iÈœÓ c.GÒ\knòãÅÎ_Ý X9¡ª²ZÇPÔýNÀ½ ³™ñõ:š Z…ê„$çOÂ3©³Ì$®ádT“«c¡hàƒ³ÒOE0ÛëQ ó%>3ÐÉÉ{Â)Õï‹*Dò,ó «¤S2}ç÷RNZ0²ö±ì°œœ ÖapW…BÝÎ˾PÜ'Ò0Äàxe˜•^ܰ\µ©#&M.º~ÒnÈÙM_0\ ÉpÛÜÖmü$5ù¾ëƒQàÌV‚¹Éøª(%ÕhMêÇÒf÷“Õ•ÂX_k%•’Ž5~±´ÜA"õSò¼éÚîò$fOZîÒðe溯¹jª;“Y˜&|Ÿjî¾üwaEÈëüC[_†ð–à+µ›—œWŠMy9I5¹+°Òì6—‚©pP…ÃxfÛü™¢OHÒ6õåÁ–W“<¿üozàv¥$'¯'!åS’qLÉÒÌG=ó’dHQgAËŽ\ŽÍz5™2Á.uaVõ@ýítEbÝJ+ȸJÑ ]04£wžƒ]îvk×]@/ ‰q‚Až:ˆ!â±}8…³v²AÊÛBit¨&ué#» ¬ÏUkCd‡æ6ı*KÈa´›¬÷À&qA–^Ñn\½HWLçqùÏ‹<·q?†´­Ù±ëa² pijUYYIJ—6û>*‹ˆt²åFU0áÀyš|só8Å"²6°¬×«±oCh¶9ÄÐ)k#>B5ŠØÊ nc?&ÚRà¥Þöl(€÷VàDSóX3ê÷‡óÙ»­”çýqú é!ú %«Àsmx%UàË®y ¢ þ|¬Ð¶RHHCÃö`)ÉJ¦6J–VP¦ ÚÊêľÿ›×x –j®.ÕÞ°` ƒ^€_þ^qi=ïØÃ«éçŠÛ%~EÒ‘ŸŸ„gJÍÀòëDÀ ªD,ãKPéüÑ1G–RŽ9eŠì†ƒÖ®ÇÂñŠ™"uGwC3D3!Û» |†È݃D ¾8 ±G €œBp€-ߺÃQD¶à(›ÈÔúè§zr‹Î Î>ÜŽ8Þß0 kìè6K˜(ÄãPEAb º­¨½¶Þ–ðø©ÎZhDƒ¬x f”æSù7ýíªiÛz³XÚVÛÊp³ci oF_ö[_u7ýÆ«=YÀ òðlËS<·$OuÏ:lÀ¦$“dô·Ú K~¯·ì CbR©¶Á—©Ù áŒ9 _Òíà‹1_€¬"ì±R_À âä\Xp\ `V sð 6ÓÎeøE>CuK©ÆPêo"Ó`<Ì[Z5GÕ[¤Ư dk†To2¤ò•­¤o‰oTA‚ÄC?'§Ýxøk( ÑÆ!Š1A~üŸÕ–.QЇ…ÏþŒáS”Î*óâXùÿõNëõš=ðZ†ß0!«²¡àIr¾Ðffd[‡ñÏ;æÄ}¼ÅîáM°Vd~Sòr…ÈðÚ6ðht:Ž]ܰ(°œiÕC›½o‡c™‡ú:IŽ¿0i‡E6Ð>a’= 6À±,`ÿŽÖ Sbf6¶ðzt¥µ™æ+¢âa®²f¾GlÂÌ$—î1×ìk`tµ àoEXAƒË°:qò!=ð‰ªx› ¹—€‹é~ ¤ þK@3á,iù;Ì=uìÝ &[ÈôÖ¼z¤§È'Z‘מW»|ÛkÈžSCÛπ柑jC—ð ¡ŽŽýšƒ×ø¶iëß c¿õëf³ /0·,q„‘‡[•¢xÉÂÈO¨ ŒŠl.V}Þ³Ú,¼ËCž¥QØ:ùÅ‹@®p²\õȉ%î&3E;>ßÔémB3Þ%0àW‡¶Þ,ã@ ÚBÙªª+ ÆüÔ$T(Ñéà¿ó^_Y€<%·÷'x!”¿Ýøµi³áÅ?{×97{wO°ÄyÛšÂ߸€—6AS&†> e}%¡@á-ŽÙ8­°·7Ãx×ïã·W+íŸßžTñ(À8ïŸÒò0Pn]!ÈO©Æço¦ÕœÐRVrj¹)ù× ¨ÒŠ‹JC‰f Aù‰3!Ë´ÒL~8p<Ï÷‰ ´'ü’ƒÃ¹¿¸¡râÌ!Éú6RU xW…Ç'4yþ !@0_¿âJp¨É;È×D{WmÔ9ò,îá<0·ƒà€ùµ ž«#òCÑ-¯ûî24€I¤ò#gÌ(l-©¿þQZêÍf­²YúÁf‚.>3ȶ.-è[„B?ÿò¶ ˜Ÿ«Ó7GÞØpœ‘n+r¹ƒ›z½n6—8p9íLocqóî>¤¬Ö‡ ]bPiKAþuúóWHZ¦Á>ªæÒ"ûµ˜L¿‘«q¼žžœ¼8}ö¦:ÅÁ\!"ø¸ZŒU×_ž\× œp¾Ûè ft ÔR˜ÌŠÒ^ß»ÙÿåÍ|7endstream endobj 193 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3630 >> stream xœµW PTg¶¾MÓíUqãÚáÞÁIã$šÆh,w#3* â‚È¾Û¬Ò ‹t½ÜîÓ+Kƒ, ÍN³µ¨q‰»‰šÄ1‰câ„,oÊq¬d’ÿ’˼y .™z¦Þ{U¯ªëV×½ÿ½ÿùÏ÷ï|G@¸»Àkã¦ÀÔäÈ” idJæ›óÞŒ—I#3\^á¼Ü 7î·Â">êgÙp°<„àá>0Ãs†':6 LAS ¡@°#9oMjZNFb|B¦Ïüyó¼ñ¾.ñ‰ÊñYíëóndôÞÔì}{}"Sb|ÞõÝäë³95ßLô™šâ›)óIóÙ»Ó'8hm`ÏúÀ€à-As|ÿûà~y— ˆ)©iû2ýeÙ‘û£6æDoЉOH Ú+MþiÆ\‚ ¶[‰ bLÌ!¶;‰ÕÄ.b ñB¼Cøk‰u„?±x—x‹ØHl"6ŸÉÄ$â·8C„;¡'¾”ºIÜ®ç y÷8Ñ«¢kâªq¯ŒÒ—tŒ?Ü*nšÄܑ޳ê/‹°!7šòç_úEúETYX1ËG5ÎxNB/˘¢,15×ÀjéiF¾tõƒóC‚0€AÇêdruº&µ6ßµÐRaépE K'vƒ{É&@{N}~JÈMCÓ%eg3Ú +Ò:bK£Jƒ­ïV–_°tw¹È ßÔHÉ"+@¥Þl3¾XóÐX£/Qàì€òå¢HÍ&µFA>ð“!Ä¿0H•P‘Ú kMoQ]?`×|–'_S¼32z‹ í¼æK]¥ÎT S²92ž¦Ù\Ò fÐëlw½Íy\Whœÿ â#WÌʯEZ–Šhc¶'zûºµ©¿)¯É‹òC?¢©’²ó¢ 1ÕW´MîŒ?Tc¨9‰4zYŒsÄ¿,Æ/â5ùKvûÌÖ°2úKñ¾-‹Ÿò¼˜›pø¦õ9y¸èŠu9<Ñœ!ÝŠÇ/J9ëE´O¼òQšI*é+®ÑÒc²Þ¦>žõƒX`ba$1ãÅ·ªø¾€æûލà°˜¤>^0Ò¨Š×(V³O¬–ö?CÀ‚[Ð…H?Þþª¢Q¿8œ¯zÞâ±BPØŽSôžCzÔ“òTókAYRvš¹ˆˆròsžò+…_—ÿÖ–õ«Y¦“¥ý$EžC_>^ô)èØüùLÿZÁŠüyh.0çàtkï•ü7i¼ÕÍÅDy'pT9<¿öûçòa?/*aØÊÍ’˜2m²NÌïñI{t¶u £Sé´ÊžáËèí¨C[¡3èÍŒ¹¥êr&› ©úd.='TiK “Ê’lÚÏ{òjz'ªc+ô0=]Ï»±¿7â0ÕÒ3`eKö2ð?Š+©£¥ô šzèÞiPŒÝ4—™ËÑ*t‡n>ÓUÙ­']ÒdÏu ê¯OÙ=©4N=$);‡™RT¸5]…iž¦ãzs' ¥KŽZzSœI½¡Õ»a ¬ UlP'×ä6C+Ô×™› йGßÙÝgí€ÓГ?ŸTÅí`ײ듙¥‰‰;”á$¥Xz໌«ÞƒpöpËI’ZÍÖEžô®‡«Þ!ù}J17Eb˜w$t—ž){ÿÜ]´ÔâÂsÊ%¬˜—ðų‚Óh8=f&Wéb&µ%r ûÛf"?ÚyèÄéÖfgϱª“zœ t­T—ɰÃP Çl£|ê´–m›'/P©V­ 7?,.×ôÆPUSV§'©2³ƒ°Y°GŸæBáèuÎæ6/ m` ¸5@›$Ū¥Í†}30ÿÁºBX•eTWªLöîÎ?ºø*mQ”ça¬‹äùiºG«‘À؇tíZæ1=/Eí(î¨EÞE›ï +ôÒ¼+ôÎÐý9gÑ  ôžÎùNÔ$>q¥"³s×'¿P`½D'ˆK“F$CìmÌqb6k»Pm²¾²úô¹s¥p:Òkb뢔Ê(\ó"œÕìln¾C€ ‡PK“pX„¬’ qêïøiü;@.‡‚®ÄÒ9ĵӿ.ãÁ¿Ù‰ 9ŽQÀÄàHQȸŠéÑÊ$]•)âjÅ£øñ‘öÚ/ÀÎ…;<µ_¨¿ð¢Žp=*’L\$™À,Ä_qè*s5Œ¶‰œŸÉëhd×–ëL.Ò7;Á6Fú4ˆ­’SøVi34"HØ"ݽîÀPþjÈ„¼ÚS…ÝPmnέ΄lØW NÆè†){âÏà6}æ|×yÜÛ´ójŸ¾\"{:Ý%²ß:›róy=düzé… çYy=ç@ïc»§lÝݱшQpO¥ö!÷ƒˆªV<Ëáx^šÙÛŒƒ€[æœ,^’ÅSwf#1\ƒ¾®öÅšZEØ‘DÂæè´¹$u˜Ø"‹ðÆ´nÎ=”}¤ä|É‹³âRÏñÇ{Ð ‡óÂJsAËæ<…2¹­Æ–Ë{P8†b±AíBQÅoŸõ&Â.HhÏsÊNYqWCb;ÁX_ó ö¾ -xÁ,lÎ2ùß ½†›1š ×Ðh#Ã#á qGóUS|rÞ[ãR>ª^8ÞPÝ€ AÞàYÕôVØ­ýaý;n!Ñ­´~è÷¢ÜݸÓÜl‰±FÕƒy¦ ‰"©ñDg\”Qæí K׬$©™ exul}V~þ¾$U‚ZZÛš½17:BEtõù×ÛÐdo4{_å§–nu_h+IeÒ­»·Âfï l•z©)ÏaîЛL uu]©GX|Ÿ_¯¼mq9e G»œæZ씌:R®Q*´r6×*¯†r¨/16üvžhÒT{³3 åi©ÑXñÄ[PýwSIéXs‹¥ÃÖT^ÑÚzþ¹¯j2ÉS#%EÁËvÍW  ¯ì,–÷U%'Ž;ñ¿YÅØK¹Ã…äOÎŒ1ç±-¿þk¶|ÈâIøz(¢î?˧…#5¿bÍkÀ¾˜çó $—F©ô(üèyh°nPó“Õ„³XsI/s™Ѝ?ò3ñž„RUqÆÛŸî)4vC—¶KÇPž'¸‡SKNs2$BFª&CfKo‡.hj55\æ@kèmÇeZÚ*øúškA›%5ßþçeuüP•²ú“´rÍiù¹ÍÊ6¥=®:Ýœ¤JR¼³iÍ"H·Íá§É’kæ}y1–µQ#šÈ‡ŽQì ¥Öçé¦Ä ñC€§’û«EnOš0NJ„ÛÌAÔ5èEÝáJqªâ@)g™×ÐzAcÑ0ݹTQz³ï=C½«'³ ñ°ÙpÀÕˆmºR…¶@“'/Rò ùÉôç\&ž¢ž‹«› žâZóýÇï_|©3ˆÍaØý9šýàÛ U×æê¯£ b=u…9ÇèD®ÇÞþžûOžîž·•»‹B¿à›kƆÇá_gé¾Xý_ÖXÃþ¯ƒd÷¯ ’ÿ;n HðWO”tÿÎ}/êìÿëüI-æÅ%15æ6¤d™&£&³7{Ö ´î…ç>{fRGÔPݳup3.Eù ~3¨Æ*V=j+c‡§2}pQòÓ‹òtZ£Õiáü± ‰ª|wø 0¸î «3£´ŠTmž*©±À Ð\mn/¿¸û¨ø?}g/ØÏ‹éåbjÛægbJMó·Ç¢®ž€Ýžf}Ý¡ùâ`.PF…ñ ϤÜý±œð«²Pð´Á.Dáz‰õZî<Cfš&]“^‘ÖUPe©,—/ݼ#T©Òé@£Uš5f¨€o?³¡qäd™[SƒR¬»Ø1ahâ‹Ü·m ÷ëõØ­ ú2ƒñ²‡GSU36ùF£Ñl1yL"ˆÿ !Ø0endstream endobj 194 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6498 >> stream xœx \S×¶þAÌéQ©§‘д•ÖV­S­Vë\J ¢(**N 2Ê”!2‘dAóŒ B±ÚA´¥¶Q{k[Ûr;H«¯}mít÷éÝÞ÷ÿïúî}Õøí³ÏÞk¯õ­o}k»Q£GQnnn“×&%&ÇïIL{~ޜ͑Ñéñ{Rø'Ó8±÷Ø(îq÷œÉÝû#@îà1úìcS/yr>“PÝ´s"åîæŸùJÒÁÌ”Ñ1i>óçÍ[0gù¹Ägo¦ß\Ÿ€=ûâ’¤©q|ö$î÷ ˜8×gC’” 𙑔è³72fO|”OR”OHäVŸ-Á«7û¬Ý¼qKPð³sÿWÛ\)Šò}9q«_Ò+W%¯NY“º6m]º¿tOÆÞõ™û²öoˆŒ ŠŽÙ| 86$.>aÞóóä¼°pñSO/Ÿ¶båŒgÃgÍÞ9gnE=Em¤–PS© êijõ µ™šFSÓ©jµ…z– ¥fR[)?jõ 5‡ÚN­¢Â©ÕÔsÔj-õ<µŽò§PÔ Ô«ÔBj=Hm &QžK=BEPBj2åM¹Sêqê!ê j 5†K-§<¨‡©•ÔxjåK½LBA¦tnÓÜ~eõ¹û¶ÑcFg & Þ¦—ÒŸ=$a|˜¶1²±ÌØØqžãZ<"<úÞ8~áøò ê'¾0±qÒÊIïx^fãYõÈiáÁÉc&xEyD_yx_z4ùÑËâÝâïS<öáãðøÇOœœ2aÊŽ)‡§üîãësÌçç'—=ódÁ“'Бñ\Ø~µqOJÝ:ÐÆïÑFwÎÐ&,,ו(Ìc:dîN¤?*/ˆ‡DAv$޼_/’Chô¹Už>G›Ð ÕÀüL×À!0·™Û¥ Ç¡E´yj4HAï­M85üœjh&süÚ*Ä"E 6  ¶›ç?ì(ÄîÅæ*Ú„æö²!A¿Ž²«ïE¼¹¼×ÁÖé kï0+÷‰ýh¤åy *€y›Ã®ƒh]áØsh¹6´ZÀþ©êó£§ÅgÁš”·1KEû‡^kq¼6Çùã°Ž“Û<;Pàˆ§¯/ \O~G^ìNÏÛšL\ŤÑ3Q š…Ò t¥sWǃ©t6¿z‚6¾až& CÓêÈŸævos[ ?…]7•fƒ²!Ù1­*ÉÐ{tNÇ«qµ fëeê°°‰øëЩ$h ±º¿áP«Lƒô?Ï8’ØÐ.›ç={¹ìÈþ‡xûW„– KíQ®¨½ÜpöLÉ…²ë;ú°;0XBË5A0-ô’ûrÁÁ6ÐlÀÍþò[Ìt\¨Þ»Û&0OÓh—M¢Ù+_Bi 6–9ˆ_ª¶oz¬ÌÒG‘D€ž ÙQ_BŸjoŸÆ†>±¹q€â…õhÒÊñhà?n3$x’³ŸÎF£€ÿ¸_<™µEÂì¹¾¾/Ã˰ýfåÝÊo?þð*\ƒ³ÙóøÅ6®Øæö­ýfwç¬h¹Ðr$ $ÞR'¦>»(u/̃µ¿7¡™MèÙß~ï惞K§ddmÐÆzS]#š"2V™š Ôyµ.ôY)‰­{ê¶ãGp@~µ?Š&bà^å7üæ8ņž³¡Ë<¨¯ØSì¯ÙÕö߈¯'R\½ãtü~xÂ!M6CEäŸÍ¨ù÷[ÿ-¦VMµ› ®ÅìEÝ…övî9®ìoäHð]=b™5“Y?j–liÀjñ Þ.>Yv]ÄNR¼_òÑÙ‹âpÂ/û…!ˆ»Ý!°@©Ä]蜰½°ÍÄÞ$X{‡íO Õà€Aºë ÚK#/äÓ‚’m3ð˜åx¢Yt'|OŒtbo)f†9è†Íóc;Ø›ì:â5WˆC„<¢I¦n§ïrçlV­ÑÔp@º,Mdúá¨æÍLŒM!ÁoÍ$€¸ gº›ö~4ŽlʵCûg$ËFÝ„Ž• g‚¤ÛPODÄÛì Ĩûœå¸°²ßXKÌïȗ褹kD¸Ž 8]€¼hõ^¬ :ÁÔ`¬­º+2ÖÉÄÐËÔ{ìE² B€ô4Û£ Õeä§w‚w˜êu$æöü’ÀÜC»ä}›Ã¿ ®þå¦ÐGÀj5w0Ãø½hGò/½Ø\7Nh¬Ó¾±¶ÂºLÿõ–Nko7“õÅx”«G>wðäÒnªpe,ìN“°3þ«êæ÷èa±.µ\Ú ÐXenqZË<Ñh{0Ï%¾ä‡{—»Âi„e×Næ}’ë!ŽÐì?ø³ÅŽÀÎ\gŒœ¡£_C±ôØŸ]kr¸Vçpíc³ŒôcÙ¯\û€K§ eÛܹ44IXý+žToö/%šüËŠ^75w·k‚!YŸeÈjg`ì¢BGÒ§‚F®Sï­€ ÀË z‰&ZöÜ/Yýò“ª[9ÊPMÔîØy°¶”æÞbô5úÒd@‡l¦H'ËOi+TÔt¿}Vß h>œø{ñÉfB lè-›g¿eÚ÷·qܤšÛ\?Î54oÐñxôæ¡°6!ª MoBs~øå±öý4¦ Y¦Üæ?–Ô É„¶¨Ê=€={bqöÇëû°7ïAOÛ!’1£ÓóuÒ.1Ë ø˜aWµ¢å‡ Ó€/“ÇÙƒì!ö»ÄÐ.y 5¦úˆ­D—¥ ÊKƒ•`=cjbØÝÇR€»†“ ‹i–©èH ’C:â%2,_"xa ŽjÅöߦ÷blÖ…èëà}n¿YÙïR¹þ›$f1ç;òÛ‹½­àLmƒ„‘âà™&×½G:³‰>€w p ÍΠøúD¸wð †}а)yKL^r©µìÛdÛ×q4Îu³š=O9êZ ‰%dºkŽ NÀgŸÄžhšÛˆæz±¹ŠväÀì¢ßE}ÎúSQˆÆìÛÏg/Î/ËsÇÛ¨qKþ4{7¶Êf}˜J¼yÞ,9ÞJ„F\~=Ôˆ¯ÓU¼1íè)‰Sݹ°!=ƒ)‡K5‚ŽºòyÎ;‡Ìv>:LzäŒNÛÜþŽÂÿ …»s׸gÈQSIYeðCt&ïS‡6ªæ=ŸhhÖžÐW]4”Æ@I@yºV½?¡–2ZN N éÍ4òtø2õÐ&Ü/JƒìcÇÌV[ëÇn+Š˜:?¬)TY³j  ºÁRUÜ€Ô/jƒz§'a¹jódwsõ|8xm¶”fµñ5/*½ºï ü4ì†g ×O›P+;DzØZÔ]X\PPWXQPNrþcè‰Ï]…Wë°h›lÃ*Ö(Îü,EgÚÖ7¾ú¤á¨¸•)ÙÏþE¨KË—ìÉ$³öï•8b:-¯[OÝéFϘ†ØžèÏíx2Ún&¿f¢í^ìõaÂs= -DSÐ Á1" Z†…jÌÈø¼i¢ {ÍŽu'vŸAå{Œ¾‹gàYx¡`Ívy„Æ Á]ñð4AtOHr¨MïÁ”ã4ÀÉÁ7lH@ÕiçUØŸ¤O ø·À]tߢ“æKºÀ»Œuæ¦i3\ÙÈfYC²¦ä}¢i`„¦ñDã¨v§ß8•£’×™ê*¹T'á+¹Æò^šå\}·È5Û»(rä<†•eœaÛ€<#l\¸Íó6Ú†CÈwùnìÛÐWØä¯ÙhAÜ%îéAÚ"K´Ò˜â3œ¡2¢”™¹ñ<Þkµõù„œ'Q¡HMŽ}„r%ØIY…M ˜Æ°žT‚–˜'fÍgÛI ñ‡1Ï ðØÿbVJdH”>ÛPd-,'p¤šLÙ5)bömŸƒ ÍÌOVïiÙw ~‚ÈRŠd\¸¨f©‰Ã™ËQYÝH@3›ÐÜšbEž^!UåÜñ2,‚W*¿->ÙƒBb’Y¯ƒA©©–" ÛXm>Ì”]Ÿ »ûÂüXö)öøää h ¼óƒ±zñn¿ÛQÙDr\XrÞ¥t¨#E¸FÿƒNª+0«½-é¸KÇ‚R¥‰Uíé2tDðe‘€§Y„ iü?øTªÔ Óeyk4ð\ÃM -Æ:cåPæ_æáêyÍþ«ý6L¶ %ÉYþ%Äó“GVíoìFä)¯MI:㉒3÷BOKÇa†õ‹ÖèåÇð.fÑ‹B¶+X´x¥x„_­ì¯úþó¯À%x=Xò€—éE¶^wîî“AÌ<é Â&zùý$™Ó8úˆÜx¼×ެzÕËeð÷‘ÅëS.IP@ß»¯+Š©24ƒw”-GɱEM.… >øøôáȃœd™ Ôåe$l V&/ø¿£ÿŠA§ézâfKw-¢ÃÀ“#Ι.Á¶—~1 ÅH¾!ÒazJˆkéæë—ß½gà|Šêé!$ I$CíYö5_¯´£±_{±{¹äƒeÄòe°h§üe¨hú-±îÍšy­;mDa:äZϦÑìº3è‚¡[üðxš}¦¸§üÖG¤¦xòû» šªÌ­NÛÖÛÎææèÒTOr¾Âª»Aßà‡Óþ‚ªGBWSèv´žošI/yû›Ê»„åT¡!kfñ!?Žt‚ßéï¡}2ÔÁ6™ —ß{÷ôÒ xVž?n—ÙC‰4zËç7Ù%çÝæUN$45ÊÛ·Öw»!ìÃ~´¿TW»S<^ô•/Rï.‹-ÍÈ‘å¤k41%)E¹Kv)Öêò…ßm@ÿyèBÅ—–nå;;ZEÑþ†çYM« Ô…Ù$îyÊ co¹Q&S…¥„a}túÂδSâ;ðå5¢ßØùAæ¶üù­e‡LÔ%P Me„ p8v']YXDl=Ö³ û·‰ï•œ~ëŒøtî '=‰±P±d÷t˜kß,zËXSÙÑU×Ze…ëdSjt?)½ÐG»9î‘Üÿã-R;ÚðoK¨¿rTõÓçGOƒ÷_½ErvL¼„E´}Ýl$$Ó¯àºî ÍüåD¯–`P)£² ŠOðîÀTÉÅÂbm£êpF}néµîö¢ã_öá±c«GÁ_R©|ßt‹®%˜nIª•ä§«÷áM)´ q û"¡¬IÖ)¾]+:ÊLG¿UÛC6ÍæÇ›×hö+êt©Â‡2ôÆOžÈhÏùÉ‹µs»‡dÉSÃd,~jD m(~xDBœìŒ-\ƒÐÔšÙD|‘œžŸ¤MªIo…VhnÈ?Ç çgöT;¿­-–\J|CYs,¹È·fEh_Y\Wqõô{'¯ †9ñ†ôM³Ñk@"g·” ª¬œ„˜®°2R–ÜaÁòìEŠu]þŸ¦"÷ƒ¢ͧRÂ/a¡Aˉ!ᦘ†­l1¾QXSX]XçìúÒ±ÈÙö1¬¹¬] çe—øk¡¯o´1D J?È»«±?ª=b/ .‹BÿŠ^ãÖ zj¾+¡ÉôšûsôYêȸïØÈx‚‘DÈ-”2,S`,(,(âÛ6“´Z"f i’•Ÿ˜óÒpÐ3Ћ›Š§;]?Þ†ÆK=Ñ«Îû©à¡Ì£¿æªòß;T¹êܰE[R=ÃÚe‰^›”ŸR­­$æ Ë飫î/ÍÁ«&—hpDp‰$ƩDž¦æ¡ëB]†6‰ÁJúòiDÝ|çØµÞ÷.•V‡<ÜÄãpøÜ%òEš¨fE5ÊÍÕ¦ÖÂ2}¹ª¨áÄÙöwéûÎìŠÕA›|C°o)T­NGw†õ *¼„¶Ûé;Þñ܃û†ç†¾jØ¿jÇÂèмú„‹Šshìo%ï›KlªWÁ6Ü%›®Ú­.]Ïä©Ö¾ª3¤¥JbT;s^êzåcÒ¡õtt-ÏèÜzþÇ/Ÿ4I åD“lÐ2ŠˆôDA uYKW뉊¦¯ÐWK†ˆ,4w–‘q²€€<+#’Ýâˆa57ôK“°Ä÷z©> stream xœUiTW®¢éª…²D»;  (ŠÙd‘]P‘%e t‹€D5.‰Û˜ Æ¨,.¨1 ®Œ‚¢W2"‚ÈÖ-•‰FMnu^33¯!™LþÎ9}ú¼Wï¼{¿÷ÝïÞ¦ (š¦ü“2r“rÒ–%èwv¢-Zˆ–„U¿ºhó¤âc K±a™¥qŒ<1…m#!~%¡éY^m¢"ÛN™bï½"3/+-%5G1Ãqº³"1OñÛ‰Â');-E¥˜L¹I+2•Iªœ4eâªlÅÂUöÿ¿PEÙªVxgfeçø¯ÊMX˜·,yHRrJjZdz†r±ãôNÎ.3®Scâ¦QT(FM¤Â©…T$EÙR‹¨Å”MySK)*†ò¥¨ù”åOP” DS!”+eJ™Q<5š¨1”9ES㨣Ô\ʃIÙ)CryõŠ¢7Ó?ØD|apAâ/Y'yhhi˜jXhø\:Zš.=ÂØ2iÌæ$ÓÍüÂF²…¬š“pÉ\×°QÃÒ‡µë4Š5R0º 'LÄZT,F4§›5µztÁŽNsþd“X"èJºà<Ë×ÿR×ÔÓp~Y ÿ»ST°êÀºÉ2ÞÑE+ã¼8 Kîç´Šö­ôi5Ôª%pX<-`'+ìƒ}5Ö` 6OßÁ<tyƒíåÂó:< ÷p˜Ñ <ð7Zûä&Ú䜱¿ƒ¾Ü'ÑÚ‰HP³CvF¶hnFTh€wŠ5ÂFWLlô¹þ ó‚ùèÕËRˆâ¦0›¢7¤­Q)CƒÓ܇'9ª¬n^ÏW—ÍÚ§ÜÉé¡¶‰vmä©×ôO½¢6çë¯a•ÐG˜‹QÕÙˆK Ðà>.`€årÞÑE¤/æ³¼½Ã×C~ðìÖlЇ‡ÌqœÑ#aäö§rè!<®.Þ\lvŸ7çoßÿÄÃl˜]­v+×ÍòŽ…k7l°ˆB‰é1îö‚0¸uˆÁKjب–ˆ¢‰°ýßwxyÉÜ »Ùç—Ã(¥¼mõwkËrQò¸è¥yÅ'í-Í•­Û÷پ͜³h ‡ ÿØ®ú×m\°>,w;è÷µªUŒ«¾p¼ñûÓªÈB™ œÈiíéîN ì"ø\`¢+žèã÷‚‰:­ª/=Pø·rYûÉÖõÛ󗲡¨B¸‡%BÅPß—‹éÎ>qxŸD¼ ÝîîÓ*§áFÝphœ6 ìƒîA=4Gë™0«ï„óZÌùÕbî±Ä×°|•b¡¯s@ÂÙ»2‘uÕÙ°Îõ ’ñ>­¨úhõ}ÎKOÆ 4TŽ8±D:•Á6:w¬ÝÉ‚t%ÒÁ ¢c+}^ {;%â7ÕÂÆm[ÐfÄ©þºïˆn³}~5XðYµð¹¶ŽÀf!µgÀá`\,}ÁÀ8ˆs'ígåY,·Qd'\%zŒ½¦U Ê–ïY¾:äl­ªÙd½ /ð˜ù˽—d†-—Ã1&ã¡oHˆÁ¢¸«:´£‹iq,©0ž¤³ÇãE{é |ueé®k“óÖ¦¢qkÑ'…y;¹yìþû·”¢£èØ—¥_9¸¯ôëó°Vk2ö¿ª»zçúÒsqÌ“ÏðõkÒÅvбj}CaU˜ê‹A&×)5œj5ç-Eá}–ï¿›W`y'l„ç:•,¨Z$?W“u ÝEUå¸L+–/¶öI.¿µI6“ù®5ÔŠîþöüÙê}õFr$\ Ëgàì`ASã‰Ça~‰§³Kt 0ºæQüw“ •¡›:‰GHšeÚIBïåG6­)–Ê+ÊBÉÜOh‚®OòŒÏY°TÇYÈlWï̺\I]ûÀŽÀwÕ•t2ük­Òp–UaH‘ؾê“À/Z 6uèîφO,ú˜ß{ ‚‹éïïéu¡Gð!ó¤|q…ô ƒ?‚—dôH ÎÂYÒÁ´ú²7vIÀž\˜5 $y´ÿäx™úŸ9êwÓë`ùï]¿ÝxçT’¿ è?è··O/ÐoÅ ì󨫶¾ ¹aKeu ‡üÇ;ú¢Ø•qY“_}†rj׌`­RjÍàñº§xŽøTúÏ$Ë diÍ@è€Rú³Ä—0W÷ò·±ö¬¾Ð ½(צ(T™¼4nA΄Çsxk;Àì:H]6‚bÕóØYrMØ1Ĺ¾¸d‡—àĸ)¶Ób_A Ä\ê1T8öh$°GÜ#èöh´)ál–|¼[æq ôê*èëˆÖg÷JÄjA7ŒùòÖ7•êÚWuc¼~å!zŠne×%œI¨\|ÀMGþÄ ³’ÖÇo#æÏì¨þüØžCeÿ~´qí·ÂÝÃ?ŠJ‘;Da›™úmÂ3ƉCsNÔ´š‰òÞù½æü}X =Ân¦‚yy%ÞÙ12ÒÑ.¶úçÏäÄÅ‹’ö§WøÞOí'N6ù¹&«6GØd¿Ç…•aw2ˆcEÿkxÆMŽyßÈ•‹’äàW÷ãkt]Xö•/GÀMè® â0gvðýg½·î¨õóf(噇ßfVÑØ ÛÉŸ9ß/Zˆ¦Âê²Ó¨‘Æù11*S§¹X:¿,µ9NÆ¿™“¸,Ìm<Ûï@Ò*þù ƶ/»9ûœŒïÇìZ.Ç{û-÷œSÕÔt¹ªEοÁ7 5·Âg9‡E8º„Þìê¹yCoCO º‰ÏA± +ð  §>ÐV> ï‘þÝAÚ‡üËBLÔV¾ùŸS0ë””áTB~õÄ!Þo*'êOÑ[ZýV ß ÖÖo“œ2±dDìIÿŠybÔ7¼m‡±qg‘ñŠú5"ïendstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 521 >> stream xœcd`ab`ddä÷HÍ)K-ÉLNÔuÊÏI iüfü!ÃôC–¹»äÇŸ¬?äxºy˜»yX–ýØ'ô½Nð{9ÿ÷"FFs÷ I¡AášÚÚ:Îù•E™é% F†& I• P—ÔâÌô<5 £,5'¿ 75¯Ä/37©´X!81¯Xd3ayF3000Z0021H‚=ÊÀÂÐʰœÑäû*¾J¾óü˜ö•qÅw…ï)ߘ¿/ý™!jßí•RaØý[®û·Ðl㵡[Ý/¤Ýë¾Ñ}jÕöc›ÍÖý]²û»XõãÌC‰çÝ6XtsüfeYß½¢|NÚÌÜÉvÝšÝÖ-¶ yÕ‰¹%ÉÝiÝùóªÖ×®l¾Úýªûþ¤ÛÓVÌÚ¶jñæn ºç3~oYÜô£VôOíw…Ÿ‘zì¥æN ¿ùº9ôØ!Nü^ûê»ßwV¡…ß~s|çÿžþH+ˆ ¿ù¡ûCLtñŒi“¦M]±lζîß™µïüÿ-¡mõ›Å}yÂéL9áO–q™aæR¿¥>é}×ü®ñéÅw©û™,wÈ ¿ù-õ½Tôä¶ÔÐø?Ÿ„‡nÛxJ^øSçïµ¢¶Å:ºÇǹ»'ì¸xyÛÎóò|%‹~l˜òÝczö,¶ï\ß广³Nãáù.?‡—èÖóendstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xœcd`ab`ddd÷ vò541ÕH3þaú!ËÜÝýƒõ§#kc7s7ËŠï·„¾‡ ~æÿ ÀÀÌȘ_Zåœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@œ§¡\KsR‹=´˜Yêtðýè^÷ã÷:Æï¬ë^¬cþ¾âÇSÑ]}SÍšÝ=gnMw¥Üïul•ÕÝ•UsºgékŒ‘ÿÓÉÝÑPWÙ]U9»{®Ü÷ulsguÏSÕÝà×>yüo‘ݢݳº6ÍåøÎÌÖTÙ]Ú]Ãñ§—½»¦»tJ%Çof¶)s»vÏâà+ŸÿÓqÛï¤é웹6sËq±˜Ïçá\7‡ˆy‹·…endstream endobj 198 0 obj << /Filter /FlateDecode /Length 4155 >> stream xœ­[KܸÎy’ŸCÃHu2­ðM*HlY¬“õ» O(=/eÕ£ÙVÛãÉÏ9UERMRê±½6|°¤æ£HV}õU±æÇ«ùŠá¿ðÿvwÆV·g?žqúº ÿmw«?_œýî{«àKݰ†¯.nÎ|¾âÎÔ̬¬¶u#õêbwöºúûšÕLKËYS]¯7øâ «þüÐŽ‡®½_o¤ÐÓU¯²–OkaêÆY°?DzfÌUßd¿ ÷ÉØwé<û«8‰©¾}t£œ«ú«õñ…FV0²¬^uÛµÀõ••ÍØGQdõõÿÒf½of„1Âþó⯰w2Û;)uÝ(ؾ‹«³Ê®/þs¶QН6ðÙƒ__O˶ÊÈ ¶j×§FÂç Å\ÝQ†ðÜhØá Jnx•¶öB(— amÍá ˦óc¿{ Õ('š¦º¬ÖØ]ˆZRÔÎ:DÿŠãf‹ÛðZkÍÜj“6ý…oªÙ ¤³ŒZššã~­ ‡‘pÔ…13YUm¥`r•4|]]®q­®f¼úc|¹º„…øc !LvMmš°ÕÏ–fwµrÊÚô¼ÊEëZiÙðÐä÷K£€¦HPÛ¸áÒÈãDºÄÌgP¬6Ì~ðcÌH¥}ÃBý\͈‚Ôë’`ÃÜU_ 9²†Ô§GP«h„ÛtW»Iý{TE°¯¬À®jûøYݽ¥ªFH]ýrS¢†· *µìl¤k/.S Ó=Z,S¶©YçýÛµkCáÚžvv#”­•2 w²Ö GP§êË—x"ÖŒð’cÕÌö *.Æ?Öî³¹#Y ½Ÿv©"† uc°9÷84Ø1޶‡f(«Õ®í»¡`#ý,®©†|Vu£eœqÚ3?£‚¾ïºA˜“ªzsœ`ú6²ê»h˸’¹ÑôÝšÃ€ÎøE#`ýäôˆªªì´ªzX°œ°¶÷Õ79¼ßi<•Ÿi7T–Áò5’ŽgH'çÜê⛳‹ß¼®XJX¦ªCÛÝÏÐñäÐhDJ\l`oƒ½±ÔH †t ²`DܦF´9ìÛûäôÇ›äeØï2‰nƒãàjv€Ù"K‘Èë&¨Ú÷7ÝýaI6%k+l”í&™Nd \¸ ´2Œ| «~ª-ç)Ts'P¸²f…Ø" ¹ ЂZ7€þBÂ,ôÂ~ÿ§õF“† Üù˸ÌËꮽ½îûa{÷Uw8LõÐîwø¶Ä%Â(ýàxõb;¼»¬úáöß`½}w}¹~q¹½›¶ö( lMí$º,Ð7¡½(¢Öa`ðð¿^o¸ lìô•ãW”©;ç ZÊúþóùÂÁ‰0Æ9—ñ“¡OÒp»^b `ošã£×÷o9añrÜiøƒ#ñ<7‹Á¨&kóö0¤JûËDQ®r(;öXcÿÃu˜Wc|r²Ê=EÆcè&[¨¨—ØLiÔÞØkRhíæN$´Ú!äÒŽí?dü°Ýe- ‘ÇÈrÊ€«öz‹ùù"BðZp­°ÝÇ3DØÑᄬyÙÀ‹ì3ÿÕæîìÊ7l/`“<Д|ÕéÆz7 €iÚªïã¹Í~Z;$±@<ν6K„6®ƒ{DEù£¬LåÔ4—âM2úLÅÒˆÒ5Õ¦Ûc+KÇ}Z5ÇÃþÍ)Å;tè„wh{‹ð>  ¤ðpcŒgÚ<¦Ï‡öï=-IK_çÚHŸ©ö…ëÛwÛBŸ`ßeƒgvU¥‚a* %cÖm›jFÈFóÓ(ò&lÊæ9%K77é ÜÐ2FNú«IM‚™È“‡¤Ý€Û `'ñãÇt*RnêŠ?ÚC7ºìp[Œ² b°®2'zsÊÐãiø¨î9îx|ÁØÏ‚jÜœR…Í+ß3 a㪷±£ Ô‰¬á3ºS#“)2"“·²Qg0 ö<ŒlôÏ-™Ú]¡í® #\`Ex‰OIiˆ½ùF è–4š!%¾F+lNì* jHô  Lo鉉Kàðoça®âH¯« ZºnCçNãÌŸâð,]Œ©öÃM¡û§abp\¯°Õò Y* ž]žà_9Ù䵑~»û¿¿ü~QUÁ›(É6\‚¦ýçÔánSs8Œ`Ò¦A½ÒhÒ˜ïà†|®â>̬ lrnAGÀÉ,HaVÃEÌA7_ØJêüg(€=˜Û_–HÙM¡[ª @¶!púoÁLм §`5ÅÒý²Ÿž"KS#ƒÛP¬DTÅä£Í-ý ›ÅH8#ú´D–y8D¦Næ¬"Õ”‡7Öq™ñía—µ1¶‰ÊÍ—´ ä¦Ñ)U]eç}õ¼¸‚Õ;~vqÅ‹Kñw8Ï6yÎ/ó9EìHÁ1ÔÈRèÔ«Û}—Ÿ™•:<7 <ë†lV@h?†Àñ»L—»ûã˜ïQrˆ.¬WñŠlS”öá¢H™s¦«|ò"þĸýëc3 ð# õ—/ÇóØ\UÞ $ee©qšÄ~ð-‹õ(³6R…4ÆCÔ=ÆSØä¿—QÜE=EC¿…õs )`v=(ÄŒ—Õ®=lï.!ä/Îc'ª{àY#Æ”×7ù¸^®cK@Áo¿8?Ù‹ÐØ0:5˜[Y’8›U¼˜BÔÏ6i¼Á!Ò¼‡Ý¸(³Pè½€f<ƒv¥7•²™h”ǹñMÒ¢?Pr¸%e'êÝ‹$ÌzÀ¹•s˜›ÊèSw{*n(ÎòV­¦yZÆbœó{ÞK^…Ù$éÿqê2LÅïx:3΄[.› 3Ï}?L͵aNÆ49‹“™í¾?nb;®rb³l$š+Raåx/bã2ñìÿƒ#â¸s6\!‹&¬ñ‹TÉ¿p8™·‘V©ì‹®Kè¶Ç©e65ô´&„)-uþ…ç¢â¹0L§?vrö$´4H‘dN‰<¼—ê($D¶i-h†6Z–sù{æq}¢b}‹ º ‚0å}5´Á|ôÌ(±¯ÑyÈŸ’Å…¸ð* W¤ŒÈ"  tNµûiá- \-„Ù—Ó©‡Œçº¸.  ì„9(ÑñÔÇðŸQhÂ<$_ l¸&¥š$ÄúU¿˜N§”µ›b¬<o‰uq¿éˆ€˜{Ìâ‰÷)Q é)…øçi®6®©8ÖÍ„[e†ú¡€nಞsͰ2 €bàU®::@H-L%K‡'^í‚_s l's}™ç~{·k÷Oa$€ù¶Ç>|Ã¥äš)%G!Rë(1WDœör8™\ØŒ§“²xŽÑá/¿ Â8¯jÿrqöÝ™¯PЫýéʹX™€&ÝJ€ˆŠ…Ò„¯ß$WþÏް2æÊ€(\ýmF©Iv jà¬Sé?Vl8«Úé&›h¢l$Á£¿–ÓÖ)UÅRgR2EžLA´#åÁrK i ÍçÙ¡%nË„n†Ôì¯$ ô¢ÿUVß^ôÙ[žR¥”¯\.x“4zõG]&T©¯Ë¸±;toñÊ5$~ŸÂ.p±t=%HömÌ·j ÿ°&‡4æ7¢Q²ï»A`Ç6 ޶{r7ÇLÔ}U4vfyþôš†šÕ)íj‰u"Æò™`uÏ×ÇüdKqµ1& ‘6ò—ξeã‚U7ÉÈ;¤æŠ®d3Q×µ/ý‘þº6 øgŽÂp|MoÖÀ;Øjèß’¾6f!ÍeèºçTHVöFy`žE¦3÷™=L¹€§ åSü3æOêhœÓ[æt9¾`¨qÚ¦Îú8Ý«!$olq›l¾l÷ýú:À•X ¡s@ëÛ‰cú²x»Ã=f¡é–œ²²~X N~±Œè84þò“ÄCØà1]RðÀ…X-½-钗Ŭ5Þþ¹X0^êñúúj‘Sy/ —+à ì&ä7TQóQ©tªœ™êŸÆ7žj,ÉÎ Àµàyá¢ïëp]ú}QÞý¢\ÆB«ÛaŸ§ÖvþWLhu’šž?$‘íÌAR“ú}fdª\­„âµÕv^5Ù]ãzh\›p¦¾=m‹¿6.i ‘ýÉZÌåý$¬ä<]ÉgÂ`[s-³qƒõ'a0(–ÍE=lé—œ(¥ù/‰–W¶A”pºÁîNRÝt·‹U[ X㇑ÿI«©]›§mc›XÓêB.—ÿHY­%Êšß±¦f°o}é™×Aì‡Û=-Á"éÝ!*ën£°‹×pGl½·Ô(¯‚ÇÚÛeׂgôŒ–ˆe-¨PI½°;‚9oG§W_,÷ÓX:¯¥QéÌŸGï¦:ÏlEþîô ]Ú¾[k—¸¿¢qò"ލhT'G ¡È“ý'hšã¥^¨ÍÈŽ7×¶‚«‡±@™ãͧì,';[<Öèq‚c€öåM˜k¡þ1õkߊYJoé:¯Xþ"ÉádƒùÀH„f?äåq`ïÄ¥@VæMÇ—|„a&ç”j¦ùµøÈ¢¤i¿»û0 O»x» §]KëÍŸ»^çlìTÔ8…oR=¾…ª!°o*ˆÌîTzÆ0ÓⲘïË&%§äêÉòò!KH§†2/œ§ì•Ì}fÛ?º’‹£ê˜ß­¥œœðe`€&Ò8Y ÐSWQLT¯<ÔYÙ0YQ‰>KØÊkÌÏ`ÞBÞ«®½½F’³ü˜5ÝÒ«j°@p1©Äà˜øñÂÇËÔ³MË`û’³}0Q#,•#ÕsÒ;äOðÆx,ls:Þkº¾CÕ†­Â=oñ–‘É"nI+æOEÎùÆØYÎ38›§³2’>¯á5rdG‚…E’Û·ãH`ÆŠú ©øã…6«ÏëžQ”AÕ„ÂßD-R†"jl¨‹µUž“¦}å}ô ðÌŠ0CÇ“Eýþ Âß V¬Áç £«œ.’¡ ð(O•Õ†MC&„åŠÙñ~øÝÞýPþê$¸Í†PKçÆùâ¾ä+-~E«§²}:’^˜Ü»ªX¥îÊ̳8[1êGÂÒ°åßuL ÔF?“Ðõë“@P)1Ì ÅØÃ”7;¡xû0+ÃÝß•Ê,£‚ø,döR–W×Á)Ù|ëÊCÓìÿ‘qfw_u·¥ú̘ ‡¤ü/Dm"ÌTí§€&š$þÞqÀ×ï¿ÆP÷(ñÞ{ŒY…½/šx¼ë¶wǻԴÄþú¡»º&…ŠUìûáaØ£y½H ÞõxñT¤ïU!ö~}Õ>ÿ|.Sh“¾;û?„fŒ‡endstream endobj 199 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4023 >> stream xœ­W TTÕú?ÃÀœ#ÇÈ:C&¾%Óº†•©¤(j’€ &ŠÈ{`x?$`x 3óÍ7ò8Šb ¾HE- Jo¨eêíf©½ì¦ysÚ¶º{«ÿ½ÞZÿµî:³f֜ٳ÷>û÷ø~Ÿˆ²¶¢D"‘ÓÊUkq¡ñ^³Ö„G¦ÊC“,7' DÂV“bÀúŸÆçÛ€½ì­ûŸ`µÎè¤JsD¯¥Ä"QP¤Â[‘™•â>göì¹³f‘w/÷-™î‹=Ý}CÃbéɱÑî¡ñ[Ý}=Wyº¿¦H'7£Ý§*âÝ·„G…Ê#ÜîáÁîþKÖø»û¬Yèç?Íóß·õð;EQ“Å+’’S–¥¦‡nÉ [µ5<"2*Ú? V7ûÙ9ÏÍ›oê´™ROŠšH­¦ü¨×)*€ ¤¦Qk©`j1åM­§^¥<©%ÔRʇZF-§|©ç¨ç©•Ô*ê5ʉr¦XJJ¹R¨ËÔÊ–zŒRPŽÔrZ”5•/r%[‰¬äâ'Å ÖNÖr›I6‡%ó%èçè!&š¹0Æ×öYÛãvOÙÝ´²¿óØ_$…:z;6Œµ»pìÇNÏ9•:uºé<írøElÅSÀ£ ¼°!]4œ2žßF¯eyž§Ó®ªjõö,ÈMQQ޽Ó57&%j–‘Ó{ íÐ ÈFíÊÓktÛxh€r}‰¾ä0’º¢*I?žaÌÓ©Aå牜œ>h8‡€Á®¨RŠ•d‹®Ø8ç€'‹ßä³MÎÈú"ЏèÂ*…ãyš †$Ðò  áSèPìN1‡W¯Oؼ4[ÁhoIØì¡´‘ÓçÊ ×Ëp#½Q ËÉ:‡õ º#pªµÇ5 O/WÂ!ò¥Ùò?:6ðnõúÕÎzäX‡_¬DŸSJ³0Ý$긆ö\ (ZŠ\ž¾‹1;ÙÃNw§"GÄÞ¾¹çË¥¯'mRlܘ ë Ô”òVbö8yÌn8eÚßyôíÚ=p öÇ6F·„ê‚!”!Œ×òh¦ Ý07ñÛÌÎ÷.¢æk.ìTa’K‘ó´ï±màºÔ-áÜÍÞÃS-Ï7TZ´Yv?êŸÏ‹nKìŠùd‡¬¾E.²çÇc‰ÏÜù!ám»“¹œFÐCƒhÖö®=>9ý,¦dÂdrø§{yyó½¡{_¸°~Âa¬tg\gÈêÐÐU)œö®„½…'>âœë«uG±ÿtz±º²[†¦Óû+Ñ$á´´F›• ÉLBÓ¶–¦–ÚNÎáQE¥4!‰ µ5‹ºŽ¢œ£bA‚ÆIá`z{jKô®È²E5‰%‹«á³³¥ç&¢Ê^HÒsº\(ª¦ÊdßÒ; Çl}5å8ÇZÝ=8$ûUkïñ¨‹!÷hà†x8a<ŸB/Кén}å%®…—„¨ýa#¹ü!ÄÀÈ[èKze„ gã”ýÇcî7Óå.E.9h8I¨xNÂA5óp TƒpÍ£Çv*{›шÅ„è“_Ö'CˆÆ3~#ÁzκÞ/¨zû9ô÷Ñ_.zŽ O§ÁBEu¤ï/ÜÇ ¯¥ã4£{ABÄuÓ‡ªHžáEÃáÂ$)O‡©5á adût¯¶&Ò!OS¤.|\'£vU5ÀàÖÆëÛ8žÞ¨ÞBŒHñk¿µ•ÙåÊê0P«²]½pêLT]TK˜ntk È?°HC†GÜä4Œ¦*Iñ®%¹†¼Z¨c¥±âÚåúÞeÌ3*kÁ­ Æ ¢¡O\›Ïì76éš‚)}7Š4¡9&ç¯Ð‹Ï„E×¥'´ÖEF‘:yÓDí]!û#vm¨]̼%¡+äMÛÚÚÛzCJ@ÖÞv¤¼˜£§ÂçÊbè@ÍBÕ²Xï¨Ô cX¥×­„³Ÿî=a®áØÅ¡%‘½LµWdxñ1)kš¾0nÓ›ºÞþàÔ‡hV)gÊ„¾6u›PDèÞ2³zà NSoc{Ÿ7¢’9t–1˜ÝÿÊLwŸá7½­è·_]B'…7ŠÖ&†¥Æn‘¯…oMîÎnÅ-6ÑÄÒu•u]‡úêöB/ìKn mÛ¬÷ƒXË©p ‡šNñ‚’wnü¬à3¶CØñ×Xµr@rBOp:¤H(eq^qÁdœïŠ­QmÑ3€[[4Y`«Õ°¶Z`: šª4ç>íšä—º6ÞÇÜ’`[µZϰ··ëÌÛ»o˨KIÊÌJé‰8ö~ï;'Z9´\x±²­~ÿ ÞÈöÌ{D¶hÏͳ¨ëÚô•XxÙI«” V‚f[—²Ô?1˜^ÇÐT4ûÊáÓÕýš¤nYZqz6Ä3‰émmM;ø÷–ì‹ÇÍpÇNXzw©V²è±rÎá§ÅÀ‹ˆz=ø!^X~UüÓøGè¿$IƒB(ÌÄ)÷]qŠpº Q«O7ü’¼E2"T<ˆ“žÐ×èúˆ£×jû-ŽîGÚeÂNZ§CÚŸ©’c~¸UBI¹±†í]uZ›ûgðiÃYBåR¸#6%õÈùfô |Sá‡ÅÛÉ9T\{uÈ…u/ºjZ¸K³A~¿£ަU¥!Ç_&†êè> K±Ó÷“‘Ý…ƒ½Mõ²4;•B.Ö ê7ÓÖ°9D¾1#lÂfkMìIìÕ¼ ;ápéñ¶}Í;÷óÇ¡ö¥µ‡We2]DïÍ´€ÕŠ<(®ês#¨”©JóóÔ…ÅZ.ÚcŽæMØ[ÚSºbú´§¡‡A{%Í%Ðôƒÿ7¤òÚÏzÅ.ÿœ‚Cß½™z\Š‹%åÈóFNÀéPgYj¾-ñXÁ†GÅ|I6CpÝxÝ…$X ;H÷†ï àØ3/{ùM‘aú%ùeüñ´‹ˆá±²¡Ùq7ûörìÄ ¨ÐT*“ê–Ä$6dšÚëÚ¸—À[ÚÑÊ+í¨°Ý¹ãdò¥œ“è‰K]']Øq”P,L‘6dóañ!ÊÈ(.¡ykM(03½}^ {S¦Ñ(¢ˆ“G×E¶g2ì·Êରˆ7õkÐ8äøÏã—ögˆhåüw¿3‰GÆB>¾4£y]Imyµ)‹“D«oΟ»Ü§èÊ©‘íÛsª@¥.PA&£,Ëh©©«hâ°/¦¤)0ýYŽ­ æÀwÍíú®­²ÚÆöZ307`zŠ ‰ï3Ò5 Bfq¬¯rÚ¢Ã'ê*>¸&ûR²9jçËÆ54J«Kl1NlË`}”ÜŸÑ¢o%lïï©îO"ÛŸ6ѓʬå=÷å|QóÉM¨”lÇ·¸ä-™ ¦ÙSx’eÍÁò"Bñ¦‡3Ô7é@!jŸša]ý…ï¥É­qqÉÉqq­É­­›M5+x´ÆŒ2Í`F^fçSƒ?¢9ƒ.¬ %T UR8•v ¹só‰JßÚ¹M®/6&Âælÿàß‘ôØŒÉ5œ!C§ªz`šd(n„í¹…Zmn!—“YQ´­1èíYÀ°±J#+'¿?…í\…DšåI$6 ±Úf”4·éÁþ[Ø¥.u{.d»å©så–!”¡ƒ(¥Cíö0Ä¿-ìµ![êF5ãGÿ,üL³ý¯ü<‡a‡¶ÏÂ:qp&5Ú¶$™F—HËË…-¾hQBÐï”ð9˜cºÖ±5-¬jãoXªX›ûnØžyð"¬JÛÈh¿“°æÿW+cDÔ'oŸ>Q¿uÉ“Æoƒÿtèˆw¥š†M¢}×P Iqè‚Ϊ¯E}´éëWZ_‡ÕðJò¦±KUóáðÕOï}éð_>É:ïÃEsÏ—gK?‚+ÌóURXóòüÒ°dQ^ÄwM²É{®‘Tt.Wh¼>Xß{a ½Á³2^†•£«²tóƒé"”~I,¼:ž¥=ÕU¤žž¤MZ}·jÅ3$÷‘,Ñg ¿¹Oò«:ד‹µpó:ì'× 3G'»‚îܽËŽÞE±_Š…-h‰T!Ñäøådå/%öÉ॒|^@χ;nˆžy…4xô˳g¯ëU•7wÖíéLk–«Ô -æZ‡wösg÷Ì¥ ^Ø$Ã+ðz% â&°’‡ÛGóB*Ùÿ™‹–¦ÑKÊ{ë‰ÖË2rµÚì|¿?ÂFŽÚž'ûV.äRå’Ç$•ÀyKÙæSé…–zs^ÄK1H›‘©µi§Wv’™}IŽ)v•b½;ƒºZÝÀ($18œèר²ýduUYée¨!¢ÌÀ.x<öÉÅó`›B†Õ\ hJ3bŽŸGîÈßµ¼’$妇Š(‹(ш£`á±_­0¾5‰X¡©ƒÃ[w$›È½¤øßìñ·†ùÞ-çŽk%·®Þ2fvèß7³3ñrÁYÚžÖ”š–МÚÞÞÔÜΡ¥ãÿãÞHç†3Ò~ÊJÝ£¯q¾JÔ†¢2,E¶[Ñ2@Þ€žéD~è)ô¸Ñ¨7@ S¦2æ>ëE܆É“Ûw9–œÀ¶ïbǯ /+1–ÉþÏä(—Ì~¥ð·\d„Ä~ÈÑóé0ó4j•^]V({'Yá'ïüt"Þ€=ðº¸TŒZ_PQuã<õsG¾mýý(xa $` _“…é¥MìÞ•‘аÛT[Gz&¯W¼¹b¨UiaYåÕKÈv TfP!&Å©Ljº_‘DÿŠð(ºýÒÿ2µYðÞâ+K›%¼í ;ÎÖ: `“ý°·kÕéÉe$mrÙ;ööfƒi{™¡Êh0–”Ú?FQÿLj^„endstream endobj 200 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2183 >> stream xœ}U{TWŸ˜ŒŠ2M¡R'iݺ”åøX‹vß+–‡ >AÞáH€$HˆˆÔ7„7J€@ ’Q”‡EmÚTæ(T#Õeë²»ê®uk»íÙ;{®ì°ÐvÏÎÌ™sîœïÞß7¿ßïû>æì„q8œEJ%R¿•¡ ‰ŠÔ˜LÇ·eŒ'‡yˉYÂý)ãœ\€+¸:ÛÞšûÔ¾£ÂÝ‹0.‡³_”¶Ušž“™œ˜$®òõ]½r%ûöÆæ·øbâÄR¥Lœ,Œ‘Ä |}„AR%û1YøžT"ŒMHŠI ¥"áÞ„Âð°í¡a¡Áá!aË}~–ÕôÃ0R’)“+v)cbsâD¡Éaiþ>Œ…a{±plæ…À¶`[±CØvl¶[`k° ìml!ö:ûǘ3¦Ážp´œNQNmÜÜϽœí.A.çpwü3ÞRžÈ#^ÎY­  ¡¦Ýþa‡!vw²9ÝÁ·¦5•ø7‡úü""sS(rÄ\\KmÂó¤@œÒ ‚^d‹šYÁßâµfÐáØ)ˆ‚›qÒòϱÎZY…db^ž„3;â¼&㳡‹ë˨‚o<Ú÷~臲ðÃT;±¯J¦3®ž©üÙ6̬`^ka!¥,$âÂy8)üööÄ(½È\xÍMõfÎ ú ´œv»KÃjÚô`¢  ¤¶Ë qg–­4Ä”ïª]Ä™ó“'úd…Ž*‘¶‚J@Â.ÐlÐTh ÀÇ ¼ätYE 0,I9ŽÝ*VÀìSU'ÙÝ–b¸}ï¡+*Õö’oPKq’üÌ¢ £GQgfu ¤9ÙéqíÑ×Fm7',¸œÙSÌ ¬äÍÊ’Ú `"^É2èàÄí¬ƒwR=ãsF÷?|¾Wãš÷±%ÍõöF¯ ÈB´ð±ÄúzêÏcI¹—¨i[£5pŸ´†Yï¿#äÎ_þFß¾7teøTyAþ0œOs>}«Ç¸L<äð›ÔUŠ< PP²ÐÝ ìëÎ*Ÿ°o4óøñÑ‚ï¢yhÑ÷ïÁ×áâ¾Ç-‚MðW|TÿtëÂÀ(¸YáO¼j˜Ð•-©V…]ÌUþM? Þ¸>ú7ÔAŽlËfU‘eÆôË  ΙéÓhN?~ҧ7©šacŒÏøg¥ àXH)¦>*JTg‚Ë༠…ÒX%ÍZ=AþpÍÚvõ³Å¿Bs(´sªÂΰ­ºå¥B6³‚ pC+›CP d0þ>ÞZŠ-ùwS6Ç.A ¥ALÿ-ªNÏ›­·zh|ÁŠö¡vÀøüiwÈ‘gˆý;7˜ôÝ&6ËLôt£yçUGCïΚ.ȆÌZ¶©Cú¢eLß,o–Jår©´Yn677›¢æÓ  Ý®ÂòÑèQw2I…ø £ ;õBü刚Äʬ²-õšÒ#5‰ç@/1pùòÈ3ød–R¥iõÅu€˜œð žc|( 4i…Txwˆ>“õgÓkÃ-¢ê£‚‹Qm…÷s«Oލôìȱ +’ïÛWU—NEšµ‹ÅuÅIÓÃñ'§‰©êt[Õ/¦ó¯²LÜýëãÙcõêÄ;90é`»Á1ž @çUǃƒ±TQiv8Û]RŽKXòÇ-Z%ÈñL™ÒÉ:ÈÆKRL›êñ”dì!¸G<ºØßÝx:/B¹¼É4Ÿ_ü$èÿ„Lu®~šØ§wèÏìÍeä_ñÛÒÀ±œ“@“GÉ䉹q€xÇû(„¿~ñÍ‹k†¨V ©ÌªbÙóÛ½qÑÜ¿±+_÷@ÿaUhZ‚"´m‡óÑbøöãG×ÛÁPÆ_7x¼×Ææâï@’C’ Þâw¥¶ŠEé©bQ{zGWk{µ ¿†ÙZW«×áô\û> stream xœcd`ab`ddðñ NÌ+¶Ô JM/ÍI,‰©ÿfü!ÃôC–¹»ûÇ—Ÿ^¬=<ŒÝ<ÌÝ<,¿oú$øÝŸÿ»3#cxZ®s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡9 Êe``` b`0f`bdd‰ú¾†ï?ÓÌÇ Ê¾Ÿ?ó}ò1¡7/¾w<ê~$.ÌñS@ìwÜ÷›¬Â_>.¿|ù®Ô§ß÷+Ëýžð×ëÅ÷óßMؾý>ÏZñ£_ÔËÏ÷7¿Üoõï“¿«³}ç8ì,ÏWºðGÀœï¡ ç.d;Ãõš[Ž‹%$$ž‡³›‡{Û쾞޾žžž S§òðïŸÚ××ÛÓÓÛ3±‡—fƒlendstream endobj 202 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1958 >> stream xœ}UyPwîaŽnAiFPÜžñЦT¢+YÝ5*‚)AC1  ÎpŒ\¢‚È5†ûPQA‘A¼:jib£F¥RÆ­¸[ni\¯³eíkëgU¶Gâj*»ûOÿñ{]ï½ï}ß{Ÿ„’¹P‰dÂêà0Ó–Xã Ý–¤ùóæ†éô[SbÓ‘÷‰0ÙEøƒȦ—Ã/ƒäà*WÙ…ÉÌI¬©î¸i%•H¢RrüM©9éIúD³zÁ¼y~sçŠß?ªµ9êå¾ê Ø8ƒ)+äŽ5Æ«ƒ|ƒ}ÕkLYâc’z–ɨÖêcSÔ¦õ:]´:"< ,\½2,$"4ü}ßÿÚÛo)Šo4¥¦¥g˜·fÆÆÅëôI)[(*„ ¥ÖRaT8µŽŠ "©(j9µ‚  ©O© *˜ZCyˆè)¥§®H‚%.ž.'¥£¥FéYˆì„|‰ü¨¢@q“–ÒUØíö‹Ël+<îåûy“Ýã!*ð#Tx±ß g'𸗾•qHý£µ!FÎò\Á>$K åúr Ä«Èå@ Vô(•‹ÿêh¶¥·ù³Íû‹ý8r8H º[ånBi‘C`í’#è‰!è) hR⿇dQ~°€Ì Ó-B½¸‹jŽxÖ+AQIñ f=$€î@þÉÂn‚àáó:[}_ïÁ^8ÝÆ:C]2l„MÌ Éã» á »"(ôôbÇ ­˜¡Ä™¾ßYLìvcw‚fŸ’'ŠVØ e­¥PYÌ«êß   fôììGÿüœ­"žˆ:*rÃæ”ΣٶЬgWû±öS>竈»JìÀ}ðMã’nì”J;‰TòÂ#-êÐ …‰D1} ™Mæ<û]zmv ©-Æï”°²’M&CQ.0Qñ×ÑÕÎð_÷.׈e$¶A'_Wíàäë.RwÑÍ‹ ¦ 2å—¡7Åf|º•³dçµ¶¬ÎN[›ƒó[Ò¨";6ÙžÙ$ÝÃχ›†¥ø UJ¸”Òµ½)¹[_£­ÕÔGÔÃfèfy뽪U™\y^EÉ~`AÕAÕ÷âXër ³òwïàrëMµ:`üýÒ§l8œÖ¸Se3ôžÞå(Ú ÁLhL^Œ¿‘¿–Ë•ì±X³É€"³ŠHèlØÕRS-\U垺*«ÃtöŠL¸÷ݼåAñJªÈÓ²p7áYE…†ÿ÷bÿ…G7åš:b[¢1®¶rhñ<‹áÚò‘‰(Þ+aô4Ûõ59¬ ÔÌ«ßu^äFäSdßÂ÷Û±ƒ×|ñv’{@ï†~•@ÑlYõv¦´âšU«-Îs¬+þH³ïFwÐ3¿1=í¸×û¸ò•ŠìËfð¡B˜¢äéô2£% °¹b{9£¡kNZòÊJ T’ÌÙh•_伔ȬrÍe§½UŸÖPÖ Û¡²¡º'ã ïêfkõˆú—<˜ì¤msεKâ(\€ ©`>¤„ýùå+4Aƒ)ôãe_÷dâU6sOöá.[Ûq›¹¸¶ÊÚŠ£À vl\©ÒÓdz)ñÚS™n ôœjã2!òw\±¿©H*” ƒ¶µæ>tAïÆŽ §tΈÒqî#ê㥂ŽRîÙy%–%Ü«–Räôçô[NÁçÌeÀq[ÊJ›¹]…ùÛÀ̼iëÚ²Ž?ï…óˆšÌzºXL7¹ e ïp%nÁ·v\ë¤K¬wà$lE¾`ÿc/h¶™ÙõRB阭52fæb2‹Ìùñ”ô79¦ÒÒìRê'ÛŸ¯7'˜b|Àؾ£/ÿ\Î7öìut·@Øóëœ#îrÊpu7.²{ˆÇíá±ûB1·dCqnYñöb.cÍÚÌ8±ž pü%Zí5åGîëqù€(çû‰èfü´½pÒ©ŸÛTsp’’„(ØÄsåV¤ïù<2ͬ/(ÙdÇ9OàIº?~¢·ë<:%R”"‡R/Ö…rDIÌëÑæéK“t+Ë?·¾ÒäCƆüù³Ö¸N³*%®4ò ¿b}¿aPÛŠÖ™Ã&m8½pþ7C7ЗLÂpkii —9X×ë}~w“=ç’º}5|û\jOAƒª±¶¡rO¥¥´¬ ˜ô}9ûZq$rŽ2ÖÂå³{qé9ºq‚×sO^UÆ'GO›©;}zð$ìã)nŸÈqn²òõ1{.rxçy â|↔ÛŽ-ø`a&Í^$Ëì]z{ÄܬrÖû†ðOåñDûgƒ..¶G‚·õ½>^¯ó ÷šxìLÔ‹í¢½ô¡ÙïÈàÕÙÀ_½é鲈7ö'ºÆ¯k?²ú{9üŽ®Ø•Êeß[l5€?Dk!ŒÓŸý??ü½âøÿ’»å7¡uÓVß àGãÔ1ÜhÙ:“ë(pÓm­,¯¨,¯©iºÚìêÊW—4Uï©­*o¨tKQÿS©endstream endobj 203 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 204 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1425 >> stream xœu”}PeÇw9XVEÈÛ.Ml÷šF|K|AISDEàÐ|IFîCoãåDyùÝ!(†¼Èqp(É¡høÆ„ ¸™vΑš5j¥¥“¦VZúl³ÎÔÒ¡ 3ý³³ûÌóìçûû~¿»8æê‚á8>fYx8«agÍž®HHÌØ¨Ô ,úðÞ8?Á…K‚ޝú[âðp=3H—"Ýô±Zþ&ÁñU‰l«ÍÒ%'&¥ËgÏœé7}ºx «²ä¾ò0e\ «OKI–+5ñò0ßp_ùrV/.&Ë'³¹*!I¹qƒœÝ _‘°Z¾2:X-QD¬ŒŒžâûª¬çφÒhÓCõÊøEr4†E`QØJl*¶ Ä‚±%˜†ÍÁ<Äá0W,Çðx¼Ý%Øå†ä#Éi×4׫nÙÈæù‹Ën 8äàVqÒûv´Â>–:Á·ÊZSa ­ByÄØ“!ë Ù4Õß5qt(±%4š¨a:‡jè M"jZ uà$£B¡ÕúÀq¬‡«V+ha³ÊýÕ}Œ.è84›Cß Ø! ǧ¢2äõÞÃwcÖço£©6¨}™ü¬ýÉj¢YÛ¡éòÉÝ_Å„½1-$dñ¢ 7»ékîÔëgûúì—¹ÀY´_4€F^zM³#?»„_†¼df°¨S #“.‹Pä§ùt73¿û Œàÿ=±šRÔžEø»oÑj¹%T¾_%_îùmß#ú¹¿|‡£ ñí‹È<Ò,X†fyô¬`â°É,ýªËä=9¼–7HøbÞGÖªß$¸ÿ±÷‰»»ˆ5çVF·lîËo˲—T«!Šó²–êC 5%Yd± qn]DÍ>‘¬ ž¶B3sN¸[™TWÒoÓ.sÕÁºÞò}¤‘0æV° Ìš¶†z0ÃÎŽsèÞ¸fë ]Ebxh÷„“ž²#ƒ˜à:¾Ò9hªÞT¹…F÷o×oåTX¢mȱTÚLG4T¦j㨆&h›î ,h"K£ŠÃõk²—&BIm]|!ânÛùŠC§ij‘ÚÜ]zØ»¹Y$ e™*IÙ²“ÖA‰wdl[çOÛÑèá²ÄtINÚálVÎPµù*â@Ñîä—ëü>±¹NվȷgL¤ U(xÝšòØ~숥A¤+!÷3ú¢3ÁÍ•Q¶è˜€EAQWîÜw8.Ù»"W½hÕÍ^èEÞœ´Ï.Ž¥nðë.«,µl4æѺ¨°í˜¡¶~G¢“Dct ¡÷„1é;Ið¤LA^HÖu»… E´Œš/4{nÚ»/ÀïÐè¿c éåq1Šä´ÒpÒ[v´Ôo·ˆƒ6må«îÊÌÛö¤m*MÛVX—¥…ãgP™o¥s[ÓÌyU$ƒõ¶}ÚÓ3þ‡À…‘´°€ÈÑ ayVá´Å µ ‡ú’Økbï@KR [›2!=v<ƒ¦!¹.µ%çÍý‡á]ô§líúˆt Ò\!(ûåxÄZfØïæú)Jº&Jý’Ìd2ºéÌD7ÊSÁ!CGœþS3†o–YõfN¯×éÌz«Õl¶ÒÏmáë8üÔyÔy^ÂÇ¡y2ø:öxÉŽ¸NßæàúqªZõA8Ažéþ¼ÿê©8ÿ=t¹Á”»Hì53ˆq¯ ›YZ Ì£×SìLû°p¡_äÁøÊ"樲¾ø/ÝÕìúb+»7c·XrelÄü¹A?o§ËjËê7©ƒžh÷ͱ¿Ñ´ëh5ÝÛ_Ø $r»ôÓmÆ3¯šªFókÊ7Ò>Š麂õ£Z«ê&£ÑXn4WxxØšÄ[ñ#1}bªòaÿ4 ®endstream endobj 205 0 obj << /Filter /FlateDecode /Length 183 >> stream xœ]1à EwNÁ $R;D,é’¡UÕöLÄ@„ ½}Ái:txHßøÛßl/£w™²{ ú ™ZçM‚5lI`vžpAÓù«ðÕ‹Š„ W_ï´4€ÝõM-À¢9c‰ï& ¬QiHÊÏ@ú¦‘½µ’€7_Ýn˜ìÑÙJD~’¤o¹DŠ„*…DDÙW%HDÕáðcLÝS©ÞRŸñ,Œ]Ó:¿ËcˆÕE äáZ]endstream endobj 206 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 728 >> stream xœm_HSQÇÏñî_nM³FZ¶ÝdË\þÌ¥ÿdþCßbÚæ.n»â®éÐiƒlé¹sŽ©©©¸Y "ë!Ä—ˆ,ÈÀ‡^ {HzÓ äÜyìÏ5"çüø|~ßï@ „G+«ªLœµÎeofmÎóµæÖN›©cOé…ãPHŽNP¨b§?Z.E* ©$/¢L?„}qØä6Ú{¼Ããs¥l»«ƒiµrtvffNF†xçÑÍ.ºÄH—›ZÚØ.gC›×èrc•‘¾Ìv‰¡ÓXÝl¶šlšµÐõæ&º¡îbm]V[Ýp¥î”ñÿñþ¥&'gî`œmv‘™mf»ÙÁ1 ã`8—ÍÄqL‹™cÛ*;«À!ˆ }@*~?؆^¸Œ©Å.‚ giÐLÀã'†•D¬_óOÐlR`ðžUK iS8Ý7};Ì¢$r÷»ù9C4}£È+ÒþžÞî‰1¯ë+‰¾Âãí@ÝI¾ŽÇZlØì%™Ò[rïÍQn=@þÐà´§'byþ}—QÒÌ»S:1Ê«&P±ˆ÷~6kÂÈ­%2’‚ˆzË ¡V6Bá=¡ÛglÀê-œ‚¸à¯ E2RLN“dr‰\Ââ‹‹u¸è·HRoÏ‚ \€¯#;ªµÓm,Ëljӟ-K+×–­ !û|ÍóÊÙz¤ ê\H,‘­ Ç}ÿ²ºùN·šÏ£‡Îå«o»_Š›ÕëàXËkR KÏeW¬ai–öÉ›ÛX)Z¸lÈÕívqKuÞI"k¾­ýðþÓç•|"ÝQ,`îz4Y,}l‘Š£9ûÍÄË܈ãBhR‡—v™u†Ã(4©¼$ßïã{6Mˆ< Éc•ÚXªñH‘êR)#þ‘ ðó#ü¸JæGýü̸?èãUø OWLóendstream endobj 207 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 208 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1358 >> stream xœm“kLSgÇO[À£V˜°FpxÚ%‹ÑM ê’]¾è4‹Ž¨¨H‘– …^è…RZ ú´”–¶ô´Ôr BUYÄËV"n3nÑ÷Á‹‰n3KÆ’ù–l®,fÉ’åMžÿO¿ç÷þ–ÄÄ ÆëGóóJñ'JTrvOîîƒ2iõZ¾=þ#žÍŒoc]²]-N6 ØI±ìdy:ÒmFõiHø–Ì`œ¨Õ´šÉµrIXÉÛ››»o÷îÄü€W¥åÌáå ÎÖÉÔŠ: OÐPÍËËÉÏáÈÔ‰PÂÛ!kàU Å©ˆ'ñøÂRÞñ⋊y‡‹Žÿ´xgÎÿ°ý7HÅ‚*¡R€aXŠB­Ñmdc+Åʰ“ +°u‰%±$Ì˨fò˜K¬š$šJ}ÉÌ8€™©´eü2L1Ñ&Tñˆ?ÞçÀ´n\’Ž ]b'ßSí‚àJ Q=êq¢ÖÐ^­xÓ~xt&t=VÙÓPÜ#>MTHZ Aõ¤lX{A5Ø}Ï0a¹m„ ¼ réå"O@EL{†Â0S µD(+ËûN²‚4€‘ú’µ_— ŠgR ”†0ôÞ ´ ½ÅZ¢¿8O…gkdCmn qIéÕ‚ ôò]R¾¬¬®©ðCÖ¥Ðy‡à&wìWrÁáwŽA_Öp˰´Ed®0¥t¥Y 0dAc¯ :qKcAᇰ<4;píò ÑòŒÂ ~«ð"ÿÍ2:[Ýê÷€ |b ±æ=À^hVšämRnõÛúrà4óyÓ¡9X˜#Æ%WUßÃmˆ…çž\~8‰Òá <á·?åÕ6Q”Š¢TVü ÚÁ!õÐÞÖ†.¢!÷P}àBmðâ/æžáFP¶ÿvd2Y}0!}I+9®TLEfÂ7¢ ŠD•Z!Ÿ->W8~˜N«ý—•~zâ àÑ ¶NÓÊo¯áJèmú‚šz dY@ j?å NÃ>¬­‹ÊKbâåřς>bL° Y¥ßCiSÜû;[03b¡5#~íâ:èè0B{7Ñ®1ɘi…)óÂx °òU œáoÀ“­Ð®ïS'¡k” hU@PåAàûŠöJ[Ðïö‚¯—Kº\¶ ;J!m>+iCg¦¬±¥eû~º‚ÎQåAÞJ‚;`³y\usÆ€qÑù“ª1m4A™ô¥F×(ãç_žCëX«ü%΄Á ÑÖ îÀå=qBØ0J†^|M¾ÆÚ£±š#õ|•Ôzݺt|þD,Ïs*¡³’fÒ{iÍ||m~þøJ4Æ ®ˆ–¿;=7Ä¥õ h+ËÇšÎt+/®¿;5‚X·¸¿¾þ~/Ítì´Ég@ñO®bôGͨ€B¨Q )¨ô¸ý·üg[2’â?£ŽsÔ1’øéYã%ÅD‡ÛÜovÍN†¯\Ã3þpøm~r+L›&›Gj#'H>Л^O§ÖÒYtîŸÉ™V£³³ðs).èsØ_!Wføä|ý=¸ ß’Ë—ç©è—äb¢¥.Žñ´þTµX\wʸ“ý¥±û>;ÙKrï #übþY“6ùäN£=q!ÐlQvªÌS\Öè–:¤P …Vc¥µ º Íw݈Dú|Ó„½;ñºðŒw]º^­f+Ô™Åí\ˆÊ9j“Ê¢N4@v·Ã?aÂ`·¿OÕ ÆKmHNõÚR¨ /6˜ê6öz`o¤ì6[¯£¿"]66û9éuØúìN›×ËÞ„añ¤yendstream endobj 209 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 420 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©üfü!ÃôC–¹»ûÇÊ©¬Ý<ÌÝ<,~ }/üžÇÿ=[€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°» U4±¸$µ(³8;(ÆÀÀÀÈÌÀØÅÀÄÈÈ2÷û¾ÿLu¾o:ËücåwCÑîu'üÖ;!ñ]óøì‰Ó'uÏ—\X1½®¥³«¹^î·ŠáÌ諾3XçǪ̂¬ª®«êèmèn—›ù[á·ÊÓúÉ=-Ý’uõ¥eÓÛfµÊ×òÿ­é_ÝZßÒ].Y:¯~ƤޞÉÓ徫> stream xœÍ\Ýsݶr×{ûÔUÓéð´:¼Ä7ØÞ›'qwb'×V§w&ɑŽrH;qþð>ww ÊRœt:~0 .°‹ýøíb©ŸŽ›š7øÏÿ~sÔ¿9úéˆÑÝcÿßùÍñ§gGzi$ܩۦeÇgWGîv̬®}l”©[¡ŽÏn޾«^mšºQ°¦­.7[üaaœ­¾OtÃØw·›­Þ´Õóläû ×ukÊ NñQ7­¾ÎžìoÚ×é<‡‹0‰®¾òï¨VZ[í.6ñQ–@YTÏûó G~´ÌIe3îÂRDõÕÿ¤Ãvn˜æZsóßgÿ²™ì„Pu+A|gG•Øœý#dsÜÖ-¼ƒ¶R4µíñFZ­qàwÕ·/6[Þ´0ÌV/ž<ºÙ*®ê†‰ê‹x-ë¶åÕWÉõ“/agMS½zú·ÍVr¸úöå7þêéËÿôWŸ}ÞÕçOŸ|(«êÙgßÄ_¯žmŸ-ð"uËc¬n•bn}l$,¯ÅK¢gyõüíånwyðD]I¨ñezeâ;W—7JÑ ÓÈ›Á\ÀJ¸gã=•ÜÆ0¨ÎwÝ0š¢úó‹'Ÿ¸É*9½Â*ÖK#_ýËw¬ðßÀŠ~+¢ÀŠù8V8±‚ëqýâ7¬_>`ýv¾~¾mx¼ww¸ί÷û] ¥Ã²ƒŠ²jpÂ6Ù„6l‚Œƒ“½ºì¿ßƒåNLè” O³b"rp¶Rv)~{ñ¡ œØ†F®è’Š#“ËçûñW·8l$O¸Ho°ü÷W%FœXQk«ævþY\Ò·/ãª?{¯_<‹å˧ñúìóÈÙÙóxÿ—z·?«zï~Yä³Ü/[ä·ÂvŽÎ_¡“«^/£½·*s‘¸¨Û}\ùùþænןwãþvÈô¯p) kŽ<¾xyd’×*òH Ž?9¯ K~ê=„c+¥Ã*ÞÖ“ó«â _ †Ïo®n¼CS‹ÄžîgKÖÃÃÀR£8øÁ®OÁ1HYÀÖ·€y;¼D&Mu±†Ù‡Œì¡¿KŽýþÖ“p½¿òתêv»0‹œ­k÷6Ý7ÙÂj²h)få@ýpé¨5RW?_@®¢›)/X‡²åBå2¾¼|U‡n ¸×=¦¯b‰° ]gXD­`>· éNWï(‘h“ßv“k 3—v0ÖÚ ä(ÈÉMíåäTiؔȀ2Ê+̂ ê²I_^WÝ]Bö´Öª¤ku+é]ºKs‰J‰†$h÷ñº•¬Juä¶N¹œâ dð.$9‚Ãí›KÕ*!PÉ蕦z½9-²Ç„…ë4!xyî˜*ÞB‹ãO\ÁVš†|HÆzb#Å@ó×Ì/‘pIi¦`q‘©åu“r¿záëò×U+í@Sø!•î¯6ÓRT¡E-•ñŠj­›ú"Ùü·Éõ¡Oµí Xƒ…E1¬arhÂø †Ÿ¾=¦Iþ!פ_oÀÆu£Ñƒÿׯò:!d`‚îG²küm˜Ôin…n^9—ÜlŒFÉѰl2e¸n¥ª~N‰øŸƒã»Æ!¯ ó ‡0U¿¢ùüBsåöÑ ÷lÞ;Úu&M~{·÷&)ËŸ\ø5K^ýC*mú4ýáýM¦äû›ÁYê€ 1J4Þ‰2V}“9 qÿ½wZåáà]{ë’)"z\4[¾4,ØÄMûºš¢Z}qõOà¨VbDknød&h”n¡¤®îºnb1"¨j»Ã_q±  ^h±Í8ÆÌDœÊ®_ݹ›þ< TC2Oôu.ªšyÚö‘ÌùL®@¶~Ãp§ÀärŸEFÎô,bfädäLn¿ýàÂÉ6Þé,ú0&¯šå*YÄ›@Hå÷û±ð>N“=½Z“éyùÏ4"DF{B ÈŒÐþPÔBÎ jµ×Âñçþvû›’Úd´1‚à¦It%„R³Hì—‡žÑÁ.È;Á¢IQ,| ¼ ã}ï€AgäçXLâF£‹,€¯nÃÿô´¢÷Nst2×¼fL΀ÌyŠXöiLÈž¤ûsȾãFŽÜpÉtf#Þ¹:¯ÕUáEX{5ø&§JÏõÒ߃ÃuÞ³áIÐP°_Sj¹÷ÚûQàrÁfÕéôG¿ëýJ /øzëaiÜ€ŸRAôù³!°ŽiÍ©g» –ùsbÝxS@²0æˆæ›|Ö/gDª;!é< ½ÍÕ›†HŒñݹ ÐCF?AéLíï6Ê¥PÀM=ä™\ðÉÔhÆ)7¬†ýaán Æ¡“%+Âë6Á%åáº1á±Ó˜&Ζò „ V¥µëwèoA Ò |qv†A^©@&ûw  .^(·xl>Fû]Ð×m:¤o„=œxŸ8ß]·‚f {c:Yo—J ½öBuDÞøñðÂa óVû›ÈìÉËý8æî.Šs’r»Œ»Y2…úðèÌI`‰Ô œyfãƒ{„ÛüsŸMÛßú·¤Yª ¾bDõ¦÷s/SF÷®.`vÖðê=…'´gó`ÁÐàÚ™ÃR›Û %g¤|OŸË¡¢%Ó¡°0®'†péN'RÉ]KntÖ°‰Ž Ÿ´ Ë£@ö²‰S­%RTw’a.rl4¨F.ç]7†幟qɨª•>ø)G ÕV ¬˜ó…šH<%¸¸ SH~ëЄëŠÒ]ÁYCø©`8ñ8•&ƒˆ4×dP(#)}áò%0C@ÏÞ8èw®6ÈÒÓ³£¿¹“]u|X?ÑÅ]É¢áæX*Ðé¾Èê1œˆ`k¶³pÁ¦ª^†üA«ù!î8¤Ë|ìúÄ¥Óåaò òql ekÛˆŒ.ûK(?š¤mjÍY.IW^Ð ¥\Yœ ìÒ Þ3øcz´DoNÙLÀ?¾¶™&MKSÞÛ̬q jN«Îóˆ°™ÌýqînX6ƒ%. h¿7НWËò¨{ï-fƘøß°ŒÖ‚Åì׾̀Þwn´"«ŽÚZªPûÇb’©jш©ó ©sŠ(óüÜ[[wH Œ ·)žH4æÉÛ,jF¦VFÙàëžWÉ€1yUÈ—§Ù²ÂÕ¥¿?óMI| /2ÚNÞÊÊœ§<™J(΃7Ýס‚èn‡ "Ÿ©ã ˆC£TçBɉv5ã¹Èîç0Ø—7¶‚­µÍ“™.…”®u9á7ìâ`vV¬ºÙ;¹œÎ2Œ8"P‘*SåÁ$l8q°4/Oà\r& GÔÜû´ÿÙ¦¨ôƒ§¾WéÁ}ÊpÔð]õ2,vY”*uàdJï$G:O’h¤ò¶Ö’‚Ê¿\Uy)R•§æ6C‘WC6¿t%Áè5x– Ø>)‘VKôêûzI?Ò×òZ¿ñ%íÎù<Ñbiœ|›hЃ-·˜¼Î=/%9¾IêРדîîÃJÁÿ»-à‘¸–VÍýÞ8 ’ Ù{ºL¾ù ‹/ëÕÔJ¾ÆÉçX °0ǹ3Û;gæÏÚ%–º†a!¯ŒHéà®85ѬdáMTj­d Òè]EÞò˜B•aæEtÙH‚qÎÍIrK§*é,e–´"`@dk‡0àòÔ깟w[LÌáW9Q€Á­ ,i‘¶d FÔ,Ú'ÁåÆu¥,yÂc5*È®å•Ø¢—hÓ¯i aV÷¾7qh±» TïªË»þ3þÂêaQôc#†ñždäåð·¹Û\C‘'Nõj¥ü€º±bJh²¿zVt{HÙv*?Ö8 J5O()f1—/L×ÊSõ0 1fV `åsœéÇëÕ²i‘<iúºŠ –ÕíÅq`ËêÔvC}Ï^+SsÃòœÔÒsч¿ö¢A(¾öQPpsyÿè’œ­P¬6RÍœúzmuè‡1s%…«{@[莺tÐ…¿fŸðÎÎ9}m¶ñn¦Ú‘m~šµË~få‹n\8l&]¡m¡^¤Åo‡@LP’?S·›PÿP³ž V«Éö~ñ¥ } »dçÊjf[€L[VkgU8°÷mVq¨!£³€·’.õ„‘¹!×òàéÀ¡L Õ$À ò!˜©!(ñÉÍRÈfûŸ&"Ê Ï]Øe:=úøj€TX[†\VC6…íJ7¾eù7æÄf±÷9!ç‡Óž8ÑMˆñÜ+I$µ?l½±Yê¬NK9w1qݺܴ¦ÎpWÄK˜¸+;q^3Åâı|b§¤ò&à©ÖqÖ®ö§÷ÅCÄG ½(²®”†´k¿Cæ[Ë Bb1H¨×‚&D8³âйñãM¡ì^Xß¡`ÞI¯–¬×ÜvÛ< BKWƒ ŠïµýjZxÎNòRÜCÇD5BœbÔ¯!e¨ˆþ›btÖ£Ïä™à7¸¬%à3ŸN}[Ûâ ¾yÌTÞÆÇ1nå‡â§¥î¹½iciü%6Õ5§ñöø¬>ŸZ¯[•;ŸœÆ¾·ñe:RÇ‘ F¾<9Z0“ôëÔ¿}©4ÝïŽB ²M§8]PïïôÄåjÿ= @³É¯âdɼ;ˆš ÅýÛáòšºÃ]p›Nvõöö½ãëê-&”a9o㈿ü%v6§¥žtXˆ¶4¢ºÝÉ|®«Ò>n¾OâeØ]ß÷ŸïáüœÅ†øäaXBXŸ‚xõÙ×u7~þà–çÇ&ÑT"'±‘œùFò“HçŸ#/H2ÎI0?w²«A˜çIûû¶þØÒÿ1ë_ÑË//ï&EwÆž0‚Šþêéßœš;º'O¾|z’0ròÙ× óÀJ±µT×ôµk­¥ÂJ*+å-„>ð`|L{½²Ì´àØ­ 3\ëèQÔeâñ5ê—‚,`$u©…š’ßò¿FI祠ESéav²æƒ¾,Ï„.<{þd›ÄÆ u§ÆÐº¥\gv:ßùÆW$¥”?†F\¶<Á ¤ÒÛyKKIJa»°\QêMÃþ¬'að‡ gQÕ÷ˀЯ4˜ù …©¦FÎ2BD®…\¦-B/æÖbù¶Ê+ÿÝ0O—sÐEt­Ÿƒ*.U^ð™{Ń"íúÞVS–ÔºT_v#Ö+é,»Ô$«|úºÔµ,~íJ…ï_aÌ$U¾Â~Ve\œ5áôš-ÛCÖ*»YužpÄv—Í ¹8™ûZIè]1?Au C‡³§„Vè¼q¾x”ŠQ…”|\øFÑiËN2!-Ìf¡-UéUÂ%ÓÕB8OÊU Y0”„iŒuµëo ò(b™þÆüÁˇ'Em­˜Ò7^ ¥À5 }»¾µE5ÉYóV²Ì§RºÎ¦áíä_B%=#‚ÕQê­S!=× X ƒxxÌk£ãÓŽPâ¿)•ï)±nz9¸( Ê`oe~ñCyZ®¥•ù´Å³P-!¦ïg†¬qŒ*À¨|œuÑ]È8~c]8‡–[iݧ_å/9`Jí+ûᇕl*ÔNU¶R¡VÕ"îÙpX<¯ísg@´­´ÿþUi l‰F´ÇéЇìüê)P;õë”wÉL§Únø& ªœ'p³§É”¿ˆ©AåB'+e–ΡðŒ„PÆÓ"ï1vàn8 ÚÔ‚Œ¿Ñ^À_ ¸å5ƶÇÛtdqÏÐÏ؉tî?|ÏXäªV®Ÿ8Ç‹yìÃoZ„ïm÷õ<â²óf#oð›’kWjU£þA¤BþàjDŠJXËò’¢Ô/)Ïvo¦OVò¨CX¾ÿ('™g:¥Ï†2(Aߓе•ËË®8$ƒùhxç¾|âʰ‡´ÂÎéüc;&@žlÞ@Bõ,죑­Gáø'š¶Týó§ýYìOñ«þ!1a—8šÄξ¼úôZ]úé³µ0öÁJ¤çx^‰Œ„O-tì岫l‹{25w¸œØŠYïiH ]è€Ì(ý;býM¿ëA¢k9¿ÃávÃ^€q3^ ¥òV÷pZê¥Ý.[ÝÃ.¸Vw6×êÒ®µéú~—^wPX¸§2ºÙ뮘„Tq¶ÔÍ©V‚žåf_b‘”lüó€;|o$9ü»Ô]ö3+9¹?à€o)½„ÙH[³yFH>Lh,> stream xœÅËrä¶ñ®{*æ*µÃoÀ©¤Êvllj“”wuHjíì4ÒÒËÑÈÃÑÊÊ×§» Žöá”kKq€F£ß/þ´jj¶jð_øÿrwÖ¬nÎ~:côvþ»Ü­>¿8ûÃs!áMíÇV×g~ [Y¶2ÊÔN¨ÕÅç?ÂZ“­5²ÒZXquö²úÇþ|ÍmÝ0e««ó¦n”0¬qÕö|Xfµ­ºö6ùéæ|-„¨›éª»dM»k×^¦ö˜­àzvZT|äµ³ªú$ôsê*,RÎ^s¸¸fÕ>Eã>yî6ÇvP¼zh¯#[½Io¸?'’4°(nuÚþ¸I7ø+i®57ùuûó.þ6cØ:ra-Tmµö¼|p£´ÜÑD£hu{WkD~›GQ»êÕpõp°pxuû™®ö×ø¬à6`ÖÜ'çÙö[‚/¬ŽÝ#n—L®—xQ®XÛ· ¡ÆKI^eRÐmú~·9nÓ}}}¾–oÀ«îÃÖìØÃ~îæT¤ß€! tÉŽÚ°ÊYÔÈY„HIQíÓ{fœ÷?ø7‘0bYwRñM¶$ãß}¸‡%~ û½ôÈLz$gµvÌ«põàµ\êàn¯äµeÀùÕ '-lô+U“¬ÔµÑ:XƒŠùYE&pX³f¬vL/¬Aþ%7À’«QJ¾L<…pãŒyG„ s/alkîtãV ¬—™ä›Ì†òZ+árs¸®æÖYMg¦®›ãy *µÒ2Þü²H`¦@ƃܢ  ÂƒõÙt :` Q,­qÕãð£­þ›JY&r‡=®Rd=SeÙÆÝ—S0W¥JÓv©2¨h ¹†=Á à`ygJ‡HVõ%‹T0W.Vš¹Ið?å¨6 úX¦¹«µ‘æE)Ò<Ðd¢DtV¢y0úsšGsCrv¤ÄvÍ@"ÐòÓÁ‘ ¢Je)r!æ‰]^ <ÝuxÒÍ\‡k€sH­Ï¡?ú žÿ P¤5X[…›`áW眢 ƒ'¸Ì¹çr±îÃ-´Ìdiï­©ã`M;„L¶¯ ܉÷¼ñ—gÈBnô{{r䈧2ÕÛsâB6P?ßn^!4žøÔ3¼£àS7íIÆXþþ§Ôçnº¸J<% aÕ~¢·ƒ`åª:x¦G°ê!£i—…‚EâäøêâÛ³‹ß¿â °Éñ#!ž:´žxÁ+"‡æ@`ºÖþíçàåeƒ<²3i’ â¢PNŽøéÂæp“Æ» Ïðº rÑ.2 ê`¢]|³ÝÞÕ—û®/©ªbpC颮‚HÔ3Á™§©PŽÊ,¶Tûm¸ƒ„›îÃN Xf–ºÇ°|ûY`cλ-Ê茔Hv\ì¤ñÑÓñBlœ¥ðé ² Šök f㟠G}™pNÕ‚T½øòßEëfjfyXó,¸Û Œ©%d Ñïöõ—ïbôÄÞŠ©b "jÀßkº4|Æ ’2f¡tEo÷Å·E¬X-G Ç“› \A€åEÑVJC¨z M7`ë F,#E- á°×››m×í/_×W×¥cµ­ 7aqMÄ` ¹Zc”¥q™Ççbj‰1»VÏ-±$]×ùúÑ*?Ä{‘M!ñ²zê)y\" €Î…lmÑ–æ†hˆ¾cnu:Z2 „˜Q~¶wíÕæ¸)‘ ˆ<íeµF[÷|·ì!æ‡hÔ‡kU}.R$Q΄t£™çE!®6Iùi £W-¢¦x—3 G­Ö\ÖF5ÁU?ÿ38Hxƒ†çõvsõý(1Ïð (Ð;ÓË«?êûóQǃ€JÃTDÓ:âêÏ¿ý×{&Òñt€¬Q ‰6â*ЏŠ_W9n¼;lûË×û`Ë=u]¤®,b,ŒµJQd ]1¬²tœ,¢à³Šß^=!ªˆ²ú…ˆœ£ÌOÙž–ãL ÔÂ×ûû~ûzßE«¾ãÂãô-e>˜Š¢L‘ ŠAÂBðá2\E ” žÒ¦I£¬òÚ%Þ{¡ ÉÞ(pï €-°ÿ=1˜z<î ¬°&œÆCL^L]y͇:Éi¯ îqˆúã!ÍS²Üîx?I¬‡¸rµ¬”÷z1.h}ØÃL¡ôÆJÆòü>=2T/5D(³*rØœå–!RÇœéržcÅt-¯.ôDƒYˆÚ] ¸Ë«Ð…lE2]å!øU€+1šEØÇH > õ³ÄlÊZ0sGÞ¾¸?¼-1É8‹Œ-VDè¢Ó!ånFÇf„à.-QùÔHbF³ÉÂBðåÅÙwgM­¨•pXî<ðbçp®+É!Þ3Û –Y}ùm‹©9Za‰™ôxæ{·9˜5™Ó: ÇÇH ŽêQ¤œ@ f?‰wýÉf•£ —¬æ’§È‚&춇í À’€cÑ€OH@s/û/’‹Þ1÷rM®ýdn@ü/›ra‹¹ èÖ_,ŸSÁ“-n¢›H ¹0Äøs"û`þà%À‚#Í¢9$‹wå`Ý—-°–"ÍÀ"È÷±`GÏVbÙ>Ñòö~¿v?!ñ—úLTœ2Aúï=ŸÓDÎiu.© ìSùê³Dm±§B­4fšJhÐò"ûã_&¢#!ÈS°@-,¸‚‡ Àƒï«re*>W(YKUñ°ì¥â€®V Ó(â”ôKõâ'(à ¬Ÿu(zPá ¹8T1jŸÑ­…Oñp9­_.'ÅÂIë„êrŒS€×z#A¦Ž‹™orBªCe­ÏúˆŽœ×ä A_|óUdANÎ"fÅ¿)ô9t-´àÖ÷9 c¾ÏÚÌ_ÔÂ6V¯Ò…Ày¿2о¸Xš8–á–@:ºÔç1*/î/IGYõeRçù)óØXuŽìgÏ`Ù°¥­N™Í/uÍ´\ ÐL ¶Í&ûƒÉ’¹ÞK$„¿5¹~SËíY#bA±±YÜ·k7³h„,Ä®‰ófuP~ÃÁXôÏb-rRõÍ­ÂÖƒÇêþL>ñ3ñlÇð>6‚7?¨“›EvñžÖåÀ®’öGû6›È«é}Q‰„Àþ],Ë}SgUkÅX”øÿ«VX°…vÉ÷‡Pe€ä±V¿'&7Šú_“®M›`’sé| ÂÉ&ÌELšã~s˜F7ÊÅ åâ0"PhnæZò&âE[°K ¬±nÒ]²K¼isõ†ádÃÅI˜Òá1.÷³æ`®‹¯0F¯LY¨ @ÄS²JbŒÄae¾(K¢Jí)¯!'2–ØÞçï3*à¡F©Róî‚¿‚­Ò˜+Goó&ì†4vÉðÄŠÐSl$Yųt4fyöæ“Þ<€j“)’¼’ì 2`°óHsªú¬;îsr¬h‘·²w7/~ÊS”Tmy ”†*n±÷¤jÅ â—ïC;×LBVeÈÉðjIY«ªÃ£ÿ dîDÌÓÃRäöÑñŸAN…Qá[dÈìÎX,cÑøóSÁáËj8Ü%‡«ŠYgÔšˆÕwð`¾Ùm¨°4±K•ïÓ J—ÊífLY«¨Å«hü 톄KÛš‰Yíé­@š ÜôúІö€t6?² á¡HÑë1þ)ƒWÅî6¦à×KŽÐ«÷¦Üã rè8ÁîòƒRCweÉÓf…$$ ΧSÅ1)NîÝǤˆ¤C D”Ë3±¼‡žØ‡ÚË ƒÃ7¹…™Vפábõ÷Äw)8ð·ÏÜ©JCîF‘9¶© m»»‡LGßý…¼í1À÷FÀ=þâ§'“*ðžQbÖÆõ û߬ÈAç{}+ëùzjy,µdxú°îNM3O•‰©Ù¤yó¬J˜UFü²˜'[¸–ÍÚÝg†ÿk—JF¹Ç-œ©­‰)jìm•Ê iˆÍŠ}îyÃ:´Æ Я¹lý¤ž4 ¯rUe5ðx¾|€„ LÅ=ô_‚—òŸ¨arœ8ˆ…†aâ ”@§&“,I±“Zé›ÌKn´t¾\iì)ú‹Ú€Ê«•ÈõÑÆí¨1‹ÊF…ç±KŸ º‡Ø;š³ðIpò—íu% ð‚þaùˆçGT›œG9¾Š€á—¦Pƒå¢cc'~/6¢§399¹vókï… ‰ZaX ¯ùÏǤ5M9ûkô¢¢00`(©<÷"ߘ‡’"¶'+Y£9_K%Hê§BI7Öeáíì4’šÊ_ž¸RÀɦ‚2ΉµÃœXn4ó‹‘ Óvž±·>nsBq QüC³äx?ç0. =Àè }«©MMÖuR­)¥ôK’Âi–Ÿm¨ë“[§ÝÞk¢#â2—ÅŒòʃÏÖ•‚tÐ .‚t‡ÕÁ§j"5b°¨“@ØÀ†"Â9ÞHN¼áˆ?4jxÆq‹Ý¾¿0ž‡:”Y”ÊÃÐ'òJ‡4˜Ë6§:FÌÑÄZìžp[Œ[7ñ[ï6)‹Àwp\Ô\ÒBO [^ï²iÀ¬Zgxd0¬‚Ô•= ïÑÜwÝ8è³/%}᫆¸ø“Î5>JôƒXƒB|–µ¿pv†2a&3;¾!ð½ðW~> stream xœ­U{PwßYW¥VÉå¼ îFïð<­œ­çœ^ë´UPQP¢ E÷#!$$!/^!_BÂ3 ˆ< PT¨ (å4­ŽÄ·íuÆ©:­swÞ\gª¿þ¼™[ÀÚ¹þ×$³3¿Ì~?¯ïgY˜ŸÆb±–‡GDòooÙ&NÎÍJ¾·ž^Å¢WûÐk|’ÑßÐÿa_àïwyõµ+àñ7aørÌ—Å:šž¿[ ”‹²22Åüw¶lÙºy3sÝÁO‘ówó÷'§æ¤…9YüäüüýÁÁüƒ)s3‹¿AÏOIËLÎMç Òù‡Óâø±1¡Ñ1ü½Ñ‡b#cþüTÿ;b ˆ Å’äÔi‘™ÑY9¹‰EaÑX v‹ÅŽ`»°,Ûƒ½íð­Ø~,‹À8 _Ì9Й]…¤VxN€€Y>ƒ¡rã·Àg ƒö/ûë>âjÜÈ.´‚aÏAAQí)ÎräØü1÷РY§ÙFæá§¿¸sqýÅ3x`¸Ꙧh»ã˼„r¹Ÿ'?@‰”¸²€¡ëdèvàL%ªØéó@î|%ŠñO`8.Ç᪗Ðÿ%µ[ÎÝòn¹¿õìø—î„øéIHæïN¯bÀ”xWrþMoÛÉ…¾tÌ‚\É•*¹ŽÌJ©+drµ±™$-ò®{ÀÚÙO [§Éy±OJ@±ÑPc¨aômW´‹„bIîÇ`®¿ú|ÜJZàܵÛ{7ÉÙT42Y_3Ë9Ú“J-B|â­f°˜ç ԩe•¤òˆ0GMU½µ -½çYC×Èý4ðnÂéˆØ‘ª˜<ßû™xŒà(àЩ˜öÔͶgmGW-97\‚!ˆÓµ’„Dô¦&›â˜µŠJ•,0Þyáçà¯ÛÉYS²§t ·Í»çöJÎ÷ôð?¹®P®RƒÂr²<_-Q¢¬Êlk56ÙÆ©Æs5M ŒgôVŒÝ7‰‡&7’(|–}ÖÆœycáRÜÚóºéŠñ+0›ý¿Ñœ[ *9¡SPêD *âýË%]$çÙÝþÇjíË {‹Ü_fþ}ÿêTRòœ ÷ž@µ×ÉèùVÏé©ÒèÈâÈÔœ<¦f•uíu¶3õªïo×Z†õì¼ñãgbƒ¢Ñâìé:ë276›ÉÎûÃöv@´ZJ‹ËteÕzj;J©Të+€”wd8óòw“pIÉá'Ñ[¹Ý²f‰P"Ël—ÃÙÚ;»Qt9cí}ï勵¯ä8˜«’W’:¥,4Obb|}h7W;Áõ8×Q›¥ñúM“éÊ—ÑnÅÕÕz½º¬Tä3o·QÓÕ®‘¢þc‰ñ¢°òXœX&Ñ<€¿™Í1“ï„ÉŸf Õj9YKÁ?¹«—ƒÇ¡¨¬. Œͺô¼’–9à,˜Ç”@ákÈ¢JJGj‹¤¡Ç¡¯é7ƒÉFAœŽ_˜>ô«ùÑßàüWê hy¡·…ãß ÀÀrYIf†;-5ܳĻ”\âwXà¿ø/i6LL†¦z³¿ÿ§“ÙÈk ö:ÿ70ì¿°ž8endstream endobj 213 0 obj << /Filter /FlateDecode /Length 3374 >> stream xœí[[ÛÆ~×oèß+¦,ßBEM |ëío«E¾öž“dȈõpTL!²ºLÇG€Ò‡q• È^Üô•=¯ðçu¥É4]*Ïrœ'w ¡ÑzÚSÎò.©ÀˆÐ¸©X‚ˆhq`]`å,I ‰K¢6P?åàæVœÈì†ËhT/йúÊ£G·>t‰¦¢žÖMÕ&ð£Ä5jƒ„&Q,µhF2[ ¨¤Ô à×©Ô É-[ÿûÄåÿ"«ôîä^ÔáKç}#(sÃE”Óé—V‚)sµ’ù>1%½FQ afA]!¯¶mvxû%˜¢q£„tÒ€™Uk–±‡Q2põQí…i´sJ{QUVDJrÈùZ¤"PY-h\üxƒ;­—œ(Mí»!E]tp´0PÓàt“ÃâÕ2T% ’'æ k¢m­Ô±tM¶ïTä¸%P%³#3XÝÛ4³ C#5vPò'¦–LI$y­C£PØ`ʾh!ì2O*Áœ¯-{¸aLÌÁØÞqÌHg*ìg|˜$J$j¬G‹À]oÔãm¡¬Axû‘[ä·‚ûèJ:˜Æ†ÿt4ùÒE=>P™ïJ@ŠÅ€¬ãHtΟš[ÎâžÀ[)Éú1×R8v¹÷ýcJšö÷‰)Ê[%R‘5 Sr¨¤»)ÁÙ¬¤Ex÷œù>ݬ}`å‚'ɧ“±A¦¦´®Ðj8wbYg•e4Û µAHÊ´'ìñPÙ<ŠÁâºqbzú;ø.Lß…)m( jûJ¯2n|¦©Óu¦z3Õçø÷ÍŒW™ KÓK´»™¶h¦èϬg/'PÃô'6¡¤Â°c´C gF¨€mÄÕŸPÊzO8B g”æÞÑ”>’¾?3B­h¼Æõ¶ÄkˆOG¯‡úH³‘<—ôŽø«çó±ˆe{F"o³tR XËäø‡ÿÐøÑ¿ßìßnzrEI*oÏ `é=g´Ë›ÎŒQ݃æÕÉPèKé‰ÞÕžÉPÖ~£Ú3*‰: ²—èšô\“Ân³Ñ‘hv±IÙP¢·=Šü) ½BJºFz†Q<¦ÿ¡¢âª÷ÄËãB;gPHù‚²/ÂOØè ìÇêÕÝW´i`X…¦Ð¦vOQq%ÐO(JUüZûD0wj÷4êyÊæ¶ÒZ¤%‘‹Àc¯é8&ªã¶«O"öï4Q ÐùlÒw‚úMc·Žè)Kú0#èq!…îÝ AÏ ¼OVþt{¿_Þn×WÕ~õóW¸Pž-£)i—‚Ç€RSÅ5`yq5c‚Ô •‰€)íâ‹Óó'3æñ¿AÇÛbÀU ŠóÉêf¼b·¤- š¶+0ù|^k8í³x9¤=ÚÃ’lqX-Öí-²u»a#`»ív寳´½b¸oßÞÃÛ^·»(´`´é"KXB°N­Ù§‹›|ÏId䈧#Ò›ݦ;àJøs´cc¼Â}F(ƒ­Ó.4bmßÐêÑ‹xÇ.nó +Q,cYpD¬×Ε1\´Òz;–v¼}d{ètcÙªÝïã­+»m»§E;˶»^¹é*,BÞ„úbtò™‹§¯ØaÛm›q¤çÁ#“oâÞ KŽUv—v¼À¦_÷;i–cëîÚ}:b¼ðÎ.<×òªÕrâ½Ëèlº-72Ûïsx ~zxx7QOÏ^8[p’–…Lb:¥½øh^‰3A²[8!ïòö“ÕÎRèzöA= oV›—Ÿ½xÍþuÛEy äŠý¾ÅyÁ.EwO~ZNžÞl=¹?tÁ®‡E'†aø^Î×óv}y&>6]í Û­JZ"›¦N»ÈxÇÕ¡ó¨Ð{*©dƒØ+è?÷£»Åƒkhîõ‘]u~czYôÛèP^iöæù”åp=¢Ÿ²Ý~yhöËåÕk&Z­z3€.m |O’þô:³x¯LͧY²?/ÖëçHËG”{§¸Þîîî׽͓É#!)üyýÎ>öõ6¡YæJkÚ.¯¯W—«åæ°§µzj‡j[÷‹¤}‚ï«»Åa9¸ãËÃU30ûx·Ûî:†Šý<ðþa±¾_Wþ±{Í>úåç_ZIêiv#ei×Ïà%3¾Ÿ×Â8C?¹BÁ‘Ð@‘²u£.R“Ý¢»YÖÜtÁiÙÓ§O§¼‚ïimY(äˆ&;fáÌÀÍ#X؇,"]™Ñå2¨1]îŒè*´~ñb·RTÍÎðG’Û>¬ÇN€ÈºçŽc^BË—i¼Ö¥a ᄚ´ëÕ´ýñ5ÂóæëÅ~¹^m–0_oášæiµN<‰ º"ï4Z)jßÈÞ6}0Ü+—µ°ƒwtÜY]×ðEâüru³Y]7ƒ„—Û«%<Ô g¼ Y!Ã(f;§Š›\Ù“´6‹jÓHL2í6ØÈ6br2‚ÚNñ*H¹I‹ ]‹):J 9”fR˜ŒW‘4“ÂÈØ— 3Eƒ àß! µ·½,æWË20jNÈ"Ã[mõ‚n¸“eZ-Ô”r×í‹~2¸è“ɪ@pÙÑŒ‚ aU÷é•(]lÔ?'j†mîï¾^v™2˜ØMuUiµ¹^^R§×¹7òÃÌ2ÊÙ}¯÷÷Ͳޯ®–]9AË÷ÇÏþü|ÈÈBjd-SÔ¿F'K¥é°ÕŸï–›ÅúðÓZo–«›ÛÃ~º~~±½©×«oþ·ÛíUωÕV„>íýí-Ë[gâýlIåaÑ­¹ë¸DKqº¯ÑDG Œ¤&Öš£–s?B­ûˆcûñ½©íÔv œJíñCçÍKsÓÄK!*jADè—ŠFh™sÇžu—|›÷;÷ñÙ¬F»ÁTçØ&<çhô¡óH”:Úš¡m4O›÷â7GõpÇ®%†Öî°Ë¶³ïïVû}Ü,FŸêש]s½‰)jy4/ ã;zJ°ìƒ‚Ô¯§V?dŸÜg3OÚL_£k Bµ¦ñÇ$íÄa‚Þ–a”|Ð×Òë ç˜ØZ§Ù•šTEt‹¶ ³Ö¾½VÎ-z¦å†[´|8ºxIó“ù[<˾~gB äùdîéµi¾ä]K<Í2¹õî¶›§«ðN….±S†\Ë×§üàrL‘˜Y­Üü]£XkäÔ$&% N®ØyDZ25v¡½óå³a´mÛîÔÓ 8Ž"LNØ·‘h|_^1ÚÙ$©Y’1@‡ jSE{ £û¢ÿÛÐtƒ.Ÿ™Óðk´Šc>Aø•*ß´lþ ðýƒ§8‚†dÝŠ*â˜q“Gõä]Ž÷SBv Q*÷‘Ãþø‹ (NAÅÊqô¬bÀL|Ï”@ñ{&àºÖ!MŽÒUҞƟßÞì²%lbº±ði3=E&Ù¥ÐiE‰YÂoõ*"$bÊÇo«BòzÄDŸ:x}üÝ h”¢5§dˆTɺ¨"Ñ}@–?•VàÎÒ]æÀpJˆó=”r Wéq‰Œn&/o‹ýú¸Ü%6g±Ø?„QÓÓ‹þQú—³!༱endstream endobj 214 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ ©ê‚XèÂÐ µý@p”' aèïKtèp'Ùw'Ÿe×ßzv ä=¾(ul"-~H0ÒäXT5‡é˜ 㬃Ý]‡÷'l²ûüÐ3Ég]]ʪÚCè -A#E͉F©¶±¶ÄæO:£=œõµ-Pjãì?•Í%Λ€kŒÄ©4-MrÇô{&øS°A|.dS1endstream endobj 215 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 335 >> stream xœcd`ab`ddôñõÍÏË74Ð JM/ÍI, ªüfü!ÃôC–¹»ûûñŸL¬Ý<ÌÝ<,¾oúž$ø=žÿ{Œ #cxz~s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æ/,Í/I-ÎÌKÏIÕ+)6d```Tg`ìb`bdd ø¾†ïÇÂï˾ï*úžûØþ¬¸pÂ÷ã?nŠv.¬œWÒÍÑÆVÒUUÕYÂ!<¡ÛgŠWŸwOq{Ú¦nŽå½ëÈOeVè=ÐwhžÉ=S»'sð5Lûá<í»í´þil'¸.pËq±„äópvópoœ=±&ÌïŸÈónAoÿ¤žy=S®™ÊÃËÀü~×endstream endobj 216 0 obj << /Filter /FlateDecode /Length 4837 >> stream xœ½[[s#Çu~gþ‚R…òC<ˆ…qß/–•*Ý,Ëå8ÉŠUzàªRX$á‰îJyÈoÏwú6݃—Ë•S[[4ÎtŸ>·ïë ~š±žÏýK/ïÎØìæì§3ZgéÏåÝìËó³ß¿ -½gžÏίÏâ+|æøÌjÛ{©gçwg›Ÿÿ²¶‘µª—Ê9ÈŸ_]tÿ¾/„ë×®»š³žii9óÝj¾ Ž;ãºÍú¾úêf¾Röl,õ¦’YŸìën}YÜçÎ\‡A³7²[Ò£è½ÓÝ'UO?7]]%!m0öB`â†wÛZ‡êy³<¬·y-ºwëÃmîÀu¯ënçÁ$ BùÙXg½?,ë┌0FØvºûùç9ûæüì¿È—–±NÒN©Þ̸à¶çø+½ìµ™íV³f÷gª×^Z={¿þÿÿŽHøï*Ý;?Óž¹^šÙZ¼ènuoÝlsÆô½õ3#½é­ -.<m}/<µxL!a¬ðÐë™§E¯8Zƒ- D¼æ½Ž-#f–á%O (ßk…Ïz¡B‹q½† —ªWÔ³\÷ʣŨ8¸&Œa¹ã½ É|/IzjZ´é¥"2È(&éutcz†Rƒ’Œ4_jñ–Ô°œóž5l ãZf9Y‰Z<ï9©,4y-Fºž LÔÊ4¬Ð3š:W½#› ‹a‚ÌÃr‹u½‡•-4´Ag‡‘^ƒå+È[ßs–ïcô‚wµôŠ|&µp3¸D÷ú}î';Ë:wgÂc¦ˆƒÔ@É ˆ»¨÷1Ç+™ÒPdàID¼¨Æ* ƒŒ$sT"ùó ÜèM5ÒÐ0ÈXX©») ƒL;ÑzæEæ±RÉa~ÛSI %7¾w° E¬ST,/:F2¢è¹£¢ý(ÛŠ ©©÷é`úØ2ö÷SRÁn‡–FJcš0z%•Z)§ØTj©¥²ƒT­×YEÂ9¤åÒ‹pfahØŒ ‹4’€¥[¨ªéØ&¨JÅw-Íè‹Æ’'Kd•H!‹hNôl¥¤”–Œ”®žƒÌæìöŒrëCãD 2 «)kU”î’Ç™ñقĸByÑT…aîc,Ýow+!ÍÝr³þŸ9§O–w««Ùf{³Ø¬_Ï…œÝj³¾Ýn¯†pz:V\ u„K¨ øC}ú:]MA z!¬Wbö¢Â¼²Áccé¯0ÕS¶˜¢CþUsÉSð×·˜Â2ÊT˜"Hq>UÚRBH7Âí?RŒm!%þRŒCJìg€”#H‘r )¶à¡“F Å‘³(s/(AàÙèwø×𠩉g^{Ù(¸@»ÚËZ¹ˆŸÅËFû^5ÌÁ¢ÅðÚÍ¥À7{¨$/g2xY«HRŠ›Á¯zî[7{²]ãf¹Dífó~?G™ÁϹŸâç2Vñsѧø¹èœü\Í«ø9O=»¹X§¸¹X°¸¹X¹¸¹x¢¸9y+º9yDÓæ ©. Q1AKD¢wŒÇ)$²7i˜HèE1á¥!ö9]9¦êDé ^÷FŸ†¹&¨Zu“žƒãå†&H Êó›Ýöz½YQvT—ç=ëVûÃúnyX]Í{vþ¯Ýsøß;aºå¦ª¼§­bUß– «xÏ8 klFÌe±Ä›sK¦ƒRõÜ—"0š!6!5ÌAi áXi¤AüSZkâí>´ þ)­ƒè6´ þCõv2f´¤ UoGK¥Ð‚øyL "áÒšÒÀ…Ä\HJB´_cZkJjÁ*¤ToŠÅ„)iÍDh!.^TqÁÚ´V„N9­i(%P[cõf1±”0°*´h«7xU¥¨ˆ¸ò‰ ÈæÕ& Ú(”€P¼ ’ ¨4 #ïd x’Ú€²Ÿ2Ò_ie#~är@jTp]gŒéháS-Žd††Bœ¥ƒŠ®A¦4EK¼š€ ƒŒD:‰Šì ƒL«b­ó³‰<­:sÌäŸ/(zᣠëxú(ã·ÖùðQµÂz¨9AAw=ÅÞ]i©~J 1k‡–FJy₵Tji¤œ ‰ZI¥–Zj öYê¹Ä^"xEÀ Ô-±GZävCìC››"ö•ô@ìß[êrIdÈÈDìÃs"óÊ¢ŽÕÏE쉨1± ±—@4ñ öO«ùGì36 ľ`Ǩ¢ÁbM¡Jl uUcƒñ)ôl€y| BER<`K<~ÀkRÇPÿ¥k±!ƒ X$TB£îhqð(0e Ì›ÀÁX  {<"× ´w¤dó @ZÁÒŽ“©‘©Fèo ¤Š¡2OçSÿÔ‡•µqË«øØ(ÓËÚÅs ³/..Õ¥¸Øƒ¨»ÆÅÀÖÂ?p2àmq1'R×¢¿ ¡ýÃ&bƒþÑΣ”\œû\œÆªà?ª389k\99ͪrrœøàãl›ÁÇÙ~ƒ“‰g/ .Žžzœ~G¢™ QîØ25V`¡¢(ò2ÍØRˆÆ‡"hª`2–¼?­oêmôÝj¾†,&;ù‡ùB3š~÷·í.–ð÷í%Ó®[á5TauتÇK^º®IGPëÆ' ·Í>|ØÕ÷Œwù˜BÙØ§SŽîºÞ…:ûûªbWƒ ‡óŽîŸâ‘òŒø8 OÎSÕÃÓ>×e¤¥"(á ãÆ®x”hmˆ¬ÀJnèê¢kŽ ªc„)uim,ÿõÕ§ÔÕ>µºïnOÝÜ'ËÃkõ©Ìá·Ѕsá|ÈHø ßœê*M5ÊÛ¬ïáÝúþûï^LiŒ` Méë.…‰“ê‘#¬¤ºW)hb3¢vžãªŽòEˆ¥ª.8•†­ÍŠX ¸Á:ròª9Âú&t§œ@vüôP}(çP(Âu/»Ä@pÿ=ùãVôŠÊCAEøŸQ…{}øI"·THUÝßE÷rNZÃø\t‡m>¡3G^zÚv^Þ´>ØTžºœÓ“DÜæ#¶Ö}Ëò,C‘ ÒŽB¤…ž)( iªzœ¶eTiyŒûb¾°»'¯§‹’-Qð” ï‡Ù~½ÞÇ£DToÉáô(¾ûËÃÈÉÉQâçÃn™Ï6QØmwÀÄ8<üÙ@l§„eÙ 3ÔÄÝÞ ³×%xªf—Z›2ê‘ÙÚ¶qzovë{(ˆúŒ)‹îíåöí|¬¢]‘n¿¾{QNÚѡ֭´B;'û‡»»åŽlÀ}xý¯¨ç$Jß¿Ùl©_k}ùÅw_•o0àê~¿>üE4‹C¯‚áY„ºV³ áš´‹sy»º|ýbµ__=,7ÿ¹Û^®öûùoæMÌÉ Iµ!»â¡«]ê…Þ¯#,Û_zÚ£s•ýsË{¢kQ©’0c£íÏ玎¼•é–¯ba Ÿ”„QdšwÐj‰k Ⱦá£ávG'ëá}«2æÄŠsŒ9¢Q“ؓȘs¿½_ܬîWÔÝDñ5Äm™ÏÅ÷úè´=‚ÀñéxR?¿á»=©ì)¯N€yt(A|?D +ϳ’}´ ÿó“à¶ËÖG†/ã"ºko¤žx·OwR¿é¨¹ °þd>ýÍÔô8LjX]Äé]nW×Ss´N`9¼a©ÈšžÉà¿VFäÒ©¿ûkÊù)s‹ [µ «T¼b$e&tS«÷Ÿ&4î׾τ0â‡R'1c×ÞžÈ6önÊÆ%¤ÞÎ3¬ä®?Í®«8]6WDyÅi„1+²Aš3M$ï¶w¹SÕ\‘YFTx|² Ñ:݇çäôýayØOÆU™`žõ€õóæ—|ïFvÛÚ‡Ýúæ–#†Õúă ã™Ù‚ÈcÅzÿÛ–xS0Û†Éò@í`ª~ôE–×€º?ÄOÞË® šëö!€šhŠ4* UßÅË}\Oˉjcn¿Ü­É>AQ¦ZÑ&^öc†E¿ ”*ÄnÄQÄG;ð1Þ\)d¡³á Ux]Šëö.%Œ6ºÛO>¥û`+¬£»CÖÏLçm±Oô²œbô©Ó&soÈœ9ò†ä 50 ‹…qZOâ›Ñì·©™[ü(Dåø¹‘RpÊTCag2 e®«çµÞÔ¶ß<_–‰íÓóT=#ÝU·}Eïz‰äç£pÙ½-+£ÕujÄÝj :Évñ¶ŽÓÈÂÛ$‚€k#&t7a>›«¨7ÊmcŽe¹Uf\–)ƒT2nN‡B™†>=™"Þû3†É;t‚±Qã[×.÷ÛôJÑÚÓt?Éò>^È£ÝmfFa±¼OäA·é¢‰±BÖ<Bôv¡®]æ”T¨yÛÝr“”á¼ûj;ÏÛ?/¾¯FœÙn¹œÞÖ1†©(:$ÌÊ@'˜«½3ºË«C{\~†ØÚï$ñpk5-Í‹z7i¾®£‰v%œ õdŒH’Nî1¡º˜<¹#¶#ИZ7ð¼·ÆgØž\¾L8ƒ0VúJ€F:RdŽHrÔëc'Ñ\aþ}C9 ðb::`Äè =ʺø¬#`Xáƒß¨k þ}‡ii)ãU_<;Ô»}Å=qó&ù\pÚåç£í˜ÚÍ“¬Zö¨ Éo×7÷+DëËî7´| [¿y9Ÿv‚ ºZCÐq.Ùz¼†>.Fܵe–GW¨é%`b{µÉéÛ’´»¬üLXä·HËOõª ÚgîIéÂDÓwkƒÈ˽NªA0ÕZØi{—mhO‡@]lÚÖˆÙœ 0ëÑ­ì4¼‰•ŽžÅñvePJ«§î0ÆÕ6XeXx]¤mA¨áÕÂEšÒ²[Sâ l:ßEa„ÝñE|VoÁ %®iS‘®åú8éepoäÀ‘u0Ö«RÚµÐ<'ú@¹WÇ庢Kaæ£^Þè‰S—pewÈkJJ’ÇX õßÝ…uK`$±J¡ ÙÎ"ôgÕ(J'÷sCÙJÛœœæ;±dåÁÆË}JõRQ+\L[½œèÅÚ1C&èŠ ù“ʇå—ý”fýü…RØcUu]µY¢¨R¸¥U-mˆïã Ó=+/³¦Ã^SÚ„j¬7›fqtØ»*$º|ñÝW‹Wõ±enW©#ðä’n0îcúAÞW¸'„šgÃ^Ú)¦Öî@!Ì”óòš€z+:åô×ÄÕµ²Qã­“tÖµžSÂÆ4½œÃ•–;êÐ…å×2Ò¤õN ãŸOYàçõ«aŠ©Í“OD’Û‘Ø Õ…´]ƒˆÑ"8ÖºQø&ª½ÛfØ2ŸÙé†X3´pD~ýCOXëîM”¼Éçˆò™l-©qtt˜†>^¢Ä³Nþ„Ÿÿ å/¼ƒ2óº^.U+¿Óü~òShD‘ÌÛ‚iOP¹fc´×\‹Lr^vI¦Ýäë…â‰áÃb“½¬Ròöê4-r=§Ò›iÑ:›%ø›j_í§Ú%Ëc¢üq´FqÛ[&ftwÆÅ»‰8íRBö\Ûª»¸gLÎû¢„l"-URðáÑÁUCIrèJ•j~±6¦ºm¤¨Þ©ìâ/'΄]¶Öó©H€y ·¢>î>Ÿ *N¿3iÄï&FT½õS Ñ‹x7(ûŒ3–#¬›nYéfí §"2ï iU΂¦C:tSÊ? ðg†=÷'ZVœ²¬pþ‰–Õâ=¦¥¹Õ¦½è.PÀÃï9M&#¼qž¶û0ÿ6NÄ ÈO³8s¿†ÅK):ip[\{ÊàÒÉÖäò”Éioãi&/ùsÊätúuÒä0÷gÉÆRT/¢²( ÞÞÍGU×5¦Sƒ.sñÿÇÌ@9 wMR±oIÀýðóÛÉŽç/ïÙŠ¿ª]–Ë–‡Ðe\,ßíÿljMu΋1éЈj ïsÉ/þ ¥•ê^ßoûôõ‹á«Ë—”ŸæM®Kù1:ñ®;¼!y3Ýá´ ]æ ·~7§ý F·¾äƒÔçùeôõpIÈø²ûš®VhºW jùõ ‘v¼cÃã¿ _ì/øŸN*#ž«L–†ÛòIë§*%’RÕ©þX?ù«é'~¬þǽ]Þ¬k—·Zþ»xW‡#›Á»26O;øo·ûÕí–vÐã –¾Îš]Vþ¯›ÅÐýïC ÑÒ6Ÿ–“^¾Z–Ù9²¶ãÃ|µz9Ì»dm€–n?ƒQ^Γ)Ó=æÿÀnÎÄendstream endobj 217 0 obj << /Type /XRef /Length 204 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 218 /ID [<1b7b2ace0b5ff35bad81886e455ad3b9><9db09f417799831192b48d6e8e0bdd95>] >> stream xœcb&F~0ù‰ $À8JŽ8ò?ƒHã ›ý!(%<ý:šFùŸAëÉZ [Lû’'@dP(ˆ4Ý"Ä$£¼%ˆÍ~ DJÙHáS ’ÑDrƒE˜Œ@$çS°Ê<Éz¬æ3˜ÍfóƒHf°]œ›@$_'ØÌ½`sÀ²É`•‡@¤`+Ø B`õÀ¶¬‘`Ó8*A$Û°z°^°˜æm\ fÿ¹_\ Ä*›óDòV€u½««ÖgyF"Ë endstream endobj startxref 152767 %%EOF surveillance/inst/doc/surveillance.pdf0000644000176200001440000042205614712411612017667 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4724 /Filter /FlateDecode /N 76 /First 631 >> stream xœåÙrÛ8ò}¿o›©©÷µ5•ªÄNâLì$ëvf*²LÙÜÈRF¢rÌ×o7RI)´cïlíM“ A Ñènô ˆ$ÆE¬PD§<1„3çˆ%œ+xB¸p‚x¸g„N¸÷PS!,$‘LBY©TÒDz#¡2QŠÁsèÂxøÞ傉6Œ¨ª=4&81 ê AŒp†€J)G(c ¾ÐÄ8hLb™ôDXb‡ïq ž8©¡SF4@$'ÎZC¤ ÎC#RϬ R/ 3©‰—ÖÙkhTZâ…ïñë{â=ÔW0ÆJcdBÁpÜã€Ñ1V0.¡gÀçFáP1œi÷\(èO4 €_. -KŸkÄž…o5´,½–þ¸ ^AËJâèˆ4@-cp-k àá¤hpkhಀH¸02-éuврƒ0#ÆÃCË–ÁhÙ*@—ÁIÒÖ!5pkÂáÆ¨8ßË–á Lθ¼åNBÑBË)ÄBËÎä€Mî¬0Qpã eÀ7wÞè¿ýò ¡Gy9:•#/9&ô媜³| ôʯFPP±ðæÛ§œÐ=¨?_BWåå|A~™ä“ cêœ1  "8œNÀ•3&¼‡g“Þã;|êåpªT¯Q¶"µÁã;-RøL¬ÛÁz½m퀩n3}gÃó0ÊE>*‹ùlTæäÞþ?Ðjr1LüÌøßûûO©ŒÿÞáèM~J¾å%¹<-ù^?Ï¿}™/ΗäŽæçßkîÕb~¾çÐÞÓW‡äéå|Y.Ç‹âSI|¦uÆ ÊëÕÙ¿òqYa\§QÛjä8ʳto×poe!bÊš„Ÿ01n`N¦ï,`âMQNóz~S‹VÅ3|Çž2=ç©•zIsamü&~çc'>Bíc+ÞV=ïÍge>ƒŽ¸NŒz”Ÿ£Gó¯Ð56«½ÎP,+žAoÊ|Pqòq¾œ¯c€~­ÄM¿˜_ç%´C_í?Aæ_KhàÁƒæx7q­¡‰b±,I„ŽàÞé¦Ð¨åJúp?_b©Îéûß@hÛÌÈ–™Ã¸g«éý;V‰£0Š4æMÊL”h+‰1IÒc7µÔf",&¶mâPŒëÁ¸½%ŒŒ×ðʈ’D¹2RŒÔ#ãXdK"j™È×÷ ÉÝÒ»Á–yøš>Ý{ÿëé¯?ϯF3Îî?šOÏ }<Ïϋ١'ÅìálY¬ºÛ»-p 0e 2™ó5=†: ùY^8)ÎËË€]î ªÃ™XvNl<÷Œo”wÔ ²p6½©ú뇡„·V‡g Vs¥Qűá¹a$ö‹wjÊXŽo#Ãýé /..«" §ã}H÷és:¢gtLÇóé|FÏiN :¥WtFçtA—´¤+ú™~¡ß~ |Z½HšŽ.–Hk]*J /=vö!¾|RLs‰JQœ|ôbt•oãg Tㇳ àhèé¨X.a‚Ã|€~ O^—ùÕ;Ȭ9cɦ§iÄ Do‡²ž½yöîäU£×ãüb5’X—MÔ²&)¤–6IÉI P‡‘È¡&)8T(M8]`ÛÍC€F&ë¤óë2ÔÃ+¶4ôÄú"hwñ°¨‚Úka´õB…J=ˆ? J ï$謔b¬k@õ`8„o°–L+#ä¡|ƒŠ4®3ŒˆF DÕW ÆHõ< Ë"ŠÈˆIïñ¹„ÅQÂ’ˆÈ¨ža×xÅS…uúÿñhà¦-pjò òàÝ™ð˜>¡Oé}FùpHè ú’¾¢Çô5}CßÒwô¤Æ¨lŽñüêjÄGh™æ³óÑò’Nèÿ þ>çt2¥X'轤 _æ37ÿ¢“Ì™Z‚x0_äËbIçPþD?áR3Í'e¼[„.@­.æçôúÇj^æñJ¬e~UD –ùghY|¥Ë)BSÒòr‘ç´ü2©¶ª;Aùö•~£Ò?óÅ|CÐéZЩ 9w_±ø–£é‡xÜug`CÔm:C¥æ[¤]WÀ<><€¾Žæ³y¯|ÛµxJÕ•tI7»Áâ©…n¥ÐõÉÿ¯{²úkÖ¸oþßý¾ÙN_6¬ÛḠôÕÙ]®ÕÆr R­Áž€5ŸS¾¨Y˜p‰¤¿ü¬x¶?æe`“t™b+þ±M‘EcV\Yt˜q( žŸMîb»šÙÚ¬&|­S´y-¾Õ »"†ZœV­ÔkNÛFýC fæ{jØ„®{üäýñ“g5‡Ûk²íQ06Td;Ї±æ+ˆÒQEau]?Ey%—Ø ß뤩jô2úpÕAÓ6Æõ·ßÔF}“¼Ÿ&M ´"ĦúeSU»4PTcLè E,¢M,Û'm(µ0ñ}j1]jùíäøùáouÇâšÔ¢z„´oQ :G‡Q‹°•%–s}²Æ³îaeÔ³¬Ššž…¯žáá¼Meìh K†ºY³V‹þ '¬£À~¨®Â㸰TA‰Wt=‡é  APF%Ì:^ñ‰æ6Ñ©ÝÒÛÿþØéè€|c‘‰Å ›u¿£z™y[[ˆÕò1 ÜYY‰mem½”µÈï÷kV}üëÀ”BÐZü›,®5ÿng£ÁÒÞU«^½?Ý?Ù¯úr}fcrF5øTtÚmO„l5‚¡ßžNÌÕ˜ÎX¬§³Ò®Fåeý[´Ú@2†…FZˆWmÄoEÆ@¼?íÇo_> N‚×£ÙòÚڬ뙀¶Ýî†N€Q]›ª­´ù ~:îúÛÌu0¯Á íÑotó[ñ1óÎ ¶#Žž?}ù²šcÓGðbÁ·­‡ÁoøÝ¼Æ`—àMí[‘1ív°œyýø`ÿ¸ÖIük¢­GwT‰´ˆÿÑ Äêk³„g¬³>¬ÞPt$™°†;¶^‰ ЀWMÿ©õ«¯ºGìOijâU¦ž±\õŽW‡^!ËëwðÃÀ±†3ö£¡gz×Jléïÿë@¬t5³©)˜¶¦ðtôE-a›¡™LÌ‹†ÚlËO• •üh'¶]3}ʃ١<x m±tâ‚5Koe´¡ºZªÃxúðôdï·Ód”^›¥u—¥ÛÊ>5w¸G¦íûØBƒj i£ÏwӾ߄k§Ÿd“0Í&a×d´#NÆJ]MlÊ&M銢¸äœµ<ßãBaºTåÚTµmªtXÛ“Ò×6_œç‹´’ñÈ zêÈj#«žeZƒQÅMf@[­«Ç˜Dð;¬ƒ.óUÒ2SÒ€ý`3Ç$Xp:“>´_“Øa1ûXA‘w—6ÃȶQC­\p¤fzõÔëhÙl3&ËX[ËÆ zâN‚Ž=pÛ‚61^ÓT§ë°Ë¦ÍwùÏ9æÏú˦¶“V…†¶³…J†jÐv@ G÷üðáÁéFSÀÎýíêl>íw ÙÊcX“&ëR¦êP&ë¡ÌùÛY­ætZ½ú#/­$‹]GHÀHuíÀoîú0¦ß_^%‘౟f=æYg£ñÇ<-B¤2¯c–)Œy´`†å4_.ãÝU1[-“A Pä‹«¦œ®fÅ|6(vŸ"÷èîm'Bô=R'ìvûçñÞáÉqê16ßOÛ•S¶¦mÞ!*Ó&îÞÐ}ƒ¸åâ6˜ßnº¡EÌ`2¬_*Ñ­FKÏiç*ż¢ÍC…CÜ!Q·V‹©u| ¦’j×u,¡¡0ÅHDŸwè’`p+^AmX$tlOâª@ –&9·0 …»z-»Ý'Ïèób9¥ïéhúé-gy9jE[0Cf:º:;Ñ«Êø«üb´ö|º,x’ø!´¾ÁÜmI`±Þ:PWº¾Ûñ÷‡({LäàhË«¾ ˺ÃÞKåßÉnôR¼°tß$˜~W‡cß«¡ô¦ßF‚r£$¦„ÉÄ%Í÷h#Z*PŸ¿Å2½©¢èÇ&íÆ|®Y ÆoƒB~÷¹JA?0)°ñ-v" »Icpào›êÑÕ6½}øøåî„Ñʹ¸V»ŠF`›Š†šƒ\§6õ„frg»„ÇZˆÕ.L˜\º‡ôâ³JTÇk•³™,µvêÖI½¢ãb1^]M¦ù×äTNÙJ µ}z•ÂÛŸž4ua#!°øÔáÁi~»U…Nˆh;ü°’°;£yïÍÉËw{»"Ó;5Ù¥Ô¶±f†ÊK×H<ÂxuunðQaíŽw×lH›X¬I£I aæq’û&•¯ÅM_¼5¼·°ècû­‰í ¶âwè¼òï nÙa#­ÍÌ+R)‘I6†Ù üëùÓ–”¿Ÿr[Sâ݆ƒÐÞÖÞ‘*Që†{G¼|vð6¹à_OG³ò6²`uW•*¾wÇ7®ŸUº½F_Û⺷…êMìöüÙ»:›}}7KV’ž$vL\iëœ<éæÊv¬ÎÁ ´çó)Zœyom²]»ùíhÇ®cŸ³ÕÕY¾X³A)¶AÊuòl»‰î­÷•åx¾È‡¤Ýz³©•êÃk´ßºy)¶³™g7Ó5%å}¾CVúmÂîìÛã'ïÞìÿ|O?çe1µ½•\w …ÊóÕèÃwªƒ …®Ï·è„3èma³NRµ«Í>}gŸÞ¶Ö¤sˆLjï݃ícNMóŠš³»ÖÝâ>­NVï·YׯZüðãÇ3˜n‡Ù¸ÉœD›€eŠã| ÐH°We&ù]ÇB,‡µÒu£FÒdøCF{XZ5àÃg-ÁŠáKëm%•Ê8èT5PÆeŒ™Û*Îô(ÝJh“¡7T(™õ`ÊÈ “ÂTrˆŠgLÆ€:{[ MÚê÷DV÷†([Ýão[¤{ƒDéÞ"%§{Ì®ê;ü VtÈíN ÉT]#puŽ:}ñþù¯‡  ʽ¡šx×f4çô`‰¤˜g’F÷Ö Ë…¶Èda¼¹³òP+2¬ãÒl„9Þab~c—ŒŠ»”IûàŠ0Uå >!¹ máóô•a<DnÁ¯LÀrßßëÖv¿= ùKq—Ûa#ßyc¹èÍÙ¹Noß2»61ÛÛ[Â:·’‰3³Úî¾^h·ÒØ`+s[îmï{ÓÔ c2 ‡¶ Ò¤§ªEºÉÁ½¿ ‘>$¥|¦ÂÏØ$¬Ì×$4Ì@í¬1:Ó0K éA®* —)†ÛŸ¢xÿ @’D<þPX˜Uë€tŒB´JâßÛnÄ­uø¡Ÿ†¨}ŒÄׄ¾=~V÷1Æ_g‰î]–å§å?(]®Ÿ—å¨Ì‹ì<§?«q;Rxs°€äF.àwÝg ˆ -†¢Ö„B¿˜Lrhöþv—Ç=³˜¬K'8 8§x_àï44¶¹’úçFêænÒ'fa7Ó¥o©Y3!PGZ‘:ÌKXóÈFsªHþJŒæÅ½Uµ­FÆZX€1€cµuLñ–Æ€!„àÔ&Á§¦'F``p+üe„ ƒñ—ð‹q¼$Ú‰wÉõÔ£a¾vÜö7úo’ßlendstream endobj 78 0 obj << /Subtype /XML /Type /Metadata /Length 1511 >> stream GPL Ghostscript 9.55.0 2024-11-05T13:46:02+01:00 2024-11-05T13:46:02+01:00 LaTeX with hyperref Getting started with outbreak detectionMichael Höhle and Andrea Riebler and Michaela PaulR package 'surveillance' endstream endobj 79 0 obj << /Type /ObjStm /Length 3152 /Filter /FlateDecode /N 76 /First 679 >> stream xœÍ[Ûr7}߯Àã¦RÁýº•r•eGk'’íЊmÊ5’fM‘*’òÚûõ{z.¼Ì ¥¡MY[,j0 Ðè>hœn@Q2É¢bÊ'53)²h˜K†EË‚ÃcÉ;=SJá60¥}`12e~OL9¯Y’L%YBS¯%Í´”x×0­œbÉ2­ÑxrL[ëÑ&ÓR`:x\#Ó í¥ÄŒTèDJfŒ£‚b&84/5³2RÁ0k´CÁ2ëœAÁ1´EÁ3›d•9ŠBdÎxªœêâuHé< Y)梡‚ƈ-Ð0qP°Ì{¼¡ ’](Ï)@A¸`$ý¡ £QH,D–5©R£A|£ô‹†ñ\i(ÔyRž…ѪÂbô†Ô í)ª >²†ž §t‚â =¹“ƒŽÄM¶Rè8% W¡C 0Åo4^G62… ¨Ž 4t‹:†F¡IɆFh<Ù’ãH.K ñ0©²4¶@º³4Ü$é7’JÒ¨-AÁ~Š4§ ÝÛb€°¹²‘FHrX½¨QG2 IG L9M£$9ÈŽFjzJ2jÒ£s4>­ÿöóÏL<Ïæ ös쀉?OÿEÒñe›¸â&·ã1ûÀÄ«ìó‚Ð\T|3œe“óÕÝ,ûÄBY>ÉãŒý|‘]\ªFJÀLÀ6x)=Ê>á;ª¾P²Ïð5å3Tƒ2ËßCq}ž<)}:™LsˆJ€ žåUWWS]muuÕÕW×P]cuMÅC{6,0œ9fYÙ¦8ÎÎóáÁô3ú£Þ\r¯usóÃrüeObͧ·³Q6g$é!Z+ÀUéf:z›‘ŽÅ›ç‡Ð©ñF…â—›ŒšºÌêAVÖ¨¥X7àÍ%&ú¦9ìVsD¹/{¨êYÀ÷¢|—Þ)ìñ=GÙtØÉVz¶]zÖûÒ³û=›¶žµOn¯¡g·]ϺCφIG¦Ôe¡sSݧR¤gÒïRç¶Ò·¯êÛ•­j[¸uœ=i§=o-O¸Ö£é€í€ª@pV G† ®¶„+P\³J観ólVW(nß–r»=ŠLÆ{øµ’ Õäï"“FçX‚šw†› ÙmpG¸F¸÷À¦ë Ä…Gë€ í`ÎÁIrÜ£Hñ+i-‘V’ÃíC$UÜ~Ø…Õ`Æ" °h°‚øCjƒ ¶jŸ2õ¡5œtàÔÔJlj.Zã¸"!ñšCï%ÕÓb¹}Ëă—Ë £E>”?ýýj±¸™ÿCˆùíìÓ|1\ðÙÇœŸgâ‡bùÝn{µ®>¹$J ?aá£jàƒ®âþ›ô×c½AèÂ=eÓ¦AqãˆkÃäŬ„-‰{[ÍmßõfP„*ƒ!^³P«ê2€bê2E`u™:­ËÐJªÊˆŒ\ùnm¤ùˆVö€ųáÍ‹,¿¼ªo¯†3¢FOÅx&Þ‹¡ÎÙ,Ÿgb$FÓëë¡8™¸ù'\@³Ä¥ÈÅG1×ùäv.&b*¦“L܈âãìbQ–fÔ‘˜‰¹˜çŸÅüf8ÊÄB,®f®ÿ™Š[ñEü7›M(ô_ùBð·ñðrjW¹ƒšÏæM(' =<ÌÇQÓ5úéÕðz¾{qòüÇÙøS¶ÈGߦãs&^.†ã|ôtr B#A2óù<Ÿ\¾ÏÏWŒ#Œ¶È®ß‘Ze0j’¤›å7‹él §á<+X¦xvpôþýZGLü2MÏÑ*ïóÉÓÉ<_ýp˜Ïæ R:|B«i ½‹Q «Jü®`Dò¨u±¨N”šd—[?åSÄÜ÷m¾Ik_W[å' À k÷^©ÎwÊϲ¹*¯$ÓE°FϨD!ôºL†îeÙ;ýöaGp¿¯Äkq"Þà„kBtQu×W5®W˜ÆT˜ž—Î>e“­HnáØÔ0VFQž¤‰eÂmB¹°¾(–v ŠÅŸ•¢€Þ‚ôé᯿ýúãÑññpqUö¥äOƒìòv P®ðMÙ„RÖ%¬áˆÚ°6 X#€k£zúÇ$G»峪°cw ß÷¡õÌ·Z×àSÞ.áó§8­€°fa¹ÍM¡ø_j¢aXß4ì=z¾ÓÊâk+ëÐ×W ~{ûüô¦×ÃIè0é].˦Ûº†m1ô~‹Xtým™ÃÛ s·Ksм\N½9·´‰‡ˆ­)G £-ZkX&´VmŠêi“ÐÛ$¯_žþ~¼]íBÖ¶aBk-‘=-dÛ¿ÚMÿj7ýëdÝ Jnx¾Ö*ŽçžøJÛóŦîVNO[¤xŸ$QZ9*Yò)R[;GUq­oÏQ©jÉß)GÕ/ Tü’Ìjë8%”½±\Æv¦"Fî°ò¸y‘ O”[Ñ‚Îu‡½…(»ˆeBäÄ)b ƒDwê:îÔ“øŠÝÊ[ùöŽ›(uXl°5½šÝ'oÞ¼ùõuà_>>sÄF[ӚînÇbªš‹)ýr×jšêlo×T‰é{çšÙ£Nó£ÚV¼N•ïý¦”²å}­9Ÿâné{rLÊËÙp|žÏoÆÃ/«äl±*/nÖ"’³õðOfÃs°ªñA~‰0á…¯uk·“ÕÍÆRC$ukœB•Á²âdÃÇ%Õôq÷C¤§ŸÓr›£kÁòhp28<©ú|ûåúl:žÇNLÖdt‰ÉŽ¥Fµ8@ß•&êvıï¸7¨¶ŒmPm’ ·I2²qvZ€×E>É_ÊXwT <í ‚öºÕH5c^Úÿ[ô%¤ó~Æÿýݫׯ_ÖÜÆïJ»|R“kPÐ ¾Ó7§;(¡Û¤„nÝZ£éx:éÈ%Üͱ°8Y4Õ0R+›°Ug=ÍuïtÂÑñ«×§uO]“rWŠ®RÃ:´=Ú“£ƒÔß»æX(Á¯ÿ¬Ú§ýµ²¤¹ç7{¶X²m1¢å»¾#œKöŽpî@ ýS¤O‘…ö«@~ÓÉËå¯Ó5ëÑB Lg꫟v¿Í¨}g7|ɽÖ?ÔÖšr‰Äu&Yî%åÔqOék¸û6røõBim8èàJ(8Žx¡úï­I°XÈ`¢Mu° ãÎDT7<¹ÇÙƒÔ´qeÒR&£,wpßE& þ®Û[:8A/me(’ÅDÉ­|à¬-2m9™ªÉFNdí»ˆ¤Ð©ôíy‡ÇZq¥¥´öЖ[“½ß·E$m4G¸¶ÉÁðÝ*˜3º”A{É%â3cà¥ØlÉ[éd]-¢ë wi@™_Ǥ”@VËÈ•BhµŒ])CAÇåê;]•«î¶Ä¾{Ý_ZåERõîÎH-Ï¡ì’Y²¨§¿œ¼{»‘8Ú•èRj³Å¥L+ú¦Ì~/.E ´S]Äö®\g.þ½#±¾+Á™Z©ç»Ô“–øÞ›d'ÿ¼<=þÚ˜ÃûK4ƒÎþ¬6º]íÏ*hqö®øÕÆõ­ oíŽÛ%Ooå¤ÝéUªB×Dj¥¹·š¥//Eèߟ—~½Ó±8€[Ý™òìí~3z+¯ÖÈî!ú©ë·3}«t±©Ž4š*mlËziã÷åíÿGÚXÍé8³ k.íæ&qv:-õ(€ŠÃ"ŹjZƒ=‹à¿tò9ð˜ïn9¸¥]q‚d)U¤s𻈴軦«ïôX÷¶ÇQÏÃÀÚt›áA'}û¸ru\Üú֜֕úö¡¦°·9ýõÇšt4ÜR(&!?h‹žÛƯ™G:j•(t]ÉdÂFx]dÚ ™–Ù÷ÄéÄ5¤ÔÑrMÿsáG\€¸¾üþzU.ª«ÿ…ÿ¿lß”Wo~}SÑÓ«ðß—íկ߼ûdá‰YhãÔÕõýîR]UU½hTsU—fQiwu½}ósQÍæU¥ì¢¬Š»™.ÞW¾è»ýl®+xªU±:~éÛýnö¿×ÿ ²+£-|é+”­` £ü×›ëù¹øé8›—‹Òئnªâ6ýcÓ~™Í•1ð@ëôÍýa½.mS,7ýÛéE銥ׯ÷]Û·¡yS5®)A¦«‹õr¦šE 3.¾Í”ƒu45Ê&Y¶.Ú]hk«bk[,û^ˆÜ>ö¡Hê÷¡!Ìf+š‰?¨‡ZøÆÀ,ïâ:AëN´[ö‡ñåþ>Žcir¨mWêâ^tù2ekï ( ÝôÎ)çTûQé…5M7`•*¬=¤š•9dÖÂíà®üI‹×µE‹(D{T ªZ˜^Òµ‚ú™ªA%ÚÏAd¥b{–3UŽøs:•ì´ß>ò"÷õDÄZüµKÚ‰ù·ßpj02>ÅL÷÷ ÍÞxºLµBÒ6j˹â~ßE}y6zSO¦¿ÙLÆ7´ 7 ËÖh ¸Åÿ¯}Õµ!ë–ýr1›[{XÕŇChVëbÉ?Ñuä¬ÏêR ÿë1i&÷âËÙNoaÌ]ÌD­¡CƒcÞ’O˜Z»â˜Ž¿2LÝ i/ü¶Ð£OV¶^Æ[S¬îÒ ØFÑ^AhX$JôÄuÒ*m”Ý/áß8JÙ‰×möi—­x¹l ¬šÂ®Ï8xîaÛŽý~{ê?wT±Ü<`è\'ZCÃ%Iΰá’(Pmu´~¢€>c¸ñ.u<5O¡~y›jtßm—›Lw`1Øü5k <óYè¦1g¹Ù<ÏŠ¢dJÊ`èWÒHEa϶`a˜i0õÃ[—U¿E]o…/´ý¾;„®Î£ÿ(H‰„ÅBÀ±&è£ki£¸‡Ímã_λVwšøH§üYš‰ÏÅ“ AP‡®u!Ò %¡¡ÃÃ,¦“ ,Îh MJ†ýý–w ÖÏ.«5è)J‹!‡-û[Ë‚¿!þÈ FNÛwž%L‚5@X0lß M[Ãj'ú1nÄùOôÜÃäNJ‚ê;Âî7v?HÌa³iwVk«(cþ”(³ÛoÛ4;‚(…ý˜eò¸pÿß–[áñWk…9ÒªAS°ì¿ ðœóŽÀ…ª Ƕ›M.¬Z³ÂéÐõùXB¯Áwº»0ØeŽ%¡ã ¯ÜÆ7,W¦F”@v}ü™ÂcloNp=ǸYŒýoŠ 6ëf6Ä’¥0F0å1Âéâ/³FQÂ^v´Ø‡ –Ú)/7¤ÏË0¬ò5­‡õîf†3Ñ(ÖbS÷OA1AuwqAuvßy =0¿I`y¦¾F¼§Å Ý÷·˜ö5,”.“g/þ:Íq3dr}uº˜¥µ&³’!1’64Õ[ê qžûTÈþ8 švFQ|¢`‘7h&µjÍ&@ÀT¦±$ ú°[I =‰=xZ6ºP`1häðà‚ÚÕWsò|%Ô ª±ëieMq|š‹° ðö×åüû¤ª´HC<©,aâpì¾Ý‘»¹›]ÿrRÒÕjQ«šÿœ¸-¡&šŽ/ž ôS3ÕŽƒû…j ©‚1õ«‹e»Å?ÐekFhø¢rÅ#œ}kWJY¹6)l^A7Šš‡¤„³ë3@"ÚÕü6Ø•«¥û 7gEjP1ÎY{Z´ „õ¦¤Àr9ªæÜ‹=Ũ4N}.˜Žm1’86´P,of“0#ˆ*¬^”@éOV&±ä, —©?Ì^±#zS| ’+S|èl‚â=4njŸÅ¾›VÅ= ¿(hWѺnŠ?}úð7ˆÕðDS¹,Faíô,]W>X:¿˜T’ðœ¸í<=zŠ‘e?ÐO©#oöËÕ9­bw@üû™yÎ*¶ eDG§?„W€„ö÷Ç.SE>jU"®°D¡ÐÓñ®DŒQ|„„eKD[âå=ï5Tã©èè3bAíf°aNÿ]l&‹¤€-cd½oÈÌØ µ³“Á1¼hò8û¤Û“pË Ð—Ò(žè…­h»0h Ë,!ìÊqÓOÙÜÞTcËÀðˆPtP¸¨ “³+u©¦zZîVËnVߟ¿³†¤A÷L÷«G;EÄB½Áï§;ÇK ­!p¬kB@¼L”ÑÅÑB»Íjl¿?fPD¶V†Bý<5EDtŸæ½Ö†áA; éIŸˆÒ§=H ²÷»ü;fzjgD‘Öl,kªôï ’ SL$…‰IÈÇ•V¥,X'T-”%EÃh»­%qŒ‹qGTɨ’ôÿK( ßFM\â.¼€-Ë!L¼×¹ò±ø›ÉÔõ4 ¿±Ò¯©¢½¤–§4 ¾°i¿²b&\G.7Ì^ô½ã9bÉK³‚m¯ÀÙ-´R$É+ïƒ[¢etí-S§U©NR ëÏËŠˆBeÿÇ~>Š~`ÜǤº|Ø gé=cæIʼ>àYpJ*]`—ˆ€œZÊÂÖ Å­i5¶ÁÒ= J›U¡§išJ.RºöóŒ‰i¦É^ WéÀ²ºÈAj,¦óºfæE˜£Är¼K#÷)£j‡b~ƒ‘´‡ð²è*r㔩k8&F²¥íPÎB“Ý@D÷AlÌ /Rð†Â ¸îl’ ” ¥#z)² QÅ7ÅíRÄ|d9x_Üw'L42uLÁ Ï¡mé#/=Ï—0'ú‚„ü8rCÁù-L0€ºÐ& &˅ħ¹´®õp6«»ØjâGÈ•l29}ÄÓ¶ªÈâ?¿ÄfÒœ ž©0TyjœÙ¡4ì—í$²Pg&cçÕùi Õwíc ã\ EZ2:kS{àœK¬TQMk›-Æ[®È¬ô‚óyxj=íÙ@“‚Ò÷” CIxÕ2ŠÜå%2ŠÄC¼þÛè8ÓœÝY‡b{P€ŠS–v{l7ýœxǧ^«Ž„½‘!w7²¥'”SÓP"Ååô N7Ðø½Gm#OMÄ#$S -’O*±á"gÙx&ö™³°tÝÙÓÎ8§ {ǽ›ËEìaOÖü¢;Òˆ0Žë¬òî¨+rÇìAé˜7É/›Óš^ê¸ë¹ÙåJ+ãÊ13@¬+›F¿èÒ5afv醼i©øOz*ö1ˇu'U½0ñèÌò¹ÍëÜí¥"‚¤%)è-Q쫸E¶-&±g›N³„ç²­;¯Zá5±8»Óï@éÊœ~Ñãè³D¿§èÈ›E³cH¿u8)‹ÓWí·6«G¬‘´Ç° EUº»Œ¡‹8åùlù”ìãNP5Ç â¸[Ù!*ÙL-ÊãqN xß]ØGÎÇÆÖP‚ÚzUKµ'û£pyÜs<)ÁŸ®ól|À‹T^4”Ï™»Wñ‚VPôp©€É˜ÉïæyìÇL­`zˆ—½Ë“½-± ò Gröô{‰üô|ôîÔÂÂö|¥yÁ n%,•,Ç[ŠÉæi8öŸ&áÉóyÊ@y6°ÇÓ‹`üærå@mL“É9ø1ÄFj«KÓ¤à`”Æ  ÔÞíû žÌ¹~E§&ö¥ª‡ðp6‚B¸£ZW5l¹¡+“†jÍTô>#IA–¨|œÎ/¡…’±U7xZ—Ž•Y~¡ÀÃI—ΙÕáu”z: ˆÔ Ì©ñ1ƒü˜›Ô̵rj¢Åæ|ª^LUßâÃæ6“µ)SÅ1­ÊN~^ŠýB?O U™mEä…â{®+ädµ8ª™º»Itÿ c1¬‡T¨^ÝƆ«6ž‘î‰@º„È!…JYüm±>‹W6e=Øå“q‰)šV›Ûï6³¬/[ ¦ŠáÜùþw9›@M ÎÊFPðõF!F…uz þwyƒ7ö¯7Õ5'hˆ,eN("Ó%ã›øTÖÐî]¯EDÓhˆ™Å ™#és0Q1Þ¼³ w|¼îø!´ÁÀK¹ M¤F°.ïsü6É`œÿ¡Ä°'$ë+oÛi]gNÍhmÚÑ™àVò­ñŸ\9“¥„H|µÊ>äšhþ•>1žT©ÂµPº8f'õœ¤㜪âïç±àÁ ±vj¬Hé`'ôÍé~ <5 ±æ¤©ÎO‡rv¨Mí¾ã€M¨G]aŽ/DH „¢hGêæhžÈS¢Ié^p>Žd¼r»%=}»¹-•ÅðÊMöðË@ü¬Ç&ä$$þø:¶d çLOñûðb{C¹¹ÛnöõûAûOç?v8ÁC"ŠCb£!²­Fn ¢©ÔStÊB#!,'9ö·º°ƬÑ#©[Õ\Æ¥Q›H¿øš(”ë ÏBr@¹“ö06\ªÄ!·C ‚oÀ7 yL¼:K‹sVV.Bú|Ð~'¿IH‡ÍæŽráì^snŠ|yœÀ’s€Ò+Å€ÒÕJ”ÑF–äÖÚÆ]% rú-æÀT<q ÍŠo¦â¡L—âñPYS?äñAµh¼n.Õÿ0› ZRÿkÇYgêìðÏ+ÿG€{:Á O1¬qt„ÖžTòvìÊ|Çí:¯Õ°Î‡öLÁ½£ H‚]7|-†gVûÛñ°ñ—L%9XêIÎI¹¤á³¢ZÝÈ‚òÔOäšç iûà«öðS·Ï*×â•âšoòŸ³dšN!Øõ ^|¸PÄ7³·x—ùó§4:µœ˜ŠÍ©ñ0TæÄtJ )A©¤ÊCµWF½i}N9 t=(çÒc’<Í~`ò“[7á58Ù·<à†(~iˆL!Ø0ö|×|J:²8­ãU8Ÿüß×.Ì.s®ˆ¬”V C»?†¤rz³/Iƒ< dàŠY…‹L[ò5µÉrÄ|a.%Ÿá*›Žùqz{I‘{R?{y F‘µUûÅÈzL|ãA2&4„­Ýjb¢}æ£(O«…ŽåéÀáýŸŠ. qx/]²š“++‡ðÔ9V\É·^D*Ô8MªÂ_¯E*ø-¥ØUSÙ1’¦¯4·’?4 s+ù¢žûʬz—kê (å”/f„¯(¢6²7bh;G˜3^@ÈlÏѵDàÏ,g­#{Mk¼¨Á½o.ðàS:ä$.b…>¤c¤eoðøñiþü‘ŒÑW®\h§‡t‚ñOSñ>aðÄ—âºðb×>Ĉ×xPMàä‹%ù=žU[Èâ ÝÆ6‹Ý©Râk³Ÿå)ìçÔÀ—ý¿~úëÇ(Þ‘F&‰'J"—Î U-TQȺïïß½CmbðXt_ÛÅêî]NóØ5e«H”¡º|Ѻ²ÙZœfÁCþF$“,¸¦üá‹®«ôƒÝÉDlñ×%!w¼¾æ–˜Ø?òÔ`›fRƵýQ²ËoÃÀÿ]:$~þIKÐj\^Žçê'ÑœgËŸd^˜­‚^Ï?Ê[÷4µ·|w­v wÙêëi‰Íü·ë7ÿ ÿþhjSendstream endobj 157 0 obj << /Filter /FlateDecode /Length 3649 >> stream xœ­ZIwܸ¾ëîÛt :Ïâú¯±ÇöŒ#+Éaœ-µZŒº›6ÛŠòÃsN-à4[~󒧃š$ˆ¥ðÕW_øÛižÉÓÿÂÿËÍI~º:ùíDÒÝÓðïrsúââäÇsY¬ÌKyzq}¯ÈS)]æ•?u¹É¤.N/6'¿Š¯‹³<ËõÎK±Ÿ^t‹3ãlV–…¸¯»¾ÊW‹3™åZ—Z,0ŒV2÷b]-T­µØÖd¥WØvÒýY^(Ñ5áw®Ä·…¥…¨Ú‡z» ûBÔ[~¿(K'.é·õÒ^ì¿NžT]ÝlCÚŠ®Þ,Ãt­_ÄÛ}·P榴¸‡_¢ZMû]Nûm˹Œï“5`‚ëìih!…Êsûe±øÇÅO'RgÖxzñáä⿊»ÉÁJR‹ÏS¼~w~¶®oq:9ÚrÚA×a¸RÃânúRY1šÖ¦Ž¬² Ý᪟o¯â•í’–ãß+Œ¨¦¦¹âû`9ñ¢­»®™>DCä°ÿ¥AKä_Ùâ¬0mÅÛf¡à.åž«U<óoÖijÄ^%vbD˜¡Š6í‡-B¾¿™Ú¤‚íѪÌpZ5,Mëœlº‰Œ KCˆjGà¦6€¾¯4Xâ–;)EžÃþEnÚ6šîe‚îÔˆf?1TGX-})aJíìœ;𘨣ê–_†VÃ~¢sËFìuõ‡®aKÀ`ï Ó}¢žËÄÔpho“mŠXWëõÃhôN­å…èÂ~À†ZìÚØäýj7Ýо•)Es=llCK+|c){F»®"çˆ=e;½Zá:÷#P[Äzm²‘]ÈxŠ@-%y©K-‹£;m£÷øÀ 7@o¸N-KqVMvyܼÕlǶ€ZÕÜ›-¬¸ ‹†»7›¶êÛðk¦` q0-Î;ŒdwWr MT¿‰90£]úñÜB81™6…Âø½i§tÏ}ƒTDψãpµŒm#nØa®reŶÁ¥÷ÀËëåÕj¹Yn‡†ÝŽZÊÜjÃÃÆaMÁ°Võ£þ}áq—pòÊ£]€å[º„ÃU;ìãè:BÄ:´·D«(Wé½ÏÂ}äñ®joûKyÀ“üН2ž¢îùºÛTÛÄU) çïß=›þ9fÁMÅ®^m>,¼Æ½SüvNu!†§ Q¶Þúlð²}äsQ; ‰éÙ8VEþ«Ôa­G»&E`¤sù($8 ÙM`"m A–+’ÝÍr|ÍjÊœmˆE–õz]m#\öss)hošm[ˆ«Ýج7Ln”ºg½ê§f0:P0rhò>ž<ìcz…­øe߆v°©)VÛÛ9kÛÞÖ„;‹ÁV¼D YÞèñ¬°¬¿Fwëàß&‘q̯;Å…x¬<'î…ß EÃÇ©í·T2 Š;aòh¢^Ü ò¨§¢ÄH“€µ6ä)Ø4 n;¶Û;qþ¤ÞÜMFŒYpEÿí 'º€*îíz5ZyÀp90ÃG4¦A9êÅ{†“œ~eÌ_Ö´:I†ì¤aýPØ+ÉB‚“;¼2Vü0í`-•‚(Ô9æåï»»À½$X‹9”Êé ¶4 Ùm>À‹— ;Ê!ñÏq)|ÙÏÜŠóˆ!¢IDOÈÌ£<¢×aË^¦Òº'˜v9cõˆ Þ¼èea)´/‚¤‚}}4ÞÎ%qÃf°ªón(¦‡p3ïà ÊbN(¹6»È ó¸ëîuä6Qõ‘< ôE¼zC±DâŒ0ó;* A´">§€ ½žèÀe»Ü^.wãïë=–V‘§(Û•%FGA¦•&fý‚™ª¦LÕÀvcŒ¾˜êh´3Œ“;ù¸&ÁB‡Q—´Œ‘"9–‘-y6è_Q·ÄŒM˜ P;’3ý¶=Bgç Ëö\›p~ǯ ǽ4TÃ^…jfÂê¡ó܉wÛ‰^‰çVwû.rª§\÷È3 >=‚îÕɯŠY4=*'ˆ?Ÿ8)û˜h‰RY$Þ+â¼|³ÎÄ~Ú8.¤Y1CölX€R™•Ïÿy*{8îwJ*1?À¼á-Â’9ת0䉳ÅÊkÀl$Q¨¡g@ç£ÊÜD¥?HŠrWžæ¼®Ï 1QVz0ÕåMµëÐDªä1_ßÕWË ßAMRŠ¡5ˆ¾«åš¼ü9'½®JK„Gê /€ãœóÙ®D•V˜Qð`hXŸ0íh©1†t±¿»­x8ãÕe&CƒàœcH‹€u†•¢ÿ{ãcêÛ¬÷(*5 ðpi%^(.Ø\Æž5¥ó$²ƒ%ï@ˆ¬–¨õKtRñaAŠX!BXXƒu Ð…3b¹ Jú¹éúKÌ©Ž š_¦tðªx€á‹žP"âœO|0ŠWQ‘$•P1¤ÏþF™4<:¨»¬ó™7œ€Ã޶éÝ¡3*´œè€ÿD)®„_ÙÓ^;¬`â{e© «ŽÎîÓr ¾MF¦¾5)ùŸ²aP'^ı0Î:&<Ÿtðjè <,‘*"Z'^VÝDhÜ1Ù‚Nif‡@ÁIªÉV5‡n-°{·ŽI¶÷¥ç=€LBÕ ˜»#!ȧ8wZ¯š¶î¦!pCf}ÏýiMF§J‚ ‚%'õqÁ9Žgq¥”Õõè8¾¡ò{ʽ÷gÂ[ð ëGÛ‰k3ébÄö½!Ùrñ\æä·;BÆX!йì)ä§fßnIEƒ•†D¿KÝ+bËçDÃ>EÃTê¼ý»0dB¬z|+þÜôw/ëe7í"ëG„dwÙÖHJòeÊJá®GÖ"6è—•0ýÌ˜ÌæáÄ$e6 ~#Ÿ¸ÖÀÑå3kÜ YnÎg®î C¢˜’¦2*òí!$Óp £öqâ1š÷îgêŽ9œÆ#˜â/û¹„”Ç/Ÿ =ƒ^sC‹y~w·®£ÂßDð •‘YµFe`§(‚ÔõŽ(Ÿ8µ¬©æ'äB{_WÙ…ðjÊY¯Š+oG¼Š‚µÕÿ§áx>@E^T½½ xÑN4rs—XI¤åÒŒžsÌ5¨|p%ØÄ%øRÛìï\&xÝ›ìéP"Isĉ»¦˜éé<ãè2“E>ˆ¢ÍߤVí0‡ ÌNǼâ-[>¥ƒµED2ª/ŒÚaÞÇôK?øÔÜí§ÍzÇ ø¯µS7·>ãŒi<™VJiÚò™Ž§—KÚ‘»j•´5tÒ¬rýDièCI䙂]Àò$~ùWô¦írФ‡uVG"ü;eÖ±ÂÖ§+ŸIÎw12gD– ´ú69¢'èCB>–Óèl›N,è(g,œÑáAIõ–ÙbUt›Sa¾xô„<¼m.²þwŽñ㨯Ö,K.%ÿ9.E•÷Ä»obñ”žtPQöé†Ë…'¤¨öÇæÞöã¤#½åËáø,?¸/2÷ËfsöHŠ)êê°*© .0V!C7ãAwÀLÛ×T ,yªß-ž I•Òïv`ïÆ†*ÍÊ'.õfÈÃ÷ëä$óŠÞ¡2éU£¼É °÷ýz³sžS×ß- ¶= Þ^žz#(9Ê:­„ ¤ÛŽ)¿ÈxUr‡¡b9O1h`åTIÈgZš'ZÁÁ0c´Ê%ö1Ú¤‡þ0:Þ:èÒJNy£4+›’æOf r(4A²ÿ0¶·‡ß]8†æÛÿܤôNɇÆù¡´%AæB”óyJ£ˆ¶³¤ÄRü’§iI1â  8+¦Xœê=ª^С'`  ¯ý¡ý¼üίY¸Ut®èä-zéæè;‘ã5±7lñ3Žœ1>îc`Ò×+>Ó3í€Ñ¥âfÐÞEÈÀÏ1?ˆqy¦FzÞUch»âÍ# £4ìY,vûöÛ’¥Ìrn¨¢©òrZ8¬\d1pwh¬€š¾¼ÈŒü¹cSx‰ ²÷RÐ ãF^:Í6|ÁI¥¥2þ×Ý}Å, I-Íz©Í _¦zß9H}å—Å3ùÄÚਾȬ.RG=¯#D_t¬Ü?)B/AÒ§/š| }3ùlÉ{M]¦ng£ |3† † Å~Õ´J¢X¨(: „F…ªmè1¾3¹}:ÃË*™aߟvÁõñb’sè€@jžƒNôB?hœÏrê¥}´fA| ±ðøÑiümNr EË“.æƒã™x{;=7:B\œÆ#ª¨|¼êOŠ ú8fî㨺?ÐJÏ ±ýýl„N¼`‹_%Aw ˆthfp¬< ¶G­ÖMû‡]˜c8XOeÃut…Þ`ø¼óU¤™ïª¶;²Mb°€×n<ë"ÞÐI<^}š‘ºOƒ<† åãë¹ùƒëY¶`n lN)i‹3™ÂLÅv˜…©É¡VÉÆ.V ¢àM(¸á™º‚$Vê> stream xœ­ZK“Û¸¾ë7$U–ÇÝ86\T™t nÈ9I²Hn\Ý~ók]²9ûÃo‡»&8‚ÂSi–]ݞÜ&6æ.z<Ô‘üM4øXÇW§É$UóôÐâo¸{EËš¦>>ø‰ Õ•3ó“nŒRiÛ}¤sZ¸Azßvø‡Xì>çîÓ°$’T7Mé½@ @‹Ã$N¥àS¥—gYú!õÏÙ$ð…ãií?Ýï÷r}ûÏ9: ræÑ!½q3"1ª7ÆøPŒföŸëãûïß-H:xsÇ” t¥ "×èõŒ+ ޶pb.`)þ0¸Å©¯ {€@#EØâÃ7Q†ƒ6u‚-¼ g&Ä)9FI4ýÐ"ÊшÁÀ½ë¢eåÇp;ó‰~'ëe2–Æ®Òï[ŠV2ýîä§æŠ=9d"©Êiç¡éŽwKÕ”D®ÛSeB”|×îÊ/s‹e?@”½Ü–3N¿ü¾ì:š¾=¾nªß뻦ZØÑÊ ’§m (©µ‚$Eéij2Ç쑤¹¦Ø¸mØŸ»¹<À‚Þiƒ\-g†>]µsW;䵂=†{èÏñBa+•Î!ùÕM8­Žf½Ä<‘/{˜ìKž&‘³Omók<’’N'e“áƆgÇ*>¬ñ Ü™q—9ݰHß—Í]˜Ö½ Ók{™.o“LMq)£tp¡ö1‹?ŽQðL]Q_ÍÓòì+ ž\¦?µŠt©<\ù±ìú8œ°¸;>X’¶;>KϧêÒ, ÙüžÔ™‹R¢Ð˜í…÷-¡±ÉDaBD½_Âb°!c9!çÆòtͯ©Qa³Ôd »Y6¨]@4¯ûrç¯Ê‚fû™ÂÒ]}ú¹k–p;ϸæã¦§ ÂBÇÅO{îfeG‘?b™"4•<3k„j +#ã‚Ë HKn‚Y¡h™ƒÍ¸¬«pÁ¹x4<³rˆGëôI;C­|w»úe%¡.Ef1²ˆðfÊ"#Ѭ0nV`$á κÆ3¸HX‘q¦dD4Ö6ðËŠ‚;¢ñ†® d.Ð=TÎ-ñ,þ‡TFƒÌ%+D 5‘È9ºˆS†`t¬í»¾Úù1(ä>{ PKs AäG&\·Ž¡Ï¥ý;-rñ®Âä+èâhüq¤ê«mÉlý±¸’R{_U‰³G5™06× ÈËË­óÅ·µã*VX¨¨+ÀdA%r‘þõ_{ÈX^R‘R9#AR-`­Ì„0Ü¿ñÙ0Ú& *ÙLfRe$°¤•½<îàŠîÓÀ»º‚,Ùù3å!™ìxTéŽZ†¡"ýÙ T•çÆ¥°µÍÁ6 Ž!ýÞßVˆ‡ê¸&¶ A9FaŒ¿ß9«¡ ÛžHšÉ 5ˆ¦½îþ~DpÆè«î„<‘TbÚòzŒÅ¾=kb9GÚ“l0‡RrvÐ7è|E¡1SUÝ¡ôrù䮇PŠH xÊ`'·Š£ù~jÝ>Ø>¹_ Üæàä°@˜pxP8ä {6=%ë0Ì9ÄæFñŒ‹ÜA/ïN}WnûăË@-$`vo‚·9ê-¨˜‡j2Ô€µqŽ:Ì êY@¦Þ/­þ|6x¥d#¯tZ06Kì@NÈ¢°­¥VµEš«À®ª¥Ž ¸’ÊŠn‡ îHœPXAä ŠÅŠ¡9ù]8(,'Ú¾L0pbâk í¶¦’E@åÖÁõq^0¹ýíÌÑÚ¦yf‹‹Üku)¾”ÇN¨?–¦ŽúäÖ³}¤^ÚžvT‰k )¥Ì䜢’ÈÍ‚\}é/³x1¿Zl©“P¸ÀÀ%‡Ç&nP®sL)>hVëžÐiMx‹˜æD(WÒ”I» ·»Úb‚¸ëž-$PQ‹Äél‘‚äPC^RmÈdwB€cI[*›ßœñÙõæ5¾›çJ|šc£Bp[*ñUÎI‡¯¡Gç…™@øˆëSj!ê¤ð/–n5’:xèæi×?é÷sìA=EÞø´TΆ¶z°¡œt^(ñ¼nÉÏ @âá–ûº†ßµõ)1ãe½ßôòÃІhGŽè|—3“îÃL•~?«ÂëþLp+Á©ã;€Ú%s îM¼±Ï‘¨E¤G¸›Eޤ%'"öÚ½„´ëÐÈ#G2¨Ûf!YQÎÎヒÏÝ£kaÜ^Wß í/Ü æÂÌiˆN®ÍBÓˆÔÿ-€T¹œ‘ÁßKÂNzh‘áT¼ßÒA½’ƒ@Í|™…àîÏ÷`ÁàOA¤0 LyÌ|‹œóvˆävåäp~á¡lÚ®î÷‡ˆjÝŒYûè. øø1–_0@|¯°Ä=”µÞÁÇq@°óa¢)ˆYøZ@ë ^lêCùDm>M¯ÉO…QzÖX‰#±îëOÞò!®f) ¹t®h~ˆþ\K£þÃ7 ]'Œ7 Û‰xrM¸Ë×·%aú¬‹]N½UtQ”Ç¥†}l/ kä†s×@ëÜÏ1•–ä¾’ ý/-Ã/õ\œ†µ‚²®_ê;>`æúêEÂî ×úz‡VuaS¬è7ƒ+†–•˜€ØÄŸ†ÎÝvlõ “Ï}C 8R÷.aY ݷ熒“ö}jZ¡g^÷Žžü,î {ÚÂ1ŒÅf>õàA‹³ËF+œgô~Ÿ±x³*å)H±Ž“Ю€8Î+˜ãŒ4OøJz+-0ÆR¥5|LºRDazÒî›b©ÆºEÎaÓJC -dúª‘`Þ“Œ×Ñ=QâÿòÕg÷¸±UŽi} Q¿óÿЫ¾q­0T÷XûÁÍâ–X)"ü%Qœ²¯Ë«B’,•B¸Rcþ¡tø œÌÒÕÓS? 4X›t»Ó‹ Š×™æ¼{ ÷Ï¢)}v&B”½¾Ž5åõ¡ÈÈðí±î[ü0B/…ûzuwXºŽê°¨o>¬Ó‹d2 ƒ3÷8‚ý"Èûõð™ã0‡MPHüáz‘w‰ªB@ºRÜ.ZßÎèO{F¡ªkŠÀ¸=µE¶5¹I†Ć'Óff|ó\ÃS°Ü©(fXmgÿëŒ[ƒýÎЧ"Á?ëÐÔ•S°}²™Éõ¨—èÞË«s¿§¯¸JPè÷SΧ·Ôl6B‚ÛuÕ ÓƒE„m»ê¸­^8äG˜ô7jkåTiåë[¡ÐN\qúä>J“&Ú´p‘ïšnHØÐtsùðäÎH‰j"Å÷ܨkÄÒ=‰â4ëÇóîsýpê»ÌMÒ™2þÑæ.ßþâÆUšÈM®„ÅGŽ·|ûo_®ðµ}u¼ñ#ÜÞTÝô®¥ ª;Œ¦:{kÒuó€P31@Œá«v[í›ê/'PP×ÛΠn8A¶¿1â%àÆÔ½c ÆØ‚þ#eC7þ—Õ.TDâendstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2217 >> stream xœ}U PW~ã0Ý­APšFÜžÑRðD¢în¢ñE·¼åPÐÑåTptCPqpà‘#¢gPpV[4Þ®1[kÔrÉFSZµ<(7îßäQåöÄ#1V¥ºº«ú½Wÿñ½ïÿ>qéC …û¼ù¡ÉëbŒŽ N^ï\ò“|Òà>Ò”@õ?MîY W%¸ºœÜoŠÄXwœ;€(Š¥ ÆÉë³R“V'¦ëÆN;Vþ~ª‹ÍÒèæÄÄ’3Ò Iºc¼nNÀüÝ‚ä y1I7"Ù¨‹MHŒY»J—¼Jž©‹ ÓÍ]±(ldÀûE½û#„¨ƒŒÉ3SÓÒ7l̈™›Ÿ´vÝ$B†’…dNÂH8‰ KÈRI‚É2ƒ,#3I™Eæùdñ%^rßÄ…¤“ŠÑŠÅ£>Ö>w””6—™.×T©ªgLÓņ±_qƒ¸ù\W_Olr{¥LXO@D?QZ™¡èù§—8Š¥%=ªmu9° 4ɰ+wgµô>ó1m1çNn£žÁ¾ÖV8GÍ‘…ñP®-*;…ýUhg.S?Õ=Ób} Ð÷ÀaæhîTÓL<¬r{Õ'ûž3_·¨?çÎÅhd¼ù‰z‰³°Œý1¢Õô’ÐÈ ËwÑé¹*={ÅñZze–žE+z˜UòÑ?t~uľqš@«_o©Ü¤¦6‰oV4¢'ÚÐS)µ¢QƒÆuÓ?ÓO‡S pÏ'ãgw»Ñ] ž¥ê‰@ å)Hî‡Ó•G„GÛíÐ훫íIË9¦”n¹l龨@,y£¿²ç">Pãz: Õt™Ð¬GÒ{Ÿ½4ƒÁ(…î¸FKý-j Šœ%†•ËgOؼ8ê'ÝG?æð}fgˆ#rÏlÃ+¾­|‡ÊK$€n›ÑÍ›!-\Ôg"–†ÄEÍKPÅò7é¤0i«Ð,_ÇDœÁ~S‹nÏ!s“1¶1£¡¡ÑÞ&Èá/î#¦FC³äÛèÑrs®{ó™ÒÔ©¡#ÑøE|ƒ¡xJù*ÛœR¹+áÀ­cønÁ²Å’g®vWk¿c@IÖ®|ÈŒRÊ‹ã€[G€zÇ\p“¶-±ÅÔµµÙt+qÓÇÁ†!)7;r„¼Š<Ø \˜ÒµTÁfÂŽý¶BøÜ.ðæºÊ†/á hc ŸV.òËOˆ© _‰–áñ½ˆýDoþ‰äÔgô‘ìlCZòb¸Z-`ƒÌWê‡az¶ÀÙˆfnµŒËZÏèîn¸þ¯ãn ¯‰f:ƒÝçoi¦t’Œ¿ZµaéÜ_` c?\<Õ\{VÀGïíleu·7<«»ßž¦°rԕݤr£4\TÔI§•R—4D-²©ùÆ‚T´úèÙ æ\€ü¼íZÊQ+å±NuVdè3e¬*ýUgôº–¥–C9h*a¯u¯'¡äS\Qd» NšMµ¾ïQ‹[h…áš!¸pÍP òæCzNüœ0=]AŒv&,é,Øf6› ÌÚ¡´„2ؤ:/çcÌ1S¸Ù¢Ñ_bíQ`€]ÎCŸÑpþ/C±TÅG;Ϲ›©B®KFïƒc{ûÙ6m¯M-íµUr|ÁK,{IËÞ[ÅaøÒ‡*ß]´ç’¯›tÞÔ¼NÄ…‡pl³G=öÅxç8ë¥S5êêlÈXäV«94°÷g~MG†R·]þêȬ?Üho?”Yi.¾(n´”wË3M›ÄÎ4SÛ Ã9~Ûhuí;ñX{•ÀO_ +þ+œd–A–®@VÍ7—çø_qÊ*_¹ÒûËUö<ôì0åì£Õø?܉úªýípH_dâÌ¡ 0V[9=[.“±6oß®K‰¹—¡W|ð&‘M0„hù ò©7#ζXŸÊ ×O¡Å̉”à*öù÷Kkv› ßjÒdåf@"ÈQYÀqY ¯Érɽ!e³äÙŒ‹ƒÎ€¬SÐÓ›_/=Á45jÆ>¢Ãƒ£Œiž`iÈ;"ö>Ù}*÷ï;Àñ_çî錸ï‹#_<@­–zzÂSâ±+¶ âÏnÿœÃ"¶Þq²ápè´ˆö5u©¾Yº(*ªE=²où›&Óé A„m^eiLÞêßwaïôå–fÏÍVÈ·äZKŠª+ÀÁ5¥Õ$%3ã#ÅØË]¯\¨Ð ­°UXeZkäÑ~5Xmɽͣ=VàÀq 7ÿPJžꊭ°=« ?;OH™·<3RÖH- ÿ‰ó€^¨vTšÍåZ> ÿˆã;^VjÇà 5Íe [-íö¦º¶¶²À¾PH½-‰Nÿ˜–òÖ?þw0º!ñæk±ÕKœ/ù³üìlõÒ/¶áfUñ>פnuG¢#::11:Ú‘ØÑáptoãÉ“ätiÎé(žºÇ—å¯ýš–§œ‘Üeç}¥<ñ¾±Ç¼~½ùΟ&¿6÷‘dž.Z‘"d<gM€‰ºÒ0s:ýíßwú»WŽTeL}çô¿³¥zS=¢*nc ·K}>ì’sù°óm¥Ò¢\iß[ʈýùHèçžìÚ\?j²Z-–Â"‹Ív䲫«XÜ^^\jÝSTXjuíOÈÿîwàäendstream endobj 160 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7688 >> stream xœµzTT×Úöæ»rÔœÁ{Ãn£¨±+ bWšé¡ 3Ì;3ô^†âì½+ñF½ÆX"jbÉM,‰‰Ù‡lþû}{@Mr“›{ÿõ¯ Ö:œ9g¿ïû¼Ïû<{+¢ÌÍ(‘Hd¹|…C ¿k€í¤ñ^á~®!¦«#„A"a°™ðžØëQ¶'X@O1ô4?5xäKaZ?TÒ­îK‰E¢uÞÁóƒ¢B¶{y‡ÙLž4iÊøñäç,·(›yl–ººûF†ún·q Øf³tŠ 6+#ÉÅí6£lÜ<¼]ýžy%í·G1ÒlȈU€2^Ã%âa6³°˜•xýt@ëö\D¢G“ðˆR¹.ÔùÀ‚¾LŽâé"ÈP¨T—Èm°ólXl,Xc{< OÁ.ØMǶh%šñÉ#ïª1^Ë£qÁš1Z¾¾Š ۬ؾB1ò“"vÌ l>ÛÕ9<’»B³ÏðpSU¯g(åÞïêe®G¿Võ#:‹N‹nqúÔãÇçH*Ÿ9÷úd†»GisSZ(eP(Íö?^s´æø §` ÓJðפâí"^„¸‡G_¢Ø—âöuè‘9àAÈÏùó ›IÐGˆC£Ð*ùÈ€Å;ì½6F9¬̈®J {éÎb¿”\‚«áÇì_•5 f›RÞçÂÛÐÇE{ÚPáU±P×Jß„"œ §=&ÅV»]þd:Àýž@̵æý59^ô› Xø¡»Rð ñ Ú Ì¼•z\kûünËÔµ¦øjLÝ„.ðy4ƒ9øÚhDcz£¸ÝåHC$!xBØ<<—ô¡õ–>¦ŸåøN—QqˆdšÂo g‹’Þ`W*Aã¡jM!–3FI ·è¸ð.?eïòó¹¤÷ÿˆTü»>~}åõC+ÖF „~ÒZ¿—y^‹]b8dfêYùŸõ¬D¿Ã>µ5AÛ¥ä4ÈÑšõ¢åÑ:Ðè8µ&2‚™À²]†bcn-GÕ^0z˜G‡Hë~äþèΣ#f´b…Ÿ…MÒÎÅúãb%¬V_š5ÃhP3¼Í:Œƒ¼z9Ò<¤¿Ë~›ˆñ>c¹i(]ÂŽîJEO FÇBÌ‘²Š4Á” +†”XÖAnGÂŽX±3Qê/…“þ»ãr}j·eºf:æ,΃sL}eóCd–fë§ã´ 9ÀäAZ‰üûÎ.JN¸XN­ŠOP©=ªÝ`)MoÅŽÞ…UáòÚàjåßcö†Au/zþÀõÞî³gx}°ƒSçiR㉅¤(9–Ñ;!)'M«-)át:Зp=¨)#ÝAúÛß .Ä}“ÎG1¼ð~góO$nEÉ…¸·Ú¦ƒ—ÞÚ¯–~¬WxÊ—ÑØ³ KñÆúNØPwáç'¶xd)÷$à[ëtjðJ<OÆ®ØMÅSû•ç÷ÈóÂ÷¹ç“™r4nJMû”ÔP”ô5¥0¢#Q"–GZþx•Tp ©à/èê+=²†¶ó÷ð\ OŠ8Ä£a<fâó©!Í,›Ñ*&œfù¸F‚û|×p½úz+×5Ä.ñhOøO8]ð¡ôÇ&T tƒ.çWÁK¼ÕvàA>sÁ[ÏøUÐ(Á±øŠýë{~¥I½þs2ÐöÂM¨'8zóT€Nà‚?¿§‹ „Gûy¿–woiçÄû$1ã¨!šÝGþÚ& 驛͛¡:|‚c{¢4ÛÜõ×Û ž,ÇcèÙ0 ;s úR gK“¬nü–â?£‡ø`ú#õ›èõ9w¸JSd‘¸¶ÁG‘UÒwôo"S+>â‚M«¾CÖÜwÞ¬šXv„0‘•1b!MN€–  ƒ©z™Ý¨É ƒ¢R)ÞÇ™2lŽj•y `]ÙÅA™HîZµ}R•y~h8F²ô]r;³R³‘º-Ë*/ÚEkz¥èk*ÜÈÜ ™‡„Þ²™/CæßbÙ x´Û˜ +U»Âð Ðm ŸC¬·¼c3=qƒãZŽª„EàuŽa‡ŸÈÝ]ÙX(g„oq–³`wÝþÑ7®ÝÌá´™ ƒ=Œ°Šn·Ë\×€$Šø^TÜn'nwì 5œ„L¡6h QJHIŽ„³d£P­*W£ƒ4ëª&(%‘SûC@W P˜’›¦ÌñÏØ1 'ËÆ¡Òä\òÆÔ·÷’¬L ¬Nƒ\u®/²Ä?ËÒbô‰¦ŒèÒÓò¿G ²pcªÂtÉ:ô¦,uC_ÊŠñyõ$KD2vò¨ðñƒeí-ä~õižX!ò‘ôLˆ#½:D©ðQLãÐfZ É«q[Ó†ÂMÀÌZ¸y‰éÎÊêâÒÊÜäº-ZyUýÑœZ`ŽžÝ6YîI¯W¢^î?w{È:pfXÅÏB._9´ïp ÇÎsO­r=<¨ìbþ—rüáq)«7ûÖnõÇN·´¡Yé$…ân~¿ö0k'ˆHõ?€£Ñ72´Ùefž<þ¥Öš§ƒÕ¾DdŒl'(¤÷iÒà ¢ãã“ð|B†®ÿ?¶â|1È -Áeé Y±gí¿ "ɼ©ïR¢]À¾s`o™+h­XµG–Ì®r‚(]X ˆìd»÷î=ZQÉ74Ö2dÙ)þš`ð‡µºX-Y6kS–’=,<6Y¹b¶lö÷ Ù¤ÊéÖPPUªeØ:BÊ÷Fc:D²Uák.köV2J+æS3 PÈTî( ‹ õßÚâuìróÙ³Z Ì©¼|\[$ÿ¢£Á¦AV÷´±Sâ­{*¦ ÒìxPNT¦p–Æy³vÊ~4 ͸×r2ë²Æ«^î¦VúC,\Y]YZ´û³9Mã~1…ûâþ/Fì¬E=³MM•Å¿m*›jTPâ¿ÿ"þ“¹†gK‚4IQ8°ã‚ û g j‰5žýN ©é Ø<Ü$»ºéQ7“¨‡«äBƒ–FÊÿc–›FðkúÌÔ¤iï%Óv\—¼m´Fýgd.4Áß Ñ4L‘ƒQèOl‹ÐM,¼ìI¥p÷gÌÓ]‚x¡gVN'éå%B‡oHxš…Q’þCI#2# E"Áµ½ÉÖ1¤<¨Mòë¤<ãÓÕ¦aIR[rÅŠõ*ÞÎJáGš-ü  ±ÐàRédzõÐÑXŠÙ磤õàžZ£| i*$5‡(HQìdئMþ[Ã]pW†î nVŸ…fhÔ]¨9XÆï­;õв‹ß𳓬*ŠéT]”V-̪&’¢kþtSãn&þ~›ƒäshüZ(LÈÕhw|ìW#)€RM¦\­ÕÀ¦£äß佈NKÖjR•¸Žg²¬8­&˜|È(‘ Gé*8üŠ{0ÿ24¯Ó &\yƒ°D]rBŠ21…ón ñ°Üw‡5ú+ÐÀ Z‰Ae/œž‘¾c&'?þ4†ø…Þ‘¸D¾YKq¼$¾oÜÌ«l|Є… ?v6x#ä±»¢|Àüò<øHû¾.àÎ̱õFÝ<~»>æøújnmõjXIHÍ’´¾©<Ô}U^TÚج.曫Wo5F7†”Ëö4¤Þ¶Rd€^£P%+ ŽÙ™W˜]’QÎᘒBÆwWHb\X ;0Sáey•¶¶À(g[¹™åÕû}#ÃäȬ£‡ÔiÁ†Ñ#?yhoã=w^ò™Ã4ù»}ë7½ùVÈÞø‹­›àlíÅhÐ÷’·6¿k ýÛÍ›¿uó`°Iòè¤è*5:—´}-M‡œX$$i8åï¨Ø‰Çc¾‰½+‹jÝX·¦äYÅí‹p›ùKîã‘þÛoÐÀ¼ÅCƒþz'Ï]ïôˆoñŽhºh©úí{½ÀÃRpoö`Øã^ͧ•»Ý.ºW-ÇáÂéÂÐð(ŽÌ\ ”C®AŸ­«R`#s~Ÿ¤O$½ÐÕ~-HôÚòÁÏf3" É[¢Jk’ bš=‹mL9ú4KI˜Íð.~3}=Ô§ìÑX³²5Â÷Òª°Jÿí‘!AåÁ»÷”V¹®Ú·÷ æðyôAµèLëßZÑòV± B+¥ðrɽ¥¸?/[Q°íñ§×N]¼>4à™[Ó9­”9o *ÚÒiñ’4š¸$ÎÛÁ¿Æ­y2¡6ñŒ)Cfžœw;Hž£:wmgUÒî¤jϲàlðal˜?#`NÚѵÜêSêVMƒ&;Ôo}êæNŸš¡ÕådpúÔº“üöV¯Gd t»û™É»¨‚ øÂ¯…ÐÎĸ?=þó’šo‘ç©  ñ8SJne™`cCoM˜¶,9 ò‚¹‚ÔÒ|¨b*£J£"ƒ× <{óRëŽíß>ÔüÏRD”>ÉÿÊ´–5Qæ#”i·Û ë¥;L;H²‡“1•¦Ô¡±P •R¦„1)Û!f(çî'iÖÿ‡Èç4œ¸ÓC!i“bç§æèªˆ¸ _/ðÉÇÓÞ N›ºæõ•›WšHtmB&)¼'„ƒÇIÌ¢E2.9è­Ôë²3/oÑ•™„g€:‰^^¡‹1 ÏM¶b!2&Žèå!¸·L£Ùú?ï+‘™½ë«Wtëé[CZ!ÊzÇNÕ®SLÖ@¦†ˆÉö„p^¸Äîòϳ½âß»îjÜãݸÃ/iyR“s=ÑæŽv™>AŸù ËHÍC³„4ú #½ë¢u×U†‰…ûÅg÷g7•-¨Ã í2ƒ¨© e¶‰tC w“ïz¾å»Y…®`ó‚Ý&ø.Lž ÂÜTÛæ9û?¸yNÁe¾­½švî03s¥–‹Ëvsðß Û`•1ê;Åx ç¡®dž*A=nf¡®D•ŒÊv„9°Üd³IùÖH ú\,ÌÀûÒ¶êœF¹pŽ®]·bÙð59¸Ròœ•LG‰;Ζó5銯`ù|Õ¹“BžtëÙ-´ð§ïyËc?=ÿ žX±¿NhQÍÉþIÎñ»’—`ðbÉëWhâ.œ‚—ÖHb{÷Æv';}Q}nseT¥wb hÔ\ù§§Ïódÿ³äì§ðá†Ö¬Àk°La’Ô¡Œ@KL¹«¾NüÄðrÔýûKFšð”ÄLlÊ4G ÷–ßVv¯êÜ5’¡{SÎŒ1Ç~ŽaG _j¨9¶vqüÑ+y À4Ÿ·KYì,÷ß´]¢IÔ„¦$A¢&IñŒ"Џ’{‹FãÁ œ]æ÷–×'óØË4•„úÆ8Oúf ¡ÞOžüÀuf ä…p’Ö“×M³¤üHaIbzt‚Ú´«ˆ/tl·ðC%SM2ÍŽ‹0Ñí 2~[àd'ݾ‘†_Ñ x)VKZèfÑ+2{>¶ m0 «¶OžVGô‘–Ç^D<šþIY±ýû’œo‘¢³^bj“K´·‡ÖÑ,S¦,­Kª„ú\{’—®NK’³Ý( Ó+Y™°1r1Uf”;lÉØ\–¨W™¶qÙ½£â!1ZŽÒQ˜Ÿ¡Ó§§r9…§¾„`Ü’Uè©ÛFT¹7؇º†nó ÞBúÞáäÎó ;w®F¯×ä ª+2VTì4úÄx'm‘³e²iWÇ sÄüðb¹ÎX„¡åmOö-[#»Ç­ØR5âê'‡Å‹<×oŠä*h¢Lú6¯hQn7p»Üa«_Å.Cá ÎGfâþx±BÁ¸1 ¾‘³§‘øÛ ™Ü–8ýM°a§—¿ý2D—ƒÿeAÔa¸KlþíÚ— Á ž+ö„õ°Ñ]ÂoÕ’j- À‰j—I±J‚{CJžª„ ‘ø`72.õ…Y—ór3ÒoCêîlŽ'ÛâA>Xï[ÇÃÖC‡à`6wœ†ÓúÓ™§RËó¸„!Y–ic¬ŒéŒ¸½QÔr¬ìR3!ô#)4(z´ì(‹Î^¶ïïGOÀæé䳓F~`7!J·µe3—×bܹ:`š#Œb†ü°ø'dñmÛÏÜôƒ¶m²÷Æ}ïʶìVí"æâ§-×o´®›Ï•uH¥vs×Íš6ÿRÛ¹ÚÖ‡9ÔgvõŽÃþ°²“mªžÞ/¿l„§Èָהÿ²Ç¨/ÉÿË“dQ÷¤È€éÏ&¯ÙµÕ…sÛæ sÜïëÑÈübs˹rΗƱö¬Þé¤ÛÄȬ)âC £ý¶->åöI‰¶Œ|åŸJgnCL…•"¶€ßå¨F8&Ö:\ÖXulo^=ÑuÛ‹¶2,Cåú¦.ß2ðÍœ|_‹¾£5BoiMhE@@hh@@EhMMEE ‡o›ÿáZ×ñÜäô×_ÖÙ_“ò¹“wTPppQPCš^ \†6G—™AôÇìevI‰„YÔLRš*-çïwý=¼D¢o-«ÛtϾ|mVìõÿ‡˜ì8¼P`¥åA~Q!á!eaU|±±œC üáZWÀÂTSÀ"´Ü FnÂCé…Ѓ.o#+ÍÏN'’W§Ó’f]ŒÊ7iþòò¸¸_ãkûusV£"~Ù)zqNŒîã$)ÑgºE¸²ôE«4o/š‡ú ~y&0ë™ •^o»³«¸õØ,‹‰˜ƒ{ÆpŸ‡K³IOÕgÈ÷tMß‚ôR¸­@½Ö {ÔgÚ§ñÀ(U*¥RJ¢äÏGÅS“±:Ç“¸¹¾Ø2¶kÁÊTUzöãÏ{ž;ŽÌr‘î3]Ž^a@Ý è~d›é·å#¢®"¸ºæ*5ÓhÅ^q!.ÿ‰Åâ9ÈOÃËð<o«‡?F›O´f´r•é¨g=2ÙIÍ%H¢Mû5êéîBÇ“qµ@¶hrDÃÐûh&zÍÁfX91Év‰œ yà Ç äHI—k´aÜNò]V™±åòºümÀ 7[bËo'¼:u¤¦e·<{݉{ù:ÿÕÏr¼uŽ”u¤ T1ÎË×+#™oÿ‰‘øüõG¢ä,¥ÈÛê¨8]Aô·&eæAàH”Ù⹿?dišûïNYºS¦c–&ê/ÎYX /tü·@|÷¿û¨Át@ŠÞ¿DážîÜËêR¸b[&DkR4D”¦hR Æ´‹…,$lÇ‹‡û.ínˆ+åÜR”ÍøTÆ–”—î>¿¦Ån8,ùýŠXÄ¿ Ã[h2}(#ÖMŽË§›C "´„tˆ³VÚÚìþ¶A òÓ³s8ÝG+7+• ¨:»"÷ÎDÿ.,Þ– êÙo‚ú'í¥T‘r«tÖ¾ùnÄ=1C±Èq˜ü?-×ëw³ðæJ±)}¿ùâÐç»- ª :!AÁ•¹«HiÚŽ\áD!ûs¢T,F5È^z¯¦ ;¡Lƒ•ÉÿfJ ªpú-vÑàÉ?² iO§«%ÏVbÁ¾=@š“¥ˆQÅÇ«9üÎKŽ…dR*EVBN~jv¶žCÿøe^1Î`Ú6[ôÆ 4ƒéIµáЏiï#mðÞã¸ÊÙC•Ì4:¦33ë0õSâù¶ÇhžÀ…¡9|ðÏ·Çp\4Zi2‘JmHU±“ Ç`oGô³{-Ÿ­ÞÜo¬ bŸÖDe%ÿÄíÖmꡉ]0µî„é_‚tŠƒû®(.¬Þµt0ãq7‚ØÿKühÆÛI·¥$„B$„çF'3x€ 4ô˯šÎWÔ'Vq½Ã Âü"“nðݯöປ¯YãܳôìaÐêLƒ C§Ó_ìÙÓØ¬O×¥ëõú´ôÔž½(êðÀßÓendstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4856 >> stream xœX T×¶­¦¡ºDT ,ôU‡8àlШT"¨ˆ¢¨ ¨ÌÐÒŒ 4 “ÀE&‘y”yÐàGâ5±U4šD“<1šÉÄ÷|ÿTryýÛÐØ—¼¬ß°`Ý®ÛçÔÝgŸ}vµˆ24 D"‘ÙWWY¸lÎì™î»¢C}åš7' ãEÂáoâ}X!þÕÅ™ˆ‘‰áÅ –7ÍáŸf9ÜL)±Hä [.Û£FÙÌ={ÞÌ™äï"?…£­‹ïÎYldHoø.[W[7Y,y3Èfª,ÜÆow o¨¿Ì߯c÷f›Vºo°Yå¾v㺠oÛþçm ¯)ŠZî(Û³"Bîíëç§Ø¹Ëm·ÿº€@÷  !¡a³çÌ7ÁÂwì&.Z¼têÛÓ¶ÎØn;‹¢ÖRoRë¨õÔ$ÊÚ@M¡<¨Ô&jåIm¦©-ÔrÊ‹ZA­¤fQNÔ*jµšr¦æQ.Ô|jµ†r¥Ü(3Êœb©±G£,(KÊŠSÖÔxЧFPÆÔHj 5ŠZF¡L©wº”!•Dý¯è=Ñyƒqé/Å~â—†k ?621ФGÑ%’9’Rfs`Ę#¾5v5><²Ù„7é5mTßèY£/Œéó?¦Î¦WÌ6›]3_bÞÍrlûxìæ±Ecïq¸]Ü«qsÇ…Œk×;Cçh¡© Wå¡2ÿQ j ö´PÜÆµËQï‰ô/›O.YídzêT±“w¤ä(4¬ •KOã^Ý æÑåM¨MóI©¬¤ÙÖŸï=±\¶–DZ»$ƒûš5ûfî“eŽQ·Êü[5$ª·&w9¤ÞzsqÍúSP/Óçö‹yC+#PXh#ª”6(÷èåÍ¡Ù(0ºÖÿP:Np~!ÎÓø·ÀÌhöÁ×õ®ÁÒ:|ŒóÚµn>Yˆžf ¿nsôÖäÏPÁ•è²Õb!B90³} ±¡íTl†Ùïg€|ÿ˜óNEœ­«½ƒƒëýçßÞ¼yçî —Ù< €å*˜¥‚[CðRƒ 9ƒ¥¨ 5fîOolõV„ñì‹ÖìòÝ¿Cn å¿"çGŸð=™Úýø=°R§qÓWº¬\øäß'aͯ^¹xýÞÇùü ~‚R%z¤†jrÿ ¸ÄÁü0 [ñØo8z…´~@­[‘ð`ñl` ŒG¬Çc¸Óå4õ`+ÌHuǺ§WÃ!û0öàÚ# %¼„Kt ª Dñ»ù=­~MîˆÁ†“f`›~7 né:T'Å!^’D9©V©¼KW4’zã¹Â8ÎÝkÑ"—ÛOŸÝVqÿô2g^0S b5úÚ‚-$#¹Úäí6¿¯XãÁ–°Ú3ñØ€~÷KÜ»X·‚rºBƒaJ”b±¦øo}wõÅçFVÅ6"¦¾¶²YK¹`ͯè¥&¨O“³% \Ÿd0ü€™¨Îe°l¶ƒ‡Ð` õ„`˜@û¡„#‡Q} ÿ\2H‚'Ky›è8}øª«å_sì® ªUbÁÌ8ôOÌÕ…¬*µ Ï_UŠŽ1Míß?.‹Èãsã÷Ç·#FóQ©ZR‰Ã"÷)Ó³yŸ:G€~7jQÀ¬WñÏ”Òî´/’Ð&Æß?xö¶ %å|fõ¾’Ä¢˜Xé4I’·Wæv•òݳ[—æv<>§¥ü-•Hõ\rö`ÎU£ºÀàœ˜x>ÇÕ}ob–¡ RH;Éëc»GÚªÇÄò‹æõr#å ΢§ß è»÷åÉþ¡ÃzhŠiM`ë¤v[ 6Q(nçÚ"’÷†Gô Ì¿“ šíž³89d êìàáä;ŠééêȾ'¶tñì¶Ü:T=¾®lDíÒ×=qä4îD·HýyL J ôøp”NÔhÇ`!©%¦ôÖG÷i"UÅÆ*Qly[ÄB–ðÖåñËZh,Â÷±îµèAv$Dji£A‚Ÿ—Õ¢:dUƒ¡’NÀw–mCM@Òìû ΫD•°õ;Ø* „I\[$RðXB+"IšC¨FÚMoÁçrè}MIg’O(®g•¢½„)ÑYé;1¿/–É¡=á¼Q7]Ý@î! ÅI‡?^G’\ÃýùQy‰Ç‘Õq”W\­j|’[žWÏäÒž]xD~Zi|5*E](¯2¿þô[¶Õ A9X½;*óÔ@t,N¨$•“£Dß½yi<„Jîlü ¿µcr «Kh¨h)îÊåÑÜÜÚýå¹e¨1Ÿ]]!Å+³ð˜-h:æ8]wyÙÕ[Ô~–gíCëÏåßRORá¥ÿàPŠÙ¥`زøo”6ÞÕïð±îoº`R¾tXÌ›Á {€×Eòo xY°„tmwÒx,,¦§Ë›‡Ë¬-T=j–:L~ï£&’LsÿƒW"´ãç8 Æx*6Å ŒvÒlãë÷aÄPAcP¨ôÓÇÉ¢µE%×4Y´ýsOF*™–…„sÿ!õàòGÒ±(†ˆEm#ÿÒ®/ì8Nåæ>*a«Ê¼ ¶àÕÀ ¶X°Öÿ–ËqP’†"=Ô*‡Î¬I­K¯±…tËÆ?çh; ñ¯ù{QBVÉßI’3lz¸G@vbƒ ŠË¤¬}£¢Zγ'÷Ä+"|ïìþù4X–äKa–°ÕHGå!mëSCd¿Xð׎2öfǦóIqÛ³pùíoϵ_w ¥Jsk” ˆi¨«jí{ycûµxÂ.<‚ú t²¯²’;óö «Uº"4(åºÕ¿tÐËY. k²Ê+sšU[iÞQ©PØ(ÑÁˆ®}v ƪÌÙ=Â.-ŒŠ´¬¸t>zóÆT²Gö%|ÃÀyº®uýþOx9} #e»ðè_&–gŸ6ò+`"‡kèò¾«ßFÄ<É‹ßb†û ̈L®Qÿøw±à,\⮽‹Þ]¶}>¿iŠNÏÁ½“õ´±A§¡“¡FëÑiôYú᧨ßW¼ëHí¡Êí _£‚¬ÁÞÈ&½%ØsÏžb £tQÛ”azƒ•Óåƒ5dpÓ÷ô9iM;œ¦óo@Ö¿èN:m´%ŠkàpùãkðÞµ°kæ­WâÔîjX­Ž¸²O½þŠkJ …‚%w(®}cŠWNÐvž5¦Jk¶Ÿ¹Â~ᎪàŠ8)+¢RR£Ã¬Q`¹¼8™ÐÞÔÁ­J±^ðÊ ÆÂØW½_ó¬ƒ êR|´¹9©È·~bVÒi( ¥íOD(¹œa'¦¤”çÔ#k”¿¿<ÿ`^öѨnÄ<ë»Û/eçÚ£¶ÔÖø–ºÒ†ü²ÜÂ=‡Ò"¦êPi«¯ÆbÎÝÇÇs£ïÙ‹<{³àò©S.}¸mÆœýŽ)SìOžª.îè¨å+‹QbúÁ-Ðêá­aÑñ Àþ¹A·?Ñå_8ôÿ?4KæWƒ³ÚW]K¦Â÷BÍs®#¥¯–çeûÇËЙ‹×ÑÔC|rkT²„a_}ÒU£:aýÍ{°1Wê÷i’×+©×%ü˜Œ6Ô!cØßêcP´¯5rAa5!Ua- ‡s½á“£ÄDÂ?8/ïõ³ùå|—fûŸZ·õõȸ÷³9ýìHî’(§vVLvx¢³p/¥ÇÂsC.€' õ\Kt½L-“ÕG·´Ô×’;E%P™_¸é¢>«©z÷M 6T…źðar™ßñ=EK«W[ú–î>‚Î2ç»ÏÝ㊙¡…|^tIF­ÖÕå­ËŒKãýŽl,õ&Š%¶_²põçÇ‘Rì1b+Z2Çηöܱn‰Ì+¿y'ïÛ¼ïÜꜪœê­ÃÖƒ¯¾°¼£˜?¦J¸Af s÷I¿Î}ª~F~ÄB¦ž½O§¥K%¯ êE°Pzê™u=ŸK\”åïÍìŒ$B²¶nèÙ0è`´@‡ÒømØc@btDÏ{ÙêÊÝEã…x†¼ºZv(½ô¼¼žÙöú’þâŒÄ³Œb‡Ycüڲ陿€6í\7<ÈLÐQ±}œÞúÑë!6üøq±Fj~-Øn¡Œ‹Ao¥×zg)ŽÀn©i™Hi¥ù€g àÍ2EÅCÈÀþà¥2?Õ¿¶¿¬ŒÕ;É-„ QàÈ¡;Û®:·õ|Ðr]bî9~Š%ØdåV§àFe­&ayÆÁ¬<¾½ýŽÆ¾Þú(À;,1pO´4$Bží¾/¡pFÃIþ Í|q~õz· kfï\Vr6BZPPTˆj™†¸ZyTtbÈÜ×î[|ýì¹¶Q(•ð7‚ð½ž^â%Ò`ëÈKáÝ™~ ˆ—Ñ‘(3')Çáß,S“P6Še‚‹ÓÛy(À”«žF®Ö5ƒ+PµÓŽí–Ó ‡—FC´«`JôD 9¤¤¡àÎý²ì'lè“íǃ;¤ë=ÍÕÓÁé©!R\#Q ¨Žêü‚ƒøæŽÕWæ§]Þ]±öÙû>–‘#("GlªŒI KÝe÷ÕJ0³OA<¤ˆ`Ð †½°ˆ4ϟþÏ= îg…ØÈ=¯xzÆûyóåðÆwž Ã¨2¥ “¼2‚‰¬Žmj¬­jë¸4Ð×ÂÞx/:¾àÙ§ úé+0!`³ûr—]ݪX~oÃþTÎô^ûè³//®vÐä?#\Q‰N©/Z ­WÃéŒJJCLŠŽ“új¥®¦…‡*;à5AxÂŒ©ª*iå   f‚£êjmõþý$ƒ–O*ØNø¤öÐ|ÿ¡ùVlÆ›î»\u¨û¢ùt7ºÌæýuöÖÓžÏ30öäGÞŽsî®>Ž<ÛéèzºçBϹÏ^Þê)-ÇÇ8'ç v<ënçÜ£V]¹þí³ËkÜ4d†/á¬H 7¸¼³A’ÈS_xJžOö±ÌMÌ‹iA¨ :·ŠÁv°ã¯w dQ/t‘ò¨¡ááŠ;ì+Rœ›d`±zO¶#°ÓOæ‚Á… U'Nó{±éÒ©ÓQ* È©Ì/((DULƒ¢6BR½‚$KÂq3ðâ—>à<6ºÛ-Þô齿ßé¹{²%*–´%Ó±«8n…µ†ÿd—3˜‰`˜‰á¡`Èu…5…ì–‡†ú·EtmloçñUÃ?¼§9¿çíG·EB¼`Îñ'v¿ •þ(0°•Já7º´‘â†G‚Q2£“ƒÉµ.¢¿ Ë»È5MÂçªHÏW”bÓ¯¶ƒCôóQ‚õ·•%Eù¨‚9YŽw`K\ŒGž™sd ÑñþòtÒTP{`0Ìj1¼‚«‚‘ÛŸ~´©Ï¾'1òŒØ´Ä’ô‚,)ØaQ^@\Ê,Åãg'îMËD‰LZalc+ì `žHñ‰XØÁªJ.ÎΕW­êŒ(êªeiQYªaòQëN›.ßß”û jµ*FÁÁ(85<×y©ëÊâl”ެb“‰q%eéR­ÃÔºäô¤ kµ…çÁônvDŽ3 ·JEÁ¨³¸5ç“ì&^ä_{Û·9a?:€˜Ú²ê ͹ìT¿¾I†¦œ€»IÛ53~}fèÙ{ç!‰ø÷û’н‡ypÖ ýPU'‹áE#§ÚuÌggTXÈîVygaQîþ">Ñu[Bò¾½YŠL¢g‰ñU//¯K«$ ~ìËýúþ ™tsÆ¿ßÄ3ôÖÎô°Ä#—zÿH%²Aðÿu WXž˜”AdàßNé 9¥Y)*âkë‹*Ê yxü«SQe.B¬F§”ËK`iI~ ­2Vä =d&#ÉÈ£•…¹šWAm~¡‰É‘ºýùE¹5¹/u4EQÿ–s(Øendstream endobj 162 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2252 >> stream xœ…V PgîaºUuÚP·{¬õÀUQ£µF+k6xEïƒ@‡‘c$ 2Ç›‹cf¸AѸ"‚’(ei4š]W³1ꮚÄk7ùÛüÖîö$Ĥ6ÙJýU]Õ¿ÿï{ï{ïk!ô!8<"R™*Û3oáìÈ„ÄÌÙ^ïî4n¢€›äÃýÆpìóÐçkýÀßü…}“F†ˆ‘n,ŠÖ!|‚ ÕRešfoR¢"CúÚܹógÏæŸ‹¤r44DºZ—¬T§''Ie{⥫C"B¤k”j~3I¬Ü#•'(d)»¤Ê]Òè„MÒ˜¨å‘QÒ•‘kcÖEÍùY\/7‚»G¹7}eF¦Z&‹OHT$%ÄZbEDÁD ±ØD„K‰eÄrbñ6±ŠXM„b1!$Û}hŸ£¾¤ï.áLáû~óýªDA"#i ü©”4j{õ?‚ß$ÀÃò;ÅOúP|_Ý©Ç{È0µ‹EùdoÁ§xäò5q¹Œñ‰ˆ¾ŒGî÷S‘ƒ¥¶²¸•LЇ1*²ÁÜ~‡õÃÙh’nùÇÀå®9Vme°ömù.TZ7·À)hB-C¾ÜR´[‚Æ…<Æ,™ŽÇañý™H€÷¿@b&Ì!xÃÚ´­Êí±Ù ° âš3ºö×@¼g>í9^ÓÖu¸—¿ûݽ ŠÖm° R¼>ä“y;Á ³õô"òR=ÝæÆK'×$½¹û-EcDÝ‚©_x‚¹z¡É Þ°4޳hùÅÑ{×ív£ÞÎ@f‘*½º ª¼ÎÞÌò>·Z':Z ÎGμJqcGZRwÐáè6#Þ´¦¼òÔV…]æˆ._^ RžÊþ'ß”LO63¦b›ÑT)X\,’ô·Ñt@g4ææ3z]a^GÑííÉ;L9±oÜúõóžfµ`/äÕéj5ùu™HÉÒcæ,H¹xGÃÐ>•z0i'ÒB­Ñ¨fñRc2–ØL&‡¡µMÇjÒŽ¨ èQß™¿ðQû\_Fìó \7Ã#>ñ ·üâþOèeÏCQ±ÄC¦b ðs êI¿mÞŸÈ®"±_˜2ÿá ªä×â¾D~·f`¶š¡…ùf0”N¤³›Eä0ü"fçÂ-ç×v, ü&žƒgb9–¡Yx6ZvóFËÙVÖ%oVÚ€âãäÏ­$éeïZlç™ïKÉÓ…ñ µø«>1îú_è>§g5Q䊴í²=q5gP’z°E´B#2LQÌû½ÚGÒŽÛEÙ€…ˆl?wù¾´íܨNÁw àûý×–œdÑ·$~åG6¬&î}kQÑŸN3èÖð—nhS…£Ixb=ÊŠ¼FÕUø Ú®:j)SˆˆO©³’¨ÈBÏŸj#¿ b!ÇL©ÈVƒK{¡ÈPh(𧢓~t°Á®wX'xÚÁÉÐcDò¾›n_.æ®d@I®IÓæÉátƒ¦pŽÈºvµÅ–%õFdĪ]‡ %õŽæÆìƒ9ºb£QÏÖ^8ã>Ô©þ Ùä:Ã2mTj¸B³¨%÷2ûú{[ÏÖ1æÍq=@ÕöUÞ`ñ¬S’;£7Çwž8TÑwî0s²©ßzØL —ÌɽæDÊNñ£ÞMCÈ2ij€S¡~vÌ{0-bçîøTÝ$ñ¨—õ{ñØM¶\iÙv,ù=~rMbÃL¼…Ÿhé ž;Ê“Ïí¯3¸)´…7X*k»>°UuèÙ>¼ÞÛÕcyú¡º+×Üâ¶!t5l®Ð¥Ü84Rb5ZŠŠŒÆ<£Z©Ž*lÉ fišu­°ë\vt“­…²^[ÁÒ]öË‘++Ï,™­ÇÕ‰ò=ªN¯7goÀ¥ÿÀNî[’vþÎ#u6ùÐb ¦ÏÅ8àþœ¯>ë¹h·±¡$‹Æ !U“–¡¦h{jRRqöÄ=¿­BQh¢Ê=':U‰õlEèAC½D™Y•ëDKb~0ñºp““ «äiÌ],š¼pÇ?œù5ö|]k× ù:&setÒFžÏ± i=)½0ïS蘈–Z­`.›c”ÐÑX+²£)>Ü —àD˜ ‡é…c](üüŽž{.¤tåœrUºÄ5ݺÁíõ§ï žì.¨ …·‘›)©Î­Ifèëâ@‘­T¥6%–%ó¬[ñzd[bYK×6¦*@^<Te íYóäq°™ZúpÏiŸG½×Ñ$ K:òõ C±)Å–Õ G êªëªsÛrººqéü§mwj+Û|èhY=X¡lz±Pû(Zè“WZXÁÐŽ-U޲ /À"‰01> ¢¦†ܹÿª™o^P’è¦3ô÷O_Ñ×ßêj©s²´Tèj,ƒKo!„°/EX:\êaþøç:¼(nÕî|^§ˆþò§Ìþ5!þu&ž7~ÿ êDco‰ÿv3œ'[#Úí%›¡¤ƒåD$}“^—Žÿ‘ÆcÐ pê ¸…{"iÈve¥çdg¦WçÔ6¸ªë¼Cöî)ïý¯zÚ ñQ/*éõRJÉ;ØûKS{°EÍÅ%`ùëõÀ³';lá€Þ죒'Uš9HEVË´ð¥Îʆ— ÆË#é¶ÿ›ŒF~õü4>äå OðïÊ5eï@^F£Ï‰zuŸ“ -GJG¥SäéÅŒF+ýG€ÿ¨*“Éd3™Í%–ŽR·»Üb.±™ÍV«Íÿ‚ø/iýÍendstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3729 >> stream xœ­WiTTWº½EAÝ«"QÊRú^ŒCÇ EŒSÛ1Ί€AÊŒŠUÌ*a.ªê«ŠyªŠé‚ ¨85¨!ޱ/­/>§LÆä\rx«ûhÌz1ýÞ[Ý‹µøq9¬s¾ýí½¿ý‰(k+J$Ù»¹{*vûÊgNó Žõ°|(Œ c¬„?ˆoïyÔãc¶b°µîcßaN E1o¡µC(±H´!$|‰",.bGpH”ãÌ3\¦M#¿ç9úÅ9.vrtõõߥPFîÚáè+pturwrôP(ÉÇŽï(äŽ~!¾¡AŽŠ G¯ÀŽÞë–y®s\á¹Æûƒu“œ~ó®_>P5n‘\¶4"rEÔÊè_¿8÷À B‰àJîªÖŸ&7ñpš<áéÕ ÐÆ!úÅÕ³.mô`qÂOÚý]ô8—Jª–+Eu]¨®K,lC;eH6é9f°íÔ±Øûv ’ Ï¾FöìÂ\„€{øÅæ­±>%ò“amÚOà0‚óõmµGŽ–4B3Ž« ¨ß nÄbñzM/Fó‰ö?\F%]#¤C„,*CÒi_c‘Ë·t5{…&µq–Ú>3¤nãzwþÓÚÓÆˆÖ€KÀ ú»gHÆ-Ž­˜õ^¨¼Ð¤d£ÌûÊ –A~4˜@—_ÂH‡µÕ4}ëÜ lÍÙýÝêée ø^„þÐ- (îY…È7¦ãù,~./“\ÏH âzké uÒV)GÏ%èOhšŒÜ¹:¬ÓNó\´Ówß`Þ–lÓd7pÂaºAŸ}”}!¹Ÿú·®j[ Áßò¾óä:t¥ÅhiøÓ»÷wC? RY]XíöÙòé±i¬‰%RzC{kõg jàš…J<-MUJ¤®‹5ùMr¦Ÿµ<¼£m&›’¾7 ¹9±¤¬¬°†%7'Ï¥òcÐL#*6ŠÚP\›½@RœÞ¹?97¸>̰ª`·aqœcêË}…D§P=«KɆ `ò!ËÈý@!+)%6:9• ­ 5ì^å•!‡B¸ýŠ©Ç’Ï$ª«”Æ}…Ñ `¶GlvYµùзÑlºQ«Ðd¦ƒ˜DPÅqx ª¼,®¼”ÍÊ}qÉ¡-§¡˜íݤ1bb1<úˆÞáE§ º+îñG*O‡k–Ãnس LÏÈëé ÁÜjKðˆ”ðxÍ ÔŒ£µG?»ÿƒ^VÍêA]Ld”q(©¯ˆ4­&)Ý´@Þäqf*ŒÄ«° vƾعàÈõÚ]󥃜qWÃÎ`rÀP¡%tsfÖ%¶¿ƒD&£x䦴~9º©!}ºÑÙÇÑ^ô¹oÀ xTÊ¢4–Çc‰~¥!Ñí´à)3ÔŒ’–Þø×K°øfTÇņ ×Ù~ºÌ£ƒ„‚cî¢vRçÊá¼’^¢Î;È µôÁŒ¼ël/‰ÔÌ9)|D’²Ëè>Vâ$ÜNjú§g^3WR©ÿ‚ȧ¾€Jž—w #jÇÆ7Ÿ!’Mj˜Q¿7‰ûœiEJöI 4ûš +èÙ>Kߟ§:ÞÁ¢ÿxù—.PÏäðdÜ!¸ngexkÂ_Hƒ÷Þ7—`œi"@ës„— ^d¢Ä‚J˜HZ,×ÄC(ÌÓ;ÈéÚ¬ÝÉ•*aÎwÀÖ¨QU¤ÈY}Œ,OGh6@L±> yé¡hþÙ!+^¯*€l0è³KÑptÇ!·¢ôÈ%ÝK£SñÅ  SÕw”ö®!¿Ë]¤‰e‚ü?eg£×Ñž‘)ñÐQÌ’¶³iÙֲߧh0óܼ]å¦xseiiek0ìã̇O[€9öI 3çOã­ê…sà=Fúþ‚ÿŠ8ÿi[Ë +­Ý’Y|dtygÑÏi—MZ¼sû&¿¦È½WФg-— ÓËÐŽûÚ.¸èÖ…²ˆ-†¼¶E±×–ß,ºAK›û}±óÞ'tÓesБÀK0ò•ù?Z™ä¬ õý¼!¤qOÍGå ¥”.#èóK*›Žò'©{‘€½¸þàÕ1‡º„µ]rÞÞt n¡ì[#¤ö¿jÇ.˜oAø &7ŠLHÒŽô¤ 8ËA:‹QUZAFJ½ª¡ŒµHt(`²å:!GUŠ&õZ9l šô”=»Ã}€ 5™•±…qœ´xOL’<ð`PÇÙÖ“«9´Hx¯æÊq F’†µ8É!þ‹Ó¢Æ.äsO,LFƒd¹© NÖªÔlôRïÝÞÀxÌï@SÑü/[O:³/ÀÌ%_déžJ³©ˆ¿²ìÄ|<ÀiœeŒ=„lC²ÍµøLÒìW€«ÖÞÔÝ÷y{ öôÇôYS2c*çJâK=o÷ùïzÒ\¬‡pb2ôØ"çzWÑø[¡*¹P«‹&L“KŽ@Ô¤2½Í´ü÷0á9ÁL礀&7AÕûÐ!/^§ÍL¦NÏWiŽ?aiÿV˜Ð¥=I')FHÏ S ªÌ´b 6|ÎÊ(_`|'Ö¢Eœ ÕÑÒ“z0}çýÆ—ñxvø~2£Amˆ*çÜ‘ƒ 'Króc-üÈx¸÷²Gýå"†–žj†ƒ‰5ŠËa„Ý^¼ïpÔY`>/¼_Îáa–lÖ–Õx8KæN±ÌPPž™««ƒ2`¤VwÑ0ÀS8;TE`e¦ˆ~fÿàÙ‹#¤U(ͲL¤g5s‚5-ý¸?«_ÊM#*­zMžäYùÐ 4ŒÔað¬.Ò©ˆ‰ ¯ˆ®®3UVZÆC ßã\#:݉Vw~Þ)â‘› ÎGµ…5µùääa«Z‡…>§àóÙÙ‹Ÿ£¹xöv«O€ô¼—Ñ ùôÅu:|”ÊîôØ|aUÁ6"Sñü™6—n;èÏ54&_‹kL9_”v<ªÞÖ1ï¯_:×Ç=ÿÈ&vm{úumƒ6' àUzóéKo¾ ›m8×äqÇßÈ ²¾ûYqÄ6È‹GõÇ™k^Û†71 9™I¯l#ŒÃÏiì8uÞ´5ãZÐVö¿;O@ÌÛHЏn4æ[V°£Ïß& ¯Ĩ,¤ð"Ýð—Tì¡héÕ7·V’ȨNA-¡cÏÇÿsëÓÆ½ž¿«¹à»fo@ümï ·_¯eßü;ײÿï1=‹•¢Ö.”C8/tC÷Twƒ»üî-©Øka©™b%÷oÜ/"ÓüÚ¿Ñ–NÅ‹…¡²š˜ÒèˆXedT™Ò\SZQ΢YÃóh¿ƒ¼Ÿ‰Ð’21Ú.»Ó 3E×çggØŒ ½Eú W­_³m+—®Öj Qe©²r»n"šµ‹)–#E^N¹„xy;ÐÚKa;l™tz²äÈHo)¶µ­¨)Ò²2ôúLC¦í`Šúâ^endstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 479 >> stream xœcd`ab`ddôñ ÊÏM̳РJM/ÍI, ªüfü!ÃôC–¹»ûGÂ4Önæn–?…¾Ç ~áÿ)ÀÀÂÈžž_íœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡Ášz讂ñ‹KR‹2‹³sK2µ»˜Yî~_Ã÷ŸIXŽáHÙ§r¡ïõ‡#‹ 'üHøn*Ú½,zz销e &Ô÷sô²OïŸ6aÚ„cË$–MÛ6­{)ǬºyUÕuµÍõr¿íg~—ïžØ3±{¢äìæÙ¥µ5Õ]r­ìÂÝU½•}US•$~3^¯Ÿ\7³º[²ª®¢¦`wýÂ&ùcÓÚ¦µMo—ìd¯oohkh ((hHhè.䨙Q1göŒ™“§Ë}g¼^û[žUxAkWk«Tõäê…r³ºgNëÍ!¬Ð=»cvçì†ïlßí§7ϨÝ-9gƼYò|e ~8Ïúž?uò¶5\×¹å¸XBòy8»y¸—÷€À„ =½“ðð,¬oâ¤¾Þ &òð20Qüendstream endobj 165 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 166 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 447 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ûÇìi¬Ý<ÌÝ<,~( }üÃÿ=R€…‘1<=¿Ú9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐ]ã'—¤egç&–d0000j10v1012²ìý¾†ï?S² ѲNåŒ?f7í^™<±tjê¬Ô™i³,ùε¼{#ÇìºyÕµõÍurI…)ù‰Å³¾+HôLì™Ô=±sNÕ´ênŽâæòÚ–žæžfù™¿Å§,OZ*Y7¹v:Pª¢®¢:wsëÂFù5k7TýæÊïN娞Q1oöÌé“gÈmYºiùÖŵ¿Å$ºš»š»[8j'—/ž=gÚœ^¹î¹ó:æ4|‘ØZ¼)KáŒæ™õ³»9æÍ˜7[ž¯lÁçYßó§N^À¶‰ë·KH>g7÷êžÞž¾žÞI=½“óðlèÝÜßÓ?©§JïT^E9´\endstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4302 >> stream xœ­— TçÚÇ',™©"(C´ájÁºÔZZëF¥.¢¸€ ²Â a Iž@Ø÷@`ÅTDEkKÕV[•ÖZ¯U+j[—Z[ßá÷ë ´ýz{oÏwÎwÂÉ9LÞ3Ïû>Ïÿù=ÿW€™a`ÂÚuî’p¿§9îA1b?™á¡;YÀ¾lľb Ü®Lò53c039õ²ÕzKÔ7ÅX õã1c`KÄY"M…GÛÍŸ;wÁœ9ü·“Ý®»Žv®~þa’¸¨°;¿ˆÝv®ŽëíÖKâø‡!vÓ%v»‚ýÄv’@»M^vž+Ý=ì\Ü7xºyÌpüã¶FÿÇ0Ì~y„DúîJY”KtLlœßÚÿu»ƒ‚C<<Åás,|Óé­áÙŽ6Û€¹a1{ÌóÀ6aÓ1Ol3¶óÂV`s°mØ»˜#¶[…¹`«±5˜+ö:ö¶[MÀ¬°‰˜-6 ›ŒÝÄÆa˜Ÿ*ÌKX¢ŒFáFŒ·šŒ1©7ùÙÔÍôCa2n…FÄ®—°—JƉ»sì#³ ã¬ÆiÆ}f^gA[ôO`6A?áK™e‡å%´Ïüc#mgØíq‚¡è‰L"¾ä…©z.n·Q”* ’ T™™I\Øð]›”Ðèà%jBŒïÏi‚N@¦Jw×$2P …ٹٹ=HdƒJ„§¸YÚT¶áI‰ñ#9'á(œ *qr!ƒ¾25g/ÿËìÕY"“8`MÊÙÜÜä2P3Ú„Ã h–´GëJ·‚#ø®Ú+!Ô„d3g/7ã 3¶Ñ\ î-‡5|œžìjÍ18¥ê>Áàkäp”F®8Yøóç'Ï}XºmÅ%ýéZó_Œ·1¹ž©4ßB·ŒÙx"BÖSŸré`ÇYqžNGˆüádA-,A l”í”x{ÇùÁVðÓEˆìR÷ñÇì„3ºC-'Ž—wÀ8VRï§ñ?‚?0·™A³uhP_Ë$ê-Ÿ  º[Öätv‹åŒÇÜÏ­1»¨s8ùŒ›n8ߥ¼L_z8ø¿žÏ oŒl ý4}¬é…9¡Ë‚·|Û£¨äȆjIqrÌm§kº&Ù?Ãhó¡F`†ŒM¹ÍN}d<†îˆ;G£yÜ»Ô0!®^Í–ÒÃux J¾„г„-GSÐtäFOŸ»`ʦ•[\œc×ò…Å„;Tùm4Û·eç÷PÏ„ ß«)èðÆrg˜nÈî1_ƒÐú™[ ZÄX"»Áûƒ5z4[zkòäCóxaH„2îµHgn)ÿ>»çïCÕ÷ñ‡%â…´UI„ SÄ3(G”.‰& É£š zÏ ÎŽÐ %(Ætøò¯û®þuß7…欃!zW #î²|véÙ7Ö¤û;^ÔÞâ³ÁÏo]4¥~*$pSþDT}Ù¥š€H^ìqø eq'f⇊Ñ4$¤Ô¸J”Q„´6±¾¶¾¼…2ÿEPˆÉuH¨Cu‚¶(ù„1+DV"8×S²/(yYdîŠR8C´ÖwÝEXþ›²lJ“™¥@”A~5ý=^ …) ¤$S*UZZ¦B\'Î 14Pè ¯°²ÈúºM¼?ãDÚ‰ÔJe]bQº.ˆ°×>òæ©JY¤ÎKb/¤'Мži%yMu¥Í+.ÍÍíÚuT©ãõbÑ}ùÍSÀAŽÅ0(™a_egž°.ƒÆCY(KÄà®J9l†Ý°‚sq+~?'%^‹sæÜlHvâÜzQ'jE®}7ý´Œ{£ÊNÖ(øCT@n-’GN‘¡T¦eR^ËÂ÷÷À–Û̽É-ä|8_´ˆ{y}{¹£WOWJ;‚‹€(†Â -Ãjs/©í4´$É µq–?Hôý¹|‡¾CãEg$žørqPÐjø¦ŠB-ÈžáìÑZ ®^üêL%!ÃÉ+·¹f!gr=º".´Ÿ¿Dó(ïbM»Ïqc<—´ü^!œ›õ[íWâó·¾çü¦¢û…¾~ñËUPΧ¹™8¸‚ßÑàæ¸Cá$ôÖ7÷š7…¼Ä) V˾ÆØ*öU>yáÊ ±F’Í3³YU¹"!U­Ê’Oårm8!jTæ©ò ß¶±ª)÷UE«wB0D@Ÿm¼‡§jy ràM^R² ¡ ;¿½Œ®ÛÔžh/i×ë®Ë‹¨C#Qý•*…Ø þ†—t«Ë¤©ªLeÆk\Žjâ+”9¶Lv#Ô[¹‹G¼˜fXß 5êâ½…òRP*öÚ8q1³Qif9Ï­mÓ‘mre(¿<$ÇVŒó(R•„ ÷³MnJNj9”ƒ¶X[ôí³ù‘Û§MÕÊËÁ¶rŠ´E<¾´©ûè¶V3Š[]\; Ò¡ù:Ës÷ÑÛ—ùâú°™wDïK6árØÇ*(äŒómó9¸o{ùV ­ô{O\›ØØT]ÓØí“ tSã±Âf Nœ X@‡âžªeŠÕaÎÁ1[ÀŸ åN¤nì?­/£È~¹ÍAÝ“uçÊ¿¢¹'E¤næ²ð;v¶ÿäÌghN¯8£4ìíÙïF¨$wØËYr.@¼þrz¼S[r—je„ÁʹàÞ°|øäÕã$fó ]p~º3 +g,kn¦ß´&›ÙÊ‘Z…)Åü›BŽª ²@ž•š•îÀ¥Ùp&¨<“€mcÔRo¬T‚;ì6¤þT«J¤hþ0n#s‹Ùáâ ¶2H,Ufä}AÛ¤ÆøŠhYB’Ô§+ðäÇÝœn ÐöíâÆªCç³mùþúè,ß_¨ãn³^Ðv í¼oÌ.EcE%ràÛ^•˜IE¯òˆôâ=§“<ôç~ÕÓ_zJ%ë¤c³âöBYרX[Éœ]¹g5ËŽ›À‰žÎàg;ÝŠÆRæÿXñ"•öÌ%†]sÝø'2ÑøOP¶ïÌ.¾JÕ3Üba,d@F=|Þ†‹fûÓkÔÙRž‹E¹—Âv{ŧ³Ë4½üü+WŸ2Ì?{8ÖD³­¸FƒÔÿÄr“µi%`[ ¹…ÚB”3df£Q›_-†°?ç/Ï<€sJÃ0–ëd]b¦N](MצC†áÀç¡èÖ»—¬I»\¶s”ìSœÜâö|"?D®Èóé{‡'²…Ý NÄMxì€Æ^9Ò][E¿‡“Ó1dm  ÜK9¾>bïxÿɾàßÙÙ­úZ¡'¯¯ñ`]ë!¦ºà`lS@I¨!žo ÁÙÙ†¢7 %#VDyñyUòyi©ÊŒ,5b?_µ¶Ã®¦è¶Ð^u?th¿°.jôøŽ÷)fs¦rã9럦!sdÞû¬žvA“D\–°9Vèá4ôûi8+C¨·ÆðjgM”ÅÈxfz îhïX“¯²FCæ¢ýû6QäGï8¹M£9|±ø÷Å™ˆˆ`¸±È'­îöé¦È)EP¤*â¥ÌGY kªªn¤žw>·« ­=÷UÊh²l~?êjòûèå«mï[“V›ÅNUïeü#|äAÁ”´nw™³]{µUì¡U*I0ßq!AM ù½Ü+É?pǤw¹#+dñSßÕCñ‡(ö0›ç^¤gGäÅ7ñ)¯È-/,Õ%1{x#úÝå‹×z%mÉeôÁŽ(…2] „Å®å jmÞ®‰<‡‰ §ÎD'g9”Q9ñEɈâ̓'^)juJ•œPTº%±fËñ9@arî¥EsíßéÙž« ì¬R ±’ëñ…ª}!´¸¹l[6w Ç#È)Vóíž%®¾Ñ?uê;nKCëâ››kk›)ò¬=ª<„jìú¨†×ÙŠ5;Â3·Ëh±O°*BE·ûT2¤ONS§«AN$@%Õ#¼½ålÎÊ%È+~fî€Ý¡Ðë Ø'«…ïñ›"ЄûƒO¨Ñ}"ÁÃY7в¾Ñgù”Idn3? Z“”œÝ…vˆÐ¸…8ÁömIDãéÑYè—Ž!ý1c>‹Eð`ù1Y…¼ ¢*%ÿxÕãpøvÎéySœ–½PÔAUÆçe}¸ÀÏm=8ûi5_ âáßF-EOD°rƒ·4gþ…Mxuttvà“«g=WRuÃV¢Åoo_üúг7.ïÿ¬ƒB–ïÔï9ëmG·ÒyïkÝÍ{HÊú®ëýŒûHtî]kòá2~g¡Îì“ynïÈYsä½YÈôÊÁ¾î**甜±¯{´—v_$¥’?.+P(88©1¡F"‰O_Óç;ˆDüÇI(Ç{¢¡Sç$mƒ³a¼:äñû¡÷Ø$^ôÇk÷·œ8PÚÁK²i•6µ,P»|GÁÍ2 a‚ofŒ¼Øq¿ò7¢AÆóW×Lq_˜4Géøg²ˆß3y䶃LXøàú Ï‚Kÿ·r67‡åDM±µRiL¬TZÓÔT[×D¡UÿíÙó£pËb‘'äª3FþÙ¢O#;wÇK¥Òji»®¼‚¿º8-u¦² àå§ÈËÈ/¾~¡~ÍËœýûqcêXçJQœW'dÆ Ž¥Æ˜lÚ´Óì%0Û Éæ?Zþ œÿ™™>GWŸS¢ÍÑææ™Ã°9E¯öendstream endobj 168 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1599 >> stream xœ…TPçÞ厽­"œlVì^’š†JGƒ™FÄ™`ùÓD “ãŽ;oÁ»óÄÑà{€?¨w §AM'˜äÚª©î4žDÇÖÖ IkŒiÒNßùü£{‰¤iÓÙù¾y÷y¾çyÞ÷£)mEÓ´þ—YY’]JKZQ\â²nïÍThå‘(åQÍë;”6å~4Äh F|D×ÕS1?3õ”†¦_2­_,•Ul°”˜†¹))©IIê7ÍPTaÈH6d­’Ûaµ íë ™ÉYɆlÉ­nZ ³$»¡¨Ø\h3$“aUñ¯ y+—®Xix~EN^îʧ“ÿãPãKŠ¢ôvÉát×›-¶õéIÉ•CåR«¨k°¸¼B½äƒ}Àr†>èjew³|VçŽÍÛߊÛ_J`ÉbOŠ´ú”ãÀ6ñØFÿŽoªï¼Q/³6»91Ûxè¼[ØÞ±³YÖN·˜¢ó@YokË^ÿ>á¬ùt‹ º??9®ð¼ŒqîxL AhDµ÷®’‡<¼j«ÜuÖ]BÝ£Ëì"v‹¸ Suß™HRo2íÐe¸«žgŸÑU•A©5lö-âažøØ|å/ÃBcFä„ST3¼êWYlBü„ lk²|?8à În³å98Ò#`§î‡LÒPù'ÇOí>zZàÒ×7vÀ[ #’SùæÈŸËñï†Ð¥æ+m¾· ª<aï&Kt×s®ÃÚ'!ÝÞYÑÝÖ³ç]Áßð4{ãLi¶Hž­#3òái–«]8œu÷Àœ ª<–î üÝI:R<8a£ÑÍrÊ’WagBnQàÔàß¡Þû }®„ÐöWbBš?äirÕTƒk«°ÝSY¸Øyˆo¿×ó/|è`Ë.h;ê¼»¼[,¾-mÀú::|×fB>Y”MRIì—³0Ÿè¹×ú>5¹(9þX½ª@ÏGïqtãj7v­V›G“˜H¦ŠÜv7:©Óß~[UfƒÊßã’Ÿã|ž 佺 }YîG·?•‡®^8ûRÞXÈ_Â)2ýÁuÜ?¢QÖ˪® Ër¬Xµð"Ì?æ¾ÃâÓÑ 'Íü‚ð$vÎL2™èÿ1 ‡F»Å…øSžìgÚÿxñäïá2¼³vo:;6í]tdÜ5ÿcØqù[â¾ëG¦ýÿÎzä– }毪v~¨¼¦K*ñãß6(™ÉxÆàÛDŒ&A;.È´Q¸ò¤rˆ÷;»$É锤.§ßßÕå"ŠK¦ÕfÔ(Vºª2íÛ¨È<ÆS¦bcO»ï"Ó&¬o3­¾ ‡T¯Â÷. ~§sƒƒ\`p‹®P;wËx¹H¨kÜt&OíÎÒmör–»yd§*JÇ@;á¸H‚:³k|XG#øa—è¸Á[ïœ9Õñfu–@*u[íã ¯|¯èGJÆÚóŒŒê‡î¿ðgõÑ(Î?ñG×ÖŠ7 ¦Zp8K*À>žøO4àS_Ýûêt ÜÔ"ÖìÛØ´Ø´å©DC& §œýâ4¦_¬"KÈ£$ŽÌ ËÈRœBÆÇFo;*æ ƒ_PW´ÖxþÚÍþ z¦Üô°Õxèý;%E£˜ñ›2ÄÔƒ©¸ˆ8Ä4Ÿ€¾ˆŸÈѸ9 Þ¸È÷Ù|VS™Íjê)ëíóõô ±µÍÊâfüEKƒ—‘'…& “´«¤˜Ÿ@Ìämû½ÞúúFïÁú}11}]õ »ëÛ¼MA”c¦PÔ¿_¯ùendstream endobj 169 0 obj << /Filter /FlateDecode /Length 1180 >> stream xœ¥V=sã6íÕ»KÁr™ a|P•x|“;;.ÎÒäŠ8O”-Æ’(SÔeî§Jq‹É„,]‘Œ $v±xûÞ^2JXFÝ/þÏV#š=^FÌ¿Íâßl•]MG—÷Ìâb©eÙôqBXÆXI 7YI%aBgÓÕè¸o?ç7„ i`ž”PeUº>/„R„R·9/‰µª„6ÌÆx˜ù—‚Xø8©LiÖÃá6/¡Z }ÓïöI™†à”²‡œä…¢_IøµÛmB°¶¶„MXÌUK3ÌhëdÔ=wÕúy·>íK·Ð¬Ý³ÆÙ®ªz0)M9øP|ú·ëûðYs­y «ààÂGSÚ4A÷4ÎÿœÞ`GˆÁ4YÁQÒ˜lZ#Ì¿§ÐÖC„ª¤ tOX8œ„DP8T»áìG÷c n»¯›¾Ý†:©äØÁˆã Ú®©›ôkR0ñå"Y¨LØ¢$)¥FÆøÂßmšz¾jÚeî"•Å!ηZÀS³-æ[‡°[µ„«Ý2/J…{àBŒ(¶aÞc#â‚);qÇRì—û)îvÌ­¹àÖ†J n¡\dçD1ÅCÄ÷ ̵oÛÿ$ð+hŽÂ¦øCM`³ôlB;x`2œÚ}™ «þçûÛûp6„„3CXÉ&°èûÍv|y¹Ýu_¶Gºç†ÔóË|ú×[0‚©dŒ$nJ!$6´4*€v]9z €""‘k”ÃKµίã¼RàÖL* 5Û'_P7æ¼db (|‡]lóA@¾Í2 h’(f¹j“9Ú0éEqGâÀÑ1‰Âvc_$ªùUfÉvWQ‰¼”°H+õ9•ÏyžWÕÐ7j÷GTÂûË$Ã!§1åIô'D¬•p×S6=Êxýô1&mcùèK lï•Î;ÐP­q|] ËxkP6Ê(ayÚ÷&:±3íêóÖz@/9¡£dDëh%pа%†»¢üÇ%‡ì/QÖ OŠ´ž®ê›Ü“ÈW(HB@ž2q–Êø¦y8"ü3l†’ý¼lf¯»MQ-ûžØ¼TôÁwô‘÷6Ëeµž½…<ž6g¬™£í2«ö`Ý´»n]¡ß ÄÙb…(äh”ct¢ø :G³íqC cÊ,øHå“ö±ÿ»êÂ74ž²jËœÿšÄ«”ô}ÈÇìB¨ƒ†1è`ßÑpßµ‰ø6Çz6ÊAnFÃ'­©V Ö‰VöAï1ÈéÞGèÃáÕ%Š=™À2¸!‡x+rwÀ¡¿ßVÝÛx·f‰ñnšvzGt¬±ášƒg…Ë~tyŠ ?;ÅÒ½ÀÏ_.œKoHª(TÕ Ù´Ç'›tž% ij ½czðÃq)Ë´¶d°ëº³—©c–ûĨÕP´òÏë¶o~p•¢–ƒ™usÊœ¢ ÏÚ¾æÿoúxëÉM” ꪯÎÝ£‚ö~M¨oU C¸˜¸›;Ù9ZÔͬYŸ–£¯úHzf,¸¸<Þ”%Fe…Ôm—yÓeܹî»éè#þ¾6Öendstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3524 >> stream xœW XW¶®¦é® •†F´ªqn¸dÔLŒŠŠ»¢hPí&* ›‚‚€²6K÷¡AEAI mrËCÔÄyjŒF£/_ž>£ÃCt 1§ô’oÞm0“eòÍ÷¾ÛÝ_uÝåÜ{Îþÿ\ãèÀ(Šþ‹—¬ˆ‰2DO˜8Ö7&r£ýÕHÙS!r+rŒ{á¯g%8;ž4`–+Ú^èþ¸x£T(7EÏŽÙš¶]7ÑÇgÒØ±ôwš.$Qç;N·Ðð^DLB\D¸Î½Q·pÜ’qº¥1 ôe¸nTL´.dS˜!r³.f³nå¦ÕºUsWèæ­X¶Ê?àq¿ÝÕ?ÿ1 #ÎŠŽ™ë·}Ç‚xºÖÆM›CÃV„DDFN˜8iò› 3„YÆø3Ùf$³’YżËx3ÌjÆ—™ÃÌeü˜yÌ|f3‰YÈLf3K˜¥ÌTÆ•á™× ãÆè¨[G&ƒéR,UØ\¢••áÊËŽjÇP•JeV=UoVÅÎâ†q¥}ÞîSì4Ïéeß7ûÞsŽsnê7¼ßM—Q.ÐæòårúHòúÅ‹67i KJ^¸šöÄG,˜²‰$¯ûG­1L1¹±¹9°¸D½úˆå/`…:øjLœÄî€MSš_ KA;ºi±J}…ø¨ÆêÕ –Nh‚xµ&Ž\Ãl Ù­Æ>Ø¢ry¡¢¦ë¤R¬Í•¨Àõ¨pç‹åN7É+ØÇ!‡ÙKÂf† ftPóÿK¦gªôìå"Ø(’Ïüôlå¼O[ïü0œå?Gæ¿Û¯¯Š›!ºßqù‡ÃÄ4&«QhSÔ£3–¡³R®Ã zŽB&)“‡7âÞ1'à”OÐU Î%š©@8¢!n€}îÿ¨lª›O”à#hÜz æP(B]Z¹~õ¤Ü))pòò ¤|ÑŒ4OÆ`â/tOÓ?ïîôÒËÓÔ¸GaÜ"’Ay }v†­ ž¿epÄ[îDoõø,üx 5¤r- ]]q5Í'Ù®ï‘sçuò ™Õ´¾ôv¸Ÿa7õ‘RÍß Sï£;ôøV¸ ‡©&ãB–e+ÂIØGØfL‚D.Ä–T[k;Ð"P÷\k·bµìÇÐâ¤VÔµ*_Œ”ý5ј®ê~HÏÐá¥W[-¨†ã€&­D<Ðzývï_±Ô¾™F +ÑŠCÕ8 j}÷“~öœmg²l8ð(>úÉQEÓuL¾®”ß@Qg·Ù† /\U²¨tY)œå>yU¨,œkòRöBpU_#~ÍVBÑ®,dìrrӌٹ1› C‹"Þ@܆à€õÙb]¶-«š3šcÁÀ½ãñ«WtÆY‡ÌyIÀÅCîv‘°ìN0–Y âp¤òTØy8ðµ2ôé^[{`ÂJàú †Vì×êÎwÊN8@ÓndDEG.ƒOk<†Ã$2  ¬yTШQ¹Ü »¤^íuoû­Û'/Þ(̳l[í±Ó·ý æ+í0g—á„(;²¼øý¸ÕìŒõK§ÏÌ©½ ðZü–å­¿îMgG~ýãáÛpWòÞR»ÈS^án(j•²»›D)†%6Ô4 ´„P §GÇîNâ¨g-O¡•¶§ÐØ“ËÛ™ŠxÙ[RÈ×äáû,„À›­ž­«Î6å€t‘ô!%DƒÇT$õvÓ\Ø Ñ°¶Ñe¯°8§Ûµx§%»<*`¯¥øNß´Eå{¯€=1Ƥ½2ðÂÚc Ú”¡ÔDJ϶Øâé˜rÒÅ!da±Iõ‘¤Ž3ùSÃè&.±ù™{R 2ò³Jâ ;'U;ƒ,' VÚGm7Í££" ¢èJ—XÛýZQb±È%ÜøâÃÖ“‡D~õfÐÿ]hSWí…j‘bÍØ)‰kCl§ÿŠLýw{9—‚ͽQÑD9i:)å0:¨, Ò“ÍæÔlÁ¸sëüñ”¼Çœº”‡îè^tÉ” f“É,ææ¦ì‚XÎp,©¶ªiß™{„-\EüæRÊbÉ Çãq$N¨G®ègÊN6\e¢ÝV¡ý¬ å¯ÿ‰C™å%2뤭gwTn°úQÛCFL":2ôÉŸÐã™JÛ 1ågþèÈ×-5¬N õ$ùk”«›Äú‹— k N&Ú6جXFs ¬øŽÍÕκ#: ÃÿBÞAY¾ ²’͹)Y¶… ⃨¡áfô¼(ây5ÿCM!Ô5Þ >#Zö-§>N\‰î{£O=? ŽG ÉP[ZòNT5V6|P-ÁPLœóÖØ'°ÝÎf/%Œ³)PÕõ9¥ü–ü“¦%´uŽQn"œ0|–þ6yù<ùÕéû=Ûu­ÂVj1› …]éIϽ×x¤º±ü¤Ð«&$¸'vÜiÀ¤†˜c®õ÷VÌ®º¬ÕÒ´ýVº/<Ž}ÙfhH­Þv4œÖ4ói i çø¶°s÷ÌÕžÏÊíIƒ++)-¾»Í”›aÀv»”ÎÍÌÉÊ1™D²ŒPÉz–7ÿNüLK u¤'_U7^Aj [QV¾¯ú ö#>Z~fQ&äÂ@>-=xÏŒÃ×ì3ÒÚ`?´Ú1Ö=ª™vL«è^ã ç"K ¨ÁïM·:¸ù žG{_gÛò«ºuCï׿þrxoZtl¼é NŸm! ÜÍ?Úý7Imzƒ2UŒØžnÌø‰+LÊ·k-Õբ ô• ZœÝm(Lîy[ { Š*1Q~¦-:h)¼¯êoêø|éj‚w£J)'Ðre°|—µš B˜µˆ(í÷‹úJõÐ^ؼë®&¢žÅw-ªW³Ñ ¯¢G›¤¸ˆè¯+e Fh êÜx£ÿ®ôLãtØE•b¼šG_TþÏõ6øÖt7‰–¨¼yWÚUSßXuº5²*²@h>Ý^P\ÇÉ™³§¿;;D/’(’ž&HôH’§²½6S›O €®ÜÇ×[]Ï q@‡=èuèå%’&—â< |û˜Œ¯û¦î?/×ÜÙWˆH§ù¿µæDòë•§kÒ­+Z[®C!pÁ/**'8"DܾʹɔjN0瘲rÁ9\R!Ϊц­/ÂÄ/È?$JÅåõp”k‰¶†¼q¦!:Ú0þé*z“˜öå_ŸŠ?»—*—ý6g/eŠQAo8n’7ª;%oy[k.ˆM4Á®Ttv/Séñ8Q…ŸPn<O ŽÞÒB(ßP#àMÕÏ.¸‰¯-nÆéÍ[lGÕ[W‚+2§1µî¼kA°]¦> ƒß ʌРøË;2™Çê Ü“W2‡éméÓ–úÊs§h1µÊRi†f§ üµöäàµiž+ ¨tÝ£%×’ \*¤'‰ä$å´C%–¼’½BÙþÆ“_Ñ0ÁØ·gÃPÒóâý…‹¼Žiß×\-òíL㶺ÍQ[×Mþr öxÝL×ùˆ.©e²1n8TR¦–œPÑWpr\ãÜœûZóóòóó,y{‹Jï8;·œ.Ûc).Ê·8÷c˜ÿ›Ùeendstream endobj 171 0 obj << /Filter /FlateDecode /Length 217 >> stream xœ]Ánà @ï|à6t“*_ÚK›¦u?@ˆ©8” šö÷³všvxHlc»;œŽ§’Û}´9ži±)—©Ñm¾·Hv¤K.Ær\¦g¼†jºÃ[¨_ß•,PZý=\©û„Þé•[“â<Ñ­†H-” ™}ßã>%4T¦O¯k˜þD ÕáJ?îXÝ¿PaD_PØDÖaD«÷¨p)/ºC¼—|@…u£}>;’–eøç¬6Þ[£²è†t2x.ô»Ä:WɲŒùWm8endstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1067 >> stream xœ…“leÇïv³=¶:•ÐÐ"\Ô¡È– ‰‰D8ˆ² ¸)é íêºvëmëÊèÖv¬?öôîÚ®½­3tt…m¤‚?þØf¦QALt1!úÿ˜þ!˜ù^w zn,5oòæÍó/Žåça8Žkªª«õíMµÎ–F›…y¢¬¤Æ`ê°èíæŠÅqq}ž¸‰Ë²Þ{@E€*ÿÃõù#«ÑùPì>¸SâxÕŒ&’å¶V§Ýljj§·••m/)‘÷§èF'ýl)]¡?Öls0ÍfZo=NW”V—Òûm9h¦µYéFC“Þb¤mFú ¡ž>T»·¦–~®æÀ¡j+ý‡ÿ›ì}»ÁnhëÐ[,†Y:0æ³\Úa5Û¬†Xqãë&L½FsÞÁìXö*vÇpÀC8‹Ê=Áò±r̈åð-ø >ŸW›7M¬#šÑ›Eb@rv.žtà³âZB< P@Ø7,Í/îÒø¿àÒíõº|áš¿³‹wóîh…XLÐýŽ«?ÁÐË ø÷ :ˆ8õ$“¶ZÆjM3““éô$µ¬ v§E—G–/q§Ô§†x?xBO‡ïy/`á-mQÂy˜ Æ{nVž;. ‚‹ðLèy%ÌA*}öôé±ô—|8Äó!…>èݼ­¾†‹u—NVÆšôxÀ½lãßå#1ç† 4‘’ Ùõ¬gxß¶+n©À {ÀFJ2d9t0v§³Ùë÷ øýÐOºã¿ýãÔK!ò'xãÜD"1>~'£ÑP\f V}Š¡<[!Ûí•»ªpuÑ„„N¼ªH$aôn´a©î5 {yO87…šžhËïÛ ÷ëÄ”ÊI¬×ïõCÖó < §ÑHŒ‡aH›;–/K¤r…ËñR·Ô0tŠëäR(¤ÇçyÖ Þ˜;„~7•›‘F<¾%%èûb~qZÑý,ð@.Í—ôÒÿi!í,*šÅg'Ä… "k@?¨Ïø¯'Ðí |—ÞUÐxi÷ÍÊ^K6ùPõÆ­L´/*p£œ.ŒÈoßžëðŽéë}7jÞíúÈ_?[øY¾:oäÖ‘oÉÿ"#Z3„øªS‹Š¿Æ#G(%­´±áñ­Ò¦÷Ñ:J$þ–S(¥bT¼­•Wñz„*òÄ3áìê‰+)E¦ SHukvªVª0ÅEbE8ö¬J•â¸Až,›Ý­ºÃþÚO2Yendstream endobj 173 0 obj << /Filter /FlateDecode /Length 349 >> stream xœ]’±nƒ@D{¾‚?à€ãÖ–¬mœÆE¢(ÉÀqX„q‘¿Ï̧H1'=Ø]f¸-Η—Ë4nyñ¾Îñ3mù0Nýšîóc)ïÒuœ²²Êû1n¿dg¼µKVœ_Ûåë{I9 Ò°ó[{KÅGåj{TîMqîÓ}icZÛéš²“szÍÒÔÿ{U»½£ž¥îª»RQwÕ],5;bP“s]¬J5¹:‰¢&`Ö˜J9WE G!åœç‡üQM@özz+öüPƒ”s8•š€tÕÔjÖ㚀"¦66¹á䀾`½½}Áz{ƒWБ•2`@Ö`yL 69ØäVMÀ–˜ÔL@}±Â b6„6Älm,ˆÙÚüE (D„ ( (° f'ïøy™¼n.ÎsOòøX×4m¶]¶=\šqJ ¸Ì »r(û1 °òendstream endobj 174 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4686 >> stream xœ¥WpSwšÂØy€)(±yÏ$KÚ–K`ÓØ„B/ƒ{Å–-[¶,YV/Oú¤§Þ\$Ë–›ÜmŠiÁˆ)!à$ì†Ínv³dCÈ–I²—ýËû¸ËýeÃm¹ËÌÍÜhF3zÒÓûþ¿ö}˜>àñx½¾iS–¸p½8«¤(gÅò¥Ûò ªJ²*â_={˜[4-öHÂANø·Ù™‰œÉÓÏ,â ç£_ß‚sQÝ<‚äñv—ÖªtfÖµ¦¬\ZQTP(N}vùò•K—â÷çR³¥©¯,KÝ•s°LRy°(5K˜›ºaÙ¦e©o”IðÅ¢Ô'Ë„©Ùy…Y%ù©eù©;òö¤îÜþê¶í©k·mÞ¹eûSËþ÷ ÿùjVIyaVvþ”Uš›U^X´¢¬4¯ ‹ úeáž´òŠJñzÉÆšliNn^þ–mEÛ‹ŸpÕ¬dþ‹ âQb3ññ<±•ØNì vO{ˆgˆ4b ±—øñ*ñ±–XA¬$6?$6s ?1›gæϳòX"ãHL'¼ôiûžHøÓôºéÿ‘X‘øYÒÑûFHÑ bÆá™ÌŸµfÖɺÙâ93æ¼5wýÜây çåÌ‹Í`¾nÁ⟠ž9ˆN¼,áMä…ø^5(6³“¡Þ˜H4…À&A-uz5÷å_¥ä¬Ë­Ë`”f @ ©·\íQ:¨ècºtø!èÕXt´ØZ邸^WÀé³ÀUD’È–d­p‹@M–îf$uj¨‡Ž°pˆŠÀ%&‚ÿÀ!šÛ‰ |Nš„ÒÐljs¾¶g5¡ Ç–†yèocõ—bWÑc|50r%Y[¼}/2§%ânu‡éàèa4 Αïf¯Y±w£XFÞÊŽî‡ýP“«–ÖÕm#©öx,–°ƒj|/t¢ÈWQ\ͨ»é­\-#׋Á 4õ¾&WÈIY¬¾ãŽHø÷)ް#loñŸJ©Ž~ö#îüâM{¹j3iج™ÞWxüözÜEÍù6aµ”ÀÐò¢¼ aïSƒ–Zg1±²aŽ.¦\ÿw4«»£³u°uŒõ[ÜAÀ«(-f „ʇ<¶H½$:;ã4ÓnsÔeP§Rh5ܹWR~‚öüàh ¶ <IŸ˜ìL²¨ ØÄVàÛ•eøÇê*7frÝ\'ÑÌf½A°wWzíF1E&€ÊßÕÃB”€!¦Š Ò´ÆRb…h¨oðù¿BDÊïÿô%§µ×¶F–k¨Ì3ÈH¥lšÏFà&RàôAÆÜýŒ½;±’ï2Ø´"!åT1²'OW£ò˜íÎNSµL,2hNÎ…¸iè”>,€ õ$xyñÁ(n>3u,A•ÉcÙ4øXs¹_[VŒ˜îG©b‡™Ye&k´S£qaè&Wòj ªÁ*£«­z+øÀéî³7÷¡Å)ö …u¹‘ ¦]]=½Wíoœ–&rη<”Jp»¢è™I%Æ~ü~BLúø··]y1m_An1¥>“Ùœ?)2TZ¤Ø ÌÿYc@›'fTFÍM¿³U[dÒe€@©‚­ÝèjïÄN¢{ 7î$»Wª†º4\žï0ú‰3Bû……o‰Ht?z=Ass¹Õü¢W÷ç¹^ñ±ÀÆúè“h³½½£©^Ðít69ÜZ¸eK1wŸ4óÁ{ëIÂS~ý©»éŸ'ÄÖÅfóûvíÙ±·¬†ÒŽt§ÿÎðÝF±ÚzÑ"[S7z0Åæï8Þv9;ÛŽÙÖ ºÔPU "²Ö[ƒ+léÇá}0н=z=ùÁq\Ñ­s ±Tô>ô×D”¾ò¡=Ã]àÊqÂÙÙzáfä”.·ž*3Kª Š¬sËÃáÖÆ¡‘ÌC/r)ùK2~z]Þ©§N«O«`)ÿ„K®{FÅÔ !ÒdK­¯ZTZ}`Û¹œOЇÐì‘øó‹ųEE»%<ônB×ÝýVÏ ˆ¸!äÖZõ4÷Ãñ'i¨Qâkþ&³ÙG7˜ >¾ÑÌ0JnáÞu®I»÷%ìnå$ ØËæ0„MÍ8ýS9”_MNG˜­§‡Ñ ô¶6É…}å`½ 4Ó¬Q©¦òkø0 ÃTÎ0á©hˆ3ºÊˆõвâfî¼…Þ½•ÓÝm“Qg¢ŠS×VâÍ­íîÅmË{”îE8ÚZnƒÀ­Ð¬(3H* rÒáî¦áÓ[E[ w‰•TÅ•!mãøq²\¬Õm¥{¿¹é2اÙZ"[—Ï¥Òµ› ³2@b¨öGìáfì³ö*—¼´Btpÿ)ÉÑ+ýã–òå÷çŽùõ9ÄÄ3¨÷é))¢üüãcH…£t%ŽÒÏv][µ?[XRJ]GgãPüŠÖ$¢´f•;C]ªSë4E†jê9î—Ê4c- žÝtÍDs1|ߣ&3±xÝþ¬¿¢âöëA6\¢Ã·a°º½‚“ïŒÔ·Ùß^ºñï‘øÅ:‚Ë ¾y{ƒ¸ìKˆÉb÷óm°‚“Œ ]]«—k(“A[b”JV¥àÖ噯®ÁÕÑc{oÒ ‡lÞ¸À¤ý«ÀowaÌ\p°B-ÒÕÐ9‹¥Û |öRéÛC½”b·roÎ.QQžp?VÞV6Ô~øjìù|~ªùM·Ï­¿@&uÂuë©æñ.ûÛ æzKà¾ÿ4·fÉÛ«ÿ4Æ>Äòã~ÙTvÒzæë¸Ž· ‹âO¼íK(x3VEK>m óFo¡«ØŽ''æñíoÉ.z]úd)¥¯fÔ•Ü|òµ¤Õdté+I/Ý¡¥OË–ï* ¦éëî‡z²Eê« «ò­kÚ^(×–èÅ´®L“rŠ#P2øÛ÷e nß=Ú»¶zðSÞGcGÆÐÀD"?T× ./•×d­-]-]”ûNõ?l:Ò׋ߨswÓqZ.ÐCÿîë«§]à Ù8*âñ³4ï»â§ZWmTÓZÑެÍT‹ÅPM¦÷žÀËÊwÜëy+ˆªèÄòZ;Žäã ±SHɇkE½ò€¸En{¶e]SJ¹»¨FÉ_}ôÛ/>¾ÉM?h”‚žPû<¶ÑFAe‰¬É©Á F’Ú·Mt|wd6û.™»›ýüèþ7åô_Ë4gåðœ`ÅsKŸÚÈ%„ѼV{«ÅAYlÜ´IÎb0˜0ü”Ѹ«ÁS¨ÞntØ-–€:yîÈÖ«uçA€áÔ yqÿ5¼÷Ÿçw1vQÅ-$¼”[Œ! Ö5VŠKÅ¥’@mK{{[;•ŽÃÇCÞ.ÈsY}iK¶Ý…Ëm±]Tä± g 4³¦æô¥wfÔ¼¸oÛv¼r€¤î.'ö}ˆlPË+„Õ9ÃU'Æ?ýs$N*Œ€oxŸ|“€vŒò;+[…ÂÊJ¡°µ²³³µµ3ð^ Áí®FYáØ /ví»¢4ì;îê£;ÁÖ{mõ{‹gO™ñVd™‹´T:·Y´ÄlØ·üy¤Uöœétv8;&§³füK»àïó(÷½;¿`”`Ä›”Ü«llö5±VÊæöŸD˺ËGŒ!‡¡‘Ö÷²£ÿ½Sâ^ªF;¿á¡õá”aá_©Ê-–T”•‡D=>¿Íí¡X«Õ‚ VsÝË…›‹‹i<³˜0c:»ÑîýèC4#~påðÝá3Þ«>ã;õ¬^Ç0:†’îÍ|{ ÜhmÆRöÑ·ÑÌf4#þf ë^:©ûÓ·ïC+–|™{„K‰·©ec/~uéý– ¿ ü»zJF€žm ¹µCü•/¼ ÊrséÈå“mˆè~“>þÁ™ ž2ÿ ÜC?͇­x÷ÃEý¨™à^®FÃè?Ãþdo™+º¨xë¡Óc!ôßfÃ8^†Õ’¨²±®^æõ8ðË5ÜÕuÈ;B.øë·ú| !ªê”†Ë»³šÒK†åÜ#EÜ"nÙ.Ek3:({’¯eÛUÔžÒ¸õXÎU8‚§Oô¼%×ÛùÊýUé¹…yÅé58×dŸ}¯ÁÚ€;é2t£ù7MA/tÔ5ˆÜrV†w×Z“Ì ÓäIóJ„ZF§1H\b{%@èÊÍ&0`ð*A_$bsG(¿Ú£pÖ’ ~è©¶‰+B™¡T'$7¡B¾Ü gê  JÀbcÝ=x ôƒÏäe0óÓÖî$\Õx'ib#f>°&+cS{õõº—»’R}~§?HƒTZ· èÜ^#kÿÈER¸N®]©ÔëA!” n¯ÇE!=8ôè niƒXÐPåv ÃIx¯t`âç±O\Z5Ê9~žwª-æëHˆ}‹Îño䎽Ä-ÙÌíâvo¦8"´ý-x:Zд±k.7nt@ÚLuÙ Ü’ï/½òÊ_+¨]Üj£"‚ *¨÷`[°D]öžvô¨Ûì4ã}=–áaûYº¬ŠÏ%r|n·Lk‹–Rš-,BD=p㟂àZûÎ}q¡Å„êýØýز7–ï=â;ÃÐfËýz‡–ÕàQB¡W«5jƒ ÷MµMëÔEªü%PJ³‚Q’âå[°¶Cñ æ´¿ÃÓåì³´\d½Á[W£®¨2Px²,5 ‹wîËÝä¢S—Bl‹=L×õ¿58ÊÚ¬XCà0Ú ,ce€Áó¶Ž1è³·Ul¬}]gÈ…BòùÎM¿¸túèÅAÊ»©/ã]ø \Bü.4›œS…ÓÆëõ£ÒpRxæØ,jæô;2’g@ò¬°ÅʲnkCÀRoINŽXz±•«ÏaMžMÿÌ»¦endstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2093 >> stream xœ”{PSgÆOãYE±µ±ÄmÏ ¶nµ»:nÛ™]uÝYou½¡‚$"!! $„{Þ\Ü%B¸ÄÄj) «x­Eëeì®N«[§N[;vgv¿Ð0Ó=^ö6³ÓÙùfÎßùã{Þçý= KJÀh4Ú¢;w²E[EìJnɯWdpÊÅ•láÓ??‹ý”{-!öz¢<^4=45 ’!9éÌkø7/#óKHœ‚*`³h´ìJ©¢i#¿Z*ä–WˆXï¬ZõîŠÔw5«XÊÚ°’µ]r_[sËbW•²¶­Ü¹’•ί¥.¹¬eü*V1§‚]YÆâ—±örrXY™›32Y[2veíÎ\¾òªû¯Kveu»˜#bc6·JT[,ÍàòÎMư]X–ƒmÄr±w±mØvlÍD,™KÂÎÓÖ%Ðü‰Û“ÞI:?k=>:ûŠÎÿ!AÓ©B12D‹-œ²ßHŒÅÐ §ÚªQ5*Q³š]ʼ^í [:œ]¤ïÄ)4Îá·³û7®ÉÎåTš‰Âc9PBQ}eM¾*ojÖ·x̶îfÂ=Övqðn‡P,ÕÕ©y¤dMYüm}ƒVz¦( ö´ùÜîfÂêhéµ·¿Hµúœ'¬>ïY0£Ñ±‘S×ïo—äïeÇéu¹¤‚ZPà#ü¡Çˆå!æÿ@S>Ó¿ ŠöÕÒÐ#J¼«É¢m4é4DmÞþMé€K”ÞhÀê²zÈ›hhÖczÀ ¯dä*z?Zbó€Ù^ï”q5ÕDe|þ¬ŸÓëP'÷Àaò!}W\£6U€œ¹kŒ{æï—Qš›z8á{Ñ ãÐÜ›hó ”ù$qZ߀¾†/ÈêfáR…… Uü_ð³ùûyû/ä?înyÏ‘!”äèt ƒÙUëPVh…”ÄÁø+Me>T1AgVƒ‡êÕ[K ü·Æ‚“ÇîÎnk+´á…áËŠãiÊçV;œV¢ûÁP_?à¾V•H¢i¤dé[Ò}Pˆ/ý¬êºÿpu€e]QÁCü¬­ïØdz.┃µÏAœaÚØ‘ñÓÄØf|»}rmfQy˜˜B³Åê¥\²ë[•úJƒQDdêÅF• ¤L¹Ü£ mÒªJ´"â½ø5@Æ|óÊî;(½‚– ¥ÄºA”‰Y‡v ²ò ó//Ýì±u¹GÉŽûö6°¸}ÌÞÁáEÊé@nI¹;o%/ E¿xfñG_G§c¾Ø<†Í hÆŸú¥™ ¨k*×I¨¥š Ek6ž+ë¾ÐûEðéìú¿½*N“å@>¾ü–àâHo{°“gªJ9y¼âAÈ€c­ Ÿ±Ù†ÁwJ=q…,7¨ä“ïÐì{h^˜¢!‘µƒ( ¡‘(-vùþÑljÓkcà (m>ÀËãf4î<žBÿ9[{ÍÖ`ޥ߻#YC¢”™†ÍàT4šô&Bü~‘¤ ð2}(uœ²EI[˜ÂÓ —Jûöµ£”È×·ásüÁòÉ8IÄGéÒçú£G¡^o2d|ñLoǨ^Ì:%Ôé­*O h1!?¢?‚£àïsú R°ÈH‰Åh…V°[fû$ò§¢Eô‡¡¼b¹†¯“ê*U Hñß^åÝz0ð8ð4mÜñ¬0¾¤ýe*z=O'1:êý"AUÍ!±¿>Ø}´3LfÄÿQ"¢µÅÅ%€+•öžÎæ6O„ŒÜÜm º#p˜yº¤/çmvœ¥ø÷rB_}ØÜëÔñU&¹êYý~õV0VofêtJá¹'ÊÏ|óÏü÷ Jìþ3I _!Õa¿¤45‡|A¯®3Üê&ØñI†ÕmiEÄÉ=i;_<ê2[}ÍDxj|ü4àín9On ¹bfNCzî¶t`ÖCƒÍhŽøl=ÐúlýUÕBç¸ðüe”p%?]ÂòßQ¾ ¡‡¾g)еý«DµR=¡Èüž‚^ íèñ˜Ýö i¶Ùüà‚{o¶å4ïèíu{&θ -ª, äQ%*>ÜÐÑîè­éß¿'»0#ƒØ“!l¬×|{#õyñ‰£Œ:)_2sUß*º2¯<ÐÛrÌk#FPÆ„öZdP :£Ê 0Ê©žÙ}ªèÂ`w$à!:û/Q¤ScEx/:îÔ]tåvâôœK · FƒÆ@Ô³¹FÈ¡ôhþ£ï¢h´à­Z[“¤—h þÒ]ë €ƒ±ËOѦ8½ ´8=ž¶ljýß®ßêºø'²ã7tm€ŸŽÈxöcÓö_ ©¬d„ÿÜçÿëÈ5òƒsg;`"¥žtßõZÇž§Êö®Ââë%hGzr†)ôrL~]tåÕ…I±1”ΰ·[Ž@OŠ"~¹§ÁÕb§Žc0|lÈ5Œ/üÞ걸݋!ª ׫¢‡÷C<ÞŠ/æRêVÌL§šT•–fºìV³ã ¤¶ï=]>—àJÛÄÉñ¾“§½gñõ†²@| „WÊË“|}þÄ'^‹×æ#/!]-ø½„€Ù a…_àl°É ê õz™ªLÆ9È×hÔ:µNÜ"´  òA}7˜t@ð?„ºCvg7áQ9•Ír|á{.‰­F¸ªõÕ>¾•0z¹QAQ³iié‡. (—ÑiÄçKÚc.ªn§‡æÜ˜KÌIÚËOþ $Ïí¶XÌ·ùˆÝá±$'GìΠÙb¶[½f{ò< ûû^Ùendstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2260 >> stream xœ}U TTå>ó<EÔ9±¨s¦»Z…™\Ñ4µ,_)™„ò(чòÞã È(¯Í^‰(80(™eR)­Ô{é¡W¯]KKoåõqMÚ‡~ÖížÑruWkÝõ¯uÖú÷>ÿwþýíïÛGA©•”B¡Ð­ 6¦D§úÏšŸmˆÎpGŸ|Ò#JéQq4vt‡4v>,ä¥àýÊà °5!Óýþp¯Š¢¦¤3×Ä'fùÏ~fî¼…Ïm\ä;}EQk¨PÊŸ  VQÔdJG±GM¥¼)êjÅSÔ8Ê“âäÒ)5e¡®(j”ã•cªpÕNõDu¸úSÍt͈֢=BO¡çÑÛ鯘çvyý¢œ!Rà’4.‹C‡ÊaŒöf;¤Î©.úuÈ€òý †Ðp\†žüƤ¦µ°Þˆ22wiv˜<õI]X0Oò÷–ÆK²ZZ¥YEû%ÜI%%c‡Sž!È䧈‚L&Ü3Ð'ܾ,?¿–ƒxËŽÌÞ™QÙœv$c>†8ƒ-û޼ÓÜðVv[T[¬…XÆëEy:eqØìÒcv]×QŒ9šuÔ›c8…ƒã)û v%un®® © ¨‡Lw[ÿeTVùl|ÅŽ:`ê¡Ê.ܦ¡ÆRRÛxkéö¥ÖØöȆxÅ„$4÷e éíÅŸç3ìŽÒl]öðº„M‹žÿèë-¼µ¾¼r;0Û È,it.ÕUUTØí¼Í¶½öè·Ë›AúÈ_>änt¸»Ûð—®û\ï`Èoö§QµTÌÝðý†<Ê“C‹ö¼Í/ŒµÐñe–øLƒ¶[< åuº­Œ+“~¡¬®GÀ¸ˆFO¤¾¼%<>õ ™Ã³I„G§¶ËVóÿ­çÀcë¹$ƉÁ'Þv68œNÎ9'ƒófi‹d–|¹Æ‚ÎͦÈâ˜hž%–®èh1ÛÇoÅŠ"±­9¶Öe ÊMŽ‚M̲›¡è…ã~Ÿ+ðd–€Ê±ñ\ØòðéO¬8vüÈÁÞ‘?©½Œj˜+3­à†îëÞp#º¯ZxÆ›mE…ÿriÕ!ARÑìGDïVøé7‹e…;hW)vCwÙò‡Øi¡Òmn_V[J¢É˜‘æLß ©½•ÿ |T!ƒëP%÷bíÔ_-!ýÇmÇXg¬ñ°êž)²£ÓŠC—°V6E~ÁÁÅ’‹ g#®/hˆ† Xšã—¼¢d<‹+ýû_|ká¦waþÖ<ðCçpÕø;3‹a¥å•¼§ƒS6ÂfXÓj¾n‚ÂI8gjí8þÜ›­ÐgÌvß!ð"¬fä/Ë|ôºN™˜vV%=;Õ•Lû[ëzéݶ,>ð•9 Œn’qÞocÆöÐñÖ>Ù-¿+Ð'¯+nù¹‘Îÿë<®¸{Û¥{ïî»pÍ›ýY Ã¥\†¶$¥(r{^QáË-(@;rg!?4·B­ÿEâE4Kþ<;ä=»wõ·™Û Ë ÜÊ;OöžæÚ[ ìix.üùÐ@J’¦Y,P™ŒDkïU€»¤l¹„㟹'ÊÎõ¤´A¾põÖV((äÉÐX¢Æ€ögÜÎYÂç´ýâûpX^Ç¡_vN½Äíœ+ôrG¬Z´J÷zÒŽÊ3.a¸½/½tÃØžãMº÷næ|;ï&rßz³S&ÉõEp8~Á-BmˆÚšÏãë4Ë47uuúàÄO¯ÕW[«ŠÖƒ°B‰Õ´c½)@Ö¹’Ú5o4Š¥î‰ÃôÝ…[ò.m†ÂÝ56±º’¯kèüÞ‡ÖˆZsCœm3„Ën ÊŒÎÜ—!äàã¹'vñârQ,¯óéjlmiÉmMÊO(ŠØæis‡ŸB52ÿ¾.Ñ{µHr^ºÖת;|—\5^õfǤŒâ}¨VÆ­Û`â[h¬ÆI=ÇZ':ø¼M°ÑÐ’çhØÿæ¡¡È£óÉâC8’NšYþÀ~€ª¾Çi‚ <7>%(¢$ VCÊPñó;pö2:o]m8.~o¬ƒõ̯6Aãˆâòˆ C%/®#³%55335µ%³££¥¥ƒ'ÔˆÝ?Hç`Øÿ?,Êþï(;–`NKOoLë©+€¯©¨³ÕÖ€½²¤¨PÖŽ•)ª*­ªûü"2nz¤9¸Ü¤žöqäiœGž&óêóQ@ Bi¼~Qy QøPúõ)>©Å[\ÓÈçÇ®kó·€Éd‡=‚ô½všòšZÎåñcßkóîçv ÒuínwN®£èŠ˜s~Î3)nžPáW¤ˆl¹d2ê’q-àLÀ¥q)NÄÉõ»À"SS*o÷_IØ5ü:¢, *xÕ‘ Í™xyÕN`ª+ÅšÿEÇ­2üa9¸`Á ¡¨ ‰sOËÿ¥âÒÒb+”ÙÍ ßÈ ±@^Œ“gì$¢ÛVpâÊÒêWÿŠìIþ*w¡ ¾bƒgúðŒL–¦Ï̓xŸÒ‰]ÚÝ`7™`‹¼ë"]tþoµ£¼ÓæÃ–¦&°ïæ± ;éû\d;¤e˜ZWíÐºÆ çÇ©CC#==Às¼£ÂVa³UÔØlâÇžž­ýbµ­ZŪêJÏ õ_Ša«9endstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 775 >> stream xœemHSqÆÿ×;ïæ¼ZÛ˜QÖÝ¥¢¬œ,ûP™‘)I–l++™¦nÓ¼æÞ²3*PŽe˜ln+¶¨ ÍZX‰½@„%½AE ý︅Ý}©sàÀó<ð;çH’†‚Pì¬Ôs‡M-´úúFG³©-e.çs ~q¿„„eÉÞ¤6hhÉXò‚›Ø8ïœH‚¨nä¶q­ím–F³-ÔéÖiµâÜÈÖ¶³¥l…©®‰sÙš,¬©å[QPYÀîâ\¢ia󸶶Þljn`¹ÖX¿ÝcØ®7°åúÝ{ª « þ=ê¯FQºµ…E›× ¤@J¤B¹ˆA4’Š¿ :& =á%^¦­Æ±ì¹4U rF“ò(1<ƒÃ3$ïÆOÔð£sÂú¨æ]QÈ‚jÝ\ciwTÃïŠÄ¦øÖgGÇ Ó;_¯=ñÎÀ„¬°_ U°Öcp.-s[ÁeÎÙÎqø£0Ïß ~Ùw †`êØ ®ß%P.û³büÕØ#=¯HÞ3Kó»ú¯iøQi¤»§•©­ÛkË™U»p?"ûÙ'mèòä3f+5ì†[b¿…ᮿ°×øÛì—˜rl¶òsÍ,Îù¼@áàru3Õå:¹ßsôôÉ-pdB…sqö@àflÀ¿ðáøƒ{ð^†3W¾ŒªJ ‹u…nœò¯®kTÖÑýàa.?¼tdÅë—•näB–FP 9éª^O't·-â5Tö±r9LâzL0Iâ>S=Ôâ,ŽVÎqD‡B‘(#<•üçeÏ‘E gÅqQœx¬&“½˜W‡mÐÁüÊ :l`·B@“TPAk³$ìJe ªÃ%fSY¸(fPœøM¿qü¢x æU‡àf„œ ü²ÛÁ!ª„º" ~ åG8 !?ƒxDꥀΠ¿-€¹¾sA*&žÉÈ%FŽÎ:3Ú“*Ÿ¯ç̹qšŽzïÙ^ïŸï,…Ðo¼{gendstream endobj 178 0 obj << /Filter /FlateDecode /Length 6034 >> stream xœ­\K“7röy~EÇ^\m«Ëx?vC>hÃ+ɶìXiÂÒéC“CrFœâp[Cqùß}ð—@ ÐÕ$W¡qúëDf"‘H$Ùݱ‘ïý7ÿû|ºb»WW½âÝÍÿ<Ÿv_]_ýË÷Ü=ó|wýò*6á;Îíè„ÛY¦F.Íîzºz2ÆÔÓý¸?X!Gïíð§½øÃ§ýA 32f‡û™ö’i7üí8½½A_Ú‘)5<Þ¾˜)µžíÂ7ÃÏs+ÇqÃóòÃãþ¯ÿŠ ^)ªÕ謅²×7WÃk¾¿þyÝ3r6“<n*¿œ•wº›Õbnh›$ÍëÞ†ÊM*Öø ]÷N*éîænþÖ0%”î~™Mcf…Œ0FØáÝé×=5ó¦Ñáîþþø&JóBêZ‘ ²Ù[éÝËQ+çfCÄöÚYLJãã*OtÃËòS¡YèÇÛò›ñ fÔðu¥Ýi"儿 µÃËê»›ÂFu£ãý¬×õ°<“(°ûêx–Å›â‹Ã{ ’÷J ÿwz|¬è¦lÔgó°Xß(ó*éÂÉÝùÿÓðxʼn§®osçóж<ޝƒÇ›{±»þÏ«ëz2ÜAIi}˜Ä™>¹0yÈ èoš/ÕØ¼kŒš[[Yø®ôÃg§V«ØÈðe’¨SWŠX3§‡rH^Íßp=“æ@OIßàÉog•0ë¢zÔþyŠƒFVþìJƬôz¸¯¬vW ©%%Ôôq¤™ŒŠH¼~žîR˜á!þ‰ˆ7<<&Šfº#¢Í,aˆ§Ã÷)ŠI¸GíK3·Ãd§|Vd\p°%P ÝíáÛ7µëß=VƒùŬŒÁy( Ǩh«ˆ'4u”'Ÿû×ýAÄÅpƒ‰þqòé~qN +·÷DøA*h:’åÂ'LÑ/­~÷G8 ¼äíìäá; bn‚!ùêÇåï<«~7«òo×W¦Õ‰cô±â( wR;3·ãÖËQªÝéÅîÇݛͥÌñ­òåB&”%®ÚÛ‘;×±?"²Áhè­ýwwov_ý¸ËJÎVvre” ÎÚZs j8-xaz¼›^ÐD"$›Ã%¸ó; AVÍ‚ÿëa¯ WÀ¯GHz¹ˆ4îñâùã‹›ÅÁZÂ9ôN£F£w’;p4`,õ¨x²–g(£wïÑc ëŽTø+Ÿ¦Ú)‹ÆÐbZ!÷@Œ‡Š›ÈíÕ+tê¶tr~‰¼j”C}.å=Ú:t*a°¯‰¬hˆ,ç£+Na2™ˆàŒF]g¥­.û× èÕÈxÄ&ú× g´2”ô¬ˆ‡PéR+®/©îÍ(ÌÊRˆF›$ÎAºtæUÍÈavêµ´Zo'ÝhÌ•œ#ò²Âš Û9cè¯-$X³AÏtü’Þ^\T*Õ@mx…•´/ Ú¸_¤R8žh¤íùoÝ7T ã¸=¼Ñÿ6uË©ç›Hì^žÑÊÓº­‚'ÂÕ…©'˜+ÿmg‚`„Òn›\0ädªvr›v …Ò ,Ö!»ßGZ`‘£s8Ñæ£5RåYàÕÔT£2*sA¼kQœ9?ªDƒ”UúõˆÔŒ ýõØ:¬ŒX‘‘µ+#iÜNŠDä1@ë±…È‚' ÉèôjD”0X°f"AëáŠü¶Nâr¶Ž+Õ#‚tze‚†“=WÂ’î<3‰ÈšÖ•0(HÚ G2¸ðŒå•ãVD›g»ŽÎµ“`]¿ìI1÷»D„T§q¦õHZzÞT¹¥´ºt§i…Üûé-à6pªÀ¾ÞŠÉшõL©ôV©ÝÚ/N’—.7­¨©”)=®‡ÍôŒ@ÃàƒFXYUzæ´BH$wÒl"Q«z-5£²›HàÕ }ÑÜô2¨Ú_´d+G_ÙJ+:±)UoRTÓu‰ª×hßîÚÊñÂR&°eÅ*×ëa¼ÍŸÖ ×c5Æ5€ž$û†o"¡o Ú_î ÂèÅé`´º0ÀŽõN¡EHQlÅ 7ï!Qõí«n…*6Ø[4•z ´?4[1U9^ƒ{%Fí6‘(°F{¹´°Ú”Ù×¥,+}¿?¯¬S+7_y,»2RPËÖÏÉj–¯ÖÑWâœâ£º´9l6[^…t‡]¤½a6Œ®³ö—;á°aôº•ZoÏE™ò'•ê©îöS—¦•Ǿuº•Á}Ƚ.a#¨×¸‡`ëN«Qñغ â$£ë”´'߬ǷÊl$Ò¼q=r•-%ÃVXŠUç"cKošVÈ=‡MÐp8Uà`Ûg/, ’3Ju/Ñ HÄZjrJPù&4oÐ3±‰./Qô$)¼¨gûƒÈàõ V`ÍÑ|àŒ>`#1:3p]|€gý†Ïì…C€F°ÐtT,‹Ó–¶vœ¥GÑN¬ oÃ7d«ŒÜŸ[¦é0tÐV…׆Å‘bÚ ÄP¯ekìÜ(Þ „Nú?+ ÒÅã$Ù“œ`êoçzÏxQ¯`Go™ 'ÿ£¢£ãëý?öý”¢CIï%1œŠ}[ÕÒe(U¤T%>¿îµ¦Ê=ïßÕµmwT‡$Œ E{oËŠšÓ\ÍD½©ËœÚš?r/fåp÷8ÿÍb±SdKBëj¤¤¥ uL¡…¦jªõ‘@ë’´Ó‹= aÀT0ªœófH¢¸ Å^¡ë³UoME]¨›#Š×µRï‚Ì@=œö¡|…‘Cq’³ŸVk¸PZ´õ†ÔEcçzCª}£zÃjL*mîÞ”_½Úh–R™XM5íSQVT_R©Õ=F7ô€Cf2j úTIõŒf¸¾­MØ3¼=.¥W¯¯Ò7¶é#¸’‹`­w¥¹™[ÀŒ/K¯zSW®ÞUepÇ{¸Pè ÃâkÃh„éª÷ªáΰ¹êãëE¹ÞK§j¯<¬ÑîÏËÉDã*H‚èÕ‰"Ù'Ç®ZV¥Â˜é£ÙÁi½€†˜˜Ã.‘’Ž9e§[s†{φ( G/)è#E™ ÿ:dŸY¼BJθ5T•??§ÂT$¨ †7œQ%ùsA f„CCM— ‘W†NY²„ùóó«¬C¢H:&M/ž‡#¾³™½&· ÅÊe–m¨è2°à-c–ý– e‹?¦vGoÁ1ÀÔ”Ž1½¦S(¡ NÆ©BåóØ:2®°ò‚D#a#ö¸ÉˆùbiõçT[¥i›—)è&vA™Cþœl‘ÙJ™ÃlÅ,#Û9k‘(’–‰CÓϱ³Tbn>ÙÎ\5vÔFz#e¶3öâØafÎ@´‘dôFÝ/6ô†"Yie*-ì.lèÄbåü9[9!ÉF‰C²a’‘­œµ˜‘¤äÌ éÄgÙ8<-ó¿eeãVœÆJŰâKX³/´ ® ?wQÿÉF)•KÑnš™b´$鮦š4ŠØÙr¸œ ε„®ü1Y2³¥Sëy2û#ôÒOÁ3…ÑáÍnæ?GÝg„8rZ0fZу’,"~¤à>ë0ŸTLÍ›N|Vl·œÎfÁ6Ï`ã¿OÂ!ö&ýH“>Yo„v¨‡é¿ØxA¢…„¢«—-Â.·…CEl1 ¦¡$qÈŸ“ 22)sˆ6Ì"’³ó÷IÅÔ¼éÄçÅuª u]mõÇÚ¸Ö]¨„[l¼ ÑB’®—(<' RÐ5¥‰= •º™€[ýÂ`ùœMœd£Äa6á,!Y8k¬àܺíÂçEuNï|ÿ^˵n,}8Ñ:ŠJÍõbÏ)/ì«“S–)°•¦êåÌ!NýÏÈl¡Ì!0‹HÎ:ÌßϦÖu>+‡½Š¹$|cßʶë.‡iQŒ~„'\rb¿Ã—$ê¾  ÅZ%H^ÒOl*6)rÈU¨ê¤´Bš£—Ù¼”–H’°ôy‘j })ª¥ …4Šâxex*Áà³>šîM"‹²”ËH¢QAšäLŽ¡x‘¸óX’ÓP…ת‚®l¢<DºoMíîg3Ëó™­¦cï¤Õ¡¾0é9u¨Âäxº¼Ž ^døýúÝ•àõf¤[î=î á2)R̈çqÜl8§‚’©C~É€n: a!„Ó.. Šjd!-ÈJX€ÈI’° ÝŒÐA‡/e…XfY’±pëSÈ"zR_ ™m!kEC %ͦBXœØ…0E¿ˆA@Htݳ˜œñEÚšè‡O¾Y¡R:hö$2Mù­ý6òXƒðƒ]í!z<ð— Óo§ÅCC: ¤“£òÐ00ºphÎ8¬éWLë’ý€VÇ¡QõÞæs‹ÞÁ½>Ðùàç§ÎÁOu0h9?ðƒTÄ ì€ ÂxðO8\üÑ9 ¸áöaz˜ûçãîúô¸:ØJ,´Þ8ƒ ¿l~T÷áöðŽ~©n>¹NÒOÇæ:£¸2ˆ×é—ë¦ããéîoÝC3ìî8‚× ½`q`ÎZ~L´{´*Ú£U:õ, ßôÎ`1‘4ýÔÌG[#Ô°‚ìê’ü3ϯ ÈRóá‘pô«8z~oË…WN ñ2¼cÚºËîOIIõ>‚¶ ˜É×ÙÂ1ú}ÄùX8.­RI*ƒxÅKz) È–øæ:E, Ø>†Ó ëã;–ûž»G?!!UÙaKÑä¶Du¶ÃLWßÎW©HOÓ™NcË{~bGLû<üÿÐóøçLÑ•s ŒŠ~-ñ0ߎ%iµ ´?!3­ŒòF÷4Öô<ëy¼àÞè_ŽJû÷„ÎÓ9f2€S÷Ìÿ@5Ø–‰0[9MŒÐî›ê¸wóZ° £U)Ø#”lÒV•.@Ît qÄÊzÈê^Àé-_zb«“Õ¡ú² 8"æÛS:·°å‡»t%‹eè5á¸:üÀª‹—ƒUlDñU‹áv–=ßà&úðƒ¬„ËùAÖùmCgÕ ü,ñ»Yn z¦†6\ê74ý©ozªn‘¥é«;¶ƒÔص ÑÜD¬†EiºÅ‘ÃÛÇ««Še`ŒwåZÌ?D||ìß—!‘çìÒ‚pvrµ¹¬Ò¶¾¿ù:P¬Ï÷uµy„¢«Ê<¡§ðÌ—÷÷ù>ç=ü§N–nˆ”‡Ÿ~–o€>t{iÑIy±—½ìÁÒÕº·Š[H\1Û>ÉÜ*>¡×T´ÉÐóü’çÝ©½ó›ÂkŽÀXÛæ HC+¸ÁêÖ¬ö¾ð;NXÏt:á°@Q¯dŽæ¾ú0ˆendstream endobj 179 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6650 >> stream xœ•YxSG¶¾ÆèrCÇ7ÂW1 N @h!ôãÐì`cÀ`:pÁ½ËE²e[’%U[î½WŒ)itâ@DH@Ô$»°É‚ dóQ6mnvÈ{o®l &/ûö.ø›Íœ9ç?ÿùϵÕ¿åää4r•OtTôºˆÀ¨„·¦MY’'ÌŒãÝœøQýø—ãpÊoý~óÁ`gÜÿÔ¨1ºðãF êahÛpÊÙÉ) "å蘔¸½!¡ îÓ§M›1e ùwžû®wÏ©î޻ã¥ñá{Ý£ö¸{Oõ™êî-%ƒ{Ý'DG¹ï Œvv÷Úè¾~ݲµëÜW¬]½ÞoÝSÿWÛú Rå¹$Ê3ú˜¥±qñ ‰IÒÀw“w­JÙ½Ç7hu°_HèÞuaáë#"¦¥½5]>cæ¬Ùs^›7fþØ -žðÆÄ-“&o›2uE½F­¦ÆP~ÔXj õ:µ–ZGùSë© Tµ‘ò¤&S›¨w¨)Ôfj)µŒz“ZNM£VPoQ+)/Ê›šI½K­¢fS>”/5—Am¥\(–ÚN½H‰©‘”+ÅQÎÔKTÊQ£¨—©W¨ÑÔ Ô@jµL ¡SC©a”õ Y¦qçt¶ÛÏììá| ÿŠþçD{D÷éTúá€Bfsÿ…†c ’ úfpüC‡|54aèOÃEÃkFŒqÁ%„]Âv¾(yñ®¸e¤ÓHóÈß\S¹\‡d‰äó—Ö¿tð¥ÿrÓŽZ7ªøå/xù÷WÖ¼RñÊ?FÏý•û÷÷«¯¾ò껯F¿Z†Ú†òÕ`ûÉÆ¿*ujE«@«y]³ØP¤ÉW˜UÆDÁ^¾’Óë# Ò@„ƒWqrH•6C•©MWGÖC0ÿ¤Ë¡ÌÍæ)„ÀáŸ84›6 )¨#$êÈZ(Ö”A=YÃàQh£s4ˆ.ˆ6 s6›Ë¯väowe›øâf±¹%ŽÈì "YÙ£ï/ÉJظ71™aí­fcÉn7O: âÈö‚ÅÀ|Hàs¢}Ñ ºØqfïvÍh™ˆmzXzãÀ ·S`Î\„¥ÜžÞ¯58¾6¥çkL·uI6´ÝæòÈ^d;l$F~Äç¢â{ðç‹*.VŸ:™®ðê֛؜DË!Ô‘êˆ:(¦ž÷X.ŠyÎ0Í#\ï*úš D‡ÅÊ];½&3–Þ‡¶‹Ðš½ô-ø¨Ã˜|Pœ½y³ßL²3K@I"ô ÍöûÊ=³· ö©lè+›(B\…F,~€ûƒðqš„G$aö/“Q?>Î?T!fE®X6ÕÃc ,Í×Kî•|÷åç—á œò–M6SØø<›Ówvô³Ý™·¢…bK[<( ‹D\ÿÆìø]0 VüR‡&Ö¡7~þ¥ ˜Ol›?ZŸªKk†v0V™*kÐhÎXjª‹„Pfª”šЦÆE5Vn,ì†_ŠÄÞ‘øÝ.ü ˆG]%w„Ãqœ ½iC,\²ÇÙ÷Û•öŸ‰¯‡S|•ãvÃ<ï¿ [`KÊž†K5™¡8è8`uÔôÇ †UR-f7öœbÝŽví <œÕ äHô*Ä2ËG²žÔ¤´ùÞËÜôvÞÑ«;Bq6ÿ©ÏÜ®ÁGž²™ÝÈàå6§»(ž¸«7 ™¾h"–`ízæü`ª0Hì;ˆvÑÈ•„¹7 YäØdüÂBSè…^ 'AüІqñ°hHìVJ0“5Ýô0È5~ÛgªòJa3òþÓlœýØ¢‘æ$µƒd+ÍuÝ¥îÙJ—6‰”9è-sùgIƒçjœ DŠÜ?‰úqe泋KºŒ•¦*åH5IË9¬r¬Nšåûúnvß<íp5¸ï ?˜n«ÕÜê(rÉ6_ä²ÃÆo±¹ÜF›°?yf“gõMß›†›@~šŒ6Qà÷ð%ÐC%g¥dD[¡®Ê©`ØÔ¤ÕÑì‹T_ŽA‘]ØþT·i ëBEÀ•¸±æS-ôMü›1S§왓䬕ér­†"’PTIVçÆ~èÒ”œXe`Ãîcð. ÎR€Òø-„‰XjøS2ê)YN$ ÉÈIlnŒ±"S«f§Çl]³aõ¥’ïòŽAI¨ƒ ËR‡–Ék åÔ”™›˜Â«c`;`˜‡GÉfHñà¯^G.€FÃñûƲ^¹(@ÇåŠý'ûmŽ& <Ž×(Û䯬èß:ŒâúþÒ·DÄÑá£EzúÑcMnh©®$ÍPd´ ׿êègCŸ~ù)z‘0n ŸÔŒÈÒd&Gn\— àu\ûw «H°tT zË}<ð âœñIxÃvà¡ÒoÆ!±âàÜRÉ·¢×ĸ‚®¿zñãKpÎÄe}ª°ùRtF|½—Öˆ}€|bc¶à÷·à÷Jc UÐÐ@&™Vq¦OÆRézéºÈ¤é0’ªrŽkNß²~\p®àbÅG5gÛ oÂuh˲ø›¶fx(|{© i»Ážj_~k± ¼åÊîâøÓâüOç,€ÙÛä3³6pãŸS+ѬYdãzé¸[©Öö•dãhvåItN„†>§T<ñPš}=ïHÑ×H”èrŒ{Ú¡êJÍ=¶­²!ÍéWA6'øå=Ä¥÷üîà$úžÚìsäs¢YÜ×”Hº­z&ÒJܾSrZöÿå“TFÑ/ôвEK>ùøSôö§‘Ÿº”œ9lO³o Úì;œYcO:ãh6.óœØT#oYO:ŸÍº€½ {aO<¼b›Û˜ã!Ÿ­ÜYVœž–ž¨ŽT…æÇåfÌÛ®X¡UÈgýýÂgÀ¹âo-YÇ·60ŠÜ=Õo³ŒÎ†tPdZ™ÅYÅÆj Þr¢ô&S±%ŸaÝ5Zþ„cnwáÛ+D±±ÓýÌÍ9M5…µ¦b½>¦Z™OíºB’ùx v&¢<`G¬‡½G¬§ö‹áŸäŸøà¤ÛiØ·•Üô(ÆbåŽy;ÇÃxXñ~îÆò’ÖöÊÆR+\%‡Rý»ÿƒlVO@áäè¾ÿmïÝ‚|ÿ´ÒúOºïÒ‡¤õÉÜ{Ÿ³]{肌öô‡®¬ßÙ[­_{F²âמ«ÈÑUà!Ïçh¯æ˜°ž¯›Sª£!bs¢ÕÑå‰ÐõÕÝ8u¤©Ë_íñváX š/Î?õ^VQè¡Ø\òEåÜîÂðö¼#ÖŸ½ h è¦è#t‰ùªÊžÆ¢q=]p©›„]cwÕtw¡ízâ²`ôûñ~ùOMï›ïh$½üñmª2(—a—6š¤eIn¬.âRs¢Òß¾‡½hpÁyR6ñ?ü[WvÓÑ ›K=Ú‚ç’ǽÐ_òCyØNWö”ŸßØ3hz µ÷ÆËCÑb&³nxjßBÁvytÐØO>‹~î¹¢wߢpÌÌÍ4Iìîq†ÕPj2熦>©¬™j1Ç ¯”ÔfºøÆÝk"6‹º‡ß±™T÷[¬'øŒ¦$ !L†Ø‘‚dÎïü׎Ú*¨ñó<¶Ÿâî’ °îdù¯Ÿô4'd«–?ýÒü@Ї]~ó!HÂw+Ѱ3èùÚÓFª»ž¢,r|Ds¯ùLi&âÝI9ÒárXßá›ÏTÄ'ýghðqeñåÂöIÂË=¤æŒ•¤N‡HØ™º'k_\y„C¸<:‘ao4¥âÞ{—*Ø$¹Hzšå·{)\ز­àØc]%ÇŽv«‚T…÷,ç’Ÿ¥…ëøBIYÿÇrá6ÙßðQ¤Rhæ'hf(šéÊ®äuH‡ÛÒOߣn½WGÚ¿¿§ø¦¨£%:Út^Ž6ƒE]“Y¤ ”a}å¼UæC4¥Þl¨0œ.æÝ{EOöö¤#mŸìq¥.´–´|+©†E•¦Ü{(½àÐn/Å)z­1®rÉ|-´£|%Ç2½=@h¨&¢pðäŠû9^è s¼K‹À¾Å®Â;¾þ€†¡—HCÀ¬,Çá ³ñÀEDÛoGëЄZ4îﮑ pêx<^Øv® >Nüö±¹)NŸØÍhÙoni@³8Séð¦æêªÚÌu™êr™òjtÚÁUS­pÙXFh-=|†V•½I-{‹S…hdAi{d›a¨ I•¯Ž¬ÕåC½Qåú<ŸSGfo?u á´ò(8zè'`jCC¥.è]G«q_׋éiô-¾¬›P%ɡ̘½^!Õ2¬=M—¤UGçÄ•©Kˆ8{ÏrâÀÒÇó¹i}‰™úà[È[>ŠdMüa±©ÞXaêy«’¬Žfp}ñ¢®?t¥ó“óE­Dƒg\ÇC„©óä³UÁõŠ2"ÈëËL†BmQvnõG§Z>æ&Ø·Éf(–ù­ñðÇfìË)²Uj¼§EwŸéqz6Ú?!V”Àš›ãõ™¯ÇN†ÜÎF´€35æ}¸µiG½)R»Á[‘S èe­*DƒgqÊÝùá|Ã3·êr¢ðrN¥ Áã´=^'—Á-¸_ÙtÃ`É;nn,¹ÃYöK”,9ª¯í b7¾á<ÚL:ü.}Q[‰÷Ãx ò^>ëÛ|nÇ'ÖÓE×|.•†â-ËÕaÕòJ‡̆âœ|±£å²ö‹ðAHövudRhdbplœ6D»&Gê¨Bþˆf­àÐÊÌ5™¾+WMƒÝàQrÄbγž²VVGjPœL.›~k ÈÝ%¢®›–(ÿ2ÁÇ7AÛ:„˜‚ù:´å HѤ XÚTy$˜Ñ4‰¾.UŠáqŠtV#U…å)[‹ÌDä¦`JäóHVöÍbšõ.G”èë'ØÁ‹ZÄ8ŽFûÐ?EÝnk±¡YJ+Hõh­¸ì‘ï}‚“Pخܞ؊ÖrHùÜ{«j: ²²Ôá;p§IÉIh% `6[óÛZ?(?7¡ÍSá-_0õRM}ò’?¶˜­¹¤so’–&#ƒð,ÕùÜ+Ë„Tˆ¾Sœ{"ØïêÍ#Ö,'ÖZ/&$íÙE¨"üSv@¯"êæmØÅ “Z¥V©Èùñ%Òzbé(›óŽÅœžH,| ðTô|àx[Ðÿ’DXËg½½öð†Èc™6U­¥ÖPœÎ~üK¸ï­L_"’ŸÄŸ!&\{ÚÛá¿ÑšÒȆ½“¨IVršäœÄ}¯ *ˆB@e4Þ‰W-Å1)¸ŸV® k'¨­(07DÈy^>[Sn0‹…ÍÑ tĉOçÏ‹ó„ç¥C2D(rv$áœVIä"yå¦2RÑο¢ÛcóΡ’ƒÃì­__ .«DŸ‹!ÕûdA¨ás¥xH2¦¯N'Ôz>.;y8Ÿ¶@s áúøìŸO aN´©È_g>½-Î;–ñ»7ìC{¸¶œ#ò¼Šle†&]“P”Ô ÐO¡¥£è«W0“oéè‘ܧISqX”þöÛéKrâ30…æDa·ÃT­:a1æ™jLIeRÍàå6ùÜ#Z¡ víán±Ôr€C.Ÿÿ½ðƒw ?±þÖýy'òŽ~|è³|æ—Ç®â¬[½ûQw>½}{öFæÿá„ïÅ_ĵ=­Þ«Ž.=‰ëw%§f«42¥&M++L-ƒjøùtê/lÌK¿+y™¹8yqèò*Ì-É3VHL5©…iä&]Zþo¼›ËTɲ5ÉÚt‹ÂªD'pW”eÐY ÿVšj>¸tó’„w!h ^á´‚Àh€þEâÜ&Ä9O&‹Âôáô„‘EêЇn|@Úµ0·;ì+Egņ"UAV.>‚¸ «†HŠ4HÊÈIÐ$dç+Q>öâð%ì•¡ì“ä$”e”’¢aÒ—Xy íæò-Åä>…—ëņ•)­÷û&IˆÊÚÐhôÆwåy&C‰>OG²/ pævb«jy«aÓaÏÏ×ÕSÖJ}žc¯[d¯ñĸJ4(âNÌñ]W½;ãII͔겵2«Ò¬Aã°Sž¥ðN¿Æ§¥ff©µ2]¶AZL $Ľ¬ŽÍL_dáÊzð &6–)¬Z}b™O[|1x–+Ê-Î5VèMæ¦Ý€G½ÃYê ¿07é­–¶0Ámaº,uT¦—6öψw´ $‚2-E#Ó$ç« •ü8<Ð/])Wi¤]Ž:ê QW8V¡ŠÍðRGé²TamBDÚôVsSþ†úν{+? ¬M3@Q•¥åÆ’nuñÛAÞlèeàÉ4ê÷Ûšü\1òê)F˜ùý]NaÊÜG"êõŒRBµ—\þÒ¶KkÈãÊšù}ĉ=DDºn–©Ec …€D mi¥âñ™ëC2l"«=È”6CM†$í2†B2N6‘¹FéÎ'ôc8ß~pQÑ„U•AuqäÞ«Ï3ÄúlJËÈQ©¦‘vgH+ çÓå¨ßÓ»££bÄüöî“Èë¹ß/N¦q¿ß‰•“Ÿ÷zF£‘«;9ý亗û^ ]~ÞèÛçþ-«ádõ˜û6Tðï E¦Ú6Ð>è•ýý£¿ƒ(µè…?æJ“eðàNC¾0WŸÚÒ?xEýOûµcendstream endobj 180 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4364 >> stream xœ­X XSgº>!jµbÓ’Ö9‡jkµUëÒk«m§ZeÜŠXEvˆa_!HBNò%! IØ!²IDÄ*®EqiÕvºŒÖ¥vµÏtæN;ÿ¤‡ûxÿz[ŸöÖνOxà$çäÿßï]¾ïçã¼7uÃÆ-©ÉQ) Ì[›•$Žñ\œÅ>Ác§{±àgpÆ Ý%Þ0‰“Æœþ˜Å˜Šr¦ À‡ >–¶25-/Cœ˜å¿hÁ‚ÅóæáßKý£óü_Ÿï¿.*F’š›)ûG¥Äú¯›¿q¾ÿ¦Ô\|Qì?;5Å?:.1*)Þ?5Þ?$n«hpÀ–`ÿÕ[Cƒ‚çÌ¿Y÷þ'âé)¯§¦­ ÈÈÌZ“½6g]nÔ†¼˜±›â⃷ˆƒ“’gÏ™7Ÿ fÄL"ˆØL±n1éêCŽÉÁ“OLÙ1凇aê*ß¹¾G¦ á6a¯ð»G…¨cò¯¯B p¡m.v{.ï´û!¾{M­°B ²0ÆÚ¬¥"ÝSg”H•ZÁݾæùZ¤&Q«ÐéòHF_boÚc„fÊíL¦ ¨³+A©§Õú¸ Üä(¯yùú!©ÀÎ-óÎÍ,ŠT´ÈÆ®ýFè¦öÂ>¦H³jin*rq´ ]õÆë[ô¡p²óœ{ÍÚ” *m†R¦¥ÍÙ dŽ®ª²ÉÖlm¤ë÷¢q0H^ qn[úf ´R·EBäfÉ’¥1…›ðš‹m`ªÐë&ªörÝÍ¢1RŒ^Îתu¥ÀˆÖ‚zG¥ÎBíG/˜œæ“STqô5{*û?üȃ†ˆœ;¹‰òºPÌ”@¹³5áð×hŽ‰Â ?ö™Øwœ¨ÇÅs?þß½¥ áúšC+ËÑä–>…É÷ƒÎs<Š;/)0V¨sµ@>ZœæžÞ¯«•«1òž7Ë¡šF×hÆO'¡[Â%|šPœŸà,2–ï³@ˆÐÁ Ûê$z3÷ðÙ—gr^÷° Œ³Ñ¦7Ó—Q§7Z.øÚüéôä;¼;ÓÇ E^—‘ã2Ÿ5#—ð› K/psBn7ë©s¯£‡‘ë3T@"³Ÿ’¦„lØdl¼ëýfÄo?Aw nëòHëΠ±çro¸ÐÜѲ¾Ëg-¨Gø¯À#Û"Ä)TÑ`„#ã*¢™*•æÃÊ$%«•`Ö¨L¥–Ì·Vº:üI3曣ä[Ál3[šËªé}h–%¿)úƃ‡&¢ÙhÍMáÖ‹2"¶¹¹ø¦Õ¨7¬ô[h³µóì•“ ê·m‘D¥qSÖÓ“Ýp¹y¸hk®óÝÕì:!š¹ìœâ.Üq?l¦ ôzKÕç(ÕOo0â%˜#Í.–ƒ¾¸R…2矕³S„ÇÖÙwý)!<[F)ŽÇÖíú75ÛfÙc5PP•ÞØ„Ÿ‚È­P/OT0(% ˥͵®Ê¬P^Åg˜ÿo_Eó/` Ì?…|ßæ³@ …pëÕÚèòTs‚úÈÆ†‹W[ºŠcí”D£LƒbRaÎo¬ivôŠîYËùD?öÇ òV5u°¸¿BIIÚËOeo6•QGMp/¼®°"'+5?bÓ`Â{èÙn4ùç»7ŒØšÈ…Âr1GÏð;ækE ËSRyoÆ,ßd4U[ ÚÒJ€¼o jì˜ë% £_t¡Ùe•`“¨!ßTœQœƒÝ0–[ì½Dú«‚•Ü~F#¹(¼#æØ³¦QÏ?ëB~¹øîìù*ÈÝ ÖrkY…ž`»­íVë95”C­]ePÅE3KÇ@´1HuáýBØÄi½¹Á¤þ}÷Ý/ ;»{ÐCï‡^›Š‡Âݵ•¡¬’~5y£ÁZ®þ·îó¨ÉÏu×䞪:Ågïâ¬Óe«)y°tƒÈth©Åù}Ôk0ëM`Ù•U¹Éª¥–zë/ÍmI¡Hšš’¼Ȉ’ƒC_4]¤­ ¦J¨#v¹"ç'r³Õ£,5T–QVWË7ƒ@ÚíLzfqš<–NH_aä ƒ)'Žw¶µ5Rµ¡}ê:肆¦*Wm·ą̃0Рčý¼ÍñÑ—uB‡r7‚Å`-L—µÝ\~ l1>MLÑt4D£Äüeç °¶PÇÐÜôá^å®åå”@žÂ¢µì?`„^ºú˜ý(ìŸôd6r ¥C•§Ïç|¶˜$Ü[äJÉÊÈÊ*´¨Ì*ª1Ý(Á)—º+ãÆ‡*:Ûoµ¼O™ªÍUˆAÒ’Ü@ØN.8Ÿr½rýW35™uf;/|ËÊ]¼ÛßñÝ^îÅÂrµQ¹+1ÛníÚ!¨;ÔjŒU ñˆ#‡ãý¤Ë·„@4$6){ :X€ìvv65çVä0AðÇÕ'bÎßþêÃ/4òa“,­k?ˆªìž}ßñªH¿K…C§n¡•ŸóÝeó#™‘&‰Þd¸¬÷@¹¾Ñ~>€^1;mû¡l„5)ª4Ìš-œT•ªËÁÚS$½ôF|Pq¢ù×5ÊRgzP¸Â¹éi ¶Š›3ÛSû™h‡½mG«â÷§†3p ·í½¶‹=h>'èß^ä³ÎÿèQÓOüC¢—ê(iŸ¤Z‚c…ÏMàær³– øpßÁ†#ûiû¶®œ½?§*·Z*TJ6. r»òtÛ€ ùÔ ›† ôâÖ¨), t*­Úpæ‹cŒ>Ëžæ»Ç!GS¤c¤*J²(’#¹žúI,Ng{Ë÷šmŸ€È6jy ÐDlg`fy”1æAld$z– œ8zÌ5!‰†ç #ÁE9ÑrD¾;Ø›öWv1#ü–¥ôfÃýªK•¢ÿ«Ü¹+*¨8néŠá@¾)ï6Þ`ÑÓ.“£ªÉ™=šf*ŠU‡õŠO~ÿåwk$ê¾Ò?ÚEÝä³‰ß MJ»R£Ó+©óiò Íè<ÞòÏæÃô¾ {û±:úµUÑájˆÄ%’Ùe»[ÝG"»ÖßméfŸ^ûzäúß«pð®±Ê¼óã+|÷Õß<äÓÜ#‚l`@‘Ç}=|Ö/˜Ô:µ "NôKÍÑ#Ãyp\Q„V¤TèòJÌŒ¥­Ó.ܺíiݰG;Tú"z‹AÛ U`sY5±­~zÁÐðw†|PU¨L³õqóðeîÉás÷Ù~Wž!ènlû]÷lÿžPü"°Ú]UæFÍd/Ž5HÿaŠu:†š­,Ò)t )lPyØ *f9àö«°À•Ö…7ý@BY“#T&mzù—„b…ݺÚT›Ì–R`t­š¼Ï#‚ñdó×îEB«ÆT’´‹ %±1 ÈR,E¹®œ>¦µæb[*Ѫ´JÎkx½ÈÖ¨«uzÜ£qSïÕÄr” SLs~Ã-òøÂ¿«&BÖá‡$÷Mzm%ˆpC¨7Õ!vȯúü)ã=itèkÆH›æD/cÖ .¡Òî_fí:Å{=ݶ~K Ý#hƒw‡ë®´Ã°‡â{ÖÏàfÎâ^òÍ(O#‘Uø$·vQ9‚>ôÒw¸ƒ$÷ïN{ª¼ÈåQtÝUVêBóþÒàäeÜ@gq7¹Õ=Mؽ;zN÷¨XEåp^Þk=XäâBVÑg¯ûm,ŽV爔â°(©QQÕfªl„zÒ™g“edä&Fôåt}ß‹â÷Y¨Ëˆó¾&¨±‰àUA;Zbí²ß"+4h+dÉ¥òLÈ%³k‹«›šê÷R÷Úøîftâù/…mÞX=2ñ€Iâ·¡!¤÷FÏ /zâȇ^Ü"„Ü‚9q;cÃ¥˜x¾‚‹¨el2üTpùhúzO…<¸ÞÉÎð ÖÅ„ BÄcוUá,(É‚¢,eІ’ïIkÄÇçfsO.ykõ‡Gûz:çÅ¢puNªX³=‡p!$Aš½Þêh€²¢¤.=/IÓ•w㟽óQ%Ca8&6½ŠÙªýÈ~¸ ù4¼E78Ø·t¦üE%ÍȽï×ëÍ‘I¿ýÁ'ý5‰‰ÉIÔŸQÿJ˜›=|K§Õ)ðGåu 5v#Õ‡VŒùåûô†Úöúö¾s—sÌÿK:‘íÄ…>îDÇ\¾lâu~ñØ´wÂWB‹Ö\X¨+-b¨üàd Vm2ÓÒÞll46ÓÆÝ¦ƒÐ§l­E3ö]¼&¯¼v‰›Jq5¿Â ïi‰b%¦Ç÷Øá9;¡{~Pµ7"ŽÉVÊ™y0­Ø®‘ƒ”œÖ»bHrîFÛVj./µf~hhrJxÖj g ð]–6«ÁbY íPäùoaÞ˜ÔF ôþè‘So|lÚÇèÆÏ+”’ö®R®oi®è¨è¢Ï£×l{ x#¢“qMñóÄÜœÒÿ ÌòŽæ¯G³4+S‘¢’ÒÉ/ÅÏ–Çi°HE±ÑÇnw g˨iþ-l¢°¡À™,‘$I²«sö´·»Ú©Ñs¡l—{A+½yíÄDÞ‹J„°GÕ›Þžá*2Îm•š’ÊK âªüvè%¯}üùÍÛ­«W¤ëTšlJ'÷ö,ÄnÔ×”QÇPŒ¾LoÆä­¸T§S”PÁ±ï®Òçb Âñðk|˜óÁ4ÚÌ8ÕUš#r¿cV¦&Ï.·gC¹àÕg-_¾ïûݦ£÷ÞöPi=„qqZ•ŽÁ“©Ú¤1[ô›•²;šÛm]¡ç މµËG#_Œ0qLjv ðnãq°c ÚR5”2”*#?@• ¢+°¸©Ã8[Js¡@ôƾøÃÝõ-MTÍÞÊó`ÄqÃ_xf¬ktœ°¹ð„íÆæúíá;w&SÊKauÛv‰wü¿ž¶ƒ£aÏ@ßà% ÁÖ‚4Uж„^ÇUüž›~]»ž./çÇ<‚Ïà£FN%€2•-ôšò&\4ý4;©Pde¥^Á²hŒj7~7ãŠóâÖ&q!àAåjÛÖôm®ÄéYVf¦þä›|Ö— Âé’syïFÊq«Ñ¨4–búÄRënzÐðxNÅEÊå:0¤ªŒ1ÛÑøOÐŒ[òBk](þåéñãÎ(ðïSdæcý½)4˜ÍN(#=§&È-h µêR©ç°Ã µ Ônm䨊áòF<>Ê8'tÊR%»’w¥×æ7wº:Ú¨ÉÙNv¥eªç„S© ãBBvNòIF,üÓSSfž4©»ÿm1Tâ6€m˜ôAü7½°Yendstream endobj 181 0 obj << /Filter /FlateDecode /Length 5233 >> stream xœå\[GvÞg%¯Äæ-=‰¦Óuí*- Ä«M gc I)8šÑ ­ápÌ¡¤U~}Î¥ªY§XMrlïS ‘ì꺜Ëw®5? ½:ð_úÿíêÙpvóì§gŠ~=Kÿ½]ýîÕ³øÞÁ/¶7Öë³Wïžñ+êL©±:œƒí•ñg¯VÏ^wæüB)íúAu?|Ø|<7ªü»ëåÝÝâþíõù…mãØ}}w³Þ,··«Çó¡l4Nùÿ~õ/°œŠ°>QárVv°ðŸ½ú»×Ýç8Ú…1¨îCùÓ¡»¦Ÿ\4ƒ ­YŽy[>…¡ÖÁNGÝ]•ƒÛEz¢|·~Ǩ„?ŽéÖV²f“Zô„L÷¿³˜²A"Z2îÈc$†¦ã[2iݼÝ+§i1 | C”B-Ì8ì ¼ÚÊœµÑÀ:…­BƒAÛtÉBñõt|°Šeß»rœå´¬e3J} :jVü îÈAaÎáº/ð£&wËæ†|~X¾- 8tŸ› u£ui«æø0ÄqlòA€±½ «øUá(³ ‡-ôj@ž&mFŰ–üʯï¶ëé0Õ0'ùg 0Ö'!€/è)tŸiPbº±XUàQ%°o@£É’Óó–~6š¥€g²j84ヵCƒÀ¸,Ó.,ޤTs`ç¹ï~Y¢éž3d‘” ’2'ïMó£Y ©`°Pþ ñìûÿCo|0¤ßt-Ö[:5ô'Ø^ V¿|õ>y\¼!†rŒ^+C?j!†Õ£Ñƒ9+¾.§¿lz/±wäð¦½9G !ÝA„säÏÀ%Í"ýä;ƒ}iŸ¨BÛQ#qƒÅîÏÿ¶ö½AÝF4.mð<¥#¸€Új°é% žáÐ× wHb”0Põa´LšeC•u Ë~ÿWª1MaÎ4oŒÐO¹;ÝÚÔñÝypçÐ%Ûû±±=Û31ÃÂWyÙ À88d_è73± ‚À–ÊöôŠ,‹Ò½MOÉÅD@…ñÒ¡5QÒ†ƒ”7y@+$r:tp*ê€Q™˜÷÷sÛ0ÙÙÿ±Å6 \C @VDÆ|’‚îk–T]Á´² 9 ¨žDüukÖØ{r½H*&]H É bT ð›ÆyeªšBè{Ì"Ø„|„Ñ}/ΔXß7–µ=l*B)bs±Û{V 5œo7Žž‡ ¼! 2 ¯ŸÇ3‡žº‚ŸÐPÛxJü?Ž™_³ñÿN^ç„-è#²¶£Áûw¨Y½×h7¢Ú¶*„ÑQ÷àÕ‚±0…gþWЉu öceè[|‚Y,»ïÐ+Σ·¨ïGÓŠtŽx~4ÇÀ‘}6uºì`R‚ö¡Dù:9!ô¬¼LJl¤± Ñè˜á¨;‰£ð –¼Zp´Ýýš©Ô=,6Û4$ÜSËÖ›ŒÎä˜ÍyŽÚxÇÚÈ[½³Âþ#_ûš³F~òù‹éù"ÿÐò<ÅîÁñ„!à5…N†×_#= ÉŸ„½TrΟ–ï×ÁRÁiäsʤZŒHÔ# ‚² Ç0=:¸n8§®¬YÂqogÅçª b6×i*\e2zyÃP.o‹aGäR°ëMРª=c¢Æ8’ËD7ò4‘»H 9ð«„Ü1Å(Îq-ÒG æ…øÆD“}zï@®v?/©b–ÜÚ.Er¸%y#fá³AøŸ–DÃû zƒ=9Å›=’YˆßáóLÂdP#z1×kJ¡A€n!¤IŠõ‹p¦LíîŠ( ü0÷ºM5Iy¢*wQ%A"e&^‰òÔcšÈ×1x™ÃY ©`Îä#L3X=ŸIéîws­W€¡òÈE‹P:¥]>Qá %§‘ˆÃ8çåI.R'~¾Ú—:éé‚«kÍ©u´f°ç3HÂÓ{í$&¿@nŽDÍå»|𜒩¨3(3’±G„"O>P¡òé¹ßaªœÒgžbáùÇr…Ÿ]Qéøð–\ ?¢$¨Hvévys+j“ŸU" Æ! L²7öxf×Oñ lϬ°Lj’l 8ާ%Š›Ä}Ž“p­’y6xºÓCoÌŸçTó#){L¯ZÕýÍâ&¥Š’ýÊGg¤K/½毮:§qhdy‡xÜ팮(Nn—7‹q ¾VùÞFyùÛûœÍØÌ׎(·åÈrqfÇPâX¼°NS áI.J.cDEsZÒúD>\› ¨¢Q§‘„T#:Þf§pàô ÒþE;ão{7NnØ\åjgã^£Æ$ºF®vŒõf»`¾YLg²¹ Þgó®’ê÷™ÔIÔhÅ=sBKŒèÕáºàOv·ëecVÖôhzc„¢#0µò§ºw %‡+d|A›Ù ­zªÊ~z6ÎÎFEU¡Dz,Œ½Üja¢CAçA+–C¬V¡à}¤@åW$â^Ͳ+PŽm‹›Ì]lø©ct[“hWSºlg´Á…¦ÊÛˆY|² BNå^|o)?°,Sks0#C"X¶LóZv'ñÞ,/K0#_éfÉyn±B&…yû#QßN„}*þÒ°ïhnQ¤Û=ö)í†} ”¶·ª.Þï)%Ó å"(³àÔ^Œ†€k,³“ûxž+†=Ñœ–^BÍŸ–uGc¹çj²a;&ê¿Ü“JÖ"Õ¨ GwfZ6¬Ÿ´ne –¼ã—ÒþH?å~r¡¶w©) &Â9j-‘Õf§¸Bs»˜ì±°Ìü|d‹0‘F¶9­j'„i³ç9……!¶O¸ üÙwµüëôإР‰€ñ\hŽHKàÇυɺN¬%ß”?Ç©¥ ÛÈè`#ÉBªOŒBžeì›ÇÇÔèj äY–t¿k|I^06C¶Ú´<ŽZØ5 ”)ˆÜð˜úsÝËš °3 ¬%}±Î/Xv.œf“òûå¼øíùç4˜ˆ—ë´fL6ë»ôÜÉ…ì6àßU辫êºí¶Ÿ4«‰)´¤MF øò÷/YÈ’g²H(Y )ßÞ¦¼L€¶¡í@rúF¶n§N þþF]ÚTÌìAÈﮞÆ@@¤À#Ä6› íBj¨,²G×ü.ûr½Z5[·î—øCd¸³¸$“nGãI…èmô$ÑÞœï~JTvÄîgáUíåh½/^‰o[‘BÆ wŒF®]êGˆ3<‚ †DÅ`#Ä0o°;C³Ç¼ØlDÅþfK‡ *Ç@%˜K¼ª.EO\2‘fM˜N«Uà´ àUZHéýžÑå^.Š-ìy¬8Û}¿ÎÍ?cppg"RñŒÑnìÖíצðõÍã§^ãä Xù…@Q-U’ðe…êK Z«Å~_ºNÖîQGÎÓ‚w‚qÝ7‹Õjq‘—« |<ܹÇPo‡žëTLÒùc…NæÈù‰Ü9pZG7í*bb…ó²‘Sß1Ò×ÁW§‘¦‹œïqíeIÝØÛ©ù¤IIßÌ  ¯9g&jÉ×i—£þ% 4w.4µ’—`¥d›NjÑ—÷âëËÒ<¥[ÒôØj(úº¿ÏhºÈº†^óÀ~¤~U¤Z}DAK—Ð{Ãäýc3«ªÓ}ŸÝû3ÝÞÿ¦Üò©}Ãj¦}ý -E‡ú†§Ü2÷ ÛáBOòhಮwÍòÞ’²Syçä²½š;0gîL/ð#ßzQýÊ»0]$}«p~ì$;¹oUA\j3)Þ´Á0î:0÷Ðp¦E}ÀNé#£›y§ô9iœ#DÙ‚¨Ká d+lã^[»U/L¾À¸³ß#æþ>S¿•ÍuôuBq{3Ô·[få2 |±’8àÌ›çík†x=k*q}Ñâ?^úÈ:º¿jV¸L’Uã›E ,Ðþ©©‘ê¤þÿ b(¬„4ÿeS›Uè}1}³R{U^4;M>””O!uB¡slÙ"£éMÈsóÀ[TÀêЮèõk°äuéµÉÝQæ˜é’È-£ ×!d‚ìÒlÞ#»¢ìWZ¶MO,;¾IÁ¦À=Õv@€÷~º#ò³pÔv÷ÍRŠ;%î;‘V*×ý°7|‘û@ò%QjcQÓ÷ìxÏûÔ›%z)ÔDÚQOJî]ð¶‰åÌc® |Ê÷ˆlŠuèeJDõÇ'Í\ô<oÈ}bh‹ECB ö^s ļô£˜íäcV‡výÂG K¾13k‰§kI<ð×7ÅQÉ4-1`œ÷ƒ.w2£ýª¸tû+á1ÀqcšØÛbHëÂÄ@¬-^Úñ™­÷ÍK!xƒƒ¯z  †È”þÏ$7¢ºñà£åÛ.?ï՞ˋw¼ð‚‘6Q?j-Y¶l bú á™±fÈœX_ª/ÛÇéî}]Ñà’Ñø‡_4û+´ÇÊ,Ð7¦ûqÔ°^ ¿EÖƒ™%=]ƒÆ8öe'EÓzbúç:1•—¿6»jl¯èVÄÜà"+áï×Vvê·:ÅlÎ!ÑèëûÒ'ÿùÚËØkåEHÆ*“U`¿*BÖ±ŠàˆKÄNšWBË{a€#Zb€ª13¼}o ¤ØÓ½5lP fÿÕ ÝÐ{G–,‚ÖÏG®xQÏ€ÃÂÊ“4§ÍÐúÏð‡fö%ÍÉ?4sŠ-žuw½ U=¢±Ž¿÷¨„öñä„Ä/ñ/þhÏ<3HøüW͌ޅ\@ !SdX[ý§WÏþ þý Z endstream endobj 182 0 obj << /Filter /FlateDecode /Length 2527 >> stream xœYßÛÆ~¿¿¡µ«Tb¸?Iu:‰‘iíô!+`%)ÒBÎîoü9“2Kr•ϲÔ$R»ÙÝîæGñÇùRÚÌ$E!ÖÕñ]Ûlß>üü‡cWv›ùÒ*ü‰?/Ã8—bu/ÚÍáþLúǶÜo7?-PÒ&©”¢«v›ãý|1ÿéîï7R'Öäùì»¯ü±Z*{¦æ~Nâ½L0­Ýt§vÊåü‘JüwXü˸øû·§î¡Ý”ÏÇÁÛÛ‰5(2aAG·ÖxëÛ¼]Œ_owj˜¦ ¦šO ŸZ6ý ÿ³o_žüšÇøöê» U¦MfˆÛ£djŽÜ„#7á™ ï'S¾÷‰,j·°1†?4嚦¢Ü¯{\r±Ù×e»ÝŒ°¬Ë®L.iø,¼uy8ÔŸî{¡Åãi¿êª<¾/wÁP#~»x轨«c÷*È8.¹ ¬þ–¶m7]Ì‚bø•üÓ½0_Y ïԕh‹ÃöW¼Wo}&ú{õ77¢kÆÔjö›‹Èí7ÉñÔ~Äü Áè¶81GÌ<Š5\Q+ëm“¬šÝ¡l7÷aVÖu¿±jö]ÛÔ¯Âßûyt]¡Ê“OÉDútÀñ´Û•-xzêñ³KÇ}ý^IFgižä2Ÿ-é$kkà±»wp±Ó¤oÞ—¼ûg´›ýg6ÇÃf†À/]š»ºÜ’ ËáLSÊŸÙ>W÷Â-Ü"E¬MF:OqjôrÆõº­y:fÐzfF¯Â]³,žæÊS›})ìkdl³£5¹Ž­Q6²ÆêØUäÌWÄÓ,Õ±56‚‹L0‹t¡bÆ›J!S7¤\ª"tÛ ]ÆmñÔis´á¡üUgt è!+ðÉ É¬È"+2Å’[¡E:NM’fçù™#csr™££XP6ËcP %·Ì«(2‚Lí—Â$4xIKˆ{)³È‚”™“ÆæÄÀ¥‰ÕÜGq˜¦‰‰ÃF&Åè£Õz… &X 8q«E„rÒD6üŸXe±XÍÐÓÛðX¶mµßvH˜º·I€‚E–d2¶D³X±±%²àhð”ÎcK „N 7É{58¹lBnƒ‚al–¤Ö‰‡ùRåIª•M÷Ô¯[c°ÝØ<C«cø’)q¤øËå¢;­½œÃºð)H¥Êz´¾Æu0¥P w„œ›XUÙÖ[hÃ.(èìÌj7G“±Ý;Õ¥¯¤Q_h3âu9WxJšƒ*Æn‚â•:åœÊDUúãDyX6ïARA>ÄøµM¹š« BÚ*ÈêL¹“{…3 0/j•BìŽaº¥Á±„Û±öcñáݲÂFÛKKñâï£-¿O]';?âûÆ Á™WÄ?z|²Ér»Àƒ°‘Ì< tª –kXýÒ±{RdÁM]¸äFóÆš«Yj §€üÁŽ'Å0©æ8†€=Òª•Ð÷4ûcPcr¦OË}ì…u@¬@-ŸÑ!©ôaHË€4, 9ª€#àaÆhözV¯ùÍ…xlZœØ>Pu#Ï›‰]Óöœãî½HÁSE(þ9MË]{U˜W<ðK.·›ºÓÇÞl…Æ“œø†ðƒþTwãÐ_¹‘ãí´ Žšöyp¹>y!ÞW,ÄbLkö qÔHVÜc1TZTAç{˜I§e/©{lQÊ`Ž7msÚ>…ˆ.æ6Š©o*R ©…8$R£ ¶€ãIã9%!µ¿”DÇ*NÀHÕujI‡[x^›D§ÃµN2™ª¾àBÒwB߂Ѩ*U)páêD3Sh+1´Æ±7‡Xãß[:óÏŸ7óBûÔ>Á‹xÓK)ñoüJxc 3 ˆÔjs©Æ@ÁÒv0ï}Ü[Cq/ ÊæÝü”å‡Õ§5ê0欤h™cžŠ2fùuÕE»|¥k‘ŠüTn«XMùMê^2ó<‹úÜ**màKâűZøƒÑÑVzÒ‡mÏåvÃ}½4º ûßÌsz0¿Ï;>Î`C¿û§©ðZ¥ Ò85D˜¨Ákt0¥—¡Ò®±bp“²0aîâ)ÑnºW\@5Çv%Ë»òª¦çuI½êM’ä¢+Wˆ¦öf…‡v¬[«5sêv+ÃESÝß(àÏùr‰mP†Þ.Ä„+Im¡r Ö{Š~"ÿ‘9 ) ›?ˆ‰«¨n[  æ_ä+éç®ýħc¾¼ôª‹ë^õTÅÆ¶"dT]—û³ú…Ú,½¨Ûª&R³›Sø^õ5ÓÊ=Û1mpè(§±Î† Äo05:¸AêÓ–¤¡ýÜ-‡‚Âú*^5vZAœ’â¼hMŒ‚àÓÄßc;ct›bÞò@éÙ]ÀÔiñ„)@:28žº ˜@×Âkk´9õT×kå•éªÇ7SOešBä;¶#Ṵ̈6ݧ×|-ïÃ2 ¿«u|Ï)’iÛkÍÆàB Ô/pœVØÇPíR l&pŒObZÿÁ!…¢¹… WXLݰ_Kñ®%69kà¢à`I€^ ±3Òöéy[@ï‹"è&ͽo+‡°Qò"ùù+‰N€rõR§šÖ ÅÅÃØ ^¥)öáw#ꌟÚf‡ަç#E›Æ.i–_]µ«~}Ó÷6¸SS4…°n.Diß2=PaÅ-Ðh¼Ãà Ÿ¹m¹=ëNqawJ»à±õü0}Lx›1©pÀkIÓÍo|7ÅgÖ?ÍÞN¹Uç)=¨ÒÓ6>]èe ø¼óRØ}Q?ð™æÛ?i»þõTDï®&?t¼Î%UiN d/$!u)(ì=)ˆ½”ÍУ\6T#Ô4ÜÔWêEo‚6“{øbh2'ž>û æ/'ÎeÄ÷¹Ï©óê‰d~ÞÜÐû¿ xÕÊ?Ap¬'ž9Lq²:âèqT`Ò*úùAÁnúP¶ßÇÖãsÇÈŸ÷²¦šzYÓ+1òïa8Óò‡ÆX0Ï; MHùè¡>)#!‰•²z5þôPŸâ½k’ÍW=êõàÙå#8’ ×]µŒ{=ÿ+Káü³€ZÆœ#ÑQ/ !!ªÚyÿàç?=ëÚjÒÍwþy¦. äâYŽ Ð$^X‘¨ÙKþ<µgõžzÓI0ý¨S¨ágî§ð¿rPžóLÏ–ðJÌÁµ˜-B¦ó»Ÿo¾»»ùüû4@Ñ5endstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2676 >> stream xœ–gXÇÇw-A8YsŽJh"Š `Á‚4Ql€¨ ô¦Ž¡EˆDMÔ“`pE¤ ‚*D%DÐØR41ÅHŒ&¹‚ï’!÷É,˜›ûÜ÷Ã>ÏÎìÌ;oùýßYšÒÑ¢hš6òILIMˆŠ˜ê¡NŒ–¦ìEsZ´Ð-µVÿá6”Áˆr h#“úÏLà[c8j©c)švõYg´:ØnʇÅê-É qñ©ÊÓ\”‘Ê×_”ž1) qIJkò’“¨Þ¢ŠIJ]ž ŠLKQD$¥(¥³ÿkü¡ÿÏ4EQ“%y¨oINIM‹ˆÌˆŠŽ‰KØœ<Ýi†³ËÌYJÛ©vö5‰ZAM¦VRVÔ**€ ¤‚¨5”µ˜ZOyR^”7åCùR~Ô2ÊŸr£Œ)JF½A Ô8Ê”¢)]ê$¥GéSc(+’JJ‡r§²¨Az>}˜ÐrÒ:«õ\{šv‹Ž™N¨N c¼Ŝa§±A,bO°¹Hn7÷ÂäÕUë&ëžÑm×ÅzzPi8‹4 cq‰†÷Њmpdñ‡C*ÏaqþŸ*¦²m@¦·±€W³?C=c(ÒˆŽ Ÿ¤1é%„ÒTv¾K¬†ëÈð'{ÐÝ|®ïÓŠMKåø1™ù7~71ï±þ­åQr™Ûœt6Ã*òÌc“‡`¥`…ÀÊT6ðp|Í~ƒ®5×5׺Ž:Ñç1WÝZy™øù…Sç>›€.%_ެ ¯[[äŽxü öØXWöV­:(0Ní¥À®,6ÖV6p§~ó2ÿ˜Í ìÿSÀÐ5Ä«ýà 3o?½ïÚ"fhĿЅŸ@—$öñ0k$±°žd+ÿÜOfjØê­ê^Äøg`n÷ÓîÇ]TÈÖ^Šó­ö3÷A!I +xÙÐS ·[|&Û†øxy†öþö{KïmbÞŒ”m(FËf*«ûOÉ8Ùʇ ïß["‡IÜ®œ½hZŠ#=xÙôAÎPlO--º•l$¹sE-a°Î}øMŽå,o¬w$±$]Q²µ8ûr&Ì _“•Ÿ…ÒøMÑoûŪ?*Èo;²çÈžÓd5ûÖÿn9¸¡{èjQCUCÕñ‹¨ÝŠ?ïy {]¿ó *å+ª4m7Ϥ¬Ï‘ÂãÔA|J?-[¹àob%~ÓÛ±ËÎ:ñSUÙƒåòçÜö}»÷g!>6ûH«ZlRÝõ§hĽ£iáu«X?N¬#žp²óKÃ"¼W¨ªnÈáW¬6à°Á _àï´•_oËÖ.žqÒˆ.À˜œ"&V€%©Œx¬XH)ÛU„NòÐÎÖÂ+Ø[/ðÇÆÙr0gó®”}܇øŽ“qÙÛ¶e+¶îDÈ;+`çxeFp ²çíoø½ø´ãÄå‹ä¤>°³àXYv•0'jƒghÒ‰†s¥škùòÖCuyå4 FwªFœNPqјtþÍIhçJøSÊO8YÛšê–ä^sžƒ¸ÞI»wYÛ¾¤z òA¡É A<äs ‡/ }m^6¶!Þ’›/_´öÞ"´cõ¿†Æ’Ž —°Ó¶Äú¢%ƒYØ0ÜÉÄÇgeç~)ŸÄÛ›¿¿Õ¢†¼‡Ï—–Ý€ä!ÙøÑdȬZ¤ž;a¼Ë—Ø‚`2Ëq"^†½ŸN0}ò5 <ÍôRo @¼gD×àåÃ-ÅUŠ¢ŠÊ¢tÜRäÉÿo̧ÿŽy›h7”C*RÆ|6¾cà r‚`‡ÇbWÒEµÁ YΚºžM=æ½èÂñš^–ˆõÄ1#ÒPÈÎØux…ô½ø­µï–\òúLz F¯hñ¤ 9ùèC”‡:v]ÜQ÷Ü¥sDÖÓ°^‚õO„©0æyï«J–³™áÑÉkQÚ\üvÅÍ{Ç÷]âsŸ ‡Õ4|†ºQ}xÞ\žàKÄçòôçúG à°[;{*ÿhyAÁþ}Gåœ*7)'ñŽæ+ü8Þö¥èûHÂ'ý8@B2ÒIôj03•YˆV¤Dnœì—®èðÓ«ÍCК”Øè µ;ràñœï1 µš’Î6¹ç·aã’u‰¥YrlÅæD&Õ©šâ;3ï“N2½ÿ+ˆ5N"Þ)¡§ÍÃÆ.Ô×kyøÍç¿7ÝîRB%’äÓ ÆôMÉý¨‘–$õvH¥CÒoLÞH GV»†î”V…À#AœLZ¡¼¸+×AÀÙ ¸±xüË œÁÎìˆí!/ÍkÃâÑ ¬áž£†’ÆÁFéJrf1=ÜLJØÌ`[3ÃM˜›¤yˆ”®*sôÅ0îaF 4%Z¢%ÛåCñÂä·9|edàV'„å›9Wóé‹}„ ®ÊæÎ†O4O˜!÷Î÷ ŸDôz×¹‘²3:µèôÛűGUç#;4w·{VÒ;ªÔ(‹Ô%™µÛ+vÝE?£oò¾:rº°©òxâG’AC¶tp¶¸]ÞN@]çÈ¥¹z„cCRf©©;PÌ–> æ°AÒÊ!é–í`KêK½¼F?Ö¶£_x°tøÛb›™.Ø^ž æeÜ—uº?«÷œ—’„g`96˜ë¿çÅtöŸÈM`”XWJ¨à–Р»[vTD¢`~YXØò%qõwÞ—c 6OúiX¦üòÈÅuÌ=«}{£ñÔù@Ïù¶´š·q~¢|GÂû©h%¹~Øœú%yTV•4"þJUÂÊÅ‘ñnŠwG)Kài¸>*ÿra‘è‹g“ÿ‰aoëAv"%qºËáMÀ ØŸ¸òºbp´eâiïö¡u°»lXÁ€ [XSUÒ„øÛMkgº…¯õ\žPyu¯$¿\<¶ßäÄy‡—/‰.­^`ÓÐøw#e`ËÀ…×9|Ð+BDÈ!Ì´ÅÄóÂî Ùeå±—ü*æ#g´8:Ü3Â;s†… jW7.¹ý ±=ñÙL ×~l¸*:sC˜"§0·çÀ±Ã'ÍJ.W—·¡óèxÆÇy[(ôœ[7oá†@ÿ¥a—ï?hîè–ôCÀÐ: ÝFÚ&AÎaÒ±#ÂÓZ±1ÿ+«„ÈM ÀM50ƒNHú‚>-6B³0œCÚqûÚÌ’ÌâP8ðh ަ…€&cÞ†}…#Ï`òm‹°Mf&bÉœÙÈVÇϵÁTl|§^ ïí¿9õZ“o?P5i·0Ç¿ó¦kÓ¼I `Mw“?n°°õc.×G½"‹à^µ\}´¢œaj™Xw|ó7²0VúÀ10E¾ÁŠú žÈendstream endobj 184 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2413 >> stream xœ•{TwÇg ™Ì*¢0QÁL -E|åU¨‘‡<° PyD@ D«V¥>Ê nÝ"–UA| Ö´¾V¡ XÔ®l‘*XV-ÚÞÉù…³û ´»§ÿî99I~3ó»÷{ï÷þ>C&“’$'(3ó•êôäDãj®`E Ö“k¯ÖЈ…9¦o*âMM*­'çX@“9ìœñÓ Iºúì²Z¹zî¼yó}³s rÓSÓÔ2'ù"YRì·;2?e^zj–ÌÿÉWff稔YêÐtUÒÆ<٪Ĭ¼ÿmüÿBa³,+;7O½101)9%T¶.-=2#3Z%_ääì²x‰ÌÕm!~ˆ#‰UD$ED„áKø ‘XNÈ ""ÁDáJ„æ„Áo,1ƒ°$Hb&1‹˜FØâ†&„±…¨'ôd yŒ|BŽNútR·è=Q¡è¢‰Ød­I™I—É¿ÅsÄâTq‘xˆò¢¨ÛI†¤‰^B»ÓJZG¿ófzG¾Öhy9)dA6۲ů)ô…^%F¦:2¦¿ :![ Ѱh+¦ðTl&4ðåÂÊö´r‹¶Nï>8ÐkÉ\h*XCE\•0mlëo¾š,EÿîdmP£”‘{ñ1ªxZ'ÁûÕÂüN²Z ZœªYdïlƒüBg sÁ~à ,… Å£h>WìÍ7z£hz„·ã•Às·sˆ3ƒ~,bsùžr‹V,Â’¹ßú›‚S’b°¨oÉ>ú©„‘ïßVX¼Ó*ŠOÊXãE3áÏqú}éoja—V$ flѨÿ·h*O#³÷ƒܯ¦Àt§Ùüí¶Ê|~ݬ˜Øõ> Ê#'ò¥ÛËv—í©¡©ƒhjKÌái˜Ù÷ð•æ£k¶§8ÏãþÍ:Á×̪½v®åQuVä~©œW· -äÓ^ÂúÃ;nè?ÿdTTuÖÃÇöÿ¹JÚ&ùdߎ¢-<º³¤†Ô?Þ¢öc}{á`ïÒKf³?C¨pCuæ†l•Â%0ñë車ÄÍ`/qy¸êg)ã×Éמ©m¥}$8/_®W”“/‡E­W± ÆTÃÔxPAÞI^Õ‘^‘ðU-»ë³½üžÎú¸ì4÷%Cþuˆõݘ’*ÍËÙ©úl5ÝGúÇ¥³žþáJv ·QR”Z°Ýš¼µ`oÆöÐ ™ñ¼?=¿9ì—æ†ÊÛMÒÏ£N«oóÇøÃû«ÑÈüY>»pK®:=3éãXžRžo¸S]5x„(=z°êmT¤‰,B4à]nq»êµ–LÜm,xLÕñHÂÔ†~ÝÕnÒAƒx/yƒ8ßsÂS88+;TÁÝó@æhJˆ‡Üie7Lƒiw»¸ÿ:|Û›¯Ø½ß츰éljmðYì±™ ä5(0ïꀷJ8Wj›ëÚD?žvŒì€é`y[ócÛõ$ŸîOk¡O{­Pˆ5º¡“TZê*Žií„Hä‰ýˆ›ïëÎ<¼Á1[—?– -B";x÷}dÁ1ÐÔOgÇÐ'`f÷Ÿü(5Ó¯›°é Õ‰ô³qPgÃe0†Ävc* £„©øÍ¸wÐ.¤PÛY¾{÷­­—Óû=ëçâôv -CËmÀL{[€ªÀ%©—Ç¥ðÑ|ÂÉìë›Î}z®¨žÞßÂiú®§Ÿ6.àÌôÇÕ=ÂHyiH( ³ô,R"´mFð6Z©š3uM\×£› æa Ÿ  õRwpúMA!ÈÏ™âòw0 `ÿ8rã3(`ÅVí¤ÿa<þ.=ÔÅãÇ.:À—¶J6ÜQŒ§Þ;þ£¥œ“¿Í×+Äi%¿ó7œlëÅxµOD/†‹-U§ ·–KO”äòëè Äè‚ï¼»,A½"V çðô玣á勿>7l×8àän†Š^Šy¥W™¸Úôá†‡„/‡Dð«ÞŠ…ÂC«;|:f5„ïî!åä·XüÛF» ÖROºAjÄ£Z?AŠeÊE¹âñ´F7[úD0opSá ¦O Dx¦!¯ BÍ ªô©l ¦Z¿B=G³i´¯±0z€…] Û8×,]W~6€§½Lžßt@¢¤øysƽ„5°ææÈsnÜ"Ju"(JYC©NŸ!ÉD¢M[‘u½Â˜µ¸_hÄÃê>(hYߨ/î}uIÛð²qæ‹;ß<æø{y‰—/­>À/â2RBr•;>Ãoê@íçgKOV^ÿû™žî¾á±>&8•sŒBöKÖú"§YBæø‘ÐºN \>hÉ´ÂègS5ÔOß$¸È##åqµ¿ìæ0­#J”G3j­i#˜ØvÃ:˜ó,­nÉ9ŽyÚ|æB]ûl˜îѬížhÁ>©Ž*¾~ðÔáåW®Ÿ¼ÃÓš›q^d¦láòvfì -¢Ç‹Ç.ºqýÝàË"_ø¾é²Òƒ$¨Ã°F¼Põ],Ê¥ ¾+­µ¤à‰û‘£a “¨hà ñêJíߎ6òôó¦ ›wÃCæyÇ]îÎÇ¢K#J²+6|õ}f7mûò58€láOÈ:&y»*‰«‚X1Üšh4kðKœ¼ö.áà{„¯Ø-0ùƒ6Dð^¼B™”à·Ù™G–<2;ê}mÅ¥ð™è`5ò Þ†Y‹†£ˆÜ­äŠÁ¿ñÅ+þ-ùK±êÉ>m›' ôpi}6xïÖxª'Žç \ÊQcY.C!/´{9²FÛèaê2l€Õà逇Ëa‹Æ¢f0hŠð—%3"X æìã•Õ| ”K²@æÎï#ñòÊ´öx)3ê‘”î9ÍqÄeÿz3»“›Ü¯H™DÃQ¶ãV‚¯l²¥kn´µÝºÑÁ1£è®‰î^„«KøJùâ°¦¾þ¦»ãzMj_‹`ÕkÖÖö5e¦®*Ê`eiÆ—Ô“ÉCS4LM{KL§Ä¥ 0"endstream endobj 185 0 obj << /Filter /FlateDecode /Length 171 >> stream xœ];à D{NÁ À–Å’Eã4.EI.€a±(¼ Œ‹Ü>|ì)f¥agÐ[6Œ×m¤ìœzA¤Æ¢°º-( ÌIÓRmUÜ]™j‘ž°á&ýû㦘êïrölºsyjjI9 «— ‚ÄHϹèPÿ­ÚZ˜Ìž<]Dçi&Û‰¢d»R?‚ù§Ìt Pµ… xË<áw›w>·hù.Vhendstream endobj 186 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 720 >> stream xœm‘ËOqÇwi1jQbcu»&ô@ƒ5 ‰ hTbÕ@Q|D-¥/(-´@K‘RZ[–Ý¥…>[II(å¡h¼i¢§ê‰øxð`<™`"ùµÙ.&^æð™Ì÷ó—a8Žº®ÑèúÍ×úuV‹þTmM‹Á4`Õ9vZÇ‹‡ñ⑲âQ@é{éb9HE («Qפ¯B÷c"¿Ó3ÜdïrXLæ~òtmm]MPëÉŽ!²QM6ëôÝv—³ÛBêld³Z£&oØ]‚h!OØmd‡Á¬³I»‘ÔÚɶÖË-­ä•–›m·ZOªÿoí_Ã0QûÝ «Ç°ª](LŒ—ãø&Z‘m‹. a/áy¼dKËc ®2œç5/GŸŸ¡ÊåÅ\v=[à’L -ˆ{{º(°F0p&½àz¦¦hU”ÎO€F|Þ€Ÿ?Ë7*Ρû¡$DæÒo&•1&ÆÀœ$1 TÇc t„4œCX—/ÉBdl ªBü2oâ]ÁMCÊ{· ·S^Úà.û’K+䉗ðŠz’H2±QT~ÆÊÂ"ÌÎÌ&’?¦øöc“„G àötŽ+}´Ÿd4“ªæà#µÊ©¤U²í²KÜ߸R|:4è³QÐKt™ëÞ¥sûbtx*71èéï©ø'|†/Cï‚)à”Ù·KÅ À¾šúƒ¥ÜIekÒï°ªø/ Åù€R¥çÏ„†¼Zš:OKÜa, Œ¡ƒT¹à*÷ƒõ¨Ù ˜Š®…Ÿ¯¡cŠpšá¦£ˆAëŠTjiieu#¬Œï¼å™D¶Ë lá_·DHû^žsfm6§ÓfË:s¹l6GÈæ‹MñxõÌ(Tb­ö‘t/H+ç–ã¢ìlŠ™a¤Òf•e™Ã&"¬tßo}Všendstream endobj 187 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 597 >> stream xœcd`ab`ddôñ ÊÏMÌ3× JM/ÍI, ªüfü!ÃôC–¹»üÇ´Ÿ:¬Ý<ÌÝ<,~ìú!ø=ÿ»3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡; Æg```642f`bf{…ÁacØ÷5|ÿ™, º×ÿX²¾{ýòr¡ï“îˆ ïø‘+¶>•]½{ÆùûØ—uöäËyût%usŸHg_Ü}¶ûÐrŽ?“سºëÔåRÓÙ¾»õ³BMzðýÍ×ëO}}ôuçæ½ß½D3Ù:Jê›[íºk»9~û°}y±nùñ]W]8ÙýŠã;¯âÕß"¿ÌMô#¶µM]¼bÎú¹-ëÂåV]:¿pW7Çûý¶V&¾nÙéò¿[756uwvçKþ0`ƒØW¾úâwæïŠË¿³:´‚ñÁ§gß|cþ1í»£h÷M™}Ù¸ñZ÷ Ž[Ç~3ÿf6 µÎ\X±rÕüEËW”/Èé•[·ý´ Ý;N•š$ÖÆæÈg¥æwFvuvv·uqt7v6ÔNéž#íæáP…ßÎiÉÆÓŽ%Êï궦{ÇêâE9ùùUIºŸý¾ó~—ýâ½_ùüγ¾çM2Ÿm=×-n9.–|În½½=}½“z'­^Áó|bï¦þžþIý“û'ñð&Xÿªendstream endobj 188 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 444 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6× JM/ÍI,ɨüfü!ÃôC–¹»ñ§Ú_Önæn–?4…¾' ~ãÿ-ÀÀÌÈžSéœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡ÁšzX]†"ÈÀÀÀ˜ÇÀàÏÀÄÈÈrøû¾ÿL‡ —ÿ_ÎøÃürïUæŸjß•EgÔuwÔvµ6´Ë•X'$%ws”µÏ\°hÂŒ¹;䧯Úòµû0Ç»9aÁɹr-&u't—äÔ•”¦Õu·qÔÍìî›ÙÓ·l’ܬcóölêæX:©´ ¢)­¥@¾Ô0û·H{]kQw‡déÜÆÙsgϘ2An”ɫ',XøTb≠',š¶¥wòŠ-Ë7ïÚ­›ãhOD…ÂoæêDù†üö¦î*ްíYûÞoÿ.7Kޝ|þç©S§/˜Ï¶œë2·KH>g7÷òž¾ž¾é=fLš8‡gmoïš ˜Ø;£‡‡9²·"endstream endobj 189 0 obj << /Filter /FlateDecode /Length 7112 >> stream xœ­=]“#GRÁëÀ3AÄ݃xºn§éú®:0A\˜ó÷±6ÚñŒÎÒh­Ñx1¿žÌ¬þ¨¬J©×†ðƒG©ì¬¬¬ü®lí·›¡W›ÿÿÿþp3lo¾½QÝŒÿ{ØüãÛ›¿ýƒJéÓÔæí×7ùµQ*ôQÇMl¯Œß¼=Ü|ÙßÝÞ ý`] Qu/ôÁE}ìò‡dо»u¾†dºíyw|¾ý¯·ÿ+9[®äRïu°ÚÛ{ ýŸéÝoBŸÂ@ؾ7ÆèÍê½qÉâ3Ýùöퟚ Ä>ºMõe·FmtÀ]÷»[¯ÔwŒ}ö&^|J¡»»/>ð‡Î§Ý»âË×óCùí=®jû]÷qw~š>…n|¼ÛïÊ5¾É ¦d»£±}Y7¾»ÏßxíAl݇Û;ØJŠÆv쉑lÒÆu÷»çÇiYC»"ZCê¶t"wÁöQ ¤jzgcÌòº|®[QLY¶ûÛ;8¢~Pš?ôÆßûò«3>báE;]ˆÝ㢻óEB”­‘óÝ–‡ó&£á^w=Cë'Œ¥¦$Õ[ka÷þ^“NÁád­âʪ\“O“²þåí´ª¨ª.ÀöD]åf J•êÚ}&.¯z§lÌËw¿Q4CzÊ1¢ü™´œë­³Ë&^PU‰9ß}Õ‰FªRïÐîÆGþz÷ˆÍx‹‘û5LR# ¬*ìÖöÚ3‘¹ 9ãG÷sQfôçˆñ3‰H@ÏfÌ´¹¯n¿º«ÒHJâMšÎáÏ%¢ ”J§OæìËî/nï(7ØDwþŸ*wiw,èGÖT7ÚéçhÐ^sPܬ¶µ–÷ÝñëñïÑà2\wÇ×ÒøÎ︑m¿Í#ÄàÌêI.Âø¥4–ìcœ!cÁøxäþ ƒÙˆ_‚µ€OKà(T§àô$ééØ;¿ˆûü4 Ä*ÉÛÒ7®cþù}‰5  6βöƒÕ6rWü2R v ¸J¼ïüç(5÷¯ËòpR¢9†Ð‡)fv¿–âŸ"®'{ƒ(wÆ9ˆµnôóIgIl÷çã#ã™\ô€}u’ùáÂþXHÞs¾Ñã•§¬k—èƒÞ”ˆ%©¹D7{&ˆìÀŠŒãxÉ•y´ÝîÁkv+w–â¯D\÷F¿¸î‘ŸÊyÚÆ›k 1}ãp^ÎUŒƒ­Úð/DW ¼›]ʔ}P؄ݓäßÖJfŒBsêÇ1§ý¿1;7J3J ÐF1M̸fþ&Zn°ÇÓ©¶ËåæQ 8vLf“¿óà–ùoLå¶#XyN‡ù‹Ç=[ðާM¯æé}媗oÆÍÁJ|;‡OP¿#ժǟvïË|qÿ°ìçøÚºø7d3hÆnóö‹›·óe÷Qòc‚Ô<¬êTë4è ›º={„åwøÄo`‡‚=¢y`úò]&'!&ÑóèC1)§‡|å©AL¨Op@ÞxÜï™ã¾ŸVÒÝ; ²¡û~¢ªrœ˜¶r>mK‘ó“§ Q»§©B¢ü{ûn·ßó逾—ÝÒä’¿¸'û³Æ¶\¯µ›¼V{ç5*Ì(²n9ÛÝ·”0¿°]ì cñþ9„=¿ 0¤Êù¿Läu>.üÛ­Ñ;ë‘’xt¶Ûž¦­ÔvøP,–·¥ÈØ™éÝ3“u›jÁgŽ–c¢ïΙ0šÁ˜âA^úBµ8ZÖXÞÞåƒâ¥;Œ‰ÆXû@ñÈÓ.f.X=d}Êðƒ“êÃ*ŽUuƒéµò«ù‚M…†ÈD9®Å܇§lEÁwß³#Ü¡XÚñ3Þ£üèIðG—Ôé|f–xÂ'¨–…pÞAJ„QÔqÛÔ#eH]X5|zÞ⃸X[ÎFi$E<bI3Ï÷¸˜Îqé]V"IfhX¸£;N:fSå#‰}"bõtŠðÀv¤1h®àHprï³BªÔ=q³9£¼‰f0WrÔײ/‘[0yQÇ‚:o.Bàä•òcß¡‹ÉвŸp<°ÊÏ܃âçœCÅãöp€}i0b Ìÿµ§,Y {_à ø³¸}Ofi×=对Ø}·+»¯È2Q*5üïÂ;¥¦Ç¬vô¸ˆöhr| /Bu?$ÀàÂR„P»ËGîü¼+)iÕýu.?7‘›£òaJXàObù’Þ¤±u÷N ó‰z7„d«³ûÉ+wÂlj2O ðo§Çh‰@.ØýöT.ƒ›ãI‰†ä‘ÊÃË#Kžn’Ïyû8á[˸˜²À¡H †ì7ÏOÛó¸IÈâ.‹¬ciY±ÅÊ‹l4)‡Œ©=B­á’äÍ2ÂÂŒÅbò1åïÇGÁ´¶ùO<©Ç*R1¡!z»ßáéFq¬ûŸkÚœ)ÛŽ÷ ùImIɯ"+ú8|ò«îW_üåNÜ«î•G‰çG¹•MƒúÔÖÀJÏ×Y<'ÖöEÇIU¥…¹ Xõ}ÚmYH¡°æ WÔÛVe´ÔFá™0é¦'ôlfbx<æ qõãËø$˜y: %Áô…®N…Ùâ÷ù‰a¨æ§Å©>OÙ)ÑŽÙZ¶É¥LÌÝ×¶^á:c–†í£(=‡ 1anVȧèÂy÷S¨ï—5¥*äsDá}çì­Q])bQ­|¯tLk5²RŸÐžM”Ñ1¥úìöΩD ¸’»M¶Å­×ÔȨ#DéCˆdí²LÍó°ÇcÉ®©ÎFÉæM{LÏÇ<’åÙSç~Üs²pʤÍüJ 8\ëFh‡ÂúàÐPÆÂþ5¹jЗ‹\|ÎR¢DÛD^}B‚ª|hÓ‚çâDÚÀønúrˆÇŠòùsÉ<‚ ‘~ª‰Ž˜mYEÌýDt4Ũòa—4Gx¥ L·œlØ|Ë’úÝ©11*fÍØ³K¤M’¹I! o1éyÐÚeÚH!v,©1—àf÷S÷ý„H†Œ@9¹»Ut[=V.X|æÉÈ¡€ ®yܼK÷ JC\§1ð#HšØÀ¯òï>îuZœ"žYÎ+béñ¸ì·Jq³Üf§{TÛ\ •ŸêM½Œ·´à³.7)¸iç{Yþïò¸Kÿ¼äiŒ´¡jœ©0wÆ^^OßÝbÖbý¿+·¾>Lœ½£¸Ç«AÍ®ŒtR”¯]í3שݱéÇhÅè=èÊ”ô¾ìý‡ãîùüÇãë 8‘2[ÐŒh'FP ˆpt<Ë®‘°Æ.…N=9F;…9é-]BV˜ƒâëž|=LUp–Õ)Åamá1­ë+¥ñÞ–ø°ÔDÇ1 {(×Îm3œn0©RF{ó.Ú|+`É”˜s­åiï·¢þn!HcL@Ýô^,«§®Éþ<©þè›iê kpÖmM30Ô5ðÝŸ®¸—e‚‚ m¦ÂÙóÖNí‰kÝÑÞáר;÷»—ߦY®3ÈÌ7ì}ÆüB„‰Ó›;­{ƻԀÜÃðüòpî_î¡ ÖÆŽ«èfJìA8 J ­¿¿›þ6µZ…§FAðýlzÞtŽÞ,ßœ–o’{3RN®Û?<ÓÍA~Æ/ˆª³Ãðfæòç TÚ¶1¢j"Ic+ž¶"%Ö»‡óva£äoFÚ-)X“ûúôðíëÃóûï'ª—V~9“U üýöß¾ø¢ß¯—‹µUÆÓ›Nú‹ú?ìç¯ð4GÄ~{ó{S¬Cõ AÏAʽ1.úÞÃçLoìæô°ù÷ÍóÕɲh6ðˆÕå\™|ÁµBÒ+œ*Ëy$()~{‡hx©¬ „ÓP}{X‘FÏ~{¼E½Ö°§~³{þúVC¸Š÷ç‡û…qbÝpNP¹¹`zˆ' †^y l\ÞwdÝöÊ)(ð>s…6ȯ 9”ËFù G [¨ŸÀ«kxøæ€äAœ¦@‚¤…åUo‡)õhx ¸1’(ºá *(°êz9mu¯JP3»Ð,W!á}ˆi–«‘ €JÍrœñ‡TC R¡>ãAaï³Û]À‰Ó,WQÒyhï*ãÎT«f9,¦p `D²†Ë)/gO(O³Ú›[Øvà­¼A#ÃLüqàzbÁ¥²µ@ÿT«%ÕÆ@³lZE \Dy1A áá)¥®Htï[-á ‡Ä…4*e¹ÿ¨ÜòÍXŠ ÖVLüÓtj€ f;!%ìp7JÂX¤¤e©"äl)¥CÙ¤áÓUÈÑâЉ©jApC«LRð\𢠰gÚžwMP¼ôªÕ§)riNÊ[.— KH~EŸ$€Æ”⬠¼¤‡Jœ „ÄYA/p…áaízú5½ƒ¬—‹sÔr¦Á ü…\3ÏäBï×&ä¿}j÷`)èÞ¬^ •þºÚ%pªÕ(f0ø÷nE¡ôOÄ–%&K@J\LBÔ„¥!hO¥BÒØž.ª†ì•žIW!OD‹C'…ª„¢=^åÒý^µ®µpözp†Ë2¯Åt@8÷·¢M€ѧզ )8.K!ë/Vb‹ >´+á µÚÄ•@ÃÐ+ñ28 Ep«¼º£[—“iÌ!M«NÌ~µ‚Ò+<f ®‡;Àø# _ÌAv»’§i~@¯¸ éUï×Eaß¼u…Õ¡@ÞnB£—$õEªzh `b(Ž"S• dtT–¨&§¤OXz$áì8%œíXɲgàâ”Ü“ÆîÝJþ¤µueF{h (§kÙÕ,)½À¸ Ý*^¤¡B‚/ÓJž¥Q¸Eê{h ¸›˜ÊÔW‚äýqèA|2…Rè$ÓâPYVf°U.ÝFm”ªÊ AVF¥RꇌíËTZ‚ëTÌX4õV¿6VñºD²ecc™s2 ŽJ™«Ì:‡^¨7\ê’^™0H¹yµ?ì9pÖ9®–z ɬsè…¡±Ãã²Ã U:\êv¼Ò‘ⱇ¦_Å‘ cp+õŽdsqŠË™Pfâr±ÖV5Œ³¬Ó\NBý H©·+õ‚¶ÞW5L®ãYšdñË6ocÙFUåÜYL,°1òœ[J6lò\LB“B;HõB{*\à\‹ê€2ŤÈkq9íĤ›/>C·Ú[QÅñ×ëÀ‰e†}oç¤Ò¤bÉk.¦Q/püvÂW „âŒã„ª2ŒÀEË…$Ô‹Ú%_k\§T&‚sòCàB’Š ¯l•L 6àé=²¯ãÁ•àP8%ãËdúÐ@À=zkÊ\Z‚ì R‡E{§xi"9UrWHà†ÖVHÁpiJ‘ÅÃ3Q°ñ )J¥I…”/M$‘‡Á”I÷¡€€ƒÊœ[‚È+¨,© §$„þBHº+JFW5Œ´œI\œcŽÁ &ØP%Ý‚šg¥¦bÜk©Ý^#%±ÝΗ ^j·W”ÀeíöjwI­¶Û)JívÎS|)§CÕˆÊT9q!e© ròi6¼•ÔõV˜q¢Ô”/›ѸՖ¼ŽÖˆ-y~¢¤–|Å5ޤ¶GÇãOôNjÊWHAK]ùŠ'Ðx©/_zºƒÔ–¯Ž7Y©-ÏWKƒ–Úò¥¸Ó¤¦š_TŒ+A¬åS6-$sÅ¡¸rõSëôœKÒ@Ź÷Ò÷g4–¹Rx¸¨¤€Ší¥+€Š¥ä¤+îóü`¤+ηWÃê ÕãIm–áµ[½@ÚÕ €Ä·§“x$ö6ˆ7|s8öz½apêU*r¢í5<;!%é  é4ó*dbœ¡XÏ&5É N¼ ýÿJD) ý.!xúÿló4ﺖ¯Ó¼ëõÁQCã®B2^êþsѸëZºN¯+é:Í»2‡SAÀ½Ð¼«¹ !‡SA/0êÁ$ÁƒÓdìZVO“±+ÝC“±+݃“±B÷¿BÂßKa’ª {„Þëo!O™ƒÄ'µ­¤Þ@2-=ˆO✭» É´8T)ÍãrAp’·lJ‚ä­—®¸6Д.ËÈ*’÷ljJ‚ä½8]UíЧ՛ Cs»«š«éª‚Œ&UN ɬsèA~2–ƒiE©°àÌÓðZ2‰3¿üp*ð€Ó½ìV£…Wô‚ZœÕ⡈¦€Û¨°J°óþp XÒ…%ÎÐ ðʨÁ`á¢ï{Ò\ðÓ °P§²®Í³#® (ºjaÖ,L•C$ _µ8),½¥PDKƒÂÂÇIÒeÇQõ¼TûŠ0o¤ëv&ç…€©’Åù_é…RD–€WfD,¯4a,¯¼ÈbqXº)õÄÒðJkÌÒ°!–†bi¸uu%^ysÄâðÚÛ–F€W bK#Àm)QQÂà•æÅ`_:§²&Vê*ä‰hqè®lZ}ûÀÒ¬ðJ¥kiVxeVÑÒ¬ðŠÃ´ø:Ÿp‰Q!á¬ðÊ-†¥Éà•êÛÒp™Ô=Bb™áK§L+®¾¥`µ¦8ë4+,d”ì`hVx%£´4+¼÷-N¦x·ìtqŸ ²ðÂjžU÷¡y Éëù ]NT —ÒË ¥/§áá•7c,N wÜGÑp{ÀÜGѰÐàdLÀ+‰¥qß5Ï‚“½ÂåD…dÌêå„¥ÉÞ5¥£9ÞUžœ—n'*$šp;Q-êÁª¶½bi@w¥sbi÷z ji÷êå„ÅAܵW, â2£«  ô4‡ë®BÈ *¨ØÎ²4¯Û¦Xls4®+L½2åÅq]áƒIÀZé £’ë¶çÆmކu×¢9ë w%øR¸Ã¨xŠë#U–¦u]b’ÄaÝU¢YÝ•¾ ÅY]á£FŠÒ _M׳R‚s¦QÝ•<ÜÒ¨nYÄ×=B¿†h!O™V=R%ÉÀU#UBámi¤w¥J´4Ó»Òf¶8Ô»vå`q¨—5¿kn9i~¿ÐB²R=z%q•Òê•ú¿wˆ?¦‹í¿Â7QÇ`¡Œ_}…°éã ÙßÐ[¦#ìF¹Do<6oãˆd@Æž‘ øV)œ¥b”2 $dÇ¿šÁW„@íðG J#„‘ ™Í‚T꣮IEÚrI*CRÚÙqBa"¥”œœ)=ÝÌ”fHI |[!aD‚Ê4Õ¤ð†A3R#¤ ‡ñp&ÍÄ÷§©Vîo†,¤Ìà,•ÀMU¢2T¯•¤fHA*©sel¹âÊÐ#5A©Èèà‹d±¦“ze9 )é ž{N NÏV¤P«¥ ( ™Ñ“,„PË}E•Z3J#¤$eG³B=¯Å„ƒ…\L#d!¹u( ófðoÏÒ€EAi”„ X‹¥È-þ­ò!ÂÐŒÒ)I…q4f!¥@ÅtE ‡5"#5B©Ô³Ý|û€ë¥‰ŽRfÈBéü*Œ½ôÓ*¿Â,ޏE\…îÝì !Bcã¶Ä¢ÛO½‚µ@àÿFg,œ>öåŠ ¤Àšò‚5C,ãa¶ÄZ Mùk†X4¯K¬R`Ñ2Ú!Ý8–H À¡Ë+Fi†XÔê-¥µ@,ƒm¾T Í€{Eš!MkztÁš!¥ÜHE f)÷R`Ñ % k†Xøº)¥µ@ ,šGg´fÈ‚ei6µTæ Pàм`¹Þ)°pì¬Ö (p¬eùcñ}eI¥m-X?ô7þ+è†èGåèGðG#ðGXÑáìßäÆÔ“ìóÏñ+¼ÞÆå«üÓŸòfƒü13>F)Û§?f“îÇ1é“áÇ1çÇ´øý^–à“i®ò¶ ÖÁÞBö4ãÍ|ß )°hH‹aÍ+‚â(ùãò½¡.$ó 3¤À¢×Ö )°¦¤`Áš! V-—RR ÖüÛcsù2A´‡%êKX6á¢-õK!IŠ¡@%’`_¾ 4榠4úÍ¡D iÜÌ‚TìîS|ÇòkoÖæD4Ô›~ìm¸½£Emêþ‹|$¨Ô)SÍ`å–¿õw®Óîÿñ§àè=!¨ìó «qƒcgPûn4¦ÈÃôÖ3^¢Bâ  *c¨ƒø IÍÙ_¨!W£ 5HòF/«@ø›9&;ü÷ë¦#j÷¡€tÿ1óÒ®Z|9k”úçã¯êá‹/¿ªG?œ ã¿Oô¯ô“íÛonVHøü£²øÏe@¶»Iø›êl0RØÙýþæšnnendstream endobj 190 0 obj << /Filter /FlateDecode /Length 184 >> stream xœ]O;à Û97 ´¨J¤ˆ%]2´ªÚ^€À#b B†Þ¾|’Œdl¿çG†ñ:Z1y'_±6VXÝ$à fc=aedÜYyå"<"ÃMø÷ÇNЕßÅäI»®|Ñ’NÁê…„ ì ¨oÞkÍXõ'±˜ôî<'g†naâ‰R^ [}I”%…UUešVÕ¶ ?Æä=¹ñQË-°±œUjç¶ÆÂïrï|Náôwp^nendstream endobj 191 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1098 >> stream xœuR{L[U¾§-íÝèP\j`^nït2— 2߉Ó- Ù":¡døÀx»(tm)åQ^£¼Jï¯o(ŽÇ¶bCXÄç÷Ç"‹ºdƒq1&.KDI<÷ö”áÝ23Œñü’_¾s¾ä÷}ùÎQ*…Úòra!ïª<Ðè2Ûj-vÛ®¼œ"sE•wÞf·‹!‘QˆYJ`p“R}.´JЪæÕàåtüÓ}øÒýT*BGžÈèäìü·W~Ùow¸–ŠJ÷d^ÞS99rßÍÝܾ\î´ÚÞP[máx›‰;”[˜Ë½bo-Ücvg4WòÖrÎ^ÎÌ¥\Iñ¢b® èÕ’ÃÅ;rÿ×èˆÚºcÇx— M–Z‡•w[l.s…“·Þ½ÖÙîQNÞd9Ê[÷Y*¼Ól»ãÚ躇]Ž;Øj.ÿçù6t9(Š¢Kßx³æ¥]/æQH@€ü(€‚(„Â(Bm£¥T”€XÔˆ>Wd)š—•OãÉ´µ”x Å$z¯3ª?¾@rž·.èœjÓ#[ ˆæX}ÏŽb:ù»ZŒˆ¿EûAg@¸+–,—Ò3ÄOÕx üÚÚï›ë¼ÞtõõxóâÛS{踚lÂS) 1ª] ½ÝB/4B»8¾Z™‘J®xŽC7@f{?œdÕ{ê´5ÅÎ %ÿçØø F¾1>†nJo*ûsus%3†½Å‘w lo;a’Q¬>\Crl$¿ŠèÝûÊÈá=@W8OþÃÀÈÄéIç°«ÖÙRYzŽ?ÿ·áÙïØËøâüý¾4-Óø­)¬{÷K¹ÍÀÄCÞ*_S8éªxó©Óñ¡Ø´5Õ‘¬ÛÉ,1)6 …%é‡%ebæÖ:IÔœ€<[ÙÕ q“ò©•«ïŬ´²Ž5$†íÄ'å²cޱi‰Fz¦žÑÐ (~_7ÐÙ¼ÅÛÖæe“1F:Cª¥¢'Ï ·,^ÃM«³“à‡¾Ó™âgŒú|xÂrpiÒ#=+OHo@¢+•âµg4Â@7ÔmP×uCë6tÔ€¾$9H2I‚ØÉ7]à =}04€@€ ñfœ½ŒËpY Ó"œÅ&ÀúŽÄÎI0ÒVÝŒDLNX— °“(qÉÇÆ–“Þ°7àó þf [:Áà=áÖãådÓ•äMÿênº5cì¼z"à ×ûÇŸÈÃ¥%YL'/V¨»Ÿü,·‹_ R=Ø u¬A]/o‹ÐN›4Ä‘ÄDö"qb%iÃùÄ8äõ„|Á/ =…˜~½õ»ÓÏèb]ÐÜìŸõö’Í$;›”‘ 2ò> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ð JM/ÍI,I©üfü!ÃôC–¹ÛûWý¬Ý<ÌÝ<,~¬ú^-ø½„ÿ{¾+#cxnuS—s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêawªhjNjnj^If^Zf^fI%3ƒ‘!Ã2Æ.Æn°/Xt&1ª|_Ã÷ŸÙ*á{ùNÆŸ%ßûD•v×Êý¹ÌV[Ú]R²°{¦üËl3v/’çûÏt$‚Á{ç÷Nbüñ/ ¢ö· Ûo¥îß|ïk¿«rü+IÈÿ²¿«~ç{ÿ]©›ã» Bâ·=Ûo‡ßZ¿e~»ývû¤¿;È·‡Ù¢ÖÀиñ÷FÆcËñ,gþUÿ=Gô;›õwæßü*úî^rî·»ºsn÷™ÒÍñ›Ïü7Ão®ßl·3çÿôüü»3òç­{ºW?Uqh3ßýï ß¹äó{DÕìœÍŒ¼og5”Ûpüî×ïÜ@YÆ£ªæòÊKDÓü-E~3~¼ÿáÆåON[ÿf}*Ï×8uó„ŸBË7-dÛɵ“[Ž‹9\Äž‡³›‡{y_ï„É=û{&ôLãáYÞ×3¥¿gî´þɽ=<¼ 2ãñuendstream endobj 193 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 397 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ìÇ®Ÿº¬Ý<ÌÝ<,~0}üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000X102HƒìgÉXú} ߦd)†²Õ?™V3õýÀ+滾_½Òý}éïÎßÝ¿—:9wÿ^ð½ó{g÷÷—åtfˆv{w«Uç›8×eu'v»Ï/¾W}´ûm÷ÉîsÝ7f\òôúŒuÝ;»Ï–.´ŸÖãÔmÇÁ÷Ÿ1þC÷wžïÁßy¿s|çaþÞðƒ]tMÁ²¬¬‚‚¬¬ekÖ,[¶Fî÷i 1¾²?œg}ÏŸ:yÛ&®{Ür\,!ù<œÝ<Ü«{z{úzz'õôN>Îó¡wsOÿ¤žþ)½SyxÈ ©Yendstream endobj 194 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1699 >> stream xœ]T PT×¾ËÂÞÙPØ›•‡é½×'‰ƒuL5µ`HˆbäS±‚¼aYvVX]þÝeYÀ.ÂòXñJ5 ÔòØ&ÖÐN·•h“bK“ÔªÁjr®½Î¤—1IgzÎÌ™9ÿ̾ïÿÿï;"ÌÓ‰D~{bãÕù©ªmâ3³‹•©…KÁuÜ ÷¢÷c1ð‡ŸD?‰ñ©¤ž“/Jþ(C…~èàÐ^_L,½“­~]}¤¬07;§ˆÙºeÃáÜΤ•1™˜Ôô<µæh^.“ªÊ`b6Ændöª5B0—yI­bÒ2sR•YŒ:‹IÌüóvBd|ÿÖÛû^Þøÿ´¾¿cæQx4µ,37oÓæ-¶KÀ±, {‹Áö`2ŒÄ^À¤Bq˜'Ö*òyìò˜ÇŠ/zfz{½âõ b}¾õX À€E¿u¡s¬l|æQÓbÁ½7ýIÏ'Ñh·þv‹÷k#Èa$êþèÆlÐBðm>ˆzê«è’Ì™ª²è§§ñ,CUU¬àB$d.¢îÿý.Í“è¯ò¨·Âx ÅoB5’s&ëe Ñò££aûh'ÿ™üÕèȵÏH¬çhÔ‰RpRtoæç;hŸoE~'c#2$v#ñB„ÛŸd¸8ù`ž+%&%)¡„ª,!Ýüª*/>{ª&‰æíx²vS |Ø< =p Lð;=ÁjðCË{4z ‡? ì_&‚$jëŽW){*:{ö~J€ì ÂŽ»¸à^Ñઙs$’Ëa\õÞ»«Ú”Ð\Jë/p8Óué.ò´lW›(cµUoÂÖúŸ¸š+OêA«¥ õ'Nè@µ ÚUK2<£ ?x`HeÖÓò»ë>Ö˜«€("£àÐOÖ©>™¬¤êZë-: ´P]J󾸎·6§)‹¥¥ÕbM38@äˆû†Ð!r§@·èEª›î2…kù‡|Z™ˆ§Ó–dÁå eà÷C®„n{-oW¾£Ìéêèìë9Ö^l¡†z§@ õjÆvZ‰Çé£õ‘ª-™åq  Ȫ­‹¿w^¼ÐE‘¯eZœ™#+šç>§ùè_ËɾõÛ ÒßI¿ñá, µÝóýã»8³ë+rÜAwÄÜ ·JÎâ9z¤Bì•™Pàý†6-Am}ÍIß à d«± ƒjì0vQ,ž¬? ÅP!o)aÚ í™h3ÿŸ€ä•ù‘‘@jßÚjên~ÂUb+ÖU*SÞÏšZÿ¦¹B{¸­½3Cͬ1PêÜϰã(݉¶¹DguVÌÅ"©¼Aß\Ye¨©5PÙë·êË 9ò/ç_†ëp†@c’®Fè^Húš_Éû®_Ãûòr„#"¯|ÓMG¡ 9ß(iBÌ|Ï ç _i,"°à5‚ha¹Ù~IJQw!òxEnj]Îâ1u–ašÃp2ƒ_·¤ÙëMµ‚fÛŸi–¬ZRíU°A+üõ¹,ž{ g ºUª‚"…ª»àì@³ÿ»V ~éd‘ú{ƒØ”ܰ€’ e ÙcüZ´/`~öÆÄ%K¯1Åê+ ’ Â˜bšÚQßP µP¢)¯®å×ðDw'›ø—°ÒÓÖÿYi Ú¡&`X°¾[£ô=|vÊ Î{i ­Ä®±kÚ4Ž8F”—êuBÊûæQ!å¼$ÔñLª‚™Ï²×5"¤»%æ–³9xˆþÝ!š›Àû Æ#TZúþ£! ëƒ)ø xÚŒgéu!TŽBrÑ|F…ý7¸øÃcŸ¢¯ßge“cï¦'wðïG‘ûxéŽÐÍIÃ5mŽÛyšTLÕïþ¸÷W@|9¾ã§«#Âùeüó4/ã—{‘V] ƒ8ZòŒCÉáWBçÿ½‰Á)ûÓðGIŒüI_Œ+Gárøl×͵]·\×fá6A†TÝÞ4³šy5.<«WëèìêÊk+6R—¦ç̧ e“ΛÕk"U©Z:_YdØ[WZ_]•DE´SW$·®Ä­¢É)Œ÷{#kâÎÎÉê½Þn–&§wž-êÎ;¢.Oy‹$(ðË/¾¢|JÜë6¤n>å°ËnzSË<ÕÒç@êí2.-‹Åh:5#•ºÌ¶>s£Õl²X¥ÏcØ„Õ2endstream endobj 195 0 obj << /Filter /FlateDecode /Length 6383 >> stream xœµ]YGrö󬽀Ã@c_¶ÆË)ç}H– 0-²,Ñ@îC“rZœž¡f†¢ä_*£:ªj¨ÝØõuddä™_uÎ;1ÊÀåÿ—Ç3±{söã™Lè®ü÷ò¸ûòéÙ¿|'# cQîž¾>ËEäNJ?v^˜Qj·{z<{6|8Wa¸áòüBk3 c‡7—çPÜZ'ÜðP`©†‡«ó Á™åõ(œ¾MJ¤²Ãíá>ÉØ ƒ Cyˆ€áöŸbPÆ©áâ«ýñ¸¿xEåî/ÞçJ\Œ~x8@¡??ý#´Éš¾MA^踻ÐÐ%ZÄÝÓWgÃ/çOI'v~Œ^$A;j„Ý]ÈÑiMŸfIë:I7B»$vŠ< ÕתGkmp»^×EÐPA¡…E×¢]AS»$§ËŒ^+¡ûJŸ Ÿ_HçÆÃð)~´ðÑåš?~6 üR;³o¸Š£…ªˆ%7\óÃ蜊4ÿ²àlÆÉÑJ—[ÿ¬Ÿ_í«¡—WØ÷±v×óïeTôEæ7E„¨‰£éDþÀŒ±´£ÕØ(5:¬°kªnÇè”CÁ 3:e}Ø](˜±¾KMùß2YƒÔžéIƒª=L6%Çà•OúÌè«Æ^C?g‡]bÅÉRé%™ß¤JœGÞ9:z~Nê°6>a‡FâÒ³.¥†ÂG)jcn¸áM‹°ŒïùÒø¶Š>ãfÕ…òÐ' fª†ùåÊMø@¼Òáå¹òè»ÌpU ÷ÅY™0ìñ#v®A?×ù§›™w›ÜÒÝþúð=°OŽ)«„iýºÖìªó‹7DË(õS².ØÎÝšáËÃÍíñ°¿.E។fD3Æ\Ì]§ü0²Ó»ÑIõXY=:ÄUé´~¬Ç¬º–=fp[³zòªkÓcÁ¿Ç¬–,zL\½½à²Ç4¡ºÌoÊÄu`âÀ™FŸ[¥:§-Á¿µÿtú‘þÓk“ýgpþÑþÓH#‹5jÕª íAõªJÑÁ\t b6—?ã:IŽÆBnb  :äš?a'´t²-®»ÓóĵþûÓ³ÿK ï?@ øÕŒÌY·sÒŠQÙÝñLGôÙª!×gß/&ŠÔî’'‚ÊÑ¡Jp´1O\´_@ Y·ß6‰^‡ö!V’›–0€² =‚Ë/ݾB´®>äÓ…17¨Guž–ÿE¼í‚7àg­M~ö4ÿµJ™á$Žüãyüå÷÷EÒÉáÛ»Ãí]y”nXȇ$¬g%ýl=Ï:ÎhLæ¡ÍÑo.ÛQ6ÀìÓ;hÌo ³BÁr„uеYA*ª³TŽUz ] Ó¬PÜ(€e`R$ãõ7®`a—ˆ:¦3ǼEuŒûÚ—Aon;¯8\ô>rx}{wÌá6¤€ZËÙù0¡6ë‰JÛ¢® öA‡süäEÞÈ`q Pn!€téàW4f?ÙWþ–m¢¨­[Ü`½ëñýÝþHfØyº»/™…­™ æ=îQ™ ¤z¡Õ yÓ¯ÊLjõ`h_ ×KÐ7Áx_’©×cÓ´¶—sû˜bSj#6¹hÿ’Ü~#4}Dn¿™N±×9n4=q/ø9 B ¾¥ºD˜{ Cv\ð‰ x PGCVcuYÕMÜ™ƒNPí°—ª›· ½¦À“"w7ŒtxŒ#8æj¤|\ÞpÏL6 TX©ú.•à$Á}{ï²Ï‘)"AŸ*È·ÈvIB'I˜EΈy0!Ê`ø„–u¨¨ e©¡“1ªSìX;Èj>ó]Q¥{ƒÜ¨½÷i:À ‡Ò3_îÏa7ƒÐ`\£°[.ïYŸ$a´1VÀªójcOy’i/Nõ¶oç¶jÔVF;ë"âþ`ó¯hª¾ï=ù+¶):O'2±?áý†L+`cÛ$º$Kã¶[ÚæŒ|Ôê0Üê£@Ýêøë™=W`À¡×èò‡sX˜K À>Uš +òsn£p¢[‰‚BÇõM\ ýtKÕMˆ0*ôŽ0µ`d›Ä°¥—èa>Â'ˆtº›ÄÔp¿tu ²1yÐ"„Ó»4Ën|ä˜)vÌ"dІz´Gú-¶NÍ×ê/k}.ßl ³$ÌZ±8ôŒg€½&™ |úŒا€ ‰'8ÇåÏ)w°ùä÷.~øñ=Éhnò±ˆÒ@\“Ôäâ]—ƒžÍð ‚z¼­cñ®-˜íøºÛ}6¤ó]³$È_¦ãë\ÑqMM£‰Pm¦~:ÇÔsÆýõû­ (Ú|”%Ö½ñ< `[A¤€Ô™öG_/{‹oï:7ûžöê«.~R:D¸ÒärÎt;e…5qMòû‡…ŒfYT˜Aá‚r¹!ßòŽ ‚†¬ûÆåó 9;aŸ¾øÎ‡þ=ëCûc—íXXÏWÙ "uêõ^°íSy*“è÷³tŠ&y-°þêéÁßmEˆg`ô"Œ/¬í<@ó½1¤ÐÊú2@¦,îonó& ¶ך[óN'f¯ô“.H¾ð\.õ%žk|äÉâüL9ôº>_c[WØ×üй.Kyü|;9ŸlI›­›ŽEØsÓJFõº~ûW˜ÁU׿ ®‚Ë'-ÓIáÂi=Īˆ¡BF¹*7Ðùñš¦Qt)Ïê,æ6vžÖPcŸ 0ž±Êi­çox^ ä²4ižg:‘(f7ð­† …çsFM¼ká‹îaÅèô3ŸññD¼^°g¹”M»‚gèOa%>€TöÑÑÓ“Âçƒãlˆx2f4éé±*Æ¡,Âj±‰ [ZЕ®΢5HsÓzOòÿW%{Ô‘²°äHóÝõaž~&A9<”,ÝØÕÖz‡lo”¶¶ë-»ÆÁ½‰ÚôgëýÃþ~q!=TªØày¸ùëô¤«2û«ZåçÓ|>å’ÛžªP¾l5ßP³É¶ÁÙ×ÎÇ¥{}}›Î{…‡eqÏ­R?‹æ0ÉÇ#6ƒ,aÙºþÛù…U6µå­_8'* ‡½ÀÏz¦Äõ›ÛñúÝç ø$UÑfûŸÎžþsÚ¢Jë ôËÛ›‡»ÛëIÕçS5ׇû‡çÃÝþRRíô½”ÿTFõd^0jô žTã0&r®“Ø_¿»Ú—¯„š¤äý&ŸŸÃêÀa3ºyw}ûð¼öK³Èàúåþþ’­õwoåtžñ#ÌW$ø`S ¬I·ƒ@y´ÛI€£‘»»ËÝÿìnΞái2¬j¿C‡faGùgùWxài%lº>œÉôùî‡31âk²˜?x<¹ûî+˜s ØÉãF”† …T‘ëÿ…$„ÇàÔS/À}û |µÔˆÑHsrH@–=!NŽ˜;­"³Ñ $úQ+Èf‚4,ÀSD)Xd!à: ãFÒ¥6 Ý¥XÆÃfÄXq,}¡sÝÁà 9ß”‹ˆDýå7<_báEÑuj/‡8X,iDé08ÄB_§6DoGÉú<=G|Ù‡4Ì`@”å"‹@&çÙ’q ð=!z*°Œhˆ qHh1È4þ‰: ’E‚•N~Ö<&1P™BzXú ÄBo)+HÁR„Üg ¸ë⑪:cdê9Lp<,22û–C¦R0]œå9š\ ,5ŠGZ©h!ad‘V»–:{Ä5DC… &°µˆsÅ'® xŽmx¤Ž°çfZÆÀnÜë ‹‰<Òƒ7Rnñ˜§l 0‚å‘Z»…ˆáÔC‡ ¼¬’ˆC6EÚ\±1¼Ù@ bX¹Ž¸ü*‡´Úɵ¿DŒà7ˆ.n 1Œc‘æŠðÕq¥6<÷‰Ä êÒj÷3’g{D©£ ^¸È"mnG<.“,ÒÖc„xA="ƒ˜˜÷­k~’D gx¤ø# blJäLl xA¼$‡@¼ žqBÒä7‚EÚ´Î'yë@:\V,’•J!.>æ#ž“ÇIÄx¤ô±‘AÐ}+‡ÄПä±2ý>l Hë¯Vf/È µ ÊÅœu­!Áe/¸‚@ú–w© Rk×#LÜ@ FLŒClÈg{§HGø*0Ý¥NÈT ¢„SëˆÁ_‹˜ DżK]C JDÏ"ÍBQ™JA”°žEZ) Q‚ìR;¤x'HÙ¦2Ĉ¨6«©ìV7D ãx¤•‚(¡Ô:â„Ï~pù>ŸÈK’WÅÜ"‚´`ȉ]ÏE<N¿Zë•ÄA¸»„Q˜˜ˆ*áñ}þÄWA-2…Š˜DÀóR‘FEÜþâk³E¦RÄð'ô¾ÊT*bMO¥"¨ÉnLo±™JEº`Ì ¾_Ud*1kÌgSD7AÍ!j 13'xh²šS¸ˆÞÜŽJ¹1‚+z#Hc±§1‚¤.’\LŒàÊ\nŒàRll„àRhœè@¦©¹¬CEž \ÒPQï¾F’®!§ eHôÌd*‰HZ¡‹ñBž,S(Ãy÷§)•2\ªB·¡Oc*i¸2…2œÄLK¦ צ®Λ®†ÏÆÖA§@Ï.iÐ)¸PWå×l®¼âÊúl¼bµ™=«¸$›)ÈÛܸÇVzæq ÈuðÈ«ìäõíÃFb–ªèsÏ`.WI \±Êr.Y\±Ê„.YZ^YÓV:Òtá9×ÔcÇÓ2U]’ ¹b•]²²îtâjɪ™ÉT®¶ÙC€ž©]²=âe†%¦Þé4ÏÓÅX6­ˆ;è£ ’Œ9•J׸ © Q°+)í‚V¡†4!¶´jšÐ„LB_ȳ½PC&¡€\7jHÒøk9\6MhB&! I´&B ™„<$˜OMB iB)HÚ› ™„fÜwyZ}A¥{g¤ýýØÔ ¼>f Þ«“®öùÇÇ I¼þo0ùJÅáë¯Óm+àA ’-Ý7S1eÞ²NŠýwú æ¯ÖÀ÷–1]õٴÔ/éù©ÝUFïDNW'—aé7?ÓË“oN/ó©—ðÛ¦ï³:aU¾cv¯x!ÓÃUºãŸŒ•'×í]_ÖB&Ýÿˆ× iƒ÷?¢ùRËìÒýI¥Â}¯ôÝÝí>ÿù v]©zs¶7‚!û7‡›}ËõémK/ÖÐívë ¼“ß²ëï¨y6ëÉvƒSî=TjÒEUòô«ô…ó³»"÷ó?Á‘Ë»á6÷8ÀéâíÙ-Vwó¿$ô.ÝÕþqvQÒÝé éÓpá@¦ ÏwÍT#ñ’|ÊcÑKû˯a!d©ðÚ‘jrÕdÔp¬WHA›^‘N¿NrIGØn ¯r¬&ýíƒWƒf-"ïÉ5Œµ ÓH¾ÉW«àûØ](<„Ïwtæ{€Êüéº'endstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 553 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6Ó JM/ÍI,ɨþfü!ÃôC–¹ûw”Ÿ:¬Ý<ÌÝ<,~Lúž*ø=ÿ{Œ3#cxN¥s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêauŠ Sfƒƒ73Ð? , Õ¿¯áûϸw&Cãêâ«¿k–½*gü.qcÙuæï~²ˆ.®œ]RW˜W4·fáê%+—È­ÿS"ÚÝ5³²¶«­¢U®:"É?¢›£²iúâùgÍX%ü»VÿÔ)‹û§HöMéŸÚ=‡ãpäªHըߥmýM3göMœÒ'·üÍEË»9æOª+)o­él‘ÿ-RŸ×ÝY—)Y—ÛV×]ű3ýЇ½ß%ÊÝöÃï„Õ?nB7ý 30|YDWO­Î.Ê).›]±déÊ%+å’~ŸíÚ7¥{&ÐÒÍÞ¿Y]KW´ö7ÏœÙÓ?s’ÜŠ3‡÷êæX9©¨¨®³¶«C^÷g…C@D`·dG~O¿|_ÿ¬é“fwÏ’\]8©¶ ·4-ìTý–sßy6~çY)ÇW¶à‡óÔiÓ¾,`[͵[Ž‹%$Ÿ‡³›‡{eoOoO߬9S{&÷óðl˜µ¨§§gÊÄþž¾)<¼ -±í¸endstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 990 >> stream xœ]ÏmL[eðçRh/PÐÑÜ0ÞÞ ˜- ™,s™¨`‹lØ´€æBËËx)Ja0 WʹÚuåE!…"`·%‹2f?øA³8Øtζ…Ä·,ÛsñY2ë¿øåœœr’ߟBþ~ˆ¢¨]™*]•ºú¥8•¶ÔP©®ý7ŒöPB”ŸðŒHáŽs')¤"ú¯ü†ßÝ…³ŸÂ™O#Eå–ꔺš¦ÚòÒ²z.áÀƒqq¾y„+jâñ\ºº¸Bg¬«(çÔÕ.=>3ž;®3úÂrnŸ®š+Ò–©+K8] —­Íãr²ÞPeqGU'rÞÌÚÿÕ7B(@Q§nÒ"²‘å£T$ö5AþÈE%Rë~%~7ðlè‘j¼ø‚·úvVÞD’…Ëzvœ8ƒÍW7ÉÞ‘¿†ï¬Ã}—Ü$Ñìãͤø˜NË;%§Á”Èê5Â[bÙ!üýô›œDᘤ×Òˆ„%JÜ*žÇ"‹Šeç~_KO“»É÷ŒB¡ ,9$–ióÁ1#Çpƒ£¯Ž(å¡O¨{Q»º±ÕM­¬â‰U‘Š.§ £ê…bû‰dç1',Óî©K¾YѧØX¾•ïzúGåw%Ã0Ø|Þ¦Öbéîn1i'óx#ÐäŪW öã Æ&ù•ΟÏB­©*ˆ}¾øÚwF¶«ßb; t#œ3ÊIˆä ´ Ùx~d”ýpb±p >€¼Ï{ëKЯ8Ò¬¹,„x®þ‚;oo.„ËZ„-fµämI;h4pe€ÅE’û/¬ÿ“$èüášÃŒ{t|r¤c¸ÉÁκ–`èoWÕIr½ä”%ѢЧÕgÀ1ZÖ–ðP¿ùãÒåOÆYYJ®}¶~nOï#Ø–“üÏÙûÑ1Í9y³K×®^ÇÇm¬ÓцH¡gÙ#¼a [Ý[á2·ð‡Åx%Ýê®JЃªÇÄÓɼÅf€V0™;Ì$´ï& vuõuÙÀ1>ìWb°¤Xj¡2¬µVßÇ:ô›‡*°’»õ¹úÜò£)a†h¤eö¹œ‘S#úº†æª“‹e_üº|gÚå«-v¯-òc|„O÷l:jŸ[÷`4<ÔgÛxþºH0c)Óg<ÓjyÏdf«^On<ÙðÎGºù’Oák˜¢ñMñ¸&6 q0y™p±‘’0,‰Á{qÌ2FãrŽbÈÇâAyoâ`ì„á«éІ1AéºǘØt;˜ òÏÖIAìá­|oµóVÇšTº`½ØË÷ÚùÞ~ë€4¡‚±Á>endstream endobj 198 0 obj << /Filter /FlateDecode /Length 14251 >> stream xœµ}Y“$·‘æ{¿Ï›ò1k¬;¸ÀØrÍ´Úc´¦‘Ùh{3r’U}”XYEeU“ÿ~ˆˆ R\­ÑŒ]øÒápÇáp8Žøëa:¹Ã„ÿÉ¿·—7ÓáÓ›¿¾q„äŸÛËá?½óÛ?» È©NÕÞ|ÃYÜÁ¹|*¾òO.̇÷—7_Ï7ïb®§iš7ï¦ÓSÉÅ?P"Õ0¥rüt~¹ÿáÆçÓärz÷mŸë~àñt¹??7ïîŸ9gqe.Ç—ëý·_˜|®5_äÛ›wÉÍ X‚_.„Í ©ë‡žÍã]— ˆ…„;ž{fw*E<^†Ü·¨Uµ?FQ/ÆŠR^rwDO×ë‚5&f?Ï”»ù·÷ÿý §K9¼ÿã›÷ÿøõñãPY×›waŽ p<~ßÿpk ©Q=}éÉ^††¸tþîY˜ç…Ì}<Ü©ḛ́bJ®ØÜTb,ؼT]S=¾ º~ºžGànlÉ¡;Ö#‰XKuy>~1MÂñüð ECéôñøòùƒ ž’oÕJ­óñé£ðMþø¨=ªúŽï ‹Ã.„íqî¹;_侮UÆ><´ÑP©c™ỊɭܓÐЩ>/ŠñsIËØ®¯Vñýí T,drá¨Cu ÞÊŽîo}'èä*k*Ç–RS…®K2Ë™F[cxáR¡™¿<œ™†rüVúðžïî„S¬œ°yߺ(¥aÂGÅß9¡Ñ®lšóP‡óç§ëýXg8¹úRP†ã?ÈŸ0ÁpütSÀR}~ZZÎÌÓ &PèŸ7:Tp~”¿a(Ž=íãØì£×±2ñÈbFÛ’°¾,Û‹ÈMCCSM×O¤JøþñSSf0†ÆC1ÿ~? ëä`³Úåû‡¡ƒ_Ý;Ð SÆKgt¸žuDÏÔ[hØ/âËùúrß›ªODˆó—úOè= Â²1"­“¼_Ù—¨çÓçÛJ>Ã㤅»ÅÆq*f?¹‹óe«{ð$÷,Tó,ˆ‹äOüþ?ÿž~Y9—D Óɽ)hµ`\¯cu¼`Y¨dåÉ,×èWÎB×K‡)D+úóŠäï,{†Ò ]'gék_Þéíë¾z®ûóãš]žÁ ³xáèxÏR‹_t?${Â-“]­j_ž·,!¸"nV"pœ¯O ã{6†37X×%EG+Ž?=ÑÌt ,Úgv-OnŸ5SÔ†•_¸upÜ™¿Ý:Wãn'öt™ÓÅËÒX»pCLÐUÛaf $#É£}Í×§µ»®6ðîürn6ª3W/OúwX,:3ð2Œ£«Š°\v\zŸç|í 5‹&¾ ®‘4J\X½«ÐO¹ëéËàà+G«J?£•¦õ òŽàÏ0¡øÖ¬æÚµ™el5jKäõÀA¿"©mEÇx˜÷Ø_†¥Ðè£ šÁ%ûÏ«˜ÃrÕÙÛ6°Xü˳ÊzüÈ+Kþ‹¹_V¿Á¡#¥$з.!UMÊ%FìTH‡k³óUë#ï8efw~|ê$Óý½0Ð÷×aÕ,3–¤ºL÷ÊlJ+¸Z k¨‡'™{~ûç<š˜éîNеù+â¯ò_®”<þ‡wøo¤Aõpÿüò ïÇO¾ ÓôOqšÞ^¾roü*¼ýö«ôöüðýçóWP²ûæÆVÿiƒ?ؼÓí(î@ `=”‚þú ’½ÕLáxûR==4à«î7¸+´ 9,ŠýHóON\bìJw\z#jBÈäú …àºÝáûóõ›ãåãíÓÃW ¡{뿹éåÆYišð­4«‘åӇǻÓÓ÷/Ï_ýéþñ?SëMÓ¯Sínÿåý›Ű[Â%R:ø Ý»\¨ñTüÁA„Ùìpýpøß‡Ç7_pŠ)äT@N³?üÌ`woâÉ%çÓáÇ7îþòf:9³Û)AKa—ô‡?ÿ7(LÌ !NåÒáþÒäN¡òÐPáß™p ܼ…DROâo!ótâL¡ž`8l®žçIþ”ü&RÅ@Ìa 2³¸®¨›ÌÙRÑ8o"³2Î0f¿‰Àª7’|¼ž´L0ðHËìëÉ×-$Áú#eB¢£·…Ì•þE$A˜·\é2Æ}N›¶<eBeÖÀœ+ôB ·÷[HNë2Í«d EJkyc¸…”p‚("Á¡®HÎéT‰{Ü&RNžä/)CïßB )á<“ [HR›üFlÛ5’;͌Ԅ»¼VD…q„m»Lói®„`¬l!0Ã"#°&âÖ^#ù‰3µí)h#!ÐDغ+$NèÄRëÖì±u×H€ ÷TX‹Bãz `k˜3ü†m¼F ôŸ‡‡‡Åؤ $Ný^B|À6^#Ë,žhIlã ô£ZõS„Þ·ìŽK‡±M­¾DâZæœã)¹ ´(§ÈØ_70wÔ:ÞMµòI:¼­¼F"”Κ‚¥§VÞ@&èùy1n!,ªË„$G­¼@=MÌ™bè›´›› É3µòñyâÃ;´le~Ü ™aVßDRá1éADjå Ë$M=ù ›XLRÂG˜?ËVz¦>çS k´Àäë¹l1!m#å4Sûy´¢q™M„ÞÃÄ žÉ“ •&˜ËÜ&âhžEÄe´[H™q€.ãË¡5¸ÿC·¢™gÌhÓHË`Ô¥-$'ªiDÀ›†zÛ@ ´K`¤8-[èY˜3xBÞm"èHQ¼E²FèM`Û®8E‰1xlÛ5&j®˜¨m×HÉNF, ¨m׬ŠN‘ÅËìi¬8A#ïÉGÿÙm"ÞcM#RÑÕX`ë{>AßÅÖ]#æîɳ§±F :™TvO [wÁžJ…§˜¹uWH†\lÓ,ÎÇ~‰K‡ù[wÌ0Ù:Fx"’9jó'°ÁØÞHPùg'¾Æ )8ÊÉjÌž}3%Ù%DÀñƒÖÝBÀò’G æ¬rë.èIÚÛ`=J£y‰âËù9“³±¢sdÙ(äkl x”'ƒß<å-ÀѨBÄ‘§±FÈW#Ëgð—HÄ%gä\A<%B}„µÌ0÷ÐX^#`7¸?friÆdÊY欜ÙÇX#P0÷ ®ý6€=4RÀ³nºä±SÀ®úM@ç½6¾–MÚ>1c–®TôÓRJ›x'…ê©€gâ&UŶ§@o‚Ùù¼ütè=—Àô;yüÀKÿ•õçÞ‘âPí0ÛôD`&÷hhÁ“ã!¿{'ø3u­& ÒgÄ] Ô´ŒàÎ䥚x\d†z†>…uqă;æ+zޙĤ’"¼Ð'oÚWFã¥C`uG±cŠ8Œ“ô¼")9òâöíy)Òór‘ªñJ3µeÏŠ¼g¥HÏ <ÎQ*0 Ô¸=+î=+EzVQ´n¼ 9Æ#¯Yj°ñR¤ñòxòºöry<œïýÀ Ü;²¶WC:^aòÜÞWL Fž,rÏH‘žŽO"{7² d·{VŠô¬tÀ4^àñ¤¼àɾ÷¼i¼¶¢³¦s 3-¢³¯Å#+-ÁÁèUŒš¡ùËäY)B ·¦ÊàÉ%ß§jzY‘©*ô:ì>ÊFå§:HqéŽÊó“ŽÊŽ*U6´£2¤£ZhÔëØ¨vcÜ]$Úbܸ{î°$ðDÁÚ¿¿¼9úiš1 |š2ÞYH`i«ÿð¿ðœ·pé×pÈ“ñè„q™†< <Ð' C¯3AA1÷ZA0×™Ê~I·‘Ûª+‚×ââØ%VT† ­ LµÌÙñê¨4ìÞE'9#ïnRÅ Þd7UwD óì;"¢±¥:"¢gXî –ÒÎ5æ’¦㲕„ áY¡Z9–×Ê­ç„[Ô­t#ËZjöžWJáé´Iã`ik)E¸¦4„a-eBhS©ÚÔƒ¤Ùìµ$)á6Eê%+Ôt‚^î;‚H³¥M%ED%ɯiM#Átnêô¢³.° §ÕÚpîÒ!™V?Pž“¾Þ•/{}œ&3/¯”V?sé8hšËÀŠ`ø*A8€G™rW§©ÖD ¥P)•èë2Ç!šnЍd¸zÉe7²é6O¼T X´Å¹ã é¦›"*™rPɵŒ¦›JaÚ‹”ÊaÔƒuK‡OZ74D:nbõcG6Q[GÌ©J¬|êXÚz¢"Ò™”v4)¡õDA TDÉ?êÀzŽn0ï ±pß­“Zwy›^4uï w ,mz)"r)[‹hЉ ¦¸ˆ(ùGX¯Œ—¼ÐBS›^:ÄnuX'á˜pN Ú&´¤IÌJS´Rä‰Î;Ks·o2Q­q˜&´ð­ NSå‰J¡R*‡QÖ ¦?>«BG­.âhÍâðVÄ´ÇÛ;—4J k6ÜS1 0b©P–æ2(#xH‘¶G„ƒ|heHšê¥P •R9,ô¸Õ{¢“¶4'^z„fMHê Ó•fUÝò—$ Ц©û,YL]~K;iC2ͺÆ`ž¥*¸NR+‹J jþQ‡[:wIñ‡K‡Ì°ÆÆB ŒóÔù`Ç$Mbf<|Ü(ÀŒa¤Gh’K¸}Ó˜Èv°öSîŠà4U¡*£rµ¸Õ`öñ ^Mð=Äe'¸ŽiyÉá Ic¹‰FX£àsPƒ¦¹ Ê¡ˆã“Q¡€o‹ãHË4UKa&·põ`Ý *ž:‡ù2²nŠÀ\1“.3žŠÖ“†z&DÓX.=RÒQ€-+Ir ·o €‚hXiöà±ñZœ¦f”BET£¬LŠ™ïi,‹°°û5Àó²4wÚ!Ic¡™Lq£;–jÇ@Ó\Â훆ÄÊãR9@KÍ¡+ƒÓÔÆ,„ˆˆšPµ‚Âqçq.Íì¥Cª M×U¾ÀQ0­×l8MbRì¡Q€ ¥ã i.s(‚Þx8O9à¤U»28M•'R(…J©F=X7 6‘UŠ8Ç_:¸…„åDò¬¾Z”vHÒ·–uä+ECææÆÁÒ\åz+nh7wepšêO¤P •R8,ô`Ý*¾×ÃWÙØqlHÅØ¤3v«£§>¿$ ÏÄv¿ú‰’»¥t_Cð ,´ª0[Š'˜½$¨…¹týÙ¤“Ü ùI'ÜLÁ=HP'»K‡Ì4ÝA™¹Ø\[he;q%i’ræcªJ§ƒCÇAÓ\æP\[ìIÆÍaìÊà4UH¡*¥rõ`Ý`F¤“»‘ô¿tH¢€r¹Ø¸ïì1-'Å$M’Všü¬íH)Ms˜CX{Ø8øBn»•Áiª?‘B)TJå0êÁºÁ¤=߇L¼™aÕÃëjèeÇL£ÔN¸IËÅ%Gê(À…Ž&©¢g²£–=âœƟ’Tu"€ü®òiöQÖ*¢’órÃTO­É‚v¢ ;ÇI,W±ýöbª]nM3{Ì ÈD£Ü`Ð,ºV‚¤©uI#ù4ÿ ?«”"yƳ#Ãr鯅: Í…odaÅÈ BI“˜…æ|£À;$¥ã i.s(þùŒ9”øï5wepšêN¤P •R9Œz°n0æÁØ¢¦:Gò­Í”ËÁÇÎØãZ£7ö•Êk4ÝŒ½"j앃˜r+ÃŒ½I¡*¥rõ`Ý`:$ïØ·†@® ͧ#É~Ðóš’¼ÅÙtþ½‚ #ÿ]ò[šKÀ Š:d Ez¬NR+‹J Jþ…¬W¥[½á0„Ç}Å€±™=cÚ Gut¶Q€óåhi5†Èà7l¬µ&ƒØQmǨ)VaVu/£sˆÀÇ ¹J‡ÐΚ3ô\¬¤IÌJ³¾QºÔÚ8hšËÀ†$Æ!Tš¬ ISå±Far ‡QÖ o¬²a,–ŠÃrkS¤-B;Î+i,7Ò6A£KV\ÇAÓ\åP„ˆƒ£0]+ƒÓT"…R˜ÜÂaÔƒuƒÎ›û•´¼®xB´­“õr[HW\jô0ÞRíXZWÒ†ÈJØ8ÈJÙʰµ´ ¡"¢æT`­ –Ñ7Æ“Q3™Eæ‰#êp× *=¸cǦ%MbÒ­¥F‘#{ðÊAÒRæ0÷ŒÞέNRͱú»É̹GX-˜ñ8F3gÚŽ0$³-­ôÈ". <.÷ì ·¤±T\h䎢Ð=›ÆAÓ\å$ÑvXãÈÒ·28MU'R(…J©F=X·<‘{Ü馈JŽuñ½ä|>½Ó­Ò¶F®=:ðÆAÓM7ET2å ’kM7•´)•èëV<ß¹5/Äñ!*Ž–æbè©zsBpWšL² ~“IÑ´´: a¢qÃÊ0'D…P•Q|…¬LŠäWšU/ I¹ËP¬Ç=b0Jö » i´P˜±ä;’–20‡"…†¢qÀgy]leHšª¥¤É]d0zÜÒ!‡‰ÞhÔ†püÊIxoQã£v…Á"¨~Û4»Ž,YpMktÓ‰‰ZA5)ŒB¤4£¬L xô|föõR1\I|¦ “þ³‹’ÆbÑ@u`ÍЙ×üšä^@x^LóÏtôÀijeA)TBe0êÀz…À‘ð¦—""ÑïÅ–»"^¸ê(Å8\/ 4ÙSDåR*·Ñ4S!Lw‘Q9ŒZ°f0+â!_iw÷Ò!‰öwýÄwƒ£Ã»Ï"i’”îü7 (}yã i.sB'/‡鈟•Áiª>‘B)Lná0êÁºíLÔÒ´ŸqéL;ß7¡ís°Ax’MoÜHËÅuGê(À˜¡7o4ÍePA@û‚ ­ÞZœ¦ú)”B¥T£¬¯¤ú©ˆt(¼ŒÑu7¹&ÔuH\xt]Ö-óÑò[Ò:¤!Ú”v7-¢uH‘A TBe0êÀzÁÌÈû^(Å¥"m°A©¼CîðZv<ØÕ&I“œqix·Ø7–¦"0ƒžäh E…[œ¦º!„„£¬Ì‹ÕQéJnŠ•·®¦÷±ZgtøF¥ë(ï€\õxACøp¤ zÜrvÀnCÚéï ½£Õ(Àž‘ç  4­;ÿ ᳟heèéB TFe0jÁšáÛåqÐL¬Ð£ Mp¹®Ù©ÆÏ‘xäÔ+K›j†¨dÊA%×2šj*…)/R*‡QÖ­Ðh¯›"Vé‘<“œo™6Ý<¾%à: °hèÔ›nšnº)"’‘ÜÊhº©¦½Hi ?èAºÁZ€]f´ )ߨ"Ÿ[¦d½Û&mª#Àãºü’Ô[Ó2Ýjf™»Í×V¾R¨|Ê`P€urže³ †Èø÷x²³z—·Y‹ÎòûèÙ¥Wš6 ÒÿÆA샕aĤP “[8Œz°nž·¿[{)`õíÙÛÖæÈ]{Å»R€!Ë“eik2´Ê•6‰ÑM…P ÒZ½×‚Ãù0È Ñ!‚7V}7„ä’t7ÈpíÑYO—ŸúA¦é6ÈÑA¦ti6ÈL ¥P)•èë–xûÛNËuvóø^;Ønqëi9è<‘V*Ú±.¿&å(›tÔ­åæ“p¿•3”@å“ü£¬nÎôGR‡.=>È'béPf»d®Ç6=>ÿÝìô,ØT:šÖ#• áC—Êleè±Í&…R¨”ÊaÔƒu˼ÿÝ馈JV‚žUÉå¼é ƒðg¦üäq°´éfˆHfTr-£é¦R˜ö"¥ê6êq«×µòà_¢¶­Îìm‹íÓÛûÍ:´L²¹s¯,mƱ!lÚ”X>+¡ÙF•Am£I-¶qÔâV/ñC[ÐKé–¼Lx1Óàá-/{Q‘Ó('.=jG‡£bÇÁÒÓ‰S`Æ·œÚÌÔÁijeB)THå0hq«—Ùh<ã'Úøîœ e¦ [o¼S´Òcµ´— 9M‚rÖŸòMs·o2Ó;ÆÃÌ·­ NSí‰J¡R*‡Q[½]‡§Ý-Þ dã×E(¾.n{ÁÒBásGýÐu4m¡pC$n8ÒÝÊÐPx“B)TJå0êÁºEÙ ×½´©<ðág{eö*…í¦yú¼Yì(Мu 4)[]ðVXËÎ;e­ÝJk"(…ЍF%X1˜±—Û¦u‡Ð.)”;qx·¤í% Û´öx*Šv•l…蕃¥eO¹!¼ëÜ8Цt+B6­› ò»Š¨ÙG%X±™÷Á±'GVL|[Ëä+6ø] )ùñI“”•üJ —Mr ˜AG×Ô|S°+’Tq"‚ü®jöQV+ó.8ù¤3_a„bîPH"/'z0òZ 'oñeŠö3¾~N¯ôrfK2w"„ö–ãó=§©Ò¤|¥Pñ„ÁBVŠïÙßnÜ*2Ë,SùŠ zyx·™ÞW‘J‰‹Úý …ר²[š ÀŠDÚ8iÐ4-€Ô²R¾ülòIö…¤>kYb¯•!*–ã;6&¶¼ Ó)†µ–; |;?t4ÝSDSª˜–aº™¦ºH©F=X7\øA7E¬Ê#y×Mr~Ê¦Ó sG«×qÐtÓM•L9¨äZFÓM¥0íEJköAÖ †wtƒnŠX­ó5›&9¿ÀÓé–ÂØ²hÀ:’lš  biv[ hŠ©¦ºˆ¨F%X1<åØ]½my^¬ä_ãCÕ Çº¼$is&Ý(ðQþÒq°´ãS(†¸Ê›¢ÊÁáUùÜÊ452Ka,¤1”`½ð°Yém¢!bÖf¾c£FOž9j6‘¿¨`¿ããõÍ¢Z²EEÔ(j~±yV€YE“@)T@å0ªÀjÍr[Fà° KóíÜ\\}™©9Á×A•<ÊÀÒâ ¬æ× 0ØDP Q :°Z0 ’W\HõK‡TÞ’Š…>ÐÆ— å1)IÞâÓQtåÚX0rÝ…¥¹Ì¡´¾Ò¢ð%_|ÇEŠ$51Ë`*£0XhÁšU¾c§¢Âgš¡X¾^#gží ,; ‚fvÍ•ÂG9Þ'4­'–Âgš>óÜÊÐSÑM ¡0)…ÃBÒ-Ñ»l½n†¨dŽ·Ê›ä|§Ó?ÔÐ(èÛ¬M7ÝQÝ”ƒê¦e4ÝT Ó^¤T£¬L‰t.ÐmK‡DžÉóVyÀk´˜–÷Å$å?× ëòK’ rDsÉ÷ÎrÇžÓÔÈ"€R˜ÈZùƒ ¬V û1vÿÀ¾<IÞ#—Ëöô™]?ðxž¶ÔŽböä¶MëÕ€†ðåÆ/´2ôúA“B)DHe0(ÁzÁ‡n±ÙŰYKøöVhfOŸkkv1á#w¸ÁÙYÖ–Ãh€Ø5c vÏŠ0ËhB(… ©-X±Ä7cìÙ‹†-–7Éqa­.oÌq ÅÆÜ~/|yDzkš   ‚Ì;0‰¾ôÔJà4Uˆ *¢r•`Åð« ýS áÛ_‰/v ›ßųãÞ>á*#¶Ÿiå[nKëiì†ðyíÆÏsKzÜÛŠ×_U:Í=ÊÏ:úrO;gˆžmÃÞ©;§OùµÓqqÀ(‹RàqÔܯÓt;gˆœŽSz:NËh§ãT £P¹…ÃBÖ­òµ˜®½±çÍqky°µÙ ‰Nþ)X0ô݃¦[›)"µn¤U¬ k6“BÛM¥´Vô Ýðí tŒ[À£!®À×:\»Îc'¶€ÇL› ô·{ZR£ H´Bss,øk¬ÃŠ—ßU:Í=ÊÏ:yºƒO÷ÐÕbfÏ[â¸^Âg`ô•GIc¡¸À¨Eòö­6ß§¹Ì¡ˆ£`ãàè*\+ƒÓÔ¾"…RˆÊ`P‚õÂqSD劎ǃÊ-OSvšá#wéÎM7ÍQÁ”ƒÊ­e4ÍT Ó]¤T£¬[ä›1vå±Ch÷øfGj—íEM»õèg\gÌEæû;ÆÁÒr-±!E,Œp‹V†]}4)ŒB¥T£¬÷Íva¤!|ÝÃã êv_Dßµë"°lo1<8»üšÖ«B%¹ ¢EØmÁ~7™%ÿ¨ë•é]·Î¥2D<"|°cê<&}½´ùT3®4B£ÀW|»ÒÙÒæS".‘qÉÊ0ŸÊ¤P •R9Œz°n…/Çtº)¢ºUÞo’ó««M·Ì7ç…ã+<¦›¦›nŠˆdÆA$·2šn*…i/Rªn£¬ÌеľtˆœÕÆw;ævºÛ‹m§½ñEÈî°w¦—´Z~IÚQoôœ¶äÖcÜʾôV”BT H-|€£Ä ?7”z™ùqÛN)\hÔŽ"òõã é¦— ¦˜p0ͤŒN3‘¢éNBƒA ÖËGv-žcGdä=P×胼ÏÉ1÷ñ|1!´xŽ%-žcˆDc,¿Dk¬‹ç˜J¡*‡QV fDŠ|[\Ñ ÒÛ¤]ÌTnqÅŒëŒ.fŠo&¸¹ã i‹,"Aã C+ÃB‹&…R¨”ÊaÔƒuKÇ¿-¶Ø Ò[©®…é±ãYÌ™/çØÏ¹r|^³[Z#‹Šh`P9hÜ0Ï©+jùö³ÈgÙG X+Üý¤ÃDz¤Ö9+ï¶Ú‰Y}‹¹©Å§qéà¤Rà®mè8hÚÎÔ"Gbƒ™µ2ìP­I¡*¥rõ`Ý ü¹Ýu¸tŸ=§gd»»ú‚t;¼ž+_ÍQŠc˜ŽØ0KÚáuCäì¹1³éV„^7!”BeT£¬Y)r˜UV Ç¢ð½×„Óg¯ÛÁª‚_’íÀ„…¹1°´ž«2@NEi~94eر*A(LDa0ê@já˾ŸtˆÖ(°¬ÝY8y©»ö(ô=ެ˜‹MÛi†°}1r˜C‹°Ó&ƒ˜ÔÂ`Ô‚5s¼³ÝŒ"ǽè‡ÝyR}_¼+!ç6ñúôЖrд3DŽ{9feØ1“B)TJå0êÁºy¾RØŒ5„|á‹ô<œ³GÐíÄ>xƒNºQ¤™ŸÖW–Ö3c†ð¡/c g¬;4fB(… ) F-X³À›Ûf†ˆ\°ì®—;öïßa±³ïoôøxBêhÒô@¤ÒÜ*´òoj©J¡ ƒQV+ñmÂN-C´ºkÿ^{V¾©…kÐQ€ó=K›bŠˆ`Ê@åÖ"šf*„é.B ƒQ‹[y±šŽ.Ð Øÿ?gðœC÷}ˆ uøjÌÃéÄ.à§þSÛH¾³€#Ó} bIÃ÷b¶‘ìÆO´m!…4Û@ð$§¯„ÔL÷ Öž¤ÜÅÁ)| ™%î†Ðç3×êG7ôˆ™žÄDR~ -.\ÈZ7~æ|Ëe–W?V@á}| –žY#0²!3tV6|8c^GX#Ðb‰°ÿy ÀO ’–ø|&_Û_!sà»|Š’_·Z"3žò'|ºE¾ÂÌØ¸¤/qqò1ø€KczelX.|®/úM„u K–M€ß…B Ty fÁ+óy™ ?¢ðU³4o"!ñ'Á¾†'6œùû®_Û¢'wÖH GiA—«úM$ëET\^§S¶øŽRÝDÊ,ý‘Þ%*[n)Ó'ÕCÁ÷¼…ÐA7.,<¿ ¶B"¹ÿˆý<î Ág‘¸t\ÎøMdÒÑŠï lxƘí½&R7‘™ÆA$89¬´Ff7àCiÞDY DRæ³-k&«DuQå z&̦Pú8ûâ¤Oʶ‰6XÞDºR_·‘šFºž^¶‘ˆçžG‡BÖˆŸ¸ÿG¼0MQž5â"êˆé¨Â ±9%â¬á†]¤$:»‹T™jAŸˆxC“Žƒ­XõPÍGôºéXÕIAj o ê ¥Áp!3ÆW¥ê€‡Ú #³“ÐúÁ£DªS¼ †ÇÄVÔ¤¶1Þ¨Ji øJÅ !â%œ{VHû°wô.`¯ØôJ$"žo!s‘ÒéòIÝD`:ž2!x—£l"°¡ï$D?³·±FpÎ& U—y{s…Ì~’ZÅSú4ÿ¬|ªžû.Ç¡7ŠVNu…ÇþÆÁ¨Páô•–uz&wÓ¸“S¶€˜ùƒæÓܳ$þZCÄ klß-ÄñÖ#VÅß@p[€F#ýäãã+ïÄ’ x„’Úw…à–è;7‹ò€ÛMôÁ¤HgúÊ&BûýDq6–€}ï\Ý™ÚvÈ §ˆÌâm¬ô1"kPØÛX#x¨€ûž$¢¶]#9‹õÀ9~ CtÔ¾äg–-$ð²‘ÀÞÆ‚v“CKcûn mŽ#žfˆ[ˆÇgdÈìl¬<ÎMZâ¦:‚^#sÛ›Ó|¤yPÁ¸ÓËgHÇ$n¸=î˜ÒáÖ5Bž{D'ЉÉfÝq|”ú3È<ñͤ=ôŒó. P_3Çþ¾´ÇVà7ŠG5´q56°Û(ØíJX*×W’Æ–•ħT„Fâ»4 X’à;ìúeW‹ìö ìs’ÁB³ahŒ`Ÿ‘ öú‘ vëZ»G#«¡40’PÁ®D*h#it¡‚„FÒ}E»²ù¥X.—˦žvë@ »U q…]‘4°°O$‘…}‘$´°ÏIb ­ÊH[ØA¨Êè+• Aˆ=Ñ- ±×.†X| xÁIâ{Ó½"¬–Èv b‰|&^#úŠ~cÄâò+c\àˆ¾RàìØœ,¶±c-¶±3[lcÏBYxc·‰5¾±«›†¢Q‘]6qÓóZÈ#‘½jÔÀÈ®ÑÈÈn]khdW$ ŽìÓHtd·4 ì$ìÕ¶ÆGZ·] ]„d¡~»@uúZ¨'¡”½9Üb)»êiHe×riLeŸh ­\~e°…*a¾RàƒÙ$Úú–=Ý-aÏM¾Õ«G>"c_fQÎvßj¸tñnÈhC«ÏYi­²ÌÉQËéeŸ.[ߦ¤U¶ù3Œ-gŽãGä^•‹y‘3âû™±5âÁªÔ >] _æt2¾,c ±ÏXéêõ2£×Ag99]N7ÑÕæeΨ#ÑrÎä4ö9=ÝsBË­ìðÿÁQûÆâ¹íôç/ˆ.¾q®½ }ã¼!íç|'(¼´6z^Ü/z^Št¼Ðp•4ðJ|#iàE±°Æˆ’=?ñWݬ«°àùÎQÇH‘žW¯œúoÖ?t°ç¥Hãñ;½¾¯©ˆOŸR‡k¼´[6^ éyUšuz^<ጼ¨£ö¬è8áº%œ’ã>ÙsâžÛ³R¤çåi ëyÍn_¼¸/÷¼i¼è“ÔøL'Ý’“¥Fyæ² ¿ù,|ÎR?[ñ6ÇÔjº5Uõkþª†´¯Ï‡ìée¼ŽÊŽ ?3 ¼ iTŸÑö¹—ËŽ RÉsOeHGµÐ¨×±Qí†Ó»pw §ãmy:awJ0»¼¿Ð×égù¤}ÂÎ+Ÿ´/‹/Úçý/Ú{pæ& x¯3á…ÍÜká×(‡Le¿$ ¹ÛØmÕ…O7Æ2v‰•!xÒ:0Õ2gÇ«£ÒLÖêÞ:ΚÊË}&ó :*¼e@ß 7*A*¼mæ*A* x†žJ ?¤–^‚ôTªQ£êuü%°í«àc¢°Ç›·‰7V¦›wü¼M=&øÓ%Œ ~ø¿Â°KòwIÐ%º¿Ó¸í²- ,½žb£Ö <ÉŒw  h‰Dypšâ|üéû›wøE¥E¹ãý-¥R S*ÇóÃÃO703Là0ßÞ¼ tÿ¯Ÿû<ðÜ1?Þ?ãŸ<¨ãýã ~¹/”p|ùÀ<‹+s9^?Üà•=èïþäø’C‘Ÿ™j©Ç;a2eäÂÇt¸üpƒ+eür~¹fWÇO’}ùüAø#(JL~äuýøt½œo{L³ÍéøôQù9àÇåTÒ±c â@ÍL~>ž¯÷O_ž‰jÆÛˆÛíÞú s†¾AÀ†Qýõñ¹/ïK_¡×nðNe9ZsÜ?<œ‡š ÅqÔÛ N>=]ïUXª”ËPÜéæÇèóñwœ¯Ö0VËyÈñRáÆI>þÈ}jàLrè¸ús™¹€?u÷ò$BMþøù4¥x|úŽhŽç—ö;·&b+gëQ*ª=B•¼ÜÿpÿB9àщq~¼9`Œõ Bý@è»^74ÿý;oØZÐÖ‡÷|óþ¿>þæÕº`ä±øÉëÂ=Ça?­ÖsÚÁc‰¤éZžë¨V˜‹ÆÅ£sö ‡jX]ž_®¸¸ êâ„© Ð0ŒºQ­§ëu¨ËáGj Ãw]¯kžF4,ÉŽ/÷¿éˆ„Kª‡ãËýÓ£Êä¤ ð¸_>ž{üKÇàåÛQ¬ów’iŠÒ›ÐÇ»}3þæqHRkÏÚkÛØÃ†ûØ×ñÓôDê.:Ú?Á°ÀGžk=ÞCgÔcY·ýfdkœÉ¯`¼®7رÁ=8žïÙÒÁÜ.M‰oâeì–\†£Ê¡¿C¶ç«òÁ d"Sò÷ñKf6•£}Ý>܉ŽS8~+ ®i^Ȩ_Ù%µâñaË}–á¢dàp?=~üÐ;©ßRiiµ¸fY8°#ú4,^¾\È¡9¨gàÑ4èô?Þûí— fžåwØWB¤ "¿+„~þ’özøI²M¿Æ“üзXŸû­j±·2ø »?}:iö|üç//T8tÃnóéñ5Q¯˜Ûw„_.¸Ø:Iµ¹ã7ÈIßܰãD«¾ì&ð=­¨qààâ£#Óbî}º ‹‚±±?H¦L«N²—ÎVô ,Ÿ¾:îÏ/uô^u-Z»IÅ/‹ŽŸ%w²Åv¥æc?¦ÆGwg8ï†禠nzÙ§¿~9?Ü¿ü´åÍâàü”uB}“ÇÑ5|‡Ï®xhŠÑÁú–§¹àçÖ‹üXñ[ýŽ›ëNšì(™ÌÐOÛRmV­ž¿\øó‡ç-…Àägoú<‰pÐaþ²3ò¸Ëáfno Z¡@ëSIÙ‡ÿúæÿŒ 9*endstream endobj 199 0 obj << /Filter /FlateDecode /Length 3205 >> stream xœ½Én#Ç5g圛„ EGìԾر“ Nìá!ÀȇR¢èᢡšAþ=ェêîj6%Lj½T½}ïz7ᕘpüK¿‹íŸ¬.Þ]z:I?‹íä«ùžsžT1™ß\Ä-b"„«¼ôÇu%”Ì·¯Ù—Ó™‘¦âB²»Ãz×\±z³ÚWïŽõfÝ<\±·¢zc-¿š^M§ßÏÿÀ¥è—¾²Ê„ÉLŠŠ;&ó%@ÿ Áê*xÅ^ö®çßLg‚ëP…À^~“Ÿ öêzwŸî‚a¯î®Ó™qÝr}ßÀu†m7õЍ˜µh…ªŒ‰H_‹Ëï; 2còLw—ÂòŒÕ3Þ{>8gÀ˜3–ŸÁ.µ ð¯ƒÍ“(D!çVÿ¸˜2¸Î`³6Þ‡kàOq+Ø‚ž› ¸ñl¿½ë/;öošëþJ`€dMúº…¼›‚\¸ÐŽ·ñ’KöXsÀ£ ,ÁóÂ[Ï^ð’íolØ —À‡ðÒ%L;Ð\ßÓclD‡kÁb:Ðûû>ìu³þ1 M‰µXv‰Z–ˆ5‡cæÃ¶+ö¬j‡˜Œ}¸›z_Yi-Ÿ‰6:ÃN/ZØ\ØQØiÝ%©ÿáÔ³le´M«^G_BéhÏ–’>S¥ž—IT‚Õ}½&?æva!¶™Ð¶rF@pá•ÖžH{‡týe~ñí…3œ¼‡øûW ÞÛJ¸‰•°C†ÉöBŒJvO6¯ÎFiãÇ¢4À¬,ÂDK¥Ù‹R1º¿CWR Ÿ…ò Âè"£ð™å94²'hRÉ$ô_%Ø%5t™Vˆý´Æò 8¡ã´$T6Xï'ª°ÒJ9ËÁ+ÍdÖ[ùšýlT¢³"w‰È‚=a`¹asª✠£ìÙJ{ý ²7PƒS’«‚=öŘϤ†Å“%Ðge©)×ù -˜ìÜÁ;§F‚ ‰†]f™.Ú4eèX ÂA/oö È1%ÞßõÜ©Yo!à»"ì¯wm¢i²KQ$h?Êú 2íˆ ³°y_x%]yí¹ꬔpç5%‡Ô ö¾©Ö‹)ØH0*°ÛÄ®Û)˜Åd†2fˆ,«:ëÊV§Ç‘o‹ t<¬ $Íz1ˆEàªòÖÅÂFyñkÈ1ÊÀVU”¾] Š‹¸tö¦0“Ýù»U’wdË' tZOáŠÐ¥0g3\¸6…‘ð—‰X®Ÿ›´úÉi$m™ }N[!è3š'hZùlæŽ<«N &×}BW›ëh`E9Í%C¢4KJÍþ™ÕûË-©Ê Rv‘òIÍ 檣3…¢²X¯n‰ƒz(ä‡òöh¤–%3–ºÜ[’°Þ«åa—†Ø„¬Òa¹¾Ê,¥*‹m½*äX¿éÝl Ú@ZPlIž½,÷l6P|H 2çKÈÎÎ¥€€ÁXå *-´/*âÆ§P‡7–Ü Kapä$#¡! ^ååö>°ÐŽžmDåÁ¡KÏFßÕÎÄ5®Úâæí}Zo2B®ÊMdE?ÞÁA]¤tÁ†Òþ“dnPXq–‘bއ~jÈ}_—çÃH±ç˜{†$ûÈ¥úà¦&Ddj "åHjPÙ|þRŽ-*®œÀ2zMJ׬ËM2¿ñvÒ[øš½€HªæÂ@ÎëEB[Õþ®Õl€4¹®†ŽB2G`Jö¤„¨¤M-0²§²ƒ,Âþ¡Ð|ýrh¬£Ä‘.­"œïrN-ß`>ê÷õa›^ð¡õy[h ÊÍh«öÔìDÔ8¢8¬‹æc[Å`‰Á¾MŸY(ó©WÑ(HŠSµá1ÒáB›QÓ ; óÏ~7Í}^—Zj¼ÖØÿäª`ÅÃX³ÉdšQ^ûxvY-îz2«áEÝtœ-Þ[aŽw`}ë“7ƒß–Hd©…RÒ°f9°ªN…^6QXúk 7t b3¨¤º7$yƒy^ t¼£ ©!¦4‡ý&í€\¶Káçãiw@äýMF§K9Õ‹ˆB *,‘ ?¬bE¢AÄM]h¦TSÞn’ýfÈ<õ6ß9ôÚeº´^}M“aSɱʜ CÜß<:Ï(M0¾Î^í}™fb_.óCE‘%ÛMŽ7±S”ßYÝo3î6²-V`Y7u•‚ê`ØéqÆ)rµÔo.ö»¨öø@±?κÁ$˜S“úÐA½}ª01¥ÄE7ÇÝâÒBô¢»üôðv->½š^fÐú¹»$í:2}8zõáèßÔ×÷¢ € ”ŸD“="‚yþ>Õñ0/–‹O/Ó=Î6w·õ ô‚€ySëݪÙïZÐB û³­¥§…&ŸmŠõ8ÁU^ÔJ‘m :‡WÍaƒÉ;ëø?O.®ÿí¡Þ­®;•t(Sœ®9ÿ¢ƒx¸nއÓ‹ÿm?ˆÇðo˜Ÿ¤¦u`dLrÒ•‡t3ém„ŠÚž<9éž<ùl£PL¥»Jþ< 9-áÏ_e+-Q¹ m-Ã9+8%•›ü9äöŒ]ÇñÇÈ­“þ™±XRpöq§tЋ#žãYûs*@á®|VŽZ 䨖Á'?'GàöùPäyûk½Æ§šÓ§ œÇ€óIƒÒ¢ž…7'}\Á)êŒIßóJá¤<óëÑ =DMB&å6–Fz|ük¨ÄÏÇ BÀ„<—‘r3jHp)ºèŽã)‰­¬eóÛa[3ŒóPœ¢eˆ¢÷dTÕ|6†Kaë×vÿÛ"Óuºž¢U‚ð*µÀ¯å·â¢¿N‹ró*5~DÐì«4æ‚>îa|ÌUöèH›íC᭠ԲǃxPX © ©a’ê¬LÛùƸ9Þeh±•¦-âc2WÙ’&á—c‚”Ô2{”*n ªÑB¼#»œ«-b®üúÏ_§MظŠ%ØÛÒý“fä8> H~¨Ð~`~Šä ¤ã5}ýÁñ¢Vz8žh†6‰s?- Á©W«nl0üž?ü6Å£óéË¡?fcíȳ¦¤t`-¦€m’´¡ f±SW<ŽT úÒ­c#kpTöõÛþqBCèÁX¡WvÎMu ç¦")â‡ù¸›&Qèrg}š¤nIE2z”S–mÚo.ƒoìm”¤oPÃïÛm0;>–Gf^YSfšÐ™sÙUÆõDd–¡M_g"3ô%B¨Œ¶Ì9ñpHFú\iiTL‹b% >œŽÄÔ±sËtTEzvÓß±§C5¦JŸ0Ò*pû=·C[ÓÊÐçOqf*ÐóÚ}ç§tÞG=–“D¹$¹æ¦sD¸ZAóÑé46ˆÂèátf}’ìñX pØìÇ»3hM[`ß7÷£Í¯`M«Üc1É*GWŸN}(÷:M¶Ÿ`n¨×rÓ©¶80—θ-@CWHRÛb«Óμ7 HïÎ… “Ê™£p¢wNÐQ¸öyïúžŽÂAÇÈÙ=ä Ëxúy$¥w®ÅÙ­B‹ Uû¥½Ä.c¦%çP}·'ÝzçâïºÇàßÖå1Ф#q¾ þ©BRx;hÑŠ­+صhE‡VöѺ”ý[h\zh+S"Ö—üR¶ˆý“üŠ>b_bð ag1Õv=Q+aþ?¢î!-b÷$âG…]ÞJ9Âs1ÎJ4´r'“4 Î\ZiN‘s)Z¡ØÄö`¸µX.÷g€Ür<úË @´’ïÆWLeìyWxÒÜǹ/­ †ÜŸdCÈòìdÓõìÀäóµo/þÁìÈ>endstream endobj 200 0 obj << /Filter /FlateDecode /Length 2539 >> stream xœ•ÙŽÛÈñ}¾!ì>´¼Ý''âµc`cÃÙØÚ'k8GC›eв=ößSÕ»›âÌÚ`†MÖ}uUͧMØŒâý»Ù_ÑÙîêÓÓogöÏf?ûyuõø-+àMRЂÍV7W…͘I–ªYFeÂD:[í¯Þ“gó¥L³„²ŒôÕ|Iªr–§99™C!àé*O(ÍH{°ÏR‘Ò!3np#B® íE)éë}e¿dâô®‹e¸çd3…à<#å TJ®çKž%Ež¤²ìo‹Dм`YªU [™‡uñ”‘›¶iÚ9‡£œ|1ò¥Tr`œÌ—¹L“¢ÈÉ˺³Ÿxš‚ }s7Ï9|â‚,æKE(žC!-Iš:F˜ÿ¾ú÷Õ’9‘f³%‰’y>[mÁ9›Ð 5ê%SIú²¶*¨<ˉO»ùRH€,aŸ¨‘‰ë=CÇ›2vüV£[ÿ‰F;Ë?Èœ*Eê“ÅWÌibQ" dŽT\º Ì,s Esò.ˆˆEÎÜÏè ´D†ž <Á8)›ÆJE Òßxð–"••<w5»¶«ûÛ}¨6úI{§à³Õë«Õ£÷±UŽw¨lÆŒß"'Ö =ÁìÜúS?K>Èa =~ËY˜ë™HD® Èw ²i}×6óÕ‡‹¢ ˜#7pïI{m„‡ôùp¿©{” S ,„>4â’òXýØÔãhB0Äé[‹o².ˆ€‰lÁÈ­¥Jåw…œ?`Ðp¡½û²Cçø« Ïó´ÐÖî‚Xº ƒ7—$}˜µ&e!g%•£”½ ½ÕvS‚G? (ÇX™tŽj é43Ñ1èlŽ˜ZBè4Ó®ÐÄ”kbkS\ r].R\cëHÓ‚ëLb˜íP+ûZ²Q¶F‚Y¬ì¹"û²ïê¯ÉÜ„eE—I.é7ÿ€ÊÈ•ÎÇžw•.@æ…ÐæP‰KN¨}š»ÌSø}upð9ùûÒã6åñØÜ­ {Âèâæ|Øôu{X“¯ë¹E†ûß@ZûÏÿ ¬ 2 RS½OŽm}èßµçnS­1Ç .'O½È g¦îSJ:ÿ)‚20R‡CSv'””.´`V ü€WõYæˆBT•Íñ¶œ1„º®úÒ Joko׆‘iÑnºêÓ¹:lîÝûxŸzïìXÂ7¿½~½ð_^M(ËK²õüp!Êð@P½h½ð§s÷¹ª›¦¿ NÐýóí«_VêUËš¼uƒ™(Ähšk×äycRÇëÕ`¨Öà1˜ÝÍt%À¬·Ë_‘Ê}݇òô Ç\B¡r=ÇqJûD·ŸÀ†;”i°yÚ™ì‡4ÅáŸKœp2M>-HC¾èÍ Ž›‘•­ŸÙh‚î˜\çdƒ—35Zh™A<•`’ó_­Ùܲڅ8ïfä0¨ÞkBÚ¬š8ËÆ•îβ™)Ù%ÅÖ&Ryþâ¹ý@ýv( ¸wŒ¬píD«u\øôÊJ'Ðö¼‰÷GGÞhG-~ôU­÷Ñ=RvõiÌ“ROêæYéÝÍÉ>‚ÑáR®¡ÌÊRÃCfm˾|p¿kCj©^‡Ù§=ͯRëëÆ±”nG‚×\ÃûÌ-c±Ðå/5¦0@ù¬ wo\Ðwµ])Ñ‚|´2±Ô%|V)9GwL|ó=ÁVר´º²|TßÏáá9¥¯Û0’§&H>!¤Ýđ꠽ð,>µµK3ì™[ÛÅ«¸Àãûÿb¡/r®WF&¶s½ìùÞ÷o~i“†ÁÚur˜c´EVî<@”Mè&8´ytXI–£½®–2©>L„¢õb×JÖ˜J9Õ·?û¦í.úž2JFk½‰íЫb¨»¸Z•]ÇÑ<îÀ§ ‹ˆ}у—ŒŠ/Ó*Ux£ ]n2ëK+͸Ówn{°ÖíúŸh…énF¢ÝnÇÿ21ËKIBšfµŽÐ/ ÅP/o,牘²Þ{`uȦö¿·ÑæÐDõýázÿªÜÜúaéá7w1®½Ç%I}°–š˜¼Þ«§þíšðGò‘âf"1çOnô‰Yú­ÉGöc{}ªºÏÕÖî?FôÝâ~ujSd‚mÑ^4Ã<wýäÂHCý¨Uxªÿ­«úsçñÿ˜ê‡gç¯uS—Ý7§ãíîÛÀô{§85ð&ypÖ¿aóÊ3â•ÝÖ§_»v÷Ÿë ÏÝ;æbú„©4XÒâÿ·N08®ç¶ö¼G:|‰ ³rW×Sﵬ¿;aaDZÏ£ +4ð”N¡‹³Ñ(š¥I ƒh‘äúâXmÿµºú/üüžòìendstream endobj 201 0 obj << /Type /XRef /Length 205 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 202 /ID [] >> stream xœcb&F~0ù‰ $À8Jaò?ƒÐË­@6»%(NŸëŒÆéÐ'ÿ3¨ö€âT¸›|Ý ’÷ˆäd‘òÉ R8,¢"ù߀H&K09LJ‚HAMÉ> D²>›&"•@$KXå2°i+A$GdäÔË&‚H‰; R*lZ:ˆÝ "¹À&sŸ³O€Íü"™µÀäz°Éb RF,ËvÃR°x˜|vÛ?) v93Ø¿, 7X|ûb¾)o! endstream endobj startxref 139854 %%EOF surveillance/inst/doc/monitoringCounts-cache/0000755000176200001440000000000014615104657021123 5ustar liggesuserssurveillance/inst/doc/monitoringCounts-cache/pMC.RData0000644000176200001440000000025414330454336022514 0ustar liggesusers‹ r‰0æŠàb```f`abb`f2XCCÜt-€"@# 'HA¯3âbaûCž&8všÛïý¼Íuᩃö[þ‚§í7$ù^ú¸òýr.Û‚Å×¹ì§÷úß·N‰²Ÿ½ôqð÷s7í§6²©ÜÕ—¶ok×fâñÜeßRõÐ}Hµ}Åä’=Yu¿ìK ü (?j”f þQUxÓsurveillance/inst/doc/monitoringCounts-cache/boda.RData0000644000176200001440000000617214615104657022753 0ustar liggesusers‹íšw|ÕÇçNÙÙvž{ÇF D% bEv–d «›Ýu7A±Š‚d“ÒûSìúlØË³÷þ°aWìXyßÙ{É^ûèÇ÷ÇÎçóåìÌÜ™¹÷Üs~wN˜‰c'íÚgRÃ0,öù×á§á~ظ Ã6ÙQ†m`í)ñÒ¡¬¿äwR¡d?úƒYÜ~˜w£Øð·ž791>EÚªâý{mÓ7œˆ—LÝ356Tf·OöT–ÍV+¯ŒVDbñòH(zØ¡+5̽Ÿ“½ŸwÇßÐÇàxþKàSø~4Œa\<Œ ‡ „ua#ض‡]aì ûÂÁp¥p2$a:Ì„Ù0æA+tÃUp=Ü÷ÀCð<¯ÁÛð!,…ïàÃN¿‡÷ƒ5a=ض†a8ìcá˜GÁd(ƒT™p\ih„v¸ þ 7Áp< OÃKð&¼ŸÀWðƒaŒÀÑ#‚0Ö asØv‘@ ŒØ‚ÃáX(“€ qÌ€ àR¨ƒè‚+a!Ü wÃð8<¯Â[ð|ßÂφQHüö…5€(- [Á»Á ì Ipœå@žçÂ…P 0À5p#ü î…Gà)xÞ€wácø¾7 \`Œt`¹6l›Á¶°3a#GÃ8dÎÈc` D §ÂÙp>\µÐ p\·À]ðüž…W`1¼ŸÁ7ð“aŒ²€Dµ: ‚aK؆BìûÁ8Ž2qTRp:œs  ê¡ 2p5Ü·Ã"xž„àux>‚/`,7Œ¢›EkÁú°)l;ÁØö†D/:B@NÅaœ³àb¨&è€ËáZ¸î„ûü/"ÿ‹Èÿ"ò¿hIŽ`ãSRáä´0ùlŠf˜ä‹ÍXlrØÂ¿9i1'–·OLYúÖwbñƒELY¦§yÀ¼XøÁÁç6¹ïàg‡Üpˆ#q™'_»ŒÍ%\úï'rÛ!OäB€1¼ß´sˆ7‡ØtÈu›œvðC~Ùä¦lÆå 6}°¹‡ÝWúMž+âWqÞfl6so‘ý1‰‹œµðµEÎXôÕ$žMîo¢–ÚdáC _XÄŸþX\çÏó ¯]| —ü ‡\rÞ%'äJ HÆK¿ôÁEO]4Äå®sˆc›qÐZ‡xrÈUß;hŠM<;hßm¯}µÑ<_)4ÔBÃæÞ"OLôËD[MtÁDKMï<¹hSæ·2oä–E’šÞ8È‹¶¶÷<üo¡ÍöKú·MÞÐ; G.±`àÛ9 æ\|ï’.kƒ‹6È•zí0Ÿ1ê ‹6ºb{ó…Ol4Î&Ï,îc£Cö ý| 5¹Ÿ"^lÆìp‹\3Ñ9“\7™sÓúh±XøÎâz‹õÆd½0ÉËë?ùj¡mÖuÚzã³éO€¶òÂå˜Kλä“K.ºè{ Ò'—g¸øÄ¥?.:`~觃OÏǬ1í°ŽÙhÃh¡çÊAlæÝF;lòÆb=1Ñ“ù´X‡ì·´ï³sÂØ­cuÌ™ÜÇ¢‰6˜ä‚¹Lÿ¶¼øœ¡çÎ$¶,¯ë¤íÍkNÍ+ v‚¬iA|[€† I¬7AüDß\b1ÈZDW‚ø4ˆ®ºÞ¦m×ÝboÒ¶{sÙWö¥ßÝ»i›é#vŽ¿FÚ/Û,÷_Kž?YÛùsýüÁÚ¶Ëñ:m›äx‹Œ·y‚—q4Êñú}ÅÎÒ6-ý˜-××ÈsZd~äºÚ…bÅß5Õbåùiñ_Úß—ùK‹?ªÔ¶JúS-÷©¿Ö¼¬mÝRyŽßßÇÅ–Ê8N“þ LÒ¶ãEm»d\]3µíÞ_ìAbÅßÝÃÅn+íe3Ò¿Ìr>#ç‹•~tHœ¶Éñ–±Ò9ß*qÕ"¶©Böbe~›Še\þ¼Èó꯿LÖö‚´MËøZÄ/ âïZßo~|/+ýLû÷ë'ûÒï´ô·z‚¶s;䏸·FæµVŽÏ“þ×Êýd\õÏËxî”ñ·jÛ.û:ኻîëç…\ßý¤Xéo÷L±¢ ÝC´Í-Vâ û±âÿnÑN™ßùâŸéÿ|‰÷6É×ÖY=ûíÏWËdm}h”yi~׋nÕŠßfËüTçÄg£Ü·ö“žík$nk¤iozQŽõuðXm«–ÊqÑÅ´ø«VÆ=OÆ['û Ò®AüØ(ãk•|œ/y×!~ì}ëºEÛùóƒØ·ÅŽ»½ØÚfäyÉïÌ:r~šÜWúÛY,ϯ–þøù,ñÐVÜóxÓbm[DW}ÿ6Ý&ãòóAî× ùU+×ÍY¨m•œo^Üóú:?ÎE¯j‹•ùNO+×§e>}½«–çWK|¥%Òr}­Œgžø§Nú× zë뜿.úùÝ.÷ï=ê’óÝ»ˆýÌH~g投ûg¶”vi»@ƹ@ž›‘<íþL¬ô³óy¾Äo›Ä_»72ŽVég˲/úÚ*ë]‹¡íŠykè?\¢íEµ­Òíþ¨W’ÕbáHÙT^I’SãñR]jf¯O4Ô*ž¸Ê§ýÇÝ蟈'*£¡ŠH<6.*ñߎF/ÕcÏÛ¼ÍÛ¼ÍÛ¼Íۼ͵ÔÛ‘UJôòå`0N/‹Çüÿ7rÎ$¢ñŠƒ“¥á¤t(·=eJü4ý’Ó[çWl¹ýé›HÆOšªHFbe½ö‹Ó¡dYjŽÁ³åþ¼$JÑÈ\ÙÖ˜‰‡æ´s¡’“Ceá—™©„8Rú·öòœ{ 84Á»\(:a…Ÿ¼fë,ÿw7úõÉ%ñXE2Î;µé9¸Ÿ±â#H¨çM•÷Wü¾@åµñ^R«ÃÀ=ïÿjm þRëõ’Âj=Xx_WÂF°1 †M`SØ ¨ƒÔ@ý ¶êGµ l ÛuŸÚ¨ËÕŽ°SŠºDí CaP‡«P#aõÚö€ÑÞG¦°'ìc€z^í Ô™j nPûõ¨:¨CÔx8† pL&VQߨúI ÔÛê(8Žêu'ÀdÁà…\Q("Ae@§"@}¬NæJ•C âÀÔªS€P€¢ŽU•@Ý«Nâ_M‡Óá  ®WgÁÙ0ÃÈÖ ê8΃Yp>P‡©Ù@]©.„‹ÀûðˆºI] Ô{ª ª! 5P ÔjÔCP+ï¬f (SÔ}ª æC;t@'tA7d`\—õ¥º®‚«:Oy©] ×ÁB¸n€á&¸n[ºNÝnèÚîêJuÜ ÷À"¸îƒûáxÐÈ~0¦ê\õ(êpõ)P7«ÏiV_À—ð| ßÀ·ð,ƒïáø~‚Ÿ)P˵ šJ°dZ@nz4’ÿ¦÷QùoHÁêIÈJŸ[÷øÝCã"ïÏ{Ù¸G7e·f¿øþ9¾ìêýªb¿ÇzQŽÀFb¡h*ç„9~ŒÑã[îgx¡oHFâÉÝéÄ6¹Šì_50«vr0Š!¾z‡|•£Ép¬Tv©p(ù§²÷ÿõ¿9SC¾ž–— )¯ŒUúë»ÓýÒ;*ODYPƇ+¦Æý÷?¥2«ˆDÃ=ŽºÓ¼ÿ¾Hù}²½^ÿ‹eÀJU¬Júû¥*Yt#Ñh(V^Å"ÐO!ÙøõJP_ ò+‘_ ò+ÁÿÕJàéÖ _ã þTýþ­Ždû±WVDóâiäÅ3/žyñìU<ÿ †Íï’µ¨Ã_¶1 Ö"¾µ:!‡úŸßúÌͪG%F&DDÇDE¨#»wûSïϧü|>éx ·Yï8®€[à>ø ¼2Y}|¸>>Xߘ[à¼@]Z€o@'Ð ƒÁÆ‚d0ÌY`)ÈëÁ°ÇÁip”‚;àW𠼿Ëd ÐïÕ€ °Àø‚ )h ‚AWÐ CA4HÀT0 ¤ƒ…`X¾ÛÁ^pü΂Ëà&¸ž€—àƒLÖÝP3P8ƒ: 4˜ ÛÐôa`8À$h8$T0d‚% ¬›Á.°§Àp ÜA9x>Éd0€š³´‘=p> >hZL»F]@oð¢&q£ñ` ˜ Ò@XVƒ`ØÁPn€»à1xÞËdYcÀdo\ Ø'à ü­qsÐtðœÆý@(ˆ±`4˜RÀ°,+ÁZPv‚}à(8 ΃«  <OÁkðQ& ”8J` `ì€+ðõ@h ڃΠà‰‘ Œ“Á 0dƒe`ض‚ÀAP ~—Àuð xžƒw R& ÒðÍ S` ð A3Ð| àèA}À§ƒbÀ(0L³AXrAØv€"pÀÿƒàÿAðÿ øÐý¯†nLh|xܨpø³Èb†Qà^ða9ÆWŸ”Ã&résJ¾Rsù[¦1rÌ)¹(Å<»È1JŒ¹¾¯Ä8+áJÌ#⌠vRa¬U¸7|A…þ«0OtàÛJø©|A÷ #ývJÌ7%榾®€O+16Jø—¾©À8(p_JÄú À9¬ßðsóWÀû Ü›¶—Ã/äèˆ9"‡ÏÊ1ÖrøŒ}1ŸEœ_D ”K 6É1†rŒ…óOø#Ç甘ÏJØS~­ÂêÀ—”oø >¯‚OêÀWt‚Øý¢ß:èƒ ñT…¢Â5tð9%æ±sD‰X«Ä|RÂW{%bŠóY‰X£À¸+¤vè«1OÄX ˆ¡rÄp%l/‡Ÿˆˆ_"b«ˆ¸ "–ŠÒûðE9æ”ø†Ù ¾%‡“ŠÒ}Àäh«®‡ñ—#6+.kþVÀotïTˆã:ˆG*Ìu<'t0¶:ðyÌ9Æ^¿PáÙ BlÖ¯è ^+aO%æ¨qQ¸¢ì…1Q Æ)àgrœG8¤°Ð\_Ž+â|æ‹÷¬Äyäð5qN„¯‹°¹(Ýâ£Ï9ÆNŽÏËñ¼ñ¼á7r©ÿðW9b›¼P£¥ûS ?:h«¿Pá5|^RÁUˆïºˆQºè“ ×PaLTè q@öÕAüTbL”Òã9¡ÄœVâ9¦@¬Sâ¨x®±•ñA»+;ð9ž'"â{ÊñRÜÖŒýg›àÞåý5sNÄyäh#"6ˆðñæo¹4?“4¶1·äR;<'’ ðÌÑEÌÓÃÜÑÅ3Mc«‡¢‡˜¤‡ç.ÆCñM…¹¨‹gµ.âŠ.ÆTqU%ٟבæb­±]‰¸ ƒX­Ä3H!½.-„àŸ Äm9b„Ï9bŽÏwQü*fÈGDi–2Q2þiÁ¢‹&Ñê¨p ‘ÌDÓN†0"3þS=mèñ×¼ùO+-iI$²+páÂ… .\¸üH‹]l´þju¢'½þÿ·QGªã°æõùj„ á¿Ý.ÿäÿvþC‘G?166<.4&1z°v3DKÜ?_1½@—é4¦¿Õ茇LïÖèôÎìøÓ™¬ý`¦W1½”ibº7Ó34:sFgùitöB¦½X¿†iôbv¬].ëo¾•Fç±ã¼ë½’gåL?cïg°ã»ìX«Y?óZ3ý”]g-Óν¬šF/eã°ô•F/9ËúË®¿0—ÝǦٸd>üJkÇû;f÷7—Ó6> Y»œÍ¬½vœYÿhÏÇú—ñ‘iÖŸO˜fÿÌYicÖNk¯ƒLOû²_Yiì>ˆõ£ ë»Î"Ö¥ýÙx9jôrÖß\6¹o˜Þ£Ñ+Ùë+ÙuòØ}ç'0½•if—üá¬ÝQ¦ó˜fïç²þ-cýZÂλxë_#vÌæßb?ÖÿHv?lže³ûÏbã’©ö¹¹2¦Ù¸,dã›3G£ÓY»ôí_gtfšK³×­ÿ±y«™ÉL3»e±û˶`×Äô3vl±þ.b¯/ÃÆåvÌæï2v½åÌßV°vylÞæ³ë®bﯩÉÞ/c¯ë3Íî#Ó'X»;½’ÍÏ•ìü¹ìó+˜®`×[ÊìÿǼbýÌf:Gk'vžvž›/ÛÍeã2»ó—ãÍÚ§'3ÍâV¯t6>éÌilže°ùž¾™ifÏl^eš2Íâe–Ö^ÙëÌ_³ÙüÓúOŽB£³ñ[ÌæÝR柹!L³ëä²ûÌ»É4ëÇ*6.ktØq‘F¯nÆŽ3}éýÏüTsY¼ÐÆYí?K.ׯ=6¿iýÿ,ÓÚcb÷Åì™cÌîŸÝçÖn&{†öó¬¿ ;³vl^.`þøÇó‚³öù”ÁΓÁú™ÁÆ-ƒÍ× v_ Ø}e±óæ°qÎfçÍaÏ…±ìum¿4ÏŸ¤Ï§QåQ>—u¶½±¯F¯gño#›¿]5ú{­fýÚ g¬«X{M˜ù‡] fiôjÖnuÛ/ß_ÉæU^WÎeñg¹6α¸µ8™iöüÒÚ)‡=ï²™ÿe±ûͲ×èy,nÎ×¼þŸZ’T: K’¸a11ƒ5›"™ü—W” sÅ¿½Ú¿Ý ÃØ˜ØÄHuBDLtÛ8u˜vuÔü™æÞ¹æšk®¹æšk®¿Öÿ©Õ‘ ` Œ£æ¿0ŒãöMÂD0 $É>ïA„É` ˜ °_R@*˜°ofìÓé‹GØ sÁ<0¤t€L²AÀ>T¾€µ,Ø ËÀr°ä‚• äìç„Õ` (Øo ëÀz°`?(H_RÛ Áf°`¿)lÛÁ°ì»Á2Í—Úöì¿…}ûKá8Ãà8 ŽÉ>aL(Ø7 ?²Ï_º°ONƒŸÁpœçÁp\%à2À¾]¸ ®R€ý¹pÜ”}þ’Pnƒ;à€ý¹pÜÀCð+xì…ßÀSPš…çàx ^×à x °¿Þƒ |ŸBP© ƒ¢ ùÂ’( }¡þ/J_ª‚ÿ‹zš «\ŠxMúv¶¨Ÿôù¡ Ê£êÁ²‹ŸG’éòîSª»“ÙákmÊ÷Ö'ûí˺_û|Ïe\ºÜìoºäe¸“õ†.ú†[·‘E¯çÄ&]Èzlµ‚qónQm…íIË~ûÉVwzÁe÷²Ï žylÕ~277”]D^d7¯ÙŒÝuuRíùäPúüµ_‡;ä¼D|?©-9oWöÚ[wyœûî¶Þzò˜nPñ¢°€<Ôí÷÷ö#¹õû°K¹y÷þ®úÆÑ¯ÈÇçXóŽÇ-(à]îJãË&äþÚsöŠv£É+ôBëàó»È/«hÂÖô™ä׿`!ÍúH>›í ŠÆ‡QÀÑÆbôé\òÏM(Ú7î ùŸ­¬¿û2Ž?ÚÏ K zd<÷úaòîßwcÛÂpª³ûDHri¹—ÅË ¯ çš«¾tÕ–Ü\L;¹—Hv?¼\ÕªA9åfwZ5à#9¸wªQî&rÜubŠm©'Ù´›hÏÂäx¨wŠH"{£ëõ¯’ã'ßu»F–ß”ôô{]ªöâýaý¼Éd1±Á¸6%T›hV‡T²<ÿM]·‰¤û»£ÉÉ,ç´ïþ[HÖfÏ}rô"³SM–¿9j-Vôkv›ª]µ¡Û dAÓŒ÷_#¯Zï;4ð."ß;é6Ïÿ„qŸT÷»&ÇÈ¿[¨™wàTòÛcÑ{^Oòªp¸z°µŠ|eOòê9 &ÏÇÂÛ¬ ·à‘Ê£>ä©ôjtx²=yÞ2±Vè!—‰·öµéCn:ñ:ë¶,'§ÊT3·H3²nò~ùÅ㘄ë^u™¶l§•ï)q$ûº©¿E}K6ñ-"{¾YKN}ýÞ³ùIr¸ÑQ<1†lúôlQÔ ”̧>Ûo}ºY)®n8VŸÌ‚"ÆËü^PÍgÛC ³ ÈÊ`ý Cëfd1øI¯›w¨¦CªµWÁ}ªµÒ²dè·ÕÈaÓ -žÙ‘eHH‹9×:é…–ÃR6:QSëïÛu„LÎ&ÿ6 vXpè«Sädü´Ì„Ì^ð\ÙŠl>Áï /Rí­×›×ÞKößΰ­¾/™œtdž3MúKx^u§ rùiû¨e6¶ä2/êU³w¿‘ó=)ñÉKɱGd”׬ŸÈcœ}i/….ù ¶ÞAî{doç•ÿBcG͘rs6y,-¾6jT}ªsþÙós­7osû·×;P€ÙLƒ®t•¼#O•(gÞ&¿Ê¤íç“ßí;a*»3äÿmaÌ&Cò~¼§âûOÈkôó´ï_"ÏÐês{F‘Ûùîc¶t&7UjèïÈcä/G£¦='·"“˜4³!dðÂpõý†äš·ÞµQ›lrS†>PÛ‹œ=§÷½2&’¬»a¼‰lŠÆÞ=kJ6Gw³káN6¥ß®åP‡,Þû¾j™¤Gæñ9áQ=É"}ʳҮÈj_enÑŒl{*bM§õ‰¬W“×’¥mRZÿ%d¼j³Ý¸Í†d¶µÁÚS™qdž^gFê232Y¼e’ÙxCª1kti;û ¤¯wÙ¯]=òœô2fòmòsò÷¸<~yÏYØ×êùõ•w›¼žü’ƒï¹Ît!Ï n¹y/$·SòÚUBîw·]ýÎq*y\y»´„\,jœ:Ö®&9o}èW?c.¹Û÷‹5~’J.7Fê¶S}"Ç©í3–w#ë^ίÏ<^BµÊí¿ñí2·nôºþô{d;îHPa]²2¼~Á²l4Y'EN›õ=™œÚÜ2sû|ªµßÿtáÞÎT㤟s=“-T+pБ?n×ïbËË©ÆaçËr‰ÌŽ úð`Y6Yþòzo·µd:ÞfÔ¤ ͨæ·f=gN&ÓÉ?V—W¦RMºð2·Ák²šYÜmê59Ú3xn››deûéÌ‹O½ÉÞRgÔΠáäxzºx­Ú@rzzq¦ŸCr2qÜZÝ—œgE4;Ñ{ ¹çhì¾MM®åÆKîÏ'§ö¹NO¸G®²C®¤4'Ÿ#1ÁZu"¿S ¯ùm&ßþ+·™M#ÿŒ£ótëÔ$¿XÃ7kv%¿ãSS­§RÀ³S*÷Þ'ß‚ÒV‰‰]É˧>ms|Óð\·ùyïÖ}PÛºœ¼ëuxnJÞk|¾ûØ4ž|’¿y—ëAÞ‰×wÇÆ’Ïš›À!?“G—_¬F;u!ÛÊzë?ë·ê}Wg’Ç¡ËÃd߯ {ãüÕç2ÉþitHYM r1?˜˜ì<š¾©;£¸9ÄÅžß¿º9ü:fÁ õÈÖxbùoÄËà3]Ö}CVúö¦ŠŽÈ~fYÐàî9Üî“°6%‹ì‹üæô~±j–êÍ›ÝfÙ6õ½~mÌ3²x±{­0i$ÙÜÑ(Ü@¼êêøêxÛæd7ÞÁôYǽdת|Wè»—d·ß©< ±=YÍkh:Ùè Õ–…n ëDµú˜•¤M&§Î'[^[A¶+ÇÅ×I=J.Ã.Ù|û‘ìÞËMÇã¹ä–ÙÐúÌ ÄýC›'u&¿Ô^›wÉ O ‹ÕËn’Ódß¶ä7u±Ç¡ÎýÉoÐÌŒaûúSÓ¢æ'Ÿ“×äâfã?Î$_Ç–·’‘äù!ƆäãÞ5¥Fýòì¥8›î’Eþ]ÓÊÛ<ÞJ¾ßô´°ÁEò;±o°WúIò¸µå¨ß ‘ܳç=›îy…ÜUA‚NA·H^¼qc¹Ï_p¯›I(y~ùgÇÜÏw{Íw!‡Êû‡¾{…xgW£½Á…%äÔe{Ô¸}-È®IljÄÑÛd)Vvd­ 댦]~L““õÌ'ßt zBök£Ã8›H3Ôk=v¥sÒö$³»£'m4†jY£’3!ë\¡ÿ&'#²HÜt°ôÙ$½±Øhüë†Éë„a£É*§µåÖÇÉtïh Pí½N'ÔK&ûIªnŽ®dy¹NÚZ¿b²k»¦2ïC ™Ý¼a8¢ß²h3ª0Ô³ ÏË1ǯ#[ï^¥Ý/’]BÑâ>ž'Èqè·üfÈiû©9cܰ>˜°áÐ̤äæSÚ{âö'ä¼jþÝ<oò¹zÓ(Õ*“¼m 1§”Üξ‰ž{xy¾4ý4ß{/y§^ ñÈÚB>^ëûq#ïq¶ý³ÓÆ×ñ€%ëä«ÉײíÚ%ä¿øjݲìäIÁFSN·QåÅvËÈûòÔuwŸÍ#Ÿ“? LU’¯U¨,´Uªj9²ãûKäX¢·´xà>rÕWÌQ­"§õ7lk†< >}ÚW9Ž\G†ìPÞÊ%§©Nç…¼!ûŠúǺïú@οŎòëºV§¶x¼?I–½"^9:‘ù 3æ¤$µiÿŽß;" ãLh¡;Ù˜5X?ÐÀœ,Æ?oàrQ—Œ¯èŸv?w’ô>êhÓƒLƒ‹s.ªÈ"%-$åt™´®o<½d8™ï·\{ùíl2M¶‰¾k]LµÎy]@6[ÓöŠtªýíÜÀŸŽ­CZ½Ö«“…ÇwßϘÿš¬/vÕ21—\=ª$çÞ«mN%^"'³#]ÜG}‹wÝ»¯õÑ4ûênÛÈ¥ÓõŸ› $×ÐEý ;“ÇùFG&èM"÷‘Λ[«ß’‹þ-ãç/o‘{Ÿz©£;#Îü<ÿЯ!D>ù{ªUQÀÃ?OÏ¿A^®ïÎ ÂúØï„åÄîESÈwã€çŽ~ ¯ƒ^^ªô#ä{ׯª(¤’üô3û9F–o\ý¤” ÃÉ{öÁ9ëÛPêÞ¶z/ÈÓbtoE y9Ï™ÿéM#òl0©Æ£ rݶþ ³¹šîr2rB²þHrûPœÑâEòð(zcð”ültZø­$·–¶é;JßÇêO³6¶ÃsýH®ÎŽØ»äWÂçÅ«Éÿåó9îVOÉ·iõÄ3gÆ÷ë²Ü`“Uä»cʰ…,ÈïЯF‡së_pR¦É‘íäÓ¹ìÑ™ëäv®IJ­c*òœÕ0ÂzÇrKï$–Ó‹<;LºJ®aS ZØ‘ÜÍ-'ø“ƒGØØßÉÉöLë3{Cú“}Þ¹Ö?ö —6i/(\ÉážMËÖ±doZ¶dí<=2;wþu¯^¯È°¾ùRe%™ëǾ~Ò$™ w•ü}Ôª™ßVwý¤WT3à×ÿÍîdqòCÐúŠ{dßàc‚ÙÞ ²èñþÀƒš¯ÈTV~±Ú–ÍdQtfÈb£…dår»s\ê[Ä9ãŒaid´å·4£Våd²×A~ì¦/™ï «¾o=ÙîhÐoÙI²¶Ú)¼‘9™–Y„ÍšHŽ‹wœVÑvª»öžqâöÔîm\§’Sš·^IµTw«øq¹™·Î·6#Y=,ŽÇm"ç =ÜûZIu:Ç,œsÕ9U[¸}ª¶pûTmáöùßn§ª-Ü>U[¸}ª¶pûTmù ûèÿùû \¸páÂ… —*)¿ÉH¾,’­Ž ×VÒS±u"ý}†%FýqðÅQÝ/ŽêýéH7:|ôØpu\¼¶B`ذ¸ˆø„(µöýNþ~õbÃã"¤"ÌÚšz_ËÓ¬NPû ‰C¯¾.73ÚGÛÛêlÉS4 Tò¼1A@*AÝH¥É¥Ÿ¡"д­€T¾ J^·RIöö R‰õŽ@*Þ t]€T »J÷=A/ •Øî¤RÝý@0 ßA@ BAJµKE‡€¡@*†ƒ@*µ¢A ˆ#TnQƒFÑ@*U?ŒãT¢{"˜’@2˜ ¦€©@*MžRÁt }õu&J‚ÏR ö¹`˜Ò@:È €TÒ> dƒ •<_ƒ%@*ý½ ,+@.X ò@>J‡¯k@J›¯ëÁ •ÿl…`3Ø¤ÒæÛÀv°ì»ÀnðØö©Ôû> •2?‚C@*QÇÀqP ¤å?à$JŸ?ƒ3à,8΃ à"¸¤ÿù2JÄ_×@)JÁß7Á-Pnƒ;à •‚¿îƒà!ø<Tjý7ð”ƒgà9x^‚Wà5xÞ©”ú{ðT€à“LSy²’EüGê†ÊBÆKMòR“¼Ô$/5ùO¥&Eø¿ÿ«kÊ÷ŠFšÒ·"ü_¬©)W+ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ØŒÅ@i½ ]Ziÿ–Äøó߬ŸR{ ŽŒ¦ÖVŽ ó‰JŒNÔVkÆáXö·a¼:*62"zhÇð„a1ÚŽLTG'DD†ñªjTx\hL¼¶OŠèÏK·¿-š,Oø»BÉÕâãF…GDFª£ÃØ)þ©d²~XÌ(u\ÈuÑúGgª³úÍ>’íXçÏoÈø£•?Zù£•?Zygþ+EüWŠø¯ñ_)â¿RÄ¥ˆÿJÿ•"þ+EüWŠø¯ñ_)â¿RÄ¥ˆÿJ¯âÌó <¿Àó <¿Àó <¿Àó <¿Àó <¿Àó <¿Àó <¿Àó U$¿ðwyž_àùž_àùž_àùž_àùž_àùž_àùž_àùž_àù^Å™çx~çx~çx~çx~çx~çx~çx~çxg.’pûTmáö©ÚÂíSµ…Û§j ·Ïÿ†p;Umáö©ÚÂíSµ…Û§Ê ¯â\……ûOÕnŸª-Ü>U[¸}ª¶pûüo·SÕnŸª-Ü>U[¸}ª¶ð*Î\¸páÂ…Ëÿ¤T*ÎT¬Š…›-¥¼N3¯ÓÌë4ó:ͼ˜$/&É‹Iò:ÍU´Nó‹)½ÿj©eVöøÿÏ1¡šsurveillance/inst/doc/twinSIR.Rnw0000644000176200001440000006131514430704663016534 0ustar liggesusers%\VignetteIndexEntry{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, quadprog} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinSIR-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinSIR} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~4]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinSIR} implementation in your own work.}}\\[1cm] \code{twinSIR}: Individual-level epidemic modeling for a fixed population with known distances} \Plaintitle{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} \Shorttitle{Modeling epidemics in a fixed population with known distances} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure %% knitr uses \subfloat, which subcaption only provides since v1.3 (2019/08/31) \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbb{I}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of individual-level surveillance data for a fixed population, of which the complete SIR event history is assumed to be known. Typical applications for the multivariate, temporal point process model ``\code{twinSIR}'' of \citet{hoehle2009} include the spread of infectious livestock diseases across farms, household models for childhood diseases, and epidemics across networks. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, and visualization for a particularly well-documented measles outbreak among children of the isolated German village Hagelloch in 1861. %% Due to the many similarities with the spatio-temporal point process model %% ``\code{twinstim}'' described and illustrated in \code{vignette("twinstim")}, %% we condense the \code{twinSIR} treatment accordingly. } \Keywords{% individual-level surveillance data, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, branching process with immigration} \begin{document} <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinSIR-cache.RData")) if (!COMPUTE) load("twinSIR-cache.RData", verbose = TRUE) @ \section[Model class]{Model class: \code{twinSIR}} \label{sec:twinSIR:methods} The spatio-temporal point process regression model ``\code{twinstim}'' (\citealp{meyer.etal2011}, illustrated in \code{vignette("twinstim")}) is indexed in a continuous spatial domain, i.e., the set of possible event locations %(the susceptible ``population'') consists of the whole observation region and is thus infinite. In contrast, if infections can only occur at a known discrete set of sites, such as for livestock diseases among farms, the conditional intensity function (CIF) of the underlying point process formally becomes $\lambda_i(t)$. It characterizes the instantaneous rate of infection of individual $i$ at time $t$, given the sets $S(t)$ and $I(t)$ of susceptible and infectious individuals, respectively (just before time $t$). %In a similar regression view as in \code{vignette("twinstim")}, \citet{hoehle2009} proposed the following endemic-epidemic multivariate temporal point process model (``\code{twinSIR}''): \begin{equation} \label{eqn:twinSIR} \lambda_i(t) = \lambda_0(t) \, \nu_i(t) + \sum_{j \in I(t)} \left\{ f(d_{ij}) + \bm{w}_{ij}^\top \bm{\alpha}^{(w)} \right\} \:, %\qquad \text{if } i \in S(t)\:, \end{equation} if $i \in S(t)$, i.e., if individual $i$ is currently susceptible, and $\lambda_i(t) = 0$ otherwise. The rate decomposes into two components. The first, endemic component consists of a Cox proportional hazards formulation containing a semi-parametric baseline hazard $\lambda_0(t)$ and a log-linear predictor $\nu_i(t)=\exp\left( \bm{z}_i(t)^\top \bm{\beta} \right)$ of covariates modeling infection from external sources. Furthermore, an additive epidemic component captures transmission from the set $I(t)$ of currently infectious individuals. The force of infection of individual $i$ depends on the distance $d_{ij}$ to each infective source $j \in I(t)$ through a distance kernel \begin{equation} \label{eqn:twinSIR:f} f(u) = \sum_{m=1}^M \alpha_m^{(f)} B_m(u) \: \geq 0 \:, \end{equation} which is represented by a linear combination of non-negative basis functions $B_m$ with the $\alpha_m^{(f)}$'s being the respective coefficients. For instance, $f$ could be modeled by a B-spline \citep[Section~8.1]{Fahrmeir.etal2013}, and $d_{ij}$ could refer to the Euclidean distance $\norm{\bm{s}_i - \bm{s}_j}$ between the individuals' locations $\bm{s}_i$ and $\bm{s}_j$, or to the geodesic distance between the nodes $i$ and $j$ in a network. The distance-based force of infection is modified additively by a linear predictor of covariates $\bm{w}_{ij}$ describing the interaction of individuals $i$ and~$j$ further. Hence, the whole epidemic component of Equation~\ref{eqn:twinSIR} can be written as a single linear predictor $\bm{x}_i(t)^\top \bm{\alpha}$ by interchanging the summation order to \begin{equation} \label{eqn:twinSIR:x} \sum_{m=1}^M \alpha^{(f)}_m \sum_{j \in I(t)} B_m(d_{ij}) + \sum_{k=1}^K \alpha^{(w)}_k \sum_{j \in I(t)} w_{ijk} = \bm{x}_i(t)^\top \bm{\alpha} \:, \end{equation} such that $\bm{x}_i(t)$ comprises all epidemic terms summed over $j\in I(t)$. Note that the use of additive covariates $\bm{w}_{ij}$ on top of the distance kernel in \eqref{eqn:twinSIR} is different from \code{twinstim}'s multiplicative approach. One advantage of the additive approach is that the subsequent linear decomposition of the distance kernel allows one to gather all parts of the epidemic component in a single linear predictor. Hence, the above model represents a CIF extension of what in the context of survival analysis is known as an additive-multiplicative hazard model~\citep{Martinussen.Scheike2006}. As a consequence, the \code{twinSIR} model could in principle be fitted with the \CRANpkg{timereg} package, which yields estimates for the cumulative hazards. However, \citet{hoehle2009} chooses a more direct inferential approach: To ensure that the CIF $\lambda_i(t)$ is non-negative, all covariates are encoded such that the components of $\bm{w}_{ij}$ are non-negative. Additionally, the parameter vector $\bm{\alpha}$ is constrained to be non-negative. Subsequent parameter inference is then based on the resulting constrained penalized likelihood which gives directly interpretable estimates of $\bm{\alpha}$. Future work could investigate the potential of a multiplicative approach for the epidemic component in \code{twinSIR}. \section[Data structure]{Data structure: \class{epidata}} \label{sec:twinSIR:data} New SIR-type event data typically arrive in the form of a simple data frame with one row per individual and sequential event time points as columns. For the 1861 Hagelloch measles epidemic, which has previously been analyzed by, e.g., \citet{neal.roberts2004}, such a data set of the 188 affected children is contained in the \pkg{surveillance} package: <>= data("hagelloch") head(hagelloch.df, n = 5) @ The \code{help("hagelloch")} contains a description of all columns. Here we concentrate on the event columns \code{PRO} (appearance of prodromes), \code{ERU} (eruption), and \code{DEAD} (day of death if during the outbreak). We take the day on which the index case developed first symptoms, 30 October 1861 (\code{min(hagelloch.df$PRO)}), as the start of the epidemic, i.e., we condition on this case being initially infectious. % t0 = 1861-10-31 00:00:00 As for \code{twinstim}, the property of point processes that concurrent events have zero probability requires special treatment. Ties are due to the interval censoring of the data to a daily basis -- we broke these ties by adding random jitter to the event times within the given days. The resulting columns \code{tPRO}, \code{tERU}, and \code{tDEAD} are relative to the defined start time. Following \citet{neal.roberts2004}, we assume that each child becomes infectious (S~$\rightarrow$~I event at time \code{tI}) one day before the appearance of prodromes, and is removed from the epidemic (I~$\rightarrow$~R event at time \code{tR}) three days after the appearance of rash or at the time of death, whichever comes first. For further processing of the data, we convert \code{hagelloch.df} to the standardized \class{epidata} structure for \code{twinSIR}. This is done by the converter function \code{as.epidata}, which also checks consistency and optionally pre-calculates the epidemic terms $\bm{x}_i(t)$ of Equation~\ref{eqn:twinSIR:x} to be incorporated in a \code{twinSIR} model. The following call generates the \class{epidata} object \code{hagelloch}: <>= hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) @ The coordinates (\code{x.loc}, \code{y.loc}) correspond to the location of the household the child lives in and are measured in meters. Note that \class{twinSIR} allows for tied locations of individuals, but assumes the relevant spatial location to be fixed during the entire observation period. By default, the Euclidean distance between the given coordinates will be used. Alternatively, \code{as.epidata} also accepts a pre-computed distance matrix via its argument \code{D} without requiring spatial coordinates. The argument \code{f} lists distance-dependent basis functions $B_m$ for which the epidemic terms $\sum_{j\in I(t)} B_m(d_{ij})$ shall be generated. Here, \code{household} ($x_{i,H}(t)$) and \code{nothousehold} ($x_{i,\bar{H}}(t)$) count for each child the number of currently infective children in its household and outside its household, respectively. Similar to \citet{neal.roberts2004}, we also calculate the covariate-based epidemic terms \code{c1} ($x_{i,c1}(t)$) and \code{c2} ($x_{i,c2}(t)$) % from $w_{ijk} = \ind(\code{CL}_i = k, \code{CL}_j = \code{CL}_i)$ counting the number of currently infective classmates. Note from the corresponding definitions of $w_{ij1}$ and $w_{ij2}$ in \code{w} that \code{c1} is always zero for children of the second class and \code{c2} is always zero for children of the first class. For pre-school children, both variables equal zero over the whole period. By the last argument \code{keep.cols}, we choose to only keep the covariates \code{SEX}, \code{AGE}, and school \code{CL}ass from \code{hagelloch.df}. The first few rows of the generated \class{epidata} object are shown below: <>= head(hagelloch, n = 5) @ The \class{epidata} structure inherits from counting processes as implemented by the \class{Surv} class of package \CRANpkg{survival} and also used in \CRANpkg{timereg}. Specifically, the observation period is split up into consecutive time intervals (\code{start}; \code{stop}] of constant conditional intensities. As the CIF $\lambda_i(t)$ of Equation~\eqref{eqn:twinSIR} only changes at time points, where the set of infectious individuals $I(t)$ or some endemic covariate in $\nu_i(t)$ change, those occurrences define the break points of the time intervals. Altogether, the \code{hagelloch} event history consists of \Sexpr{nrow(hagelloch)/nlevels(hagelloch$id)} time \code{BLOCK}s of \Sexpr{nlevels(hagelloch[["id"]])} rows, where each row describes the state of individual \code{id} during the corresponding time interval. The susceptibility status and the I- and R-events are captured by the columns \code{atRiskY}, \code{event} and \code{Revent}, respectively. The \code{atRiskY} column indicates if the individual is at risk of becoming infected in the current interval. The event columns indicate, which individual was infected or removed at the \code{stop} time. Note that at most one entry in the \code{event} and \code{Revent} columns is 1, all others are 0. Apart from being the input format for \code{twinSIR} models, the \class{epidata} class has several associated methods (Table~\ref{tab:methods:epidata}), which are similar in spirit to the methods described for \class{epidataCS}. <>= print(xtable( surveillance:::functionTable("epidata", list(Display = c("stateplot"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidata} objects.", label="tab:methods:epidata"), include.rownames = FALSE) @ For example, Figure~\ref{fig:hagelloch_plot} illustrates the course of the Hagelloch measles epidemic by counting processes for the number of susceptible, infectious and removed children, respectively. Figure~\ref{fig:hagelloch_households} shows the locations of the households. An \code{animate}d map can also be produced to view the households' states over time and a simple \code{stateplot} shows the changes for a selected unit. <>= par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") @ <>= par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") @ \section{Modeling and inference} \label{sec:twinSIR:fit} \subsection{Basic example} To illustrate the flexibility of \code{twinSIR} we will analyze the Hagelloch data using class room and household indicators similar to \citet{neal.roberts2004}. We include an additional endemic background rate $\exp(\beta_0)$, which allows for multiple outbreaks triggered by external sources. Consequently, we do not need to ignore the child that got infected about one month after the end of the main epidemic (see the last event mark in Figure~\ref{fig:hagelloch_plot}). % ATM, there is no way to fit a twinSIR without an endemic component. Altogether, the CIF for a child $i$ is modeled as \begin{equation} \label{eqn:twinSIR:hagelloch} \lambda_i(t) = Y_i(t) \cdot \left[ \exp(\beta_0) + \alpha_H x_{i,H}(t) + \alpha_{c1} x_{i,c1}(t) + \alpha_{c2} x_{i,c2}(t) + \alpha_{\bar{H}} x_{i,\bar{H}}(t) \right] \:, \end{equation} where $Y_i(t) = \ind(i \in S(t))$ is the at-risk indicator. By counting the number of infectious classmates separately for both school classes as described in the previous section, we allow for class-specific effects $\alpha_{c1}$ and $\alpha_{c2}$ on the force of infection. The model is estimated by maximum likelihood \citep{hoehle2009} using the call <>= hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) @ and the fit is summarized below: <>= set.seed(1) summary(hagellochFit) @ <>= ## drop leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The results show, e.g., a \Sexpr{sprintf("%.4f",coef(hagellochFit)["c1"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["c2"])} $=$ \Sexpr{format(coef(hagellochFit)["c1"]/coef(hagellochFit)["c2"])} times higher transmission between individuals in the 1st class than in the 2nd class. Furthermore, an infectious housemate adds \Sexpr{sprintf("%.4f",coef(hagellochFit)["household"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["nothousehold"])} $=$ \Sexpr{format(coef(hagellochFit)["household"]/coef(hagellochFit)["nothousehold"])} times as much infection pressure as infectious children outside the household. The endemic background rate of infection in a population with no current measles cases is estimated to be $\exp(\hat{\beta}_0) = \exp(\Sexpr{format(coef(hagellochFit)["cox(logbaseline)"])}) = \Sexpr{format(exp(coef(hagellochFit)["cox(logbaseline)"]))}$. An associated Wald confidence interval (CI) based on the asymptotic normality of the maximum likelihood estimator (MLE) can be obtained by \code{exp}-transforming the \code{confint} for $\beta_0$: <>= exp(confint(hagellochFit, parm = "cox(logbaseline)")) @ Note that Wald confidence intervals for the epidemic parameters $\bm{\alpha}$ are to be treated carefully, because their construction does not take the restricted parameter space into account. For more adequate statistical inference, the behavior of the log-likelihood near the MLE can be investigated using the \code{profile}-method for \class{twinSIR} objects. For instance, to evaluate the normalized profile log-likelihood of $\alpha_{c1}$ and $\alpha_{c2}$ on an equidistant grid of 25 points within the corresponding 95\% Wald CIs, we do: <>= prof <- profile(hagellochFit, list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) @ The profiling result contains 95\% highest likelihood based CIs for the parameters, as well as the Wald CIs for comparison: <<>>= prof$ci.hl @ The entire functional form of the normalized profile log-likelihood on the requested grid as stored in \code{prof$lp} can be visualized by: <>= plot(prof) @ The above model summary also reports the one-sided AIC~\citep{hughes.king2003}, which can be used for model selection under positivity constraints on $\bm{\alpha}$ as described in \citet{hoehle2009}. The involved parameter penalty is determined by Monte Carlo simulation, which is why we did \code{set.seed} before the \code{summary} call. The algorithm is described in \citet[p.~79, Simulation 3]{Silvapulle.Sen2005} and involves quadratic programming using package \CRANpkg{quadprog} \citep{R:quadprog}. If there are less than three constrained parameters in a \code{twinSIR} model, the penalty is computed analytically. \subsection{Model diagnostics} <>= print(xtable( surveillance:::functionTable("twinSIR", functions=list(Display = c("checkResidualProcess"))), caption="Generic and \\textit{non-generic} functions for \\class{twinSIR}. There are no specific \\code{coef} or \\code{confint} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinSIR"), include.rownames = FALSE) @ Table~\ref{tab:methods:twinSIR} lists all methods for the \class{twinSIR} class. For example, to investigate how the conditional intensity function decomposes into endemic and epidemic components over time, we produce Figure~\ref{fig:hagellochFit_plot-1} by: <>= par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) @ Note that the last infection was necessarily caused by the endemic component since there were no more infectious children in the observed population which could have triggered the new case. We can also inspect temporal Cox-Snell-like \code{residuals} of the fitted point process using the function \code{checkResidualProcess} as for the spatio-temporal point process models in \code{vignette("twinstim")}. The resulting Figure~\ref{fig:hagellochFit_plot-2} reveals some deficiencies of the model in describing the waiting times between events, which might be related to the assumption of fixed infection periods. <>= knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) @ To illustrate AIC-based model selection, we may consider a more flexible model for local spread using a step function for the distance kernel $f(u)$ in Equation \ref{eqn:twinSIR:f}. An updated model with <>= .allknots <- c(0, knots, "\\infty") cat(paste0("$B_{", seq_along(fstep), "} = ", "I_{", ifelse(seq_along(fstep)==1,"(","["), .allknots[-length(.allknots)], ";", .allknots[-1], ")}(u)$", collapse = ", ")) @ can be fitted as follows: <>= <> hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) @ <>= set.seed(1) AIC(hagellochFit, hagellochFit_fstep) @ Hence the simpler model with just a \code{nothousehold} component instead of the more flexible distance-based step function is preferred. \section{Simulation} \label{sec:twinSIR:simulation} Simulation from fitted \code{twinSIR} models is described in detail in~\citet[Section~4]{hoehle2009}. The implementation is made available by an appropriate \code{simulate}-method for class \class{twinSIR}. We skip the illustration here and refer to \code{help("simulate.twinSIR")}. %-------------- % BIBLIOGRAPHY %-------------- \bibliography{references} <>= save(prof, file = "twinSIR-cache.RData") @ \end{document} surveillance/inst/doc/hhh4.R0000644000176200001440000003171314712411551015454 0ustar liggesusers### R code from vignette source 'hhh4.Rnw' ################################################### ### code chunk number 1: setup ################################################### library("surveillance") options(width=75) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################### ## Do we need to compute or can we just fetch results? ###################################################### compute <- !file.exists("hhh4-cache.RData") message("Doing computations: ", compute) if(!compute) load("hhh4-cache.RData") ################################################### ### code chunk number 2: loadInfluMen ################################################### # load data data("influMen") # convert to sts class and print basic information about the time series print(fluMen <- disProg2sts(influMen)) ################################################### ### code chunk number 3: getMen ################################################### meningo <- fluMen[, "meningococcus"] dim(meningo) ################################################### ### code chunk number 4: plotfluMen ################################################### getOption("SweaveHooks")[["fig"]]() plot(fluMen, type = observed ~ time | unit, # type of plot (default) same.scale = FALSE, # unit-specific ylim? col = "grey") # color of bars ################################################### ### code chunk number 5: readInFlu ################################################### # read in observed number of cases flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt", package = "surveillance"), check.names = FALSE)) ################################################### ### code chunk number 6: nhoodByBw ################################################### getOption("SweaveHooks")[["fig"]]() # read in 0/1 adjacency matrix (1 if regions share a common border) nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt", package = "surveillance"), check.names = FALSE)) library("Matrix") print(image(Matrix(nhood))) ################################################### ### code chunk number 7: fluAsSTS ################################################### # read in population fractions popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt", package = "surveillance"), header = TRUE)$popFrac # create sts object flu <- sts(flu.counts, start = c(2001, 1), frequency = 52, population = popfracs, neighbourhood = nhood) ################################################### ### code chunk number 8: plot-flu-ByBw ################################################### getOption("SweaveHooks")[["fig"]]() data("fluBYBW") plot(fluBYBW[year(fluBYBW) == 2001, ], # select year 2001 type = observed ~ unit, # total counts by region population = fluBYBW@map$X31_12_01 / 100000, # per 100000 inhabitants colorkey = list(title = "Incidence [per 100'000 inhabitants]")) ################################################### ### code chunk number 9: hhh4.Rnw:266-271 ################################################### # consistency check local({ fluBYBW@map <- flu@map stopifnot(all.equal(fluBYBW, flu)) }) ################################################### ### code chunk number 10: measles2w ################################################### data("measlesDE") measles2w <- aggregate(measlesDE, nfreq = 26) ################################################### ### code chunk number 11: plot-measles ################################################### getOption("SweaveHooks")[["fig"]]() plot(measles2w, type = observed ~ time, # aggregate counts over all units main = "Bi-weekly number of measles cases in Germany") ################################################### ### code chunk number 12: hhh4 (eval = FALSE) ################################################### ## hhh4(sts, control) ################################################### ### code chunk number 13: controlObj (eval = FALSE) ################################################### ## control = list( ## ar = list(f = ~ -1, # formula for log(lambda_it) ## offset = 1), # optional multiplicative offset ## ne = list(f = ~ -1, # formula for log(phi_it) ## offset = 1, # optional multiplicative offset ## weights = neighbourhood(stsObj) == 1), # (w_ji) matrix ## end = list(f = ~ 1, # formula for log(nu_it) ## offset = 1), # optional multiplicative offset e_it ## family = "Poisson", # Poisson or NegBin model ## subset = 2:nrow(stsObj), # subset of observations to be used ## optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules ## regression = list(method = "nlminb"), # for penLogLik ## variance = list(method = "nlminb")), # for marLogLik ## verbose = FALSE, # level of progress reporting ## start = list(fixed = NULL, # list with initial values for fixed, ## random = NULL, # random, and ## sd.corr = NULL), # variance parameters ## data = list(t = epoch(stsObj)-1),# named list of covariates ## keep.terms = FALSE # whether to keep the model terms ## ) ################################################### ### code chunk number 14: fitMeningo0 ################################################### # specify a formula object for the endemic component ( f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52) ) # fit the Poisson model result0 <- hhh4(meningo, control = list(end = list(f = f_S1), family = "Poisson")) summary(result0) ################################################### ### code chunk number 15: fitMeningo1 ################################################### result1 <- update(result0, family = "NegBin1") ################################################### ### code chunk number 16: hhh4.Rnw:496-497 ################################################### AIC(result0, result1) ################################################### ### code chunk number 17: fitMeningo2 ################################################### # fit an autoregressive model result2 <- update(result1, ar = list(f = ~ 1)) ################################################### ### code chunk number 18: hhh4.Rnw:510-514 ################################################### coef(result2, se = TRUE, # also return standard errors amplitudeShift = TRUE, # transform sine/cosine coefficients # to amplitude/shift parameters idx2Exp = TRUE) # exponentiate remaining parameters ################################################### ### code chunk number 19: plot_result2 ################################################### getOption("SweaveHooks")[["fig"]]() plot(result2) ################################################### ### code chunk number 20: neighbourhood_fluMen ################################################### # no "transmission" from meningococcus to influenza neighbourhood(fluMen)["meningococcus","influenza"] <- 0 neighbourhood(fluMen) ################################################### ### code chunk number 21: fitFluMen ################################################### # create formula for endemic component f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE), # disease-specific intercepts S = c(3, 1), # S = 3 for flu, S = 1 for men period = 52) # specify model m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, # phi, only relevant for meningococcus due to weights = neighbourhood(fluMen)), # the weight matrix end = list(f = f.end), family = "NegBinM") # disease-specific overdispersion # fit model result <- hhh4(fluMen, control = m) summary(result, idx2Exp=1:3) ################################################### ### code chunk number 22: plot-fit_men ################################################### getOption("SweaveHooks")[["fig"]]() plot(result, units = NULL, pch = 20, legend = 2, legend.args = list( legend = c("influenza-driven", "autoregressive", "endemic"))) ################################################### ### code chunk number 23: plot-fit_men_decomposed ################################################### getOption("SweaveHooks")[["fig"]]() plot(result, units = NULL, pch = 20, legend = 2, decompose = TRUE, col = c(7, 4)) ################################################### ### code chunk number 24: ri (eval = FALSE) ################################################### ## f.end <- ~ -1 + ri(type = "iid", corr = "all") ################################################### ### code chunk number 25: modelFluBYBW ################################################### # endemic component: iid random effects, linear trend, S=3 seasonal terms f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) # model specification model.B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid", corr="all"), weights = neighbourhood(fluBYBW), normalize = TRUE), # all(rowSums(weights) == 1) end = list(f = f.end, offset = population(fluBYBW)), family = "NegBin1", verbose = TRUE, optimizer = list(variance = list(method = "Nelder-Mead"))) # default start values for random effects are sampled from a normal set.seed(42) ################################################### ### code chunk number 26: computeFluBYBW ################################################### if(compute){ result.B2 <- hhh4(fluBYBW, model.B2) s.B2 <- summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) #pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") meanSc.B2 <- colMeans(scores(predfinal.B2)) save(s.B2, meanSc.B2, file="hhh4-cache.RData") } ################################################### ### code chunk number 27: fitFluBYBW (eval = FALSE) ################################################### ## # fit the model (takes about 35 seconds) ## result.B2 <- hhh4(fluBYBW, model.B2) ## summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) ################################################### ### code chunk number 28: hhh4.Rnw:670-671 ################################################### s.B2 ################################################### ### code chunk number 29: oneStepAhead_rolling (eval = FALSE) ################################################### ## pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) ################################################### ### code chunk number 30: oneStepAhead_fake (eval = FALSE) ################################################### ## predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, ## type = "final") ################################################### ### code chunk number 31: scores (eval = FALSE) ################################################### ## colMeans(scores(predfinal.B2, which = c("logs", "rps"))) ################################################### ### code chunk number 32: hhh4.Rnw:703-704 ################################################### meanSc.B2[c("logs", "rps")] ################################################### ### code chunk number 33: createVacc ################################################### data("MMRcoverageDE") cardVac1 <- MMRcoverageDE[1:16,3:4] adjustVac <- function(cardVac, p=0.5, nrow=1){ card <- cardVac[,1] vac <- cardVac[,2] vacAdj <- vac*card + p*vac*(1-card) return(matrix(vacAdj,nrow=nrow, ncol=length(vacAdj), byrow=TRUE)) } vac0 <- 1 - adjustVac(cardVac1, p=0.5, nrow=frequency(measles2w)*3) colnames(vac0) <- colnames(measles2w) ################################################### ### code chunk number 34: hhh4.Rnw:750-751 ################################################### vac0[1:2, 1:6] ################################################### ### code chunk number 35: fitMeasles ################################################### # endemic component: Intercept + sine/cosine terms f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26) # autoregressive component: Intercept + vaccination coverage information model.A0 <- list(ar = list(f = ~ 1 + logVac0), end = list(f = f.end, offset = population(measles2w)), data = list(t = epoch(measles2w), logVac0 = log(vac0))) # fit the model result.A0 <- hhh4(measles2w, model.A0) summary(result.A0, amplitudeShift = TRUE) surveillance/inst/doc/twinSIR.R0000644000176200001440000000741314712411574016165 0ustar liggesusers## ----include = FALSE--------------------------------------------------------------- ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinSIR-cache.RData")) if (!COMPUTE) load("twinSIR-cache.RData", verbose = TRUE) ## ----hagelloch.df------------------------------------------------------------------ data("hagelloch") head(hagelloch.df, n = 5) ## ----hagelloch--------------------------------------------------------------------- hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) ## ----hagelloch_show, warning=FALSE------------------------------------------------- head(hagelloch, n = 5) ## ----hagelloch_plot, echo=2, fig.cap="Evolution of the 1861 Hagelloch measles epidemic in terms of the numbers of susceptible, infectious, and recovered children. The bottom \\code{rug} marks the infection times \\code{tI}.", fig.pos="!h"---- par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") ## ----hagelloch_households, fig.cap="Spatial locations of the Hagelloch households. The size of each dot is proportional to the number of children in the household.", fig.pos="ht", echo=-1---- par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") ## ----hagellochFit, results='hide'-------------------------------------------------- hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) ## ----hagellochFit_summary_echo, eval=FALSE----------------------------------------- # set.seed(1) # summary(hagellochFit) ## ----hagellochFit_confint---------------------------------------------------------- exp(confint(hagellochFit, parm = "cox(logbaseline)")) ## ----hagellochFit_profile, results='hide', eval=COMPUTE---------------------------- # prof <- profile(hagellochFit, # list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), # c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) ## ---------------------------------------------------------------------------------- prof$ci.hl ## ----hagellochFit_profile_plot, fig.cap="Normalized log-likelihood for $\\alpha_{c1}$ and $\\alpha_{c2}$ when fitting the \\code{twinSIR} model formulated in Equation~\\eqref{eqn:twinSIR:hagelloch} to the Hagelloch data.", fig.pos="ht", fig.height=4.4---- plot(prof) ## ----hagellochFit_plot, echo=2, fig.width=4.5, fig.height=4.5, out.width="0.49\\linewidth", fig.subcap=c("Epidemic proportion.","Transformed residuals."), fig.cap="Diagnostic plots for the \\code{twinSIR} model formulated in Equation~\\ref{eqn:twinSIR:hagelloch}.", fig.pos="htb"---- par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) ## ----hagellochFit_fstep, results='hide'-------------------------------------------- knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) ## ----hagellochFit_AIC-------------------------------------------------------------- set.seed(1) AIC(hagellochFit, hagellochFit_fstep) surveillance/inst/doc/glrnb.pdf0000644000176200001440000037516114712411606016306 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4116 /Filter /FlateDecode /N 68 /First 564 >> stream xœå[YsÛ¶~¿¿oM§‚ÄJÜéd&^'±³8ÎÖNh‰²ÙÊ¢«%qúëï9X¸ˆ”L;jópG¦ ’àÁÁÁ‡³d$&œ(MI• ’˜ÔE’Ä(¢IÂ$')I¸‰‰!‰LáVL-±I þc„%F@„b$„¥*IÂcx-Q„§‚ÃKDpø—¤Dhõ ‘±6„ÅD ¨Ï"µP„1"S Ç€«˜'@”(Ã}I”JS€¯n2M´z,%Z¨gHš]“TBex5M4Έá@—sèðÁ1Æ@= ]IDB8ô%fÀ)ÇÎ n€_(ÈÞ>ÇÈ,ö'NÓ˜@ý$6Àž€$øÇ®%Js"@,FIeÆ%huP’ „'€2K¡i”™(\B‘@™ƒ„ˆÊ\W z¼„G@Y#DeÁ@ø(š‘Aä2ƒ‚2@( ÒT8±‚ÑÊÇGGrà\e)4H(K DP–ʤ c(h"$`¼ñPV1 Jtñ?¿þJèI¾ÌÆÙ2#:újµœ³|à±×¯³ ¸îâìÛuNè>ÔŸ–äÑ#KâñjyYÎɯ“|2‰c©âX%pŒàpäq¬œ+³êh=öÔÓÌ=³ïB=‹½c_—ÑúçÒÑ·ÏáÞDùg¶ÍGÀá<Ï–E9;È–9ypð_3‘`d¤L‰“Ÿâø§Ÿ}=àýÁqv–$_‹å%¹„>Îçù¿È¿}-çãy'åø6r¯çåx5ÊÞÓ×Çäée¹X.FóâzIL$eC•·«ó?òѲ’–ïµ=Ç^žû²v=Åç Êži/)­¼Œïõ¨!9îßÓ ‰³b9ÍCkH¥,ã½Ü—G޲¥À\]žysWW7ÆÓŽ•pô´?Ûž0Ï™®Ë–sî¹Ô8hŽ©í•põ,ÙxÇóhï ÿŽ—L’­ã¥SõÞÕ™xö÷­”eã:õ¼MêºV…߉¿Ïë>‡gÕ=‹ÕGarì—«Ù•+}Q~ÍŒ3)µÿý/Ü)‰ýIù³¿ ºÙÝ› (Lâ·èJt‡üÑ÷Öý\Úb„‡™„žÆõQ^\\†KèŠø=»¿…æ­²)-g9½ÆQšæ“¥+Íñz=]-èòkIÿÎçåÏV XÒ{2Í.б±Ù °Ï4ˆüì>)¦9xZ‚ûq€[/³«|ËØ=©=ž]€Æ€¦NŠÅFÒÊ]¸óv™_½-$š£ÒÏL_½Ùÿš:É–—Ž|/VÒu¬À`tÀ"ÖÀŽï@´H;ËýX›]"Çý˜5Qwù)qW.¤äþͺ-n>„7]Æ¢…B{Y¡ð-•WW½ÈðÿŸtFot‰ØlÁ-‘›áÏ”–òÜÄ:ܶc`(æâd(æö½{ü<À;‰ûðÆ:xÓ]¼©5¼A€9oÂÚb;jqk SãˆtSλ(‚¸‡§ÆÕ5ÔÃ3Òz`}|_ûslµ‚Ž!T¿K+!hÒ©´O8h] ³ËÆ]àU†}¯SÔ}6¾íû)‚+”v:àY€ŠcBæà†û¶KxN ”Q x?<ÇûÃcˆqQ á6Œg<„…Øÿã¥t7ƒó˜îÑ}z@ŸÐ§ôˆ>£Ïé zLOèKú  Îè;úfôœŽ@-LË™WcšSK’æ³q¶¸ôVkB'øWPû÷%§p,轤€^æ3ZÐ?@¥L騕x³´¤0çòy¾(Îæm°zù¼(Çô/úת\æãó©»m¯\qjj‘6Å ]L‘)T[ó<·ærE¿Ð¯ô†~£7…7žA˜>ëé½ïZmV/CU™¬Ê>íœ=FÕYÎÊ^M:göx¶(êµN㢫Ӽ¡­m(êqaV«E¸jÞqåv5ðVÏÚ¥æÑ½Û¤Ü­ÙׯmÇæZýOÝõ‰§LËÆ*ÆÛïÐO:7ÝêÉæ¦š^~Fáì)ªISÞ6Cüü°óaiQÿ­‹wfÞ9[¼{*A£bÖàœö î!8í äûÁN?zÉ ˆi:ÈóöùÉ›“j–±‡{åt<÷Bvcñ:îÑàÂ=×.u .lªœ¦h²DâìºÒÁ÷Ó ï¤ÜlWûÖ{EåÖY&˜E¶ue3ÍŽ <î,xàL@”‡æRøû]?±e<0ÛÀ0ާ`4Ž-z3ÚÉ&½à‹J~î]ÊJ7·À‰¾\/8c÷Ð@WtÜQÅz›@2TƒSs4ÁýÐ,çã|îÃíÄåöÝ£ÏU®Æçµl²ÆÄ‘”à&ó8°…TÍ)¦QSE ³õBEIª <ª ™Fän ó¸˜ý8µÉ:³T¥¼^ÿþ—OñÜ7/ðüã§OG‡ÞÙûí꼜.ú]pŸc©§mܵˆ/ægmíûÞöÚÃkwJé{¿{·_ðïïæžÏ³Qnm‰-9[7®àUz+ àœYK4Í Wº*f«Å]RhIzœ'³>coƒÇàhppâÕëw^¿lEŸýx qk&]@®‡„ýîSùnVÙWÀH#Á»†Q%Ц4óÂÚi탊û­‹b¬÷þ¶†Zl#ÆuZó€ñžÑ`“ªÖµÜn,ß>š¦Væ²fªcÿ¸ª³iX¿k“T;w¡šh~êý)°GÓëKð¥0¡6ò1Ëœ¨?³ëëŒ^­Ð]åYp›ªýÖNr¨-I\›ÂòÐF¶ Ú«Bö-8l²I`¿<;;|óq{š#Ì¿Ú5êQ²Ý`hš£NV4hPSëå6¿Gå6[ªÏ!/ò u"¤/Ó`k|#\ÉVFãîŠÖâ°˜VW“i~ãƒé*jnøLmWi“·Y` x¯ GiYLÇ9¸û7wÎ £'ÚUÎ2äÀ*oFÔPô²M‘mãâ](Ÿ½ÿôdï¸Ñ°ko¨»ßÅ4;˜æŠØØÃ¡€KÌW9/“Äm †§•2ÜfEu‚ÉxÌ’6f†'SS¿£1SÛTºk]y,áÛ ×¡}Ü—‘âF Us*³½áàhK®½†€ ½}é"Q}™¤Cú0³Y•1raÁÆ``{<ëC›À¹YSÎ5°jG± ɶa}àî,zlÄXÛqec³nŽïʽ=|¶ÿÔGÐo§Ùl¹‹L__:®¶7g\úò,Ãs)ëWqë¼)¯2,Óô+Ú™¦!9Ÿûåƒúr\wÍTy ¾ÄkF³Å¨(œj?·úŸù²rÖ¡ì¦Êzjv\NÈ)á&Rà24Ñøi ¹ƒ‰nšå^SLOÑu©Êö뛆‰®7îºÛ>nñ:¸µWz¾{½.Lû.×}zqöî…ÏZÞw‹¢ÜL˯õ~^Õ™D!/^©ê4ݾ>â}Ûþ5<ûÝfMƒÛcˆK°‹_‚Yåu*Z‰2Ñ¿Üv^\\4–ܪKàï5®m{c±‚?‹ëiÖΆ¹ÅÀ‡ Ǽ:¹°î*Ü­£>0áËâM»;:H;~òæÅ‹ÓöÊ_ßVà„wqÖMð&1_&çþ…㸋òó?¥ö‚.Ö þp;zÐÅ:q1æÑʼn€Vƒ>” “:& œ ÐÅoP$(…ÂC‹²Š)'`­ØÝ˜jYˆ!Ý  ®a-RÜ·ëËó‡¡Ì¬ÒÝ=;:|÷aû²^Hn7vË÷¨âκš Fßu]çá6¨†Òs—µÖƒáÉ— mU%î•”af¯aè@¬H¢­©Â7)he£4†n?3·(¨Ýf`3ÃMY†Ù¼™à*R×`À›’C=üš-xwéF—f¨ƒXܪ“I^ º!(6ÑZ%]m !­%V7û'öºÚH’†…¬¿¬»G¶öãg„~3NS:™ÀQà!ndÆ/Õ»ŒwÅÎ57)vE:a·<»çwòºý Vòv×êOzµÂ¯ôÜÞÔ>P#ní`GÌàK7컡|ÛO£vEN‘¶FÖ1» ¶æŒ‘Ž7f×ulg!îû›Æ@¢{·ËQÂ¥©zC‚[ ´KMýôÿú1ý•endstream endobj 70 0 obj << /Subtype /XML /Type /Metadata /Length 1556 >> stream GPL Ghostscript 9.55.0 2024-11-05T13:45:58+01:00 2024-11-05T13:45:58+01:00 LaTeX with hyperref 'algo.glrnb': Count data regression charts using the generalized likelihood ratio statisticValentin Wimmer and Michael HöhleR package 'surveillance' endstream endobj 71 0 obj << /Type /ObjStm /Length 3008 /Filter /FlateDecode /N 67 /First 586 >> stream xœå[koÛFý¾¿b>îbÎûb'Nóvä¦q[øƒ"Ó¶6²äˆršô×ï¹Ã‡)R²%[iXȇäpæÌ½gîc†öŠ æ5“V1o˜V’yËLðÌ;æè&J7“"æ#“ÚX“ÎK†G2Å‚bÊ)Âf*z\£-©PÏ2­M`Á1íbdhXG´3Rã:2£­eQ0cE`Q2ãµdQ1+4®5³ZàÚ0ëÑy´Ìiú@g¬fÑ3ç„b10ç-êEæ¢8^ ÅË^F‚ÁhãQÐ#*ÆãBÁb`@+…È UDêGS0ÖÐè1‹×¥Àh€GJ ß*`¼‘ú’$¨/i0jGªÖôÈ»0é^S£ó$W‰aE…‚J¸!™Ð)B¤ž†D¥Ò”ê(‚ãZM˜ƒ¤wAtônÂH¸¨MTF[*ƒeêÙÚ e ¢'Z,êWk‚CïiW¤ajB!ÒŽyj…úQ–îQßë?~øñ'y±`¿³N ?þõ7j7 hÏX›öôz2a'Œ¿É¿.ˆv©ÞápžOÌUWóü óeùçñb’³Îò³3!¬€l”7Â=»ÓêœãÕóXÖñúGöãm\± õ3°|—YK­fzøK S^ßzN`5ŽpÖ›U@A±¾MÌŒë uë‘êUH©÷³aêYU×£וèLy4¢õK(O§³EA8u ”¸DgàÚŸMÀRÀ<”÷øëüt<Ü›}E}ªm#˜@“Jf˜ü' øJ胼˜]ÏGyÁ¨§´–øY l6:ÊI@üðÉÆF28*¿]åÔÔyÞ%¬Y_é6dÎ6¢\%=³Jz•D’”px[–Óu¬%ÛHioXä ?÷ìøÍ³÷ÿ~õúõl:“êÑ ?¿ž çŒ?Žf§ãé9ãÆÓÇÓb|sã`ièUŒ’>`_ùþðê§||~Q_b°Ä€ò!ÿÈÏù„OùŒ_åóñì”Ïÿ•´ž^~¤`ØøÁdx^À©•RØ«I˜Ztjó¤|x0žä0~®¢Ýz3¼ÌoQÞóÅp2=žžƒ!44—Íü#?Zä—¿Ðmi¢¥D~\ÌÝçÌû/Žß½E·ƒÙåp*ý–¤±¡×_]ÒÀ·lFeû v.<€Æ’16ð·: sy®ÊÞ B‡²”j¤ú‚i¸b2é~ÓZèÁ@›@é²!Ð>(4â£Ùd6å§<™.ø˜ª(5ç_ðkþç§0¬ç:ømê¦Ã)ÝåÔzånH*„Ew’ÊõIõôÝÓý_Ž›~WY"rò%Ú†KTKªÃ%EVj#.™¸C4":¨¬àwµr¥¦ãÍ!š;bm»¡œ7%W=8‹8%tº¢o-CϨäÊWQ·ìaU§³Š±zY¥¡ò¥±n¸’Kgºc¥¯¬Ÿ_ÑÏÿǤӸp¬í‰[^¶&îþŒÿÄ_ð×üˆ¿ç¿ðÕT¾¼¦©œ^ãùôtX\ð3Ìë‹oWùÓ{Â/Óô×óy^Œ >›æüŠ_Q0ÉÏeiž PŒ¿Â,þ˜Á|áßøŸù|¶d¬¬M‚éYÊGèþŽE¨Â‹‹°~fnh(kYmzVàð×ã'žÔ}…•F  0ZQˆêj0›ú«eO鯹¶ÒËËw_,àä‹O—ÃÅEKþbðA,'R#ÉÛ®ä×JcCÁ# ÛP/žþÔèX<Ú›MN7 m_üŽuý¹ÜPþ:èµR˸t\wE­(äÚú? ítéÝÓYÕ¯î­<§g¾ bpJ¼ RvºïRJN½R©ïëò¯mö<æ/SÀØö÷-›Ðvø_øüÛ²Ó·9}ù#õ×!ZíF¢­Qÿ¦ó"»ËåÛqäàýÛgÇ/ÐëÑpZ ÓíÂȰbÖws°é¬wfUŒf–õfÚz¬šêÎZzÓ݆˜ÞîhÁ÷´°Nê!llfŸ¿~ùìm乕f¶ö·™ÙnÜËÌ–éÍ÷5³w…™ ]¹¯•ƦiÔ:ú÷便·wøæ¨î)>å)cH¥2c â§|ÑÜF¹|PÏ¡:G9MÀ¬›Tåóõp‚Éu6þ‚96»žós~>χ谽ü±Ê$/Š”ÄLÇÈ\f·å/Õ²ØÕäºàŸùçëÙ"?ý8)Óšü Z¤ä¦˜P’„çbžçU¢s==ÍçÅh6ÏS8ôuUÞ£B3×—Â#W>µF­pÈ^t'ûºI·Ã¸Hê¹>›ch•ëJkûé‚ìäI³f¬*ƒOkÆQdÖ¦M§ V¿^2ä£TQøL 47Æe2x¼²è4 sÈ$z=iÍöWãé§iZ@0&M|è .ÓHà4΀6*³Q3C¦KOý×ƒÒÆgVºP.fÌùk@¹¨!Ýå=Ô&PÆŠ *ý{AIH*úp&3Ö‘Ìh•ªù}AY¨vA»’R:SôÁ+p ‹*óŠ–añšùÞ’Z*ÒvŽo@3Ù¸¨fµ¯²„bY_E#•6·«2m‹Öe‹¸½.SJZ—i¸*ÓÖjS&«W—-m€WeÏdÝW¹^–¤Mðª¬i¥—Êoæ–W¶ÝÒÊ6ÜÒ%j%W‘<ËRæ×óéÅhÔ^ÇlË®Ù~uðîåË™m¤ Gß.?Î&Åö‹'ë#µ~pöá×ãWÏnK§n]?é‡õ´ëßI¬Â+çì²Nl['=ÿÙ,®Jgé±µ"5ÒQDoj­\6MhÕí¸Ùì%u—6yëmæ‡oòŠ*eÜj“wµI)s¡“bÚÿNÃñ悆Ÿ’=çilFîIËÌ Ã”…ï¤,Ë­ÞСdÊ´VØŽuváfžóLÕuœdª®*T»ìU7-%˜])¡þð`+%U|E•PËAÒ×UåYVçŠRJWgSí Š¹]QL¹ûP¬ñ‚¥§]ZC¬Dr‹ãÚŠw$U›J‹Âr^gBWÎ$Úº`~ÅïÅSeLæ m ¾Ò:cwòhä-T”ý¨Ý z@¤juF|sȲ ƒ­… ê¤ï¸v€éÞ”2FEÓ§¤6Þ@ÂâÁ+ \É6µ1; \Àmeƒœ1A‚J­ýÞ)þLÒÐm‹7 3!iŸ#óÎ$ŒB<ÈE<%¬ P Y4}|ºP°2¤oýˆoND€rp[0VR"g¼W@—>É•îÇuw‡xǃáwÇ>*¬pH~g)þ51Ïíá…V" Q‰úÚ'dôÝ·Ãì³þ>jÚH1›*c÷ÃKÑ%hÎÀ;ŒÂù»æ¯ÒP…›5&‹‰e¶Ã´>õÙ$Øk/‰ µyJt‡ú¶^qôo K@vËBÓñÙYŽ™FSë÷´AÛÞI%Ù•ÂjÞ¸O³ô ü|xy9LÿÀ/¯wÔ0-F”_KíªAÁnVŸ}¾U­Ií¨ýÍü_JŸÊendstream endobj 139 0 obj << /Filter /FlateDecode /Length 3644 >> stream xœ¥ZI“·¾óžSr`ùºÌvcœKl%‘7UÙÒÄ9X9ô )NG\ÆÍæÈòÏ9ošR¶Ë¥* Ñ ¼¼å{ ú§y]ÉyÿÒ߻ݬžof?Í$=§?w»ù7³O_J?—¾RÒšùÍ›/‘s©|嬚;WWðb7Ívs¨6Ûn»¸ù/®‹ãu!T6økoV³Åg‹¥©]U» žN‹e]Õ:ú:h±_([EèK]Ë*ÂÏÕxFÓ7øFUuíE·Þtë#½6::åE1hiàêj'û´ÎXqGl¢ñâ¾ Ýõ I‰li¾¶‚÷h”5ÆeV‡:&6Z§ ì~4m³øÏÍ׳¥5U0ÞÏ— #]` k¯dÚ‚©ôZ¬‰©Ø¬-)•3bÝ5Û1£‚ë/ëUÚ©•b2­aÅÛ…y«Äú:¡û1ËÃb©ÿ’‚…+VHmE×€ràˆL2]ë:à䬘B }Ó| Ž%^̺#ù}úR¹è,˜X’ª«êš§JKxGâüa`JÍ$ÖYK­EߢÎñä°»·»ÝºËDõÜW t‰4£D sSik‡$Åk!Ù•Íô•UÞk¶cñ×4cLKUÚÊhÓ õz‘æøÑœšÈ3>Nï‹CúJZ-õ|9ÚÑ¢Ù£ ÐpC/Ú»i”{ß R5Z‰/ÿ·@Ý(/¶ë‹çÒ«ßx^7œæÚyÕ ‘óy‹ó€ éÊ”,e¨T°‘+HŠ¿¯ÀÿvI}`¤<+oøw N¼B{:öíÝñ“,/þµoY  êuwl{ë‰÷iV<“A’/N{”a2•ûL+JñMÒ{Wƒy®»]“vÞõžÄ Ó”B—–Ü+äèÑa^<[~¹n¶ý}ÚvTâOç—%çü\‰gÙv-Ø.Øê`»ãã]tºÀhňë»v½¿<ÄMʦÔà( Ô J¥Mºa_Ÿöë3ML²¥Äy¬Àm[ª'{_ZU)]“·‰Ïo}×Üõ¬i-GóA"W4+Z©˜íÍ=ðR*‚Ó‹¦Ýáï|Y JØ=ø¾=¦Y΋"¼@ˆ¹cX(‹Ón=‚À"ŽCk!²Ñ‰3!Ñøq-e´ðþÀZUA¼Ë›€¨3ìÔê§N;ØE~áUÚv$¢iE ¸òæ´/6Û·uX®Z䤬sÉk¦±³iž»d‡J¾óææaŒ&³nð§…í œÒaA§ïÎ\ãƒFM{çÉ1>ØAèpÚ³ûh$ȧ`K+As ÞaxÐbÓz8^ ˆFŒ^Ù¿ ÕõàsÄI"$.&@ä+Ô[Œ ¶¿Œ;Ze(±mß²]X) Ûö>V¬9Æ¥Ÿ+v1˜ù·³›Ä@×bP³\¸øóo_’“ƒ;Ô{"PÛ ÔxwÕbiÁ%18’; £.›LâàÉ’é·á1oF3$ð>H~§dnvln2V6§_âå+ƒ_FÖ*'h +J)Þ6›§ä ”о JçµÇS÷¸Ð ÔÒ–œ)ç+mt2oã™H1³PË^4Þ´Â`Ư!ôaÄ­SA“åÄù× |5†ñî¾M‡Œ¢4/ñÐHylW……!¬t#p—þ¶t€æmæ¥ÄªxÓ£ ÊVA"tm¿øXòs–S:ìr°Qv xòxkK«o·Û&[™‡g†Á:ÌÐÈÉÁ8ƒ†Ò‰.è˜a¬';lЇ-†GÑî×ê;ô 4X {ç£¶Ãø¥ƒæŠ9£“lj;CÄî°o{Æ~“kñ¦xºAN{i"Š =˜¼Ä;JÈMpB¸lág«ÑOŸlïòàÂW+“C!möë¾_¿¡{¬Y!ërºT˜µ„üª¡XBàð†Àý¦ptdíA^êöy`mic¨::5 ü_ö«dM·01¦vÖ¶kÕ졹%¤@ V/r¼^§Y^¦H¯0])±›©:V±ò—ql,T ™º! uÕ¿ë› Ô±r>æ¤ófžSÒª$–c<µò2§+´BÆÎÃíçˆÔ¦½ePþï%Og‡ëãèÔ(ª Øß ”à¾Y9Üí(*?÷æB7E³ÑŒ*­F7Cω‰ xNÑWO±Ý ‘à´mú©±âú!¸ÑúZOºäïÄÆ^¬­à9†Ô3Ç•Õq°$bª¬.Ì`ë«íd¾ß¬ß÷ðŽªçÝêøÙÓ:£ÀzW¹sí=n¯ì‹²],lF¸Éž ¹iÆ­†ßU´bFHm¡?ذQx+ÿPk‰÷o&­¥"¥¤ÝZR÷ÃË&Ñ#õ#’@ËvēȢÉúL7Íõû•È’“Öøqdá…+™‹ñä“ÌHÀÞ]À‡lµÓ2•Y©ñöÜDÁ¿‡t„—Éý\šJ—šûJ!_ÃC²#‘ɈPaö Y×B#–ÈÈi+„€Õénœíȹ¤–5ß+¼XÈ.Biäž„¯Iö}º¯²Ánqâ H©v‡ýøÍ¹à)Ãä(Î5†þrXG  *ƒ ƒ„h=f5gGÊ£‰‰æú«ãh}ú vÒfÊ`¶ûëÛ™’º2hº÷Y^’{0.’-¤öJâ%sæ1¬¤ «+k³.$jÌ͆l„‡˜a@à®}jQâo ßeñ±Núv?QÞ™úK$#)ØR‡ sûíöê)^­_KŠ"aºQwÌ•ü ÏçãõÃAnV¼(VqéC=’È¥OZ1œÚ¥ë˜¬Àí|'Z>Àv1O¥&dJA&„¬…»±¤§b/l€he¹âÀI½Ñ°ýŽÊ-·ˆDS¯Wc|÷Œ BR„)¥M-%ÃFšŠßà#‹MRnqb¹{Ieí CRŒ"ƒ  NÓ¡<æ»Þ³EŒÆ×}PˆPyH· nxn±vÍIÑ Ò1Pê»+Tt.–Mß4¤%¸•i+…¾HÎD +¢1R­F¿)ÙŽ|mÆ—ØÒz`kµ^‰ënÄQ)zºî(ÑRÌÏn @´“nX‘¿žð/V§ŠkªÄËžˆ”=9"ÞIÎ:Jåoª4ohÙ&¯*pî%[+ä,é Ž€ðI)%£™á+÷ ¡MÔ•ZÍþ u·ùµ¸@Llê¹SήuáB(E$Ê×åTÐl¼Íâ‹;}*˜‰K'AŸú‹h›±j=­²\’Y&ÏeàôtÝlÅWgw¡gkjA4ÛRøF&¤ë{™ý1ãÝú¢¿oè®2’Nö‡žéâÃaì,Pˆaî1Ót’²`ƒ…bjO:4dm'ŽÒñÞHx–áýƒZ¡N-—Ü4ßÛ´¿6‘ܰgB2Eß<ƒQÎÔ©ú;÷ëÞ¥BÇ”Q ¼EQ©Hh·K-‹_ÜÆ‹ oêHy(UbFÖ”;–.¾iºUñµŽýGpÍÛñÉûD¡VenUè¹ ×Í*¯‰I?HØNƒÎ‡s)\ï’ˆñ7ˆø¡<Â#¤pÇDÜé,ó´îšÌÇh‚âÿÇÍìû6ºçïfõüùLJss‰ Œ æ»™‚,º ç'ÛÙ««_×é8·UôÞ×A²¬œcöì5}]—¾2r–ï}Sg*i%~S\êÓg(Ÿ/è€ïÄ›ŽƒW†/Úw‡DC_ ‰#žK¹Ñ#vuþ°éüÎ ’¸Š¿ªúÛf÷sö‘{‘£D¼3àÇFøÁ]`ârúÖˆDùýìÿƒOyendstream endobj 140 0 obj << /Filter /FlateDecode /Length 3794 >> stream xœ¥ZKsÜÆ¾ó/Ø–OØ”Á¼¹œ*ÛåWâÄŽMWR —¤`awi+šùá9§»g@ŠrŠU˜éééç×=óÛy‘‹óÿÂÿWû³âüöì·3AoÏÃWûó/.Îþü“ð&¯ŠJœ_Üœù)ðJ¸¼”å¹+t.”=¿ØŸ½Êêîz³UÖä…•ÙÕf[ä…©TaÊìx _Ú”®Ù½ÿTŠÒ–Y³›~ºžÎêØ/6î,ät^›]n¶Òå…âs¯¦kÔ'?×V•ã«ÃÖNUº*RòC¹%JÃnmV_NÞw§»É¯Gi l)ióJV*{S&Cný‚¶ÐRÓ‚DÖ©¬nÙêÇ@ªâLíë¶ û†ïüx`#{XV–yQ5òUF¾œùª¤2‘/&+­•îß=*7º,Ï/¾?»øÓ+ÎÒ›©²Ž§é¯D(+àÕ’9°£¤Eaú·*[·ˆ~IÇKŸvùf«•QéìË_~þåïÛ=ÛKÿæè—FIìîãÚ2{ÝLåÀ¤Ù7ljÚPàjêR¹vøÈÅî Ôw{̯N÷§ýæâ×™/—ƒÈÃØWÙë u!s\÷ûŸ¶›­ö$YC«q ®¼Z•» òûp¹3â|K©¤§÷ ÐØséq­ ¸¬¶.¼fjzF+4Ùnݘxº&è³(¹ í]òV ´ËÃðòûº #À_g¢ªÌëÍø†ù Ñ2Ù·ÿ}Ó^‡!V,ùåVà-õ© ‹èK`0ÐOâÄÄøQ²hÖõGÇ-¶”`§&‘aÄ6']ö¯ÑcaÂuøáìÿg[BcÀ3SÛºm»Ãå’mÙ"WÚŠh[ÄÄŠ 'ì-ù†DØùH)P8s™yá$J¯§ñ"kÚÇ0N謾»›D™¶Ieªƒ­„£ljÝ=ÆB%)¬²í°XÓ½£ÈViÉãHÓ¶5KI,”`\W ¾ îu_ç›ùLŒ{ŸcÅHÆÆ=Þ1 a”kŠÓ °¼ú~U%l{FÏ›‰²ÀžÙ „€°:ZÐþ:×ó47uÓ èQ¨…DGtÌŽ7‘P¢í#3`ŸK0²Ü‡ñ6õ Œi¶"7îßÔ}&‚_З/™­pnßy7vvSh¶±Ë’iqŸÊ^ÄšÁÐ丩Ô>üB2Á¤FC”Œ²Æ_Ngwc;6oµÎ"IØûͱmÃFð ÂЗկðA ²n¤~œeÇÇõ€§úá!Ój>ûî&rÂßDØónÀ\É2w>*T3»âïu01 .Õ6o‡ÀæC„(¥§ûbÃ/·×öYTíH¸­ûæß”6×Ì1ã¾!ßt fUϬ'ë²»î8˜Ù»f–,ý0Eš&òëP³ ÆT`šYfTGN.@²=—úÁo—‡¹!!B…ÙG¤‡Ì"ÝÞv”6¥ðQ,,æ4 &m@þJ|cñ*Êf.š]˜NÐ=CH `1ó «Ü³2CU ²¥ÁïI ù3<€}33“Ö›¢¨ñø•N-çѨmÚŸO–¸$ÄUJûËŽ'Ï·!Ò-R°‰ÑKˆE\ÈOÃu*~¿yõü~Z)½q§JT ÕŠ_Í{>FdH‘7Ž9…ˆˆ|Ó !¢c;cŸîú1ÓêÊÆ(}‘Ê\+h&»Y5Ú/¸ /Ùšu¹¶Z<eaÆÓeDYuˆñU÷€ZãRÚç:ϪÉN÷Ób/uxUâšϳè eú:° äÅ$ÙÜ<ÆÉeöð†W¬S|ǵ‹—ŸM;6®^@áÓý¸ËX›YåF¦®·^á1u%>±iü@ E°B´HzžøaÈä×j±X% OXŸ*Y.jš Å>gë¶î’À†u€Fʾö­Ê§áô"1 ¼ëxAëU1á"/0y’à…ôB¤ƒUPH¹g²€GWqPCu"¿DGŽCyfx²Q£eAø¦¹ ¤-ÆÛa!—4„–yŽ™ð~_ K?¦M›Éþj|TBôo¸R×í£Ý8ßmÀÒëö”†{M0ˇ{?[9u· B©à·ïãïm€+3D5íÅäC’žAé~`¤IÚDdá PÆ]S…g©9@9ë½ðÆÓQ¡Î%N,³Ø(b_sÙ´MïíÌü1̬ÐÓú–Ò WLê"óÉš‡Užöƒ¬!­.̃ýa­CkUi7`¡(ݸ ŠˆZzðBp4oRR ‚¨ý p¸Ôc%*“VÙ¨MöãhCʳý¥ £­y¢¹9ª¿îÈ(”hôhŠIÍí­b(vS(“ú$mBn™#ŸgX¨¥/fÝ•ˆÃÞ5·ëˆŸp3Ôå8 ,áØÝÖ‡æ?OB/A¡Z 6ôÀŒö%ºwA¤¯›ŽªéÙŒ4‹?'ª`±íB!+§`jBwu_Ÿx„ïNWì÷©»÷Ï鈧d”7“âï,À·u³.ð4ÄËÊQ«•v]û~~^ŽÀIäTx Öããz4îzt‹ŠL2àL ¬ïB{«éuë k—L™÷â§"íž»ÇÈšø¨Ÿƒ©8¤v(øCã–©"f[ïà¥ÏKͪCô¡Œ÷¬b¥Ü‡ÉÚ{³Ìtôf󄀇 úp?º¯ïÝPñf¡˜üˆƒØ$…Qa±²Ø0‡|…_€ÛWǨ®]ÂÚg«¡¡Ék²¤ˆn·I_6¬ì΅ƾ¨D‚[©E.…<ß®”“ÊS`5¨Ü»ë¶Ù7‡ºk®ï7ä•6cÜI a·úòžwP‘f%Úb¡­×ô,µÔIÃ{o[èú‰*€*w!¨N©é1¢O|i¦YaRotMšFˆÁØ:Ä©+}¹¥Î!MÕÞhªLæ¶í!”eæ]a›£H[4OÝ àjÚíf¿§Y,çùŽ$¥T¥’.´‡C°÷2CLýt| }[¡¶Ÿªh„Ð,è¥}Sc(‡C¶Å]úìÁËÏÔ¬~ø‘™OÜ™q̨=°oiZ½×Eóp™ð%ÓMX_| .£¢œMO;ó8¼*Å´Ìœ&f·`kUEÎÆ<<¦`†ÖV Z"`| ‹á`KU%AÀ:©‡ýlý¿~¿¯áÙ$.°z¦*Å,4:¹oá1±ù‚ÜŸÝ3]{V[-¨¡qAùwÕÏRáý´ÅX>v').ÉÐü^w¤!8 Z“¡QßÄgëžèAðÎp² $@–ËŽ2}N0Žu-…Ë•ˆ]ËŸÔLÅš•¹6¦ $ CC¤9‡\F(]æ"‹UNØû–'È\)WùÉÀO—ÕyI$‹uZC@™2fÛÏbµ$3·ÊHB–†Uÿ)BkÉ2_⣡âêeòÖ?~:8,ŠQ9l+Êèv±ç bT#8ÈcžýÂÕB°£ó–Ðÿ¢ÆCUVlÛƒmR²ñ>çÍG†*ªÀ‚!%S]JIS“ñG<ÇCèŠ^Ö¡)f<Óíp¹ÄF’J΂ð=å%€N³¤w¶9”Ànè1 BŸ«=¦Eu+<ÂÔA%‡%•`‰d¢B(ràBÔiY¨¹Ô¦a„NcdAUÅó8Í}ó›+?œº8êÎfpFŽã »u]òŽ‡×žÆÄ¦“žæƒ?öwþŒ|~ à<û5ÀˆÆ$å;|<§æÉ)r< ù4^ðCB ¥õŇi°r®µ|JëUnŠ!ž½¢Ž_d4)¢º]„¨Lù‡žxËiñXÄy¡{%M˜&=êÝJP9ÔaAaˆë;”œ.ü ¨Úî?ÜKIŽŽo'wq\t%¤…ªÂ@­Á|-éüÕO¡IhHï=òüÆö¡¡®oÉõk§IP¢Æ,·†ã ºì£éÄ£SÞ‡Å@Ò«ýÉTÐt~ð÷Êð†ƒïòlr$ÎØÙâùÛ7ÀDŠ—v²BõMä"©x×aV§o:\qðõìó¯8hÛ¯OŽj_Âý•ÃôÉš()Í¿Åâ°le£ÇVû±;.&@¼d#ÔËŽ÷°`õ_*§Ø+¢[”…LÏ”K *©Oi“1¡šÝò¤ˆƒÅ~Ò=ZÀÊ%;4³ÁB5\ùSÒpå;Û¤aœ¯ÊgkxDYOŠqx‚‹Ö%•M¸Û¢§ÆµœU6¾>pŒ±gUV÷£ êÃ.2`|P‘1¥Ç>iÒbmÖp²[$÷4aBu¾¾˜9(íÏúÇæ€_3¾§D« E~f¦Ù fzo’6D~KËUcùèIUÙOÑšÕ&"í1Èk"Tìüi7=ÁÞ~—Ü„mÜèýz,°ÔjhëY±B\:9+1‰/ˆèƒy-è7¨ëm\1ÉBû!¹%‹fgø5‹š¡tz¢''.äS_iñƒˆžEã¥b[ÁQ‹6Iñ“6ìž5uuŸ³ áèè7¨ âAÔPΡäÉSéÄn©%W¨y˜]?äyó¹×é´³’ñDºû°0øüìbM3³cë@¬Omw”¦Ë¦Ùç÷a=L{q pê;¦¥>|)õÿ^ïïÚ(+=ïÄxŽ?8”2ý¨$ ½çžn,f•˜QÝîKeXpÿ¶mow±wc»¯îÆMì×+É唉ˆê.€SKÈÙ[øÇ†Þ|¬Y¨ñ>msà½ÏØè¶ ŠÈ‹j<óùŠt‚ílˆ1²ò&Bõi&^F濵šJ9(ªä;þxŽÚ㚎¥^g÷ ‰º{½ñ‘ –…ªa>ö®=öqì‹=xågŸüã´¿¼îpˆ~4\8$M\“Äé;`tš;¿ªï¯ïÇŸ(ö8û›ën_ãêrë'ÏY¹ áÒês,¡-‰8ë«‹³ÂßÿmO„9endstream endobj 141 0 obj << /Filter /FlateDecode /Length 7800 >> stream xœ­]K“$Çm¾Ïðɇùà§œï‡ÃòÁa…(Y!Yâ†}}î¹cuÍP»³züqŸ dVuHL¹á`œþ…D!‘Hd"ýÇ“™ìÉà?ËÿßÎ7¼±6—É•Sô1O)|,iJödsõ“?}x8ý×ééÆœ¾CÚöôiùßÛùô¯onþñw9ŸÒT³¯éôæÛ›ÎÚžœ“õ”Ÿ’ §7óÍïÏ¿þ4óðáôüíéãýe~~z¸\îOïïßÝ8½½ÿøðñôøtúùÇùþéÖÖ©ÖäÏ=9cìü'Ýþ÷›_b{õ¡½œ ¶WÍ­³§;›ÜT|>½yws~yœnßüÏ r‡Y—'ý)Ù4•äižo=¶âây‚–¿½õf2ÖäóÃÛ—‡w­µŸ½¹ù-ü¯L>ÅTÌ@M8ÖŒ«lYõä§ì“‰§?ƒ~ ÿ¢?¿ÑÌ­Æ\â²Zèëás˜l¨ä›¯€šÏ%ã %øXâJÌTFøî)Ø•&‚¨n`$ˆR“[r*ÖO.¹•(ÛÉÍ9€MI+Q±Ó(¶5e á*6h)¦‘ÏuŠ~)ƒŠS89ì³z%²v*á@ÙYìœAnÎɻɤ£æ‚›œ;j.:°õ#"øâžrv8øNœ¨¸)‹þ V ^a8ð®35“+f4JnohÖŽm1 (Œ&µåÁŸ”©KðS;NÈ=zª¡¹š¦àVÓ…Q>å<4'8e?U?p2•0™0pJÆ´»Õ€_*`ptšjÂäÝÜÕÂþ@îê•qÉä®>LÙÍq«¬!Le´%npz²Ž¾"xtw+MŠ“©ƒy‹—Ëð¥Ò½Ì TøÒçˆë»Ö8ÅWP»„9#«î»/g`¢Êã¸d29ê¯c÷†’q&Z‰|š”ÅTàLH“U¼­Á¡(~ƒ·keŒ('ÃŒQnXN£OdKÄìc)Á!uo„%‚ÆFa‰ ¢Œ!Òt—°ã,$8AÌjÆ(RÈT l?êÞ+|§ÌB¬¹ë÷ D‘œTf¡«„4Mî.Ä”£ X$Ô#kJðŒa³@À­¥èXCš£è¬>™]jHçÅÑY} ié¼8ª»¨+ŽAR†¥‰µpó̰4)Lt€ V&d.Ö&º@uÛË>Êàf|¿àKϤâÊaIQw‘.GgõIXèÄ= sbà+’Ãj(7vü2£Fp‚ÕP'4Þ}âns&xÄ™Tq©mîšTÕP`Ö"P]ÅPŒ»HÓ¦@ÕE1ü‘´õ®P¬šÊhR|..°jªãŠ_p‚GŽüb©¿Ü—»š,C–‘S…õPPÌ€©¼Âzhœ>¸Ø–Cyœ÷„H°*ʤΉ`9TÇØ\¥"#–Ö *nA‚³¿«° GΠÂr(*«ªoà‘4v/Îã6§•–CeŒ¢X4â ¬‡êAHê DÀF I¹L¡NÊÖ)ÖiÜÁ¢F‹X¨–¼AíŒ_o`ý’•MMÎ Ö/EÙ×¥6àáU`pí‡ÛÞ:£E,‚“‡%À‘L6ÙÍrL+º]ä}ãÅQ5fñð6r_@y?X˜äʤâÊPèæ¾t™Êa Öt,00wÆòfDZ{Õ'-KhHçe‡„°rö–Bá Vö°nÕ2 \é°ôÒ2 ¢¹¨fQ2 C¼â!ª¡ËØy@P/…%4¤kª'`>$F©ÀKM£6Uó\Ð1|ï@"ð2ÑHDCÚë T ô½W6¹|ô‡áŠ÷é8=á}VÓÜÿø¢¦'DsuHOŒF`Y¥Ä!œS°jzB95=!šó¯¥'(§0ä'Æi!c-ᜒšŸœòŸ‚V`‰£D"‚Sò£Ž&Ê÷Qðh£š `VÝ õaíö} j‚BpŠ,A1 ²˜X~BCÚ°¨>ÎcfyŒy@}Itë]Czƒ}å «–îàªJFMw"«¦;øë%ÇÒó€ÀË$Xª”¸‹´×è¬>DdD:/ŽÎê“1ó=Œé¼â>gJYFS£_L™¥OæA`)í.Ò¥âè¬>YY’EC:¯zœŒñÙ°dÌ< À>Ãʪî­9ê&šKØÌ‚Ì=Ë×hHoÏ«yñzaÈë [>ÇBw0^áË´Ãh*g‘Ø‘¾MiœéïWÔÄŽªª‰NTLÕŽqpÑ‹­j4ʼnœš±DželæW.A¤gF¤)A ¯¼_‰ {Xõ•²‹ô9ª{ã’ÕŒªšá\ÈäTcdà5®|«U36,kî«c›y@à•«g  iJ¨®„†ÄÎ8ÇWXVe×”­ÈkR;‚SV;ÜôjQ;BçuHì ql0°€‹£ã`ŒÕ;L¤`œšØa€P÷8±L;ÃæU0ÑÉðL‘; ™!† &™aåLq2<Ãæè¹—`ªãÑ™D.7Á ŒÅb#‚–)Qµƒ@Zþ‡ëÀº!ÿ3¾žÅYû£3Ø §¨õõôo-©éÁ)ËôÏàU‚…E˜r~D´Vƒz~„9äȱ9gƒv¸O9–‰™úÜÁ,¹]¤Y@_=ÙHÙG‘‘Þ GUç\bFî˜_ .GÄŒHoŠ£³ú$þUv‘΋£³údé›é¼8ªw²72§3Z‹‡db† =‹ˆF¤ %P}ÄxÏR?ó€ ûÀ2?Ò j†H¼a2Dã`‡µ… ¥†è<@ÔIóA¯4WÔÔh®²ÔÏ< ðÊ0/Ð iJ¨™ðfZŒÄ}gpZ†H0òj†ˆ÷qj†“¶%å•(¢!«,ù”؇[Кš"Í•!E„ͱDZÀ+±'ŠFMñæ¢=N…èÔ‘hÎ)¢á4NˆxîL±LªËÕ ÈŒ7V¢¤fˆ€VN+MVD,̈Eæ‡xýZŸßþà+¯^eˆm`%è5X„ÀPKx¬¹^‘ËM;Ÿ[OlT"œFw©®HÌí$L£*ðêËlT+B¨œõ@ „êŠP*WB 7ª¡Tдc£ZJaTââw£ZJU¬m»Q­¥ª`Y¹Rª!TÞä0QáW€Òxp(Lö+B©,•êŠPªËϨV„R•&F´”¦‚ƒ‰Ôj®¡‚¨µ4g¸YÍŠP*X1¶ŸjE(•°7b„j÷Z»f´^k²xhct\d@€ùf¾9ã%¼m„›Ð Úºk#¸Y¼Šô‹_àW°Lò^—~³>†‰³â±ÿl9ˆ«¡ñ˜[[øZkÍË(akÀñµÆì £¿¾ø’þjþ³ Ÿ×Xøz„˜E<@cŠãÚLS?¢ÓÒAkíª™â^]¬m“:ÎêŠDß“æT,¬–#s‰+B©Ì>l_BåDE޹•¡T¦,CÝØ!TòÈ;ªë…»kL·" w±’} ´J#*J•ú½Šh‡¨ ¦3B´ Œ*BdÑ¡ZFµHJ¨ˆì?ÌñlWƒm«L/ä~ÑÜÞùŠÁC8GøïÏE{¶C4<Î6¶¿=’8C¯4î¹>ß‚‡Š~Žº> † ÀÚÙE„7ïoï p%{~ÀÖð£?Oñû··x]Òûóî¿»Nôáù·ËM9ÿéñÝCû&[R9\žHîüòž?ŽlK®ççâ$7°(.çÇo//7xïó_áùv&ýüò¼°2éÌœ;µ‹çO—û—µÅè9Ù§.}ª èjoXf¢?^.÷Oo)råVÏïî_îWüùÏ/ï·O/‹b«ó‘±Ä>´- ýæW7oþá÷ço©?ÑkÃV®åüòøüD¿ý(˜B¿{ÚïÌD±iNêãã<}ÿüøôòÕó§oÛíZi(0ààÏ…þ‹…‚±„µN©&–î?>?Ý_~ýüøQejÁ¨C]¤øýùþ‰(ýÝ­&7¸ílj!|ùå—kÔtÿ¾°žpÁ`²öüUWxr)¹Üz ¿€±õåÿ¾¿Èθó‡Nº:¬³û~þúÍÍá-ã«ì]ýïÈí5b„UÑ"Œˆïž^^¾>ÿäã§zèfõð`¯é \ÅÚ`ÏVÂù[f´m4m¦Ùèà]Œ=?R=‡ù~3Ÿf’Ó¢ûÄ„¾³Ö9ˆàq`b'4 ~ö—ûùûË-6Šƒ‘‡8ÂÎîŸV>ñ+¥ v!îƒÂòn±ð¹½Ãœ»±áüwÛŸ_=ÎËèìHéã©(Våq°†kƒ®öüÏwËßÎJÿú|yxúîåýO½1_üûOÍ¿øÿM_|ÿSdªÇ¦š¨xí|hëûËóË×k‹ us¾Û Ìa8 ‚~Æ¥{5:Ū|ð*Þ¹ ïpm¿ Ÿ¹ oàÓÎUxðôQý¼«ð0ãg<ަ¶¡aÔ–ëåthÔB‰Bˆ`ü‚”œ<°y%êø8%ƒS÷§lp·JrÊx ¢¬4x±È1ªHFœ(ƒh’SÂ{am.ƒ»QM˜Q+õJ ‡8MrD¾Ý­:à ·£š,&\Ò•¯rj¢6§–<D‚AÓ•ômF5 ‘ :¤…çjŽY»„ÝKÆDsu'´~ð’+‘mÖýÎÅDs-7€ËáÊ d±G2…ŠiÊýÑÔòÅ›-ÍrÁëò€ìï'¾Ò˜F] ¢R5/ tYë±€™çØ Tè•8ê’Ý ¢8Nƒ©þ@5) Þ¨dhšä ®ÉÛ~m#È ¶aó.ò~MQ*>Œ˜cz0&ÜÎ9èÁ¦ 81A¶ 81ATî_Pp¯Äc¡¸‹ôKòU‡1Þ8tuxK ŒÊDxüÿ °wx®¥á^f>XE¹”&PË g¾ý÷Çí§ÑiFµíQí;ÖlÚ É‰ÏQ¯iŒ{|ÚÌ îQ$>!d¼Q>jI´ÚV<Ÿ3&‚FœðTÓ( 2¨ÛZbÛZ$êiVFÅ·{L MÛIÝ?ðJÿQ˜¾ÜèßçºV] ­ðú¾â8£~‚l¿ûñ¢¾9o*fË[C#>Øý ˆ:¶`ý%°à·Ôqsõ`AW±˜ÜWpË®®]ßÚÛÕGmlsû¯xLÙmârÇvÉì@&P÷áàÆò}‘-ÃrÁkúíÞÛÒܲ@gõÉyÀ#ΉóHå± ‹nF¤Ý è¬> =Ü.ÒyqTsò« úÂÚãr;ðqéíqToÌEñMœÌÂCÓ`2Û3¹9‚Rb©Ç= KÍÀY{ ¬Â¦]¤sâ¨.wmgwßßš(½Üà ¼…Î5Êú‰µ<}9àôøyéwþ9ªº oCÐÜ!=,åyÄÏoªdÃÛÜ ‡îë²ÍŠÖjм!sâOê烻ǓúŠ7d.Óã¹|ŲùÀ·#øûñ‰ÇóöJ¤Ã_ÖGe1Êå}EMtÏ–õo™p‚P£Ó¡“¦‡Iƒº-öð˜ÑöcìÁiðÓеS¶Phäå1ãìŽ<4}ÄOV™­ÇÂ]£ÙòÖ@ÕF‹ÏI4ä}¯ ¼Wx·PF³åDX @ÛÜl—R»Al;èSF5q à±bet³‚×77¶½6º–a>ˆu|È^Ý‚^5¹À€µ¶š|D ÷ñ(‹‚Þ§©e éWà9:«OB§„²‹t^Õ•ñÎÖA(£—™êÁ}ÇäEx"3{ê)4¤ ÎQ½½â'UpycÅ´‹ôÖ8ª)¬l¨8®K¬l¨x&76´4•H+àiÊ[C–‚^¦ÆÇÆˆŠƒDÑkJÅ7å&%5.TYõNó€´küŽ:' Y.ö;͉q©²qšDÖI/6zߌ%lö* ,¡<þTÀ‘Ç_ HGAþR@ƒ6GáÄ#ç‹?Gç+Ä®NžæßêVÜ×d±Ns;‚Ô­ø.RuûQKlæ_'3Ú 'üe†ƒé €ºgÁUY²“dÆù·€¾•TµhômÔTÓܹ 7»¾‚•2‚“’|l‚•n`Ôd3®l¦È¥_‡çn`@ú-}Žê#¯Í—£ ¸öâûÓ!Þšg f‰\ú¥ùv‘vP Z{ËÝú]CiwëA$réWë“ßEºLÕ¦±`‚U] µƒ`@ÿŠKaëF;&9GPNè:ߌH—œ£ºäø 4GǺL$´;ù–z Yné[Í;±Ö,ô¯âœ8³z>›Ò@¿)élNý¦¸&Ní¡g ˆéH ¨,Taw‘®$ŽêB«ðã¶Ôêz&GðN·1üÐ̈ô[ÞUC‹àðððèéø0pÎÈ2£>727>ÌÑÁ#FÃÔ\4š œ’‘ÙqE&,:y°Ó\1ŠwÀòø£š¸ÜÞ™ïæK[óv8ì;ÌPÁ»á°ïh+ j¢ÛïW„ñå„Üq8뫈„§†Þ-õð ³8ü9§ü9ípëü9w4 øsné‚Súr‘ {©wÐUðÐð‘DÑÈıÌõ„Ú6£árÀK¬Êçý°¾ÑA²3„RiFx¬PÙY_ é8:kOFS©ÐÆK ºD<„¼ï{£F}Õ}¥ÁVô£DðMbaË€ôwãè¬>‰÷çÜ.ÒyqtVŸìe÷΋£ºÁà}v€G"—~A?Ú]¤7ÈÑY{D ~LC^5H'œ=ð¿`!¿Ã;˜ZÆÌri2û¾™Û~9ß.‰ ×B‡™ Ð+n¹5‰ùþæL6VaÙô¥¼°A`¼V„òÂLuf¼â²7Lyùž!ÚX-å´æ³7NiÙA¦œÂ’2ÚX­ååÓÄ_0/ûÌ”ÞÖòŒÕŠPV˜OŒWY¶£)¯´d 6^+By­IôW]¶­)¯¼$ª6^+²ñr“BôÖ°ªüÁË£¸!”W =•~åÕªZyÁ k81V @8µÂKL*—}ÂÉùecñÊêŠP^Žeûõ§eû€ò }¿qcµ”¦+ã”Ý$EÏÇΆPV8R§²ìDPViÙ¥ÜX­a…Ûm‘Z–Ãk?‰[–ËfYá]y]«®kÅ+/¼<øàqXû.ÑÁ³!”àf¬ðvH¬Òr%lcµ"”U´âñâ|ÅšxÅ+²ñòf]y¬¼¼µ•zŒFeÍrMiåµ!”Wµ}ƒeãµ\4 ¬ìr™icµ"„V›/ޱÂ3öYðJK°ñZ WŽç·.¿d¨ê7„òʆŽ;¬)²ž§¼J¿Ò²±ZÊ©:ê“-ýàåT—k.«¡¼Öˆxã…G͹qyü©4Oç‹ !¼p¡âãµI§¼ìrAfãµ"”—]îÒm¼B¿íÉx¹åÖÌÆkE(¯h„¡z«êÞj4Ñ^«>Eœìm«úñ'KRiUŸ¢óøfXõéÿ¯b‡Ã»ú œ<ò 7k=NÍЮ­Ûص_ñÙZ<$³›õ¸†[‘Ë+›Q+­—“OmŸxî?WÒ ,K¿öCÃ>¹ö3Ab[¶}ž“÷ sÈ#Ó¥Ê/ž¾½…@¼‚Ÿ!ÅO@­Ù‡€U^οùôò͇‡û?Üþ=Ѱ^Gk-ç´:Z×ì¥ôfýííǃϿúÖŠ˜E8ß?½[>˜|þùm«¾ã£M—¡äâÏwooaÑnL-ç÷÷^>¶R;ÖD–ÊB¬<™¢[+Öü†•Œúp{‡ùMÜ?ÎËÏ—¿S¯›Õñª­eª–rS¬´+õÏ›¦ãóýÊ*‹\ßÑDK>0V÷O­îVtW¦5ž—jc¶ž[­ZªÍ‰—ŽÂ*d­áηMwÞŸ´­–P+Ô(¢¼Õ ùüi) fÜù›­ú˜¬¢ÏŸ¿]ž÷VˆüQ—Ú>0L·wøÓ°¨ý7ï¯úieå.VŒõ¯ø…e—ÚÉõ&Cÿ3ñúaÏ—K/ÃfÁü¨ps#¹€Ò´5P)çß<]åõm´ÂkŸfYÅmûðr¨‹¦ï_¿³,Gµ6“ú;·¿³G›iÊ~ÉhF©õ ^›ª[ácÆ·¾iû¨öÍVª¡³àä²åµÙVá©„ŸXº¿|q»öSÀß{êe¨‡ŽÄÆâ[ýïpf%Ü ;ñÕ Ø?¿|x¾ .„óyfCZzw°P$‹2¤TÖasˉa„µM£Åë|Àf#ðæ¦bŒKŒZN ¦X¨ºVS-â pLk¥À6üÖ— ‘W»c½ñÜ7Lëëfƒ¯ŠQTŠÖ·Å« ‹… Ï|æÕ©ïxbß¼[¥°LåK‘·Æ8çÅãw`‡ÿÑ$JúýÓ¥ujÂÄm–ã&WÔ¿†m¿½ù? Éñendstream endobj 142 0 obj << /Filter /FlateDecode /Length 6236 >> stream xœí]K#Gr¾÷ðÉB0à¢=][ùÎ0dc!ÌBÒZÒØ{˜Þ§Ÿ”XÍ›£YýÿlG䣪"U5Ã3±ØöÇ|DEÆ;²¸¿­šZ¬üOú÷¶»úíJ˜FÔ[ë›ZÛ•’ÒÕ­Y ÙŠZøÕá~õ·ÕóÕ»•µl¼X _ÃPµú;¬pw¥j§lcVŸ®Äê/ðß_®`uÙÂÆ{øß¶‘«Ÿ¾½V6µU+㼩¥Xu€([K×#;1¢n¸ÚÛ€XWÃ!¾'Qñª–,2Z¹õµoç'tmÔ¢€nѦöb±¢Öfq®nÚ¤•pFóˆo|­yx #"u^¶Qmí‹ÀÊ&Î2¦Vf I»;œvñ¶¶šC<ÈZð<–…ʃX3ö¸#YÚ´ñ"xÜSÄ÷OØ–Ö²H¿² #ó€ôµÔ X*] bÚB–Ä×AÙ3I¸N€~Ø? Xàˆ™¤¬…^@”«_@Œªµ\@l[Hƒ€EtbqMC=môR:² 9írZ§úJéWÖ®Vr C%‰Aœžvi5æÍ#‰æ8DÍqˆ ‘ Øo'©@ ÀTžN‘, õ´ "ÚÂ÷2ˆ2É÷Î  »€X[ëyÀKôÊóHë¢ÏFT#Tïs'°1­[@´¦ÒÄ!´dÓš,¨iç ñ¹vÆ»DyÛqˆÑ4’ã°3®]@à“ö󄟵P Øâu9DIêu9D{*ObUíæ×R¯;BR¦©@êFñHž¥b¬?È`Gç°2TžĸBžÄ©Bžì ñ» ¢c.4€‘b;ãÍY¿nÈú©<1XçÌoåb§ø¤Vªz€œ_¶ XšVM". ó÷òtŠÄYÀ]*O§ˆKC|/‡@¶mæÈø‰ïå°3^- ñk·€@Æ/Ä–ÆYøÜiòókèçxÈø›%DKÛqdü$¶ãÈø›%Ä·(y³H ¿š0vÕ ˆ‚€Þ/ û“ÈŽC¬+d‰A ÷7fÜ_κ àõ©?ñ¼¹¿ Ø"]⊠˜C ÷ŸD °^@ õW~ܟȇCe‰C ÷W,àÑÛ"&úÝS$O’¤~—C õ—~ÓÊrcÈýå<Æ› ‰nçF©×!àK&&–"O€~dþÚ. ù‹SÀ àb¨Òj0¿Áãž ¦U!gCRô¸'ˆM¨>¢±>¢8¤Q¡š„ˆÕqÄWV²eÄxˆÎ] PcºIÿ´X»mmÚzœÉ B‹X¿Öò~Ù2H¬)Žk0.­bÈ~Ú€a‚·e°É‘¹&Ä6>È2"`]¼á,é™ Aò~£$Ä4¡¡á¤kÑrVƒC‘PÃ1Ë *T±÷£¿A~¾ú{cÂE}Ä(¬„2Øa+*¿¹5Ö¬ql謭Ò?·Ýê?ß^ýé'8C° \ÂêíÃUl»‰•Ãä[¿r NVêÕÛîê]õÍóf·þ6R¸ê—íËjÿ°zyÚÜm«/ÛçÇÕãîða¿}ùzµ}>ÞÖ˽FU·÷Žë¿¿ý n¼ÐÁ©ÃvV´BÆk¬„G[½½»ªŽÛî~ýö—+¤ã  {…L`…BEb~د!dk[iª¶{Xƒi ­îo÷wa·?¿ýøùÄCG¶H¾X"OW'(pÏ‚b®Ð€âÀÎam"†Að%2Å‚³Jƒú.b?¨…ØPßöƒhÓ°;³I§(OzÑ]œDÛ‹Ý™ Ç@Uvg6&ãZ žö+ó ¬C´FåA´a™‡®Tô0ó1Óì[–MDÆ=ËI‹¦åÄJ´kÙ}Y“²³@ó† RGé3U¹½9+ƹ¿Y¬¤ÑƒÁJƒRƒ³T¬”:œ¥jNåç<á¹Ç9Çó¢ÍÉò¼ìs²,([Ÿ™pBSÙéd /[ƒh÷³ä LS=M}û“Ðd Z΋e n|?hÔú«D{ŸÑvè` Æ4åîç,M´ÿÉJeÙím ‘¥¢Ês»hŠòPô@ù•ж(/•´ :±íƒvgvFŸÂZDed¡Ë†éU´cÚ}yu ª@yS@{«ÝyÍÖ¸E»3›²q-ŠæS¦ -º·¼ÆôÍÚ¿XvkY[ôk'ÆÐ†-¯VEǶûÒî˜QÊŸqÑÜå%¶wy>Ñ/*E‡·;³çž®@yž­`žE/˜?˜¢ÌoWô‡3£¨ÚÁ3/úÁÛц0Oxў؎¶„'¶£=a~¥¢)Ìf eW˜¨¢-ÌŸ]Ñæõœv†'¢­až—Eo˜ç@ÑæýYÑæÝgў؎4ˆy~âîÌžqлeE¥l%wg6—ŸÂZeŸ°ì9³UtYv–mç‰Ç£}çîÌNtx¼íÎìXǵ(ÚÙÙŽkQ”Õš²áÍs«èxwgöÀ#UíÎ앇µ ”'¾h¡wg6Õã†å°èµwgußãvœx<Ú¥gíPÙ”çW*ºòüÃmùîÌF}x¼ Šöï'Ñþé´ƒÏ[˜¢…Ïz‘²‡ßÙÕL(PþùŠfwfû?nHQÞ·&¨¢×øAÅM¶1º*@WÂÞ DiPº00¡@Æ7¦‘À„å™0¾B0i@ÇwÆñË8//ðÛÑk¼x÷x–W Øø¥¼IÀÆ]åU^Š»<èm‚‰1ô:/*Å}žîâBÏâFÁÄÃÑK}©Pá{?i ½SÐwÉ ˆeòÇ[Ü=`ë¼åå^šŠÛ!Èsô¬æd&Ds¡*?Ìt2”؆‰ènK}þËãLçq>4É,:‰ƒ®Ôv@ðp…!ÅÒÏ0*3ivT„‡±a”l ]AÖõ£zd‹Hs‘æL"M&OgŠJy2ÍöT†_xøÜó¶=•'R¦…_u`ÌOcÛ`æÆ†ådT Q ¾ögìéÈ`kEÏÈh”’ÁbíoлŒŒF•TŒèê"…T]@RÝÆª; ;K$çF‰ÿ6”2ã?PÌÑ „Që0~<*!dT¢t4jDûçŒá> ‚B׆ъ‹¿ïѬ¯UëÐÞV>b%ÁˆJ ¬%Ä%®&|V8D6gýâïÛ¤w!D³©±£]ƒÂV³®ý~[K%Q‡‘ïªíK"H‹ÊÔëk#Ðþn`YS¸H±Š}õñÃ@KŸQ[Zm3W<$Þ¾:¼¾ØMx¾ËL•ÕËxÆqsÜR`{›‡šD!àtµÁµ‘ÃBUû5îJÌ–H´huÕ1g+•Ö†“1x(cš‘¯×˜•¶ÈÈP Ì!D‘£‡-‘ ©)|ØìÖט"áŠF_¾àWØ'ÖÕv ÌmZ%«ç•ǧû4Ù´ðÇöp—þFþ6fäæp¤Oã`ÊCZOËè%5®ºIô„¿ÉLJüÛoŸÃãˆFVÇ—LCÕm¿ö<&ÞåM|õ>ÎÔ®ú#LL<³bRKìvAÆ‘©p¨Û¨ÎÇÃvóá>l¾IÛ [Ý‘Å^&W>l?¤Å ™â> QT¬GB€¹xlZ `ô~wNÙ>-ÏÇã–žJ‡À£¯Æø­0Dý^ÃöÌ/ÐÊÄsœdª÷ƒÔnäÓˆCû^Ë?õS]Ú@Æ+|a ðM÷a—¿ [²c„[¯à@Éîû48ù0ð(yãÖ·=Â6x'¦¿ ºÛ  ±HŒ¦oê䌕K¹†D§‰—½œh³áÒà!QºªÿR"ú¢ f/k\¼7põêq„¤µ‰CÆ¢¹émb0S»=®0tè¾Â7VΨ0‘—h@†%P!¬N&°4¢¸´‡>>™Cvïð¤ûrÓ0ÃU›±Ý!lÃQ~L|'¤‡ñ`eÖ6ÈQØû„ƒ X2XSÃñ ‹Ã¨ULLOû©´Ÿ ”x|85>É€ò*Æ]ÁÀÔ»Ãó{.–ºÎƒ¯{φQmj™ã ®A÷I‘ ¶åt0™ŠB Q!NÎ ¨èÉv·ûHcªÃæX:ñ¨’’:ñ@ˆø …&zFBXñpØwi G~^òŸ‘WÉz ŸI*q“z¨¨gQ>«á89X0F‡á(‚»ŽÉW»-ãcb¹9N°™M:Ä–) H¡Ô'Æ|Nùq¬_Ô '‡ Ç$äg›dÍ Â ku0° hMfÒ@Ð,’®n÷ÏÈ‚×@úñ‚ÑçÇû×á_ÝÖßüôÝkó*rKĽIûw0iÆa¦ê>6¯øŸï¾{…K""A >Ÿê~ì9 À+F¸q’€}JqÁ¶ü2sØH– †%„GF°ŸÆQÛ–¦y9tâò1x) àJ6Ï·Å„Õì\Èøqw7lJÏ!NVÕ]–ƜΌ-ßµsmõæ!=,Dó› ú×XysʧÃBEÖuû´‹63Uˆ"ðʤßL$Ž}\qzÒa¤ÔD⯹PʼnÄPß¡@?òasØPk_fïlrpȲTüÓ:o›j@jT²5˜Q)i ¨ádÍ×B@>”€ðÁ!¼üuü€Ñ•atŽÀ_ÝTkNÞñí*ÛÛTð$Üþ²©M¯tgÌ—X;ÚÖÞ¦bX…„]WâǼ,øŽ|”î$c&J{åIã ¥ç4$ŠÂ©ŠD™ *2™¼¡á%A “ü2|!Û² v8¦¯øð9d=©†W›®á sË<—(˜‘QÁþz|šuø´-ƒù°4fò6ŽˆjsU%èÒn ß'&™ØæðG~ˆö}dh²'.3ÞqTÙ…07o©Žis!‹_2—gÁY•ÀÊš6DâC}¶ˆ„¬u ’ޝç¨,‘Ÿ¶HHXX¸dšh¿ýîû:þ…ˆ0ð<•ÕE…òlCS4œ&V cXÖŸ¢Æz(š¡çQâœT ¤^aÿ–ZQNñi€Ú ‰xÁ e¼aäª>œ„Í8Âæ$»8 ¾˜‘Ý´ÛI¥ ­³ a¨aÝÜ Ôž¤¤a“ëK¤ê-!Ф?~%ÜÿS—‚ñEÕîeàÁ¦ŒBŠ2éIžƒIGÈsEµÔn-dhEÜT?ì)c¾Æ¦™×,R¥ L(3àk&{m»x>XR>7£4ÇÄäù”é"^}&ý€Ç§a¿»Íq“&åŠOXº=‰ ]Ç‹óŸÈ¾E§ ë|†ÓÔµƒ¼‚úÌW1u|?™ï÷•-]ÑJLÎb]Šb*ïBì„…As®©uáI„Mc6ï†ôø´9溚,*"'É@NjãÑäÜ7Õ*B)o\ÿã Ð îATSÂv $ClõÜämÿm£Ê}f¹À¬˜1X…¹Û…þ‰Fæ®3orºjð{v»ø Š|éãÎŒ‰Àù¦»ëÙ¡Œhb FÚDæ¾úƒÏÝ6‡—aï›J4:OŸ—ù]Ãl‚˜[Ù »>MÅÆŠ4´‚JÑ" §^¸¦ÅÞõ—†§Øž O•u­[¾ƒ(é.K°¤åR¢šg³õÇpß'‰² ö+޽²¨q I»¬4^©K¬ûÄÀ*—ÏvÛç¾€g yÞB.NëŽ-ä\‡_ÏÍ[Hdj:.ÔsDc¾ÞÝ??Ÿnªøÿªò/û÷/÷‡ßïïúÒ-ðŒŠš79%ýëû_^Çu^åíÒ¿}¥¨Š@¤¯$ÄÌø¯m£á4ý›¯þW(¤ñendstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1013 >> stream xœ]}L[eÆïm»ÛK)hiŠ°Û›-æ ˜ŒáÌ&˧l„2>q– ´ é„Ò¡”/Yátµ±kÉt„*+ÉTL,udYF–™iÔEC¦DA†yÚ½l]ö‡ž79ÉsžäwÞóДH@Ñ4-{©°Xÿº¦!;­¸º¶¹^Ó>L¤ƒI‚à!{h Ôµ ¤BŠæ¸â°A†•¡úqJDÓeµzÃ~ýÉ–F]­ÖÀgªTYiiá¾›¯jásÓùƒšã'ô¦¦:^Óð0½0?¤7…‡:>EßÀWUk5õ5¼¾†/©.稫ùüâÃGŠÔ;Òÿÿ­GºD[mÐPŪ22ŸKÙ±S@Q2*Ž’SEI()ÝOE…£DT'u“.¦ÏÓ÷jÁ¸P¾Ø |eô†$^zz=Ë o+àώźÇ~Ì+•if}mn_ ”Á öígýÏujp×}ù×K·í˰Èf:Pµqkž¹t7l\{0 ·à‹w¯ŽþþíÐ8LÁ­7GTÎØùìÃåà ^ôÝ0Ñh¹# ªã}ZqªÕyIœOôÙNrUÇK›R­OÀgðùû׸ÆjIå´uÌ´ý.|~?À´õì{ümý_ÜÜzáê±uŒ_}B>|óõŒÕÔ]a9õV÷^h–ä1˜ˆ±Ãî}îÍ×ç®ÂO,F'Cdœ¼ˆH÷¨2~Øãt ”×ÍV€…{ïË›ãŸûs`Ï®m¹{‰„Ä(I‰ß$°t@_cBPÉÄnsj(ŒñcŽŸ^• CTxš û;ŠikƒaÜÊŒq€GI´")âɘ6SØ»ñ¢÷…°»AŸÏ¢H‹ñA›‰þcQˆ÷I—Þî·µŸ#[P¡ÃC€ONc4&^ñ»ÎÙlà`§:[+Ê»º9’@x=)"b¸G 0i';èç¹h ƒ¯£]«­È¢äèŠê»`;­=½§¡ÏiQ"O6_$/Iò‰&Iå•ííýýÐËöÚ{††/_ygÃä½X(emÄ%?.™è`‚?]ái3Gf0À¸`Ì`€æ° €ØÜ>{ \J +Æ ÍŒ¹8 àŒØ5öo  ñ}œ¹ƒ3^zaíÚ$.M^[‹`WXI²0›”’ ’Av“—É«¸‹¨°KñÌÄW¸§âI/IÎ"4aȶìÂܺ†L84n;éàP`r½Ž,MÕ“äÉ)\Ò‰c£ÁýnÔ Ž2>É×ÑœDT¢—F4Úk‹”Ãa;38/•zíî ûÙû‡ã¬4†¢þóÕñ¦endstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1402 >> stream xœm”YPSWÇï%@/‚û`¡µ7)nE+ÒV‹K¬Ø±2"@Pd [ KX7Ü„ïf'¹I€H@d1´ ˆŽu¡Uê2V;Nµµ>´L™iµíKOœÛ{éCg:Ó—3s¾ó9ÿï÷ÿÏÁ±à ÇñU’“%Ê¢ýJI©ôäöÍâüªR‰|ád}àu<°:(ð†¸’ï¿H D_Yb\¨åH±I—a!8žQªR·$Ê*Tria‘Rôn|ü{›7óëQ®J´'N”$9Y"«Q”HE’òmªôJºZrBŪ}ž!çÔlÒédî5ÉÛ™Z(•‘=ªNýçÚsÔŒ2 ²¶XV[ Èj«ì3Ë?»l´K VØ4õ¹š´C³ùóhÏ(Z:± BóÅe~t¤GóU ¾3ƒ¾ñaÅÈÑÃ'Äbò°XÞTO=¬‰bŒ&7ßb¡Û5t©Þ $Sé*ƒ¶ TÑn`/‚®Y†VÉÅüu‡nŠ÷¨ÎÝè¶Ÿu›Éi$¾¦»[ âhh…VƒV¯64B+qhò“/&ú†¼.²w´ãX >Öb€8Jé Sä-Å䉢Y…Ì+íõx ©QœœLÒzƒ¿ßb×ÙØ£°×ìÆ¸#Õ‡ðÀ½@B$Û@Ómz=ßü·á(Gê}Q´4ó @ÕpÁø~Þ¬Ur늚íz›Ãd²›„ƒsÏ]ƒ<äm,·'!MßL)…U{Ë8”ÀTu8Û=§íäÀ|û딩û:Ú5YÁ´ û·¡;n£Ûýø$\þƒP4‘hyöÛ¹Xn 7Ä)6ù¹°çh=zõ¢:r·2’« FÇŸ  Y n€¨6UµS“%l–FæpÇvp‚d Òuß]øÊû½sB¸¤º;èp:QEwhÿ¢áä¢à4YDD„÷Œ‘eNY¬.cDÄÅÑËÉÍX"cØß€A­nendstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7209 >> stream xœµyw\TW×îæ»rÄœAcb/ØM4Š»¢ V”&EzGD`(à ³f†ÞëPˆ`ï½ÄD}±DŒŠšbILt²¹ß½{@MÞ7¾y¿ûÝßý ¿ùãÌá콞õ¬õÅü5ëпwÿˆþϤiº˜?à•Å>™,Zö«¥ÊòÞÀZ«V̓¬U|ðÙ‘\/n-W.§ä寭'Y/µvµN°>68zÈT×»=x´Ž6FŠÚ]ðQ´Äd(ê°_»™,9/%#¢A­LŽÁî?Ê¢ÖºowÔ0~ô/zD«Íxz]He•^›­ÕÉ 3’ãxŒV¥S‚ÊÒß‚8?ºAvƒû£,)— Stˬ÷ÿ6¥§€Ìx…Á™\AW,Ø¡vO¯Ðìd ÷÷kˆ)ò)] sÀÉ%póÍ^Áƒf~ôÕ̤õr\FoRÀB² 2Ó#Sã†*`¿-¥Ùš_¯ºt1ÇÑžÃ1ºË¸öiG²6ºl@M¼9’·¢3Oç¼°`÷·ËÑ)<˜~‹sŸ–\¹_3ÆÝŸ¿ ÉMÂKÞQA{¥(>ãBý„A6 Y>jûAŽû¢{Ò%ë§b1‡?BI.ã ‡úJØ›O맬–WàVé¼5Ó‡r¸ŸÄ)%£NŽªÐ š5}Þ2v¡¼· VT ã ¢êV´³U,ø")ê?ìî…ûÄ"ÜK…º¡^??C,7-S ^àî¾É9`¸€sYÐ}p  NTìÛqà`ÙØ{ë\ª\`%x0$ÞkÓ¨p¾} /:õRÚ)nƒb¤Ù«e¼†KÄZOÇ"`–ãµ»ÐQt ­Ùu‰ÚÆãKåºPçSú29Ч‹ C¡RA\"·ÎÖ³aí‘Q`‰íðd<»`w4Û åhê3$GŒ¼+Çx5FK>¦ÒüÕTØjÁöŠ‘Ÿ±#ŸcÓ™®Îá‘Üeš}Ї³z-Cé,ïð~—/S=2û#«3è,:-ºÅñ`P_Ÿ!©|ÚÜëó©¶î¥ÍA\Lh¡”A¡4ÛÿhÍᚣV×ÏOÄfÆà‡$ãí"^„¸û‡_ Øâö5¨MŠì±²Á³ÞŸa š84­X¼ÕÎk}dýÊù¸+“Ânº3Ù/$àJøÑy{WdM†™FÈûœ{úÈJÑ®VTxE,TàÕÒ7¡§Ãiñ±Õn?%2CFâ¸ßÓsµyoAŽü 3?tG ¾Qᡱ1¾ANÀÌYÞ†hÔãjë×wZ&­&ñ‰Tü»jzuùÕ} ÖZ „~ÒZ¿—9^ ]b8db¬ùû*G¢ßaÚ’ mSräh,ÍÞÒöM†4:N­‰Œƒ`&°l»¡¸2·–#ÑiÏ è ÔæÞv»-¤}XiÁ6 ¯… Ò@nÖqà¤eo!•°Z}ý-h²j†ÇРfxšµ yõr¤¹Oÿ”í;E^‰ŠC$Sã}Fq“Qº„ÑUL=%h$T:bŽ€+ÒS ƒ®D\b^w¹ ;dÁNC¨¿ŽûïŒËõ©Ýœéšé³0Î0õUÍ÷‘IšŸŽÓ&ä“i%òŸ;¹œœq±œZŸ R{T»ÁvÒ¨z{,tð. Ü.¯ ®Vþ#†a¯Tw£ç\ëí>sª×éï¶rêäñ‡Æ®:)D¢™îo=BÅ„Ó,ÿ®‘à>ßÇ5\«¾v‰ë’’ <ÚEêlP:FâtÀ‡ÒŸY%TÐ ºœ›\/ñVÛ‚ùÌo=ãWAw²Çâc(öïïù£8%õú¯‰¬ì†POxôf T€Žá‚÷ßÓÕˆG{y¿–wº³¸Sw>OÌ8,Gˆf÷âa”É|zÒ†s¦ªãØžè;šmîúõ¨'ÈñHz&ŒG£Oí«¾PÃÙÐÕ-ƒÞ6šAmbtLÏP¿‰^Ÿs›«2F6ƒÄµftFVEßÖ¿‰L­˜Áw}›ì¹ n¿Ù5i%ÙÂ8^T"Ĉ…4a(!NXJ€& &ée~t£&' ¶BBŠJ¥øgʰ)ªUæA*€eUs„e"u¸kýu–~ôEHUæù¡¡ÉÒctÉy@îÌJÍFè–,«¼hïe­qIÑC*ÜÈÔ™†„Þ¼™.A¦?“ƲNðh·6RWªv…‰àA¨Û@?ƒXoy‡=nÃjŽ¢„àu†a‡ËÝYÕX(gç…o‰q–³`{Í®í—ëWoäpÚLÐÁ.FXA7çÃE®K¦H "¾€·ÛŠÛ:C '¡†ÃXc¨ C€R’cÇã,ÙpT«ÊÕè ÍrG”’H?TûC@W P˜’›¦ÌñÏØ:'ËF£Òä\²bêÛ{ *cIo¥@®:×™ãײ´}¢]zZþϨAö nLU/YæÞˆR7ô­¬øŸWOP"ÂmØÆ£ÂG‡ æµ7‘û•ë¤xb…È6é©zeˆRá£ÚŸÆ!'Z É«qsӺ ÀLŸï´È¿t[UuqiUnrÝF­|GýáœZ`ŸÞ°ç` ÇÎqOÝázЪì|þ·rüéQ)«=w˦õnõGN¶´¢ééBq·s¢_{¡µ#D¤úïÃÑè{Zˆl33ýVkÉÓÁj_"f¶Ò{4éaÑññ‰Iø2>&C×þKq.d‚á²ô„¬Xˆ³ôß ‘Doê»ü`±'ãù2Ï´¬ZÈ#[fW8B”.¬D¶²»w®¨âš j²íM0øÃj]¬–l›µ.KÉŒH6›¬\6S6óç„l’åtK((È*Õ2lÉ4¥Ž'm‘WA«9h÷KeNvâd¿a劔 OªÒñÚ*øQ-#ëÏ×'å CMÝù|3L–©È‹&¬KHؤaX5ÑLJ¿š4;S,ßv•ó-è¬y¶ù]ÔŠtÄæ|csF<Ç’™.NQѺJw¹œÎÖÒñ}%Ýp¡ ¬eÝ×`ùÖÎh¥à™b°)ÂÏÃÇÖsxU„6g£‡b¹ÑPڜ¦S'3+`?4WxT¹éíÁéÝnF ŒŒ&¼‘dÔ@øø…påHC$Šbˆ•œGè'aÇwY—ô.Èÿ‘«ã%ìpµ×xp³Ú 3ßd˜½þ¯^¨XòÆÔ¸ŠïApæÍKîÏü×~Äk · ¯IIŽûkdXŒ ªì”TRyUPò/ýè (ßìÉBV„¯ œ¿,Ù›É@ZZ1Ÿši€B¦jkaXdx¬ÿ¦¯#›OŸ®àÐBv$Ó ¸{„3fˆé.A¼Ð3+§³éå%B‡¯Kx²Y¥$ý—’FdBŠD‚k;z%( ’-c2HzP«ä¥<Å£“„ÕF±$Ж\¶`=„Š·Z)üJ³…"4ö£\ªK¥˜}6I.íßU[)_DŠ IM! RÛ¶iƒÿ¦p+BîªÐÝÁÍêÓÐ ºs5ûËøÝu' Z¶ó›r¶‘]E1®¢«¥U Ó«‰¥èÒŸnjÜÍØ¿_‚S¼c_ … ¹íV‚÷g~5’(ÕhÊÕZ le:Jþ îEtZ²V“ªFw<•eÅi5ÀäCF‰\8L/¹wó/Cs:Ç´„Ëo–¨KNHQ&¦pÞCm ÖûΰFÿCpT+1è¡ì¹ãSRw̸¡ä{ào#‰kiKä‹¥ÇKÒш{•»€y™­6Ë»úwxUû´J£Mt~)n÷@O¤È"£Õb¼Á“°qwcñx4-F£ÐD´‰š/ÅÅøƒ©ãFáQ>ÊEÕú}8g·oófÒF“îeDÈôò“bÔÞÞGÚèY·úó)«s˜žáwßü›‰à’ð¸b臇íÓ@R§ŠŠ…&¬0rGMAi…QÀkŒ+¡ÝUè"o^ÿîë_"‡—ìëvSA)}6ü!þ€Ã¯þ:hýI@3iÔQß¾à¤2'r¬æPyׄÝ&AaðzãÝÊ‘ý™ýå…åÊãÊÍÑÄäa7,XZ!D Ã¥Eqµ›#•n®‹u®®úp«±óçælð¨ŒÇnòoðËóà#í¶ùº€;3÷ù*Ôuÿõè­ú˜£k«¹ÕÕ+a9ij.¤õMà¡–ø«ò¢Ò¦Àfu 0ß_¹r³1º1¤\Þ°«!­˜ôm @è5 U²â˜myq…Ù%垇))i|·‡$Æ…º3 ^”ïÐÖTÊÙKŠÜÌòê=V`X˜™tô:Î[7âãùGØÝ¸OÏ•ÜG¦0YþîôÄòMm¾5²×ÿæe*8ÛE{1ô³äí°Ý%CEÿöåß |7ÈèytÜ€Žu¥HžKÚƒJÓ!'V IN9Ï;*ÖCâјïcïÈ¢.­¯[Uò´âÖy¸Åü„%÷ð0ù'6°oùР¿ÖÙç®uΈoùŽhºx©ú-»½ÀÂbpoö`Ø£^Í'•;­nÝ­–ãpa¢t~è'x8Gt'WåkÐgëj ˜GÈT…?2ŽËÒs]%áׂD¯Ì¿{ý él•x‹TiMrAL³§±µ£/²”¤³ÞÅo¢¯‡ú”]KV¶JøYº#¬ÊKd`HPyðÎ]¥Õ•\WnÈ´÷9fñçyôIµèÔ¥//¡¥—Ä‚ -—‹Ew§–âþ¼lYÁæd>½zâü-ô©OÛ”Îi• Ìy3 ¢#^’F—ÄyÛû׸5O ­Mš\P‡FA1TAvJ™ Ʀl˜!œ»Ÿ¤Yÿ  Ÿ—ÐLxâNü]F=&ÉÎ/NÍÑí æ‚ü{O>žüÎp;a°±j^]¾q¹‰D×*d’Ä{B8xÇ,Z Óè’Ó‰ßJ½v.;óâÑ]™Ñx¨c!øåeº£ñ,Ñd+ "câˆ_Œ{Ë„0š­]‰ôÈä]]½¤/¼9¸Å¢,·nSmå:Íd Ôhjˆ™lOç… üÁ®ùyzÛKþÜuWãïä¿ ñ‘ŸŽvÂÝ+‘='ôû^½#“§"úÑ÷HRÄéK! ö0è:]û;UNúft0ö1¥aé:­ú/ãáÑ{cûØÖñ_s;ÛÑáöÛŽ¶yÄ<°ÍÙô§³Ýoÿ›g»‡ßßšþ›íËT|ŽÒDÏø¾7/þ=Ô‚]û»²fÿ??¤‰‘ýRSêCk¥:1E‰Gv¸Éð$!V“š’NæÍg Š8Y/õ‚5îm¼vÊ ×Ëð¹ Ë;lñdA¡Ñ;¡ïÍÇo@jr®'rêh—éôñyºŒÔ<4]H“¡O:Ò».Zv]eØiÈA¸W|zovñ¼‚:ÜÐ.3ˆšZQf«XpA×¥p'ùŽ÷ך^è v0'Øm¬ïüä™ð)ÌNµižµ÷“둇á|S¶ïÇÚ+i·à63-WJH²@±dûh{ÿM°VTFý¤8Oà,\‚Ë™'JPY•P—£J†g;À,XjzIžùK‘"ôµX˜:€÷¥mÔ9rá ]º0nÙ’‰àkœ§JÉsŽU1$î8Îרò`ù<è<× Oºùô&šÿÛϼù‘ßžý-ØßG4‡xØdÿ$çøíI‰‹HM2x¡äÕK4qçNÀ K$±¹ƒ{c3ÛqŽ€¾¨>·¹*ªÊ;14j®ü‹g€y¼÷“érö øtÝŒUËð*ì#S n(#Ð#vÕ׈»ZŽºÿ|¡R„Æ>!1“¡a#š%…»Ko}XvwÇ™«¡»Oúx–Ý,ÃÖ¾ÔPsÄ ¶süáËy À4Ÿ ·‰KYì,÷ß°E¢IÔ„¦$A¢&IñŒ"Џ}’» FàAóœ]fõ–×'óØÍ4•„úÆ8ÿ~¡ÞÿÂu¢ŠòB8õø5ãK€éR~˜°€˜ 6žñás[ÌüPÉ$£i²å"ŒÍïÃ8ÞÙüÞµô<^ŠÕ¤º™uÆŠLžjEë È¢õógÕ}¤ù‘çmSž#i›Û¿/Á|£õ˜þS\¢½½8´†f™2ei]R­êsõq^º:-IÎv£€hI²:2a}äBbqL(wؘáT–¨WUÙÝÃã!1ZŽÓQ˜Ÿ¡Ó§§r9…'¾…cP¹13ªÐS·™xdo° u Ý켑Խýñmgvöl^¯É±ª+ª¬¨ØVéã´QΖÉ&_‰LóËOˆ%ù ß½¡¥4Û FnÂ}é¹Ðý.ÞQAÁÁEA ¥ùÙéD>u:-Ù èbT¾Is—.“ÇÅ‘¼«™¤4UZNë7¨;‡VøŸü['’ÂòÖÇ{*Í[!ÛG,ØÂ2áOø ‹x®ÝÉUÐÄ¥ôm8ZÑ¢Übà¶»Ã&¿Ší†ÂYMçœMÃý±‹‚q)bæ}/gO"ñ? ™Ü†Lý`Ý6/»DP—‚ÿ9eAÔA¸CFþ[µ/€eXYÆÃ¦`6w”†“ú“™'RËóïﻀ¬½,ËxHVÆtFÜÞ§RÔr¤ìR1ÖÇ )4(ö{´l-‹Î^²ç‡ÁeæÉ„Óã‡}b;6J·©Å‰Ë‰k ©Ü¶2`² gÿ²ð7döcëknúE ö›7Øyã¾wdwªvAsþ‹–k×/­™Ë•uH¥¶³×LŸ<÷Bë™ÚKßäPŸ™Õ[úÃòÎ^WÝðä^ùÅJx‚l*wñ/{„úü_'›º+EL5aÕú¨M.œÛ¦0W˜Íà~G ÓóÍ-gÊ9_Ç~¸qå6GÝ® n_fMZퟰyá ·ï”øüAÈW>î‰tÚ–‘dÀ°PDÃFð»ÕGÀØ3–5î8²;¯žøŒº-E›–¡r}S—nøF3_¡ÀW¢û¯Äh•Ð[ZZPZSSQQÃá[¦¹ööýh^ݪ{úíShµ`¯ýx÷ÇŽÆóVZQäR¶ƒ/®,çÐü¹Ö5}"Ë=hìÑ©ö1Æáó…´t+Äp?Ib¶Bdd È…$%P*Ç«MÉoÛ¹Ž$Û»~Ë— ?Iò¿u!#LŠ@Ž%û?¯×®÷8*â÷í‘¢çgÄèN’o¦ÛV„û!s_´Ð@sv£9¨ê—g$¯žÉPé•ñ6 0»‚[‹MⰘؙ9¸×Ilv÷¹¿8˜ôT}†üŸžŽ¢Éã[^ ·¨×*df‡úLþ"¥J¥TCJI”üÙðÓx"`"â³<É$×›ÇvmX™ªJÏ~ôbÏrG‘I.Ã=æOï¸ÛÖ`|1‡>º ÄYìU±%åå…;Ï®j±‹{¬Å"Kþypë‘ø tM dĺÉqù?û5cvðì®ì,"ÙqÖJ/…6»¿MNA~zv§›¸ÜÙI©Ôh@Õ™‘ÜÛ·mÌÈ2G Ùå b1ªAvÒ3¸x%MH2 "TÆ9'SjèP…ÓoK¤«>Žÿµ<Œ³{ü§ ±`× ÍIÈRĨâãÕþá¿æ$ÇB2F‘•“Ÿš­çпÏI#ÏþL¼1ž(Í Bz‚.\·3í}¤ Þ»V8{¨’¹€F‡´ `Fcf ¦äÿ 1Ïÿp Bó$= Ývèàþ÷ƒà¸i´:Ò8,(µ!;ÈØq ¦ñdF?½ÛòÅáê­ÀýÉ4#öIADØáeü·ïÿ96«‡$vѲ“KЉöîÛ£¸°z×ÒuÀŒÁÝCþc¼^ÿ·ìÁûÛ­¤›SB!Âs£‹“<ûÐ^> stream xœWwXTWú¾ãÀ+ 7üÝK\#ºFĺj4 *‹h¤ØiJz@Š)Šô^…Ä$‘,5qTtãuS4¶Dcbö»Éáߊ3îšìÂ<ðœ¹ç~ç+ï÷~ïQFã(‘Hdá¶~½×qö¦ÀàX™¿B÷åtÁV$L'üŸx?Nju5FfbdfÔ7…³„ H0÷I”X$Ú,_)ß“¨ ‰±›çè8ölòw‰]@¢Ý ;Wÿ]áòøèðP;ÿÈÝv®ëìÜåñäËP»òH»€ÀY<ÈÎ3p‹—ÇêMvk6mðÚè1ÓáßÝ[S5Ã9R¾gµÂ%zMÌÚØ8ÿ·Ä]ëw»m Ùêáî%‹pœº|ÆLŠšJm 6RïQÓ)Êžò¤fP^ÔLÊ›ÚL­ VR³©mÔ*ÊZMÍ¡\¨5Ô\j-µŽšO¹R ¨…”µˆZO¹S”˜â¨ñ” eNÍ$9£Œ¨TJ-·tœJl-V9KsŒŸÒ ôÉÉ fóÝø€ñ_˜,1©7¥L5‹š0e‚r¢ýÄ sKóXó'ùOê˜$X¼m‘aqÁâ1tLægðF¼èlx ÄB¶ZŠÊ÷N+Ê.ˆE)Oê¬3º•ù2‰’QF ž0To­D1(;7=;{/Je"ZP5÷Œ®iBê¶xÌ7þl ‹èÆ?Ç#YDªáŸÑÕ-HÍãå°EŠ­éÏàsãá“a@㩱ü^ žZ+ö”P¢–¶)P2ç )ô[N,[ëšÀ±ÚvT¹‹[A'+ˆ¹TÁŸÂ¾ú̧+ˆuÝ›¼/¬¦ÙÖ§×»?î«oàpünÉð¾#º}³‡÷ñääl |¡ÕB³V,ƒL O°6r˜-0ûè-ã=KÎå Ôa½“³óú¾»té굋®Ž1€˜£Ë#îŸÔ‚ ÀZHÑ™2Ÿ÷ÃÛ}e¡û¤5·"ð%χT¿ëy}ÌÿDF;b@ôý#`y—×g­v]½<äÛÓÜ „µüô\ß…ëçV,àF2«ßáÔYiOiwÓòŽIïJjQChŠ‹ç\pÄ‚•$%wE µÜƒÑgɶ_š=¹ÞtŠ=Ú‰êëÈmÙ‡C¹¡ñtJе J^=¤Œó¶’xš×q°¤7¨ÌÖ‚X‹¾²b…dÁTZ—v|ñ–¿&ºyrG%ìÃñ8:EA,6¡*þXª_A]©‹? ¥ðX 4;íá§a—]ߌ˜†ºª#£‡…é>¢gZ˜B ©B¶tÌa ½‹CÊ0ý èÊfb>š¤w3„Áú•¹˜B$â>®i F#|ÁBŠ~ÆÒúð¢5eÖ‘…kÊÐûLK{Û£;Q\~Ò¤6Äè^åµ’*Ô½_™•ËùÖû¢Äà·c–Ïyžt_É÷f~™Š¼™  0Ç¥7ܾšý¥QˆÑ•‹ÿ³$)Ô%Uù]e\op_®Šà`^ûÓºøÓ50_'5¢n-´è³ Kª&Iã°©>™Çé4l´m‡7b–¾ ØÃì/ºÙy!SÕü¤â´–Qv2n_zh ¢ÞUéOœ4›†mñ:ìö3ž ¦g«ëøX?’+X&ijDm£}sY#ÒÕ|qà ,¥5¨>$,/.‰Ë[¿io bÞAgšyȀŒ©Ç‹oÓ/P¹dÁHC6“ú|‹sèY—ƒ¯ß:qwÕqðш¾ÑB±ŸGè€à‚²Y_IØ›±Ÿ—Ÿ&GÚoR*ô+0ÕïR@„à8…GžŽé©·%´€ƒ‹Ö¬Ø¡¤M—q%ç·éaؽDG¡4Û;wiZø2ÔÑÎA£ä?w”г´ÑƒÇŽVuqìŽðüzTc;HW5äµ:N0шš`ëmØ*r„i#ãñzU4áX7ŒUáŽ×¨¦A‚”…Ö¡z4¹5¢ÒÀCkõË‘]ÕX~¤…d B‰JRü÷dr “\õú'žæ÷&ZQŸÜT©*éÊçСüüºùå¨1ÿ8#[ÅãÕ9Ø|+šÅ°é.\Ÿu lëáX'YÃé¼n[U‰/ÿIJDÜîD†-O öA™¶ë޾ßûu¼Y8Š£ë0Öˆ“Jÿo‚ëfp¨˜ŽGq‘uÍÜðäË,)( ZEZÈÖ¡cG’‚Ãø8ÂŽÙ‚²_RqdŒ~éÙ5¤ Ò¯3zŒôp‚Æ,}5Âve lÅkoƒ lµbm~¯d+qhjPvb–lr½¯6£>«Ö²¬›_]¿6¦â_ ÷¢„&#¤øKª‚a³"=ƒsSòTTRγN͉5 Ž=±')1Êÿè®Þ§§Àº´‡9ÂvcÃ2ëØkP ÑwÅBˆ¤ªH”¼77>‹ËNMØáŒ˜E+¯|wZEÐa[ÿ>ÊàóCj•Mˆiª¯nüòÁNð”ùØìá›` üѪG9x‰ª4–gûýú¿ì‡)äŸÛ(’&Cᜠ”´×“Ú³ uˆâ<×îWfD­Å>ÖiÁ‘Ù‘L½·g>”åïmR %b<†3ų­²zÔÎ )%áqHƳEºdp·G¢a?1•/)Ýy{¦Š),Ê*Î,Ë*Cå¨âÐ¡Š‚â¯ ¸¬ÉŠ¢u&†“Éî½ý2ì/ëðfØÓ©úžŠ_ÑÓóè°Ö€*?BŽ¢Yoa–g ð¤{þ¥ÿø‘VǺ#åÜhcø‹”íôðYüΪ Wï>¾réÊÅ^O=ôC\?ámá‹”¼aHRò<» 9i){Ðä5ì¦ã¯«_ èKçÓà6”SR•ׂ&«Ë ºy¡¸Y¢ÿÇyxMcÉîv" 13'!‹‹Ýâ•!GNÈé£ä¯ø˜®¯E]@ÿõü:6eÍy¶ Oüq:HÁºç^3· ¦Jq-]1øé߯ 3h@Q2ÿ`AºËMûý7bað‰ôüÛ(ùíwv.à¼íõÿ#˜®ФøÓa&tÂÄúæçHÍí/ÙÝY×X¥nÈæ‰\ÒÃ1‚“ôó=,ápÌïÉêψ7¢*€¼÷€Ð„·ŸË,î Èù…~|ÂÅ{¸¡σóÙ¿Ÿ‡wÏGœ·l=— Ý¤…µÚ¨sûµï³b'QB±`-mLhóJß–º“cM¨ÒäÚ¶³W9-ò««LàY•žœaƒB*%i¤c'9û 5é6 Ÿ»ÃkðÚó¯8ÖÙu%~´åHêAÿ†¹ˆYMg¢T”y e£´ †šž^‘×€lPáŠÂùÝ1½ˆ¹?xí.ÏÎsBêŒÖ$U}YSay~ñžÆ¬Ãˆ©n,kåñZ,–nòõÝìåßÓDZ—ŠÎž¶G£t¢"ò¸ÌÜ $9ú°ï:”ÑÈ¥µÆÔ+Köùg]µšc6_¿{›pxõÿ6äÃná¡Fír†ý­!ÅúÛ WQ^¡J>Š˜ MŸuóxü$Ýæóž#·®ÑìÝû'7n¡p¯?µ„Ч+ˆ—„ôIŽt¢kê˜ÀS mŒðžF!Ï:â©BƒTÛ —ÇÆÊå ±*UCÃ0¸Ó5Â!å™K®Ú-ðÚÀKV¬LÁR)º|<­<àƒ=—×,­±ö/ ìD=Ìǽ§¯‚IålY1W[š]7&ç¬G4群ˆL. Ó«Ì‡0–ØiÙ¢µ®»̓d1[©Ê¾¿Àf³ßÆeòm…GvqþGöϫɫΫ •ŸØzX6W´—pDh’/’ùÊ\ûö.ÿ‚Ä>×Þ'¿baŸö¶¥Ã23Ãø’ê¹&)7KôÂÊÙ@„ J°~Yi‰)!’¥°Ý£ß¶‹…¢ÑDËh<¼Á$ƃIMãEø-cx>⎫ž-{‡”Û ÔÁM`Û-úËë`ŠçŒ\O‡Qc2R¬‘¢º¹¡…tiµpsTgK Ø?¤íÖmÞìízæ_‰6ÎIÁýM°Âã°‘=¶Á®Øý¹ŠŽ£§`®œK©ÏpÅ&Ë—»‚ Ì€éÚ'ׯÌÄö:¤À-è ¼pQZÐz(•Ü­"Ó |˱¯u~JAœ 5£¢šüj/¿?Þ¡³µùÊí+"!I°”v@Š¥ B!!¨Œ‡ßè²ÔÉã·Œ:ÃP‡£ÓÂȳ.]žÐ]ä™Î„3‰h—Uf&–áIÿÜ “¡§ÝÀƒÍwU¥ Q%sh_]T$öÃÖ¸›~8·s+×·â†ÑZ-Eu‡†ÍüM+†çð©éÎ{!y:õG#F‘Ÿ™RšU”ÃÃb,ªÄ qÙaÛ:¦ìÍ܇R˜ÌâøæVðk(î#°Á°ÃÍiWDKx B& RGµw7·µqÓK…•¥°¼´°”Ö˜hM9#O¹ÙxdfÚ]Uœ¯û)ª+,63ë¬?Px0¿6ÿð'‡Í&PÔÿ£ãƒñendstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3043 >> stream xœ– TSgÚÇoHȽ,E›Û°½7¨XwܾQ:£uAp£RQ±E4‰²/QP¥, Hò,¢ È¢ Khd‹¢µÓ™ÖVÔª_OG§Öé =Ô­>_ç|ß±Óv¦gΜ÷$'¹Ë»<¿ÿó£pbd2Ù¨Õ¡k ɺ”Y³§/1$ms\š(ùʤ1NÒX9¨'þÃaÎà.wŹ1*<ñ"&ŒÂU£¹L²Ô°=35>6n§föÌ™s¦O§ß}¦fÉ ÍJÝÖDCFZb¼F—²M³rFè Íë† z1^3É¢ÑGÇé’b4†ͺèšõáËÖ†kBÖ®Y>yÆO7õÏ ÃŒM1, JM Ù¹k…nõÖmÑ1a±qkã“’gÍž3÷¦3Ì&Œ™Àø3áÌ:f³žÙÀLa–0Ó™ fÌ„0³˜åÌ f³’ e^gT ϼĨOƃh<³‹¹,‹õ:ù:ýNž ïSø(6(þàìåœãüP™¬¼ÄNå<¸|—‰.¹.}®:×cn¼›ÝÝÓý3÷oÐâ1ì 6l¶uÙR-*”£ 7£Ì‹¯”†Sd•^¶ÈÚЫÑ].5£A¾÷È,2oîxâI¼§ã,œwçªâ^¥ž„#jâ èrë ü¦Î*4tŸ>jƒÀºýˆáX,D@$Z>-ŸÉ³ab¦¥c†MöúI¥½òáÜ­>RTšSPù&a™FÔ³`%Ì9þq\gây@îÖ\;sáâûUgáà ºVdÞS ÕÀ5‚¹IĶÊv ‹–†Ÿ]Þ´|È^2ƒø“¢ÇÉd21Yô@W‘ncs6iÈ&à ÈKcpŒ|¸ÿ¬Æt2 G‘0ái öÑÓ!?­¨Äu8 Ga‚HÆ”ª¸äDÄmŠ‹Zž0 82EÂ)Ê;p%þdD‹¾î- jzHÙÅ|:;Jb>@΋×H¯I¬º?âב¿ŠÖ½MQÉ•üe2ÿ_QÝ Zà&4QTsq%ËO²TàtÞÎ/Ì‚LNoÉ:~Ür¤G «œµ3E|¹Ƕ~Ò*ëÀì¹4E5œÝaÉ8ªïˆ/__µêàšƒp–ûäk¨Gyù²T³Pš{À³z(k¿bë "§È{r„}%ù…Å%†Ú˜òXà’É žãpô®¶b±¹ØR´º÷t§‚Ž[8Ò7®®2EÇL¥YÀ¥CÉN‘°ìn(¬©0Cí1áDÝé¸sp|Îã‹Õèãˆ÷ÎEì‘6IeSQæxý½½xix³Ô66ͨD afo-úù³†­©¹I:X “‡^Ûv:í÷€îðàÈ•ÓöŸÿÝ'ƒK_ÔØ{ÄŽÄÒÊ€«†ªZµ, gï3ѳ6 ÏPýeº^|¡×‹’\q´Ú®‹`W$§$­Kvà™€á:Ö4)rÒ¤.¦ÔMÒ¦ô»µó³ë§.\hÒY¶;$ íÿQÒ®s$-Z]¢¤`y þÿFöµÍ¯/X´ïøy÷Æ¿²|Ëï°¯\JyÜtnÚ„ÒW•Ò¼çòÞrÉËÓFTŠ k|tt¼±fN‹Š§CD¡e­æûÐKÇ}°>Kðq·©t¶7Kc-ªº=½cs§¥Îuýx[X] µÐÈa;¸ä#âN\‹çéÚ3›[[ê;ë f,•MPÜ@Ot ¸•%³Éœ-D>¹ŒËŸ¿×{ê˜ÈoŒíß„~eýhIº¨§ÏËL|Koéû 2mwß¡úujºûCzˇ9lTë”…ÁÙtºåÀièy|lJnŒ¢„³ÏóŒü-ë!•PR^VY'µ§t•Kqtê|(È6™òŠ…ÂÝÛ—Ð줛vúÃRôB¯ŠÅ`2MbIIn¤rºŽ¬ãõ‡ÎÜ"lùz¼ŒºKÆ|€¯à¬6ä*¾G(¹Zp½ƒ¢c­rGœVJ_ý¢Äò6²øL›Ù]u[Z‚éÚã&Î!2þÞ/Ðçü™:K—Áò‹+øæ×usc}Éh@þSj” bÛ…Ë¡NeZ¶8àÈÖP!bx .´¨Â%Êoyñ#õJÔM™í:­>=3]àUL“~[åF_"¬[¸,©Jß/fíÎŒƒXÐ6ÆÔgsüÝü´¢Ðk_ûd9®ÆW¿YÒ|vdͼî.Põî—øR¯UEM„8¡Ó;è×…NôÕ&É—bˆÞKý–4ÿ©ù÷ÁÜ¥‘(Ã^}³+ûDË»u}›*„Þž(îkNNÞ•¨wÄï0FóL¦}Æ¢(„}\V9Î*Qã#7ƒaÒW”uDŠ¶Êš6håzRZô_¸H—’¢ ¸¿ž¶‹_üå¾ø}x©5J›i|i­Dí¦=mSP9d›"-f›ö§f!'O CO×8kñ$Q™#CîÑüè€{Ðlähï²IM@‰€W¿ÁU|qu7.èN°ü ÇYf¨éCƒ£­RåSQjô˜‡ŒÝ¹7Q+àd–W0{;𡯗—3M´3¿ÔÓV÷þiZéßê<(âÿÔžõV~¸ïZˆ<¸éH¡¹Ä\\d‰ämñòU™K«Õ‡­§nSL0ýWKa<³úðñ"¯a쇺DÞÎXw4Ç$'dnšûÅ> stream xœ¥WMsÛ6½ëî[:‚Á÷‡oŽÓ6ã&ÖÖLqŒDËl$Ѧ¨tüÇ{î.J„,¹õttA»Àî{ocFù˜á/ýÏV#6^ŒG<¼§¿Ùjün:z{-í˜+*•ãéÝ(.ácÎ-uÂ-S”K3ž®FŸÉu1a”Y嬓¤º+` ™`B“ª­Ö³j³óÇô mƒ!F=óm p£ÁËÇÑôûÏäÇ ê½'eÛÖë`Yi°ÌÉ¢k²ñ›b"”¦ÞirIáY(òká$ežhøj``ÉÅzŽë¼—F Òœ2f™#U°¦wÆ‘¿6ÃQZí%¿Ûž ¹¢;§–¼ËÖ—Ëê„‹÷;^‘2ÇxoÉ<œ€âãeÙÍ a©×F“ûøàÀ®&ÍQŒiò)¸Ððìî¹%Ü{s[Ð1wàl<á’jåÜx:‡ì]é!jL‘,]ÙÕù‹z‡^Â+80.!þårÑ´uw?8Ï ¿*r×´½}Kºû* ”Ì£_¶Ë§dÎ2ϾuÙh–o !-ZÒÜŸ”Nší`/Ý—6÷öu“VY•VØz}÷¢³dÔ ©³`…èbPýÇó!Tû@ÆÈå{Éb\ çŬ½½6rH[• ÒwÕlÛ5æB žŠç Ï^Æ€+€FÿºÐH#Ió©=€€ìÖ‚Ç›tL´F’ÈýG8ðMÓ¿ÕU74A{†ÜTm „ON=¢K ®0îÌoú·BN9镃ó˜OåÈÃmQ ´áÊõÑŽH) ×þ\+{¦¤É£Öp;ªPÍMœýáïûaÖ–Y6À”–rG7 û ‚ÛS ¶“%Ë;ʽòq;d³m¿UõrY‚(Ó?ŸmÞÀ¦„Û¥ö¼˜Xaä$¬7¯³ÓBlLZHð›\Puoò¡ŒÊ"¹'_Ë¢¡âˆ<5~‘d…ë5³î`ÂÈqa!y‹8Å€B ’CµQ)“ÈôœkùÝp…9Ó¤Ü&¤Ωÿ§â ûrœ`pg¬èCv@'-47«‡-b¸ Œ“"©ôÖÇ ‰5“ùD qKÔmq®-?ÓPñbè„àÔ1õ:TJ@‡Ê‹¨”’…RfÑžÇILr¨~ &Ô×íòMZE*.Îá°š£èiúôzZuxƒ{*¿Ä{žR>oˆÚ¶ÜÛ‹QÆö™ëP2ÿŠcùP©kã±–4ѲvRK¶m{ rÏJÖ®Ãýý½Ãóºéêïpç»UËÁÌy}º ½Ü¢õö•Ýà«.êéáÚAÝ ­ÀÑCØØ°—¼» K¡fàµ:-¤ãS…ÔC0ÌëY½®Ž1 7·æ€pî\ y&…žµ§*¤4À4oC϶ð?LG¿ÁïÉÆ0endstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 858 >> stream xœ}oLuÇ×âõÖUö'#eíÅh¦‹dËͲ©¸¨0t‚b̲®¥¡Ph ]¥w¥-Oï®…»ë³ÍÂnÙtYÝâ+Ðã¿D÷Æhb|á›ÅĽü]ý5уaL\ôÍ/yžï÷ù=ŸïC¡: ¢(ªñXw·;<ÔøCOµµôpÞ ¿;¸®=fáös~n„ û¹Ph£FÑ/jhß…Ð[è$Z¦æ( 2ÈfÕ¡ÕFõSŸYž´ðÕz#E¢“ÆÙ%#¡°ÿ[«q„L7€–!s(ëùXü0¥ƒ0x¯ .ÃjZ›ú¦ëÒiÛ¯Á÷°Âà—lpÊKÏ[\úNÉfrŒ> ñ=íýi'é²A œÄbccÇ’ÌÌÌœ ä@›sÝJý2 {ò¦ ^ßšçÖÈ×ÓW€É/€îÚ¤šŸ4þ¦Âò&Õ)ùÀ{p—ÁæÜçp­ïú©÷»Ôa`ø{ÿ8{ý¤ê•yHÃCLìè—„ÂË_ßà‰Ý/@€!&vL„‚Ñh8t49;—LB‚á5Ðîþºz[rbû¼{i¥X\^þRaæç3š«þOë–/~»BU;Mœ g æ¬Ý¤cg 9E—q“.ž‡ ›>²{Ã÷{DEÈÖVq±qj> )`xQäã¹T!á2Ê$S[$’˜“0ÕÄ«¢®HÓÆ.©Š–…|Sm°Î\õ޳V¡c‘ûVYJWÐ`Å„Zçúù#«ñSäÙGˆí·8~ˆ1oø×Wí0ÇÍØ~7ƒ÷ÿ#ƒ4ÙO%õäy?B¶ãƒ.|àþL?4@~FŽçjeœi4±¤) štQåSiHðÎÚ'¤$ÌnD‚¸6«&5RjÔ(À說»ÈÿJÐ*ÙêΕeºb¯luÚ­}»Ž8¶€ckYΩ²¤er²tÑá(Ëò‚¢äõ¢$UŸs<ˆÐ_ù Àåendstream endobj 150 0 obj << /Filter /FlateDecode /Length 277 >> stream xœ]‘Knƒ@ †÷œbn€‡×)ò&ÙdѪj{LÄ""dÑÛ÷·)]tñYú˜ñƒq~¾^®iÚ\þ¾ÎñS67NiXå1?×(®—Û”2_¸aŠÛ¯YŒ÷nÉòók·|}/âpAÆÝߺ»ä>ûä÷¤8òXº(k—n’ˆø4ŽœIþùvÏèÇãjÏ;eïy§ì ¨/Ø€¾¨Vl@;Õ† ¢¾†ž *c -QU!*"´ l!BÑDÚéÀtP6 ­1‚BTëTMÉ"#46"=ë‹E™ÆJ5Z* /XnÐÜ€¿Q •jË´µç;ÞI_Rwr¬ÀÅçºJÚlq¶ÝÇ”äo·Ë¼h–ÙÆhendstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3276 >> stream xœuW pS×™¾²°r &ˆ‚Dà^§”Ž»-J7Ý!4!ÌüÀ[Æ6ÆOù!ù¡·t¥_÷êý°-Y–lcY~¿À¼‚!&S ¡¤I6ÓI)m:ÝLÒ4{D®w»G@ÒÉìîhF3:÷è?çÿþïûþÿ ˆYI„@ X°%##G^°IžS\˜»rŲLÙѪ✊ģÅŸÄ%Å /þ&zO2¤!eÖÅEOlž‡Î=\O¢†§R Ø{¼N­7s® ¥eŠŠÂ£òÔŸ­X±jÙ2üýËÔ#ŠÔWÒS7çä+­©êÊuÂ8m¿r·ã¼>¯™*µÔTAÙஇÛÃã‡G×ñ’ü¥Ù/½W5P4Ô°‹,—ÿ‚OiX rjÈØÑ ]d¤ÎW]~¼úPædîôÂ0š;ŽÏÎ{™¨Š¡†X|iLp_†šÅN£M'ß΀œâS¹d­ jÔ.C7˜#t'cg ´êCšüR>‰V]äO~0‰–Å<è—GÏÒoþõÊç@~ùÎZžÌe, ¡5^°ù Ú©iäJæÌN-c±¨ÕÔ«kµMÇ AÊWòU|9_ϯBBþ1ô©qwó}>ÔÚ ¹+:ó=@ÚYÐ,ë²·µ~ ±ì[À;ne'­¤Ýkm¥1…‹ÆÐÞº‘ €LZ £6R‡—ì©,²Zãïmg¶ý:›|Oò@È«½J4€~`ƒ ¨(qpÞ{@v» Õ§#ͧ1¼”KÖ'ðvC+´9@Ín ÆÛda¿p¦O¢É3ëÖ`*kì Òñ\Q;XÁøwT,±yq| 1yàsÂcwÇ0¥ˆkÞ)a\ZlkœdGSg¨×Rf£®Ø¤¨yQrˆÝTøÕM ݧ>5x:pµï.Ý2Šã…ÈñcƒûšÏ/Õ>ÔÛb§NÜéîÒ€cšr}-û¼"?›>þÎp_ «‹jÜ«ÊÊÝS^(+9 pˆS·€š|·Ç­d¬Ì¦‘Õeí?•õoû%w%”0xõÝ F߯_ùO±Ãà4ÍfZ“Æ @ä–²sS£¡¿ö]¥c“—N^‚>jl*«Ã‡44ÔÕ›• '+ƒêÖè‰ö‘sÅ?ÇKù%üó+/¯ù -ùøk_‚ñÓ?|T³o’Cb¯jóK!hK†BÒx·{€õü¤÷r(i^"* ¨jg37$/ŧ™ˆÊ1k‹jÕ˜xŸ?h±øè³ƒõ£bÍŸqH4¹Êc«ÒØhQhŒ«§Ÿƒ^º˜^Lh?¯=iU‡ N«ó¢Eñ1‰Utç¿VeUû@ê‡×ݟ‹—ù%3ï>¬¿T™8ØžâFá$3 Rˆe \Rû]v÷.À¦UÀ@U\†¿<à¢'-Þj¨Æ\oaøY3;$|y¼U´Xå8µ…¢íCÚ§AK'¨÷0©Am©ÕÛMÿ;Öª¦w°º0„%#‰wHl0Û5ˆ¹#q*9³¼V@jü¢Ä3Œ}Ä‘vßCýÞó&8Ûz7^CKÿ &>E7?ÆÏÝJ|ú`äHáEÚqÊPÍh*ùyäkß‚ßJ_½¢ºƒµ[ôuLFsDŸwÔëŠ rZ_ªÍ‡r¾š'P øÿÐÿES"_²9¡Ê©?ûÂ(L€NÞ¸ü™0Þømµ˜ªæù¾l k½[ÄÖBÛ?üzKôo,ØÓi?;qúä9p`«b->3vBk k~“ÑæŠ¬óÖžÀwË{•Ô½¸*”ååÊ꿊¯–$(,Eg.§tµ0.zóYV¯¡˜~éÌmÓƒ•ÊCF·¿ÙísPv÷8Êptô1¿¯ƒM £1«Ì‰Æ»}$÷B÷‰–Á0ÕqÊ;ùÐ*ÅS|-¸óµíšG+ÛKJ*+KJÚ+£Ñööh€,+Áï­F9áø†Aü7ßË\¹Y±ýeLg(ì;ãê§»Á5{†lÍR{Ä3„JÂlå–Bu€ßV¾Ôb|sÅjî¯ì½uv9»è1´ÆÞ†wÚ¥ÿl=ügÞgT`Ö{U6_c)›Ûa¥÷”›Bð. ·w¹ –ž‚~ˆDZzþéïâ_®F»¿ Ma!Ê¶Š¯W çÕT”–…Ê{}~›ÛCq,kÅ»q1Öl+*¢Õj "CbeÛ½}€f'W<ªn|gJì4p=ÃèJ‘%ü÷bø°½ X¾‡oC³-5ºFJ±¥hÝíäÕÇÐÊôsëùż$aÄéS뾜þmäÊû”Ooñ8±K-4¿qX¼jíZu.ÛŽ_;׉ˆž·è3·/¶öù9ð ^ʇ¬»DÒ¿¶üújôFýwØAöȼxáÕÆ·ÌŸ¡­b{˜KЈf°&¦ 44+½þ¸Fº»G½ãäüo8?ëó-„˜:ª—õäŸ+øÅ…ü">}†—èl&Ì ‘lœÕvvœÎ½ “p¥õÂÐÙÁ·š&ÈMv±ê`Õ¼YÑZLü G.Ýja[ð\1…Œ=hÞ‡HŒÇKit5´”»ë9%ÔBYiTje Yq‰N¯Õk5.¹½ŽBèË,f0bð*G¡¿£Ãæî üO£³ŽœÿsOµM^±JÇõ%d*×ë™ìÛÅ`µqî^hÇ}Õgö2¸òI/§%¤úñŸèó›.ìœ'¿ÇÕÚ×ä»á!Híïo¶µã˲nÎýøO9w²½Áž'"§‡£í#³³ÏHªœòXO8Úá6uݺ}~6µqGeýQUèC‰£Ówì¦%8ª¥–ÏèPÿ`"îv´÷¸(Ï€¡ö$Zó1óG%lÆ:4š5¦:‹ttØÓì Qc¾©´M*‘ê߯ŸÆûéÄÞ“¾ó0Æp½ßàÐqZÜü VcT㫱éœúŽ*1€ÊÒȨHùŠË×ÀN(Ò^ðwyºÝ¬›uƒ‹l6zj5UF Ï:Ç-%E»ßÌÛäÖòóÓ!.bÓÍSoMp6×&»‘cX0€ž1ŽdV¼Q·E#3æA¹:šñþô…SW‡(oFö ø ¦‘¸ÍMÈî½òø·{Ðí°`ì:ê».Œ¿gÄ׈^ÊÓ|:ßÏ+–Eyá'èyôS4‚äÔùÅb^& \ }4rëĹÁ·±Î9ÞÈÌÒí«L£µÇÄêƒÕ/È6l”eÆý¡:úÙ˜ãrçÐOTa+òzýèxX~|jõø¬]»²SfCÊœ°•å87ÛÒdm¶¦¤tXû°ÎøÍÄÁ¦Ì%ˆÿ”Iüendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2723 >> stream xœV PWîa˜éFð¢q»IU*VâmBTÄ\h=_%4Lo 1¥Ï@«]ž8ÑßÐh;Þ]}Æ@ÙÈĸ¢Dˆƒ`c¶R’´G]ayvÆ ÈØŸ]¿ÅÛÕûan¡Ô ª«š ]e#1¡Oƒ]†£›ŠÎø>À2×]¾P¸Ë§ßÖÂ4*5m†FøFï*ì¿*•Ë«ªž––¶k7>˜åZ®­Ê€|ÈÍÍL(¢h½@T‚k‚΢£…nÙú²YQÛÝ«èØ0ÚvWÌ/D޲Šý Ï-Ôå2ñž›r" ^x-FK?í9wðÍ¢¨v6LŸÙTâus£¹öèÛ+;_ÆSÿˆ <O{0QhF+rªpyýèhÑgå²¼{GŒFF&Ë:"Û‚×- ~†ÁäKÊð‡Ou$åºà téÝliäêÂÊã,zImØQä}}½\5äU39:M6$Q)5ꦖjs#‡Õ#ÿ˧êkêÔçÔ;£…ïƒp¹Ð¤–×ð³eµ9­êü09Ccm›\Î¥º{®_ÿrˆEaMc³35{!”U ›Ú7=6©5Ñ$4áÑÀ­ö¬íÍLp³¼&X](äb‹ÓlÐ ÅP_kîTuëM@ýuhèÃŽŒŽ¤zöø±ã%G€¢]´eÀiuZȡҫrj*Leõ ^‹ $Åf&ÈIQ…µ¾«o2´V[YúºöPy}s—û˜•Â"»QGYÐÚÏ?·~àÜé½sEzÙÃâ1£]‡VÙƒD?ÿçŠAÚŠ@ á+º’N–“ô%ì1¦«·æ ª³<…ØŽk‡öÂcEn´k ÿPÖ”Ò£V%%Ô'=fn¶2?=Q´X(Üʧÿèmü÷cžþìS9Ö>-,Üúñê ÿHŠ'†Ð?rþwÃb)„ø¦+²î¬®Üó‹àøäÿ Žþÿ¿~ë÷Ã%Õ2âju£r!\BÑM|\ðqô{»ï-¯‘ƒ/ø$†yÆ®/ð†aU±W÷Ê“+nªûá<|P×ûMëPÉ-øˆZvH«`ƒöÕÌyþq{ ¶Z5÷´Wá.\ë0X~Þ„ß?h…6Ô˜fWÀJØL ; (uØ®«E(á=1¿tº-–ôÒWv°üe²Œ)Ì–WB옾ÍB³Ôh5¥Ïñbb•Òvît ×h×WB3l|ªPêÜ»c ¹\f›Åï–fäê!çƒ¯ŽÆH”È´ˆŒ*Ô®fÒ”Ònî¬à—=pºõÔOZ»C®µÉ°^Šô¼Ãlš‘Ýý¹Ãh‡¹ ¯»¯jN³pjç7¤}¹ä’}éBO›Â¡Ý2ä¸ü;Lì ͈ŽbÐ6’¦êòÍmy­îhò;©*Õ—ä±´ ‡½:÷uõFAvD8ì.ÛUw€Óå}bö~8Áâ~R—¹Òb¦²¦ãü'p¬»Ë55‘ÆØ!ˆÔ7Yž™¸[`Šÿ¹ô+½jUÇUº·ÕZÒ­{³¢óv³tëâ¡9ÈQ»' ~¤ôc¤z,ºýXŒùI²–䆸øääøø†ä––††ß²ÿÍØøB¼* ýïÅœ Õ–Â÷‚¢5 ‰‰µ ÇK80e†Jcy¨ÀûÕÕy ôT^‰®¤òÆÇˆ3-þXZ«ñÏñM2<-Áóð’ª,Ä"±˜“ÃU¹u!Ï.ÑÅ‘ùâúNfÞYÌè=iÖ>P«MPÍò_K«M`fq°½0—ÉŒ~-ÍŸ;Ìò÷¤‡ÇæÆ6»pŠ;%âL‘eTK@±3$%©º"I¨Ñ”¥ƒö¥n¨Ét…}½õÖÌýµLSÆ‘¼Z8&ËÀEá$Êû‚Àš´eªE.‹Ñg8OÓkñTä‹üÍäsù ÉhjÕ!!Ê8ªLÇåï÷Ú€é­Ìvl—ƒÅ‚Ö½+ñÄ XrO¾½©¨Òb®ŒýUu”!”ïAœ niÑÄ@$ñE“¿%œIòuº|=š4ìýÙ—ðBÀ À+#C‚³sžÀ›_¬+­øêmD_aÝ!$†Ï¨q·¤¡Á.4( -é’·¢6éa0©Õ°OxjÃmdÖOà!áIšûÌf0fPj%ÇÁLµðkjQ|e©Ej›0äÈL° qr'G‹Áh0 eF#wÍÉÉÚÍ•K9Ž+)-všHÿTÔMendstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4287 >> stream xœ­X TS׺>!ŽCÀMäŸÈã8îN´Oš8©ù©5O}7ùÖþÔµSû¦uûþÑ÷¾ß2?£ß×Ó¦oEm“ðú"‚ÚírïÉc½9ò{d³[!Q¤ÊÒ¨¦bF8‡F/ž”r…”¹3úÉ̘×b”Éj©F“@ª´%Vç!=4R.hUµi¬€Z« dZZ¡MÒ ÊŒ¶²šw‘ïL$äX™UÞyY’©„è;è¡‹: ªv M6°ÓÌFTÊeöqÐtÓïoñ BêpÏw°Ü~çìØî[h6·\ò"P*)™@0/È\MU¥³¼ÑÒ@×îAã`ˆü$ܱ{åÁÂ"J~2¥%’ /[”.Œ/Ú÷\\Æ ­Öa¤ì×jOº€l¾T¤*EôZæ´Z¡)Oj)¬³Õ˜kÍÔ´Ôè0Õ¼ŠS ­9TÙÐwý é¢s·ïe&Šãé¢U ä’{›“N|ÙŽæ)¼ñÁO=À¾å@Ý.ÖÈÓŸ²GV¢ .ÜÚÜ¿¡ Mnzÿ.|H¾r™aQÌeŽHŠá°@­« T VŠiæ™Ñ#²…lFÞóÏ2¨¦Ñ-š…|Ï}: Ýã.{õy†C139‘¾¬Ã mÀC8·Ë7¥Ñ¡ÌûÜWÏf¼(f*' ôf“¾\k¢¯¡vo´–ó¥é•ôäX?<ûZäu Ù®±Ý&äâ~ru)3•á2³˜¹s.m¿…¦".^õ*°› 19sRƒùỢw™èzw ±[ÏÐN´ty²yo~®×e=‘ã™ïb¡ï±GN¬áj ZHДƒ¤%Ô¶u1WC«£€ÇÄ1©L#aV|7Q(±Ðþø®R…d*z³†™¶uË—œC³.:Ñ¢›È‹þâ‹þ|ÐñÒÒ¥© ¢=µêµ5jìXÌë.ôòk‚ßf»Í¨›û]ðÉàÝ1I)|J2mË|B(@$Ï Îh´,M¦JÐðJ0iåÆRs¦{3Ý í*|§ ÓÝV â]`*7™ Õtšk.pÆ âr°ÐD€æÑÌf3W’¸ ÈÐâ;½V¯³ÐÇQ¨¥ýâ³Àë+ß™+`&ò·Ò“G”àaaÎl¾Å©vqÑìUÿÉp)æÊ“Òä<…¢0”‚rè]\á3ÁË^ؽscìj çüŒˆr”6k1qþÎùøF43ÃS½¦‡†pÞu×…–»XG^cl@ÀµJ@…%Ÿ]B…2Tr³HfòÏv5{ßã ›E¹¦PƧA-SIÊÁdÕëìú,à#—ðlP*WA 7 sV¹Šsi,m·¦qáLß(P©²hM©¦T¤Ä †J­Á®£¢@}£r7šÄ)(†ü"3Ô ¬@¦,¤™§GÛ~ †;‹SZ­¹êo(c¦V§Ç[ 1G]Dy.úìFfȼÛl·Ø=…;dÝÿ礨%=P»ÿ_´Œó!‹Žº‚ª´ú>Ľ <#4C8YªJ…R²¨LØhwUv{xZñ)–ß_o¢ÃX‚ Î!ß¿²Ý@‹¸po=®,Ôd^²¡~øfSgq‚•JUÊPLJM 5¶Þþ¸î-Ìø¸—"_½"nVPÇŠûŠ!‚L¬ž“j<%¢NáÞxmQEnvFAôŽ¡¤wЋ]hr¿gím]•çB‘y˜£çÙÈýÈV% É—QùoÄ¯Ý ¤œÕf¨67Óï£ï;œ+æz ˆèÕœN`¨yõÆâÌâ\lÆ Ìïeœ‚ÇÐßäl`Žh”JˆyQmñƒÿqê‘3Ît=ö?^¨:Çv=^[£ÉQPâ0á¶ @SåØÚï¢Ik=Ï*«ÊK—óejj=ÓWšê’"ž0ƒŸ¾Èè’cmÚ>sÓ–zc%Ô’û]1 ’™ÅXåt•ÊâjúzH«Uu «X N X‘äÒ!þ™Óí-- ”=¢WQ Pï¬rÙ»lç=dq;rW¾q‹]¬¯¾ex,á–)ô²ýI*H¡¢a/î1†‡G¶qjÀ vµCeÑ@!(=eÈÑęµ;Ã!’²Ff »íÎÆ¼Š\U¼ºéLü対¸þ¹ƒFãÝiæf³¥xUí_Øô7Ãl·ã¿Çj9V–TyJ©†ö¦V§bµ²™ ÌËÌÜeý×;ŽÕŸnìonùM¿õïUXŽl©‹ë8o}ÿ'öÈMÿä –2‹¡ŠBϸ»,­Ë%àÕ—gÚ™ÎÉHó™/G/Î s©j\Ãû­5}Ô&Û'‰VódRM~‰Ieni׃ wÐÃ;(Ž}6¹VBïÔ©¡ ô`2T#ž»y¦–saô[]È«€WF³Éê?—™çF/ýÜé­8Ivã$IwAªH³'IþL:(ñ( X>­¿/Ÿ*Sf»‡õ)ÈUÅŠ I4R yÒr¨<¡“«TbÀ]°¨Ð%hŠÅ‡~"amÎåÊÒv¬þ-aYà ÆžQ.*çƒT¥ZAŽ^à@«qå9WQi×oW>HúNwWyŸ¹‰îæ´ÀÛúµ7Zá ˜ÉþÄî­³˜Ùs™ÀE'–}=Vëdá>Ǭ„ýT.§­ø7CòÈAAŠ©Å.*joº….4ÿ£z+ó6ºˆE½kÄÛw0n^&óo)r*—ñòÞâ©q£Š¾ÈY?:^²½8N‘Ë“¥E&A1õÒªceÔ‘ŽürQff^rtonçý”Øa¦®!ÆûNMù#"­á´¢e–NëéàY ^]!J/gA™c/®v:ëS \·:ܳ<"À5œ°‹Xî Cö9ÃCŸ“dËøJJ|HЃ‘Çø0ÌsËŽoº~ª·Çf£s—K¢¹)¼ø=ñØ•‹ Ö:‹­jÈŠ’Úùiâ„øÎüÛÿüà­j)ŠÄ¸c ®T„úë‰4¾þ8íùl²999=zõ=!ݘ€Ñ{µFŠo•–ÖÖWÔXõT/Z÷h0)ëÐêì­u­½—®ýƒÉGˆŽx§hÐåëÎG¬öÏføÕŒ$}Á5«MEEšR‰Š*KOM2]ÕÔÚ¨oÐ7ÒúƒÆcPç’î²£YÃ÷à=òÆkW™iSó;ÁÔÛ/9E†EúÌcvy¦=ºk´{L£Æ:C%}U{#‚stP´A¬*‡ÑÒ=J1I¿žuR/Ýny`¡^v'rA¡\‘ÎÊÞä\þ”¹Å¢3ëxf]+Ôyù˜ÿˆÒ ôà/š~îøÙ~¢Û¿¬_ð®L¬mj¬h«è¤/£×ÊéðAxg÷9ç§0óJ2÷²¶Æ/š{iv–”/Òé+Äû”X ¼„†¸Á¯ÚЋÊÏ¿ÉÌ­/t¤§¦¦¥æTçjmuµRc“,‹6³ÐÃh/&òaTÂ…Còž­™.‰þåf¡1­¬T—RUÐ =ä'þíÎWÍ›ÖÐÈ•9”FìýÓŒ3ˆâÇ*žg *Õhð@–ðöFmv£) ûD:^Ð&•CQ¥<)ž9XhQÕä[ÅÖH"®yañÚµ÷›ôVÜó¼­% ¨=D2ûÔr ‡Y…Qi2kuåÊjkl-¯èŒ¸\8$òElô4òÅ?è1Â#Ü£¬¯p‚l{m©JU”<³ P›¼É\™i£ØKó ÷zG≮º&gUs¸ò2èqzg/:ÿ(<|'0ò„ïn‡Öí ŒÚ»7’]¬†`ؽ?å/ÿ¯ïN‚ÎVh wè*ý°«P ç«Kè ¦âó¡ß×®Çtp¯ž’Çr¿RËÅc§ˆ’qŠ @[¤ÍÑ+´P &]™ÖàAzæÔ¤EaP(4šB õêœ@9_U껀”ØÀPuÒtø8ÅLåËReÅk€' ïxÞêíÓC/} úUǰR+~ ¢9×Ìds nìÅ+[Ð$Gßa»mhùÉûp\ÂæÍ ‘!É’P–R(Q«5wßëqÙÑ‚{Ÿ_Ä%‘Ïš3k˜€•LtPž)¦ïÆQ4©Ë^r¸HQŠJ­š2I E !ù‰Ï훯\G!hrÏqÁ æù¥ËB¨hAlVldàréÆG5³étØ-ÍöŽh…æ> stream xœY @SGúy}Þ•×HÒ¸•ªUëU«õ¬¶H½ ((**^ B¸!á „„À9 îC.9Ū­U«VªµkãÙÚÕíViuÛ­öØí¼î¸ÿýÏK"ºí®äqÌÌ›ùÎß÷ûF7Êcåææ6zÕêÕ±1±Ò1I/Ïœ¾>lo²tg?3‘“¸qcqpOÀ©¿ úÅ_ÃÜa˜Ç™1â<¹ñ£PÝH´íiÊÝÍ-XšúFl\j¾½IÞ³fΜ=}:ù¾À{Wª·ï oÿ»£bå‰Qû¼wÆìñöŸ±z†÷šX9Üç=96Æ{WXÄNi¸wl¸wPØ&ï ËÖz¯X¿vC@à‹3þ£l.ƒE-Y·tYÂòÄI+“eòo¦ìZ•º{õž5akÃöF¬ßµA=óåY³3_™3wþ¸ãNX´øµÉ/†L¶mú ŠG­¥¨uÔ ÔD*šDQ“© Ô‹ÔF*˜ÚDùRÓ¨ÍÔÔtj µ”šA-£^¢–S3©ÔËÔJÊšMùS¯PoRs¨UÔ\j5µ†EyR,õ J ©Ñ”%¦Ü©g)JB ¨?PÏQc©ÁÔj5ŒN½F FR¾ÄdÎm¢[â ñƒÌî‹ÜOy„züSÐHO§ÿýTãÆ´^<øßCŽ ;ôÀ0ý°†±rÄ­‘þ#;Ÿö{Ú:êsO9»–½ðLºð¡etü蟼üD^¢ѧâMâÿ{vë³ßIRƸ)sçÑÏÍ{N1vÑXÝØ[Þ/z'{Ÿ}~øóÊçOcÆÍ·uŒàêÁú“•{^îÖŽÖ~‹Öºsù­ÂÂ2]‰Ò¨Ñ'CìãjEy‡RˆtÈÃaêD HM^–&';/SÝUÀü@WC[mrØ G~¡¹´qü^ƒV*ÖF7@5¿¦ šÈA›„XD£!è’À.º` ²zþlCA6/öWÞ*4¶%™Pú-”Qõ}èÛ‹@¼6íKNaX[»Q_±[âK§CÙž— ˜ct0¾ uD³érû™}Ûµ¢eöÀÃÊ[‡NI΀96{m–‹öô½Ölmºó5†H§±¢Ï¬n ©°zíöþã6Y†GÉ0ûù44øû·uÈ“YQ$̘áã³–À–÷+¾þôã+pÎøgÌä7à Vô’}«{Ù–`;hSÛþNt~šâêìŒôýîyÔ=R†@0ByدUeó©YZ~S[†USmF¢±„½  ¥»Ð®ÎGTí Fn€ßÔ!–Y>šõ¥¦¦/ô_&Y ò»Å',×Dì(åù’Kg>’\‡w}3^aì®áV·{¶2J´¹síè}a3ze š‚ÅÀà]ýί¦ž^ðH!HvD»häE¬ƒ¼›Ñrl ¼ÄîÀL¥os Á·4@'Ë1ã8%[Q( äÌͶhbœGœéˆ°¢W_c¨ßâÈ•éäYËE¸–>„’È‹VïÒ¥wA'êõ5•÷Eú=Yyéê] ö¢;Q¨åÑìqÕF]Jnr'ˆ»ÀP§¯%*ÛrKöóh0ñ ÖJíB·Ú5‰vÕ„Kw€ÙllgúÅ,šgCŠ¿x±“¹ãÜP¡¾V{t>l‚•©~«L"ÖÖf$ûKð ²}‚}û¨æ–=Vº¢rºÂ«ñ$óìN“x°“ÿZyã[4\¢K,“7B=ì¯46;%ˆä?žÈÃhò!ß¼ØûÜeN#´\sh&~4ÊU‰šý™×-r€—fÃí‡'ò‰LD‘4æ×¦5ØM«³›vŒc•žî3,û¥Ã´OyZQ†ÕKB£„U?áQuR£ŸEcð³½ehênûþ æèüø¼´ü´6p:Æ&*¬44FC"h:õ®ºPHü*ì] Ù›þÒi½Š973U5á;"gÂVØPšu“É«Î+Gt¤OéÒsZÁ •ÕÝoï=“×h¼ûçâ¼hJ+šmEïX={m(Õ¶‹˜ã:Zhlu˜~¨«kŽÒRì±~ëFXëÕˆ&5¢éßýx“H{>)Sùi†¬&ò‡¾ÎP»éí²Ë@­”í‹n ¯Ø x`O,‰Æ~R¼ê6£¡ðomØÏ°ɹ:y—„e6fØ¥-hQìc›ØaÄOˆ‹£l¶ Û}"h‰<…újC]D‚V¦KS®ÈN‚×À|ÚÐȰ;#•Íwu'€çÓ,S~Û‘$‡tÄJdX±@ðJ_$4ò‘ÀöÞ¥wa]úÔ {¯ø:Ü}»¢×n2+ÚnõüIÌP"Î7ä§{WÉx´¶“`ÏèF׳³‘Þ‡· pÍN¦:ÑvA¹Ço0ì8‚[ä- y)xÿ‰TÇÈ">n\ÇÑP×ÃhöuÉ(‚Ã2²Ü5Ç/wÄgŸÄžh š±Íðbã¸ò6{(€ÙNŸE·9ô+øÝ‹÷ Øc/gÌÏŠ’,S‡±ýÚÿK~µz6§Oý8‘Xó¼]r¤…aWFåÖAµä]É ÓÆ S%ã†XݾF›o£ÍîÜEnÂc›âÁ®*´Ðx¾„nZØy°«iZésø¾i_-Ô¸†ÄSUòAµö³@î§è”ÕíÏ(ä¯(Ļʽ@´O„T²×St*¿9t?Ôs’ž„O òihÒ¾«=’óQ~id“œT$kÕ«ðsj9“Oç¡S‚“}4 ‰ÌöߦZÁ€{EIqø°Ñlmyîð]}yQ=S@çWãÁ…9æ´j°@7˜*‹ëƒzE­Dr‡q잺bõdwpu¼‡H’î•Q­?ˆ¤¢Ò+»¿À`¼Y¾Úèšô¢þsQwaqAAmayAOá¸4k)^¦Ã¢ÍéSV¹\yÚÿI7|Ttºa}¤U'òIZ¾’#ñ´…º¤\ÙÎT²0mÏvÈ‘¬†ˆNÓ[æ“÷ºÑ †¾Êèy©'±§‰<×ÑË^¬•Óñ©D¸R¾AgÊ/Äè­BAíªˆ­q|lÍv'ÛÀf\#:†jõNügØ=Žâ=©¯(5òžg?{\`à Û(Õ’ÉþÂa'9lQ2]ÄH€‡õ ûZ±sÏx\Â<ÛÑ<m1’SÐ/ö—Ç+aÇÁÝôD4E“‡ ³hîW›že=Ÿ9Qð}“Ývb‡w+ž(ɦïãÉx*ž#ØM³\¦Ðà¾@–~F#EŸà‘±ìàŽŽ<ìÀYX®[‘€Ô–NBžÜÍœZ‘ÿofãÜG& á™JQ:Bˆ¥žîÇvºàFš‚܄ƖÐ)²ó”òœÌ¸­K`.¬½\ñuñ‰ãè)$! õä«´UŠ9û«Œ˵ñ°°,Àc2fËñ°Ï^@ž€ÆÂ{ß髜¿ÀŠ*É)'{€|¹sf>ÖeÄU¢v{–:8ÞEȇ"~Þ.JÝ«ˆQÆð;¾YòMš†>û,\í@¼(Š"U¿Ï‡·û…uü‰‹Ðúmí8¨0ÓTfPrJÕ(ƒŠâÒrƒ ±ÈTw†àá«âûˆlÔ…ŸðÑïyÕö“í.‰¿ —²õÎô[e+ÏŠ=V¹ÄØô0ÓH÷Bð ?-»>å’8ÞÜ~€a}÷jò‡ŸÔ&Ì¢yB¶+P0ÿ5ÉR¹RÑ[ùí­/ÃEx+Pô¤Iø±Y‰E¿â>{‚Ï»Æt#½èQ,)"9ºC¡ñŠÌÀQá]ÿ1°ÀÎÅ èïéŠ"*ó›@Ü ezÓ!¢¶¨ÑÅNðá§¢gHшãd}ñ” *]vJô¦@U,ø€ß{y_2è]Gjœ©»Ñ!ßáÑ€‡ãL’á‘ ÛGÈ¿˜ˆ„$‚ _zµâºéÚ'g/Ãi8—3ÁÁ'¹bÒ#V¢sÂèhz ^ ä‚ßÁG+ãÐj@« ¹™L2+ÌÂìÕYKåäѲY0du¹ïéN•ß1Ÿ-½PúIÍ»ûÏwXnà èP™‚ [³|”kúÐ"ȳіf[~ç5rÇ‹ÝÅ5sï K>|•çU˜»MñŠj£hÒJ·ò{š5ò-ÇD×65¸¶ivåitA€F  ¾x;P|¼ìæ%RÇÅù¹ú=]P •Ƨl«¬Hgu³7mI$ƒOp>ÂÊû_á§%ýͺŠM·¡U4ŠF Üýªâ>ÁåœA˧òQuéÿ ¿…¶åªv|Lý-ùàì‡èõ£?ô¬8wÄ–nÛHê;68·Î&;go¯¯p"¡a¿¢m(aK~ð>†½´§TU³M2æù(æªwX"KS2Ó3“µÑšˆ’„¢¬Û•+ò”Š9߬AÏÿyêBù_Lݪ÷¶63Ê¢=õ/³ŒÎLPfÐÊ.W•ëëXË*0ÊM% ë­Ë+ìL:)¹¹Jh4;+ÀØš{ «e¿¥ÁP^PW¯.*h´ðÂ!Ø]¨Z `ßqó†ýãÓ”œzç´ä}èÜJ4=±Pº`Ç$˜+Þ.zG_]ÑÞUÛRi†käPÊ£—”0Șãtˆ#ÜìW*î¿{¡Ò†Öüf±äõ¿\©T>¼uèˆÿ· •¾Æ•ï$m[i3ÚÂŽõ*¹®ûBc{"ñP6ÅŸ£ OƒX(~—7¦J>*,ÖîÏ9R—Uzµû€µèHù—«oã!$Æ– Äšÿ©YàÛ×›t ‰éæØYn²z'é(¥¿6º<Ša¿QF[Ó;%A׋1“М-Aëfó†ýÍ«4û%u:rBú2ôúCO¤·e>ôbmÜŽ>"5®_7Ç HBý6'úèàä \½ÐÐ’ZKlŸœ«­NnhªwäŸ~<ÿdK´ñÇêÐBaÉŘ£ª²ˆÃñE>Õ‹«E»-Q]ÅÇͧ>8qÐÈŸ^ ÍO.ÑÔ:ûíz$r6­‰“–Ñl!…Ôf/ʘ«\Ùå÷y"r5k>—| Þ°ˆbˆhfغ°fýÑÂêªÂê(góŒEÎî›aõ`./oïŠ>—~H*ß¹ëè& ¥!U#Ž7×þÞð^ôŒ­€˜,ý+Tx•[þØR³\q ¦—?šž—¦‹ŠG†IgÚY…ŠB†e ô…E|÷lWÉ$l~$¤åÆd¾þôô a¥ £ùžûöwMédwn6áv$º×§›ÆxÚyôw§:þ®’ž´‹¿…&˜égX%Õ’9Iß%ñ«³OgÕÔºüÖ½ëVEÝÇ/ ØlÊqëûØgCúu$NI‘@¯Ú’€Ò¿¸›}.Â%b=þkª·Op0ˆ7BàéêŸ?p¶®Mv†ö/­Ãäxä•—‚ø!üx¯<‡מ´Ùª‚TäxißµÝ5õ :Þ¶„æ:ÜŸ”=¾ ü¨ å?^ìI®ÚÁ,÷¤ék ¹˜Ѱ#3bª3¡:’0Â(El2ÃÞjÕË!UÕ§K¢½N.iл}Õ‘ß²­±'{+N?"Ù¥iJÿ=X!Jé¸7~õBE/Yÿey?2SOÈ © ¯"/<È~ã=?ý¥xÍŸ°áíh$z–ôZÌÊRaž<YLÚ¦íhH#šÜ€&~ùà:©Lg^LÄ“œ¦aE#äžèMçEe`ŸfÒw¸*‰S 'K¥©ÇMÆbéG2jH&dh£2fÝY‡Fò‚ïï6E¤äT莰°2«2Ô[µ6G³/6&]A*¯Ú¬´d—¥‘f6¤é iI‘ɺԼtK:9¯ŠÈÞ]--•åPEªÒ¬ÒÌJY'ipÛ*›ªê+:êõÕΔ ¬Üˆ·¿è ëÙÖ£'IÎ5¢Ç._L2uhЉkbiâËü49>Œÿ)RfæçéäšÈbuO]‘‘p×TL VpùJWD]M³þÕˆ"åÜ xq›'Шý p8¥ÍŠæÀXA£­V}¿æ;âõخޞ܎֋zÀZ=ô*mT(®éRs“Ú¡ŒFsIGû;Õçà6tø*ý¯.\;“ÕÅ)gMFs‘¾Öx@^)&¢Tš=ŠùW—ñ™2 ýU rwÆÇ  ÈãiFݸåD@„ |{I¦CPZð®CèyDݾ P®4h5Z†œŸX!o"ò‘^·µødÜûSˆ„Ïž‡ïÃÛwã쇾ì÷_˜&|Y1çõõo€?DŸÌ¶jL …å%lï} ·àèÊÌ%ÕŠ¶Y=¯ÙÔ<&G@bÔ²ç—Õ}ÑüþIóå·ß¸É÷DÃ`Ê"ÅBÕúîÍ7âöÚ"™o@¦Oú”›³yå<á绕c"Ðaaöú塾Äum¾°á˜¹Ç|úâ‰Ïá&œ Q3ûð[Båò×ç“ù ùØSj+±Ú>úîÁ»«²íº…Ž»q™ÜEaÉñ¨âLH©27T†CEy k!(®6TÐF;~…CÁP7Aü‘¶ö›—ˆ©kÑÇÂÃH3Ù6ç7ø©ùr<<Ó×fD; g«N‘â§§Mž *ˆ(H©4M&}ŸHñ„/BRAè(ÓR¾š€Fu -ŒÿgBUЛëçÃBØy©ìzù[=WámhH²È›ö˜R²–ò¢ÔÉмËhâe4WîÆÕ -BSWdãGE'h áb¦.ç`Ýž*íN.ɱT1º¬<\4á?޾Fg‘ÖDh"ºÀÌ%z'žHê·Ëà[ô^<2_  K-M«ƒ6(>`°D#D?þÖħNøÿ¬õò[N° ʧ6…üÐ(7n4ç!,êŽoŠ‚0ˆ–j¥êð¦øv8­m¤ØnÂç{’ws²UC¾Ü¹ôº°ødÖìÝ܉öˆ:r+Š7)sÔYºL]R™¬™E‹©»ì³W1Sbêv2U)ä&èÒ5a",È|ýõÌ%¹‰Y˜Bó¤a8Cj «×œ2,ņý†Y•œx3U|âìáJ˜<òª6oõSD1¢‹™]Ûs6ÙÑSþµP_£,Î.Â%ÈO„.#?KQE±¾FlØŸfI'êòÓUøßx·([“‘£KÉË4)Íjt ‡‰ÊT…ùfÞuÃ~»)‚/ß¾ìÆçHð?‰“#É"mD·’< MV7»ìòU¢óÂÂ2M©ªŸBa¢,³®@E@M–•›¤K)Í)Q£ì'—±_–š—Oœ›T•UI*Ž¡ ÂÌQh·¨ÄTNô± È·ô>„…Cºú"‰kGÕC+‹^üºº´ØPXQPœO’$° ‹v`³m{¹yó߀ismA±}¯;d¯ID¸Z4TúUÜ{»®ù÷$*’-ÏÏÉË0«:4»eá9Jÿ´IkñX*7Fƒ~/@Ó@¹ŸÊ1ó¯7EZ©!»“̯k@ —=QÁåm—בNj5rDFg:’–eÐøB ? æ+/‹àD<^@æ\R­Cdµ™ÊËÒ’!Bì]…2N69g^9É ýØ(,±F½J*w,ÁuXcq4Ưޜž•«$´E'Ï˰¤UA; ÷÷«Ñ 'º£;…ˆùåÍÇìÕo@ß1ƃþE¤œ6`ܯ_!ª»Ùã屺W\UBW }÷Âïä¶²”{£-.5”ÒÖ!¶¡Ï ñŠ6† =Ti*àÿk ¦aÃz K ,E%K† §¨ÿ6Àü!endstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2271 >> stream xœUiTTG~º_?QhŸ@×í†Ð*n¸KT„fÁ®ˆ‚@Jw³ª˜ƒ¨3j¡& 4Ò€¢,²(.( G”EO&Éd<5ÑÑq¹¯§pÎTƒ19ù9?úœªzÕ߽߽ßýЦDfMÓÃ}¢â¶F%ÇF„OñÐÆEšŽ‚-Œ6ÍÖïub·¤¥9²=tŒ tZCöpHA‰hzŽ÷Š,ç•+V»Lš4y©6^—“,Ÿ1mº›|“Nþñ‹Ü3*)6Z#w"‹­QqÚxu”&9 V½)%I®I’›bÿnÿÐÿMQ”ã6>1É;9%|“."2 J§ž6}Ælùü)5– ¤–S_PAT0åL­¤VQÔRjåIyQS)%åMùP¾”µŒ  ¬)JJÙR4å@¢xR8JD¹SéÔ-Ú™Ž¢Ÿ˜™2ë61o0ÿ Õ‰úÄîâíbÌø2ZfóJ’ É–:ÅB‹Ì_ÇNØiÑ2lÁƒ“u½äx7b[Oé¢uii²í»R¦í²“ëV#«¸ã÷òfëÉæ+$ÒÚ•»ƒ…ÉŒ4»ƒš›ê¹^s²îB±á†žo¨A~M"mZUÕØåÜ s¾M¹Ý,SµøVù"o´>1v% z ÅW¸î&¯‰Î!J¢ÈÎ7/»îE¶`í¿#ÈÈò&‹ú±…à(Æ® „ö·‰ƒb¢V§g<œÊ•íÓ(@5¨.ëäÑsùÅ%w Ñ(µ,ÖÀðU™4YO¸]`çöM:<Ûu þV>n`ûä{àreø3&ÕK„XÏðöwÍG *eùåùuèt*>ß“ý#ç²_9§ .£@nT“6ꙘÖГÞ$ç‚Gà9ÅKjVˤ™«j;6w8t¡Ë'ª[Yi* ˜C™ôŒ E¯î—¯»ïòveô2Ð]D¦—‰”…ìQ  Њþ= ¾ ì!% ÕU™Œ‰à{û†¿§…"ØÊeêÑW( µî¾òåÙènm˜&iLŒEØ/y6¦À°]ï+d˜gRÃ"× ´¥`[ù—†?ŸØ•=ø”;ÒW]w ÝFgò°DéÄÜž>K?6i½ƒh}n sZ¬47÷Àþcü[‰ú &s+b]7lœ&ó[äÚÓïrÁ§Ï¤t¬yü–TéÉ€c'…Ò‚½­t´0žts®DúK{dXÙ ‡´*I¹2HëŽ&³xþ#Ìw£º°­‰÷ø…nð]W|>Çã™Ìðügا§ä&ȰŒ„Z<ø³•VßüÝ“ÒÙYsîfCY|ûN:jê~Û 6’·þ·0¥\ŸÎ'\]Y惈/CÛBƒØÎA°rˆäMÚŒ4¥QjŒá!¿-aË7oŸŽ0°Mþ̪•¼»U}¨µW\j«»fx‚ÀÁ¨b¯…w)kçåˆE5¨l[ê˜:ûsä‚ìqO×ìW'G Ò¦Öì,ß}=G?dý=§,ïbʼn:D&¤hÈ0Îvrý;ÉX¬u•¤ÌñÃVD)¦y‹uÀÐçÀBM“yÄôè¶2…g‹‹Þ<€ákZÐ/,8N~„ñÄYnXÁ'‚C‰ä»ÚË·o ó\˜¤Á3°ˆÇ–óTËöb;VØÊ 2=˜Ãx¾xˆ{sá°PÏí¹œQ¢+U]õ+ÿÍDK#Ã<Õ© æ¶Ê[T³â¼ïýȈªÆüü¦Âè9ϰÕ‘©¡e™y;=e_Ø\UÚ„êÑ Ýñ ¬3æ:.¬]¸84x™ÿÆæžÞK­·e¤õ¦y'ØN4±…9äƒ‡Ø ŒP ú¸²¾'m· …óp‰ëÏ$¦F9¹D¨=>ú-y Œ 2 çXZ‚Lo9Œ¢þåƒð7endstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2477 >> stream xœV{Twž!Ę́ˆJ:R &)XŠ Ÿª@ Ø"‰€PˆÖZ«È lmêªAPðÕ‚ÖG—BA±>º"P•1iƒeÕªíœ_8»“Øîžþ»çäœä79¿{¿{ïw¿opŒoƒá8>1L‘[¤Pe¯M³œf±N8ëlÃ:ó•i¿©DÀΰÅ[c˯sžxÑnMƒS e*ÆÃñùÁ;ÝâÞ›åé9;$CIAvf–Jâ+ã/I/‘üñ$TQ˜™'qã~)ró7(yªèleú¦BÉŠ´¼Âÿ]üÿBaæº$/¿ P®Úž–¹6#Z±|]V\v|NîJ¥tޝŸÿÜyo sÁ–c1Ø ,sǰ•˜Œ…`^X(&Ã|°¥˜“cá˜ÍÅ"±(l>MÃì1!öFcÓ1 Ǧ`3¹ža|l¶kÇLxÞeCØÈl’lþÅ å¥òNó þ~ß ˜!H\Œ$@Ä*âòm2Œ”/xA ÏLJ²%P͸Rð„è‡||ª¡ÑVlaH`Çv0j6î^–Ú¾·?höë„g{ÙZÚ\;Iáíß;{‡».®¡ëX ©èt ¥L¢2%˜2Ü}U?;»oÒC‡žÇÙ&¹û¹ P$3¸Â,pôCÄÜçh¶¸"ˆí BÓÑÔØ ï¸~‚ðZ¿QlÈbõnµ}ÂAx³çÇÉ °oﲌ"…Ò}–VìpJ`Òs’)aÌc.}Ù«ô-zة籬]þ\þšÌPÈîH…3`ªR¬)þîú"fcâªõÁ©ŠšcE¢m‡>>´»™ò#*ÑäîX˜ÁPðúàígšÕ—\‹ŽÊÿžwŒivl½tªûNS^ü>‘é¨J eZhÐâ—`äÁ.š÷¸’MÔ"3ñ_’æ–Ïè=ßn?»ùdfkäÉ`Žf.RÄGÁ(pD.0íA¼V%žO|8MZ(CùÄ÷ÁTp¸¢ù©÷rzp•ø¯àOè¡[¸V¶”Ë·ÕY+e\Lg_„£$F8¸Ümk¸ýµX¸ué}maÓè‘kï {±ð,šàçýìÀîæÃŸ8†®{5À ¬ÈÀ3½Áõ3 ó4Ö(pWXÁN6/­S퇰nðïÇÙ*ØF3³õ|öp@û,.½›â¡%hɈ ¸ƒ­®ˆZ®$ÕÒäÌ0f%“ZŸyó©]§ÊÛ©}Ýô±ëß2ÔÐõp/±uGØ1-~ÎÈ2òXGS Èy£bTo"/È|¤ih».~p§ L¢à#$/´^´¾¿¢I( …º [î†t&§Paöœûò[ÙÉrˆîán1r‹á¯%¾^T³žYCù¯ÎpÙAUŸ¾´ï\À±Â\ ̵:BøÌ¤äÏwäæ܈I-Ÿs,ýÝäDC©Öܳv;-Dµ†€(5þ×£7-¬²º†x82Ô,xN õð D@¸@B T °¦µ¦{³¹ óÇ•\‹™Xž²ÎÓáÎAÜ ”jGëÙqÁÛâ¼ÄÎtÿ/αÁòq~ù§yhIá¯Þì¾õ¥"L„Æ-,Ç›Má–#;ƒMhŸ%K+ŠY%ÊíL«—3”P*c’7®Ž¤î¿Ò2ög ~išGxÐhʤÙåÊu«R–©<ô…Ê ³ÁC 4ìɦÑä.Ѻ¶˜“a ÈÜâÞGé)ž³¼“ŸB$µŒ=¶®¸‡jªÙjÚ\m0eÆ’¹ˆ·y+r.¡–Y²V ³ÜN,á±ûõ´yñÙ3çôO;_rõÛûÌ#æFagÚù´sï cæ0a9QŠí©{9/$ö·~r²º¾îò?:jàFl`ìúÄÈL±OrŸ·F^Š|Ù\ëæiXC¿=+Y:â ì0L$š‰_¾Mõ—ÆÇK=’[ûXÌùRl•âpN³¬'kŒó&·QÌø9«mÞ)±p¨«álÛ½7`ê¢>ä„\ß @^e"Qq¹òøÁcê —ë¯2”¦%9ðý’ÜŒ-âÂ9{¢Ë)kñàó‡®þ¡QˆB^>pa³#HÔgNx“Ðþ€FÀ])è5à£ÇÙ®L‰´Ù†Xiž.xH\hýâp'C=¾áòVL”gPòù"tulU~íÆ¯îæp ]Ÿ¾xÿ‚œ×nS¦‹a•¾yÕèÒp¯+ø¥ÇpŽ ¾›=Co‰ïö"Œ ddŠ´ˆÔÐb?Î"dw8èÒ²s1·r9G§±gð&8ÎEBYüÆ• qÈ;Ÿ> stream xœ½[Ío$IV—8ZœÐ,˜C²Wß»4Ò Áì¢ÙµÒ˜C¶Ý¶sºÊé-gµ§ùÃ÷¼ï½ˆÈʈŒªv³€úÐY™ññ¾ßï½ÿnÅZ¾bø/þ³»`«û‹ß]pz»ŠÿÝìVÿtuñ÷ßKoZÏ<_]Ý]„)ðŠÛÖ ·²Lµ\šÕÕîâ‡æºŒ¹ëõz#¥h½Í8à³l½óÍÛõF¸–Iašwë k™ö’i÷_Wÿ »˜l¥[ü[ÁÜÖqåVW·°üv¸_o¸l×öZ‡™Úgô¹V ŽTÒ”?_Ã>ÊxoÃ`!W¶õ–ÑXÓj«„Xmxk¤ö §4l}õ#Ô³ªR9´hó‹1 ÉIÖðd¼:®Q LóæÍ)r­³>®ü§qïœHn9óU"s l˵vfNAóUXl œ‰ó›‚Ì ÉðÚZªµR0™mZ•i¥QÌÄM¿ªH™ëV9xä¢5ΓΛ߆qέ|ë08n£ZPÓ« ؘ³ÎYÿg°)ç¸LÊž¯¹•LY˜Æ[«8­ÿ\a¬•›I¬YPÜ}®‚Å'­ð¹.dQjã‡æ& †;ãšáù´ã8å\rœ¿¿5à:BÀN8++<¨¶æ®÷U*Í%« fAÑÕÍ,¸žþ¿“Ê}~U×§Ä(fsÁ=÷ëi½BNÆÛZ®E)6¥ƒØ”RŸ•Z¢üz b«Ø§Ð<ùÍÏÃ<&KpBÆƒ× +m@%@œ(*ZÍŒ $þên½QW!ü6Ý#> ´Žf8( .Å›ñíü×~°›î}˜Î× !¨ƒð’…1™ÑöÏóŸ—0]›ÞE ¬l×ÂÂR‚7‡ÝšVe‚²†Å­|Êa‘=ÎãðÁ4ÃÄ‘Î÷í²m³éÏiŠlú5SõR0R·È ‡8œAŽ8°@Zñ)Js4׿‘pó¯§ÇœÆ*##Ìiüt^4)’QöVÒNÑ^”Ñ^"§`?YsuGAPïf?§Ñ·F€‹çì£#*åÁreîdYzŸýÈÁ=ÿ—Ç8Üi˜{Ê»ô^Hç0„áˆFQJÿ DA¨¡Çæ©ÛøäÀ¹eH.4 FFúùý¶iÒç(Ð&9áøcìwݘְó½@l tdS@x ìG}Þgñ(Už»mÿßó¡eSLPÐÙöµEbžÇËBÞÚ 1ƒ#Ýf[mqG%1~óí¯¯×mšfÐþêvÞ¤²ç‹ª™³Ö`=ÅfÆÃB4}?Wÿ@HAЙ¿FŒÁ=¥Ño¿ß„€-0f¼Œ ¨ ?“ÛúOÿ>€]ãsElûlJt@¯m|$¤|›²<ÀT„©õR¨>z½‰¤AXÃODMŸ‡ÝÓL©‡…Ðü`k4ÝòænØn‡ »¿Ì#mÍÊåÜaŸKò(ÌoŽ…Ó·ßW‰ èÁ§øÉºû±^,ƒ!±‚бnvÝOëJ*¤¾ ,³ðà£g'´âÙÉòô‹J d8,9È÷Õ5 Àûê5Np –lj`¨pTÛK,µÁˆ§çJÿ„a°RIЖo%UÔ¸ÙŸU ‘2’#*5¹nÁ?|:Réò@ÝKý4¼ÅË_׺F¬UÒB–T0NŠ¹Ê®‘ÚºÏëQ°(˜HIE¦Çj›ÂRJX`B¯ÔôÂ&÷ûJ Ñ0D»ä‡ëÖy (,Ì…öÈ_œhöß+ìc0¼«Ð¦[©°'ØÎZãõ\·%´5-z>ð´ BmùýxbW—åÙö!B ²¹€ï?_]ü{=Í}/'„¨Õ‡côÊW°Á%­ò³*µá±É‘\Bì Î*‡ˆ A8eÚuö“i÷h„ŸÎ»“Uåì’)Lc~V l9»7G¨R‰ãQ×™á_ïk;ƒ9ÎGÞ×̪65þ¼@‘ˆÚµŽ4´æË}VnŽávϼ s8AHƒÚ B2fMϸˆ—xi2Ô‘ \’öŽ{#°Ž•ˆ©UÀÖ×`D¦n{øŒÝ¹XE`­ tç›ÁÝ„¢ýq$À÷.>r$qº.Îz‡ÛÛR•…⥃Ò¾âSË")>×ç\ñS¡2BS¯Ê…e„¡2"°…°~’ TQ¥Ä½&•Æ’TQñX÷FÆŽ\¥p$ËC aí4j0’J\è’†j °ÿ\Y÷Økĺ¡,“æýÒ‰M™*v0FÑšÉb`\V1“mó”Ÿû.ٯ}•Hц¢ÞµÊ;uÝ#– ÜÐÀCµe#µ,çÒ±™zkUø¸Tkær˜w&2æEÛ,v  •X47좯!©Ë¢L?”)ý.wßx˜@`İNá%z*/UuµpS)G$”qÐ9emŽJ¤ðÄ9N(ªá‹):]îs»¹ÛX»®ˆüµÐîQWci«˜½Á/ç=Ñ¢™›ƒP ˜™kÌäxr×mï‡ö~»|[E-¼•ˆß¢xÊÖ%«LEløAž¯È×<`QN‘‡¾£YೕùcŸ%6°N„|ÈïnØÇä¡E«…,BA¦›c¸È_ï?bS ‰ä16<¦Hyªc‚'=Ö„CJ”b:¢yx’’Écœ÷x»mÜ r凵ÆŽÀó£Ã»ø^cÓk:Õûi<3â•ñ2œéáÞ˜‹¦•T3k)eC9[•fS¦¨%À¨‰ÌzÕÓ Åv H7Õóo+åŸÎpÓ!7¶-%C“ ®%’¼ )½HOÍ>ŠW*(²’_*ÍiL0Ïaxóuæ~cƒ`GgVÙûp\欞+ )ÂXH^Fª¦nXâ åÚ’¯îûqŽ7_Sg=Ösœcxs·äs"9ÞÇÜD{ê%8Ã÷àò™öñHP‰È#CTÕo€Ãè¶ÍOk³P…Ëð'£JPGínipKÙt÷]_êEÓ©¬‘ ׃9gØ?lǸ6€M:}Æ9ÂgçèÝv†`ÿu¸+q[cÔ¸xeŒ>;*°!’"% á!ÂVtÆ3¦ {NJ$ ]ds–È£ð¶ËTWž/—œ”¢+(³ôÖ<ƒ¾¿÷\c-øÈLˆ0¦]eùljÚ7oà¾EÚðàÛ›ÙņâÌwû1ŒGäÔ¥sll8/Jäƒ$d@š§íÿ®À¸œ¶èö÷ó½+‚%z€ÂÄ”íÒ†c6<†Z)¢V0úÝð¼pEÎbvs¾»lÀ#ßDço(ÅÅ;O1SB8uW³ ð=ÙóáééÝþíp€8Q³gº’LàUÚñ'†sC@oy$lk£±ØR6MÆLA'4™§Þa×ñ6’ÂGH˜Û“iõäU¿&ø¢è~Ȳµ1á­òB[¼Û"Áw!¸õ÷1‘1ìõ•j]hŒÊ¥ÿ˜Sž#Ó Ãl^¡5ÚrD©ÑY.…›±òt÷c¸PDè(À*œ Ôž,9a„¢:ýå•*ôU½C3ö'ªÉ~»ÍnàTÊ®.Á›-yëp—ç¬ÏDäñ· ‹ÎÄ$“ØD“-0Hç©nÇ0ÆÜéûQ]v çXgqrVÊÌNâ†ÜðÓõŸwaãpJ÷ZýÒ¶Ø7 -º#$Ïè7Œ¹×çøä¡Ôv¢©D(³A³ëE/¡)é$œøáÛ 7&}œÀá6ø$'ÊSðPÏÑ#,0B=÷uh.Q¨†²Dƒã2 Úpøxª¦ˆ#À¹úǸŽT©4Rä‚úûÇâ9}U9w ¦—x!‚4¯Šp9}Þ§Pvô!µIN㥕ty2#¡›—vOÛ~qÚy˜_ £ ÏñrÓ¾©S•úVÑžM“²+5t~Õó®èÜ@5Ÿª™E#ˆQÿ"«§k`a¾Tó„·~ùû‡mZȈŠJIu¤iþ=X½‰e7|mó¿BÀ Œà€ôÃ4wY8«8EX¥ø0ä.²n7í®SLJì~ûœ˜:¶NQ„Ãaœ°ýRœZÑ=R¨ÙñGhAf]¶éR¥X”ÇYfÊT“óƒu£ ~ ±ˆpØlÂOèU:ÄÃüC·{"5"ÍV)f7Ñu&Ò}qÓä9î­S#ŠälnšJ¨ÏÈM´0XÝÀ:©‘³yŠ{ìû×V+ö˜¹úÇcw¢KÝ_ ¨n?[–¡îÃtí·Á3 `}LÝÓܧ†0¼ùø”Ý¢í! Ãg”Çè×­Sòù8Ý©¡†#7+-GáÍˬdGãM+ËðæXŠ^i°-»"‡ØÙ8@€Þø¢u[ÑQ0ü]àk–¦$Öˆ¾ðª~×íûíÇø™Étc;ôÄökÝÞŽ…ÕÁJZBá6:Š´˜û?ÃT'ûפ´£˜ök O´‘•õ>êpQQº,•.ò~Ê :e…s×É7C&AL7©ŸmUÞl ·ƒâÑÖ 9™zÄ"kiWâ ?wí+¯Nú,дg¼ ø55!bS¼ZI`¼ ·äã¨k­³‹ð‡Y žY7qíB›rŸ)=‹–QÜä!SÚ4d›ÐEž>múw]è©Gãƒ-Wîû»pGp‘|h¢™9Ç¢?@ëÆP‚ø1Me#(»‚çW¡1˜ä‰Q\ÿ ÖG wÞ© Z‚ >œÃYboB›! áç/®"H`49xF>§Ž’0h§› VEsq2þQEJùÑ•:y)}üP䮼ޘ'îsYn™Úì±C„»©2vû±L8 [°ýD;Ï!ð |ÃCï3‚“€Ç‡5áñi;ŒÇ¨±„$J³l“âÎÚWû©iº_F-Pæ(5Sÿ;!ûK§±;s!ú6µÁô±˨„¸Ó ^áÍ£â-_lQ'ŸþG™ÐÔìôý1½àÍ?lâ3”šG|qÝ=toý…EˆX@–›¢r®ÓÖ—é}sëÞ\7îò»¯/Õ´Ê¢GcM‹—pÔñ/"Õt?ë7½ó`¶endstream endobj 158 0 obj << /Filter /FlateDecode /Length 176 >> stream xœ]1à EwNÁ th†ˆ%]24ªÚ^€€‰ˆ¡·/8I‡ßÒ³ý­oÖ·Á»LÙ#ý‚L­ó&Á¶¤N0;O¸ Æé|V½¨HXWñý‰@ËØGµ{ò–c‹ï& ¬QiHÊÏ@º¦‘µ’€7£Ën˜ì±É•DÙÖ‚,8ITAQP‰*xÅk§¯®ÏDTo)Ïøæ¬ñœ‡ß«1Äê¢Eä Íl[vendstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 845 >> stream xœuRkHSa>ŸÛÎNº–Fƒ²“žÒ.Bʪ_]þd”%®ËÔVÒmËM—Ó9GÍ\svqç=ÛtÎbY©`] ºT²Š ª?EýJ*"ñ;õ­ËQˆ Ë÷ã…ç}žï}Ÿ÷åE”2B¥ fwùÊ·µªÖî¬Z Ï6ZËêæš1vŽ4Il‚4C숋UU ¨@£òæ×ÄÉøn ¾1 _N¦„LÕ-Á£g®Ý[á¬n¬±—•»¹…zý¢ìl9.æ,\n—oÞYᬯ­°sæªR.?ÇíuÖËI;7ÏYÅY¬åf‡sÚ¸"ë&®¸p¥±Ë3®+^_˜•ó_“–óN«Ãjs[ìeeã`ÜÍ/Tau‘¹¿á8=†kë*+Ín¹H©½¶Úan¤(J•:}VÆ& ˆ(HÑòÒ(%u• : Çgµ_|ìè ž°½áW/Òwvô¥º±µÝÒCt÷yœéÂ!b¤ˆ®ÂÓ‚ç¥×WVƦ·gq&Üb¤'jˆž‚7w† G˜^ëšý°×•6¯$kO´mõàƒÕLÜ¢˜¯oÖZ=¡ š|‚M°[¢­lÃ+zHJÈ ~ð2ñ7j ³?ÎÇÉëû¼rI`zEèKÿ‡[Ò ƒ£‚èí «‡[ð\8ÅHò_<{î;’|§îöà ¿ü‘éy<%¿‡dšÁ 똸<ÒX~wÉ…Í·¶>rSö.’ F&.d‚ r·–¸vðûÂAð0¼(ôFpøDÚ‡Á÷Ïz±6ØxÀHýrÃÄ¡O8õq8$ŠÐÍh$äSòÍÅØ¤¥1„OÆÒCêbÄ#g°'FÙ‘5ê?uþ˜騤KdЀ=ìÈmâ1È:U¿‹b¿¶½f•Ÿ®!ù’¿ß×ÕÐ¥3󈺒?å"EÀÄ?ÒR‡ô6ÜBû4hß×·}I™*]¦q*¼iŽøo¶¾ÞýlsÓÃmç–0ý4™ˆÏ©Xb¡Ý mû…6h¯tâ[ùÔø‘øç–½°`š7ÇÒXåqZÛÒ%e¶Ké]A‘H|””–¨,rj&€&©¯;;ÄP0=¯Ñ CaùE£<ª™HQ?ÙZ®endstream endobj 160 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 283 >> stream xœcd`ab`ddòñ ÊÏMÌ34Ð JM/ÍI,‰ªüfü!ÃôC–¹»ûÇÊܬÝ<ÌÝ<,¿7 }üÄÿÝ_€™‘1<£Ð9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ0\````ì``(a`bddÑü¾†ï?3çq†Gß·0~ïü¾…ùÇÊïÕ¢·¼ÎØØxyÙØœñºuëÌ™[r|¥ 8Ïùž7mâB¶U\¸å¸XBBây8»y¸öôöôööLêíí;ÁódKßÄÞ‰}}}&öóð201«g>endstream endobj 161 0 obj << /Filter /FlateDecode /Length 6780 >> stream xœí]Ks$¹qö™7;>9{QÑ– o`íq„,;VëÐê±b؇z†²µ]ìÙfsWëƒÏþÅ>;*$:»z†¡›sö×@"‘•ÈÕøn5ôb5à¿üÿ»ñbXÝ]|w!"ºÊÿ½Wÿr}ñ󯕤C«ë÷© @Úôb+7è^(»º/¾é~ñxy¥¬ê­»õCþÛøîöòj€?‚Â^¶·ø¥F¬ûáRú~”énKoßÖß^J×ïïË';Ll·Þ^‡Á éºq÷q£p¥$àÛí:)\w³>ÄOzÉn}·ÞìÛBÁ,ÊTÒŒÓüd·Ý]^ÁT —ìvß^þñúß/„êö~uýë‹ë¿ÿ¦[#a)îÆ;/"/J÷¥ÜuOuƒñ2R¶‘QiS0KÛ o}·Ï¤öî}þ[©îÝ,˜u’£U0­J^¹±F¦‡(­úyíž*¡mor£ºûõ$œï§¿Êd¬ˆÌÎwf–|x(œ«î|ñîd—Ç“Öû‘œ€Ønó~&½Î\Œo-+­…ù“Qöä«õã1é+|¸øDIòHwäùE¡)”r” HJI%¥46ênu˜©NËä£Ö5½Rà>*ßÏ¿¶fåA™¬Æ-e/®í¤‹ÿ|ye¤UÔÝ»ÝÃa¿Û¾ÞnoºýúáîöµÌç2˜WûÛÃëÏÞ­o?{u³Ù¿þìæöÝg¯ÖÛ÷ë×Ûˤå0° áǧý÷ ?ê5矮òWRÀJ¾ÛõwÛýÃÛ7ÝÍæñwûÝÝoßþéõãýúf½U8Êÿçqþíúâ÷h½œS½_i¤¤X¡Ãø+!ƒè…_íoWÿ¹z¸øf%D/Ì÷ÖjõG°g7ªwÊfõX8`}õ§ 02€‘4°PÑþÉÕ×_\TæNúàVã…Ë8}Ü„I‚ —=ôÒŸAŒÇxq¢·ò â]/í""‡Vú2Â3ú *,<‹xø?!:ô^²ÈÜËš^[™{ÁÊç`{Ï]!d¯õ©?ƒhÐ&y1¡Ö#q¸^Î aèÝ"âê•>ƒHAu‰C”ë­:ƒÕKw±`|‹LFÂ_Æ,#j€5¢Ï ÂôÞ³È4ºR¢7ò ¢]Ò¦%¢ ¿ 8ßks `øƒ˜AA[‰ˆX«3XAøë©(ƒƒÇu1–ªÓ1àd¯ÌlL˰ÚhƒˆÐhÓ„LOØ€• –Eæ^fè­`‘¹—µ½4,2÷+ãÃ$¸Þ¨eÄBD(ÜìŒ,2qh5¬’c ÒkÁ¯i©;•qEæ±Á«jµŒ¸‚SwøÃ‰3ðJõ)#Õ,œÑíǺ½ ½ goz¥–&¸3ˆ°n1ˆ’&1XªI bUãuÄÁ Qg°1Þ-#â9#¤{€D©{¡ºÄ Æ5ºÄ îQ¿Ë Þ÷Î-"à4t¯ÅDbtÍ"e@úd’F-!F$ÏÛ"³ÄÔ`1cztHYH\7#3åàS\·€°2Á0ˆB¤‡Œa‡ ”ˆ6¨QËØð¼ÇH5 ÈR¨ç-H%  Ñó2ÈLY‚ñ 0÷à¥×CªN*ôB1HÅŸ4ºÑ§ ™d f/yÞcdîå-õ¼©8T¬“c ê⢑‡`¾©XdâOiLޤÜê^I©)ƒ¥!ž—C¬’E@cÊ¦Ï `g¨.1ˆ–v1ˆñ˜=rÈ$ ‰¦e‘¹—½YÌ`’ß=F&º¬Œó,2÷R¶Ñ¥ ™{™ün‹TOÏX×;Ë 5ek„fº!ôÃÄ ÝhׄL„­]b°1T—Ä ê{9ÄÁYÀ½Œ¸2`Ü_J™dáÀÆPíš¹äþf€Ì_œCÀÂ¿Ë RíÏ û yCu‰A ÷§~wB&YxÈý©ße?4~wBfÊü“ØŽAdÿƒdj 9°eºdÿjÌÄiôºÇH=6$ÿR1È, =€•ñŽE e=@öo,‹Ì½ û—ÇÀ<¶ÀÆxÍ u'Èýu`Ùëê¿S R÷+ã‹Lsûý*HÅ¡PX;`Š2òá8dŽ‘´€ä_™);Üð=ƒÈ‹L”%dÿJœAp³Õ0H% ©ªaé¿<‡€¥ ê ù¿qËÐÔ¤’†KãÍò뤦lê9,WgÈÿµ;ƒ@þ/ƒTj°4Î0HÕ D†µŒh¼ïbõ¾â õ¾Ýd3@.lÎ X“g06T£&dZ•ƨ¤QKˆ ÔÿÎÈL¾#þ—Aì0¤ýÉ%D@.Î `m¨F1ˆvÔsˆUÔsXgÏ A“ˆïpb ;–" îO.#2a1Žzdq’ú_ñ¾W‹€KCâ;Æw¢ ݱä°4dGœC¬m<2ƒxÙË%à©P¦MZ•#9¹‚ >îO ‡µ­R([:nÕE¡vu$·ñ…+‹Á_>ð°Þ^ŠXÚsÝ›ÇÕîý*óVO›‡»ÕÝvÿa·yü|µy8Üî/rjT÷îöÃ!W+!… Þ9°G0˜Å­\iVWèN½r«ë›‹î°o/¯ÿt\\!;rpÈÿVÖ䓉™ßì.!Aš®‡áÞ_BB1ˆÁu·ï·7s)ñ㋉ºÒ;®(Ø L]|¼¿xO!™…Hæ_0¶ ¥Ã©ˆÂÎhí£VLÊhñp|f91ñMѬÓ*#Û¨©3ŽÏ+<ÞGJ?±@IiQôë´nY и҈–2㣣¡T*—%ø’<¿¦vÉ*B[¼äùnª—'(ÑòåøÌ‚f”fƒ–é)\h~Ö9‹ ¨ h¥³p K>7i*¥ ¥Ó”: GTNM­³P¢l7ÅN^âMý“—øTî\ÀTï\â©)xòòn*ž'(Ñ’çÔÈÏSS#Rô,m,V×äÄ7­zòo ¡ü£ËuÏVLFKðD¶4¢…ω˜- ·¡…O¾ ©|òë²)}Îf€0DkŸì`Mí“W¥¦:Ù¢JMõ“—vSå ©žà‰@OP¢Pž§¦:~bQ”X¥6Ï¥zº4½©Z:3e›<‘«–¶HbŠ¢“Èãkʪã3 ­qÀŸYM´(Ê;¼¦r˯™ºV˻ĦX{b,Z­å5åZþ7õÚñ™Ü(¦å­}SØ=Á­ìò’jJ»'„@k»ã'U{›ù5(?`Sæ…ÐTy!4eà¢PÍp´\$EMPSf‡k+ÁììÚâð J¥¼`ñæòðâp´|b8Z f%>׃4j./©R^tÖ¥$¼ÌSSæg×”‰yaæªð¢#ÊuáEZ ÃË,5•a~rM±xdËÇǥṴ(ÊëJSU¹:óq¹âpä§×Ôšy}jÊÏü³›êÏK“kÊÍã3 ÐizŸU¨N”8>¯œ)5(/ó¦ÊÍKª)sŸXø¦\Qtd{—Ã[$Ñ¢(kÍ›Âùøi•t2\ƒò ¹)°ŸXr§R”ŸßT›_²AM)žÌ´:bz¥?O"|5¾Eâô”Ÿ^S¶ç9oêö<ëMáž7/´t‚­ÝϬæG4(?½¦ì?²Ž‹ü-’¤(oèqþÁ4çNpN°û퉀‰R°q67¢GÆgˆ2hP>&iNð‚š4K•Š·‡N¢§xålðÏ¥9?ÀÇ-ôo5GøµÐœ*˜2´ZÓ‚ÓBjϰŠÒ+`ÙžÎ,L>G°DÌG (%Ê£J›r he‹° ŽûH‹¢ì‚jÏ °ñ|ä`A™æSKÂ̇u·œ:XT”rì`qÍ•sË"hðÃ5'x4GN Gϰ‹®=|0~Òq„F”Ÿ_>¥P Ø ü)…IR”_ Íq†ñ™Ò€Ÿy"Ñ¢èøI&ZZåõ¡9GÁëCsb|æÑŠÈUƒòk°9q1>ó F¢ìfg{4ƒWšæl/ÐæpƉFô¼¿(¦ã“„?žÑ"Q z‚+zŽƒ÷ZÍAžRs’ƒÈÍQŽ"s|‡Þ»i8z–ƒ-!´‡9Ø«=ÍQ5ÑóEu­=ÏQئmèy~¬æ@[jOtLn›ŒFOtð‘#¼›3¥‘‡lˈòh›C“+Ê÷!z¨ƒ5šC…i:ûæTþ¼¼ÃüòóË;Ì/ï0Ï£¿¼Ã¼ˆ¼¼ÃüòóË;Ìyy‡™A^ÞaNÈË;Ì/ï0o_Þa&”_Þa> ¼¼ÃüòóË;Ìyy‡y yy‡ùåæíË;Ì/ï0—^/ï0³ÈË;ÌÛ—w˜Ï ÿ_ßaþ&—» ñ[‚µ\ÅTôë/p'Ðåè"¼ø¶ ¦ XÄeœ6 ±<£*äˆÊ&7…N¹cÀ ÄÖîÍ7ýÔfFTªo\çS35àŽ´k; £ò~Lî(0¸%nú(ñ¥fQu”0!E:JÜyõG±]÷ƒˆÒ)Òì*™sêÞ:e¡¹£ÂRŽ`Hƃ䫯'¨0Ö«[AÒîc½ˆöƒð ï#äŽ:…is?;–GãyÈ^¡ôCƒH;‚‘ m?;Øl s?™ºîgpË­ÕHj$С¿%3t¸%ÚŽfèëŽ!þ¹cÀ}‘¶#„"<©#DCÜ/œšéóøVi´.ïúäŽ2/á¹£À$×´Akò¹¯ÜdH54>X´Ÿtvn¹ŒH•¢ {¤4àºD_IF›øziÝÍ`æÑJæãØ€©’¯¾Àšw|³Œ±B7#{PW5#hz¤€YáåÜÊÁâ“gÍ<…¹þ+}>jùÜjBªVFˆX]›[MHÕª¯¹Õ„Ì­`ÕŠ˜ML­f¤j…G DÍ׌T­ŠêÏ­&¤j@Ét-Ô™[iÎX— ñ\ÚNž&cÏŽ)œ 6€¬‘`qK(#ÑÀ¦ŸÅ(4îXÚ<dd0Uo@¼åÿ|–ít0˸9ˆÁ˜ßêÆÕxèx#[Åt¨’é’?#d·›nü!‹¿™2nƒAf¼(8 ‡b|$ZE £ÂÂâIbl#)¶$eÌ#R“¿:ñ,„•Ó¨_]^A8 Ѝ»„ÙY/¥ûüóÏã§èa¨Ì Oî`JÆ¢:(ðÈÒVXgñÉRÿ7ÇÓ•F[÷UÕò+–¢îQü…ûÀøÎ1 Ú";Nó uà§ Éx1!îÛz îÔ€¿Ú>vÌÉK]akƒoÌüov‡xõ"êŒlnS\ØUk°<èýòª…À#xºÞ)yHŒPš0ØÁãû#WuÓ¯¸a1¡œœ)¿ÊqVû%(p‡Gª"ëWEÔ°ºî«åH a”á-g¾rSD×6’{279F´ÃElTîP,AÞÙýÈŠ]àoqŠؤ©ÀT«ün€Ì"ÏuóXT!Lª8ŽmÖ)/Cl âž´ïˆIÜÐ/ÑŸâ&4;êÃǵé»-Í$m¶ù¯6‰­|Œu4 z ö#©C¼¹46SÑtÆ?!6 të{:J‚Msåf‰±q¼…å€î¶pñÂŽ7 ?O+½û›ôÐ@aHƒãòƒÌN (óÞ*ܪVa£1‘¢ñ®~Ó½Æ(DÁ¼éxŽ¿J[|åß2ØÞ8åå`àTQCî)!A&D«m£ ÿ ¯é`þUVÊîÍå Wì°POÙ›îWÿ{¯ÊÅ–ÇÁrüB‰îwi!J0äNV\íÞ”ÄÁ¿¹„È Òñè\¯›åiâ®o*Í1´–ÇŽÖ€ÒÝ•öð)]+‹ vOÙPƒíÕ˜ÐÜåo`´uþSØ.š˜‚Èt{.²þ$Q21=ëÊU«Ÿ‰`®(S¾ªpÃ"^¼Í_ Ñý ¿Òrc«œinÊßv'óˆ Ø¿&8ÐØµ ihL¾#¶á飨 yU®ÞuÝÛúáò¸yÆÔ1OíÈÐeÞNg°‡§ªÇ‡™ê 5å°h ]$ãyÌ@¨ÛxWË›ŸäR‡«”˜&#Xï(Ù`b>Ü$·ìÒ†Þký±Ö7NZß{‹¯óÖ _Ÿð¹V6±·j •ñfŠ÷÷Qað(ÓÝìÒ=¿Gĺ>üì{@êQm‰ì§}6vPQ£Á-Û¸ð”3/¼’9Ó)?Tyk¯ „ ^ÿ%CHXÓø†ÉfãKc˜–’ PÊ^¡£¯üø4Ñè¨1s 4ö’óyI³~J4sCT3i³‚„ÿP6@”Ë›ø2ξ—œØ¾ûi‡l÷ Ø}o4îþ8D‚ƒÀ¿{ŠŸtP¬]ý7.lv¾0˜™ÖÞ¢ŽðÑ­žÞËkæPMöêË—ðÑuâ‘.LõýÉ$Ú"nKF ñpCZóõÍܺÀˆR‹yëg›7õ^^& Aä˜}<&X¸:mß1Û%Åë¼Ýl7‡M»¶"Sòx“VÖÍ.ú¨ô±I3žö'¶É6Û«- !A%ÜR'ÝšD%!XqTþ1û•>åëÜkÜ+ÌNo¤îæ»h¼þȽjvžÈÅíÓ¥õ2nÂè´ŸøåC$ ŒÞ,™œBÈÛ•È(à:[z­’©Ï7‘oÒEó!h¨h­¼›Äcí‘'-}gí¼jß2¡W‰n£µN’X—ÆÝ}ÚR‰Á¨N›O:ïTmÆ[²\Ç6êN›òG»m)²î=ÒR²û%>–õ²ûÅÃün0Š(Èïö‡²„@å¹· †ôtŠp›É:2òÉæ§Ê´¢œÛÍÏ$*KDµø`ðiÐôk K=…¾&š m’Ök#S} 1:ž¹²ô1ž^Z7‘bŠŠÁ²í7ÄýŽírñƒŽ›7$²Ž³‹DšEˆ²Iüè¦êQÌM 3ëÓà˜ég¾Ê9?ðXÄE&§Äò×ïQê@y€¥üãñFðqšâI§ç¡üp¼yÙ8Ù%3œ§†tów'mlaMâœS˜‘-!2a|‰ØCÜ!â @EÂ[ˆ® †Þ^gKHÀnƃ8ˆ„AÈ,·O7ûÀñe1Z_'Æ«ßþòjý$Cû]ö‘ ”£t“Ìm䛳~ר´°w¹Œs¿žÊ’¤@¿Gc’‚¦ãn_¾Ðq+·Ã&¢ïÛº*iÖOì)MÚ½ÇöÞ§Ÿ&cÒeÀÂê¦õ±‘ÓeéX_é.yN¤]¬ÙN¹”Ï‚K ú4Uú¨{WmNAà·pö\p‹/åUݲǂð×: VOCï½Oß1ýùýÅÿm Vyendstream endobj 162 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1030 >> stream xœ]’LeÇßk¡Ü +ÒK%z½ètCBÓmLGb")0[…µ #¡cí¥üèA…AqÈ~„Àx¯Ð°–`ípeÜÍIœn)G‚;e¨ ê7câÈpfqŽ÷âÍhÙÁýóæ}ž¼oÞÏûy¾ˆ Ãâöèõ´Þ²5ÙPj­¯2;Vš/ ˜ðœDx^ E§àP$”K¡<âò_÷”¨<Æ"ý3@Ša…V:®q:lÖò:j«V»-99¼¦R'¥ÓP9惕tÃÛ•6Êl?DåhôêMº!Ü´Q›i;e)-7W•Qt•_º*0fŒT–!· Ϙ¨yšêI Àí´Ãl±ViÈyÀt ìz Ö…¿"À1¶c¼$E-Ý+­G¬â‰¤@Íq…œr‰Gù|<ñ©ÐTka3iA-²;¦©Ô¬’ÒÆ&’¸6}ÉlYs-´Û‡¡O}Qœ³¬Vh“Ì7 ƒ+7Õ”-#‚¿ÍM\á¼R|Çõô9õ£Ç[9ô‡q<â¥B1ªR¡8íï"v³'*o%-/ßZBJ2ç”*IŸ–ž®_¸½xõ«ùù«Ùòÿø(‰ÿ“÷ýOì‚B5a>]´ËPm4‘Gߟoíµ‘/¯Â.ˆso¬AïXEÅˈ(æÆ77ÝØá&;­çÚOAܺÿÌÌ…JáîsÊÏyÔVV,x)«mpyšIdZ0\̯À5GÎxX×' Ý 3äò2ïC/ôà uŒÑ†ö¼“{Ûô EM»­0 'Žf|™»8:ëû‚$Ò*/ü(!ÛSÿPÁ:xØÒˆlSy1lOÈ;0zqfùZ¿ªò:‡p ²+l³vÅfìkw^Ô™JŽ'QnÔC kø Gæ„uì( ’šq{â÷o#BólRVVFZÙÍKäQÓ¡ÿ-§ÛòX¸è ¡!.„,!epÚÉÃi´¯á™éxB„v!A5p„5:÷·U˜É ¿­›†¸6S·½Þ]zΪn¤Û«a ,ï§»ãÄRZ~uCÁ¡ ;îîA"îÎÞ@ÅLXA¾*k1Á+]]ÝêÁföÝ1ˆÿ:ÿÝÏj"å(<Ûzþ0;ì tö1žª‘qïÙ!Fª Loퟜ™™šüŒ$fÓ.O˜ ê{âß*“®$1Q79ÕçþpÜOúûzá5ˆÿ‚$p›úIŒ„†êÃâö=ο¨zd‰›Ö„Eñà„¨XSÏ®Í3D‘2¡H)ú:¤bköJ‡£²z¸v„ |$-^!Ý‹^÷u22.š!£#òiù:( öô3.†a:™A·\ÎúÃÛp^\ï¹zäëørc Ïendstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2085 >> stream xœ…U Tgž03*µ6cDŠ;Oݪµ¢®îR=]ÛŠoÀßžäBh$ÌMx#Ä$„W„+º®ˆ¨lÕõhkuw»bÛUw­µ.žÓöú{vwRQ{j{zþsþsæÎÌ}|÷»÷“2B"‘ȃ‚CÔI‘Éóüg‡ÄÆ¥'F¦º­¯ ¾aЇð+)àˆÉÈZOð’‚—¬Ê‡ñ¯ Ø—Ñú „T"Ù¨Ò¨St©ñqª=ÊßÌ;ölñ^¨ŒÒ)—ø)WGF'¨µi ñÊÈäåj¿`?åµV4Æ+g¨“•Q±ªÈÄ]Jõ.eXì&exè²P劵áëBgú½×3Aòdu@jÚžôÈ謘Ø8U|Bâ"‚XK¬#¦¡DNl –K‰­Ä2b9±’XE¬&‚ˆ`—`Ä¢ Q@|!‰”\÷[ÒßKÿ"›/3z’žZ2ƒ¡6Ó½”Þ‡ÚÇÿOòß›¸„q®B›|¸Åô{3­‚v’‹ 4–ts(‡ê˽…Ǿµ&z/Ë“ÌU‡r)o.0ò|N>»ÓË…µ‹Á¿ƒçàY8 Ç 9ø ô.š}ù"Šk‹š*‚‹° Üð¶]>D]ñf& Ï…IŠÃ Îøwv¿§Êey$!™VLÿ$°'D¨Z¡šÝÀ2rà8‡R_½{£¼œ7•³ž¯I«Í=X]_Þ⎷•0ØÐQ+ØÚôVySgJ'Òvz3Aès4A})Íúê¤6UydEXõ2+|@»¬Ãß–MO°°æÂR¾èJ(¶sHF1F«Ý›ÃšŒy¹&#Ítt$ì0gùbiôúõóe´põõÆ:]MN}:ÄÑ‘iás$^¾­c« Ì_Ffày-‡§Q:3_Vj6W”²Œ¡ù˜3åˆæ,ø<ì?ó÷Q¤D°.¬•Õ¯s ÖáÍ|þ,¦|NJ-OÙ™íü‹:‘Ò…•(˜bT:²hšjÞïŠèlŠùøŸ¸ƒÌ,Cô`Çùëìf:„q]’ïy-ýžÕëòÊNrè; ¿ôìÕ”ÿŽ%ï-ÌÿÓi ¾éf0GÓ8Œ‚•áR×è›4×à3h¿VQG›ýÈ'¼=ôŠê¿é áwgu!Ôšƒ> N÷²h—áHd÷®öˆªx ß ^µëPQYMCEKSæ,c!Ï›¸º‹gG€>5°ÓŸÛI­+ZjM Ré6C,½ønzÿ@_Û¹zÖ²³%ºèº~ë'~ó”bAðΰÍ1]'ÕôŸ?Ìžl(9lqÑ@TÿÑu‡¼ýò¹x ®y3•ÂD4VQÂççó¼ÞÈj…h#€\<ˆfpŒ ½y}`°û|fX=›©•ºÁPÃ1Ýå­ÅG>ZqfñÔy3Åñóùbî#4¡ Q¸'aÀ!(m'úZ*Ðh¥BG°T¿ O$Q›àS!Ž€O¥t,>Gæâ9ž²üÁ÷4Oâîǯyî3óu,ºJŽ6ÊfpÙ»Ð}R»4]î l}ÞL¬ö´gÂwcÃãžwMOK£.-‡vÆ\<{ß›óÕg½—ËK¹%&Ê I—²GK3åIññ…™¾É¯D¡h¢«]'º4q \M˜@÷¹ôƒ{m(À&·P¾¸o T¢x~“Sý_Ç/ãI÷g}ƒd½ßÔ•òù¢#›¾",~#D@DcJob ÂitŒd”%%`©z5œW0aØ@–£i;ÜWàD ËF7ް£  ;zïÚ‘Úžu!ÔnµË=ÆÁí §ožìÉmðfd„°Q˜¥¨ÝëL`™1ë¢A•©Ö$5ÇU%ˆ„ZüVH{\U.ÇÔ5%© ªðUÐTÅvdlÔGEÃf:àþD"‡}7Ð<³LÈ[{ ͉¥-p*¡¾¶¾vo{VП\¹pËeèIjãZ­j›W¥&#Ÿg„lš‘yè+ójX¦bËÁŠª/À¤B ˜˜?átŠ×íÛ⣖ýö1­[¾a:˼»úòþ6{k½c”2{S\ñB$øqÏG9ÚêQÑùøEÑY½jwޏÉ<øAçÿ’êü²æ#MODOÓ…^’z3H$[Úí&[QY''sSîg+~´A4ÂQh(¢™É[„aEc¦=#-+3=­6«®Ñ^[ï^=wN¹ýw!­»Ä‡}¨¬ÏM)µ`ì¯LêÅr<™·–Añ?nL>w²³ÔeK(0ñÀmáÕ"©R,>ÊÊW`­ÍÈV”ÖSÐSLûÏ‚Ñ$žÞ‚áA]½8Œß¨ÖUí½NgÊyVÃ3FÜ0ȉ v!ÍÓŒxR¢Ôÿ|ד8£>†PíäÓ!)Z$ø(š´¶ mFvjª3»ÎYgkbñ°ìÛøl›°¤©+¬6Ò5Ö1Ž+ S{¯qÍfs©Ùb)+î¬ôòr8ª‹-e¥KII©×Kñ½Šƒýendstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4051 >> stream xœ­Xy\×–®¦¡«T4J¥¥Q_&Ñ(n¸DÅ5 !"à‚¨A²)6; (ÊÚt÷¡¡Ù÷F@ P*¨DC܈‰+Šb2f3‰Y4æÝÂË›™Û IfžïÍÌoÞ¯~¿þãvUÝs¿óï;§$”¹%‘H¬\ÝÖ„m÷UΜ5mM@PL¨o¤iu¢8V"Ž3ÿ"œý4¼/Å,¥`i~z{Ç ]…^B«GRR‰d}p„SXx|dHPp´í,{ûÙÓ¦‘_[¿x[Çé¶.¾þÛÂTQÛBl}•[l]¦»M·uS‘ÅÛIaJ[¿€`ßÐ@Û°@Ûµl==–­ñ°u^³Òs•Çäé×ï E½® s _åýnL¬‹o¼¿Û–€ÀàÏÐuÛ×ÛÏœ5wþ_'Mž:MNQ+©UÔkÔjjåA­¥&QžÔdjµžšB9R^ÔRj:µŒz‡r¦–S.Ôj.åFͣܩùÔ(ÊŠb)kʆꡆPC©áÔ*ŒšD0£Ì)=õH$é3 6»/Í5·3ßi1Æ"Áâ¡ÌYv‹VÑ×™HæÑï!†®zp˜ÿ°–Ö–yÃ=GX(ñåK›^úÛÈìQ¯Ju×ê«VkPã±Ô(\”-VˆêBþ]Öìu±b´@¿‘ k`+  >z¿òЦœ°ƒ€ù©*F÷XÆ>Äã’,”ô§yi^<®¡½“À…SÒµú¨: VËôŠÝÐÆ#wúÉgg/\(ÙàÎáÝ/¼sÄH¾Ë§’«ÄwT’†nÔÐ-}ÐV9’O~Œl9u<¶Â/ÿ<ÉÐЇ?"+nq¾‚Á-bSØÆ÷㠼˔'ÂÛtÃa8ç÷µÕ9ZÖ‡àp|Ý–}ïƒ+’=ÌÎÚQ±Bß AÒñ@Œª•öÙ¢òBÈIJÖ©Ó¸<3Ëì€Y†=£6t­:zíÉ·³°]%¯ß š"`J «’GÉt’ÓuÚätÎk¡÷Yç&'°Á+ð,rmÆþh¶GËÑüèUdƈñ:ͨÇ IUV¿v¡²nkv¤h@¡rÄNûKforÍÐp—i‚(oBôJNšß¿õŸ"êHWD¶n¹ ¢yˆäüâÑx˜óœE¡Êb£Š‹®ÞY õ ò£Á™…e ûr[à ãÁ±7ÏÙcsžàðCBŸ… AéG#í[޾”#O<ÍÀ 8üXY)»–•È÷×Óšd'N¥DeèM4Ù!7Þ>SºikÞÞê»Òo0¯È|´¹¼x˜nÔçåžÈîÁ'þ­ËÛ–ÂDð7¥vçy²ºÜRa¢Ù¯3zö÷X³/£ßDVÞ^¿y®rF\:§CR+à1/ U½þ 4@\…jlšJƺ8j ›y4“~ØòÍ­<=è²¹ÔŒéÎ(«“Ê*+‹ë8²sÊ|ª0ͪ@¥’Æ6ß&EO+‡Ž­ûSòƒö…ç,/ÚžãXç˜}{Ž}$9ÓCõ\fj.dS† þ×\§ÆÅ¤¤q¡{Cs¶ƒ‡-_›Áƒùýa¤K9“T¬Ù«ªØYaÌæÈ³—o<øs —Q¡Óh³3@L¨ãy<ŽŽu!3sO9gÈ}iÙÁMPÌ“öÎ’)уXíÄI}ó®´Ï©å¡}¶Ã6˜ázF¹þ2kw¿‚Æ2l±¯<Ž®>zåþ¯®xY-§Oú‡„U6»Ÿ™J»œð}&ö%„Mërõnõ¥|ŶƭyÀäANœèCÙ†KÜ`IqŽ«ÊêqWLWeÍ>A=h¤ü£˜µ´“Òw‹3<(çP#/àñD5Øà™nZÐ{ £¢Ùë_à}2,½}úbã…k܈¾HBˆ. wµ“s¾;ZPÑNš‚¼XOÈ*¸ÆU ²(­(ÉÁ Š»’`%NÆíäLÿôž?˜+«Ñ÷’òi€^¨!ìy¶ª@í¸âÅ÷’M>$2-’AE”è¡sjî ‰4ÿAé¹ÞK—8¨?<͡ϟýÓ šY<¶£Á ‚¶ÖD´î>E¼>„것ÌLš ù9ÂKÑ^TˆÑRQ-N$)Vj!ô %}XkØI¢U«wOÀ… lŽšÔ%:ƒMíA¨à:R»ÂaŠéæ³PQŠ^ÅO†D½ºr!GŸ[ŽF£;Šüªò#—2ɉbï>w ’S?¡)=Rq}ß+rÓ[œt[gÕW&Võûг6­òŒ]•×¹kP7T@3S³coHtDbàÒ.·ûŸ?8‡Ì8Ñ×DŽËÜ r«…]±(˸·÷ŽÊꃫȯ«›ð£RT~%?ãA¯‰JM €Ó¥aѱŸCÁû½K|€qpõtQ«kÊËkZƒ`'_}øxE 0Ç>˜ÉûÓø}Íây°ˆa—,ü6òü'm-Ç[¿){_Б±{:Kîðx^»|²ãÖÍ^~ÍÇ‘-*jÖsƒèâ±»ÅÕÝJÁÊxn¢Ü›Ö¬ÕŸ€Þ LØÐæGC¼ èŒä Ø `_ÃR´7½„`6ìÚÚ&¨äLÅça`gz òÔÅ¡hr¿™Âg\|њ݋ÒI .†C¼hN³ ¶—òÓI‚÷þqøãä…Ð hVá!þ"oˆ2F…ÅÆ„GTÅÔ6kÎIš·™u’ŽN´¢óv§TLD®r8ÝÞØæ]¸¥›Õ+6{Ÿ„KÌ•³o£ùUxîæŽ4oÏüyx¡&v¥q[Ý7^X^äCH/]0kÂÆrŸþ|Ó–¦”«ñM©gKÒ?ŒÞç Ì’uKç{»ñâV·g\Ó5êò’ž[º÷€¥çdê‹r¹ÆsÍþCþ lùÝïM½__$‰xÌ ÇýVGŸ ghðIo£¤OéJÃ@é MOÄ+û“ø=±Ü‚]¢.„l#œ„½{@ £´‹Iäaà<9}Ê Ôíêï°©(Ì,bSQb¯"oùÑÛĦú>úïãÈ—ïõ}ð¹<|WîØ’x˳ÊõÏÓÉOÿÊéäÿPOS VüI8*HÊŸúHÉkÂn³V >A>€Äy]Å6‚ŸZ“ªMÃSû• ›ÄU’Ön”G&±µèºî©ïuûÝsªò‚Õ°T8?Ì5Ù 0v¹ŽÍK-þ,ªîÃÉv¡³ù¦þGèdÉá]Xœä‡Í\らãºTÄ!IÒ9è†+¤ÑºQöqùåSûŽy­3ÚøFñXÎÏ·Äá‘ͰϤâôÑB(=[SÔÌ‹çéjÈTqQáï¾ä”Õ„³gj™þ :H³{6ª”ÕéB#¹~€ºçS%\EO¿#2juâ»[÷à;ÿ{ÖlšèŠÊcdš„ÔµÉ;ÒRÖc°›¬®úü¥Ú†}JŒ×ölûOcm‹  Œó¤76…¬=µ¥ûëãŒa)ZÐi8ã§Ǻ€ù¢}錹^o¯YAÄÇZD‰zpãØ:äUó ®³òÛ^?ÒXZµö¢e½;z­Ù7’¦›åÈfúW¯ÏÚº(,™«£Qz©¥ƒcªš“ŒÛÖœÚ~< I1¥qµ{ËK…ö€Ssˆã+°‡ãzdéöÇ~¶I|Fód*ÛÞq‘ƒüÉÄ»ýlÊž”Úäp…éiþéë3B`H)WHªx3ó<@Ñ¢©IdÇâZQMkÜ1k6”„¶@œÚÞ:~²îú1øœ¹?ïÜŒIo9Ú‡„Ô‡p…»2uW¼öª÷{ï:ŽÿËòGHú ÷ çŒ~•ƒ»×êm˜éV°»òýkOŒéú´õòµK븪~V¾xÑú79Öj®ã…{·?ºØÕÀ£á kŽ…‚»ÍŸ¾ ±÷‰7—Ý¿~¿„´Wÿõ_Ø©ØQ%¯‹-‰ŒSEEWªªëÊ«öphÎè¿[~pBìÓD•äÇ)º3äd<Ô'”¿þ‹r´кÉpÌ ¡ù¦’drÔúŒ]N“½¸ £m¿³Jð°vÛ±e¯K!0Ù}ÿ_^ŒâÈ››^ÝÉh¤bV!K‡®$`2ÔÚt hËøŸ'žÅ€7^· ¿I°šœBú “nÐf÷^ûñwêQ5¢Yš|/‰Ež%È©RŠÖgÈ/ÄÚ¢Œ‹‰7Æ4”ær¸¬,½ÉÅ@Ÿ¨^±Òç}>C£ÓB£6¨ ùÝ7m:ú;~ZÝ!)DÅRTƒVË;p±ç3v£†X ˆ‰&ΗWö'ªè±{D§RV·G& íÆ 5_f9,‡3õdèÍÉÎÔ·”ZZVÕ•ès Yz}vN¶åpŠúOD½œGendstream endobj 165 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 479 >> stream xœcd`ab`ddôñ ÊÏM̳РJM/ÍI, ªüfü!ÃôC–¹»ûGÂ4Önæn–?…¾Ç ~áÿ)ÀÀÂÈžž_íœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡Ášz讂ñ‹KR‹2‹³sK2µ»˜Yî~_Ã÷ŸIXŽáHÙ§r¡ïõ‡#‹ 'üHøn*Ú½,zz销e &Ô÷sô²OïŸ6aÚ„cË$–MÛ6­{)ǬºyUÕuµÍõr¿íg~—ïžØ3±{¢äìæÙ¥µ5Õ]r­ìÂÝU½•}US•$~3^¯Ÿ\7³º[²ª®¢¦`wýÂ&ùcÓÚ¦µMo—ìd¯oohkh ((hHhè.䨙Q1göŒ™“§Ë}g¼^û[žUxAkWk«Tõäê…r³ºgNëÍ!¬Ð=»cvçì†ïlßí§7ϨÝ-9gƼYò|e ~8Ïúž?uò¶5\×¹å¸XBòy8»y¸—÷€À„ =½“ðð,¬oâ¤¾Þ &òð20Qüendstream endobj 166 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2095 >> stream xœm• Pg€ÿa˜éÆà€4Œ¸=Á $êî&nE·ðæPÔÑåäÃTxà ȇ3ÂJ{ÄÛuMÕ¥\³I¶*µjyPYÝ×ÔO•Ûƒ‰›­®êª~ÿëwýß{OFˆL&sYº,t™Yz÷«iŽ•Ø®P½vÈ»o÷7,è/º¡]ƒJO®M¤Â"¬f^FõúO_Æ#a¸»t~BÏ\/‡-½¾HÏ ›ÝÌ I5‘AÙ÷gþzÜ–5§oŽ*ñ¶©OäºeèŽåè.{ѨƉ3‡éïé‡A“©†ºÞ÷Ç?àÇ÷†Ñ…§îUê9@ å(Hî‚suÇùúý¶3Ðý;’m) ëYÕkÙ×uoÃ~…PµUžÜq¹è¨>Õ¶&4~íÒL 7Dçþ*è¸ÝR½æàæ«fT½€œƸŽì¶¶[/™¿r˜˜: Ý¢w‡[Ï-Ì¿åÉ刳Q§†ì®äÏÚ eŸÔ$•‡UÀ^õwzŒ‘yË.K¡ Ø&8بý†©‡ŠÜE“À§Õ$—Å»•õŒ?ºíèm_réîînÓ3/=:¾ëÏHpVíY«tårSœÔEâA†þè+yä!™Õ`.Í?Lñ?^¸õ Gúá˜T|Ao‡BH„°ÉÊê™ ÆæÂÃò-æQ%½î…CH&Ñ<b¤g*$JZHFP¢gz¬Ï¤4Ï ÇÌ ”`óâŸG›š ÈjÒädC2HVOZÂ)iVÝ”æû”Ý¢{7®²7º¤AâŠîžÜ6ñ)f¨Qð˜NYkÌÎàq¡¡oA}*0‡ë뎮g¹/ ‰zàSxˆZ-u÷=D¦%ã6ì1@($\Øû‹¥Lk×é¶‹À¢ èøPít©¾[¼"ÈA=2cüfH8ýÄ/¯-̧ -–àmüxWŒúd®ß¾Þ°x!hvC‘¥ÀZQÚX ]lgFSJª1'!Zˆ»v÷ÊõË­<Ä åµV kÔÚ¯'I­-ºô¹õ ;à„ZœðNðä‰éè¤®Ý {s‹‹ò ù´¥ës¢¥Z@ÿÁK€¨îª3›k´\dî΢¬}ÇÐùž²e«xÎFK¡²TóxâïŽ![®«òVA”Ku¶TÉ+´ƒ&>{;^2ÜÀ/*L×0k{×”m–ÜûùΦ>Ôë_3pÊ_N75·k×1Ü|”9r­¹yq‘ó¼© püW§áBK¯¶­_¨l‡ËÐgh0Ú/ØEmbK;qîk¢é :?‘‹û¤4ä@ᎢÂ&>k}¸!LòãSŒšsZ¼¨l¨„ÖvÓÐÚ³Ú¤îÕGIGsæ¼O'Љ/¦áoqÖÀ«:í œ¨¦Ê’^K¿­³¥¯¯º Ð J¨§%Ù¾?æ¥í`ÛwDUH<¹fìõ–‰þ w™†ØS½úóÚPYœ×MqX=Ü“œÓ•<0ÐÕ5ÀÙ“:ɾFY»¥8(­Ðo†»ùK,ÏÚ-¹H«ñÍ/„^$ûƒä¸WtøµizÒñÿ¹Ë"òTVƒWäx CÔOé•iŒjO•¸²7Ú*«”Â8T¾ÇsŒLuvç÷:­V‹¥¤ÔR^~üš³³PÖ_SVe=TZReuOÈêZyendstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 168 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 447 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ûÇìi¬Ý<ÌÝ<,~( }üÃÿ=R€…‘1<=¿Ú9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐ]ã'—¤egç&–d0000j10v1012²ìý¾†ï?S² ѲNåŒ?f7í^™<±tjê¬Ô™i³,ùε¼{#ÇìºyÕµõÍurI…)ù‰Å³¾+HôLì™Ô=±sNÕ´ênŽâæòÚ–žæžfù™¿Å§,OZ*Y7¹v:Pª¢®¢:wsëÂFù5k7TýæÊïN娞Q1oöÌé“gÈmYºiùÖŵ¿Å$ºš»š»[8j'—/ž=gÚœ^¹î¹ó:æ4|‘ØZ¼)KáŒæ™õ³»9æÍ˜7[ž¯lÁçYßó§N^À¶‰ë·KH>g7÷êžÞž¾žÞI=½“óðlèÝÜßÓ?©§JïT^E9´\endstream endobj 169 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1660 >> stream xœ…T LTg¾—yÜ[@.ã°k½3±Q ±˜fÅl»Q«ÔW¥<,jDË{`˜Ž@‘‘ ÌÌCyÙ*Ï‹(T†UË"[j›Ö„-ÛÝífw©•l´I›e˹ä7q/µf7is“?¹çÿ“s¾ï|ßGSr?Цé}û ºÂ¸èÄÌìb½Î´\ŒWÓâÓ~âƒK–¥tÊ P>õ4c ŲL ÆWWR2š~=Û°ÃPTbÊÍαhc7mÚ-qÚŒíöíÝñ|ƒÕœŸ«Õ¾¡Ý³?FûªÁ*sµQ†BmFfŽNŸ¥5di“3Sµ)I;“´ñ‰R’ÖÇüt¬ÇÿEm+4™Ì–âãodfål¥¨µÔ*zJ¢’©ê õ2µ“ÚEÅS»©ÕT°„’’S•t0mö£ýô²5²"Ù'òòŠhE2VYˆ‚Êü <"ˆG¬ô’e•PÊì[Ói/±.1áÕmö·Ë  UUe$ÿÁ|xEž%ç%'«gFêú`Pa˜DW©íÐTÛPÛp UáØªœ"ëO»ìPý«‚$0òzæJÝu¸ , DZ)Ñ¿T‰·AšÏ åžP”ÏbÖ¬š³‰¿_%0\r*˜À)°˜ÌÀß¡ßpÑâÍl;1¾«ÜÀ:¿Qrý$¦Ð3·›ÎÖæ¨ vK}®Õ¶»Þ‡÷¡Í9é`f· ®jpÃ5}ÿ§ëØvøOÊžø6è¡ýeóŠÐï>ª5/¬"ÊøÍ[Ó2{/šùSP í,1œÿC7:|«ÿ2ý<¡4Ab¤Dþ´¯CÐûBg塀ñ)q¥j°` í€N·ßÂ;”Ü7díxž¬msMrÒþ­Ìv{˰70£-¸•¼“q8Ë*ÀÌu–vwv¿3À=¤›³(›•ìí¢‡&ðÔ„LTb˜ ®XûŠ»s/d7n;klØÞ7ÙÁnß=®Zé«—¼ØøA` ·Îóvc]k}]}ƒ;pEýxa†îendstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6051 >> stream xœ…XXSçþ>1prÜHŒ€´çÐV½Öuuµn(‚(àEFØI!@B€øfØ{o.Ô:ªq Fí´µZ­õVmoûþ?ïóü¿$(Øöö’X¸èÝÅK&}øÑ²©ï¯˜¶kú öü“ \Wb áFL!¶ÿ ¶î„1ð$¶«ˆÄjb'±†˜E8k‰ÙÄ:b±žØ@Ì#œˆùÄFbñáL,$6‹ˆq„aMð‰ÝÄxb! &6„-aGp‰‰„=aI¼MÐC 'Fï#‰‰QÄhb1†K¬ ¬ˆ58„¡$Îp>â´ ›9¬€Kr›,ÆZ$Z|j9Ýò,éH^åÍçÝ£–Pß ß1üÄûêßì5uTÿèù£¿#snì”±!cû¬âÆÙŽó÷Ðz‘u71ÿæøãKö‚\ÁOB'œ´ùÀFb;Ï6Íöªcewi⺉ßÚ3öáö­öÞ²zkÎ[oåÁö1l ÐÃ^½‹Þút5Øð±Åm‚v PÐ{ Œüiç±Å^Þñ!4ÿFSf¹/½œLƒÐFPÊE½{¯àdIh3>Éì+I~ó¿îìïé)‰r¥QT(/A„Ç5ÇM3cðÊizxMÏùØ+ \6†  ÕÌŸ%²œ9Y!«'Ó ´xòZÑ+ós\V­Zårëáƒ+ŸÞè»ì<—Æ H=œ¡‡¶¯ÁÛ·e•ƉF.xŽ,¼öÆ‹‚hþÓÊÑYõ_7îE¶†Œ; (È}úZ3+'ÌuZ¿jÿ—gè>ü… =—n\X7ÈêWôœ.¬ÀG8ˆÜíbŒÜ.ö$Y j…B £C[ü«=…ÈÉ35ýh*$ûO))aÿ®!°,#Kš1,h1ËlÛùÑÒÕ¯ßÿþ¦þöîe.´9Lb=Üa:¨µ¡Ëà‰ûlæÁcžy©èXÚC1´æ€ØÎNP[I?¸@#k¸ƒä†*w2D›oß嵫uÁôËá¤ÂŒFÓüR*¼b’?¬]—ßÁ ! œ†—žÍÊYJP™xl‘Û¦(÷]t+Ã4²|ü Ô»tð V˜ŽhDˆA\8’ä;<¿ö-$è,aSJ1 j«Ë›Öñ7¾9Ï p>)—U²I‚W{µ"åjĬí¥4tð Μ~;ô‡È¿„a¾•6¯ë!£Ö[÷ëaÞH¢=ÐZzÂZ£Jýê#sf–îÍÝP:©†¶¦ï¿Ï –jh­¸äŠï`œ„Ñóø_–‚ÆÐè´Ä”t: r'ˆÇ_­˜-ö8U¤f:bšÒ~–7ìû\ vPa¢ é›ýª/È蔪}…b@áØÉ˜Ù<´•–ä5åÓ§‚΃*LÁ%u$Ê=+³†Ó ÀpÃÿ”u‡Áþ$—e„fÒ»ü¤Á€Z zë çñ^SÍûÒÄEšË´ÎÒE<dFêßC ò½þ ›ßÞ¸h0ábŒ1¦XŸá(^%lˆÜ%Mø¿‘ÿB’ß³pYbð2ÐÜJÃÞŸGd“3¯EÜÝ(§¥›æ¯Ï®öw^ гR=Jqˆ=ÚÌ©ƒV ‰!Dé&s„x)EÄënsÎà™ÊbXžžSÇJ¸l:û®qÏrÚ@NBúIPoÙ0dêChOÂaè~‘°T»JPŠÀað;Ûf²´iè el—Íaß´QA£W8Ez£#–™ä¾Fù9u‹âì¾2!ûò-IB¥×¾H*“ÜXž²þhR!ÁO×&æ<ú6/ Ý®d”_¬ýRS¥)¡4d–¸Ü9WZî’¥< *@ Èë:¿µmªíÌ«€ÍÐ?Ò[Ÿ4`mø^lY»qorE È‹¥a ï3—σ÷°BTWWÖš{’nʪ:@}~ÅOZ~ÃùiÑp°*¸®´Û›VA+ !Ñ ÆOFñÛãwƒ}ö®¾í‡zžw@+Ík]à°*Á »‰ÆÂ9'Y"Kñañ· ùê°õÌúYk[ÖáÉÛL¸Ó€Ãpˆ„–h‰æXú‘òˆšb©0Í DÌçú Q–QoÞÈ’+z8LÏ1•îŸ \÷g‚¾¤Ì¬Uôßÿ²/ÓWèÙ-zN·ÁH6L1ˆ§IÆãY•¹ ¥û˜œ Ì)°M³/H N“áØ§4ËÎDôE_L)ºRŠù•«-ÎÉ+¥Æ Îø´)¶H¥KÇO7ãP÷Ñ/¶šŒl%ÀÑK"©Ÿ()2#¯Ò6cdA Äq±¿VŸ3}½Ÿ~ÛÌÀ÷Ù-å  ähíòµ%y †z]`o`Øc.+„AµB'U&©ŠNQÄïuÔkoÜ?Ýú_^’ ²™ª M¦F•ܘ\¨ÆªªÆÛ“Z¹ÙÏCcþ5Ž…ïµþT:˜º×/þvñùE.›‡cÂiVÊk1ÆÕHï-dHV'‡»¢õ¶J?¥oj†!µ9¹5©Ý î²MnVéµÅœƒu …y)å…G ˆùW¦¼3Îɰ^N”N¤]Gþ¶Ù‰ù- ä7d]†î¶ÔÞÊ©£4/É?<ü:?.IaÝaöŠAIc5!i3Hi¥_­VoîôéhÃOAcNƒÄ±îòpf„ø#ô€‚¡ùp¡€ßî¾{ÉŠµ®×ï?Ð_»uñ”§»YI¡à ­çœý Üá²þà'(àG¹mI` XØ!{BÁcdU è‚”ÓH€ÆÌ˜ŒéoõËT8N<ö°ŽY' PYùÕ僟€>pØ;o…1´Izè9ç °³0žÀ#1MÈ9ÇHP7:R-ÎpSM#´þíâwð=´ ˆè5$ÿŒ(:Kö$còƒb ŠrtŠVU+ ~0Üú®MÕßÀÔ•jK4¹Õêlu*+êä„8wŸíÛ}º{{»»OŸîöq§E¬ÀÏÑgÊû«ww¶>M_$BX4Ö…WçŠÁúk«7þ…ÐIÿÆ«ÿO§þÊ’Yß3ÀU/C)†ð [ùDÐ!* TH&š¨ˆ'z®€\U­lÕîË¢øÿ>ÓÞrúã‰ß.û §ÑºA¥¯{)¼Â|])¢ ÿm²Ôe6GPüÇ5بùN›AHE(Åÿ-´²Y¾ßþÓÆËÝ ZŸ öø»Ì¢×Bÿä£C®»_W#à kôb9Þå%ÖgÀY¼ûÊ ÉC˜d‰zј!Èôš-6šÂV š¢kÅâèh±¸6º©©¶¶‰~•yÖgú`nŸOŸ _†Á¥Ц:vÐÿ„Wa`~LΪreöîÂÀà(ÕsâÄuÈ+™Mg‡—gbY5F8gô‹R•2<…v?䚉‡³üÃîÍ‚Dæðž–”Ûñé7äYØc6_‘Unžèé³u¥¯Ÿ®LB{7í;œY™Y–Y4à‘ÀdktÅ-yôñP}Òi\Ȩþï2æŠÅÖ19ùØûñW/V`Xn²<_»ÊÌôÁHLx9•r,Âu?¤…F®ÍÔ€|ŠOÌ Ñ%Ú󭤑òP†Ÿ¹ì8'wÁ×iþ$ ûÃ_"f® 8Îøæ²iCì¼ ¬R1Ëy¯ y/÷Rº} × ñõØŽ{Ó¼ãp$é9ý¨À3W³·¼Ÿí`cÐŒ’“6yzxl:ó3 6ó^kÇ›£~ Ѹ³Ÿ?ð=GÃÌãþ`SCLšðªzü<)š0äúþksRÞÑs*X—ÍbïÚD ~×ÌÃZÐÁ8¢N¥§tvš¯]&™Q“ÒžÚ0“µ±í¨¨¥ïš%¶„ã_øWáRo×€ý î°e¶†ðUvú"$o~I$¤ûŸd^ €s“w¾tFvìqwßµçÙ—Íûd Î>ļ÷°ŸA½¼ é€È?4g'žGƒÇï¹wøø¡ªâgÅóT¢Ô¹ùÆ ¿2G›ÎeuƘ1Ò*Ö‘{ÑÍ”m©>é;€|ºz¤%WÈ@2~áϸԤÝÈ=ccúÁÔc©Ç}°Q¯¬KÍα è Ù÷²0K–Ó ìt­‚º¬¼Ó0:ûp¶ï)­.ˆ®Å]\ȪÑVô±E¶7WWì©ÛqÌ%Æêºy2´AÈr šˆu{ó d- ås8:Ñ+ h²3þÑGÎpœ'_ÿ±¿ÿú44ÉÈÏ8=Œ1¾Íü Þ!hkÔ4š¨@#çó@%èÙÚr® œ•¦ëzll´T‘Yã"×gDì`¶„ƒ –Bø~؃ì2¨dIfXhc¦ŽÓÁ^iº¡õ¾~Lz5£P ¯8Á’z8FÆ)x[<—-"¯V)Sé0G?‰_º"SšÂ)YabÝ¡ƒÕUµôËÎå Úðœ×áƤ³>óØÛÜuÜeÃŽššì‰±rŸ=-Ô×vè¿~¢àÈ©Ÿ!+šï€†/]ú÷òkK.¥ù«Ê[ªÕyi9LùÑ£ X³¾0x/ptwñ aP2òR§¤¤…‘4üŽ|õCÄ Åái“hTÓ,pÔ›0lÈ8¾©ewÍm âðš2ó1P¸%“˜€Š;Ï…o »@È&ƒJ4§nEý5mÃ)æ| èJ8 í´TA£¦ÕL¸O=õÖGo| Æ݇6®€¯œÏyUß:“wøîò«Èݰs]xM\}}uUƒ.½0-noÔƒ\@õúŠ•¾þ‘LD|\¦Wº†Ìc¶Ð|Ãò磎Û7¹¹.ˆXž}2ˆÑfåê€V[`4YÙõ²êˆ¨hEð¼Üà88áþ÷OŒcà}A¹¼<^™’¢RÑŠQT,Ι}9ñe‰E²ê`ÌI¢8ÆK˜S‰Š/‹//ÎËÓéèÒ’æºJP²ÓÊåE‰U1øÄEMÕ':µ ÀlÖ³oa]ÄΛ~5ô2»•ðÙ¡ÖÑ"2¤f*c±¶*%È1”(;¡‹†šI.CŠìúAûáò³aÀL¯i P†Â,ÍïÕc5›£·þÆÕÜE¸Ðº ^|ø ñM“úÐpLò;G•±’0¨˜ÇÿD"öWäääÓ-Ž•ôàf÷¨ãÆek]ûy–uK&¯@£Õ™plUEÄŠ–|µZÂqÏBî@„›¯öÃYNzëS÷`Ò=w¼…m¬º  å܇ÈbÛöØ@_ºÚ=øú!n§ëA™<5%= ¨p—]ÝÜXUÙr<ôÂdd_cÑ.”¹+~¡ù—!çÙ×p4öª‹7º­žüÛ¥O>9}÷‹3N«jQÃâ^ú¨¡Çä„o›ñEwÉ”²x 2ÕúXf÷@­¬n¤a6éºa׊ %žhŒÞ”vÐt”ÑÙPŠ{ðµ¿<¯¬ÈÒâ>ó Ò\ °Øðg˜)ûõòÞMç˯7¨¯~ŽF¡Q ?\¼öš÷y9Í¿é»rÛ’‰ï?š­¡õ£Oéy°K°ÍÅÇ‘æ·;ºt|ª÷Ä;½^;˜Ô)ذiëšï¶dÓ¹«—>¹xÿ»s.›xÂ1ðfÕ_þÈ…ö¦`¿¨8>!Pµ+‹.F^ÚH]b-°«EEš: ºAáßÝ7Æ Îê¿ ›q| °òžñ—k¼"€Iˆ¸=YN^ˆaù`´8v¶øH­DüçÎÅn]¤‘•fçdç€rН¨¯Id±áÞm®„ö¸ÁåCOzáç‚-nÛ—-õÔ÷ß»ñqÿµŽmåt¾4»!S&àAŽÏ» Ÿ ?g¹‚ΰÆP¡$,TØ*iëllm£Ñ'ú?éó…~£ €ÿÒ!³>ýýÏ×mø×Ïâö|¥\ò€l(èÅëJ=_⛚¦Vã «—Wwä½ì÷ ²)¤»LÞ1H䴇ůÕ`ØÙ:¾ƒ‹€”˜ëS¡8“›£+TCLU¤ ¼ý½7*)(ä]N8äv+†Í–qα³qÛùPª”ºä<´®³…p}A^I>¨¶«—+0ÒIØ'ÝAþ‰ê¤ ³²U~|€BmóÒu™¨ªÒZ5¶Ý¾{›ÓÉzpY9;NÐå½zJ&øƒáPÈ@–,<:4Ý¢3$ш%“0à (aàS²ä èbþ°3xo-A§ÎA`¨mJ–Jƒ×‹“)¢eŪ‚îGëÐqäº/] bí"k”¥99Zm. ñð¢ü£ž~´­N¡ÅjlWUZViD{‘þw{ìD8‚±;Œ¿ÔafMûÝ·¶ØÊ½unÃÉ•:˜ùÏ^H¾ªƒ†N¦{ƧŸÇ@×ÛПLzs‡«KiDC†,] ÄW bxIøß€NPÄ@|E&€Î.ÐY„ÇAšWˆÿ5µa#bðµI6¦rá³Áya·—dxˆ°QÒ™—§Ñhé4i\ÀöxUz\*RŠÒ¸Ê¶ŸÏB zð ¸É|¿oèÜœ†TÕiÿ±GÓ†\;½6L°úö«¼xu„käà–¯‘¯¶UíòŸEÍx†i·9l²üÛYÌisžÁe…¿OÔÆ–ÆE©b“qØ?ûÏ*µd‚»èJEE®¢Çò³ßWå— ȳ“TÈ®.„•diHýÃHz„Å6ñ¨á`ÔÈ®²Œ6[S®Í5ª³V›•“­-Óèz¡~Ôh‚ø*oendstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 464 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ð JM/ÍI,I©þfü!ÃôC–¹û·ÝÏ’Ÿ†¬Ý<ÌÝ<,~„ }¯ü^Êÿ½P€•‘1<·º©Û9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°»U45'575¯$'µ¸8µ°41‡ÉH„±‹±›™‘‘%ëÚ÷5|ÿ™ŽD0xïüÞ BŒ?þ%‰.*í®•ûmÃö[©û7ßûÚïª?‚Øf.ì^’ÿdWýÎ÷þ»R7Çw„Äo{¶ß¿µ~ËüvûíöHwÿn–—çûÏl•ÆðÛn'ãÏ’Ó¢Ý3'4Nø³ûû|‰»¾Ï›>qÊÄî’3§Öµwv·6Èý¹÷{}mKKkw½dwíÔ¶©m?îþ^/1£¥·»¿›cÆÔ©3ä§³€]ùç2[miwIÉÂî™ò?.CíjœºyÂO¡å›²íäÚÉ-ÇÅ.bÏÃÙÍý¼¯wÂ䞉ý=z¦ñð,ïë™Òß3wZÿäÞ^܃Ñendstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 347 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ìÇ®Ÿº¬Ý<ÌÝ<,¾ïú$øÝŸÿ»3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡; Æg```4``d`bddÉø¾†ï?S²CÙêŸL«¿ú~àó]ß/‹^éþ¾ôwçïÎîßKœ»/øÞù½³ûû‚Ër:3D»½»Õª‚óMœë²º»Ýçß«>Úý¶ûd÷¹î3.yz}ƺîÝgKÚÏ ëqê¶ãà+[ðÃyÖ÷ü©“°mâºÇ-ÇÅ’ÏÃÙÍýº§·§¯§wROïäã<<z7÷÷ôOêéŸÒ;•‡—vö‹endstream endobj 173 0 obj << /Filter /FlateDecode /Length 3360 >> stream xœÅZKo#Ǿ+9ç´ d,'Óïn# `Nà`;^ù¤u€‘¨m>äÑhÿƒüìTUW§‡MQ›tÐÓ¯z}õU5ž5µ˜5øÇÿ¯7gÍìîìç3AßÎøßõföåÅÙï¿ ~U‡&ˆÙÅíYœ#fB‰ZX1s®…²³‹ÍYõ¯ùÅ0C©l‚ªƒn$LºXžUíúá¾åab2ÌhïgïÎ.~wY]ÜÏMÝhãÕêq¾P>ÃÏ¢nœ©úlÔÍ~Їê§m|eCpÕn.}Ý4BUÏã¯?ÌãŒàUµÄuq²Þúêa¾^À&7ãï»lÔj·åÃ(U=´]»É÷ùÔù¹MË-U[ËÚùUQ3°<Ì¡—Õî–¥TÄ¿áí«¶Ùfwm¿ú8—eÓƒfàÅÕj»Û¬Ú5f!…®³©?ȸÇrª{\7(X»ê»ÕÕÓøuO:Ø®ç glk«¯oYâÜ!\¨•Sþ”C€Å¬ÚË}Þ¼/Àlu#LµÙyP6c«e&÷zµ½ƒqZ íªëñ«]×eCìíPp–±‹*@˜ h.ÜèPõ»´‰‰VÐZ‚zUõíÝÆÊPír‡Š¬´VÆ-Ò'Ž·ˆ† 8¬`»`X Pùc]Ÿ2x/x=·ƒçàÁ€÷¸Ÿv ¬¹‚Úì ™®@÷FÈ:Áâ: éÉüõ:¾¡»Ýk±äO íàw»únÝm¯J®`e­Jž0œßšÜ†«ÍjÝv|¸FG#á@PA›åá™c$¨P›I$ eDsÒÊÉÑÐà¥Ã{íÒáÑ*¤ã á1ÀË NB0.S‡Q€‡ºzÊä ‡aäá†Ñ”8âèãÜ Ú$èjý4|ï'êÚ¦ººât¡¢áú0ªÐAë™;]ƒaõ&{·Œk…ÝòºM >H•CrɹBøZ7*ZÓ*¯wÛ¾Û­K Õ°XI¡‹ ðr@ï^2 k¶¡53qo5mÏ .$È!”‹ëþbHB@ Îr¾^=öª®ÝÞÝœ‹Æ|.ƒyK€x® 7áÊxJðΊ£%öó!äÛnw÷ÍÕç÷í²íÞ¦ ø?/v±¦6Viõ¯1µ ©E¢ó`úƒ~Œn$uREÔKWL™Ù57ŸSHž¸ŸI]õðLgo¶tFÉ»ÇÙ7ä3´’a¨RÆÐ‡eÛ·oñ#¦ “æM«Äx6ÏÐòJþqšàžÂ&J€6TjOØñË„`D„ ü[¤MýÊZ\3OY.ø)û´#^ nŸ·¨âŠÛÊŠâãèW›vŸjöèn'lNÔ.hF±Ä ËåDõ{#NRŸ²¬ç&€æ’íÖm?E’QÇtGËi2Tß/#ÇÂQÀ¦¸ghð³E†b ‘ĶfbðrRMèÕÀ^´É©V,K•’”K³ïOX3ŒÖ†ðýû£±SÌȨm5¦eçûþÝ»bN£Çd̳tT`3w9^â Ì›y‡R˜¨^á^5+ÈmP˜•=Âó ‹)í—^¹=¡¨©'Ð4}ù&ZÊ=;„Ú©FœöìÁûËž ›x%Ç®M§Dœ»ôM -J "ê±4a/H´_áã=>u¿»)R—I^üæ*âºMýXÈç{£K¤YÇcߟ˜¿á„‡T"¼2su† ¡å€Xæ1·Î±¼§(ÑÒÅ(!*¤vÊèZò霎Ñt*­£5ð“&®ý‡¿‘"Kø/fùŠŸñˆÏbµå‚Ä?‘ ™J<Ñ¥øOVlj ÕƒkÌkHÄ ì\:ŽÁ`Z·#.Xû©LÓ€­ü™WЧ Ëá:ÌØ2€¬NTôQ"¨How]ÂëT—³Hy8¯7»mFÖë6Ž¥&p”Ä('}tg@BO¤Ó&züц‹‚góÔüGíILÀ£×™eQxiѶfRsGކL°oWã4õÈ3´‹êÚïwŒ«t(HÛEîdAv9$¦ßÌsŽ™ÜÂ5cj@n'¨Ï I[E]¹Ú (¥g£—Ñà(A6÷²öš˜€fyCTô‰Õ&I iÿa_;í@-©Hêy„`èĹÞ|v )j ›Ÿpèh{Ŧt_3túZ9N* TCa²êã3Vg™Ë™¢AºÝtb´­)çØ\ï±»ÇG;ÆAÀ¯ È:ûÑF»«ÜÓŽ;·?È« Œ÷¢'FYA¯PZN©$óðåêúèÎi`²‚±ßf2(„Æ«,šfÕB°Ie-ô‘ÔvÔôXzeUÃÑTHJÁs(!Þ9òü7=%z›¾6ÕŸßýµæBDÂÝRÏad‚ºŒ]OÜîâ3æŸc]unµ»${-S ö»q9Ðó}ÌAHx½æÎ1ÎT¯âõÜTˆÐù…Á¾ÌИÀXnÎ3ÂŽ°<µ­z-2‚È'nBM­}œ>;CT`)¾6ñ=$¶+nj›I;°,­‚G/Ùµã£Þ ;G/ gçÍvÉ nâ¹=˜¬ë™£ä¤!ÚîU;ÊK¯.•¤wKDâdŒ¤3F¾õÏcàò‰æhˆÆº‚Bך—sª¢lÈ9½%3µ=”õKg `N0¢·Yç"Æô"1°hv·Ãým;„uÏFÜ”ÅgÀRÊùMÌùOGQ=öl@`m¦M¯)Œ7fy}´¹a6¥_¼å‹ƒWÞ3åæ MíÒ>½$H¾P„zäÉóc§¹L5  Ìf>Šñ/(„ϸǚŠK/¢êH nrm2ÎO]¼Å S¹‚Âq{œ`ý Y}±åm¢­'-èípOŒ°?ÈM:úoù…Љ¤.Dcj/ÇW,—Õ›±Ñ“<Â26§™·¥3ÀxNÃí ÃÓ XtdøB]Ž]'?I,èA[àÙ&ß._öúø«%KêÎùæU©íO`C\Å1-Ôr·½¡‹¦$«ÎiÔ=# ïw$+¦NPÆšv%õÖÜ﹦š’A^âq ¨wŸÔX¶Ø!R©K×ÝÜ®úó‹ï¾ÿªØY5ávÊdxØÐMñ+› ’¥âKƒ˜]*°µlÚÜŽ¯Íé(Ó;ѯÍ5·á¦5|\ Tyuœ#ÇØoš*4èÒKŽ?×ÀÓ>'­P¥A0E\j0‹êvü}·ÛD?CËÇ&yñ/4)h|ˆµ+¶Š ‚ž™ûÐ*€âi͈„§×¤ËœkÓž|nÝN©o<6Š Tg!Èui–{!W±1F2…ìy&¨Â=Å(÷îÚÔ÷ª_Z$¤á1Ù³€_ªjSçªÒÂ]J\qèúɯ~žéÅ©Ä))‹ŸÀO“ÇÈï>, ¾ÑO £É±‚¢ %‡»åm¬¼1ã~µ/œšØa½Žµ>Ô^ÕsTµ‹l1ÛÿŸíæa1‘qÒoPä =ðbÔÁ)Ö|ŸÓ-N±È1øÓŽý/SÎeÚû5ÕGT‡¾är[î­`Oy Ìì½mÇ‘,ÐŽ)M(tôÖ éSºÀ¢ø1£™¤ë#M3¯ñœþÇ!ùžúÙÇÜ;¶¶)¬-·¶!÷9âÅÜ”VÿƒÎcB ¢3àƒ:GXx¢é:`nôîL‘ù-CŸ¢Vœ§üÉáŽÝ©„ºú¥Üio»GG-Úp=sØÚ—éj…Šx¦È)‰WŒ|—à ¿² ü:vùµ¿$zååäaþþý¹|K5ìùŸ¾x÷þ«óÿÃ\îŽ)k8jɧ–CG½k[ û™«ü¤;êðWU9Pެá:,³ÖâàjbIYnL2…UÞP¢_u¤Øß¦´ìòmbO™Ó®Ëè„zFD†)ÏÛR¿®MwüÖí³”Ë5×–JçBAœØÐ¯:'pA)2þBŒbC™Ü…o÷éèÅó>Sƒ¯?¬w=')j%Ý JÛZz >‹HÿÕÅÙßáïßÏ;Üendstream endobj 174 0 obj << /Filter /FlateDecode /Length 5668 >> stream xœµ\YoIr~çðÓ>4„\œ!kó>– ¬Çc¬×»ZÚ~ƒ"›Ç]l »9²`x»¿È¬#/vi05£#3##ã‹#£ªÞ°žoý7þ{;œ±Í‡³ŸÏx nÆn‡Í?\ýöÑ×{cÔæêþ,Žà®tÏßX¦z.Íæj8{Ûýýù¥ºg\uŸvûãuwøxswót}~þîêŸ1{ïµß\ýþìêÛŒ÷óÃñ#xŸŸ~ùævÿx|Úï.vÛÃu7<³¿<Ý<~Ø^ìŽ_^‹‹Ýç»×êâv¿{­®ÏÇiwuö'’]iŽÙ6Ê;ß{·‘Ú™Þ@Pëe/7OÛÍlOîÓúƥ•Rbƒj£±QÆ=m´;> Ûó«ŸÎèûKbäZõJ˜v¬g^Gmüa.!Šºë7÷ç_rf»ííq{·È¤·Vön£%½µ)„…²6\xÞs7I/{+ Ó›ÏúÜ?œqG;ÄâŠÛ^+l 'ã!1NÆkÚúٟϸg²W6c2 Ûç'&.{#3&.å†ÑóÈ$ ‡Îgb¢d‚Ú<¯frX@11)èTTLÂâ$™˜h²^޹^©Yp£zá«™¤õ=t:1Yœ¯fÜôÎÏLNõÚ®©À«fR žÎ$,ÆúÓË Ø?ôÉå# ¬È$˜Ôd*'õ$`KÆ\Δ3iÝ+]™J!¸Ñ½§N0«a²õ±¤F'˜Ó½SµžR+Ì›jš|-Î È+Rsü%\%u.¦—µ1ior11IÓ×:*&RpA50 ‘´!È—3͠ߙɘÞ7Ï &=ñXÛ3]ŸH.¶³˜Mno{ÙÀe&76S-—¥ /k5åöFÎÎÖ¾BIòw´½•‘ä›Ê’ë?é„Ð®ç•Ø¹º…q½hØRf’º^Ö¨,˜vZ£²É;è¬VÎ ñhd’Йm€ Ó€ä®wve9)|Ϩ̙»ø*¥òýJ¸R{¸¢&ihí™i¨(;P Ÿñ')Ã\9µí-$²„ÚR É=Âwms9“™5fÊ,\ ëP‹¤È:LŠõª¶‚b9³n„‚\pÃz[]±œe½kà7ŸÉñ2Œ×ž@Q&SÛJnšñ^¨z¹lwšó^¥¦’`Zð^ó“”`)õ…å$oÅú|wø6õCE! ž$D™2â$R~*k³Ú ]Z±žh'Ò|`¨($¦i:ТDÉsêÐ zmNRÂ\µ­CÉríYò!Êì"gÎ$E™…ÕþÞ(Y&µÖF‚Ûðùr ûšÏ0¨ÖCã$Õ8åjyà0(l§òoQ¸ÚZòo‘¬²Úeäà UfµàV"_¯ãT®K‹ò@­Å) ›Ðuœ*–Cy°©-ª×°¦|"ä[¾.F²²FXt½@ùLŽAýk<\—yXmLç¨Öj‡â@×n¥˜ Å­ÈB&níxŠƒ"k,gM™aÔÈt¨âÅZr”ÕÈ̽…G} eµ\Á­™FÊ–ó¨–Í %NÍ£8ðü$%¸¹‚:4G"©MŠ¿%ΕS‡æHmÓ<¤E‰såÔöÑxc‹ä¯¡*Ô$t%7Nw¥sÉs ɉ’ĸ“”(yNmZžd(]\÷æLø2):‡Š²E –')Ã\9uhŽ”¨9äIJœ+§¾ ¼re.Y%œ’¡Ò5lŠ™P ™Úe'(J!»’#¡~AmÒp‹ùrȹYÑò™`Œ=O ¦¤@yœû´ÒoQ‚: ê\1¥ÑQrTLª|¹8*&][UŒ%GÅd/Ÿ %“[;bŽÉ×®ªܱ2g©€,¹geµ[Ÿž`¨Nj¸ç‚ Uí7r™Š¡Ú%<¨…l™L¨…\ã2'Í0‚õ¾Ž|Y½/‘Jö¼ù25Qº V|™DÌ.S»˜¸"·fbB-¤ëÈ—å#î¦7+9©„ùö®‘“f2áXʤ%F¾T&p•¹]c9 YI¸¥Ô( Ö,ñ—jÜhæ3¡‚ÑKÝÌ$ê•OÅD¨C9K>‘BÉá×DRHôXZç•ø%dš²´(ÁóÔfÖ"鬸ۯ÷§P™è,¼’AgWû-J”J¯·¤2Y `¨(4½•y&SSâ‚9uhŽtY£ E‰s¹ª¡P‡=åUYט¡vO£¡ë]ófC!_N‹fC¡`’UC¡N[4ê!—ë%zÑ:ë'´(ASµ}ÌÚT}‡Úø´Õëùˆv;C¡¯ó „’‚Ý”M†Ÿ¤„ýÔö‚†Wí‰*……§ÒeÚRÇ#WÚÒ¨f{"÷AF7ÛÅZ¦jOTw#Ò ¸j$#ÅL®ÙŸ(˜|³?‘/gÙKý‰d&Ë«E¬°Íd$ŸIV ŠªR•åZËX,*•jVZSõ'jXT:n-|X×nPdF`}Ù ¨µä0m#ÉWs¼Ù (fYƒb¨(€˜“Y¢E  +¨m 8•õ1†ŠBÓ£2ñâ$%.˜S_Ø¡i¶; ]Ùf»£`r­vG±=Ÿµ;†Š‚ÍxT+Ú¤„íÔ¡9’=šçÊ©Cs¤ð½;Eˆ3‰²uRÛ§§'Ö\¢×Yëd¨($aiG E‰BåÔ¡9Òf –%Îe×1Ò»¬3Tš…UžsU”¸`NmúaÅXÖ¯*ÊžµkZ”a.Þlëd;D>¼ÞÖQLVmÆLН&SŠé¼­Sh/¦hâÔ”¸;Ólë2Ùª­S]*æxõG™–)†j®•JeLœU-›úˆ9ù½FIÁ–¹(ú35%(¡ 6µKѲ))4=j¾,¿ª)qÁœÚôÅŠëf˦ÊT-›*­ÆwfbÚwÍ~MÖ0WÜgýš¡¢`¿‚eíš%h  ¶5 xÙÖ©¼'¤“e^Võ+P=6Û:ÅLªÙÖÉÍNèf['×·0U[§Ê_•°ª•—åç"\³­SÈä›m\’­¶u”äU[§Ê•DækgP0Éf['×êç¾^-ßН2/£ÕÒç]J<-+)°B$¯yVS‚]Ôöù"—j5 øªùSoþ·•oå3äÍæOf½0ºfó'_N6›?ÅLªjþÔ.E¡új<8R,gL¿R¡)eMùðc€è^¸ñP_Áä³FÌPQpèšÙ<‰©)Á j{{šÛ<­))4=J´¬;SSâ‚9µí|4J¹Ä•…¦W¶Hk*J\0§Í‘(?I‰såÔ¡9ÒMœšçÊ©í£Ö¶êëÔ&ªKkÿ¡¢ ÞiRE‰Rùvû'ŽaYûg¨(˜Þð¬ûÓ¢„ j[ FT]¢Úh Ê ¶’¡+£²žÐ LºÙþ)–3Yûg¨(´e›uZ”¨[u‰jß`PhÚµ8j|³K”ÏdY³K”²Í.=ÛdÕ%ª:Ê*ÖJòœËêf—¨XΔ]"Z-k¦)‹B­‘L®Ù%*Vóë]"åX³K”/çxÕ%ªw(­)P®K'›]"Ýkæ&&Õìa: tâÑÍ&Q–o8Sõˆ…¬XÍ€¾þ]ŒßfpZ;clÎÚà>GÊî,<íÎÂY,\6Fñô$×BaáiùÀűwÊj®™’p È®3®™’piä”I.\3%á2pÚ”i,\3%ár€eªˆ™°ðH†"‡ÎvfZ( —à:´ƒ®™’pIKŠ@ ×LI¸ ŽÝ¦L!á±0äTò™ð8Ô <“|¦,\¨GmHÜ–sž) —€;™ÍÌ”„K1 õ…k¦$\…ŽLÏy¡$\…µ¥ö·pýõoqL")W¤´Œo Æ8½mD%ŠÜ.QÑH®ÍÕÝY÷ãôÜ Š ½I¿™†Ár‹bØ¿‡a6™‹abZ ®ä¥ÕBl £Õ0ãK‹q^Ž’_µµö°¿z1õëS_¡GÔÆÅ(ý‹5Ô¨ÕÎÌÊbáM³†oÕR„ø‘xÍšk¦Ð3'’Gï¤È맘))—×"GùLI¸àf\¿‹/˜( ÀªC)¿H?QR®bGÉ®é}»9£ †ž@G|®Ç§YßÂü·H™FJÊä‘lZž2”„ÉУ/.á )Ë(d“ˆýugyuµ‰ å]½ûøê";¿”‰*SÆGËèBµãDF‡Y:®ÃgI,‚ýš—ßn¨y-‘+Áí[äï Íݽ‡Â?Í üý†Þhpø¿bÞü°˜=ænL0,ä´d~Õ·â;ÊFéµL'ʼnzj:÷á1Âhš^ŒÒá±;ÄÖTYÙ@À>(7Òñ¶ð”Ÿ 7f4ÈÆAôšh˜FG“LÉp¦§Q´ YŸF>K2#Ã.šçÁ§°F×Å»%œk® ˆ‚´ƒ ê·@#9½›JÓ P¹HimchE"ˆÃhbäãR…GpH]2> ‡1*îAEt)¤½¥L‡(´æ1\ŽêâV‡6=C?®…ñt·cèž+è  5Î T·IA’Š‹l™–)!¡LAu ¸º¡ÖD©É¬½ÉJ‡.u,}œWÇ ìâ›`D èijš¸RÜ0(~Ô–@zJW”(ë°qS¸ºpP’ <8«p+áíˆp’ª1Ìc7.Éü¨º‰[’2æ­–‡þænɧÈ7ƒ”RÛP¾êYÄi)¿'uÚè0‹ ºˆ‰“Ù‘Ó‰é Qp@ÎGƒŒ… –JdºVàA:1x0P¡„ç’\x¦Ì$¤’ÑÑ/–¤” õ*Qlä&-£D¤˜°P<™Ânqß#:Ã;¾ç 8¥BùJõä N©Q«F¸Žà”šû®8µðTÎØD’zÇ 6µ Çš`zÑ:a3 @§Ø$)„I±©QRÛvÁ&©› ²œcê»`Ó Ch°iཽH5j(0¹œv'Rl’5D´NØ48´€Ö›&j/Ø4ð¯Ô\°IŽ; uÆ&Žžr[°iáÐyN nÊpŽéû‚M«EDë„MK 2§ÅÑSÌYÀiá|}ŠM*ZglÒðˆÖ ›áÕ ŸbÓÁùR‹jÁ¦“±[°éT¨ml:8߀ÖžH•Bò¿Às*@x:˜bì OçUð >=¼¯Náéá|©¶ÀÓÃûÆ2ÁÓCøØž^é›Ð:cÓ›˜^-–äázC@™±éa­6=\¯1 6ç¤iƦbð½!ÀMàTL˜Q&p*&ÍלŠ)3¸œŠÁû*· S1ˆâÛ„NÅh  ~Ê„gft*æcÅ<£SqfCD™Ñ©8´-t‚NÅ‘eÈ4tΕâ OÅaz!ÂMðTþ×%:UÌž'èD²çB?c†'© wð3<G‚,t*Aˆ&A§03ÂëŒNdR±æŸÑ‰|Ê…ëêJ(BÜŒN$Ù>àuFç\ëÎðT¹]õOð„£÷á®w†§Bâ;ÁS!±ˆn§BÜ€à©dø ‹ž q&\²ÎðTpã°<'y ~)àuF' 1nF§¬ÂíæŒÎ¹XŸÑ©`¡©>£‰#ÍÛ ›1n†§Â°€× Šn« OЩ&´"A§Rfˆ*@½õBÜP¥ü˜’ÎÆ¤™˜!Š¥Æ”t¨ÒTÑ© S½²”.mšÚ*­§œt(öµ3ÒŸ†éŒO²× ž(HBPYài䘑Îð4jÌHgx¤’°<§k•žþW‹žÆ)é¬RãÇ”tÆ'ÝäÄÎø´<¦¤ >­ˆ)éP+CJºàÓª˜’Ž] ¢…”>GЉ)©Qv48ku,ÿäxëo]ÌI <‹”ñbˆË‚’ ‡ó¥w}‰ÀcJj…UêDLIéEIèà€©ïB‚‹HQ1%µt[Ú„ B(am@E‡¿ì”R%¸ÙM×µÍzQR£åTÛøÝìÖoc¹øããù%¥X0Ç»ûôýÓps|؃~.¢»yϤÓíŸ#«ÁLÝqda®;~ÜÒÀƒqÝó!0F¾°Û†?plʹînbx7ìé3¬+ÜLŽ;ŒßÑøÆ›îá0ÀD‡”çæê‡ê~9'Ù—]6É´ÓÝô)¢ 3ÁЛLõFOi8`‚…»ú£7Û]È” ¦òÛóÈ÷¶»ÜOZâ¦û)å6ªu€Ò.ˆÍ…Ý÷q÷¢Û÷çQšìÇ› 7Um.é¥hº` ‹%?Å”þÓ7Ã3û—ýÝv7N•ËKor€lü9§«é©{zÅ,†OIñMJyÛýÍùd‘Рf ¬T‡ašÍ%|4e¯A¬¥A)¤Éb“0¾]ìBi:ÄJÄÙF¨ó>˜ˆÔAñÝoŽÇÒF®÷ÁJMt_FvÆaDñ#Ôx›×n7}ÓíïÇÒGã hßݧPxÌÆGøä*ÊŒY¢'^¢‘mÇ€nûÃïßüáý?í÷ÿÕRý ]Æ!Är)©„ÿ½¤G”tÔßçì\nÏÃ]ŽVè(gƒž‚Τ °jé8˜A÷›ô›ÇJ±4^ëîæ0ÎkáHö»Ý>jš‰îsæ¾oÙ7Y5÷­Ÿ«u‡#‚,ÃiÌýóãmTxêºë®úý²îÎÿöŒ~ii´5ÒI]#t¦Ñ¼û»Ëñ³àݧ›§í㱿º¶4ë´0;-þiøä¸»‡ÃŸöþõýOßÜ?mžÇ‡ŸJ£qŠ|óé9"ï4òøtóðØÉ¿¿Ž¿åï&ÓM \w|ÔO˜Šž˜òÍçëÝÝoÚ|ôÍ$æ—‘ à¼^Ö;¥ŽýûÃöé—íÝÛ°¡wñàpR’ñü¤Ž‹®_/ðq?—ù8dYaà=BÚóî¦}į¾,Ÿÿ’¨hùøjÖÁÃýÂ{Ý•N÷›#vyQF-yÝ‹›)dÅÑŽPÔÈs‘Š2ünùx|u1®étwØ~ZþHÎàÕ«¶’‚<Ýÿ’; hÚ?MÃöxX„zx\>¶?ÿçnûØÐÁŸÃ¯ü3ˆÿ |w»?\wâÛeÏÈ .’óüöÓÃo?}{¼>ÿn1×L$ޙĩü@{Žyh]³(aŒömÅæ¶ópèŸw»Yoß¾ºÙ}úxóêbÑÇö¿on‹1%+^½ù·ß½{7i::½šÚNjûËÍŽ~Äñ=<íñ™Ôýa7ôï£Ú/–CÌ¡ŸÈA_\ŸO"3ÕíÇ8|½° DŠ~<ÐùdióïB6á»hp»;l1Nì· Ó ßEöׯ&6+R¤W62l‡›PT0Ovݽú°{z|ÿýbÿøp<><~XöüÇýÃá°'ô†ò³ùTßooožã¾F%MbF£[Ä”{5«Šô1,›Y=ÖäLãIÝß »/Ëß©·Ž"“£¾h&’ôn®ÄÇKz­ÄÙhèvîYþéìÿ Tªendstream endobj 175 0 obj << /Filter /FlateDecode /Length 2496 >> stream xœÍYKoÜȾòâÃÀð¡g!Ñýf·±^`¬7œÇÚÊIã5CI´9¤ÌáH1‚Üó³SÕ!›âØ»NÃGuwõWU_E}ZÒŒ-)þ…ßÍnA—7‹O æž.ÃÏf·üÃÅâù[)–&³ZËåÅõÂ`KÎi&™YæTfLèåÅnqI¶E_¬Î—™µŒ¼ÄK•Q¦Ü‹õê,< ’ÔÕ¾_“ë¶Û{ÃÇöÅ>Ãw‡ºðFx±ò«÷Zœ‹<Ó*7ËsF3«ìòb» ÿZ]|X¸{xqñfqñÝ%)ë}9xôO7˜™ÌpcÇc/É®Üï‹›rMîŠ}_Ò5yzSwÍÕ‹èž"¯ª¾¯š›è$'7õ.k®†=íÚmYÇÅ,y¨úÛa颾»-^>=;åÙ´Mßµõ3gè6 »9Ÿ÷uêûópÍ)ï‹zMö‡«}_õ‡özüFÈ_»ªþ<ÜPoÊ›¢¯îËìªjÚ]…³õ·ålH9aÏ'ŸÜÚÿE^8$e'2ÆÆ„¹ëÊíàê^X»9ìʮڬUµOÈ‚AS>Äzˆ&Í®»bQéãv<»¢ô¡8qö’ôŸïÊYŸvåþ®möåÓˆÙº²?tÍ:  ùAÏ6ÞRŠÆÈ_¤‹ A7|!ýþês_n 8ŽÅd ý‡B±Íu©Ìng[6÷U×6»²é_ÄåH¸íïŠMùbèî˪®‹fSúQÏß ¶Äu©eHP0BQÅbåP{JI¯ÔŽeaŠD>ø ýS9zú_#Á;Àè¾ä°w¥Sï1ѨaL*™Ã ókMRâßx}ãÆ›‰8°_žUtqm@uE¡Ú•P¦/_ýøæÝOs‡Éy´ËKÒ&2¢þŒytôk‰ ½B„®ÐÞx°%jhì±ýJ‚’Ü…qÈ×'d±;u !$=,ã±€4‹ à LŠßÍktؾ8ê› ÃÓkª›ÀÍÔjŰÍÜ?ô{[¶^eÁ Èòd BX G„ŠIÄÿ{N @,PDðx“ýøöͬ×,5ßS» Hí“ëÃØèô ÖÇÆ‰ÇÆ †çPó·Ý´†›ÛQn·õvšŸ“˜@0uEQ¿Œ¬¹ZBrêÅN–»ÎàœeZ JBXÖÝ&6ƒý@³1²¼ ù—{é‰ÂâQ'IÜ›bš¸óþôîúa†õº‰ØeÄãŸ:}åDN"˜(ÐÅQG¦3ùi0]’šLVÞA– z”4H6|†ñ…ã5:›²„å¡?ÆìÌ’ÛvN-†b@ùÅ©Sv>Kü »¶‹7k]}t:…i›Çï]ÞYà¿>*¹Ð3^0#7(9ƒ} »¶É,ÓÁNoÑq¤,a…×H£ø•°~tà<§ŠnwŽlr†4Ñ9m œ¶Ä/Jё𶇑‹›“‰¾4÷«5¤Ž/ýg.÷aí%£ê·ê̇¥cieg¦@zâ3`}ÓfîÛðšl«ýߺöæ¯W^îo‹mÑÅ¥ÃoXf2y_\Õe¹Îy5 üÔ-ƒš•A¡Pˆ—ò‡yMw´«"f”3TDŸþL&Ž[µ2܉4G_øa’ ˆ—&–)5i‹ßVI7ˆqÖ¹ký‹†””qJØo 圱/’²àÚä‘å%yðíKh×´Æ.ô(ï†ZFס#ÔÎæ˜èƒ ’¨äNE½nüD¾Œ³‚0¸nëºõ,Tðà¿÷¸‰…{t@<î#Ãsç^è)u?¾wá7ø ’O:Æë$J],쉈ª~ŸRzr×8”Ó| ž„­«Ó{I¸tÚÕQ…IåØo;ß#ù8ºwÔ'¾0Âã]íÃXG™|WÑðöŒ°[fYªƒ~ºXü²‰d– ºüyÁ-EN[B9Š úôÝðÀ‡Ò]Ö‹w'ÿ“6ÑTñ_iÖb-œ *™û¥1¬^è7th–°¯ÃK—zW~•û5îœåàHÆ,zÈ2P~»…„zÌ€:ã“oðCÓió%0’zØ´®û—®û‡ùQá ¾E¬xŽ"vŒž¤ö}ò\¥¾1ŒÃŒ±áÚÜòð«~¡;†–úgÈa3#˜ÿjŽyðËâ?`I­°endstream endobj 176 0 obj << /Filter /FlateDecode /Length 5428 >> stream xœ¥\[od7r~×sóÐ0ÈQ¢>9¼“F&€l¼&Žw,'#?ôèÚ޾ȭ–gçäïs¾*’§Ù”ÚP``Üýu±X,‹U$K¿Î†^Ìú/ýÿz}6ÌîÏ~=ŒÎÒÿ®×³»<ûçb ¨C³Ë»³ØFÌ„½°bæÝ eg—ë³îÏ/A ¥ŠªzhtysÖ]?,6÷·‰NTtF{?»|vù»Ë‡óùÐÚxçEwË_LPƒñÝߤõøQt‹ø%ôƒUÝþ\úî3þé‡A™nÉBðÝ#>º>xºíSäå…·¾‹_ì ¥öÝòÓrµÜs{aC÷å)³vÝž™EpÝÍí”ÃßG9-ý²ÉÂ@ÊÅ&Iie·}ží?í ‹¿ôçs-%Ä ã°™2ss¢[nÎizÝ>¶¶ÒZéºÝõ”WñÓã~~Í­ŒìHb$4s?àçËÿ`/1\=Àº»yQù…ö®‹iY~‚¼hoT(ÛÜ$ÆŠ†¤ Ñýx[²‚)(£­éöËm&S¢S©ñ º<VNf:äQ'F¿Nu½˜ðÒ„¢-[„ì~z:ÖÛAµKŒK†Òˆß}µÜìow×·û¯Z=Ïæ£ißœ}dKRBxÛÅéQBaídk¾2Ô[jE£€™Ä4mJ⻓o4ós¯H½²#;T¤ž#3ä®1“Û}õá‹]CÀ¢Wûò§M9%¿ñ°ƒ¶‡QÅaðG¬‡ŒÃ NË›‰?­—×I¶&êA¢»‡Ånqžmüó ¯â¨Ï×.}6º[.bZ4ŸF^*lË{¥±p[˜Ì W{‰ÇÝ6:+üp3õ wz˜M-¯³_ÞOÛ첬ðj!}\w·Û®“ ðìû‡EmH‹ÇØ¿’¶ZG49ÐŒSغ% DØ OX g»û󖻚쥣³º}\~uþG^Ê‰Þ ë£gûÈZ’?Ð&.ÃøE•zO%[ÖØdö»-[Gܾ^tªÝ~¿ÜÜÌvêÙa|¿Ýç®°WEMe–/JTÎçÄ-Ô [m+1b!½&K¬+qžUý57kdSxf¦¹Ëj‹‹‹Û{›z”†µûBÔè‹÷®± Òþ¿¯m‰{€ŸØÞ~hMsp=اMi±ºßö÷«ÝæSk3²üqœå§Ô ¦a%‡Þ;7²Â ±DŸ&B­nË…±f`­æÝNìvZÍæpÁÎù{ú×󹑴¸uw½Ý±¼[-ŸöWÝŽ­RákÌÅuÿ͇÷ïL/.ÖÏC¢øñ¸Øïn77ï.?üôÇ«óèÅiL&d7óOçs§ D“ÿãÃâÝ÷?½ñŸïŒ¼˜Ú=ÜUÞ&==ï~£o+Rtÿ2O¿H1ÑåU÷ô°¸YТä…¤q´y’«ºbÎ×ëõU÷ý7þBCüÕþ }Ã… ¯ŸoâWq¡èëí=†Úo÷O<ˆÄž‡ëƨxÒÓj¹¹}Š]ý!‰ô(»‘Ì]²rÊ)4->««îá]Á‹§$q#>ª=à(7C·}ÜÝ>=!æºê¾}ÿáªÛ`dëçÃÏ×ïëõâç#.f¿œ!ý‘X½Ÿ¤Å!g¾=>¨ÙŒ²° ´^Ÿ‰~NȪ‰X‰ÕÑD‚í`Ÿ´l"¹•ÄÎGC9´èdÀb‘È&rh ‰ð:"°ú½= T¾‰ wÁ½ËAÒ®ßBÆVRÁÁ¨œ¯4¯#p´½•'Eûë ÄéÞñU„R ëO Tœ@|´o!nd!@ ŒÓ™‚ÐÁöŽ[!1BÐ@&œ B4­_G¬Ð½—'z¡›ˆ…\ `6¢Œmœp½÷'#{ù:à±Z\ qâ%¹¶rhåé¥;øÐ[ÝD¬î"$à7žác6 ZB°*ÕDFΜ{÷ x™¡@r%úu 8´ »q qˆI§œ Íî1rh%0^mO Á÷^7kiíÁrì¥h"c+:g1ª‰`xä:•ÂR ïc ݳÛB¼h"$­D¥D¶‰Œ­4<Œ MDI²CB°IYÛDÆV†ÏHN ZöÊœ@|„|±”É„ˆ6åþÔBEºð:âàa„=hßkAFàÍ눇‘êbD¹CMÐòBòÞ =h#¹U€—)ç½Ý[qñtô*¢YÄ%S„Ö€fĸ¸C#‡V¡ŠTˆU\r@´å¯È&œ>þz ‡âuD"Ç-æwDœ¡sF,bÑB&­B¥:á ­•J1Ih…]4ê jë½k p¯ðbè!…$5à#7B”áÝéÑ»“pŒXD$ºLÆ`†*"9 ˆUëÂ(D$ª…Ä„A0⎿ÒÊâØQ#EޱÈ1Ï£"¢i‹oh3°ôÖÅHäñðM¼z4í͉!ZÒ>Ìsâ4Æa›ˆóiNfP¨2Ñ”§ü½x'c| ½F$¢ZˆEâc#C‘cú¡àý!?ëÞ >ÁúŽ2‰œ~¼vÁ‚ÍÖí0KÓû:oƒÕxl|Ø/×È¥¿Ù,Vç‚3T×}yZ>Ͷw³˜žÎžŸ–›û§¬_Ïò¦f©wN¼!9Ì[ÏæÙ‰WŽÏ öË5ßÇP§sê]ÀAaÍ423gc×ßoÏ9Œ¶¶ëgËÍݹ¢“ÞÁu·×ûÛ›C:öû2…ÊÂïL2„òͬBÚ)X<`‚jTa !§ša„Ⱦ$da¢2{#"_EJ†—‰Êd‰LɨJßrg+Gg>uº¶~c÷À¼J4 ^ Uåu,R•©Þ¨‚Bô*³{¨LíÚJ¨r»õ³=VB…6'¦Ê×oÌ c%Ú´–:Yl+½ÊÛÓW%™3Ö{øôH”3ÈÚÌÙf3§*a\¿1…d%ThRz©ƒ*±-¡$*sÍqx0‡V›ˆÊä²­ò*»Ì*/ ¯Ì/Û¯RÎL¤$v%ŸUf\9-UŠÙ^0UÖ™TY*`Ì1«ÞJ¢2Él[J™f6iêÌ3k²P@•i6‡V'Ÿ™Á9åHS¥šë7&ŸÌ«D[® NRÛ¨rÒ¦«ÓÔ6§21mZn™6-·NVÛœªÜ´¹ÝÕéj{êªì4/ð‚¦ÊNÛ½UéisÉÕùéú+A…¶µY%²ë7¦¶±Ãmë³Êx×o̹à ]¿1W޼JtýÆœšyUhÛªä»mU®½~cöÍRUèhÅ©’òõÓôØa‰6GXçóMS§ï/p ÇÑkåôꌾÝ[•ƯߘØ?0¯mK^ä™)hð¿À)´Ã×éJ%Ð6o]&Ê9¥M‰L=m´‡c€W¢­ñ  ©ì­ÊûÇ Y’¶DTd5UDù,àµîŒ;¦°†ò®¬íœþWC+ûJ¯ O^Óc>¨:󴯊¬Çtp4µ‚œiÊ#€VœQ d%–£^‰üáa šKü«ùÖPécÒ#8÷çÐ1”¤Ó€t–“Ãàu¢þÚ0it5t…`OT¶Ôˆd9ä[jD~Úl>ÌÕ- ¢RŽËÇ–° f-ŠysÙÒ!0´ÓabváMeƒ1'­Z"Z …´ŽÞÒ:¤C¾–ö÷±4è4!@íFõ¦Ñ³·†¹%dÅI<-YÐÊD¡áÕAÐáU¤òƒb‹=PÈ 6šÊu@TZ@'fÊë€L¨*Y§Ò¨^=‚*މÆ#(z…DûÒD9h~â+‡ÁÐi‘¦§XÈ6æˆbð»á£¤ï¾£Ÿ^Z‡Î§¿š £Zq3yÚ­`Τlõßô LÅ 0£ª•ý="ºZ½(!ŸpßèW˜Ê1ÕˆÀRŒÎFPµœðšPåó´q_N€¦#Y^¢Q®ùÀié„(!"ìý–”QF¦D?a%dJ”ÄœMÿ}y8›´%¹ D&ôÚ'‡ó¹ ôÑué݈N¬%=rê„áÏ’Häð–ãÊX =T@Çç=û™Ÿ!ÎÍFëdù¬äxçžNêë+`[ã8ÃÉxç/61É4CT³°eqŠ(ADD»¸ÏØt/Dë 8bGO4„M—@¼/ê}¼kkF¹ˆD‰‘s˜Gш`áÕ@›®I‰ Vó]2c>ƒ>øŽÅо:¸BK'ó¼ã)h|¾©k”í5%—„Øè§,Øf£ƒfÿfé "ž@åÍ5@Ù,žAL(-ÝIHò˜„„¸3¹&„ ý`÷–}|À@¶Ë@ÎÑé6€‡€€o1Ð Œ@ø¤½”ãFÙ‘“!ÇñŠ"â}¤;M¯à¨ó ƒå —B/ûµˆ7îØ>Ó+èÑȈÄäbÀFêCä÷;j@{:•ph­"]º­Q>Þc(!d| ™ƒc6#‰F²}‚ ±&Ž}Œ¢{HêQñÆ=mF¤ÁH‚9£ÞÑfÌ´?[á¯FÑô`š8‘&¡# CzW@KP°I !ÆÒ„áãB@Í4ˆ Ù²=5ãÓ'ù±‰2&ÄåDÄÒD!=+Њsuz|Ïë@;B(˜OVFWkÁÍó•¼C¤¥ø=…O|bË4i•§÷jLc£ËTQÜp,Dy)Å4†#D£L4&"ôþ42Ž·hØ‘há0âùún€•ñ?Äñ|o58O÷1¾V0NÂíï(sÀÀÃç[Bx¼äE’=j)F/ÂÒi,Ìx¨g$¸kºâs8Á›J$GBÅŒÇhÖÑKmF|r$^ůµHŽÄ§âÉÂ]¤¸Õ'W貋ãQ] ò</2SKÎÞÇ»ÏòpÊÃlhë36:ï%éâ–o7CºyµßuðÛ!žò1È%$j=¯„˜H’;ž<íÕÀC§¾|DR˜éCY.mvgù¢ ëø”¸‰BWÿBÓ¿Èúh÷HT`µ>CÀOû#GFÓˆWcVIç[`2¤ç{™x™5>†l?‚ –‚Ÿ™¦LÞðl3Øç‰±½&Ö&^zMX'äÿ¡§Ì[SZ¦¼òÆ0‹Ã8'ˆô"ûª‹4%[( ‚J4›E:ÃÔ%6çš Ÿ9meÌœ¢sb¨º»Tô¨ e~d aF¯âaü°QSC¸ùHŠåb½ÓA€ WÉïÝ]äj‡Hz?Ê~kE!æ'~oEáþáv¿x© p¬Gùî.V] ÚVõS·é«^*ÇZ%÷cƒX›ÀŸehTè傎—KJ©œ@¸±Î>S½`*€ŠR½1•þQ‰FÐ\áð”˜ë\iå¹ â/Ó⪟é>³T G‘‚—Ýâæ·sCàÁa±¹žÖ=_Œµ@\Aµß¨X ±22Õ(×-VÏõ´ ×jL -h2⺪Š,]÷¸(ÊL^.I¹Im†XÞÉŸ…JÊç.lw7­ÍØ ¥…L¨,ûËÂ…£¢Ç6?í:uuN…QŠÇ×]>4ªÌêÒŠîý‡ùø¸þ%cf[à¼È¥òYM·‹N–%*‹b8ÙðbµÙ.1¾ûTT¶2^ŽŠæ+fauÉâ&ÿÂêg)†¸FŽw¥Á/·»T*T÷JáÝój¤‘Ýò.wdºEî–¾+ªHñ"–¾Ü'ÚÁLëaVÏ·™—å´ªq’':.±Rz­>”XqÁ&ÅE]añ-ûëg×W³]?N +wGÖFÊÖÍZ˵•ôƒÆ¢. °¨œ]™ªJ—çÓ’¤n~Tæ¨?xØXu§áC¶‘»¸Z¡Q ‡µó§¿=L ¸V·± ­æÅfRñÉeZYeYí±žUšª`sE5w†ÕKãÊBÀL«6&ÑÑóg+J3,ƹ+Ö¢.ÊdÔ63†Å˜!Ka¦5ºµ7‡ÉHkDUÚFjå¥E—»ðı†šS•9,^ö@OY™Ê¼ {·ÊšÖÛ¬a»Ï•Å,›ëцZ*KÅòU.`‚’$ c<½é3<¿^%O„Ž+@?O‹—q££¢ó"ñ\¦ZŽl÷НHu˜ˆàÙ Ja³”FÄäbõÿ"-~Šqºûô¹ïïšñÈ@áröǵ}¶¤Ær£ÏXmá—»\ ;m;“Út_GJ®tA祉­¡:^JÜ©®í}”\Ò;4ùsv¬N²÷9pÕñô¶Öƒ¤v,[\rÌîIQ-ê þZ¬ëTÙÏUŒ°d?Ò^ùr™t£l‘‹‘—ŵÊÅ`¸\‘=ý;ŒãdmݤðfùôÃn{ÿ_Ÿ~y—j seEá‘¾è„ 9å$’•†‚Žú/-<&3.Ö›•嬄Çð³ŽÓßÐø\îÙ7÷™-\ä"ý½„ÔÛ* `® çaìn"Èäú#D¶|´˜éøU+ZÌL$t!,æÖãLÇ8è™¶¬ÜqñËrÿÌæ2Ö–Ñé’‹zù¯!¤ÊØ8¾Få¯çMxÓÐz´Ñ"Tý`Ë„ã4°§Qme£½>.ï¾¼P zåOfK’îsZú‘‹³M,Bÿn“ÅËу <éH‚§`„Ëi"@„£‰æ?ØÅ*ƽù¯ ÔÎgNGÿp…‡h;Ú€mTJ×*v.S‰Uñµ û£hŠ*¹1¢O1Ò€¬_r18UQÏé}’ãn½øër=º'×Ç]–ÁfjþC«XÖoÕý%þ}_%T«åC±2çL…à-ý䆦KSóñß5ÉC?ž °ª`±Z¥z¸ïÙ\†Þ#Tae‡Inÿ¶w:Ùendstream endobj 177 0 obj << /Filter /FlateDecode /Length 6174 >> stream xœí]K“#7r¾÷oð1bmá lx¡°³¡ØõŽÚÞƒ´N?)ñÑb³%Ï?ðÏv&Ufä+cC~Ä#‘Hd&*³:^ =[ ø/þ·»O7?ß0.âw»ÅŸnoþðQ«…íÖrqûxz°“ªg[˜AöLèÅíîæûîß–+ÅU?0ÙÝö§ãaû~»y=ýÐ×û§‡÷lPäN}uz~8­ßÿ忾ýö‡åò·†y{§ÜâöÛ›Û)FYoŸýÓö¸ÿôCw¿yýÏãá鯟~|ÿú¼¾_¿JsÄÿã`ø(€<qp )†¡Ô ÆÑ7ûåJÑ‚w§çåj詬±¬Û¼â/²Œì^ýÊ2«m·9½åíÖ§Íaíœéú8-†|Þ½“_¬8ïÝßtÿ»¼ý)yËÔpðMŽ§ØˆU”t<-ã¶ ý!ëyPÌÀa'Lœáíååáøéð¶¿oM¤LÏM¿ïV'N°öØÜ-WÒ`ëøÙöwÝz٢ðž9í"¯oÇ_>>¼¶ˆ0…c#‡Oˇ…Ý9w58¿Æ¥úÍôtiÕ½Ág†:Û½­·ÛÏñ§Awÿ´Ý†á4ך›î~á× ˆ.bÅl R‹•ßkQ§z¸u¸Ý·WðÅÁoƒèÇøÃ`»oà—/`§ïj¸g§ï*lW¬ùç·Lú¢4úNŠw¢‡ˆÁŸž¯±?]+JyÞâONv¿,•‚ƒö–V Y·+¦[ï_s}…“á¨zdã†8¥•ªò‡|0äg:…óVw™üv°njÙá±^µÏb¾xa ›. ®¡Ûn~Z¢Ä0íJæÁî[ w¸á@.”Vè‡ì0Ý'lì¬cFw›¥ÿ4Å“Ÿy¥á:2,Llò‰×¡å3¬ç˜@±ô£Ç½$2 |DÉ“ `qj"»Ã›oƒ“œ>el<>,0?Ç»õO°Í ×{ûáq™Øú9ÌÉÃ(‚á® 8#ÈOXˆì÷«;ìS$JöfÒSïßý‚|x×:ÁzT!ÈgTqÖD¹pŽIOä߀GR¶§ðÉuR—wü4ýpÈ…ÔXX*0©XÌöpŠ¿°¸Ež!Ó¡íî!ÎÚpèá[8ø™áù“l¢–ûs53ÀR/|Á Ÿd¶Q³´yAP½%ŸK~&~EÕÏúè{Xdì °àt¶VHA,ËIs“[&Îø!¨^Áó½ˆò·Ý~‡bI¶ñ‹™.ª»/äkœšÁÔÇð%XFT©O¶»ŠuÛí:Í ×”õi®Åõ®šè\5®ÒÔ…Ü»rÁ.~µÞ¾<¯ßs7s¼»qü*ýJþuâìw]ÚÿýöæoøÂÑÛ¸‹¨¾‚{í²`ütfLJÅßû›ïŒõ|°`h,XöA,þ&èþFôFèA-~½a }ñãÍÐC×ÅÐ+Ðph“øâã77Ì:Ñ ½‡ˆç‹Ý k5~Ýž…E{[Ü´L@@”¹AÀps\‘5ŸA,\Ñ5‰ð­; ó”œA@š™A¤ë-o"‰_4_/õ baç§Q<€1ÞKÙB¬p=3AçÁÎ  ¦`54öå¨ CÄày™AàînHØÕ ÙDƹ9g^–Î'M¯™Gà\ÁÅì‘àLõ6 JôÜÌ Tk"èvyœÙBh®<ÂTÇ—FëŸA`Í M4¢yo[€–½ ÜÒáSÉÖàÀ¸2õ/´Õ  Uò&2(½©žA€C†÷BÍ ­o ™¤@Á•¤”¦yž–—¦sdêZÆéD (ÃçH&ÝJk¤•F@ËX×B¦Ó¦œé•  ®433èËšÈxj5\ª h°kr-c\ ™4£«*˜ŸíÎ àu6ƒ‹òÔBF»aJãSÕ®×n±ª‚F,hgf¦½$‘8‡\Í SÖÍ ZTVwDF^ÁM¶çbc 88»ŠÍ p¡fª…L²ä@Ç”ÒÕ@à…²D"àî•vwDÆâ¬í!0 !Ù Âѽn!ãɃP^¢HD1oyÏI ðçÑòÒˆåè×µ¤Åà,úu$ÂðÙªj!£¦à÷ÊÍ poâb=SXÞbtiy'$Ù1oy „ƒž±4ÀE/Ý ‚’%šÈHǧÚf1Ciy[ˆÕ¥åm vÛ4€i÷€]Aš(Ä0›È(MBâåh®Þ@2鯏X^qpJÀtÖ$^Ùä zÆÚDr”¥’tˆ ΛAð¢©gë Û€Q3 5(owI´Œ±3ˆÐ(K4¢xiw'$Y¡´éžA,œpø ŽF4“(K4ŸŸA@Ç8=ƒhVÚÞbàŒ´€‘[4Œ“4b¸ÛîþœÏ 2V·I˜ Üý `¸| SØÝ Oˆ…«¿´3Üýo!´·ô#[Ð1(KçÈtð-Üý%›Aàî_Ú݈dzÈÚí.Àå_ˆ&2êE·ÿÏ èÐ-dRÓnÿ‚@Ç”V·YYÝ—ÿÒêŽH²a°b…žÀí_énÿœ@ÇXÙD}r€»¿t3ˆ•¥Õm! e «Û@ÜýAšȸ{’ ¤‰B$œ’6’¤ Ö w`7ƒ`¾‹h “tKgJápû¬…Œ'Rr|تf9 <Ѭ™·‘¤E$MãÄ ÷ehèÒòŽÈ¨¥McÕ ÷éf5”¶·…€¦±¢‰$Ó!Aõ¡~£¸ÿ3F#4Q3Üÿ…›A0Ì*gåJëÛBŒ*­o ÁŒÖDFŽ©îÂjáÜK‰àS~1ƒ(á%ê™$Jiçí/‰@ÿÂþ6= ø|²…Œ'E3¸ »´3œóÂȤ´ÞŸ#74h£H¦‘´ƒ“rd{l0©Ã5L?®üóI‘p¶ $£Ï(ƒö÷Étº1¼´¿-ÄÚŸ“%d ™è³Ì¡×@&‹g…òÏ'I4 >ÿ&­+û›ik¬å=§€ïB L**¹ë‡Ò§¬>Å ÊS ”QY½`VuïÀ-ÕyZ/>Æg¨§ ¼ÍÖûõ~½]2Ü3Ýç×Íëâð¸á¼ÅÛëfÿ´xÚ_›×?.6ûÓÃq‰±t£Dw÷ð’GÀ#·ÞÐH˜†s9fTâóua|þˆOD¹ýñéX!A náÃZÐH³˜cü—ÃR`¨^뮇é—˜ìˆñÓ‡»ÓÃýLüòpâ€]ž¦° ‡ ¥‘¬¼ôõù汄€g|!`=¸C°ãÇß"ëF¸Ê©QŒfœ ÊÆ‚TÅF1|8Q\!Yø@Ý%zôg¤¥HãHTdFyö#•è®Ù3$ $ŒU¢H‘˪È!s «b£ºÌ·œŒj¤»ÌG‚‹ýKÑKJÆð%IwŠ_Ò#ÅæÄÍ É˜â¹Y¡iy,·.M#£JÄXgE¹-ÙØ$Å:«6å8)ØYQTò)Å?«‘J²c¸“æxŒwÒOš1âIÓCž4¿cÌsf¤ôÏFµ5¤µÅÐ'ÝÆÇ>ésƒŸçj  (D?ÉÉbô“¥þ<Ó'…(Åø'Íí% E@išb”)Æ@IšRtÒ:’A Äk %WÏ1\J./ÅK3¢J$‹—H ªDG.Û—«Ù„%’V ÄOX¡»fÏ€%0V‰¶ ^ŠÔ’gÆ(y.ÂÓS¸–ž+ÆkÉF)`KîqŠØNlª,bK žMÚÖö)´KSc»$§Rp—fBŒîfë+‘,ºK ~}Úž0…I&¤80É„®ªš.F‚+N•*(…‚©éÆX0µº1L£Á”ÆÄôt!<3]“OaR¢RH˜TR)&Lë¦iŠQazu1,L33Æ…IC#äM¡aš¤¦ƒÃÓÁ«‘)8L!Ï~¬mËJŒ"ç–ÈF&?] ¶—£Í´<Åp3½w1ÞL/.œ§ÅUHp&°¼Ý5{†Èôe ŒT€»F·¾&?R…¶yžâÜ$§R {"ªB²@7ªJt×ìâÆ*Ѧ6O¡ól¾È"çâ§«ÐöAN!öi¾ ÉBì&,ÑöúR,žÔA)Ons ÇÓË‹ñøly%’Åã Ä/¯BÛËK{’ò¹'IO¡{R½Äà==PŒÞO<¨,zO žÚ^^ óOVHæ'0a‰¶µBL 7&eДǔ€Šç¥aO9õHNû‡°±QL ˜xP!YRxThÛ'IÙ$£RBAí¸dWñ”>03PÈ …3&Ðû3h¿%äÐþVL" ÏBÌ"8»¡å ˆY“R)()€$;&ËO™¤‘R ê‘$ HmB*Á$•52¥Pȳ«D›*åœñ»`AL: …)eÐÌŒi¤ìŽy” Œ‰Ô™3H¤Ôrº”{@² %ÐÓÅìêÐé“TH–~@ ^*´½¾”§0MX!Yž„ K´}RBC6¡ª\ &,Ñ]³gL| 0V‰îš=c‚„±J´-)“‚”‡”J1QU!Y*xª*´}SÎE6a‰d9&,ÑæÃÎ19ƒš”A24¥gÐb~y(R‚ÆÄ„ É4Ä3¡B/P39H«•R9È‘R.¹É)™£â9þ%,kÆéb6ÇÙtYaLç \®1ãjTM2:*äQ´1Ç£"»l2:è¹RJGÕ¨ˆYµÙ.f 94E>©ƒfcÌê¨Y¸m)–¶6¦uœ™"&l?Ò:H_#¦uÔD—«y¤ûs}‹ùúóõ-æë[Ì×·˜¯o1_ßb¾€\ßb¾€\ßbžA®o1_ßb¾¾Å|}‹ùúóõ-æë[Ì×·˜¯o1o¯o1_ßb¾€\ßb¾¾Å|¹¾Å<ƒ\ßb¾¾Å¼½¾Åüßbþ>†»àâ ºj¾ðWÑß ¤¹± A†w€w} ¬þÇíçñm·„<è 7CˆN=±Ü€)z¢í×uOÞ¤5= Üpü{/SO´öò¬'ø†eG¸®ø—wÇŽFÄ7ÓŠŽ.>´;ö´Ü…wH¦žhdíYOpídÁ •“bâBAÞóË_oÄ!ß`TÑ¿;í8âÌàü‰ ÁÍål>Ü7µŠL"MÞ°\h…Å8uS«ÉZ)`%2dj5"Y+Ÿ£N­Fdj%H>™HÖ ƒ¹,§kB²VFpoã¦V#’µr°2gê„L­$†ª]Ný„d­‚É91!Y«r;²ý™Ú= xüë i5{Ø ÛÝMLJAàKý‹‰£Wp¿`müÿ>àO „B»È™º1%Ïz…n`°¬kw2ø`ªnÿíÑpôÁ8T½d¢´Úeå…n@#Üé.©šý~3‘ê÷©~'‘*‰›s‰J~ÖMTú?ðð¥Û­g¶ÛÿQ‡†ö’{-—)–óV á|Ń200 êÚID$o%Çüìd oSÓ0Q•·JŒbL‹Š€ Ë™¼Ô}É<mj¤˜@w,k‘¼Ñ”’ËØ(¹ S£É‘ø®&3k”þezbúËc˜×ƒÙƒ…¿ì1`=.,¢%;…å°`ËëÂ똎)ÿŸƒÈüž¿õÑ6j‚©è——ñ8 :ãƒoç¾»˜®ÓLθ@à· yý [Fû+w¼v uD€Íó„Úo±€ÅYÌMÿÇT¡Ë¾|æþÙ ^xq2¸+£G‹êXù'Aì*|šçߥßýãyîó¡”‹åÃþqɱxgÙŸ`Á/Ü—qênŸ¯Ï‡íýòŸ}‰¯±¨ÍÊŽP¢ÛUÛØ$§*…XÕ äpŸ/$Ðó×ÇTßÑ–5TÊrBǼhÔY­&_Åc°eŽT¥‹‚8ë&ù–RûºIS<ÔMеEN©:ˆŠ5{—40ô=«$´›Z­Som§r„gµ5øÔà*dUÙ.—¸Ò¾ô]*5Ù‡&uáJ^…~þÆÂ•÷›ã®üàKÝ _Hí¬„¢ÿAó’#å¾]¨³Ùn×ûº¤’΄jYþ³äYM¿¼ØËcU /üa¬PêñÁÑu¾ØŽá¾PÖýærMž™r=‰_0U-DLU5ÑžòzQþÔøvŒùSž¦BQ§¸_#ëc ¤X>¦®“‰±@Ï:mhÝÍ~52*ŽÎ±`uZà’î+WqÊ/bå*~akýÒýöŠg˜þ…•„ãÜÕ#=_ê­Ë×Y—%ò &?­å|ÅÆ5|^')è—+د TTÁó…á¯Úµ>Þ{t±rcw:•6±–ÑàUV ÌJ@›*®‡`ý©žªù\,ËMV3O ôl÷§\vOiþ $þ~ \w8UE‹wÊóx]T‡ÜnÊjLU)¯×8º´á|ÅU—ū޶÷ñ§³bq¾s¶ŒâÔ  Ç–ŽÒ ÒÒŽÅ󴈥•¯úV±-/º*ð!ád(fe¨™h|YÁÿHeVÇ©Ð^*žˆ6³{ÉÇ;¦²Ÿk—$Íê(r_Y¬1{f$íЃ¡œ±TàµX>~Éë衘ùÝæÎôRŠªêg¨½†E±¬——ÊÛlן¶…Pô¡Ô0jðXÁµQ-Y‰Ñ²_ 𣬰‘꜎Ël<ù:l(Íz™¬×†¥²Žï6û»¦/÷ aÆz™¾¶› [žŸH,·ŒEßœc¥ân §Â ·çÂYÕ»Ãk:¨,'§já~B5Ú1Œ¥ÿlÏkúùþz´}þ/S{n(–:(†}d¸|¬›íä>ü‚ eÐÁâHf¼¹?­Z6 _슪+/kˆú‚)/[뻋½>¨+j¯0<¡aügËÀú/`ª.—MÞäª:«i™ÊÂ&½_Q¯*û•*à& TàýhÎBÁ¾Ñ8µ1œPðHÇñþÝýC[:Á†)©Š"İØsÉôž>ûèÍR4c¹ÁÜ×/÷¦2VÓ/›ûs[NñvcÆfyZýþ¹Lÿ˜&\›ÓC“¿Ýü^$/Óendstream endobj 178 0 obj << /Type /XRef /Length 188 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 179 /ID [<785dc5c11a4777532cc07ae8333274d0>] >> stream xœcb&F~0ù‰ $À8J"ò?ƒ@ç^ ›- G¯ÂGãh0‘ÿ”/î²ùÚ@ñÂ/"åHÉe ’%D²]‘2-`5 @$ˆdŸ "™·€H¦8É«"¹ÿHA) É(ÅbsZH.)ôD2þ›¿Ì.‘ÒÇÀ"‰`õ R@l²%X¤ Ìž&%Á®º"%Àv1kÍÙ "ù²@¤XØF°íbu`• K endstream endobj startxref 129186 %%EOF surveillance/inst/doc/glrnb.R0000644000176200001440000001425414712411546015732 0ustar liggesusers### R code from vignette source 'glrnb.Rnw' ################################################### ### code chunk number 1: setup ################################################### library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) ## create directory for plots dir.create("plots", showWarnings=FALSE) ################################################### ### code chunk number 2: glrnb.Rnw:92-94 ################################################### getOption("SweaveHooks")[["fig"]]() data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") ################################################### ### code chunk number 3: glrnb.Rnw:101-103 ################################################### # Simulate data simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) ################################################### ### code chunk number 4: glrnb.Rnw:106-107 ################################################### getOption("SweaveHooks")[["fig"]]() plot(simData) ################################################### ### code chunk number 5: glrnb.Rnw:140-142 ################################################### getOption("SweaveHooks")[["fig"]]() survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj, col=c(8,NA,4)) ################################################### ### code chunk number 6: glrnb.Rnw:161-164 (eval = FALSE) ################################################### ## control=list(range=range,c.ARL=5, ## mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL, ## dir=c("inc","dec"),ret=c("cases","value")) ################################################### ### code chunk number 7: glrnb.Rnw:173-175 (eval = FALSE) ################################################### ## control=list(range=105:length(shadar$observed)) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 8: glrnb.Rnw:181-183 (eval = FALSE) ################################################### ## control=list(range=105:295,alpha=3) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 9: glrnb.Rnw:191-194 ################################################### control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha ################################################### ### code chunk number 10: glrnb.Rnw:205-207 (eval = FALSE) ################################################### ## control=list(range=105:295,mu0=list(S=2,trend=FALSE)) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 11: glrnb.Rnw:210-212 ################################################### control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 12: glrnb.Rnw:217-219 ################################################### getOption("SweaveHooks")[["fig"]]() plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) ################################################### ### code chunk number 13: glrnb.Rnw:225-226 (eval = FALSE) ################################################### ## surv$control$mu0Model ################################################### ### code chunk number 14: glrnb.Rnw:233-234 ################################################### estimateGLRNbHook ################################################### ### code chunk number 15: glrnb.Rnw:274-275 ################################################### coef(surv$control$mu0Model$fitted[[1]]) ################################################### ### code chunk number 16: glrnb.Rnw:283-286 ################################################### control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) ################################################### ### code chunk number 17: glrnb.Rnw:291-295 ################################################### num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } ################################################### ### code chunk number 18: glrnb.Rnw:311-319 ################################################### getOption("SweaveHooks")[["fig"]]() control=list(range=209:295,c.ARL=5.1,mu0=list(S=1,trend=TRUE), alpha=NULL,M=52,change="epi") surv <- algo.glrnb(shadar, control) plot(surv,col=c(NA,8,4),lty=c(1,0,1),lwd=c(1,1,3),legend.opts=NULL) lines(surv$control$mu0,lty=2,lwd=2,col=2) abline(h=surv$control$c.ARL,lty=2,col=3) legend(1,20,expression(GLR(n),mu[0],c[gamma]), col=c(4,2,3),lty=c(1,2,2),lwd=c(3,2,1)) ################################################### ### code chunk number 19: glrnb.Rnw:325-327 (eval = FALSE) ################################################### ## control=list(range=105:295,theta=0.4) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 20: glrnb.Rnw:332-334 (eval = FALSE) ################################################### ## control=list(range=105:295,theta=NULL) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 21: glrnb.Rnw:342-344 ################################################### control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 22: glrnb.Rnw:347-348 ################################################### getOption("SweaveHooks")[["fig"]]() plot(surv2, col=c(8,NA,4)) ################################################### ### code chunk number 23: glrnb.Rnw:358-360 ################################################### control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 24: glrnb.Rnw:363-364 ################################################### getOption("SweaveHooks")[["fig"]]() plot(surv3, col=c(8,NA,4)) surveillance/inst/doc/monitoringCounts.R0000644000176200001440000004036414712411566020212 0ustar liggesusers## ----SETUP, include = FALSE-------------------------------------------------------- ## create directories for plots and cache dir.create("plots", showWarnings=FALSE) dir.create("monitoringCounts-cache", showWarnings=FALSE) ## load packages library('surveillance') library('gamlss') ## ----echo=FALSE-------------------------------------------------------------------- data("salmNewport") ## ----echo=FALSE-------------------------------------------------------------------- stopifnot( all.equal(observed(salmNewport), observed(as(as(salmNewport, "ts"), "sts"))) ) ## ----echo=FALSE-------------------------------------------------------------------- # This code is the one used for the Salmon et al. (2016) JSS article. # Using this code all examples from the article can be reproduced. # computeALL is FALSE to avoid the computationally intensive parts # of the code (simulations to find a threshold value for categoricalCUSUM, # INLA-driven BODA) but one can set it to TRUE to have it run. computeALL <- FALSE ## ----NewportPlot-simple, fig.keep = 'none'----------------------------------------- plot(salmNewport, type = observed ~ time, xaxis.tickFreq = list("%m" = atChange, "%G" = atChange), xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y") ## ----unitPlot-simple, echo = FALSE, fig.keep = 'none'------------------------------ plot(salmNewport, units = 2:3) ## ----EARS, fig.keep='none'--------------------------------------------------------- in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) plot(surv) ## ----farHead----------------------------------------------------------------------- con.farrington <- list( range = in2011, noPeriods = 1, b = 4, w = 3, weightsThreshold = 1, pastWeeksNotIncluded = 3, pThresholdTrend = 0.05, thresholdMethod = "delta" ) con.noufaily <- list( range = in2011, noPeriods = 10, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin" ) ## ----echo=F------------------------------------------------------------------------ con.farrington$limit54 <- con.noufaily$limit54 <- c(0,50) # for the figure ## ---------------------------------------------------------------------------------- salm.farrington <- farringtonFlexible(salmNewportGermany, con.farrington) salm.noufaily <- farringtonFlexible(salmNewportGermany, con.noufaily) ## ----farPlot-simple, echo = FALSE, fig.keep = 'none'------------------------------- par(mfrow = c(1,2)) plot(salm.farrington) plot(salm.noufaily) ## ----campyDE-simple, fig.keep='none'----------------------------------------------- data("campyDE") cam.sts <- sts(epoch = campyDE$date, observed = campyDE$case, state = campyDE$state) plot(cam.sts, col = "mediumblue") lines(campyDE$hum * 50, col = "white", lwd = 2) axis(4, at = seq(0, 2500, by = 500), labels = seq(0, 50, by = 10)) ## ----boda-cache, echo = FALSE, results='hide'-------------------------------------- if (computeALL) { ##hoehle 2018-07-18: changed code to use NICELOOKINGboda, but that's iid. Reason: ##The option 'rw1' currently crashes INLA. library("INLA") rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01")) control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE, season = TRUE, prior = "iid", alpha = 0.025, mc.munu = 10000, mc.y = 1000, samplingMethod = "marginals") boda <- boda(cam.sts, control = control.boda) save(list = c("boda", "control.boda", "rangeBoda"), file = "monitoringCounts-cache/boda.RData") } else { load("monitoringCounts-cache/boda.RData") } ## ----boda2-cache, echo = FALSE, results='hide'------------------------------------- if (computeALL) { covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum", "newyears", "christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X = campyDE[, covarNames], season = FALSE)) boda.covars <- boda(cam.sts, control = control.boda2) save(list = c("boda.covars", "covarNames", "control.boda2"), file = "monitoringCounts-cache/boda.covars.RData") } else { load("monitoringCounts-cache/boda.covars.RData") } ## ----bPlot-simple, echo = FALSE, fig.keep = 'none'--------------------------------- plot(boda.covars) ## ----boda3, echo = FALSE----------------------------------------------------------- control.far <- list(range=rangeBoda,b=4,w=5,alpha=0.025*2) far <- farrington(cam.sts,control=control.far) #Both farringtonFlexible and algo.bayes uses a one-sided interval just as boda. control.far2 <-modifyList(control.far,list(alpha=0.025)) farflex <- farringtonFlexible(cam.sts,control=control.far2) bayes <- suppressWarnings(bayes(cam.sts,control=control.far2)) ## ----boda4, echo = FALSE----------------------------------------------------------- # Small helper function to combine several equally long univariate sts objects combineSTS <- function(stsList) { epoch <- as.numeric(epoch(stsList[[1]])) observed <- NULL alarm <- NULL for (i in 1:length(stsList)) { observed <- cbind(observed,observed(stsList[[i]])) alarm <- cbind(alarm,alarms(stsList[[i]])) } colnames(observed) <- colnames(alarm) <- names(stsList) res <- sts(epoch=as.numeric(epoch), epochAsDate=TRUE, observed=observed, alarm=alarm) return(res) } ## ----alarmplot, fig.width=8, fig.height=4, out.width="\\linewidth", echo=FALSE----- # Make an artificial object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") ## ----glrnb, results='hide'--------------------------------------------------------- phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011) phase2 <- in2011 control <- list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases", mu0 = list(S = 1, trend = TRUE, refit = FALSE)) salmGlrnb <- glrnb(salmNewportGermany, control = control) ## ----cat--------------------------------------------------------------------------- data("salmHospitalized") isoWeekYearData <- isoWeekYear(epoch(salmHospitalized)) dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013) data2013 <- which(isoWeekYearData$ISOYear == 2013) dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014 & isoWeekYearData$ISOWeek <= 4) phase1 <- dataBefore2013 phase2 <- c(data2013, dataEarly2014) salmHospitalized.df <- cbind(as.data.frame(salmHospitalized), weekNumber = isoWeekYearData$ISOWeek) names(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound", "n", "freq", "epochInPeriod", "weekNumber") ## ----catbis, results='hide'-------------------------------------------------------- vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber") m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod) + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod) + I(weekNumber == 1) + I(weekNumber == 2), sigma.formula =~ 1, family = BB(sigma.link = "log"), data = salmHospitalized.df[phase1, vars]) ## ----cat2-------------------------------------------------------------------------- R <- 2 h <- 2 pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars], type = "response") pi1 <- plogis(qlogis(pi0) + log(R)) pi0m <- rbind(pi0, 1 - pi0) pi1m <- rbind(pi1, 1 - pi1) ## ----cat2bis----------------------------------------------------------------------- populationHosp <- unname(cbind( population(salmHospitalized), population(salmHospitalized))) observedHosp <- cbind( "Yes" = as.vector(observed(salmHospitalized)), "No" = as.vector(population(salmHospitalized) - observed(salmHospitalized))) salmHospitalized.multi <- sts( frequency = 52, start = c(2004, 1), epoch = epoch(salmHospitalized), observed = observedHosp, population = populationHosp, multinomialTS = TRUE) ## ----cat2ter----------------------------------------------------------------------- dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { dBB(if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log) } ## ----cat3-------------------------------------------------------------------------- controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM( salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coefficients)) ## ---------------------------------------------------------------------------------- h.grid <- seq(1, 10, by = 0.5) ## ----cath-cache, echo = FALSE, results='hide'-------------------------------------- if (computeALL) { simone <- function(sts, h) { y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE], bd = population(sts)[phase2, ], sigma = exp(m.bbin$sigma.coefficients), fast = TRUE) observed(sts)[phase2, ] <- cbind(y, population(sts)[phase2, 1] - y) one.surv <- categoricalCUSUM( sts, control = modifyList(controlCat, list(h = h)), sigma = exp(m.bbin$sigma.coefficients)) return(any(alarms(one.surv)[, 1])) } set.seed(123) nSims <- 1000 pMC <- sapply(h.grid, function(h) { mean(replicate(nSims, simone(salmHospitalized.multi, h))) }) pMarkovChain <- sapply(h.grid, function(h) { TA <- LRCUSUM.runlength(mu = pi0m[1,,drop = FALSE], mu0 = pi0m[1,,drop = FALSE], mu1 = pi1m[1,,drop = FALSE], n = population(salmHospitalized.multi)[phase2, ], h = h, dfun = dBB.cusum, sigma = exp(m.bbin$sigma.coef)) return(tail(TA$cdf, n = 1)) }) save(pMC, file = "monitoringCounts-cache/pMC.RData") save(pMarkovChain, file = "monitoringCounts-cache/pMarkovChain.RData") } else { load("monitoringCounts-cache/pMC.RData") load("monitoringCounts-cache/pMarkovChain.RData") } ## ----catF-simple, echo = FALSE, fig.keep = 'none'---------------------------------- plot(salmHospitalizedCat[,1]) ## ----catARL-simple, echo = FALSE, fig.keep = 'none'-------------------------------- matplot(h.grid, cbind(pMC, pMarkovChain), type="l", lty=1:2, col=1) abline(h=0.1, lty=5) legend("center", c("Monte Carlo","Markov chain"), lty=1:2, bty="n") ## ----rotaPlot-simple, fig.keep='none'---------------------------------------------- data("rotaBB") plot(rotaBB) ## ---------------------------------------------------------------------------------- rotaBB.df <- as.data.frame(rotaBB) X <- with(rotaBB.df, cbind(intercept = 1, epoch, sin1 = sin(2 * pi * epochInPeriod), cos1 = cos(2 * pi * epochInPeriod))) phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 library("MGLM") ## MGLMreg automatically takes the last class as ref so we reorder order <- c(2:5, 1); reorder <- c(5, 1:4) m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ], dist = "MN") ## ---------------------------------------------------------------------------------- m1 <- m0 m1@coefficients[1, ] <- m0@coefficients[1, ] + log(2) pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder]) pi1 <- t(predict(m1, newdata = X[phase2, ])[, reorder]) ## ----CATCUSUM---------------------------------------------------------------------- dfun <- function(y, size, mu, log = FALSE) { dmultinom(x = y, size = size, prob = mu, log = log) } h <- 2 # threshold for the CUSUM statistic control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, pi1 = pi1, ret = "value", dfun = dfun) surv <- categoricalCUSUM(rotaBB,control=control) ## ----include = FALSE--------------------------------------------------------------- alarmDates <- epoch(surv)[which(alarms(surv)[,1])] format(alarmDates,"%b %Y") ## ----CATCUSUMMC,echo=FALSE,eval=FALSE---------------------------------------------- # #Number of MC samples # nSamples <- 1e4 # # #Do MC # simone.stop <- function(sts, control) { # phase2Times <- seq(nrow(sts))[phase2] # #Generate new phase2 data from the fitted in control model # y <- sapply(1:length(phase2Times), function(i) { # rmultinom(n=1, prob=pi0[,i],size=population(sts)[phase2Times[i],1]) # }) # observed(sts)[phase2Times,] <- t(y) # one.surv <- categoricalCUSUM(sts, control=control) # #compute P(S<=length(phase2)) # return(any(alarms(one.surv)[,1]>0)) # } # # set.seed(1233) # rlMN <- replicate(nSamples, simone.stop(rotaBB, control=control)) # mean(rlMN) # 0.5002 ## ---------------------------------------------------------------------------------- m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ], dist = "DM") c(m0@AIC, m0.dm@AIC) ## ---------------------------------------------------------------------------------- ## Change intercept in the first class (for DM all 5 classes are modeled) delta <- 2 m1.dm <- m0.dm m1.dm@coefficients[1, ] <- m0.dm@coefficients[1, ] + c(-delta, rep(delta/4, 4)) alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients) dfun <- function(y, size, mu, log = FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) dLog else exp(dLog) } h <- 2 control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = t(alpha0), pi1 = t(alpha1), ret = "value", dfun = dfun) surv.dm <- categoricalCUSUM(rotaBB, control = control) ## ----echo=FALSE,eval=FALSE--------------------------------------------------------- # matplot(alpha0/rowSums(alpha0),type="l",lwd=3,lty=1,ylim=c(0,1)) # matlines(alpha1/rowSums(alpha1),type="l",lwd=1,lty=2) ## ----ctPlot-simple, echo = FALSE, fig.keep = 'none'-------------------------------- par(mfrow = c(1,2)) surv@multinomialTS <- surv.dm@multinomialTS <- FALSE # trick plot method ... plot(surv[,1], col=c(NA,NA,4), ylab = expression(C[t]), ylim = c(0,33), xaxis.tickFreq=list("%Y"=atChange, "%m"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y") abline(h=h, lwd=2, col="darkgrey") plot(surv.dm[,1], col=c(NA,NA,4), ylab = expression(C[t]), ylim = c(0,33), xaxis.tickFreq=list("%Y"=atChange, "%m"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y") abline(h=h, lwd=2, col="darkgrey") ## ---------------------------------------------------------------------------------- today <- which(epoch(salmNewport) == as.Date("2013-12-23")) rangeAnalysis <- (today - 4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013) algoParameters <- list(range = rangeAnalysis, noPeriods = 10, populationBool = FALSE, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin", alpha = 0.05, limit54 = c(0, 50)) results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control = algoParameters) ## ----results='asis'---------------------------------------------------------------- start <- isoWeekYear(epoch(salmNewport)[min(rangeAnalysis)]) end <- isoWeekYear(epoch(salmNewport)[max(rangeAnalysis)]) caption <- paste0("Results of the analysis of reported S. Newport ", "counts in two German federal states for the weeks ", start$ISOYear, "-W", start$ISOWeek, " to ", end$ISOYear, "-W", end$ISOWeek, ". Bold red counts indicate weeks with alarms.") toLatex(results, caption = caption, label = "tableResults", ubColumnLabel = "Threshold", include.rownames = FALSE, sanitize.text.function = identity) surveillance/inst/doc/twinstim.Rnw0000644000176200001440000016176214673030222017052 0ustar liggesusers%\VignetteIndexEntry{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} %\VignetteEngine{knitr::knitr} %% additional dependencies beyond what is required for surveillance anyway: %\VignetteDepends{surveillance, grid, sf, polyclip, memoise, colorspace} %% 'sf' is not strictly required: sp:::is.projectedCRS() still has a fallback <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinstim-', fig.width = 8, fig.height = 4, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## add a chunk option "strip.white.output" to remove leading and trailing white ## space (empty lines) from output chunks ('strip.white' has no effect) local({ default_output_hook <- knitr::knit_hooks$get("output") knitr::knit_hooks$set(output = function (x, options) { if (isTRUE(options[["strip.white.output"]])) { x <- sub("[[:space:]]+$", "\n", # set a single trailing \n sub("^[[:space:]]+", "", x)) # remove leading space } default_output_hook(x, options) }) }) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ \documentclass[nojss,nofooter,article]{jss} \usepackage[utf8]{inputenc} % Rnw is ASCII, but auto-generated bib file isn't % (specification is redundant in LaTeX >= 2018-04-01) \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinstim} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~3]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinstim} implementation in your own work.}}\\[1cm] \code{twinstim}: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Plaintitle{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Shorttitle{Endemic-epidemic modeling of spatio-temporal point patterns} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure %% knitr uses \subfloat, which subcaption only provides since v1.3 (2019/08/31) \providecommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbb{I}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of \emph{point-referenced} surveillance data using the endemic-epidemic point process model ``\code{twinstim}'' proposed by \citet{meyer.etal2011} and extended in \citet{meyer.held2013}. %% (For other types of surveillance data, see %% \code{vignette("twinSIR")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for time-stamped geo-referenced case reports of invasive meningococcal disease (IMD) caused by the two most common bacterial finetypes of meningococci in Germany, 2002--2008. } \Keywords{% spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, spatial interaction function, branching process with immigration} \begin{document} <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) @ \section[Model class]{Model class: \code{twinstim}} \label{sec:twinstim:methods} Infective events occur at specific points in continuous space and time, which gives rise to a spatio-temporal point pattern $\{(\bm{s}_i,t_i): i = 1,\dotsc,n\}$ from a region~$\bm{W}$ observed during a period~$(0,T]$. The locations~$\bm{s}_i$ and time points~$t_i$ of the $n$~events can be regarded as a realization of a self-exciting spatio-temporal point process, which can be characterized by its conditional intensity function (CIF, also termed intensity process) $\lambda(\bm{s},t)$. It represents the instantaneous event rate at location~$\bm{s}$ at time point~$t$ given all past events, and is often more verbosely denoted by~$\lambda^*$ or by explicit conditioning on the ``history''~$\mathcal{H}_t$ of the process. \citet[Chapter~7]{Daley.Vere-Jones2003} provide a rigorous mathematical definition of this concept, which is key to likelihood analysis and simulation of ``evolutionary'' point processes. \citet{meyer.etal2011} formulated the model class ``\code{twinstim}'' -- a \emph{two}-component \emph{s}patio-\emph{t}emporal \emph{i}ntensity \emph{m}odel -- by a superposition of an endemic and an epidemic component: \begin{equation} \label{eqn:twinstim} \lambda(\bm{s},t) = \nu_{[\bm{s}][t]} + \sum_{j \in I(\bm{s},t)} \eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j) \:. \end{equation} This model constitutes a branching process with immigration. Part of the event rate is due to the first, endemic component, which reflects sporadic events caused by unobserved sources of infection. This background rate of new events is modeled by a log-linear predictor $\nu_{[\bm{s}][t]}$ incorporating regional and/or time-varying characteristics. Here, the space-time index $[\bm{s}][t]$ refers to the region covering $\bm{s}$ during the period containing $t$ and thus spans a whole spatio-temporal grid on which the involved covariates are measured, e.g., district $\times$ month. We will later see that the endemic component therefore simply equals an inhomogeneous Poisson process for the event counts by cell of that grid. The second, observation-driven epidemic component adds ``infection pressure'' from the set \begin{equation*} I(\bm{s},t) = \big\{ j : t_j < t \:\wedge\: t-t_j \le \tau_j \:\wedge\: \norm{\bm{s}-\bm{s}_j} \le \delta_j \big\} \end{equation*} of past events and hence makes the process ``self-exciting''. During its infectious period of length~$\tau_j$ and within its spatial interaction radius~$\delta_j$, the model assumes each event~$j$ to trigger further events, which are called offspring, secondary cases, or aftershocks, depending on the application. The triggering rate (or force of infection) is proportional to a log-linear predictor~$\eta_j$ associated with event-specific characteristics (``marks'') $\bm{m}_j$, which are usually attached to the point pattern of events. The decay of infection pressure with increasing spatial and temporal distance from the infective event is modeled by parametric interaction functions~$f$ and~$g$, respectively. A simple assumption for the time course of infectivity is $g(t) = 1$. Alternatives include exponential decay, a step function, or empirically derived functions such as Omori's law for aftershock intervals. With regard to spatial interaction, a Gaussian kernel $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$ could be chosen. However, in modeling the spread of human infectious diseases on larger scales, a heavy-tailed power-law kernel $f(x) = (x+\sigma)^{-d}$ was found to perform better \citep{meyer.held2013}. The (possibly infinite) upper bounds~$\tau_j$ and~$\delta_j$ provide a way of modeling event-specific interaction ranges. However, since these need to be pre-specified, a common assumption is $\tau_j \equiv \tau$ and $\delta_j \equiv \delta$, where the infectious period~$\tau$ and the spatial interaction radius~$\delta$ are determined by subject-matter considerations. \subsection{Model-based effective reproduction numbers} Similar to the simple SIR model \citep[see, e.g.,][Section 2.1]{Keeling.Rohani2008}, the above point process model~\eqref{eqn:twinstim} features a reproduction number derived from its branching process interpretation. As soon as an event occurs (individual becomes infected), it triggers offspring (secondary cases) around its origin $(\bm{s}_j, t_j)$ according to an inhomogeneous Poisson process with rate $\eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j)$. Since this triggering process is independent of the event's parentage and of other events, the expected number $\mu_j$ of events triggered by event $j$ can be obtained by integrating the triggering rate over the observed interaction domain: \begin{equation} \label{eqn:R0:twinstim} \mu_j = \eta_j \cdot \left[ \int_0^{\min(T-t_j,\tau_j)} g(t) \,dt \right] \cdot \left[ \int_{\bm{R}_j} f(\norm{\bm{s}}) \,d\bm{s} \right] \:, \end{equation} where \begin{equation} \label{eqn:twinstim:IR} \bm{R}_j = (b(\bm{s}_j,\delta_j) \cap \bm{W}) - \bm{s}_j \end{equation} is event $j$'s influence region centered at $\bm{s}_j$, and $b(\bm{s}_j, \delta_j)$ denotes the disc centered at $\bm{s}_j$ with radius $\delta_j$. Note that the above model-based reproduction number $\mu_j$ is event-specific since it depends on event marks through $\eta_j$, on the interaction ranges $\delta_j$ and $\tau_j$, as well as on the event location $\bm{s}_j$ and time point $t_j$. If the model assumes unique interaction ranges $\delta$ and $\tau$, a single reference number of secondary cases can be extrapolated from Equation~\ref{eqn:R0:twinstim} by imputing an unbounded domain $\bm{W} = \IR^2$ and $T = \infty$ \citep{meyer.etal2015}. Equation~\ref{eqn:R0:twinstim} can also be motivated by looking at a spatio-temporal version of the simple SIR model wrapped into the \class{twinstim} class~\eqref{eqn:twinstim}. This means: no endemic component, homogeneous force of infection ($\eta_j \equiv \beta$), homogeneous mixing in space ($f(x) = 1$, $\delta_j \equiv \infty$), and exponential decay of infectivity over time ($g(t) = e^{-\alpha t}$, $\tau_j \equiv \infty$). Then, for $T \rightarrow \infty$, \begin{equation*} \mu = \beta \cdot \left[ \int_0^\infty e^{-\alpha t} \,dt \right] \cdot \left[ \int_{\bm{W}-\bm{s}_j} 1 \,d\bm{s} \right] = \beta \cdot \abs{\bm{W}} / \alpha \:, \end{equation*} which corresponds to the basic reproduction number known from the simple SIR model by interpreting $\abs{\bm{W}}$ as the population size, $\beta$ as the transmission rate and $\alpha$ as the removal rate. If $\mu < 1$, the process is sub-critical, i.e., its eventual extinction is almost sure. However, it is crucial to understand that in a full model with an endemic component, new infections may always occur via ``immigration''. Hence, reproduction numbers in \class{twinstim} are adjusted for infections occurring independently of previous infections. This also means that a misspecified endemic component may distort model-based reproduction numbers \citep{meyer.etal2015}. Furthermore, under-reporting and implemented control measures imply that the estimates are to be thought of as \emph{effective} reproduction numbers. \subsection{Likelihood inference} The log-likelihood of the point process model~\eqref{eqn:twinstim} is a function of all parameters in the log-linear predictors $\nu_{[\bm{s}][t]}$ and $\eta_j$ and in the interaction functions $f$ and $g$. It has the form %% \begin{equation} \label{eqn:twinstim:marked:loglik} %% l(\bm{\theta}) = \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i,k_i) \right] - %% \sum_{k\in\mathcal{K}} \int_0^T \int_{\bm{W}} \lambda(\bm{s},t,k) \dif\bm{s} %% \dif t \:, %% \end{equation} \begin{equation} \label{eqn:twinstim:loglik} \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i) \right] - \int_0^T \int_{\bm{W}} \lambda(\bm{s},t) \dif\bm{s} \dif t \:. \end{equation} %\citep[Proposition~7.3.III]{Daley.Vere-Jones2003} To estimate the model parameters, we maximize the above log-likelihood numerically using the quasi-Newton algorithm available through the \proglang{R}~function \code{nlminb}. We thereby employ the analytical score function and an approximation of the expected Fisher information worked out by \citet[Web Appendices A and B]{meyer.etal2011}. The space-time integral in the log-likelihood \eqref{eqn:twinstim:loglik} poses no difficulties for the endemic component of $\lambda(\bm{s},t)$, since $\nu_{[\bm{s}][t]}$ is defined on a spatio-temporal grid. However, integration of the epidemic component involves two-dimensional integrals $\int_{\bm{R}_i} f(\norm{\bm{s}}) \dif\bm{s}$ over the influence regions~$\bm{R}_i$, which are represented by polygons (as is~$\bm{W}$). Similar integrals appear in the score function, where $f(\norm{\bm{s}})$ is replaced by partial derivatives with respect to kernel parameters. Calculation of these integrals is trivial for (piecewise) constant~$f$, but otherwise requires numerical integration. The \proglang{R}~package \CRANpkg{polyCub} \citep{meyer2019} offers various cubature methods for polygonal domains. % For Gaussian~$f$, we apply a midpoint rule with $\sigma$-adaptive bandwidth % %% combined with an analytical formula via the $\chi^2$ distribution % %% if the $6\sigma$-circle around $\bm{s}_i$ is contained in $\bm{R}_i$. % and use product Gauss cubature \citep{sommariva.vianello2007} % to approximate the integrals in the score function. % For the recently implemented power-law kernels, Of particular relevance for \code{twinstim} is the \code{polyCub.iso} method, which takes advantage of the assumed isotropy of spatial interaction such that numerical integration remains in only one dimension \citep[Supplement~B, Section~2]{meyer.held2013}. We \CRANpkg{memoise} \citep{R:memoise} the cubature function during log-likelihood maximization to avoid integration for unchanged parameters of~$f$. \subsection{Special cases: Single-component models} If the \emph{epidemic} component is omitted in Equation~\ref{eqn:twinstim}, the point process model becomes equivalent to a Poisson regression model for aggregated counts. This provides a link to ecological regression approaches in general and to the count data model \code{hhh4} illustrated in \code{vignette("hhh4")} and \code{vignette("hhh4\_spacetime")}. To see this, recall that the endemic component $\nu_{[\bm{s}][t]}$ is piecewise constant on the spatio-temporal grid with cells $([\bm{s}],[t])$. Hence the log-likelihood~\eqref{eqn:twinstim:loglik} of an endemic-only \code{twinstim} simplifies to a sum over all these cells, \begin{equation*} \sum_{[\bm{s}],[t]} \left\{ Y_{[\bm{s}][t]} \log\nu_{[\bm{s}][t]} - \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]} \right\} \:, \end{equation*} where $Y_{[\bm{s}][t]}$ is the aggregated number of events observed in cell $([\bm{s}],[t])$, and $\abs{[\bm{s}]}$ and $\abs{[t]}$ denote cell area and length, respectively. Except for an additive constant, the above log-likelihood is equivalently obtained from the Poisson model $Y_{[\bm{s}][t]} \sim \Po( \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]})$. This relation offers a means of code validation using the established \code{glm} function to fit an endemic-only \code{twinstim} model -- see the examples in \code{help("glm_epidataCS")}. %% The \code{help("glm_epidataCS")} also shows how to fit %% an equivalent endemic-only \code{hhh4} model. If, in contrast, the \emph{endemic} component is omitted, all events are necessarily triggered by other observed events. For such a model to be identifiable, a prehistory of events must exist to trigger the first event, and interaction typically needs to be unbounded such that each event can actually be linked to potential source events. \subsection[Extension: Event types]{Extension: \code{twinstim} with event types} To model the example data on invasive meningococcal disease in the remainder of this section, we actually need to use an extended version $\lambda(\bm{s},t,k)$ of Equation~\ref{eqn:twinstim}, which accounts for different event types~$k$ with own transmission dynamics. This introduces a further dimension in the point process, and the second log-likelihood component in Equation~\ref{eqn:twinstim:loglik} accordingly splits into a sum over all event types. We refer to \citet[Sections~2.4 and~3]{meyer.etal2011} for the technical details of this type-specific \code{twinstim} class. The basic idea is that the meningococcal finetypes share the same endemic pattern (e.g., seasonality), while infections of different finetypes are not associated via transmission. This means that the force of infection is restricted to previously infected individuals with the same bacterial finetype~$k$, i.e., the epidemic sum in Equation~\ref{eqn:twinstim} is over the set $I(\bm{s},t,k) = I(\bm{s},t) \cap \{j: k_j = k\}$. The implementation has limited support for type-dependent interaction functions $f_{k_j}$ and $g_{k_j}$ (not further considered here). \section[Data structure]{Data structure: \class{epidataCS}} \label{sec:twinstim:data} <>= ## extract components from imdepi to reconstruct data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units=km) ) stgrid <- imdepi$stgrid[,-1] @ <>= load(system.file("shapes", "districtsD.RData", package = "surveillance")) @ The first step toward fitting a \code{twinstim} is to turn the relevant data into an object of the dedicated class \class{epidataCS}.\footnote{ The suffix ``CS'' indicates that the data-generating point process is indexed in continuous space. } The primary ingredients of this class are a spatio-temporal point pattern (\code{events}) and its underlying observation region (\code{W}). An additional spatio-temporal grid (\code{stgrid}) holds (time-varying) area-level covariates for the endemic regression part. We exemplify this data class by the \class{epidataCS} object for the \Sexpr{nobs(imdepi)} cases of invasive meningococcal disease in Germany originally analyzed by \citet{meyer.etal2011}. It is already contained in the \pkg{surveillance} package as \code{data("imdepi")} and has been constructed as follows: <>= imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, qmatrix = diag(2), nCircle2Poly = 16) @ The function \code{as.epidataCS} checks the consistency of the three data ingredients described in detail below. It also pre-computes auxiliary variables for model fitting, e.g., the individual influence regions~\eqref{eqn:twinstim:IR}, which are intersections of the observation region with discs %of radius \code{eps.s} centered at the event location approximated by polygons with \code{nCircle2Poly = 16} edges. The intersections are computed using functionality of the package \CRANpkg{polyclip} \citep{R:polyclip}. For multitype epidemics as in our example, the additional indicator matrix \code{qmatrix} specifies transmissibility across event types. An identity matrix corresponds to an independent spread of the event types, i.e., cases of one type can not produce cases of another type. \subsection{Data ingredients} The core \code{events} data must be provided in the form of a \class{SpatialPointsDataFrame} as defined by the package \CRANpkg{sp} \citep{R:sp}: <>= summary(events) @ <>= oopt <- options(width=100) ## hack to reduce the 'print.gap' in the data summary but not for the bbox ## Note: sp >= 2.0-0 loads 'sf' for summary(events), but has a fallback, ## see https://github.com/r-spatial/evolution/issues/10 local({ print.summary.Spatial <- sp:::print.summary.Spatial environment(print.summary.Spatial) <- environment() print.table <- function (x, ..., print.gap = 0) { base::print.table(x, ..., print.gap = print.gap) } print.summary.Spatial(summary(events)) }) options(oopt) @ The associated event coordinates are residence postcode centroids, projected in the \emph{European Terrestrial Reference System 1989} (in kilometer units) to enable Euclidean geometry. See the \code{spTransform}-methods for how to project latitude and longitude coordinates into a planar coordinate reference system (CRS). The data frame associated with these spatial coordinates ($\bm{s}_i$) contains a number of required variables and additional event marks (in the notation of Section~\ref{sec:twinstim:methods}: $\{(t_i,[\bm{s}_i],k_i,\tau_i,\delta_i,\bm{m}_i): i = 1,\dotsc,n\}$). For the IMD data, the event \code{time} is measured in days since the beginning of the observation period 2002--2008 and is subject to a tie-breaking procedure (described later). The \code{tile} column refers to the region of the spatio-temporal grid where the event occurred and here contains the official key of the administrative district of the patient's residence. There are two \code{type}s of events labeled as \code{"B"} and \code{"C"}, which refer to the serogroups of the two meningococcal finetypes \emph{B:P1.7-2,4:F1-5} and \emph{C:P1.5,2:F3-3} contained in the data. The \code{eps.t} and \code{eps.s} columns specify upper limits for temporal and spatial interaction, respectively. Here, the infectious period is assumed to last a maximum of 30 days and spatial interaction is limited to a 200 km radius for all cases. The latter has numerical advantages for a Gaussian interaction function $f$ with a relatively small standard deviation. For a power-law kernel, however, this restriction will be dropped to enable occasional long-range transmission. The last two data attributes displayed in the above \code{event} summary are covariates from the case reports: the gender and age group of the patient. For the observation region \code{W}, we use a polygon representation of Germany's boundary. Since the observation region defines the integration domain in the point process log-likelihood~\eqref{eqn:twinstim:loglik}, the more detailed the polygons of \code{W} are the longer it will take to fit a \code{twinstim}. It is thus advisable to sacrifice some shape details for speed by reducing the polygon complexity. In \proglang{R} this can be achieved via, e.g., \code{ms_simplify} from the \CRANpkg{rmapshaper} package \citep{R:rmapshaper}, or \code{simplify.owin} from \CRANpkg{spatstat.geom} \citep{R:spatstat}. % \code{thinnedSpatialPoly} in package \CRANpkg{maptools}, % will retire % which implements the Douglas-Peucker reduction method. The \pkg{surveillance} package already contains a simplified representation of Germany's boundaries: <>= <> @ This file contains both the \class{SpatialPolygonsDataFrame} \code{districtsD} of Germany's \Sexpr{length(districtsD)} administrative districts as at January 1, 2009, as well as their union \code{stateD}. %obtained by the call \code{rgeos::gUnaryUnion(districtsD)} \citep{R:rgeos}. These boundaries are projected in the same CRS as the \code{events} data. The \code{stgrid} input for the endemic model component is a data frame with (time-varying) area-level covariates, e.g., socio-economic or ecological characteristics. In our example: <>= .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) @ Numeric (\code{start},\code{stop}] columns index the time periods and the factor variable \code{tile} identifies the regions of the grid. Note that the given time intervals (here: months) also define the resolution of possible time trends and seasonality of the piecewise constant endemic intensity. We choose monthly intervals to reduce package size and computational cost compared to the weekly resolution originally used by \citet{meyer.etal2011} and \citet{meyer.held2013}. The above \code{stgrid} data frame thus consists of 7 (years) times 12 (months) blocks of \Sexpr{nlevels(stgrid[["tile"]])} (districts) rows each. The \code{area} column gives the area of the respective \code{tile} in square kilometers (compatible with the CRS used for \code{events} and \code{W}). A geographic representation of the regions in \code{stgrid} is not required for model estimation, and is thus not part of the \class{epidataCS} class. %It is, however, necessary for plots of the fitted intensity and for %simulation from the estimated model. In our example, the area-level data only consists of the population density \code{popdensity}, whereas \citet{meyer.etal2011} additionally incorporated (lagged) weekly influenza counts by district as a time-dependent covariate. %% In another application, \citet{meyer.etal2015} used a large number of socio-economic %% characteristics to model psychiatric hospital admissions. \pagebreak \subsection{Data handling and visualization} The generated \class{epidataCS} object \code{imdepi} is a simple list of the checked ingredients <>= cat(paste0('\\code{', names(imdepi), '}', collapse = ", "), ".", sep = "") @ Several methods for data handling and visualization are available for such objects as listed in Table~\ref{tab:methods:epidataCS} and briefly presented in the remainder of this section. <>= print(xtable( surveillance:::functionTable( class = "epidataCS", functions = list( Convert = c("epidataCS2sts"), Extract = c("getSourceDists"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidataCS} objects.", label="tab:methods:epidataCS" ), include.rownames = FALSE) @ Printing an \class{epidataCS} object presents some metadata and the first \Sexpr{formals(surveillance:::print.epidataCS)[["n"]]} events by default: <>= imdepi @ During conversion to \class{epidataCS}, the last three columns \code{BLOCK} (time interval index), \code{start} and \code{popdensity} have been merged from the checked \code{stgrid} to the \code{events} data frame. The event marks including time and location can be extracted in a standard data frame by \code{marks(imdepi)} -- inspired by package \CRANpkg{spatstat} -- and this is summarized by \code{summary(imdepi)}. <>= (simdepi <- summary(imdepi)) @ The number of potential sources of infection per event (denoted \texttt{|.sources|} in the above output) is additionally summarized. It is determined by the events' maximum ranges of interaction \code{eps.t} and \code{eps.s}. The event-specific set of potential sources is stored in the (hidden) list \code{imdepi$events$.sources} (events are referenced by row index), and the event-specific numbers of potential sources are stored in the summarized object as \code{simdepi$nSources}. A simple plot of the number of infectives as a function of time (Figure~\ref{fig:imdepi_stepfun}) %determined by the event times and infectious periods can be obtained by the step function converter: <>= par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") #axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) @ \pagebreak[1] The \code{plot}-method for \class{epidataCS} offers aggregation of the events over time or space: <>= par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) @ \pagebreak[1] The time-series plot (Figure~\ref{fig:imdepi_plot-1}) shows the monthly aggregated number of cases by finetype in a stacked histogram as well as each type's cumulative number over time. The spatial plot (Figure~\ref{fig:imdepi_plot-2}) shows the observation window \code{W} with the locations of all cases (by type), where the areas of the points are proportional to the number of cases at the respective location. Additional shading by the population is possible and exemplified in \code{help("plot.epidataCS")}. %The above static plots do not capture the space-time dynamics of epidemic spread. An animation may provide additional insight and can be produced by the corresponding \code{animate}-method. For instance, to look at the first year of the B-type in a weekly sequence of snapshots in a web browser (using facilities of the \CRANpkg{animation} package of \citealp{R:animation}): <>= animation::saveHTML( animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B") @ Selecting events from \class{epidataCS} as for the animation above is enabled by the \code{[}- and \code{subset}-methods, which return a new \class{epidataCS} object containing only the selected \code{events}. A limited data sampling resolution may lead to tied event times or locations, which are in conflict with a continuous spatio-temporal point process model. For instance, a temporal residual analysis would suggest model deficiencies \citep[Figure 4]{meyer.etal2011}, and a power-law kernel for spatial interaction may diverge if there are events with zero distance to potential source events \citep{meyer.held2013}. The function \code{untie} breaks ties by random shifts. This has already been applied to the event \emph{times} in the provided \code{imdepi} data by subtracting a U$(0,1)$-distributed random number from the original dates. The event \emph{coordinates} in the IMD data are subject to interval censoring at the level of Germany's postcode regions. A possible replacement for the given centroids would thus be a random location within the corresponding postcode area. Lacking a suitable shapefile, \citet{meyer.held2013} shifted all locations by a random vector with length up to half the observed minimum spatial separation: <>= eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) @ Note that random tie-breaking requires sensitivity analyses as discussed by \citet{meyer.held2013}, but these are skipped here for the sake of brevity. The \code{update}-method is useful to change the values of the maximum interaction ranges \code{eps.t} and \code{eps.s}, since it takes care of the necessary updates of the hidden auxiliary variables in an \class{epidataCS} object. For unbounded spatial interaction: <>= imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) @ Last but not least, \class{epidataCS} can be aggregated to \class{epidata} (from \code{vignette("twinSIR")}) or \class{sts} (from \code{vignette("hhh4_spacetime")}). The method \code{as.epidata.epidataCS} aggregates events by region (\code{tile}), and the function \code{epidataCS2sts} yields counts by region and time interval. The latter could be analyzed by an areal time-series model such as \code{hhh4} (see \code{vignette("hhh4\_spacetime")}). We can also use \class{sts} visualizations, e.g.\ (Figure~\ref{fig:imdsts_plot}): <>= imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD, neighbourhood = NULL) # skip adjacency matrix (needs spdep) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) @ \section{Modeling and inference} \label{sec:twinstim:fit} Having prepared the data as an object of class \class{epidataCS}, the function \code{twinstim} can be used to perform likelihood inference for conditional intensity models of the form~\eqref{eqn:twinstim}. The main arguments for \code{twinstim} are the formulae of the \code{endemic} and \code{epidemic} linear predictors ($\nu_{[\bm{s}][t]} = \exp$(\code{endemic}) and $\eta_j = \exp$(\code{epidemic})), and the spatial and temporal interaction functions \code{siaf} ($f$) and \code{tiaf} ($g$), respectively. Both formulae are parsed internally using the standard \code{model.frame} toolbox from package \pkg{stats} and thus can handle factor variables and interaction terms. While the \code{endemic} linear predictor incorporates %time-dependent and/or area-level covariates from \code{stgrid}, %% and in the disease mapping context usually contains at least the population density as a multiplicative offset, i.e., %% \code{endemic = ~offset(log(popdensity))}. There can be additional effects of time, %% which are functions of the variable \code{start} from \code{stgrid}, %% or effects of, e.g., socio-demographic and ecological variables. the \code{epidemic} formula may use both \code{stgrid} variables and event marks to be associated with the force of infection. %% For instance, \code{epidemic = ~log(popdensity) + type} corresponds to %% $\eta_j = \rho_{[\bm{s}_j]}^{\gamma_{\rho}} \exp(\gamma_0 + \gamma_C \ind(k_j=C))$, %% which models different infectivity of the event types, and scales %% with population density (a grid-based covariate) to reflect higher %% contact rates and thus infectivity in more densely populated regions. For the interaction functions, several alternatives are predefined as listed in Table~\ref{tab:iafs}. They are applicable out-of-the-box and illustrated as part of the following modeling exercise for the IMD data. Own interaction functions can also be implemented following the structure described in \code{help("siaf")} and \code{help("tiaf")}, respectively. <>= twinstim_iafs <- suppressWarnings( cbind("Spatial (\\code{siaf.*})" = ls(pattern="^siaf\\.", pos="package:surveillance"), "Temporal (\\code{tiaf.*})" = ls(pattern="^tiaf\\.", pos="package:surveillance")) ) twinstim_iafs <- apply(twinstim_iafs, 2, function (x) { is.na(x) <- duplicated(x) x }) print(xtable(substring(twinstim_iafs, 6), label="tab:iafs", caption="Predefined spatial and temporal interaction functions."), include.rownames=FALSE, sanitize.text.function=function(x) paste0("\\code{", x, "}"), sanitize.colnames.function=identity, sanitize.rownames.function=identity) @ \subsection{Basic example} To illustrate statistical inference with \code{twinstim}, we will estimate several models for the simplified and ``untied'' IMD data presented in Section~\ref{sec:twinstim:data}. In the endemic component, we include the district-specific population density as a multiplicative offset, a (centered) time trend, and a sinusoidal wave of frequency $2\pi/365$ to capture seasonality, where the \code{start} variable from \code{stgrid} measures time: <>= (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) @ See \citet[Section~2.2]{held.paul2012} for how such sine/cosine terms reflect seasonality. Because of the aforementioned integrations in the log-likelihood~\eqref{eqn:twinstim:loglik}, it is advisable to first fit an endemic-only model to obtain reasonable start values for more complex epidemic models: <>= imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) @ We exclude the single case with unknown age group from this analysis since we will later estimate an effect of the age group on the force of infection. Many of the standard functions to access model fits in \proglang{R} are also implemented for \class{twinstim} fits (see Table~\ref{tab:methods:twinstim}). For example, we can produce the usual model summary: <>= summary(imdfit_endemic) @ Because of the aforementioned equivalence of the endemic component with a Poisson regression model, the coefficients can be interpreted as log rate ratios in the usual way. For instance, the endemic rate is estimated to decrease by \code{1 - exp(coef(imdfit_endemic)[2])} $=$ \Sexpr{round(100*(1-exp(coef(imdfit_endemic)[2])),1)}\% per year. Coefficient correlations can be retrieved via the argument \code{correlation = TRUE} in the \code{summary} call just like for \code{summary.glm}, or via \code{cov2cor(vcov(imdfit_endemic))}. <>= print(xtable( surveillance:::functionTable( class = "twinstim", functions = list( Display = c("iafplot", "checkResidualProcess"), Extract = c("intensity.twinstim", "simpleR0"), Modify = c("stepComponent"), Other = c("epitest"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{twinstim} objects. Note that there is no need for specific \\code{coef}, \\code{confint}, \\code{AIC} or \\code{BIC} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinstim" ), include.rownames = FALSE) @ We now update the endemic model to take additional spatio-temporal dependence between events into account. Infectivity shall depend on the meningococcal finetype and the age group of the patient, and is assumed to be constant over time (default), $g(t)=\ind_{(0,30]}(t)$, with a Gaussian distance-decay $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$. This model was originally selected by \citet{meyer.etal2011} and can be fitted as follows: <>= imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix")) @ On Unix-alikes, the numerical integrations of $f(\norm{\bm{s}})$ in the log-likelihood and $\frac{\partial f(\norm{\bm{s}})}{\partial \log\sigma}$ in the score function (note that $\sigma$ is estimated on the log-scale) can be performed in parallel via %the ``multicore'' functions \code{mclapply} \textit{et al.}\ from the base package \pkg{parallel}, here with \code{cores = 2} processes. Table~\ref{tab:imdfit_Gaussian} shows the output of \code{twinstim}'s \code{xtable} method \citep{R:xtable} applied to the above model fit, providing a table of estimated rate ratios for the endemic and epidemic effects. The alternative \code{toLatex} method simply translates the \code{summary} table of coefficients to \LaTeX\ without \code{exp}-transformation. On the subject-matter level, we can conclude from Table~\ref{tab:imdfit_Gaussian} that the meningococcal finetype of serogroup~C is less than half as infectious as the B-type, and that patients in the age group 3 to 18 years are estimated to cause twice as many secondary infections as infants aged 0 to 2 years. <>= print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) @ \subsection{Model-based effective reproduction numbers} The event-specific reproduction numbers~\eqref{eqn:R0:twinstim} can be extracted from fitted \class{twinstim} objects via the \code{R0} method. For the above IMD model, we obtain the following mean numbers of secondary infections by finetype: <<>>= R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) @ Confidence intervals %for the estimated reproduction numbers $\hat\mu_j$ can be obtained via Monte Carlo simulation, where Equation~\ref{eqn:R0:twinstim} is repeatedly evaluated with parameters sampled from the asymptotic multivariate normal distribution of the maximum likelihood estimate. For this purpose, the \code{R0}-method takes an argument \code{newcoef}, which is exemplified in \code{help("R0")}. %% Note that except for (piecewise) constant $f$, computing confidence intervals for %% $\hat\mu_j$ takes a considerable amount of time since the integrals over the %% polygons $\bm{R}_j$ have to be solved numerically for each new set of parameters. \subsection{Interaction functions} <>= imdfit_exponential <- update(imdfit_Gaussian, siaf = siaf.exponential()) @ <>= imdfit_powerlaw <- update(imdfit_Gaussian, siaf = siaf.powerlaw(), data = imdepi_untied_infeps, start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) @ <>= imdfit_step4 <- update(imdfit_Gaussian, siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100)) @ <>= save(imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4, file = "twinstim-cache.RData", compress = "xz") @ Figure~\ref{fig:imdfit_siafs} shows several estimated spatial interaction functions, which can be plotted by, e.g., \code{plot(imdfit_Gaussian, "siaf")}. <>= par(mar = c(5,5,1,1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_exponential, "siaf", add=TRUE, col.estimate=5, lty = c(5,3)) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Exponential", "Gaussian", "Step (df=4)"), col=c(4,5,2,3), lty=c(2,5,1,4), lwd=3, bty="n") @ The estimated standard deviation $\hat\sigma$ of the Gaussian kernel is: <<>>= exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) @ \citet{meyer.held2013} found that a power-law decay of spatial interaction more appropriately describes the spread of human infectious diseases. A power-law kernel concentrates on short-range interaction, but also exhibits a heavier tail reflecting occasional transmission over large distances. %This result is supported by the power-law distribution of short-time human %travel \citep{brockmann.etal2006}, which is an important driver of epidemic spread. To estimate the power law $f(x) = (x+\sigma)^{-d}$, we use the prepared \code{eps.s = Inf} version of the \class{epidataCS} object, and update the model as follows: <>= <> @ To reduce the runtime of this example, we specified convenient \code{start} values for some parameters. The estimated parameters $(\hat\sigma, \hat d)$ are: <<>>= exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) @ Sometimes $\sigma$ is difficult to estimate, and also in this example, its confidence interval is relatively large. The one-parameter version \code{siaf.powerlaw1} can be used to estimate a power-law decay with fixed $\sigma = 1$. A more common option is the exponential kernel $f(x) = \exp(-x/\sigma)$: <>= <> @ Table~\ref{tab:iafs} also lists the step function kernel as an alternative, which is particularly useful for two reasons. First, it is a more flexible approach since it estimates interaction between the given knots without assuming an overall functional form. Second, the spatial integrals in the log-likelihood can be computed analytically for the step function kernel, which therefore offers a quick estimate of spatial interaction. We update the Gaussian model to use four steps at log-equidistant knots up to an interaction range of 100 km: <>= <> @ Figure~\ref{fig:imdfit_siafs} suggests that the estimated step function is in line with the power law. Note that suitable knots for the step function could also be derived from quantiles of the observed distances between events and their potential source events, e.g.: <<>>= quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) @ For the temporal interaction function $g(t)$, model updates and plots are similarly possible, e.g., using \code{update(imdfit_Gaussian, tiaf = tiaf.exponential())}. However, the events in the IMD data are too rare to infer the time-course of infectivity with confidence. <>= local({ nSources <- sapply(levels(imdepi$events$type), function (.type) { mean(summary(subset(imdepi_untied_infeps, type==.type))$nSources) }) structure( paste("Specifically, there are only", paste0(round(nSources,1), " (", names(nSources), ")", collapse=" and "), "cases on average within the preceding 30 days", "(potential sources of infection)."), class="Latex") }) @ \subsection{Model selection} <>= AIC(imdfit_endemic, imdfit_Gaussian, imdfit_exponential, imdfit_powerlaw, imdfit_step4) @ Akaike's Information Criterion (AIC) suggests superiority of the power-law vs.\ the exponential, Gaussian, and endemic-only models. The more flexible step function yields the best AIC value, but its shape strongly depends on the chosen knots and is not guaranteed to be monotonically decreasing. The function \code{stepComponent} -- a wrapper around the \code{step} function from \pkg{stats} -- can be used to perform AIC-based stepwise selection within a given model component. <>= ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model @ \subsection{Model diagnostics} The element \code{"fittedComponents"} of a \class{twinstim} object contains the endemic and epidemic values of the estimated intensity at each event occurrence. However, plots of the conditional intensity (and its components) as a function of location or time provide more insight into the fitted process. Evaluation of \code{intensity.twinstim} requires the model environment to be stored with the fit. By default, \code{model = FALSE} in \code{twinstim}, but if the data are still available, the model environment can also be added afterwards using the convenient \code{update} method: <>= imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) @ Figure~\ref{fig:imdfit_powerlaw_intensityplot_time} shows an \code{intensityplot} of the fitted ``ground'' intensity $\sum_{k=1}^2 \int_{\bm{W}} \hat\lambda(\bm{s},t,k) \dif \bm{s}$: %aggregated over both event types: <>= intensityplot(imdfit_powerlaw, which = "total", aggregate = "time", types = 1:2) @ <>= par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) #curve(intensity_endprop(x), add=TRUE, col=2, lty=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) @ %% Note that this represents a realization of a stochastic process, since it %% depends on the occurred events. The estimated endemic intensity component has also been added to the plot. It exhibits strong seasonality and a slow negative trend. The proportion of the endemic intensity is rather constant along time since no major outbreaks occurred. This proportion can be visualized separately by specifying \code{which = "endemic proportion"} in the above call. <>= meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which="epidemic proportion"), 50, 2450, subdivisions=2000, rel.tol=1e-3)$value / 2400 @ Spatial \code{intensityplot}s as in Figure~\ref{fig:imdfit_powerlaw_intensityplot_space} can be produced via \code{aggregate = "space"} and require a geographic representation of \code{stgrid}. The epidemic proportion is naturally high around clusters of cases and even more so if the population density is low. %% The function \code{epitest} offers a model-based global test for epidemicity, %% while \code{knox} and \code{stKtest} implement related classical approaches %% \citep{meyer.etal2015}. <>= for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, # scales=list(draw=TRUE), # default (sp>=2 uses 'sf', with a fallback) xlab="x [km]", ylab="y [km]", at=seq(0,1,by=0.1), col.regions=rev(hcl.colors(10,"Reds")), colorkey=list(title="Epidemic proportion"))) } @ Another diagnostic tool is the function \code{checkResidualProcess} (Figure~\ref{fig:imdfit_checkResidualProcess}), which transforms the temporal ``residual process'' in such a way that it exhibits a uniform distribution and lacks serial correlation if the fitted model describes the true CIF well \citep[see][Section~3.3]{ogata1988}. % more recent work: \citet{clements.etal2011} <>= par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) @ \section{Simulation} \label{sec:twinstim:simulation} %% Simulations from the fitted model are also useful to investigate the %% goodness of fit. To identify regions with unexpected IMD dynamics, \citet{meyer.etal2011} compared the observed numbers of cases by district to the respective 2.5\% and 97.5\% quantiles of 100 simulations from the selected model. Furthermore, simulations allow us to investigate the stochastic volatility of the endemic-epidemic process, to obtain probabilistic forecasts, and to perform parametric bootstrap of the spatio-temporal point pattern. The simulation algorithm we apply is described in \citet[Section 4]{meyer.etal2011}. It requires a geographic representation of the \code{stgrid}, as well as functionality for sampling locations from the spatial kernel $f_2(\bm{s}) := f(\norm{\bm{s}})$. This is implemented for all predefined spatial interaction functions listed in Table~\ref{tab:iafs}. %For instance for the %power-law kernel, we pass via polar coordinates (with density then proportional %to $rf(r)$) %, a function also involved in the efficient cubature of % %$f_2(\bm{s})$ via Green's theorem) %and the inverse transformation method with numerical root finding for the %quantiles. Event marks are by default sampled from their respective empirical distribution in the original data. %but a customized generator can be supplied as argument \code{rmarks}. The following code runs \emph{a single} simulation over the last year based on the estimated power-law model: <>= imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) @ This yields an object of the class \class{simEpidataCS}, which extends \class{epidataCS}. It carries additional components from the generating model to enable an \code{R0}-method and \code{intensityplot}s for simulated data. %All methods for \class{epidataCS} are applicable. %% The result is simplified in that only the \code{events} instead of a full %% \class{epidataCS} object are retained from every run to save memory and %% computation time. All other components, which do not vary between simulations, %% e.g., the \code{stgrid}, are only stored from the first run. %% There is a \code{[[}-method for such \class{simEpidataCSlist}s in order to %% extract single simulations as full \class{simEpidataCS} objects from the %% simplified structure. %Extracting a single simulation (e.g., \code{imdsims[[1]]}) Figure~\ref{fig:imdsim_plot} shows the cumulative number of cases from the simulation appended to the first six years of data. <>= .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = adjustcolor(c("indianred", "darkblue"), alpha.f = 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) @ %% Because we have started simulation at time \code{t0 = 0}, %% no events from \code{data} have been used as the prehistory, i.e., %% the first simulated event is necessarily driven by the endemic model component. A special feature of such simulated epidemics is that the source of each event is known: <>= table(imdsim$events$source > 0, exclude = NULL) @ The stored \code{source} value is 0 for endemic events, \code{NA} for events of the prehistory but still infective at \code{t0}, and otherwise corresponds to the row index of the infective source. %% Averaged over all 30 simulations, the proportion of events triggered by %% previous events is %% Sexpr{mean(sapply(imdsims$eventsList, function(x) mean(x$source > 0, na.rm = TRUE)))}. %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages knitr::write_bib( # produces UTF-8 c("memoise", "sp", "polyclip", "xtable"), file = "twinstim-R.bib", tweak = FALSE, prefix = "R:") @ \bibliography{references,twinstim-R} \end{document} surveillance/inst/extdata/0000755000176200001440000000000012655404667015374 5ustar liggesuserssurveillance/inst/extdata/salmonella.agona.txt0000644000176200001440000001046012003613027021324 0ustar liggesusersweek observed state 199001 1 0 199002 0 0 199003 5 0 199004 2 0 199005 1 0 199006 2 0 199007 0 0 199008 4 0 199009 0 0 199010 0 0 199011 0 0 199012 3 0 199013 1 0 199014 1 0 199015 0 0 199016 0 0 199017 2 0 199018 2 0 199019 0 0 199020 2 0 199021 6 0 199022 3 0 199023 2 0 199024 1 0 199025 2 0 199026 0 0 199027 1 0 199028 1 0 199029 3 0 199030 5 0 199031 3 0 199032 4 0 199033 3 0 199034 6 0 199035 5 0 199036 8 0 199037 6 0 199038 3 0 199039 6 0 199040 2 0 199041 5 0 199042 2 0 199043 1 0 199044 5 0 199045 7 0 199046 1 0 199047 10 0 199048 3 0 199049 4 0 199050 0 0 199051 0 0 199052 1 0 199101 6 0 199102 0 0 199103 2 0 199104 2 0 199105 0 0 199106 0 0 199107 2 0 199108 2 0 199109 0 0 199110 6 0 199111 7 0 199112 1 0 199113 0 0 199114 0 0 199115 0 0 199116 1 0 199117 1 0 199118 4 0 199119 3 0 199120 1 0 199121 3 0 199122 2 0 199123 6 0 199124 3 0 199125 4 0 199126 4 0 199127 8 0 199128 12 0 199129 9 0 199130 17 0 199131 16 0 199132 8 0 199133 6 0 199134 13 0 199135 4 0 199136 7 0 199137 10 0 199138 3 0 199139 11 0 199140 4 0 199141 6 0 199142 4 0 199143 7 0 199144 6 0 199145 2 0 199146 9 0 199147 2 0 199148 3 0 199149 4 0 199150 1 0 199151 2 0 199152 2 0 199201 0 0 199202 0 0 199203 1 0 199204 2 0 199205 2 0 199206 2 0 199207 5 0 199208 0 0 199209 0 0 199210 4 0 199211 2 0 199212 1 0 199213 3 0 199214 2 0 199215 0 0 199216 1 0 199217 1 0 199218 3 0 199219 0 0 199220 1 0 199221 3 0 199222 2 0 199223 3 0 199224 6 0 199225 2 0 199226 1 0 199227 3 0 199228 3 0 199229 2 0 199230 2 0 199231 2 0 199232 1 0 199233 3 0 199234 3 0 199235 2 0 199236 3 0 199237 0 0 199238 2 0 199239 4 0 199240 6 0 199241 7 0 199242 3 0 199243 1 0 199244 4 0 199245 1 0 199246 2 0 199247 5 0 199248 1 0 199249 3 0 199250 1 0 199251 0 0 199252 1 0 199301 3 0 199302 3 0 199303 0 0 199304 0 0 199305 1 0 199306 1 0 199307 0 0 199308 1 0 199309 4 0 199310 1 0 199311 1 0 199312 0 0 199313 0 0 199314 1 0 199315 1 0 199316 4 0 199317 1 0 199318 0 0 199319 1 0 199320 2 0 199321 1 0 199322 4 0 199323 3 0 199324 3 0 199325 0 0 199326 3 0 199327 5 0 199328 3 0 199329 3 0 199330 4 0 199331 3 0 199332 3 0 199333 3 0 199334 4 0 199335 5 0 199336 7 0 199337 6 0 199338 5 0 199339 3 0 199340 2 0 199341 1 0 199342 3 0 199343 2 0 199344 1 0 199345 2 0 199346 1 0 199347 1 0 199348 0 0 199349 0 0 199350 1 0 199351 1 0 199352 0 0 199401 1 0 199402 4 0 199403 3 0 199404 2 0 199405 0 0 199406 1 0 199407 0 0 199408 3 0 199409 1 0 199410 1 0 199411 4 0 199412 4 0 199413 0 0 199414 1 0 199415 4 0 199416 2 0 199417 0 0 199418 1 0 199419 1 0 199420 0 0 199421 1 0 199422 1 0 199423 2 0 199424 5 0 199425 4 0 199426 0 0 199427 2 0 199428 1 0 199429 1 0 199430 3 0 199431 6 0 199432 1 0 199433 7 0 199434 6 0 199435 2 0 199436 5 0 199437 7 0 199438 5 0 199439 4 0 199440 5 0 199441 6 0 199442 6 0 199443 1 0 199444 2 0 199445 2 0 199446 5 0 199447 4 0 199448 1 0 199449 6 0 199450 2 0 199451 5 0 199452 3 0 199501 4 0 199502 7 0 199503 6 0 199504 10 0 199505 2 0 199506 4 0 199507 0 0 199508 3 0 199509 0 0 199510 1 0 199511 3 0 199512 0 0 199513 1 0 199514 1 0 199515 0 0 199516 1 0 199517 0 0 199518 1 0 199519 0 0 199520 1 0 199521 2 0 199522 2 0 199523 4 0 199524 7 0 199525 6 0 199526 1 0 199527 4 0 199528 6 0 199529 4 0 199530 2 0 199531 4 0 199532 5 0 199533 5 0 199534 9 0 199535 8 0 199536 6 0 199537 3 0 199538 2 0 199539 3 0 199540 4 0 199541 3 0 199542 3 0 199543 4 0 199544 4 0 199545 2 0 199546 1 0 199547 2 0 199548 3 0 199549 2 0 199550 2 0 199551 0 0 199552 4 0 surveillance/inst/extdata/population_2001-12-31_BYBW.txt0000644000176200001440000001527511736057020022251 0ustar liggesusers"name" "id" "popFrac" "pop31.12.2001" "LK Loerrach" 8336 0.00955704642962118 219149 "LK Waldshut" 8337 0.00724420011321107 166114 "LK Breisgau Hochschwarzwald" 8315 0.0105990592491612 243043 "SK Freiburg i. Breisgau" 8311 0.0090836619332578 208294 "SK Passau" 9262 0.00220966550402911 50669 "LK Berchtesgadener Land" 9172 0.00438828082276013 100626 "SK Rosenheim" 9163 0.0025864978792549 59310 "LK Lindau" 9776 0.00339502377170787 77850 "SK Kempten" 9763 0.00268222141398706 61505 "LK Bodenseekreis" 8435 0.00876330426303345 200948 "LK Konstanz" 8335 0.0117248901250817 268859 "LK Tuttlingen" 8327 0.00583787093414831 133866 "LK Schwarzwald Baar Kreis" 8326 0.00921566883058548 211321 "LK Emmendingen" 8316 0.0066702513931154 152953 "LK Rottweil" 8325 0.00618217039050841 141761 "LK Passau" 9275 0.00817051610466703 187355 "LK Traunstein" 9189 0.0073625135299438 168827 "LK Altoetting" 9171 0.00475447240414782 109023 "LK Rosenheim" 9187 0.0104709772348066 240106 "LK Miesbach" 9182 0.0040435016584811 92720 "LK Bad Toelz Wolfratshausen" 9173 0.00512048954629225 117416 "LK Ebersberg" 9175 0.00525131897872801 120416 "SK Memmingen" 9764 0.00179240683418067 41101 "LK Ravensburg" 8436 0.0117995937310025 270572 "LK Oberallgaeu" 9780 0.00646798909056973 148315 "SK Kaufbeuren" 9762 0.00184234006756032 42246 "LK Garmisch Partenkirchen" 9180 0.00381184634344819 87408 "LK Weilheim Schongau" 9190 0.00560573591119647 128543 "LK Starnberg" 9188 0.00552047873105917 126588 "SK Muenchen" 9162 0.0535510160649821 1227958 "LK Neu Ulm" 9775 0.00702597661990823 161110 "SK Ulm" 8421 0.00516109028015815 118347 "LK Sigmaringen" 8437 0.00582936702103999 133671 "LK Biberach" 8426 0.00804810336571798 184548 "LK Zollernalbkreis" 8417 0.00842524100961945 193196 "LK Ortenaukreis" 8317 0.0179450446608073 411491 "LK Freudenstadt" 8237 0.0053065289992159 121682 "SK Baden Baden" 8211 0.00231498319713989 53084 "LK Freyung Grafenau" 9272 0.00360012071195633 82553 "LK Deggendorf" 9271 0.00508307232861562 116558 "SK Straubing" 9263 0.00193261237594099 44316 "LK Dingolfing Landau" 9279 0.0039779997226416 91218 "LK Rottal Inn" 9277 0.0051942337363752 119107 "SK Landshut" 9261 0.00259535067084972 59513 "LK Muehldorf a. Inn" 9183 0.00478543536982428 109733 "LK Muenchen" 9184 0.0130778408957106 299883 "LK Erding" 9177 0.005143733575455 117949 "LK Unterallgaeu" 9778 0.00588383567474408 134920 "LK Ostallgaeu" 9777 0.00577345924357911 132389 "SK Augsburg" 9761 0.0112441791805019 257836 "LK Landsberg a. Lech" 9181 0.00469280813165976 107609 "LK Fuerstenfeldbruck" 9179 0.00854181003391971 195869 "LK Dachau" 9174 0.00572793060109147 131345 "LK Guenzburg" 9774 0.00532536843748664 122114 "LK Alb Donau Kreis" 8425 0.0081550346218288 187000 "LK Tuebingen" 8416 0.00920419945034194 211058 "LK Reutlingen" 8415 0.012174856153039 279177 "SK Pforzheim" 8231 0.00514604489542803 118002 "LK Boeblingen" 8115 0.0160409967109481 367830 "LK Calw" 8235 0.00698258485815037 160115 "LK Rastatt" 8216 0.00978207305341068 224309 "SK Karlsruhe" 8212 0.0121923436871746 279578 "LK Regen" 9276 0.00360744716017273 82721 "SK Regensburg" 9362 0.00554708071565444 127198 "LK Straubing Bogen" 9278 0.00418806818132262 96035 "LK Landshut" 9274 0.0063017921015655 144504 "LK Freising" 9178 0.00677679016092892 155396 "LK Pfaffenhofen.a.d.Ilm" 9186 0.00493274931074694 113111 "SK Ingolstadt" 9161 0.005115910516157 117311 "LK Dillingen a. d. Donau" 9773 0.00411829248402355 94435 "LK Augsburg" 9772 0.0104025098318318 238536 "LK Aichach Friedberg" 9771 0.0054294650558947 124501 "LK Neuburg Schrobenhausen" 9185 0.00393465157069456 90224 "LK Heidenheim" 8135 0.00597694262082752 137055 "LK Goeppingen" 8117 0.0112361113655017 257651 "LK Esslingen" 8116 0.022037781795695 505340 "SK Stuttgart" 8111 0.0256055876378397 587152 "LK Enzkreis" 8236 0.00845476485153912 193873 "SK Heilbronn" 8121 0.00524028569659259 120163 "LK Ludwigsburg" 8118 0.0219457214850711 503229 "SK Heidelberg" 8221 0.00617118071818381 141509 "LK Karlsruhe" 8215 0.0184448567025227 422952 "SK Schwabach" 9565 0.00167976269285349 38518 "LK Cham" 9372 0.00573102689765911 131416 "LK Regensburg" 9375 0.00776668925654867 178095 "LK Kelheim" 9273 0.0048371129956364 110918 "LK Eichstaett" 9176 0.00527813901237734 121031 "SK Fuerth" 9563 0.00485189672150164 111257 "SK Erlangen" 9562 0.00444436303946426 101912 "LK Donau Ries" 9779 0.00568388469217143 130335 "LK Weissenburg Gunzenhausen" 9577 0.00415060735383518 95176 "LK Fuerth" 9573 0.00495102182147713 113530 "SK Ansbach" 9561 0.00176235967453126 40412 "LK Ostalbkreis" 8136 0.0137521357904845 315345 "LK Rems Murr Kreis" 8119 0.0180090638630791 412959 "LK Heilbronn" 8125 0.0141314539249266 324043 "LK Rhein Neckar Kreis" 8226 0.0230170837072875 527796 "SK Mannheim" 8222 0.0134486115072336 308385 "LK Roth" 9576 0.0054496127884898 124963 "SK Nuernberg" 9564 0.0214258053205714 491307 "SK Weiden i. d. OPf." 9363 0.00187831816148015 43071 "LK Schwandorf" 9376 0.00629594838691671 144370 "LK Neumarkt i. d. OPf." 9373 0.005552052234087 127312 "SK Amberg" 9361 0.00192829500467061 44217 "LK Erlangen Hoechstadt" 9572 0.00565841656265727 129751 "SK Bamberg" 9461 0.00302634643110391 69396 "SK Wuerzburg" 9663 0.00566556857163042 129915 "LK Neustadt/Aisch Bad Windsheim" 9575 0.00432417440086661 99156 "LK Ansbach" 9571 0.00800972673220349 183668 "LK Schwaebisch Hall" 8127 0.00815359549807201 186967 "LK Hohenlohekreis" 8126 0.00474998059363419 108920 "LK Neckar Odenwald Kreis" 8225 0.0065454401145717 150091 "LK Kitzingen" 9675 0.00388580858258521 89104 "SK Schweinfurt" 9662 0.00237970015638478 54568 "LK Nuernberger Land" 9574 0.00735666981529501 168693 "LK Forchheim" 9474 0.00492084383239529 112838 "SK Bayreuth" 9462 0.00324975949189337 74519 "LK Tirschenreuth" 9377 0.00348023734203436 79804 "LK Neustadt a. d. Waldnaab" 9374 0.0044064661138687 101043 "LK Amberg Sulzbach" 9371 0.00475708899279653 109083 "LK Bamberg" 9471 0.00624086919586125 143107 "SK Coburg" 9463 0.0018664126831285 42798 "LK Wuerzburg" 9679 0.00694752257025759 159311 "LK Main Tauber Kreis" 8128 0.00599669786512532 137508 "LK Miltenberg" 9676 0.00572897723655095 131369 "SK Aschaffenburg" 9661 0.00298121027691358 68361 "LK Schweinfurt" 9678 0.00509685302883219 116874 "LK Wunsiedel i. Fichtelgebirge" 9479 0.00371895744641881 85278 "LK Bayreuth" 9472 0.00476432822139131 109249 "SK Hof" 9464 0.00220901135686693 50654 "LK Lichtenfels" 9478 0.00309080173148393 70874 "LK Kulmbach" 9477 0.00343095825581689 78674 "LK Hassberge" 9674 0.00385563059350336 88412 "LK Coburg" 9473 0.0040207809470481 92199 "LK Main Spessart" 9677 0.00576547864820053 132206 "LK Aschaffenburg" 9671 0.00761326994211234 174577 "LK Rhoen Grabfeld" 9673 0.00378171196417716 86717 "LK Bad Kissingen" 9672 0.00477518706428348 109498 "LK Hof" 9475 0.00474230526693129 108744 "LK Kronach" 9476 0.00329070910424576 75458 surveillance/inst/extdata/neighbourhood_BYBW.txt0000644000176200001440000012031011736057020021573 0ustar liggesusers"8336" "8337" "8315" "8311" "9262" "9172" "9163" "9776" "9763" "8435" "8335" "8327" "8326" "8316" "8325" "9275" "9189" "9171" "9187" "9182" "9173" "9175" "9764" "8436" "9780" "9762" "9180" "9190" "9188" "9162" "9775" "8421" "8437" "8426" "8417" "8317" "8237" "8211" "9272" "9271" "9263" "9279" "9277" "9261" "9183" "9184" "9177" "9778" "9777" "9761" "9181" "9179" "9174" "9774" "8425" "8416" "8415" "8231" "8115" "8235" "8216" "8212" "9276" "9362" "9278" "9274" "9178" "9186" "9161" "9773" "9772" "9771" "9185" "8135" "8117" "8116" "8111" "8236" "8121" "8118" "8221" "8215" "9565" "9372" "9375" "9273" "9176" "9563" "9562" "9779" "9577" "9573" "9561" "8136" "8119" "8125" "8226" "8222" "9576" "9564" "9363" "9376" "9373" "9361" "9572" "9461" "9663" "9575" "9571" "8127" "8126" "8225" "9675" "9662" "9574" "9474" "9462" "9377" "9374" "9371" "9471" "9463" "9679" "8128" "9676" "9661" "9678" "9479" "9472" "9464" "9478" "9477" "9674" "9473" "9677" "9671" "9673" "9672" "9475" "9476" "8336" 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8337" 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8315" 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8311" 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9262" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9172" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9163" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9776" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9763" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8435" 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8335" 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8327" 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8326" 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8316" 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8325" 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9275" 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9189" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9171" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9187" 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9182" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9173" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9175" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9764" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8436" 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9780" 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9762" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9180" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9190" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9188" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9162" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9775" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8421" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8437" 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8426" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8417" 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8317" 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8237" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8211" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9272" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9271" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9263" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9279" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9277" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9261" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9183" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9184" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9177" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9778" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9777" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9761" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9181" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9179" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9174" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9774" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8425" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8416" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8415" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8231" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8115" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8235" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8216" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8212" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9276" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9362" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9278" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9274" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9178" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9186" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9161" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9773" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9772" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9771" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9185" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8135" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8117" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8116" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8111" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8236" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8121" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8118" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8221" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8215" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9565" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9372" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9375" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9273" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9176" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9563" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9562" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9779" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9577" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9573" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9561" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8136" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8119" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8125" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8226" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8222" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9576" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9564" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9363" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9376" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9373" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9361" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9572" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9461" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9663" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9575" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9571" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8127" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8126" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8225" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9675" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "9662" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "9574" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9474" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9462" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9377" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 "9374" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9371" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9471" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 "9463" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "9679" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 "8128" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "9676" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 "9661" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 "9678" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 "9479" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 "9472" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 "9464" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 "9478" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 "9477" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 "9674" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 "9473" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 "9677" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 "9671" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "9673" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 "9672" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 "9475" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 "9476" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 surveillance/inst/extdata/counts_flu_BYBW.txt0000644000176200001440000035307012655404667021151 0ustar liggesusers"8336" "8337" "8315" "8311" "9262" "9172" "9163" "9776" "9763" "8435" "8335" "8327" "8326" "8316" "8325" "9275" "9189" "9171" "9187" "9182" "9173" "9175" "9764" "8436" "9780" "9762" "9180" "9190" "9188" "9162" "9775" "8421" "8437" "8426" "8417" "8317" "8237" "8211" "9272" "9271" "9263" "9279" "9277" "9261" "9183" "9184" "9177" "9778" "9777" "9761" "9181" "9179" "9174" "9774" "8425" "8416" "8415" "8231" "8115" "8235" "8216" "8212" "9276" "9362" "9278" "9274" "9178" "9186" "9161" "9773" "9772" "9771" "9185" "8135" "8117" "8116" "8111" "8236" "8121" "8118" "8221" "8215" "9565" "9372" "9375" "9273" "9176" "9563" "9562" "9779" "9577" "9573" "9561" "8136" "8119" "8125" "8226" "8222" "9576" "9564" "9363" "9376" "9373" "9361" "9572" "9461" "9663" "9575" "9571" "8127" "8126" "8225" "9675" "9662" "9574" "9474" "9462" "9377" "9374" "9371" "9471" "9463" "9679" "8128" "9676" "9661" "9678" "9479" "9472" "9464" "9478" "9477" "9674" "9473" "9677" "9671" "9673" "9672" "9475" "9476" "1" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "2" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "3" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "4" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "5" 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 5 0 0 0 0 4 0 4 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 12 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 2 0 4 4 0 0 2 0 3 0 0 0 0 0 0 0 3 0 0 0 0 6 0 0 1 0 3 0 0 0 0 0 0 0 0 1 2 2 8 0 0 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "6" 0 0 1 6 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 3 0 0 0 0 10 0 6 0 5 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 6 0 4 0 1 0 0 5 0 0 0 0 0 0 1 0 0 0 0 1 2 4 8 0 0 3 0 3 0 0 0 0 0 1 0 1 0 0 0 0 7 1 0 0 0 5 0 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "7" 0 0 1 1 0 0 0 0 0 0 0 4 0 3 0 0 0 0 1 2 1 6 0 3 0 0 0 0 0 6 0 3 0 0 0 2 0 0 0 0 1 0 0 0 2 7 0 0 0 0 0 0 0 0 2 0 3 0 1 0 0 9 0 0 0 0 0 0 0 1 0 1 1 2 1 0 9 0 0 3 0 0 0 2 0 0 0 0 0 2 0 0 0 0 3 3 0 0 0 7 1 0 0 0 0 0 0 0 0 6 1 0 0 3 0 1 0 2 11 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "8" 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 11 1 1 0 6 0 0 1 0 0 0 0 3 0 3 0 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 0 6 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 1 0 3 1 6 0 0 1 0 1 0 0 0 0 1 0 1 4 0 0 0 0 2 2 0 0 0 1 0 8 0 0 0 0 0 0 0 4 1 0 1 0 0 1 0 0 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "9" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 6 0 0 0 1 0 1 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 2 0 0 1 0 0 3 0 0 4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 "10" 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "11" 0 0 2 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "12" 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "13" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 "14" 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "15" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "16" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "17" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "18" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "19" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "20" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "21" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "22" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "23" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "24" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "25" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "26" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "27" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "28" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "29" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "30" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "31" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "32" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "33" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "34" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "35" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "36" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "37" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "38" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "39" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "40" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "41" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "42" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "43" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "44" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "45" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "46" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "47" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "48" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "49" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "50" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "51" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "52" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "53" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "54" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "55" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "56" 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "57" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 6 4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "58" 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "59" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 3 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 5 3 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "60" 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 10 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 1 1 0 1 0 3 1 0 0 0 3 0 0 0 0 0 0 0 1 0 1 6 0 0 1 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 3 1 6 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "61" 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 7 0 1 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 5 0 3 0 1 1 1 0 0 2 0 0 4 0 0 0 0 1 0 1 6 0 0 1 0 0 0 4 0 0 0 0 1 0 0 0 0 0 1 2 2 0 1 5 1 3 0 0 2 0 0 0 0 8 1 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 "62" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 2 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 7 0 0 2 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0 3 0 2 0 2 1 5 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2 0 3 "63" 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7 0 4 0 5 0 5 1 0 0 0 5 0 0 0 0 0 0 0 0 0 1 7 0 0 3 0 3 0 3 0 0 0 0 0 2 0 0 0 0 0 5 2 0 0 11 4 0 4 0 0 0 0 1 1 12 1 0 0 0 0 0 0 0 7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 "64" 0 0 1 2 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 4 3 1 0 0 0 0 0 0 0 0 1 2 4 0 2 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 1 0 8 0 0 4 0 2 0 2 0 0 0 0 3 0 0 0 0 0 2 1 1 0 0 6 1 0 0 0 1 4 0 0 0 4 1 0 1 0 1 1 0 3 14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 10 "65" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 10 3 0 0 0 0 0 0 0 0 11 0 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 4 "66" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 "67" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 "68" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 "69" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 "70" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "71" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "72" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "73" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "74" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "75" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "76" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "77" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "78" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "79" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "80" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "81" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "82" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "83" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "84" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "85" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "86" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "87" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "88" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "89" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "90" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "91" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "92" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "93" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "94" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "95" 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "96" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "97" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "98" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "99" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "100" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "101" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "102" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "103" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "104" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "105" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "106" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "107" 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "108" 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 5 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "109" 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29 3 0 0 4 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 1 0 0 0 0 2 6 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 "110" 0 0 1 5 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 9 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 24 2 0 0 7 0 0 2 0 2 0 0 0 15 0 1 1 2 1 0 0 1 0 1 0 1 9 0 0 0 12 7 0 0 1 1 0 0 8 0 0 0 0 1 2 0 0 0 0 4 0 1 0 0 5 3 2 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "111" 0 0 0 2 0 0 0 0 0 0 0 9 0 2 0 0 0 0 0 4 0 1 0 2 0 0 2 0 0 19 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 14 0 0 0 3 0 0 2 0 3 0 2 0 3 0 3 1 3 1 1 1 0 0 4 0 2 7 0 0 0 8 16 0 0 13 0 0 0 12 1 0 0 2 0 1 0 0 0 0 2 1 3 0 1 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 1 "112" 0 0 5 1 0 0 0 0 0 1 1 10 1 0 3 0 0 5 2 11 0 5 0 2 0 0 0 0 0 26 0 0 1 1 1 1 1 0 0 0 0 0 0 0 2 45 2 0 0 11 0 0 6 0 5 4 1 0 7 0 9 21 3 6 2 0 0 0 5 0 6 6 0 0 1 22 51 0 0 12 1 1 0 30 2 0 0 1 3 1 0 0 0 1 5 14 1 0 0 9 6 10 0 0 0 0 1 15 1 0 1 0 5 2 0 0 0 4 13 0 0 0 9 0 0 0 5 0 0 0 0 1 0 0 0 0 0 3 0 0 "113" 1 0 11 3 0 1 0 0 0 6 0 9 0 2 2 0 4 5 2 8 0 10 0 0 0 0 1 0 0 37 0 2 0 1 0 0 0 0 0 0 0 0 0 0 2 47 2 0 0 11 1 1 3 0 11 7 5 0 8 0 16 0 1 7 5 3 0 1 5 0 3 10 0 0 4 21 57 0 0 7 1 0 0 14 6 0 1 0 0 4 0 1 0 3 4 8 5 2 0 16 18 13 0 0 0 0 3 0 0 0 0 0 2 5 0 1 0 2 9 2 1 0 14 0 0 0 2 0 0 0 0 3 0 0 1 1 1 0 0 3 "114" 0 2 7 9 0 1 0 0 0 8 2 10 0 4 0 0 0 1 0 6 0 7 0 2 0 0 2 0 0 32 0 0 0 2 0 2 0 0 0 0 0 0 0 0 4 23 0 1 0 8 0 3 4 0 4 2 5 0 26 0 4 2 1 9 2 1 0 0 0 1 1 6 0 0 1 12 12 1 0 3 0 0 2 15 16 0 0 1 1 1 0 4 0 0 13 4 3 0 0 12 20 9 1 0 1 0 1 20 4 0 0 0 2 14 0 7 0 9 34 1 4 3 7 0 0 0 0 1 0 0 0 3 1 1 2 0 2 3 0 0 "115" 0 0 1 6 0 2 0 0 0 0 0 4 0 0 0 0 1 1 0 4 1 3 0 0 0 0 2 0 0 30 0 4 0 0 0 0 0 0 0 0 0 0 0 0 4 10 2 0 0 0 1 1 0 0 3 0 1 0 12 1 2 0 1 8 1 1 0 12 2 1 1 6 0 0 0 3 15 0 0 3 0 0 1 6 2 0 1 0 3 0 0 0 0 1 0 1 0 0 0 4 7 12 1 0 0 1 1 3 2 1 0 0 0 2 4 3 0 5 8 1 4 2 4 1 0 0 0 3 1 0 0 5 0 1 0 0 2 0 0 25 "116" 0 0 0 4 0 0 1 0 0 1 0 0 1 5 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 6 0 4 0 0 0 2 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 1 1 0 3 0 0 0 4 6 2 1 0 0 0 0 0 2 0 0 0 3 0 0 1 6 7 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 5 3 1 0 0 1 0 4 2 0 0 0 0 1 0 0 0 3 4 2 3 0 5 0 0 0 1 0 0 0 1 10 0 1 0 1 0 0 0 0 "117" 0 0 7 5 0 1 0 0 0 2 0 0 0 1 0 0 3 3 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 2 0 1 0 0 0 2 0 0 0 4 0 0 0 1 3 0 0 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 2 0 1 0 0 0 3 0 0 0 0 0 1 1 0 0 0 4 0 1 1 0 0 0 0 0 0 0 0 0 2 0 1 2 0 0 0 0 3 "118" 0 2 2 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 7 2 0 0 1 3 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 10 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 "119" 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 5 0 3 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 "120" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 "121" 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "122" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "123" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "124" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "125" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "126" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "127" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "128" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "129" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "130" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "131" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "132" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "133" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "134" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "135" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "136" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "137" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "138" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "139" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "140" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "141" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "142" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "143" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "144" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "145" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "146" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "147" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "148" 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "149" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "150" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "151" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "152" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "153" 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "154" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 "155" 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 "156" 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "157" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "158" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "159" 3 3 5 2 0 0 0 0 0 1 1 1 0 3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 7 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 "160" 1 0 5 10 0 0 0 0 0 1 0 1 0 2 0 0 1 2 3 1 0 0 0 0 0 0 2 0 0 4 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 2 1 0 0 4 0 0 2 0 0 2 0 3 7 0 3 0 0 0 1 1 0 0 1 0 0 2 0 0 1 0 2 0 0 3 0 1 0 2 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 2 3 0 0 0 0 0 2 0 4 0 0 1 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 "161" 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 6 0 0 0 2 0 2 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 3 0 1 1 1 0 1 0 1 2 1 0 0 1 0 5 0 0 0 1 0 0 1 1 3 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 3 0 0 2 0 0 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "162" 1 0 1 0 0 0 0 0 0 1 1 4 2 2 0 0 2 2 1 0 0 0 0 1 0 0 0 1 0 10 0 2 0 1 0 1 0 1 0 0 0 0 0 0 2 3 0 0 0 1 0 0 1 0 2 1 1 0 4 0 1 4 0 0 0 0 0 1 2 0 0 0 0 0 1 3 3 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 3 0 0 1 0 0 5 2 1 0 0 3 1 0 0 0 1 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "163" 1 0 0 2 0 0 0 0 0 1 1 1 0 0 0 0 0 4 0 0 0 1 0 1 2 0 0 0 0 8 0 1 0 0 0 6 0 0 0 0 0 0 0 0 1 4 1 0 0 1 0 0 5 1 0 3 0 0 5 0 0 0 1 0 0 1 0 11 0 0 0 0 0 2 3 4 9 0 0 2 0 2 0 2 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 3 0 0 0 1 0 1 9 6 0 0 10 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "164" 0 0 0 2 0 0 2 0 0 3 1 0 0 0 0 0 2 0 2 0 0 2 0 1 0 0 0 0 0 7 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 4 1 0 4 0 0 0 1 0 12 1 0 0 1 0 0 2 2 4 0 0 5 0 0 0 2 0 0 0 0 0 0 0 0 4 0 1 2 0 0 0 0 0 1 0 0 0 1 0 1 0 2 0 0 4 0 0 1 0 0 0 0 5 1 0 0 1 0 0 0 0 0 3 5 0 1 0 1 1 0 0 0 "165" 0 1 1 5 0 1 0 0 0 2 2 6 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 1 0 2 0 4 0 0 0 0 0 0 0 5 0 2 0 1 0 1 0 0 2 0 0 0 0 0 3 0 0 0 0 1 0 3 0 3 1 0 1 0 0 0 0 0 3 0 0 2 0 0 0 2 1 0 0 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 0 0 1 0 0 2 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 6 0 0 0 0 0 0 0 0 "166" 1 0 1 1 0 0 0 0 0 1 2 2 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 0 0 1 0 0 0 1 0 5 0 0 0 0 0 1 0 0 0 0 2 0 4 0 0 1 1 0 0 1 0 8 0 0 1 1 2 0 3 1 7 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 2 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 6 1 1 0 1 0 1 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 "167" 1 0 5 3 0 0 0 0 0 2 0 5 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 3 0 3 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 2 1 0 0 0 0 0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "168" 0 2 2 2 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 "169" 0 0 0 2 0 0 0 0 0 1 0 3 0 1 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 "170" 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "171" 0 0 0 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "172" 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "173" 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "174" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "175" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "176" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "177" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "178" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "179" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "180" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "181" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "182" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "183" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "184" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "185" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "186" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "187" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "188" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "189" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "190" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "191" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "192" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "193" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "194" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "195" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "196" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "197" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "198" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "199" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "200" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "201" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "202" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "203" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "204" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "205" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "206" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "207" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "208" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "209" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "210" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "211" 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 1 0 3 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "212" 1 0 0 1 0 0 0 1 0 0 0 2 0 0 0 0 3 0 0 1 0 0 0 2 0 0 0 0 3 14 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 7 0 0 0 2 0 0 0 0 0 4 0 0 3 3 0 0 0 1 1 0 3 0 1 0 2 1 1 0 0 4 8 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "213" 1 0 0 6 0 0 0 0 0 3 0 2 0 0 0 0 0 2 2 4 0 3 0 2 0 0 0 4 5 12 0 2 0 2 2 1 1 0 0 5 0 0 0 5 0 6 1 0 0 3 0 0 1 0 3 13 1 0 15 0 3 4 0 0 1 3 1 0 1 0 0 2 1 0 2 10 15 0 0 10 0 3 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 1 1 1 0 1 0 2 0 0 0 9 4 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "214" 9 2 1 1 0 1 0 0 0 4 2 5 0 1 0 0 3 1 2 2 0 1 0 3 0 0 0 5 7 26 0 1 2 0 1 4 6 0 0 11 0 1 0 1 1 10 2 0 0 1 2 0 0 0 0 10 1 0 27 9 1 2 0 0 2 1 5 4 2 0 1 4 0 1 0 12 24 0 0 6 0 4 0 0 3 0 0 2 1 0 0 1 0 5 2 1 1 0 0 1 3 1 0 0 1 0 1 1 0 9 3 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 "215" 10 0 4 4 0 0 0 0 0 4 4 11 0 0 4 0 7 0 3 0 0 2 0 1 0 0 0 3 0 16 0 0 0 1 4 4 7 0 0 14 1 3 0 5 1 1 5 0 0 2 0 1 0 0 0 20 5 1 38 1 5 3 3 0 3 5 4 1 0 1 0 0 0 1 9 8 32 0 0 21 1 1 0 0 2 0 3 1 0 0 4 1 2 7 4 0 3 0 0 4 2 4 1 0 0 0 0 1 0 4 1 0 1 0 0 0 1 0 5 1 10 0 3 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 "216" 5 1 8 9 1 3 1 0 0 4 3 5 0 0 6 0 8 2 15 1 0 8 0 1 0 0 0 7 6 38 1 0 1 2 0 7 2 0 0 4 0 3 0 4 2 20 7 0 0 8 1 3 0 0 4 8 11 0 19 0 5 2 6 7 2 6 9 2 1 0 3 7 1 1 19 10 33 2 1 21 2 1 0 2 1 1 4 2 1 0 0 2 2 3 8 3 6 2 0 4 5 3 2 0 0 4 0 0 2 22 1 0 3 0 0 4 0 3 7 1 10 0 4 2 0 0 1 0 1 1 0 1 1 3 2 0 2 0 0 0 "217" 10 2 2 6 0 1 3 0 0 5 7 6 2 1 33 0 5 0 11 0 0 3 0 3 0 0 2 7 1 37 0 2 1 0 1 4 2 1 2 6 2 2 0 3 0 17 7 0 0 22 2 0 2 0 5 5 8 0 18 0 9 6 3 2 3 3 5 5 1 1 9 3 1 1 28 9 35 1 0 21 3 7 0 9 11 2 4 3 0 0 0 1 2 4 13 5 19 2 0 6 15 10 6 0 2 2 0 3 6 16 1 0 6 0 0 5 2 6 18 1 10 0 4 2 0 0 1 1 1 0 0 2 4 7 2 0 0 1 0 0 "218" 4 6 1 3 0 0 0 2 0 2 4 4 2 2 0 1 3 0 11 2 0 4 0 3 1 0 0 14 0 35 0 0 0 1 0 3 3 1 2 1 0 8 0 2 1 13 1 0 0 11 3 0 0 0 2 0 7 0 28 1 11 6 7 2 5 1 5 8 0 3 10 6 2 0 25 12 40 0 0 15 2 14 0 12 7 3 1 1 3 0 1 2 0 5 5 5 12 1 0 7 30 8 5 3 0 6 1 4 1 7 3 1 5 7 0 3 0 7 26 4 13 1 4 5 1 0 11 0 0 0 0 2 3 7 3 0 1 3 1 0 "219" 6 2 3 4 0 0 3 0 0 1 3 7 0 2 7 0 0 1 2 6 1 7 0 3 0 0 0 21 0 60 1 0 1 1 2 5 3 0 0 0 1 5 0 0 2 11 1 0 0 16 0 2 0 1 2 5 14 0 17 1 14 4 3 7 1 3 3 0 0 8 6 11 4 0 24 6 29 1 2 12 4 9 1 7 5 3 1 2 0 0 0 0 6 2 17 4 13 0 0 4 9 0 5 2 0 0 0 4 10 9 3 0 8 3 0 2 4 0 12 2 3 0 4 6 2 0 2 0 0 0 0 3 2 2 2 0 0 1 0 1 "220" 2 0 2 3 0 0 1 1 0 0 4 4 0 0 0 0 1 0 3 2 2 1 0 1 0 0 0 2 0 22 2 0 0 2 0 1 0 0 0 0 2 3 0 0 0 4 2 0 0 4 0 0 0 0 1 2 2 0 2 0 7 0 3 2 2 0 2 0 0 0 1 1 2 0 13 7 10 0 0 4 1 2 0 3 2 1 0 0 1 0 0 1 3 2 4 0 2 0 0 1 6 2 0 1 0 1 0 2 6 15 0 0 1 7 1 0 0 0 10 2 5 0 0 5 2 0 2 1 0 0 0 0 4 0 2 1 0 1 0 0 "221" 2 2 1 2 0 0 0 0 0 1 6 1 1 1 0 0 0 0 2 0 1 0 0 0 0 0 0 6 0 17 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 4 1 0 0 1 0 0 0 0 0 0 1 0 0 0 2 0 1 1 3 0 3 2 0 4 0 0 0 0 3 1 2 0 0 1 0 0 0 0 2 0 0 0 1 0 2 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 2 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 "222" 0 0 2 3 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 2 1 0 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 "223" 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "224" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "225" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "226" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "227" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "228" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "229" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "230" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "231" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "232" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "233" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "234" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "235" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "236" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "237" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "238" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "239" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "240" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "241" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "242" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "243" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "244" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "245" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "246" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "247" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "248" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "249" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "250" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "251" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "252" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "253" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 "254" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "255" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 "256" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "257" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "258" 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "259" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "260" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "261" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "262" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "263" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "264" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 "265" 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "266" 0 0 0 0 0 0 0 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "267" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "268" 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 3 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 5 2 0 0 0 0 1 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "269" 2 0 1 0 0 0 0 0 0 0 2 0 0 2 0 1 0 2 0 0 0 2 0 0 0 0 0 0 2 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 3 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "270" 0 0 0 1 1 0 0 0 0 3 1 0 0 2 0 0 1 3 0 0 0 0 0 1 0 0 0 0 2 4 1 3 1 0 0 0 0 0 0 0 0 0 0 1 0 5 0 1 0 0 0 1 0 1 4 0 0 0 0 0 1 1 0 0 0 4 0 0 1 0 0 0 2 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 "271" 0 0 0 5 8 0 0 4 0 2 2 1 0 2 0 5 2 6 1 3 0 1 0 0 1 0 1 4 4 14 0 1 0 0 0 2 0 0 0 1 0 0 0 0 0 4 2 0 0 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 2 2 0 0 2 1 0 0 3 1 0 0 1 0 2 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 "272" 0 1 0 1 3 0 0 1 0 4 2 0 0 2 0 10 0 0 0 0 0 1 0 1 0 0 0 0 10 14 0 0 0 1 0 5 0 0 0 4 0 0 1 1 3 4 3 0 0 0 0 5 0 2 3 0 0 1 1 5 0 0 0 0 0 1 0 2 0 0 1 1 1 0 1 4 2 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 0 0 "273" 3 2 0 4 3 1 0 0 0 10 0 1 0 4 0 7 2 3 3 0 0 1 0 2 2 1 1 0 8 30 0 0 0 0 0 0 0 0 0 13 0 4 2 3 6 9 3 0 0 1 1 1 1 2 1 2 2 0 3 6 1 0 3 1 0 2 4 22 0 0 2 0 0 1 1 3 4 1 0 2 0 2 0 20 2 1 3 1 0 0 0 0 0 0 6 1 0 0 3 2 0 2 0 0 0 0 0 0 0 7 1 0 1 0 0 1 0 0 3 1 0 0 0 3 0 0 0 0 0 0 0 3 4 2 0 0 0 0 0 0 "274" 0 0 0 0 11 0 0 0 0 4 3 1 0 1 0 23 1 6 2 1 0 0 0 3 1 0 2 1 10 29 0 1 0 1 0 0 0 0 0 10 1 3 1 1 2 12 2 0 0 2 0 0 2 0 0 3 1 0 4 0 6 0 16 0 1 3 0 1 1 0 3 5 4 0 1 2 4 0 0 2 0 0 0 13 2 1 0 0 0 2 0 0 0 0 3 0 2 0 0 7 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 1 7 0 0 0 0 1 0 1 0 "275" 1 0 0 0 4 0 0 0 0 1 1 0 1 1 0 8 0 4 4 0 0 1 0 1 1 0 1 0 0 15 0 0 0 0 0 0 0 0 0 2 0 0 2 0 2 6 3 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 7 0 1 1 2 1 1 0 0 1 1 0 2 0 4 0 0 1 0 0 0 4 3 0 1 0 0 0 0 0 0 1 3 0 1 1 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 7 0 1 1 0 2 0 0 0 "276" 0 1 1 0 2 0 0 0 0 0 1 0 0 1 0 4 0 3 3 0 0 0 0 0 1 0 1 0 3 5 0 1 0 0 0 0 0 0 0 3 2 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 3 0 4 0 1 0 0 6 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 3 1 0 0 1 0 1 0 1 1 1 2 0 0 0 0 2 3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 "277" 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 3 0 1 1 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "278" 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "279" 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "280" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 "281" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "282" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "283" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "284" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "285" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "286" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "287" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "288" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "289" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "290" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "291" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "292" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "293" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 "294" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "295" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "296" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "297" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "298" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "299" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "300" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "301" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "302" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "303" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "304" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "305" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "306" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "307" 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "308" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "309" 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "310" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "311" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 "312" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "313" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "314" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 "315" 1 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "316" 1 0 2 2 0 0 1 0 0 1 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 1 3 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 4 0 0 11 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 2 0 4 0 1 0 0 0 0 0 1 1 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "317" 3 2 2 4 0 0 0 0 0 0 0 0 0 10 1 0 1 0 4 0 0 0 0 1 1 0 2 6 2 11 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2 0 10 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 10 0 0 11 0 1 3 0 0 0 2 0 0 0 0 0 0 0 8 0 6 4 0 0 0 0 2 1 1 3 1 0 0 6 0 0 1 0 1 0 0 1 0 5 1 0 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 2 "318" 11 3 3 14 1 1 0 0 0 9 10 2 3 4 0 0 1 0 11 1 1 2 0 0 4 0 0 17 0 43 0 0 3 3 2 16 17 0 0 1 0 0 0 0 3 6 1 0 4 24 0 0 10 2 1 2 2 0 26 0 6 1 1 0 1 5 1 1 0 1 6 7 0 2 1 8 17 0 0 29 6 2 8 8 1 1 1 0 0 1 0 0 0 0 8 4 5 4 4 3 1 0 3 0 0 5 1 1 0 1 1 0 3 1 6 0 2 1 2 1 7 1 4 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 1 "319" 9 8 14 7 2 2 0 0 0 6 17 4 0 3 1 1 11 1 7 0 2 6 0 10 6 0 8 13 17 84 0 0 5 6 1 28 16 0 0 0 0 0 1 1 5 15 3 0 4 15 3 13 5 3 4 2 23 6 20 3 1 3 5 2 3 1 0 2 0 4 3 6 1 0 1 13 36 0 0 37 3 7 7 10 2 1 0 2 2 1 0 0 1 8 30 5 7 5 3 4 0 0 3 0 1 14 1 2 2 18 5 0 3 0 48 2 0 1 3 0 11 0 13 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 0 0 "320" 6 9 8 17 1 2 3 1 1 2 27 8 1 3 1 6 12 3 5 5 4 19 0 19 9 0 9 17 5 109 0 0 1 13 10 32 9 0 1 3 0 0 0 3 17 39 7 0 4 17 3 8 5 6 0 2 18 2 13 3 10 0 2 4 0 1 1 0 3 8 13 4 4 2 7 21 33 0 8 12 5 23 4 13 4 1 3 8 2 0 0 5 1 7 15 4 7 7 5 12 4 5 5 2 3 5 9 7 2 9 2 0 9 1 0 6 2 1 7 2 17 0 15 2 0 1 0 0 4 0 0 1 6 0 7 0 4 2 0 0 "321" 11 10 8 14 0 1 3 3 0 8 15 17 4 5 2 3 12 5 12 7 7 8 0 11 7 0 2 41 3 52 0 1 1 14 10 29 13 1 0 3 3 3 0 1 9 21 57 1 9 15 3 7 6 7 1 18 14 0 22 1 10 1 6 5 5 6 12 20 4 11 12 34 12 1 27 19 26 0 10 17 2 13 2 25 9 1 7 3 0 1 0 2 7 9 6 10 19 14 4 21 2 10 17 0 9 10 9 0 38 6 6 0 10 0 1 3 0 4 5 1 31 1 18 5 0 0 1 0 0 5 3 1 6 0 8 0 5 9 0 0 "322" 6 6 3 14 14 3 0 3 0 10 10 5 0 2 0 15 12 6 7 8 5 10 0 23 13 1 8 3 10 29 0 2 9 8 14 12 0 0 2 6 0 3 0 3 10 37 8 0 4 15 3 13 4 7 4 8 17 0 11 9 6 1 5 11 2 7 13 9 0 10 9 3 5 0 24 31 19 2 5 20 3 0 0 17 8 1 4 3 2 2 1 4 3 13 18 11 13 5 1 7 4 14 18 1 3 3 13 25 35 17 0 0 8 0 2 5 6 4 8 4 18 0 14 1 0 0 0 0 0 4 0 3 14 2 5 0 1 8 3 5 "323" 9 9 6 1 10 0 0 1 0 5 4 3 1 0 1 10 6 8 0 4 3 8 0 11 6 0 15 6 13 14 1 0 1 9 2 39 0 0 0 3 0 2 0 1 14 20 17 0 1 1 4 3 7 8 4 8 5 0 4 2 8 1 4 5 2 3 5 3 0 16 8 14 4 0 5 12 14 1 5 4 0 2 3 16 6 1 8 4 3 1 1 1 0 6 9 15 10 6 1 4 3 9 24 1 4 2 3 0 16 5 7 0 7 0 2 6 0 0 8 1 8 2 5 1 0 0 0 0 0 0 2 2 8 0 0 2 0 5 0 3 "324" 9 2 5 4 6 0 1 0 0 1 1 0 1 1 0 5 2 4 1 2 0 2 0 8 3 0 0 3 3 5 1 0 4 2 15 26 0 0 0 1 0 5 4 0 2 11 2 0 0 2 2 3 0 4 1 4 5 0 3 0 6 3 2 2 2 2 5 16 1 3 6 3 5 1 1 16 9 0 0 4 1 0 7 7 6 0 6 4 4 0 2 1 0 3 5 19 2 5 1 4 2 17 17 0 2 2 1 3 2 6 2 0 8 0 0 3 0 0 2 0 6 0 4 1 0 0 1 0 0 1 1 7 4 2 4 0 0 4 1 8 "325" 5 1 2 2 1 0 1 0 0 0 7 0 0 3 0 1 1 1 0 0 0 2 0 2 3 0 2 0 3 16 0 0 2 2 1 8 0 0 0 0 0 1 0 1 3 2 1 0 0 0 2 4 0 3 2 11 5 0 1 0 6 0 0 0 0 3 17 2 0 3 1 2 1 0 1 4 1 0 4 3 0 2 0 3 3 0 1 0 1 0 0 0 0 2 2 8 0 2 1 0 0 4 14 0 0 1 0 8 2 6 1 1 3 0 0 3 0 0 0 0 6 0 2 1 0 0 0 0 0 1 0 0 7 1 3 0 0 3 1 1 "326" 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2 1 0 0 0 0 1 0 1 0 0 6 0 1 0 1 1 4 1 0 0 0 0 0 0 0 1 2 1 0 1 0 0 0 0 0 0 0 1 0 3 0 1 0 1 0 0 0 1 0 0 4 1 0 1 1 0 3 2 0 1 1 1 0 0 4 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 1 0 3 1 0 0 0 0 2 0 3 1 0 0 0 1 2 0 0 1 0 4 0 0 0 0 0 0 0 0 0 2 1 0 0 2 0 0 1 0 2 "327" 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 14 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "328" 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "329" 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "330" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "331" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "332" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "333" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "334" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 "335" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "336" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "337" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "338" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "339" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "340" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "341" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "342" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "343" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "344" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "345" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "346" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "347" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "348" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "349" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "350" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "351" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "352" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "353" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "354" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "355" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "356" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "357" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "358" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "359" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "360" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "361" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "362" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "363" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "364" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "365" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "366" 2 0 0 1 0 0 1 0 0 2 0 3 0 0 0 0 0 0 2 0 1 1 0 0 0 1 0 2 0 2 0 0 1 0 6 1 0 0 0 0 0 0 0 0 2 4 7 0 0 1 0 2 0 0 0 0 1 0 2 1 1 0 0 1 0 1 0 4 0 0 0 0 2 0 1 6 6 0 0 1 0 0 0 6 0 0 1 0 2 0 0 0 1 0 3 2 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 "367" 3 2 0 0 1 0 0 0 0 1 0 2 0 1 0 9 0 1 2 2 2 2 0 0 1 1 0 1 3 47 0 0 1 1 4 2 4 0 0 0 2 1 2 1 1 9 4 0 0 2 1 14 0 0 0 1 1 0 13 2 12 0 3 1 4 1 4 3 0 2 0 3 12 0 1 15 13 0 0 3 0 2 1 19 1 0 0 1 1 0 0 0 1 0 0 4 0 3 0 3 0 2 0 2 0 0 0 0 2 1 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 8 0 0 2 0 0 "368" 5 8 0 2 6 3 1 4 0 4 4 0 0 0 0 28 7 6 12 5 1 4 0 1 1 1 0 7 9 58 0 0 0 1 3 5 1 0 0 9 0 4 5 3 4 7 34 0 1 6 1 27 0 1 0 9 11 0 22 15 5 2 7 1 2 2 6 6 2 2 3 12 21 0 1 17 27 0 0 19 0 3 3 22 1 0 0 1 1 0 0 0 1 2 7 8 1 6 0 7 0 4 4 1 1 1 1 2 6 0 2 0 1 0 0 2 1 0 0 4 5 0 1 0 0 0 0 0 2 0 0 2 0 1 1 1 0 2 0 2 "369" 10 2 0 2 6 1 3 5 0 7 8 5 0 0 0 13 5 1 14 8 4 4 0 4 2 1 4 7 7 76 0 0 2 0 2 5 1 1 0 10 2 4 10 7 2 21 40 1 0 2 0 28 2 1 4 8 7 0 16 9 6 1 8 0 3 8 13 17 4 11 4 23 31 0 4 29 23 1 1 11 0 1 3 28 2 0 0 4 0 2 0 2 4 4 12 5 0 7 1 9 1 10 11 0 0 0 1 0 8 7 1 1 5 0 0 1 1 0 2 0 6 0 0 0 2 0 0 0 0 0 0 1 0 1 3 0 0 2 0 1 "370" 6 8 5 4 1 1 0 1 0 6 5 6 0 0 0 4 11 4 19 5 6 5 0 3 0 5 0 9 8 28 1 0 2 2 2 4 1 1 1 5 0 0 2 6 10 25 7 0 3 3 1 12 1 2 0 2 6 1 28 11 11 0 3 0 4 3 5 11 1 8 3 8 6 2 0 20 48 1 4 6 2 2 1 8 2 0 0 1 0 5 1 2 1 8 12 15 6 4 1 2 9 7 1 2 0 1 0 0 9 7 1 0 2 0 2 2 0 1 2 2 2 0 2 0 0 0 0 0 0 0 1 10 3 1 1 0 1 2 1 3 "371" 16 9 8 10 4 0 0 3 0 6 10 4 0 0 2 5 1 4 9 6 8 6 0 1 4 0 2 6 4 69 0 3 1 3 10 9 3 0 0 2 0 0 1 4 6 10 9 0 4 3 0 4 4 0 4 2 5 0 24 14 11 2 8 0 13 3 5 0 1 3 3 12 10 1 19 12 35 1 5 8 0 1 0 9 4 0 0 8 0 0 4 5 1 9 11 12 5 3 1 7 6 2 7 2 2 3 0 0 11 8 4 0 0 0 6 0 0 0 6 3 9 0 0 0 0 0 0 0 0 0 0 0 8 2 0 0 5 3 0 0 "372" 14 7 5 2 4 1 10 2 0 4 6 5 3 0 15 9 7 0 17 9 2 6 0 11 4 1 0 3 13 46 0 1 2 1 8 3 1 0 1 7 0 0 2 4 4 6 10 0 3 2 0 11 0 0 4 3 2 0 13 9 2 2 6 0 5 9 8 10 2 9 1 1 7 0 17 10 31 3 5 18 1 2 0 5 2 0 0 2 5 2 3 4 2 3 17 7 3 3 10 11 1 3 10 1 0 6 0 1 7 6 2 0 11 3 4 1 0 1 4 1 12 1 6 0 0 0 0 1 2 1 0 1 1 1 3 0 3 2 0 0 "373" 16 7 10 7 6 0 1 2 0 1 2 3 2 2 8 11 2 1 19 3 1 9 0 7 6 1 3 5 10 93 1 2 0 5 6 3 1 1 2 13 1 1 1 3 7 31 5 1 2 3 1 6 1 7 3 11 0 1 15 14 3 12 4 2 6 11 13 6 0 3 0 6 12 3 20 17 37 3 1 13 3 5 0 5 4 0 4 5 2 3 4 4 2 4 13 12 19 0 4 4 1 15 8 0 4 5 1 2 10 2 1 0 1 0 5 11 0 2 1 2 20 3 2 1 0 0 1 0 0 0 0 3 3 1 4 0 3 6 0 1 "374" 12 1 3 2 10 0 0 0 0 2 2 4 0 1 1 5 2 2 4 7 4 4 0 6 1 1 1 1 5 42 0 6 1 1 18 1 1 0 0 13 2 6 0 2 4 18 6 0 5 2 3 2 0 5 1 6 2 0 9 1 1 1 3 0 4 3 8 11 3 10 0 3 3 0 2 3 8 4 2 9 1 2 1 6 5 0 0 5 0 0 1 3 1 1 9 10 6 3 3 4 9 5 20 0 2 2 2 2 7 8 1 0 2 0 4 3 0 3 4 3 11 2 1 0 0 0 0 1 6 1 2 6 4 1 5 0 3 10 0 0 "375" 2 2 2 2 6 0 3 1 0 0 2 1 0 1 0 2 0 3 1 3 3 4 0 5 0 1 3 0 4 31 0 9 1 0 2 8 1 1 5 8 0 0 1 2 6 14 8 0 1 0 0 2 0 0 2 5 2 0 8 2 6 0 5 1 3 4 0 1 0 2 1 0 1 2 16 19 16 1 6 9 4 0 0 5 0 0 3 1 0 0 0 0 0 1 14 4 3 1 1 1 4 14 5 0 0 5 2 4 4 4 1 0 3 0 5 0 6 4 3 3 13 0 5 0 1 0 0 0 1 0 0 1 1 0 3 0 0 1 2 1 "376" 6 1 7 7 1 0 2 0 0 1 2 2 1 1 0 2 1 2 0 1 0 2 0 2 2 0 3 1 4 21 0 1 1 2 3 2 0 0 4 1 0 1 3 0 1 8 8 0 0 1 0 0 0 0 1 2 1 0 2 0 3 2 1 2 1 0 2 9 0 0 0 1 1 0 4 5 7 0 0 5 2 2 0 3 0 0 0 1 0 1 0 0 0 0 4 1 2 2 1 4 5 2 1 0 0 0 1 0 1 5 1 0 1 0 0 1 0 1 1 0 4 0 3 0 1 0 0 0 0 1 0 1 0 0 4 0 0 1 0 0 "377" 4 0 1 3 2 0 0 0 0 1 1 1 0 0 0 0 0 1 2 2 1 0 0 0 1 0 1 0 1 4 0 0 0 2 0 0 0 0 1 2 0 0 0 0 2 1 3 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 1 3 0 1 0 0 0 0 2 9 4 0 3 1 2 1 0 2 0 0 1 0 0 1 0 0 0 0 3 0 0 0 0 1 0 0 4 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0 0 1 6 0 0 0 6 0 1 0 0 0 2 0 1 0 2 0 0 1 0 0 "378" 3 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 2 0 2 0 0 0 0 1 0 0 1 1 0 5 1 1 0 2 0 1 0 0 1 0 0 0 1 0 0 1 3 0 0 0 0 1 0 0 0 3 0 0 0 0 0 1 0 0 0 1 2 3 1 0 0 0 1 1 3 3 2 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 2 0 2 1 0 0 1 0 0 1 2 0 0 2 0 0 0 0 1 0 1 6 0 2 0 0 0 1 1 0 0 0 2 1 0 0 0 0 6 0 0 "379" 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 4 1 0 0 0 0 0 0 0 0 3 0 0 0 1 0 3 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 0 1 1 0 "380" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 1 5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 5 0 0 1 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 "381" 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "382" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "383" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "384" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "385" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "386" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "387" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "388" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "389" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "390" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "391" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "392" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "393" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "394" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "395" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "396" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "397" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "398" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "399" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "400" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 "401" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "402" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "403" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "404" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "405" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "406" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "407" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "408" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "409" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "410" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "411" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "412" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "413" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 3 0 0 0 0 0 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "414" 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 5 1 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 1 0 0 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 "415" 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 37 1 0 0 1 0 0 0 0 0 0 2 1 1 1 0 4 3 0 0 0 0 2 1 0 1 0 1 0 2 3 0 0 0 1 2 3 0 2 0 0 0 0 1 0 0 2 5 0 0 6 0 0 0 6 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "416" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 15 0 0 0 1 0 0 0 0 0 2 0 0 3 1 0 2 5 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 4 0 0 1 2 0 0 0 0 0 0 4 1 0 0 0 1 0 0 0 1 0 3 1 0 0 0 5 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 surveillance/README.md0000644000176200001440000001525114712407636014243 0ustar liggesusers# surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena The open-source [R](https://www.R-project.org/) package **surveillance** implements statistical methods for the *modeling* and *monitoring* of epidemic phenomena based on (infectious disease) surveillance data. This includes time series of counts, proportions and categorical data as well as spatio-temporal point processes. Potential users are biostatisticians, epidemiologists and others working in, e.g., applied infectious disease epidemiology. However, applications could just as well originate from environmetrics, reliability engineering, econometrics or the social sciences. ## Prospective outbreak detection [Salmon et al. (2016)](https://doi.org/10.18637/jss.v070.i10) provide an overall guide to the monitoring capabilities of **surveillance**. The paper is available as [`vignette("monitoringCounts")`](https://CRAN.R-project.org/package=surveillance/vignettes/monitoringCounts.pdf) with the package. Further descriptions can be found in a book chapter by Höhle and Mazick (2010, [preprint](https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf)), and -- slightly outdated -- [Höhle (2007)](https://doi.org/10.1007/s00180-007-0074-8) or [`vignette("surveillance")`](https://CRAN.R-project.org/package=surveillance/vignettes/surveillance.pdf). - Aberration detection in *count data time series*, e.g., `farringtonFlexible()`. - Online change-point detection in *categorical time series*, e.g., `categoricalCUSUM()`.\ A Markov Chain approximation for computing the run-length distribution of the proposed likelihood ratio CUSUMs is available as function `LRCUSUM.runlength()`. See the [online reference index](https://surveillance.R-forge.R-project.org/pkgdown/reference/index.html#prospective-outbreak-detection) for the complete list of algorithms. ## Modeling reporting delays - Backprojection methods: `backprojNP()` - Adjusting for occurred-but-not-yet-reported events: `nowcast()`, `bodaDelay()` ## Endemic-epidemic modeling [Meyer et al. (2017)](https://doi.org/10.18637/jss.v077.i11) provide a guide to the spatio-temporal modeling capabilities of **surveillance**. These so-called *endemic-epidemic* models have proven useful in a wide range of applications, also beyond epidemiology. A list of corresponding publications is maintained at . ### `twinstim()` - models a *spatio-temporal point pattern* of infective events - is described in [`vignette("twinstim")`](https://CRAN.R-project.org/package=surveillance/vignettes/twinstim.pdf) - needs data of class `"epidataCS"`, which holds the observed events (with covariates) and exogenous covariates on a space-time grid (for the endemic/background component) - features a model-based `epitest()` for space-time interaction ### `twinSIR()` - models the susceptible-infectious-recovered *(SIR) event history of a fixed population* - is described in [`vignette("twinSIR")`](https://CRAN.R-project.org/package=surveillance/vignettes/twinSIR.pdf) - needs data of class `"epidata"` ### `hhh4()` - models a (multivariate) *time series of infectious disease counts* - is described in [`vignette("hhh4_spacetime")`](https://CRAN.R-project.org/package=surveillance/vignettes/hhh4_spacetime.pdf) for areal time series, and more generally in [`vignette("hhh4")`](https://CRAN.R-project.org/package=surveillance/vignettes/hhh4.pdf), including the univariate case - needs data of class `"sts"` (see below) ## Data class `"sts"` The S4 class `"sts"` (surveillance time series), created via `sts()` or `linelist2sts()`, represents (multivariate) time series of counts. For areal time series, the class can also capture population fractions, a map, and a weight matrix. For evaluation purposes, the package contains several datasets derived from the [SurvStat@RKI](https://survstat.rki.de/) database maintained by the Robert Koch Institute in Germany. See the [online reference index](https://surveillance.R-forge.R-project.org/pkgdown/reference/index.html#datasets) for the complete list of datasets. ## Installation The stable release version of **surveillance** is hosted on the Comprehensive R Archive Network (CRAN) at and can be installed via ```R install.packages("surveillance") ``` The development version of **surveillance** is hosted on R-Forge at in a Subversion (SVN) repository. It can be installed via ```R install.packages("surveillance", repos = "https://R-Forge.R-project.org") ``` Alternatively, a development build can be installed from the [R-universe](https://r-forge.r-universe.dev/surveillance) mirror of R-Forge. ## Feedback Contributions are welcome! Please report bugs via e-mail to `maintainer("surveillance")`. Note that (large) new features are unlikely to be included in **surveillance**. Some extensions have already been developed in separate packages, for example [**hhh4contacts**](https://CRAN.R-project.org/package=hhh4contacts), [**HIDDA.forecasting**](https://hidda.github.io/forecasting/), [**hhh4addon**](https://github.com/jbracher/hhh4addon), and [**hhh4ZI**](https://github.com/Junyi-L/hhh4ZI). ## Funding The authors acknowledge financial support from the following institutions: - [German Research Foundation](https://www.dfg.de/en/) (DFG, 2024--2027, #528691398) - [FAU Interdisciplinary Center for Clinical Research](https://www.izkf.med.fau.de/en/) (IZKF, 2018--2021, junior project J75) - [Swedish Research Council](https://www.vr.se/english.html) (VR, 2016--2019, #2015-05182) - [Swiss National Science Foundation](https://www.snf.ch/en/) (SNSF, 2007--2010 and 2012--2015, projects [#116776](https://data.snf.ch/grants/grant/116776), [#124429](https://data.snf.ch/grants/grant/124429), and [#137919](https://data.snf.ch/grants/grant/137919)) - [Munich Center of Health Sciences](https://www.en.mc-health.uni-muenchen.de/) (MC-Health, 2007--2010) - [German Research Foundation](https://www.dfg.de/en/) (DFG, 2003--2006) ## License The **surveillance** package is free and open-source software, and you are welcome to redistribute it under the terms of the [GNU General Public License, version 2](https://www.gnu.org/licenses/gpl-2.0.html). This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. surveillance/build/0000755000176200001440000000000014712411606014047 5ustar liggesuserssurveillance/build/vignette.rds0000644000176200001440000000127514712411606016413 0ustar liggesusers‹•TKoÛ0 v7I»Šu?€·m‡æ´SnÃú@ÑÚ ÛNƒb3¶Yò$¹i{ÚßÞeåHv^¶ƒm‘’È?úÛaE(Ž÷¢N—–Ýczõè9¢§ÅÑ}2¡ådx#çÞ1Èóüý’}d*}‡\&\ò¿rç~˜’%hy±¼óºP’[¥¹Ì>ªJZ³´÷Ìι¼½¼Yr=w.C1jß*ºïLdjXCA RfhÌ4Õ„$gÚ¨ ¥›#d(Q3Á1Ág(x®T šY®ÀXúP²Ä'¸rUŒàƒ”)<9Á’× (TŠB¸¨SÍ œ+=ƒ©ÒÀåŠUH¹Af’ºLòÍZë®Q.m ÄœÛTe'Ù R´õué_;ð–ˆ$ç‰Å¢T„þÝζrÕÅ‹¼à胚c€ðeÜt`ó 7Tòu͉l!¹­²šJ–S|‚½Ü|ü«oá.eÊïxZ1q"ðlBu„1˜ò{â¡Te%kJfRÍ¥ãкèûmÃŽ®l6e>ÊÅ©jrZÔÒl×|™NW4ßÚ«šoýëšow65ßî5šo]­æo]ßO¤7{‹yôÖËÕi x×g1àÝœÄ@A3‡ÞqØN!YÇ5ž®È;ûMôÆÌj~¿vc°ãFŸ”@cÌnfD@’(¡t]LÓ/ÍÓ³{«YHg&Åô§L–BÙÍ‘‘(iYbCç»»°g¬&‹Ç×ã¨xð³bi©UæÏövœ~¿î˜Ft¥‰àe(£ÀBÑe Ûò߸C¯=y_Òäfîøœ‹zÿ3·Ñýtzî—{A,ýS,i2gƒ+| I${5ÑVóaHöÂÿ‹^OOO¿×%‚™€(8ÝŸ~X9Yþ„ÙÅ­Îsurveillance/build/partial.rdb0000644000176200001440000002254014712411544016200 0ustar liggesusers‹í}KsI’&ø~èA‰z«ô‘’ ”@ð!‰T±Š’HŠ,Q%V©AUuu5ºkÈ‘ÅD&:¤XÕôìÎÌiîs³±±ý;f{Y›±>ím¯³a/m½÷© Ïô‰LŠ‘‘€´»-³Ôç‚î/oG3™Lo¦¿¿'ÓÛäïs¦ð,~îaxÊÃþÌí¦ÒºVÑœL¦¿—ûa° ~ï(;Œâ“÷³^X §´­²E+,£ðÉÏ$3„8†ôX识Ø_U4ÂK3þ¿?…’ô­åPþ_¿Ú˜~J7L²©jF˜ÙL(݈£Õ¨í(µ:{÷IøaåßþËÇÿ½ø?ß„”uŶñm½Ã/¿ÚÞü¶ì¥ö>²ZËü{˜(–¡Ôhˆ•§VŸ)°ÿ>YûBÝÖg %WÓÕùù{êü½Å9¥¢Ì•fl×Ú£š®+F™ÎÔc¦Ñ>ù‚ʨw_ e1+š…Ï~P„áŸCïã).I£õùõ„S ý {‰Jðœj"¤ëcéú>j¶-RÝ3ÃGÿ«õo_ŰqšC|°q”NÖÎV³[µ°­=Œx éDµ™ë`QÑ5ÅŽÉ·‘«–n· d?Î!>)µJ¿ª8Š G WGO }"µ.ªfùÕA=ª£ôa3žDúd÷›²ãŸ„M2(ËN?vŠñ‘¬•áõ×ÌHè”r3€í2€œô$æ&J^‡}Ͱ™ ‹Ó±…µ¯ž®Ç°5†xéó© í@‘ß(‰…ìF/ }AºmN Í!Ó"N5Q]D¼‰ôÍÔhÐWóIšç.â,Ò³Ýiž[ˆsHÏI7Ï yÊ´ªh7æ‘^LÑÎ9š£GÕA¿ßŠaO¤ÛJ5°uâ“P,GdÙwý$‡øHÖJ/!‚|p*”÷HRê­§Áüg'®ÙÄ”hÇö+ÛÃKH_ê|Ç…ìú/#}9…Ž«ÙDIÒD!¤‰T%±|‡q7xéû)6®»1Ù~ŒøéÝ‘‹ˆ H/HËÅ©±ìtQL,".#½,ÍÌ)BXOu¨J3‰ýñ…ËÒ§R×Ãý€Ãx»Š8ôDç…½2'‘žì¼°zñ&ÒÉ<±Va¥žVøíâ]¤ï¦VÇ‹*µË–Vw4Óˆ1· ˆ£™÷ê„ø³‡M”sBÒ·¶Ç2¾6¼ˆôÅ}D×Vv¢$õ6 à%¤Yy¹æì/sˆOÂæ9&ËÎqì.â#Y+çQ b–~ e‡˜âÍÃAÖN`#žCú\âšê ×Ô„¨à^áŸ.Í VK“ˆw¾Óysxñ.Ò‰Tm ’ãŸN›=ÀóˆÓHOw_™æ9ÄG’)º®£hóÏ*–Yó<´Š©ë&ÑRVt¸6‚ìró™)¤§RëAÇ=Óä[&a«,Í"~Šô§—#ÈîâgH&Ý€½K¢‚ù/#>Bú‘4}„ˆ22†bÈM•w}ÎâT¦1ªHa΢ÿÈÝ_@Ð ÑÐós’¥†JkZ™,EU·©b›Æ|Å´j®®d2+›:YÝÜÉÖͺJ [s¦¦È]2Jؿͬí(–3soá™&÷ò¦rd›½i.çÿ^§–fªì – G`YvO±ØÇ ïÏ&¦0ë?9uÊ^Ï|´«Ž¿ÛšRa¿äw×f„‘ þz5ûÑï×9b»%Æ1ûâ†fç %ë¿(Hl2ç¼–W¬›¥Ð5ÛÉ–MñL=øhQÝñ>Ù¿³œl~K)W™ž»©šnI§yZ·§¦‚wyãe–rcåÅözŽ”ÝÚÚæFð9NÁÈ4`ŒêØ£VIè1"‚Ø@|RRqCE*ʼnñ1¡ÿœÍH Œú{¹_Ž©†ÂjC÷v6žâ`Õt{|€rã§1YvÀóåy½lÖj¦AjÔ©šªí­Ä²v«ý|& =lÎG'&ìCWo!}«óÆü<÷Ün¢ô\fÛ9Q¹Ì?Î4éÙP’¾bÙj-a¸tÞ¶°ÿŽÓ¡DEfH"ø %RéïŒVN"™>VôVÁÊþF´Fò3ÍäbÐ}˜ògCYîO.ò'CE³Êáx$×U_ð‚DçZßÿþIf^Õ–?h«[ÓÐZ%çÐ÷ñ¨cðÇ"•L]mOQ Z…ê6ÿ¾óm\nß÷—Q¢#ô>Û±ÌùÏ:ê­-IFYpkÔRZ„ëTĈ٘˜y…u¾†;o+‰Ú:*ó|\>»±6@½¿qL÷ë»åoÍe’ªÆËÆdÛ[öëo &²ª™ÆxùÐîy¢hѸNj7Åeífeâkº±M‘¯æH!,êªéð ¥b¡ au0óÆÐ>ÖXYåiND?а®¥gZ´D„þg­É7gTK0ØVÔpO»×ÓBõÁÌ’«·H\-*ÖëDFKÖc‘5]§µ ±ZˆµH–5Eo-s[GÙ{gÅùîû¡7T,¨_Õ[ø=„·þ¢Zá[þX„5Ë5áíD±ÎÔ¾·äïPõ„ xÂ=&ª¯Õ_¸æ‘®qìæ}¸ŽŽqP{GæƒÌµ™¢CÚ–uŒšöc„ÎHÛðsßÉmo±pˆðm/äA”ø… ?jÁaž³C‡Tw”Ÿ„Û;ÞáÂ@Íp‰Æ£³6]«|”ö(*¥R„–IŒ[esWFYWaÉìVÝUCƒEZS4=:óp¡Kj·—(¤ya:|û~–"®ÿÓæ'"^6R´ ³nk!Ÿ9T†múºÎWàHÄ«úŠ-–6l¯XEÔ«G¨‡þâné0UpŒYÐ eV´LßUUL5ƹ‡> ä¯Æ°w¦XWÊ»Ìì>åí_oÅ¥˜áa«ëÜ*LLgh†††”ÿ£§~ÅÿÚ¢¶«;ö²¥æl‡e½ìòøÍÇ4u{ii© ~L}ÏYåìÄäÜÄÔÛˆñá5ŸY+HWšãC~Üß ´ÍÂpWÃ?füï‡ Cð2zVþí¿þ ¾o :Je$œÁí×¶fìªbÑ™B€êŒ?±l¦<ñQFÃý!DE‰è;/ ‰„¨Nr§MdZÄ~ûþe!;9)Ü,oé·'Ó²ô«y²"Æâ¾P^Ño¹‚^L^Ð[8¤z —¯ß¾¯êÍ?‡·oß¾ñ‰ˆ2Îb¹—^J­ŒÃÅ’Vò­4š³wr.¢ËÈ6à%¤/%)BÈÔ-s‡ÉüN:¼G¶‹¿vìÊ›É9h$öDñ¸)l¾¨ÉZ¨½uüIçZ‡ë8)¶Noq³“L‚Œâü/?M™éáâZaåKo žë Þ,Ñ›ªãÔí¥™xw¾0ͤŽˆåMkgÍà2¬70AàÉYDqDZˆ€[Ho¥"bÌ/µ4-w9ªýÄz‰*¿ßm6ÓPsÉU[ÄôÖð+ì”F«>÷r¼‘[¼¬È~‡ôw²õp¤éȱ ~6 UóÔ4jè‰x i~þñutëð·Hÿ653Øô’×·× ›/_m~õe:u‘À'æxˆ¯±#|â„ ðdP+8™—F<¯.1¾ô7°Ä€E¤‹©èÃþ¢jjé”{ú¾-Ë,¾”ÓX2À'H?‘nãñ ·Íð6›¤ÔÎkâí\k°_ Á:5 Š´šºv ¡»õDM•¼Ä©’4Úä¼÷Ê_Ûõ¥É¹iソ‰ñb{±jçžëà ûïÞý×´Òd?OŸÇà\­øñ÷-±ÑC傊eáùO=hìpÝ¢uÅò¦Þ=1züÇLð±ä ž í€8w × ÞpÊèmLZûjkký˨=ÜqðK® 2Y3æÚ{Éûãïÿwv(­^ò"Qƒð_L£æþ°û‰|<Ýóâ´ôþ‘ N «·È—¦C¨³D4ƒÈ|~n>?K¦ÉýülþAŽbú–T•&¡• „ɾ,LÎ=œ]¼7%.´¼R_EzUº(‰bá®qˆO·ÙàÃÐrÝ9‘‘³ø>,öâ)¤O%á)2W~ëPdÖ=ˆ§‘>ÝýVìÇ9Ä'¥V9¥½â8Œ‰d Û†/#}9µ6Š /ÎGä妺Ý>ýC!€>€ög8ÓœKNZQ‘¹ÆGŒEè¨B·(8¡ >)5ÐñV[-Ô0CØ€g>Ó…† ¢ÒFœ¶îVÃ@öç8Ä'¥†zGg9$¸å(â)¤O¥Ö&‡EçCâ¾G{Ùs˜ÜÞH±1‚5 œ3Ò/Ó{ ªxñ"ÒS“Ü™k £—¾$Ý<½K$Aé/#~„trë ÙdŽÞª#_o¯¶VÖ _Åî âÒ ¢…kšxs)¡äáå—¶fyþŠÖꦥèÞiãí:ó ÍéÆw[Œ‚mÀ[¦¡9¦Í Y¢+½¬RìQCIм‹\ ,&©CLS\Ôö PjO¦%ZüÑk>|ÖA^#K9ħۊ‘Y*¯OȲûéNrˆd­ òJ<tÐÜüLÅ`âªÉÄäîíÈŒÌ{1ð醥ëa„ †HR#ˆ§3˜ÌÝtzáìâÒ7›€ã™fhÔñLKLƒ„Í“%ðö‰f¨Ív´2SÍ|-§J“Äð B |ôÒÜ>'Ä¢ŽeÂ&tGÛ£~4»À€Ô[~àI#T_=0&IBIö >Gú¹tyrf ÞDÚ¾‰l|‘þ`‡’pØð1ä0‡tNšãuB6̲kÃ} ¦A²–é:šAõƨ®³Ê§ê©»%Uv•*ºS%|Oóâ G@9…ì®#½.]”UBJ®ã… „ý×vˆb“}ª³Ö¨×Y±ÓÕè…Œ¥Æžf™Knieñèeܘ(ÅÉÚMB(“¹"xùmÂ9 b—5ogrž¬Ø¤¦Ð¼27{_´8ãXÀM¤7Óh ä‰I¯Xçf¥°IùÒçÙÔ̓œWžÀÌhÂåà¶—¥Ø,OãWPº§H·×œƒF! Ã³ß5¥¤yßSc‡u& "Üß¹i¨½’Vé]×Ñ0ƒ…³ä>ÿk¯p¤]È¿±é>i>„}J~uIÞÅÝ’e<”QCá6“+žW|Çk:žžqê^Ïe¢dQe—¨ÔñóùYuÙ™Y‡r5ID¬`[azЇ9Lõo³ŽéÖ ev@Ï“ìÜ'?™Ê‘ Å‚Né0Þ›¿|²À~)˜¶­ñ_²äI"'á¦Ü‹û„1·C-›1 ŠæWJMQ’ŸcŒ+dU9 ”,e*å*É>ä<ˆ¸xéû‰å:k«³žù½§þðÏ øZBüé¥$|e¢½¦èøx„ø8Ó‰\zÈàMŽÌõâ¤KËÕñªNs„IÑ¢¸¤'+ˆ/+ùaÁMB º£xŽIcž8>k_o½Õðì„%›ß²ËmP{ï’ üÜA¼‹ô÷(ÙÀGq&ãoeÌw\²!·[ˆ³HÏHËÑU&ÙþT¤ò£VÞõ„´?|%¼Š‚ ÈÅæ–˜>ŒŒË½o)õ¼¢ï˜ Ø»‰˜C:ÑìLd®±J!»kˆÓHO§˜mL„RÈî"béDF¢µÇ ‘!ÿÄY¤g¥ùØ dFúžÇј1m™Ž,Wc‡N×MÍp¸qf4üaWê 5àÒÒeY!¤DeºáFA_¬¹º|†ëPX´46vS,V2sZÌîÆH´בuÀ¤W¤‹1IBFÑ ŠÕ˜-N¤P2L6ÿ~hìö²âÐÓ‚‘³'O ¸œE|Œt"ë ¦W »;ˆO~Òy½ÙÝD\AZ^xÄõ 俊¸†´¼%|ó+šÍ´DYwUjã央hÐãÊf­®X ïW-EÕéÁô+jYÍE‘ „[l¬Ù¸òÜ@ùLoBbÐ[íõF'0ÿ‰LK¢éy£ÀÏqÄHÞ覄†1ÿs‡½QÈmqiù-_“0ËÎÏÎÍ2ç™S”xf”&ßž^é ¬hÀÈl²A ÿk!YAF8Ûu\Jvä¤_e¬Æ’X‘ILxéDNŬd7Šx ék·"]?âu¤¯K‹Æí©¦þ%¥²íP8Ù:U,li€G‚¸Ž´üRè“Ö™|XžR4ÃfnÒøPÄ¢Š>½oZºJ‚°»þ¢.\% ŒjrkU-¥xF`-¸;‚[w€5g²§Ù®çzŒãö¼ˆÅPMØ…åû>Cú™tiÖIcc@Îßk)VÛŠbWÙX"O6 &pŠgø÷5§êyê¢E¹ìßΤ¹Òþ9 F ~Sx7¯º†ªÀj+‚·Àn;–[v\6¤À6i.èz·ï‹†?Aÿ9ÒŸKf˜$»ø9‹r¥SÖû}¶pDl`è"wmW§•=d7†ÈÝ8ÕieÙ ^Bú’´P̘ª{ÛJLÖ÷ï–‚¯X•ÃFÔ¢’ Ì^F|†´¼†É{×RReyjf.¼±þWÀ/Ü`_ØRM¡Œæ‘–ŸóyDÈ «É2Sfö4º( eOÑt¥¤·¨sn©Y|g“äÒ‰fx[ÊpƒmžW è5nQ™¹¼ âNÁ]d ºI²)¼Ë€Ûe–IoÈ ì8³Ðhó{ÿCÑlÍnÙàg×™ÉW[v‰cYLoFêS¢¸ÇØsfQJð ãéïq{Åb–‘¹[»¶gÉE Àõ6o¤'ÓrM[òvðÎ.xZ"p¦<5—ã4caúËfèƒ"ZŒd}&Õvó]]æ~øS°‚LÍ"#€cH¥nÅû«Õêýœ]A¼Žt¢QŒ˜‡ìÎgš“Žç3-×'vÊŒÏbBÀHË«¼ ¦K˜øÚM)–Ý üM ®!-?3¸IH–7ÔSlÈæÂCnrÞÓ&žr|FÙ¸­iafá¾sX^c߉gEpéÍ4noÞ@yxŒƒM„ýJÞ‡`eÐûv—æ·èW'p«æ±€é ÜÎ&ã÷§òd[|­á2üPòìé=mÇ ŽC³ g&¦â:_ÜÝFÀÖeÄ)¤§:ßç!»³ˆwN´õ¥õ>;¯k+ÁzëúŽw}XQÎî"n -¿&—ìªNnçF óæaºÜ*Cß{!&AýˆK0xñ6Ò·;/MÝâÇH,ÝVçQšTÍ.»6ÄcO¢˜€§,â2ÒËÒ¼]&DÓu×v¼A˜†`^I¿(OÁæBÜš’læýÄJ°rñ&Ò‰öë‰Id÷b°!í–tK õö™`Ì#-?è^'̈é•iúº¬9Þ ÚÛÇ€G2p#€Ç1Uapcº;Õ¶áhQP®Ó›Šœ$0»­zÁí}eO Ž^ñ:çùJn à¿\þ!æ Ø‹toêC“!¸’y{³€¹1ÄsH'Š”!6:ìFÏ#}¾óZ²ëC¼€t²Ígü¯}â[9‹ˆ—‘N®¨AªÒY<~â ¤I¾RZ<>n"‚ŸÌ¤i=âÏ!·ogÒ2çƒýùŸLƒÀWàécÄÏ?ùI¤eBl׆ Û´’N§a˜ Z×µ§-ì$Ë2í2EèLñV5Û1-ïÌ¢"|ì_4<\FZÞ‹bE¨h¯Ÿu³ŽS[ÞÆœ\c’ÙCˆ:j“ŠbÕ¼ó˜ÌSö¦ó>-²½”jI’ pÜTbgš ´0â# àìâu¤¯w^ÛCvCˆi’ÖHÂhñÙ…àéâÒ ïÁ9áï èœs2 ¢c³ahîÆÏ#¦›ã@v#ˆNså5F^!»>Ä‹H'Zym©û9’õ'âü™F°@sóSpí½Ý¶gÁ?ˆŠrp} à&ÒòsHãhy`,Í`|—Z†7‡Š–jú†)Ø‹)ZN‡§¸ ¸A¼™ßiÛQjuf™v¨Éì)Î`«íˆ·õ<0½0WA[ØCàøOqú8!f¹ìZïŸ&±S‘Àq¤ÇS³Sg[í(qCõÅ0‡tš§?b:>dwqéD§?:`¨€§<âÒò %‡lhœW§^Ô•2ö–O"VaEËò¥îIª=c‰xÝËvH56ð:Ø[‚XßOÀ­¶FÝH&)žÜ½’m9'µVÓÙB ¼“²ïåŸn³±†5`:µñìÖ-âßþFÀ»ÿÔ;‹Ä Á¡Ôàä‰~@èkÖ“!œù: wm ñ¶G–æhåO±€é-¸ ×+d¿É!> -Ä1Yv`vs„C|ºî£sªJÒGçÍoiåªBuò̤ÞÌÄ6-)Ìl2ƒáéªÁŠ·²{8ÏòmQú9ħÛ"¸…õ`:]û!Í;–Â5-*_"_€×¾–š#uʦ¥| øzRQܼ*:e\ÝFä–=R2Rk’#󽎸€´üˆZX€ ûEñéºÒø 0=¥ñüVûVoøqÌ[Bn±a 3Tòh™ÜÏßËÏ“]ÃÜ·‰R2]-œý¤ n¥ (}ˆ/–Ü ÜÂý‡ø¤$àCEo€‹´GÐŒ/3º R¤Áö%JY€ïÉ1û–)Àt´÷2sÌž¶»`~´8­ä:LžÓôÆ È9`z“Ë• Ù?âI6î³Êô‚‚z°°Þ`¼>óêÙÊ—_lûƒÖ2¨ ª;Þ@pI¼·±Þåb¥HÕ!dÿ€C|šjèU‘&{¥µ¾DOš€7Šx)Óˆÿ¾ün`ã ‡Éï=áͲí–lG1¼5Î { `êæfØ@}I”Û¯Qº¹³D]7øß`ÞßdÒ4øÿë5ªbù›>sl°°V]k׬åÈ«ªÂƧk¦eQ… §ª)6KT©)†‘#kUKóÝ „wxîêìe Íù‘ 9ÌzU£¤@ÙHƒZNެ*{)h´¤Ãä)KȆ(ÛJ‰ý™MVÍ= ÙP]§xDƒ¥Ñ¬]²]®º5Þ’ƒ–%ì„qÌî®I¾Ñ,Öö”ýÁ/©OŽ|£è¬·hù¥V«QKpˆ#ŽàW\8€ô@÷•Òw(¦c%Ÿ²áZÌZ5Ó¢x ÕwöȾéê~,˜ÅwªŠ±ë64uÝÜ÷v.Q³.éè×È= 7‡!Y’YBOS©b縃p¶–ÚNÖºB©Zb–JXcp÷æFݾÝ5ñÌû7)i oÓIÏß?5Y§'+ºãë€ç&kn¯óZØ?×Bé*ä)%«J¹lr‰žZ”Ú칯Öá®!èõV™|ÎÆU·ÂÄë¹Vc*Évà…_0¹cJÇ2´]Hw@]|¡¸ÔBÏ]ã@#/ÜyÁ$“¹-ÕÒv ¥Ìô{ËK&„~ Q?Ó&/-Æ¢í«£?üg¦:¼¸n­D5Ë$+5Å;ü»jf{šg?0Ù=È‘ K1þðO&+}Ád"CYŽ« Dþ(0ã̲°Í†NdŠ üÉþö û…®¸ãT±X ~Ÿ&/(„§¦µCÉ/M“)è•r••é;VOTc%Xiý¢u\»UP£Udµ[Ü%’›á¢ímŠq$àïwd]gL;Øç|O¦*–)Àä¦<¿3²ìhXÍâÓuÍøVÅYÍ宓²æxsûYœKYžà§PÄ—-ÍDîuJ3±Ë–]âÒSÒ­uÕ[3óc 8û&›Ê‰mVæx ;ÀÚÄ ¤åWü6 >.ã7ãÊ5(Û÷[,NyCkD Ñ²ì¢ îfÒ\½œ"$ÛrØÙcxaª±ñ"ãkÔörtdQÏ´œ9ﶆ«aÖ¦ã슫ó”R)Þ]Ûe«ÅÀþj!â“PÃebU‡æÐZG³÷õ÷;OâzÊ6žJ|Áðÿ 1«¶’.¹§[OaKð2|ñÚ wv¾ý¦5òµ úÔH¼Ä0,¼éÈ¿¯ÒEOÏÕ_¸¦e:Ònÿ¢„[÷úsÓµà4 kÌmîÊ”m4fTc ™ V»ÖT½9òAµUïââÖ%SW»Ö'²ÞYî¹ééÞ£Ž„_ƒ ;§Û.ìl¹¤~û^5µÖû9ÏÍÍæç.Ü[œùÁ¶ó{³‹‹ymn.¦<‡^Ô™J¡ Åë¶j,2¶Å\d)# &>Tè¬ÔúmæÿÚ¬gV/(j)éh³mEŽ¿ý#¤¹;b½¹ø÷'ÿ»¶úùúÕÆ4^±9xØCëIøñ/ÿ/ú‡Pâ:ôò«íÍoËNPÞG§YW#á\ŽV6 ß»ÀeµÑpšÙ§VŸ)°ÿ>YûBÝÖg Þmµóó÷Ôù{‹sJE™+ʹޘȷO[+±Vô×$c“D6tgzFˬÊh&ÂH¼gUôø™û¾ÅÚÊqË-äiÈÉN'«³¦ýîã5/Ë+ØO¼í‡cÑ RX"+%jáéû§|ø—þ‰Ïü·ÿìj ]âÏ®öÑ›êÃsµg?°æè¶«=ë»Ú÷þßrµg™GײÿW»Ú^Á>hWûàçԤ当ӄlVÈé×ö#ò ²µ‡¬žFútjb|¼u²C˜³ ˆHO¤&¸ýÅúîNL®ãˆ“H'ëÖü¯çšQø h-‹˜ûÂQ÷°rv$Y[$çæH]‡ÓëD5a¿ƒ/KeØ(j×!Ðìùó×J²è^û([€\¤¯”ZóX±©Ö#2×0Ã× £Òf´OFÔ¦°½–z9ħÛf÷Ë ÜÆ¢~Yv~Ìøžb€øÈZá]o°*Þd$wDjÇ»UÇ©ÛK3-SÂùÂtö2¬[æÌ÷˳3qŒ³^Xa|qéù•§kEéƒÜúï!}¯û ÙßçŸÔF6¥Šn›1r 2òÒÝHªþÅ5À÷¤TÞb (§T½g¤aSÙú)ã+Àq¤ÇS]zÀ,jÔ ÕOX €X¤„ñ¨¥Ú²?Ë!>Ýfã/±”£²;Rú}Æ; Õ@|$«eer’¬¨H©ªYv½ëšŒiÜî¥y‘†Ë?del9þ ëpéér= as.Date("2011-05-23")) & (campyDE$date < as.Date("2011-07-31")) ))) # Make an sts object from the data.frame cam.sts <- sts(epoch=campyDE$date, observed=campyDE$case, state=campyDE$state) # Plot the result plot(cam.sts) } \keyword{datasets} surveillance/man/epidataCS.Rd0000644000176200001440000004220314673030222015645 0ustar liggesusers\encoding{latin1} \name{epidataCS} \alias{epidataCS} \alias{as.epidataCS} \alias{print.epidataCS} \alias{nobs.epidataCS} \alias{head.epidataCS} \alias{tail.epidataCS} \alias{[.epidataCS} \alias{subset.epidataCS} \alias{marks.epidataCS} \alias{summary.epidataCS} \alias{print.summary.epidataCS} \alias{as.stepfun.epidataCS} \alias{getSourceDists} \alias{coerce,epidataCS,SpatialPointsDataFrame-method} \title{ Continuous Space-Time Marked Point Patterns with Grid-Based Covariates } \description{ Data structure for \strong{c}ontinuous \strong{s}patio-temporal event data, e.g. individual case reports of an infectious disease. Apart from the actual \code{events}, the class simultaneously holds a spatio-temporal grid of endemic covariates (similar to disease mapping) and a representation of the observation region. The \code{"epidataCS"} class is the basis for fitting spatio-temporal endemic-epidemic intensity models with the function \code{\link{twinstim}} (Meyer et al., 2012). The implementation is described in Meyer et al. (2017, Section 3), see \code{vignette("twinstim")}. } \usage{ as.epidataCS(events, stgrid, W, qmatrix = diag(nTypes), nCircle2Poly = 32L, T = NULL, clipper = "polyclip", verbose = interactive()) \method{print}{epidataCS}(x, n = 6L, digits = getOption("digits"), ...) \method{nobs}{epidataCS}(object, ...) \method{head}{epidataCS}(x, n = 6L, ...) \method{tail}{epidataCS}(x, n = 6L, ...) \method{[}{epidataCS}(x, i, j, ..., drop = TRUE) \method{subset}{epidataCS}(x, subset, select, drop = TRUE, ...) \method{marks}{epidataCS}(x, coords = TRUE, ...) \method{summary}{epidataCS}(object, ...) \method{print}{summary.epidataCS}(x, ...) \method{as.stepfun}{epidataCS}(x, ...) getSourceDists(object, dimension = c("space", "time")) } \arguments{ \item{events}{ a \code{"\linkSPclass{SpatialPointsDataFrame}"} of cases with the following obligatory columns (in the \code{events@data} \code{data.frame}): \describe{ \item{time}{time point of event. Will be converted to a numeric variable by \code{as.numeric}. There should be no concurrent events (but see \code{\link{untie}} for an ex post adjustment) and there cannot be events beyond \code{stgrid} (i.e., \code{time<=T} is required). Events at or before time \eqn{t_0} = \code{min(stgrid$start)} are allowed and form the prehistory of the process.} \item{tile}{the spatial region (tile) where the event is located. This links to the tiles of \code{stgrid}.} \item{type}{optional type of event in a marked \code{twinstim} model. Will be converted to a factor variable dropping unused levels. If missing, all events will be attribute the single type \code{"1"}.} \item{eps.t}{maximum \emph{temporal} influence radius (e.g. length of infectious period, time to culling, etc.); must be positive and may be \code{Inf}.} \item{eps.s}{maximum \emph{spatial} influence radius (e.g. 100 [km]); must be positive and may be \code{Inf}. A compact influence region mainly has computational advantages, but might also be plausible for specific applications.} } The \code{data.frame} may contain columns with further marks of the events, e.g. sex, age of infected individuals, which may be used as epidemic covariates influencing infectiousness. Note that some auxiliary columns will be added at conversion whose names are reserved: \code{".obsInfLength"}, \code{".bdist"}, \code{".influenceRegion"}, and \code{".sources"}, as well as \code{"start"}, \code{"BLOCK"}, and all endemic covariates' names from \code{stgrid}. } \item{stgrid}{ a \code{\link{data.frame}} describing endemic covariates on a full spatio-temporal region x interval grid (e.g., district x week), which is a decomposition of the observation region \code{W} and period \eqn{t_0,T}. This means that for every combination of spatial region and time interval there must be exactly one row in this \code{data.frame}, that the union of the spatial tiles equals \code{W}, the union of the time intervals equals \eqn{t_0,T}, and that regions (and intervals) are non-overlapping. There are the following obligatory columns: \describe{ \item{tile}{ID of the spatial region (e.g., district ID). It will be converted to a factor variable (dropping unused levels if it already was one).} \item{start, stop}{columns describing the consecutive temporal intervals (converted to numeric variables by \code{as.numeric}). The \code{start} time of an interval must be equal to the \code{stop} time of the previous interval. The \code{stop} column may be missing, in which case it will be auto-generated from the set of \code{start} values and \code{T}.} \item{area}{area of the spatial region (\code{tile}). Be aware that the unit of this area (e.g., square km) must be consistent with the units of \code{W} and \code{events} (as specified in their \code{\link[sp]{proj4string}}s).} } The remaining columns are endemic covariates. Note that the column name \code{"BLOCK"} is reserved (a column which will be added automatically for indexing the time intervals of \code{stgrid}). } \item{W}{ an object of class \code{"\linkSPclass{SpatialPolygons}"} representing the observation region. It must have the same \code{proj4string} as \code{events} and all events must be within \code{W}. Prior simplification of \code{W} may considerably reduce the computational burden of likelihood evaluations in \code{\link{twinstim}} models with non-trivial spatial interaction functions (see the \dQuote{Note} section below). } \item{qmatrix}{ a square indicator matrix (0/1 or \code{FALSE}/\code{TRUE}) for possible transmission between the event types. The matrix will be internally converted to \code{logical}. Defaults to an independent spread of the event types, i.e. the identity matrix. } \item{nCircle2Poly}{ accuracy (number of edges) of the polygonal approximation of a circle, see \code{\link{discpoly}}. } \item{T}{ end of observation period (i.e. last \code{stop} time of \code{stgrid}). Must be specified if the start but not the stop times are supplied in \code{stgrid} (=> auto-generation of \code{stop} times). } \item{clipper}{polygon clipping engine to use for calculating the \code{.influenceRegion}s of events (see the Value section below). Default is the \CRANpkg{polyclip} package (called via \code{\link[spatstat.geom]{intersect.owin}} from package \CRANpkg{spatstat.geom}). In \pkg{surveillance} <= 1.6-0, package \pkg{gpclib} was used; this is no longer supported, neither is \pkg{rgeos}.} \item{verbose}{logical indicating if status messages should be printed during input checking and \code{"epidataCS"} generation. The default is to do so in interactive \R sessions.} \item{x}{an object of class \code{"epidataCS"} or \code{"summary.epidataCS"}, respectively.} \item{n}{a single integer. If positive, the first (\code{head}, \code{print}) / last (\code{tail}) \code{n} events are extracted. If negative, all but the \code{n} first/last events are extracted.} \item{digits}{minimum number of significant digits to be printed in values.} \item{i,j,drop}{ arguments passed to the \code{\link[sp:SpatialPointsDataFrame-class]{[-method}} for \code{SpatialPointDataFrame}s for subsetting the \code{events} while retaining \code{stgrid} and \code{W}.\cr If \code{drop=TRUE} (the default), event types that completely disappear due to \code{i}-subsetting will be dropped, which reduces \code{qmatrix} and the factor levels of the \code{type} column.\cr By the \code{j} index, epidemic covariates can be removed from \code{events}.} \item{\dots}{unused (arguments of the generics) with a few exceptions: The \code{print} method for \code{"epidataCS"} passes \code{\dots} to the \code{\link{print.data.frame}} method, and the \code{print} method for \code{"summary.epidataCS"} passes additional arguments to \code{\link{print.table}}.} \item{subset, select}{arguments used to subset the \code{events} from an \code{"epidataCS"} object like in \code{\link{subset.data.frame}}.} \item{coords}{logical indicating if the data frame of event marks returned by \code{marks(x)} should have the event coordinates appended as last columns. This defaults to \code{TRUE}.} \item{object}{an object of class \code{"epidataCS"}.} \item{dimension}{the distances of all events to their potential source events can be computed in either the \code{"space"} or \code{"time"} dimension.} } \details{ The function \code{as.epidataCS} is used to generate objects of class \code{"epidataCS"}, which is the data structure required for \code{\link{twinstim}} models. The \code{[}-method for class \code{"epidataCS"} ensures that the subsetted object will be valid, for instance, it updates the auxiliary list of potential transmission paths stored in the object. The \code{[}-method is used in \code{subset.epidataCS}, which is implemented similar to \code{\link{subset.data.frame}}. The \code{print} method for \code{"epidataCS"} prints some metadata of the epidemic, e.g., the observation period, the dimensions of the spatio-temporal grid, the types of events, and the total number of events. By default, it also prints the first \code{n = 6} rows of the \code{events}. } \value{ An object of class \code{"epidataCS"} is a list containing the following components: \item{events}{a \code{"\linkSPclass{SpatialPointsDataFrame}"} (see the description of the argument). The input \code{events} are checked for requirements and sorted chronologically. The columns are in the following order: obligatory event columns, event marks, the columns \code{BLOCK}, \code{start} and endemic covariates copied from \code{stgrid}, and finally, hidden auxiliary columns. The added auxiliary columns are: \describe{ \item{\code{.obsInfLength}}{observed length of the infectious period (possibly truncated at \code{T}), i.e., \code{pmin(T-time, eps.t)}.} \item{\code{.sources}}{a list of numeric vectors of potential sources of infection (wrt the interaction ranges eps.s and eps.t) for each event. Row numbers are used as index.} \item{\code{.bdist}}{minimal distance of the event locations to the polygonal boundary \code{W}.} \item{\code{.influenceRegion}}{a list of influence regions represented by objects of the \pkg{spatstat.geom} class \code{"owin"}. For each event, this is the intersection of \code{W} with a (polygonal) circle of radius \code{eps.s} centered at the event's location, shifted such that the event location becomes the origin. The list has \code{nCircle2Poly} set as an attribute.} } } \item{stgrid}{a \code{data.frame} (see description of the argument). The spatio-temporal grid of endemic covariates is sorted by time interval (indexed by the added variable \code{BLOCK}) and region (\code{tile}). It is a full \code{BLOCK} x \code{tile} grid.} \item{W}{a \code{"\linkSPclass{SpatialPolygons}"} object representing the observation region.} \item{qmatrix}{see the above description of the argument. The \code{\link{storage.mode}} of the indicator matrix is set to logical and the \code{dimnames} are set to the levels of the event types.} The \code{nobs}-method returns the number of events. The \code{head} and \code{tail} methods subset the epidemic data using the extraction method (\code{[}), i.e. they return an object of class \code{"epidataCS"}, which only contains (all but) the first/last \code{n} events. For the \code{"epidataCS"} class, the method of the generic function \code{\link[spatstat.geom]{marks}} defined by the \pkg{spatstat.geom} package returns a \code{data.frame} of the event marks (actually also including time and location of the events), disregarding endemic covariates and the auxiliary columns from the \code{events} component of the \code{"epidataCS"} object. The \code{summary} method (which has again a \code{print} method) returns a list of metadata, event data, the tables of tiles and types, a step function of the number of infectious individuals over time (\code{$counter}), i.e., the result of the \code{\link{as.stepfun}}-method for \code{"epidataCS"}, and the number of potential sources of transmission for each event (\code{$nSources}) which is based on the given maximum interaction ranges \code{eps.t} and \code{eps.s}. } \note{ Since the observation region \code{W} defines the integration domain in the point process likelihood, the more detailed the polygons of \code{W} are the longer it will take to fit a \code{\link{twinstim}}. You are advised to sacrifice some shape details for speed by reducing the polygon complexity, for example via the \command{mapshaper} JavaScript library wrapped by the R package \CRANpkg{rmapshaper}, or via \code{\link[spatstat.geom]{simplify.owin}}. } \references{ Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Sebastian Meyer Contributions to this documentation by Michael H\enc{ö}{oe}hle and Mayeul Kauffmann. } \seealso{ \code{vignette("twinstim")}. \code{\link{plot.epidataCS}} for plotting, and \code{\link{animate.epidataCS}} for the animation of such an epidemic. There is also an \code{\link[=update.epidataCS]{update}} method for the \code{"epidataCS"} class. To re-extract the \code{events} point pattern from \code{"epidataCS"}, use \code{as(object, "SpatialPointsDataFrame")}. It is possible to convert an \code{"epidataCS"} point pattern to an \code{"\link{epidata}"} object (\code{\link{as.epidata.epidataCS}}), or to aggregate the events into an \code{"\linkS4class{sts}"} object (\code{\link{epidataCS2sts}}). } \examples{ ## load "imdepi" example data (which is an object of class "epidataCS") data("imdepi") ## print and summary print(imdepi, n=5, digits=2) print(s <- summary(imdepi)) plot(s$counter, # same as 'as.stepfun(imdepi)' xlab = "Time [days]", ylab="Number of infectious individuals", main=paste("Time course of the number of infectious individuals", "assuming an infectious period of 30 days", sep="\n")) plot(table(s$nSources), xlab="Number of \"close\" infective individuals", ylab="Number of events", main=paste("Distribution of the number of potential sources", "assuming an interaction range of 200 km and 30 days", sep="\n")) ## the summary object contains further information str(s) ## a histogram of the spatial distances to potential source events ## (i.e., to events of the previous eps.t=30 days within eps.s=200 km) sourceDists_space <- getSourceDists(imdepi, "space") hist(sourceDists_space); rug(sourceDists_space) ## internal structure of an "epidataCS"-object str(imdepi, max.level=4) ## see help("imdepi") for more info on the data set ## extraction methods subset the 'events' component imdepi[101:200,] head(imdepi, n=1) # only first event tail(imdepi, n=4) # only last 4 events subset(imdepi, type=="B") # only events of type B ## see help("plot.epidataCS") for convenient plot-methods for "epidataCS" ### ### reconstruct the "imdepi" object ### ## observation region load(system.file("shapes", "districtsD.RData", package="surveillance"), verbose = TRUE) ## extract point pattern of events from the "imdepi" data ## a) as a data frame with coordinate columns via marks() eventsData <- marks(imdepi) ## b) as a Spatial object via the coerce-method events <- as(imdepi, "SpatialPointsDataFrame") ## plot observation region with events % might load 'sf' but should succeed without () plot(stateD, axes=TRUE); title(xlab="x [km]", ylab="y [km]") points(events, pch=unclass(events$type), cex=0.5, col=unclass(events$type)) legend("topright", legend=levels(events$type), title="Type", pch=1:2, col=1:2) summary(events) ## space-time grid with endemic covariates head(stgrid <- imdepi$stgrid[,-1]) ## reconstruct the "imdepi" object from its components myimdepi <- as.epidataCS(events = events, stgrid = stgrid, W = stateD, qmatrix = diag(2), nCircle2Poly = 16) ## This reconstructed object should be equal to 'imdepi' as long as the internal ## structures of the embedded classes ("owin", "SpatialPolygons", ...), and ## the calculation of the influence regions by "polyclip" have not changed: all.equal(imdepi, myimdepi) \dontshow{if (surveillance.options("allExamples")) stopifnot(all.equal(imdepi, myimdepi)) } } \keyword{spatial} \keyword{classes} \keyword{manip} surveillance/man/discpoly.Rd0000644000176200001440000000416014614775012015646 0ustar liggesusers\name{discpoly} \alias{discpoly} \title{Polygonal Approximation of a Disc/Circle} \description{ Generates a polygon representing a disc/circle (in planar coordinates) as an object of one of three possible classes: \code{"\link[sp:Polygon-class]{Polygon}"} from package \CRANpkg{sp}, \code{"\link[spatstat.geom]{owin}"} from package \CRANpkg{spatstat.geom}, or \code{"gpc.poly"} from \pkg{gpclib} (if available). } \usage{ discpoly(center, radius, npoly = 64, class = c("Polygon", "owin", "gpc.poly"), hole = FALSE) } \arguments{ \item{center}{numeric vector of length 2 (center coordinates of the circle).} \item{radius}{single numeric value (radius of the circle).} \item{npoly}{single integer. Number of edges of the polygonal approximation.} \item{class}{class of the resulting polygon (partial name matching applies). For \code{"owin"}, this is just a wrapper around \pkg{spatstat.geom}'s own \code{\link[spatstat.geom]{disc}} function.} \item{hole}{logical. Does the resulting polygon represent a hole?} } \value{ A polygon of class \code{class} representing a circle/disc with \code{npoly} edges accuracy. If \code{class="gpc.poly"} and this S4 class is not yet registered in the current \R session (by loading \pkg{gpclib} beforehand), only the \code{pts} slot of a \code{"gpc.poly"} is returned with a warning. } \examples{ ## Construct circles with increasing accuracy and of different spatial classes disc1 <- discpoly(c(0,0), 5, npoly=4, class = "owin") disc2 <- discpoly(c(0,0), 5, npoly=16, class = "Polygon") disc3 <- discpoly(c(0,0), 5, npoly=64, class = "gpc.poly") # may warn ## Look at the results print(disc1) plot(disc1, axes=TRUE, main="", border=2) str(disc2) lines(disc2, col=3) str(disc3) # a list or a formal "gpc.poly" (if gpclib is available) if (is(disc3, "gpc.poly")) { plot(disc3, add=TRUE, poly.args=list(border=4)) } else { lines(disc3[[1]], col=4) } ## to only _draw_ a circle symbols(0, 0, circles=5, inches=FALSE, add=TRUE, fg=5) } \seealso{ \code{\link[spatstat.geom]{disc}} in package \pkg{spatstat.geom}. } \keyword{datagen} \keyword{spatial} surveillance/man/multiplicity.Spatial.Rd0000644000176200001440000000307014614160257020142 0ustar liggesusers\name{multiplicity.Spatial} \alias{multiplicity.Spatial} \title{ Count Number of Instances of Points } \description{ The generic function \code{multiplicity} defined in \pkg{spatstat.geom} is intended to count the number of duplicates of each element of an object. \pkg{spatstat.geom} already offers methods for point patterns, matrices and data frames, and here we add a method for \code{Spatial} objects from the \pkg{sp} package. It is a wrapper for the default method, which effectively computes the distance matrix of the points, and then just counts the number of zeroes in each row. } \usage{ \method{multiplicity}{Spatial}(x) } \arguments{ \item{x}{ a \code{"\linkSPclass{Spatial}"} object (we only need a \code{\link[sp]{coordinates}}-method), e.g. of class \code{"\linkSPclass{SpatialPoints}"}. } } \value{ an integer vector containing the number of instances of each point of the object. } \seealso{ \code{\link[spatstat.geom]{multiplicity}} in package \pkg{spatstat.geom}. See the Examples of the \code{\link{hagelloch}} data for a specific use of \code{multiplicity}. } \examples{ foo <- SpatialPoints(matrix(c(1,2, 2,3, 1,2, 4,5), 4, 2, byrow=TRUE)) multiplicity(foo) # the following function determines the multiplicities in a matrix # or data frame and returns unique rows with appended multiplicity countunique <- function(x) unique(cbind(x, count=multiplicity(x))) countunique(coordinates(foo)) } \keyword{utilities} \keyword{spatial} surveillance/man/twinstim_epitest.Rd0000644000176200001440000002126314644700550017434 0ustar liggesusers\encoding{latin1} \name{twinstim_epitest} \alias{epitest} \alias{coef.epitest} \alias{plot.epitest} \title{Permutation Test for Space-Time Interaction in \code{"twinstim"}} \description{ The function \code{epitest} takes a \code{"twinstim"} model and tests if the spatio-temporal interaction invoked by the epidemic model component is statistically significant. The test only works for simple epidemic models, where \code{epidemic = ~1} (no additional parameters for event-specific infectivity), and requires the non-canonical \code{epilink="identity"} (see \code{\link{twinstim}}). A permutation test is performed by default, which is only valid if the endemic intensity is space-time separable. The approach is described in detail in Meyer et al. (2016), where it is also compared to alternative global tests for clustering such as the \code{\link{knox}} test. } \usage{ epitest(model, data, tiles, method = "time", B = 199, eps.s = NULL, eps.t = NULL, fixed = NULL, verbose = TRUE, compress = FALSE, ...) \method{coef}{epitest}(object, which = c("m1", "m0"), ...) \method{plot}{epitest}(x, teststat = c("simpleR0", "D"), ...) } \arguments{ \item{model}{ a simple epidemic \code{"\link{twinstim}"} with \code{epidemic = ~1}, fitted using the non-canonical \code{epilink="identity"}. Note that the permutation test is only valid for models with a space-time separable endemic intensity, where covariates vary either in space or time but not both. } \item{data}{ an object of class \code{"\link{epidataCS}"}, the \code{data} to which the \code{model} was fitted. } \item{tiles}{ (only used by \code{method = "simulate"}) a \code{"\linkSPclass{SpatialPolygons}"} representation of the \code{tile}s in \code{data$stgrid}. } \item{method}{ one of the following character strings specifying the test method: \describe{ \item{\code{"LRT"}:}{ a simple likelihood ratio test of the epidemic \code{model} against the corresponding endemic-only model, } \item{\code{"time"}/\code{"space"}:}{ a Monte Carlo permutation test where the null distribution is obtained by relabeling time points or locations, respectively (using \code{\link{permute.epidataCS}}). } \item{\code{"simulate"}:}{ obtain the null distribution of the test statistic by simulations from the endemic-only model (using \code{\link{simEndemicEvents}}). } } } \item{B}{ the number of permutations for the Monte Carlo approach. The default number is rather low; if computationally feasible, \code{B = 999} is more appropriate. Note that this determines the \dQuote{resolution} of the p-value: the smallest attainable p-value is \code{1/(B+1)}. } \item{eps.s,eps.t}{arguments for \code{\link{simpleR0}}.} \item{fixed}{ optional character vector naming parameters to fix at their original value when re-fitting the \code{model} on permuted data. The special value \code{fixed = TRUE} means to fix all epidemic parameters but the intercept. } \item{verbose}{ the amount of tracing in the range \code{0:3}. Set to 0 (or \code{FALSE}) for no output, 1 (or \code{TRUE}, the default) for a progress bar, 2 for the test statistics resulting from each permutation, and to 3 for additional tracing of the log-likelihood maximization in each permutation (not useful if parallelized). Tracing does not work if permutations are parallelized using clusters. See \code{\link{plapply}} for other choices. } \item{compress}{ logical indicating if the \code{nobs}-dependent elements \code{"fitted"}, \code{"fittedComponents"}, and \code{"R0"} should be dropped from the permutation-based model fits. Not keeping these elements saves a lot of memory especially with a large number of events. Note, however, that the returned \code{permfits} then no longer are fully valid \code{"twinstim"} objects (but most methods will still work). } \item{\dots}{further arguments for \code{\link{plapply}} to configure parallel operation, i.e., \code{.parallel} as well as \code{.seed} to make the results reproducible.\cr For the \code{plot}-method, further arguments passed to \code{\link[MASS]{truehist}}.\cr Ignored by the \code{coef}-method. } \item{object,x}{ an object of class \code{"epitest"} as returned by \code{epitest}. } \item{which}{ a character string indicating either the full (\code{"m1"}, default) or the endemic-only (\code{"m0"}) model. } \item{teststat}{ a character string determining the test statistic to plot, either \code{"\link{simpleR0}"} or \code{"D"} (twice the log-likelihood difference of the models). } } \value{ a list (inheriting from \code{"htest"}) with the following components: \item{method}{a character string indicating the type of test performed.} \item{data.name}{a character string giving the supplied \code{data} and \code{model} arguments.} \item{statistic}{the observed test statistic.} \item{parameter}{the (effective) number of permutations used to calculate the p-value (only those with convergent fits are used).} \item{p.value}{the p-value for the test. For the \code{method}s involving resampling under the null (\code{method != "LRT"}), it is based on the subset of convergent fits only and the p-value from the simple LRT is attached as an attribute \code{"LRT"}.} In addition, if \code{method != "LRT"}, the result will have the following elements: \item{permfits}{the list of model fits (endemic-only and epidemic) from the \code{B} permutations.} \item{permstats}{a data frame with \code{B} rows and the columns \code{"l0"} (log-likelihood of the endemic-only model \code{m0}), \code{"l1"} (log-likelihood of the epidemic model \code{m1}), \code{"D"} (twice their difference), \code{"simpleR0"} (the results of \code{\link{simpleR0}(m1, eps.s, eps.t)}), and \code{"converged"} (a boolean indicator if both models converged).} The \code{plot}-method invisibly returns \code{NULL}. The \code{coef}-method returns the \code{B} x \code{length(coef(model))} matrix of parameter estimates. } \details{ This space-time interaction test is limited to models with \code{epidemic = ~1}, since covariate effects are not identifiable under the null hypothesis of no space-time interaction. Estimating a rich epidemic \code{model} based on permuted data will most likely result in singular convergence. A similar issue might arise when the model employs parametric interaction functions, in which case \code{fixed=TRUE} can be used. For further details see Meyer et al. (2016). The test statistic is the reproduction number \code{\link{simpleR0}}. A likelihood ratio test of the supplied epidemic model against the corresponding endemic-only model is also available. By default, the null distribution of the test statistic under no space-time interaction is obtained by a Monte Carlo permutation approach (via \code{\link{permute.epidataCS}}) and therefore relies on a space-time separable endemic model component. The \code{plot}-method shows a \code{\link[MASS]{truehist}} of the simulated null distribution together with the observed value. The \code{coef}-method extracts the parameter estimates from the \code{B} \code{permfits} (by default for the full model \code{which = "m1"}). } \references{ Meyer, S., Warnke, I., R\enc{ö}{oe}ssler, W. and Held, L. (2016): Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. \emph{Spatial and Spatio-temporal Epidemiology}, \bold{17}, 15-25. \doi{10.1016/j.sste.2016.03.002}. Eprint: \url{https://arxiv.org/abs/1512.09052}. } \author{ Sebastian Meyer } \seealso{ \code{\link{permute.epidataCS}}, \code{\link{knox}} } \examples{ data("imdepi", "imdepifit") ## test for space-time interaction of the B-cases ## assuming spatial interaction to be constant within 50 km imdepiB50 <- update(subset(imdepi, type == "B"), eps.s = 50) imdfitB50 <- update(imdepifit, data = imdepiB50, subset = NULL, epidemic = ~1, epilink = "identity", siaf = NULL, start = c("e.(Intercept)" = 0)) ## simple likelihood ratio test epitest(imdfitB50, imdepiB50, method = "LRT") ## permutation test et <- epitest(imdfitB50, imdepiB50, B = 5, # CAVE: limited here for speed verbose = 2, # (tracing does not work on Windows .seed = 1, .parallel = 1) # if parallelized) et plot(et) ## summary of parameter estimates under permutation summary(coef(et, which = "m1")) } \keyword{htest} surveillance/man/isoWeekYear.Rd0000644000176200001440000000200714307577435016255 0ustar liggesusers\name{isoWeekYear} \alias{isoWeekYear} \title{Find ISO Week and Year of Date Objects} \description{ The function \code{isoWeekYear} extracts the year and week of a \code{\link{Date}} according to the ISO 8601 specification. } \usage{ isoWeekYear(Y, M, D) } \arguments{ \item{Y}{year(s) or a Date/POSIXt object. Can be a vector.} \item{M}{month(s), only used if \code{Y} is not a Date/POSIXt object.} \item{D}{day(s), only used if \code{Y} is not a Date/POSIXt object.} } \value{ A list with entries \code{ISOYear} and \code{ISOWeek} containing the corresponding results. } \note{ As from \pkg{surveillance} 1.17.0, this function simply calls \code{\link{strftime}} with format strings \code{"\%G"} and \code{"\%V"}, respectively, as this is nowadays (\R >= 3.1.0) also supported on Windows. } \examples{ dates <- as.Date(c("2002-12-31","2003-01-01","2003-01-06")) isoWeekYear(dates) ## the same using numeric inputs: isoWeekYear(Y = c(2002, 2003, 2003), M = c(12, 1, 1), D = c(31, 1, 6)) } \keyword{chron} surveillance/man/stsXtrct.Rd0000644000176200001440000000412614673233515015662 0ustar liggesusers\name{stsXtrct} \docType{methods} \title{Subsetting \code{"sts"} Objects} \alias{[,sts-method} % for convenience \alias{[,sts,ANY,ANY,ANY-method} \description{ The \code{[}-method extracts parts of an \code{"\linkS4class{sts}"} object using row (time) and column (unit) indices. } \usage{ \S4method{[}{sts}(x, i, j, ..., drop = FALSE) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{i}{optional row index (integer or logical vector).} \item{j}{optional column index (character, integer, or logical vector).} \item{drop}{logical: Should subsetting by \code{j} be applied to the map as well? This requires a \emph{character} index and is disabled by default. It does not affect the other slots: Dimensions are never dropped.} \item{\dots}{ignored.} } \value{ an object of class \code{"sts"}. } \details{ Row indices are used to select a subset of the original time period. The \code{start} and \code{epoch} slots of the time series are adjusted accordingly. A warning is issued if an irregular integer sequence is used to extract rows, e.g., \code{x[c(1,2,4),]}, which could destroy the structure of the time series (\code{freq}). Column indices work as usual when indexing matrices, so may select units by name, position or a vector of booleans. When subsetting columns, population fractions are recomputed if and only if \code{x} is no \code{multinomialTS} and already contains population fractions. \code{NA} indices are not supported, negative indices are. Note that a \code{[<-} method (i.e., subassignment) is not implemented. } \examples{ data("ha.sts") # Show a (subset of a) single time series plot(ha.sts[,7]) plot(ha.sts[year(ha.sts)==2006, 7]) # Map a single time point plot(ha.sts[5*52+26,], type=observed~unit) plot(ha.sts, type=observed~unit, tps=5*52+26) # same -> ?stsplot_space # Restrict the data (and the map) to a subset of the districts plot(ha.sts[,c("pank","lich")], type=observed~unit, labels=TRUE) plot(ha.sts[,c("pank","lich"),drop=TRUE], type=observed~unit, labels=TRUE) } \keyword{methods} surveillance/man/twinstim_intensity.Rd0000644000176200001440000002306314672562102020005 0ustar liggesusers\name{twinstim_intensity} \alias{intensityplot.twinstim} \alias{intensity.twinstim} \alias{intensityplot.simEpidataCS} \title{ Plotting Intensities of Infection over Time or Space } \description{ \code{\link{intensityplot}} method to plot the evolution of the total infection intensity, its epidemic proportion or its endemic proportion over time or space (integrated over the other dimension) of fitted \code{\link{twinstim}} models (or \code{\link{simEpidataCS}}). The \code{"simEpidataCS"}-method is just a wrapper around \code{intensityplot.twinstim} by making the \code{"simEpidataCS"} object \code{"twinstim"}-compatible, i.e. enriching it by the required model components and environment. The \code{intensity.twinstim} auxiliary function returns functions which calculate the endemic or epidemic intensity at a specific time point or location (integrated over the other dimension). } \usage{ \method{intensityplot}{twinstim}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = c("time", "space"), types = 1:nrow(x$qmatrix), tiles, tiles.idcol = NULL, plot = TRUE, add = FALSE, tgrid = 101, rug.opts = list(), sgrid = 128, polygons.args = list(), points.args = list(), cex.fun = sqrt, ...) \method{intensityplot}{simEpidataCS}(x, ...) intensity.twinstim(x, aggregate = c("time", "space"), types = 1:nrow(x$qmatrix), tiles, tiles.idcol = NULL) } \arguments{ \item{x}{ an object of class \code{"twinstim"} or \code{"simEpidataCS"}, respectively. } \item{which}{ \code{"epidemic proportion"}, \code{"endemic proportion"}, or \code{"total intensity"}. Partial matching is applied. Determines whether to plot the path of the total intensity or its epidemic or endemic proportions over time or space (\code{which}) aggregated over the other dimension and \code{types}. } \item{aggregate}{ One of \code{"time"} or \code{"space"}. The former results in a plot of the evolution of \code{which} as a function of time (integrated over the observation region \eqn{\bold{W}}), whereas the latter produces a \code{spplot} of \code{which} over \eqn{\bold{W}} (spanned by \code{tiles}). In both cases, \code{which} is evaluated on a grid of values, given by \code{tgrid} or \code{sgrid}, respectively. } \item{types}{ event types to aggregate. By default, all types of events are aggregated, but one could also be interested in only one specific type or a subset of event types. } \item{tiles}{ object of class \code{"\linkSPclass{SpatialPolygons}"} representing the decomposition of \eqn{\bold{W}} into different regions (as used in the corresponding \code{stgrid} of the \code{"\link{epidataCS}"}. This is only needed for \code{aggregate = "space"}. } \item{tiles.idcol}{ either a column index for \code{tiles@data} (if \code{tiles} is a \code{"\linkSPclass{SpatialPolygonsDataFrame}"}), or \code{NULL} (default), which refers to the \code{"ID"} slot of the polygons, i.e., \code{row.names(tiles)}. The ID's must correspond to the factor levels of \code{stgrid$tile} of the \code{"\link{epidataCS}"} on which \code{x} was fitted. } \item{plot}{ logical indicating if a plot is desired, which defaults to \code{TRUE}. Otherwise, a function will be returned, which takes a vector of time points (if \code{aggregate = "time"}) or a matrix of coordinates (if \code{aggregate = "space"}), and returns \code{which} on this grid. } \item{add}{ logical. If \code{TRUE} and \code{aggregate = "time"}, paths are added to the current plot, using \code{lines}. This does not work for \code{aggregate = "space"}. } \item{tgrid}{ either a numeric vector of time points when to evaluate \code{which}, or a scalar representing the desired number of evaluation points in the observation interval \eqn{[t_0, T]}. This argument is unused for \code{aggregate = "space"}. } \item{rug.opts}{ if a list, its elements are passed as arguments to the function \code{\link{rug}}, which will mark the time points of the events if \code{aggregate = "time"} (it is unused in the spatial case); otherwise (e.g., \code{NULL}), no \code{rug} will be produced. By default, the \code{rug} argument \code{ticksize} is set to 0.02 and \code{quiet} is set to \code{TRUE}. Note that the argument \code{x} of the \code{rug} function, which contains the locations for the \code{rug} is fixed internally and can not be modified. } \item{sgrid}{ either an object of class \code{"\linkSPclass{SpatialPixels}"} (or coercible to that class) representing the locations where to evaluate \code{which}, or a scalar representing the approximate number of points of a grid constructed on the bounding box of \code{tiles}. \code{sgrid} is internally subsetted to contain only points inside \code{tiles}. This argument is unused for \code{aggregate = "time"}. } \item{polygons.args}{ if a list, its elements are passed as arguments to \code{\link[sp]{sp.polygons}}, which will add \code{tiles} to the plot if \code{aggregate = "space"} (it is unused for the temporal plot). By default, the fill \code{col}our of the tiles is set to \code{"darkgrey"}. } \item{points.args}{ if a list, its elements are passed as arguments to \code{\link[sp]{sp.points}}, which will add the event locations to the plot if \code{aggregate = "space"} (it is unused for the temporal plot). By default, the plot symbol is set to \code{pch=1}. The sizes of the points are determined as the product of the argument \code{cex} (default: 0.5) of this list and the sizes obtained from the function \code{cex.fun} which accounts for multiple events at the same location. } \item{cex.fun}{ function which takes a vector of counts of events at each unique location and returns a (vector of) \code{cex} value(s) for the sizes of the points at the event locations used in \code{points.args}. Defaults to the \code{sqrt()} function, which for the default circular \code{pch=1} means that the area of each point is proportional to the number of events at its location. } \item{\dots}{ further arguments passed to \code{plot} or \code{lines} (if \code{aggregate = "time"}), or to \code{\link[sp]{spplot}} (if \code{aggregate = "space"}).\cr For \code{intensityplot.simEpidataCS}, arguments passed to \code{intensityplot.twinstim}. } } \value{ If \code{plot = FALSE} or \code{aggregate = "time"}, a function is returned, which takes a vector of time points (if \code{aggregate = "time"}) or a matrix of coordinates (if \code{aggregate = "space"}), and returns \code{which} on this grid. \code{intensity.twinstim} returns a list containing such functions for the endemic and epidemic intensity (but these are not vectorized). If \code{plot = TRUE} and \code{aggregate = "space"}, the \code{\link[lattice]{trellis.object}} of the spatial plot is returned. } \author{ Sebastian Meyer } \seealso{ \code{\link{plot.twinstim}}, which calls \code{intensityplot.twinstim}. } \examples{ data("imdepi", "imdepifit") # for the intensityplot we need the model environment, which can be # easily added by the intelligent update method (no need to refit the model) imdepifit <- update(imdepifit, model=TRUE) ## path of the total intensity opar <- par(mfrow=c(2,1)) intensityplot(imdepifit, which="total intensity", aggregate="time", tgrid=500) plot(imdepi, "time", breaks=100) par(opar) ## time course of the epidemic proportion by event intensityplot(imdepifit, which="epidemic proportion", aggregate="time", tgrid=500, types=1) intensityplot(imdepifit, which="epidemic proportion", aggregate="time", tgrid=500, types=2, add=TRUE, col=2) legend("topright", legend=levels(imdepi$events$type), lty=1, col=1:2, title = "event type") ## endemic and total intensity in one plot intensity_endprop <- intensityplot(imdepifit, which="endemic proportion", aggregate="time", plot=FALSE) intensity_total <- intensityplot(imdepifit, which="total intensity", aggregate="time", tgrid=501, lwd=2) curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) ## spatial shape of the intensity (aggregated over time) # need a map of the 'stgrid' tiles, here Germany's districts load(system.file("shapes", "districtsD.RData", package="surveillance")) # total intensity (using a rather sparse 'sgrid' for speed) intensityplot(imdepifit, which="total intensity", aggregate="space", tiles=districtsD, sgrid=500, col.regions=rev(heat.colors(100))) % soft-depends on 'sf' via longlat.scales -> is.projected, unless % scales=list(draw=FALSE) if (surveillance.options("allExamples")) {% ~as in vignette("twinstim") # epidemic proportion by type maps_epiprop <- lapply(1:2, function (type) { intensityplot(imdepifit, which="epidemic", aggregate="space", types=type, tiles=districtsD, sgrid=1000, main=rownames(imdepifit$qmatrix)[type], scales=list(draw=FALSE), at=seq(0,1,by=0.1), col.regions=rev(hcl.colors(10,"YlOrRd")), colorkey=list(title=list("Epidemic proportion", cex=1))) }) plot(maps_epiprop[[1]], split=c(1,1,2,1), more=TRUE) plot(maps_epiprop[[2]], split=c(2,1,2,1)) } } \keyword{hplot} \keyword{aplot} \keyword{dplot} \keyword{methods} surveillance/man/glm_epidataCS.Rd0000644000176200001440000000570513165513254016520 0ustar liggesusers\name{glm_epidataCS} \alias{glm_epidataCS} \title{ Fit an Endemic-Only \code{twinstim} as a Poisson-\code{glm} } \description{ An endemic-only \code{\link{twinstim}} is equivalent to a Poisson regression model for the aggregated number of events, \eqn{Y_{[t][\bm{s}],k}}, by time-space-type cell. The rate of the corresponding Poisson distribution is \eqn{e_{[t][\bm{s}]} \cdot \lambda([t],[\bm{s}],k)}, where \eqn{e_{[t][\bm{s}]} = |[t]| |[\bm{s}]|} is a multiplicative offset. Thus, the \code{\link{glm}} function can be used to fit an endemic-only \code{twinstim}. However, wrapping in \code{glm} is usually slower. } \usage{ glm_epidataCS(formula, data, ...) } \arguments{ \item{formula}{ an endemic model formula without response, comprising variables of \code{data$stgrid} and possibly the variable \code{type} for a type-specific model. } \item{data}{ an object of class \code{"\link{epidataCS}"}. } \item{\dots}{ arguments passed to \code{\link{glm}}. Note that \code{family} and \code{offset} are fixed internally. } } \value{ a \code{\link{glm}} } \author{ Sebastian Meyer } \examples{ data("imdepi", "imdepifit") ## Fit an endemic-only twinstim() and an equivalent model wrapped in glm() fit_twinstim <- update(imdepifit, epidemic = ~0, siaf = NULL, subset = NULL, optim.args=list(control=list(trace=0)), verbose=FALSE) fit_glm <- glm_epidataCS(formula(fit_twinstim)$endemic, data = imdepi) ## Compare the coefficients cbind(twinstim = coef(fit_twinstim), glm = coef(fit_glm)) \dontshow{ stopifnot(all.equal(coef(fit_glm), coef(fit_twinstim), tolerance = 1e-6, check.attributes = FALSE)) if (surveillance.options("allExamples")) { ## also check type-specific model: stopifnot(all.equal( coef(glm_epidataCS(~0+type, imdepi)), coef(update(fit_twinstim, endemic=~(1|type))), tolerance = 1e-6, check.attributes = FALSE)) } } ### also compare to an equivalent endemic-only hhh4() fit ## first need to aggregate imdepi into an "sts" object load(system.file("shapes", "districtsD.RData", package="surveillance")) imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), neighbourhood = NULL, tiles = districtsD, popcol.stgrid = "popdensity") ## determine the correct offset to get an equivalent model offset <- 2 * rep(with(subset(imdepi$stgrid, !duplicated(BLOCK)), stop - start), ncol(imdsts)) * sum(districtsD$POPULATION) * population(imdsts) ## fit the model using hhh4() fit_hhh4 <- hhh4(imdsts, control = list( end = list( f = addSeason2formula(~I(start/365-3.5), period=365, timevar="start"), offset = offset ), family = "Poisson", subset = 1:nrow(imdsts), data = list(start=with(subset(imdepi$stgrid, !duplicated(BLOCK)), start)))) summary(fit_hhh4) stopifnot(all.equal(coef(fit_hhh4), coef(fit_glm), check.attributes=FALSE)) } \keyword{models} surveillance/man/pit.Rd0000644000176200001440000000547713446150274014627 0ustar liggesusers\name{pit} \alias{pit} \alias{pit.default} \title{ Non-Randomized Version of the PIT Histogram (for Count Data) } \description{ See Czado et al. (2009). } \usage{ pit(x, ...) \method{pit}{default}(x, pdistr, J = 10, relative = TRUE, ..., plot = list()) } \arguments{ \item{x}{ numeric vector representing the observed counts. } \item{pdistr}{ either a list of predictive cumulative distribution functions for the observations \code{x}, or (the name of) a single predictive CDF used for all \code{x} (with potentially varying arguments \code{...}). It is checked that the predictive CDF returns 0 at \code{x=-1}. The name of its first argument can be different from \code{x}, e.g., \code{pdistr="pnbinom"} is possible.\cr If \code{pdistr} is a single function and no additional \code{\dots} arguments are supplied, \code{pdistr} is assumed to be vectorized, i.e., it is simply called as \code{pdistr(x)} and \code{pdistr(x-1)}. Otherwise, the predictive CDF is called sequentially and does not need to be vectorized. } \item{J}{ the number of bins of the histogram. } \item{relative}{ logical indicating if relative frequency or the density should be plotted. Due to a historical bug, \code{relative=TRUE} (the default) actually plots a density histogram while \code{relative=FALSE} plots relative frequencies. } \item{\dots}{ ignored if \code{pdistr} is a list. Otherwise, such additional arguments are used in sequential calls of \code{pdistr} via \code{\link{mapply}(pdistr, x, ...)}. } \item{plot}{ a list of arguments for \code{\link{plot.histogram}}. Otherwise, no plot will be produced. } } \value{ an object of class \code{"pit"}, which inherits from class \code{"histogram"} (see \code{\link{hist}}). It is returned invisibly if a plot is produced. } \references{ Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. \emph{Biometrics}, \bold{65} (4), 1254-1261. \doi{10.1111/j.1541-0420.2009.01191.x} } \author{ Michaela Paul and Sebastian Meyer } \examples{ ## Simulation example of Czado et al. (2009, Section 2.4) set.seed(100) x <- rnbinom(200, mu = 5, size = 2) pdistrs <- list("NB(5,0)" = function (x) ppois(x, lambda=5), "NB(5,1/2)" = function (x) pnbinom(x, mu=5, size=2), "NB(5,1)" = function (x) pnbinom(x, mu=5, size=1)) ## Reproduce Figure 1 op <- par(mfrow = c(1,3)) for (i in seq_along(pdistrs)) { pit(x, pdistr = pdistrs[[i]], J = 10, plot = list(ylim = c(0,2.75), main = names(pdistrs)[i])) box() } par(op) ## Alternative call using ... arguments for pdistr (less efficient) stopifnot(identical(pit(x, "pnbinom", mu = 5, size = 2, plot = FALSE), pit(x, pdistrs[[2]], plot = FALSE))) } \keyword{dplot} surveillance/man/epidata_animate.Rd0000644000176200001440000001713314615162374017133 0ustar liggesusers\name{epidata_animate} \alias{animate.epidata} \alias{animate.summary.epidata} \title{ Spatio-Temporal Animation of an Epidemic } \description{ Function for the animation of epidemic data, i.e. objects inheriting from class \code{"epidata"}. This only works with 1- or 2-dimensional coordinates and is not useful if some individuals share the same coordinates (overlapping). There are two types of animation, see argument \code{time.spacing}. Besides the direct plotting in the \R session, it is also possible to generate a sequence of graphics files to create animations outside \R. } \usage{ \method{animate}{summary.epidata}(object, main = "An animation of the epidemic", pch = 19, col = c(3, 2, gray(0.6)), time.spacing = NULL, sleep = quote(5/.nTimes), legend.opts = list(), timer.opts = list(), end = NULL, generate.snapshots = NULL, ...) \method{animate}{epidata}(object, ...) } \arguments{ \item{object}{ an object inheriting from class \code{"epidata"} or \code{"summary.epidata"}. In the former case, its summary is calculated and the function continues as in the latter case, passing all \code{...} arguments to the \code{summary.epidata} method. } \item{main}{ a main title for the plot, see also \code{\link{title}}. } \item{pch, col}{ vectors of length 3 specifying the point symbols and colors for susceptible, infectious and removed individuals (in this order). The vectors are recycled if necessary. By default, susceptible individuals are marked as filled green circles, infectious individuals as filled red circles and removed individuals as filled gray circles. Note that the symbols are iteratively drawn (overlaid) in the same plotting region as time proceeds. For information about the possible values of \code{pch} and \code{col}, see the help pages of \code{\link{points}} and \code{\link{par}}, respectively. } \item{time.spacing}{ time interval for the animation steps. If \code{NULL} (the default), the events are plotted one by one with pauses of \code{sleep} seconds. Thus, it is just the \emph{ordering} of the events, which is shown. To plot the appearance of events proportionally to the exact time line, \code{time.spacing} can be set to a numeric value indicating the period of time between consecutive plots. Then, for each time point in \code{seq(0, end, by = time.spacing)} the current state of the epidemic can be seen and an additional timer indicates the current time (see \code{timer.opts} below). The argument \code{sleep} will be the artificial pause in seconds between two of those time points. } \item{sleep}{ time in seconds to \code{\link{Sys.sleep}} before the next plotting event. By default, each artificial pause is of length \code{5/.nTimes} seconds, where \code{.nTimes} is the number of events (infections and removals) of the epidemic, which is evaluated in the function body. Thus, for \code{time.spacing = NULL} the animation has a duration of approximately 5 seconds. In the other case, \code{sleep} is the duration of the artificial pause between two time points. Note that \code{sleep} is ignored on non-interactive devices (see \code{\link{dev.interactive}}) } \item{legend.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no legend will be plotted. All necessary arguments have sensible defaults and need not be specified, i.e. \describe{ \item{\code{x}:}{\code{"topright"}} \item{\code{legend}:}{\code{c("susceptible", "infectious", "removed")}} \item{\code{pch}:}{same as argument \code{pch} of the main function} \item{\code{col}:}{same as argument \code{col} of the main function} } } \item{timer.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no timer will be plotted. All necessary arguments have sensible defaults and need not be specified, i.e. \describe{ \item{\code{x}:}{\code{"bottomright"}} \item{\code{title}:}{\code{"time"}} \item{\code{box.lty}:}{\code{0}} \item{\code{adj}:}{\code{c(0.5,0.5)}} \item{\code{inset}:}{\code{0.01}} \item{\code{bg}:}{\code{"white"}} } Note that the argument \code{legend}, which is the current time of the animation, can not be modified. } \item{end}{ ending time of the animation in case of \code{time.spacing} not being \code{NULL}. By default (\code{NULL}), time stops after the last event. } \item{generate.snapshots}{ By default (\code{NULL}), the animation is not saved to image files but only shown on the on-screen device. In order to print to files, \code{time.spacing} must not be \code{NULL}, a screen device must be available, and there are two options:\cr If the framework of the \pkg{animation} package should be used, i.e. the \code{animate}-call is passed as the \code{expr} argument to one of the \code{save*} functions of the \pkg{animation} package, then set \code{generate.snapshots = img.name}, where \code{img.name} is the base name for the generated images (the same as passed to the \code{save*} function). The path and format (type, width, height) for the generated images is derived from \code{\link[animation]{ani.options}}. See the last example below.\cr Alternatively, \code{generate.snapshots} may be a list of arguments passed to the function \code{\link{dev.print}}, which then is executed at each time point of the grid defined by \code{time.spacing}. Essentially, this is used for saving the produced snapshots to files, e.g. \code{generate.snapshots = % list(device=pdf, file=quote(paste("epidemic_",sprintf(form,tp),".pdf",% sep="")))} will store the animation steps in pdf-files in the current working directory, where the file names each end with the time point represented by the corresponding plot. Because the variables \code{tp} and \code{form} should only be evaluated inside the function the \code{file} argument is \code{quote}d. Alternatively, the file name could also make use of the internal plot index \code{i}, e.g., use \code{file=quote(paste("epidemic",i,".pdf",sep=""))}. } \item{\dots}{ further graphical parameters passed to the basic call of \code{plot}, e.g. \code{las}, \code{cex.axis} (etc.) and \code{mgp}. } } %\value{ % invisibly returns \code{NULL}. %} \author{ Sebastian Meyer } \seealso{ \code{\link{summary.epidata}} for the data, on which the plot is based. \code{\link{plot.epidata}} for plotting the evolution of an epidemic by the numbers of susceptible, infectious and removed individuals. The contributed \R package \pkg{animation}. } \examples{ data("hagelloch") (s <- summary(hagelloch)) # plot the ordering of the events only animate(s) # or: animate(hagelloch) # with timer (animate only up to t=10) animate(s, time.spacing=0.1, end=10, sleep=0.01, legend.opts=list(x="topleft")) # Such an animation can be saved in various ways using tools of # the animation package, e.g., saveHTML() if (interactive() && require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML({ par(bg="white") # default "transparent" is grey in some browsers animate(s, time.spacing=1, sleep=0, legend.opts=list(x="topleft"), generate.snapshots="epiani") }, use.dev=FALSE, img.name="epiani", ani.width=600, interval=0.5) setwd(oldwd) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/twinstim_iafplot.Rd0000644000176200001440000002205313100434734017405 0ustar liggesusers\encoding{latin1} \name{twinstim_iafplot} \alias{iafplot} \title{ Plot the Spatial or Temporal Interaction Function of a \code{twimstim} } \description{ The function plots the fitted temporal or (isotropic) spatial interaction function of a \code{twinstim} object. The implementation is illustrated in Meyer et al. (2017, Section 3), see \code{vignette("twinstim")}. } \usage{ iafplot(object, which = c("siaf", "tiaf"), types = NULL, scaled = c("intercept", "standardized", "no"), truncated = FALSE, log = "", conf.type = if (length(pars) > 1) "MC" else "parbounds", conf.level = 0.95, conf.B = 999, xgrid = 101, col.estimate = rainbow(length(types)), col.conf = col.estimate, alpha.B = 0.15, lwd = c(3,1), lty = c(1,2), verticals = FALSE, do.points = FALSE, add = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, legend = !add && (length(types) > 1), ...) } \arguments{ \item{object}{ object of class \code{"twinstim"} containing the fitted model. } \item{which}{ argument indicating which of the two interaction functions to plot. Possible values are \code{"siaf"} (default) for the spatial interaction \eqn{f(x)} as a function of the distance \eqn{x}, and \code{"tiaf"} for the temporal interaction function \eqn{g(t)}. } \item{types}{ integer vector indicating for which event \code{types} the interaction function should be plotted in case of a marked \code{"twinstim"}. The default \code{types=NULL} checks if the interaction function is type-specific: if so, \code{types=1:nrow(object$qmatrix)} is used, otherwise \code{types=1}. } \item{scaled}{ character string determining if/how the the interaction function should be scaled. Possible choices are: \describe{ \item{"intercept":}{multiplication by the epidemic intercept.} \item{"standardized":}{division by the value at 0 distance such that the function starts at 1.} \item{"no":}{no scaling.} } The first one is the default and required for the comparison of estimated interaction functions from different models. For backward compatibility, \code{scaled} can also be a boolean, where \code{TRUE} refers to \code{"intercept"} scaling and \code{FALSE} to \code{"no"} scaling. } \item{truncated}{ logical indicating if the plotted interaction function should take the maximum range of interaction (\code{eps.t}/\code{eps.s}) into account, i.e., drop to zero at that point (if it is finite after all). If there is no common range of interaction, a \code{\link{rug}} indicating the various ranges will be added to the plot if \code{truncated=TRUE}. If \code{truncated} is a scalar, this value is used as the point \code{eps} where the function drops to 0. } \item{log}{a character string passed to \code{\link{plot.default}} indicating which axes should be logarithmic. If \code{add=TRUE}, \code{log} is set according to \code{par("xlog")} and \code{par("ylog")}.} \item{conf.type}{ type of confidence interval to produce.\cr If \code{conf.type="MC"} (or \code{"bootstrap"}), \code{conf.B} parameter vectors are sampled from the asymptotic (multivariate) normal distribution of the ML estimate of the interaction function parameters; the interaction function is then evaluated on the \code{xgrid} (i.e. temporal or spatial distances from the host) for each parameter realization to obtain a \code{conf.level} confidence interval at each point of the \code{xgrid} (or to plot the interaction functions of all Monte-Carlo samples if \code{conf.level=NA}). Note that the resulting plot is \code{\link{.Random.seed}}-dependent for the Monte-Carlo type of confidence interval.\cr If \code{conf.type="parbounds"}, the \code{conf.level} Wald confidence intervals for the interaction function parameters are calculated and the interaction function is evaluated on the \code{xgrid} (distances from the host) for all combinations of the bounds of the parameters and the point-wise extremes of those functions are plotted. This type of confidence interval is only valid in case of a single parameter, i.e. \code{scaled + nsiafpars == 1}, but could also be used as a rough indication if the Monte-Carlo approach takes too long. A warning is thrown if the \code{"parbounds"} type is used for multiple parameters.\cr If \code{conf.type="none"} or \code{NA} or \code{NULL}, no confidence interval will be calculated. } \item{conf.level}{ the confidence level required. For \code{conf.type = "MC"} it may also be specified as \code{NA}, in which case all \code{conf.B} sampled functions will be plotted with transparency value given by \code{alpha.B}. } \item{conf.B}{ number of samples for the \code{"MC"} (Monte Carlo) confidence interval. } \item{xgrid}{ either a numeric vector of x-values (distances from the host) where to evaluate \code{which}, or a scalar representing the desired number of evaluation points in the interval \code{c(0,xlim[2])}.\cr If the interaction function is a step function (\code{\link{siaf.step}} or \code{\link{tiaf.step}}), \code{xgrid} is ignored and internally set to \code{c(0, knots)}. } \item{col.estimate}{ vector of colours to use for the function point estimates of the different \code{types}. } \item{col.conf}{ vector of colours to use for the confidence intervals of the different \code{types}. } \item{alpha.B}{ alpha transparency value (as relative opacity) used for the \code{conf.B} sampled interaction functions in case \code{conf.level = NA} } \item{lwd, lty}{ numeric vectors of length two specifying the line width and type of point estimates (first element) and confidence limits (second element), respectively. } \item{verticals,do.points}{graphical settings for step function kernels. These can be logical (as in \code{\link{plot.stepfun}}) or lists of graphical parameters.} \item{add}{ add to an existing plot? } \item{xlim, ylim}{ vectors of length two containing the x- and y-axis limit of the plot. The default y-axis range (\code{ylim=NULL}) is from 0 to the value of the (scaled) interaction function at \eqn{x = 0}. The default x-axis (\code{xlim=NULL}) starts at 0, and the upper limit is determined as follows (in decreasing order of precedence): \itemize{ \item If \code{xgrid} is a vector of evaluation points, \code{xlim[2]} is set to \code{max(xgrid)}. \item \code{eps.t}/\code{eps.s} if it is unique and finite. \item If the interaction function is a step function with \code{maxRange=as.Date("2007-01-01")) # range <- which(epoch(cam.sts)>=as.Date("2011-12-10")) range <- tail(1:nrow(cam.sts),n=2) control <- list(range=range, X=NULL, trend=TRUE, season=TRUE, prior='iid', alpha=0.025, mc.munu=100, mc.y=10, samplingMethod = "joint") #Apply the boda algorithm in its simples form, i.e. spline is #described by iid random effects and no extra covariates library("INLA") # needs to be attached cam.boda1 <- boda(cam.sts, control=control) plot(cam.boda1, xlab='time [weeks]', ylab='No. reported', dx.upperbound=0) } } \author{J. Manitz, M. \enc{Höhle}{Hoehle}, M. Salmon} \references{ Manitz, J. and \enc{Höhle}{Hoehle}, M. (2013): Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in Germany. Biometrical Journal, 55(4), 509-526. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/stK.Rd0000644000176200001440000001141314610747661014565 0ustar liggesusers\encoding{latin1} \name{stK} \alias{stKtest} \alias{plot.stKtest} \title{ Diggle et al (1995) K-function test for space-time clustering } \description{ The function \code{stKtest} wraps functions in package \pkg{splancs} to perform the K-function based Monte Carlo permutation test for space-time clustering (Diggle et al, 1995) for \code{"epidataCS"}. The implementation is due to Meyer et al. (2016). } \usage{ stKtest(object, eps.s = NULL, eps.t = NULL, B = 199, cores = 1, seed = NULL, poly = object$W) \method{plot}{stKtest}(x, which = c("D", "R", "MC"), args.D = list(), args.D0 = args.D, args.R = list(), args.MC = list(), mfrow = sort(n2mfrow(length(which))), ...) } \arguments{ \item{object}{an object of class \code{"epidataCS"}.} \item{eps.s, eps.t}{ numeric vectors defining the spatial and temporal grids of critical distances over which to evaluate the test. The default (\code{NULL}) uses equidistant values from 0 to the smallest \code{eps.s}/\code{eps.t} value in \code{object$events}, but not larger than half the observed spatial/temporal domain. } \item{B}{the number of permutations.} \item{cores}{ the number of parallel processes over which to distribute the requested number of permutations. } \item{seed}{ argument for \code{\link{set.seed}} to initialize the random number generator such that results become reproducible (also if \code{cores > 1}, see \code{\link{plapply}}). } \item{poly}{ the polygonal observation region of the events (as an object handled by \code{\link[polyCub]{xylist}}). The default \code{object$W} might not work since package \pkg{splancs} does not support multi-polygons. In this case, the \code{poly} argument can be used to specify a substitute. } \item{x}{an \code{"stKtest"}.} \item{which}{ a character vector indicating which diagnostic plots to produce. The full set is \code{c("D", "D0", "R", "MC")}. The special value \code{which = "stdiagn"} means to call the associated \pkg{splancs} function \code{\link[splancs]{stdiagn}}. } \item{args.D,args.D0,args.R,args.MC}{ argument lists for the plot functions \code{\link{persp}} (for \code{"D"} and \code{"D0"}), \code{\link{plot.default}} (\code{"R"}), and \code{\link[MASS]{truehist}} (\code{"MC"}), respectively, to modify the default settings. Ignored if \code{which = "stdiagn"}. } \item{mfrow}{ \code{\link{par}}-setting to layout the plots. Ignored for \code{which = "stdiagn"} and if set to \code{NULL}. } \item{\dots}{ignored (argument of the generic).} } \value{ an object of class \code{"stKtest"} (inheriting from \code{"htest"}), which is a list with the following components: \item{method}{a character string indicating the type of test performed.} \item{data.name}{a character string naming the supplied \code{object}.} \item{statistic}{the sum \eqn{U} of the standardized residuals \eqn{R(s,t)}.} \item{parameter}{the number \code{B} of permutations.} \item{p.value}{the p-value for the test.} \item{pts}{the coordinate matrix of the event locations (for \code{\link[splancs]{stdiagn}}.} \item{stK}{the estimated K-function as returned by \code{\link[splancs]{stkhat}}.} \item{seD}{the standard error of the estimated \eqn{D(s,t)} as returned by \code{\link[splancs]{stsecal}}.} \item{mctest}{the observed and permutation values of the test statistic as returned by \code{\link[splancs]{stmctest}}.} The \code{plot}-method invisibly returns \code{NULL}. } \references{ Diggle, P. J.; Chetwynd, A. G.; H\enc{ä}{ae}ggkvist, R. and Morris, S. E. (1995): Second-order analysis of space-time clustering \emph{Statistical Methods in Medical Research}, \bold{4}, 124-136. Meyer, S., Warnke, I., R\enc{ö}{oe}ssler, W. and Held, L. (2016): Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. \emph{Spatial and Spatio-temporal Epidemiology}, \bold{17}, 15-25. \doi{10.1016/j.sste.2016.03.002}. Eprint: \url{https://arxiv.org/abs/1512.09052}. } \author{ Sebastian Meyer } \seealso{ the simple \code{\link{knox}} test and function \code{\link{epitest}} for testing \code{"\link{twinstim}"} models. } \examples{ if (requireNamespace("splancs")) { data("imdepi") imdepiB <- subset(imdepi, type == "B") mainpoly <- coordinates(imdepiB$W@polygons[[1]]@Polygons[[5]]) SGRID <- c(10, 25, 50, 100, 150) TGRID <- c(1, 7, 14, 21) B <- 19 # limited here for speed \dontshow{if (!interactive()) B <- 4} % for faster checks imdBstKtest <- stKtest(imdepiB, eps.s = SGRID, eps.t = TGRID, B = B, cores = 2, seed = 1, poly = list(mainpoly)) print(imdBstKtest) plot(imdBstKtest) } } \keyword{htest} surveillance/man/coeflist.Rd0000644000176200001440000000207112476432506015631 0ustar liggesusers\name{coeflist} \alias{coeflist} \alias{coeflist.default} \title{ List Coefficients by Model Component } \description{ S3-generic function to use with models which contain several groups of coefficients in their coefficient vector. The \code{coeflist} methods are intended to list the coefficients by group. The default method simply \code{\link{split}}s the coefficient vector given the number of coefficients by group. } \usage{ coeflist(x, ...) \method{coeflist}{default}(x, npars, ...) } \arguments{ \item{x}{ a model with groups of coefficients or, for the default method, a vector of coefficients. } \item{npars}{ a named vector specifying the number of coefficients per group. } \item{\dots}{ potential further arguments (currently ignored). } } \value{ a list of coefficients } \author{ Sebastian Meyer } \examples{ ## the default method just 'split's the coefficient vector coefs <- c(a = 1, b = 3, dispersion = 0.5) npars <- c(regression = 2, variance = 1) coeflist(coefs, npars) } \keyword{models} \keyword{utilities} surveillance/man/makeControl.Rd0000644000176200001440000000237414665117445016311 0ustar liggesusers\name{makeControl} \alias{makeControl} \title{Generate \code{control} Settings for an \code{hhh4} Model} \usage{ makeControl(f = list(~1), S = list(0, 0, 1), period = 52, offset = 1, ...) } \arguments{ \item{f, S, period}{ arguments for \code{\link{addSeason2formula}} defining each of the three model formulae in the order (\code{ar}, \code{ne}, \code{end}). Recycled if necessary within \code{\link{mapply}}. } \item{offset}{ multiplicative component offsets in the order (\code{ar}, \code{ne}, \code{end}). } \item{...}{ further elements for the \code{\link{hhh4}} control list. The \code{family} parameter is set to \code{"NegBin1"} by default. } } \value{ a list for use as the \code{control} argument in \code{\link{hhh4}}. } \description{ Generate \code{control} Settings for an \code{hhh4} Model } \examples{ makeControl() ## a simplistic model for the fluBYBW data ## (first-order transmission only, no district-specific intercepts) data("fluBYBW") mycontrol <- makeControl( f = list(~1, ~1, ~t), S = c(1, 1, 3), offset = list(population(fluBYBW)), # recycled -> in all components ne = list(normalize = TRUE), verbose = TRUE) str(mycontrol) if (surveillance.options("allExamples")) ## fit this model fit <- hhh4(fluBYBW, mycontrol) } surveillance/man/formatPval.Rd0000644000176200001440000000152712536544321016135 0ustar liggesusers\name{formatPval} \alias{formatPval} \title{ Pretty p-Value Formatting } \description{ Just \acronym{yapf} -- yet another p-value formatter... It is a wrapper around \code{\link{format.pval}}, such that by default \code{eps = 1e-4}, \code{scientific = FALSE}, \code{digits = if (p<10*eps) 1 else 2}, and \code{nsmall = 2}. } \usage{ formatPval(pv, eps = 1e-4, scientific = FALSE, ...) } \arguments{ \item{pv}{a numeric vector (of p-values).} \item{eps}{a numerical tolerance, see \code{\link{format.pval}}.} \item{scientific}{see \code{\link{format}}.} \item{\dots}{further arguments passed to \code{\link{format.pval}} (but \code{digits} and \code{nsmall} are hard-coded internally).} } \value{ The character vector of formatted p-values. } \examples{ formatPval(c(0.9, 0.13567, 0.0432, 0.000546, 1e-8)) } \keyword{print} surveillance/man/ranef.Rd0000644000176200001440000000062112716552041015105 0ustar liggesusers\name{ranef} \alias{ranef} \alias{fixef} \docType{import} \title{Import from package \pkg{nlme}} \description{ The generic functions \code{ranef} and \code{fixef} are imported from package \pkg{nlme}. See \code{\link[nlme:ranef]{nlme::ranef}} for \pkg{nlme}'s own description, and \code{\link{ranef.hhh4}} or \code{\link{fixef.hhh4}} for the added methods for \code{"\link{hhh4}"} models. } surveillance/man/knox.Rd0000644000176200001440000001547714644700550015012 0ustar liggesusers\encoding{latin1} \name{knox} \alias{knox} \alias{plot.knox} \alias{toLatex.knox} \title{ Knox Test for Space-Time Interaction } \description{ Given temporal and spatial distances as well as corresponding critical thresholds defining what \dQuote{close} means, the function \code{knox} performs Knox (1963, 1964) test for space-time interaction. The corresponding p-value can be calculated either by the Poisson approximation or by a Monte Carlo permutation approach (Mantel, 1967) with support for parallel computation via \code{\link{plapply}}. There is a simple \code{plot}-method showing a \code{\link[MASS]{truehist}} of the simulated null distribution together with the expected and observed values. This implementation of the Knox test is due to Meyer et al. (2016). } \usage{ knox(dt, ds, eps.t, eps.s, simulate.p.value = TRUE, B = 999, ...) \method{plot}{knox}(x, ...) } \arguments{ \item{dt,ds}{ numeric vectors containing temporal and spatial distances, respectively. Logical vectors indicating temporal/spatial closeness may also be supplied, in which case \code{eps.t}/\code{eps.s} is ignored. To test for space-time interaction in a single point pattern of \eqn{n} events, these vectors should be of length \eqn{n*(n-1)/2} and contain the pairwise event distances (e.g., the lower triangle of the distance matrix, such as in \code{"\link{dist}"} objects). Note that there is no special handling of matrix input, i.e., if \code{dt} or \code{ds} are matrices, all elements are used (but a warning is given if a symmetric matrix is detected). } \item{eps.t,eps.s}{ Critical distances defining closeness in time and space, respectively. Distances lower than or equal to the critical distance are considered \dQuote{"close"}. } \item{simulate.p.value}{ logical indicating if a Monte Carlo permutation test should be performed (as per default). Do not forget to set the \code{\link{.Random.seed}} via an extra \code{.seed} argument if reproducibility is required (see the \dots arguments below). If \code{simulate.p.value = FALSE}, the Poisson approximation is used (but see the note below). } \item{B}{ number of permutations for the Monte Carlo approach. } \item{\dots}{ arguments configuring \code{\link{plapply}}: \code{.parallel}, \code{.seed}, and \code{.verbose}. By default, no parallelization is performed (\code{.parallel = 1}), and a progress bar is shown (\code{.verbose = TRUE}).\cr For the \code{plot}-method, further arguments passed to \code{\link[MASS]{truehist}}. } \item{x}{ an object of class \code{"knox"} as returned by the \code{knox} test. } } \note{ The Poisson approximation works well if the proportions of close pairs in both time and space are small (Kulldorff and Hjalmars, 1999), otherwise the Monte Carlo permutation approach is recommended. } \value{ an object of class \code{"knox"} (inheriting from \code{"htest"}), which is a list with the following components: \item{method}{a character string indicating the type of test performed, and whether the Poisson approximation or Monte Carlo simulation was used.} \item{data.name}{a character string giving the supplied \code{dt} and \code{ds} arguments.} \item{statistic}{the number of close pairs.} \item{parameter}{if \code{simulate.p.value = TRUE}, the number \code{B} of permutations, otherwise the \code{lambda} parameter of the Poisson distribution, i.e., the same as \code{null.value}.} \item{p.value}{the p-value for the test. In case \code{simulate.p.value = TRUE}, the p-value from the Poisson approximation is still attached as an attribute \code{"Poisson"}.} \item{alternative}{the character string \code{"greater"} (this is a one-sided test).} \item{null.value}{the expected number of close pairs in the absence of space-time interaction.} \item{table}{the contingency table of \code{dt <= eps.t} and \code{ds <= eps.s}.} The \code{plot}-method invisibly returns \code{NULL}. A \code{toLatex}-method exists, which generates LaTeX code for the contingency table associated with the Knox test. } \author{ Sebastian Meyer } \seealso{ The function \code{mantel.randtest} in package \pkg{ade4} implements Mantel's (1967) space-time interaction test, i.e., using the Pearson correlation between the spatial and temporal distances of all event pairs as the test statistic, and assessing statistical significance using a Monte Carlo permutation approach as with \code{simulate.p.value} here in the \code{knox} function. To combine information from different scales \code{eps.t} and \code{eps.s} while also handling edge effects, the space-time K-function test available via \code{\link{stKtest}} can be used. Function \code{\link{epitest}} tests epidemicity in a \code{"\link{twinstim}"} point process model. } \references{ Knox, G. (1963): Detection of low intensity epidemicity: application to cleft lip and palate. \emph{British Journal of Preventive & Social Medicine}, \bold{17}, 121-127. Knox, E. G. (1964): The detection of space-time interactions. \emph{Journal of the Royal Statistical Society. Series C (Applied Statistics)}, \bold{13}, 25-30. Kulldorff, M. and Hjalmars, U. (1999): The Knox method and other tests for space-time interaction. \emph{Biometrics}, \bold{55}, 544-552. Mantel, N. (1967): The detection of disease clustering and a generalized regression approach. \emph{Cancer Research}, \bold{27}, 209-220. Meyer, S., Warnke, I., R\enc{ö}{oe}ssler, W. and Held, L. (2016): Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. \emph{Spatial and Spatio-temporal Epidemiology}, \bold{17}, 15-25. \doi{10.1016/j.sste.2016.03.002}. Eprint: \url{https://arxiv.org/abs/1512.09052}. } \examples{ data("imdepi") imdepiB <- subset(imdepi, type == "B") ## Perform the Knox test using the Poisson approximation knoxtest <- knox( dt = dist(imdepiB$events$time), eps.t = 30, ds = dist(coordinates(imdepiB$events)), eps.s = 50, simulate.p.value = FALSE ) knoxtest ## The Poisson approximation works well for these data since ## the proportion of close pairs is rather small (204/56280). \dontshow{.opt <- options(xtable.comment = FALSE)} ## contingency table in LaTeX toLatex(knoxtest) \dontshow{options(.opt)} ## Obtain the p-value via a Monte Carlo permutation test, ## where the permutations can be computed in parallel ## (using forking on Unix-alikes and a cluster on Windows, see ?plapply) knoxtestMC <- knox( dt = dist(imdepiB$events$time), eps.t = 30, ds = dist(coordinates(imdepiB$events)), eps.s = 50, simulate.p.value = TRUE, B = 99, # limited here for speed .parallel = 2, .seed = 1, .verbose = FALSE ) knoxtestMC plot(knoxtestMC) } \keyword{htest} surveillance/man/marks.Rd0000644000176200001440000000055513777627613015155 0ustar liggesusers\name{marks} \alias{marks} \docType{import} \title{Import from package \pkg{spatstat.geom}} \description{ The generic function \code{marks} is imported from package \pkg{spatstat.geom}. See \code{\link[spatstat.geom:marks]{spatstat.geom::marks}} for \pkg{spatstat.geom}'s own methods, and \code{\link{marks.epidataCS}} for the \code{"epidataCS"}-specific method. } surveillance/man/toLatex.sts.Rd0000644000176200001440000000410514662137762016256 0ustar liggesusers\name{toLatex.sts} \docType{methods} \alias{toLatex.sts} \alias{toLatex,sts-method} \title{\code{toLatex}-Method for \code{"sts"} Objects} \description{ Convert \code{"\linkS4class{sts}"} objects to a character vector with LaTeX markup. } \usage{ \S4method{toLatex}{sts}(object, caption = "",label=" ", columnLabels = NULL, subset = NULL, alarmPrefix = "\\\\textbf{\\\\textcolor{red}{", alarmSuffix = "}}", ubColumnLabel = "UB", ...) } \arguments{ \item{object}{an \code{"\linkS4class{sts}"} object.} \item{caption}{A caption for the table. Default is the empty string.} \item{label}{A label for the table. Default is the empty string.} \item{columnLabels}{A list of labels for each column of the resulting table. Default is NULL} \item{subset}{A range of values which should be displayed. If Null, then all data in the sts objects will be displayed. Else only a subset of data. Therefore range needs to be a numerical vector of indexes from 1 to length(@observed).} \item{alarmPrefix}{A latex compatible prefix string wrapped around a table cell iff there is an alarm;i.e. alarm = TRUE} \item{alarmSuffix}{A latex compatible suffix string wrapped around a table cell iff there is an alarm;i.e. alarm[i,j] = TRUE} \item{ubColumnLabel}{The label of the upper bound column; default is \"UB\".} \item{\dots}{further arguments passed to \code{\link[xtable]{print.xtable}}.} } \value{ An object of class \code{\link[=toLatex]{"Latex"}}. } \examples{ # Create a test object data("salmonella.agona") # Create the corresponding sts object from the old disProg object salm <- disProg2sts(salmonella.agona) control <- list(range=(260:312), noPeriods=1,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=1, pastWeeksNotIncluded=3, pThresholdTrend=0.05,trend=TRUE, thresholdMethod="delta",alpha=0.1) salm <- farringtonFlexible(salm,control=control) toLatex(salm, sanitize.text.function=identity, comment=FALSE) } \author{Dirk Schumacher} \keyword{print} surveillance/man/algo.quality.Rd0000644000176200001440000000450314531107643016427 0ustar liggesusers\name{algo.quality} \alias{algo.quality} \alias{xtable.algoQV} \title{Computation of Quality Values for a Surveillance System Result} \description{ Computation of the quality values for a surveillance system output. } \usage{ algo.quality(sts, penalty = 20) } \arguments{ \item{sts}{object of class \code{survRes} or \code{sts}, which includes the state chain and the computed alarm chain} \item{penalty}{the maximal penalty for the lag} } \value{ an object of class \code{"algoQV"}, which is a list of quality values: \item{TP}{Number of correct found outbreaks.} \item{FP}{Number of false found outbreaks.} \item{TN}{Number of correct found non outbreaks.} \item{FN}{Number of false found non outbreaks.} \item{sens}{True positive rate, meaning TP/(FN + TP).} \item{spec}{True negative rate, meaning TN/(TN + FP).} \item{dist}{Euclidean distance between (1-spec, sens) to (0,1).} \item{lag}{Lag of the outbreak recognizing by the system.} } \details{ The lag is defined as follows: In the state chain just the beginnings of an outbreak chain (outbreaks directly following each other) are considered. In the alarm chain, the range from the beginning of an outbreak until \code{min(\var{next outbreak beginning}, penalty)} timepoints is considered. The \code{penalty} timepoints were chosen, to provide an upper bound on the penalty for not discovering an outbreak. Now the difference between the first alarm by the system and the defined beginning is denoted \dQuote{the lag}. Additionally outbreaks found by the system are not punished. At the end, the mean of the lags for every outbreak chain is returned as summary lag. } \seealso{\code{\link{algo.compare}}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from rki1 survResObj <- algo.rki1(disProgObj, control = list(range = 50:200)) # Compute the list of quality values quality <- algo.quality(survResObj) quality # the list is printed in matrix form \dontshow{.opt <- options(xtable.comment = FALSE)} # Format as an "xtable", which is printed with LaTeX markup (by default) library("xtable") xtable(quality) \dontshow{options(.opt)} } \keyword{misc} surveillance/man/imdepi.Rd0000644000176200001440000001737714614160257015304 0ustar liggesusers\encoding{latin1} \docType{data} \name{imdepi} \alias{imdepi} \title{ Occurrence of Invasive Meningococcal Disease in Germany } \description{ \code{imdepi} contains data on the spatio-temporal location of 636 cases of invasive meningococcal disease (IMD) caused by the two most common meningococcal finetypes in Germany, \samp{B:P1.7-2,4:F1-5} (of serogroup B) and \samp{C:P1.5,2:F3-3} (of serogroup C). } \usage{ data("imdepi") } \format{ \code{imdepi} is an object of class \code{"\link{epidataCS}"} (a list with components \code{events}, \code{stgrid}, \code{W} and \code{qmatrix}). } \details{ The \code{imdepi} data is a simplified version of what has been analyzed by Meyer et al. (2012). Simplification is with respect to the temporal resolution of the \code{stgrid} (see below) to be used in \code{\link{twinstim}}'s endemic model component. In what follows, we describe the elements \code{events}, \code{stgrid}, \code{W}, and \code{qmatrix} of \code{imdepi} in greater detail. \code{imdepi$events} is a \code{"\linkSPclass{SpatialPointsDataFrame}"} object (ETRS89 projection, i.e. EPSG code 3035, with unit \sQuote{km}) containing 636 events, each with the following entries: \describe{ \item{time:}{Time of the case occurrence measured in number of days since origin. Note that a U(0,1)-distributed random number has been subtracted from each of the original event times (days) to break ties (using \code{\link{untie}(imdepi_tied, amount=list(t=1))}).} \item{tile:}{Tile ID in the spatio-temporal grid (\code{stgrid}) of endemic covariates, where the event is contained in. This corresponds to one of the 413 districts of Germany. } \item{type:}{Event type, a factor with levels \code{"B"} and \code{"C"}.} \item{eps.t:}{Maximum temporal interaction range for the event. Here set to 30 days.} \item{eps.s:}{Maximum spatial interaction range for the event. Here set to 200 km.} \item{sex:}{Sex of the case, i.e. a factor with levels \code{"female"} and \code{"male"}. Note: for some cases this information is not available (\code{NA}).} \item{agegrp:}{Factor giving the age group of the case, i.e. 0-2, 3-18 or >=19. Note: for one case this information is not available (\code{NA}).} \item{BLOCK, start:}{Block ID and start time (in days since origin) of the cell in the spatio-temporal endemic covariate grid, which the event belongs to.} \item{popdensity:}{Population density (per square km) at the location of the event (corresponds to population density of the district where the event is located).} } There are further auxiliary columns attached to the events' data the names of which begin with a . (dot): These are created during conversion to the \code{"epidataCS"} class and are necessary for fitting the data with \code{twinstim}, see the description of the \code{"\link{epidataCS}"}-class. With \code{coordinates(imdepi$events)} one obtains the (x,y) locations of the events. The district identifier in \code{tile} is indexed according to the German official municipality key ( \dQuote{Amtlicher Gemeindeschl\enc{ü}{ue}ssel}). See \url{https://de.wikipedia.org/wiki/Amtlicher_Gemeindeschl\%C3\%BCssel} for details. The data component \code{stgrid} contains the spatio-temporal grid of endemic covariate information. In addition to the usual bookkeeping variables this includes: \describe{ \item{area:}{Area of the district \code{tile} in square kilometers.} \item{popdensity:}{Population density (inhabitants per square kilometer) computed from DESTATIS (Federal Statistical Office) information (Date: 31.12.2008) on communities level (LAU2) aggregated to district level (NUTS3).} } We have actually not included any time-dependent covariates here, we just established this grid with a (reduced -> fast) temporal resolution of \emph{monthly} intervals so that we can model endemic time trends and seasonality (in this discretized time). The entry \code{W} contains the observation window as a \code{"\linkSPclass{SpatialPolygons}"} object, in this case the boundaries of Germany (\code{stateD}). It was obtained as the \dQuote{UnaryUnion} of Germany's districts (\code{districtsD}) as at 2009-01-01, simplified by the \dQuote{modified Visvalingam} algorithm (level 6.6\%) available at \url{https://MapShaper.org} (v. 0.1.17). The objects \code{districtsD} and \code{stateD} are contained in \code{system.file("shapes", "districtsD.RData", package="surveillance")}. The entry \code{qmatrix} is a \eqn{2\times 2}{2 x 2} identity matrix indicating that no transmission between the two finetypes can occur. } \source{ IMD case reports: German Reference Centre for Meningococci at the Department of Hygiene and Microbiology, Julius-Maximilians-Universit\enc{ä}{ae}t W\enc{ü}{ue}rzburg, Germany (\url{https://www.hygiene.uni-wuerzburg.de/meningococcus/}). Thanks to Dr. Johannes Elias and Prof. Dr. Ulrich Vogel for providing the data. Shapefile of Germany's districts as at 2009-01-01: German Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany, \url{https://gdz.bkg.bund.de/}. %% "Copy, distribution and making available to the public - also in %% parts - is allowed with reference." } \references{ Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} } \seealso{ the data class \code{"\link{epidataCS}"}, and function \code{\link{twinstim}} for model fitting. } \examples{ data("imdepi") # Basic information print(imdepi, n=5, digits=2) # What is an epidataCS-object? str(imdepi, max.level=4) names(imdepi$events@data) # => events data.frame has hidden columns sapply(imdepi$events@data, class) # marks and print methods ignore these auxiliary columns # look at the B type only imdepiB <- subset(imdepi, type == "B") #<- subsetting applies to the 'events' component imdepiB # select only the last 10 events tail(imdepi, n=10) # there is also a corresponding 'head' method # Access event marks str(marks(imdepi)) # there is an update-method which assures that the object remains valid # when changing parameters like eps.s, eps.t or qmatrix update(imdepi, eps.t = 20) # Summary s <- summary(imdepi) s str(s) # Step function of number of infectives plot(s$counter, xlab = "Time [days]", ylab = "Number of infectious individuals", main = "Time series of IMD assuming 30 days infectious period") # distribution of number of potential sources of infection opar <- par(mfrow=c(1,2), las=1) for (type in c("B","C")) { plot(100*prop.table(table(s$nSources[s$eventTypes==type])), xlim=range(s$nSources), xlab = "Number of potential epidemic sources", ylab = "Proportion of events [\%]") } par(opar) # a histogram of the number of events along time (using the # plot-method for the epidataCS-class, see ?plot.epidataCS) opar <- par(mfrow = c(2,1)) plot(imdepi, "time", subset = type == "B", main = "Finetype B") plot(imdepi, "time", subset = type == "C", main = "Finetype C") par(opar) # Plot the spatial distribution of the events in W plot(imdepi, "space", points.args = list(col=c("indianred", "darkblue"))) # or manually (no legends, no account for tied locations) plot(imdepi$W, lwd=2, asp=1) % to avoid sp -> sf plot(imdepi$events, pch=c(3,4)[imdepi$events$type], cex=0.8, col=c("indianred", "darkblue")[imdepi$events$type], add=TRUE) \dontrun{ # Show a dynamic illustration of the spatio-temporal dynamics of the # spread during the first year of type B with a step size of 7 days animate(imdepiB, interval=c(0,365), time.spacing=7, sleep=0.1) } } \keyword{datasets} surveillance/man/algo.call.Rd0000644000176200001440000000462514176013316015655 0ustar liggesusers\name{algo.call} \alias{algo.call} \title{Query Transmission to Specified Surveillance Algorithm} \description{ Transmission of a object of class disProg to the specified surveillance algorithm. } \usage{ algo.call(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki", range = range, b = 2, w = 4, actY = TRUE), list(funcName = "rki", range = range, b = 2, w = 5, actY = TRUE))) } \arguments{ \item{disProgObj}{object of class disProg, which includes the state chain and the observed} \item{control}{specifies which surveillance algorithm should be used with their parameters. The parameter \code{funcName} and \code{range} must be specified. Here, \code{funcName} is the appropriate method function (without '\code{algo.}') and \code{range} defines the timepoints to be evaluated by the actual system.} } \value{ a list of survRes objects generated by the specified surveillance algorithm } \seealso{\code{\link{algo.rki}}, \code{\link{algo.bayes}}, \code{\link{algo.farrington}}} \examples{ # Create a test object disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from any methods in range = 200:400 range <- 200:400 survRes <- algo.call(disProg, control = list( list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range), list(funcName = "rki", range = range, b = 3, w = 2, actY = FALSE), list(funcName = "rki", range = range, b = 2, w = 9, actY = TRUE), list(funcName = "bayes1", range = range), list(funcName = "bayes2", range = range), list(funcName = "bayes3", range = range), list(funcName = "bayes", range = range, b = 1, w = 5, actY = TRUE,alpha=0.05) )) # show selected survRes objects names(survRes) plot(survRes[["rki(6,6,0)"]]) survRes[["bayes(5,5,1)"]] } \keyword{classif} surveillance/man/hhh4_plot.Rd0000644000176200001440000004532514667617354015735 0ustar liggesusers\encoding{latin1} \name{hhh4_plot} \alias{plot.hhh4} \alias{plotHHH4_fitted} \alias{plotHHH4_fitted1} \alias{plotHHH4_season} \alias{getMaxEV_season} \alias{plotHHH4_maxEV} \alias{getMaxEV} \alias{plotHHH4_maps} \alias{plotHHH4_ri} \alias{plotHHH4_neweights} \title{Plots for Fitted \code{hhh4}-models} \description{ There are six \code{type}s of plots for fitted \code{\link{hhh4}} models: \itemize{ \item Plot the \code{"fitted"} component means (of selected units) along time along with the observed counts. \item Plot the estimated \code{"season"}ality of the three components. \item Plot the time-course of the dominant eigenvalue \code{"maxEV"}. \item If the units of the corresponding multivariate \code{"\linkS4class{sts}"} object represent different regions, maps of the fitted mean components averaged over time (\code{"maps"}), or a map of estimated region-specific intercepts (\code{"ri"}) of a selected model component can be produced. \item Plot the (estimated) neighbourhood weights (\code{"neweights"}) as a function of neighbourhood order (shortest-path distance between regions), i.e., \code{w_ji ~ o_ji}. } Spatio-temporal \code{"hhh4"} models and these plots are illustrated in Meyer et al. (2017, Section 5), see \code{vignette("hhh4_spacetime")}. } \usage{ \method{plot}{hhh4}(x, type=c("fitted", "season", "maxEV", "maps", "ri", "neweights"), ...) plotHHH4_fitted(x, units = 1, names = NULL, col = c("grey85", "blue", "orange"), pch = 19, pt.cex = 0.6, pt.col = 1, par.settings = list(), legend = TRUE, legend.args = list(), legend.observed = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL, ...) plotHHH4_fitted1(x, unit = 1, main = NULL, col = c("grey85", "blue", "orange"), pch = 19, pt.cex = 0.6, pt.col = 1, border = col, start = x$stsObj@start, end = NULL, xaxis = NULL, xlim = NULL, ylim = NULL, xlab = "", ylab = "No. infected", hide0s = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL) plotHHH4_season(..., components = NULL, intercept = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = "", main = NULL, par.settings = list(), matplot.args = list(), legend = NULL, legend.args = list(), refline.args = list(), unit = 1, period = NULL) getMaxEV_season(x, period = frequency(x$stsObj)) plotHHH4_maxEV(..., matplot.args = list(), refline.args = list(), legend.args = list()) getMaxEV(x) plotHHH4_maps(x, which = c("mean", "endemic", "epi.own", "epi.neighbours"), prop = FALSE, main = which, zmax = NULL, col.regions = NULL, labels = FALSE, sp.layout = NULL, ..., map = x$stsObj@map, meanHHH = NULL) plotHHH4_ri(x, component, exp = FALSE, at = list(n = 10), col.regions = cm.colors(100), colorkey = TRUE, labels = FALSE, sp.layout = NULL, gpar.missing = list(col = "darkgrey", lty = 2, lwd = 2), ...) plotHHH4_neweights(x, plotter = boxplot, ..., exclude = 0, maxlag = Inf) } \arguments{ \item{x}{a fitted \code{\link{hhh4}} object.} \item{type}{type of plot: either \code{"fitted"} component means of selected \code{units} along time along with the observed counts, or \code{"season"}ality plots of the model components and the epidemic dominant eigenvalue (which may also be plotted along overall time by \code{type="maxEV"}, especially if the model contains time-varying neighbourhood weights or unit-specific epidemic effects), or \code{"maps"} of the fitted mean components averaged over time, or a map of estimated region-specific random intercepts (\code{"ri"}) of a specific model \code{component}. The latter two require \code{x$stsObj} to contain a map.} \item{\dots}{For \code{plotHHH4_season} and \code{plotHHH4_maxEV}, one or more \code{\link{hhh4}}-fits, or a single list of these. Otherwise further arguments passed on to other functions.\cr For the \code{plot}-method these go to the specific plot \code{type} function.\cr \code{plotHHH4_fitted} passes them to \code{plotHHH4_fitted1}, which is called sequentially for every unit in \code{units}.\cr \code{plotHHH4_maps} and \code{plotHHH4_ri} pass additional arguments to \code{\link[sp]{spplot}}, and \code{plotHHH4_neweights} to the \code{plotter}.} \item{units,unit}{integer or character vector specifying a single \code{unit} or possibly multiple \code{units} to plot. It indexes \code{colnames(x$stsObj)}.\cr In \code{plotHHH4_fitted}, \code{units=NULL} plots all units.\cr In the seasonality plot, selection of a unit is only relevant if the model contains unit-specific intercepts or seasonality terms.} \item{names,main}{main title(s) for the selected \code{unit}(\code{s}) / \code{components}. If \code{NULL} (default), \code{plotHHH4_fitted1} will use the appropriate element of \code{colnames(x$stsObj)}, whereas \code{plotHHH4_season} uses default titles.} \item{col,border}{length 3 vectors specifying the fill and border colors for the endemic, autoregressive, and spatio-temporal component polygons (in this order).} \item{pch,pt.cex,pt.col}{style specifications for the dots drawn to represent the observed counts. \code{pch=NA} can be used to disable these dots.} \item{par.settings}{list of graphical parameters for \code{\link{par}}. Sensible defaults for \code{mfrow}, \code{mar} and \code{las} will be applied unless overridden or \code{!is.list(par.settings)}.} \item{legend}{Integer vector specifying in which of the \code{length(units)} frames the legend should be drawn. If a logical vector is supplied, \code{which(legend)} determines the frame selection, i.e., the default is to drawn the legend in the first (upper left) frame only, and \code{legend=FALSE} results in no legend being drawn.} \item{legend.args}{list of arguments for \code{\link{legend}}, e.g., to modify the default positioning \code{list(x="topright", inset=0.02)}.} \item{legend.observed}{logical indicating if the legend should contain a line for the dots corresponding to observed counts.} \item{decompose}{if \code{TRUE} or (a permutation of) \code{colnames(x$stsObj)}, the fitted mean will be decomposed into the contributions from each single unit and the endemic part instead of the default endemic + AR + neighbours decomposition.} \item{total}{logical indicating if the fitted components should be summed over all units to be compared with the total observed counts at each time point. If \code{total=TRUE}, the \code{units}/\code{unit} argument is ignored.} \item{start,end}{time range to plot specified by vectors of length two in the form \code{c(year,number)}, see \code{"\linkS4class{sts}"}.} \item{xaxis}{if this is a list (of arguments for \code{\link{addFormattedXAxis}}), the time axis is nicely labelled similar to \code{\link{stsplot_time}}. Note that in this case or if \code{xaxis = NA}, the basic time indexes \code{1:nrow(x$stsObj)} will be used as x coordinates, which is different from the long-standing default (\code{xaxis = NULL}) with a real time scale.} \item{xlim}{numeric vector of length 2 specifying the x-axis range. The default (\code{NULL}) is to plot the complete time range (\code{type="fitted"}) or period (\code{type="season"}), respectively.} \item{ylim}{y-axis range. For \code{type="fitted"}, this defaults to \code{c(0,max(observed(x$stsObj)[,unit]))}. For \code{type="season"}, \code{ylim} must be a list of length \code{length(components)} specifying the range for every component plot, or a named list to customize only a subset of these. If only one \code{ylim} is specified, it will be recycled for all \code{components} plots.} \item{xlab,ylab}{axis labels. For \code{plotHHH4_season}, \code{ylab} specifies the y-axis labels for all \code{components} in a list (similar to \code{ylim}). If \code{NULL} or incomplete, default mathematical expressions are used. If a single name is supplied such as the default \code{ylab=""} (to omit y-axis labels), it is used for all \code{components}.} \item{hide0s}{logical indicating if dots for zero observed counts should be omitted. Especially useful if there are too many.} \item{meanHHH}{(internal) use different component means than those estimated and available from \code{x}.} \item{components}{character vector of component names, i.e., a subset of \code{c("ar", "ne", "end")}, for which to plot the estimated seasonality. If \code{NULL} (the default), only components which appear in any of the models in \code{\dots} are plotted.\cr A seasonality plot of the epidemic dominant eigenvalue is also available by including \code{"maxEV"} in \code{components}, but it only supports models without epidemic covariates/offsets.} \item{intercept}{logical indicating whether to include the global intercept. For \code{plotHHH4_season}, the default (\code{FALSE}) means to plot seasonality as a multiplicative effect on the respective component. Multiplication by the intercept only makes sense if there are no further (non-centered) covariates/offsets in the component.} \item{exp}{logical indicating whether to \code{exp}-transform the color-key axis labels to show the multiplicative effect of the region-specific random intercept on the respective component. Axis labels are then computed using \code{\link[scales]{log_breaks}} from package \pkg{scales} (if that is available) or \code{\link{axisTicks}} (as a fallback) respecting the \code{colorkey$tick.number} setting (default: 7). The default is \code{FALSE}.} \item{at}{a numeric vector of breaks for the color levels (see \code{\link[lattice]{levelplot}}), or a list specifying the number of breaks \code{n} (default: 10) and their \code{range} (default: range of the random effects, extended to be symmetric around 0). In the latter case, breaks are equally spaced (on the original, non-\code{exp} scale of the random intercepts). If \code{exp=TRUE}, custom breaks (or \code{range}) need to be given on the exp-scale.} \item{matplot.args}{list of line style specifications passed to \code{\link{matplot}}, e.g., \code{lty}, \code{lwd}, \code{col}.} \item{refline.args}{list of line style specifications (e.g., \code{lty} or \code{col}) passed to \code{\link{abline}} when drawing the reference line (\code{h=1}) in plots of seasonal effects (if \code{intercept=FALSE}) and of the dominant eigenvalue. The reference line is omitted if \code{refline.args} is not a list.} \item{period}{a numeric value giving the (longest) period of the harmonic terms in the model. This usually coincides with the \code{freq} of the data (the default), but needs to be adjusted if the model contains harmonics with a longer periodicity.} \item{which}{a character vector specifying the components of the mean for which to produce maps. By default, the overall mean and all three components are shown.} \item{prop}{a logical indicating whether the component maps should display proportions of the total mean instead of absolute numbers.} \item{zmax}{a numeric vector of length \code{length(which)} (recycled as necessary) specifying upper limits for the color keys of the maps, using a lower limit of 0. A missing element (\code{NA}) means to use a map-specific color key only covering the range of the values in that map (can be useful for \code{prop = TRUE}). The default \code{zmax = NULL} means to use the same scale for the component maps and a separate scale for the map showing the overall mean.} \item{col.regions}{a vector of colors used to encode the fitted component means (see \code{\link[lattice]{levelplot}}). For \code{plotHHH4_maps}, the length of this color vector also determines the number of levels, using 10 heat colors by default.} \item{colorkey}{a Boolean indicating whether to draw the color key. Alternatively, a list specifying how to draw it, see \code{\link[lattice]{levelplot}}.} \item{map}{an object inheriting from \code{"\linkSPclass{SpatialPolygons}"} with \code{row.names} covering \code{colnames(x)}.} \item{component}{component for which to plot the estimated region-specific random intercepts. Must partially match one of \code{colnames(ranef(x, tomatrix=TRUE))}.} \item{labels}{determines if and how regions are labeled, see \code{\link{layout.labels}}.} \item{sp.layout}{optional list of additional layout items, see \code{\link[sp]{spplot}}.} \item{gpar.missing}{list of graphical parameters for \code{\link[sp]{sp.polygons}}, applied to regions with missing random intercepts, i.e., not included in the model. Such extra regions won't be plotted if \code{!is.list(gpar.missing)}.} \item{plotter}{the (name of a) function used to produce the plot of weights (a numeric vector) as a function of neighbourhood order (a factor variable). It is called as \code{plotter(Weight ~ Distance, ...)} and defaults to \code{\link{boxplot}}. A useful alternative is, e.g., \code{\link[lattice]{stripplot}} from package \pkg{lattice}.} \item{exclude}{vector of neighbourhood orders to be excluded from plotting (passed to \code{\link{factor}}). By default, the neighbourhood weight for order 0 is not shown, which is usually zero anyway.} \item{maxlag}{maximum order of neighbourhood to be assumed when computing the \code{\link{nbOrder}} matrix. This additional step is necessary iff \code{neighbourhood(x$stsObj)} only specifies a binary adjacency matrix.} } \value{ \code{plotHHH4_fitted1} invisibly returns a matrix of the fitted component means for the selected \code{unit}, and \code{plotHHH4_fitted} returns these in a list for all \code{units}.\cr \code{plotHHH4_season} invisibly returns the plotted y-values, i.e. the multiplicative seasonality effect within each of \code{components}. Note that this will include the intercept, i.e. the point estimate of \eqn{exp(intercept + seasonality)} is plotted and returned.\cr \code{getMaxEV_season} returns a list with elements \code{"maxEV.season"} (as plotted by \code{plotHHH4_season(..., components="maxEV")}, \code{"maxEV.const"} and \code{"Lambda.const"} (the Lambda matrix and its dominant eigenvalue if time effects are ignored).\cr \code{plotHHH4_maxEV} (invisibly) and \code{getMaxEV} return the dominant eigenvalue of the \eqn{\Lambda_t} matrix for all time points \eqn{t} of \code{x$stsObj}.\cr \code{plotHHH4_maps} returns a \code{\link[lattice]{trellis.object}} if \code{length(which) == 1} (a single \code{\link[sp]{spplot}}), and otherwise uses \code{\link[gridExtra]{grid.arrange}} from the \pkg{gridExtra} package to arrange all \code{length(which)} \code{\link[sp]{spplot}}s on a single page. \code{plotHHH4_ri} returns the generated \code{\link[sp]{spplot}}, i.e., a \code{\link[lattice]{trellis.object}}.\cr \code{plotHHH4_neweights} eventually calls \code{plotter} and thus returns whatever is returned by that function. } \author{ Sebastian Meyer } \references{ Held, L. and Paul, M. (2012): Modeling seasonality in space-time infectious disease surveillance data. \emph{Biometrical Journal}, \bold{54}, 824-843. \doi{10.1002/bimj.201200037} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \seealso{ other methods for \code{hhh4} fits, e.g., \code{\link{summary.hhh4}}. } \examples{ data("measlesWeserEms") ## fit a simple hhh4 model measlesModel <- list( ar = list(f = ~ 1), end = list(f = addSeason2formula(~0 + ri(type="iid"), S=1, period=52), offset = population(measlesWeserEms)), family = "NegBin1" ) measlesFit <- hhh4(measlesWeserEms, measlesModel) ## fitted values for a single unit plot(measlesFit, units=2) ## sum fitted components over all units plot(measlesFit, total=TRUE) ## 'xaxis' option for a nicely formatted time axis ## default tick locations and labels: plot(measlesFit, total=TRUE, xaxis=list(epochsAsDate=TRUE, line=1)) ## an alternative with monthly ticks: oopts <- surveillance.options(stsTickFactors = c("\%m"=0.75, "\%Y" = 1.5)) plot(measlesFit, total=TRUE, xaxis=list(epochsAsDate=TRUE, xaxis.tickFreq=list("\%m"=atChange, "\%Y"=atChange), xaxis.labelFreq=list("\%Y"=atMedian), xaxis.labelFormat="\%Y")) surveillance.options(oopts) ## plot the multiplicative effect of seasonality plot(measlesFit, type="season") ## alternative fit with biennial pattern, plotted jointly with original fit measlesFit2 <- update(measlesFit, end = list(f = addSeason2formula(~0 + ri(type="iid"), S=2, period=104))) plotHHH4_season(measlesFit, measlesFit2, components="end", period=104) ## dominant eigenvalue of the Lambda matrix (cf. Held and Paul, 2012) getMaxEV(measlesFit) # here simply constant and equal to exp(ar.1) plot(measlesFit, type="maxEV") # not very exciting ## fitted mean components/proportions by district, averaged over time if (requireNamespace("gridExtra")) { plot(measlesFit, type="maps", labels=list(cex=0.6), which=c("endemic", "epi.own"), prop=TRUE, zmax=NA, main=c("endemic proportion", "autoregressive proportion")) } ## estimated random intercepts of the endemic component round(nu0 <- fixef(measlesFit)["end.ri(iid)"], 4) # global intercept round(ranefs <- ranef(measlesFit, tomatrix = TRUE), 4) # zero-mean deviations stopifnot(all.equal( nu0 + ranefs, ranef(measlesFit, intercept = TRUE) # local intercepts (log-scale) )) plot(measlesFit, type="ri", component="end", main="deviations around the endemic intercept (log-scale)") exp(ranef(measlesFit)) # multiplicative effects, plotted below plot(measlesFit, type="ri", component="end", exp=TRUE, main="multiplicative effects", labels=list(font=3, labels="GEN")) ## neighbourhood weights as a function of neighbourhood order plot(measlesFit, type="neweights") # boring, model has no "ne" component ## fitted values for the 6 regions with most cases and some customization bigunits <- tail(names(sort(colSums(observed(measlesWeserEms)))), 6) plot(measlesFit, units=bigunits, names=measlesWeserEms@map@data[bigunits,"GEN"], legend=5, legend.args=list(x="top"), xlab="Time (weekly)", hide0s=TRUE, ylim=c(0,max(observed(measlesWeserEms)[,bigunits])), start=c(2002,1), end=c(2002,26), par.settings=list(xaxs="i")) } \keyword{hplot} surveillance/man/twinstim_siaf.Rd0000644000176200001440000001253612665561746016721 0ustar liggesusers\name{twinstim_siaf} \alias{siaf} \title{ Spatial Interaction Function Objects } \description{ A spatial interaction function for use in \code{\link{twinstim}} can be constructed via the \code{siaf} function. It checks the supplied function elements, assigns defaults for missing arguments, and returns all checked arguments in a list. However, for standard applications it is much easier to use one of the pre-defined spatial interaction functions, e.g., \code{\link{siaf.gaussian}}. } \usage{ siaf(f, F, Fcircle, effRange, deriv, Deriv, simulate, npars, validpars = NULL) } \arguments{ \item{f}{the spatial interaction function. It must accept two arguments, the first one being a (2-column) coordinate matrix, the second one a parameter vector. For marked \code{twinstim}, it must accept the type of the event (integer code) as its third argument (either a single type for all locations or separate types for each location).} \item{F}{function computing the integral of \eqn{f(s)} (passed as second argument) over a polygonal \code{"owin"} domain (first argument). The third and fourth argument are the parameter vector and the (\emph{single}) type, respectively. There may be additional arguments, which can then be specified in the \code{control.siaf$F} argument list of \code{twinstim}. If the \code{F} function is missing, a general default (\code{\link[polyCub]{polyCub}}) will be used, with extra arguments \code{method} (default: \code{"SV"}) and corresponding accuracy parameters.} \item{Fcircle}{optional function for fast calculation of the (two-dimensional) integral of \eqn{f(s)} over a circle with radius \code{r} (first argument). Further arguments are as for \code{f}. It must not be vectorized (will always be called with single radius and a single type). If this function is specified, integration of the \code{siaf} over the spatial influence region of an event will be faster if the region is actually circular. This is the case if the event is located at least a distance \code{eps.s} from the border of the observation region \code{W}, or if the distance to the border is larger than the effective integration range (if specified, see \code{effRange} below).} \item{effRange}{optional function returning the \dQuote{effective} range of \eqn{f(s)} for the given set of parameters (the first and only argument) such that the circle with radius \code{effRange} contains the numerically essential proportion of the integral mass. For the Gaussian kernel the default is \code{function (logsd) 6*exp(logsd)}. The return value must be a vector of length \code{nTypes} (effective range for each type). This function is only used if \code{Fcircle} is also specified.} \item{deriv}{optional derivative of \eqn{f(s)} \emph{with respect to the parameters}. It takes the same arguments as \code{f} but returns a matrix with as many rows as there were coordinates in the input and \code{npars} columns. This derivative is necessary for the calculation of the score function in \code{twinstim()}, which is advantageous for the numerical log-likelihood maximization.} \item{Deriv}{function computing the integral of \code{deriv} (passed as second argument) over a polygonal \code{"owin"} domain (first argument). The return value is thus a vector of length \code{npars}. The third argument is the parameter vector and the fourth argument is a (\emph{single}) type and must be named \code{type}. There may be additional arguments, which can then be specified in the \code{control.siaf$Deriv} argument list of \code{twinstim}. If the \code{Deriv} function is missing, a general default (\code{\link[polyCub]{polyCub}}) will be used, with extra arguments \code{method} (default: \code{"SV"}) and corresponding accuracy parameters.} \item{simulate}{optional function returning a sample drawn from the spatial kernel (only required for the simulation of \code{twinstim} models). Its first argument is the size of the sample to generate, next the parameter vector, an optional single event type, and an optional upper bound for the radius within which to simulate points. The function must return a two-column \emph{matrix} of the sampled locations. Note that the simulation method actually samples only one location at a time, thus it is sufficient to have a working \code{function(n=1, pars, type, ub)}. } \item{npars}{the number of parameters of the spatial interaction function \code{f} (i.e. the length of its second argument).} \item{validpars}{ optional function taking one argument, the parameter vector, indicating if it is valid. This approach to specify parameter constraints is rarely needed, because usual box-constrained parameters can be taken into account by using L-BFGS-B as the optimization method in \code{twinstim} (with arguments \code{lower} and \code{upper}), and positivity constraints by using log-parametrizations. This component is not necessary (and ignored) if \code{npars == 0}. } } \value{ list of checked arguments. } \author{ Sebastian Meyer } \seealso{ \code{\link{siaf.gaussian}} for a pre-defined spatial interaction function, and \code{\link{tiaf}} for the temporal interaction function. } \keyword{utilities} surveillance/man/hhh4_simulate_plot.Rd0000644000176200001440000002114713230375405017613 0ustar liggesusers\name{hhh4_simulate_plot} \alias{plot.hhh4sims} \alias{aggregate.hhh4sims} \alias{as.hhh4simslist} \alias{plot.hhh4simslist} \alias{aggregate.hhh4simslist} \alias{plotHHH4sims_size} \alias{plotHHH4sims_time} \alias{plotHHH4sims_fan} \title{ Plot Simulations from \code{"hhh4"} Models } \description{ Arrays of simulated counts from \code{\link{simulate.hhh4}} can be visualized as final size boxplots, individual or average time series, or fan charts (using the \CRANpkg{fanplot} package). An \code{aggregate}-method is also available. } \usage{ \method{plot}{hhh4sims}(x, ...) \method{aggregate}{hhh4sims}(x, units = TRUE, time = FALSE, ..., drop = FALSE) as.hhh4simslist(x, ...) \method{plot}{hhh4simslist}(x, type = c("size", "time", "fan"), ..., groups = NULL, par.settings = list()) \method{aggregate}{hhh4simslist}(x, units = TRUE, time = FALSE, ..., drop = FALSE) plotHHH4sims_size(x, horizontal = TRUE, trafo = NULL, observed = TRUE, names = base::names(x), ...) plotHHH4sims_time(x, average = mean, individual = length(x) == 1, conf.level = if (individual) 0.95 else NULL, matplot.args = list(), initial.args = list(), legend = length(x) > 1, xlim = NULL, ylim = NULL, add = FALSE, ...) plotHHH4sims_fan(x, which = 1, fan.args = list(), observed.args = list(), initial.args = list(), means.args = NULL, key.args = NULL, xlim = NULL, ylim = NULL, add = FALSE, xaxis = list(), ...) } \arguments{ \item{x}{ an object of class \code{"hhh4sims"} (as resulting from the \code{\link[=simulate.hhh4]{simulate}}-method for \code{"\link{hhh4}"} models if \code{simplify = TRUE} was set), or an \code{"hhh4simslist"}, i.e., a list of such simulations potentially obtained from different model fits (using the same simulation period). } \item{type}{ a character string indicating the summary plot to produce. } \item{\dots}{ further arguments passed to methods. } \item{groups}{ an optional factor to produce stratified plots by groups of units. The special setting \code{groups = TRUE} is a convenient shortcut for one plot by unit. } \item{par.settings}{ a list of graphical parameters for \code{\link{par}}. Sensible defaults for \code{mfrow}, \code{mar} and \code{las} will be applied unless overridden or \code{!is.list(par.settings)}. } \item{horizontal}{ a logical indicating if the boxplots of the final size distributions should be horizontal (the default). } \item{trafo}{ an optional transformation function from the \pkg{scales} package, e.g., \code{\link[scales]{sqrt_trans}}. } \item{observed}{ a logical indicating if a line and axis value for the observed size of the epidemic should be added to the plot. Alternatively, a list with graphical parameters can be specified to modify the default values. } \item{names}{ a character vector of names for \code{x}. } \item{average}{ scalar-valued function to apply to the simulated counts at each time point. } \item{individual}{ a logical indicating if the individual simulations should be shown as well. } \item{conf.level}{ a scalar in (0,1), which determines the level of the pointwise quantiles obtained from the simulated counts at each time point. A value of \code{NULL} disables the confidence interval. } \item{matplot.args}{ a list of graphical parameters for \code{\link{matlines}}. } \item{initial.args}{ if a list (of graphical parameters for \code{\link{lines}}), a bar for the initial number of cases is added to the plot. } \item{legend}{ a logical, a character vector (providing names for \code{x}), or a list of parameters for \code{\link{legend}}. } \item{xlim,ylim}{ vectors of length 2 determining the axis limits. } \item{add}{ a logical indicating if the (mean) simulated time series or the fan chart, respectively, should be added to an existing plot. } \item{which}{ a single integer or a character string selecting the model in \code{x} for which to produce the fan chart. This is only relevant if \code{x} is a \code{"hhh4simslist"} of simulations from multiple models. Defaults to the first model. } \item{fan.args}{ a list of graphical parameters for the \code{\link[fanplot]{fan}}, e.g., to employ a different \code{\link{colorRampPalette}} as \code{fan.col}, or to enable contour lines via \code{ln}. } \item{observed.args}{ if a list (of graphical parameters for \code{\link{lines}}), the originally observed counts are added to the plot. } \item{means.args}{ if a list (of graphical parameters for \code{\link{lines}}), the point forecasts are added to the plot (by default as a white line within the fan). } \item{key.args}{ if a list, a color key (in \code{\link[fanplot]{fan}}'s \code{"boxfan"}-style) is added to the fan chart. The list may include positioning parameters \code{start} (the x-position) and \code{ylim} (the y-range of the color key), \code{space} to modify the width of the boxfan, and \code{rlab} to modify the labels. The color key is disabled by default. An alternative way of labeling the quantiles is via the argument \code{ln} in \code{fan.args}, see the Examples. } \item{xaxis}{ if a list of arguments for \code{\link{addFormattedXAxis}}, that function is used to draw the time axis, otherwise a default x-axis is drawn. } \item{units}{ a logical indicating aggregation over units. Can also be a factor (or something convertible to a factor using \code{\link{as.factor}}) to aggregate groups of units. } \item{time}{ a logical indicating if the counts should be summed over the whole simulation period. } \item{drop}{ a logical indicating if the unit dimension and the \code{"hhh4sims"} (or \code{"hhh4simslist"}) class should be dropped after aggregating over (groups of) units. } } \author{ Sebastian Meyer } \examples{ ### univariate example data("salmAllOnset") ## fit a hhh4 model to the first 13 years salmModel <- list(end = list(f = addSeason2formula(~1 + t)), ar = list(f = ~1), family = "NegBin1", subset = 2:678) salmFit <- hhh4(salmAllOnset, salmModel) ## simulate the next 20 weeks ahead salmSims <- simulate(salmFit, nsim = 300, seed = 3, subset = 678 + seq_len(20), y.start = observed(salmAllOnset)[678,]) ## compare final size distribution to observed value summary(aggregate(salmSims, time = TRUE)) # summary of simulated values plot(salmSims, type = "size") ## individual and average simulated time series with a confidence interval plot(salmSims, type = "time", main = "20-weeks-ahead simulation") ## fan chart based on the quantiles of the simulated counts at each time point ## point forecasts are represented by a white line within the fan if (requireNamespace("fanplot")) { plot(salmSims, type = "fan", main = "20-weeks-ahead simulation", fan.args = list(ln = 1:9/10), means.args = list()) } ### multivariate example data("measlesWeserEms") ## fit a hhh4 model to the first year measlesModel <- list( end = list(f = addSeason2formula(~1), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1 + log(pop), weights = W_powerlaw(maxlag = 5, normalize = TRUE)), family = "NegBin1", subset = 2:52, data = list(pop = population(measlesWeserEms))) measlesFit1 <- hhh4(measlesWeserEms, control = measlesModel) ## use a Poisson distribution instead (just for comparison) measlesFit2 <- update(measlesFit1, family = "Poisson") ## simulate realizations from these models during the second year measlesSims <- lapply(X = list(NegBin = measlesFit1, Poisson = measlesFit2), FUN = simulate, nsim = 50, seed = 1, subset = 53:104, y.start = observed(measlesWeserEms)[52,]) ## final size of the first model plot(measlesSims[[1]]) ## stratified by groups of districts mygroups <- factor(substr(colnames(measlesWeserEms), 4, 4)) apply(aggregate(measlesSims[[1]], time = TRUE, units = mygroups), 1, summary) plot(measlesSims[[1]], groups = mygroups) ## a class and plot-method for a list of simulations from different models measlesSims <- as.hhh4simslist(measlesSims) plot(measlesSims) ## simulated time series plot(measlesSims, type = "time", individual = TRUE, ylim = c(0, 80)) ## fan charts if (requireNamespace("fanplot")) { opar <- par(mfrow = c(2,1)) plot(measlesSims, type = "fan", which = 1, ylim = c(0, 80), main = "NegBin", key.args = list()) plot(measlesSims, type = "fan", which = 2, ylim = c(0, 80), main = "Poisson") par(opar) } } \keyword{hplot} surveillance/man/hagelloch.Rd0000644000176200001440000001576614310560071015752 0ustar liggesusers\encoding{latin1} \name{hagelloch} \alias{hagelloch} \alias{hagelloch.df} \docType{data} \keyword{datasets} \title{1861 Measles Epidemic in the City of Hagelloch, Germany} \description{ Data on the 188 cases in the measles outbreak among children in the German city of Hagelloch (near T\enc{ü}{ue}bingen) 1861. The data were originally collected by Dr. Albert Pfeilsticker (1863) and augmented and re-analysed by Dr. Heike Oesterle (1992). This dataset is used to illustrate the \code{twinSIR} model class in \code{vignette("twinSIR")}. } \usage{ data("hagelloch") } \format{ Loading \code{data("hagelloch")} gives two objects: \code{hagelloch} and \code{hagelloch.df}. The latter is the original \code{data.frame} of 188 rows with individual information for each infected child. \code{hagelloch} has been generated from \code{hagelloch.df} via \code{\link{as.epidata}} (see the Examples below) to obtain an \code{"epidata"} object for use with \code{\link{twinSIR}}. It contains the entire SIR event history of the outbreak (but not all of the covariates). The covariate information in \code{hagelloch.df} is as follows: \describe{ \item{PN:}{patient number} \item{NAME:}{patient name (as a factor)} \item{FN:}{family index} \item{HN:}{house number} \item{AGE:}{age in years} \item{SEX:}{gender of the individual (factor: male, female)} \item{PRO:}{\code{Date} of prodromes} \item{ERU:}{\code{Date} of rash} \item{CL:}{class (factor: preschool, 1st class, 2nd class)} \item{DEAD:}{\code{Date} of death (with missings)} \item{IFTO:}{number of patient who is the putative source of infection (0 = unknown)} \item{SI:}{serial interval = number of days between dates of prodromes of infection source and infected person} \item{C:}{complications (factor: no complications, bronchopneumonia, severe bronchitis, lobar pneumonia, pseudocroup, cerebral edema)} \item{PR:}{duration of prodromes in days} \item{CA:}{number of cases in family} \item{NI:}{number of initial cases} \item{GE:}{generation number of the case} \item{TD:}{day of max. fever (days after rush)} \item{TM:}{max. fever (degree Celsius)} \item{x.loc:}{x coordinate of house (in meters). Scaling in metres is obtained by multiplying the original coordinates by 2.5 (see details in Neal and Roberts (2004))} \item{y.loc:}{y coordinate of house (in meters). See also the above description of \code{x.loc}.} \item{tPRO:}{Time of prodromes (first symptoms) in days after the start of the epidemic (30 Oct 1861).} \item{tERU:}{Time upon which the rash first appears.} \item{tDEAD:}{Time of death, if available.} \item{tR:}{Time at which the infectious period of the individual is assumed to end. This unknown time is calculated as \deqn{tR_i = \min(tDEAD_i, tERU_i+d_0),}{tR[i] = min(tDEAD[i], tERU[i] + d0),} where -- as in Section 3.1 of Neal and Roberts (2004) -- we use \eqn{d_0=3}{d0=3}.} \item{tI:}{Time at which the individual is assumed to become infectious. Actually this time is unknown, but we use \deqn{tI_i = tPRO_i - d_1,}{tI[i] = tPRO[i] - d1,} where \eqn{d_1=1}{d1=1} as in Neal and Roberts (2004).} } The time variables describe the transitions of the individual in an Susceptible-Infectious-Recovered (SIR) model. Note that in order to avoid ties in the event times resulting from daily interval censoring, the times have been jittered uniformly within the respective day. The time point 0.5 would correspond to noon of 30 Oct 1861. The \code{hagelloch} \code{"epidata"} object only retains some of the above covariates to save space. Apart from the usual \code{"epidata"} event columns, \code{hagelloch} contains a number of extra variables representing distance- and covariate-based weights for the force of infection: \describe{ \item{household:}{the number of currently infectious children in the same household (including the child itself if it is currently infectious).} \item{nothousehold:}{the number of currently infectious children outside the household.} \item{c1, c2:}{the number of children infectious during the respective time block and being members of class 1 and 2, respectively; but the value is 0 if the individual of the row is not herself a member of the respective class.} } Such epidemic covariates can been computed by specifying suitable \code{f} and \code{w} arguments in \code{\link{as.epidata}} at conversion (see the code below), or at a later step via the \code{\link[=update.epidata]{update}}-method for \code{"epidata"}. } \source{ Thanks to Peter J. Neal, University of Manchester, for providing us with these data, which he again became from Niels Becker, Australian National University. To cite the data, the main references are Pfeilsticker (1863) and Oesterle (1992). } \examples{ data("hagelloch") head(hagelloch.df) # original data documented in Oesterle (1992) head(as.data.frame(hagelloch)) # "epidata" event history format ## How the "epidata" 'hagelloch' was created from 'hagelloch.df' stopifnot(all.equal(hagelloch, as.epidata( hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list( household = function(u) u == 0, nothousehold = function(u) u > 0 ), w = list( c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i ), keep.cols = c("SEX", "AGE", "CL")) )) ### Basic plots produced from hagelloch.df # Show case locations as in Neal & Roberts (different scaling) using # the data.frame (promoted to a SpatialPointsDataFrame) coordinates(hagelloch.df) <- c("x.loc","y.loc") plot(hagelloch.df, xlab="x [m]", ylab="x [m]", pch=15, axes=TRUE, cex=sqrt(multiplicity(hagelloch.df))) # Epicurve hist(as.numeric(hagelloch.df$tI), xlab="Time (days)", ylab="Cases", main="") ### "epidata" summary and plot methods (s <- summary(hagelloch)) head(s$byID) plot(s) \dontrun{ # Show a dynamic illustration of the spread of the infection animate(hagelloch, time.spacing=0.1, sleep=1/100, legend.opts=list(x="topleft")) } } \references{ Pfeilsticker, A. (1863). Beitr\enc{ä}{ae}ge zur Pathologie der Masern mit besonderer Ber\enc{ü}{ue}cksichtigung der statistischen Verh\enc{ä}{ae}ltnisse, M.D. Thesis, Eberhard-Karls-Universit\enc{ä}{ae}t T\enc{ü}{ue}bingen. Available as \url{https://archive.org/details/beitrgezurpatho00pfeigoog}. Oesterle, H. (1992). Statistische Reanalyse einer Masernepidemie 1861 in Hagelloch, M.D. Thesis, Eberhard-Karls-Universit\enc{ä}{ae}at T\enc{ü}{ue}bingen. Neal, P. J. and Roberts, G. O (2004). Statistical inference and model selection for the 1861 Hagelloch measles epidemic, Biostatistics 5(2):249-261 } \seealso{ data class: \code{\link{epidata}} point process model: \code{\link{twinSIR}} illustration with \code{hagelloch}: \code{vignette("twinSIR")} } surveillance/man/algo.compare.Rd0000644000176200001440000000331314176013316016361 0ustar liggesusers\name{algo.compare} \alias{algo.compare} \title{Comparison of Specified Surveillance Systems using Quality Values} \description{ Comparison of specified surveillance algorithms using quality values. } \usage{ algo.compare(survResList) } \arguments{ \item{survResList}{a list of survRes objects to compare via quality values.} } \value{ Matrix with values from \code{\link{algo.quality}}, i.e. quality values for every surveillance algorithm found in \code{survResults}. } \seealso{\code{\link{algo.quality}}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from any methods in range = 200:400 range <- 200:400 survRes <- algo.call(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range), list(funcName = "rki", range = range, b = 3, w = 2, actY = FALSE), list(funcName = "rki", range = range, b = 2, w = 9, actY = TRUE), list(funcName = "bayes1", range = range), list(funcName = "bayes2", range = range), list(funcName = "bayes3", range = range), list(funcName = "bayes", range = range, b = 1, w = 5, actY = TRUE,alpha=0.05) )) algo.compare(survRes) } \keyword{classif} surveillance/man/algo.cusum.Rd0000644000176200001440000001171414137000756016074 0ustar liggesusers\name{algo.cusum} \alias{algo.cusum} \title{CUSUM method} \encoding{latin1} \description{ Approximate one-side CUSUM method for a Poisson variate based on the cumulative sum of the deviation between a reference value k and the transformed observed values. An alarm is raised if the cumulative sum equals or exceeds a prespecified decision boundary h. The function can handle time varying expectations. } \usage{ algo.cusum(disProgObj, control = list(range = range, k = 1.04, h = 2.26, m = NULL, trans = "standard", alpha = NULL)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain)} \item{control}{control object: \describe{ \item{\code{range}}{determines the desired time points which should be evaluated} \item{\code{k}}{is the reference value} \item{\code{h}}{the decision boundary} \item{\code{m}}{how to determine the expected number of cases -- the following arguments are possible \describe{ \item{\code{numeric}}{a vector of values having the same length as \code{range}. If a single numeric value is specified then this value is replicated \code{length(range)} times.} \item{\code{NULL}}{A single value is estimated by taking the mean of all observations previous to the first \code{range} value.} \item{\code{"glm"}}{ A GLM of the form \deqn{\log(m_t) = \alpha + \beta t + \sum_{s=1}^S (\gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)),} where \eqn{\omega_s = \frac{2\pi}{52}s}{\omega_s = 2\pi/52 s} are the Fourier frequencies is fitted. Then this model is used to predict the \code{range} values.} }} \item{\code{trans}}{one of the following transformations (warning: Anscombe and NegBin transformations are experimental) \describe{ \item{\code{rossi}}{standardized variables z3 as proposed by Rossi} \item{\code{standard}}{standardized variables z1 (based on asymptotic normality) - This is the default.} \item{\code{anscombe}}{anscombe residuals -- experimental} \item{\code{anscombe2nd}}{ anscombe residuals as in Pierce and Schafer (1986) based on 2nd order approximation of E(X) -- experimental} \item{\code{pearsonNegBin}}{compute Pearson residuals for NegBin -- experimental} \item{\code{anscombeNegBin}}{anscombe residuals for NegBin -- experimental} \item{\code{none}}{ no transformation} } } \item{\code{alpha}}{parameter of the negative binomial distribution, s.t. the variance is \eqn{m+\alpha *m^2} } } } } \value{ \code{algo.cusum} gives a list of class \code{"survRes"} which includes the vector of alarm values for every timepoint in \code{range} and the vector of cumulative sums for every timepoint in \code{range} for the system specified by \code{k} and \code{h}, the range and the input object of class \code{"disProg"}. The \code{upperbound} entry shows for each time instance the number of diseased individuals it would have taken the cusum to signal. Once the CUSUM signals no resetting is applied, i.e. signals occurs until the CUSUM statistic again returns below the threshold. In case \code{control$m="glm"} was used, the returned \code{control$m.glm} entry contains the fitted \code{"glm"} object. } \note{This implementation is experimental, but will not be developed further.} \author{M. Paul and M. \enc{Höhle}{Hoehle}} \examples{ # Xi ~ Po(5), i=1,...,500 set.seed(321) stsObj <- sts(observed = rpois(500,lambda=5)) # there should be no alarms as mean doesn't change res <- cusum(stsObj, control = list(range = 100:500, trans = "anscombe")) plot(res, xaxis.labelFormat = NULL) # simulated data disProgObj <- sim.pointSource(p = 1, r = 1, length = 250, A = 0, alpha = log(5), beta = 0, phi = 10, frequency = 10, state = NULL, K = 0) plot(disProgObj) # Test weeks 200 to 250 for outbreaks surv0 <- algo.cusum(disProgObj, control = list(range = 200:250)) plot(surv0, xaxis.years = FALSE) # alternatively, using the newer "sts" interface stsObj <- disProg2sts(disProgObj) surv <- cusum(stsObj, control = list(range = 200:250)) plot(surv) stopifnot(upperbound(surv) == surv0$upperbound) } \references{ G. Rossi, L. Lampugnani and M. Marchi (1999), An approximate CUSUM procedure for surveillance of health events, Statistics in Medicine, 18, 2111--2122 D. A. Pierce and D. W. Schafer (1986), Residuals in Generalized Linear Models, Journal of the American Statistical Association, 81, 977--986 } \keyword{classif} surveillance/man/linelist2sts.Rd0000644000176200001440000000722413430572401016453 0ustar liggesusers\encoding{latin1} \name{linelist2sts} \alias{linelist2sts} \title{ Convert Dates of Individual Case Reports into a Time Series of Counts } \description{ The function is used to convert an individual line list of cases to an aggregated time series of counts based on event date information of the cases. } \usage{ linelist2sts(linelist,dateCol, aggregate.by=c("1 day", "1 week", "7 day", "1 week", "1 month", "3 month", "1 year"), dRange=NULL, epochInPeriodStr=switch(aggregate.by, "1 day"="1", "1 week"="\%u", "1 month"="\%d","3 month"="\%q","1 year"="\%j"), startYearFormat=switch(aggregate.by,"1 day"="\%Y", "7 day"="\%G", "1 week"="\%G","1 month"="\%Y","3 month"="\%Y","1 year"="\%Y"), startEpochFormat=switch(aggregate.by,"1 day"="\%j", "7 day"="\%V", "1 week"="\%V", "1 month"="\%m", "3 month"="\%Q", "1 year"="1") ) } \arguments{ \item{linelist}{ A \code{data.frame} containing the line list of cases. } \item{dateCol}{A character string stating the column name in \code{linelist} which contains the event occurrence information (as a vector of \code{Date}s) which are to be temporally aggregated. } \item{aggregate.by}{Temporal aggregation level given as a string, see the \code{by} variable of the \code{\link{seq.Date}} function for further details. } \item{dRange}{A vector containing the minimum and maximum date for doing the aggregation. If not specified these dates are extracted automatically by taking \code{range(D[,dateCol])} and adjust these according to \code{aggregate.by} (e.g. always first of a month). } \item{epochInPeriodStr}{\code{strptime} compatible format string to use for determining how a date is placed within the epoch. This is, e.g., used to move the \code{dRange} epochs to the beginning of the period. Example: In case of weekly aggregation the "\%u" determines which day within the week (Monday is day 1) we have. See \code{\link{strptime}} for further details. } \item{startYearFormat}{\code{strptime} compatible format string to use for determining how the \code{start} entry of the \code{sts} object is generated. Usually the provided defaults are sufficient.} \item{startEpochFormat}{\code{strptime} compatible format string to use for determining how the \code{start} entry of the \code{sts} object is generated. Usually the provided defaults are sufficient.} } \details{ The date range is automatically extended such that the starting and ending dates are always the first epoch within the period, i.e. for aggregation by week it is moved to Mondays. This is controlled by the \code{epochInPeriodStr} parameter. Please note that the formatting strings are implemented by the \code{\link{formatDate}} function, which uses \code{\link{strptime}} formatting strings as well as formatting of quarters via "\%Q", "\%OQ" and "\%q". } \value{ The function returns an object of class \code{"\linkS4class{sts}"}. The \code{freq} slot might not be appropriate. } \author{ Michael \enc{Höhle}{Hoehle} } \seealso{ \code{\link{seq.Date}}, \code{\link{strptime}}, \code{\link{formatDate}} } \examples{ #Load O104 outbreak data data("husO104Hosp") #Convert line list to an sts object sts <- linelist2sts(husO104Hosp, dateCol="dHosp", aggregate.by="1 day") #Check that the number of cases is correct all.equal(sum(observed(sts)),nrow(husO104Hosp)) #Plot the result plot(sts,xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange), xaxis.labelFormat="\%d \%b", xlab="",las=2,cex.axis=0.8) } \keyword{models} \keyword{optimize} surveillance/man/findH.Rd0000644000176200001440000000445313122471774015056 0ustar liggesusers\name{findH} \alias{findH} \alias{hValues} \title{Find decision interval for given in-control ARL and reference value} \description{ Function to find a decision interval \code{h}* for given reference value \code{k} and desired ARL \eqn{\gamma} so that the average run length for a Poisson or Binomial CUSUM with in-control parameter \eqn{\theta_0}, reference value \code{k} and is approximately \eqn{\gamma}, i.e. \eqn{\Big| \frac{ARL(h^*) -\gamma}{\gamma} \Big| < \epsilon}, or larger, i.e. \eqn{ARL(h^*) > \gamma }. } \usage{ findH(ARL0, theta0, s = 1, rel.tol = 0.03, roundK = TRUE, distr = c("poisson", "binomial"), digits = 1, FIR = FALSE, ...) hValues(theta0, ARL0, rel.tol=0.02, s = 1, roundK = TRUE, digits = 1, distr = c("poisson", "binomial"), FIR = FALSE, ...) } \arguments{ \item{ARL0}{ desired in-control ARL \eqn{\gamma} } \item{theta0}{in-control parameter \eqn{\theta_0}} \item{s}{change to detect, see details} \item{distr}{ \code{"poisson"} or \code{"binomial"} } \item{rel.tol}{relative tolerance, i.e. the search for \code{h}* is stopped if \eqn{\Big| \frac{ARL(h^*) -\gamma}{\gamma} \Big| < } \code{rel.tol} } \item{digits}{the reference value \code{k} and the decision interval \code{h} are rounded to \code{digits} decimal places} \item{roundK}{ passed to \code{findK} } \item{FIR}{if \code{TRUE}, the decision interval that leads to the desired ARL for a FIR CUSUM with head start \eqn{\frac{\code{h}}{2}} is returned } \item{\dots}{ further arguments for the distribution function, i.e. number of trials \code{n} for binomial cdf } } \value{ \code{findH} returns a vector and \code{hValues} returns a matrix with elements \item{theta0}{in-control parameter} \item{h}{decision interval} \item{k}{reference value} \item{ARL}{ARL for a CUSUM with parameters \code{k} and \code{h} } \item{rel.tol}{corresponds to \eqn{\Big| \frac{ARL(h) -\gamma}{\gamma} \Big|} } } \details{ The out-of-control parameter used to determine the reference value \code{k} is specified as: \deqn{\theta_1 = \lambda_0 + s \sqrt{\lambda_0} } for a Poisson variate \eqn{X \sim Po(\lambda)} \deqn{\theta_1 = \frac{s \pi_0}{1+(s-1) \pi_0} } for a Binomial variate \eqn{X \sim Bin(n, \pi) } } \keyword{models} surveillance/man/magic.dim.Rd0000644000176200001440000000137613276245673015666 0ustar liggesusers\name{magic.dim} \alias{magic.dim} \title{Compute Suitable k1 x k2 Layout for Plotting} \description{ For a given number \code{k}, \code{magic.dim} provides a vector containing two elements, the number of rows (k1) and columns (k2), respectively, which can be used to set the dimension of a single graphic device so that k1*k2 plots can be drawn by row (or by column) on the device. } \usage{ magic.dim(k) } \arguments{ \item{k}{an integer} } \value{numeric vector with two elements} \seealso{ \code{\link{primeFactors}} and \code{\link{bestCombination}} which are internally used to complete the task. \code{\link{n2mfrow}} is a similar function from package \pkg{grDevices}. } \keyword{dplot} \keyword{utilities} surveillance/man/addSeason2formula.Rd0000644000176200001440000000461514442263115017371 0ustar liggesusers\name{addSeason2formula} \alias{addSeason2formula} \title{ Add Harmonics to an Existing Formula } \description{ This function helps to construct a \code{\link{formula}} object that can be used in a call to \code{\link{hhh4}} to model seasonal variation via a sum of sine and cosine terms. } \usage{ addSeason2formula(f = ~1, S = 1, period = 52, timevar = "t") } \arguments{ \item{f}{ formula that the seasonal terms should be added to, defaults to an intercept \code{~1}. } \item{S}{ number of sine and cosine terms. If \code{S} is a vector, unit-specific seasonal terms are created. } \item{period}{ period of the season, defaults to 52 for weekly data. } \item{timevar}{ the time variable in the model. Defaults to \code{"t"}. } } \details{ The function adds the seasonal terms \deqn{ \sin( s \cdot 2\pi \cdot \code{timevar}/\code{period} ),\; \cos( s \cdot 2\pi \cdot \code{timevar}/\code{period} ), }{ sin( s * 2 * pi * \code{timevar}/\code{period} ), cos( s * 2 * pi * \code{timevar}/\code{period} ), } for \eqn{s = 1,\dots,\code{S}} to an existing formula \code{f}. Note the following equivalence when interpreting the coefficients of the seasonal terms: \deqn{ \gamma \sin(\omega t) + \delta \cos(\omega t) = A \sin(\omega t + \epsilon) }{ gamma sin(omega * t) + delta cos(omega * t) = A sin(omega * t + epsilon) } with amplitude \eqn{A = \sqrt{\gamma^2 + \delta^2}}{A = sqrt(gamma^2 + delta^2)} and phase shift \eqn{\epsilon = \arctan(\delta / \gamma)}. The amplitude and phase shift can be obtained from a fitted \code{\link{hhh4}} model via \code{coef(..., amplitudeShift = TRUE)}, see \code{\link{coef.hhh4}}. } \value{ Returns a \code{\link{formula}} with the seasonal terms added and its environment set to \code{\link{.GlobalEnv}}. Note that to use the resulting formula in \code{\link{hhh4}}, a time variable named as specified by the argument \code{timevar} must be available. } \author{ M. Paul, with contributions by S. Meyer } \seealso{ \code{\link{hhh4}}, \code{\link{fe}}, \code{\link{ri}} } \examples{ # add 2 sine/cosine terms to a model with intercept and linear trend addSeason2formula(f = ~ 1 + t, S = 2) # the same for monthly data addSeason2formula(f = ~ 1 + t, S = 2, period = 12) # different number of seasons for a bivariate time series addSeason2formula(f = ~ 1, S = c(3, 1), period = 52) } surveillance/man/stsNClist_animate.Rd0000644000176200001440000000225214404370624017441 0ustar liggesusers\name{stsNClist_animate} \alias{stsNClist_animate} \alias{animate_nowcasts} \encoding{latin1} \title{Animate a Sequence of Nowcasts} \description{ Animate a sequence of nowcasts stored as a list. } \usage{ animate_nowcasts(nowcasts,linelist_truth, method="bayes.trunc.ddcp", control=list(dRange=NULL,anim.dRange=NULL, plot.dRange=NULL, consistent=FALSE, sys.sleep = 1, ylim=NULL,cex.names=0.7, col=c("violetred3","#2171B5","orange","blue","black", "greenyellow")), showLambda=TRUE) } \arguments{ \item{nowcasts}{A list of objects of class \code{\linkS4class{stsNC}}} \item{linelist_truth}{True linelist} \item{method}{Which method to show (has to be present in the nowcasts)} \item{control}{List with control options} \item{showLambda}{Boolean indicating whether to show the estimate for the epidemic curve (only applied to \code{bayes.trunc.ddcp})} } \value{ This function is experimental and not yet fully documented. } \author{M. \enc{Höhle}{Hoehle}} \seealso{ \url{https://staff.math.su.se/hoehle/blog/2016/07/19/nowCast.html} for a worked through example. } \keyword{hplot} surveillance/man/measles.weser.Rd0000644000176200001440000001074014614160257016575 0ustar liggesusers\encoding{latin1} \name{measles.weser} \alias{measles.weser} \alias{measlesWeserEms} \docType{data} \keyword{datasets} \title{Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002} \description{ Weekly counts of new measles cases for the 17 administrative districts (NUTS-3 level) of the \dQuote{Weser-Ems} region of Lower Saxony, Germany, during 2001 and 2002, as reported to the Robert Koch institute according to the Infection Protection Act (\dQuote{Infektionsschutzgesetz}, \acronym{IfSG}).\cr \code{data("measlesWeserEms")} is a corrected version of \code{data("measles.weser")} (see Format section below). These data are illustrated and analyzed in Meyer et al. (2017, Section 5), see \code{vignette("hhh4_spacetime")}. } \usage{ data("measles.weser") data("measlesWeserEms") } \format{ \code{data("measles.weser")} is an object of the old \code{"disProg"} class, whereas \code{data("measlesWeserEms")} is of the new class \code{"\linkS4class{sts}"}. Furthermore, the following updates have been applied for \code{data("measlesWeserEms")}: \itemize{ \item it includes the two districts \dQuote{SK Delmenhorst} (03401) and \dQuote{SK Wilhemshaven} (03405) with zero counts, which are ignored in \code{data("measles.weser")}. \item it corrects the time lag error for year 2002 caused by a redundant pseudo-week \dQuote{0} with 0 counts only (the row \code{measles.weser$observed[53,]} is nonsense). \item it has one more case attributed to \dQuote{LK Oldenburg} (03458) during 2001/W17, i.e., 2 cases instead of 1. This reflects the official data as of \dQuote{Jahrbuch 2005}, whereas \code{data("measles.weser")} is as of \dQuote{Jahrbuch 2004}. \item it contains a map of the region (as a \code{"\linkSPclass{SpatialPolygonsDataFrame}"}) with the following variables: \describe{ \item{\code{GEN}}{district label.} \item{\code{AREA}}{district area in m^2.} \item{\code{POPULATION}}{number of inhabitants (as of 31/12/2003).} \item{\code{vaccdoc.2004}}{proportion with a vaccination card among screened abecedarians (2004).} \item{\code{vacc1.2004}}{proportion with at least one vaccination against measles among abecedarians presenting a vaccination card (2004).} \item{\code{vacc2.2004}}{proportion of doubly vaccinated abecedarians among the ones presenting their vaccination card at school entry in the year 2004.} } \item it uses the correct format for the official district keys, i.e., 5 digits (initial 0). \item its attached neighbourhood matrix is more general: a distance matrix (neighbourhood orders) instead of just an adjacency indicator matrix (special case \code{nbOrder == 1}). \item population fractions represent data as of 31/12/2003 (\acronym{LSN}, 2004, document \dQuote{A I 2 - hj 2 / 2003}). There are only minor differences to the ones used for \code{data("measles.weser")}. } } \source{ Measles counts were obtained from the public SurvStat database of the Robert Koch institute: \url{https://survstat.rki.de/}. A shapefile of Germany's districts as of 01/01/2009 was obtained from the German Federal Agency for Cartography and Geodesy (\url{https://gdz.bkg.bund.de/}). The map of the 17 districts of the \dQuote{Weser-Ems} region (\code{measlesWeserEms@map}) is a simplified subset of this shapefile using a 30\% reduction via the Douglas-Peucker reduction method as implemented at \url{https://MapShaper.org}. Population numbers were obtained from the Federal Statistical Office of Lower Saxony (\acronym{LSN}). %\url{https://www.statistik.niedersachsen.de/} % curl status 400 ... Vaccination coverage was obtained from the public health department of Lower Saxony (\acronym{NLGA}, \dQuote{Impfreport}). %\url{https://www.nlga.niedersachsen.de/} % curl status 400 ... %% Nieders\enc{ä}{ae}chsisches Landesgesundheitsamt (2005): Impfreport -- %% Durchimpfung von Kindern im Einschulungsalter in Niedersachsen im %% Erhebungsjahrgang 2004. } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \examples{ ## old "disProg" object data("measles.weser") measles.weser plot(measles.weser, as.one=FALSE) ## new "sts" object (with corrections) data("measlesWeserEms") measlesWeserEms plot(measlesWeserEms) } surveillance/man/twinstim_plot.Rd0000644000176200001440000000260512011140620016712 0ustar liggesusers\name{twinstim_plot} \alias{plot.twinstim} \title{ Plot methods for fitted \code{twinstim}'s } \description{ The fitted conditional intensity function from \code{\link{twinstim}} may be visualized in at least two ways: \code{\link{iafplot}} plots the fitted interaction functions (as a function of the distance from the host), and \code{\link{intensityplot.twinstim}} plots the fitted intensity either aggregated over space (evolution over time) or aggregated over time (spatial surface of the cumulated intensity). The \code{plot} method for class \code{"twinstim"} is just a wrapper for these two functions. } \usage{ \method{plot}{twinstim}(x, which, ...) } \arguments{ \item{x}{ an object of class \code{"twinstim"}. } \item{which}{ character. Which characteristic of the conditional intensity should be plotted? Possible values are the ones allowed in the functions \code{\link{iafplot}} and \code{\link{intensityplot.twinstim}}, e.g. \code{"siaf"}, or \code{"epidemic proportion"}. Partial matching is applied. } \item{\dots}{ further arguments passed to \code{iafplot} or \code{intensityplot.twinstim}. } } \value{ See the documentation of the respective plot functions, \code{\link{iafplot}} or \code{\link{intensityplot.twinstim}}. } \author{ Sebastian Meyer } \examples{ # see the examples for iafplot() and intensityplot.twinstim() } \keyword{hplot} surveillance/man/farringtonFlexible.Rd0000644000176200001440000002523614662137762017662 0ustar liggesusers\name{farringtonFlexible} \alias{farringtonFlexible} \encoding{latin1} \title{Surveillance for Univariate Count Time Series Using an Improved Farrington Method} \description{ % The function takes \code{range} values of the surveillance time series \code{sts} and for each time point uses a Poisson GLM with overdispersion to predict an upper bound on the number of counts according to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then compared to the observed number of counts. If the observation is above the bound, then an alarm is raised. The implementation is illustrated in Salmon et al. (2016). % } \usage{ farringtonFlexible(sts, control = list( range = NULL, b = 5, w = 3, reweight = TRUE, weightsThreshold = 2.58, verbose = FALSE, glmWarnings = TRUE, alpha = 0.05, trend = TRUE, pThresholdTrend = 0.05, limit54 = c(5,4), powertrans = "2/3", fitFun = "algo.farrington.fitGLM.flexible", populationOffset = FALSE, noPeriods = 1, pastWeeksNotIncluded = NULL, thresholdMethod = "delta")) } \arguments{ \item{sts}{object of class \code{\linkS4class{sts}} (including the \code{observed} and the \code{state} time series)} \item{control}{Control object given as a \code{list} containing the following components: \describe{ \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} all possible timepoints are used.} \item{\code{b}}{How many years back in time to include when forming the base counts.} \item{\code{w}}{Window's half-size, i.e. number of weeks to include before and after the current week in each year.} \item{\code{reweight}}{Boolean specifying whether to perform reweighting step.} \item{\code{weightsThreshold}}{Defines the threshold for reweighting past outbreaks using the Anscombe residuals (1 in the original method, 2.58 advised in the improved method).} \item{\code{verbose}}{Boolean specifying whether to show extra debugging information.} \item{\code{glmWarnings}}{Boolean specifying whether to print warnings from the call to \code{glm}.} \item{\code{alpha}}{An approximate (one-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated unlike the original method where it was a two-sided interval. The upper limit of this interval i.e. the \eqn{(1-\alpha)\cdot 100\%} quantile serves as an upperbound.} \item{\code{trend}}{Boolean indicating whether a trend should be included and kept in case the conditions in the Farrington et. al. paper are met (see the results). If \code{false} then NO trend is fit.} \item{\code{pThresholdTrend}}{Threshold for deciding whether to keep trend in the model (0.05 in the original method, 1 advised in the improved method).} \item{\code{limit54}}{Vector containing two numbers: \code{cases} and \code{period}. To avoid alarms in cases where the time series only has about almost no cases in the specific week the algorithm uses the following heuristic criterion (see Section 3.8 of the Farrington paper) to protect against low counts: no alarm is sounded if fewer than \eqn{\code{cases}=5} reports were received in the past \eqn{\code{period}=4} weeks. \code{limit54=c(cases,period)} is a vector allowing the user to change these numbers. Note: As of version 0.9-7 of the package the term "last" period of weeks includes the current week - otherwise no alarm is sounded for horrible large numbers if the four weeks before that are too low.} \item{\code{powertrans}}{Power transformation to apply to the data if the threshold is to be computed with the method described in Farrington et al. (1996. Use either "2/3" for skewness correction (Default), "1/2" for variance stabilizing transformation or "none" for no transformation.} \item{\code{fitFun}}{String containing the name of the fit function to be used for fitting the GLM. The only current option is "algo.farrington.fitGLM.flexible".} \item{\code{populationOffset}}{Boolean specifying whether to include a population offset in the GLM. The slot \code{sts@population} gives the population vector.} \item{\code{noPeriods}}{Number of levels in the factor allowing to use more baseline. If equal to 1 no factor variable is created, the set of reference values is defined as in Farrington et al (1996).} \item{\code{pastWeeksNotIncluded}}{Number of past weeks to ignore in the calculation. The default (\code{NULL}) means to use the value of \code{control$w}. Setting \code{pastWeeksNotIncluded=26} might be preferable (Noufaily et al., 2012).} \item{\code{thresholdMethod}}{Method to be used to derive the upperbound. Options are \code{"delta"} for the method described in Farrington et al. (1996), \code{"nbPlugin"} for the method described in Noufaily et al. (2012), and \code{"muan"} for the method extended from Noufaily et al. (2012).} } } } \details{ The following steps are performed according to the Farrington et al. (1996) paper. \enumerate{ \item Fit of the initial model with intercept, time trend if \code{trend} is \code{TRUE}, seasonal factor variable if \code{noPeriod} is bigger than 1, and population offset if \code{populationOffset} is \code{TRUE}. Initial estimation of mean and overdispersion. \item Calculation of the weights omega (correction for past outbreaks) if \code{reweighting} is \code{TRUE}. The threshold for reweighting is defined in \code{control}. \item Refitting of the model \item Revised estimation of overdispersion \item Omission of the trend, if it is not significant \item Repetition of the whole procedure \item Calculation of the threshold value using the model to compute a quantile of the predictive distribution. The method used depends on \code{thresholdMethod}, this can either be: \describe{ \item{"delta"}{One assumes that the prediction error (or a transformation of the prediction error, depending on \code{powertrans}), is normally distributed. The threshold is deduced from a quantile of this normal distribution using the variance and estimate of the expected count given by GLM, and the delta rule. The procedure takes into account both the estimation error (variance of the estimator of the expected count in the GLM) and the prediction error (variance of the prediction error). This is the suggestion in Farrington et al. (1996).} \item{"nbPlugin"}{One assumes that the new count follows a negative binomial distribution parameterized by the expected count and the overdispersion estimated in the GLM. The threshold is deduced from a quantile of this discrete distribution. This process disregards the estimation error, though. This method was used in Noufaily, et al. (2012).} \item{"muan"}{One also uses the assumption of the negative binomial sampling distribution but does not plug in the estimate of the expected count from the GLM, instead one uses a quantile from the asymptotic normal distribution of the expected count estimated in the GLM; in order to take into account both the estimation error and the prediction error. } } \item Computation of exceedance score } Warning: monthly data containing the last day of each month as date should be analysed with \code{epochAsDate=FALSE} in the \code{sts} object. Otherwise February makes it impossible to find some reference time points. } \value{ An object of class \code{sts} with the slots \code{upperbound} and \code{alarm} filled by appropriate output of the algorithm. The \code{control} slot of the input \code{sts} is amended with the following matrix elements, all with \code{length(range)} rows: \describe{ \item{trend}{Booleans indicating whether a time trend was fitted for this time point.} \item{trendVector}{coefficient of the time trend in the GLM for this time point. If no trend was fitted it is equal to NA.} \item{pvalue}{probability of observing a value at least equal to the observation under the null hypothesis .} \item{expected}{expectation of the predictive distribution for each timepoint. It is only reported if the conditions for raising an alarm are met (enough cases).} \item{mu0Vector}{input for the negative binomial distribution to get the upperbound as a quantile (either a plug-in from the GLM or a quantile from the asymptotic normal distribution of the estimator)} \item{phiVector}{overdispersion of the GLM at each timepoint.} } } \keyword{classif} \examples{ data("salmonella.agona") # Create the corresponding sts object from the old disProg object salm <- disProg2sts(salmonella.agona) ### RUN THE ALGORITHMS WITH TWO DIFFERENT SETS OF OPTIONS control1 <- list(range=282:312, noPeriods=1, b=4, w=3, weightsThreshold=1, pastWeeksNotIncluded=3, pThresholdTrend=0.05, alpha=0.1) control2 <- list(range=282:312, noPeriods=10, b=4, w=3, weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1, alpha=0.1) salm1 <- farringtonFlexible(salm,control=control1) salm2 <- farringtonFlexible(salm,control=control2) ### PLOT THE RESULTS y.max <- max(upperbound(salm1),observed(salm1),upperbound(salm2),na.rm=TRUE) plot(salm1, ylim=c(0,y.max), main='S. Newport in Germany', legend.opts=NULL) lines(1:(nrow(salm1)+1)-0.5, c(upperbound(salm1),upperbound(salm1)[nrow(salm1)]), type="s",col='tomato4',lwd=2) lines(1:(nrow(salm2)+1)-0.5, c(upperbound(salm2),upperbound(salm2)[nrow(salm2)]), type="s",col="blueviolet",lwd=2) legend("topleft", legend=c('Alarm','Upperbound with old options', 'Upperbound with new options'), pch=c(24,NA,NA),lty=c(NA,1,1), bg="white",lwd=c(2,2,2),col=c('red','tomato4',"blueviolet")) } \author{M. Salmon, M. \enc{Höhle}{Hoehle}} \seealso{\code{\link{algo.farrington.fitGLM}},\code{\link{algo.farrington.threshold}}} \keyword{classif} \references{ Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563. Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32 (7), 1206-1222. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/sts_creation.Rd0000644000176200001440000000501613430612031016500 0ustar liggesusers\name{sts_creation} \alias{sts_creation} \title{Simulate Count Time Series with Outbreaks} \usage{ sts_creation(theta, beta, gamma1, gamma2, m, overdispersion, dates, sizesOutbreak, datesOutbreak, delayMax, alpha, densityDelay) } \arguments{ \item{theta}{baseline frequency of reports} \item{beta}{time trend} \item{gamma1}{seasonality} \item{gamma2}{seasonality} \item{m}{seasonality} \item{overdispersion}{\code{size} parameter of \code{\link{rnbinom}} for the parameterization with mean and dispersion} \item{dates}{dates of the time series} \item{sizesOutbreak}{sizes of all the outbreaks (vector)} \item{datesOutbreak}{dates of all the outbreaks (vector)} \item{delayMax}{maximal delay in time units} \item{alpha}{alpha for getting the (1-alpha) quantile of the negative binomial distribution at each timepoint} \item{densityDelay}{density distribution for the delay} } \description{ Function for simulating a time series and creating an \code{\linkS4class{sts}} object. As the counts are generated using a negative binomial distribution one also gets the (1-alpha) quantile for each timepoint (can be interpreted as an in-control upperbound for in-control values). The baseline and outbreaks are created as in Noufaily et al. (2012). } \examples{ set.seed(12345) # Time series parameters scenario4 <- c(1.6,0,0.4,0.5,2) theta <- 1.6 beta <- 0 gamma1 <-0.4 gamma2 <- 0.5 overdispersion <- 1 m <- 1 # Dates firstDate <- "2006-01-01" lengthT=350 dates <- as.Date(firstDate) + 7 * 0:(lengthT - 1) # Maximal delay in weeks D=10 # Dates and sizes of the outbreaks datesOutbreak <- as.Date(c("2008-03-30","2011-09-25")) sizesOutbreak <- c(2,5) # Delay distribution data("salmAllOnset") in2011 <- which(isoWeekYear(epoch(salmAllOnset))$ISOYear == 2011) rT2011 <- salmAllOnset@control$reportingTriangle$n[in2011,] densityDelay <- apply(rT2011,2,sum, na.rm=TRUE)/sum(rT2011, na.rm=TRUE) # alpha for the upperbound alpha <- 0.05 # Create the sts with the full time series stsSim <- sts_creation(theta=theta,beta=beta,gamma1=gamma1,gamma2=gamma2,m=m, overdispersion=overdispersion, dates=dates, sizesOutbreak=sizesOutbreak,datesOutbreak=datesOutbreak, delayMax=D,densityDelay=densityDelay, alpha=alpha) plot(stsSim) } \references{ Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32 (7), 1206-1222. } surveillance/man/layout.labels.Rd0000644000176200001440000001071514673030222016571 0ustar liggesusers\name{layout.labels} \alias{layout.labels} \alias{layout.scalebar} \title{ Layout Items for \code{spplot} } \description{ Generate \code{sp.layout} items for use by \code{\link[sp]{spplot}} or plot these items directly in the traditional graphics system. Function \code{layout.labels} draws labels at the coordinates of the spatial object, and \code{layout.scalebar} returns a labeled scale bar. } \usage{ layout.labels(obj, labels = TRUE, plot = FALSE) layout.scalebar(obj, corner = c(0.05, 0.95), scale = 1, labels = c(0, scale), height = 0.05, pos = 3, ..., plot = FALSE) } \arguments{ \item{obj}{ an object inheriting from a \code{"\linkSPclass{Spatial}"} class. } \item{labels}{ specification of the labels. For \code{layout.labels}: \itemize{ \item a \code{FALSE} or \code{NULL} value omits labels (\code{NULL} is returned), \item \code{labels = TRUE} uses \code{row.names(obj)}, \item a character or numeric index for a column of \code{obj@data} which contains suitable labels, \item a vector of length \code{length(obj)} with labels, \item or a list of arguments for \code{\link[lattice]{panel.text}}, where the optional \code{labels} component follows the same rules as above. } For \code{layout.scalebar}, a character vector of length two giving the labels to be put above the left and right ends of the scale bar. } \item{corner}{ the location of the scale bar in the unit square, where \code{c(0,0)} refers to the bottom left corner. By default, the scale bar is placed in the top left corner (with a small buffer). } \item{scale}{ the width of the scale bar in the units of \code{\link[sp]{proj4string}(obj)}. If \code{identical(FALSE, \link[sp]{is.projected}(obj))} (i.e., \code{obj} has longlat coordinates), \code{scale} is interpreted in kilometres. } \item{height}{ the height of the scale bar, see \code{\link[sp]{layout.scale.bar}}. } \item{pos}{ a position specifier for the labels (see \code{\link{text}}). By default, the labels are plotted above the scale bar. } \item{\dots}{ further arguments for \code{\link[lattice]{panel.text}} (if \code{plot = FALSE}) or \code{\link{text}} (if \code{plot = TRUE}) to change the style of the labels, e.g., \code{cex}, \code{col}, and \code{font}. } \item{plot}{ logical indicating if the layout item should be plotted using the traditional graphics system. By default (\code{FALSE}), a list for subsequent use by \code{\link[sp]{spplot}} is returned. } } \value{ For \code{layout.labels}, a single \code{sp.layout} item, which is a list with first element \code{"panel.text"} and subsequent elements being arguments to that function based on the \code{labels} specification. For \code{layout.scalebar}, a list of \code{sp.layout} items comprising the polygonal scale bar and the labels. If these layout functions are called with \code{plot = TRUE}, the item is plotted directly using traditional graphics functions and \code{NULL} is returned. } \author{ Sebastian Meyer } \examples{ ## districts in the Regierungsbezirk Weser-Ems (longlat coordinates) data("measlesWeserEms") mapWE <- measlesWeserEms@map li1 <- layout.labels(mapWE, labels = list(font=2, labels="GEN")) li2 <- layout.scalebar(mapWE, corner = c(0.05, 0.05), scale = 20, labels = c("0", "20 km")) % sp:::is.projectedCRS() might load 'sf' but should succeed without spplot(mapWE, zcol = "AREA", sp.layout = c(list(li1), li2), col.regions = rev(heat.colors(100)), scales = list(draw = TRUE)) ## districts in Bavaria (projected coordinates) load(system.file("shapes", "districtsD.RData", package = "surveillance")) bavaria <- districtsD[substr(row.names(districtsD), 1, 2) == "09", ] sb <- layout.scalebar(bavaria, corner = c(0.75,0.9), scale = 50, labels = c("0", "50 km"), cex = 0.8) spplot(bavaria, zcol = "POPULATION", sp.layout = sb, xlab = "x [km]", ylab = "y [km]", scales = list(draw = TRUE), col.regions = rev(heat.colors(100))) ## these layout functions also work in the traditional graphics system par(mar = c(0,0,0,0)) plot(bavaria, col = "lavender") layout.scalebar(bavaria, corner = c(0.75, 0.9), scale = 50, labels = c("0", "50 km"), plot = TRUE) layout.labels(bavaria, labels = list(cex = 0.8, labels = substr(bavaria$GEN, 1, 3)), plot = TRUE) } \keyword{aplot} \keyword{dplot} surveillance/man/pairedbinCUSUM.Rd0000644000176200001440000001457114665117445016607 0ustar liggesusers\name{pairedbinCUSUM} \alias{pairedbinCUSUM} \alias{pairedbinCUSUM.runlength} \alias{pairedbinCUSUM.LLRcompute} \encoding{latin1} \title{Paired binary CUSUM and its run-length computation} \description{ CUSUM for paired binary data as described in Steiner et al. (1999). } \usage{ pairedbinCUSUM(stsObj, control = list(range=NULL,theta0,theta1, h1,h2,h11,h22)) pairedbinCUSUM.runlength(p,w1,w2,h1,h2,h11,h22, sparse=FALSE) } \arguments{ \item{stsObj}{Object of class \code{sts} containing the paired responses for each of the, say n, patients. The observed slot of \code{stsObj} is thus a \eqn{n \times 2}{n x 2} matrix.} \item{control}{Control object as a list containing several parameters. \describe{ \item{\code{range}}{Vector of indices in the observed slot to monitor.} \item{\code{theta0}}{In-control parameters of the paired binary CUSUM.} \item{\code{theta1}}{Out-of-control parameters of the paired binary CUSUM.} \item{\code{h1}}{Primary control limit (=threshold) of 1st CUSUM.} \item{\code{h2}}{Primary control limit (=threshold) of 2nd CUSUM.} \item{\code{h11}}{Secondary limit for 1st CUSUM.} \item{\code{h22}}{Secondary limit for 2nd CUSUM.} } } \item{p}{Vector giving the probability of the four different possible states, i.e. c((death=0,near-miss=0),(death=1,near-miss=0), (death=0,near-miss=1),(death=1,near-miss=1)).} \item{w1}{The parameters \code{w1} and \code{w2} are the sample weights vectors for the two CUSUMs, see eqn. (2) in the paper. We have that \code{w1} is equal to deaths } \item{w2}{As for \code{w1}} \item{h1}{decision barrier for 1st individual cusums} \item{h2}{decision barrier for 2nd cusums} \item{h11}{together with \code{h22} this makes up the joing decision barriers} \item{h22}{together with \code{h11} this makes up the joing decision barriers} \item{sparse}{Boolean indicating whether to use sparse matrix computations from the \code{Matrix} library (usually much faster!). Default: \code{FALSE}.} } \details{ For details about the method see the Steiner et al. (1999) reference listed below. Basically, two individual CUSUMs are run each based on a logistic regression model. The combined CUSUM not only signals if one of its two individual CUSUMs signals, but also if the two CUSUMs simultaneously cross the secondary limits. } \seealso{\code{\link{categoricalCUSUM}}} \value{An \code{sts} object with \code{observed}, \code{alarm}, etc. slots trimmed to the \code{control$range} indices. } \references{ Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes using cumulative sum charts, Statistics in Medicine, 18, pp. 69--86. } \examples{ #Set in-control and out-of-control parameters as in paper theta0 <- c(-2.3,-4.5,2.5) theta1 <- c(-1.7,-2.9,2.5) #Small helper function to compute the paired-binary likelihood #of the length two vector yz when the true parameters are theta dPBin <- function(yz,theta) { exp(dbinom(yz[1],size=1,prob=plogis(theta[1]),log=TRUE) + dbinom(yz[2],size=1,prob=plogis(theta[2]+theta[3]*yz[1]),log=TRUE)) } #Likelihood ratio for all four possible configurations p <- c(dPBin(c(0,0), theta=theta0), dPBin(c(0,1), theta=theta0), dPBin(c(1,0), theta=theta0), dPBin(c(1,1), theta=theta0)) if (surveillance.options("allExamples")) #Compute ARL using slow, non-sparse matrix operations pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32, h11=38,h22=17) #Sparse computations can be considerably (!) faster pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32, h11=38,h22=17,sparse=TRUE) #Use paired binary CUSUM on the De Leval et al. (1994) arterial switch #operation data on 104 newborn babies data("deleval") #Switch between death and near misses observed(deleval) <- observed(deleval)[,c(2,1)] #Run paired-binary CUSUM without generating alarms. pb.surv <- pairedbinCUSUM(deleval,control=list(theta0=theta0, theta1=theta1,h1=Inf,h2=Inf,h11=Inf,h22=Inf)) plot(pb.surv, xaxis.labelFormat=NULL, ylab="CUSUM Statistic") ###################################################################### #Scale the plots so they become comparable to the plots in Steiner et #al. (1999). To this end a small helper function is defined. ###################################################################### ###################################################################### #Log LR for conditional specification of the paired model ###################################################################### LLR.pairedbin <- function(yz,theta0, theta1) { #In control alphay0 <- theta0[1] ; alphaz0 <- theta0[2] ; beta0 <- theta0[3] #Out of control alphay1 <- theta1[1] ; alphaz1 <- theta1[2] ; beta1 <- theta1[3] #Likelihood ratios llry <- (alphay1-alphay0)*yz[1]+log(1+exp(alphay0))-log(1+exp(alphay1)) llrz <- (alphaz1-alphaz0)*yz[2]+log(1+exp(alphaz0+beta0*yz[1]))- log(1+exp(alphaz1+beta1*yz[1])) return(c(llry=llry,llrz=llrz)) } val <- expand.grid(0:1,0:1) table <- t(apply(val,1, LLR.pairedbin, theta0=theta0, theta1=theta1)) w1 <- min(abs(table[,1])) w2 <- min(abs(table[,2])) S <- upperbound(pb.surv) / cbind(rep(w1,nrow(observed(pb.surv))),w2) #Show results opar <- par(mfcol=c(2,1)) plot(1:nrow(deleval),S[,1],type="l",main="Near Miss",xlab="Patient No.", ylab="CUSUM Statistic") lines(c(0,1e99), c(32,32),lty=2,col=2) lines(c(0,1e99), c(17,17),lty=2,col=3) plot(1:nrow(deleval),S[,2],type="l",main="Death",xlab="Patient No.", ylab="CUSUM Statistic") lines(c(0,1e99), c(70,70),lty=2,col=2) lines(c(0,1e99), c(38,38),lty=2,col=3) par(opar) ###################################################################### # Run the CUSUM with thresholds as in Steiner et al. (1999). # After each alarm the CUSUM statistic is set to zero and # monitoring continues from this point. Triangles indicate alarm # in the respective CUSUM (nearmiss or death). If in both # simultaneously then an alarm is caused by the secondary limits. ###################################################################### pb.surv2 <- pairedbinCUSUM(deleval,control=list(theta0=theta0, theta1=theta1,h1=70*w1,h2=32*w2,h11=38*w1,h22=17*w2)) plot(pb.surv2, xaxis.labelFormat=NULL) } \author{S. Steiner and M. \enc{Höhle}{Hoehle}} \keyword{regression} surveillance/man/twinstim_profile.Rd0000644000176200001440000000704712677753025017434 0ustar liggesusers\encoding{latin1} \name{twinstim_profile} \alias{profile.twinstim} \title{ Profile Likelihood Computation and Confidence Intervals for \code{twinstim} objects } \description{ Function to compute estimated and profile likelihood based confidence intervals for \code{twinstim} objects. Computations might be cumbersome! WARNING: the implementation is not well tested, simply uses \code{optim} (ignoring optimizer settings from the original fit), and does not return the complete set of coefficients at each grid point. } \usage{ \method{profile}{twinstim}(fitted, profile, alpha = 0.05, control = list(fnscale = -1, maxit = 100, trace = 1), do.ltildeprofile=FALSE, ...) } \arguments{ \item{fitted}{ an object of class \code{"twinstim"}. } \item{profile}{ a list with elements being numeric vectors of length 4. These vectors must have the form \code{c(index, lower, upper, gridsize)}. \describe{ \item{\code{index}:}{ index of the parameter to be profiled in the vector \code{coef(fitted)}. } \item{\code{lower, upper}:}{ lower/upper limit of the grid on which the profile log-likelihood is evaluated. Can also be \code{NA} in which case \code{lower/upper} equals the lower/upper bound of the respective 0.3 \% Wald confidence interval (+-3*se). } \item{\code{gridsize}:}{ grid size of the equally spaced grid between lower and upper. Can also be 0 in which case the profile log-likelihood for this parameter is not evaluated on a grid. } } } \item{alpha}{ \eqn{(1-\alpha)\%}{(1-alpha)\%} profile likelihood based confidence intervals are computed. If alpha <= 0, then no confidence intervals are computed. This is currently not implemented. } \item{control}{ control object to use in \code{\link{optim}} for the profile log-likelihood computations. It might be necessary to control \code{maxit} or \code{reltol} in order to obtain results in finite time. } \item{do.ltildeprofile}{If \code{TRUE} calculate profile likelihood as well. This might take a while, since an optimisation for all other parameters has to be performed. Useful for likelihood based confidence intervals. Default: \code{FALSE}. } \item{\dots}{ unused (argument of the generic). } } \value{ list with profile log-likelihood evaluations on the grid, and -- not implemented yet -- highest likelihood and Wald confidence intervals. The argument \code{profile} is also returned. } \author{ Michael \enc{Höhle}{Hoehle} } \examples{ # profiling takes a while \dontrun{ #Load the twinstim model fitted to the IMD data data("imdepi", "imdepifit") # for profiling we need the model environment imdepifit <- update(imdepifit, model=TRUE) #Generate profiling object for a list of parameters for the new model names <- c("h.(Intercept)","e.typeC") coefList <- lapply(names, function(name) { c(pmatch(name,names(coef(imdepifit))),NA,NA,11) }) #Profile object (necessary to specify a more loose convergence #criterion). Speed things up by using do.ltildeprofile=FALSE (the default) prof <- profile(imdepifit, coefList, control=list(reltol=0.1, REPORT=1), do.ltildeprofile=TRUE) #Plot result for one variable par(mfrow=c(1,2)) for (name in names) { with(as.data.frame(prof$lp[[name]]), matplot(grid,cbind(profile,estimated,wald), type="l",xlab=name,ylab="loglik")) legend(x="bottomleft",c("profile","estimated","wald"),lty=1:3,col=1:3) } } } \keyword{htest} \keyword{methods} \keyword{optimize} \keyword{dplot} surveillance/man/algo.hmm.Rd0000644000176200001440000001577514431140532015526 0ustar liggesusers\encoding{latin1} \name{algo.hmm} \alias{algo.hmm} \title{Hidden Markov Model (HMM) method} \description{ This function implements on-line HMM detection of outbreaks based on the retrospective procedure described in Le Strat and Carret (1999). Using the function \code{\link[msm]{msm}} (from package \pkg{msm}) a specified HMM is estimated, the decoding problem, i.e. the most probable state configuration, is found by the Viterbi algorithm and the most probable state of the last observation is recorded. On-line detection is performed by sequentially repeating this procedure. Warning: This function can be very slow - a more efficient implementation would be nice! } \usage{ algo.hmm(disProgObj, control = list(range=range, Mtilde=-1, noStates=2, trend=TRUE, noHarmonics=1, covEffectEqual=FALSE, saveHMMs = FALSE, extraMSMargs=list())) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain)} \item{control}{control object: \describe{ \item{\code{range}}{determines the desired time points which should be evaluated. Note that opposite to other surveillance methods an initial parameter estimation occurs in the HMM. Note that range should be high enough to allow for enough reference values for estimating the HMM} \item{\code{Mtilde}}{number of observations back in time to use for fitting the HMM (including the current observation). Reasonable values are a multiple of \code{disProgObj$freq}, the default is \code{Mtilde=-1}, which means to use all possible values - for long series this might take very long time!} \item{\code{noStates}}{number of hidden states in the HMM -- the typical choice is 2. The initial rates are set such that the \code{noStates}th state is the one having the highest rate. In other words: this state is considered the outbreak state.} \item{\code{trend}}{Boolean stating whether a linear time trend exists, i.e. if \code{TRUE} (default) then \eqn{\beta_j \neq 0}{\beta != 0}} \item{\code{noHarmonics}}{number of harmonic waves to include in the linear predictor. Default is 1.} \item{\code{covEffectEqual}}{see details} \item{\code{saveHMMs}}{Boolean, if \code{TRUE} then the fitted HMMs are saved. With this option the function can also be used to analyse data retrospectively. Default option is \code{FALSE}} \item{\code{extraMSMArgs}}{A named list with additional arguments to send to the \code{\link[msm:msm]{msm}} HMM fitting function. Note that the \code{msm} arguments \code{formula}, \code{data}, \code{qmatrix}, \code{hmodel}, \code{hcovariates} and \code{hconstraint} are automatically filled by \code{algo.hmm}, thus these should NOT be modified.} } } } \value{ \code{algo.hmm} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range}. No \code{upperbound} can be specified and is put equal to zero. The resulting object contains a list \code{control$hmms}, which contains the \code{"msm"} objects with the fitted HMMs (if \code{saveHMMs=TRUE}). } \details{ For each time point t the reference values values are extracted. If the number of requested values is larger than the number of possible values the latter is used. Now the following happens on these reference values: A \code{noStates}-State Hidden Markov Model (HMM) is used based on the Poisson distribution with linear predictor on the log-link scale. I.e. \deqn{Y_t | X_t = j \sim Po(\mu_t^j),}{Y_t|X_t = j ~ Po(\mu_t^j),} where \deqn{\log(\mu_t^j) = \alpha_j + \beta_j\cdot t + \sum_{i=1}^{nH} \gamma_j^i \cos(2i\pi/freq\cdot (t-1)) + \delta_j^i \sin(2i\pi/freq\cdot (t-1))}{% log(mu_t^j) = alpha_j + beta_j t + \sum_{i=1}^{nH} gamma_j^i \cos(2*i*pi/freq * (t-1)) + delta_j^i sin(2*i*pi/freq * (t-1)) } and \eqn{nH=}\code{noHarmonics} and \eqn{freq=12,52} depending on the sampling frequency of the surveillance data. In the above \eqn{t-1} is used, because the first week is always saved as \code{t=1}, i.e. we want to ensure that the first observation corresponds to cos(0) and sin(0). If \code{covEffectEqual} then all covariate effects parameters are equal for the states, i.e. \eqn{\beta_j=\beta, \gamma_j^i=\gamma^i, \delta_j^i=\delta^i} for all \eqn{j=1,...,\code{noStates}}. In case more complicated HMM models are to be fitted it is possible to modify the \code{msm} code used in this function. Using e.g. \code{AIC} one can select between different models (see the \pkg{msm} package for further details). Using the Viterbi algorithms the most probable state configuration is obtained for the reference values and if the most probable configuration for the last reference value (i.e. time t) equals \code{control$noOfStates} then an alarm is given. Note: The HMM is re-fitted from scratch every time, sequential updating schemes of the HMM would increase speed considerably! A major advantage of the approach is that outbreaks in the reference values are handled automatically. } \seealso{\code{\link[msm:msm]{msm}}} \author{M. \enc{Höhle}{Hoehle}} \examples{ #Simulate outbreak data from HMM set.seed(123) counts <- sim.pointSource(p = 0.98, r = 0.8, length = 3*52, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.5) \dontrun{ #Do surveillance using a two state HMM without trend component and #the effect of the harmonics being the same in both states. A sliding #window of two years is used to fit the HMM surv <- algo.hmm(counts, control=list(range=(2*52):length(counts$observed), Mtilde=2*52,noStates=2,trend=FALSE, covEffectsEqual=TRUE,extraMSMargs=list())) plot(surv,legend.opts=list(x="topright")) } if (require("msm")) { #Retrospective use of the function, i.e. monitor only the last time point #but use option saveHMMs to store the output of the HMM fitting surv <- algo.hmm(counts,control=list(range=length(counts$observed),Mtilde=-1,noStates=2, trend=FALSE,covEffectsEqual=TRUE, saveHMMs=TRUE)) #Compute most probable state using the viterbi algorithm - 1 is "normal", 2 is "outbreak". viterbi.msm(surv$control$hmms[[1]])$fitted #How often correct? tab <- cbind(truth=counts$state + 1 , hmm=viterbi.msm(surv$control$hmm[[1]])$fitted) table(tab[,1],tab[,2]) } } \references{ Y. Le Strat and F. Carrat, Monitoring Epidemiologic Surveillance Data using Hidden Markov Models (1999), Statistics in Medicine, 18, 3463--3478 I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series, (1997), Chapman & Hall, Monographs on Statistics and applied Probability 70 } \keyword{classif} surveillance/man/intensityplot.Rd0000644000176200001440000000130712061471523016737 0ustar liggesusers\name{intensityplot} \alias{intensityplot} \title{ Plot Paths of Point Process Intensities } \description{ Generic function for plotting paths of point process intensities. Methods currently defined in package \pkg{surveillance} are for classes \code{"twinSIR"} and \code{"simEpidata"} (temporal), as well as \code{"twinstim"} and \code{"simEpidataCS"} (spatio-temporal). } \usage{ intensityplot(x, ...) } \arguments{ \item{x}{ An object for which an \code{intensityplot} method is defined. } \item{\dots}{ Arguments passed to the corresponding method. } } \seealso{ The methods \code{\link{intensityplot.twinSIR}} and \code{\link{intensityplot.twinstim}}. } \keyword{hplot} surveillance/man/measlesDE.Rd0000644000176200001440000000250214026701226015651 0ustar liggesusers\name{measlesDE} \alias{measlesDE} \docType{data} \title{Measles in the 16 states of Germany} \description{ Weekly number of measles cases in the 16 states (Bundeslaender) of Germany for years 2005 to 2007. } \usage{data(measlesDE)} \format{ An \code{"\linkS4class{sts}"} object containing \eqn{156\times 16}{156 x 16} observations starting from week 1 in 2005. The \code{population} slot contains the population fractions of each state at 31.12.2006, obtained from the Federal Statistical Office of Germany. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 14 October 2009. } \seealso{\code{\link{MMRcoverageDE}}} \examples{ data(measlesDE) plot(measlesDE) ## aggregate to bi-weekly intervals measles2w <- aggregate(measlesDE, nfreq = 26) plot(measles2w, type = observed ~ time) ## use a date index for nicer x-axis plotting epoch(measles2w) <- seq(as.Date("2005-01-03"), by = "2 weeks", length.out = nrow(measles2w)) plot(measles2w, type = observed ~ time) } \references{ Herzog, S. A., Paul, M. and Held, L. (2011): Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data. \emph{Epidemiology and Infection}, \bold{139}, 505-515. \doi{10.1017/S0950268810001664} } \keyword{datasets} surveillance/man/twinstim_simEndemicEvents.Rd0000644000176200001440000000372014665117445021227 0ustar liggesusers\name{twinstim_simEndemicEvents} \alias{simEndemicEvents} \title{ Quick Simulation from an Endemic-Only \code{twinstim} } \description{ In \emph{endemic-only} \code{\link{twinstim}} models, the conditional intensity is a piecewise constant function independent from the history of the process. This allows for a much more efficient simulation algorithm than via Ogata's modified thinning as in the general \code{\link{simulate.twinstim}} method. } \usage{ simEndemicEvents(object, tiles) } \arguments{ \item{object}{ an object of class \code{"\link{twinstim}"} (with the \code{model} component retained; otherwise try \code{object <- \link[=update.twinstim]{update}(object, model = TRUE)}). } \item{tiles}{ an object inheriting from \code{"\linkSPclass{SpatialPolygons}"}, which represents the tiles of the original data's \code{stgrid} (see, e.g., \code{levels(environment(object)$gridTiles)}). } } \value{ a \code{"\linkSPclass{SpatialPointsDataFrame}"} } \author{ Sebastian Meyer } \seealso{ the general simulation method \code{\link{simulate.twinstim}} } \examples{ data("imdepi", "imdepifit") load(system.file("shapes", "districtsD.RData", package="surveillance")) ## Fit an endemic-only twinstim() m_noepi <- update(imdepifit, epidemic = ~0, siaf = NULL, model = TRUE, T = 120) # using a restricted time range, for speed ## Simulate events from the above endemic model set.seed(1) s1 <- simEndemicEvents(m_noepi, tiles = districtsD) class(s1) # just a "SpatialPointsDataFrame" summary(s1@data) plot(imdepi$W, lwd = 2, asp = 1) % to avoid sp -> sf plot(s1, col = s1$type, cex = 0.5, add = TRUE) ## Compare with the generic simulation method (slower) s0 <- simulate(m_noepi, seed = 1, data = imdepi, tiles = districtsD) class(s0) # gives a full "simEpidataCS" with several methods applicable methods(class = "epidataCS") plot(s0, "time") plot(s0, "space", points.args = list(pch = 3), lwd = 2) } \keyword{datagen} \keyword{models} surveillance/man/stsplot.Rd0000644000176200001440000000517614614640226015536 0ustar liggesusers\name{stsplot} \docType{methods} \alias{plot.sts} \alias{plot,sts,missing-method} \alias{plot,stsNC,missing-method} \alias{stsplot} % for convenience \title{Plot Methods for Surveillance Time-Series Objects} \description{ This page gives an overview of plot types for objects of class \code{"sts"}. } \usage{ \S4method{plot}{sts,missing}(x, type = observed ~ time | unit, \dots) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{type}{see Details.} \item{\dots}{arguments passed to the \code{type}-specific plot function.} } \details{ There are various types of plots which can be produced from an \code{"sts"} object. The \code{type} argument specifies the desired plot as a formula, which defaults to \code{observed ~ time | unit}, i.e., plot the time series of each unit separately. Arguments to specific plot functions can be passed as further arguments (\dots). The following list describes the plot variants: \describe{ \item{\code{observed ~ time | unit}}{The default type shows \code{ncol(x)} plots, each containing the time series of one observational unit. The actual plotting per unit is done by the function \code{\link{stsplot_time1}}, called sequentially from \code{\link{stsplot_time}}.\cr A \CRANpkg{ggplot2}-based alternative for this type of plot is provided through an \code{\link[=autoplot.sts]{autoplot}}-method for \code{"sts"} objects. } \item{\code{observed ~ time}}{The observations in \code{x} are first \code{\link[=aggregate.sts]{aggregated}} over units and the resulting univariate time-series is plotted via the function \code{\link{stsplot_time}}.} \item{\code{alarm ~ time}}{Generates a so called alarmplot for a multivariate \code{sts} object. For each time point and each series it is shown whether there is an alarm. In case of hierarchical surveillance the user can pass an additional argument \code{lvl}, which is a vector of the same length as rows in \code{x} specifying for each time series its level. } \item{\code{observed ~ unit}}{ produces a map of counts (or incidence) per region aggregated over time. See \code{\link{stsplot_space}} for optional arguments, details and examples. } } } \value{ \code{NULL} (invisibly). The methods are called for their side-effects. } \seealso{ the documentation of the individual plot types \code{\link{stsplot_time}}, \code{\link{stsplot_space}}, as well as the \code{\link[=animate.sts]{animate}} method. } \keyword{ts} \keyword{spatial} \keyword{hplot} \keyword{methods} surveillance/man/algo.farrington.Rd0000644000176200001440000001341614665117445017124 0ustar liggesusers\name{algo.farrington} \alias{algo.farrington} \alias{farrington} \encoding{latin1} \title{Surveillance for Count Time Series Using the Classic Farrington Method} \description{ Implements the procedure of Farrington et al. (1996). At each time point of the specified \code{range}, a GLM is fitted to predict the counts. This is then compared to the observed counts. If the observation is above a specific quantile of the prediction interval, then an alarm is raised. } \usage{ # original interface for a single "disProg" time series algo.farrington(disProgObj, control=list( range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE, plot=FALSE, alpha=0.05, trend=TRUE, limit54=c(5,4), powertrans="2/3", fitFun="algo.farrington.fitGLM.fast")) # wrapper for "sts" data, possibly multivariate farrington(sts, control=list( range=NULL, b=5, w=3, reweight=TRUE, verbose=FALSE, alpha=0.05), ...) } \arguments{ \item{disProgObj}{ an object of class \code{"disProg"} (a list including \code{observed} and \code{state} time series). } \item{control}{list of control parameters \describe{ \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} the maximum number of possible weeks is used (i.e. as many weeks as possible while still having enough reference values).} \item{\code{b}}{how many years back in time to include when forming the base counts.} \item{\code{w}}{windows size, i.e. number of weeks to include before and after the current week} \item{\code{reweight}}{Boolean specifying whether to perform reweight step} \item{\code{trend}}{If \code{TRUE} a trend is included and kept in case the conditions documented in Farrington et al. (1996) are met (see the results). If \code{FALSE} then NO trend is fit.} \item{\code{verbose}}{Boolean indicating whether to show extra debugging information.} \item{\code{plot}}{Boolean specifying whether to show the final GLM model fit graphically (use History|Recording to see all pictures).} \item{\code{powertrans}}{Power transformation to apply to the data. Use either "2/3" for skewness correction (Default), "1/2" for variance stabilizing transformation or "none" for no transformation.} \item{\code{alpha}}{An approximate (two-sided) \eqn{(1-\alpha)} prediction interval is calculated.} \item{\code{limit54}}{To avoid alarms in cases where the time series only has about 0-2 cases the algorithm uses the following heuristic criterion (see Section 3.8 of the Farrington paper) to protect against low counts: no alarm is sounded if fewer than \eqn{cases=5} reports were received in the past \eqn{period=4} weeks. \code{limit54=c(cases,period)} is a vector allowing the user to change these numbers. Note: As of version 0.9-7 the term "last" period of weeks includes the current week - otherwise no alarm is sounded for horrible large numbers if the four weeks before that are too low.} \item{\code{fitFun}}{String containing the name of the fit function to be used for fitting the GLM. The options are \code{algo.farrington.fitGLM.fast} (default) and \code{algo.farrington.fitGLM} or \code{algo.farrington.fitGLM.populationOffset}. See details of \code{\link{algo.farrington.fitGLM}} for more information.} } } \item{sts}{an object of class \code{"\link{sts}"}.} \item{\dots}{arguments for \code{\link{wrap.algo}}, e.g., \code{verbose=FALSE}.} } \details{ The following steps are performed according to the Farrington et al. (1996) paper. \enumerate{ \item fit of the initial model and initial estimation of mean and overdispersion. \item calculation of the weights omega (correction for past outbreaks) \item refitting of the model \item revised estimation of overdispersion \item rescaled model \item omission of the trend, if it is not significant \item repetition of the whole procedure \item calculation of the threshold value \item computation of exceedance score } } \value{ For \code{algo.farrington}, a list object of class \code{"survRes"} with elements \code{alarm}, \code{upperbound}, \code{trend}, \code{disProgObj}, and \code{control}. For \code{farrington}, the input \code{"\link{sts}"} object with updated \code{alarm}, \code{upperbound} and \code{control} slots, and subsetted to \code{control$range}. } \examples{ #load "disProg" data data("salmonella.agona") #Do surveillance for the last 42 weeks n <- length(salmonella.agona$observed) control <- list(b=4,w=3,range=(n-42):n,reweight=TRUE, verbose=FALSE,alpha=0.01) res <- algo.farrington(salmonella.agona,control=control) plot(res) #Generate Poisson counts and create an "sts" object set.seed(123) x <- rpois(520,lambda=1) stsObj <- sts(observed=x, frequency=52) if (surveillance.options("allExamples")) { #Compare timing of the two possible fitters for algo.farrington range <- 312:520 system.time( sts1 <- farrington(stsObj, control=list(range=range, fitFun="algo.farrington.fitGLM.fast"), verbose=FALSE)) system.time( sts2 <- farrington(stsObj, control=list(range=range, fitFun="algo.farrington.fitGLM"), verbose=FALSE)) #Check if results are the same stopifnot(upperbound(sts1) == upperbound(sts2)) } } \author{M. \enc{Höhle}{Hoehle}} \seealso{ \code{\link{algo.farrington.fitGLM}}, \code{\link{algo.farrington.threshold}} An improved Farrington algorithm is available as function \code{\link{farringtonFlexible}}. } \keyword{classif} \references{ A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996), J. R. Statist. Soc. A, 159, 547-563. } surveillance/man/twinstim_simulation.Rd0000644000176200001440000004625014665117445020156 0ustar liggesusers\encoding{latin1} \name{twinstim_simulation} \alias{simEpidataCS} \alias{simulate.twinstim} \title{ Simulation of a Self-Exciting Spatio-Temporal Point Process } \description{ The function \code{simEpidataCS} simulates events of a self-exciting spatio-temporal point process of the \code{"\link{twinstim}"} class. Simulation works via Ogata's modified thinning of the conditional intensity as described in Meyer et al. (2012). Note that simulation is limited to the spatial and temporal range of \code{stgrid}. The \code{\link{simulate}} method for objects of class \code{"\link{twinstim}"} simulates new epidemic data using the model and the parameter estimates of the fitted object. } \usage{ simEpidataCS(endemic, epidemic, siaf, tiaf, qmatrix, rmarks, events, stgrid, tiles, beta0, beta, gamma, siafpars, tiafpars, epilink = "log", t0 = stgrid$start[1], T = tail(stgrid$stop,1), nEvents = 1e5, control.siaf = list(F=list(), Deriv=list()), W = NULL, trace = 5, nCircle2Poly = 32, gmax = NULL, .allocate = 500, .skipChecks = FALSE, .onlyEvents = FALSE) \method{simulate}{twinstim}(object, nsim = 1, seed = NULL, data, tiles, newcoef = NULL, rmarks = NULL, t0 = NULL, T = NULL, nEvents = 1e5, control.siaf = object$control.siaf, W = data$W, trace = FALSE, nCircle2Poly = NULL, gmax = NULL, .allocate = 500, simplify = TRUE, ...) } \arguments{ \item{endemic}{ see \code{\link{twinstim}}. Note that type-specific endemic intercepts are specified by \code{beta0} here, not by the term \code{(1|type)}. } \item{epidemic}{ see \code{\link{twinstim}}. Marks appearing in this formula must be returned by the generating function \code{rmarks}. } \item{siaf}{ see \code{\link{twinstim}}. In addition to what is required for fitting with \code{twinstim}, the \code{siaf} specification must also contain the element \code{simulate}, a function which draws random locations following the spatial kernel \code{siaf$f}. The first argument of the function is the number of points to sample (say \code{n}), the second one is the vector of parameters \code{siafpars}, the third one is the type indicator (a character string matching a type name as specified by \code{dimnames(qmatrix)}). With the current implementation there will always be simulated only one location at a time, i.e. \code{n=1}. The \link[=siaf.constant]{predefined siaf's} all provide simulation. } \item{tiaf}{ e.g. what is returned by the generating function \code{\link{tiaf.constant}} or \code{\link{tiaf.exponential}}. See also \code{\link{twinstim}}. } \item{qmatrix}{ see \code{\link{epidataCS}}. Note that this square matrix and its \code{dimnames} determine the number and names of the different event types. In the simplest case, there is only a single type of event, i.e. \code{qmatrix = diag(1)}. } \item{rmarks}{ function of single time (1st argument) and location (2nd argument) returning a one-row \code{data.frame} of marks (named according to the variables in \code{epidemic}) for an event at this point. This must include the columns \code{eps.s} and \code{eps.t}, i.e. the values of the spatial and temporal interaction ranges at this point. Only \code{"numeric"} and \code{"factor"} columns are allowed. Assure that factor variables are coded equally (same levels and level order) for each new sample. For the \code{simulate.twinstim} method, the default (\code{NULL}) means sampling from the empirical distribution function of the (non-missing) marks in \code{data} restricted to events in the simulation period (\code{t0};\code{T}]. If there are no events in this period, e.g., if simulating beyond the original observation period, \code{rmarks} will sample marks from all of \code{data$events}. } \item{events}{ \code{NULL} or missing (default) in case of an empty prehistory, or a \code{\link[sp]{SpatialPointsDataFrame}} containing events of the prehistory (-Inf;\code{t0}] of the process (required for the epidemic to start in case of no endemic component in the model). The \code{SpatialPointsDataFrame} must have the same \code{proj4string} as \code{tiles} and \code{W}). The attached \code{data.frame} (data slot) must contain the typical columns as described in \code{\link{as.epidataCS}} (\code{time}, \code{tile}, \code{eps.t}, \code{eps.s}, and, for type-specific models, \code{type}) and all marks appearing in the \code{epidemic} specification. Note that some column names are reserved (see \code{\link{as.epidataCS}}). Only events up to time \code{t0} are selected and taken as the prehistory. } \item{stgrid}{ see \code{\link{as.epidataCS}}. Simulation only works inside the spatial and temporal range of \code{stgrid}. } \item{tiles}{ object inheriting from \code{"\linkSPclass{SpatialPolygons}"} with \code{row.names} matching the \code{tile} names in \code{stgrid} and having the same \code{proj4string} as \code{events} and \code{W}. This is necessary to sample the spatial location of events generated by the endemic component. } \item{beta0,beta,gamma,siafpars,tiafpars}{ these are the parameter subvectors of the \code{twinstim}. \code{beta} and \code{gamma} must be given in the same order as they appear in \code{endemic} and \code{epidemic}, respectively. \code{beta0} is either a single endemic intercept or a vector of type-specific endemic intercepts in the same order as in \code{qmatrix}. } \item{epilink}{ a character string determining the link function to be used for the \code{epidemic} linear predictor of event marks. By default, the log-link is used. The experimental alternative is \code{epilink = "identity"}. Note that the identity link does not guarantee the force of infection to be positive. If this leads to a negative total intensity (endemic + epidemic), the point process is not well defined and simulation cannot proceed. } \item{t0}{ \code{events} having occurred during (-Inf;\code{t0}] are regarded as part of the prehistory \eqn{H_0} of the process. For \code{simEpidataCS}, by default and also if \code{t0=NULL}, the beginning of \code{stgrid} is used as \code{t0}. For the \code{simulate.twinstim} method, \code{NULL} means to use the fitted time range of the \code{"twinstim"} \code{object}. } \item{T, nEvents}{ simulate a maximum of \code{nEvents} events up to time \code{T}, then stop. For \code{simEpidataCS}, by default, and also if \code{T=NULL}, \code{T} equals the last stop time in \code{stgrid} (it cannot be greater) and \code{nEvents} is bounded above by 10000. For the \code{simulate.twinstim} method, \code{T=NULL} means to use the same same time range as for the fitting of the \code{"twinstim"} \code{object}. } \item{W}{ see \code{\link{as.epidataCS}}. When simulating from \code{twinstim}-fits, \code{W} is by default taken from the original \code{data$W}. If specified as \code{NULL}, \code{W} is generated automatically via \code{\link{unionSpatialPolygons}(tiles)}. However, since the result of such a polygon operation should always be verified, it is recommended to do that in advance.\cr It is important that \code{W} and \code{tiles} cover the same region: on the one hand direct offspring is sampled in the spatial influence region of the parent event, i.e., in the intersection of \code{W} and a circle of radius the \code{eps.s} of the parent event, after which the corresponding tile is determined by overlay with \code{tiles}. On the other hand endemic events are sampled from \code{tiles}. } \item{trace}{ logical (or integer) indicating if (or how often) the current simulation status should be \code{cat}ed. For the \code{simulate.twinstim} method, \code{trace} currently only applies to the first of the \code{nsim} simulations. } \item{.allocate}{ number of rows (events) to initially allocate for the event history; defaults to 500. Each time the simulated epidemic exceeds the allocated space, the event \code{data.frame} will be enlarged by \code{.allocate} rows. } \item{.skipChecks,.onlyEvents}{ these logical arguments are not meant to be set by the user. They are used by the \code{simulate}-method for \code{"twinstim"} objects. } \item{object}{ an object of class \code{"\link{twinstim}"}. } \item{nsim}{ number of epidemics (i.e. spatio-temporal point patterns inheriting from class \code{"epidataCS"}) to simulate. Defaults to 1 when the result is a simple object inheriting from class \code{"simEpidataCS"} (as if \code{simEpidataCS} would have been called directly). If \code{nsim > 1}, the result will be a list the structure of which depends on the argument \code{simplify}. } \item{seed}{ an object specifying how the random number generator should be initialized for simulation (via \code{\link{set.seed}}). The initial state will also be stored as an attribute \code{"seed"} of the result. The original state of the \code{\link{.Random.seed}} will be restored at the end of the simulation. By default (\code{NULL}), neither initialization nor recovery will be done. This behaviour is copied from the \code{\link{simulate}.lm} method. } \item{data}{ an object of class \code{"epidataCS"}, usually the one to which the \code{"twinstim"} \code{object} was fitted. It carries the \code{stgrid} of the endemic component, but also \code{events} for use as the prehistory, and defaults for \code{rmarks} and \code{nCircle2Poly}. } \item{newcoef}{ an optional named numeric vector of (a subset of) parameters to replace the original point estimates in \code{coef(object)}. Elements which do not match any model parameter by name are silently ignored. The \code{newcoef}s may also be supplied in a list following the same conventions as for the \code{start} argument in \code{\link{twinstim}}. } \item{simplify}{ logical. It is strongly recommended to set \code{simplify = TRUE} (default) if \code{nsim} is large. This saves space and computation time, because for each simulated epidemic only the \code{events} component is saved. All other components, which do not vary between simulations, are only stored from the first run. In this case, the runtime of each simulation is stored as an attribute \code{"runtime"} to each simulated \code{events}. See also the \dQuote{Value} section below. } \item{control.siaf}{see \code{\link{twinstim}}.} \item{nCircle2Poly}{see \code{\link{as.epidataCS}}. For \code{simulate.twinstim}, \code{NULL} means to use the same value as for \code{data}.} \item{gmax}{ maximum value the temporal interaction function \code{tiaf$g} can attain. If \code{NULL}, then it is assumed as the maximum value of the type-specific values at 0, i.e. \code{max(tiaf$g(rep.int(0,nTypes), tiafpars, 1:nTypes))}. } \item{\dots}{unused (arguments of the generic).} } \value{ The function \code{simEpidataCS} returns a simulated epidemic of class \code{"simEpidataCS"}, which enhances the class \code{"epidataCS"} by the following additional components known from objects of class \code{"\link{twinstim}"}: \code{bbox}, \code{timeRange}, \code{formula}, \code{coefficients}, \code{npars}, \code{control.siaf}, \code{call}, \code{runtime}. It has corresponding \code{\link{coeflist}}, \code{\link[=residuals.simEpidataCS]{residuals}}, \code{\link[=R0.simEpidataCS]{R0}}, and \code{\link[=intensityplot.simEpidataCS]{intensityplot}} methods. The \code{simulate.twinstim} method has some additional \emph{attributes} set on its result: \code{call}, \code{seed}, and \code{runtime}. If \code{nsim > 1}, it returns an object of class \code{"simEpidataCSlist"}, the form of which depends on the value of \code{simplify} (which is stored as an attribute \code{simplified}): if \code{simplify = FALSE}, then the return value is just a list of sequential simulations, each of class \code{"simEpidataCS"}. However, if \code{simplify = TRUE}, then the sequential simulations share all components but the simulated \code{events}, i.e. the result is a list with the same components as a single object of class \code{"simEpidataCS"}, but with \code{events} replaced by an \code{eventsList} containing the \code{events} returned by each of the simulations. The \code{stgrid} component of the returned \code{"simEpidataCS"} will be truncated to the actual end of the simulation, which might be \eqn{ 1}) may have different \code{stgrid} time ranges. In a \code{"simEpidataCSlist"}, the \code{stgrid} shared by all of the simulated epidemics is just the \code{stgrid} returned by the \emph{first} simulation. } \note{ The more detailed the polygons in \code{tiles} are the slower is the algorithm. You are advised to sacrifice some shape details for speed by reducing the polygon complexity, for example via the \command{mapshaper} JavaScript library wrapped by the R package \CRANpkg{rmapshaper}, or via \code{\link[spatstat.geom]{simplify.owin}}. } \references{ Douglas, D. H. and Peucker, T. K. (1973): Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. \emph{Cartographica: The International Journal for Geographic Information and Geovisualization}, \bold{10}, 112-122 Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} } \author{ Sebastian Meyer, with contributions by Michael H\enc{ö}{oe}hle } \seealso{ The function \code{\link{simEndemicEvents}} is a faster alternative for endemic-only models, only returning a \code{"\linkSPclass{SpatialPointsDataFrame}"} of simulated events. The \code{\link{plot.epidataCS}} and \code{\link{animate.epidataCS}} methods for plotting and animating continuous-space epidemic data, respectively, also work for simulated epidemics (by inheritance), and \code{\link{twinstim}} can be used to fit spatio-temporal conditional intensity models also to simulated data. } \examples{ data("imdepi", "imdepifit") ## load borders of Germany's districts (originally obtained from ## the German Federal Agency for Cartography and Geodesy, ## https://gdz.bkg.bund.de/), simplified by the "modified Visvalingam" ## algorithm (level=6.6\%) using MapShaper.org (v. 0.1.17): load(system.file("shapes", "districtsD.RData", package="surveillance")) if (surveillance.options("allExamples")) { plot(districtsD) plot(stateD, add=TRUE, border=2, lwd=2) } ## simulate 2 realizations (over a short period, for speed) ## considering events from data(imdepi) before t=31 as prehistory ## IGNORE_RDIFF_BEGIN mysims <- simulate(imdepifit, nsim=2, seed=1, data=imdepi, tiles=districtsD, newcoef=c("e.typeC"=-1), t0=31, T=if (interactive()) 180 else 45, # for CRAN simplify=TRUE) ## IGNORE_RDIFF_END \dontshow{ ## check construction and selection from "simEpidataCSlist" local({ mysim_from_list <- mysims[[1]] capture.output(mysim_single <- eval("[[<-"(attr(mysims, "call"), "nsim", 1))) mysim_from_list$runtime <- mysim_single$runtime <- NULL stopifnot(all.equal(mysim_single, mysim_from_list, check.attributes = FALSE)) }) ## check equivalence of Lambdag from simulation and residuals via twinstim stopifnot(all.equal( residuals(mysims[[1]]), suppressMessages(surveillance:::residuals.twinstim(surveillance:::as.twinstim.simEpidataCS(mysims[[1]]))) )) } ## plot both simulations using the plot-method for simEpidataCSlist's mysims plot(mysims, aggregate="time") ## extract the second realization -> object of class simEpidataCS mysim2 <- mysims[[2]] summary(mysim2) plot(mysim2, aggregate="space") ### compare the observed _cumulative_ number of cases in the first 90 days to nsim <- 20 ### simulations from the fitted model \dontshow{if (!interactive()) nsim <- 2}% faster checks sims <- simulate(imdepifit, nsim=nsim, seed=1, data=imdepi, t0=0, T=90, tiles=districtsD, simplify=TRUE) ## extract cusums getcsums <- function (events) { tapply(events$time, events@data["type"], function (t) cumsum(table(t)), simplify=FALSE) } csums_observed <- getcsums(imdepi$events) csums_simulated <- lapply(sims$eventsList, getcsums) ## plot it plotcsums <- function (csums, ...) { mapply(function (csum, ...) lines(as.numeric(names(csum)), csum, ...), csums, ...) invisible() } plot(c(0,90), c(0,35), type="n", xlab="Time [days]", ylab="Cumulative number of cases") plotcsums(csums_observed, col=c(2,4), lwd=3) legend("topleft", legend=levels(imdepi$events$type), col=c(2,4), lwd=1) invisible(lapply(csums_simulated, plotcsums, col=adjustcolor(c(2,4), alpha.f=0.5))) \dontrun{ ### Experimental code to generate 'nsim' simulations of 'nm2add' months ### beyond the observed time period: nm2add <- 24 nsim <- 5 ### The events still infective by the end of imdepi$stgrid will be used ### as the prehistory for the continued process. origT <- tail(imdepi$stgrid$stop, 1) ## extend the 'stgrid' by replicating the last block 'nm2add' times ## (i.e., holding "popdensity" constant) stgridext <- local({ gLast <- subset(imdepi$stgrid, BLOCK == max(BLOCK)) gAdd <- gLast[rep(1:nrow(gLast), nm2add),]; rownames(gAdd) <- NULL newstart <- seq(origT, by=30, length.out=nm2add) newstop <- c(newstart[-1], max(newstart) + 30) gAdd$start <- rep(newstart, each=nlevels(gAdd$tile)) gAdd$stop <- rep(newstop, each=nlevels(gAdd$tile)) rbind(imdepi$stgrid, gAdd, make.row.names = FALSE)[,-1] }) ## create an updated "epidataCS" with the time-extended 'stgrid' imdepiext <- update(imdepi, stgrid = stgridext) newT <- tail(imdepiext$stgrid$stop, 1) ## simulate beyond the original period simsext <- simulate(imdepifit, nsim=nsim, seed=1, t0=origT, T=newT, data=imdepiext, tiles=districtsD, simplify=TRUE) ## Aside to understand the note from checking events and tiles: # marks(imdepi)["636",] # tile 09662 is attributed to this event, but: # plot(districtsD[c("09678","09662"),], border=1:2, lwd=2, axes=TRUE) # points(imdepi$events["636",]) ## this mismatch is due to polygon simplification ## plot the observed and simulated event numbers over time plot(imdepiext, breaks=c(unique(imdepi$stgrid$start),origT), cumulative=list(maxat=330)) for (i in seq_along(simsext$eventsList)) plot(simsext[[i]], add=TRUE, legend.types=FALSE, breaks=c(unique(simsext$stgrid$start),newT), subset=!is.na(source), # have to exclude the events of the prehistory cumulative=list(offset=c(table(imdepi$events$type)), maxat=330, axis=FALSE), border=NA, density=0) # no histogram abline(v=origT, lty=2, lwd=2) } } \keyword{datagen} \keyword{models} surveillance/man/sts_observation.Rd0000644000176200001440000000146314431116166017243 0ustar liggesusers\name{sts_observation} \alias{sts_observation} \title{Create an \code{sts} object with a given observation date} \usage{ sts_observation(sts, dateObservation, cut = TRUE) } \arguments{ \item{sts}{sts-object we want to set at a previous state. Needs to include a reporting triangle.} \item{dateObservation}{Date for which we want the state. Needs to be in the reporting triangle dates.} \item{cut}{Boolean indicating whether to have 0 counts after the observation date or to simply cut the sts-object} } \description{ Function for creating an \code{\linkS4class{sts}} object with a given observation date. } \examples{ data("salmAllOnset") salmAllOnsety2014m01d20 <- sts_observation(salmAllOnset, dateObservation="2014-01-20",cut=FALSE) plot(salmAllOnset) lines(observed(salmAllOnsety2014m01d20),type="h",col="red") } surveillance/man/twinSIR_intensityplot.Rd0000644000176200001440000001425214665117445020375 0ustar liggesusers\encoding{latin1} \name{twinSIR_intensityplot} \alias{plot.twinSIR} \alias{intensityplot.twinSIR} \alias{intensityplot.simEpidata} \title{ Plotting Paths of Infection Intensities for \code{twinSIR} Models } \description{ \code{\link{intensityplot}} methods to plot the evolution of the total infection intensity, its epidemic proportion or its endemic proportion over time. The default \code{plot} method for objects of class \code{"twinSIR"} is just a wrapper for the \code{intensityplot} method. The implementation is illustrated in Meyer et al. (2017, Section 4), see \code{vignette("twinSIR")}. } \usage{ \method{plot}{twinSIR}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), ...) \method{intensityplot}{twinSIR}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = TRUE, theta = NULL, plot = TRUE, add = FALSE, rug.opts = list(), ...) \method{intensityplot}{simEpidata}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = TRUE, theta = NULL, plot = TRUE, add = FALSE, rug.opts = list(), ...) } \arguments{ \item{x}{ an object of class \code{"\link{twinSIR}"} (fitted model) or \code{"\link{simEpidata}"} (simulated \code{twinSIR} epidemic), respectively. } \item{which}{ \code{"epidemic proportion"}, \code{"endemic proportion"}, or \code{"total intensity"}. Partial matching is applied. Determines whether to plot the path of the total intensity \eqn{\lambda(t)} or its epidemic or endemic proportions \eqn{\frac{e(t)}{\lambda(t)}}{e(t)/lambda(t)} or \eqn{\frac{h(t)}{\lambda(t)}}{h(t)/lambda(t)}. } \item{aggregate}{ logical. Determines whether lines for all individual infection intensities should be drawn (\code{FALSE}) or their sum only (\code{TRUE}, the default). } \item{theta}{ numeric vector of model coefficients. If \code{x} is of class \code{"twinSIR"}, then \code{theta = c(alpha, beta)}, where \code{beta} consists of the coefficients of the piecewise constant log-baseline function and the coefficients of the endemic (\code{cox}) predictor. If \code{x} is of class \code{"simEpidata"}, then \code{theta = c(alpha, 1, betarest)}, where 1 refers to the (true) log-baseline used in the simulation and \code{betarest} is the vector of the remaining coefficients of the endemic (\code{cox}) predictor. The default (\code{NULL}) means that the fitted or true parameters, respectively, will be used. } \item{plot}{ logical indicating if a plot is desired, defaults to \code{TRUE}. Otherwise, only the data of the plot will be returned. Especially with \code{aggregate = FALSE} and many individuals one might e.g. consider to plot a subset of the individual intensity paths only or do some further calculations/analysis of the infection intensities. } \item{add}{ logical. If \code{TRUE}, paths are added to the current plot, using \code{lines}. } \item{rug.opts}{ either a list of arguments passed to the function \code{\link{rug}}, or \code{NULL} (or \code{NA}), in which case no \code{rug} will be plotted. By default, the argument \code{ticksize} is set to 0.02 and \code{quiet} is set to \code{TRUE}. Note that the argument \code{x} of the \code{rug()} function, which contains the locations for the \code{rug} is fixed internally and can not be modified. The locations of the rug are the time points of infections. } \item{\dots}{ For the \code{plot.twinSIR} method, arguments passed to \code{intensityplot.twinSIR}. For the \code{intensityplot} methods, further graphical parameters passed to the function \code{\link{matplot}}, e.g. \code{lty}, \code{lwd}, \code{col}, \code{xlab}, \code{ylab} and \code{main}. Note that the \code{matplot} arguments \code{x}, \code{y}, \code{type} and \code{add} are implicit and can not be specified here. } } \value{ numeric matrix with the first column \code{"stop"} and as many rows as there are \code{"stop"} time points in the event history \code{x}. The other columns depend on the argument \code{aggregate}: if \code{TRUE}, there is only one other column named \code{which}, which contains the values of \code{which} at the respective \code{"stop"} time points. Otherwise, if \code{aggregate = FALSE}, there is one column for each individual, each of them containing the individual \code{which} at the respective \code{"stop"} time points. } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Sebastian Meyer } \seealso{ \code{\link{twinSIR}} for a description of the intensity model, and \code{\link{simulate.twinSIR}} for the simulation of epidemic data according to a \code{twinSIR} specification. } \examples{ data("hagelloch") plot(hagelloch) # a simplistic twinSIR model fit <- twinSIR(~ household, data = hagelloch) # overall total intensity plot(fit, which = "total") # overall epidemic proportion epi <- plot(fit, which = "epidemic", ylim = c(0, 1)) head(epi) # add overall endemic proportion = 1 - epidemic proportion ende <- plot(fit, which = "endemic", add = TRUE, col = 2) legend("topleft", legend = "endemic proportion", lty = 1, col = 2, bty = "n") # individual intensities tmp <- plot(fit, which = "total", aggregate = FALSE, col = rgb(0, 0, 0, alpha = 0.1), main = expression("Individual infection intensities " * lambda[i](t) == Y[i](t) \%.\% (e[i](t) + h[i](t)))) # return value: matrix of individual intensity paths str(tmp) # plot intensity path only for individuals 3 and 99 matplot(x = tmp[,1], y = tmp[,1+c(3,99)], type = "S", ylab = "Force of infection", xlab = "time", main = expression("Paths of the infection intensities " * lambda[3](t) * " and " * lambda[99](t))) legend("topright", legend = paste("Individual", c(3,99)), col = 1:2, lty = 1:2) } \keyword{hplot} \keyword{aplot} \keyword{dplot} \keyword{methods} surveillance/man/algo.glrnb.Rd0000644000176200001440000002362014310560071016035 0ustar liggesusers\name{algo.glrnb} \alias{algo.glrnb} \alias{algo.glrpois} \encoding{latin1} \title{Count Data Regression Charts} \description{ Count data regression charts for the monitoring of surveillance time series as proposed by \enc{Höhle}{Hoehle} and Paul (2008). The implementation is described in Salmon et al. (2016). } \usage{ algo.glrnb(disProgObj, control = list(range=range, c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept", theta=NULL, dir=c("inc","dec"), ret=c("cases","value"), xMax=1e4)) algo.glrpois(disProgObj, control = list(range=range, c.ARL=5, mu0=NULL, Mtilde=1, M=-1, change="intercept", theta=NULL, dir=c("inc","dec"), ret=c("cases","value"), xMax=1e4)) } \arguments{ \item{disProgObj}{object of class \code{disProg} to do surveillance for. For new \code{\link{sts}}-class data, use the \code{\link{glrnb}} wrapper, or the \code{\link{sts2disProg}} converter.} \item{control}{A list controlling the behaviour of the algorithm \describe{ \item{\code{range}}{vector of indices in the observed vector to monitor (should be consecutive)} \item{\code{mu0}}{A vector of in-control values of the mean of the Poisson / negative binomial distribution with the same length as \code{range}. If \code{NULL} the observed values in \code{1:(min(range)-1)} are used to estimate the beta vector through a generalized linear model. To fine-tune the model one can instead specify \code{mu0} as a list with two components: \describe{ \item{\code{S}}{integer number of harmonics to include (typically 1 or 2)} \item{\code{trend}}{A Boolean indicating whether to include a term \code{t} in the GLM model} } The fitting is controlled by the \code{estimateGLRNbHook} function. The in-control mean model is re-fitted after every alarm. The fitted models can be found as a list \code{mod} in the \code{control} slot after the call. Note: If a value for \code{alpha} is given, then the inverse of this value is used as fixed \code{theta} in a \code{\link[MASS]{negative.binomial}} \code{glm}. If \code{is.null(alpha)} then the parameter is estimated as well (using \code{\link[MASS]{glm.nb}}) -- see the description of this parameter for details. } \item{\code{alpha}}{The (known) dispersion parameter of the negative binomial distribution, i.e. the parametrization of the negative binomial is such that the variance is \eqn{mean + alpha*mean^2}{mean + \alpha*mean^2}. Note: This parametrization is the inverse of the shape parametrization used in R -- for example in \code{dnbinom} and \code{glr.nb}. Hence, if \code{alpha=0} then the negative binomial distribution boils down to the Poisson distribution and a call of \code{algo.glrnb} is equivalent to a call to \code{algo.glrpois}. If \code{alpha=NULL} the parameter is calculated as part of the in-control estimation. However, the parameter is estimated only once from the first fit. Subsequent fittings are only for the parameters of the linear predictor with \code{alpha} fixed.} \item{\code{c.ARL}}{threshold in the GLR test, i.e. \eqn{c_{\gamma}}{c_gamma}} \item{\code{Mtilde}}{number of observations needed before we have a full rank the typical setup for the "\code{intercept}" and "\code{epi}" charts is \code{Mtilde=1}} \item{\code{M}}{number of time instances back in time in the window-limited approach, i.e. the last value considered is \eqn{\max{1,n-M}}. To always look back until the first observation use \code{M=-1}.} \item{\code{change}}{a string specifying the type of the alternative. Currently the two choices are \code{intercept} and \code{epi}. See the SFB Discussion Paper 500 for details.} \item{\code{theta}}{if \code{NULL} then the GLR scheme is used. If not \code{NULL} the prespecified value for \eqn{\kappa} or \eqn{\lambda} is used in a recursive LR scheme, which is faster. } \item{\code{dir}}{a string specifying the direction of testing in GLR scheme. With \code{"inc"} only increases in \eqn{x} are considered in the GLR-statistic, with \code{"dec"} decreases are regarded. } \item{\code{ret}}{a string specifying the type of \code{upperbound}-statistic that is returned. With \code{"cases"} the number of cases that would have been necessary to produce an alarm or with \code{"value"} the GLR-statistic is computed (see below).} \item{\code{xMax}}{Maximum value to try for x to see if this is the upperbound number of cases before sounding an alarm (Default: 1e4). This only applies for the GLR using the NegBin when \code{ret="cases"} -- see details.} } } } \value{ \code{algo.glrpois} simply calls \code{algo.glrnb} with \code{control$alpha} set to 0. \code{algo.glrnb} returns a list of class \code{survRes} (surveillance result), which includes the alarm value for recognizing an outbreak (1 for alarm, 0 for no alarm), the threshold value for recognizing the alarm and the input object of class disProg. The \code{upperbound} slot of the object are filled with the current \eqn{GLR(n)} value or with the number of cases that are necessary to produce an alarm at any time point \eqn{\leq n}{<=n}. Both lead to the same alarm timepoints, but \code{"cases"} has an obvious interpretation. } \details{ This function implements the seasonal count data chart based on generalized likelihood ratio (GLR) as described in the \enc{Höhle}{Hoehle} and Paul (2008) paper. A moving-window generalized likelihood ratio detector is used, i.e. the detector has the form % \deqn{N = \inf\left\{ n : \max_{1\leq k \leq n} \left[ \sum_{t=k}^n \log \left\{ \frac{f_{\theta_1}(x_t|z_t)}{f_{\theta_0}(x_t|z_t)} \right\} \right] \geq c_\gamma \right\} }{N = inf(... >= c_gamma)} % where instead of \eqn{1\leq k \leq n}{1<= k <= n} the GLR statistic is computed for all \eqn{k \in \{n-M, \ldots, n-\tilde{M}+1\}}{k \in \{n-M, \ldots, n-Mtilde+1\}}. To achieve the typical behaviour from \eqn{1\leq k\leq n}{1<= k <= n} use \code{Mtilde=1} and \code{M=-1}. So \eqn{N} is the time point where the GLR statistic is above the threshold the first time: An alarm is given and the surveillance is reset starting from time \eqn{N+1}. Note that the same \code{c.ARL} as before is used, but if \code{mu0} is different at \eqn{N+1,N+2,\ldots} compared to time \eqn{1,2,\ldots} the run length properties differ. Because \code{c.ARL} to obtain a specific ARL can only be obtained my Monte Carlo simulation there is no good way to update \code{c.ARL} automatically at the moment. Also, FIR GLR-detectors might be worth considering. In case \code{is.null(theta)} and \code{alpha>0} as well as \code{ret="cases"} then a brute-force search is conducted for each time point in range in order to determine the number of cases necessary before an alarm is sounded. In case no alarm was sounded so far by time \eqn{t}, the function increases \eqn{x[t]} until an alarm is sounded any time before time point \eqn{t}. If no alarm is sounded by \code{xMax}, a return value of 1e99 is given. Similarly, if an alarm was sounded by time \eqn{t} the function counts down instead. Note: This is slow experimental code! At the moment, window limited ``\code{intercept}'' charts have not been extensively tested and are at the moment not supported. As speed is not an issue here this doesn't bother too much. Therefore, a value of \code{M=-1} is always used in the intercept charts. } \author{M. \enc{Höhle}{Hoehle} with contributions by V. Wimmer} \examples{ ##Simulate data and apply the algorithm S <- 1 ; t <- 1:120 ; m <- length(t) beta <- c(1.5,0.6,0.6) omega <- 2*pi/52 #log mu_{0,t} base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t) #Generate example data with changepoint and tau=tau tau <- 100 kappa <- 0.4 mu0 <- exp(base) mu1 <- exp(base + kappa) ## Poisson example #Generate data set.seed(42) x <- rpois(length(t),mu0*(exp(kappa)^(t>=tau))) s.ts <- sts(observed=x, state=(t>=tau)) #Plot the data plot(s.ts, xaxis.labelFormat=NULL) #Run cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, change="intercept",ret="value",dir="inc") glr.ts <- glrpois(s.ts,control=cntrl) plot(glr.ts, xaxis.labelFormat=NULL, dx.upperbound=0.5) lr.ts <- glrpois(s.ts,control=c(cntrl,theta=0.4)) plot(lr.ts, xaxis.labelFormat=NULL, dx.upperbound=0.5) #using the legacy interface for "disProg" data lr.ts0 <- algo.glrpois(sts2disProg(s.ts), control=c(cntrl,theta=0.4)) stopifnot(upperbound(lr.ts) == lr.ts0$upperbound) ## NegBin example #Generate data set.seed(42) alpha <- 0.2 x <- rnbinom(length(t),mu=mu0*(exp(kappa)^(t>=tau)),size=1/alpha) s.ts <- sts(observed=x, state=(t>=tau)) #Plot the data plot(s.ts, xaxis.labelFormat=NULL) #Run GLR based detection cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha, change="intercept",ret="value",dir="inc") glr.ts <- glrnb(s.ts, control=cntrl) plot(glr.ts, xaxis.labelFormat=NULL, dx.upperbound=0.5) #CUSUM LR detection with backcalculated number of cases cntrl2 = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha, change="intercept",ret="cases",dir="inc",theta=1.2) glr.ts2 <- glrnb(s.ts, control=cntrl2) plot(glr.ts2, xaxis.labelFormat=NULL) } \keyword{classif} \references{ \enc{Höhle}{Hoehle}, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time series. Computational Statistics and Data Analysis, 52 (9), 4357-4368. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/primeFactors.Rd0000644000176200001440000000043613122471774016461 0ustar liggesusers\name{primeFactors} \alias{primeFactors} \title{Prime Number Factorization} \description{ Computes the prime number factorization of an integer. } \usage{ primeFactors(x) } \arguments{ \item{x}{an integer} } \value{vector with prime number factorization of \code{x}} \keyword{math} surveillance/man/m1.Rd0000644000176200001440000000420214662137762014341 0ustar liggesusers\name{m1} \alias{m1} \alias{h1_nrwrp} \alias{k1} \alias{m2} \alias{m3} \alias{m4} \alias{m5} \alias{n1} \alias{n2} \alias{q1_nrwh} \alias{q2} \alias{s1} \alias{s2} \alias{s3} \docType{data} \encoding{latin1} \title{RKI SurvStat Data} \description{ 14 datasets for different diseases beginning in 2001 to the 3rd Quarter of 2004 including their defined outbreaks. \itemize{ \item \code{m1} 'Masern' in the 'Landkreis Nordfriesland' (Germany, Schleswig-Holstein) \item \code{m2} 'Masern' in the 'Stadt- und Landkreis Coburg' (Germany, Bayern) \item \code{m3} 'Masern' in the 'Kreis Leer' (Germany, Niedersachsen) \item \code{m4} 'Masern' in the 'Stadt- und Landkreis Aachen' (Germany, Nordrhein-Westfalen) \item \code{m5} 'Masern' in the 'Stadt Verden' (Germany, Niedersachsen) \item \code{q1_nrwh} 'Q-Fieber' in the 'Hochsauerlandkreis' (Germany, Westfalen) and in the 'Landkreis Waldeck-Frankenberg' (Germany, Hessen) \item \code{q2} 'Q-Fieber' in '\enc{München}{Muenchen}' (Germany, Bayern) \item \code{s1} 'Salmonella Oranienburg' in Germany \item \code{s2} 'Salmonella Agona' in 12 'Bundesl\enc{ä}{ae}ndern' of Germany \item \code{s3} 'Salmonella Anatum' in Germany \item \code{k1} 'Kryptosporidiose' in Germany, 'Baden-W\enc{ü}{ue}rttemberg' \item \code{n1} 'Norovirus' in 'Stadtkreis Berlin Mitte' (Germany, Berlin) \item \code{n2} 'Norovirus' in 'Torgau-Oschatz' (Germany, Sachsen) \item \code{h1_nrwrp} 'Hepatitis A' in 'Oberbergischer Kreis, Olpe, Rhein-Sieg-kreis' (Germany, Nordrhein-Westfalen) and 'Siegenwittgenstein Altenkirchen' (Germany, Rheinland-Pfalz) } } \usage{data(m1)} \format{ \code{disProg} objects each containing 209 observations (weekly on 52 weeks) \describe{ \item{observed}{Number of counts in the corresponding week} \item{state}{Boolean whether there was an outbreak.} } } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; m1 and m3 were queried on 10 November 2004. The rest during September 2004. } \examples{ data(k1) survResObj <- algo.rki1(k1, control=list(range=27:192)) plot(survResObj, "RKI 1", "k1") } \keyword{datasets} surveillance/man/stsSlots.Rd0000644000176200001440000000126013507347337015661 0ustar liggesusers\name{stsSlot-generics} \docType{methods} \alias{alarms} \alias{alarms<-} \alias{upperbound} \alias{upperbound<-} \alias{control} \alias{control<-} \alias{epoch} \alias{epoch<-} \alias{observed} \alias{observed<-} \alias{population} \alias{population<-} \alias{multinomialTS} \alias{multinomialTS<-} \alias{neighbourhood} \alias{neighbourhood<-} \title{Generic Functions to Access \code{"sts"} Slots} \description{ For almost every slot of the \code{"sts"} class, package \pkg{surveillance} defines a generic function of the same name (and a replacement version) to extract (or set) the corresponding slot. See the \code{"\linkS4class{sts}"} class documentation. } \keyword{methods} surveillance/man/refvalIdxByDate.Rd0000644000176200001440000000205614662137762017046 0ustar liggesusers\name{refvalIdxByDate} \alias{refvalIdxByDate} \title{Compute indices of reference value using Date class} \description{ The reference values are formed based on computations of \code{seq} for Date class arguments. } \usage{ refvalIdxByDate(t0, b, w, epochStr, epochs) } \arguments{ \item{t0}{A Date object describing the time point} \item{b}{Number of years to go back in time} \item{w}{Half width of window to include reference values for} \item{epochStr}{One of \code{"1 month"}, \code{"1 week"} or \code{"1 day"}} \item{epochs}{Vector containing the epoch value of the sts/disProg object} } \details{ Using the Date class the reference values are formed as follows: Starting from \code{t0} go i, i= 1,...,\code{b} years back in time. For each year, go \code{w} epochs back and include from here to \code{w} epochs after \code{t0}. In case of weeks we always go back to the closest Monday of this date. In case of months we also go back in time to closest 1st of month. } \value{ a vector of indices in epochs which match } \keyword{chron} surveillance/man/formatDate.Rd0000644000176200001440000000163614431621313016102 0ustar liggesusers\name{formatDate} \alias{formatDate} \title{ Convert Dates to Character (Including Quarter Strings) } \description{ An extension of \code{\link{format.Date}} with additional formatting strings for quarters. Used by \code{\link{linelist2sts}}. } \usage{ formatDate(x, format) } \arguments{ \item{x}{a \code{"\link{Date}"} object.} \item{format}{ a character string, see \code{\link{strftime}} for possible specifications. Further to these base formats, \code{formatDate} implements: \describe{ \item{\code{"\%Q"}}{the quarter as a numeric} \item{\code{"\%OQ"}}{the quarter as a roman numeral} \item{\code{"\%q"}}{the day within the quarter} } } } \value{ a character vector representing the input date(s) \code{x} following the \code{format} specification. } \seealso{ \code{\link{strftime}} } \examples{ formatDate(as.Date("2021-10-13"), "\%G/\%OQ/\%q") } \keyword{chron} surveillance/man/twinSIR_exData.Rd0000644000176200001440000000051313562264564016651 0ustar liggesusers\name{twinSIR_exData} \alias{fooepidata} \docType{data} \title{ Toy Data for \code{twinSIR} } \description{ Toy \code{"\link{epidata}"} previously used to exemplify \code{\link{twinSIR}} models. We now use the well-known \code{\link{hagelloch}} dataset. } \usage{ data(fooepidata) } \keyword{datasets} \keyword{internal} surveillance/man/epidata.Rd0000644000176200001440000003764714665117445015455 0ustar liggesusers\encoding{latin1} \name{epidata} \alias{as.epidata} \alias{as.epidata.data.frame} \alias{as.epidata.default} \alias{print.epidata} \alias{[.epidata} \alias{update.epidata} \alias{epidata} \title{ Continuous-Time SIR Event History of a Fixed Population } \description{ The function \code{as.epidata} is used to generate objects of class \code{"epidata"}. Objects of this class are specific data frames containing the event history of an epidemic together with some additional attributes. These objects are the basis for fitting spatio-temporal epidemic intensity models with the function \code{\link{twinSIR}}. Their implementation is illustrated in Meyer et al. (2017, Section 4), see \code{vignette("twinSIR")}. Note that the spatial information itself, i.e. the positions of the individuals, is assumed to be constant over time. Besides epidemics following the SIR compartmental model, also data from SI, SIRS and SIS epidemics may be supplied. } \usage{ as.epidata(data, ...) \method{as.epidata}{data.frame}(data, t0, tE.col, tI.col, tR.col, id.col, coords.cols, f = list(), w = list(), D = dist, max.time = NULL, keep.cols = TRUE, ...) \method{as.epidata}{default}(data, id.col, start.col, stop.col, atRiskY.col, event.col, Revent.col, coords.cols, f = list(), w = list(), D = dist, .latent = FALSE, ...) \method{print}{epidata}(x, ...) \method{[}{epidata}(x, i, j, drop) \method{update}{epidata}(object, f = list(), w = list(), D = dist, ...) } \arguments{ \item{data}{ For the \code{data.frame}-method, a data frame with as many rows as there are individuals in the population and time columns indicating when each individual became exposed (optional), infectious (mandatory, but can be \code{NA} for non-affected individuals) and removed (optional). Note that this data format does not allow for re-infection (SIRS) and time-varying covariates. The \code{data.frame}-method converts the individual-indexed data frame to the long event history start/stop format and then feeds it into the default method. If calling the generic function \code{as.epidata} on a \code{data.frame} and the \code{t0} argument is missing, the default method is called directly.\cr For the default method, \code{data} can be a \code{\link{matrix}} or a \code{\link{data.frame}}. It must contain the observed event history in a form similar to \code{Surv(, type="counting")} in package \pkg{survival}, with additional information (variables) along the process. Rows will be sorted automatically during conversion. The observation period is split up into \emph{consecutive} intervals of constant state - thus constant infection intensities. The data frame consists of a block of \eqn{N} (number of individuals) rows for each of those time intervals (all rows in a block have the same start and stop values\dots therefore the name \dQuote{block}), where there is one row per individual in the block. Each row describes the (fixed) state of the individual during the interval given by the start and stop columns \code{start.col} and \code{stop.col}.\cr Note that there may not be more than one event (infection or removal) in a single block. Thus, in a single block, only one entry in the \code{event.col} and \code{Revent.col} may be 1, all others are 0. This rule follows the point process characteristic that there are no concurrent events (infections or removals). } \item{t0,max.time}{ observation period. In the resulting \code{"epidata"}, the time scale will be relative to the start time \code{t0}. Individuals that have already been removed prior to \code{t0}, i.e., rows with \code{tR <= t0}, will be dropped. The end of the observation period (\code{max.time}) will by default (\code{NULL}, or if \code{NA}) coincide with the last observed event. } \item{tE.col, tI.col, tR.col}{ single numeric or character indexes of the time columns in \code{data}, which specify when the individuals became exposed, infectious and removed, respectively. \code{tE.col} and \code{tR.col} can be missing, corresponding to SIR, SEI, or SI data. \code{NA} entries mean that the respective event has not (yet) occurred. Note that \code{is.na(tE)} implies \code{is.na(tI)} and \code{is.na(tR)}, and \code{is.na(tI)} implies \code{is.na(tR)} (and this is checked for the provided data).\cr CAVE: Support for latent periods (\code{tE.col}) is experimental! \code{\link{twinSIR}} cannot handle them anyway. } \item{id.col}{ single numeric or character index of the \code{id} column in \code{data}. The \code{id} column identifies the individuals in the data frame. It is converted to a factor by calling \code{\link{factor}}, i.e., unused levels are dropped if it already was a factor. } \item{start.col}{ single index of the \code{start} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{start} column contains the (numeric) time points of the beginnings of the consecutive time intervals of the event history. The minimum value in this column, i.e. the start of the observation period should be 0. } \item{stop.col}{ single index of the \code{stop} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{stop} column contains the (numeric) time points of the ends of the consecutive time intervals of the event history. The stop value must always be greater than the start value of a row. } \item{atRiskY.col}{ single index of the \code{atRiskY} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{atRiskY} column indicates if the individual was \dQuote{at-risk} of becoming infected during the time interval (start; stop]. This variable must be logical or in 0/1-coding. Individuals with \code{atRiskY == 0} in the first time interval (normally the rows with \code{start == 0}) are taken as \emph{initially infectious}. } \item{event.col}{ single index of the \code{event} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{event} column indicates if the individual became \emph{infected} at the \code{stop} time of the interval. This variable must be logical or in 0/1-coding. } \item{Revent.col}{ single index of the \code{Revent} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{Revent} column indicates if the individual was \emph{recovered} at the \code{stop} time of the interval. This variable must be logical or in 0/1-coding. } \item{coords.cols}{ index\emph{es} of the \code{coords} column\emph{s} in \code{data}. Can be numeric (by column number), character (by column name), or \code{NULL} (no coordinates, e.g., if \code{D} is a pre-specified distance matrix). These columns contain the individuals' coordinates, which determine the distance matrix for the distance-based components of the force of infection (see argument \code{f}). By default, Euclidean distance is used (see argument \code{D}).\cr Note that the functions related to \code{\link{twinSIR}} currently assume \emph{fixed positions} of the individuals during the whole epidemic. Thus, an individual has the same coordinates in every block. For simplicity, the coordinates are derived from the first time block only (normally the rows with \code{start == 0}).\cr The \code{\link[=animate.epidata]{animate}}-method requires coordinates. } \item{f}{ a \emph{named} list of \emph{vectorized} functions for a distance-based force of infection. The functions must interact elementwise on a (distance) matrix \code{D} so that \code{f[[m]](D)} results in a matrix. A simple example is \code{function(u) {u <= 1}}, which indicates if the Euclidean distance between the individuals is smaller than or equal to 1. The names of the functions determine the names of the epidemic variables in the resulting data frame. So, the names should not coincide with names of other covariates. The distance-based weights are computed as follows: Let \eqn{I(t)} denote the set of infectious individuals just before time \eqn{t}. Then, for individual \eqn{i} at time \eqn{t}, the \eqn{m}'th covariate has the value \eqn{\sum_{j \in I(t)} f_m(d_{ij})}{\sum_{j in I(t)} f[[m]](d[i,j])}, where \eqn{d_{ij}}{d[i,j]} denotes entries of the distance matrix (by default this is the Euclidean distance \eqn{||s_i - s_j||} between the individuals' coordinates, but see argument \code{D}). } \item{w}{ a \emph{named} list of \emph{vectorized} functions for extra covariate-based weights \eqn{w_{ij}}{w_ij} in the epidemic component. Each function operates on a single time-constant covariate in \code{data}, which is determined by the name of the first argument: The two function arguments should be named \code{varname.i} and \code{varname.j}, where \code{varname} is one of \code{names(data)}. Similar to the components in \code{f}, \code{length(w)} epidemic covariates will be generated in the resulting \code{"epidata"} named according to \code{names(w)}. So, the names should not coincide with names of other covariates. For individual \eqn{i} at time \eqn{t}, the \eqn{m}'th such covariate has the value \eqn{\sum_{j \in I(t)} w_m(z^{(m)}_i, z^{(m)}_j)}, where \eqn{z^{(m)}} denotes the variable in \code{data} associated with \code{w[[m]]}. } \item{D}{ either a function to calculate the distances between the individuals with locations taken from \code{coord.cols} (the default is Euclidean distance via the function \code{\link{dist}}) and the result converted to a matrix via \code{\link{as.matrix}}, or a pre-computed distance matrix with \code{dimnames} containing the individual ids (a classed \code{"\link[Matrix:Matrix-class]{Matrix}"} is supported). } \item{keep.cols}{ logical indicating if all columns in \code{data} should be retained (and not only the obligatory \code{"epidata"} columns), in particular any additional columns with time-constant individual-specific covariates. Alternatively, \code{keep.cols} can be a numeric or character vector indexing columns of \code{data} to keep. } \item{.latent}{ (internal) logical indicating whether to allow for latent periods (EXPERIMENTAL). Otherwise (default), the function verifies that an event (i.e., switching to the I state) only happens when the respective individual is at risk (i.e., in the S state). } \item{x,object}{ an object of class \code{"epidata"}. } \item{\dots}{ arguments passed to \code{\link{print.data.frame}}. Currently unused in the \code{as.epidata}-methods. } \item{i,j,drop}{ arguments passed to \code{\link{[.data.frame}}. } } \details{ The \code{print} method for objects of class \code{"epidata"} simply prints the data frame with a small header containing the time range of the observed epidemic and the number of infected individuals. Usually, the data frames are quite long, so the summary method \code{\link{summary.epidata}} might be useful. Also, indexing/subsetting \code{"epidata"} works exactly as for \code{\link[=[.data.frame]{data.frame}}s, but there is an own method, which assures consistency of the resulting \code{"epidata"} or drops this class, if necessary. The \code{update}-method can be used to add or replace distance-based (\code{f}) or covariate-based (\code{w}) epidemic variables in an existing \code{"epidata"} object. SIS epidemics are implemented as SIRS epidemics where the length of the removal period equals 0. This means that an individual, which has an R-event will be at risk immediately afterwards, i.e. in the following time block. Therefore, data of SIS epidemics have to be provided in that form containing \dQuote{pseudo-R-events}. } \note{ The column name \code{"BLOCK"} is a reserved name. This column will be added automatically at conversion and the resulting data frame will be sorted by this column and by id. Also the names \code{"id"}, \code{"start"}, \code{"stop"}, \code{"atRiskY"}, \code{"event"} and \code{"Revent"} are reserved for the respective columns only. } \value{ a \code{data.frame} with the columns \code{"BLOCK"}, \code{"id"}, \code{"start"}, \code{"stop"}, \code{"atRiskY"}, \code{"event"}, \code{"Revent"} and the coordinate columns (with the original names from \code{data}), which are all obligatory. These columns are followed by any remaining columns of the input \code{data}. Last but not least, the newly generated columns with epidemic variables corresponding to the functions in the list \code{f} are appended, if \code{length(f)} > 0. The \code{data.frame} is given the additional \emph{attributes} \item{"eventTimes"}{ numeric vector of infection time points (sorted chronologically). } \item{"timeRange"}{ numeric vector of length 2: \code{c(min(start), max(stop))}. } \item{"coords.cols"}{ numeric vector containing the column indices of the coordinate columns in the resulting data frame. } \item{"f"}{ this equals the argument \code{f}. } \item{"w"}{ this equals the argument \code{w}. } } \author{ Sebastian Meyer } \seealso{ The \code{\link{hagelloch}} data as an example. The \code{\link[=plot.epidata]{plot}} and the \code{\link[=summary.epidata]{summary}} method for class \code{"epidata"}. Furthermore, the function \code{\link{animate.epidata}} for the animation of epidemics. Function \code{\link{twinSIR}} for fitting spatio-temporal epidemic intensity models to epidemic data. Function \code{\link{simEpidata}} for the simulation of epidemic data. } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \examples{ data("hagelloch") # see help("hagelloch") for a description head(hagelloch.df) ## convert the original data frame to an "epidata" event history myEpi <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), keep.cols = c("SEX", "AGE", "CL")) \dontshow{if (surveillance.options("allExamples")) { ## test consistency with default method evHist <- as.data.frame(myEpi)[,-1] myEpi2 <- as.epidata( evHist, id.col = 1, start.col = "start", stop.col = "stop", atRiskY.col = "atRiskY", event.col = "event", Revent.col = "Revent", coords.cols = c("x.loc", "y.loc") ) stopifnot(identical(myEpi, myEpi2)) }} str(myEpi) head(as.data.frame(myEpi)) # "epidata" has event history format summary(myEpi) # see 'summary.epidata' plot(myEpi) # see 'plot.epidata' and also 'animate.epidata' ## add distance- and covariate-based weights for the force of infection ## in a twinSIR model, see vignette("twinSIR") for a description myEpi <- update(myEpi, f = list( household = function(u) u == 0, nothousehold = function(u) u > 0 ), w = list( c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i ) ) ## this is now identical to the prepared hagelloch "epidata" stopifnot(all.equal(myEpi, hagelloch)) \dontshow{if (surveillance.options("allExamples")) { ## test with precomputed distance matrix D myEpi3 <- suppressWarnings( # from overwriting existing f columns update(hagelloch, f = attr(hagelloch, "f"), D = as.matrix(dist(hagelloch.df[c("x.loc", "y.loc")]))) ) stopifnot(identical(hagelloch, myEpi3)) }} } \keyword{spatial} \keyword{classes} \keyword{manip} surveillance/man/twinSIR_profile.Rd0000644000176200001440000000453213433452530017075 0ustar liggesusers\encoding{latin1} \name{twinSIR_profile} \alias{profile.twinSIR} \alias{plot.profile.twinSIR} \title{ Profile Likelihood Computation and Confidence Intervals } \description{ Function to compute estimated and profile likelihood based confidence intervals. Computations might be cumbersome! There is a simple \code{plot}-method for the result. } \usage{ \method{profile}{twinSIR}(fitted, profile, alpha = 0.05, control = list(fnscale = -1, factr = 10, maxit = 100), ...) } \arguments{ \item{fitted}{ an object of class \code{"twinSIR"}. } \item{profile}{ a list with elements being numeric vectors of length 4. These vectors must have the form \code{c(index, lower, upper, gridsize)}. \describe{ \item{\code{index}:}{ index of the parameter to be profiled in the vector \code{coef(fitted)}. } \item{\code{lower, upper}:}{ lower/upper limit of the grid on which the profile log-likelihood is evaluated. Can also be \code{NA} in which case \code{lower/upper} equals the lower/upper bound of the respective 0.3 \% Wald confidence interval (+-3*se). } \item{\code{gridsize}:}{ grid size of the equally spaced grid between lower and upper. Can also be 0 in which case the profile log-likelihood for this parameter is not evaluated on a grid. } } } \item{alpha}{ \eqn{(1-\alpha) 100\%}{(1-alpha)*100\%} profile likelihood based confidence intervals are computed. If \code{alpha <= 0}, then no confidence intervals are computed. } \item{control}{ control object to use in \code{\link{optim}} for the profile log-likelihood computations. } \item{\dots}{ unused (argument of the generic). } } \value{ a list with profile log-likelihood evaluations on the grid and highest likelihood and Wald confidence intervals. The argument \code{profile} is also returned. The result has class \code{"profile.twinSIR"}, for which a simple (undocumented) \code{plot}-method is available. } \author{ Michael \enc{Höhle}{Hoehle} and Sebastian Meyer } \examples{ data("hagelloch") fit <- twinSIR(~ household, data = hagelloch) gridsize <- if (interactive()) 35 else 5 # for fast tests prof <- profile(fit, list(c(1, NA, NA, gridsize))) prof$ci.hl plot(prof) } \keyword{htest} \keyword{methods} \keyword{optimize} \keyword{dplot} surveillance/man/epidata_plot.Rd0000644000176200001440000001467513671635730016505 0ustar liggesusers\name{epidata_plot} \alias{plot.epidata} \alias{plot.summary.epidata} \alias{stateplot} \title{ Plotting the Evolution of an Epidemic } \description{ Functions for plotting the evolution of epidemics. The \code{\link{plot}} methods for \code{\link{class}}es \code{"\link{epidata}"} and \code{"summary.epidata"} plots the numbers of susceptible, infectious and recovered (= removed) individuals by step functions along the time axis. The function \code{stateplot} shows individual state changes along the time axis. } \usage{ \method{plot}{summary.epidata}(x, lty = c(2, 1, 3), lwd = 2, col = c("#1B9E77", "#D95F02", "#7570B3"), col.hor = col, col.vert = col, xlab = "Time", ylab = "Number of individuals", xlim = NULL, ylim = NULL, legend.opts = list(), do.axis4 = NULL, panel.first = grid(), rug.opts = list(), which.rug = c("infections", "removals", "susceptibility", "all"), ...) \method{plot}{epidata}(x, ...) stateplot(x, id, ...) } \arguments{ \item{x}{ an object inheriting from class \code{"epidata"} or \code{"summary.epidata"}. In the former case, its summary is calculated and the function continues as in the latter case. The \code{plot} method for class \code{"epidata"} is a simple wrapper for \code{plot.summary.epidata} implemented as \code{plot(summary(x, ...))}. } \item{lty, lwd}{ vectors of length 3 containing the line types and widths, respectively, for the numbers of susceptible, infectious and removed individuals (in this order). By default, all lines have width 1 and the line types are dashed (susceptible), solid (infectious) and dotted (removed), respectively. To omit the drawing of a specific line, just set the corresponding entry in \code{lty} to 0. The vectors are recycled if necessary. For information about the different \code{lty} and \code{lwd} codes, see the help pages of \code{\link{par}}. } \item{col, col.hor, col.vert}{ vectors of length 3 containing the line colors for the numbers of susceptible, infectious and removed individuals (in this order). \code{col.hor} defines the color for the horizontal parts of the step function, whilst \code{col.vert} defines the color for its vertical parts. The argument \code{col} is just short for \code{col.hor = col} and \code{col.vert = col}. The default \code{col} vector corresponds to \code{brewer.pal("Dark2",n=3)} from the \CRANpkg{RColorBrewer} package. The vectors are recycled if necessary. For information about the possible values of \code{col}, see the help pages of \code{\link{par}}. } \item{xlab, ylab}{ axis labels, default to "Time" and "Number of individuals", respectively. } \item{xlim, ylim}{ the x and y limits of the plot in the form \code{c(xmin, xmax)} and \code{c(ymin, ymax)}, respectively. By default, these are chosen adequately to fit the time range of the epidemic and the number of individuals. } \item{legend.opts}{ if this is a list (of arguments for the \code{\link{legend}} function), a legend will be plotted. The defaults are as follows: \describe{ \item{\code{x}:}{\code{"topright"}} \item{\code{inset}:}{\code{c(0,0.02)}} \item{\code{legend}:}{\code{c("susceptible", "infectious", "removed")}} \item{\code{lty},\code{lwd},\code{col}:}{same as the arguments \code{lty}, \code{lwd}, and \code{col.hor} of the main function} \item{\code{bty}:}{\code{"n"}} } } \item{do.axis4}{ logical indicating if the final numbers of susceptible and removed individuals should be indicated on the right axis. The default \code{NULL} means \code{TRUE}, if \code{x} represents a SIR epidemic and \code{FALSE} otherwise, i.e. if the epidemic is SI, SIS or SIRS. } \item{panel.first}{ an expression to be evaluated after the plot axes are set up but before any plotting takes place. By default, a standard grid is drawn. } \item{rug.opts}{ either a list of arguments passed to the function \code{\link{rug}} or \code{NULL} (or \code{NA}), in which case no \code{rug} will be plotted. By default, the argument \code{ticksize} is set to 0.02, \code{col} is set to the color according to \code{which.rug} (black if this is \code{"all"}), and \code{quiet} is set to \code{TRUE}. Note that the argument \code{x}, which contains the locations for the \code{rug} is fixed internally and can not be modified. The argument \code{which.rug} (see below) determines the locations to mark. } \item{which.rug}{ By default, tick marks are drawn at the time points of infections. Alternatively, one can choose to mark only \code{"removals"}, \code{"susceptibilities"} (i.e. state change from R to S) or \code{"all"} events. } \item{id}{ single character string or factor of length 1 specifying the individual for which the \code{stateplot} should be established. } \item{\dots}{ For \code{plot.summary.epidata}: further graphical parameters passed to \code{plot}, \code{lines} and \code{axis}, e.g. \code{main}, \code{las}, \code{cex.axis} (etc.) and \code{mgp}.\cr For \code{plot.epidata}: arguments passed to \code{plot.summary.epidata}.\cr For \code{stateplot}: arguments passed to \code{\link{plot.stepfun}} or \code{\link{plot.function}} (if \code{id} had no events during the observation period). By default, \code{xlab="time"}, \code{ylab="state"}, \code{xlim=attr(x,"timeRange")}, \code{xaxs="i"} and \code{do.points=FALSE}. } } \value{ \code{plot.summary.epidata} (and \code{plot.epidata}) invisibly returns the matrix used for plotting, which contains the evolution of the three counters.\cr \code{stateplot} invisibly returns the function, which was plotted, typically of class \code{"stepfun"}, but maybe of class \code{"function"}, if no events have been observed for the individual in question (then the function always returns the initial state). The vertical axis of \code{stateplot} can range from 1 to 3, where 1 corresponds to \emph{S}usceptible, 2 to \emph{I}nfectious and 3 to \emph{R}emoved. } \author{ Sebastian Meyer } \seealso{ \code{\link{summary.epidata}} for the data, on which the plots are based. \code{\link{animate.epidata}} for the animation of epidemics. } \examples{ data("hagelloch") (s <- summary(hagelloch)) # rudimentary stateplot stateplot(s, id = "187") # evolution of the epidemic plot(s) } \keyword{hplot} \keyword{methods} \keyword{spatial} surveillance/man/algo.summary.Rd0000644000176200001440000000347013122471774016442 0ustar liggesusers\name{algo.summary} \alias{algo.summary} \title{Summary Table Generation for Several Disease Chains} \description{ Summary table generation for several disease chains. } \usage{ algo.summary(compMatrices) } \arguments{ \item{compMatrices}{list of matrices constructed by algo.compare.} } \value{ a matrix summing up the singular input matrices } \details{ As lag the mean of all single lags is returned. TP values, FN values, TN values and FP values are summed up. \code{dist}, \code{sens} and \code{spec} are new computed on the basis of the new TP value, FN value, TN value and FP value. } \seealso{\code{\link{algo.compare}}, \code{\link{algo.quality}}} \examples{ # Create a test object disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 5) disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 17) # Let this object be tested from any methods in range = 200:400 range <- 200:400 control <- list(list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range)) compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control)) compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control)) compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control)) algo.summary( list(a=compMatrix1, b=compMatrix2, c=compMatrix3) ) } \keyword{print} surveillance/man/twinstim_siaf_simulatePC.Rd0000644000176200001440000000316513612576410021030 0ustar liggesusers\name{siaf.simulatePC} \alias{siaf.simulatePC} \title{ Simulation from an Isotropic Spatial Kernel via Polar Coordinates } \description{ To sample points from isotropic spatial kernels \eqn{f_2(s) = f(||s||)} such as \code{\link{siaf.powerlaw}} on a bounded domain (i.e., \eqn{||s|| < \code{ub}}), it is convenient to switch to polar coordinates \eqn{(r,\theta)}, which have a density proportional to \eqn{r f_2((r \cos(\theta), r \sin(\theta))) = r f(r)} (independent of the angle \eqn{\theta} due to isotropy). The angle is thus simply drawn uniformly in \eqn{[0,2\pi)}, and \eqn{r} can be sampled by the inversion method, where numeric root finding is used for the quantiles (since the quantile function is not available in closed form). } \usage{ siaf.simulatePC(intrfr) } \arguments{ \item{intrfr}{ a function computing the integral of \eqn{r f(r)} from 0 to \code{R} (first argument, not necessarily named \code{R}). Parameters of the function are passed as its second argument and a third argument is the event type. } } \value{ a function with arguments \code{(n, siafpars, type, ub)}, which samples \code{n} points from the spatial kernel \eqn{f_2(s)} within the disc of radius \code{ub}, where \code{siafpars} and \code{type} are passed as second and third argument to \code{intrfr}. The environment of the returned function will be the caller's environment. } \author{ Sebastian Meyer } \examples{ simfun <- siaf.powerlaw()$simulate ## is internally generated as siaf.simulatePC(intrfr.powerlaw) set.seed(1) simfun(n=10, siafpars=log(c(sigma=1, d=2)), ub=5) } \keyword{internal} surveillance/man/nowcast.Rd0000644000176200001440000003455714615244470015513 0ustar liggesusers\encoding{latin1} \name{nowcast} \alias{nowcast} %Internal functions %\alias{dist.median} %\alias{outside.ci} %\alias{logS} %\alias{RPS} \title{ Adjust a univariate time series of counts for observed but-not-yet-reported events } \description{ Nowcasting can help to obtain up-to-date information on trends during a situation where reports about events arrive with delay. For example in public health reporting, reports about important indicators (such as occurrence of cases) are prone to be delayed due to for example manual quality checking and reporting system hierarchies. Altogether, the delays are subject to a delay distribution, which may, or may not, vary over time. } \usage{ nowcast(now, when, data, dEventCol="dHospital", dReportCol="dReport", method=c("bayes.notrunc", "bayes.notrunc.bnb", "lawless", "bayes.trunc", "unif", "bayes.trunc.ddcp"), aggregate.by="1 day", D=15, m=NULL, m.interpretation=c("hoehle_anderheiden2014", "lawless1994"), control=list( dRange=NULL, alpha=0.05, nSamples=1e3, N.tInf.prior=c("poisgamma","pois","unif"), N.tInf.max=300, gd.prior.kappa=0.1, ddcp=list(ddChangepoint=NULL, cp_order=c("zero","one"), Wextra=NULL, logLambda=c("iidLogGa","tps","rw1","rw2"), responseDistr=c("poisson", "negbin"), mcmc=c(burnin=2500, sample=10000, thin=1, adapt=1000, store.samples=FALSE)), score=FALSE, predPMF=FALSE)) } \arguments{ \item{now}{ an object of class \code{Date} denoting the day at which to do the nowcast. This corresponds to \eqn{T} in the notation of \enc{Höhle}{Hoehle} and an der Heiden (2014). } \item{when}{a vector of \code{Date} objects denoting the day(s) for which the projections are to be done. One needs to ensure that each element in \code{when} is smaller or equal to \code{now}. } \item{data}{A data frame with one row per case -- for each case on needs information on the day of the event (e.g. hospitalization) and the day of report of this event. } \item{dEventCol}{The name of the column in \code{data} which contains the date of the event, e.g. hospitalization. Default: \code{"dHospital"}. } \item{dReportCol}{Name of the column in \code{data} containing the date at which the report arrives at the respective register. Default: \code{"dReport"}. } \item{method}{A vector of strings denoting the different methods for doing the nowcasting. Note that results of the first name in this list are officially returned by the function. However, it is possible to specify several methods here, e.g., in order to compare score evaluations. Details of the methods are described in \enc{Höhle}{Hoehle} and an der Heiden (2014). \describe{ \item{\code{"unif"}}{} \item{\code{"bayes.notrunc"}}{A Bayesian procedure ignoring truncation.} \item{\code{"bayes.notrunc.bnb"}}{A fast Bayesian procedure ignoring truncation and which calculates the adjustment per-time (i.e. ignoring other delays) using the negative binomial.} \item{\code{"lawless"}}{A discretized version of the Gaussian predictive distribution suggested in Lawless (1994).} \item{\code{"bayes.trunc"}}{Bayesian method based on the generalized Dirichlet distribution, which is the conjugate prior-posterior for the delay distribution PMF under right-truncated sampling as shown in HadH (2014).} \item{\code{"bayes.trunc.ddcp"}}{Fully Bayesian method allowing for change-points in the delay distribution, e.g., due to speed-ups in the reporting process. A discrete-survival model is used for the delay distribution. Details of the methods are described in HadH (2014). Note: This method requires that the JAGS program is installed on the system.} } } \item{aggregate.by}{Time scale used for the temporal aggregation of the records in the data \code{data}. See \code{\link{linelist2sts}} and \code{\link{seq.Date}} for further information.} \item{D}{Maximum possible or maximum relevant delay (unit: \code{aggregate.by}). Default: 15.} \item{m}{Size of the moving window for the estimation of the delay distribution. Default: \code{NULL}, i.e. take all values at all times. Otherwise: a positive integer equal to or greater than \code{D} such that only values from a sliding window are used. The shape of the window depends on the value of \code{m.interpretation}.} \item{m.interpretation}{This parameter controls the interpretation of the sliding window used to estimate the delay distribution. If \code{m.interpretation="hoehle_anderheiden2014"} (Default) then the sliding window is defined as a horizontal cut in the reporting triangle, i.e. the values for the delay estimation originate from reports occurring during \code{(now-m):now}. This means that the estimation of long delays is based on fewer observations than the estimation of the short delays, hence, the long delay estimates are subject to more variability. If for example \eqn{m=D} then the estimate for a delay of \eqn{d=D} is based on only one observation. The advantage of this choice is that one explicitly knows which time period all observations originate from. For details see Section 3 of \enc{Höhle}{Hoehle} and an der Heiden (2014). Alternatively, when \code{m.interpretation}="lawless1994", the cut in the reporting triangle is made such that each delay \code{d} is estimated based on the same number of observations (\eqn{m+1}). This means that in order to estimate the delay for \eqn{d} days, a sliding rectangle of length \eqn{m+1} containing the reports which occurred during \code{(now-m-d):now}. See Fig. 2 in Lawless (1994) for details. Note: A warning is given is \code{method="lawless"}, but \code{m.interpretation} is not.} \item{control}{A list with named arguments controlling the functionality of the nowcasting. \describe{ \item{dRange}{Default: \code{NULL}. In this case the \code{dEventCol} column is used to extract the first and last available in \code{data}.} \item{alpha}{Equal tailed (1-\eqn{\alpha}{alpha})*100\% prediction intervals are calculated. Default: 0.05.} \item{nSamples}{Number of PMF samples in the \code{bayes.*} procedures. Note: Entire vectors containing the PMF on the grid from 0 to \code{N.tInf.max} are drawn and which are then combined. The argument does not apply to the \code{bayes.trunc.ddcp} method.} \item{N.tInf.prior}{Prior distribution of \eqn{N(t,\infty)}{N(t,Inf)}. Applies only to the \code{bayes.*} except \code{bayes.bayes.ddcp} methods. See example on how to control the distribution parameters.} \item{N.tInf.max}{Limit of the support of \eqn{N(t,\infty)}{N(t,Inf)}. The value needs to be high enough such that at this limit only little of the predictive distribution is right-truncated. Default: 300.} \item{gd.prior.kappa}{Concentration parameter for the Dirichlet prior for the delay distribution on \eqn{0,...,D}. Default: 0.1. Note: The procedure is quite sensitive to this parameter in case only few cases are available.} \item{ddcp}{A list specifying the change point model for the delay distribution. This method should only be used if detailed information about changes in the delay distribution are available as, e.g., in the case of the STEC O104:H4 outbreak. The components are as follows: \describe{ \item{\code{ddChangepoint}}{Vector of Date objects corresponding to the changepoints} \item{\code{cp_order}}{Either \code{"zero"} (Default) or \code{"one"}. This is the degree of the TPS spline for the baseline hazard, which is formed by the changepoints. Order zero corresponds to the dummy variables of the change-points being simply zero or one. In case a 1st order polynomial is chosen, this allows the delay distribution to change towards faster or slow reporting as time progresses (until the next change-point). The later can be helpful in very dynamic epidemic situations where a lot of cases suddenly appear overwhelming the surveillance system infrastructure.} \item{\code{Wextra}}{An additional design matrix part to be joined onto the part originating from the change-points. Altogether, the column bind of these two quantities will be \eqn{W_{t,d}}. This allows one to include, e.g., day of the week effects or holidays.} \item{\code{logLambda}}{Prior on the spline. One of \code{c("iidLogGa","tps","rw1","rw2")}.} \item{\code{respDistr}}{Response distribution of \eqn{n_{t,d}} in the reporting triangle. Default is \code{"poisson"}. An experimental alternative is to use \code{"negbin"}.} \item{\code{tau.gamma}}{} \item{\code{eta.mu}}{Vector of coefficients describing the mean of the prior normal distribution of the regression effects in the discrete time survival model.} \item{\code{eta.prec}}{A precision matrix for the regression effects in the discrete time survival model.} \item{\code{mcmc}}{A named vector of length 5 containing burn-in (default: 2500), number of samples (10000), thinning (1) and adaptation (1000) for the three MCMC chains which are ran. The values are passed on to \code{\link[runjags]{run.jags}}. The fifth argument \code{store.samples} denotes if the output of the JAGS sampling should be included as part of the returned \code{stsNC} object. Warning: If \code{TRUE} (Default: \code{FALSE}) the size of the returned object might increase substantially.} } } \item{score}{Compute scoring rules. Default: \code{FALSE}. The computed scores are found in the \code{SR} slot of the result.} \item{predPMF}{Boolean whether to return the probability mass functions of the individual forecasts (Default: \code{FALSE}). The result can be found in the \code{control} slot of the return object.} } } } \details{ The methodological details of the nowcasting procedures are described in \enc{Höhle}{Hoehle} M and an der Heiden M (2014). } \value{ \code{nowcast} returns an object of \code{"\linkS4class{stsNC}"}. The \code{upperbound} slot contains the median of the method specified at the first position the argument \code{method}. The slot \code{pi} (for prediction interval) contains the equal tailed (1-\eqn{\alpha}{alpha})*100\% prediction intervals, which are calculated based on the predictive distributions in slot \code{predPMF}. Furthermore, slot \code{truth} contains an \code{sts} object containing the true number of cases (if possible to compute it is based on the data in \code{data}). Finally, slot \code{SR} contains the results for the proper scoring rules (requires truth to be calculable). } \references{ \enc{Höhle}{Hoehle}, M. and an der Heiden, M. (2014): Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011. \emph{Biometrics} 70(4):993-1002. \doi{10.1111/biom.12194}.\cr A preprint is available as \url{https://staff.math.su.se/hoehle/pubs/hoehle_anderheiden2014-preprint.pdf}. \enc{Günther}{Guenther}, F. and Bender, A. and Katz, K. and \enc{Küchenhoff}{Kuechenhoff}, H. and \enc{Höhle}{Hoehle}, M. (2020): Nowcasting the COVID-19 pandemic in Bavaria. \emph{Biometrical Journal}. \doi{10.1002/bimj.202000112}\cr Preprint available at \doi{10.1101/2020.06.26.20140210}. } \author{ Michael \enc{Höhle}{Hoehle} } \note{ Note: The \code{bayes.trunc.ddcp} uses the JAGS software together with the \R package \pkg{runjags} to handle the parallelization of the MCMC using the \code{"rjparallel"} method of \code{\link[runjags]{run.jags}}, which additionally requires the \pkg{rjags} package. You need to manually install JAGS on your computer for the package to work -- see \url{https://mcmc-jags.sourceforge.io/} and the documentation of \pkg{runjags} for details. Note: The function is still under development and might change in the future. Unfortunately, little emphasis has so far been put on making the function easy to understand and use. } \examples{ data("husO104Hosp") #Extract the reporting triangle at a specific day t.repTriangle <- as.Date("2011-07-04") #Use 'void' nowcasting procedure (we just want the reporting triangle) nc <- nowcast(now=t.repTriangle,when=t.repTriangle, dEventCol="dHosp",dReportCol="dReport",data=husO104Hosp, D=15,method="unif") #Show reporting triangle reportingTriangle(nc) #Perform Bayesian nowcasting assuming the delay distribution is stable over time nc.control <- list(N.tInf.prior=structure("poisgamma", mean.lambda=50,var.lambda=3000), nSamples=1e2) t.repTriangle <- as.Date("2011-06-10") when <- seq(t.repTriangle-3,length.out=10,by="-1 day") nc <- nowcast(now=t.repTriangle,when=when, dEventCol="dHosp",dReportCol="dReport",data=husO104Hosp, D=15,method="bayes.trunc",control=nc.control) #Show time series and posterior median forecast/nowcast plot(nc,xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange),xaxis.labelFormat="\%d-\%b", xlab="Time (days)",lty=c(1,1,1,1),lwd=c(1,1,2)) \dontrun{ ### Using runjags to do a Bayesian model with changepoint(s) ### -- this might take a while nc.control.ddcp <- modifyList(nc.control, list(gd.prior.kappa=0.1, ddcp=list(ddChangepoint=as.Date(c("2011-05-23")), logLambda="tps", tau.gamma=1, mcmc=c(burnin=1000,sample=1000,thin=1, adapt=1000,store.samples=FALSE)))) nc.ddcp <- nowcast(now=t.repTriangle,when=when, dEventCol="dHosp",dReportCol="dReport", data=husO104Hosp, aggregate.by="1 day", method="bayes.trunc.ddcp", D=15, control=nc.control.ddcp) plot(nc.ddcp,legend.opts=NULL, xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange),xaxis.labelFormat="\%d-\%b", xlab="Time (days)",lty=c(1,1,1,1),lwd=c(1,1,2)) lambda <- attr(delayCDF(nc.ddcp)[["bayes.trunc.ddcp"]],"model")$lambda showIdx <- seq(which( max(when) == epoch(nc.ddcp))) #seq(ncol(lambda)) matlines( showIdx,t(lambda)[showIdx,],col="gray",lwd=c(1,2,1),lty=c(2,1,2)) legend(x="topright",c(expression(lambda(t)),"95\% CI"),col="gray",lwd=c(2,1),lty=c(1,2)) } } \keyword{models} surveillance/man/findK.Rd0000644000176200001440000000213113122471774015050 0ustar liggesusers\name{findK} \alias{findK} \title{Find Reference Value} \description{ Calculates the reference value \code{k} for a Poisson or binomial CUSUM designed to detect a shift from \eqn{\theta_0} to \eqn{\theta_1} } \usage{ findK(theta0, theta1, distr = c("poisson", "binomial"), roundK = FALSE, digits = 1, ...) } \arguments{ \item{theta0}{ in-control parameter } \item{theta1}{ out-of-control parameter } \item{distr}{ \code{"poisson"} or \code{"binomial"} } \item{digits}{ the reference value \code{k} is rounded to \code{digits} decimal places} \item{roundK}{ For discrete data and rational reference value there is only a limited set of possible values that the CUSUM can take (and therefore there is also only a limited set of ARLs). If \code{roundK=TRUE}, integer multiples of 0.5 are avoided when rounding the reference value \code{k}, % i.e. the CUSUM can take more values.} \item{\dots}{ further arguments for the distribution function, i.e. number of trials \code{n} for the binomial CDF.} } \value{ Returns reference value \code{k}. } \keyword{models} surveillance/man/hhh4_methods.Rd0000644000176200001440000001461714666673310016413 0ustar liggesusers\encoding{latin1} \name{hhh4_methods} \alias{print.hhh4} \alias{summary.hhh4} \alias{nobs.hhh4} \alias{formula.hhh4} \alias{logLik.hhh4} \alias{coef.hhh4} \alias{vcov.hhh4} \alias{fixef.hhh4} \alias{ranef.hhh4} \alias{coeflist.hhh4} \alias{confint.hhh4} \alias{residuals.hhh4} %% internal methods without need for documentation %\alias{print.summary.hhh4} %\alias{terms.hhh4} \title{ Print, Summary and other Standard Methods for \code{"hhh4"} Objects } \description{ Besides \code{print} and \code{summary} methods there are also some standard extraction methods defined for objects of class \code{"hhh4"} resulting from a call to \code{\link{hhh4}}. The implementation is illustrated in Meyer et al. (2017, Section 5), see \code{vignette("hhh4_spacetime")}. } \usage{ \method{print}{hhh4}(x, digits = max(3, getOption("digits") - 3), ...) \method{summary}{hhh4}(object, maxEV = FALSE, ...) \method{coef}{hhh4}(object, se = FALSE, reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...) \method{fixef}{hhh4}(object, ...) \method{ranef}{hhh4}(object, tomatrix = FALSE, intercept = FALSE, ...) \method{coeflist}{hhh4}(x, ...) \method{formula}{hhh4}(x, ...) \method{nobs}{hhh4}(object, ...) \method{logLik}{hhh4}(object, ...) \method{vcov}{hhh4}(object, reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...) \method{confint}{hhh4}(object, parm, level = 0.95, reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...) \method{residuals}{hhh4}(object, type = c("deviance", "pearson", "response"), ...) } \arguments{ \item{x, object}{an object of class \code{"hhh4"}.} \item{digits}{the number of significant digits to use when printing parameter estimates.} \item{maxEV}{logical indicating if the summary should contain the (range of the) dominant eigenvalue as a measure of the importance of the epidemic components. By default, the value is not calculated as this may take some seconds depending on the number of time points and units in \code{object$stsObj}.} \item{\dots}{ For the \code{print}, \code{summary}, \code{fixef}, \code{ranef}, and \code{coeflist} methods: arguments passed to \code{coef}.\cr For the remaining methods: unused (argument of the generic). } \item{reparamPsi}{ logical. If \code{TRUE} (default), the overdispersion parameter from the negative binomial distribution is transformed from internal scale (-log) to standard scale, where zero corresponds to a Poisson distribution. } \item{se}{logical switch indicating if standard errors are required} \item{idx2Exp}{integer vector selecting the parameters which should be returned on exp-scale. Alternatively, \code{idx2Exp = TRUE} will exp-transform all parameters except for those associated with \code{log()} covariates or already affected by \code{reparamPsi} or \code{amplitudeShift}.} \item{amplitudeShift}{logical switch indicating whether the parameters for sine/cosine terms modelling seasonal patterns (see \code{\link{addSeason2formula}}) should be transformed to an amplitude/shift formulation.} \item{tomatrix}{logical. If \code{FALSE} (default), the vector of all random effects is returned (as used internally). However, for random intercepts of \code{type="car"}, the number of parameters is one less than the number of regions and the individual parameters are not obviously linked to specific regions. Setting \code{tomatrix} to \code{TRUE} returns a more useful representation of random effects in a matrix with as many rows as there are regions and as many columns as there are random effects. Here, any CAR-effects are transformed to region-specific effects.} \item{intercept}{logical. If \code{FALSE} (default), the returned random effects represent zero-mean deviations around the corresponding global intercepts of the \emph{log}-linear predictors. Setting \code{intercept=TRUE} adds these global intercepts to the result (and implies \code{tomatrix=TRUE}).} \item{parm}{a vector of numbers or names, specifying which parameters are to be given confidence intervals. If missing, all parameters are considered.} \item{level}{the confidence level required.} \item{type}{the type of residuals which should be returned. The alternatives are \code{"deviance"} (default), \code{"pearson"}, and \code{"response"}.} } \value{ The \code{\link{coef}}-method returns all estimated (regression) parameters from a \code{\link{hhh4}} model. If the model includes random effects, those can be extracted with \code{ranef}, whereas \code{fixef} returns the fixed parameters. The \code{coeflist}-method extracts the model coefficients in a list (by parameter group). The \code{\link{formula}}-method returns the formulae used for the three log-linear predictors in a list with elements \code{"ar"}, \code{"ne"}, and \code{"end"}. The \code{\link{nobs}}-method returns the number of observations used for model fitting. The \code{\link{logLik}}-method returns an object of class \code{"logLik"} with \code{"df"} and \code{"nobs"} attributes. For a random effects model, the value of the \emph{penalized} log-likelihood at the MLE is returned, but degrees of freedom are not available (\code{NA_real_}). As a consequence, \code{\link{AIC}} and \code{\link{BIC}} are only well defined for models without random effects; otherwise these functions return \code{NA_real_}. The \code{\link{vcov}}-method returns the estimated variance-covariance matrix of the \emph{regression} parameters. The estimated variance-covariance matrix of random effects is available as \code{object$Sigma}. The \code{\link{confint}}-method returns Wald-type confidence intervals (assuming asymptotic normality). The \code{\link{residuals}}-method extracts raw (\code{"response"}) or \code{"deviance"} or standardized (\code{"pearson"}) residuals from the model fit similar to \code{\link{residuals.glm}} for Poisson or NegBin GLM's. } \seealso{ the \code{\link[=plot.hhh4]{plot}} and \code{\link[=update.hhh4]{update}} methods for fitted \code{"hhh4"} models. } \author{ Michaela Paul and Sebastian Meyer } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \keyword{methods} \keyword{print} surveillance/man/aggregate.disProg.Rd0000644000176200001440000000112314136341403017340 0ustar liggesusers\name{aggregate.disProg} \alias{aggregate.disProg} \title{Aggregate a \code{disProg} Object} \description{ Aggregates the observed counts of a multivariate \code{disProg} object over the units. } \usage{ \method{aggregate}{disProg}(x,\dots) } \arguments{ \item{x}{Object of class \code{disProg}} \item{\dots}{not used at the moment} } \value{univariate \code{disProg} object with aggregated counts and respective states for each time point.} \keyword{internal} % disProg is soft-deprecated \examples{ data(ha) dim(ha$observed) dim(aggregate(ha)$observed) } surveillance/man/LRCUSUM.runlength.Rd0000644000176200001440000001443714665117445017175 0ustar liggesusers\name{LRCUSUM.runlength} \alias{LRCUSUM.runlength} %% \alias{outcomeFunStandard} %% \alias{LLR.fun} \encoding{latin1} \title{Run length computation of a CUSUM detector} \description{ Compute run length for a count data or categorical CUSUM. The computations are based on a Markov representation of the likelihood ratio based CUSUM. } \usage{ LRCUSUM.runlength(mu, mu0, mu1, h, dfun, n, g=5, outcomeFun=NULL, ...) } \arguments{ \item{mu}{\eqn{k-1 \times T} matrix with true proportions, i.e. equal to mu0 or mu1 if one wants to compute e.g. \eqn{ARL_0} or \eqn{ARL_1}.} \item{mu0}{\eqn{k-1 \times T} matrix with in-control proportions} \item{mu1}{\eqn{k-1 \times T} matrix with out-of-control proportion} \item{h}{The threshold h which is used for the CUSUM.} \item{dfun}{The probability mass function or density used to compute the likelihood ratios of the CUSUM. In a negative binomial CUSUM this is \code{dnbinom}, in a binomial CUSUM \code{dbinom} and in a multinomial CUSUM \code{dmultinom}.} \item{n}{Vector of length \eqn{T} containing the total number of experiments for each time point.} \item{g}{The number of levels to cut the state space into when performing the Markov chain approximation. Sometimes also denoted \eqn{M}. Note that the quality of the approximation depends very much on \code{g}. If \eqn{T} is greater than, say, 50 it's necessary to increase the value of \code{g}.} \item{outcomeFun}{A hook \code{function (k,n)} to compute all possible outcome states to compute the likelihood ratio for. If \code{NULL} then the internal default function \code{surveillance:::outcomeFunStandard} is used. This function uses the Cartesian product of \code{0:n} for \code{k} components.} \item{\dots}{Additional arguments to send to \code{dfun}.} } \details{ Brook and Evans (1972) formulated an approximate approach based on Markov chains to determine the PMF of the run length of a time-constant CUSUM detector. They describe the dynamics of the CUSUM statistic by a Markov chain with a discretized state space of size \eqn{g+2}. This is adopted to the time varying case in \enc{Höhle}{Hoehle} (2010) and implemented in R using the \dots notation such that it works for a very large class of distributions. } \seealso{\code{\link{categoricalCUSUM}}} \value{A list with five components \item{P}{An array of \eqn{g+2 \times g+2} transition matrices of the approximation Markov chain.} \item{pmf}{Probability mass function (up to length \eqn{T}) of the run length variable.} \item{cdf}{Cumulative density function (up to length \eqn{T}) of the run length variable.} \item{arl}{If the model is time homogeneous (i.e. if \eqn{T==1}) then the ARL is computed based on the stationary distribution of the Markov chain. See the eqns in the reference for details. Note: If the model is not time homogeneous then the function returns \code{NA} and the ARL has to be approximated manually from the output. One could use \code{sum(1:length(pmf) * pmf)}, which is an approximation because of using a finite support for a sum which should be from 1 to infinity. } } \references{ \enc{Höhle}{Hoehle}, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures - Festschrift in Honour of Ludwig Fahrmeir, Physica-Verlag, pp. 377-397. Preprint available as \url{https://staff.math.su.se/hoehle/pubs/hoehle2010-preprint.pdf} \enc{Höhle}{Hoehle}, M. and Mazick, A. (2010): Aberration detection in R illustrated by Danish mortality monitoring. In: T. Kass-Hout and X. Zhang (Eds.), Biosurveillance: A Health Protection Priority, CRCPress. Preprint available as \url{https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf} Brook, D. and Evans, D. A. (1972): An approach to the probability distribution of cusum run length. \emph{Biometrika} \bold{59}(3):539-549. } \examples{ ###################################################### #Run length of a time constant negative binomial CUSUM ###################################################### #In-control and out of control parameters mu0 <- 10 alpha <- 1/2 kappa <- 2 #Density for comparison in the negative binomial distribution dY <- function(y,mu,log=FALSE, alpha, ...) { dnbinom(y, mu=mu, size=1/alpha, log=log) } #In this case "n" is the maximum value to investigate the LLR for #It is assumed that beyond n the LLR is too unlikely to be worth #computing. LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=5, dfun = dY, n=rep(100,length(mu0)), alpha=alpha) h.grid <- seq(3,6,by=0.3) arls <- sapply(h.grid, function(h) { LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=h, dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)$arl }) plot(h.grid, arls,type="l",xlab="threshold h",ylab=expression(ARL[0])) ###################################################### #Run length of a time varying negative binomial CUSUM ###################################################### mu0 <- matrix(5*sin(2*pi/52 * 1:150) + 10,ncol=1) rl <- LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=2, dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20) plot(1:length(mu0),rl$pmf,type="l",xlab="t",ylab="PMF") plot(1:length(mu0),rl$cdf,type="l",xlab="t",ylab="CDF") ######################################################## # Further examples contain the binomial, beta-binomial # and multinomial CUSUMs. Hopefully, these will be added # in the future. ######################################################## #dfun function for the multinomial distribution (Note: Only k-1 categories are specified). dmult <- function(y, size,mu, log = FALSE) { return(dmultinom(c(y,size-sum(y)), size = size, prob=c(mu,1-sum(mu)), log = log)) } #Example for the time-constant multinomial distribution #with size 100 and in-control and out-of-control parameters as below. n <- 100 pi0 <- as.matrix(c(0.5,0.3,0.2)) pi1 <- as.matrix(c(0.38,0.46,0.16)) #ARL_0 LRCUSUM.runlength(mu=pi0[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE], h=5,dfun=dmult, n=n, g=15)$arl #ARL_1 LRCUSUM.runlength(mu=pi1[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE], h=5,dfun=dmult, n=n, g=15)$arl } \author{M. \enc{Höhle}{Hoehle}} \keyword{regression} surveillance/man/twinstim_tiaf.Rd0000644000176200001440000000535312265262002016674 0ustar liggesusers\name{twinstim_tiaf} \alias{tiaf} \title{ Temporal Interaction Function Objects } \description{ A temporal interaction function for use in \code{\link{twinstim}} can be constructed via the \code{tiaf} function. It checks the supplied function elements, assigns defaults for missing arguments, and returns all checked arguments in a list. However, for standard applications it is much easier to use one of the pre-defined temporal interaction functions, e.g., \code{\link{tiaf.exponential}}. } \usage{ tiaf(g, G, deriv, Deriv, npars, validpars = NULL) } \arguments{ \item{g}{the temporal interaction function. It must accept two arguments, the first one being a vector of time points, the second one a parameter vector. For marked \code{twinstim}, it must accept the type of the event (integer code) as its third argument (either a single type for all locations or separate types for each location).} \item{G}{a primitive of \eqn{g(t)} (with respect to time). It must accept the same arguments as \code{g}, for instance a \emph{vector} of time points (not just a single one).} \item{deriv}{optional derivative of \eqn{g(t)} \emph{with respect to the parameters}. It takes the same arguments as \code{g} but returns a matrix with as many rows as there were time points in the input and \code{npars} columns. This derivative is necessary for the calculation of the score function in \code{twinstim()}, which is advantageous for the numerical log-likelihood maximization.} \item{Deriv}{optional primitive of \code{deriv} (with respect to time). It must accept the same arguments as \code{deriv}, \code{g} and \code{G} and returns a matrix with as many rows as there were time points in the input and \code{npars} columns. The integrated derivative is necessary for the score function in \code{twinstim}.} \item{npars}{the number of parameters of the temporal interaction function \code{g} (i.e. the length of its second argument).} \item{validpars}{ optional function taking one argument, the parameter vector, indicating if it is valid. This approach to specify parameter constraints is rarely needed, because usual box-constrained parameters can be taken into account by using L-BFGS-B as the optimization method in \code{twinstim} (with arguments \code{lower} and \code{upper}), and positivity constraints by using log-parametrizations. This component is not necessary (and ignored) if \code{npars == 0}. } } \value{ list of checked arguments. } \author{ Sebastian Meyer } \seealso{ \code{\link{tiaf.exponential}} for a pre-defined temporal interaction function, and \code{\link{siaf}} for the spatial interaction function. } \keyword{utilities} surveillance/man/imdepifit.Rd0000644000176200001440000000171114665117445015777 0ustar liggesusers\name{imdepifit} \alias{imdepifit} \docType{data} \title{ Example \code{twinstim} Fit for the \code{imdepi} Data } \description{ \code{data("imdepifit")} is a \code{\link{twinstim}} model fitted to the \code{\link{imdepi}} data. } \usage{data("imdepifit")} \format{ an object of class \code{"\link{twinstim}"} obtained from the following call using \code{data(imdepi)}: \Sexpr[stage=build,results=verbatim]{ data(imdepifit, package="surveillance") writeLines(deparse(imdepifit$call, width.cutoff = 25)) } } \seealso{ common methods for \code{"twinstim"} fits, exemplified using \code{imdepifit}, e.g., \code{\link{summary.twinstim}}, \code{\link{plot.twinstim}}, and \code{\link{simulate.twinstim}} } \examples{ data("imdepi", "imdepifit") ## how this fit was obtained imdepifit$call \dontshow{if (surveillance.options("allExamples")) ## reproduce "imdepifit" stopifnot(all.equal(imdepifit, eval(imdepifit$call))) } } \keyword{datasets} surveillance/man/scores.Rd0000644000176200001440000000726714431621542015324 0ustar liggesusers\name{scores} \alias{scores} \alias{scores.default} \alias{logs} \alias{rps} \alias{dss} \alias{ses} \title{ Proper Scoring Rules for Poisson or Negative Binomial Predictions } \description{ Proper scoring rules for Poisson or negative binomial predictions of count data are described in Czado et al. (2009). The following scores are implemented: logarithmic score (\code{logs}), ranked probability score (\code{rps}), Dawid-Sebastiani score (\code{dss}), squared error score (\code{ses}). } \usage{ scores(x, ...) \method{scores}{default}(x, mu, size = NULL, which = c("logs", "rps", "dss", "ses"), sign = FALSE, ...) logs(x, mu, size = NULL) rps(x, mu, size = NULL, k = 40, tolerance = sqrt(.Machine$double.eps)) dss(x, mu, size = NULL) ses(x, mu, size = NULL) } \arguments{ \item{x}{ the observed counts. All functions are vectorized and also accept matrices or arrays. Dimensions are preserved. } \item{mu}{ the means of the predictive distributions for the observations \code{x}. } \item{size}{ either \code{NULL} (default), indicating Poisson predictions with mean \code{mu}, or dispersion parameters of negative binomial forecasts for the observations \code{x}, parametrized as in \code{\link{dnbinom}} with variance \code{mu*(1+mu/size)}. } \item{which}{ a character vector specifying which scoring rules to apply. By default, all four proper scores are calculated. The normalized squared error score (\code{"nses"}) is also available but it is improper and hence not computed by default. } \item{sign}{ a logical indicating if the function should also return \code{sign(x-mu)}, i.e., the sign of the difference between the observed counts and corresponding predictions. } \item{\dots}{ unused (argument of the generic). } \item{k}{ scalar argument controlling the finite sum approximation for the \code{rps} with truncation at \code{max(x, ceiling(mu + k*sd))}. } \item{tolerance}{ absolute tolerance for the finite sum approximation employed in the \code{rps} calculation. A warning is produced if the approximation with \code{k} summands is insufficient for the specified \code{tolerance}. In this case, increase \code{k} for higher precision (or use a larger tolerance). } } \value{ The scoring functions return the individual scores for the predictions of the observations in \code{x} (maintaining their dimension attributes). The default \code{scores}-method applies the selected (\code{which}) scoring functions (and calculates \code{sign(x-mu)}) and returns the results in an array (via \code{\link{simplify2array}}), where the last dimension corresponds to the different scores. } \references{ Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. \emph{Biometrics}, \bold{65} (4), 1254-1261. \doi{10.1111/j.1541-0420.2009.01191.x} } \seealso{ The R package \CRANpkg{scoringRules} implements the logarithmic score and the (continuous) ranked probability score for many distributions. } \author{ Sebastian Meyer and Michaela Paul } \examples{ mu <- c(0.1, 1, 3, 6, 3*pi, 100) size <- 0.5 set.seed(1) y <- rnbinom(length(mu), mu = mu, size = size) scores(y, mu = mu, size = size) scores(y, mu = mu, size = 1) # ses ignores the variance scores(y, mu = 1, size = size) ## apply a specific scoring rule scores(y, mu = mu, size = size, which = "rps") rps(y, mu = mu, size = size) \dontshow{# failed in surveillance <= 1.19.1 stopifnot(!is.unsorted(rps(3, mu = 10^-(0:8)), strictly = TRUE)) } ## rps() gives NA (with a warning) if the NegBin is too wide rps(1e5, mu = 1e5, size = 1e-5) } \keyword{univar} surveillance/man/zetaweights.Rd0000644000176200001440000000300012316635114016341 0ustar liggesusers\name{zetaweights} \alias{zetaweights} \title{ Power-Law Weights According to Neighbourhood Order } \description{ Compute power-law weights with decay parameter \code{d} based on a matrix of neighbourhood orders \code{nbmat} (e.g., as obtained via \code{\link{nbOrder}}). Without normalization and truncation, this is just \eqn{o^{-d}} (where \eqn{o} is a neighbourhood order). This function is mainly used internally for \code{\link{W_powerlaw}} weights in \code{\link{hhh4}} models. } \usage{ zetaweights(nbmat, d = 1, maxlag = max(nbmat), normalize = FALSE) } \arguments{ \item{nbmat}{numeric, symmetric matrix of neighbourhood orders.} \item{d}{single numeric decay parameter (default: 1). Should be positive.} \item{maxlag}{single numeric specifying an upper limit for the power law. For neighbourhood orders > \code{maxlag}, the resulting weight is 0. Defaults to no truncation.} \item{normalize}{Should the resulting weight matrix be normalized such that rows sum to 1?} } \value{ a numeric matrix with same dimensions and names as the input matrix. } \author{ Sebastian Meyer } \seealso{\code{\link{W_powerlaw}}} \examples{ nbmat <- matrix(c(0,1,2,2, 1,0,1,1, 2,1,0,2, 2,1,2,0), 4, 4, byrow=TRUE) zetaweights(nbmat, d=1, normalize=FALSE) # harmonic: o^-1 zetaweights(nbmat, d=1, normalize=TRUE) # rowSums=1 zetaweights(nbmat, maxlag=1, normalize=FALSE) # results in adjacency matrix } \keyword{spatial} \keyword{utilities} surveillance/man/hhh4_W_utils.Rd0000644000176200001440000000211313117736473016362 0ustar liggesusers\name{hhh4_W_utils} \alias{getNEweights} \alias{coefW} \title{ Extract Neighbourhood Weights from a Fitted \code{hhh4} Model } \description{ The \code{getNEweights} function extracts the (fitted) weight matrix/array from a \code{"hhh4"} object, after scaling and normalization. The \code{coefW} function extracts the coefficients of parametric neighbourhood weights from a \code{hhh4} fit (or directly from a corresponding coefficient vector), i.e., coefficients whose names begin with \dQuote{neweights}. } \usage{ getNEweights(object, pars = coefW(object), scale = ne$scale, normalize = ne$normalize) coefW(object) } \arguments{ \item{object}{an object of class \code{"hhh4"}. \code{coefW} also works with the coefficient vector.} \item{pars}{coefficients for parametric neighbourhood weights, such as for models using \code{\link{W_powerlaw}}. Defaults to the corresponding point estimates in \code{object}.} \item{scale,normalize}{parameters of the \code{ne} component of \code{\link{hhh4}}.} } \author{ Sebastian Meyer } \keyword{utilities} surveillance/man/intersectPolyCircle.Rd0000644000176200001440000000266214614717045020015 0ustar liggesusers\name{intersectPolyCircle} \alias{intersectPolyCircle} \alias{intersectPolyCircle.owin} %\alias{intersectPolyCircle.SpatialPolygons} # defunct in surveillance 1.22.0 \title{ Intersection of a Polygonal and a Circular Domain } \description{ This is a unifying wrapper around functionality of various packages dealing with spatial data. It computes the intersection of a circular domain and a polygonal domain (whose class defines the specific method). Currently the only supported class is \code{"\link[spatstat.geom]{owin}"} from package \CRANpkg{spatstat.geom}. } \usage{ intersectPolyCircle(object, center, radius, ...) \method{intersectPolyCircle}{owin}(object, center, radius, npoly = 32, ...) %\method{intersectPolyCircle}{SpatialPolygons}(object, center, radius, npoly = 32, ...) } \arguments{ \item{object}{a polygonal domain of one of the supported classes.} \item{center,radius,npoly}{see \code{\link{discpoly}}.} \item{\dots}{potential further arguments (from the generic).} } \value{ a polygonal domain of the same class as the input \code{object}. } \author{ Sebastian Meyer } \seealso{ \code{\link{discpoly}} to generate a polygonal approximation to a disc } \examples{ letterR <- surveillance:::LETTERR # an "owin" (internally used for checks) plot(letterR, axes = TRUE) plot(intersectPolyCircle(letterR, center = c(-1, 2), radius = 2), add = TRUE, col = 4, lwd = 3) } \keyword{spatial} \keyword{manip} surveillance/man/meningo.age.Rd0000644000176200001440000000156614662137762016225 0ustar liggesusers\name{meningo.age} \alias{meningo.age} \docType{data} \title{Meningococcal infections in France 1985-1997} \description{ Monthly counts of meningococcal infections in France 1985-1997. Here, the data is split into 4 age groups (<1, 1-5, 5-20, >20). } \usage{data(meningo.age)} \format{ An object of class \code{disProg} with 156 observations in each of 4 age groups. \describe{ \item{week}{Month index} \item{observed}{Matrix with number of counts in the corresponding month and age group} \item{state}{Boolean whether there was an outbreak -- dummy not implemented} \item{neighbourhood}{Neighbourhood matrix, all age groups are adjacent} \item{populationFrac}{Population fractions} } } \source{ ?? } \examples{ data(meningo.age) plot(meningo.age, title="Meningococcal infections in France 1985-97") plot(meningo.age, as.one=FALSE) } \keyword{datasets} surveillance/man/rotaBB.Rd0000644000176200001440000000106414662137762015200 0ustar liggesusers\name{rotaBB} \alias{rotaBB} \docType{data} \title{Rotavirus cases in Brandenburg, Germany, during 2002-2013 stratified by 5 age categories} \description{ Monthly reported number of rotavirus infections in the federal state of Brandenburg stratified by five age categories (00-04, 05-09, 10-14, 15-69, 70+) during 2002-2013. } \usage{data(rotaBB)} \format{ A \code{sts} object. } \source{ The data were queried on 19 Feb 2014 from the Survstat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). } \keyword{datasets} surveillance/man/momo.Rd0000644000176200001440000000504414665117445014777 0ustar liggesusers\name{momo} \alias{momo} \docType{data} \encoding{latin1} \title{Danish 1994-2008 all-cause mortality data for eight age groups} \description{ Weekly number of all cause mortality from 1994-2008 in each of the eight age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74, 75-84 and 85+ years, see \enc{Höhle}{Hoehle} and Mazick (2010). } \usage{data(momo)} \format{ An object of class \code{"\linkS4class{sts}"} containing the weekly number of all-cause deaths in Denmark, 1994-2008 (782 weeks), for each of the eight age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74, 75-84 and 85+ years. A special feature of the EuroMOMO data is that weeks follow the ISO 8601 standard, which can be handled by the \code{"sts"} class. The \code{population} slot of the \code{momo} object contains the population size in each of the eight age groups. These are yearly data obtained from the StatBank Denmark. } \source{ \emph{European monitoring of excess mortality for public health action} (EuroMOMO) project. \url{https://www.euromomo.eu/}. Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark StatBank Denmark, Statistics Denmark, \url{https://www.statistikbanken.dk/} } \examples{ data("momo") momo ## show the period 2000-2008 with customized x-axis annotation ## (this is Figure 1 in Hoehle and Mazick, 2010) oopts <- surveillance.options("stsTickFactors" = c("\%G" = 1.5, "\%Q"=.75)) plot(momo[year(momo) >= 2000,], ylab = "", xlab = "Time (weeks)", par.list = list(las = 1), col = c(gray(0.5), NA, NA), xaxis.tickFreq = list("\%G"=atChange, "\%Q"=atChange), xaxis.labelFreq = list("\%G"=atChange), xaxis.labelFormat = "\%G") surveillance.options(oopts) if (surveillance.options("allExamples")) { ## stratified monitoring from 2007-W40 using the Farrington algorithm phase2 <- which(epoch(momo) >= "2007-10-01") momo2 <- farrington(momo, control = list(range=phase2, alpha=0.01, b=5, w=4)) print(colSums(alarms(momo2))) plot(momo2, col = c(8, NA, 4), same.scale = FALSE) ## stripchart of alarms (Figure 5 in Hoehle and Mazick, 2010) plot(momo2, type = alarm ~ time, xlab = "Time (weeks)", main = "", alarm.symbol = list(pch=3, col=1, cex=1.5)) } } \references{ \enc{Höhle}{Hoehle}, M. and Mazick, A. (2010). Aberration detection in R illustrated by Danish mortality monitoring. In T. Kass-Hout and X. Zhang (eds.), \emph{Biosurveillance: A Health Protection Priority}, chapter 12. Chapman & Hall/CRC.\cr Preprint available at \url{https://staff.math.su.se/hoehle/pubs/hoehle_mazick2009-preprint.pdf} } \keyword{datasets} surveillance/man/twinstim_methods.Rd0000644000176200001440000001703214607740561017426 0ustar liggesusers\name{twinstim_methods} \alias{print.twinstim} \alias{summary.twinstim} \alias{coeflist.twinstim} \alias{vcov.twinstim} \alias{logLik.twinstim} \alias{nobs.twinstim} \alias{print.summary.twinstim} \alias{toLatex.summary.twinstim} \alias{xtable.twinstim} \alias{xtable.summary.twinstim} \title{ Print, Summary and Extraction Methods for \code{"twinstim"} Objects } \description{ Besides \code{\link{print}} and \code{\link{summary}} methods there are also some standard extraction methods defined for objects of class \code{"twinstim"}: \code{\link{vcov}}, \code{\link{logLik}}, and \code{\link{nobs}}. This also enables the use of, e.g., \code{\link{confint}} and \code{\link{AIC}}. The model \code{summary} can be exported to LaTeX by the corresponding \code{\link{toLatex}} or \code{\link[xtable]{xtable}} methods. } \usage{ \method{print}{twinstim}(x, digits = max(3, getOption("digits") - 3), ...) \method{summary}{twinstim}(object, test.iaf = FALSE, correlation = FALSE, symbolic.cor = FALSE, runtime = FALSE, ...) \method{coeflist}{twinstim}(x, ...) \method{vcov}{twinstim}(object, ...) \method{logLik}{twinstim}(object, ...) \method{nobs}{twinstim}(object, ...) \method{print}{summary.twinstim}(x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) \method{toLatex}{summary.twinstim}(object, digits = max(3, getOption("digits") - 3), eps.Pvalue = 1e-4, align = "lrrrr", booktabs = getOption("xtable.booktabs", FALSE), withAIC = FALSE, ...) \method{xtable}{summary.twinstim}(x, caption = NULL, label = NULL, align = c("l", "r", "r", "r"), digits = 3, display = c("s", "f", "s", "s"), ..., ci.level = 0.95, ci.fmt = "\%4.2f", ci.to = "--", eps.Pvalue = 1e-4) } \arguments{ \item{x, object}{an object of class \code{"twinstim"} or \code{"summary.twinstim"}, respectively.} \item{digits}{ integer, used for number formatting with \code{signif()}. Minimum number of significant digits to be printed in values. } \item{test.iaf}{logical indicating if the simple Wald z- and p-values should be calculated for parameters of the interaction functions \code{siaf} and \code{tiaf}. Because it is often invalid or meaningless to do so, the default is \code{FALSE}. } \item{correlation}{ logical. If \code{TRUE}, the correlation matrix of the estimated parameters is returned and printed. } \item{symbolic.cor}{ logical. If \code{TRUE}, print the correlations in a symbolic form (see \code{symnum}) rather than as numbers. } \item{runtime}{ logical. If \code{TRUE}, the summary additionally includes the time elapsed and the number of log-likelihood and score function evaluations during model fitting. } \item{signif.stars}{logical. If \code{TRUE}, \dQuote{significance stars} are printed for each coefficient.} \item{eps.Pvalue}{passed to \code{\link{format.pval}}.} \item{booktabs}{logical indicating if the \code{toprule}, \code{midrule} and \code{bottomrule} commands from the LaTeX package \pkg{booktabs} should be used for horizontal lines rather than \code{hline}.} \item{withAIC}{logical indicating if the AIC and the log-likelihood of the model should be included below the table of coefficients in the LaTeX tabular.} \item{caption,label,align,display}{see \code{\link[xtable]{xtable}}.} \item{ci.level,ci.fmt,ci.to}{the confidence intervals are calculated at level \code{ci.level} and printed using \code{\link{sprintf}} with format \code{ci.fmt} and separator \code{ci.to}.} \item{\dots}{ For \code{print.summary.twinstim}, arguments passed to \code{\link{printCoefmat}}.\cr For all other methods: unused (argument of the generic). } } \details{ The estimated coefficients and standard Wald-type confidence intervals can be extracted using the default \code{\link{coef}} and \code{\link{confint}} methods from package \pkg{stats}. Note, however, that there is the useful \code{\link{coeflist}} method to list the coefficients by model component. The \code{print} and \code{summary} methods allow the compact or comprehensive representation of the fitting results, respectively. The former only prints the original function call, the estimated coefficients and the maximum log-likelihood value. The latter prints the whole coefficient matrix with standard errors, z- and p-values (see \code{\link{printCoefmat}}) -- separately for the endemic and the epidemic component -- and additionally the AIC, the achieved log-likelihood, the number of log-likelihood and score evaluations, and the runtime. They both append a big \dQuote{WARNING}, if the optimization algorithm did not converge. The \code{toLatex} method is essentially a translation of the printed summary table of coefficients to LaTeX code (using \pkg{xtable}). However, the \code{xtable} method does a different job in that it first converts coefficients to rate ratios (RR, i.e., the \code{exp}-transformation) and gives confidence intervals for those instead of standard errors and z-values. Intercepts and interaction function parameters are ignored by the \code{xtable} method. } \value{ The \code{print} methods return their first argument, invisibly, as they always should. The \code{vcov} method returns the estimated variance-covariance matrix of the parameters, which is the inverse of \code{object$fisherinfo} (estimate of the \emph{expected} Fisher information matrix). This \code{"fisherinfo"} is not always available (see \code{\link{twinstim}}), in which case \code{object$fisherinfo.observed} is used if available or an error is returned otherwise. The \code{logLik} and \code{nobs} methods return the maximum log-likelihood value of the model, and the number of events (excluding events of the prehistory), respectively. The \code{summary} method returns a list containing some summary statistics of the model, which is nicely printed by the corresponding \code{print} method. The \code{toLatex} method returns a character vector of class \code{"Latex"}, each element containing one line of LaTeX code (see \code{\link{print.Latex}}). The \code{xtable} method returns an object of class \code{"\link[xtable]{xtable}"}. Note that the column name of the confidence interval, e.g. \dQuote{95\% CI}, contains the percent symbol that may need to be escaped when printing the \code{"xtable"} in the output format (see \code{sanitize.text.function} in \code{\link[xtable]{print.xtable}}). This may also hold for row names. } \author{ Sebastian Meyer } \examples{ # load a fit of the 'imdepi' data, see the example in ?twinstim data("imdepifit") # print method imdepifit # extract point estimates (in a single vector or listed by model component) coef(imdepifit) coeflist(imdepifit) # variance-covariance matrix of endemic parameters # (inverse of expected Fisher information) unname(vcov(imdepifit)[1:4,1:4]) # the default confint() method may be used for Wald CI's confint(imdepifit, parm="e.typeC", level=0.95) # log-likelihood and AIC of the fitted model logLik(imdepifit) AIC(imdepifit) nobs(imdepifit) # produce a summary with parameter correlations and runtime information (s <- summary(imdepifit, correlation=TRUE, symbolic.cor=TRUE, runtime=TRUE)) # create LaTeX code of coefficient table toLatex(s, digits=2) \dontshow{.opt <- options(xtable.comment = FALSE)} # or using the xtable-method (which produces rate ratios) xtable(s) \dontshow{options(.opt)} } \keyword{methods} \keyword{print} \keyword{htest} surveillance/man/print.algoQV.Rd0000644000176200001440000000136313122471774016347 0ustar liggesusers\name{print.algoQV} \alias{print.algoQV} \title{Print Quality Value Object} \description{Print a single quality value object in a nicely formatted way} \usage{ \method{print}{algoQV}(x,...) } \arguments{ \item{x}{Quality Values object generated with \code{quality}} \item{...}{Further arguments (not really used)} } \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from rki1 survResObj <- algo.rki1(disProgObj, control = list(range = 50:200)) # Compute the quality values in a nice formatted way algo.quality(survResObj) } \keyword{print} surveillance/man/clapply.Rd0000644000176200001440000000124613117527513015464 0ustar liggesusers\name{clapply} \alias{clapply} \title{ Conditional \code{lapply} } \description{ Use \code{\link{lapply}} if the input is a list and otherwise apply the function directly to the input \emph{and} wrap the result in a list. The function is implemented as \preformatted{ if (is.list(X)) lapply(X, FUN, ...) else list(FUN(X, ...)) } } \usage{ clapply(X, FUN, ...) } \arguments{ \item{X}{a list or a single \code{R} object on which to apply \code{FUN}.} \item{FUN}{the function to be applied to (each element of) \code{X}.} \item{\dots}{optional arguments to \code{FUN}.} } \value{ a list (of length 1 if \code{X} is not a list). } \keyword{iteration} \keyword{list} surveillance/man/stsNewport.Rd0000644000176200001440000000123314662137762016215 0ustar liggesusers\encoding{latin1} \name{stsNewport} \alias{stsNewport} \docType{data} \title{Salmonella Newport cases in Germany 2001-2015} \description{ Reported number of cases of the Salmonella Newport serovar in Germany 2001-2015, by date of disease onset. The slot \code{control} contains a matrix \code{reportingTriangle$n} with the reporting triangle as described in Salmon et al. (2015). } \usage{data(stsNewport)} \format{ A \code{sts} object. } \references{ Salmon, M., Schumacher, D., Stark, K., \enc{Höhle}{Hoehle}, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067. } \keyword{datasets} surveillance/man/estimateGLRNbHook.Rd0000644000176200001440000000131013122471774017274 0ustar liggesusers\name{estimateGLRNbHook} \alias{estimateGLRNbHook} \encoding{latin1} \title{Hook function for in-control mean estimation} \description{ Estimation routine for the in-control mean of \code{\link{algo.glrpois}}. In \R < 2.14.0 and \pkg{surveillance} < 1.4 (i.e., without a package namespace) users could customize this function simply by defining a modified version in their workspace. This is no longer supported. } \usage{ estimateGLRNbHook() } \value{ A list with elements \item{\code{mod}}{resulting model of a call of \code{glm.nb}} \item{\code{range}}{vector of length as \code{range} containing the predicted values} } \seealso{ \code{\link{algo.glrnb}} } \author{M. Hoehle} \keyword{internal} surveillance/man/ks.plot.unif.Rd0000644000176200001440000000434314244757706016366 0ustar liggesusers\encoding{latin1} \name{ks.plot.unif} \alias{ks.plot.unif} \title{ Plot the ECDF of a uniform sample with Kolmogorov-Smirnov bounds } \description{ This plot function takes a univariate sample that should be tested for a U(0,1) distribution, plots its empirical cumulative distribution function (\code{\link{ecdf}}), and adds a confidence band by inverting the corresponding Kolmogorov-Smirnov test (\code{\link{ks.test}}). The uniform distribution is rejected if the ECDF is not completely inside the confidence band. } \usage{ ks.plot.unif(U, conf.level = 0.95, exact = NULL, col.conf = "gray", col.ref = "gray", xlab = expression(u[(i)]), ylab = "Cumulative distribution") } \arguments{ \item{U}{ numeric vector containing the sample. Missing values are (silently) ignored. } \item{conf.level}{ confidence level for the K-S-test (defaults to 0.95), can also be a vector of multiple levels. } \item{exact}{see \code{\link{ks.test}}.} \item{col.conf}{ colour of the confidence lines. } \item{col.ref}{ colour of the diagonal reference line. } \item{xlab, ylab}{ axis labels. } } \value{ \code{NULL} (invisibly). } \author{ Michael H\enc{ö}{oe}hle and Sebastian Meyer. The code re-uses fragments from the \link{ks.test} source file \url{https://svn.R-project.org/R/trunk/src/library/stats/R/ks.test.R}, with Copyright (C) 1995-2022 The R Core Team, available under GPL-2 (or later), and C functionality from the source file \url{https://svn.R-project.org/R/trunk/src/library/stats/src/ks.c}, partially based on code published in Marsaglia et al. (2003), with Copyright (C) 1999-2022 The R Core Team, also available under GPL-2 (or later). } \references{ George Marsaglia and Wai Wan Tsang and Jingbo Wang (2003): Evaluating Kolmogorov's distribution. \emph{Journal of Statistical Software}, \bold{8} (18). \doi{10.18637/jss.v008.i18} } \seealso{ \code{\link{ks.test}} for the Kolmogorov-Smirnov test, as well as \code{\link{checkResidualProcess}}, which makes use of this plot function. } \examples{ samp <- runif(99) ks.plot.unif(samp, conf.level=c(0.95, 0.99), exact=TRUE) ks.plot.unif(samp, conf.level=c(0.95, 0.99), exact=FALSE) } \keyword{hplot} \keyword{htest} surveillance/man/ha.Rd0000644000176200001440000000174214662137762014422 0ustar liggesusers\name{ha} \alias{ha} \alias{ha.sts} \docType{data} \title{Hepatitis A in Berlin} \description{ Number of Hepatitis A cases among adult (age>18) males in Berlin, 2001-2006. An increase is seen during 2006. } \usage{ data("ha") data("ha.sts") } \format{ \code{ha} is a \code{disProg} object containing \eqn{290\times 12}{290 x 12} observations starting from week 1 in 2001 to week 30 in 2006. \code{ha.sts} was generated from \code{ha} via the converter function \code{\link{disProg2sts}} and includes a map of Berlin's districts. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 25 August 2006. Robert Koch Institut, Epidemiologisches Bulletin 33/2006, p.290. } \examples{ ## deprecated "disProg" object data("ha") ha plot(aggregate(ha)) ## new-style "sts" object data("ha.sts") ha.sts plot(ha.sts, type = observed ~ time) # = plot(aggregate(ha.sts, by = "unit")) plot(ha.sts, type = observed ~ unit, labels = TRUE) } \keyword{datasets} surveillance/man/R0.Rd0000644000176200001440000002045313514363214014277 0ustar liggesusers\encoding{latin1} \name{R0} \alias{R0} \alias{R0.twinstim} \alias{R0.simEpidataCS} \alias{simpleR0} \title{Computes reproduction numbers from fitted models} \description{ The S3 generic function \code{R0} defined in package \pkg{surveillance} is intended to compute reproduction numbers from fitted epidemic models. The package currently defines a method for the \code{"\link{twinstim}"} class, which computes expected numbers of infections caused by infected individuals depending on the event type and marks attached to the individual, which contribute to the infection pressure in the epidemic predictor of that class. There is also a method for simulated \code{"epidataCS"} (just a wrapper for the \code{"twinstim"}-method). } \usage{ R0(object, ...) \method{R0}{twinstim}(object, newevents, trimmed = TRUE, newcoef = NULL, ...) \method{R0}{simEpidataCS}(object, trimmed = TRUE, ...) simpleR0(object, eta = coef(object)[["e.(Intercept)"]], eps.s = NULL, eps.t = NULL, newcoef = NULL) } \arguments{ \item{object}{A fitted epidemic model object for which an \code{R0} method exists.} \item{newevents}{ an optional \code{data.frame} of events for which the reproduction numbers should be calculated. If omitted, it is calculated for the original events from the fit. In this case, if \code{trimmed = TRUE} (the default), the result is just \code{object$R0}; however, if \code{trimmed = FALSE}, the model environment is required, i.e. \code{object} must have been fitted with \code{model = TRUE}. For the \code{twinstim} method, \code{newevents} must at least contain the following columns: the event \code{time} (only for \code{trimmed = TRUE}) and \code{type} (only for multi-type epidemics), the maximum interaction ranges \code{eps.t} and \code{eps.s}, as well as columns for the marks and \code{stgrid} variables used in the epidemic component of the fitted \code{"twinstim"} \code{object} as stored in \code{formula(object)$epidemic}. For \code{trimmed} R0 values, \code{newevents} must additionally contain the components \code{.influenceRegion} and, if using the \code{Fcircle} trick in the \code{siaf} specification, also \code{.bdist} (cf. the hidden columns in the \code{events} component of class \code{"epidataCS"}). } \item{trimmed}{ logical indicating if the individual reproduction numbers should be calculated by integrating the epidemic intensities over the observation period and region only (\code{trimmed = TRUE}) or over the whole time-space domain R+ x R^2 (\code{trimmed = FALSE}). By default, if \code{newevents} is missing, the trimmed \code{R0} values stored in \code{object} are returned. Trimming means that events near the (spatial or temporal) edges of the observation domain have lower reproduction numbers (ceteris paribus) because events outside the observation domain are not observed. } \item{newcoef}{ the model parameters to use when calculating reproduction numbers. The default (\code{NULL}) is to use the MLE \code{coef(object)}. This argument mainly serves the construction of Monte Carlo confidence intervals by evaluating \code{R0} for parameter vectors sampled from the asymptotic multivariate normal distribution of the MLE, see Examples. } \item{\dots}{additional arguments passed to methods. Currently unused for the \code{twinstim} method.} \item{eta}{a value for the epidemic linear predictor, see details.} \item{eps.s,eps.t}{the spatial/temporal radius of interaction. If \code{NULL} (the default), the original value from the data is used if this is unique and an error is thrown otherwise.} } \details{ For the \code{"\link{twinstim}"} class, the individual-specific expected number \eqn{\mu_j} of infections caused by individual (event) \eqn{j} inside its theoretical (untrimmed) spatio-temporal range of interaction given by its \code{eps.t} (\eqn{\epsilon}) and \code{eps.s} (\eqn{\delta}) values is defined as follows (cf. Meyer et al, 2012): \deqn{\mu_j = e^{\eta_j} \cdot \int_{b(\bold{0},\delta)} f(\bold{s}) d\bold{s} \cdot \int_0^\epsilon g(t) dt .} Here, \eqn{b(\bold{0},\delta)} denotes the disc centred at (0,0)' with radius \eqn{\delta}, \eqn{\eta_j} is the epidemic linear predictor, \eqn{g(t)} is the temporal interaction function, and \eqn{f(\bold{s})} is the spatial interaction function. For a type-specific \code{twinstim}, there is an additional factor for the number of event types which can be infected by the type of event \eqn{j} and the interaction functions may be type-specific as well. Alternatively to the equation above, the \code{trimmed} (observed) reproduction numbers are obtain by integrating over the observed infectious domains of the individuals, i.e. integrate \eqn{f} over the intersection of the influence region with the observation region \code{W} (i.e. over \eqn{\{ W \cap b(\bold{s}_j,\delta) \} - \bold{s}_j}) and \eqn{g} over the intersection of the observed infectious period with the observation period \eqn{(t_0;T]} (i.e. over \eqn{(0; \min(T-t_j,\epsilon)]}). The function \code{simpleR0} computes \deqn{\exp(\eta) \cdot \int_{b(\bold{0},\delta)} f(\bold{s}) d\bold{s} \cdot \int_0^{\epsilon} g(t) dt ,} where \eqn{\eta} defaults to \eqn{\gamma_0} disregarding any epidemic effects of types and marks. It is thus only suitable for simple epidemic \code{\link{twinstim}} models with \code{epidemic = ~1}, a diagonal (or secondary diagonal) \code{qmatrix}, and type-invariant interaction functions. \code{simpleR0} mainly exists for use by \code{\link{epitest}}. (Numerical) Integration is performed exactly as during the fitting of \code{object}, for instance \code{object$control.siaf} is queried if necessary. } \value{ For the \code{R0} methods, a numeric vector of estimated reproduction numbers from the fitted model \code{object} corresponding to the rows of \code{newevents} (if supplied) or the original fitted events including events of the prehistory. For \code{simpleR0}, a single number (see details). } \references{ Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} } \author{Sebastian Meyer} \examples{ ## load the 'imdepi' data and a model fit data("imdepi", "imdepifit") ## calculate individual and type-specific reproduction numbers R0s <- R0(imdepifit) tapply(R0s, imdepi$events@data[names(R0s), "type"], summary) ## untrimmed R0 for specific event settings refevent <- data.frame(agegrp = "[0,3)", type = "B", eps.s = Inf, eps.t = 30) setting2 <- data.frame(agegrp = "[3,19)", type = "C", eps.s = Inf, eps.t = 14) newevents <- rbind("ref" = refevent, "event2" = setting2) (R0_examples <- R0(imdepifit, newevents = newevents, trimmed = FALSE)) stopifnot(all.equal(R0_examples[["ref"]], simpleR0(imdepifit))) ### compute a Monte Carlo confidence interval ## use a simpler model with constant 'siaf' for speed simplefit <- update(imdepifit, epidemic=~type, siaf=NULL, subset=NULL) ## we'd like to compute the mean R0's by event type meanR0ByType <- function (newcoef) { R0events <- R0(simplefit, newcoef=newcoef) tapply(R0events, imdepi$events@data[names(R0events),"type"], mean) } (meansMLE <- meanR0ByType(newcoef=NULL)) ## sample B times from asymptotic multivariate normal of the MLE B <- 5 # CAVE: toy example! In practice this has to be much larger set.seed(123) parsamples <- MASS::mvrnorm(B, mu=coef(simplefit), Sigma=vcov(simplefit)) ## for each sample compute the 'meanR0ByType' meansMC <- apply(parsamples, 1, meanR0ByType) ## get the quantiles and print the result cisMC <- apply(cbind(meansMLE, meansMC), 1, quantile, probs=c(0.025,0.975)) print(rbind(MLE=meansMLE, cisMC)) ### R0 for a simple epidemic model ### without epidemic covariates, i.e., all individuals are equally infectious mepi1 <- update(simplefit, epidemic = ~1, subset = type == "B", model = TRUE, verbose = FALSE) ## using the default spatial and temporal ranges of interaction (R0B <- simpleR0(mepi1)) # eps.s=200, eps.t=30 stopifnot(identical(R0B, R0(mepi1, trimmed = FALSE)[[1]])) ## assuming smaller interaction ranges (but same infection intensity) simpleR0(mepi1, eps.s = 50, eps.t = 15) } \keyword{methods} \keyword{univar} surveillance/man/residualsCT.Rd0000644000176200001440000000444713433452051016243 0ustar liggesusers\name{residualsCT} \alias{residuals.twinSIR} \alias{residuals.twinstim} \alias{residuals.simEpidataCS} \title{ Extract Cox-Snell-like Residuals of a Fitted Point Process } \description{ Extract the \dQuote{residual process} (cf. Ogata, 1988) of a fitted point process model specified through the conditional intensity function, for instance a model of class \code{"\link{twinSIR}"} or \code{"\link{twinstim}"} (and also \code{"\link{simEpidataCS}"}). The residuals are defined as the fitted cumulative intensities at the event times, and are generalized residuals similar to those discussed in Cox and Snell (1968). } \usage{ \method{residuals}{twinSIR}(object, ...) \method{residuals}{twinstim}(object, ...) \method{residuals}{simEpidataCS}(object, ...) } \arguments{ \item{object}{ an object of one of the aforementioned model classes. } \item{\dots}{unused (argument of the generic).} } \details{ For objects of class \code{twinstim}, the residuals may already be stored in the object as component \code{object$tau} if the model was fitted with \code{cumCIF = TRUE} (and they always are for \code{"simEpidataCS"}). In this case, the \code{residuals} method just extracts these values. Otherwise, the residuals have to be calculated, which is only possible with access to the model environment, i.e. \code{object} must have been fitted with \code{model = TRUE}. The calculated residuals are then also appended to \code{object} for future use. However, if \code{cumCIF} and \code{model} were both set to true in the \code{object} fit, then it is not possible to calculate the residuals and the method returns an error. } \value{ Numeric vector of length the number of events of the corresponding point process fitted by \code{object}. This is the observed residual process. } \references{ Ogata, Y. (1988) Statistical models for earthquake occurrences and residual analysis for point processes. \emph{Journal of the American Statistical Association}, 83, 9-27 Cox, D. R. & Snell, E. J. (1968) A general definition of residuals. \emph{Journal of the Royal Statistical Society. Series B (Methodological)}, 30, 248-275 } \seealso{ \code{\link{checkResidualProcess}} to graphically check the goodness-of-fit of the underlying model. } \author{ Sebastian Meyer } \keyword{methods} surveillance/man/polyAtBorder.Rd0000644000176200001440000000330614614160257016426 0ustar liggesusers\name{polyAtBorder} \alias{polyAtBorder} \title{Indicate Polygons at the Border} \description{ Determines which polygons of a \code{"\linkSPclass{SpatialPolygons}"} object are at the border, i.e. have coordinates in common with the spatial union of all polygons (constructed using \code{\link{unionSpatialPolygons}}). } \usage{ polyAtBorder(SpP, snap = sqrt(.Machine$double.eps), method = "sf", ...) } \arguments{ \item{SpP}{ an object of class \code{"\linkSPclass{SpatialPolygons}"}. } \item{snap}{ tolerance used to consider coordinates as identical. } \item{method}{method to use for \code{\link{unionSpatialPolygons}}. Defaults to \pkg{sf}, since \pkg{polyclip} uses integer arithmetic, which causes rounding errors usually requiring tuning of (i.e., increasing) the tolerance parameter \code{snap} (see example below).} \item{\dots}{further arguments passed to the chosen \code{method}.} } \value{ logical vector of the same length as \code{SpP} also inheriting its \code{row.names}. } \author{ Sebastian Meyer } \examples{ ## Load districts of Germany load(system.file("shapes", "districtsD.RData", package = "surveillance")) ## Determine districts at the border and check the result on the map if (requireNamespace("sf")) { atBorder <- polyAtBorder(districtsD, method = "sf") if (interactive()) plot(districtsD, col = atBorder) table(atBorder) } ## For method = "polyclip", a higher snapping tolerance is required ## to obtain the correct result if (requireNamespace("polyclip")) { atBorder <- polyAtBorder(districtsD, snap = 1e-6, method = "polyclip") if (interactive()) plot(districtsD, col = atBorder) table(atBorder) } } \keyword{spatial} surveillance/man/hhh4_formula.Rd0000644000176200001440000000602313122471774016401 0ustar liggesusers\name{hhh4_formula} \alias{fe} \alias{ri} \title{ Specify Formulae in a Random Effects HHH Model } \description{ The special functions \code{fe} and \code{ri} are used to specify unit-specific effects of covariates and random intercept terms, respectively, in the component formulae of \code{\link{hhh4}}. } \usage{ fe(x, unitSpecific = FALSE, which = NULL, initial = NULL) ri(type = c("iid","car"), corr = c("none", "all"), initial.fe = 0, initial.var = -.5, initial.re = NULL) } \arguments{ \item{x}{an expression like \code{sin(2*pi*t/52)} involving the time variable \code{t}, or just \code{1} for an intercept. In general this covariate expression might use any variables contained in the \code{control$data} argument of the parent \code{\link{hhh4}} call.} \item{unitSpecific}{logical indicating if the effect of \code{x} should be unit-specific. This is a convenient shortcut for \code{which = rep(TRUE, nUnits)}, where \code{nUnits} is the number of units (i.e., columns of the \code{"sts"} object).} \item{which}{vector of logicals indicating which unit(s) should get an unit-specific parameter. For units with a \code{FALSE} value, the effect term for \code{x} will be zero in the log-linear predictor. Note especially that setting a \code{FALSE} value for the intercept term of a unit, e.g., \code{ar = list(f = ~-1 + fe(1, which=c(TRUE, FALSE)))} in a bivariate \code{hhh4} model, does \emph{not} mean that the (autoregressive) model component is omitted for this unit, but that \eqn{\log(\lambda_1) = \alpha_1} and \eqn{\log(\lambda_2) = 0}, which is usually not of interest. ATM, omitting an autoregressive effect for a specific unit is not possible.\cr If \code{which=NULL}, the parameter is assumed to be the same for all units.} \item{initial}{initial values (on internal scale!) for the fixed effects used for optimization. The default (\code{NULL}) means to use zeroes.} \item{type}{random intercepts either follow an IID or a CAR model.} \item{corr}{whether random effects in different components (such as \code{ar} and \code{end}) should be correlated or not.} \item{initial.fe}{initial value for the random intercept mean.} \item{initial.var}{initial values (on internal scale!) for the variance components used for optimization.} \item{initial.re}{initial values (on internal scale!) for the random effects used for optimization. The default \code{NULL} are random numbers from a normal distribution with zero mean and variance 0.001.} } \seealso{ \code{\link{addSeason2formula}} \code{hhh4} model specifications in \code{vignette("hhh4")}, \code{vignette("hhh4_spacetime")} or on the help page of \code{\link{hhh4}}. } \note{ These special functions are intended for use in component formulae of \code{hhh4} models and are not exported from the package namespace. If unit-specific fixed or random intercepts are specified, an overall intercept must be excluded (by \code{-1}) in the component formula. } \keyword{regression} surveillance/man/macros/0000755000176200001440000000000014614160257015013 5ustar liggesuserssurveillance/man/macros/linkSPclass.Rd0000644000176200001440000000014114614160257017524 0ustar liggesusers%\linkS4class lacks an optional package anchor \newcommand{\linkSPclass}{\link[sp:#1-class]{#1}} surveillance/man/fanplot.Rd0000644000176200001440000000723313325600040015451 0ustar liggesusers\name{fanplot} \alias{fanplot} \title{Fan Plot of Forecast Distributions} \description{ The \code{fanplot()} function in \pkg{surveillance} wraps functionality of the dedicated \CRANpkg{fanplot} package, employing a different default style and optionally adding point predictions and observed values. } \usage{ fanplot(quantiles, probs, means = NULL, observed = NULL, start = 1, fan.args = list(), means.args = list(), observed.args = list(), key.args = NULL, xlim = NULL, ylim = NULL, log = "", xlab = "Time", ylab = "No. infected", add = FALSE, ...) } \arguments{ \item{quantiles}{ a time x \code{probs} matrix of forecast quantiles at each time point. } \item{probs}{ numeric vector of probabilities with values between 0 and 1. } \item{means}{ (optional) numeric vector of point forecasts. } \item{observed}{ (optional) numeric vector of observed values. } \item{start}{ time index (x-coordinate) of the first prediction. } \item{fan.args}{ a list of graphical parameters for the \code{\link[fanplot]{fan}}, e.g., to employ a different \code{\link{colorRampPalette}} as \code{fan.col}, or to enable contour lines via \code{ln}. } \item{means.args}{ a list of graphical parameters for \code{\link{lines}} to modify the plotting style of the \code{means}. The default is a white line within the fan. } \item{observed.args}{ a list of graphical parameters for \code{\link{lines}} to modify the plotting style of the \code{observed} values. } \item{key.args}{ if a list, a color key (in \code{\link[fanplot]{fan}()}'s \code{"boxfan"}-style) is added to the fan chart. The list may include positioning parameters \code{start} (the x-position) and \code{ylim} (the y-range of the color key), \code{space} to modify the width of the boxfan, and \code{rlab} to modify the labels. An alternative way of labeling the quantiles is via the argument \code{ln} in \code{fan.args}. } \item{xlim,ylim}{ axis ranges. } \item{log}{ a character string specifying which axes are to be logarithmic, e.g., \code{log="y"} (see \code{\link{plot.default}}). } \item{xlab,ylab}{ axis labels. } \item{add}{ logical indicating if the fan plot should be added to an existing plot. } \item{\dots}{ further arguments are passed to \code{\link{plot.default}}. For instance, \code{panel.first} could be used to initialize the plot with \code{\link{grid}(nx=NA, ny=NULL)} lines. } } \value{ \code{NULL} (invisibly), with the side effect of drawing a fan chart. } \author{ Sebastian Meyer } \seealso{ the underlying \code{\link[fanplot]{fan}} function in package \CRANpkg{fanplot}. The function is used in \code{\link{plot.oneStepAhead}} and \code{\link{plot.hhh4sims}}. } \examples{ ## artificial data example to illustrate the graphical options if (requireNamespace("fanplot")) { means <- c(18, 19, 20, 25, 26, 35, 34, 25, 19) y <- rlnorm(length(means), log(means), 0.5) quantiles <- sapply(1:99/100, qlnorm, log(means), seq(.5,.8,length.out=length(means))) ## default style with point predictions, color key and log-scale fanplot(quantiles = quantiles, probs = 1:99/100, means = means, observed = y, key.args = list(start = 1, space = .3), log = "y") ## with contour lines instead of a key, and different colors pal <- colorRampPalette(c("darkgreen", "gray93")) fanplot(quantiles = quantiles, probs = 1:99/100, observed = y, fan.args = list(fan.col = pal, ln = c(5,10,25,50,75,90,95)/100), observed.args = list(type = "b", pch = 19)) } } \keyword{hplot} \keyword{distribution} surveillance/man/salmNewport.Rd0000644000176200001440000000153314662137762016343 0ustar liggesusers\name{salmNewport} \alias{salmNewport} \docType{data} \title{Salmonella Newport cases in Germany 2004-2013} \description{ Reported number of cases of the Salmonella Newport serovar in the 16 German federal states 2004-2013. } \usage{data(salmNewport)} \format{ A \code{sts} object. } \source{ The data were queried from the SurvStat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). A detailed description of the 2011 outbreak can be found in the publication Bayer, C., Bernard, H., Prager, R., Rabsch, W., Hiller, P., Malorny, B., Pfefferkorn, B., Frank, C., de Jong, A., Friesema, I., Start, K., Rosner, B.M. (2014), An outbreak of Salmonella Newport associated with mung bean sprouts in Germany and the Netherlands, October to November 2011, Eurosurveillance 19(1):pii=20665. } \keyword{datasets} surveillance/man/stsplot_time.Rd0000644000176200001440000002044514657422475016563 0ustar liggesusers\encoding{latin1} \name{stsplot_time} \alias{stsplot_time} \alias{stsplot_time1} \alias{stsplot_alarm} \title{ Time-Series Plots for \code{"sts"} Objects } \description{ These are the \code{plot} variants of \code{type=observed~time|unit}, \code{type=observed~time}, and \code{type=alarm~time} for \code{"\linkS4class{sts}"} objects (see the central \code{"sts"} \code{\link[=plot,sts,missing-method]{plot}}-method for an overview of plot types). } \usage{ stsplot_time(x, units=NULL, as.one=FALSE, same.scale=TRUE, par.list=list(), ...) stsplot_time1(x, k=1, ylim=NULL, axes=TRUE, xaxis.tickFreq=list("\%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="\%G\n\n\%OQ", epochsAsDate=x@epochAsDate, xlab="time", ylab="No. infected", main=NULL, type="s", lty=c(1,1,2), col=c(NA,1,4), lwd=c(1,1,1), outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), legend.opts=list(), dx.upperbound=0L, hookFunc=function(){}, .hookFuncInheritance=function() {}, ...) stsplot_alarm(x, lvl=rep(1,ncol(x)), xaxis.tickFreq=list("\%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="\%G\n\n\%OQ", epochsAsDate=x@epochAsDate, xlab="time", ylab="", main=NULL, outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), cex.yaxis=1, ...) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{units}{optional integer or character vector to select the units (=columns of \code{observed(x)}) to plot. The default is to plot all time series. If \code{as.one=FALSE}, \code{stsplot_time1} is called \code{for (k in units)} with \code{mfrow} splitting (see \code{par.list}). Note that if there are too many \code{units}, the default \code{mfrow} setting might lead to the error \dQuote{figure margins too large} (meaning that the units do not fit onto a single page).} \item{as.one}{logical indicating if all time series should be plotted in a single frame (using \code{\link{matplot}}).} \item{same.scale}{logical indicating if all time series should be plotted with the same \code{ylim}. Default is to do so. Only relevant for multivariate plots (\code{ncol(x) > 1}).} \item{par.list}{a list of arguments delivered to a call of \code{\link{par}} to set graphical parameters before plotting. The \code{mfrow} splitting is handled per default. Afterwards, the \code{par}ameters are reverted to their original values. Use \code{par.list=NULL} to disable the internal \code{par} call.} \item{k}{the unit to plot, i.e., an element of \code{1:ncol(x)}.} \item{ylim}{the y limits of the plot(s). Ignored if \code{same.scale=FALSE}.} \item{axes}{a logical value indicating whether both axes should be drawn on the plot.} \item{xaxis.tickFreq,xaxis.labelFreq,xaxis.labelFormat}{ arguments for \code{\link{addFormattedXAxis}} if \code{epochsAsDate=TRUE}. Use \code{xaxis.labelFormat=NULL} to get a standard x-axis (without date labels).} \item{epochsAsDate}{Boolean indicating whether to treat the epochs as Date objects (or to transform them to dates such that the new x-axis formatting is applied). Default: Value of the \code{epochAsDate} slot of \code{x}.} \item{xlab}{a title for the x axis. See \code{plot.default}.} \item{ylab}{a title for the y axis. See \code{plot.default}.} \item{main}{an overall title for the plot: see 'title'.} \item{type}{type of plot to do.} \item{lty}{vector of length 3 specifying the line type for the three lines in the plot -- see \code{col} argument.} \item{col}{Vector of length 3 specifying the color to use in the plot. The first color is the fill color of the polygons for the counts bars (\code{NA} for unfilled), the 2nd element denotes their border color, the 3rd element is the color of the \code{upperbound} plotting.} \item{lwd}{Vector of length 3 specifying the line width of the three elements to plot. See also the \code{col} argument.} \item{alarm.symbol}{a list with entries \code{pch}, \code{col}, \code{cex} and \code{lwd} specifying the appearance of the alarm symbol in the plot.} \item{outbreak.symbol}{a list with entries \code{pch}, \code{col}, \code{cex} and \code{lwd} specifying the appearance of the outbreak symbol in the plot. Currently ignored by \code{stsplot_alarm}.} \item{legend.opts}{a list of arguments for the \code{\link{legend}}. If \code{\link{missing}(legend.opts)} (i.e., not explicitly specified), the default legend will only be added if the \code{"sts"} object contains outbreaks, alarms, or upperbounds. The default legend options are \describe{ \item{\code{x}}{\code{"top"}} \item{\code{legend}}{\code{c("Infected","Threshold","Outbreak","Alarm")[included]}} \item{\code{lty,lwd,pch,col}}{the corresponding graphical settings of the included elements} } where individual elements are only \code{included} in the legend if they are plotted (except for alarms, which are also included if upperbounds exist). To disable the legend, use \code{legend.opts=NULL}. } \item{dx.upperbound}{horizontal change in the plotting of the upperbound line. Sometimes it can be convenient to offset this line a little for better visibility.} \item{lvl}{A vector of length \code{ncol(x)}, which is used to specify the hierarchy level for each time series in the sts object for alarm plots.} \item{cex.yaxis}{The magnification to be used for y-axis annotation.} \item{hookFunc}{a function that is called after all the basic plotting has be done, i.e., it is not possible to control formatting with this function. See Examples.} \item{.hookFuncInheritance}{a function which is altered by sub-classes plot method. Do not alter this function manually.} \item{...}{further arguments for the function \code{matplot}. If e.g. \code{xlab} or \code{main} are provided they overwrite the default values.} } \details{ The time series plot relies on the work-horse \code{stsplot_time1}. Its arguments are (almost) similar to \code{\link{plot.survRes}}. } \value{ \code{NULL} (invisibly). The functions are called for their side-effects. } \author{ Michael H\enc{ö}{oe}hle and Sebastian Meyer } \seealso{ There is an \code{\link[=autoplot.sts]{autoplot}}-method, which implements \CRANpkg{ggplot2}-based time-series plots of \code{"sts"} objects. The \code{\link{stsplot}} help page gives an overview of other types of plots for \code{"sts"} objects. } \examples{ data("ha.sts") print(ha.sts) plot(ha.sts, type=observed ~ time | unit) # default multivariate type plot(ha.sts, units=c("mitt", "pank")) # selected units plot(ha.sts, type=observed ~ time) # aggregated over all districts ## Hook function example hookFunc <- function() grid(NA,NULL,lwd=1) plot(ha.sts, hookFunc=hookFunc) ## another multivariate time series example plotted "as.one" data("measlesDE") plot(measlesDE, units=1:2, as.one=TRUE, legend.opts=list(cex=0.8)) ## more sophisticated plots are offered by package "xts" if (requireNamespace("xts")) plot(as.xts.sts(measlesDE)) ## Use ISO8601 date formatting (see ?strptime) and no legend data("salmNewport") plot(aggregate(salmNewport,by="unit"), xlab="Time (weeks)", xaxis.tickFreq=list("\%m"=atChange,"\%G"=atChange), xaxis.labelFreq=list("\%G"=atMedian),xaxis.labelFormat="\%G") ## Formatting also works for daily data (illustrated by artificial ## outbreak converted to sts object via 'linelist2sts') set.seed(123) exposureTimes <- as.Date("2014-03-12") + sample(x=0:25,size=99,replace=TRUE) sts <- linelist2sts(data.frame(exposure=exposureTimes), dateCol="exposure",aggregate.by="1 day") ## Plot it with larger ticks for days than usual surveillance.options("stsTickFactors"=c("\%d"=1, "\%W"=0.33, "\%V"=0.33, "\%m"=1.75, "\%Q"=1.25, "\%Y"=1.5, "\%G"=1.5)) plot(sts,xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange),xaxis.labelFormat="\%d-\%b", xlab="Time (days)") } \keyword{hplot} \keyword{ts} surveillance/man/sts_tidy.Rd0000644000176200001440000000205614667617354015700 0ustar liggesusers\name{tidy.sts} \alias{tidy.sts} \title{ Convert an \code{"sts"} Object to a Data Frame in Long (Tidy) Format } \description{ The resulting data frame will have a row for each time point and observational unit, and columns corresponding to the slots of the \code{"\linkS4class{sts}"} object (except for \code{populationFrac}, which is named \code{population}). Some time variables are added for convenience: \code{year}, \code{epochInYear}, \code{epochInPeriod}, \code{date} (the latter gives \code{NA} dates if \code{epoch(x, as.Date=TRUE)} fails, i.e., for non-standard \code{frequency(x)} if \code{x@epochAsDate} is false). } \usage{ tidy.sts(x, ...) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{\dots}{unused.} } \author{ Sebastian Meyer } \seealso{ \code{\link{as.data.frame.sts}} } \examples{ data("momo") momodat <- tidy.sts(momo) head(momodat) ## tidy.sts(stsObj) is the same as as.data.frame(stsObj, tidy = TRUE) stopifnot(identical(as.data.frame(momo, tidy = TRUE), momodat)) } \keyword{manip} surveillance/man/hhh4_update.Rd0000644000176200001440000000760414667617354016237 0ustar liggesusers\name{hhh4_update} \alias{update.hhh4} \title{ \code{update} a fitted \code{"hhh4"} model } \description{ Re-fit a \code{"\link{hhh4}"} model with a modified \code{control} list. } \usage{ \method{update}{hhh4}(object, ..., S = NULL, subset.upper = NULL, use.estimates = object$convergence, evaluate = TRUE) } \arguments{ \item{object}{ a fitted \code{"hhh4"} model. Non-convergent fits can be updated as well. } \item{\dots}{ components modifying the original control list for \code{\link{hhh4}}. Modifications are performed by \code{\link{modifyList}(object$control, list(...))}. } \item{S}{ a named list of numeric vectors serving as argument for \code{\link{addSeason2formula}}, or \code{NULL} (meaning no modification of seasonal terms). This argument provides a convenient way of changing the number of harmonics in the \code{f}ormulae of the model components \code{"ar"}, \code{"ne"} and \code{"end"} (to be used as names of the list). Non-specified components are not touched. Updating the \code{f}ormula of component \code{\var{comp}} works by first dropping all sine and cosine terms and then applying \code{addSeason2formula} with arguments \code{S = S[[\var{comp}]]} and \code{period = frequency(object$stsObj)}, unless the component was originally disabled (\code{f = ~ -1}) when the harmonics are added to a simple intercept model and a warning is given.\cr Note that this step of updating seasonality is processed after modification of the \code{control} list by the \code{\dots} arguments. } \item{subset.upper}{ if a scalar value, refit the model to the data up to the time index given by \code{subset.upper}. The lower time index remains unchanged, i.e., \code{control$subset[1]:subset.upper} is used as the new \code{subset}. This argument is used by \code{\link{oneStepAhead}}. } \item{use.estimates}{ logical specifying if \code{coef(object)} should be used as starting values for the new fit (which is the new default since \pkg{surveillance} 1.8-2, in case the original fit has converged). This works by matching names against the coefficients of the new model. Extra coefficients no longer in the model are silently ignored. Setting \code{use.estimates = FALSE} means to re-use the previous start specification \code{object$control$start}.\cr Note that coefficients can also receive initial values from an extra \code{start} argument in the update call (as in \code{\link{hhh4}}), which then takes precedence over \code{coef(object)}. } \item{evaluate}{ logical indicating if the updated model should be fitted directly (defaults to \code{TRUE}). Otherwise, the updated \code{control} list is returned. } } \value{ If \code{evaluate = TRUE} the re-fitted object, otherwise the updated \code{control} list for \code{\link{hhh4}}. } \author{ Sebastian Meyer } \seealso{ \code{\link{hhh4}} } \examples{ data("salmonella.agona") ## convert to sts class salmonella <- disProg2sts(salmonella.agona) ## fit a basic model fit0 <- hhh4(salmonella, list(ar = list(f = ~1), end = list(f = addSeason2formula(~1)))) ## the same, updating the minimal endemic-only model via 'S' (with a warning): fit0.2 <- update(hhh4(salmonella), # has no AR component S = list(ar = 0, end = 1)) local({ fit0$control$start <- fit0.2$control$start <- NULL # obviously different stopifnot(all.equal(fit0, fit0.2)) }) ## multiple updates: Poisson -> NegBin1, more harmonics fit1 <- update(fit0, family = "NegBin1", S = list(end=2, ar=2)) ## compare fits AIC(fit0, fit1) opar <- par(mfrow=c(2,2)) plot(fit0, type="fitted", names="fit0", par.settings=NULL) plot(fit1, type="fitted", names="fit1", par.settings=NULL) plot(fit0, fit1, type="season", components=c("end", "ar"), par.settings=NULL) par(opar) } \keyword{models} \keyword{methods} surveillance/man/epidataCS_animate.Rd0000644000176200001440000001363214614160257017356 0ustar liggesusers\encoding{latin1} \name{epidataCS_animate} \alias{animate.epidataCS} \title{ Spatio-Temporal Animation of a Continuous-Time Continuous-Space Epidemic } \description{ Function for the animation of continuous-time continuous-space epidemic data, i.e. objects inheriting from class \code{"epidataCS"}. There are three types of animation, see argument \code{time.spacing}. Besides the on-screen plotting in the interactive \R session, it is possible and recommended to redirect the animation to an off-screen graphics device using the contributed \R package \pkg{animation}. For instance, the animation can be watched and navigated in a web browser via \code{\link[animation]{saveHTML}} (see Examples). } \usage{ \method{animate}{epidataCS}(object, interval = c(0,Inf), time.spacing = NULL, nmax = NULL, sleep = NULL, legend.opts = list(), timer.opts = list(), pch = 15:18, col.current = "red", col.I = "#C16E41", col.R = "#B3B3B3", col.influence = NULL, main = NULL, verbose = interactive(), ...) } \arguments{ \item{object}{ an object inheriting from class \code{"epidataCS"}. } \item{interval}{time range of the animation.} \item{time.spacing}{ time interval for the animation steps.\cr If \code{NULL} (the default), the events are plotted sequentially by producing a snapshot at every time point where an event occurred. Thus, it is just the \emph{ordering} of the events, which is shown.\cr To plot the appearance of events proportionally to the exact time line, \code{time.spacing} can be set to a numeric value indicating the period of time between consecutive snapshots. Then, for each time point in \code{seq(0, end, by = time.spacing)} the current state of the epidemic can be seen and an additional timer indicates the current time (see \code{timer.opts} below).\cr If \code{time.spacing = NA}, then the time spacing is automatically determined in such a way that \code{nmax} snapshots result. In this case, \code{nmax} must be given a finite value. } \item{nmax}{ maximum number of snapshots to generate. The default \code{NULL} means to take the value from \code{ani.options("nmax")} if the \pkg{animation} package is available, and no limitation (\code{Inf}) otherwise. } \item{sleep}{ numeric scalar specifying the artificial pause in seconds between two time points (using \code{\link{Sys.sleep}}), or \code{NULL} (default), when this is taken from \code{ani.options("interval")} if the \pkg{animation} package is available, and set to 0.1 otherwise. Note that \code{sleep} is ignored on non-interactive devices (see \code{\link{dev.interactive}}), e.g., if generating an animation inside \pkg{animation}'s \code{\link[animation]{saveHTML}}. } \item{pch, col}{ vectors of length equal to the number of event types specifying the point symbols and colors for events to plot (in this order). The vectors are recycled if necessary. } \item{legend.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no legend will be plotted. All necessary arguments have sensible defaults and need not be specified. } \item{timer.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no timer will be plotted. All necessary arguments have sensible defaults and need not be specified, i.e. \describe{ \item{\code{x}:}{\code{"bottomright"}} \item{\code{title}:}{\code{"time"}} \item{\code{box.lty}:}{\code{0}} \item{\code{adj}:}{\code{c(0.5,0.5)}} \item{\code{inset}:}{\code{0.01}} \item{\code{bg}:}{\code{"white"}} } Note that the argument \code{legend}, which is the current time of the animation, can not be modified. } \item{col.current}{color of events when occurring (new).} \item{col.I}{color once infectious.} \item{col.R}{color event has once \dQuote{recovered}. If \code{NA}, then recovered events will not be shown.} \item{col.influence}{color with which the influence region is drawn. Use \code{NULL} (default) if no influence regions should be drawn.} \item{main}{optional main title placed above the map.} \item{verbose}{logical specifying if a (textual) progress bar should be shown during snapshot generation. This is especially useful if the animation is produced within \code{\link[animation]{saveHTML}} or similar.} \item{\dots}{ further graphical parameters passed to the \code{plot} method for \code{"\linkSPclass{SpatialPolygons}"}. } } %\value{ % invisibly returns \code{NULL}. %} \author{ Sebastian Meyer with documentation contributions by Michael H\enc{ö}{oe}hle } \seealso{ \code{\link{plot.epidataCS}} for plotting the numbers of events by time (aggregated over space) or the locations of the events in the observation region \code{W} (aggregated over time). The contributed \R package \pkg{animation}. } \examples{ data("imdepi") imdepiB <- subset(imdepi, type == "B") \dontrun{ # Animate the first year of type B with a step size of 7 days animate(imdepiB, interval=c(0,365), time.spacing=7, nmax=Inf, sleep=0.1) # Sequential animation of type B events during the first year animate(imdepiB, interval=c(0,365), time.spacing=NULL, sleep=0.1) # Animate the whole time range but with nmax=20 snapshots only animate(imdepiB, time.spacing=NA, nmax=20, sleep=0.1) } # Such an animation can be saved in various ways using the tools of # the animation package, e.g., saveHTML() if (interactive() && require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML(animate(imdepiB, interval = c(0,365), time.spacing = 7), nmax = Inf, interval = 0.2, loop = FALSE, title = "Animation of the first year of type B events") setwd(oldwd) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/anscombe.residuals.Rd0000644000176200001440000000077314662137762017616 0ustar liggesusers\name{anscombe.residuals} \alias{anscombe.residuals} \title{Compute Anscombe Residuals} \description{ Compute Anscombe residuals from a fitted \code{\link{glm}}, which makes them approximately standard normal distributed. } \usage{ anscombe.residuals(m, phi) } \arguments{ \item{m}{a fitted \code{"glm"}} \item{phi}{the current estimated overdispersion} } \value{The standardized Anscombe residuals of \code{m}} \references{McCullagh & Nelder, Generalized Linear Models, 1989} \keyword{regression} surveillance/man/bestCombination.Rd0000644000176200001440000000102513122471774017136 0ustar liggesusers\name{bestCombination} \alias{bestCombination} \title{Partition of a number into two factors} \description{ Given a prime number factorization \code{x}, \code{bestCombination} partitions \code{x} into two groups, such that the product of the numbers in group one is as similar as possible to the product of the numbers of group two. This is useful in \code{\link{magic.dim}}. } \usage{ bestCombination(x) } \arguments{ \item{x}{prime number factorization} } \value{a vector \code{c(prod(set1),prod(set2))}} \keyword{dplot} surveillance/man/hhh4_validation.Rd0000644000176200001440000003476714531107643017102 0ustar liggesusers\name{hhh4_validation} \alias{oneStepAhead} \alias{quantile.oneStepAhead} \alias{confint.oneStepAhead} \alias{plot.oneStepAhead} \alias{scores.oneStepAhead} \alias{scores.hhh4} \alias{calibrationTest.oneStepAhead} \alias{calibrationTest.hhh4} \alias{pit.oneStepAhead} \alias{pit.hhh4} \title{Predictive Model Assessment for \code{hhh4} Models} \description{ The function \code{oneStepAhead} computes successive one-step-ahead predictions for a (random effects) HHH model fitted by \code{\link{hhh4}}. These can be inspected using the \code{quantile}, \code{confint} or \code{plot} methods. The associated \code{\link{scores}}-method computes a number of (strictly) proper scoring rules based on such one-step-ahead predictions; see Paul and Held (2011) for details. There are also \code{\link{calibrationTest}} and \code{\link{pit}} methods for \code{oneStepAhead} predictions. Scores, calibration tests and PIT histograms can also be computed for the fitted values of an \code{hhh4} model (i.e., in-sample/training data evaluation). } \usage{ oneStepAhead(result, tp, type = c("rolling", "first", "final"), which.start = c("current", "final"), keep.estimates = FALSE, verbose = type != "final", cores = 1) \method{quantile}{oneStepAhead}(x, probs = c(2.5, 10, 50, 90, 97.5)/100, ...) \method{confint}{oneStepAhead}(object, parm, level = 0.95, ...) \method{plot}{oneStepAhead}(x, unit = 1, probs = 1:99/100, start = NULL, means.args = NULL, ...) ## assessment of "oneStepAhead" predictions \method{scores}{oneStepAhead}(x, which = c("logs", "rps", "dss", "ses"), units = NULL, sign = FALSE, individual = FALSE, reverse = FALSE, ...) \method{calibrationTest}{oneStepAhead}(x, units = NULL, ...) \method{pit}{oneStepAhead}(x, units = NULL, ...) ## assessment of the "hhh4" model fit (in-sample predictions) \method{scores}{hhh4}(x, which = c("logs", "rps", "dss", "ses"), subset = x$control$subset, units = seq_len(x$nUnit), sign = FALSE, ...) \method{calibrationTest}{hhh4}(x, subset = x$control$subset, units = seq_len(x$nUnit), ...) \method{pit}{hhh4}(x, subset = x$control$subset, units = seq_len(x$nUnit), ...) } \arguments{ \item{result}{fitted \code{\link{hhh4}} model (class \code{"hhh4"}).} \item{tp}{ numeric vector of length 2 specifying the time range in which to compute one-step-ahead predictions (for the time points \code{tp[1]+1}, \ldots, \code{tp[2]+1}). If a single time index is specified, it is interpreted as \code{tp[1]}, and \code{tp[2]} is set to the penultimate time point of \code{result$control$subset}. } \item{type}{ The default \code{"rolling"} procedure sequentially refits the model up to each time point in \code{tp} and computes the one-step-ahead predictions for the respective next time point. The alternative \code{type}s are no true one-step-ahead predictions but much faster: \code{"first"} will refit the model for the first time point \code{tp[1]} only and use this specific fit to calculate all subsequent predictions, whereas \code{"final"} will just use \code{result} to calculate these. The latter case thus gives nothing else than a subset of \code{result$fitted.values} if the \code{tp}'s are part of the fitted subset \code{result$control$subset}. } \item{which.start}{ Which initial parameter values should be used when successively refitting the model to subsets of the data (up to time point \code{tp[1]}, up to \code{tp[1]+1}, ...) if \code{type="rolling"}? Default (\code{"current"}) is to use the parameter estimates from the previous time point, and \code{"final"} means to always use the estimates from \code{result} as initial values. Alternatively, \code{which.start} can be a list of \code{start} values as expected by \code{\link{hhh4}}, which then replace the corresponding estimates from \code{result} as initial values. This argument is ignored for \dQuote{non-rolling} \code{type}s. } \item{keep.estimates}{ logical indicating if parameter estimates and log-likelihoods from the successive fits should be returned. } \item{verbose}{ non-negative integer (usually in the range \code{0:3}) specifying the amount of tracing information to output. During \code{hhh4} model updates, the following verbosity is used: \code{0} if \code{cores > 1}, otherwise \code{verbose-1} if there is more than one time point to predict, otherwise \code{verbose}. } \item{cores}{the number of cores to use when computing the predictions for the set of time points \code{tp} in parallel (with \code{\link[parallel]{mclapply}}). Note that parallelization is not possible in the default setting \code{type="rolling"} and \code{which.start="current"} (use \code{which.start="final"} for this to work).} \item{object}{an object of class \code{"oneStepAhead"}.} \item{parm}{unused (argument of the generic).} \item{level}{required confidence level of the prediction interval.} \item{probs}{numeric vector of probabilities with values in [0,1].} \item{unit}{single integer or character selecting a unit for which to produce the plot.} \item{start}{ x-coordinate of the first prediction. If \code{start=NULL} (default), this is derived from \code{x}. } \item{means.args}{ if a list (of graphical parameters for \code{\link{lines}}), the point predictions (from \code{x$pred}) are added to the plot. } \item{x}{an object of class \code{"oneStepAhead"} or \code{"hhh4"}.} \item{which}{character vector determining which scores to compute. The package \pkg{surveillance} implements the following proper scoring rules: logarithmic score (\code{"logs"}), ranked probability score (\code{"rps"}), Dawid-Sebastiani score (\code{"dss"}), and squared error score (\code{"ses"}). The normalized SES (\code{"nses"}) is also available but it is improper and hence not computed by default.\cr It is possible to name own scoring rules in \code{which}. These must be functions of \code{(x, mu, size)}, vectorized in all arguments (time x unit matrices) except that \code{size} is \code{NULL} in case of a Poisson model. See the available scoring rules for guidance, e.g., \code{\link{dss}}. } \item{subset}{ subset of time points for which to calculate the scores (or test calibration, or produce the PIT histogram, respectively). Defaults to the subset used for fitting the model.} \item{units}{integer or character vector indexing the units for which to compute the scores (or the calibration test or the PIT histogram, respectively). By default, all units are considered.} \item{sign}{logical indicating if the function should also return \code{sign(x-mu)}, i.e., the sign of the difference between the observed counts and corresponding predictions. This does not really make sense when averaging over multiple \code{units} with \code{individual=FALSE}.} \item{individual}{logical indicating if the individual scores of the \code{units} should be returned. By default (\code{FALSE}), the individual scores are averaged over all \code{units}.} \item{reverse}{logical indicating if the rows (time points) should be reversed in the result. The long-standing but awkward default was to do so for the \code{oneStepAhead}-method. This has changed in version 1.16.0, so time points are no longer reversed by default.} \item{\dots}{Unused by the \code{quantile}, \code{confint} and \code{scores} methods.\cr The \code{plot}-method passes further arguments to the \code{\link{fanplot}} function, e.g., \code{fan.args}, \code{observed.args}, and \code{key.args} can be used to modify the plotting style.\cr For the \code{calibrationTest}-method, further arguments are passed to \code{\link{calibrationTest.default}}, e.g., \code{which} to select a scoring rule.\cr For the \code{pit}-methods, further arguments are passed to \code{\link{pit.default}}.} } \value{ \code{oneStepAhead} returns a list (of class \code{"oneStepAhead"}) with the following components: \item{pred}{one-step-ahead predictions in a matrix, where each row corresponds to one of the time points requested via the argument \code{tp}, and which has \code{ncol(result$stsObj)} unit-specific columns. The rownames indicate the predicted time points and the column names are identical to \code{colnames(result$stsObj)}.} \item{observed}{matrix with observed counts at the predicted time points. It has the same dimensions and names as \code{pred}.} \item{psi}{in case of a negative-binomial model, a matrix of the estimated overdispersion parameter(s) at each time point on the internal -log-scale (1 column if \code{"NegBin1"}, \code{ncol(observed)} columns if \code{"NegBinM"} or shared overdispersion). For a \code{"Poisson"} model, this component is \code{NULL}.} \item{allConverged}{logical indicating if all successive fits converged.} If \code{keep.estimates=TRUE}, there are the following additional elements: \item{coefficients}{matrix of estimated regression parameters from the successive fits.} \item{Sigma.orig}{matrix of estimated variance parameters from the successive fits.} \item{logliks}{matrix with columns \code{"loglikelihood"} and \code{"margll"} with their obvious meanings.} The \code{quantile}-method computes quantiles of the one-step-ahead forecasts. If there is only one unit, it returns a tp x prob matrix, otherwise a tp x unit x prob array. The \code{confint}-method is a convenient wrapper with \code{probs} set according to the required confidence level. The function \code{scores} computes the scoring rules specified in the argument \code{which}. If multiple \code{units} are selected and \code{individual=TRUE}, the result is an array of dimensions \code{c(nrow(pred),length(units),5+sign)} (up to \pkg{surveillance} 1.8-0, the first two dimensions were collapsed to give a matrix). Otherwise, the result is a matrix with \code{nrow(pred)} rows and \code{5+sign} columns. If there is only one predicted time point, the first dimension is dropped in both cases. The \code{\link{calibrationTest}}- and \code{\link{pit}}-methods are just convenient wrappers around the respective default methods. } \references{ Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. \emph{Biometrics}, \bold{65} (4), 1254-1261. \doi{10.1111/j.1541-0420.2009.01191.x} Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. \emph{Statistics in Medicine}, \bold{30} (10), 1118-1136. \doi{10.1002/sim.4177} } \author{ Sebastian Meyer and Michaela Paul } \seealso{ \code{vignette("hhh4")} and \code{vignette("hhh4_spacetime")} } \examples{ ### univariate salmonella agona count time series data("salmonella.agona") ## convert from old "disProg" to new "sts" class salmonella <- disProg2sts(salmonella.agona) ## generate formula for temporal and seasonal trends f.end <- addSeason2formula(~1 + t, S=1, period=52) model <- list(ar = list(f = ~1), end = list(f = f.end), family = "NegBin1") ## fit the model result <- hhh4(salmonella, model) ## do sequential one-step-ahead predictions for the last 5 weeks pred <- oneStepAhead(result, nrow(salmonella)-5, type="rolling", which.start="final", verbose=FALSE) pred quantile(pred) confint(pred) ## simple plot of the 80% one-week-ahead prediction interval ## and point forecasts if (requireNamespace("fanplot")) plot(pred, probs = c(.1,.9), means.args = list()) \dontshow{ ## test equivalence of parallelized version if (.Platform$OS.type == "unix" && isTRUE(parallel::detectCores() > 1)) stopifnot(identical(pred, oneStepAhead(result, nrow(salmonella)-5, type="rolling", which.start="final", verbose=FALSE, cores=2))) } ## note: oneStepAhead(..., type="final") just means fitted values stopifnot(identical( unname(oneStepAhead(result, nrow(salmonella)-5, type="final")$pred), unname(tail(fitted(result), 5)))) ## compute scores of the one-step-ahead predictions (sc <- scores(pred)) ## the above uses the scores-method for "oneStepAhead" predictions, ## which is a simple wrapper around the default method: scores(x = pred$observed, mu = pred$pred, size = exp(pred$psi)) ## scores with respect to the fitted values are similar (scFitted <- scores(result, subset = nrow(salmonella)-(4:0))) \dontshow{ ## test that scFitted is equivalent to scores(oneStepAhead(..., type = "final")) stopifnot(all.equal( scFitted, scores(oneStepAhead(result, nrow(salmonella)-5, type="final")), check.attributes = FALSE)) } ## test if the one-step-ahead predictions are calibrated calibrationTest(pred) # p = 0.8746 ## the above uses the calibrationTest-method for "oneStepAhead" predictions, ## which is a simple wrapper around the default method: calibrationTest(x = pred$observed, mu = pred$pred, size = exp(pred$psi)) ## we can also test calibration of the fitted values ## using the calibrationTest-method for "hhh4" fits calibrationTest(result, subset = nrow(salmonella)-(4:0)) ## plot a (non-randomized) PIT histogram for the predictions pit(pred) ## the above uses the pit-method for "oneStepAhead" predictions, ## which is a simple wrapper around the default method: pit(x = pred$observed, pdistr = "pnbinom", mu = pred$pred, size = exp(pred$psi)) ### multivariate measles count time series ## (omitting oneStepAhead forecasts here to keep runtime low) data("measlesWeserEms") ## simple hhh4 model with random effects in the endemic component measlesModel <- list( end = list(f = addSeason2formula(~0 + ri(type="iid"))), ar = list(f = ~1), family = "NegBin1") measlesFit <- hhh4(measlesWeserEms, control = measlesModel) ## assess overall (in-sample) calibration of the model, i.e., ## if the observed counts are from the fitted NegBin distribution calibrationTest(measlesFit) # default is DSS (not suitable for low counts) calibrationTest(measlesFit, which = "logs") # p = 0.7238 ## to assess calibration in the second year for a specific district calibrationTest(measlesFit, subset = 53:104, units = "03452", which = "rps") pit(measlesFit, subset = 53:104, units = "03452") ### For a more sophisticated multivariate analysis of ### areal time series of influenza counts - data("fluBYBW") - ### see the (computer-intensive) demo("fluBYBW") script: demoscript <- system.file("demo", "fluBYBW.R", package = "surveillance") #file.show(demoscript) } \keyword{univar} \keyword{htest} \keyword{dplot} \keyword{ts} surveillance/man/multiplicity.Rd0000644000176200001440000000065214614160257016551 0ustar liggesusers\name{multiplicity} \alias{multiplicity} \docType{import} \title{Import from package \pkg{spatstat.geom}} \description{ The generic function \code{multiplicity} is imported from package \pkg{spatstat.geom}. See \code{\link[spatstat.geom:multiplicity]{spatstat.geom::multiplicity}} for \pkg{spatstat.geom}'s own methods, and \code{\link{multiplicity.Spatial}} for the added method for \code{"\linkSPclass{Spatial}"} objects. } surveillance/man/salmAllOnset.Rd0000644000176200001440000000125614662137762016430 0ustar liggesusers\encoding{latin1} \docType{data} \name{salmAllOnset} \alias{salmAllOnset} \title{Salmonella cases in Germany 2001-2014 by data of symptoms onset} \format{A sts-object} \usage{ data(salmAllOnset) } \description{ A dataset containing the reported number of cases of Salmonella in Germany 2001-2014 aggregated by data of disease onset. The slot \code{control} contains a matrix \code{reportingTriangle$n} with the reporting triangle as described in Salmon et al. (2015). } \references{ Salmon, M., Schumacher, D., Stark, K., \enc{Höhle}{Hoehle}, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067. } \keyword{datasets} surveillance/man/epidataCS_aggregate.Rd0000644000176200001440000001346114673233515017671 0ustar liggesusers\name{epidataCS_aggregate} \alias{epidataCS2sts} \alias{as.epidata.epidataCS} \title{Conversion (aggregation) of \code{"epidataCS"} to \code{"epidata"} or \code{"sts"}} \description{ Continuous-time continuous-space epidemic data stored in an object of class \code{"\link{epidataCS}"} can be aggregated in space or in space and time yielding an object of class \code{"\link{epidata}"} or \code{"\linkS4class{sts}"} for use of \code{\link{twinSIR}} or \code{\link{hhh4}} modelling, respectively. } \usage{ ## aggregation in space and time over 'stgrid' for use of 'hhh4' models epidataCS2sts(object, freq, start, neighbourhood, tiles = NULL, popcol.stgrid = NULL, popdensity = TRUE) ## aggregation in space for use of 'twinSIR' models \method{as.epidata}{epidataCS}(data, tileCentroids, eps = 0.001, ...) } \arguments{ \item{object, data}{an object of class \code{"\link{epidataCS}"}.} \item{freq,start}{ see the description of the \code{"\linkS4class{sts}"} class. The \code{start} specification should reflect the beginning of \code{object$stgrid}, i.e., the start of the first time interval. } \item{neighbourhood}{ binary adjacency or neighbourhood-order matrix of the regions (\code{tiles}). If missing but \code{tiles} is given, a binary adjacency matrix will be auto-generated from \code{tiles} using functionality of the \pkg{spdep} package (see \code{\link{poly2adjmat}}). Since the \code{"neighbourhood"} slot in \code{"\linkS4class{sts}"} is actually optional, \code{neighbourhood=NULL} also works. } \item{tiles}{ object inheriting from \code{"\linkSPclass{SpatialPolygons}"} representing the regions in \code{object$stgrid} (column \code{"tile"}). It will become the \code{"map"} slot of the resulting \code{"sts"} object. Its \code{row.names} must match \code{levels(object$stgrid$tile)}. If \code{neighbourhood} is provided, \code{tiles} is optional (not required for \code{hhh4}, but for plots of the resulting \code{"sts"} object). } \item{popcol.stgrid}{ single character or numeric value indexing the column in \code{object$stgrid} which contains the population data (counts or densities, depending on the \code{popdensity} argument). This will become the \code{"populationFrac"} slot (optional).} \item{popdensity}{ logical indicating if the column referenced by \code{popcol.stgrid} contains population densities or absolute counts. } \item{tileCentroids}{ a coordinate matrix of the region centroids (i.e., the result of \code{coordinates(tiles)}). Its row names must match \code{levels(data$stgrid$tile)}. This will be the coordinates used for the \dQuote{population} (i.e., the \code{tiles} from \code{"\link{epidataCS}"}) in the discrete-space \code{\link{twinSIR}} modelling. } \item{eps}{ numeric scalar for breaking tied removal and infection times between different individuals (tiles), which might occur during conversion from \code{"epidataCS"} to \code{"epidata"}. Rather dumb, this is simply done by subtracting \code{eps} from each tied removal time. One should consider other ways of breaking the tied event times. } \item{\dots}{unused (argument of the generic).} } \details{ Conversion to \code{"\linkS4class{sts}"} only makes sense if the time intervals (\code{BLOCK}s) of the \code{stgrid} are regularly spaced (to give \code{freq} intervals per year). Note that events of the prehistory (not covered by \code{stgrid}) are not included in the resulting \code{sts} object. Some comments on the conversion to \code{"epidata"}: the conversion results into SIS epidemics only, i.e. the at-risk indicator is set to 1 immediately after recovery. A tile is considered infective if at least one individual within the tile is infective, otherwise it is susceptible. The lengths of the infectious periods are taken from \code{data$events$eps.t}. There will be no \code{f} columns in the resulting \code{"epidata"}. These must be generated by a subsequent call to \code{\link{as.epidata}} with desired \code{f}. } \value{ \code{epidataCS2sts}: an object of class \code{"\linkS4class{sts}"} representing the multivariate time-series of the number of cases aggregated over \code{stgrid}. \code{as.epidata.epidataCS}: an object of class \code{"\link{epidata}"} representing an SIS epidemic in form of a multivariate point process (one for each region/\code{tile}). } \author{ Sebastian Meyer } \seealso{ \code{\link{epidata}} and \code{\link{twinSIR}} \code{linkS4class{sts}} and \code{\link{hhh4}}. } \examples{ data("imdepi") load(system.file("shapes", "districtsD.RData", package="surveillance")) ## convert imdepi point pattern into multivariate time series imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), neighbourhood = NULL, # not needed here tiles = districtsD) ## check the overall number of events by district stopifnot(all.equal(colSums(observed(imdsts)), c(table(imdepi$events$tile)))) ## compare plots of monthly number of cases opar <- par(mfrow = c(2, 1)) plot(imdepi, "time") plot(imdsts, type = observed ~ time) par(opar) ## plot number of cases by district in Bavaria (municipality keys 09xxx) imd09 <- imdsts[, grep("^09", colnames(imdsts), value = TRUE), drop = TRUE] plot(imd09, type = observed ~ unit) ## also test conversion to an SIS event history ("epidata") of the "tiles" if (requireNamespace("intervals")) { imdepi_short <- subset(imdepi, time < 50) # to reduce the runtime imdepi_short$stgrid <- subset(imdepi_short$stgrid, start < 50) imdepidata <- as.epidata(imdepi_short, tileCentroids = coordinates(districtsD)) summary(imdepidata) } } \keyword{spatial} \keyword{manip} \keyword{methods} surveillance/man/sts_ggplot.Rd0000644000176200001440000000477314665117445016225 0ustar liggesusers\name{sts_ggplot} \alias{autoplot.sts} \title{ Time-Series Plots for \code{"sts"} Objects Using \pkg{ggplot2} } \description{ A simple \CRANpkg{ggplot2} variant of \code{\link{stsplot_time}}, based on a \dQuote{tidy} version of the \code{"sts"} object via \code{\link{tidy.sts}}. It uses a date axis and thus only works for time series indexed by dates or with a standard frequency (daily, (bi-)weekly, or monthly). } \usage{ autoplot.sts(object, population = FALSE, units = NULL, as.one = FALSE, scales = "fixed", width = NULL, ...) } \arguments{ \item{object}{an object of class \code{"\linkS4class{sts}"}.} \item{population}{logical indicating whether \code{observed(object)} should be divided by \code{population(object)}. The \code{population} argument can also be a scalar, which is used to scale the denominator \code{population(object)}, i.e., \code{observed(object)} is divided by \code{population(object) / population}. For instance, if \code{population(object)} contains raw population numbers, \code{population = 1000} could be used to plot the incidence per 1000 inhabitants.} \item{units}{optional integer or character vector to select the units (=columns of \code{object}) to plot. The default (\code{NULL}) is to plot all time series.} \item{as.one}{logical indicating if all time series should be plotted in one panel with \code{\link[ggplot2]{geom_line}}. By default, the time series are plotted in separate panels (using \code{\link[ggplot2]{geom_col}}).} \item{scales}{passed to \code{\link[ggplot2]{facet_wrap}} (for \code{as.one=FALSE}). By default, all panels use a common \code{ylim} (and \code{xlim}).} \item{width}{bar width, passed to \code{\link[ggplot2]{geom_col}}. Defaults to 7 for weekly time series.} \item{\dots}{unused (argument of the generic).} } \value{ a \code{"ggplot"} object. } \author{ Sebastian Meyer } \seealso{ \code{\link{stsplot_time}} for the traditional plots. } \examples{ ## compare traditional plot() with ggplot2-based autoplot.sts() if (requireNamespace("ggplot2")) { data("measlesDE") plot(measlesDE, units = 1:2) autoplot.sts(measlesDE, units = 1:2) } ## weekly incidence: population(measlesDE) gives population fractions, ## which we need to multiply by the total population if (require("ggplot2", quietly = TRUE)) { autoplot.sts(measlesDE, population = 1000000/82314906) + ylab("Weekly incidence [per 1'000'000 inhabitants]") } } \keyword{hplot} \keyword{ts} surveillance/man/nbOrder.Rd0000644000176200001440000000303214402466607015412 0ustar liggesusers\name{nbOrder} \alias{nbOrder} \title{ Determine Neighbourhood Order Matrix from Binary Adjacency Matrix } \description{ Given a square binary adjacency matrix, the function \code{nbOrder} determines the integer matrix of neighbourhood orders (shortest-path distance). } \usage{ nbOrder(neighbourhood, maxlag = Inf) } \arguments{ \item{neighbourhood}{ a square, numeric or logical, and usually symmetric matrix with finite entries (and usually zeros on the diagonal) which indicates vertex adjacencies, i.e., first-order neighbourhood (interpreted as \code{neighbourhood == 1}, \emph{not} \code{>0}). } \item{maxlag}{ positive scalar integer specifying an upper bound for the neighbourhood order. The default (\code{Inf}) means no truncation (but orders cannot be larger than the number of regions minus 1), whereas \code{maxlag = 1} just returns the input neighbourhood matrix (converted to binary integer mode). } } \value{ An integer matrix of neighbourhood orders, i.e., the shortest-path distance matrix of the vertices. The \code{dimnames} of the input \code{neighbourhood} matrix are preserved. } \author{ Sebastian Meyer } \seealso{ \code{\link[spdep]{nblag}} from the \pkg{spdep} package } \examples{ ## generate adjacency matrix set.seed(1) n <- 6 adjmat <- matrix(0, n, n) adjmat[lower.tri(adjmat)] <- sample(0:1, n*(n-1)/2, replace=TRUE) adjmat <- adjmat + t(adjmat) adjmat ## determine neighbourhood order matrix nblags <- nbOrder(adjmat) nblags } \keyword{spatial} \keyword{utilities} surveillance/man/hepatitisA.Rd0000644000176200001440000000076614662137762016132 0ustar liggesusers\name{hepatitisA} \docType{data} \alias{hepatitisA} \title{Hepatitis A in Germany} \description{ Weekly number of reported hepatitis A infections in Germany 2001-2004. } \usage{data(hepatitisA)} \format{ A \code{disProg} object containing \eqn{208\times 1}{208 x 1} observations starting from week 1 in 2001 to week 52 in 2004. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 11-01-2005. } \examples{ data(hepatitisA) plot(hepatitisA) } \keyword{datasets} surveillance/man/plot.disProg.Rd0000644000176200001440000000322414136730766016412 0ustar liggesusers\name{plot.disProg} \alias{plot.disProg} \title{Plot Observed Counts and Defined Outbreak States of a (Multivariate) Time Series} \description{ Plotting a (multivariate) \code{disProg} object (soft-deprecated). As of \pkg{surveillance} 1.20.0, legacy \code{disProg} objects are plotted via internal \code{\link{disProg2sts}} conversion and \code{\link{stsplot_time}}. } \usage{ \method{plot}{disProg}(x, title = "", xaxis.years=TRUE, startyear = x$start[1], firstweek = x$start[2], as.one=TRUE, same.scale=TRUE, ...) } \arguments{ \item{x}{object of class \code{disProg}} \item{title}{plot title} \item{xaxis.years}{if \code{TRUE}, the x axis is labeled using years} \item{startyear,firstweek}{(legacy arguments, ignored with a warning)} \item{as.one}{if \code{TRUE} all individual time series are shown in one plot} \item{same.scale}{if \code{TRUE} all plots have same scale} \item{\dots}{further arguments passed to \code{\link{stsplot_time}}} } \examples{ # Plotting of simulated data disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 5) plot(disProgObj) title <- "Infection Counts and Defined Outbreaks for Simulated Data" plot(disProgObj, title = title) plot(disProgObj, title = title, xaxis.years = FALSE) # Plotting of measles data data(measles.weser) # one plot plot(measles.weser, title = "measles cases in the district Weser-Ems") # plot cases for each "Kreis" plot(measles.weser, as.one = FALSE) plot(measles.weser, as.one = FALSE, same.scale = FALSE) } \keyword{hplot} \keyword{internal} surveillance/man/algo.cdc.Rd0000644000176200001440000000634014615244470015474 0ustar liggesusers\name{algo.cdc} \alias{algo.cdcLatestTimepoint} \alias{algo.cdc} \encoding{latin1} \title{The CDC Algorithm} \description{ Surveillance using the CDC Algorithm } \usage{ algo.cdcLatestTimepoint(disProgObj, timePoint = NULL, control = list(b = 5, m = 1, alpha=0.025)) algo.cdc(disProgObj, control = list(range = range, b= 5, m=1, alpha = 0.025)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{timePoint}{time point which should be evaluated in \code{algo.cdcLatestTimepoint}. The default is to use the latest timepoint.} \item{control}{control object: \code{range} determines the desired timepoints which should be evaluated, \code{b} describes the number of years to go back for the reference values, \code{m} is the half window width for the reference values around the appropriate timepoint (see details). The standard definition is \code{b}=5 and \code{m}=1.} } \details{ Using the reference values for calculating an upper limit, alarm is given if the actual value is bigger than a computed threshold. \code{algo.cdc} calls \code{algo.cdcLatestTimepoint} for the values specified in \code{range} and for the system specified in \code{control}. The threshold is calculated from the predictive distribution, i.e. \deqn{mean(x) + z_{\alpha/2} * sd(x) * \sqrt{1+1/k},} which corresponds to Equation 8-1 in Farrington and Andrews (2003). Note that an aggregation into 4-week blocks occurs in \code{algo.cdcLatestTimepoint} and \code{m} denotes number of 4-week blocks (months) to use as reference values. This function currently does the same for monthly data (not correct!) } \value{ \code{algo.cdcLatestTimepoint} returns a list of class \code{survRes} (surveillance result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing an outbreak, the threshold value for recognizing the alarm and the input object of class disProg. \code{algo.cdc} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range}, the vector of threshold values for every timepoint in \code{range} for the system specified by \code{b}, \code{w}, the range and the input object of class disProg. } \seealso{ \code{\link{algo.rkiLatestTimepoint}},\code{\link{algo.bayesLatestTimepoint}} and \code{\link{algo.bayes}} for the Bayes system. } \author{M. \enc{Höhle}{Hoehle}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 500, A = 1,alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Test week 200 to 208 for outbreaks with a selfdefined cdc algo.cdc(disProgObj, control = list(range = 400:500,alpha=0.025)) } \keyword{classif} \references{ Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the occurrence of notifiable diseases surveillance data. \emph{Statistics in Medicine} 8, 323--329. \doi{10.1002/sim.4780080312} Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press. } surveillance/man/backprojNP.Rd0000644000176200001440000002551214661362645016063 0ustar liggesusers\encoding{latin1} \name{backprojNP} \alias{backprojNP} %Internal functions %\alias{backprojNP.fit} %\alias{naninf2zero} %\alias{em.step.becker} \title{ Non-parametric back-projection of incidence cases to exposure cases using a known incubation time as in Becker et al (1991) } \description{ The function is an implementation of the non-parametric back-projection of incidence cases to exposure cases described in Becker et al. (1991). The method back-projects exposure times from a univariate time series containing the number of symptom onsets per time unit. Here, the delay between exposure and symptom onset for an individual is seen as a realization of a random variable governed by a known probability mass function. The back-projection function calculates the expected number of exposures \eqn{\lambda_t}{lambda_t} for each time unit under the assumption of a Poisson distribution, but without any parametric assumption on how the \eqn{\lambda_t}{lambda_t} evolve in time. Furthermore, the function contains a bootstrap based procedure, as given in Yip et al (2011), which allows an indication of uncertainty in the estimated \eqn{\lambda_t}{lambda_T}. The procedure is equivalent to the suggestion in Becker and Marschner (1993). However, the present implementation in \code{backprojNP} allows only a univariate time series, i.e. simultaneous age groups as in Becker and Marschner (1993) are not possible. The method in Becker et al. (1991) was originally developed for the back-projection of AIDS incidence, but it is equally useful for analysing the epidemic curve in outbreak situations of a disease with long incubation time, e.g. in order to qualitatively investigate the effect of intervention measures. } \usage{ backprojNP(sts, incu.pmf, control = list(k = 2, eps = rep(0.005,2), iter.max=rep(250,2), Tmark = nrow(sts), B = -1, alpha = 0.05, verbose = FALSE, lambda0 = NULL, eq3a.method = c("R","C"), hookFun = function(stsbp) {}), \dots) } \arguments{ \item{sts}{ an object of class \code{"\linkS4class{sts}"} (or one that can be coerced to that class): contains the observed number of symptom onsets as a time series. } \item{incu.pmf}{Probability mass function (PMF) of the incubation time. The PMF is specified as a vector or matrix with the value of the PMF evaluated at \eqn{0,...,d_max}{0,...,d_max}, i.e. note that the support includes zero. The value of \eqn{d_max}{d_max} is automatically calculated as \code{length(incu.pmf)-1} or \code{nrow(incu.pmf)-1}. Note that if the sts object has more than one column, then for the backprojection the incubation time is either recycled for all components or, if it is a matrix with the same number of columns as the sts object, the \eqn{k}{k}'th column of \code{incu.pmf} is used for the backprojection of the \eqn{k}{k}'th series. } \item{control}{A list with named arguments controlling the functionality of the non-parametric back-projection. \describe{ \item{\code{k}}{An integer representing the smoothing parameter to use in the smoothing step of the EMS algorithm. Needs to be an even number. } \item{\code{eps}}{A vector of length two representing the convergence threshold \eqn{\epsilon}{epsilon} of the EMS algorithm, see Details for further information. The first value is the threshold to use in the \eqn{k=0}{k=0} loop, which forms the values for the parametric bootstrap. The second value is the threshold to use in the actual fit and bootstrap fitting using the specified \code{k}. If \code{k} is only of length one, then this number is replicated twice. } \item{\code{Tmark}}{Numeric with \eqn{T'\leq T}. Upper time limit on which to base convergence, i.e. only the values \eqn{\lambda_1,\ldots,\lambda_{T'}} are monitored for convergence. See details. } \item{\code{iter.max}}{ The maximum number of EM iterations to do before stopping. } \item{\code{B}}{ Number of parametric bootstrap samples to perform from an initial k=0 fit. For each sample a back projection is performed. See Becker and Marschner (1993) for details. } \item{\code{alpha}}{(1-\eqn{\alpha}{alpha})*100\% confidence intervals are computed based on the percentile method. } \item{\code{verbose}}{(boolean). If true show extra progress and debug information. } \item{\code{lambda0}}{Start values for lambda. Vector needs to be of the length \code{nrow(sts)}. } \item{\code{eq3a.method}}{A single character being either \code{"R"} or \code{"C"} depending on whether the three nested loops of equation 3a in Becker et al. (1991) are to be executed as safe R code (can be extremely slow, however the implementation is not optimized for speed) or a C code (can be more than 200 times faster!). However, the C implementation is experimental and can hang R if, e.g., the time series does not go far enough back. } \item{\code{hookFun}}{ Hook function called for each iteration of the EM algorithm. The function should take a single argument \code{stsbp} of class \code{"\linkS4class{stsBP}"} class. It will be have the lambda set to the current value of lambda. If no action desired just leave the function body empty (default). Additional arguments are possible. } } } \item{\dots}{Additional arguments are sent to the hook function. } } \details{ Becker et al. (1991) specify a non-parametric back-projection algorithm based on the Expectation-Maximization-Smoothing (EMS) algorithm. In the present implementation the algorithm iterates until \deqn{\frac{||\lambda^{(k+1)} - \lambda^{(k)}||}{||\lambda^{(k)}||} < \epsilon} This is a slight adaptation of the proposals in Becker et al. (1991). If \eqn{T} is the length of \eqn{\lambda} then one can avoid instability of the algorithm near the end by considering only the \eqn{\lambda}{lambda}'s with index \eqn{1,\ldots,T'}. See the references for further information. } \value{ \code{backprojNP} returns an object of \code{"\linkS4class{stsBP}"}. } \references{ Becker NG, Watson LF and Carlin JB (1991), A method for non-parametric back-projection and its application to AIDS data, Statistics in Medicine, 10:1527-1542. Becker NG and Marschner IC (1993), A method for estimating the age-specific relative risk of HIV infection from AIDS incidence data, Biometrika, 80(1):165-178. Yip PSF, Lam KF, Xu Y, Chau PH, Xu J, Chang W, Peng Y, Liu Z, Xie X and Lau HY (2011), Reconstruction of the Infection Curve for SARS Epidemic in Beijing, China Using a Back-Projection Method, Communications in Statistics - Simulation and Computation, 37(2):425-433. Associations of Age and Sex on Clinical Outcome and Incubation Period of Shiga toxin-producing Escherichia coli O104:H4 Infections, 2011 (2013), Werber D, King LA, \enc{Müller}{Mueller} L, Follin P, Buchholz U, Bernard H, Rosner BM, Ethelberg S, de Valk H, \enc{Höhle}{Hoehle} M, American Journal of Epidemiology, 178(6):984-992. } \author{ Michael \enc{Höhle}{Hoehle} with help by Daniel \enc{Sabanés Bové}{Sabanes Bove} and Sebastian Meyer for \code{eq3a.method = "C"} } \note{ The method is still experimental. A proper plot routine for \code{stsBP} objects is currently missing. } \examples{ #Generate an artificial outbreak of size n starting at time t0 and being of length n <- 1e3 ; t0 <- 23 ; l <- 10 #PMF of the incubation time is an interval censored gamma distribution #with mean 15 truncated at 25. dmax <- 25 inc.pmf <- c(0,(pgamma(1:dmax,15,1.4) - pgamma(0:(dmax-1),15,1.4))/pgamma(dmax,15,1.4)) #Function to sample from the incubation time rincu <- function(n) { sample(0:dmax, size=n, replace=TRUE, prob=inc.pmf) } #Sample time of exposure and length of incubation time set.seed(123) exposureTimes <- t0 + sample(x=0:(l-1),size=n,replace=TRUE) symptomTimes <- exposureTimes + rincu(n) #Time series of exposure (truth) and symptom onset (observed) X <- table( factor(exposureTimes,levels=1:(max(symptomTimes)+dmax))) Y <- table( factor(symptomTimes,levels=1:(max(symptomTimes)+dmax))) #Convert Y to an sts object Ysts <- sts(Y) #Plot the outbreak plot(Ysts, xaxis.labelFormat=NULL, legend=NULL) #Add true number of exposures to the plot lines(1:length(Y)+0.2,X,col="red",type="h",lty=2) #Helper function to show the EM step plotIt <- function(cur.sts) { plot(cur.sts,xaxis.labelFormat=NULL, legend.opts=NULL,ylim=c(0,140)) } #Call non-parametric back-projection function with hook function but #without bootstrapped confidence intervals bpnp.control <- list(k=0,eps=rep(0.005,2),iter.max=rep(250,2),B=-1,hookFun=plotIt,verbose=TRUE) #Fast C version (use argument: eq3a.method="C")! sts.bp <- backprojNP(Ysts, incu.pmf=inc.pmf, control=modifyList(bpnp.control,list(eq3a.method="C")), ylim=c(0,max(X,Y))) #Show result plot(sts.bp,xaxis.labelFormat=NULL,legend=NULL,lwd=c(1,1,2),lty=c(1,1,1),main="") lines(1:length(Y)+0.2,X,col="red",type="h",lty=2) #Do the convolution for the expectation mu <- matrix(0,ncol=ncol(sts.bp),nrow=nrow(sts.bp)) #Loop over all series for (j in 1:ncol(sts.bp)) { #Loop over all time points for (t in 1:nrow(sts.bp)) { #Convolution, note support of inc.pmf starts at zero (move idx by 1) i <- seq_len(t) mu[t,j] <- sum(inc.pmf[t-i+1] * upperbound(sts.bp)[i,j],na.rm=TRUE) } } #Show the fit lines(1:nrow(sts.bp)-0.5,mu[,1],col="green",type="s",lwd=3) #Non-parametric back-projection including bootstrap CIs bpnp.control2 <- modifyList(bpnp.control, list(hookFun=NULL, k=2, B=10, # in practice, use B >= 1000 ! eq3a.method="C")) sts.bp2 <- backprojNP(Ysts, incu.pmf=inc.pmf, control=bpnp.control2) ###################################################################### # Plot the result. This is currently a manual routine. # ToDo: Need to specify a plot method for stsBP objects which also # shows the CI. # # Parameters: # stsBP - object of class stsBP which is to be plotted. ###################################################################### plot.stsBP <- function(stsBP) { maxy <- max(observed(stsBP),upperbound(stsBP),stsBP@ci,na.rm=TRUE) plot(upperbound(stsBP),type="n",ylim=c(0,maxy), ylab="Cases",xlab="time") if (!all(is.na(stsBP@ci))) { polygon( c(1:nrow(stsBP),rev(1:nrow(stsBP))), c(stsBP@ci[2,,1],rev(stsBP@ci[1,,1])),col="lightgray") } lines(upperbound(stsBP),type="l",lwd=2) legend(x="topright",c(expression(lambda[t])),lty=c(1),col=c(1),fill=c(NA),border=c(NA),lwd=c(2)) invisible() } #Plot the result of k=0 and add truth for comparison. No CIs available plot.stsBP(sts.bp) lines(1:length(Y),X,col=2,type="h") #Same for k=2 plot.stsBP(sts.bp2) lines(1:length(Y),X,col=2,type="h") } \keyword{models} \keyword{optimize} surveillance/man/algo.outbreakP.Rd0000644000176200001440000001217214615244470016677 0ustar liggesusers\encoding{latin1} \name{algo.outbreakP} \alias{algo.outbreakP} \alias{calc.outbreakP.statistic} \title{Semiparametric surveillance of outbreaks} \description{ Frisen and Andersson (2009) method for semiparametric surveillance of outbreaks } \usage{ algo.outbreakP(disProgObj, control = list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{control}{A list controlling the behaviour of the algorithm \describe{ \item{\code{range}}{determines the desired time-points which should be monitored. Note that it is automatically assumed that ALL other values in \code{disProgObj} can be used for the estimation, i.e. for a specific value \code{i} in \code{range} all values from 1 to \code{i} are used for estimation.} \item{\code{k}}{The threshold value. Once the outbreak statistic is above this threshold \code{k} an alarm is sounded.} \item{\code{ret}}{a string specifying the type of \code{upperbound}-statistic that is returned. With \code{"cases"} the number of cases that would have been necessary to produce an alarm (NNBA) or with \code{"value"} the outbreakP-statistic is computed (see below).} \item{\code{maxUpperboundCases}}{Upperbound when numerically searching for NNBA. Default is 1e5.} } } } \value{ \code{algo.outbreakP} gives a list of class \code{survRes} which includes the vector of alarm values for every time-point in \code{range}, the vector of threshold values for every time-point in \code{range}. } \details{ A generalized likelihood ratio test based on the Poisson distribution is implemented where the means of the in-control and out-of-control states are computed by isotonic regression. \deqn{OutbreakP(s) = \prod_{t=1}^s \left( \frac{\hat{\mu}^{C1}(t)}{\hat{\mu}^D(t)} \right)^{x(t)}} where \eqn{\hat{\mu}^{C1}(t)} is the estimated mean obtained by uni-modal regression under the assumption of one change-point and \eqn{\hat{\mu}^D(t)} is the estimated result when there is no change-point (i.e. this is just the mean of all observations). Note that the contrasted hypothesis assume all means are equal until the change-point, i.e. this detection method is especially suited for detecting a shift from a relative constant mean. Hence, this is less suited for detection in diseases with strong seasonal endemic component. Onset of influenza detection is an example where this method works particular well. In case \code{control$ret == "cases"} then a brute force numerical search for the number needed before alarm (NNBA) is performed. That is, given the past observations, what's the minimum number which would have caused an alarm? Note: Computing this might take a while because the search is done by sequentially increasing/decreasing the last observation by one for each time point in \code{control$range} and then calling the workhorse function of the algorithm again. The argument \code{control$maxUpperboundCases} controls the upper limit of this search (default is 1e5). Currently, even though the statistic has passed the threshold, the NNBA is still computed. After a few time instances what typically happens is that no matter the observed value we would have an alarm at this time point. In this case the value of NNBA is set to \code{NA}. Furthermore, the first time point is always \code{NA}, unless \code{k<1}. } \source{ The code is an extended R port of the Java code by Marianne \enc{Frisén}{Frisen} and Linus \enc{Schiöler}{Schioeler} from the Computer Assisted Search For Epidemics (CASE) project, formerly available from \verb{https://case.folkhalsomyndigheten.se/} under the GNU GPL License v3. %% A manual on how to use an Excel implementation of the method %% is available at \url{http://economics.handels.gu.se/english/Units+and+Centra/statistical_research_unit/software}. An additional feature of the R code is that it contains a search for NNBA (see details). } \author{M. \enc{Höhle}{Hoehle} -- based on Java code by M. Frisen and L. \enc{Schiöler}{Schioeler}} \references{ \enc{Frisén}{Frisen}, M., Andersson and \enc{Schiöler}{Schioeler}, L., (2009), Robust outbreak surveillance of epidemics in Sweden, Statistics in Medicine, 28(3):476-493. \enc{Frisén}{Frisen}, M. and Andersson, E., (2009) Semiparametric Surveillance of Monotonic Changes, Sequential Analysis 28(4):434-454. } \examples{ #Use data from outbreakP manual (http://www.hgu.gu.se/item.aspx?id=16857) y <- matrix(c(1,0,3,1,2,3,5,4,7,3,5,8,16,23,33,34,48),ncol=1) #Generate sts object with these observations mysts <- sts(y, alarm=y*0) #Run the algorithm and present results #Only the value of outbreakP statistic upperbound(outbreakP(mysts, control=list(range=1:length(y),k=100, ret="value"))) #Graphical illustration with number-needed-before-alarm (NNBA) upperbound. res <- outbreakP(mysts, control=list(range=1:length(y),k=100, ret="cases")) plot(res,dx.upperbound=0,lwd=c(1,1,3),legend.opts=list(legend=c("Infected", "NNBA","Outbreak","Alarm"),horiz=TRUE)) } \keyword{classif} surveillance/man/wrap.algo.Rd0000644000176200001440000000471314145025164015711 0ustar liggesusers\name{wrap.algo} \alias{wrap.algo} \alias{bayes} \alias{rki} \alias{cusum} \alias{glrpois} \alias{glrnb} \alias{outbreakP} %% FIXME: hmm and rogerson are currently undocumented and unexported %\alias{hmm} %\alias{rogerson} \encoding{latin1} \title{Multivariate Surveillance through independent univariate algorithms} \description{ This function takes an \code{\link{sts}} object and applies an univariate surveillance algorithm to the time series of each observational unit. } \usage{ %This is the main function wrap.algo(sts, algo, control,control.hook=function(k, control) return(control),verbose=TRUE,...) %Derived functions fixing the control object and the "algo" argument bayes(sts, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05),...) rki(sts, control = list(range = range, b = 2, w = 4, actY = FALSE),...) cusum(sts, control = list(range=range, k=1.04, h=2.26, m=NULL, trans="standard",alpha=NULL),...) glrpois(sts, control = list(range=range,c.ARL=5, S=1,beta=NULL, Mtilde=1, M=-1, change="intercept",theta=NULL),...) glrnb(sts, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept", theta=NULL,dir=c("inc","dec"), ret=c("cases","value")),...) outbreakP(sts, control=list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5),...) } \arguments{ \item{sts}{Object of class \code{\link{sts}}} \item{algo}{Character string giving the function name of the algorithm to call, e.g. \code{"algo.farrington"}. Calling is done using \code{do.call}.} \item{control}{Control object as list. Depends on each algorithm.} \item{control.hook}{This is a function for handling multivariate objects. This argument is a function function of integer k and the current control object and which returns the appropriate control object for region k.} \item{verbose}{Boolean, if \code{TRUE} then textual information about the process is given} \item{...}{currently ignored.} } \value{ An \code{sts} object with the \code{alarm}, \code{upperbound}, etc. slots filled with the results of independent and univariate surveillance algorithm. } \seealso{ \code{\link{algo.rki}}, \code{\link{algo.farrington}}, \code{\link{algo.cusum}}, \code{\link{algo.glrpois}}, \code{\link{algo.glrnb}}, \code{\link{algo.outbreakP}} for the exact form of the \code{control} object. } \author{M. \enc{Höhle}{Hoehle}} \keyword{classif} surveillance/man/salmonella.agona.Rd0000644000176200001440000000123414662137762017241 0ustar liggesusers\name{salmonella.agona} \alias{salmonella.agona} \docType{data} \title{Salmonella Agona cases in the UK 1990-1995} \description{ Reported number of cases of the Salmonella Agona serovar in the UK 1990-1995. Note however that the counts do not correspond exactly to the ones used by Farrington et. al (1996). } \usage{data(salmonella.agona)} \format{ A \code{disProg} object with 312 observations starting from week 1 in 1990. } \source{ A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563. } \keyword{datasets} surveillance/man/surveillance-defunct.Rd0000644000176200001440000001026514711776640020153 0ustar liggesusers\name{surveillance-defunct} \alias{surveillance-defunct} \title{Defunct Functions in Package \pkg{surveillance}} \alias{compMatrix.writeTable} \alias{correct53to52} \alias{enlargeData} \alias{makePlot} \alias{readData} \alias{test} \alias{testSim} \alias{toFileDisProg} \alias{algo.hhh} \alias{algo.hhh.grid} \alias{create.grid} \alias{qlomax} \alias{inside.gpc.poly} \alias{intersectPolyCircle.gpc.poly} \alias{scale.gpc.poly} \alias{algo.twins} \alias{plot.atwins} \description{ The functions listed here are no longer part of \pkg{surveillance}. } \usage{ ## Removed in surveillance 1.17.0 compMatrix.writeTable(compMatrix) correct53to52(disProgObj, firstweek = 1) enlargeData(disProgObj, range = 1:156, times = 1) makePlot(outputpath, data = "k1", method = "rki1", name, disease, range = 157:339) readData(abb, week53to52=TRUE, sysPath=TRUE) test(data = c("k1", "m5"), range = 157:339) testSim(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K, range = 200:400) toFileDisProg(disProgObj, toFile) ## Removed in surveillance 1.18.0 algo.hhh(disProgObj, control=list( lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"), lag.range=NULL ), thetastart=NULL, verbose=TRUE) algo.hhh.grid(disProgObj, control=list( lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"), lag.range=NULL ), thetastartMatrix, maxTime=1800, verbose=FALSE) create.grid(disProgObj, control, params=list( epidemic=c(0.1, 0.9, 5), endemic=c(-0.5, 0.5, 3), negbin=c(0.3, 12, 10) )) ## Removed in surveillance 1.20.0 qlomax(p, scale, shape) ## Removed in surveillance 1.22.0 inside.gpc.poly(x, y = NULL, polyregion, mode.checked = FALSE) \method{intersectPolyCircle}{gpc.poly}(object, center, radius, npoly = 32, useGEOS = FALSE, ...) \method{scale}{gpc.poly}(x, center = c(0,0), scale = c(1,1)) ## Removed in surveillance 1.24.0 algo.twins(disProgObj, control=list( burnin=1000, filter=10, sampleSize=2500, noOfHarmonics=1, alpha_xi=10, beta_xi=10, psiRWSigma=0.25, alpha_psi=1, beta_psi=0.1, nu_trend=FALSE, logFile="twins.log")) \method{plot}{atwins}(x, which=c(1,4,6,7), ask=TRUE, ...) } \details{ The trivial function \code{compMatrix.writeTable} is no longer used (it did nothing more than generating an \code{\link[xtable]{xtable}} of its input). The ancient test function \code{makePlot} is no longer used, nor are functions \code{readData} (the datasets are still available via \code{data(\link{m1})} etc) and \code{correct53to52} / \code{enlargeData} (which both only worked for old \code{"disProg"} objects with non-matrix elements). \code{enlargeData} is still exemplified in the old \code{vignette("surveillance")}. \code{test} calls of outbreak detection algorithms applied to the old SurvStat datasets can be found in \code{vignette("surveillance")}, and \code{testSim} is provided as an example in \code{help("\link{sim.pointSource}")}. Functions related to the old \code{"\link[=create.disProg]{disProg}"} class are no longer needed. The effect of \code{toFileDisProg} could still be achieved via \code{\link{write.table}} of \code{as.data.frame(disProg2sts(disProgObj))[c("epoch", "observed", "state")]}. \code{algo.hhh} was an early implementation of the HHH regression framework for multivariate time series of infectious disease counts. An improved and considerably extended implementation is provided by the \code{\link{hhh4}} function since 2012. A \code{qlomax} function is provided in package \pkg{VGAM}. Long unused methods for \code{"gpc.poly"} objects have been removed; the corresponding package \pkg{gpclib} has been unmaintained on CRAN. The experimental and since unused \code{algo.twins} implementation of Held et al. (2006) has been removed; it is archived at \url{https://codeberg.org/EE-hub/twins}. } \keyword{internal} surveillance/man/checkResidualProcess.Rd0000644000176200001440000000505414221271063020117 0ustar liggesusers\name{checkResidualProcess} \alias{checkResidualProcess} \title{ Check the residual process of a fitted \code{twinSIR} or \code{twinstim} } \description{ Transform the residual process (cf. the \code{\link[=residuals.twinstim]{residuals}} methods for classes \code{"twinSIR"} and \code{"twinstim"}) such that the transformed residuals should be uniformly distributed if the fitted model well describes the true conditional intensity function. Graphically check this using \code{\link{ks.plot.unif}}. The transformation for the residuals \code{tau} is \code{1 - exp(-diff(c(0,tau)))} (cf. Ogata, 1988). Another plot inspects the serial correlation between the transformed residuals (scatterplot between \eqn{u_i} and \eqn{u_{i+1}}). } \usage{ checkResidualProcess(object, plot = 1:2, mfrow = c(1,length(plot)), ...) } \arguments{ \item{object}{ an object of class \code{"\link{twinSIR}"} or \code{"\link{twinstim}"}. } \item{plot}{ logical (or integer index) vector indicating if (which) plots of the transformed residuals should be produced. The \code{plot} index 1 corresponds to a \code{\link{ks.plot.unif}} to check for deviations of the transformed residuals from the uniform distribution. The \code{plot} index 2 corresponds to a scatterplot of \eqn{u_i} vs. \eqn{u_{i+1}}. By default (\code{plot = 1:2}), both plots are produced. } \item{mfrow}{ see \code{\link{par}}. } \item{\dots}{ further arguments passed to \code{\link{ks.plot.unif}}. } } \value{ A list (returned invisibly, if \code{plot = TRUE}) with the following components: \describe{ \item{tau}{the residual process obtained by \code{residuals(object)}.} \item{U}{the transformed residuals which should be distributed as U(0,1).} \item{ks}{the result of the \code{ks.test} for the uniform distribution of \code{U}.} } } \references{ Ogata, Y. (1988) Statistical models for earthquake occurrences and residual analysis for point processes. \emph{Journal of the American Statistical Association}, 83, 9-27 } \author{ Sebastian Meyer } \seealso{ \code{\link{ks.plot.unif}} and the \code{\link[=residuals.twinstim]{residuals}}-method for classes \code{"twinSIR"} and \code{"twinstim"}. } \examples{ data("hagelloch") fit <- twinSIR(~ household, data = hagelloch) # a simplistic model ## extract the "residual process", i.e., the fitted cumulative intensities residuals(fit) ## assess goodness of fit based on these residuals checkResidualProcess(fit) # could be better } \keyword{dplot} \keyword{htest} surveillance/man/epidata_intersperse.Rd0000644000176200001440000000333213433306243020044 0ustar liggesusers\name{epidata_intersperse} \alias{intersperse} \title{ Impute Blocks for Extra Stops in \code{"epidata"} Objects } \description{ This function modifies an object inheriting from class \code{"epidata"} such that it features the specified stop time points. For this purpose, the time interval in the event history into which the new stop falls will be split up into two parts, one block for the time period until the new stop -- where no infection or removal occurs -- and the other block for the time period from the new stop to the end of the original interval.\cr Main application is to enable the use of \code{knots} in \code{twinSIR}, which are not existing stop time points in the \code{"epidata"} object. } \usage{ intersperse(epidata, stoptimes, verbose = FALSE) } \arguments{ \item{epidata}{ an object inheriting from class \code{"epidata"}. } \item{stoptimes}{ a numeric vector of time points inside the observation period of the \code{epidata}. } \item{verbose}{ logical indicating if a \code{\link{txtProgressBar}} should be shown while inserting blocks for extra \code{stoptimes}. } } \value{ an object of the same class as \code{epidata} with additional time blocks for any new \code{stoptimes}. } \author{ Sebastian Meyer } \seealso{ \code{\link{as.epidata.epidataCS}} where this function is used. } \examples{ data("hagelloch") subset(hagelloch, start < 25 & stop > 25 & id \%in\% 9:13, select = 1:7) # there is no "stop" time at 25, but we can add this extra stop nrow(hagelloch) moreStopsEpi <- intersperse(hagelloch, stoptimes = 25) nrow(moreStopsEpi) subset(moreStopsEpi, (stop == 25 | start == 25) & id \%in\% 9:13, select = 1:7) } \keyword{spatial} \keyword{manip} surveillance/man/surveillance-package.Rd0000644000176200001440000001332014676741003020104 0ustar liggesusers%\RdOpts{stage=build} % Not yet: in R 2.12.0 - 4.0.5, \RdOpts{} had no effect (PR#18073) \encoding{latin1} \name{surveillance-package} \alias{surveillance-package} \alias{surveillance} \docType{package} \title{\pkg{surveillance}: \packageTitle{surveillance}} \description{ The \R package \pkg{surveillance} implements statistical methods for the retrospective modeling and prospective monitoring of epidemic phenomena in temporal and spatio-temporal contexts. Focus is on (routinely collected) public health surveillance data, but the methods just as well apply to data from environmetrics, econometrics or the social sciences. As many of the monitoring methods rely on statistical process control methodology, the package is also relevant to quality control and reliability engineering. } \details{ The package implements many typical outbreak detection procedures such as Stroup et al. (1989), Farrington et al. (1996), Rossi et al. (1999), Rogerson and Yamada (2001), a Bayesian approach (H\enc{ö}{oe}hle, 2007), negative binomial CUSUM methods (H\enc{ö}{oe}hle and Mazick, 2009), and a detector based on generalized likelihood ratios (H\enc{ö}{oe}hle and Paul, 2008), see \code{\link{wrap.algo}}. Also CUSUMs for the prospective change-point detection in binomial, beta-binomial and multinomial time series are covered based on generalized linear modeling, see \code{\link{categoricalCUSUM}}. This includes, e.g., paired comparison Bradley-Terry modeling described in H\enc{ö}{oe}hle (2010), or paired binary CUSUM (\code{\link{pairedbinCUSUM}}) described by Steiner et al. (1999). The package contains several real-world datasets, the ability to simulate outbreak data, visualize the results of the monitoring in temporal, spatial or spatio-temporal fashion. In dealing with time series data, the fundamental data structure of the package is the S4 class \code{\link{sts}} wrapping observations, monitoring results and date handling for multivariate time series. A recent overview of the available monitoring procedures is given by Salmon et al. (2016). For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. The function \code{\link{hhh4}} offers inference methods for the (multivariate) count time series models of Held et al. (2005), Paul et al. (2008), Paul and Held (2011), Held and Paul (2012), and Meyer and Held (2014). See \code{vignette("hhh4")} for a general introduction and \code{vignette("hhh4_spacetime")} for a discussion and illustration of spatial \code{hhh4} models. Self-exciting point processes are modeled through endemic-epidemic conditional intensity functions. \code{\link{twinSIR}} (H\enc{ö}{oe}hle, 2009) models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks; see \code{vignette("twinSIR")} for an illustration. \code{\link{twinstim}} (Meyer et al., 2012) fits spatio-temporal point process models to point patterns of infective events, e.g., time-stamped geo-referenced surveillance data on infectious disease occurrence; see \code{vignette("twinstim")} for an illustration. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017). } %% Author information is dynamically extracted from the DESCRIPTION file \author{ \Sexpr[stage=build]{ pkgdir <- tools:::Rd_macros_package_dir() # support R CMD Rd2pdf pkg desc <- tools:::.read_description(file.path(pkgdir, "DESCRIPTION")) aar <- unname(eval(parse(text=desc["Authors@R"]))) authors <- aar[grep("aut", aar$role)] paste0(format(authors, include = c("given", "family")), collapse = ", ") } Maintainer: Sebastian Meyer \email{seb.meyer@fau.de} %\packageMaintainer{surveillance} % only R >= 4.3.2 knows about Authors@R } %% Dynamically extract contributors from the DESCRIPTION file %% and persons from inst/THANKS for acknowledgement: \section{Acknowledgements}{ Substantial contributions of code by: \Sexpr[stage=build]{ contributors <- aar[grepl("ctb", aar$role) & !sapply(aar$family, is.null)] paste0(format(contributors, include = c("given", "family")), collapse = ", ") }. Furthermore, the authors would like to thank the following people for ideas, discussions, testing and feedback: \Sexpr[stage=build]{ find_inst_file <- function (file) { # support R CMD Rd2pdf in source package if(dir.exists(file.path(pkgdir, "inst"))) file.path(pkgdir, "inst", file) else file.path(pkgdir, file) } ## internally, Rd objects are assumed to be in UTF-8, see parse_Rd() thanks <- readLines(find_inst_file("THANKS"), encoding = "UTF-8") toString(grep("^(#|$)", trimws(thanks), invert=TRUE, value=TRUE)) }. } \references{ \code{citation(package="surveillance")} gives the two main software references for the modeling (Meyer et al., 2017) and the monitoring (Salmon et al., 2016) functionalities: \Sexpr[stage=build,results=rd]{ paste0("\\\itemize{\n", paste0("\\\item ", tools::toRd( readCitationFile(find_inst_file("CITATION")) # gives marked UTF-8 strings ), collapse = "\n\n"), "\n}") } Further references are listed in \code{surveillance:::REFERENCES}. If you use the \pkg{surveillance} package in your own work, please do cite the corresponding publications. } \seealso{ \url{https://surveillance.R-forge.R-project.org/} } \keyword{ package } \examples{ ## Additional documentation and illustrations of the methods are ## available in the form of package vignettes and demo scripts: vignette(package = "surveillance") demo(package = "surveillance") } surveillance/man/poly2adjmat.Rd0000644000176200001440000000316014614160257016244 0ustar liggesusers\name{poly2adjmat} \alias{poly2adjmat} \title{ Derive Adjacency Structure of \code{"SpatialPolygons"} } \description{ Wrapping around functionality of the \pkg{spdep} package, this function computes the symmetric, binary (0/1), adjacency matrix from a \code{"\linkSPclass{SpatialPolygons}"} object. It essentially applies \code{\link[spdep]{nb2mat}(\link[spdep]{poly2nb}(SpP, ...), style="B", zero.policy=zero.policy)}. } \usage{ poly2adjmat(SpP, ..., zero.policy = TRUE) } \arguments{ \item{SpP}{an object inheriting from \code{"\linkSPclass{SpatialPolygons}"}.} \item{\dots}{arguments passed to \code{\link[spdep]{poly2nb}}. Its \code{snap} argument might be particularly useful to handle maps with sliver polygons.} \item{zero.policy}{logical indicating if islands are allowed, see \code{\link[spdep]{nb2mat}}.} } \value{ a symmetric numeric indicator matrix of size \code{length(SpP)}^2 representing polygon adjacencies. } \author{ (of this wrapper) Sebastian Meyer } \seealso{ \code{\link[spdep]{poly2nb}} in package \pkg{spdep} } \examples{ if (requireNamespace("spdep")) { ## generate adjacency matrix for districts of Bayern and Baden-Wuerttemberg data("fluBYBW") adjmat <- poly2adjmat(fluBYBW@map) ## same as already stored in the neighbourhood slot (in different order) stopifnot(all.equal(adjmat, neighbourhood(fluBYBW)[rownames(adjmat),colnames(adjmat)])) ## a visual check of the district-specific number of neighbours plot(fluBYBW@map) text(coordinates(fluBYBW@map), labels=rowSums(adjmat==1), font=2, col=2) } } \keyword{spatial} \keyword{graphs} surveillance/man/stsplot_space.Rd0000644000176200001440000001513414614160257016705 0ustar liggesusers\name{stsplot_space} \alias{stsplot_space} \title{ Map of Disease Counts/Incidence accumulated over a Given Period } \description{ This is the \code{plot} variant of \code{type=observed~unit} for \code{"\linkS4class{sts}"} objects, i.e., \code{plot(stsObj, type=observed~unit, ...)} calls the function documented below. It produces an \code{\link[sp]{spplot}} where regions are color-coded according to disease incidence (either absolute counts or relative to population) over a given time period. } \usage{ stsplot_space(x, tps = NULL, map = x@map, population = NULL, main = NULL, labels = FALSE, ..., at = 10, col.regions = NULL, colorkey = list(space = "bottom", labels = list(at=at)), total.args = NULL, gpar.missing = list(col = "darkgrey", lty = 2, lwd = 2), sp.layout = NULL, %aspect = mapasp(map), xlim = bbox(map)[1, ], ylim = bbox(map)[2, ]) } \arguments{ \item{x}{ an object of class \code{"\linkS4class{sts}"} or a matrix of counts, i.e., \code{observed(stsObj)}, where especially \code{colnames(x)} have to be contained in \code{row.names(map)}. If a matrix, the \code{map} object has to be provided explicitly. The possibility of specifying a matrix is, e.g., useful to plot mean counts of simulations from \code{\link{simulate.hhh4}}. } \item{tps}{ a numeric vector of one or more time points. The unit-specific \emph{sum} over all time points \code{tps} is plotted. The default \code{tps=NULL} means accumulation over the whole time period \code{1:nrow(x)}. } \item{map}{ an object inheriting from \code{"\linkSPclass{SpatialPolygons}"} representing the \code{ncol(x)} regions. By default the \code{map} slot of \code{x} is queried (which might be empty and is not applicable if \code{x} is a matrix of counts). } \item{population}{ if \code{NULL} (default), the map shows the region-specific numbers of cases accumulated over \code{tps}. For a disease incidence map, \code{population} can be specified in three ways: \itemize{ \item a numeric vector of population numbers in the \code{ncol(x)} regions, used to divide the disease counts. \item a matrix of population counts of dimension \code{dim(x)} (such as \code{population(x)} in an \code{"sts"} object). This will produce the cumulative incidence over \code{tps} relative to the population at the first time point, i.e., only \code{population[tps[1],]} is used. \item [if \code{is(x, "sts")}] a scalar specifying how \code{population(x)} should be scaled for use as the population matrix, i.e., \code{population(x)/population} is used. For instance, if \code{population(x)} contains raw population numbers, \code{population=1000} would produce the incidence per 1000 inhabitants. } } \item{main}{ a main title for the plot. If \code{NULL} and \code{x} is of class \code{"sts"}, the time range of \code{tps} is put as the main title. } \item{labels}{ determines if and how the regions of the \code{map} are labeled, see \code{\link{layout.labels}}. } \item{\dots}{ further arguments for \code{\link[sp]{spplot}}, for example \code{col = "white"} for white polygon lines. } \item{at}{ either a number of levels (default: 10) for the categorization (color-coding) of counts/incidence, or a numeric vector of specific break points, or a named list of a number of levels (\code{"n"}), a transformer (\code{"trafo"}) of class \code{"\link[scales]{trans}"} defined by package \pkg{scales}, and optional further arguments for \code{\link{pretty}}. The default breaks are equally spaced on the square-root scale (equivalent to \code{\link[scales]{sqrt_trans}}). Note that intervals given by \code{at} are closed on the left and open to the right; if manually specified break points do not cover the data range, further breaks are automatically added at 0 and the maximum (rounded up to 1 significant digit), respectively. } \item{col.regions}{ a vector of fill colors, sufficiently long to serve all levels (determined by \code{at}). \dQuote{Heat} colors are used by default (\code{NULL}). } \item{colorkey}{ a list describing the color key, see \code{\link[lattice]{levelplot}}. The default list elements will be updated by the provided list using \code{\link{modifyList}}. } \item{total.args}{ an optional list of arguments for \code{\link[grid]{grid.text}} to have the overall number/incidence of cases printed at an edge of the map. The default settings are \code{list(label="Overall: ", x=1, y=0)}, and \code{total.args=list()} will use all of them. } \item{gpar.missing}{list of graphical parameters for \code{\link[sp]{sp.polygons}} applied to the regions of \code{map}, which are not part of \code{x}. Such extra regions won't be plotted if \code{!is.list(gpar.missing)}.} \item{sp.layout}{ optional list of additional layout items, see \code{\link[sp]{spplot}}. } %% currently hard-coded for simplicity (rarely needed): %% \item{aspect}{the aspect ratio, see \code{\link[lattice]{levelplot}}. %% Defaults to \code{"iso"} for projected coordinates.} \item{xlim,ylim}{numeric vectors of length 2 specifying the axis limits.} } \value{ a lattice plot of class \code{"\link[lattice:trellis.object]{trellis}"}, but see \code{\link[sp]{spplot}}. } \author{ Sebastian Meyer } \seealso{ the central \code{\link{stsplot}}-documentation for an overview of plot types, and \code{\link{animate.sts}} for animations of \code{"sts"} objects. } \examples{ data("measlesWeserEms") # default plot: total region-specific counts over all weeks plot(measlesWeserEms, type = observed ~ unit) stsplot_space(measlesWeserEms) # the same # cumulative incidence (per 100'000 inhabitants), # with region labels and white borders plot(measlesWeserEms, observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(labels = "GEN", cex = 0.7, font = 3), col = "white", lwd = 2, sub = "cumulative incidence (per 100'000 inhabitants)") # incidence in a particular week, manual color breaks, display total plot(measlesWeserEms, observed ~ unit, tps = 62, population = measlesWeserEms@map$POPULATION / 100000, at = c(0, 1, 5), total.args = list(x = 0, label = "Overall incidence: ")) # if we had only observed a subset of the regions plot(measlesWeserEms[,5:11], observed ~ unit, gpar.missing = list(col = "gray", lty = 4)) } \keyword{hplot} \keyword{spatial} surveillance/man/hhh4_W.Rd0000644000176200001440000001477414665117445015163 0ustar liggesusers\name{hhh4_W} \alias{W_powerlaw} \alias{W_np} \title{ Power-Law and Nonparametric Neighbourhood Weights for \code{hhh4}-Models } \description{ Set up power-law or nonparametric weights for the neighbourhood component of \code{\link{hhh4}}-models as proposed by Meyer and Held (2014). Without normalization, power-law weights are \eqn{w_{ji} = o_{ji}^{-d}}{w_ji = o_ji^-d} (if \eqn{o_{ji} > 0}{o_ji > 0}, otherwise \eqn{w_{ji} = 0}{w_ji = 0}), where \eqn{o_{ji}}{o_ji} (\eqn{=o_{ij}}{=o_ij}) is the adjacency order between regions \eqn{i} and \eqn{j}, and the decay parameter \eqn{d} is to be estimated. In the nonparametric formulation, unconstrained log-weights will be estimated for each of the adjacency orders \code{2:maxlag} (the first-order weight is fixed to 1 for identifiability). Both weight functions can be modified to include a 0-distance weight, which enables \code{hhh4} models without a separate autoregressive component. } \usage{ W_powerlaw(maxlag, normalize = TRUE, log = FALSE, initial = if (log) 0 else 1, from0 = FALSE) W_np(maxlag, truncate = TRUE, normalize = TRUE, initial = log(zetaweights(2:(maxlag+from0))), from0 = FALSE, to0 = truncate) } \arguments{ \item{maxlag}{a single integer specifying a limiting order of adjacency. If spatial dependence is not to be truncated at some high order, \code{maxlag} should be set to the maximum adjacency order in the network of regions. The smallest possible value for \code{maxlag} is 2 if \code{from0=FALSE} and 1 otherwise.} \item{truncate,to0}{\code{W_np} represents order-specific log-weights up to order \code{maxlag}. Higher orders are by default (\code{truncate=TRUE}) assumed to have zero weight (similar to \code{W_powerlaw}). Alternatively, \code{truncate=FALSE} requests that the weight at order \code{maxlag} should be carried forward to higher orders. \code{truncate} has previously been called \code{to0} (deprecated).} \item{normalize}{logical indicating if the weights should be normalized such that the rows of the weight matrix sum to 1 (default). Note that normalization does not work with islands, i.e., regions without neighbours.} \item{log}{logical indicating if the decay parameter \eqn{d} should be estimated on the log-scale to ensure positivity.} \item{initial}{initial value of the parameter vector.} \item{from0}{logical indicating if these parametric weights should include the 0-distance (autoregressive) case. In the default setting (\code{from0 = FALSE}), adjacency order 0 has zero weight, which is suitable for \code{hhh4} models with a separate autoregressive component. With \code{from0 = TRUE} (Meyer and Held, 2017), the power law is based on \eqn{(o_{ji} + 1)}{(o_ji + 1)}, and nonparametric weights are estimated for adjacency orders \code{1:maxlag}, respectively, where the 0-distance weight is \eqn{w_{jj} = 1}{w_jj = 1} (without normalization). Note that the corresponding \code{hhh4} model should then exclude a separate autoregressive component (\code{control$ar$f = ~ -1}).} } \value{ a list which can be passed as a specification of parametric neighbourhood weights in the \code{control$ne$weights} argument of \code{\link{hhh4}}. } \details{ \code{hhh4} will take adjacency orders from the \code{neighbourhood} slot of the \code{"sts"} object, so these must be prepared before fitting a model with parametric neighbourhood weights. The function \code{\link{nbOrder}} can be used to derive adjacency orders from a binary adjacency matrix. } \references{ Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S. and Held, L. (2017): Incorporating social contact data in spatio-temporal models for infectious disease spread. \emph{Biostatistics}, \bold{18} (2), 338-351. \doi{10.1093/biostatistics/kxw051} } \author{ Sebastian Meyer } \seealso{ \code{\link{nbOrder}} to determine adjacency orders from a binary adjacency matrix. \code{\link{getNEweights}} and \code{\link{coefW}} to extract the estimated neighbourhood weight matrix and coefficients from an \code{hhh4} model. } \examples{ data("measlesWeserEms") ## data contains adjaceny orders as required for parametric weights plot(measlesWeserEms, type = observed ~ unit, labels = TRUE) neighbourhood(measlesWeserEms)[1:6,1:6] max(neighbourhood(measlesWeserEms)) # max order is 5 ## fit a power-law decay of spatial interaction ## in a hhh4 model with seasonality and random intercepts in the endemic part measlesModel <- list( ar = list(f = ~ 1), ne = list(f = ~ 1, weights = W_powerlaw(maxlag=5)), end = list(f = addSeason2formula(~-1 + ri(), S=1, period=52)), family = "NegBin1") ## fit the model set.seed(1) # random intercepts are initialized randomly measlesFit <- hhh4(measlesWeserEms, measlesModel) summary(measlesFit) # "neweights.d" is the decay parameter d coefW(measlesFit) ## plot the spatio-temporal weights o_ji^-d / sum_k o_jk^-d ## as a function of adjacency order plot(measlesFit, type = "neweights", xlab = "adjacency order") ## normalization => same distance does not necessarily mean same weight. ## to extract the whole weight matrix W: getNEweights(measlesFit) ## visualize contributions of the three model components ## to the overall number of infections (aggregated over all districts) plot(measlesFit, total = TRUE) ## little contribution from neighbouring districts if (surveillance.options("allExamples")) { ## simpler model with autoregressive effects captured by the ne component measlesModel2 <- list( ne = list(f = ~ 1, weights = W_powerlaw(maxlag=5, from0=TRUE)), end = list(f = addSeason2formula(~-1 + ri(), S=1, period=52)), family = "NegBin1") measlesFit2 <- hhh4(measlesWeserEms, measlesModel2) ## omitting the separate AR component simplifies model extensions/selection ## and interpretation of covariate effects (only two predictors left) plot(measlesFit2, type = "neweights", exclude = NULL, xlab = "adjacency order") ## strong decay, again mostly within-district transmission ## (one could also try a purely autoregressive model) plot(measlesFit2, total = TRUE, legend.args = list(legend = c("epidemic", "endemic"))) ## almost the same RMSE as with separate AR and NE effects c(rmse1 = sqrt(mean(residuals(measlesFit, "response")^2)), rmse2 = sqrt(mean(residuals(measlesFit2, "response")^2))) } } \keyword{spatial} \keyword{models} \keyword{utilities} surveillance/man/sts_animate.Rd0000644000176200001440000001132314614642005016321 0ustar liggesusers\name{sts_animate} \alias{animate.sts} \title{ Animated Maps and Time Series of Disease Counts or Incidence } \description{ The \code{animate}-method for \code{\linkS4class{sts}} objects iterates over time points, plotting maps of the current|cumulative counts|incidence via \code{\link{stsplot_space}}, optionally including a time series chart below the map to track the epidemic curve. It is worth using functionality of the \pkg{animation} package (e.g., \code{\link[animation]{saveHTML}}) to directly export the animation into a useful format. } \usage{ \method{animate}{sts}(object, tps = NULL, cumulative = FALSE, population = NULL, at = 10, ..., timeplot = list(pos = 1, size = 0.3, fill = TRUE), sleep = 0.5, verbose = interactive(), draw = TRUE) } \arguments{ \item{object}{ an object of class \code{"\linkS4class{sts}"} or a matrix of counts, i.e., \code{observed(stsObj)}, where especially \code{colnames(x)} have to be contained in \code{row.names(map)}. If a matrix, the \code{map} object has to be provided explicitly (as part of \code{\dots}). } \item{tps}{ a numeric vector of one or more time points at which to plot the map. The default \code{tps=NULL} means the whole time period \code{1:nrow(object)}. } \item{cumulative}{ logical specifying if the cumulative counts/incidence over time should be plotted. The cumulative incidence is relative to the population from the first time point \code{tps[1]} throughout the whole animation, while \code{cumulative=FALSE} computes the incidence from the current population numbers. } \item{population,at,\dots}{ arguments for \code{\link{stsplot_space}}. } \item{timeplot}{ if a list and package \CRANpkg{gridExtra} is available, a time series chart of the counts along the selected time points \code{tps} will be plotted next to the map. The list elements determine both the positioning of this plot (\code{pos}, \code{size}, and \code{fill}) and its appearance. The default \code{pos=1} and \code{size=0.3} arguments put the time series plot below the map, using 30\% of the total plot height. The logical value \code{fill} indicates whether to make the panel as big as possible (default: TRUE). An alternative to \code{fill=FALSE} is to manually specify an \code{aspect} (ratio) value in \code{timeplot}. Other list elements are arguments for the internal (and currently undocumented) function \code{stsplot_timeSimple}. For example, \code{inactive} and \code{active} are lists of graphical parameters (e.g., \code{col}) determining the appearance of the bars (e.g., default color is grey when inactive and black when active), and the boolean \code{as.Date} determines whether dates should be put on the x-axis (instead of the \code{tps} indexes). } \item{sleep}{ time to wait (\code{Sys.sleep}) between subsequent snapshots (only if \code{\link{dev.interactive}}), in seconds. } \item{verbose}{ logical indicating if a \code{\link{txtProgressBar}} should be shown during generation of the animation -- which may take a while. Default is to do so in \code{\link{interactive}} sessions. } \item{draw}{ logical indicating if the produced plots at each time point should be drawn directly (the default) or not. The setting \code{draw = FALSE} is useful if one would like to manually arrange the plots, which are always returned invisibly in a list of length \code{length(tps)}. } } \value{ (invisibly) a list of the \code{length(tps)} sequential plot objects. These are of class \code{"gtable"} (from \CRANpkg{gtable}) if the \code{timeplot} is included, otherwise of class \code{"\code{\link[lattice:trellis.object]{trellis}"}. } \author{ Sebastian Meyer } \seealso{ the other plot types documented in \code{\link{stsplot}} for static time series plots and maps. } \examples{ data("measlesWeserEms") ## animate the weekly counts of measles (during weeks 12-16 only, for speed) if (interactive() && require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML(animate(measlesWeserEms, tps=12:16), title="Evolution of the measles epidemic in the Weser-Ems region", ani.width=500, ani.height=600) setwd(oldwd) } \dontrun{ ## animate the weekly incidence of measles (per 100'000 inhabitants), ## and label the time series plot with dates in a specified format animate(measlesWeserEms, tps=12:16, population = measlesWeserEms@map$POPULATION / 100000, timeplot = list(as.Date = TRUE, scales = list(x = list(format = "\%G/\%V")))) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/epidataCS_update.Rd0000644000176200001440000000566114614536762017235 0ustar liggesusers\name{epidataCS_update} \alias{update.epidataCS} \title{ Update method for \code{"epidataCS"} } \description{ The \code{\link{update}} method for the \code{"\link{epidataCS}"} class may be used to modify the hyperparameters \eqn{\epsilon} (\code{eps.t}) and \eqn{\delta} (\code{eps.s}), the indicator matrix \code{qmatrix} determining possible transmission between the event types, the numerical accuracy \code{nCircle2Poly} of the polygonal approximation, and the endemic covariates from \code{stgrid} (including the time intervals). The update method will also update the auxiliary information contained in an \code{"epidataCS"} object accordingly, e.g., the vector of potential sources of each event, the influence regions, or the endemic covariates copied from the new \code{stgrid}. } \usage{ \method{update}{epidataCS}(object, eps.t, eps.s, qmatrix, nCircle2Poly, stgrid, ...) } \arguments{ \item{object}{ an object of class \code{"epidataCS"}. } \item{eps.t}{ numeric vector of length 1 or corresponding to the number of events in \code{object$events}. The event data column \code{eps.t} specifies the maximum temporal influence radius (e.g., length of infectious period, time to culling, etc.) of the events. } \item{eps.s}{ numeric vector of length 1 or corresponding to the number of events in \code{object$events}. The event data column \code{eps.s} specifies the maximum spatial influence radius of the events. } \item{qmatrix}{ square indicator matrix (0/1 or TRUE/FALSE) for possible transmission between the event types. } \item{nCircle2Poly}{ accuracy (number of edges) of the polygonal approximation of a circle. } \item{stgrid}{ a new \code{data.frame} with endemic covariates, possibly transformed from or adding to the original \code{object$stgrid}. The grid must cover the same regions as the original, i.e., \code{levels(object$stgrid$tile)} must remain identical. See \code{\link{epidataCS}} for a detailed description of the required format. } \item{\dots}{ unused (argument of the generic). } } \value{ The updated \code{"epidataCS"} object. } \author{ Sebastian Meyer } \seealso{ class \code{"\link{epidataCS}"}. } \examples{ data("imdepi") ## assume different interaction ranges and simplify polygons imdepi2 <- update(imdepi, eps.t = 20, eps.s = Inf, nCircle2Poly = 16) (s <- summary(imdepi)) (s2 <- summary(imdepi2)) ## The update reduced the number of infectives (along time) ## because the length of the infectious periods is reduced. It also ## changed the set of potential sources of transmission for each ## event, since the interaction is shorter in time but wider in space ## (eps.s=Inf means interaction over the whole observation region). ## use a time-constant grid imdepi3 <- update(imdepi, stgrid = subset(imdepi$stgrid, BLOCK == 1, -stop)) (s3 <- summary(imdepi3)) # "1 time block" } \keyword{manip} \keyword{utilities} \keyword{methods} surveillance/man/twinstim_step.Rd0000644000176200001440000000365713165517635016750 0ustar liggesusers\name{twinstim_step} \alias{stepComponent} \alias{add1.twinstim} \alias{drop1.twinstim} \title{ Stepwise Model Selection by AIC } \description{ \code{stepComponent} is a wrapper around \code{\link{step}} to select a \code{"\link{twinstim}"} component's model based on an information criterion in a stepwise algorithm. There are also stand-alone single-step methods of \code{\link{add1}} and \code{\link{drop1}}. } \usage{ stepComponent(object, component = c("endemic", "epidemic"), scope = list(upper = object$formula[[component]]), direction = "both", trace = 2, verbose = FALSE, ...) \method{add1}{twinstim}(object, scope, component = c("endemic", "epidemic"), trace = 2, ...) \method{drop1}{twinstim}(object, scope, component = c("endemic", "epidemic"), trace = 2, ...) } \arguments{ \item{object}{an object of class \code{"twinstim"}.} \item{component}{one of \code{"endemic"} or \code{"epidemic"} (partially matched), determining the model component where the algorithm should proceed.} \item{scope,direction,trace}{see \code{\link{step}} and \code{\link{add1}}, respectively.} \item{verbose}{see \code{\link{twinstim}}.} \item{\dots}{further arguments passed to \code{\link{step}}, \code{\link{add1.default}}, or \code{\link{drop1.default}}, respectively.} } \value{ See \code{\link{step}} and \code{\link{add1}}, respectively. } \author{ (of this wrapper around \code{\link{step}}) Sebastian Meyer } \seealso{ \code{\link{step}}, \code{\link{add1}}, \code{\link{drop1}} } \examples{ data("imdepi", "imdepifit") ## simple baseline model m0 <- update(imdepifit, epidemic=~1, siaf=NULL) ## AIC-based step-wise backward selection of the endemic component m0_step <- stepComponent(m0, "endemic", scope=list(lower=~I(start/365-3.5))) ## nothing is dropped from the model \dontshow{ m0_step$anova <- NULL stopifnot(identical(m0, m0_step)) } } \keyword{models} \keyword{methods} surveillance/man/twinstim_update.Rd0000644000176200001440000000504513165520251017234 0ustar liggesusers\name{twinstim_update} \alias{update.twinstim} \title{ \code{update}-method for \code{"twinstim"} } \description{ Update and (by default) re-fit a \code{"twinstim"}. This method is especially useful if one wants to add the \code{model} environment (which is required for some methods) to a fitted model object a posteriori. } \usage{ \method{update}{twinstim}(object, endemic, epidemic, control.siaf, optim.args, model, ..., use.estimates = TRUE, evaluate = TRUE) } \arguments{ \item{object}{a previous \code{"twinstim"} fit.} \item{endemic, epidemic}{changes to the formulae -- see \code{\link{update.formula}} and \code{\link{twinstim}}.} \item{control.siaf}{a list (see \code{\link{twinstim}}) to replace the given elements in the original \code{control.siaf} list. If \code{NULL}, the original list of control arguments is removed from the call, i.e., the defaults are used in \code{twinstim}.} \item{optim.args}{see \code{\link{twinstim}}. If a list, it will modify the original \code{optim.args} using \code{\link{modifyList}}.} \item{model}{see \code{\link{twinstim}}. If this is the only argument to update, re-fitting is cleverly circumvented. Enriching the fit by the model environment is, e.g., required for \code{\link{intensityplot.twinstim}}.} \item{\dots}{Additional arguments to the call, or arguments with changed values.\cr If \code{start} values are specified, they need to be in the same format as in the original call \code{object$call$start}, which is either a named list of named numeric vectors or a named numeric vector; see the argument description in \code{\link{twinstim}}.} \item{use.estimates}{logical indicating if the estimates of \code{object} should be used as initial values for the new fit (in the \code{start} argument of \code{twinstim}). Defaults to \code{TRUE}.} \item{evaluate}{If \code{TRUE} (default), evaluate the new call else return the call.} } \value{ If \code{evaluate = TRUE} the re-fitted object, otherwise the updated call. } \author{ Sebastian Meyer Inspiration and some pieces of code originate from \code{\link{update.default}} by the R Core Team. } \seealso{ \code{\link{update.default}} } \examples{ data("imdepi", "imdepifit") ## add another epidemic covariate ## (but fix siaf-parameter so that this example runs quickly) imdepifit2 <- update(imdepifit, epidemic = ~. + log(popdensity), optim.args = list(fixed="e.siaf.1")) ## compare by AIC AIC(imdepifit, imdepifit2) } \keyword{models} \keyword{methods} surveillance/man/stsNC-class.Rd0000644000176200001440000000422314221271063016144 0ustar liggesusers\name{stsNC-class} \docType{class} \alias{stsNC-class} %New stsNC specific methods \alias{reportingTriangle} \alias{reportingTriangle,stsNC-method} \alias{delayCDF} \alias{delayCDF,stsNC-method} \alias{score} \alias{score,stsNC-method} \alias{predint} \alias{predint,stsNC-method} %Coerce method to convert to sts object \alias{coerce,sts,stsNC-method} \encoding{latin1} \title{Class "stsNC" -- a class inheriting from class \code{sts} which allows the user to store the results of back-projecting surveillance time series} \description{ A class inheriting from class \code{sts}, but with additional slots to store the results of nowcasting. } \section{Slots}{ The slots are as for \code{"\linkS4class{sts}"}. However, a number of additional slots exists. \describe{ \item{\code{reportingTriangle}:}{An array containing the upper and lower limit of the confidence interval.} \item{\code{predPMF}:}{Predictive distribution for each nowcasted time point.} \item{\code{pi}:}{A prediction interval for each nowcasted time point. This is calculated based on \code{predPMF}.} \item{\code{truth}:}{An object of type \code{sts} containing the true number of cases.} \item{\code{delayCDF}:}{List with the CDF of the estimated delay distribution for each method.} \item{\code{SR}:}{Possible output of proper scoring rules} } } \section{Methods}{ The methods are the same as for \code{"\linkS4class{sts}"}. \describe{ \item{coerce}{\code{signature(from = "sts", to = "stsNC")}: convert an object of class \code{sts} to class \code{stsNC}. } \item{reportingTriangle}{\code{signature(x = "stsNC")}: extract the \code{reportingTriangle} slot of an \code{stsNC} object. } \item{delayCDF}{\code{signature(x = "stsNC")}: extract the \code{delayCDF} slot of an \code{stsNC} object. } \item{score}{\code{signature(x = "stsNC")}: extract the scoring rules result slot of an \code{stsNC} object. } \item{predint}{\code{signature(x = "stsNC")}: extract the prediction interval slot of an \code{stsNC} object. } } } \author{M. \enc{Höhle}{Hoehle}} \keyword{classes} surveillance/man/fluBYBW.Rd0000644000176200001440000000451314665117445015302 0ustar liggesusers\name{fluBYBW} \alias{fluBYBW} \docType{data} \title{Influenza in Southern Germany} \description{ Weekly number of influenza A & B cases in the 140 districts of the two Southern German states Bavaria and Baden-Wuerttemberg, for the years 2001 to 2008. These surveillance data have been analyzed originally by Paul and Held (2011) and more recently by Meyer and Held (2014). } \usage{data(fluBYBW)} \format{ An \code{\linkS4class{sts}} object containing \eqn{416\times 140}{416 x 140} observations starting from week 1 in 2001. The \code{population} slot contains the population fractions of each district at 31.12.2001, obtained from the Federal Statistical Office of Germany. The \code{map} slot contains an object of class \code{"\linkSPclass{SpatialPolygonsDataFrame}"}. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 6 March 2009. } \note{ Prior to \pkg{surveillance} version 1.6-0, \code{data(fluBYBW)} contained a redundant last row (417) filled with zeroes only. } \examples{ data("fluBYBW") # Count time series plot plot(fluBYBW, type = observed ~ time) # Map of disease incidence (per 100000 inhabitants) for the year 2001 plot(fluBYBW, type = observed ~ unit, tps = 1:52, total.args = list(), population = fluBYBW@map$X31_12_01 / 100000) # the overall rate for 2001 shown in the bottom right corner is sum(observed(fluBYBW[1:52,])) / sum(fluBYBW@map$X31_12_01) * 100000 \dontrun{ # Generating an animation takes a while. # Here we take the first 20 weeks of 2001 (runtime: ~3 minutes). # The full animation is available in Supplement A of Meyer and Held (2014) if (require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML(animate(fluBYBW, tps = 1:20), title="Evolution of influenza in Bayern and Baden-Wuerttemberg", ani.width=500, ani.height=600) setwd(oldwd) } } } \references{ Paul, M. and Held, L. (2011) Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. Statistics in Medicine, \bold{30}, 1118-1136. Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} } \keyword{datasets} surveillance/man/influMen.Rd0000644000176200001440000000110414662137762015577 0ustar liggesusers\name{influMen} \alias{influMen} \docType{data} \title{Influenza and meningococcal infections in Germany, 2001-2006} \description{ Weekly counts of new influenza and meningococcal infections in Germany 2001-2006. } \usage{data(influMen)} \format{ A \code{disProg} object containing \eqn{312\times 2}{312 x 2} observations starting from week 1 in 2001 to week 52 in 2006. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}. Queried on 25 July 2007. } \examples{ data(influMen) plot(influMen, as.one=FALSE, same.scale=FALSE) } \keyword{datasets} surveillance/man/all.equal.Rd0000644000176200001440000000202412670511517015671 0ustar liggesusers\name{all.equal} \alias{all.equal.twinstim} \alias{all.equal.hhh4} \title{ Test if Two Model Fits are (Nearly) Equal } \description{ Two model fits are compared using standard \code{\link{all.equal}}-methods after discarding certain elements considered irrelevant for the equality of the fits, e.g., the runtime and the call. } \usage{ \method{all.equal}{twinstim}(target, current, ..., ignore = NULL) \method{all.equal}{hhh4}(target, current, ..., ignore = NULL) } \arguments{ \item{target,current}{the model fits to be compared.} \item{\dots}{further arguments for standard \code{\link{all.equal}}-methods, e.g., the numerical \code{tolerance}.} \item{ignore}{an optional character vector of elements to ignore when comparing the two fitted objects. The following elements are always ignored: \code{"runtime"} and \code{"call"}.} } \value{ Either \code{TRUE} or a character vector describing differences between the \code{target} and the \code{current} model fit. } \author{ Sebastian Meyer } \keyword{utilities} surveillance/man/salmHospitalized.Rd0000644000176200001440000000114014662137762017336 0ustar liggesusers\name{salmHospitalized} \alias{salmHospitalized} \docType{data} \title{Hospitalized Salmonella cases in Germany 2004-2014} \description{ Reported number of cases of Salmonella in Germany 2004-2014 (early 2014) that were hospitalized. The corresponding total number of cases is indicated in the slot \code{populationFrac} and \code{multinomialTS} is \code{TRUE}. } \usage{data(salmHospitalized)} \format{ An \code{"\linkS4class{sts}"} object. } \source{ The data are queried from the Survstat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). } \keyword{datasets} surveillance/man/twinstim_iaf.Rd0000644000176200001440000003442614610747661016532 0ustar liggesusers\encoding{latin1} \name{twinstim_iaf} \alias{siaf.constant} \alias{siaf.step} \alias{siaf.gaussian} \alias{siaf.exponential} \alias{siaf.powerlaw} \alias{siaf.powerlaw1} \alias{siaf.powerlawL} \alias{siaf.student} \alias{tiaf.constant} \alias{tiaf.step} \alias{tiaf.exponential} \title{ Temporal and Spatial Interaction Functions for \code{twinstim} } \description{ A \code{twinstim} model as described in Meyer et al. (2012) requires the specification of the spatial and temporal interaction functions (\eqn{f} and \eqn{g}, respectively), i.e. how infectivity decays with increasing spatial and temporal distance from the source of infection. Own such functions can be specified (see \code{\link{siaf}} and \code{\link{tiaf}}, respectively), but the package already predefines some common dispersal kernels returned by the constructor functions documented here. See Meyer and Held (2014) for various spatial interaction functions, and Meyer et al. (2017, Section 3, available as \code{vignette("twinstim")}) for an illustration of the implementation. } \usage{ # predefined spatial interaction functions siaf.constant() siaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL) siaf.gaussian(nTypes = 1, logsd = TRUE, density = FALSE, F.adaptive = FALSE, F.method = "iso", effRangeMult = 6, validpars = NULL) siaf.exponential(nTypes = 1, validpars = NULL, engine = "C") siaf.powerlaw(nTypes = 1, validpars = NULL, engine = "C") siaf.powerlaw1(nTypes = 1, validpars = NULL, sigma = 1) siaf.powerlawL(nTypes = 1, validpars = NULL, engine = "C") siaf.student(nTypes = 1, validpars = NULL, engine = "C") # predefined temporal interaction functions tiaf.constant() tiaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL) tiaf.exponential(nTypes = 1, validpars = NULL) } \arguments{ \item{knots}{numeric vector of distances at which the step function switches to a new height. The length of this vector determines the number of parameters to estimate. For identifiability, the step function has height 1 in the first interval \eqn{[0,knots_1)}. Note that the implementation is right-continuous, i.e., intervals are \eqn{[a,b)}.\cr An initial choice of knots could be based on quantiles of the observed distances between events and their potential source events. For instance, an identifiable spatial step function could be \code{siaf.step(quantile(\link{getSourceDists}(myepi, "space"), c(1,2,4)/10))}, where \code{myepi} is the \code{"epidataCS"} data to be modelled.} \item{maxRange}{a scalar larger than any of \code{knots}. Per default (\code{maxRange=Inf}), the step function never drops to 0 but keeps the last height for any distance larger than the last knot. However, this might not work in some cases, where the last parameter value would become very small and lead to numerical problems. It is then possible to truncate interaction at a distance \code{maxRange} (just like what the variables \code{eps.s} and \code{eps.t} do in the \code{"\link{epidataCS}"} object).} \item{nTypes}{ determines the number of parameters ((log-)scales or (log-)shapes) of the kernels. In a multitype epidemic, the different types may share the same spatial interaction function, in which case \code{nTypes=1}. Otherwise \code{nTypes} should equal the number of event types of the epidemic, in which case every type has its own (log-)scale or (log-)shape, respectively.\cr Currently, \code{nTypes > 1} is only implemented for \code{siaf.gaussian(F.adaptive = TRUE)}, \code{tiaf.step}, and \code{tiaf.exponential}. } \item{logsd,density}{ logicals affecting the parametrization of the Gaussian kernel. Settings different from the defaults are deprecated. The default is to use only the kernel of the bivariate, isotropic normal distribution (\code{density=FALSE}, see Details below), parametrized with the log-standard deviation (\code{logsd=TRUE}) to avoid constrained optimisation (L-BFGS-B) or \code{validpars}.\cr The power-law kernels always employ the log-scale for their scale and shape parameters. } \item{F.adaptive,F.method}{ If \code{F.adaptive = TRUE}, then an adaptive bandwidth of \code{adapt*sd} will be used in the midpoint-cubature (\code{\link[polyCub]{polyCub.midpoint}} in package \pkg{polyCub}) of the Gaussian interaction kernel, where \code{adapt} is an extra parameter of the returned \code{siaf$F} function and defaults to 0.1. It can be customized either by the \code{control.siaf$F} argument list of \code{twinstim}, or by a numeric specification of \code{F.adaptive} in the constructing call, e.g., \code{F.adaptive = 0.05} to achieve higher accuracy.\cr Otherwise, if \code{F.adaptive = FALSE}, the \code{F.method} argument determines which \code{\link[polyCub]{polyCub}} method to use in \code{siaf$F}. The accuracy (controlled via, e.g., \code{nGQ}, \code{rel.tol}, or \code{eps}, depending on the cubature method) can then be adjusted in \code{twinstim}'s \code{control.siaf$F} argument. } \item{effRangeMult}{ determines the effective range for numerical integration in terms of multiples of the standard deviation \eqn{\sigma} of the Gaussian kernel, i.e. with \code{effRangeMult=6} the \eqn{6 \sigma} region around the event is considered as the relevant integration domain instead of the whole observation region \code{W}. Setting \code{effRangeMult=NULL} will disable the integral approximation with an effective integration range. } \item{validpars}{ function taking one argument, the parameter vector, indicating if it is valid (see also \code{\link{siaf}}). If \code{logsd=FALSE} and one prefers not to use \code{method="L-BFGS-B"} for fitting the \code{twinstim}, then \code{validpars} could be set to \code{function (pars) pars > 0}. } \item{engine}{ character string specifying the implementation to use. Prior to \pkg{surveillance} 0.14.0, the \code{intrfr} functions for \code{\link[polyCub]{polyCub.iso}} were evaluated in \R (and this implementation is available via \code{engine = "R"}). The new C-implementation, \samp{LinkingTo} the newly exported \code{polyCub_iso} C-implementation in \pkg{polyCub} 0.6.0, is considerably faster. } \item{sigma}{ Fixed value of \eqn{\sigma} for the one-parameter power-law kernel. } } \details{ Evaluation of \code{twinstim}'s likelihood involves cubature of the spatial interaction function over polygonal domains. Various approaches have been compared by Meyer (2010, Section 3.2) and a new efficient method, which takes advantage of the assumed isotropy, has been proposed by Meyer and Held (2014, Supplement B, Section 2) for evaluation of the power-law kernels. These cubature methods are available in the dedicated \R package \pkg{polyCub} and used by the kernels implemented in \pkg{surveillance}. The readily available spatial interaction functions are defined as follows: \describe{ \item{\code{siaf.constant}:}{ \eqn{f(s) = 1} } \item{\code{siaf.step}:}{ \eqn{f(s) = \sum_{k=0}^K \exp(\alpha_k) I_k(||s||)},\cr where \eqn{\alpha_0 = 0}, and \eqn{\alpha_1, \dots, \alpha_K} are the parameters (heights) to estimate. \eqn{I_k(||s||)} indicates if distance \eqn{||s||} belongs to the \eqn{k}th interval according to \code{c(0,knots,maxRange)}, where \eqn{k=0} indicates the interval \code{c(0,knots[1])}.\cr Note that \code{siaf.step} makes use of the \pkg{memoise} package if it is available -- and that is highly recommended to speed up calculations. Specifically, the areas of the intersection of a polygonal domain (influence region) with the \dQuote{rings} of the two-dimensional step function will be cached such that they are only calculated once for every \code{polydomain} (in the first iteration of the \code{twinstim} optimization). They are used in the integration components \code{F} and \code{Deriv}. See Meyer and Held (2014) for a use case and further details. } \item{\code{siaf.gaussian}:}{ \eqn{f(s|\kappa) = \exp(-||s||/2/\sigma_\kappa^2)}\cr If \code{nTypes=1} (single-type epidemic or type-invariant \code{siaf} in multi-type epidemic), then \eqn{\sigma_\kappa = \sigma} for all types \eqn{\kappa}. If \code{density=TRUE} (deprecated), then the kernel formula above is additionally divided by \eqn{2 \pi \sigma_\kappa^2}, yielding the density of the bivariate, isotropic Gaussian distribution with zero mean and covariance matrix \eqn{\sigma_\kappa^2 I_2}. The standard deviation is optimized on the log-scale (\code{logsd = TRUE}, not doing so is deprecated). } \item{\code{siaf.exponential}:}{ \eqn{f(s) = exp(-||s||/sigma)}\cr The scale parameter \eqn{sigma} is estimated on the log-scale, i.e., \eqn{\sigma = \exp(\tilde{\sigma})}, and \eqn{\tilde{\sigma}} is the actual model parameter. } \item{\code{siaf.powerlaw}:}{ \eqn{f(s) = (||s|| + \sigma)^{-d}}\cr The parameters are optimized on the log-scale to ensure positivity, i.e., \eqn{\sigma = \exp(\tilde{\sigma})} and \eqn{d = \exp(\tilde{d})}, where \eqn{(\tilde{\sigma}, \tilde{d})} is the parameter vector. If a power-law kernel is not identifiable for the dataset at hand, the exponential kernel or a lagged power law are useful alternatives. } \item{\code{siaf.powerlaw1}:}{ \eqn{f(s) = (||s|| + 1)^{-d}},\cr i.e., \code{siaf.powerlaw} with fixed \eqn{\sigma = 1}. A different fixed value for \eqn{sigma} can be specified via the \code{sigma} argument of \code{siaf.powerlaw1}. The decay parameter \eqn{d} is estimated on the log-scale. } \item{\code{siaf.powerlawL}:}{ \eqn{f(s) = (||s||/\sigma)^{-d}}, for \eqn{||s|| \ge \sigma}, and \eqn{f(s) = 1} otherwise,\cr which is a \emph{L}agged power-law kernel featuring uniform short-range dispersal (up to distance \eqn{\sigma}) and a power-law decay (Pareto-style) from distance \eqn{\sigma} onwards. The parameters are optimized on the log-scale to ensure positivity, i.e. \eqn{\sigma = \exp(\tilde{\sigma})} and \eqn{d = \exp(\tilde{d})}, where \eqn{(\tilde{\sigma}, \tilde{d})} is the parameter vector. However, there is a caveat associated with this kernel: Its derivative wrt \eqn{\tilde{\sigma}} is mathematically undefined at the threshold \eqn{||s||=\sigma}. This local non-differentiability makes \code{twinstim}'s likelihood maximization sensitive wrt parameter start values, and is likely to cause false convergence warnings by \code{\link{nlminb}}. Possible workarounds are to use the slow and robust \code{method="Nelder-Mead"}, or to just ignore the warning and verify the result by sets of different start values. } \item{\code{siaf.student}:}{ \eqn{f(s) = (||s||^2 + \sigma^2)^{-d}},\cr which is a reparametrized \eqn{t}-kernel. For \eqn{d=1}, this is the kernel of the Cauchy density with scale \code{sigma}. In Geostatistics, a correlation function of this kind is known as the Cauchy model.\cr The parameters are optimized on the log-scale to ensure positivity, i.e. \eqn{\sigma = \exp(\tilde{\sigma})} and \eqn{d = \exp(\tilde{d})}, where \eqn{(\tilde{\sigma}, \tilde{d})} is the parameter vector. } } The predefined temporal interaction functions are defined as follows: \describe{ \item{\code{tiaf.constant}:}{ \eqn{g(t) = 1} } \item{\code{tiaf.step}:}{ \eqn{g(t) = \sum_{k=0}^K \exp(\alpha_k) I_k(t)},\cr where \eqn{\alpha_0 = 0}, and \eqn{\alpha_1, \dots, \alpha_K} are the parameters (heights) to estimate. \eqn{I_k(t)} indicates if \eqn{t} belongs to the \eqn{k}th interval according to \code{c(0,knots,maxRange)}, where \eqn{k=0} indicates the interval \code{c(0,knots[1])}. } \item{\code{tiaf.exponential}:}{ \eqn{g(t|\kappa) = \exp(-\alpha_\kappa t)},\cr which is the kernel of the exponential distribution. If \code{nTypes=1} (single-type epidemic or type-invariant \code{tiaf} in multi-type epidemic), then \eqn{\alpha_\kappa = \alpha} for all types \eqn{\kappa}. } } } \value{ The specification of an interaction function, which is a list. See \code{\link{siaf}} and \code{\link{tiaf}}, respectively, for a description of its components. } \references{ Meyer, S. (2010): Spatio-Temporal Infectious Disease Epidemiology based on Point Processes. Master's Thesis, Ludwig-Maximilians-Universit\enc{ä}{ae}t M\enc{ü}{ue}nchen.\cr Available as \url{https://epub.ub.uni-muenchen.de/11703/} Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Sebastian Meyer } \seealso{ \code{\link{twinstim}}, \code{\link{siaf}}, \code{\link{tiaf}}, and package \pkg{polyCub} for the involved cubature methods. } \examples{ # constant temporal dispersal tiaf.constant() # step function kernel tiaf.step(c(3,7), maxRange=14, nTypes=2) # exponential temporal decay tiaf.exponential() # Type-dependent Gaussian spatial interaction function using an adaptive # two-dimensional midpoint-rule to integrate it over polygonal domains siaf.gaussian(2, F.adaptive=TRUE) # Single-type Gaussian spatial interaction function (using polyCub.iso) siaf.gaussian() # Exponential kernel siaf.exponential() # Power-law kernel siaf.powerlaw() # Power-law kernel with fixed sigma = 1 siaf.powerlaw1() # "lagged" power-law siaf.powerlawL() # (reparametrized) t-kernel siaf.student() # step function kernel siaf.step(c(10,20,50), maxRange=100) } \keyword{models} \keyword{utilities} surveillance/man/runifdisc.Rd0000644000176200001440000000166013777627613016024 0ustar liggesusers\name{runifdisc} \alias{runifdisc} \title{ Sample Points Uniformly on a Disc } \description{ Sample \code{n} points uniformly on a disc of radius \code{r} in two-dimensional euclidean space via transformation to polar coordinates: the angle is sampled uniformly from \eqn{U(0,2\pi)}, the length is sampled uniformly from \eqn{\sqrt{U(0,r^2)}}. The sampled polar coordinates are then back-transformed to cartesian coordinates. } \usage{ runifdisc(n, r = 1, buffer = 0) } \arguments{ \item{n}{ integer size of the sample. } \item{r}{ numeric radius of the disc (centered at (0,0)). } \item{buffer}{ radius of inner buffer zone without points. } } \value{ A two-column coordinate matrix of the sampled points. } \author{ Sebastian Meyer } \examples{ x <- surveillance:::runifdisc(1000, 3) plot(x) } \keyword{datagen} \keyword{distribution} \keyword{internal} % not exported to avoid clash with spatstat::runifdisc surveillance/man/sim.pointSource.Rd0000644000176200001440000000514214615244470017122 0ustar liggesusers\name{sim.pointSource} \alias{sim.pointSource} \encoding{latin1} \title{Simulate Point-Source Epidemics} \description{ Simulation of epidemics which were introduced by point sources. The basis of this programme is a combination of a Hidden Markov Model (to get random timepoints for outbreaks) and a simple model (compare \code{\link{sim.seasonalNoise}}) to simulate the baseline. } \usage{ sim.pointSource(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K) } \arguments{ \item{p}{probability to get a new outbreak at time i if there was one at time i-1, default 0.99.} \item{r}{probability to get no new outbreak at time i if there was none at time i-1, default 0.01.} \item{length}{number of weeks to model, default 400. \code{length} is ignored if \code{state} is given. In this case the length of \code{state} is used.} \item{A}{amplitude (range of sinus), default = 1.} \item{alpha}{parameter to move along the y-axis (negative values not allowed) with alpha > = A, default = 1.} \item{beta}{regression coefficient, default = 0.} \item{phi}{factor to create seasonal moves (moves the curve along the x-axis), default = 0.} \item{frequency}{factor to determine the oscillation-frequency, default = 1.} \item{state}{use a state chain to define the status at this timepoint (outbreak or not). If not given a Markov chain is generated by the programme, default NULL.} \item{K}{additional weight for an outbreak which influences the distribution parameter mu, default = 0.} } \value{ a \code{disProg} (disease progress) object including a list of the observed, the state chain and nearly all input parameters. } \seealso{\code{\link{sim.seasonalNoise}}} \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ set.seed(123) disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 2) plot(disProgObj) ## with predefined state chain state <- rep(c(0,0,0,0,0,0,0,0,1,1), 20) disProgObj <- sim.pointSource(state = state, K = 1.2) plot(disProgObj) ## simulate epidemic, send to RKI 1 system, plot, and compute quality values testSim <- function (..., K = 0, range = 200:400) { disProgObj <- sim.pointSource(..., K = K) survResults <- algo.call(disProgObj, control = list(list(funcName = "rki1", range = range))) plot(survResults[[1]], "RKI 1", "Simulation") algo.compare(survResults) } testSim(K = 2) testSim(r = 0.5, K = 5) # larger and more frequent outbreaks } \keyword{datagen} surveillance/man/twinSIR.Rd0000644000176200001440000003611214224035777015365 0ustar liggesusers\encoding{latin1} \name{twinSIR} \alias{twinSIR} \title{ Fit an Additive-Multiplicative Intensity Model for SIR Data } \description{ \code{twinSIR} is used to fit additive-multiplicative intensity models for epidemics as described in \enc{Höhle}{Hoehle} (2009). Estimation is driven by (penalized) maximum likelihood in the point process frame work. Optimization (maximization) of the (penalized) likelihood function is performed by means of \code{\link{optim}}. The implementation is illustrated in Meyer et al. (2017, Section 4), see \code{vignette("twinSIR")}. } \usage{ twinSIR(formula, data, weights, subset, knots = NULL, nIntervals = 1, lambda.smooth = 0, penalty = 1, optim.args = list(), model = TRUE, keep.data = FALSE) } \arguments{ \item{formula}{ an object of class \code{"\link{formula}"} (or one that can be coerced to that class): a symbolic description of the intensity model to be estimated. The details of the model specification are given below. } \item{data}{ an object inheriting from class \code{"\link{epidata}"}. } \item{weights}{ an optional vector of weights to be used in the fitting process. Should be \code{NULL} (the default, i.e. all observations have unit weight) or a numeric vector. } \item{subset}{ an optional vector specifying a subset of observations to be used in the fitting process. The subset \code{atRiskY == 1} is automatically chosen, because the likelihood only depends on those observations. } \item{knots}{ numeric vector or \code{NULL} (the default). Specification of the knots, where we suppose a step of the log-baseline. With the current implementation, these must be existing \code{"stop"} time points in the selected \code{subset} of the \code{data}, which is always restricted to \code{atRiskY == 1} rows. The intervals of constant log-baseline hazard rate then are \eqn{(minTime;knots_1]}, \eqn{(knots_1;knots_2]}, \ldots, \eqn{(knots_K;maxTime]}. By default, the \code{knots} are automatically chosen at the quantiles of the infection time points such that \code{nIntervals} intervals result. Non-NULL \code{knots} take precedence over \code{nIntervals}. } \item{nIntervals}{ the number of intervals of constant log-baseline hazard. Defaults to 1, which means an overall constant log-baseline hazard will be fitted. } \item{lambda.smooth}{ numeric, the smoothing parameter \eqn{\lambda}. By default it is 0 which leads to unpenalized likelihood inference. In case \code{lambda.smooth=-1}, the automatic smoothing parameter selection based on a mixed model approach is used (cf. \enc{Höhle}{Hoehle}, 2009). } \item{penalty}{ either a single number denoting the order of the difference used to penalize the log-baseline coefficients (defaults to 1), or a more specific penalty matrix \eqn{K} for the parameter sub-vector \eqn{\beta}. In case of non-equidistant knots -- usually the case when using quantile based knot locations -- only a 1st order differences penalty matrix as in Fahrmeir and Lang (2001) is implemented. } \item{optim.args}{ a list with arguments passed to the \code{\link{optim}} function. Especially useful are the following ones: \describe{ \item{\code{par}:}{ to specify initial parameter values. Those must be in the order \code{c(alpha, h0, beta)}, i.e. first the coefficients of the epidemic covariates in the same order as they appear in the \code{formula}, then the log-baseline levels in chronological order and finally the coefficients of the endemic covariates in the same order as they appear in the \code{cox} terms of the \code{formula}. The default is to start with 1's for \code{alpha} and 0's for \code{h0} and \code{beta}. } \item{\code{control}:}{ for more detailed \code{trace}-ing (default: 1), another \code{REPORT}-ing frequency if \code{trace} is positive (default: 10), higher \code{maxit} (maximum number of iterations, default: 300) or another \code{factr} value (default: 1e7, a lower value means higher precision). } \item{\code{method}:}{ the optimization algorithm defaults to \code{"L-BFGS-B"} (for box-constrained optimization), if there are any epidemic (non-\code{cox}) variables in the model, and to \code{"BFGS"} otherwise. } \item{\code{lower}:}{ if \code{method = "L-BFGS-B"} this defines the lower bounds for the model coefficients. By default, all effects \eqn{\alpha} of epidemic variables are restricted to be non-negative. Normally, this is exactly what one would like to have, but there might be reasons for other lower bounds, see the Note below. } \item{\code{hessian}:}{ An estimation of the Expected Fisher Information matrix is always part of the return value of the function. It might be interesting to see the Observed Fisher Information (= negative Hessian at the maximum), too. This will be additionally returned if \code{hessian = TRUE}. } } } \item{model}{ logical indicating if the model frame, the \code{weights}, \code{lambda.smooth}, the penalty matrix \eqn{K} and the list of used distance functions \code{f} (from \code{attributes(data)}) should be returned for further computation. This defaults to \code{TRUE} as this information is necessary e.g. in the \code{profile} and \code{plot} methods. } \item{keep.data}{ logical indicating if the \code{"epidata"} object (\code{data}) should be part of the return value. This is only necessary for use of the \code{\link[=simulate.twinSIR]{simulate}}-method for \code{"twinSIR"} objects. The reason is that the \code{twinSIR} function only uses and stores the rows with \code{atRiskY == 1} in the \code{model} component, but for the simulation of new epidemic data one needs the whole data set with all individuals in every time block. The default value is \code{FALSE}, so if you intent to use \code{simulate.twinSIR}, you have to set this to \code{TRUE}. } } \details{ A model is specified through the \code{formula}, which has the form \code{~ epidemicTerm1 + epidemicTerm2 + cox(endemicVar1) * cox(endemicVar2)}, i.e. the right hand side has the usual form as in \code{\link{lm}} with some variables marked as being endemic by the special function \code{\link{cox}}. The left hand side of the formula is empty and will be set internally to \code{cbind(start, stop, event)}, which is similar to \code{Surv(start, stop, event, type="counting")} in package \pkg{survival}. Basically, the additive-multiplicative model for the infection intensity \eqn{\lambda_i(t)} for individual \eqn{i} is \deqn{\lambda_i(t) = Y_i(t) * (e_i(t) + h_i(t))} where \describe{ \item{Y_i(t)}{ is the at-risk indicator, indicating if individual \eqn{i} is \dQuote{at risk} of becoming infected at time point \eqn{t}. This variable is part of the event history \code{data}. } \item{e_i(t)}{ is the epidemic component of the infection intensity, defined as \deqn{e_i(t) = \sum_{j \in I(t)} f(||s_i - s_j||)} where \eqn{I(t)} is the set of infectious individuals just before time point \eqn{t}, \eqn{s_i} is the coordinate vector of individual \eqn{i} and the function \eqn{f} is defined as \deqn{f(u) = \sum_{m=1}^p \alpha_m B_m(u)} with unknown transmission parameters \eqn{\alpha} and known distance functions \eqn{B_m}. This set of distance functions results in the set of epidemic variables normally calculated by the converter function \code{\link{as.epidata}}, considering the equality \deqn{e_i(t) = \sum_{m=1}^p \alpha_m x_{im}(t)} with \eqn{x_{im}(t) = \sum_{j \in I(t)} B_m(||s_i - s_j||)} being the \eqn{m}'th epidemic variable for individual \eqn{i}. } \item{h_i(t)}{ is the endemic (\code{cox}) component of the infection intensity, defined as \deqn{h_i(t) = \exp(h_0(t) + z_i(t)' \beta)} where \eqn{h_0(t)} is the log-baseline hazard function, \eqn{z_i(t)} is the vector of endemic covariates of individual \eqn{i} and \eqn{\beta} is the vector of unknown coefficients. To fit the model, the log-baseline hazard function is approximated by a piecewise constant function with known knots, but unknown levels, which will be estimated. The approximation is specified by the arguments \code{knots} or \code{nIntervals}. } } If a big number of \code{knots} (or \code{nIntervals}) is chosen, the corresponding log-baseline parameters can be rendered identifiable by the use of penalized likelihood inference. At present, it is the job of the user to choose an adequate value of the smoothing parameter \code{lambda.smooth}. Alternatively, a data driven \code{lambda.smooth} smoothing parameter selection based on a mixed model representation of an equivalent truncated power spline is offered (see reference for further details). The following two steps are iterated until convergence: \enumerate{ \item Given fixed smoothing parameter, the penalized likelihood is optimized for the regression components using a L-BFGS-B approach \item Given fixed regression parameters, a Laplace approximation of the marginal likelihood for the smoothing parameter is numerically optimized. } Depending on the data, convergence might take a couple of iterations. Note also that it is unwise to include endemic covariates with huge values, as they affect the intensities on the exponential scale (after multiplication by the parameter vector \eqn{\beta}). With large covariate values, the \code{optim} method "L-BFGS-B" will likely terminate due to an infinite log-likelihood or score function in some iteration. } \value{ \code{twinSIR} returns an object of class \code{"twinSIR"}, which is a list containing the following components: \item{coefficients}{a named vector of coefficients.} \item{loglik}{the maximum of the (penalized) log-likelihood function.} \item{counts}{the number of log-likelihood and score function evaluations.} \item{converged}{logical indicating convergence of the optimization algorithm.} \item{fisherinfo.observed}{if requested, the negative Hessian from \code{optim}.} \item{fisherinfo}{an estimation of the Expected Fisher Information matrix.} \item{method}{the optimization algorithm used.} \item{intervals}{a numeric vector (\code{c(minTime, knots, maxTime)}) representing the consecutive intervals of constant log-baseline.} \item{nEvents}{a numeric vector containing the number of infections in each of the above \code{intervals}.} \item{model}{if requested, the model information used. This is a list with components \code{"survs"} (data.frame with the id, start, stop and event columns), \code{"X"} (matrix of the epidemic variables), \code{"Z"} (matrix of the endemic variables), \code{"weights"} (the specified \code{weights}), \code{"lambda.smooth"} (the specified \code{lambda.smooth}), \code{"K"} (the penalty matrix used), and \code{"f"} and \code{"w"} (the functions to generate the used epidemic covariates). Be aware that the model only contains those rows with \code{atRiskY == 1}!} \item{data}{if requested, the supplied \code{"epidata"} \code{data}.} \item{call}{the matched call.} \item{formula}{the specified \code{formula}.} \item{terms}{the \code{terms} object used.} } \references{ \enc{Höhle}{Hoehle}, M. (2009), Additive-multiplicative regression models for spatio-temporal epidemics, \emph{Biometrical Journal}, \bold{51} (6), 961-978. Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Michael \enc{Höhle}{Hoehle} and Sebastian Meyer } \note{ There are some restrictions to modelling the infection intensity without a baseline hazard rate, i.e. without an intercept in the \code{formula}. Reason: At some point, the optimization algorithm L-BFGS-B tries to set all transmission parameters \eqn{\alpha} to the boundary value 0 and to calculate the (penalized) score function with this set of parameters (all 0). The problem then is that the values of the infection intensities \eqn{lambda_i(t)} are 0 for all \eqn{i} and \eqn{t} and especially at observed event times, which is impossible. Without a baseline, it is not allowed to have all alpha's set to 0, because then we would not observe any infections. Unfortunately, L-BFGS-B can not consider this restriction. Thus, if one wants to fit a model without baseline hazard, the control parameter \code{lower} must be specified in \code{optim.args} so that some alpha is strictly positive, e.g. \code{optim.args = list(lower = c(0,0.001,0.001,0))} and the initial parameter vector \code{par} must not be the zero vector. } \seealso{ \code{\link{as.epidata}} for the necessary data input structure, \code{\link{plot.twinSIR}} for plotting the path of the infection intensity, \code{\link{profile.twinSIR}} for profile likelihood estimation. and \code{\link{simulate.twinSIR}} for the simulation of epidemics following the fitted model. Furthermore, the standard extraction methods \code{\link[=vcov.twinSIR]{vcov}}, \code{\link[=logLik.twinSIR]{logLik}}, \code{\link[=AIC.twinSIR]{AIC}} and \code{\link[=extractAIC.twinSIR]{extractAIC}} are implemented for objects of class \code{"twinSIR"}. } \examples{ data("hagelloch") summary(hagelloch) # simple model with an overall constant baseline hazard rate fit1 <- twinSIR(~ household + cox(AGE), data = hagelloch) fit1 summary(fit1) # see also help("summary.twinSIR") plot(fit1) # see also help("plot.twinSIR") checkResidualProcess(fit1) # could be better # fit a piecewise constant baseline hazard rate with 3 intervals using # _un_penalized ML and estimated coefs from fit1 as starting values fit2 <- twinSIR(~ household, data = hagelloch, nIntervals = 3, optim.args = list(par = coef(fit1)[c(1,2,2,2)])) summary(fit2) # fit a piecewise constant baseline hazard rate with 7 intervals # using _penalized_ ML fit3 <- twinSIR(~ household, data = hagelloch, nIntervals = 7, lambda.smooth = 0.1, penalty = 1) summary(fit3) checkResidualProcess(fit3) # plot the estimated log-baseline levels plot(x=fit2$intervals, y=coef(fit2)[c(2,2:4)], type="S", ylim=c(-6, -1)) lines(x=fit3$intervals, y=coef(fit3)[c(2,2:8)], type="S", col=2) legend("right", legend=c("unpenalized 3", "penalized 7"), lty=1, col=1:2, bty="n") ## special use case: fit the model to a subset of the events only, ## while preserving epidemic contributions from the remainder ## (maybe some buffer area nodes) fit_subset <- twinSIR(~ household, data = hagelloch, subset = CL=="preschool") summary(fit_subset) \dontshow{ ## the eventTimes attribute was wrong in surveillance <= 1.15.0 stopifnot( length(residuals(fit_subset)) == sum(fit_subset$model$survs$event) ) } } \keyword{models} \keyword{optimize} surveillance/man/algo.bayes.Rd0000644000176200001440000001216413165505075016047 0ustar liggesusers\name{algo.bayes} \alias{algo.bayes} \alias{algo.bayesLatestTimepoint} \alias{algo.bayes1} \alias{algo.bayes2} \alias{algo.bayes3} \encoding{latin1} \title{The Bayes System} \description{ Evaluation of timepoints with the Bayes subsystem 1, 2, 3 or a self defined Bayes subsystem. } \usage{ algo.bayesLatestTimepoint(disProgObj, timePoint = NULL, control = list(b = 0, w = 6, actY = TRUE,alpha=0.05)) algo.bayes(disProgObj, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05)) algo.bayes1(disProgObj, control = list(range = range)) algo.bayes2(disProgObj, control = list(range = range)) algo.bayes3(disProgObj, control = list(range = range)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain)} \item{timePoint}{time point which should be evaluated in \code{algo.bayes LatestTimepoint}. The default is to use the latest timepoint} \item{control}{control object: \code{range} determines the desired timepoints which should be evaluated, \code{b} describes the number of years to go back for the reference values, \code{w} is the half window width for the reference values around the appropriate timepoint and \code{actY} is a boolean to decide if the year of \code{timePoint} also contributes \code{w} reference values. The parameter \code{alpha} is the \eqn{(1-\alpha)}-quantile to use in order to calculate the upper threshold. As default \code{b}, \code{w}, \code{actY} are set for the Bayes 1 system with \code{alpha}=0.05. } } \value{ \item{survRes}{ \code{algo.bayesLatestTimepoint} returns a list of class \code{survRes} (surveillance result), which includes the alarm value for recognizing an outbreak (1 for alarm, 0 for no alarm), the threshold value for recognizing the alarm and the input object of class disProg. \code{algo.bayes} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range} and the vector of threshold values for every timepoint in \code{range} for the system specified by \code{b}, \code{w} and \code{actY}, the range and the input object of class disProg. \code{algo.bayes1} returns the same for the Bayes 1 system, \code{algo.bayes2} for the Bayes 2 system and \code{algo.bayes3} for the Bayes 3 system. } } \details{ Using the reference values the \eqn{(1-\alpha)\cdot 100\%}{(1-alpha)*100\%} quantile of the predictive posterior distribution is calculated as a threshold. An alarm is given if the actual value is bigger or equal than this threshold. It is possible to show using analytical computations that the predictive posterior in this case is the negative binomial distribution. Note: \code{algo.rki} or \code{algo.farrington} use two-sided prediction intervals -- if one wants to compare with these procedures it is necessary to use an alpha, which is half the one used for these procedures. Note also that \code{algo.bayes} calls \code{algo.bayesLatestTimepoint} for the values specified in \code{range} and for the system specified in \code{control}. \code{algo.bayes1}, \code{algo.bayes2}, \code{algo.bayes3} call \code{algo.bayesLatestTimepoint} for the values specified in \code{range} for the Bayes 1 system, Bayes 2 system or Bayes 3 system. \itemize{ \item \code{"Bayes 1"} reference values from 6 weeks. Alpha is fixed a t 0.05. \item \code{"Bayes 2"} reference values from 6 weeks ago and 13 weeks of the previous year (symmetrical around the same week as the current one in the previous year). Alpha is fixed at 0.05. \item \code{"Bayes 3"} 18 reference values. 9 from the year ago and 9 from two years ago (also symmetrical around the comparable week). Alpha is fixed at 0.05. } The procedure is now able to handle \code{NA}'s in the reference values. In the summation and when counting the number of observed reference values these are simply not counted. } \seealso{ \code{\link{algo.call}}, \code{\link{algo.rkiLatestTimepoint}} and \code{\link{algo.rki}} for the RKI system. } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Test for bayes 1 the latest timepoint algo.bayesLatestTimepoint(disProg) # Test week 200 to 208 for outbreaks with a selfdefined bayes algo.bayes(disProg, control = list(range = 200:208, b = 1, w = 5, actY = TRUE,alpha=0.05)) # The same for bayes 1 to bayes 3 algo.bayes1(disProg, control = list(range = 200:208,alpha=0.05)) algo.bayes2(disProg, control = list(range = 200:208,alpha=0.05)) algo.bayes3(disProg, control = list(range = 200:208,alpha=0.05)) } \keyword{classif} \source{ Riebler, A. (2004), Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten, Bachelor's thesis. } surveillance/man/plapply.Rd0000644000176200001440000000731014614775012015501 0ustar liggesusers\name{plapply} \alias{plapply} \title{Verbose and Parallel \code{lapply}} \description{ Verbose and parallelized version of \code{lapply} wrapping around \code{\link[parallel]{mclapply}} and \code{\link[parallel]{parLapply}} in the base package \pkg{parallel}. This wrapper can take care of the \code{.Random.seed} and print progress information (not for cluster-based parallelization). With the default arguments it equals \code{lapply} enriched by a progress bar. } \usage{ plapply(X, FUN, ..., .parallel = 1, .seed = NULL, .verbose = TRUE) } \arguments{ \item{X,FUN,\dots}{see \code{\link{lapply}}.} \item{.parallel}{ the number of processes to use in parallel operation, or a \code{"cluster"} object (see \code{\link[parallel]{makeCluster}}). If a number, \code{\link[parallel]{mclapply}} (forking) is used on Unix-alikes, whereas on Windows \code{\link[parallel]{parLapply}} is used on a newly created cluster of the specified size, which is stopped when exiting the function. By default (\code{.parallel = 1}), the basic \code{\link{lapply}} is used. } \item{.seed}{ If set (non-\code{NULL}), results involving random number generation become reproducible. If using a cluster (see the \code{.parallel} argument), \code{\link[parallel]{clusterSetRNGStream}} is called with the specified \code{.seed} before running \code{parLapply}. Otherwise, \code{\link{set.seed}(.seed)} is called and the \code{\link{RNGkind}} is changed to \code{"L'Ecuyer-CMRG"} if \code{.parallel > 1} (see the section on random numbers in the documentation of \code{mcparallel} in package \pkg{parallel}). % no link to mcparallel since it is not available on Windows (R-3.1.2) If \code{.seed} is non-\code{NULL}, the original \code{\link{.Random.seed}} will be restored \code{on.exit} of the function. } \item{.verbose}{ if and how progress information should be displayed, i.e., what to do on each exit of \code{FUN}. This is unsupported and ignored for cluster-based parallelization and primitive \code{FUN}ctions. The default (\code{TRUE}) will show a \code{\link{txtProgressBar}} (if \code{.parallel = 1} in an \code{\link{interactive}} \R session) or \code{cat(".")} (otherwise). Other choices for the dot are possible by specifying the desired symbol directly as the \code{.verbose} argument. Alternatively, \code{.verbose} may be any custom call or expression to be executed \code{\link{on.exit}} of \code{FUN} and may thus involve any objects from the local evaluation environment. } } \value{ a list of the results of calling \code{FUN} on each value of \code{X}. } \author{ Sebastian Meyer } \seealso{ \code{\link[parallel]{mclapply}} and \code{\link[parallel]{parLapply}} } \examples{ ## example inspired by help("lapply") x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE)) ## if neither parallel nor verbose then this simply equals lapply() plapply(x, quantile, probs = 1:3/4, .verbose = FALSE) ## verbose lapply() -- not really useful for such fast computations res <- plapply(x, quantile, probs = 1:3/4, .verbose = TRUE) res <- plapply(x, quantile, probs = 1:3/4, .verbose = "|") res <- plapply(x, quantile, probs = 1:3/4, .verbose = quote(cat("length(x) =", length(x), "\n"))) ## setting the seed for reproducibility of results involving the RNG samp <- plapply(as.list(1:3), runif, .seed = 1) ## parallel lapply() res <- plapply(x, quantile, probs = 1:3/4, .parallel = 2, .verbose = FALSE) ## using a predefined cluster library("parallel") cl <- makeCluster(getOption("cl.cores", 2)) res <- plapply(x, quantile, probs = 1:3/4, .parallel = cl) stopCluster(cl) } \keyword{iteration} \keyword{list} surveillance/man/calibration.Rd0000644000176200001440000000616113062247044016305 0ustar liggesusers\name{calibrationTest} \alias{calibrationTest} \alias{calibrationTest.default} \title{ Calibration Tests for Poisson or Negative Binomial Predictions } \description{ The implemented calibration tests for Poisson or negative binomial predictions of count data are based on proper scoring rules and described in detail in Wei and Held (2014). The following proper scoring rules are available: Dawid-Sebastiani score (\code{"dss"}), logarithmic score (\code{"logs"}), ranked probability score (\code{"rps"}). } \usage{ calibrationTest(x, ...) \method{calibrationTest}{default}(x, mu, size = NULL, which = c("dss", "logs", "rps"), tolerance = 1e-4, method = 2, ...) } \arguments{ \item{x}{ the observed counts. All involved functions are vectorized and also accept matrices or arrays. } \item{mu}{ the means of the predictive distributions for the observations \code{x}. } \item{size}{ either \code{NULL} (default), indicating Poisson predictions with mean \code{mu}, or dispersion parameters of negative binomial forecasts for the observations \code{x}, parametrized as in \code{\link{dnbinom}} with variance \code{mu*(1+mu/size)}. } \item{which}{ a character string indicating which proper scoring rule to apply. } \item{tolerance}{ absolute tolerance for the null expectation and variance of \code{"logs"} and \code{"rps"}. For the latter, see the note below. Unused for \code{which = "dss"} (closed form). } \item{method}{ selection of the \eqn{z}-statistic: \code{method = 2} refers to the alternative test statistic \eqn{Z_s^*} of Wei and Held (2014, Discussion), which has been recommended for low counts. \code{method = 1} corresponds to Equation 5 in Wei and Held (2014). } \item{\dots}{ unused (argument of the generic). } } \value{ an object of class \code{"htest"}, which is a list with the following components: \item{method}{a character string indicating the type of test performed (including \code{which} scoring rule).} \item{data.name}{a character string naming the supplied \code{x} argument.} \item{statistic}{the \eqn{z}-statistic of the test.} \item{parameter}{the number of predictions underlying the test, i.e., \code{length(x)}.} \item{p.value}{the p-value for the test.} } \note{ If the \CRANpkg{gsl} package is installed, its implementations of the Bessel and hypergeometric functions are used when calculating the null expectation and variance of the \code{rps}. These functions are faster and yield more accurate results (especially for larger \code{mu}). } \references{ Wei, W. and Held, L. (2014): Calibration tests for count data. \emph{Test}, \bold{23}, 787-805. } \author{ Sebastian Meyer and Wei Wei } \examples{ mu <- c(0.1, 1, 3, 6, pi, 100) size <- 0.1 set.seed(1) y <- rnbinom(length(mu), mu = mu, size = size) calibrationTest(y, mu = mu, size = size) # p = 0.99 calibrationTest(y, mu = mu, size = 1) # p = 4.3e-05 calibrationTest(y, mu = 1, size = size) # p = 0.6959 calibrationTest(y, mu = 1, size = size, which = "rps") # p = 0.1286 } \keyword{htest} surveillance/man/algo.farrington.fitGLM.Rd0000644000176200001440000000550714662137762020250 0ustar liggesusers\name{algo.farrington.fitGLM} \alias{algo.farrington.fitGLM} \alias{algo.farrington.fitGLM.fast} \alias{algo.farrington.fitGLM.populationOffset} \title{Fit Poisson GLM of the Farrington procedure for a single time point} \description{ The function fits a Poisson regression model (GLM) with mean predictor \deqn{\log \mu_t = \alpha + \beta t}{ log mu_t = alpha + beta * t} as specified by the Farrington procedure. If requested, Anscombe residuals are computed based on an initial fit and a 2nd fit is made using weights, where base counts suspected to be caused by earlier outbreaks are downweighted. } \usage{ algo.farrington.fitGLM(response, wtime, timeTrend = TRUE, reweight = TRUE, ...) algo.farrington.fitGLM.fast(response, wtime, timeTrend = TRUE, reweight = TRUE, ...) algo.farrington.fitGLM.populationOffset(response, wtime, population, timeTrend=TRUE,reweight=TRUE, ...) } \arguments{ \item{response}{The vector of observed base counts} \item{wtime}{Vector of week numbers corresponding to \code{response}} \item{timeTrend}{Boolean whether to fit the \eqn{\beta t}{beta*t} or not} \item{reweight}{Fit twice -- 2nd time with Anscombe residuals} \item{population}{Population size. Possibly used as offset, i.e. in \code{algo.farrington.fitGLM.populationOffset} the value \code{log(population)} is used as offset in the linear predictor of the GLM: \deqn{\log \mu_t = \log(\texttt{population}) + \alpha + \beta t}{ log mu_t = log(population) alpha + beta * t} This provides a way to adjust the Farrington procedure to the case of greatly varying populations. Note: This is an experimental implementation with methodology not covered by the original paper. } \item{\dots}{Used to catch additional arguments, currently not used.} } \details{ Compute weights from an initial fit and rescale using Anscombe based residuals as described in the \code{\link{anscombe.residuals}} function. Note that \code{algo.farrington.fitGLM} uses the \code{glm} routine for fitting. A faster alternative is provided by \code{algo.farrington.fitGLM.fast} which uses the \code{glm.fit} function directly (thanks to Mikko Virtanen). This saves computational overhead and increases speed for 500 monitored time points by a factor of approximately two. However, some of the routine \code{glm} functions might not work on the output of this function. Which function is used for \code{algo.farrington} can be controlled by the \code{control$fitFun} argument. } \value{ an object of class GLM with additional fields \code{wtime}, \code{response} and \code{phi}. If the \code{glm} returns without convergence \code{NULL} is returned. } \seealso{\code{\link{anscombe.residuals}},\code{\link{algo.farrington}}} \keyword{regression} surveillance/man/deleval.Rd0000644000176200001440000000274114100450412015417 0ustar liggesusers\name{deleval} \alias{deleval} \docType{data} \title{Surgical Failures Data} \description{ The dataset from Steiner et al. (1999) on A synthetic dataset from the Danish meat inspection -- useful for illustrating the beta-binomial CUSUM. } \usage{data(deleval)} \details{ Steiner et al. (1999) use data from de Leval et al. (1994) to illustrate monitoring of failure rates of a surgical procedure for a bivariate outcome. Over a period of six years an arterial switch operation was performed on 104 newborn babies. Since the death rate from this surgery was relatively low the idea of surgical "near miss" was introduced. It is defined as the need to reinstitute cardiopulmonary bypass after a trial period of weaning. The object of class \code{\linkS4class{sts}} contains the recordings of near misses and deaths from the surgery for the 104 newborn babies of the study. The data could also be handled by a multinomial CUSUM model. } \seealso{\code{\link{pairedbinCUSUM}}} \examples{ data("deleval") plot(deleval, xaxis.labelFormat=NULL,ylab="Response",xlab="Patient number") } \references{ Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes using cumulative sum charts, Statistics in Medicine, 18, pp. 69--86. De Leval, Marc R., Franiois, K., Bull, C., Brawn, W. B. and Spiegelhalter, D. (1994), Analysis of a cluster of surgical failures, Journal of Thoracic and Cardiovascular Surgery, March, pp. 914--924. } \keyword{datasets} surveillance/man/hhh4_predict.Rd0000644000176200001440000000436214273227667016402 0ustar liggesusers\name{hhh4_predict} \alias{predict.hhh4} \title{Predictions from a \code{hhh4} Model} \description{ Get fitted (component) means from a \code{\link{hhh4}} model. } \usage{ \method{predict}{hhh4}(object, newSubset=object$control$subset, type="response", \dots) } \arguments{ \item{object}{fitted \code{\link{hhh4}} model (class \code{"hhh4"}).} \item{newSubset}{subset of time points for which to return the predictions. Defaults to the subset used for fitting the model, and must be a subset of \code{1:nrow(object$stsObj)}.} \item{type}{the type of prediction required. The default (\code{"response"} or, equivalently, \code{"mean"}) is on the scale of the response variable (mean = endemic plus epidemic components). The alternatives are: \code{"endemic"}, \code{"epidemic"}, \code{"epi.own"} (i.e. the autoregressive part), and \code{"epi.neighbours"} (i.e. the spatio-temporal part).} \item{\dots}{unused (argument of the generic).} } \value{ matrix of fitted means for each time point (of \code{newSubset}) and region. } \note{ Predictions for \dQuote{newdata}, i.e., with modified covariates or fixed weights, can be computed manually by adjusting the control list (in a copy of the original fit), dropping the old \code{terms}, and using the internal function \code{\link{meanHHH}} directly, see the Example. } \author{Michaela Paul and Sebastian Meyer} \keyword{methods} \keyword{models} \examples{ ## simulate simple seasonal noise with reduced baseline for t >= 60 t <- 0:100 y <- rpois(length(t), exp(3 + sin(2*pi*t/52) - 2*(t >= 60))) obj <- sts(y) plot(obj) ## fit true model fit <- hhh4(obj, list(end = list(f = addSeason2formula(~lock)), data = list(lock = as.integer(t >= 60)), family = "Poisson")) coef(fit, amplitudeShift = TRUE, se = TRUE) ## compute predictions for a subset of the time points stopifnot(identical(predict(fit), fitted(fit))) plot(obj) lines(40:80, predict(fit, newSubset = 40:80), lwd = 2) ## advanced: compute predictions for "newdata" (here, a modified covariate) mod <- fit mod$terms <- NULL # to be sure mod$control$data$lock[t >= 60] <- 0.5 pred <- meanHHH(mod$coefficients, terms(mod))$mean plot(fit, xaxis = NA) lines(mod$control$subset, pred, lty = 2) } surveillance/man/find.kh.Rd0000644000176200001440000000247112375711212015336 0ustar liggesusers\name{find.kh} \alias{find.kh} \title{Determine the k and h values in a standard normal setting} \description{ Given a specification of the average run length in the (a)cceptance and (r)ejected setting determine the k and h values in a standard normal setting. } \usage{ find.kh(ARLa = 500, ARLr = 7, sided = "one", method = "BFGS", verbose=FALSE) } \arguments{ \item{ARLa}{average run length in acceptance setting, aka. in control state. Specifies the number of observations before false alarm.} \item{ARLr}{average run length in rejection state, aka. out of control state. Specifies the number of observations before an increase is detected (i.e. detection delay)} \item{sided}{one-sided cusum scheme} \item{method}{Which method to use in the function \code{\link{optim}}. Standard choice is BFGS, but in some situation Nelder-Mead can be advantageous.} \item{verbose}{gives extra information about the root finding process} } \value{ Returns a list with reference value k and decision interval h. } \details{ Functions from the \pkg{spc} package are used in a simple univariate root finding problem. } \examples{ if (requireNamespace("spc")) { find.kh(ARLa=500,ARLr=7,sided="one") find.kh(ARLa=500,ARLr=3,sided="one") } } \keyword{models} surveillance/man/surveillance.options.Rd0000644000176200001440000000510014516240231020170 0ustar liggesusers\name{surveillance.options} \alias{surveillance.options} \alias{reset.surveillance.options} \title{Options of the \pkg{surveillance} Package} \description{ Query, set or reset options specific to the \pkg{surveillance} package, similar to what \code{\link{options}} does for global settings. } \usage{ surveillance.options(...) reset.surveillance.options() } \arguments{ \item{\dots}{ Either empty, or a sequence of option names (as strings), or a sequence of \code{name=value} pairs, or a named list of options. Available options are: \describe{ \item{stsTickFactors:}{ A named vector containing tick sizes for the \code{"sts"} x-axis relative to \code{\link{par}("tcl")}. Each entry contains the size at \code{\link{strptime}} formatting strings. See the help on \code{\link{stsplot_time1}} for details. \describe{ \item{"\%d"}{} \item{"\%W"}{} \item{"\%V"}{} \item{"\%m"}{} \item{"\%Q"}{} \item{"\%Y"}{} \item{"\%G"}{} } } \item{colors:}{ A named list containing plotting color defaults. \describe{ \item{nowSymbol}{Color of the "now" symbol in \code{stsNC} plots. Default: \code{"springgreen4"}.} \item{piBars}{Color of the prediction interval bars in \code{stsNC} plots. Default: \code{"orange"}.} } } \item{allExamples:}{ Logical flag queried before running cumbersome computations in help file examples. For \code{interactive()} sessions, this option defaults to \code{TRUE}. Otherwise, long examples will only be run if the environment variable \env{_R_SURVEILLANCE_ALL_EXAMPLES_} is set (to any value different from \code{""}) when attaching the \pkg{surveillance} package. This is to avoid long computations during (daily) CRAN checks. } } } } \value{ \code{reset.surveillance.options} reverts all options to their default values and (invisibly) returns these in a list. For \code{surveillance.options}, the following holds: \itemize{ \item If no arguments are given, the current values of all package options are returned in a list. \item If one option name is given, the current value of this option is returned (\emph{not} in a list, just the value). \item If several option names are given, the current values of these options are returned in a list. \item If \code{name=value} pairs are given, the named options are set to the given values, and the \emph{previous} values of these options are returned in a list. } } \examples{ surveillance.options() } \keyword{environment} surveillance/man/abattoir.Rd0000644000176200001440000000154014662137762015633 0ustar liggesusers\name{abattoir} \alias{abattoir} \docType{data} \encoding{latin1} \title{Abattoir Data} \description{ A synthetic dataset from the Danish meat inspection -- useful for illustrating the beta-binomial CUSUM. } \usage{ data(abattoir) } \details{ The object of class \code{"sts"} contains an artificial data set inspired by meat inspection data used by Danish Pig Production, Denmark. For each week the number of pigs with positive audit reports is recorded together with the total number of audits made that week. } \seealso{\code{\link{categoricalCUSUM}}} \examples{ data("abattoir") plot(abattoir) population(abattoir) } \references{ \enc{Höhle}{Hoehle}, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag. } \keyword{datasets} surveillance/man/categoricalCUSUM.Rd0000644000176200001440000001543614665117445017130 0ustar liggesusers\name{categoricalCUSUM} \alias{categoricalCUSUM} \alias{catcusum.LLRcompute} \encoding{latin1} \title{CUSUM detector for time-varying categorical time series} \description{ Function to process \code{sts} object by binomial, beta-binomial or multinomial CUSUM as described by \enc{Höhle}{Hoehle} (2010). Logistic, multinomial logistic, proportional odds or Bradley-Terry regression models are used to specify in-control and out-of-control parameters. The implementation is illustrated in Salmon et al. (2016). } \usage{ categoricalCUSUM(stsObj,control = list(range=NULL,h=5,pi0=NULL, pi1=NULL, dfun=NULL, ret=c("cases","value")),...) } \arguments{ \item{stsObj}{Object of class \code{sts} containing the number of counts in each of the \eqn{k} categories of the response variable. Time varying number of counts \eqn{n_t} is found in slot \code{populationFrac}. } \item{control}{Control object containing several items \describe{ \item{\code{range}}{Vector of length \eqn{t_{max}} with indices of the \code{observed} slot to monitor.} \item{\code{h}}{Threshold to use for the monitoring. Once the CUSUM statistics is larger or equal to \code{h} we have an alarm.} \item{\code{pi0}}{\eqn{(k-1) \times t_{max}} in-control probability vector for all categories except the reference category.} \item{\code{mu1}}{\eqn{(k-1) \times t_{max}} out-of-control probability vector for all categories except the reference category.} \item{\code{dfun}}{The probability mass function (PMF) or density used to compute the likelihood ratios of the CUSUM. In a negative binomial CUSUM this is \code{dnbinom}, in a binomial CUSUM \code{dbinom} and in a multinomial CUSUM \code{dmultinom}. The function must be able to handle the arguments \code{y}, \code{size}, \code{mu} and \code{log}. As a consequence, one in the case of, e.g, the beta-binomial distribution has to write a small wrapper function.} \item{\code{ret}}{Return the necessary proportion to sound an alarm in the slot \code{upperbound} or just the value of the CUSUM statistic. Thus, \code{ret} is one of the values in \code{c("cases","value")}. Note: For the binomial PMF it is possible to compute this value explicitly, which is much faster than the numeric search otherwise conducted. In case \code{dfun} just corresponds to \code{dbinom} just set the attribute \code{isBinomialPMF} for the \code{dfun} object.} }} \item{\dots}{Additional arguments to send to \code{dfun}.} } \details{ The function allows the monitoring of categorical time series as described by regression models for binomial, beta-binomial or multinomial data. The later includes e.g. multinomial logistic regression models, proportional odds models or Bradley-Terry models for paired comparisons. See the \enc{Höhle}{Hoehle} (2010) reference for further details about the methodology. Once an alarm is found the CUSUM scheme is reset (to zero) and monitoring continues from there. } \seealso{\code{\link{LRCUSUM.runlength}}} \value{An \code{sts} object with \code{observed}, \code{alarm}, etc. slots trimmed to the \code{control$range} indices. } \references{ \enc{Höhle}{Hoehle}, M. (2010): Online Change-Point Detection in Categorical Time Series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } \examples{ ## IGNORE_RDIFF_BEGIN have_GAMLSS <- require("gamlss") ## IGNORE_RDIFF_END if (have_GAMLSS) { ########################################################################### #Beta-binomial CUSUM for a small example containing the time-varying #number of positive test out of a time-varying number of total #test. ####################################### #Load meat inspection data data("abattoir") #Use GAMLSS to fit beta-bin regression model phase1 <- 1:(2*52) phase2 <- (max(phase1)+1) : nrow(abattoir) #Fit beta-binomial model using GAMLSS abattoir.df <- as.data.frame(abattoir) #Replace the observed and epoch column names to something more convenient dict <- c("observed"="y", "epoch"="t", "population"="n") replace <- dict[colnames(abattoir.df)] colnames(abattoir.df)[!is.na(replace)] <- replace[!is.na(replace)] m.bbin <- gamlss( cbind(y,n-y) ~ 1 + t + + sin(2*pi/52*t) + cos(2*pi/52*t) + + sin(4*pi/52*t) + cos(4*pi/52*t), sigma.formula=~1, family=BB(sigma.link="log"), data=abattoir.df[phase1,c("n","y","t")]) #CUSUM parameters R <- 2 #detect a doubling of the odds for a test being positive h <- 4 #threshold of the cusum #Compute in-control and out of control mean pi0 <- predict(m.bbin,newdata=abattoir.df[phase2,c("n","y","t")],type="response") pi1 <- plogis(qlogis(pi0)+log(R)) #Create matrix with in control and out of control proportions. #Categories are D=1 and D=0, where the latter is the reference category pi0m <- rbind(pi0, 1-pi0) pi1m <- rbind(pi1, 1-pi1) ###################################################################### # Use the multinomial surveillance function. To this end it is necessary # to create a new abattoir object containing counts and proportion for # each of the k=2 categories. For binomial data this appears a bit # redundant, but generalizes easier to k>2 categories. ###################################################################### abattoir2 <- sts(epoch=1:nrow(abattoir), start=c(2006,1), freq=52, observed=cbind(abattoir@observed, abattoir@populationFrac-abattoir@observed), populationFrac=cbind(abattoir@populationFrac,abattoir@populationFrac), state=matrix(0,nrow=nrow(abattoir),ncol=2), multinomialTS=TRUE) ###################################################################### #Function to use as dfun in the categoricalCUSUM #(just a wrapper to the dBB function). Note that from v 3.0-1 the #first argument of dBB changed its name from "y" to "x"! ###################################################################### mydBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB(y[1,], mu = mu[1,], sigma = sigma, bd = size, log = log)) } #Create control object for multinom cusum and use the categoricalCUSUM #method control <- list(range=phase2,h=h,pi0=pi0m, pi1=pi1m, ret="cases", dfun=mydBB.cusum) surv <- categoricalCUSUM(abattoir2, control=control, sigma=exp(m.bbin$sigma.coef)) #Show results plot(surv[,1],dx.upperbound=0) lines(pi0,col="green") lines(pi1,col="red") #Index of the alarm which.max(alarms(surv[,1])) } } \author{M. \enc{Höhle}{Hoehle}} \keyword{regression} surveillance/man/arlCusum.Rd0000644000176200001440000000350313122471774015614 0ustar liggesusers\name{arlCusum} \alias{arlCusum} \title{Calculation of Average Run Length for discrete CUSUM schemes} \description{ Calculates the average run length (ARL) for an upward CUSUM scheme for discrete distributions (i.e. Poisson and binomial) using the Markov chain approach. } \usage{ arlCusum(h=10, k=3, theta=2.4, distr=c("poisson","binomial"), W=NULL, digits=1, ...) } \arguments{ \item{h}{ decision interval} \item{k}{ reference value} \item{theta}{distribution parameter for the cumulative distribution function (cdf) \eqn{F}, i.e. rate \eqn{\lambda} for Poisson variates or probability \eqn{p} for binomial variates} \item{distr}{ \code{"poisson"} or \code{"binomial"} } %ppois, pbinom \item{W}{Winsorizing value \code{W} for a robust CUSUM, to get a nonrobust CUSUM set %\code{W} is set to \code{W} > \code{k}+\code{h}. If \code{NULL}, a nonrobust CUSUM is used.} \item{digits}{ \code{k} and \code{h} are rounded to \code{digits} decimal places } \item{\dots}{ further arguments for the distribution function, i.e. number of trials \code{n} for binomial cdf } } \value{ Returns a list with the ARL of the regular (zero-start) and the fast initial response (FIR) CUSUM scheme with reference value \code{k}, decision interval \code{h} for \eqn{X \sim F(\theta)}, where F is the Poisson or binomial CDF. \item{ARL}{one-sided ARL of the regular (zero-start) CUSUM scheme} \item{FIR.ARL}{one-sided ARL of the FIR CUSUM scheme with head start \eqn{\frac{\code{h}}{2}} } } \keyword{models} \source{Based on the FORTRAN code of Hawkins, D. M. (1992). Evaluation of Average Run Lengths of Cumulative Sum Charts for an Arbitrary Data Distribution. Communications in Statistics - Simulation and Computation, 21(4), p. 1001-1020. } surveillance/man/plot.survRes.Rd0000644000176200001440000000264014200437000016426 0ustar liggesusers\name{plot.survRes} \alias{plot.survRes} \title{Plot a \code{survRes} object} \description{ Plotting a (multivariate) \code{survRes} object (soft-deprecated), including the number of infected, the threshold for recognizing an outbreak, the alarm status and the outbreak status. As of \pkg{surveillance} 1.20.0, legacy \code{survRes} objects are plotted via internal \code{\link{disProg2sts}} conversion and \code{\link{stsplot_time}}. } \usage{ \method{plot}{survRes}(x, method = x$control$name, disease = x$control$data, xaxis.years = TRUE, startyear = 2001, firstweek = 1, same.scale = TRUE, ..., main = paste0("Analysis of ", disease, " using ", method)) } \arguments{ \item{x}{object of class \code{survRes}} \item{method}{surveillance method to be used in title} \item{disease}{name of disease in title} \item{xaxis.years}{Boolean indicating whether to show a year-based x-axis} \item{startyear,firstweek}{(legacy arguments, ignored with a warning)} \item{same.scale}{if \code{TRUE} (default), all plots use the same \code{ylim}} \item{\dots}{further arguments passed to \code{\link{stsplot_time}}} \item{main}{the plot title is generated from the \code{method} and \code{disease} arguments if not specified otherwise} } \examples{ data(ha) ctrl <- list(range = 209:290, b = 2, w = 6, alpha = 0.005) plot(algo.bayes(aggregate(ha), control = ctrl)) } \keyword{hplot} \keyword{internal} surveillance/man/stsplot_spacetime.Rd0000644000176200001440000000670214712103537017562 0ustar liggesusers\encoding{latin1} \name{stsplot_spacetime} \alias{stsplot_spacetime} %\alias{stsplot_spacetime-deprecated} \title{ Animated Map of Disease Incidence (DEPRECATED) } \description{ \code{stsplot_spacetime} is \emph{deprecated}; use the \code{\link[=animate.sts]{animate}} method instead. For each period (row) or for the overall period of the \code{observed} matrix of the \code{"\linkS4class{sts}"} object, a map showing the counts by region is produced. It is possible to redirect the output into files, e.g., to generate an animated GIF. } \usage{ stsplot_spacetime(x, type, legend = NULL, opts.col = NULL, labels = TRUE, wait.ms = 250, cex.lab = 0.7, verbose = FALSE, dev.printer = NULL, ...) } \arguments{ \item{x}{ an object of class \code{"\linkS4class{sts}"}. } \item{type}{ a formula (see \code{\link{stsplot}}). For a map aggregated over time (no animation), use \code{observed ~ 1 | unit}, otherwise \code{observed ~ 1 | unit * time}. } \item{legend}{ a \code{list} containing the following items used for coloring \describe{ \item{\code{dx}}{position increments in x direction} \item{\code{dy}}{position increments in y direction} \item{\code{x}}{position in x} \item{\code{y}}{position in y} \item{\code{once}}{a Boolean; if \code{TRUE} then only shown once} } If \code{NULL} then a default legend is used. } \item{opts.col}{ a \code{list} containing the two elements \describe{ \item{\code{ncolors}}{number of colors to use for plotting} \item{\code{use.color}}{a Boolean; if \code{TRUE} then colors will be used in the palette, otherwise grayscale} } } \item{labels}{Boolean whether to add labels } \item{wait.ms}{Number of milliseconds to wait between each plot } \item{cex.lab}{\code{cex} of the labels } \item{verbose}{Boolean whether to write out extra information } \item{dev.printer}{Either \code{NULL} (default), which means that plotting is only to the screen, or a list with elements \code{device}, \code{extension}, \code{width}, \code{height}, and \code{name} (with defaults \code{png}, \code{".png"}, \code{640}, \code{480}, and \code{"Rplot"}, respectively) to \code{\link{dev.print}} the plots to files (only works in interactive sessions). This option is more or less obsolete since the \pkg{animation} package provides better features for output to files. } \item{\dots}{Extra arguments sent to the plot function. } } \author{ Michael H\enc{ö}{oe}hle } \seealso{ Other \code{\link{stsplot}} types, and \code{\link{animate.sts}} for the new implementation. } \examples{ data("ha.sts") print(ha.sts) \dontrun{ # map of total counts by district (compare old vs. new implementation) plot(ha.sts, type = observed ~ 1 | unit) # deprecated plot(ha.sts, type = observed ~ unit, labels = TRUE) # space-time animation plot(aggregate(ha.sts,nfreq=13), type = observed ~ 1 | unit * time) #print the frames to a png device #and do the animation without extra sleeping between frames imgname <- file.path(tempdir(), "berlin") plot(aggregate(ha.sts,nfreq=13), type = observed ~ 1 | unit * time, wait.ms=0, dev.printer=list(name=imgname)) #Use ImageMagick (you might have to adjust the path to 'convert') system(paste0("convert -delay 50 ", imgname, "*.png ", imgname, "-animated.gif")) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} \keyword{internal} surveillance/man/stsAggregate.Rd0000644000176200001440000000320513507405136016434 0ustar liggesusers\name{aggregate-methods} \docType{methods} \alias{aggregate.sts} \alias{aggregate,sts-method} \title{Aggregate an \code{"sts"} Object Over Time or Across Units} \description{ Aggregate the matrix slots of an \code{"\linkS4class{sts}"} object. Either the time series is aggregated so a new sampling frequency of \code{nfreq} observations per year is obtained (i.e., as in \code{\link{aggregate.ts}}), or the aggregation is over all columns (units). } \usage{ \S4method{aggregate}{sts}(x, by = "time", nfreq = "all", ...) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{by}{a string being either \code{"time"} or \code{"unit"}.} \item{nfreq}{new sampling frequency for \code{by="time"}. If \code{nfreq="all"} then all time points are summed.} \item{\dots}{unused (argument of the generic).} } \value{ an object of class \code{"sts"}. } \section{Warning}{ Aggregation over units fills the upperbound slot with \code{NA}s and the \code{map} slot is left as-is, but the object cannot be plotted by unit any longer. The \code{populationFrac} slot is aggregated just like \code{observed}. Population fractions are recomputed if and only if \code{x} is no \code{multinomialTS} and already contains population fractions. This might not be intended, especially for aggregation over time. } \examples{ data("ha.sts") dim(ha.sts) dim(aggregate(ha.sts, by = "unit")) dim(aggregate(ha.sts, nfreq = 13)) \dontshow{ ## population(ha.sts) are trivial fractions, aggregate() should keep them stopifnot(population(aggregate(ha.sts)) == 1/ncol(ha.sts)) ## failed in surveillance <= 1.16.2 } } \keyword{methods} surveillance/man/algo.farrington.assign.weights.Rd0000644000176200001440000000121414662137762022052 0ustar liggesusers\name{algo.farrington.assign.weights} \alias{algo.farrington.assign.weights} \title{Assign weights to base counts} \description{ Weights are assigned according to the Anscombe residuals } \usage{ algo.farrington.assign.weights(s, weightsThreshold=1) } \arguments{ \item{s}{Vector of standardized Anscombe residuals} \item{weightsThreshold}{A scalar indicating when observations are seen as outlier. In the original Farrington proposal the value was 1 (default value), in the improved version this value is suggested to be 2.58.} } \value{Weights according to the residuals} \seealso{\code{\link{anscombe.residuals}}} \keyword{regression} surveillance/man/algo.rogerson.Rd0000644000176200001440000001051514310560071016566 0ustar liggesusers\name{algo.rogerson} \alias{algo.rogerson} \title{Modified CUSUM method as proposed by Rogerson and Yamada (2004)} \description{ Modified Poisson CUSUM method that allows for a time-varying in-control parameter \eqn{\theta_{0,t}} as proposed by Rogerson and Yamada (2004). The same approach can be applied to binomial data if \code{distribution="binomial"} is specified. } \usage{ algo.rogerson(disProgObj, control = list(range = range, theta0t = NULL, ARL0 = NULL, s = NULL, hValues = NULL, distribution = c("poisson","binomial"), nt = NULL, FIR=FALSE, limit = NULL, digits = 1)) } \arguments{ \item{disProgObj}{object of class \code{disProg} that includes a matrix with the observed number of counts} \item{control}{ list with elements \describe{ \item{range}{vector of indices in the observed matrix of \code{disProgObj} to monitor} \item{theta0t}{matrix with in-control parameter, must be specified} \item{ARL0 }{ desired average run length \eqn{\gamma} } \item{s}{change to detect, see \code{\link{findH}} for further details} \item{hValues}{matrix with decision intervals \code{h} for a sequence of values \eqn{\theta_{0,t}} (in the range of \code{theta0t}) } \item{distribution}{\code{"poisson"} or \code{"binomial"} } \item{nt}{optional matrix with varying sample sizes for the binomial CUSUM} \item{FIR}{a FIR CUSUM with head start \eqn{h/2} is applied to the data if \code{TRUE}, otherwise no head start is used; see details } \item{limit}{numeric that determines the procedure after an alarm is given, see details} \item{digits}{the reference value and decision interval are rounded to \code{digits} decimal places. Defaults to 1 and should correspond to the number of digits used to compute \code{hValues} } } } } \details{ The CUSUM for a sequence of Poisson or binomial variates \eqn{x_t} is computed as \deqn{S_t = \max \{0, S_{t-1} + c_t (x_t- k_t)\} , \, t=1,2,\ldots ,} where \eqn{S_0=0} and \eqn{c_t=h/h_t}; \eqn{k_t} and \eqn{h_t} are time-varying reference values and decision intervals. An alarm is given at time \eqn{t} if \eqn{S_t \geq h}{S_t >= h}. If \code{FIR=TRUE}, the CUSUM starts with a head start value \eqn{S_0=h/2} at time \eqn{t=0}. After an alarm is given, the FIR CUSUM starts again at this head start value. The procedure after the CUSUM gives an alarm can be determined by \code{limit}. Suppose that the CUSUM signals at time \eqn{t}, i.e. \eqn{S_t \geq h}{S_t >= h}. For numeric values of \code{limit}, the CUSUM is bounded above after an alarm is given, % at time \eqn{t-1}, i.e. \eqn{S_t} is set to \eqn{ \min\{\code{limit} \cdot h, S_t\} }{min(limit*h, S_t)}. %\deqn{S_{t} = \max \{0, S_{t-1} + c_t(x_t - k_t)\}. } Using \code{limit}=0 corresponds to resetting \eqn{S_t} to zero after an alarm as proposed in the original formulation of the CUSUM. If \code{FIR=TRUE}, \eqn{S_t} is reset to \eqn{ h/2 } (i.e. \code{limit}=\eqn{h/2} ). If \code{limit=NULL}, no resetting occurs after an alarm is given. } \note{\code{algo.rogerson} is a univariate CUSUM method. If the data are available in several regions (i.e. \code{observed} is a matrix), multiple univariate CUSUMs are applied to each region. } \value{Returns an object of class \code{survRes} with elements \item{alarm}{indicates whether the CUSUM signaled at time \eqn{t} or not (1 = alarm, 0 = no alarm) } \item{upperbound}{CUSUM values \eqn{S_t} } \item{disProgObj}{\code{disProg} object } \item{control}{list with the alarm threshold \eqn{h} and the specified control object} } \examples{ # simulate data (seasonal Poisson) set.seed(123) t <- 1:300 lambda <- exp(-0.5 + 0.4 * sin(2*pi*t/52) + 0.6 * cos(2*pi*t/52)) data <- sts(observed = rpois(length(lambda), lambda)) # determine a matrix with h values hVals <- hValues(theta0 = 10:150/100, ARL0=500, s = 1, distr = "poisson") # convert to legacy "disProg" class and apply modified Poisson CUSUM disProgObj <- sts2disProg(data) res <- algo.rogerson(disProgObj, control=c(hVals, list(theta0t=lambda, range=1:300))) plot(res, xaxis.years = FALSE) } \references{ Rogerson, P. A. and Yamada, I. Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts. Morbidity and Mortality Weekly Report, 2004, 53/Supplement, 79-85 } \seealso{\code{\link{hValues}}} \keyword{classif} surveillance/man/hhh4_simulate_scores.Rd0000644000176200001440000000672614430727511020143 0ustar liggesusers\name{hhh4_simulate_scores} \alias{scores.hhh4sims} \alias{scores.hhh4simslist} \title{ Proper Scoring Rules for Simulations from \code{hhh4} Models } \description{ Calculate proper scoring rules based on simulated predictive distributions. } \usage{ \method{scores}{hhh4sims}(x, which = "rps", units = NULL, ..., drop = TRUE) \method{scores}{hhh4simslist}(x, ...) } \arguments{ \item{x}{ an object of class \code{"hhh4sims"} (as resulting from the \code{\link[=simulate.hhh4]{simulate}}-method for \code{"\link{hhh4}"} models if \code{simplify = TRUE} was set), or an \code{"hhh4simslist"}, i.e., a list of such simulations potentially obtained from different model fits (using the same simulation period). } \item{which}{ a character vector indicating which proper scoring rules to compute. By default, only the ranked probability score (\code{"rps"}) is calculated. Other options include \code{"logs"} and \code{"dss"}. } \item{units}{ if non-\code{NULL}, an integer or character vector indexing the columns of \code{x} for which to compute the scores. } \item{drop}{ a logical indicating if univariate dimensions should be dropped (the default). } \item{\dots}{ unused (argument of the generic). } } \details{ This implementation can only compute \emph{univariate scores}, i.e., independently for each time point. The logarithmic score is badly estimated if the domain is large and there are not enough samples to cover the underlying distribution in enough detail (the score becomes infinite when an observed value does not occur in the samples). An alternative is to use kernel density estimation as implemented in the \R package \CRANpkg{scoringRules}. } \author{ Sebastian Meyer } \examples{ data("salmAllOnset") ## fit a hhh4 model to the first 13 years salmModel <- list(end = list(f = addSeason2formula(~1 + t)), ar = list(f = ~1), family = "NegBin1", subset = 2:678) salmFit <- hhh4(salmAllOnset, salmModel) ## simulate the next 20 weeks ahead (with very small 'nsim' for speed) salmSims <- simulate(salmFit, nsim = 500, seed = 3, subset = 678 + seq_len(20), y.start = observed(salmAllOnset)[678,]) if (requireNamespace("fanplot")) plot(salmSims, "fan") ### calculate scores at each time point ## using empirical distribution of simulated counts as forecast distribution scores(salmSims, which = c("rps", "logs", "dss")) ## observed count sometimes not covered by simulations -> infinite log-score ## => for a more detailed forecast, either considerably increase 'nsim', or: ## 1. use continuous density() of simulated counts as forecast distribution fi <- apply(salmSims, 1, function (x) approxfun(density(x))) logs_kde <- mapply(function (f, y) -log(f(y)), f = fi, y = observed(attr(salmSims,"stsObserved"))) cbind("empirical" = scores(salmSims, "logs"), "density" = logs_kde) ## a similar KDE approach is implemented in scoringRules::logs_sample() ## 2. average conditional predictive NegBin's of simulated trajectories, ## currently only implemented in HIDDA.forecasting::dhhh4sims() ### produce a PIT histogram ## using empirical distribution of simulated counts as forecast distribition pit(x = observed(attr(salmSims, "stsObserved")), pdistr = apply(salmSims, 1:2, ecdf)) ## long-term forecast is badly calibrated (lower tail is unused, see fan above) ## we also get a warning for the same reason as infinite log-scores } \keyword{univar} surveillance/man/stcd.Rd0000644000176200001440000000733312014262005014743 0ustar liggesusers\name{stcd} \alias{stcd} \encoding{latin1} \title{Spatio-temporal cluster detection} \description{ Shiryaev-Roberts based prospective spatio-temporal cluster detection as in Assuncao & Correa (2009). } \usage{ stcd(x, y,t,radius,epsilon,areaA, areaAcapBk, threshold, cusum=FALSE) } \arguments{ \item{x}{Vector containing spatial x coordinate of the events.} \item{y}{Vector containing spatial y coordinate of the events.} \item{t}{Vector containing the time points of the events. It is assumed that the vector is sorted (early->last).} \item{radius}{Radius of the cluster to detect.} \item{epsilon}{Relative change of event-intensity within the cluster to detect. See reference paper for an explicit definition.} \item{areaA}{Area of the observation region A (single number) -- This argument is currently ignored!} \item{areaAcapBk}{Area of A \ B(s_k,rho) for all k=1,\ldots,n (vector). This argument is currently ignored!} \item{threshold}{Threshold limit for the alarm and should be equal to the desired Average-Run-Length (ARL) of the detector.} \item{cusum}{(logical) If \code{FALSE} (default) then the Shiryaev-Roberts detector is used as in the original article by Assuncao & Correa (2009), i.e. \eqn{R_n = \sum_{k=1}^n \Lambda_{k,n}}, where \eqn{\Lambda_{k,n}} denotes the likelihood ratio between the in-control and out-of control model. If \code{TRUE}, CUSUM test statistic is used instead. Here, \deqn{R_n = \max_{1\leq k \leq n} \Lambda_{k,n}}. Note that this has implications on what threshold will sound the alarm (CUSUM threshold needs to be smaller).} } \details{ Shiryaev-Roberts based spatio-temporal cluster detection based on the work in Assuncao and Correa (2009). The implementation is based on C++ code originally written by Marcos Oliveira Prates, UFMG, Brazil and provided by Thais Correa, UFMG, Brazil during her research stay in Munich. This stay was financially supported by the Munich Center of Health Sciences. Note that the vectors \code{x}, \code{y} and \code{t} need to be of the same length. Furthermore, the vector \code{t} needs to be sorted (to improve speed, the latter is not verified within the function). The current implementation uses a call to a C++ function to perform the actual computations of the test statistic. The function is currently experimental -- data type and results may be subject to changes. } \value{A list with three components \item{R}{A vector of the same length as the input containing the value of the test statistic for each observation.} \item{idxFA}{Index in the x,y,t vector causing a possible alarm. If no cluster was detected, then a value of \code{-1} is returned here.} \item{idxCC}{index in the x,y,t vector of the event containing the cluster. If no cluster was detected, then a value of \code{-1} is returned here.} } \references{ Assuncao, R. and Correa, T. (2009), Surveillance to detect emerging space-time clusters, Computational Statistics & Data Analysis, 53(8):2817-2830. } \examples{ if (require("splancs")) { # load the data from package "splancs" data(burkitt, package="splancs") # order the times burkitt <- burkitt[order(burkitt$t), ] #Parameters for the SR detection epsilon <- 0.5 # relative change within the cluster radius <- 20 # radius threshold <- 161 # threshold limit res <- stcd(x=burkitt$x, y=burkitt$y, t=burkitt$t, radius=radius, epsilon=epsilon, areaA=1, areaAcapBk=1, threshold=threshold) #Index of the event which.max(res$R >= threshold) } } \author{M. O. Prates, T. Correa and M. \enc{Höhle}{Hoehle}} \keyword{cluster} surveillance/man/shadar.Rd0000644000176200001440000000111014662137762015261 0ustar liggesusers\name{shadar} \alias{shadar} \docType{data} \title{Salmonella Hadar cases in Germany 2001-2006} \description{ Number of salmonella hadar cases in Germany 2001-2006. An increase is seen during 2006. } \usage{data(shadar)} \format{ A \code{disProg} object containing \eqn{295\times 1}{295 x 1} observations starting from week 1 in 2001 to week 35 in 2006. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on September 2006. Robert Koch Institut, Epidemiologisches Bulletin 31/2006. } \examples{ data(shadar) plot(shadar) } \keyword{datasets} surveillance/man/hcl.colors.Rd0000644000176200001440000000175014001335534016057 0ustar liggesusers\name{hcl.colors} \alias{.hcl.colors} \title{ HCL-based Heat Colors from the \pkg{colorspace} Package } \description{ If package \pkg{colorspace} is available, its \link[colorspace]{heat_hcl} function is used to generate a color palette. Otherwise, the similar Heat 2 palette from R's own \code{hcl.colors} are used. This function was exported as \code{hcl.colors} in \pkg{surveillance} 1.14.0 - 1.17.0 but is now internal to avoid a name clash with R 3.6.0 (or later), which introduced a function of that name in the base package \pkg{grDevices}. } \usage{ .hcl.colors(ncolors = 100, use.color = TRUE) } \arguments{ \item{ncolors}{the number of colors (>= 1) to be in the palette.} \item{use.color}{logical. Should the palette use colors? Otherwise grey levels are returned.} } \value{ A character vector of \code{ncolors} colors. } \examples{ barplot(rep(1,10), col = surveillance:::.hcl.colors(10), axes = FALSE) } \keyword{color} \keyword{dplot} \keyword{internal} surveillance/man/untie.Rd0000644000176200001440000001075614614160257015153 0ustar liggesusers\name{untie} \alias{untie} \alias{untie.epidataCS} \alias{untie.matrix} \alias{untie.default} \title{ Randomly Break Ties in Data } \description{ This is a generic function intended to randomly break tied data in a way similar to what \code{\link{jitter}} does: tie-breaking is performed by shifting \emph{all} data points by a random amount. The \pkg{surveillance} package defines methods for matrices, \code{"epidataCS"}, and a default method for numeric vectors. } \usage{ untie(x, amount, ...) \method{untie}{epidataCS}(x, amount = list(t=NULL, s=NULL), minsep = list(t=0, s=0), direction = "left", keep.sources = FALSE, ..., verbose = FALSE) \method{untie}{matrix}(x, amount = NULL, minsep = 0, constraint = NULL, giveup = 1000, ...) \method{untie}{default}(x, amount = NULL, minsep = 0, direction = c("symmetric", "left", "right"), sort = NULL, giveup = 1000, ...) } \arguments{ \item{x}{ the data to be untied. } \item{amount}{ upper bound for the random amount by which data are shifted. \code{NULL} means to use a data-driven default, which equals the minimum separation of the data points for the non-symmetric default method and its half for the symmetric default method and the \code{matrix} method. } \item{minsep}{minimum separation of jittered points. Can only be obeyed if much smaller than \code{amount} (also depending on the number of points). \code{minsep>0} is currently only implemented for the spatial (matrix) method.} \item{keep.sources}{ logical (\code{FALSE}). If \code{TRUE}, the original list of possible event sources in \code{x$events$.sources} will be preserved. For instance, events observed at the same time did by definition not trigger each other; however, after random tie-breaking one event will precede the other and considered as a potential source of infection for the latter, although it could just as well be the other way round. Enabling \code{keep.sources} will use the \code{.sources} list from the original (tied) \code{"epidataCS"} object. Note, however, that an update is forced within \code{twinstim} if a subset of the data is selected for model fitting or if a different \code{qmatrix} is supplied. } \item{constraint}{ an object of class \code{"\linkSPclass{SpatialPolygons}"} representing the domain which the points of the matrix should belong to -- before and after jittering. } \item{giveup}{number of attempts after which the algorithm should stop trying to generate new points.} \item{direction}{ one of \code{"symmetric"} (default), \code{"left"}, or \code{"right"}, indicating in which direction vector elements should be shifted. } \item{sort}{ logical indicating if the jittered vector should be sorted. Defaults to doing so if the original vector was already sorted. } \item{\dots}{ For the \code{"epidataCS"}-method: arguments passed to the \code{matrix}- or \code{default}-method (\code{giveup}). Unused in other methods. } \item{verbose}{logical passed to \code{\link{as.epidataCS}}.} } \details{ For numeric vectors (default method), the jittered version is the same as for \code{\link{jitter}(x, amount=amount)}, if \code{direction="symmetric"} (and \code{amount} is non-\code{NULL}), and otherwise uses \code{x} \dQuote{+-} \code{runif(length(x), 0, amount)}. For matrices, a vector uniformly drawn from the disc with radius \code{amount} is added to each point (row). For \code{"epidataCS"}, \code{amount} is a list stating the amounts for the temporal and/or spatial dimension, respectively. It then uses the specific methods with arguments \code{constraint=x$W}, \code{direction}, and \code{sort=TRUE}. Note that this implements a simplistic approach of tie-breaking where all events are assumed to be subject to the same amounts of censoring, and the default amounts may not be sensible choices. } \value{ the untied (jittered) data. } \author{ Sebastian Meyer } \seealso{ \code{\link{jitter}} } \examples{ # vector example set.seed(123) untie(c(rep(1,3), rep(1.2, 4), rep(3,3)), direction="left", sort=FALSE) # spatial example data(imdepi) coords <- coordinates(imdepi$events) table(duplicated(coords)) plot(coords, cex=sqrt(multiplicity(coords))) set.seed(1) coords_untied <- untie(coords) stopifnot(!anyDuplicated(coords_untied)) points(coords_untied, col=2) # shifted by very small amount in this case } \keyword{utilities} \keyword{manip} \keyword{dplot} surveillance/man/sts-class.Rd0000644000176200001440000003135014676756252015752 0ustar liggesusers\name{sts-class} \docType{class} \alias{sts} \alias{sts-class} % methods to access and replace slots \alias{alarms,sts-method} \alias{alarms<-,sts-method} \alias{upperbound,sts-method} \alias{upperbound<-,sts-method} \alias{control,sts-method} \alias{control<-,sts-method} \alias{epoch,sts-method} \alias{epoch<-,sts-method} \alias{frequency,sts-method} \alias{start,sts-method} \alias{observed,sts-method} \alias{observed<-,sts-method} \alias{population,sts-method} \alias{population<-,sts-method} \alias{multinomialTS,sts-method} \alias{multinomialTS<-,sts-method} \alias{neighbourhood,sts-method} \alias{neighbourhood<-,sts-method} % other access methods \alias{dim,sts-method} \alias{dimnames,sts-method} \alias{year} \alias{year,sts-method} \alias{epochInYear} \alias{epochInYear,sts-method} % conversion methods \alias{as.data.frame.sts} \alias{as.data.frame,sts-method} \alias{as.ts.sts} \alias{coerce,sts,ts-method} \alias{coerce,ts,sts-method} \alias{as.xts.sts} \encoding{latin1} \title{Class \code{"sts"} -- surveillance time series} \description{ This is a lightweight S4 class to implement (multivariate) time series of counts, typically from public health surveillance. The \code{"sts"} class supersedes the informal \code{"disProg"} class used in early versions of package \pkg{surveillance}. Converters are available, see \code{\link{disProg2sts}}. The constructor function \code{sts} can be used to setup an \code{"sts"} object. For areal time series, it can also capture a \code{map} of the regions, where the counts originate from. See Section \dQuote{Slots} below for a description of all class components, and Section \dQuote{Methods} for a list of extraction, conversion and visualization methods. } \usage{ sts(observed, start = c(2000, 1), frequency = 52, epoch = NULL, population = NULL, map = NULL, ...) } \arguments{ \item{observed}{a vector (for a single time series) or matrix (one time series per column) of counts. A purely numeric data frame will also do (transformed via \code{as.matrix}). This argument sets the \code{observed} slot, which is the core element of the resulting \code{"sts"} object. It determines the dimensions and colnames for several other slots. The columns (\dQuote{units}) typically correspond to different regions, diseases, or age groups.} \item{start,frequency}{basic characteristics of the time series data just like for simple \code{"\link{ts}"} objects. The (historical) default values correspond to weekly data starting in the first week of 2000. The \code{epoch} and \code{epochInYear} methods use the ISO 8601 specification when converting between week numbers and dates, see \code{\link{isoWeekYear}}.} \item{epoch}{observation times, either as an integer sequence (default) or as a \code{Date} vector (in which case \code{epochAsDate} is automatically set to \code{TRUE}).} \item{population}{a vector of length the number of columns in \code{observed} or a matrix of the same dimension as \code{observed}. Especially for multivariate time series, the population numbers (or fractions) underlying the counts in each unit are relevant for visualization and statistical inference. The \code{population} argument is an alias for the corresponding slot \code{populationFrac}. The default \code{NULL} value sets equal population fractions across all units.} \item{map}{optional spatial data representing the regions, either of class \code{"\linkSPclass{SpatialPolygons}"} (or \code{"\linkSPclass{SpatialPolygonsDataFrame}"}) or of class \code{"\link[sf]{sf}"} (requires package \CRANpkg{sf}). Its \code{row.names()} must contain the region IDs to be matched against \code{colnames(observed)}.} \item{\dots}{further named arguments with names corresponding to slot names (see the list below). For instance, in the public health surveillance context, the \code{state} slot is used to indicate outbreaks (default: \code{FALSE} for all observations). For areal time series data, the \code{map} and \code{neighbourhood} slots are used to store the spatial structure of the observation region.} } \section{Slots}{ \describe{ \item{\code{epoch}:}{a numeric vector specifying the time of observation, typically a week index. Depending on the \code{freq} slot, it could also index days or months. Furthermore, if \code{epochAsDate=TRUE} then \code{epoch} is the integer representation of \code{\link{Date}}s giving the exact date of the observation.} \item{\code{freq}:}{number of observations per year, e.g., 52 for weekly data, 12 for monthly data.} \item{\code{start}:}{vector of length two denoting the year and the sample number (week, month, etc.) of the first observation.} \item{\code{observed}:}{matrix of size \code{length(epoch)} times the number of regions containing the weekly/monthly number of counts in each region. The colnames of the matrix should match the ID values of the shapes in the \code{map} slot.} \item{\code{state}:}{matrix with the same dimensions as \code{observed} containing Booleans whether at the specific time point there was an outbreak in the region.} \item{\code{alarm}:}{matrix with the same dimensions as \code{observed} specifying whether an outbreak detection algorithm declared a specific time point in the region as having an alarm.} \item{\code{upperbound}:}{matrix with upper-bound values.} \item{\code{neighbourhood}:}{symmetric matrix of size \eqn{(number of regions)^2} describing the neighbourhood structure. It may either be a binary adjacency matrix or contain neighbourhood orders (see the Examples for how to infer the latter from the \code{map}).} \item{\code{populationFrac}:}{\code{matrix} of population fractions or absolute numbers (see \code{multinomialTS} below) with dimensions \code{dim(observed)}.} \item{\code{map}:}{object of class \code{"\linkSPclass{SpatialPolygons}"} (or \code{"\linkSPclass{SpatialPolygonsDataFrame}"}) providing a shape of the areas which are monitored or modelled.} \item{\code{control}:}{\code{\link{list}} of settings; this is a rather free data type to be returned by the surveillance algorithms.} \item{\code{epochAsDate}:}{a Boolean indicating if the \code{epoch} slot corresponds to \code{Date}s.} \item{\code{multinomialTS}:}{a Boolean stating whether to interpret the object as \code{observed} out of \code{population}, i.e. a multinomial interpretation instead of a count interpretation.} } } \section{Methods}{ \subsection{Extraction of slots}{ There is an extraction (and replacement) method for almost every slot. The name of the method corresponds to the slot name, with three exceptions: the \code{freq} slot can be extracted by \code{frequency()}, the \code{populationFrac} slot is accessed by \code{population()}, and the \code{alarm} slot is accessed by \code{alarms()}. \describe{ \item{epoch}{\code{signature(x = "sts")}: extract the \code{epoch} slot. If the \code{sts} object is indexed by dates (\code{epochAsDate} = TRUE), the returned vector is of class \code{Date}, otherwise numeric (usually the integer sequence \code{1:nrow(x)}).\cr By explicitly requesting \code{epoch(x, as.Date = TRUE)}, dates can also be extracted if the \code{sts} object is not internally indexed by dates but has a standard frequency of 12 (monthly) or 52 (weekly). The transformation is based on \code{start} and \code{freq} and will return the first day of each month (\code{freq=12}) and the Monday of each week (\code{freq=52}), respectively.} \item{frequency}{\code{signature(x = "sts")}: extract the \code{freq} slot.} \item{start}{\code{signature(x = "sts")}: extract the \code{start} slot.} \item{observed}{\code{signature(x = "sts")}: extract the \code{observed} slot.} \item{alarms}{\code{signature(x = "sts")}: extract the \code{alarm} slot.} \item{upperbound}{\code{signature(x = "sts")}: extract the \code{upperbound} slot.} \item{neighbourhood}{\code{signature(x = "sts")}: extract the \code{neighbourhood} slot.} \item{population}{\code{signature(x = "sts")}: extract the \code{populationFrac} slot.} \item{control}{\code{signature(x = "sts")}: extract the \code{control} slot.} \item{multinomialTS}{\code{signature(x = "sts")}: extract the \code{multinomialTS} slot.} } } \subsection{Other extraction methods}{ \describe{ \item{dim}{\code{signature(x = "sts")}: extract matrix dimensions of \code{observed}. This method also enables \code{nrow(x)} and \code{ncol(x)}.} \item{dimnames}{\code{signature(x = "sts")}: extract the \code{\link{dimnames}} of the \code{observed} matrix. This method also enables \code{rownames(x)} and \code{colnames(x)}.} \item{year}{\code{signature(x = "sts")}: extract the corresponding year of each observation.} \item{epochInYear}{\code{signature(x = "sts")}: extract the epoch number within the year.} \item{[}{\code{signature(x = "sts")}: subset rows (time points) and/or columns (units), see \code{help("\link{[,sts-method}")}.} } } \subsection{Transformation methods}{ \describe{ \item{aggregate}{\code{signature(x = "sts")}: see \code{\link{aggregate.sts}}.} \item{as.data.frame}{\code{signature(x = "sts")}: the default \code{as.data.frame} call will collect the following slots into a data frame: \code{observed}, \code{epoch}, \code{state}, \code{alarm}, \code{upperbound}, and \code{populationFrac}. Additional columns will be created for \code{freq} (potentially varying by year for weekly or daily data if \code{x@epochAsDate} is \code{TRUE}) and \code{epochInPeriod} (the epoch fraction within the current year).\cr Calling the \code{as.data.frame} method with the argument \code{tidy = TRUE} will return \code{\link{tidy.sts}(x)}, which reshapes multivariate \code{sts} objects to the \dQuote{long} format (one row per epoch and observational unit). The tidy format is particularly useful for standard regression models and customized plotting.} \item{coerce}{\code{signature(from="sts", to="ts")} and \code{signature(from="ts", to="sts")}, to be called via \code{as(stsObj, "ts")} (or \code{as.ts(stsObj)}) and \code{as(tsObj, "sts")}, respectively.} \item{as.xts}{convert to the \CRANpkg{xts} package format.} } } \subsection{Visualization methods}{ \describe{ \item{plot}{\code{signature(x = "sts", y = "missing")}: entry point to a collection of plot variants. The \code{type} of plot is specified using a formula, see \code{\link{plot.sts}} for details.} \item{autoplot}{a \CRANpkg{ggplot2} variant of the standard time-series-type plot, see \code{\link{autoplot.sts}}.} \item{animate}{see \code{\link{animate.sts}}.} \item{toLatex}{see \code{\link{toLatex.sts}}.} } } } \author{Michael \enc{Höhle}{Hoehle} and Sebastian Meyer} \examples{ showClass("sts") ## create an sts object from time-series data salmonellaDF <- read.table(system.file("extdata/salmonella.agona.txt", package = "surveillance"), header = TRUE) str(salmonellaDF) salmonella <- with(salmonellaDF, sts(observed = observed, state = state, start = c(1990, 1), frequency = 52)) salmonella plot(salmonella) ## these data are also available as a legacy "disProg" object in the package data(salmonella.agona) stopifnot(all.equal(salmonella, disProg2sts(salmonella.agona))) ## A typical dataset with weekly counts of measles from several districts data("measlesWeserEms") measlesWeserEms ## reconstruct data("measlesWeserEms") from its components counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- population(measlesWeserEms) weserems_nbOrder <- neighbourhood(measlesWeserEms) ## orders of adjacency can also be determined from the map if (requireNamespace("spdep")) { stopifnot(identical(weserems_nbOrder, nbOrder(poly2adjmat(map)))) } mymeasles <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) stopifnot(identical(mymeasles, measlesWeserEms)) ## convert ts/mts object to sts z <- ts(matrix(rpois(300,10), 100, 3), start = c(1961, 1), frequency = 12) z.sts <- as(z, "sts") plot(z.sts) ## conversion of "sts" objects to the quasi-standard "xts" class if (requireNamespace("xts")) { z.xts <- as.xts.sts(z.sts) plot(z.xts) } } \keyword{classes} \keyword{ts} \keyword{methods} surveillance/man/stsBP-class.Rd0000644000176200001440000000203014221271063016137 0ustar liggesusers\name{stsBP-class} \docType{class} \alias{stsBP-class} \alias{coerce,sts,stsBP-method} \encoding{latin1} \title{Class "stsBP" -- a class inheriting from class \code{sts} which allows the user to store the results of back-projecting or nowcasting surveillance time series} \description{ A class inheriting from class \code{sts}, but with additional slots to store the result and associated confidence intervals from back projection of a \code{sts} object. } \section{Slots}{ The slots are as for \code{"\linkS4class{sts}"}. However, two additional slots exists. \describe{ \item{\code{ci}:}{An array containing the upper and lower limit of the confidence interval.} \item{\code{lambda}:}{Back projection component} } } \section{Methods}{ The methods are the same as for \code{"\linkS4class{sts}"}. \describe{ \item{coerce}{\code{signature(from = "sts", to = "stsBP")}: convert an object of class \code{sts} to class \code{stsBP}. } } } \author{M. \enc{Höhle}{Hoehle}} \keyword{classes} surveillance/man/earsC.Rd0000644000176200001440000001767214662137762015100 0ustar liggesusers\name{earsC} \alias{earsC} \encoding{latin1} \title{Surveillance for a count data time series using the EARS C1, C2 or C3 method and its extensions} \description{ % The function takes \code{range} values of the surveillance time series \code{sts} and for each time point computes a threshold for the number of counts based on values from the recent past. This is then compared to the observed number of counts. If the observation is above a specific quantile of the prediction interval, then an alarm is raised. This method is especially useful for data without many historic values, since it only needs counts from the recent past. % } \usage{ earsC(sts, control = list(range = NULL, method = "C1", baseline = 7, minSigma = 0, alpha = 0.001)) } \arguments{ \item{sts}{object of class sts (including the \code{observed} and the \code{state} time series) , which is to be monitored.} \item{control}{Control object \describe{ \item{\code{range}}{Specifies the index in the \code{sts} object of all the timepoints which should be monitored. If \code{range} is \code{NULL} the maximum number of possible timepoints is used (this number depends on the method chosen): \describe{ \item{C1}{all timepoints from the observation with index \code{baseline + 1} can be monitored,} \item{C2}{timepoints from index \code{baseline + 3} can be monitored,} \item{C3}{timepoints starting from the index \code{baseline + 5} can be monitored.} } } \item{\code{method}}{String indicating which method to use: \cr \describe{ \item{\code{"C1"}}{for EARS C1-MILD method (Default),} \item{\code{"C2"}}{for EARS C2-MEDIUM method,} \item{\code{"C3"}}{for EARS C3-HIGH method.} } See Details for further information about the methods. } \item{\code{baseline}}{how many time points to use for calculating the baseline, see details} \item{\code{minSigma}}{By default 0. If \code{minSigma} is higher than 0, for C1 and C2, the quantity zAlpha * minSigma is then the alerting threshold if the baseline is zero. Howard Burkom suggests using a value of 0.5 or 1 for sparse data.} \item{\code{alpha}}{An approximate (two-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated. By default if \code{alpha} is \code{NULL} the value 0.001 is assumed for C1 and C2 whereas 0.025 is assumed for C3. These different choices are the one made at the CDC.} % } } } \details{ The three methods are different in terms of baseline used for calculation of the expected value and in terms of method for calculating the expected value: \itemize{ \item in C1 and C2 the expected value is the moving average of counts over the sliding window of the baseline and the prediction interval depends on the standard derivation of the observed counts in this window. They can be considered as Shewhart control charts with a small sample used for calculations. \item in C3 the expected value is based on the sum over 3 timepoints (assessed timepoints and the two previous timepoints) of the discrepancy between observations and predictions, predictions being calculated with the C2 method. This method has similarities with a CUSUM method due to it adding discrepancies between predictions and observations over several timepoints, but is not a CUSUM (sum over 3 timepoints, not accumulation over a whole range), even if it sometimes is presented as such. } Here is what the function does for each method, see the literature sources for further details: \enumerate{ \item For C1 the baseline are the \code{baseline} (default 7) timepoints before the assessed timepoint t, t-\code{baseline} to t-1. The expected value is the mean of the baseline. An approximate (two-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated based on the assumption that the difference between the expected value and the observed value divided by the standard derivation of counts over the sliding window, called \eqn{C_1(t)}, follows a standard normal distribution in the absence of outbreaks: \deqn{C_1(t)= \frac{Y(t)-\bar{Y}_1(t)}{S_1(t)},} where \deqn{\bar{Y}_1(t)= \frac{1}{\code{baseline}} \sum_{i=t-1}^{t-\code{baseline}} Y(i)} and \deqn{ S^2_1(t)= \frac{1}{6} \sum_{i=t-1}^{t-\code{baseline}} [Y(i) - \bar{Y}_1(i)]^2.} Then under the null hypothesis of no outbreak, \deqn{C_1(t) \mathcal \> \sim \> {N}(0,1)} An alarm is raised if \deqn{C_1(t)\ge z_{1-\alpha}} with \eqn{z_{1-\alpha}} the \eqn{(1-\alpha)^{th}} quantile of the standard normal distribution. \cr The upperbound \eqn{U_1(t)} is then defined by: \deqn{U_1(t)= \bar{Y}_1(t) + z_{1-\alpha}S_1(t).} \item C2 is very similar to C1 apart from a 2-day lag in the baseline definition. In other words the baseline for C2 is \code{baseline} (Default: 7) timepoints with a 2-day lag before the monitored timepoint t, i.e. \eqn{(t-\code{baseline}-2)} to \eqn{t-3}. The expected value is the mean of the baseline. An approximate (two-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated based on the assumption that the difference between the expected value and the observed value divided by the standard derivation of counts over the sliding window, called \eqn{C_2(t)}, follows a standard normal distribution in the absence of outbreaks: \deqn{C_2(t)= \frac{Y(t)-\bar{Y}_2(t)}{S_2(t)},} where \deqn{\bar{Y}_2(t)= \frac{1}{\code{baseline}} \sum_{i=t-3}^{t-\code{baseline}-2} Y(i)} and \deqn{ S^2_2(t)= \frac{1}{\code{baseline}-1} \sum_{i=t-3}^{t-\code{baseline}-2} [Y(i) - \bar{Y}_2(i)]^2.} Then under the null hypothesis of no outbreak, \deqn{C_2(t) \mathcal \sim {N}(0,1)} An alarm is raised if \deqn{C_2(t)\ge z_{1-\alpha},} with \eqn{z_{1-\alpha}} the \eqn{(1-\alpha)^{th}} quantile of the standard normal distribution. \cr The upperbound \eqn{U_{2}(t)} is then defined by: \deqn{U_{2}(t)= \bar{Y}_{2}(t) + z_{1-\alpha}S_{2}(t).} \item C3 is quite different from the two other methods, but it is based on C2. Indeed it uses \eqn{C_2(t)} from timepoint t and the two previous timepoints. This means the baseline consists of the timepoints \eqn{t-(\code{baseline}+4)} to \eqn{t-3}. The statistic \eqn{C_3(t)} is the sum of discrepancies between observations and predictions. \deqn{C_3(t)= \sum_{i=t}^{t-2} \max(0,C_2(i)-1)} Then under the null hypothesis of no outbreak, \deqn{C_3(t) \mathcal \sim {N}(0,1)} An alarm is raised if \deqn{C_3(t)\ge z_{1-\alpha},} with \eqn{z_{1-\alpha}} the \eqn{(1-\alpha)^{th}} quantile of the standard normal distribution. \cr The upperbound \eqn{U_3(t)} is then defined by: \deqn{U_3(t)= \bar{Y}_2(t) + S_2(t)\left(z_{1-\alpha}-\sum_{i=t-1}^{t-2} \max(0,C_2(i)-1)\right).} } } \value{ An object of class \code{sts} with the slots \code{upperbound} and \code{alarm} filled by the chosen method. } \examples{ #Sim data and convert to sts object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) stsObj <- disProg2sts( disProgObj) # Call earsC function and show result res1 <- earsC(stsObj, control = list(range = 20:208, method="C1")) plot(res1, legend.opts=list(horiz=TRUE, x="topright")) # Compare C3 upperbounds depending on alpha res3 <- earsC(stsObj, control = list(range = 20:208,method="C3",alpha = 0.001)) plot(upperbound(res3), type='l') res3 <- earsC(stsObj, control = list(range = 20:208,method="C3")) lines(upperbound(res3), col='red') } \author{M. Salmon, H. Burkom} \keyword{classif} \source{ Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/addFormattedXAxis.Rd0000644000176200001440000000637413234140561017374 0ustar liggesusers\encoding{latin1} \name{addFormattedXAxis} \alias{addFormattedXAxis} % helper functions for time axis formatting \alias{atChange} \alias{at2ndChange} \alias{atMedian} \title{ Formatted Time Axis for \code{"sts"} Objects } \description{ Add a nicely formatted x-axis to time series plots related to the \code{"\linkS4class{sts}"} class. This utility function is, e.g., used by \code{\link{stsplot_time1}} and \code{\link{plotHHH4_fitted1}}. } \usage{ addFormattedXAxis(x, epochsAsDate = FALSE, xaxis.tickFreq = list("\%Q"=atChange), xaxis.labelFreq = xaxis.tickFreq, xaxis.labelFormat = "\%G\n\n\%OQ", ...) } \arguments{ \item{x}{ an object of class \code{"\linkS4class{sts}"}. } \item{epochsAsDate}{ a logical indicating if the old (\code{FALSE}) or the new (\code{TRUE}) and more flexible implementation should be used. The \code{xaxis.*} arguments are only relevant for the new implementation \code{epochsAsDate = TRUE}. } \item{xaxis.labelFormat,xaxis.tickFreq,xaxis.labelFreq}{ see the details below. } \item{\dots}{ further arguments passed to \code{\link{axis}}. } } \details{ The setting \code{epochsAsDate = TRUE} enables very flexible formatting of the x-axis and its annotations using the \code{xaxis.tickFreq}, \code{xaxis.labelFreq} and \code{xaxis.labelFormat} arguments. The first two are named lists containing pairs with the \emph{name} being a \code{\link{strftime}} single conversion specification and the second part is a function which based on this conversion returns a subset of the rows in the \code{sts} objects. The subsetting function has the following header: \code{function(x,xm1)}, where \code{x} is a vector containing the result of applying the conversion in \code{name} to the epochs of the \code{sts} object and \code{xm1} is the scalar result when applying the conversion to the natural element just before the first epoch. Please note that the input to the subsetting function is converted using \code{as.numeric} before calling the function. Hence, the conversion specification needs to result in a string convertible to integer. Three predefined subsetting functions exist: \code{atChange}, \code{at2ndChange} and \code{atMedian}, which are used to make a tick at each (each 2nd for \code{at2ndChange}) change and at the median index computed on all having the same value, respectively: \preformatted{ atChange <- function(x,xm1) which(diff(c(xm1,x)) != 0) at2ndChange <- function(x,xm1) which(diff(c(xm1,x) \%/\% 2) != 0) atMedian <- function(x,xm1) tapply(seq_along(x), INDEX=x, quantile, prob=0.5, type=3) } By defining own functions here, one can obtain an arbitrary degree of flexibility. Finally, \code{xaxis.labelFormat} is a \code{\link{strftime}} compatible formatting string., e.g. the default value is \code{"\%G\\n\\n\%OQ"}, which means ISO year and quarter (in roman letters) stacked on top of each other. } \value{ \code{NULL} (invisibly). The function is called for its side effects. } \author{ Michael H\enc{ö}{oe}hle with contributions by Sebastian Meyer } \seealso{ the examples in \code{\link{stsplot_time1}} and \code{\link{plotHHH4_fitted1}} } \keyword{aplot} surveillance/man/algo.rki.Rd0000644000176200001440000000765014662137762015544 0ustar liggesusers\name{algo.rki} \alias{algo.rkiLatestTimepoint} \alias{algo.rki} \alias{algo.rki1} \alias{algo.rki2} \alias{algo.rki3} \encoding{latin1} \title{The system used at the RKI} \description{ Evaluation of timepoints with the detection algorithms used by the RKI } \usage{ algo.rkiLatestTimepoint(disProgObj, timePoint = NULL, control = list(b = 2, w = 4, actY = FALSE)) algo.rki(disProgObj, control = list(range = range, b = 2, w = 4, actY = FALSE)) algo.rki1(disProgObj, control = list(range = range)) algo.rki2(disProgObj, control = list(range = range)) algo.rki3(disProgObj, control = list(range = range)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{timePoint}{time point which should be evaluated in \code{algo.rkiLatestTimepoint}. The default is to use the latest timepoint.} \item{control}{control object: \code{range} determines the desired timepoints which should be evaluated, \code{b} describes the number of years to go back for the reference values, \code{w} is the half window width for the reference values around the appropriate timepoint and \code{actY} is a boolean to decide if the year of \code{timePoint} also spend \code{w} reference values of the past. As default \code{b}, \code{w}, \code{actY} are set for the RKI 3 system. } } \value{ \code{algo.rkiLatestTimepoint} returns a list of class \code{survRes} (surveillance result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing an outbreak, the threshold value for recognizing the alarm and the input object of class disProg. \code{algo.rki} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range}, the vector of threshold values for every timepoint in \code{range} for the system specified by \code{b}, \code{w} and \code{actY}, the range and the input object of class disProg. \code{algo.rki1} returns the same for the RKI 1 system, \code{algo.rki2} for the RKI 2 system and \code{algo.rki3} for the RKI 3 system. } \details{ Using the reference values for calculating an upper limit (threshold), alarm is given if the actual value is bigger than a computed threshold. \code{algo.rki} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} and for the system specified in \code{control}. \code{algo.rki1} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} for the RKI 1 system. \code{algo.rki2} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} for the RKI 2 system. \code{algo.rki3} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} for the RKI 3 system. \itemize{ \item \code{"RKI 1"} reference values from 6 weeks ago \item \code{"RKI 2"} reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical around the comparable week). \item \code{"RKI 3"} 18 reference values. 9 from the year ago and 9 from two years ago (also symmetrical around the comparable week). } } \seealso{ \code{\link{algo.bayesLatestTimepoint}} and \code{\link{algo.bayes}} for the Bayes system. } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, Christian Lang} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Test week 200 to 208 for outbreaks with a selfdefined rki algo.rki(disProgObj, control = list(range = 200:208, b = 1, w = 5, actY = TRUE)) # The same for rki 1 to rki 3 algo.rki1(disProgObj, control = list(range = 200:208)) algo.rki2(disProgObj, control = list(range = 200:208)) algo.rki3(disProgObj, control = list(range = 200:208)) # Test for rki 1 the latest timepoint algo.rkiLatestTimepoint(disProgObj) } \keyword{classif} surveillance/man/hhh4.Rd0000644000176200001440000005660014667617354014675 0ustar liggesusers\encoding{latin1} \name{hhh4} \alias{hhh4} \title{Fitting HHH Models with Random Effects and Neighbourhood Structure} \description{ Fits an autoregressive Poisson or negative binomial model to a univariate or multivariate time series of counts. The characteristic feature of \code{hhh4} models is the additive decomposition of the conditional mean into \emph{epidemic} and \emph{endemic} components (Held et al, 2005). Log-linear predictors of covariates and random intercepts are allowed in all components; see the Details below. A general introduction to the \code{hhh4} modelling approach and its implementation is given in the \code{vignette("hhh4")}. Meyer et al (2017, Section 5, available as \code{vignette("hhh4_spacetime")}) describe \code{hhh4} models for areal time series of infectious disease counts. } \usage{ hhh4(stsObj, control = list( ar = list(f = ~ -1, offset = 1, lag = 1), ne = list(f = ~ -1, offset = 1, lag = 1, weights = neighbourhood(stsObj) == 1, scale = NULL, normalize = FALSE), end = list(f = ~ 1, offset = 1), family = c("Poisson", "NegBin1", "NegBinM"), subset = 2:nrow(stsObj), optimizer = list(stop = list(tol=1e-5, niter=100), regression = list(method="nlminb"), variance = list(method="nlminb")), verbose = FALSE, start = list(fixed=NULL, random=NULL, sd.corr=NULL), data = list(t = stsObj@epoch - min(stsObj@epoch)), keep.terms = FALSE ), check.analyticals = FALSE) } \arguments{ \item{stsObj}{object of class \code{"\linkS4class{sts}"} containing the (multivariate) count data time series.} \item{control}{a list containing the model specification and control arguments: \describe{ \item{\code{ar}}{Model for the autoregressive component given as list with the following components: \describe{ \item{f = ~ -1}{a formula specifying \eqn{\log(\lambda_{it})}{log(\lambda_it)}} \item{offset = 1}{optional multiplicative offset, either 1 or a matrix of the same dimension as \code{observed(stsObj)}} \item{lag = 1}{a positive integer meaning autoregression on \eqn{y_{i,t-lag}}} } } \item{\code{ne}}{Model for the neighbour-driven component given as list with the following components: \describe{ \item{f = ~ -1}{a formula specifying \eqn{\log(\phi_{it})}{log(\phi_it)}} \item{offset = 1}{optional multiplicative offset, either 1 or a matrix of the same dimension as \code{observed(stsObj)}} \item{lag = 1}{a non-negative integer meaning dependency on \eqn{y_{j,t-lag}}} \item{weights = neighbourhood(stsObj) == 1}{ neighbourhood weights \eqn{w_{ji}}{w_ji}. The default corresponds to the original formulation by Held et al (2005), i.e., the spatio-temporal component incorporates an unweighted sum over the lagged cases of the first-order neighbours. See Paul et al (2008) and Meyer and Held (2014) for alternative specifications, e.g., \code{\link{W_powerlaw}}. Time-varying weights are possible by specifying an array of \code{dim()} \code{c(nUnits, nUnits, nTime)}, where \code{nUnits=ncol(stsObj)} and \code{nTime=nrow(stsObj)}.} \item{scale = NULL}{ optional matrix of the same dimensions as \code{weights} (or a vector of length \code{ncol(stsObj)}) to scale the \code{weights} to \code{scale * weights}. } \item{normalize = FALSE}{ logical indicating if the (scaled) \code{weights} should be normalized such that each row sums to 1. } } } \item{\code{end}}{Model for the endemic component given as list with the following components \describe{ \item{f = ~ 1}{a formula specifying \eqn{\log(\nu_{it})}{log(\nu_it)}} \item{offset = 1}{optional multiplicative offset \eqn{e_{it}}{e_it}, either 1 or a matrix of the same dimension as \code{observed(stsObj)}} } } \item{\code{family}}{Distributional family -- either \code{"Poisson"}, or the Negative Binomial distribution. For the latter, the overdispersion parameter can be assumed to be the same for all units (\code{"NegBin1"}), to vary freely over all units (\code{"NegBinM"}), or to be shared by some units (specified by a factor of length \code{ncol(stsObj)} such that its number of levels determines the number of overdispersion parameters). Note that \code{"NegBinM"} is equivalent to \code{factor(colnames(stsObj), levels = colnames(stsObj))}. } \item{\code{subset}}{Typically \code{2:nrow(obs)} if model contains autoregression} \item{\code{optimizer}}{a list of three lists of control arguments. The \code{"stop"} list specifies two criteria for the outer optimization of regression and variance parameters: the relative \code{tol}erance for parameter change using the criterion \code{max(abs(x[i+1]-x[i])) / max(abs(x[i]))}, and the maximum number \code{niter} of outer iterations. Control arguments for the single optimizers are specified in the lists named \code{"regression"} and \code{"variance"}. \code{method="nlminb"} is the default optimizer for both (taking advantage of the analytical Fisher information matrices), however, the \code{method}s from \code{\link{optim}} may also be specified (as well as \code{"\link{nlm}"} but that one is not recommended here). Especially for the variance updates, Nelder-Mead optimization (\code{method="Nelder-Mead"}) is an attractive alternative. All other elements of these two lists are passed as \code{control} arguments to the chosen \code{method}, e.g., if \code{method="nlminb"}, adding \code{iter.max=50} increases the maximum number of inner iterations from 20 (default) to 50. For \code{method="Nelder-Mead"}, the respective argument is called \code{maxit} and defaults to 500. } \item{\code{verbose}}{non-negative integer (usually in the range \code{0:3}) specifying the amount of tracing information to be output during optimization.} \item{\code{start}}{a list of initial parameter values replacing initial values set via \code{\link{fe}} and \code{\link{ri}}. Since \pkg{surveillance} 1.8-2, named vectors are matched against the coefficient names in the model (where unmatched start values are silently ignored), and need not be complete, e.g., \code{start = list(fixed = c("-log(overdisp)" = 0.5))} (default: 2) for a \code{family = "NegBin1"} model. In contrast, an unnamed start vector must specify the full set of parameters as used by the model.} \item{\code{data}}{a named list of covariates that are to be included as fixed effects (see \code{\link{fe}}) in any of the 3 component formulae. By default, the time variable \code{t} is available and used for seasonal effects created by \code{\link{addSeason2formula}}. In general, covariates in this list can be either vectors of length \code{nrow(stsObj)} interpreted as time-varying but common across all units, or matrices of the same dimension as the disease counts \code{observed(stsObj)}.} \item{\code{keep.terms}}{logical indicating if the terms object used in the fit is to be kept as part of the returned object. This is usually not necessary, since the terms object is reconstructed by the \code{\link{terms}}-method for class \code{"hhh4"} if necessary (based on \code{stsObj} and \code{control}, which are both part of the returned \code{"hhh4"} object).} } The auxiliary function \code{\link{makeControl}} might be useful to create such a list of control parameters. } \item{check.analyticals}{logical (or a subset of \code{c("numDeriv", "maxLik")}), indicating if (how) the implemented analytical score vector and Fisher information matrix should be checked against numerical derivatives at the parameter starting values, using the packages \pkg{numDeriv} and/or \pkg{maxLik}. If activated, \code{hhh4} will return a list containing the analytical and numerical derivatives for comparison (no ML estimation will be performed). This is mainly intended for internal use by the package developers.} } \value{ \code{hhh4} returns an object of class \code{"hhh4"}, which is a list containing the following components: \item{coefficients}{named vector with estimated (regression) parameters of the model} \item{se}{estimated standard errors (for regression parameters)} \item{cov}{covariance matrix (for regression parameters)} \item{Sigma}{estimated variance-covariance matrix of random effects} \item{Sigma.orig}{estimated variance parameters on internal scale used for optimization} \item{Sigma.cov}{inverse of marginal Fisher information (on internal scale), i.e., the asymptotic covariance matrix of \code{Sigma.orig}} \item{call}{ the matched call } \item{dim}{ vector with number of fixed and random effects in the model } \item{loglikelihood}{(penalized) loglikelihood evaluated at the MLE} \item{margll}{ (approximate) log marginal likelihood should the model contain random effects } \item{convergence}{logical. Did optimizer converge?} \item{fitted.values}{fitted mean values \eqn{\mu_{i,t}}{\mu_it}} \item{control}{control object of the fit} \item{terms}{the terms object used in the fit if \code{keep.terms = TRUE} and \code{NULL} otherwise} \item{stsObj}{ the supplied \code{stsObj} } \item{lags}{named integer vector of length two containing the lags used for the epidemic components \code{"ar"} and \code{"ne"}, respectively. The corresponding lag is \code{NA} if the component was not included in the model.} \item{nObs}{number of observations used for fitting the model} \item{nTime}{ number of time points used for fitting the model } \item{nUnit}{ number of units (e.g. areas) used for fitting the model} \item{runtime}{the \code{\link{proc.time}}-queried time taken to fit the model, i.e., a named numeric vector of length 5 of class \code{"proc_time"}} } \details{ An endemic-epidemic multivariate time-series model for infectious disease counts \eqn{Y_{it}}{Y_it} from units \eqn{i=1,\dots,I} during periods \eqn{t=1,\dots,T} was proposed by Held et al (2005) and was later extended in a series of papers (Paul et al, 2008; Paul and Held, 2011; Held and Paul, 2012; Meyer and Held, 2014). In its most general formulation, this so-called \code{hhh4} (or HHH or \eqn{H^3} or triple-H) model assumes that, conditional on past observations, \eqn{Y_{it}}{Y_it} has a Poisson or negative binomial distribution with mean \deqn{\mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j\neq i} w_{ji} y_{j,t-1} + e_{it} \nu_{it} }{% \mu_it = \lambda_it y_i,t-1 + \phi_it sum_(j != i) w_ji y_j,t-1 + e_it \nu_it } In the case of a negative binomial model, the conditional variance is \eqn{\mu_{it}(1+\psi_i\mu_{it})}{\mu_it(1+\psi_i*\mu_it)} with overdispersion parameters \eqn{\psi_i > 0} (possibly shared across different units, e.g., \eqn{\psi_i\equiv\psi}{\psi_i=\psi}). Univariate time series of counts \eqn{Y_t} are supported as well, in which case \code{hhh4} can be regarded as an extension of \code{\link[MASS]{glm.nb}} to account for autoregression. See the Examples below for a comparison of an endemic-only \code{hhh4} model with a corresponding \code{glm.nb}. The three unknown quantities of the mean \eqn{\mu_{it}}{\mu_it}, \itemize{ \item \eqn{\lambda_{it}}{\lambda_it} in the autoregressive (\code{ar}) component, \item \eqn{\phi_{it}}{\phi_it} in the neighbour-driven (\code{ne}) component, and \item \eqn{\nu_{it}}{\nu_it} in the endemic (\code{end}) component, } are log-linear predictors incorporating time-/unit-specific covariates. They may also contain unit-specific random intercepts as proposed by Paul and Held (2011). The endemic mean is usually modelled proportional to a unit-specific offset \eqn{e_{it}}{e_it} (e.g., population numbers or fractions); it is possible to include such multiplicative offsets in the epidemic components as well. The \eqn{w_{ji}}{w_ji} are transmission weights reflecting the flow of infections from unit \eqn{j} to unit \eqn{i}. If weights vary over time (prespecified as a 3-dimensional array \eqn{(w_{jit})}{(w_jit)}), the \code{ne} sum in the mean uses \eqn{w_{jit} y_{j,t-1}}{w_jit y_j,t-1}. In spatial \code{hhh4} applications, the \dQuote{units} refer to geographical regions and the weights could be derived from movement network data. Alternatively, the weights \eqn{w_{ji}}{w_ji} can be estimated parametrically as a function of adjacency order (Meyer and Held, 2014), see \code{\link{W_powerlaw}}. (Penalized) Likelihood inference for such \code{hhh4} models has been established by Paul and Held (2011) with extensions for parametric neighbourhood weights by Meyer and Held (2014). Supplied with the analytical score function and Fisher information, the function \code{hhh4} by default uses the quasi-Newton algorithm available through \code{\link{nlminb}} to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. } \seealso{ See the special functions \code{\link{fe}}, \code{\link{ri}} and the examples below for how to specify unit-specific effects. Further details on the modelling approach and illustrations of its implementation can be found in \code{vignette("hhh4")} and \code{vignette("hhh4_spacetime")}. } \author{Michaela Paul, Sebastian Meyer, Leonhard Held} \examples{ ###################### ## Univariate examples ###################### ### weekly counts of salmonella agona cases, UK, 1990-1995 data("salmonella.agona") ## convert old "disProg" to new "sts" data class salmonella <- disProg2sts(salmonella.agona) salmonella plot(salmonella) ## generate formula for an (endemic) time trend and seasonality f.end <- addSeason2formula(f = ~1 + t, S = 1, period = 52) f.end ## specify a simple autoregressive negative binomial model model1 <- list(ar = list(f = ~1), end = list(f = f.end), family = "NegBin1") ## fit this model to the data res <- hhh4(salmonella, model1) ## summarize the model fit summary(res, idx2Exp=1, amplitudeShift=TRUE, maxEV=TRUE) plot(res) plot(res, type = "season", components = "end") ### weekly counts of meningococcal infections, Germany, 2001-2006 data("influMen") fluMen <- disProg2sts(influMen) meningo <- fluMen[, "meningococcus"] meningo plot(meningo) ## again a simple autoregressive NegBin model with endemic seasonality meningoFit <- hhh4(stsObj = meningo, control = list( ar = list(f = ~1), end = list(f = addSeason2formula(f = ~1, S = 1, period = 52)), family = "NegBin1" )) summary(meningoFit, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE) plot(meningoFit) plot(meningoFit, type = "season", components = "end") ######################## ## Multivariate examples ######################## ### bivariate analysis of influenza and meningococcal infections ### (see Paul et al, 2008) plot(fluMen, same.scale = FALSE) ## Fit a negative binomial model with ## - autoregressive component: disease-specific intercepts ## - neighbour-driven component: only transmission from flu to men ## - endemic component: S=3 and S=1 sine/cosine pairs for flu and men, respectively ## - disease-specific overdispersion WfluMen <- neighbourhood(fluMen) WfluMen["meningococcus","influenza"] <- 0 WfluMen f.end_fluMen <- addSeason2formula(f = ~ -1 + fe(1, which = c(TRUE, TRUE)), S = c(3, 1), period = 52) f.end_fluMen fluMenFit <- hhh4(fluMen, control = list( ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, weights = WfluMen), end = list(f = f.end_fluMen), family = "NegBinM")) summary(fluMenFit, idx2Exp=1:3) plot(fluMenFit, type = "season", components = "end", unit = 1) plot(fluMenFit, type = "season", components = "end", unit = 2) \dontshow{ ## regression test for amplitude/shift transformation of sine-cosine pairs ## coefficients were wrongly matched in surveillance < 1.18.0 stopifnot(coef(fluMenFit, amplitudeShift = TRUE)["end.A(2 * pi * t/52).meningococcus"] == sqrt(sum(coef(fluMenFit)[paste0("end.", c("sin","cos"), "(2 * pi * t/52).meningococcus")]^2))) } ### weekly counts of measles, Weser-Ems region of Lower Saxony, Germany data("measlesWeserEms") measlesWeserEms plot(measlesWeserEms) # note the two districts with zero cases ## we could fit the same simple model as for the salmonella cases above model1 <- list( ar = list(f = ~1), end = list(f = addSeason2formula(~1 + t, period = 52)), family = "NegBin1" ) measlesFit <- hhh4(measlesWeserEms, model1) summary(measlesFit, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE) ## but we should probably at least use a population offset in the endemic ## component to reflect heterogeneous incidence levels of the districts, ## and account for spatial dependence (here just using first-order adjacency) measlesFit2 <- update(measlesFit, end = list(offset = population(measlesWeserEms)), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1)) summary(measlesFit2, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE) plot(measlesFit2, units = NULL, hide0s = TRUE) ## 'measlesFit2' corresponds to the 'measlesFit_basic' model in ## vignette("hhh4_spacetime"). See there for further analyses, ## including vaccination coverage as a covariate, ## spatial power-law weights, and random intercepts. \dontrun{ ### last but not least, a more sophisticated (and time-consuming) ### analysis of weekly counts of influenza from 140 districts in ### Southern Germany (originally analysed by Paul and Held, 2011, ### and revisited by Held and Paul, 2012, and Meyer and Held, 2014) data("fluBYBW") plot(fluBYBW, type = observed ~ time) plot(fluBYBW, type = observed ~ unit, ## mean yearly incidence per 100.000 inhabitants (8 years) population = fluBYBW@map$X31_12_01 / 100000 * 8) ## For the full set of models for data("fluBYBW") as analysed by ## Paul and Held (2011), including predictive model assessement ## using proper scoring rules, see the (computer-intensive) ## demo("fluBYBW") script: demoscript <- system.file("demo", "fluBYBW.R", package = "surveillance") demoscript #file.show(demoscript) ## Here we fit the improved power-law model of Meyer and Held (2014) ## - autoregressive component: random intercepts + S = 1 sine/cosine pair ## - neighbour-driven component: random intercepts + S = 1 sine/cosine pair ## + population gravity with normalized power-law weights ## - endemic component: random intercepts + trend + S = 3 sine/cosine pairs ## - random intercepts are iid but correlated between components f.S1 <- addSeason2formula( ~-1 + ri(type="iid", corr="all"), S = 1, period = 52) f.end.S3 <- addSeason2formula( ~-1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) ## for power-law weights, we need adjaceny orders, which can be ## computed from the binary adjacency indicator matrix nbOrder1 <- neighbourhood(fluBYBW) neighbourhood(fluBYBW) <- nbOrder(nbOrder1) ## full model specification fluModel <- list( ar = list(f = f.S1), ne = list(f = update.formula(f.S1, ~ . + log(pop)), weights = W_powerlaw(maxlag=max(neighbourhood(fluBYBW)), normalize = TRUE, log = TRUE)), end = list(f = f.end.S3, offset = population(fluBYBW)), family = "NegBin1", data = list(pop = population(fluBYBW)), optimizer = list(variance = list(method = "Nelder-Mead")), verbose = TRUE) ## CAVE: random effects considerably increase the runtime of model estimation ## (It is usually advantageous to first fit a model with simple intercepts ## to obtain reasonable start values for the other parameters.) set.seed(1) # because random intercepts are initialized randomly fluFit <- hhh4(fluBYBW, fluModel) summary(fluFit, idx2Exp = TRUE, amplitudeShift = TRUE) plot(fluFit, type = "fitted", total = TRUE) plot(fluFit, type = "season") range(plot(fluFit, type = "maxEV")) plot(fluFit, type = "maps", prop = TRUE) gridExtra::grid.arrange( grobs = lapply(c("ar", "ne", "end"), function (comp) plot(fluFit, type = "ri", component = comp, main = comp, exp = TRUE, sub = "multiplicative effect")), nrow = 1, ncol = 3) plot(fluFit, type = "neweights", xlab = "adjacency order") } ######################################################################## ## An endemic-only "hhh4" model can also be estimated using MASS::glm.nb ######################################################################## ## weekly counts of measles, Weser-Ems region of Lower Saxony, Germany data("measlesWeserEms") ## fit an endemic-only "hhh4" model ## with time covariates and a district-specific offset hhh4fit <- hhh4(measlesWeserEms, control = list( end = list(f = addSeason2formula(~1 + t, period = frequency(measlesWeserEms)), offset = population(measlesWeserEms)), ar = list(f = ~-1), ne = list(f = ~-1), family = "NegBin1", subset = 1:nrow(measlesWeserEms) )) summary(hhh4fit) ## fit the same model using MASS::glm.nb measlesWeserEmsData <- as.data.frame(measlesWeserEms, tidy = TRUE) measlesWeserEmsData$t <- c(hhh4fit$control$data$t) glmnbfit <- MASS::glm.nb( update(formula(hhh4fit)$end, observed ~ . + offset(log(population))), data = measlesWeserEmsData ) summary(glmnbfit) ## Note that the overdispersion parameter is parametrized inversely. ## The likelihood and point estimates are all the same. ## However, the variance estimates are different: in glm.nb, the parameters ## are estimated conditional on the overdispersion theta. \dontshow{ stopifnot( all.equal(logLik(hhh4fit), logLik(glmnbfit)), all.equal(1/coef(hhh4fit)[["overdisp"]], glmnbfit$theta, tolerance = 1e-6), all.equal(coef(hhh4fit)[1:4], coef(glmnbfit), tolerance = 1e-6, check.attributes = FALSE), sapply(c("deviance", "pearson", "response"), function (type) all.equal(c(residuals(hhh4fit, type = type)), residuals(glmnbfit, type = type), tolerance = 5e-6, check.attributes = FALSE)) ) } } \references{ Held, L., \enc{Höhle}{Hoehle}, M. and Hofmann, M. (2005): A statistical framework for the analysis of multivariate infectious disease surveillance counts. \emph{Statistical Modelling}, \bold{5} (3), 187-199. \doi{10.1191/1471082X05st098oa} Paul, M., Held, L. and Toschke, A. M. (2008): Multivariate modelling of infectious disease surveillance data. \emph{Statistics in Medicine}, \bold{27} (29), 6250-6267. \doi{10.1002/sim.4177} Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. \emph{Statistics in Medicine}, \bold{30} (10), 1118-1136. \doi{10.1002/sim.4177} Held, L. and Paul, M. (2012): Modeling seasonality in space-time infectious disease surveillance data. \emph{Biometrical Journal}, \bold{54} (6), 824-843. \doi{10.1002/bimj.201200037} Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \keyword{ts} \keyword{regression} surveillance/man/animate.Rd0000644000176200001440000000111113167111527015424 0ustar liggesusers\name{animate} \alias{animate} \title{ Generic animation of spatio-temporal objects } \description{ Generic function for animation of \R objects. } \usage{ animate(object, ...) } \arguments{ \item{object}{The object to animate.} \item{\dots}{ Arguments to be passed to methods, such as graphical parameters or time interval options for the snapshots. } } \seealso{ The methods \code{\link{animate.epidata}}, \code{\link{animate.epidataCS}}, and \code{\link{animate.sts}} for the animation of surveillance data. } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/sim.seasonalNoise.Rd0000644000176200001440000000335114615244470017413 0ustar liggesusers\name{sim.seasonalNoise} \alias{sim.seasonalNoise} \encoding{latin1} \title{Generation of Background Noise for Simulated Timeseries} \description{Generation of a cyclic model of a Poisson distribution as background data for a simulated timevector. The mean of the Poisson distribution is modelled as: \deqn{\mu = \exp(A \sin( frequency \cdot \omega \cdot (t + \phi)) + \alpha + \beta * t + K * state)}{% mu = exp(A * sin( frequency * omega * (t + phi)) + alpha + beta * t + K * state)} } \usage{ sim.seasonalNoise(A = 1, alpha = 1, beta = 0, phi = 0, length, frequency = 1, state = NULL, K = 0) } \arguments{ \item{A}{amplitude (range of sinus), default = 1.} \item{alpha}{parameter to move along the y-axis (negative values not allowed) with alpha > = A, default = 1.} \item{beta}{regression coefficient, default = 0.} \item{phi}{factor to create seasonal moves (moves the curve along the x-axis), default = 0.} \item{length}{number of weeks to model.} \item{frequency}{factor to determine the oscillation-frequency, default = 1.} \item{state}{if a state chain is entered the outbreaks will be additional weighted by K.} \item{K}{additional weight for an outbreak which influences the distribution parameter mu, default = 0.} } \value{ an object of class \code{seasonNoise} which includes the modelled timevector, the parameter \code{mu} and all input parameters. } \seealso{\code{\link{sim.pointSource}}} \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ season <- sim.seasonalNoise(length = 300) plot(season$seasonalBackground,type = "l") # use a negative timetrend beta season <- sim.seasonalNoise(beta = -0.003, length = 300) plot(season$seasonalBackground,type = "l") } \keyword{datagen} surveillance/man/epidataCS_plot.Rd0000644000176200001440000002174614665117445016732 0ustar liggesusers\name{epidataCS_plot} \alias{plot.epidataCS} \alias{epidataCSplot_time} \alias{epidataCSplot_space} \title{ Plotting the Events of an Epidemic over Time and Space } \description{ The \code{plot} method for class \code{"epidataCS"} either plots the number of events along the time axis (\code{epidataCSplot_time}) as a \code{hist()}, or the locations of the events in the observation region \code{W} (\code{epidataCSplot_space}). The spatial plot can be enriched with tile-specific color levels to indicate attributes such as the population (using \code{\link[sp]{spplot}}). } \usage{ \method{plot}{epidataCS}(x, aggregate = c("time", "space"), subset, by = type, ...) epidataCSplot_time(x, subset, by = type, t0.Date = NULL, breaks = "stgrid", freq = TRUE, col = rainbow(nTypes), cumulative = list(), add = FALSE, mar = NULL, xlim = NULL, ylim = NULL, xlab = "Time", ylab = NULL, main = NULL, panel.first = abline(h=axTicks(2), lty=2, col="grey"), legend.types = list(), ...) epidataCSplot_space(x, subset, by = type, tiles = x$W, pop = NULL, cex.fun = sqrt, points.args = list(), add = FALSE, legend.types = list(), legend.counts = list(), sp.layout = NULL, ...) } \arguments{ \item{x}{ an object of class \code{"\link{epidataCS}"}. } \item{aggregate}{ character, one of \code{"time"} and \code{"space"}, referring to the specific plot functions \code{epidataCSplot_time} and \code{epidataCSplot_time}, respectively. For \code{"time"}, the number of events over time is plotted as \code{\link{hist}} (or \code{\link{hist.Date}}). For \code{"space"}, the observation region \code{x$W} (or the \code{tiles}) and the locations of the events therein are plotted. } \item{subset}{ logical expression indicating a subset of events to consider for plotting: missing values are taken as false. Note that the expression is evaluated in the data frame of event marks (\code{marks(x)}), which means that column names can be referred to by name (like in \code{\link{subset.data.frame}}). } \item{\dots}{ in the basic \code{plot}-method further arguments are passed to the \code{aggregate}-specific plot function. In \code{epidataCSplot_time}, further graphical parameters are passed to \code{\link{hist}} or \code{\link{hist.Date}}, respectively. In \code{epidataCSplot_space}, further arguments are passed to the \code{plot}-method for \code{"\linkSPclass{SpatialPolygons}"}, which draws \code{tiles}. } \item{by}{an expression evaluated in \code{marks(x)}, defining how events should be stratified in the plot (the result is converted to a factor), or \code{NULL} to disregard event types. By default (\code{by = type}) the plot distinguishes between event types, i.e., the bars of the temporal plot are stacked by type, and the point colors in the spatial plot differ by type, respectively.\cr Note: to select specific event types for plotting use the \code{subset} argument, e.g., \code{subset=(type=="B")}.} \item{t0.Date}{the beginning of the observation period \code{t0 = x$stgrid$start[1]} as a \code{"\link{Date}"} (or anything coercible by \code{as.Date} without further arguments), enabling a nice x-axis using \code{\link{hist.Date}} and sensible \code{breaks} of the histogram, e.g., \code{breaks="months"}. The event times then equal \code{t0.Date + as.integer(x$events$time - t0)}, i.e. possible fractional parts of the event times are removed (which ensures that using \code{breaks = "months"} or other automatic types always works).} \item{breaks}{ a specification of the histogram break points, see \code{\link{hist}} (or \code{\link{hist.Date}} if \code{t0.Date} is used). The default value \code{"stgrid"} is special and means to use the temporal grid points \code{with(x$stgrid, c(start[1L], unique.default(stop)))} as breaks (or their \code{"Date"} equivalents). } \item{freq}{see \code{\link{hist}}, defaults to \code{TRUE}.} \item{col}{fill colour for the bars of the histogram, defaults to the vector of \code{\link{rainbow}} colours.} \item{cumulative}{if a list (of style options), lines for the cumulative number of events (per type) will be added to the plot. Possible options are \code{axis} (logical), \code{lab} (axis label), \code{maxat} (single integer affecting the axis range), \code{lwd}, \code{col}, and \code{offset} (a numeric vector of length the number of types).} \item{add}{logical (default: \code{FALSE}) indicating if the plot should be added to an existing window. Ignored if an \code{\link[sp]{spplot}} is created (if \code{pop} is non-\code{NULL}).} \item{mar}{see \code{\link{par}}. The default (\code{NULL}) is \code{mar <- par("mar")}, with \code{mar[4] <- mar[2]} if an axis is requested for the \code{cumulative} numbers.} \item{xlim,ylim}{\code{NULL} provides automatic axis limits.} \item{xlab,ylab}{axis labels (with sensible defaults).} \item{main}{main title of the plot (defaults to no title).} \item{panel.first}{expression that should be evaluated after the plotting window has been set up but before the histogram is plotted. Defaults to adding horizontal grid lines.} \item{legend.types}{if a list (of arguments for \code{\link{legend}}), a legend for the event types is added to the plot in case there is more than one type.} \item{tiles}{the observation region \code{x$W} (default) or, alternatively, a \code{"\linkSPclass{SpatialPolygons}"} representation of the tiles of \code{x$stgrid}.} \item{pop}{if \code{tiles} is a \code{"\linkSPclass{SpatialPolygonsDataFrame}"}, \code{pop} can specify an attribute to be displayed in a \code{levelplot} behind the point pattern, see \code{\link[sp]{spplot}}. By default (\code{NULL}), the conventional graphics system is used to display the \code{tiles} and event locations, otherwise the result is a \code{\link[lattice]{trellis.object}}.} \item{cex.fun}{function which takes a vector of counts of events at each unique location and returns a (vector of) \code{cex} value(s) for the sizes of the corresponding \code{points}. Defaults to the \code{sqrt()} function, which for the default circular \code{pch=1} means that the area of each point is proportional to the number of events at its location.} \item{points.args}{a list of (type-specific) graphical parameters for \code{\link{points}}, specifically \code{pch}, \code{lwd}, and \code{col}, which are all recycled to give the length \code{nlevels(x$events$type)}. In contrast, a possible \code{cex} element should be scalar (default: 0.5) and multiplies the sizes obtained from \code{cex.fun}.} \item{legend.counts}{if a list (of arguments for \code{\link{legend}}), a legend illustrating the effect of \code{cex.fun} is added to the plot. This list may contain a special element \code{counts}, which is an integer vector specifying the counts to illustrate.} \item{sp.layout}{optional list of additional layout items in case \code{pop} is non-\code{NULL}, see \code{\link[sp]{spplot}}.} } \value{ For \code{aggregate="time"} (i.e., \code{epidataCSplot_time}) the data of the histogram (as returned by \code{\link{hist}}), and for \code{aggregate="space"} (i.e., \code{epidataCSplot_space}) \code{NULL}, invisibly, or the \code{\link[lattice]{trellis.object}} generated by \code{\link[sp]{spplot}} (if \code{pop} is non-\code{NULL}). } \author{ Sebastian Meyer } \seealso{ \code{\link{animate.epidataCS}} } \examples{ data("imdepi") ## show the occurrence of events along time plot(imdepi, "time", main = "Histogram of event time points") plot(imdepi, "time", by = NULL, main = "Aggregated over both event types") ## show the distribution in space plot(imdepi, "space", lwd = 2, col = "lavender") ## with the district-specific population density in the background, ## a scale bar, and customized point style load(system.file("shapes", "districtsD.RData", package = "surveillance")) districtsD$log10popdens <- log10(districtsD$POPULATION/districtsD$AREA) keylabels <- (c(1,2,5) * rep(10^(1:3), each=3))[-1] plot(imdepi, "space", tiles = districtsD, pop = "log10popdens", ## modify point style for better visibility on gray background points.args = list(pch=c(1,3), col=c("orangered","blue"), lwd=2), ## metric scale bar, see proj4string(imdepi$W) sp.layout = layout.scalebar(imdepi$W, scale=100, labels=c("0","100 km")), ## gray scale for the population density and white borders col.regions = gray.colors(100, start=0.9, end=0.1), col = "white", ## color key is equidistant on log10(popdens) scale at = seq(1.3, 3.7, by=0.05), colorkey = list(labels=list(at=log10(keylabels), labels=keylabels), title=expression("Population density per " * km^2))) } \keyword{hplot} \keyword{methods} \keyword{spatial} surveillance/man/twinstim.Rd0000644000176200001440000006022114665117445015704 0ustar liggesusers\encoding{latin1} \name{twinstim} \alias{twinstim} \title{ Fit a Two-Component Spatio-Temporal Point Process Model } \description{ A \code{twinstim} model as described in Meyer et al. (2012) is fitted to marked spatio-temporal point process data. This constitutes a regression approach for conditional intensity function modelling. The implementation is illustrated in Meyer et al. (2017, Section 3), see \code{vignette("twinstim")}. } \usage{ twinstim(endemic, epidemic, siaf, tiaf, qmatrix = data$qmatrix, data, subset, t0 = data$stgrid$start[1], T = tail(data$stgrid$stop,1), na.action = na.fail, start = NULL, partial = FALSE, epilink = "log", control.siaf = list(F = list(), Deriv = list()), optim.args = list(), finetune = FALSE, model = FALSE, cumCIF = FALSE, cumCIF.pb = interactive(), cores = 1, verbose = TRUE) } \arguments{ \item{endemic}{ right-hand side formula for the exponential (Cox-like multiplicative) endemic component. May contain offsets (to be marked by the special function \code{offset}). If omitted or \code{~0} there will be no endemic component in the model. A type-specific endemic intercept can be requested by including the term \code{(1|type)} in the formula. } \item{epidemic}{ formula representing the epidemic model for the event-specific covariates (marks) determining infectivity. Offsets are not implemented here. If omitted or \code{~0} there will be no epidemic component in the model. } \item{siaf}{ spatial interaction function. Possible specifications are: \itemize{ \item \code{NULL} or missing, corresponding to \code{siaf.constant()}, i.e. spatially homogeneous infectivity independent of the distance from the host \item a list as returned by \code{\link{siaf}} or, more commonly, generated by a predefined interaction function such as \code{\link{siaf.gaussian}} as in Meyer et al. (2012) or \code{\link{siaf.powerlaw}} as in Meyer and Held (2014). The latter requires unique event locations, possibly after random tie-breaking (\code{\link{untie}}) or imputation of interval-censored locations. \code{\link{siaf.exponential}} is a simpler alternative. \item a numeric vector corresponding to the knots of a step function, i.e. the same as \code{\link{siaf.step}(knots)} } If you run into \dQuote{false convergence} with a non-constant \code{siaf} specification, the numerical accuracy of the cubature methods is most likely too low (see the \code{control.siaf} argument). } \item{tiaf}{ temporal interaction function. Possible specifications are: \itemize{ \item \code{NULL} or missing, corresponding to \code{tiaf.constant()}, i.e. time-constant infectivity \item a list as returned by \code{\link{tiaf}} or by a predefined interaction function such as \code{\link{tiaf.exponential}} \item a numeric vector corresponding to the knots of a step function, i.e. the same as \code{\link{tiaf.step}(knots)} } } \item{qmatrix}{ square indicator matrix (0/1 or \code{FALSE}/\code{TRUE}) for possible transmission between the event types. The matrix will be internally converted to \code{logical}. Defaults to the \eqn{Q} matrix specified in \code{data}. } \item{data}{ an object of class \code{"\link{epidataCS}"}. } \item{subset}{ an optional vector evaluating to logical indicating a subset of \code{data$events} to keep. Missing values are taken as \code{FALSE}. The expression is evaluated in the context of the \code{data$events@data} \code{data.frame}, i.e. columns of this \code{data.frame} may be referenced directly by name. } \item{t0, T}{ events having occurred during (-Inf;t0] are regarded as part of the prehistory \eqn{H_0} of the process. Only events that occurred in the interval (t0; T] are considered in the likelihood. The time point \code{t0} (\code{T}) must be an element of \code{data$stgrid$start} (\code{data$stgrid$stop}). The default time range covers the whole spatio-temporal grid of endemic covariates. } \item{na.action}{ how to deal with missing values in \code{data$events}? Do not use \code{\link{na.pass}}. Missing values in the spatio-temporal grid \code{data$stgrid} are not accepted. } \item{start}{ a named vector of initial values for (a subset of) the parameters. The names must conform to the conventions of \code{twinstim} to be assigned to the correct model terms. For instance, \code{"h.(Intercept)"} = endemic intercept, \code{"h.I(start/365)"} = coefficient of a linear time trend in the endemic component, \code{"h.factorB"} = coefficient of the level B of the factor variable \code{factor} in the endemic predictor, \code{"e.(Intercept)"} = epidemic intercept, \code{"e.VAR"} = coefficient of the epidemic term \code{VAR}, \code{"e.siaf.2"} = second \code{siaf} parameter, \code{"e.tiaf.1"} = first \code{tiaf} parameter. Elements which don't match any of the model parameters are ignored. Alternatively, \code{start} may also be a named list with elements \code{"endemic"} or \code{"h"}, \code{"epidemic"} or \code{"e"}, \code{"siaf"} or \code{"e.siaf"}, and \code{"tiaf"} or \code{"e.tiaf"}, each of which containing a named numeric vector with the term labels as names (i.e. without the prefix \code{"h."}, \code{"e."}, etc). Thus, \code{start=list(endemic=c("(Intercept)"=-10))} is equivalent to \code{start=c("h.(Intercept)"=-10)}. } \item{partial}{ logical indicating if a partial likelihood similar to the approach by Diggle et al. (2010) should be used (default is \code{FALSE}). Note that the partial likelihood implementation is not well tested. } \item{epilink}{ a character string determining the link function to be used for the \code{epidemic} linear predictor of event marks. By default, the log-link is used. The experimental alternative \code{epilink = "identity"} (for use by \code{\link{epitest}}) does not guarantee the force of infection to be positive. If this leads to a negative total intensity (endemic + epidemic), the point process is not well defined (the log-likelihood will be \code{\link{NaN}}). } \item{control.siaf}{ a list with elements \code{"F"} and \code{"Deriv"}, which are lists of extra arguments passed to the functions \code{siaf$F} and \code{siaf$Deriv}, respectively.\cr These arguments control the accuracy of the cubature routines from package \pkg{polyCub} involved in non-constant \code{siaf} specifications, e.g., the bandwidth of the midpoint rule \code{\link[polyCub]{polyCub.midpoint}}, the number of Gaussian quadrature points for \code{\link[polyCub]{polyCub.SV}}, or the relative tolerance of \code{\link{integrate}} in \code{\link[polyCub]{polyCub.iso}}.\cr For instance, \code{\link{siaf.gaussian}(F.adaptive = TRUE)} uses the midpoint-cubature \code{\link[polyCub]{polyCub.midpoint}} with an adaptive bandwidth of \code{eps=adapt*sd} to numerically integrate the kernel \eqn{f(\bold{s})}, and the default \code{adapt} value (0.1) can be overwritten by setting \code{control.siaf$F$adapt}. However, the default version \code{siaf.gaussian()} as well as \code{\link{siaf.powerlaw}()} and friends use \code{\link[polyCub]{polyCub.iso}} and thus accept control arguments for the standard \code{\link{integrate}} routine (such as \code{rel.tol}) via \code{control.siaf$F} and \code{control.siaf$Deriv}.\cr This argument list is ignored in the case \code{siaf=siaf.constant()} (which is the default if \code{siaf} is unspecified). } \item{optim.args}{ an argument list passed to \code{\link{optim}}, or \code{NULL}, in which case no optimization will be performed but the necessary functions will be returned in a list (similar to what is returned if \code{model = TRUE}). Initial values for the parameters may be given as list element \code{par} in the order \code{(endemic, epidemic, siaf, tiaf)}. If no initial values are provided, crude estimates will be used for the endemic intercept and the Gaussian kernel, -9 for the epidemic intercept, and zeroes for the remaining parameters. Any initial values given in the \code{start} argument take precedence over those in \code{par}. Note that \code{optim} receives the negative log-likelihood for minimization (thus, if used, \code{optim.args$control$fnscale} should be positive). The \code{hessian} argument defaults to \code{TRUE}, and in the \code{control} list, \code{trace}ing is enabled with \code{REPORT=1} by default. By setting \code{optim.args$control$trace = 0}, all output from the optimization routine is suppressed. For the \code{partial} likelihood, the analytic score function and the Fisher information are not implemented and the default is to use robust \code{method="Nelder-Mead"} optimization. There may be an extra component \code{fixed} in the \code{optim.args} list, which determines which parameters should stick to their initial values. This can be specified by a logical vector of the same length as the \code{par} component, by an integer vector indexing \code{par} or by a character vector following the \code{twinstim} naming conventions. Furthermore, if \code{isTRUE(fixed)}, then all parameters are fixed at their initial values and no optimization is performed. Importantly, the \code{method} argument in the \code{optim.args} list may also be \code{"nlminb"}, in which case the \code{\link{nlminb}} optimizer is used. This is also the default for full likelihood inference. In this case, not only the score function but also the \emph{expected} Fisher information can be used during optimization (as estimated by what Martinussen and Scheike (2006, p. 64) call the \dQuote{optional variation process}, or see Rathbun (1996, equation (4.7))). In our experience this gives better convergence than \code{optim}'s methods. For \code{method="nlminb"}, the following parameters of the \code{optim.args$control} list may be named like for \code{optim} and are renamed appropriately: \code{maxit} (-> \code{iter.max}), \code{REPORT} (-> \code{trace}, default: 1), \code{abstol} (-> \code{abs.tol}), and \code{reltol} (-> \code{rel.tol}, default: \code{1e-6}). For \code{nlminb}, a logical \code{hessian} argument (default: \code{TRUE}) indicates if the negative \emph{expected} Fisher information matrix should be used as the Hessian during optimization (otherwise a numerical approximation is used). Similarly, \code{method="nlm"} should also work but is not recommended here. } \item{finetune}{ logical indicating if a second maximisation should be performed with robust Nelder-Mead \code{optim} using the resulting parameters from the first maximisation as starting point. This argument is only considered if \code{partial = FALSE} and the default is to not conduct a second maximization (in most cases this does not improve upon the MLE). } \item{model}{ logical indicating if the model environment should be kept with the result, which is required for \code{\link[=intensityplot.twinstim]{intensityplot}}s and \code{\link[=R0.twinstim]{R0}(..., trimmed = FALSE)}. Specifically, if \code{model=TRUE}, the return value will have the evaluation environment set as its \code{\link{environment}}, and the returned \code{functions} element will contain the log-likelihood function (or partial log-likelihood function, if \code{partial = TRUE}), and optionally the score and the expected Fisher information functions (not for the partial likelihood, and only if \code{siaf} and \code{tiaf} provide the necessary derivatives).\cr Note that fitted objects with a model environment might consume quite a lot of memory since they contain the \code{data}. } \item{cumCIF}{ logical (default: \code{FALSE}) indicating whether to calculate the fitted cumulative ground intensity at event times. This is the residual process, see \code{\link{residuals.twinstim}}. } \item{cumCIF.pb}{ logical indicating if a progress bar should be shown during the calculation of \code{cumCIF}. Defaults to do so in an interactive \R session, and will be \code{FALSE} if \code{cores != 1}. } \item{cores}{ number of processes to use in parallel operation. By default \code{twinstim} runs in single-CPU mode. Currently, only the \pkg{multicore}-type of parallel computing via forking is supported, which is not available on Windows, see \code{\link[parallel]{mclapply}} in package \pkg{parallel}. Note that for a \pkg{memoise}d \code{\link{siaf.step}} kernel, \code{cores=1} is fixed internally since parallelization would slow down model fitting significantly. } \item{verbose}{ logical indicating if information should be printed during execution. Defaults to \code{TRUE}. } } \details{ The function performs maximum likelihood inference for the additive-multiplicative spatio-temporal intensity model described in Meyer et al. (2012). It uses \code{\link{nlminb}} as the default optimizer and returns an object of class \code{"twinstim"}. Such objects have \code{print}, \code{\link[=plot.twinstim]{plot}} and \code{\link[=summary.twinstim]{summary}} methods. The \code{summary} output can be converted via corresponding \code{\link[=xtable.summary.twinstim]{xtable}} or \code{\link[=toLatex.summary.twinstim]{toLatex}} methods. Furthermore, the usual accessor methods are implemented, including \code{coef}, \code{vcov}, \code{logLik}, \code{\link[=residuals.twinstim]{residuals}}, and \code{update}. Additional functionality is provided by the \code{\link{R0}} and \code{\link[=simulate.twinstim]{simulate}} methods. } \value{ Returns an S3 object of class \code{"twinstim"}, which is a list with the following components: \item{coefficients}{vector containing the MLE.} \item{loglik}{value of the log-likelihood function at the MLE with a logical attribute \code{"partial"} indicating if the partial likelihood was used.} \item{counts}{number of log-likelihood and score evaluations during optimization.} \item{converged}{either \code{TRUE} (if the optimizer converged) or a character string containing a failure message.} \item{fisherinfo}{\emph{expected} Fisher information evaluated at the MLE. Only non-\code{NULL} for full likelihood inference (\code{partial = FALSE}) and if spatial and temporal interaction functions are provided with their derivatives.} \item{fisherinfo.observed}{observed Fisher information matrix evaluated at the value of the MLE. Obtained as the negative Hessian. Only non-\code{NULL} if \code{optim.args$method} is not \code{"nlminb"} and if it was requested by setting \code{hessian=TRUE} in \code{optim.args}.} \item{fitted}{fitted values of the conditional intensity function at the events.} \item{fittedComponents}{two-column matrix with columns \code{"h"} and \code{"e"} containing the fitted values of the endemic and epidemic components, respectively.\cr (Note that \code{rowSums(fittedComponents) == fitted}.)} \item{tau}{fitted cumulative ground intensities at the event times. Only non-\code{NULL} if \code{cumCIF = TRUE}. This is the \dQuote{residual process} of the model, see \code{\link{residuals.twinstim}}.} \item{R0}{estimated basic reproduction number for each event. This equals the spatio-temporal integral of the epidemic intensity over the observation domain (t0;T] x W for each event.} \item{npars}{vector describing the lengths of the 5 parameter subvectors: endemic intercept(s) \eqn{\beta_0(\kappa)}, endemic coefficients \eqn{\beta}, epidemic coefficients \eqn{\gamma}, parameters of the \code{siaf} kernel, and parameters of the \code{tiaf} kernel.} \item{qmatrix}{the \code{qmatrix} associated with the epidemic \code{data} as supplied in the model call.} \item{bbox}{the bounding box of \code{data$W}.} \item{timeRange}{the time range used for fitting: \code{c(t0,T)}.} \item{formula}{a list containing the four main parts of the model specification: \code{endemic}, \code{epidemic}, \code{siaf}, and \code{tiaf}.} \item{xlevels}{a record of the levels of the factors used in fitting.} \item{control.siaf}{see the \dQuote{Arguments} section above.} \item{optim.args}{input optimizer arguments used to determine the MLE.} \item{functions}{if \code{model=TRUE} this is a \code{list} with components \code{ll}, \code{sc} and \code{fi}, which are functions evaluating the log-likelihood, the score function and the expected Fisher information for a parameter vector \eqn{\theta}. The \code{environment} of these function is the model environment, which is thus retained in the workspace if \code{model=TRUE}. Otherwise, the \code{functions} component is \code{NULL}.} \item{call}{the matched call.} \item{runtime}{the \code{\link{proc.time}}-queried time taken to fit the model, i.e., a named numeric vector of length 5 of class \code{"proc_time"}, with the number of \code{cores} set as additional attribute.} If \code{model=TRUE}, the model evaluation environment is assigned to this list and can thus be queried by calling \code{environment()} on the result. } \note{ \code{twinstim} makes use of the \pkg{memoise} package if it is available -- and that is highly recommended for non-constant \code{siaf} specifications to speed up calculations. Specifically, the necessary numerical integrations of the spatial interaction function will be cached such that they are only calculated once for every state of the \code{siaf} parameters during optimization. } \references{ Diggle, P. J., Kaimi, I. & Abellana, R. (2010): Partial-likelihood analysis of spatio-temporal point-process data. \emph{Biometrics}, \bold{66}, 347-354. Martinussen, T. and Scheike, T. H. (2006): Dynamic Regression Models for Survival Data. Springer. Meyer, S. (2010): Spatio-Temporal Infectious Disease Epidemiology based on Point Processes. Master's Thesis, Ludwig-Maximilians-Universit\enc{ä}{ae}t M\enc{ü}{ue}nchen.\cr Available as \url{https://epub.ub.uni-muenchen.de/11703/} Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} Rathbun, S. L. (1996): Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes. \emph{Journal of Statistical Planning and Inference}, \bold{51}, 55-74. } \author{ Sebastian Meyer Contributions to this documentation by Michael H\enc{ö}{oe}hle and Mayeul Kauffmann. } \seealso{ \code{vignette("twinstim")}. There is a \code{\link{simulate.twinstim}} method, which simulates the point process based on the fitted \code{twinstim}. A discrete-space alternative is offered by the \code{\link{twinSIR}} modelling framework. } \examples{ # Load invasive meningococcal disease data data("imdepi") ### first, fit a simple endemic-only model m_noepi <- twinstim( endemic = addSeason2formula(~ offset(log(popdensity)) + I(start/365-3.5), S=1, period=365, timevar="start"), data = imdepi, subset = !is.na(agegrp) ) ## look at the model summary summary(m_noepi) ## there is no evidence for a type-dependent endemic intercept (LR test) m_noepi_type <- update(m_noepi, endemic = ~(1|type) + .) pchisq(2*c(logLik(m_noepi_type)-logLik(m_noepi)), df=1, lower.tail=FALSE) ### add an epidemic component with just the intercept, i.e. ### assuming uniform dispersal in time and space up to a distance of ### eps.s = 200 km and eps.t = 30 days (see summary(imdepi)) m0 <- update(m_noepi, epidemic=~1, model=TRUE) ## summarize the model fit summary(m0, correlation = TRUE, symbolic.cor = TRUE) ## the default confint-method can be used for Wald-CI's confint(m0, level=0.95) ## same "untrimmed" R0 for every event (simple epidemic intercept model) summary(R0(m0, trimmed=FALSE)) ## plot the path of the fitted total intensity plot(m0, "total intensity", tgrid=500) if (surveillance.options("allExamples")) { ## extract "residual process" integrating over space (takes some seconds) res <- residuals(m0) # if the model describes the true CIF well _in the temporal dimension_, # then this residual process should behave like a stationary Poisson # process with intensity 1 plot(res, type="l"); abline(h=c(0, length(res)), lty=2) # easier, with CI and serial correlation: checkResidualProcess(m0) } \dontrun{ ## NB: in contrast to nlminb(), optim's BFGS would miss the ## likelihood maximum wrt the epidemic intercept m0_BFGS <- update(m_noepi, epidemic=~1, optim.args = list(method="BFGS")) format(cbind(nlminb=coef(m0), BFGS=coef(m0_BFGS)), digits=3, scientific=FALSE) m0_BFGS$fisherinfo # singular Fisher information matrix here m0$fisherinfo logLik(m0_BFGS) logLik(m0) ## nlminb is more powerful since we make use of the analytical fisherinfo ## as estimated by the model during optimization, which optim cannot } ### an epidemic-only model? ## for a purely epidemic model, all events must have potential source events ## (otherwise the intensity at the observed event would be 0) ## let's focus on the C-type for this example imdepiC <- subset(imdepi, type == "C") table(summary(imdepiC)$nSources) ## 106 events have no prior, close events (in terms of eps.s and eps.t) try(twinstim(epidemic = ~1, data = imdepiC)) # detects this problem ## let's assume spatially unbounded interaction imdepiC_infeps <- update(imdepiC, eps.s = Inf) (s <- summary(imdepiC_infeps)) table(s$nSources) ## for 11 events, there is no prior event within eps.t = 30 days ## (which is certainly true for the first event) plot(s$counter, main = "Number of infectious individuals over time (eps.t = 30)") rug(imdepiC_infeps$events$time) rug(imdepiC_infeps$events$time[s$nSources == 0], col = 2, lwd = 3) ## An endemic component would catch such events (from unobserved sources), ## otherwise a longer infectious period would need to be assumed and ## for the first event to happen, a prehistory is required (e.g., t0 = 31). ## As an example, we fit the data only until T = 638 (all events have ancestors) m_epi <- twinstim(epidemic = ~1, data = imdepiC_infeps, t0 = 31, T = 638) summary(m_epi) if (surveillance.options("allExamples")) withAutoprint({ ### full model with interaction functions (time-consuming) ## estimate an exponential temporal decay of infectivity m1_tiaf <- update(m0, tiaf=tiaf.exponential()) plot(m1_tiaf, "tiaf", scaled=FALSE) ## estimate a step function for spatial interaction summary(sourceDists <- getSourceDists(imdepi, "space")) (knots <- quantile(sourceDists, c(5,10,20,40)/100)) m1_fstep <- update(m0, siaf=knots) plot(m1_fstep, "siaf", scaled=FALSE) rug(sourceDists, ticksize=0.02) ## estimate a continuously decreasing spatial interaction function, ## here we use the kernel of an isotropic bivariate Gaussian m1 <- update(m0, siaf = siaf.gaussian()) AIC(m_noepi, m0, m1_fstep, m1) summary(m1) # e.siaf.1 is log(sigma), no test for H0: log(sigma) = 0 exp(confint(m1, "e.siaf.1")) # a confidence interval for sigma plot(m1, "siaf", scaled=FALSE) ## alternative: siaf.powerlaw() with eps.s=Inf and untie()d data, ## see vignette("twinstim") ## add epidemic covariates m2 <- update(m1, epidemic = ~ 1 + type + agegrp) AIC(m1, m2) # further improvement summary(m2) ## look at estimated R0 values by event type tapply(R0(m2), imdepi$events@data[names(R0(m2)), "type"], summary) }) } \keyword{models} \keyword{optimize} surveillance/man/permutationTest.Rd0000644000176200001440000000512314644700550017225 0ustar liggesusers\name{permutationTest} \alias{permutationTest} \title{Monte Carlo Permutation Test for Paired Individual Scores} \description{ The difference between mean \code{\link{scores}} from model 1 and mean \code{\link{scores}} from model 2 is used as the test statistic. Under the null hypothesis of no difference, the actually observed difference between mean scores should not be notably different from the distribution of the test statistic under permutation. As the computation of all possible permutations is only feasible for small datasets, a random sample of permutations is used to obtain the null distribution. The resulting p-value thus depends on the \code{\link{.Random.seed}}. } \usage{ permutationTest(score1, score2, nPermutation = 9999, plot = FALSE, verbose = FALSE) } \arguments{ \item{score1, score2}{ numeric vectors of scores from models 1 and 2, respectively. } \item{nPermutation}{ number of Monte Carlo replicates. } \item{plot}{ logical indicating if a \code{\link[MASS]{truehist}} of the \code{nPermutation} permutation test statistics should be plotted with a vertical line marking the observed difference of the means. To customize the histogram, \code{plot} can also be a list of arguments for \code{truehist} replacing internal defaults. } \item{verbose}{ logical indicating if the results should be printed in one line. } } \details{ For each permutation, we first randomly assign the membership of the n individual scores to either model 1 or 2 with probability 0.5. We then compute the respective difference in mean for model 1 and 2 in this permuted set of scores. The Monte Carlo p-value is then given by (1 + #\{permuted differences larger than observed difference (in absolute value)\}) / (1 + \code{nPermutation}). } \value{ a list of the following elements: \item{diffObs}{observed difference in mean scores, i.e., \code{mean(score1) - mean(score2)}} \item{pVal.permut}{p-value of the permutation test} \item{pVal.t}{p-value of the corresponding \code{\link{t.test}(score1, score2, paired=TRUE)}} } \author{ Michaela Paul with contributions by Sebastian Meyer } \references{ Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. \emph{Statistics in Medicine}, \bold{30} (10), 1118-1136. \doi{10.1002/sim.4177} } \seealso{ Package \CRANpkg{coin} for a comprehensive permutation test framework. } \examples{ permutationTest(rnorm(50, 1.5), rnorm(50, 1), plot = TRUE) } \keyword{htest} surveillance/man/twinSIR_methods.Rd0000644000176200001440000001541713433460451017105 0ustar liggesusers\encoding{latin1} \name{twinSIR_methods} \alias{print.twinSIR} \alias{summary.twinSIR} \alias{AIC.twinSIR} \alias{extractAIC.twinSIR} \alias{vcov.twinSIR} \alias{logLik.twinSIR} \alias{print.summary.twinSIR} \title{ Print, Summary and Extraction Methods for \code{"twinSIR"} Objects } \description{ Besides \code{print} and \code{summary} methods there are also some standard extraction methods defined for objects of class \code{"twinSIR"}: \code{vcov}, \code{logLik} and especially \code{AIC} and \code{extractAIC}, which extract Akaike's Information Criterion. Note that special care is needed, when fitting models with parameter constraints such as the epidemic effects \eqn{\alpha} in \code{twinSIR} models. Parameter constraints reduce the average increase in the maximized loglikelihood - thus the penalty for constrained parameters should be smaller than the factor 2 used in the ordinary definition of AIC. To this end, these two methods offer the calculation of the so-called one-sided AIC (OSAIC). } \usage{ \method{print}{twinSIR}(x, digits = max(3, getOption("digits") - 3), ...) \method{summary}{twinSIR}(object, correlation = FALSE, symbolic.cor = FALSE, ...) \method{AIC}{twinSIR}(object, ..., k = 2, one.sided = NULL, nsim = 1e3) \method{extractAIC}{twinSIR}(fit, scale = 0, k = 2, one.sided = NULL, nsim = 1e3, ...) \method{vcov}{twinSIR}(object, ...) \method{logLik}{twinSIR}(object, ...) \method{print}{summary.twinSIR}(x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) } \arguments{ \item{x, object, fit}{an object of class \code{"twinSIR"}.\cr For the \code{print} method of the \code{summary} method, an object of class \code{"summary.twinSIR"}.} \item{digits}{ integer, used for number formatting with \code{signif()}. Minimum number of significant digits to be printed in values. } \item{correlation}{ logical. if \code{TRUE}, the correlation matrix of the estimated parameters is returned and printed. } \item{symbolic.cor}{ logical. If \code{TRUE}, print the correlations in a symbolic form (see \code{symnum}) rather than as numbers. } \item{\dots}{ For the \code{summary} method: arguments passed to \code{\link{extractAIC.twinSIR}}.\cr For the \code{AIC} method, optionally more fitted model objects.\cr For the \code{print}, \code{extractAIC}, \code{vcov} and \code{logLik} methods: unused (argument of the generic). } \item{k}{ numeric specifying the "weight" of the \emph{penalty} to be used; in an unconstrained fit \code{k = 2} is the classical AIC. } \item{one.sided}{ logical or \code{NULL} (the default). Determines if the one-sided AIC should be calculated instead of using the classical penalty \code{k*edf}. The default value \code{NULL} chooses classical AIC in the case of an unconstrained fit and one-sided AIC in the case of constraints. The type of the fit can be seen in \code{object$method} (or \code{fit$method} respectively), where \code{"L-BFGS"} means constrained optimization. } \item{nsim}{ when there are more than two epidemic covariates in the fit, the weights in the OSAIC formula have to be determined by simulation. Default is to use 1000 samples. Note that package \pkg{quadprog} is additionally required in this case. } \item{scale}{unused (argument of the generic).} \item{signif.stars}{logical. If \code{TRUE}, \dQuote{significance stars} are printed for each coefficient.} } \details{ The \code{print} and \code{summary} methods allow the compact or comprehensive representation of the fitting results, respectively. The former only prints the original function call, the estimated coefficients and the maximum log-likelihood value. The latter prints the whole coefficient matrix with standard errors, z- and p-values (see \code{\link{printCoefmat}}), and additionally the number of infections per log-baseline \code{interval}, the (one-sided) AIC and the number of log-likelihood evaluations. They both append a big \dQuote{WARNING}, if the optimization algorithm did not converge. The estimated coefficients may be extracted by using the default \code{coef}-method from package \pkg{stats}. The two AIC functions differ only in that \code{AIC} can take more than one fitted model object and that \code{extractAIC} always returns the number of parameters in the model (\code{AIC} only does with more than one fitted model object). Concerning the choice of one-sided AIC: parameter constraints -- such as the non-negative constraints for the epidemic effects alpha in \code{twinSIR} models -- reduce the average increase in the maximized loglikelihood. Thus, the penalty for constrained parameters should be smaller than the factor 2 used in the ordinary definition of AIC. One-sided AIC (OSAIC) suggested by Hughes and King (2003) is such a proposal when \eqn{p} out of \eqn{k = p + q} parameters have non-negative constraints: \deqn{OSAIC = -2 l(\theta, \tau) + 2 \sum_{g=0}^p w(p,g) (k-p+g)}{% OSAIC = -2 l(theta, tau) + 2 sum_{g=0}^p w(p,g) (k-p+g)} where \eqn{w(p,g)} are \eqn{p}-specific weights. For more details see Section 5.2 in \enc{Höhle}{Hoehle} (2009). } \value{ The \code{print} methods return their first argument, invisibly, as they always should. The \code{vcov} and \code{logLik} methods return the estimated variance-covariance matrix of the parameters (here, the inverse of the estimate of the expected Fisher information matrix), and the maximum log-likelihood value of the model, respectively. The \code{summary} method returns a list containing some summary statistics of the fitted model, which is nicely printed by the corresponding \code{print} method. For the \code{\link{AIC}} and \code{\link{extractAIC}} methods, see the documentation of the corresponding generic functions. } \references{ Hughes A, King M (2003) Model selection using AIC in the presence of one-sided information. \emph{Journal of Statistical Planning and Inference} \strong{115}, pp. 397--411. \enc{Höhle}{Hoehle}, M. (2009), Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics, Biometrical Journal, 51(6):961-978. } \author{ Michael \enc{Höhle}{Hoehle} and Sebastian Meyer } \examples{ data("hagelloch") # a simplistic twinSIR model fit <- twinSIR(~ household + cox(AGE), data = hagelloch) coef(fit) vcov(fit) logLik(fit) summary(fit, correlation = TRUE, symbolic.cor = TRUE) # AIC or OSAIC AIC(fit) AIC(fit, one.sided = FALSE) extractAIC(fit) extractAIC(fit, one.sided = FALSE) # comparing models via AIC fit2 <- update(fit, nIntervals = 2) AIC(fit, fit2) # the 2nd column should be named "OSAIC" here } \keyword{methods} \keyword{print} \keyword{htest} surveillance/man/hhh4_internals.Rd0000644000176200001440000000352314273167411016733 0ustar liggesusers\name{hhh4_internals} \alias{meanHHH} \alias{sizeHHH} \alias{decompose.hhh4} \title{ Internal Functions Dealing with \code{hhh4} Models } \description{ The functions documented here are considered \emph{internal}, i.e., not intended to be called by the user. They are used by add-on packages dealing with \code{\link{hhh4}} models. } \usage{ meanHHH(theta, model, subset = model$subset, total.only = FALSE) sizeHHH(theta, model, subset = model$subset) decompose.hhh4(x, coefs = x$coefficients, ...) } \arguments{ \item{theta,coefs}{numeric vector of \emph{untransformed} model parameters, i.e., the \code{coefficients} element of the \code{"hhh4"} object.} \item{model}{the model terms as returned by the \code{\link{terms}}-method for \code{"hhh4"} objects.} \item{subset}{vector of time points for which to compute the component means. Defaults to the fitted time range. For \code{sizeHHH}, \code{subset=NULL} means to return the vector of dispersion parameters.} \item{total.only}{logical. Should only the total mean (epidemic + endemic) be returned in a \code{length(subset)} x nUnit matrix? Otherwise, a list of such matrices is returned, giving the values of the various model components separately (as well as the total).} \item{x}{a fitted \code{hhh4} model.} \item{\dots}{unused.} } \details{ \code{meanHHH} computes the components of the mean returned in \code{length(subset)} x nUnit matrices. \code{sizeHHH} computes the model dispersion in \code{\link{dnbinom}} (\code{mu}, \code{size}) parametrization (it returns \code{NULL} in the Poisson case). \code{decompose.hhh4} decomposes the fitted mean (extracted via \code{meanHHH}) in an array with dimensions \eqn{(t, i, j)}, where the first \eqn{j} index is \code{"endemic"}. } \author{ Michaela Paul and Sebastian Meyer } \keyword{internal} surveillance/man/disProg2sts.Rd0000644000176200001440000000155614662137762016260 0ustar liggesusers\name{disProg2sts} \alias{disProg2sts} \alias{sts2disProg} \title{Convert disProg object to sts and vice versa} \description{ A small helper function to convert a \code{disProg} object to become an object of the S4 class \code{sts} and vice versa. In the future the \code{sts} should replace the \code{disProg} class, but for now this function allows for conversion between the two formats. } \usage{ disProg2sts(disProgObj, map=NULL) sts2disProg(sts) } \arguments{ \item{disProgObj}{an object of class \code{"disProg"}} \item{map}{an optional \code{"SpatialPolygons"} object} \item{sts}{an object of class \code{"sts"} to convert} } \value{ an object of class \code{"sts"} or \code{"disProg"}, respectively. } \seealso{ \code{\link{sts-class}} } \examples{ data(ha) print(disProg2sts(ha)) class(sts2disProg(disProg2sts(ha))) } \keyword{utilities} surveillance/man/epidata_summary.Rd0000644000176200001440000000561613433274256017215 0ustar liggesusers\name{epidata_summary} \alias{summary.epidata} \alias{print.summary.epidata} \title{ Summarizing an Epidemic } \description{ The \code{\link{summary}} method for \code{\link{class}} \code{"\link{epidata}"} gives an overview of the epidemic. Its \code{\link{print}} method shows the type of the epidemic, the time range, the total number of individuals, the initially and never infected individuals and the size of the epidemic. An excerpt of the returned \code{counters} data frame is also printed (see the Value section below). } \usage{ \method{summary}{epidata}(object, ...) \method{print}{summary.epidata}(x, ...) } \arguments{ \item{object}{an object inheriting from class \code{"epidata"}.} \item{x}{an object inheriting from class \code{"summary.epidata"}, i.e. an object returned by the function \code{summary.epidata}.} \item{\dots}{unused (argument of the generic).} } \value{ A list with the following components: \item{type}{ character string. Compartmental type of the epidemic, i.e. one of "SIR", "SI", "SIS" or "SIRS". } \item{size}{ integer. Size of the epidemic, i.e. the number of initially susceptible individuals, which became infected during the course of the epidemic. } \item{initiallyInfected}{ factor (with the same levels as the \code{id} column in the \code{"epidata"} object). Set of initially infected individuals. } \item{neverInfected}{ factor (with the same levels as the \code{id} column in the \code{"epidata"} object). Set of never infected individuals, i.e. individuals, which were neither initially infected nor infected during the course of the epidemic. } \item{coordinates}{ numeric matrix of individual coordinates with as many rows as there are individuals and one column for each spatial dimension. The row names of the matrix are the \code{id}s of the individuals. } \item{byID}{ data frame with time points of infection and optionally removal and re-susceptibility (depending on the \code{type} of the epidemic) ordered by \code{id}. If an event was not observed, the corresponding entry is missing. } \item{counters}{ data frame containing all events (S, I and R) ordered by time. The columns are \code{time}, \code{type} (of event), corresponding \code{id} and the three counters \code{nSusceptible}, \code{nInfectious} and \code{nRemoved}. The first row additionally shows the counters at the beginning of the epidemic, where the \code{type} and \code{id} column contain missing values. } } \author{ Sebastian Meyer } \seealso{ \code{\link{as.epidata}} for generating objects of class \code{"epidata"}. } \examples{ data("hagelloch") s <- summary(hagelloch) s # uses the print method for summary.epidata names(s) # components of the list 's' # positions of the individuals plot(s$coordinates) # events by id head(s$byID) } \keyword{methods} surveillance/man/husO104Hosp.Rd0000644000176200001440000000535513234140561016014 0ustar liggesusers\encoding{latin1} \name{husO104Hosp} \alias{husO104Hosp} \docType{data} \title{Hospitalization date for HUS cases of the STEC outbreak in Germany, 2011} \description{ Data contain the date of hospitalization for 630 hemolytic-uremic syndrome (HUS) cases during the large STEC outbreak in Germany, 2011. Note: Only HUS cases which ultimately had a hospitalization date available/reported are included in the data set. The total number of HUS cases during the outbreak was 855 -- see \enc{Höhle}{Hoehle} and an der Heiden (2014) as well as Frank et al. (2011) for details. For each HUS case the attribute \code{dHosp} contains the date of hospitalization and the attribute \code{dReport} contains the date of first arrival of this hospitalization date at the Robert Koch Institute (RKI). As described in \enc{Höhle}{Hoehle} and an der Heiden (2014) the mechanisms of the delay were complicated and should be interpreted with care. For example, the case report could have arrived earlier, but without information about the hospitalization date. The resulting reporting triangle corresponds to Fig. 1 of the Web appendix of \enc{Höhle}{Hoehle} and an der Heiden (2014). This means that the reports which arrived with a delay longer than 15 days are set to have have arrived after 15 days. Altogether, this gives small discrepancies when compared with the results of the paper. However, as mentioned in the paper, longer delays were not very relevant for the nowcasting. } \usage{data(husO104Hosp)} \format{ A \code{data.frame} object. } \source{ Data were collected during the outbreak as part of the mandatory reporting of notifiable diseases in Germany (Faensen et al., 2006). Here, reports are transmitted from the local health authorities via the state health authorities to the Robert Koch Institute, Berlin. The resulting reporting triangle corresponds to Fig. 1 of the Web appendix of \enc{Höhle}{Hoehle} and an der Heiden (2014). } \references{ \enc{Höhle}{Hoehle} M and an der Heiden, M (2014). Bayesian Nowcasting during the STEC O104:H4 Outbreak in Germany, 2011, In revision for Biometrics. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, \enc{Müller}{Mueller} L, King LA, Rosner B, Buchholz U, Stark K, Krause G; HUS Investigation Team (2011). Epidemic Profile of Shiga-Toxin Producing Escherichia coli O104:H4 Outbreak in Germany, N Engl J Med. 2011 Nov 10;365(19):1771-80. Faensen D, Claus H, Benzler J, Ammon A, Pfoch T, Breuer T, Krause G (2014). SurvNet@RKI - a multistate electronic reporting system for communicable diseases, Euro Surveillance, 2006;11(4):100-103. } \keyword{datasets} surveillance/man/hhh4_simulate.Rd0000644000176200001440000001723214152422604016553 0ustar liggesusers\name{hhh4_simulate} \alias{simulate.hhh4} \title{Simulate \code{"hhh4"} Count Time Series} \description{ Simulates a multivariate time series of counts based on the Poisson/Negative Binomial model as described in Paul and Held (2011). } \usage{ \method{simulate}{hhh4}(object, nsim = 1, seed = NULL, y.start = NULL, subset = 1:nrow(object$stsObj), coefs = coef(object), components = c("ar","ne","end"), simplify = nsim>1, ...) } \arguments{ \item{object}{ an object of class \code{"\link{hhh4}"}. } \item{nsim}{ number of time series to simulate. Defaults to \code{1}. } \item{seed}{ an object specifying how the random number generator should be initialized for simulation (via \code{\link{set.seed}}). The initial state will also be stored as an attribute \code{"seed"} of the result. The original state of the \code{\link{.Random.seed}} will be restored at the end of the simulation. By default (\code{NULL}), neither initialization nor recovery will be done. This behaviour is copied from the \code{\link{simulate}.lm} method. } \item{y.start}{ vector or matrix (with \code{ncol(object$stsObj)} columns) with starting counts for the epidemic components. If \code{NULL}, the observed means in the respective units of the data in \code{object} during \code{subset} are used. } \item{subset}{ time period in which to simulate data. Defaults to (and cannot exceed) the whole period defined by the underlying \code{"sts"} object. } \item{coefs}{ coefficients used for simulation from the model in \code{object}. Default is to use the fitted parameters. Note that the \code{coefs}-vector must be in the same order and scaling as \code{coef(object)}, which especially means \code{reparamPsi = TRUE} (as per default when using the \code{coef}-method to extract the parameters). The overdispersion parameter in \code{coefs} is the inverse of the dispersion parameter \code{size} in \code{\link{rnbinom}}. } \item{components}{ character vector indicating which components of the fitted model \code{object} should be active during simulation. For instance, a simulation with \code{components="end"} is solely based on the fitted endemic mean. } \item{simplify}{ logical indicating if only the simulated counts (\code{TRUE}) or the full \code{"\linkS4class{sts}"} object (\code{FALSE}) should be returned for every replicate. By default a full \code{"sts"} object is returned iff \code{nsim=1}. } \item{\dots}{unused (argument of the generic).} } \details{ Simulates data from a Poisson or a Negative Binomial model with mean \deqn{\mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j \neq i} w_{ji} y_{j,t-1} + \nu_{it}}{% \mu_it = \lambda_it y_i,t-1 + \phi_it \sum_j w_ji y_j,t-1 + \nu_it} where \eqn{\lambda_{it}>0}, \eqn{\phi_{it}>0}, and \eqn{\nu_{it}>0} are parameters which are modelled parametrically. The function uses the model and parameter estimates of the fitted \code{object} to simulate the time series. With the argument \code{coefs} it is possible to simulate from the model as specified in \code{object}, but with different parameter values. } \value{ If \code{simplify=FALSE}: an object of class \code{"\linkS4class{sts}"} (\code{nsim = 1}) or a list of those (\code{nsim > 1}). If \code{simplify=TRUE}: an object of class \code{"hhh4sims"}, which is an array of dimension \code{c(length(subset), ncol(object$stsObj), nsim)}. The originally observed counts during the simulation period, \code{object$stsObj[subset,]}, are attached for reference (used by the \code{plot}-methods) as an attribute \code{"stsObserved"}, and the initial condition \code{y.start} as attribute \code{"initial"}. The \code{[}-method for \code{"hhh4sims"} takes care of subsetting these attributes appropriately. } \references{ Paul, M. and Held, L. (2011) Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. Statistics in Medicine, \bold{30}, 1118--1136 } \author{ Michaela Paul and Sebastian Meyer } \seealso{ \code{\link{plot.hhh4sims}} and \code{\link{scores.hhh4sims}} and the examples therein for \code{nsim > 1}. } \examples{ data(influMen) # convert to sts class and extract meningococcal disease time series meningo <- disProg2sts(influMen)[,2] # fit model fit <- hhh4(meningo, control = list( ar = list(f = ~ 1), end = list(f = addSeason2formula(~1, period = 52)), family = "NegBin1")) plot(fit) # simulate from model (generates an "sts" object) simData <- simulate(fit, seed=1234) # plot simulated data plot(simData, main = "simulated data", xaxis.labelFormat=NULL) # use simplify=TRUE to return an array of simulated counts simCounts <- simulate(fit, seed=1234, simplify=TRUE) dim(simCounts) # nTime x nUnit x nsim \dontshow{stopifnot(observed(simData) == c(simCounts))} # plot the first year of simulated counts (+ initial + observed) plot(simCounts[1:52,,], type = "time", xaxis.labelFormat = NULL) # see help(plot.hhh4sims) for other plots, mainly useful for nsim > 1 # simulate from a Poisson instead of a NegBin model # keeping all other parameters fixed at their original estimates coefs <- replace(coef(fit), "overdisp", 0) simData2 <- simulate(fit, seed=123, coefs = coefs) plot(simData2, main = "simulated data: Poisson model", xaxis.labelFormat = NULL) # simulate from a model with higher autoregressive parameter coefs <- replace(coef(fit), "ar.1", log(0.9)) simData3 <- simulate(fit, seed=321, coefs = coefs) plot(simData3, main = "simulated data: lambda = 0.5", xaxis.labelFormat = NULL) ## more sophisticated: simulate beyond initially observed time range # extend data range by one year (non-observed domain), filling with NA values nextend <- 52 timeslots <- c("observed", "state", "alarm", "upperbound", "populationFrac") addrows <- function (mat, n) mat[c(seq_len(nrow(mat)), rep(NA, n)),,drop=FALSE] extended <- Map(function (x) addrows(slot(meningo, x), n = nextend), x = timeslots) # create new sts object with extended matrices meningo2 <- do.call("sts", c(list(start = meningo@start, frequency = meningo@freq, map = meningo@map), extended)) # fit to the observed time range only, via the 'subset' argument fit2 <- hhh4(meningo2, control = list( ar = list(f = ~ 1), end = list(f = addSeason2formula(~1, period = 52)), family = "NegBin1", subset = 2:(nrow(meningo2) - nextend))) # the result is the same as before stopifnot(all.equal(fit, fit2, ignore = c("stsObj", "control"))) \dontshow{ # one-week-ahead prediction only "works" for the first non-observed time point # because the autoregressive component relies on non-missing past counts oneStepAhead(fit2, tp = rep(nrow(meningo2)-nextend, 2), type = "final", verbose = FALSE) # however, methods won't work as observed is NA } # long-term probabilistic forecast via simulation for non-observed time points meningoSim <- simulate(fit2, nsim = 100, seed = 1, subset = seq(nrow(meningo)+1, nrow(meningo2)), y.start = tail(observed(meningo), 1)) apply(meningoSim, 1:2, function (ysim) quantile(ysim, c(0.1, 0.5, 0.9))) # three plot types are available for "hhh4sims", see also ?plot.hhh4sims plot(meningoSim, type = "time", average = median) plot(meningoSim, type = "size", observed = FALSE) if (requireNamespace("fanplot")) plot(meningoSim, type = "fan", means.args = list(), fan.args = list(ln = c(.1,.9), ln.col = 8)) } \keyword{datagen} surveillance/man/epidataCS_permute.Rd0000644000176200001440000000270713263671176017430 0ustar liggesusers\name{epidataCS_permute} \alias{permute.epidataCS} \title{ Randomly Permute Time Points or Locations of \code{"epidataCS"} } \description{ Monte Carlo tests for space-time interaction (\code{\link{epitest}}) use the distribution of some test statistic under the null hypothesis of no space-time interaction. For this purpose, the function \code{permute.epidataCS} randomly permutes the time or space labels of the events. } \usage{ permute.epidataCS(x, what = c("time", "space"), keep) } \arguments{ \item{x}{an object of class \code{"\link{epidataCS}"}.} \item{what}{character string determining what to permute: time points (default) or locations.} \item{keep}{optional logical expression to be evaluated in the context of \code{x$events@data}, determining for which events the time and location should be kept as is. For instance, to keep some \dQuote{prehistory} before time point 30 unchanged, use \code{keep = time <= 30}.} } \value{ the permuted \code{"\link{epidataCS}"} object. } \author{ Sebastian Meyer } \seealso{ \code{\link{epitest}} } \examples{ data("imdepi") set.seed(3) permepi <- permute.epidataCS(imdepi, what = "time", keep = time <= 30) print(imdepi, n = 8) print(permepi, n = 8) ## the first 6 events are kept (as are all row.names), ## the time labels of the remaining events are shuffled ## (and events then again sorted by time), ## the marginal temporal distribution is unchanged } \keyword{manip} surveillance/man/bodaDelay.Rd0000644000176200001440000001470114662137762015715 0ustar liggesusers\encoding{latin1} \name{bodaDelay} \alias{bodaDelay} \title{Bayesian Outbreak Detection in the Presence of Reporting Delays} \usage{ bodaDelay(sts, control = list( range = NULL, b = 5, w = 3, mc.munu = 100, mc.y = 10, pastAberrations = TRUE, verbose = FALSE, alpha = 0.05, trend = TRUE, limit54 = c(5,4), inferenceMethod = c("asym","INLA"), quantileMethod = c("MC","MM"), noPeriods = 1, pastWeeksNotIncluded = NULL, delay = FALSE)) } \arguments{ \item{sts}{sts-object to be analysed. Needs to have a reporting triangle.} \item{control}{list of control arguments: \describe{ \item{\code{b}}{How many years back in time to include when forming the base counts.} \item{\code{w}}{Window's half-size, i.e. number of weeks to include before and after the current week in each year.} \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} all possible timepoints are used.} \item{\code{pastAberrations}}{Boolean indicating whether to include an effect for past outbreaks in a second fit of the model. This option only makes sense if \code{inferenceMethod} is \code{INLA}, as it is not supported by the other inference method.} \item{\code{verbose}}{Boolean specifying whether to show extra debugging information.} \item{\code{alpha}}{An approximate (one-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated unlike the original method where it was a two-sided interval. The upper limit of this interval i.e. the \eqn{(1-\alpha)\cdot 100\%} quantile serves as an upperbound.} \item{\code{trend}}{Boolean indicating whether a trend should be included} \item{\code{noPeriods}}{Number of levels in the factor allowing to use more baseline. If equal to 1 no factor variable is created, the set of reference values is defined as in Farrington et al (1996).} \item{\code{inferenceMethod}}{Which inference method used, as defined in Salmon et al. (2015). If one chooses \code{"INLA"} then inference is performed with INLA. If one chooses \code{"asym"} (default) then the asymptotic normal approximation of the posteriori is used.} \item{\code{pastWeeksNotIncluded}}{Number of past weeks to ignore in the calculation. The default (\code{NULL}) means to use the value of \code{control$w}.} \item{\code{delay}}{Boolean indicating whether to take reporting delays into account.} \item{\code{mc.munu}}{Number of samples for the parameters of the negative binomial distribution for calculating a threshold} \item{\code{mc.y}}{Number of samples for observations when performing Monte Carlo to calculate a threshold} \item{\code{limit54}}{c(cases,period) is a vector allowing the user to change these numbers.} \item{\code{quantileMethod}}{Character, either \code{"MC"} (default) or \code{"MM"}. Indicates how to compute the quantile based on the posterior distribution (no matter the inference method): either by sampling \code{mc.munu} values from the posterior distribution of the parameters and then for each sampled parameters vector sampling \code{mc.y} response values so that one gets a vector of response values based on which one computes an empirical quantile (MC method, as explained in Salmon et al. 2015); or by sampling \code{mc.munu} from the posterior distribution of the parameters and then compute the quantile of the mixture distribution using bisectioning, which is faster.} } } } \description{ The function takes \code{range} values of the surveillance time series \code{sts} and for each time point uses a Bayesian model of the negative binomial family with log link inspired by the work of Noufaily et al. (2012) and of Manitz and \enc{Höhle}{Hoehle} (2014). It allows delay-corrected aberration detection as explained in Salmon et al. (2015). A \code{reportingTriangle} has to be provided in the \code{control} slot. } \examples{ \dontrun{ data("stsNewport") salm.Normal <- list() salmDelayAsym <- list() for (week in 43:45){ listWeeks <- as.Date(row.names(stsNewport@control$reportingTriangle$n)) dateObs <- listWeeks[isoWeekYear(listWeeks)$ISOYear==2011 & isoWeekYear(listWeeks)$ISOWeek==week] stsC <- sts_observation(stsNewport, dateObservation=dateObs, cut=TRUE) inWeeks <- with(isoWeekYear(epoch(stsC)), ISOYear == 2011 & ISOWeek >= 40 & ISOWeek <= 48) rangeTest <- which(inWeeks) alpha <- 0.07 # Control slot for Noufaily method controlNoufaily <- list(range=rangeTest,noPeriods=10, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=alpha*2, limit54=c(0,50)) # Control slot for the Proposed algorithm with D=0 correction controlNormal <- list(range = rangeTest, b = 4, w = 3, reweight = TRUE, mc.munu=10000, mc.y=100, verbose = FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=FALSE) # Control slot for the Proposed algorithm with D=10 correction controlDelayNorm <- list(range = rangeTest, b = 4, w = 3, reweight = FALSE, mc.munu=10000, mc.y=100, verbose = FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=TRUE,inferenceMethod="asym") set.seed(1) salm.Normal[[week]] <- farringtonFlexible(stsC, controlNoufaily) salmDelayAsym[[week]] <- bodaDelay(stsC, controlDelayNorm) } opar <- par(mfrow=c(2,3)) lapply(salmDelayAsym[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35)) lapply(salm.Normal[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35)) par(opar) } } \references{ Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563. Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32 (7), 1206-1222. Salmon, M., Schumacher, D., Stark, K., \enc{Höhle}{Hoehle}, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067. } surveillance/man/twinSIR_simulation.Rd0000644000176200001440000003465714665117445017647 0ustar liggesusers\encoding{latin1} \name{twinSIR_simulation} \alias{simEpidata} \alias{simulate.twinSIR} \title{ Simulation of Epidemic Data } \description{ This function simulates the infection (and removal) times of an epidemic. Besides the classical SIR type of epidemic, also SI, SIRS and SIS epidemics are supported. Simulation works via the conditional intensity of infection of an individual, given some (time varying) endemic covariates and/or some distance functions (epidemic components) as well as the fixed positions of the individuals. The lengths of the infectious and removed periods are generated following a pre-specified function (can be deterministic). The \code{\link{simulate}} method for objects of class \code{"\link{twinSIR}"} simulates new epidemic data using the model and the parameter estimates of the fitted object. } \usage{ simEpidata(formula, data, id.col, I0.col, coords.cols, subset, beta, h0, f = list(), w = list(), alpha, infPeriod, remPeriod = function(ids) rep(Inf, length(ids)), end = Inf, trace = FALSE, .allocate = NULL) \method{simulate}{twinSIR}(object, nsim = 1, seed = 1, infPeriod = NULL, remPeriod = NULL, end = diff(range(object$intervals)), trace = FALSE, .allocate = NULL, data = object$data, ...) } \arguments{ \item{formula}{ an object of class \code{"\link{formula}"} (or one that can be coerced to that class): a symbolic description of the intensity model to be estimated. The details of model specification are given under Details. } \item{data}{ a data.frame containing the variables in \code{formula} and the variables specified by \code{id.col}, \code{I0.col} and \code{coords.col} (see below). It represents the \dQuote{history} of the endemic covariates to use for the simulation. The form is similar to and can be an object of class \code{"\link{epidata}"}. The simulation period is split up into \emph{consecutive} intervals of constant endemic covariables. The data frame consists of a block of N (number of individuals) rows for each of those time intervals (all rows in a block share the same start and stop values... therefore the name \dQuote{block}), where there is one row per individual in the block. Each row describes the (fixed) state of the endemic covariates of the individual during the time interval given by the start and stop columns (specified through the lhs of \code{formula}). For the \code{simulate} method of class \code{"twinSIR"} this should be the object of class \code{"\link{epidata}"} used for the fit. This is a part of the return value of the function \code{twinSIR}, if called with argument \code{keep.data} set to \code{TRUE}. } \item{id.col}{ only if \code{data} does not inherit from \code{epidata}: single index of the \code{id} column in \code{data}. Can be numeric (by column number) or character (by column name).\cr The \code{id} column identifies the individuals in the data-frame. It will be converted to a factor variable and its levels serve also to identify individuals as argument to the \code{infPeriod} function. } \item{I0.col}{ only if \code{data} does not inherit from \code{epidata}: single index of the \code{I0} column in \code{data}. Can be numeric (by column number), character (by column name) or \code{NULL}.\cr The \code{I0} column indicates if an individual is initially infectious, i.e. it is already infectious at the beginning of the first time block. Setting \code{I0.col = NULL} is short for \dQuote{there are no initially infectious individuals}. Otherwise, the variable must be logical or in 0/1-coding. As this variable is constant over time the initially infectious individuals are derived from the first time block only. } \item{coords.cols}{ only if \code{data} does not inherit from \code{epidata}: index\emph{es} of the \code{coords} column\emph{s} in \code{data}. Can be a numeric (by column number), a character (by column name) vector or \code{NULL}.\cr These columns contain the coordinates of the individuals. It must be emphasized that the functions in this package currently assume \emph{fixed positions} of the individuals during the whole epidemic. Thus, an individual has the same coordinates in every block. For simplicity, the coordinates are derived from the first time block only. The epidemic covariates are calculated based on the Euclidean distance between the individuals, see \code{f}. } \item{subset}{ an optional vector specifying a subset of the covariate history to be used in the simulation. } \item{beta}{ numeric vector of length equal the number of endemic (\code{cox}) terms on the rhs of \code{formula}. It contains the effects of the endemic predictor (excluding the log-baseline \code{h0}, see below) in the same order as in the formula. } \item{h0}{ \emph{either} a single number to specify a constant baseline hazard (equal to \code{exp(h0)}) \emph{or} a list of functions named \code{exact} and \code{upper}. In the latter case, \code{h0$exact} is the true log-baseline hazard function and \code{h0$upper} is a \emph{piecewise constant upper bound} for \code{h0$exact}. The function \code{h0$upper} must inherit from \code{\link{stepfun}} with \code{right=FALSE}. Theoretically, the intensity function is left-continuous, thus \code{right=TRUE} would be adequate, but in the implementation, when we evaluate the intensity at the \code{\link{knots}} (change points) of \code{h0$upper} we need its value for the subsequent interval. } \item{f, w}{ see \code{\link{as.epidata}}. } \item{alpha}{ a named numeric vector of coefficients for the epidemic covariates generated by \code{f} and \code{w}. The names are matched against \code{names(f)} and \code{names(w)}. Remember that \code{alpha >= 0}. } \item{infPeriod}{ a function generating lengths of infectious periods. It should take one parameter (e.g. \code{ids}), which is a character vector of id's of individuals, and return appropriate infection periods for those individuals. Therefore, the value of the function should be of length \code{length(ids)}. For example, for independent and identically distributed infection periods following \eqn{Exp(1)}, the generating function is \code{function(ids) rexp(length(ids), rate=1)}. For a constant infectious period of length c, it is sufficient to set \code{function (x) {c}}.\cr For the \code{simulate} method of class \code{"twinSIR"} only, this can also be \code{NULL} (the default), which means that the observed infectious periods of infected individuals are re-used when simulating a new epidemic and individuals with missing infectious periods (i.e. infection and recovery was not observed) are attributed to the mean observed infectious period. Note that it is even possible to simulate an SI-epidemic by setting \code{infPeriod = function (x) {Inf}} In other words: once an individual became infected it spreads the disease forever, i.e. it will never be removed. } \item{remPeriod}{ a function generating lengths of removal periods. Per default, once an individual was removed it will stay in this state forever (\code{Inf}). Therefore, it will not become at-risk (S) again and re-infections are not possible. Alternatively, always returning 0 as length of the removal period corresponds to a SIS epidemic. Any other values correspond to SIRS. Note that \code{end} should be set to a finite value in these cases. } \item{end}{ a single positive numeric value specifying the time point at which the simulation should be forced to end. By default, this is \code{Inf}, i.e. the simulation continues until there is no susceptible individual left.\cr For the \code{simulate} method of class \code{"twinSIR"} the default is to have equal simulation and observation periods. } \item{trace}{ logical (or integer) indicating if (or how often) the sets of susceptible and infected individuals as well as the rejection indicator (of the rejection sampling step) should be \code{cat}ed. Defaults to \code{FALSE}. } \item{.allocate}{ number of blocks to initially allocate for the event history (i.e. \code{.allocate*N} rows). By default (\code{NULL}), this number is set to \code{max(500, ceiling(nBlocks/100)*100)}, i.e. 500 but at least the number of blocks in \code{data} (rounded to the next multiple of 100). Each time the simulated epidemic exceeds the allocated space, the event history will be enlarged by \code{.allocate} blocks. } \item{object}{ an object of class \code{"twinSIR"}. This must contain the original \code{data} used for the fit (see \code{data}). } \item{nsim}{ number of epidemics to simulate. Defaults to 1. } \item{seed}{ an integer that will be used in the call to \code{\link{set.seed}} before simulating the epidemics. } \item{\dots}{ unused (argument of the generic). } } \details{ A model is specified through the \code{formula}, which has the form \code{cbind(start, stop) ~ cox(endemicVar1) * cox(endemicVar2)}, i.e. the right hand side has the usual form as in \code{\link{lm}}, but all variables are marked as being endemic by the special function \code{\link{cox}}. The effects of those predictor terms are specified by \code{beta}. The left hand side of the formula denotes the start and stop columns in \code{data}. This can be omitted, if \code{data} inherits from class \code{"epidata"} in which case \code{cbind(start, stop)} will be used. The epidemic model component is specified by the arguments \code{f} and \code{w} (and the associated coefficients \code{alpha}). If the epidemic model component is empty and \code{infPeriod} always returns \code{Inf}, then one actually simulates from a pure Cox model. The simulation algorithm used is \emph{Ogata's modified thinning}. For details, see \enc{Höhle}{Hoehle} (2009), Section 4. } \value{ An object of class \code{"simEpidata"}, which is a \code{data.frame} with the columns \code{"id"}, \code{"start"}, \code{"stop"}, \code{"atRiskY"}, \code{"event"}, \code{"Revent"} and the coordinate columns (with the original names from \code{data}), which are all obligatory. These columns are followed by all the variables appearing on the rhs of the \code{formula}. Last but not least, the generated columns with epidemic covariates corresponding to the functions in the lists \code{f} and \code{w} are appended. Note that objects of class \code{"simEpidata"} also inherit from class \code{"\link{epidata}"}, thus all \code{"\link{epidata}"} methods can be applied. The \code{data.frame} is given the additional \emph{attributes} \item{"eventTimes"}{ numeric vector of infection time points (sorted chronologically). } \item{"timeRange"}{ numeric vector of length 2: \code{c(min(start), max(stop))}. } \item{"coords.cols"}{ numeric vector containing the column indices of the coordinate columns in the resulting data-frame. } \item{"f"}{ this equals the argument \code{f}. } \item{"w"}{ this equals the argument \code{w}. } \item{"config"}{ a list with elements \code{h0 = h0$exact}, \code{beta} and \code{alpha}. } \item{call}{the matched call.} \item{terms}{the \code{terms} object used.} If \code{nsim > 1} epidemics are simulated by the \code{simulate}-method for fitted \code{"twinSIR"} models, these are returned in a list. } \references{ \enc{Höhle}{Hoehle}, M. (2009), Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics, Biometrical Journal, 51(6):961-978. } \author{ Sebastian Meyer and Michael \enc{Höhle}{Hoehle} } \seealso{ The \code{\link{plot.epidata}} and \code{\link{animate.epidata}} methods for plotting and animating (simulated) epidemic data, respectively. The \code{\link{intensityplot.simEpidata}} method for plotting paths of infection intensities. Function \code{\link{twinSIR}} for fitting spatio-temporal epidemic intensity models to epidemic data. } \examples{ ## Generate a data frame containing a hypothetic population with 100 individuals set.seed(1234) n <- 100 pos <- matrix(rnorm(n*2), ncol=2, dimnames=list(NULL, c("x", "y"))) pop <- data.frame(id=1:n, x=pos[,1], y=pos[,2], gender=sample(0:1, n, replace=TRUE), I0col=c(rep(1,3),rep(0,n-3)), # 3 initially infectious start=rep(0,n), stop=rep(Inf,n)) ## Simulate an SIR epidemic in this population set.seed(123) infPeriods <- setNames(c(1:3/10, rexp(n-3, rate=1)), 1:n) epi <- simEpidata( cbind(start,stop) ~ cox(gender), data = pop, id.col = "id", I0.col = "I0col", coords.cols = c("x","y"), beta = c(-2), h0 = -1, alpha = c(B1=0.1), f = list(B1=function(u) u<=1), infPeriod = function(ids) infPeriods[ids], ##remPeriod = function(ids) rexp(length(ids), rate=0.1), end = 30 # -> SIRS ) ## extract event times by id head(summary(epi)$byID) ## Plot the numbers of susceptible, infectious and removed individuals plot(epi) ## load the 1861 Hagelloch measles epidemic data("hagelloch") summary(hagelloch) plot(hagelloch) ## fit a simplistic twinSIR model fit <- twinSIR(~ household, data = hagelloch) ## simulate a new epidemic from the above model ## with simulation period = observation period, re-using observed infPeriods sim1 <- simulate(fit, data = hagelloch) plot(sim1) ## check if we find similar parameters in the simulated epidemic fitsim1 <- update(fit, data = sim1) cbind(base = coef(fit), new = coef(fitsim1)) if (surveillance.options("allExamples")) { ## simulate only 10 days, using random infPeriods ~ Exp(0.1) sim2 <- simulate(fit, data = hagelloch, seed = 2, end = 10, infPeriod = function(ids) rexp(length(ids), rate = 0.1)) plot(sim2) ## simulate from a different model with manually specified parameters set.seed(321) simepi <- simEpidata(~ cox(AGE), data = hagelloch, beta = c(0.1), h0 = -4, alpha = c(household = 0.05), f = list(household = function(u) u == 0), infPeriod = function(ids) rexp(length(ids), rate=1/8)) plot(simepi) intensityplot(simepi) ## see if we correctly estimate the parameters fitsimepi <- twinSIR(~ cox(AGE) + household, data = simepi) cbind(true = c(0.05, -4, 0.1), est = coef(fitsimepi), confint(fitsimepi)) } } \keyword{datagen} \keyword{models} surveillance/man/unionSpatialPolygons.Rd0000644000176200001440000000402214610747661020223 0ustar liggesusers\name{unionSpatialPolygons} \alias{unionSpatialPolygons} \title{ Compute the Unary Union of \code{"SpatialPolygons"} } \description{ Union all subpolygons of a \code{"\link[sp:SpatialPolygons-class]{SpatialPolygons}"} object. This is a legacy wrapper for the polygon clipping engines implemented by packages \pkg{sf} and \pkg{polyclip}. Internally, both \code{method}s need to convert the input polygons to a class appropriate for the \code{method}, so are rather inefficient. } \usage{ unionSpatialPolygons(SpP, method = c("sf", "polyclip"), ...) } \arguments{ \item{SpP}{ an object of class \code{"\link[sp:SpatialPolygons-class]{SpatialPolygons}"}. For the \pkg{polyclip} \code{method} only, all polygon classes for which an \code{\link[polyCub]{xylist}}-method exists should work as input. } \item{method}{ polygon clipping machinery to use. Default is to call \code{\link[sf]{st_union}} in package \pkg{sf}. For \code{method="polyclip"}, function \code{\link[polyclip]{polyclip}} from package \pkg{polyclip} is used. The old \code{method="gpclib"} is no longer available. } \item{\dots}{further arguments passed to the chosen \code{method}.} } \value{ an object of class \code{"\link[sp:SpatialPolygons-class]{SpatialPolygons}"} representing the union of all subpolygons. } \author{ Sebastian Meyer } \seealso{ \code{\link[sf]{st_union}} in package \pkg{sf}, \code{\link[polyclip]{polyclip}} in package \pkg{polyclip}. } \examples{ ## Load districts of Germany load(system.file("shapes", "districtsD.RData", package = "surveillance")) plot(districtsD, border = "gray", asp = 1) % to avoid sp -> sf ## Union these districts using either "sf" or "polyclip" if (requireNamespace("sf")) { stateD <- unionSpatialPolygons(districtsD, method = "sf") plot(stateD, add = TRUE, border = 2, lwd = 2) } if (requireNamespace("polyclip")) { stateD_pc <- unionSpatialPolygons(districtsD, method = "polyclip") plot(stateD_pc, add = TRUE, border = 1, lwd = 2, lty = 2) } } \keyword{spatial} surveillance/DESCRIPTION0000644000176200001440000001215614712423472014467 0ustar liggesusersPackage: surveillance Title: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena Version: 1.24.1 Date: 2024-11-05 Authors@R: c( MH = person("Michael", "Hoehle", role = c("aut", "ths"), comment = c(ORCID = "0000-0002-0423-6702")), SM = person("Sebastian", "Meyer", email = "seb.meyer@fau.de", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-1791-9449")), MP = person("Michaela", "Paul", role = "aut"), LH = person("Leonhard", "Held", role = c("ctb", "ths"), comment = c(ORCID = "0000-0002-8686-5325")), person("Howard", "Burkom", role = "ctb"), person("Thais", "Correa", role = "ctb"), person("Mathias", "Hofmann", role = "ctb"), person("Christian", "Lang", role = "ctb"), person("Juliane", "Manitz", role = "ctb"), person("Sophie", "Reichert", role = "ctb"), person("Andrea", "Riebler", role = "ctb"), person("Daniel", "Sabanes Bove", role = "ctb"), MS = person("Maelle", "Salmon", role = "ctb"), DS = person("Dirk", "Schumacher", role = "ctb"), person("Stefan", "Steiner", role = "ctb"), person("Mikko", "Virtanen", role = "ctb"), person("Wei", "Wei", role = "ctb"), person("Valentin", "Wimmer", role = "ctb"), person("R Core Team", role = "ctb", comment = paste("A few code segments are modified", "versions of code from base R")) ) Depends: R (>= 3.6.0), methods, grDevices, graphics, stats, utils, sp (>= 2.1-4), xtable (>= 1.7-0) Imports: polyCub (>= 0.8.0), MASS, Matrix, nlme, spatstat.geom LinkingTo: polyCub Suggests: parallel, grid, gridExtra (>= 2.0.0), lattice (>= 0.20-44), colorspace, scales, animation, msm, spc, coda, runjags, INLA, spdep, numDeriv, maxLik, gsl, fanplot, hhh4contacts, quadprog, memoise, polyclip, intervals, splancs, gamlss, MGLM (>= 0.1.0), sf, tinytest (>= 1.2.4), knitr Enhances: xts, ggplot2 Description: Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) . A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) . For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) and Meyer and Held (2014) . twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) . twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) . A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) . License: GPL-2 URL: https://surveillance.R-Forge.R-project.org/ Additional_repositories: https://inla.r-inla-download.org/R/stable/ VignetteBuilder: utils, knitr NeedsCompilation: yes Packaged: 2024-11-05 12:46:04 UTC; smeyer Author: Michael Hoehle [aut, ths] (), Sebastian Meyer [aut, cre] (), Michaela Paul [aut], Leonhard Held [ctb, ths] (), Howard Burkom [ctb], Thais Correa [ctb], Mathias Hofmann [ctb], Christian Lang [ctb], Juliane Manitz [ctb], Sophie Reichert [ctb], Andrea Riebler [ctb], Daniel Sabanes Bove [ctb], Maelle Salmon [ctb], Dirk Schumacher [ctb], Stefan Steiner [ctb], Mikko Virtanen [ctb], Wei Wei [ctb], Valentin Wimmer [ctb], R Core Team [ctb] (A few code segments are modified versions of code from base R) Maintainer: Sebastian Meyer Repository: CRAN Date/Publication: 2024-11-05 14:10:02 UTC