r-bioc-edger-3.4.2+dfsg.orig/0002755000265600020320000000000012262114163014761 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/NAMESPACE0000644000265600020320000000147312227063711016206 0ustar tilleaadmin# Calling the dynamic library. useDynLib(edgeR) # All functions exported other than those starting with "." exportPattern("^[^\\.]") exportClasses("DGEList","DGEExact","DGEGLM","DGELRT","TopTags") exportMethods("show") import(limma) S3method(as.matrix,DGEList) S3method(dim,DGEList) S3method(dim,DGEExact) S3method(dim,DGEGLM) S3method(dim,DGELRT) S3method(dim,TopTags) S3method(dimnames,DGEList) S3method(dimnames,DGEExact) S3method(dimnames,DGEGLM) S3method(dimnames,DGELRT) S3method(dimnames,TopTags) S3method("dimnames<-",DGEList) S3method("dimnames<-",DGEGLM) S3method(length,DGEList) S3method(length,DGEExact) S3method(length,TopTags) S3method(length,DGEGLM) S3method(length,DGELRT) S3method(plotMDS,DGEList) S3method(as.data.frame,TopTags) S3method(roast,DGEList) S3method(mroast,DGEList) S3method(camera,DGEList) r-bioc-edger-3.4.2+dfsg.orig/build/0002755000265600020320000000000012250253443016062 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/build/vignette.rds0000644000265600020320000000034312250253443020417 0ustar tilleaadminmP 0 .N7P|^)k(nv_n@$'1) y1 <- rowSums(y1) if(n2>1) y2 <- rowSums(y2) if(length(dispersion)==1) dispersion <- rep(dispersion,ntags) # Null fitted values y <- y1+y2 mu <- y/(n1+n2) # Compute p-values pvals <- rep(1,ntags) all.zero <- y<=0 alpha1 <- n1*mu/(1+dispersion*mu) alpha2 <- n2/n1*alpha1 med <- rep(0,ntags) med[!all.zero] <- qbeta(0.5,alpha1[!all.zero],alpha2[!all.zero]) left <- (y1+0.5)/ymed & !all.zero if(any(right)) { pvals[right] <- 2*pbeta((y1[right]-0.5)/y[right],alpha1[right],alpha2[right],lower.tail=FALSE) } names(pvals) <- names(y1) pvals } r-bioc-edger-3.4.2+dfsg.orig/R/getOffset.R0000644000265600020320000000101012227063702017224 0ustar tilleaadmingetOffset <- function(y) # Extract offset vector or matrix from data object and optional arguments. # By default, offset is constructed from the lib.size and norm.factors # but offset supplied explicitly takes precedence # Gordon Smyth # 26 Jan 2011. Last modified 11 Jan 2012. { offset <- y$offset lib.size <- y$samples$lib.size norm.factors <- y$samples$norm.factors if(!is.null(offset)) { return(offset) } else { if(!is.null(norm.factors)) lib.size <- lib.size*norm.factors return(log(lib.size)) } } r-bioc-edger-3.4.2+dfsg.orig/R/dispCoxReidSplineTrend.R0000644000265600020320000000354112227063702021676 0ustar tilleaadmindispCoxReidSplineTrend <- function(y, design, offset=NULL, df = 5, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0) # Estimate spline trend dispersion # Gordon Smyth, Yunshun Chen, Davis McCarthy # Created 16 Dec 2010. Last modified 3 Oct 2012. { y <- as.matrix(y) nlibs <- ncol(y) ntags <- nrow(y) lib.size <- colSums(y) if(is.null(offset)) offset <- 0 offset <- expandAsMatrix(offset,dim(y)) if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,offset=offset) method.optim <- match.arg(method.optim, c("Nelder-Mead", "BFGS")) all.zero <- rowSums(y)==0 # if(any(all.zero)) warning("Some rows of count matrix are all zero. These rows are ignored in dispersion calculation.") abundance.full <- AveLogCPM abundance.nonzero <- AveLogCPM[!all.zero] i <- systematicSubset(subset, abundance.nonzero) offset.nonzero <- offset[!all.zero,] y.nonzero <- y[!all.zero,] # Spline basis require("splines") p1 <- (1:(df-1))/df knots1 <- quantile(abundance.nonzero,p=p1) r <- range(abundance.nonzero) knots2 <- r[1]+p1*(r[2]-r[1]) knots <- 0.3*knots1+0.7*knots2 X <- cbind(1, ns(abundance.nonzero, df, knots=knots)) fun <- function(par,y,design,offset,abundance,X) { eta <- X %*% par dispersion <- exp(eta - abundance) tryCatch(-sum(adjustedProfileLik(as.vector(dispersion),y,design,offset)),error=function(e) 1e10) } par0 <- rep(0,df+1) par0[1] <- median(abundance.nonzero[i]) + log(0.1) out <- optim(par0,fun,y=y.nonzero[i,],design=design,offset=offset.nonzero[i,],abundance=abundance.nonzero[i],X=X[i,],control=list(trace=trace),method=method.optim) disp <- rep(NA, ntags) disp.nonzero <- as.vector(exp(X %*% out$par - abundance.nonzero)) disp[all.zero] <- disp.nonzero[which.min(abundance.nonzero)] disp[!all.zero] <- disp.nonzero out$dispersion <- disp out$AveLogCPM <- AveLogCPM out } r-bioc-edger-3.4.2+dfsg.orig/R/goodTuring.R0000644000265600020320000000432212227063702017430 0ustar tilleaadmingoodTuring <- function(x, conf=1.96) # Simple Good-Turing algorithm for frequency estimation # as described by Gale and Sampson (1995) # Sampson's C code translated to C++ and optimized by Aaron Lun # Has been tested against Sampson's C code from # http://www.grsampson.net/RGoodTur.html # and gives identical results. # Gordon Smyth and Aaron Lun # 9 Nov 2010. Last modified 7 Sep 2012. { # Raw frequencies x <- as.integer(x) if(max(x) < length(x)) { n <- tabulate(x+1L) n0 <- n[1] n <- n[-1] max.x <- length(n) r <- seq.int(from=1L,to=max.x) r <- r[n>0] n <- n[n>0] } else { r <- sort(unique(x)) z <- match(x,r) n <- tabulate(z) if(r[1]==0) { n0 <- n[1] n <- n[-1] r <- r[-1] } else { n0 <- 0 } } # SGT algorithm (no type checking, as that's enforced above) out <- .Call("R_simple_good_turing", r, n, conf, PACKAGE="edgeR") if (is.character(out)) { stop(out) } names(out) <- c("P0","proportion") out$count <- r out$n <- n out$n0 <- n0 out } goodTuringPlot <- function(x) # Simple Good-Turing algorithm for frequency estimation # as described by Gale and Sampson (1995) # Has been tested against Sampson's C code from # http://www.grsampson.net/RGoodTur.html # and gives identical results. # Gordon Smyth # 9 Nov 2010. Last modified 21 Nov 2010. { # Raw frequencies n <- tabulate(x+1L) n0 <- n[1] n <- n[-1] max.x <- length(n) r <- seq.int(from=1L,to=max.x) # Fit a linear trend to log-frequencies n.pos <- n[n>0] r.pos <- r[n>0] l <- length(n.pos) q <- diff(c(0L,r.pos,2L*r.pos[l]-r.pos[l-1]),lag=2)/2 z <- n.pos/q design <- cbind(1,log(r.pos)) fit <- lm.fit(x=design,y=log(z)) plot(log(r.pos),log(z),xlab="log count",ylab="log frequency") abline(fit) invisible(list(r=r.pos,n=n.pos)) } goodTuringProportions <- function(counts) # Transform counts to approximately normal expression values # Gordon Smyth # 15 Dec 2010. Last modified 5 Jan 2011. { z <- counts <- as.matrix(counts) nlibs <- ncol(counts) for (i in 1:nlibs) { g <- goodTuring(counts[,i]) p0 <- g$P0/g$n0 zero <- z[,i]==0 z[zero,i] <- p0 m <- match(z[!zero,i],g$count) z[!zero,i] <- g$proportion[m] } z } r-bioc-edger-3.4.2+dfsg.orig/R/mglmLevenberg.R0000644000265600020320000000522012227063702020073 0ustar tilleaadminmglmLevenberg <- function(y, design, dispersion=0, offset=0, coef.start=NULL, start.method="null", tol=1e-06, maxit=200) # Fit genewise negative binomial glms with log-link # using Levenberg damping to ensure secure convergence # R version by Gordon Smyth and Yunshun Chen # C++ version by Aaron Lun # Created 3 March 2011. Last modified 11 July 2012 { # Check arguments y <- as.matrix(y) if(any(y<0)) stop("y must be non-negative") nlibs <- ncol(y) ngenes <- nrow(y) if(nlibs==0 || ngenes==0) stop("no data") if(!( all(is.finite(y)) || all(is.finite(design)) )) stop("All values must be finite and non-missing") design <- as.matrix(design) if(length(dispersion)= mu) if(any(up)) { p <- pnbinom(q[up],size=size[up],mu=mu[up],lower.tail=FALSE) z[up] <- qnorm(p+d[up]/2,lower.tail=FALSE) } if(any(!up)) { p <- pnbinom(q[!up],size=size[!up],mu=mu[!up],lower.tail=TRUE) z[!up] <- qnorm(p-d[!up]/2,lower.tail=TRUE) } z } r-bioc-edger-3.4.2+dfsg.orig/R/cpm.R0000644000265600020320000000247512227063702016075 0ustar tilleaadmincpm <- function(x, ...) UseMethod("cpm") cpm.DGEList <- function(x, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25, ...) # Counts per million for a DGEList # Davis McCarthy and Gordon Smyth. # Created 20 June 2011. Last modified 1 November 2012 { lib.size <- x$samples$lib.size if(normalized.lib.sizes) lib.size <- lib.size*x$samples$norm.factors cpm(x$counts,lib.size=lib.size,log=log,prior.count=prior.count) } cpm.default <- function(x, lib.size=NULL, log=FALSE, prior.count=0.25, ...) # Counts per million for a matrix # Davis McCarthy and Gordon Smyth. # Created 20 June 2011. Last modified 1 November 2012 { x <- as.matrix(x) if(is.null(lib.size)) lib.size <- colSums(x) if(log) { prior.count.scaled <- lib.size/mean(lib.size)*prior.count lib.size <- lib.size+2*prior.count.scaled } lib.size <- 1e-6*lib.size if(log) log2(t( (t(x)+prior.count.scaled) / lib.size )) else t(t(x)/lib.size) } rpkm <- function(x, gene.length, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25) # Reads per kilobase of gene length per million reads of sequencing # Gordon Smyth # Created 1 November 2012. Last modified 11 March 2012. { y <- cpm(x=x,normalized.lib.sizes=normalized.lib.sizes,log=log,prior.count=prior.count) gene.length.kb <- gene.length/1000 if(log) y-log2(gene.length.kb) else y/gene.length.kb } r-bioc-edger-3.4.2+dfsg.orig/R/systematicSubset.R0000644000265600020320000000057312227063702020666 0ustar tilleaadminsystematicSubset <- function(n,order.by) # Take a systematic subset of indices, # stratified by a ranking variable # Gordon Smyth # 28 Jan 2011 { ntotal <- length(order.by) sampling.ratio <- floor(ntotal/n) if(sampling.ratio <= 1) return(1:ntotal) i1 <- floor(sampling.ratio/2)+1 i <- seq.int(from=i1,to=ntotal,by=sampling.ratio) o <- order(order.by) o[i] } r-bioc-edger-3.4.2+dfsg.orig/R/aveLogCPM.R0000644000265600020320000000224012227063702017061 0ustar tilleaadminaveLogCPM <- function(y, ...) UseMethod("aveLogCPM") aveLogCPM.DGEList <- function(y, normalized.lib.sizes=TRUE, prior.count=2, dispersion=0.05, ...) # log2(AveCPM) # Gordon Smyth # 11 March 2013. { lib.size <- y$samples$lib.size if(normalized.lib.sizes) lib.size <- lib.size*y$samples$norm.factors aveLogCPM(y$counts,lib.size=lib.size,prior.count=prior.count,dispersion=dispersion) } aveLogCPM.DGEGLM <- function(y, prior.count=2, dispersion=0.05, ...) # log2(AveCPM) # Gordon Smyth # 11 March 2013. { offset <- y$offset if(is.matrix(offset)) offset <- colMeans(offset) lib.size <- exp(offset) aveLogCPM(y$counts,lib.size=lib.size,prior.count=prior.count,dispersion=dispersion) } aveLogCPM.default <- function(y,lib.size=NULL,prior.count=2,dispersion=0.05, ...) # log2(AveCPM) # Gordon Smyth # 25 Aug 2012. Last modified 11 March 2012. { y <- as.matrix(y) if(is.null(lib.size)) lib.size <- colSums(y) prior.count.scaled <- lib.size/mean(lib.size) * prior.count offset <- log(lib.size+2*prior.count.scaled) abundance <- mglmOneGroup(t(t(y)+prior.count.scaled),dispersion=dispersion,offset=offset) (abundance+log(1e6)) / log(2) } r-bioc-edger-3.4.2+dfsg.orig/R/getPriorN.R0000644000265600020320000000110212227063702017211 0ustar tilleaadmin# ESTIMATE VALUES FOR PRIOR.N getPriorN <- function(y, design=NULL, prior.df=20) ## Determine the appropriate prior.n value to keep the prior degrees of freedom fixed at the given level ## Davis McCarthy. ## Created 29 April 2011. Last modified 29 Apr 2011. { if( !is(y, "DGEList") && is.null(design) ) stop("If y is not a DGEList object then a non-null design matrix must be provided.\n") nlibs <- ncol(y) if( is.null(design) ) npar <- nlevels(y$samples$group) else npar <- ncol(design) residual.df <- nlibs - npar prior.n <- prior.df/residual.df prior.n } r-bioc-edger-3.4.2+dfsg.orig/R/plotSmear.R0000644000265600020320000000456212227063702017263 0ustar tilleaadminplotSmear <- function (object, pair=NULL, de.tags=NULL, xlab="Average logCPM", ylab="logFC", pch=19, cex=.2, smearWidth=.5, panel.first=grid(), smooth.scatter=FALSE, lowess=FALSE, ...) # User-level function for creating an MA-plot for DGE data. # Created by Mark Robinson. Last modified by Yunshun Chen, 19 March 2012. { if ( !(class(object) %in% c("DGEList", "DGELRT", "DGEExact")) ) stop("Currently only supports DGEList/DGELRT/DGEExact objects as the object argument.") if( is(object, "DGEList") && is.null(object$samples$group) ) stop("Cannot produce a smear plot if no experimental groups are defined. Here, d$samples$groups is NULL.\n") if( is(object, "DGEList") ) { levs.group <- levels(object$samples$group) if(length(levs.group)==1) stop("Cannot produce an MA-plot with only one group. The one group defined is: ",levs.group) if (is.null(pair)) pair <- levs.group[1:2] if( !all(pair %in% levs.group) ) stop("At least one element of given pair is not a group.\n Groups are: ", paste(levs.group, collapse=" "), "\n") stopifnot(length(pair)==2) cols1 <- pair[1]==object$samples$group cols2 <- pair[2]==object$samples$group lib.size <- object$samples$lib.size*object$samples$norm.factors x <- 1e6 * rowMeans( object$counts[,cols1,drop=FALSE] / expandAsMatrix( lib.size[cols1], dim(object$counts[,cols1,drop=FALSE])) ) y <- 1e6 * rowMeans( object$counts[,cols2,drop=FALSE] / expandAsMatrix( lib.size[cols2], dim(object$counts[,cols2,drop=FALSE])) ) ylab <- paste(ylab, ":", paste(pair[c(2,1)], collapse="-"), paste="") i <- match(de.tags,rownames(object$counts)) i <- i[!is.na(i)] maPlot( x, y, xlab=xlab, ylab=ylab, pch=pch, cex=cex, smearWidth=smearWidth, de.tags=i, panel.first=panel.first, smooth.scatter=smooth.scatter, lowess=lowess, ...) } else { if(is.null(object$table$logFC)) stop("table$logFC slot in DGELRT object is NULL. We cannot produce an MA (smear) plot if more than one coefficient from the GLM is being tested in the likelihood ratio test as this results in more one logFC value per gene---one for each coefficient.\n") i <- match(de.tags,rownames(object$table)) i <- i[!is.na(i)] maPlot( x=NULL, y=NULL, logAbundance=object$table$logCPM, logFC=object$table$logFC, xlab=xlab, ylab=ylab, pch=pch, cex=cex, smearWidth=smearWidth, de.tags=i, panel.first=panel.first, smooth.scatter=smooth.scatter, lowess=lowess, ...) } } r-bioc-edger-3.4.2+dfsg.orig/R/loessByCol.R0000644000265600020320000000235412227063702017370 0ustar tilleaadminloessByCol <- function(y, x=NULL, span=0.5) # Calls a C++ function to do the dirty work of fitting a degree-0, # non-robustified loess curve through each column of a matrix. # C++ version by Aaron Lun, 26 June 2012. Last modified 6 July 2012. # Replaces: # Rcode version by Davis McCarthy, May 2010. # simpleLoess version by Yunshun Chen, 08 May 2012. { y <- as.matrix(y) ntags <- nrow(y) if(is.null(x)) x <- 1:ntags # Sort by x-values. x.order <- order(x) y <- y[x.order,,drop=FALSE] x <- x[x.order] nspan <- min(floor(span*ntags), ntags) if(nspan<=1) { fitted <- list(fitted.values=y,leverages=rep(1,ntags)) names(fitted$leverages) <- rownames(y) return(fitted) } # Passing to the compiled code. Note type checking, otherwise the code will complain. if (!is.double(y)) storage.mode(y) <- "double" if (!is.double(x)) x <- as.double(x) fitted <- .Call("R_loess_by_col", x, y, ncol(y), nspan, PACKAGE="edgeR") if (is.character(fitted)) { stop(fitted) } # Recover the original order. fitted[[1]][x.order,] <- fitted[[1]] fitted[[2]][x.order] <- fitted[[2]] # Beautifying. names(fitted) <- c("fitted.values", "leverages") dimnames(fitted$fitted.values) <- dimnames(y) names(fitted$leverages) <- rownames(y) fitted } r-bioc-edger-3.4.2+dfsg.orig/R/dispCoxReidPowerTrend.R0000644000265600020320000000256012227063702021540 0ustar tilleaadmindispCoxReidPowerTrend <- function(y, design, offset=NULL, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0) # Estimate trend dispersion=a*mean^b+c # Gordon Smyth, Davis McCarthy, Yunshun Chen # 16 Dec 2010. Last modified 3 Oct 2012. { y <- as.matrix(y) nlibs <- ncol(y) ntags <- nrow(y) if(is.null(offset)) offset <- 0 offset <- expandAsMatrix(offset,dim(y)) if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,offset=offset) method.optim <- match.arg(method.optim, c("Nelder-Mead", "BFGS")) all.zero <- rowSums(y)==0 # if(any(all.zero)) warning("Some rows of count matrix are all zero. These rows are ignored in dispersion calculation.") abundance.full <- AveLogCPM abundance.nonzero <- abundance.full[!all.zero] i <- systematicSubset(subset, abundance.nonzero) offset.nonzero <- offset[!all.zero,] y.nonzero <- y[!all.zero,] fun <- function(par,y,design,offset,abundance) { dispersion <- exp(par[1]+par[2]*abundance) + exp(par[3]) tryCatch(-sum(adjustedProfileLik(dispersion,y,design,offset)),error=function(e) 1e10) } par0 <- c(log(0.1),0,-5) out <- optim(par0,fun,y=y.nonzero[i,],design=design,offset=offset.nonzero[i,],abundance=abundance.nonzero[i],control=list(trace=trace),method=method.optim) out$dispersion <- exp(out$par[1]+out$par[2]*abundance.full) + exp(out$par[3]) out$AveLogCPM <- abundance.full out } r-bioc-edger-3.4.2+dfsg.orig/R/exactTestByDeviance.R0000644000265600020320000000533612227063702021213 0ustar tilleaadminexactTestByDeviance <- function(y1,y2,dispersion=0,big.count=900) # Test for differences in means between two groups of # negative binomial or Poisson random variables, # using exact enumeration conditional on total sum. # Rejection region is defined by large deviance statistics, # making this a conditional likelihood ratio test. # Davis McCarthy, Gordon Smyth. # Created 8 August 2011. Last modified 2 October 2011. { y1 <- as.matrix(y1) y2 <- as.matrix(y2) ntags <- nrow(y1) if(ntags!=nrow(y2)) stop("Number of rows of y1 not equal to number of rows of y2") if(any(is.na(y1)) || any(is.na(y2))) stop("NAs not allowed") n1 <- ncol(y1) n2 <- ncol(y2) if(n1==n2) return(exactTestDoubleTail(y1=y1,y2=y2,dispersion=dispersion,big.count=big.count)) sum1 <- round(rowSums(y1)) sum2 <- round(rowSums(y2)) N <- sum1+sum2 mu <- N/(n1+n2) if(all(dispersion==0)) return(binomTest(sum1,sum2,p=n1/(n1+n2))) if(any(dispersion==0)) stop("dispersion must be either all zero or all positive") if(length(dispersion)==1) dispersion <- rep(dispersion,ntags) r <- 1/dispersion all.zeros <- N==0 pvals <- rep(1,ntags) if(ntags==0) return(pvals) # Eliminate all zero rows if(any(all.zeros)) { pvals[!all.zeros] <- Recall(y1=y1[!all.zeros,,drop=FALSE],y2=y2[!all.zeros,,drop=FALSE],dispersion=dispersion[!all.zeros],big.count=big.count) return(pvals) } for (i in 1:ntags) { ind <- 0:N[i] p.top <- dnbinom(ind,size=n1*r[i],mu=n1*mu[i])*dnbinom(N[i]-ind,size=n2*r[i],mu=n2*mu[i]) p.obs <- dnbinom(sum1[i],size=n1*r[i],mu=n1*mu[i]) * dnbinom(sum2[i],size=n2*r[i],mu=n2*mu[i]) ## We need a robust way to choose the appropriate prob masses to sum over ## We use the LR stat to choose---choose all values of support with LR stat >= obs LR stat ## Then sum prob masses over these chosen values of support ind.mat <- cbind(ind, N[i]-ind) rmat.i <- matrix(cbind(n1*r[i], n2*r[i]), nrow=length(ind), ncol=2, byrow=TRUE) mumat.i <- matrix(cbind(n1*mu[i], n2*mu[i]), nrow=length(ind), ncol=2, byrow=TRUE) dev.obs <- .nbdev(cbind(sum1[i],sum2[i]), rmat.i[1,,drop=FALSE], mumat.i[1,,drop=FALSE]) dev.all <- .nbdev(ind.mat, rmat.i, mumat.i) keep <- dev.all>=dev.obs p.bot <- dnbinom(N[i],size=(n1+n2)*r[i],mu=(n1+n2)*mu[i]) pvals[i] <- sum(p.top[keep]/p.bot) } pmin(pvals,1) } .nbdev <- function(y, r, mu) ## Compute NB deviances for observations, with potentially different size (r = 1/dispersion) and mean (mu) ## Arguments can be vectors or matrices ## Created by Davis McCarthy, 5 August 2011. ## Last modified 8 August 2011. { if(!identical(dim(y),dim(r)) | !identical(dim(y),dim(mu))) stop("Matrices y, r and m are not all the same size.\n") y[y==0] <- 1e-08 dev <- 2*rowSums( y*log( y / mu ) - (y + r)*log( (1+y/r) / (1+mu/r) ) ) dev } r-bioc-edger-3.4.2+dfsg.orig/R/estimateCommonDisp.R0000644000265600020320000000236412227063702021117 0ustar tilleaadminestimateCommonDisp <- function(object,tol=1e-06,rowsum.filter=5,verbose=FALSE) # Do two iterations of calculating pseudodata and estimating common dispersion # Davis McCarthy, Mark Robinson, Gordon Smyth. # Created 2009. Last modified 2 Aug 2012. { if(!is(object,"DGEList")) stop("Currently supports DGEList objects") group <- object$samples$group <- as.factor(object$samples$group) if( all(tabulate(group)<=1) ) { warning("There is no replication, setting dispersion to NA.") object$common.dispersion <- NA return(object) } tags.used <- rowSums(object$counts) > rowsum.filter pseudo.obj <- object[tags.used,] # Start from small dispersion disp <- 0.01 for(i in 1:2) { out <- equalizeLibSizes(object,dispersion=disp) pseudo.obj$counts <- out$pseudo.counts[tags.used,,drop=FALSE] y <- splitIntoGroups(pseudo.obj) delta <- optimize(commonCondLogLikDerDelta, interval=c(1e-4,100/(100+1)), tol=tol, maximum=TRUE, y=y, der=0) delta <- delta$maximum disp <- delta/(1-delta) } if(verbose) cat("Disp =",round(disp,5),", BCV =",round(sqrt(disp),4),"\n") object$common.dispersion <- disp object$pseudo.counts <- out$pseudo.counts # Average logCPM object$AveLogCPM <- aveLogCPM(object) object$pseudo.lib.size <- out$common.lib.size object } r-bioc-edger-3.4.2+dfsg.orig/R/decidetestsDGE.R0000644000265600020320000000102412227063702020123 0ustar tilleaadmin# DECIDETESTSDGE.R decideTestsDGE <- function(object,adjust.method="BH",p.value=0.05) ## Accept or reject hypothesis tests across genes and contrasts ## Davis McCarthy ## 15 August 2010. Last modified 19 Jan 2012. { if(!is(object,"DGEExact") & !is(object,"DGELRT")) stop("Need DGEExact or DGELRT object") # Expects a DGEExact or DGELRT object decideTests(new("MArrayLM", list(p.value=object$table$PValue, coefficients=object$table$logFC)), method="separate", adjust.method=adjust.method, p.value=p.value) } r-bioc-edger-3.4.2+dfsg.orig/R/condLogLikDerDelta.R0000644000265600020320000000134512227063702020743 0ustar tilleaadmincondLogLikDerDelta <- function(y,delta,der=1L) # Derivatives of log-likelihood function wrt to delta # r=1/dispersion and delta=1/(1+r)=dispersion/(1+dispersion) # der is order of derivative required (0th deriv is the function) # Written by Mark Robinson, edited by Davis McCarthy, February 2009 { # Vector interpreted as matrix of one row, i.e., one gene if (is.vector(y)) { y <- matrix(y,nrow=1) } else { y <- as.matrix(y) } if( !(length(delta)==1 | length(delta)==nrow(y)) ) stop("delta must be of length 1 or nrow(y)") r <- (1/delta)-1 switch(der+1L, condLogLikDerSize(y,r,der=0L), condLogLikDerSize(y,r,der=1L)*(-delta^(-2)), condLogLikDerSize(y,r,der=1L)*2*(delta^(-3))+condLogLikDerSize(y,r,der=2)*(delta^(-4)) ) } r-bioc-edger-3.4.2+dfsg.orig/R/maximizeInterpolant.R0000644000265600020320000000175212227063702021356 0ustar tilleaadminmaximizeInterpolant <- function( x, y ) # maximizeInterpolant: written by Aaron Lun # # This function takes an ordered set of spline points and a likelihood matrix where each row # corresponds to a tag and each column corresponds to a spline point. It then calculates the # position at which the maximum interpolated likelihood occurs for each by solving the derivative # of the spline function. { if (is.vector(y)) { y<-rbind(y) warning("coverting vector of likelihoods to matrix format for interpolation") } if (length(x)!=ncol(y)) { stop("number of columns must equal number of spline points") } else if (is.unsorted(x) || anyDuplicated(x)) { stop("spline points must be unique and sorted") } # Performing some type checking. if (!is.double(x)) storage.mode(x)<-"double" if (!is.double(y)) storage.mode(y)<-"double" out<-.Call("R_maximize_interpolant", x, t(y), PACKAGE="edgeR") if (is.character(out)) { stop(out) } return(out); } r-bioc-edger-3.4.2+dfsg.orig/R/weightedCondLogLikDerDelta.R0000644000265600020320000000060212227063702022417 0ustar tilleaadminweightedCondLogLikDerDelta <- function(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0) # Calculates weighted conditional log-likelihood for a tag - necessary to estimate tagwise dispersions { l0<-rep(0,ntags) onev<-rep(1,ntags) for(i in seq_len(length(y))) { l0<-condLogLikDerDelta(y[[i]],delta,der=der)+l0 } m0<-sum(l0) l0a<-l0 + (prior.n/ntags)*m0 l0a[tag] }r-bioc-edger-3.4.2+dfsg.orig/R/calcNormFactors.R0000644000265600020320000000661312227063702020374 0ustar tilleaadmincalcNormFactors <- function(object, method=c("TMM","RLE","upperquartile","none"), refColumn=NULL, logratioTrim=.3, sumTrim=0.05, doWeighting=TRUE, Acutoff=-1e10, p=0.75) # Scale normalization of RNA-Seq data. # Mark Robinson. Edits by Gordon Smyth. # Created October 22 October 2009. Last modified 16 Apr 2013. { # Check object if(is(object,"DGEList")) { x <- as.matrix(object$counts) lib.size <- object$samples$lib.size } else { x <- as.matrix(object) lib.size <- colSums(x) } # Check method method <- match.arg(method) # Remove all zero rows allzero <- rowSums(x>0) == 0 if(any(allzero)) x <- x[!allzero,,drop=FALSE] # Degenerate cases if(nrow(x)==0 || ncol(x)==1) method="none" # Calculate factors f <- switch(method, TMM = { f75 <- .calcFactorQuantile(data=x, lib.size=lib.size, p=0.75) if( is.null(refColumn) ) refColumn <- which.min(abs(f75-mean(f75))) if(length(refColumn)==0 | refColumn < 1 | refColumn > ncol(x)) refColumn <- 1 f <- rep(NA,ncol(x)) for(i in 1:ncol(x)) f[i] <- .calcFactorWeighted(obs=x[,i],ref=x[,refColumn], libsize.obs=lib.size[i], libsize.ref=lib.size[refColumn], logratioTrim=logratioTrim, sumTrim=sumTrim, doWeighting=doWeighting, Acutoff=Acutoff) f }, RLE = .calcFactorRLE(x)/lib.size, upperquartile = .calcFactorQuantile(x,lib.size,p=p), none = rep(1,ncol(x)) ) # Factors should multiple to one f <- f/exp(mean(log(f))) # Output if(is(object, "DGEList")) { object$samples$norm.factors <- f return(object) } else { return(f) } } .calcFactorRLE <- function (data) { gm <- exp(rowMeans(log(data))) apply(data, 2, function(u) median((u/gm)[gm > 0])) } .calcFactorQuantile <- function (data, lib.size, p=0.75) { # i <- apply(data<=0,1,all) # if(any(i)) data <- data[!i,,drop=FALSE] y <- t(t(data)/lib.size) f <- apply(y,2,function(x) quantile(x,p=p)) # f/exp(mean(log(f))) } .calcFactorWeighted <- function(obs, ref, libsize.obs=NULL, libsize.ref=NULL, logratioTrim=.3, sumTrim=0.05, doWeighting=TRUE, Acutoff=-1e10) { if( all(obs==ref) ) return(1) obs <- as.numeric(obs) ref <- as.numeric(ref) if( is.null(libsize.obs) ) nO <- sum(obs) else nO <- libsize.obs if( is.null(libsize.ref) ) nR <- sum(ref) else nR <- libsize.ref logR <- log2((obs/nO)/(ref/nR)) # log ratio of expression, accounting for library size absE <- (log2(obs/nO) + log2(ref/nR))/2 # absolute expression v <- (nO-obs)/nO/obs + (nR-ref)/nR/ref # estimated asymptotic variance # remove infinite values, cutoff based on A fin <- is.finite(logR) & is.finite(absE) & (absE > Acutoff) logR <- logR[fin] absE <- absE[fin] v <- v[fin] # taken from the original mean() function n <- sum(fin) loL <- floor(n * logratioTrim) + 1 hiL <- n + 1 - loL loS <- floor(n * sumTrim) + 1 hiS <- n + 1 - loS # keep <- (rank(logR) %in% loL:hiL) & (rank(absE) %in% loS:hiS) # a fix from leonardo ivan almonacid cardenas, since rank() can return # non-integer values when there are a lot of ties keep <- (rank(logR)>=loL & rank(logR)<=hiL) & (rank(absE)>=loS & rank(absE)<=hiS) if(doWeighting) 2^( sum(logR[keep]/v[keep], na.rm=TRUE) / sum(1/v[keep], na.rm=TRUE) ) else 2^( mean(logR[keep], na.rm=TRUE) ) } r-bioc-edger-3.4.2+dfsg.orig/R/dispBinTrend.R0000644000265600020320000000546412227063702017704 0ustar tilleaadmindispBinTrend <- function(y, design=NULL, offset=NULL, df=5, span=0.3, min.n=400, method.bin="CoxReid", method.trend="spline", AveLogCPM=NULL, ...) # Estimate common dispersion in bins based on AveLogCPM, # then fit a curve through the dispersions # Davis McCarthy, Gordon Smyth # Created 10 Feb 2011. Last modified 17 April 2013. { # Check y y <- as.matrix(y) nlibs <- ncol(y) ntags <- nrow(y) pos <- rowSums(y)>0 if(!any(pos)) return(AveLogCPM=AveLogCPM, dispersion=rep(0,ntags)) npostags <- sum(pos) # Check design if(is.null(design)) { design <- matrix(1,nlibs,1) } else { design <- as.matrix(design) } # Check offset if(is.null(offset)) offset <- expandAsMatrix(log(colSums(y)),dim(y)) # Check methods method.bin <- match.arg(method.bin, c("CoxReid", "Pearson", "deviance")) method.trend <- match.arg(method.trend, c("spline", "loess")) # Check AveLogCPM if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y) # Define bins of genes based on min.n in each bin # All zero rows are marked as group==0 group <- as.numeric(pos) if(npostags < 100) nbins <- 1 else { nbins <- floor(npostags^0.4) nbins <- min(nbins,1000) min.n <- min(min.n,floor(npostags/nbins)) } if(min.n < 50) { nbins <- floor(npostags/50) min.n <- 50 } # nbins <- floor(npostags/min.n) # nbins <- min(max(nbins,1),1000) if(nbins>1) group[pos] <- cutWithMinN(AveLogCPM[pos],intervals=nbins,min.n=min.n)$group # Estimate dispersion in each bin bin.d <- bin.A <- rep(0,nbins) for(i in 1:nbins) { bin <- group==i bin.d[i] <- estimateGLMCommonDisp(y[bin,], design, method=method.bin, offset[bin,], min.row.sum=0, ...) bin.A[i] <- mean(AveLogCPM[bin]) } # If just one bin, trended dispersion is constant if(nbins==1) { dispersion <- rep.int(bin.d,ntags) return(list(AveLogCPM=AveLogCPM, dispersion=dispersion, bin.AveLogCPM=bin.A, bin.dispersion=bin.d)) } # If few bins, use linear interpolation if(nbins<7) { f <- approxfun(bin.A,sqrt(bin.d),rule=2) dispersion <- f(AveLogCPM)^2 return(list(AveLogCPM=AveLogCPM, dispersion=dispersion, bin.AveLogCPM=bin.A, bin.dispersion=bin.d)) } # Spline smoother through binned dispersions if( method.trend=="spline" ) { require("splines") p1 <- (1:(df-1))/df knots1 <- quantile(bin.A,p=p1) r <- range(bin.A) knots2 <- r[1]+p1*(r[2]-r[1]) knots <- 0.3*knots1+0.7*knots2 basisbins <- ns(bin.A,df=df,knots=knots,intercept=TRUE) beta <- coefficients(lm.fit(basisbins, sqrt(bin.d))) basisall <- predict(basisbins,newx=AveLogCPM) dispersion <- drop(basisall %*% beta)^2 } # Loess smoother though binned dispersions if( method.trend=="loess" ) { fit <- loessFit(sqrt(bin.d), bin.A, span=span, iterations=1) f <- approxfun(bin.A, fit$fitted, rule=2) dispersion <- f(AveLogCPM)^2 } list(AveLogCPM=AveLogCPM, dispersion=dispersion, bin.AveLogCPM=bin.A, bin.dispersion=bin.d) } r-bioc-edger-3.4.2+dfsg.orig/R/roast.DGEList.R0000644000265600020320000000652712227063702017702 0ustar tilleaadminroast.DGEList <- function(y, index=NULL, design=NULL, contrast=ncol(design), set.statistic="mean", gene.weights=NULL, array.weights=NULL, weights=NULL, block=NULL, correlation, var.prior=NULL, df.prior=NULL, trend.var=FALSE, nrot=999) # Rotation gene set testing for RNA-Seq data # Yunshun Chen, Gordon Smyth # Created 19 Dec 2012. Last revised on 4 Feb 2013 { # Check design matrix if(is.null(design)) { if(nlevels(y$samples$group)<2) stop("Need at least two groups, or at least two columns for design matrix") design <- model.matrix(~y$samples$group) rownames(design) <- colnames(y) } nbeta <- ncol(design) if(nbeta < 2) stop("Need at least two columns for design") # Check dispersion estimates dispersion <- getDispersion(y) if(is.null(dispersion)) stop("Dispersion estimate not found. Please estimate the dispersion(s) before you proceed.") # Check contrast if(length(contrast) == 1) { u <- rep.int(0, nbeta) u[contrast] <- 1 contrast <- u } if(length(contrast) != nbeta) stop("length of contrast must match column dimension of design") if(all(contrast==0)) stop("contrast all zero") # Null design matrix QR <- qr(contrast) design0 <- t(qr.qty(QR, t(design))[-1, , drop=FALSE]) # Null fit fit.null <- glmFit(y, design0, prior.count=0) z <- zscoreNBinom(y$counts, mu=fit.null$fitted.values, size=1/dispersion) roast(y=z, index=index, design=design, contrast=contrast, set.statistic=set.statistic, gene.weights=gene.weights, array.weights=array.weights, weights=weights, block=block, correlation=correlation, var.prior=var.prior, df.prior=df.prior, trend.var=trend.var, nrot=nrot) } mroast.DGEList <- function(y, index=NULL, design=NULL, contrast=ncol(design), set.statistic="mean", gene.weights=NULL, array.weights=NULL, weights=NULL, block=NULL, correlation, var.prior=NULL, df.prior=NULL, trend.var=FALSE, nrot=999, adjust.method="BH", midp=TRUE, sort="directional") # Rotation gene set testing for RNA-Seq data with multiple sets # Yunshun Chen, Gordon Smyth # Created 8 Jan 2013 { # Check design matrix if(is.null(design)) { if(nlevels(y$samples$group)<2) stop("Need at least two groups, or at least two columns for design matrix") design <- model.matrix(~y$samples$group) rownames(design) <- colnames(y) } nbeta <- ncol(design) if(nbeta < 2) stop("Need at least two columns for design") # Check dispersion estimates dispersion <- getDispersion(y) if(is.null(dispersion)) stop("Dispersion estimate not found. Please estimate the dispersion(s) before you proceed.") # Check contrast if(length(contrast) == 1) { u <- rep.int(0, nbeta) u[contrast] <- 1 contrast <- u } if(length(contrast) != nbeta) stop("length of contrast must match column dimension of design") if(all(contrast==0)) stop("contrast all zero") # Null design matrix QR <- qr(contrast) design0 <- t(qr.qty(QR, t(design))[-1, , drop=FALSE]) # Null fit fit.null <- glmFit(y, design0, prior.count=0) z <- zscoreNBinom(y$counts, mu=fit.null$fitted.values, size=1/dispersion) mroast(y=z, index=index, design=design, contrast=contrast, set.statistic=set.statistic, gene.weights=gene.weights, array.weights=array.weights, weights=weights, block=block, correlation=correlation, var.prior=var.prior, df.prior=df.prior, trend.var=trend.var, nrot=nrot, adjust.method=adjust.method, midp=midp, sort=sort) } r-bioc-edger-3.4.2+dfsg.orig/R/locfitByCol.R0000644000265600020320000000056512227063702017525 0ustar tilleaadminlocfitByCol <- function(y, x=NULL, weights=1, span=0.5, degree=0) # Gordon Smyth # 20 Aug 2012. { y <- as.matrix(y) ntags <- nrow(y) if(is.null(x)) x <- 1:ntags if(span*ntags<2 || ntags<=1) return(y) suppressPackageStartupMessages(require(locfit)) X <- cbind(1,x) for (j in 1:ncol(y)) y[,j] <- fitted(locfit.raw(X,y[,j],weights=weights, alpha=span,deg=degree)) y } r-bioc-edger-3.4.2+dfsg.orig/R/normalizeChIPtoInput.R0000644000265600020320000000743212227063702021403 0ustar tilleaadminnormalizeChIPtoInput <- function(input,response,dispersion=0.01,niter=6,loss="p",plot=FALSE,verbose=FALSE,...) # Normalize ChIP-Seq counts to input # and test for enrichment # Gordon Smyth # 2 Dec 2011. Last modified 11 Dec 2011. { if(length(input)!=length(response)) stop("input and response must be same length") if(any(input<0) || any(response<0)) stop("negative values not allowed") if(any(dispersion<=0)) stop("dispersion must be positive") # Remove zero inputs from main calculation zero <- input<=0 & response<=0 if(any(zero)) { p.value <- rep.int(1,length(zero)) out <- Recall(input[!zero],response[!zero],dispersion=dispersion,niter=niter,loss=loss,plot=plot,verbose=verbose,...) p.value[!zero] <- out$p.value out$p.value <- p.value return(out) } n <- length(response) # Handle special cases if(n==0) return(p=numeric(0),scaling.factor=NA,prop.enriched=NA) if(all(input==0)) return(p=rep(0,1),scaling.factor=0,prop.enriched=1) if(n==1) return(p=1,scaling.factor=input/response,prop.enriched=0) # Reset zero inputs to minimum positive value input[input==0] <- min(input[input>0]) # From here, all values of input are positive # Objective function for optimizing scaling of response relative to input loss <- match.arg(loss,c("p","z")) f <- switch(loss, p = function(scaling.factor,input,response,prop.enriched) { p <- pnbinom(response,mu=scaling.factor*input,size=1/dispersion) d <- dnbinom(response,mu=scaling.factor*input,size=1/dispersion) pmid <- p-d/2 n <- length(response) n.not.enriched <- round(length(response) * (1-prop.enriched)) n.not.enriched <- max(n.not.enriched,1) p.sorted <- sort(pmid,partial=n.not.enriched) out <- abs(mean(p.sorted[1:n.not.enriched])-0.5) }, z = function(scaling.factor,input,response,prop.enriched) { z <- zscoreNBinom(response,mu=scaling.factor*input,size=1/dispersion) n <- length(response) n.not.enriched <- round(length(response) * (1-prop.enriched)) n.not.enriched <- max(n.not.enriched,1) z.sorted <- sort(z,partial=n.not.enriched) out <- mean(abs(z.sorted[1:n.not.enriched])) } ) # Starting value for proportion of enriched marks prop.enriched <- 0.5 scaling.factor.interval <- quantile(response/input,prob=c(0.1,0.8)) if(diff(scaling.factor.interval)==0) { scaling.factor <- scaling.factor.interval[1] p <- pnbinom(response,mu=scaling.factor*input,size=1/dispersion,lower.tail=FALSE) d <- dnbinom(response,mu=scaling.factor*input,size=1/dispersion) pmid <- p-d/2 enriched <- p.adjust(pmid,method="holm")<0.5 prop.enriched <- sum(enriched)/n if(verbose) cat("prop.enriched:",prop.enriched,"scaling.factor:",scaling.factor,"\n") } else { # Iterate over prop.enriched and scaling.factor for (iter in 1:niter) { scaling.factor <- optimize(f,interval=scaling.factor.interval,input=input,response=response,prop.enriched=prop.enriched)$minimum p <- pnbinom(response,mu=scaling.factor*input,size=1/dispersion,lower.tail=FALSE) d <- dnbinom(response,mu=scaling.factor*input,size=1/dispersion) pmid <- p-d/2 enriched <- p.adjust(pmid,method="holm")<0.5 prop.enriched <- sum(enriched)/n if(verbose) cat("prop.enriched:",prop.enriched,"scaling.factor:",scaling.factor,"\n") } } if(plot) { x <- log2(input) y <- log2(response) mu <- log2(input*scaling.factor) o <- order(x) plot(x,y,xlab="log2(Input)",ylab="log2(Response)",type="n",...) points(x[!enriched],y[!enriched],pch=16,cex=0.1) points(x[enriched],y[enriched],pch=16,cex=0.2,col="red") lines(x[o],mu[o],col="blue",lwd=2) legend("topleft",pch=16,col=c("red","blue"),legend=c("Enriched","Line of normalization")) } return(list(p.value=p,pmid.value=pmid,scaling.factor=scaling.factor,prop.enriched=prop.enriched)) } r-bioc-edger-3.4.2+dfsg.orig/R/maPlot.R0000644000265600020320000000330412227063702016542 0ustar tilleaadminmaPlot <- function(x,y, logAbundance=NULL, logFC=NULL, normalize=FALSE, plot.it=TRUE, smearWidth=1, col=NULL, allCol="black", lowCol="orange", deCol="red", de.tags=NULL, smooth.scatter=FALSE, lowess=FALSE, ...) # Low-level function for creating an MA-plot for DGE data. # Created by Mark Robinson. Last modified by Davis McCarthy, 19 November 2010. # Edits by Gordon Smyth 20 March 2011. { if( !is.null(logAbundance) && !is.null(logFC) ) { A <- logAbundance M <- logFC w <- v <- rep(FALSE, length(A)) w <- A < -25+log2(1e6) # logCPM instead of logConc if( any(w) ) { shift <- max(abs(M[w])) - max(abs(M[!w])) A[w] <- min(A[!w]) - runif(sum(w),min=0,max=smearWidth) M[w] <- sign(M[w]) * (abs(M[w]) - shift) } } else { if(normalize) { x <- x/sum(x) y <- y/sum(y) } A <- (log2(x)+log2(y))/2 M <- log2(y) - log2(x) w <- x==min(x) | y==min(y) if( any(w) ) { A[w] <- min(A[!w]) - runif(sum(w),min=0,max=smearWidth) M[w] <- log2(y[w]+min(y[!w])) - log2(x[w]+min(x[!w])) } } qs <- quantile(M, c(0.05,0.95)) range <- qs[2]-qs[1] v <- (M < (median(M) - 5*range)) | (M > (median(M) + 5*range)) if( any(v) ) { M[v] <- sign(M[v]) * (max(abs(M[!v])) + 0.5*range) } if(plot.it) { if( is.null(col) ) { col <- rep(allCol, length(A)) if( any(w) | any(v) ) col[w | v] <- lowCol } if(smooth.scatter) { smoothScatter(A, M, col=col, ...) grid() if( any(w) | any(v) ) points(A[w | v], M[w | v], col=lowCol, ...) } else plot(A,M,col=col,...) points(A[de.tags],M[de.tags],col=deCol,...) if(lowess) { keep <- A > min(A[!(w |v)]) + 1 low <- lowess(A[keep],M[keep], f=1/4) lines(low,col="red",lwd=4) } } invisible(list(A=A,M=M,w=w,v=v)) } r-bioc-edger-3.4.2+dfsg.orig/R/calcNormOffsets.R0000644000265600020320000000153612227063702020403 0ustar tilleaadmincalcNormOffsetsforChIP <- function(input,response,dispersion=0.01,niter=6,loss="p",plot=FALSE,verbose=FALSE,...) # Normalize ChIP-Seq counts to input and form offset matrix # Gordon Smyth # 14 Dec 2011. Last modified 14 May 2012. { input <- as.matrix(input) y <- as.matrix(response) if(nrow(input) != nrow(y)) stop("nrows of input and response disagree") if(ncol(input)==1 && ncol(y)>1) input <- matrix(input,nrow(input),ncol(response)) if(ncol(input) != ncol(y)) stop("ncols of input and response disagree") offset <- y for (j in 1:ncol(y)) { out <- normalizeChIPtoInput(input[,j],y[,j],dispersion=dispersion,niter=niter,loss=loss,plot=plot,verbose=verbose,main=colnames(y)[j],...) offset[,j] <- log(out$scaling.factor * input[,j]) } if(is(response,"DGEList")) { response$offset <- offset return(response) } else { return(offset) } } r-bioc-edger-3.4.2+dfsg.orig/R/expandAsMatrix.R0000644000265600020320000000160012227063702020233 0ustar tilleaadmin expandAsMatrix <- function(x,dim=NULL) # Convert scalar, row or column vector, or matrix, to be a matrix # Gordon Smyth # 26 Jan 2011. Last modified 26 Jan 2011. { # Check dim argument if(is.null(dim)) return(as.matrix(x)) if(length(dim)<2) stop("dim must be numeric vector of length 2") dim <- round(dim[1:2]) if(any(dim<1)) stop("zero or negative dimensions not allowed") # x is a vector dx <- dim(x) if(is.null(dx)) { lx <- length(x) if(lx==1) return(matrix(x,dim[1],dim[2])) if(lx==dim[2]) return(matrix(x,dim[1],dim[2],byrow=TRUE)) if(lx==dim[1]) return(matrix(x,dim[1],dim[2],byrow=FALSE)) stop("x of unexpected length") } # x is a matrix or data.frame if(length(dx)<2) stop("x has less than 2 dimensions") if(length(dx)>2) stop("x has more than 2 dimensions") if(all(dx==dim)) return(as.matrix(x)) stop("x is matrix of wrong size") } r-bioc-edger-3.4.2+dfsg.orig/R/adjustedProfileLik.R0000644000265600020320000000307712227063702021101 0ustar tilleaadminadjustedProfileLik <- function(dispersion, y, design, offset, adjust=TRUE) # tagwise Cox-Reid adjusted profile likelihoods for the dispersion # dispersion can be scalar or tagwise vector # y is matrix: rows are genes/tags/transcripts, columns are samples/libraries # offset is matrix of the same dimensions as y # Yunshun Chen, Gordon Smyth, Aaron Lun # Created June 2010. Last modified 21 Aug 2012. { if(any(dim(y)!=dim(offset))) offset <- expandAsMatrix(offset,dim(y)) ntags <- nrow(y) nlibs <- ncol(y) if(length(dispersion)==1) dispersion <- rep(dispersion,ntags) # Fit tagwise linear models. This is actually the most time-consuming # operation that I can see for this function. fit <- glmFit(y,design=design,dispersion=dispersion,offset=offset,prior.count=0) # Compute log-likelihood. mu <- fit$fitted if(dispersion[1] == 0){ loglik <- rowSums(dpois(y,lambda=mu,log = TRUE)) } else { loglik <- rowSums(dnbinom(y,size=1/dispersion,mu=mu,log = TRUE)) } if (!adjust) { return(loglik) } # Calculating the Cox-Reid adjustment. if(ncol(design)==1) { D <- rowSums(mu/(1+mu*dispersion)) cr <- 0.5*log(abs(D)) } else { W <- mu/(1+dispersion*mu) # Checking type, otherwise the C++ code will complain. # Note the use of a transposed matrix for easy row access in column-major format. if (!is.double(W)) storage.mode(W)<-"double" if (!is.double(design)) storage.mode(design)<-"double" cr <- .Call("R_cr_adjust", t(W), design, nrow(design), PACKAGE="edgeR") if (is.character(cr)) { stop(cr) } } return(loglik - cr) } r-bioc-edger-3.4.2+dfsg.orig/R/camera.DGEList.R0000644000265600020320000000270312227063702017772 0ustar tilleaadmincamera.DGEList <- function(y, index, design=NULL, contrast=ncol(design), weights=NULL, use.ranks=FALSE, allow.neg.cor=TRUE, trend.var=FALSE, sort=TRUE) # Rotation gene set testing for RNA-Seq data accounting for inter-gene correlation # Yunshun Chen, Gordon Smyth # Created 07 Jan 2013. Last modified 4 Feb 2013. { # Check design matrix if(is.null(design)) { if(nlevels(y$samples$group)<2) stop("Samples all belong to the same group") design <- model.matrix(~y$samples$group) rownames(design) <- colnames(y) } nbeta <- ncol(design) if(nbeta < 2) stop("design matrix must have at least two columns") # Check dispersion estimates dispersion <- getDispersion(y) if(is.null(dispersion)) stop("Dispersion estimate not found. Please estimate the dispersion(s) before you proceed.") # Check contrast if(length(contrast) == 1) { u <- rep.int(0, nbeta) u[contrast] <- 1 contrast <- u } if(length(contrast) != nbeta) stop("length of contrast must match column dimension of design") if(all(contrast==0)) stop("contrast all zero") # Null design matrix QR <- qr(contrast) design0 <- t(qr.qty(QR, t(design))[-1, , drop=FALSE]) # Null fit fit.null <- glmFit(y, design0, prior.count=0) z <- zscoreNBinom(y$counts, mu=fit.null$fitted.values, size=1/dispersion) camera(y=z, index=index, design=design, contrast=contrast, weights=weights, use.ranks=use.ranks, allow.neg.cor=allow.neg.cor, trend.var=trend.var, sort=sort) } r-bioc-edger-3.4.2+dfsg.orig/R/mglmOneWay.R0000644000265600020320000000255412227063702017373 0ustar tilleaadmindesignAsFactor <- function(design) # Construct a factor from the unique rows of a matrix # Gordon Smyth # 11 March 2011. Last modified 19 March 2011. { design <- as.matrix(design) z <- (exp(1)+pi)/5 g <- factor(rowMeans(design*z^(col(design)-1))) levels(g) <- 1:length(levels(g)) g } mglmOneWay <- function(y,design=NULL,dispersion=0,offset=0,maxit=50) # Fit multiple negative binomial glms with log link # by Fisher scoring with # only a single explanatory factor in the model # Gordon Smyth # 11 March 2011. Last modified 19 October 2012. { y <- as.matrix(y) ntags <- nrow(y) nlibs <- ncol(y) if(is.null(design)) { design <- matrix(1,nlibs,1) group <- factor(design) } else { design <- as.matrix(design) group <- designAsFactor(design) } ngroups <- length(levels(group)) stopifnot(ncol(design)==ngroups) mu <- matrix(0,ntags,ngroups) offset <- expandAsMatrix(offset,dim(y)) firstjofgroup <- rep(0,ngroups) for (g in 1:ngroups) { j <- which(group==(levels(group)[g])) firstjofgroup[g] <- j[1] mu[,g] <- mglmOneGroup(y[,j,drop=FALSE],dispersion=dispersion,offset=offset[,j,drop=FALSE],maxit=maxit) } designunique <- design[firstjofgroup,,drop=FALSE] mu1 <- pmax(mu,-1e8) beta <- t(solve(designunique,t(mu1))) mu <- mu[,group,drop=FALSE] mu <- exp(mu+offset) list(coefficients=beta,fitted.values=mu) } r-bioc-edger-3.4.2+dfsg.orig/R/binomTest.R0000644000265600020320000000265012227063702017255 0ustar tilleaadmin## binomTest.R binomTest <- function(y1, y2, n1=sum(y1), n2=sum(y2), p=n1/(n1+n2)) # Multiple exact binomial tests. # Intended for comparing DGE libraries # in the absence of biological variation. # Rejection region is all values with lower prob than that of # value observed, same as for binom.test() in stats package. # Based on function sage.test() in the statmod package. # Gordon Smyth # In statmod package 15 Nov 2003. # In edgeR package 11 Feb 2011. # Last modified 1 March 2011. { if(length(y1) != length(y2)) stop("y1 and y2 must have same length") if(any(is.na(y1)) || any(is.na(y2))) stop("missing values not allowed") y1 <- round(y1) y2 <- round(y2) if(any(y1<0) || any(y2<0)) stop("y1 and y2 must be non-negative") if(p<=0 || p>=1) stop("p must be between 0 and 1") size <- y1+y2 p.value <- rep.int(1,length(y1)) if(p==0.5) { i <- (size>0) if(any(i)) { y1 <- pmin(y1[i],y2[i]) size <- size[i] p.value[i] <- pmin(2*pbinom(y1,size=size,prob=0.5),1) } return(p.value) } if(any(big <- size>10000)) { ibig <- which(big) for (i in ibig) p.value[i] <- chisq.test(matrix(c(y1[i],y2[i],n1-y1[i],n2-y2[i]),2,2))$p.value } size0 <- size[size>0 & !big] if(length(size0)) for (isize in unique(size0)) { i <- (size==isize) d <- dbinom(0:isize,prob=p,size=isize) o <- order(d) cumsump <- cumsum(d[o])[order(o)] p.value[i] <- cumsump[y1[i]+1] } p.value } r-bioc-edger-3.4.2+dfsg.orig/R/mglmSimple.R0000644000265600020320000000474212227063702017423 0ustar tilleaadmin### NB GLM fitting genewise using glm.fit() mglmSimple <- function(y, design, dispersion=0, offset=0, weights=NULL) ## Fit negative binomial generalized linear model for each transcript ## to a series of digital expression libraries, ## using genewise calls to stats:::glm.fit(). ## Requires the {MASS} package for the negative.binomial() family ## Lower-level function. Takes a matrix of counts (y) ## Davis McCarthy and Gordon Smyth ## Created 17 August 2010. Last modified 10 Apr 2012. { # Check arguments require(MASS) y <- as.matrix(y) nlibs <- ncol(y) ngenes <- nrow(y) design <- as.matrix(design) offset <- expandAsMatrix(offset,dim(y)) if(!is.null(weights)) { weights <- expandAsMatrix(weights,dim(y)) weights[weights <= 0] <- NA y[!is.finite(weights)] <- NA } else { weights <- array(1,dim(y)) } # Define objects in which to store various results from the glm fits coefficients <- matrix(NA,nrow=ngenes,ncol=ncol(design)) fitted.values <- matrix(NA,nrow=ngenes,ncol=nlibs) colnames(coefficients) <- colnames(design) rownames(coefficients) <- rownames(y) dimnames(fitted.values) <- dimnames(y) df.residual <- rep(0,ngenes) dev <- rep(NA,ngenes) error <- converged <- rep(FALSE,ngenes) # If common dispersion, then set glm family here if(length(dispersion)>1) { common.family <- FALSE if(length(dispersion)!=ngenes) stop("length(dispersion) should agree with nrow(y)") } else { common.family <- TRUE if(dispersion > 1e-10) f <- negative.binomial(link="log",theta=1/dispersion) else f <- poisson(link="log") } # Fit a glm to each gene sequentially for (i in 1:ngenes) { if(!common.family) { if(dispersion[i] > 1e-10) f <- negative.binomial(link="log",theta=1/dispersion[i]) else f <- poisson(link="log") f$aic <- function(y,n,mu,wt,dev) NA } z <- as.vector(y[i,]) obs <- is.finite(z) if(sum(obs) > 0) { X <- design[obs,,drop=FALSE] z <- z[obs] w <- as.vector(weights[i,obs]) out <- tryCatch(glm.fit(X,z,w,offset=offset[i,obs],family=f),error=function(e) e) if(class(out)[1]=="simpleError") { error[i] <- TRUE } else { coefficients[i,] <- out$coefficients fitted.values[i,] <- fitted(out) dev[i] <- out$deviance df.residual[i] <- out$df.residual converged[i] <- out$converged } } } list(coefficients=coefficients, df.residual=df.residual, deviance=dev, design=design, offset=offset, dispersion=dispersion, weights=weights, fitted.values=fitted.values, converged=converged, error=error) } r-bioc-edger-3.4.2+dfsg.orig/R/mglmLS.R0000644000265600020320000001175612227063702016513 0ustar tilleaadmindeviances.function <- function(dispersion) # Deviance function for multiple GLMs # Gordon Smyth # 23 November 2010. Last modified 26 Nov 2010. { i <- dispersion>0 if(all(i)) { # All Negative binomial deviances <- function(y,mu,dispersion) { logymu <- log(y/mu) logymu[y<1e-14] <- 0 2*rowSums(y*logymu + (y+1/dispersion)*log((mu+1/dispersion)/(y+1/dispersion))) } } else { if(any(i)) { # Some Poisson, some negative binomial deviances <- function(y,mu,dispersion) { i <- dispersion>0 f0 <- deviances.function(0) f1 <- deviances.function(1) dev <- dispersion dev[!i] <- f0(y[!i,,drop=FALSE],mu[!i,,drop=FALSE],0) dev[i] <- f1(y[i,,drop=FALSE],mu[i,,drop=FALSE],dispersion[i]) dev } } else { # All Poisson deviances <- function(y,mu,dispersion) { logymu <- log(y/mu) logymu[y<1e-14] <- 0 2*rowSums(y*logymu-(y-mu)) } } } deviances } ###################################################### ######### Simple Line Search glm (Multiple) ########## ###################################################### mglmLS <- function(y,design,dispersion=0,offset=0,coef.start=NULL,tol=1e-5,maxit=50,trace=FALSE) # Fit the same negative binomial generalized linear model with log link # to multipe response vectors # by approximate Fisher scoring with simple line search # Yunshun Chen and Gordon Smyth # 12 November 2010. Revised 27 July 2012. { # Check input X <- as.matrix(design) ncoef <- ncol(X) if(any(y<0)) stop("y must be non-negative") if(is.vector(y)) y <- matrix(y, nrow=1) ntags <- nrow(y) nlibs <- ncol(y) phi <- dispersion if(any(phi<0)) stop("dispersions must be non-negative") if(all(phi==0)) { ispoisson <- TRUE } else { if(any(phi==0)) stop("Cannot mix zero and positive dispersions") ispoisson <- FALSE } phi <- rep(phi,length=ntags) offset <- expandAsMatrix(offset,dim(y)) # Define deviance functions deviances <- deviances.function(dispersion) # Transform to orthonormal design matrix qrX <- qr(X) X <- qr.Q(qrX) beta <- matrix(0,ntags,ncoef) rownames(beta) <- rownames(y) colnames(beta) <- colnames(X) stepsize <- meanw <- 1/rowMeans(y)+phi # Non-iterative solution for all zero case nypos <- rowSums(y>0) if(any(nypos<1)) { # yi <- y[nypos<1,,drop=FALSE] # logyi <- log(yi) # logyi[yi==0] <- -30 z <- -30-offset[nypos<1,,drop=FALSE] beta[nypos<1,] <- z %*% X } # Index tags still iterating i <- nypos >= 1 ls.fail <- rep(FALSE,ntags) # Starting values if(any(i)) if(is.null(coef.start)) { z <- log(pmax(y[i,,drop=FALSE],1/6))-offset[i,,drop=FALSE] # beta[i,] <- t(qr.coef(qrX,t(z))) beta[i,] <- z %*% X } else { beta[i,] <- coef.start[i,,drop=FALSE] } mu <- exp(beta %*% t(X) + offset) dimnames(mu) <- dimnames(y) # Approximate Fisher scoring iteration iter <- 0 if(trace) { cat("Iter",iter,"\n") cat("Scoring for",sum(i),"tag(s)\n") # print(summary(beta)) } while(any(i)) { iter <- iter + 1 # Tagwise test for convergence yi <- y[i,,drop=FALSE] mui <- mu[i,,drop=FALSE] phii <- phi[i] z <- (yi-mui)/(1+phii*mui) # dbeta <- t(qr.coef(qrX,t(z))) dbeta <- z %*% X derivbig <- rowMeans(abs(dbeta)) > tol # cat("derivbig",derivbig,"\n") i[i] <- derivbig i[ls.fail] <- FALSE # cat("i",i,"\n") if(iter > maxit) break if(trace) { cat("Iter",iter,"\n") cat("Scoring for",sum(i),"tag(s)\n") # print(summary(beta)) } # Subset to data not yet converged if(any(!derivbig)) { yi <- yi[derivbig,,drop=FALSE] mui <- mui[derivbig,,drop=FALSE] phii <- phii[derivbig] dbeta <- dbeta[derivbig,,drop=FALSE] } # Current deviance, and prepare for line search devi <- deviances(yi,mui,phii) betai <- beta[i,,drop=FALSE] offseti <- offset[i,,drop=FALSE] stepsizei <- stepsize[i] # Index tags active in line search j <- i[i] # cat("j",j,"\n") # Line search until deviance is decreased iter.ls <- 0 while(any(j)) { iter.ls <- iter.ls + 1 if(iter.ls > 50) { # cat("Line search iteration limit exceeded at iteration ",iter,"\n") k <- which(i)[j] ls.fail[k] <- TRUE i[k] <- FALSE break } betaj <- betai[j,,drop=FALSE] + stepsizei[j]*dbeta[j,,drop=FALSE] muj <- exp(betaj %*% t(X) + offseti[j,,drop=FALSE]) devj <- deviances(yi[j,,drop=FALSE],muj,phii[j]) decr <- devj < devi[j] if(any(decr)) { k <- which(i)[j][decr] beta[k,] <- betaj[decr,] mu[k,] <- exp(beta[k,,drop=FALSE]%*%t(X)+offset[k,,drop=FALSE]) if(iter.ls==1) stepsize[k] <- 1.2*stepsize[k] # print(betaj[decr,]) j[j] <- !decr # cat("j",j,"\n") } if(trace) { if(iter.ls==1 & any(j)) cat("Step halving:",sum(j),"tag(s), ") } stepsizei[j] <- stepsizei[j]/3 } if(trace) if(iter.ls>1) cat(iter.ls-1,"iteration(s)\n") } R <- qr.R(qrX) beta <- t(solve(R,t(beta))) list(coefficients=beta,fitted.values=mu,fail=which(ls.fail),not.converged=which(i)) } r-bioc-edger-3.4.2+dfsg.orig/R/splitIntoGroupsPseudo.R0000644000265600020320000000066212227063702021657 0ustar tilleaadminsplitIntoGroupsPseudo<-function(pseudo,group,pair) # Written by Davis McCarthy, February 2009, idea suggested by Mark Robinson # A function to extract the data for specified two groups from a matrix of pseudocounts pair <- levels(as.factor(pair)) { y1<-pseudo[,group==pair[1]]; if (is.vector(y1)) { y1<-matrix(y1,ncol=1) } y2<-pseudo[,group==pair[2]]; if (is.vector(y2)) { y2<-matrix(y2,ncol=1) } y<-list(y1=y1,y2=y2) y }r-bioc-edger-3.4.2+dfsg.orig/R/S3methods.R0000644000265600020320000000273012227063702017161 0ustar tilleaadmin# S3 as.matrix method as.matrix.DGEList <- function(x,...) as.matrix(x$counts) # S3 as.data.frame method as.data.frame.TopTags <- function(x,row.names=NULL,optional=FALSE,...) { if(!is.null(row.names)) row.names(x$table) <- row.names x$table } # S3 dim methods # These enable nrow() and ncol() as well dim.DGEList <- function(x) if(is.null(x$counts)) c(0,0) else dim(as.matrix(x$counts)) dim.DGEGLM <- function(x) if(is.null(x$coefficients)) c(0,0) else dim(as.matrix(x$coefficients)) dim.DGEExact <- dim.TopTags <- dim.DGELRT <- function(x) if(is.null(x$table)) c(0,0) else dim(as.matrix(x$table)) # S3 length methods length.DGEList <- length.DGEExact <- length.TopTags <- length.DGEGLM <- length.DGELRT <- function(x) prod(dim(x)) # S3 dimnames methods # These enable rownames() and colnames() as well dimnames.DGEList <- function(x) dimnames(x$counts) dimnames.DGEGLM <- function(x) dimnames(x$coefficients) dimnames.DGEExact <- dimnames.DGELRT <- dimnames.TopTags <- function(x) dimnames(x$table) # S3 dimnames<- methods # These enable rownames()<- and colnames()<- as well assign("dimnames<-.DGEList",function(x,value) { dimnames(x$counts) <- value if(!is.null(x$samples)) row.names(x$samples) <- value[[2]] if(!is.null(x$genes)) row.names(x$genes) <- value[[1]] x }) assign("dimnames<-.DGEGLM",function(x,value) { dimnames(x$coefficients) <- value if(!is.null(x$samples)) row.names(x$samples) <- value[[2]] if(!is.null(x$genes)) row.names(x$genes) <- value[[1]] x }) r-bioc-edger-3.4.2+dfsg.orig/R/cutWithMinN.R0000644000265600020320000000412112227063702017515 0ustar tilleaadmincutWithMinN <- function(x, intervals=2, min.n=1) # Cut numeric x into intervals, as equally spaced as possible subject # to including a minimum number of values in each interval # Gordon Smyth # 7 May 2011. Last modified 17 Apr 2013. { # Check input x <- as.numeric(x) isna <- is.na(x) if(any(isna)) { group <- rep.int(NA,length(x)) out <- Recall(x=x[!isna],intervals=intervals,min.n=min.n) group[!isna] <- out$group out$group <- group return(out) } intervals <- as.integer(intervals) min.n <- as.integer(min.n) nx <- length(x) if(nx < intervals*min.n) stop("too few observations: length(x) < intervals*min.n") if(intervals==1) return(list(group=rep(1,nx),breaks=NA)) # Add jittering to ensure all x are unique # x <- x+(1e-10)*(1:nx)/nx x <- x+(1e-10)*(runif(nx)-0.5) # Breaks equally spaced by x breaks.eqx <- seq(from=min(x),to=max(x),length.out=intervals+1L) breaks.eqx[1] <- breaks.eqx[1]-1 breaks.eqx[intervals+1L] <- breaks.eqx[intervals+1L]+1 # Breaks equally spaced by quantiles breaks.eqn <- quantile(x,p=seq(from=0,to=1,length.out=intervals+1L)) breaks.eqn[1] <- breaks.eqn[1]-1 breaks.eqn[intervals+1L] <- breaks.eqn[intervals+1L]+1 # First try equally spaced by x z <- cut(x,breaks=intervals,labels=FALSE) n <- tabulate(z) if(all(n>=min.n)) return(list(group=z,breaks=breaks.eqx)) # Step down gradually for (i in 1:9) { breaks <- (i*breaks.eqn+(10-i)*breaks.eqx)/10 z <- cut(x,breaks=breaks,labels=FALSE) n <- tabulate(z) if(all(n>=min.n)) return(list(group=z,breaks=breaks)) } # Try equally spaced by quantiles z <- cut(x,breaks=breaks,labels=FALSE) n <- tabulate(z) if(all(n>=min.n)) return(list(group=z,breaks=breaks)) # If all else fails, order by x o <- order(x) n <- floor(nx/intervals) nresid <- nx - intervals*n n <- rep.int(n,intervals) if(nresid>0) n[1:nresid] <- n[1:nresid]+1 z <- rep(1:intervals,n) z[o] <- z return(list(group=z,breaks=breaks.eqn)) # Function should never fail stop("Could not cut x into requested number of intervals with specified min.n in each group") } r-bioc-edger-3.4.2+dfsg.orig/R/spliceVariants.R0000644000265600020320000002073312227063702020302 0ustar tilleaadminspliceVariants <- function(y, geneID, dispersion=NULL, group=NULL, estimate.genewise.disp=TRUE, trace=FALSE) # Identify genes with splice variants using a negative binomial model # We assume that the data come in a matrix (possibly and/or a DGEList), counts summarized at exon level, with gene information available # Davis McCarthy and Gordon Smyth # Created 4 February 2011. Last modified 2 Aug 2011. { if( is(y, "DGEList") ) { y.mat <- y$counts if( is.null(group) ) group <- y$samples$group } else { y.mat <- as.matrix(y) if( is.null(group) ) stop("y is a matrix and no group argument has been supplied. Please supply group argument.") } geneID <- as.vector(unlist(geneID)) ## Order genes by geneID: we need some way to reorganise the data---output cannot possibly be same dimension as input so this is a sensible way to organise things o <- order(geneID) geneID <- geneID[o] y.mat <- y.mat[o,] uniqIDs <- unique(geneID) ## Organise the dispersion values to be used in the NB models if( is.null(dispersion) ) { if(estimate.genewise.disp) { dispersion <- estimateExonGenewiseDisp(y.mat, geneID, group) genewise.disp <- TRUE if(trace) cat("Computing genewise dispersions from exon counts.\n") } else { dispersion <- estimateCommonDisp(DGEList(counts=y.mat, group=group)) genewise.disp <- FALSE if(trace) cat("Computing common dispersion across all exons.\n") } } else { if( length(dispersion)==length(uniqIDs) ) { if(is.null(names(dispersion))) stop("names(dispersion) is NULL. All names of dispersion must be unique geneID.\n") matches <- match(uniqIDs, names(dispersion)) if( any(is.na(matches)) | any(duplicated(matches))) stop("names(dispersion) of dispersion do not have a one-to-one mapping to unique geneID. All names of dispersion must be unique geneID.\n") dispersion <- dispersion[matches] genewise.disp <- TRUE } if( length(dispersion)==1 ) { genewise.disp <- FALSE } } ## Can't get any results if there are no counts for an exon, so remove all-zero exons keep <- rowSums(y.mat) > 0 exons <- y.mat[keep,] rownames(exons) <- geneID[keep] uniqIDs <- unique(geneID[keep]) na.vec <- rep(NA, length(uniqIDs)) if(genewise.disp) dispersion <- dispersion[names(dispersion) %in% uniqIDs] if(!genewise.disp) { dispersion <- rep(dispersion, length(uniqIDs)) names(dispersion) <- uniqIDs } ## We want to know how many exons each gene has nexons <- na.vec dummy <- rowsum(rep(1, nrow(exons)), rownames(exons)) nexons <- as.vector(dummy) names(nexons) <- rownames(dummy) mm <- match(uniqIDs,names(nexons)) nexons <- nexons[mm] if(trace) cat("Max number exons: ",max(nexons),"\n") ## Genes with the same number of exons have the same design matrix, allowing some parallelization of computations splicevars.out <- data.frame(logFC= na.vec, logCPM = na.vec, LR = na.vec, PValue = na.vec) rownames(splicevars.out) <- uniqIDs abundance <- na.vec ## For loop iterates over number of exons for genes, starting at 2 (can't have splice variants if only one exon!) for(i.exons in sort(unique(nexons))) { ## Select the genes with the right number of exons for this iteration this.genes <- nexons==i.exons full.index <- rownames(exons) %in% uniqIDs[this.genes] if( any(this.genes) ) { gene.counts.mat <- matrix(t(exons[full.index,]), nrow=sum(this.genes), ncol=ncol(exons)*i.exons, byrow=TRUE) if(i.exons==1) { abundance[this.genes] <- aveLogCPM(gene.counts.mat) splicevars.out$LR[this.genes] <- 0 splicevars.out$PValue[this.genes] <- 1 } else { exon.this <- factor(rep(1:i.exons, each=ncol(exons))) group.this <- as.factor(rep(group, i.exons)) ## Define design matrices for this group of genes X.full <- model.matrix(~ exon.this + group.this + exon.this:group.this ) X.null <- model.matrix(~ exon.this + group.this ) coef <- (ncol(X.null)+1):ncol(X.full) ## Fit NB GLMs to these genes fit.this <- glmFit(gene.counts.mat, X.full, dispersion[this.genes], offset=0, prior.count=0) abundance[this.genes] <- aveLogCPM(gene.counts.mat) results.this <- glmLRT(fit.this, coef=coef) if(sum(this.genes)==1) { splicevars.out$LR[this.genes] <- results.this$table$LR[1] splicevars.out$PValue[this.genes] <- results.this$table$PValue[1] } else { splicevars.out$LR[this.genes] <- results.this$table$LR splicevars.out$PValue[this.genes] <- results.this$table$PValue } } } } splicevars.out$logCPM <- abundance ## Create a list with the exons divided up neatly by geneID (a bit slow using in-built fn) ## Not really necessary, so leave out for the time being ## exon.list <- split(as.data.frame(exons), rownames(exons)) ## names(exon.list) <- uniqIDs if(!genewise.disp) dispersion <- dispersion[1] new("DGEExact",list(table=splicevars.out, comparison=NULL, genes=data.frame(GeneID=uniqIDs), dispersion=dispersion)) } estimateExonGenewiseDisp <- function(y, geneID, group=NULL) ## Function to estimate a common dispersion from exon count data ## Created by Davis McCarthy, 29 July 2011. ## Last modified 29 July 2011. { ## Check objects coming in if( is(y, "DGEList") ) { y.mat <- y$counts if( is.null(group) ) group <- y$samples$group } else { y.mat <- as.matrix(y) if( is.null(group) ) stop("y is a matrix and no group argument has been supplied. Please supply group argument\n") } geneID <- as.vector(unlist(geneID)) ## Cannot maintain order of the argument y, so order on geneID so that we have some sensible organisation o <- order(geneID) geneID <- geneID[o] y.mat <- y.mat[o,] ## Sum counts from all exons for each gene to get gene-level counts and form DGEList object gene.counts <- rowsum(y.mat, geneID) genewise.disp <- rep(NA, nrow(gene.counts)) names(genewise.disp) <- rownames(gene.counts) gene.data <- DGEList(counts=gene.counts, group=group) ## Cannot properly compute dispersion if there are no counts for the gene used <- rowSums(gene.data$counts) > 0 ## Need to first estimate a common dispersion gene.data <- estimateCommonDisp(gene.data[used,]) ## Next estimate tagwise dispersion for each gene, with trend. Default prop.used=2/3, grid.length=200 gene.data <- estimateTagwiseDisp(gene.data, trend="movingave") ## For those gene which have sufficient (>0) counts, assign estimated dispersion genewise.disp[used] <- gene.data$tagwise.dispersion ## For those genes with zero counts, assign maximum estimated dispersion value genewise.disp[!used] <- max(gene.data$tagwise.dispersion) genewise.disp } plotExonUsage <- function(y, geneID, group=NULL, transform="none", counts.per.million=TRUE, legend.coords=NULL, ...) ## Plots exon usage from a matrix, DGEList or list of exon counts ## Created by Davis McCarthy, 30 July 2011. ## Last modified 2 Aug 2011. { if( is(y,"DGEList") ) { ind <- rownames(y$counts) %in% geneID counts <- y$counts if(counts.per.million) counts <- cpm(counts) exon.mat <- counts[ind,] group <- y$samples$group } else { if( is(y,"list") ) { exon.mat <- y[[geneID]] if(counts.per.million) stop("Counts per million cannot easily be computed when y is a list. Please use either a DGEList object or a matrix of counts.\n") if(is.null(group)) stop("Group argument must be supplied.\n") } else { if(is.null(group)) stop("Group argument must be supplied.\n") if(counts.per.million) y <- cpm(y) ind <- rownames(y) %in% geneID exon.mat <- y[ind,] } } transform <- match.arg(transform, c("none", "log2", "sqrt")) if(transform=="none") { if(counts.per.million) ylab <- "Counts per million" else ylab <- "Read counts" } if(transform=="log2") { exon.mat <- log2(exon.mat + 0.5) if(counts.per.million) ylab <- "log2( Counts per million )" else ylab <- "log2( Read counts )" } if(transform=="sqrt") { exon.mat <- sqrt(exon.mat) if(counts.per.million) ylab <- "sqrt( Counts per million )" else ylab <- "sqrt( Read counts )" } if(length(group)!=ncol(exon.mat)) stop("Length of group vector does not match number of samples (columns of exon matrix).\n") cols <- 1:nlevels(group) plot(exon.mat[,1], type="b", col=cols[group[1]], panel.first=grid(), ylab=ylab, xlab="Exon", main=paste("GeneID: ",geneID), ylim=c(0, max(exon.mat)), ...) for( i in 2:ncol(exon.mat) ) lines(exon.mat[,i], type="b", col=cols[group[i]], ...) if(is.null(legend.coords)) { legend.coords <- rep(NA,2) legend.coords[1] <- 0.8*nrow(exon.mat) legend.coords[2] <- 0.9*max(exon.mat) } legend(legend.coords[1], legend.coords[2], levels(group), col=cols, lwd=2) invisible(exon.mat) } r-bioc-edger-3.4.2+dfsg.orig/R/glmfit.R0000644000265600020320000001740712227063702016601 0ustar tilleaadmin# FIT GENERALIZED LINEAR MODELS glmFit <- function(y, design, dispersion=NULL, offset=NULL, weights=NULL, lib.size=NULL, prior.count=0.125, start=NULL, method="auto", ...) UseMethod("glmFit") glmFit.DGEList <- function(y, design=NULL, dispersion=NULL, offset=NULL, weights=NULL, lib.size=NULL, prior.count=0.125, start=NULL, method="auto", ...) # Created 11 May 2011. Last modified 11 March 2013. { if(is.null(dispersion)) dispersion <- getDispersion(y) if(is.null(dispersion)) stop("No dispersion values found in DGEList object.") if(is.null(offset) && is.null(lib.size)) offset <- getOffset(y) if(is.null(y$AveLogCPM)) y$AveLogCPM <- aveLogCPM(y) fit <- glmFit(y=y$counts,design=design,dispersion=dispersion,offset=offset,weights=weights,lib.size=lib.size,prior.count=prior.count,start=start,method=method,...) fit$samples <- y$samples fit$genes <- y$genes fit$prior.df <- y$prior.df fit$AveLogCPM <- y$AveLogCPM new("DGEGLM",fit) } glmFit.default <- function(y, design=NULL, dispersion=NULL, offset=NULL, weights=NULL, lib.size=NULL, prior.count=0.125, start=NULL, method="auto", ...) # Fit negative binomial generalized linear model for each transcript # to a series of digital expression libraries # Davis McCarthy and Gordon Smyth # Created 17 August 2010. Last modified 13 Nov 2012. { # Check input y <- as.matrix(y) if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) ne <- nonEstimable(design) if(!is.null(ne)) stop(paste("Design matrix not of full rank. The following coefficients not estimable:\n", paste(ne, collapse = " "))) } if(is.null(dispersion)) { stop("No dispersion values provided.") } else { if(!( length(dispersion)==1 | length(dispersion)==nrow(y) )) stop("Length of dispersion vector incompatible with count matrix. Dispersion argument must be either of length 1 (i.e. common dispersion) or length equal to the number of rows of y (i.e. individual dispersion value for each tag/gene).") } if(!is.null(offset) && !is.null(lib.size)) warning("offset and lib.size both supplied: offset takes precedence, lib.size ignored.") if(is.null(lib.size)) lib.size <- colSums(y) if(is.null(offset)) offset <- log(lib.size) offset <- expandAsMatrix(offset,dim(y)) iswt <- !is.null(weights) if(iswt) { weights <- expandAsMatrix(weights,dim(y)) weights[weights <= 0] <- NA y[!is.finite(weights)] <- NA } method <- match.arg(method,c("auto","linesearch","levenberg","simple")) # End of input checking ngenes <- nrow(y) nlibs <- ncol(y) isna <- any(is.na(y)) # Choose fitting algorithm if(method=="auto") { if(isna || iswt) { method <- "simple" } else { group <- designAsFactor(design) if(nlevels(group)==ncol(design)) { method <- "oneway" } else { method <- "levenberg" } } } if(method!="simple") { if(iswt) stop("weights only supported by simple fitting method") if(isna) stop("NAs only supported by simple fitting method") } # Fit a glm to each gene fit <- switch(method, linesearch=mglmLS(y,design=design,dispersion=dispersion,coef.start=start,offset=offset,...), oneway=mglmOneWay(y,design=design,dispersion=dispersion,offset=offset), levenberg=mglmLevenberg(y,design=design,dispersion=dispersion,offset=offset,coef.start=start,maxit=250,...), simple=mglmSimple(y,design=design,dispersion=dispersion,offset=offset,weights=weights) ) # Prepare output fit$counts <- y if(prior.count>0) fit$coefficients <- predFC(y,design,offset=offset,dispersion=dispersion,prior.count=prior.count)*log(2) else fit$coefficients <- as.matrix(fit$coefficients) colnames(fit$coefficients) <- colnames(design) rownames(fit$coefficients) <- rownames(y) fit$fitted.values <- as.matrix(fit$fitted.values) dimnames(fit$fitted.values) <- dimnames(y) if(is.null(fit$deviance)) { deviances <- deviances.function(dispersion) fit$deviance <- deviances(y,fit$fitted.values,dispersion) } if(is.null(fit$df.residual)) fit$df.residual <- rep(nlibs-ncol(design),ngenes) # if(is.null(fit$abundance)) fit$abundance <- mglmOneGroup(y, offset=offset, dispersion=dispersion) if(is.null(fit$design)) fit$design <- design if(is.null(fit$offset)) fit$offset <- offset if(is.null(fit$dispersion)) fit$dispersion <- dispersion fit$method <- method new("DGEGLM",fit) } glmLRT <- function(glmfit,coef=ncol(glmfit$design),contrast=NULL,test="chisq") # Tagwise likelihood ratio tests for DGEGLM # Gordon Smyth, Davis McCarthy and Yunshun Chen. # Created 1 July 2010. Last modified 14 Dec 2012. { # Check glmfit if(!is(glmfit,"DGEGLM")) { if(is(glmfit,"DGEList") && is(coef,"DGEGLM")) { stop("First argument is no longer required. Rerun with just the glmfit and coef/contrast arguments.") } stop("glmfit must be an DGEGLM object (usually produced by glmFit).") } nlibs <- ncol(glmfit) # Check test test <- match.arg(test,c("F","f","chisq")) if(test=="f") test <- "F" # Check design matrix design <- as.matrix(glmfit$design) nbeta <- ncol(design) if(nbeta < 2) stop("Need at least two columns for design, usually the first is the intercept column") coef.names <- colnames(design) # Evaluate logFC for coef to be tested # Note that contrast takes precedence over coef: if contrast is given # then reform design matrix so that contrast of interest is last column. if(is.null(contrast)) { if(length(coef) > 1) coef <- unique(coef) if(is.character(coef)) { check.coef <- coef %in% colnames(design) if(any(!check.coef)) stop("One or more named coef arguments do not match a column of the design matrix.") coef.name <- coef coef <- match(coef, colnames(design)) } else coef.name <- coef.names[coef] logFC <- glmfit$coefficients[,coef,drop=FALSE]/log(2) } else { contrast <- as.matrix(contrast) qrc <- qr(contrast) ncontrasts <- qrc$rank if(ncontrasts==0) stop("contrasts are all zero") coef <- 1:ncontrasts if(ncontrasts < ncol(contrast)) contrast <- contrast[,qrc$pivot[coef]] logFC <- drop((glmfit$coefficients %*% contrast)/log(2)) if(ncontrasts>1) { coef.name <- paste("LR test of",ncontrasts,"contrasts") } else { contrast <- drop(contrast) i <- contrast!=0 coef.name <- paste(paste(contrast[i],coef.names[i],sep="*"),collapse=" ") } Dvec <- rep.int(1,nlibs) Dvec[coef] <- diag(qrc$qr)[coef] Q <- qr.Q(qrc,complete=TRUE,Dvec=Dvec) design <- design %*% Q } if(length(coef)==1) logFC <- as.vector(logFC) # Null design matrix design0 <- design[,-coef,drop=FALSE] # Null fit fit.null <- glmFit(glmfit$counts,design=design0,offset=glmfit$offset,weights=glmfit$weights,dispersion=glmfit$dispersion,prior.count=0) # Likelihood ratio statistic LR <- fit.null$deviance - glmfit$deviance df.test <- fit.null$df.residual - glmfit$df.residual # Chisquare or F-test LRT.pvalue <- switch(test, "F" = { phi <- quantile(glmfit$dispersion,p=0.5) mu <- quantile(glmfit$fitted.values,p=0.5) gamma.prop <- (phi*mu/(1 + phi*mu))^2 prior.df <- glmfit$prior.df if(is.null(prior.df)) prior.df <- 20 glmfit$df.total <- glmfit$df.residual + prior.df/gamma.prop pf(LR/df.test, df1=df.test, df2=glmfit$df.total, lower.tail = FALSE, log.p = FALSE) }, "chisq" = pchisq(LR, df=df.test, lower.tail = FALSE, log.p = FALSE) ) rn <- rownames(glmfit) if(is.null(rn)) rn <- 1:nrow(glmfit) else rn <- make.unique(rn) if(is.null(glmfit$AveLogCPM)) glmfit$AveLogCPM <- aveLogCPM(glmfit) tab <- data.frame( logFC=logFC, logCPM=glmfit$AveLogCPM, LR=LR, PValue=LRT.pvalue, row.names=rn ) glmfit$counts <- NULL glmfit$table <- tab glmfit$comparison <- coef.name glmfit$df.test <- df.test new("DGELRT",unclass(glmfit)) } r-bioc-edger-3.4.2+dfsg.orig/R/dispPearson.R0000644000265600020320000000355312227063702017603 0ustar tilleaadmindispPearson <- function(y, design=NULL, offset=NULL, min.row.sum=5, subset=10000, AveLogCPM=NULL, tol=1e-6, trace = FALSE, initial.dispersion=0.1) # Pearson estimator of the common dispersion # using Newton iteration # Gordon Smyth # 23 Aug 2012. Last modified 13 Nov 2012. { # Check y y <- as.matrix(y) # Check design if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) } # Check offset if(is.null(offset)) offset <- 0 offset <- expandAsMatrix(offset,dim(y)) # Apply row sum filter small.row.sum <- which(rowSums(y)0 y <- y[pos] mu <- mu[pos] repeat { iter <- iter+1 s2 <- (y-mu)^2 Q <- mean(s2/mu/(1+phi*mu)) dQ <- mean(s2/(1+phi*mu)^2) dif <- (Q-one)/dQ if(dif<0) break phi <- phi+dif if(trace) cat(iter,phi,Q,dQ,dif,"\n") if(dif < tol) break if(iter > 100) { warning("iteration limit reached") break } } phi } r-bioc-edger-3.4.2+dfsg.orig/R/readDGE.R0000644000265600020320000000244512227063702016546 0ustar tilleaadminreadDGE <- function(files,path=NULL,columns=c(1,2),group=NULL,labels=NULL,...) # Read and collate a set of DGE data files, one library per file # Last modified 16 October 2010. { x <- list() if(is.data.frame(files)) { x$samples <- files if(is.null(labels)) labels <- row.names(files) files <- files$files } else { x$samples <- data.frame(files=as.character(files),stringsAsFactors=FALSE) } if(!is.null(group)) x$samples$group <- group if(!is.null(x$samples$group)) x$samples$group <- as.factor(x$samples$group) d <- taglist <- list() for (fn in files) { if(!is.null(path)) fn <- file.path(path,fn) d[[fn]] <- read.delim(fn,...,stringsAsFactors=FALSE) taglist[[fn]] <- as.character(d[[fn]][,columns[1]]) if(any(duplicated(taglist[[fn]]))) { stop(paste("Repeated tag sequences in",fn)) } } tags <- unique(unlist(taglist)) ntags <- length(tags) nfiles <- length(files) x$counts <- matrix(0,ntags,nfiles) rownames(x$counts) <- tags colnames(x$counts) <- labels if(is.null(colnames(x$counts))) colnames(x$counts) <- removeExt(files) for (i in 1:nfiles) { aa <- match(taglist[[i]],tags) x$counts[aa,i] <- d[[i]][,columns[2]] } x$samples$lib.size <- colSums(x$counts) x$samples$norm.factors <- 1 row.names(x$samples) <- colnames(x$counts) x$genes <- NULL new("DGEList",x) } r-bioc-edger-3.4.2+dfsg.orig/R/dispCoxReidInterpolateTagwise.R0000644000265600020320000000425012227063702023257 0ustar tilleaadmindispCoxReidInterpolateTagwise <- function(y, design, offset=NULL, dispersion, trend=TRUE, AveLogCPM=NULL, min.row.sum=5, prior.df=10, span=0.3, grid.npts=11, grid.range=c(-6,6)) # Estimate tagwise NB dispersions # using weighted Cox-Reid Adjusted Profile-likelihood # and cubic spline interpolation over a tagwise grid. # Yunshun Chen and Gordon Smyth # Created August 2010. Last modified 11 March 2013. { # Check y y <- as.matrix(y) ntags <- nrow(y) nlibs <- ncol(y) # Check design design <- as.matrix(design) if(!is.fullrank(design)) stop("design matrix must be full column rank") ncoefs <- ncol(design) if(ncoefs >= nlibs) stop("no residual degrees of freedom") # Check offset lib.size <- NULL if(is.null(offset)) { lib.size <- colSums(y) offset <- log(lib.size) } offset <- expandAsMatrix(offset,dim(y)) # Check AveLogCPM if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,lib.size=lib.size) # Check dispersion ldisp <- length(dispersion) if(ldisp==1) { dispersion <- rep(dispersion,ntags) } else { if(ldisp != ntags) stop("length of dispersion doesn't match nrow(y)") } # Apply min.row.sum and use input dispersion for small count tags i <- (rowSums(y) >= min.row.sum) if(any(!i)) { if(any(i)) dispersion[i] <- Recall(y=y[i,],design=design,offset=offset[i,],dispersion=dispersion[i],AveLogCPM=AveLogCPM[i],grid.npts=grid.npts,min.row.sum=0,prior.df=prior.df,span=span,trend=trend) return(dispersion) } # Posterior profile likelihood prior.n <- prior.df/(nlibs-ncoefs) spline.pts <- seq(from=grid.range[1],to=grid.range[2],length=grid.npts) apl <- matrix(0, nrow=ntags, ncol=grid.npts) for(i in 1:grid.npts){ spline.disp <- dispersion * 2^spline.pts[i] apl[,i] <- adjustedProfileLik(spline.disp, y=y, design=design, offset=offset) } if(trend) { o <- order(AveLogCPM) oo <- order(o) width <- floor(span*ntags) apl.smooth <- movingAverageByCol(apl[o,],width=width)[oo,] } else { apl.smooth <- matrix(colMeans(apl),ntags,grid.npts,byrow=TRUE) } apl.smooth <- (apl+prior.n*apl.smooth)/(1+prior.n) # Tagwise maximization d <- maximizeInterpolant(spline.pts, apl.smooth) dispersion * 2^d } r-bioc-edger-3.4.2+dfsg.orig/R/thinCounts.R0000644000265600020320000000125112227063702017443 0ustar tilleaadminthinCounts <- function(x,prob=NULL,target.size=min(colSums(x))) # Binomial or multinomial thinning of counts # Gordon Smyth # 23 March 2011. Last revised 23 Nov 2011. { if(!is.null(prob)) { x[] <- rbinom(length(x),size=x,prob=prob) } else { x <- as.matrix(x) target.size <- rep.int(target.size,ncol(x)) actual.size <- colSums(x) if(any(target.size>actual.size)) stop("target.size bigger than actual size") for (j in 1:ncol(x)) { diff.size <- actual.size[j]-target.size[j] if(diff.size>0) x[,j] <- x[,j]-rmultinom(1,size=diff.size,prob=x[,j]) } if(any(x<0)) { x <- pmax(x,0) x <- Recall(x,target.size=target.size) } } x } r-bioc-edger-3.4.2+dfsg.orig/R/plotBCV.R0000644000265600020320000000316312227063702016622 0ustar tilleaadminplotBCV <- function(y, xlab="Average log CPM", ylab="Biological coefficient of variation", pch=16, cex=0.2, col.common="red", col.trend="blue", col.tagwise="black", ...) # Plot biological coefficient of variation against average log CPM # Davis McCarthy, Yunshun Chen, Gordon Smyth. # Created 18 January 2012. Last modified 11 March 2013. { # Check y if(!is(y,"DGEList")) stop("y must be a DGEList.") # Compute AveLogCPM if not found in y A <- y$AveLogCPM if(is.null(A)) A <- aveLogCPM(y$counts,offset=getOffset(y)) # Points to determine y axis limits disp <- getDispersion(y) if(is.null(disp)) stop("No dispersions to plot") if(attr(disp,"type")=="common") disp <- rep(disp,length=length(A)) # Make plot plot(A, sqrt(disp), xlab=xlab, ylab=ylab, type="n", ...) labels <- cols <- NULL if(!is.null(y$tagwise.dispersion)) { points(A, sqrt(y$tagwise.dispersion), pch=pch, cex=cex, col=col.tagwise) labels <- c(labels,"Tagwise") cols <- c(cols,col.tagwise) } if(!is.null(y$common.dispersion)) { abline(h=sqrt(y$common.dispersion), col=col.common, lwd=2) labels <- c(labels,"Common") cols <- c(cols,col.common) } if(!is.null(y$trended.dispersion)) { o <- order(A) lines(A[o], sqrt(y$trended.dispersion)[o], col=col.trend, lwd=2) labels <- c(labels,"Trend") cols <- c(cols,col.trend) } legend("topright",legend=labels,lwd=2,col=cols) # Add binned dispersions if appropriate # if(!is.null(y$trend.method)) if(y$trend.method %in% c("bin.spline","bin.loess")) if(!is.null(y$bin.dispersion)) if(!is.null(y$bin.AveLogCPM)) # points(y$bin.AveLogCPM, sqrt(y$bin.dispersion), pch=16, cex=1, col="lightblue") invisible() } r-bioc-edger-3.4.2+dfsg.orig/R/edgeRUsersGuide.R0000644000265600020320000000051612227063702020336 0ustar tilleaadminedgeRUsersGuide <- function(view=TRUE) # Find and optionally view limma User's Guide # Gordon Smyth # 23 May 2012. { f <- system.file("doc","edgeRUsersGuide.pdf",package="edgeR") if(view) { if(.Platform$OS.type == "windows") shell.exec(f) else system(paste(Sys.getenv("R_PDFVIEWER"),f,"&")) } return(f) } r-bioc-edger-3.4.2+dfsg.orig/R/estimateDisp.R0000644000265600020320000001463712227063702017754 0ustar tilleaadmin############################################################## ########### Weighted Likelihood Empirical Bayes ############## ############################################################## estimateDisp <- function(y, design=NULL, offset=NULL, prior.df=NULL, trend.method="locfit", span=NULL, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06) # Estimating dispersion using weighted conditional likelihood empirical Bayes. # Use GLM approach if a design matrix is given, and classic approach otherwise. # It calculates a matrix of likelihoods for each gene at a set of dispersion grid points, and then calls WLEB() to do the shrinkage. # Yunshun Chen, Gordon Smyth. Created July 2012. Last modified 4 Feb 2013. { if( !is(y,"DGEList") ) stop("y must be a DGEList") group <- y$samples$group <- as.factor(y$samples$group) trend <- match.arg(trend.method, c("none", "loess", "locfit", "movingave")) ntags <- nrow(y$counts) nlibs <- ncol(y$counts) # Spline points spline.pts <- seq(from=grid.range[1],to=grid.range[2],length=grid.length) spline.disp <- 0.1 * 2^spline.pts grid.vals <- spline.disp/(1+spline.disp) l0 <- matrix(0, ntags, grid.length) if(is.null(offset)) offset <- getOffset(y) AveLogCPM <- aveLogCPM(y) offset <- expandAsMatrix(offset, dim(y)) # Classic edgeR if(is.null(design)){ # One group if(length(levels(group))==1) design <- matrix(1,nlibs,1) else design <- model.matrix(~group) if( all(tabulate(group)<=1) ) { warning("There is no replication, setting dispersion to NA.") y$common.dispersion <- NA return(y) } pseudo.obj <- y q2q.out <- equalizeLibSizes(y, dispersion=0.01) pseudo.obj$counts <- q2q.out$pseudo ysplit <- splitIntoGroups(pseudo.obj) delta <- optimize(commonCondLogLikDerDelta, interval=c(1e-4,100/(100+1)), tol=tol, maximum=TRUE, y=ysplit, der=0) delta <- delta$maximum disp <- delta/(1-delta) q2q.out <- equalizeLibSizes(y,dispersion=disp) pseudo.obj$counts <- q2q.out$pseudo ysplit <- splitIntoGroups(pseudo.obj) for(j in 1:grid.length) for(i in 1:length(ysplit)) l0[,j] <- condLogLikDerDelta(ysplit[[i]], grid.vals[j], der=0) + l0[,j] } # GLM edgeR else { design <- as.matrix(design) if(ncol(design) >= ncol(y$counts)) { warning("No residual df: setting dispersion to NA") y$common.dispersion <- NA return(y) } for(i in 1:grid.length) l0[,i] <- adjustedProfileLik(spline.disp[i], y=y$counts, design=design, offset=offset) } out.1 <- WLEB(theta=spline.pts, loglik=l0, covariate=AveLogCPM, trend.method=trend.method, span=span, individual=FALSE, m0.out=TRUE) y$common.dispersion <- 0.1 * 2^out.1$overall y$trended.dispersion <- 0.1 * 2^out.1$trend y$trend.method <- trend.method y$AveLogCPM <- AveLogCPM y$span <- out.1$span # Calculate prior.df if(is.null(prior.df)){ glmfit <- glmFit(y, design, dispersion=y$trended.dispersion, prior.count=0) # Residual deviances df.residual <- glmfit$df.residual # Adjust df.residual for fitted values at zero zerofit <- (glmfit$fitted.values < 1e-14) Q <- qr.Q(qr(glmfit$design)) h <- rowSums(Q^2) dffromzeros <- zerofit %*% (1-h) df.residual <- drop(round(df.residual-dffromzeros)) # Empirical Bayes squeezing of the quasi-likelihood variance factors s2 <- glmfit$deviance / df.residual s2[df.residual==0] <- 0 s2 <- pmax(s2,0) s2.fit <- squeezeVar(s2, df=df.residual, covariate=AveLogCPM, robust=robust, winsor.tail.p=winsor.tail.p) prior.df <- s2.fit$df.prior } ncoefs <- ncol(design) prior.n <- prior.df/(nlibs-ncoefs) # Protecting against infinite prior.n's; otherwise, interpolation of a matrix of Inf values will give the smallest value. if(!robust){ # scalar prior.n if (prior.n > 1e6) { if (trend.method!='none') { y$tagwise.dispersion <- y$trended.dispersion } else { y$tagwise.dispersion <- rep(y$common.dispersion, ntags) } } else { out.2 <- WLEB(theta=spline.pts, loglik=l0, prior.n=prior.n, covariate=AveLogCPM, trend.method=trend.method, span=span, overall=FALSE, trend=FALSE, m0=out.1$shared.loglik) y$tagwise.dispersion <- 0.1 * 2^out.2$individual } } else { # vector prior.n i <- prior.n > 1e6 y$tagwise.dispersion <- rep(y$common.dispersion, ntags) if (trend.method!='none') { y$tagwise.dispersion[i] <- y$trended.dispersion[i] } if(sum(!i)!=0){ # Make sure that there are still some genes with finite prior.df out.2 <- WLEB(theta=spline.pts, loglik=l0[!i,], prior.n=prior.n[!i], covariate=AveLogCPM[!i], trend.method=trend.method, span=span, overall=FALSE, trend=FALSE, m0=out.1$shared.loglik[!i,]) y$tagwise.dispersion[!i] <- 0.1 * 2^out.2$individual } } y$prior.df <- prior.df y$prior.n <- prior.n y } WLEB <- function(theta, loglik, prior.n=5, covariate=NULL, trend.method="locfit", span=NULL, overall=TRUE, trend=TRUE, individual=TRUE, m0=NULL, m0.out=FALSE) # Weighted likelihood empirical Bayes for estimating a parameter vector theta # given log-likelihood values on a grid of theta values # Yunshun Chen, Gordon Smyth # Created July 2012. Last modified 24 October 2012. { # Check loglik loglik <- as.matrix(loglik) ntheta <- ncol(loglik) ntags <- nrow(loglik) # Check covariate and trend if(is.null(covariate)) trend.method <- "none" else trend.method <- match.arg(trend.method, c("none", "loess", "locfit", "movingave")) # Set span if(is.null(span)) if(ntags<=50) span <- 1 else span <- 0.25+0.75*(50/ntags)^0.5 # Output out <- list() out$span <- span # overall prior if(overall) out$overall <- maximizeInterpolant(theta, matrix(colSums(loglik), nrow=1)) # trended prior if(is.null(m0)) m0 <- switch(trend.method, "movingave" = { o <- order(covariate) oo <- order(o) movingAverageByCol(loglik[o,], width=floor(span*ntags))[oo,] }, "loess" = loessByCol(loglik, covariate, span=span)$fitted.values, "locfit" = locfitByCol(loglik, covariate, span=span, degree=0), "none" = matrix(colMeans(loglik), ntags, length(theta), byrow=TRUE) ) if(trend) out$trend <- maximizeInterpolant(theta, m0) # weighted empirical Bayes posterior estimates if(individual){ prior.n <- expandAsMatrix(as.vector(prior.n), dim(m0)) l0a <- loglik + prior.n*m0 out$individual <- maximizeInterpolant(theta, l0a) } if(m0.out) out$shared.loglik <- m0 out } r-bioc-edger-3.4.2+dfsg.orig/R/zzz.R0000644000265600020320000000052112227063702016141 0ustar tilleaadmin# ZZZ.R .onAttach <- function(libname, pkgname) # Add User's Guide to Windows menu # Gordon Smyth # 14 Sep 2009. Last modified 9 July 2011. { if(.Platform$OS.type=="windows" && .Platform$GUI=="Rgui" ) { winMenuAddItem("Vignettes","edgeR","shell.exec(system.file(\"doc\",\"edgeRUsersGuide.pdf\",package=\"edgeR\"))") } } r-bioc-edger-3.4.2+dfsg.orig/R/dglmStdResid.R0000644000265600020320000000676412227063702017710 0ustar tilleaadmin## DGLMSTDRESID.R dglmStdResid <- function(y, design, dispersion=0, offset=0, nbins=100, make.plot=TRUE, xlab="Mean", ylab="Ave. binned standardized residual", ... ) { ## Function to bin DGE data based on fitted values for the abundance and compute and plot the average of the standardized residuals from a Poisson model fit in each bin against the average abundance for each bin. Allows us to investigate the mean-variance relationship in the data and compute a variance function for the negative binomial model. ## Davis McCarthy ## Created 9 November 2010. Last modified 1 March 2012. ngenes <- nrow(y) nlibs <- ncol(y) if( length(offset)!=nlibs & length(offset)!=1 & length(offset)!=length(y) ) stop("Number of entries in argument 'offset' incompatible with 'y'. Must have length equal to 1 or to the number of entries in the matrix of counts or to the number of columns in the matrix of counts.\n") else offset <- matrix(offset, nrow=ngenes, ncol=nlibs, byrow=TRUE) fit <- mglmLS(y, design=design, dispersion=0, offset=offset) means <- as.vector(fit$fitted) std.resid <- nlibs * ( as.vector(y) - means )^2 / ( nlibs - ncol(design) ) # Obtain an approximate value for the standardized residual: denominator is (n - p) / n instead of the usual (1 - leverage) n <- length(means) means.quantiles <- quantile(means, probs=seq(0,1,length=nbins+1)) means.quantiles[1] <- 0 if(any(duplicated(means.quantiles))) stop("Duplicated quantiles for the means, so cannot produce bins. Try altering nbins.") else f <- cut(means,breaks=means.quantiles) bins <- split(1:n,f) std.resid.bins <- means.bins <- list() for(i in 1:nbins){ means.bins[[i]] <- means[bins[[i]]] std.resid.bins[[i]] <- std.resid[bins[[i]]] } ave.means <- sapply(means.bins, mean) ave.std.resid <- sapply(std.resid.bins, mean) out <- list(ave.means=ave.means, ave.std.resid=ave.std.resid, bin.means=means.bins, bin.std.resid=std.resid.bins, means=means, standardized.residuals=std.resid, bins=bins, nbins=nbins, ngenes=ngenes, nlibs=nlibs) out$dispersion.estimate <- getDispersions(out) if(make.plot) plot(ave.means, ave.std.resid, pch="x", col="darkgreen", cex=1.5, log="xy", xlab=xlab, ylab=ylab, plot.first=grid(), ...) return( invisible( out ) ) } getDispersions <- function(binned.object) { ## Estimate the dispersion parameter for each DGE observation from the variance function calculated by binning the standardized residuals from the Poisson GLM based on the estimated (fitted) mean for the observation. Operates on the output of binStdResidPois ## Davis McCarthy ## Created 9 November 2010. Last modified 9 November 2010. dispersion <- rep(NA, length=length(binned.object$means)) bin.dispersion <- ( binned.object$ave.std.resid - binned.object$ave.means) / binned.object$ave.means^2 bin.dispersion.used <- bin.dispersion whichbin <- 1:binned.object$nbins for( i in 1:binned.object$nbins) { if(bin.dispersion[i] > 0) dispersion[binned.object$bins[[i]]] <- bin.dispersion.used[i] <- bin.dispersion[i] else { next.ok <- min( whichbin[ bin.dispersion > 0 & whichbin > i ] ) dispersion[binned.object$bins[[i]]] <- bin.dispersion.used[i] <- bin.dispersion[ next.ok ] } } dispersion <- matrix(dispersion, nrow=binned.object$ngenes, ncol=binned.object$nlibs) list(bin.dispersion=bin.dispersion, bin.dispersion.used=bin.dispersion.used, dispersion=dispersion) } r-bioc-edger-3.4.2+dfsg.orig/R/subsetting.R0000644000265600020320000001214712250214166017500 0ustar tilleaadmin# SUBSET DATA SETS assign("[.DGEList", function(object, i, j, ...) { # Subsetting for DGEList objects # Davis McCarthy, Gordon Smyth # 24 September 2009. Last modified 7 May 2012. if(nargs() != 3) stop("Two subscripts required",call.=FALSE) if(missing(i)) if(missing(j)) return(object) else { object$counts <- object$counts[,j,drop=FALSE] object$samples <- droplevels(object$samples[j,,drop=FALSE]) object$pseudo.counts <- object$pseudo.counts[,j,drop=FALSE] object$offset <- object$offset[,j,drop=FALSE] } else { if(is.character(i)) { i <- match(i,rownames(object$counts)) i <- i[!is.na(i)] } if(missing(j)) { object$counts <- object$counts[i,,drop=FALSE] object$conc$conc.common <- object$conc$conc.common[i,drop=FALSE] object$conc$conc.group <- object$conc$conc.group[i,,drop=FALSE] object$abundance <- object$abundance[i,drop=FALSE] object$trended.dispersion <- object$trended.dispersion[i,drop=FALSE] object$tagwise.dispersion <- object$tagwise.dispersion[i,drop=FALSE] object$infos <- object$infos[i,drop=FALSE] object$pseudo.counts <- object$pseudo.counts[i,,drop=FALSE] object$genes <- object$genes[i,,drop=FALSE] object$all.zeros <- object$all.zeros[i,drop=FALSE] object$offset <- object$offset[i,,drop=FALSE] !is.null(object$AveLogCPM) object$AveLogCPM <- object$AveLogCPM[i,drop=FALSE] } else { object$counts <- object$counts[i,j,drop=FALSE] object$samples <- droplevels(object$samples[j,,drop=FALSE]) object$pseudo.counts <- object$pseudo.counts[i,j,drop=FALSE] object$conc$conc.common <- object$conc$conc.common[i,drop=FALSE] object$conc$conc.group <- object$conc$conc.group[i,,drop=FALSE] object$trended.dispersion <- object$trended.dispersion[i,drop=FALSE] object$tagwise.dispersion <- object$tagwise.dispersion[i,drop=FALSE] object$infos <- object$infos[i,drop=FALSE] object$genes <- object$genes[i,,drop=FALSE] object$all.zeros <- object$all.zeros[i,drop=FALSE] object$offset <- object$offset[i,,drop=FALSE] !is.null(object$AveLogCPM) object$AveLogCPM <- object$AveLogCPM[i,drop=FALSE] } } object }) assign("[.DGEGLM", function(object, i, j, ...) # Subsetting for DGEGLM objects # Davis McCarthy, Gordon Smyth # 11 May 2011. Last modified 8 April 2013. { if(nargs() != 3) stop("Two subscripts required",call.=FALSE) if(!missing(j)) stop("Subsetting columns not allowed for DGEGLM object. Try subsetting elements of DGEGLM object instead.",call.=FALSE) if(!missing(i)) { object$coefficients <- object$coefficients[i,,drop=FALSE] object$df.residual <- object$df.residual[i,drop=FALSE] object$deviance <- object$deviance[i,drop=FALSE] object$offset <- object$offset[i,,drop=FALSE] object$genes <- object$genes[i,,drop=FALSE] object$trended.dispersion <- object$trended.dispersion[i,drop=FALSE] object$tagwise.dispersion <- object$tagwise.dispersion[i,drop=FALSE] if(length(object$dispersion)>1) object$dispersion <- object$dispersion[i,drop=FALSE] object$weights <- object$weights[i,,drop=FALSE] object$fitted.values <- object$fitted.values[i,,drop=FALSE] object$abundance <- object$abundance[i,drop=FALSE] } object }) assign("[.DGEExact", function(object, i, j, ...) # Subsetting for DGEExact objects # Davis McCarthy, Gordon Smyth # 6 October 2010. Last modified 8 April 2013. { if(nargs() != 3) stop("Two subscripts required",call.=FALSE) if(!missing(j)) stop("Subsetting columns not allowed for DGEExact object. Try subsetting object$table instead.",call.=FALSE) if(!missing(i)) { object$table <- object$table[i,,drop=FALSE] object$genes <- object$genes[i,,drop=FALSE] } object }) assign("[.DGELRT", function(object, i, j, ...) # Subsetting for DGELRT objects # Davis McCarthy, Gordon Smyth # 6 April 2011. Last modified 8 April 2013. { if(nargs() != 3) stop("Two subscripts required",call.=FALSE) if(!missing(j)) stop("Subsetting columns not allowed for DGELRT object. Try subsetting object$table instead.",call.=FALSE) if(!missing(i)) { object$table <- object$table[i,,drop=FALSE] object$genes <- object$genes[i,,drop=FALSE] object$abundance <- object$abundance[i,drop=FALSE] object$trended.dispersion <- object$trended.dispersion[i,drop=FALSE] object$tagwise.dispersion <- object$tagwise.dispersion[i,drop=FALSE] object$dispersion <- object$dispersion[i,drop=FALSE] object$coefficients <- object$coefficients[i,,drop=FALSE] } object }) assign("[.TopTags", function(object, i, j, ...) # Subsetting for TopTags objects # Gordon Smyth # 7 October 2009. Last modified 8 April 2013. { if(nargs() != 3) stop("Two subscripts required",call.=FALSE) if(missing(i)) if(missing(j)) return(object) else { object$table <- object$table[,j,drop=FALSE] } else { if(is.character(i)) { i <- match(i,rownames(object$counts)) i <- i[!is.na(i)] } if(missing(j)) { object$table <- object$table[i,,drop=FALSE] } else { object$table <- object$table[i,j,drop=FALSE] } } object }) r-bioc-edger-3.4.2+dfsg.orig/R/meanvar.R0000644000265600020320000001563012227063702016744 0ustar tilleaadminbinMeanVar <- function(x, group, nbins=100, common.dispersion=FALSE, object=NULL) ## Function to bin DGE data based on abundance and calculate the mean and pooled variance for each tag, as well as the average mean and variance for each bin. Allows us to investigate the mean-variance relationship in the data. ## Expect x to be a matrix of counts or pseudocounts---pseudocounts preferable as this adjusts for library size. ## Created by Davis McCarthy { x <- as.matrix(x) group <- as.factor(group) ntags <- nrow(x) nlibs <- ncol(x) means <- rowMeans(x) if(nlevels(group) > 1) { design <- model.matrix(~group) vars <- lmFit(x,design)$sigma^2 } else { vars <- rowSums((x-means)^2)/(nlibs-1) } bins <- var.bins <- means.bins <- vector("list", nbins) o <- order(means) ntagsinbin <- floor(ntags / nbins) if(common.dispersion) { comdisp.bin <- rep(NA, nbins) dispersions <- rep(NA, nrow(x)) } else dispersions <- NULL for(i in 1:nbins){ if( i==nbins ) bins[[i]] <- o[ (1 + (i-1)*ntagsinbin):ntags] else bins[[i]] <- o[ (1 + (i-1)*ntagsinbin):( i*ntagsinbin)] means.bins[[i]] <- means[bins[[i]]] var.bins[[i]] <- vars[bins[[i]]] if(common.dispersion) { if(!is.null(object)) { comdisp.bin[i] <- estimateCommonDisp(object[bins[[i]],], rowsum.filter=0)$common.dispersion dispersions[bins[[i]]] <- comdisp.bin[i] } } } ## Take the averages of mean and variance for each bin on the square-root scale - more appropriate for the count data and reduces upward bias sqrt.means <- lapply(means.bins, sqrt) sqrt.vars <- lapply(var.bins, sqrt) ave.means <- sapply(sqrt.means, mean) ave.means <- ave.means^2 ave.vars <- sapply(sqrt.vars, mean) ave.vars <- ave.vars^2 if(common.dispersion) comdisp.vars <- ave.means + comdisp.bin * ave.means^2 else { comdisp.vars <- NULL comdisp.bin <- NULL } list(avemeans=ave.means,avevars=ave.vars,bin.means=means.bins, bin.vars=var.bins, means=means, vars=vars, common.dispersion.vars=comdisp.vars, binned.common.dispersion=comdisp.bin, dispersions=dispersions, bins=bins) } plotMeanVar <- function(object, meanvar=NULL, show.raw.vars=FALSE, show.tagwise.vars=FALSE, show.binned.common.disp.vars=FALSE, show.ave.raw.vars=TRUE, scalar=NULL, NBline=FALSE, nbins=100, log.axes="xy", xlab=NULL, ylab=NULL, ...) { ## Creates a mean-variance plot (with binned values) for a given DGEList object ## Uses the binMeanVar function ## Created by Davis McCarthy ## Last modified: 14 December 2011, Davis McCarthy if(!is(object,"DGEList")) stop("This function requires a DGEList object") if(!is.null(meanvar)) if(is.null(meanvar$means) | is.null(meanvar$vars) | is.null(meanvar$avemeans) | is.null(meanvar$avevars)) { message("Cannot extract all required elements of meanvar object, so will recompute it.") meanvar <- NULL } if(!is.null(scalar)) { if( length(scalar) != ncol(object$counts) ) stop("The supplied argument scalar must have length equal to the number of columns of the count matrix in the DGEList object.") } else { offset <- getOffset(object) scalar <- exp(offset)/exp(mean(offset)) } scalingmatrix <- expandAsMatrix(scalar, dim(object$counts)) x <- object$counts/scalingmatrix if(NBline | show.tagwise.vars) { common.dispersion <- object$common.dispersion tagwise.dispersion <- object$tagwise.dispersion if(is.null(common.dispersion)) stop("Could not extract common dispersion. Try running estimateCommonDisp or estimateGLMCommonDisp on the DGEList object before plotMeanVar.\n") } if(show.binned.common.disp.vars) { com.disp <- TRUE meanvar.in <- object } else { com.disp <- FALSE meanvar.in <- NULL } if( is.null(meanvar) ) { if( !is.null(object$logCPM) ) meanvar <- binMeanVar(x, group=object$samples$group, nbins=nbins, common.dispersion=com.disp, object=meanvar.in) else meanvar <- binMeanVar(x, group=object$samples$group, nbins=nbins, common.dispersion=com.disp, object=meanvar.in) } if(show.tagwise.vars) { if( is.null(object$tagwise.dispersion) ) stop("Cannot extract tagwise dispersions. Try running estimateTagwiseDisp() or estimateGLMTagwiseDisp on your object first.") tagvars <- meanvar$means + meanvar$means^2*tagwise.dispersion } ## Averaging of means and variances in bins is now done on the square root scale to get less upward bias (done within binMeanVar) - more appropriate for count data avemeans <- meanvar$avemeans avevars <- meanvar$avevars common.dispersion.vars <- meanvar$common.dispersion.vars ## Having done the necessary calculations, now do the plotting if(is.null(xlab)) xlab <- "Mean gene expression level (log10 scale)" if(is.null(ylab)) ylab <- "Pooled gene-level variance (log10 scale)" if(show.raw.vars) { plot(meanvar$means, meanvar$vars, log=log.axes, col="gray60", cex=0.6, xlab=xlab, ylab=ylab, plot.first=grid(), ...) if(show.tagwise.vars) points(meanvar$means, tagvars, col="lightskyblue", cex=0.6) if(show.ave.raw.vars) points(avemeans, avevars, pch="x", col="darkred", cex=1.5) if(show.binned.common.disp.vars) points(avemeans, meanvar$common.dispersion.vars, pch="x", col="firebrick2", cex=1.5) } else { if(show.tagwise.vars) { plot(meanvar$means, tagvars, col="lightskyblue", log=log.axes, cex=0.6, xlab=xlab, ylab=ylab, plot.first=grid(), ...) if(show.ave.raw.vars) points(avemeans, avevars, pch="x", col="darkred", cex=1.5) if(show.binned.common.disp.vars) points(avemeans, meanvar$common.dispersion.vars, pch="x", col="firebrick2", cex=1.5) } else { if( any(!is.finite(avevars)) ) maxy <- max(meanvar$vars) else maxy <- max(avevars) if(show.ave.raw.vars) { plot(avemeans, avevars, pch="x", col="darkred", cex=1.5, ylim=c(0.1,maxy), log=log.axes, xlab=xlab, ylab=ylab, plot.first=grid(), ...) if(show.binned.common.disp.vars) points(avemeans, meanvar$common.dispersion.vars, pch="x", col="firebrick2", cex=1.5) } else { plot(avemeans, meanvar$common.dispersion.vars, pch="x", col="firebrick2", cex=1.5, ylim=c(0.1,maxy), log=log.axes, xlab=xlab, ylab=ylab, plot.first=grid(), ...) if(show.ave.raw.vars) points(avemeans, avevars, pch="x", col="darkred", cex=1.5) } } } abline(0,1,lwd=2) if(NBline) { if(length(common.dispersion)==1) curve(x + common.dispersion*x^2, from=0.01, to=100000, col="dodgerblue3", lwd=4, add=TRUE) else { o <- order(meanvar$means) nb.var <- meanvar$means + (meanvar$means^2)*common.dispersion lines(meanvar$means[o], nb.var[o], col="dodgerblue3", lwd=4) } } return(invisible(meanvar)) } r-bioc-edger-3.4.2+dfsg.orig/R/movingAverageByCol.R0000644000265600020320000000147612227063702021041 0ustar tilleaadminmovingAverageByCol <- function(x,width=5,full.length=TRUE) # Moving average smoother for columns of a matrix # Gordon Smyth # 17 Feb 2011 { x <- as.matrix(x) width <- as.integer(width) if(width<=1) return(x) n <- nrow(x) m <- ncol(x) if(width>n) { width <- n warning("reducing moving average width to nrow(x)") } if(full.length) { half1 <- ceiling(width/2) half2 <- floor(width/2) x <- rbind(matrix(0,half1,m),x,matrix(0,half2,m)) } else { if(width==n) return(matrix(colMeans(x),1L,m)) x <- rbind(matrix(0,1,m),x) } n2 <- nrow(x) x <- apply(x,2,cumsum) x <- x[(width+1):n2,,drop=FALSE]-x[1:(n2-width),,drop=FALSE] n3 <- nrow(x) w <- rep(width,n3) if(full.length) { if(half1>1) w[1:(half1-1)] <- width-(half1-1):1 w[(n3-half2+1):n3] <- width-(1:half2) } x/w } r-bioc-edger-3.4.2+dfsg.orig/R/commonCondLogLikDerDelta.R0000644000265600020320000000052412227063702022112 0ustar tilleaadmincommonCondLogLikDerDelta <- function(y, delta, der=0) # Calculates the common conditional log-likelihood (i.e. summed over all tags) - necessary so that optimize can be applied in estimateCommonDisp # Davis McCarthy, July 2009 { l0 <- 0 for(i in 1:length(y)) { l0 <- condLogLikDerDelta(y[[i]],delta,der=der)+l0 } sum(l0) } r-bioc-edger-3.4.2+dfsg.orig/R/mglmOneGroup.R0000644000265600020320000000260212227063702017721 0ustar tilleaadminmglmOneGroup <- function(y,dispersion=0,offset=0,maxit=50,tol=1e-10) # Fit null (single-group) negative-binomial glm with log-link to DGE data # Aaron Lun and Gordon Smyth # 18 Aug 2010. Last modified 19 October 2012. { # Check input values for y y <- as.matrix(y) if(any(y<0)) stop("y must be non-negative") ntags <- nrow(y) nlibs <- ncol(y) # Check input values for dispersion if(any(dispersion<0)) stop("dispersion must be non-negative") # All-Poisson special case N <- exp(offset) if(all(dispersion==0)) { if(is.null(dim(N))) m <- mean(N) else m <- .rowMeans(N,ntags,nlibs) return(log(.rowMeans(y/m,ntags,nlibs))) } # Expanding the offset and dispersion values. dispersion <- rep(dispersion,length=ntags) offset <- expandAsMatrix(offset,dim(y)) # Checking type for entry into C++ code. if (!is.double(dispersion)) storage.mode(dispersion)<-"double" if (!is.double(offset)) storage.mode(offset)<-"double" stopifnot(is.numeric(y)); # Fisher scoring iteration. Matrices are transposed due to column major storage - thus, each column # of the transposed matrix maps to a row of the original for easy access. output<-.Call("R_one_group", ntags, nlibs, t(y), dispersion, t(offset), maxit, tol, PACKAGE="edgeR") if (is.character(output) ) { stop(output) } if (any(!output[[2]])) warning(paste("max iteractions exceeded for", sum(!output[[2]]), "tags", sep=" ")) output[[1]] } r-bioc-edger-3.4.2+dfsg.orig/R/estimateGLMCommonDisp.R0000644000265600020320000000365512227063702021463 0ustar tilleaadmin# Last modified 13 March 2013 estimateGLMCommonDisp <- function(y, design=NULL, offset=NULL, method="CoxReid", subset=10000, AveLogCPM=NULL, verbose=FALSE, ...) UseMethod("estimateGLMCommonDisp") estimateGLMCommonDisp.DGEList <- function(y, design=NULL, offset=NULL, method="CoxReid", subset=10000, AveLogCPM=NULL, verbose=FALSE, ...) { # If provided as arguments, offset and AveLogCPM over-rule the values stored in y if(!is.null(AveLogCPM)) y$AveLogCPM <- AveLogCPM if(is.null(y$AveLogCPM)) y$AveLogCPM <- aveLogCPM(y) if(!is.null(offset)) y$offset <- expandAsMatrix(offset,dim(y)) disp <- estimateGLMCommonDisp(y=y$counts, design=design, offset=getOffset(y), method=method, subset=subset, AveLogCPM=y$AveLogCPM, verbose=verbose, ...) y$common.dispersion <- disp y$design <- design y } estimateGLMCommonDisp.default <- function(y, design=NULL, offset=NULL, method="CoxReid", subset=10000, AveLogCPM=NULL, verbose=FALSE, ...) { # Check y y <- as.matrix(y) # Check design if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) } if(ncol(design) >= ncol(y)) { warning("No residual df: setting dispersion to NA") return(NA) } # Check method method <- match.arg(method, c("CoxReid","Pearson","Pearson2","deviance")) # Check offset if(is.null(offset)) offset <- log(colSums(y)) # Check AveLogCPM if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y) # Call lower-level function disp <- switch(method, CoxReid=dispCoxReid(y, design=design, offset=offset, subset=subset, AveLogCPM=AveLogCPM, ...), Pearson=dispPearson(y, design=design, offset=offset, subset=subset, AveLogCPM=AveLogCPM, ...), deviance=dispDeviance(y, design=design, offset=offset, subset=subset, AveLogCPM=AveLogCPM, ...) ) if(verbose) cat("Disp =",round(disp,5),", BCV =",round(sqrt(disp),4),"\n") disp } r-bioc-edger-3.4.2+dfsg.orig/R/estimateGLMTagwiseDisp.R0000644000265600020320000000417112227063702021630 0ustar tilleaadmin# Created March 2011. Last modified 13 March 2013. estimateGLMTagwiseDisp <- function(y, ...) UseMethod("estimateGLMTagwiseDisp") estimateGLMTagwiseDisp.DGEList <- function(y, design=NULL, offset=NULL, dispersion=NULL, prior.df=10, trend=!is.null(y$trended.dispersion), span=NULL, AveLogCPM=NULL, ...) { # If provided as arguments, offset and AveLogCPM over-rule the values stored in y if(!is.null(AveLogCPM)) y$AveLogCPM <- AveLogCPM if(is.null(y$AveLogCPM)) y$AveLogCPM <- aveLogCPM(y) if(!is.null(offset)) y$offset <- expandAsMatrix(offset,dim(y)) # Find appropriate dispersion if(trend) { if(is.null(dispersion)) dispersion <- y$trended.dispersion if(is.null(dispersion)) stop("No trended.dispersion found in data object. Run estimateGLMTrendedDisp first.") } else { if(is.null(dispersion)) dispersion <- y$common.dispersion if(is.null(dispersion)) stop("No common.dispersion found in data object. Run estimateGLMCommonDisp first.") } d <- estimateGLMTagwiseDisp(y=y$counts, design=design, offset=getOffset(y), dispersion=dispersion, trend=trend, prior.df=prior.df, AveLogCPM=y$AveLogCPM, ...) y$prior.df <- prior.df y$span <- d$span y$tagwise.dispersion <- d$tagwise.dispersion y } estimateGLMTagwiseDisp.default <- function(y, design=NULL, offset=NULL, dispersion, prior.df=10, trend=TRUE, span=NULL, AveLogCPM=NULL, ...) { # Check y y <- as.matrix(y) ntags <- nrow(y) if(ntags==0) return(numeric(0)) nlibs <- ncol(y) # Check design if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) } if(ncol(design) >= ncol(y)) { warning("No residual df: setting dispersion to NA") return(rep(NA,ntags)) } # Check span if(is.null(span)) if(ntags>10) span <- (10/ntags)^0.23 else span <- 1 # Check AveLogCPM if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,lib.size=exp(offset)) # Call Cox-Reid grid method tagwise.dispersion <- dispCoxReidInterpolateTagwise(y, design, offset=offset, dispersion, trend=trend, prior.df=prior.df, span=span, AveLogCPM=AveLogCPM, ...) list(tagwise.dispersion=tagwise.dispersion,span=span) } r-bioc-edger-3.4.2+dfsg.orig/R/dispCoxReid.R0000644000265600020320000000265412227063702017532 0ustar tilleaadmindispCoxReid <- function(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=10000, AveLogCPM=NULL) # Cox-Reid APL estimator of common dispersion # Gordon Smyth, Davis McCarthy # 26 Jan 2011. Last modified 4 Feb 2013. { # Check y y <- as.matrix(y) # Check design if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) } # Check offseet if(is.null(offset)) offset <- 0 offset <- expandAsMatrix(offset,dim(y)) if(min(interval)<0) stop("please give a non-negative interval for the dispersion") # Apply min row count small.row.sum <- rowSums(y)0 && is.null(colnames(counts))) colnames(counts) <- paste("Sample",1:ncol(counts),sep="") if(ntags>0 && is.null(rownames(counts))) rownames(counts) <- 1:ntags # Check lib.size if(is.null(lib.size)) lib.size <- colSums(counts) if(nlib != length(lib.size)) stop("Length of 'lib.size' must equal number of columns in 'counts'") # Check norm.factors if(is.null(norm.factors)) norm.factors <- rep(1,ncol(counts)) if(nlib != length(norm.factors)) stop("Length of 'norm.factors' must equal number of columns in 'counts'") # Check group if(is.null(group)) group <- rep(1,ncol(counts)) group <- as.factor(group) if(nlib != length(group)) stop("Length of 'group' must equal number of columns in 'counts'") samples <- data.frame(group=group,lib.size=lib.size,norm.factors=norm.factors) row.names(samples) <- colnames(counts) x <- new("DGEList",list(counts=counts,samples=samples)) if(!is.null(genes)) { genes <- as.data.frame(genes, stringsAsFactors=FALSE) if(nrow(genes) != ntags) stop("counts and genes have different numbers of rows") x$genes <- genes } if(remove.zeros) { all.zeros <- rowSums(counts,na.rm=TRUE)==0 if(any(all.zeros)) { x <- x[!all.zeros,] message("Removing ",sum(all.zeros)," rows with all zero counts.") } } x } r-bioc-edger-3.4.2+dfsg.orig/R/condLogLikDerSize.R0000644000265600020320000000121412227063702020617 0ustar tilleaadmincondLogLikDerSize <- function(y, r, der=1L) # Derivatives of the conditional log-likelihood function (given the row sum) # with respect to r=1/dispersion # for a single group of replicate libraries, all of the same total size { # Vector interpreted as matrix of one row, i.e., one gene if (is.vector(y)) { y <- matrix(y,nrow=1) } else { y <- as.matrix(y) } n <- ncol(y) m <- rowMeans(y) switch(der+1L, rowSums(lgamma(y+r)) + lgamma(n*r) - lgamma(n*(m+r)) - n*lgamma(r), rowSums(digamma(y+r)) + n*digamma(n*r) - n*digamma(n*(m+r)) - n*digamma(r), rowSums(trigamma(y+r)) + n^2*trigamma(n*r) - n^2*trigamma(n*(m+r)) - n*trigamma(r) ) } r-bioc-edger-3.4.2+dfsg.orig/R/exactTestDoubleTail.R0000644000265600020320000000413412227063702021221 0ustar tilleaadminexactTestDoubleTail <- function(y1,y2,dispersion=0,big.count=900) # Test for differences in means between two groups of # negative binomial or Poisson random variables, # using exact enumeration conditional on total sum. # Smaller tail probability is doubled to get p-value. # QUESTION: should we use sign(logFC) to choose which tail to evaluate # instead of trying to find smaller of tail probabilities? # Gordon Smyth # 28 Sep 2019. Last modified 10 Jan 2012. { # Convert matrices to vectors ntags <- NROW(y1) n1 <- NCOL(y1) n2 <- NCOL(y2) if(n1>1) s1 <- round(rowSums(y1)) else s1 <- round(y1) if(n2>1) s2 <- round(rowSums(y2)) else s2 <- round(y2) if(length(dispersion)==1) dispersion <- rep(dispersion,ntags) # Null fitted values s <- s1+s2 mu <- s/(n1+n2) mu1 <- n1*mu mu2 <- n2*mu pvals <- rep(1,ntags) names(pvals) <- names(y1) # Poisson case pois <- dispersion<=0 # BINOMTEST DOESN'T USE EQUAL TAILED REJECTION REGION if(any(pois)) pvals[pois] <- binomTest(s1[pois],s2[pois],p=n1/(n1+n2)) # Use beta approximation for large counts big <- s1>big.count & s2>big.count if(any(big)) { y1 <- as.matrix(y1) y2 <- as.matrix(y2) pvals[big] <- exactTestBetaApprox(y1[big,,drop=FALSE],y2[big,,drop=FALSE],dispersion[big]) } p.bot <- size1 <- size2 <- rep(0,ntags) left <- s1mu1 & !pois & !big if(any(right)) { p.bot[right] <- dnbinom(s[right],size=(n1+n2)/dispersion[right],mu=s[right]) size1[right] <- n1/dispersion[right] size2[right] <- n2/dispersion[right] for (g in which(right)) { x <- s1[g]:s[g] p.top <- dnbinom(x,size=size1[g],mu=mu1[g]) * dnbinom(s[g]-x,size=size2[g],mu=mu2[g]) pvals[g] <- 2*sum(p.top) } pvals[right] <- pvals[right]/p.bot[right] } pmin(pvals,1) } r-bioc-edger-3.4.2+dfsg.orig/R/estimateTagwiseDisp.R0000644000265600020320000000560112227063702021267 0ustar tilleaadminestimateTagwiseDisp <- function(object, prior.df=10, trend="movingave", span=NULL, method="grid", grid.length=11, grid.range=c(-6,6), tol=1e-06, verbose=FALSE) # Tagwise dispersion using weighted conditional likelihood empirical Bayes. # Davis McCarthy, Mark Robinson, Yunshun Chen, Gordon Smyth. # Created 2009. Last modified 11 March 2013. # Notes 3 July 2012: # - interpolating derivatives would be better than interpolating loglik values. # - share code with estimateGLMTagwiseDisp? { if( !is(object,"DGEList") ) stop("object must be a DGEList") if(is.null(object$AveLogCPM)) object$AveLogCPM <- aveLogCPM(object) if( is.null(object$common.dispersion) ) { message("Running estimateCommonDisp() on DGEList object before proceeding with estimateTagwiseDisp().") object <- estimateCommonDisp(object) } trend <- match.arg(trend,c("none","loess","movingave","tricube")) if(trend=="tricube") trend="loess" method <- match.arg(method,c("grid","optimize")) ntags <- nrow(object$counts) group <- object$samples$group <- as.factor(object$samples$group) y <- splitIntoGroups(list(counts=object$pseudo.counts,samples=object$samples)) delta <- rep(0,ntags) nlibs <- ncol(object$counts) ngroups <- length(unique(group)) prior.n <- prior.df/(nlibs-ngroups) if(method=="grid"){ # do spline interpolation if(verbose) message("Using interpolation to estimate tagwise dispersion. ") spline.pts <- seq(from=grid.range[1],to=grid.range[2],length=grid.length) spline.disp <- object$common.dispersion * 2^spline.pts grid.vals <- spline.disp/(1+spline.disp) l0 <- matrix(0,ntags,grid.length) for(j in 1:grid.length) for(i in 1:length(y)) l0[,j] <- condLogLikDerDelta(y[[i]],grid.vals[j],der=0)+l0[,j] if(is.null(span)) if(trend=="movingave") span <- 0.3 else span <- 0.5 m0 <- switch(trend, "movingave" = { o <- order(object$AveLogCPM) oo <- order(o) movingAverageByCol(l0[o,], width=floor(span*ntags))[oo,] }, "loess" = loessByCol(l0, object$AveLogCPM, span=span)$fitted.values, "none" = matrix(colMeans(l0),ntags,grid.length,byrow=TRUE) ) l0a <- l0 + prior.n*m0 d <- maximizeInterpolant(spline.pts, l0a) tagwise.dispersion <- object$common.dispersion * 2^d } else { if(trend != "none") stop("optimize method doesn't allow for abundance-dispersion trend") if(verbose) message("Tagwise dispersion optimization begun, may be slow, progress reported every 100 tags") for(tag in seq_len(ntags)) { delta.this <- optimize(weightedCondLogLikDerDelta, interval=c(1e-4,100/(100+1)), tol=tol, maximum=TRUE, y=y, tag=tag, ntags=ntags, prior.n=prior.n, der=0) delta[tag] <- delta.this$maximum if(verbose) if(tag%%100==0) message("tag ",tag) } tagwise.dispersion <- delta/(1-delta) } if(verbose) cat("\n") # Output object$prior.n <- prior.n object$tagwise.dispersion <- tagwise.dispersion object } r-bioc-edger-3.4.2+dfsg.orig/R/plotMDS.DGEList.R0000644000265600020320000000527512227063702020073 0ustar tilleaadminplotMDS.DGEList <- function (x, top=500, labels=colnames(x), col=NULL, cex=1, dim.plot=c(1, 2), ndim=max(dim.plot), xlab=NULL, ylab=NULL, method="logFC", prior.count=2, gene.selection="pairwise", ...) # Multidimensional scaling plot of digital gene expression profiles # Yunshun Chen, Mark Robinson and Gordon Smyth # 23 May 2011. Last modified 28 May 2013. { # Check x x$counts <- as.matrix(x$counts) if(!all(is.finite(x$counts))) stop("Missing or infinite counts not allowed") nprobes <- nrow(x) nsamples <- ncol(x) if(nsamples < 3) stop("Need at least 3 columns of data") # Check value for labels if(is.null(labels)) labels <- 1:nsamples labels <- as.character(labels) # Check value for dim.plot if(nsamples < ndim) stop("Dimension to be plotted is greater than number of libraries") # Default method is to convert to moderated logCPM and call limma plotMDS method <- match.arg(method, c("logFC","bcv","BCV")) if(method=="logFC") { if(is.null(xlab)) xlab <- paste("Leading logFC dim",dim.plot[1]) if(is.null(ylab)) ylab <- paste("Leading logFC dim",dim.plot[2]) y <- cpm(x,log=TRUE,prior.count=prior.count) return(plotMDS(y,top=top,labels=labels,col=col,cex=cex,dim.plot=dim.plot,ndim=ndim,gene.selection=gene.selection,xlab=xlab,ylab=ylab,...)) } # From here method="bcv" x$samples$group <- factor(rep.int(1,nsamples)) cn <- colnames(x) dd <- matrix(0,nrow=nsamples,ncol=nsamples,dimnames=list(cn,cn)) # Check value for top if (top < nprobes) { twd <- estimateTagwiseDisp(estimateCommonDisp(x), grid.length = 100) o <- order(twd$tagwise.dispersion, decreasing = TRUE)[1:top] subdata <- x$counts[o,,drop=FALSE] } else { subdata<-x$counts } lib.size <- x$samples$lib.size * x$samples$norm.factors myFun <- function(delta, y, ...) sum(condLogLikDerDelta(y, delta, ...)) for (i in 2:(nsamples)) { for (j in 1:(i - 1)) { mm <- subdata[,c(i,j)] rs5 <- rowSums(mm) > 5 lib <- lib.size[c(i, j)] norm <- t(t(mm)/lib) * exp(mean(log(lib))) delta <- optimize(myFun, interval = c(0.0001,.99), tol = 0.000001, maximum = TRUE, y = norm[rs5,], der = 0) dd[i, j] = sqrt( delta$maximum / (1-delta$maximum) ) } } # Securing against negative eigenvalues with non-Euclidian distance matrices. a1 <- cmdscale(as.dist(dd), k = ndim) ndiff <- ndim-ncol(a1) if (ndiff > 0) a1<-cbind(a1, matrix(runif(ndiff*nsamples, -1e-6, 1e-6), ncol=ndiff, nrow=nsamples)) mds <- new("MDS",list(dim.plot=dim.plot,distance.matrix=dd,cmdscale.out=a1,top=top)) mds$x <- a1[,dim.plot[1]] mds$y <- a1[,dim.plot[2]] if(is.null(xlab)) xlab <- paste("BCV distance",dim.plot[1]) if(is.null(ylab)) ylab <- paste("BCV distance",dim.plot[2]) plotMDS(mds,labels=labels,col=col,cex=cex,xlab=xlab,ylab=ylab,...) } r-bioc-edger-3.4.2+dfsg.orig/R/exactTestBySmallP.R0000644000265600020320000000327712227063702020667 0ustar tilleaadminexactTestBySmallP <- function(y1,y2,dispersion=0,big.count=900) # Test for differences in means between two groups of # negative binomial or Poisson random variables, # using exact enumeration conditional on total sum. # Rejection region is by method of small probability, i.e., # all values with probability equal or less than that observed. # Mark Robinson, Davis McCarthy, Gordon Smyth. # Created 17 June 2009. Last modified 10 Jan 2012. { y1 <- as.matrix(y1) y2 <- as.matrix(y2) ntags <- nrow(y1) if(ntags!=nrow(y2)) stop("Number of rows of y1 not equal to number of rows of y2") if(any(is.na(y1)) || any(is.na(y2))) stop("NAs not allowed") n1 <- ncol(y1) n2 <- ncol(y2) if(n1==n2) return(exactTestDoubleTail(y1=y1,y2=y2,dispersion=dispersion,big.count=big.count)) sum1 <- round(rowSums(y1)) sum2 <- round(rowSums(y2)) N <- sum1+sum2 mu <- N/(n1+n2) if(all(dispersion==0)) return(binomTest(sum1,sum2,p=n1/(n1+n2))) if(any(dispersion==0)) stop("dispersion must be either all zero or all positive") if(length(dispersion)==1) dispersion <- rep(dispersion,ntags) r <- 1/dispersion all.zeros <- N==0 pvals <- rep(1,ntags) if(ntags==0) return(pvals) if(any(all.zeros)) { pvals[!all.zeros] <- Recall(y1=y1[!all.zeros,,drop=FALSE],y2=y2[!all.zeros,,drop=FALSE],dispersion=dispersion[!all.zeros],big.count=big.count) return(pvals) } for (i in 1:ntags) { ind <- 0:N[i] p.top <- dnbinom(ind,size=n1*r[i],mu=n1*mu[i])*dnbinom(N[i]-ind,size=n2*r[i],mu=n2*mu[i]) p.obs <- dnbinom(sum1[i],size=n1*r[i],mu=n1*mu[i]) * dnbinom(sum2[i],size=n2*r[i],mu=n2*mu[i]) keep <- p.top<=p.obs p.bot <- dnbinom(N[i],size=(n1+n2)*r[i],mu=(n1+n2)*mu[i]) pvals[i] <- sum(p.top[keep]/p.bot) } min(pvals,1) } r-bioc-edger-3.4.2+dfsg.orig/R/predFC.R0000644000265600020320000000343312227063702016454 0ustar tilleaadminpredFC <- function(y,design=NULL,prior.count=0.125,offset=NULL,dispersion=NULL) UseMethod("predFC") predFC.DGEList <- function(y,design=NULL,prior.count=0.125,offset=NULL,dispersion=NULL) { if(is.null(offset)) offset <- getOffset(y) if(is.null(dispersion)) dispersion <- getDispersion(y) if(is.null(dispersion)) { dispersion <- 0 message("dispersion set to zero") } predFC.default(y=y$counts,design=design,prior.count=prior.count,offset=offset,dispersion=dispersion) } predFC.default <- function(y,design=NULL,prior.count=0.125,offset=NULL,dispersion=0) # Shrink log-fold-changes towards zero by augmenting data counts # Gordon Smyth and Belinda Phipson # 17 Aug 2011. Last modified 4 Nov 2012. { # Check y y <- as.matrix(y) ngenes <- nrow(y) nsamples <- ncol(y) # Check prior.count if(prior.count<0) stop("prior.count should be non-negative") # Check offset if(is.null(offset)) { lib.size <- colSums(y) offset <- log(lib.size) } else lib.size <- exp(offset) # Check design if(is.null(design)) { warning("Behaviour of predFC with design=NULL is scheduled to be deprecated April 2014. Use cpm() instead.",call.=FALSE) return(cpm(y,lib.size=lib.size,log=TRUE,prior.count=prior.count)) } else design <- as.matrix(design) # Add prior counts in proportion to library sizes if(is.null(dim(lib.size))) ave.lib.size <- mean(lib.size) else ave.lib.size <- rowMeans(lib.size) prior.count <- prior.count * lib.size/ave.lib.size lib.size <- lib.size+2*prior.count if(is.null(dim(prior.count))) prior.count <- matrix(prior.count,ngenes,nsamples,byrow=TRUE) y <- y+prior.count # Return matrix of coefficients on log2 scale g <- glmFit(y,design,offset=log(lib.size),dispersion=dispersion,prior.count=0) g$coefficients/log(2) } r-bioc-edger-3.4.2+dfsg.orig/R/q2qnbinom.R0000644000265600020320000000557112227063702017224 0ustar tilleaadminq2qpois <- function (x, input.mean, output.mean) # Approximate quantile to quantile mapping between Poisson distributions # Original version, Gordon Smyth, 31 July 2009 { if(any(x<0)) stop("x must be non-negative") if(any(input.mean<0)) stop("input.mean must be non-negative") if(any(output.mean<0)) stop("output.mean must be non-negative") eps <- 1e-14 zero <- input.mean= input.mean) j <- !i p1 <- p2 <- q1 <- q2 <- x if(any(i)) { p1[i] <- pnorm(x[i], mean=input.mean[i], sd=sqrt(input.mean[i]), lower.tail=FALSE, log.p=TRUE) p2[i] <- pgamma(x[i], shape=(input.mean[i]), lower.tail=FALSE, log.p=TRUE) q1[i] <- qnorm(p1[i], mean=output.mean[i], sd=sqrt(output.mean[i]), lower.tail=FALSE, log.p=TRUE) q2[i] <- qgamma(p2[i], shape=(output.mean[i]), lower.tail=FALSE, log.p=TRUE) } if(any(j)) { p1[j] <- pnorm(x[j], mean=input.mean[j], sd=sqrt(input.mean[j]), lower.tail=TRUE, log.p=TRUE) p2[j] <- pgamma(x[j], shape=(input.mean[j]), lower.tail=TRUE, log.p=TRUE) q1[j] <- qnorm(p1[j], mean=output.mean[j], sd=sqrt(output.mean[j]), lower.tail=TRUE, log.p=TRUE) q2[j] <- qgamma(p2[j], shape=(output.mean[j]), lower.tail=TRUE, log.p=TRUE) } (q1+q2)/2 } q2qnbinom <- function(x, input.mean, output.mean, dispersion=0) # Approximate quantile to quantile mapping between negative-binomial distributions # with different means but same dispersion # Original version, Gordon Smyth, 31 July 2009 { if(any(x<0)) stop("x must be non-negative") if(any(input.mean<0)) stop("input.mean must be non-negative") if(any(output.mean<0)) stop("output.mean must be non-negative") if(any(dispersion<0)) stop("dispersion must be non-negative") eps <- 1e-14 zero <- input.mean= input.mean) j <- !i p1 <- p2 <- q1 <- q2 <- x if(any(i)) { p1[i] <- pnorm(x[i], mean=input.mean[i], sd=sqrt(vi[i]), lower.tail=FALSE, log.p=TRUE) p2[i] <- pgamma(x[i], shape=input.mean[i]/ri[i], scale=ri[i], lower.tail=FALSE, log.p=TRUE) q1[i] <- qnorm(p1[i], mean=output.mean[i], sd=sqrt(vo[i]), lower.tail=FALSE, log.p=TRUE) q2[i] <- qgamma(p2[i], shape=output.mean[i]/ro[i], scale=ro[i], lower.tail=FALSE, log.p=TRUE) } if(any(j)) { p1[j] <- pnorm(x[j], mean=input.mean[j], sd=sqrt(vi[j]), lower.tail=TRUE, log.p=TRUE) p2[j] <- pgamma(x[j], shape=input.mean[j]/ri[j], scale=ri[j], lower.tail=TRUE, log.p=TRUE) q1[j] <- qnorm(p1[j], mean=output.mean[j], sd=sqrt(vo[j]), lower.tail=TRUE, log.p=TRUE) q2[j] <- qgamma(p2[j], shape=output.mean[j]/ro[j], scale=ro[j], lower.tail=TRUE, log.p=TRUE) } (q1+q2)/2 } r-bioc-edger-3.4.2+dfsg.orig/R/dispDeviance.R0000644000265600020320000000361712227063702017713 0ustar tilleaadmindispDeviance <- function(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=10000, AveLogCPM=NULL, robust=FALSE, trace=FALSE) # Deviance estimator of common dispersion # Gordon Smyth, Davis McCarthy # 26 Jan 2011. Last modified 30 Sep 2012. { # Check y y <- as.matrix(y) # Check design if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) } # Check offset if(is.null(offset)) offset <- 0 offset <- expandAsMatrix(offset,dim(y)) if(min(interval)<0) stop("please give a non-negative interval for the dispersion") # Apply row sum filter small.row.sum <- rowSums(y)0) { warning("dispersion estimate above interval upper limit") return(interval[2]) } if(trace) cat("Dispersion, mean(deviance)-df\n") out <- uniroot(f=fun,interval=interval^0.25,y=y,design=design,offset=offset,tol=tol) out$root^4 } r-bioc-edger-3.4.2+dfsg.orig/R/gof.R0000644000265600020320000000374112227063702016066 0ustar tilleaadmingof <- function( glmfit, pcutoff=0.1, adjust="holm", plot=FALSE, main="qq-plot of genewise goodness of fit", ...) ## Use LRT on deviance from a DGEGLM object ## to identify dispersion outlier genes ## Davis McCarthy, Gordon Smyth ## 23 Mar 2011. Last modified 23 May 2012. { stopifnot( is(glmfit, "DGEGLM") ) gof.stats <- glmfit$deviance gof.pvals <- pchisq(gof.stats, df=glmfit$df.residual, lower.tail=FALSE, log.p=FALSE) outlier <- p.adjust(gof.pvals, method=adjust) < pcutoff if(plot) { n <- length(gof.stats) z <- zscoreGamma(gof.stats,shape=glmfit$df.residual/2,scale=2) col <- rep("black",n) col[outlier] <- "blue" pch <- rep(1,n) pch[outlier] <- 16 qqnorm(z,col=col,pch=pch,main=main,...) abline(0,1) } invisible(list(gof.statistics=gof.stats, gof.pvalues=gof.pvals, outlier=outlier, df=glmfit$df.residual[1])) } .gof2 <- function( y, design, dispersion, offset=NULL, pcutoff=0.1, fit=NULL, method="LR" ) ## Calculate Deviance or Pearson goodness of fit statistics ## for the dispersion parameter and find dispersion outliers ## Davis McCarthy ## 8 Feb 2011. Last modified 13 Nov 2012. { y <- as.matrix(y) nlibs <- ncol(y) ntags <- nrow(y) npar <- ncol(design) if( is.null(fit) ) fit <- glmFit(y, design, dispersion, offset=offset, prior.count=0) method <- match.arg(method, c("LR","Pearson")) if( method=="LR") { gof.stats <- fit$deviance } else { means <- fitted(fit) V <- means*(1+dispersion*means) gof.stats <- rowSums( (y-means)^2/V ) } right <- gof.stats > ( nlibs - npar ) gof.pvals <- rep(NA, ntags) gof.pvals[right] <- pchisq(gof.stats[right], df=(nlibs - npar), lower.tail=FALSE, log.p=FALSE) gof.pvals[!right] <- pchisq(gof.stats[!right], df=(nlibs - npar), lower.tail=TRUE, log.p=FALSE) outlier <- p.adjust(gof.pvals, method="holm") < pcutoff new("list", list(gof.statistics=gof.stats, gof.pvalues=gof.pvals, outlier=outlier, right=right, fit=fit)) } r-bioc-edger-3.4.2+dfsg.orig/R/estimateGLMTrendedDisp.R0000644000265600020320000000437012227063702021613 0ustar tilleaadmin# Last modified 11 March 2013 estimateGLMTrendedDisp <- function(y, design=NULL, offset=NULL, AveLogCPM=NULL, method="auto", ...) UseMethod("estimateGLMTrendedDisp") estimateGLMTrendedDisp.DGEList <- function(y, design=NULL, offset=NULL, AveLogCPM=NULL, method="auto", ...) { # If provided as arguments, offset and AveLogCPM over-rule the values stored in y if(!is.null(AveLogCPM)) y$AveLogCPM <- AveLogCPM if(is.null(y$AveLogCPM)) y$AveLogCPM <- aveLogCPM(y) if(!is.null(offset)) y$offset <- expandAsMatrix(offset,dim(y)) d <- estimateGLMTrendedDisp(y=y$counts, design=design, offset=getOffset(y), AveLogCPM=y$AveLogCPM, method=method, ...) y$trended.dispersion <- d$dispersion y$trend.method <- d$trend.method y$bin.dispersion <- d$bin.dispersion y$bin.AveLogCPM <- d$bin.AveLogCPM y$design <- d$design y } estimateGLMTrendedDisp.default <- function(y, design=NULL, offset=NULL, AveLogCPM=NULL, method="auto", ...) { # Check y y <- as.matrix(y) ntags <- nrow(y) # Check design if(is.null(design)) { design <- matrix(1,ncol(y),1) rownames(design) <- colnames(y) colnames(design) <- "Intercept" } else { design <- as.matrix(design) } if(ncol(design) >= ncol(y)) { warning("No residual df: cannot estimate dispersion") return(NA,ntags) } # Check offset if(is.null(offset)) { lib.size <- colSums(y) offset <- log(lib.size) } offset <- expandAsMatrix(offset,dim(y)) # Check AveLogCPM if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,lib.size=exp(offset)) # Check method method <- match.arg(method,c("auto","bin.spline","bin.loess","power","spline")) if(method=="auto"){ if(ntags < 200) { method <- "power" } else { method <- "bin.spline" } } # Call lower-level function trend <- switch(method, bin.spline=dispBinTrend(y, design, offset=offset, method.trend="spline", AveLogCPM=AveLogCPM, ...), bin.loess=dispBinTrend(y, design, offset=offset, method.trend="loess", AveLogCPM=AveLogCPM, ...), power=dispCoxReidPowerTrend(y, design, offset=offset, AveLogCPM=AveLogCPM, ...), spline=dispCoxReidSplineTrend(y, design, offset=offset, AveLogCPM=AveLogCPM, ...) ) trend$design <- design trend$AveLogCPM <- AveLogCPM trend$trend.method <- method trend } r-bioc-edger-3.4.2+dfsg.orig/R/topTags.R0000644000265600020320000000363112227063702016732 0ustar tilleaadmintopTags <- function(object,n=10,adjust.method="BH",sort.by="PValue") # Summary table of the n most differentially expressed tags # Mark Robinson, Davis McCarthy, Gordon Smyth # Created September 2008. Last modified 25 Oct 2012. { # Check object if(is.null(object$table)) stop("Need to run exactTest or glmLRT first") if(is(object,"DGEExact")) test <- "exact" else test <- "glm" MultipleContrasts <- (test=="glm" && ncol(object$table) > 4) # Check n n <- min(n,nrow(object$table)) if(n<1) stop("No rows to output") # Check adjust.method FWER.methods <- c("holm", "hochberg", "hommel", "bonferroni") FDR.methods <- c("BH", "BY", "fdr") adjust.method <- match.arg(adjust.method,c(FWER.methods,FDR.methods,"none")) # Check sort.by sort.by <- match.arg(sort.by,c("none","p.value","PValue","logFC")) if(sort.by=="p.value") sort.by <- "PValue" # Absolute log fold change if(MultipleContrasts) { if(sort.by=="logFC") warning("Two or more logFC columns in DGELRT object. First logFC column used to rank by logFC.") alfc <- abs(object$table[,1]) } else { alfc <- abs(object$table$logFC) } # Choose top genes o <- switch(sort.by, "logFC" = order(alfc,decreasing=TRUE)[1:n], "PValue" = order(object$table$PValue,-alfc)[1:n], "none" = 1:n ) tab <- object$table[o,] # Add adjusted p-values if appropriate if(adjust.method != "none") { adj.p.val <- p.adjust(object$table$PValue,method=adjust.method) if(adjust.method %in% FWER.methods) adjustment <- "FWER" if(adjust.method %in% FDR.methods) adjustment <- "FDR" tab[[adjustment]] <- adj.p.val[o] } # Add gene annotation if appropriate if(!is.null(object$genes)){ if(is.null(dim(object$genes))) object$genes <- data.frame(ID=object$genes,stringsAsFactors=FALSE) tab <- cbind(object$genes[o,,drop=FALSE], tab) } # Output object new("TopTags",list( table=tab, adjust.method=adjust.method, comparison=as.character(object$comparison), test=test )) } r-bioc-edger-3.4.2+dfsg.orig/R/getDispersion.R0000644000265600020320000000113412227063702020124 0ustar tilleaadmingetDispersion <- function(y) # Get most complex dispersion values from DGEList object # Gordon Smyth # Created 12 Dec 2011. Last modified 3 Oct 2012. { if( !is.null(y$tagwise.dispersion) ) { dispersion <- y$tagwise.dispersion attr(dispersion,"type") <- "tagwise" } else { if( !is.null(y$trended.dispersion) ) { dispersion <- y$trended.dispersion attr(dispersion,"type") <- "trended" } else { if( !is.null(y$common.dispersion) ) { dispersion <- y$common.dispersion attr(dispersion,"type") <- "common" } else dispersion <- NULL } } dispersion } r-bioc-edger-3.4.2+dfsg.orig/R/exactTest.R0000644000265600020320000000744712227063702017266 0ustar tilleaadminexactTest <- function(object, pair=1:2, dispersion="auto", rejection.region="doubletail", big.count=900, prior.count=0.125) # Calculates exact p-values for the differential expression levels of tags in the two groups being compared. # Davis McCarthy, Gordon Smyth. # Created September 2009. Last modified 8 July 2012. { # Check input if(!is(object,"DGEList")) stop("Currently only supports DGEList objects as the object argument.") if(length(pair)!=2) stop("Pair must be of length 2.") rejection.region <- match.arg(rejection.region,c("doubletail","deviance","smallp")) # Get group names group <- as.factor(object$samples$group) levs.group <- levels(group) if(is.numeric(pair)) pair <- levs.group[pair] else pair <- as.character(pair) if(!all(pair %in% levs.group)) stop("At least one element of given pair is not a group.\n Groups are: ", paste(levs.group, collapse=" ")) # Get dispersion vector if(is.null(dispersion)) dispersion <- "auto" if(is.character(dispersion)) { dispersion <- match.arg(dispersion,c("auto","common","trended","tagwise")) dispersion <- switch(dispersion, "common"=object$common.dispersion, "trended"=object$trended.dispersion, "tagwise"=object$tagwise.dispersion, "auto"=getDispersion(object) ) if(is.null(dispersion)) stop("specified dispersion not found in object") if(is.na(dispersion[1])) stop("dispersion is NA") } ldisp <- length(dispersion) ntags <- nrow(object$counts) if(ldisp!=1 && ldisp!=ntags) stop("Dispersion provided by user must have length either 1 or the number of tags in the DGEList object.") if(ldisp==1) dispersion <- rep(dispersion,ntags) # Reduce to two groups group <- as.character(group) j <- group %in% pair y <- object$counts[,j,drop=FALSE] lib.size <- object$samples$lib.size[j] norm.factors <- object$samples$norm.factors[j] group <- group[j] if(is.null(rownames(y))) rownames(y) <- paste("tag",1:ntags,sep=".") # Normalized library sizes lib.size <- lib.size * norm.factors offset <- log(lib.size) lib.size.average <- exp(mean(offset)) # logFC prior.count <- prior.count*lib.size/mean(lib.size) offset.aug <- log(lib.size+2*prior.count) j1 <- group==pair[1] n1 <- sum(j1) if(n1==0) stop("No libraries for",pair[1]) y1 <- y[,j1,drop=FALSE] abundance1 <- mglmOneGroup(y1+matrix(prior.count[j1],ntags,n1,byrow=TRUE),offset=offset.aug[j1],dispersion=dispersion) j2 <- group==pair[2] n2 <- sum(j2) if(n1==0) stop("No libraries for",pair[2]) y2 <- y[,j2,drop=FALSE] abundance2 <- mglmOneGroup(y2+matrix(prior.count[j2],ntags,n2,byrow=TRUE),offset=offset.aug[j2],dispersion=dispersion) logFC <- (abundance2-abundance1)/log(2) # Equalize library sizes abundance <- mglmOneGroup(y,dispersion=dispersion,offset=offset) e <- exp(abundance) input.mean <- matrix(e,ntags,n1) output.mean <- input.mean*lib.size.average input.mean <- t(t(input.mean)*lib.size[j1]) y1 <- q2qnbinom(y1,input.mean=input.mean,output.mean=output.mean,dispersion=dispersion) input.mean <- matrix(e,ntags,n2) output.mean <- input.mean*lib.size.average input.mean <- t(t(input.mean)*lib.size[j2]) y2 <- q2qnbinom(y2,input.mean=input.mean,output.mean=output.mean,dispersion=dispersion) exact.pvals <- switch(rejection.region, doubletail=exactTestDoubleTail(y1,y2,dispersion=dispersion,big.count=big.count), deviance=exactTestByDeviance(y1,y2,dispersion=dispersion,big.count=big.count), smallp=exactTestBySmallP(y1,y2,dispersion=dispersion,big.count=big.count) ) AveLogCPM <- object$AveLogCPM if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(object) de.out <- data.frame(logFC=logFC, logCPM=AveLogCPM, PValue=exact.pvals) rn <- rownames(object$counts) if(!is.null(rn)) rownames(de.out) <- make.unique(rn) new("DGEExact",list(table=de.out, comparison=pair, genes=object$genes)) } r-bioc-edger-3.4.2+dfsg.orig/R/classes.R0000644000265600020320000000135112227063702016743 0ustar tilleaadminrequire(methods) # S4 classes setClass("DGEExact", representation("list") ) setClass("DGEList", representation("list") ) setClass("DGEGLM", representation("list") ) setClass("DGELRT", representation("list") ) setClass("TopTags", representation("list") ) # Set inheritance # The LargeDataObject class is set in limma and provides a show method setIs("DGEList","LargeDataObject") setIs("DGEExact","LargeDataObject") setIs("DGEGLM","LargeDataObject") setIs("DGELRT","LargeDataObject") # Show method setMethod("show", "TopTags", function(object) { if(object$test=="exact") { cat("Comparison of groups: ",paste(rev(object$comparison),collapse="-"),"\n") } else { cat("Coefficient: ",object$comparison,"\n") } print(object$table) }) r-bioc-edger-3.4.2+dfsg.orig/R/equalizeLibSizes.R0000644000265600020320000000234612227063702020577 0ustar tilleaadminequalizeLibSizes <- function(object, dispersion=0, common.lib.size=NULL) # Normalize counts so that the library sizes can be treated as equal. # Uses a quantile-to-quantile transformation so that new count counts are equivalent deviates on the equalized scale. # Davis McCarthy, Gordon Smyth. # Created July 2009. Last modified 25 July 2012. { d <- dim(object) ntags <- d[1] nlibs <- d[2] lib.size <- object$samples$lib.size * object$samples$norm.factors if(is.null(common.lib.size)) common.lib.size <- exp(mean(log(lib.size))) levs.group <- unique(object$samples$group) if(length(dispersion)==1) dispersion <- rep(dispersion,ntags) input.mean <- output.mean <- matrix(0,ntags,nlibs) for(i in 1:length(levs.group)) { j <- object$samples$group==levs.group[i] beta <- mglmOneGroup(object$counts[,j,drop=FALSE],dispersion=dispersion,offset=log(lib.size[j])) lambda <- exp(beta) input.mean[,j] <- matrix(lambda,ncol=1) %*% matrix(lib.size[j],nrow=1) output.mean[,j] <- matrix(lambda, ncol=1) %*% matrix(common.lib.size, nrow=1, ncol=sum(j)); } pseudo <- q2qnbinom(object$counts, input.mean=input.mean, output.mean=output.mean, dispersion=dispersion) pseudo[pseudo<0] <- 0 list(pseudo.counts=pseudo, common.lib.size=common.lib.size) } r-bioc-edger-3.4.2+dfsg.orig/R/estimateTrendedDisp.R0000644000265600020320000000316512227063702021254 0ustar tilleaadminestimateTrendedDisp <- function(object, method="bin.spline", df=5, span=2/3) # Yunshun Chen, Gordon Smyth. # Created 2 Feb 2012, last modified on 4 Oct 2012. { if( !is(object,"DGEList") ) stop("object must be a DGEList") if( is.null(object$pseudo.counts) ) { message("Running estimateCommonDisp() on DGEList object before proceeding with estimateTrendedDisp().") object <- estimateCommonDisp(object) } ntags <- nrow(object$counts) logCPM <- object$AveLogCPM if(is.null(logCPM)) logCPM <- aveLogCPM(object) nbins <- 50 if(nbins>ntags) stop("nbins greater than number of rows of data") bins <- cutWithMinN(logCPM,intervals=nbins,min.n=floor(ntags/nbins)) disp.bins <- logCPM.bins <- rep(NA,nbins) for(i in 1:nbins) { tagsinbin <- bins$group==i disp.bins[i] <- estimateCommonDisp(object[tagsinbin,])$common.dispersion logCPM.bins[i] <- mean(logCPM[tagsinbin]) } if( method=="bin.spline" ) { require("splines") p1 <- (1:(df-1))/df knots1 <- quantile(logCPM.bins,p=p1) r <- range(logCPM.bins) knots2 <- r[1]+p1*(r[2]-r[1]) knots <- 0.3*knots1+0.7*knots2 ind <- rep(NA, df+1) ind[1] <- which.min(logCPM.bins) ind[df+1] <- which.max(logCPM.bins) for(i in 2:df) ind[i] <- which.min(abs(knots[i-1]-logCPM.bins)) fit <- lm(disp.bins ~ ns(logCPM.bins, df=df, knots=knots)) f <- splinefun(logCPM.bins[ind], fit$fitted.value[ind], method="natural") dispersion <- f(logCPM) } if( method=="bin.loess" ) { fit <- loessFit(disp.bins, logCPM.bins, span=span) f <- approxfun(logCPM.bins, fit$fitted, method="linear", rule=2) dispersion <- f(logCPM) } object$trended.dispersion <- dispersion object } r-bioc-edger-3.4.2+dfsg.orig/R/glmQLFTest.R0000644000265600020320000000536412227063702017300 0ustar tilleaadminglmQLFTest <- function(y, design=NULL, dispersion=NULL, coef=ncol(glmfit$design), contrast=NULL, abundance.trend=TRUE, robust=FALSE, winsor.tail.p=c(0.05,0.1), plot=FALSE) # Quasi-likelihood F-tests for DGE glms. # Davis McCarthy and Gordon Smyth. # Created 18 Feb 2011. Last modified 21 July 2013. { # Initial fit with trended dispersion if(is(y,"DGEList")) { if(is.null(dispersion)) { dispersion <- y$trended.dispersion if(is.null(dispersion)) dispersion <- y$common.dispersion if(is.null(dispersion)) dispersion <- 0.05 } glmfit <- glmFit(y,design=design,dispersion=dispersion) } else { glmfit <- y disptype <- attr(glmfit$dispersion,"type") if(!is.null(disptype)) if(disptype=="tagwise") stop("glmfit should be computed using trended dispersions, not tagwise") } # Call glmLRT to get most of the results that we need for the QL F-test calculations out <- glmLRT(glmfit, coef=coef, contrast=contrast) if(is.null(out$AveLogCPM)) out$AveLogCPM <- aveLogCPM(glmfit$counts) # Residual deviances df.residual <- glmfit$df.residual # Adjust df.residual for fitted values at zero zerofit <- (glmfit$fitted.values < 1e-14) Q <- qr.Q(qr(glmfit$design)) h <- rowSums(Q^2) dffromzeros <- zerofit %*% (1-h) df.residual <- drop(round(df.residual-dffromzeros)) # Empirical Bayes squeezing of the quasi-likelihood variance factors s2 <- glmfit$deviance / df.residual s2[df.residual==0] <- 0 s2 <- pmax(s2,0) if(abundance.trend) { A <- out$AveLogCPM } else { A <- NULL } s2.fit <- squeezeVar(s2,df=df.residual,covariate=A,robust=robust,winsor.tail.p=winsor.tail.p) # Plot if(plot) { if(!abundance.trend) A <- out$AveLogCPM plot(A,sqrt(sqrt(s2)),xlab="Average Log2 CPM",ylab="Quarter-Root Mean Deviance",pch=16,cex=0.2) o <- order(A) points(A[o],sqrt(sqrt(s2.fit$var.post[o])),pch=16,cex=0.2,col="red") lines(A[o],sqrt(sqrt(s2.fit$var.prior[o])),col="blue") legend("topright",pch=16,col=c("black","red"),legend=c("Raw","Squeezed")) } # Compute the QL F-statistic F <- out$table$LR / out$df.test / s2.fit$var.post df.total <- s2.fit$df.prior+df.residual max.df.residual <- ncol(glmfit$counts)-ncol(glmfit$design) df.total <- pmin(df.total, length(s2)*max.df.residual) # Compute p-values from the QL F-statistic F.pvalue <- pf(F, df1=out$df.test, df2=df.total, lower.tail=FALSE, log.p=FALSE) # Ensure is not more significant than chisquare test i <- s2.fit$var.post < 1 if(any(i)) { chisq.pvalue <- pchisq(out$table$LR[i], df=out$df.test[i], lower.tail=FALSE, log.p=FALSE) F.pvalue[i] <- pmax(F.pvalue[i],chisq.pvalue) } out$table$LR <- out$table$PValue <- NULL out$table$F <- F out$table$PValue <- F.pvalue out$df.residual.corrected <- df.residual out$s2.fit <- s2.fit out$df.prior <- s2.fit$df.prior out$df.total <- df.total out } r-bioc-edger-3.4.2+dfsg.orig/man/0002755000265600020320000000000012227063710015536 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/man/DGEExact-class.Rd0000644000265600020320000000353612227063710020521 0ustar tilleaadmin\name{DGEExact-class} \docType{class} \alias{DGEExact-class} \alias{show,DGEExact-method} \title{differential expression of Digital Gene Expression data - class} \description{ A list-based S4 class for for storing results of a differential expression analysis for DGE data. } \section{List Components}{ For objects of this class, rows correspond to genomic features and columns to statistics associated with the differential expression analysis. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc. Objects of this class contain the following list components: \tabular{ll}{ \code{table } \tab data frame containing columns for the log2-fold-change, \code{logFC}, the average log2-counts-per-million, \code{logCPM}, and the two-sided p-value \code{PValue}.\cr \code{comparison } \tab vector giving the two experimental groups/conditions being compared.\cr \code{genes } \tab a data frame containing information about each gene (can be \code{NULL}).\cr } } \section{Methods}{ This class inherits directly from class \code{list}, so \code{DGEExact} objects can be manipulated as if they were ordinary lists. However they can also be treated as if they were matrices for the purposes of subsetting. The dimensions, row names and column names of a \code{DGEExact} object are defined by those of \code{table}, see \code{\link{dim.DGEExact}} or \code{\link{dimnames.DGEExact}}. \code{DGEExact} objects can be subsetted, see \code{\link{subsetting}}. \code{DGEExact} objects also have a \code{show} method so that printing produces a compact summary of their contents. } \author{edgeR team. First created by Mark Robinson and Davis McCarthy} \seealso{ Other classes defined in edgeR are \code{\link{DGEList-class}}, \code{\link{DGEGLM-class}}, \code{\link{DGELRT-class}}, \code{\link{TopTags-class}} } \keyword{classes} r-bioc-edger-3.4.2+dfsg.orig/man/DGEList.Rd0000644000265600020320000000273312227063710017263 0ustar tilleaadmin\name{DGEList} \alias{DGEList} \title{ DGEList Constructor } \description{ Creates a \code{DGEList} object from a table of counts (rows=features, columns=samples), group indicator for each column, library size (optional) and a table of feature annotation (optional). } \usage{ DGEList(counts = matrix(0, 0, 0), lib.size = colSums(counts), norm.factors = rep(1,ncol(counts)), group = rep(1,ncol(counts)), genes = NULL, remove.zeros = FALSE) } \arguments{ \item{counts}{numeric matrix of read counts.} \item{lib.size}{numeric vector giving the total count (sequence depth) for each library.} \item{norm.factors}{numeric vector of normalization factors that modify the library sizes.} \item{group}{vector or factor giving the experimental group/condition for each sample/library.} \item{genes}{data frame containing annotation information for the tags/transcripts/genes.} \item{remove.zeros}{logical, whether to remove rows that have 0 total count.} } \details{ To facilitate programming pipelines, \code{NULL} values can be input for \code{lib.size}, \code{norm.factors} or \code{group}, in which case the default value is used as if the argument had been missing. } \value{a \code{\link[edgeR:DGEList-class]{DGEList}} object} \author{edgeR team. First created by Mark Robinson.} \seealso{\code{\link[edgeR:DGEList-class]{DGEList-class}}} \examples{ y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4) d <- DGEList(counts=y, group=rep(1:2,each=2)) dim(d) colnames(d) d$samples } r-bioc-edger-3.4.2+dfsg.orig/man/systematicSubset.Rd0000644000265600020320000000107412227063710021400 0ustar tilleaadmin\name{systematicSubset} \alias{systematicSubset} \title{Take a systematic subset of indices.} \description{ Take a systematic subset of indices stratified by a ranking variable. } \usage{ systematicSubset(n, order.by) } \arguments{ \item{n}{integer giving the size of the subset.} \item{order.by}{numeric vector of the values by which the indices are ordered.} } \value{\code{systematicSubset} returns a vector of size \code{n}. } \author{Gordon Smyth} \examples{ y <- rnorm(100, 1, 1) systematicSubset(20, y) } \seealso{ \code{\link{order}} } \keyword{subset} r-bioc-edger-3.4.2+dfsg.orig/man/estimateDisp.Rd0000644000265600020320000000731512227063710020464 0ustar tilleaadmin\name{estimateDisp} \alias{estimateDisp} \title{Estimate Common, Trended and Tagwise Negative Binomial dispersions by weighted likelihood empirical Bayes} \description{ Maximizes the negative binomial likelihood to give the estimate of the common, trended and tagwise dispersions across all tags. } \usage{ estimateDisp(y, design=NULL, offset=NULL, prior.df=NULL, trend.method="locfit", span=NULL, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06) } \arguments{ \item{y}{\code{DGEList} object} \item{design}{numeric design matrix} \item{offset}{numeric vector or matrix of offsets for the log-linear models} \item{prior.df}{prior degrees of freedom. It is used in calculating \code{prior.n}.} \item{trend.method}{method for estimating dispersion trend. Possible values are \code{"none"}, \code{"movingave"}, \code{"loess"} and \code{"locfit"}.} \item{span}{width of the smoothing window, as a proportion of the data set.} \item{grid.length}{the number of points on which the interpolation is applied for each tag.} \item{grid.range}{the range of the grid points around the trend on a log2 scale.} \item{robust}{logical, should the estimation of \code{prior.df} be robustified against outliers?} \item{winsor.tail.p}{numeric vector of length 1 or 2, giving left and right tail proportions of the deviances to Winsorize when estimating \code{prior.df}.} \item{tol}{the desired accuracy, passed to \code{\link{optimize}}} } \value{Returns \code{object} with the following added components: \item{common.dispersion}{estimate of the common dispersion.} \item{trended.dispersion}{estimates of the trended dispersions.} \item{tagwise.dispersion}{tag- or gene-wise estimates of the dispersion parameter.} \item{logCPM}{the tag abundance in log average counts per million.} \item{prior.df}{prior degrees of freedom. It is a vector when robust method is used.} \item{prior.n}{estimate of the prior weight, i.e. the smoothing parameter that indicates the weight to put on the common likelihood compared to the individual tag's likelihood.} \item{span}{width of the smoothing window used in estimating dispersions.} } \details{ This function calculates a matrix of likelihoods for each gene at a set of dispersion grid points, and then applies weighted likelihood empirical Bayes method to obtain posterior dispersion estimates. If there is no design matrix, it calculates the quantile conditional likelihood for each gene (tag) and then maximize it. The method is same as in the function \code{estimateCommonDisp} and \code{estimateTagwiseDisp}. If a design matrix is given, it then calculates the adjusted profile log-likelihood for each gene (tag) and then maximize it. It is similar to the functions \code{estimateGLMCommonDisp}, \code{estimateGLMTrendedDisp} and \code{estimateGLMTagwiseDisp}. } \references{ McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} Robinson, MD, and Smyth, GK (2007). Moderated statistical tests for assessing differences in tag abundance. \emph{Bioinformatics} 23, 2881-2887. \url{http://bioinformatics.oxfordjournals.org/content/23/21/2881} } \author{Yunshun Chen, Gordon Smyth} \examples{ # True dispersion is 1/5=0.2 y <- matrix(rnbinom(1000, mu=10, size=5), ncol=4) group <- c(1,1,2,2) design <- model.matrix(~group) d <- DGEList(counts=y, group=group) d1 <- estimateDisp(d) d2 <- estimateDisp(d, design) } \seealso{ \code{\link{estimateCommonDisp}}, \code{\link{estimateTagwiseDisp}}, \code{\link{estimateGLMCommonDisp}}, \code{\link{estimateGLMTrendedDisp}}, \code{\link{estimateGLMTagwiseDisp}} } r-bioc-edger-3.4.2+dfsg.orig/man/goodTuring.Rd0000644000265600020320000000561212227063710020150 0ustar tilleaadmin\name{goodTuring} \alias{goodTuring} \alias{goodTuringPlot} \alias{goodTuringProportions} \title{Good-Turing Frequency Estimation} \description{ Non-parametric empirical Bayes estimates of the frequencies of observed (and unobserved) species. } \usage{goodTuring(x, conf=1.96) goodTuringPlot(x) goodTuringProportions(counts)} \arguments{ \item{x}{numeric vector of non-negative integers, representing the observed frequency of each species.} \item{conf}{confidence factor, as a quantile of the standard normal distribution, used to decide for what values the log-linear relationship between frequencies and frequencies of frequencies is acceptable.} \item{counts}{matrix of counts} } \value{ \code{goodTuring} returns a list with components \item{count}{observed frequencies, i.e., the unique positive values of \code{x}} \item{n}{frequencies of frequencies} \item{n0}{frequency of zero, i.e., number of zeros found in \code{x}} \item{proportion}{estimated proportion of each species given its count} \item{P0}{estimated combined proportion of all undetected species} \code{goodTuringProportions} returns a matrix of proportions of the same size as \code{counts}. } \details{ Observed counts are assumed to be Poisson distributed. Using an non-parametric empirical Bayes strategy, the algorithm evaluates the posterior expectation of each species mean given its observed count. The posterior means are then converted to proportions. In the empirical Bayes step, the counts are smoothed by assuming a log-linear relationship between frequencies and frequencies of frequencies. The fundamentals of the algorithm are from Good (1953). Gale and Sampson (1995) proposed a simplied algorithm with a rule for switching between the observed and smoothed frequencies, and it is Gale and Sampson's simplified algorithm that is implemented here. The number of zero values in \code{x} are not used in the algorithm, but is returned by this function. Sampson gives a C code version on his webpage at \url{http://www.grsampson.net/RGoodTur.html} which gives identical results to this function. \code{goodTuringPlot} plots log-probability (i.e., log frequencies of frequencies) versus log-frequency. \code{goodTuringProportions} runs \code{goodTuring} on each column of data, then uses the results to predict the proportion of each tag in each library. } \references{ Gale, WA, and Sampson, G (1995). Good-Turing frequency estimation without tears. \emph{Journal of Quantitative Linguistics} 2, 217-237. } \author{Aaron Lun and Gordon Smyth, adapted from Sampson's C code from \url{http://www.grsampson.net/RGoodTur.html}} \examples{ # True means of observed species lambda <- rnbinom(10000,mu=2,size=1/10) lambda <- lambda[lambda>1] # Oberved frequencies Ntrue <- length(lambda) x <- rpois(Ntrue, lambda=lambda) freq <- goodTuring(x) goodTuringPlot(x) } \keyword{models} r-bioc-edger-3.4.2+dfsg.orig/man/q2qnbinom.Rd0000644000265600020320000000356012227063710017735 0ustar tilleaadmin\name{q2qnbinom} \alias{q2qpois} \alias{q2qnbinom} \title{Quantile to Quantile Mapping between Negative-Binomial Distributions} \description{Interpolated quantile to quantile mapping between negative-binomial distributions with the same dispersion but different means. The Poisson distribution is a special case.} \usage{ q2qpois(x, input.mean, output.mean) q2qnbinom(x, input.mean, output.mean, dispersion=0) } \arguments{ \item{x}{numeric matrix of counts.} \item{input.mean}{numeric matrix of population means for \code{x}. If a vector, then of the same length as \code{nrow(x)}.} \item{output.mean}{numeric matrix of population means for the output values. If a vector, then of the same length as \code{nrow(x)}.} \item{dispersion}{numeric scalar, vector or matrix giving negative binomial dispersion values.} } \details{ This function finds the quantile with the same left and right tail probabilities relative to the output mean as \code{x} has relative to the input mean. \code{q2qpois} is equivalent to \code{q2qnbinom} with \code{dispersion=0}. In principle, \code{q2qnbinom} gives similar results to calling \code{pnbinom} followed by \code{qnbinom} as in the example below. However this function avoids infinite values arising from rounding errors and does appropriate interpolation to return continuous values. \code{q2qnbinom} is called by \code{\link{equalizeLibSizes}} to perform quantile-to-quantile normalization. } \value{numeric matrix of same dimensions as \code{x}, with \code{output.mean} as the new nominal population mean.} \seealso{ \code{\link{equalizeLibSizes}} } \author{Gordon Smyth} \examples{ x <- 15 input.mean <- 10 output.mean <- 20 dispersion <- 0.1 q2qnbinom(x,input.mean,output.mean,dispersion) # Similar in principle: qnbinom(pnbinom(x,mu=input.mean,size=1/dispersion),mu=output.mean,size=1/dispersion) } r-bioc-edger-3.4.2+dfsg.orig/man/edgeRUsersGuide.Rd0000644000265600020320000000241312227063710021051 0ustar tilleaadmin\name{edgeRUsersGuide} \alias{edgeRUsersGuide} \title{View edgeR User's Guide} \description{Finds the location of the edgeR User's Guide and optionally opens it.} \usage{ edgeRUsersGuide(view=TRUE) } \arguments{ \item{view}{logical, should the document be opened using the default PDF document reader?} } \value{Character string giving the file location. If \code{view=TRUE}, the PDF document reader is started and the User's Guide is opened, as a side effect.} \details{ The function \code{vignette("edgeR")} will find the short edgeR Vignette which describes how to obtain the Limma User's Guide. The User's Guide is not itself a true vignette because it is not automatically generated using \code{\link{Sweave}} during the package build process. This means that it cannot be found using \code{vignette}, hence the need for this special function. If the operating system is other than Windows, then the PDF viewer used is that given by \code{Sys.getenv("R_PDFVIEWER")}. The PDF viewer can be changed using \code{Sys.putenv(R_PDFVIEWER=)}. } \seealso{ \code{\link{system}} } \author{Gordon Smyth} \examples{ # To get the location: edgeRUsersGuide(view=FALSE) # To open in pdf viewer: \dontrun{edgeRUsersGuide()} } \keyword{documentation} r-bioc-edger-3.4.2+dfsg.orig/man/estimateTagwiseDisp.Rd0000644000265600020320000001022612227063710022003 0ustar tilleaadmin\name{estimateTagwiseDisp} \alias{estimateTagwiseDisp} \title{Estimate Empirical Bayes Tagwise Dispersion Values} \description{ Estimates tagwise dispersion values by an empirical Bayes method based on weighted conditional maximum likelihood. } \usage{ estimateTagwiseDisp(object, prior.df=10, trend="movingave", span=NULL, method="grid", grid.length=11, grid.range=c(-6,6), tol=1e-06, verbose=FALSE) } \arguments{ \item{object}{object of class \code{DGEList} containing (at least) the elements \code{counts} (table of raw counts), \code{group} (factor indicating group), \code{lib.size} (numeric vector of library sizes) and \code{pseudo.alt} (numeric matrix of quantile-adjusted pseudocounts calculated under the alternative hypothesis of a true difference between groups; recommended to use the \code{DGEList} object provided as the output of \code{estimateCommonDisp}} \item{prior.df}{prior degrees of freedom.} \item{trend}{method for estimating dispersion trend. Possible values are \code{"none"}, \code{"movingave"} and \code{"loess"}.} \item{span}{width of the smoothing window, as a proportion of the data set.} \item{method}{method for maximizing the posterior likelihood. Possible values are \code{"grid"} for interpolation on grid points or \code{"optimize"} to call the function of the same name. } \item{grid.length}{for \code{method="grid"}, the number of points on which the interpolation is applied for each tag.} \item{grid.range}{for \code{method="grid"}, the range of the grid points around the trend on a log2 scale.} \item{tol}{for \code{method="optimize"}, the tolerance for Newton-Rhapson iterations.} \item{verbose}{logical, if \code{TRUE} then diagnostic ouput is produced during the estimation process.} } \details{ This function implements the empirical Bayes strategy proposed by Robinson and Smyth (2007) for estimating the tagwise negative binomial dispersions. The experimental design is assumed to be a oneway layout with one or more experimental groups. The empirical Bayes posterior is implemented as a conditional likelihood with tag-specific weights. The prior values for the dispersions are determined by a global trend. The individual tagwise dispersions are then squeezed towards this trend. The prior degrees of freedom determines the weight given to the prior. The larger the prior degrees of freedom, the more the tagwise dispersions are squeezed towards the global trend. If the number of libraries is large, the prior becomes less important and the tagwise dispersion are determined more by the individual tagwise data. If \code{trend="none"}, then the prior dispersion is just a constant, the common dispersion. Otherwise, the trend is determined by a moving average (\code{trend="movingave"}) or loess smoother applied to the tagwise conditional log-likelihood. \code{method="loess"} applies a loess curve of degree 0 as implemented in \code{\link{loessByCol}}. \code{method="optimize"} is not recommended for routine use as it is very slow. It is included for testing purposes. } \value{ An object of class \code{DGEList} with the same components as for \code{\link{estimateCommonDisp}} plus the following: \item{prior.n}{estimate of the prior weight, i.e. the smoothing parameter that indicates the weight to put on the common likelihood compared to the individual tag's likelihood; prior.n of 10 means that the common likelihood is given 10 times the weight of the individual tag/gene's likelihood in the estimation of the tag/genewise dispersion} \item{tagwise.dispersion}{tag- or gene-wise estimates of the dispersion parameter} } \references{ Robinson, MD, and Smyth, GK (2007). Moderated statistical tests for assessing differences in tag abundance. \emph{Bioinformatics} 23, 2881-2887. \url{http://bioinformatics.oxfordjournals.org/content/23/21/2881} } \author{Mark Robinson, Davis McCarthy, Yunshun Chen and Gordon Smyth} \examples{ # See exactTest } \seealso{ \code{\link{estimateCommonDisp}} is usually run before \code{estimateTagwiseDisp}. \code{\link{movingAverageByCol}} and \code{\link{loessByCol}} implement the moving average or loess smoothers. } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/roast.DGEList.Rd0000644000265600020320000001762612227063710020421 0ustar tilleaadmin\name{roast.DGEList} \alias{roast.DGEList} \alias{mroast.DGEList} \title{Rotation Gene Set Tests for Digital Gene Expression Data} \description{ Rotation gene set testing for Negative Binomial generalized linear models. } \usage{ \method{roast}{DGEList}(y, index=NULL, design=NULL, contrast=ncol(design), set.statistic="mean", gene.weights=NULL, array.weights=NULL, weights=NULL, block=NULL, correlation, var.prior=NULL, df.prior=NULL, trend.var=FALSE, nrot=999) \method{mroast}{DGEList}(y, index=NULL, design=NULL, contrast=ncol(design), set.statistic="mean", gene.weights=NULL, array.weights=NULL, weights=NULL, block=NULL, correlation, var.prior=NULL, df.prior=NULL, trend.var=FALSE, nrot=999, adjust.method="BH", midp=TRUE, sort="directional") } \arguments{ \item{y}{\code{DGEList} object.} \item{index}{index vector specifying which rows (genes) of \code{y} are in the test set. This can be a vector of indices, or a logical vector of the same length as \code{statistics}, or any vector such as \code{y[iset,]} contains the values for the gene set to be tested.} \item{design}{design matrix} \item{contrast}{contrast for which the test is required. Can be an integer specifying a column of \code{design}, or else a contrast vector of length equal to the number of columns of \code{design}.} \item{set.statistic}{summary set statistic. Possibilities are \code{"mean"},\code{"floormean"},\code{"mean50"} or \code{"msq"}.} \item{gene.weights}{optional numeric vector of weights for genes in the set. Can be positive or negative. For \code{mroast.DGEList} this vector must have length equal to \code{nrow(y)}. For \code{roast.DGEList}, can be of length \code{nrow(y)} or of length equal to the number of genes in the test set.} \item{array.weights}{optional numeric vector of array weights.} \item{weights}{optional matrix of observation weights. If supplied, should be of same dimensions as \code{y} and all values should be positive.} \item{block}{optional vector of blocks.} \item{correlation}{correlation between blocks.} \item{var.prior}{prior value for residual variances. If not provided, this is estimated from all the data using \code{squeezeVar}.} \item{df.prior}{prior degrees of freedom for residual variances. If not provided, this is estimated using \code{squeezeVar}.} \item{trend.var}{logical, should a trend be estimated for \code{var.prior}? See \code{eBayes} for details. Only used if \code{var.prior} or \code{df.prior} are \code{NULL}.} \item{nrot}{number of rotations used to estimate the p-values.} \item{adjust.method}{method used to adjust the p-values for multiple testing. See \code{\link{p.adjust}} for possible values.} \item{midp}{logical, should mid-p-values be used in instead of ordinary p-values when adjusting for multiple testing?} \item{sort}{character, whether to sort output table by directional p-values (\code{"directional"}), non-directional p-value (\code{"mixed"}), or not at all (\code{"none"}).} } \value{ \code{roast} produces an object of class \code{\link[limma:roast]{Roast}}. See \code{\link{roast}} for details. \code{mroast} produces a data.frame. See \code{\link{mroast}} for details. } \details{ This function implements a method for the ROAST gene set test from Wu et al (2010) for the digital gene expression data, eg. RNA-Seq data. Basically, the Negative Binomial generalized linear models are fitted for count data. The fitted values are converted into z-scores, and then it calls the \code{roast} function in \code{limma} package to conduct the gene set test. It tests whether any of the genes in the set are differentially expressed. This allows users to focus on differential expression for any coefficient or contrast in a generalized linear model. If \code{contrast} is not specified, the last coefficient in the model will be tested. The arguments \code{array.weights}, \code{block} and \code{correlation} have the same meaning as they for for the \code{\link{lmFit}} function. The arguments \code{df.prior} and \code{var.prior} have the same meaning as in the output of the \code{\link{eBayes}} function. If these arguments are not supplied, they are estimated exactly as is done by \code{eBayes}. The argument \code{gene.weights} allows directions or weights to be set for individual genes in the set. The gene set statistics \code{"mean"}, \code{"floormean"}, \code{"mean50"} and \code{msq} are defined by Wu et al (2010). The different gene set statistics have different sensitivities to small number of genes. If \code{set.statistic="mean"} then the set will be statistically significantly only when the majority of the genes are differentially expressed. \code{"floormean"} and \code{"mean50"} will detect as few as 25\% differentially expressed. \code{"msq"} is sensitive to even smaller proportions of differentially expressed genes, if the effects are reasonably large. The output gives p-values three possible alternative hypotheses, \code{"Up"} to test whether the genes in the set tend to be up-regulated, with positive t-statistics, \code{"Down"} to test whether the genes in the set tend to be down-regulated, with negative t-statistics, and \code{"Mixed"} to test whether the genes in the set tend to be differentially expressed, without regard for direction. \code{roast} estimates p-values by simulation, specifically by random rotations of the orthogonalized residuals (Langsrud, 2005), so p-values will vary slightly from run to run. To get more precise p-values, increase the number of rotations \code{nrot}. The p-value is computed as \code{(b+1)/(nrot+1)} where \code{b} is the number of rotations giving a more extreme statistic than that observed (Phipson and Smyth, 2010). This means that the smallest possible p-value is \code{1/(nrot+1)}. \code{mroast} does roast tests for multiple sets, including adjustment for multiple testing. By default, \code{mroast} reports ordinary p-values but uses mid-p-values (Routledge, 1994) at the multiple testing stage. Mid-p-values are probably a good choice when using false discovery rates (\code{adjust.method="BH"}) but not when controlling the family-wise type I error rate (\code{adjust.method="holm"}). \code{roast} performs a \emph{self-contained} test in the sense defined by Goeman and Buhlmann (2007). For a \emph{competitive} gene set test, see \code{\link{camera.DGEList}}. } \seealso{ \code{\link{roast}}, \code{\link{camera.DGEList}} } \author{Yunshun Chen and Gordon Smyth} \references{ Goeman, JJ, and Buhlmann, P (2007). Analyzing gene expression data in terms of gene sets: methodological issues. \emph{Bioinformatics} 23, 980-987. Langsrud, O (2005). Rotation tests. \emph{Statistics and Computing} 15, 53-60. Phipson B, and Smyth GK (2010). Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. \emph{Statistical Applications in Genetics and Molecular Biology}, Volume 9, Article 39. Routledge, RD (1994). Practicing safe statistics with the mid-p. \emph{Canadian Journal of Statistics} 22, 103-110. Wu, D, Lim, E, Francois Vaillant, F, Asselin-Labat, M-L, Visvader, JE, and Smyth, GK (2010). ROAST: rotation gene set tests for complex microarray experiments. \emph{Bioinformatics} 26, 2176-2182. \url{http://bioinformatics.oxfordjournals.org/content/26/17/2176} } \examples{ mu <- matrix(10, 100, 4) group <- factor(c(0,0,1,1)) design <- model.matrix(~group) # First set of 10 genes that are genuinely differentially expressed iset1 <- 1:10 mu[iset1,3:4] <- mu[iset1,3:4]+10 # Second set of 10 genes are not DE iset2 <- 11:20 # Generate counts and create a DGEList object y <- matrix(rnbinom(100*4, mu=mu, size=10),100,4) y <- DGEList(counts=y, group=group) # Estimate dispersions y <- estimateDisp(y, design) roast(y, iset1, design, contrast=2) mroast(y, iset1, design, contrast=2) mroast(y, list(set1=iset1, set2=iset2), design, contrast=2) } \keyword{htest} r-bioc-edger-3.4.2+dfsg.orig/man/Tu102.Rd0000644000265600020320000000117512227063710016642 0ustar tilleaadmin\name{Tu102} \alias{Tu102} \alias{Tu98} \alias{NC1} \alias{NC2} \docType{data} \title{Raw Data for Several SAGE Libraries from the Zhang 1997 Science Paper.} \description{ SAGE dataset for 2 tumour samples, 2 normal samples. } \usage{data(Tu102)} \format{ Data frames with 22713, 18794, 16270 and 17703 observations (for Tu102, Tu98, NC2, NC1, respectively) on the following 2 variables. \describe{ \item{\code{Tag_Sequence}}{a character vector} \item{\code{Count}}{a numeric vector} } } \source{ Zhang et al. (1997) Gene Expression Profiles in Normal and Cancer Cells. \emph{Science}, 276, 1268-72. } \keyword{datasets} r-bioc-edger-3.4.2+dfsg.orig/man/glmfit.Rd0000644000265600020320000002251412227063710017311 0ustar tilleaadmin\name{glmFit} \alias{glmFit} \alias{glmFit.DGEList} \alias{glmFit.default} \alias{glmLRT} \alias{glmQLFTest} \title{Genewise Negative Binomial Generalized Linear Mdels} \description{Fit a negative binomial generalized log-linear model to the read counts for each gene or transcript. Conduct genewise statistical tests for a given coefficient or coefficient contrast.} \usage{ \method{glmFit}{DGEList}(y, design=NULL, dispersion=NULL, offset=NULL, weights=NULL, lib.size=NULL, prior.count=0.125, start=NULL, method="auto", ...) glmLRT(glmfit, coef=ncol(glmfit$design), contrast=NULL, test="chisq") glmQLFTest(y, design=NULL, dispersion=NULL, coef=ncol(glmfit$design), contrast=NULL, abundance.trend=TRUE, robust=FALSE, winsor.tail.p=c(0.05,0.1), plot=FALSE) } \arguments{ \item{y}{an object that contains the raw counts for each library (the measure of expression level); alternatively, a matrix of counts, or a \code{DGEList} object with (at least) elements \code{counts} (table of unadjusted counts) and \code{samples} (data frame containing information about experimental group, library size and normalization factor for the library size)} \item{design}{numeric matrix giving the design matrix for the tagwise linear models. Must be of full column rank. Defaults to a single column of ones, equivalent to treating the columns as replicate libraries.} \item{dispersion}{numeric scalar or vector of negative binomial dispersions. Can be a common value for all tags, or a vector of values can provide a unique dispersion value for each tag. If \code{NULL} will be extracted from \code{y}, with order of precedence: tagwise dispersion, trended dispersions, common dispersion.} \item{offset}{numeric matrix of same size as \code{y} giving offsets for the log-linear models. Can be a scalor or a vector of length \code{ncol{y}}, in which case it is expanded out to a matrix.} \item{weights}{optional numeric matrix giving prior weights for the observations (for each library and transcript) to be used in the GLM calculations. Not supported by methods \code{"linesearch"} or \code{"levenberg"}.} \item{lib.size}{numeric vector of length \code{ncol(y)} giving library sizes. Only used if \code{offset=NULL}, in which case \code{offset} is set to \code{log(lib.size}). Defaults to \code{colSums(y)}.} \item{prior.count}{average prior count to be added to observation to shrink the estimated log-fold-changes towards zero.} \item{start}{optional numeric matrix of initial estimates for the linear model coefficients.} \item{method}{which fitting algorithm to use. Possible values are \code{"auto"}, \code{"linesearch"}, \code{"levenberg"} or \code{"simple"}.} \item{...}{other arguments are passed to lower-level functions, for example to \code{mglmLS}.} \item{glmfit}{a \code{DGEGLM} object, usually output from \code{glmFit}.} \item{coef}{integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. Values must be columns or column names of \code{design}. Defaults to the last coefficient. Ignored if \code{contrast} is specified.} \item{contrast}{numeric vector or matrix specifying one or more contrasts of the linear model coefficients to be tested equal to zero. Number of rows must equal to the number of columns of \code{design}. If specified, then takes precedence over \code{coef}.} \item{test}{which test (distribution) to use in calculating the p-values. Possible values are \code{"F"} or \code{"chisq"}.} \item{abundance.trend}{logical, whether to allow an abundance-dependent trend when estimating the prior values for the quasi-likelihood multiplicative dispersion parameter.} \item{robust}{logical, whether to estimate the prior.df robustly.} \item{winsor.tail.p}{numeric vector of length 2 giving proportion to trim (Winsorize) from lower and upper tail of the distribution of genewise deviances when estimating the hyperparameters. Positive values produce robust empirical Bayes ignoring outlier small or large deviances. Only used when \code{robust=TRUE}.} \item{plot}{logical, whether to plot the quasi-likelihood dispersion estimates vs abundance} } \value{ \code{glmFit} produces an object of class \code{DGEGLM} containing components \code{counts}, \code{samples}, \code{genes} and \code{abundance} from \code{y} plus the following new components: \item{design}{design matrix as input.} \item{weights}{matrix of weights as input.} \item{df.residual}{numeric vector of residual degrees of freedom, one for each tag.} \item{offset}{numeric matrix of linear model offsets.} \item{dispersion}{vector of dispersions used for the fit.} \item{coefficients}{numeric matrix of estimated coefficients from the glm fits, on the natural log scale, of size \code{nrow(y)} by \code{ncol(design)}.} \item{fitted.values}{matrix of fitted values from glm fits, same number of rows and columns as \code{y}.} \item{deviance}{numeric vector of deviances, one for each tag.} \code{glmLRT} and \code{glmQFTest} produce objects of class \code{DGELRT} with the same components as for \code{glmfit} plus the following: \item{table}{data frame with the same rows as \code{y} containing the log2-fold changes, test statistics and p-values, ready to be displayed by \code{topTags.}.} \item{comparison}{character string describing the coefficient or the contrast being tested.} The data frame \code{table} contains the following columns: \item{logFC}{log2-fold change of expression between conditions being tested.} \item{logCPM}{average log2-counts per million, the average taken over all libraries in \code{y}.} \item{LR}{likelihood ratio statistics (only for \code{glmLRT}).} \item{F}{F-statistics (only for \code{glmQFTest}).} \item{PValue}{p-values.} } \details{ \code{glmFit} and \code{glmLRT} implement generalized linear model (glm) methods developed by McCarthy et al (2012). \code{glmFit} fits genewise negative binomial glms, all with the same design matrix but possibly different dispersions, offsets and weights. When the design matrix defines a one-way layout, or can be re-parametrized to a one-way layout, the glms are fitting very quickly using \code{\link{mglmOneGroup}}. Otherwise the default fitting method, implemented in \code{\link{mglmLS}}, is a parallelized line search algorithm described by McCarthy et al (2012). Other possible fitting methods are \code{\link{mglmLevenberg}} and \code{\link{mglmSimple}}. Positive \code{prior.count} cause the returned coefficients to be shrunk in such a way that fold-changes between the treatment conditions are decreased. In particular, infinite fold-changes are avoided. Larger values cause more shrinkage. The returned coefficients are affected but not the likelihood ratio tests or p-values. \code{glmLRT} conducts likelihood ratio tests for one or more coefficients in the linear model. If \code{coef} is used, the null hypothesis is that all the coefficients indicated by \code{coef} are equal to zero. If \code{contrast} is non-null, then the null hypothesis is that the specified contrast of the coefficients is equal to zero. For example, a contrast of \code{c(0,1,-1)}, assuming there are three coefficients, would test the hypothesis that the second and third coefficients are equal. \code{glmQLFTest} implements the quasi-likelihood method of Lund et al (2012). It behaves the same as \code{glmLRT} except that it replaces likelihood ratio tests with quasi-likelihood F-tests for coefficients in the linear model. This function calls the limma function \code{\link{squeezeVar}} to conduct empirical Bayes smoothing of the genewise multiplicative dispersions. Note that the \code{QuasiSeq} package provides a alternative implementation of Lund et al (2012), with slightly different glm, trend and FDR methods. } \references{ McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} Lund, SP, Nettleton, D, McCarthy, DJ, and Smyth, GK (2012). Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. \emph{Statistical Applications in Genetics and Molecular Biology} Volume 11, Issue 5, Article 8. \url{http://www.statsci.org/smyth/pubs/QuasiSeqPreprint.pdf} } \author{Davis McCarthy and Gordon Smyth} \examples{ nlibs <- 3 ntags <- 100 dispersion.true <- 0.1 # Make first transcript respond to covariate x x <- 0:2 design <- model.matrix(~x) beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1))) mu.true <- 2^(beta.true \%*\% t(design)) # Generate count data y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true) y <- matrix(y,ntags,nlibs) colnames(y) <- c("x0","x1","x2") rownames(y) <- paste("Gene",1:ntags,sep="") d <- DGEList(y) # Normalize d <- calcNormFactors(d) # Fit the NB GLMs fit <- glmFit(d, design, dispersion=dispersion.true) # Likelihood ratio tests for trend results <- glmLRT(fit, coef=2) topTags(results) # Estimate the dispersion (may be unreliable with so few tags) d <- estimateGLMCommonDisp(d, design, verbose=TRUE) } \seealso{ Low-level computations are done by \code{\link{mglmOneGroup}}, \code{\link{mglmLS}}, \code{\link{mglmLevenberg}} or \code{\link{mglmSimple}}. \code{\link{topTags}} displays results from \code{glmLRT} or \code{glmQLFTest}. The \code{QuasiSeq} package gives an alternative implementation of \code{glmQLFTest} based on the same statistical ideas. } \keyword{models} r-bioc-edger-3.4.2+dfsg.orig/man/plotExonUsage.Rd0000644000265600020320000000535312227063710020626 0ustar tilleaadmin\name{plotExonUsage} \alias{plotExonUsage} \title{Create a Plot of Exon Usage from Exon-Level Count Data} \description{Create a plot of exon usage for a given gene by plotting the (un)transformed counts for each exon, coloured by experimental group.} \usage{ plotExonUsage(y, geneID, group=NULL, transform="none", counts.per.million=TRUE, legend.coords=NULL, ...) } \arguments{ \item{y}{either a matrix of exon-level counts, a list containing a matrix of counts for each exon or a \code{DGEList} object with (at least) elements \code{counts} (table of counts summarized at the exon level) and \code{samples} (data frame containing information about experimental group, library size and normalization factor for the library size). Each row of \code{y} should represent one exon.} \item{geneID}{character string giving the name of the gene for which exon usage is to be plotted.} \item{group}{factor supplying the experimental group/condition to which each sample (column of \code{y}) belongs. If \code{NULL} (default) the function will try to extract if from \code{y}, which only works if \code{y} is a \code{DGEList} object.} \item{transform}{character, supplying the method of transformation to be applied to the exon counts, if any. Options are \code{"none"} (original counts are preserved), \code{"sqrt"} (square-root transformation) and \code{"log2"} (log2 transformation). Default is \code{"none"}.} \item{counts.per.million}{logical, if \code{TRUE} then counts per million (as determined from total library sizes) will be plotted for each exon, if \code{FALSE} the raw read counts will be plotted. Using counts per million effectively normalizes for different read depth among the different samples, which can make the exon usage plots easier to interpret.} \item{legend.coords}{optional vector of length 2 giving the x- and y-coordinates of the legend on the plot. If \code{NULL} (default), the legend will be automatically placed near the top right corner of the plot.} \item{...}{optional further arguments to be passed on to \code{plot}.} } \value{\code{plotExonUsage} (invisibly) returns the transformed matrix of counts for the gene being plotted and produces a plot to the current device.} \details{ This function produces a simple plot for comparing exon usage between different experimental conditions for a given gene. } \author{Davis McCarthy, Gordon Smyth} \examples{ # generate exon counts from NB, create list object y<-matrix(rnbinom(40,size=1,mu=10),nrow=10) rownames(y) <- rep(c("gene.1","gene.2"), each=5) d<-DGEList(counts=y,group=rep(1:2,each=2)) plotExonUsage(d, "gene.1") } \seealso{ \code{\link{spliceVariants}} for methods to detect genes with evidence for alternative exon usage. } \keyword{hplot} r-bioc-edger-3.4.2+dfsg.orig/man/dispCoxReidSplineTrend.Rd0000644000265600020320000000577412227063710022425 0ustar tilleaadmin\name{dispCoxReidSplineTrend} \alias{dispCoxReidSplineTrend} \alias{dispCoxReidPowerTrend} \title{Estimate Dispersion Trend for Negative Binomial GLMs} \description{ Estimate trended dispersion parameters across multiple negative binomial generalized linear models using Cox-Reid adjusted profile likelihood. } \usage{ dispCoxReidSplineTrend(y, design, offset=NULL, df = 5, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0) dispCoxReidPowerTrend(y, design, offset=NULL, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0) } \arguments{ \item{y}{numeric matrix of counts} \item{design}{numeric matrix giving the design matrix for the GLM that is to be fit.} \item{offset}{numeric scalar, vector or matrix giving the offset (in addition to the log of the effective library size) that is to be included in the NB GLM for the transcripts. If a scalar, then this value will be used as an offset for all transcripts and libraries. If a vector, it should be have length equal to the number of libraries, and the same vector of offsets will be used for each transcript. If a matrix, then each library for each transcript can have a unique offset, if desired. In \code{adjustedProfileLik} the \code{offset} must be a matrix with the same dimension as the table of counts.} \item{df}{integer giving the degrees of freedom of the spline function, see \code{ns} in the splines package.} \item{subset}{integer, number of rows to use in the calculation. Rows used are chosen evenly spaced by AveLogCPM using \code{\link{cutWithMinN}}.} \item{AveLogCPM}{numeric vector giving average log2 counts per million for each gene} \item{method.optim}{the method to be used in \code{optim}. See \code{\link{optim}} for more detail.} \item{trace}{logical, should iteration information be output?} } \value{ List containing numeric vectors \code{dispersion} and \code{abundance} containing the estimated dispersion and abundance for each transcript. The vectors are of the same length as \code{nrow(y)}. } \details{ In the \code{edgeR} context, these are low-level functions called by \code{estimateGLMTrendedDisp}. \code{dispCoxReidSplineTrend} and \code{dispCoxReidPowerTrend} fit abundance trends to the tagwise dispersions. \code{dispCoxReidSplineTrend} fits a regression spline whereas \code{dispCoxReidPowerTrend} fits a log-linear trend of the form \code{a*exp(abundance)^b+c}. In either case, \code{optim} is used to maximize the adjusted profile likelihood (Cox and Reid, 1987). } \references{ Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference. \emph{Journal of the Royal Statistical Society Series B} 49, 1-39. } \author{Yunshun Chen, Davis McCarthy, Gordon Smyth} \examples{ design <- matrix(1,4,1) y <- matrix((rnbinom(400,mu=100,size=5)),100,4) d1 <- dispCoxReidSplineTrend(y, design, df=3) d2 <- dispCoxReidPowerTrend(y, design) with(d2,plot(AveLogCPM,sqrt(dispersion))) } \seealso{ \code{\link{estimateGLMTrendedDisp}} } \keyword{models} r-bioc-edger-3.4.2+dfsg.orig/man/commonCondLogLikDerDelta.Rd0000644000265600020320000000312212227063710022624 0ustar tilleaadmin\name{commonCondLogLikDerDelta} \alias{commonCondLogLikDerDelta} \title{Conditional Log-Likelihoods in Terms of Delta} \description{Common conditional log-likelihood parameterized in terms of delta (\code{phi / (phi+1)}) } \usage{ commonCondLogLikDerDelta(y, delta, der = 0) } \arguments{ \item{y}{list with elements comprising the matrices of count data (or pseudocounts) for the different groups} \item{delta}{delta (\code{phi / (phi+1)}) parameter of negative binomial} \item{der}{derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)} } \value{ numeric scalar of function/derivative evaluated at given delta} \details{ The common conditional log-likelihood is constructed by summing over all of the individual tag conditional log-likelihoods. The common conditional log-likelihood is taken as a function of the dispersion parameter (\code{phi}), and here parameterized in terms of delta (\code{phi / (phi+1)}). The value of delta that maximizes the common conditional log-likelihood is converted back to the \code{phi} scale, and this value is the estimate of the common dispersion parameter used by all tags. } \author{Davis McCarthy} \examples{ counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5) d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2)) y<-splitIntoGroups(d) ll1<-commonCondLogLikDerDelta(y,delta=0.5,der=0) ll2<-commonCondLogLikDerDelta(y,delta=0.5,der=1) } \seealso{ \code{\link{estimateCommonDisp}} is the user-level function for estimating the common dispersion parameter. } \keyword{file}r-bioc-edger-3.4.2+dfsg.orig/man/thinCounts.Rd0000644000265600020320000000321512227063710020162 0ustar tilleaadmin\name{thinCounts} \alias{thinCounts} \title{Binomial or Multinomial Thinning of Counts} \description{ Reduce the size of Poisson-like counts by binomial thinning. } \usage{thinCounts(x, prob=NULL, target.size=min(colSums(x)))} \arguments{ \item{x}{numeric vector or array of non-negative integers.} \item{prob}{numeric scalar or vector of same length as \code{x}, the expected proportion of the events to keep.} \item{target.size}{integer scale or vector of the same length as \code{NCOL{x}}, the desired total column counts. Must be not greater than column sum of \code{x}. Ignored if \code{prob} is not \code{NULL}.} } \value{ A vector or array of the same dimensions as \code{x}, with thinned counts. } \details{ If \code{prob} is not \code{NULL}, then this function calls \code{rbinom} with \code{size=x} and \code{prob=prob} to generate the new counts. This is classic binomial thinning. The new column sums are random, with expected values determined by \code{prob}. If \code{prob} is \code{NULL}, then this function does multinomial thinning of the counts to achieve specified column totals. The default behavior is to thin the columns to have the same column sum, equal to the smallest column sum of \code{x}. If the elements of \code{x} are Poisson, then binomial thinning produces new Poisson random variables with expected values reduced by factor \code{prob}. If the elements of each column of \code{x} are multinomial, then multinomial thinning produces a new multinomial observation with a reduced sum. } \author{Gordon Smyth} \examples{ x <- rpois(10,lambda=10) thinCounts(x,prob=0.5) } \keyword{models} r-bioc-edger-3.4.2+dfsg.orig/man/maximizeInterpolant.Rd0000644000265600020320000000236312227063710022072 0ustar tilleaadmin\name{maximizeInterpolant} \alias{maximizeInterpolant} \title{Maximize a function given a table of values by spline interpolation.} \description{ Maximize a function given a table of values by spline interpolation. } \usage{ maximizeInterpolant(x, y) } \arguments{ \item{x}{numeric vector of the inputs of the function.} \item{y}{numeric matrix of function values at the values of \code{x}. Columns correspond to \code{x} values and each row corresponds to a different function to be maximized.} } \value{ numeric vector of input values at which the function maximums occur. } \details{ Calculates the cubic spline interpolant for each row the method of Forsythe et al (1977) using the function \code{fmm_spline} from \code{splines.c} in the \code{stats} package). Then calculates the derivatives of the spline segments adjacant to the input with the maximum function value. This allows identification of the maximum of the interpolating spline. } \author{Aaron Lun, improving on earlier code by Gordon Smyth} \examples{ x <- seq(0,1,length=10) y <- rnorm(10,1,1) maximizeInterpolant(x,y) } \references{ Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977). \emph{Computer Methods for Mathematical Computations}, Prentice-Hall. } \keyword{interpolation} r-bioc-edger-3.4.2+dfsg.orig/man/meanvar.Rd0000644000265600020320000001601512227063710017457 0ustar tilleaadmin\name{meanvar} \alias{binMeanVar} \alias{plotMeanVar} \title{Explore the mean-variance relationship for DGE data} \description{Appropriate modelling of the mean-variance relationship in DGE data is important for making inferences about differential expression. Here are functions to compute tag/gene means and variances, as well at looking at these quantities when data is binned based on overall expression level.} \usage{ plotMeanVar(object, meanvar=NULL, show.raw.vars=FALSE, show.tagwise.vars=FALSE, show.binned.common.disp.vars=FALSE, show.ave.raw.vars=TRUE, scalar=NULL, NBline=FALSE, nbins=100, log.axes="xy", xlab=NULL, ylab=NULL, ...) binMeanVar(x, group, nbins=100, common.dispersion=FALSE, object=NULL) } \arguments{ \item{object}{\code{DGEList} object containing the raw data and dispersion value. According the method desired for computing the dispersion, either \code{estimateCommonDisp} and (possibly) \code{estimateTagwiseDisp} should be run on the \code{DGEList} object before using \code{plotMeanVar}. The argument \code{object} must be supplied in the function \code{binMeanVar} if common dispersion values are to be computed for each bin.} \item{meanvar}{list (optional) containing the output from \code{binMeanVar} or the returned value of \code{plotMeanVar}. Providing this object as an argument will save time in computing the tag/gene means and variances when producing a mean-variance plot. } \item{show.raw.vars}{logical, whether or not to display the raw (pooled) gene/tag variances on the mean-variance plot. Default is \code{FALSE}.} \item{show.tagwise.vars}{logical, whether or not to display the estimated genewise/tagwise variances on the mean-variance plot. Default is \code{FALSE}.} \item{show.binned.common.disp.vars}{logical, whether or not to compute the common dispersion for each bin of tags and show the variances computed from those binned common dispersions and the mean expression level of the respective bin of tags. Default is \code{FALSE}.} \item{show.ave.raw.vars}{logical, whether or not to show the average of the raw variances for each bin of tags plotted against the average expression level of the tags in the bin. Averages are taken on the square root scale as regular arithmetic means are likely to be upwardly biased for count data, whereas averaging on the square scale gives a better summary of the mean-variance relationship in the data. The default is \code{TRUE}.} \item{scalar}{vector (optional) of scaling values to divide counts by. Would expect to have this the same length as the number of columns in the count matrix (i.e. the number of libraries).} \item{NBline}{logical, whether or not to add a line on the graph showing the mean-variance relationship for a NB model with common dispersion.} \item{nbins}{scalar giving the number of bins (formed by using the quantiles of the genewise mean expression levels) for which to compute average means and variances for exploring the mean-variance relationship. Default is \code{100} bins} \item{log.axes}{character vector indicating if any of the axes should use a log scale. Default is \code{"xy"}, which makes both y and x axes on the log scale. Other valid options are \code{"x"} (log scale on x-axis only), \code{"y"} (log scale on y-axis only) and \code{""} (linear scale on x- and y-axis).} \item{xlab}{character string giving the label for the x-axis. Standard graphical parameter. If left as the default \code{NULL}, then the x-axis label will be set to "logConc".} \item{ylab}{character string giving the label for the y-axis. Standard graphical parameter. If left as the default \code{NULL}, then the x-axis label will be set to "logConc".} \item{\dots}{further arguments passed on to \code{plot}} \item{x}{matrix of count data, with rows representing tags/genes and columns representing samples} \item{group}{factor giving the experimental group or condition to which each sample (i.e. column of \code{x} or element of {y}) belongs} \item{common.dispersion}{logical, whether or not to compute the common dispersion for each bin of tags.} } \value{ \code{plotMeanVar} produces a mean-variance plot for the DGE data using the options described above. \code{plotMeanVar} and \code{binMeanVar} both return a list with the following components: \item{avemeans}{vector of the average expression level within each bin of genes, with the average taken on the square-root scale} \item{avevars}{vector of the average raw pooled gene-wise variance within each bin of genes, with the average taken on the square-root scale} \item{bin.means}{list containing the average (mean) expression level for genes divided into bins based on amount of expression} \item{bin.vars}{list containing the pooled variance for genes divided into bins based on amount of expression} \item{means}{vector giving the mean expression level for each gene} \item{vars}{vector giving the pooled variance for each gene} \item{bins}{list giving the indices of the tags in each bin, ordered from lowest expression bin to highest} } \details{ This function is useful for exploring the mean-variance relationship in the data. Raw variances are, for each gene, the pooled variance of the counts from each sample, divided by a scaling factor (by default the effective library size). The function will plot the average raw variance for tags split into \code{nbins} bins by overall expression level. The averages are taken on the square-root scale as for count data the arithmetic mean is upwardly biased. Taking averages on the square-root scale provides a useful summary of how the variance of the gene counts change with respect to expression level (abundance). A line showing the Poisson mean-variance relationship (mean equals variance) is always shown to illustrate how the genewise variances may differ from a Poisson mean-variance relationship. Optionally, the raw variances and estimated tagwise variances can also be plotted. Estimated tagwise variances can be calculated using either qCML estimates of the tagwise dispersions (\code{estimateTagwiseDisp}) or Cox-Reid conditional inference estimates (\code{CRDisp}). A log-log scale is used for the plot. } \author{Davis McCarthy} \examples{ y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4) d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003)) plotMeanVar(d) # Produce a straight-forward mean-variance plot meanvar <- plotMeanVar(d, show.raw.vars=TRUE) # Produce a mean-variance plot with the raw variances shown and save the means and variances for later use ## If we want to show estimated tagwise variances on the plot, we must first estimate them! d <- estimateCommonDisp(d) # Obtain an estimate of the dispersion parameter d <- estimateTagwiseDisp(d) # Obtain tagwise dispersion estimates plotMeanVar(d, meanvar=meanvar, show.tagwise.vars=TRUE, NBline=TRUE) # Use previously saved object to speed up plotting; ## We could also estimate common/tagwise dispersions using the Cox-Reid methods with an appropriate design matrix } \seealso{ \code{\link{plotMDS.DGEList}}, \code{\link{plotSmear}} and \code{\link{maPlot}} provide more ways of visualizing DGE data. } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/readDGE.Rd0000755000265600020320000000423412227063710017264 0ustar tilleaadmin\name{readDGE} \alias{readDGE} \title{Read and Merge a Set of Files Containing DGE Data} \description{Reads and merges a set of text files containing digital gene expression data.} \usage{readDGE(files, path=NULL, columns=c(1,2), group=NULL, labels=NULL, ...)} \arguments{ \item{files}{character vector of filenames, or alternatively a data.frame with a column containing the file names of the files containing the libraries of counts and, optionally, columns containing the \code{group} to which each library belongs, descriptions of the other samples and other information.} \item{path}{character string giving the directory containing the files. The default is the current working directory.} \item{columns}{numeric vector stating which two columns contain the tag names and counts, respectively} \item{group}{vector, or preferably a factor, indicating the experimental group to which each library belongs. If \code{group} is not \code{NULL}, then this argument overrides any group information included in the \code{files} argument.} \item{labels}{character vector giving short names to associate with the libraries. Defaults to the file names.} \item{...}{other are passed to \code{read.delim}} } \details{ Each file is assumed to contained digital gene expression data for one sample (or library), with transcript identifiers in the first column and counts in the second column. Transcript identifiers are assumed to be unique and not repeated in any one file. By default, the files are assumed to be tab-delimited and to contain column headings. The function forms the union of all transcripts and creates one big table with zeros where necessary. } \value{DGEList object} \author{Mark Robinson and Gordon Smyth} \examples{ # Read all .txt files from current working directory \dontrun{files <- dir(pattern="*\\\\.txt$") RG <- readDGE(files)} } \seealso{ \code{\link{DGEList}} provides more information about the \code{DGEList} class and the function \code{DGEList}, which can also be used to construct a \code{DGEList} object, if \code{readDGE} is not required to read in and construct a table of counts from separate files. } \keyword{file} r-bioc-edger-3.4.2+dfsg.orig/man/adjustedProfileLik.Rd0000644000265600020320000000467612227063710021624 0ustar tilleaadmin\name{adjustedProfileLik} \alias{adjustedProfileLik} \title{Adjusted Profile Likelihood for the Negative Binomial Dispersion Parameter} \description{ Compute adjusted profile-likelihoods for estimating the dispersion parameters of genewise negative binomial glms. } \usage{ adjustedProfileLik(dispersion, y, design, offset, adjust=TRUE) } \arguments{ \item{dispersion}{numeric scalar or vector of dispersions.} \item{y}{numeric matrix of counts.} \item{design}{numeric matrix giving the design matrix.} \item{offset}{numeric matrix of same size as \code{y} giving offsets for the log-linear models. Can be a scalor or a vector of length \code{ncol(y)}, in which case it is expanded out to a matrix.} \item{adjust}{logical, if \code{TRUE} then Cox-Reid adjustment is made to the log-likelihood, if \code{FALSE} then the log-likelihood is returned without adjustment.} } \value{ vector of adjusted profile log-likelihood values, one for each row of \code{y}. } \details{ For each row of data, compute the adjusted profile-likelihood for estimating the dispersion parameter of the negative binomial glm. The adjusted profile likelihood is described by McCarthy et al (2012), and is based on the method of Cox and Reid (1987). The adjusted profile likelihood is an approximate log-likelihood for the dispersion parameter, conditional on the estimated values of the coefficients in the NB log-linear models. The conditional likelihood approach is a technique for adjusting the likelihood function to allow for the fact that nuisance parameters have to be estimated in order to evaluate the likelihood. When estimating the dispersion, the nuisance parameters are the coefficients in the linear model. This implementation calls the LAPACK library to perform the Cholesky decomposition during adjustment estimation. } \references{ Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference. \emph{Journal of the Royal Statistical Society Series B} 49, 1-39. McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Yunshun Chen, Gordon Smyth, Aaron Lun} \examples{ y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4) design <- matrix(1, 4, 1) dispersion <- 0.5 apl <- adjustedProfileLik(dispersion, y, design, offset=0) apl } \seealso{ \code{\link{glmFit}} } r-bioc-edger-3.4.2+dfsg.orig/man/zscoreNBinom.Rd0000644000265600020320000000173312227063710020437 0ustar tilleaadmin\name{zscoreNBinom} \alias{zscoreNBinom} \title{Z-score Equivalents of Negative Binomial Deviate} \description{ Compute z-score equivalents of negative binomial random deviates. } \usage{ zscoreNBinom(q, size, mu) } \arguments{ \item{q}{numeric vector or matrix giving negative binomial random values.} \item{size}{negative binomial size parameter (>0).} \item{mu}{mean of negative binomial distribution (>0).} } \value{ Numeric vector or matrix giving equivalent deviates from a standard normal distribution. } \details{ This function computes the mid-p value of \code{q}, then converts to the standard normal deviate with the same cumulative probability distribution value. Care is taken to do the computations accurately in both tails of the distributions. } \author{Gordon Smyth} \seealso{ \code{\link{pnbinom}}, \code{\link{qnorm}} in the stats package. } \examples{ zscoreNBinom(c(0,10,100), mu=10, size=1/10) } \keyword{distribution} r-bioc-edger-3.4.2+dfsg.orig/man/decidetestsDGE.Rd0000644000265600020320000000330512227063710020644 0ustar tilleaadmin\name{decideTestsDGE} \alias{decideTestsDGE} \title{Multiple Testing Across Genes and Contrasts} \description{ Classify a series of related differential expression statistics as up, down or not significant. A number of different multiple testing schemes are offered which adjust for multiple testing down the genes as well as across contrasts for each gene. } \usage{ decideTestsDGE(object, adjust.method="BH", p.value=0.05) } \arguments{ \item{object}{\code{deDGElist} object, output from \code{exactTest}, or \code{DGELRT} object, output from \code{DGELRT}, from which p-values for differential expression and log-fold change values may be extracted.} \item{adjust.method}{character string specifying p-value adjustment method. Possible values are \code{"none"}, \code{"BH"}, \code{"fdr"} (equivalent to \code{"BH"}), \code{"BY"} and \code{"holm"}. See \code{\link[stats]{p.adjust}} for details.} \item{p.value}{numeric value between 0 and 1 giving the desired size of the test} } \value{ An object of class \code{TestResults} (see \code{\link[limma:TestResults]{TestResults}}). This is essentially a numeric matrix with elements \code{-1}, \code{0} or \code{1} depending on whether each DE p-value is classified as significant with negative log-fold change, not significant or significant with positive log-fold change, respectively. } \details{ These functions implement multiple testing procedures for determining whether each log-fold change in a matrix of log-fold changes should be considered significantly different from zero. } \seealso{ Adapted from \code{\link[limma:decideTests]{decideTests}} in the limma package. } \author{Davis McCarthy, Gordon Smyth} \keyword{htest} r-bioc-edger-3.4.2+dfsg.orig/man/dispBinTrend.Rd0000644000265600020320000000661712227063710020422 0ustar tilleaadmin\name{dispBinTrend} \alias{dispBinTrend} \title{Estimate Dispersion Trend by Binning for NB GLMs} \description{ Estimate the abundance-dispersion trend by computing the common dispersion for bins of genes of similar AveLogCPM and then fitting a smooth curve. } \usage{ dispBinTrend(y, design=NULL, offset=NULL, df = 5, span=0.3, min.n=400, method.bin="CoxReid", method.trend="spline", AveLogCPM=NULL, \dots) } \arguments{ \item{y}{numeric matrix of counts} \item{design}{numeric matrix giving the design matrix for the GLM that is to be fit.} \item{offset}{numeric scalar, vector or matrix giving the offset (in addition to the log of the effective library size) that is to be included in the NB GLM for the transcripts. If a scalar, then this value will be used as an offset for all transcripts and libraries. If a vector, it should be have length equal to the number of libraries, and the same vector of offsets will be used for each transcript. If a matrix, then each library for each transcript can have a unique offset, if desired. In \code{adjustedProfileLik} the \code{offset} must be a matrix with the same dimension as the table of counts.} \item{df}{degrees of freedom for spline curve.} \item{span}{span used for loess curve.} \item{min.n}{minimim number of genes in a bins.} \item{method.bin}{method used to estimate the dispersion in each bin. Possible values are \code{"CoxReid"}, \code{"Pearson"} or \code{"deviance"}.} \item{method.trend}{type of curve to smooth the bins. Possible values are \code{"spline"} for a natural cubic regression spline or \code{"loess"} for a linear lowess curve.} \item{AveLogCPM}{numeric vector giving average log2 counts per million for each gene} \item{\dots}{other arguments are passed to \code{estimateGLMCommonDisp}} } \value{ list with the following components: \item{AveLogCPM}{numeric vector containing the overall AveLogCPM for each gene} \item{dispersion}{numeric vector giving the trended dispersion estimate for each gene} \item{bin.AveLogCPM}{numeric vector of length equal to \code{nbins} giving the average (mean) AveLogCPM for each bin} \item{bin.dispersion}{numeric vector of length equal to \code{nbins} giving the estimated common dispersion for each bin} } \details{ Estimate a dispersion parameter for each of many negative binomial generalized linear models by computing the common dispersion for genes sorted into bins based on overall AveLogCPM. A regression natural cubic splines or a linear loess curve is used to smooth the trend and extrapolate a value to each gene. If there are fewer than \code{min.n} rows of \code{y} with at least one positive count, then one bin is used. The number of bins is limited to 1000. } \references{ McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Davis McCarthy and Gordon Smyth} \examples{ ntags <- 1000 nlibs <- 4 means <- seq(5,10000,length.out=ntags) y <- matrix(rnbinom(ntags*nlibs,mu=rep(means,nlibs),size=0.1*means),nrow=ntags,ncol=nlibs) keep <- rowSums(y) > 0 y <- y[keep,] group <- factor(c(1,1,2,2)) design <- model.matrix(~group) # Define the design matrix for the full model out <- dispBinTrend(y, design, min.n=100, span=0.3) with(out, plot(AveLogCPM, sqrt(dispersion))) } \seealso{ \code{\link{estimateGLMTrendedDisp}} } r-bioc-edger-3.4.2+dfsg.orig/man/normalizeChIPtoInput.Rd0000644000265600020320000000554412227063710022122 0ustar tilleaadmin\name{normalizeChIPtoInput} \alias{normalizeChIPtoInput} \alias{calcNormOffsetsforChIP} \title{Normalize ChIP-Seq Read Counts to Input and Test for Enrichment} \description{ Normalize ChIP-Seq read counts to input control values, then test for significant enrichment relative to the control. } \usage{ normalizeChIPtoInput(input, response, dispersion=0.01, niter=6, loss="p", plot=FALSE, verbose=FALSE, ...) calcNormOffsetsforChIP(input, response, dispersion=0.01, niter=6, loss="p", plot=FALSE, verbose=FALSE, ...) } \arguments{ \item{input}{numeric vector of non-negative input values, not necessarily integer.} \item{response}{vector of non-negative integer counts of some ChIP-Seq mark for each gene or other genomic feature.} \item{dispersion}{negative binomial dispersion, must be positive.} \item{niter}{number of iterations.} \item{loss}{loss function to be used when fitting the response counts to the input: \code{"p"} for cumulative probabilities or \code{"z"} for z-value.} \item{plot}{if \code{TRUE}, a plot of the fit is produced.} \item{verbose}{if \code{TRUE}, working estimates from each iteration are output.} \item{\ldots}{other arguments are passed to the \code{plot} function.} } \details{ \code{normalizeChIPtoInput} identifies significant enrichment for a ChIP-Seq mark relative to input values. The ChIP-Seq mark might be for example transcriptional factor binding or an epigenetic mark. The function works on the data from one sample. Replicate libraries are not explicitly accounted for, and would normally be pooled before using this function. ChIP-Seq counts are assumed to be summarized by gene or similar genomic feature of interest. This function makes the assumption that a non-negligible proportion of the genes, say 25\% or more, are not truly marked by the ChIP-Seq feature of interest. Unmarked genes are further assumed to have counts at a background level proportional to the input. The function aligns the counts to the input so that the counts for the unmarked genes behave like a random sample. The function estimates the proportion of marked genes, and removes marked genes from the fitting process. For this purpose, marked genes are those with a Holm-adjusted mid-p-value less than 0.5. The read counts are treated as negative binomial. The dispersion parameter is not estimated from the data; instead a reasonable value is assumed to be given. \code{calcNormOffsetsforChIP} returns a numeric matrix of offsets, ready for linear modelling. } \value{ \code{normalizeChIPtoInput} returns a list with components \item{p.value}{numeric vector of p-values for enrichment.} \item{scaling.factor}{factor by which input is scaled to align with response counts for unmarked genes.} \item{prop.enriched}{proportion of marked genes, as internally estimated} \code{calcNormOffsetsforChIP} returns a numeric matrix of offsets. } \author{Gordon Smyth} r-bioc-edger-3.4.2+dfsg.orig/man/weightedCondLogLikDerDelta.Rd0000644000265600020320000000407112227063710023140 0ustar tilleaadmin\name{weightedCondLogLikDerDelta} \alias{weightedCondLogLikDerDelta} \title{Weighted Conditional Log-Likelihood in Terms of Delta} \description{Weighted conditional log-likelihood parameterized in terms of delta (\code{phi / (phi+1)}) for a given tag/gene - maximized to find the smoothed (moderated) estimate of the dispersion parameter} \usage{ weightedCondLogLikDerDelta(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0) } \arguments{ \item{y}{list with elements comprising the matrices of count data (or pseudocounts) for the different groups} \item{delta}{delta (\code{phi / (phi+1)})parameter of negative binomial} \item{tag}{tag/gene at which the weighted conditional log-likelihood is evaluated} \item{prior.n}{smoothing paramter that indicates the weight to put on the common likelihood compared to the individual tag's likelihood; default \code{10} means that the common likelihood is given 10 times the weight of the individual tag/gene's likelihood in the estimation of the tag/genewise dispersion} \item{ntags}{numeric scalar number of tags/genes in the dataset to be analysed} \item{der}{derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)} } \value{ numeric scalar of function/derivative evaluated for the given tag/gene and delta} \details{ This function computes the weighted conditional log-likelihood for a given tag, parameterized in terms of delta. The value of delta that maximizes the weighted conditional log-likelihood is converted back to the \code{phi} scale, and this value is the estimate of the smoothed (moderated) dispersion parameter for that particular tag. The delta scale for convenience (delta is bounded between 0 and 1). } \author{Mark Robinson, Davis McCarthy} \examples{ counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5) d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2)) y<-splitIntoGroups(d) ll1<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=0) ll2<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=1) } \keyword{file} r-bioc-edger-3.4.2+dfsg.orig/man/gof.Rd0000644000265600020320000000550012227063710016576 0ustar tilleaadmin\name{gof} \alias{gof} \title{Goodness of Fit Tests for Multiple GLM Fits} \description{Conducts deviance goodness of fit tests for each fit in a \code{DGEGLM} object} \usage{ gof(glmfit, pcutoff=0.1, adjust="holm", plot=FALSE, main="qq-plot of genewise goodness of fit", ...) } \arguments{ \item{glmfit}{\code{DGEGLM} object containing results from fitting NB GLMs to genes in a DGE dataset. Output from \code{glmFit}.} \item{pcutoff}{scalar giving the cut-off value for the Holm-adjusted p-value. Genes with Holm-adjusted p-values lower than this cutoff value are flagged as `dispersion outlier' genes.} \item{adjust}{method used to adjust goodness of fit p-values for multiple testing.} \item{plot}{logical, if \code{TRUE} a qq-plot is produced.} \item{main}{character, title for the plot.} \item{\dots}{other arguments are passed to \code{qqnorm}.} } \details{ If \code{plot=TRUE}, produces a plot similar to Figure 2 of McCarthy et al (2012). } \value{ This function returns a list with the following components: \item{gof.statistics}{numeric vector of deviance statistics, which are the statistics used for the goodness of fit test} \item{gof.pvalues}{numeric vector of p-values providing evidence of poor fit; computed from the chi-square distribution on the residual degrees of freedom from the GLM fits.} \item{outlier}{logical vector indicating whether or not each gene is a `dispersion outlier' (i.e., the model fit is poor for that gene indicating that the dispersion estimate is not good for that gene).} \item{df}{scalar, the residual degrees of freedom from the GLM fit for which the goodness of fit statistics have been computed. Also the degrees of freedom for the goodness of fit statistics for the LR (chi-quare) test for significance.} } \author{Davis McCarthy and Gordon Smyth} \references{ McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297 \url{http://nar.oxfordjournals.org/content/40/10/4288} } \examples{ nlibs <- 3 ntags <- 100 dispersion.true <- 0.1 # Make first transcript respond to covariate x x <- 0:2 design <- model.matrix(~x) beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1))) mu.true <- 2^(beta.true \%*\% t(design)) # Generate count data y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true) y <- matrix(y,ntags,nlibs) colnames(y) <- c("x0","x1","x2") rownames(y) <- paste("Gene",1:ntags,sep="") d <- DGEList(y) # Normalize d <- calcNormFactors(d) # Fit the NB GLMs fit <- glmFit(d, design, dispersion=dispersion.true) # Check how good the fit is for each gene gof(fit) } \seealso{ \code{\link{qqnorm}}. \code{\link{glmFit}} for more information on fitting NB GLMs to DGE data. } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/plotMDS.DGEList.Rd0000644000265600020320000001004012227063710020572 0ustar tilleaadmin\title{Multidimensional scaling plot of digital gene expression profiles} \name{plotMDS.DGEList} \alias{plotMDS.DGEList} \description{ Calculate distances between RNA-seq or DGE libraries, then produce a multidimensional scaling plot. Distances on the plot represent coefficient of variation of expression between samples for the top genes that best distinguish the samples. } \usage{ \method{plotMDS}{DGEList}(x, top=500, labels=colnames(x), col=NULL, cex=1, dim.plot=c(1,2), ndim=max(dim.plot), xlab=NULL, ylab=NULL, method="logFC", prior.count=2, gene.selection="pairwise", ...) } \arguments{ \item{x}{an \code{DGEList} object.} \item{top}{number of top genes used to calculate pairwise distances.} \item{labels}{character vector of sample names or labels. If \code{x} has no column names, then defaults the index of the samples.} \item{col}{numeric or character vector of colors for the plotting characters. See \code{\link[graphics]{text}} for possible values.} \item{cex}{numeric vector of plot symbol expansions. See \code{\link[graphics]{text}} for possible values.} \item{dim.plot}{which two dimensions should be plotted, numeric vector of length two.} \item{ndim}{number of dimensions in which data is to be represented} \item{xlab}{x-axis label} \item{ylab}{y-axis label} \item{method}{how to compute distances. Possible values are "logFC" or \code{"bcv"}.} \item{prior.count}{average prior count to be added to observation to shrink the estimated log-fold-changes towards zero. Only used when \code{method="logFC"}.} \item{gene.selection}{character, \code{"pairwise"} to choose the top genes separately for each pairwise comparison between the samples or \code{"common"} to select the same genes for all comparisons. Only used when \code{method="logFC"}.} \item{...}{any other arguments are passed to \code{plot}.} } \details{ This function is a variation on the usual multdimensional scaling (or principle coordinate) plot, in that a distance measure particularly appropriate for the digital gene expression (DGE) context is used. A set of top genes are chosen that have largest biological variation between the libraries (those with largest tagwise dispersion treating all libraries as one group). Then the distance between each pair of libraries (columns) is the biological coefficient of variation (square root of the common dispersion) between those two libraries alone, using the top genes. If \code{x} is a \code{DGEList}, then the library sizes and normalization factors found in the object are used. If \code{x} is a matrix, then library sizes are computed from the column sums, but no other normalization is done. The number \code{top} of top genes chosen for this exercise should roughly correspond to the number of differentially expressed genes with materially large fold-changes. The default setting of 500 genes is widely effective and suitable for routine use, but a smaller value might be chosen for when the samples are distinguished by a specific focused molecular pathway. Very large values (greater than 1000) are not usually so effective. This function can be slow when there are many libraries. } \value{ A plot is created on the current graphics device. An object of class \code{\link[limma:plotMDS]{MDS}} is invisibly returned. } \author{Yunshun Chen, Mark Robinson and Gordon Smyth} \seealso{ \code{\link[limma]{plotMDS}}, \code{\link{cmdscale}}, \code{\link{as.dist}} } \examples{ # Simulate DGE data for 1000 genes(tags) and 6 samples. # Samples are in two groups # First 200 genes are differentially expressed in second group ngenes <- 1000 nlib <- 6 counts <- matrix(rnbinom(ngenes*nlib, size=1/10, mu=20),ngenes,nlib) rownames(counts) <- paste("Gene",1:ngenes) group <- gl(2,3,labels=c("Grp1","Grp2")) counts[1:200,group=="Grp2"] <- counts[1:200,group=="Grp2"] + 10 y <- DGEList(counts,group=group) y <- calcNormFactors(y) # without labels, indexes of samples are plotted. col <- as.numeric(group) mds <- plotMDS(y, top=200, col=col) # or labels can be provided, here group indicators: plotMDS(mds, col=col, labels=group) } \keyword{hplot} r-bioc-edger-3.4.2+dfsg.orig/man/plotBCV.Rd0000644000265600020320000000255512227063710017343 0ustar tilleaadmin\title{Plot Biological Coefficient of Variation} \name{plotBCV} \alias{plotBCV} \description{ Plot genewise biological coefficient of variation (BCV) against gene abundance (in log2 counts per million). } \usage{ plotBCV(y, xlab="Average log CPM", ylab="Biological coefficient of variation", pch=16, cex=0.2, col.common="red", col.trend="blue", col.tagwise="black", ...) } \arguments{ \item{y}{a \code{DGEList} object.} \item{xlab}{label for the x-axis.} \item{ylab}{label for the y-axis.} \item{pch}{the plotting symbol. See \code{\link{points}} for more details.} \item{cex}{plot symbol expansion factor. See \code{\link{points}} for more details.} \item{col.common}{color of line showing common dispersion} \item{col.trend}{color of line showing dispersion trend} \item{col.tagwise}{color of points showing tagwise dispersions} \item{...}{any other arguments are passed to \code{plot}.} } \details{ The BCV is the square root of the negative binomial dispersion. This function displays the common, trended and tagwise BCV estimates. } \value{ A plot is created on the current graphics device. } \author{Davis McCarthy, Yunshun Chen, Gordon Smyth} \examples{ BCV.true <- 0.1 y <- DGEList(matrix(rnbinom(6000, size = 1/BCV.true^2, mu = 10),1000,6)) y <- estimateCommonDisp(y) y <- estimateTrendedDisp(y) y <- estimateTagwiseDisp(y) plotBCV(y) } \keyword{plot} r-bioc-edger-3.4.2+dfsg.orig/man/maPlot.Rd0000644000265600020320000000604212227063710017261 0ustar tilleaadmin\name{maPlot} \Rdversion{1.1} \alias{maPlot} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Plots Log-Fold Change versus Log-Concentration (or, M versus A) for Count Data } \description{ To represent counts that were low (e.g. zero in 1 library and non-zero in the other) in one of the two conditions, a 'smear' of points at low A value is presented. } \usage{ maPlot(x, y, logAbundance=NULL, logFC=NULL, normalize=FALSE, plot.it=TRUE, smearWidth=1, col=NULL, allCol="black", lowCol="orange", deCol="red", de.tags=NULL, smooth.scatter=FALSE, lowess=FALSE, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{vector of counts or concentrations (group 1)} \item{y}{vector of counts or concentrations (group 2)} \item{logAbundance}{vector providing the abundance of each tag on the log2 scale. Purely optional (default is \code{NULL}), but in combination with \code{logFC} provides a more direct way to create an MA-plot if the log-abundance and log-fold change are available.} \item{logFC}{vector providing the log-fold change for each tag for a given experimental contrast. Default is \code{NULL}, only to be used together with \code{logAbundance} as both need to be non-null for their values to be used.} \item{normalize}{logical, whether to divide \code{x} and \code{y} vectors by their sum} \item{plot.it}{logical, whether to produce a plot} \item{smearWidth}{scalar, width of the smear} \item{col}{vector of colours for the points (if \code{NULL}, uses \code{allCol} and \code{lowCol})} \item{allCol}{colour of the non-smeared points} \item{lowCol}{colour of the smeared points} \item{deCol}{colour of the DE (differentially expressed) points} \item{de.tags}{indices for tags identified as being differentially expressed; use \code{exactTest} to identify DE genes} \item{smooth.scatter}{logical, whether to produce a 'smooth scatter' plot using the KernSmooth::smoothScatter function or just a regular scatter plot; default is \code{FALSE}, i.e. produce a regular scatter plot} \item{lowess}{logical, indicating whether or not to add a lowess curve to the MA-plot to give an indication of any trend in the log-fold change with log-concentration} \item{\dots}{further arguments passed on to \code{plot}} } \details{ The points to be smeared are identified as being equal to the minimum in one of the two groups. The smear is created by using random uniform numbers of width \code{smearWidth} to the left of the minimum A value. } \value{a plot to the current device (if \code{plot.it=TRUE}), and invisibly returns the \code{M} (logFC) and \code{A} (logConc) values used for the plot, plus identifiers \code{w} and \code{v} of genes for which \code{M} and {A} values, or just \code{M} values, respectively, were adjusted to make a nicer looking plot. } \seealso{ \code{\link{plotSmear}} } \author{Mark Robinson, Davis McCarthy} \examples{ y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4) maPlot(y[,1], y[,2]) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. r-bioc-edger-3.4.2+dfsg.orig/man/dispCoxReid.Rd0000644000265600020320000001005712227063710020243 0ustar tilleaadmin\name{dispCoxReid} \alias{dispCoxReid} \alias{dispDeviance} \alias{dispPearson} \title{Estimate Common Dispersion for Negative Binomial GLMs} \description{ Estimate a common dispersion parameter across multiple negative binomial generalized linear models. } \usage{ dispCoxReid(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=10000, AveLogCPM=NULL) dispDeviance(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=10000, AveLogCPM=NULL, robust=FALSE, trace=FALSE) dispPearson(y, design=NULL, offset=NULL, min.row.sum=5, subset=10000, AveLogCPM=NULL, tol=1e-6, trace=FALSE, initial.dispersion=0.1) } \arguments{ \item{y}{numeric matrix of counts. A glm is fitted to each row.} \item{design}{numeric design matrix, as for \code{\link{glmFit}}.} \item{offset}{numeric vector or matrix of offsets for the log-linear models, as for \code{\link{glmFit}}.} \item{interval}{numeric vector of length 2 giving allowable values for the dispersion, passed to \code{optimize}.} \item{tol}{the desired accuracy, see \code{optimize} or \code{uniroot}.} \item{min.row.sum}{integer. Only rows with at least this number of counts are used.} \item{subset}{integer, number of rows to use in the calculation. Rows used are chosen evenly spaced by AveLogCPM.} \item{AveLogCPM}{numeric vector giving average log2 counts per million.} \item{trace}{logical, should iteration information be output?} \item{robust}{logical, should a robust estimator be used?} \item{initial.dispersion}{starting value for the dispersion} } \value{ Numeric vector of length one giving the estimated common dispersion. } \details{ These are low-level (non-object-orientated) functions called by \code{estimateGLMCommonDisp}. \code{dispCoxReid} maximizes the Cox-Reid adjusted profile likelihood (Cox and Reid, 1987). \code{dispPearson} sets the average Pearson goodness of fit statistics to its (asymptotic) expected value. This is also known as the \emph{pseudo-likelihood} estimator. \code{dispDeviance} sets the average residual deviance statistic to its (asymptotic) expected values. This is also known as the \emph{quasi-likelihood} estimator. Robinson and Smyth (2008) and McCarthy et al (2011) showed that the Pearson (pseudo-likelihood) estimator typically under-estimates the true dispersion. It can be seriously biased when the number of libraries (\code{ncol(y)} is small. On the other hand, the deviance (quasi-likelihood) estimator typically over-estimates the true dispersion when the number of libraries is small. Robinson and Smyth (2008) and McCarthy et al (2011) showed the Cox-Reid estimator to be the least biased of the three options. \code{dispCoxReid} uses \code{optimize} to maximize the adjusted profile likelihood. \code{dispDeviance} uses \code{uniroot} to solve the estimating equation. The robust options use an order statistic instead the mean statistic, and have the effect that a minority of tags with very large (outlier) dispersions should have limited influence on the estimated value. \code{dispPearson} uses a globally convergent Newton iteration. } \references{ Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference. \emph{Journal of the Royal Statistical Society Series B} 49, 1-39. Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. \emph{Biostatistics}, 9, 321-332 McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research}. \url{http://nar.oxfordjournals.org/content/early/2012/02/06/nar.gks042} (Published online 28 January 2012) } \author{Gordon Smyth} \examples{ ntags <- 100 nlibs <- 4 y <- matrix(rnbinom(ntags*nlibs,mu=10,size=10),nrow=ntags,ncol=nlibs) group <- factor(c(1,1,2,2)) lib.size <- rowSums(y) design <- model.matrix(~group) disp <- dispCoxReid(y, design, offset=log(lib.size), subset=100) } \seealso{ \code{\link{estimateGLMCommonDisp}}, \code{\link{optimize}}, \code{\link{uniroot}} } r-bioc-edger-3.4.2+dfsg.orig/man/DGELRT-class.Rd0000644000265600020320000000506412227063710020114 0ustar tilleaadmin\name{DGELRT-class} \docType{class} \alias{DGELRT-class} \alias{show,DGELRT-method} \title{Digital Gene Expression Likelihood Ratio Test data and results - class} \description{ A list-based S4 class for storing results of a GLM-based differential expression analysis for DGE data. } \section{List Components}{ For objects of this class, rows correspond to genomic features and columns to statistics associated with the differential expression analysis. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc. Objects of this class contain the following list components: \tabular{ll}{ \code{table } \tab data frame containing the log-concentration (i.e. expression level), the log-fold change in expression between the two groups/conditions and the exact p-value for differential expression, for each gene.\cr \code{coefficients.full } \tab matrix containing the coefficients computed from fitting the full model (fit using \code{glmFit} and a given design matrix) to each gene in the dataset.\cr \code{coefficients.null } \tab matrix containing the coefficients computed from fitting the null model to each gene in the dataset. The null model is the model to which the full model is compared, and is fit using \code{glmFit} and dropping selected column(s) (i.e. coefficient(s)) from the design matrix for the full model.\cr \code{design } \tab design matrix for the full model from the likelihood ratio test.\cr \code{... } \tab if the argument \code{y} to \code{glmLRT} (which produces the \code{DGELRT} object) was itself a \code{DGEList} object, then the \code{DGELRT} will contain all of the elements of \code{y}, except for the table of counts and the table of pseudocounts.\cr } } \section{Methods}{ This class inherits directly from class \code{list}, so \code{DGELRT} objects can be manipulated as if they were ordinary lists. However they can also be treated as if they were matrices for the purposes of subsetting. The dimensions, row names and column names of a \code{DGELRT} object are defined by those of \code{table}, see \code{\link{dim.DGELRT}} or \code{\link{dimnames.DGELRT}}. \code{DGELRT} objects can be subsetted, see \code{\link{subsetting}}. \code{DGELRT} objects also have a \code{show} method so that printing produces a compact summary of their contents. } \author{edgeR team. First created by Davis McCarthy} \seealso{ Other classes defined in edgeR are \code{\link{DGEList-class}}, \code{\link{DGEExact-class}}, \code{\link{DGEGLM-class}}, \code{\link{TopTags-class}} } \keyword{classes} r-bioc-edger-3.4.2+dfsg.orig/man/calcNormFactors.Rd0000644000265600020320000000654212227063710021112 0ustar tilleaadmin\name{calcNormFactors} \alias{calcNormFactors} \title{Calculate Normalization Factors to Align Columns of a Count Matrix} \description{ Calculate normalization factors to scale the raw library sizes. } \usage{ calcNormFactors(object, method=c("TMM","RLE","upperquartile","none"), refColumn = NULL, logratioTrim = .3, sumTrim = 0.05, doWeighting=TRUE, Acutoff=-1e10, p=0.75) } \arguments{ \item{object}{either a \code{matrix} of raw (read) counts or a \code{DGEList} object} \item{method}{normalization method to be used} \item{refColumn}{column to use as reference for \code{method="TMM"}. Can be a column number or a numeric vector of length \code{nrow(object))}.} \item{logratioTrim}{amount of trim to use on log-ratios ("M" values) for \code{method="TMM"}} \item{sumTrim}{amount of trim to use on the combined absolute levels ("A" values) for \code{method="TMM"}} \item{doWeighting}{logical, whether to compute (asymptotic binomial precision) weights for \code{method="TMM"}} \item{Acutoff}{cutoff on "A" values to use before trimming for \code{method="TMM"}} \item{p}{percentile (between 0 and 1) of the counts that is aligned when \code{method="upperquartile"}} } \details{ \code{method="TMM"} is the weighted trimmed mean of M-values (to the reference) proposed by Robinson and Oshlack (2010), where the weights are from the delta method on Binomial data. If \code{refColumn} is unspecified, the library whose upper quartile is closest to the mean upper quartile is used. \code{method="RLE"} is the scaling factor method proposed by Anders and Huber (2010). We call it "relative log expression", as median library is calculated from the geometric mean of all columns and the median ratio of each sample to the median library is taken as the scale factor. \code{method="upperquartile"} is the upper-quartile normalization method of Bullard et al (2010), in which the scale factors are calculated from the 75\% quantile of the counts for each library, after removing transcripts which are zero in all libraries. This idea is generalized here to allow scaling by any quantile of the distributions. If \code{method="none"}, then the normalization factors are set to 1. For symmetry, normalization factors are adjusted to multiply to 1. The effective library size is then the original library size multiplied by the scaling factor. Note that rows that have zero counts for all columns are trimmed before normalization factors are computed. Therefore rows with all zero counts do not affect the estimated factors. } \value{ If \code{object} is a \code{matrix}, the output is a vector with length \code{ncol(object)} giving the relative normalization factors. If \code{object} is a \code{DGEList}, then it is returned as output with the relative normalization factors in \code{object$samples$norm.factors}. } \author{Mark Robinson, Gordon Smyth} \references{ Anders, S, Huber, W (2010). Differential expression analysis for sequence count data \emph{Genome Biology} 11, R106. Bullard JH, Purdom E, Hansen KD, Dudoit S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. \emph{BMC Bioinformatics} 11, 94. A scaling normalization method for differential expression analysis of RNA-seq data. Robinson MD, Oshlack A (2010). \emph{Genome Biology} 11, R25. } \examples{ y <- matrix( rpois(1000, lambda=5), nrow=200 ) calcNormFactors(y) } r-bioc-edger-3.4.2+dfsg.orig/man/cutWithMinN.Rd0000644000265600020320000000302512227063710020234 0ustar tilleaadmin\name{cutWithMinN} \alias{cutWithMinN} \title{Cut numeric vector into non-empty intervals} \description{ Discretizes a numeric vector. Divides the range of \code{x} into intervals, so that each interval contains a minimum number of values, and codes the values in \code{x} according to which interval they fall into. } \usage{cutWithMinN(x, intervals=2, min.n=1)} \arguments{ \item{x}{numeric vector.} \item{intervals}{number of intervals required.} \item{min.n}{minimum number of values in any interval. Must be greater than \code{length(x)/intervals}.} } \value{ A list with components: \item{group}{integer vector of same length as \code{x} indicating which interval each value belongs to.} \item{breaks}{numeric vector of length \code{intervals+1} giving the left and right limits of each interval.} } \details{ This function strikes a compromise between the base functions \code{cut}, which by default cuts a vector into equal length intervals, and \code{quantile}, which is suited to finding equally populated intervals. It finds a partition of the \code{x} values that is as close as possible to equal length intervals while keeping at least \code{min.n} values in each interval. Tied values of \code{x} are broken by random jittering, so the partition may vary slightly from run to run if there are many tied values. } \author{Gordon Smyth} \seealso{ \code{\link{cut}}, \code{\link{quantile}}. } \examples{ x <- c(1,2,3,4,5,6,7,100) cutWithMinN(x,intervals=3,min.n=1) } \keyword{category} r-bioc-edger-3.4.2+dfsg.orig/man/dglmStdResid.Rd0000644000265600020320000001463112227063710020415 0ustar tilleaadmin\name{dglmStdResid} \alias{dglmStdResid} \alias{getDispersions} \title{Visualize the mean-variance relationship in DGE data using standardized residuals} \description{Appropriate modelling of the mean-variance relationship in DGE data is important for making inferences about differential expression. However, the standard approach to visualizing the mean-variance relationship is not appropriate for general, complicated experimental designs that require generalized linear models (GLMs) for analysis. Here are functions to compute standardized residuals from a Poisson GLM and plot them for bins based on overall expression level of tags as a way to visualize the mean-variance relationship. A rough estimate of the dispersion parameter can also be obtained from the standardized residuals.} \usage{ dglmStdResid(y, design, dispersion=0, offset=0, nbins=100, make.plot=TRUE, xlab="Mean", ylab="Ave. binned standardized residual", ...) getDispersions(binned.object) } \arguments{ \item{y}{numeric matrix of counts, each row represents one tag, each column represents one DGE library.} \item{design}{numeric matrix giving the design matrix of the GLM. Assumed to be full column rank.} \item{dispersion}{numeric scalar or vector giving the dispersion parameter for each GLM. Can be a scalar giving one value for all tags, or a vector of length equal to the number of tags giving tag-wise dispersions.} \item{offset}{numeric vector or matrix giving the offset that is to be included in teh log-linear model predictor. Can be a vector of length equal to the number of libraries, or a matrix of the same size as \code{y}.} \item{nbins}{scalar giving the number of bins (formed by using the quantiles of the genewise mean expression levels) for which to compute average means and variances for exploring the mean-variance relationship. Default is \code{100} bins} \item{make.plot}{logical, whether or not to plot the mean standardized residual for binned data (binned on expression level). Provides a visualization of the mean-variance relationship. Default is \code{TRUE}.} \item{xlab}{character string giving the label for the x-axis. Standard graphical parameter. If left as the default, then the x-axis label will be set to "Mean".} \item{ylab}{character string giving the label for the y-axis. Standard graphical parameter. If left as the default, then the y-axis label will be set to "Ave. binned standardized residual".} \item{\dots}{further arguments passed on to \code{plot}} \item{binned.object}{list object, which is the output of \code{dglmStdResid}.} } \value{ \code{dglmStdResid} produces a mean-variance plot based on standardized residuals from a Poisson model fitfor each tag for the DGE data. \code{dglmStdResid} returns a list with the following elements: \item{ave.means}{vector of the average expression level within each bin of observations} \item{ave.std.resid}{vector of the average standardized Poisson residual within each bin of tags} \item{bin.means}{list containing the average (mean) expression level (given by the fitted value from the given Poisson model) for observations divided into bins based on amount of expression} \item{bin.std.resid}{list containing the standardized residual from the given Poisson model for observations divided into bins based on amount of expression} \item{means}{vector giving the fitted value for each observed count} \item{standardized.residuals}{vector giving approximate standardized residual for each observed count} \item{bins}{list containing the indices for the observations, assigning them to bins} \item{nbins}{scalar giving the number of bins used to split up the observed counts} \item{ngenes}{scalar giving the number of genes/tags in the dataset} \item{nlibs}{scalar giving the number of libraries in the dataset} \code{getDispersions} computes the dispersion from the standardized residuals and returns a list with the following components: \item{bin.dispersion}{vector giving the estimated dispersion value for each bin of observed counts, computed using the average standardized residual for the bin} \item{bin.dispersion.used}{vector giving the actual estimated dispersion value to be used. Some computed dispersions using the method in this function can be negative, which is not allowed. We use the dispersion value from the nearest bin of higher expression level with positive dispersion value in place of any negative dispersions.} \item{dispersion}{vector giving the estimated dispersion for each observation, using the binned dispersion estimates from above, so that all of the observations in a given bin get the same dispersion value.} } \details{ This function is useful for exploring the mean-variance relationship in the data. Raw or pooled variances cannot be used for complex experimental designs, so instead we can fit a Poisson model using the appropriate design matrix to each tag and use the standardized residuals in place of the pooled variance (as in \code{plotMeanVar}) to visualize the mean-variance relationship in the data. The function will plot the average standardized residual for observations split into \code{nbins} bins by overall expression level. This provides a useful summary of how the variance of the counts change with respect to average expression level (abundance). A line showing the Poisson mean-variance relationship (mean equals variance) is always shown to illustrate how the genewise variances may differ from a Poisson mean-variance relationship. A log-log scale is used for the plot. The function \code{mglmLS} is used to fit the Poisson models to the data. This code is fast for fitting models, but does not compute the value for the leverage, technically required to compute the standardized residuals. Here, we approximate the standardized residuals by replacing the usual denominator of \code{ ( 1 - leverage )} by \code{ ( 1 - p/n ) }, where n is the number of observations per tag (i.e. number of libraries) and p is the number of parameters in the model (i.e. number of columns in the full-rank design matrix. } \author{Davis McCarthy} \examples{ y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4) design <- model.matrix(~c(0,0,1,1)+c(0,1,0,1)) binned <- dglmStdResid(y, design, dispersion=0.5) getDispersions(binned)$bin.dispersion.used # Look at the estimated dispersions for the bins } \seealso{ \code{\link{plotMeanVar}}, \code{\link{plotMDS.DGEList}}, \code{\link{plotSmear}} and \code{\link{maPlot}} provide more ways of visualizing DGE data. } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/spliceVariants.Rd0000644000265600020320000000737312227063710021024 0ustar tilleaadmin\name{spliceVariants} \alias{spliceVariants} \title{Identify Genes with Splice Variants} \description{Identify genes exhibiting evidence for splice variants (alternative exon usage/transcript isoforms) from exon-level count data using negative binomial generalized linear models.} \usage{ spliceVariants(y, geneID, dispersion=NULL, group=NULL, estimate.genewise.disp=TRUE, trace=FALSE) } \arguments{ \item{y}{either a matrix of exon-level counts or a \code{DGEList} object with (at least) elements \code{counts} (table of counts summarized at the exon level) and \code{samples} (data frame containing information about experimental group, library size and normalization factor for the library size). Each row of \code{y} should represent one exon.} \item{geneID}{vector of length equal to the number of rows of \code{y}, which provides the gene identifier for each exon in \code{y}. These identifiers are used to group the relevant exons into genes for the gene-level analysis of splice variation.} \item{dispersion}{scalar (in future a vector will also be allowed) supplying the negative binomial dispersion parameter to be used in the negative binomial generalized linear model.} \item{group}{factor supplying the experimental group/condition to which each sample (column of \code{y}) belongs. If \code{NULL} (default) the function will try to extract if from \code{y}, which only works if \code{y} is a \code{DGEList} object.} \item{estimate.genewise.disp}{logical, should genewise dispersions (as opposed to a common dispersion value) be computed if the \code{dispersion} argument is \code{NULL}?} \item{trace}{logical, whether or not verbose comments should be printed as function is run. Default is \code{FALSE}.} } \value{\code{spliceVariants} returns a \code{DGEExact} object, which contains a table of results for the test of differential splicing between experimental groups (alternative exon usage), a data frame containing the gene identifiers for which results were obtained and the dispersion estimate(s) used in the statistical models and testing.} \details{ This function can be used to identify genes showing evidence of splice variation (i.e. alternative splicing, alternative exon usage, transcript isoforms). A negative binomial generalized linear model is used to assess evidence, for each gene, given the counts for the exons for each gene, by fitting a model with an interaction between exon and experimental group and comparing this model (using a likelihood ratio test) to a null model which does not contain the interaction. Genes that show significant evidence for an interaction between exon and experimental group by definition show evidence for splice variation, as this indicates that the observed differences between the exon counts between the different experimental groups cannot be explained by consistent differential expression of the gene across all exons. The function \code{topTags} can be used to display the results of \code{spliceVariants} with genes ranked by evidence for splice variation. } \author{Davis McCarthy, Gordon Smyth} \examples{ # generate exon counts from NB, create list object y<-matrix(rnbinom(40,size=1,mu=10),nrow=10) d<-DGEList(counts=y,group=rep(1:2,each=2)) genes <- rep(c("gene.1","gene.2"), each=5) disp <- 0.2 spliceVariants(d, genes, disp) } \seealso{ \code{\link{estimateExonGenewiseDisp}} for more information about estimating genewise dispersion values from exon-level counts. \code{\link{DGEList}} for more information about the \code{DGEList} class. \code{\link{topTags}} for more information on displaying ranked results from \code{spliceVariants}. \code{\link{estimateCommonDisp}} and related functions for estimating the dispersion parameter for the negative binomial model. } \keyword{htest} r-bioc-edger-3.4.2+dfsg.orig/man/splitIntoGroups.Rd0000644000265600020320000000337012227063710021213 0ustar tilleaadmin\name{splitIntoGroups} \alias{splitIntoGroups} \alias{splitIntoGroupsPseudo} \title{Split the Counts or Pseudocounts from a DGEList Object According To Group} \description{Split the counts from a DGEList object according to group, creating a list where each element consists of a numeric matrix of counts for a particular experimental group. Given a pair of groups, split pseudocounts for these groups, creating a list where each element is a matrix of pseudocounts for a particular gourp.} \usage{ splitIntoGroups(object) splitIntoGroupsPseudo(pseudo, group, pair) } \arguments{ \item{object}{\code{DGEList}, object containing (at least) the elements \code{counts} (table of raw counts), \code{group} (factor indicating group) and \code{lib.size} (numeric vector of library sizes)} \item{pseudo}{numeric matrix of quantile-adjusted pseudocounts to be split} \item{group}{factor indicating group to which libraries/samples (i.e. columns of \code{pseudo} belong; must be same length as ncol(pseudo)} \item{pair}{vector of length two stating pair of groups to be split for the pseudocounts} } \value{\code{splitIntoGroups} outputs a list in which each element is a matrix of count counts for an individual group. \code{splitIntoGroupsPseudo} outputs a list with two elements, in which each element is a numeric matrix of (pseudo-)count data for one of the groups specified.} \author{Davis McCarthy} \examples{ # generate raw counts from NB, create list object y<-matrix(rnbinom(80,size=1,mu=10),nrow=20) d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2)) rownames(d$counts)<-paste("tagno",1:nrow(d$counts),sep=".") z1<-splitIntoGroups(d) z2<-splitIntoGroupsPseudo(d$counts,d$group,pair=c(1,2)) } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/estimateGLMCommonDisp.Rd0000644000265600020320000000613712227063710022176 0ustar tilleaadmin\name{estimateGLMCommonDisp} \alias{estimateGLMCommonDisp} \alias{estimateGLMCommonDisp.DGEList} \alias{estimateGLMCommonDisp.default} \title{Estimate Common Dispersion for Negative Binomial GLMs} \description{ Estimates a common negative binomial dispersion parameter for a DGE dataset with a general experimental design. } \usage{ \S3method{estimateGLMCommonDisp}{DGEList}(y, design=NULL, offset=NULL, method="CoxReid", subset=10000, AveLogCPM=NULL, verbose=FALSE, ...) \S3method{estimateGLMCommonDisp}{default}(y, design=NULL, offset=NULL, method="CoxReid", subset=10000, AveLogCPM=NULL, verbose=FALSE, ...) } \arguments{ \item{y}{object containing read counts, as for \code{\link{glmFit}}.} \item{design}{numeric design matrix, as for \code{\link{glmFit}}.} \item{offset}{numeric vector or matrix of offsets for the log-linear models, as for \code{\link{glmFit}}.} \item{method}{method for estimating the dispersion. Possible values are \code{"CoxReid"}, \code{"Pearson"} or \code{"deviance"}.} \item{subset}{maximum number of rows of \code{y} to use in the calculation. Rows used are chosen evenly spaced by AveLogCPM using \code{\link{systematicSubset}}.} \item{AveLogCPM}{numeric vector giving average log2 counts per million for each gene} \item{verbose}{logical, if \code{TRUE} estimated dispersion and BCV will be printed to standard output.} \item{\ldots}{other arguments are passed to lower-level functions. See \code{\link{dispCoxReid}}, \code{\link{dispPearson}} and \code{\link{dispDeviance}} for details.} } \value{ The default method returns a numeric vector of length 1 containing the estimated dispersion. The \code{DGEList} method returns the same \code{DGEList} \code{y} as input but with \code{common.dispersion} as an added component. } \details{ This function calls \code{dispCoxReid}, \code{dispPearson} or \code{dispDeviance} depending on the \code{method} specified. See \code{\link{dispCoxReid}} for details of the three methods and a discussion of their relative performance. } \references{ McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Gordon Smyth, Davis McCarthy, Yunshun Chen} \examples{ # True dispersion is 1/size=0.1 y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4) d <- DGEList(counts=y,group=c(1,1,2,2)) design <- model.matrix(~group, data=d$samples) d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE) # Compare with classic CML estimator: d2 <- estimateCommonDisp(d, verbose=TRUE) # See example(glmFit) for a different example } \seealso{ \code{\link{dispCoxReid}}, \code{\link{dispPearson}}, \code{\link{dispDeviance}} \code{\link{estimateGLMTrendedDisp}} for trended dispersion and \code{\link{estimateGLMTagwiseDisp}} for tagwise dispersions in the context of a generalized linear model. \code{\link{estimateCommonDisp}} for common dispersion or \code{\link{estimateTagwiseDisp}} for tagwise dispersion in the context of a multiple group experiment (one-way layout). } \keyword{models} r-bioc-edger-3.4.2+dfsg.orig/man/expandAsMatrix.Rd0000644000265600020320000000125112227063710020752 0ustar tilleaadmin\title{expandAsMatrix} \name{expandAsMatrix} \alias{expandAsMatrix} \description{ Expand scalar or vector to a matrix. } \usage{ expandAsMatrix(x, dim) } \arguments{ \item{x}{scalar, vector or matrix. If a vector, length must match one of the output dimensions.} \item{dim}{required dimension for the output matrix.} } \details{ This function expands a row or column vector to be a matrix. It is used internally in edgeR to convert offsets to a matrix. } \value{ Numeric matrix of dimension \code{dim}. } \author{Gordon Smyth} \examples{ expandAsMatrix(1:3,c(4,3)) expandAsMatrix(1:4,c(4,3)) } \seealso{ \code{\link{mglmLS}}. } \keyword{hplot} r-bioc-edger-3.4.2+dfsg.orig/man/maximizeQuadratic.Rd0000644000265600020320000000177212227063710021513 0ustar tilleaadmin\name{maximizeQuadratic} \alias{maximizeQuadratic} \title{Maximize a function given a table of values by quadratic interpolation.} \description{ Maximize a function given a table of values by quadratic interpolation. } \usage{ maximizeQuadratic(y, x=1:ncol(y)) } \arguments{ \item{y}{numeric matrix of response values.} \item{x}{numeric matrix of inputs of the function of same dimension as \code{y}. If a vector, must be a row vector of length equal to \code{ncol(y)}.} } \details{ For each row of \code{y}, finds the three \code{x} values bracketing the maximum of \code{y}, interpolates a quadatric polyonomial through these \code{y} for these three values and solves for the location of the maximum of the polynomial. } \value{ numeric vector of length equal to \code{nrow(y)} giving the x-value at which \code{y} is maximized. } \author{Yunshun Chen and Gordon Smyth} \examples{ y <- matrix(rnorm(5*9),5,9) maximizeQuadratic(y) } \seealso{ \code{\link{maximizeInterpolant}} } \keyword{interpolation} r-bioc-edger-3.4.2+dfsg.orig/man/dim.Rd0000644000265600020320000000301412227063710016572 0ustar tilleaadmin\name{dim} \alias{dim.DGEList} \alias{dim.DGEExact} \alias{dim.TopTags} \alias{dim.DGEGLM} \alias{dim.DGELRT} \alias{length.DGEList} \alias{length.DGEExact} \alias{length.TopTags} \alias{length.DGEGLM} \alias{length.DGELRT} \title{Retrieve the Dimensions of a DGEList, DGEExact, DGEGLM, DGELRT or TopTags Object} \description{ Retrieve the number of rows (transcripts) and columns (libraries) for an DGEList, DGEExact or TopTags Object. } \usage{ \method{dim}{DGEList}(x) \method{length}{DGEList}(x) } \arguments{ \item{x}{an object of class \code{DGEList}, \code{DGEExact}, \code{TopTags}, \code{DGEGLM} or \code{DGELRT}} } \details{ Digital gene expression data objects share many analogies with ordinary matrices in which the rows correspond to transcripts or genes and the columns to arrays. These methods allow one to extract the size of microarray data objects in the same way that one would do for ordinary matrices. A consequence is that row and column commands \code{nrow(x)}, \code{ncol(x)} and so on also work. } \value{ Numeric vector of length 2. The first element is the number of rows (genes) and the second is the number of columns (arrays). } \author{Gordon Smyth, Davis McCarthy} \seealso{ \code{\link[base]{dim}} in the base package. \link{02.Classes} gives an overview of data classes used in LIMMA. } \examples{ M <- A <- matrix(11:14,4,2) rownames(M) <- rownames(A) <- c("a","b","c","d") colnames(M) <- colnames(A) <- c("A1","A2") MA <- new("MAList",list(M=M,A=A)) dim(M) ncol(M) nrow(M) length(M) } \keyword{array} r-bioc-edger-3.4.2+dfsg.orig/man/DGEList-class.Rd0000644000265600020320000000476312227063710020373 0ustar tilleaadmin\name{DGEList-class} \alias{DGEList-class} \docType{class} \title{Digital Gene Expression data - class} \description{ A list-based S4 class for storing read counts and associated information from digital gene expression or sequencing technologies. } \section{List Components}{ For objects of this class, rows correspond to genomic features and columns to samples. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc. Objects of this class contain the following essential list components: \tabular{ll}{ \code{counts } \tab numeric matrix of read counts, one row for each gene and one column for each sample.\cr \code{samples } \tab data.frame with a row for each sample and columns \code{group}, \code{lib.size} and \code{norm.factors} containing the group labels, library sizes and normalization factors. Other columns can be optionally added to give more detailed sample information. } Optional components include: \tabular{ll}{ \code{genes } \tab data.frame giving annotation information for each gene. Same number of rows as \code{counts}.\cr \code{AveLogCPM } \tab numeric vector giving average log2 counts per million for each gene.\cr \code{common.dispersion } \tab numeric scalar giving the overall dispersion estimate.\cr \code{trended.dispersion } \tab numeric vector giving trended dispersion estimates for each gene.\cr \code{tagwise.dispersion } \tab numeric vector giving tagwise dispersion estimates for each gene.\cr \code{offset } \tab numeric matrix of same size as \code{counts} giving offsets for use in log-linear models. } } \seealso{ \code{\link{DGEList}} constructs DGEList objects. Other classes defined in edgeR are \code{\link{DGEExact-class}}, \code{\link{DGEGLM-class}}, \code{\link{DGELRT-class}}, \code{\link{TopTags-class}} } \section{Methods}{ This class inherits directly from class \code{list}, so \code{DGEList} objects can be manipulated as if they were ordinary lists. However they can also be treated as if they were matrices for the purposes of subsetting. The dimensions, row names and column names of a \code{DGEList} object are defined by those of \code{counts}, see \code{\link{dim.DGEList}} or \code{\link{dimnames.DGEList}}. \code{DGEList} objects can be subsetted, see \code{\link[edgeR:subsetting]{subsetting}}. \code{DGEList} objects also have a \code{show} method so that printing produces a compact summary of their contents. } \author{edgeR team. First created by Mark Robinson.} \keyword{classes} r-bioc-edger-3.4.2+dfsg.orig/man/asdataframe.Rd0000644000265600020320000000165712227063710020304 0ustar tilleaadmin\name{as.data.frame} \alias{as.data.frame.TopTags} \title{Turn a TopTags Object into a Dataframe} \description{ Turn a \code{TopTags} object into a \code{data.frame}. } \usage{ \method{as.data.frame}{TopTags}(x, row.names = NULL, optional = FALSE, ...) } \arguments{ \item{x}{an object of class \code{TopTags}} \item{row.names}{\code{NULL} or a character vector giving the row names for the data frame. Missing values are not allowed.} \item{optional}{logical. If \code{TRUE}, setting row names and converting column names (to syntactic names) is optional.} \item{\dots}{additional arguments to be passed to or from methods.} } \details{ This method combines all the components of \code{x} which have a row for each tag (transcript) into a \code{data.frame}. } \value{ A data.frame. } \author{Gordon Smyth} \seealso{ \code{\link[base]{as.data.frame}} in the base package. } \keyword{array} r-bioc-edger-3.4.2+dfsg.orig/man/dispCoxReidInterpolateTagwise.Rd0000644000265600020320000000763312227063710024004 0ustar tilleaadmin\name{dispCoxReidInterpolateTagwise} \alias{dispCoxReidInterpolateTagwise} \title{Estimate Tagwise Dispersion for Negative Binomial GLMs by Cox-Reid Adjusted Profile Likelihood} \description{ Estimate tagwise dispersion parameters across multiple negative binomial generalized linear models using weighted Cox-Reid Adjusted Profile-likelihood and cubic spline interpolation over a tagwise grid. } \usage{ dispCoxReidInterpolateTagwise(y, design, offset=NULL, dispersion, trend=TRUE, AveLogCPM=NULL, min.row.sum=5, prior.df=10, span=0.3, grid.npts=11, grid.range=c(-6,6)) } \arguments{ \item{y}{numeric matrix of counts} \item{design}{numeric matrix giving the design matrix for the GLM that is to be fit.} \item{offset}{numeric scalar, vector or matrix giving the offset (in addition to the log of the effective library size) that is to be included in the NB GLM for the transcripts. If a scalar, then this value will be used as an offset for all transcripts and libraries. If a vector, it should be have length equal to the number of libraries, and the same vector of offsets will be used for each transcript. If a matrix, then each library for each transcript can have a unique offset, if desired. In \code{adjustedProfileLik} the \code{offset} must be a matrix with the same dimension as the table of counts.} \item{dispersion}{numeric scalar or vector giving the dispersion(s) towards which the tagwise dispersion parameters are shrunk.} \item{trend}{logical, whether abundance-dispersion trend is used for smoothing.} \item{AveLogCPM}{numeric vector giving average log2 counts per million for each tag.} \item{min.row.sum}{numeric scalar giving a value for the filtering out of low abundance tags. Only tags with total sum of counts above this value are used. Low abundance tags can adversely affect the estimation of the common dispersion, so this argument allows the user to select an appropriate filter threshold for the tag abundance.} \item{prior.df}{numeric scalar, prior degsmoothing parameter that indicates the weight to give to the common likelihood compared to the individual tag's likelihood; default \code{getPriorN(object)} gives a value for \code{prior.n} that is equivalent to giving the common likelihood 20 prior degrees of freedom in the estimation of the tag/genewise dispersion.} \item{span}{numeric parameter between 0 and 1 specifying proportion of data to be used in the local regression moving window. Larger numbers give smoother fits.} \item{grid.npts}{numeric scalar, the number of points at which to place knots for the spline-based estimation of the tagwise dispersion estimates.} \item{grid.range}{numeric vector of length 2, giving relative range, in terms of \code{log2(dispersion)}, on either side of trendline for each tag for spline grid points.} } \value{\code{dispCoxReidInterpolateTagwise} produces a vector of tagwise dispersions having the same length as the number of genes in the count data. } \details{ In the \code{edgeR} context, \code{dispCoxReidInterpolateTagwise} is a low-level function called by \code{estimateGLMTagwiseDisp}. \code{dispCoxReidInterpolateTagwise} calls the function \code{maximizeInterpolant} to fit cubic spline interpolation over a tagwise grid. } \references{ Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference. \emph{Journal of the Royal Statistical Society Series B} 49, 1-39. McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Yunshun Chen, Gordon Smyth} \examples{ y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4) design <- matrix(1, 4, 1) dispersion <- 0.5 d <- dispCoxReidInterpolateTagwise(y, design, dispersion=dispersion) d } \seealso{ \code{\link{estimateGLMTagwiseDisp}}, \code{\link{maximizeInterpolant}} } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/mglm.Rd0000644000265600020320000001654612227063710016773 0ustar tilleaadmin\name{mglm} \alias{mglm} \alias{mglmSimple} \alias{mglmLS} \alias{mglmOneGroup} \alias{mglmOneWay} \alias{mglmLevenberg} \alias{deviances.function} \alias{designAsFactor} \title{Fit Negative Binomial Generalized Linear Model to Multiple Response Vectors} \description{ Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of a matrix of counts. } \usage{ mglmLS(y, design, dispersion=0, offset=0, coef.start=NULL, tol=1e-5, maxit=50, trace=FALSE) mglmOneGroup(y, dispersion=0, offset=0, maxit=50, tol=1e-10) mglmOneWay(y, design=NULL, dispersion=0, offset=0, maxit=50) mglmSimple(y, design, dispersion=0, offset=0, weights=NULL) mglmLevenberg(y, design, dispersion=0, offset=0, coef.start=NULL, start.method="null", tol=1e-06, maxit=200) deviances.function(dispersion) designAsFactor(design) } \arguments{ \item{y}{numeric matrix containing the negative binomial counts. Rows for tags and columns for libraries.} \item{design}{numeric matrix giving the design matrix of the GLM. Assumed to be full column rank.} \item{dispersion}{numeric scalar or vector giving the dispersion parameter for each GLM. Can be a scalar giving one value for all tags, or a vector of length equal to the number of tags giving tag-wise dispersions.} \item{offset}{numeric vector or matrix giving the offset that is to be included in the log-linear model predictor. Can be a scalar, a vector of length equal to the number of libraries, or a matrix of the same size as \code{y}.} \item{weights}{numeric vector or matrix of non-negative quantitative weights. Can be a vector of length equal to the number of libraries, or a matrix of the same size as \code{y}.} \item{coef.start}{numeric matrix of starting values for the linear model coefficients. Number of rows should agree with \code{y} and number of columns should agree with \code{design}.} \item{start.method}{method used to generate starting values when \code{coef.stat=NULL}. Possible values are \code{"null"} to start from the null model of equal expression levels or \code{"y"} to use the data as starting value for the mean.} \item{tol}{numeric scalar giving the convergence tolerance. For \code{mglmOneGroup}, convergence is judged successful when the step size falls below \code{tol} in absolute size.} \item{maxit}{scalar giving the maximum number of iterations for the Fisher scoring algorithm.} \item{trace}{logical, whether or not to information should be output at each iteration.} } \details{ The functions \code{mglmLS}, \code{mglmOneGroup} and \code{mglmSimple} all fit negative binomial generalized linear models, with the same design matrix but possibly different dispersions, offsets and weights, to a series of response vectors. \code{mglmLS} and \code{mglmOneGroup} are vectorized in R for fast execution, while \code{mglmSimple} simply makes tagwise calls to \code{glm.fit} in the stats package. The functions are all low-level functions in that they operate on atomic objects such as matrices. They are used as work-horses by higher-level functions in the edgeR package, especially by \code{glmFit}. \code{mglmOneGroup} fit the null model, with intercept term only, to each response vector. In other words, it treats the libraries as belonging to one group. It implements Fisher scoring with a score-statistic stopping criterion for each tag. Excellent starting values are available for the null model, so this function seldom has any problems with convergence. It is used by other edgeR functions to compute the overall abundance for each tag. \code{mglmLS} fits an arbitrary log-linear model to each response vector. It implements a vectorized approximate scoring algorithm with a likelihood derivative stopping criterion for each tag. A simple line search strategy is used to ensure that the residual deviance is reduced at each iteration. This function is the work-horse of other edgeR functions such as \code{glmFit} and \code{glmLRT}. \code{mglmSimple} is not vectorized, and simply makes tag-wise calls to \code{glm.fit}. This has the advantage that it accesses all the usual information generated by \code{glm.fit}. Unfortunately, \code{glm.fit} does not always converge, and the tag-wise fitting is relatively slow. \code{mglmLevenberg} implements a Levenberg-Marquardt modification of the glm scoring algorithm to prevent divergence, and is implemented in C++. All these functions treat the dispersion parameter of the negative binomial distribution as a known input. \code{deviances.function} simply chooses the appropriate deviance function to use given a scalar or vector of dispersion parameters. If the dispersion values are zero, then the Poisson deviance function is returned; if the dispersion values are positive, then the negative binomial deviance function is returned. } \value{ \code{mglmOneGroup} produces a vector of length equal to the number of tags/genes (number of rows of \code{y}) providing the single coefficent from the GLM fit for each tag/gene. This can be interpreted as a measure of the 'average expression' level of the tag/gene. \code{mglmLS} produces a list with the following components: \item{coefficients}{matrix of estimated coefficients for the linear models} \item{fitted.values}{matrix of fitted values} \item{fail}{vector of indices of tags that fail the line search, in that the maximum number of step-halvings in exceeded} \item{not.converged}{vector of indices of tags that exceed the iteration limit before satisying the convergence criterion} \code{mglmSimple} produces a list with the following components: \item{coefficients}{matrix of estimated coefficients for the linear models} \item{df.residual}{vector of residual degrees of freedom for the linear models} \item{deviance}{vector of deviances for the linear models} \item{design}{matrix giving the experimental design that was used for each of the linear models} \item{offset}{scalar, vector or matrix of offset values used for the linear models} \item{dispersion}{scalar or vector of the dispersion values used for the linear model fits} \item{weights}{matrix of final weights for the observations from the linear model fits} \item{fitted.values}{matrix of fitted values} \item{error}{logical vector, did the fit fail?} \item{converged}{local vector, did the fit converge?} \code{deviances.function} returns a function to calculate the deviance as appropriate for the given values of the dispersion. \code{designAsFactor} returns a factor of length equal to \code{nrow(design)}. } \references{ McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Yunshun Chen, Davis McCarthy, Aaron Lun, Gordon Smyth. C++ code by Aaron Lun.} \examples{ y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4) lib.size <- colSums(y) dispersion <- 0.1 abundance <- mglmOneGroup(y, dispersion=dispersion, offset=log(lib.size)) AveLogCPM <- log1p(exp(1e6*abundance))/log(2) summary(AveLogCPM) ## Same as above: AveLogCPM <- aveLogCPM(y, dispersion, offset=log(lib.size)) ## Fit the NB GLM to the counts with a given design matrix f1 <- factor(c(1,1,2,2)) f2 <- factor(c(1,2,1,2)) x <- model.matrix(~f1+f2) fit <- mglmLS(y, x, dispersion=dispersion, offset=log(lib.size)) head(fit$coefficients) } \seealso{ \code{\link{glmFit}}, for more object-orientated GLM modelling for DGE data. } r-bioc-edger-3.4.2+dfsg.orig/man/condLogLikDerSize.Rd0000755000265600020320000000307012227063710021341 0ustar tilleaadmin\name{condLogLikDerSize} \alias{condLogLikDerSize} \alias{condLogLikDerDelta} \title{Conditional Log-Likelihood of the Dispersion for a Single Group of Replicate Libraries} \description{Derivatives of the negative-binomial log-likelihood with respect to the dispersion parameter for each tag/transcript, conditional on the mean count, for a single group of replicate libraries of the same size.} \usage{ condLogLikDerSize(y, r, der=1L) condLogLikDerDelta(y, delta, der=1L) } \arguments{ \item{y}{matrix of counts, all counts in each row having the same population mean} \item{r}{numeric vector or scalar, size parameter of negative binomial distribution, equal to 1/dispersion} \item{delta}{numeric vector or scalar, delta parameter of negative binomial, equal to dispersion/(1+dispersion)} \item{der}{integer specifying derivative required, either 0 (the function), 1 (first derivative) or 2 (second derivative)} } \value{vector of function/derivative evaluations, one for each transcript,with respect to } \details{The library sizes must be equalized before running this function. This function carries out the actual mathematical computations for the conditional log-likelihood and its derivatives, calculating the conditional log-likelihood for each tag/transcript. Derivatives are with respect to either the size or the delta parametrization of the dispersion. } \author{Mark Robinson, Davis McCarthy, Gordon Smyth} \examples{ y <- matrix(rnbinom(10,size=1,mu=10),nrow=5) condLogLikDerSize(y,r=1,der=1) condLogLikDerDelta(y,delta=0.5,der=1) } r-bioc-edger-3.4.2+dfsg.orig/man/equalizeLibSizes.Rd0000644000265600020320000000367612227063710021323 0ustar tilleaadmin\name{equalizeLibSizes} \alias{equalizeLibSizes} \title{Equalize Library Sizes by Quantile-to-Quantile Normalization} \description{Adjusts counts so that the effective library sizes are equal, preserving fold-changes between groups and preserving biological variability within each group.} \usage{ equalizeLibSizes(object, dispersion=0, common.lib.size) } \arguments{ \item{object}{\code{\link[edgeR:DGEList-class]{DGEList}} object} \item{dispersion}{numeric scalar or vector of \code{dispersion} parameters; if a scalar, then a common dispersion parameter is used for all tags} \item{common.lib.size}{numeric scalar, the library size to normalize to; default is the geometric mean of the original effective library sizes} } \value{A list with components \item{pseudo.counts}{numeric matrix of normalized pseudo-counts} \item{common.lib.size}{normalized library size} } \details{ Thus function implements the quantile-quantile normalization method of Robinson and Smyth (2008). It computes normalized counts, or pseudo-counts, used by \code{exactTest} and \code{estimateCommonDisp}. Note that the output common library size is a theoretical quantity. The column sums of the normalized counts, while to be exactly equal, nor are they intended to be. However, the expected counts for each tag are equal under the null hypothesis of no differential expression. } \author{Mark Robinson, Davis McCarthy, Gordon Smyth} \references{ Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. \emph{Biostatistics}, 9, 321-332. } \seealso{ \code{\link{q2qnbinom}} } \examples{ ngenes <- 1000 nlibs <- 2 counts <- matrix(0,ngenes,nlibs) colnames(counts) <- c("Sample1","Sample2") counts[,1] <- rpois(ngenes,lambda=10) counts[,2] <- rpois(ngenes,lambda=20) summary(counts) y <- DGEList(counts=counts) out <- equalizeLibSizes(y) summary(out$pseudo.counts) } r-bioc-edger-3.4.2+dfsg.orig/man/estimateCommonDisp.Rd0000644000265600020320000000507312227063710021634 0ustar tilleaadmin\name{estimateCommonDisp} \alias{estimateCommonDisp} \title{Estimate Common Negative Binomial Dispersion by Conditional Maximum Likelihood} \description{ Maximizes the negative binomial conditional common likelihood to give the estimate of the common dispersion across all tags. } \usage{ estimateCommonDisp(object, tol=1e-06, rowsum.filter=5, verbose=FALSE) } \arguments{ \item{object}{\code{DGEList} object} \item{tol}{the desired accuracy, passed to \code{\link{optimize}}} \item{rowsum.filter}{numeric scalar giving a value for the filtering out of low abundance tags in the estimation of the common dispersion. Only tags with total sum of counts above this value are used in the estimation of the common dispersion.} \item{verbose}{logical, if \code{TRUE} estimated dispersion and BCV will be printed to standard output.} } \value{Returns \code{object} with the following added components: \item{common.dispersion}{estimate of the common dispersion.} \item{pseudo.counts}{numeric matrix of quantile-quantile normalized counts. These are counts adjusted so that the library sizes are equal, while preserving differences between groups and variability within each group.} \item{pseudo.lib.size}{the common library size to which the counts have been adjusted} } \details{ Implements the method of Robinson and Smyth (2008) for estimating a common dispersion parameter by conditional maximum likelihood. The method of conditional maximum likelihood assumes that library sizes are equal, which is not true in general, so pseudocounts (counts adjusted so that the library sizes are equal) need to be calculated. The function \code{equalizeLibSizes} is called to adjust the counts using a quantile-to-quantile method, but this requires a fixed value for the common dispersion parameter. To obtain a good estimate for the common dispersion, pseudocounts are calculated under the Poisson model (dispersion is zero) and these pseudocounts are used to give an estimate of the common dispersion. This estimate of the common dispersion is then used to recalculate the pseudocounts, which are used to provide a final estimate of the common dispersion. } \references{ Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. \emph{Biostatistics}, 9, 321-332 } \author{Mark Robinson, Davis McCarthy, Gordon Smyth} \examples{ # True dispersion is 1/5=0.2 y <- matrix(rnbinom(1000,mu=10,size=5),ncol=4) d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003)) d <- estimateCommonDisp(d, verbose=TRUE) } \seealso{ \code{\link{equalizeLibSizes}} } r-bioc-edger-3.4.2+dfsg.orig/man/loessByCol.Rd0000644000265600020320000000267012227063710020106 0ustar tilleaadmin\name{loessByCol} \alias{loessByCol} \alias{locfitByCol} \title{Locally Weighted Mean By Column} \description{Smooth columns of matrix by non-robust loess curves of degree 0.} \usage{ loessByCol(y, x=NULL, span=0.5) locfitByCol(y, x=NULL, weights=1, span=0.5, degree=0) } \arguments{ \item{y}{numeric matrix of response variables.} \item{x}{numeric covariate vector of length \code{nrow(y)}, defaults to equally spaced.} \item{span}{width of the smoothing window, in terms of proportion of the data set. Larger values produce smoother curves.} \item{weights}{relative weights of each observation, one for each covariate value.} \item{degree}{degree of local polynomial fit} } \value{A list containing a numeric matrix with smoothed columns and a vector of leverages for each covariate value. \code{locfitByCol} returns a numeric matrix. } \details{ Fits a loess curve with degree 0 to each column of the response matrix, using the same covariate vector for each column. The smoothed column values are tricube-weighted means of the original values. \code{locfitByCol} uses the \code{locfit.raw} function of the \code{locfit} package. } \author{Aaron Lun for \code{loessByCol}, replacing earlier R code by Davis McCarthy. Gordon Smyth for \code{locfitByCol}.} \seealso{ \code{\link{loess}} } \examples{ y <- matrix(rnorm(100*3), nrow=100, ncol=3) head(y) out <- loessByCol(y) head(out$fitted.values) } r-bioc-edger-3.4.2+dfsg.orig/man/plotSmear.Rd0000644000265600020320000000643412227063710020000 0ustar tilleaadmin\name{plotSmear} \alias{plotSmear} \title{ Plots log-Fold Change versus log-Concentration (or, M versus A) for Count Data } \description{ Both of these functions plot the log-fold change (i.e. the log of the ratio of expression levels for each tag between two experimential groups) against the log-concentration (i.e. the overall average expression level for each tag across the two groups). To represent counts that were low (e.g. zero in 1 library and non-zero in the other) in one of the two conditions, a 'smear' of points at low A value is presented in \code{plotSmear}. } \usage{ plotSmear(object, pair=NULL, de.tags=NULL, xlab="Average logCPM", ylab="logFC", pch=19, cex=0.2, smearWidth=0.5, panel.first=grid(), smooth.scatter=FALSE, lowess=FALSE, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{\code{DGEList}, \code{DGEExact} or \code{DGELRT} object containing data to produce an MA-plot.} \item{pair}{pair of experimental conditions to plot (if \code{NULL}, the first two conditions are used)} \item{de.tags}{rownames for tags identified as being differentially expressed; use \code{exactTest} to identify DE genes} \item{xlab}{x-label of plot} \item{ylab}{y-label of plot} \item{pch}{scalar or vector giving the character(s) to be used in the plot; default value of \code{19} gives a round point.} \item{cex}{character expansion factor, numerical value giving the amount by which plotting text and symbols should be magnified relative to the default; default \code{cex=0.2} to make the plotted points smaller} \item{smearWidth}{width of the smear} \item{panel.first}{an expression to be evaluated after the plot axes are set up but before any plotting takes place; the default \code{grid()} draws a background grid to aid interpretation of the plot} \item{smooth.scatter}{logical, whether to produce a 'smooth scatter' plot using the \code{KernSmooth::smoothScatter} function or just a regular scatter plot; default is \code{FALSE}, i.e. produce a regular scatter plot} \item{lowess}{logical, indicating whether or not to add a lowess curve to the MA-plot to give an indication of any trend in the log-fold change with log-concentration} \item{\dots}{further arguments passed on to \code{plot}} } \value{A plot to the current device} \details{ \code{plotSmear} is a more sophisticated and superior way to produce an 'MA plot'. \code{plotSmear} resolves the problem of plotting tags that have a total count of zero for one of the groups by adding the 'smear' of points at low A value. The points to be smeared are identified as being equal to the minimum estimated concentration in one of the two groups. The smear is created by using random uniform numbers of width \code{smearWidth} to the left of the minimum A. \code{plotSmear} also allows easy highlighting of differentially expressed (DE) tags. } \author{Mark Robinson, Davis McCarthy} \seealso{ \code{\link{maPlot}} } \examples{ y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4) d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y)) rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".") d <- estimateCommonDisp(d) plotSmear(d) # find differential expression de <- exactTest(d) # highlighting the top 500 most DE tags de.tags <- rownames(topTags(de, n=500)$table) plotSmear(d, de.tags=de.tags) } r-bioc-edger-3.4.2+dfsg.orig/man/estimateTrendedDisp.Rd0000644000265600020320000000431712227063710021771 0ustar tilleaadmin\name{estimateTrendedDisp} \alias{estimateTrendedDisp} \title{Estimate Empirical Bayes Trended Dispersion Values} \description{ Estimates trended dispersion values by an empirical Bayes method. } \usage{ estimateTrendedDisp(object, method="bin.spline", df=5, span=2/3) } \arguments{ \item{object}{object of class \code{DGEList} containing (at least) the elements \code{counts} (table of raw counts), \code{group} (factor indicating group), \code{lib.size} (numeric vector of library sizes) and \code{pseudo.alt} (numeric matrix of quantile-adjusted pseudocounts calculated under the alternative hypothesis of a true difference between groups; recommended to use the \code{DGEList} object provided as the output of \code{estimateCommonDisp}} \item{method}{method used to estimated the trended dispersions. Possible values are \code{"spline"}, and \code{"loess"}.} \item{df}{integer giving the degrees of freedom of the spline function if \code{"spline"} method is used, see \code{ns} in the splines package. Default is 5.} \item{span}{scalar, passed to \code{loess} to determine the amount of smoothing for the loess fit when \code{"loess"} method is used. Default is \code{2/3}.} } \details{ This function takes the binned common dispersion and abundance, and fits a smooth curve through these binned values using either natural cubic splines or loess. From this smooth curve it predicts the dispersion value for each gene based on the gene's overall abundance. This results in estimates for the NB dispersion parameter which have a dependence on the overall expression level of the gene, and thus have an abundance-dependent trend. } \value{ An object of class \code{DGEList} with the same components as for \code{\link{estimateCommonDisp}} plus the trended dispersion estimates for each gene or tag. } \author{Yunshun Chen and Gordon Smyth} \examples{ y <- matrix(rnbinom(6000, mu=100, size=10), 1000, 6) group <- c(0,0,0,1,1,1) d <- DGEList(y, group=group) d <- estimateCommonDisp(d) d <- estimateTrendedDisp(d) } \seealso{ \code{\link{estimateCommonDisp}} estimates a common value for the dispersion parameter for all tags/genes - should generally be run before \code{estimateTrendedDisp}. } r-bioc-edger-3.4.2+dfsg.orig/man/getCounts.Rd0000644000265600020320000000271312227063710020001 0ustar tilleaadmin\name{getCounts} \alias{getCounts} \alias{getOffset} \alias{getDispersion} \title{Extract Specified Component of a DGEList Object} \usage{ getCounts(y) getOffset(y) getDispersion(y) } \arguments{ \item{y}{\code{DGEList} object containing (at least) the elements \code{counts} (table of raw counts), \code{group} (factor indicating group) and \code{lib.size} (numeric vector of library sizes)} } \description{ \code{getCounts(y)} returns the matrix of read counts \code{y$counts}. \code{getOffset(y)} returns offsets for the log-linear predictor account for sequencing depth and possibly other normalization factors. Specifically it returns the matrix \code{y$offset} if it is non-null, otherwise it returns the log product of \code{lib.size} and \code{norm.factors} from \code{y$samples}. \code{getDispersion(y)} returns the most complex dispersion estimates (common, trended or tagwise) found in \code{y}. } \value{\code{getCounts} returns the matrix of counts. \code{getOffset} returns a numeric matrix or vector. \code{getDispersion} returns vector of dispersion values. } \author{Mark Robinson, Davis McCarthy, Gordon Smyth} \examples{ # generate raw counts from NB, create list object y <- matrix(rnbinom(20,size=5,mu=10),5,4) d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=1001:1004) getCounts(d) getOffset(d) d <- estimateCommonDisp(d) getDispersion(d) } \seealso{\code{\link[edgeR:DGEList-class]{DGEList-class}}} r-bioc-edger-3.4.2+dfsg.orig/man/estimateExonGenewisedisp.Rd0000644000265600020320000000411312227063710023036 0ustar tilleaadmin\name{estimateExonGenewiseDisp} \alias{estimateExonGenewiseDisp} \title{Estimate Genewise Dispersions from Exon-Level Count Data} \description{Estimate a dispersion value for each gene from exon-level count data by collapsing exons into the genes to which they belong.} \usage{ estimateExonGenewiseDisp(y, geneID, group=NULL) } \arguments{ \item{y}{either a matrix of exon-level counts or a \code{DGEList} object with (at least) elements \code{counts} (table of counts summarized at the exon level) and \code{samples} (data frame containing information about experimental group, library size and normalization factor for the library size). Each row of \code{y} should represent one exon.} \item{geneID}{vector of length equal to the number of rows of \code{y}, which provides the gene identifier for each exon in \code{y}. These identifiers are used to group the relevant exons into genes for the gene-level analysis of splice variation.} \item{group}{factor supplying the experimental group/condition to which each sample (column of \code{y}) belongs. If \code{NULL} (default) the function will try to extract if from \code{y}, which only works if \code{y} is a \code{DGEList} object.} } \value{\code{estimateExonGenewiseDisp} returns a vector of genewise dispersion estimates, one for each unique \code{geneID}.} \details{ This function can be used to compute genewise dispersion estimates (for an experiment with a one-way, or multiple group, layout) from exon-level count data. \code{estimateCommonDisp} and \code{estimateTagwiseDisp} are used to do the computation and estimation, and the default arguments for those functions are used. } \author{Davis McCarthy, Gordon Smyth} \examples{ # generate exon counts from NB, create list object y<-matrix(rnbinom(40,size=1,mu=10),nrow=10) d<-DGEList(counts=y,group=rep(1:2,each=2)) genes <- rep(c("gene.1","gene.2"), each=5) estimateExonGenewiseDisp(d, genes) } \seealso{ \code{\link{estimateCommonDisp}} and related functions for estimating the dispersion parameter for the negative binomial model. } \keyword{models} r-bioc-edger-3.4.2+dfsg.orig/man/movingAverageByCol.Rd0000644000265600020320000000202612227063710021546 0ustar tilleaadmin\name{movingAverageByCol} \alias{movingAverageByCol} \alias{movingAverageByCol} \title{Moving Average Smoother of Matrix Columns} \description{ Apply a moving average smoother to the columns of a matrix. } \usage{ movingAverageByCol(x, width=5, full.length=TRUE) } \arguments{ \item{x}{numeric matrix} \item{width}{integer, width of window of rows to be averaged} \item{full.length}{logical value, should output have same number of rows as input?} } \details{ If \code{full.length=TRUE}, narrower windows are used at the start and end of each column to make a column of the same length as input. If \code{FALSE}, all values are averager of \code{width} input values, so the number of rows is less than input. } \value{ Numeric matrix containing smoothed values. If \code{full.length=TRUE}, of same dimension as \code{x}. If \code{full.length=FALSE}, has \code{width-1} fewer rows than \code{x}. } \examples{ x <- matrix(rpois(20,lambda=5),10,2) movingAverageByCol(x,3) } \author{Gordon Smyth} \keyword{smooth} r-bioc-edger-3.4.2+dfsg.orig/man/getPriorN.Rd0000644000265600020320000000516612227063710017744 0ustar tilleaadmin\name{getPriorN} \alias{getPriorN} \title{Get a Recommended Value for Prior N from DGEList Object} \description{Returns the \code{lib.size} component of the \code{samples} component of DGEList object multiplied by the \code{norm.factors} component} \usage{ getPriorN(y, design=NULL, prior.df=20) } \arguments{ \item{y}{a \code{DGEList} object with (at least) elements \code{counts} (table of unadjusted counts) and \code{samples} (data frame containing information about experimental group, library size and normalization factor for the library size)} \item{design}{numeric matrix (optional argument) giving the design matrix for the GLM that is to be fit. Must be of full column rank. If provided \code{design} is used to determine the number of parameters to be fit in the statistical model and therefore the residual degrees of freedom. If left as the default (\code{NULL}) then the \code{y$samples$group} element of the \code{DGEList} object is used to determine the residual degrees of freedom.} \item{prior.df}{numeric scalar giving the weight, in terms of prior degrees of freedom, to be given to the common parameter likelihood when estimating tagwise dispersion estimates.} } \value{\code{getPriorN} returns a numeric scalar } \details{ When estimating tagwise dispersion values using \code{\link{estimateTagwiseDisp}} or \code{\link{estimateGLMTagwiseDisp}} we need to decide how much weight to give to the common parameter likelihood in order to smooth (or stabilize) the dispersion estimates. The best choice of value for the \code{prior.n} parameter varies between datasets depending on the number of samples in the dataset and the complexity of the model to be fit. The value of \code{prior.n} should be inversely proportional to the residual degrees of freedom. We have found that choosing a value for \code{prior.n} that is equivalent to giving the common parameter likelihood 20 degrees of freedom generally gives a good amount of smoothing for the tagwise dispersion estimates. This function simply recommends an appropriate value for \code{prior.n}---to be used as an argument for \code{\link{estimateTagwiseDisp}} or \code{\link{estimateGLMTagwiseDisp}}---given the experimental design at hand and the chosen prior degrees of freedom. } \author{Davis McCarthy, Gordon Smyth} \examples{ # generate raw counts from NB, create list object y<-matrix(rnbinom(20,size=1,mu=10),nrow=5) d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2)) getPriorN(d) } \seealso{ \code{\link{DGEList}} for more information about the \code{DGEList} class. \code{\link{as.matrix.DGEList}}. } \keyword{file} r-bioc-edger-3.4.2+dfsg.orig/man/edgeR-package.Rd0000644000265600020320000000410112227063710020436 0ustar tilleaadmin\name{edgeR-package} \docType{package} \alias{edgeR} \alias{edgeR-package} \title{Empirical analysis of digital gene expression data in R} \description{ edgeR is a package for the analysis of digital gene expression data arising from RNA sequencing technologies such as SAGE, CAGE, Tag-seq or RNA-seq, with emphasis on testing for differential expression. Particular strengths of the package include the ability to estimate biological variation between replicate libraries, and to conduct exact tests of significance which are suitable for small counts. The package is able to make use of even minimal numbers of replicates. An extensive User's Guide is available, and can be opened by typing \code{edgeRUsersGuide()} at the R prompt. Detailed help pages are also provided for each individual function. The edgeR package implements original statistical methodology described in the publications below. } \author{ Mark Robinson , Davis McCarthy , Yunshun Chen , Aaron Lun , Gordon Smyth } \references{ Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag abundance. \emph{Bioinformatics} 23, 2881-2887 Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. \emph{Biostatistics}, 9, 321-332 Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. \emph{Bioinformatics} 26, 139-140 McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. Lund, SP, Nettleton, D, McCarthy, DJ, Smyth, GK (2012). Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. \emph{Statistical Applications in Genetics and Molecular Biology}. (Accepted 31 July 2012) } \keyword{package} r-bioc-edger-3.4.2+dfsg.orig/man/camera.DGEList.Rd0000644000265600020320000000743312227063710020514 0ustar tilleaadmin\name{camera.DGEList} \alias{camera.DGEList} \title{Competitive Gene Set Test for Digital Gene Expression Data Accounting for Inter-gene Correlation} \description{ Test whether a set of genes is highly ranked relative to other genes in terms of differential expression, accounting for inter-gene correlation. } \usage{ \method{camera}{DGEList}(y, index, design, contrast=ncol(design), weights=NULL, use.ranks=FALSE, allow.neg.cor=TRUE, trend.var=FALSE, sort=TRUE) } \arguments{ \item{y}{\code{DGEList} object.} \item{index}{an index vector or a list of index vectors. Can be any vector such that \code{y[indices,]} selects the rows corresponding to the test set.} \item{design}{design matrix.} \item{contrast}{contrast of the linear model coefficients for which the test is required. Can be an integer specifying a column of \code{design}, or else a numeric vector of same length as the number of columns of \code{design}.} \item{weights}{can be a numeric matrix of individual weights, of same size as \code{y}, or a numeric vector of array weights with length equal to \code{ncol(y)}.} \item{use.ranks}{do a rank-based test (\code{TRUE}) or a parametric test (\code{FALSE}?} \item{allow.neg.cor}{should reduced variance inflation factors be allowed for negative correlations?} \item{trend.var}{logical, should an empirical Bayes trend be estimated? See \code{\link{eBayes}} for details.} \item{sort}{logical, should the results be sorted by p-value?} } \details{ This function implements a method proposed by Wu and Smyth (2012) for the digital gene expression data, eg. RNA-Seq data. \code{camera} performs a \emph{competitive} test in the sense defined by Goeman and Buhlmann (2007). It tests whether the genes in the set are highly ranked in terms of differential expression relative to genes not in the set. It has similar aims to \code{geneSetTest} but accounts for inter-gene correlation. See \code{\link{roast.DGEList}} for an analogous \emph{self-contained} gene set test. The function can be used for any sequencing experiment which can be represented by a Negative Binomial generalized linear model. The design matrix for the experiment is specified as for the \code{\link{glmFit}} function, and the contrast of interest is specified as for the \code{\link{glmLRT}} function. This allows users to focus on differential expression for any coefficient or contrast in a model by giving the vector of test statistic values. \code{camera} estimates p-values after adjusting the variance of test statistics by an estimated variance inflation factor. The inflation factor depends on estimated genewise correlation and the number of genes in the gene set. } \value{ A data.frame. See \code{\link{camera}} for details. } \author{Yunshun Chen, Gordon Smyth} \references{ Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene correlation. \emph{Nucleic Acids Research} 40, e133. \url{http://nar.oxfordjournals.org/content/40/17/e133} Goeman, JJ, and Buhlmann, P (2007). Analyzing gene expression data in terms of gene sets: methodological issues. \emph{Bioinformatics} 23, 980-987. } \seealso{ \code{\link{roast.DGEList}}, \code{\link{camera}}. } \examples{ mu <- matrix(10, 100, 4) group <- factor(c(0,0,1,1)) design <- model.matrix(~group) # First set of 10 genes that are genuinely differentially expressed iset1 <- 1:10 mu[iset1,3:4] <- mu[iset1,3:4]+10 # Second set of 10 genes are not DE iset2 <- 11:20 # Generate counts and create a DGEList object y <- matrix(rnbinom(100*4, mu=mu, size=10),100,4) y <- DGEList(counts=y, group=group) # Estimate dispersions y <- estimateDisp(y, design) camera(y, iset1, design) camera(y, iset2, design) camera(y, list(set1=iset1,set2=iset2), design) } \keyword{htest} r-bioc-edger-3.4.2+dfsg.orig/man/predFC.Rd0000644000265600020320000000631512227063710017173 0ustar tilleaadmin\name{predFC} \alias{predFC} \alias{predFC.DGEList} \alias{predFC.default} \title{Predictive log-fold changes} \description{Computes estimated coefficients for a NB glm in such a way that the log-fold-changes are shrunk towards zero.} \usage{ \S3method{predFC}{DGEList}(y, design=NULL, prior.count=0.125, offset=NULL, dispersion=NULL) \S3method{predFC}{default}(y, design=NULL, prior.count=0.125, offset=NULL, dispersion=0) } \arguments{ \item{y}{a matrix of counts or a \code{DGEList} object} \item{design}{the design matrix for the experiment} \item{prior.count}{the average prior count to be added to each observation. Larger values produce more shrinkage.} \item{offset}{numeric vector or matrix giving the offset in the log-linear model predictor, as for \code{\link{glmFit}}. Usually equal to log library sizes.} \item{dispersion}{the negative binomial dispersion} } \details{ This function computes predictive log-fold changes (pfc) for a NB glm. The pfc are posterior Bayesian estimators of the true log-fold-changes. They are predictive of values that might be replicated in a future experiment. Specifically the function adds a small prior count to each observation before estimating the glm. The actual prior count that is added is proportion to the library size. This has the effect that any log-fold-change that was zero prior to augmentation remains zero and non-zero log-fold-changes are shrunk towards zero. The prior counts can be viewed as equivalent to a prior belief that the log-fold changes are small, and the output can be viewed as posterior log-fold-changes from this Bayesian viewpoint. The output coefficients are called \emph{predictive} log fold-changes because, depending on the prior, they may be a better prediction of the true log fold-changes than the raw estimates. Log-fold changes for transcripts with low counts are shrunk more than transcript with high counts. In particular, infinite log-fold-changes arising from zero counts are avoided. The exact degree to which this is done depends on the negative binomail dispersion. If \code{design=NULL}, then the function returns a matrix of the same size as \code{y} containing log2 counts-per-million, with zero values for the counts avoided. This equivalent to choosing \code{design} to be the identity matrix with the same number of columns as \code{y}. } \value{ Numeric matrix of linear model coefficients (if \code{design} is given) or logCPM (if \code{design=NULL}) on the log2 scale. } \author{Belinda Phipson and Gordon Smyth} \examples{ # generate counts for a two group experiment with n=2 in each group and 100 genes dispersion <- 0.1 y <- matrix(rnbinom(400,size=1/dispersion,mu=4),nrow=100) y <- DGEList(y,group=c(1,1,2,2)) design <- model.matrix(~group, data=y$samples) #estimate the predictive log fold changes predlfc<-predFC(y,design,dispersion=dispersion,prior.count=1) logfc <- predFC(y,design,dispersion=dispersion,prior.count=0) logfc.truncated <- pmax(pmin(logfc,100),-100) #plot predFC's vs logFC's plot(predlfc[,2],logfc.truncated[,2],xlab="Predictive log fold changes",ylab="Raw log fold changes") abline(a=0,b=1) } \seealso{ \code{\link{glmFit}}, \code{\link{exactTest}} } r-bioc-edger-3.4.2+dfsg.orig/man/cpm.Rd0000644000265600020320000000353312227063710016606 0ustar tilleaadmin\name{cpm} \alias{cpm} \alias{cpm.DGEList} \alias{cpm.default} \alias{rpkm} \title{Counts per Million or Reads per Kilobase per Million} \description{Computes counts per million (CPM) or reads per kilobase per million (RPKM) values.} \usage{ \method{cpm}{DGEList}(x, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25, ...) \method{cpm}{default}(x, lib.size=NULL, log=FALSE, prior.count=0.25, ...) rpkm(x, gene.length, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25) } \arguments{ \item{x}{matrix of counts or a \code{DGEList} object} \item{normalized.lib.sizes}{logical, use normalized library sizes?} \item{lib.size}{library size, defaults to \code{colSums(x)}.} \item{log}{logical, if \code{TRUE} then \code{log2} values are returned.} \item{prior.count}{average count to be added to each observation to avoid taking log of zero. Used only if \code{log=TRUE}.} \item{gene.length}{vector of length \code{nrow(x)} giving gene length in bases.} \item{\ldots}{other arguments are not currently used} } \value{numeric matrix of CPM or RPKM values.} \details{ CPM or RPKM values are useful descriptive measures for the expression level of a gene or transcript. By default, the normalized library sizes are used in the computation for \code{DGEList} objects but simple column sums for matrices. If log-values are computed, then a small count, given by \code{prior.count} but scaled to be proportional to the library size, is added to \code{x} to avoid taking the log of zero. } \note{ \code{aveLogCPM(x)}, \code{rowMeans(cpm(x,log=TRUE))} and \code{log2(rowMeans(cpm(x))} all give slightly different results. } \author{Davis McCarthy, Gordon Smyth} \examples{ y <- matrix(rnbinom(20,size=1,mu=10),5,4) cpm(y) d <- DGEList(counts=y, lib.size=1001:1004) cpm(d) cpm(d,log=TRUE) } \seealso{ \code{\link{aveLogCPM}} } r-bioc-edger-3.4.2+dfsg.orig/man/WLEB.Rd0000644000265600020320000000561712227063710016565 0ustar tilleaadmin\name{WLEB} \alias{WLEB} \title{Calculate Weighted Likelihood Empirical Bayes Estimates} \description{ Estimates the parameters which maximize the given log-likelihood matrix using empirical Bayes method. } \usage{ WLEB(theta, loglik, prior.n, covariate, trend.method="locfit", span=NULL, overall=TRUE, trend=TRUE, individual=TRUE, m0=NULL, m0.out=FALSE) } \arguments{ \item{theta}{numeric vector of values of the parameter at which the log-likelihoods are calculated.} \item{loglik}{numeric matrix of log-likelihood of all the candidates at those values of parameter.} \item{prior.n}{numeric scaler, estimate of the prior weight, i.e. the smoothing parameter that indicates the weight to put on the common likelihood compared to the individual's likelihood.} \item{covariate}{numeric vector of values across which a parameter trend is fitted} \item{trend.method}{method for estimating the parameter trend. Possible values are \code{"none"}, \code{"movingave"} and \code{"loess"}.} \item{span}{width of the smoothing window, as a proportion of the data set.} \item{overall}{logical, should a single value of the parameter which maximizes the sum of all the log-likelihoods be estimated?} \item{trend}{logical, should a parameter trend (against the covariate) which maximizes the local shared log-likelihoods be estimated?} \item{individual}{logical, should individual estimates of all the candidates after applying empirical Bayes method along the trend be estimated?} \item{m0}{numeric matrix of local shared log-likelihoods. If \code{Null}, they will be calculated using the method selected by \code{trend.method}.} \item{m0.out}{logical, should local shared log-likelihoods be included in the output?} } \details{ This function is a generic function that calculates an overall estimate, trend estimates and individual estimates for each candidate given the values of the log-likelihood of all the candidates at some specified parameter values. } \value{ A list with the following: \item{overall}{the parameter estimate that maximizes the sum of all the log-likelihoods.} \item{trend}{the estimated trended parameters against the covariate.} \item{individual}{the individual estimates of all the candidates after applying empirical Bayes method along the trend.} \item{shared.loglik}{the estimated numeric matrix of local shared log-likelihoods} } \author{Yunshun Chen, Gordon Smyth} \examples{ y <- matrix(rpois(100, lambda=10), ncol=4) theta <- 7:14 loglik <- matrix(0,nrow=nrow(y),ncol=length(theta)) for(i in 1:nrow(y)) for(j in 1:length(theta)) loglik[i,j] <- sum(dpois(y[i,], theta[j] ,log=TRUE)) covariate <- log(rowSums(y)) out <- WLEB(theta, loglik, prior.n=3, covariate) out } \seealso{ \code{\link{locfitByCol}}, \code{\link{movingAverageByCol}} and \code{\link{loessByCol}} implement the local fit, moving average or loess smoothers. } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/DGEGLM-class.Rd0000644000265600020320000000520212227063710020064 0ustar tilleaadmin\name{DGEGLM-class} \docType{class} \alias{DGEGLM-class} \alias{show,DGEGLM-method} \title{Digital Gene Expression Generalized Linear Model results - class} \description{ A list-based S4 class for storing results of a GLM fit to each gene in a DGE dataset. } \section{List Components}{ For objects of this class, rows correspond to genomic features and columns to coefficients in the linear model. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc. Objects of this class contain the following list components: \tabular{ll}{ \code{coefficients } \tab matrix containing the coefficients computed from fitting the model defined by the design matrix to each gene in the dataset.\cr \code{df.residual } \tab vector containing the residual degrees of freedom for the model fit to each gene in the dataset.\cr \code{deviance } \tab vector giving the deviance from the model fit to each gene.\cr \code{design } \tab design matrix for the full model from the likelihood ratio test.\cr \code{offset } \tab scalar, vector or matrix of offset values to be included in the GLMs for each gene.\cr \code{samples } \tab data frame containing information about the samples comprising the dataset.\cr \code{genes } \tab data frame containing information about the genes or tags for which we have DGE data (can be \code{NULL} if there is no information available).\cr \code{dispersion } \tab scalar or vector providing the value of the dispersion parameter used in the negative binomial GLM for each gene.\cr \code{lib.size } \tab vector providing the effective library size for each sample in the dataset.\cr \code{weights } \tab matrix of weights used in the GLM fitting for each gene.\cr \code{fitted.values } \tab the fitted (expected) values from the GLM for each gene.\cr \code{AveLogCPM } \tab numeric vector giving average log2 counts per million for each gene. } } \section{Methods}{ This class inherits directly from class \code{list} so any operation appropriate for lists will work on objects of this class. The dimensions, row names and column names of a \code{DGEGLM} object are defined by those of the dataset, see \code{\link{dim.DGEGLM}} or \code{\link{dimnames.DGEGLM}}. \code{DGEGLM} objects can be subsetted, see \code{\link{subsetting}}. \code{DGEGLM} objects also have a \code{show} method so that printing produces a compact summary of their contents. } \author{edgeR team. First created by Davis McCarthy.} \seealso{ Other classes defined in edgeR are \code{\link{DGEList-class}}, \code{\link{DGEExact-class}}, \code{\link{DGELRT-class}}, \code{\link{TopTags-class}} } \keyword{classes} r-bioc-edger-3.4.2+dfsg.orig/man/asmatrix.Rd0000644000265600020320000000131312227063710017651 0ustar tilleaadmin\name{as.matrix} \alias{as.matrix.DGEList} \title{Turn a DGEList Object into a Matrix} \description{ Turn a digital gene expression object into a numeric matrix by extracting the count values. } \usage{ \method{as.matrix}{DGEList}(x,\dots) } \arguments{ \item{x}{an object of class \code{DGEList}.} \item{\dots}{additional arguments, not used for these methods.} } \details{ This method extracts the matrix of counts. This involves loss of information, so the original data object is not recoverable. } \value{ A numeric matrix. } \author{Gordon Smyth} \seealso{ \code{\link{as.matrix}} in the base package or \code{\link[limma]{as.matrix.RGList}} in the limma package. } \keyword{array} r-bioc-edger-3.4.2+dfsg.orig/man/estimateGLMTrendedDisp.Rd0000644000265600020320000000636412227063710022335 0ustar tilleaadmin\name{estimateGLMTrendedDisp} \alias{estimateGLMTrendedDisp} \alias{estimateGLMTrendedDisp.DGEList} \alias{estimateGLMTrendedDisp.default} \title{Estimate Trended Dispersion for Negative Binomial GLMs} \description{ Estimates the abundance-dispersion trend by Cox-Reid approximate profile likelihood. } \usage{ \S3method{estimateGLMTrendedDisp}{DGEList}(y, design=NULL, offset=NULL, AveLogCPM=NULL, method="auto", ...) \S3method{estimateGLMTrendedDisp}{default}(y, design=NULL, offset=NULL, AveLogCPM=NULL, method="auto", ...) } \arguments{ \item{y}{a matrix of counts or a \code{DGEList} object.)} \item{design}{numeric design matrix, as for \code{\link{glmFit}}.} \item{method}{method (low-level function) used to estimated the trended dispersions. Possible values are \code{"auto"} (default, switch to \code{"bin.spline"} method if the number of tags is great than 200 and \code{"power"} method otherwise),\code{"bin.spline"}, \code{"bin.loess"} (which both result in a call to \code{dispBinTrend}), \code{"power"} (call to \code{dispCoxReidPowerTrend}), or \code{"spline"} (call to \code{dispCoxReidSplineTrend}).} \item{offset}{numeric scalar, vector or matrix giving the linear model offsets, as for \code{\link{glmFit}}.} \item{AveLogCPM}{numeric vector giving average log2 counts per million for each gene.} \item{\ldots}{other arguments are passed to lower-level functions \code{\link{dispBinTrend}}, \code{\link{dispCoxReidPowerTrend}} or \code{\link{dispCoxReidSplineTrend}}.} } \value{ When the input object is a \code{DGEList}, \code{estimateGLMTrendedDisp} produces a \code{DGEList} object, which contains the estimates of the trended dispersion parameter for the negative binomial model according to the method applied. When the input object is a numeric matrix, the output of one of the lower-level functions \code{dispBinTrend}, \code{dispCoxReidPowerTrend} of \code{dispCoxReidSplineTrend} is returned. } \details{ Estimates the dispersion parameter for each transcript (tag) with a trend that depends on the overall level of expression for the transcript for a DGE dataset for general experimental designs by using Cox-Reid approximate conditional inference for a negative binomial generalized linear model for each transcript (tag) with the unadjusted counts and design matrix provided. The function provides an object-orientated interface to lower-level functions. } \references{ Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference. \emph{Journal of the Royal Statistical Society Series B} 49, 1-39. McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Gordon Smyth, Davis McCarthy, Yunshun Chen} \examples{ ntags <- 250 nlibs <- 4 y <- matrix(rnbinom(ntags*nlibs,mu=10,size=10),ntags,nlibs) d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003)) design <- model.matrix(~group, data=d$samples) disp <- estimateGLMTrendedDisp(d, design, min.n=25, df=3) plotBCV(disp) } \seealso{ \code{\link{dispBinTrend}}, \code{\link{dispCoxReidPowerTrend}} and \code{\link{dispCoxReidSplineTrend}} for details on how the calculations are done. } r-bioc-edger-3.4.2+dfsg.orig/man/subsetting.Rd0000644000265600020320000000326712227063710020222 0ustar tilleaadmin\name{subsetting} \alias{subsetting} \alias{[.DGEList} \alias{[.DGEExact} \alias{[.DGELRT} \alias{[.DGEGLM} \title{Subset DGEList, DGEGLM, DGEExact and DGELRT Objects} \description{ Extract a subset of a \code{DGEList}, \code{DGEGLM}, \code{DGEExact} or \code{DGELRT} object. } \usage{ \method{[}{DGEList}(object, i, j, \ldots) \method{[}{DGEGLM}(object, i, j, \ldots) \method{[}{DGEExact}(object, i, j, \ldots) \method{[}{DGELRT}(object, i, j, \ldots) } \arguments{ \item{object}{object of class \code{DGEList}, \code{DGEGLM}, \code{DGEExact} or \code{DGELRT}, respectively} \item{i,j}{elements to extract. \code{i} subsets the tags or genes while \code{j} subsets the libraries. Note, columns of \code{DGEGLM}, \code{DGEExact} and \code{DGELRT} objects cannot be subsetted.} \item{\ldots}{not used} } \details{ \code{i,j} may take any values acceptable for the matrix components of \code{object} of class \code{DGEList}. See the \link{Extract} help entry for more details on subsetting matrices. For \code{DGEGLM}, \code{DGEExact} and \code{DGELRT} objects, only rows (i.e. \code{i}) may be subsetted. } \value{ An object of class \code{DGEList}, \code{DGEGLM}, \code{DGEExact} or \code{DGELRT} as appropriate, holding data from the specified subset of tags/genes and libraries. } \author{Davis McCarthy, Gordon Smyth} \seealso{ \code{\link{Extract}} in the base package. } \examples{ d <- matrix(rnbinom(16,size=1,mu=10),4,4) rownames(d) <- c("a","b","c","d") colnames(d) <- c("A1","A2","B1","B2") d <- DGEList(counts=d,group=factor(c("A","A","B","B"))) d[1:2,] d[1:2,2] d[,2] d <- estimateCommonDisp(d) results <- exactTest(d) results[1:2,] # NB: cannot subset columns for DGEExact objects } \keyword{manip} r-bioc-edger-3.4.2+dfsg.orig/man/dimnames.Rd0000644000265600020320000000230112227063710017614 0ustar tilleaadmin\name{dimnames} \alias{dimnames.DGEList} \alias{dimnames.DGEExact} \alias{dimnames.DGEGLM} \alias{dimnames.DGELRT} \alias{dimnames.TopTags} \alias{dimnames<-.DGEList} \alias{dimnames<-.DGEGLM} \title{Retrieve the Dimension Names of a DGE Object} \description{ Retrieve the dimension names of a digital gene expression data object. } \usage{ \method{dimnames}{DGEList}(x) \method{dimnames}{DGEList}(x) <- value } \arguments{ \item{x}{an object of class \code{DGEList}, \code{DGEExact}, \code{DGEGLM}, \code{DGELRT} or \code{TopTags}} \item{value}{a possible value for \code{dimnames(x)}, see \code{\link{dimnames}}} } \details{ The dimension names of a DGE data object are the same as those of the most important component of that object. Setting dimension names is currently only permitted for \code{DGEList} or \code{DGEGLM} objects. A consequence is that \code{rownames} and \code{colnames} will work as expected. } \value{ Either \code{NULL} or a list of length 2. If a list, its components are either \code{NULL} or a character vector the length of the appropriate dimension of \code{x}. } \author{Gordon Smyth} \seealso{ \code{\link[base]{dimnames}} in the base package. } r-bioc-edger-3.4.2+dfsg.orig/man/aveLogCPM.Rd0000644000265600020320000000406212227063710017602 0ustar tilleaadmin\name{aveLogCPM} \alias{aveLogCPM} \alias{aveLogCPM.DGEList} \alias{aveLogCPM.DGEGLM} \alias{aveLogCPM.default} \title{Average Log Counts Per Million} \description{ Compute average log2 counts-per-million for each row of counts. } \usage{ \method{aveLogCPM}{DGEList}(y, normalized.lib.sizes=TRUE, prior.count=2, dispersion=0.05, \dots) \method{aveLogCPM}{default}(y, lib.size=NULL, prior.count=2, dispersion=0.05, \dots) } \arguments{ \item{y}{numeric matrix containing counts. Rows for tags and columns for libraries.} \item{normalized.lib.sizes}{logical, use normalized library sizes?} \item{lib.size}{numeric vector of library sizes. Defaults to \code{colSums(y)}.} \item{prior.count}{average value to be added to each count, to avoid infinite values on the log-scale.} \item{dispersion}{numeric scalar or vector of negative-binomial dispersions.} \item{\dots}{other arguments are not currently used} } \details{ This function uses \code{mglmOneGroup} to compute average counts-per-million (AveCPM) for each row of counts, and returns log2(AveCPM). An average value of \code{prior.count} is added to the counts before running \code{mglmOneGroup}. This function is similar to \code{rowMeans(cpm(y, log=TRUE, \dots))}, but with the refinement that larger library sizes are given more weight in the average. This function converges to \code{rowMeans(cpm(y, log=TRUE, \dots))} for large values of \code{dispersion}, } \value{ Numeric vector giving log2(AveCPM) for each row of \code{y}. } \author{Gordon Smyth} \examples{ y <- matrix(c(0,100,30,40),2,2) lib.size <- c(1000,10000) # With disp large, the function is equivalent to row-wise averages of individual cpms: aveLogCPM(y, dispersion=1e4) cpm(y, log=TRUE, prior.count=2) # With disp=0, the function is equivalent to pooling the counts before dividing by lib.size: aveLogCPM(y,prior.count=0,dispersion=0) cpms <- rowSums(y)/sum(lib.size)*1e6 log2(cpms) } \seealso{ See \code{\link{cpm}} for individual logCPM values, rather than tagwise averages. The computations for \code{aveLogCPM} are done by \code{\link{mglmOneGroup}}. } r-bioc-edger-3.4.2+dfsg.orig/man/estimateGLMTagwiseDisp.Rd0000644000265600020320000000771512227063710022354 0ustar tilleaadmin\name{estimateGLMTagwiseDisp} \alias{estimateGLMTagwiseDisp} \alias{estimateGLMTagwiseDisp.DGEList} \alias{estimateGLMTagwiseDisp.default} \title{Empirical Bayes Tagwise Dispersions for Negative Binomial GLMs} \description{ Compute an empirical Bayes estimate of the negative binomial dispersion parameter for each tag or transcript, with expression levels specified by a log-linear model. } \usage{ \S3method{estimateGLMTagwiseDisp}{DGEList}(y, design=NULL, offset=NULL, dispersion=NULL, prior.df=10, trend=!is.null(y$trended.dispersion), span=NULL, AveLogCPM=NULL, ...) \S3method{estimateGLMTagwiseDisp}{default}(y, design=NULL, offset=NULL, dispersion, prior.df=10, trend=TRUE, span=NULL, AveLogCPM=NULL, ...) } \arguments{ \item{y}{matrix of counts or a \code{DGEList} object.} \item{design}{numeric design matrix, as for \code{\link{glmFit}}.} \item{trend}{logical. Should the prior be the trended dispersion (\code{TRUE}) or the common dispersion (\code{FALSE})?} \item{offset}{offset matrix for the log-linear model, as for \code{\link{glmFit}}. Defaults to the log-effective library sizes.} \item{dispersion}{common or trended dispersion estimates, used as an initial estimate for the tagwise estimates. By default uses values stored in the \code{DGEList} object.} \item{prior.df}{prior degrees of freedom.} \item{span}{width of the smoothing window, in terms of proportion of the data set. Default value decreases with the number of tags.} \item{AveLogCPM}{numeric vector giving average log2 counts per million for each gene} \item{\ldots}{other arguments are passed to \code{\link{dispCoxReidInterpolateTagwise}}.} } \value{ \code{estimateGLMTagwiseDisp.DGEList} produces a \code{DGEList} object, which contains the tagwise dispersion parameter estimate for each tag for the negative binomial model that maximizes the Cox-Reid adjusted profile likelihood. The tagwise dispersions are simply added to the \code{DGEList} object provided as the argument to the function. \code{estimateGLMTagwiseDisp.default} returns a vector of the tagwise dispersion estimates. } \details{ This function implements the empirical Bayes strategy proposed by McCarthy et al (2012) for estimating the tagwise negative binomial dispersions. The experimental conditions are specified by design matrix allowing for multiple explanatory factors. The empirical Bayes posterior is implemented as a conditional likelihood with tag-specific weights, and the conditional likelihood is computed using Cox-Reid approximate conditional likelihood (Cox and Reid, 1987). The prior degrees of freedom determines the weight given to the global dispersion trend. The larger the prior degrees of freedom, the more the tagwise dispersions are squeezed towards the global trend. This function calls the lower-level function \code{\link{dispCoxReidInterpolateTagwise}}. } \references{ Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference. \emph{Journal of the Royal Statistical Society Series B} 49, 1-39. McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. \emph{Nucleic Acids Research} 40, 4288-4297. \url{http://nar.oxfordjournals.org/content/40/10/4288} } \author{Gordon Smyth, Davis McCarthy} \examples{ y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4) d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003)) design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model d <- estimateGLMTrendedDisp(d, design, min.n=10) d <- estimateGLMTagwiseDisp(d, design) summary(d$tagwise.dispersion) } \seealso{ \code{\link{estimateGLMCommonDisp}} for common dispersion and \code{\link{estimateGLMTrendedDisp}} for trended dispersion in the context of a generalized linear model. \code{\link{estimateCommonDisp}} for common dispersion or \code{\link{estimateTagwiseDisp}} for tagwise dispersion in the context of a multiple group experiment (one-way layout). } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/binomTest.Rd0000644000265600020320000000553412227063710017776 0ustar tilleaadmin\name{binomTest} \alias{binomTest} \title{Exact Binomial Tests for Comparing Two Digital Libraries} \description{ Computes p-values for differential abundance for each tag between two digital libraries, conditioning on the total count for each tag. The counts in each group as a proportion of the whole are assumed to follow a binomial distribution. } \usage{ binomTest(y1, y2, n1=sum(y1), n2=sum(y2), p=n1/(n1+n2)) } \arguments{ \item{y1}{integer vector giving counts in first library. Non-integer values are rounded to the nearest integer.} \item{y2}{integer vector giving counts in second library. Of same length as \code{x}. Non-integer values are rounded to the nearest integer.} \item{n1}{total number of tags in first library. Non-integer values are rounded to the nearest integer. Not required if \code{p} is supplied.} \item{n2}{total number of tags in second library. Non-integer values are rounded to the nearest integer. Not required if \code{p} is supplied.} \item{p}{expected proportion of y1 to the total under the null hypothesis.} } \details{ This function can be used to compare two libraries from SAGE, RNA-Seq, ChIP-Seq or other sequencing technologies with respect to technical variation. An exact two-sided binomial test is computed for each tag. This test is closely related to Fisher's exact test for 2x2 contingency tables but, unlike Fisher's test, it conditions on the total number of counts for each tag. The null hypothesis is that the expected counts are in the same proportions as the library sizes, i.e., that the binomial probability for the first library is \code{n1/(n1+n2)}. The two-sided rejection region is chosen analogously to Fisher's test. Specifically, the rejection region consists of those values with smallest probabilities under the null hypothesis. When the counts are reasonably large, the binomial test, Fisher's test and Pearson's chisquare all give the same results. When the counts are smaller, the binomial test is usually to be preferred in this context. This function replaces the earlier \code{sage.test} functions in the statmod and sagenhaft packages. It produces the same results as \code{\link{binom.test}} in the stats packge, but is much faster. } \value{ Numeric vector of p-values. } \references{ \url{http://en.wikipedia.org/wiki/Binomial_test} \url{http://en.wikipedia.org/wiki/Fisher's_exact_test} \url{http://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression} http://en.wikipedia.org/wiki/RNA-Seq } \author{Gordon Smyth} \seealso{ \code{\link[statmod:sage.test]{sage.test}} (statmod package), \code{\link{binom.test}} (stats package) } \examples{ binomTest(c(0,5,10),c(0,30,50),n1=10000,n2=15000) # Univariate equivalents: binom.test(5,5+30,p=10000/(10000+15000))$p.value binom.test(10,10+50,p=10000/(10000+15000))$p.value } \keyword{htest} r-bioc-edger-3.4.2+dfsg.orig/man/exactTest.Rd0000644000265600020320000001602512227063710017773 0ustar tilleaadmin\name{exactTest} \alias{exactTest} \alias{exactTestDoubleTail} \alias{exactTestBetaApprox} \alias{exactTestBySmallP} \alias{exactTestByDeviance} \title{Exact Tests for Differences between Two Groups of Negative-Binomial Counts} \description{Compute genewise exact tests for differences in the means between two groups of negative-binomially distributed counts.} \usage{ exactTest(object, pair=1:2, dispersion="auto", rejection.region="doubletail", big.count=900, prior.count=0.125) exactTestDoubleTail(y1, y2, dispersion=0, big.count=900) exactTestBySmallP(y1, y2, dispersion=0, big.count=900) exactTestByDeviance(y1, y2, dispersion=0, big.count=900) exactTestBetaApprox(y1, y2, dispersion=0) } \arguments{ \item{object}{an object of class \code{\link[edgeR:DGEList-class]{DGEList}}.} \item{pair}{vector of length two, either numeric or character, providing the pair of groups to be compared; if a character vector, then should be the names of two groups (e.g. two levels of \code{object$samples$group}); if numeric, then groups to be compared are chosen by finding the levels of \code{object$samples$group} corresponding to those numeric values and using those levels as the groups to be compared; if \code{NULL}, then first two levels of \code{object$samples$group} (a factor) are used. Note that the first group listed in the pair is the baseline for the comparison---so if the pair is \code{c("A","B")} then the comparison is \code{B - A}, so genes with positive log-fold change are up-regulated in group B compared with group A (and vice versa for genes with negative log-fold change).} \item{dispersion}{either a numeric vector of dispersions or a character string indicating that dispersions should be taken from the data object. If a numeric vector, then can be either of length one or of length equal to the number of tags. Allowable character values are \code{"common"}, \code{"trended"}, \code{"tagwise"} or \code{"auto"}. Default behavior (\code{"auto"} is to use most complex dispersions found in data object.} \item{rejection.region}{type of rejection region for two-sided exact test. Possible values are \code{"doubletail"}, \code{"smallp"} or \code{"deviance"}.} \item{big.count}{count size above which asymptotic beta approximation will be used.} \item{prior.count}{average prior count used to shrink log-fold-changes. Larger values produce more shrinkage.} \item{y1}{numeric matrix of counts for the first the two experimental groups to be tested for differences. Rows correspond to genes or transcripts and columns to libraries. Libraries are assumed to be equal in size - e.g. adjusted pseudocounts from the output of \code{\link{equalizeLibSizes}}.} \item{y2}{numeric matrix of counts for the second of the two experimental groups to be tested for differences. Rows correspond to genes or transcripts and columns to libraries. Libraries are assumed to be equal in size - e.g. adjusted pseudocounts from the output of \code{\link{equalizeLibSizes}}. Must have the same number of rows as \code{y1}.} } \value{ \code{exactTest} produces an object of class \code{DGEExact} containing the following components: \item{table}{data frame containing columns for the log2-fold-change, \code{logFC}, the average log2-counts-per-million, \code{logCPM}, and the two-sided p-value \code{PValue}} \item{comparison}{character vector giving the names of the two groups being compared} \item{genes}{optional data frame containing annotation for transcript; taken from \code{object}} The low-level functions, \code{exactTestDoubleTail} etc, produce a numeric vector of genewise p-values, one for each row of \code{y1} and \code{y2}. } \details{ The functions test for differential expression between two groups of count libraries. They implement the exact test proposed by Robinson and Smyth (2008) for a difference in mean between two groups of negative binomial random variables. The functions accept two groups of count libraries, and a test is performed for each row of data. For each row, the test is conditional on the sum of counts for that row. The test can be viewed as a generalization of the well-known exact binomial test (implemented in \code{binomTest}) but generalized to overdispersed counts. \code{exactTest} is the main user-level function, and produces an object containing all the necessary components for downstream analysis. \code{exactTest} calls one of the low level functions \code{exactTestDoubleTail}, \code{exactTestBetaApprox}, \code{exactTestBySmallP} or \code{exactTestByDeviance} to do the p-value computation. The low level functions all assume that the libraries have been normalized to have the same size, i.e., to have the same expected column sum under the null hypothesis. \code{exactTest} equalizes the library sizes using \code{\link{equalizeLibSizes}} before calling the low level functions. The functions \code{exactTestDoubleTail}, \code{exactTestBySmallP} and \code{exactTestByDeviance} correspond to different ways to define the two-sided rejection region when the two groups have different numbers of samples. \code{exactTestBySmallP} implements the method of small probabilities as proposed by Robinson and Smyth (2008). This method corresponds exactly to \code{binomTest} as the dispersion approaches zero, but gives poor results when the dispersion is very large. \code{exactTestDoubleTail} computes two-sided p-values by doubling the smaller tail probability. \code{exactTestByDeviance} uses the deviance goodness of fit statistics to define the rejection region, and is therefore equivalent to a conditional likelihood ratio test. Note that \code{rejection.region="smallp"} is no longer recommended. It is preserved as an option only for backward compatiblity with early versions of edgeR. \code{rejection.region="deviance"} has good theoretical statistical properties but is relatively slow to compute. \code{rejection.region="doubletail"} is just slightly more conservative than \code{rejection.region="deviance"}, but is recommended because of its much greater speed. For general remarks on different types of rejection regions for exact tests see Gibbons and Pratt (1975). \code{exactTestBetaApprox} implements an asymptotic beta distribution approximation to the conditional count distribution. It is called by the other functions for rows with both group counts greater than \code{big.count}. } \references{ Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. \emph{Biostatistics}, 9, 321-332. Gibbons, JD and Pratt, JW (1975). P-values: interpretation and methodology. \emph{The American Statistician} 29, 20-25. } \author{Mark Robinson, Davis McCarthy, Gordon Smyth} \examples{ # generate raw counts from NB, create list object y <- matrix(rnbinom(80,size=1/0.2,mu=10),nrow=20,ncol=4) d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=rep(1000,4)) de <- exactTest(d, dispersion=0.2) topTags(de) # same p-values using low-level function directly p.value <- exactTestDoubleTail(y[,1:2], y[,3:4], dispersion=0.2) sort(p.value)[1:10] } \seealso{ \code{\link{equalizeLibSizes}}, \code{\link{binomTest}} } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/man/topTags.Rd0000755000265600020320000000723612227063710017457 0ustar tilleaadmin\name{topTags} \alias{topTags} \alias{TopTags-class} \alias{show,TopTags-method} \alias{[.TopTags} \title{Table of the Top Differentially Expressed Tags} \description{Extracts the top DE tags in a data frame for a given pair of groups, ranked by p-value or absolute log-fold change.} \usage{ topTags(object, n=10, adjust.method="BH", sort.by="PValue") } \arguments{ \item{object}{a \code{\link[edgeR:DGEList-class]{DGEExact}} object (output from \code{exactTest}) or a \code{\link[edgeR:DGELRT-class]{DGELRT}} object (output from \code{glmLRT}), containing the (at least) the elements \code{table}: a data frame containing the log-concentration (i.e. expression level), the log-fold change in expression between the two groups/conditions and the p-value for differential expression, for each tag. If it is a \code{DGEExact} object, then \code{topTags} will also use the \code{comparison} element, which is a vector giving the two experimental groups/conditions being compared. The object may contain other elements that are not used by \code{topTags}.} \item{n}{scalar, number of tags to display/return} \item{adjust.method}{character string stating the method used to adjust p-values for multiple testing, passed on to \code{p.adjust}} \item{sort.by}{character string, should the top tags be sorted by p-value (\code{"PValue"}), by absolute log-fold change (\code{"logFC"}), or not sorted (\code{"none"}).} } \value{ an object of class \code{TopTags} containing the following elements for the top \code{n} most differentially expressed tags as determined by \code{sort.by}: \item{table}{a data frame containing the elements \code{logFC}, the log-abundance ratio, i.e. fold change, for each tag in the two groups being compared, \code{logCPM}, the log-average concentration/abundance for each tag in the two groups being compared, \code{PValue}, exact p-value for differential expression using the NB model, \code{FDR}, the p-value adjusted for multiple testing as found using \code{p.adjust} using the method specified.} \item{adjust.method}{character string stating the method used to adjust p-values for multiple testing.} \item{comparison}{a vector giving the names of the two groups being compared.} \item{test}{character string stating the name of the test.} The dimensions, row names and column names of a \code{TopTags} object are defined by those of \code{table}, see \code{\link{dim.TopTags}} or \code{\link{dimnames.TopTags}}. \code{TopTags} objects also have a \code{show} method so that printing produces a compact summary of their contents. } \author{Mark Robinson, Davis McCarthy, Gordon Smyth} \examples{ # generate raw counts from NB, create list object y <- matrix(rnbinom(80,size=1,mu=10),nrow=20) d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2)) rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".") # estimate common dispersion and find differences in expression # here we demonstrate the 'exact' methods, but the use of topTags is # the same for a GLM analysis d <- estimateCommonDisp(d) de <- exactTest(d) # look at top 10 topTags(de) # Can specify how many tags to view tp <- topTags(de, n=15) # Here we view top 15 tp # Or order by fold change instead topTags(de,sort.by="logFC") } \references{ Robinson MD, Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. \emph{Biostatistics} 9, 321-332. Robinson MD, Smyth GK (2007). Moderated statistical tests for assessing differences in tag abundance. \emph{Bioinformatics} 23, 2881-2887. } \seealso{ \code{\link{exactTest}}, \code{\link{glmLRT}}, \code{\link{p.adjust}}. Analogous to \code{\link[limma:toptable]{topTable}} in the limma package. } \keyword{algebra} r-bioc-edger-3.4.2+dfsg.orig/DESCRIPTION0000755000265600020320000000203112250253443016466 0ustar tilleaadminPackage: edgeR Version: 3.4.2 Date: 2013/08/31 Title: Empirical analysis of digital gene expression data in R Author: Mark Robinson , Davis McCarthy , Yunshun Chen , Aaron Lun , Gordon Smyth Maintainer: Mark Robinson , Davis McCarthy , Yunshun Chen , Gordon Smyth Depends: R (>= 2.15.0), methods, limma Suggests: MASS, statmod, splines, locfit, KernSmooth biocViews: Bioinformatics, DifferentialExpression, SAGE, HighThroughputSequencing, RNAseq, ChIPseq Description: Differential expression analysis of RNA-seq and digital gene expression profiles with biological replication. Uses empirical Bayes estimation and exact tests based on the negative binomial distribution. Also useful for differential signal analysis with other types of genome-scale count data. License: GPL (>=2) Packaged: 2013-12-06 04:48:35 UTC; biocbuild r-bioc-edger-3.4.2+dfsg.orig/src/0002755000265600020320000000000012250253443015552 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/src/R_simple_good_turing.cpp0000644000265600020320000000652712250253443022440 0ustar tilleaadmin/* Implements the simple version of the Good-Turing frequency estimator in C++. * This is based on the C code written by Geoffrey Sampson from Sussex University. * It takes in a vector of observed frequencies and another vector of the same * length of frequencies (of observed frequencies). The first vector must be * sorted in ascending order. It also takes a numeric scalar which describes * the confidence factor. */ #include "utils.h" extern "C" { SEXP R_simple_good_turing (SEXP obs, SEXP freq, SEXP conf) try { const double confid_factor=NUMERIC_VALUE(conf); if (!IS_INTEGER(obs)) { throw std::runtime_error("observations vector must be integral"); } if (!IS_INTEGER(freq)) { throw std::runtime_error("frequencies vector must be integral"); } const int rows=LENGTH(obs); if (rows!=LENGTH(freq)) { throw std::runtime_error("length of vectors must match"); } int* optr=INTEGER_POINTER(obs); int* fptr=INTEGER_POINTER(freq); // Prefilling various data structures. double bigN=0; double XYs=0, meanX=0, meanY=0, Xsquares=0; double* log_obs=(double*)R_alloc(rows, sizeof(double)); const long last=rows-1; for (long i=0; i out=glm_one_group(num_libs, maxit, tol, optr, ydptr, *dptr); (*bptr)=out.first; (*cptr)=out.second; if (!is_integer) { ydptr+=num_libs; } optr+=num_libs; ++bptr; ++cptr; ++dptr; } } catch (std::exception& e) { UNPROTECT(1); throw; } // Returning everything as a list. UNPROTECT(1); return output; } catch (std::exception& e) { return mkString(e.what()); } } r-bioc-edger-3.4.2+dfsg.orig/src/R_levenberg.cpp0000644000265600020320000000772712250253443020523 0ustar tilleaadmin#include "glm.h" extern "C" { SEXP R_levenberg (SEXP nlib, SEXP ntag, SEXP design, SEXP counts, SEXP disp, SEXP offset, SEXP beta, SEXP fitted, SEXP tol, SEXP maxit) try { if (!IS_NUMERIC(design)) { throw std::runtime_error("design matrix should be double precision"); } if (!IS_NUMERIC(counts)) { throw std::runtime_error("count matrix should be double precision"); } if (!IS_NUMERIC(disp)) { throw std::runtime_error("dispersion vector should be double precision"); } if (!IS_NUMERIC(offset)) { throw std::runtime_error("offset matrix should be double precision"); } if (!IS_NUMERIC(beta)) { throw std::runtime_error("matrix of start values for coefficients should be double precision"); } if (!IS_NUMERIC(fitted)) { throw std::runtime_error("matrix of starting fitted values should be double precision"); } // Getting and checking the dimensions of the arguments. const int num_tags=INTEGER_VALUE(ntag); const int num_libs=INTEGER_VALUE(nlib); const int dlen=LENGTH(design); const int clen=LENGTH(counts); if (dlen%num_libs!=0) { throw std::runtime_error("size of design matrix is incompatible with number of libraries"); } const int num_coefs=dlen/num_libs; if (clen!=num_tags*num_libs) { throw std::runtime_error("dimensions of the count matrix are not as specified"); } else if (LENGTH(beta)!=num_tags*num_coefs) { throw std::runtime_error("dimensions of the beta matrix do not match to the number of tags and coefficients"); } else if (LENGTH(fitted)!=clen) { throw std::runtime_error("dimensions of the fitted matrix do not match those of the count matrix"); } else if (LENGTH(disp)!=num_tags) { throw std::runtime_error("length of dispersion vector must be equal to the number of tags"); } else if (LENGTH(offset)!=clen) { throw std::runtime_error("dimensions of offset matrix must match that of the count matrix"); } // Initializing pointers to the assorted features. double* beta_ptr=NUMERIC_POINTER(beta), *design_ptr=NUMERIC_POINTER(design), *count_ptr=NUMERIC_POINTER(counts), *fitted_ptr=NUMERIC_POINTER(fitted), *offset_ptr=NUMERIC_POINTER(offset), *disp_ptr=NUMERIC_POINTER(disp); // Initializing output cages. SEXP output=PROTECT(NEW_LIST(5)); SET_VECTOR_ELT(output, 0, allocMatrix(REALSXP, num_coefs, num_tags)); // beta (transposed) SET_VECTOR_ELT(output, 1, allocMatrix(REALSXP, num_libs, num_tags)); // new fitted (transposed) SET_VECTOR_ELT(output, 2, NEW_NUMERIC(num_tags)); SET_VECTOR_ELT(output, 3, NEW_INTEGER(num_tags)); SET_VECTOR_ELT(output, 4, NEW_LOGICAL(num_tags)); double* new_beta_ptr=NUMERIC_POINTER(VECTOR_ELT(output, 0)); double* new_fitted_ptr=NUMERIC_POINTER(VECTOR_ELT(output, 1)); double* dev_ptr=NUMERIC_POINTER(VECTOR_ELT(output, 2)); int* iter_ptr=INTEGER_POINTER(VECTOR_ELT(output, 3)); int* fail_ptr=LOGICAL_POINTER(VECTOR_ELT(output, 4)); try { // Running through each tag and fitting the NB GLM. glm_levenberg glbg(num_libs, num_coefs, design_ptr, INTEGER_VALUE(maxit), NUMERIC_VALUE(tol)); for (int tag=0; tagtotal) { throw std::runtime_error("number of smoothing points should less than the total number of points"); } else if (span<=0) { throw std::runtime_error("number of smoothing points should be positive"); } const double* x_ptr=NUMERIC_POINTER(x); const int ncols=INTEGER_VALUE(n_cols); if (LENGTH(y)!=ncols*total) { throw std::runtime_error("supplied dimensions for matrix 'y' are not consistent"); } std::deque y_ptrs; for (int i=0; i f_ptrs; for (int i=0; iframe_end) { frame_end=cur_p; } const double& cur_point=x_ptr[cur_p]; double back_dist=cur_point-x_ptr[frame_end-span+1], front_dist=x_ptr[frame_end]-cur_point, max_dist=(back_dist > front_dist ? back_dist : front_dist); while (frame_end < total-1 && cur_p+span-1>frame_end) { /* Every time we advance, we twiddle with the ends of the frame to see if we can't get * a better fit. The frame will always advance in the forward direction. This is because the * current frame is optimal with respect to the previous tag. If the previous maximal distance * was at the back, shifting the frame backward will increase the back distance with respect to * the current tag (and thus increase the maximal distance). * * If the previous maximal distance was at the front, shifting the frame backward may * decrease the front distance with respect to the current tag. However, we note that * because of optimality, having a previous maximal distance at the front must mean * that a back-shifted frame will result in an even larger previous maximal distance at * the back (otherwise the optimal frame would be located further back to start with). In * short, shifting the frame backwards will flip the maximal distance to that of the back * distance which is even larger than the non-shifted forward distance. * * Thus, the frame can only go forwards. Note that below, the frame is defined by * the 'end' position which notes the end point of the current frame. The start * point is inherently defined by revolving around the minimum point. */ back_dist=cur_point-x_ptr[frame_end-span+2]; front_dist=x_ptr[frame_end+1]-cur_point; const double& next_max=(back_dist > front_dist ? back_dist : front_dist); /* This bit provides some protection against near-equal values, by forcing the frame * forward provided that the difference between the lowest maximum distance and * the maximum distance at any other frame is less than a low_value. This ensures * that values following a stretch of identical x-coordinates are accessible * to the algorithm (rather than being blocked off by inequalities introduced by * double imprecision). */ const double diff=(next_max-max_dist)/max_dist; if (diff > low_value) { break; } else if (diff < 0) { max_dist=next_max; } ++frame_end; } /* Now that we've located our optimal window, we can calculate the weighted average * across the points in the window (weighted according to distance from the current point). * and we can calculate the leverages. Unfortunately, we have to loop over the points in the * window because each weight must be recomputed according to its new distance and new maximal * distance. */ double total_weight=0; double& out_leverage=(w_ptr[cur_p]=-1); for (int i=0; i B - A. The algorithm above will move the * frame to [1,3] when calculating the maximum distance for B. This is the same as [0, 2] in terms * of distance, but only using the frame components to calculate the mean will miss out on element 0. * So, the computation should work from [0, 3]. There's no need to worry about the extra 'C' as it * will have weight zero. */ for (int m=frame_end; m>=0; --m) { const double rel_dist=(max_dist > low_value ? std::abs(x_ptr[m]-cur_point)/max_dist : 0); const double weight=std::pow(1-std::pow(rel_dist, 3.0), 3.0); if (weight < 0) { continue; } total_weight+=weight; for (int i=0; i low_value ? sum : low_value); if (!deriv) { return use_sum*std::log(use_sum/mu) - (use_sum+size)*std::log((use_sum+size)/(mu+size)); } else { return std::log(use_sum/mu) - std::log((use_sum+size)/(mu+size)); } } extern "C" { SEXP R_exact_test_by_deviance(SEXP sums_1, SEXP sums_2, SEXP n_1, SEXP n_2, SEXP disp, SEXP big, SEXP tol) try { // Setting up the inputs. if (!IS_INTEGER(sums_1) || !IS_INTEGER(sums_2)) { throw std::runtime_error("sums must be integer vectors"); } if (!IS_NUMERIC(disp)) { throw std::runtime_error("dispersion must be a double precision vector"); } const int n1=INTEGER_VALUE(n_1), n2=INTEGER_VALUE(n_2); const int ntags=LENGTH(sums_1); if (ntags!=LENGTH(sums_2) || ntags!=LENGTH(disp)) { throw std::runtime_error("lengths of input vectors do not match"); } else if (n1<=0 || n2 <=0) { throw std::runtime_error("number of libraries must be positive for each condition"); } int* s1_ptr=INTEGER_POINTER(sums_1), *s2_ptr=INTEGER_POINTER(sums_2); double *d_ptr=NUMERIC_POINTER(disp); const double nr_tolerance=NUMERIC_VALUE(tol); const double big_count=NUMERIC_VALUE(big); // Setting up the outputs. SEXP output; PROTECT(output=NEW_NUMERIC(ntags)); double* p_ptr=NUMERIC_POINTER(output); try{ // Iterating through the tags. const double prop1=n1/double(n1+n2), prop2=n2/double(n1+n2); for (long i=0; i nr_tolerance) { step=(nbdev(x, right_mu, right_size)+nbdev(total-x, left_mu, left_size)-threshold_dev)/ (nbdev(x, right_mu, right_size, true)-nbdev(total-x, left_mu, left_size, true)); x-=step; if (x > total || x < 0) { throw std::runtime_error("failure during Newton-Raphson procedure"); } } double& p_out=(p_ptr[i]=0); const int& including=(other_is_up ? s1 : s2); /* We check if the mu*disp product is large enough for us to use the fact that * the NB distribution is well approximated by the Gamma. This means that the * conditional NB distribution can then be approximated by the Beta distribution. * Note that we only have to check one of them, because mu1*disp2=mu2*disp2=total*disp. */ if (mu1/size1 > big_count) { const double alpha1=mu1/(1+mu1/size1), alpha2=n2/n1*alpha1; const double& left_alpha=(other_is_up ? alpha1 : alpha2); const double& right_alpha=(other_is_up ? alpha2 : alpha1); p_out=pbeta(including/total, left_alpha, right_alpha, 1, 0) +pbeta((x+0.5)/total, right_alpha, left_alpha, 1, 0); continue; } /* We use lbeta to avoid over/underflow problems resulting from beta. * These go away with lbeta because we end up subtracting by the divisor. * The price is some loss of precision as the exponent is moved around. * However, the number of digits lost is usually small (~3 for * the limit of the double datatype). When it gets large, the non-logged * version wouldn't be able to handle it anyway, so it's an okay price to pay. */ const double divisor=lbeta(size1, size2); /* If the counts are small enough, we iterate. We bascially go through and include * our lower partitions on the side of the observed partition and including the observed * partition (hence the +0.5 in the 'including' definition). We do the same for the * 'other' side, but we ignore the closest integer for now. */ double mult=1; for (int j=0; j<=including; ++j) { p_out+=std::exp(lbeta(j+left_size, total+right_size-j)-divisor)*mult; mult*=(total-j)/(j+1.0); } mult=1; for (int j=0; j threshold_dev) { p_out+=std::exp(lbeta(new_x+right_size, total+left_size-new_x)-divisor)*mult; } } } catch (std::exception& e) { UNPROTECT(1); throw; } UNPROTECT(1); return output; } catch (std::exception& e) { return mkString(e.what()); } } r-bioc-edger-3.4.2+dfsg.orig/src/Makevars0000644000265600020320000000076412227063703017255 0ustar tilleaadminCHECK=#-Wall -pedantic PKG_LIBS=$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) PKG_CPPFLAGS=-I./core -I. $(CHECK) PKG_CFLAGS=$(CHECK) CPP_SOURCES=R_exact_test_by_deviance.cpp R_loess_by_col.cpp R_cr_adjust.cpp R_levenberg.cpp R_maximize_interpolant.cpp R_one_group.cpp R_simple_good_turing.cpp \ core/adj_coxreid.cpp core/glm_levenberg.cpp core/glm_one_group.cpp core/interpolator.cpp C_SOURCES=core/fmm_spline.c OBJECTS=$(CPP_SOURCES:.cpp=.o) $(C_SOURCES:.c=.o) all: $(SHLIB) clean: @rm -fv $(OBJECTS) r-bioc-edger-3.4.2+dfsg.orig/src/R_cr_adjust.cpp0000644000265600020320000000306312250253443020515 0ustar tilleaadmin#include "glm.h" extern "C" { /* * 'w' represents a matrix of negative binomial probabilities (i.e. * the prob of success/failure, a function of mean and dispersion) * whereas 'x' represents the design matrix. This function calculates * the multiplication of the matrices, then performs a Cholesky decomposition * to get the lower triangular matrix 'L'. The diagonal of 'L' can then * be used to compute the Cox-Reid adjustment factor. */ SEXP R_cr_adjust (SEXP w, SEXP x, SEXP nlibs) try { if (!IS_NUMERIC(w)) { throw std::runtime_error("matrix of likelihoods must be double precision"); } if (!IS_NUMERIC(x)) { throw std::runtime_error("design matrix must be double precision"); } const int num_libs=INTEGER_VALUE(nlibs); const int num_tags=LENGTH(w)/num_libs; const int num_coefs=LENGTH(x)/num_libs; // Setting up a couple of indices for quick access. adj_coxreid acr(num_libs, num_coefs, NUMERIC_POINTER(x)); double* wptr=NUMERIC_POINTER(w); SEXP output=PROTECT(NEW_NUMERIC(num_tags)); double* out_ptr=NUMERIC_POINTER(output); try { // Running through each tag. for (long tag=0; tag x=acr.compute(wptr); if (!x.second) { std::stringstream errout; errout << "LDL factorization failed for tag " << tag+1; throw std::runtime_error(errout.str()); } out_ptr[tag]=x.first; wptr+=num_libs; } } catch (std::exception& e) { UNPROTECT(1); throw; } UNPROTECT(1); return output; } catch (std::exception& e) { return mkString(e.what()); } } r-bioc-edger-3.4.2+dfsg.orig/src/core/0002755000265600020320000000000012250253443016502 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/src/core/utils.h0000644000265600020320000000046112250253443020012 0ustar tilleaadmin#ifndef UTILS_H #define UTILS_H #include #include #include #include #include #include "R.h" #include "Rdefines.h" #include "R_ext/BLAS.h" #include "R_ext/Lapack.h" const double low_value=std::pow(10.0, -10.0), log_low_value=std::log(low_value); #endif r-bioc-edger-3.4.2+dfsg.orig/src/core/glm_levenberg.cpp0000644000265600020320000002614712250253443022026 0ustar tilleaadmin#include "glm.h" /* Function to calculate the deviance. Note the protection for very large mu*phi (where we * use a gamma instead) or very small mu*phi (where we use the Poisson instead). This * approximation protects against numerical instability introduced by subtrackting * a very large log value in (log cur_mu) with another very large logarithm (log cur_mu+1/phi). * We need to consider the 'phi' as the approximation is only good when the product is * very big or very small. */ const double one_million=std::pow(10, 6.0), one_millionth=std::pow(10, -6.0); const double mildly_low_value=std::pow(10, -8.0), supremely_low_value=std::pow(10, -13.0), ridiculously_low_value=std::pow(10, -100.0); double glm_levenberg::nb_deviance (const double* y, const double* mu, const double& phi) const { double dev=0; for (int i=0; i one_million) { dev+=(cur_y - cur_mu)/cur_mu - std::log(cur_y/cur_mu); // * cur_mu/(1+product); } else { dev+=cur_y * std::log( cur_y/cur_mu ) + (cur_y + 1/phi) * std::log( (cur_mu + 1/phi)/(cur_y + 1/phi) ); } } return dev*2; } void glm_levenberg::autofill(const double* offset, double* mu, const double* beta) { for (int lib=0; libymax) { ymax=count; } } dev=0; iter=0; failed=false; // If we start off with all entries at zero, there's really no point continuing. if (ymaxmax_info) { max_info=cur_val; } } if (iter==1) { lambda=max_info*one_millionth; if (lambda < supremely_low_value) { lambda=supremely_low_value; } } /* Levenberg/Marquardt damping reduces step size until the deviance increases or no * step can be found that increases the deviance. In short, increases in the deviance * are enforced to avoid problems with convergence. */ int lev=0; bool low_dev=false; while (++lev) { for (int col=0; col smaller coefficients isn't * that great when the true value is negative inifinity. */ lambda*=10; if (lambda <= 0) { lambda=ridiculously_low_value; } // Just to make sure it actually increases. } else { break; } } while (1); F77_NAME(dpotrs)(&uplo, &ncoefs, &nrhs, xwx_copy, &ncoefs, dbeta, &ncoefs, &info); if (info!=0) { return 1; } // Updating beta and the means. 'dbeta' stores 'Y' from the solution of (X*VX)Y=dl, corresponding to a NR step. for (int i=0; i 1/supremely_low_value) { failed=1; break; } } /* Terminating if we failed, if divergence from the exact solution is acceptably low * (cross-product of beta with the log-likelihood derivative) or if the actual deviance * of the fit is acceptably low. */ if (failed) { break; } if (low_dev) { break; } double divergence=0; for (int i=0; i glm_one_group(const int&, const int&, const double&, const double*, const double*, const double&); class glm_levenberg { public: glm_levenberg(const int&, const int&, const double*, const int&, const double&); ~glm_levenberg(); int fit(const double*, const double*, const double&, double*, double*); const bool& is_failure() const; const int& get_iterations() const; const double& get_deviance() const; private: const int nlibs; const int ncoefs; const int maxit; const double tolerance; double* design; double * wx; double * xwx; double * xwx_copy; double * dl; double * dbeta; int info; double* mu_new, *beta_new; double dev; int iter; bool failed; double nb_deviance(const double*, const double*, const double&) const; void autofill(const double*, double*, const double*); }; class adj_coxreid { public: adj_coxreid(const int&, const int&, const double*); ~adj_coxreid(); std::pair compute(const double* wptr); private: const int ncoefs; const int nlibs; double* design; double* working_matrix, *work; int* pivots; int info, lwork; }; #endif r-bioc-edger-3.4.2+dfsg.orig/src/core/interpolator.h0000644000265600020320000000164212250253443021376 0ustar tilleaadmin#ifndef INTERPOLATOR_H #define INTERPOLATOR_H #include "utils.h" /* Splines a la Forsythe Malcolm and Moler (from splines.c in the stats package). * * 'n' is the number of points, 'x' is the vector of x-coordinates, 'y' is the * vector of y-coordinates (unchanged and equal to the constant for the interpolating * cubic spline upon output), 'b' is the coefficient degree 1, 'c' is the coefficient * of degree '2', 'd' is the coefficient degree 3. We need to access the coefficients * directly, which makes evaluation from R undesirable. */ extern "C" { void fmm_spline(int n, const double *x, const double *y, double *b, double *c, double *d); } /* This class just identifies the global maximum in the interpolating function. */ class interpolator { public: interpolator(const int&); ~interpolator(); double find_max(const double* x, const double* y); private: const int npts; double* b, *c, *d; }; #endif r-bioc-edger-3.4.2+dfsg.orig/src/core/interpolator.cpp0000644000265600020320000000705212250253443021732 0ustar tilleaadmin#include "interpolator.h" struct solution { double sol1, sol2; bool solvable; }; solution quad_solver (const double& a, const double& b, const double& c) { double back=b*b-4*a*c; solution cur_sol; if (back<0) { cur_sol.solvable=false; return(cur_sol); } double front=-b/(2*a); back=std::sqrt(back)/(2*a); cur_sol.sol1=front-back; cur_sol.sol2=front+back; cur_sol.solvable=true; return(cur_sol); } /************************************ * * It fits the spline and grabs the coefficients of each segment. * It then calculates the maxima at the segments neighbouring * the maximally highest point. This avoids NR optimisation * as well as the need to call R's splinefun's from within C. * ***********************************/ interpolator::interpolator(const int& n) : npts(n) { if (npts<2) { throw std::runtime_error("must have at least two points for interpolation"); } b=new double[npts]; c=new double[npts]; d=new double [npts]; } interpolator::~interpolator () { delete [] b; delete [] c; delete [] d; } double interpolator::find_max (const double*x, const double* y) { double maxed=-1; int maxed_at=-1; for (int i=0; i maxed) { maxed=y[i]; maxed_at=i; } } double x_max=x[maxed_at]; fmm_spline(npts, x, y, b, c, d); // First we have a look at the segment on the left and see if it contains the maximum. if (maxed_at>0) { const double& ld=d[maxed_at-1]; const double& lc=c[maxed_at-1]; const double& lb=b[maxed_at-1]; solution sol_left=quad_solver(3*ld, 2*lc, lb); if (sol_left.solvable) { /* Using the solution with the maximum (not minimum). If the curve is mostly increasing, the * maximal point is located at the smaller solution (i.e. sol1 for a>0). If the curve is mostly * decreasing, the maximal is located at the larger solution (i.e., sol1 for a<0). */ const double& chosen_sol=sol_left.sol1; /* The spline coefficients are designed such that 'x' in 'y + b*x + c*x^2 + d*x^3' is * equal to 'x_t - x_l' where 'x_l' is the left limit of that spline segment and 'x_t' * is where you want to get an interpolated value. This is necessary in 'splinefun' to * ensure that you get 'y' (i.e. the original data point) when 'x=0'. For our purposes, * the actual MLE corresponds to 'x_t' and is equal to 'solution + x_0'. */ if (chosen_sol > 0 && chosen_sol < x[maxed_at]-x[maxed_at-1]) { double temp=((ld*chosen_sol+lc)*chosen_sol+lb)*chosen_sol+y[maxed_at-1]; if (temp > maxed) { maxed=temp; x_max=chosen_sol+x[maxed_at-1]; } } } } // Repeating for the segment on the right. if (maxed_at 0 && chosen_sol < x[maxed_at+1]-x[maxed_at]) { double temp=((rd*chosen_sol+rc)*chosen_sol+rb)*chosen_sol+y[maxed_at]; if (temp>maxed) { maxed=temp; x_max=chosen_sol+x[maxed_at]; } } } } return x_max; } r-bioc-edger-3.4.2+dfsg.orig/src/core/glm_one_group.cpp0000644000265600020320000000232112250253443022036 0ustar tilleaadmin#include "glm.h" std::pair glm_one_group(const int& nlibs, const int& maxit, const double& tolerance, const double* offset, const double* y, const double& disp) { /* Setting up initial values for beta as the log of the mean of the ratio of counts to offsets. * This is the exact solution for the gamma distribution (which is the limit of the NB as * the dispersion goes to infinity. */ bool nonzero=false; double cur_beta=0; for (int j=0; jlow_value) { cur_beta+=cur_val/std::exp(offset[j]); nonzero=true; } } if (!nonzero) { return std::make_pair(R_NegInf, true); } // If we can't cop out of it, we'll do Newton-Raphson iterations instead. bool has_converged=false; cur_beta=std::log(cur_beta/nlibs); for (int i=0; i adj_coxreid::compute(const double* wptr) { /* Setting working weight_matrix to 'A=XtWX' with column-major storage. * This represents the expected Fisher information. The overall strategy is * to compute the determinant of the information matrix in order to compute * the adjustment factor for the likelihood (in order to account for uncertainty * in the nuisance parameters i.e. the fitted values). */ for (int row=0; row 3) { c[1] = c[3]/(x[4]-x[2]) - c[2]/(x[3]-x[1]); c[n] = c[nm1]/(x[n] - x[n-2]) - c[n-2]/(x[nm1]-x[n-3]); c[1] = c[1]*d[1]*d[1]/(x[4]-x[1]); c[n] = -c[n]*d[nm1]*d[nm1]/(x[n]-x[n-3]); } /* Gaussian elimination */ for(i=2 ; i<=n ; i++) { t = d[i-1]/b[i-1]; b[i] = b[i] - t*d[i-1]; c[i] = c[i] - t*c[i-1]; } /* Backward substitution */ c[n] = c[n]/b[n]; for(i=nm1 ; i>=1 ; i--) c[i] = (c[i]-d[i]*c[i+1])/b[i]; /* c[i] is now the sigma[i-1] of the text */ /* Compute polynomial coefficients */ b[n] = (y[n] - y[n-1])/d[n-1] + d[n-1]*(c[n-1]+ 2.0*c[n]); for(i=1 ; i<=nm1 ; i++) { b[i] = (y[i+1]-y[i])/d[i] - d[i]*(c[i+1]+2.0*c[i]); d[i] = (c[i+1]-c[i])/d[i]; c[i] = 3.0*c[i]; } c[n] = 3.0*c[n]; d[n] = d[nm1]; return; } r-bioc-edger-3.4.2+dfsg.orig/tests/0002755000265600020320000000000012227063703016127 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/tests/edgeR-Tests.Rout.save0000644000265600020320000005004712227063703022071 0ustar tilleaadmin R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(edgeR) Loading required package: limma > > set.seed(0); u <- runif(100) > > # generate raw counts from NB, create list object > y <- matrix(rnbinom(80,size=5,mu=10),nrow=20) > y <- rbind(0,c(0,0,2,2),y) > rownames(y) <- paste("Tag",1:nrow(y),sep=".") > d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=1001:1004) > > # estimate common dispersion and find differences in expression > d <- estimateCommonDisp(d) > d$common.dispersion [1] 0.210292 > de <- exactTest(d) > summary(de$table) logFC logCPM PValue Min. :-1.7266 Min. :10.96 Min. :0.01976 1st Qu.:-0.4855 1st Qu.:13.21 1st Qu.:0.33120 Median : 0.2253 Median :13.37 Median :0.56514 Mean : 0.1877 Mean :13.26 Mean :0.54504 3rd Qu.: 0.5258 3rd Qu.:13.70 3rd Qu.:0.81052 Max. : 4.0861 Max. :14.31 Max. :1.00000 > topTags(de) Comparison of groups: 2-1 logFC logCPM PValue FDR Tag.17 2.0450964 13.73750 0.01975954 0.4347099 Tag.21 -1.7265870 13.38299 0.06131012 0.6744114 Tag.6 -1.6329986 12.81458 0.12446044 0.8982100 Tag.2 4.0861092 11.54134 0.16331090 0.8982100 Tag.16 0.9324996 13.57093 0.29050785 0.9655885 Tag.20 0.8543138 13.76371 0.31736609 0.9655885 Tag.12 0.7081170 14.31393 0.37271028 0.9655885 Tag.19 -0.7976602 13.31402 0.40166354 0.9655885 Tag.3 -0.7300410 13.54148 0.42139935 0.9655885 Tag.8 -0.7917906 12.86342 0.47117217 0.9655885 > > d2 <- estimateTagwiseDisp(d,trend="none",prior.df=20) > summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1757 0.1896 0.1989 0.2063 0.2185 0.2677 > de <- exactTest(d2,dispersion="common") > topTags(de) Comparison of groups: 2-1 logFC logCPM PValue FDR Tag.17 2.0450964 13.73750 0.01975954 0.4347099 Tag.21 -1.7265870 13.38299 0.06131012 0.6744114 Tag.6 -1.6329986 12.81458 0.12446044 0.8982100 Tag.2 4.0861092 11.54134 0.16331090 0.8982100 Tag.16 0.9324996 13.57093 0.29050785 0.9655885 Tag.20 0.8543138 13.76371 0.31736609 0.9655885 Tag.12 0.7081170 14.31393 0.37271028 0.9655885 Tag.19 -0.7976602 13.31402 0.40166354 0.9655885 Tag.3 -0.7300410 13.54148 0.42139935 0.9655885 Tag.8 -0.7917906 12.86342 0.47117217 0.9655885 > > de <- exactTest(d2) > topTags(de) Comparison of groups: 2-1 logFC logCPM PValue FDR Tag.17 2.0450987 13.73750 0.01327001 0.2919403 Tag.21 -1.7265897 13.38299 0.05683886 0.6252275 Tag.6 -1.6329910 12.81458 0.11460208 0.8404152 Tag.2 4.0861092 11.54134 0.16126207 0.8869414 Tag.16 0.9324975 13.57093 0.28103256 0.9669238 Tag.20 0.8543178 13.76371 0.30234789 0.9669238 Tag.12 0.7081149 14.31393 0.37917895 0.9669238 Tag.19 -0.7976633 13.31402 0.40762735 0.9669238 Tag.3 -0.7300478 13.54148 0.40856822 0.9669238 Tag.8 -0.7918243 12.86342 0.49005179 0.9669238 > > d2 <- estimateTagwiseDisp(d,trend="movingave",span=0.4,prior.df=20) > summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1005 0.1629 0.2064 0.2077 0.2585 0.3164 > de <- exactTest(d2) > topTags(de) Comparison of groups: 2-1 logFC logCPM PValue FDR Tag.17 2.0450951 13.73750 0.02427872 0.5341319 Tag.21 -1.7265927 13.38299 0.05234833 0.5758316 Tag.6 -1.6330014 12.81458 0.12846308 0.8954397 Tag.2 4.0861092 11.54134 0.16280722 0.8954397 Tag.16 0.9324887 13.57093 0.24308201 0.9711975 Tag.20 0.8543044 13.76371 0.35534649 0.9711975 Tag.19 -0.7976535 13.31402 0.38873717 0.9711975 Tag.3 -0.7300525 13.54148 0.40001438 0.9711975 Tag.12 0.7080985 14.31393 0.43530228 0.9711975 Tag.8 -0.7918376 12.86342 0.49782701 0.9711975 > > summary(exactTest(d2,rejection="smallp")$table$PValue) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02428 0.36370 0.55660 0.54320 0.78890 1.00000 > summary(exactTest(d2,rejection="deviance")$table$PValue) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02428 0.36370 0.55660 0.54320 0.78890 1.00000 > > d2 <- estimateTagwiseDisp(d,trend="loess",span=0.8,prior.df=20) > summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1165 0.1449 0.1833 0.1849 0.2116 0.2826 > de <- exactTest(d2) > topTags(de) Comparison of groups: 2-1 logFC logCPM PValue FDR Tag.17 2.0450979 13.73750 0.01547929 0.3405443 Tag.21 -1.7266049 13.38299 0.03544057 0.3898463 Tag.6 -1.6329841 12.81458 0.10633495 0.7797896 Tag.2 4.0861092 11.54134 0.16057929 0.8831861 Tag.16 0.9324935 13.57093 0.26349447 0.9658370 Tag.20 0.8543140 13.76371 0.31673704 0.9658370 Tag.19 -0.7976354 13.31402 0.35562850 0.9658370 Tag.3 -0.7300593 13.54148 0.38831288 0.9658370 Tag.12 0.7081041 14.31393 0.41512829 0.9658370 Tag.8 -0.7918152 12.86342 0.48483728 0.9658370 > > d2 <- estimateTagwiseDisp(d,trend="tricube",span=0.8,prior.df=20) > summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1165 0.1449 0.1833 0.1849 0.2116 0.2826 > de <- exactTest(d2) > topTags(de) Comparison of groups: 2-1 logFC logCPM PValue FDR Tag.17 2.0450979 13.73750 0.01547929 0.3405443 Tag.21 -1.7266049 13.38299 0.03544057 0.3898463 Tag.6 -1.6329841 12.81458 0.10633495 0.7797896 Tag.2 4.0861092 11.54134 0.16057929 0.8831861 Tag.16 0.9324935 13.57093 0.26349447 0.9658370 Tag.20 0.8543140 13.76371 0.31673704 0.9658370 Tag.19 -0.7976354 13.31402 0.35562850 0.9658370 Tag.3 -0.7300593 13.54148 0.38831288 0.9658370 Tag.12 0.7081041 14.31393 0.41512829 0.9658370 Tag.8 -0.7918152 12.86342 0.48483728 0.9658370 > > # mglmOneWay > design <- model.matrix(~group,data=d$samples) > mglmOneWay(d[1:10,],design,dispersion=0.2) $coefficients (Intercept) group2 [1,] -1.000000e+08 0.000000e+00 [2,] -1.000000e+08 1.000000e+08 [3,] 2.525729e+00 -5.108256e-01 [4,] 2.525729e+00 1.484200e-01 [5,] 2.140066e+00 -1.941560e-01 [6,] 2.079442e+00 -1.163151e+00 [7,] 2.014903e+00 2.363888e-01 [8,] 1.945910e+00 -5.596158e-01 [9,] 1.504077e+00 2.006707e-01 [10,] 2.302585e+00 2.623643e-01 $fitted.values [,1] [,2] [,3] [,4] [1,] 0.0 0.0 0.0 0.0 [2,] 0.0 0.0 2.0 2.0 [3,] 12.5 12.5 7.5 7.5 [4,] 12.5 12.5 14.5 14.5 [5,] 8.5 8.5 7.0 7.0 [6,] 8.0 8.0 2.5 2.5 [7,] 7.5 7.5 9.5 9.5 [8,] 7.0 7.0 4.0 4.0 [9,] 4.5 4.5 5.5 5.5 [10,] 10.0 10.0 13.0 13.0 > mglmOneWay(d[1:10,],design,dispersion=0) $coefficients (Intercept) group2 [1,] -1.000000e+08 0.000000e+00 [2,] -1.000000e+08 1.000000e+08 [3,] 2.525729e+00 -5.108256e-01 [4,] 2.525729e+00 1.484200e-01 [5,] 2.140066e+00 -1.941560e-01 [6,] 2.079442e+00 -1.163151e+00 [7,] 2.014903e+00 2.363888e-01 [8,] 1.945910e+00 -5.596158e-01 [9,] 1.504077e+00 2.006707e-01 [10,] 2.302585e+00 2.623643e-01 $fitted.values [,1] [,2] [,3] [,4] [1,] 0.0 0.0 0.0 0.0 [2,] 0.0 0.0 2.0 2.0 [3,] 12.5 12.5 7.5 7.5 [4,] 12.5 12.5 14.5 14.5 [5,] 8.5 8.5 7.0 7.0 [6,] 8.0 8.0 2.5 2.5 [7,] 7.5 7.5 9.5 9.5 [8,] 7.0 7.0 4.0 4.0 [9,] 4.5 4.5 5.5 5.5 [10,] 10.0 10.0 13.0 13.0 > > fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5/4) > lrt <- glmLRT(fit,coef=2) > topTags(lrt) Coefficient: group2 logFC logCPM LR PValue FDR Tag.17 2.0450964 13.73750 6.0485417 0.01391779 0.3058697 Tag.2 4.0861092 11.54134 4.8400348 0.02780633 0.3058697 Tag.21 -1.7265870 13.38299 4.0777825 0.04345065 0.3186381 Tag.6 -1.6329986 12.81458 3.0078205 0.08286364 0.4557500 Tag.16 0.9324996 13.57093 1.3477682 0.24566867 0.8276702 Tag.20 0.8543138 13.76371 1.1890032 0.27553071 0.8276702 Tag.19 -0.7976602 13.31402 0.9279152 0.33540526 0.8276702 Tag.12 0.7081170 14.31393 0.9095513 0.34023349 0.8276702 Tag.3 -0.7300410 13.54148 0.8300307 0.36226364 0.8276702 Tag.8 -0.7917906 12.86342 0.7830377 0.37621371 0.8276702 > > fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5) > summary(fit$coef) (Intercept) group2 Min. :-7.604 Min. :-1.13681 1st Qu.:-4.895 1st Qu.:-0.32341 Median :-4.713 Median : 0.15083 Mean :-4.940 Mean : 0.07817 3rd Qu.:-4.524 3rd Qu.: 0.35163 Max. :-4.107 Max. : 1.60864 > > fit <- glmFit(d,design,prior.count=0.5/4) > lrt <- glmLRT(fit,coef=2) > topTags(lrt) Coefficient: group2 logFC logCPM LR PValue FDR Tag.17 2.0450964 13.73750 6.0485417 0.01391779 0.3058697 Tag.2 4.0861092 11.54134 4.8400348 0.02780633 0.3058697 Tag.21 -1.7265870 13.38299 4.0777825 0.04345065 0.3186381 Tag.6 -1.6329986 12.81458 3.0078205 0.08286364 0.4557500 Tag.16 0.9324996 13.57093 1.3477682 0.24566867 0.8276702 Tag.20 0.8543138 13.76371 1.1890032 0.27553071 0.8276702 Tag.19 -0.7976602 13.31402 0.9279152 0.33540526 0.8276702 Tag.12 0.7081170 14.31393 0.9095513 0.34023349 0.8276702 Tag.3 -0.7300410 13.54148 0.8300307 0.36226364 0.8276702 Tag.8 -0.7917906 12.86342 0.7830377 0.37621371 0.8276702 > > dglm <- estimateGLMCommonDisp(d,design) > dglm$common.dispersion [1] 0.2033282 > dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20) > summary(dglm$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1756 0.1879 0.1998 0.2031 0.2135 0.2578 > fit <- glmFit(dglm,design,prior.count=0.5/4) > lrt <- glmLRT(fit,coef=2) > topTags(lrt) Coefficient: group2 logFC logCPM LR PValue FDR Tag.17 2.0450988 13.73750 6.8001118 0.009115216 0.2005348 Tag.2 4.0861092 11.54134 4.8594096 0.027495744 0.2872068 Tag.21 -1.7265904 13.38299 4.2537154 0.039164558 0.2872068 Tag.6 -1.6329904 12.81458 3.1763761 0.074710253 0.4109064 Tag.16 0.9324970 13.57093 1.4126709 0.234613511 0.8499599 Tag.20 0.8543183 13.76371 1.2721097 0.259371274 0.8499599 Tag.19 -0.7976614 13.31402 0.9190392 0.337727380 0.8499599 Tag.12 0.7081163 14.31393 0.9014515 0.342392806 0.8499599 Tag.3 -0.7300488 13.54148 0.8817937 0.347710872 0.8499599 Tag.8 -0.7918166 12.86342 0.7356185 0.391068048 0.8603497 > dglm <- estimateGLMTrendedDisp(dglm,design) > summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1522 0.1676 0.1740 0.1887 0.1999 0.3471 > dglm <- estimateGLMTrendedDisp(dglm,design,method="power") > summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1522 0.1676 0.1740 0.1887 0.1999 0.3471 > dglm <- estimateGLMTrendedDisp(dglm,design,method="spline") Loading required package: splines > summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0206 0.1010 0.1687 0.1849 0.2445 0.4910 > dglm <- estimateGLMTrendedDisp(dglm,design,method="bin.spline") > summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1997 0.1997 0.1997 0.1997 0.1997 0.1997 > dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20) > summary(dglm$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1385 0.1792 0.1964 0.1935 0.2026 0.2709 > > # Continuous trend > nlibs <- 3 > ntags <- 1000 > dispersion.true <- 0.1 > # Make first transcript respond to covariate x > x <- 0:2 > design <- model.matrix(~x) > beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1))) > mu.true <- 2^(beta.true %*% t(design)) > # Generate count data > y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true) > y <- matrix(y,ntags,nlibs) > colnames(y) <- c("x0","x1","x2") > rownames(y) <- paste("Gene",1:ntags,sep="") > d <- DGEList(y) > d <- calcNormFactors(d) > fit <- glmFit(d, design, dispersion=dispersion.true, prior.count=0.5/3) > results <- glmLRT(fit, coef=2) > topTags(results) Coefficient: x logFC logCPM LR PValue FDR Gene1 2.907024 13.56183 38.738513 4.845535e-10 4.845535e-07 Gene61 2.855317 10.27136 10.738307 1.049403e-03 5.247014e-01 Gene62 -2.123902 10.53174 8.818704 2.981584e-03 8.334758e-01 Gene134 -1.949073 10.53355 8.125889 4.363759e-03 8.334758e-01 Gene740 -1.610046 10.94907 8.013408 4.643227e-03 8.334758e-01 Gene354 2.022698 10.45066 7.826308 5.149116e-03 8.334758e-01 Gene5 1.856816 10.45249 7.214238 7.232750e-03 8.334758e-01 Gene746 -1.798331 10.53094 6.846262 8.882690e-03 8.334758e-01 Gene110 1.623148 10.68607 6.737984 9.438120e-03 8.334758e-01 Gene383 1.637140 10.75412 6.687530 9.708962e-03 8.334758e-01 > d <- estimateGLMCommonDisp(d, design, verbose=TRUE) Disp = 0.10253 , BCV = 0.3202 > glmFit(d,design,dispersion=dispersion.true,method="simple", prior.count=0.5/3) Loading required package: MASS An object of class "DGEGLM" $coefficients (Intercept) x Gene1 -7.391745 2.0149958 Gene2 -7.318483 -0.7611895 Gene3 -6.831702 -0.1399478 Gene4 -7.480255 0.5172002 Gene5 -8.747793 1.2870467 995 more rows ... $df.residual [1] 1 1 1 1 1 995 more elements ... $deviance [1] 6.38037582 1.46644949 1.38532340 0.01593969 1.03894514 995 more elements ... $design (Intercept) x 1 1 0 2 1 1 3 1 2 attr(,"assign") [1] 0 1 $offset [,1] [,2] [,3] [1,] 8.295172 8.338525 8.284484 [2,] 8.295172 8.338525 8.284484 [3,] 8.295172 8.338525 8.284484 [4,] 8.295172 8.338525 8.284484 [5,] 8.295172 8.338525 8.284484 995 more rows ... $dispersion [1] 0.1 $weights [,1] [,2] [,3] [1,] 1 1 1 [2,] 1 1 1 [3,] 1 1 1 [4,] 1 1 1 [5,] 1 1 1 995 more rows ... $fitted.values x0 x1 x2 Gene1 2.3569790 18.954451 138.2830865 Gene2 2.5138459 1.089294 0.4282075 Gene3 4.1580678 3.750528 3.0689914 Gene4 2.1012458 3.769592 6.1349943 Gene5 0.5080376 2.136398 8.1502479 995 more rows ... $converged [1] TRUE TRUE TRUE TRUE TRUE 995 more elements ... $error [1] FALSE FALSE FALSE FALSE FALSE 995 more elements ... $counts x0 x1 x2 Gene1 0 30 110 Gene2 2 2 0 Gene3 3 6 2 Gene4 2 4 6 Gene5 1 1 9 995 more rows ... $method [1] "simple" $samples group lib.size norm.factors x0 1 4001 1.0008730 x1 1 4176 1.0014172 x2 1 3971 0.9977138 $AveLogCPM [1] 13.561832 9.682757 10.447014 10.532113 10.452489 995 more elements ... > glmFit(d,design,dispersion=dispersion.true,method="levenberg", prior.count=0.5/3) An object of class "DGEGLM" $coefficients (Intercept) x Gene1 -7.391745 2.0149958 Gene2 -7.318483 -0.7611895 Gene3 -6.831702 -0.1399478 Gene4 -7.480255 0.5172002 Gene5 -8.747793 1.2870467 995 more rows ... $fitted.values x0 x1 x2 Gene1 2.3570471 18.954454 138.2791326 Gene2 2.5138172 1.089292 0.4282107 Gene3 4.1580452 3.750528 3.0690081 Gene4 2.1012460 3.769592 6.1349937 Gene5 0.5080377 2.136398 8.1502486 995 more rows ... $deviance [1] 6.38037543 1.46644912 1.38532340 0.01593969 1.03894514 995 more elements ... $iter [1] 8 4 4 4 6 995 more elements ... $failed [1] FALSE FALSE FALSE FALSE FALSE 995 more elements ... $counts x0 x1 x2 Gene1 0 30 110 Gene2 2 2 0 Gene3 3 6 2 Gene4 2 4 6 Gene5 1 1 9 995 more rows ... $df.residual [1] 1 1 1 1 1 995 more elements ... $design (Intercept) x 1 1 0 2 1 1 3 1 2 attr(,"assign") [1] 0 1 $offset [,1] [,2] [,3] [1,] 8.295172 8.338525 8.284484 [2,] 8.295172 8.338525 8.284484 [3,] 8.295172 8.338525 8.284484 [4,] 8.295172 8.338525 8.284484 [5,] 8.295172 8.338525 8.284484 995 more rows ... $dispersion [1] 0.1 $method [1] "levenberg" $samples group lib.size norm.factors x0 1 4001 1.0008730 x1 1 4176 1.0014172 x2 1 3971 0.9977138 $AveLogCPM [1] 13.561832 9.682757 10.447014 10.532113 10.452489 995 more elements ... > > # Exact tests > y <- matrix(rnbinom(20,mu=10,size=3/2),5,4) > group <- factor(c(1,1,2,2)) > ys <- splitIntoGroupsPseudo(y,group,pair=c(1,2)) > exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3) [1] 0.1334396 0.6343568 0.7280015 0.7124912 0.3919258 > > y <- matrix(rnbinom(5*7,mu=10,size=3/2),5,7) > group <- factor(c(1,1,2,2,3,3,3)) > ys <- splitIntoGroupsPseudo(y,group,pair=c(1,3)) > exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3) [1] 1.0000000 0.4486382 1.0000000 0.9390317 0.4591241 > exactTestBetaApprox(ys$y1,ys$y2,dispersion=2/3) [1] 1.0000000 0.4492969 1.0000000 0.9421695 0.4589194 > > y[1,3:4] <- 0 > design <- model.matrix(~group) > fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7) > summary(fit$coef) (Intercept) group2 group3 Min. :-1.817 Min. :-5.0171 Min. :-0.64646 1st Qu.:-1.812 1st Qu.:-1.1565 1st Qu.:-0.13919 Median :-1.712 Median : 0.1994 Median :-0.10441 Mean :-1.625 Mean :-0.9523 Mean :-0.04217 3rd Qu.:-1.429 3rd Qu.: 0.3755 3rd Qu.:-0.04305 Max. :-1.356 Max. : 0.8374 Max. : 0.72227 > > lrt <- glmLRT(fit,contrast=cbind(c(0,1,0),c(0,0,1))) > topTags(lrt) Coefficient: LR test of 2 contrasts logFC.1 logFC.2 logCPM LR PValue FDR 1 -7.2381060 -0.0621100 17.20027 10.7712179 0.004582049 0.02291025 5 -1.6684268 -0.9326507 17.34879 1.7309951 0.420842114 0.90967967 2 1.2080938 1.0420198 18.24809 1.0496688 0.591653346 0.90967967 4 0.5416704 -0.1506381 17.59977 0.3958596 0.820427427 0.90967967 3 0.2876249 -0.2008143 18.02991 0.1893255 0.909679671 0.90967967 > design <- model.matrix(~0+group) > fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7) > lrt <- glmLRT(fit,contrast=cbind(c(-1,1,0),c(0,-1,1),c(-1,0,1))) > topTags(lrt) Coefficient: LR test of 2 contrasts logFC.1 logFC.2 logCPM LR PValue FDR 1 -7.2381060 7.1759960 17.20027 10.7712179 0.004582049 0.02291025 5 -1.6684268 0.7357761 17.34879 1.7309951 0.420842114 0.90967967 2 1.2080938 -0.1660740 18.24809 1.0496688 0.591653346 0.90967967 4 0.5416704 -0.6923084 17.59977 0.3958596 0.820427427 0.90967967 3 0.2876249 -0.4884392 18.02991 0.1893255 0.909679671 0.90967967 > > # spliceVariants > z = matrix(c(2,0,4,6,4,3,7,1,1,0,1,1,0,3,1,2,0,1,2,1,0,3,1,0), 8, 3) > gz = c(1,2,2,2,2,2,2,2) > spliceVariants(DGEList(counts = z, group = c(1,2,2)), gz) An object of class "DGEExact" $table logFC logCPM LR PValue 1 NA 19.19460 0.00000 1.00000000 2 NA 19.34082 11.47712 0.07470318 $comparison NULL $genes GeneID 1 1 2 2 $dispersion 1 2 6.434416e-03 1.570902e-06 > > # simple Good-Turing algorithm runs. > test1<-1:9 > freq1<-c(2018046, 449721, 188933, 105668, 68379, 48190, 35709, 37710, 22280) > goodTuring(rep(test1, freq1)) $P0 [1] 0.3814719 $proportion [1] 8.035111e-08 2.272143e-07 4.060582e-07 5.773690e-07 7.516705e-07 [6] 9.276808e-07 1.104759e-06 1.282549e-06 1.460837e-06 $count [1] 1 2 3 4 5 6 7 8 9 $n [1] 2018046 449721 188933 105668 68379 48190 35709 37710 22280 $n0 [1] 0 > test2<-c(312, 14491, 16401, 65124, 129797, 323321, 366051, 368599, 405261, 604962) > goodTuring(test2) $P0 [1] 0 $proportion [1] 0.0001362656 0.0063162959 0.0071487846 0.0283850925 0.0565733349 [6] 0.1409223124 0.1595465235 0.1606570896 0.1766365144 0.2636777866 $count [1] 312 14491 16401 65124 129797 323321 366051 368599 405261 604962 $n [1] 1 1 1 1 1 1 1 1 1 1 $n0 [1] 0 > > > > proc.time() user system elapsed 4.30 0.04 4.35 r-bioc-edger-3.4.2+dfsg.orig/tests/edgeR-Tests.R0000644000265600020320000001041112227063703020373 0ustar tilleaadminlibrary(edgeR) set.seed(0); u <- runif(100) # generate raw counts from NB, create list object y <- matrix(rnbinom(80,size=5,mu=10),nrow=20) y <- rbind(0,c(0,0,2,2),y) rownames(y) <- paste("Tag",1:nrow(y),sep=".") d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=1001:1004) # estimate common dispersion and find differences in expression d <- estimateCommonDisp(d) d$common.dispersion de <- exactTest(d) summary(de$table) topTags(de) d2 <- estimateTagwiseDisp(d,trend="none",prior.df=20) summary(d2$tagwise.dispersion) de <- exactTest(d2,dispersion="common") topTags(de) de <- exactTest(d2) topTags(de) d2 <- estimateTagwiseDisp(d,trend="movingave",span=0.4,prior.df=20) summary(d2$tagwise.dispersion) de <- exactTest(d2) topTags(de) summary(exactTest(d2,rejection="smallp")$table$PValue) summary(exactTest(d2,rejection="deviance")$table$PValue) d2 <- estimateTagwiseDisp(d,trend="loess",span=0.8,prior.df=20) summary(d2$tagwise.dispersion) de <- exactTest(d2) topTags(de) d2 <- estimateTagwiseDisp(d,trend="tricube",span=0.8,prior.df=20) summary(d2$tagwise.dispersion) de <- exactTest(d2) topTags(de) # mglmOneWay design <- model.matrix(~group,data=d$samples) mglmOneWay(d[1:10,],design,dispersion=0.2) mglmOneWay(d[1:10,],design,dispersion=0) fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5/4) lrt <- glmLRT(fit,coef=2) topTags(lrt) fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5) summary(fit$coef) fit <- glmFit(d,design,prior.count=0.5/4) lrt <- glmLRT(fit,coef=2) topTags(lrt) dglm <- estimateGLMCommonDisp(d,design) dglm$common.dispersion dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20) summary(dglm$tagwise.dispersion) fit <- glmFit(dglm,design,prior.count=0.5/4) lrt <- glmLRT(fit,coef=2) topTags(lrt) dglm <- estimateGLMTrendedDisp(dglm,design) summary(dglm$trended.dispersion) dglm <- estimateGLMTrendedDisp(dglm,design,method="power") summary(dglm$trended.dispersion) dglm <- estimateGLMTrendedDisp(dglm,design,method="spline") summary(dglm$trended.dispersion) dglm <- estimateGLMTrendedDisp(dglm,design,method="bin.spline") summary(dglm$trended.dispersion) dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20) summary(dglm$tagwise.dispersion) # Continuous trend nlibs <- 3 ntags <- 1000 dispersion.true <- 0.1 # Make first transcript respond to covariate x x <- 0:2 design <- model.matrix(~x) beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1))) mu.true <- 2^(beta.true %*% t(design)) # Generate count data y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true) y <- matrix(y,ntags,nlibs) colnames(y) <- c("x0","x1","x2") rownames(y) <- paste("Gene",1:ntags,sep="") d <- DGEList(y) d <- calcNormFactors(d) fit <- glmFit(d, design, dispersion=dispersion.true, prior.count=0.5/3) results <- glmLRT(fit, coef=2) topTags(results) d <- estimateGLMCommonDisp(d, design, verbose=TRUE) glmFit(d,design,dispersion=dispersion.true,method="simple", prior.count=0.5/3) glmFit(d,design,dispersion=dispersion.true,method="levenberg", prior.count=0.5/3) # Exact tests y <- matrix(rnbinom(20,mu=10,size=3/2),5,4) group <- factor(c(1,1,2,2)) ys <- splitIntoGroupsPseudo(y,group,pair=c(1,2)) exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3) y <- matrix(rnbinom(5*7,mu=10,size=3/2),5,7) group <- factor(c(1,1,2,2,3,3,3)) ys <- splitIntoGroupsPseudo(y,group,pair=c(1,3)) exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3) exactTestBetaApprox(ys$y1,ys$y2,dispersion=2/3) y[1,3:4] <- 0 design <- model.matrix(~group) fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7) summary(fit$coef) lrt <- glmLRT(fit,contrast=cbind(c(0,1,0),c(0,0,1))) topTags(lrt) design <- model.matrix(~0+group) fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7) lrt <- glmLRT(fit,contrast=cbind(c(-1,1,0),c(0,-1,1),c(-1,0,1))) topTags(lrt) # spliceVariants z = matrix(c(2,0,4,6,4,3,7,1,1,0,1,1,0,3,1,2,0,1,2,1,0,3,1,0), 8, 3) gz = c(1,2,2,2,2,2,2,2) spliceVariants(DGEList(counts = z, group = c(1,2,2)), gz) # simple Good-Turing algorithm runs. test1<-1:9 freq1<-c(2018046, 449721, 188933, 105668, 68379, 48190, 35709, 37710, 22280) goodTuring(rep(test1, freq1)) test2<-c(312, 14491, 16401, 65124, 129797, 323321, 366051, 368599, 405261, 604962) goodTuring(test2) r-bioc-edger-3.4.2+dfsg.orig/data/0002755000265600020320000000000012250253443015674 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/data/NC1.txt0000755000265600020320000074526412227063704017044 0ustar tilleaadminTag_Sequence Count AAAAAAAAAA 17 AAAAAAAAGA 1 AAAAAAACCC 1 AAAAAAAGCA 1 AAAAAAATCA 4 AAAAAAATTT 1 AAAAAACAAA 1 AAAAAACCCA 1 AAAAAACTAA 1 AAAAAACTCC 1 AAAAAATACT 1 AAAAAATATG 1 AAAAACACCT 1 AAAAACAGTA 1 AAAAACCCTT 1 AAAAACTCCA 1 AAAAAGAAAA 1 AAAAAGAATG 1 AAAAAGACAC 1 AAAAAGCACA 2 AAAAAGCAGA 1 AAAAAGCATT 1 AAAAAGCTAG 1 AAAAAGCTGA 1 AAAAAGGGTT 1 AAAAAGTTTC 1 AAAAATAAAG 4 AAAAATAAAT 1 AAAAATCCTA 1 AAAAATCGGC 1 AAAAATCTTC 1 AAAAATGCAC 1 AAAAATGGTA 1 AAAAATTGGA 3 AAAACAAAAA 1 AAAACAATCT 1 AAAACAGAGG 1 AAAACAGGAT 1 AAAACAGTAG 1 AAAACATACT 1 AAAACATTAT 2 AAAACATTCA 1 AAAACATTCC 4 AAAACATTCT 161 AAAACATTTC 1 AAAACCAAAA 1 AAAACCCAGT 2 AAAACCGAGG 1 AAAACCTACA 1 AAAACCTAGT 1 AAAACGCTCC 1 AAAACTCATT 3 AAAACTCCTG 1 AAAACTGAGA 3 AAAACTGCAC 2 AAAACTTCTG 3 AAAACTTTCC 1 AAAACTTTCT 1 AAAAGAAAAG 1 AAAAGAAAAT 1 AAAAGAAACT 1 AAAAGAAAGG 1 AAAAGAGAAA 8 AAAAGAGAAT 1 AAAAGAGTGG 19 AAAAGAGTTA 1 AAAAGATGCA 1 AAAAGATGCT 1 AAAAGATTCT 1 AAAAGCAGAA 3 AAAAGGAATG 1 AAAAGGAGTG 1 AAAAGGATGC 1 AAAAGGATGT 1 AAAAGGCACT 1 AAAAGGCTTT 1 AAAAGGGAGA 1 AAAAGGGCAT 1 AAAAGGGGCA 1 AAAAGTCATT 1 AAAAGTTATT 1 AAAAGTTGGA 1 AAAAGTTTTA 1 AAAATAAACC 1 AAAATAAACG 4 AAAATAAACT 1 AAAATAAATG 1 AAAATAAGTG 1 AAAATAGAAA 1 AAAATAGGTC 1 AAAATATCCC 1 AAAATATGCT 1 AAAATCACTT 1 AAAATCAGGT 3 AAAATCCAAT 1 AAAATCCACA 1 AAAATCCATC 1 AAAATCGCTT 1 AAAATCTACT 1 AAAATCTCTT 1 AAAATCTGGA 1 AAAATGAACA 1 AAAATGAAGA 1 AAAATGAGAA 1 AAAATGATAC 1 AAAATGATAT 2 AAAATGCTTT 1 AAAATGGACA 1 AAAATGGAGA 1 AAAATGGCTT 1 AAAATGGGGT 1 AAAATGTACT 1 AAAATGTATC 1 AAAATGTTCA 1 AAAATGTTCC 1 AAAATGTTCT 1 AAAATTAAAG 1 AAAATTATCT 1 AAAATTATGT 2 AAAATTCCCC 1 AAAATTGACC 1 AAAATTGCCA 1 AAAATTGCTT 1 AAAATTTAGC 1 AAAATTTTTG 1 AAACAAAAAA 1 AAACAAACTT 1 AAACAACCAG 1 AAACAATGGC 1 AAACACAGCA 1 AAACACCAAC 1 AAACACGAAA 1 AAACACTCTT 2 AAACACTTGA 1 AAACAGAGCT 3 AAACAGAGTT 1 AAACAGCACA 1 AAACAGCAGG 1 AAACAGCCCT 1 AAACAGCCTA 1 AAACAGGCAC 2 AAACAGTAGT 3 AAACAGTGTA 1 AAACAGTTGT 1 AAACATCCTA 9 AAACATCCTT 1 AAACATTAGC 1 AAACATTCTC 1 AAACATTGGG 7 AAACATTTTC 1 AAACCAAAAA 1 AAACCAACTG 1 AAACCAATCA 1 AAACCAATCT 1 AAACCAATTA 1 AAACCAATTT 1 AAACCACTTC 1 AAACCAGGAG 2 AAACCATCCA 2 AAACCATTCT 1 AAACCCCGTC 2 AAACCCCGTT 1 AAACCCCTCA 1 AAACCGCTTG 1 AAACCGGGAG 2 AAACCTCAGG 2 AAACCTCATT 1 AAACCTCCAA 1 AAACCTGAGA 2 AAACCTGTGT 1 AAACGAAGAT 1 AAACGACCAA 1 AAACGAGACG 2 AAACGAGCTG 1 AAACGGCTGG 1 AAACTAATCC 1 AAACTAATGA 1 AAACTACCCC 1 AAACTACCCT 1 AAACTAGAAA 1 AAACTAGGAG 1 AAACTATTAG 1 AAACTCCAAC 1 AAACTCGGGT 2 AAACTCGTGA 1 AAACTCTATT 1 AAACTCTGGG 1 AAACTCTGTG 3 AAACTGAATA 2 AAACTGGACT 1 AAACTGGCAG 5 AAACTGTCAG 1 AAACTGTGGT 2 AAACTGTTCA 1 AAACTTACCT 1 AAACTTACTG 1 AAACTTCATT 1 AAACTTCCGC 1 AAACTTGCTC 7 AAACTTGTGG 1 AAACTTTCAC 1 AAACTTTGTA 3 AAACTTTTCT 1 AAAGAAAAAA 1 AAAGAAAGTG 2 AAAGAACAGA 1 AAAGAACATA 1 AAAGAACGAC 2 AAAGAAGACT 1 AAAGAAGGCA 1 AAAGAAGGCT 1 AAAGAATGCA 1 AAAGACATAT 1 AAAGAGAAAG 1 AAAGAGCATC 1 AAAGAGGACC 2 AAAGAGTCGG 2 AAAGAGTCTT 1 AAAGATACAA 1 AAAGCAAGAA 1 AAAGCACAAG 1 AAAGCACGTC 1 AAAGCAGCAC 3 AAAGCAGCCG 1 AAAGCAGGAC 1 AAAGCATCCC 1 AAAGCATCCG 1 AAAGCATTCT 1 AAAGCATTTT 1 AAAGCCAAGA 3 AAAGCCCAGT 1 AAAGCCCCCC 1 AAAGCCCTCT 1 AAAGCCCTTG 1 AAAGCCGGTA 1 AAAGCCGTCA 2 AAAGCCTATA 1 AAAGCCTTCT 1 AAAGCGTAAA 4 AAAGCTCTTC 1 AAAGCTGACA 1 AAAGCTGCCT 4 AAAGCTGGAA 1 AAAGCTGTGG 1 AAAGCTGTGT 1 AAAGGAAAGT 2 AAAGGAATGA 1 AAAGGACAGT 1 AAAGGACTCA 1 AAAGGCAAGA 1 AAAGGCAGAG 1 AAAGGCAGAT 1 AAAGGCGGGG 1 AAAGGGAGGT 1 AAAGGGGCAG 1 AAAGGGGCCA 1 AAAGGGGGCA 2 AAAGGGTGAG 1 AAAGGTATCA 1 AAAGGTCAAG 1 AAAGGTGAAG 1 AAAGGTTCTT 1 AAAGGTTTGG 1 AAAGTACAGG 1 AAAGTACTAA 1 AAAGTAGAAG 1 AAAGTCAATC 1 AAAGTCAGAA 5 AAAGTCATCA 1 AAAGTCATTG 5 AAAGTCCAGA 1 AAAGTCCAGG 1 AAAGTCCCTC 1 AAAGTCTAGA 4 AAAGTGAAGA 1 AAAGTGATGC 2 AAAGTGCGAT 1 AAAGTGGAAA 2 AAAGTGGAGG 1 AAAGTGGCTA 1 AAAGTGGGTG 3 AAAGTGGTGG 1 AAAGTTAGCA 1 AAAGTTAGTA 1 AAAGTTAGTG 1 AAAGTTCGTA 2 AAAGTTGGGT 1 AAAGTTTTAT 1 AAAGTTTTGT 1 AAATAAAAGA 5 AAATAAAAGC 16 AAATAAATTA 1 AAATAATGTT 1 AAATACAGCA 2 AAATACAGTT 1 AAATACATCC 1 AAATACGAAG 1 AAATACTTCA 4 AAATAGAAAA 1 AAATAGATCC 9 AAATAGCCCA 1 AAATAGCTAA 1 AAATAGGTGA 1 AAATAGGTTA 1 AAATAGGTTT 1 AAATATGGCA 1 AAATATGTTG 1 AAATATTAGC 1 AAATCACCAA 1 AAATCAGGAA 1 AAATCAGTTA 1 AAATCCACTC 1 AAATCCAGGC 1 AAATCCCAAT 1 AAATCCCCCG 1 AAATCCCTGT 1 AAATCCTCAA 1 AAATCGATGA 1 AAATCGGCCT 1 AAATCTGGCA 16 AAATCTTTGC 1 AAATGAAAAT 3 AAATGACTAT 1 AAATGAGAGA 1 AAATGAGCTG 1 AAATGAGGGA 1 AAATGATGGT 1 AAATGATTGC 1 AAATGCAGGC 1 AAATGCCACA 5 AAATGCCCAC 1 AAATGCCTTT 1 AAATGCTTTC 1 AAATGCTTTT 1 AAATGGAATG 1 AAATGGCAAA 1 AAATGGCTCT 1 AAATGGCTGC 1 AAATGGCTTG 8 AAATGGGGAA 1 AAATGGTACT 1 AAATGGTAGT 1 AAATGTAAGA 1 AAATGTAATT 3 AAATGTATAC 1 AAATGTGAAT 1 AAATGTGGCA 1 AAATGTGTAA 1 AAATGTTAAG 1 AAATGTTAAT 1 AAATGTTCGC 1 AAATGTTTAG 3 AAATTAAAAA 1 AAATTAAAAC 1 AAATTAAACG 1 AAATTAAAGC 1 AAATTAGGCT 1 AAATTAGTAT 1 AAATTCACCC 1 AAATTCAGAA 1 AAATTCGAGT 1 AAATTCGTTC 1 AAATTGTTCC 2 AAATTGTTGT 4 AAATTTCAAA 2 AAATTTCAAG 2 AAATTTCTCA 3 AAATTTCTGC 1 AAATTTGTCT 2 AAATTTTACA 1 AAATTTTCCA 1 AAATTTTGCC 1 AAATTTTGGT 3 AACAAAAAAG 1 AACAAACATC 1 AACAAAGAAT 1 AACAAATTCT 2 AACAACACAG 1 AACAACAGAC 1 AACAACTGGC 2 AACAAGGTGA 3 AACAAGGTTA 1 AACAAGTTCT 1 AACAATAATT 1 AACACAACCA 1 AACACAGCCT 1 AACACAGGAA 1 AACACAGGAG 1 AACACAGTGG 1 AACACAGTTA 1 AACACCCTTT 1 AACACGGAAG 1 AACACGTCTT 2 AACACTTCCT 1 AACAGAAACA 1 AACAGAAGAT 1 AACAGACACA 3 AACAGACACT 1 AACAGACTAA 1 AACAGATATT 2 AACAGATGAG 1 AACAGCAGCA 3 AACAGCATTA 1 AACAGCTTGG 2 AACAGGAAGA 1 AACAGTCAAA 7 AACAGTCTCT 1 AACAGTGTCG 1 AACAGTTGCT 1 AACATAAATA 1 AACATAACAT 1 AACATAAGGG 1 AACATACGTT 1 AACATACTGG 1 AACATAGAAG 1 AACATAGAGA 1 AACATCAAAC 4 AACATTGACA 4 AACATTTATC 1 AACATTTGGA 1 AACCAAAAAA 1 AACCAAAAGG 1 AACCAACGGG 1 AACCAAGATT 1 AACCACAGTG 1 AACCACATTG 6 AACCACCACG 2 AACCACCCAG 4 AACCACTGCA 2 AACCACTGCT 3 AACCAGACTC 1 AACCAGAGAG 1 AACCAGGCAG 1 AACCAGGGAG 4 AACCAGGTGT 4 AACCAGTGGC 2 AACCCAAAAA 1 AACCCAAGAG 4 AACCCAAGAT 1 AACCCAATAA 1 AACCCACAGT 1 AACCCACCAG 1 AACCCAGCAG 2 AACCCAGGAA 4 AACCCAGGAG 44 AACCCAGGAT 1 AACCCAGGGG 1 AACCCAGGTG 1 AACCCATCAG 1 AACCCCATCT 1 AACCCCCTGA 1 AACCCCGCCG 1 AACCCCGGAG 1 AACCCCGGGA 1 AACCCCTCAA 1 AACCCGAAAG 1 AACCCGAGAG 1 AACCCGCAAG 2 AACCCGGGAA 1 AACCCGGGAG 96 AACCCGGGAT 1 AACCCGGTAG 2 AACCCGTGTT 1 AACCCTACAA 1 AACCCTCAGA 1 AACCCTCTCC 1 AACCCTGCAA 1 AACCCTGCCC 2 AACCCTGGAG 2 AACCGCCTGC 1 AACCGCTCTG 1 AACCGGACAG 1 AACCGGAGAC 1 AACCGGAGTT 1 AACCGGGAAG 7 AACCGGGGCA 1 AACCGTGAAG 1 AACCTCCTGC 1 AACCTCTGCC 1 AACCTGAGAG 1 AACCTGGCCC 1 AACCTGGCCT 1 AACCTGGGAA 2 AACCTGGGAG 38 AACCTGTGGT 1 AACCTGTTTT 3 AACCTTGGTT 1 AACCTTTAAA 1 AACCTTTGGA 1 AACGAACGTG 3 AACGAATGCA 1 AACGACCTCG 1 AACGACCTTG 1 AACGACTGTG 1 AACGAGCCAA 1 AACGAGGAAT 8 AACGAGGATT 1 AACGAGTACA 4 AACGCACCAC 1 AACGCAGGAG 1 AACGCCCAGG 1 AACGCGGCCA 14 AACGCGGCGC 1 AACGCTGCAA 1 AACGCTGCCT 2 AACGCTTTAA 1 AACGGAATGG 1 AACGGGGCTA 1 AACGGTCGTG 1 AACGGTTACA 1 AACGTATCTA 1 AACGTGAGCT 1 AACGTGCAAG 1 AACGTGCAGG 29 AACGTGCGGG 2 AACGTGGCCC 3 AACGTGGGAG 1 AACGTTATTA 2 AACGTTCACA 1 AACGTTTAAG 1 AACGTTTGCA 1 AACTAAAAAA 6 AACTAACAAA 2 AACTAACATA 1 AACTACATAG 1 AACTACCCTC 1 AACTACTCAC 1 AACTACTTTA 3 AACTACTTTG 1 AACTAGCAGA 1 AACTAGCAGT 1 AACTAGGAAG 1 AACTAGGAAT 1 AACTATAAAC 1 AACTATACAA 1 AACTATTTCT 1 AACTCAGAGG 1 AACTCAGCTA 1 AACTCAGGAG 2 AACTCCCACT 1 AACTCCCAGT 2 AACTCCCTGC 1 AACTCCTGGG 2 AACTCCTTCA 1 AACTCCTTTG 1 AACTCGAGCA 1 AACTCGGGAG 1 AACTCGTCCG 1 AACTCTCCTT 1 AACTCTGACT 1 AACTCTGATA 1 AACTCTGCTC 1 AACTCTGGGT 1 AACTCTTCAC 1 AACTCTTGAA 2 AACTGAAATG 1 AACTGAATTC 1 AACTGAGCTT 1 AACTGCAGCG 1 AACTGCATAG 1 AACTGCATTA 1 AACTGCCTGC 1 AACTGCCTTA 1 AACTGCGACT 1 AACTGCGGCA 2 AACTGCTTCA 5 AACTGGAGTC 4 AACTGGGCAA 1 AACTGGGGAG 1 AACTGGGTTG 1 AACTGTACAA 1 AACTGTACTA 1 AACTGTATAC 2 AACTGTATTG 1 AACTGTATTT 1 AACTGTCATA 1 AACTGTCCCT 1 AACTGTCCTT 2 AACTGTGCAC 1 AACTGTTAGT 1 AACTGTTGGA 1 AACTTACTCT 1 AACTTAGCCC 1 AACTTCGTCA 1 AACTTCTGTG 1 AACTTGACAG 1 AACTTGATGG 1 AACTTGCCAA 2 AACTTGCCCA 4 AACTTGCTCT 2 AACTTGCTTA 1 AACTTGGCAA 1 AACTTGGCTG 2 AACTTGGGAG 2 AACTTGTAAA 2 AACTTTCAAA 1 AACTTTCTAG 1 AACTTTCTGG 2 AACTTTGACA 1 AACTTTGAGG 1 AACTTTGTGG 1 AAGAAAACCT 14 AAGAAAACTG 8 AAGAAAAGCC 1 AAGAAACAGA 1 AAGAAACCCT 1 AAGAAAGAGC 1 AAGAAAGCTC 20 AAGAAAGGGA 1 AAGAAAGTTC 3 AAGAAATCGT 1 AAGAAATTTC 1 AAGAACCCCA 1 AAGAACGTAG 1 AAGAACTCCA 1 AAGAACTCTA 1 AAGAACTTCA 1 AAGAAGAAGA 1 AAGAAGACTT 3 AAGAAGATAG 6 AAGAAGATTG 1 AAGAAGCACA 1 AAGAAGCAGG 8 AAGAAGCCCA 1 AAGAAGCTGA 1 AAGAAGGGAG 1 AAGAAGGTGG 3 AAGAAGTCCC 1 AAGAATACAT 1 AAGAATAGAA 1 AAGAATATTG 1 AAGAATCACG 1 AAGAATGCAG 1 AAGAATTCAC 1 AAGAATTGGA 1 AAGAATTTGA 2 AAGACAGACC 1 AAGACAGAGC 2 AAGACAGTGC 1 AAGACAGTGG 37 AAGACATCCA 1 AAGACCACTA 1 AAGACCCACC 1 AAGACCCCCG 1 AAGACCCTAA 1 AAGACCTCAG 1 AAGACCTCTA 1 AAGACCTTCC 1 AAGACGGTGG 1 AAGACTCATC 1 AAGACTCTGT 1 AAGACTGAAG 1 AAGACTGCCC 1 AAGACTGGCC 1 AAGACTGGCT 12 AAGACTGTAA 1 AAGACTGTGG 1 AAGACTTGAC 1 AAGAGACAAC 1 AAGAGACACA 1 AAGAGACAGT 2 AAGAGACATA 7 AAGAGAGGGA 4 AAGAGAGGGC 1 AAGAGAGTGG 1 AAGAGATGAG 3 AAGAGATTCT 1 AAGAGCAAGC 1 AAGAGCGACT 1 AAGAGCGCAT 2 AAGAGCGCCG 6 AAGAGCTAAT 1 AAGAGGACAG 1 AAGAGGACTC 1 AAGAGGAGAT 3 AAGAGGATTG 1 AAGAGGCCAA 1 AAGAGGCTCT 1 AAGAGGCTTC 2 AAGAGGTGGG 1 AAGAGGTTTG 6 AAGAGTAGAG 1 AAGAGTCCAG 11 AAGAGTGCTT 1 AAGAGTTACG 2 AAGAGTTGCG 1 AAGATAAGAA 1 AAGATAATGC 1 AAGATAGTGG 1 AAGATATACG 1 AAGATATTTG 1 AAGATCACCA 1 AAGATCATTG 2 AAGATCCAAA 1 AAGATCCCCG 2 AAGATCCCCT 1 AAGATCCCGC 1 AAGATCCCTT 1 AAGATCGCTT 1 AAGATGAGGG 1 AAGATGATAA 2 AAGATGCATC 1 AAGATGCCTT 1 AAGATGGACC 1 AAGATGGAGG 1 AAGATGTCTG 1 AAGATGTGGG 1 AAGATGTTTG 1 AAGATTGGAA 1 AAGATTGGCG 1 AAGATTGGTG 30 AAGATTGGTT 1 AAGCAAACTA 2 AAGCAAGAGG 1 AAGCAAGGAA 1 AAGCAAGTCA 1 AAGCAATCAA 1 AAGCACCTGG 1 AAGCACGTTT 1 AAGCACTGTT 1 AAGCACTTCT 2 AAGCAGAACA 1 AAGCAGAAGG 1 AAGCAGACAA 1 AAGCAGCTGA 1 AAGCAGCTGT 1 AAGCAGGAGG 4 AAGCAGTGGC 1 AAGCATATAC 1 AAGCATCACC 1 AAGCATCCCC 1 AAGCATCTCA 2 AAGCATTCCA 1 AAGCCACCTC 3 AAGCCAGAAG 1 AAGCCAGCCC 4 AAGCCAGCTT 1 AAGCCAGGAC 9 AAGCCAGGAG 1 AAGCCAGGGG 1 AAGCCATTCA 4 AAGCCCAGGA 1 AAGCCCAGGC 1 AAGCCCAGTT 1 AAGCCCATAC 1 AAGCCCCAGA 1 AAGCCCCCTT 1 AAGCCCGTAG 1 AAGCCCTACA 1 AAGCCCTGGA 1 AAGCCCTTCT 1 AAGCCGGCCC 1 AAGCCGGGAG 2 AAGCCGGGGG 1 AAGCCGTCCC 1 AAGCCTATAG 1 AAGCCTCATC 1 AAGCCTCCCC 1 AAGCCTGAGC 1 AAGCCTGGCT 1 AAGCCTGTAG 1 AAGCCTGTTC 1 AAGCCTTAGA 1 AAGCCTTCAA 2 AAGCCTTGCT 3 AAGCGAATGC 1 AAGCGCAGAA 1 AAGCGCTACC 1 AAGCGCTCTC 8 AAGCGGAGTG 2 AAGCGGGACC 1 AAGCGGGTGG 1 AAGCTACCAA 1 AAGCTAGGGT 1 AAGCTCCCAG 1 AAGCTCCCTA 1 AAGCTCTCCT 1 AAGCTCTGTG 1 AAGCTGAGAG 1 AAGCTGAGTG 5 AAGCTGCTAA 2 AAGCTGCTGC 2 AAGCTGGAAT 1 AAGCTGGAGG 5 AAGCTGTCAG 2 AAGCTGTTCC 3 AAGCTGTTGA 1 AAGCTGTTTA 1 AAGCTTGAGA 1 AAGCTTTGCA 1 AAGCTTTGCT 1 AAGGAAAAGC 1 AAGGAACCTG 1 AAGGAACTTG 2 AAGGAAGATC 3 AAGGAAGATG 2 AAGGAAGATT 1 AAGGAAGCAA 1 AAGGAAGCTG 1 AAGGAATCGG 1 AAGGAATCTA 1 AAGGACACAC 2 AAGGACAGAG 6 AAGGACATCC 2 AAGGACCGGA 1 AAGGACCTAG 2 AAGGACCTCA 1 AAGGACCTCT 2 AAGGACCTTT 34 AAGGACTGAG 1 AAGGACTTCC 1 AAGGAGATGG 16 AAGGAGATTG 1 AAGGAGCGAA 1 AAGGAGCGGG 2 AAGGAGCTGC 1 AAGGAGCTGG 2 AAGGAGGCAA 1 AAGGAGGTCA 1 AAGGAGTCCC 2 AAGGAGTCTC 1 AAGGAGTGAA 1 AAGGAGTTCG 1 AAGGAGTTTG 4 AAGGAGTTTT 1 AAGGATAAAA 8 AAGGATACTT 1 AAGGATCCTT 1 AAGGATGAGG 1 AAGGATGCGG 1 AAGGATTGTG 1 AAGGCAAAGC 1 AAGGCAAAGG 1 AAGGCAATCG 2 AAGGCAGAAG 1 AAGGCAGACC 1 AAGGCAGAGT 2 AAGGCAGGAG 1 AAGGCAGGCG 1 AAGGCCACCG 1 AAGGCCAGAG 1 AAGGCCAGCA 1 AAGGCCCCAG 1 AAGGCCCCTG 5 AAGGCCGAGT 1 AAGGCCGGGT 1 AAGGCCTTGT 6 AAGGCGCTGA 1 AAGGCGGAGA 1 AAGGCGTTTC 1 AAGGCTCAAA 1 AAGGCTCTTT 2 AAGGCTGAGC 7 AAGGCTGAGG 1 AAGGCTGATA 1 AAGGCTGCTC 1 AAGGCTGGAA 1 AAGGGAAAGA 1 AAGGGAAAGG 1 AAGGGAGAAA 1 AAGGGAGCAC 2 AAGGGAGCTG 1 AAGGGAGGGT 4 AAGGGATACT 1 AAGGGATCTC 1 AAGGGATGTC 2 AAGGGCACCT 1 AAGGGCAGTG 3 AAGGGCCGGT 1 AAGGGCCTCA 1 AAGGGCCTTT 1 AAGGGCGCGG 8 AAGGGGCAAG 1 AAGGGGCTGG 1 AAGGGGGCAA 13 AAGGGGTTTC 1 AAGGTAACTT 1 AAGGTAATAT 1 AAGGTAATGC 1 AAGGTAGCAG 15 AAGGTAGCAT 1 AAGGTAGGGC 3 AAGGTAGTGA 1 AAGGTAGTGG 1 AAGGTATAAA 1 AAGGTCAAGG 1 AAGGTCGAGC 6 AAGGTCGTGC 1 AAGGTCTGAG 1 AAGGTGAAGG 1 AAGGTGGAGC 1 AAGGTGGAGG 26 AAGGTGGCCA 3 AAGGTGTACT 1 AAGGTGTGAG 1 AAGGTTAGTA 1 AAGGTTGCCC 1 AAGGTTTTAA 1 AAGGTTTTTC 1 AAGTAAGGTG 1 AAGTACAAGA 1 AAGTACTGAT 1 AAGTAGAGCA 1 AAGTAGATTT 1 AAGTAGCAGA 1 AAGTATGTTG 1 AAGTATTCAA 1 AAGTATTGTG 1 AAGTCAAGAG 1 AAGTCAGGAA 3 AAGTCAGGAG 4 AAGTCATATG 1 AAGTCATTCA 2 AAGTCCCCCC 1 AAGTCCCTCC 1 AAGTCCGAGG 1 AAGTCCTGCA 1 AAGTCCTTGC 1 AAGTCGGGCT 1 AAGTCTCGTG 1 AAGTCTGTAA 1 AAGTGAAACA 5 AAGTGAACAT 1 AAGTGACCAG 1 AAGTGAGATG 1 AAGTGAGGAG 4 AAGTGAGGTA 1 AAGTGATTCT 3 AAGTGCAACT 1 AAGTGCAGAC 1 AAGTGCATTT 2 AAGTGCCTGT 1 AAGTGCGTGT 1 AAGTGGAAGC 3 AAGTGGAAGT 1 AAGTGGAGGT 1 AAGTGGGGTT 1 AAGTGGGTGC 2 AAGTGGTACA 1 AAGTGGTGAC 1 AAGTGGTGCC 5 AAGTGTAGAT 1 AAGTGTCCCT 1 AAGTTAAGAC 1 AAGTTAGTAG 1 AAGTTATGTT 1 AAGTTATTTA 1 AAGTTCAGGC 1 AAGTTCCCAG 1 AAGTTCTCCA 1 AAGTTCTGTC 1 AAGTTGAAAG 1 AAGTTGAGAC 1 AAGTTGCACT 1 AAGTTGCTAT 10 AAGTTGCTGG 2 AAGTTGGCAG 1 AAGTTGGGGA 3 AAGTTGGTTT 1 AAGTTGTAAT 1 AAGTTGTGTG 1 AAGTTGTTCA 1 AAGTTTCCAA 1 AAGTTTCCAG 1 AAGTTTGCCT 4 AAGTTTGGGA 1 AAGTTTTACT 1 AAGTTTTATT 1 AAGTTTTCAG 1 AAGTTTTCCT 1 AAGTTTTTTA 1 AATAAAACGG 1 AATAAAAGCA 1 AATAAAAGTG 2 AATAAACTTT 1 AATAAAGATA 1 AATAAAGCAA 3 AATAAAGCCT 5 AATAAAGGCT 25 AATAAAGGTT 1 AATAAATGGA 1 AATAAATTCC 2 AATAAATTTG 1 AATAACACTA 1 AATAACTTTA 1 AATAAGCCCA 1 AATAAGGCAA 1 AATAAGGCTA 1 AATAAGTGAA 1 AATAAGTGTA 1 AATAATAATG 1 AATAATCCAC 1 AATAATGTGA 1 AATACAGCCT 1 AATACCTCGT 3 AATACTCGGT 1 AATACTGAAT 1 AATACTGGGT 1 AATACTGTGT 1 AATAGAAAAA 1 AATAGAAACA 1 AATAGACAAA 1 AATAGACTCA 1 AATAGATCTC 1 AATAGCTCAG 2 AATAGGACCA 1 AATAGGCCCA 1 AATAGGGTCA 1 AATAGGTCCA 12 AATAGGTTTT 1 AATAGTGACG 1 AATAGTGCCC 1 AATAGTTCTC 1 AATAGTTTCC 7 AATATAGGCA 1 AATATAGGTG 1 AATATCATTG 1 AATATCTCCA 1 AATATCTGAC 1 AATATCTGGA 1 AATATGAACT 1 AATATGAATC 1 AATATGATGA 1 AATATGCACT 1 AATATGCAGA 1 AATATGCATC 1 AATATGCGAC 1 AATATGCTTT 2 AATATGGGTG 1 AATATGTGGG 20 AATATTGAGA 1 AATATTGTAC 2 AATATTGTTG 1 AATATTTATA 9 AATATTTATT 2 AATATTTTGT 1 AATCAAAAAA 1 AATCAAACAC 1 AATCAAGATA 1 AATCAAGGCT 1 AATCAATATT 1 AATCACAAAT 18 AATCAGATGT 2 AATCATCTTC 1 AATCATTTCA 1 AATCCAAGAG 2 AATCCACCCA 1 AATCCAGCAG 1 AATCCAGGAA 1 AATCCAGGAG 3 AATCCAGGGA 1 AATCCCTTTT 1 AATCCGACTC 3 AATCCGGGAA 1 AATCCGGGAG 3 AATCCTATGA 1 AATCCTGTAA 1 AATCCTGTGA 1 AATCCTGTGG 18 AATCCTTAGG 1 AATCGAGAAT 1 AATCGCTTCT 1 AATCGTGGCT 1 AATCGTGGTG 1 AATCTACCTG 1 AATCTAGAAG 1 AATCTATTTA 1 AATCTCACAG 1 AATCTGAACC 2 AATCTGCGCC 15 AATCTGCTCA 1 AATCTGGTTG 2 AATCTTGTCT 3 AATCTTTATT 1 AATCTTTTTC 1 AATGAAAAGG 2 AATGAAACGG 1 AATGAAAGGG 1 AATGAACAAT 1 AATGAACTCC 1 AATGAAGGAT 1 AATGAATAAA 1 AATGAATATA 1 AATGAATCCA 1 AATGACTATT 1 AATGACTGAA 1 AATGACTGAC 1 AATGAGAAGG 11 AATGAGATGA 1 AATGAGCCAC 1 AATGAGGAGA 1 AATGAGGAGG 1 AATGAGTGTA 1 AATGATACTT 1 AATGCAACAA 1 AATGCAGGCA 1 AATGCATATA 1 AATGCATCGT 1 AATGCCAGCA 1 AATGCCAGGT 1 AATGCCCCTG 1 AATGCCTTCC 1 AATGCGGAGT 1 AATGCTAAAT 1 AATGCTCAGG 1 AATGCTCATA 1 AATGCTGACC 1 AATGCTGGAG 1 AATGCTGGCA 3 AATGCTGTGG 1 AATGCTGTTT 2 AATGCTTGAT 1 AATGCTTTGT 1 AATGGAATGG 7 AATGGACCTA 1 AATGGACTCA 1 AATGGAGAGT 1 AATGGAGCTT 1 AATGGAGTTG 1 AATGGATACG 1 AATGGATGAA 4 AATGGATTAT 2 AATGGCAAAG 1 AATGGCACTT 2 AATGGGAGGA 1 AATGGGATTA 2 AATGGGGGAG 1 AATGGGGTGA 1 AATGGTTAGC 1 AATGGTTATT 1 AATGTAATCA 9 AATGTCCGAA 2 AATGTCTAGA 1 AATGTCTTCA 1 AATGTGAGTC 1 AATGTGATCT 1 AATGTGGCAC 1 AATGTGTCCC 1 AATGTTCAAG 1 AATGTTTCGT 1 AATTAAAGGT 1 AATTAATTGC 1 AATTACAAAT 1 AATTACGAAG 2 AATTAGAGCA 1 AATTAGGCTG 1 AATTATAACT 1 AATTATGACT 2 AATTATGCGG 3 AATTCAACAA 1 AATTCAAGGC 1 AATTCAATTA 1 AATTCACCCA 1 AATTCAGATT 2 AATTCAGTGA 3 AATTCCCTTT 4 AATTCGAACA 1 AATTCGAGAA 1 AATTCGAGCG 2 AATTCTAGGA 1 AATTCTAGGG 1 AATTCTCGCA 1 AATTCTCTAT 1 AATTCTGCCA 1 AATTCTGTGA 1 AATTCTGTGC 1 AATTCTTAGG 1 AATTGAAACC 1 AATTGACCAG 1 AATTGAGAAG 2 AATTGAGCTA 1 AATTGCAACA 1 AATTGCAAGC 3 AATTGCACTT 1 AATTGCGGCC 1 AATTGCTTTT 1 AATTGGGAGG 1 AATTGGGCTT 1 AATTGTTCTT 1 AATTGTTTGA 1 AATTTACTAG 1 AATTTACTTC 1 AATTTAGCTG 1 AATTTAGGGG 1 AATTTATCTT 1 AATTTCCAGC 1 AATTTCTATT 3 AATTTCTCTG 1 AATTTCTTTT 1 AATTTGAGAC 1 AATTTGAGTG 2 AATTTGATGG 1 AATTTGATGT 1 AATTTGCAAC 3 AATTTGTACC 1 AATTTGTCAT 1 AATTTTAAAA 1 AATTTTATGT 1 AATTTTATTT 2 AATTTTCAGT 1 AATTTTCCTG 1 AATTTTGGAC 1 AATTTTTACT 1 AATTTTTCAA 2 ACAAAAAAAA 1 ACAAAAAAAG 2 ACAAAAACCA 1 ACAAAAACTA 33 ACAAAACCCC 5 ACAAAACCCT 1 ACAAAACCTC 1 ACAAACAAAT 1 ACAAACACAA 3 ACAAACACCA 1 ACAAACCCCC 15 ACAAACCCCT 1 ACAAACGTGT 1 ACAAACTAAA 1 ACAAACTGGC 1 ACAAACTGTA 1 ACAAACTGTG 13 ACAAACTTAG 4 ACAAACTTCT 1 ACAAAGAAGG 1 ACAAAGACCT 1 ACAAAGATGC 1 ACAAAGGAAT 1 ACAAAGGAGA 1 ACAAAGGGAA 1 ACAAATATAA 1 ACAAATATTG 1 ACAAATCCTT 6 ACAAATGGTA 1 ACAAATTATG 3 ACAAATTCAG 1 ACAAATTCAT 1 ACAAATTCCT 1 ACAAATTGCA 1 ACAACACCCC 1 ACAACACTCT 1 ACAACAGAGG 1 ACAACATTCT 1 ACAACCACCA 2 ACAACCAGAA 1 ACAACCTTAA 1 ACAACCTTCA 1 ACAACGACCA 2 ACAACGTCCA 2 ACAACTCAAT 1 ACAACTCCTG 1 ACAACTCTCA 1 ACAACTGATG 1 ACAACTTCAG 1 ACAAGAAGTT 1 ACAAGACCCC 1 ACAAGACCCT 1 ACAAGACTAA 1 ACAAGAGCTA 1 ACAAGATGCA 1 ACAAGATGTT 1 ACAAGCAATA 1 ACAAGCATAT 1 ACAAGCCTAG 9 ACAAGCTTAG 1 ACAAGGAATA 1 ACAAGTCTGC 1 ACAATAAATC 1 ACAATAATGA 1 ACAATACTTG 1 ACAATAGGGC 1 ACAATATCGA 1 ACAATCACTC 1 ACAATCGTCC 1 ACAATGAAAT 2 ACAATGGGTT 1 ACAATGGTAG 1 ACAATGTCAT 1 ACAATTTGTT 1 ACACAAATGA 1 ACACAAGCAA 1 ACACAAGTGT 1 ACACAAGTTT 1 ACACACACCA 1 ACACACAGTT 1 ACACACGCAA 2 ACACAGATTT 1 ACACAGGTTT 1 ACACAGTAGT 1 ACACAGTGAG 1 ACACAGTGTG 2 ACACAGTTTT 5 ACACATACCA 2 ACACATATTA 1 ACACCACGTA 1 ACACCAGACT 2 ACACCAGGCC 1 ACACCATTCA 1 ACACCCAAAG 1 ACACCCACGG 1 ACACCCAGAA 2 ACACCCATCA 2 ACACCCCACC 1 ACACGAGTTT 1 ACACGCCCAC 1 ACACGGGGGG 1 ACACGGTAGC 1 ACACGTGGCA 1 ACACTATGCC 1 ACACTATGGA 1 ACACTATTGT 1 ACACTCCAGC 1 ACACTCGGTG 1 ACACTGCACT 3 ACACTGCAGG 1 ACACTGCCCA 1 ACACTGCCTC 6 ACACTGCCTG 1 ACACTGCTCT 1 ACACTGGACT 1 ACACTGGGTG 1 ACACTGTACT 1 ACACTGTAGG 1 ACACTGTGCA 1 ACACTTACAA 1 ACACTTATAT 1 ACACTTCATC 1 ACACTTCTTG 1 ACACTTTGGA 1 ACAGAAATCA 1 ACAGAAGGGA 1 ACAGAATCCC 1 ACAGAATGGC 1 ACAGACACTG 1 ACAGAGAAGA 1 ACAGAGAGAT 1 ACAGAGCACA 1 ACAGAGCTCA 1 ACAGAGGTGG 1 ACAGAGTGAG 2 ACAGATACTA 1 ACAGATATCA 1 ACAGATCTCA 1 ACAGATGTTG 1 ACAGCAAGTG 1 ACAGCAATAA 1 ACAGCCGTGG 4 ACAGCCTGCA 1 ACAGCCTGCT 1 ACAGCCTGGG 1 ACAGCCTTTG 1 ACAGCGCTGA 1 ACAGCGGCAA 6 ACAGCGGGCA 1 ACAGCGTCTG 1 ACAGCTAACA 2 ACAGCTAGGG 2 ACAGCTCCTG 1 ACAGCTCTCT 1 ACAGCTGCTT 1 ACAGCTGTCT 1 ACAGCTTTGT 1 ACAGGAAACC 1 ACAGGACCCT 1 ACAGGACTTC 1 ACAGGAGCAC 1 ACAGGGAAAA 1 ACAGGGACTT 1 ACAGGGCATA 1 ACAGGGCCTC 1 ACAGGGCTGG 1 ACAGGGTGAC 25 ACAGGTCAGA 1 ACAGGTGGGT 1 ACAGTAACAA 1 ACAGTATAAA 1 ACAGTATGAA 1 ACAGTCTTGC 3 ACAGTGCCAC 1 ACAGTGCGCC 1 ACAGTGCTCA 1 ACAGTGCTTG 11 ACAGTGGACC 2 ACAGTGGATC 1 ACAGTGGGAG 1 ACAGTGGGGA 4 ACAGTGGGTG 1 ACAGTGTGAA 1 ACAGTGTGCC 1 ACAGTGTGTG 13 ACAGTTCTGT 1 ACAGTTTCAG 1 ACAGTTTGAC 1 ACAGTTTGGA 1 ACATAAAAAC 1 ACATAAAGCG 1 ACATAAGATC 1 ACATAGACTA 1 ACATAGAGTG 1 ACATAGGTAA 1 ACATAGTTAA 1 ACATATACAG 1 ACATATACTG 1 ACATATCTTT 1 ACATATTGAG 1 ACATATTGCA 1 ACATCAAAAT 1 ACATCAAATT 1 ACATCAAGAA 2 ACATCAAGTC 3 ACATCAAGTT 1 ACATCAGATT 1 ACATCATCGA 10 ACATCATTCT 1 ACATCCCAGG 1 ACATCCCTTG 1 ACATCCTCAC 5 ACATCGGGGG 1 ACATCGGTCT 1 ACATCGTAGG 8 ACATCGTTGT 1 ACATCTACCT 2 ACATCTCCAA 1 ACATCTGTGG 1 ACATCTTCCC 1 ACATCTTCTA 1 ACATTAAGCA 1 ACATTACCCA 1 ACATTAGCTT 1 ACATTATAAG 1 ACATTATGTT 1 ACATTCCATA 2 ACATTCGGAA 2 ACATTCGGGA 1 ACATTCTTTG 1 ACATTGAGTG 2 ACATTGCACT 1 ACATTGCATA 1 ACATTGCGTG 2 ACATTGCTTG 1 ACATTGGATG 1 ACATTGGGCG 1 ACATTGGGGT 1 ACATTGGGTA 2 ACATTGGGTG 377 ACATTGGGTT 2 ACATTGTGTG 2 ACATTTCAAT 1 ACATTTGCCA 1 ACATTTGGTG 1 ACATTTTCAA 1 ACATTTTGGA 1 ACATTTTGTG 1 ACATTTTTCC 12 ACCAAAACTA 1 ACCAAAATAA 1 ACCAAACTGT 1 ACCAAATATT 1 ACCAACACAC 1 ACCAACACCC 1 ACCAACTCAT 1 ACCAAGAACC 2 ACCAAGCAGC 1 ACCAAGCCAA 1 ACCAAGCGAG 1 ACCAAGCTGG 4 ACCAAGGACA 3 ACCAAGGAGG 5 ACCAAGGGGG 1 ACCAAGTACC 1 ACCAAGTGCA 1 ACCAAGTGGG 3 ACCAAGTTTG 1 ACCAATCAGC 1 ACCACAAATA 2 ACCACAAATG 6 ACCACACCAC 1 ACCACAGAGA 1 ACCACAGCCT 1 ACCACAGGAA 1 ACCACATAGG 1 ACCACCAAAG 1 ACCACCAACC 1 ACCACCATCC 1 ACCACGCCCT 1 ACCACGCCGT 2 ACCACTAGAC 1 ACCACTGAAG 1 ACCACTGAAT 1 ACCACTGCAG 1 ACCACTGTTC 1 ACCAGAATGC 1 ACCAGACTCT 1 ACCAGAGACA 1 ACCAGAGGCG 1 ACCAGATGGC 1 ACCAGATTAA 1 ACCAGCCAAA 2 ACCAGCCACA 3 ACCAGCCACT 1 ACCAGCGTTG 1 ACCAGCTCCC 2 ACCAGCTGTC 1 ACCAGGAATC 1 ACCAGGCAAG 2 ACCAGGCACG 1 ACCAGGCCAC 1 ACCAGGGAGG 1 ACCAGGGTCA 2 ACCATAAACC 1 ACCATAGCAA 1 ACCATCCTAT 1 ACCATCCTGC 4 ACCATCCTGG 3 ACCATCGTCA 1 ACCATCGTCC 3 ACCCAAATAG 1 ACCCAACTGC 12 ACCCAAGATA 1 ACCCAAGTTG 1 ACCCAATCAG 3 ACCCAATTTG 1 ACCCACAGTG 1 ACCCACCGCA 1 ACCCACCTGC 1 ACCCACGTCA 22 ACCCACTCTA 3 ACCCAGAGCT 1 ACCCAGCATA 1 ACCCAGCGGC 1 ACCCAGCGGG 3 ACCCAGGTCA 1 ACCCAGTCCT 1 ACCCATCTCA 1 ACCCATTGGA 1 ACCCCAAACG 1 ACCCCAAACT 3 ACCCCAGGAG 1 ACCCCAGGTT 1 ACCCCATTCT 1 ACCCCATTGC 1 ACCCCCACAG 1 ACCCCCCAGC 1 ACCCCCCCCA 1 ACCCCCCCGC 44 ACCCCCCCGT 1 ACCCCCTGCC 1 ACCCCCTTCC 2 ACCCCGACCC 1 ACCCCGCCGC 1 ACCCCTAACA 8 ACCCCTAAGG 1 ACCCCTCCGG 1 ACCCCTGAAG 1 ACCCCTGGCC 1 ACCCCTGGTA 1 ACCCCTGTCT 1 ACCCCTGTTA 1 ACCCGCCGGG 2 ACCCGGGAGG 1 ACCCGGGGAG 2 ACCCGTAAGT 1 ACCCTAGGCC 1 ACCCTATCTC 1 ACCCTCAAAT 1 ACCCTCAAGA 1 ACCCTCAAGG 1 ACCCTCAGCC 8 ACCCTCAGTA 1 ACCCTCCCTG 1 ACCCTCCTCT 1 ACCCTCGGCC 3 ACCCTCTCCC 5 ACCCTCTGTG 1 ACCCTGCCAA 5 ACCCTGCCCT 1 ACCCTGCCTC 1 ACCCTGCTCC 2 ACCCTGGACG 1 ACCCTGGGCA 2 ACCCTTAGCC 2 ACCCTTCCCT 5 ACCCTTGAAC 1 ACCCTTGACC 1 ACCCTTGCCT 1 ACCCTTGCTT 1 ACCCTTGGCA 1 ACCCTTGGCC 344 ACCCTTGGCT 2 ACCCTTGGTC 1 ACCCTTGTCC 1 ACCCTTGTGT 1 ACCCTTTAAC 2 ACCCTTTAAT 1 ACCCTTTCCC 1 ACCCTTTCCT 1 ACCGACGCGC 1 ACCGAGCGGA 1 ACCGAGGTGC 2 ACCGCACAAA 1 ACCGCACGAA 1 ACCGCAGGAA 1 ACCGCCGAGG 1 ACCGCCGGGC 1 ACCGCCGTGG 28 ACCGCCTGTG 20 ACCGCTTGTT 1 ACCGGATCAT 2 ACCGGCTCTG 1 ACCGGGAGGT 2 ACCGGGGACT 4 ACCGGGTGGG 1 ACCGGTATGA 1 ACCGTATTCC 2 ACCGTCCACT 5 ACCGTCTCCT 1 ACCGTCTTGT 1 ACCGTGCAGT 1 ACCGTGCCAC 1 ACCGTTCCAT 1 ACCTAAACAC 1 ACCTAACGAT 1 ACCTAACTTT 1 ACCTAAGCAT 1 ACCTAATTGC 1 ACCTAATTGG 1 ACCTACAGCG 1 ACCTAGAGGG 1 ACCTAGCCAC 1 ACCTAGCTGG 1 ACCTAGTTCT 1 ACCTATAAGT 2 ACCTATTTGT 1 ACCTCAAGGA 1 ACCTCAATGA 1 ACCTCAATTA 3 ACCTCACAAA 1 ACCTCACCAA 3 ACCTCACCCA 1 ACCTCACTTA 1 ACCTCAGAAG 1 ACCTCAGCTT 1 ACCTCAGGAA 4 ACCTCCCACC 1 ACCTCCCCTT 1 ACCTCCCGAA 1 ACCTCCTCAA 1 ACCTCCTCCC 1 ACCTCTGCCA 1 ACCTCTGGCT 1 ACCTCTGGTC 1 ACCTGAAACC 1 ACCTGAAGCG 2 ACCTGAGAGG 1 ACCTGAGGAG 1 ACCTGAGGGA 1 ACCTGATGGA 1 ACCTGCAAAG 1 ACCTGCACAA 1 ACCTGCACCC 1 ACCTGCCACC 2 ACCTGCCCCT 2 ACCTGCCGAC 2 ACCTGCGTCT 1 ACCTGCTGAT 1 ACCTGCTGGT 6 ACCTGGCCTG 1 ACCTGGGAAA 1 ACCTGGGCCG 1 ACCTGGGCGG 1 ACCTGGGGAG 35 ACCTGGGTGC 2 ACCTGGTTTT 1 ACCTGTATCC 5 ACCTGTCACA 1 ACCTGTCCAC 1 ACCTTACATA 1 ACCTTAGCCA 1 ACCTTCAAAA 1 ACCTTCAAGT 1 ACCTTCATCA 1 ACCTTCATCT 3 ACCTTCCGAC 1 ACCTTCCTAG 15 ACCTTCCTTC 5 ACCTTCTAAC 1 ACCTTCTATT 2 ACCTTGATGA 1 ACCTTGCCTC 1 ACCTTGCTCA 1 ACCTTGGAAG 1 ACCTTGGCAT 1 ACCTTGGCCA 2 ACCTTGGGCA 1 ACCTTGGGGT 2 ACCTTGGGTA 1 ACCTTGGGTG 1 ACCTTGTAAT 2 ACCTTGTATC 1 ACCTTGTCAC 2 ACCTTGTGCC 6 ACCTTTACTG 2 ACCTTTAGAA 1 ACCTTTCGTG 1 ACCTTTGCCA 1 ACCTTTGCCG 1 ACCTTTTCAA 4 ACCTTTTCTA 1 ACCTTTTTCA 1 ACGAAACCCC 5 ACGAAACCCT 1 ACGAAACCTT 1 ACGAACTTAG 1 ACGAAGGAAG 1 ACGAATAATA 1 ACGACAGGCA 1 ACGACCTCGT 1 ACGAGAACCC 1 ACGAGACGAC 1 ACGAGGGCCT 1 ACGAGGTCAC 1 ACGATCACCG 1 ACGATGGTCC 1 ACGATTGATG 1 ACGCAAGAAG 1 ACGCAAGGAA 1 ACGCAAGGAG 2 ACGCACCGGG 1 ACGCACGTAG 1 ACGCACTCTC 1 ACGCAGACCT 1 ACGCAGGCGC 2 ACGCAGGGAC 1 ACGCAGGGAG 142 ACGCAGTGAC 1 ACGCCACCCA 1 ACGCCACTGT 1 ACGCCCACCT 1 ACGCCCGCCT 1 ACGCCGCTAG 1 ACGCCTATTA 1 ACGCCTTGAG 1 ACGCGAAGAC 1 ACGCGGATGG 2 ACGCGGCGCA 1 ACGCTGCAGT 1 ACGCTGCCCA 1 ACGCTGCCGC 1 ACGCTGCTGC 6 ACGCTTTGGA 1 ACGGAACAGA 1 ACGGAAGTTT 6 ACGGAGGCGG 2 ACGGAGGTTG 1 ACGGCACTCT 1 ACGGCAGATG 1 ACGGCAGGTG 1 ACGGCCGGCT 2 ACGGCCTCGG 1 ACGGCTCAAT 1 ACGGCTCCGA 1 ACGGCTGGGC 4 ACGGGCCCAA 1 ACGGGGCCAC 1 ACGGGTATGA 1 ACGGTAGAAG 1 ACGGTCCAGG 5 ACGGTGATGT 4 ACGGTGGTGG 2 ACGGTTTCAT 1 ACGTAACAGA 1 ACGTAACTCT 1 ACGTATATCC 1 ACGTATTTTC 1 ACGTCACCAT 1 ACGTCATCGA 1 ACGTCGTGTG 1 ACGTCTGGTC 1 ACGTGAAAAT 1 ACGTGAGGCC 1 ACGTGCAGGT 1 ACGTGCGTGG 1 ACGTGGAGGC 1 ACGTGGATGG 1 ACGTGGGTTG 1 ACGTGGTGTA 1 ACGTGTCCCA 1 ACGTGTTTTC 1 ACGTTAACCT 1 ACGTTGGAAT 1 ACGTTGGGTG 2 ACGTTTGCAT 1 ACGTTTGGTG 1 ACGTTTTTAC 1 ACTAAAACAC 11 ACTAAAACTC 1 ACTAAACCAG 1 ACTAACAAAC 1 ACTAACACCC 229 ACTAACACCG 2 ACTAACACCT 4 ACTAACACTC 1 ACTAACAGGC 1 ACTAACCCCC 1 ACTAACCTGG 1 ACTAACGCCC 2 ACTAAGCAGG 1 ACTAATACCC 1 ACTAATGACT 1 ACTAATTCAC 1 ACTAATTCTC 1 ACTACAAATA 1 ACTACAACTT 1 ACTACAAGGA 2 ACTACAGCCA 1 ACTACATCTT 1 ACTACCTTCA 2 ACTACCTTCT 1 ACTACCTTTC 1 ACTACGGGTC 1 ACTACTAAAT 1 ACTACTCTAC 1 ACTACTTCAC 1 ACTAGATTAC 1 ACTAGCACAG 1 ACTAGCACCC 1 ACTAGCCGTC 1 ACTAGTTGAA 1 ACTATATATA 1 ACTATATGTT 1 ACTATCACTC 1 ACTATCATCT 1 ACTATCCTGA 1 ACTATCTCTA 1 ACTATGCAGG 1 ACTATTAGTG 2 ACTATTCCAT 1 ACTATTTCCA 1 ACTCAAAAGG 1 ACTCAAAGAC 3 ACTCACACTT 1 ACTCACATCA 1 ACTCACGTTG 1 ACTCACTGAT 1 ACTCACTGGG 1 ACTCACTTTT 1 ACTCAGAAGA 5 ACTCAGACCC 2 ACTCAGACTA 1 ACTCAGAGAA 1 ACTCAGAGAG 1 ACTCAGCAGA 1 ACTCAGCCCC 1 ACTCAGCGTG 1 ACTCAGGGAT 1 ACTCAGGTGA 1 ACTCAGTCTG 1 ACTCAGTCTT 1 ACTCAGTTCC 1 ACTCATCCCA 1 ACTCATCTGA 1 ACTCATCTTC 1 ACTCCAAAAA 9 ACTCCAAAGG 1 ACTCCAAGGA 4 ACTCCAGCTA 1 ACTCCAGCTG 1 ACTCCAGGTG 1 ACTCCAGTGC 2 ACTCCAGTTT 1 ACTCCATAGA 2 ACTCCATCAC 1 ACTCCCACAA 1 ACTCCCCAAC 1 ACTCCCCAGC 1 ACTCCCTGCA 1 ACTCCCTGGA 1 ACTCCGAACA 1 ACTCCGTGGA 1 ACTCCTAAGT 1 ACTCCTCACC 1 ACTCCTGGCC 1 ACTCCTGTTA 1 ACTCGAACAA 1 ACTCGACGGA 1 ACTCGGTCGC 1 ACTCGTATTA 1 ACTCGTCTCC 1 ACTCTACAAA 1 ACTCTACCAG 1 ACTCTACCTG 2 ACTCTAGACC 1 ACTCTCAAAG 1 ACTCTGCCAA 1 ACTCTGTCTC 2 ACTCTGTGTG 1 ACTCTTGCCA 1 ACTCTTGGAG 1 ACTCTTGTTG 7 ACTCTTTAGG 1 ACTCTTTCAA 2 ACTCTTTCAT 1 ACTCTTTGTG 1 ACTGAAACAC 1 ACTGAAAGCT 1 ACTGAAGAAT 2 ACTGAAGGCG 7 ACTGAATGTC 1 ACTGACACCC 1 ACTGACTATC 1 ACTGACTTCT 1 ACTGAGCAAG 1 ACTGAGGAAC 1 ACTGAGGCGG 1 ACTGAGGTGC 4 ACTGAGTCTG 1 ACTGATAACA 1 ACTGATACAG 1 ACTGATACTG 1 ACTGATCTGC 1 ACTGATGCAA 1 ACTGATTGAT 1 ACTGCAAATG 1 ACTGCAACCC 1 ACTGCACCAC 2 ACTGCACTAA 1 ACTGCACTCC 2 ACTGCAGAGC 3 ACTGCAGATT 1 ACTGCAGCCA 1 ACTGCAGGTC 1 ACTGCATAGA 1 ACTGCCACCG 1 ACTGCCACTT 1 ACTGCCCCAA 7 ACTGCCCCAC 1 ACTGCCCGCT 1 ACTGCCCTCT 1 ACTGCCTCTT 1 ACTGCCTGCA 1 ACTGCGTTCA 1 ACTGCTGAAC 1 ACTGCTGTCT 1 ACTGCTTGCC 6 ACTGGAAAAC 1 ACTGGAACGA 2 ACTGGACGGG 1 ACTGGAGAAT 1 ACTGGAGTCT 1 ACTGGAGTGC 1 ACTGGAGTTT 3 ACTGGATACC 1 ACTGGATCAA 1 ACTGGCGAAG 1 ACTGGCGAAT 1 ACTGGCTAAT 1 ACTGGCTACG 1 ACTGGCTGCT 3 ACTGGGAGGC 2 ACTGGGCGCC 2 ACTGGGGAAT 1 ACTGGGGATA 1 ACTGGGTCTA 7 ACTGGGTGCA 2 ACTGGGTGGG 1 ACTGGTAATA 1 ACTGGTACGT 5 ACTGGTATAC 1 ACTGGTGGTC 5 ACTGGTTGTT 1 ACTGTAAACA 1 ACTGTAAGAA 1 ACTGTAATCC 1 ACTGTAATCT 1 ACTGTAATTC 1 ACTGTACAAT 1 ACTGTACTGG 1 ACTGTACTTT 1 ACTGTAGACT 1 ACTGTAGAGT 1 ACTGTAGGGT 1 ACTGTAGTCC 1 ACTGTATCAC 1 ACTGTATTTT 5 ACTGTCGAGG 1 ACTGTGAAAA 1 ACTGTGACCT 1 ACTGTGAGAG 1 ACTGTGCATT 1 ACTGTGCCAA 1 ACTGTGCCAC 4 ACTGTGCCAT 1 ACTGTGGATC 1 ACTGTGGCCG 1 ACTGTGGCGG 17 ACTGTGGCTT 1 ACTGTGTCTA 1 ACTGTGTTTG 4 ACTGTTAATC 1 ACTGTTGCTA 10 ACTTAAAAAA 1 ACTTAACACC 1 ACTTAAGGAA 2 ACTTAAGTAC 1 ACTTACACCC 2 ACTTACCTGC 13 ACTTCAGCTC 1 ACTTCCCAAA 1 ACTTCCCTCC 1 ACTTCCTACA 1 ACTTCCTCCT 1 ACTTCGGTGC 1 ACTTCTCCAA 1 ACTTCTGGAA 1 ACTTCTGTAT 1 ACTTCTTCAA 2 ACTTCTTCAC 1 ACTTCTTTGT 1 ACTTGAAGCC 1 ACTTGAGAAG 1 ACTTGAGACC 1 ACTTGAGCTT 1 ACTTGATATT 1 ACTTGCCATT 2 ACTTGCCCTT 1 ACTTGCGAAT 4 ACTTGCTGGA 1 ACTTGCTGTG 1 ACTTGGAGCC 6 ACTTGGGGAG 1 ACTTGGGGCT 1 ACTTGGGTTC 1 ACTTGTCCCA 1 ACTTGTGGGG 1 ACTTGTTCGC 1 ACTTTAATCC 1 ACTTTAGCTG 1 ACTTTATCAT 1 ACTTTATGGT 1 ACTTTCAAAA 2 ACTTTCAAGT 1 ACTTTCCAAA 32 ACTTTCCAAG 1 ACTTTCCCAA 1 ACTTTCTCTA 1 ACTTTCTTGT 1 ACTTTGAATG 1 ACTTTGCCAC 1 ACTTTGCTAT 1 ACTTTGGCAA 1 ACTTTGGCAG 1 ACTTTGGTTG 1 ACTTTGTATT 1 ACTTTGTGGG 3 ACTTTGTTCG 1 ACTTTTACAA 2 ACTTTTAGAT 1 ACTTTTAGCT 1 ACTTTTCAAA 6 ACTTTTCCAA 2 ACTTTTGCAG 1 ACTTTTGGGA 1 ACTTTTTCAA 217 ACTTTTTCAC 1 ACTTTTTCAG 1 ACTTTTTCGA 2 ACTTTTTCTT 1 ACTTTTTGAG 1 ACTTTTTGTG 1 ACTTTTTTAA 2 ACTTTTTTCA 1 AGAAAAAAAA 9 AGAAAAACAC 1 AGAAAAATGG 1 AGAAAACAAT 1 AGAAAACAGA 1 AGAAAACAGT 1 AGAAAACCTT 1 AGAAACACTA 1 AGAAACACTC 1 AGAAACATCT 1 AGAAACCGTC 1 AGAAACCTTG 1 AGAAAGAGAG 1 AGAAAGAGCC 2 AGAAAGATGT 4 AGAAAGCGTC 1 AGAAAGGGAG 2 AGAAATAAAG 1 AGAAATGTAT 4 AGAACAAAAC 2 AGAACAAAGG 1 AGAACAACCC 1 AGAACACCAA 4 AGAACACCTA 1 AGAACACTGG 1 AGAACAGAAA 1 AGAACAGTTT 1 AGAACATAGT 1 AGAACATCTT 1 AGAACATTCT 1 AGAACCAAAA 2 AGAACCACTG 1 AGAACCACTT 1 AGAACCCAAA 1 AGAACCGCTT 2 AGAACCTGCA 2 AGAACCTGTC 1 AGAACCTTAA 5 AGAACCTTCA 3 AGAACCTTCC 27 AGAACTACGT 1 AGAACTGCTT 2 AGAACTTCTT 1 AGAACTTTCC 5 AGAACTTTTG 1 AGAAGAAAAT 1 AGAAGAACGT 1 AGAAGAGGTG 1 AGAAGCAGAC 1 AGAAGCCAGA 1 AGAAGCTCCA 1 AGAAGCTGGA 1 AGAAGGACCA 1 AGAAGGATCT 2 AGAAGGCCTT 2 AGAAGGGCGT 1 AGAAGGTCTA 1 AGAAGTATAG 1 AGAAGTCTTC 1 AGAAGTGCGA 1 AGAAGTGCTT 1 AGAAGTTTCT 1 AGAATAAAGC 1 AGAATACCAA 1 AGAATAGCCG 1 AGAATAGCCT 1 AGAATAGCTC 1 AGAATAGCTT 44 AGAATAGTTT 1 AGAATCAATT 1 AGAATCACGT 1 AGAATCACTG 2 AGAATCACTT 15 AGAATCAGTT 1 AGAATCATTT 2 AGAATCCCTT 1 AGAATCCTCT 1 AGAATCCTTG 1 AGAATCGAAC 2 AGAATCGCCT 1 AGAATCGCGT 1 AGAATCGCTC 1 AGAATCGCTG 1 AGAATCGCTT 18 AGAATCGTTT 1 AGAATCTAAC 1 AGAATCTCTT 1 AGAATCTGAA 1 AGAATGAATA 1 AGAATGCGGC 1 AGAATGCTGT 1 AGAATGGAGC 1 AGAATGGCAT 1 AGAATGGCGT 1 AGAATGGCTT 2 AGAATGTCTT 1 AGAATTACTT 2 AGAATTGCCT 2 AGAATTGCTT 14 AGAATTGTTT 2 AGAATTTTCA 1 AGACAAAAAA 1 AGACAAAAGA 1 AGACAAGCTG 6 AGACAAGTTA 1 AGACAATTTT 1 AGACACCAAG 1 AGACACTGTG 1 AGACAGAGTG 2 AGACAGATCT 1 AGACATCAAT 1 AGACATCACC 1 AGACATCCCT 1 AGACATTCCT 2 AGACCAAAGT 1 AGACCATATT 2 AGACCATCCT 1 AGACCCACAA 50 AGACCCACCC 1 AGACCCAGCT 1 AGACCCCTGA 1 AGACCCTGAA 1 AGACCCTTCC 1 AGACCTCTGC 1 AGACCTGCTG 1 AGACCTGGAA 2 AGACCTGGGA 1 AGACCTGTAA 2 AGACGTGGGC 1 AGACTAACAC 1 AGACTACCCG 1 AGACTAGATA 1 AGACTAGGGG 1 AGACTCACTT 1 AGACTCCACT 1 AGACTCCCCT 1 AGACTCCTTG 1 AGACTGGGTT 1 AGACTTGCTT 1 AGACTTTCCA 1 AGAGAAACAC 1 AGAGAAAGCA 1 AGAGAATGGG 1 AGAGACAAGT 9 AGAGACTCTT 2 AGAGACTGAG 1 AGAGACTGGG 1 AGAGAGCTGA 1 AGAGAGTAAG 1 AGAGCAAAAA 1 AGAGCAAGTA 1 AGAGCACTAC 1 AGAGCAGAAA 1 AGAGCAGGGC 1 AGAGCATATC 1 AGAGCCAAGG 1 AGAGCCAGCA 1 AGAGCCCTAG 5 AGAGCCCTGT 1 AGAGCCGCTC 1 AGAGCTAATT 1 AGAGCTCACT 1 AGAGCTCTCT 1 AGAGCTGCGT 1 AGAGCTGCTG 1 AGAGGAAGTA 1 AGAGGACAAA 1 AGAGGATTCC 1 AGAGGCAGAG 1 AGAGGCTAAG 1 AGAGGCTGAC 1 AGAGGCTGGG 1 AGAGGGACAA 1 AGAGGGGCCA 2 AGAGGGGGTC 1 AGAGGGTGGA 1 AGAGGGTGGG 1 AGAGGTGGAC 1 AGAGGTGGTG 1 AGAGGTGTAC 1 AGAGGTGTAG 5 AGAGGTTGTG 1 AGAGTAACTG 2 AGAGTCACTT 2 AGAGTCATAC 5 AGAGTCCAGG 2 AGAGTCCTGC 4 AGAGTCTCAG 1 AGAGTCTTCT 1 AGAGTGACTG 1 AGAGTGAGCA 1 AGAGTGCACA 1 AGAGTTGCTT 2 AGAGTTTCAT 1 AGATACATAG 1 AGATACTCAT 1 AGATAGAGAT 1 AGATATCTTT 1 AGATCAAAAC 1 AGATCACAAG 1 AGATCAGAAT 1 AGATCAGAGA 4 AGATCAGGAG 1 AGATCCAAAG 1 AGATCCAAGG 1 AGATCCCAAG 12 AGATCCCACA 1 AGATCCCAGC 1 AGATCCTACT 2 AGATCCTCTA 1 AGATCCTGAC 1 AGATCGAGAC 2 AGATCTACAA 1 AGATCTACTT 1 AGATCTGCAG 1 AGATGAGATG 12 AGATGATATA 1 AGATGATTGC 1 AGATGCCCAG 1 AGATGTATAT 1 AGATGTGTGA 2 AGATGTGTGG 4 AGATTAAAGT 1 AGATTAGACT 1 AGATTATCAC 1 AGATTATTAT 1 AGATTCCAGG 1 AGATTGGAGA 1 AGATTGTAAC 1 AGATTTCACT 1 AGATTTCTCT 1 AGATTTGGAA 1 AGCAAAAGCA 1 AGCAAACACA 1 AGCAAACACT 1 AGCAAACTGA 2 AGCAAAGCCT 2 AGCAAATCCA 2 AGCAAATGAA 1 AGCAAATTGG 1 AGCAACAGAA 1 AGCAACAGTG 3 AGCAACCGTG 1 AGCAACTGCT 1 AGCAAGACCC 1 AGCAAGAGTT 1 AGCAAGATGG 1 AGCAAGATTG 1 AGCAAGCCCC 3 AGCAAGCTGC 1 AGCAAGTCTC 4 AGCAAGTTTT 1 AGCAATAATA 1 AGCAATTGAG 1 AGCAATTGCT 1 AGCAATTTCA 1 AGCACATCAG 2 AGCACATTTG 4 AGCACATTTT 1 AGCACCAGAA 1 AGCACCAGGT 1 AGCACCATTG 1 AGCACCTACA 1 AGCACCTCCA 37 AGCACGCCCT 1 AGCACGGCCA 1 AGCACGGCTG 1 AGCACTGAGC 1 AGCACTGCTG 1 AGCACTGTAC 2 AGCACTTTTG 1 AGCAGAAACC 1 AGCAGAACAA 1 AGCAGAACCA 1 AGCAGACAAA 1 AGCAGACAAT 1 AGCAGAGGCT 3 AGCAGATCAG 108 AGCAGCAATT 1 AGCAGCCTTT 2 AGCAGCGAGG 2 AGCAGCTCCA 1 AGCAGGAACA 1 AGCAGGAGCA 50 AGCAGGAGCG 1 AGCAGGCCCC 1 AGCAGGCTCA 1 AGCAGGCTGT 1 AGCAGGGAGT 1 AGCAGGGCCT 1 AGCAGGGCTC 4 AGCAGGGCTG 1 AGCAGGGGTG 1 AGCAGTCCAG 1 AGCAGTCCCC 1 AGCAGTGACG 1 AGCAGTGGTG 1 AGCAGTTCTC 1 AGCAGTTGGT 1 AGCAGTTTGG 1 AGCATAGCAG 1 AGCATAGTGC 1 AGCATTGCTC 1 AGCATTTCTT 1 AGCCAAAAAA 2 AGCCAAAATA 1 AGCCAAAGAG 1 AGCCAAATTA 1 AGCCAACGCG 1 AGCCAACTCA 1 AGCCAAGAAT 1 AGCCAAGAGC 1 AGCCAAGTAA 1 AGCCAATTAA 1 AGCCACAGCG 1 AGCCACCACA 15 AGCCACCACG 3 AGCCACCACT 1 AGCCACCATA 1 AGCCACCCCG 1 AGCCACCCTG 1 AGCCACCGCA 10 AGCCACCGCC 1 AGCCACCGCG 32 AGCCACCGTC 1 AGCCACCGTG 7 AGCCACCTCA 2 AGCCACCTCC 1 AGCCACCTGC 2 AGCCACGACA 1 AGCCACGACG 1 AGCCACGGCG 1 AGCCACGGTG 1 AGCCACTATG 3 AGCCACTCCA 1 AGCCACTGAG 2 AGCCACTGCA 24 AGCCACTGCC 1 AGCCACTGCG 9 AGCCACTGCT 1 AGCCACTGGG 1 AGCCACTGTA 1 AGCCACTGTG 17 AGCCACTGTT 1 AGCCACTTCG 1 AGCCAGACAA 2 AGCCAGAGAT 1 AGCCAGAGTA 1 AGCCAGCAGT 1 AGCCAGGGTA 1 AGCCAGGTGG 1 AGCCAGGTGT 1 AGCCATCACA 1 AGCCATCACG 1 AGCCATCGAG 1 AGCCATCGCA 1 AGCCATCGCG 1 AGCCATTGCA 4 AGCCATTGCG 2 AGCCATTGTG 2 AGCCCAAGAG 1 AGCCCAAGGG 1 AGCCCACAGG 1 AGCCCACTCA 1 AGCCCAGAAC 1 AGCCCAGCAG 1 AGCCCAGCCC 1 AGCCCAGCTG 3 AGCCCAGGAA 1 AGCCCAGGAG 7 AGCCCCAAAC 1 AGCCCCACAA 2 AGCCCCAGAG 1 AGCCCCCCCT 1 AGCCCCGGGG 1 AGCCCCGGTG 1 AGCCCCTGCA 1 AGCCCCTGTG 2 AGCCCGAACT 1 AGCCCGACCA 16 AGCCCGCCGC 7 AGCCCGCGAG 2 AGCCCGGGAG 3 AGCCCTAACA 2 AGCCCTACAA 222 AGCCCTACAT 2 AGCCCTACCA 1 AGCCCTACGA 2 AGCCCTCCCT 20 AGCCCTCCTG 1 AGCCCTGCAC 1 AGCCCTGCTC 1 AGCCCTGGAA 1 AGCCCTTCAA 1 AGCCCTTTTA 2 AGCCGAAAGG 1 AGCCGACATC 1 AGCCGACTAG 1 AGCCGAGATC 5 AGCCGAGATG 5 AGCCGAGATT 2 AGCCGCAAAC 1 AGCCGCCCGC 1 AGCCGCTGAG 1 AGCCGCTGGG 1 AGCCTACAAA 1 AGCCTACAAC 1 AGCCTACAAG 1 AGCCTACAGG 5 AGCCTAGAAA 1 AGCCTAGGCA 1 AGCCTCAAAA 1 AGCCTCAACG 1 AGCCTCCTGT 2 AGCCTCGGCC 2 AGCCTCTCAA 1 AGCCTCTTCA 1 AGCCTGACTG 1 AGCCTGAGAG 1 AGCCTGCAGA 8 AGCCTGCCTG 4 AGCCTGCTCA 3 AGCCTGGAAG 1 AGCCTGGACT 6 AGCCTGGAGA 2 AGCCTGGCCC 1 AGCCTGGCCT 1 AGCCTGGGAG 2 AGCCTGGGCC 1 AGCCTGGGTG 2 AGCCTGTAAT 3 AGCCTGTAGT 5 AGCCTGTGGT 1 AGCCTGTTGT 1 AGCCTTACAA 1 AGCCTTGGCA 1 AGCCTTGGGA 1 AGCCTTTCCG 1 AGCCTTTCTA 1 AGCCTTTGCG 1 AGCCTTTGTT 2 AGCGACAGCG 1 AGCGACTGCA 1 AGCGAGAGGG 1 AGCGAGCTAG 1 AGCGAGCTGC 1 AGCGATCTGG 1 AGCGATTCCT 1 AGCGCCTAGC 1 AGCGCCTTCC 2 AGCGCTGATG 2 AGCGGAAGAG 2 AGCGGAGAGG 1 AGCGGATCAG 1 AGCGGCCGCG 10 AGCGGCCTGC 2 AGCGGCTACA 8 AGCGGCTACG 1 AGCGGTCTAG 1 AGCGTCGATG 1 AGCGTCTCTT 1 AGCGTGGAGG 1 AGCGTGGTGA 1 AGCTAATTAA 1 AGCTACAGAA 1 AGCTACAGGT 1 AGCTACTCCA 1 AGCTACTGCA 1 AGCTACTGCG 1 AGCTATTTCT 1 AGCTCACGAG 1 AGCTCACTGA 1 AGCTCAGCCT 1 AGCTCAGCGT 1 AGCTCAGCTA 1 AGCTCAGGAG 4 AGCTCATATT 1 AGCTCCCCAG 2 AGCTCCGTCC 3 AGCTCCTACC 1 AGCTCGTGGT 1 AGCTCTAAGA 1 AGCTCTCAAT 1 AGCTCTCACT 1 AGCTCTCCCT 15 AGCTCTGGTC 1 AGCTCTTCCT 1 AGCTCTTGGA 33 AGCTGAACAG 1 AGCTGAACTC 1 AGCTGAAGTC 1 AGCTGAATTC 1 AGCTGAGACC 1 AGCTGAGATC 2 AGCTGATCAG 3 AGCTGATGGT 1 AGCTGCACCT 1 AGCTGCTGCA 2 AGCTGCTGGA 1 AGCTGGAGAA 1 AGCTGGAGTC 4 AGCTGGCGAA 1 AGCTGGCGAC 1 AGCTGGCTCA 1 AGCTGGGATG 1 AGCTGGGCTG 1 AGCTGGGGAG 2 AGCTGGGGCC 1 AGCTGGTTTC 2 AGCTGTCACA 1 AGCTGTCACT 1 AGCTGTCCCC 5 AGCTGTCTCA 3 AGCTGTGGGC 1 AGCTGTGTGG 1 AGCTGTTCCT 1 AGCTGTTCTG 1 AGCTGTTGCC 3 AGCTTACATC 1 AGCTTACATT 2 AGCTTCACCT 1 AGCTTCCAGC 5 AGCTTCCTCT 1 AGCTTGAGAC 1 AGCTTGCACA 1 AGCTTGCCTG 1 AGCTTGCTCA 1 AGCTTGTATA 1 AGCTTTAGTT 1 AGCTTTATTC 1 AGCTTTCCTT 1 AGCTTTCTTG 1 AGCTTTTGGC 1 AGGAAAAGAT 5 AGGAAAAGTG 1 AGGAAACAAG 1 AGGAAACCCC 1 AGGAAACCCT 1 AGGAAACTGA 1 AGGAAAGAGA 1 AGGAAAGCCA 1 AGGAAAGCTG 14 AGGAAAGGAT 1 AGGAAATTTC 1 AGGAACTGCT 1 AGGAACTGGG 1 AGGAACTTTA 1 AGGAACTTTT 3 AGGAAGAAGG 1 AGGAAGATTA 1 AGGAAGGAAC 1 AGGAAGGACA 1 AGGAAGGAGT 1 AGGAAGGGGT 1 AGGAAGTCCA 1 AGGAATGCTT 2 AGGAATGGCA 1 AGGAATGTAT 1 AGGAATTGGT 1 AGGACAAACC 4 AGGACAAAGA 1 AGGACAGCAA 2 AGGACAGTTG 1 AGGACCACTT 1 AGGACTCTGG 1 AGGACTGCTG 1 AGGACTGGGG 2 AGGACTGTGC 1 AGGACTGTTG 1 AGGACTTCTG 1 AGGACTTTCC 1 AGGACTTTGC 2 AGGAGAAAGC 1 AGGAGAACAG 1 AGGAGACATA 1 AGGAGAGGCT 1 AGGAGAGGGG 1 AGGAGATGGA 1 AGGAGCAAAG 3 AGGAGCCTGA 1 AGGAGCCTTA 1 AGGAGCGGGG 3 AGGAGCTCGG 1 AGGAGCTGCG 1 AGGAGCTGCT 8 AGGAGGAAGA 1 AGGAGGAGCT 1 AGGAGGCAAA 1 AGGAGGGATA 1 AGGAGGTCCG 1 AGGAGGTCGC 1 AGGAGGTCGT 1 AGGAGTCCAG 1 AGGAGTCGAC 2 AGGAGTTGTA 1 AGGATAAACA 1 AGGATAGAGC 1 AGGATAGCTA 1 AGGATAGCTT 1 AGGATATCCA 1 AGGATATGAG 1 AGGATATTAT 1 AGGATCACCT 1 AGGATCACTT 1 AGGATCGCTT 1 AGGATGACCA 1 AGGATGACCC 2 AGGATGAGGC 1 AGGATGCCAG 2 AGGATGGTCC 34 AGGATGTACA 3 AGGATGTGGG 10 AGGATGTGTT 1 AGGATTGTAA 1 AGGATTGTCC 1 AGGCAAAAAA 1 AGGCAAATGC 1 AGGCAACTAC 1 AGGCAAGAGG 1 AGGCAAGGGA 3 AGGCAAGGGG 1 AGGCAAGGTG 1 AGGCAATGAT 1 AGGCACATCA 1 AGGCACCATA 1 AGGCACGCAC 4 AGGCACGTGG 1 AGGCACTAAT 1 AGGCACTGGC 2 AGGCAGAGAT 1 AGGCAGAGGC 1 AGGCAGAGGT 3 AGGCAGGACT 1 AGGCAGGAGG 5 AGGCAGGGGC 1 AGGCAGGTCA 1 AGGCAGTGAG 1 AGGCATCACA 1 AGGCATTCCT 1 AGGCATTGAA 1 AGGCCAAATA 1 AGGCCAAATG 2 AGGCCAAGAG 1 AGGCCAAGGG 21 AGGCCAATAA 2 AGGCCAATGA 1 AGGCCACGAC 1 AGGCCACGGC 1 AGGCCAGGAA 1 AGGCCAGGAG 4 AGGCCAGGCC 2 AGGCCAGGGG 1 AGGCCAGGTG 1 AGGCCAGTAT 1 AGGCCATAGG 5 AGGCCCACCC 1 AGGCCCTGCT 1 AGGCCGGAGA 1 AGGCCGGGAA 1 AGGCCGGGAT 1 AGGCCGGTAG 1 AGGCCGTCCC 2 AGGCCTCAAG 1 AGGCCTCCTG 1 AGGCCTCTTA 1 AGGCCTGGCA 1 AGGCCTGGGC 4 AGGCCTTGAG 1 AGGCCTTGGC 1 AGGCCTTGGT 3 AGGCGAGATC 6 AGGCGAGCTG 3 AGGCGCGAGG 1 AGGCGGAGGT 1 AGGCGTAACA 1 AGGCTACGAA 1 AGGCTACGGA 19 AGGCTATTGG 1 AGGCTCCCAG 1 AGGCTGAACG 1 AGGCTGAGAC 1 AGGCTGAGGC 7 AGGCTGCACC 2 AGGCTGCGAC 1 AGGCTGCGGA 1 AGGCTGGATG 4 AGGCTGGGGT 1 AGGCTGTCCA 2 AGGCTGTGTT 7 AGGCTTCGGT 1 AGGCTTCTAG 1 AGGCTTGCAA 1 AGGCTTTATG 2 AGGGAAAAAA 1 AGGGAAAACC 2 AGGGAAAAGG 1 AGGGAAACCT 1 AGGGAACTGC 1 AGGGAACTTG 1 AGGGAAGTGC 1 AGGGAATTCC 1 AGGGACACGT 1 AGGGACTGAA 1 AGGGACTTTA 1 AGGGAGAAGG 1 AGGGAGAGGG 3 AGGGAGCGGT 1 AGGGAGCTGC 1 AGGGAGGTGG 1 AGGGATTCTC 1 AGGGCAACTA 3 AGGGCAAGGC 1 AGGGCAATAA 1 AGGGCACCAC 1 AGGGCACTGA 1 AGGGCAGAGG 3 AGGGCAGCCC 1 AGGGCAGCGG 1 AGGGCAGGAG 1 AGGGCAGGCG 1 AGGGCATCGT 1 AGGGCCAAAA 1 AGGGCCAGCA 1 AGGGCCAGGA 1 AGGGCCATCA 1 AGGGCCCTCT 1 AGGGCGAGGC 1 AGGGCTACTT 1 AGGGCTGAAG 1 AGGGCTGACA 1 AGGGCTGCCA 1 AGGGCTGCCC 1 AGGGCTGCCT 1 AGGGCTGGGG 1 AGGGCTTCCA 26 AGGGCTTGAG 4 AGGGCTTGCC 1 AGGGCTTTAA 1 AGGGGAAAGT 1 AGGGGAAGGT 1 AGGGGACGGC 1 AGGGGAGAGG 1 AGGGGATTCC 1 AGGGGCAGAA 1 AGGGGCCCAG 1 AGGGGCGCAG 3 AGGGGCGGTG 1 AGGGGCTACA 1 AGGGGCTACC 1 AGGGGCTGCC 5 AGGGGGCAGG 1 AGGGGGCTGA 2 AGGGGGGAAT 1 AGGGGGGAGG 4 AGGGGGGCAG 1 AGGGGGGCGT 1 AGGGGTTCTT 1 AGGGGTTGCC 1 AGGGTAACCG 1 AGGGTAATTA 1 AGGGTCATCC 1 AGGGTCTGGG 1 AGGGTGAAAC 1 AGGGTGAACG 1 AGGGTGACGT 1 AGGGTGCCAC 1 AGGGTGCTAT 1 AGGGTGCTTT 1 AGGGTGTTTT 24 AGGGTTGGAA 2 AGGGTTTCAA 1 AGGGTTTTAA 1 AGGTACTACT 12 AGGTACTCTA 1 AGGTAGCAGG 1 AGGTAGGCAG 1 AGGTATCCAA 1 AGGTATTGGT 1 AGGTCAAGAA 1 AGGTCAAGAG 7 AGGTCAAGGC 1 AGGTCAATGA 5 AGGTCAGGAA 2 AGGTCAGGAC 2 AGGTCAGGAG 94 AGGTCAGGCG 1 AGGTCAGGGG 1 AGGTCAGTAG 2 AGGTCCATAT 1 AGGTCCCTGC 1 AGGTCCCTGT 1 AGGTCCTAGA 1 AGGTCCTAGC 8 AGGTCGGGAG 3 AGGTCGGGAT 1 AGGTCTAAGG 1 AGGTCTGCCA 1 AGGTCTGGGT 1 AGGTCTTCAA 2 AGGTCTTGCC 1 AGGTGAAAGG 1 AGGTGAACAG 1 AGGTGAAGCA 1 AGGTGACGGC 1 AGGTGACTGG 10 AGGTGACTTT 1 AGGTGAGAAA 1 AGGTGAGAGG 6 AGGTGAGGAG 1 AGGTGATTTG 1 AGGTGCAGAG 2 AGGTGCCTAA 1 AGGTGCTGTC 1 AGGTGGAAGT 1 AGGTGGACAA 1 AGGTGGACAG 3 AGGTGGAGGT 3 AGGTGGCAAA 1 AGGTGGCAAG 58 AGGTGGGCAT 1 AGGTGGGCCC 1 AGGTGGGCTT 1 AGGTGGGGGT 1 AGGTGTCTTT 1 AGGTGTGTCA 3 AGGTGTTTCT 1 AGGTGTTTTC 1 AGGTTAGGAG 1 AGGTTCCTAG 1 AGGTTCTTTA 1 AGGTTGCAGT 1 AGGTTGGAAG 1 AGGTTGGCTT 1 AGGTTGGGAG 1 AGGTTTCAAA 1 AGGTTTCAAG 1 AGGTTTCCTC 5 AGGTTTTCAT 1 AGGTTTTCCT 1 AGGTTTTGCC 3 AGGTTTTGCT 1 AGTAAAACAC 1 AGTAAAACTT 1 AGTAACGAAC 1 AGTAACTCAG 1 AGTAACTGAG 1 AGTAAGTACT 1 AGTAAGTCAC 1 AGTACAATGC 1 AGTACCACAC 1 AGTACCACCC 1 AGTACCCTCT 1 AGTACGAATG 2 AGTAGCCGTG 1 AGTAGCGAAC 3 AGTAGGCGGC 1 AGTAGGTGAA 1 AGTAGGTGAC 1 AGTAGGTGGC 17 AGTATAAGCC 1 AGTATACCAA 1 AGTATCACTC 1 AGTATCACTT 1 AGTATCAGGA 1 AGTATCTGGG 3 AGTATGAATT 1 AGTATGACCT 1 AGTATGCCAC 1 AGTATGCCTT 1 AGTATGTACA 1 AGTATTATTA 1 AGTATTCATA 6 AGTCAAAAAA 1 AGTCAACCTG 1 AGTCAACTGG 1 AGTCAAGGAA 1 AGTCAAGGAG 1 AGTCACAGAA 1 AGTCACCAGC 2 AGTCACCGAG 1 AGTCACCTCT 1 AGTCACCTGA 1 AGTCACTGAA 1 AGTCACTGCG 1 AGTCACTTTT 1 AGTCAGCATA 1 AGTCAGCTGG 16 AGTCAGGAGA 1 AGTCAGGATG 1 AGTCAGTAGA 1 AGTCCAGCCC 1 AGTCCATATG 1 AGTCCCACCA 1 AGTCCCGCCC 1 AGTCCTCAGT 1 AGTCCTGCTT 1 AGTCCTGGGG 1 AGTCGCCTAG 1 AGTCGCCTTC 1 AGTCGTTATG 1 AGTCTAAGTA 1 AGTCTCCACT 1 AGTCTCCCCT 2 AGTCTGATGT 5 AGTCTGCTAT 1 AGTCTGCTGG 4 AGTCTGTCCA 2 AGTCTGTGGT 1 AGTCTGTTAG 1 AGTCTTCACC 5 AGTCTTCTGA 1 AGTCTTGGGT 1 AGTGAAATTG 1 AGTGAACCAG 1 AGTGAACCGT 1 AGTGAACTCC 1 AGTGACAAGT 1 AGTGACAGAG 1 AGTGACAGAT 1 AGTGACCAGA 1 AGTGAGCCCT 1 AGTGAGGCGG 1 AGTGAGGGGA 2 AGTGAGTACC 1 AGTGAGTCTC 1 AGTGATGGTT 2 AGTGATGTAA 1 AGTGATGTCA 7 AGTGCAAAAT 1 AGTGCAAGAC 14 AGTGCACTCC 1 AGTGCAGCGG 1 AGTGCAGGGG 1 AGTGCCAGGG 1 AGTGCCCGAT 1 AGTGCCGTGT 4 AGTGCTCACC 1 AGTGCTCACT 3 AGTGCTCAGA 1 AGTGGAAACG 1 AGTGGAGGGA 1 AGTGGAGGTA 1 AGTGGAGGTG 3 AGTGGAGTCT 1 AGTGGAGTGG 1 AGTGGAGTTG 1 AGTGGCAGGC 1 AGTGGCCAAC 1 AGTGGCTGTG 1 AGTGGGACCA 1 AGTGGGCTCA 3 AGTGGGGACC 5 AGTGGGGATC 3 AGTGGGGGCT 1 AGTGGGGTCA 2 AGTGGGTATT 1 AGTGGTATAT 1 AGTGGTGCCC 1 AGTGGTGGCT 4 AGTGTAATCA 1 AGTGTATAGT 1 AGTGTATGGT 1 AGTGTATTTT 1 AGTGTCACCC 1 AGTGTCCGGC 1 AGTGTCTCTT 1 AGTGTCTGTG 1 AGTGTGCGCT 3 AGTGTGGAAT 2 AGTGTGGTTA 1 AGTGTGTCAG 1 AGTGTGTGCA 1 AGTGTTACTC 1 AGTGTTATTG 1 AGTGTTTGTA 3 AGTGTTTTCC 1 AGTTAAAGGT 1 AGTTAAATTG 3 AGTTAAGATG 1 AGTTAATCCT 1 AGTTAATCTG 1 AGTTACCACG 1 AGTTACTCAG 1 AGTTAGACAA 1 AGTTAGGAGG 1 AGTTATTCAT 1 AGTTCAAGAC 3 AGTTCAGGAG 2 AGTTCAGGGG 1 AGTTCATATA 1 AGTTCATCTT 3 AGTTCCAGAA 1 AGTTCCAGTT 1 AGTTCCATAG 1 AGTTCGAGCA 1 AGTTCGTTAG 2 AGTTCTCCCT 1 AGTTCTGGAG 1 AGTTCTTTGC 1 AGTTGAAATT 1 AGTTGAATGC 2 AGTTGAGAAG 1 AGTTGCAGAT 2 AGTTGCCAAA 1 AGTTGCCAGC 1 AGTTGCGGGG 1 AGTTGGAGGT 1 AGTTGGATGA 1 AGTTGGGCAA 1 AGTTGGGCTG 2 AGTTGGTTCA 1 AGTTGTAGGA 1 AGTTGTAGTC 1 AGTTGTATAT 2 AGTTGTCTCC 1 AGTTGTTTGT 1 AGTTTAAATC 1 AGTTTAAGCA 3 AGTTTAATGG 1 AGTTTAATTT 1 AGTTTACGAA 1 AGTTTATCGC 1 AGTTTATCTG 1 AGTTTATTTG 1 AGTTTCAGCT 1 AGTTTCCCAA 4 AGTTTCTTGT 2 AGTTTCTTTC 1 AGTTTGAAAT 1 AGTTTGACGC 1 AGTTTGAGAA 1 AGTTTGAGAC 1 AGTTTGAGAT 1 AGTTTGAGGC 1 AGTTTGCGTA 1 AGTTTGGGCT 2 AGTTTGGGTG 1 AGTTTGGTAG 1 AGTTTGGTGT 1 AGTTTGTAAG 1 AGTTTGTTAG 58 AGTTTGTTGG 2 AGTTTTAACT 1 AGTTTTAATG 1 AGTTTTACAA 1 AGTTTTGCTG 1 AGTTTTTGGC 1 ATAAAAATTG 1 ATAAAACCCC 2 ATAAAACCTC 1 ATAAAAGGCA 1 ATAAAATTAC 1 ATAAAGCATC 1 ATAAAGTAAC 1 ATAAAGTGGG 1 ATAAATAGTT 1 ATAAATATAA 1 ATAAATGCAG 1 ATAAATGTAA 1 ATAAATTGGG 2 ATAAATTTCC 1 ATAAATTTTA 1 ATAACATCAA 1 ATAACCAGAC 1 ATAACCCCAA 1 ATAACCCCCT 1 ATAACCTCAA 1 ATAACGTTAC 1 ATAACTCAAG 1 ATAACTCAGA 1 ATAACTTCCC 1 ATAAGACTAC 1 ATAAGAGACA 2 ATAAGATGGT 1 ATAAGGTACA 1 ATAATAAAGC 3 ATAATATATA 1 ATAATCAAGC 1 ATAATCTACA 1 ATAATCTGAG 1 ATAATGGACA 1 ATAATTAGAC 1 ATAATTCTTT 6 ATAATTGACT 1 ATACAAATAT 1 ATACACCTCT 1 ATACAGTAAA 1 ATACAGTTGA 1 ATACATAATA 2 ATACATACTG 1 ATACCAGATG 1 ATACCATCAC 1 ATACCCCGGG 1 ATACCCCTTC 1 ATACCGTACA 1 ATACCGTGCA 1 ATACCTAACG 1 ATACGAGGAC 1 ATACTACACT 1 ATACTCACTC 1 ATACTCCACA 2 ATACTCCACT 82 ATACTCTTCT 1 ATACTGAAGT 1 ATACTGATTG 1 ATACTGCACT 1 ATACTGCCCC 1 ATACTGCTGC 2 ATACTGGAAA 1 ATACTGGAGT 1 ATACTGTAGG 2 ATACTGTCAG 1 ATACTTCACT 1 ATACTTCCTG 1 ATAGAAGGGC 1 ATAGACGCAA 3 ATAGAGCTGG 1 ATAGAGGCAA 4 ATAGATGCTG 1 ATAGATGGGG 4 ATAGCACTCT 1 ATAGCACTGC 1 ATAGCAGACA 1 ATAGCATAGT 1 ATAGCCACTG 1 ATAGCCCATA 2 ATAGCCTTTT 1 ATAGCGCCAC 1 ATAGCTCTGT 1 ATAGCTGGGG 1 ATAGCTTGCT 1 ATAGCTTTGG 1 ATAGGAGTAA 1 ATAGGATTCC 2 ATAGGATTGC 1 ATAGGCCAAC 1 ATAGGCCGTC 1 ATAGGGACCC 1 ATAGGTAGAG 1 ATAGGTCAGA 4 ATAGGTCTAA 1 ATAGTACAGC 1 ATAGTGACAC 1 ATAGTGCCAC 3 ATAGTGGCGG 1 ATAGTGGTTA 1 ATAGTTCTTT 1 ATAGTTTACT 1 ATAGTTTTTA 1 ATATAATCCG 1 ATATAATCTG 18 ATATAATGTG 1 ATATACGCGT 1 ATATAGAGTG 1 ATATAGGTCG 1 ATATAGTGGC 1 ATATATAATG 1 ATATATATTG 1 ATATCATAAA 1 ATATCCCTGT 1 ATATCCTTTG 1 ATATCTAGGC 1 ATATCTCCCT 1 ATATGACCTG 1 ATATGAGAAA 1 ATATGAGAAG 1 ATATGCACTC 1 ATATGCAGAG 1 ATATGCGGTG 1 ATATGCTACT 1 ATATGGAAGC 1 ATATTACGAC 1 ATATTAGAAA 1 ATATTATCTT 1 ATATTCATTT 1 ATATTGATGA 1 ATATTGTCAA 1 ATATTTTAAA 1 ATATTTTCCT 7 ATCAAAATCT 1 ATCAAACCAC 1 ATCAACTATT 1 ATCAACTGGA 1 ATCAAGAAGA 2 ATCAAGAGAT 1 ATCAAGATGG 1 ATCAAGCCAC 1 ATCAAGGACT 1 ATCAAGGGTG 12 ATCAAGTCGA 1 ATCAAGTGGG 2 ATCAAGTTCG 1 ATCAAGTTGG 1 ATCAATGAGA 1 ATCACACCAC 5 ATCACACGAC 1 ATCACAGCTG 1 ATCACAGGTC 1 ATCACAGGTG 1 ATCACAGTTC 1 ATCACCCCCC 1 ATCACCCCCT 1 ATCACCTCTG 1 ATCACGCACT 1 ATCACGCCAC 6 ATCACGCCCC 2 ATCACGCCCT 78 ATCACGCCGT 1 ATCACGCCTC 1 ATCACGCCTT 1 ATCACTAAAG 1 ATCACTCATT 1 ATCACTCCAG 1 ATCACTTCCC 1 ATCACTTCTC 1 ATCACTTGGG 2 ATCAGAAGGT 1 ATCAGAATGA 1 ATCAGAATTG 1 ATCAGCAGAA 1 ATCAGCTCCT 1 ATCAGCTCTT 2 ATCAGGCATT 1 ATCAGGCCAC 1 ATCAGGCGCC 1 ATCAGGGCTA 1 ATCAGTGGCT 3 ATCAGTGTGC 1 ATCAGTTGAC 1 ATCATAAACT 1 ATCATACCAC 1 ATCATAGCTC 2 ATCATATAGA 2 ATCATCGAGT 1 ATCATCTCAA 1 ATCATCTCAG 1 ATCATCTTAA 1 ATCATTATCA 1 ATCATTATGG 1 ATCATTCCCT 1 ATCATTCTCA 7 ATCCAAAGGA 1 ATCCAAGGTC 1 ATCCACATCG 1 ATCCACCACT 1 ATCCACCCAC 3 ATCCACCCGC 5 ATCCACCTGC 1 ATCCACTGCG 1 ATCCAGGGGC 1 ATCCAGGGTC 2 ATCCAGTAAG 1 ATCCAGTTCG 1 ATCCATAGTG 1 ATCCATCTGT 2 ATCCATTCTG 2 ATCCCAAGCT 1 ATCCCACAGG 1 ATCCCACCAC 1 ATCCCACCAG 1 ATCCCAGATA 1 ATCCCAGCTC 1 ATCCCAGGAG 1 ATCCCCAAGC 1 ATCCCCCAAA 1 ATCCCCCACC 1 ATCCCCGCCC 1 ATCCCCGTGG 1 ATCCCCTCTC 1 ATCCCCTTTT 1 ATCCCGCTGG 1 ATCCCGGGAG 1 ATCCCGTGCT 1 ATCCCTACAA 1 ATCCCTCAGT 5 ATCCCTGCTG 1 ATCCCTGTAA 2 ATCCCTGTCA 1 ATCCCTGTGA 1 ATCCCTTGGA 1 ATCCGAATGT 1 ATCCGCCCGC 3 ATCCGCCTAC 1 ATCCGCCTGC 4 ATCCGCGGGG 1 ATCCGGACCC 4 ATCCGGAGAA 1 ATCCGGCGCC 14 ATCCGTGCCC 9 ATCCTACCTG 1 ATCCTACTGT 1 ATCCTCCATT 1 ATCCTCCCCG 1 ATCCTCCCTA 1 ATCCTCCTGC 1 ATCCTCGCGC 1 ATCCTGAGCA 1 ATCCTGAGTT 1 ATCCTGATGG 1 ATCCTGATTC 1 ATCCTGCCAC 2 ATCCTGCTGC 1 ATCCTGGCTG 1 ATCCTTACAT 1 ATCCTTCTGG 1 ATCCTTTGTC 1 ATCGAAAATG 1 ATCGAGCCAC 12 ATCGAGCGTA 1 ATCGAGGCGG 1 ATCGATCCTG 1 ATCGATCGCC 2 ATCGCACCAC 9 ATCGCACCAT 1 ATCGCACTAC 1 ATCGCATCAC 2 ATCGCGCTGC 1 ATCGCGGAGG 1 ATCGCGGCGG 1 ATCGCTAACA 1 ATCGCTCAGG 1 ATCGCTTTCT 20 ATCGGAAGAT 1 ATCGGAGAGC 1 ATCGGCAACC 1 ATCGGGCCCG 10 ATCGGGTACT 1 ATCGGTCGCC 2 ATCGTAAATC 1 ATCGTACCAC 2 ATCGTATCAC 1 ATCGTCAAGA 1 ATCGTCCGGG 1 ATCGTCGAAG 1 ATCGTGCCAC 8 ATCGTGCCGC 1 ATCGTGGAGG 1 ATCGTGGCAC 1 ATCGTGGCAG 1 ATCGTGGCCG 1 ATCGTGGCGG 193 ATCGTGGGGC 1 ATCGTGGTGC 1 ATCGTGGTGG 1 ATCGTTGGCG 2 ATCGTTGTAA 2 ATCGTTGTGA 2 ATCTAAAACA 1 ATCTAAACCA 1 ATCTAAGCAG 1 ATCTACCTTT 1 ATCTACTGTT 1 ATCTAGAACT 1 ATCTAGCCTT 1 ATCTAGGCCC 1 ATCTAGTGAG 1 ATCTATGACC 1 ATCTCAAAGA 2 ATCTCACCAC 1 ATCTCACTCA 1 ATCTCAGAGT 1 ATCTCAGCTC 2 ATCTCAGCTT 1 ATCTCAGTTC 1 ATCTCAGTTG 1 ATCTCAGTTT 1 ATCTCCGCCT 1 ATCTCCGCTC 1 ATCTCCTGGA 1 ATCTCCTGGC 1 ATCTCGAAAG 2 ATCTCGCCAA 1 ATCTCGGCTC 5 ATCTCGGGTT 1 ATCTCGTCAC 1 ATCTCTAAAA 1 ATCTCTGCCT 1 ATCTCTGTAA 1 ATCTCTTTCC 1 ATCTCTTTTC 1 ATCTGAAAAC 1 ATCTGAAAAG 1 ATCTGAAGCA 2 ATCTGACTTA 1 ATCTGAGAAG 1 ATCTGAGGCC 1 ATCTGAGTGC 1 ATCTGAGTTC 1 ATCTGATGGT 1 ATCTGCATAT 1 ATCTGCCCAC 1 ATCTGCCCGC 6 ATCTGCCGTG 1 ATCTGCCTGC 2 ATCTGCTGTC 1 ATCTGGAGCA 2 ATCTGGGAGG 1 ATCTGGGCCC 1 ATCTGGGCCT 1 ATCTGGGGGA 1 ATCTGGGGTT 1 ATCTGGGTTG 1 ATCTGGTGCT 1 ATCTGTCTAT 1 ATCTGTGAAA 1 ATCTGTTTAT 3 ATCTTACCAG 1 ATCTTAGCTC 1 ATCTTAGTCA 9 ATCTTCTTCG 1 ATCTTGAACA 1 ATCTTGGCCT 1 ATCTTGGCGG 1 ATCTTGGCTC 4 ATCTTTCTGG 19 ATCTTTCTGT 1 ATCTTTTAAC 1 ATGAAAACAA 2 ATGAAAAGAA 3 ATGAAAATCT 1 ATGAAACCAC 1 ATGAAACCCA 2 ATGAAACCCC 20 ATGAAACCCG 2 ATGAAACCCT 11 ATGAAACCTG 2 ATGAAACTCC 2 ATGAAACTCT 1 ATGAAACTGT 1 ATGAAACTTC 1 ATGAAAGCCC 1 ATGAAAGGTG 1 ATGAAATCAC 1 ATGAAATCCT 2 ATGAACACGG 2 ATGAACAGCG 1 ATGAACCCCC 1 ATGAACCGCA 1 ATGAACTCTG 1 ATGAAGAGTC 2 ATGAAGCCCC 1 ATGAAGGGGT 1 ATGAATCTAG 1 ATGAATGATC 1 ATGAATGTTC 1 ATGAATTCCC 1 ATGACAAATG 3 ATGACACTCA 2 ATGACAGGGA 1 ATGACATCCC 1 ATGACCACGG 2 ATGACCAGCA 1 ATGACCAGGC 1 ATGACCATAG 1 ATGACCATTC 1 ATGACCCCCG 2 ATGACGATGG 2 ATGACGCTCA 22 ATGACGGGTC 1 ATGACTAGCG 2 ATGACTATGA 1 ATGACTCAAG 4 ATGACTGCTG 1 ATGAGACCCC 1 ATGAGACCTC 1 ATGAGACTCT 1 ATGAGAGCCC 1 ATGAGCAAGA 1 ATGAGCCTAA 1 ATGAGCGTCT 1 ATGAGCTAGT 1 ATGAGCTGAC 8 ATGAGCTGTG 1 ATGAGCTTCG 1 ATGAGGCCGG 2 ATGAGGGAAC 1 ATGAGGGTCC 1 ATGAGTCCTG 1 ATGAGTTCTG 1 ATGATAATAT 1 ATGATAGTCA 1 ATGATCCGGA 3 ATGATCTGAT 1 ATGATCTGCC 1 ATGATGAGGC 1 ATGATGATGA 10 ATGATGCAGG 1 ATGATGCGGA 1 ATGATGCGGT 13 ATGATGGAAA 2 ATGATGGCAC 12 ATGATGGGTG 2 ATGATGTCTG 1 ATGATGTGAA 1 ATGATTCCAT 1 ATGATTCCTT 1 ATGATTGAAC 1 ATGATTGCAC 1 ATGCAAATGT 1 ATGCAAATTA 1 ATGCAAGGCA 1 ATGCACACTT 1 ATGCACATTT 1 ATGCAGAATC 1 ATGCAGAGTC 1 ATGCAGCCAG 2 ATGCAGCCAT 9 ATGCAGCCGT 2 ATGCAGCGGG 1 ATGCAGGCCT 1 ATGCAGTTCA 1 ATGCCAAATG 1 ATGCCACGCA 1 ATGCCAGTTC 1 ATGCCCAGCT 1 ATGCCCCACC 1 ATGCCCGAGG 2 ATGCCCGGGT 1 ATGCCGACAG 1 ATGCCTTCAG 1 ATGCCTTGGG 3 ATGCCTTTCT 1 ATGCGAAAGG 2 ATGCGCAAGG 2 ATGCGGAGTC 14 ATGCGGGAAA 1 ATGCGGGAGA 38 ATGCGGGAGG 1 ATGCGGGATC 1 ATGCGGTCCG 1 ATGCGTGAAA 1 ATGCGTTGGG 1 ATGCTAAAAA 2 ATGCTAAGTG 1 ATGCTAGAAT 1 ATGCTATTGT 2 ATGCTCAAAT 1 ATGCTCAACC 1 ATGCTCATTA 1 ATGCTCCCTG 9 ATGCTCTGGT 1 ATGCTGACTG 2 ATGCTGTACA 7 ATGCTGTCAG 2 ATGCTGTTTT 2 ATGCTTATTG 1 ATGCTTCTTG 1 ATGCTTGCAT 2 ATGCTTGGCC 1 ATGCTTGTGT 1 ATGCTTTCAC 1 ATGCTTTTAG 1 ATGGAAAGGA 2 ATGGAACTGA 3 ATGGAATGCT 3 ATGGACAATA 1 ATGGACGACT 1 ATGGACTTAC 1 ATGGAGACTT 6 ATGGAGCGCA 1 ATGGAGGGAA 1 ATGGATCGCA 1 ATGGATCTGC 1 ATGGATGTGG 1 ATGGATGTTG 1 ATGGATTATG 1 ATGGCAAGCC 1 ATGGCAAGGG 2 ATGGCAATAT 1 ATGGCACACA 2 ATGGCACACG 1 ATGGCACATA 1 ATGGCACATC 1 ATGGCACATT 1 ATGGCACCAC 1 ATGGCACGCA 1 ATGGCACGGA 6 ATGGCACGTG 1 ATGGCAGAGA 1 ATGGCAGGAG 7 ATGGCAGGCA 1 ATGGCAGGTG 6 ATGGCCAACT 4 ATGGCCAGAA 1 ATGGCCAGAC 1 ATGGCCATAG 2 ATGGCCCAGA 1 ATGGCCCATA 19 ATGGCCCCAC 1 ATGGCCCTAG 1 ATGGCCCTCG 1 ATGGCCGGTA 1 ATGGCCTACA 1 ATGGCCTCCT 3 ATGGCGACTG 2 ATGGCGATCT 2 ATGGCGCACA 2 ATGGCGCACG 1 ATGGCGCAGT 1 ATGGCGCCAC 2 ATGGCGCCTC 1 ATGGCGCGCA 1 ATGGCGCTAC 1 ATGGCGGGCA 3 ATGGCGGGCC 1 ATGGCGGGCG 1 ATGGCGGGTG 7 ATGGCGGTCG 1 ATGGCGGTGG 1 ATGGCGTGTT 1 ATGGCTCACA 1 ATGGCTCACG 1 ATGGCTCACT 1 ATGGCTCCTC 1 ATGGCTCCTG 1 ATGGCTGCTA 1 ATGGCTGCTG 2 ATGGCTGGAT 1 ATGGCTGGCG 2 ATGGCTGGGC 5 ATGGCTGGTA 18 ATGGCTTGTG 1 ATGGGAGTGC 1 ATGGGATTAG 1 ATGGGCACTG 1 ATGGGCAGCC 1 ATGGGCAGTG 1 ATGGGCGTCT 1 ATGGGCTAGG 1 ATGGGCTTGA 18 ATGGGGAGGG 1 ATGGGGAGTT 1 ATGGGGATTC 1 ATGGGGATTG 1 ATGGGGCAGG 1 ATGGGGGTGA 2 ATGGGTCAGA 1 ATGGGTCCCA 1 ATGGGTCGTT 1 ATGGGTGATA 1 ATGGTACCAC 2 ATGGTACGCA 1 ATGGTAGGTG 1 ATGGTCAGCT 1 ATGGTCAGGC 1 ATGGTCAGTA 2 ATGGTCTACG 10 ATGGTCTCCT 1 ATGGTGAAAC 2 ATGGTGAAGG 1 ATGGTGAGCG 1 ATGGTGATGG 1 ATGGTGCACA 4 ATGGTGCACT 1 ATGGTGCCAC 2 ATGGTGCCTG 1 ATGGTGCCTT 1 ATGGTGCGGG 1 ATGGTGCTGA 1 ATGGTGGCAG 1 ATGGTGGGCA 1 ATGGTGGGGA 1 ATGGTGGGGG 25 ATGGTGGGTG 8 ATGGTGGTGG 6 ATGGTGTAAT 2 ATGGTGTATG 2 ATGGTGTGCA 1 ATGGTGTGCT 1 ATGGTGTGTG 2 ATGGTTAATA 1 ATGGTTAATG 1 ATGGTTAATT 1 ATGGTTAGTT 1 ATGGTTCCTT 1 ATGGTTCTCA 1 ATGGTTGAGG 1 ATGGTTGGCT 1 ATGGTTGGTG 1 ATGGTTGTTG 2 ATGTAAAATT 1 ATGTACCTGA 1 ATGTACGGGT 1 ATGTACTCTG 1 ATGTAGAATG 1 ATGTAGGTAT 1 ATGTATGGGC 1 ATGTATTATA 1 ATGTCAGGCG 1 ATGTCAGGGC 1 ATGTCATCAA 2 ATGTCATTTC 1 ATGTCCAAAA 1 ATGTCCAATT 3 ATGTCCCCTC 1 ATGTCCCCTG 1 ATGTCCTTTC 1 ATGTCGTGAC 1 ATGTCGTGGT 1 ATGTCTTTCT 1 ATGTGAAAAC 1 ATGTGAAATA 1 ATGTGACACT 3 ATGTGAGAAG 1 ATGTGAGTAG 1 ATGTGAGTGT 1 ATGTGATCTC 1 ATGTGATTTT 1 ATGTGCAGAT 1 ATGTGCGTGG 38 ATGTGCTGAG 1 ATGTGCTTTT 1 ATGTGGAGTG 1 ATGTGGCACA 7 ATGTGGGCCC 1 ATGTGGGCTC 7 ATGTGGGTTA 1 ATGTGTCCCT 1 ATGTGTGATA 1 ATGTGTTCAC 1 ATGTTAAATC 1 ATGTTAAGTA 1 ATGTTACTAA 1 ATGTTAGATA 1 ATGTTAGGGA 2 ATGTTATCAA 2 ATGTTATGAG 1 ATGTTCAATC 1 ATGTTCAGGT 1 ATGTTCCTAT 1 ATGTTGCTAG 1 ATGTTGTGTT 1 ATGTTTAATT 3 ATGTTTAGAA 1 ATGTTTCTCC 1 ATGTTTCTTG 1 ATGTTTGATA 1 ATGTTTGTTA 2 ATTAAAACAG 1 ATTAAAAGCT 1 ATTAAAATAT 1 ATTAAAGAAG 1 ATTAACAAAG 8 ATTAACAAGC 1 ATTAACACCC 1 ATTAACGGCC 1 ATTAACTGCT 1 ATTAAGAAAA 3 ATTAAGAGGA 1 ATTAATAGGC 1 ATTACAAGGT 1 ATTACACCAC 3 ATTACAGGGT 1 ATTACAGTTC 1 ATTACATTTA 1 ATTACTGTAG 1 ATTAGAAATT 4 ATTAGAAGTT 1 ATTAGACTCT 1 ATTAGACTTT 1 ATTAGAGAAG 1 ATTAGCCAGA 1 ATTAGGTAGG 1 ATTAGTGGCA 1 ATTAGTGGTG 1 ATTAGTGTTG 1 ATTATAAGCT 1 ATTATAATAA 1 ATTATACCAC 1 ATTATAGTTT 1 ATTATCACAT 3 ATTATCCAGG 3 ATTATCTCCT 1 ATTATCTGTG 1 ATTATGGGCA 2 ATTATGTAAG 1 ATTATGTCAC 1 ATTATTCAAT 1 ATTATTCACA 1 ATTATTCCCC 1 ATTATTGGAT 1 ATTATTTCAA 1 ATTATTTTTC 2 ATTCAACCTT 1 ATTCAATCGC 1 ATTCAATTAT 1 ATTCACATAC 1 ATTCACCCCC 1 ATTCACTGCA 1 ATTCAGCAAA 1 ATTCAGCACC 2 ATTCAGTCAA 1 ATTCAGTTAT 1 ATTCATATTA 1 ATTCATCTGC 1 ATTCATTGTC 1 ATTCCAAACC 1 ATTCCAACTG 1 ATTCCAATCT 3 ATTCCAATGG 1 ATTCCACTAA 1 ATTCCATATG 1 ATTCCATCTC 1 ATTCCATCTG 1 ATTCCATTAG 1 ATTCCATTCG 1 ATTCCATTTA 1 ATTCCATTTG 1 ATTCCCGGGG 1 ATTCCGTCTT 1 ATTCCTGGTG 1 ATTCGAAAGC 1 ATTCGAGAAG 1 ATTCGGAGGG 1 ATTCGTGCTT 1 ATTCTAAATG 1 ATTCTATGTA 2 ATTCTATGTC 1 ATTCTCACGA 1 ATTCTCATCT 1 ATTCTCCAGT 8 ATTCTCCTGC 1 ATTCTCTAAA 1 ATTCTCTGAG 1 ATTCTGCTGG 1 ATTCTGGACT 1 ATTCTGTAAT 1 ATTCTGTAGC 1 ATTCTGTCAA 1 ATTCTGTTGT 1 ATTCTTAGCC 1 ATTCTTAGTC 1 ATTCTTCGGA 1 ATTCTTGGAA 1 ATTCTTGGCG 1 ATTCTTTCTA 1 ATTGAACACG 1 ATTGAAGTGC 1 ATTGACCGCT 1 ATTGAGAAGC 1 ATTGAGCCAC 3 ATTGAGCTTA 1 ATTGAGCTTC 1 ATTGAGTCCA 1 ATTGATCAAT 1 ATTGATGTCG 1 ATTGCACCAC 14 ATTGCACCAG 1 ATTGCACCCT 1 ATTGCACCGC 1 ATTGCACTGC 1 ATTGCAGAGG 1 ATTGCAGTGC 1 ATTGCATCAA 1 ATTGCATCAC 2 ATTGCCTTCT 1 ATTGCCTTGG 1 ATTGCGCCAC 7 ATTGCGTGCA 1 ATTGCTCCAC 1 ATTGCTGATT 1 ATTGCTGGTA 1 ATTGCTTTTG 1 ATTGGAAGTA 1 ATTGGAATGC 1 ATTGGACAAG 1 ATTGGAGGAT 1 ATTGGAGTAC 1 ATTGGAGTCT 1 ATTGGAGTGC 136 ATTGGAGTGG 1 ATTGGAGTTG 1 ATTGGCCACC 1 ATTGGCCCAC 1 ATTGGCGTGC 1 ATTGGCTAAT 1 ATTGGCTGGG 3 ATTGGCTGTT 1 ATTGGGCATT 1 ATTGGGCCAC 1 ATTGGGCCAT 1 ATTGGTACCC 1 ATTGGTCCAA 1 ATTGGTTGTA 1 ATTGTAAGCT 1 ATTGTAATCC 1 ATTGTACAAC 1 ATTGTACCAC 1 ATTGTAGACA 3 ATTGTAGACG 1 ATTGTAGAGA 1 ATTGTAGGCA 1 ATTGTATATG 1 ATTGTATATT 1 ATTGTCCCAG 1 ATTGTCCGGG 1 ATTGTCTATG 1 ATTGTGAACA 1 ATTGTGACAC 1 ATTGTGAGGC 4 ATTGTGAGGG 4 ATTGTGCCAC 19 ATTGTGCCAT 1 ATTGTGCTAA 1 ATTGTGCTAC 2 ATTGTGCTAT 1 ATTGTGCTTG 1 ATTGTGGCAC 1 ATTGTGGCGG 1 ATTGTGGGTG 1 ATTGTGTCAC 1 ATTGTTCTGT 1 ATTGTTCTTG 1 ATTGTTGTAA 1 ATTGTTTATC 1 ATTGTTTATG 5 ATTGTTTCTT 1 ATTTAAAAAA 1 ATTTAAAATA 1 ATTTAAGAAG 1 ATTTAAGAGA 1 ATTTACCAGC 1 ATTTACTCTT 1 ATTTAGGACC 1 ATTTATGCTT 1 ATTTATTACC 1 ATTTATTGCA 1 ATTTCAACAG 1 ATTTCAAGAT 35 ATTTCAAGGA 1 ATTTCAAGTA 1 ATTTCACTGC 1 ATTTCAGAAA 2 ATTTCAGAAG 1 ATTTCAGGCC 1 ATTTCAGTAT 1 ATTTCCATCG 1 ATTTCCATTA 1 ATTTCCCAAA 1 ATTTCCCTGA 1 ATTTCCTTGA 5 ATTTCGACGT 1 ATTTCGTGGG 1 ATTTCTAAAA 1 ATTTCTCATT 1 ATTTCTCTGC 1 ATTTCTGAAC 1 ATTTCTGCTG 6 ATTTCTGTGG 1 ATTTCTTGCC 1 ATTTGAAAAG 4 ATTTGAAAGT 1 ATTTGAGAAA 2 ATTTGAGAAC 5 ATTTGAGAAG 320 ATTTGAGAGG 1 ATTTGAGCAG 2 ATTTGAGCTG 1 ATTTGAGGAA 1 ATTTGAGTAG 1 ATTTGAGTGC 1 ATTTGATAAG 2 ATTTGATGTG 1 ATTTGATTAG 1 ATTTGCATCC 1 ATTTGCCCGC 1 ATTTGCTCTC 1 ATTTGCTTAT 1 ATTTGGAAGA 1 ATTTGGAGCC 1 ATTTGGCCAC 1 ATTTGGGAAG 4 ATTTGGGCCT 1 ATTTGGGGTT 2 ATTTGTATTT 1 ATTTGTCATT 1 ATTTGTCCCA 18 ATTTGTGGCC 2 ATTTGTGTTC 1 ATTTTACACA 1 ATTTTAGAAG 1 ATTTTATATC 1 ATTTTATGTT 2 ATTTTCAAAG 1 ATTTTCAAGA 1 ATTTTCACCA 1 ATTTTCATTA 1 ATTTTCTAAA 25 ATTTTCTAAG 1 ATTTTCTACA 1 ATTTTCTAGA 1 ATTTTCTGAT 1 ATTTTGAATC 1 ATTTTGAGAA 2 ATTTTGATTA 1 ATTTTGCCAA 1 ATTTTGCCAC 1 ATTTTGGAAC 1 ATTTTGGCTC 1 ATTTTGTAAA 1 ATTTTGTGCA 1 ATTTTGTGTC 2 ATTTTGTTTC 2 ATTTTGTTTG 1 ATTTTTAAAT 1 ATTTTTAGCT 1 ATTTTTCAGG 1 ATTTTTGCCC 1 ATTTTTTACA 1 ATTTTTTCAA 2 ATTTTTTCCA 2 ATTTTTTCCT 2 CAAAAAAAAA 35 CAAAAAAAGA 1 CAAAAAACCA 1 CAAAAAAGAA 1 CAAAAAAGAG 1 CAAAAAAGGA 1 CAAAAAAGGT 1 CAAAAACTAT 1 CAAAAACTTA 1 CAAAAAGAAA 1 CAAAAATGCA 1 CAAAACAACA 1 CAAAACCCCA 1 CAAAACCCTG 1 CAAAACGCTG 1 CAAAACGGTA 1 CAAAACTGTT 1 CAAAACTTCA 1 CAAAAGAAGA 1 CAAAAGAATG 1 CAAAAGATGG 1 CAAAAGCCTT 1 CAAAAGGCTC 2 CAAAATCAAA 1 CAAAATCAGG 4 CAAAATTACG 1 CAAAATTGGA 1 CAAACAAAAC 1 CAAACAATAA 1 CAAACACACA 1 CAAACACAGT 1 CAAACAGGTG 1 CAAACAGTTC 1 CAAACATCCC 1 CAAACCACCC 1 CAAACCATCC 140 CAAACCCTCC 1 CAAACCGTCC 1 CAAACTAGAA 1 CAAACTCTAT 1 CAAACTTAAG 1 CAAACTTCAT 1 CAAACTTGCC 1 CAAAGACAAT 1 CAAAGACACA 4 CAAAGACATA 1 CAAAGACTGA 1 CAAAGACTTC 1 CAAAGAGCTT 1 CAAAGATGTC 1 CAAAGCAACG 1 CAAAGCAAGC 1 CAAAGCCCCC 1 CAAAGCTAGC 1 CAAAGCTGTG 1 CAAAGGAAGC 1 CAAAGGATTT 6 CAAAGGCCCT 2 CAAAGGCTCT 1 CAAAGGCTGG 1 CAAAGGCTTG 1 CAAAGGGACA 1 CAAAGGTGAA 1 CAAAGTACTA 1 CAAAGTATGC 1 CAAAGTCCTT 1 CAAAGTGGAA 1 CAAATAAAAA 2 CAAATAAAAG 9 CAAATAAAAT 1 CAAATAAATT 10 CAAATAAGAG 1 CAAATAAGCT 2 CAAATAATTG 1 CAAATACAGT 1 CAAATCAAAA 1 CAAATCCAAA 10 CAAATCCAAT 1 CAAATGAGGA 3 CAAATGAGGG 1 CAAATGCGAA 1 CAAATGCTCC 1 CAAATGCTGT 3 CAAATGGAAA 1 CAAATGGACA 2 CAAATGGAGG 1 CAAATGGGTT 1 CAAATGGTTG 1 CAAATGTATG 1 CAAATGTGGT 1 CAAATTAGTG 3 CAAATTGCAA 1 CAAATTTTCT 1 CAACAAAAAA 1 CAACAAAAAG 1 CAACAAGCAA 1 CAACAAGTGG 1 CAACAATAAT 8 CAACAATAGA 1 CAACAGAGTA 1 CAACAGGTTG 1 CAACAGTTTG 1 CAACATACCT 1 CAACATTAAA 1 CAACATTAGT 1 CAACATTCCT 4 CAACATTCTA 2 CAACATTTAC 1 CAACCAAGAT 2 CAACCATCAT 2 CAACCATCCA 1 CAACCCAGAT 1 CAACCCATCC 1 CAACCCTAAA 1 CAACCCTGAT 1 CAACCCTGGT 1 CAACCCTGTG 1 CAACCTAACA 4 CAACCTGGCA 1 CAACCTTCTC 1 CAACGAAAAA 1 CAACTAACTA 1 CAACTAATTC 2 CAACTATCCG 2 CAACTCAGCA 1 CAACTCCACT 1 CAACTCTTTA 1 CAACTGAGGT 1 CAACTGCACT 3 CAACTGCCCC 1 CAACTGGAGT 10 CAACTGGATT 1 CAACTGTACT 1 CAACTGTAGT 1 CAACTGTATT 4 CAACTGTCTC 1 CAACTTAAGT 4 CAACTTACTT 2 CAACTTAGTC 1 CAACTTAGTT 15 CAACTTCTTC 1 CAACTTTTCC 1 CAAGAAACTC 1 CAAGAACAAG 2 CAAGAAGTTC 1 CAAGACCCAG 1 CAAGACCCTG 1 CAAGACGGGG 4 CAAGACTGTG 1 CAAGACTTTC 1 CAAGAGCACT 1 CAAGAGGCAA 2 CAAGAGGTAC 1 CAAGAGTTTC 14 CAAGATATGG 2 CAAGATCATA 1 CAAGATCCCA 1 CAAGATGTGG 1 CAAGCAAAAT 1 CAAGCAAACG 1 CAAGCAGCAG 1 CAAGCAGGAC 3 CAAGCATCAC 1 CAAGCATCCC 91 CAAGCATCTC 1 CAAGCATTCC 1 CAAGCCATCC 2 CAAGCCCAGC 1 CAAGCCCTGC 2 CAAGCCTTAC 1 CAAGCTAAGC 1 CAAGCTCAGA 1 CAAGCTCAGC 1 CAAGCTCTAC 1 CAAGCTGTGT 1 CAAGCTTTCC 1 CAAGCTTTGG 1 CAAGGACACT 1 CAAGGACGCA 1 CAAGGAGAGG 1 CAAGGAGTCG 1 CAAGGATCTA 2 CAAGGCTGAG 1 CAAGGGCTTG 1 CAAGGGGACA 1 CAAGGGTGAC 9 CAAGGGTGCC 1 CAAGGGTGGT 1 CAAGGTCATT 3 CAAGGTGAAA 1 CAAGGTTTTT 1 CAAGTAATGA 1 CAAGTACCTG 3 CAAGTATCCC 1 CAAGTCATTT 1 CAAGTGACTC 1 CAAGTGCACA 1 CAAGTGCACT 1 CAAGTGCTCA 1 CAAGTGCTTA 1 CAAGTGGAAG 1 CAAGTGGCAA 4 CAAGTGTAAT 1 CAAGTTAGTT 1 CAAGTTCCTG 1 CAAGTTCTTT 3 CAAGTTGCAA 1 CAAGTTGTTA 1 CAAGTTGTTC 1 CAAGTTTACC 1 CAAGTTTGCT 1 CAATAAAAGT 1 CAATAAACTA 1 CAATAAACTG 12 CAATAAATGT 8 CAATAACAAG 1 CAATAAGATC 1 CAATACTCAC 1 CAATACTGCA 1 CAATATACTG 1 CAATATGCCA 1 CAATCACAAA 2 CAATCACTGT 1 CAATCAGAAT 1 CAATCATTCC 1 CAATCATTGG 1 CAATCCCAGG 1 CAATCCTCCA 1 CAATCTCAGC 2 CAATCTGATG 1 CAATCTTAAC 1 CAATCTTGTG 3 CAATGACAAG 1 CAATGACCCC 1 CAATGACTAG 1 CAATGATGCA 4 CAATGATTCT 1 CAATGCACAC 1 CAATGCAGAG 1 CAATGCATCC 1 CAATGCCTTA 1 CAATGCTGCC 1 CAATGGAAGT 1 CAATGGATAT 1 CAATGGATGG 1 CAATGGGCAG 1 CAATGGGCCA 1 CAATGGGTAA 1 CAATGTATTT 1 CAATGTGAGC 1 CAATGTGCAA 1 CAATGTGCTG 1 CAATGTGTCT 1 CAATGTGTTA 4 CAATTAAAAG 2 CAATTACCTG 1 CAATTACTGC 1 CAATTATTGG 1 CAATTCCATT 1 CAATTCCCTA 1 CAATTCCTTC 1 CAATTCCTTT 1 CAATTGATGC 1 CAATTGCATT 1 CAATTGGCGT 1 CAATTTAAGT 1 CAATTTATAT 1 CAATTTATCC 1 CAATTTGAAG 2 CAATTTGATG 1 CAATTTGTGT 1 CAATTTTGAC 1 CAATTTTGCA 1 CAATTTTGTT 1 CACAAAATCT 2 CACAAACGGT 22 CACAAAGACA 1 CACAAAGAGG 1 CACAAAGGAC 1 CACAAAGGCA 1 CACAAAGTTG 1 CACAAATGAA 1 CACAACCGGA 1 CACAACCTCC 1 CACAACGCGC 1 CACAAGACCT 1 CACAAGCGGT 2 CACAAGCTTC 2 CACAAGTTTT 1 CACAATAATT 2 CACAATTATA 1 CACAATTCTC 1 CACACAAATG 1 CACACAATGT 1 CACACACACA 2 CACACACCAG 1 CACACAGGAA 1 CACACAGGTA 1 CACACCAGCC 1 CACACCAGGA 1 CACACCAGTT 1 CACACCATCC 1 CACACCATTG 2 CACACCCACA 1 CACACCCATA 1 CACACCCATT 2 CACACCCCAG 1 CACACCCCTG 5 CACACCCTGA 1 CACACCTGAT 1 CACACCTGTA 1 CACACGCACA 1 CACACGGGCA 1 CACACTACTA 2 CACACTGCCC 1 CACAGACACA 4 CACAGACGGT 1 CACAGACTGA 2 CACAGACTGG 1 CACAGAGTCC 6 CACAGATATC 1 CACAGATATG 1 CACAGATCTG 1 CACAGCATAG 1 CACAGCCGCA 1 CACAGCCTCA 1 CACAGCTAGA 1 CACAGGCAAA 13 CACAGGCCTG 1 CACAGGGATT 1 CACAGGGCAA 2 CACAGGGCCA 2 CACAGGTACC 1 CACAGTATTT 1 CACAGTGGCT 1 CACAGTTCCC 1 CACATAATAA 1 CACATAATGG 1 CACATAATTG 1 CACATACTCT 2 CACATATAAG 1 CACATATACT 1 CACATATATA 1 CACATCCGAT 1 CACATCGTCA 1 CACATCTCTG 3 CACATCTGTA 1 CACATCTTTG 1 CACATTAATG 1 CACATTATTA 1 CACATTGCAG 1 CACCAAACTT 1 CACCAACAAA 1 CACCAACTAC 1 CACCACAACA 2 CACCACACCT 1 CACCACACGC 1 CACCACCAAT 1 CACCACCACA 4 CACCACCACG 2 CACCACCACT 1 CACCACGGGC 5 CACCACTCAC 1 CACCACTTGG 1 CACCAGAAAG 1 CACCAGCAAG 1 CACCAGCCCA 1 CACCAGCTAC 1 CACCAGCTCA 1 CACCAGTCAG 4 CACCATAACC 1 CACCATCACA 1 CACCATTCAG 2 CACCCAAATT 1 CACCCAATGG 4 CACCCAATTG 2 CACCCACTGC 2 CACCCAGCAG 1 CACCCATATA 1 CACCCCAGCA 1 CACCCCAGGG 1 CACCCCATCC 1 CACCCCCAGG 2 CACCCCCTCG 1 CACCCCTGAA 1 CACCCCTGAT 73 CACCCTAAAA 2 CACCCTAATT 1 CACCCTATAG 1 CACCCTGATG 4 CACCCTGCTG 1 CACCCTTAAT 1 CACCCTTGAT 2 CACCCTTGCT 1 CACCGCCTCT 1 CACCGGAAAT 1 CACCGGACAC 1 CACCGGGTAG 2 CACCGGTCGG 1 CACCGTAAAA 1 CACCGTTCAC 1 CACCTAAATG 1 CACCTAAATT 3 CACCTAATAG 3 CACCTAATCG 2 CACCTAATGG 3 CACCTAATGT 1 CACCTAATTA 2 CACCTAATTC 1 CACCTAATTG 469 CACCTAATTT 1 CACCTACAGT 1 CACCTACATT 1 CACCTACCTG 1 CACCTACTCG 1 CACCTACTTG 1 CACCTAGTTG 4 CACCTATACA 1 CACCTATAGT 1 CACCTATCAA 1 CACCTATGAG 1 CACCTATGTT 1 CACCTATTGG 1 CACCTCAGCC 1 CACCTCCAAG 1 CACCTCTAGT 1 CACCTCTCCC 1 CACCTGAACG 1 CACCTGATTG 2 CACCTGCAAT 1 CACCTGTAAT 11 CACCTGTACT 3 CACCTGTAGT 11 CACCTGTCAT 22 CACCTGTCGT 1 CACCTGTCTC 1 CACCTGTGGC 2 CACCTGTGGT 3 CACCTGTTAT 1 CACCTTAATT 1 CACCTTATTG 1 CACGAAAGAA 1 CACGAATGAA 1 CACGACTGTT 2 CACGCAATGC 29 CACGCAGCCA 1 CACGCAGGAG 1 CACGCCACTG 1 CACGCCTTAT 1 CACGCGATAG 1 CACGCGCGCA 1 CACGCTCAAT 1 CACGCTCACT 2 CACGGAAGGG 1 CACGGGGGAG 2 CACGGGGTGC 1 CACGGGTGGG 1 CACGGGTGTC 2 CACGGGTTTC 1 CACGTAAGGT 1 CACGTAAGTG 1 CACGTAATTG 2 CACGTGTATC 1 CACGTTAGAA 1 CACGTTATTA 1 CACGTTCCCT 2 CACGTTCTAG 1 CACGTTTTAC 1 CACTACAAAG 1 CACTACACGG 4 CACTACCACT 1 CACTACTCAC 245 CACTACTCAT 2 CACTACTCCC 1 CACTACTCGC 1 CACTACTTAC 1 CACTACTTCA 1 CACTAGAGGG 1 CACTAGCTGA 1 CACTAGTTTG 1 CACTATATTT 3 CACTATTCAC 1 CACTCAAGAA 1 CACTCAATGT 1 CACTCACACC 3 CACTCACGAG 1 CACTCCAGCC 3 CACTCCATTC 1 CACTCCCAGT 1 CACTCCTACA 5 CACTCGACAG 1 CACTCTAGCC 2 CACTCTATCC 2 CACTCTGCAC 1 CACTCTGCTC 1 CACTCTGGCG 1 CACTCTGTGC 1 CACTGAATTC 2 CACTGACCAT 1 CACTGACTCA 1 CACTGAGCCA 1 CACTGATTTA 1 CACTGCACTC 4 CACTGCATAT 4 CACTGCCCCT 1 CACTGCCTTG 1 CACTGCGGTC 1 CACTGCTGGG 1 CACTGGATAT 1 CACTGGCGGC 1 CACTGTACGC 1 CACTGTAGTA 1 CACTGTCTTA 1 CACTGTGACC 1 CACTGTGCCT 1 CACTGTGGGG 1 CACTGTGTAG 1 CACTGTGTTG 3 CACTTAATTG 2 CACTTAGCAC 1 CACTTATACA 1 CACTTCAATA 1 CACTTCCACT 1 CACTTCCTCC 1 CACTTGCCCT 19 CACTTGGTGA 4 CACTTGTAAT 1 CACTTGTAGT 1 CACTTGTTGA 1 CACTTGTTTA 1 CACTTTAAGC 1 CACTTTATTG 1 CACTTTCACA 1 CACTTTGCCT 1 CACTTTGGGA 1 CACTTTGTAT 1 CACTTTGTGT 1 CACTTTTGGG 14 CACTTTTTAT 1 CACTTTTTGG 1 CAGAAAACAC 1 CAGAAAATAA 1 CAGAAACAGA 1 CAGAAACCCC 1 CAGAAAGCAT 9 CAGAAAGGTG 1 CAGAAAGTTG 1 CAGAAATCAA 1 CAGAAATCAG 1 CAGAAATCGA 1 CAGAAATGAA 1 CAGAAATGCC 1 CAGAACCATC 1 CAGAACCTAA 2 CAGAACTGTG 1 CAGAAGAAAG 1 CAGAAGAAGA 2 CAGAAGAGAC 1 CAGAAGAGGC 1 CAGAAGATAA 1 CAGAAGCGGC 1 CAGAAGGAAG 1 CAGAAGGCCA 6 CAGAATAATG 2 CAGAATAGCT 1 CAGAATCAAG 1 CAGAATGACT 3 CAGAATGAGC 1 CAGAATTCAG 1 CAGAATTCCT 1 CAGAATTGAT 2 CAGAATTTTA 1 CAGACACCAC 1 CAGACAGCCA 1 CAGACATCAA 1 CAGACATTCA 1 CAGACCATCC 2 CAGACCCAAA 1 CAGACCTGTG 2 CAGACGTTGT 1 CAGACTATGT 3 CAGACTGGGA 1 CAGACTGTAA 1 CAGACTGTGT 1 CAGACTTTTG 1 CAGACTTTTT 2 CAGAGAACGG 1 CAGAGACACA 2 CAGAGACCAC 1 CAGAGACGTG 1 CAGAGAGACT 1 CAGAGAGTGA 1 CAGAGATAAA 1 CAGAGATGTG 1 CAGAGCCCAC 1 CAGAGCCCCT 2 CAGAGCCCTG 1 CAGAGCGCTC 1 CAGAGCTAGC 1 CAGAGGAGCT 1 CAGAGGCCGA 1 CAGAGGCGTC 1 CAGAGGTCAC 1 CAGAGTATGT 1 CAGAGTGAAT 1 CAGAGTTGAT 1 CAGAGTTTGT 1 CAGATAAAAC 1 CAGATAACAT 1 CAGATACCCC 1 CAGATAGCTT 1 CAGATAGTCA 1 CAGATATGTA 1 CAGATCTTTG 1 CAGATGAATA 1 CAGATGACTC 1 CAGATGCAAA 1 CAGATGGTGT 1 CAGATGTTTC 1 CAGATGTTTT 1 CAGATTAAGT 2 CAGATTATTG 1 CAGATTTACA 1 CAGATTTCCA 2 CAGATTTGCA 2 CAGATTTTGG 1 CAGCAAAAAA 3 CAGCAACATA 1 CAGCAAGGCT 1 CAGCAATTAA 1 CAGCACCAGG 2 CAGCACTCAG 1 CAGCACTTAC 1 CAGCACTTCT 1 CAGCAGAAAA 1 CAGCAGAAGC 17 CAGCAGAGGG 1 CAGCAGCGGC 2 CAGCAGGGGG 1 CAGCAGGTTC 1 CAGCAGTGGC 1 CAGCAGTTGT 1 CAGCATAAAA 1 CAGCATAATT 1 CAGCATCCCC 1 CAGCATCCTG 1 CAGCATCTAA 1 CAGCATTCCA 1 CAGCCAAGCA 1 CAGCCAGCGG 1 CAGCCAGGAC 2 CAGCCAGGGG 3 CAGCCATCTT 1 CAGCCCAACC 2 CAGCCCAAGC 1 CAGCCCAAGG 2 CAGCCCATCG 1 CAGCCCCAAA 1 CAGCCCCAGC 2 CAGCCCGTGG 1 CAGCCGAGGC 4 CAGCCGTGAT 1 CAGCCTCCCT 1 CAGCCTCGGC 1 CAGCCTCTAA 7 CAGCCTCTGC 1 CAGCCTGAGG 1 CAGCCTGATC 1 CAGCCTGGGG 1 CAGCCTGGGT 1 CAGCCTGGTT 1 CAGCCTGTCG 1 CAGCCTTGAT 1 CAGCCTTGCG 2 CAGCCTTGGA 1 CAGCGAGGAC 1 CAGCGATGCA 1 CAGCGCACAG 1 CAGCGCGCCC 4 CAGCGCGCCT 1 CAGCGCTGCA 8 CAGCGCTTTG 1 CAGCGGGTAA 1 CAGCTAAACG 1 CAGCTAACCT 1 CAGCTAATTG 1 CAGCTACACT 1 CAGCTACTGG 1 CAGCTAGAAG 1 CAGCTATCCC 1 CAGCTATTAA 1 CAGCTATTTC 4 CAGCTCACTG 4 CAGCTCATCT 7 CAGCTCCACC 1 CAGCTCCACT 1 CAGCTCCTGG 1 CAGCTCTATG 1 CAGCTGATAT 1 CAGCTGATTG 1 CAGCTGCTGC 2 CAGCTGCTGT 1 CAGCTGCTTC 1 CAGCTGGAGA 2 CAGCTGGGGC 6 CAGCTGTAGT 3 CAGCTGTCTC 1 CAGCTGTGAG 1 CAGCTTAATT 1 CAGCTTCACC 2 CAGCTTCAGT 1 CAGCTTGACG 1 CAGCTTGCAA 1 CAGGAAACAC 1 CAGGAAAGCA 1 CAGGAAAGGC 1 CAGGAAATCA 1 CAGGAAATGA 1 CAGGAACACT 2 CAGGAACCAC 3 CAGGAACGGG 15 CAGGAAGAAG 1 CAGGAAGCTC 1 CAGGAATGAA 1 CAGGACAGTT 2 CAGGACCCTG 1 CAGGACTGAG 1 CAGGACTTTC 1 CAGGAGCCCC 2 CAGGAGGAAA 2 CAGGAGGAGT 19 CAGGAGGATG 1 CAGGAGGGTC 1 CAGGAGGTTA 1 CAGGAGTAGC 2 CAGGAGTCCC 1 CAGGAGTTCA 9 CAGGATCCAG 2 CAGGATCCTT 2 CAGGATGACA 1 CAGGATGACG 3 CAGGATGATG 1 CAGGATGGAG 1 CAGGATGTAT 1 CAGGATTCCA 1 CAGGATTCGT 1 CAGGCAGCAA 1 CAGGCAGCTA 1 CAGGCCATCG 1 CAGGCCCCAC 3 CAGGCCCTTC 1 CAGGCCTAGG 1 CAGGCCTATT 1 CAGGCCTCAT 1 CAGGCCTCTG 2 CAGGCCTGGA 1 CAGGCCTTAG 1 CAGGCGACCA 1 CAGGCGGCAC 1 CAGGCGTCAG 1 CAGGCTGCCT 1 CAGGCTGTAG 2 CAGGCTGTGT 1 CAGGCTTCAA 1 CAGGCTTCAC 3 CAGGCTTTCG 1 CAGGCTTTGC 1 CAGGCTTTTC 2 CAGGGAAGCC 6 CAGGGAATGC 1 CAGGGACCCA 1 CAGGGAGACT 1 CAGGGAGAGG 1 CAGGGAGATT 1 CAGGGAGCAA 1 CAGGGAGCGC 2 CAGGGAGGAA 1 CAGGGAGTGT 2 CAGGGATGCA 1 CAGGGATGTG 1 CAGGGATTCC 3 CAGGGCACCA 1 CAGGGCAGTG 5 CAGGGCCCTT 1 CAGGGCCGGC 1 CAGGGCGAGA 1 CAGGGCGGAT 1 CAGGGCGGTG 1 CAGGGCTCGG 1 CAGGGGAGGA 1 CAGGGGAGTG 2 CAGGGGCTGG 2 CAGGGGCTTA 2 CAGGGGTGGC 1 CAGGGGTTGG 1 CAGGGTAACG 1 CAGGGTGACG 3 CAGGGTGAGG 2 CAGGGTGGTG 1 CAGGGTTCTC 1 CAGGTAACAC 1 CAGGTAAGGT 3 CAGGTACGCG 1 CAGGTCAGTT 1 CAGGTCGCTA 1 CAGGTGAATT 1 CAGGTGACTA 1 CAGGTGCGAG 1 CAGGTGCTGG 7 CAGGTGCTGT 1 CAGGTGGATC 1 CAGGTGGTGA 3 CAGGTGTCTT 1 CAGGTGTGGT 1 CAGGTTGAAG 1 CAGGTTGACA 1 CAGGTTGGTC 2 CAGGTTTATG 1 CAGGTTTGTA 1 CAGTAAAAAA 1 CAGTAAAAGA 1 CAGTAAGCCT 1 CAGTACAAGA 2 CAGTACCCCT 1 CAGTAGATAT 1 CAGTATCCCA 2 CAGTATGAAC 1 CAGTATGACT 1 CAGTATGATG 1 CAGTCAGCCC 1 CAGTCAGGCT 3 CAGTCCATAA 1 CAGTCCCAGA 1 CAGTCCGGTC 1 CAGTCCTGTC 1 CAGTCGGTCA 1 CAGTCGTGTG 1 CAGTCTCAGA 1 CAGTCTCCAT 1 CAGTCTCTGT 1 CAGTCTGACC 1 CAGTCTGGGA 3 CAGTCTGTCC 1 CAGTCTGTGA 3 CAGTCTTGAG 1 CAGTGAAAAG 1 CAGTGAACAA 1 CAGTGACACA 1 CAGTGAGATT 3 CAGTGAGCCG 1 CAGTGATGGC 1 CAGTGATGTG 1 CAGTGATTCC 2 CAGTGCAAAG 1 CAGTGCAGTA 1 CAGTGCCAAA 1 CAGTGCCTTT 1 CAGTGCGTCA 1 CAGTGCGTTC 12 CAGTGCTGGA 2 CAGTGGAATG 2 CAGTGGAGGG 2 CAGTGGGGCC 1 CAGTGGGTGG 2 CAGTGGGTGT 2 CAGTGGTTAG 1 CAGTGTATAT 1 CAGTGTATTC 4 CAGTGTCACC 1 CAGTGTCTGT 4 CAGTGTGTTC 1 CAGTGTTGGG 3 CAGTTAACCA 1 CAGTTACAAA 1 CAGTTACCAA 1 CAGTTACTTA 13 CAGTTAGGGA 1 CAGTTATCGG 1 CAGTTATGTT 4 CAGTTCAGGG 1 CAGTTCCAAG 1 CAGTTCCATA 1 CAGTTCCCAT 1 CAGTTCTCCT 1 CAGTTCTCTG 7 CAGTTGAATC 1 CAGTTGACTG 1 CAGTTGCTGC 1 CAGTTGGCCA 1 CAGTTGGCTC 1 CAGTTGGTTG 1 CAGTTGTCTT 1 CAGTTGTTTA 1 CAGTTTCCCA 1 CAGTTTGGAG 1 CAGTTTGTAA 1 CAGTTTGTAC 3 CATAAAAACT 2 CATAAAAGGG 1 CATAAAGTTT 2 CATAACAAAG 1 CATAACTTAC 1 CATAAGCCAC 1 CATAAGTACT 1 CATAATAGGT 1 CATAATGGAG 1 CATACACAAA 1 CATACACACA 3 CATACAGAAA 2 CATACAGAAG 1 CATACAGATA 1 CATACAGCTA 1 CATACATACT 1 CATACCCTGC 1 CATACGTAAT 1 CATACTTCCA 1 CATACTTTAA 1 CATAGATACA 1 CATAGATGAT 1 CATAGATTTT 1 CATAGGAAAA 1 CATAGGCACA 1 CATAGGCTTA 1 CATAGGTTCA 1 CATAGGTTTA 66 CATAGTCACC 1 CATATAAACT 1 CATATACACC 1 CATATACATT 1 CATATAGCTG 1 CATATAGGTA 1 CATATAGGTC 1 CATATAGTCC 1 CATATATACT 1 CATATCCCCA 1 CATATCCCCT 1 CATATCCCTA 1 CATATGAAGC 1 CATATGCCTG 1 CATATGGAGG 1 CATATGTAAT 1 CATATGTTTA 1 CATATTCTCT 1 CATATTGTCT 1 CATATTTATG 1 CATCAACAAT 1 CATCAACCTT 1 CATCAATGCC 1 CATCACCACG 1 CATCACTATG 1 CATCACTTTC 2 CATCAGCATC 1 CATCATCTCA 1 CATCATTCCT 2 CATCCAAAAC 4 CATCCACAGA 1 CATCCAGAAA 1 CATCCAGCTA 1 CATCCATCCA 1 CATCCCAACA 1 CATCCCAGAA 1 CATCCCCACC 2 CATCCCCTAG 1 CATCCCTCAC 1 CATCCGATGG 1 CATCCGTGGG 1 CATCCTCAAA 1 CATCCTGCTG 6 CATCCTTTGT 1 CATCGCCGCG 1 CATCGTACCT 1 CATCGTGCTA 1 CATCTAAACT 6 CATCTAAGCT 1 CATCTATTGT 1 CATCTCTAGT 1 CATCTCTCCT 1 CATCTGCGCC 1 CATCTGGTGT 1 CATCTGTAAC 1 CATCTGTAAT 1 CATCTGTAGT 3 CATCTGTGAG 4 CATCTTAAAT 3 CATCTTAAGA 1 CATCTTATTA 1 CATCTTCACC 4 CATCTTTAAG 1 CATTAAACAG 1 CATTAAACTG 1 CATTAAAGGG 3 CATTAACTAG 1 CATTACTACA 1 CATTACTCAC 1 CATTAGGTAT 1 CATTATCCAA 1 CATTCAGATT 1 CATTCAGTAG 1 CATTCCAGAG 1 CATTCGAATT 1 CATTCGTAAT 1 CATTCTCAGA 1 CATTCTCCCA 1 CATTCTGCGT 1 CATTGAACCA 1 CATTGAAGGG 3 CATTGACCTC 1 CATTGAGCTC 1 CATTGCAGGA 1 CATTGGGTGA 2 CATTGGTGTG 1 CATTGTAATT 1 CATTGTCCAG 1 CATTGTCTTC 1 CATTGTGGGA 1 CATTTAAAAC 1 CATTTAAACA 1 CATTTACGAC 1 CATTTATAAA 1 CATTTATCAA 1 CATTTATCAT 5 CATTTATGGT 1 CATTTATTGA 1 CATTTCAGAG 2 CATTTCATAA 4 CATTTCTCAT 5 CATTTGAAAG 2 CATTTGACTT 1 CATTTGCACA 1 CATTTGGCCA 2 CATTTGGGTC 2 CATTTGGTAT 9 CATTTGTAAC 2 CATTTGTAAT 48 CATTTGTAGT 1 CATTTTCATA 2 CATTTTGAAG 1 CATTTTTATA 1 CATTTTTCTG 1 CATTTTTGCC 1 CCAAAAAAAA 1 CCAAAAACAC 1 CCAAAAACGG 2 CCAAAAATTT 1 CCAAAACACA 1 CCAAAACCCT 1 CCAAAATGTA 2 CCAAAATTAG 2 CCAAACATAA 1 CCAAACCAAC 1 CCAAACCCCC 1 CCAAACGCAT 1 CCAAACGTGT 16 CCAAACTGCC 1 CCAAAGCAAA 1 CCAAAGCTAT 42 CCAAATCATT 5 CCAAATCTGA 1 CCAAATGAGG 5 CCAAATGCTG 2 CCAAATGGTA 2 CCAAATTGTA 1 CCAACAAACA 1 CCAACAACAG 1 CCAACAACTT 1 CCAACAAGAA 3 CCAACAAGAT 1 CCAACAATTC 1 CCAACAATTT 1 CCAACACACA 1 CCAACACAGC 1 CCAACACCAG 9 CCAACAGAGA 1 CCAACATTCC 1 CCAACCACAA 1 CCAACCACTC 1 CCAACCCATC 1 CCAACCGTGC 3 CCAACCTGGG 1 CCAACCTTAG 1 CCAACCTTTC 1 CCAACGAGGA 7 CCAACGCGCT 1 CCAACGTCCT 1 CCAACTATCG 3 CCAACTGTGC 1 CCAACTTCAC 1 CCAAGAATTC 1 CCAAGACCCC 1 CCAAGACTAC 1 CCAAGACTTC 2 CCAAGACTTT 1 CCAAGAGCCA 1 CCAAGATATT 1 CCAAGATGGA 1 CCAAGCACAA 1 CCAAGCACTG 1 CCAAGCAGAG 1 CCAAGCAGTC 1 CCAAGCATCC 1 CCAAGCATTT 1 CCAAGCCTCT 1 CCAAGCTCAC 1 CCAAGGAATG 2 CCAAGGATAT 1 CCAAGGCGTC 1 CCAAGGGAGA 1 CCAAGGGTCC 4 CCAAGGTGGC 1 CCAAGGTGTT 5 CCAAGTGGAA 1 CCAAGTTCAC 2 CCAAGTTTAA 1 CCAAGTTTTT 7 CCAATAAATG 1 CCAATAAGTC 1 CCAATACACT 1 CCAATAGACA 1 CCAATAGATT 1 CCAATCCTCA 1 CCAATCCTGA 1 CCAATCCTGC 1 CCAATCGTCC 2 CCAATCTCAT 1 CCAATCTTTC 1 CCAATGCACT 2 CCAATGCTGA 1 CCAATGGACA 2 CCAATGTACC 1 CCAATTAAAA 1 CCAATTATTC 1 CCAATTCAGT 1 CCAATTGCTT 1 CCAATTTCTC 1 CCACAATCCT 3 CCACAATTGC 2 CCACACAAAC 1 CCACACAAGC 3 CCACACACCG 1 CCACACACGC 1 CCACACCCTT 1 CCACACCTCT 2 CCACACCTGG 1 CCACACGCAG 3 CCACACGTCA 1 CCACACTGAA 1 CCACACTGCA 1 CCACAGAGGC 1 CCACAGCACT 1 CCACAGCATT 1 CCACAGCCAA 1 CCACAGCTGT 1 CCACAGGAAT 1 CCACAGGAGA 18 CCACATTAAA 1 CCACATTCAC 1 CCACATTTCT 1 CCACCAAAGA 1 CCACCAACAA 1 CCACCACAAT 1 CCACCACACC 1 CCACCACACT 5 CCACCACGCC 4 CCACCACGCT 1 CCACCACGTC 1 CCACCACTCC 2 CCACCACTCT 1 CCACCACTTG 1 CCACCAGCTA 2 CCACCATACT 1 CCACCATATC 1 CCACCATCAC 1 CCACCATCCA 1 CCACCATCTA 1 CCACCCACAT 1 CCACCCAGGC 3 CCACCCCCAC 3 CCACCCCCGG 1 CCACCCCGAA 23 CCACCCGGGG 1 CCACCCTCAC 2 CCACCCTCAT 1 CCACCGACTC 1 CCACCGCACT 18 CCACCGCATT 1 CCACCGCGCC 1 CCACCGGACT 1 CCACCGGCCC 1 CCACCGTACT 3 CCACCGTCTC 1 CCACCGTTCT 1 CCACCTAACT 1 CCACCTAATT 1 CCACCTGCTT 2 CCACCTGGAT 1 CCACCTTGAT 1 CCACCTTTCC 1 CCACGAAGCA 1 CCACGACACC 1 CCACGAGGAA 1 CCACGAGGTG 1 CCACGGCAGT 1 CCACGGCCCC 2 CCACGTCTTA 1 CCACGTGCCA 1 CCACGTGGAA 1 CCACGTGGGC 2 CCACTACACT 11 CCACTACATA 2 CCACTACATT 2 CCACTACGCC 1 CCACTACGCT 1 CCACTATACT 2 CCACTATGCC 1 CCACTCCACT 2 CCACTCCATT 1 CCACTCCGCA 1 CCACTCCTCA 9 CCACTCGGCT 1 CCACTCTGGC 3 CCACTCTTGA 2 CCACTGAACT 2 CCACTGAAGT 3 CCACTGACTC 4 CCACTGATTC 1 CCACTGCACA 7 CCACTGCACC 21 CCACTGCACG 5 CCACTGCACT 359 CCACTGCAGT 4 CCACTGCATT 19 CCACTGCCAC 3 CCACTGCCCT 10 CCACTGCGCT 6 CCACTGCTCT 5 CCACTGCTGC 1 CCACTGGACC 1 CCACTGGACT 2 CCACTGGCAC 1 CCACTGGCCA 1 CCACTGGCTA 1 CCACTGGGCA 1 CCACTGGTAC 1 CCACTGTAAA 1 CCACTGTACT 20 CCACTGTATT 3 CCACTGTGCC 1 CCACTGTGCT 6 CCACTGTTCT 2 CCACTTACTC 1 CCACTTCACT 6 CCACTTCAGC 1 CCACTTCCAC 1 CCACTTCCTC 1 CCACTTCTCA 1 CCACTTCTCT 1 CCACTTGATA 2 CCACTTGCAC 2 CCACTTTGAA 1 CCACTTTTTA 2 CCAGAACAGA 17 CCAGAACCGA 1 CCAGAACGAC 1 CCAGAATCCT 2 CCAGAATTTC 1 CCAGACTTCC 1 CCAGAGAAAA 1 CCAGAGAACT 13 CCAGAGAAGT 1 CCAGAGAATA 1 CCAGAGATAT 1 CCAGAGCGCT 1 CCAGAGCTAA 1 CCAGAGGCTC 1 CCAGAGGCTG 7 CCAGAGGTAG 1 CCAGAGTACA 1 CCAGAGTCTC 2 CCAGAGTGTA 1 CCAGAGTTTC 1 CCAGATGAGG 1 CCAGATGCCA 1 CCAGATTTTG 2 CCAGCAAGCA 1 CCAGCACACT 1 CCAGCACAGC 1 CCAGCACTTT 1 CCAGCAGAAG 1 CCAGCAGCTT 1 CCAGCAGGTT 2 CCAGCATCTC 1 CCAGCCAGCC 1 CCAGCCAGGA 1 CCAGCCAGGG 2 CCAGCCCGTC 1 CCAGCCGGGG 1 CCAGCCTCAC 1 CCAGCCTCTG 1 CCAGCCTGGA 1 CCAGCCTGGG 12 CCAGCGACTC 1 CCAGCGCAGC 2 CCAGCGTTTG 1 CCAGCTCCAA 1 CCAGCTGCCA 9 CCAGCTGCCC 1 CCAGCTGGCA 1 CCAGCTTGAT 1 CCAGCTTGGA 1 CCAGGAATCC 1 CCAGGACACC 1 CCAGGAGAGA 1 CCAGGAGGAA 15 CCAGGAGTGA 1 CCAGGATAGG 1 CCAGGCACGC 2 CCAGGCACGG 1 CCAGGCACTG 3 CCAGGCAGTA 1 CCAGGCCAAG 1 CCAGGCCCTG 1 CCAGGCCGCG 1 CCAGGCCTCA 1 CCAGGCGTCA 17 CCAGGCTAGT 1 CCAGGCTCGC 1 CCAGGCTGCG 4 CCAGGCTGGC 2 CCAGGCTGTC 1 CCAGGGAAGA 1 CCAGGGAGCA 1 CCAGGGCAAC 7 CCAGGGCACG 1 CCAGGGCCAA 1 CCAGGGGAGA 45 CCAGGGGGAA 1 CCAGGGGTGT 1 CCAGGTACTG 1 CCAGGTCCAG 1 CCAGGTGCCA 1 CCAGGTGGAA 1 CCAGGTGTTA 1 CCAGTAATCC 5 CCAGTACAGC 1 CCAGTAGAAG 1 CCAGTAGAGA 1 CCAGTAGCTG 1 CCAGTAGTAC 1 CCAGTAGTAG 1 CCAGTAGTCC 2 CCAGTCCAGG 4 CCAGTCCATT 1 CCAGTCCTGG 1 CCAGTCTACA 1 CCAGTGAATT 1 CCAGTGAGTT 1 CCAGTGCACA 1 CCAGTGCACT 3 CCAGTGCAGG 1 CCAGTGCTCT 1 CCAGTGGACC 1 CCAGTGGATG 2 CCAGTGGCAA 1 CCAGTGGCCC 13 CCAGTGGCTC 1 CCAGTGGCTT 1 CCAGTGGGGG 1 CCAGTGTATT 1 CCAGTGTGCA 3 CCAGTTGAGG 1 CCAGTTGCAA 1 CCAGTTTTCA 1 CCATAACAAC 1 CCATAACCTG 1 CCATAATGTT 3 CCATACACAA 1 CCATACACAC 1 CCATACGCTT 1 CCATACTCCT 1 CCATAGCACT 2 CCATAGCTCG 1 CCATATACAT 1 CCATATGACC 1 CCATATGTCA 1 CCATATTTCA 1 CCATCAAGAG 1 CCATCACACC 1 CCATCAGGAG 1 CCATCATAGA 1 CCATCATTCT 1 CCATCCAGAG 1 CCATCCAGTG 2 CCATCCATAA 1 CCATCCCATT 2 CCATCCCGTT 1 CCATCCGCAT 1 CCATCCTGCC 3 CCATCCTGCG 1 CCATCCTTGG 1 CCATCGCACT 1 CCATCGCCTT 1 CCATCGCGTG 1 CCATCGGCCT 1 CCATCGTCCA 1 CCATCGTCCT 11 CCATTAAACT 1 CCATTACACT 5 CCATTACTGC 1 CCATTAGGAA 1 CCATTAGTCC 1 CCATTATACT 1 CCATTATTCT 1 CCATTATTTC 1 CCATTCAAAA 1 CCATTCAATG 1 CCATTCCACT 13 CCATTCCATT 1 CCATTCGATG 1 CCATTCGATT 2 CCATTCTCCT 8 CCATTCTCTG 1 CCATTCTCTT 1 CCATTCTGCC 1 CCATTCTTAA 1 CCATTGAAAC 15 CCATTGATGC 1 CCATTGCACA 1 CCATTGCACC 4 CCATTGCACG 1 CCATTGCACT 91 CCATTGCATT 3 CCATTGCCAG 1 CCATTGCGCT 4 CCATTGGACA 1 CCATTGGACT 2 CCATTGGGTG 1 CCATTGTACT 4 CCATTGTATT 1 CCATTGTTAC 1 CCATTTAAGA 1 CCATTTAATT 1 CCATTTCACT 1 CCATTTCATT 1 CCATTTGATT 1 CCATTTGCAG 1 CCATTTTAAA 1 CCATTTTCAC 1 CCATTTTCTA 1 CCATTTTGGT 1 CCATTTTTAC 4 CCCAAAAAAA 1 CCCAAAAGCA 1 CCCAAAGACA 2 CCCAAAGCAT 1 CCCAACACAC 1 CCCAACACGC 1 CCCAACCCCA 1 CCCAACCCCT 1 CCCAACGCGC 106 CCCAACGTCC 3 CCCAACTAAT 1 CCCAACTGAA 1 CCCAACTGGC 1 CCCAAGCCCA 1 CCCAAGCTAG 16 CCCAAGGACA 1 CCCAAGGACT 1 CCCAAGGTAC 1 CCCAAGGTCT 2 CCCAAGTATT 1 CCCAAGTGCC 1 CCCAATCTAT 1 CCCAATGCAA 3 CCCACAAAGG 1 CCCACAACAG 2 CCCACAACCC 1 CCCACAAGGA 1 CCCACAATCC 3 CCCACACTAC 14 CCCACACTCC 1 CCCACACTTT 1 CCCACAGAAG 1 CCCACCATCA 1 CCCACCGCAT 1 CCCACCGCCA 1 CCCACCGGTG 2 CCCACCGTCC 5 CCCACCGTTA 1 CCCACCTAAT 1 CCCACCTCTG 1 CCCACCTGCC 3 CCCACCTGGA 1 CCCACCTGGG 1 CCCACGGTAA 1 CCCACGGTTA 1 CCCACTCTCA 1 CCCACTGAAT 1 CCCACTGCAC 1 CCCACTGCCT 1 CCCACTTGCC 1 CCCAGAAAAA 1 CCCAGAACCA 13 CCCAGAAGCT 1 CCCAGAGACT 1 CCCAGAGCTC 4 CCCAGATCGT 1 CCCAGATGAT 3 CCCAGATTAT 1 CCCAGCAAGA 1 CCCAGCACGC 1 CCCAGCACTG 1 CCCAGCATCT 1 CCCAGCATTT 1 CCCAGCCAAG 2 CCCAGCCACC 1 CCCAGCCACT 1 CCCAGCCAGG 1 CCCAGCCAGT 1 CCCAGCCCAG 1 CCCAGCCCCA 2 CCCAGCCCCT 1 CCCAGCCCTG 1 CCCAGCCCTT 2 CCCAGCCGGA 1 CCCAGCCTAG 1 CCCAGCCTAT 1 CCCAGCCTCA 1 CCCAGCCTCT 1 CCCAGCCTGA 1 CCCAGCCTGC 1 CCCAGCCTTT 1 CCCAGCGACT 1 CCCAGCGTCC 1 CCCAGCTAAT 8 CCCAGCTACA 1 CCCAGCTACT 2 CCCAGCTAGC 1 CCCAGCTAGG 1 CCCAGCTGGC 1 CCCAGCTGGG 2 CCCAGCTGTC 1 CCCAGCTTGC 1 CCCAGGAAGA 1 CCCAGGAAGG 1 CCCAGGACAC 1 CCCAGGATCT 2 CCCAGGGAGA 4 CCCAGGGCTC 1 CCCAGGTCAC 3 CCCAGGTCCA 1 CCCAGTGACA 1 CCCATAATCC 6 CCCATAGTCC 4 CCCATAGTCT 1 CCCATAGTGC 1 CCCATATATG 2 CCCATATCTG 1 CCCATATTTT 1 CCCATCAGCC 1 CCCATCATCC 5 CCCATCCACC 1 CCCATCCCAG 1 CCCATCCGAA 11 CCCATCCTCA 1 CCCATCCTGA 1 CCCATCGAAC 1 CCCATCGACC 2 CCCATCGATC 1 CCCATCGCCC 6 CCCATCGCCT 1 CCCATCGCGC 1 CCCATCGGCC 5 CCCATCGGCG 1 CCCATCGGTC 2 CCCATCGTAC 2 CCCATCGTCA 4 CCCATCGTCC 1286 CCCATCGTCG 2 CCCATCGTCT 8 CCCATCGTGC 2 CCCATCGTGG 1 CCCATCGTTC 2 CCCATCGTTT 1 CCCATCTGCT 1 CCCATCTGTC 1 CCCATCTTCA 1 CCCATCTTCC 2 CCCATTATAC 1 CCCATTCACA 1 CCCATTCACT 2 CCCATTCCTC 2 CCCATTCTCA 1 CCCATTGTAC 1 CCCATTGTCC 8 CCCATTGTGC 1 CCCATTTGCA 5 CCCATTTGTC 1 CCCATTTTTA 1 CCCCAAAAAA 1 CCCCAAAGCT 1 CCCCAACACC 2 CCCCAACCTC 1 CCCCAACTGC 1 CCCCAAGACC 2 CCCCAAGACG 1 CCCCACAACA 1 CCCCACACCC 1 CCCCACCCAC 1 CCCCACCCGA 1 CCCCACCTGC 1 CCCCACGCTC 1 CCCCACGGGG 1 CCCCACGGTC 1 CCCCACTTGC 1 CCCCAGAGTT 1 CCCCAGATGC 1 CCCCAGCCAG 12 CCCCAGCCCC 1 CCCCAGCCGG 1 CCCCAGCGGC 1 CCCCAGGAGA 3 CCCCAGGATA 1 CCCCAGGCTC 1 CCCCAGGCTG 2 CCCCAGGTCA 1 CCCCAGGTCC 1 CCCCAGTAGC 1 CCCCAGTATA 1 CCCCAGTCCT 1 CCCCAGTCGG 17 CCCCAGTGAA 1 CCCCAGTGAC 1 CCCCAGTGAG 2 CCCCAGTGCT 2 CCCCAGTGGA 1 CCCCAGTGGC 1 CCCCAGTTAA 1 CCCCAGTTCG 1 CCCCAGTTGC 42 CCCCAGTTGT 1 CCCCATCACC 1 CCCCATCGTC 4 CCCCATTAGA 1 CCCCATTTGC 1 CCCCCAAAAA 1 CCCCCAAACT 1 CCCCCAACAG 1 CCCCCACCCC 1 CCCCCACCTA 1 CCCCCACGGA 1 CCCCCAGATG 1 CCCCCAGCTA 2 CCCCCAGGCC 1 CCCCCATATA 1 CCCCCATCCT 1 CCCCCATCTC 1 CCCCCCACAG 2 CCCCCCATCT 1 CCCCCCTGGA 1 CCCCCCTTCT 1 CCCCCGAAGA 2 CCCCCGAAGC 25 CCCCCGAGCT 1 CCCCCGCACA 1 CCCCCGCACT 1 CCCCCGCGGA 33 CCCCCGCGTG 1 CCCCCGTAGC 1 CCCCCGTGAA 8 CCCCCTACAG 1 CCCCCTCCGG 4 CCCCCTCGTG 5 CCCCCTGCAA 1 CCCCCTGCAT 5 CCCCCTGCCC 3 CCCCCTGGAT 136 CCCCCTGGGA 2 CCCCCTTCCC 1 CCCCCTTGCA 5 CCCCCTTTGC 4 CCCCGAGTCA 1 CCCCGCACAT 2 CCCCGCAGCT 2 CCCCGCCAAG 4 CCCCGCGGAG 1 CCCCGCGTGC 1 CCCCGCTGCC 2 CCCCGGCCAC 1 CCCCGGCCAG 1 CCCCGGCCTT 1 CCCCGGTCCA 1 CCCCGTACAG 1 CCCCGTACGT 1 CCCCGTACTC 1 CCCCGTATGG 1 CCCCGTCATC 2 CCCCGTGGGT 1 CCCCTAAAGG 1 CCCCTAAGTA 1 CCCCTAATCC 4 CCCCTATAAG 1 CCCCTCAAAA 1 CCCCTCCCCA 3 CCCCTCCCCC 1 CCCCTCCCGA 1 CCCCTCCCTC 3 CCCCTCCGGG 1 CCCCTCGTCC 4 CCCCTCTGAG 1 CCCCTGAACA 1 CCCCTGAGCT 1 CCCCTGCACT 4 CCCCTGCCTT 1 CCCCTGCTAG 2 CCCCTGGATC 1 CCCCTGGCTG 1 CCCCTGGGGA 1 CCCCTGTGGC 1 CCCCTGTGGT 1 CCCCTGTTCC 1 CCCCTTATTG 1 CCCCTTCAGC 1 CCCCTTGAAA 1 CCCCTTGGAT 1 CCCCTTGGCC 1 CCCCTTGGGG 1 CCCCTTGGGT 5 CCCCTTTGCA 1 CCCGAAATCC 1 CCCGAAGCTC 2 CCCGAATAGA 1 CCCGACGAGC 1 CCCGACGTGC 13 CCCGACTACT 1 CCCGAGGGCC 1 CCCGATCGTC 1 CCCGCATTAG 2 CCCGCCCCAA 2 CCCGCCCCAG 1 CCCGCCTGTG 1 CCCGCGGCCC 2 CCCGCGGTGG 1 CCCGCGTTCA 1 CCCGCTCTTG 1 CCCGCTGCAC 1 CCCGCTTCGC 1 CCCGGCAAAT 2 CCCGGCAATT 1 CCCGGCCAAT 1 CCCGGCCAGC 2 CCCGGCCAGG 1 CCCGGCCCTC 1 CCCGGCCCTG 1 CCCGGCCGAA 2 CCCGGCCGGA 1 CCCGGCCTAT 2 CCCGGCCTCA 1 CCCGGCCTGA 1 CCCGGCGTGT 1 CCCGGCTAAA 1 CCCGGCTAAT 8 CCCGGCTCAT 1 CCCGGCTCCT 8 CCCGGCTCTT 1 CCCGGGAGCG 13 CCCGGGCCCT 1 CCCGGGGGAG 1 CCCGGGTGGG 2 CCCGGTGTGT 1 CCCGGTGTTC 1 CCCGTAACCC 1 CCCGTAATCC 3 CCCGTAATTC 1 CCCGTACATC 2 CCCGTAGTCC 3 CCCGTCAAAT 1 CCCGTCAGCC 8 CCCGTCCGGA 31 CCCGTCCGGG 1 CCCGTCGTCC 4 CCCGTCGTCT 1 CCCGTCTCTG 1 CCCGTGGTCC 1 CCCGTGGTCG 1 CCCGTGTCGG 1 CCCTAACAAC 1 CCCTAAGGTG 1 CCCTAATTTA 1 CCCTACAACG 3 CCCTACCGCC 1 CCCTACTTAA 1 CCCTACTTCT 1 CCCTAGCTGA 1 CCCTAGGAGA 1 CCCTAGGATG 1 CCCTAGGTTG 16 CCCTATAATG 1 CCCTATAGCC 1 CCCTATATCC 1 CCCTATCACA 5 CCCTATCACT 2 CCCTCAAAGG 1 CCCTCAATCC 4 CCCTCACCTG 1 CCCTCACTCC 1 CCCTCAGGCT 2 CCCTCCAAGG 1 CCCTCCAGAC 1 CCCTCCAGCC 1 CCCTCCAGCT 2 CCCTCCAGGC 1 CCCTCCAGTC 1 CCCTCCCAAA 1 CCCTCCCAGC 3 CCCTCCCGAA 89 CCCTCCCTAA 1 CCCTCCCTCC 1 CCCTCCGTGC 1 CCCTCCTCTC 1 CCCTCCTGCT 1 CCCTCCTGGA 3 CCCTCCTGGG 5 CCCTCCTTGG 1 CCCTCCTTGT 1 CCCTCGCGGA 1 CCCTCGGAAA 1 CCCTCGTCCT 3 CCCTCTCACG 1 CCCTCTCCCT 1 CCCTCTCCGG 1 CCCTCTCTGG 3 CCCTCTCTGT 3 CCCTCTGCAT 1 CCCTCTGTGA 5 CCCTCTTTGA 1 CCCTGAAGAG 1 CCCTGAATCC 1 CCCTGACTGC 5 CCCTGAGAAT 2 CCCTGAGGCC 6 CCCTGATAAT 1 CCCTGATTTT 6 CCCTGCAAGT 1 CCCTGCAATT 1 CCCTGCACCC 1 CCCTGCACTC 1 CCCTGCAGCA 1 CCCTGCCAGG 1 CCCTGCCTTG 2 CCCTGCGCGC 1 CCCTGCGTTC 1 CCCTGCTCCT 2 CCCTGGAGAC 3 CCCTGGCAAT 4 CCCTGGCAGG 2 CCCTGGCTGG 1 CCCTGGCTGT 1 CCCTGGGGGG 1 CCCTGGGTTC 23 CCCTGGTCAA 1 CCCTGGTTCT 1 CCCTGTAATC 2 CCCTGTAATT 1 CCCTGTACAT 1 CCCTGTATGT 1 CCCTGTCTCT 1 CCCTGTGGTT 1 CCCTGTTCAC 1 CCCTGTTGAA 1 CCCTTAAGTT 2 CCCTTAGCAA 14 CCCTTAGCTT 16 CCCTTATTAA 1 CCCTTATTGG 1 CCCTTCACGG 1 CCCTTCACTG 3 CCCTTCCACT 2 CCCTTCCCAA 1 CCCTTCCCCG 6 CCCTTCCGTC 1 CCCTTCCTCT 1 CCCTTCGTCC 3 CCCTTCTATT 1 CCCTTCTGAT 4 CCCTTCTGCC 1 CCCTTCTGGG 1 CCCTTGACCC 8 CCCTTGCAAT 1 CCCTTGCACT 12 CCCTTGGCCA 2 CCCTTGGTCC 1 CCCTTGTAAG 1 CCCTTGTGAA 1 CCCTTGTGCC 1 CCCTTGTTTG 1 CCCTTTAAGC 2 CCCTTTACCC 1 CCCTTTCCAG 2 CCCTTTGCAC 1 CCCTTTGTCA 1 CCCTTTGTTT 1 CCGAAAAAGT 1 CCGAAACCCT 1 CCGAAATTAA 1 CCGAACACGG 1 CCGAACTACA 1 CCGAAGGGTC 1 CCGACACTAG 1 CCGACCAGGA 1 CCGACCCAAG 1 CCGACGGACC 1 CCGACGGGCG 4 CCGAGATGAA 2 CCGAGATGAG 1 CCGAGCAACT 2 CCGAGCAGCC 1 CCGAGGCACA 1 CCGAGGCAGG 1 CCGAGGCGAT 1 CCGAGGCTGC 6 CCGAGGCTTG 1 CCGAGGGCAC 1 CCGAGGTTGA 1 CCGAGTTGGT 1 CCGATCACCG 8 CCGATGTCAT 1 CCGATTCGTC 1 CCGATTCTTG 1 CCGATTGTGG 1 CCGATTTTTA 1 CCGCAACTTC 1 CCGCAAGATT 1 CCGCAGGAGA 1 CCGCATCCAG 1 CCGCATTGGT 1 CCGCCACGCC 1 CCGCCACTGC 1 CCGCCATCCA 1 CCGCCCACCC 1 CCGCCCCCAG 1 CCGCCCCTGA 1 CCGCCCTCCA 1 CCGCCGAAGT 3 CCGCCGAATT 1 CCGCCGCCGC 1 CCGCCGGATC 1 CCGCCGGTCA 1 CCGCCTCCTA 1 CCGCGGCCGC 2 CCGCGTCCCT 8 CCGCGTGAAG 1 CCGCTAAACT 1 CCGCTAATCC 1 CCGCTGAACT 1 CCGCTGACTC 1 CCGCTGATCC 4 CCGCTGCACT 127 CCGCTGCAGT 2 CCGCTGCCTC 1 CCGCTGCGCT 1 CCGCTGCTCT 1 CCGCTGCTTG 1 CCGCTGGCCC 1 CCGCTTACTC 1 CCGCTTCTGA 1 CCGCTTCTGC 2 CCGGAAACAC 5 CCGGAATGTG 1 CCGGACCTGT 1 CCGGAGGAGG 1 CCGGCAACCA 1 CCGGCAATGC 1 CCGGCCAACA 1 CCGGCCAGCG 1 CCGGCCCTAC 1 CCGGCCTCTA 1 CCGGCGCGTG 4 CCGGCGGGCG 1 CCGGCTCACA 1 CCGGCTGGAA 1 CCGGCTTGAG 7 CCGGGAGTCC 1 CCGGGAGTCT 1 CCGGGCACAG 1 CCGGGCACCC 1 CCGGGCCCAG 3 CCGGGCGAAT 1 CCGGGCGCGC 2 CCGGGCGCGG 1 CCGGGCTAAT 2 CCGGGCTCAC 1 CCGGGGAGCA 4 CCGGGGCAAC 1 CCGGGGCAAT 2 CCGGGGGCTT 1 CCGGGTGATG 6 CCGGGTTATT 1 CCGGTAATCC 2 CCGGTAATTC 1 CCGGTAGTCC 1 CCGTAATCTC 1 CCGTACCCGG 1 CCGTACCTGT 1 CCGTACGCGC 1 CCGTAGCAAT 1 CCGTAGTGCC 3 CCGTCATCCT 2 CCGTCCAAGG 18 CCGTCCAGCG 1 CCGTCCTCAG 1 CCGTCGTGGG 1 CCGTCTGGGA 1 CCGTGAAGTT 1 CCGTGAGCCA 2 CCGTGAGGGT 1 CCGTGCATTA 1 CCGTGCCACC 1 CCGTGCCTCC 1 CCGTGCTCAT 6 CCGTGGGGAG 1 CCGTGGTCAC 6 CCGTGGTCGT 1 CCGTTACTGA 1 CCGTTCCACT 1 CCGTTCCCTG 2 CCGTTCTCCT 3 CCGTTCTGAT 1 CCGTTCTGGA 6 CCGTTGCACT 1 CCGTTGCGAG 1 CCGTTGGAAA 1 CCTAAAACCC 1 CCTAAAAGAG 1 CCTAAAATCC 1 CCTAAAGGAG 1 CCTAACACCC 1 CCTAACACCT 1 CCTAACTGAC 1 CCTAAGGCTA 2 CCTAAGTGAC 1 CCTAATCGCA 1 CCTAATGCTT 1 CCTAATTTGA 2 CCTACAAAAA 1 CCTACAATCC 1 CCTACAGCTA 6 CCTACCACAA 1 CCTACCACAG 1 CCTACTCATC 1 CCTACTGCAC 2 CCTACTGTGG 1 CCTAGAGCAG 1 CCTAGCTGGA 16 CCTAGGACCT 6 CCTAGGACTT 1 CCTAGGCCTT 1 CCTAGGGGAT 1 CCTAGGGTTC 2 CCTAGTAAAA 1 CCTAGTCCAA 1 CCTAGTGCCT 1 CCTAGTGGCA 1 CCTAGTTTCT 1 CCTAGTTTTA 1 CCTATAAAAT 1 CCTATAAACC 1 CCTATAAGCC 1 CCTATAATCA 1 CCTATAATCC 33 CCTATAATCT 4 CCTATAATGC 1 CCTATAATTC 2 CCTATACATA 1 CCTATAGGCC 1 CCTATAGTCC 8 CCTATAGTCT 1 CCTATAGTTT 1 CCTATATAAT 2 CCTATATATT 1 CCTATATTCC 1 CCTATCATCC 1 CCTATCGTCC 2 CCTATCTACC 1 CCTATGATCC 1 CCTATGCTGG 1 CCTATGGACC 2 CCTATGGTCA 1 CCTATGTAAG 1 CCTATGTCCT 2 CCTATGTGTT 1 CCTATTAAAT 1 CCTATTGCTT 1 CCTATTTACT 26 CCTATTTATT 1 CCTATTTTCT 1 CCTCAACGTA 1 CCTCAAGCTA 1 CCTCAATGCT 1 CCTCACAGAT 1 CCTCACCACG 2 CCTCACGATA 1 CCTCACTCTG 1 CCTCACTTTC 1 CCTCAGCACT 5 CCTCAGCAGA 1 CCTCAGCATA 1 CCTCAGCCCT 1 CCTCAGCCTC 4 CCTCAGCTAC 1 CCTCAGCTGG 1 CCTCAGCTTG 1 CCTCAGGATA 114 CCTCAGGCTC 2 CCTCAGGGAC 1 CCTCAGGTTA 1 CCTCAGTATA 1 CCTCAGTCTC 1 CCTCATCGTC 1 CCTCATTGTA 1 CCTCCAAATA 1 CCTCCAACAT 1 CCTCCAACTA 3 CCTCCAAGCC 1 CCTCCACCAA 1 CCTCCACCTA 4 CCTCCACTAC 2 CCTCCAGATA 1 CCTCCAGATG 2 CCTCCAGCAA 2 CCTCCAGCAC 1 CCTCCAGCAG 2 CCTCCAGCAT 1 CCTCCAGCCA 5 CCTCCAGCTA 715 CCTCCAGCTC 2 CCTCCAGCTG 4 CCTCCAGGTA 4 CCTCCAGTAA 1 CCTCCAGTAC 20 CCTCCAGTTA 4 CCTCCAGTTC 1 CCTCCATCTA 2 CCTCCATTTA 1 CCTCCCAAGG 3 CCTCCCAGCT 2 CCTCCCAGTA 1 CCTCCCCCGT 3 CCTCCCCTCC 1 CCTCCCCTGC 2 CCTCCCGAGT 1 CCTCCCGCTA 1 CCTCCCTCTG 1 CCTCCCTGAC 1 CCTCCCTGAG 1 CCTCCCTGAT 14 CCTCCGAAGG 1 CCTCCGCCTA 1 CCTCCGCTGC 1 CCTCCGGCTA 1 CCTCCTATTA 4 CCTCCTCCAA 1 CCTCCTCCTC 1 CCTCCTCGGG 1 CCTCCTCTAC 1 CCTCCTCTGA 1 CCTCCTGCAC 1 CCTCCTGCAT 2 CCTCCTGCCC 1 CCTCCTGCCT 1 CCTCCTGGAT 1 CCTCCTGTCC 1 CCTCCTGTGT 1 CCTCCTTAGC 1 CCTCCTTCTG 1 CCTCCTTGGC 1 CCTCGCTCAG 7 CCTCGCTGTC 1 CCTCGGAAAA 7 CCTCGGAGAT 1 CCTCGGGGAA 5 CCTCGTATGA 1 CCTCTAATCC 3 CCTCTAGCCC 1 CCTCTAGTCC 4 CCTCTAGTTA 1 CCTCTCAGTT 1 CCTCTCATCC 1 CCTCTCCATT 1 CCTCTCCCAG 1 CCTCTCCTAG 1 CCTCTCCTCC 6 CCTCTCGGCC 2 CCTCTGAATG 1 CCTCTGCACT 2 CCTCTGGAGG 7 CCTCTGGATA 1 CCTCTGGCAG 1 CCTCTGGTCC 1 CCTCTGTTAA 1 CCTCTTAAGT 1 CCTCTTCCAA 2 CCTCTTGCCC 1 CCTCTTGTAT 1 CCTCTTTAAA 1 CCTCTTTAAG 1 CCTCTTTCCA 3 CCTCTTTCTA 1 CCTGAAAAGC 2 CCTGAAAAGT 1 CCTGAAACAG 1 CCTGAAATCC 6 CCTGAAATCT 1 CCTGAACCTC 1 CCTGAACTGC 1 CCTGAACTGG 1 CCTGAAGAAG 1 CCTGAAGCAA 1 CCTGAAGCGC 1 CCTGAAGTCC 1 CCTGAAGTCT 1 CCTGAAGTGG 1 CCTGAATCTG 1 CCTGAATGCA 1 CCTGACCAGG 2 CCTGACCCTC 1 CCTGACCTAT 1 CCTGACTTCC 2 CCTGAGAAGA 1 CCTGAGCCCG 12 CCTGAGGAAG 1 CCTGAGGATT 1 CCTGAGGGTG 1 CCTGAGGTCC 1 CCTGAGTCTC 2 CCTGAGTGAC 1 CCTGAGTGCG 1 CCTGAGTGTT 1 CCTGAGTTGA 1 CCTGATAGAA 1 CCTGATCTTG 1 CCTGATGAAG 1 CCTGATGTAC 1 CCTGATGTGG 1 CCTGATTCCC 1 CCTGCAATCC 11 CCTGCAATCT 1 CCTGCAATTC 1 CCTGCACACA 1 CCTGCACACT 3 CCTGCACCCA 1 CCTGCACCTT 2 CCTGCACTCC 2 CCTGCAGTCC 1 CCTGCAGTTC 1 CCTGCCAAAG 3 CCTGCCACCC 5 CCTGCCCACC 1 CCTGCCCAGA 1 CCTGCCCCCC 20 CCTGCCCCCT 1 CCTGCCCCTT 3 CCTGCCGTCG 1 CCTGCGCACC 2 CCTGCGGGGC 1 CCTGCGGGTC 1 CCTGCGTGCA 1 CCTGCGTGTG 1 CCTGCTGCAA 1 CCTGCTGCAG 7 CCTGCTGGGA 1 CCTGCTGGTG 2 CCTGCTTGTC 20 CCTGGAACCC 2 CCTGGAAGAA 1 CCTGGAAGAG 30 CCTGGAATCC 3 CCTGGAATCG 1 CCTGGAATGA 1 CCTGGACTTG 1 CCTGGAGTCC 1 CCTGGAGTGG 1 CCTGGATAAA 1 CCTGGATCTG 1 CCTGGCAATG 1 CCTGGCAGGT 1 CCTGGCAGTT 5 CCTGGCATAA 1 CCTGGCCAAG 2 CCTGGCCAAT 1 CCTGGCCACA 1 CCTGGCCAGA 1 CCTGGCCCCC 1 CCTGGCCCTA 3 CCTGGCCCTT 1 CCTGGCCGTC 1 CCTGGCCGTG 1 CCTGGCCTAT 1 CCTGGCCTCA 1 CCTGGCCTCC 1 CCTGGCCTCT 1 CCTGGCCTGT 1 CCTGGCCTTA 2 CCTGGCTAAA 1 CCTGGCTAAT 6 CCTGGCTCAA 1 CCTGGCTCGA 2 CCTGGCTGAT 1 CCTGGCTGTA 1 CCTGGCTGTT 1 CCTGGCTTAA 1 CCTGGCTTGA 1 CCTGGCTTTT 1 CCTGGGAAGT 16 CCTGGGACAC 1 CCTGGGAGGC 1 CCTGGGATTC 1 CCTGGGCTGG 2 CCTGGGGGTC 1 CCTGGGTGGG 1 CCTGGTAATC 1 CCTGGTCAAG 2 CCTGGTCCCA 1 CCTGGTGCCC 1 CCTGGTGGCG 1 CCTGGTTGTA 1 CCTGGTTTAC 1 CCTGGTTTCT 1 CCTGTAAAAA 1 CCTGTAAACC 2 CCTGTAAACT 1 CCTGTAAAGC 4 CCTGTAAATC 2 CCTGTAAATT 1 CCTGTAACAC 1 CCTGTAACAG 1 CCTGTAACCC 14 CCTGTAACCT 1 CCTGTAAGCC 4 CCTGTAAGCT 2 CCTGTAAGTG 1 CCTGTAATAC 6 CCTGTAATAG 1 CCTGTAATCA 5 CCTGTAATCC 448 CCTGTAATCG 5 CCTGTAATCT 31 CCTGTAATGA 1 CCTGTAATGC 7 CCTGTAATTC 17 CCTGTAATTT 2 CCTGTACTCC 4 CCTGTACTCT 1 CCTGTACTTC 1 CCTGTAGACC 3 CCTGTAGCAC 1 CCTGTAGCCA 1 CCTGTAGCCC 4 CCTGTAGCCG 1 CCTGTAGCCT 1 CCTGTAGCTC 2 CCTGTAGGCC 1 CCTGTAGTCA 1 CCTGTAGTCC 82 CCTGTAGTCG 1 CCTGTAGTCT 8 CCTGTAGTTA 1 CCTGTAGTTC 4 CCTGTATATC 1 CCTGTATCAA 1 CCTGTATCCC 8 CCTGTATGTG 1 CCTGTATTCC 10 CCTGTATTCT 2 CCTGTATTGC 1 CCTGTATTGG 2 CCTGTCATCC 3 CCTGTCATTC 1 CCTGTCCAGC 1 CCTGTCCTAG 1 CCTGTCCTGC 7 CCTGTCCTTT 4 CCTGTCTATC 1 CCTGTCTGAA 1 CCTGTCTGCC 14 CCTGTCTTAG 1 CCTGTCTTGG 1 CCTGTGAAGA 1 CCTGTGAATA 1 CCTGTGACAG 22 CCTGTGACGG 1 CCTGTGACTC 1 CCTGTGATCC 16 CCTGTGATGC 1 CCTGTGATTC 1 CCTGTGCAGA 1 CCTGTGCCTT 1 CCTGTGCTCC 1 CCTGTGCTGG 1 CCTGTGGCCA 1 CCTGTGGCCC 1 CCTGTGGGCC 1 CCTGTGGGTC 1 CCTGTGGTCC 30 CCTGTGGTCG 1 CCTGTGGTCT 6 CCTGTGGTGC 1 CCTGTGGTTC 3 CCTGTGGTTT 1 CCTGTGTACT 1 CCTGTGTAGC 1 CCTGTGTATG 3 CCTGTGTCCC 1 CCTGTGTGCA 1 CCTGTGTGCT 1 CCTGTGTGGT 1 CCTGTGTGTG 5 CCTGTGTTCC 2 CCTGTGTTGG 2 CCTGTTAATC 1 CCTGTTATCC 2 CCTGTTATCT 1 CCTGTTATTC 1 CCTGTTCTTC 1 CCTGTTGATG 1 CCTGTTGCTC 1 CCTGTTGGTC 1 CCTGTTGTCC 5 CCTTAAGATA 1 CCTTAATTGG 1 CCTTACCCAG 1 CCTTACCTAC 1 CCTTACTCTT 1 CCTTACTTTA 1 CCTTAGCTGG 1 CCTTAGGAGG 1 CCTTATAGTG 1 CCTTATGATA 1 CCTTCAAATC 29 CCTTCAGATA 1 CCTTCAGCTA 6 CCTTCAGGGT 3 CCTTCAGTAT 1 CCTTCCAAAT 3 CCTTCCAGCC 1 CCTTCCAGCT 2 CCTTCCAGGT 1 CCTTCCAGTA 1 CCTTCCCAAC 1 CCTTCCCGAA 1 CCTTCCCTGA 8 CCTTCCTCAC 1 CCTTCCTGGG 1 CCTTCCTTGC 1 CCTTCGAGAT 6 CCTTCGCCTT 1 CCTTCGGTCA 1 CCTTCGTACT 1 CCTTCTATGT 1 CCTTCTGGTG 3 CCTTCTGTGG 1 CCTTCTTCCT 1 CCTTCTTGCT 1 CCTTCTTGGG 1 CCTTCTTTTT 1 CCTTGAAGCA 1 CCTTGACCTA 1 CCTTGATAAA 1 CCTTGCACAG 1 CCTTGCATTT 1 CCTTGCTTTT 4 CCTTGGAAGG 1 CCTTGGATGT 1 CCTTGGCCTG 1 CCTTGGGTTC 1 CCTTGGTGCC 6 CCTTGGTTTC 1 CCTTGGTTTT 2 CCTTGTAAAT 1 CCTTGTCACA 1 CCTTGTCAGT 1 CCTTGTCCCT 1 CCTTGTCTGA 1 CCTTGTGGGC 1 CCTTTAAGTA 1 CCTTTAATCC 2 CCTTTAGTCC 2 CCTTTCATTG 1 CCTTTCCACT 1 CCTTTCCCAG 1 CCTTTCCTTT 1 CCTTTCTAGC 1 CCTTTCTTTG 1 CCTTTGAACA 5 CCTTTGACAG 1 CCTTTGCACT 1 CCTTTGCCAG 1 CCTTTGCCCT 6 CCTTTGGCTA 3 CCTTTGGTGG 1 CCTTTGTAAA 1 CCTTTGTAAG 6 CCTTTGTTTT 1 CCTTTTCAGG 1 CCTTTTCTTT 1 CCTTTTGAAG 1 CCTTTTGGTG 1 CCTTTTTAGT 1 CCTTTTTCAA 1 CGAAAAAAAA 2 CGAAAAGCTT 1 CGAAACTGTG 1 CGAAAGCTAT 1 CGAACTGATG 1 CGAAGAACTA 1 CGAAGACTCA 1 CGAAGACTTC 1 CGAAGCCATA 1 CGAAGGGCCA 1 CGAAGGGGCA 2 CGAATAAAAT 2 CGAATAAATT 1 CGAATATACT 1 CGAATCCAAA 1 CGACATAGGA 1 CGACCCCACG 1 CGACCGCGTC 1 CGACCGTCAC 1 CGACCGTGGC 5 CGACGAGGAG 2 CGACGCAGTC 1 CGACTCCTTG 1 CGACTGCACT 2 CGACTGGGAG 1 CGACTGTATT 1 CGAGAGGCCA 1 CGAGCAATCA 1 CGAGCATCCC 1 CGAGCTTCCA 7 CGAGGATGGG 1 CGAGGCACCA 1 CGAGGCCAGG 1 CGAGGGATCT 2 CGAGGGCCAC 1 CGAGGGCCAG 1 CGAGGGCCCA 1 CGAGGGGCAG 2 CGAGGGGCCA 110 CGAGGGGCCC 1 CGAGGGGCCG 1 CGAGGGGCGC 1 CGAGGTTCCA 1 CGAGTCAACA 1 CGAGTTGCTT 1 CGAGTTTTTT 1 CGATACTAGT 1 CGATATAATG 1 CGATATTCCC 2 CGATCTCACT 1 CGATGACACT 2 CGATGAGCAT 1 CGATGCTGAC 1 CGATGGGTGA 1 CGATGGTCCC 2 CGATGTGGGG 1 CGATTACATT 1 CGATTATTTA 1 CGATTCAAAA 1 CGATTCCATT 8 CGATTCTGGA 2 CGATTTCACT 1 CGCAAACATA 1 CGCAAATTCA 1 CGCAACTGCG 3 CGCAACTGGA 1 CGCAACTGGT 2 CGCAAGCCGG 1 CGCAAGCTGG 18 CGCAAGGAAA 1 CGCACAAGAA 1 CGCACACACA 5 CGCACACTGT 1 CGCACAGGTC 1 CGCACCAGGT 1 CGCACCATCA 1 CGCACCATTG 12 CGCACTCTTA 1 CGCACTGCAT 1 CGCAGAGCCT 2 CGCAGCGCCC 2 CGCAGCTGGT 1 CGCAGGAAGC 1 CGCAGGCACC 2 CGCAGTAGGG 1 CGCAGTCTGC 1 CGCAGTGCTT 1 CGCAGTGTCA 1 CGCAGTGTCC 15 CGCATAGTTA 1 CGCATCGTCC 1 CGCATCGTGG 1 CGCATCTGGT 1 CGCCAACGCA 1 CGCCACACTT 1 CGCCACTATG 1 CGCCACTGTG 1 CGCCAGGCAT 1 CGCCAGGCGG 2 CGCCATAAAG 1 CGCCATCACG 1 CGCCCAGCCA 1 CGCCCCAGAG 1 CGCCCCCTGC 1 CGCCGAATAA 2 CGCCGACGAT 13 CGCCGACTAT 1 CGCCGCCGCC 1 CGCCGCCGGC 25 CGCCGCGGTG 28 CGCCGCTTCT 2 CGCCGGAACA 15 CGCCGGAATA 1 CGCCGGGAGC 4 CGCCGGGGAG 1 CGCCGGGGCC 1 CGCCGGGGGC 1 CGCCGTACGC 1 CGCCGTATCA 1 CGCCTAATTG 5 CGCCTATAAT 2 CGCCTATGAA 1 CGCCTATTAA 1 CGCCTCAGAG 2 CGCCTGCAAT 1 CGCCTGCGAC 1 CGCCTGGAAT 2 CGCCTGGAGC 1 CGCCTGGGGT 1 CGCCTGTAAT 19 CGCCTGTACT 1 CGCCTGTAGT 10 CGCCTGTATA 1 CGCCTGTATT 1 CGCCTGTCAT 3 CGCCTGTGAT 1 CGCCTGTGGG 1 CGCCTTTACT 1 CGCCTTTAGT 1 CGCGCACCCG 3 CGCGCCCGGC 13 CGCGGCGAGC 1 CGCGGGCCCG 1 CGCGGGCGTG 1 CGCGGTGCTT 1 CGCGTCACTA 1 CGCGTCGCCT 1 CGCGTGCACA 9 CGCGTGGAGT 1 CGCGTGTTGT 1 CGCGTTGCAC 1 CGCGTTGCAG 1 CGCTACTCAC 1 CGCTACTTTG 1 CGCTCGGAAA 1 CGCTCTCTTT 1 CGCTCTTAGT 1 CGCTCTTGTA 1 CGCTGATGGT 1 CGCTGCACTC 1 CGCTGCCTGC 1 CGCTGCGGGG 1 CGCTGCGTCC 1 CGCTGCTGGG 1 CGCTGCTTCG 1 CGCTGGAGGC 1 CGCTGGCTCC 1 CGCTGGGCGT 2 CGCTGGGGGC 1 CGCTGGTTCA 1 CGCTGGTTCC 20 CGCTGTGGGG 58 CGCTGTGGGT 1 CGCTGTGTGC 5 CGCTTGGCAG 1 CGCTTGTAGG 1 CGCTTGTAGT 2 CGCTTGTCCC 1 CGCTTTGCCA 1 CGCTTTGCGC 2 CGCTTTTGGG 1 CGCTTTTGTA 5 CGGAAACACG 1 CGGAACACCG 7 CGGAAGTGGG 1 CGGACAGACA 1 CGGACAGCCA 2 CGGACCAGAA 1 CGGACCCAGC 1 CGGACCGGCT 1 CGGACCGTCC 1 CGGACTCACT 20 CGGAGAAGGT 1 CGGAGAATAA 1 CGGAGACCCT 11 CGGAGATGTT 2 CGGAGCCGGC 1 CGGAGGTGGC 1 CGGAGGTGGG 10 CGGAGTCCAT 1 CGGATAACCA 2 CGGATAAGGC 1 CGGATACAGT 1 CGGATGCGGG 1 CGGATTTAGG 1 CGGATTTTAT 1 CGGATTTTTA 13 CGGCACTGAG 1 CGGCAGAGCT 7 CGGCAGCTGC 1 CGGCCCAACG 2 CGGCCCACGT 1 CGGCCCCGAG 1 CGGCCTGACG 1 CGGCCTGGCG 1 CGGCGAAACA 1 CGGCGCTCCC 3 CGGCGGCGAA 1 CGGCTGAATT 1 CGGCTGGTGA 11 CGGCTGTGGG 1 CGGCTTAGTT 1 CGGCTTTCTG 1 CGGCTTTTCT 11 CGGGAACTTC 2 CGGGAATCGG 1 CGGGAGCACC 4 CGGGAGCCAG 1 CGGGAGCCGG 1 CGGGAGCTGG 2 CGGGAGTCGG 28 CGGGATGCAG 2 CGGGCAACGT 1 CGGGCACCCC 1 CGGGCAGCAC 1 CGGGCAGGGA 2 CGGGCCACGT 2 CGGGCCCCAA 1 CGGGCCGTGC 4 CGGGCCTCAG 1 CGGGCGCGGG 1 CGGGCGGGGG 1 CGGGCTCTCG 1 CGGGGAGAGG 1 CGGGGAGATG 1 CGGGGCTGCA 1 CGGGGCTGGT 1 CGGGGGAAGA 1 CGGGGGCTCC 1 CGGGGGGCCA 1 CGGGGTCACT 1 CGGGTCAAGT 1 CGGGTCCCCA 1 CGGGTGCTGC 2 CGGTACAGAC 1 CGGTAGAGGG 1 CGGTCAAAAG 1 CGGTCCCGTT 1 CGGTCCCTGA 1 CGGTCCTCAA 1 CGGTCTTATG 1 CGGTGAAGTC 1 CGGTGCAGAT 1 CGGTGGAGAA 1 CGGTGGAGTA 1 CGGTGGATTT 1 CGGTGGGACC 7 CGGTGGGGAA 1 CGGTGGGGAC 1 CGGTTAAGAA 1 CGGTTACTGT 7 CGGTTGGATC 1 CGGTTGTTGA 1 CGGTTTCCAA 3 CGGTTTGCAT 2 CGTAAACCTA 1 CGTAAATCGT 1 CGTAAGAATG 1 CGTACTGAAC 1 CGTACTGAGC 3 CGTAGCAGGG 1 CGTAGGAATG 1 CGTAGGCACT 1 CGTAGGGGAA 1 CGTAGGTTTA 1 CGTATCTCTG 1 CGTATGTCCA 2 CGTATTCAGA 1 CGTCACTTTT 1 CGTCAGTAGT 1 CGTCCACATT 1 CGTCCCGAGA 1 CGTCTCCACA 2 CGTCTCTCCT 1 CGTCTCTTCT 1 CGTCTGTTAT 1 CGTCTTCTCT 1 CGTCTTGTCA 2 CGTCTTTAGT 1 CGTGACCACT 1 CGTGAGCCAC 3 CGTGAGCCGG 1 CGTGAGGTCT 1 CGTGCCGACG 1 CGTGCCGCCT 1 CGTGCGGCCG 1 CGTGCGTGTT 1 CGTGCTGAAA 1 CGTGCTGGCC 3 CGTGCTGGGG 1 CGTGGAAGCA 1 CGTGGCCACG 1 CGTGGCCTAA 1 CGTGGCTTCT 1 CGTGGGGTGG 1 CGTGGGTGGG 1 CGTGGTGGCA 1 CGTGGTGGCT 1 CGTGTAATCC 7 CGTGTACCTC 1 CGTGTGCACA 1 CGTGTGCCTG 6 CGTGTGGGCT 1 CGTGTGGGGT 1 CGTGTGTGTG 1 CGTGTTAATG 10 CGTGTTAGGC 1 CGTGTTATTG 1 CGTTATGTGG 1 CGTTCCCGCG 2 CGTTCCTGCG 39 CGTTCCTGGC 1 CGTTCCTTCG 1 CGTTCTCACA 1 CGTTCTGCGG 1 CGTTGGGCCA 1 CGTTGGTTAG 1 CGTTTAATCA 1 CGTTTCCATT 1 CGTTTCTGAT 1 CGTTTGCGCG 1 CGTTTGTCAA 1 CGTTTTCTGA 3 CTAAAAAAAA 2 CTAAAAATTC 1 CTAAAACTGC 1 CTAAAATGTA 1 CTAAACCATC 1 CTAAACTTTT 1 CTAAAGACTT 3 CTAAAGCCCT 1 CTAAAGGAGG 1 CTAAATACTG 1 CTAAATATTC 1 CTAAATTCTA 1 CTAACAATCC 1 CTAACACACA 1 CTAACAGGAT 1 CTAACATTTG 1 CTAACCAGAC 8 CTAACCAGCT 1 CTAACCCTTC 1 CTAACCGACC 1 CTAACCGTGT 1 CTAACCTGCC 1 CTAACGCAGC 3 CTAACTAGCT 1 CTAACTAGTT 5 CTAACTGGTG 1 CTAACTTAAG 1 CTAAGAAAAT 1 CTAAGAACCG 1 CTAAGAACTC 1 CTAAGAACTT 1 CTAAGACATC 1 CTAAGACCTC 4 CTAAGACCTG 1 CTAAGACTAC 2 CTAAGACTCA 3 CTAAGACTCC 1 CTAAGACTGT 1 CTAAGACTTA 3 CTAAGACTTC 559 CTAAGACTTT 5 CTAAGAGAAG 1 CTAAGAGATG 1 CTAAGAGTTC 1 CTAAGATCTC 1 CTAAGATTTC 2 CTAAGCCTTC 2 CTAAGCTTCA 8 CTAAGGATAA 1 CTAAGGATTC 1 CTAAGGCGAG 1 CTAAGGCTTC 6 CTAAGGGTTC 1 CTAAGGTGGG 1 CTAAGTGAAA 3 CTAAGTGACT 1 CTAAGTGAGT 1 CTAAGTTACA 1 CTAAGTTATC 1 CTAATAAAAG 1 CTAATCGTCC 1 CTAATGCTAG 3 CTAATGTCTG 1 CTAATTAGAT 1 CTAATTATTT 1 CTAATTCAGA 1 CTAATTTGAC 1 CTAATTTTAA 1 CTACAAAAAG 1 CTACAAGAAG 1 CTACAAGGGC 1 CTACAATGTA 1 CTACAATTTT 1 CTACACCAGT 1 CTACACCCTA 1 CTACACTTAA 1 CTACAGAGAA 1 CTACAGCCTG 1 CTACAGGGAC 1 CTACATAATG 1 CTACCAACTT 1 CTACCAATGG 1 CTACCAATTC 1 CTACCACCAA 1 CTACCAGCAC 1 CTACCATTAT 1 CTACCCAAAG 2 CTACCCCCCT 1 CTACCTGACT 1 CTACGACGTC 1 CTACGCAGAA 1 CTACGCGCTG 1 CTACGCTCCA 1 CTACGCTGCC 1 CTACGGTGCT 1 CTACGTGATG 1 CTACGTGCTC 1 CTACGTGTTC 1 CTACTAAGGG 1 CTACTACTAG 1 CTACTCACAG 1 CTACTCGGTC 2 CTACTCTTCT 2 CTACTCTTTG 1 CTACTGAACT 1 CTACTGATTT 1 CTACTGCACT 10 CTACTGCAGT 2 CTACTGCATT 1 CTACTGCCCT 1 CTACTGCTAA 1 CTACTGTACT 1 CTACTTCACT 1 CTACTTGAGG 1 CTACTTGTGA 1 CTACTTTGCA 1 CTAGAACATC 1 CTAGAAGTAC 5 CTAGACAGAA 1 CTAGACAGTA 2 CTAGACATAC 1 CTAGACTAAG 1 CTAGACTTCA 3 CTAGAGGCTT 1 CTAGAGTGAA 1 CTAGATTCGG 2 CTAGATTTTT 1 CTAGCAGGGA 1 CTAGCATCAC 1 CTAGCCAGAC 1 CTAGCCAGCA 3 CTAGCCCACG 1 CTAGCCCCAC 2 CTAGCCCTTC 1 CTAGCCTCAA 1 CTAGCCTCAC 172 CTAGCCTCTA 1 CTAGCTGCCT 1 CTAGCTGCTG 2 CTAGCTGTAA 1 CTAGCTTCAC 3 CTAGCTTCAG 1 CTAGCTTTGG 1 CTAGCTTTTA 11 CTAGGAAGCT 1 CTAGGAAGGC 1 CTAGGACTTC 2 CTAGGATGAT 5 CTAGGATGCG 6 CTAGGCACCA 1 CTAGGCTTTC 1 CTAGGGTTGG 1 CTAGGTGGAG 1 CTAGTCCCGA 1 CTAGTTTGAA 1 CTATAAATAC 1 CTATACTGAA 2 CTATACTGCA 1 CTATAGCATA 12 CTATAGGCAT 1 CTATATAATG 1 CTATATCTAT 1 CTATATTTAT 1 CTATATTTCC 1 CTATCAGAAA 2 CTATCAGTTT 2 CTATCATTGC 1 CTATCCTCAC 1 CTATCGCTGC 1 CTATGACTTC 3 CTATGCTAAT 1 CTATGGAAGC 1 CTATGGCATA 1 CTATGGCTTC 7 CTATGGGAGG 1 CTATGGGATT 3 CTATGGGTGT 1 CTATGGTTGC 1 CTATGTGTGA 1 CTATGTGTTA 1 CTATTAGAGT 1 CTATTCACTG 1 CTATTCATCT 1 CTATTCCTCA 1 CTATTCTGTT 1 CTATTGCACT 3 CTATTGCCCT 1 CTATTTAGTT 4 CTATTTGGTC 1 CTATTTTTGT 1 CTCAAAAAAA 3 CTCAAACCGA 1 CTCAAATGAC 1 CTCAACAAAT 1 CTCAACAACC 1 CTCAACACGC 1 CTCAACAGCA 2 CTCAACATCT 14 CTCAACATTT 2 CTCAACCCCC 3 CTCAAGAAAT 1 CTCAAGAGGG 1 CTCAAGAGGT 1 CTCAAGCGGC 1 CTCAAGTAGC 1 CTCAAGTCGC 2 CTCAATGAAA 1 CTCACAAACT 1 CTCACAAGGT 1 CTCACAAGTT 1 CTCACACATT 9 CTCACACTGT 1 CTCACCACTG 1 CTCACCCCTG 1 CTCACCCTGT 1 CTCACCGTGA 1 CTCACTAGTG 2 CTCACTCCAG 1 CTCACTGCTT 1 CTCACTGTGA 2 CTCACTTCTT 1 CTCACTTTAA 1 CTCAGAACTA 1 CTCAGAACTT 18 CTCAGACAGT 4 CTCAGACTTC 1 CTCAGACTTG 1 CTCAGAGAGG 1 CTCAGAGCTG 1 CTCAGCCGAG 1 CTCAGCCTTC 1 CTCAGCTGAT 1 CTCAGGAAAT 1 CTCAGGCCAC 1 CTCAGGGCCA 1 CTCAGTCCCC 6 CTCAGTCTTC 1 CTCAGTCTTT 1 CTCAGTTTCC 1 CTCATAAAAA 1 CTCATAAAGG 1 CTCATAAGAA 2 CTCATAAGGA 113 CTCATAAGGG 1 CTCATAATGA 1 CTCATACACC 3 CTCATACCTC 1 CTCATACTTC 1 CTCATAGCAG 6 CTCATCAGCC 1 CTCATCAGCT 9 CTCATCATCG 1 CTCATCATCT 2 CTCATCGTCC 3 CTCATCTATG 1 CTCATCTCTT 1 CTCATCTGAG 1 CTCATCTGCT 3 CTCATTAAGG 2 CTCATTGTAC 1 CTCATTTAGC 1 CTCCAAAAAA 1 CTCCAACCCC 1 CTCCAACCTA 1 CTCCAACTAA 1 CTCCAAGCAC 1 CTCCAAGTAC 1 CTCCAAGTAT 1 CTCCAAGTCC 1 CTCCAATAAA 3 CTCCAATCTG 1 CTCCACAAAT 1 CTCCACAGCA 1 CTCCACCCGA 102 CTCCACCCGG 1 CTCCACCCGT 1 CTCCACCGGG 1 CTCCACTTGG 1 CTCCAGACTG 1 CTCCAGCCGC 1 CTCCAGCTAC 4 CTCCAGGAGG 3 CTCCAGTCGA 1 CTCCATCGGC 2 CTCCATTTGC 1 CTCCCAGGTC 1 CTCCCATTCT 1 CTCCCCAACA 1 CTCCCCATCA 7 CTCCCCCAAA 4 CTCCCCCAAC 1 CTCCCCCAAG 6 CTCCCCCGAG 1 CTCCCCTGCC 9 CTCCCGAATC 1 CTCCCGGAGC 2 CTCCCGGCGA 3 CTCCCGTCAC 1 CTCCCTCTCT 1 CTCCCTCTGC 1 CTCCCTCTGG 1 CTCCCTTCAG 1 CTCCCTTGCC 1 CTCCGCCCGA 2 CTCCGCCGGC 1 CTCCGTGACC 1 CTCCTAATAA 1 CTCCTAGCAC 1 CTCCTCACCT 7 CTCCTCAGGG 1 CTCCTCATTC 2 CTCCTCATTT 1 CTCCTCGGCG 1 CTCCTCTCGG 1 CTCCTCTGAG 1 CTCCTCTGCC 1 CTCCTGAACA 1 CTCCTGAAGG 1 CTCCTGAATG 1 CTCCTGAGCC 1 CTCCTGCACT 2 CTCCTGGCCC 3 CTCCTGGGGC 3 CTCCTGGGTG 1 CTCCTGTAAT 1 CTCCTGTGGT 1 CTCCTGTTGC 1 CTCCTTAAGA 5 CTCCTTATCT 1 CTCCTTGATA 2 CTCCTTGCTG 1 CTCCTTGTTT 1 CTCCTTTAGC 2 CTCGAGGAGG 4 CTCGCCAAGC 1 CTCGCCCGGG 1 CTCGCGCCGG 2 CTCGCGCGGG 1 CTCGCGCTGG 109 CTCGCGCTGT 1 CTCGCGCTTT 1 CTCGCGTGAG 1 CTCGCGTTGG 1 CTCGCTCCAG 1 CTCGCTTCAC 1 CTCGGACTCT 1 CTCGGAGAAA 1 CTCGGAGGCC 1 CTCGGCACTC 1 CTCGGCGAGC 2 CTCGGCTAAT 1 CTCGGGCTGC 1 CTCGGTACAT 1 CTCGGTGATG 3 CTCGTACACT 1 CTCGTAGCGC 1 CTCGTGAGGC 1 CTCGTGTCTC 1 CTCGTTAAGA 7 CTCGTTAAGG 1 CTCGTTAATA 1 CTCGTTATTT 1 CTCTAAAAAT 1 CTCTAAAACC 1 CTCTAACTGC 2 CTCTAAGAGT 1 CTCTAAGTTG 1 CTCTACAGAA 1 CTCTACAGTG 3 CTCTACGCAT 1 CTCTACTCAC 1 CTCTAGTCAC 1 CTCTAGTGCA 1 CTCTATGAAA 1 CTCTCAAGGT 1 CTCTCAATAT 2 CTCTCAATCC 1 CTCTCAATGG 1 CTCTCACCCT 6 CTCTCAGGCA 1 CTCTCAGTCG 1 CTCTCATCTC 1 CTCTCCAGTG 1 CTCTCCCAGG 1 CTCTCCTGCT 1 CTCTCGGGTC 1 CTCTCTCCTG 1 CTCTCTGAGA 1 CTCTCTGTGG 4 CTCTGAGGTA 2 CTCTGATAAC 1 CTCTGATGCA 3 CTCTGATTCC 1 CTCTGCAAGA 1 CTCTGCAATG 1 CTCTGCCAAC 1 CTCTGCCCTC 26 CTCTGCGTAA 1 CTCTGCTCGG 1 CTCTGGAAAC 1 CTCTGGATGG 4 CTCTGGCTCC 1 CTCTGGGCCA 1 CTCTGGGGCC 1 CTCTGTAACC 1 CTCTGTAATT 1 CTCTGTCCCC 1 CTCTGTGCGG 1 CTCTGTGTGG 4 CTCTGTTTAC 1 CTCTTAAAAC 1 CTCTTAACCA 1 CTCTTAACTC 1 CTCTTAATGT 2 CTCTTACCTG 1 CTCTTAGAGT 1 CTCTTATAGT 1 CTCTTATCAA 1 CTCTTATCAC 1 CTCTTCACGG 1 CTCTTCAGGA 1 CTCTTCGAGA 2 CTCTTCGTTG 1 CTCTTGCAGA 1 CTCTTGGACC 1 CTCTTGGATA 1 CTCTTGTATT 1 CTCTTTGTGC 1 CTCTTTTGGG 1 CTGAAAAAAA 1 CTGAAAAGTA 1 CTGAAACAGC 1 CTGAAACCCC 3 CTGAAACTCT 1 CTGAAATGTG 1 CTGAACAAGA 1 CTGAACCCCA 1 CTGAACCCCT 1 CTGAACCTCC 5 CTGAACCTGA 1 CTGAACGTAA 1 CTGAACTGCA 1 CTGAAGCAGG 1 CTGAAGCCCC 1 CTGAAGGCGC 1 CTGAAGGCTC 1 CTGAAGTGGG 1 CTGAAGTGTG 4 CTGAAGTTTG 1 CTGAATATTT 1 CTGAATCACA 1 CTGAATGTAC 1 CTGAATTCAG 2 CTGACACAAA 1 CTGACAGAAT 1 CTGACAGTTC 1 CTGACATAGG 1 CTGACCACTT 1 CTGACCAGAA 1 CTGACCCAGC 3 CTGACCCCCT 1 CTGACCCTCG 1 CTGACCTGAC 1 CTGACCTGAG 1 CTGACCTGTG 88 CTGACCTGTT 1 CTGACGGGGA 2 CTGACTATAT 1 CTGACTATGT 1 CTGACTCCCT 1 CTGACTCGGT 1 CTGACTTGTT 1 CTGAGAAACT 2 CTGAGAATTA 1 CTGAGACAAA 7 CTGAGACACC 3 CTGAGACCCT 1 CTGAGACGGA 1 CTGAGACTTC 2 CTGAGAGCTG 2 CTGAGAGGCA 1 CTGAGCCAGA 1 CTGAGCCGCC 1 CTGAGCGACA 1 CTGAGCTGTA 3 CTGAGGAAAG 1 CTGAGGAACA 2 CTGAGGCAGG 2 CTGAGGCCTG 3 CTGAGGCCTT 1 CTGAGGCGCT 4 CTGAGGGCCG 1 CTGAGGGCCT 1 CTGAGGGTGA 1 CTGAGGGTGG 2 CTGAGGTAGT 1 CTGAGGTCGG 1 CTGAGTCTCC 3 CTGAGTTGAA 1 CTGAGTTGCT 1 CTGATAATTG 1 CTGATACTGG 1 CTGATATTCC 1 CTGATATTCT 1 CTGATCAAAC 1 CTGATCTGTG 1 CTGATCTTCT 2 CTGATGACCT 1 CTGATGATAA 1 CTGATGCCCA 9 CTGATGTACC 1 CTGATGTTAT 2 CTGATTCAAC 4 CTGATTCAGG 1 CTGATTCAGT 1 CTGATTCTAA 1 CTGATTCTTC 4 CTGATTGAGG 1 CTGATTTGTA 1 CTGCAAAAAA 1 CTGCAAAATT 1 CTGCAACCTA 2 CTGCAATATG 2 CTGCACGTGT 1 CTGCACTTAC 1 CTGCAGAAAA 1 CTGCAGACCC 2 CTGCAGCTCT 1 CTGCAGGACC 1 CTGCAGGGAC 1 CTGCAGGGCC 1 CTGCAGTCAC 1 CTGCAGTTAG 6 CTGCATAACT 1 CTGCATCTGG 1 CTGCCAACTC 1 CTGCCAACTT 7 CTGCCAAGAA 1 CTGCCAAGGC 1 CTGCCAAGGG 1 CTGCCAAGTT 7 CTGCCAATAA 1 CTGCCACCCC 1 CTGCCACCTC 6 CTGCCAGCAT 1 CTGCCAGCCC 1 CTGCCAGGCA 1 CTGCCAGTTG 1 CTGCCATAAC 7 CTGCCCACCC 1 CTGCCCAGTG 1 CTGCCCCACA 1 CTGCCCCCCA 9 CTGCCCCTGC 1 CTGCCCCTGG 1 CTGCCCGCCT 3 CTGCCCGGGG 1 CTGCCCGGTT 1 CTGCCCGTGT 1 CTGCCCTAAC 1 CTGCCCTCGG 1 CTGCCCTGGC 1 CTGCCCTGGG 2 CTGCCCTTGA 1 CTGCCTAGCT 1 CTGCCTAGTT 1 CTGCCTCATT 1 CTGCCTCCTA 1 CTGCCTCCTT 7 CTGCCTCGGC 1 CTGCCTCTTT 1 CTGCCTGGCA 1 CTGCCTTACA 1 CTGCCTTCAA 1 CTGCCTTCTT 3 CTGCGACGCC 1 CTGCGACTCC 1 CTGCGAGGTC 1 CTGCGAGTGA 2 CTGCGATTCC 2 CTGCGCACGT 1 CTGCGCCGCG 1 CTGCGCTCGC 1 CTGCGGCCAC 1 CTGCGGGGGG 1 CTGCGGTGCT 3 CTGCGGTGGC 1 CTGCGTCTGG 1 CTGCGTCTGT 1 CTGCGTTGCG 1 CTGCGTTGGG 1 CTGCTAACAC 1 CTGCTAAGGT 2 CTGCTACGTT 1 CTGCTAGGAA 1 CTGCTAGGGG 1 CTGCTAGGGT 1 CTGCTAGTCG 1 CTGCTAGTTC 2 CTGCTAGTTT 1 CTGCTATACG 12 CTGCTCATTG 1 CTGCTCCAAA 1 CTGCTCCAGA 1 CTGCTCCTCT 1 CTGCTCCTTC 1 CTGCTCGAAT 1 CTGCTCGGCG 1 CTGCTCGTGC 1 CTGCTGAAGT 1 CTGCTGAGTG 1 CTGCTGCAAC 1 CTGCTGCACC 1 CTGCTGCACT 5 CTGCTGCCCC 2 CTGCTGCCTT 5 CTGCTGCGCT 1 CTGCTGCTTT 1 CTGCTGTACT 3 CTGCTGTCCC 1 CTGCTGTGAT 1 CTGCTGTGGC 1 CTGCTGTGTG 1 CTGCTTAAGG 2 CTGCTTCAAA 1 CTGCTTCCTG 3 CTGCTTGGTG 1 CTGCTTGTTG 1 CTGCTTTCTG 1 CTGGAAATGG 1 CTGGAACACA 1 CTGGAACCCT 2 CTGGAAGCCT 1 CTGGAATGGT 1 CTGGAATGTA 1 CTGGACACCT 1 CTGGACAGGT 1 CTGGACCCTG 1 CTGGACGACA 1 CTGGACTCCG 2 CTGGACTCTT 1 CTGGAGAACT 1 CTGGAGAAGG 2 CTGGAGCAAC 1 CTGGAGCCCG 2 CTGGAGCTGA 1 CTGGAGCTGG 1 CTGGAGGCAC 2 CTGGAGGCTG 1 CTGGAGGGCA 2 CTGGAGGTGA 1 CTGGAGTGCA 1 CTGGATAAGC 1 CTGGATACTG 1 CTGGATCTGG 21 CTGGATGCCG 5 CTGGATGTGG 1 CTGGCAAAGG 14 CTGGCACACA 1 CTGGCACACT 1 CTGGCAGGCG 1 CTGGCAGGGA 1 CTGGCAGGTG 2 CTGGCATATG 1 CTGGCCACCT 1 CTGGCCAGAG 1 CTGGCCAGGA 1 CTGGCCAGGC 5 CTGGCCATCG 10 CTGGCCATCT 1 CTGGCCATTG 2 CTGGCCCCAA 1 CTGGCCCCCG 2 CTGGCCCCGA 1 CTGGCCCCTC 1 CTGGCCCGGA 11 CTGGCCCTAG 1 CTGGCCCTCA 1 CTGGCCCTCC 1 CTGGCCCTCG 186 CTGGCCCTGG 1 CTGGCCGCAA 4 CTGGCCGCTC 1 CTGGCCGCTT 1 CTGGCCGGAG 1 CTGGCCGGCT 1 CTGGCCGTGG 1 CTGGCCTAGG 1 CTGGCCTCGA 1 CTGGCCTCGT 1 CTGGCCTGTG 7 CTGGCCTTCG 1 CTGGCGAGCG 3 CTGGCGATGG 3 CTGGCGCCGA 3 CTGGCGGCGC 1 CTGGCGGGCA 2 CTGGCTAAAA 1 CTGGCTAAAG 1 CTGGCTAGCG 1 CTGGCTATCC 7 CTGGCTCACA 1 CTGGCTGAAG 1 CTGGCTGCAA 13 CTGGCTGCGG 1 CTGGCTGCTG 1 CTGGCTGGGT 1 CTGGCTTACA 1 CTGGCTTCTT 1 CTGGCTTGCT 1 CTGGGAAAGT 1 CTGGGAAGCA 1 CTGGGACAGG 1 CTGGGACTGA 3 CTGGGACTGC 2 CTGGGAGAGC 1 CTGGGAGAGG 9 CTGGGATCAT 1 CTGGGATGTC 3 CTGGGATTTG 1 CTGGGCAAAC 6 CTGGGCAACA 2 CTGGGCACCC 1 CTGGGCACGG 1 CTGGGCACTG 1 CTGGGCCAGT 1 CTGGGCCTCG 1 CTGGGCCTCT 22 CTGGGCCTGA 10 CTGGGCCTGG 4 CTGGGCGTGT 11 CTGGGGACTT 1 CTGGGGAGGC 1 CTGGGGCGGC 1 CTGGGGCTCT 1 CTGGGGCTTT 1 CTGGGGGCTG 1 CTGGGGGGAA 1 CTGGGGGTCT 1 CTGGGGGTTC 1 CTGGGGGTTG 2 CTGGGGTAAT 1 CTGGGGTCCC 1 CTGGGGTCTC 1 CTGGGGTGCT 1 CTGGGGTGGG 1 CTGGGGTTTC 1 CTGGGTCAGT 1 CTGGGTTAAT 14 CTGGGTTTCA 1 CTGGTAACGG 1 CTGGTAAGAA 1 CTGGTAATCC 1 CTGGTAGGAA 1 CTGGTCAGGC 1 CTGGTCCCAA 1 CTGGTCCTCC 7 CTGGTCCTCG 1 CTGGTCGTTG 3 CTGGTCTCCA 1 CTGGTCTGGG 1 CTGGTGCACA 1 CTGGTGCCCA 2 CTGGTGCGCT 2 CTGGTGCGTA 1 CTGGTGGCTT 1 CTGGTGGGCA 1 CTGGTGGGCC 2 CTGGTGGGCG 1 CTGGTGGTCT 1 CTGGTGGTGC 5 CTGGTGGTTG 1 CTGGTGTGCT 4 CTGGTGTGGT 1 CTGGTTAAAG 1 CTGGTTACCA 1 CTGGTTATTT 1 CTGGTTCAGA 1 CTGGTTTCTG 1 CTGGTTTGGA 1 CTGGTTTTCC 1 CTGGTTTTTT 1 CTGTAAAAAA 6 CTGTAAAACA 1 CTGTAAACTA 1 CTGTAACATA 1 CTGTAACCAT 1 CTGTAACTCC 1 CTGTAAGGAG 1 CTGTAAGGAT 1 CTGTAATTGG 1 CTGTAATTGT 1 CTGTACAAAC 1 CTGTACAACT 1 CTGTACAGAC 39 CTGTACATAC 2 CTGTACCTGA 1 CTGTACCTGG 1 CTGTACCTTA 1 CTGTACGTTC 1 CTGTACTAGG 4 CTGTACTGGC 1 CTGTACTTGA 1 CTGTACTTGT 9 CTGTAGAAAT 1 CTGTAGACTC 1 CTGTAGCAGC 1 CTGTAGCTCA 2 CTGTAGTCCC 1 CTGTAGTCTT 1 CTGTATGCAG 1 CTGTATGTCA 1 CTGTATTCCC 1 CTGTATTTGA 3 CTGTCAAAGG 1 CTGTCAAGCA 1 CTGTCAGCGG 1 CTGTCATTTG 1 CTGTCATTTT 1 CTGTCCCTCG 1 CTGTCCGTAC 2 CTGTCCTAGC 8 CTGTCCTTCA 1 CTGTCCTTGT 2 CTGTCTCCTT 1 CTGTCTGGAA 1 CTGTCTGGGT 1 CTGTCTGGTC 1 CTGTCTTACT 1 CTGTCTTGGG 1 CTGTGAAAAC 1 CTGTGACACA 1 CTGTGACCCC 1 CTGTGAGACC 10 CTGTGAGGGC 1 CTGTGATCGT 1 CTGTGATGTG 4 CTGTGATTGT 1 CTGTGCAGAC 1 CTGTGCATTT 4 CTGTGCCAAT 1 CTGTGCCCAG 5 CTGTGCCTAA 1 CTGTGCCTGA 1 CTGTGCCTTG 1 CTGTGCGCAC 1 CTGTGCTCAC 1 CTGTGCTCCG 1 CTGTGCTCCT 1 CTGTGCTCGG 2 CTGTGCTCTA 1 CTGTGCTGTT 1 CTGTGGCCGG 2 CTGTGGTGGA 1 CTGTGTAAAG 5 CTGTGTAAGC 1 CTGTGTAGAG 1 CTGTGTATCC 1 CTGTGTCTGT 2 CTGTGTGACT 4 CTGTGTGCCC 3 CTGTGTGCTA 1 CTGTGTGTAA 1 CTGTGTTTGT 1 CTGTTAAAGG 1 CTGTTAGTGT 3 CTGTTCCCTC 1 CTGTTCCCTT 2 CTGTTCCGGC 1 CTGTTCCGTG 1 CTGTTCGTAC 1 CTGTTCTAAA 2 CTGTTCTCCT 2 CTGTTGATTG 13 CTGTTGCACT 1 CTGTTGCTGG 1 CTGTTGGCAT 5 CTGTTGGTGA 9 CTGTTGTGTG 2 CTGTTTAAAC 3 CTGTTTAGTG 1 CTGTTTCTAA 1 CTGTTTCTAC 1 CTGTTTTCGT 1 CTGTTTTGCC 1 CTGTTTTGGT 5 CTGTTTTTGT 1 CTTAAACTTC 1 CTTAAAGAAA 1 CTTAAAGTCT 1 CTTAAATATC 3 CTTAAATCTG 2 CTTAACAAGC 1 CTTAACAGCG 1 CTTAAGAAAA 1 CTTAAGACTT 1 CTTAAGGATT 2 CTTAAGGCCT 1 CTTAATACTA 1 CTTAATCCTG 1 CTTAATCTTG 1 CTTAATGATG 1 CTTAATGCCT 1 CTTAATGGGA 1 CTTAATTTCA 1 CTTACAACCG 1 CTTACAAGCA 21 CTTACAGCAT 1 CTTACAGTCC 3 CTTACATAAG 1 CTTACCACAG 1 CTTACCTGAT 1 CTTACGTGAT 1 CTTACTATGT 1 CTTAGAACAA 1 CTTAGACCTC 1 CTTAGAGGGG 16 CTTAGAGGGT 2 CTTAGCCTCA 2 CTTAGCTCCC 1 CTTAGCTCTT 2 CTTAGTGCAA 1 CTTAGTGCTT 1 CTTAGTGTGT 2 CTTAGTTTCA 1 CTTATAATAA 2 CTTATAATCC 1 CTTATAATTC 1 CTTATACCTG 1 CTTATACTAG 1 CTTATACTCA 1 CTTATAGTCC 2 CTTATATCGA 1 CTTATATGTA 1 CTTATCAGGA 1 CTTATCTCTT 1 CTTATGATCA 1 CTTATGCTAC 1 CTTATGGTCC 36 CTTATGGTTG 2 CTTATGTGCA 1 CTTATGTTGC 1 CTTATTCATT 1 CTTATTCCTT 1 CTTATTGTAA 1 CTTATTTTTG 1 CTTCAAACAA 1 CTTCAAAGAA 1 CTTCAATACC 1 CTTCACACGT 1 CTTCACCTAT 1 CTTCACTGTG 1 CTTCAGAATT 1 CTTCAGACCA 1 CTTCATAACC 1 CTTCATTTGA 1 CTTCCAAAAC 1 CTTCCACCTA 1 CTTCCACTAA 1 CTTCCAGAAG 1 CTTCCAGACA 1 CTTCCAGCCA 1 CTTCCAGCTA 64 CTTCCAGTAA 1 CTTCCAGTTA 2 CTTCCATCAC 1 CTTCCATCTG 1 CTTCCATCTT 1 CTTCCCACTC 1 CTTCCCACTG 1 CTTCCCCCTT 1 CTTCCCGCTA 1 CTTCCCGGGG 1 CTTCCCGTAC 1 CTTCCCTGTG 1 CTTCCGGCTA 1 CTTCCGTAGC 3 CTTCCGTCTA 1 CTTCCTCCAC 1 CTTCCTCTGC 2 CTTCCTGAGA 1 CTTCCTGCCA 1 CTTCCTGTAC 3 CTTCCTGTAG 1 CTTCCTGTAT 1 CTTCCTGTTA 2 CTTCCTTTAT 1 CTTCCTTTGG 1 CTTCGAAACT 4 CTTCGACGAA 2 CTTCGAGGCT 2 CTTCGATGTT 1 CTTCGGATGT 1 CTTCGGGCTG 3 CTTCGGTGCC 2 CTTCGTCCGG 1 CTTCTACTAA 1 CTTCTATGTA 1 CTTCTCAAGG 1 CTTCTCACCG 2 CTTCTCAGGG 2 CTTCTCATCT 3 CTTCTCATTT 1 CTTCTCCCCA 2 CTTCTCTCTC 2 CTTCTCTGGG 1 CTTCTCTGTT 4 CTTCTGCCCC 1 CTTCTGCTGG 5 CTTCTGGCAT 1 CTTCTGGGAC 1 CTTCTGGGGA 4 CTTCTGGGGG 1 CTTCTGTAAT 1 CTTCTGTATA 1 CTTCTGTGTA 1 CTTCTGTTTT 1 CTTCTTATTT 1 CTTCTTCCCA 1 CTTCTTCTGG 1 CTTCTTGACC 1 CTTCTTGCAC 1 CTTCTTGCCC 29 CTTCTTGGCC 2 CTTCTTTGCT 1 CTTCTTTGGC 1 CTTGAAATTT 1 CTTGAACTGT 1 CTTGAAGACC 1 CTTGACAGCT 1 CTTGACATAC 18 CTTGAGCGAC 1 CTTGAGCTTG 1 CTTGATCAAA 1 CTTGATCCCA 1 CTTGATGTTC 1 CTTGATTAAA 1 CTTGATTCCC 26 CTTGATTTCC 1 CTTGCACCAC 1 CTTGCAGATG 1 CTTGCAGGAG 1 CTTGCAGGTT 1 CTTGCAGTCC 1 CTTGCAGTCT 2 CTTGCAGTTA 1 CTTGCATTGT 1 CTTGCCAAGG 1 CTTGCCATAA 3 CTTGCCATCG 1 CTTGCCCCCG 1 CTTGCCTACA 1 CTTGCCTGAA 1 CTTGCCTTCA 1 CTTGCCTTCC 1 CTTGCTCTCC 3 CTTGCTTCCT 1 CTTGCTTGAG 1 CTTGGACCAT 1 CTTGGAGCTG 1 CTTGGAGTGC 1 CTTGGATACA 1 CTTGGCACCC 3 CTTGGCCATA 1 CTTGGCCCTG 2 CTTGGCCTTG 1 CTTGGCTCCC 1 CTTGGCTGCA 1 CTTGGGACGT 1 CTTGGGAGGC 1 CTTGGGATGT 1 CTTGGGCCTA 1 CTTGGGCCTT 1 CTTGGGCGGG 1 CTTGGGGTGG 1 CTTGGTCCCT 1 CTTGGTGTCA 1 CTTGTAATCC 24 CTTGTAATCG 1 CTTGTAATCT 3 CTTGTAATTC 1 CTTGTACAGC 1 CTTGTACCAC 1 CTTGTAGGCC 1 CTTGTAGTCC 3 CTTGTATACA 3 CTTGTATGTA 1 CTTGTGAACT 11 CTTGTGAAGT 1 CTTGTGAGGC 1 CTTGTGATTT 1 CTTGTGGGGC 1 CTTGTGTCCC 1 CTTGTGTGTA 3 CTTGTTAATA 2 CTTGTTGAAT 1 CTTTAAAAGA 1 CTTTAAATAT 1 CTTTAAGAAA 1 CTTTACAGCC 1 CTTTACCAAA 1 CTTTACTCCT 1 CTTTAGCCAA 1 CTTTATGTGA 1 CTTTATGTGT 1 CTTTATTGGA 1 CTTTATTTGT 3 CTTTCAACGT 3 CTTTCAAGGT 1 CTTTCAATGT 1 CTTTCAGATG 3 CTTTCAGCCA 1 CTTTCAGCTA 1 CTTTCCAAAA 1 CTTTCCAAGG 1 CTTTCCAGCT 1 CTTTCCAGGC 1 CTTTCCATTA 1 CTTTCCCATT 1 CTTTCCCCTT 1 CTTTCCGTGT 1 CTTTCCTATG 1 CTTTCTAGAA 1 CTTTCTATTA 2 CTTTCTCAAA 1 CTTTCTGCCT 1 CTTTCTGCTC 1 CTTTCTGGTA 3 CTTTCTGTGT 2 CTTTGAAAAC 1 CTTTGAAGTT 1 CTTTGAATTG 1 CTTTGACTGG 1 CTTTGAGCTG 1 CTTTGAGGGA 1 CTTTGATCAG 1 CTTTGATGTT 8 CTTTGCAGAT 1 CTTTGCATAT 1 CTTTGCTGGA 1 CTTTGCTGTC 1 CTTTGCTGTG 2 CTTTGGAAAG 1 CTTTGGAAAT 1 CTTTGGGAGG 1 CTTTGGGCAC 1 CTTTGGGTAC 1 CTTTGGGTGA 1 CTTTGGTGTT 1 CTTTGTAACA 1 CTTTGTACAC 1 CTTTGTGACT 2 CTTTGTGGCT 1 CTTTGTTTCT 1 CTTTGTTTTG 3 CTTTTAAAAT 2 CTTTTAAGAA 1 CTTTTAATCC 1 CTTTTACTAT 2 CTTTTAGAAA 1 CTTTTAGTGC 1 CTTTTATTTT 1 CTTTTCAAAC 1 CTTTTCACTT 2 CTTTTCAGCA 6 CTTTTCAGGG 1 CTTTTCATCA 1 CTTTTCCATT 1 CTTTTCCTCT 1 CTTTTCTCTT 3 CTTTTCTGAA 1 CTTTTCTGCC 1 CTTTTCTTCT 2 CTTTTCTTTA 1 CTTTTGAGAT 1 CTTTTGATGC 1 CTTTTGCCAC 1 CTTTTGCTGT 1 CTTTTGGCTG 2 CTTTTGGTTT 4 CTTTTGTCAA 1 CTTTTGTCGT 1 CTTTTGTGAG 1 CTTTTGTTTG 3 CTTTTTAAAG 1 CTTTTTAATT 1 CTTTTTATGG 1 CTTTTTCTAG 1 CTTTTTGTGC 15 GAAAAAAAAA 3 GAAAAAAATG 1 GAAAAAAGAA 1 GAAAAACAGA 1 GAAAAACCCC 2 GAAAAACCCT 1 GAAAAAGATG 1 GAAAAAGCTG 1 GAAAAAGCTT 1 GAAAAATGGT 7 GAAAACAAAG 1 GAAAACAACT 1 GAAAACACTG 1 GAAAACAGAA 1 GAAAACAGAG 1 GAAAACAGGA 1 GAAAACATTC 1 GAAAACCCCA 1 GAAAACTACC 1 GAAAACTCAA 1 GAAAAGAATG 1 GAAAAGAGAT 1 GAAAAGCTCC 1 GAAAAGGGAA 2 GAAAAGGGCT 1 GAAAAGGGTG 1 GAAAAGGTAA 1 GAAAAGGTCT 1 GAAAAGGTTA 2 GAAAAGTGTG 1 GAAAAGTTCA 1 GAAAAGTTGC 1 GAAAATAAAC 1 GAAAATAACA 1 GAAAATACTG 1 GAAAATCTTG 1 GAAAATTCAA 1 GAAAATTGAA 1 GAAACAAAAT 2 GAAACAAGAT 6 GAAACACGTA 1 GAAACACGTC 1 GAAACAGAAC 1 GAAACAGACG 1 GAAACAGGAC 1 GAAACATTCT 3 GAAACCAACT 2 GAAACCACAA 3 GAAACCCTGT 1 GAAACCGACC 1 GAAACCGAGG 2 GAAACCTCCA 1 GAAACTACGC 1 GAAACTCCAC 1 GAAACTGAAC 10 GAAACTGAAG 1 GAAACTGACC 1 GAAACTGAGA 1 GAAACTGAGC 1 GAAACTGCTC 1 GAAACTGTAC 1 GAAACTGTAT 1 GAAACTTGCA 1 GAAAGAAATT 1 GAAAGAATAA 1 GAAAGACAAA 1 GAAAGACCCC 1 GAAAGAGCAC 1 GAAAGAGCTG 1 GAAAGATTGG 1 GAAAGCACGG 1 GAAAGCCAAC 1 GAAAGCGAGC 1 GAAAGGAAGT 1 GAAAGGAATG 1 GAAAGGCAAA 4 GAAAGGCAAC 1 GAAAGGCGCT 1 GAAAGGCTTC 1 GAAAGGGGAC 1 GAAAGGTCTG 9 GAAAGTAATC 1 GAAAGTACAA 1 GAAAGTCGGA 1 GAAAGTCTCA 1 GAAAGTGAGA 1 GAAAGTTATT 1 GAAAGTTGAG 1 GAAATAAAAA 1 GAAATAAAAG 1 GAAATAAACG 1 GAAATACACT 1 GAAATACAGA 2 GAAATACAGG 1 GAAATACAGT 34 GAAATACATC 1 GAAATACCAG 1 GAAATAGACA 1 GAAATAGCAA 1 GAAATAGGAA 1 GAAATATCTT 1 GAAATCAACT 1 GAAATCAAGT 1 GAAATCAGTG 1 GAAATCCGCA 3 GAAATGAACT 1 GAAATGAAGT 1 GAAATGAGCA 2 GAAATGATGA 5 GAAATGCAGC 2 GAAATGCCTT 1 GAAATGCGAA 1 GAAATGGAAG 1 GAAATGGGGC 2 GAAATGTAAG 3 GAAATGTTAG 1 GAAATGTTCA 1 GAAATTAAAT 1 GAAATTAGGG 2 GAAATTCTCA 1 GAAATTGAAC 1 GAAATTGGGA 1 GAAATTTAAA 1 GAAATTTATT 1 GAAATTTGAA 1 GAAATTTTGG 1 GAACAACAGA 1 GAACAAGCAG 1 GAACAAGTTT 1 GAACACAAAA 1 GAACACAGAA 1 GAACACATCC 15 GAACACCCCA 1 GAACAGCAAC 1 GAACAGCAGA 1 GAACAGCAGG 1 GAACAGCCCA 1 GAACAGCTCA 5 GAACAGTGCT 1 GAACAGTGGC 1 GAACAGTGTG 1 GAACATACTT 1 GAACATCGCT 1 GAACATTCTC 1 GAACCAAACA 1 GAACCAAATA 1 GAACCAACCC 2 GAACCAACGA 1 GAACCACTAA 3 GAACCAGCCC 1 GAACCAGGCC 1 GAACCAGGTT 1 GAACCAGTGA 1 GAACCATCAA 1 GAACCCAAAC 2 GAACCCAAGG 1 GAACCCAGCT 1 GAACCCCAGG 1 GAACCCGGGA 1 GAACCCTTCT 4 GAACCGCCGG 1 GAACCGCTGA 1 GAACCTCTGA 2 GAACCTGCCA 1 GAACCTGGAC 1 GAACCTGGTG 1 GAACGACCTA 2 GAACGATTTG 1 GAACGCCAGA 7 GAACGCCTAA 1 GAACGCTGAA 1 GAACGCTGGG 1 GAACGGTGAC 1 GAACGTCCTA 1 GAACGTCTTA 2 GAACTCAATG 1 GAACTCCATA 2 GAACTCTCAC 1 GAACTGCCTC 1 GAACTGCGTG 2 GAACTGGATT 2 GAACTGGGCA 1 GAACTGGTGA 1 GAACTGTATG 1 GAACTGTGAG 2 GAACTTGGGC 1 GAACTTTGGG 1 GAACTTTTCT 2 GAAGAAAAAC 1 GAAGAAAAGC 1 GAAGAAACCC 1 GAAGAAACTG 2 GAAGAAAGAC 1 GAAGAACAAG 2 GAAGAACTCC 1 GAAGAAGACC 1 GAAGAAGCGC 1 GAAGAAGTAA 1 GAAGACGCTG 1 GAAGACTTTT 1 GAAGAGACAT 1 GAAGAGAGAG 1 GAAGAGATGA 1 GAAGAGGCCT 1 GAAGAGTCTG 1 GAAGATGCCT 2 GAAGATGTGT 3 GAAGATGTTG 1 GAAGATTTCA 1 GAAGATTTTC 1 GAAGCAAATT 1 GAAGCAAGGA 1 GAAGCACCAC 1 GAAGCAGAAC 1 GAAGCAGGAC 66 GAAGCAGGGC 1 GAAGCAGTTT 1 GAAGCATCTG 1 GAAGCATTAA 1 GAAGCATTCC 1 GAAGCCAGAA 1 GAAGCCAGCA 1 GAAGCCCAAC 2 GAAGCCCACG 1 GAAGCCCAGA 1 GAAGCCCAGC 1 GAAGCGACTC 1 GAAGCGGAGG 1 GAAGCGGTGG 1 GAAGCTAAGG 1 GAAGCTACAT 1 GAAGCTCTGT 3 GAAGCTGAAA 1 GAAGCTGTTC 1 GAAGCTTATT 1 GAAGCTTCCA 1 GAAGCTTTGC 11 GAAGGAAGAA 1 GAAGGAAGCC 1 GAAGGACCCC 1 GAAGGAGATA 1 GAAGGAGCAC 1 GAAGGAGCTG 6 GAAGGAGTAA 1 GAAGGATATT 1 GAAGGATCAT 1 GAAGGATTGG 1 GAAGGCAACG 4 GAAGGCAAGT 1 GAAGGCACCA 1 GAAGGCAGAG 1 GAAGGCATCC 5 GAAGGCATCT 2 GAAGGCGCTG 1 GAAGGCTGAG 1 GAAGGGACCG 6 GAAGGGATCA 1 GAAGGGCTCA 1 GAAGGGGTGC 2 GAAGGGTGAA 1 GAAGGGTGGC 1 GAAGGTCCTG 1 GAAGGTGACA 1 GAAGGTGACG 1 GAAGGTGGGG 1 GAAGGTGTTT 1 GAAGTACAGT 1 GAAGTATGAA 2 GAAGTCAGAG 1 GAAGTCGGAA 51 GAAGTCGGAG 1 GAAGTCGGAT 1 GAAGTGATAG 1 GAAGTGCCTT 1 GAAGTGCTGC 1 GAAGTGGAAG 2 GAAGTGGCAG 1 GAAGTGTAGG 1 GAAGTGTGTC 2 GAAGTTAGGC 1 GAAGTTATGA 3 GAAGTTATGC 1 GAAGTTGCAC 1 GAAGTTTAGC 1 GAAGTTTCTT 1 GAATAAAATA 1 GAATAAATGA 1 GAATAAATTA 1 GAATAAGTTC 1 GAATACTGTT 1 GAATAGAATG 1 GAATAGCCAT 1 GAATAGTTAT 1 GAATCACCTC 2 GAATCACTGT 1 GAATCAGAAG 1 GAATCATCAT 4 GAATCCAACT 4 GAATCCCAGC 1 GAATCCCATT 1 GAATCCGGTT 1 GAATCCTGTC 1 GAATCGAAGT 1 GAATCGATCT 1 GAATCGGTTA 3 GAATCTCAGG 1 GAATCTCATT 2 GAATCTCTCT 1 GAATCTCTGG 1 GAATCTTGCT 1 GAATCTTGTA 1 GAATGACTTC 1 GAATGAGGAC 1 GAATGATATG 1 GAATGATTTC 9 GAATGCAATG 1 GAATGCACAA 1 GAATGCAGTT 1 GAATGCATCT 1 GAATGCCATA 1 GAATGCTCGG 1 GAATGCTGAC 2 GAATGGAACG 1 GAATGGAATC 1 GAATGGAATG 3 GAATGGAATT 1 GAATGGACTC 3 GAATGGATCT 1 GAATGGCTGT 1 GAATGGGCTG 1 GAATGGTCAT 1 GAATGTAAAC 1 GAATGTAAGT 2 GAATGTAATC 1 GAATGTCATT 1 GAATGTCCTT 2 GAATGTCTTT 1 GAATGTTTTG 1 GAATTAACAT 3 GAATTACAGT 1 GAATTCACCT 1 GAATTCAGCA 2 GAATTCTGAG 1 GAATTGAGCT 1 GAATTGCTAT 1 GAATTGGCAG 1 GAATTGGCCT 1 GAATTTACTG 1 GAATTTGAGC 1 GAATTTTATA 4 GACAAAACAC 1 GACAAACACC 2 GACAAATTCT 1 GACAACACAG 1 GACAAGAACT 1 GACAAGATGC 1 GACAAGGCCG 1 GACAAGTGGG 1 GACAATACCA 1 GACAATACCC 1 GACAATGAGA 1 GACAATGCCA 5 GACACAAGAT 1 GACACAAGCA 2 GACACAAGGG 1 GACACACAGA 1 GACACACCAG 1 GACACACTAT 1 GACACAGAAA 2 GACACAGAGG 1 GACACAGATA 1 GACACAGCAA 3 GACACAGGGA 1 GACACATCCA 2 GACACATTCA 1 GACACCAACT 1 GACACCACTC 1 GACACCACTG 1 GACACCAGGG 3 GACACCGGCC 1 GACACCTCCT 3 GACACCTTCA 1 GACACCTTTT 1 GACACGAGAT 1 GACACGCGGA 1 GACACGGCGC 1 GACACGTGAC 1 GACACTCCCA 2 GACACTGAAA 6 GACACTGAGA 1 GACAGAAAGG 1 GACAGAATGG 1 GACAGACATC 2 GACAGACGAG 1 GACAGACTCA 1 GACAGAGTGT 1 GACAGCACCA 1 GACAGCCCAG 1 GACAGCCCGG 1 GACAGCTATT 1 GACAGCTGAG 10 GACAGCTGAT 1 GACAGGAACA 1 GACAGGGCAC 1 GACAGGTGCA 1 GACAGGTTCT 2 GACAGGTTGC 1 GACAGTACCC 1 GACAGTCCTG 2 GACAGTCGGT 2 GACAGTGACG 2 GACAGTGCAA 1 GACAGTGGAG 1 GACAGTGTGG 1 GACAGTTAGG 2 GACATAAATC 2 GACATAAGTA 1 GACATACAGA 1 GACATATGTA 4 GACATCAACC 1 GACATCAAGA 1 GACATCAAGC 3 GACATCAAGT 198 GACATCAATG 1 GACATCACAA 1 GACATCACAC 1 GACATCACAT 1 GACATCACGT 2 GACATCAGCG 1 GACATCAGTG 1 GACATCCCCT 1 GACATCCCGC 2 GACATCCGGT 1 GACATCGAGG 2 GACATCTAGT 1 GACATCTCTT 1 GACATCTGAG 1 GACATTAAGT 1 GACATTAGTC 1 GACATTTGGA 1 GACATTTGTC 1 GACATTTGTT 1 GACCAAAAAA 1 GACCAACAGT 1 GACCAAGACA 1 GACCAAGGAG 1 GACCAAGTCA 1 GACCAATCAC 1 GACCACGGCG 1 GACCACTGGT 1 GACCAGAAAA 17 GACCAGAGGC 1 GACCAGCCCA 23 GACCAGCGGC 4 GACCAGCGGG 1 GACCAGCTGC 7 GACCAGCTGG 7 GACCAGGGGC 1 GACCAGGTCA 1 GACCAGGTTA 1 GACCAGTGGA 1 GACCAGTGGC 21 GACCATCCTG 1 GACCATTTGA 2 GACCCAAAAA 1 GACCCAAAAT 1 GACCCAAAGA 1 GACCCAACAT 1 GACCCAAGAG 1 GACCCAAGAT 190 GACCCAAGTT 1 GACCCAGCCC 1 GACCCAGGAT 2 GACCCAGGCA 1 GACCCCAAGA 1 GACCCCAAGG 1 GACCCCAGCT 2 GACCCCAGGT 1 GACCCCCACA 1 GACCCCCTCT 1 GACCCCTAAA 2 GACCCCTGTC 2 GACCCCTGTT 1 GACCCGGGAG 3 GACCCGGGAT 1 GACCCGTCAC 1 GACCCTAAAA 1 GACCCTAGAA 1 GACCCTCACC 1 GACCCTCATT 1 GACCCTGACT 3 GACCCTGCCC 22 GACCCTGCTG 1 GACCCTGCTT 1 GACCCTGGGG 1 GACCCTTACA 1 GACCGAGGTG 4 GACCGCAGGA 1 GACCGGCGCG 1 GACCGTGGTC 1 GACCTAATTG 1 GACCTCAAAG 2 GACCTCAAGT 1 GACCTCACTG 4 GACCTCAGAG 1 GACCTCCAAG 1 GACCTCCTGC 5 GACCTCTCGG 1 GACCTCTCTG 1 GACCTGACCC 4 GACCTGACCT 1 GACCTGCACT 1 GACCTGCGGC 2 GACCTGGGAA 1 GACCTGTGCC 1 GACCTTCCAT 1 GACCTTTTCA 1 GACGAAACGA 1 GACGAACTTG 1 GACGAAGCTG 1 GACGACACGA 16 GACGACACGT 1 GACGACTGAC 1 GACGAGCTTT 3 GACGAGGCGC 1 GACGAGGCTC 1 GACGATCCTG 1 GACGCAAGAT 2 GACGCACACG 1 GACGCAGAAG 1 GACGCATCTT 1 GACGCCAATG 1 GACGCCACGA 1 GACGCCAGCG 1 GACGCCGCGC 1 GACGCGCGCG 1 GACGCGGCGC 30 GACGCGGCGG 1 GACGCGTCCC 1 GACGCTGCAG 1 GACGGCGCGG 1 GACGGCTACT 3 GACGGCTGCA 3 GACGGCTTCC 1 GACGGTATCA 1 GACGGTGGCC 1 GACGGTTGCA 1 GACGTCAAGT 1 GACGTCCACG 1 GACGTCTTAA 1 GACGTGGCCG 1 GACGTGGTTA 1 GACGTGTGGG 2 GACTAATTTG 1 GACTACACCA 2 GACTACCTGG 1 GACTAGGGGT 1 GACTAGTGCG 8 GACTAGTGGC 1 GACTATAGCG 1 GACTATATTT 1 GACTATGGGA 1 GACTCAAGAT 2 GACTCAATCT 1 GACTCACTTT 16 GACTCAGGGA 5 GACTCAGTGA 1 GACTCCACAT 1 GACTCCCATT 1 GACTCCCTTT 1 GACTCCTGGT 1 GACTCCTTAT 1 GACTCGCCCA 1 GACTCGCTGA 1 GACTCTCTCA 1 GACTCTCTGT 1 GACTCTGGGA 1 GACTCTTAAA 1 GACTCTTATG 1 GACTGAAACT 1 GACTGAAGTA 1 GACTGAATAA 1 GACTGAATGG 1 GACTGAATGT 2 GACTGAATTT 1 GACTGCACAT 1 GACTGCGCGT 3 GACTGCGTGC 1 GACTGCTCTG 1 GACTGCTGGC 1 GACTGGAACT 1 GACTGGAATT 1 GACTGGGGTG 1 GACTGTACAT 1 GACTGTGAAA 1 GACTGTGCAT 1 GACTGTGCCA 11 GACTGTTAAT 2 GACTGTTGCC 1 GACTGTTGCT 6 GACTTAACCC 1 GACTTAAGGA 1 GACTTACTCC 1 GACTTCATCC 1 GACTTCCATT 1 GACTTCTCAG 1 GACTTCTGAG 1 GACTTGAAAC 1 GACTTGAATG 1 GACTTGCCTG 1 GACTTGGAAT 1 GACTTGGAGC 1 GACTTGGAGG 2 GACTTGGTGA 1 GACTTGTATA 4 GACTTTATTT 1 GACTTTCATT 1 GACTTTGAGT 1 GACTTTGGGA 1 GACTTTGGGG 1 GACTTTGTGG 1 GACTTTTAAA 1 GACTTTTTTG 2 GAGAAAAAAA 2 GAGAAAACCC 1 GAGAAAACCT 6 GAGAAAACTC 1 GAGAAACACC 2 GAGAAACACT 1 GAGAAACCCA 1 GAGAAACCCC 15 GAGAAACCCT 12 GAGAAACCTC 1 GAGAAACCTT 1 GAGAAACTCC 2 GAGAAACTGT 2 GAGAAACTTT 1 GAGAAAGAGG 1 GAGAAAGCCC 1 GAGAAAGTGG 1 GAGAAATAGG 1 GAGAAATATA 1 GAGAAATCAA 1 GAGAAATCAG 1 GAGAAATGGT 1 GAGAACCAAA 1 GAGAACCCCG 1 GAGAACCGTA 8 GAGAACCGTT 1 GAGAACGGGG 13 GAGAACTGTG 1 GAGAAGAAGA 1 GAGAAGACTT 1 GAGAAGAGAG 1 GAGAAGAGCT 1 GAGAAGAGGG 1 GAGAAGCAGA 1 GAGAAGCAGC 2 GAGAAGCCCA 1 GAGAAGCCCC 2 GAGAAGCGGC 1 GAGAAGCTAA 1 GAGAAGCTGG 1 GAGAAGGAGT 1 GAGAAGGGTA 1 GAGAAGTCAG 1 GAGAAGTTGC 1 GAGAATAAGC 1 GAGAATGGTG 1 GAGAATTGAT 1 GAGAATTGCT 6 GAGAATTTAA 1 GAGACAAAAT 2 GAGACAAGAA 1 GAGACACAGA 1 GAGACAGAAC 1 GAGACATATA 1 GAGACCACAG 1 GAGACCAGAC 1 GAGACCCCGG 1 GAGACCCGCA 1 GAGACCTGGA 1 GAGACGGGAT 1 GAGACTAGCT 1 GAGACTAGGA 1 GAGACTATTG 1 GAGACTCCTG 10 GAGACTGCTG 1 GAGACTGTAC 1 GAGACTGTTT 1 GAGACTTACT 2 GAGAGACACG 1 GAGAGACCCT 1 GAGAGACTCC 1 GAGAGATTGA 1 GAGAGCACCC 3 GAGAGCACTG 1 GAGAGCAGGG 1 GAGAGCCTCA 1 GAGAGCCTGC 3 GAGAGCTACA 4 GAGAGCTCCC 5 GAGAGCTGCC 1 GAGAGGAATG 1 GAGAGGACAT 3 GAGAGGAGAT 1 GAGAGGATAT 1 GAGAGGATGG 3 GAGAGGGATG 1 GAGAGGGGAG 1 GAGAGTATGG 1 GAGAGTGCAG 1 GAGAGTGCTC 1 GAGAGTGTTG 1 GAGAGTTGAG 1 GAGATACAGT 1 GAGATACCCT 1 GAGATCATCC 2 GAGATCCACG 2 GAGATCCGCA 2 GAGATCGGAT 1 GAGATCGGGG 1 GAGATGCGTG 1 GAGATGCTTC 1 GAGATGGATG 1 GAGATGGCCT 1 GAGATTCTTC 1 GAGATTGAGG 1 GAGATTTGTT 1 GAGCAAACGG 2 GAGCAAATGT 2 GAGCAAGTGG 1 GAGCAAGTTG 1 GAGCACATCA 1 GAGCACCGTG 7 GAGCACTTGG 2 GAGCAGAGGC 1 GAGCAGGACG 2 GAGCAGGCAA 3 GAGCAGGCAT 1 GAGCAGTAAA 1 GAGCAGTTCC 1 GAGCATACCT 2 GAGCATTTAA 1 GAGCCAAGTG 2 GAGCCACTGG 1 GAGCCAGAGG 1 GAGCCAGCAC 1 GAGCCAGGGT 1 GAGCCATCCG 2 GAGCCCACCT 1 GAGCCCAGCA 1 GAGCCCCACA 1 GAGCCCCAGC 1 GAGCCCCTTG 1 GAGCCCTCAG 1 GAGCCCTGGT 1 GAGCCGAGAT 1 GAGCCGCCTC 5 GAGCCGGGGC 1 GAGCCTGACT 1 GAGCCTGAGA 1 GAGCCTGTAA 1 GAGCCTTAGC 1 GAGCCTTGGG 1 GAGCCTTGGT 10 GAGCCTTTAA 1 GAGCGAAAGG 1 GAGCGCTTCG 1 GAGCGGATCA 1 GAGCGGCCTC 1 GAGCGGCTCT 3 GAGCGGGAAC 1 GAGCGGGATC 5 GAGCGGGATG 9 GAGCGGGTAG 1 GAGCGTCTTA 1 GAGCGTGCCG 1 GAGCTAATAC 1 GAGCTACACC 1 GAGCTAGGGA 1 GAGCTCAACT 1 GAGCTCAGGG 1 GAGCTCCCAA 1 GAGCTCCCAG 1 GAGCTCCTCG 1 GAGCTCGACC 1 GAGCTCGGCC 1 GAGCTCTCCG 1 GAGCTGAAAA 1 GAGCTGAGAG 1 GAGCTGAGTG 1 GAGCTGGAGG 1 GAGCTGGCAT 1 GAGCTGGGCA 1 GAGCTGGTGA 2 GAGCTGGTGC 1 GAGCTGGTTT 2 GAGCTGTTTT 1 GAGCTTAAAG 1 GAGCTTACCC 1 GAGCTTCTGG 1 GAGCTTGTGG 1 GAGCTTGTGT 1 GAGCTTTAAA 1 GAGGAAACCC 1 GAGGAAAGGT 1 GAGGAACAGT 1 GAGGAACCAG 4 GAGGAACGAA 1 GAGGAAGAAC 1 GAGGAAGAAG 12 GAGGAAGGCT 2 GAGGAATATG 2 GAGGAATTCG 1 GAGGACACAG 1 GAGGACCCAA 1 GAGGACCTTT 1 GAGGACGAAG 1 GAGGAGAAAG 1 GAGGAGACCC 2 GAGGAGAGGG 1 GAGGAGAGTC 1 GAGGAGCCCC 1 GAGGAGCTGG 1 GAGGAGGAGG 1 GAGGAGGGAG 1 GAGGAGGGTG 5 GAGGAGGTGG 1 GAGGAGTCTA 1 GAGGAGTGGC 1 GAGGAGTGTT 1 GAGGATAGGC 1 GAGGATATGG 1 GAGGATCACT 1 GAGGATGGTG 4 GAGGATTCAA 1 GAGGATTTGG 2 GAGGCAAGTG 1 GAGGCAATCC 1 GAGGCAGAAG 1 GAGGCAGCCA 1 GAGGCAGGGT 1 GAGGCCAACA 4 GAGGCCAATA 1 GAGGCCAATG 1 GAGGCCAGAA 1 GAGGCCAGTG 5 GAGGCCATAG 3 GAGGCCATCA 1 GAGGCCATCC 2 GAGGCCATTG 3 GAGGCCCAGC 1 GAGGCCCCCG 4 GAGGCCCTCT 1 GAGGCCGAGA 1 GAGGCCGAGG 1 GAGGCCGCCC 1 GAGGCCGCTG 3 GAGGCCGGGC 1 GAGGCCTACG 1 GAGGCCTACT 1 GAGGCCTCAA 1 GAGGCCTCAG 3 GAGGCCTGGA 1 GAGGCCTGTG 2 GAGGCCTTTA 1 GAGGCGAGGC 1 GAGGCGCTGG 3 GAGGCGGGCG 1 GAGGCTCACA 1 GAGGCTCCTG 1 GAGGCTGAGC 1 GAGGCTGAGG 1 GAGGCTTAAT 2 GAGGCTTGAT 1 GAGGCTTGTC 1 GAGGCTTTTG 1 GAGGGAAAAG 1 GAGGGAAACA 1 GAGGGAAGAC 1 GAGGGAATCA 1 GAGGGAATCT 1 GAGGGAATTA 1 GAGGGACCCA 1 GAGGGACTGC 1 GAGGGACTTG 2 GAGGGAGGAT 2 GAGGGAGGCA 1 GAGGGAGTTT 18 GAGGGATGTG 1 GAGGGCAGTG 1 GAGGGCCAGG 1 GAGGGCCGGT 15 GAGGGCCTTC 3 GAGGGCCTTG 2 GAGGGCGGTG 1 GAGGGCTCAG 1 GAGGGGAAAC 3 GAGGGGAGGA 1 GAGGGGATGT 2 GAGGGGCAAG 2 GAGGGGCACT 1 GAGGGGCGGG 1 GAGGGGCTAT 1 GAGGGGGCAG 1 GAGGGGGCGC 1 GAGGGGGCGG 1 GAGGGTGGCG 3 GAGGGTTCCC 1 GAGGGTTGCG 1 GAGGGTTTAG 3 GAGGGTTTTA 5 GAGGTATTAG 1 GAGGTCCCCT 1 GAGGTCCCTC 1 GAGGTCCCTG 1 GAGGTCCTTC 5 GAGGTGAAGG 1 GAGGTGAGCA 1 GAGGTGCCAG 1 GAGGTGCCGG 1 GAGGTGCTCT 1 GAGGTGGAGG 1 GAGGTGGGCA 1 GAGGTGGGCC 1 GAGGTGGGTG 1 GAGGTGGTCA 1 GAGGTGGTGC 1 GAGGTTGCAG 1 GAGGTTTGTG 1 GAGTAGAGAA 1 GAGTAGAGGC 6 GAGTAGATGA 1 GAGTCACAGA 1 GAGTCACTGC 1 GAGTCAGCAT 1 GAGTCAGGAC 1 GAGTCAGGAG 2 GAGTCATTAG 1 GAGTCCAAAT 1 GAGTCCCAGC 1 GAGTCCCTGG 3 GAGTCCTCTT 1 GAGTCCTGCA 1 GAGTCCTGTG 1 GAGTCGATTC 2 GAGTCGGAAG 1 GAGTCTACGT 1 GAGTCTCCCT 3 GAGTCTGAGG 3 GAGTCTGCTT 1 GAGTCTGTTC 1 GAGTCTTCGG 1 GAGTGAAAGA 1 GAGTGAACAA 1 GAGTGACTAA 1 GAGTGAGTGA 2 GAGTGATTAC 1 GAGTGCAGGG 1 GAGTGCAGGT 2 GAGTGCCTCG 1 GAGTGCTGAT 1 GAGTGGACAT 1 GAGTGGAGAG 4 GAGTGGAGGG 1 GAGTGGCTAT 5 GAGTGGGGGG 1 GAGTGGGTGA 1 GAGTGGGTGG 1 GAGTGGGTTA 1 GAGTGTACAG 1 GAGTGTCCCT 1 GAGTTAGCCA 1 GAGTTAGGCA 1 GAGTTCAAAG 1 GAGTTCATTT 1 GAGTTCCAGC 1 GAGTTCCCCT 1 GAGTTCGACC 7 GAGTTGAAAG 1 GAGTTGAACT 1 GAGTTGAGCG 1 GAGTTGCTTT 1 GAGTTGGCAC 1 GAGTTGGCAG 3 GAGTTGGGAA 1 GAGTTGGGGT 1 GAGTTGGGTA 3 GAGTTGTGTG 1 GAGTTTAAAA 1 GAGTTTGGTA 1 GAGTTTGTCC 1 GAGTTTTGTG 1 GAGTTTTTCT 1 GATAAAATGA 1 GATAAATCTC 1 GATAACAACA 1 GATAAGTGTA 2 GATAATTATT 1 GATACACTGG 2 GATACTAGTG 1 GATACTGTGT 1 GATACTTTGC 1 GATAGAGGGA 2 GATAGATCAA 1 GATAGCACAC 1 GATAGGAGAC 1 GATAGGCAGT 1 GATAGGCTGA 1 GATAGGGTTG 3 GATAGGTCGG 1 GATAGTGTAG 1 GATATAAGCT 1 GATATGTAAA 1 GATATGTACC 1 GATATGTTAT 2 GATATTTGTA 1 GATCAAATGA 1 GATCAAGAGC 2 GATCAAGGAG 1 GATCAAGTTC 1 GATCACAAAT 1 GATCACAAGA 1 GATCACATAA 1 GATCACCCCA 1 GATCAGAAAA 2 GATCAGAATA 1 GATCAGCAAG 1 GATCATTCCT 1 GATCCAACCA 1 GATCCAGATG 1 GATCCAGTTG 2 GATCCCAACA 12 GATCCCAACT 9 GATCCCATTT 1 GATCCCTGTG 1 GATCCGAGCC 1 GATCCGCTCT 2 GATCCGCTGT 1 GATCCTACTA 1 GATCCTATTA 7 GATCCTCTGT 1 GATCCTGATG 1 GATCCTGGTA 1 GATCCTGGTG 1 GATCCTGTGG 2 GATCCTGTGT 1 GATCCTTGGT 2 GATCGCTTGT 1 GATCGTATGT 1 GATCTAAAGA 1 GATCTAATGT 1 GATCTATCCA 4 GATCTATTGT 1 GATCTCACTG 1 GATCTCAGCT 8 GATCTCAGTT 1 GATCTCATCT 2 GATCTCGCAA 1 GATCTCTGAA 1 GATCTCTTGG 1 GATCTGATTG 1 GATCTGCCTG 1 GATCTGTTCC 2 GATCTTAGAG 1 GATCTTCGTA 8 GATCTTGTAT 1 GATGAAAATG 1 GATGAAAGAC 1 GATGAAATTG 4 GATGAACCTG 1 GATGAACCTT 2 GATGAACTGA 1 GATGAAGCTG 1 GATGAATCCG 12 GATGAATGAA 1 GATGAATGAG 1 GATGAATGGA 1 GATGACAAGG 1 GATGACAGGT 1 GATGACCCCC 42 GATGACCCCG 1 GATGACCCCT 1 GATGACCCTG 1 GATGACCTTC 1 GATGACTTGC 1 GATGAGAATG 1 GATGAGCGGC 1 GATGAGCTTG 1 GATGAGGTGG 1 GATGAGTAAG 1 GATGAGTGGA 2 GATGAGTTTG 1 GATGATCCCT 1 GATGATGGAG 1 GATGATGGCG 1 GATGATTAAT 1 GATGCAACAG 1 GATGCAAGTT 1 GATGCAGCAG 1 GATGCATATA 1 GATGCATTAG 1 GATGCCATCT 1 GATGCCCCCT 1 GATGCCCTCC 2 GATGCCTCTG 4 GATGCCTTGG 1 GATGCCTTTT 1 GATGCGAGGA 1 GATGCGCAGG 1 GATGCGCTTG 1 GATGCGGTGA 1 GATGCTAGGA 1 GATGCTCCTA 1 GATGCTCCTG 1 GATGCTGCCA 5 GATGCTGCTT 2 GATGCTGGCT 1 GATGCTGTGG 1 GATGCTTAGA 1 GATGCTTTCG 1 GATGCTTTCT 3 GATGGAATGT 3 GATGGAGATA 1 GATGGAGCTG 2 GATGGCAGGG 1 GATGGCCCAT 1 GATGGCCTCC 1 GATGGCTGCC 3 GATGGCTTTT 2 GATGGGCTGC 7 GATGGGCTGG 1 GATGGGGATG 3 GATGGGGCTG 6 GATGGGGTTC 1 GATGGGTACA 1 GATGGGTCCT 1 GATGGGTCTC 1 GATGGGTTGA 2 GATGGTCAGT 3 GATGGTGTGA 1 GATGTCCTGT 1 GATGTCTATA 1 GATGTCTCTA 4 GATGTCTTCC 1 GATGTGCTGG 4 GATGTGGAGA 1 GATGTGGGGT 1 GATGTGGTCA 1 GATGTGGTCT 2 GATGTTACTG 1 GATGTTAGTA 2 GATGTTGTCC 1 GATGTTTGAG 1 GATTAAACCT 1 GATTAACACC 1 GATTAAGAGA 1 GATTAAGTGA 1 GATTAATAGA 1 GATTACCGCA 1 GATTACCTTC 1 GATTACTTGC 2 GATTACTTTC 2 GATTAGAATA 1 GATTAGAGGT 1 GATTATTCCA 1 GATTCAACAA 1 GATTCAAGTC 1 GATTCACTCC 1 GATTCACTTC 1 GATTCATCCT 1 GATTCATCTC 1 GATTCCACTG 1 GATTCCAGCT 1 GATTCCGACT 2 GATTCCTTGA 1 GATTCTAATG 1 GATTCTAATT 1 GATTCTAGCC 1 GATTCTCAAT 1 GATTGAAATA 1 GATTGAACCT 2 GATTGAAGAG 1 GATTGAATTG 1 GATTGACCTT 1 GATTGAGAGG 1 GATTGATCCG 1 GATTGATGTC 3 GATTGGAAAA 1 GATTGGAAGA 4 GATTGGAATG 4 GATTGGACTT 1 GATTGGGATG 1 GATTGGGGAT 2 GATTGTAAGG 3 GATTGTGAGC 1 GATTGTGCAA 1 GATTTAATCC 1 GATTTACCTA 1 GATTTCAAGG 2 GATTTCAGCT 1 GATTTCTATT 1 GATTTGAAAA 1 GATTTGAAAT 2 GATTTGAGAA 1 GATTTGGCAA 1 GATTTGGTCT 1 GATTTTAAAT 2 GATTTTAATG 1 GATTTTGTGT 1 GATTTTTAAA 1 GATTTTTCAT 1 GATTTTTCTG 1 GATTTTTGTA 1 GCAAAAAAAA 13 GCAAAAAAAT 5 GCAAAAAACC 1 GCAAAAACCC 2 GCAAAAACCG 1 GCAAAAACCT 1 GCAAAAATGC 1 GCAAAACACT 1 GCAAAACCAG 1 GCAAAACCCC 50 GCAAAACCCG 2 GCAAAACCCT 31 GCAAAACCTC 3 GCAAAACGTC 2 GCAAAACTCA 1 GCAAAACTCC 4 GCAAAACTCT 4 GCAAAACTTT 1 GCAAAAGAAA 1 GCAAAAGGTA 1 GCAAAATAAA 1 GCAAAATAAC 1 GCAAAATCCC 3 GCAAAATCCT 1 GCAAAATGCC 1 GCAAAATGCT 1 GCAAAATTAA 1 GCAAAATTCT 1 GCAAACAAGC 1 GCAAACAATC 1 GCAAACACCA 1 GCAAACACTT 1 GCAAACAGAA 1 GCAAACAGCA 1 GCAAACCCCC 1 GCAAACCCTG 1 GCAAAGATTG 1 GCAAAGCCAG 1 GCAAAGCCCC 4 GCAAAGCCTT 2 GCAAAGGACT 1 GCAAAGGCCG 1 GCAAATAAAC 1 GCAAATCCAA 2 GCAAATCCTG 1 GCAAATCCTT 1 GCAAATCTGA 2 GCAAATCTTT 1 GCAAATGAGA 1 GCAAATGTAC 1 GCAAATTCAA 1 GCAAATTTTT 1 GCAACAAAAA 1 GCAACAACAC 3 GCAACAACCA 1 GCAACACCCC 1 GCAACACCCT 1 GCAACACCGG 1 GCAACAGAGC 1 GCAACAGCAA 3 GCAACAGGTA 1 GCAACCAAGA 1 GCAACCACGA 2 GCAACCTCCG 1 GCAACCTCTG 1 GCAACGGGCC 3 GCAACGTAGC 1 GCAACTAAAA 1 GCAACTCCTG 1 GCAACTGATT 1 GCAACTTAAA 1 GCAACTTAGA 7 GCAACTTCCA 1 GCAACTTGAA 1 GCAACTTGGA 1 GCAAGAAAGT 48 GCAAGACCCA 1 GCAAGACCCC 4 GCAAGACCCT 1 GCAAGACCTC 2 GCAAGACGTC 1 GCAAGACTCC 1 GCAAGACTCT 2 GCAAGATAGT 1 GCAAGATCCC 2 GCAAGATGTC 1 GCAAGCCAAC 29 GCAAGCCACG 1 GCAAGCTTGG 1 GCAAGGAAGT 1 GCAAGGAGCA 1 GCAAGGAGTT 2 GCAAGGATGG 1 GCAAGGCAGA 2 GCAAGGCATA 1 GCAAGGCCTC 2 GCAAGGCTGG 1 GCAAGGGCCG 1 GCAAGGGCTA 2 GCAAGGGCTG 2 GCAAGGTCAG 1 GCAAGGTGGG 1 GCAAGGTTGC 4 GCAAGTATAT 1 GCAAGTCAAA 1 GCAAGTCAGA 2 GCAAGTCCAC 1 GCAAGTGGGG 2 GCAAGTGTAC 1 GCAATACCCC 2 GCAATATTAG 1 GCAATCAACG 7 GCAATCCACA 1 GCAATCCAGC 1 GCAATGCAAA 1 GCAATGCGCT 1 GCAATGGAAA 1 GCAATGGTGA 1 GCAATTAAAG 1 GCAATTCATA 1 GCAATTCATT 1 GCAATTGGCA 1 GCAATTGTGA 1 GCAATTTAAC 2 GCAATTTCTG 1 GCACAAAATA 1 GCACAACCCG 1 GCACAAGAAC 1 GCACAAGAAG 2 GCACACAGCA 1 GCACACATAG 1 GCACACCGCA 1 GCACACGACA 1 GCACACTAGC 1 GCACAGAGCT 2 GCACAGATGA 1 GCACAGATTA 2 GCACAGCAAA 1 GCACAGCCGC 1 GCACAGGGCC 1 GCACAGGTCA 5 GCACAGGTCT 1 GCACAGTCAC 1 GCACAGTGAG 4 GCACAGTGAT 1 GCACAGTGGC 1 GCACATACAA 1 GCACATAGCA 1 GCACATATAT 1 GCACATTAAA 1 GCACATTTTA 1 GCACCAAAGC 1 GCACCAAGAA 1 GCACCACACA 1 GCACCACCGC 1 GCACCACTGT 1 GCACCAGGAG 1 GCACCATCCC 1 GCACCCAACA 1 GCACCCAGAC 1 GCACCCAGAT 1 GCACCCCAGC 1 GCACCCCTGG 1 GCACCCGCAC 1 GCACCCGCCT 8 GCACCCGGCC 1 GCACCCGGGA 1 GCACCCTCCT 1 GCACCCTGCA 1 GCACCCTTTC 13 GCACCGCCGG 8 GCACCGTAAG 1 GCACCGTCAA 2 GCACCTAATT 1 GCACCTAGTG 1 GCACCTATAG 1 GCACCTATTG 1 GCACCTCAAC 1 GCACCTCACA 1 GCACCTCAGC 3 GCACCTGACC 1 GCACCTGGGA 1 GCACCTGTCG 2 GCACCTTCTG 1 GCACCTTGGA 1 GCACGAGCAG 1 GCACGCCCAA 1 GCACGCCCCC 1 GCACGCCCCG 1 GCACGGAACT 1 GCACGTGAGC 1 GCACGTGCCT 2 GCACGTGCTC 1 GCACGTGTAT 1 GCACGTGTGG 1 GCACGTGTTC 1 GCACGTTTGA 1 GCACTACAAA 1 GCACTACTCA 1 GCACTACTCT 1 GCACTAGATG 1 GCACTAGGTC 1 GCACTATGCG 1 GCACTATGTT 1 GCACTCACAG 1 GCACTCCAGC 3 GCACTCCCCT 2 GCACTCTACC 1 GCACTCTCAG 1 GCACTCTCTC 2 GCACTCTGAT 1 GCACTGAAAA 1 GCACTGAATA 3 GCACTGCACT 1 GCACTGCCAT 2 GCACTGGATT 1 GCACTGGCTG 1 GCACTGGTGG 1 GCACTGTACT 1 GCACTTACAA 2 GCACTTATAC 1 GCACTTCAGC 1 GCACTTGCAT 2 GCACTTGGAA 2 GCACTTGGAC 1 GCACTTTCAT 2 GCACTTTTGT 1 GCAGAAACCC 1 GCAGAAAGGG 1 GCAGAAAGTG 2 GCAGAACCCA 1 GCAGAACCCC 2 GCAGAAGAAA 1 GCAGAAGAGG 1 GCAGAAGATG 1 GCAGAAGCAC 1 GCAGAAGGCA 1 GCAGAAGTTC 2 GCAGAAGTTG 1 GCAGAATCCT 1 GCAGAATGCC 1 GCAGACCAGG 1 GCAGACCCAC 3 GCAGACTCAG 2 GCAGACTTTG 1 GCAGAGAAAA 1 GCAGAGAGAG 1 GCAGAGATGG 1 GCAGAGCCCC 1 GCAGAGCGCT 2 GCAGAGTAAG 1 GCAGATAATG 1 GCAGATCAGG 1 GCAGATCGGG 1 GCAGATGCCT 1 GCAGCAACAA 1 GCAGCACACA 1 GCAGCACGCT 1 GCAGCACGTG 1 GCAGCACTCA 1 GCAGCAGGCA 1 GCAGCATCAG 1 GCAGCCAGCC 1 GCAGCCATCC 33 GCAGCCATCT 3 GCAGCCATTT 1 GCAGCCCATA 1 GCAGCCCCTC 1 GCAGCCCGAG 1 GCAGCCCGCG 2 GCAGCCCTAC 1 GCAGCCCTTG 1 GCAGCCGGAT 1 GCAGCCTGCA 2 GCAGCCTGGA 1 GCAGCGCTTG 1 GCAGCGGCGG 1 GCAGCGGGCA 2 GCAGCGTGCA 1 GCAGCGTGGC 1 GCAGCGTTCA 1 GCAGCTAATT 1 GCAGCTATGT 1 GCAGCTCACA 1 GCAGCTCAGG 6 GCAGCTCCTA 1 GCAGCTCCTG 13 GCAGCTGATG 1 GCAGCTGCAT 1 GCAGCTGCCC 1 GCAGCTGGAA 1 GCAGCTTAGC 1 GCAGCTTGGC 1 GCAGCTTTTA 1 GCAGGAACAG 1 GCAGGAAGTG 2 GCAGGAATTG 2 GCAGGACCTC 1 GCAGGACTGG 1 GCAGGAGAAG 1 GCAGGAGAGG 2 GCAGGAGCCC 1 GCAGGAGCTC 1 GCAGGAGGAA 2 GCAGGAGGTA 1 GCAGGAGGTG 2 GCAGGATCCA 1 GCAGGATCGG 2 GCAGGCACCT 2 GCAGGCAGCT 1 GCAGGCATTT 1 GCAGGCCCCT 1 GCAGGCCTCA 2 GCAGGCCTGC 6 GCAGGCCTTC 1 GCAGGCGGAT 1 GCAGGCGTGG 1 GCAGGCTGAA 1 GCAGGGAACA 1 GCAGGGAATG 1 GCAGGGACAA 1 GCAGGGAGGT 1 GCAGGGAGTA 1 GCAGGGCCTC 128 GCAGGGCCTG 1 GCAGGGCCTT 2 GCAGGGCTCA 1 GCAGGGGAGA 1 GCAGGGGAGG 1 GCAGGGGCCC 1 GCAGGGGCTC 1 GCAGGGGTTA 1 GCAGGGTGGG 4 GCAGGTCAAG 1 GCAGGTCAGC 1 GCAGGTGATT 2 GCAGGTGCAC 1 GCAGGTGGTT 3 GCAGGTGTAA 1 GCAGGTTCTC 1 GCAGGTTGTG 4 GCAGTAAACG 1 GCAGTACCTG 1 GCAGTATAAT 1 GCAGTATAGT 1 GCAGTCATAA 1 GCAGTCATAC 1 GCAGTCGCCT 1 GCAGTCGCTT 5 GCAGTCTGGA 1 GCAGTGACTC 1 GCAGTGACTT 1 GCAGTGATAA 1 GCAGTGCACG 1 GCAGTGCGTG 1 GCAGTGGCCT 11 GCAGTGTGGG 1 GCAGTGTGTG 1 GCAGTTACAT 1 GCAGTTACTC 1 GCAGTTCAAG 1 GCATAAACAT 1 GCATAACAAC 1 GCATAAGACT 1 GCATAAGCCA 1 GCATAAGTAA 1 GCATAATAGG 11 GCATACAGAC 2 GCATAGGCTG 8 GCATAGTTCT 3 GCATAGTTGG 1 GCATATACAA 1 GCATATATTT 1 GCATATGCCT 1 GCATATGCTT 1 GCATCAAATC 1 GCATCAAGTT 1 GCATCAATTG 1 GCATCACCAG 1 GCATCAGCTG 1 GCATCAGGTA 1 GCATCAGGTC 2 GCATCAGTGG 1 GCATCATCCT 1 GCATCCACCT 1 GCATCCCAGA 1 GCATCCCCCT 1 GCATCCCTCC 1 GCATCCGGAG 1 GCATCCTATC 1 GCATCCTTCT 1 GCATCGGCCG 1 GCATCTATCA 1 GCATCTCTCC 1 GCATCTTCAA 1 GCATCTTCTG 1 GCATTAATAG 1 GCATTAGAAT 1 GCATTAGATG 1 GCATTAGCCA 2 GCATTATCTG 1 GCATTATTCA 1 GCATTCCATT 1 GCATTCCTCC 1 GCATTCCTCT 1 GCATTCTACA 1 GCATTGAGTG 2 GCATTGCACT 1 GCATTGGGTC 1 GCATTGTGGT 1 GCATTGTTGG 1 GCATTTAAAT 1 GCATTTACCA 2 GCATTTATTG 1 GCATTTCAGG 2 GCATTTGACA 2 GCATTTGGTA 1 GCATTTTAAA 1 GCATTTTCAC 1 GCATTTTCAG 1 GCCAAAAAAA 1 GCCAAAAGCA 1 GCCAAACCCC 1 GCCAAAGAGA 1 GCCAAAGTGT 1 GCCAAATCCA 1 GCCAAATCCC 1 GCCAACACTG 1 GCCAACATCG 1 GCCAACCTCA 2 GCCAACCTCC 20 GCCAACCTGC 3 GCCAACGTGG 2 GCCAAGAAAT 1 GCCAAGAAGT 1 GCCAAGACAC 2 GCCAAGACGA 1 GCCAAGATGC 7 GCCAAGCAAA 1 GCCAAGCCCC 1 GCCAAGGAAA 1 GCCAAGGAAC 1 GCCAAGGAGT 3 GCCAAGGCAG 1 GCCAAGGCTG 1 GCCAAGGGCC 1 GCCAAGGGGC 13 GCCAAGGTTA 1 GCCAAGTGAA 2 GCCAAGTGGG 2 GCCAAGTGTG 1 GCCAAGTTGG 1 GCCAAGTTTG 4 GCCAATAGTT 1 GCCAATCTAG 1 GCCAATGTGG 1 GCCACAACAG 1 GCCACAATAT 1 GCCACACACA 1 GCCACACCCC 1 GCCACACTGG 1 GCCACAGCAG 1 GCCACAGCCA 5 GCCACAGTCC 1 GCCACAGTGG 1 GCCACATACT 3 GCCACCAAAG 1 GCCACCAAGT 1 GCCACCAATG 1 GCCACCACGT 1 GCCACCAGAC 2 GCCACCAGGA 1 GCCACCATAG 1 GCCACCCCTT 1 GCCACCGTCC 2 GCCACCGTCG 1 GCCACCGTGT 1 GCCACGACTG 1 GCCACGGACC 2 GCCACGTGGA 19 GCCACGTGGG 1 GCCACGTTGT 1 GCCACTACCC 1 GCCACTCTTG 5 GCCAGAAAGC 1 GCCAGAACTT 1 GCCAGAAGAC 1 GCCAGACACC 19 GCCAGACCCC 2 GCCAGACTCA 1 GCCAGAGGCT 1 GCCAGATCAG 1 GCCAGATTGA 2 GCCAGCAAGA 1 GCCAGCAAGC 1 GCCAGCCAAG 1 GCCAGCCCAG 5 GCCAGCCCTG 1 GCCAGCCCTT 1 GCCAGCCGCC 1 GCCAGCGTCA 2 GCCAGCTCTG 1 GCCAGCTGAC 1 GCCAGCTTCT 1 GCCAGCTTGC 1 GCCAGGAAGC 1 GCCAGGAGCT 19 GCCAGGCACT 1 GCCAGGCCTG 1 GCCAGGCGCA 1 GCCAGGCGTG 1 GCCAGGCTGG 1 GCCAGGGCCA 3 GCCAGGGCGC 3 GCCAGGGCGG 5 GCCAGGGCTC 2 GCCAGGGGGT 1 GCCAGGTCAC 3 GCCAGGTCTC 2 GCCAGGTGGA 2 GCCAGGTGGT 1 GCCAGGTTAC 2 GCCAGGTTGA 1 GCCAGGTTGC 14 GCCAGTCAAA 1 GCCAGTCTGT 2 GCCAGTGATT 1 GCCATAGTCG 1 GCCATATATA 1 GCCATCAAGT 1 GCCATCACCA 1 GCCATCATAG 1 GCCATCATCC 1 GCCATCATCT 1 GCCATCCCCT 27 GCCATCCCTT 1 GCCATCCTCC 9 GCCATCGTCC 1 GCCATCTCAT 1 GCCATCTGCA 1 GCCATCTTCC 1 GCCATCTTGA 1 GCCATCTTTG 1 GCCATTATTA 1 GCCATTATTT 1 GCCATTCATT 1 GCCATTGGCC 1 GCCCAAAAGA 1 GCCCAAAATA 1 GCCCAAAGAC 1 GCCCAAAGCC 1 GCCCAAATGA 1 GCCCAACCCC 1 GCCCAAGATA 1 GCCCAAGGTC 1 GCCCAAGGTT 1 GCCCAAGTAC 1 GCCCAAGTCA 1 GCCCACAAGT 7 GCCCACACAG 15 GCCCACACCC 1 GCCCACAGTA 1 GCCCACAGTC 1 GCCCACATAC 1 GCCCACATTA 1 GCCCACCCGT 1 GCCCACGACA 1 GCCCACGTCA 7 GCCCACTGCA 1 GCCCACTTCA 1 GCCCAGATCA 1 GCCCAGCAAG 1 GCCCAGCAGG 1 GCCCAGCCCT 1 GCCCAGCGGC 20 GCCCAGCTCA 7 GCCCAGCTCT 1 GCCCAGCTGG 11 GCCCAGGACA 1 GCCCAGGAGA 1 GCCCAGGCCA 1 GCCCAGGCCC 1 GCCCAGGCTC 1 GCCCAGGGAA 1 GCCCAGGGAC 3 GCCCAGGGCC 4 GCCCAGGTCA 519 GCCCAGGTCC 5 GCCCAGGTCG 2 GCCCAGGTTA 3 GCCCAGTGGC 51 GCCCAGTGGT 1 GCCCATCACT 1 GCCCATCAGG 4 GCCCATCGTC 2 GCCCATTGCT 1 GCCCATTGGA 12 GCCCCAACCT 1 GCCCCAAGAT 1 GCCCCACAGC 4 GCCCCACTCA 2 GCCCCACTTC 1 GCCCCAGAGA 1 GCCCCAGCAG 1 GCCCCAGCCA 1 GCCCCAGCGA 4 GCCCCAGCTC 1 GCCCCAGGTA 2 GCCCCAGGTC 2 GCCCCATCCC 2 GCCCCATTCT 1 GCCCCATTTT 6 GCCCCCAAAG 1 GCCCCCAACC 6 GCCCCCAATA 2 GCCCCCCACT 4 GCCCCCCCGG 1 GCCCCCCCGT 1 GCCCCCCTGC 6 GCCCCCTCAT 5 GCCCCCTCTG 1 GCCCCCTGGA 1 GCCCCCTGTA 1 GCCCCCTTAG 1 GCCCCGAGCC 5 GCCCCGCAAT 1 GCCCCGCCCT 2 GCCCCGCCGC 1 GCCCCGGAAA 3 GCCCCGGAGC 1 GCCCCTCAGC 4 GCCCCTCCCA 1 GCCCCTCCGG 6 GCCCCTCTCC 1 GCCCCTGCCT 7 GCCCCTGCGC 3 GCCCCTGCGG 2 GCCCCTGGAA 1 GCCCCTGTGC 1 GCCCCTTAAG 1 GCCCCTTTGT 3 GCCCGAGATG 1 GCCCGAGGGC 1 GCCCGAGTGG 1 GCCCGATACG 1 GCCCGCAGGG 8 GCCCGCAGGT 5 GCCCGCCTTG 5 GCCCGCGGGG 1 GCCCGCTGGG 1 GCCCGGAAGG 1 GCCCGGCCTT 1 GCCCGGCGCG 1 GCCCGGGGCC 1 GCCCGGGTCA 1 GCCCGGTCAT 1 GCCCGGTGGT 1 GCCCGGTTTC 1 GCCCGGTTTT 1 GCCCGTAAAA 2 GCCCGTGAGC 1 GCCCGTGCCA 2 GCCCGTGGCC 1 GCCCGTGTAT 1 GCCCGTTGCT 1 GCCCTCAATG 1 GCCCTCACAG 3 GCCCTCGGAG 2 GCCCTCGGCC 1 GCCCTCTCTT 1 GCCCTGACCA 5 GCCCTGACCT 1 GCCCTGAGCG 10 GCCCTGATCA 1 GCCCTGCCCA 1 GCCCTGCTCC 1 GCCCTGGTCA 1 GCCCTGGTGA 1 GCCCTGTAAT 1 GCCCTGTACC 1 GCCCTGTGCA 1 GCCCTTCAAA 1 GCCCTTCAGC 1 GCCCTTCCTG 2 GCCCTTGGCC 1 GCCCTTTCTG 1 GCCCTTTGTG 1 GCCCTTTTCT 1 GCCGAAGACC 1 GCCGAAGAGT 1 GCCGAATCAG 1 GCCGACAAGG 1 GCCGACAGCG 1 GCCGACAGTG 1 GCCGACATTA 1 GCCGACCAGG 46 GCCGACGCCA 2 GCCGAGACCA 12 GCCGAGCAGA 1 GCCGAGCCAG 1 GCCGAGCCGC 6 GCCGAGCTCC 1 GCCGAGCTGG 6 GCCGAGGAAG 25 GCCGAGGCGT 1 GCCGAGGGGC 1 GCCGAGTACT 1 GCCGAGTGGG 1 GCCGATCCGA 1 GCCGATCCTC 3 GCCGATCTGA 1 GCCGATTAAT 1 GCCGCAAGGG 1 GCCGCAGCCT 1 GCCGCCATCA 7 GCCGCCATCT 4 GCCGCCCTGC 34 GCCGCCGACG 1 GCCGCCGCCG 1 GCCGCCGCGC 1 GCCGCCGGTC 1 GCCGCCGTCC 1 GCCGCCTGCA 1 GCCGCGCTCT 1 GCCGCGTCCG 1 GCCGCTGCAA 1 GCCGCTGCCA 3 GCCGCTTGGT 1 GCCGGACACC 1 GCCGGAGGGC 6 GCCGGCCAGG 1 GCCGGCCCGG 1 GCCGGCCGCG 1 GCCGGCCTCT 1 GCCGGCGCTC 11 GCCGGCTCGG 1 GCCGGCTGGG 1 GCCGGGAGCC 2 GCCGGGAGGG 1 GCCGGGCACA 1 GCCGGGCACG 1 GCCGGGCCCC 1 GCCGGGCCTC 1 GCCGGGCGCG 4 GCCGGGCGGG 1 GCCGGGCGTG 1 GCCGGGTACT 1 GCCGGGTGCA 1 GCCGGGTGGA 1 GCCGGGTGGC 4 GCCGGGTGGG 207 GCCGGGTGTG 1 GCCGGGTTCC 2 GCCGGGTTGG 2 GCCGTCCCCT 1 GCCGTCGGAG 5 GCCGTCTTTG 1 GCCGTGGAGA 32 GCCGTGTCCA 1 GCCGTGTCCG 43 GCCGTGTCCT 1 GCCGTGTCTC 1 GCCGTGTGGG 1 GCCGTTCTTA 2 GCCGTTGGCA 1 GCCTAAAGGA 1 GCCTAAGTCA 1 GCCTACAAAT 1 GCCTACCCGA 1 GCCTACGCCT 1 GCCTAGAAAA 1 GCCTAGATAG 4 GCCTAGCCAT 1 GCCTAGGTCA 3 GCCTATATAG 1 GCCTATCATC 1 GCCTATGGTC 2 GCCTATTATA 1 GCCTCAACCC 1 GCCTCACGCA 1 GCCTCAGAGT 3 GCCTCAGTTC 2 GCCTCATCAT 1 GCCTCCAAAA 2 GCCTCCAGAT 1 GCCTCCAGCT 1 GCCTCCAGGG 1 GCCTCCCAAA 2 GCCTCCCAGG 17 GCCTCCCGAG 2 GCCTCCTAAT 1 GCCTCCTAGA 1 GCCTCCTCCC 11 GCCTCCTGAG 6 GCCTCCTGCC 1 GCCTCCTGGT 1 GCCTCCTGTC 1 GCCTCCTGTG 3 GCCTCCTTTG 3 GCCTCGAAAC 1 GCCTCGGATG 1 GCCTCGGCGC 1 GCCTCTATTT 1 GCCTCTCCGA 1 GCCTCTCTAC 1 GCCTCTGATG 1 GCCTCTGGAT 1 GCCTCTGGCA 1 GCCTCTGTCT 4 GCCTCTTCCC 1 GCCTGAAGGA 1 GCCTGAATCC 1 GCCTGACACC 1 GCCTGAGAAT 1 GCCTGATTTT 4 GCCTGCACCG 1 GCCTGCAGGG 3 GCCTGCAGTC 31 GCCTGCAGTT 1 GCCTGCCTCC 1 GCCTGCGAGG 2 GCCTGCTCCC 2 GCCTGCTCCT 1 GCCTGCTGGC 1 GCCTGCTGGG 3 GCCTGCTGTG 1 GCCTGCTTCT 1 GCCTGGAGGG 3 GCCTGGCAAG 1 GCCTGGCATC 1 GCCTGGCCAA 1 GCCTGGCCAT 26 GCCTGGCCCC 1 GCCTGGGACC 2 GCCTGGGACT 12 GCCTGGGCGA 2 GCCTGGGCTG 5 GCCTGGGTGT 1 GCCTGGTCCT 12 GCCTGGTGAC 1 GCCTGGTGTG 1 GCCTGTACAA 1 GCCTGTATGA 7 GCCTGTCACG 1 GCCTGTCTGC 1 GCCTGTGAGC 1 GCCTGTGCGA 1 GCCTGTGGGT 1 GCCTGTTTGG 1 GCCTTAAAAA 1 GCCTTAAGTA 1 GCCTTCACGC 1 GCCTTCCAAT 13 GCCTTCCACA 1 GCCTTCTGCC 1 GCCTTCTGCT 1 GCCTTCTGGG 1 GCCTTGAACG 1 GCCTTGATCT 3 GCCTTGCACC 5 GCCTTGGAAC 1 GCCTTGGACA 1 GCCTTGGATG 1 GCCTTGGCAG 1 GCCTTGGCCC 1 GCCTTGGGGG 1 GCCTTGGGTG 1 GCCTTGGTAA 3 GCCTTGTCCA 1 GCCTTGTGGC 1 GCCTTTACCT 1 GCCTTTCATA 1 GCCTTTCCCT 1 GCCTTTCCTC 1 GCCTTTCTAA 2 GCCTTTGCTT 1 GCGAAAAAAA 1 GCGAAAACCC 2 GCGAAAACCT 1 GCGAAAACTG 1 GCGAAACACT 2 GCGAAACATC 1 GCGAAACCAA 1 GCGAAACCCA 3 GCGAAACCCC 50 GCGAAACCCG 1 GCGAAACCCT 167 GCGAAACCGC 2 GCGAAACCTC 8 GCGAAACCTG 3 GCGAAACCTT 1 GCGAAACGCG 1 GCGAAACGCT 1 GCGAAACTCC 6 GCGAAACTCG 5 GCGAAATCCC 3 GCGAAATCCT 2 GCGAAATGCC 1 GCGAAATGTT 1 GCGAACCCCA 2 GCGAACCCCC 1 GCGAACCCCG 1 GCGAAGCCCC 3 GCGAAGCCTC 1 GCGAATCTCT 1 GCGAATTCCC 2 GCGACAAAAA 1 GCGACAACTC 1 GCGACACCCC 1 GCGACACGCA 1 GCGACACTCC 1 GCGACAGAGC 1 GCGACAGAGT 1 GCGACAGCGC 1 GCGACAGCTC 2 GCGACCAACA 4 GCGACCACAC 1 GCGACCACGG 1 GCGACCCACG 3 GCGACCCGCG 1 GCGACCGCCA 1 GCGACCGTCA 112 GCGACCGTCG 1 GCGACCTTAG 1 GCGACGAGGC 9 GCGACGCAGA 1 GCGACGGGTC 1 GCGACGGTGA 2 GCGACGTGTG 1 GCGACTGGTA 1 GCGAGAAAGT 1 GCGAGACCCA 2 GCGAGACCCC 4 GCGAGACCCT 4 GCGAGACTCA 1 GCGAGACTCT 1 GCGAGACTGC 1 GCGAGATCCC 1 GCGAGCACTG 1 GCGAGCCCTG 1 GCGAGGTAGT 1 GCGAGTCTCC 1 GCGATACCCC 1 GCGATGCCCT 1 GCGATGGCCG 1 GCGATGTAAA 3 GCGATGTGAG 1 GCGATTAAGA 1 GCGATTAATT 2 GCGATTATGG 1 GCGATTCCGG 12 GCGCAAACCC 1 GCGCAAGGCA 1 GCGCAGAGGT 2 GCGCATTATT 1 GCGCCACTGC 2 GCGCCAGTGC 4 GCGCCATACC 1 GCGCCATTGC 1 GCGCCCATTA 1 GCGCCCCCGC 2 GCGCCCCCTG 1 GCGCCCTGAC 1 GCGCCGAGGA 1 GCGCCGCCCA 1 GCGCCGCCCC 4 GCGCCGTCGC 1 GCGCCGTTAA 1 GCGCCTCCTC 1 GCGCGCTCCT 1 GCGCGGCAGC 2 GCGCGGGCGA 1 GCGCTAACTA 1 GCGCTCATAG 1 GCGCTCCAGC 1 GCGCTCCCTA 1 GCGCTCTCCA 1 GCGCTGCCGT 1 GCGCTGCTGT 3 GCGCTGCTTT 1 GCGCTGGAGT 10 GCGCTGGGTG 1 GCGCTGTCCT 1 GCGCTTGCTC 1 GCGGAACCCC 1 GCGGAACCCT 1 GCGGAACGCA 3 GCGGAACGCC 1 GCGGACACTC 1 GCGGACCTTG 1 GCGGACGAGG 1 GCGGAGAAGC 1 GCGGAGGTGG 5 GCGGATGGTG 1 GCGGCACACA 1 GCGGCACACG 1 GCGGCAGAGG 1 GCGGCAGATC 1 GCGGCAGCCT 1 GCGGCAGCGC 1 GCGGCAGGCG 1 GCGGCAGGTG 3 GCGGCATCTG 1 GCGGCCACCA 1 GCGGCCATCC 1 GCGGCCCCCC 1 GCGGCCCCGC 1 GCGGCCCGAT 1 GCGGCCCGCG 1 GCGGCCTAAC 1 GCGGCCTCCA 1 GCGGCGACTA 1 GCGGCGCTGC 15 GCGGCGGCGA 3 GCGGCGGCGC 1 GCGGCGGCTC 1 GCGGCGGGCG 1 GCGGCGGGTG 1 GCGGCGTAGA 1 GCGGCGTGTG 1 GCGGCTCACG 1 GCGGCTGACA 1 GCGGCTGGTT 1 GCGGCTGTCA 1 GCGGCTTTCC 2 GCGGGACCGG 1 GCGGGACCTT 1 GCGGGAGCCT 1 GCGGGAGCGG 4 GCGGGAGGGC 1 GCGGGCACCT 1 GCGGGCAGGC 1 GCGGGCATAA 2 GCGGGCATAT 1 GCGGGCATTC 1 GCGGGCGCCT 1 GCGGGGAAGT 1 GCGGGGCCTC 1 GCGGGGCGAG 4 GCGGGGTACC 12 GCGGGGTGGA 1 GCGGGTAAGC 1 GCGGGTACCC 1 GCGGGTGGGC 1 GCGGGTGTCC 1 GCGGGTGTGG 1 GCGGTAAAAA 1 GCGGTAAGAG 2 GCGGTACCCG 1 GCGGTACCTG 1 GCGGTCGCTA 1 GCGGTGACAG 1 GCGGTGAGGG 2 GCGGTGAGGT 7 GCGGTGGAAG 1 GCGGTGGCAG 1 GCGGTGGGCA 1 GCGGTGGGCT 1 GCGGTGTCAC 1 GCGGTGTGCG 3 GCGGTTCACT 1 GCGGTTGGCC 2 GCGTAACACT 1 GCGTAACCCT 1 GCGTAATGGG 1 GCGTACTCGG 1 GCGTATGCCG 1 GCGTCCACGC 1 GCGTCCAGTG 1 GCGTCCGACC 1 GCGTCCTCGG 1 GCGTCCTGCC 1 GCGTCGGGAA 1 GCGTGAACCA 1 GCGTGAACCT 1 GCGTGAATCC 1 GCGTGACTTC 1 GCGTGATCCT 4 GCGTGCGCCT 1 GCGTGCGCGC 1 GCGTGCTCAC 1 GCGTGCTCTC 2 GCGTGCTTGT 1 GCGTGGATGC 1 GCGTGGCAAG 1 GCGTGGCACT 1 GCGTGGCTTG 2 GCGTGGGGCA 2 GCGTGGTGGG 1 GCGTGTCGGC 1 GCGTGTTACA 2 GCGTGTTCAG 1 GCGTGTTCAT 1 GCGTGTTCCA 1 GCGTTCTTGT 1 GCGTTGCGTT 1 GCGTTGCTGT 1 GCGTTTAGCG 1 GCGTTTTAGT 2 GCTAAAAAAT 1 GCTAAAAACC 1 GCTAAAAAGG 1 GCTAAAACTC 1 GCTAAACTCC 1 GCTAAAGATG 1 GCTAAATGCC 1 GCTAACACCC 1 GCTAACACGG 2 GCTAACCCCT 5 GCTAACCCTG 1 GCTAACTATT 1 GCTAACTGGC 1 GCTAACTTGG 1 GCTAAGACAT 1 GCTAAGACTT 1 GCTAAGGAGA 17 GCTAATGTAA 1 GCTAATTGCA 1 GCTACAAAAT 1 GCTACAAGCA 1 GCTACAGAGC 1 GCTACAGGTA 1 GCTACAGGTG 1 GCTACAGTTG 2 GCTACGAGGC 1 GCTACTCTTT 2 GCTACTTGTG 1 GCTAGACCCT 3 GCTAGCCCTT 1 GCTAGCTGGT 1 GCTAGCTTCT 1 GCTAGGAAAC 5 GCTAGGAATA 1 GCTAGGAGCT 1 GCTAGGAGTC 1 GCTAGGATTA 1 GCTAGGCCGG 4 GCTAGGGCCA 2 GCTAGGTATT 6 GCTAGGTCTG 2 GCTAGGTTAA 1 GCTAGGTTTA 30 GCTAGTGAAA 2 GCTAGTGAGT 1 GCTAGTGATG 2 GCTATACGGG 2 GCTATAGTCA 1 GCTATATGTT 1 GCTATCCAAC 1 GCTATGAGAA 1 GCTATGTTGT 1 GCTATTCACC 1 GCTATTCCTG 1 GCTATTTAGT 1 GCTATTTCGT 1 GCTCAAGCCT 1 GCTCAATGCA 1 GCTCACAGCA 1 GCTCACCACA 1 GCTCACGCCT 5 GCTCACGCTT 2 GCTCACGTCG 1 GCTCACTGAA 1 GCTCACTGCA 32 GCTCACTGCC 1 GCTCACTGCG 1 GCTCACTTCA 1 GCTCAGAAAA 1 GCTCAGATCG 2 GCTCAGCTCT 1 GCTCAGCTGG 3 GCTCAGGATG 1 GCTCAGGCTA 1 GCTCAGGTCT 6 GCTCAGTGCA 1 GCTCAGTGTG 1 GCTCATAGTA 1 GCTCATTTGA 1 GCTCCACAGT 1 GCTCCACCTT 1 GCTCCACGAG 1 GCTCCACTGG 1 GCTCCAGCCA 6 GCTCCAGGTT 1 GCTCCATAAA 1 GCTCCATCTA 1 GCTCCCAGAC 13 GCTCCCCCCC 1 GCTCCCGGTT 1 GCTCCCTAGA 1 GCTCCCTCAG 1 GCTCCGAGCG 4 GCTCCGATCG 1 GCTCCGCAAC 1 GCTCCGGTCA 1 GCTCCGGTGT 1 GCTCCTAAAC 1 GCTCCTGGCC 1 GCTCCTGTCT 1 GCTCCTGTGA 1 GCTCCTGTGC 1 GCTCCTTGGT 1 GCTCGCTGAG 1 GCTCGGCACG 1 GCTCGGTTAC 1 GCTCTAAAAT 1 GCTCTACTGG 1 GCTCTATTTG 3 GCTCTCACTC 1 GCTCTCAGGG 3 GCTCTCCCCC 8 GCTCTCCCCT 2 GCTCTCCCTG 1 GCTCTCCTGA 15 GCTCTCCTTC 1 GCTCTCGGAA 1 GCTCTCGGCG 1 GCTCTCTATG 10 GCTCTCTCTC 2 GCTCTCTGGG 1 GCTCTGAAAT 1 GCTCTGAAGA 2 GCTCTGACTC 1 GCTCTGACTG 2 GCTCTGCAGA 2 GCTCTGCCTC 5 GCTCTGCTCG 1 GCTCTGCTTT 1 GCTCTGGATA 1 GCTCTGGCCG 1 GCTCTGGGCG 8 GCTCTGGTGT 1 GCTCTGGTTA 1 GCTCTGTCTC 1 GCTCTGTGAA 4 GCTCTGTGAC 1 GCTCTGTTCA 1 GCTCTTAGAG 2 GCTCTTCCCC 9 GCTCTTCCCG 2 GCTCTTGAGC 1 GCTCTTGCAC 1 GCTCTTGCAT 1 GCTCTTGGCA 3 GCTCTTTATG 1 GCTGAAAAAA 1 GCTGAAACTT 14 GCTGAACAGA 1 GCTGAAGATG 1 GCTGAAGGCG 1 GCTGAAGTGC 1 GCTGACAAAG 1 GCTGACACTG 1 GCTGACATCA 1 GCTGACCCCG 1 GCTGACGGAA 1 GCTGACTGGA 1 GCTGACTGGC 1 GCTGACTTCA 1 GCTGAGAATA 1 GCTGAGACCC 1 GCTGAGAGCA 1 GCTGAGCAAG 1 GCTGAGCACG 1 GCTGAGCAGA 1 GCTGAGCAGC 1 GCTGAGCCTG 1 GCTGAGCTAG 1 GCTGAGCTGG 3 GCTGAGGACT 1 GCTGAGGAGG 1 GCTGAGGCCC 1 GCTGAGGCCG 1 GCTGAGGGCT 2 GCTGAGTGAA 1 GCTGATAAAG 1 GCTGATCCTG 1 GCTGATCTAC 1 GCTGATGCAG 1 GCTGATGGTT 1 GCTGATTGCA 1 GCTGATTGGC 5 GCTGCAATCC 1 GCTGCAATGC 1 GCTGCAGCCT 1 GCTGCAGTGA 3 GCTGCAGTTT 1 GCTGCATTGC 1 GCTGCATTGT 1 GCTGCCCGGC 1 GCTGCCCTAC 1 GCTGCCCTGA 8 GCTGCCCTTG 44 GCTGCCGACA 1 GCTGCCTCTG 2 GCTGCCTGCC 1 GCTGCCTGTA 7 GCTGCGCCTG 1 GCTGCGGCCG 1 GCTGCGTTCC 1 GCTGCTACGG 1 GCTGCTCACA 1 GCTGCTCCCC 1 GCTGCTCCCT 1 GCTGCTCCTA 1 GCTGCTCTGC 1 GCTGCTGCCA 1 GCTGCTGCCT 2 GCTGCTGGAA 1 GCTGCTGGCA 2 GCTGCTGGTG 6 GCTGCTTGCA 1 GCTGGAAAGC 1 GCTGGAATTG 1 GCTGGACCAG 1 GCTGGAGCTA 1 GCTGGAGCTT 1 GCTGGAGGTA 1 GCTGGATGCA 9 GCTGGCACAT 15 GCTGGCAGGC 4 GCTGGCAGTC 1 GCTGGCATCC 1 GCTGGCCCCG 5 GCTGGCCGGA 1 GCTGGCCTTG 5 GCTGGCGGGT 1 GCTGGCTGCT 1 GCTGGCTGGC 11 GCTGGGACAG 5 GCTGGGACTA 5 GCTGGGATCA 4 GCTGGGCACG 1 GCTGGGCCTG 1 GCTGGGCCTT 1 GCTGGGCGCG 1 GCTGGGCGGC 1 GCTGGGCTCC 1 GCTGGGCTTT 1 GCTGGGGAAA 1 GCTGGGGACT 3 GCTGGGGAGA 1 GCTGGGGAGG 1 GCTGGGGCTG 1 GCTGGGGCTT 1 GCTGGGGGAG 1 GCTGGGGGCC 2 GCTGGGGTCC 4 GCTGGGGTGG 3 GCTGGGGTTA 1 GCTGGGGTTG 1 GCTGGGTCCA 1 GCTGGGTGCA 2 GCTGGGTGCG 1 GCTGGTAAAA 1 GCTGGTAACA 1 GCTGGTACAT 1 GCTGGTCAAG 1 GCTGGTCCCA 2 GCTGGTCTGA 8 GCTGGTGAAC 1 GCTGGTGCGA 1 GCTGGTGGCT 1 GCTGGTTCCT 1 GCTGGTTCTC 1 GCTGGTTTGA 1 GCTGTAATCC 2 GCTGTACAAA 1 GCTGTAGACA 5 GCTGTAGGTG 1 GCTGTAGTCC 1 GCTGTATCCT 1 GCTGTCCAGC 1 GCTGTCCCTG 1 GCTGTCCTAC 1 GCTGTCTTTG 2 GCTGTGAATA 1 GCTGTGCAAG 1 GCTGTGCCTG 36 GCTGTGCTGG 2 GCTGTGGATA 1 GCTGTGGCCA 1 GCTGTGGGTT 1 GCTGTGGTCA 1 GCTGTGGTTA 1 GCTGTGTAAC 1 GCTGTGTTCC 3 GCTGTTAGTT 1 GCTGTTCAGA 2 GCTGTTCTCA 2 GCTGTTGCGC 6 GCTGTTGCTG 1 GCTGTTGGGA 1 GCTGTTTAAA 1 GCTGTTTATA 1 GCTGTTTGCA 1 GCTGTTTTAA 1 GCTGTTTTCC 1 GCTTAAAGCA 1 GCTTAAAGGT 1 GCTTAAAGTT 1 GCTTAAATTA 1 GCTTAACCTG 1 GCTTAATAGC 1 GCTTAATGTT 1 GCTTAATTTG 1 GCTTACAGCT 1 GCTTACCTTT 2 GCTTACTACA 1 GCTTACTGCG 1 GCTTAGAAGA 1 GCTTAGAAGT 4 GCTTAGCTGG 1 GCTTAGGTAT 1 GCTTAGTGAT 1 GCTTATATAT 1 GCTTATCCTG 1 GCTTATGTCG 1 GCTTATTGCA 1 GCTTATTGTG 1 GCTTATTTGT 1 GCTTCAAAAC 1 GCTTCAATTA 1 GCTTCACTCG 1 GCTTCAGCGT 1 GCTTCATCAG 2 GCTTCATTTG 1 GCTTCATTTT 1 GCTTCCAGCC 1 GCTTCCATCT 7 GCTTCCCCAC 2 GCTTCCGGCC 1 GCTTCCGGGG 1 GCTTCCTACC 1 GCTTCGAGAT 1 GCTTCGCCGC 1 GCTTCGTGCT 1 GCTTCTGGGC 1 GCTTCTTCCC 1 GCTTGAACTC 1 GCTTGAATAA 6 GCTTGAATTA 1 GCTTGACATC 1 GCTTGACTCC 1 GCTTGAGCCT 1 GCTTGATTCA 1 GCTTGCAAAA 1 GCTTGCAAAG 1 GCTTGCAGCT 1 GCTTGCAGTC 1 GCTTGCCGAT 1 GCTTGCTGAG 7 GCTTGCTGCC 1 GCTTGCTGGC 1 GCTTGCTGTT 1 GCTTGCTTAA 3 GCTTGCTTTG 1 GCTTGGACAG 1 GCTTGGAGCC 1 GCTTGGATCT 1 GCTTGGCCCT 1 GCTTGGCTCC 3 GCTTGGGATA 1 GCTTGGGGAT 11 GCTTGGGGCC 1 GCTTGGTCCC 1 GCTTGGTTCC 1 GCTTGTTCCT 1 GCTTGTTGGC 1 GCTTTAAAGG 1 GCTTTAACCC 1 GCTTTAATTG 1 GCTTTACTTG 1 GCTTTACTTT 3 GCTTTAGAAC 1 GCTTTAGGGA 1 GCTTTATATG 3 GCTTTATTCT 1 GCTTTATTGT 1 GCTTTATTTG 185 GCTTTCATTG 2 GCTTTCCTCC 1 GCTTTCTAAG 3 GCTTTCTCAC 2 GCTTTCTGTA 1 GCTTTGAGAA 1 GCTTTGATGT 1 GCTTTGATTT 1 GCTTTGCTTT 8 GCTTTGTATC 3 GCTTTGTTGG 1 GCTTTGTTTG 2 GCTTTTAAGG 2 GCTTTTAGGA 1 GCTTTTATTC 1 GCTTTTCAGG 1 GCTTTTGGCT 1 GCTTTTGTGA 1 GCTTTTTAGA 6 GCTTTTTGGG 1 GCTTTTTTAG 1 GGAAAAAAAA 8 GGAAAAAAAT 1 GGAAAAAGCA 1 GGAAAAAGGG 1 GGAAAAATCC 1 GGAAAACACC 1 GGAAAACAGA 119 GGAAAACAGG 3 GGAAAACAGT 1 GGAAAACCCC 2 GGAAAACCTT 1 GGAAAAGTGG 12 GGAAAAGTTT 1 GGAAAATACT 1 GGAAAATGAT 1 GGAAACAGAA 1 GGAAACAGAG 1 GGAAACATAG 1 GGAAACCAGA 1 GGAAACCCCA 1 GGAAACCCTG 2 GGAAACCTTA 1 GGAAACGGTG 1 GGAAACTGAA 1 GGAAAGAAAA 1 GGAAAGAAGG 1 GGAAAGAGCT 1 GGAAAGCAGA 2 GGAAAGCCAG 1 GGAAAGCTGC 1 GGAAAGCTGG 5 GGAAAGTGAC 1 GGAAATCAGA 1 GGAAATCATT 1 GGAAATCCCA 1 GGAAATGTGC 1 GGAAATTCGG 1 GGAAATTGTC 1 GGAAATTTAG 1 GGAAATTTCC 1 GGAACAAAAA 1 GGAACAAACA 22 GGAACAACAT 1 GGAACACAGA 1 GGAACACATC 1 GGAACAGAAA 1 GGAACAGCTT 1 GGAACAGGGG 1 GGAACCACTG 1 GGAACCATCA 1 GGAACCGTGG 1 GGAACGAATA 1 GGAACGGATG 1 GGAACTATGA 1 GGAACTCTGT 1 GGAACTGTAA 1 GGAACTGTGA 90 GGAACTGTGG 1 GGAACTGTGT 1 GGAACTGTTA 1 GGAACTTATA 2 GGAAGAACTA 1 GGAAGAAGGG 1 GGAAGACAAA 1 GGAAGACCAC 1 GGAAGACCAG 1 GGAAGACCCA 1 GGAAGACGAG 1 GGAAGAGAAG 3 GGAAGAGCAC 21 GGAAGAGGGT 1 GGAAGAGTGC 1 GGAAGAGTGT 1 GGAAGATGTC 1 GGAAGATGTT 2 GGAAGATTTC 1 GGAAGCACGG 2 GGAAGCAGAT 1 GGAAGCCTAT 1 GGAAGCCTGG 1 GGAAGCGGAG 1 GGAAGCTCAG 1 GGAAGCTGAG 2 GGAAGCTGGG 1 GGAAGGAAAC 1 GGAAGGAACA 1 GGAAGGAAGA 1 GGAAGGACAG 11 GGAAGGACCA 1 GGAAGGACGG 1 GGAAGGAGCA 2 GGAAGGCAGT 1 GGAAGGCCAG 1 GGAAGGCTTA 1 GGAAGGGGAG 1 GGAAGGTGGG 1 GGAAGGTGTC 1 GGAAGGTTTA 10 GGAAGTGACG 1 GGAAGTGCCA 1 GGAAGTTAGG 2 GGAAGTTGGG 1 GGAAGTTTCG 3 GGAATAAAAG 1 GGAATAAATT 1 GGAATAAGGA 1 GGAATACAGT 2 GGAATACGCA 2 GGAATATCTA 1 GGAATGCAGG 1 GGAATGCAGT 1 GGAATGGCTT 1 GGAATGGGAC 1 GGAATGTACG 9 GGAATGTTCT 1 GGAATTCGAA 1 GGAATTTCAA 1 GGAATTTGCA 1 GGAATTTGCT 1 GGACAAAAAA 1 GGACAAAACT 1 GGACAAAAGA 1 GGACAACAGA 1 GGACACAGCA 1 GGACACGTTT 2 GGACACTGTA 1 GGACAGAACC 2 GGACAGCCAC 1 GGACAGGATT 1 GGACAGGCCA 1 GGACATCAAG 1 GGACATTAGG 3 GGACCACCGA 1 GGACCACTGA 18 GGACCAGAAG 1 GGACCCACTG 1 GGACCTGCGC 3 GGACCTGGGA 1 GGACCTTCCA 1 GGACGAGGGT 1 GGACGGAAGT 1 GGACGGAATG 1 GGACGGAGAT 1 GGACGGCCGT 1 GGACGGTCAC 1 GGACTAAATG 5 GGACTCATCC 1 GGACTCCCCT 1 GGACTCGTGA 1 GGACTCTCTC 1 GGACTGATCC 1 GGACTGGGAG 1 GGACTGGGTC 1 GGACTGGTGT 1 GGACTGTGAC 1 GGACTGTGCT 1 GGACTGTTTT 1 GGACTTTCCT 1 GGACTTTGAG 7 GGAGAAAATT 1 GGAGAAACAG 13 GGAGAAAGAT 1 GGAGAACCCA 1 GGAGAAGATG 1 GGAGAAGGTA 1 GGAGAATTTT 1 GGAGACAGAG 4 GGAGACTATT 1 GGAGACTGTA 1 GGAGACTGTG 1 GGAGACTTCC 5 GGAGACTTTT 1 GGAGAGAATG 1 GGAGAGAGCA 1 GGAGAGCATT 1 GGAGAGCCTC 1 GGAGAGGCTG 1 GGAGAGGGAT 1 GGAGAGGTGG 1 GGAGATAATG 1 GGAGATACTA 1 GGAGATAGCA 1 GGAGATAGTG 4 GGAGATGCCT 1 GGAGCAAGTG 1 GGAGCACTGT 7 GGAGCAGATG 1 GGAGCAGGCT 2 GGAGCAGGGC 1 GGAGCCACTT 1 GGAGCCAGAG 1 GGAGCCAGGC 5 GGAGCCGGCC 2 GGAGCCTACT 1 GGAGCCTCTG 1 GGAGCCTTGG 1 GGAGCGAAAA 1 GGAGCGTGGG 10 GGAGCTACAA 1 GGAGCTAGAT 1 GGAGCTCTGT 7 GGAGCTGCTG 1 GGAGCTGGCA 1 GGAGCTGTCT 1 GGAGCTGTGA 5 GGAGCTGTGC 2 GGAGCTGTGG 1 GGAGCTTAAG 1 GGAGCTTCTG 1 GGAGCTTGCA 1 GGAGGAGAGG 1 GGAGGAGCAA 1 GGAGGAGCTG 3 GGAGGAGGAG 1 GGAGGATCAC 3 GGAGGCAGAA 8 GGAGGCAGAG 6 GGAGGCAGGG 1 GGAGGCAGGT 1 GGAGGCCAAG 1 GGAGGCCGAG 13 GGAGGCGAGG 1 GGAGGCGCTC 5 GGAGGCGGAA 1 GGAGGCGGAG 5 GGAGGCTAAA 1 GGAGGCTAAG 1 GGAGGCTGAA 1 GGAGGCTGAG 14 GGAGGCTGTG 1 GGAGGGAACA 3 GGAGGGACCC 1 GGAGGGACCT 1 GGAGGGAGGA 1 GGAGGGATCA 4 GGAGGGCAGA 1 GGAGGGCTCA 1 GGAGGGGAGA 1 GGAGGGGAGG 1 GGAGGGGCTT 1 GGAGGGGGCT 17 GGAGGGGTTC 2 GGAGGGTCTC 1 GGAGGGTGAG 1 GGAGGGTTCA 1 GGAGGTAGGG 1 GGAGGTGAGG 1 GGAGGTGCAG 1 GGAGGTGGAG 5 GGAGGTGGGG 28 GGAGGTGTCT 1 GGAGGTTGAG 2 GGAGGTTGGC 1 GGAGTAGATG 2 GGAGTCCCTC 1 GGAGTCTAAC 1 GGAGTCTAGC 1 GGAGTGCAGA 1 GGAGTGCAGC 1 GGAGTGCAGG 1 GGAGTGCCGG 1 GGAGTGCGTC 1 GGAGTGCTGC 1 GGAGTGCTTG 1 GGAGTGGACA 6 GGAGTGGATG 5 GGAGTGGCAC 1 GGAGTGGGCT 2 GGAGTGTGGA 1 GGAGTGTGTA 1 GGAGTGTTCT 1 GGAGTTAAGT 1 GGATAACAGA 1 GGATACACTT 1 GGATACAGTG 1 GGATACTTTG 1 GGATAGAAGC 1 GGATATAATT 1 GGATATATCC 2 GGATATCGTA 1 GGATATCTCT 1 GGATATGGGA 2 GGATATGTTT 1 GGATCAAAGC 1 GGATCAAGGA 1 GGATCACAGT 2 GGATCAGGAT 1 GGATCATCAT 1 GGATCCAAGT 1 GGATCCAGGC 1 GGATCCTACA 1 GGATCCTTGG 3 GGATCGCTAA 1 GGATCGTAGG 1 GGATCGTGCT 1 GGATCTCAGC 1 GGATCTGACG 1 GGATCTGAGA 1 GGATCTGTGA 1 GGATGCCTGC 1 GGATGCGCAG 3 GGATGGCAAT 1 GGATGGCCTT 1 GGATGGCTTA 25 GGATGGCTTT 1 GGATGGGGGT 1 GGATGTAAAC 1 GGATGTAACT 1 GGATGTAGAG 2 GGATGTCAAC 4 GGATGTCTCT 1 GGATGTCTTT 1 GGATGTGAAA 1 GGATTACTAT 1 GGATTAGCAG 1 GGATTCACAT 1 GGATTCCAGT 6 GGATTCTGAC 2 GGATTGATCG 1 GGATTGCTTA 1 GGATTGGACA 1 GGATTGTCTG 2 GGATTTCAAT 1 GGATTTGCCT 1 GGATTTGCTG 1 GGATTTGGCC 27 GGATTTTGAC 1 GGATTTTGCA 1 GGCAAAAAAA 1 GGCAAAATCT 1 GGCAAAATTA 1 GGCAAAGAAG 1 GGCAACAAAA 2 GGCAACAAAC 1 GGCAACAACA 1 GGCAACAAGA 2 GGCAACAGAG 5 GGCAACAGCA 1 GGCAACAGTG 1 GGCAACATAG 1 GGCAACGGTA 3 GGCAACGTGG 3 GGCAACTGCC 1 GGCAAGAACT 1 GGCAAGAAGA 8 GGCAAGCCCC 16 GGCAAGCGCC 1 GGCAAGCTGC 1 GGCAAGGACT 1 GGCAAGGGGG 10 GGCAAGGGGT 1 GGCAAGGTTC 1 GGCAAGTGCA 2 GGCAAGTTAG 1 GGCAAGTTTG 1 GGCAATAAAG 1 GGCAATGCAG 1 GGCACAAATA 1 GGCACAATCA 1 GGCACACATT 1 GGCACACCTT 1 GGCACAGAAG 1 GGCACAGAGC 1 GGCACAGCCA 1 GGCACCCTTG 2 GGCACCGAGC 1 GGCACCGCGT 2 GGCACCGTGC 22 GGCACCGTGG 1 GGCACCTCCA 1 GGCACCTGGC 1 GGCACGGCAA 1 GGCACGTGTC 1 GGCACTGAAA 1 GGCACTGTGC 1 GGCAGAAAGT 3 GGCAGAAGGA 1 GGCAGACCAC 1 GGCAGACGCA 1 GGCAGAGCCA 1 GGCAGAGGAC 1 GGCAGATCAG 1 GGCAGCACAA 1 GGCAGCAGAA 1 GGCAGCAGCA 3 GGCAGCAGGG 1 GGCAGCCAGA 5 GGCAGCCATC 1 GGCAGCCCTG 1 GGCAGCCTGG 2 GGCAGCTCAG 1 GGCAGGAAAC 1 GGCAGGAAGC 1 GGCAGGACAC 1 GGCAGGAGCA 3 GGCAGGAGGA 1 GGCAGGCACA 6 GGCAGGCGGG 3 GGCAGGCTCT 1 GGCAGGGGGG 1 GGCAGGGTCC 1 GGCAGTAGAG 1 GGCAGTATGT 1 GGCAGTCTCT 3 GGCAGTGCCA 1 GGCAGTGCCC 4 GGCAGTGGAC 1 GGCATCAAGT 1 GGCATCAGCT 2 GGCATCAGGG 1 GGCATCGTTA 1 GGCATCGTTG 1 GGCATTATTG 1 GGCATTCCCT 1 GGCATTGGCA 1 GGCATTGTTC 2 GGCATTTTAA 1 GGCATTTTGC 1 GGCATTTTTC 2 GGCCAAAATT 1 GGCCAAAGAG 2 GGCCAAAGGC 1 GGCCAAATAA 1 GGCCAACCTC 1 GGCCAAGAAC 1 GGCCACAAGT 1 GGCCACAGAG 3 GGCCACAGCC 1 GGCCACCGCA 1 GGCCACCGCG 1 GGCCACCGTG 1 GGCCACGTCA 1 GGCCACGTCG 6 GGCCACTGCG 1 GGCCAGAATT 1 GGCCAGACCT 2 GGCCAGCCCT 11 GGCCAGCCTA 1 GGCCAGCTCA 2 GGCCAGGAAG 1 GGCCAGGCAG 1 GGCCAGGCGG 1 GGCCAGGCGT 1 GGCCAGGGTC 1 GGCCAGGTCA 1 GGCCAGGTGG 6 GGCCAGTGAG 2 GGCCAGTGTT 1 GGCCAGTTCA 1 GGCCAGTTCT 1 GGCCATATCT 1 GGCCATCAAC 1 GGCCATCTCT 2 GGCCCAAGAT 3 GGCCCACACC 2 GGCCCACTGT 1 GGCCCACTTC 1 GGCCCAGAGC 1 GGCCCAGGAG 1 GGCCCAGGCT 1 GGCCCAGGGA 1 GGCCCAGGTC 1 GGCCCAGTTA 1 GGCCCATATG 4 GGCCCATCCC 1 GGCCCCAAGA 1 GGCCCCAAGG 1 GGCCCCATAA 1 GGCCCCATTG 1 GGCCCCATTT 1 GGCCCCCTAA 1 GGCCCCCTTC 2 GGCCCCGGAC 11 GGCCCGGAAG 1 GGCCCGGCTT 1 GGCCCGGGAG 3 GGCCCGGTCA 1 GGCCCTAAAC 1 GGCCCTAGAG 1 GGCCCTAGGC 4 GGCCCTCCCG 3 GGCCCTCTCA 1 GGCCCTCTGA 1 GGCCCTGAAG 1 GGCCCTGAGC 14 GGCCCTGCAG 14 GGCCCTGGGT 5 GGCCCTGGTG 3 GGCCCTTGCC 1 GGCCCTTTGA 1 GGCCCTTTTT 1 GGCCGACCAG 1 GGCCGAGTGT 1 GGCCGATCTT 1 GGCCGCGTTC 2 GGCCGCTGCT 3 GGCCGGGCCA 1 GGCCGGGGGC 2 GGCCGGTTTC 1 GGCCGTGCTG 1 GGCCGTGGTT 1 GGCCTAAGAA 1 GGCCTCATCC 1 GGCCTCCAAC 1 GGCCTCCCAG 2 GGCCTCCCGG 1 GGCCTCGGCG 1 GGCCTCTCAA 1 GGCCTCTCTC 1 GGCCTCTGAG 2 GGCCTCTGAT 2 GGCCTGAAAG 2 GGCCTGAACC 3 GGCCTGCAGG 1 GGCCTGCTGC 7 GGCCTGGAAG 2 GGCCTGGATG 2 GGCCTGGCCA 5 GGCCTGGCTG 1 GGCCTGGGAG 1 GGCCTGGGCC 1 GGCCTGGGGA 1 GGCCTGGGGG 1 GGCCTGGTCA 1 GGCCTGTATG 1 GGCCTGTGGA 1 GGCCTGTGTG 4 GGCCTTAACG 1 GGCCTTATAA 1 GGCCTTCCTC 1 GGCCTTCCTT 1 GGCCTTCTCT 1 GGCCTTGAAG 1 GGCCTTGCCA 1 GGCCTTGGTT 1 GGCGAATGAT 1 GGCGACAAAG 1 GGCGACAGAA 1 GGCGACAGAG 4 GGCGACAGCG 1 GGCGACAGTG 1 GGCGACCAAG 1 GGCGAGACTC 1 GGCGAGGCTG 1 GGCGATGTCT 1 GGCGATTCTG 1 GGCGCAAAGC 1 GGCGCAGACC 1 GGCGCCAAAA 1 GGCGCCAGCG 1 GGCGCCCATT 1 GGCGCCGTGG 1 GGCGCCTCCT 6 GGCGCCTTCC 1 GGCGCTATTC 2 GGCGCTGATT 2 GGCGCTGTAC 1 GGCGGCCTCT 1 GGCGGCCTGG 2 GGCGGCTGCA 2 GGCGGCTGTG 1 GGCGGCTTCA 2 GGCGGGAGCT 1 GGCGGGGCAG 1 GGCGGGGGGC 1 GGCGTAGAAG 1 GGCGTCAGGG 1 GGCGTCCTGA 1 GGCGTCCTGG 5 GGCGTGAACA 1 GGCGTGAACC 2 GGCTACACCT 1 GGCTAGACAA 1 GGCTAGCTGA 1 GGCTAGGACT 1 GGCTAGGAGC 1 GGCTAGGCTG 2 GGCTAGGTTT 1 GGCTATAGGG 1 GGCTCAAAAT 1 GGCTCACCCA 1 GGCTCACTTT 3 GGCTCAGCTC 1 GGCTCAGGCT 1 GGCTCAGGGC 2 GGCTCATCTT 2 GGCTCCCACT 11 GGCTCCCGGA 1 GGCTCCCTGA 1 GGCTCCCTGG 1 GGCTCCGCAA 1 GGCTCCTACC 1 GGCTCCTATT 1 GGCTCCTCGA 13 GGCTCCTCTG 1 GGCTCCTGGC 13 GGCTCGCCTG 1 GGCTCGGGAT 15 GGCTCGTCAG 2 GGCTCTGTCA 1 GGCTCTTCAT 2 GGCTCTTGGC 2 GGCTGAACCA 1 GGCTGAAGGG 3 GGCTGACTGA 1 GGCTGATGAT 2 GGCTGATGTG 1 GGCTGATTCT 1 GGCTGATTTT 7 GGCTGCACGC 1 GGCTGCAGTA 1 GGCTGCAGTC 1 GGCTGCCAAA 1 GGCTGCCCTC 1 GGCTGCCTCG 1 GGCTGCCTGC 13 GGCTGCGGGG 2 GGCTGCTTTA 1 GGCTGCTTTC 1 GGCTGGACAA 1 GGCTGGACGA 1 GGCTGGAGAA 1 GGCTGGAGGT 1 GGCTGGCCAC 1 GGCTGGCCTG 1 GGCTGGGAGC 2 GGCTGGGATG 1 GGCTGGGCCA 2 GGCTGGGCCT 46 GGCTGGGCGC 2 GGCTGGGGCC 2 GGCTGGGGGC 75 GGCTGGGTTT 1 GGCTGGTCAC 1 GGCTGGTCCC 2 GGCTGGTCTC 1 GGCTGTACCC 4 GGCTGTGAGC 1 GGCTGTGCAG 1 GGCTGTGCCA 1 GGCTGTGCCT 1 GGCTGTGTCT 1 GGCTGTGTGT 1 GGCTGTGTTG 1 GGCTGTTAAG 1 GGCTGTTGAA 1 GGCTTAAGTT 1 GGCTTAATTT 1 GGCTTAGAGC 1 GGCTTAGTGA 1 GGCTTATACA 1 GGCTTCACCC 1 GGCTTCACGG 1 GGCTTCACTG 1 GGCTTCAGAA 1 GGCTTCATTC 1 GGCTTCCAGC 1 GGCTTCCTGG 5 GGCTTCGCAA 1 GGCTTCGGAG 1 GGCTTGCCAG 2 GGCTTGCTGA 7 GGCTTGGGCA 1 GGCTTGGTCA 1 GGCTTGGTTT 1 GGCTTTAAGA 1 GGCTTTACCC 13 GGCTTTACCG 1 GGCTTTAGGG 21 GGCTTTATTT 2 GGCTTTCCCT 2 GGCTTTGATT 1 GGCTTTGCCA 1 GGCTTTGCTT 1 GGCTTTGGAG 4 GGCTTTGGTT 1 GGCTTTGTAC 1 GGCTTTGTCA 1 GGCTTTTACC 1 GGCTTTTGTT 1 GGGAAAAAAG 1 GGGAAAAATG 1 GGGAAACAGA 3 GGGAAACAGG 1 GGGAAACCCC 10 GGGAAACCCT 5 GGGAAACCTT 1 GGGAAACTCC 1 GGGAAACTCT 1 GGGAAAGAGG 1 GGGAAATCGC 3 GGGAAATCGT 1 GGGAACCTAT 1 GGGAACCTGT 1 GGGAACTGCC 1 GGGAAGAACT 1 GGGAAGAGTC 1 GGGAAGCAGA 32 GGGAAGCCCA 1 GGGAAGCTCT 1 GGGAAGCTGC 1 GGGAAGGCAC 1 GGGAAGTCAC 4 GGGAATAAAC 3 GGGAATCAAA 1 GGGAATCCCC 1 GGGAATTAAA 1 GGGACAGGAT 1 GGGACAGGCT 1 GGGACATTTA 1 GGGACCACAG 1 GGGACCGCTG 1 GGGACCTCAG 2 GGGACGAGAG 1 GGGACGAGCT 1 GGGACGAGTG 20 GGGACGCCCT 1 GGGACGGGCG 1 GGGACGGGTG 1 GGGACTGTTT 1 GGGAGAACAA 1 GGGAGACCCC 3 GGGAGAGGAC 1 GGGAGAGGAG 1 GGGAGATTCT 1 GGGAGCACTG 1 GGGAGCAGGA 1 GGGAGCATTA 1 GGGAGCCACT 1 GGGAGCCCAC 1 GGGAGCCCCT 1 GGGAGCCCGG 10 GGGAGCCGAG 1 GGGAGCCGTG 2 GGGAGCGCCG 1 GGGAGCGGGT 2 GGGAGCTGCG 3 GGGAGGACGT 1 GGGAGGAGGT 1 GGGAGGATTA 6 GGGAGGCACT 1 GGGAGGCAGA 1 GGGAGGCCAA 1 GGGAGGCTGC 2 GGGAGGGAAG 1 GGGAGGGGGT 1 GGGAGGGGTG 1 GGGAGGGTTA 1 GGGAGGGTTG 1 GGGAGGTAGC 1 GGGAGGTAGT 1 GGGAGGTTCT 1 GGGAGTGCGC 2 GGGAGTTTAC 1 GGGATAAAAG 1 GGGATAACCT 1 GGGATAGAGA 1 GGGATCAAAG 1 GGGATCAAGG 1 GGGATCACTG 1 GGGATCGCCC 3 GGGATCTTGT 1 GGGATGCCTG 1 GGGATGGCAG 2 GGGATGTAAA 1 GGGATTAGTT 1 GGGATTATTA 1 GGGATTGATA 1 GGGATTGTTC 1 GGGATTTATT 1 GGGATTTGGC 1 GGGCAACAAG 1 GGGCAACTGC 1 GGGCAAGCCA 3 GGGCAAGCGT 1 GGGCAAGCTC 1 GGGCAAGGCA 1 GGGCAAGGGC 1 GGGCAATACC 1 GGGCACAATG 1 GGGCACACCC 1 GGGCACATTT 1 GGGCACCAGC 2 GGGCACCGCA 1 GGGCACGCTA 1 GGGCAGAATT 2 GGGCAGACCC 1 GGGCAGATGG 1 GGGCAGCTGG 4 GGGCAGGACC 5 GGGCAGGATA 1 GGGCAGGCCA 2 GGGCAGGCGT 11 GGGCAGGGAC 1 GGGCAGGGCA 1 GGGCAGGGCC 1 GGGCAGGGGA 4 GGGCAGGGGC 1 GGGCAGGTCC 1 GGGCATTCTC 1 GGGCATTTTT 1 GGGCCAAAAA 1 GGGCCAAAAC 5 GGGCCAACCC 2 GGGCCAATAA 2 GGGCCAGAGC 3 GGGCCAGGGA 1 GGGCCAGGGG 9 GGGCCAGGTC 1 GGGCCAGTGT 1 GGGCCCAGGA 7 GGGCCCCCAA 1 GGGCCCCGCA 2 GGGCCCCTCT 1 GGGCCCCTGG 2 GGGCCCGTAC 1 GGGCCCTCTC 1 GGGCCCTGCT 1 GGGCCCTGGC 1 GGGCCCTTCC 4 GGGCCCTTGG 2 GGGCCGTGGC 6 GGGCCGTGGG 2 GGGCCTAAAT 1 GGGCCTCGAG 1 GGGCCTGAGC 1 GGGCCTGCTT 1 GGGCCTGGCC 4 GGGCCTGGGG 15 GGGCCTGGGT 1 GGGCCTGTGC 12 GGGCCTTTTC 1 GGGCGAGAAC 3 GGGCGCTGTG 11 GGGCGGCGAG 1 GGGCGGGAGG 1 GGGCGGGATC 1 GGGCGGGGGC 1 GGGCGTGCCA 1 GGGCTACGTC 4 GGGCTATCTT 1 GGGCTCACCC 1 GGGCTCACTG 1 GGGCTCACTT 1 GGGCTCCCAG 1 GGGCTCCGGA 1 GGGCTGAACA 1 GGGCTGAATG 1 GGGCTGCCTA 1 GGGCTGCTCT 1 GGGCTGCTTT 1 GGGCTGGATG 1 GGGCTGGCCT 1 GGGCTGGGCC 9 GGGCTGGGGC 1 GGGCTGGGGG 2 GGGCTGGGGT 28 GGGCTGTCTT 1 GGGCTGTTTG 9 GGGCTTACAG 1 GGGCTTATAT 1 GGGCTTCACA 1 GGGCTTGAGG 1 GGGCTTGCAT 1 GGGCTTGGCA 1 GGGCTTGGTA 3 GGGCTTTCCT 1 GGGCTTTGGC 1 GGGCTTTTGA 4 GGGCTTTTTT 1 GGGGAAAATG 1 GGGGAAACCC 1 GGGGAAACCG 1 GGGGAAAGCA 1 GGGGAAAGGG 2 GGGGAAATCA 1 GGGGAAATCG 66 GGGGAAATCT 1 GGGGAAATTG 1 GGGGAACAAA 1 GGGGAACTGG 1 GGGGAAGGAG 1 GGGGAAGGCT 1 GGGGAATCGC 2 GGGGAATTCA 1 GGGGACATCG 1 GGGGACGCTG 1 GGGGACGGCC 1 GGGGACTGAA 12 GGGGACTGAG 1 GGGGACTGCG 1 GGGGACTGGT 4 GGGGAGAGGT 1 GGGGAGCAGA 1 GGGGAGCCGG 1 GGGGAGCTCG 1 GGGGAGGCCC 1 GGGGAGGGGC 1 GGGGAGGGGG 4 GGGGATAAAA 1 GGGGATAGAG 1 GGGGATCGGT 1 GGGGATGGGG 1 GGGGATTATC 1 GGGGATTTCT 1 GGGGATTTGG 1 GGGGCAAGAA 1 GGGGCACCCG 1 GGGGCAGAGA 1 GGGGCAGGAG 3 GGGGCAGGCC 2 GGGGCAGGGA 1 GGGGCAGGGC 48 GGGGCAGTAG 1 GGGGCCCCAG 1 GGGGCCCCCT 3 GGGGCCCTAC 1 GGGGCCGTCA 1 GGGGCGAGAA 6 GGGGCGCGCA 1 GGGGCGCGCG 1 GGGGCGCGTG 1 GGGGCGGGAT 1 GGGGCGGGCG 1 GGGGCGGGGC 1 GGGGCGGGGT 1 GGGGCTCAGC 2 GGGGCTCCAG 1 GGGGCTCCCC 1 GGGGCTGGGC 1 GGGGCTGGGT 1 GGGGCTGTGG 5 GGGGCTTCCA 1 GGGGCTTCTG 4 GGGGCTTTCT 1 GGGGGAAAAT 1 GGGGGAAAGT 1 GGGGGACCTC 2 GGGGGACGGC 10 GGGGGAGAAG 2 GGGGGAGAAT 1 GGGGGAGGGA 1 GGGGGATCTC 1 GGGGGCAAGC 2 GGGGGCAGGG 2 GGGGGCCTCG 1 GGGGGCGCCT 2 GGGGGCTAAT 1 GGGGGCTGAG 1 GGGGGCTGCT 1 GGGGGGACCG 1 GGGGGGCCCC 1 GGGGGGCGGC 1 GGGGGGGGTC 1 GGGGGGTGGA 3 GGGGGGTGGG 1 GGGGGTAACT 1 GGGGGTCACC 6 GGGGGTGAAG 3 GGGGGTGACG 1 GGGGGTGAGG 1 GGGGGTGGAG 1 GGGGGTGGAT 2 GGGGGTGGGT 1 GGGGTAAGAA 1 GGGGTAGCCG 1 GGGGTAGTGA 1 GGGGTCAAGG 2 GGGGTCACCG 1 GGGGTCAGGG 27 GGGGTCAGGT 1 GGGGTCCACA 1 GGGGTCCCAT 5 GGGGTCCCCC 1 GGGGTCCCTG 1 GGGGTCTGGG 2 GGGGTGAGGG 1 GGGGTGCTGT 1 GGGGTGGGTG 1 GGGGTGTGAG 3 GGGGTGTGCA 1 GGGGTGTGTG 1 GGGGTTGCTG 1 GGGGTTTCTT 1 GGGTAGCTGG 1 GGGTAGGACT 2 GGGTAGGAGG 1 GGGTAGGGGG 1 GGGTAGTGAT 1 GGGTAGTGGG 1 GGGTATCACT 1 GGGTATCCCT 1 GGGTATTGGT 1 GGGTCAAAAG 2 GGGTCAGGAG 1 GGGTCAGTCT 1 GGGTCCCAGG 1 GGGTCCTGGC 1 GGGTCGGTCC 1 GGGTCTCCTG 1 GGGTCTGCCT 1 GGGTCTGGGC 1 GGGTGAAGTG 2 GGGTGATTCT 1 GGGTGCACAC 1 GGGTGCCCAG 1 GGGTGCCCGC 1 GGGTGCTCTG 1 GGGTGCTTGG 4 GGGTGCTTGT 1 GGGTGGAACA 1 GGGTGGACAG 1 GGGTGGCAAG 1 GGGTGGCACA 1 GGGTGGCAGT 2 GGGTGGCTTA 1 GGGTGGGAGG 1 GGGTGGGCAG 1 GGGTGGGGGT 1 GGGTGGGGTT 8 GGGTGGGTAG 1 GGGTGGGTAT 1 GGGTGGGTTG 1 GGGTGGTGTC 1 GGGTGTCGGG 1 GGGTGTCTTA 1 GGGTGTGGTG 4 GGGTGTGTAT 3 GGGTTACACT 1 GGGTTATGTA 1 GGGTTATTGT 1 GGGTTCCCCG 1 GGGTTCGGGA 1 GGGTTGAATC 1 GGGTTGAGTT 1 GGGTTGCAAT 1 GGGTTGCAGG 1 GGGTTGCCAC 1 GGGTTGGCTT 4 GGGTTGGTGT 1 GGGTTGTGAA 1 GGGTTGTGGG 1 GGGTTTATTT 1 GGGTTTCCTC 1 GGGTTTGAAC 5 GGGTTTGATG 1 GGGTTTTTAA 1 GGGTTTTTAT 5 GGGTTTTTGT 1 GGTAAAAATA 1 GGTAAATTGG 1 GGTAACTCAA 1 GGTAACTCGA 1 GGTAACTTAG 1 GGTAAGAATT 1 GGTAATCCGT 3 GGTAATTCTC 1 GGTAATTGCT 1 GGTACAAATA 3 GGTACACTGC 2 GGTACAGTAG 1 GGTACCACAC 1 GGTACCATTG 1 GGTACCCATT 2 GGTACCCGGA 1 GGTACTCGAT 1 GGTACTGTGC 1 GGTAGAACGC 1 GGTAGAGTTT 1 GGTAGCCCAC 3 GGTAGCCTGG 6 GGTAGCGGGG 1 GGTAGCTCAG 1 GGTAGCTCCT 1 GGTAGCTTGA 1 GGTAGGAACC 1 GGTAGGATTA 1 GGTATAACCA 1 GGTATACCAC 1 GGTATATTCG 1 GGTATCCGCC 1 GGTATGACAT 2 GGTATGGCAG 1 GGTATTGGTG 1 GGTCAAAGGA 1 GGTCAAATCA 2 GGTCAATTTC 2 GGTCACACTA 4 GGTCACGCTT 1 GGTCACTGCT 1 GGTCACTTTT 4 GGTCAGAAAC 1 GGTCAGAGAA 1 GGTCAGAGGA 1 GGTCAGCTGG 1 GGTCAGTCGG 11 GGTCCAAAAT 1 GGTCCAATGT 1 GGTCCAGCAT 4 GGTCCAGGGC 1 GGTCCAGTGG 1 GGTCCAGTGT 7 GGTCCATTAG 1 GGTCCCCCGC 1 GGTCCCCTGC 1 GGTCCCGTTC 1 GGTCCCTCTC 2 GGTCCCTGCG 1 GGTCCGCTCC 1 GGTCCTCTCT 16 GGTCCTGCCT 1 GGTCCTGGAA 1 GGTCCTGTCC 1 GGTCCTGTTC 1 GGTCCTTGGT 2 GGTCGCACTA 1 GGTCGGCCTG 1 GGTCGTCTAT 1 GGTCGTGACC 1 GGTCTCCAGG 1 GGTCTCCTTG 1 GGTCTCTAAG 1 GGTCTCTCTC 1 GGTCTGCCAC 1 GGTCTGCTGG 1 GGTCTGGAAA 1 GGTCTGGATT 1 GGTCTGGGCT 1 GGTCTTCATT 1 GGTCTTCTAG 1 GGTCTTGCTT 1 GGTCTTTTTT 1 GGTGAAACCC 2 GGTGAAAGTG 2 GGTGAACCCC 1 GGTGAAGAGG 16 GGTGAAGGCA 1 GGTGACAAAG 2 GGTGACAAGA 1 GGTGACAGAG 9 GGTGACAGAT 1 GGTGACAGCA 2 GGTGACAGTG 1 GGTGACCCCC 1 GGTGACCGTC 1 GGTGACTCTT 3 GGTGAGACAC 2 GGTGAGACCT 7 GGTGAGCTAC 1 GGTGAGGGAG 1 GGTGAGGGCT 1 GGTGAGTAAT 1 GGTGATAGAG 1 GGTGATCCCA 1 GGTGATGAGA 1 GGTGATGAGG 7 GGTGATGGAG 1 GGTGATTGTG 1 GGTGCAAAAG 1 GGTGCACCCG 2 GGTGCCAGGA 1 GGTGCCCAGT 2 GGTGCTCACG 1 GGTGCTCCAG 1 GGTGCTGGAG 3 GGTGGAAACT 1 GGTGGAAATG 1 GGTGGAATCT 1 GGTGGAGATG 1 GGTGGAGCAA 1 GGTGGAGGAG 1 GGTGGAGGCA 1 GGTGGATCAC 1 GGTGGATGTG 1 GGTGGCACCA 1 GGTGGCACTC 13 GGTGGCAGAG 3 GGTGGCCCCC 1 GGTGGCCCGG 10 GGTGGCGCTG 1 GGTGGCGGAG 1 GGTGGCGGGC 2 GGTGGCGTCT 1 GGTGGCGTGC 1 GGTGGCTTTG 2 GGTGGGAACA 7 GGTGGGAATG 2 GGTGGGACAA 2 GGTGGGACCA 1 GGTGGGCCCA 1 GGTGGGCCCT 2 GGTGGGGCAG 1 GGTGGGTTAA 1 GGTGGTCACT 1 GGTGGTCTGG 1 GGTGGTGGGC 2 GGTGGTGGTG 1 GGTGGTGTCT 12 GGTGGTTATG 1 GGTGGTTGCT 1 GGTGGTTGTG 1 GGTGTAAATC 1 GGTGTATATG 3 GGTGTCACCA 1 GGTGTCCCCA 2 GGTGTCCTGC 1 GGTGTCTCAG 1 GGTGTCTCTT 1 GGTGTCTGTG 4 GGTGTGGAAG 2 GGTGTGGGAG 1 GGTGTGGGTG 2 GGTGTTGAGA 1 GGTTAAGAGC 4 GGTTAAGGCA 1 GGTTAATAAA 1 GGTTACAGTA 1 GGTTACAGTC 1 GGTTACCTGG 1 GGTTACTGAG 1 GGTTAGCAGG 1 GGTTAGTGTC 1 GGTTAGTTGA 1 GGTTATCTGG 1 GGTTATCTGT 2 GGTTCAAAAT 1 GGTTCATCTT 1 GGTTCCACCT 1 GGTTCCCCAG 1 GGTTCCCGAA 1 GGTTCCTAAT 1 GGTTCTCAAC 2 GGTTCTCAGC 1 GGTTCTGATG 1 GGTTCTGGGT 1 GGTTCTGTGG 1 GGTTCTTCCC 1 GGTTGAGGCA 1 GGTTGAGTGT 2 GGTTGATCAC 1 GGTTGCTCAT 3 GGTTGGACAG 1 GGTTGGACTT 1 GGTTGGATTT 1 GGTTGGCAGT 1 GGTTGGGGAA 1 GGTTGGGGTG 3 GGTTGGGTAG 2 GGTTGGTGTT 1 GGTTGTAATT 1 GGTTGTGTCT 1 GGTTGTTGAG 1 GGTTGTTTTT 1 GGTTTAGAAA 1 GGTTTATTTG 1 GGTTTCAACT 1 GGTTTCAAGG 1 GGTTTCCCAG 1 GGTTTGATTA 1 GGTTTGGCTT 11 GGTTTGGGCC 1 GGTTTGTAAT 1 GGTTTGTCCC 1 GGTTTGTGGA 1 GGTTTGTGTG 3 GGTTTGTTTG 1 GGTTTTAGTT 1 GGTTTTTCTA 1 GTAAAAAAAA 3 GTAAAAAAGC 1 GTAAAAAGGC 1 GTAAAACAGA 1 GTAAAACAGG 2 GTAAAACATA 1 GTAAAACCAA 1 GTAAAACCAC 1 GTAAAACCCA 1 GTAAAACCCC 11 GTAAAACCCG 1 GTAAAACCCT 11 GTAAAACCTC 1 GTAAAACCTG 1 GTAAAACTGA 1 GTAAAAGAAA 1 GTAAAAGTGA 1 GTAAAAGTGG 1 GTAAAAGTTC 1 GTAAAATTGC 1 GTAAACACAG 1 GTAAACACTC 1 GTAAACCAAG 3 GTAAACCCCA 2 GTAAACCCCG 2 GTAAACTAGC 1 GTAAAGAAGC 1 GTAAAGAATT 1 GTAAAGATGA 1 GTAAAGCAGA 1 GTAAAGGCAG 1 GTAAAGTGTG 1 GTAAATGATT 1 GTAAATGGCA 1 GTAAATTTGG 1 GTAACAAAAT 1 GTAACAAATG 1 GTAACAAGAG 1 GTAACAAGCT 1 GTAACACCAT 1 GTAACATCCT 1 GTAACCACCA 1 GTAACCAGGC 1 GTAACCCCCA 1 GTAACCCTGC 1 GTAACGGGCA 1 GTAACTGCCA 1 GTAAGACAAC 1 GTAAGACCCC 2 GTAAGACCCT 2 GTAAGACCTA 1 GTAAGACTTC 2 GTAAGAGCAC 1 GTAAGATGTA 1 GTAAGATTTG 1 GTAAGCGATC 1 GTAAGGATCA 1 GTAAGGCAAC 3 GTAAGGGTAC 1 GTAAGTAAGT 1 GTAAGTAGAC 1 GTAAGTGACT 1 GTAAGTGTAC 44 GTAAGTTCCC 2 GTAATAAAAC 1 GTAATAAACA 1 GTAATATTTG 1 GTAATCCTGC 21 GTAATCTCCA 1 GTAATCTTAT 1 GTAATGACCT 1 GTAATGAGCC 1 GTAATGATTC 1 GTAATGTGTG 2 GTAATTATTG 1 GTAATTCACG 1 GTAATTCCAT 1 GTAATTCCTA 1 GTAATTCGTA 1 GTAATTTAAA 3 GTAATTTGAA 1 GTACAAGGAA 1 GTACAAGGAC 1 GTACACCACA 1 GTACACCCCA 1 GTACAGGCAC 1 GTACAGTTTA 1 GTACATCCTT 2 GTACCACGGG 2 GTACCACTGC 1 GTACCAGACC 1 GTACCATAGT 1 GTACCATCAC 1 GTACCCAGGT 1 GTACCCGCAC 1 GTACCCGGAC 1 GTACCGAGGG 1 GTACCGCACG 1 GTACCTCCCC 1 GTACCTCTCC 1 GTACCTGAGT 1 GTACCTTTTG 1 GTACGAATGG 2 GTACGATCGG 1 GTACGCATTC 1 GTACGCATTT 1 GTACGGGTAC 1 GTACGTCCCA 4 GTACGTCTGG 4 GTACTCCACT 1 GTACTCCAGC 1 GTACTCTACT 1 GTACTGAATT 1 GTACTGCCAA 1 GTACTGGAAT 1 GTACTGGAGG 2 GTACTGGATG 1 GTACTGGGTA 1 GTACTGGTAC 4 GTACTGGTTT 1 GTACTGTAAG 1 GTACTGTAAT 1 GTACTGTAGC 5 GTACTGTATG 3 GTACTGTGAC 1 GTACTGTGGC 19 GTACTTACCT 1 GTACTTCAGC 1 GTACTTCATT 1 GTACTTGGTG 1 GTACTTTTCA 1 GTAGAAAAGG 1 GTAGAACCCC 2 GTAGAAGAAA 1 GTAGACAATG 1 GTAGACATCA 2 GTAGACTCAC 2 GTAGACTCTT 4 GTAGACTGGG 1 GTAGACTTGT 1 GTAGAGCAGT 1 GTAGAGCCAC 1 GTAGAGCTGG 1 GTAGAGGTGG 1 GTAGATTATG 1 GTAGCACGTG 1 GTAGCAGGCA 1 GTAGCAGGCG 1 GTAGCAGGGC 1 GTAGCAGGTC 1 GTAGCAGGTG 24 GTAGCATAAA 3 GTAGCATACA 1 GTAGCATATG 1 GTAGCCTGCA 1 GTAGCGATCG 13 GTAGCGATGG 4 GTAGCGCACA 2 GTAGCGCACG 8 GTAGCGGAAG 1 GTAGCGGATG 1 GTAGCGGGCA 1 GTAGCGGGTG 1 GTAGCGTGCA 1 GTAGCTCACA 1 GTAGCTCACG 1 GTAGCTCACT 1 GTAGCTGACA 1 GTAGCTTCCT 1 GTAGCTTGAA 2 GTAGCTTGGA 2 GTAGGAAAGC 1 GTAGGAAGAC 1 GTAGGAAGTT 1 GTAGGACCCC 1 GTAGGAGCTG 1 GTAGGAGGCA 1 GTAGGCCCTG 1 GTAGGCCGGG 1 GTAGGGCATT 1 GTAGGGGCCT 1 GTAGGGGTAA 7 GTAGGTAAAC 1 GTAGGTCGAT 1 GTAGGTGAGG 1 GTAGGTGCCC 1 GTAGGTGTAC 1 GTAGTACTTG 1 GTAGTATACA 1 GTAGTATGCT 1 GTAGTCCAAA 1 GTAGTGAGTG 1 GTAGTGATCA 1 GTAGTGCACA 3 GTAGTGCATA 1 GTAGTGCGTG 1 GTAGTGCTCG 1 GTAGTGGGCA 1 GTAGTGGGCG 1 GTAGTGGGTG 2 GTAGTGTGTA 1 GTAGTTCACG 2 GTAGTTCTGG 1 GTAGTTGGGA 1 GTAGTTTGCT 1 GTATAAAACT 1 GTATAACGCC 1 GTATAATAGC 1 GTATAATTAA 1 GTATACAACA 3 GTATAGCCCC 1 GTATAGTCAT 1 GTATAGTCTG 1 GTATATACAA 1 GTATATAGAA 1 GTATATGAAG 1 GTATCACCAC 1 GTATCCTTCA 1 GTATCTTCAC 1 GTATGACACT 1 GTATGACCCC 1 GTATGAGGTG 7 GTATGAGTAG 7 GTATGCACAT 1 GTATGCGCCT 1 GTATGGCTAG 1 GTATGGGGGG 1 GTATGTACAG 1 GTATGTGATA 1 GTATGTTGCC 1 GTATGTTTTA 1 GTATTACTTG 1 GTATTAGGTT 2 GTATTATTCT 1 GTATTCCCCT 5 GTATTCCTAA 1 GTATTCTCTT 1 GTATTGGCCT 11 GTATTGGGGC 5 GTATTGGTGA 4 GTATTTAACA 4 GTATTTAGTA 1 GTATTTATCA 1 GTATTTGCAA 2 GTATTTGGTA 1 GTATTTTTCC 1 GTCAAAAAAA 1 GTCAAATCCA 1 GTCAAATTTT 1 GTCAACAGTA 5 GTCAACATTT 1 GTCAAGAATC 1 GTCAAGACCA 4 GTCAAGAGAA 1 GTCAAGCCAC 1 GTCAAGTAGG 1 GTCAAGTATT 1 GTCAAGTGCC 1 GTCAAGTTCC 1 GTCAATCTAA 1 GTCAATCTCC 1 GTCAATGAGC 1 GTCAATGTCT 1 GTCACAACCT 3 GTCACACACA 1 GTCACACCAC 2 GTCACACCTG 1 GTCACACTCA 1 GTCACACTGG 1 GTCACAGGAA 6 GTCACAGTAG 1 GTCACAGTCC 2 GTCACATATA 1 GTCACCAAAA 1 GTCACCCCCA 2 GTCACCGTTG 1 GTCACGGTGG 1 GTCACGTGTA 1 GTCACTCATA 1 GTCACTCTCC 1 GTCACTCTGA 1 GTCACTGCAC 1 GTCACTGCCT 1 GTCACTGGGA 1 GTCAGAATGG 2 GTCAGAGACA 1 GTCAGAGAGC 1 GTCAGAGGTC 1 GTCAGAGTCC 1 GTCAGATGGC 1 GTCAGATTAG 1 GTCAGATTTG 1 GTCAGCACCC 1 GTCAGCCTGG 1 GTCAGCTGCT 5 GTCAGGAGAT 2 GTCAGGATGG 1 GTCAGGCCTC 2 GTCAGGCGTG 1 GTCAGGGACC 1 GTCAGGGCCA 1 GTCAGGGCTT 1 GTCAGGGGTG 2 GTCAGGTATT 4 GTCAGGTTGA 2 GTCAGTAGTA 1 GTCAGTCACT 1 GTCAGTGGGC 1 GTCATAGCTC 1 GTCATAGCTG 2 GTCATAGGCA 1 GTCATATGCC 1 GTCATCACCA 35 GTCATCACTG 2 GTCATCAGGT 1 GTCATCCCAC 1 GTCATCCGCC 1 GTCATCCGGG 1 GTCATCGCCA 1 GTCATCTTGA 1 GTCATTATGC 2 GTCATTCTGC 1 GTCATTGACT 1 GTCATTGCCA 1 GTCATTGTGG 1 GTCATTTGCC 1 GTCATTTGGG 1 GTCCAAATTT 1 GTCCAACTTA 1 GTCCAACTTT 1 GTCCAATAAT 1 GTCCACGTTG 1 GTCCAGGGCC 1 GTCCAGGTCA 1 GTCCAGTGGC 1 GTCCATCATA 2 GTCCCAAAAT 1 GTCCCAACAC 1 GTCCCATCCC 1 GTCCCATTCA 1 GTCCCCCAGT 1 GTCCCCTCCC 1 GTCCCGGGCA 2 GTCCCTCCAC 1 GTCCGAGTGC 17 GTCCGGTGGT 2 GTCCTAAGAG 1 GTCCTAGAAA 1 GTCCTAGATT 1 GTCCTCAACT 1 GTCCTCCATA 1 GTCCTCCCTT 1 GTCCTCTCCC 1 GTCCTGAACA 7 GTCCTGAACC 1 GTCCTGACAA 1 GTCCTGGAGG 2 GTCCTGGCAT 1 GTCCTGGCCC 1 GTCCTGGCTC 1 GTCCTGTAGC 1 GTCCTTATTT 1 GTCCTTCAAG 1 GTCCTTCTGG 1 GTCCTTTCTG 6 GTCGATATGC 1 GTCGCAAAAC 1 GTCGCAGGCA 1 GTCGGGACAG 1 GTCGGGGGTT 1 GTCGTCTAGA 1 GTCGTGACAG 1 GTCGTGGGTG 1 GTCGTGTGTT 1 GTCTAATGAA 1 GTCTACAATT 1 GTCTACCTGA 2 GTCTACTCCT 1 GTCTAGAATC 1 GTCTAGTCAA 1 GTCTATGGAA 1 GTCTCAAACA 1 GTCTCACGTG 1 GTCTCAGCCC 1 GTCTCAGCTG 1 GTCTCAGTAT 1 GTCTCAGTCC 1 GTCTCATTTG 5 GTCTCCAAAG 1 GTCTCCCGGC 1 GTCTCCGCTG 1 GTCTCCGGGA 1 GTCTCCGGGG 1 GTCTCCTAAT 9 GTCTCGCCAC 1 GTCTCTCCCT 1 GTCTCTCTAA 1 GTCTCTCTCC 1 GTCTCTCTGG 1 GTCTCTGCAT 1 GTCTCTGCTG 2 GTCTCTGCTT 1 GTCTCTGTCC 1 GTCTCTTTGG 4 GTCTGAAGAG 1 GTCTGAAGCT 1 GTCTGACCCC 6 GTCTGAGCTC 11 GTCTGAGGAA 1 GTCTGAGTTT 1 GTCTGATACT 1 GTCTGATTTC 1 GTCTGCACCT 11 GTCTGCATCC 1 GTCTGCCCTC 1 GTCTGCGTGC 5 GTCTGCTCTT 1 GTCTGGCCAT 1 GTCTGGGCTT 2 GTCTGGGGCT 27 GTCTGGGGGA 27 GTCTGGGGTT 1 GTCTGGGTCC 1 GTCTGGGTGA 1 GTCTGGGTTG 2 GTCTGGTTAA 1 GTCTGTAGTC 1 GTCTGTCGAA 1 GTCTGTGAAA 1 GTCTGTGGTC 1 GTCTTAACTC 2 GTCTTACTGG 1 GTCTTACTTT 1 GTCTTCACAT 1 GTCTTCCTCG 1 GTCTTCGCTG 1 GTCTTCGGAG 1 GTCTTCTTCC 1 GTCTTGCCTT 1 GTCTTGGATG 1 GTCTTGGGCT 1 GTCTTGTAAA 1 GTCTTTACTC 1 GTCTTTAGGA 1 GTCTTTCCCC 1 GTCTTTCTAA 1 GTCTTTCTGG 4 GTCTTTGGGA 1 GTCTTTTAAC 1 GTGAAAACCA 2 GTGAAAACCC 5 GTGAAAACCT 3 GTGAAAACTC 1 GTGAAAAGCG 1 GTGAAAATCC 1 GTGAAAATCT 1 GTGAAAATTT 1 GTGAAACACA 1 GTGAAACACC 4 GTGAAACACT 2 GTGAAACCAC 5 GTGAAACCAT 1 GTGAAACCCA 12 GTGAAACCCC 359 GTGAAACCCG 15 GTGAAACCCT 188 GTGAAACCGC 3 GTGAAACCGT 3 GTGAAACCTA 1 GTGAAACCTC 42 GTGAAACCTG 3 GTGAAACCTT 7 GTGAAACGCA 1 GTGAAACGCC 8 GTGAAACGCT 4 GTGAAACGTC 1 GTGAAACGTT 1 GTGAAACTCC 18 GTGAAACTCG 2 GTGAAACTCT 10 GTGAAACTGC 3 GTGAAAGACG 1 GTGAAAGCCC 8 GTGAAAGGCC 1 GTGAAAGGGT 1 GTGAAAGTTC 1 GTGAAATCAC 1 GTGAAATCCA 1 GTGAAATCCC 16 GTGAAATCCT 8 GTGAAATCGC 1 GTGAAATCGG 1 GTGAAATCTC 1 GTGAAATGCC 5 GTGAAATGCT 1 GTGAAATTCT 1 GTGAACAACT 1 GTGAACACAG 1 GTGAACATAT 1 GTGAACCCAT 2 GTGAACCCCA 2 GTGAACCCCC 3 GTGAACCCCG 5 GTGAACCCCT 2 GTGAACCCTC 1 GTGAACCCTG 2 GTGAACCCTT 1 GTGAACCTCC 1 GTGAACCTTC 1 GTGAACTCCC 1 GTGAACTCCG 1 GTGAACTCGG 1 GTGAACTCTG 1 GTGAACTGCT 1 GTGAACTGGC 1 GTGAAGACCT 1 GTGAAGACTC 1 GTGAAGATGA 1 GTGAAGATGC 1 GTGAAGCCAG 1 GTGAAGCCCC 2 GTGAAGCCCG 1 GTGAAGCCCT 4 GTGAAGCCTT 1 GTGAAGCGCC 1 GTGAAGCTCA 1 GTGAAGCTCC 2 GTGAAGCTGA 3 GTGAAGGCAG 12 GTGAAGGCTG 2 GTGAAGTCCG 1 GTGAAGTCCT 1 GTGAAGTGCG 1 GTGAAGTTGC 1 GTGAATAGGA 1 GTGAATCACC 1 GTGAATCCCC 4 GTGAATCCCG 1 GTGAATCCCT 1 GTGAATCCTC 1 GTGAATCCTG 1 GTGAATGACG 1 GTGAATGCCA 1 GTGAATGTGC 1 GTGACAACAC 7 GTGACAACCC 1 GTGACACACA 1 GTGACACACC 1 GTGACACACT 1 GTGACACCCT 1 GTGACACCGC 1 GTGACACGCA 1 GTGACACGTA 2 GTGACACTCG 2 GTGACACTTG 1 GTGACAGAAG 9 GTGACAGAAT 14 GTGACAGACA 1 GTGACAGAGT 1 GTGACAGGCA 1 GTGACATATG 1 GTGACCAACA 1 GTGACCACGA 1 GTGACCACGG 294 GTGACCACGT 1 GTGACCATAA 2 GTGACCCACG 1 GTGACCCCAG 1 GTGACCCCCA 1 GTGACCCGGG 1 GTGACCGCGG 2 GTGACCGTTT 1 GTGACCTCCT 24 GTGACCTCGT 1 GTGACGCCCA 1 GTGACGCGCA 1 GTGACGCGGG 1 GTGACGCTTT 1 GTGACGGAAG 1 GTGACGGCGT 1 GTGACGGGCG 1 GTGACGTGCA 2 GTGACTCACA 1 GTGACTCACG 4 GTGACTCACT 1 GTGACTCTGC 1 GTGACTGCCA 1 GTGACTTATG 2 GTGAGAAATT 1 GTGAGAACCC 1 GTGAGAACCT 1 GTGAGAAGCT 1 GTGAGAATGA 1 GTGAGACACT 1 GTGAGACCCA 1 GTGAGACCCC 16 GTGAGACCCG 1 GTGAGACCCT 7 GTGAGACCTC 2 GTGAGACCTG 1 GTGAGACCTT 2 GTGAGACTCA 1 GTGAGACTCC 2 GTGAGACTCT 2 GTGAGAGCAG 1 GTGAGCAAAG 1 GTGAGCAAGA 3 GTGAGCAATT 1 GTGAGCAGTG 1 GTGAGCCAGT 1 GTGAGCCCAT 6 GTGAGCCCCT 1 GTGAGCTCTC 2 GTGAGCTGGG 1 GTGAGGCCCC 1 GTGAGGCCCT 1 GTGAGGGCAA 1 GTGAGGGCTA 1 GTGAGGTGAT 1 GTGAGGTGGA 1 GTGAGTATTT 1 GTGAGTCACG 3 GTGAGTGCCC 2 GTGAGTGTGT 1 GTGAGTTGCT 1 GTGATAAAGG 3 GTGATAAGGA 1 GTGATAATTG 1 GTGATACACC 1 GTGATACCCT 1 GTGATACGTT 2 GTGATAGCCT 1 GTGATAGTTC 1 GTGATATCCA 1 GTGATCAGTG 1 GTGATCATTA 5 GTGATCCTGT 1 GTGATCTCCG 5 GTGATCTCCT 1 GTGATCTTAA 1 GTGATGAGCT 8 GTGATGATGA 1 GTGATGCACA 3 GTGATGCACG 2 GTGATGCCCG 1 GTGATGCCTT 1 GTGATGCGCA 6 GTGATGCGCG 2 GTGATGGAGC 1 GTGATGGGCG 1 GTGATGGGGG 4 GTGATGGGTG 1 GTGATGGTCA 1 GTGATGGTGC 1 GTGATGGTGT 6 GTGATGTACG 1 GTGATGTCTC 1 GTGATGTGGC 1 GTGATTAGGT 1 GTGATTGTGT 1 GTGATTGTTC 4 GTGATTTTTG 1 GTGCAAAATG 1 GTGCAACTCC 1 GTGCAAGAAA 1 GTGCACACCT 1 GTGCACACGT 1 GTGCACCGAG 1 GTGCACCTGC 1 GTGCACTGAC 1 GTGCACTGAG 118 GTGCAGAAAA 1 GTGCAGCACG 1 GTGCAGCTCC 1 GTGCAGGCTC 6 GTGCAGGCTT 1 GTGCAGGGAA 1 GTGCAGGGAG 6 GTGCAGGTCA 1 GTGCAGGTCT 7 GTGCAGTACC 1 GTGCAGTCCT 3 GTGCAGTGAG 3 GTGCAGTTAG 1 GTGCATCCCG 5 GTGCATCCGA 1 GTGCATTCCG 1 GTGCATTTCA 1 GTGCATTTCG 1 GTGCCAAGCA 1 GTGCCAATGG 1 GTGCCACACA 1 GTGCCACCAC 1 GTGCCACCTA 1 GTGCCACTGC 3 GTGCCAGAGA 1 GTGCCAGCCC 1 GTGCCAGCCT 2 GTGCCAGGCA 1 GTGCCAGTGC 1 GTGCCATATG 2 GTGCCATATT 2 GTGCCCAGGC 1 GTGCCCAGTT 1 GTGCCCATTG 1 GTGCCCCGTG 1 GTGCCCGCCG 2 GTGCCCGGGG 1 GTGCCCGTGC 1 GTGCCCTGTT 2 GTGCCCTTTG 1 GTGCCGCACA 1 GTGCCGCAGG 1 GTGCCGGCCC 1 GTGCCGGTGG 1 GTGCCTAGGA 1 GTGCCTCACG 1 GTGCCTGAGA 18 GTGCCTGCAT 2 GTGCCTGGAC 1 GTGCCTGGGC 3 GTGCCTGTAG 2 GTGCCTTGGC 1 GTGCGCAGAG 1 GTGCGCTACT 1 GTGCGCTAGG 18 GTGCGCTGCA 1 GTGCGCTGGA 1 GTGCGGCTGG 1 GTGCGGGCAC 1 GTGCTAAAGA 1 GTGCTAGATT 3 GTGCTATTAT 1 GTGCTATTCT 1 GTGCTCAATG 1 GTGCTCACGC 3 GTGCTCACTA 2 GTGCTCAGAG 1 GTGCTCCTAC 1 GTGCTCTCGC 1 GTGCTCTGAG 2 GTGCTCTGCC 1 GTGCTCTGTA 3 GTGCTGAAAA 1 GTGCTGAACG 1 GTGCTGAATG 96 GTGCTGAGGC 1 GTGCTGATAT 1 GTGCTGATGA 1 GTGCTGCACA 2 GTGCTGCGTG 1 GTGCTGGACC 16 GTGCTGGAGA 4 GTGCTGGCTC 5 GTGCTGGTCC 1 GTGCTGTATG 1 GTGCTGTTGC 2 GTGCTGTTTG 1 GTGCTGTTTT 1 GTGCTTCAGT 1 GTGCTTCTTA 1 GTGCTTGTAC 4 GTGCTTTACG 1 GTGGAAAATC 3 GTGGAAAGTC 1 GTGGAACAAA 1 GTGGAACACA 1 GTGGAACACC 1 GTGGAACCCC 7 GTGGAACCCT 3 GTGGAACCTT 1 GTGGAAGAAG 1 GTGGAAGAAT 1 GTGGAATATG 1 GTGGAATGCT 1 GTGGACAAGC 1 GTGGACACAC 1 GTGGACACGC 1 GTGGACATTA 1 GTGGACCCCA 1 GTGGACCCTG 1 GTGGACCTCC 1 GTGGACTTTT 1 GTGGAGAGTG 2 GTGGAGCACA 1 GTGGAGCACG 1 GTGGAGCATC 1 GTGGAGCCAT 1 GTGGAGCGCA 1 GTGGAGCGGG 1 GTGGAGCGTG 1 GTGGAGGACG 1 GTGGAGGCCA 1 GTGGAGGGCA 2 GTGGAGGGCG 1 GTGGAGGGGC 2 GTGGAGGGTG 1 GTGGAGGTGC 3 GTGGAGTCTG 1 GTGGAGTGCA 1 GTGGAGTTCC 2 GTGGAGTTTG 1 GTGGATAAGC 2 GTGGATAGGG 1 GTGGATATGG 1 GTGGATCACA 1 GTGGATGCTG 1 GTGGATGGAC 1 GTGGATGGAT 1 GTGGATGGCC 1 GTGGATGTGC 1 GTGGATTAGC 1 GTGGCAAACA 1 GTGGCAAACG 1 GTGGCAAAGA 1 GTGGCAAGCA 2 GTGGCAAGTG 2 GTGGCAATCA 1 GTGGCACAAG 1 GTGGCACACA 17 GTGGCACACC 1 GTGGCACACG 34 GTGGCACACT 3 GTGGCACAGA 1 GTGGCACAGG 7 GTGGCACATA 2 GTGGCACCCA 1 GTGGCACCTC 1 GTGGCACCTG 5 GTGGCACGAG 3 GTGGCACGCA 13 GTGGCACGCG 12 GTGGCACGTG 20 GTGGCACTCA 1 GTGGCACTCC 1 GTGGCACTTG 1 GTGGCAGAAA 1 GTGGCAGACA 1 GTGGCAGACG 3 GTGGCAGACT 1 GTGGCAGAGC 2 GTGGCAGATG 8 GTGGCAGCCA 3 GTGGCAGGAG 3 GTGGCAGGCA 44 GTGGCAGGCC 1 GTGGCAGGCG 38 GTGGCAGGCT 3 GTGGCAGGGA 1 GTGGCAGGTA 3 GTGGCAGGTG 35 GTGGCAGTGG 4 GTGGCATACA 1 GTGGCATACC 1 GTGGCATACG 1 GTGGCATACT 1 GTGGCATAGC 2 GTGGCATATG 2 GTGGCATCAC 3 GTGGCATCCG 1 GTGGCATTCA 1 GTGGCCACGG 7 GTGGCCAGAG 4 GTGGCCATAC 1 GTGGCCATTG 1 GTGGCCCACA 3 GTGGCCCACG 2 GTGGCCCACT 1 GTGGCCCCTG 1 GTGGCCCGCA 2 GTGGCCCTCG 1 GTGGCCCTGC 1 GTGGCCGGCA 1 GTGGCCTACT 1 GTGGCCTGCA 4 GTGGCCTGCG 1 GTGGCCTGTA 1 GTGGCCTGTG 1 GTGGCGAATG 1 GTGGCGACAC 2 GTGGCGAGCA 1 GTGGCGAGCG 4 GTGGCGAGTG 1 GTGGCGCAAG 1 GTGGCGCACA 21 GTGGCGCACG 12 GTGGCGCACT 2 GTGGCGCAGG 3 GTGGCGCATC 1 GTGGCGCCCT 1 GTGGCGCCTG 1 GTGGCGCGCA 4 GTGGCGCGCC 1 GTGGCGCGCG 8 GTGGCGCGCT 1 GTGGCGCGTG 11 GTGGCGCTCA 1 GTGGCGCTCG 1 GTGGCGCTGA 1 GTGGCGGACA 1 GTGGCGGACG 5 GTGGCGGATG 4 GTGGCGGCCA 1 GTGGCGGCCG 1 GTGGCGGCGA 1 GTGGCGGCGG 4 GTGGCGGCTA 1 GTGGCGGCTG 1 GTGGCGGGAA 3 GTGGCGGGAG 3 GTGGCGGGCA 31 GTGGCGGGCC 1 GTGGCGGGCG 36 GTGGCGGGCT 1 GTGGCGGGGG 2 GTGGCGGGGT 1 GTGGCGGGTG 33 GTGGCGGTCA 2 GTGGCGGTCG 1 GTGGCGGTGG 1 GTGGCGGTTG 1 GTGGCGTACA 2 GTGGCGTCCC 1 GTGGCGTGAG 2 GTGGCGTGCA 19 GTGGCGTGCG 4 GTGGCGTGGG 1 GTGGCGTGGT 1 GTGGCGTGTA 1 GTGGCGTGTG 25 GTGGCGTTGC 1 GTGGCGTTTG 1 GTGGCTAACG 1 GTGGCTCAAG 1 GTGGCTCACA 33 GTGGCTCACC 1 GTGGCTCACG 38 GTGGCTCACT 2 GTGGCTCAGA 1 GTGGCTCAGG 2 GTGGCTCATA 3 GTGGCTCCCA 2 GTGGCTCCCT 1 GTGGCTCCTG 2 GTGGCTCGCG 2 GTGGCTCGTG 3 GTGGCTCTAT 2 GTGGCTCTCA 1 GTGGCTGAGA 1 GTGGCTGAGC 2 GTGGCTGAGG 3 GTGGCTGATG 1 GTGGCTGCTG 2 GTGGCTGGCA 3 GTGGCTGGTA 1 GTGGCTGGTG 1 GTGGCTTACA 1 GTGGCTTACT 1 GTGGCTTATG 3 GTGGCTTGAG 2 GTGGCTTGTG 2 GTGGGAAGTG 1 GTGGGAATGT 1 GTGGGACACA 1 GTGGGACCCT 1 GTGGGACGTG 1 GTGGGAGACC 2 GTGGGAGACG 1 GTGGGAGGCA 1 GTGGGAGGCG 1 GTGGGAGGGG 3 GTGGGAGTTC 1 GTGGGCACAC 1 GTGGGCACCT 1 GTGGGCAGCT 2 GTGGGCAGGC 1 GTGGGCAGTT 1 GTGGGCATAT 1 GTGGGCCAGG 1 GTGGGCCCCC 1 GTGGGCCCCT 1 GTGGGCCGCT 1 GTGGGCCTTT 1 GTGGGCGCCA 1 GTGGGCGCCT 2 GTGGGCGGCA 1 GTGGGCTCAC 1 GTGGGCTCGT 1 GTGGGGAGTA 1 GTGGGGCACA 1 GTGGGGCACC 1 GTGGGGCGTG 2 GTGGGGCTAG 2 GTGGGGGATG 1 GTGGGGGCGC 5 GTGGGGGCTG 1 GTGGGGGGAG 1 GTGGGGGGAT 1 GTGGGGGGGA 1 GTGGGGGGTG 1 GTGGGGTACC 1 GTGGGGTGAC 1 GTGGGGTGCA 1 GTGGGGTGGG 1 GTGGGTCACA 1 GTGGGTCACC 1 GTGGGTCAGC 2 GTGGGTCCTG 4 GTGGGTGCCC 1 GTGGGTGTCC 2 GTGGGTGTGC 1 GTGGGTTATC 1 GTGGGTTGAT 1 GTGGGTTGGC 11 GTGGTACACA 2 GTGGTACACG 3 GTGGTACAGG 8 GTGGTACATA 1 GTGGTACCCA 1 GTGGTACGCA 1 GTGGTACGTG 1 GTGGTACTTT 1 GTGGTAGGCC 1 GTGGTAGGCG 2 GTGGTAGGTG 2 GTGGTAGTAC 1 GTGGTATGCA 3 GTGGTATGCC 1 GTGGTATGGC 1 GTGGTATGTA 1 GTGGTATGTG 1 GTGGTCACCC 1 GTGGTCACCT 1 GTGGTCAGCA 1 GTGGTCATTC 1 GTGGTCGCGC 1 GTGGTCGGCA 2 GTGGTCGGTG 1 GTGGTCTCGT 1 GTGGTCTGAG 1 GTGGTCTGCT 3 GTGGTGAACA 1 GTGGTGAACG 2 GTGGTGACAG 1 GTGGTGACCC 1 GTGGTGACGC 1 GTGGTGAGAG 1 GTGGTGAGCA 5 GTGGTGAGCG 3 GTGGTGAGTG 2 GTGGTGATGT 4 GTGGTGCAAC 1 GTGGTGCAAG 1 GTGGTGCACA 32 GTGGTGCACC 3 GTGGTGCACG 21 GTGGTGCATA 1 GTGGTGCCTG 4 GTGGTGCCTT 1 GTGGTGCGAC 1 GTGGTGCGCA 9 GTGGTGCGCC 3 GTGGTGCGCG 8 GTGGTGCGCT 1 GTGGTGCGGG 2 GTGGTGCGTA 3 GTGGTGCGTG 11 GTGGTGCGTT 1 GTGGTGCTTG 1 GTGGTGCTTT 1 GTGGTGGAAC 1 GTGGTGGACA 1 GTGGTGGACC 1 GTGGTGGACG 3 GTGGTGGAGG 1 GTGGTGGCAG 29 GTGGTGGCCC 1 GTGGTGGCGC 1 GTGGTGGCTG 1 GTGGTGGGAG 2 GTGGTGGGCA 27 GTGGTGGGCC 1 GTGGTGGGCG 25 GTGGTGGGCT 2 GTGGTGGGGG 2 GTGGTGGGTA 1 GTGGTGGGTG 28 GTGGTGGGTT 1 GTGGTGGTAG 1 GTGGTGGTGA 1 GTGGTGGTGC 1 GTGGTGTACG 3 GTGGTGTATG 2 GTGGTGTCTG 1 GTGGTGTGAG 1 GTGGTGTGCA 7 GTGGTGTGCC 3 GTGGTGTGCG 5 GTGGTGTGCT 1 GTGGTGTGGC 1 GTGGTGTGGG 2 GTGGTGTGTA 1 GTGGTGTGTG 21 GTGGTGTGTT 1 GTGGTTCACA 6 GTGGTTCACG 4 GTGGTTCAGG 1 GTGGTTCGTG 1 GTGGTTCTCT 1 GTGGTTGGCG 1 GTGGTTGGTG 1 GTGGTTGTAC 1 GTGGTTGTTG 2 GTGGTTTGCA 1 GTGGTTTGTG 2 GTGGTTTTGG 1 GTGGTTTTGT 1 GTGTAAATGG 1 GTGTAACCCT 2 GTGTAATAAG 8 GTGTAATGGC 1 GTGTACATTT 1 GTGTACCGGA 3 GTGTAGCAGG 1 GTGTATAAGT 1 GTGTATACTG 1 GTGTATATGT 2 GTGTATCTTT 1 GTGTATTAGG 1 GTGTCACACA 1 GTGTCCACGG 1 GTGTCCCTGT 1 GTGTCCGGCG 1 GTGTCCTCCT 2 GTGTCGAATG 1 GTGTCGCATC 5 GTGTCGCGTG 1 GTGTCTACTG 1 GTGTCTCACG 1 GTGTCTCATC 1 GTGTCTCCCG 4 GTGTCTCGCA 20 GTGTCTGCAG 1 GTGTCTGCCC 1 GTGTCTGTAG 1 GTGTGAAGGT 1 GTGTGAATGT 4 GTGTGACAGG 1 GTGTGAGTGT 1 GTGTGATGCT 1 GTGTGCAAAT 1 GTGTGCACCC 2 GTGTGCAGTA 1 GTGTGCCCTG 1 GTGTGCCTCC 3 GTGTGCTGGC 4 GTGTGCTTGC 2 GTGTGGGAGA 1 GTGTGGGCTG 1 GTGTGGGGCG 1 GTGTGGGGGC 2 GTGTGGGGGG 39 GTGTGGGGTG 3 GTGTGGGTGC 1 GTGTGGTATT 1 GTGTGGTCAC 1 GTGTGGTGGC 1 GTGTGGTGGG 1 GTGTGGTGGT 2 GTGTGTAAAA 3 GTGTGTATAT 1 GTGTGTATTG 1 GTGTGTGGTG 2 GTGTGTGTGC 2 GTGTGTGTGT 3 GTGTTAACCA 6 GTGTTCCCAT 1 GTGTTCCCCA 1 GTGTTCCTGG 1 GTGTTCTGAC 2 GTGTTCTTGG 3 GTGTTGAATT 1 GTGTTGACCT 1 GTGTTGCACA 5 GTGTTGCGCA 1 GTGTTGGCAG 1 GTGTTGGCTT 1 GTGTTGGGCG 1 GTGTTGGGGG 21 GTGTTGGGGT 1 GTGTTGTGCG 1 GTGTTGTGGG 1 GTGTTGTGTG 1 GTGTTTACGT 2 GTGTTTATTT 1 GTGTTTCAGA 1 GTGTTTCTGA 2 GTGTTTGAAT 1 GTGTTTGATT 1 GTGTTTTCTG 1 GTGTTTTTAA 1 GTTAAACCCC 4 GTTAAACCCT 2 GTTAAAGCTC 1 GTTAAATAAC 1 GTTAAATCCT 5 GTTAACACGG 1 GTTAACAGTG 1 GTTAACATAA 1 GTTAACCTCT 1 GTTAACGGCC 2 GTTAACGTCC 8 GTTAACTGGG 1 GTTAAGAGGG 2 GTTAAGATTT 1 GTTAAGGCCA 1 GTTAAGTGCT 1 GTTAATTGCT 5 GTTAATTTTC 1 GTTACCAGAC 1 GTTACCAGCA 1 GTTACTGAGG 1 GTTACTGGTA 1 GTTAGAAGCT 1 GTTAGATTTC 1 GTTAGCCCTA 1 GTTAGGAGCT 1 GTTAGGATTT 1 GTTAGGGTCT 1 GTTAGTAAGA 1 GTTAGTCTTG 1 GTTATAAGAT 1 GTTATAATAA 1 GTTATAATAC 6 GTTATACAAC 1 GTTATACATC 1 GTTATATGCC 2 GTTATCGGCC 1 GTTATCTCAA 1 GTTATGACAT 1 GTTATGATTG 1 GTTATGCAAC 1 GTTATGGAGC 1 GTTATTCCCC 2 GTTATTGAGG 7 GTTATTGCGT 1 GTTATTTAGA 1 GTTATTTGCC 1 GTTATTTGGG 1 GTTATTTTTC 2 GTTCAAAATA 1 GTTCAAATGT 2 GTTCAACTTT 1 GTTCAAGATG 9 GTTCAAGCTC 1 GTTCAATCCC 8 GTTCAATCGG 1 GTTCAATGGC 1 GTTCACATTA 1 GTTCACCATC 1 GTTCACTCTA 1 GTTCACTGCT 2 GTTCAGCAAT 1 GTTCAGCTCT 11 GTTCAGCTGT 11 GTTCAGCTTT 1 GTTCATTTGT 1 GTTCCAAAAA 2 GTTCCAACAA 1 GTTCCAAGCA 1 GTTCCAGCAG 1 GTTCCAGCCG 1 GTTCCAGCTA 1 GTTCCAGTCT 1 GTTCCAGTGA 4 GTTCCATTCC 1 GTTCCATTTC 1 GTTCCCCAGT 2 GTTCCCCCAC 1 GTTCCCCCTT 1 GTTCCCTGGC 19 GTTCCCTTGG 1 GTTCCTCAGC 1 GTTCCTGGCT 1 GTTCCTGGGG 1 GTTCCTGGTT 1 GTTCCTGTTG 1 GTTCGCCTGT 2 GTTCGGGCCG 3 GTTCGTCTCC 1 GTTCGTGCCA 1 GTTCGTGCTA 1 GTTCTAAACC 6 GTTCTAGCTA 1 GTTCTATTTA 1 GTTCTCAACC 1 GTTCTCAGCC 1 GTTCTCAGTG 1 GTTCTCCCAC 7 GTTCTCCCTT 1 GTTCTCCTTT 1 GTTCTCTGAA 2 GTTCTCTTGA 1 GTTCTGCAAT 1 GTTCTGGTTC 1 GTTCTGGTTT 5 GTTCTTCACA 1 GTTCTTCTCC 1 GTTCTTGAGA 1 GTTCTTGTTC 1 GTTCTTTTGG 1 GTTCTTTTTA 1 GTTGAAACAG 1 GTTGAAACTC 2 GTTGAACCTC 1 GTTGACATCC 1 GTTGACCACG 1 GTTGACTTAC 1 GTTGAGCAAG 1 GTTGAGGCTG 1 GTTGAGGTTA 1 GTTGAGTGGG 2 GTTGATAGGA 1 GTTGATTGTA 1 GTTGATTTTA 1 GTTGCAAGGT 1 GTTGCAATAT 1 GTTGCACACA 1 GTTGCACAGG 1 GTTGCACCAC 1 GTTGCACTAC 1 GTTGCAGATA 1 GTTGCAGGCG 1 GTTGCAGGTG 1 GTTGCAGTTC 1 GTTGCCCACA 1 GTTGCCCTTG 1 GTTGCCTGTT 1 GTTGCGCACA 1 GTTGCGGGCA 1 GTTGCGGTTA 2 GTTGCTCACA 1 GTTGCTGCCC 1 GTTGCTGGCT 1 GTTGCTTCTC 1 GTTGCTTTTA 1 GTTGGAAGTA 1 GTTGGACAGC 3 GTTGGACATC 1 GTTGGACCAG 1 GTTGGACCTT 1 GTTGGAGTGC 1 GTTGGATAGG 2 GTTGGCAGGC 1 GTTGGCCACA 1 GTTGGCCAGG 1 GTTGGCCCGG 1 GTTGGCTACG 1 GTTGGGAAGA 1 GTTGGGACAT 9 GTTGGGAGAC 1 GTTGGGAGTC 1 GTTGGGATGG 1 GTTGGGGGAG 1 GTTGGGGGGG 1 GTTGGGGGTC 1 GTTGGGTAAG 1 GTTGGGTAGG 1 GTTGGGTCAG 1 GTTGGTCCCT 1 GTTGGTCTGT 4 GTTGGTGCAA 1 GTTGGTGCAG 1 GTTGGTGCGT 1 GTTGGTGGTG 1 GTTGGTTGGC 1 GTTGGTTTTA 1 GTTGTAAATA 1 GTTGTATAAT 1 GTTGTATAGC 1 GTTGTCCATT 1 GTTGTCCTAC 2 GTTGTCCTCT 1 GTTGTCTTTA 1 GTTGTGATGT 1 GTTGTGCACA 1 GTTGTGCCAG 1 GTTGTGCCTT 1 GTTGTGGAGG 3 GTTGTGGCTA 1 GTTGTGGGCA 1 GTTGTGGGCG 2 GTTGTGGGTG 1 GTTGTGGTAA 2 GTTGTGGTTA 104 GTTGTGGTTG 2 GTTGTGTAAG 1 GTTGTGTGTG 2 GTTGTTAGGA 1 GTTGTTCACA 1 GTTTAAAAAA 1 GTTTAAAAAG 1 GTTTAAATCG 1 GTTTAAATGG 1 GTTTAATCTT 1 GTTTACCAAC 1 GTTTACCTCT 1 GTTTACTAGA 1 GTTTACTGTC 1 GTTTAGAGGG 5 GTTTATAATT 1 GTTTATAGCA 1 GTTTATCTGT 1 GTTTATTCTT 1 GTTTATTGCC 1 GTTTATTTGT 1 GTTTATTTTC 2 GTTTCAATTA 1 GTTTCAGGGG 1 GTTTCATAGA 1 GTTTCATCCT 1 GTTTCCAGAG 1 GTTTCCTCTT 1 GTTTCGGCTC 1 GTTTCTAATA 1 GTTTCTCAAA 1 GTTTCTCGCA 1 GTTTCTCTGG 2 GTTTCTGATG 1 GTTTCTGCTG 2 GTTTCTGGCA 1 GTTTCTTACT 1 GTTTCTTCCC 2 GTTTCTTCTT 1 GTTTGAACTG 1 GTTTGAAGGG 2 GTTTGAATCC 1 GTTTGAGGGG 1 GTTTGAGTGC 1 GTTTGCAAGT 1 GTTTGCATCT 1 GTTTGCCTAA 1 GTTTGCCTGA 1 GTTTGGACAG 1 GTTTGGAGCT 2 GTTTGGCAGG 1 GTTTGGCAGT 11 GTTTGGCGTC 3 GTTTGGCTCC 1 GTTTGGGAAT 1 GTTTGGGGCC 1 GTTTGGGGCT 1 GTTTGGGTTA 1 GTTTGGTTGG 1 GTTTGTATAA 1 GTTTGTATAC 10 GTTTGTGATG 1 GTTTGTTGCC 1 GTTTGTTGGG 1 GTTTGTTTGG 1 GTTTGTTTGT 1 GTTTTACTAT 1 GTTTTATGCA 1 GTTTTATTTG 2 GTTTTCAAAT 1 GTTTTCATTC 3 GTTTTCCATA 3 GTTTTCCCTA 1 GTTTTCCGTA 1 GTTTTCTCTG 1 GTTTTCTGGC 1 GTTTTGAAAT 2 GTTTTGAGTA 1 GTTTTGGGGG 1 GTTTTGTAAC 1 GTTTTGTACA 1 GTTTTGTATG 1 GTTTTGTGCG 1 GTTTTTAGTA 1 GTTTTTCATT 3 GTTTTTCCCC 1 GTTTTTGCGG 1 GTTTTTGCTT 2 GTTTTTGTTT 1 GTTTTTTACT 1 TAAAAAAAAA 8 TAAAAAAACA 1 TAAAAACACT 1 TAAAAAGAGA 1 TAAAAATAGA 1 TAAAAATATC 1 TAAAACAAGA 1 TAAAACCAGG 1 TAAAACCCTA 3 TAAAACCGTT 3 TAAAACCTGC 1 TAAAACTCAA 1 TAAAACTTAC 1 TAAAAGACAA 1 TAAAAGATCT 1 TAAAAGGAGG 1 TAAAAGGATG 2 TAAAAGGCTT 2 TAAAAGTTAA 1 TAAAATAGCT 1 TAAAATATGT 1 TAAAATCCAT 1 TAAAATCTTC 3 TAAAATGCTT 1 TAAAATGGCA 1 TAAAATGTGT 1 TAAAATGTTG 1 TAAAATTGCA 1 TAAAATTGCG 1 TAAAATTTTT 2 TAAACAAACG 1 TAAACAAGCA 1 TAAACACCCC 1 TAAACAGCCT 1 TAAACAGGTG 1 TAAACAGGTT 1 TAAACATAAG 1 TAAACCAGCA 1 TAAACCGTAT 2 TAAACCTGTC 2 TAAACCTGTG 1 TAAACGAAAG 1 TAAACGGCCC 1 TAAACGGCCT 2 TAAACGGGAT 1 TAAACTAACA 1 TAAACTATTG 4 TAAACTGCAA 2 TAAACTGTTT 1 TAAACTTCTG 1 TAAAGAATGA 1 TAAAGACTCT 1 TAAAGACTTG 1 TAAAGCCTTT 3 TAAAGCTGTT 1 TAAAGCTTAG 2 TAAAGGAGAC 1 TAAAGGTTTT 1 TAAAGTAACA 1 TAAAGTGCAA 1 TAAAGTGTCT 4 TAAATAAAGC 1 TAAATAAGCA 1 TAAATAATAC 1 TAAATAATTT 1 TAAATACTGG 1 TAAATAGATA 1 TAAATAGCAC 1 TAAATAGCAG 1 TAAATAGTTC 1 TAAATATCTA 1 TAAATCAACT 3 TAAATCATTG 1 TAAATCCAAA 1 TAAATCCAAT 1 TAAATGAAAC 1 TAAATGGGTA 1 TAAATGGTCA 1 TAAATGTAGT 2 TAAATTCTAT 1 TAAATTGCAA 103 TAAATTGCAG 1 TAAATTGCGA 1 TAACAAAATT 1 TAACAAACCT 2 TAACAAAGGA 1 TAACAAATGG 1 TAACAAGCCT 1 TAACAAGGAA 1 TAACAAGTTT 2 TAACAATAGC 1 TAACACAACC 1 TAACACACAC 1 TAACACGCTT 1 TAACACGTCC 1 TAACACTGAC 1 TAACAGAGAG 1 TAACAGCATT 1 TAACAGCCAG 7 TAACAGGCCA 1 TAACAGTGAT 3 TAACAGTGGA 1 TAACAGTTAC 1 TAACATTCAA 1 TAACATTGGT 3 TAACCAAACA 2 TAACCAAATA 2 TAACCAAATC 2 TAACCAAATG 1 TAACCAAGAG 1 TAACCAATCA 4 TAACCAATCG 1 TAACCACTTT 1 TAACCATTTT 2 TAACCCAACA 3 TAACCCAGCA 5 TAACCCAGCC 1 TAACCCCAAA 1 TAACCTATTA 1 TAACCTCAGC 1 TAACCTGCTA 1 TAACGCTACA 1 TAACGTCTGC 1 TAACGTTACA 1 TAACTAAACA 2 TAACTAACAA 1 TAACTACTCT 1 TAACTAGCAA 1 TAACTAGGAT 1 TAACTCAATG 1 TAACTCAGGA 1 TAACTCAGTT 1 TAACTCCAAA 3 TAACTCCATT 3 TAACTCCTAG 2 TAACTCCTTT 1 TAACTCTGTT 1 TAACTGAACT 1 TAACTGCCTC 1 TAACTGCTAA 1 TAACTGGAGG 1 TAACTGTGGG 1 TAACTGTGTG 1 TAACTTCCAA 1 TAACTTGCCA 1 TAACTTGTCA 1 TAACTTTTGA 1 TAACTTTTGG 1 TAAGAAAAAA 1 TAAGAAAATT 1 TAAGAATCAG 1 TAAGAATGAC 1 TAAGACTGAA 1 TAAGACTTAC 1 TAAGAGGCCA 1 TAAGAGGCCG 1 TAAGAGGTGC 1 TAAGAGTTTC 1 TAAGATAGAT 1 TAAGATCTGA 1 TAAGATGCTG 1 TAAGCAAATA 1 TAAGCAGACC 1 TAAGCAGATG 5 TAAGCAGCTG 1 TAAGCAGGAC 1 TAAGCAGGCT 1 TAAGCATTAA 1 TAAGCATTCT 1 TAAGCCCTTT 1 TAAGCCTCCC 1 TAAGCCTCCT 1 TAAGCTAATC 1 TAAGCTATGC 1 TAAGCTCTCT 1 TAAGCTGGAT 1 TAAGGAAAGA 1 TAAGGAAGCA 1 TAAGGAATTG 1 TAAGGAGCTG 18 TAAGGCAATA 1 TAAGGCAGTA 1 TAAGGCCATT 1 TAAGGCCCTA 1 TAAGGCCTTT 6 TAAGGGATTT 1 TAAGGTTTGT 1 TAAGTAAAGT 2 TAAGTACTAT 1 TAAGTAGACT 1 TAAGTAGCAA 4 TAAGTAGCTG 1 TAAGTCAACT 1 TAAGTCCACG 1 TAAGTGGAAT 7 TAAGTGTATA 1 TAAGTTTAAT 1 TAAGTTTTTT 1 TAATAAAACC 1 TAATAAAATG 1 TAATAAAATT 1 TAATAAACTG 1 TAATAAAGAA 1 TAATAAAGCA 2 TAATAAAGGT 4 TAATAAAGTT 1 TAATAAATGC 1 TAATAGAGGT 1 TAATAGCCAG 1 TAATATACCT 1 TAATATGACA 1 TAATATTCCA 1 TAATATTTTT 3 TAATCAAGCA 1 TAATCACCAA 2 TAATCATCAC 1 TAATCATCAT 1 TAATCATTAA 1 TAATCCCAGA 1 TAATCCCAGC 37 TAATCCCGGC 1 TAATCTAGGT 1 TAATCTTTTA 2 TAATGAAAAT 1 TAATGACTGC 1 TAATGCAGAT 2 TAATGCCAGC 1 TAATGCCCCA 1 TAATGCTGAA 1 TAATGGAAGG 6 TAATGGACCC 1 TAATGGCGCC 1 TAATGGCTCT 1 TAATGGGAGT 1 TAATGGGCCC 1 TAATGGGCCT 1 TAATGGTAAC 2 TAATGGTATC 1 TAATGTAATC 1 TAATGTGAGC 1 TAATTAACTC 1 TAATTACCAT 1 TAATTAGCGA 1 TAATTATGTA 1 TAATTCAAGT 1 TAATTCCAGC 1 TAATTCTGCT 1 TAATTCTTAA 1 TAATTCTTCT 2 TAATTGAAAT 1 TAATTGAGAA 1 TAATTGCAAA 1 TAATTGGATT 1 TAATTGTATA 2 TAATTGTTAA 1 TAATTTATTG 1 TAATTTCTCT 1 TAATTTGCAT 25 TAATTTTAAA 1 TAATTTTAGA 1 TAATTTTATA 1 TAATTTTCAC 1 TAATTTTCTC 1 TAATTTTGCA 1 TACAAAAATA 1 TACAAAATTA 1 TACAAACCTG 1 TACAAAGATG 3 TACAAATAGG 1 TACAAATCGT 2 TACAACAGTC 1 TACAACCGGA 1 TACAAGAGGA 7 TACAAGCAGT 1 TACAAGCTAC 1 TACAAGCTTA 1 TACAAGGCAC 1 TACAAGTGAT 1 TACAAGTGGA 1 TACAATAAAA 1 TACAATAATT 2 TACAATTGGC 1 TACAATTGTG 1 TACACACAGA 1 TACACACCTA 1 TACACACGGA 1 TACACAGAAC 1 TACACCAGCA 2 TACACCCGCT 1 TACACGTGAG 4 TACACTACAT 1 TACACTACTG 2 TACACTGCTT 1 TACACTGTAT 1 TACACTTGCC 2 TACAGAATGT 3 TACAGACACT 1 TACAGACGGA 1 TACAGAGACA 1 TACAGAGAGT 1 TACAGAGCTC 1 TACAGAGGGA 4 TACAGATAGT 1 TACAGATTTT 1 TACAGCAGTG 1 TACAGCGAGC 2 TACAGCTGCA 1 TACAGGATCA 1 TACAGGCCTA 1 TACAGGGCCC 1 TACAGGTTGC 1 TACAGGTTTT 1 TACAGTATGT 6 TACAGTCATT 1 TACAGTGGGT 1 TACAGTGTTC 1 TACAGTTAAG 1 TACAGTTACA 1 TACAGTTCAG 2 TACAGTTCCC 1 TACATAATTA 9 TACATACACC 1 TACATACCCT 1 TACATAGATA 1 TACATAGTCC 1 TACATCCGAA 2 TACATCTATA 1 TACATTCTGT 16 TACATTTTAT 2 TACCAACTCG 1 TACCAAGACC 7 TACCAAGGAT 1 TACCAAGTTT 1 TACCAGAAGT 1 TACCAGAGCA 1 TACCAGAGCG 1 TACCAGGTTG 2 TACCAGTGTA 4 TACCATCAAT 41 TACCATCAGT 1 TACCATTAAT 1 TACCATTACA 1 TACCATTGAA 1 TACCCAAGAT 1 TACCCACAGA 2 TACCCACCCA 6 TACCCACTGA 1 TACCCAGGAG 2 TACCCCACCC 6 TACCCCAGAA 1 TACCCCATAC 1 TACCCCCGAG 1 TACCCCCTGA 2 TACCCCCTGC 1 TACCCCGGAA 1 TACCCCTGAA 1 TACCCGGGAG 1 TACCCTAAAA 36 TACCCTACAT 1 TACCCTAGAA 15 TACCCTAGCA 1 TACCCTGCTG 1 TACCCTGGAA 1 TACCCTGGCA 3 TACCCTGGGA 1 TACCCTTCCT 1 TACCCTTGTA 1 TACCCTTTAC 1 TACCGCCCGT 3 TACCGTACTT 1 TACCGTATAT 1 TACCGTCAAT 1 TACCGTGGAT 1 TACCTAATTG 1 TACCTACAGG 1 TACCTAGTGG 2 TACCTATGAT 1 TACCTATGTA 1 TACCTATTAA 6 TACCTATTAC 1 TACCTCAACA 1 TACCTCAGAA 1 TACCTCTGAT 19 TACCTGCAAT 1 TACCTGCAGA 2 TACCTGCCAC 1 TACCTGTAAT 1 TACCTGTAGC 1 TACCTGTAGT 3 TACCTGTCTG 1 TACCTTCTCT 1 TACCTTGACC 1 TACCTTTGCT 3 TACGAAGTTC 2 TACGAGCAAC 1 TACGATAAAA 1 TACGATGAGT 2 TACGCAAGAC 1 TACGCAGACC 2 TACGCCACCC 1 TACGCCTACC 1 TACGCTGTGA 1 TACGGCAGAC 3 TACGGCGTGG 2 TACGGGGATC 1 TACGGTGTGG 7 TACGTACTGC 2 TACGTAGGTC 1 TACGTCCACG 5 TACGTTGCAG 3 TACGTTTAAT 1 TACGTTTCTC 1 TACTAAAGTG 1 TACTAGACAA 1 TACTAGTCCT 1 TACTATCTCC 1 TACTCAGAGG 1 TACTCAGTAG 1 TACTCCACCC 1 TACTCCAGAA 2 TACTCCAGCC 1 TACTCCTAAG 1 TACTCCTACC 1 TACTCGACAT 1 TACTCGGAAA 1 TACTCGGCCA 10 TACTCGTTGA 1 TACTCTAGAA 1 TACTCTGCCC 1 TACTCTGTTG 1 TACTCTTCTG 1 TACTCTTGGC 10 TACTGAAAGG 1 TACTGACACT 1 TACTGAGTTT 1 TACTGCTCGG 7 TACTGCTTTT 1 TACTGGAAGG 1 TACTGGAAGT 2 TACTGGTAGT 1 TACTGGTTAC 1 TACTGGTTGA 2 TACTGTAAAG 1 TACTGTACTT 6 TACTGTAGAC 2 TACTGTATGT 2 TACTGTCTAT 2 TACTGTGATC 1 TACTGTGATG 4 TACTGTGGAT 4 TACTTCACAG 1 TACTTCCTCA 1 TACTTCCTGC 1 TACTTGAAGC 1 TACTTGGGAG 5 TACTTGTGTG 5 TACTTGTTAC 1 TACTTTATTT 1 TACTTTCAGG 1 TACTTTCCCA 1 TACTTTCCCC 1 TACTTTCGTA 1 TACTTTGTGA 1 TACTTTTAGC 1 TAGAAAAATG 1 TAGAAAAGAG 1 TAGAAAATGG 1 TAGAAAGGCA 1 TAGAAGAGTT 1 TAGAAGATGC 1 TAGAAGCCAA 2 TAGAAGCTTC 2 TAGAAGTACA 1 TAGAATATGC 1 TAGAATGAAA 1 TAGAATGCAA 1 TAGAATGTCC 1 TAGAATTTTC 1 TAGACCAACA 1 TAGACCAGTA 1 TAGACCTTGG 2 TAGACGTTCC 1 TAGACTAACA 1 TAGACTAGCA 31 TAGACTTATT 1 TAGACTTCCT 1 TAGAGAATGA 1 TAGAGAGAGA 1 TAGAGCCTCA 1 TAGAGGAGGC 1 TAGAGGATGT 1 TAGATAATGA 1 TAGATGAGGA 1 TAGCAACCAG 1 TAGCAAGCCC 1 TAGCAATCAG 1 TAGCACCTGC 1 TAGCACTCTC 1 TAGCAGATGT 1 TAGCAGCAAC 1 TAGCAGCAAT 1 TAGCAGCTGG 1 TAGCAGGACA 1 TAGCAGTTAC 4 TAGCAGTTTT 1 TAGCATAATA 1 TAGCATTTTG 1 TAGCCCAAAA 1 TAGCCCAACA 1 TAGCCCCAGC 6 TAGCCCCAGG 1 TAGCCCCCAG 1 TAGCCCGGCC 2 TAGCCCTCCT 1 TAGCCGCTGA 6 TAGCCGGGAC 4 TAGCCTCTGA 1 TAGCGCACGC 1 TAGCTACAAT 1 TAGCTAGTGA 1 TAGCTCCAAG 1 TAGCTCCCTT 1 TAGCTCGTGG 1 TAGCTCTATG 28 TAGCTCTCCA 1 TAGCTCTGCC 1 TAGCTCTTAT 1 TAGCTCTTGC 1 TAGCTGAAAA 1 TAGCTGAGGC 2 TAGCTGCAAT 1 TAGCTGCTGG 4 TAGCTGGAAA 4 TAGCTGGGGG 1 TAGCTGGGGT 1 TAGCTGTCCG 1 TAGGAAAACA 1 TAGGAAAGTA 1 TAGGAAAGTG 1 TAGGAAATTA 1 TAGGAACCTG 2 TAGGAACTCA 1 TAGGACAAAC 1 TAGGACAACT 1 TAGGACATCT 1 TAGGACCCCT 1 TAGGACCCTC 1 TAGGACCCTG 1 TAGGACGGGG 1 TAGGACTTGT 1 TAGGACTTTA 1 TAGGAGAATC 2 TAGGAGGATG 1 TAGGATCAGG 1 TAGGATGGAC 1 TAGGATGGGG 24 TAGGCACTGT 1 TAGGCCACAA 1 TAGGCCAGGC 1 TAGGCCCAAG 7 TAGGCGAACG 1 TAGGCTCTGG 1 TAGGCTGCCT 1 TAGGCTGGGT 1 TAGGGAAAAA 1 TAGGGCAATC 2 TAGGGCATCT 1 TAGGGCCTAG 1 TAGGGGAGGG 3 TAGGGGCGGG 1 TAGGGTAATC 1 TAGGGTCCCC 1 TAGGGTTGCG 1 TAGGGTTTCC 1 TAGGTCACAG 1 TAGGTGAGTA 1 TAGGTGGAGG 1 TAGGTGGGGG 7 TAGGTGTGTT 1 TAGGTTGTCT 36 TAGTAAAGGC 2 TAGTACTTCT 1 TAGTACTTTA 1 TAGTAGAAAC 1 TAGTAGTGCA 1 TAGTAGTGGT 1 TAGTCACTGA 1 TAGTCAGAGA 1 TAGTCAGTAA 1 TAGTCATCAA 1 TAGTCATCTT 1 TAGTCCCAGC 5 TAGTCCCTCT 2 TAGTCCTAGC 1 TAGTCCTGCC 1 TAGTCCTTAG 1 TAGTCGGAAA 2 TAGTCTAGCA 1 TAGTCTCAGG 1 TAGTCTCCTG 1 TAGTCTGGAG 2 TAGTGAGGCT 1 TAGTGCGTCT 1 TAGTGCTTGA 1 TAGTGGAAAT 1 TAGTGGAGGT 1 TAGTGGCTAT 1 TAGTGGCTCT 1 TAGTGTGGTA 3 TAGTTACTTA 1 TAGTTCTATA 1 TAGTTCTATG 1 TAGTTGAAGT 8 TAGTTGAGCA 1 TAGTTGCACA 2 TAGTTGGAAA 6 TAGTTGGAAC 1 TAGTTGGAAT 1 TAGTTGGGAA 1 TAGTTGTACA 1 TAGTTGTAGG 2 TAGTTGTGCA 1 TAGTTGTGCG 1 TAGTTGTGTG 1 TAGTTGTTTA 1 TAGTTTCTTG 2 TATAAAACTT 1 TATAAAGAAG 1 TATAAAGGCA 1 TATAAATTGT 1 TATAACAGGG 1 TATAACCAAT 1 TATAACGGCC 1 TATAACTAAC 1 TATAAGGGAG 1 TATAAGTTTT 1 TATAATAAAT 1 TATAATCTGA 1 TATAATTTGG 1 TATAATTTGT 1 TATAATTTTT 1 TATACACTGT 1 TATACATATG 2 TATACCAATC 1 TATACCCGGA 4 TATACCTGTG 2 TATACTGCGA 1 TATACTTATT 1 TATAGAGAAA 1 TATAGCATCT 1 TATAGCTGCG 1 TATAGGAAGA 1 TATAGGCATT 2 TATAGGCCGA 2 TATAGGTCTC 1 TATAGTACTC 1 TATAGTCCTC 21 TATAGTGGCT 1 TATAGTTAAA 1 TATATAAACT 1 TATATAAGCT 1 TATATAATTA 1 TATATATGGG 1 TATATCGCGA 1 TATATGGATG 1 TATATGTACA 2 TATATGTGGG 1 TATATGTGTG 1 TATATTGATT 2 TATATTGCAG 1 TATATTTTCT 1 TATCAAACCA 1 TATCACCACA 1 TATCACCCTT 1 TATCACTTGT 1 TATCAGAGAT 1 TATCAGTACT 1 TATCAGTATT 1 TATCATCCTG 1 TATCATCTGG 1 TATCCAGCTG 1 TATCCATAAA 1 TATCCATACT 1 TATCCATCAC 1 TATCCCAGAA 6 TATCCCAGTT 1 TATCCCTTTA 1 TATCCGCTGA 1 TATCCTAAAA 1 TATCCTAATT 1 TATCCTAGAA 2 TATCCTCTCA 1 TATCCTCTGG 3 TATCCTGAAC 1 TATCCTGAGT 1 TATCCTGATG 2 TATCCTGGAA 1 TATCCTGGTA 1 TATCGAGAGT 1 TATCGGGAAT 1 TATCGTTGCC 4 TATCTACCTT 1 TATCTCACTT 1 TATCTCCACT 1 TATCTGATAA 8 TATCTGGAGT 1 TATCTGGTCT 2 TATCTGTCTT 1 TATCTGTTCA 1 TATCTTCTTC 1 TATCTTGAGA 1 TATCTTTTCT 1 TATGAAAACA 1 TATGAACCTT 1 TATGAAGCCC 1 TATGAAGCCG 1 TATGAATCCG 1 TATGAATGTA 3 TATGACATTG 1 TATGACTATG 1 TATGACTGCA 1 TATGACTTAA 6 TATGACTTAG 1 TATGAGAAGG 1 TATGAGGTTT 1 TATGATAATA 1 TATGATGACC 1 TATGATGAGC 13 TATGATGTGC 1 TATGCAACAG 1 TATGCAATCC 1 TATGCAGGAG 1 TATGCAGTCA 1 TATGCCAAGT 1 TATGCCATAT 1 TATGCCTGGC 1 TATGCCTTAT 1 TATGCGTTTG 1 TATGGAAACA 1 TATGGCAATC 1 TATGGGGAAG 1 TATGTAAAAA 3 TATGTAAAAC 1 TATGTAAACG 1 TATGTAAATA 2 TATGTAATAT 3 TATGTAATCA 1 TATGTATACG 1 TATGTATTTG 1 TATGTCCCCA 1 TATGTCCTTA 1 TATGTCTGGA 1 TATGTCTTCT 1 TATGTGACAC 1 TATGTGCTGT 1 TATGTGGCAC 1 TATGTGGGCT 1 TATGTGTCCC 1 TATGTGTGCT 4 TATGTGTTGT 1 TATGTGTTTT 2 TATGTTTCAG 1 TATGTTTTAG 1 TATGTTTTCT 1 TATTAAATAG 1 TATTAACTCA 1 TATTACTGTT 1 TATTACTTTT 1 TATTAGAGTC 1 TATTAGGAGG 1 TATTATATAA 1 TATTATATAC 1 TATTATCCTG 1 TATTATGATC 1 TATTATGCTC 1 TATTATGGTA 1 TATTATTAAC 1 TATTCACTAA 1 TATTCAGGGG 1 TATTCATAAT 2 TATTCATTCA 1 TATTCCCATT 1 TATTCCCCAC 1 TATTCCCTTA 1 TATTCGGTCA 1 TATTCTCAAT 2 TATTCTCTAT 1 TATTCTTCAG 1 TATTCTTTCT 1 TATTGAATGA 1 TATTGACAAC 1 TATTGAGCAC 1 TATTGAGCTG 1 TATTGCATAA 1 TATTGCTGCC 1 TATTGGCCTG 1 TATTGGTTAG 1 TATTGTAGTC 1 TATTGTATAT 1 TATTGTGTGC 1 TATTGTTAGT 1 TATTGTTGTA 1 TATTTAATAA 1 TATTTATGGA 3 TATTTATTCA 1 TATTTATTCC 4 TATTTATTCG 1 TATTTATTGA 2 TATTTCACCG 1 TATTTCACTT 1 TATTTCAGAA 1 TATTTCAGAT 1 TATTTCAGTG 1 TATTTCCCAA 1 TATTTCGTGT 1 TATTTGGCCT 1 TATTTGTGTC 1 TATTTTATAA 1 TATTTTCAAG 1 TATTTTCACT 1 TATTTTCCTT 1 TATTTTGCAA 1 TATTTTGCAT 1 TATTTTGTGA 6 TATTTTTCCT 7 TCAAAAAAAA 12 TCAAAAACCC 1 TCAAAAAGTT 1 TCAAAACTCA 1 TCAAAAGCTG 1 TCAAAAGGAC 2 TCAAACCCAA 1 TCAAACGCGC 1 TCAAACGCGG 1 TCAAACTGTG 5 TCAAAGACAT 1 TCAAAGCCCC 2 TCAAAGCGGG 1 TCAAAGGGAA 1 TCAAAGTGGA 1 TCAAATACTT 1 TCAAATCACA 1 TCAAATGCAT 3 TCAAATGTCA 6 TCAAATTAAA 1 TCAAATTGTA 1 TCAACAAATT 1 TCAACAGCCA 2 TCAACAGCGT 1 TCAACCGGTC 1 TCAACCTTTG 1 TCAACGGTGT 3 TCAACGTGGC 1 TCAACTATCT 1 TCAACTCAAG 1 TCAACTGCCG 1 TCAACTGGTT 3 TCAAGAAACA 1 TCAAGAAATT 2 TCAAGAAGAA 1 TCAAGAGCCG 1 TCAAGATGAA 1 TCAAGCCATC 4 TCAAGCCCCC 1 TCAAGCTGCC 1 TCAAGGCTGA 1 TCAAGGGGGT 1 TCAAGTACTG 1 TCAAGTCCAG 4 TCAAGTCCTG 1 TCAAGTTCAC 1 TCAAGTTTTT 1 TCAATAAAGA 2 TCAATAAAGG 4 TCAATAGGTG 1 TCAATAGTAA 1 TCAATATAAG 1 TCAATATCCT 1 TCAATATTAA 1 TCAATATTCT 1 TCAATCAAGA 4 TCAATCTGTA 1 TCAATGAATA 1 TCAATGATAA 1 TCAATGCACT 1 TCAATGGACA 1 TCAATGTAAG 1 TCAATGTCAG 1 TCAATTACTC 1 TCAATTCCAC 1 TCAATTTAAT 1 TCACAAAAGA 1 TCACAAACTT 1 TCACAAAGTG 1 TCACAACTGG 1 TCACAAGCAA 10 TCACAATAGG 1 TCACACCACT 1 TCACACCAGC 1 TCACACGTAC 1 TCACACTCTC 3 TCACAGACAC 2 TCACAGCACT 1 TCACAGCTGT 3 TCACAGGGTC 1 TCACAGGTCA 1 TCACAGTACA 1 TCACAGTGCA 1 TCACAGTGCC 26 TCACAGTGCT 1 TCACATAGGT 1 TCACATTGAT 1 TCACCAAGCT 1 TCACCACAAC 1 TCACCACACC 1 TCACCAGAGT 1 TCACCAGCAA 1 TCACCAGTAA 1 TCACCAGTGC 1 TCACCCACAC 12 TCACCCAGAA 1 TCACCCCCAC 1 TCACCCGGGT 1 TCACCCTACC 1 TCACCCTTGG 1 TCACCGCAAC 1 TCACCGCACT 2 TCACCGGGAA 1 TCACCGGTCA 118 TCACCGGTCG 1 TCACCGTAAA 1 TCACCTCCGA 1 TCACCTCTAT 1 TCACCTGGGA 1 TCACCTGTAG 1 TCACCTTAGG 4 TCACGACAAA 1 TCACGCCTTC 1 TCACGCGAGA 1 TCACGCTCTC 1 TCACGCTGCT 4 TCACGCTGGT 1 TCACGGCAAG 1 TCACGTGTGT 1 TCACTACCAA 1 TCACTACTAA 1 TCACTCACCA 2 TCACTCCCCT 1 TCACTCGGGT 1 TCACTGAACT 1 TCACTGAAGT 1 TCACTGAGTT 1 TCACTGCACT 15 TCACTGCATT 2 TCACTGGGGA 2 TCACTGTACA 2 TCACTGTACT 1 TCACTGTGAG 1 TCACTGTGCT 4 TCACTGTGGG 7 TCACTTACCT 1 TCACTTCCCT 1 TCACTTCTCT 1 TCACTTGCAC 1 TCAGAAAGCC 6 TCAGAAAGGG 1 TCAGAACAGT 1 TCAGAAGCCA 1 TCAGAAGGTG 2 TCAGAAGTTT 2 TCAGAATTGA 1 TCAGACAAAA 2 TCAGACCTTT 1 TCAGACGCAG 23 TCAGACTCCA 1 TCAGACTCGC 1 TCAGAGAAAG 2 TCAGAGAACA 1 TCAGAGAAGG 1 TCAGAGACGA 2 TCAGAGATGA 8 TCAGAGCAGA 1 TCAGAGCGCT 5 TCAGAGCTGC 1 TCAGAGCTTT 1 TCAGATACTA 1 TCAGATAGTA 1 TCAGATATAA 1 TCAGATATTG 1 TCAGATCCGT 2 TCAGATCTTT 14 TCAGATGCAC 2 TCAGATGGCG 1 TCAGCAAGTG 1 TCAGCAATAA 1 TCAGCACAGT 1 TCAGCACCTG 12 TCAGCCAAGG 1 TCAGCCGCTA 5 TCAGCCTAAA 1 TCAGCCTCTT 1 TCAGCCTTCA 1 TCAGCCTTCT 3 TCAGCGGAGA 4 TCAGCTCAAT 1 TCAGCTGAAA 1 TCAGCTGCAA 56 TCAGCTGCAC 1 TCAGCTGCCC 1 TCAGCTGGCC 2 TCAGCTGGCG 1 TCAGCTTCAC 2 TCAGGAAACG 1 TCAGGAAGCT 1 TCAGGAGGGA 1 TCAGGCAGCT 2 TCAGGCATTC 1 TCAGGCATTT 10 TCAGGCCACT 1 TCAGGCTGAA 1 TCAGGCTGTT 3 TCAGGGACTG 1 TCAGGGAGAT 4 TCAGGGATGT 1 TCAGGGCAGG 1 TCAGGGCTTA 1 TCAGGGGAAG 1 TCAGGGGCCA 1 TCAGGGTGGG 1 TCAGGTATAG 1 TCAGTACAGA 3 TCAGTATTCT 2 TCAGTATTTG 2 TCAGTCACAA 1 TCAGTCCCTG 1 TCAGTGAACG 2 TCAGTGAACT 1 TCAGTGATCA 1 TCAGTGCGCA 1 TCAGTGGTAG 6 TCAGTGGTGC 2 TCAGTGTCGA 2 TCAGTGTCTT 1 TCAGTGTGTG 1 TCAGTGTTTT 1 TCAGTTATAC 1 TCAGTTATCT 1 TCAGTTCTGG 1 TCAGTTCTTG 3 TCAGTTGCAA 1 TCAGTTGGGC 1 TCAGTTTATG 2 TCAGTTTGTC 2 TCAGTTTTGC 1 TCATAAAAAG 1 TCATAACCGT 1 TCATAACCTT 1 TCATAACTGT 3 TCATAATCAG 1 TCATAATTAA 1 TCATACAAAC 1 TCATACAACT 1 TCATACACCT 5 TCATACCATT 2 TCATACCCAT 1 TCATAGAAAC 3 TCATAGCAGA 1 TCATAGTTCA 2 TCATATATGG 1 TCATATCCTG 1 TCATATGTGT 1 TCATATTAAA 1 TCATCACATT 2 TCATCACCAC 1 TCATCAGAGA 1 TCATCAGCTA 1 TCATCAGGAC 1 TCATCAGTGT 1 TCATCATATT 1 TCATCATCTG 2 TCATCCCCTT 1 TCATCCGAGC 1 TCATCCTAGT 1 TCATCGACAG 1 TCATCGGCCA 1 TCATCTCACT 1 TCATCTGCAA 3 TCATCTTCAA 6 TCATCTTCCC 1 TCATCTTTGT 1 TCATTAATCA 1 TCATTAGATG 1 TCATTATTGC 1 TCATTCAGAA 1 TCATTCCCTT 1 TCATTCCTGT 1 TCATTCTTGA 1 TCATTGAAAC 1 TCATTGAAAG 5 TCATTGCCCT 1 TCATTGCTCA 2 TCATTGTGAC 1 TCATTTCAGA 4 TCATTTGAAC 1 TCATTTGCCC 1 TCATTTTACT 1 TCATTTTAGG 1 TCATTTTCAC 1 TCATTTTCCA 3 TCATTTTGGA 1 TCATTTTGTG 1 TCCAAAACAC 2 TCCAAAAGTA 1 TCCAAACATT 2 TCCAAAGAGT 1 TCCAAAGCAT 9 TCCAAAGTAA 4 TCCAAATCAG 1 TCCAAATTGA 1 TCCAACCCCA 1 TCCAACTACA 1 TCCAAGCCTT 2 TCCAAGGAAG 2 TCCAAGGCGA 1 TCCAAGGTAA 1 TCCAAGGTGT 1 TCCAAGTTCC 3 TCCAATCAGT 1 TCCAATGTTT 1 TCCACACAAA 1 TCCACACAGT 1 TCCACACCCA 1 TCCACAGTAC 1 TCCACATCAC 1 TCCACATCCC 1 TCCACCAAGT 3 TCCACCAGCC 2 TCCACCAGCT 1 TCCACCAGGC 1 TCCACCCGCA 1 TCCACCGGTC 1 TCCACCTTTC 1 TCCACGCACC 10 TCCACTACAA 1 TCCACTATGA 1 TCCACTCCTG 1 TCCACTGTCT 1 TCCACTTTTT 1 TCCAGACAGC 3 TCCAGAGGCT 1 TCCAGAGTCC 1 TCCAGCACCT 1 TCCAGCCCCT 13 TCCAGCCCTG 1 TCCAGCCTGG 2 TCCAGCCTTC 1 TCCAGGAGGG 1 TCCAGGCCAG 1 TCCAGGCGCG 1 TCCAGGCTGG 1 TCCAGGGCAT 1 TCCAGGGCCC 1 TCCAGGGCCG 2 TCCAGGTAAG 1 TCCAGGTGTG 1 TCCAGGTTCC 2 TCCAGTACAT 1 TCCAGTAGGT 1 TCCAGTCCGG 1 TCCAGTGCAG 1 TCCAGTTTAC 1 TCCAGTTTAG 1 TCCATAGATT 2 TCCATCAAGA 3 TCCATCTGCA 1 TCCATCTGTT 6 TCCATTAATC 1 TCCATTGCTG 1 TCCATTGTCA 1 TCCCACACTT 1 TCCCACGTTC 1 TCCCAGAGAC 6 TCCCAGGAAC 4 TCCCAGGTCA 1 TCCCAGTACG 1 TCCCAGTGTT 1 TCCCCAAAAA 1 TCCCCAACCA 1 TCCCCAATAA 1 TCCCCACACC 1 TCCCCAGAGA 1 TCCCCCTTCG 1 TCCCCGAATT 1 TCCCCGATCA 1 TCCCCGATCG 2 TCCCCGATGT 1 TCCCCGCTTG 1 TCCCCGGAAG 1 TCCCCGGACC 1 TCCCCGGTCA 1 TCCCCGTAGG 1 TCCCCGTATT 1 TCCCCGTGAA 1 TCCCCGTGGC 2 TCCCCGTGGG 1 TCCCCGTTCC 1 TCCCCGTTTA 1 TCCCCGTTTT 1 TCCCCTAACG 1 TCCCCTACAA 1 TCCCCTACAC 1 TCCCGCACAT 1 TCCCGCCTAG 1 TCCCGGTCCA 1 TCCCGTAACA 1 TCCCGTAATC 1 TCCCGTACCT 1 TCCCGTACTC 1 TCCCTACTTC 1 TCCCTATAGG 1 TCCCTATATT 1 TCCCTATCAC 1 TCCCTATCAG 1 TCCCTATGCT 1 TCCCTATTGG 2 TCCCTCACAG 1 TCCCTCCCCA 1 TCCCTCCGTC 1 TCCCTCGTAG 1 TCCCTCTAAA 1 TCCCTCTTAC 1 TCCCTGACAC 1 TCCCTGCAAC 2 TCCCTGCACA 1 TCCCTGGCAT 3 TCCCTGGCTG 5 TCCCTGGGCA 1 TCCCTTAAGC 1 TCCCTTAATA 1 TCCCTTCAAC 1 TCCCTTCATA 1 TCCCTTTTAG 1 TCCGAAACCT 1 TCCGAAAGGC 1 TCCGAGACTG 3 TCCGAGCCCC 2 TCCGCACCAC 1 TCCGCCGCGG 2 TCCGCCTCGG 1 TCCGCGAGAA 1 TCCGCGCGGC 1 TCCGCGTGGA 1 TCCGCTGGCC 1 TCCGGAGTCT 1 TCCGGCCGCG 9 TCCGGCCTAC 1 TCCGGCCTCC 1 TCCGGCTAAT 1 TCCGGCTATT 1 TCCGTCAGTA 1 TCCGTGATTG 1 TCCGTGCTAA 1 TCCGTGGGTC 1 TCCGTGGTCA 1 TCCGTGTTCA 1 TCCTAAGACT 1 TCCTAAGTCT 1 TCCTAATTCA 1 TCCTACAACT 2 TCCTACAAGC 1 TCCTACAAGG 1 TCCTACAATC 2 TCCTACAATT 1 TCCTACACTT 1 TCCTACGGAA 2 TCCTACTGGC 1 TCCTAGCCTG 1 TCCTAGGGAT 1 TCCTAGTAGG 2 TCCTATAGCC 1 TCCTCAGGAG 1 TCCTCAGTGC 1 TCCTCCACCA 1 TCCTCCCTAC 3 TCCTCCCTCC 2 TCCTCCTAAG 1 TCCTCCTGGT 1 TCCTCGGGCA 4 TCCTCGTGCA 1 TCCTCTCCTC 1 TCCTCTCTGC 1 TCCTCTCTTG 1 TCCTCTTACA 1 TCCTCTTCCC 2 TCCTCTTTCA 2 TCCTCTTTCC 17 TCCTCTTTTT 1 TCCTGAAAGG 1 TCCTGAAATA 1 TCCTGAGTGC 1 TCCTGATTTC 1 TCCTGCAGCT 3 TCCTGCATCC 1 TCCTGCCCCA 1 TCCTGCCTTC 1 TCCTGCTCAT 3 TCCTGCTGCC 2 TCCTGCTTGG 1 TCCTGGCTCT 1 TCCTGGCTGG 1 TCCTGGGGCA 2 TCCTGTAAAG 1 TCCTTAAAAT 1 TCCTTACCAC 1 TCCTTACTGG 1 TCCTTAGTCC 1 TCCTTATTAC 1 TCCTTATTTA 1 TCCTTCAGCA 1 TCCTTCCCTA 1 TCCTTCGAGG 1 TCCTTCGCCC 1 TCCTTCTCCA 1 TCCTTCTGTA 1 TCCTTGACCA 2 TCCTTGATGA 1 TCCTTGCTCA 1 TCCTTGCTTC 1 TCCTTGGAGG 1 TCCTTGTTGG 1 TCCTTTGCCC 2 TCCTTTGTGC 2 TCCTTTTTTG 1 TCGAAACCCC 1 TCGAAACCCT 1 TCGAAACGCT 1 TCGAAATCCC 1 TCGAAGAACC 5 TCGAAGATTC 1 TCGAAGCCCA 1 TCGAAGCCCC 98 TCGAAGCCCG 1 TCGAAGCGCC 1 TCGAAGGGGT 1 TCGAATTGAA 1 TCGACCTTAC 1 TCGACGAGGC 1 TCGAGACCTC 1 TCGAGACTGT 1 TCGAGCTGCA 1 TCGAGGTACA 1 TCGATGTGGC 1 TCGATTTGGT 1 TCGCAGAACT 1 TCGCAGCTCC 1 TCGCCAGCCC 1 TCGCCCAGGC 3 TCGCCCAGGT 1 TCGCCCTCAC 1 TCGCCGCGAC 1 TCGCCGGAAC 1 TCGCCTGATG 1 TCGCCTGGGA 1 TCGCCTTCGG 1 TCGCGCGTGA 1 TCGCGCTGGG 3 TCGCGGGGTC 1 TCGCGGGTCA 1 TCGCTCAGCA 1 TCGCTGATTT 1 TCGCTGCAAC 1 TCGCTGCATT 1 TCGCTGTCTA 1 TCGCTTTCAA 1 TCGGAAAGCC 1 TCGGACCCCG 1 TCGGAGCCCC 2 TCGGAGCCGT 1 TCGGAGCTGT 21 TCGGAGGGGG 1 TCGGAGGTTG 1 TCGGAGTTCC 1 TCGGATTCAT 1 TCGGCAGCCA 1 TCGGCATTTG 1 TCGGCGCCGG 2 TCGGCGGGCG 1 TCGGCTAGGC 1 TCGGGATCCA 1 TCGGGCAGAG 2 TCGGGGAGGC 1 TCGGGTCCCT 1 TCGGGTGAGG 1 TCGGGTGTGG 9 TCGGTAACCC 1 TCGGTAATCC 2 TCGGTCACAA 1 TCGGTCAGGC 1 TCGGTGTCTG 2 TCGGTGTTCG 4 TCGGTTACAA 12 TCGGTTGATG 1 TCGGTTTGAA 1 TCGTAACGAG 3 TCGTCAAGGA 1 TCGTCACTCG 1 TCGTCAGCCA 1 TCGTCAGGAC 1 TCGTCCGACT 1 TCGTCCTAGA 1 TCGTCGCAGA 4 TCGTCGCCAA 1 TCGTCTCATT 1 TCGTCTGCAA 1 TCGTCTTCTC 1 TCGTCTTTAT 4 TCGTGACTCG 1 TCGTGGCGGG 1 TCGTGTGTTA 3 TCGTGTTCAC 1 TCGTTAGAGA 1 TCGTTATTAA 1 TCGTTGTTTA 1 TCGTTTTTTA 1 TCTAAAAAGA 1 TCTAAAACAC 6 TCTAAAATAC 1 TCTAAAATCT 2 TCTAAAGAGT 2 TCTAAATAAA 1 TCTAAATACT 1 TCTAACTACG 1 TCTAACTTAT 1 TCTAAGCAGG 1 TCTAAGGTAG 1 TCTAAGTAAG 1 TCTAAGTACG 1 TCTAATACCA 1 TCTAATGAAG 1 TCTAATGACC 1 TCTACAAATG 1 TCTACACAGA 1 TCTACACTTA 1 TCTACACTTG 1 TCTACATTTC 1 TCTACCAAGC 1 TCTACCACTG 1 TCTACCCAGG 1 TCTACCTATG 1 TCTACCTCAC 1 TCTACGGTCC 1 TCTACTAAAA 1 TCTACTAAGT 1 TCTACTATTT 1 TCTACTTTTT 2 TCTAGAAGTG 1 TCTAGAATTA 1 TCTAGAGACA 1 TCTAGATGTT 1 TCTAGGTGGG 1 TCTAGTCACT 1 TCTATAATCC 1 TCTATACCCT 1 TCTATACCTC 1 TCTATAGAGT 1 TCTATATGTG 1 TCTATCACCT 1 TCTATCTCAG 3 TCTATGACTT 1 TCTATTGATG 1 TCTCAAAAAA 2 TCTCAAACAA 2 TCTCAAATAA 1 TCTCAAGCAG 1 TCTCAAGGAC 1 TCTCAATTCT 4 TCTCACACAA 1 TCTCACCCGA 2 TCTCAGCAGG 2 TCTCAGCCTC 1 TCTCAGGATA 1 TCTCAGGCTG 1 TCTCAGTACA 2 TCTCAGTGTC 1 TCTCAGTGTT 3 TCTCATACCG 1 TCTCATCCAT 1 TCTCATCTCA 1 TCTCCAAGTC 1 TCTCCACATA 1 TCTCCACGAA 1 TCTCCAGGAA 5 TCTCCAGTGC 1 TCTCCATCAC 2 TCTCCATTTT 1 TCTCCCAACA 1 TCTCCCTGCA 1 TCTCCGGTCA 1 TCTCCTAATG 1 TCTCCTACCC 1 TCTCCTGTAT 1 TCTCCTTCAT 1 TCTCGATGAG 1 TCTCTAAGCC 2 TCTCTACAAG 1 TCTCTACCAA 1 TCTCTACCCA 3 TCTCTACTAA 5 TCTCTACTGA 1 TCTCTCCATT 1 TCTCTGACGA 1 TCTCTGAGAT 1 TCTCTGAGCT 1 TCTCTGCAAA 1 TCTCTGCTCA 2 TCTCTGCTCT 1 TCTCTGGATG 1 TCTCTGGGCA 1 TCTCTTCTCC 1 TCTCTTGGGT 1 TCTCTTTTTC 1 TCTGAAATCA 1 TCTGAAGACT 1 TCTGAAGTTT 3 TCTGAATCGG 1 TCTGAATTAT 24 TCTGACAAAC 3 TCTGACACCC 1 TCTGACCCAA 1 TCTGACCTTG 2 TCTGAGACGG 1 TCTGAGCCAG 3 TCTGAGGCCC 1 TCTGAGTCGG 1 TCTGATAACG 1 TCTGATAGCG 1 TCTGATATGG 1 TCTGATTATG 1 TCTGATTGGT 1 TCTGCAAGCA 3 TCTGCAATCC 1 TCTGCACACA 1 TCTGCACATC 1 TCTGCACTGA 1 TCTGCAGGGG 1 TCTGCAGTCC 3 TCTGCATTTG 1 TCTGCCAGGG 2 TCTGCCATTT 1 TCTGCCCGCA 1 TCTGCCGTAC 1 TCTGCCTGGA 2 TCTGCCTGGG 2 TCTGCTAAAA 1 TCTGCTAAAG 3 TCTGCTACCG 1 TCTGCTCAGG 1 TCTGCTGGGG 1 TCTGCTGTGA 1 TCTGCTTACA 3 TCTGCTTCTG 1 TCTGGACCGG 1 TCTGGAGGGA 1 TCTGGATAAG 1 TCTGGGAGAA 1 TCTGGGAGGG 1 TCTGGGCGCA 1 TCTGGGCTCA 1 TCTGGGGACA 1 TCTGGGGACG 2 TCTGGGGGAT 1 TCTGGGTAGA 1 TCTGGTAATT 1 TCTGGTGCAG 1 TCTGGTGTGG 1 TCTGGTTCTA 1 TCTGGTTTGT 7 TCTGTAAACC 1 TCTGTAAATG 1 TCTGTAACTT 1 TCTGTAATAC 1 TCTGTAATCC 21 TCTGTACACC 1 TCTGTAGGCT 1 TCTGTAGTCC 5 TCTGTATTGT 1 TCTGTATTTG 1 TCTGTCAAGA 6 TCTGTCCCCC 3 TCTGTCCTCA 4 TCTGTGACCT 4 TCTGTGAGAT 1 TCTGTGATCC 1 TCTGTGATGA 1 TCTGTGCCGG 1 TCTGTGCTCA 3 TCTGTGCTGT 1 TCTGTGGCGG 1 TCTGTGGTCC 1 TCTGTGGTGT 1 TCTGTGGTTC 1 TCTGTGTGTC 2 TCTGTGTTGC 1 TCTGTTCAAG 1 TCTGTTGGGA 1 TCTGTTGTAT 1 TCTGTTGTTC 1 TCTGTTTACT 1 TCTGTTTATC 2 TCTGTTTATG 1 TCTGTTTCCC 1 TCTTAAAACA 1 TCTTAAATGC 1 TCTTAATCAA 1 TCTTAATGAA 2 TCTTACCAGT 1 TCTTACGCGT 1 TCTTAGTGTT 1 TCTTCAATTT 1 TCTTCACAAG 1 TCTTCACCCC 1 TCTTCAGCCC 1 TCTTCAGCTG 1 TCTTCAGTAG 1 TCTTCATATG 1 TCTTCCCCAC 1 TCTTCCCCAG 4 TCTTCCCTGC 1 TCTTCCCTTT 1 TCTTCCTCTT 1 TCTTCCTTGG 2 TCTTCGTCCT 1 TCTTCTATTG 1 TCTTCTCACT 1 TCTTCTCCCT 6 TCTTCTGCAT 1 TCTTCTGCCA 3 TCTTCTGTTG 1 TCTTCTTTGA 1 TCTTCTTTTC 1 TCTTGAAAAC 1 TCTTGACCAT 1 TCTTGAGCAC 1 TCTTGAGTCA 1 TCTTGATGTC 1 TCTTGCCTAG 1 TCTTGCCTTC 1 TCTTGGGCTT 1 TCTTGTAAAC 1 TCTTGTAACT 1 TCTTGTCCAC 1 TCTTGTCTAT 1 TCTTGTGAAG 1 TCTTGTGAGG 1 TCTTGTGCAT 7 TCTTGTGCTT 1 TCTTGTTCCT 1 TCTTGTTTAT 1 TCTTGTTTCT 1 TCTTTAACCC 1 TCTTTACTTG 1 TCTTTCCAGA 1 TCTTTCTACC 1 TCTTTCTGCA 1 TCTTTCTGTG 1 TCTTTGAAAA 1 TCTTTGACTT 1 TCTTTGAGTG 2 TCTTTGCTTA 1 TCTTTGGACA 1 TCTTTGGCAA 1 TCTTTGTGGG 1 TCTTTGTTAC 1 TCTTTGTTTT 1 TCTTTTATTA 1 TCTTTTCAAA 2 TCTTTTCACT 1 TCTTTTCTCT 1 TCTTTTTAAA 1 TCTTTTTCAT 1 TGAAAAAGGC 1 TGAAAAATAG 1 TGAAAACCCC 1 TGAAAACTAC 1 TGAAAAGCTT 4 TGAAAAGGAC 1 TGAAAAGTGA 1 TGAAACAATT 1 TGAAACCCCA 2 TGAAACCCCG 1 TGAAACCCTG 1 TGAAACCTAC 1 TGAAACGGGA 1 TGAAACGTGC 1 TGAAACTCAT 4 TGAAAGAAAG 1 TGAAAGCAAA 1 TGAAAGGGAG 1 TGAAAGGGGA 1 TGAAAGGTGA 1 TGAAAGTAAC 1 TGAAAGTGTG 1 TGAAAGTTAC 1 TGAAATACTA 1 TGAAATCTGA 1 TGAAATCTGT 1 TGAAATCTTT 1 TGAAATGGGG 2 TGAAATGTTT 1 TGAAATTGCA 1 TGAAATTGGA 1 TGAACAAACA 1 TGAACAAAGC 1 TGAACACGTT 1 TGAACAGCAT 1 TGAACAGTAA 1 TGAACCAAAG 1 TGAACCCACT 1 TGAACCCGCC 14 TGAACCCGGG 2 TGAACCCGTT 1 TGAACCCTGC 1 TGAACCTGGG 2 TGAACGAATT 1 TGAACTAGGT 1 TGAACTGTGA 1 TGAAGAAAGT 1 TGAAGAACCT 1 TGAAGAATGG 2 TGAAGAATGT 2 TGAAGAGAAG 7 TGAAGAGAAT 2 TGAAGAGACC 1 TGAAGATACC 1 TGAAGATAGA 1 TGAAGATATT 1 TGAAGCAGCT 1 TGAAGCAGTA 4 TGAAGCCACT 1 TGAAGCCAGT 1 TGAAGCTCAC 1 TGAAGGAAAT 1 TGAAGGAGCC 8 TGAAGGATGC 5 TGAAGGCTCC 1 TGAAGGGACT 1 TGAAGGTGGT 1 TGAAGGTTTT 2 TGAAGTAACA 7 TGAAGTGACT 1 TGAAGTGTAT 1 TGAAGTGTTT 1 TGAAGTTATA 1 TGAAGTTGGT 1 TGAATACTAC 1 TGAATAGCTG 1 TGAATATACT 2 TGAATATCCA 1 TGAATATGAA 1 TGAATCAGGC 1 TGAATCCCAG 1 TGAATCCGTG 1 TGAATCTGGC 1 TGAATCTGGG 1 TGAATGAAGT 1 TGAATGAATG 1 TGAATGATAC 2 TGAATGATGC 1 TGAATGCATT 1 TGAATGGCCT 1 TGAATGTCAA 1 TGAATGTCAT 3 TGAATGTGGA 1 TGAATGTGTC 1 TGAATTAACT 1 TGAATTCTAC 1 TGAATTGCCT 1 TGAATTGTGA 1 TGAATTTACT 1 TGAATTTCTG 1 TGACAAACAG 1 TGACAAACCT 1 TGACAAAGGG 1 TGACAACTTT 1 TGACAATTTT 2 TGACACAGCC 1 TGACACCCAC 1 TGACAGAAAC 1 TGACAGAGTG 10 TGACAGGATT 1 TGACATACAC 1 TGACATTGGA 1 TGACCAGACC 1 TGACCAGTTA 1 TGACCCCACA 4 TGACCCCAGC 1 TGACCCCCTC 1 TGACCCCGCA 2 TGACCGGCGA 1 TGACCTGCCT 1 TGACCTGTGA 1 TGACCTTACC 1 TGACCTTAGG 1 TGACCTTGGA 1 TGACGACGAC 1 TGACGCTCCT 1 TGACGGAGGC 1 TGACTAATTG 7 TGACTACCAC 1 TGACTACTGA 2 TGACTATAAT 1 TGACTCCTTA 1 TGACTCTACA 1 TGACTCTACT 1 TGACTCTTGG 1 TGACTGAGGC 1 TGACTGGAAA 2 TGACTGGATG 1 TGACTGGCAA 2 TGACTGGCAG 10 TGACTGTAAA 1 TGACTGTTAA 1 TGACTTAAGC 1 TGACTTCACT 1 TGACTTCAGT 1 TGACTTCCAC 1 TGACTTGCCC 1 TGACTTTTCT 2 TGAGAACAAT 1 TGAGAAGAAG 2 TGAGAATCAT 1 TGAGAATGCA 1 TGAGACAATT 1 TGAGACACCT 1 TGAGACATAG 1 TGAGAGAAGG 1 TGAGAGATGG 1 TGAGAGGGTG 2 TGAGATGCCT 1 TGAGATGGGT 2 TGAGATTTCT 1 TGAGCAAACG 1 TGAGCAACTT 1 TGAGCAAGAA 1 TGAGCAATGG 1 TGAGCCCGGC 5 TGAGCCTAAC 1 TGAGCCTCCT 1 TGAGCCTCGT 2 TGAGCCTGTC 1 TGAGCGTGGG 3 TGAGCTACCC 2 TGAGCTCTAC 1 TGAGCTGAGC 1 TGAGCTGGGT 1 TGAGCTGTAG 1 TGAGCTTGTG 2 TGAGCTTTAG 1 TGAGCTTTGG 1 TGAGGACACT 1 TGAGGACGTG 1 TGAGGAGAAG 1 TGAGGAGAGT 1 TGAGGAGCCT 1 TGAGGAGCTG 2 TGAGGATCAT 1 TGAGGATGCA 1 TGAGGCAGGG 2 TGAGGCCAGG 4 TGAGGCCTCT 2 TGAGGCTCAA 1 TGAGGCTCAG 2 TGAGGGAATA 7 TGAGGGAGGG 1 TGAGGGATAA 1 TGAGGGATGG 6 TGAGGGGAGA 1 TGAGGGGGCA 1 TGAGGGGTGA 1 TGAGGGGTGT 1 TGAGGGTTAG 13 TGAGGTCCAC 1 TGAGGTGAAG 1 TGAGGTGCCC 1 TGAGGTGGGA 1 TGAGGTTAGG 1 TGAGGTTTTC 2 TGAGTAATCG 1 TGAGTCTCCC 1 TGAGTCTGGC 9 TGAGTGAAAG 1 TGAGTGACAG 9 TGAGTGCACA 1 TGAGTGGACA 3 TGAGTGGGCA 1 TGAGTGGTCA 1 TGAGTTCACT 1 TGAGTTGAGA 1 TGAGTTGGGC 1 TGAGTTGTGT 1 TGAGTTTGGT 1 TGAGTTTTAC 1 TGATAAAAAC 1 TGATAAAACT 1 TGATAAGTTA 1 TGATAATTCA 6 TGATACACCT 1 TGATACCAGA 1 TGATACCATT 1 TGATACCCTT 1 TGATAGAAAA 1 TGATAGGAAG 1 TGATAGGAGA 1 TGATATCCTA 1 TGATATGGCC 1 TGATATTACT 1 TGATATTAGG 6 TGATATTCAT 1 TGATATTTTT 1 TGATCAAAAT 1 TGATCACCTA 1 TGATCACCTG 1 TGATCAGGTT 1 TGATCCCAGA 1 TGATCCCAGC 1 TGATCGGTCG 1 TGATCGGTGG 1 TGATCTCACT 2 TGATCTCCAA 1 TGATCTCCTC 1 TGATCTCGTC 1 TGATCTCTGA 1 TGATCTCTGT 6 TGATCTGAAG 1 TGATCTGCCA 1 TGATCTGCCT 3 TGATCTGGGA 2 TGATGAATGC 1 TGATGACTGG 1 TGATGAGCTA 1 TGATGAGTCC 1 TGATGAGTGC 1 TGATGAGTTT 1 TGATGATGCT 1 TGATGATGTT 1 TGATGCTGCA 1 TGATGCTTGG 1 TGATGGCTCC 2 TGATGGTCCC 1 TGATGTATGA 1 TGATGTGTTG 1 TGATGTTCCA 1 TGATGTTGTT 1 TGATGTTTGA 1 TGATGTTTTG 1 TGATTACACT 2 TGATTATGCC 1 TGATTCACTT 7 TGATTCCACT 2 TGATTCCATT 1 TGATTCTGAT 1 TGATTGAACT 1 TGATTGATTT 1 TGATTGCAAT 1 TGATTGCATT 1 TGATTGCCCT 1 TGATTGCGGT 1 TGATTGGCTT 1 TGATTGGTGG 2 TGATTGTGAC 1 TGATTTAACT 1 TGATTTAATT 1 TGATTTCACA 1 TGATTTCACC 1 TGATTTCACT 358 TGATTTCAGT 1 TGATTTCATT 2 TGATTTCCAC 1 TGATTTCCCT 1 TGATTTCCTA 1 TGATTTCGCT 2 TGATTTCTCT 2 TGATTTGTTG 1 TGATTTTACT 1 TGATTTTGCC 1 TGATTTTTGA 1 TGCAAACAAG 2 TGCAAAGACA 2 TGCAAATCAA 1 TGCAACAAAT 2 TGCAACTACA 1 TGCAAGAAGT 2 TGCAAGCTGC 1 TGCAAGGCCC 1 TGCAATAGGG 1 TGCACAAAGT 2 TGCACAATAT 3 TGCACACACC 1 TGCACACACG 1 TGCACACGTG 1 TGCACACTCC 1 TGCACACTTA 1 TGCACAGCCA 2 TGCACCACAG 3 TGCACCTATG 1 TGCACCTGGA 1 TGCACCTGTC 1 TGCACCTTGG 1 TGCACGACTA 2 TGCACGCCTG 1 TGCACGCCTT 1 TGCACGCTTT 1 TGCACGTAAT 1 TGCACGTTTT 23 TGCACTACCC 2 TGCACTCTCC 1 TGCACTGGAA 1 TGCACTTCCC 1 TGCACTTGAC 3 TGCAGAACCA 1 TGCAGAAGAG 1 TGCAGAAGCC 1 TGCAGAAGCT 1 TGCAGACCAA 1 TGCAGCACGA 6 TGCAGCAGTC 1 TGCAGCCCAG 1 TGCAGCCGTC 1 TGCAGCGCCT 16 TGCAGCGTCT 1 TGCAGCGTTG 1 TGCAGGCACT 1 TGCAGGCCTG 3 TGCAGGGAAT 1 TGCAGGTGTG 1 TGCAGGTTTA 1 TGCAGGTTTT 1 TGCAGTGTGC 1 TGCAGTTCTG 1 TGCAGTTTTA 1 TGCATAAAGG 1 TGCATAGTGG 1 TGCATAGTTA 1 TGCATATCAA 2 TGCATATTAA 1 TGCATCACGA 2 TGCATCCCGA 1 TGCATCTCAA 1 TGCATCTGGT 34 TGCATCTGTT 1 TGCATTAACT 1 TGCATTATTT 1 TGCATTGGTG 1 TGCATTGTGC 1 TGCATTTGCC 1 TGCATTTTTA 1 TGCCAAAAAA 1 TGCCAACTCT 1 TGCCAATACA 1 TGCCAATGCA 1 TGCCACAGTG 1 TGCCACCAAA 1 TGCCACCACA 1 TGCCACCACC 1 TGCCACCACG 3 TGCCACCAGG 1 TGCCACCTGA 1 TGCCACGAAC 1 TGCCACTACA 1 TGCCACTATG 1 TGCCACTGCA 2 TGCCACTGTA 1 TGCCAGAGAA 1 TGCCAGAGAC 1 TGCCAGATGT 2 TGCCAGCAAA 1 TGCCAGGAAA 1 TGCCAGGACA 1 TGCCAGGGAC 2 TGCCAGGTGC 1 TGCCAGTAGT 1 TGCCAGTGGT 1 TGCCATCTGT 1 TGCCCAACTT 1 TGCCCACTCA 2 TGCCCAGGGC 1 TGCCCAGGTT 3 TGCCCATCAG 1 TGCCCCAAGT 1 TGCCCCCATC 1 TGCCCCCCTA 1 TGCCCCTGAA 2 TGCCCCTGAG 1 TGCCCGAGAA 3 TGCCCGCACT 1 TGCCCGCTGC 2 TGCCCGGCAC 1 TGCCCGGCAG 1 TGCCCGTAAT 1 TGCCCTCAAA 1 TGCCCTCAGG 5 TGCCCTCATC 1 TGCCCTCCCC 1 TGCCCTCTCC 1 TGCCCTGGTG 1 TGCCCTGTAT 1 TGCCCTTCGG 1 TGCCGCCACT 1 TGCCGCCCGC 14 TGCCGCCCGT 1 TGCCGGACAT 1 TGCCGTATTA 1 TGCCGTTGCT 1 TGCCTAGAAC 1 TGCCTAGACC 2 TGCCTAGGGA 1 TGCCTATAAT 2 TGCCTCAGCT 1 TGCCTCATTG 1 TGCCTCCAGG 1 TGCCTCCCAT 1 TGCCTCGTGA 1 TGCCTCTCTG 1 TGCCTCTGCG 21 TGCCTCTGTC 3 TGCCTCTTGA 1 TGCCTGAAAC 1 TGCCTGAAAT 1 TGCCTGCAAC 2 TGCCTGCACC 34 TGCCTGCACT 1 TGCCTGCAGT 1 TGCCTGGAAA 1 TGCCTGGAAT 1 TGCCTGGGCT 1 TGCCTGGTTG 1 TGCCTGTAAT 22 TGCCTGTACT 1 TGCCTGTAGC 1 TGCCTGTAGG 1 TGCCTGTAGT 24 TGCCTGTATG 1 TGCCTGTCCC 1 TGCCTGTCGG 1 TGCCTGTGAT 1 TGCCTGTGGC 2 TGCCTGTGGT 2 TGCCTGTTGG 1 TGCCTGTTGT 2 TGCCTTACTT 2 TGCCTTAGAT 1 TGCCTTCAGG 2 TGCCTTCTTA 1 TGCCTTGGTG 1 TGCCTTTGCA 1 TGCGACCGCA 1 TGCGACGACT 1 TGCGACTGGT 1 TGCGAGCCGC 1 TGCGAGCCTT 1 TGCGCACAAC 1 TGCGCAGACT 1 TGCGCCGGCT 1 TGCGCGTACA 2 TGCGCTAAAC 1 TGCGCTGGCC 2 TGCGGAGCGG 1 TGCGGCTGAA 1 TGCGGCTGGC 1 TGCGGCTGGT 2 TGCGGGTGCT 1 TGCGGTGGTG 1 TGCGGTGTTG 1 TGCGTCACCG 1 TGCGTCCCTC 6 TGCGTGCGTG 1 TGCGTGGTTT 1 TGCTAAAAAA 2 TGCTAAATTC 1 TGCTAATTAC 1 TGCTAATTGG 2 TGCTAATTGT 1 TGCTACTGGT 2 TGCTAGGAAG 1 TGCTAGGACA 1 TGCTAGGGCA 1 TGCTATTCGA 1 TGCTATTCTA 1 TGCTATTTGG 1 TGCTCAAACC 1 TGCTCAGAGA 1 TGCTCAGCGT 1 TGCTCAGTCC 1 TGCTCCAACC 1 TGCTCCAAGC 1 TGCTCCCAGA 1 TGCTCCCTCT 1 TGCTCCCTGA 1 TGCTCCCTTA 1 TGCTCCTAAC 4 TGCTCCTACA 1 TGCTCCTACC 140 TGCTCCTATA 1 TGCTCGGTGG 1 TGCTCTCTCT 1 TGCTCTGAAT 1 TGCTCTGTTG 1 TGCTCTGTTT 1 TGCTCTTACC 2 TGCTCTTACT 1 TGCTCTTATA 1 TGCTCTTTCC 1 TGCTGAAACT 1 TGCTGAATCA 1 TGCTGACGCA 1 TGCTGAGTTG 1 TGCTGCAGAA 1 TGCTGCATTG 8 TGCTGCCGTG 1 TGCTGCTTGA 1 TGCTGGAGTG 1 TGCTGGCAGA 1 TGCTGGGCTC 1 TGCTGGGTGG 5 TGCTGGTGTG 5 TGCTGTCATA 1 TGCTGTGCAT 6 TGCTGTGCTT 1 TGCTGTGGAG 1 TGCTGTGTCC 1 TGCTGTTCCT 1 TGCTGTTTTA 1 TGCTTAAGGG 1 TGCTTAGGGC 1 TGCTTATTAA 1 TGCTTATTGG 1 TGCTTATTTG 1 TGCTTCATCT 2 TGCTTCCCTA 4 TGCTTCTAAT 1 TGCTTCTGCT 1 TGCTTCTGGT 1 TGCTTCTTGG 1 TGCTTCTTTT 1 TGCTTGAATC 1 TGCTTGACAA 1 TGCTTGATGG 1 TGCTTGCAGT 1 TGCTTGCATC 1 TGCTTGGGAA 1 TGCTTGGGCA 1 TGCTTGTAAT 1 TGCTTGTAGT 1 TGCTTGTCCC 15 TGCTTGTCCT 1 TGCTTTCAAA 1 TGCTTTCACT 1 TGCTTTCAGT 1 TGCTTTCATT 1 TGCTTTGGAT 1 TGCTTTGGGA 4 TGCTTTGGGG 1 TGCTTTTCTG 1 TGCTTTTGGC 1 TGCTTTTGGT 1 TGGAAAGAAA 1 TGGAAAGCTG 1 TGGAAAGCTT 1 TGGAAAGTGA 21 TGGAAATCCC 1 TGGAAATGCA 1 TGGAAATTGG 1 TGGAACATTA 1 TGGAACCAGA 1 TGGAACCTTG 2 TGGAACTATG 1 TGGAACTCAG 1 TGGAACTGCA 1 TGGAACTGTG 3 TGGAACTTCT 1 TGGAAGAAAC 2 TGGAAGATGT 1 TGGAAGCACT 1 TGGAAGCAGC 1 TGGAAGCCCC 1 TGGAAGCGCT 1 TGGAAGCTAG 1 TGGAAGGACC 1 TGGAAGGCTT 1 TGGAAGGGCA 6 TGGAAGGGCT 2 TGGAAGGTGA 1 TGGAAGTCCT 1 TGGAAGTGGT 1 TGGAATAAAC 1 TGGAATCAAT 1 TGGAATCTAA 1 TGGAATCTGG 1 TGGAATCTTG 2 TGGAATGAGC 8 TGGAATGCAA 1 TGGAATGCTG 5 TGGAATTCCC 1 TGGAATTTGA 1 TGGACAAAGA 1 TGGACAAGAA 1 TGGACACAAG 3 TGGACACCAC 1 TGGACACGTA 1 TGGACAGAAA 1 TGGACAGGCT 1 TGGACATAGT 1 TGGACATTTT 1 TGGACCAGGC 6 TGGACCAGTG 1 TGGACCCCCA 1 TGGACCCCCC 2 TGGACCTCAG 1 TGGACCTGGA 1 TGGACCTTGA 1 TGGACGCGAG 1 TGGACGCTGC 1 TGGACTGTGT 1 TGGACTTCTT 1 TGGACTTTGT 1 TGGAGAAAAG 2 TGGAGAAAGA 1 TGGAGAAGAG 11 TGGAGAATCA 1 TGGAGAATGT 1 TGGAGACAGT 1 TGGAGACTGG 1 TGGAGAGCAA 1 TGGAGAGTCG 2 TGGAGATTTC 1 TGGAGCGCTA 1 TGGAGGAAGA 1 TGGAGGCACA 2 TGGAGGCCAG 1 TGGAGGGGCA 1 TGGAGGGTGC 1 TGGAGGTAGC 1 TGGAGGTGAA 1 TGGAGGTGGG 6 TGGAGTAAGG 1 TGGAGTAGTG 1 TGGAGTCGGA 1 TGGAGTGGAG 12 TGGAGTGGGG 1 TGGAGTGTAC 2 TGGAGTTAGT 1 TGGATAAACA 1 TGGATAGATT 1 TGGATATCCA 1 TGGATATCTA 1 TGGATATGTG 2 TGGATCAAGA 1 TGGATCAGAT 2 TGGATCATTC 1 TGGATCCTAA 1 TGGATCCTAG 7 TGGATCCTTA 1 TGGATGCTAT 1 TGGATGGAAA 1 TGGATGTAAG 1 TGGATGTTCA 1 TGGATTAAAC 1 TGGATTAGCC 1 TGGATTCTCA 1 TGGATTCTGC 1 TGGATTGAGC 1 TGGCAAACGT 1 TGGCAAATTT 1 TGGCAACAGC 1 TGGCAACCTT 9 TGGCAAGAAG 1 TGGCAATGAG 1 TGGCACACAC 1 TGGCACCTTT 1 TGGCACGCTG 1 TGGCACTGAC 1 TGGCACTTCA 1 TGGCACTTTT 1 TGGCAGAACA 1 TGGCAGAAGC 2 TGGCAGAGTG 1 TGGCAGCTTT 2 TGGCAGGAGG 1 TGGCAGGCCT 1 TGGCAGTATC 1 TGGCATCCTG 1 TGGCATTATT 1 TGGCCAACAA 1 TGGCCAACTG 1 TGGCCAATAA 3 TGGCCACGCT 1 TGGCCAGAGG 1 TGGCCAGTCT 1 TGGCCATCAG 1 TGGCCATCCG 1 TGGCCATCTG 30 TGGCCCACAG 1 TGGCCCCACA 1 TGGCCCCACC 7 TGGCCCGGGC 1 TGGCCCTCAC 1 TGGCCCTCCA 6 TGGCCCTCGG 3 TGGCCCTTTC 1 TGGCCGCTCC 1 TGGCCTCCCC 11 TGGCCTCTCT 1 TGGCCTGAAG 1 TGGCCTGCCC 12 TGGCCTGGAC 1 TGGCCTGGTG 1 TGGCCTGTAT 1 TGGCCTGTTT 1 TGGCCTTTTT 1 TGGCGAGTAT 1 TGGCGCACGG 1 TGGCGCGTGC 1 TGGCGCGTGT 25 TGGCGGAGTC 3 TGGCGGGAGT 1 TGGCGGGATT 1 TGGCGGTGTG 1 TGGCGTACGG 13 TGGCTAAATG 1 TGGCTACACT 1 TGGCTACTGG 1 TGGCTACTTA 6 TGGCTAGATC 1 TGGCTAGATT 1 TGGCTAGCGT 1 TGGCTAGTGT 2 TGGCTCAGAG 1 TGGCTCAGGA 1 TGGCTCCTCC 1 TGGCTCGAAA 1 TGGCTCTGTG 1 TGGCTGACTA 1 TGGCTGAGAT 1 TGGCTGATGT 1 TGGCTGGAAG 1 TGGCTGGAGC 2 TGGCTGGGAA 10 TGGCTGTAAG 1 TGGCTGTGAA 1 TGGCTGTGAG 4 TGGCTGTGAT 1 TGGCTGTGGC 1 TGGCTGTGGG 1 TGGCTGTGTG 7 TGGCTGTTGA 1 TGGCTTAGCT 1 TGGCTTAGGG 1 TGGCTTATGC 1 TGGCTTCCCC 1 TGGCTTGAGC 2 TGGCTTGCTC 1 TGGCTTGGAA 1 TGGCTTGGGA 1 TGGCTTGGGT 1 TGGCTTTCCT 1 TGGGAAAACT 1 TGGGAACCGG 3 TGGGAACCTT 1 TGGGAAGAGG 7 TGGGAAGCAC 1 TGGGAAGCTG 1 TGGGAAGTGA 2 TGGGACAAGG 1 TGGGACAGTT 1 TGGGACCTGG 1 TGGGACCTTG 1 TGGGAGAAGG 1 TGGGAGAAGT 2 TGGGAGAGAC 1 TGGGAGCCCT 1 TGGGAGCTAA 1 TGGGAGCTTT 3 TGGGAGGATG 1 TGGGAGGCTG 1 TGGGAGGGGA 1 TGGGATGAGC 1 TGGGATGCAG 1 TGGGATGCGC 6 TGGGATGGGT 1 TGGGCAAAGA 1 TGGGCAAAGC 31 TGGGCAAGGC 1 TGGGCACCAA 1 TGGGCAGCTG 1 TGGGCAGGGT 1 TGGGCAGTTA 1 TGGGCATAAC 1 TGGGCCAGGC 3 TGGGCCAGGT 1 TGGGCCCCTT 3 TGGGCCCGTG 6 TGGGCCCTGC 1 TGGGCCTGAC 1 TGGGCCTGCC 1 TGGGCCTGTG 1 TGGGCGCCTT 1 TGGGCGGACT 1 TGGGCGTATA 1 TGGGCTAAGC 1 TGGGCTATGG 1 TGGGCTCCCT 1 TGGGCTCCTC 1 TGGGCTGACA 1 TGGGCTTGAG 1 TGGGGAAAAG 2 TGGGGAAACA 1 TGGGGAAGCA 2 TGGGGAAGTA 1 TGGGGAATAG 1 TGGGGACTCA 2 TGGGGAGAAG 1 TGGGGAGAGG 43 TGGGGAGCTC 1 TGGGGATTAC 1 TGGGGCACAT 1 TGGGGCAGGA 1 TGGGGCCAGT 1 TGGGGCCGCA 3 TGGGGCCTCT 1 TGGGGCTTGG 2 TGGGGGCACC 2 TGGGGGCTGT 1 TGGGGGGAAG 1 TGGGGGGCTT 1 TGGGGGGGAT 1 TGGGGTCCCC 1 TGGGGTCTCT 1 TGGGGTGGAG 1 TGGGGTTGAG 1 TGGGGTTGTA 1 TGGGTAAAGG 1 TGGGTATCAA 1 TGGGTCAGCT 1 TGGGTCATTA 1 TGGGTCCATT 1 TGGGTCTGAA 3 TGGGTCTGGA 1 TGGGTGACTC 1 TGGGTGAGCC 5 TGGGTGCACA 1 TGGGTGCTGG 1 TGGGTGGAGA 3 TGGGTGGATT 1 TGGGTGGTTC 1 TGGGTGTATC 1 TGGGTTACAG 1 TGGGTTATTA 1 TGGGTTCCAG 1 TGGGTTGGCA 1 TGGGTTTTGG 1 TGGTAAAACC 1 TGGTAAGAGG 1 TGGTACACCT 1 TGGTACACGT 9 TGGTACCACA 1 TGGTACTCAT 1 TGGTAGACTT 1 TGGTAGAGCG 1 TGGTAGCAGG 1 TGGTAGCAGT 2 TGGTAGGTTC 1 TGGTAGTTAC 3 TGGTATTTCG 1 TGGTATTTTT 1 TGGTCAAGGG 1 TGGTCAAGGT 2 TGGTCACTCT 1 TGGTCAGCAT 1 TGGTCAGCCG 2 TGGTCATCTC 1 TGGTCCCAGC 1 TGGTCCCAGT 1 TGGTCCCGTG 1 TGGTCCTCAG 1 TGGTCCTGCA 1 TGGTCGCCCA 1 TGGTCGGACA 1 TGGTCTAGGA 1 TGGTCTATGC 1 TGGTCTGCTG 1 TGGTCTGGAG 5 TGGTCTTCTG 1 TGGTCTTTCC 1 TGGTGAAACC 1 TGGTGACAGC 1 TGGTGACAGT 1 TGGTGACATT 1 TGGTGAGGGG 1 TGGTGAGTCA 1 TGGTGATATA 1 TGGTGATATT 1 TGGTGCAGCA 1 TGGTGCTGTT 1 TGGTGCTTGG 3 TGGTGGAAGA 1 TGGTGGAAGC 1 TGGTGGAGGC 1 TGGTGGCTGT 1 TGGTGGGCAT 5 TGGTGGGGGG 1 TGGTGGGGTG 4 TGGTGGTCTC 1 TGGTGGTGTA 1 TGGTGGTTTC 1 TGGTGTATGC 17 TGGTGTGCAG 1 TGGTGTGTGC 1 TGGTGTTCGG 1 TGGTGTTGAA 1 TGGTGTTGAG 19 TGGTGTTTGG 1 TGGTGTTTTG 2 TGGTTACAAA 2 TGGTTACCTC 1 TGGTTACTAG 1 TGGTTAGATA 1 TGGTTCAGCT 2 TGGTTCCAAA 5 TGGTTCTATA 1 TGGTTCTCAC 1 TGGTTGAACC 2 TGGTTGGTGG 8 TGGTTGTGGT 1 TGGTTTGAAC 3 TGGTTTGAGA 1 TGGTTTGAGC 1 TGGTTTGCAC 1 TGGTTTGCAT 1 TGGTTTGCGT 5 TGGTTTGGCA 1 TGGTTTTAGT 1 TGGTTTTCTC 1 TGGTTTTGAG 1 TGGTTTTGCT 1 TGGTTTTGGC 4 TGGTTTTTGG 7 TGGTTTTTGT 1 TGTAAAAACC 1 TGTAAAATCC 1 TGTAAAGATT 1 TGTAAAGCCA 1 TGTAAATAAA 1 TGTAACACCC 1 TGTAACCCCG 1 TGTAACTACT 1 TGTAACTTCC 1 TGTAACTTGA 1 TGTAAGAAGA 1 TGTAAGACCC 1 TGTAAGGCAG 1 TGTAAGGGCA 1 TGTAAGTAAA 1 TGTAAGTATC 1 TGTAAGTCTG 3 TGTAATAAGC 1 TGTAATAGCC 1 TGTAATATCT 1 TGTAATATGG 1 TGTAATCAAG 1 TGTAATCAAT 2 TGTAATCGTA 1 TGTAATGATA 1 TGTAATTGGG 1 TGTACACTTT 1 TGTACATATG 1 TGTACATCAC 2 TGTACATTCT 2 TGTACATTTT 1 TGTACCAAGG 1 TGTACCACCT 1 TGTACCCGCC 1 TGTACCCTTG 1 TGTACCTGGG 1 TGTACCTGTA 12 TGTACCTTCT 1 TGTACGTATG 1 TGTACTGCGG 1 TGTACTGCTT 1 TGTACTTATT 2 TGTAGAGACA 1 TGTAGAGTGC 1 TGTAGATCAA 1 TGTAGATGTA 1 TGTAGCCCTT 1 TGTAGCCTAT 2 TGTAGCTGCA 1 TGTAGGAAAC 1 TGTAGGCTAT 1 TGTAGTATTT 3 TGTAGTCACT 1 TGTAGTTTGA 2 TGTATAAAAA 2 TGTATAAAGA 1 TGTATAGCTT 1 TGTATATAAA 1 TGTATATGGT 1 TGTATATGTA 1 TGTATCTGCA 1 TGTATGAATT 1 TGTATGCACA 1 TGTATGCCGT 1 TGTATGCCTT 1 TGTATGGAAT 1 TGTATGTGCA 1 TGTATTACAG 2 TGTATTCAAC 1 TGTATTGAGG 1 TGTATTGTAC 1 TGTATTTATA 2 TGTATTTGAA 2 TGTATTTTTA 1 TGTCAAATAA 1 TGTCAATGGC 1 TGTCAATGGG 1 TGTCACTACT 1 TGTCACTGGG 5 TGTCACTTTT 1 TGTCAGAAAA 1 TGTCAGAGAT 1 TGTCAGCCAG 1 TGTCAGGAAC 2 TGTCAGGACG 1 TGTCAGTGTC 1 TGTCATTTCT 1 TGTCCACACA 1 TGTCCCCTCA 1 TGTCCGTCAC 1 TGTCCTACCC 1 TGTCCTGAAG 1 TGTCCTGCTC 1 TGTCCTGCTT 2 TGTCCTGGTT 46 TGTCGCTGGG 9 TGTCTAAATG 1 TGTCTATTGT 1 TGTCTCCCTC 1 TGTCTCGCAC 1 TGTCTCTTGA 1 TGTCTGAACA 1 TGTCTGCCTG 2 TGTCTGGATA 1 TGTCTGGATG 2 TGTCTGGCTT 1 TGTCTGGTGA 1 TGTCTGGTGG 1 TGTCTGTACT 1 TGTCTGTAGT 1 TGTCTGTGCC 3 TGTCTGTGGT 1 TGTCTGTGTG 3 TGTCTTACTG 1 TGTCTTGCCT 1 TGTCTTGGTG 1 TGTCTTTATA 1 TGTCTTTATG 1 TGTCTTTGCT 1 TGTCTTTGGC 1 TGTCTTTTCT 1 TGTGAAAGGT 1 TGTGAAATCA 1 TGTGAACAAC 1 TGTGAAGTGA 1 TGTGAATAGA 1 TGTGAATTTT 1 TGTGACAGAG 2 TGTGACCTCT 1 TGTGAGCCCC 1 TGTGAGCCCT 3 TGTGAGCTAG 1 TGTGAGGAGT 3 TGTGAGGCAG 1 TGTGAGGGCA 2 TGTGAGGGCC 1 TGTGATCACA 1 TGTGATCAGA 12 TGTGATCAGC 1 TGTGCAAAGA 1 TGTGCAATAG 1 TGTGCAGAAG 1 TGTGCATCCT 1 TGTGCATCTT 3 TGTGCATTGA 1 TGTGCCCCGT 1 TGTGCCCGTG 1 TGTGCCCTGA 3 TGTGCCTGTA 2 TGTGCGCGTG 1 TGTGCGGCTT 1 TGTGCGTTCA 1 TGTGCTAAAT 4 TGTGCTAATA 3 TGTGCTATCT 1 TGTGCTCGGG 9 TGTGCTGGCA 1 TGTGCTGGGT 1 TGTGCTTGTG 1 TGTGGAAGTT 4 TGTGGAGACG 1 TGTGGATCCA 1 TGTGGCAACA 1 TGTGGCAACG 1 TGTGGCCTCC 7 TGTGGCGTAT 2 TGTGGGAAAT 1 TGTGGGAACC 1 TGTGGGAGCT 1 TGTGGGAGTA 1 TGTGGGGACA 1 TGTGGGGGGC 1 TGTGGGGTGA 1 TGTGGGTATT 3 TGTGGGTCTG 1 TGTGGGTGCT 42 TGTGGGTTAA 1 TGTGGTATAA 1 TGTGGTGGCA 1 TGTGGTGGCG 1 TGTGGTGGCT 1 TGTGGTGGTG 1 TGTGGTGTAG 1 TGTGGTGTGT 1 TGTGGTTTAA 1 TGTGGTTTCT 1 TGTGTAAAAC 1 TGTGTAAATC 2 TGTGTCCGTC 1 TGTGTCCTTT 1 TGTGTCTTCC 2 TGTGTGATGG 1 TGTGTGATTG 1 TGTGTGCCAC 8 TGTGTGCCCA 2 TGTGTGGAGA 1 TGTGTGGAGC 1 TGTGTGGGGC 3 TGTGTGTCTA 1 TGTGTGTGAC 1 TGTGTGTGCT 1 TGTGTGTGTG 1 TGTGTGTGTT 1 TGTGTGTTAA 1 TGTGTGTTTG 6 TGTGTTAAAA 1 TGTGTTAGGT 1 TGTGTTCCCC 1 TGTGTTGAAA 1 TGTGTTGAGA 52 TGTGTTGAGG 1 TGTGTTGCTG 1 TGTGTTGTGT 1 TGTGTTTGAA 4 TGTGTTTGAG 1 TGTGTTTGTC 1 TGTGTTTGTT 1 TGTTAAAAAA 1 TGTTAATGTT 3 TGTTACCTGT 1 TGTTACTGGC 1 TGTTAGAACT 2 TGTTAGGGAG 1 TGTTATCTGT 1 TGTTATGTTA 1 TGTTATTAAA 1 TGTTCACACC 1 TGTTCACACT 1 TGTTCAGGAC 1 TGTTCAGTTG 1 TGTTCATAGA 1 TGTTCATCAC 1 TGTTCATCAT 2 TGTTCCACTC 8 TGTTCCAGAT 1 TGTTCCCTTT 2 TGTTCCTAGA 1 TGTTCGAAGA 1 TGTTCGCTGA 1 TGTTCGGTTG 1 TGTTCTCCAT 1 TGTTCTGAAT 1 TGTTCTGATT 1 TGTTCTTTAA 1 TGTTCTTTAG 3 TGTTCTTTCC 1 TGTTGAATAG 1 TGTTGAGCGT 1 TGTTGATGAG 1 TGTTGGGAAG 1 TGTTGGGATT 1 TGTTGGTGCT 1 TGTTGGTTCA 1 TGTTGTCGCT 1 TGTTGTGAGG 1 TGTTGTGCGC 13 TGTTGTGGGA 1 TGTTGTGTAC 1 TGTTGTGTTC 1 TGTTGTTACA 1 TGTTTAATAA 1 TGTTTAGGAA 1 TGTTTATCCT 3 TGTTTCACAC 1 TGTTTCAGAT 1 TGTTTCATCA 1 TGTTTCCACT 1 TGTTTCGGAC 1 TGTTTCGGTG 1 TGTTTCGTCA 2 TGTTTCTAAA 1 TGTTTCTGAC 1 TGTTTGAATT 1 TGTTTGCATA 4 TGTTTGCCAG 1 TGTTTGCTCA 3 TGTTTGCTGC 1 TGTTTGGCTC 1 TGTTTGTACA 3 TGTTTGTGTG 1 TGTTTTAAAA 1 TGTTTTCTCC 1 TGTTTTGTGT 1 TGTTTTTACC 1 TGTTTTTCCG 2 TGTTTTTGCC 1 TGTTTTTTGC 1 TGTTTTTTTG 1 TGTTTTTTTT 1 TTAAAAAAAA 2 TTAAAACAAA 1 TTAAAAGTCA 1 TTAAAATGTT 2 TTAAACCTCA 2 TTAAACTATA 1 TTAAAGATTT 4 TTAAAGCTCT 1 TTAAAGTTGA 1 TTAAATAGAA 1 TTAAATCTTA 1 TTAAATGGCC 1 TTAAATGGTT 1 TTAAATGTGA 1 TTAAATTTTT 1 TTAACACACT 1 TTAACACTAC 1 TTAACACTCA 1 TTAACACTGT 1 TTAACAGGCA 1 TTAACAGGTT 1 TTAACCAGAC 1 TTAACCCAGG 1 TTAACCCCCC 1 TTAACCCCTC 34 TTAACCCTAT 1 TTAACCCTCT 9 TTAACCGGCC 1 TTAACCTTCT 1 TTAACGATCT 1 TTAACTCCTC 1 TTAACTGTGT 1 TTAACTTTTC 1 TTAAGACTTC 2 TTAAGAGGGA 1 TTAAGATTTC 2 TTAAGCAGTT 1 TTAAGGGCAA 1 TTAAGGTCCA 1 TTAAGTCAAT 1 TTAAGTCACA 1 TTAATAAAAT 1 TTAATAAAGT 1 TTAATAAATG 1 TTAATAAATT 1 TTAATACACA 1 TTAATACTCT 1 TTAATAGGCT 1 TTAATAGTGG 4 TTAATATATG 1 TTAATATTCT 4 TTAATCACCT 1 TTAATCCTAA 1 TTAATCCTGT 1 TTAATGAGCA 1 TTAATGAGGG 1 TTAATGCGTC 2 TTAATGGATT 1 TTAATTACAG 1 TTAATTGGCC 1 TTAATTGGGA 1 TTAATTTATT 1 TTAATTTCTC 1 TTACAACAGC 2 TTACAACATT 1 TTACAATGCT 4 TTACACAGGA 1 TTACACTAAC 1 TTACACTAAT 2 TTACACTGGA 1 TTACAGAGCT 1 TTACAGGCAG 1 TTACAGTGCC 1 TTACATTTGG 1 TTACCAGATA 1 TTACCAGCAC 1 TTACCAGGAG 1 TTACCATATC 10 TTACCCAGCA 2 TTACCCAGGA 1 TTACCCCTCC 2 TTACCCGCCC 1 TTACCCTGCT 1 TTACCGGGCA 1 TTACCGTCCC 1 TTACCTAAAA 1 TTACCTCCTT 3 TTACCTCTTC 1 TTACCTTCAT 1 TTACGAGGAA 2 TTACGAGGAT 1 TTACTAAATG 3 TTACTATTAA 1 TTACTCAAAA 1 TTACTCAAAT 1 TTACTCAGGC 1 TTACTCTGAA 1 TTACTGAAGC 1 TTACTGAGTT 1 TTACTGGCAG 1 TTACTGGCCC 8 TTACTGGCCT 1 TTACTGTGTA 1 TTACTTATAC 1 TTACTTCTCT 1 TTACTTGGGC 1 TTACTTGTAC 1 TTACTTTCAA 1 TTACTTTTAG 1 TTAGAAGAGT 1 TTAGAAGCTT 1 TTAGAAGGCA 1 TTAGAAGGGT 1 TTAGAATCAC 1 TTAGACATTA 3 TTAGACTGCT 1 TTAGAGATTC 2 TTAGAGCAGA 1 TTAGAGCTGA 1 TTAGATCGTT 1 TTAGCAATAA 5 TTAGCAGATG 1 TTAGCAGTTG 1 TTAGCATTAA 1 TTAGCCAACC 1 TTAGCCAAGA 1 TTAGCCAGCT 1 TTAGCCAGGA 11 TTAGCCAGGC 2 TTAGCCAGGG 1 TTAGCCCTTT 1 TTAGCCTCTG 1 TTAGCCTTAG 1 TTAGCTCTCG 1 TTAGCTGAGT 3 TTAGCTGGCC 1 TTAGCTGGGA 1 TTAGCTTGTT 4 TTAGGAAAAA 1 TTAGGAAGCT 1 TTAGGCATAA 1 TTAGGCCCTC 1 TTAGGGAGGA 3 TTAGGGCCCT 1 TTAGGGGAGG 1 TTAGGGTTAC 1 TTAGTAGGGG 1 TTAGTCAGAC 1 TTAGTCAGGC 4 TTAGTCTTCG 1 TTAGTGCCAC 1 TTAGTTAAGC 2 TTAGTTACAC 1 TTAGTTACCT 1 TTAGTTCCAG 1 TTAGTTGTGG 1 TTAGTTTTAT 1 TTATAAAAGA 1 TTATAAAGGT 1 TTATAACTGA 3 TTATAATCTT 1 TTATAGCCAA 1 TTATCAAATC 1 TTATCAGGAC 1 TTATCCAGGA 1 TTATCCTGCA 1 TTATCGTCCT 1 TTATCTGTGA 1 TTATGAAGCC 1 TTATGAGGCC 1 TTATGAGTGT 1 TTATGCATAA 1 TTATGCCACT 1 TTATGGGATC 6 TTATGGGGAG 1 TTATGGGTAT 1 TTATGGGTGA 1 TTATGGTGTA 1 TTATGGTGTG 11 TTATGTATAA 1 TTATGTGATT 1 TTATTACTGA 1 TTATTATAAG 1 TTATTATCTG 1 TTATTCCATT 1 TTATTCCCTG 1 TTATTCTTTT 1 TTATTGAAGG 1 TTATTGAGCA 1 TTATTGCAAG 1 TTATTGCTTG 1 TTATTGGAGC 1 TTATTGTATT 2 TTATTTCGCC 1 TTATTTGCCA 1 TTATTTGGGT 1 TTATTTTAGA 1 TTCAAAAACG 1 TTCAAACACC 1 TTCAAACCCC 1 TTCAAACTGT 1 TTCAAAGGGA 1 TTCAAAGTGC 1 TTCAAATAGT 1 TTCAACACCT 1 TTCAACAGGA 1 TTCAACGAGG 1 TTCAACGGCC 1 TTCAAGACCT 1 TTCAAGCACG 1 TTCAAGGCAT 1 TTCAAGTGAA 1 TTCAAGTGGA 1 TTCAAGTTCA 1 TTCAATAAAA 8 TTCAATAGAA 1 TTCAATTAAA 1 TTCAATTAAC 1 TTCAATTCTG 2 TTCAATTTCA 8 TTCACAAAGA 1 TTCACAAAGG 4 TTCACACACC 2 TTCACACTCG 1 TTCACAGACA 1 TTCACAGAGC 1 TTCACAGATT 2 TTCACAGCTA 1 TTCACAGTAG 1 TTCACAGTGG 5 TTCACCAACT 1 TTCACCAGCA 1 TTCACCAGGG 1 TTCACCGTGA 1 TTCACCTGCC 1 TTCACCTTTA 1 TTCACTGACA 1 TTCACTGCCG 1 TTCACTGCGA 1 TTCACTGTAG 1 TTCACTGTGA 150 TTCACTTTGC 1 TTCACTTTGG 1 TTCAGAACTA 1 TTCAGAGAAC 1 TTCAGCCATA 1 TTCAGCCTGA 1 TTCAGCCTGG 1 TTCAGGAGGG 6 TTCAGGATGG 1 TTCAGGCCAC 1 TTCAGGCCCC 2 TTCAGGCCCT 2 TTCAGGCTTT 1 TTCAGGGCTT 3 TTCAGGTTGC 1 TTCAGTATAT 1 TTCAGTGCCT 2 TTCATACACA 2 TTCATACACC 400 TTCATACACG 2 TTCATACATC 2 TTCATACCCC 1 TTCATACCCT 2 TTCATACGAC 1 TTCATACGCC 3 TTCATACTCC 3 TTCATAGTCT 2 TTCATCACCT 2 TTCATCAGCT 1 TTCATCTCTT 1 TTCATCTGAC 1 TTCATTAATT 1 TTCATTATAA 1 TTCATTATAG 1 TTCATTCTAA 1 TTCATTGAGA 1 TTCATTGCAG 1 TTCATTGTAG 1 TTCATTGTGA 1 TTCATTTGCC 5 TTCATTTGTC 2 TTCCAAGAAC 1 TTCCAAGACA 1 TTCCAAGCTG 1 TTCCAAGGCA 4 TTCCACCTCT 2 TTCCACTAAC 29 TTCCACTATC 1 TTCCACTATG 1 TTCCACTCCT 1 TTCCACTCGC 1 TTCCAGACCT 7 TTCCAGATGG 1 TTCCATAACC 1 TTCCATACAT 1 TTCCATATGC 1 TTCCATCTGT 1 TTCCATTGGA 2 TTCCCAACAT 1 TTCCCAACTA 1 TTCCCAGATG 1 TTCCCCACAG 1 TTCCCCACCA 1 TTCCCCACCC 1 TTCCCCAGAA 1 TTCCCCGTGT 1 TTCCCCTCCT 1 TTCCCGCACA 1 TTCCCGCCCT 1 TTCCCGTCCC 2 TTCCCGTGGG 1 TTCCCTATAT 1 TTCCCTCATC 1 TTCCCTCCAA 4 TTCCCTGATA 1 TTCCCTGCAA 2 TTCCCTGGAA 1 TTCCGAGCCC 1 TTCCGCGATC 1 TTCCGCGTGC 4 TTCCGCGTTC 5 TTCCGGAGCG 1 TTCCGGTTCC 10 TTCCGTCATC 1 TTCCGTCTGT 1 TTCCGTGCCT 2 TTCCGTTCCT 3 TTCCTAATAA 1 TTCCTACACC 1 TTCCTAGAAT 1 TTCCTAGTTT 1 TTCCTATGCA 1 TTCCTATTAG 1 TTCCTCCACC 1 TTCCTCCACG 1 TTCCTCGAAC 1 TTCCTCTAAC 1 TTCCTCTACT 1 TTCCTCTCAA 2 TTCCTGAAAA 1 TTCCTGAAGT 1 TTCCTGAATA 1 TTCCTGACTA 1 TTCCTGCCCC 1 TTCCTGCTGT 1 TTCCTGGCAG 1 TTCCTGGTAG 1 TTCCTGGTGC 1 TTCCTGTAGC 2 TTCCTGTTCC 1 TTCCTTCCTG 1 TTCCTTCCTT 1 TTCCTTGCCA 1 TTCCTTGTAA 3 TTCCTTGTTA 1 TTCGATGATT 1 TTCGATGCAG 1 TTCGATGGAG 1 TTCGCACCCA 1 TTCGCAGCAG 1 TTCGCCGTGC 1 TTCGCCGTGG 1 TTCGCTGAGG 3 TTCGCTGTGA 1 TTCGCTTCCT 3 TTCGGAGCTT 1 TTCGGGTGTG 1 TTCGGTGACC 1 TTCGTACACC 3 TTCGTATTAC 1 TTCGTGGCGG 1 TTCTAACATA 7 TTCTAAGTGT 2 TTCTAATCCC 1 TTCTAATTAC 1 TTCTACTTAC 1 TTCTAGAACC 1 TTCTAGGCCA 1 TTCTATGGAG 1 TTCTATTTTT 1 TTCTCAAGAC 1 TTCTCACAGC 1 TTCTCACTCT 1 TTCTCAGTCA 1 TTCTCAGTGA 1 TTCTCATAGA 1 TTCTCATAGG 1 TTCTCCACCA 1 TTCTCCCAAA 2 TTCTCCCGCT 11 TTCTCCGTTT 1 TTCTCCTTCA 1 TTCTCGCTCA 1 TTCTCGGGGC 1 TTCTCTAAGG 1 TTCTCTACAA 1 TTCTCTACAC 19 TTCTCTCCAA 1 TTCTCTCCCC 2 TTCTCTCCTG 1 TTCTCTCTGT 5 TTCTCTGTCC 1 TTCTCTGTGA 1 TTCTCTTCTC 2 TTCTCTTCTT 2 TTCTCTTTCC 1 TTCTGAGATC 1 TTCTGAGCGG 1 TTCTGCACGT 2 TTCTGCACTG 9 TTCTGCAGAA 1 TTCTGCCATT 1 TTCTGCGTCC 1 TTCTGCGTTT 1 TTCTGCTGCG 1 TTCTGGACCC 1 TTCTGGATGC 1 TTCTGGCACT 1 TTCTGGCCTG 1 TTCTGGCTGC 25 TTCTGGGTGA 2 TTCTGGTATT 3 TTCTGGTGCG 8 TTCTGGTTTG 1 TTCTGTAGCC 13 TTCTGTGAAT 1 TTCTGTGAGT 1 TTCTGTGGAT 1 TTCTGTGGCA 2 TTCTGTGTCA 1 TTCTGTGTTT 4 TTCTGTTACC 1 TTCTGTTCTA 1 TTCTGTTTCC 1 TTCTTACCGC 1 TTCTTATTTT 2 TTCTTCAGCA 1 TTCTTCCATA 1 TTCTTGAACA 3 TTCTTGAGCA 1 TTCTTGATCA 1 TTCTTGCAGC 1 TTCTTGCTTA 1 TTCTTGGCCA 1 TTCTTGTCCC 1 TTCTTGTGGC 9 TTCTTTCAGC 1 TTCTTTGAAT 1 TTCTTTGCCC 2 TTCTTTTCCA 2 TTGAAAAGTT 1 TTGAAAATTA 1 TTGAAACCAC 1 TTGAAACCCC 3 TTGAAACCCT 1 TTGAAACCTC 1 TTGAAAGGTG 1 TTGAAAGGTT 2 TTGAAATATA 1 TTGAAATGTC 2 TTGAACTGGC 1 TTGAACTGTA 1 TTGAACTTAA 1 TTGAAGAAGA 1 TTGAAGAATC 1 TTGAAGCACT 1 TTGAAGCTTT 2 TTGAAGGCAA 1 TTGAAGGCCC 1 TTGAAGGGCC 2 TTGAAGGTGC 1 TTGAAGGTGT 1 TTGAAGTCAA 2 TTGAAGTCAG 1 TTGAAGTGGT 3 TTGAATCCCC 12 TTGAATGGAA 1 TTGAATTCCC 1 TTGACAATCT 1 TTGACACTTT 2 TTGACCAAAT 1 TTGACCAGCT 1 TTGACCAGGC 6 TTGACCAGGG 1 TTGACCCCAT 1 TTGACCTCAG 1 TTGACTATCA 1 TTGACTATTC 1 TTGACTATTT 1 TTGACTCCTG 1 TTGACTGGCA 1 TTGACTTTTG 1 TTGAGATTCT 1 TTGAGCCAGC 5 TTGAGCCAGG 2 TTGAGCTTAT 4 TTGAGGAGGT 1 TTGAGGCAGA 1 TTGAGGCTGG 1 TTGAGGGGGG 1 TTGAGGGGGT 4 TTGAGTAGGA 1 TTGAGTCACA 1 TTGAGTTACA 1 TTGAGTTTGT 1 TTGATAGGAT 1 TTGATCAGGC 1 TTGATCCCAA 1 TTGATCGTAC 1 TTGATGAGTC 1 TTGATGCCAA 1 TTGATGCCCA 1 TTGATGCCCG 13 TTGATGCCCT 1 TTGATGCTCA 1 TTGATGCTTC 1 TTGATGGCCG 1 TTGATGGGTG 1 TTGATGTCCT 1 TTGATGTCTT 1 TTGATGTGGC 1 TTGATGTTGA 1 TTGATTCCAT 3 TTGATTCCTC 1 TTGATTCTAT 1 TTGCAAAAGT 1 TTGCAAAGAG 1 TTGCAAATAA 1 TTGCAAATCT 1 TTGCAACCGT 1 TTGCAAGCCT 1 TTGCAATAGG 2 TTGCACGAAG 1 TTGCACGAGG 2 TTGCACTTCC 1 TTGCAGAAAA 1 TTGCAGACCC 1 TTGCATACAG 1 TTGCATATCA 3 TTGCATCCTG 1 TTGCCAACAA 1 TTGCCAACAC 2 TTGCCACGGG 1 TTGCCATTGG 2 TTGCCATTGT 1 TTGCCCAAGC 3 TTGCCCAATC 1 TTGCCCAGCC 1 TTGCCCAGGC 19 TTGCCCAGGG 3 TTGCCCCGTT 1 TTGCCCGGAT 1 TTGCCCTGGC 1 TTGCCCTTTC 1 TTGCCGGGCG 1 TTGCCGGTTT 1 TTGCCGTTGA 1 TTGCCTCCTG 2 TTGCCTGGGA 1 TTGCCTGGGC 2 TTGCCTGTTC 1 TTGCCTTTTA 1 TTGCGCTGCA 1 TTGCGCTGGC 1 TTGCGGAATG 1 TTGCGGGAGA 1 TTGCGGTTCC 1 TTGCGGTTTC 1 TTGCGTAGGT 1 TTGCGTGGGT 1 TTGCGTTCAA 1 TTGCGTTGCG 2 TTGCTAAAGG 1 TTGCTAATGA 1 TTGCTAGAGG 4 TTGCTAGGCT 1 TTGCTATTAA 1 TTGCTCAAGT 3 TTGCTCACAA 1 TTGCTCACAC 1 TTGCTCAGGC 1 TTGCTCATTT 1 TTGCTCCCTG 1 TTGCTGACTT 1 TTGCTGCATA 1 TTGCTGCCAG 3 TTGCTGGAGA 5 TTGCTGGGCA 1 TTGCTGTGTG 1 TTGCTTAATA 1 TTGCTTCACG 1 TTGCTTCATT 1 TTGCTTCGAG 1 TTGCTTTAAA 1 TTGCTTTTGT 5 TTGGAAAATA 1 TTGGAAAGGA 1 TTGGAAAGGG 1 TTGGAACAAT 5 TTGGAACTTA 1 TTGGAAGTTG 2 TTGGAATCGC 1 TTGGACAAGC 1 TTGGACAGGC 1 TTGGACAGTT 1 TTGGACCTGA 1 TTGGACCTGG 33 TTGGACCTTT 1 TTGGACTGAG 1 TTGGAGATCT 5 TTGGAGCAAA 2 TTGGAGCACC 1 TTGGAGGAGA 5 TTGGAGGAGT 1 TTGGAGTTTC 1 TTGGATATCC 2 TTGGATTAAG 1 TTGGATTATT 1 TTGGCAAAAA 1 TTGGCAACAG 1 TTGGCAACAT 5 TTGGCAAGGC 2 TTGGCAAGTA 1 TTGGCAAGTG 2 TTGGCAATCC 1 TTGGCAGCCC 4 TTGGCAGGCA 2 TTGGCCAAGA 1 TTGGCCAAGG 1 TTGGCCAATG 1 TTGGCCACAA 1 TTGGCCAGAC 4 TTGGCCAGCA 1 TTGGCCAGGA 12 TTGGCCAGGC 110 TTGGCCAGGG 3 TTGGCCAGGT 6 TTGGCCAGTC 2 TTGGCCCAGA 6 TTGGCCCATA 1 TTGGCCCTCT 1 TTGGCCGGGC 2 TTGGCCTTGG 1 TTGGCCTTTT 1 TTGGCGCGTG 1 TTGGCGCTGG 1 TTGGCGGAGA 1 TTGGCGGCGG 1 TTGGCGGGCG 1 TTGGCGGGTG 2 TTGGCTAAGC 1 TTGGCTAGGC 8 TTGGCTATTT 1 TTGGCTGCCT 1 TTGGCTGGCT 1 TTGGCTTACG 1 TTGGCTTCAG 1 TTGGCTTGTG 1 TTGGCTTTTC 2 TTGGGAAGCG 1 TTGGGAATCC 1 TTGGGAGGCC 1 TTGGGAGGGT 1 TTGGGAGTGA 1 TTGGGATTCC 1 TTGGGCACTA 1 TTGGGCGAAT 1 TTGGGCGCAG 1 TTGGGCTCCT 1 TTGGGCTTCT 1 TTGGGGACCA 1 TTGGGGCCAG 1 TTGGGGGATT 1 TTGGGGGTTC 3 TTGGGGTGCC 1 TTGGGGTTAC 2 TTGGGGTTAT 1 TTGGGGTTCA 1 TTGGGGTTCC 3 TTGGGGTTCT 1 TTGGGGTTGA 1 TTGGGGTTGG 1 TTGGGGTTGT 1 TTGGGGTTTC 111 TTGGGGTTTT 2 TTGGGTATCC 1 TTGGGTTGGA 1 TTGGGTTTCC 2 TTGGTAAAGA 1 TTGGTAAGGA 1 TTGGTAAGGC 1 TTGGTACACC 1 TTGGTACTGG 1 TTGGTATCAG 1 TTGGTCAGCA 1 TTGGTCAGGA 4 TTGGTCAGGC 32 TTGGTCAGGG 1 TTGGTCAGGT 1 TTGGTCATCC 1 TTGGTCCCTT 1 TTGGTCCTAC 1 TTGGTCCTCT 55 TTGGTGAAGA 1 TTGGTGAAGG 69 TTGGTGATAC 1 TTGGTGCCTG 1 TTGGTGCGTG 1 TTGGTGGAAG 1 TTGGTGGAGG 1 TTGGTGGCAC 1 TTGGTGGCCC 1 TTGGTGGGAG 1 TTGGTGTGCA 1 TTGGTGTGCT 4 TTGGTGTGTG 1 TTGGTGTTTC 1 TTGGTGTTTG 2 TTGGTTATTG 1 TTGGTTCTCT 1 TTGGTTTCCC 9 TTGGTTTTAA 1 TTGGTTTTGT 1 TTGTAAAAAA 1 TTGTAAAAGG 1 TTGTAAATAG 1 TTGTAAATGC 1 TTGTAAGAGG 1 TTGTAAGCAC 1 TTGTAAGGAC 1 TTGTAAGGGA 1 TTGTAATCGT 11 TTGTAATTGT 1 TTGTACCAAA 1 TTGTACCACA 1 TTGTACTCCA 1 TTGTAGCTCA 2 TTGTAGCTCT 1 TTGTATACTT 1 TTGTATAGGG 1 TTGTATTCCA 1 TTGTATTGTT 1 TTGTCAAGCA 1 TTGTCATCTG 1 TTGTCCAGGA 1 TTGTCCAGGC 2 TTGTCCCAAC 1 TTGTCCCCTA 1 TTGTCCCTGG 1 TTGTCCTCTG 1 TTGTCCTGGC 1 TTGTCCTTTT 4 TTGTCGATGG 1 TTGTCTCTTG 1 TTGTCTGCCA 1 TTGTCTGCCT 4 TTGTCTGCTA 1 TTGTCTGGGA 1 TTGTCTTTGT 1 TTGTGAAACC 1 TTGTGAACCG 1 TTGTGAGAAT 2 TTGTGAGTGA 1 TTGTGATGTA 1 TTGTGATTAA 1 TTGTGCACAT 1 TTGTGCCTAT 1 TTGTGCGCCT 1 TTGTGCTACT 1 TTGTGCTTAA 1 TTGTGCTTTT 1 TTGTGGAAAA 1 TTGTGGGGGG 1 TTGTGGTTAA 2 TTGTGGTTAC 1 TTGTGGTTTC 1 TTGTGTAGAC 1 TTGTGTGTAG 1 TTGTGTTCAT 1 TTGTTAACGA 1 TTGTTAATCT 1 TTGTTAGCTG 1 TTGTTAGTGA 1 TTGTTAGTTA 1 TTGTTATTGC 4 TTGTTCAATA 1 TTGTTCACGC 1 TTGTTCCAAA 1 TTGTTCCAGG 1 TTGTTCCTTC 1 TTGTTCTGCA 1 TTGTTCTGCT 1 TTGTTCTTTG 4 TTGTTGGATA 1 TTGTTGGTTT 1 TTGTTGTCTG 1 TTGTTGTGGG 1 TTGTTGTTGA 19 TTGTTTAAAG 1 TTGTTTAGAA 1 TTGTTTCTAT 1 TTGTTTGAAA 1 TTGTTTGTGT 1 TTGTTTTACA 1 TTGTTTTAGA 1 TTGTTTTTGG 2 TTTAAAAGAG 1 TTTAAAATAG 2 TTTAAAATTG 1 TTTAAAGCAG 1 TTTAAATAGC 7 TTTAAATTAT 1 TTTAAATTCC 2 TTTAACATTG 1 TTTAACCCTC 1 TTTAACGGCC 93 TTTAACGTGA 1 TTTAATCTCA 2 TTTAATTTCT 1 TTTAATTTGT 3 TTTACAAACC 1 TTTACAAATA 1 TTTACAAGTT 3 TTTACACGTG 1 TTTACAGACC 1 TTTACAGCCC 2 TTTACAGCTG 3 TTTACAGGCC 1 TTTACCCCTC 1 TTTACTCTGT 1 TTTACTGCAA 1 TTTACTGTCA 5 TTTACTGTGA 1 TTTAGAAAAT 1 TTTAGAGAGA 1 TTTAGCACTT 1 TTTAGCGCTT 3 TTTAGCTACT 1 TTTAGCTCTC 1 TTTAGGGGGA 1 TTTAGGTAAA 5 TTTAGGTGCA 1 TTTAGGTGTG 1 TTTAGGTTGT 1 TTTAGTAGAT 1 TTTAGTGACG 1 TTTAGTGCTT 2 TTTATAAATC 1 TTTATAACTA 1 TTTATACACC 1 TTTATATAGC 1 TTTATATCAT 2 TTTATCAGCT 1 TTTATCATTC 1 TTTATCCCAA 1 TTTATCTAGA 1 TTTATCTGCT 2 TTTATGACAA 1 TTTATGACCC 1 TTTATGCTGC 1 TTTATGCTGT 1 TTTATGGGCA 1 TTTATGGTCA 1 TTTATGTACC 1 TTTATTCCTC 2 TTTATTGAAA 1 TTTATTGAAT 1 TTTATTGGAA 1 TTTATTGGGC 1 TTTATTGGTT 1 TTTATTTAGC 1 TTTATTTCTA 2 TTTATTTGGC 1 TTTATTTGGT 1 TTTATTTTGA 1 TTTCAAATAA 2 TTTCAAATGC 1 TTTCAAGCAG 1 TTTCAAGTGG 2 TTTCAATAAT 1 TTTCAATCCC 1 TTTCAATGAT 1 TTTCACAAAG 1 TTTCACAGGC 2 TTTCACCTAA 1 TTTCAGAACT 1 TTTCAGAGAG 2 TTTCAGATTC 1 TTTCAGATTG 7 TTTCAGCCAC 1 TTTCAGCCCT 1 TTTCAGGGGA 2 TTTCAGGTAT 1 TTTCATATGT 1 TTTCATCCAC 2 TTTCATCTGT 1 TTTCATTGCC 6 TTTCATTTGT 1 TTTCCAAAGT 1 TTTCCAAGGA 1 TTTCCAATCC 1 TTTCCACTTA 1 TTTCCAGCAT 3 TTTCCAGTGG 1 TTTCCAGTTT 1 TTTCCATTTG 1 TTTCCCAAAA 1 TTTCCCAGGA 1 TTTCCCATCC 1 TTTCCCCACC 1 TTTCCCCTCC 1 TTTCCCTGGT 1 TTTCCCTTTG 1 TTTCCGTACA 1 TTTCCTATCC 2 TTTCCTCTCA 21 TTTCCTGGGT 1 TTTCCTGTTT 1 TTTCCTTCCT 3 TTTCGTAAAA 1 TTTCGTAGAT 3 TTTCGTTGCT 1 TTTCTACTCA 1 TTTCTAGATA 1 TTTCTAGGTT 1 TTTCTAGTTT 3 TTTCTCAGTG 1 TTTCTCATAC 1 TTTCTCCCAC 1 TTTCTCGTCG 10 TTTCTCTCCT 2 TTTCTCTGAG 1 TTTCTCTGCA 1 TTTCTGAGCA 1 TTTCTGATGG 1 TTTCTGCAAA 1 TTTCTGCACT 2 TTTCTGCTCC 1 TTTCTGCTCT 1 TTTCTGGAGG 3 TTTCTGTATG 6 TTTCTGTGAA 1 TTTCTGTGGC 2 TTTCTGTGTA 2 TTTCTGTGTT 1 TTTCTGTTTT 1 TTTCTTAAAG 2 TTTCTTCACA 1 TTTCTTCTGT 1 TTTCTTGTCC 1 TTTCTTTGGG 1 TTTCTTTTCA 1 TTTCTTTTGA 1 TTTCTTTTGC 1 TTTGAAAAAT 1 TTTGAAAATT 1 TTTGAAAGGC 1 TTTGAAATGA 15 TTTGAAATGC 1 TTTGAACAGA 1 TTTGAACATA 1 TTTGAAGAAA 1 TTTGAATTAA 1 TTTGACATTT 1 TTTGACGTAT 1 TTTGACGTTT 1 TTTGACTATC 1 TTTGACTCAC 1 TTTGAGAATA 2 TTTGAGCTGG 2 TTTGATGTAT 1 TTTGATTGAC 1 TTTGCAATCC 1 TTTGCACAAG 1 TTTGCACCAC 1 TTTGCACCTT 4 TTTGCACGTT 1 TTTGCACTTG 3 TTTGCAGACG 1 TTTGCAGCAG 1 TTTGCAGCCT 1 TTTGCAGTGA 1 TTTGCATAGC 2 TTTGCCAGCG 1 TTTGCCATAC 1 TTTGCCCAGC 1 TTTGCCCTGA 1 TTTGCCTGTT 3 TTTGCGACTT 1 TTTGCGGCAG 1 TTTGCGGTCC 1 TTTGCGTCAC 1 TTTGCGTCAG 2 TTTGCGTCCG 1 TTTGCTCCGC 1 TTTGCTCTCC 4 TTTGCTGAAC 3 TTTGCTGCCC 2 TTTGCTGGAG 1 TTTGCTGTTC 1 TTTGCTTCCT 1 TTTGCTTTTG 1 TTTGGAAATA 1 TTTGGAAATC 1 TTTGGACAAT 1 TTTGGAGCTT 1 TTTGGAGTAG 1 TTTGGATCTG 1 TTTGGCAGGA 1 TTTGGCAGTA 1 TTTGGCCTAA 1 TTTGGCCTTC 1 TTTGGCTGGG 1 TTTGGGCCCT 1 TTTGGGCCTA 11 TTTGGGGCTA 1 TTTGGGGCTG 11 TTTGGGGTAT 1 TTTGGTAGAC 1 TTTGGTCAAC 1 TTTGGTGAAA 1 TTTGGTGATC 1 TTTGGTGTTT 2 TTTGGTTTCA 2 TTTGGTTTTA 1 TTTGTAATAT 1 TTTGTAATCC 1 TTTGTACAAA 1 TTTGTACTTG 1 TTTGTAGACC 1 TTTGTAGATG 2 TTTGTAGTCT 1 TTTGTAGTTT 1 TTTGTATGCT 1 TTTGTCAGGC 1 TTTGTCCCTC 1 TTTGTCTGCG 1 TTTGTCTTCT 1 TTTGTGAAAG 1 TTTGTGACTG 5 TTTGTGCAAT 1 TTTGTGCCAC 1 TTTGTGGCTA 1 TTTGTGGGGG 1 TTTGTGGTGA 1 TTTGTGTCTT 1 TTTGTTAATT 1 TTTGTTCATT 4 TTTGTTCGCA 2 TTTGTTCGTT 1 TTTGTTGCTG 1 TTTGTTGCTT 1 TTTGTTTTTG 1 TTTTAAAAAG 1 TTTTAAACTT 1 TTTTAAAGAC 1 TTTTAAAGTG 1 TTTTAAATCA 1 TTTTAAATTA 1 TTTTAAATTC 1 TTTTAACCGT 1 TTTTAAGGAA 1 TTTTAATACA 1 TTTTAATGAA 1 TTTTAATTGC 2 TTTTACACCT 1 TTTTACAGTA 1 TTTTACATCT 1 TTTTACCAGG 1 TTTTACCTGA 1 TTTTACTCAC 1 TTTTACTGAT 1 TTTTAGACAG 9 TTTTAGAGAA 6 TTTTATGACT 2 TTTTATGTGA 1 TTTTATTAAA 1 TTTTATTATC 1 TTTTATTATT 2 TTTTATTGGA 1 TTTTATTTCT 2 TTTTCAATAA 1 TTTTCACAGC 2 TTTTCAGATC 1 TTTTCAGGTA 1 TTTTCATAAA 1 TTTTCATCTG 1 TTTTCATTTG 1 TTTTCCAACC 1 TTTTCCAGGC 1 TTTTCCCACC 2 TTTTCCCTCA 1 TTTTCCCTGT 1 TTTTCCTGCA 1 TTTTCGTTTT 1 TTTTCTAACG 1 TTTTCTAAGA 2 TTTTCTATTT 1 TTTTCTCCCG 1 TTTTCTCTGC 1 TTTTCTGAAA 4 TTTTCTGAGT 3 TTTTCTGCAT 8 TTTTCTGCTG 4 TTTTCTGGAA 1 TTTTCTGTAT 1 TTTTCTTCAT 1 TTTTCTTTCT 1 TTTTCTTTTC 1 TTTTGAAAGG 1 TTTTGAAGCA 1 TTTTGACCAT 1 TTTTGACTTC 1 TTTTGAGATA 1 TTTTGAGTTT 1 TTTTGATGAG 3 TTTTGCAACA 1 TTTTGCATTT 1 TTTTGCTACA 1 TTTTGCTGTG 2 TTTTGGAATT 1 TTTTGGAGGC 1 TTTTGGAGTT 1 TTTTGGATTT 1 TTTTGGCCAG 1 TTTTGGGAGG 1 TTTTGGGGGC 4 TTTTGGGTGA 3 TTTTGGGTGT 1 TTTTGGTCTG 1 TTTTGGTGCA 2 TTTTGTAAAT 1 TTTTGTACAG 1 TTTTGTACGC 3 TTTTGTCACA 1 TTTTGTGGGG 1 TTTTGTGTGA 1 TTTTGTTAAT 1 TTTTGTTTCT 1 TTTTGTTTTG 1 TTTTGTTTTT 2 TTTTTAACTG 1 TTTTTACACT 1 TTTTTACTGA 32 TTTTTACTGT 2 TTTTTAGAAT 2 TTTTTAGATT 1 TTTTTATCCA 1 TTTTTATGAT 1 TTTTTATTTA 2 TTTTTATTTT 1 TTTTTCACTG 1 TTTTTCCCTG 1 TTTTTCTGTA 1 TTTTTCTGTG 1 TTTTTCTTCT 2 TTTTTGAAGG 2 TTTTTGATCA 7 TTTTTGCACT 1 TTTTTGCCAC 1 TTTTTGGCCT 1 TTTTTGTACA 7 TTTTTGTAGG 2 TTTTTGTATT 3 TTTTTGTGCT 1 TTTTTGTGGC 1 TTTTTGTTGT 1 TTTTTTAACA 1 TTTTTTACTG 1 TTTTTTATGC 1 TTTTTTCACT 1 TTTTTTGCCC 1 TTTTTTGTAA 2 TTTTTTTTCT 1 TTTTTTTTTA 1 r-bioc-edger-3.4.2+dfsg.orig/data/Tu98.txt0000755000265600020320000100262312227063704017216 0ustar tilleaadminTag_Sequence Count AAAAAAAAAA 40 AAAAAAAAAC 1 AAAAAAAAAG 1 AAAAAAACAA 1 AAAAAAATCA 2 AAAAAACCCA 3 AAAAAAGCAG 1 AAAAAAGGGT 1 AAAAAATAAA 1 AAAAAATCAG 1 AAAAAATTTC 1 AAAAACACCC 1 AAAAACACCT 1 AAAAACAGAA 1 AAAAACCATA 1 AAAAAGAATT 1 AAAAAGACAC 1 AAAAAGATAG 1 AAAAAGATGC 1 AAAAAGCACA 1 AAAAAGCAGA 3 AAAAAGTGAA 1 AAAAATAAAA 3 AAAAATAAAG 1 AAAAATCTGA 1 AAAAATTACC 1 AAAACAAAGA 1 AAAACAAAGT 1 AAAACACTCT 1 AAAACACTGT 1 AAAACATAAA 1 AAAACATATC 1 AAAACATCCT 1 AAAACATCTC 2 AAAACATTCT 62 AAAACCAACA 1 AAAACCAAGA 1 AAAACCAATC 2 AAAACCAGAG 1 AAAACCCAGT 1 AAAACCGTTG 1 AAAACTGAAC 1 AAAACTGAGA 3 AAAACTGCCT 3 AAAACTTAAG 1 AAAAGAAACT 7 AAAAGAAAGA 2 AAAAGAATCT 1 AAAAGAATGA 1 AAAAGACAAA 2 AAAAGACAGT 1 AAAAGAGTGG 6 AAAAGATACT 1 AAAAGATGTC 1 AAAAGCAACT 1 AAAAGCAATT 1 AAAAGCAGAA 3 AAAAGCGAAG 1 AAAAGCTACT 1 AAAAGCTGCA 1 AAAAGGGACC 1 AAAAGGTGCT 2 AAAAGGTTAT 1 AAAAGTGGTT 1 AAAAGTGTGA 1 AAAAGTTGAG 1 AAAATAAAAA 1 AAAATAAACA 1 AAAATAAACC 1 AAAATAAACG 1 AAAATAAAGA 4 AAAATAAATT 1 AAAATACCAA 1 AAAATATCAC 2 AAAATATTTT 1 AAAATCACTT 2 AAAATCAGCT 1 AAAATCCTGT 1 AAAATCTTTG 1 AAAATGAAAC 1 AAAATGAAGA 1 AAAATGAATG 1 AAAATGACTT 1 AAAATGCCAC 1 AAAATGCTGT 1 AAAATGGCCA 1 AAAATGTACT 2 AAAATGTGTT 1 AAAATTCACT 1 AAAATTCAGG 1 AAAATTGCCC 1 AAAATTTCCC 1 AAACAAAAAA 1 AAACAAAACA 1 AAACAACACC 1 AAACAACCCA 1 AAACAATGCA 1 AAACAATGGC 1 AAACACATTG 1 AAACACCTTA 1 AAACACGATG 1 AAACACTTTG 1 AAACAGAGCC 1 AAACAGCCCT 1 AAACAGCTAG 1 AAACAGCTAT 1 AAACAGCTCC 2 AAACAGTGTA 2 AAACATAAAC 1 AAACATCGAA 1 AAACATTAAA 1 AAACATTAGC 1 AAACATTCTC 3 AAACATTGGG 4 AAACATTGTA 1 AAACATTTTC 1 AAACCAACGA 1 AAACCAAGCT 1 AAACCAATCC 1 AAACCAATTT 1 AAACCACAGC 1 AAACCAGGGC 1 AAACCAGGTA 1 AAACCATAAA 1 AAACCATCCA 1 AAACCCAGGA 1 AAACCCCAAT 1 AAACCCCTTC 1 AAACCCGAAG 1 AAACCCTGTC 1 AAACCGAGAG 1 AAACCGTATG 1 AAACCTACCA 1 AAACCTCAAT 1 AAACCTCCAC 1 AAACCTCTCT 1 AAACCTCTTC 2 AAACCTTGAC 1 AAACCTTGAG 1 AAACGAAACA 1 AAACGACTGC 1 AAACGAGAAT 1 AAACGCCCAA 1 AAACGTGTCT 1 AAACGTTGGG 1 AAACTACAAA 1 AAACTACCCT 1 AAACTATGAA 1 AAACTCACCA 1 AAACTCACGC 1 AAACTCAGTA 1 AAACTCATTT 1 AAACTCGGGT 3 AAACTCTGGG 1 AAACTCTGTG 4 AAACTGAAAT 1 AAACTGAACT 1 AAACTGACAG 1 AAACTGCAAG 1 AAACTGCCAA 1 AAACTGGCAG 6 AAACTGGGAG 1 AAACTGGTCC 1 AAACTGTAGT 1 AAACTGTGAG 1 AAACTTACCT 1 AAACTTAGTA 1 AAACTTGGAG 1 AAACTTTCAA 1 AAACTTTCTT 1 AAACTTTTTC 1 AAAGAAAGGC 1 AAAGAAAGTG 2 AAAGAAATGG 1 AAAGAACAAC 1 AAAGAAGATG 1 AAAGAAGCCA 1 AAAGAATATG 1 AAAGAATTCA 1 AAAGAATTGT 1 AAAGACAGAA 1 AAAGACCAAA 5 AAAGACTAAA 1 AAAGACTTAG 1 AAAGAGAAAG 1 AAAGAGCTGG 1 AAAGAGTCGG 1 AAAGAGTGAT 1 AAAGATCCCC 1 AAAGATGAAA 1 AAAGATGATG 1 AAAGCAAACC 5 AAAGCAAGGA 1 AAAGCAATCA 1 AAAGCAGCAC 1 AAAGCAGGAT 2 AAAGCAGTTT 1 AAAGCATCCG 1 AAAGCCAAGA 3 AAAGCCACTC 1 AAAGCCAGCA 1 AAAGCCCATC 1 AAAGCCTGAC 1 AAAGCGCAAA 1 AAAGCGCTGC 3 AAAGCGTAAA 1 AAAGCTAGAG 1 AAAGGAAAGT 1 AAAGGAATAA 1 AAAGGAATGG 2 AAAGGACCGT 1 AAAGGACTCA 1 AAAGGAGGAG 1 AAAGGGCAAT 1 AAAGGGCCTG 1 AAAGGGCCTT 1 AAAGGGCTCA 3 AAAGGGGCCT 1 AAAGGGGGCA 10 AAAGGTGATA 1 AAAGGTGCAG 1 AAAGGTGGGG 1 AAAGGTGTAA 1 AAAGGTTAGT 1 AAAGTAAAGC 1 AAAGTCAGAA 5 AAAGTCATTG 1 AAAGTCTAGA 2 AAAGTCTGAG 1 AAAGTGAAAT 1 AAAGTGAAGA 3 AAAGTGCATC 2 AAAGTGCTGT 1 AAAGTGGCAG 1 AAAGTGGCCA 2 AAAGTGGCTA 1 AAAGTGTGAG 1 AAAGTGTTTT 1 AAAGTTAACA 1 AAAGTTCTAA 1 AAAGTTCTCA 2 AAAGTTTATC 1 AAATAAAAGA 3 AAATAAAAGC 3 AAATAAAATT 1 AAATAAAGAA 1 AAATAACTGA 1 AAATAAGAGG 1 AAATAAGTAT 2 AAATAATTCT 1 AAATACAGCA 4 AAATACAGTT 1 AAATACATCC 1 AAATACCTCC 1 AAATACCTGT 1 AAATACTGAT 1 AAATACTTCA 6 AAATAGATCC 11 AAATAGCAGT 1 AAATAGGGTG 1 AAATAGGTTT 1 AAATATCCTA 2 AAATATGAGA 1 AAATATGAGC 3 AAATATGCTA 1 AAATATGGGG 1 AAATATGGTG 1 AAATATGTTG 2 AAATATTAAT 1 AAATCAAGTC 1 AAATCAATAA 1 AAATCACACC 1 AAATCAGAGC 1 AAATCAGCCA 1 AAATCAGTGT 1 AAATCATCTG 1 AAATCATTTG 1 AAATCCCCCT 1 AAATCTGACT 1 AAATCTGAGC 1 AAATCTGGCA 2 AAATCTTGTC 1 AAATGAAAAT 1 AAATGAACCA 1 AAATGAATAA 1 AAATGACAAT 1 AAATGACTTA 1 AAATGAGCTA 1 AAATGATGAC 1 AAATGATTTA 1 AAATGCAGTA 1 AAATGCCACA 2 AAATGGAAAG 2 AAATGGACAT 1 AAATGGCTTG 3 AAATGGGTGC 1 AAATGGTATT 1 AAATGGTGAC 1 AAATGTACAA 1 AAATGTAGAA 1 AAATGTGAAT 1 AAATGTGTTT 1 AAATGTTAAT 1 AAATGTTCGC 1 AAATGTTGAT 1 AAATTACAGG 1 AAATTACATA 1 AAATTACTGT 1 AAATTAGCTG 1 AAATTATCTC 1 AAATTCAAAG 1 AAATTCACCC 1 AAATTGAGTG 1 AAATTGCACT 1 AAATTGCTGT 2 AAATTGTTCC 1 AAATTGTTGG 1 AAATTTTAAT 1 AAATTTTCCA 1 AAATTTTGAT 1 AAATTTTGCC 1 AAATTTTGGA 1 AAATTTTGGG 1 AACAAACATA 1 AACAAACATC 1 AACAAACGGA 1 AACAAAGAAC 1 AACAAATCCT 1 AACAAATGGA 1 AACAAATTCT 2 AACAACAGGT 1 AACAACTATG 1 AACAAGCCTC 1 AACAAGGTGA 1 AACAAGTACC 1 AACAAGTCTT 2 AACAATGAAA 1 AACAATGAAT 1 AACAATTATG 1 AACAATTTAC 1 AACACAAAGG 1 AACACAAATA 1 AACACACACA 1 AACACACTCC 1 AACACAGCAC 1 AACACAGCTC 1 AACACAGGAG 2 AACACATACA 1 AACACCAAAT 1 AACACCAATT 1 AACACCTCCA 1 AACACGAATG 1 AACACGGGAG 1 AACACGGGGG 1 AACACGTCAG 1 AACACTGACT 1 AACACTTCAG 1 AACACTTCTC 1 AACACTTGGA 1 AACAGAAAAA 1 AACAGAAAGC 1 AACAGAAGCA 2 AACAGAATAT 1 AACAGAATCA 1 AACAGAATGA 1 AACAGACACA 3 AACAGACACT 1 AACAGAGAAT 1 AACAGAGATA 1 AACAGAGGAG 1 AACAGATATT 6 AACAGCAAGA 1 AACAGCAGGC 1 AACAGCGAGA 1 AACAGCTGCC 1 AACAGCTTTA 1 AACAGGGACA 1 AACAGTCAAA 2 AACAGTGTTT 1 AACATAAATG 1 AACATAACAT 1 AACATACAAA 1 AACATACACA 1 AACATCAGAT 1 AACATCCCGG 1 AACATCTTAA 1 AACATTAAGG 1 AACATTAGTG 1 AACATTGAAG 1 AACATTGGCT 1 AACATTTGTG 1 AACCAAAGCT 1 AACCAACCAG 2 AACCAAGTAT 1 AACCAATACA 1 AACCACAAAA 1 AACCACAGCA 1 AACCACATAC 1 AACCACATTG 2 AACCACCAAG 1 AACCACCACA 1 AACCACCCAC 1 AACCACCCAG 3 AACCACCGCA 1 AACCACCGCC 1 AACCACCTAC 1 AACCACTACA 1 AACCACTGCA 1 AACCACTGGG 1 AACCACTGTA 1 AACCACTGTG 1 AACCAGAATG 1 AACCAGAGTG 1 AACCAGCAAA 1 AACCAGGGAG 1 AACCAGGTGG 1 AACCAGGTGT 3 AACCAGTAGA 1 AACCAGTTTG 1 AACCATAGCA 1 AACCATAGGG 1 AACCATCAGG 1 AACCATCTGA 1 AACCATTAGG 1 AACCCAAAAA 2 AACCCAAGAG 2 AACCCAATCC 1 AACCCAGAAA 1 AACCCAGAAG 3 AACCCAGCAG 1 AACCCAGGAA 3 AACCCAGGAC 1 AACCCAGGAG 42 AACCCAGGGG 1 AACCCCAGAG 1 AACCCCAGGG 1 AACCCCGGAG 1 AACCCGAGAG 1 AACCCGGAAG 1 AACCCGGAGA 1 AACCCGGGAA 6 AACCCGGGAG 37 AACCCGGGAT 2 AACCCGGGGG 2 AACCCGGTAG 2 AACCCGTACA 1 AACCCGTGAG 1 AACCCTACCA 2 AACCCTCTGG 1 AACCCTGAAT 1 AACCCTGCCC 4 AACCGAAATT 1 AACCGACACA 1 AACCGAGATC 2 AACCGAGATT 1 AACCGAGGAG 1 AACCGCCTGC 1 AACCGGCAGC 1 AACCGGGAAG 3 AACCGGGAGG 1 AACCGGGTTG 1 AACCGGTAAG 1 AACCGTCACG 1 AACCTAATTG 1 AACCTATTAA 1 AACCTCTGTT 1 AACCTGAACA 1 AACCTGAGAG 1 AACCTGCAGA 1 AACCTGCGGC 1 AACCTGGAAG 2 AACCTGGAGT 1 AACCTGGCCT 1 AACCTGGGAG 38 AACCTGGGGG 1 AACCTGGGTT 1 AACCTGTTTT 3 AACCTTATTT 1 AACCTTCAGT 1 AACCTTGGGG 1 AACCTTTGAG 1 AACGAACCAG 1 AACGAACGTG 1 AACGAAGGTA 1 AACGAATCGG 1 AACGACCTCG 6 AACGACCTGG 1 AACGAGGAAT 17 AACGAGGAGA 1 AACGAGGCCT 1 AACGAGGTAT 1 AACGAGTACA 1 AACGATACCA 1 AACGCAGACC 1 AACGCAGGAG 1 AACGCCAACC 1 AACGCGAACA 4 AACGCGCACT 1 AACGCGCCCT 1 AACGCGGCCA 35 AACGCTCCGC 1 AACGCTGCAA 2 AACGCTGCCT 2 AACGCTTTAG 1 AACGGAGCCT 1 AACGGGAACC 1 AACGGGAAGA 1 AACGGTCGTG 1 AACGTCCAGT 1 AACGTGCAGG 7 AACGTGTAAT 1 AACGTTCTTG 1 AACGTTCTTT 1 AACTAAAAAA 7 AACTAAACAT 1 AACTAACAAA 12 AACTAACAAC 1 AACTAACATT 1 AACTAATACT 5 AACTAATCCT 1 AACTACATAG 1 AACTACCAGT 1 AACTACGCAC 1 AACTACTTCT 1 AACTAGAAAT 1 AACTAGCACA 1 AACTAGCGGA 1 AACTAGGAAG 1 AACTAGTGTC 2 AACTATAAAC 1 AACTATAAGA 1 AACTATACAA 1 AACTATTCAC 2 AACTATTTAA 1 AACTCAAAAT 1 AACTCAACTT 1 AACTCAAGAA 1 AACTCAGCTC 1 AACTCAGGAG 2 AACTCCAGTT 1 AACTCCCAGT 1 AACTCCGTGG 1 AACTCCTTCG 5 AACTCGGGAG 3 AACTCTCTGC 1 AACTCTGGAC 2 AACTCTGGGT 2 AACTCTGTAA 2 AACTCTTCAC 1 AACTCTTGAA 4 AACTCTTGGA 1 AACTCTTTTC 2 AACTGAAAAG 1 AACTGAAAGG 1 AACTGACTAA 1 AACTGAGTTC 1 AACTGCAGCA 1 AACTGCAGTG 3 AACTGCGCGG 1 AACTGCGGCC 1 AACTGCTCAG 1 AACTGCTGAA 1 AACTGCTTAC 1 AACTGCTTCA 6 AACTGGCAAA 1 AACTGGCCCC 1 AACTGGGAAT 1 AACTGGGAGG 1 AACTGGGCAG 1 AACTGGGCGG 1 AACTGGGCTG 1 AACTGGGTGG 1 AACTGGTGCT 1 AACTGGTGTT 1 AACTGTAAGT 1 AACTGTACTA 1 AACTGTATAC 1 AACTGTGATT 1 AACTGTGCAG 1 AACTGTGGTG 1 AACTGTGTTT 1 AACTGTTCCA 1 AACTGTTCCC 2 AACTGTTGAT 2 AACTGTTTCC 1 AACTTAAGAG 1 AACTTAATGC 1 AACTTAGCTC 1 AACTTCTGTA 1 AACTTCTGTG 1 AACTTCTTAG 1 AACTTGATAC 2 AACTTGCCCA 1 AACTTGCGTT 1 AACTTGGCTG 2 AACTTGGGAG 1 AACTTGGGCT 2 AACTTGGGGT 1 AACTTGTTCC 1 AACTTTAGGT 1 AACTTTGCCT 1 AACTTTGTAT 1 AAGAAAACAA 1 AAGAAAACTG 2 AAGAAAATCT 1 AAGAAAATGT 1 AAGAAACCAT 2 AAGAAACCCC 1 AAGAAAGCTC 1 AAGAAAGGGA 1 AAGAAATGAC 1 AAGAAATGTA 1 AAGAAATTAT 1 AAGAACATTA 1 AAGAACATTG 1 AAGAACCACT 1 AAGAACCCCC 1 AAGAACCTTT 1 AAGAACTAAA 2 AAGAACTGTG 1 AAGAAGACTT 2 AAGAAGATAG 21 AAGAAGATTG 1 AAGAAGCAGG 1 AAGAAGCCAC 1 AAGAAGGCAC 1 AAGAAGGTGG 1 AAGAAGTTCC 1 AAGAATGCAG 1 AAGAATGCTT 1 AAGAATTCTA 1 AAGACAATGT 1 AAGACACTAA 1 AAGACACTGT 1 AAGACAGAGC 1 AAGACAGAGG 1 AAGACAGATT 1 AAGACAGTGA 1 AAGACAGTGG 41 AAGACATATT 1 AAGACATTCT 1 AAGACATTGT 1 AAGACCAGGC 1 AAGACCATCT 1 AAGACCCCGG 1 AAGACCCTCT 1 AAGACCGAGG 1 AAGACCGATT 1 AAGACCTAAG 2 AAGACGTCAT 1 AAGACTAGCT 1 AAGACTGGCT 1 AAGACTGGGG 1 AAGACTTGAT 1 AAGACTTTTG 1 AAGAGAGTAT 1 AAGAGATAAA 1 AAGAGCAATG 1 AAGAGCCCTA 1 AAGAGCGCCG 1 AAGAGCGGCG 3 AAGAGCTGCC 1 AAGAGCTGCT 1 AAGAGCTTTG 1 AAGAGGACCT 1 AAGAGGACTT 2 AAGAGGAGTG 1 AAGAGGCACT 2 AAGAGGCCCC 1 AAGAGGGAAG 1 AAGAGGTTTG 2 AAGAGTCCAG 1 AAGAGTGAGG 1 AAGAGTGCTT 1 AAGAGTTCGT 1 AAGAGTTGTA 1 AAGATAAACT 2 AAGATAATGC 2 AAGATAATGT 2 AAGATAGATA 1 AAGATATTCT 1 AAGATCAAAA 1 AAGATCAAGA 3 AAGATCACCA 1 AAGATCCCCA 1 AAGATCCCCG 8 AAGATCCCGC 1 AAGATCCCTT 1 AAGATCCTCA 1 AAGATCTTTT 1 AAGATGAGGA 1 AAGATGAGGG 1 AAGATGAGTA 1 AAGATGATAA 1 AAGATGGACC 1 AAGATGGAGG 1 AAGATGGGGA 1 AAGATGTGGA 1 AAGATGTTTG 1 AAGATTCTGC 1 AAGATTGGGG 2 AAGATTGGTG 9 AAGATTTCTG 1 AAGATTTGTG 1 AAGCAAACTA 1 AAGCAAGGAA 1 AAGCAATTCA 1 AAGCACCTGG 1 AAGCACCTTG 1 AAGCACTGCA 1 AAGCACTGCC 1 AAGCACTGCG 1 AAGCACTGTT 1 AAGCACTTCT 1 AAGCAGAATA 1 AAGCAGACAA 1 AAGCAGACTG 1 AAGCAGCTGC 1 AAGCAGCTGT 2 AAGCAGGACT 1 AAGCAGGAGG 1 AAGCAGTCAA 1 AAGCAGTCGC 2 AAGCAGTCTG 1 AAGCAGTGAA 1 AAGCATCAAA 1 AAGCATCTCA 1 AAGCATTCAT 1 AAGCATTTAT 1 AAGCCAAAGG 1 AAGCCAACCT 1 AAGCCACCGG 1 AAGCCACCTC 1 AAGCCACTTC 1 AAGCCAGCCC 8 AAGCCAGGAA 1 AAGCCAGGAC 7 AAGCCAGGAG 1 AAGCCAGGGG 2 AAGCCATTCA 1 AAGCCCCAAC 2 AAGCCCCCAA 1 AAGCCCCCTT 1 AAGCCCCTGG 1 AAGCCCTCTA 1 AAGCCCTGCT 1 AAGCCCTTCT 1 AAGCCGCTGG 1 AAGCCGGCCC 1 AAGCCTCCCC 1 AAGCCTCCTC 1 AAGCCTGTAG 1 AAGCCTTAGC 1 AAGCCTTGCT 3 AAGCGAATGC 1 AAGCGCTCTC 3 AAGCGCTGTT 1 AAGCGGGACC 7 AAGCGGGCCG 1 AAGCGGGGGG 1 AAGCTAAAAA 1 AAGCTAAAAG 1 AAGCTAAGAA 1 AAGCTAATGT 1 AAGCTATCTG 1 AAGCTCAACA 1 AAGCTCAGTT 1 AAGCTCATAC 1 AAGCTCTCCT 1 AAGCTCTGTG 3 AAGCTCTTGG 1 AAGCTGAGCC 1 AAGCTGAGGT 1 AAGCTGAGTG 5 AAGCTGCAAA 1 AAGCTGCTAA 2 AAGCTGCTGG 12 AAGCTGCTGT 1 AAGCTGCTTT 1 AAGCTGGAGG 3 AAGCTGGCCC 2 AAGCTGGTGG 2 AAGCTGGTGT 1 AAGCTGTATA 1 AAGCTGTATT 2 AAGCTGTCAG 7 AAGCTGTCTC 1 AAGCTGTTCC 4 AAGCTGTTGG 1 AAGCTGTTGT 1 AAGCTGTTTA 1 AAGCTTCCAA 1 AAGCTTCTCT 1 AAGCTTCTGC 1 AAGCTTTAAA 2 AAGCTTTGTG 1 AAGGAAAAAA 1 AAGGAAAACG 1 AAGGAAACTG 1 AAGGAACCTG 1 AAGGAAGAAA 1 AAGGAAGATC 1 AAGGAAGATG 3 AAGGAAGATT 2 AAGGAAGCTG 1 AAGGAAGTTG 1 AAGGAATGCG 1 AAGGACACAT 1 AAGGACACTG 1 AAGGACAGAG 2 AAGGACAGGA 1 AAGGACCTAG 2 AAGGACCTGG 1 AAGGACCTTT 7 AAGGACGTGC 1 AAGGACTCGC 1 AAGGACTGAG 1 AAGGAGAAAT 2 AAGGAGAAGG 2 AAGGAGACAC 2 AAGGAGACAT 1 AAGGAGATGG 33 AAGGAGCAAG 5 AAGGAGCGGG 1 AAGGAGTATC 1 AAGGAGTCCC 2 AAGGAGTCGG 1 AAGGAGTTAC 1 AAGGAGTTGG 1 AAGGAGTTTG 3 AAGGATAAAA 6 AAGGATGCGG 1 AAGGATGTAG 1 AAGGATGTGG 1 AAGGATTATA 1 AAGGATTCAC 2 AAGGCAAAAA 1 AAGGCAAGGA 1 AAGGCAAGTG 1 AAGGCAATCG 1 AAGGCACAGA 5 AAGGCACCAT 1 AAGGCAGAAA 1 AAGGCAGAAG 2 AAGGCAGATG 1 AAGGCAGCTG 1 AAGGCAGGTG 1 AAGGCATCCT 1 AAGGCCACCC 1 AAGGCCACCG 3 AAGGCCATTC 1 AAGGCCCAGG 1 AAGGCCGAGT 2 AAGGCCTCGG 1 AAGGCCTGGT 1 AAGGCCTTGT 6 AAGGCTTCCA 1 AAGGGAGCAC 12 AAGGGAGGGT 1 AAGGGAGGTC 1 AAGGGATGTT 1 AAGGGCACAA 1 AAGGGCACCA 1 AAGGGCAGTG 3 AAGGGCGCGG 1 AAGGGGAAAC 1 AAGGGGAAAG 1 AAGGGGGCAA 3 AAGGGTTCTG 1 AAGGGTTGCA 1 AAGGTAACAG 2 AAGGTAATAT 1 AAGGTAATGC 1 AAGGTACAAG 1 AAGGTACAGC 1 AAGGTAGCAG 2 AAGGTAGGCT 1 AAGGTAGGGC 8 AAGGTAGGGT 1 AAGGTATATT 1 AAGGTATGAC 1 AAGGTCATCA 1 AAGGTCGAGC 8 AAGGTCGTCG 1 AAGGTCTGAG 1 AAGGTCTGCT 2 AAGGTGAAGG 1 AAGGTGAAGT 1 AAGGTGAGTT 1 AAGGTGCACG 1 AAGGTGCCTC 1 AAGGTGCTGG 1 AAGGTGGAGA 1 AAGGTGGAGG 39 AAGGTGGAGT 1 AAGGTGGCCA 3 AAGGTGGTTT 1 AAGGTGTAGA 1 AAGGTTTTTA 1 AAGGTTTTTC 1 AAGTAAACTA 1 AAGTAAAGAG 1 AAGTAAATAA 1 AAGTAAGCCG 1 AAGTAATACT 1 AAGTACAACT 1 AAGTACATAG 1 AAGTACGAGG 3 AAGTACGCAC 1 AAGTACTCAC 1 AAGTAGAGCA 1 AAGTAGATTT 1 AAGTAGCTGG 2 AAGTAGGGAT 1 AAGTAGGTGG 1 AAGTAGGTTT 1 AAGTAGTGAC 1 AAGTATGCCA 1 AAGTATGTTC 1 AAGTATTGTG 2 AAGTATTTTT 1 AAGTCACCGC 1 AAGTCACTGG 1 AAGTCAGAGC 1 AAGTCAGGAG 5 AAGTCATAGG 1 AAGTCATCAG 1 AAGTCATTCA 6 AAGTCCTGCA 1 AAGTCGCAGG 1 AAGTCGTGAA 1 AAGTCTCACA 1 AAGTCTTCCT 1 AAGTGAACGT 1 AAGTGAGATG 2 AAGTGAGGAG 1 AAGTGATGTC 1 AAGTGATTCT 3 AAGTGCAGAC 1 AAGTGCTACG 1 AAGTGCTAGA 1 AAGTGGAAGA 1 AAGTGGAAGC 1 AAGTGGAGGC 1 AAGTGGATAG 1 AAGTGGCAAA 1 AAGTGGCAAG 1 AAGTGGCACT 1 AAGTGGCGCT 1 AAGTGGGTGC 2 AAGTGTAGAT 1 AAGTGTGCTT 1 AAGTGTGTTT 1 AAGTTAAAAA 1 AAGTTATTGT 1 AAGTTCAGCA 1 AAGTTCAGGC 1 AAGTTCCAGA 1 AAGTTCGTGA 1 AAGTTCTGCG 1 AAGTTCTGCT 1 AAGTTGAGAC 1 AAGTTGCTAT 5 AAGTTTCCAA 1 AAGTTTCCCA 1 AAGTTTCTAC 1 AAGTTTGACA 1 AAGTTTGCAA 1 AAGTTTGCCT 2 AAGTTTGTGC 1 AAGTTTGTTA 1 AATAAAAATG 1 AATAAAACGG 1 AATAAAAGAT 1 AATAAAAGTG 1 AATAAACTCA 1 AATAAACTGA 1 AATAAAGAGA 2 AATAAAGCCT 6 AATAAAGCGT 1 AATAAAGGCT 3 AATAAAGTTG 4 AATAAATGGA 3 AATAAATTCC 3 AATAAGCCAA 1 AATAAGTTAA 1 AATAATTGGG 1 AATACAAACC 2 AATACAATGA 1 AATACACATC 2 AATACACCAG 1 AATACAGAAG 1 AATACAGCTG 1 AATACAGTGA 1 AATACATTTC 2 AATACCTCGT 5 AATACTTTTG 2 AATAGACATT 1 AATAGCACGT 1 AATAGCTCAG 4 AATAGCTGAT 4 AATAGGAATC 1 AATAGGATCC 1 AATAGGGTCA 2 AATAGGTCAG 1 AATAGGTCCA 22 AATAGGTCCT 1 AATAGTCATC 1 AATAGTTTCC 6 AATATAACAC 1 AATATACCAC 1 AATATCCCCC 1 AATATCCTGG 1 AATATCTGAC 3 AATATGAACA 2 AATATGATGA 1 AATATGGATG 2 AATATGGTAC 3 AATATGTACA 3 AATATGTGGG 8 AATATTAAAT 1 AATATTACTC 1 AATATTATAT 1 AATATTATTA 1 AATATTCATA 1 AATATTCTGA 1 AATATTGAGA 4 AATATTGTTG 1 AATATTTAGT 1 AATATTTATA 10 AATATTTCAA 1 AATATTTGAC 1 AATATTTGCA 1 AATATTTGGA 1 AATCAAGGTG 1 AATCAATCAA 1 AATCACAAAT 14 AATCACCGGA 1 AATCACCTTT 1 AATCACGAAC 1 AATCACGTCT 1 AATCACTAAG 1 AATCACTGCA 2 AATCAGAAAA 1 AATCAGCAGT 1 AATCAGTACT 2 AATCAGTTAC 1 AATCAGTTGT 1 AATCATAAAA 1 AATCATATGG 1 AATCATCAGT 1 AATCATTCAT 1 AATCCAAAGG 1 AATCCAGCAG 1 AATCCAGGAG 4 AATCCCCATC 1 AATCCCGCCA 1 AATCCCGCCC 1 AATCCCTCCC 1 AATCCGACTC 1 AATCCGGAAG 1 AATCCGGGAC 1 AATCCGGGAG 1 AATCCGGGTG 1 AATCCTCCAC 1 AATCCTCCTT 1 AATCCTGAGG 1 AATCCTGTGG 36 AATCGCTAAT 1 AATCGGTTAT 1 AATCTAACAA 1 AATCTCATTG 1 AATCTCCCTG 1 AATCTCTCTG 1 AATCTGAACC 2 AATCTGCCAG 1 AATCTGCGCC 2 AATCTGGATG 1 AATCTGGCAC 1 AATCTGGGAG 1 AATCTGGTTG 2 AATCTGTGAC 1 AATCTTCCCT 1 AATCTTGCAA 1 AATCTTTTGG 1 AATGAAAAAA 1 AATGAAAAAC 1 AATGAAAAGA 1 AATGAAAAGG 1 AATGAACAGG 1 AATGAACCCT 1 AATGAATAAA 1 AATGAATCCA 1 AATGAATGCA 1 AATGACATAA 1 AATGACGGGC 1 AATGACGTAG 1 AATGACTAAA 1 AATGACTGAA 3 AATGAGAAGA 1 AATGAGAAGG 1 AATGAGATAG 1 AATGAGCAAC 1 AATGAGGCCA 1 AATGAGGTGC 1 AATGAGTGCT 1 AATGATACTT 1 AATGATATTG 1 AATGATGGGG 1 AATGCAAAAT 1 AATGCAAACG 1 AATGCAAGAC 1 AATGCAAGAT 4 AATGCACGAT 1 AATGCACTCA 1 AATGCAGGCA 9 AATGCAGGGT 1 AATGCATCGT 2 AATGCATTTT 1 AATGCCAGCA 1 AATGCCCACA 1 AATGCCCCAC 1 AATGCGAGAA 1 AATGCGGAGG 1 AATGCGGGAA 2 AATGCGTGTA 2 AATGCTACCG 1 AATGCTACTT 1 AATGCTAGAT 1 AATGCTGGAG 1 AATGCTGGCA 5 AATGCTGTGA 1 AATGCTGTTT 1 AATGCTTGAT 3 AATGCTTGTG 1 AATGGAAGGT 1 AATGGAATGG 1 AATGGACACT 1 AATGGAGACT 1 AATGGAGCAC 1 AATGGAGTGA 1 AATGGAGTGG 1 AATGGATGAA 6 AATGGATTAC 1 AATGGATTAT 2 AATGGCAAAG 1 AATGGCACTT 3 AATGGCAGCA 1 AATGGCATTG 2 AATGGCCAAA 1 AATGGCCAGT 1 AATGGCCTTG 1 AATGGCTGAT 1 AATGGGAAAG 1 AATGGGAAGC 2 AATGGGATTA 1 AATGGGGAGA 2 AATGGGGCTG 1 AATGGGGGTT 3 AATGGGGTTT 1 AATGGGTAGG 1 AATGGGTGAA 1 AATGGGTGAG 1 AATGGTGAGG 1 AATGGTGGGT 1 AATGGTTAAG 1 AATGGTTAGC 2 AATGGTTCTG 1 AATGTAGCCA 1 AATGTCAGCA 1 AATGTCATTG 1 AATGTCCAGT 2 AATGTCCGAA 1 AATGTCTGCA 1 AATGTGACCC 1 AATGTGAGTC 3 AATGTGATCA 1 AATGTGGCCA 1 AATGTGGCTG 2 AATGTGGTGG 1 AATGTGTGTC 1 AATGTTCAGG 1 AATGTTGAGG 1 AATGTTTAAA 1 AATGTTTCCA 1 AATGTTTGTG 1 AATTAAAGCG 1 AATTAAAGTT 1 AATTAACTCC 3 AATTAAGAGT 1 AATTAATTAA 1 AATTACTAAC 1 AATTACTTTA 1 AATTACTTTT 1 AATTAGGCCA 1 AATTAGGGTC 1 AATTAGTTCT 1 AATTATGACT 2 AATTATGGCT 1 AATTCACAAA 1 AATTCATCAT 1 AATTCCAGAG 1 AATTCCCGTC 1 AATTCCCTTT 1 AATTCTCCAT 1 AATTCTCCTA 2 AATTCTGCTG 1 AATTCTGGTC 1 AATTCTTCGT 1 AATTGAATAA 1 AATTGAGGAG 2 AATTGCAAAT 1 AATTGCAACA 1 AATTGCAAGC 3 AATTGCAAGG 1 AATTGCATTA 1 AATTGCATTT 2 AATTGCCACT 1 AATTGCGGAA 1 AATTGCTCAC 1 AATTGGATTT 1 AATTGGCTGT 1 AATTGGGTTT 1 AATTGTACCT 1 AATTGTCCAA 1 AATTGTCTGA 1 AATTGTGGCC 1 AATTGTTTGG 1 AATTTAAAGC 1 AATTTACAGG 1 AATTTACCAT 1 AATTTACTTC 1 AATTTAGACA 1 AATTTAGGTT 1 AATTTCAATA 1 AATTTCAGTC 1 AATTTCATCT 1 AATTTCTATC 1 AATTTGACTG 1 AATTTGAGAA 1 AATTTGCAAC 3 AATTTGGGAG 1 AATTTTATTT 2 ACAAAAACTA 12 ACAAAACCCC 2 ACAAAACCCT 1 ACAAAACTTC 1 ACAAAAGTCA 1 ACAAAAGTGA 1 ACAAAATAAA 2 ACAAACATTG 1 ACAAACCCCC 8 ACAAACGCTC 1 ACAAACTAAG 2 ACAAACTGGC 1 ACAAACTGTG 5 ACAAACTTAG 2 ACAAAGACTG 1 ACAAAGATGG 1 ACAAAGCATT 4 ACAAAGCTTG 1 ACAAAGTGAG 2 ACAAAGTTTT 1 ACAAATCCTT 3 ACAAATCTTT 1 ACAAATGGAT 1 ACAAATGTAT 1 ACAACACCCC 3 ACAACAGGCT 1 ACAACATAGA 1 ACAACCACCA 1 ACAACCCCCA 1 ACAACCCCCT 1 ACAACGACCA 3 ACAACGCAGG 1 ACAACGTGGA 1 ACAACTACCA 1 ACAACTCAAT 8 ACAACTTGGG 1 ACAACTTGTC 1 ACAACTTTCT 1 ACAAGAAAGG 1 ACAAGAACAA 2 ACAAGAATTG 1 ACAAGACCCT 2 ACAAGATAAA 1 ACAAGATCGT 2 ACAAGATGGG 2 ACAAGCACAA 1 ACAAGCATAT 1 ACAAGCCTAG 1 ACAAGCGCTT 1 ACAAGGAGAG 1 ACAAGGATGC 1 ACAAGTACCC 1 ACAAGTTCTC 1 ACAATAAAAA 1 ACAATAAATA 1 ACAATAATAG 1 ACAATAATCA 1 ACAATAATGA 1 ACAATAGGGC 1 ACAATAGTTC 1 ACAATCAACA 1 ACAATCATCC 1 ACAATCCCTA 1 ACAATGACAA 1 ACAATGACCA 1 ACAATGGGAG 1 ACAATGGTAT 1 ACAATGTCAC 1 ACAATGTGTG 1 ACAATTTTGA 1 ACACAACAGG 1 ACACAAGGTG 1 ACACAAGTTT 1 ACACAATAAT 1 ACACACACAG 1 ACACACACTG 1 ACACACCAAG 1 ACACACGCAA 2 ACACACGGAG 1 ACACACGGTT 1 ACACACTCCA 2 ACACACTGTC 1 ACACAGCAAG 38 ACACAGCCGT 1 ACACAGTATT 1 ACACAGTGTG 1 ACACAGTTTA 1 ACACATAAGA 1 ACACATATAA 1 ACACATATTA 3 ACACATCAAG 1 ACACATCCAA 1 ACACATCCTA 1 ACACATTAAG 1 ACACATTATT 1 ACACCAAAAA 1 ACACCAACAC 1 ACACCACACC 1 ACACCACTAG 1 ACACCACTCA 1 ACACCACTGC 1 ACACCAGACT 1 ACACCATTCA 1 ACACCCACAA 1 ACACCCAGAA 1 ACACCCAGCC 1 ACACCCATCA 5 ACACCCTCTC 1 ACACCCTGGG 1 ACACCCTGTG 1 ACACCGTAAC 1 ACACCTCATT 1 ACACCTTTAA 1 ACACGAGGGT 1 ACACGCCGTC 1 ACACGGCAAT 1 ACACTAAAAT 2 ACACTAAATC 1 ACACTAACTT 1 ACACTAAGAC 1 ACACTACACT 1 ACACTACGGG 1 ACACTAGTTT 1 ACACTCAAAG 1 ACACTCCCCA 1 ACACTGCACT 4 ACACTGCCCA 2 ACACTGCTTT 1 ACACTTAAAA 1 ACACTTCACC 1 ACACTTCTAG 1 ACACTTGACT 1 ACACTTGCAG 1 ACACTTGGAG 1 ACACTTTAAT 1 ACACTTTTCC 1 ACACTTTTGT 1 ACAGAAAAGC 1 ACAGAACACG 1 ACAGAATGGC 1 ACAGAATGTT 1 ACAGACTGAT 2 ACAGACTTCC 1 ACAGAGACAG 1 ACAGAGAGAT 1 ACAGAGATGC 1 ACAGAGATGT 1 ACAGAGCAAG 2 ACAGAGCAAT 1 ACAGAGCACA 1 ACAGAGCCTC 1 ACAGATGACT 1 ACAGATGAGT 1 ACAGATGGGA 1 ACAGATTCAA 1 ACAGCACAAG 1 ACAGCACTCC 1 ACAGCAGTCA 1 ACAGCATCTG 1 ACAGCCCCGT 1 ACAGCCGCAG 2 ACAGCCTCAG 1 ACAGCCTGCA 1 ACAGCCTGTA 6 ACAGCGAGTT 1 ACAGCGGCAA 4 ACAGCTAACA 1 ACAGCTACAG 1 ACAGCTCAAC 1 ACAGCTGCCT 1 ACAGCTGGCT 1 ACAGCTTGCA 1 ACAGCTTTGT 1 ACAGGACCTT 1 ACAGGACTTC 1 ACAGGAGCGT 1 ACAGGCAAGG 1 ACAGGCAGAG 1 ACAGGCTACG 7 ACAGGGAAAA 1 ACAGGGATCT 1 ACAGGGCTAC 1 ACAGGGGCCA 1 ACAGGGGCCG 4 ACAGGGGTCT 1 ACAGGGTGAC 7 ACAGGTCGAT 1 ACAGGTGTTT 1 ACAGGTTTGG 1 ACAGTAACTG 1 ACAGTAAGCG 3 ACAGTAGAGA 1 ACAGTCTAGA 1 ACAGTCTGAG 1 ACAGTCTTGC 5 ACAGTCTTGT 1 ACAGTCTTTG 1 ACAGTGACTC 1 ACAGTGCCAC 1 ACAGTGCTGA 1 ACAGTGGATT 2 ACAGTGGGGA 3 ACAGTGGTGC 1 ACAGTGTCAG 1 ACAGTGTGAG 1 ACAGTGTGGC 1 ACAGTGTGTG 3 ACAGTGTTAA 3 ACAGTTACAG 1 ACAGTTTGCA 1 ACATAAAAAC 1 ACATAAAAAT 1 ACATAATAAA 1 ACATACCACA 1 ACATAGCAGA 1 ACATAGCATC 1 ACATATACTG 1 ACATATTGAG 1 ACATATTGCT 1 ACATCAAAAT 2 ACATCAAAGT 2 ACATCAATGT 1 ACATCACAAT 1 ACATCACCGA 1 ACATCACTAG 2 ACATCAGTGT 1 ACATCATACT 1 ACATCATCGA 34 ACATCCCAGA 1 ACATCCCCTC 1 ACATCCTCAC 1 ACATCCTCAG 1 ACATCCTCTT 1 ACATCGCCTG 1 ACATCGGGTG 1 ACATCGGTCC 1 ACATCGTAGG 7 ACATCGTAGT 1 ACATCTGTAT 1 ACATCTGTGA 1 ACATTAAAAT 2 ACATTAAAGC 1 ACATTACAAC 1 ACATTACAAG 1 ACATTAGGCG 1 ACATTCCAAG 1 ACATTCCCGA 1 ACATTCTTCA 1 ACATTCTTGT 1 ACATTCTTTT 1 ACATTGCACT 1 ACATTGCCGT 1 ACATTGGATG 1 ACATTGGGTG 96 ACATTGGTAA 1 ACATTGTAAC 1 ACATTGTCCA 1 ACATTGTGTA 1 ACATTTAGGC 1 ACATTTCATT 2 ACATTTCCAA 1 ACATTTGCCA 1 ACATTTGCTT 1 ACATTTGGTT 2 ACATTTGTTG 1 ACATTTTACC 1 ACATTTTGGA 1 ACATTTTGTC 1 ACATTTTTCC 3 ACCAAAAAAA 1 ACCAAAAACC 9 ACCAAAACAC 1 ACCAAAACCA 1 ACCAAAAGTT 1 ACCAAACTGT 2 ACCAAAGCCC 1 ACCAAATATT 2 ACCAAATTAA 3 ACCAACAAGT 1 ACCAACACAC 2 ACCAACACCC 1 ACCAACACGG 1 ACCAACCCTA 1 ACCAACCGAC 1 ACCAACTGCG 1 ACCAACTTTC 1 ACCAAGAATA 1 ACCAAGAGTG 1 ACCAAGATCA 1 ACCAAGCAAC 1 ACCAAGCAAG 2 ACCAAGCCTA 1 ACCAAGCTGG 3 ACCAAGGAGG 5 ACCAAGTAGG 1 ACCAAGTGAA 1 ACCAAGTGCA 1 ACCAATCAGG 1 ACCAATGTGT 1 ACCACAAAAA 1 ACCACAAATG 1 ACCACAAGAC 1 ACCACAATTA 1 ACCACAGATG 1 ACCACAGGGG 2 ACCACAGTGT 1 ACCACCAATA 1 ACCACCACCA 1 ACCACCAGCT 1 ACCACCCTGC 1 ACCACCGCCA 1 ACCACCTATC 1 ACCACCTTTT 1 ACCACGCAGA 1 ACCACGCCGT 3 ACCACGGTGC 1 ACCACGTACA 1 ACCACGTATG 1 ACCACTACCC 1 ACCACTAGGT 1 ACCACTCTCG 1 ACCACTGCCT 1 ACCACTTATC 4 ACCACTTTCT 1 ACCAGAACCC 1 ACCAGAGGAT 1 ACCAGCAAAT 1 ACCAGCAAGA 1 ACCAGCAGAG 1 ACCAGCATTG 1 ACCAGCCAAA 1 ACCAGCCACA 2 ACCAGCCCAG 1 ACCAGCCCGG 1 ACCAGCCTGA 1 ACCAGCCTGG 2 ACCAGCGTTT 1 ACCAGCTCCC 1 ACCAGCTCCT 1 ACCAGCTGCA 1 ACCAGCTGTC 3 ACCAGCTTGT 1 ACCAGGCGCA 2 ACCAGTAATT 1 ACCAGTCCCC 1 ACCATCCTGC 4 ACCATCCTGG 1 ACCATTCACC 1 ACCATTCTGC 5 ACCATTGGAT 3 ACCATTTATT 1 ACCCAAACAT 1 ACCCAAATTG 1 ACCCAAGATT 1 ACCCAATCAG 3 ACCCAATGAG 1 ACCCAATTTG 2 ACCCACAGTG 1 ACCCACCCCC 1 ACCCACCTGC 2 ACCCACCTTC 1 ACCCACGTCA 3 ACCCACTACC 1 ACCCACTCTA 1 ACCCACTGCA 1 ACCCACTGTG 1 ACCCAGAGCT 1 ACCCAGCGGG 3 ACCCAGGACA 1 ACCCAGGCTG 1 ACCCAGGTCA 1 ACCCAGTAAA 1 ACCCAGTCCC 1 ACCCAGTCTC 1 ACCCATCGCC 1 ACCCATCTCC 1 ACCCCAAAAA 1 ACCCCAAACT 1 ACCCCAACCC 1 ACCCCAACCT 1 ACCCCAAGAA 1 ACCCCAAGAG 1 ACCCCACCCA 3 ACCCCACGTT 1 ACCCCAGAAG 1 ACCCCAGAGC 1 ACCCCAGGAG 1 ACCCCATTAA 1 ACCCCCAAGA 1 ACCCCCATCG 1 ACCCCCCAGC 1 ACCCCCCCGC 16 ACCCCCCGCC 2 ACCCCCCGGC 1 ACCCCCCTGT 1 ACCCCCGATG 1 ACCCCCTGCG 1 ACCCCCTGTG 1 ACCCCCTTCC 1 ACCCCTAACA 1 ACCCCTCCCC 1 ACCCCTCTGG 1 ACCCCTGCCC 1 ACCCCTGGCC 1 ACCCCTGGGC 1 ACCCCTGTCT 1 ACCCCTTCTC 1 ACCCCTTGGC 3 ACCCGCAGTG 1 ACCCGCCCAC 2 ACCCGCCGGG 6 ACCCGCGAGG 2 ACCCGCTATG 1 ACCCGGGAAC 1 ACCCGGGGGG 1 ACCCGTTCCC 1 ACCCTAAAAC 1 ACCCTACAAA 2 ACCCTAGGCC 1 ACCCTCCCGC 1 ACCCTCGGCC 3 ACCCTCTCAC 1 ACCCTCTCCC 2 ACCCTCTGTG 1 ACCCTGCAAA 1 ACCCTGCCAA 2 ACCCTGCCCT 1 ACCCTGCCTC 1 ACCCTGCTCC 1 ACCCTGGGCA 4 ACCCTGTGTC 1 ACCCTTAAAA 1 ACCCTTAGCC 3 ACCCTTCCCT 6 ACCCTTGACC 1 ACCCTTGGAG 1 ACCCTTGGCA 1 ACCCTTGGCC 273 ACCCTTGGCG 1 ACCCTTGGCT 2 ACCCTTGGGC 1 ACCCTTGTAC 1 ACCCTTTAAC 3 ACCCTTTCAC 5 ACCCTTTGGC 3 ACCCTTTTAG 1 ACCGACTGAT 1 ACCGAGAAAA 1 ACCGAGAGCC 3 ACCGAGCGGA 1 ACCGAGGAAG 1 ACCGAGTCAT 1 ACCGATCCCA 1 ACCGCAATGC 2 ACCGCACCAC 1 ACCGCAGGGA 1 ACCGCCCAGT 1 ACCGCCGAGG 1 ACCGCCGTGG 22 ACCGCCTGTG 2 ACCGCGAGGC 1 ACCGCGTTGT 1 ACCGCTTCAC 1 ACCGCTTGTT 6 ACCGGATGAC 1 ACCGGCCGAC 1 ACCGGCCGGA 1 ACCGGCTGCA 1 ACCGGGAGGA 1 ACCGGGAGTT 1 ACCGGGCCTC 1 ACCGGGGTGA 1 ACCGGGTCCA 2 ACCGGTACTG 1 ACCGTAAAAA 1 ACCGTAACTA 1 ACCGTAATCT 1 ACCGTATTAA 1 ACCGTCCACT 1 ACCGTCCCCT 1 ACCGTGCGCG 1 ACCGTTCTGT 1 ACCGTTGCTA 1 ACCTAAAAGA 1 ACCTAAGCTG 1 ACCTAAGGAG 1 ACCTAATTGG 1 ACCTACGATG 1 ACCTACGCGC 1 ACCTAGGTTC 1 ACCTATCCAA 5 ACCTATGCAA 1 ACCTCAACAA 1 ACCTCAATTA 1 ACCTCACAGA 1 ACCTCACCTC 1 ACCTCACTCT 1 ACCTCACTTA 4 ACCTCAGAGG 1 ACCTCAGCCG 1 ACCTCAGGAA 13 ACCTCAGGAG 1 ACCTCCAAAC 1 ACCTCCACAA 1 ACCTCCATTT 1 ACCTCCCACC 3 ACCTCCCCAG 1 ACCTCCCCTT 1 ACCTCCCGCA 1 ACCTCCTACC 1 ACCTCGCCGT 1 ACCTCTACAA 1 ACCTCTACAG 1 ACCTCTCTAA 1 ACCTCTGATA 2 ACCTCTGCCT 1 ACCTCTGCGA 1 ACCTCTTCAG 1 ACCTGAAACC 1 ACCTGAAGCG 1 ACCTGACCTC 1 ACCTGACTCA 1 ACCTGATTTC 1 ACCTGCAACA 1 ACCTGCACAA 2 ACCTGCATCA 2 ACCTGCCCCT 2 ACCTGCCGAC 4 ACCTGCCTTA 1 ACCTGCTGGT 3 ACCTGGACCT 1 ACCTGGCCTG 1 ACCTGGGAGG 1 ACCTGGGATC 1 ACCTGGGGAG 4 ACCTGGGTGG 1 ACCTGGTGTC 5 ACCTGTATCC 26 ACCTGTCCCA 1 ACCTGTGACC 3 ACCTGTGGCA 2 ACCTGTGGCC 1 ACCTGTGGGG 1 ACCTGTTCCC 1 ACCTGTTGAA 1 ACCTGTTGCC 1 ACCTGTTTCC 1 ACCTGTTTCG 1 ACCTGTTTTC 1 ACCTTAATGG 2 ACCTTACAGT 1 ACCTTCAAAG 1 ACCTTCCTAG 4 ACCTTCCTCT 1 ACCTTCCTTC 1 ACCTTCCTTG 1 ACCTTCTGTA 1 ACCTTCTTCC 1 ACCTTGAAAA 1 ACCTTGACCC 1 ACCTTGATTG 1 ACCTTGGCAC 2 ACCTTGGCCA 1 ACCTTGGGCA 1 ACCTTGGGCT 1 ACCTTGTGAC 1 ACCTTGTGCC 5 ACCTTTAATT 1 ACCTTTACTA 1 ACCTTTACTG 4 ACCTTTGACC 1 ACCTTTGGCC 1 ACCTTTTCAA 1 ACGAAAAAAA 1 ACGAAACCCC 4 ACGAAACCCG 1 ACGAAACCTG 1 ACGAAACGCT 1 ACGAAATCCC 1 ACGAAGACGC 1 ACGAAGCCCA 1 ACGAAGCCCG 1 ACGAATGGAT 1 ACGAATTAAG 1 ACGAATTGGG 1 ACGACAAAGC 2 ACGACACAGA 1 ACGACCAAAG 1 ACGACCGCGT 1 ACGACGGAAG 1 ACGACGGCCG 1 ACGACTGAAA 1 ACGAGCTGGA 1 ACGAGCTTTT 1 ACGAGGGCCT 1 ACGAGTGTGG 1 ACGATTGATG 2 ACGCAAGCCA 1 ACGCAAGCGC 1 ACGCACCACG 1 ACGCACGGAG 1 ACGCACTCTC 1 ACGCAGCAAG 1 ACGCAGCCAG 1 ACGCAGGCGC 2 ACGCAGGGAC 1 ACGCAGGGAG 70 ACGCAGGTCC 1 ACGCCAAGCC 1 ACGCCACCGC 1 ACGCCATCTG 1 ACGCCATTTT 1 ACGCCCTGCT 3 ACGCCGGAAC 1 ACGCCTGGTG 1 ACGCGGACAG 1 ACGCTACAGG 1 ACGCTCAAAA 1 ACGCTCCCAC 1 ACGCTGCTGC 1 ACGCTGTTTC 1 ACGCTTAAGA 1 ACGCTTGTCA 1 ACGGAACAAT 1 ACGGAGGCCC 1 ACGGAGGTGC 1 ACGGATTTTT 1 ACGGCAAAAA 1 ACGGCAGGAG 1 ACGGCAGGGT 1 ACGGCCAGGA 1 ACGGCCGATC 1 ACGGCGCCGC 1 ACGGCGGCAG 2 ACGGCGGGTG 1 ACGGCTCCGA 4 ACGGCTCCGG 1 ACGGCTCTCC 1 ACGGCTGTCT 1 ACGGGCCCAA 1 ACGGGGTACC 1 ACGGGTTCAA 1 ACGGGTTGAA 1 ACGGTCATCA 1 ACGGTCATCT 1 ACGGTGAATT 1 ACGGTGATGT 4 ACGGTGCTCA 1 ACGGTGGTTA 1 ACGTAACAGA 1 ACGTAATTAA 1 ACGTATAGGA 1 ACGTCAAGAG 1 ACGTCAGAAG 1 ACGTCAGATC 1 ACGTCAGGAG 1 ACGTCCGCTT 1 ACGTCCTTGT 1 ACGTCGTGTG 1 ACGTCTCAAA 1 ACGTCTCTAT 1 ACGTGAAGTC 1 ACGTGACGTA 1 ACGTGAGGCC 1 ACGTGAGTGC 3 ACGTGCAGGC 1 ACGTGCCCGC 1 ACGTGCCTCA 2 ACGTGGTGAT 4 ACGTGTCTAT 1 ACGTGTGAAA 2 ACGTTCCTTT 1 ACGTTGCAGG 1 ACGTTGTAAT 1 ACGTTTAAGG 1 ACTAAAAAAA 1 ACTAAAAACC 1 ACTAAAAAGT 1 ACTAAAACAC 2 ACTAAAACCC 1 ACTAAAACCG 1 ACTAAAAGAA 1 ACTAAACACC 1 ACTAAATACA 1 ACTAAATTAG 1 ACTAACAACC 1 ACTAACACAA 1 ACTAACACAC 1 ACTAACACAG 1 ACTAACACCC 304 ACTAACACCG 2 ACTAACACCT 6 ACTAACACTC 1 ACTAACAGCC 2 ACTAACATCA 1 ACTAACATCC 1 ACTAACCAAG 1 ACTAACCCCT 1 ACTAACCCTC 1 ACTAACGCCC 1 ACTAACGGCC 1 ACTAACGGCT 1 ACTAACTGTG 1 ACTAAGCAAG 1 ACTAAGCAGG 1 ACTAAGGAAT 1 ACTAAGGATA 1 ACTACAAGGA 2 ACTACACCCT 3 ACTACAGAGA 1 ACTACAGCAC 1 ACTACAGCCA 1 ACTACAGGGT 1 ACTACCAAAA 1 ACTACCAAAC 1 ACTACCAAGG 1 ACTACCACCA 1 ACTACCCCTG 1 ACTACCTCAC 1 ACTACCTCCC 4 ACTACCTTCA 1 ACTACTAAAT 1 ACTACTTATC 1 ACTAGAAGAG 1 ACTAGACCCT 1 ACTAGCCCTC 1 ACTAGTACAT 1 ACTAGTTTTG 1 ACTATACGCA 1 ACTATAGAGA 1 ACTATATATA 1 ACTATATCAA 1 ACTATCAATT 1 ACTATCCTGA 2 ACTATGAGCG 1 ACTATGAGCT 1 ACTATGCCAC 1 ACTATGGTGG 2 ACTATGTATT 1 ACTATGTCAA 1 ACTATGTTAT 1 ACTATTAGTG 2 ACTATTATTT 1 ACTATTTCAC 1 ACTATTTGCA 1 ACTCAAATCA 1 ACTCAAATGG 1 ACTCAACCTC 1 ACTCACTGCT 1 ACTCAGAAGA 4 ACTCAGATGC 1 ACTCAGGATG 1 ACTCAGGTAG 1 ACTCATTTGC 1 ACTCCAAAAA 21 ACTCCAAGAG 1 ACTCCAGAAA 1 ACTCCAGGAT 1 ACTCCAGGTG 1 ACTCCAGTCA 1 ACTCCATAGA 1 ACTCCATCAC 1 ACTCCCCCAC 1 ACTCCGTCTC 1 ACTCCGTGGA 4 ACTCCTACAA 1 ACTCGAATAT 1 ACTCGATCAG 1 ACTCGCTCTG 12 ACTCGGGATG 1 ACTCGTATTA 1 ACTCTAAAAA 1 ACTCTAAGAC 2 ACTCTACCTG 1 ACTCTCATCA 1 ACTCTCCAAA 1 ACTCTCCAGT 1 ACTCTCTGTG 1 ACTCTCTTTT 1 ACTCTGCCAA 3 ACTCTGCTCG 2 ACTCTGGAGT 1 ACTCTGGCCT 1 ACTCTGGGCA 1 ACTCTGTCCA 1 ACTCTGTCTC 1 ACTCTTGAGT 1 ACTCTTGGTT 1 ACTCTTTCAA 2 ACTCTTTCAG 1 ACTCTTTGAA 1 ACTCTTTGTC 1 ACTGAAAATT 1 ACTGAAAGAA 1 ACTGAAATAC 1 ACTGAACCGC 1 ACTGAAGAAT 1 ACTGAAGGCG 3 ACTGAATGAT 1 ACTGAATGTC 1 ACTGAATGTT 2 ACTGAATTGA 1 ACTGACTCAG 1 ACTGAGATAT 1 ACTGAGCCCA 1 ACTGAGGAAC 1 ACTGAGGTGC 3 ACTGAGTTCT 1 ACTGATAACA 1 ACTGATCTGC 2 ACTGATGCAA 1 ACTGATGCTG 1 ACTGATGGTC 1 ACTGATTCCT 1 ACTGATTGAT 1 ACTGCAATTA 1 ACTGCACAAT 1 ACTGCACCAC 2 ACTGCACTCC 2 ACTGCAGACA 1 ACTGCATCAA 1 ACTGCATCTT 1 ACTGCCAGGC 1 ACTGCCCAAT 1 ACTGCCCCAA 2 ACTGCCTACA 1 ACTGCCTAGG 1 ACTGCGAAGG 1 ACTGCGAGGA 2 ACTGCGTGCT 1 ACTGCGTTCA 1 ACTGCTACTT 1 ACTGCTATGC 1 ACTGCTCAGA 1 ACTGCTCTCC 1 ACTGCTCTTT 1 ACTGCTGAAC 2 ACTGCTGTCC 1 ACTGCTGTCT 1 ACTGCTTGCC 4 ACTGGACAGC 1 ACTGGACCGA 1 ACTGGAGAAT 1 ACTGGAGCCT 1 ACTGGAGCGC 1 ACTGGAGTTT 1 ACTGGATAAT 1 ACTGGCAGCT 1 ACTGGCAGGA 1 ACTGGCCCAA 1 ACTGGCCCAG 1 ACTGGCGAAG 4 ACTGGCTCCA 1 ACTGGCTGCT 2 ACTGGCTTTG 1 ACTGGGAAGA 1 ACTGGGACTA 1 ACTGGGCAAG 1 ACTGGGCCAC 2 ACTGGGCCTC 1 ACTGGGCGCC 2 ACTGGGCTTA 1 ACTGGGGAAT 3 ACTGGGGCAA 1 ACTGGGTACT 1 ACTGGGTCTA 32 ACTGGGTGCA 4 ACTGGTAAAA 1 ACTGGTACGT 3 ACTGGTATAC 1 ACTGGTCTAT 1 ACTGGTGAGA 1 ACTGGTGCTG 1 ACTGTAAATG 1 ACTGTAATCC 1 ACTGTAATCT 1 ACTGTAGTCC 3 ACTGTAGTCT 1 ACTGTAGTGG 1 ACTGTAGTTC 1 ACTGTATATA 1 ACTGTATTCC 1 ACTGTATTGG 1 ACTGTCAGGT 1 ACTGTCAGTC 1 ACTGTGAACC 1 ACTGTGATCC 1 ACTGTGCCAC 1 ACTGTGCCAT 1 ACTGTGCTGT 1 ACTGTGCTTT 1 ACTGTGGCGG 9 ACTGTGGTTT 2 ACTGTGTCAC 1 ACTGTGTGTT 1 ACTGTTAAGA 1 ACTGTTCCCA 3 ACTGTTCTCT 1 ACTGTTGATC 1 ACTGTTGCTA 5 ACTGTTGTCA 1 ACTGTTTGTC 1 ACTTAAAAAA 2 ACTTAAAACT 1 ACTTAACACC 1 ACTTAAGGAA 3 ACTTAATCTC 1 ACTTACAGGA 1 ACTTACCTGC 23 ACTTACCTGT 1 ACTTACTTAA 1 ACTTAGGGAG 1 ACTTAGTGAT 1 ACTTATCTGC 1 ACTTATGATG 1 ACTTATTTCA 1 ACTTCACTGG 1 ACTTCCCAAA 1 ACTTCCCTCC 1 ACTTCCGGAA 1 ACTTCCGTCG 1 ACTTCCTCAT 1 ACTTCCTCCT 1 ACTTCGCCTT 1 ACTTCTACAT 1 ACTTCTGCAA 1 ACTTCTGGAA 1 ACTTCTGTGA 1 ACTTCTTAAG 1 ACTTCTTCTG 1 ACTTCTTTAC 1 ACTTGAAACT 1 ACTTGAATAA 1 ACTTGCAAAC 1 ACTTGCACAA 1 ACTTGCACTC 1 ACTTGCGAAT 2 ACTTGCTATT 1 ACTTGGAAAG 1 ACTTGGAGCC 2 ACTTGGATAT 1 ACTTGGGAGG 1 ACTTGGGGCT 1 ACTTGTAAGA 1 ACTTGTTAGC 1 ACTTGTTCCC 1 ACTTGTTCGC 1 ACTTTAAAAA 1 ACTTTAATGA 1 ACTTTCAGGA 1 ACTTTCAGTG 1 ACTTTCCAAA 77 ACTTTCCAGA 1 ACTTTCGGTC 1 ACTTTCTCAA 1 ACTTTCTCAC 1 ACTTTCTCTC 1 ACTTTGAGAC 1 ACTTTGATGA 1 ACTTTGGTTT 1 ACTTTGTCAA 1 ACTTTGTCGA 1 ACTTTGTGGG 2 ACTTTTAAAA 2 ACTTTTAATG 1 ACTTTTATCT 1 ACTTTTCAAA 4 ACTTTTCCAA 3 ACTTTTCCCC 1 ACTTTTGCCC 6 ACTTTTGTCT 1 ACTTTTTAAA 8 ACTTTTTCAA 252 ACTTTTTCAC 4 ACTTTTTCAT 2 ACTTTTTCCA 1 ACTTTTTCGA 1 ACTTTTTCTA 1 ACTTTTTGGC 1 ACTTTTTGTA 1 ACTTTTTGTC 1 ACTTTTTTAA 1 ACTTTTTTAT 1 ACTTTTTTCA 1 AGAAAAAAAA 11 AGAAAAAAGG 1 AGAAAAACAG 1 AGAAAAATCA 1 AGAAAATAAA 1 AGAAAATCAG 1 AGAAAATCCT 3 AGAAAATTGA 1 AGAAACAGTC 1 AGAAACATCA 1 AGAAACCCTG 1 AGAAACGCTT 1 AGAAACTGCT 1 AGAAAGAGCC 1 AGAAATACCA 3 AGAAATAGAG 1 AGAAATAGTG 1 AGAAATATAC 1 AGAAATCACT 2 AGAAATCAGA 1 AGAAATCTGG 1 AGAAATGTGA 1 AGAAATTCTG 1 AGAACAAAAC 2 AGAACAAACC 1 AGAACAAGAA 1 AGAACACACC 1 AGAACACCAA 1 AGAACCACTT 1 AGAACCGTGC 1 AGAACCTCCC 1 AGAACCTGCA 2 AGAACCTTAA 3 AGAACCTTCA 3 AGAACCTTCC 8 AGAACCTTTG 1 AGAACTCGTT 1 AGAACTGCTT 1 AGAACTGGCC 1 AGAACTGGGT 1 AGAACTTACC 1 AGAAGACTGA 1 AGAAGAGGGC 1 AGAAGATCTG 1 AGAAGCAAGA 1 AGAAGCACCC 2 AGAAGCCAGA 2 AGAAGCCCCC 1 AGAAGCCTGA 1 AGAAGCTCCA 1 AGAAGGATCT 1 AGAAGGATGC 1 AGAAGGCACC 1 AGAAGGCTGC 1 AGAAGGGCGT 1 AGAAGGGGCA 2 AGAAGGTTGA 1 AGAAGGTTGC 1 AGAAGTAAAG 1 AGAAGTACTG 3 AGAAGTAGTG 1 AGAAGTCCAG 1 AGAAGTGACC 1 AGAAGTGTAA 1 AGAAGTGTCC 1 AGAAGTTTAC 1 AGAATAAAAT 1 AGAATAAAGC 1 AGAATAACTT 1 AGAATACAAG 1 AGAATAGCTT 11 AGAATATCAC 1 AGAATATCAG 5 AGAATCACGT 1 AGAATCACTT 7 AGAATCATTT 1 AGAATCGCTT 21 AGAATCGGTT 1 AGAATCTTGT 1 AGAATGAAGG 1 AGAATGACGT 1 AGAATGACTT 1 AGAATGGAAA 1 AGAATGGAGC 1 AGAATGTACG 1 AGAATGTCCA 1 AGAATGTTTT 1 AGAATTACTA 1 AGAATTACTT 1 AGAATTATGG 1 AGAATTCCTT 1 AGAATTGCCT 1 AGAATTGCTG 1 AGAATTGCTT 13 AGAATTGTTT 2 AGAATTTCTT 1 AGAATTTGCA 1 AGACAAATAC 1 AGACAACAGC 1 AGACAAGAGA 1 AGACAAGCTG 3 AGACAAGTTT 2 AGACAATGTG 1 AGACACCGCC 1 AGACACTCGG 1 AGACACTGGG 1 AGACACTGTG 1 AGACAGAGAA 1 AGACAGAGTG 2 AGACAGCAAG 1 AGACAGCCGC 2 AGACAGGAGG 1 AGACATAAAG 1 AGACATAAAT 1 AGACATACCC 1 AGACATTCTT 1 AGACATTGAG 1 AGACCAAAGT 3 AGACCAAATT 1 AGACCAACAA 1 AGACCAGGAG 2 AGACCATATT 2 AGACCCAAAA 1 AGACCCACAA 103 AGACCCATAA 1 AGACCCCACA 1 AGACCCGCAA 1 AGACCCGCAG 1 AGACCCTGTC 1 AGACCCTTCT 1 AGACCGCTAA 1 AGACCGGGTT 1 AGACCTAATT 1 AGACCTAGGC 1 AGACCTGAAA 1 AGACCTGGAA 2 AGACCTGTTG 1 AGACGATACA 1 AGACGCGTCA 1 AGACGCTTCT 2 AGACGGAGGT 1 AGACGGCGGC 1 AGACGGTCCA 1 AGACGTGGGC 1 AGACTAACAA 1 AGACTAACAC 1 AGACTAGGGG 1 AGACTATATT 1 AGACTCAGCT 1 AGACTCAGGT 1 AGACTCATTT 1 AGACTCCATC 1 AGACTCCTTG 1 AGACTCTGTC 1 AGACTCTTCT 1 AGACTGAGGG 1 AGACTGTACT 2 AGACTTAAAG 2 AGACTTGCAA 1 AGACTTGGCA 1 AGACTTGTTT 1 AGACTTTCCC 1 AGAGAAAAGT 1 AGAGAAAGGC 1 AGAGAAATTT 2 AGAGAATCGA 1 AGAGACAAGT 3 AGAGACATTT 1 AGAGACTCTT 2 AGAGACTGGC 1 AGAGAGATGG 1 AGAGAGGCAA 1 AGAGAGGGAG 2 AGAGAGGTAG 1 AGAGATGGAC 1 AGAGATGGAT 1 AGAGATTGCT 1 AGAGATTTTT 2 AGAGCAAGTA 3 AGAGCACACT 2 AGAGCAGATC 1 AGAGCAGATG 1 AGAGCAGGTA 1 AGAGCATATC 1 AGAGCATTCC 1 AGAGCCAAGT 2 AGAGCCATAG 1 AGAGCCCTAA 1 AGAGCCCTAG 1 AGAGCCGCTG 1 AGAGCGTGGG 1 AGAGCTAAGG 1 AGAGCTCCAT 1 AGAGCTCCCT 1 AGAGCTCTCA 1 AGAGCTGCTG 1 AGAGCTGGGG 1 AGAGCTGGTC 1 AGAGCTGTAG 1 AGAGCTTCGA 1 AGAGCTTTCC 1 AGAGGAAGCT 1 AGAGGAAGTA 1 AGAGGAATGC 1 AGAGGACAAG 1 AGAGGAGAAT 1 AGAGGATGTA 1 AGAGGCGGCG 1 AGAGGCGTAG 2 AGAGGCTAAG 1 AGAGGCTGGG 1 AGAGGTCAGA 1 AGAGGTGGCT 1 AGAGGTGGTG 1 AGAGGTGTAA 1 AGAGGTGTAG 5 AGAGTAAAAT 1 AGAGTAACTG 1 AGAGTAGAAG 1 AGAGTAGGGT 1 AGAGTCAACA 1 AGAGTCACTT 1 AGAGTCGCTT 1 AGAGTCTCTT 1 AGAGTGCAAG 1 AGAGTGCATC 1 AGAGTTGTAG 2 AGATAAAGTT 1 AGATAACACA 3 AGATAACTCA 2 AGATACCACA 1 AGATACCTGG 1 AGATACTTTG 1 AGATAGCATT 1 AGATAGTGAT 1 AGATAGTGTT 1 AGATAGTTGG 1 AGATATAAAT 1 AGATATAGTT 1 AGATATGGGG 1 AGATATTTTG 1 AGATCAAGAG 1 AGATCAAGTC 1 AGATCAGAGA 1 AGATCAGGAG 2 AGATCAGGTC 1 AGATCCCAAG 2 AGATCCGCGG 1 AGATCCTACT 5 AGATCGAGAC 1 AGATCGAGCC 1 AGATCTAAAC 1 AGATCTCGAC 1 AGATCTGATT 1 AGATCTTGCC 1 AGATGAAATG 1 AGATGAACAA 1 AGATGAACCC 1 AGATGAATAG 1 AGATGAATCT 1 AGATGACTCA 2 AGATGAGATG 3 AGATGAGGAA 1 AGATGCCAAG 1 AGATGCCCTT 2 AGATGGGTAC 1 AGATGGGTCT 1 AGATGGGTTT 1 AGATGGTATC 1 AGATGGTCTT 1 AGATGTCCAG 1 AGATGTCTGC 1 AGATGTGTGA 1 AGATTATTCT 1 AGATTCACCT 1 AGATTCATTG 1 AGATTCGTGG 1 AGATTCTGCC 1 AGATTGAGGA 2 AGATTGCACT 1 AGATTGCCTT 1 AGATTGGAGA 1 AGATTTCACT 1 AGATTTTTTA 1 AGATTTTTTT 1 AGCAAAAAAA 1 AGCAAAATAA 1 AGCAAATATG 1 AGCAACATTC 1 AGCAACCGCG 1 AGCAAGCAAG 1 AGCAAGCCCC 5 AGCAAGCTCC 1 AGCAAGGAAT 1 AGCAAGTCTC 3 AGCAATACAC 1 AGCAATAGCT 1 AGCAATCAGG 1 AGCAATGGGT 1 AGCAATGGTA 1 AGCACAAAGC 1 AGCACACTCA 1 AGCACACTTC 1 AGCACAGGGA 1 AGCACAGGGT 1 AGCACCAGAA 3 AGCACCCCCT 1 AGCACCGGAA 1 AGCACCTCAG 1 AGCACCTCCA 57 AGCACGACCC 3 AGCACTCCGC 1 AGCACTCCGG 1 AGCACTGAAA 1 AGCACTGCAC 1 AGCACTGCAG 1 AGCACTGCTG 1 AGCACTGTAC 1 AGCACTTACT 1 AGCACTTTTG 2 AGCAGACAAA 1 AGCAGACCAG 1 AGCAGACTCC 1 AGCAGAGCGA 2 AGCAGAGGCT 1 AGCAGATCAG 32 AGCAGCATTT 1 AGCAGCGAGG 1 AGCAGCTGCT 1 AGCAGCTTCT 3 AGCAGGACTT 1 AGCAGGAGCA 7 AGCAGGATCC 1 AGCAGGCTCC 1 AGCAGGGCAG 1 AGCAGGGCTC 4 AGCAGTGAGT 1 AGCAGTGCAA 1 AGCAGTGTGA 1 AGCAGTTCCC 2 AGCATAGGAT 1 AGCATATCAG 1 AGCATCCTGC 1 AGCATTCAGC 2 AGCATTGTCA 1 AGCCAAAAAA 4 AGCCAACGGT 1 AGCCAAGACT 1 AGCCAAGATT 2 AGCCAATTCC 1 AGCCACAATT 1 AGCCACACTG 1 AGCCACAGCA 2 AGCCACAGCG 1 AGCCACAGTC 1 AGCCACATCT 1 AGCCACCACA 15 AGCCACCACG 9 AGCCACCACT 2 AGCCACCCAC 1 AGCCACCCCA 1 AGCCACCGCA 6 AGCCACCGCC 1 AGCCACCGCG 27 AGCCACCGCT 4 AGCCACCGTG 19 AGCCACCGTT 1 AGCCACCTCA 2 AGCCACCTCG 1 AGCCACGGTC 1 AGCCACGGTG 1 AGCCACTACA 1 AGCCACTCCG 1 AGCCACTCGC 1 AGCCACTGCA 20 AGCCACTGCC 1 AGCCACTGCG 10 AGCCACTGCT 2 AGCCACTGGC 1 AGCCACTGTG 13 AGCCAGACAA 1 AGCCAGGAAG 1 AGCCAGGCTG 1 AGCCAGGGTC 1 AGCCAGTAAC 1 AGCCAGTAGC 1 AGCCAGTCCG 1 AGCCAGTTAA 1 AGCCAGTTCT 1 AGCCAGTTTC 1 AGCCATACAA 1 AGCCATCACG 1 AGCCATCACT 1 AGCCATTAAA 1 AGCCATTAGA 1 AGCCATTCTA 1 AGCCATTGTG 2 AGCCATTTAG 1 AGCCCAAAGT 1 AGCCCAACAA 1 AGCCCACACT 1 AGCCCACGGC 2 AGCCCACTGC 1 AGCCCAGAAA 1 AGCCCAGAAG 1 AGCCCAGCTG 1 AGCCCAGGAA 1 AGCCCAGGAG 9 AGCCCAGGCA 1 AGCCCAGGTG 1 AGCCCATAAT 2 AGCCCCACAA 1 AGCCCCCTGA 1 AGCCCCGGAT 1 AGCCCCTACA 1 AGCCCGAAGC 1 AGCCCGACCA 1 AGCCCGCCGC 2 AGCCCGCGAG 1 AGCCCGCTGG 1 AGCCCGGCAA 1 AGCCCGGCTT 1 AGCCCGGGAG 3 AGCCCGGGCT 1 AGCCCGTTCA 1 AGCCCTACAA 222 AGCCCTACAG 1 AGCCCTACGA 2 AGCCCTAGAT 1 AGCCCTCCCT 14 AGCCCTGCAT 1 AGCCCTGCTT 1 AGCCCTGGCT 1 AGCCCTTACA 1 AGCCCTTCCT 1 AGCCCTTCGC 1 AGCCGAGATC 1 AGCCGAGATG 1 AGCCGAGGAG 1 AGCCGCCACA 1 AGCCGCCGCA 1 AGCCGCCGCG 1 AGCCGCCGTG 1 AGCCGCTGTG 1 AGCCGGAAAG 1 AGCCGGATGC 1 AGCCGGCAAA 1 AGCCGGCCCC 1 AGCCGGGACT 1 AGCCGGGATG 1 AGCCGGGCGA 1 AGCCGGGCTT 1 AGCCGGGGAG 1 AGCCGTCCGA 1 AGCCGTTCCC 2 AGCCTAACAA 1 AGCCTAAGCC 1 AGCCTAAGGA 1 AGCCTAGAAG 1 AGCCTAGTTG 1 AGCCTATTGT 1 AGCCTCAAAA 1 AGCCTCCAAA 1 AGCCTCCTGT 1 AGCCTCGTGA 1 AGCCTGCAGA 5 AGCCTGCCTG 3 AGCCTGGAAG 1 AGCCTGGACT 5 AGCCTGGAGA 6 AGCCTGGGAG 7 AGCCTGGGCC 1 AGCCTGGTAG 1 AGCCTGTACC 1 AGCCTGTAGG 1 AGCCTGTGAC 1 AGCCTGTGGT 1 AGCCTGTTTA 1 AGCCTTAAAA 1 AGCCTTACAA 2 AGCCTTGGGG 1 AGCCTTGGTA 2 AGCCTTTCCG 3 AGCCTTTGTT 3 AGCGAAGGCA 1 AGCGAATTGT 1 AGCGAGGTGC 2 AGCGATGCAG 2 AGCGCAGTCT 1 AGCGCCTCCA 1 AGCGCCTCCT 1 AGCGCGGCCA 1 AGCGCTACAA 1 AGCGCTGATG 3 AGCGGAAGAG 1 AGCGGAGTCT 1 AGCGGATGCT 1 AGCGGCCGCG 2 AGCGGCCTCA 1 AGCGGCTACA 1 AGCGGGATCA 1 AGCGGGGATC 1 AGCGGTTCAT 1 AGCGTAACTA 1 AGCGTCCGGT 1 AGCGTGGAGG 2 AGCGTGTGAT 1 AGCTAAGAAT 1 AGCTAAGTTT 1 AGCTACCACA 1 AGCTACCACG 2 AGCTACCGTG 1 AGCTACCTCC 1 AGCTACTGCA 2 AGCTACTGTG 1 AGCTACTGTT 1 AGCTAGCAAA 1 AGCTAGGATC 1 AGCTAGGGAA 1 AGCTATTCCC 2 AGCTATTCCT 3 AGCTATTCTG 1 AGCTATTGAG 1 AGCTCAAGAG 1 AGCTCAAGTG 1 AGCTCACCCT 1 AGCTCAGACT 1 AGCTCAGCTA 2 AGCTCAGGAG 3 AGCTCATCCT 1 AGCTCCAGCG 1 AGCTCCTCAA 1 AGCTCGGGAG 1 AGCTCTACGA 1 AGCTCTAGGC 1 AGCTCTCCCC 1 AGCTCTCCCT 18 AGCTCTGCAG 1 AGCTCTGCTC 2 AGCTCTGGGG 1 AGCTCTGTTC 1 AGCTCTTCCC 1 AGCTCTTCTT 2 AGCTCTTGGA 6 AGCTGACCCC 1 AGCTGACCCG 3 AGCTGAGCTA 2 AGCTGATCAG 3 AGCTGATCCC 2 AGCTGCACCA 1 AGCTGCTCAG 1 AGCTGCTCCC 3 AGCTGCTGCC 2 AGCTGCTTAA 1 AGCTGGAGTC 3 AGCTGGAGTG 1 AGCTGGGAGG 1 AGCTGGGATG 1 AGCTGGGCGT 1 AGCTGGGGTG 2 AGCTGGGTTG 1 AGCTGGTACC 1 AGCTGGTCCA 1 AGCTGGTCCC 1 AGCTGGTTTC 1 AGCTGTACCC 2 AGCTGTATCT 1 AGCTGTATTC 2 AGCTGTCCAG 1 AGCTGTCCCA 3 AGCTGTCCCC 6 AGCTGTCCCG 1 AGCTGTCTCA 2 AGCTGTCTTG 1 AGCTGTGCCA 1 AGCTGTGCCC 2 AGCTGTGTAA 2 AGCTGTTAAT 1 AGCTGTTACC 2 AGCTGTTAGC 1 AGCTGTTCAC 6 AGCTGTTCAT 1 AGCTGTTCCA 2 AGCTGTTCCC 890 AGCTGTTCTC 1 AGCTGTTCTG 2 AGCTGTTGCC 1 AGCTGTTGCT 1 AGCTGTTTCA 1 AGCTGTTTCC 5 AGCTGTTTCT 4 AGCTGTTTTT 1 AGCTTAAAAG 1 AGCTTAAAGT 1 AGCTTACCTC 1 AGCTTATATT 1 AGCTTATCAC 1 AGCTTCCCCA 1 AGCTTCCCGG 1 AGCTTCTGCC 1 AGCTTCTTGA 1 AGCTTGAGAT 1 AGCTTGCAAG 1 AGCTTGCGCT 2 AGCTTGCTTG 1 AGCTTGGACA 1 AGCTTGGAGG 1 AGCTTGGCTT 1 AGCTTGTATT 1 AGCTTGTTCC 2 AGCTTGTTCT 1 AGCTTTAATT 2 AGCTTTCAAG 1 AGCTTTCCAA 1 AGCTTTCCCA 5 AGCTTTCCCT 1 AGCTTTGCAA 1 AGCTTTTCCC 1 AGGAAAAAAA 1 AGGAAAAGAT 1 AGGAAACCTC 1 AGGAAACCTG 1 AGGAAACTGC 2 AGGAAACTGG 1 AGGAAAGCTG 27 AGGAAAGCTT 1 AGGAAATCCA 1 AGGAACACAA 2 AGGAACGGCC 1 AGGAACTGTA 2 AGGAACTGTT 2 AGGAAGAAGG 1 AGGAAGAGCC 1 AGGAAGATAA 1 AGGAAGCTGA 2 AGGAAGGAAC 1 AGGAAGGGGT 1 AGGAAGTTGC 1 AGGAATAAAT 1 AGGAATCTGG 1 AGGAATGAGC 1 AGGAATGCTT 1 AGGAATGTTA 3 AGGAATTGAA 1 AGGACAAACC 1 AGGACACAGC 1 AGGACAGAAG 2 AGGACAGCAA 6 AGGACAGGAG 2 AGGACCAGCA 3 AGGACCAGGT 2 AGGACCATCG 1 AGGACCCCAC 1 AGGACGCTGG 1 AGGACGGGCT 1 AGGACTAGTA 1 AGGACTCTGG 2 AGGACTGGAC 1 AGGACTGGCA 1 AGGACTGGGG 1 AGGACTTCTG 1 AGGACTTTGC 1 AGGACTTTTG 1 AGGAGACAAG 1 AGGAGAGGCG 1 AGGAGATCCA 1 AGGAGCAAAG 1 AGGAGCCTTA 1 AGGAGCGAAC 1 AGGAGCGGGG 5 AGGAGCGGGT 1 AGGAGCGTGG 1 AGGAGCTGCT 7 AGGAGGAAGT 1 AGGAGGAGGT 1 AGGAGGCAAT 1 AGGAGGCGAG 1 AGGAGGCGGG 1 AGGAGGGATA 1 AGGAGGGCAG 1 AGGAGGGTGG 1 AGGAGGTCCT 1 AGGAGGTGCC 1 AGGAGTACCA 1 AGGAGTCGAC 1 AGGAGTGACA 1 AGGAGTGAGC 1 AGGAGTTTAA 1 AGGATAAGCC 1 AGGATACTAT 1 AGGATACTGC 1 AGGATCACGA 1 AGGATCGCTT 1 AGGATCTTCC 1 AGGATCTTTG 1 AGGATCTTTT 1 AGGATGAAAG 1 AGGATGACAT 1 AGGATGACCA 2 AGGATGACCC 3 AGGATGGCGG 1 AGGATGGGTG 1 AGGATGGTCC 6 AGGATGTGGG 4 AGGATTTACC 1 AGGCAAAGTG 1 AGGCAAATTT 1 AGGCAACTGG 1 AGGCAAGAGG 1 AGGCAAGGGA 1 AGGCAAGTCG 1 AGGCACACCT 1 AGGCACGCAC 2 AGGCACTGCA 1 AGGCACTGGC 2 AGGCAGAGGG 1 AGGCAGCGGG 1 AGGCAGGAGA 1 AGGCAGGAGG 3 AGGCAGGCAG 1 AGGCAGGGTG 1 AGGCAGGTCC 1 AGGCAGTGAG 1 AGGCAGTTCA 1 AGGCATATTC 1 AGGCCAAATG 2 AGGCCAAGAA 1 AGGCCAAGGG 3 AGGCCACCAG 1 AGGCCACCCT 2 AGGCCACGCC 1 AGGCCAGCAT 1 AGGCCAGGAC 1 AGGCCAGGAG 6 AGGCCAGTGG 1 AGGCCAGTTT 1 AGGCCATAGG 1 AGGCCATTTG 1 AGGCCCACAA 5 AGGCCCAGCT 1 AGGCCCCTAC 1 AGGCCCTGCT 1 AGGCCGAGGG 4 AGGCCGGCCT 1 AGGCCGGGCG 1 AGGCCGTCCC 4 AGGCCGTGGC 1 AGGCCTAGCA 1 AGGCCTCAGT 1 AGGCCTGGCT 4 AGGCCTGGGC 1 AGGCCTGTGG 1 AGGCCTTCAG 2 AGGCGAAGAG 1 AGGCGAGATC 2 AGGCGCCGGC 1 AGGCGCTTAG 1 AGGCGGAGGT 3 AGGCTAAAAG 1 AGGCTACGAA 1 AGGCTACGGA 44 AGGCTAGAAA 1 AGGCTCCACT 1 AGGCTCCGTG 1 AGGCTCCTGG 6 AGGCTCTGAA 1 AGGCTGACTG 1 AGGCTGAGAC 1 AGGCTGAGGC 8 AGGCTGAGGT 1 AGGCTGCACC 2 AGGCTGCCCA 1 AGGCTGCGCT 1 AGGCTGCGGT 1 AGGCTGGATG 2 AGGCTGGGCC 1 AGGCTGGGGG 1 AGGCTGTATT 1 AGGCTGTGCT 1 AGGCTGTGTT 1 AGGCTGTTGG 1 AGGCTTAAAG 1 AGGCTTCAGT 1 AGGCTTCCAA 1 AGGCTTCTAG 1 AGGCTTGCAA 1 AGGCTTTAGC 1 AGGCTTTATG 2 AGGCTTTCAG 1 AGGCTTTGTC 1 AGGGAAAACC 2 AGGGAAAGAG 1 AGGGAACAGC 1 AGGGAACAGT 1 AGGGAAGAAA 1 AGGGAAGAGG 1 AGGGAAGATG 1 AGGGAAGGAG 1 AGGGAATCAA 1 AGGGACAGGC 1 AGGGACCGCC 1 AGGGACTTAG 1 AGGGACTTGT 1 AGGGAGAACC 1 AGGGAGAGCA 1 AGGGAGCAAG 1 AGGGAGGATG 1 AGGGAGGCAG 1 AGGGAGGGAA 1 AGGGAGGGTT 1 AGGGAGTAAC 1 AGGGAGTTTC 1 AGGGAGTTTG 1 AGGGATAAGG 1 AGGGATCACA 1 AGGGATCCAC 1 AGGGCAAAGC 1 AGGGCAAGGC 1 AGGGCAAGGT 1 AGGGCAGAGG 2 AGGGCAGCCC 1 AGGGCAGGAC 1 AGGGCAGGGA 1 AGGGCCACCT 1 AGGGCCAGGA 1 AGGGCCCCAC 1 AGGGCCCGGG 3 AGGGCCCTCA 1 AGGGCCCTCT 1 AGGGCCGCCT 1 AGGGCCGGAT 1 AGGGCCTCCA 1 AGGGCGCTGC 1 AGGGCTACTT 3 AGGGCTATAG 1 AGGGCTCACA 1 AGGGCTCCAA 1 AGGGCTGCAG 2 AGGGCTGCCA 2 AGGGCTGGTG 1 AGGGCTTACA 1 AGGGCTTCCA 50 AGGGCTTCTA 1 AGGGCTTGCA 1 AGGGGAAGGT 1 AGGGGAGAGG 1 AGGGGAGGCC 1 AGGGGAGTGG 2 AGGGGATAAC 1 AGGGGATTCC 1 AGGGGCAGAA 1 AGGGGCAGCT 1 AGGGGCCCGT 1 AGGGGCCGCC 1 AGGGGCCTGC 1 AGGGGCGCAG 1 AGGGGCGTGG 1 AGGGGCTGCC 2 AGGGGCTTCC 1 AGGGGGAGCC 1 AGGGGGCACC 1 AGGGGGCTGA 2 AGGGGGGAAT 1 AGGGGGGAGG 2 AGGGGGGCAG 1 AGGGGGGGGC 1 AGGGGTATTG 1 AGGGGTCTTT 1 AGGGGTGGGC 1 AGGGTAAAGG 1 AGGGTCCCCG 1 AGGGTCGAAT 1 AGGGTCGGAC 2 AGGGTCTGGG 3 AGGGTGAAAC 4 AGGGTGAAAT 1 AGGGTGAACG 2 AGGGTGATTT 1 AGGGTGCTTT 1 AGGGTGTACA 1 AGGGTGTCTT 1 AGGGTGTTTC 3 AGGGTGTTTT 47 AGGGTTCTAG 1 AGGGTTGGAA 1 AGGGTTTGTT 1 AGGTAAAATG 1 AGGTAAATAG 1 AGGTAAGCAA 2 AGGTAATTGA 1 AGGTACTACT 7 AGGTAGATGG 1 AGGTAGGCTT 1 AGGTATAAGA 1 AGGTATAATA 1 AGGTATGGAG 3 AGGTATTATG 1 AGGTATTTCT 1 AGGTCAAAAA 2 AGGTCAAGAG 5 AGGTCAATGA 1 AGGTCACCTG 1 AGGTCACGAG 1 AGGTCACGAT 1 AGGTCAGAAG 2 AGGTCAGAGG 4 AGGTCAGAGT 1 AGGTCAGCAG 1 AGGTCAGGAA 1 AGGTCAGGAC 1 AGGTCAGGAG 132 AGGTCAGGAT 3 AGGTCAGGGG 2 AGGTCAGGTA 1 AGGTCAGGTG 1 AGGTCAGTAA 1 AGGTCATCGT 1 AGGTCATCTG 1 AGGTCCACCA 1 AGGTCCAGCC 1 AGGTCCCTGT 1 AGGTCCTAGC 25 AGGTCCTTAG 1 AGGTCGAGGC 1 AGGTCGGCGT 1 AGGTCGGGAG 1 AGGTCTACCA 1 AGGTCTCTGT 1 AGGTCTGGGA 1 AGGTCTTACT 1 AGGTCTTCAA 3 AGGTCTTGCT 1 AGGTGAAAAG 1 AGGTGACACG 1 AGGTGACGGC 1 AGGTGAGAGG 3 AGGTGAGCGG 1 AGGTGAGGGT 1 AGGTGCAGAG 1 AGGTGCATAG 1 AGGTGCCTCG 1 AGGTGCGGTA 1 AGGTGGAAAA 1 AGGTGGACAG 2 AGGTGGAGGT 3 AGGTGGCAAG 23 AGGTGGCCTT 1 AGGTGGCGGC 1 AGGTGGCTAA 1 AGGTGGTGCT 1 AGGTGTCTTT 2 AGGTGTGGTG 1 AGGTGTGTCA 1 AGGTGTTTCA 1 AGGTGTTTTC 1 AGGTTAAGAG 2 AGGTTACGGA 1 AGGTTAGGAG 2 AGGTTAGGTG 1 AGGTTATTTG 1 AGGTTCTGCC 3 AGGTTGAAGG 1 AGGTTGAATT 1 AGGTTGCCCA 1 AGGTTGGCCC 1 AGGTTGGCTT 1 AGGTTGGGCA 1 AGGTTTATGG 1 AGGTTTCCTC 1 AGGTTTGCAT 1 AGGTTTGGGC 1 AGGTTTTAAA 1 AGGTTTTTCT 1 AGTAAAAAAA 2 AGTAAAAGTA 1 AGTAAACAGC 1 AGTAAACCAT 3 AGTAAACCCC 1 AGTAACAAGA 1 AGTAACCATT 1 AGTAACTCAA 1 AGTAAGACAG 1 AGTAAGTGGC 1 AGTAAGTTCT 1 AGTAATCACT 1 AGTACAAGAG 1 AGTACAGCTG 1 AGTACATTGA 1 AGTACATTTG 1 AGTACCAACT 1 AGTACCCGGG 1 AGTACCTCGT 2 AGTACTGCCT 1 AGTACTGTAA 1 AGTAGATATA 1 AGTAGCAATC 1 AGTAGCCGTG 1 AGTAGCGCCC 1 AGTAGCTGGA 1 AGTAGCTTGA 1 AGTAGGATGG 1 AGTAGGTATG 1 AGTAGGTGGC 36 AGTAGTCGAA 1 AGTATCAGGA 2 AGTATCTGGG 2 AGTATGACCT 1 AGTATGCAGA 2 AGTATGCCAC 2 AGTATGCTCA 1 AGTATGGAAT 1 AGTATGTATG 1 AGTATTAGCT 1 AGTATTCATA 1 AGTATTTATA 1 AGTCAAGCCC 1 AGTCACCACA 3 AGTCACCAGC 1 AGTCACCCAC 1 AGTCACCGCA 1 AGTCACCGTG 2 AGTCACTGCG 2 AGTCACTGTC 1 AGTCACTTTT 1 AGTCAGCCAG 1 AGTCAGCTGG 2 AGTCAGGAGG 1 AGTCAGGGCA 1 AGTCAGTACT 1 AGTCAGTTGC 1 AGTCATTGAT 1 AGTCATTGTG 1 AGTCCAGGAA 1 AGTCCAGGAG 1 AGTCCAGGCC 1 AGTCCCCAAC 1 AGTCCCCTAC 1 AGTCCTAATG 1 AGTCCTAGCC 1 AGTCCTGATG 1 AGTCCTGCTT 1 AGTCCTTATG 1 AGTCGCCTTC 1 AGTCGTTATG 1 AGTCTAACTT 1 AGTCTAGCTA 2 AGTCTCCCCT 1 AGTCTCTTGT 1 AGTCTGAGAG 1 AGTCTGATGT 4 AGTCTGCTGG 8 AGTCTGGGAG 1 AGTCTGTTGT 1 AGTCTTAACT 1 AGTCTTCCAG 1 AGTCTTCCTT 1 AGTGAAAGGC 1 AGTGAACGAT 1 AGTGAAGACG 1 AGTGAAGACT 2 AGTGAATCAA 1 AGTGACAGAG 1 AGTGACCTAG 1 AGTGACTCCA 1 AGTGACTGCC 1 AGTGAGCATA 1 AGTGAGCCCA 1 AGTGAGTGGT 1 AGTGATATAA 1 AGTGATCGGA 1 AGTGATCTTG 1 AGTGATGACA 1 AGTGATGAGA 1 AGTGATGTGG 1 AGTGCAAGAC 24 AGTGCAAGCG 1 AGTGCACGTG 4 AGTGCCACCT 1 AGTGCCCTCT 1 AGTGCGAGAC 1 AGTGCTAAAT 1 AGTGCTCACT 1 AGTGCTGAGG 1 AGTGGAAAAA 1 AGTGGAATAT 1 AGTGGACACG 1 AGTGGAGGGA 1 AGTGGAGGTG 1 AGTGGAGTCT 2 AGTGGATACC 1 AGTGGATTTT 2 AGTGGCAGTG 1 AGTGGCCCAG 1 AGTGGCCCGG 1 AGTGGCTGCC 1 AGTGGCTGTG 1 AGTGGGGACC 2 AGTGGGGATC 1 AGTGGGTTGT 1 AGTGGTGGCT 2 AGTGTAAATG 1 AGTGTACAAT 1 AGTGTATTTT 1 AGTGTCCATT 1 AGTGTCCCCA 1 AGTGTCCGGC 2 AGTGTGAAAT 1 AGTGTGATAC 3 AGTGTGCCAC 2 AGTGTGCGCT 3 AGTGTGCGTG 1 AGTGTGCGTT 1 AGTGTGGAAT 1 AGTGTTACTA 1 AGTGTTCCCA 4 AGTGTTCCCG 1 AGTGTTGATT 1 AGTGTTGCAG 1 AGTGTTTCAC 1 AGTTAACAGT 1 AGTTAAGAGC 1 AGTTAATGAT 3 AGTTACAGAG 1 AGTTACAGAT 1 AGTTATAAAA 1 AGTTATAATG 1 AGTTATAGCC 1 AGTTATCACT 1 AGTTATGATC 1 AGTTATGCTT 1 AGTTATTTGA 1 AGTTCAAGAC 3 AGTTCACTTT 1 AGTTCAGGAC 1 AGTTCAGGAG 1 AGTTCCACCA 1 AGTTCCAGAC 1 AGTTCGCTAG 1 AGTTCTCACA 1 AGTTCTCACC 1 AGTTCTGAGA 1 AGTTCTGCCG 1 AGTTCTGGAG 2 AGTTCTGTTT 1 AGTTGAAATT 3 AGTTGAAGAA 1 AGTTGAGAGT 1 AGTTGAGGTG 1 AGTTGAGTCC 1 AGTTGATGCA 2 AGTTGCTCTA 1 AGTTGCTCTG 1 AGTTGTAGGT 1 AGTTGTCACA 1 AGTTGTCACT 4 AGTTGTCAGC 1 AGTTGTGTGG 1 AGTTGTTAAA 1 AGTTGTTCCC 1 AGTTGTTGGC 1 AGTTGTTTGG 1 AGTTTACATC 1 AGTTTATCTG 2 AGTTTCCCAA 4 AGTTTCTTGT 2 AGTTTGAAAT 3 AGTTTGAGAC 2 AGTTTGAGAG 1 AGTTTGAGAT 1 AGTTTGAGGC 1 AGTTTGAGTC 1 AGTTTGAGTT 1 AGTTTGATCT 1 AGTTTGCAGG 1 AGTTTGCGCC 1 AGTTTGGCAG 1 AGTTTGTACT 1 AGTTTGTCAC 1 AGTTTGTTAG 18 AGTTTTACAA 1 AGTTTTCATA 1 AGTTTTCCTT 1 ATAAAAAAAA 1 ATAAAAACCT 1 ATAAAAAGTT 1 ATAAAACCCC 1 ATAAAATAGG 1 ATAAAATGGC 1 ATAAAATTTT 1 ATAAACAGAT 1 ATAAAGCTAC 2 ATAAAGGCTC 1 ATAAAGTAAC 2 ATAAATAAAT 1 ATAAATACAA 1 ATAAATATAT 1 ATAAATATTT 1 ATAAATGAAG 1 ATAAATGCAG 1 ATAAATTGGG 1 ATAACAAAAC 1 ATAACAGCCT 1 ATAACTCTGT 1 ATAAGAAGGA 1 ATAAGATGCA 1 ATAAGCAAGA 1 ATAAGCAATG 1 ATAAGCCAGG 1 ATAAGCCTTG 1 ATAAGGAAAT 1 ATAAGGCTTT 1 ATAAGGGTGC 1 ATAAGGTTTC 1 ATAATAAAAG 1 ATAATACACC 1 ATAATACCAG 1 ATAATACTGT 1 ATAATATTAT 1 ATAATCTCCG 1 ATAATCTGGG 1 ATAATGATAA 1 ATAATTCTTT 14 ATAATTTTTG 1 ATACAAAGGA 1 ATACAAATTC 1 ATACAACAGA 1 ATACAACTAA 1 ATACAAGAGC 1 ATACAAGCAA 1 ATACAAGGAA 1 ATACAATCTG 1 ATACAATGGA 1 ATACAATTGG 1 ATACACGCAA 1 ATACACTTTG 1 ATACAGACAA 1 ATACAGATTG 1 ATACAGCCAC 1 ATACAGGTCT 1 ATACAGGTGT 1 ATACAGTAAG 1 ATACATACTG 2 ATACATTTAG 1 ATACCAGAAT 1 ATACCAGCTG 1 ATACCCAGCT 1 ATACCCATCA 2 ATACCCTCTC 2 ATACCTACCT 1 ATACCTATTT 1 ATACCTGAAA 1 ATACCTTATT 1 ATACCTTCCG 1 ATACGATTCC 1 ATACTAGATG 1 ATACTAGTGG 1 ATACTCCACT 10 ATACTCCCAC 2 ATACTCTCAC 1 ATACTCTGTA 1 ATACTGACAT 1 ATACTGGATG 2 ATACTGGCAG 1 ATACTGTAGG 1 ATACTGTCAG 1 ATACTGTGGC 1 ATAGAACTGC 1 ATAGAATTTG 1 ATAGACAAGA 1 ATAGACACTT 1 ATAGACGCAA 3 ATAGAGATTG 1 ATAGAGCGAG 1 ATAGAGGCAA 5 ATAGATGCAA 1 ATAGCACAAT 1 ATAGCACCGC 1 ATAGCAGCAG 1 ATAGCATCAT 1 ATAGCCAAAG 1 ATAGCCAGGA 1 ATAGCCTTAC 1 ATAGCGTTCT 2 ATAGCTGCTG 1 ATAGCTTCAC 1 ATAGGACTCA 1 ATAGGAGCTG 1 ATAGGATACT 1 ATAGGATTCC 2 ATAGGATTGC 1 ATAGGATTGT 1 ATAGGCAACT 1 ATAGGTCAGA 4 ATAGGTGAGT 1 ATAGTAACCA 1 ATAGTATGAA 1 ATAGTCACAA 1 ATAGTCTGTT 2 ATAGTGAATT 1 ATAGTGATTT 1 ATAGTGCCAC 2 ATAGTGCTTT 1 ATAGTGGCAC 1 ATAGTGGGCA 2 ATAGTGGGCG 3 ATAGTGGTAA 1 ATAGTGTCTG 1 ATATAAAATG 1 ATATAACTGA 1 ATATAATCTG 5 ATATACCCAG 1 ATATACCCCC 1 ATATACCCTG 1 ATATACTGTG 1 ATATAGACAA 1 ATATAGACAG 1 ATATAGGTCG 3 ATATAGTCAG 1 ATATATACCC 1 ATATATTAGG 1 ATATATTGCT 1 ATATCATTCT 1 ATATCCTGTG 1 ATATCGGATC 1 ATATCTAAGG 1 ATATCTCGTG 1 ATATCTTTGA 1 ATATGAATGT 1 ATATGACCCT 1 ATATGCAGAG 2 ATATGCCAAT 1 ATATGGGACC 1 ATATGGGATT 1 ATATGTATAT 1 ATATGTGGTC 1 ATATTAGTTC 1 ATATTCAGCT 1 ATATTCAGGT 1 ATATTCCCAT 1 ATATTCTGAA 1 ATATTCTGCC 1 ATATTGAATT 1 ATATTGACCA 1 ATATTGCTCT 1 ATATTGGGAG 1 ATATTGGTTC 1 ATATTGTCAA 1 ATATTTACTG 1 ATATTTTAAA 1 ATCAAATGCA 1 ATCAAATGCT 1 ATCAACATAC 1 ATCAACTCCT 1 ATCAACTGCT 1 ATCAAGAATC 1 ATCAAGACTT 1 ATCAAGAGGA 1 ATCAAGAGTA 1 ATCAAGCAGC 1 ATCAAGGGTG 4 ATCAAGTAGG 1 ATCAAGTGGA 1 ATCAAGTGGG 1 ATCAAGTTCC 1 ATCAAGTTCG 2 ATCAATAACT 1 ATCACACCAC 12 ATCACACCAT 1 ATCACACCGC 1 ATCACAGCTA 1 ATCACAGCTC 1 ATCACAGCTT 1 ATCACAGGCC 4 ATCACAGTGT 1 ATCACATATC 1 ATCACATCTC 1 ATCACCACTG 1 ATCACCCTCT 1 ATCACGAAGG 1 ATCACGCACA 1 ATCACGCCAC 11 ATCACGCCAT 1 ATCACGCCCT 44 ATCACGGAGA 1 ATCACGGCCA 1 ATCACGGCGA 1 ATCACGGCTC 1 ATCACGTAAT 1 ATCACTAATC 1 ATCACTCCAC 1 ATCAGAACAT 1 ATCAGAAGAC 1 ATCAGAGATA 1 ATCAGATCAT 1 ATCAGCTCTT 1 ATCAGCTTTC 1 ATCAGGCCAA 1 ATCAGGGCTC 1 ATCAGGGGAA 1 ATCAGGGGAT 1 ATCAGGTTGG 1 ATCAGTAGAA 1 ATCAGTGGCT 8 ATCAGTTACA 1 ATCAGTTGTT 1 ATCAGTTTGT 1 ATCATAAAAT 1 ATCATAAATA 1 ATCATAAGGA 1 ATCATACCAC 2 ATCATAGCTC 1 ATCATATCAG 1 ATCATCACAT 1 ATCATCCAAT 1 ATCATCGCTG 1 ATCATCTCAA 2 ATCATCTTCT 1 ATCATCTTGA 1 ATCATTAAAA 1 ATCATTCTCA 2 ATCATTGCAG 1 ATCATTGGCC 1 ATCATTGGGG 1 ATCATTGTAG 1 ATCCAACGAG 1 ATCCAACTTA 1 ATCCAAGGAT 1 ATCCACATCG 7 ATCCACCACG 1 ATCCACCCAC 4 ATCCACCCGC 10 ATCCACCTGC 1 ATCCACTCTG 1 ATCCAGAACT 1 ATCCAGACAG 1 ATCCAGCACA 1 ATCCAGCCCT 1 ATCCAGCGCA 1 ATCCAGGGTC 1 ATCCATAGTG 2 ATCCATCCGC 1 ATCCATCTGT 7 ATCCATTCTG 5 ATCCATTGAA 1 ATCCATTTAT 1 ATCCCAAGGT 1 ATCCCACCTG 1 ATCCCACTGC 3 ATCCCAGTGA 1 ATCCCCTTGA 1 ATCCCGCCTC 1 ATCCCGGACT 1 ATCCCGGCGT 1 ATCCCGGGAG 1 ATCCCGTACA 1 ATCCCTCAGT 8 ATCCCTCATC 2 ATCCCTCCCC 1 ATCCCTCCTA 1 ATCCCTGCAA 1 ATCCGCCAGC 1 ATCCGCCCGC 8 ATCCGCCTGC 8 ATCCGCCTGG 1 ATCCGCGGGG 5 ATCCGCGGTG 1 ATCCGGCGCC 11 ATCCGGGGAG 2 ATCCGGGTGT 1 ATCCGTCCGT 1 ATCCGTGCCC 2 ATCCTCACAT 1 ATCCTCCTGC 1 ATCCTGCAGA 1 ATCCTGCATT 1 ATCCTGGCTC 1 ATCCTGGGAA 1 ATCCTGGGAG 1 ATCCTGTAGG 2 ATCCTGTCTA 1 ATCCTGTGTA 1 ATCCTGTTCT 1 ATCCTTACAT 1 ATCCTTCTAT 1 ATCCTTGCTT 1 ATCGAAATTA 1 ATCGACATCC 1 ATCGAGCAGC 1 ATCGAGCCAC 2 ATCGATCAGA 2 ATCGATCGCC 2 ATCGCACCAC 6 ATCGCATCCT 1 ATCGCCATCT 1 ATCGCCGTGG 1 ATCGCCTTCT 1 ATCGCGACCC 1 ATCGCGCCAC 4 ATCGCGGCTC 1 ATCGCTCAGG 1 ATCGCTTCCT 1 ATCGCTTTCT 19 ATCGCTTTTA 1 ATCGGACTCA 1 ATCGGAGAAG 1 ATCGGCCTGC 1 ATCGGCTCAC 1 ATCGGGCCCG 4 ATCGGTTGTT 1 ATCGTCAAGA 1 ATCGTGCCAA 1 ATCGTGCCAC 4 ATCGTGCCAT 3 ATCGTGCCGC 1 ATCGTGCGCT 4 ATCGTGGAGA 2 ATCGTGGCGG 20 ATCGTGTCAC 1 ATCGTTCTTC 1 ATCGTTGTAA 1 ATCGTTTCCT 1 ATCTACCGAG 1 ATCTACTTAA 1 ATCTAGCACC 1 ATCTATAAGC 1 ATCTATACTG 1 ATCTATAGGG 1 ATCTATAGTT 1 ATCTATCGAT 1 ATCTCAAAGA 5 ATCTCAACCT 1 ATCTCAAGTT 1 ATCTCACCAC 1 ATCTCACTGA 1 ATCTCAGCTC 5 ATCTCAGCTT 1 ATCTCATCGG 1 ATCTCATCTC 1 ATCTCATCTG 1 ATCTCCAAAC 1 ATCTCCACTG 1 ATCTCCCGCG 1 ATCTCGGCCC 1 ATCTCGGCTC 8 ATCTCGGGTG 1 ATCTCGGTCG 1 ATCTCTATCC 1 ATCTCTGATG 2 ATCTCTGCTC 3 ATCTCTGTCA 1 ATCTCTTTCC 1 ATCTGAGAAG 1 ATCTGAGGCC 1 ATCTGAGTTC 1 ATCTGATAAG 1 ATCTGATACC 1 ATCTGCACAT 1 ATCTGCCACC 2 ATCTGCCAGG 1 ATCTGCCCAC 1 ATCTGCCCAT 1 ATCTGCCCGC 5 ATCTGCCCGT 1 ATCTGCCCTC 1 ATCTGCCTGC 3 ATCTGCCTGT 1 ATCTGCGCCT 1 ATCTGCTCAG 1 ATCTGCTCGG 1 ATCTGCTGCC 1 ATCTGGAGCA 4 ATCTGGATTT 1 ATCTGGCTCA 1 ATCTGGCTGG 1 ATCTGGGCTC 1 ATCTGGTCCC 1 ATCTGTCCGA 1 ATCTTACCTT 1 ATCTTAGTCA 1 ATCTTAGTTC 1 ATCTTATCCA 1 ATCTTCAAAA 1 ATCTTCAGCA 1 ATCTTCATAG 1 ATCTTCCACC 1 ATCTTGATAC 1 ATCTTGCCCT 1 ATCTTGCCTC 2 ATCTTGCTCA 2 ATCTTGGCTC 5 ATCTTGTGCT 1 ATCTTGTTAC 11 ATCTTTCACT 1 ATCTTTCTGG 11 ATGAAAACAA 2 ATGAAAACAG 1 ATGAAAACCC 3 ATGAAACAAA 1 ATGAAACCCC 18 ATGAAACCCT 9 ATGAAACCGC 1 ATGAAACCTC 3 ATGAAACCTG 1 ATGAAACGCC 1 ATGAAACTCC 3 ATGAAACTCT 1 ATGAAACTGT 1 ATGAAACTTC 1 ATGAAAGGTT 1 ATGAAAGTAA 1 ATGAAAGTAT 1 ATGAAATCAA 1 ATGAAATGTG 1 ATGAAATTAA 1 ATGAACACAC 1 ATGAACACGG 1 ATGAACACTC 1 ATGAACAGCG 3 ATGAACAGGT 1 ATGAACATTG 1 ATGAACCCTG 1 ATGAACCGCA 2 ATGAACCGCC 1 ATGAACCGCG 1 ATGAACTCCA 1 ATGAACTTCG 1 ATGAAGAATT 1 ATGAAGACAC 1 ATGAAGAGTC 1 ATGAAGGTAT 1 ATGAAGTCTA 1 ATGAAGTGGA 1 ATGAATAATA 1 ATGAATACTT 1 ATGAATGGGT 1 ATGAATGTAT 1 ATGAATGTTA 1 ATGAATTGCC 1 ATGAATTTAT 1 ATGACACCAC 1 ATGACACTCA 1 ATGACAGATG 1 ATGACAGGCA 1 ATGACAGGTG 1 ATGACCCCCG 2 ATGACCTTTT 1 ATGACGATGG 1 ATGACGCCAC 1 ATGACGCTCA 3 ATGACGCTGT 1 ATGACGGGCG 1 ATGACTAGCG 1 ATGACTCAAG 5 ATGACTCTCC 1 ATGACTCTGC 1 ATGACTGCTC 1 ATGACTGCTG 1 ATGACTGTAC 1 ATGACTGTCT 1 ATGAGACCCC 1 ATGAGACCCT 1 ATGAGACTTG 1 ATGAGAGAAG 2 ATGAGAGTGT 1 ATGAGATCCC 1 ATGAGATGAC 1 ATGAGATGAG 1 ATGAGCAACT 1 ATGAGCGTCT 1 ATGAGCTACA 1 ATGAGCTATG 1 ATGAGCTGAA 1 ATGAGCTGAC 5 ATGAGCTGGT 1 ATGAGCTTTA 1 ATGAGGCCGG 3 ATGAGTCTCA 1 ATGAGTCTCC 1 ATGAGTTCTA 1 ATGAGTTTCT 1 ATGATAAGAA 1 ATGATACCTG 1 ATGATACGCT 1 ATGATATATA 1 ATGATATGGA 1 ATGATATTAT 1 ATGATCATAT 1 ATGATCCATA 1 ATGATCCATC 1 ATGATCCCGG 1 ATGATCCGGA 2 ATGATCTGCC 2 ATGATGATGA 5 ATGATGCATT 1 ATGATGCCAA 1 ATGATGCGGT 3 ATGATGGCAC 1 ATGATGGCTT 1 ATGATGTATA 1 ATGATGTCCT 1 ATGATTGAAC 1 ATGATTGCCG 1 ATGATTTATT 1 ATGATTTCAG 1 ATGATTTTAC 1 ATGATTTTGA 1 ATGCAAAATA 1 ATGCAACCAT 1 ATGCAAGCCC 1 ATGCAAGTTA 1 ATGCACCACA 1 ATGCACCCAG 1 ATGCACGGCG 1 ATGCACGTTT 1 ATGCAGAGGT 1 ATGCAGCCAT 9 ATGCAGCCGT 3 ATGCAGGTGA 1 ATGCATTTGA 1 ATGCCAAAAT 1 ATGCCACCAT 1 ATGCCACCCT 1 ATGCCACGGA 1 ATGCCATTAC 1 ATGCCCCTGC 1 ATGCCCGAGG 1 ATGCCCGATA 1 ATGCCCGTCA 1 ATGCCCGTGA 1 ATGCCCGTTA 1 ATGCCCTGCC 1 ATGCCCTGGC 1 ATGCCGACAG 1 ATGCCGATGA 1 ATGCCTACTG 1 ATGCCTAGTG 1 ATGCCTCCAG 2 ATGCCTCTCT 1 ATGCCTGTAA 1 ATGCCTTTAT 1 ATGCGAAAGG 1 ATGCGCAACG 1 ATGCGCAAGG 1 ATGCGCCCAC 1 ATGCGGAGTC 2 ATGCGGGAAA 1 ATGCGGGAGA 5 ATGCGGTTGA 1 ATGCTAAATG 1 ATGCTAAGTA 1 ATGCTACTAA 2 ATGCTAGCAC 1 ATGCTCAGCC 1 ATGCTCCCTG 6 ATGCTGAAAG 1 ATGCTGAGAC 1 ATGCTGAGGG 1 ATGCTGCCAA 3 ATGCTGCCAC 1 ATGCTGCCAT 1 ATGCTGCCTC 1 ATGCTGGCTG 1 ATGCTGTACA 2 ATGCTGTCGA 1 ATGCTTCTTT 1 ATGCTTTTGA 1 ATGGAAAAGA 1 ATGGAAAGGA 1 ATGGAAATTG 1 ATGGAACCCT 1 ATGGAAGACA 1 ATGGAAGGTG 2 ATGGAAGTCT 1 ATGGAATGCT 3 ATGGAATTCC 1 ATGGAATTGG 1 ATGGACAGAC 1 ATGGACAGCA 1 ATGGACAGTT 1 ATGGAGAAGA 1 ATGGAGAAGG 2 ATGGAGACTT 5 ATGGAGAGGA 1 ATGGAGCGCA 1 ATGGAGCTGC 2 ATGGAGGCAG 1 ATGGAGGTGG 1 ATGGAGTGCT 1 ATGGATAGTA 1 ATGGATATTC 1 ATGGATCCAC 1 ATGGATGCAC 1 ATGGATGTAT 1 ATGGATGTGG 1 ATGGCAAGCA 1 ATGGCAAGGG 2 ATGGCACACA 1 ATGGCACATC 1 ATGGCACCAC 3 ATGGCACCTG 1 ATGGCACGGA 3 ATGGCACGTG 1 ATGGCACGTT 1 ATGGCAGACT 1 ATGGCAGAGA 6 ATGGCAGCGT 1 ATGGCAGCTG 2 ATGGCAGGAG 38 ATGGCAGGCG 4 ATGGCAGGTC 1 ATGGCAGGTG 6 ATGGCATCAC 1 ATGGCCAACT 3 ATGGCCAAGC 1 ATGGCCAGAA 2 ATGGCCAGGA 1 ATGGCCAGGC 2 ATGGCCAGTA 1 ATGGCCATAG 1 ATGGCCCACA 1 ATGGCCCACT 1 ATGGCCCATA 2 ATGGCCCGGA 1 ATGGCCCGGC 1 ATGGCCGGTG 1 ATGGCCTCCT 2 ATGGCCTGCT 1 ATGGCCTTGA 1 ATGGCGACCG 1 ATGGCGACTG 4 ATGGCGAGTG 1 ATGGCGATCT 2 ATGGCGCACA 2 ATGGCGCAGT 3 ATGGCGCCAC 2 ATGGCGCGGC 1 ATGGCGGCAG 1 ATGGCGGGAC 1 ATGGCGGGCA 1 ATGGCGGGCC 1 ATGGCGGGTG 4 ATGGCGTGCA 2 ATGGCGTGTG 1 ATGGCTATAA 1 ATGGCTCACA 1 ATGGCTCAGC 1 ATGGCTCATA 1 ATGGCTCGCA 1 ATGGCTCGTA 1 ATGGCTGAAT 1 ATGGCTGCTG 2 ATGGCTGGAT 1 ATGGCTGGTA 81 ATGGCTGGTT 2 ATGGCTTTCT 1 ATGGCTTTGT 1 ATGGGACAGC 1 ATGGGACCCC 1 ATGGGAGCAT 1 ATGGGAGTCC 1 ATGGGAGTGC 1 ATGGGATTTT 1 ATGGGCAATA 1 ATGGGCAGGG 1 ATGGGCATTG 1 ATGGGCCTCA 1 ATGGGCCTGT 1 ATGGGCTCTC 1 ATGGGCTTGA 5 ATGGGCTTTG 1 ATGGGCTTTT 1 ATGGGGCCAG 1 ATGGGGGAAG 1 ATGGGGGTGA 2 ATGGGGTCAC 1 ATGGGTAACT 1 ATGGGTCAGA 1 ATGGGTGTTA 1 ATGGTCAGCT 1 ATGGTCAGGA 1 ATGGTCCTAA 1 ATGGTCGCCG 1 ATGGTCTACG 1 ATGGTCTCAA 1 ATGGTCTCCT 1 ATGGTCTGTT 1 ATGGTGAAAC 1 ATGGTGAAAT 1 ATGGTGAAGC 1 ATGGTGACTG 1 ATGGTGAGGG 1 ATGGTGAGTC 1 ATGGTGCACA 1 ATGGTGCACG 1 ATGGTGCCAC 4 ATGGTGCTGA 4 ATGGTGGAAG 1 ATGGTGGCTT 1 ATGGTGGGCG 1 ATGGTGGGGG 1 ATGGTGGGTG 4 ATGGTGGTGG 3 ATGGTGTGCA 1 ATGGTTAAAA 1 ATGGTTAAAG 2 ATGGTTCACG 1 ATGGTTCTCA 2 ATGGTTGGTA 1 ATGGTTGTCA 1 ATGGTTTGCT 1 ATGGTTTTAC 1 ATGTAAAAAA 2 ATGTAAAATT 1 ATGTAAACCT 1 ATGTAATGCA 1 ATGTACACAG 1 ATGTACAGGT 1 ATGTACCTGA 2 ATGTACTAAA 1 ATGTACTCCA 1 ATGTACTCTG 1 ATGTAGAATG 1 ATGTAGTAGT 4 ATGTATAAAA 1 ATGTATGAAA 1 ATGTATGGGG 2 ATGTATTGGT 1 ATGTCAAACG 1 ATGTCACGAC 1 ATGTCAGAGC 1 ATGTCAGGCT 1 ATGTCATCAA 1 ATGTCCAATT 1 ATGTCCCTGA 1 ATGTCCGGCA 1 ATGTCCGTGA 1 ATGTCCGTGT 1 ATGTCCTTTC 1 ATGTCGCTCT 2 ATGTCGGCTC 1 ATGTCTAGGA 1 ATGTCTATAA 1 ATGTCTCCCA 1 ATGTCTCTGG 1 ATGTCTGAGG 1 ATGTCTGCAA 1 ATGTCTGGTA 1 ATGTCTTGTG 1 ATGTCTTTTC 3 ATGTGAAAAG 1 ATGTGAACCT 1 ATGTGAAGAA 1 ATGTGAAGAG 9 ATGTGAAGAT 1 ATGTGAAGGG 1 ATGTGACCAC 1 ATGTGAGAAG 2 ATGTGAGGCT 2 ATGTGATTAA 1 ATGTGATTGT 1 ATGTGCCTGT 1 ATGTGCGCAC 1 ATGTGCGTGA 1 ATGTGCGTGG 7 ATGTGCTTGA 1 ATGTGGCACA 2 ATGTGGTAAC 1 ATGTGTAACG 3 ATGTGTCCTC 1 ATGTGTTATG 1 ATGTGTTCCC 2 ATGTGTTGAC 1 ATGTGTTTCA 1 ATGTTACCTA 2 ATGTTAGCAA 1 ATGTTAGGGA 1 ATGTTATAGG 1 ATGTTCAAAA 1 ATGTTCGTCC 1 ATGTTCTAGT 1 ATGTTGCGCA 1 ATGTTGGGTG 1 ATGTTGTCTG 1 ATGTTGTGCC 1 ATGTTGTTCT 1 ATGTTTAATT 1 ATGTTTCTTT 1 ATGTTTGCTC 1 ATGTTTGTGT 1 ATGTTTTCAT 1 ATGTTTTTAA 1 ATGTTTTTGA 1 ATTAAAAAAA 1 ATTAAAATAT 2 ATTAAACCCT 1 ATTAAAGTAA 1 ATTAAAGTGC 1 ATTAAATGCA 1 ATTAAATGCT 1 ATTAACAAAG 8 ATTAACACCC 1 ATTAACATCC 1 ATTAAGAGGG 2 ATTAAGCCTA 2 ATTAAGCCTG 1 ATTAAGTCGA 1 ATTACAATTT 2 ATTACACACA 1 ATTACACCAC 1 ATTACAGTTC 1 ATTACATAGG 1 ATTACCGTCT 1 ATTACCTCAG 1 ATTACGAAAT 1 ATTACTAGGT 1 ATTACTTTTG 1 ATTAGAAATT 2 ATTAGACTAA 1 ATTAGCAAAG 1 ATTAGCGAAG 1 ATTAGGAACT 1 ATTAGGCCTA 1 ATTAGGGCCG 1 ATTAGGTCCT 1 ATTAGTGCAT 1 ATTAGTTACA 1 ATTATACAGG 1 ATTATATCAA 1 ATTATCACAT 1 ATTATCCAGC 3 ATTATCCTGG 4 ATTATGAGGC 1 ATTATGATCT 1 ATTATGATGA 1 ATTATGCCAC 3 ATTATGCCTG 1 ATTATGGAAG 1 ATTATGGTAA 1 ATTATGTGCA 1 ATTATTTTTC 3 ATTCAAATTC 1 ATTCAACAAT 1 ATTCAACCCA 1 ATTCAACTGT 1 ATTCAATTAC 1 ATTCACAGGA 1 ATTCACATTT 1 ATTCACCAAG 1 ATTCACTACT 1 ATTCAGCACC 4 ATTCAGTCAG 1 ATTCATCAGT 1 ATTCATCTGC 1 ATTCATTTCG 1 ATTCCACTTC 1 ATTCCAGCTA 2 ATTCCATTAG 1 ATTCCATTTT 1 ATTCCCCACT 1 ATTCCCCATA 1 ATTCGAAGGA 1 ATTCGAGAAG 1 ATTCGCTCTC 1 ATTCGGAGGG 2 ATTCTAGATT 1 ATTCTATCAC 1 ATTCTCACTA 1 ATTCTCCAGT 43 ATTCTCCTTC 1 ATTCTCTCTG 1 ATTCTCTGAG 3 ATTCTGCAGA 1 ATTCTGCCAC 1 ATTCTGCCCA 1 ATTCTGCTTT 1 ATTCTGGTCT 1 ATTCTGGTGG 1 ATTCTGTCAA 1 ATTCTGTTGC 1 ATTCTGTTGT 3 ATTCTTCAAC 1 ATTCTTCATT 1 ATTCTTCGGA 1 ATTCTTCTGA 1 ATTCTTTAAT 1 ATTCTTTCCT 2 ATTCTTTCTC 1 ATTCTTTTGT 1 ATTGAAACCC 1 ATTGAAGCTG 1 ATTGAATCAC 1 ATTGACTTGC 1 ATTGAGAACG 1 ATTGAGCCAC 1 ATTGAGCCAT 1 ATTGAGGGTG 1 ATTGATCTTG 1 ATTGATGACG 2 ATTGCAACCA 1 ATTGCACCAC 17 ATTGCACCAT 1 ATTGCACCCC 1 ATTGCACCGC 1 ATTGCACGAT 1 ATTGCAGCAC 1 ATTGCAGTGC 1 ATTGCAGTTT 1 ATTGCATCAC 1 ATTGCATCAT 1 ATTGCCACTG 1 ATTGCCCCAT 1 ATTGCCTTGA 1 ATTGCGAAGA 1 ATTGCGCCAC 7 ATTGCGCCGC 1 ATTGCGCCTC 2 ATTGCGCTAC 1 ATTGCGTCAC 1 ATTGCTAGGT 1 ATTGCTGGGG 1 ATTGCTGTAA 1 ATTGCTTTTG 1 ATTGGACACA 1 ATTGGAGTGC 37 ATTGGCAGAG 1 ATTGGCCGGG 1 ATTGGCTCTT 2 ATTGGCTTAA 7 ATTGGGCCAC 1 ATTGGGCCAT 2 ATTGGGCTAG 1 ATTGGTGGTG 1 ATTGGTTGTA 1 ATTGTACCAC 4 ATTGTACTGG 1 ATTGTAGACA 2 ATTGTATATC 1 ATTGTATGAC 1 ATTGTCAGAA 1 ATTGTCAGGG 2 ATTGTCCCAG 1 ATTGTCTATA 1 ATTGTCTGCA 1 ATTGTGAAGG 1 ATTGTGACTC 1 ATTGTGAGGC 3 ATTGTGAGGG 14 ATTGTGAGGT 1 ATTGTGATAG 1 ATTGTGCCAC 12 ATTGTGCCAT 1 ATTGTGCCCC 1 ATTGTGCCTC 1 ATTGTGCTAC 2 ATTGTGGCTG 1 ATTGTGTGGA 2 ATTGTTACAA 1 ATTGTTATGG 1 ATTGTTGCAG 1 ATTGTTTATG 12 ATTGTTTCTT 1 ATTTAAACTG 1 ATTTAACAAC 1 ATTTAACATC 1 ATTTAACATT 1 ATTTAAGAAG 1 ATTTAAGGTC 1 ATTTAATGGA 1 ATTTACAACA 1 ATTTACCTAT 1 ATTTACTCAT 1 ATTTACTCTT 1 ATTTAGAAGC 3 ATTTAGAAGT 1 ATTTAGAGTG 1 ATTTAGCAGA 1 ATTTAGTCAG 1 ATTTATAAAT 1 ATTTATAATC 2 ATTTATATCT 1 ATTTATCCTA 2 ATTTATGGAC 1 ATTTATTAAG 1 ATTTCAAAAT 1 ATTTCAAGAT 1 ATTTCAATAT 1 ATTTCACCCT 1 ATTTCAGAAG 4 ATTTCAGCTC 1 ATTTCCAGGT 1 ATTTCCATCG 1 ATTTCCCAAA 1 ATTTCCGGCC 1 ATTTCCTGGC 1 ATTTCCTTGA 6 ATTTCGCGCT 1 ATTTCTAATT 1 ATTTCTGCCT 1 ATTTCTGCTG 1 ATTTCTTCAG 1 ATTTCTTCGA 1 ATTTCTTGCC 3 ATTTCTTTTA 1 ATTTGAAAGC 2 ATTTGACTCA 1 ATTTGAGAAA 2 ATTTGAGAAC 5 ATTTGAGAAG 312 ATTTGAGAGG 1 ATTTGAGCAG 6 ATTTGAGGAG 2 ATTTGAGTGA 1 ATTTGAGTTT 1 ATTTGCCGCT 1 ATTTGCGGAA 1 ATTTGCGGCG 1 ATTTGCTGTT 1 ATTTGCTTAT 1 ATTTGGAACC 1 ATTTGGACAC 1 ATTTGGAGTG 1 ATTTGGCTCT 2 ATTTGGGAAC 1 ATTTGTACTT 1 ATTTGTATCT 2 ATTTGTCCCA 7 ATTTGTCTGC 1 ATTTGTTCCA 1 ATTTTAACAA 1 ATTTTAAGAA 1 ATTTTACTAA 1 ATTTTAGAAG 2 ATTTTATTAA 2 ATTTTATTTT 1 ATTTTCAAAA 1 ATTTTCCTTG 1 ATTTTCTAAA 1 ATTTTCTTCA 1 ATTTTCTTTA 1 ATTTTGACCC 1 ATTTTGAGAA 1 ATTTTGATAA 1 ATTTTGCCAA 1 ATTTTGCCAC 1 ATTTTGCCTG 1 ATTTTGCTTG 1 ATTTTGGGGG 1 ATTTTGGTTA 1 ATTTTGTGTC 2 ATTTTTAAAT 1 ATTTTTACTC 1 ATTTTTCAAA 1 ATTTTTCAAG 1 ATTTTTCTTA 1 ATTTTTCTTT 1 ATTTTTGTAT 1 ATTTTTTCCA 1 ATTTTTTCCT 1 CAAAAAAAAA 7 CAAAAAATCA 1 CAAAAAATGC 1 CAAAAACGGT 1 CAAAAATCAG 1 CAAAAATGAA 1 CAAAACCTAT 1 CAAAACGCAC 1 CAAAAGAAAG 1 CAAAAGAATA 1 CAAAAGAATG 1 CAAAAGACTA 1 CAAAAGATTA 2 CAAAAGTATT 1 CAAAAGTGAG 1 CAAAAGTTCT 1 CAAAATAATA 1 CAAAATATAA 1 CAAAATCAGG 1 CAAAATCCTT 1 CAAAATGCAA 3 CAAAATGCAG 1 CAAAATGCTT 1 CAAAATGGAC 1 CAAAATTTTG 1 CAAACAAAGA 1 CAAACAACTA 1 CAAACACGTT 1 CAAACAGAAA 1 CAAACAGCTG 1 CAAACAGTTC 1 CAAACATTCA 2 CAAACCACTG 1 CAAACCATCC 41 CAAACCATTC 1 CAAACCCTCA 1 CAAACCCTGG 1 CAAACCTCCA 1 CAAACCTTTA 1 CAAACGATCC 1 CAAACTAACC 2 CAAACTAAGC 1 CAAACTGCTT 1 CAAACTGGAG 1 CAAACTTTAC 2 CAAAGAAATA 1 CAAAGACAAT 2 CAAAGACACA 2 CAAAGACTTG 1 CAAAGAGGCT 1 CAAAGATCTT 1 CAAAGATGCA 1 CAAAGATTTT 1 CAAAGCAACC 1 CAAAGCACAC 1 CAAAGCACAG 1 CAAAGCAGGA 1 CAAAGCCAAA 1 CAAAGCCACA 1 CAAAGCGAGG 1 CAAAGGAAGC 1 CAAAGGCCCT 1 CAAAGGTAAG 1 CAAAGGTGTG 1 CAAAGTATGG 1 CAAATAAAAA 2 CAAATAAAAG 1 CAAATAAATT 5 CAAATACTGG 1 CAAATATACA 2 CAAATATAGT 1 CAAATCAAGA 1 CAAATCCAAA 3 CAAATCGGGT 1 CAAATCTTCT 1 CAAATGAGGA 1 CAAATGCTGT 1 CAAATGGGAT 1 CAAATGGTTA 1 CAAATTAGCA 1 CAAATTCAAA 1 CAAATTCATC 1 CAAATTCCCA 1 CAAATTGAAT 1 CAAATTGGTA 1 CAAATTTGAG 1 CAACAAAAAA 1 CAACAATAAT 1 CAACAATATA 1 CAACAATCGC 1 CAACAATGTC 1 CAACACAGTG 1 CAACACCTGA 2 CAACACGTCA 1 CAACACTTCT 1 CAACACTTTT 1 CAACAGCTCT 1 CAACAGTCCA 1 CAACAGTGTG 1 CAACAGTGTT 1 CAACATCTGC 1 CAACATTCCT 2 CAACCACACC 1 CAACCAGCCC 1 CAACCAGTAA 1 CAACCATCAT 1 CAACCATCCA 1 CAACCATTTA 1 CAACCCAGAA 1 CAACCCAGAC 1 CAACCCTGAG 4 CAACCCTGGG 1 CAACCGAGGC 1 CAACCTAACA 1 CAACCTAATT 1 CAACCTACAG 1 CAACCTACCA 1 CAACCTCTCC 1 CAACCTCTTG 1 CAACCTGCCC 1 CAACGTCCTG 1 CAACTAAAGA 1 CAACTCAAAC 1 CAACTCAGCA 1 CAACTCTATG 1 CAACTCTCAA 1 CAACTGAATA 1 CAACTGCTGT 1 CAACTGGAGT 3 CAACTGTATT 4 CAACTGTCTC 1 CAACTGTTGT 1 CAACTGTTTG 1 CAACTTAAAG 1 CAACTTAAGT 1 CAACTTAGTT 8 CAACTTTAAA 1 CAACTTTAGG 1 CAACTTTCCC 1 CAAGAAAATT 1 CAAGAAACTC 1 CAAGACAACT 1 CAAGACAGAA 1 CAAGACGGGG 1 CAAGACTGAG 1 CAAGAGCTGC 1 CAAGAGGCAA 4 CAAGAGTGAC 1 CAAGATATGG 1 CAAGATGACG 1 CAAGATGATA 1 CAAGCAAAAA 1 CAAGCAAAAT 1 CAAGCAAGAA 1 CAAGCAAGTA 1 CAAGCAGAAA 1 CAAGCAGCCA 1 CAAGCAGGAC 5 CAAGCAGTGA 1 CAAGCATCCC 49 CAAGCATTTC 1 CAAGCCCGAG 1 CAAGCCCTGC 2 CAAGCCGGAA 1 CAAGCGCTCT 2 CAAGCTCTAC 2 CAAGCTGTAA 1 CAAGCTTTTC 1 CAAGGAAGCA 1 CAAGGACCAG 10 CAAGGAGCAA 1 CAAGGAGGAC 1 CAAGGATAAT 1 CAAGGATAGA 1 CAAGGATCTA 3 CAAGGCCCAG 1 CAAGGCTACT 2 CAAGGGAAGA 1 CAAGGGATCC 1 CAAGGGCAGG 1 CAAGGGCGCA 1 CAAGGGTAAG 2 CAAGGTGGCG 1 CAAGGTTGCT 1 CAAGTAATAA 1 CAAGTACCTG 1 CAAGTCCAAG 1 CAAGTGAAAG 1 CAAGTGGAAG 2 CAAGTGGATT 1 CAAGTGTGGA 1 CAAGTTAGTG 1 CAAGTTCTTT 2 CAAGTTTGCT 4 CAATAAAAAG 1 CAATAAAACT 1 CAATAAACTG 5 CAATAAAGAT 1 CAATAAATGG 1 CAATAAATGT 33 CAATAACCCT 1 CAATACAAGT 1 CAATACTCCA 1 CAATACTGAA 1 CAATACTGCA 2 CAATAGAGCA 2 CAATATCTTG 1 CAATCACAAA 1 CAATCAGCCT 1 CAATCCCCCT 1 CAATCTGGCT 1 CAATGAAAAA 1 CAATGAAAAC 1 CAATGAATCA 1 CAATGACCCC 1 CAATGATGCA 2 CAATGCTGCC 2 CAATGGAAAT 1 CAATGGAACA 1 CAATGGAGCT 2 CAATGGAGGT 1 CAATGGATTT 1 CAATGGGTTG 1 CAATGTGAGC 1 CAATGTGTTA 8 CAATTAAAAG 2 CAATTAAAGC 1 CAATTAAAGG 1 CAATTAAAGT 2 CAATTAACGA 1 CAATTAATAC 1 CAATTACCTG 1 CAATTCCAAA 1 CAATTCCTTC 2 CAATTCTCCT 1 CAATTGGATA 1 CAATTTAAAG 1 CAATTTGAAA 1 CAATTTTATT 1 CACAAAACAA 1 CACAAAAGAA 1 CACAAAAGAT 1 CACAAAAGTA 1 CACAAAATAA 1 CACAAAATAG 1 CACAAAATCT 4 CACAAAATTC 1 CACAAACGAT 1 CACAAACGGC 1 CACAAACGGT 38 CACAAATGCT 1 CACAACCCTA 1 CACAACGAGG 1 CACAACGGTA 1 CACAACTTCC 1 CACAAGCTTC 1 CACAATAGGC 1 CACACAAATA 1 CACACAAGCA 1 CACACAAGTC 1 CACACAATGG 1 CACACAATGT 2 CACACACAAA 2 CACACACACA 3 CACACACAGC 6 CACACACAGG 1 CACACACGTG 2 CACACAGAAC 1 CACACAGAGC 1 CACACAGCTC 1 CACACAGTGA 1 CACACAGTTT 4 CACACATACA 1 CACACATACT 1 CACACATATG 1 CACACATCTG 1 CACACCACAA 1 CACACCCACA 1 CACACCCCTG 3 CACACCCGCT 1 CACACCTGGG 1 CACACGACTT 1 CACACGCAGC 1 CACACGGCCG 1 CACACGTGCA 1 CACACTCCTC 1 CACACTGGGG 1 CACACTGTGC 1 CACAGAAAAG 1 CACAGAACAA 1 CACAGAACGC 1 CACAGAATCC 1 CACAGAATGC 1 CACAGAGTCC 4 CACAGATCTG 1 CACAGCACTA 1 CACAGCGCCA 1 CACAGCGCCC 4 CACAGCTTCA 1 CACAGGCAAA 3 CACAGGCTGA 1 CACAGGGCAA 1 CACAGGGCCA 1 CACAGGTAGG 1 CACAGTGCTG 1 CACAGTGGCT 1 CACAGTTTAT 1 CACATAAATT 1 CACATACACA 1 CACATACAGT 1 CACATACTCA 1 CACATACTCT 1 CACATAGGCC 1 CACATAGGCT 1 CACATCAAAC 1 CACATCAGCT 1 CACATCATCT 1 CACATCGTGG 1 CACATCTCTG 2 CACATCTGTA 1 CACATTGACT 1 CACATTGGCC 1 CACATTGTTT 1 CACATTTCTT 1 CACCAAATAA 1 CACCAAGTTG 1 CACCAATTAC 1 CACCACAACA 1 CACCACACCC 1 CACCACCACA 1 CACCACCACC 5 CACCACCACG 3 CACCACCATC 1 CACCACCCTC 1 CACCACCGTG 1 CACCACGGGC 1 CACCACGTGT 1 CACCAGCGCC 1 CACCAGGCCA 1 CACCATCACG 1 CACCATTATG 1 CACCATTCAG 1 CACCATTGCC 1 CACCATTTTG 1 CACCCAAAAT 1 CACCCAATGG 3 CACCCACAAG 1 CACCCACTGC 1 CACCCATAAT 1 CACCCCCAGC 1 CACCCCCAGG 1 CACCCCCTCT 1 CACCCCGAAC 1 CACCCCTGAC 1 CACCCCTGAT 13 CACCCCTGGG 3 CACCCGAACC 1 CACCCGTACG 1 CACCCTAAAA 1 CACCCTAATT 1 CACCCTACAA 1 CACCCTAGAA 1 CACCCTGTAC 1 CACCCTGTAG 1 CACCGAGGGA 1 CACCGGACAC 1 CACCGGACTC 1 CACCGGCAAA 1 CACCGGCTGA 1 CACCTAAATT 3 CACCTAACTG 1 CACCTAAGCC 1 CACCTAATCG 1 CACCTAATTA 1 CACCTAATTC 1 CACCTAATTG 366 CACCTAATTT 1 CACCTACAGT 1 CACCTACGTA 1 CACCTACTTG 1 CACCTAGCAA 1 CACCTATAAT 1 CACCTATTTG 1 CACCTCAGGG 1 CACCTCCTCG 1 CACCTCGCAT 1 CACCTCTGCA 1 CACCTGCAAT 1 CACCTGCCAC 1 CACCTGCGGA 1 CACCTGTAAT 8 CACCTGTACA 1 CACCTGTAGT 7 CACCTGTATT 2 CACCTGTCAT 3 CACCTGTCCT 1 CACCTGTGCC 1 CACCTGTGGT 5 CACCTGTGTC 1 CACCTTAATT 1 CACCTTATAT 1 CACCTTCAAT 1 CACCTTCCAG 3 CACCTTCTGC 1 CACCTTTAAT 1 CACCTTTTTG 1 CACGAATTCA 1 CACGACTGTT 1 CACGAGAGCT 1 CACGATTAAA 1 CACGCAATGC 17 CACGCAGCCC 1 CACGCCAACG 1 CACGCCAGCC 1 CACGCCTGAT 1 CACGCGCTCA 1 CACGCGTCAG 1 CACGCTCACT 1 CACGGGTGTC 2 CACGGGTTTC 1 CACGTATAAG 1 CACGTATGCA 1 CACGTCGTGC 1 CACGTCTGCT 1 CACGTGATTG 1 CACGTGCAGC 1 CACGTGGAGG 2 CACGTGTAGT 1 CACGTTCCCT 1 CACTAAAAAA 1 CACTAATCAC 1 CACTAATCAG 1 CACTACAACC 1 CACTACACGG 4 CACTACCCAC 1 CACTACTACA 1 CACTACTACC 2 CACTACTCAC 314 CACTACTCGC 2 CACTACTTAC 1 CACTAGAGGC 1 CACTAGCAAA 1 CACTAGTCAC 1 CACTATATTT 3 CACTATCAAA 1 CACTATGATC 1 CACTATTCAC 1 CACTCAACAA 1 CACTCACACA 1 CACTCACAGT 1 CACTCACGGT 1 CACTCCAGCC 2 CACTCCCCAC 1 CACTCCTTTG 1 CACTCGTAGT 1 CACTCGTGTG 3 CACTCTATCC 7 CACTCTCACC 1 CACTCTCCCG 1 CACTGAGACT 1 CACTGAGGTT 1 CACTGCAGCC 1 CACTGCATAT 2 CACTGCATTC 1 CACTGCCATT 1 CACTGCCTGT 3 CACTGCCTTT 3 CACTGCTTGT 1 CACTGGAAGG 1 CACTGGATAA 1 CACTGGCGTC 1 CACTGGGAGG 1 CACTGTAATT 1 CACTGTACAA 1 CACTGTAGTT 1 CACTGTATGG 1 CACTGTGCAG 1 CACTGTGCCT 3 CACTGTGTGT 1 CACTGTTTGT 1 CACTTAAGTA 1 CACTTAATTG 1 CACTTACTCA 1 CACTTATCAC 1 CACTTATCTG 3 CACTTCAAGG 1 CACTTCAGGA 1 CACTTCTAGT 1 CACTTGAAAA 1 CACTTGCAGT 1 CACTTGCCCT 12 CACTTGGAAC 1 CACTTGTAGT 1 CACTTGTGCT 1 CACTTGTTAT 1 CACTTTAAAG 1 CACTTTCAAG 1 CACTTTCTAC 1 CACTTTCTGA 1 CACTTTGGGC 1 CACTTTGTAA 1 CACTTTTGGG 6 CAGAAAAGCA 1 CAGAAAATTA 1 CAGAAAATTC 1 CAGAAACCCC 1 CAGAAACTCC 1 CAGAAACTGC 1 CAGAAAGAAT 1 CAGAAAGCAT 9 CAGAAAGCCA 1 CAGAAAGGTA 1 CAGAACAGAT 1 CAGAACAGTG 1 CAGAACATCA 1 CAGAAGAAAA 1 CAGAAGAGGC 2 CAGAAGCATC 1 CAGAAGGCCA 1 CAGAAGGTGG 4 CAGAAGTGAC 1 CAGAATAATA 1 CAGAATAATG 1 CAGAATAGGC 1 CAGAATAGTA 1 CAGAATCAGA 1 CAGAATCAGT 1 CAGAATGACT 1 CAGAATTTCT 1 CAGACAAAAA 1 CAGACAAACA 1 CAGACAAACC 1 CAGACAACTG 1 CAGACACACA 1 CAGACAGGAA 1 CAGACATTTT 1 CAGACCAGCA 1 CAGACCCTGC 1 CAGACCTGAA 1 CAGACCTGGG 1 CAGACGCTCC 2 CAGACGGTCT 1 CAGACTAGCA 1 CAGACTATGT 2 CAGACTCTCT 1 CAGACTTGTT 1 CAGACTTTGG 1 CAGACTTTTG 1 CAGACTTTTT 2 CAGAGAAGCA 1 CAGAGAATAT 1 CAGAGAATGA 1 CAGAGAATGC 1 CAGAGACGGT 1 CAGAGACGTG 3 CAGAGAGAGG 1 CAGAGCAATT 1 CAGAGGAGCG 1 CAGAGGATGG 1 CAGAGGCACT 1 CAGAGGCTCG 1 CAGAGGCTGT 1 CAGAGGCTTG 7 CAGAGGTGAG 1 CAGAGGTGTG 1 CAGAGGTTGG 1 CAGAGTACGT 1 CAGAGTAGCA 1 CAGAGTTGTA 1 CAGATAAACA 1 CAGATAAACC 1 CAGATAACAT 7 CAGATAATGG 2 CAGATAATTA 1 CAGATAGTAG 1 CAGATATATG 1 CAGATATCAA 1 CAGATCCAAA 1 CAGATCCCCA 1 CAGATCGGAT 1 CAGATCTATT 1 CAGATCTTTG 6 CAGATCTTTT 1 CAGATGAATA 1 CAGATGAATG 1 CAGATGAGAA 1 CAGATGCAAA 2 CAGATGGATC 1 CAGATGGGTG 1 CAGATGTAGA 1 CAGATGTCCT 1 CAGATTACTG 1 CAGATTAGTT 3 CAGATTCAAG 1 CAGATTCCCC 1 CAGATTGCTG 1 CAGATTGTGA 1 CAGATTTCCA 1 CAGATTTGCA 2 CAGATTTGGG 1 CAGATTTGGT 1 CAGATTTTCC 1 CAGATTTTGG 4 CAGCAAAAAA 1 CAGCAACCTT 1 CAGCAAGTTG 1 CAGCAATTAA 2 CAGCAATTAT 1 CAGCACAGAC 1 CAGCACAGGC 1 CAGCACATTA 1 CAGCACCACA 1 CAGCACCAGG 1 CAGCACCATT 1 CAGCACCTCA 2 CAGCACTCAC 1 CAGCAGAAGC 9 CAGCAGAGCA 1 CAGCAGAGGC 1 CAGCAGCGGC 1 CAGCAGGAAT 1 CAGCAGGAGG 1 CAGCAGTAGC 1 CAGCAGTCCT 1 CAGCAGTGAC 1 CAGCAGTTAT 1 CAGCATAAAT 1 CAGCATACTG 1 CAGCATCTAA 1 CAGCCAAACC 1 CAGCCAAGCA 1 CAGCCAAGGG 1 CAGCCAGCCA 1 CAGCCAGGAC 1 CAGCCATAAA 1 CAGCCATCGA 1 CAGCCATCTA 1 CAGCCCAACC 5 CAGCCCCAAA 1 CAGCCCCAGC 1 CAGCCCCCAG 1 CAGCCCCTAG 1 CAGCCCCTGG 2 CAGCCCTCCT 1 CAGCCGAGGC 2 CAGCCTCCGT 1 CAGCCTCCTA 1 CAGCCTCCTG 1 CAGCCTCTCG 1 CAGCCTCTGC 1 CAGCCTGATC 1 CAGCCTGGGC 1 CAGCCTGGGT 1 CAGCCTGTCG 1 CAGCCTGTGC 1 CAGCCTTGCG 1 CAGCCTTGGA 4 CAGCGACGAT 1 CAGCGAGCCA 1 CAGCGAGGGT 1 CAGCGCACAG 7 CAGCGCCACC 2 CAGCGCCATT 2 CAGCGCCTCT 1 CAGCGCGCCC 10 CAGCGCTGCA 4 CAGCGCTGCC 1 CAGCGCTGCG 1 CAGCGCTTTG 4 CAGCGGCGGG 2 CAGCGGGTAA 1 CAGCTAAACG 3 CAGCTACACT 1 CAGCTATCAA 1 CAGCTATCAG 2 CAGCTATCGC 1 CAGCTATTGA 1 CAGCTATTTC 3 CAGCTCACTG 21 CAGCTCAGAA 1 CAGCTCAGCT 3 CAGCTCAGTG 1 CAGCTCATCT 6 CAGCTCCACC 1 CAGCTCCTTA 1 CAGCTCTGCA 1 CAGCTGAGCT 1 CAGCTGCACT 1 CAGCTGCTCG 1 CAGCTGCTGC 1 CAGCTGGCAC 2 CAGCTGGCCT 1 CAGCTGGGGC 2 CAGCTGGTGA 1 CAGCTGTAGT 2 CAGCTGTGAG 1 CAGCTGTGCC 1 CAGCTGTGTT 1 CAGCTGTTGG 1 CAGCTTACCC 1 CAGCTTCACC 3 CAGCTTCCAC 1 CAGCTTGCAA 13 CAGCTTGGAG 1 CAGGAAACTG 1 CAGGAACACT 2 CAGGAACAGA 2 CAGGAACCAC 2 CAGGAACGGC 1 CAGGAACGGG 5 CAGGAAGCAT 1 CAGGAATGTG 1 CAGGACCCCG 1 CAGGACCCTG 1 CAGGACGAAT 1 CAGGACGGCC 1 CAGGACGGGC 3 CAGGACGGTG 2 CAGGACTTTC 2 CAGGAGACCC 3 CAGGAGAGGA 1 CAGGAGCCCC 1 CAGGAGCGGG 2 CAGGAGGAAA 2 CAGGAGGAGT 6 CAGGAGTAGT 1 CAGGAGTCAG 1 CAGGAGTTCA 6 CAGGAGTTCC 1 CAGGATCCAG 3 CAGGATGACG 3 CAGGATGATG 1 CAGGCAAACT 1 CAGGCACTGA 2 CAGGCAGAGT 1 CAGGCAGCCA 1 CAGGCAGCTA 1 CAGGCAGGAT 1 CAGGCAGGCT 1 CAGGCCCCAC 8 CAGGCCCGCT 1 CAGGCCCTGC 1 CAGGCCCTTT 1 CAGGCCTCTG 1 CAGGCCTGCC 1 CAGGCCTGCT 1 CAGGCCTGGC 2 CAGGCCTTCT 1 CAGGCGGCAG 1 CAGGCGGTGA 1 CAGGCGTGCA 2 CAGGCTAATT 1 CAGGCTGAAA 1 CAGGCTGCCT 1 CAGGCTGGAG 4 CAGGCTGGGG 1 CAGGCTTCAC 1 CAGGCTTCCA 1 CAGGCTTTGC 2 CAGGCTTTTG 1 CAGGCTTTTT 1 CAGGGAAGCC 4 CAGGGAAGGC 1 CAGGGAGATC 1 CAGGGAGCGC 5 CAGGGAGCTC 1 CAGGGAGGAG 1 CAGGGAGGGA 1 CAGGGAGTCT 1 CAGGGCGAGA 2 CAGGGCGGGC 1 CAGGGCGGGG 1 CAGGGCGGGT 2 CAGGGCTCAC 1 CAGGGCTCGC 4 CAGGGCTCTG 1 CAGGGGAAGG 1 CAGGGGCTGG 2 CAGGGGTCAT 1 CAGGGGTGAC 3 CAGGGGTTGA 1 CAGGGGTTGG 2 CAGGGTCGCT 1 CAGGGTGAAG 1 CAGGGTGACG 4 CAGGGTGGAG 1 CAGGTAAGGT 1 CAGGTAGGAA 1 CAGGTCAAGA 3 CAGGTCCGAG 1 CAGGTCCTCA 1 CAGGTCCTGC 1 CAGGTCGGGC 1 CAGGTCTCGG 1 CAGGTGAAAA 1 CAGGTGAAAC 1 CAGGTGAATT 1 CAGGTGACAA 1 CAGGTGCACT 1 CAGGTGCGCT 1 CAGGTGCTGG 6 CAGGTGGTGA 1 CAGGTGTCAA 1 CAGGTTAAGC 1 CAGGTTGACA 4 CAGGTTTCAT 1 CAGGTTTTCC 1 CAGTAAAAAA 3 CAGTAAGAGA 1 CAGTAAGCAG 1 CAGTAAGGAA 1 CAGTACTCTT 1 CAGTAGACAG 1 CAGTAGCTTC 1 CAGTAGTGGG 1 CAGTATCCCA 2 CAGTATCTAT 1 CAGTATGTGT 1 CAGTATGTTC 1 CAGTATTCTA 1 CAGTATTTGA 1 CAGTCAGGCT 5 CAGTCATCAA 4 CAGTCATTTG 1 CAGTCCCACT 1 CAGTCCCAGC 1 CAGTCCCCCC 1 CAGTCCCCCT 2 CAGTCCGCTT 2 CAGTCCTGCT 1 CAGTCCTGTC 2 CAGTCGAGGT 1 CAGTCGCTGG 1 CAGTCGGTCA 2 CAGTCGGTGA 1 CAGTCGTGTG 1 CAGTCTCAGT 1 CAGTCTCTCA 5 CAGTCTGGGA 1 CAGTCTGTGA 1 CAGTCTTCTG 1 CAGTGAAAAA 1 CAGTGAAGCA 1 CAGTGAATGA 3 CAGTGACCTG 1 CAGTGAGCCA 1 CAGTGAGCCG 1 CAGTGATTCC 1 CAGTGATTGA 1 CAGTGCCACT 1 CAGTGCGCAC 1 CAGTGCGCCC 2 CAGTGCGTTC 3 CAGTGCTGCT 1 CAGTGGAAGT 1 CAGTGGAATG 1 CAGTGGCACG 2 CAGTGGCCTC 1 CAGTGGCTCC 1 CAGTGGGGCT 1 CAGTGGGGTT 1 CAGTGGGTGG 1 CAGTGGGTGT 3 CAGTGGTATA 1 CAGTGGTCTG 3 CAGTGGTGGG 1 CAGTGTATAT 1 CAGTGTCTCC 1 CAGTGTGGCC 1 CAGTGTTCCT 1 CAGTGTTGCG 1 CAGTGTTGGG 1 CAGTTAAATC 1 CAGTTAATAT 1 CAGTTACAAG 1 CAGTTACAAT 1 CAGTTACTTA 1 CAGTTAGTAA 2 CAGTTATATA 1 CAGTTCCTGC 1 CAGTTCTCTG 6 CAGTTCTCTT 1 CAGTTCTTGA 2 CAGTTCTTGT 1 CAGTTGACGC 1 CAGTTGCTGG 2 CAGTTGGTAC 1 CAGTTGGTGG 1 CAGTTGGTTG 5 CAGTTGTTTA 1 CAGTTTCAAA 1 CAGTTTCCAA 1 CAGTTTGCAT 1 CAGTTTGGAG 1 CAGTTTGTAC 6 CAGTTTGTCC 1 CAGTTTGTGT 1 CAGTTTTCAT 1 CATAAAAGGG 2 CATAAAATTC 1 CATAAAATTT 1 CATAAACACT 1 CATAAAGTTT 2 CATAAATATG 1 CATAACATTA 1 CATAACCTTC 2 CATAACTTAC 1 CATAATCTCT 1 CATACAAAGG 1 CATACACAAG 1 CATACAGAAA 3 CATACATTGG 1 CATACCAAGA 1 CATACCAGAT 1 CATACCAGGC 1 CATACCTGCC 2 CATACGGCAC 1 CATACTGCTG 1 CATACTGGGA 1 CATACTTTAC 1 CATACTTTAT 1 CATAGAAAAG 1 CATAGAATGT 1 CATAGACTTC 1 CATAGAGCCA 1 CATAGATCCA 1 CATAGATTAT 1 CATAGCAATG 1 CATAGCTATC 1 CATAGCTGCT 1 CATAGGCAAG 1 CATAGGCGAG 1 CATAGGTGAG 1 CATAGGTTTA 5 CATAGTGAAC 1 CATAGTGACT 1 CATATAAGAG 1 CATATAAGCA 1 CATATAATCC 1 CATATAGAAA 3 CATATCATTA 3 CATATGCATC 1 CATATGCCGT 1 CATATGTGTG 1 CATCAAAAAA 1 CATCAAATGC 1 CATCAATGAA 1 CATCACAGTG 2 CATCACTACA 1 CATCACTTCT 1 CATCAGATGC 1 CATCAGTAGG 1 CATCATTATA 1 CATCATTCAC 1 CATCATTCCT 2 CATCCAAAAC 11 CATCCAAACG 1 CATCCAAACT 1 CATCCAAGGC 1 CATCCAATAG 2 CATCCACACC 1 CATCCACTCA 1 CATCCAGAAA 1 CATCCCACAC 1 CATCCCACTG 1 CATCCCGTGA 1 CATCCCTAAA 1 CATCCCTAGT 1 CATCCGGGGG 1 CATCCGTCTA 1 CATCCGTGTT 1 CATCCTATAC 1 CATCCTGACC 1 CATCCTGCTG 3 CATCCTGTTA 1 CATCCTTGGG 1 CATCCTTTAT 1 CATCGGGAAG 1 CATCTAAACT 6 CATCTACACT 1 CATCTAGAGG 1 CATCTAGTAA 1 CATCTATCCA 1 CATCTATGGT 1 CATCTATGTT 1 CATCTCCTAA 1 CATCTCTATC 1 CATCTCTCCC 1 CATCTGACTG 1 CATCTGCGGA 1 CATCTGTAGT 2 CATCTGTGAG 1 CATCTTAACC 1 CATCTTATAT 1 CATCTTCACC 11 CATCTTCTTA 1 CATCTTTATC 1 CATCTTTTGG 1 CATTAACTTG 2 CATTACAAAT 1 CATTACAGGC 1 CATTACTATC 1 CATTATAACT 1 CATTATAGTA 1 CATTATCACC 1 CATTATCAGG 1 CATTATGTAC 1 CATTATTTTT 1 CATTCAATGG 1 CATTCACCAT 1 CATTCAGCAT 1 CATTCAGCTG 1 CATTCCACCT 1 CATTCCGAGA 1 CATTCCTCCT 2 CATTCGTAAT 1 CATTCTAAGA 1 CATTCTCACC 1 CATTCTGATA 1 CATTCTGTCC 1 CATTCTTAAT 1 CATTCTTTCT 1 CATTGAAGGG 3 CATTGAGCAT 1 CATTGCAGAG 1 CATTGCGGAT 1 CATTGCTGAA 1 CATTGCTGGC 1 CATTGCTTTG 1 CATTGGTAGA 1 CATTGGTCTT 1 CATTGTAAAA 1 CATTGTACAA 1 CATTGTCATA 1 CATTGTGAAA 1 CATTGTGCAT 1 CATTTAAAAG 1 CATTTAAACC 1 CATTTACTCT 1 CATTTAGATT 1 CATTTATACG 1 CATTTATATT 1 CATTTATCAT 3 CATTTATGGC 1 CATTTCACTG 1 CATTTCAGTA 1 CATTTCATAA 4 CATTTCCTAT 1 CATTTCCTTT 1 CATTTGAAAG 1 CATTTGAGAG 1 CATTTGAGCA 1 CATTTGCATA 1 CATTTGCTTG 1 CATTTGGTAA 1 CATTTGGTAT 3 CATTTGGTTC 1 CATTTGTAAA 1 CATTTGTAAC 1 CATTTGTAAT 36 CATTTGTATT 1 CATTTTCAAG 1 CATTTTGACA 1 CATTTTGCTA 1 CATTTTTCAT 1 CATTTTTGCA 1 CATTTTTGGG 1 CCAAAAAAAA 1 CCAAAACCCC 1 CCAAAAGCTC 1 CCAAAAGCTG 1 CCAAAAGGTT 1 CCAAAATCAT 1 CCAAAATTAG 3 CCAAACAATT 1 CCAAACCCCT 1 CCAAACCTAT 1 CCAAACGTGT 15 CCAAACTAAA 1 CCAAACTTGT 1 CCAAAGCAAA 1 CCAAAGCTAT 6 CCAAAGTTTT 1 CCAAATGAAA 1 CCAAATGCTG 3 CCAAATTAAA 1 CCAACAACTA 2 CCAACAAGAA 1 CCAACACACT 1 CCAACAGAAA 1 CCAACAGTGT 1 CCAACAGTTT 1 CCAACATTAA 1 CCAACCCATT 1 CCAACCGTGC 4 CCAACCTATA 1 CCAACGAGGA 3 CCAACGATGA 1 CCAACGTCTG 1 CCAACTATCG 1 CCAACTCACC 1 CCAACTCCTA 1 CCAACTCTGT 1 CCAACTGTGC 1 CCAACTTCAA 1 CCAAGAAAGA 3 CCAAGACCCA 1 CCAAGACCTC 1 CCAAGAGCTT 1 CCAAGAGGAA 1 CCAAGAGTGG 3 CCAAGCAAGG 1 CCAAGCACTT 2 CCAAGCCTCA 1 CCAAGCGGCC 1 CCAAGGACAG 1 CCAAGGACCA 1 CCAAGGACTC 2 CCAAGGATTG 4 CCAAGGCGGG 1 CCAAGGGAAC 1 CCAAGGGCCC 3 CCAAGGTAAC 1 CCAAGGTGTT 1 CCAAGGTTAC 1 CCAAGGTTTT 1 CCAAGTCCCA 1 CCAAGTGAAC 3 CCAAGTTCAC 2 CCAAGTTTTT 5 CCAATAAAAG 1 CCAATAAAAT 1 CCAATAATTT 1 CCAATACACT 1 CCAATACTGT 1 CCAATCCGCC 1 CCAATCCTGA 1 CCAATCTCAT 2 CCAATCTTGT 1 CCAATGAAAG 1 CCAATGACAC 1 CCAATGCACT 1 CCAATGTAAT 1 CCAATGTTGT 2 CCAATTAACC 1 CCAATTGAAG 2 CCACAAAAAA 1 CCACAAAATT 1 CCACAAACCT 1 CCACAAACTG 1 CCACAACCTG 3 CCACAACGCC 1 CCACAATCCT 1 CCACACAAGC 1 CCACACACCG 1 CCACACCCCA 1 CCACACCGGT 2 CCACACCTCT 2 CCACACTTCT 1 CCACAGAAAT 3 CCACAGCACT 2 CCACAGCCAC 6 CCACAGCCAG 1 CCACAGCTAC 1 CCACAGCTGA 1 CCACAGCTGG 1 CCACAGGAGA 6 CCACAGGATT 1 CCACAGGGGA 6 CCACAGTAGA 1 CCACAGTGAG 1 CCACATAGAA 1 CCACATATGT 1 CCACCACAAT 1 CCACCACACC 9 CCACCACACG 1 CCACCACACT 4 CCACCACATC 1 CCACCACCAC 1 CCACCACCCC 1 CCACCACGCC 7 CCACCAGATC 1 CCACCAGATT 1 CCACCAGTTC 1 CCACCATATT 1 CCACCATTCC 1 CCACCATTCT 1 CCACCCCCAC 5 CCACCCCGAA 14 CCACCCTCAC 2 CCACCCTTAA 1 CCACCGCACA 1 CCACCGCACC 1 CCACCGCACT 8 CCACCGCATT 1 CCACCGTACT 1 CCACCTCAAT 1 CCACCTCCCA 1 CCACCTCCTC 1 CCACCTGCTT 1 CCACCTTGGC 1 CCACCTTTCC 2 CCACCTTTCT 1 CCACGAAAGG 1 CCACGAACGT 1 CCACGAGTAA 1 CCACGCAAGA 1 CCACGCCACT 1 CCACGCCTCC 1 CCACGGCACT 1 CCACGGCTTT 1 CCACGGGTGC 1 CCACGTATGA 1 CCACGTCAAT 1 CCACGTGAAG 1 CCACGTGGAA 1 CCACGTGTTT 1 CCACTAAACT 1 CCACTAATGG 1 CCACTACAAT 1 CCACTACACC 2 CCACTACACG 1 CCACTACACT 11 CCACTACATC 1 CCACTAGATT 1 CCACTATATT 1 CCACTCACTC 2 CCACTCCAAA 1 CCACTCCAGC 1 CCACTCCTCA 2 CCACTCCTCC 1 CCACTCGGCT 1 CCACTCTCCC 1 CCACTCTCTA 1 CCACTCTGGC 2 CCACTCTGGT 1 CCACTGACAG 1 CCACTGACTC 1 CCACTGACTG 1 CCACTGATTT 1 CCACTGCAAC 2 CCACTGCACA 2 CCACTGCACC 6 CCACTGCACG 1 CCACTGCACT 243 CCACTGCAGC 1 CCACTGCAGG 1 CCACTGCAGT 1 CCACTGCATC 1 CCACTGCATT 12 CCACTGCCAC 1 CCACTGCCCC 1 CCACTGCCCT 8 CCACTGCGCT 7 CCACTGCGTT 1 CCACTGCTCA 1 CCACTGCTCC 1 CCACTGCTCT 2 CCACTGCTGC 1 CCACTGGAAC 1 CCACTGGACT 3 CCACTGGCAC 1 CCACTGGGCT 1 CCACTGTACA 1 CCACTGTACG 1 CCACTGTACT 25 CCACTGTAGC 1 CCACTGTATT 1 CCACTGTCCA 1 CCACTGTCCT 3 CCACTGTCTC 1 CCACTGTGCC 1 CCACTGTGCT 1 CCACTGTGTC 1 CCACTTCACT 2 CCACTTGATA 1 CCACTTGCAC 2 CCACTTTCAC 1 CCACTTTCTC 1 CCACTTTTTA 1 CCAGAAACCA 1 CCAGAAAGCT 1 CCAGAACAGA 16 CCAGAACAGT 1 CCAGAACTCT 1 CCAGAAGTGT 1 CCAGACGCAG 2 CCAGACGCCT 1 CCAGACTCCC 1 CCAGACTTTG 1 CCAGACTTTT 1 CCAGAGAAAG 1 CCAGAGAACT 6 CCAGAGGAAA 1 CCAGAGGCTG 2 CCAGAGGTAA 2 CCAGAGTCTA 1 CCAGAGTCTC 4 CCAGATACCA 1 CCAGATAGAA 1 CCAGATAGGA 1 CCAGATTTTG 2 CCAGCAAGAG 1 CCAGCACATT 1 CCAGCACCCT 1 CCAGCAGACC 1 CCAGCAGCCC 1 CCAGCAGCTT 1 CCAGCCAACA 1 CCAGCCAGGT 1 CCAGCCATCC 1 CCAGCCCAGC 1 CCAGCCCCGT 12 CCAGCCCTAC 1 CCAGCCCTCT 1 CCAGCCCTTC 1 CCAGCCGGGG 2 CCAGCCTGAG 1 CCAGCCTGGA 2 CCAGCCTGGC 1 CCAGCCTGGG 5 CCAGCCTTGG 1 CCAGCCTTTA 1 CCAGCGCACC 1 CCAGCGCAGC 1 CCAGCGCCTG 1 CCAGCGCTAC 2 CCAGCTCCCT 1 CCAGCTCCTG 1 CCAGCTGCCA 9 CCAGCTGTCA 1 CCAGCTTGAT 1 CCAGGAACAG 1 CCAGGAGATC 1 CCAGGAGGAA 10 CCAGGATTGA 1 CCAGGCAAGA 1 CCAGGCACGC 4 CCAGGCACTC 1 CCAGGCACTG 2 CCAGGCAGAG 1 CCAGGCCAGC 1 CCAGGCCGGC 1 CCAGGCCGTA 1 CCAGGCGTCA 6 CCAGGCTATA 1 CCAGGCTGCG 2 CCAGGCTGGG 2 CCAGGGAGGG 1 CCAGGGCAAC 7 CCAGGGCCAC 1 CCAGGGCCAG 1 CCAGGGCCTA 1 CCAGGGGAGA 10 CCAGGGTAGC 1 CCAGGGTCTG 1 CCAGGTACTA 1 CCAGGTCCCT 1 CCAGGTCTGG 1 CCAGGTTCTG 1 CCAGTAACCC 1 CCAGTAAGTT 1 CCAGTAATCC 8 CCAGTAATTC 1 CCAGTACAGC 1 CCAGTAGAAG 3 CCAGTAGTCC 1 CCAGTATTCC 1 CCAGTCCAGG 3 CCAGTCCCCT 1 CCAGTCCGCC 43 CCAGTCCGCT 1 CCAGTCCGGA 1 CCAGTCCTAC 1 CCAGTGAGCT 1 CCAGTGATCC 1 CCAGTGCAAC 2 CCAGTGCACT 2 CCAGTGCCAA 1 CCAGTGCCCA 1 CCAGTGCTCA 1 CCAGTGCTTC 1 CCAGTGGCAG 1 CCAGTGGCCC 7 CCAGTGGCTC 4 CCAGTGGTCC 1 CCAGTGTACT 1 CCAGTGTGCA 1 CCAGTGTGCC 1 CCAGTTCCTG 1 CCAGTTTGTA 1 CCATAAAGCA 1 CCATAACAGA 1 CCATAAGACT 1 CCATAATGTT 2 CCATACAATT 3 CCATACACGT 1 CCATACCAAA 1 CCATACCACT 1 CCATAGTACA 1 CCATATGATC 1 CCATATGCCA 1 CCATCACTGC 1 CCATCATCAT 2 CCATCATCGT 1 CCATCATTTC 1 CCATCCACAC 1 CCATCCAGTG 2 CCATCCCTTA 1 CCATCCTCCC 1 CCATCCTGCC 1 CCATCGCACT 3 CCATCGCATT 1 CCATCTAAGC 1 CCATCTAGCC 1 CCATCTCACT 1 CCATCTGAGG 1 CCATCTTTGA 1 CCATTAAATT 1 CCATTACACT 2 CCATTATTTC 1 CCATTCCCCA 1 CCATTCTCCT 6 CCATTCTCTT 1 CCATTGAAAC 5 CCATTGAACT 1 CCATTGACCT 1 CCATTGCACA 2 CCATTGCACC 1 CCATTGCACG 1 CCATTGCACT 62 CCATTGCAGT 1 CCATTGCATT 6 CCATTGCCCT 1 CCATTGCGTT 1 CCATTGCTCT 1 CCATTGGAAC 1 CCATTGGACT 1 CCATTGGCAG 1 CCATTGGGTG 2 CCATTGTACT 11 CCATTTCACT 1 CCATTTGACC 1 CCATTTGCAC 2 CCATTTTTAC 3 CCATTTTTCC 1 CCATTTTTCT 1 CCCAAACATA 1 CCCAAACCTT 1 CCCAAACGGT 1 CCCAAAGATC 1 CCCAAAGTCA 1 CCCAACCATT 1 CCCAACCCCT 2 CCCAACTGCA 1 CCCAAGACCA 1 CCCAAGAGGT 1 CCCAAGATCA 1 CCCAAGATGA 1 CCCAAGCGAT 1 CCCAAGCTAG 3 CCCAAGGGTT 3 CCCAAGGTTC 2 CCCAAGTGCT 1 CCCAATAAGA 1 CCCAATTTTC 2 CCCACAACCC 1 CCCACAATCC 1 CCCACACGAC 1 CCCACACTAC 5 CCCACAGCGC 1 CCCACAGGTT 1 CCCACATTCA 1 CCCACCAAAA 1 CCCACCATCA 1 CCCACCCCTG 1 CCCACCCTAG 1 CCCACCCTGC 1 CCCACCCTTA 1 CCCACCCTTG 1 CCCACCGCCA 1 CCCACCTGCC 2 CCCACCTGGA 1 CCCACGGTTA 2 CCCACGTAAA 1 CCCACTAACT 1 CCCACTCACT 1 CCCACTGAGA 1 CCCACTTGGC 1 CCCAGAACCA 1 CCCAGAGAAC 1 CCCAGAGCTC 1 CCCAGAGCTG 1 CCCAGATGAT 4 CCCAGCAGAT 1 CCCAGCATCT 1 CCCAGCCAAA 1 CCCAGCCAAT 1 CCCAGCCACA 1 CCCAGCCACC 1 CCCAGCCACT 2 CCCAGCCAGG 1 CCCAGCCAGT 1 CCCAGCCATA 1 CCCAGCCATT 2 CCCAGCCCCA 1 CCCAGCCCCC 1 CCCAGCCCTA 1 CCCAGCCGAT 1 CCCAGCCTAA 2 CCCAGCCTAG 2 CCCAGCCTAT 1 CCCAGCCTCC 1 CCCAGCCTCT 1 CCCAGCCTGA 2 CCCAGCCTGT 1 CCCAGCCTTC 1 CCCAGCCTTG 2 CCCAGCGAGC 1 CCCAGCGTGA 1 CCCAGCTAAG 2 CCCAGCTAAT 10 CCCAGCTACC 1 CCCAGCTAGT 1 CCCAGCTATT 3 CCCAGCTCTA 1 CCCAGCTGAG 1 CCCAGCTGAT 1 CCCAGCTGCA 1 CCCAGCTGGA 1 CCCAGGAAGC 1 CCCAGGACAC 5 CCCAGGATCT 1 CCCAGGCAGC 1 CCCAGGGAAC 1 CCCAGGGAGA 2 CCCAGGGCGG 1 CCCAGGGCTC 1 CCCAGGGGTC 1 CCCAGGTCAC 1 CCCAGTCCAA 1 CCCAGTGCCT 1 CCCAGTGGAT 1 CCCAGTTTTC 1 CCCATAAGGA 1 CCCATAATAA 1 CCCATAGCCA 1 CCCATCAATG 1 CCCATCAGGA 1 CCCATCAGGG 1 CCCATCATCC 9 CCCATCATCT 1 CCCATCCGAA 7 CCCATCCGCA 2 CCCATCCTGA 3 CCCATCCTGC 1 CCCATCTAGC 1 CCCATCTTGC 1 CCCATTAATC 1 CCCATTCACT 1 CCCATTCAGT 1 CCCATTCCTC 2 CCCATTTGCA 3 CCCATTTTAT 1 CCCCAAAAGG 1 CCCCAACTCG 1 CCCCAAGACC 1 CCCCAATAAG 1 CCCCAATGCT 2 CCCCACACGG 1 CCCCACAGAC 1 CCCCACCCAC 1 CCCCACCCAG 1 CCCCACCCCA 1 CCCCACGCAG 1 CCCCAGCCAC 1 CCCCAGCCAG 17 CCCCAGCCCC 2 CCCCAGCCTC 1 CCCCAGGATA 1 CCCCAGGTGG 1 CCCCAGTCGG 2 CCCCAGTTGC 17 CCCCAGTTGG 1 CCCCATCACA 1 CCCCATCCAA 1 CCCCCAAACT 2 CCCCCAATGC 5 CCCCCACCTA 9 CCCCCACGAG 1 CCCCCAGAGA 1 CCCCCAGATG 2 CCCCCATCAG 1 CCCCCCACAG 2 CCCCCCGCTC 1 CCCCCCGGAG 1 CCCCCCTTCT 2 CCCCCGAAAC 1 CCCCCGAAGC 4 CCCCCGACAT 1 CCCCCGATTC 1 CCCCCGCACT 1 CCCCCGCGGA 4 CCCCCGCGTA 1 CCCCCGTACC 1 CCCCCGTCAT 1 CCCCCGTGAA 11 CCCCCGTGCA 1 CCCCCGTTTA 1 CCCCCTATTA 1 CCCCCTCCGG 2 CCCCCTCCTT 3 CCCCCTCGTG 6 CCCCCTCTTG 1 CCCCCTGACT 1 CCCCCTGCAG 1 CCCCCTGCCC 2 CCCCCTGCTC 1 CCCCCTGGAT 18 CCCCCTTCTC 1 CCCCCTTGCA 4 CCCCGCAGCT 1 CCCCGCCAAG 7 CCCCGGAGGT 1 CCCCGGCCAC 2 CCCCGGGCTC 1 CCCCGGTCCA 3 CCCCGGTTGC 1 CCCCGTACAC 1 CCCCGTACAG 1 CCCCGTACCT 1 CCCCGTAGAT 1 CCCCGTATGG 2 CCCCGTCATC 1 CCCCGTCATT 1 CCCCGTCTCC 2 CCCCGTGTCA 1 CCCCTAAATT 1 CCCCTAATTA 1 CCCCTAATTG 2 CCCCTACATC 2 CCCCTACCGC 1 CCCCTAGTTG 1 CCCCTATTAC 1 CCCCTATTTA 1 CCCCTCCAGC 1 CCCCTCCCCA 1 CCCCTCCCCC 1 CCCCTCCCTC 5 CCCCTCTCCC 1 CCCCTCTGAG 5 CCCCTCTTTA 1 CCCCTGCACT 1 CCCCTGCCCT 1 CCCCTGCCTC 1 CCCCTGCTAG 1 CCCCTGCTGT 1 CCCCTGGATC 1 CCCCTGGCTG 1 CCCCTGGGCG 1 CCCCTGGTGG 1 CCCCTGGTTC 1 CCCCTGTACT 1 CCCCTGTAGT 1 CCCCTGTCAT 1 CCCCTTAAAA 1 CCCCTTATAA 1 CCCCTTATTA 1 CCCCTTCACT 1 CCCCTTGGGT 1 CCCCTTGTTA 1 CCCCTTTTCT 1 CCCGAATAAC 1 CCCGACCTCC 1 CCCGACGTGC 2 CCCGACTAGC 1 CCCGACTCCA 1 CCCGACTTCC 1 CCCGAGGAAG 1 CCCGAGTACT 1 CCCGCAAGGC 1 CCCGCAATCC 1 CCCGCATCGT 1 CCCGCATTAG 1 CCCGCCCCAA 1 CCCGCCCCCG 1 CCCGCCCGGA 1 CCCGCCGGAA 1 CCCGCCTATT 1 CCCGCCTCTT 16 CCCGCGATCC 1 CCCGCTGCGG 1 CCCGGCAAAT 1 CCCGGCCAAT 1 CCCGGCCACG 1 CCCGGCCAGC 1 CCCGGCCAGT 2 CCCGGCCATA 1 CCCGGCCCAG 1 CCCGGCCCCT 1 CCCGGCCCTT 1 CCCGGCCTCT 2 CCCGGCCTGC 1 CCCGGCGACA 1 CCCGGCTAAT 12 CCCGGCTCCT 2 CCCGGCTCTT 1 CCCGGCTGAT 1 CCCGGCTTTT 1 CCCGGGAGCG 5 CCCGGGATCT 1 CCCGGGCACC 1 CCCGGGGAGG 1 CCCGGGGCCT 2 CCCGGGGTCT 1 CCCGGTCTAC 1 CCCGGTGTGT 1 CCCGTAATCC 10 CCCGTACAAA 1 CCCGTACATC 4 CCCGTAGCCC 1 CCCGTAGTCA 1 CCCGTAGTCC 4 CCCGTCCGGA 92 CCCGTCCGGC 1 CCCGTCCGGG 1 CCCGTCGCCG 1 CCCGTGCAGT 1 CCCGTGGCTG 1 CCCGTGGGCT 2 CCCGTGTCGG 1 CCCGTTATCC 1 CCCGTTCATC 1 CCCGTTGTCC 2 CCCGTTTTAT 1 CCCTAAACTG 1 CCCTAAAGAA 1 CCCTAAGTAC 1 CCCTAATTCT 1 CCCTAATTGG 1 CCCTACAACG 2 CCCTACACTC 1 CCCTACCCCC 1 CCCTACCTTC 1 CCCTACGTTG 1 CCCTACTAAG 1 CCCTACTCAC 1 CCCTAGGTTG 5 CCCTATCAAG 1 CCCTATCACA 1 CCCTATCACT 1 CCCTATGGAT 1 CCCTATGTTT 1 CCCTATTAGG 1 CCCTATTAGT 1 CCCTATTTAG 1 CCCTCAACCC 1 CCCTCAATCC 2 CCCTCACAGA 1 CCCTCACCAT 1 CCCTCACCTG 1 CCCTCACTCC 3 CCCTCAGGAA 1 CCCTCAGGCT 1 CCCTCAGTAA 1 CCCTCATCCC 1 CCCTCCCAGC 1 CCCTCCCAGG 1 CCCTCCCCAA 1 CCCTCCCGAA 18 CCCTCCGCCC 1 CCCTCCTGGA 2 CCCTCCTGGG 2 CCCTCGCAGT 1 CCCTCGCATT 1 CCCTCTCCCT 1 CCCTCTCTGT 2 CCCTCTGGCT 1 CCCTCTGTGA 2 CCCTGAAGAC 1 CCCTGAATCC 2 CCCTGACTGC 1 CCCTGATTTT 13 CCCTGCACGT 1 CCCTGCACTC 1 CCCTGCATCG 1 CCCTGCATTC 1 CCCTGCCAAA 2 CCCTGCCACT 1 CCCTGCCCCA 1 CCCTGCCTGA 1 CCCTGCCTTA 1 CCCTGCCTTG 4 CCCTGCGGTC 2 CCCTGCGTTC 1 CCCTGCTATT 1 CCCTGCTCCT 1 CCCTGCTGCT 1 CCCTGCTGTT 1 CCCTGCTTCC 1 CCCTGGAGAC 3 CCCTGGAGCT 1 CCCTGGCAAT 1 CCCTGGCAGG 4 CCCTGGCTGT 2 CCCTGGGACT 1 CCCTGGGCGG 1 CCCTGGGCTT 1 CCCTGGGGAG 1 CCCTGGGGTC 1 CCCTGGGGTG 1 CCCTGGGGTT 1 CCCTGGGTCT 2 CCCTGGGTTC 34 CCCTGGTAAT 1 CCCTGTAATC 1 CCCTGTCCAT 1 CCCTGTCTCC 1 CCCTGTGCAA 1 CCCTGTGGCA 2 CCCTTAAGTT 1 CCCTTAATTG 2 CCCTTAGATT 1 CCCTTAGCAA 3 CCCTTAGCCT 1 CCCTTAGCTT 8 CCCTTAGTCC 1 CCCTTCAAAT 1 CCCTTCACTG 1 CCCTTCAGAT 1 CCCTTCCAAA 1 CCCTTCCTTA 1 CCCTTCTATA 1 CCCTTCTGCA 1 CCCTTCTGCC 3 CCCTTGAATT 1 CCCTTGACCC 1 CCCTTGCACT 4 CCCTTGGAAA 1 CCCTTGGCCA 3 CCCTTGGCCT 1 CCCTTGTAGA 1 CCCTTGTGAC 3 CCCTTTAACA 1 CCCTTTAGAA 1 CCCTTTAGGG 1 CCCTTTCACA 2 CCCTTTGCGT 1 CCCTTTGGCC 1 CCCTTTTAAG 1 CCCTTTTAGC 1 CCCTTTTTTT 1 CCGAAAAAGT 3 CCGAAACCCT 1 CCGAAACCTC 1 CCGAACACCA 1 CCGAAGCCCC 1 CCGAAGTCGA 2 CCGACATAGA 1 CCGACGGGCG 6 CCGACGTCTC 1 CCGACTTGTG 1 CCGACTTTCT 1 CCGAGATGAA 1 CCGAGCAACG 1 CCGAGCTGTA 1 CCGAGGAGTT 1 CCGAGGCTGC 3 CCGAGGTCAC 1 CCGAGTATAG 1 CCGATCACCG 7 CCGATGACCA 1 CCGATGCACT 1 CCGATGGTCA 1 CCGATGTTAG 1 CCGATTTTTA 1 CCGCACCACT 1 CCGCAGCTCA 1 CCGCAGGCAG 1 CCGCCACACT 1 CCGCCACATC 1 CCGCCACTTA 2 CCGCCAGCAT 1 CCGCCCAAGG 1 CCGCCCAGGC 1 CCGCCCCCAG 2 CCGCCCCGCC 1 CCGCCGAAGT 6 CCGCCTTCTC 1 CCGCGCTGAG 1 CCGCGCTGGC 1 CCGCTAACCG 1 CCGCTATACT 1 CCGCTCCTTG 1 CCGCTGCACT 37 CCGCTGCATT 1 CCGCTGCCTC 1 CCGCTGCGCT 1 CCGCTGCGTG 1 CCGCTGCTTG 4 CCGCTGTACT 1 CCGCTGTGCT 1 CCGCTTACTC 1 CCGGAACCGC 1 CCGGACCTGT 1 CCGGCCAGCG 1 CCGGCCATCG 1 CCGGCCCCCA 1 CCGGCCCTAC 3 CCGGCCCTTA 1 CCGGCGCGTG 1 CCGGCTACTC 1 CCGGGCACAG 1 CCGGGCCCAG 4 CCGGGCCTTA 1 CCGGGCGCGG 1 CCGGGCTAAC 1 CCGGGCTGTG 1 CCGGGGAGCA 1 CCGGGGCAAT 4 CCGGGGGAGC 2 CCGGGGGCTT 1 CCGGGGGGCC 1 CCGGGTGATG 4 CCGGGTGCCC 1 CCGGTATCCC 1 CCGGTCCAAA 1 CCGGTCGGTT 2 CCGGTCTCAA 1 CCGGTCTCGA 1 CCGGTGGCCT 1 CCGGTTCCTC 2 CCGGTTGGCA 4 CCGGTTTAGA 1 CCGTAAAAGC 1 CCGTAAATCA 1 CCGTACACCA 1 CCGTAGTGCC 3 CCGTATGAAG 1 CCGTCATCCT 6 CCGTCCAAGG 16 CCGTGAAAAA 1 CCGTGAAACC 1 CCGTGACAAT 1 CCGTGAGGGT 1 CCGTGCTCAT 4 CCGTGGCTGA 1 CCGTGGTCAC 2 CCGTGGTCGT 6 CCGTGTTAAA 1 CCGTGTTTAA 1 CCGTTCCTTG 1 CCGTTCTCCT 2 CCGTTCTGGA 3 CCGTTGCACC 1 CCGTTGCACG 1 CCGTTGCACT 4 CCGTTGCTGA 1 CCGTTGTAGC 1 CCGTTTCTTT 1 CCTAAACTCA 1 CCTAAATCTG 1 CCTAACACCC 1 CCTAACTGAC 2 CCTAAGGACA 1 CCTAAGGCTA 6 CCTAAGGGAG 1 CCTAATATTT 1 CCTAATCCAT 1 CCTAATGTGT 2 CCTAATGTTC 1 CCTACAATCC 1 CCTACAGAAG 1 CCTACAGACA 1 CCTACAGATA 3 CCTACAGCTA 1 CCTACCAAAA 1 CCTACCACAG 1 CCTACCCGCC 1 CCTACGGCAG 1 CCTACTAGGA 1 CCTACTATCC 1 CCTACTCACC 1 CCTACTCAGG 1 CCTACTTTCA 1 CCTAGATACT 1 CCTAGCAGGA 1 CCTAGCCCAA 1 CCTAGCTCGA 1 CCTAGCTGGA 48 CCTAGGAAAC 1 CCTAGGAAGT 1 CCTAGGACCT 3 CCTAGGATAC 1 CCTAGGGAGA 1 CCTAGTAATC 1 CCTATAAGTC 1 CCTATAATAT 1 CCTATAATCC 25 CCTATAATCT 2 CCTATAATGC 2 CCTATAATTT 1 CCTATAGTCC 7 CCTATAGTCT 3 CCTATATATA 1 CCTATATCCC 1 CCTATATTCC 1 CCTATCAAAG 1 CCTATCAAGA 1 CCTATCACCG 1 CCTATCGTCT 1 CCTATCTGGA 1 CCTATGATCC 2 CCTATGTAAG 1 CCTATGTCCT 1 CCTATGTTCC 1 CCTATTAAGC 4 CCTATTAAGG 1 CCTATTAGCA 1 CCTATTCTGC 1 CCTATTGTCC 1 CCTATTTACT 13 CCTCAAGAGG 1 CCTCAAGGAA 1 CCTCAATATA 1 CCTCAATGCT 1 CCTCAATTTC 1 CCTCACCACG 1 CCTCACTGCC 1 CCTCAGAAAA 1 CCTCAGAAGC 1 CCTCAGCAAC 1 CCTCAGCATC 1 CCTCAGCCAC 2 CCTCAGCCAG 2 CCTCAGCCCT 1 CCTCAGCTCA 1 CCTCAGCTCC 1 CCTCAGCTTC 1 CCTCAGGAAT 1 CCTCAGGAGA 1 CCTCAGGATA 120 CCTCAGGATC 2 CCTCAGGATG 1 CCTCAGGATT 1 CCTCAGGCTC 5 CCTCAGGGTA 1 CCTCAGGTTA 1 CCTCAGGTTC 1 CCTCATCAGC 1 CCTCATTGAT 1 CCTCCAACTA 2 CCTCCAATAA 2 CCTCCACACC 1 CCTCCACATC 1 CCTCCACCTA 12 CCTCCACCTG 1 CCTCCAGCCC 1 CCTCCAGCTA 131 CCTCCAGCTG 1 CCTCCAGTAC 2 CCTCCAGTAG 1 CCTCCATTTA 1 CCTCCCAACT 1 CCTCCCACCA 1 CCTCCCAGCA 1 CCTCCCAGCT 1 CCTCCCAGTG 1 CCTCCCCCCA 1 CCTCCCCCGT 6 CCTCCCCTGC 4 CCTCCCGGCT 1 CCTCCCTCAA 1 CCTCCCTCTC 1 CCTCCCTGAT 3 CCTCCCTGGC 1 CCTCCCTTTA 1 CCTCCGAAAT 1 CCTCCTAAGA 1 CCTCCTCCTC 2 CCTCCTCTCC 1 CCTCCTCTGA 2 CCTCCTCTGC 2 CCTCGAAATC 1 CCTCGAGGAG 1 CCTCGCGCTC 1 CCTCGCTCAG 2 CCTCGCTGCG 1 CCTCGGAAAA 5 CCTCGGAGAT 1 CCTCGGCCTC 1 CCTCGGCGTC 1 CCTCGGGGAA 2 CCTCGGGGAG 1 CCTCGTATGA 1 CCTCGTTCTC 1 CCTCTAATCC 3 CCTCTAATCT 3 CCTCTACACT 1 CCTCTACCTT 1 CCTCTAGTCC 2 CCTCTCAGGG 1 CCTCTCCAAC 1 CCTCTCCTCC 2 CCTCTCCTCG 2 CCTCTCCTGT 2 CCTCTGAATG 1 CCTCTGATTG 1 CCTCTGCACC 1 CCTCTGCACT 3 CCTCTGGAAG 1 CCTCTGGAGG 1 CCTCTGGCAG 1 CCTCTGGCTC 1 CCTCTGGCTT 1 CCTCTGGGGT 1 CCTCTGGTAA 1 CCTCTGGTCC 1 CCTCTGGTCT 3 CCTCTGTTTC 1 CCTCTTAGAC 1 CCTCTTATAC 1 CCTCTTCAGG 2 CCTCTTCCAA 2 CCTCTTGTAT 1 CCTGAAAAAA 1 CCTGAAAACA 1 CCTGAAAACT 1 CCTGAAAAGC 3 CCTGAAAATT 1 CCTGAAAGAG 1 CCTGAAATCC 3 CCTGAAATCT 1 CCTGAAATTT 2 CCTGAACAGG 1 CCTGAAGAAG 2 CCTGAAGTAC 1 CCTGAAGTCC 1 CCTGAAGTCT 1 CCTGAATACC 1 CCTGAATCCC 1 CCTGAATTAT 1 CCTGACCAGG 1 CCTGACCTTG 1 CCTGACGCTC 1 CCTGACTCGG 1 CCTGACTGTG 1 CCTGAGAATG 1 CCTGAGCCCC 1 CCTGAGCCCG 6 CCTGAGCGAC 1 CCTGAGGAAT 1 CCTGAGGATA 3 CCTGAGGATT 2 CCTGAGGGTA 1 CCTGAGGTCC 1 CCTGATTGCT 1 CCTGCAACCT 1 CCTGCAATAC 1 CCTGCAATCA 1 CCTGCAATCC 16 CCTGCAATGA 1 CCTGCACACT 3 CCTGCACTCC 1 CCTGCAGCAA 1 CCTGCAGCTA 1 CCTGCAGGTA 1 CCTGCAGTAC 1 CCTGCAGTCC 5 CCTGCAGTCG 1 CCTGCCAAAG 3 CCTGCCACCC 8 CCTGCCATCC 1 CCTGCCCCCC 11 CCTGCCCCTT 2 CCTGCCCTTG 1 CCTGCCGCTG 1 CCTGCCGTCG 2 CCTGCCTAAG 1 CCTGCCTAAT 1 CCTGCCTCTT 1 CCTGCCTGGG 1 CCTGCCTTGT 1 CCTGCGCTGC 1 CCTGCGGGGC 1 CCTGCGGGTG 1 CCTGCTATTA 1 CCTGCTCCCT 4 CCTGCTCCTC 1 CCTGCTGAGG 1 CCTGCTGCAG 6 CCTGCTGTCA 1 CCTGCTGTCG 1 CCTGCTTTCG 1 CCTGGAAAAA 1 CCTGGAAAAG 1 CCTGGAACCC 2 CCTGGAAGAA 3 CCTGGAAGAG 12 CCTGGAATCC 1 CCTGGACAGG 1 CCTGGAGCAA 3 CCTGGAGGCA 1 CCTGGAGGTG 1 CCTGGAGTCC 2 CCTGGAGTGG 1 CCTGGAGTTC 1 CCTGGCAAAT 1 CCTGGCACAA 1 CCTGGCATCT 1 CCTGGCCAAA 1 CCTGGCCAAG 2 CCTGGCCAAT 2 CCTGGCCAGA 1 CCTGGCCAGG 1 CCTGGCCATC 1 CCTGGCCCAC 1 CCTGGCCCCA 1 CCTGGCCCGG 1 CCTGGCCCTA 4 CCTGGCCCTC 1 CCTGGCCTAA 1 CCTGGCCTAG 1 CCTGGCCTAT 1 CCTGGCCTCA 1 CCTGGCCTTG 1 CCTGGCCTTT 2 CCTGGCGGGG 2 CCTGGCTAAA 2 CCTGGCTAAG 1 CCTGGCTAAT 9 CCTGGCTACT 1 CCTGGCTAGG 1 CCTGGCTAGT 1 CCTGGCTCAT 1 CCTGGCTGAA 1 CCTGGCTGAG 1 CCTGGCTGAT 1 CCTGGCTGGC 1 CCTGGCTGTA 3 CCTGGCTTTT 1 CCTGGGAAGT 5 CCTGGGAATC 1 CCTGGGATCC 1 CCTGGGCAAC 1 CCTGGGCATC 1 CCTGGGCCAC 1 CCTGGGCCCA 1 CCTGGGCCTA 1 CCTGGGCTAC 1 CCTGGGCTGG 2 CCTGGGGAGT 1 CCTGGGGCAC 1 CCTGGGGCTT 1 CCTGGGGGCC 1 CCTGGGGGTC 1 CCTGGGGGTG 4 CCTGGGGTGT 1 CCTGGGTGAC 2 CCTGGGTTCT 1 CCTGGTAATC 1 CCTGGTATCC 1 CCTGGTCAGT 3 CCTGGTCCAC 1 CCTGGTCCCA 2 CCTGGTGCTG 1 CCTGGTGTTT 1 CCTGGTTGTA 1 CCTGGTTTTC 1 CCTGTAAACC 3 CCTGTAAACT 1 CCTGTAAATC 4 CCTGTAACCC 13 CCTGTAACTC 1 CCTGTAACTT 1 CCTGTAAGGG 1 CCTGTAATAC 3 CCTGTAATAG 1 CCTGTAATCA 2 CCTGTAATCC 344 CCTGTAATCG 4 CCTGTAATCT 34 CCTGTAATGC 2 CCTGTAATTA 1 CCTGTAATTC 18 CCTGTAATTG 2 CCTGTAATTT 3 CCTGTACCCC 2 CCTGTACTCC 2 CCTGTACTCG 1 CCTGTAGACA 1 CCTGTAGACC 1 CCTGTAGCAA 1 CCTGTAGCCC 4 CCTGTAGTAC 1 CCTGTAGTCA 3 CCTGTAGTCC 84 CCTGTAGTCG 2 CCTGTAGTCT 8 CCTGTAGTGC 1 CCTGTAGTTA 1 CCTGTAGTTC 8 CCTGTATACA 1 CCTGTATCAA 1 CCTGTATCCC 4 CCTGTATCCT 1 CCTGTATGTA 1 CCTGTATTCC 8 CCTGTATTTC 1 CCTGTCAGCT 1 CCTGTCATCC 2 CCTGTCATCG 1 CCTGTCATTA 1 CCTGTCCAGC 1 CCTGTCCAGT 2 CCTGTCCGGA 1 CCTGTCCTCC 1 CCTGTCCTGC 3 CCTGTCCTGG 1 CCTGTCCTTT 2 CCTGTCGTTA 1 CCTGTCTAGC 2 CCTGTCTGCC 1 CCTGTGAAGA 1 CCTGTGAAGG 1 CCTGTGAATG 1 CCTGTGACAA 1 CCTGTGACAG 3 CCTGTGATCC 12 CCTGTGATCT 1 CCTGTGCCCC 1 CCTGTGCCCT 1 CCTGTGCGCT 1 CCTGTGCTTC 1 CCTGTGGCCC 1 CCTGTGGCCT 1 CCTGTGGCTG 1 CCTGTGGGCC 1 CCTGTGGTCC 25 CCTGTGGTCG 1 CCTGTGGTCT 3 CCTGTGGTTC 2 CCTGTGTACC 1 CCTGTGTATG 3 CCTGTGTGCA 1 CCTGTGTTGG 3 CCTGTTAATC 1 CCTGTTACCC 1 CCTGTTATCC 4 CCTGTTATCG 1 CCTGTTCTCC 3 CCTGTTGTAA 1 CCTGTTGTAG 1 CCTGTTGTTG 1 CCTTAAGTGC 1 CCTTAATCCC 1 CCTTACAGTC 1 CCTTACCTAG 1 CCTTAGAATT 1 CCTTAGCCCT 1 CCTTAGCTGG 1 CCTTATATTT 2 CCTTATGATA 4 CCTTCAAATC 1 CCTTCACCCT 1 CCTTCAGCTA 1 CCTTCAGGGT 1 CCTTCCAAAA 1 CCTTCCAAAT 2 CCTTCCAGCT 1 CCTTCCATCC 1 CCTTCCGAAC 1 CCTTCCTCAT 1 CCTTCGAGAT 7 CCTTCGCAGG 1 CCTTCGGGAT 1 CCTTCGGTCA 1 CCTTCGTGCC 1 CCTTCTGAAA 1 CCTTCTGGGT 1 CCTTCTGGTG 2 CCTTCTTTAG 1 CCTTGACAAT 1 CCTTGACCAA 1 CCTTGATCAA 1 CCTTGATCAT 1 CCTTGCAATG 1 CCTTGCACTA 1 CCTTGCCAAT 1 CCTTGCTTTT 1 CCTTGGCCAC 1 CCTTGGTGCC 2 CCTTGGTTTT 2 CCTTGTAAAA 1 CCTTGTAATC 1 CCTTGTCCAG 2 CCTTGTCCTC 1 CCTTGTCTTT 3 CCTTGTGCAC 1 CCTTGTTCCT 1 CCTTTAAAAA 1 CCTTTAATCC 3 CCTTTAATGA 1 CCTTTAGCAG 1 CCTTTAGCTA 1 CCTTTAGTCC 1 CCTTTATCTA 1 CCTTTATTAG 1 CCTTTCAACA 1 CCTTTCACAA 1 CCTTTCACAC 1 CCTTTCCAGA 1 CCTTTCCTAC 1 CCTTTCCTTT 1 CCTTTCTCTC 1 CCTTTGAAAA 1 CCTTTGAACA 2 CCTTTGCAGA 1 CCTTTGGCTA 1 CCTTTGGGGT 1 CCTTTGTAAA 3 CCTTTGTAAG 7 CCTTTGTCTT 1 CCTTTGTGAG 1 CCTTTTACCT 1 CCTTTTGCCA 1 CCTTTTGGGT 1 CCTTTTTCGT 1 CCTTTTTGTA 1 CGAAACCGTT 1 CGAAAGCCAG 1 CGAAAGCTGC 1 CGAAAGGAGG 1 CGAAATAATG 1 CGAACAAAAG 7 CGAACCATCC 1 CGAACGAAAG 1 CGAACGAAGC 1 CGAAGGCTGC 4 CGAATAAAAT 1 CGAATCATTT 1 CGAATGATAG 1 CGACATTGCT 1 CGACCCACAA 1 CGACCCCACG 1 CGACCGTGGC 2 CGACGCCCAA 1 CGACTACTAA 1 CGACTGCACT 3 CGACTTGTCT 1 CGAGACACCC 1 CGAGACGACA 1 CGAGACTCCA 1 CGAGAGCTCT 1 CGAGCATCGC 1 CGAGCTCGGA 1 CGAGCTGGAA 1 CGAGGAGGAG 1 CGAGGATCTA 1 CGAGGATGGG 1 CGAGGCGAAA 1 CGAGGGCGCT 1 CGAGGGGCCA 12 CGAGGGGCGA 1 CGAGGGGGAG 1 CGAGGGGGGC 1 CGAGGTGCCT 1 CGAGTGCAAC 1 CGATAATTCA 1 CGATACAAGG 1 CGATACCTCG 1 CGATACTATA 1 CGATCATATC 1 CGATCCCCAC 1 CGATCCTGTG 1 CGATCGAGAC 1 CGATCTCACT 1 CGATGACACT 2 CGATGGTCCC 4 CGATGTGTCA 1 CGATGTGTCC 3 CGATTAAAAA 1 CGATTCTGGA 1 CGATTGCTCT 1 CGATTGGTGG 11 CGATTTCACT 4 CGCAAACACC 1 CGCAACTCAC 1 CGCAACTGGT 2 CGCAAGCTGG 5 CGCAATGTCC 1 CGCACACACA 2 CGCACAGAAA 1 CGCACATACC 1 CGCACCAGCA 1 CGCACCATTG 3 CGCACGCTTT 1 CGCAGAGCCC 1 CGCAGAGCCT 1 CGCAGCACGA 1 CGCAGCCTCC 1 CGCAGCCTGA 1 CGCAGGACAG 1 CGCAGGCACC 2 CGCAGGCCTT 1 CGCAGGGAGA 2 CGCAGTGTCC 16 CGCATCACGT 1 CGCATTAAAG 1 CGCATTTTTG 1 CGCCAACAGC 1 CGCCACCACC 1 CGCCACCACG 4 CGCCACCATA 1 CGCCACCGCG 1 CGCCACTATG 1 CGCCACTCAC 1 CGCCAGCCCC 1 CGCCAGGCGG 1 CGCCAGTAAT 1 CGCCATTCCT 1 CGCCCAGCTA 2 CGCCCAGCTC 2 CGCCCATATG 1 CGCCCCCACA 1 CGCCCCCTGC 2 CGCCCCGATC 1 CGCCCGTAAT 1 CGCCCTATTA 1 CGCCGAAACA 3 CGCCGAATAA 4 CGCCGACGAT 4 CGCCGAGCAC 1 CGCCGATAAT 1 CGCCGATTTG 1 CGCCGCCGAC 1 CGCCGCCGCC 1 CGCCGCCGGC 43 CGCCGCCTTC 1 CGCCGCGGTG 19 CGCCGCTTCT 2 CGCCGGAACA 50 CGCCGGGAGC 2 CGCCGGTTCT 1 CGCCGTAAAT 1 CGCCGTCCTC 1 CGCCGTCGCT 1 CGCCGTTCTT 1 CGCCTAATTG 1 CGCCTACAGT 1 CGCCTAGTCT 2 CGCCTATAAT 2 CGCCTCCTGA 1 CGCCTGAAGT 1 CGCCTGCAAT 1 CGCCTGCCTA 1 CGCCTGGTGG 1 CGCCTGTAAT 20 CGCCTGTAGC 2 CGCCTGTAGT 11 CGCCTGTCAT 2 CGCCTTGGGG 1 CGCCTTTACT 2 CGCCTTTCGT 1 CGCGACGATC 1 CGCGAGCCAA 1 CGCGAGTCGG 1 CGCGCACACA 1 CGCGCACCCG 2 CGCGCAGGGG 1 CGCGCCCGGC 9 CGCGCCGGCC 1 CGCGCGCTGG 3 CGCGGCCACC 4 CGCGGCGGCG 1 CGCGGTATTT 1 CGCGGTGGGC 1 CGCGTCACTA 17 CGCGTGCACA 11 CGCGTGCGCA 3 CGCGTTCAAG 1 CGCGTTTTAT 1 CGCTACTCAC 1 CGCTATATGA 1 CGCTCGCCCG 2 CGCTCGCTGG 1 CGCTCTCTGC 1 CGCTCTCTTT 1 CGCTCTGGGC 1 CGCTGAGTTA 1 CGCTGATTAA 1 CGCTGCAGGG 1 CGCTGCTGCG 1 CGCTGGGCGT 3 CGCTGGGCTG 1 CGCTGGGGCA 1 CGCTGGTCAG 1 CGCTGGTCCA 1 CGCTGGTTCA 1 CGCTGGTTCC 46 CGCTGTCTCA 1 CGCTGTGGGG 8 CGCTGTGTGC 1 CGCTGTTCCC 2 CGCTGTTTTT 1 CGCTTGAACT 2 CGCTTGTGGT 2 CGCTTTCTTC 1 CGCTTTTGGG 2 CGCTTTTGTA 5 CGCTTTTGTT 1 CGGAAATTGC 1 CGGAACTGTG 1 CGGAAGCTCA 1 CGGAATTTAA 1 CGGACAGCAT 1 CGGACAGCCA 1 CGGACCGGCT 2 CGGACCTATT 1 CGGACTCACT 14 CGGAGACCCT 6 CGGAGATGTT 3 CGGAGGACTG 1 CGGAGGTGGA 1 CGGAGGTGGG 2 CGGAGTCCAT 2 CGGAGTCGGA 1 CGGATAAACA 1 CGGATAACCA 1 CGGATATAGG 1 CGGATATGTT 1 CGGATGTAAC 1 CGGATTTCAC 1 CGGATTTTTA 7 CGGCAAAAAA 1 CGGCAAGAGG 1 CGGCACCTTA 1 CGGCAGAGCT 3 CGGCCACAGA 2 CGGCCCAACG 9 CGGCCCCCTT 1 CGGCCCCGAG 2 CGGCCCGCAA 1 CGGCCCTTTT 1 CGGCCTCGGC 1 CGGCGATCAT 1 CGGCGCTCCC 1 CGGCTACGGA 1 CGGCTCAAGT 2 CGGCTCACAC 1 CGGCTCACTG 1 CGGCTGAATT 1 CGGCTGACCG 1 CGGCTGGAGC 1 CGGCTGGGGT 1 CGGCTGGTGA 6 CGGCTGTGCA 1 CGGCTTTCCT 1 CGGCTTTTAG 1 CGGCTTTTCT 7 CGGGAAAGAA 1 CGGGAACTTC 1 CGGGAGCACC 3 CGGGAGCATT 1 CGGGAGCCGG 2 CGGGAGTCGG 9 CGGGATGATA 1 CGGGATGCAG 1 CGGGATTCCT 2 CGGGCAACGT 1 CGGGCATCCA 1 CGGGCCAACT 1 CGGGCCACGT 1 CGGGCCATAT 1 CGGGCCCCAC 1 CGGGCCGTGC 3 CGGGCTCTGA 1 CGGGCTGCAT 1 CGGGGAGAAC 1 CGGGGAGAGG 1 CGGGGCAATA 1 CGGGGCAGAG 1 CGGGGCGCGG 1 CGGGGCTGCA 1 CGGGGGAAGA 3 CGGGGGTAAG 1 CGGGGGTCCT 1 CGGGGTAGTA 1 CGGGGTCCAT 1 CGGGGTGGCC 1 CGGGGTTAAT 1 CGGGTAGGTA 1 CGGGTAGTAT 3 CGGGTAGTTT 1 CGGGTCTTCC 1 CGGGTGCTGC 2 CGGGTTTGTT 1 CGGTACACGT 1 CGGTCAGGAG 2 CGGTCCCATT 1 CGGTCTTAGA 2 CGGTGAAACC 1 CGGTGACACT 1 CGGTGAGAGG 1 CGGTGAGTTT 1 CGGTGCCCAG 1 CGGTGGATTT 1 CGGTGGCTCA 1 CGGTGGGACC 3 CGGTGTCCCC 1 CGGTGTGAGG 1 CGGTGTTGAG 1 CGGTTACTGT 8 CGGTTTCTGG 1 CGGTTTGCAG 1 CGTAAGACGT 2 CGTACCAGGG 1 CGTACGCGAC 1 CGTACTGAGC 5 CGTAGCTGGA 1 CGTAGGGTAC 1 CGTCACACCA 1 CGTCACTAGT 1 CGTCAGGGAT 1 CGTCCCGGAG 2 CGTCCCTGAT 1 CGTCCTACGT 1 CGTCGGGGCG 1 CGTCTTCTCT 1 CGTGACAGAG 1 CGTGACAGGG 2 CGTGACCTGG 1 CGTGAGATGC 1 CGTGAGCCCA 1 CGTGATGGAC 1 CGTGCCGCCT 1 CGTGCCTGCT 1 CGTGCGCGAC 1 CGTGCGGCCC 1 CGTGCTGCTG 1 CGTGGAATCC 1 CGTGGCCAGG 1 CGTGGCCCCG 1 CGTGGGGCGG 1 CGTGGGGTGG 4 CGTGGTGTCA 1 CGTGTAATCC 4 CGTGTAATCT 1 CGTGTAATGG 1 CGTGTAGTCC 3 CGTGTCACCT 1 CGTGTCAGCA 1 CGTGTGACCC 1 CGTGTGACTT 1 CGTGTGCCTG 5 CGTGTGCGTA 1 CGTGTGGGCT 2 CGTGTGTGCT 1 CGTGTTAATG 8 CGTGTTATCC 1 CGTGTTTTGT 1 CGTTATTGGT 1 CGTTCCTGCG 2 CGTTCTGTTA 2 CGTTGATATT 1 CGTTGCTGGG 2 CGTTGTTTCG 1 CGTTTAATCA 1 CGTTTAATGT 1 CGTTTATAGA 1 CGTTTCCTTC 1 CGTTTGAAAA 1 CGTTTGGAGT 1 CGTTTGTAAC 1 CGTTTGTAAG 1 CGTTTTCTGA 1 CTAAAAAAAA 3 CTAAAAACTC 1 CTAAAACAAG 1 CTAAAACATT 1 CTAAAAGGAG 1 CTAAAATAAC 1 CTAAAATGGC 1 CTAAACACTA 1 CTAAACATAG 1 CTAAACCTCT 1 CTAAACTAGT 1 CTAAAGAACA 1 CTAAAGACTT 1 CTAAAGATTC 1 CTAAAGGCAA 1 CTAAAGTGGA 2 CTAAAGTTTG 1 CTAAATAATC 1 CTAAATCAAG 1 CTAAATCAAT 1 CTAAATGAAC 1 CTAACAAGTG 1 CTAACACCCC 1 CTAACACTCA 1 CTAACCACTG 1 CTAACCAGAC 1 CTAACCATAG 1 CTAACCTCGC 1 CTAACGCAGC 4 CTAACGGGGC 4 CTAACTACTG 2 CTAACTAGTC 1 CTAACTAGTT 4 CTAACTGTGA 1 CTAACTTCGT 1 CTAAGAAAAG 1 CTAAGAAGAA 1 CTAAGACATC 1 CTAAGACCTC 2 CTAAGACTCA 2 CTAAGACTGC 1 CTAAGACTTA 3 CTAAGACTTC 166 CTAAGATACA 1 CTAAGCTTCA 2 CTAAGGACTT 1 CTAAGGAGAT 1 CTAAGGCACT 1 CTAAGGCGAA 1 CTAAGGCGAG 24 CTAAGGGTTC 1 CTAAGGTGGG 2 CTAAGTGAAA 3 CTAAGTGAGT 1 CTAAGTGGGC 1 CTAATAAACT 4 CTAATAAGGA 1 CTAATACTTC 1 CTAATATGTG 1 CTAATGATGT 1 CTAATGTAAA 1 CTAATTAGCT 1 CTAATTCAGA 1 CTAATTCCAA 1 CTAATTGGAT 1 CTACAACCTG 1 CTACAATAAA 1 CTACACCAGT 1 CTACAGAATG 1 CTACAGATAA 1 CTACAGCCTC 1 CTACAGGGTA 1 CTACATCATA 1 CTACATTCTA 1 CTACCAGCAC 1 CTACCAGGCC 3 CTACCATATA 1 CTACCCCGGT 1 CTACCCGGTA 3 CTACCGCACT 1 CTACCGCAGC 1 CTACCGGCTT 1 CTACCGGGCC 1 CTACCTAAGT 1 CTACCTGGAT 1 CTACGAAACT 1 CTACGACGCC 1 CTACGACTTC 1 CTACGTGATG 1 CTACGTGCTC 1 CTACTAGGCC 1 CTACTGCACT 6 CTACTGCGCT 1 CTACTGGACT 1 CTACTGTACT 2 CTACTGTCCT 1 CTACTGTCTA 1 CTACTGTGCC 1 CTACTTAGAT 1 CTACTTGAAA 1 CTACTTGGGA 1 CTACTTTAAA 1 CTACTTTTGG 1 CTAGAAAGAG 3 CTAGAACAGA 1 CTAGAAGTAC 1 CTAGACTTCA 2 CTAGAGTGAA 1 CTAGATATGT 1 CTAGATGGGG 1 CTAGCAGAGC 1 CTAGCAGGTT 1 CTAGCATCAC 1 CTAGCATTTC 1 CTAGCCAGCA 2 CTAGCCAGGA 1 CTAGCCTCAC 36 CTAGCCTCCG 1 CTAGCCTGGG 2 CTAGCCTTCA 1 CTAGCGACCA 1 CTAGCTGAAT 1 CTAGCTGGCC 3 CTAGCTTTTA 10 CTAGGAACCA 1 CTAGGACTTC 1 CTAGGATCTG 1 CTAGGCATCT 1 CTAGGCTACA 1 CTAGGGCTTT 1 CTAGGGTGGT 1 CTAGGTCCCA 1 CTAGTATGCT 1 CTAGTCAGCT 1 CTAGTCTCAG 1 CTAGTGAAAG 1 CTAGTGAGAA 1 CTAGTGTTGT 1 CTAGTTAACA 1 CTATAAAGAT 1 CTATAAATGT 2 CTATAAGTAT 1 CTATACCCGA 1 CTATACTTTG 1 CTATAGAAAA 1 CTATAGTTTG 1 CTATATTGTA 1 CTATATTTTT 2 CTATCAGTCT 3 CTATCAGTTT 2 CTATCCATAC 1 CTATCCCCCT 1 CTATGAAAAT 1 CTATGAAGAT 1 CTATGACTTC 1 CTATGAGATC 1 CTATGAGCAC 1 CTATGCTCTT 1 CTATGGCTTC 4 CTATGGTTGC 1 CTATGTGCAC 1 CTATGTGCTT 1 CTATGTGTTA 2 CTATGTGTTG 1 CTATTAACTT 1 CTATTAAGAG 1 CTATTAAGCC 1 CTATTACTGG 1 CTATTAGCAT 1 CTATTATTCT 1 CTATTCCATT 1 CTATTCTACC 1 CTATTCTCCT 1 CTATTGAATG 2 CTATTGCTAA 1 CTATTTTCTC 1 CTCAAAAAAA 2 CTCAAAACTA 1 CTCAAAGAGG 1 CTCAAAGTCG 1 CTCAAATATT 1 CTCAACACGC 1 CTCAACAGCA 3 CTCAACATCT 9 CTCAACCCCC 2 CTCAACCGGC 1 CTCAACGCCA 1 CTCAACTTTT 1 CTCAAGAGTG 1 CTCAAGCACC 5 CTCAAGCGGC 1 CTCAAGCTAG 1 CTCAAGTCGC 2 CTCAATAAAA 1 CTCAATCACT 1 CTCAATCCGT 1 CTCACACACT 1 CTCACACATT 6 CTCACAGAGG 1 CTCACATAAA 1 CTCACATTTG 1 CTCACCATCT 1 CTCACCCAGT 1 CTCACCCGGC 1 CTCACCTGCT 2 CTCACGCCTG 1 CTCACTAATA 1 CTCACTGTCT 1 CTCACTTCTT 2 CTCACTTTTT 1 CTCAGAACAC 1 CTCAGACAGT 4 CTCAGACTTG 1 CTCAGAGAGG 1 CTCAGAGCTG 2 CTCAGAGGAG 1 CTCAGCAAAC 1 CTCAGCAATG 2 CTCAGCACGT 1 CTCAGCAGAT 1 CTCAGCCAGA 1 CTCAGCCCAG 1 CTCAGCCCCA 1 CTCAGCCCTA 1 CTCAGCCCTG 1 CTCAGCCTCT 2 CTCAGCCTGG 1 CTCAGCTAAT 2 CTCAGGAAAT 1 CTCAGGAACC 1 CTCAGGAAGC 1 CTCAGGAATA 1 CTCAGGATAC 1 CTCAGGCAAC 1 CTCAGGCATA 1 CTCAGGCTGG 1 CTCAGGGAGG 1 CTCAGGTTAT 1 CTCAGTACAC 1 CTCAGTCCCC 6 CTCAGTGAAT 1 CTCAGTGTCC 1 CTCATAAAAA 2 CTCATAACTT 1 CTCATAAGAA 3 CTCATAAGAG 1 CTCATAAGGA 77 CTCATAAGGG 1 CTCATACACC 2 CTCATACTGC 1 CTCATAGAGT 1 CTCATAGCAG 11 CTCATAGGGA 2 CTCATATAGA 1 CTCATATCAG 1 CTCATATGTT 1 CTCATCAGAA 1 CTCATCAGCT 5 CTCATCGCAG 1 CTCATCTTCA 1 CTCATTAGGA 1 CTCATTCAGC 1 CTCATTCGTA 1 CTCATTCTTA 1 CTCATTGCAG 1 CTCATTTGGT 1 CTCATTTGTG 1 CTCCAAGATG 1 CTCCAATTCT 1 CTCCACAAAT 1 CTCCACCCAA 1 CTCCACCCGA 85 CTCCACCCGG 1 CTCCACTGCC 1 CTCCACTGTG 1 CTCCAGACAT 1 CTCCAGCCCG 1 CTCCAGCCTG 1 CTCCAGGACA 2 CTCCAGGAGG 2 CTCCAGGGCT 1 CTCCAGTCAG 1 CTCCAGTTCC 1 CTCCAGTTGC 1 CTCCATCAGA 1 CTCCATCCGA 1 CTCCATCGGC 4 CTCCCACGAG 1 CTCCCACTGG 1 CTCCCCATCA 2 CTCCCCCAAA 6 CTCCCCCAAG 13 CTCCCCCACC 1 CTCCCCCCGC 1 CTCCCCGGCC 1 CTCCCCTGCC 5 CTCCCGGCGA 2 CTCCCTCCTA 1 CTCCCTCCTC 2 CTCCCTCTCT 5 CTCCCTGACC 1 CTCCCTGGTA 1 CTCCCTGTGC 1 CTCCCTTATG 1 CTCCCTTGCC 1 CTCCGCCACT 2 CTCCGCGGGG 1 CTCCGCTAAT 1 CTCCGGGACG 1 CTCCGTCAGT 1 CTCCTAATAA 1 CTCCTAATAG 2 CTCCTAATTG 1 CTCCTACTGC 1 CTCCTAGTTG 1 CTCCTCAAAG 1 CTCCTCAAGT 1 CTCCTCACCT 24 CTCCTCCGCG 1 CTCCTGATTG 1 CTCCTGCCGA 1 CTCCTGCCTT 1 CTCCTGCTGC 1 CTCCTGCTGT 1 CTCCTGGAAC 2 CTCCTGGACT 1 CTCCTGGGAA 1 CTCCTGGGCC 1 CTCCTGGGCG 1 CTCCTGGGGC 3 CTCCTGTAGT 1 CTCCTGTGAC 1 CTCCTGTTCA 1 CTCCTTAAGA 2 CTCCTTCCAG 1 CTCCTTCTAT 1 CTCCTTTCTG 1 CTCGACCACC 1 CTCGAGCCGA 1 CTCGAGGAAG 1 CTCGAGGAGG 3 CTCGCAATGG 1 CTCGCAGTGG 1 CTCGCATCCA 1 CTCGCCAGCA 1 CTCGCCTAGT 1 CTCGCCTGGG 1 CTCGCCTTCC 1 CTCGCGCTGG 18 CTCGCTAACT 1 CTCGCTCCAG 1 CTCGCTGTTT 1 CTCGCTTAAC 1 CTCGGAGGCC 1 CTCGGCACAT 1 CTCGGCGAGC 1 CTCGGCTAAG 1 CTCGGCTACT 1 CTCGGTGATG 1 CTCGGTGGGC 1 CTCGTACAGG 1 CTCGTACGCA 1 CTCGTATGCC 1 CTCGTCATCC 1 CTCGTGCTGG 1 CTCGTTAAGA 3 CTCGTTCATT 1 CTCGTTTGGC 3 CTCTAAATAT 1 CTCTAACATA 1 CTCTAACTCC 1 CTCTAACTGC 1 CTCTAAGAGG 1 CTCTACAGTG 1 CTCTACCGGA 1 CTCTACCGTT 1 CTCTACTCAC 1 CTCTAGAACC 1 CTCTATCCTG 1 CTCTATGTCA 1 CTCTATTGTA 1 CTCTCAAAGA 1 CTCTCAATGG 1 CTCTCACCCT 3 CTCTCACCTG 1 CTCTCACTTT 1 CTCTCATAGC 1 CTCTCATCAA 1 CTCTCCAATT 1 CTCTCCCAGT 1 CTCTCCCCCC 1 CTCTCCGTCA 1 CTCTCCTGCT 2 CTCTCCTTTG 1 CTCTCGGGGA 1 CTCTCTCATA 1 CTCTCTGCGG 1 CTCTCTGGCT 1 CTCTCTGTGG 1 CTCTGAAATA 1 CTCTGAATGT 1 CTCTGAGACA 1 CTCTGATAAC 1 CTCTGATCCC 1 CTCTGATTGT 1 CTCTGCAATG 1 CTCTGCCAGT 1 CTCTGCCCTC 19 CTCTGCCTAT 1 CTCTGCTCGG 1 CTCTGCTGTC 1 CTCTGGAAGA 1 CTCTGGAGCC 1 CTCTGGATGG 1 CTCTGGCGGC 1 CTCTGGCTCT 1 CTCTGGGATA 1 CTCTGGGGTC 1 CTCTGGGTGT 1 CTCTGTAATT 2 CTCTGTAGCC 1 CTCTGTAGTG 1 CTCTGTCCTC 2 CTCTGTGGAG 1 CTCTGTGTGG 1 CTCTGTGTTA 1 CTCTGTGTTG 1 CTCTGTGTTT 1 CTCTGTTGAT 1 CTCTTAACTG 1 CTCTTAATGT 2 CTCTTAATTG 1 CTCTTAGTGG 1 CTCTTATGAG 1 CTCTTCAAAA 1 CTCTTCAACC 1 CTCTTCAGAG 1 CTCTTCAGGA 2 CTCTTCAGGT 1 CTCTTCGAGA 5 CTCTTCTCCC 1 CTCTTCTCCT 1 CTCTTGTACT 2 CTCTTGTCCA 1 CTCTTGTCTA 1 CTCTTGTGTC 1 CTCTTTACAC 1 CTCTTTCACC 1 CTCTTTGATT 1 CTCTTTGCTT 1 CTCTTTGGAG 1 CTCTTTGGCA 1 CTGAAAAAAA 1 CTGAAAACCC 1 CTGAAAAGAG 1 CTGAAAAGGT 1 CTGAAAATCC 1 CTGAAACCCA 1 CTGAAACCCC 3 CTGAAACCCT 2 CTGAAACCGC 1 CTGAAAGGCT 1 CTGAAATTCG 1 CTGAACAAGA 1 CTGAACAGTG 1 CTGAACATAA 1 CTGAACCCGG 1 CTGAACCTGA 2 CTGAACGCCG 1 CTGAACTGCA 1 CTGAACTTGG 1 CTGAAGCAAA 1 CTGAAGCCCC 1 CTGAAGGCAT 1 CTGAAGGGAT 1 CTGAAGGTAA 1 CTGAAGTGTG 1 CTGAAGTTAA 1 CTGAAGTTGG 1 CTGAATATAT 1 CTGAATGGAG 1 CTGAATGTTG 1 CTGAATTTAC 1 CTGAATTTGA 1 CTGACACAGA 1 CTGACAGCCC 1 CTGACATTTT 1 CTGACCAATT 1 CTGACCAGAG 1 CTGACCAGTG 1 CTGACCCCCT 2 CTGACCCCTG 1 CTGACCTAAA 1 CTGACCTCCC 1 CTGACCTGTG 16 CTGACGGGGA 1 CTGACTAAAA 1 CTGACTATTA 1 CTGACTGCCC 1 CTGACTGTCC 1 CTGACTTAAA 1 CTGACTTGAG 1 CTGACTTGCG 1 CTGACTTGTG 9 CTGAGAACTG 1 CTGAGAAGCG 1 CTGAGACCCC 1 CTGAGACGAA 10 CTGAGACTTC 1 CTGAGAGAAA 1 CTGAGAGCTG 3 CTGAGATCCT 1 CTGAGCAAGG 1 CTGAGCAGCC 1 CTGAGCCCAT 1 CTGAGCCCGA 1 CTGAGCCTGC 1 CTGAGCGAAG 1 CTGAGCTATA 1 CTGAGCTCTG 1 CTGAGCTGTA 2 CTGAGGCCTG 3 CTGAGGCGCT 5 CTGAGGGAAG 1 CTGAGGGCCG 1 CTGAGGTATA 1 CTGAGGTGAT 1 CTGAGGTGCC 2 CTGAGGTTGC 1 CTGAGTAAAA 1 CTGAGTACTC 1 CTGAGTCTCC 4 CTGAGTTCAA 1 CTGAGTTGCA 1 CTGAGTTTAG 1 CTGATAACTC 1 CTGATACACA 1 CTGATGCCCA 1 CTGATGGCAG 10 CTGATGGCCA 1 CTGATGGCTC 1 CTGATGGGGA 1 CTGATGTAAC 1 CTGATGTTAA 1 CTGATGTTGG 1 CTGATTAAAG 1 CTGATTAGGA 1 CTGATTATCT 1 CTGATTGGTT 1 CTGATTTCAG 1 CTGATTTGGC 1 CTGCAACCTA 1 CTGCACAGCT 1 CTGCACCCAA 1 CTGCACGGGC 1 CTGCACTGAC 1 CTGCACTTAC 2 CTGCAGAAAA 1 CTGCAGAAAC 1 CTGCAGAAAT 2 CTGCAGAACG 3 CTGCAGACCC 9 CTGCAGCGTA 1 CTGCAGCTCA 1 CTGCAGCTCC 1 CTGCAGCTGA 1 CTGCAGGACC 1 CTGCAGGCCC 2 CTGCAGGCGG 1 CTGCAGTGGA 1 CTGCAGTTAG 3 CTGCAGTTTT 1 CTGCATACCA 1 CTGCATAGAT 1 CTGCCAACTT 9 CTGCCAAGTT 13 CTGCCACACC 1 CTGCCACCTC 1 CTGCCACCTT 1 CTGCCAGACC 1 CTGCCAGCAG 1 CTGCCAGGAC 1 CTGCCATAAC 1 CTGCCATCAG 1 CTGCCATCCC 1 CTGCCATCTG 1 CTGCCATCTT 1 CTGCCCAGAG 1 CTGCCCAGGC 2 CTGCCCCACA 1 CTGCCCCAGC 1 CTGCCCCCCA 3 CTGCCCGCCG 1 CTGCCCGCCT 3 CTGCCCGGCA 1 CTGCCCGGGA 1 CTGCCCGTCT 1 CTGCCCTCCT 1 CTGCCCTCTG 1 CTGCCCTGAC 1 CTGCCGACTG 1 CTGCCGAGCT 7 CTGCCTCCCT 1 CTGCCTCCGT 1 CTGCCTCCTG 1 CTGCCTCCTT 1 CTGCCTCTGG 1 CTGCCTGGAA 1 CTGCCTGGCA 1 CTGCCTTCTT 2 CTGCGACTGC 1 CTGCGGAACG 1 CTGCGGCGCC 1 CTGCGGTGGC 2 CTGCGTACAT 2 CTGCGTCTGG 1 CTGCTAAGGT 1 CTGCTAGGAA 1 CTGCTAGGGG 1 CTGCTAGGGT 1 CTGCTATACG 17 CTGCTATGGT 1 CTGCTCAGTG 1 CTGCTCCAGT 1 CTGCTCCCAG 1 CTGCTCTTAA 1 CTGCTGAAAT 1 CTGCTGAATT 1 CTGCTGACCT 1 CTGCTGAGTC 1 CTGCTGAGTG 3 CTGCTGATAG 1 CTGCTGCAAT 1 CTGCTGCACT 4 CTGCTGCATT 1 CTGCTGCCCC 1 CTGCTGCCGC 3 CTGCTGCTGC 1 CTGCTGCTGG 1 CTGCTGGTGA 1 CTGCTGTACT 1 CTGCTGTCGC 1 CTGCTGTGAA 1 CTGCTGTGAT 2 CTGCTGTGTT 1 CTGCTGTTGT 1 CTGCTTCAAC 1 CTGCTTCACT 1 CTGCTTCCGA 1 CTGCTTCCTG 4 CTGCTTCGTG 1 CTGCTTGGTG 1 CTGCTTGTAC 1 CTGCTTTCCC 1 CTGCTTTTTT 2 CTGGAAAAAC 1 CTGGAAAGTC 1 CTGGAAGAGG 1 CTGGAAGGGC 1 CTGGAAGGGG 1 CTGGAATCAA 1 CTGGAATCCC 1 CTGGAATGAC 1 CTGGAATGTG 1 CTGGACCAGG 1 CTGGACCCTT 1 CTGGACCTGC 1 CTGGACGTAG 1 CTGGACTGGG 2 CTGGACTGTT 1 CTGGAGAGAA 1 CTGGAGAGCG 1 CTGGAGATGT 1 CTGGAGCCTG 1 CTGGAGGCAC 2 CTGGAGGGTT 1 CTGGAGTATG 1 CTGGAGTGCA 2 CTGGAGTTGA 1 CTGGATCCCC 1 CTGGATCGGC 1 CTGGATCTGG 5 CTGGATGACT 1 CTGGATGAGG 1 CTGGATGCCG 1 CTGGATGGGC 1 CTGGATGGTG 1 CTGGATGTTT 1 CTGGCAACGG 1 CTGGCACCTG 1 CTGGCAGAGC 1 CTGGCAGGCC 1 CTGGCAGGTG 2 CTGGCATATG 1 CTGGCCAAAA 1 CTGGCCAACT 1 CTGGCCAAGA 6 CTGGCCACCC 1 CTGGCCACCT 1 CTGGCCAGGC 5 CTGGCCATCG 3 CTGGCCATTT 1 CTGGCCCCGA 4 CTGGCCCGGA 7 CTGGCCCTCG 15 CTGGCCGACT 1 CTGGCCGCAA 4 CTGGCCTAGG 1 CTGGCCTCAC 1 CTGGCCTCTG 1 CTGGCCTGCT 2 CTGGCCTGGA 1 CTGGCGAGCG 7 CTGGCGATGA 1 CTGGCGATGG 2 CTGGCGCACG 1 CTGGCTAACA 1 CTGGCTAACG 1 CTGGCTATAT 1 CTGGCTCACA 1 CTGGCTCAGA 1 CTGGCTCAGC 1 CTGGCTCCAT 1 CTGGCTCTGA 1 CTGGCTGATT 1 CTGGCTGCAA 7 CTGGCTGCTT 1 CTGGCTGGGG 1 CTGGCTGGTT 1 CTGGCTGTTT 1 CTGGCTTAAT 1 CTGGCTTCTT 2 CTGGCTTGGG 1 CTGGCTTTTA 1 CTGGCTTTTG 2 CTGGGAAATT 1 CTGGGACTGC 4 CTGGGAGAGG 4 CTGGGAGGGA 2 CTGGGATCAT 1 CTGGGATGCA 1 CTGGGATGTC 2 CTGGGATTCC 1 CTGGGCAAAC 1 CTGGGCAGCA 1 CTGGGCCAGC 1 CTGGGCCCTC 1 CTGGGCCCTG 1 CTGGGCCCTT 1 CTGGGCCTCT 3 CTGGGCCTGA 1 CTGGGCCTGG 1 CTGGGCCTTG 1 CTGGGCGTGT 11 CTGGGCTAGC 1 CTGGGCTCTG 2 CTGGGCTTAA 1 CTGGGCTTCG 1 CTGGGGCTCT 1 CTGGGGCTTT 1 CTGGGGGAGG 1 CTGGGGGCCC 1 CTGGGGGTCT 1 CTGGGGTGAC 1 CTGGGGTTAA 1 CTGGGTAAAA 1 CTGGGTCAGG 3 CTGGGTCTCC 1 CTGGGTGACA 1 CTGGGTGCCC 3 CTGGGTTAAT 42 CTGGTAATCC 1 CTGGTAGGAA 1 CTGGTCCCTG 1 CTGGTCCTAA 1 CTGGTCCTCC 4 CTGGTCCTGG 2 CTGGTGACAG 1 CTGGTGAGCG 4 CTGGTGAGTG 1 CTGGTGATGG 1 CTGGTGCAGG 1 CTGGTGCCCC 1 CTGGTGCGCG 1 CTGGTGCGCT 2 CTGGTGGGCA 1 CTGGTGGGCC 2 CTGGTGGGGG 1 CTGGTGGTCC 1 CTGGTGGTCT 1 CTGGTGGTGC 5 CTGGTGGTTG 1 CTGGTGTGCT 4 CTGGTTAAGA 2 CTGGTTTGTT 1 CTGGTTTTTC 1 CTGTAAAAAA 1 CTGTAAACTA 1 CTGTAAATAC 1 CTGTAAGGAT 1 CTGTAAGTTA 1 CTGTAATCCC 3 CTGTAATGCT 1 CTGTACAAAC 1 CTGTACAGAC 20 CTGTACATAC 2 CTGTACTAGG 3 CTGTACTTTA 1 CTGTAGATAA 1 CTGTAGCCCC 2 CTGTAGTCCC 1 CTGTAGTTGC 2 CTGTATAAAA 1 CTGTATGTGG 2 CTGTATGTTT 1 CTGTATTGTA 1 CTGTATTTGA 1 CTGTCACCCA 1 CTGTCATTAA 1 CTGTCATTTG 5 CTGTCATTTT 1 CTGTCCCCAC 1 CTGTCCCTGT 1 CTGTCCGCCG 1 CTGTCCGCTG 1 CTGTCCGGCT 1 CTGTCCGTAC 1 CTGTCCTTGT 1 CTGTCGTCCT 1 CTGTCTCCCC 1 CTGTCTCTAC 2 CTGTCTGGAG 1 CTGTCTGGTG 1 CTGTCTGTCT 1 CTGTCTTGGG 2 CTGTCTTTTC 1 CTGTGAGACC 11 CTGTGAGATC 1 CTGTGAGCTT 1 CTGTGAGGAA 1 CTGTGCAGCA 5 CTGTGCAGGG 1 CTGTGCATTT 5 CTGTGCTCGA 1 CTGTGCTCGG 1 CTGTGCTGCT 1 CTGTGGAATT 1 CTGTGGAGAG 1 CTGTGGCAGT 1 CTGTGGCCGG 3 CTGTGGGCAT 1 CTGTGGGCCA 1 CTGTGGGGTA 1 CTGTGGGGTT 1 CTGTGGTTTT 1 CTGTGTAAAG 4 CTGTGTAAGC 2 CTGTGTAATT 1 CTGTGTAGGT 1 CTGTGTATCC 1 CTGTGTGACT 1 CTGTGTTGCA 1 CTGTGTTTCA 3 CTGTGTTTGG 1 CTGTGTTTGT 3 CTGTTAACCA 1 CTGTTACAGA 1 CTGTTACCTT 1 CTGTTACTAG 1 CTGTTAGTGT 1 CTGTTATTTA 1 CTGTTCCAGC 1 CTGTTCCATC 1 CTGTTCCGGC 4 CTGTTCTCAG 1 CTGTTCTCGA 1 CTGTTCTGCT 1 CTGTTCTGGT 1 CTGTTGACTG 1 CTGTTGAGTG 1 CTGTTGATTG 32 CTGTTGCACT 1 CTGTTGCTGG 1 CTGTTGGAAA 1 CTGTTGGCAT 3 CTGTTGGTGA 31 CTGTTGGTGG 1 CTGTTGTGTG 2 CTGTTTAAAC 1 CTGTTTACTA 1 CTGTTTATCC 1 CTGTTTCAGA 1 CTGTTTCTTA 1 CTGTTTTCTT 2 CTGTTTTGGT 2 CTTAAAAAAA 1 CTTAAAACAC 1 CTTAAATATC 1 CTTAAATCAG 3 CTTAAATGGT 1 CTTAACAACT 1 CTTAACTCCC 1 CTTAAGAAAA 1 CTTAAGACTT 1 CTTAAGATTC 1 CTTAATCCTG 4 CTTAATCTTG 2 CTTAATGATA 1 CTTAATGTTT 1 CTTAATTATG 1 CTTACAACAA 1 CTTACAAGCA 4 CTTACACCCT 1 CTTACACCTG 1 CTTACACGCA 1 CTTACACTCT 1 CTTACAGAGG 2 CTTACAGCCA 1 CTTACAGGTT 1 CTTACATTTT 1 CTTACCTCCG 1 CTTACGTGAT 5 CTTACTATAG 1 CTTACTGCCC 1 CTTACTTGAT 1 CTTAGAAGGG 1 CTTAGACAGT 1 CTTAGACTTC 2 CTTAGAGGGG 1 CTTAGCAGGG 1 CTTAGCTCTT 1 CTTAGCTGCA 1 CTTAGCTTTA 1 CTTAGGTCCT 1 CTTAGGTCTT 2 CTTAGTGCAA 5 CTTAGTGCGA 1 CTTATAGATG 1 CTTATATTTG 1 CTTATCAAAA 1 CTTATCAAAG 1 CTTATCCTGA 1 CTTATGATCA 2 CTTATGCCCT 1 CTTATGGATA 1 CTTATGGTCC 1 CTTATGTAGA 1 CTTATTAAAA 1 CTTATTACAT 1 CTTATTCCAA 1 CTTATTCCTT 4 CTTATTTCTG 1 CTTCAAAAAT 1 CTTCAAACAA 1 CTTCAAGAGA 1 CTTCAAGCTT 1 CTTCAAGGCC 1 CTTCACCAGA 1 CTTCACGATA 1 CTTCACTCGT 1 CTTCAGAAAT 1 CTTCAGAGCT 1 CTTCAGCATT 1 CTTCAGCCCC 1 CTTCAGCCGG 1 CTTCAGCTAG 1 CTTCAGGATA 1 CTTCAGGCAA 1 CTTCAGTCAG 1 CTTCAGTGCC 1 CTTCATAACC 1 CTTCATACGC 1 CTTCCAAAAC 1 CTTCCACCTA 1 CTTCCACCTT 1 CTTCCAGCTA 14 CTTCCAGTAA 1 CTTCCAGTTA 1 CTTCCATTTC 1 CTTCCCACCA 1 CTTCCCACTC 3 CTTCCGCAAA 1 CTTCCGTAGC 1 CTTCCTGTAC 4 CTTCCTGTTA 1 CTTCCTTGCC 2 CTTCCTTGTA 1 CTTCCTTGTC 1 CTTCGGCAAA 1 CTTCTAACGA 1 CTTCTAATCC 1 CTTCTACCAA 1 CTTCTACGGC 1 CTTCTACTAA 4 CTTCTCACCG 2 CTTCTCAGGG 1 CTTCTCATCC 1 CTTCTCATCT 6 CTTCTCCCCA 1 CTTCTCCCTC 2 CTTCTCTTGG 1 CTTCTGCAAA 2 CTTCTGCCTC 1 CTTCTGCTGG 6 CTTCTGGGGA 3 CTTCTGGGGC 1 CTTCTGGGTT 1 CTTCTGGTCC 1 CTTCTGTAAT 1 CTTCTGTCTC 1 CTTCTGTGCT 1 CTTCTGTGTA 3 CTTCTGTTTT 4 CTTCTTCTCT 2 CTTCTTGTGC 1 CTTCTTTATA 1 CTTCTTTCCA 1 CTTCTTTGCT 2 CTTCTTTGGA 1 CTTGAAACTG 1 CTTGAAATTT 1 CTTGAACATT 1 CTTGAACTAA 1 CTTGAACTGC 1 CTTGAACTTG 1 CTTGAATGTA 1 CTTGACACAC 1 CTTGACATTC 1 CTTGACTCTT 1 CTTGAGACCA 1 CTTGAGCAAT 4 CTTGAGCAGA 1 CTTGAGCTTG 1 CTTGAGGTCT 1 CTTGATCCCC 1 CTTGATTCCC 2 CTTGCAAAAT 1 CTTGCAAACT 1 CTTGCAAAGC 1 CTTGCACGTC 1 CTTGCAGTCC 1 CTTGCATTGT 1 CTTGCCAACA 1 CTTGCCACCA 1 CTTGCCAGTT 1 CTTGCCATAA 10 CTTGCCCTTC 1 CTTGCCTCCT 1 CTTGCCTGAA 1 CTTGCCTTTG 1 CTTGCGTGAG 1 CTTGCGTGTA 1 CTTGCTAGCT 1 CTTGCTCAAT 1 CTTGCTCGGG 1 CTTGCTGCTG 1 CTTGCTGGTG 1 CTTGCTTATA 1 CTTGCTTTCA 1 CTTGCTTTTG 1 CTTGGAAGAG 1 CTTGGCACCC 1 CTTGGCAGTT 1 CTTGGCCCTG 1 CTTGGCTCTA 1 CTTGGGAGGC 2 CTTGGGATGT 1 CTTGGGCATA 1 CTTGGGGTTT 2 CTTGGGTAAT 1 CTTGGGTTCT 1 CTTGGGTTTG 2 CTTGGGTTTT 83 CTTGGTAAGA 1 CTTGGTAATT 1 CTTGGTACTT 1 CTTGGTGATG 1 CTTGGTGCCT 1 CTTGGTGTAG 1 CTTGGTGTGA 1 CTTGGTTGCA 1 CTTGGTTGGC 1 CTTGGTTTTT 1 CTTGTAAAAA 1 CTTGTAACAG 2 CTTGTAACTG 1 CTTGTAATCA 1 CTTGTAATCC 17 CTTGTAATCT 1 CTTGTACAGC 1 CTTGTAGTCC 7 CTTGTATCCC 1 CTTGTATGTA 1 CTTGTCGTTG 1 CTTGTGAACT 2 CTTGTGAGGC 1 CTTGTGATCC 1 CTTGTGCATA 1 CTTGTGGCTA 1 CTTGTGGTCC 1 CTTGTGGTCT 1 CTTGTGGTGA 1 CTTGTGTCCA 1 CTTGTGTGTA 2 CTTGTTAATA 1 CTTGTTCCTA 1 CTTGTTCTCC 1 CTTGTTCTCT 2 CTTGTTGAAG 1 CTTGTTGACA 1 CTTTACTTCA 1 CTTTACTTTT 1 CTTTAGCCTT 1 CTTTAGGGAG 1 CTTTAGTTCA 2 CTTTATGCGA 1 CTTTATGTGA 3 CTTTATGTGT 2 CTTTATTCCA 3 CTTTCAAAAT 1 CTTTCAATGT 1 CTTTCAGATT 1 CTTTCAGTGG 1 CTTTCAGTTT 1 CTTTCATTGA 1 CTTTCATTTT 1 CTTTCCAAAA 3 CTTTCCCATA 2 CTTTCCCCTT 1 CTTTCCTGGC 1 CTTTCCTTTT 1 CTTTCTCAAA 1 CTTTCTCTAA 1 CTTTCTCTGT 1 CTTTCTGGTA 1 CTTTCTTCCC 2 CTTTCTTGAA 1 CTTTGAACTT 1 CTTTGATATC 1 CTTTGATCAG 5 CTTTGATGGC 1 CTTTGATGTT 4 CTTTGCACTC 1 CTTTGCATTT 1 CTTTGCGCTA 1 CTTTGCTCAG 1 CTTTGCTCTC 1 CTTTGCTGTG 1 CTTTGGGAGG 1 CTTTGGGTCC 1 CTTTGGGTGA 1 CTTTGTAACA 1 CTTTGTACAC 1 CTTTGTCAAA 1 CTTTGTGTCC 1 CTTTGTTTGT 1 CTTTGTTTTG 1 CTTTTAACTT 1 CTTTTACAGT 1 CTTTTACTCT 1 CTTTTATATG 1 CTTTTATGTT 1 CTTTTCAAGA 2 CTTTTCAGCA 3 CTTTTCAGGC 1 CTTTTCCTCT 1 CTTTTCCTGT 1 CTTTTCTAAA 1 CTTTTCTACA 1 CTTTTCTATG 2 CTTTTCTGAA 1 CTTTTCTTCT 3 CTTTTCTTTA 2 CTTTTGGCCA 1 CTTTTGTAAT 1 CTTTTGTTTG 2 CTTTTTAAAT 1 CTTTTTCACT 1 CTTTTTGTGC 2 GAAAAAAAAA 8 GAAAAAAAAG 1 GAAAAAAAAT 2 GAAAAAAATA 2 GAAAAACCCC 1 GAAAAACCTT 1 GAAAAACTGT 1 GAAAAAGAAA 1 GAAAAAGGGT 1 GAAAAATAAT 1 GAAAAATACA 1 GAAAAATGGC 1 GAAAAATGGT 25 GAAAAATTTA 2 GAAAACAAAG 2 GAAAACAACT 2 GAAAACAGTA 1 GAAAACCCCC 1 GAAAACCCCT 1 GAAAACCCTT 1 GAAAACGCCA 1 GAAAACGGAA 1 GAAAACGGCT 1 GAAAAGACAC 2 GAAAAGCCTT 3 GAAAAGCTGA 1 GAAAAGGACA 1 GAAAAGGGTT 1 GAAAAGGTTA 2 GAAAAGTCAC 1 GAAAAGTGAC 1 GAAAAGTGGG 1 GAAAAGTTGC 2 GAAAATAAAA 1 GAAAATAAAC 1 GAAAATACGG 1 GAAAATAGAT 1 GAAAATAGTC 1 GAAAATCAGA 1 GAAAATGCCC 1 GAAAATGCTG 1 GAAACAAAAT 1 GAAACAAATT 1 GAAACAAGAT 8 GAAACAAGCA 1 GAAACACACA 1 GAAACACGTA 1 GAAACAGGCA 1 GAAACAGGTT 1 GAAACCAACT 1 GAAACCAGCT 1 GAAACCATCC 1 GAAACCCGGT 2 GAAACCCTCA 1 GAAACCGAGG 8 GAAACCGCAT 1 GAAACCTCAG 1 GAAACTAGAG 1 GAAACTAGAT 1 GAAACTCCTG 1 GAAACTCTAC 1 GAAACTGAAC 15 GAAACTGAAG 2 GAAACTGACA 1 GAAACTGGCC 1 GAAAGAATTT 1 GAAAGAGCTC 1 GAAAGAGCTG 3 GAAAGAGTGA 1 GAAAGATAAC 1 GAAAGATTGG 2 GAAAGATTTC 1 GAAAGCAGAA 1 GAAAGCTAAC 2 GAAAGCTACT 1 GAAAGCTCTT 1 GAAAGCTGCA 1 GAAAGCTGGG 1 GAAAGGATTC 1 GAAAGGCAAA 3 GAAAGGGGAG 2 GAAAGGGGGG 1 GAAAGGGTCT 1 GAAAGGTCTG 3 GAAAGTAGAA 1 GAAAGTATAC 1 GAAAGTCTCC 1 GAAAGTGACA 1 GAAAGTGCCT 1 GAAAGTGCGG 1 GAAAGTGGTT 1 GAAAGTTACA 1 GAAAGTTTTT 1 GAAATAAAAG 6 GAAATAAAGC 4 GAAATAAAGT 1 GAAATACAGA 1 GAAATACAGG 1 GAAATACAGT 23 GAAATACCAC 1 GAAATAGCAG 1 GAAATCAAGC 1 GAAATCAGAT 1 GAAATCAGTG 2 GAAATCATTG 1 GAAATCCCCA 1 GAAATGAATA 1 GAAATGACCG 1 GAAATGAGTC 1 GAAATGAGTG 1 GAAATGATGA 6 GAAATGCCCT 1 GAAATGCCTT 1 GAAATGGATC 1 GAAATGGGCT 1 GAAATGGGGA 1 GAAATGGTGG 1 GAAATGTAAG 8 GAAATGTCCC 1 GAAATGTTCT 1 GAAATGTTTA 1 GAAATTAAAC 1 GAAATTAAAT 1 GAAATTAAGC 1 GAAATTATTG 1 GAAATTCGAA 1 GAAATTGAAC 1 GAAATTGAGC 1 GAAATTGCAC 1 GAAATTTAAA 5 GAAATTTATG 1 GAAATTTGAA 1 GAAATTTTTG 1 GAACAACTAA 1 GAACAACTTA 1 GAACAAGCAG 1 GAACAAGCCA 1 GAACAATTCT 1 GAACACAATA 1 GAACACACCC 1 GAACACACTT 1 GAACACATCC 31 GAACACATTG 3 GAACACCACT 1 GAACACCGGG 1 GAACACCGTC 1 GAACACCTCC 1 GAACAGAGCT 2 GAACAGCTAC 1 GAACAGCTCA 1 GAACAGCTCG 1 GAACAGTGGA 1 GAACAGTGTG 1 GAACATAAGT 1 GAACATCTGG 1 GAACATTTAT 1 GAACCAAGTG 1 GAACCAGCCC 1 GAACCATTCA 3 GAACCCAAAG 1 GAACCCTGGG 6 GAACCCTTCT 1 GAACCGGACT 1 GAACCGGATG 1 GAACCGGTTA 1 GAACCGTAGC 1 GAACCGTTGT 1 GAACCTAGCT 1 GAACCTGGAG 1 GAACGCCAGA 1 GAACGCCTAA 2 GAACGGGAGA 1 GAACGTTCTC 1 GAACTCAATG 1 GAACTCACAC 1 GAACTCATCA 1 GAACTCTGGT 1 GAACTCTTGC 1 GAACTGAACA 1 GAACTGCCTC 1 GAACTGCTGA 1 GAACTGGATT 6 GAACTGGTTT 1 GAACTGTAAC 1 GAACTGTCCG 1 GAACTGTGAG 3 GAACTTATAT 1 GAACTTCCCC 1 GAACTTGCCA 1 GAACTTTCAA 1 GAACTTTTAC 1 GAACTTTTCT 1 GAAGAAAAAA 1 GAAGAAAACA 1 GAAGAAAATG 1 GAAGAAACCC 1 GAAGAAACTG 1 GAAGAAAGAG 1 GAAGAAAGTG 1 GAAGAACCAA 1 GAAGAAGTAT 1 GAAGACAACA 1 GAAGACAAGT 1 GAAGACCAGC 1 GAAGACGGTG 2 GAAGACTGTG 1 GAAGACTTGT 1 GAAGAGAAGG 1 GAAGAGCGCC 1 GAAGAGCTAT 1 GAAGAGGACA 1 GAAGAGGCCT 1 GAAGAGGTCA 1 GAAGATATCG 1 GAAGATATTA 1 GAAGATCAAC 1 GAAGATGCCT 1 GAAGATGGCC 1 GAAGATGTGG 1 GAAGATGTGT 7 GAAGATTAAT 1 GAAGCAAAGG 1 GAAGCAACTC 1 GAAGCAAGAA 1 GAAGCAAGAC 1 GAAGCAATAA 1 GAAGCAGATG 1 GAAGCAGGAC 15 GAAGCAGGCC 1 GAAGCAGGGA 1 GAAGCAGGGT 1 GAAGCAGTTT 1 GAAGCATCGC 1 GAAGCCAACG 1 GAAGCCAAGA 2 GAAGCCAGAG 1 GAAGCCAGCC 4 GAAGCCATCC 1 GAAGCCATTG 1 GAAGCCCAGC 1 GAAGCCCCAG 1 GAAGCCCTGA 1 GAAGCCTTAT 1 GAAGCTACAC 1 GAAGCTCACC 3 GAAGCTCCTT 1 GAAGCTGTTC 1 GAAGCTTCCA 1 GAAGCTTTGC 5 GAAGGAAGAA 3 GAAGGACAAA 1 GAAGGACGGG 1 GAAGGAGAGC 1 GAAGGAGATA 1 GAAGGAGCTG 3 GAAGGAGGAC 1 GAAGGAGTTT 1 GAAGGATCCA 1 GAAGGATGTC 1 GAAGGCAAAA 1 GAAGGCACCA 1 GAAGGCACCT 1 GAAGGCACGG 1 GAAGGCAGAG 1 GAAGGCATCC 3 GAAGGCCCAC 1 GAAGGCCCTG 1 GAAGGCGGAG 1 GAAGGCGTCA 1 GAAGGCTACT 1 GAAGGCTGAG 1 GAAGGGACCG 3 GAAGGGAGCC 1 GAAGGGATCA 1 GAAGGGATTT 1 GAAGGGCCAG 1 GAAGGGGCTG 1 GAAGGGTAAG 1 GAAGGGTCAC 1 GAAGGGTTGG 1 GAAGGTAAGA 1 GAAGGTCCAA 1 GAAGGTGGAG 2 GAAGGTGGGG 1 GAAGGTTATT 1 GAAGGTTTTC 1 GAAGTAACAT 1 GAAGTAAGAG 1 GAAGTAATGC 1 GAAGTAGACC 1 GAAGTATAGT 1 GAAGTATTTT 1 GAAGTCCCTT 1 GAAGTCGGAA 19 GAAGTCGGAT 1 GAAGTGATAA 1 GAAGTGATCA 1 GAAGTGCTGC 1 GAAGTGGAAG 2 GAAGTGGCCT 1 GAAGTGGTGT 1 GAAGTGTCAG 2 GAAGTGTGTC 1 GAAGTTATGA 4 GAAGTTATTT 1 GAAGTTGCCT 1 GAAGTTTAAA 3 GAAGTTTGAT 1 GAAGTTTTAA 1 GAAGTTTTAC 3 GAATAAACAC 2 GAATAAACAT 1 GAATAAATGT 1 GAATAAATTA 1 GAATACAGTT 1 GAATACCCCC 1 GAATACTACT 1 GAATACTCAG 1 GAATACTGTT 1 GAATACTTAG 1 GAATAGGTAG 1 GAATATATGT 1 GAATATGATA 1 GAATATTAAC 1 GAATATTCAG 1 GAATCAACCT 1 GAATCACTGC 2 GAATCAGAAG 1 GAATCAGCAC 1 GAATCAGGGC 1 GAATCCAACT 5 GAATCCACCG 1 GAATCCATCA 1 GAATCCATTT 1 GAATCCGCAA 1 GAATCGGTTA 10 GAATCTAAAG 1 GAATCTAGCT 1 GAATCTCTTC 1 GAATGACAAA 1 GAATGACCCC 1 GAATGAGCAA 3 GAATGAGGAC 3 GAATGATCAC 1 GAATGATGAG 1 GAATGATTTC 1 GAATGCCATA 1 GAATGCGCCG 1 GAATGCTACT 1 GAATGCTCTG 1 GAATGGACAT 1 GAATGGCAGG 1 GAATGGGCTG 1 GAATGTCCTT 1 GAATTAACAA 1 GAATTAACAT 9 GAATTAAGCG 1 GAATTATTTA 1 GAATTCAAGA 1 GAATTCAGCA 1 GAATTCCAGT 1 GAATTCCTCG 2 GAATTCTGCT 1 GAATTGCTAC 1 GAATTGGTGG 1 GAATTGTACA 1 GAATTGTGAT 1 GAATTTAGAA 1 GAATTTCCAT 1 GAATTTCCCA 5 GAATTTGACA 1 GAATTTGTGT 3 GAATTTGTTC 1 GAATTTTATA 1 GACAAAAAAA 2 GACAAAAACT 1 GACAAAATCT 1 GACAAACACC 1 GACAAACACG 1 GACAAACTAT 1 GACAAAGCAG 1 GACAAAGCTT 2 GACAACAAGA 1 GACAACACAA 1 GACAACAGCC 1 GACAACCTGG 1 GACAACTCTA 1 GACAAGCGGA 1 GACAAGGGAG 1 GACAAGGGGG 1 GACAATAAAT 1 GACAATGAGA 1 GACAATGCCA 6 GACAATGGAT 1 GACACAAAAC 1 GACACAAGAT 1 GACACAAGCA 2 GACACACAGG 1 GACACAGAAC 1 GACACAGGCA 3 GACACATCCA 1 GACACCAAAA 1 GACACCAACT 1 GACACCAAGT 1 GACACCAGGG 2 GACACCGAGG 1 GACACCTCCT 2 GACACGGGAG 1 GACACTGAAA 5 GACACTGATA 1 GACACTTGGA 1 GACAGAGGCT 1 GACAGAGGGT 1 GACAGATAGA 1 GACAGATGCA 1 GACAGATGGA 5 GACAGATTAA 1 GACAGATTCA 1 GACAGATTTG 1 GACAGCAAAA 1 GACAGCCTTA 1 GACAGCTGAG 1 GACAGCTGAT 1 GACAGCTGTG 1 GACAGCTTAT 1 GACAGCTTGC 1 GACAGGAAGA 1 GACAGGACAT 1 GACAGGACTG 1 GACAGGCCTG 1 GACAGGCGGG 1 GACAGGCTGG 1 GACAGGGCCC 2 GACAGGTTAC 1 GACAGTCCTG 1 GACAGTCGGT 2 GACAGTGACA 1 GACAGTGTGG 3 GACAGTGTTT 1 GACAGTTAGG 2 GACAGTTCTT 1 GACATAAATC 3 GACATACCAC 1 GACATAGAAT 1 GACATAGAGT 1 GACATAGTAA 1 GACATATCAC 1 GACATATGTA 5 GACATCAAGT 47 GACATCACAA 1 GACATCAGCA 1 GACATTGAAC 1 GACATTGCTG 1 GACATTTGAG 1 GACATTTTTT 1 GACCAAAGAG 1 GACCAACAGA 1 GACCAACAGT 3 GACCAATACC 1 GACCAATGTT 1 GACCAATTGA 1 GACCACACCG 1 GACCACCCAT 1 GACCACCTTT 1 GACCACGAAT 7 GACCACGGCG 1 GACCACTAAT 1 GACCACTCCC 1 GACCACTGAA 2 GACCAGAAAA 6 GACCAGAAGA 1 GACCAGAGTG 1 GACCAGATCC 1 GACCAGCAGA 10 GACCAGCCCA 12 GACCAGCCGC 1 GACCAGCCTT 3 GACCAGCGGC 1 GACCAGCTGC 1 GACCAGCTGG 1 GACCAGGAGA 1 GACCAGGCCC 2 GACCAGGTGG 1 GACCAGTCGT 1 GACCAGTGGC 2 GACCATCATA 1 GACCATTCAT 1 GACCCAAGAT 62 GACCCACCTT 1 GACCCACTGA 1 GACCCCAAAG 1 GACCCCAAGG 3 GACCCCAGGG 1 GACCCCCAGG 2 GACCCCTAAA 1 GACCCCTCAT 1 GACCCCTCGC 1 GACCCCTGAA 1 GACCCCTTTA 1 GACCCGGCCC 1 GACCCGGGAG 1 GACCCTAAGA 1 GACCCTAGCT 2 GACCCTGACC 1 GACCCTGACT 3 GACCCTGCCC 27 GACCCTTCTC 1 GACCGAGGTG 1 GACCGCAGCA 1 GACCGCAGGA 2 GACCGGAACT 1 GACCGGATCA 1 GACCGGGAAC 1 GACCGTGCCT 1 GACCGTGTGC 1 GACCTAAACC 1 GACCTAAAGA 1 GACCTAAAGC 1 GACCTACGGG 1 GACCTATCTC 1 GACCTCAAAG 4 GACCTCACTG 2 GACCTCCTGC 2 GACCTGATCC 1 GACCTGCAGT 1 GACCTGCCCG 1 GACCTGCGCA 1 GACCTGGATC 1 GACCTGGCTC 1 GACCTGGTGC 1 GACCTGTGAG 1 GACCTGTGTT 1 GACCTTAAAC 1 GACCTTACCA 1 GACCTTGCTC 1 GACCTTTCGA 1 GACGACACGA 35 GACGACATTC 2 GACGACTGAC 1 GACGAGCTTT 2 GACGAGGAGA 1 GACGATTGAT 1 GACGCAGAAG 1 GACGCAGGGC 2 GACGCGGCGC 12 GACGGCCAGA 2 GACGGCGCAC 1 GACGGCGCAG 3 GACGGCTGCA 3 GACGGCTTCC 1 GACGGGAACT 1 GACGGGCCGC 1 GACGGGCGCC 1 GACGGGGCCG 1 GACGGGGCGG 1 GACGGGGTGG 1 GACGGTGCCG 1 GACGTCAAGT 1 GACGTCCAGA 1 GACGTCTTAA 1 GACGTGGGAA 1 GACGTGTGGG 1 GACGTTAGGT 1 GACGTTATGC 1 GACGTTTAAT 1 GACGTTTTTA 1 GACTAAGAAA 1 GACTAAGGAA 1 GACTACACCC 1 GACTACTCTC 1 GACTAGATTG 1 GACTAGTGCG 1 GACTATGGAC 1 GACTATGGGG 3 GACTATTCAC 1 GACTATTCCA 1 GACTCAACCT 2 GACTCACCCC 1 GACTCACTTT 19 GACTCAGGGA 1 GACTCAGGGG 1 GACTCATACA 1 GACTCATTTT 1 GACTCCACAT 1 GACTCCCACC 1 GACTCCCAGG 1 GACTCCCCAA 1 GACTCCTGCT 2 GACTCGCCCA 3 GACTCGGTAC 1 GACTCTCCGG 1 GACTCTCTCA 1 GACTCTCTGG 1 GACTCTCTGT 2 GACTCTGAAA 1 GACTCTGCCC 1 GACTCTGGAG 1 GACTCTGGCC 1 GACTCTGGGA 5 GACTCTGGTG 3 GACTCTGTGT 4 GACTCTTCAG 2 GACTCTTCTG 1 GACTGAAGCT 1 GACTGAATAT 1 GACTGAGCTT 4 GACTGAGTGC 1 GACTGATGCT 1 GACTGATGGA 1 GACTGCCGCC 2 GACTGCGCCG 2 GACTGCGCGT 3 GACTGCGTGC 13 GACTGCTTGG 1 GACTGGAACT 1 GACTGGAAGA 1 GACTGGAATT 1 GACTGGCAGG 1 GACTGGCTCC 1 GACTGGGCTG 1 GACTGTATCT 2 GACTGTCACT 1 GACTGTGCCA 5 GACTGTTGCT 3 GACTTACAGC 1 GACTTACCTG 1 GACTTAGGAA 1 GACTTCACTT 2 GACTTCAGGG 1 GACTTCCCCT 1 GACTTCTGAG 1 GACTTGATAT 3 GACTTGGAAT 1 GACTTGGAGG 3 GACTTGGCTG 1 GACTTTACCC 1 GACTTTGGCC 1 GACTTTGGGA 2 GACTTTTAAA 1 GACTTTTACA 1 GACTTTTTCA 1 GACTTTTTTG 1 GAGAAAACCT 2 GAGAAAATCA 1 GAGAAACACC 1 GAGAAACCCA 5 GAGAAACCCC 24 GAGAAACCCT 12 GAGAAACCTC 3 GAGAAACCTG 2 GAGAAACTCT 1 GAGAAACTGT 1 GAGAAAGCCC 1 GAGAAAGGAC 1 GAGAAATGCT 1 GAGAAATGGG 1 GAGAACAACC 1 GAGAACCCCA 1 GAGAACCCCG 1 GAGAACCGTA 4 GAGAACCTCT 1 GAGAACGGGG 7 GAGAACTCCC 1 GAGAACTCTG 1 GAGAAGAAAT 1 GAGAAGACAC 1 GAGAAGACCA 1 GAGAAGACTT 1 GAGAAGCAGA 1 GAGAAGCCCA 1 GAGAAGCCCC 3 GAGAAGCTGG 3 GAGAAGGAGG 1 GAGAAGGCAG 1 GAGAAGGTGG 1 GAGAATATTC 1 GAGAATCCCA 1 GAGAATGCGG 1 GAGAATTAAT 1 GAGACAAGGT 1 GAGACACGCA 1 GAGACAGAAA 1 GAGACAGAGA 1 GAGACAGGGA 1 GAGACAGTGC 2 GAGACATACT 1 GAGACATATA 1 GAGACCAAGC 1 GAGACCAGAC 1 GAGACCCACT 1 GAGACCCCAA 1 GAGACCCTGG 1 GAGACCTTCA 1 GAGACCTTGG 1 GAGACGCCTT 1 GAGACGGCGC 1 GAGACTACCA 2 GAGACTAGAT 1 GAGACTCCTG 14 GAGACTGCAA 1 GAGACTGCTG 1 GAGACTGCTT 1 GAGACTTCGT 1 GAGAGAAAAG 1 GAGAGAACAC 1 GAGAGAAGAG 1 GAGAGAATTG 1 GAGAGACACA 1 GAGAGACCCT 1 GAGAGAGAGC 1 GAGAGAGGTT 1 GAGAGATCAA 1 GAGAGATCCA 1 GAGAGATCCC 1 GAGAGCACCC 4 GAGAGCCTGC 4 GAGAGCTCCC 2 GAGAGCTTAA 1 GAGAGCTTGC 1 GAGAGGACAG 1 GAGAGGAGAG 1 GAGAGGGAAG 1 GAGAGGGAAT 1 GAGAGTAACA 1 GAGAGTATGG 1 GAGAGTGCAG 1 GAGAGTGCTG 1 GAGAGTGTAA 1 GAGAGTGTCT 3 GAGAGTTCTT 1 GAGAGTTGTG 1 GAGATAGTCT 1 GAGATCAAGG 1 GAGATCATAT 1 GAGATCCACG 2 GAGATCCAGG 1 GAGATCCCCA 1 GAGATCCGCA 8 GAGATCCTCA 1 GAGATCTGCA 1 GAGATGAAAC 1 GAGATGAAAT 1 GAGATGCATA 1 GAGATGGATG 1 GAGATGGCAG 1 GAGATGTATT 1 GAGATGTGAC 1 GAGATGTGCG 1 GAGATGTTTG 1 GAGATTGAGG 1 GAGATTGCTC 1 GAGATTGGCA 1 GAGATTGTGC 1 GAGATTTGAA 1 GAGCAAAATA 1 GAGCAAAGAG 1 GAGCAACAGT 1 GAGCAAGGTG 1 GAGCAATTAG 1 GAGCACAGGG 1 GAGCACATCC 1 GAGCACCTCC 1 GAGCACTGAG 1 GAGCAGCTAT 1 GAGCAGCTGG 5 GAGCAGGCAA 3 GAGCAGGCGT 1 GAGCAGGCTC 1 GAGCAGGGAT 1 GAGCAGGTGG 1 GAGCAGTGCA 1 GAGCAGTGCT 1 GAGCATAATA 1 GAGCATATCT 1 GAGCCAACCC 2 GAGCCAAGAT 1 GAGCCAATAC 1 GAGCCACCCC 1 GAGCCACCGC 1 GAGCCACGTT 1 GAGCCACTCC 1 GAGCCACTGC 1 GAGCCAGGCT 2 GAGCCAGGTA 1 GAGCCAGGTG 2 GAGCCCAGCC 1 GAGCCCCCGT 1 GAGCCCGGGA 1 GAGCCCGTGC 1 GAGCCCTCCA 1 GAGCCCTGGG 1 GAGCCGCCAG 1 GAGCCGCCTC 3 GAGCCGGCTG 1 GAGCCTACCT 1 GAGCCTCATC 1 GAGCCTCCCA 1 GAGCCTGACC 1 GAGCCTGGCT 1 GAGCCTGTCT 1 GAGCCTTGGT 5 GAGCGCAGCG 1 GAGCGGCACC 1 GAGCGGCCTC 2 GAGCGGCTCC 1 GAGCGGCTCT 1 GAGCGGGAAC 1 GAGCGGGATC 4 GAGCGGGATG 1 GAGCGTAACT 1 GAGCTAGTGG 1 GAGCTCAGAA 1 GAGCTCAGGA 1 GAGCTCCAAC 1 GAGCTCCACA 3 GAGCTCCCCC 1 GAGCTCCCCT 1 GAGCTCCTCT 1 GAGCTCCTTT 1 GAGCTCGGGA 1 GAGCTCTCAG 1 GAGCTCTTCC 6 GAGCTGAGAC 1 GAGCTGATTT 1 GAGCTGCAGG 4 GAGCTGCTGT 1 GAGCTGGCCT 2 GAGCTGGGCA 1 GAGCTGGGCC 1 GAGCTGGGGG 1 GAGCTGGGTC 1 GAGCTGGTGA 1 GAGCTGGTGC 1 GAGCTGTCCC 1 GAGCTGTCCT 1 GAGCTGTCTT 1 GAGCTGTTCC 4 GAGCTGTTGG 1 GAGCTTACAG 1 GAGCTTACAT 1 GAGCTTACCC 1 GAGCTTATGT 1 GAGCTTCTCG 1 GAGCTTGAAT 1 GAGCTTGCAG 1 GAGCTTGGGT 1 GAGCTTTCGT 1 GAGCTTTTGA 1 GAGGAAACCC 2 GAGGAACAGT 1 GAGGAACCAG 1 GAGGAACCAT 1 GAGGAAGAAG 2 GAGGAAGACG 1 GAGGAAGAGC 1 GAGGAAGCCT 1 GAGGAAGCTC 1 GAGGAAGGCC 1 GAGGAAGGCT 2 GAGGAAGTAG 1 GAGGAATTAA 1 GAGGACCCAA 6 GAGGACCCCT 3 GAGGACGTAG 1 GAGGACTGTA 1 GAGGACTTGC 1 GAGGACTTGG 1 GAGGAGAAGA 1 GAGGAGAAGG 1 GAGGAGAATC 1 GAGGAGACCC 1 GAGGAGAGTA 1 GAGGAGCCCC 1 GAGGAGCTAT 1 GAGGAGGGTG 2 GAGGAGGTGC 1 GAGGAGGTGT 1 GAGGATCACT 1 GAGGATCCTA 1 GAGGATCTTC 1 GAGGATGAGG 1 GAGGATTCAA 1 GAGGCAGAAG 1 GAGGCAGAAT 1 GAGGCAGCCT 1 GAGGCAGGCG 1 GAGGCATATG 3 GAGGCCACCA 1 GAGGCCACTG 1 GAGGCCAGAC 1 GAGGCCAGAG 1 GAGGCCAGTG 3 GAGGCCATAG 1 GAGGCCATCC 2 GAGGCCCAGG 3 GAGGCCGACC 2 GAGGCCGATG 1 GAGGCCGGGC 1 GAGGCCTCAG 1 GAGGCCTCCT 1 GAGGCCTGAT 1 GAGGCGATCA 3 GAGGCGCCCA 1 GAGGCGCCTT 1 GAGGCGCTGC 3 GAGGCGGCGG 2 GAGGCGGGCG 2 GAGGCGTCCG 1 GAGGCGTTTG 1 GAGGCTCAAT 2 GAGGCTCCTG 1 GAGGCTCGAT 1 GAGGCTGAAG 1 GAGGCTGACG 1 GAGGCTGCAG 1 GAGGCTTAAT 2 GAGGCTTCAG 1 GAGGCTTGCT 1 GAGGCTTTCA 1 GAGGGAATCA 1 GAGGGAATCT 1 GAGGGACTTG 4 GAGGGAGCTT 1 GAGGGAGGCC 1 GAGGGAGTTG 1 GAGGGAGTTT 29 GAGGGCAAAA 1 GAGGGCAGGG 1 GAGGGCAGTG 1 GAGGGCCATT 1 GAGGGCCGGT 2 GAGGGCCGTG 2 GAGGGCCTTG 1 GAGGGGAAAC 1 GAGGGGAACC 1 GAGGGGATTG 1 GAGGGGCCGC 2 GAGGGGCGGG 1 GAGGGGCTGC 1 GAGGGGGGAG 1 GAGGGGTCCC 1 GAGGGGTTTG 1 GAGGGGTTTT 1 GAGGGTAACT 1 GAGGGTCCTG 2 GAGGGTCTTG 3 GAGGGTGCAC 1 GAGGGTGGCG 2 GAGGGTGTAG 1 GAGGGTGTAT 1 GAGGGTGTGC 1 GAGGGTTTAG 5 GAGGGTTTTA 3 GAGGTAGGGT 1 GAGGTCAGGA 1 GAGGTCAGGG 2 GAGGTCAGTG 1 GAGGTCAGTT 1 GAGGTCATTG 1 GAGGTCCCTC 1 GAGGTCCCTG 5 GAGGTCTAGC 1 GAGGTCTTTA 1 GAGGTGAAGG 1 GAGGTGACGG 1 GAGGTGCATC 1 GAGGTGCCTA 1 GAGGTGCGTG 1 GAGGTGCTCT 1 GAGGTGGACG 1 GAGGTGGGGG 3 GAGGTGGTCT 1 GAGGTGTCTT 1 GAGGTGTTCT 1 GAGGTGTTTC 1 GAGGTTAAAA 1 GAGGTTGCAG 3 GAGGTTTCAT 2 GAGTAAGTCA 1 GAGTAGAGAA 1 GAGTAGAGCC 1 GAGTAGATGA 2 GAGTAGCACA 1 GAGTAGCCAG 1 GAGTAGGAGC 1 GAGTATAATT 1 GAGTATGACC 1 GAGTCAAATT 1 GAGTCACACT 1 GAGTCACAGA 1 GAGTCAGCAT 2 GAGTCAGCTG 1 GAGTCAGGAG 9 GAGTCATACA 1 GAGTCATCCT 1 GAGTCCAAGA 1 GAGTCCCAGA 1 GAGTCCCTGG 1 GAGTCCGTTT 1 GAGTCCTGCA 1 GAGTCGGCCC 1 GAGTCTAAAG 1 GAGTCTACCT 1 GAGTCTATGC 1 GAGTCTCCCT 1 GAGTCTCGCT 1 GAGTCTCGGT 1 GAGTCTGAGG 3 GAGTCTGGCT 1 GAGTCTTCTG 1 GAGTGAAAGA 2 GAGTGAAGTG 1 GAGTGACTAT 1 GAGTGAGACC 3 GAGTGAGCGA 1 GAGTGAGTGA 3 GAGTGATGAG 1 GAGTGCAGGT 1 GAGTGCAGTG 1 GAGTGCCTGC 1 GAGTGCGGTG 1 GAGTGCTGGT 1 GAGTGGAGAG 2 GAGTGGAGGA 1 GAGTGGCGGG 1 GAGTGGCTAT 3 GAGTGGGCAA 1 GAGTGGGGGA 1 GAGTGGGGGC 4 GAGTGGGTGG 1 GAGTGTACAG 1 GAGTGTGAGG 1 GAGTGTTAGA 1 GAGTGTTGAT 1 GAGTTACAAA 1 GAGTTACTGA 1 GAGTTACTGT 1 GAGTTAGGTT 1 GAGTTAGTGA 2 GAGTTAGTGT 1 GAGTTATGAG 1 GAGTTCACTT 1 GAGTTCCTGA 1 GAGTTCGACC 2 GAGTTCTGGG 1 GAGTTGGCAG 5 GAGTTGGGGA 1 GAGTTGGGTA 1 GAGTTGTTCC 1 GAGTTGTTTT 1 GAGTTTGAGA 1 GAGTTTGGCC 2 GAGTTTTCAA 1 GAGTTTTTAA 1 GATAAAAACG 1 GATAAACCCC 1 GATAAATACT 1 GATAAGAGCA 1 GATACAAATA 1 GATACAACAA 1 GATACAACCT 1 GATACACCTA 1 GATACAGCCC 1 GATACAGTGA 1 GATACAGTGG 1 GATACCAAAA 1 GATACCCTTC 1 GATACTAGTG 1 GATACTGAGG 1 GATACTTTGC 1 GATAGATTAA 1 GATAGCACAG 2 GATAGCGCTG 1 GATAGGAAGA 1 GATAGGACAG 1 GATAGGGGAA 1 GATAGGTCGG 3 GATAGGTTGA 1 GATAGGTTTA 1 GATAGTTGTG 1 GATAGTTTCC 1 GATATAGAGA 3 GATATCAACA 1 GATATCAGAC 1 GATATCAGTC 1 GATATGATAT 1 GATATTTTGT 1 GATCAAAAAA 1 GATCAAAAGG 1 GATCAACCCT 1 GATCAAGGAA 1 GATCAATCAG 1 GATCACAGTT 4 GATCACCTTT 1 GATCAGAAAA 5 GATCAGAGGA 1 GATCAGGCCA 7 GATCATATGT 1 GATCCAAAAC 1 GATCCAAATG 1 GATCCAAGAT 1 GATCCACCCG 1 GATCCAGCAG 1 GATCCAGTTG 2 GATCCCAACA 4 GATCCCAACT 1 GATCCCAGCT 1 GATCCCCATC 1 GATCCGCTCT 1 GATCCGCTGT 1 GATCCTAAAA 1 GATCCTGAAC 1 GATCCTGATT 1 GATCCTGTGT 1 GATCGCAACT 1 GATCGGATGA 1 GATCGTATGT 1 GATCGTTCCC 1 GATCTAGAAA 1 GATCTATCCA 2 GATCTCATCT 3 GATCTCCAAG 1 GATCTCCGTG 1 GATCTGAAAG 1 GATCTGCCTT 1 GATCTGCTAT 1 GATCTGTAAT 1 GATCTGTGCT 1 GATCTGTGGG 1 GATCTGTTAC 1 GATCTGTTCA 1 GATCTGTTCC 1 GATCTTAGAG 1 GATCTTCCAT 1 GATCTTCGTA 4 GATCTTGACG 1 GATGAAAATG 1 GATGAAATAA 1 GATGAAATAC 1 GATGAACACT 1 GATGAACCTT 5 GATGAACTGA 1 GATGAAGAGA 1 GATGAAGCTG 1 GATGAATCCG 1 GATGAATCTT 1 GATGAATGAG 1 GATGACAAAT 2 GATGACAGAA 1 GATGACAGAG 1 GATGACCAAA 1 GATGACCCCC 3 GATGACCCCG 6 GATGACCCCT 1 GATGACGACT 5 GATGAGCACA 1 GATGAGCGGC 1 GATGAGCTCA 1 GATGAGCTCG 1 GATGAGGAGA 8 GATGAGGGAA 1 GATGAGTCTC 10 GATGATAACC 1 GATGATATTT 1 GATGATGAAT 1 GATGATGATC 1 GATGATTTTG 1 GATGCAACAG 1 GATGCAACGT 1 GATGCAACTG 1 GATGCAATAT 1 GATGCAGCAG 1 GATGCAGCTG 1 GATGCATTAG 2 GATGCATTGC 1 GATGCCCTCC 3 GATGCCGTGC 1 GATGCCTCTG 8 GATGCGAGGA 1 GATGCGCTTG 2 GATGCGTGTC 1 GATGCTAACC 1 GATGCTACCT 1 GATGCTCGTG 1 GATGCTCTGG 1 GATGCTGAAT 1 GATGCTGCCA 7 GATGCTGCCT 1 GATGCTGCTC 1 GATGCTTCCA 1 GATGCTTTCT 1 GATGGAAAAG 1 GATGGAATGT 1 GATGGACGAT 1 GATGGAGCCC 2 GATGGAGCTG 3 GATGGCAGAA 1 GATGGCAGCA 1 GATGGCTGCC 2 GATGGGAAAC 1 GATGGGAAGC 1 GATGGGATGG 1 GATGGGATTT 1 GATGGGCTGC 6 GATGGGGACA 2 GATGGGGCTG 1 GATGGGGGCA 1 GATGGGGTCC 1 GATGGGGTTC 1 GATGGGTAGA 1 GATGGTGTAT 1 GATGGTGTCT 1 GATGTAAACT 1 GATGTAGTGG 1 GATGTATGGG 1 GATGTATTTT 1 GATGTCATCA 1 GATGTCTTGT 2 GATGTGACTG 1 GATGTGATGC 1 GATGTGCTAA 1 GATGTGCTGC 1 GATGTGGTTG 1 GATGTGTGCT 3 GATGTGTGGG 1 GATGTTGCAT 1 GATGTTGGAA 1 GATGTTGTCC 1 GATGTTTATG 1 GATGTTTGAA 1 GATGTTTTCA 1 GATTAAACAA 1 GATTAAACCA 2 GATTAAGTGA 4 GATTAATGGC 1 GATTACTTCT 2 GATTACTTGC 1 GATTACTTTG 2 GATTAGACCA 1 GATTAGAGTG 1 GATTATCGGT 1 GATTATCTCA 1 GATTATGTTA 1 GATTCAAAAA 1 GATTCAACCA 1 GATTCAAGTC 2 GATTCACAAA 1 GATTCACAGC 1 GATTCAGAAG 1 GATTCCACAG 1 GATTCCACTG 2 GATTCCATCA 1 GATTCCGACT 1 GATTCCGTGA 2 GATTCCTTAA 1 GATTCCTTTT 1 GATTCGCAGC 1 GATTCTCATA 1 GATTCTGAAA 1 GATTCTGTCT 1 GATTCTTTTC 1 GATTGAACAG 1 GATTGAGAAG 2 GATTGATGTC 1 GATTGATTTT 1 GATTGCCCCC 1 GATTGCTGCC 1 GATTGCTGGA 1 GATTGCTTAT 1 GATTGGAAGA 3 GATTGGAGAA 1 GATTGGCAAG 1 GATTGGCCTT 1 GATTGGCGGC 1 GATTGGGAGG 1 GATTGGGGAT 1 GATTGGGTGG 1 GATTGTCCCC 1 GATTGTGCAA 3 GATTGTTGAA 1 GATTGTTTTG 1 GATTTAAAAC 2 GATTTAAAGG 1 GATTTAAATA 1 GATTTACATA 1 GATTTACATT 1 GATTTCAAGG 1 GATTTCAGAG 1 GATTTCCCCA 1 GATTTCCTAC 1 GATTTCCTTG 3 GATTTCTCTT 2 GATTTGAAAT 1 GATTTGTGTT 2 GATTTGTTGA 1 GATTTTAAGA 1 GATTTTAATG 1 GATTTTCAAG 1 GATTTTCTAC 1 GATTTTGTAG 1 GATTTTTCAT 1 GATTTTTTAA 1 GCAAAAAAAA 13 GCAAAAAAAT 2 GCAAAAACCA 1 GCAAAAACCC 1 GCAAAAACCT 2 GCAAAAACTC 1 GCAAAAAGAG 1 GCAAAACACC 2 GCAAAACACT 2 GCAAAACCAC 2 GCAAAACCAG 1 GCAAAACCCA 3 GCAAAACCCC 48 GCAAAACCCG 1 GCAAAACCCT 26 GCAAAACCGC 1 GCAAAACCGT 2 GCAAAACCTC 5 GCAAAACCTT 2 GCAAAACGCA 1 GCAAAACGCT 2 GCAAAACTCA 1 GCAAAACTCC 5 GCAAAACTCT 3 GCAAAACTTC 1 GCAAAACTTG 1 GCAAAAGAAA 1 GCAAAAGCCC 3 GCAAAAGCCT 1 GCAAAATCCC 1 GCAAAATCCT 1 GCAAAATCTC 1 GCAAAATGCC 1 GCAAAATTCC 1 GCAAACCAGT 1 GCAAACCCCC 1 GCAAACCCCT 3 GCAAACGATC 1 GCAAACTGCA 1 GCAAAGAATG 1 GCAAAGACAG 1 GCAAAGACCC 1 GCAAAGATTG 1 GCAAAGCCCC 4 GCAAAGGTCA 1 GCAAATAAAC 1 GCAAATAAAT 2 GCAAATACAA 1 GCAAATCCGA 1 GCAAATCTGC 1 GCAAATCTTT 1 GCAAATGCCG 1 GCAAATGCTG 1 GCAAATTTTA 1 GCAAATTTTT 1 GCAACAAACA 1 GCAACAACAC 26 GCAACAACCC 1 GCAACAACTG 1 GCAACACCCC 2 GCAACACCCT 1 GCAACAGCAA 12 GCAACAGGCA 1 GCAACATTGT 1 GCAACCAAGA 1 GCAACCACGA 3 GCAACCATAG 1 GCAACCCAGC 1 GCAACCCTAT 1 GCAACGGGCC 2 GCAACGTAAT 1 GCAACTAGAG 1 GCAACTCATT 1 GCAACTTAGA 2 GCAACTTCCA 1 GCAACTTGGA 2 GCAACTTGGT 1 GCAACTTGTC 1 GCAAGACACT 1 GCAAGACCCA 1 GCAAGACCCC 7 GCAAGACCCT 5 GCAAGACCTC 1 GCAAGACGTC 1 GCAAGACTCT 2 GCAAGACTGC 1 GCAAGATTAG 1 GCAAGATTCA 1 GCAAGCCAAA 1 GCAAGCCAAC 46 GCAAGCCATC 1 GCAAGCCCAA 1 GCAAGCCCCA 1 GCAAGCTAAT 1 GCAAGCTGTT 1 GCAAGGCAGA 1 GCAAGGGCTT 1 GCAAGGGGGT 1 GCAAGGTCAG 2 GCAAGGTTGG 1 GCAAGTAGGG 1 GCAAGTCAGA 1 GCAAGTCGGC 1 GCAATAAATG 1 GCAATAAGTG 1 GCAATACCCC 1 GCAATATGTA 1 GCAATCAACG 1 GCAATCGAAT 1 GCAATCTGTA 1 GCAATCTTCA 1 GCAATGACCT 1 GCAATGAGGT 1 GCAATGCAAA 2 GCAATGCTGG 1 GCAATGTGTG 1 GCAATTTGAG 1 GCAATTTTCA 1 GCACAAAAAA 1 GCACAAAGTA 1 GCACAACAAG 1 GCACAACCCC 2 GCACAAGAAG 6 GCACAAGAGG 1 GCACAATAGT 1 GCACACACAG 1 GCACACATAG 1 GCACACATTT 1 GCACACGCTT 1 GCACACGGTA 1 GCACACGTAT 1 GCACACGTTT 2 GCACACTGAA 1 GCACAGAGCC 3 GCACAGAGCT 1 GCACAGCACC 1 GCACAGCACT 1 GCACAGCAGG 1 GCACAGGTCA 1 GCACAGTGGG 1 GCACATACTC 1 GCACATAGCT 1 GCACATTGTA 1 GCACATTTTA 1 GCACCAAAGC 3 GCACCAAATG 1 GCACCACAGG 2 GCACCACCAC 1 GCACCACTGC 1 GCACCATATG 1 GCACCATCCG 1 GCACCATTCC 1 GCACCCAACA 2 GCACCCAGGT 1 GCACCCCACC 3 GCACCCCTGC 2 GCACCCGGCT 1 GCACCCGTAA 1 GCACCCTCAG 1 GCACCCTGAT 1 GCACCCTTTC 1 GCACCGCACT 1 GCACCGGGCT 1 GCACCGTAAG 2 GCACCGTCAC 1 GCACCTAAGA 1 GCACCTAATT 1 GCACCTACCT 1 GCACCTAGTG 2 GCACCTATTG 1 GCACCTCAGC 8 GCACCTCCCC 1 GCACCTCCTA 2 GCACCTGAGA 1 GCACCTGCTT 1 GCACCTGGCC 1 GCACCTGTCG 1 GCACCTGTGC 1 GCACCTTATT 2 GCACCTTCAC 1 GCACCTTCAG 1 GCACCTTGAC 1 GCACCTTGTG 1 GCACCTTTAT 1 GCACGACCTT 2 GCACGAGAAC 3 GCACGCGTAA 1 GCACGGAAAA 1 GCACGGGGCC 1 GCACGTGCCT 1 GCACGTGTAT 1 GCACGTGTCT 1 GCACGTGTTC 1 GCACGTGTTT 1 GCACTACTCA 2 GCACTAGATG 1 GCACTAGGGC 2 GCACTCAACC 1 GCACTCAGGC 1 GCACTCATTT 1 GCACTCCAGC 1 GCACTCCAGT 1 GCACTCCTGC 1 GCACTCTAAC 1 GCACTCTGAT 1 GCACTCTTCC 1 GCACTGAAAA 1 GCACTGAATA 1 GCACTGATTC 1 GCACTGCACT 2 GCACTGCCAT 1 GCACTGCTAA 1 GCACTGCTGT 2 GCACTGGCTG 2 GCACTGGTTG 1 GCACTGTCTC 1 GCACTGTTGA 2 GCACTTACAA 4 GCACTTCAAA 1 GCACTTGCAT 1 GCACTTGGAG 1 GCACTTGTTC 1 GCAGAAAACC 1 GCAGAAAATT 1 GCAGAAATGT 1 GCAGAACAAA 1 GCAGAACAGA 1 GCAGAACCCC 1 GCAGAAGAGG 1 GCAGAAGCAC 1 GCAGAAGGCC 1 GCAGAATACT 1 GCAGAATAGA 1 GCAGAATCTA 3 GCAGAATGCC 1 GCAGAATTAT 1 GCAGAATTCG 1 GCAGACACCT 1 GCAGACAGCC 1 GCAGACATCC 1 GCAGACATTG 2 GCAGACTCAC 1 GCAGACTCAG 7 GCAGACTTTG 2 GCAGAGAAAA 1 GCAGAGAAGA 1 GCAGAGATGA 1 GCAGAGATGG 3 GCAGAGCAAA 1 GCAGAGCCTC 1 GCAGAGGGTT 1 GCAGAGTGAA 3 GCAGAGTGAG 1 GCAGATAACC 1 GCAGATACTG 1 GCAGATCACC 1 GCAGATCGGG 1 GCAGATTATT 2 GCAGCAACAC 1 GCAGCACGCT 1 GCAGCACGTG 1 GCAGCACTTA 1 GCAGCAGCAA 1 GCAGCAGGAA 5 GCAGCAGTCC 1 GCAGCAGTGA 1 GCAGCAGTGT 1 GCAGCCATCC 100 GCAGCCATCG 1 GCAGCCCAGT 1 GCAGCCCCTC 1 GCAGCCCGCG 1 GCAGCCCTAC 2 GCAGCCCTGA 1 GCAGCCTCCA 2 GCAGCCTCGG 1 GCAGCCTGGA 2 GCAGCCTGGG 1 GCAGCTAATT 1 GCAGCTCAAA 1 GCAGCTCACT 1 GCAGCTCAGG 4 GCAGCTCCTG 7 GCAGCTCCTT 1 GCAGCTCTCG 1 GCAGCTGAAA 1 GCAGCTGAAG 1 GCAGCTGACT 1 GCAGCTGCCC 1 GCAGCTGGGA 1 GCAGCTGGGC 1 GCAGCTGTGT 1 GCAGCTTTGT 1 GCAGGAAAGG 1 GCAGGAAATA 1 GCAGGAACAG 4 GCAGGAATTG 1 GCAGGACCTC 3 GCAGGACTCC 1 GCAGGAGAAG 1 GCAGGAGAGG 1 GCAGGAGCAG 1 GCAGGAGGAC 1 GCAGGAGGAT 1 GCAGGAGTAG 1 GCAGGATCCA 1 GCAGGATCCG 1 GCAGGATGAG 1 GCAGGCAAAA 1 GCAGGCACTG 1 GCAGGCAGAT 2 GCAGGCAGCT 1 GCAGGCAGTC 1 GCAGGCATCA 2 GCAGGCCTCC 1 GCAGGCCTGC 1 GCAGGCGGAT 1 GCAGGGAAAT 2 GCAGGGAACT 1 GCAGGGAATG 1 GCAGGGAGAG 2 GCAGGGAGGG 1 GCAGGGCCAG 2 GCAGGGCCTC 39 GCAGGGCGGG 1 GCAGGGGACA 1 GCAGGGTCTC 1 GCAGGGTGGG 2 GCAGGTATCA 1 GCAGGTCGTC 1 GCAGGTGCAG 2 GCAGGTGCCT 2 GCAGGTGCTC 1 GCAGGTGGGC 1 GCAGGTGGTT 9 GCAGGTGTAA 1 GCAGGTTCAA 1 GCAGGTTCCC 1 GCAGGTTGCT 1 GCAGTAAATA 1 GCAGTAGGTT 1 GCAGTATTAA 1 GCAGTCCGCC 1 GCAGTCGCCA 3 GCAGTCGCTT 3 GCAGTCGGTG 1 GCAGTCTTCC 1 GCAGTCTTGT 1 GCAGTGACTA 1 GCAGTGACTC 2 GCAGTGCACT 1 GCAGTGCCCA 1 GCAGTGCGGC 1 GCAGTGGCCT 1 GCAGTGGGCT 2 GCAGTGTGTT 1 GCAGTTAAGC 1 GCAGTTGACT 1 GCAGTTTAAT 1 GCAGTTTACC 1 GCATAAAAAT 1 GCATAAAATA 1 GCATAAACGA 1 GCATAACCCT 1 GCATAAGAGG 1 GCATAATAAG 1 GCATAATAGG 50 GCATAATGTT 1 GCATAGAAAG 1 GCATAGAACT 1 GCATAGATAG 1 GCATAGATGA 1 GCATAGCCAT 1 GCATAGCTGA 1 GCATAGGCTG 19 GCATAGTTCT 1 GCATATGAGC 1 GCATATGTCT 2 GCATATTAAA 1 GCATATTGCA 1 GCATATTTAC 2 GCATCAAGTC 1 GCATCAAGTT 1 GCATCAGGGC 1 GCATCATCGT 1 GCATCCAATC 1 GCATCCCTCC 1 GCATCCGATT 1 GCATCCGGAG 1 GCATCCTTTC 1 GCATCGAAAG 1 GCATCGACCC 1 GCATCGAGGA 1 GCATCGCACA 1 GCATCGGCCG 1 GCATCGTCAG 1 GCATCTCTAC 1 GCATCTCTGG 1 GCATCTGGTT 1 GCATCTTCTC 1 GCATTAGCCA 1 GCATTAGTTA 1 GCATTATATC 1 GCATTCCATA 1 GCATTCCTGG 1 GCATTCTGCT 1 GCATTGACAG 1 GCATTGAGTG 3 GCATTGATGT 2 GCATTGGGTA 1 GCATTGGGTG 1 GCATTGTACA 1 GCATTGTGAC 1 GCATTTAAAT 12 GCATTTACAG 1 GCATTTACAT 1 GCATTTAGTT 1 GCATTTCTTA 1 GCATTTGACA 9 GCATTTGGTA 1 GCATTTGTAA 1 GCATTTGTTG 1 GCCAAAAAAA 1 GCCAAAAACC 1 GCCAAAACCT 1 GCCAAAAGTT 1 GCCAAACCAC 1 GCCAAACCCC 1 GCCAAACCCT 2 GCCAAACGTA 1 GCCAAAGGCC 2 GCCAAATCCC 1 GCCAACACGG 1 GCCAACAGCA 1 GCCAACATAG 1 GCCAACCCCT 3 GCCAACCCGT 1 GCCAACCCTG 1 GCCAACCTCC 40 GCCAACCTGG 1 GCCAACGTGA 1 GCCAACTATT 1 GCCAACTTGG 1 GCCAAGAACA 1 GCCAAGAAGG 1 GCCAAGAATC 1 GCCAAGAGAC 2 GCCAAGATGC 3 GCCAAGATGG 1 GCCAAGCCTG 1 GCCAAGGAGT 5 GCCAAGGGCC 2 GCCAAGGGGC 2 GCCAAGTCCA 1 GCCAAGTCTA 1 GCCAAGTGCA 1 GCCAATGCCT 1 GCCAATGGGT 1 GCCAATGTGG 1 GCCAATTCCT 2 GCCACACCCC 7 GCCACACTGG 1 GCCACACTGT 1 GCCACAGCCA 1 GCCACAGGAT 1 GCCACATAAA 1 GCCACCAAGG 1 GCCACCAAGT 2 GCCACCACAC 1 GCCACCACCA 1 GCCACCACCG 1 GCCACCACGT 1 GCCACCAGAC 2 GCCACCAGTG 1 GCCACCCAAC 1 GCCACCCCCA 1 GCCACCCCCT 51 GCCACCCCGT 4 GCCACCCCTG 1 GCCACCCCTT 1 GCCACCCTCA 1 GCCACCCTCC 1 GCCACCGTCC 10 GCCACCGTCG 2 GCCACGAAAA 1 GCCACGACTG 1 GCCACGATGC 1 GCCACGCACG 1 GCCACGCCAA 1 GCCACGCCCT 1 GCCACGTGAG 1 GCCACGTGGA 7 GCCACGTTGT 1 GCCACTACCC 1 GCCACTCAGC 1 GCCACTCAGG 1 GCCACTCTGG 1 GCCACTCTTG 2 GCCAGAAAAG 1 GCCAGAAGGG 1 GCCAGACACC 1 GCCAGACATT 1 GCCAGACTGG 1 GCCAGAGCTT 1 GCCAGATTAC 1 GCCAGATTGA 2 GCCAGCAAGA 1 GCCAGCACGC 1 GCCAGCATAT 1 GCCAGCCAGA 1 GCCAGCCAGG 1 GCCAGCCAGT 2 GCCAGCCCAG 16 GCCAGCTATG 1 GCCAGCTATT 1 GCCAGCTGAC 4 GCCAGCTGGT 1 GCCAGGAACT 1 GCCAGGAAGC 1 GCCAGGAGCG 1 GCCAGGAGCT 8 GCCAGGAGTA 1 GCCAGGATTA 1 GCCAGGATTG 1 GCCAGGCACG 1 GCCAGGCCAT 1 GCCAGGCGCA 1 GCCAGGCTCC 2 GCCAGGCTGA 2 GCCAGGGCCA 1 GCCAGGGCGG 6 GCCAGGGGCC 3 GCCAGGGGCT 1 GCCAGGGTCA 1 GCCAGGGTCC 1 GCCAGGGTGG 1 GCCAGGGTTT 1 GCCAGGTGGA 3 GCCAGGTGTG 1 GCCAGGTTAC 3 GCCAGGTTGC 1 GCCAGGTTTT 1 GCCAGTGTTG 1 GCCATACCCT 1 GCCATACTGT 1 GCCATATTAT 1 GCCATCCAGA 3 GCCATCCCAT 1 GCCATCCCCT 29 GCCATCGGTG 1 GCCATCTCAT 1 GCCATTACCA 1 GCCATTGGGA 1 GCCATTTGCT 1 GCCCAAAAAA 1 GCCCAAATGA 1 GCCCAACCTC 1 GCCCAACTAC 1 GCCCAAGGAC 11 GCCCAAGGAG 1 GCCCAATCTG 1 GCCCAATGGC 1 GCCCAATTAA 1 GCCCAATTTG 1 GCCCACAAAA 1 GCCCACAGTA 1 GCCCACATCC 6 GCCCACCAGC 1 GCCCACTTCC 1 GCCCAGCAGG 3 GCCCAGCCAC 3 GCCCAGCCCT 2 GCCCAGCGGC 5 GCCCAGCTAT 1 GCCCAGCTCA 1 GCCCAGCTGG 22 GCCCAGCTTA 1 GCCCAGGAAA 1 GCCCAGGAAC 1 GCCCAGGACA 1 GCCCAGGACC 1 GCCCAGGAGT 1 GCCCAGGCCA 1 GCCCAGGGCC 2 GCCCAGGGGC 1 GCCCAGGTCA 58 GCCCAGGTCC 1 GCCCAGGTGG 1 GCCCAGTGAT 1 GCCCAGTGGC 2 GCCCAGTGGG 1 GCCCAGTTGC 1 GCCCATACTC 1 GCCCATCCCC 4 GCCCATCTGA 1 GCCCCAAATG 1 GCCCCAAGAT 2 GCCCCAATCA 1 GCCCCACAGC 7 GCCCCACCCT 1 GCCCCACGCT 1 GCCCCAGAAT 2 GCCCCAGACA 1 GCCCCAGCGA 1 GCCCCAGCTG 1 GCCCCAGTGG 1 GCCCCATATA 1 GCCCCATCCC 2 GCCCCATCTC 1 GCCCCATTAA 1 GCCCCATTCA 1 GCCCCCAACC 2 GCCCCCAATA 3 GCCCCCAGGG 1 GCCCCCCCAC 1 GCCCCCCCGG 1 GCCCCCCCGT 3 GCCCCCCTGC 4 GCCCCCGTAA 1 GCCCCCTCAG 1 GCCCCCTCAT 2 GCCCCCTTAA 1 GCCCCGAGCC 3 GCCCCGCCCA 2 GCCCCGCCCT 11 GCCCCGCGGC 1 GCCCCGGACA 1 GCCCCGGCAA 1 GCCCCGTGGC 1 GCCCCTACGC 1 GCCCCTCACT 1 GCCCCTCAGC 1 GCCCCTCCAA 1 GCCCCTCCAG 1 GCCCCTCCGG 6 GCCCCTCCGT 2 GCCCCTCTTT 1 GCCCCTGAAG 2 GCCCCTGCCT 4 GCCCCTGCGC 2 GCCCCTGCGG 1 GCCCCTGCTC 1 GCCCCTGGAG 1 GCCCCTGGGA 1 GCCCCTTTTG 1 GCCCGAGATC 1 GCCCGAGCAG 1 GCCCGATCCT 1 GCCCGCAAGC 3 GCCCGCAGGG 1 GCCCGCAGGT 2 GCCCGCAGTG 1 GCCCGCCTTC 3 GCCCGCCTTG 5 GCCCGCGGAG 1 GCCCGCTGGG 1 GCCCGGCGCG 1 GCCCGGGGCC 1 GCCCGTGCCA 5 GCCCGTGGAC 1 GCCCGTGGCC 1 GCCCGTTCTC 5 GCCCTAACAA 1 GCCCTACGCT 1 GCCCTCAATG 1 GCCCTCACAG 2 GCCCTCACCT 3 GCCCTCACTG 1 GCCCTCAGCA 1 GCCCTCCACA 2 GCCCTCCAGC 1 GCCCTCCCTG 1 GCCCTCCGCC 1 GCCCTCCTGC 1 GCCCTCGGAG 2 GCCCTCGGCC 4 GCCCTCTGCC 6 GCCCTGAAAC 1 GCCCTGACCA 3 GCCCTGACCT 2 GCCCTGAGCG 6 GCCCTGAGGC 1 GCCCTGATGA 1 GCCCTGATTT 1 GCCCTGCAGG 1 GCCCTGCCTC 1 GCCCTGGACC 1 GCCCTGGAGC 1 GCCCTGGCTG 1 GCCCTGGGCG 1 GCCCTGGGCT 1 GCCCTGTCCC 1 GCCCTTAGCC 1 GCCCTTAGCT 1 GCCCTTATTA 1 GCCCTTCTCA 1 GCCCTTGGCC 3 GCCCTTGGGT 1 GCCCTTTTAG 1 GCCCTTTTGT 1 GCCGACCAGG 19 GCCGACCCTC 1 GCCGACTCCG 2 GCCGAGACCA 3 GCCGAGCCCA 1 GCCGAGCCGC 1 GCCGAGCTCT 1 GCCGAGGAAG 57 GCCGAGTAAT 1 GCCGAGTGGA 1 GCCGAGTTGA 1 GCCGATTAAT 1 GCCGCACCTG 1 GCCGCAGCCC 2 GCCGCAGTGC 1 GCCGCCATCA 8 GCCGCCATCT 14 GCCGCCCTAC 1 GCCGCCCTGC 8 GCCGCCGCCG 3 GCCGCCGGGC 1 GCCGCCGTGG 1 GCCGCCTCCA 1 GCCGCCTCCT 1 GCCGCCTGCC 5 GCCGCGCCCA 1 GCCGCGGGGT 1 GCCGCTGCCA 1 GCCGCTGTGG 1 GCCGCTTCTA 1 GCCGGAGGGC 1 GCCGGCAGCC 1 GCCGGCCGCG 1 GCCGGCCGGA 2 GCCGGCCTGA 1 GCCGGCTAAT 1 GCCGGCTGTC 1 GCCGGGAGCC 1 GCCGGGCCGG 1 GCCGGGCGCG 3 GCCGGGCGTG 2 GCCGGGGAAG 1 GCCGGGTACT 2 GCCGGGTGGC 1 GCCGGGTGGG 68 GCCGGGTGTG 1 GCCGGTTGGC 1 GCCGTAACCT 1 GCCGTAATCC 1 GCCGTCAATA 1 GCCGTCATCT 1 GCCGTCCCCT 1 GCCGTCGGAG 3 GCCGTGAGCA 2 GCCGTGCGGC 1 GCCGTGGAGA 7 GCCGTGGCCG 2 GCCGTGTCCG 22 GCCGTTCTTA 1 GCCGTTTCCT 1 GCCTAAGCTA 1 GCCTACAGTA 1 GCCTACATAT 2 GCCTACCCGA 1 GCCTACGTGG 1 GCCTAGATAG 1 GCCTAGGTAA 1 GCCTAGTACT 1 GCCTATGCCA 1 GCCTATGGTC 1 GCCTATGTTG 1 GCCTATTCCT 1 GCCTCAAACT 2 GCCTCAAATG 1 GCCTCAAGTG 1 GCCTCACCCT 1 GCCTCAGCCA 2 GCCTCAGCCT 1 GCCTCAGCTG 1 GCCTCAGTAA 1 GCCTCAGTCG 1 GCCTCAGTTC 2 GCCTCATCCC 1 GCCTCCAAAA 1 GCCTCCAGCC 1 GCCTCCATAA 1 GCCTCCCAAA 1 GCCTCCCAGC 1 GCCTCCCAGG 4 GCCTCCCTCT 1 GCCTCCCTGC 1 GCCTCCTCCC 6 GCCTCCTGAG 1 GCCTCCTTAT 1 GCCTCCTTCC 1 GCCTCCTTTG 2 GCCTCGGTGC 1 GCCTCGTCCA 1 GCCTCTAGTA 1 GCCTCTGCCA 3 GCCTCTGTCA 1 GCCTCTGTCT 3 GCCTCTGTTT 1 GCCTCTTCCC 3 GCCTCTTCTC 1 GCCTCTTGAT 1 GCCTCTTTCC 1 GCCTGAACTC 1 GCCTGAAGGA 1 GCCTGAAGGG 1 GCCTGAGACC 1 GCCTGAGCCT 1 GCCTGAGGAA 1 GCCTGAGGGG 1 GCCTGAGTAT 1 GCCTGATCAG 1 GCCTGATTTT 7 GCCTGCACCC 1 GCCTGCACGC 1 GCCTGCAGAG 1 GCCTGCAGTC 16 GCCTGCGAGG 1 GCCTGCTAGG 1 GCCTGCTCCC 1 GCCTGCTCCT 1 GCCTGCTGAG 1 GCCTGCTGGG 3 GCCTGGAGGA 1 GCCTGGAGGG 1 GCCTGGCACC 1 GCCTGGCCAT 10 GCCTGGCCCA 1 GCCTGGCTGG 1 GCCTGGCTTA 1 GCCTGGCTTT 1 GCCTGGGACC 2 GCCTGGGACT 8 GCCTGGGCTG 5 GCCTGGTACA 1 GCCTGGTGCA 1 GCCTGGTGGC 1 GCCTGTAATC 1 GCCTGTAATG 1 GCCTGTACAA 2 GCCTGTATGA 17 GCCTGTCCCT 1 GCCTGTCTGC 1 GCCTGTGCTA 1 GCCTGTGGAT 1 GCCTGTGGGC 1 GCCTGTGTAT 1 GCCTGTTAAA 4 GCCTGTTAAC 1 GCCTGTTAGC 1 GCCTGTTTGT 1 GCCTTAAAAA 2 GCCTTAACAA 6 GCCTTAACCA 1 GCCTTACCGT 1 GCCTTCAAAA 1 GCCTTCAAGG 1 GCCTTCAATA 1 GCCTTCCAAT 9 GCCTTCCCAA 1 GCCTTCCCTG 1 GCCTTCCGTG 1 GCCTTCCTCA 1 GCCTTCGAGA 1 GCCTTCTAGA 1 GCCTTCTCCT 1 GCCTTGATCC 1 GCCTTGATCT 4 GCCTTGCTTA 1 GCCTTGGCCA 1 GCCTTGGGGG 4 GCCTTGGTAA 1 GCCTTGTCCT 1 GCCTTGTCTA 1 GCCTTTGCAG 1 GCCTTTTATA 1 GCCTTTTCTT 1 GCCTTTTGCT 1 GCGAAAACCC 4 GCGAAAACCT 1 GCGAAACACT 2 GCGAAACATC 1 GCGAAACCCA 4 GCGAAACCCC 49 GCGAAACCCG 1 GCGAAACCCT 64 GCGAAACCGC 2 GCGAAACCGT 1 GCGAAACCTC 5 GCGAAACCTG 3 GCGAAACGTC 1 GCGAAACTCC 3 GCGAAACTCT 1 GCGAAAGCCC 2 GCGAAAGCCT 1 GCGAAATCCC 4 GCGAAATCCG 1 GCGAAATGCT 1 GCGAACCACA 1 GCGAACCCAT 1 GCGAACCCCA 4 GCGAACCCCG 1 GCGAACGCCC 1 GCGAAGCCCC 3 GCGAAGCCCG 2 GCGAAGCCCT 2 GCGAAGGCTC 1 GCGAATAGGA 1 GCGAATCCGG 1 GCGAATCCTC 1 GCGAATCTCT 1 GCGAATTCCC 2 GCGACACGCA 1 GCGACAGCTC 4 GCGACAGTCC 2 GCGACCAACA 2 GCGACCATCA 1 GCGACCCCAA 1 GCGACCGAGC 1 GCGACCGCAC 1 GCGACCGCCA 1 GCGACCGGTC 2 GCGACCGTCA 108 GCGACCGTTA 1 GCGACGAGCG 1 GCGACGAGGC 38 GCGACGGCCG 5 GCGACGGTCA 1 GCGAGAACTT 1 GCGAGAATCC 2 GCGAGACCAG 1 GCGAGACCCC 4 GCGAGACCCT 2 GCGAGACCTC 1 GCGAGACGCT 1 GCGAGACTCA 2 GCGAGACTCC 1 GCGAGAGCAG 1 GCGAGATCCC 1 GCGAGATGCT 1 GCGAGCAACG 1 GCGAGGCCCC 1 GCGAGTACCA 3 GCGATACAGA 1 GCGATCAAAG 1 GCGATCTCTT 1 GCGATGAGGG 1 GCGATGCCCG 1 GCGATGGCCG 2 GCGATGGGAG 2 GCGATGGGGG 1 GCGATTCCGG 4 GCGCAACGCA 1 GCGCAAGGGG 1 GCGCAATCTC 1 GCGCAGACTT 1 GCGCAGGGAG 1 GCGCAGGGGA 1 GCGCATAAAG 1 GCGCCACTGC 1 GCGCCACTGG 1 GCGCCAGCGA 1 GCGCCATATT 1 GCGCCCAGCA 1 GCGCCCAGGC 1 GCGCCCCCGC 2 GCGCCCTCCG 2 GCGCCGAATA 1 GCGCCGCAGC 2 GCGCCGCCCC 4 GCGCCGCCTC 1 GCGCCGCTGC 1 GCGCCGTCAC 1 GCGCCTCAAC 1 GCGCGATCTC 1 GCGCGCACCT 1 GCGCGGCAGC 1 GCGCGGCCCT 1 GCGCGGCTAC 1 GCGCGGCTGC 1 GCGCGGGATT 1 GCGCGGGCGA 4 GCGCGGTGGC 1 GCGCGGTTGA 1 GCGCGTGCCT 1 GCGCTGAAGT 1 GCGCTGCACT 1 GCGCTGCTTT 1 GCGCTGGAGT 6 GCGCTGGGTG 1 GCGGAAAAAG 1 GCGGAAATCG 1 GCGGAACCCC 3 GCGGAACGCA 2 GCGGAAGAGT 1 GCGGAAGTGG 1 GCGGACACTC 1 GCGGACGAGG 2 GCGGACGTCT 1 GCGGAGAGAG 3 GCGGAGCGCG 2 GCGGAGCTAA 1 GCGGAGGGGT 1 GCGGAGGTGG 4 GCGGATACTG 1 GCGGATTCTG 1 GCGGCACACA 1 GCGGCACAGG 1 GCGGCACGCA 2 GCGGCAGCGG 1 GCGGCATTGT 1 GCGGCCAAGG 1 GCGGCCACCA 1 GCGGCCGCTC 1 GCGGCCGTCA 1 GCGGCCGTCT 1 GCGGCCTCAG 1 GCGGCCTCCA 1 GCGGCGACAC 1 GCGGCGAGAT 1 GCGGCGCCCA 1 GCGGCGCGTG 1 GCGGCGCTGC 7 GCGGCGGCAG 1 GCGGCGGCGA 2 GCGGCGGCGG 2 GCGGCGGCTC 1 GCGGCGGGAG 1 GCGGCGGGCA 1 GCGGCGGGCG 1 GCGGCGGTCC 1 GCGGCGTGCA 2 GCGGCTAGAG 1 GCGGCTCACG 1 GCGGCTCATA 1 GCGGCTCTCC 1 GCGGCTGCCG 1 GCGGCTTTCC 1 GCGGGACGAT 1 GCGGGAGCCG 1 GCGGGAGCGG 3 GCGGGAGGAT 1 GCGGGAGGCT 1 GCGGGAGGGC 6 GCGGGAGTGC 1 GCGGGCACCT 2 GCGGGCAGAT 1 GCGGGCGAGG 1 GCGGGCGCCC 1 GCGGGCGCGG 2 GCGGGCTACA 1 GCGGGGACTG 1 GCGGGGCGAG 1 GCGGGGTACC 5 GCGGGGTCCC 1 GCGGGGTGGA 4 GCGGGGTGGG 1 GCGGGTGTGG 1 GCGGTAAAAA 2 GCGGTACACT 1 GCGGTAGGCG 1 GCGGTCAAGT 1 GCGGTCAGCG 1 GCGGTCCCAA 1 GCGGTCCGGG 1 GCGGTCCTCT 1 GCGGTGAACA 4 GCGGTGAGGT 2 GCGGTGGATG 1 GCGGTGGGTT 1 GCGGTGTGAG 1 GCGGTGTGCG 1 GCGGTTCACA 1 GCGGTTGGAG 1 GCGTCCAGCT 1 GCGTCCATCG 1 GCGTCTGCAC 1 GCGTCTGGGG 1 GCGTCTGTAT 1 GCGTGAACCC 1 GCGTGAACCG 1 GCGTGACTTC 1 GCGTGATCCT 1 GCGTGATCGG 1 GCGTGATTAG 1 GCGTGCCTCT 1 GCGTGCGCCT 1 GCGTGCTCTC 1 GCGTGGCGTC 1 GCGTGGCTCA 1 GCGTGGGGCA 2 GCGTGGTGAC 1 GCGTGGTGGC 1 GCGTGTGCTC 1 GCGTGTTACA 1 GCGTGTTATC 1 GCGTGTTGTC 1 GCGTGTTTAT 1 GCGTTAGCAC 1 GCGTTATGTA 1 GCGTTCAATA 1 GCGTTGACCA 1 GCGTTGATCT 1 GCGTTGCCAG 1 GCGTTGGAAG 1 GCGTTGGTCT 1 GCTAAAAAAA 2 GCTAAAAGGG 1 GCTAAAATTA 1 GCTAAACCCC 1 GCTAAACCCT 1 GCTAAACTCT 1 GCTAAAGCAA 1 GCTAACACCC 2 GCTAACACGC 1 GCTAACACGG 1 GCTAACTAGT 1 GCTAAGAGAA 1 GCTAAGCCAA 1 GCTAAGGAGA 4 GCTAATAGTA 2 GCTAATATGG 1 GCTAATCCCA 1 GCTAATGTTG 1 GCTAATTTTT 1 GCTACAACTG 1 GCTACAGGTA 1 GCTACATCCC 1 GCTACCAAAA 1 GCTACCAATG 1 GCTACCAGCA 1 GCTACCGAGC 2 GCTACCTTCT 1 GCTACTATTC 1 GCTACTCCTA 1 GCTACTTTTG 1 GCTAGAACCT 1 GCTAGAAGAG 1 GCTAGACCCT 1 GCTAGAGAGG 1 GCTAGCAAAA 1 GCTAGCAAGA 2 GCTAGCGCGA 1 GCTAGGAAAC 5 GCTAGGAAAG 1 GCTAGGAACT 1 GCTAGGATTA 1 GCTAGGCCGG 3 GCTAGGCCTA 1 GCTAGGGTCC 1 GCTAGGTCTA 1 GCTAGGTCTG 1 GCTAGGTTTA 59 GCTAGTGAAA 1 GCTAGTTTAT 1 GCTATATCCA 2 GCTATATTTG 1 GCTATCTCAG 1 GCTATCTCTA 1 GCTATGGTTT 1 GCTATGTGAG 1 GCTATTAAAA 1 GCTATTTATA 1 GCTATTTGAA 1 GCTCAAAAAA 1 GCTCAAGTAA 1 GCTCAATGAA 1 GCTCAATGCA 3 GCTCACACCT 4 GCTCACAGTG 1 GCTCACATTA 1 GCTCACCTGT 2 GCTCACGCCG 1 GCTCACGCCT 1 GCTCACGTCG 1 GCTCACTACA 1 GCTCACTGAA 2 GCTCACTGCA 13 GCTCACTGCG 2 GCTCACTGTA 2 GCTCACTTAA 1 GCTCAGAAGC 1 GCTCAGAATC 1 GCTCAGACAC 1 GCTCAGAGGG 1 GCTCAGATCG 1 GCTCAGCCTC 1 GCTCAGCTGG 8 GCTCAGGAAA 1 GCTCAGGAGC 1 GCTCAGGATG 1 GCTCAGGCCT 1 GCTCAGGGGT 1 GCTCAGGTCT 3 GCTCAGTCAT 3 GCTCAGTCTT 1 GCTCATACAA 1 GCTCATATTC 1 GCTCATTCAG 1 GCTCATTGCA 1 GCTCCACTGG 6 GCTCCAGCCA 1 GCTCCAGGCA 1 GCTCCATCAC 1 GCTCCCAGAC 5 GCTCCCAGCC 1 GCTCCCAGCT 1 GCTCCCAGTG 1 GCTCCCATCC 1 GCTCCCCACT 1 GCTCCCGCGT 1 GCTCCCGGAC 2 GCTCCCTCCT 1 GCTCCGAGCG 7 GCTCCGGCTG 1 GCTCCTAAAG 1 GCTCCTCCAG 1 GCTCCTCGGA 1 GCTCCTGAGC 1 GCTCCTGCTC 1 GCTCCTGTAT 1 GCTCCTTGAA 2 GCTCCTTTCA 2 GCTCGCTGTT 1 GCTCGCTTCG 1 GCTCGGAGGG 1 GCTCGGCACT 1 GCTCGGCAGC 1 GCTCGGTAGC 1 GCTCGTGGCC 1 GCTCTAGGCT 1 GCTCTATCTT 1 GCTCTATTTG 2 GCTCTCAATC 1 GCTCTCCAGC 1 GCTCTCCCAC 1 GCTCTCCCCC 2 GCTCTCCTGA 9 GCTCTCCTTG 1 GCTCTCTAGG 1 GCTCTCTATG 12 GCTCTCTGCT 1 GCTCTCTGGG 1 GCTCTGAACA 1 GCTCTGAAGA 2 GCTCTGATGT 2 GCTCTGCCTC 3 GCTCTGGCCG 3 GCTCTGGGCA 1 GCTCTGGGCG 2 GCTCTGGGGC 1 GCTCTGGTCA 1 GCTCTGGTGT 2 GCTCTGTAAA 1 GCTCTGTAAG 1 GCTCTGTGAA 2 GCTCTGTTCA 1 GCTCTTACCA 1 GCTCTTCCAA 1 GCTCTTCCCA 2 GCTCTTCCCC 2 GCTCTTCTCC 1 GCTCTTCTTT 1 GCTCTTGCCA 1 GCTCTTGGCA 1 GCTCTTTCTC 1 GCTGAAACAA 1 GCTGAAACTG 1 GCTGAAACTT 1 GCTGAAAGGT 1 GCTGAACAGG 1 GCTGAACCCC 1 GCTGAACGCG 1 GCTGAACGGG 1 GCTGAATAAG 1 GCTGAATTTT 1 GCTGACACTG 1 GCTGACATTG 1 GCTGACCCCT 1 GCTGACCTTC 1 GCTGACTCTT 1 GCTGACTTTG 1 GCTGAGAATA 3 GCTGAGACCT 1 GCTGAGCAGA 1 GCTGAGCAGC 1 GCTGAGCCGC 1 GCTGAGCTGC 1 GCTGAGCTGG 1 GCTGAGGCAG 1 GCTGAGGGCT 1 GCTGAGGGTT 1 GCTGAGGTAT 1 GCTGAGTTAT 1 GCTGAGTTCT 1 GCTGATAATC 1 GCTGATGACA 1 GCTGATGGAA 1 GCTGATGTTG 1 GCTGATTGGT 1 GCTGATTTCT 1 GCTGATTTGT 1 GCTGCAAAGG 2 GCTGCAACCT 1 GCTGCACCAC 4 GCTGCACCGG 3 GCTGCAGCTA 1 GCTGCAGGCG 1 GCTGCAGGTC 1 GCTGCATCCA 1 GCTGCATTTG 1 GCTGCCACTC 1 GCTGCCAGAG 1 GCTGCCAGCT 1 GCTGCCCTCA 1 GCTGCCCTGA 5 GCTGCCCTTG 6 GCTGCCGGCT 1 GCTGCCTCAT 2 GCTGCCTCTG 2 GCTGCCTGCC 1 GCTGCGAAAA 1 GCTGCGCAGA 1 GCTGCGGCCG 2 GCTGCGGTCC 1 GCTGCGGTGG 1 GCTGCTCCCT 6 GCTGCTGCCT 1 GCTGCTGGTG 3 GCTGCTGTGT 1 GCTGCTTGAG 1 GCTGGAATAA 1 GCTGGACTCC 1 GCTGGAGAAC 1 GCTGGAGAGA 1 GCTGGAGAGC 1 GCTGGAGCAG 1 GCTGGAGCCC 1 GCTGGAGCCT 1 GCTGGAGCGC 2 GCTGGAGCTA 1 GCTGGAGGCA 1 GCTGGATCCA 1 GCTGGATGCA 1 GCTGGATGCT 1 GCTGGATTAA 1 GCTGGCACAT 6 GCTGGCAGGC 1 GCTGGCAGGG 1 GCTGGCAGTC 1 GCTGGCAGTG 1 GCTGGCCGCT 1 GCTGGCCGGA 1 GCTGGCCTGA 1 GCTGGCCTGG 1 GCTGGCCTTG 1 GCTGGCGGCC 1 GCTGGCTGAT 1 GCTGGCTGCA 1 GCTGGCTGCT 1 GCTGGCTGGC 17 GCTGGCTTCC 1 GCTGGGAAAC 1 GCTGGGCACA 1 GCTGGGCACG 1 GCTGGGCAGG 1 GCTGGGCCCG 1 GCTGGGCGCG 1 GCTGGGCGGC 3 GCTGGGCGTG 1 GCTGGGCTAA 1 GCTGGGGAGG 1 GCTGGGGGCA 1 GCTGGGGGGC 1 GCTGGGGTCC 1 GCTGGTAAGT 1 GCTGGTCCCT 2 GCTGGTCTCA 1 GCTGGTCTGA 2 GCTGGTCTGG 1 GCTGGTGCAC 1 GCTGGTGCCT 3 GCTGGTTCCC 1 GCTGGTTCCT 1 GCTGGTTTGC 1 GCTGTAAAAG 1 GCTGTAATCC 4 GCTGTAATTC 1 GCTGTACAAA 1 GCTGTAGACA 2 GCTGTAGTCC 3 GCTGTATGAG 1 GCTGTCAAGA 1 GCTGTCACTG 1 GCTGTCAGAA 1 GCTGTCAGAT 1 GCTGTCATCA 1 GCTGTCCAAT 1 GCTGTCCCAC 1 GCTGTCCCCT 1 GCTGTCCTTA 1 GCTGTCGATG 1 GCTGTCTTAT 1 GCTGTGATTT 1 GCTGTGCCTG 11 GCTGTGCTGG 1 GCTGTGGCCG 1 GCTGTGGTTA 2 GCTGTGGTTC 1 GCTGTGTGAA 1 GCTGTGTTCT 1 GCTGTTACTG 1 GCTGTTCATT 3 GCTGTTCCCA 1 GCTGTTCCCC 2 GCTGTTGCAT 4 GCTGTTGCGC 12 GCTGTTTGCA 1 GCTTAAAAGA 1 GCTTAACCTG 5 GCTTAATGTT 1 GCTTAATTTA 1 GCTTACAAGA 1 GCTTACATCG 1 GCTTACATTT 1 GCTTACTGGC 1 GCTTAGAAAT 1 GCTTAGAAGG 1 GCTTAGAAGT 2 GCTTAGGTAT 1 GCTTATAAAA 2 GCTTATTATC 1 GCTTATTTGT 1 GCTTCAAAAT 1 GCTTCACACC 1 GCTTCACCAT 1 GCTTCACCTG 1 GCTTCACTCG 1 GCTTCAGAGG 1 GCTTCAGGCC 1 GCTTCATCAG 1 GCTTCATTTG 1 GCTTCCAAGC 1 GCTTCCAGGG 1 GCTTCCATCT 7 GCTTCCATTT 1 GCTTCCCAGC 2 GCTTCCCTGG 3 GCTTCCCTTG 1 GCTTCCGACG 1 GCTTCCGGCC 1 GCTTCCTCAC 3 GCTTCCTCTA 1 GCTTCCTCTG 2 GCTTCCTGGC 1 GCTTCTAGGT 1 GCTTCTCAAG 1 GCTTCTCCTC 1 GCTTCTGCAT 2 GCTTCTGCCA 1 GCTTCTGGAG 1 GCTTCTGGGT 1 GCTTGAACCT 1 GCTTGAAGTT 2 GCTTGACACA 1 GCTTGACATT 2 GCTTGAGAGA 1 GCTTGAGCCA 1 GCTTGAGCCC 1 GCTTGAGGCT 1 GCTTGAGTTG 1 GCTTGCAAAA 1 GCTTGCTCCT 1 GCTTGCTGAG 1 GCTTGGAGTG 1 GCTTGGATCT 3 GCTTGGCTCC 4 GCTTGGGGAA 1 GCTTGGTACT 1 GCTTGGTGAG 2 GCTTGTAAAC 1 GCTTGTACCA 1 GCTTGTACCT 2 GCTTGTATGA 1 GCTTGTCTTT 1 GCTTGTGATG 1 GCTTGTGGTC 1 GCTTGTTAGG 1 GCTTGTTCTC 2 GCTTTAAACA 1 GCTTTAATTG 1 GCTTTACCAC 1 GCTTTACTCG 1 GCTTTACTTT 3 GCTTTAGGGA 3 GCTTTATTCA 1 GCTTTATTTG 61 GCTTTCAAAA 1 GCTTTCATTG 1 GCTTTCCAAA 2 GCTTTGAGGA 1 GCTTTGCTTT 5 GCTTTGGCTG 1 GCTTTGGGAT 1 GCTTTGTATC 2 GCTTTGTTTA 1 GCTTTTAAGG 16 GCTTTTAGGG 1 GCTTTTATTC 1 GCTTTTATTT 1 GCTTTTCACA 1 GCTTTTCAGA 4 GCTTTTCCTG 1 GCTTTTGCAT 1 GCTTTTGCTT 1 GCTTTTTAAA 1 GCTTTTTACG 1 GCTTTTTAGA 8 GCTTTTTCAA 1 GGAAAAAAAA 9 GGAAAAAACA 1 GGAAAAAGCC 1 GGAAAAATGG 1 GGAAAACAGA 15 GGAAAACCCC 1 GGAAAAGATT 1 GGAAAAGCAA 1 GGAAAAGTGG 7 GGAAAATTGT 1 GGAAACAATA 1 GGAAACATTA 1 GGAAACCAAG 1 GGAAACCCAC 1 GGAAACCCCA 5 GGAAACCCCC 2 GGAAACCCTG 2 GGAAACCGAG 1 GGAAACCTAT 1 GGAAACCTGT 1 GGAAACGGCG 1 GGAAAGAGCT 1 GGAAAGCAGA 1 GGAAAGCCAG 2 GGAAAGCTGC 2 GGAAAGCTGG 1 GGAAAGGAGA 1 GGAAAGTCCA 1 GGAAAGTGAC 1 GGAAAGTGAT 1 GGAAAGTGTA 1 GGAAAGTTCA 2 GGAAATGGTA 1 GGAAATGTCA 4 GGAAATGTTT 1 GGAAATTCTG 1 GGAAATTGAG 1 GGAAATTGGC 1 GGAAATTTGG 1 GGAACAAACA 34 GGAACAAACC 1 GGAACAAAGG 2 GGAACACACA 1 GGAACAGGTC 1 GGAACATCTT 1 GGAACATTTT 1 GGAACCAATG 1 GGAACCCCAT 1 GGAACCTAGA 1 GGAACGGATG 9 GGAACTACTT 1 GGAACTGGTA 1 GGAACTGTGA 10 GGAACTTTTA 5 GGAACTTTTG 1 GGAAGAAGGC 1 GGAAGACAGA 1 GGAAGACCCT 1 GGAAGAGCAC 2 GGAAGAGGCC 2 GGAAGATGAA 1 GGAAGATGGA 1 GGAAGCAAGC 1 GGAAGCACGG 7 GGAAGCCCAC 2 GGAAGCCCTG 3 GGAAGCTGAG 1 GGAAGCTGGA 1 GGAAGGAACA 3 GGAAGGACAG 3 GGAAGGAGGT 1 GGAAGGCATC 1 GGAAGGCCCC 1 GGAAGGGAAC 1 GGAAGGGAGG 2 GGAAGGGGAA 2 GGAAGGGGGA 2 GGAAGTAGAG 1 GGAAGTCTCA 1 GGAAGTGCAA 1 GGAAGTGCCA 1 GGAAGTTTCG 4 GGAATAAACT 1 GGAATAAAGC 1 GGAATAAATT 1 GGAATAAGGA 1 GGAATAAGGC 1 GGAATACGCA 1 GGAATATTTT 1 GGAATCACTT 2 GGAATCCAAT 2 GGAATCCACA 1 GGAATCCTGC 1 GGAATGATAG 2 GGAATGCATA 1 GGAATGTAAC 1 GGAATGTACG 11 GGAATTAGGG 1 GGAATTATAG 1 GGAATTATCT 1 GGAATTGACT 1 GGAATTTGCT 1 GGAATTTTAT 1 GGACAAAAAG 1 GGACAAGGAA 1 GGACACTGTG 1 GGACACTTCC 1 GGACAGAATA 1 GGACAGAGGC 1 GGACAGTCGC 1 GGACAGTGGG 1 GGACATCATA 1 GGACATTAGG 1 GGACCAACCC 1 GGACCACAGC 1 GGACCACTGA 48 GGACCAGAAG 2 GGACCATCTA 1 GGACCCAGGA 1 GGACCCATCC 1 GGACCCCCAG 1 GGACCCCCTG 1 GGACCCTCAT 1 GGACCCTCTC 2 GGACCCTGCT 1 GGACCTATCT 1 GGACCTCGGC 1 GGACCTGACT 1 GGACCTGAGG 1 GGACCTGCGC 2 GGACCTTGGA 1 GGACGAGGCC 1 GGACGCCGAG 1 GGACGGAAGT 1 GGACGGGCGT 1 GGACGGTCAC 1 GGACGTGGGA 1 GGACTAAATG 1 GGACTATGCT 1 GGACTCTGAG 1 GGACTGATTT 1 GGACTGCGCC 1 GGACTGCTGG 1 GGACTGGCCC 1 GGACTGGGGT 1 GGACTGGTAC 1 GGACTGTGCT 1 GGACTTCCAG 1 GGACTTTCCT 2 GGAGAAACAG 1 GGAGAAAGAG 2 GGAGAAAGTA 1 GGAGAAATAG 2 GGAGAAGATG 1 GGAGAAGCGT 1 GGAGAATGTT 1 GGAGAATTTT 1 GGAGACAAAG 1 GGAGACCCCG 1 GGAGACCCTA 1 GGAGACGCTG 1 GGAGACTTCA 1 GGAGACTTCC 1 GGAGAGAAAA 1 GGAGAGCAGC 1 GGAGAGGGCA 2 GGAGAGGTAG 1 GGAGATAGCG 1 GGAGATAGTG 4 GGAGATCTTT 1 GGAGATGAGG 2 GGAGATGGAG 1 GGAGATTGGT 1 GGAGCAAGAA 1 GGAGCAATAA 1 GGAGCACACA 1 GGAGCACAGT 1 GGAGCACTGT 1 GGAGCAGACG 1 GGAGCAGACT 1 GGAGCAGCAT 2 GGAGCAGGCT 2 GGAGCATCTG 1 GGAGCCAAAA 1 GGAGCCAATA 1 GGAGCCACCA 1 GGAGCCAGGA 1 GGAGCCCCTG 2 GGAGCCTCTA 1 GGAGCCTGAA 1 GGAGCGTGGG 2 GGAGCTCCTC 1 GGAGCTCTGT 2 GGAGCTCTTG 2 GGAGCTGCGA 1 GGAGCTGGTC 1 GGAGCTTAGA 1 GGAGGAACTA 1 GGAGGAAGTG 1 GGAGGAGAGC 1 GGAGGAGATA 1 GGAGGAGATG 1 GGAGGAGCTG 1 GGAGGAGGAG 4 GGAGGAGGGG 1 GGAGGAGGTC 1 GGAGGATCAC 4 GGAGGATGGG 1 GGAGGATTGC 1 GGAGGATTTG 1 GGAGGCAGAA 2 GGAGGCAGAG 4 GGAGGCAGGT 2 GGAGGCCCTT 1 GGAGGCCGAG 2 GGAGGCGGAA 1 GGAGGCGGAG 9 GGAGGCTGAA 2 GGAGGCTGAG 15 GGAGGCTGGC 1 GGAGGCTGGG 2 GGAGGCTTGC 1 GGAGGGAACA 1 GGAGGGAGGA 1 GGAGGGATCA 2 GGAGGGCAAT 1 GGAGGGCAGG 1 GGAGGGCTGG 1 GGAGGGGCAG 1 GGAGGGGGCT 3 GGAGGGGTCA 1 GGAGGGGTTC 3 GGAGGGTGAG 1 GGAGGTACAA 1 GGAGGTAGAG 1 GGAGGTAGCA 1 GGAGGTAGGG 3 GGAGGTATGT 1 GGAGGTCAAC 1 GGAGGTCACA 1 GGAGGTCATC 1 GGAGGTGGAG 4 GGAGGTGGGA 1 GGAGGTGGGG 4 GGAGGTGGGT 1 GGAGGTGTGG 1 GGAGGTGTTT 1 GGAGTACAGA 1 GGAGTACTAT 1 GGAGTCATTG 9 GGAGTCCAAT 1 GGAGTCCTAG 2 GGAGTCTCAT 1 GGAGTGACAG 1 GGAGTGCTTG 1 GGAGTGGACA 10 GGAGTGGGAG 2 GGAGTGTGCT 4 GGAGTTCATT 1 GGAGTTCCCG 1 GGAGTTGTCC 1 GGAGTTTCTC 1 GGAGTTTTGA 1 GGATAAATGC 1 GGATAAATGT 1 GGATAACGCC 1 GGATAATGCT 1 GGATACAACA 1 GGATACACTG 1 GGATACATCA 1 GGATACCAAT 1 GGATAGACTA 1 GGATAGAGCA 1 GGATATACCA 1 GGATATCCCT 1 GGATATGAGA 1 GGATATGGCT 1 GGATATGTGG 3 GGATCAAAGG 1 GGATCATACT 1 GGATCCAAGT 2 GGATCCAATC 1 GGATCCTATC 1 GGATCCTCGG 5 GGATGAAACA 1 GGATGAAGTG 1 GGATGAATAT 1 GGATGCAAGG 1 GGATGCATTA 1 GGATGCGCAG 4 GGATGCGCCG 1 GGATGGCAAT 4 GGATGGCTTA 1 GGATGGGAGC 1 GGATGGGGCG 1 GGATGTCCGG 1 GGATGTGAAA 1 GGATGTGGAG 1 GGATGTGGAT 1 GGATGTTCCA 1 GGATGTTCTG 1 GGATTACACT 1 GGATTCACAT 6 GGATTCACTT 2 GGATTCCAGA 2 GGATTCGAAA 1 GGATTCTGAC 1 GGATTGCTAA 1 GGATTGGCCT 1 GGATTGGGGA 1 GGATTGTCTG 1 GGATTTCACT 3 GGATTTGGCC 83 GGATTTGGCT 1 GGATTTGGGG 1 GGATTTGGTA 1 GGATTTTGCC 5 GGATTTTGGC 1 GGATTTTTAT 1 GGATTTTTGG 1 GGCAAAATTG 1 GGCAAACAGC 1 GGCAAACCCA 1 GGCAAAGCCC 1 GGCAACAAAA 3 GGCAACAACA 1 GGCAACAAGA 1 GGCAACAAGC 1 GGCAACACAG 1 GGCAACAGAG 3 GGCAACAGTA 1 GGCAACATAC 1 GGCAACATAG 4 GGCAACATTA 1 GGCAACCCCA 2 GGCAACGGCC 1 GGCAACGTGG 3 GGCAACTTGA 1 GGCAAGAAGA 2 GGCAAGAGAG 2 GGCAAGAGGA 1 GGCAAGATGA 1 GGCAAGCCCA 1 GGCAAGCCCC 38 GGCAAGCCTC 1 GGCAAGCGTT 1 GGCAAGGACA 1 GGCAAGGGCT 3 GGCAAGGGGT 1 GGCAAGGTTA 1 GGCAAGGTTC 1 GGCAAGTCCC 1 GGCAAGTGCA 1 GGCAAGTGGG 1 GGCAATAGGG 1 GGCAATATGG 4 GGCAATGGTT 1 GGCAATGTAG 1 GGCAATGTGG 1 GGCAATTCAA 1 GGCACAAACT 1 GGCACAAGCT 1 GGCACAAGTA 1 GGCACACACA 1 GGCACACCAG 1 GGCACACGTC 1 GGCACAGAGA 1 GGCACAGGCA 1 GGCACAGTAA 2 GGCACCACTG 1 GGCACCAGAC 1 GGCACCAGCA 1 GGCACCGCGT 1 GGCACCGGCG 1 GGCACCGTGC 8 GGCACCTAGG 1 GGCACCTGAA 1 GGCACCTGGT 1 GGCACCTTGC 1 GGCACGCCAC 1 GGCACTCCGC 1 GGCACTGATT 1 GGCACTGCAG 1 GGCACTGCTC 1 GGCACTGGGA 1 GGCACTGGGG 2 GGCACTTATG 1 GGCACTTTCG 1 GGCACTTTTT 1 GGCAGAATTG 1 GGCAGACAAT 1 GGCAGACACA 1 GGCAGACCAA 3 GGCAGAGACA 1 GGCAGAGACC 1 GGCAGAGCAA 1 GGCAGAGGAC 7 GGCAGAGGCA 1 GGCAGAGGCT 1 GGCAGAGGGC 1 GGCAGAGGGG 1 GGCAGATCAC 2 GGCAGATCAG 1 GGCAGCACAA 2 GGCAGCAGCA 1 GGCAGCAGCT 1 GGCAGCCACA 1 GGCAGCCAGA 6 GGCAGCCCTG 1 GGCAGCCCTT 1 GGCAGCCTGG 5 GGCAGCGCCT 1 GGCAGCTCAG 1 GGCAGCTGGC 1 GGCAGGACAC 1 GGCAGGACCT 1 GGCAGGAGCG 7 GGCAGGATGA 1 GGCAGGCACA 2 GGCAGGCACC 2 GGCAGGCGGG 6 GGCAGGCGTG 1 GGCAGGCTGT 2 GGCAGGGAAG 1 GGCAGGGGCT 1 GGCAGGGGGC 2 GGCAGGGGTT 1 GGCAGGGTGG 1 GGCAGGTGTA 1 GGCAGTGCTT 1 GGCAGTTAAC 1 GGCAGTTGCT 1 GGCATATGTA 1 GGCATCAACA 1 GGCATCAGCT 1 GGCATCAGTT 1 GGCATCCCTG 1 GGCATCTCCT 2 GGCATCTCTG 1 GGCATCTGGA 1 GGCATCTGGC 1 GGCATTGTTT 1 GGCATTTATT 1 GGCATTTGCA 1 GGCATTTTAA 1 GGCATTTTTC 3 GGCATTTTTG 1 GGCATTTTTT 2 GGCCAAACAG 2 GGCCAAAGAA 1 GGCCAAAGGC 1 GGCCAAATCT 1 GGCCAACCCT 1 GGCCAAGATC 1 GGCCAAGGCT 1 GGCCAAGTCT 1 GGCCAATCCC 1 GGCCACCACA 1 GGCCACCACG 1 GGCCACTCTA 3 GGCCACTGAA 1 GGCCACTGCG 1 GGCCAGACTA 1 GGCCAGATAC 1 GGCCAGATTT 1 GGCCAGCAAC 1 GGCCAGCACT 1 GGCCAGCAGC 1 GGCCAGCAGT 1 GGCCAGCCCG 1 GGCCAGCCCT 8 GGCCAGCCTT 1 GGCCAGCGGG 1 GGCCAGGAAG 1 GGCCAGGCAC 1 GGCCAGGCAG 1 GGCCAGGCCG 2 GGCCAGGTAT 1 GGCCAGGTCA 1 GGCCAGTAAC 1 GGCCAGTGAG 2 GGCCAGTGCC 1 GGCCAGTGTT 1 GGCCATAAAC 1 GGCCATATTT 1 GGCCATCTCT 5 GGCCATTTCT 1 GGCCCACACC 7 GGCCCAGAGC 2 GGCCCAGATC 1 GGCCCAGCTC 1 GGCCCATATA 1 GGCCCATATG 5 GGCCCCATTC 1 GGCCCCATTT 1 GGCCCCCAGG 1 GGCCCCCCTG 1 GGCCCCCTAA 2 GGCCCCGGAC 8 GGCCCCTCAC 1 GGCCCCTCAT 1 GGCCCCTCCT 1 GGCCCGAGTT 1 GGCCCGGAAG 1 GGCCCGGACC 1 GGCCCGGCCC 1 GGCCCGGCTT 1 GGCCCGTGGG 1 GGCCCGTTTT 1 GGCCCTACAA 5 GGCCCTAGGC 4 GGCCCTAGGG 1 GGCCCTCCGG 1 GGCCCTGAGC 6 GGCCCTGCAC 1 GGCCCTGCAG 5 GGCCCTGCTC 1 GGCCCTGGGT 1 GGCCCTGGTG 5 GGCCCTTGCC 2 GGCCGAGCAC 1 GGCCGAGCCC 1 GGCCGAGGAA 1 GGCCGAGGAC 1 GGCCGAGTGT 1 GGCCGCCGCT 2 GGCCGCGTTC 6 GGCCGCTAAG 1 GGCCGCTCAC 1 GGCCGCTCAG 1 GGCCGCTCCC 1 GGCCGCTGGC 1 GGCCGGACAC 1 GGCCGGCTGC 1 GGCCGGGCCT 1 GGCCGGGCGC 1 GGCCGGGGGC 10 GGCCGGTGGC 1 GGCCGTGCTG 1 GGCCGTTAGT 1 GGCCGTTCCC 1 GGCCTAAATA 1 GGCCTATTCT 1 GGCCTCACTA 1 GGCCTCATCC 2 GGCCTCCAGC 2 GGCCTCCCAG 3 GGCCTCCCCC 1 GGCCTCCCTG 1 GGCCTCGCAG 2 GGCCTCGGCC 1 GGCCTCTGAG 3 GGCCTGAGGC 1 GGCCTGCAGG 4 GGCCTGCTCA 1 GGCCTGCTGC 6 GGCCTGCTTA 1 GGCCTGGACT 1 GGCCTGGATG 5 GGCCTGGCCA 1 GGCCTGGCCC 1 GGCCTGGGGG 1 GGCCTGTAAT 1 GGCCTGTGGA 1 GGCCTGTTAA 1 GGCCTTAGGA 1 GGCCTTCCTT 2 GGCCTTGGCT 2 GGCCTTGGTT 1 GGCCTTTTTT 2 GGCGACAACG 1 GGCGACAAGA 1 GGCGACAGAG 3 GGCGACAGGA 1 GGCGACAGTG 1 GGCGACCCGG 1 GGCGACCGGT 1 GGCGACGGTG 1 GGCGAGAACT 1 GGCGAGCCCC 1 GGCGATCTCA 1 GGCGCCAAAA 3 GGCGCCAGCG 1 GGCGCCGAGT 1 GGCGCCTCCT 6 GGCGCTAAGG 1 GGCGGAAGGC 1 GGCGGCACCA 1 GGCGGCCTGG 2 GGCGGCCTGT 1 GGCGGCCTTC 1 GGCGGCTGCA 1 GGCGGCTGCT 1 GGCGGCTGTG 2 GGCGTAGTCT 1 GGCGTCAGGG 1 GGCGTCCTGG 6 GGCGTCCTTA 1 GGCGTGAACA 1 GGCGTGAACC 2 GGCGTGTCCC 1 GGCGTTGTCT 2 GGCTAAATCC 1 GGCTAACATA 1 GGCTAATAAC 1 GGCTACACCT 2 GGCTACACTT 1 GGCTACAGAG 1 GGCTACTCAC 1 GGCTAGAGCA 1 GGCTAGCCCC 1 GGCTAGTACT 1 GGCTAGTATC 1 GGCTATATGA 1 GGCTATATTT 1 GGCTATGCCA 4 GGCTATGGCC 1 GGCTATTAAA 1 GGCTATTTAG 1 GGCTCAAGTG 2 GGCTCAATGA 1 GGCTCACTGT 1 GGCTCAGACA 1 GGCTCAGGGG 1 GGCTCCACGC 1 GGCTCCCAAG 3 GGCTCCCACT 15 GGCTCCTAGG 1 GGCTCCTCGA 8 GGCTCCTGGC 14 GGCTCCTGGT 1 GGCTCCTGTG 1 GGCTCCTTGA 2 GGCTCCTTGT 1 GGCTCGAGTT 1 GGCTCGATCT 1 GGCTCGGGAT 3 GGCTCGTCAG 1 GGCTCTAACA 1 GGCTCTCACT 1 GGCTCTGAGG 1 GGCTCTGCCT 1 GGCTCTGTCA 1 GGCTGAACTG 1 GGCTGAAGGC 1 GGCTGAATTG 1 GGCTGAGAAT 3 GGCTGAGACG 1 GGCTGAGCTC 2 GGCTGAGGGA 2 GGCTGATGTG 1 GGCTGATTTG 1 GGCTGATTTT 2 GGCTGCAGTC 2 GGCTGCCAAA 1 GGCTGCCCAG 1 GGCTGCCGAG 1 GGCTGCCTCG 2 GGCTGCCTGC 5 GGCTGCCTGG 1 GGCTGCTGCC 1 GGCTGCTGGG 1 GGCTGCTTCT 3 GGCTGGAAGA 2 GGCTGGAGCC 1 GGCTGGAGGC 1 GGCTGGCAGG 1 GGCTGGCCCT 1 GGCTGGCCTT 1 GGCTGGGCCT 10 GGCTGGGGCC 2 GGCTGGGGCG 1 GGCTGGGGGC 22 GGCTGGGGGG 1 GGCTGGGTTT 1 GGCTGGTACC 1 GGCTGGTCAC 1 GGCTGGTCCC 2 GGCTGGTCTC 2 GGCTGGTCTG 1 GGCTGGTTCA 1 GGCTGGTTCC 1 GGCTGTAAGT 1 GGCTGTACCC 3 GGCTGTGGCT 1 GGCTGTGGGG 1 GGCTGTTCCC 3 GGCTTAAGGG 1 GGCTTAGTAC 1 GGCTTAGTAG 1 GGCTTAGTGA 2 GGCTTATACA 1 GGCTTCACGG 1 GGCTTCAGAA 1 GGCTTCAGCA 1 GGCTTCAGGA 1 GGCTTCCCCG 1 GGCTTCCTAA 2 GGCTTCCTGG 1 GGCTTCTACC 1 GGCTTCTTCA 1 GGCTTGACCT 1 GGCTTGCCAG 3 GGCTTGCCTC 1 GGCTTGCTGA 2 GGCTTGGCCC 1 GGCTTGGCTT 1 GGCTTGGTCA 1 GGCTTGGTTT 1 GGCTTGTCCC 1 GGCTTTAAGG 3 GGCTTTACCC 6 GGCTTTAGGA 2 GGCTTTAGGG 158 GGCTTTATGG 2 GGCTTTCAGC 1 GGCTTTGATG 1 GGCTTTGATT 2 GGCTTTGCTT 2 GGCTTTGGAG 8 GGCTTTGGTT 1 GGCTTTGTCC 1 GGCTTTTAGG 1 GGCTTTTCCC 1 GGGAAAAGAA 1 GGGAAACCCC 9 GGGAAACCCT 10 GGGAAACCTC 1 GGGAAACCTT 1 GGGAAACGCC 2 GGGAAACTCC 2 GGGAAACTGT 1 GGGAAAGCTG 1 GGGAAAGGGA 1 GGGAAATCGC 1 GGGAAATGAC 1 GGGAACAAAA 1 GGGAACAGGA 1 GGGAACCCCA 1 GGGAACCCCT 1 GGGAACCTCC 1 GGGAACTGCA 1 GGGAAGCAGA 8 GGGAAGCCCC 2 GGGAAGCGTC 1 GGGAAGGCAC 3 GGGAAGGGCA 1 GGGAAGGGCG 2 GGGAAGTACA 1 GGGAAGTCAC 5 GGGAAGTTGA 1 GGGAATAACA 1 GGGAATATGA 1 GGGAATCAAA 3 GGGAATGGTG 1 GGGAATTGCC 1 GGGACAAGAT 1 GGGACACCCA 1 GGGACCCCGG 3 GGGACCTCAG 2 GGGACCTTCT 1 GGGACGAGTG 6 GGGACGGGGT 1 GGGAGAACCT 1 GGGAGACCTC 1 GGGAGAGCCG 1 GGGAGATGCC 1 GGGAGCAGAG 1 GGGAGCCCCT 3 GGGAGCCCGG 3 GGGAGCCGGC 1 GGGAGCCTCA 2 GGGAGCCTTC 1 GGGAGCTGCG 3 GGGAGGAGGT 1 GGGAGGATTG 1 GGGAGGGAAA 1 GGGAGGGGTG 2 GGGAGGTAGC 1 GGGAGGTCTA 1 GGGAGTAATA 1 GGGAGTCATT 1 GGGAGTCCAG 1 GGGAGTGCGC 1 GGGAGTGGAG 1 GGGAGTGGGC 1 GGGAGTGTGG 1 GGGATAAGAT 1 GGGATCAAGG 2 GGGATCCAAC 2 GGGATCCAGG 1 GGGATCGCCC 1 GGGATGCAGC 1 GGGATGGAAC 1 GGGATGGAGA 2 GGGATGGCAG 5 GGGATTACTT 2 GGGATTCACA 1 GGGATTGGTG 1 GGGATTTCAC 1 GGGATTTGGC 1 GGGCAAACCG 1 GGGCAAGCCA 2 GGGCAAGGTC 1 GGGCACATTA 1 GGGCACCAGC 2 GGGCACCGTG 1 GGGCACGCTA 1 GGGCACGTGC 1 GGGCACTGAA 1 GGGCAGAAGG 1 GGGCAGAATT 1 GGGCAGACTG 3 GGGCAGATGC 6 GGGCAGCAAA 1 GGGCAGCAGT 1 GGGCAGCGGG 1 GGGCAGCTGC 2 GGGCAGCTGG 4 GGGCAGGACC 6 GGGCAGGCGT 4 GGGCAGGGGA 1 GGGCAGGGGC 1 GGGCAGGGGT 1 GGGCAGTGGC 1 GGGCATACCC 1 GGGCATATAA 1 GGGCATATAC 1 GGGCATCCGA 1 GGGCATCTCC 1 GGGCCAAAAC 1 GGGCCAAATT 1 GGGCCAATAA 6 GGGCCAGAGC 1 GGGCCAGCCC 1 GGGCCAGCTG 1 GGGCCAGGAG 1 GGGCCAGGGG 2 GGGCCAGGTT 1 GGGCCATAAA 1 GGGCCCAAGG 1 GGGCCCAGGA 2 GGGCCCAGGC 1 GGGCCCCAAA 5 GGGCCCCCAA 1 GGGCCCCCAG 1 GGGCCCTAGG 1 GGGCCCTGGC 1 GGGCCCTTCC 4 GGGCCCTTGG 4 GGGCCCTTTA 1 GGGCCGCAGA 1 GGGCCGCTCA 1 GGGCCGTGGG 1 GGGCCTAAAC 1 GGGCCTCCGT 1 GGGCCTGACA 3 GGGCCTGAGA 1 GGGCCTGAGG 1 GGGCCTGCAG 1 GGGCCTGGCC 1 GGGCCTGGCG 1 GGGCCTGGGG 15 GGGCCTGTGC 3 GGGCCTTCCC 1 GGGCCTTTGA 1 GGGCCTTTTC 2 GGGCGCTGTG 4 GGGCGGACGG 1 GGGCGGACTC 2 GGGCGGAGCT 3 GGGCGGCTGC 1 GGGCGGGAGG 1 GGGCGGGCTT 1 GGGCGGGGGC 1 GGGCGTTTTC 1 GGGCTAACTC 1 GGGCTAATTC 1 GGGCTACAAC 1 GGGCTCACCT 1 GGGCTCCACT 1 GGGCTCCTGT 1 GGGCTCTCCC 1 GGGCTCTCCT 1 GGGCTGAGAC 1 GGGCTGAGCC 2 GGGCTGCCTA 1 GGGCTGCGCG 1 GGGCTGCTGC 3 GGGCTGCTTT 1 GGGCTGGCTT 1 GGGCTGGGCC 4 GGGCTGGGGC 3 GGGCTGGGGG 1 GGGCTGGGGT 36 GGGCTGTTTG 1 GGGCTTATGC 1 GGGCTTGCTG 1 GGGCTTGGCC 1 GGGCTTGGTA 1 GGGCTTGGTT 1 GGGCTTTTGA 1 GGGCTTTTGT 1 GGGGAAAAAA 1 GGGGAAAATG 1 GGGGAAACAG 1 GGGGAAATCA 1 GGGGAAATCC 1 GGGGAAATCG 78 GGGGAAATTT 1 GGGGAACCCA 1 GGGGAACCCC 1 GGGGAAGGGC 1 GGGGAATCGC 1 GGGGACAGGG 1 GGGGACCCCA 1 GGGGACTCAC 1 GGGGACTGAA 2 GGGGACTGGA 1 GGGGACTGGT 2 GGGGAGGCAC 1 GGGGAGGGGC 1 GGGGAGGGGG 2 GGGGAGTAGG 1 GGGGATGAGT 1 GGGGATGGCA 1 GGGGATGGGG 2 GGGGCAATTA 1 GGGGCACGCG 2 GGGGCACGTG 1 GGGGCACTTG 3 GGGGCAGACA 1 GGGGCAGATC 1 GGGGCAGGAG 1 GGGGCAGGCA 2 GGGGCAGGGC 15 GGGGCAGGGG 1 GGGGCATCAG 1 GGGGCCCAGA 1 GGGGCCCCCA 1 GGGGCCCCCT 1 GGGGCCTTGT 1 GGGGCGAGAA 1 GGGGCGCTTG 1 GGGGCGGACG 1 GGGGCGGCGT 1 GGGGCGGGGG 1 GGGGCGGGGT 1 GGGGCGTGCA 1 GGGGCGTTCA 1 GGGGCTCACA 1 GGGGCTCACC 1 GGGGCTCCCA 1 GGGGCTCTGA 1 GGGGCTGACA 1 GGGGCTGCAT 1 GGGGCTGCCC 1 GGGGCTGCGG 1 GGGGCTGGAG 1 GGGGCTGGCA 1 GGGGCTGTAT 1 GGGGCTTAGG 1 GGGGGAAATC 1 GGGGGAACTA 1 GGGGGAATGT 1 GGGGGAATTT 2 GGGGGACGGC 9 GGGGGAGAAG 5 GGGGGAGGGA 3 GGGGGCAAGC 1 GGGGGCAAGG 1 GGGGGCACAC 1 GGGGGCCAGA 1 GGGGGCCCAA 1 GGGGGCCCAG 1 GGGGGCCTTA 1 GGGGGCGCAG 1 GGGGGCGCCT 6 GGGGGCGCTT 1 GGGGGGAAAA 1 GGGGGGACTT 1 GGGGGGAGAA 1 GGGGGGATCA 1 GGGGGGGCGC 1 GGGGGGGCTT 2 GGGGGGGGGA 1 GGGGGGGGGG 26 GGGGGGGGGT 12 GGGGGGGTCT 1 GGGGGGTGGA 2 GGGGGTAACT 14 GGGGGTACTA 1 GGGGGTAGGG 1 GGGGGTCACC 3 GGGGGTCAGG 1 GGGGGTCCAG 1 GGGGGTCGGG 1 GGGGGTGAAG 2 GGGGGTGGAT 5 GGGGGTGGTG 1 GGGGTAAGAA 5 GGGGTACCAC 1 GGGGTACCCC 1 GGGGTATCCC 1 GGGGTATGGT 2 GGGGTCAAAG 1 GGGGTCAAGG 1 GGGGTCAGGA 1 GGGGTCAGGG 111 GGGGTCCATA 1 GGGGTCCGAC 2 GGGGTCCGTG 1 GGGGTCCTTC 1 GGGGTCTGGG 2 GGGGTGAGAC 1 GGGGTGAGGA 1 GGGGTGCACG 1 GGGGTGCTAG 1 GGGGTGCTGT 1 GGGGTGGCAG 1 GGGGTGGGGG 1 GGGGTGGGGT 1 GGGGTGGGTT 1 GGGGTGGTGG 1 GGGGTGTGAG 2 GGGGTGTGTA 1 GGGGTTAACC 1 GGGGTTAAGT 1 GGGGTTAGGG 1 GGGGTTCCAG 1 GGGGTTCCCC 1 GGGGTTGGCC 1 GGGGTTTGGT 1 GGGTAACCCT 1 GGGTAACTGG 1 GGGTACTACT 1 GGGTAGAGAG 1 GGGTAGCCGC 1 GGGTAGCTGG 2 GGGTAGGCCT 1 GGGTAGGTTT 1 GGGTAGTAGG 1 GGGTAGTGTC 1 GGGTATATAA 1 GGGTATCAGG 1 GGGTATGCAG 1 GGGTATTGGT 1 GGGTCAAAAG 7 GGGTCACCTG 1 GGGTCAGGAG 2 GGGTCAGGGA 1 GGGTCAGGGG 2 GGGTCCTCTT 1 GGGTCCTTGA 2 GGGTCGCCAG 1 GGGTCGGGAA 1 GGGTCGTGAT 1 GGGTCTAGAA 1 GGGTCTCCTG 1 GGGTCTGCGG 1 GGGTCTGCTG 1 GGGTCTTCAA 1 GGGTGAATTT 1 GGGTGACAGA 1 GGGTGAGGGG 3 GGGTGATTTG 1 GGGTGCAAAA 2 GGGTGCACCT 1 GGGTGCCAGC 1 GGGTGCCCCA 1 GGGTGCGTAT 1 GGGTGCTGCG 1 GGGTGCTTGG 2 GGGTGGGAGG 1 GGGTGGGCGT 1 GGGTGGGGCC 1 GGGTGGGGGG 1 GGGTGGGGGT 1 GGGTGGGGTT 7 GGGTGGTGGG 1 GGGTGTATGC 1 GGGTGTGGTG 1 GGGTGTGTAT 3 GGGTGTGTTT 1 GGGTTAACAT 1 GGGTTAATTT 1 GGGTTAGGAG 1 GGGTTCCCCG 2 GGGTTCTCAG 1 GGGTTCTCAT 1 GGGTTCTGCA 1 GGGTTGCCAG 1 GGGTTGGCAG 2 GGGTTGGCGT 1 GGGTTGGCTT 19 GGGTTGGGTC 1 GGGTTGTATG 1 GGGTTGTTGG 1 GGGTTTCACA 1 GGGTTTGAAC 1 GGGTTTGGCC 1 GGGTTTTGGA 1 GGGTTTTTAA 2 GGGTTTTTAT 2 GGTAAAACAC 1 GGTAAAACAT 1 GGTAAAAGCC 1 GGTAAAATTA 3 GGTAAAGTTA 1 GGTAACCCGT 1 GGTAACGGGG 1 GGTAACTTTT 1 GGTAAGAACA 1 GGTAAGAGGG 2 GGTAAGTGTG 1 GGTAAGTTTG 1 GGTAATCCGT 6 GGTAATGATG 1 GGTACAAAGT 1 GGTACAAATA 1 GGTACACATA 1 GGTACACTGC 2 GGTACCCATT 3 GGTACCTGCA 1 GGTACGCACC 1 GGTACTCGAT 2 GGTAGAGATA 1 GGTAGAGGCA 1 GGTAGATGGC 1 GGTAGCAGGG 3 GGTAGCCCAC 2 GGTAGCCTAA 1 GGTAGCCTGG 3 GGTAGCTCAG 2 GGTAGGAAGA 1 GGTAGGGTCT 1 GGTAGGTTAT 1 GGTATAGCTT 1 GGTATATGCT 1 GGTATATTGC 1 GGTATCTGGC 1 GGTATGACAG 1 GGTATGAGGA 1 GGTATGCTAG 1 GGTATTAACC 1 GGTATTAGTT 1 GGTATTGCTG 1 GGTATTTATA 1 GGTATTTCAG 1 GGTATTTTGC 1 GGTCAAAGGA 1 GGTCAAGCCA 1 GGTCAAGCCC 1 GGTCAATTTC 1 GGTCACAAGA 1 GGTCACACTA 2 GGTCACATCC 1 GGTCACATCT 1 GGTCAGAAAC 1 GGTCAGAAAT 1 GGTCAGAGAA 2 GGTCAGCCCT 1 GGTCAGGGTG 3 GGTCAGGGTT 1 GGTCAGTCCC 1 GGTCAGTCGG 14 GGTCCAAAAT 1 GGTCCAAATT 1 GGTCCAACTC 1 GGTCCACTGA 1 GGTCCAGTGT 14 GGTCCCACGG 1 GGTCCCCTAC 1 GGTCCCCTTC 1 GGTCCCTCCA 1 GGTCCGAGCC 1 GGTCCGAGGT 1 GGTCCTCACC 1 GGTCCTCCAA 1 GGTCCTCCGT 1 GGTCCTCTCT 1 GGTCCTGGCG 1 GGTCCTGGGT 1 GGTCCTTTTA 1 GGTCGAGTGT 1 GGTCGCTGCA 1 GGTCGGGGGT 2 GGTCGTACCT 1 GGTCGTTAAG 1 GGTCTACTGT 1 GGTCTGAGAC 2 GGTCTGAGTA 1 GGTCTGCAAT 1 GGTCTGCAGC 1 GGTCTGCAGG 1 GGTCTGGCAT 1 GGTCTTAAAT 1 GGTCTTAGCA 1 GGTCTTCTAG 1 GGTCTTTATG 1 GGTCTTTGTT 1 GGTGAAAGAG 1 GGTGAAATAC 1 GGTGAAGACA 1 GGTGAAGAGG 10 GGTGAAGCCC 1 GGTGAATGTT 1 GGTGACAATG 1 GGTGACAGAA 1 GGTGACAGAC 1 GGTGACAGAG 5 GGTGACGAGT 2 GGTGACTCTT 2 GGTGACTTTT 1 GGTGAGACAC 22 GGTGAGACCT 9 GGTGAGCAGT 1 GGTGAGCGTG 1 GGTGAGGAAT 1 GGTGAGGGGC 1 GGTGAGGGGG 1 GGTGAGGTAC 1 GGTGAGGTGG 1 GGTGATACAT 1 GGTGATCCTT 1 GGTGATGAAC 1 GGTGATGAGG 1 GGTGATGGAG 1 GGTGATGTTG 1 GGTGCAAAAG 2 GGTGCAAACT 1 GGTGCACCCG 1 GGTGCAGAGC 1 GGTGCAGGAG 1 GGTGCCAAGA 1 GGTGCCAGGA 1 GGTGCCCAGT 4 GGTGCCTTTC 1 GGTGCGCGTT 1 GGTGCGCTGG 1 GGTGCGTAGC 1 GGTGCGTGTG 1 GGTGCTAGCC 1 GGTGCTCAAA 1 GGTGCTCCCT 2 GGTGCTGACG 1 GGTGCTGCAC 3 GGTGCTGGAG 3 GGTGCTGGAT 1 GGTGGAATCT 1 GGTGGAGCAG 1 GGTGGAGGTG 1 GGTGGAGGTT 1 GGTGGATACT 2 GGTGGATCTC 1 GGTGGATCTT 1 GGTGGATGTG 3 GGTGGCACTC 13 GGTGGCACTG 1 GGTGGCAGGG 1 GGTGGCATAG 1 GGTGGCCCGG 3 GGTGGCCGCT 1 GGTGGCGGCT 1 GGTGGCGGGG 1 GGTGGCGGGT 1 GGTGGCTCAC 1 GGTGGCTCTG 1 GGTGGCTTTG 6 GGTGGCTTTT 1 GGTGGGAACA 2 GGTGGGCCAA 1 GGTGGGCCGC 2 GGTGGGCCGG 1 GGTGGGCTAA 1 GGTGGGGAGA 2 GGTGGGGCCC 1 GGTGGGGCTT 1 GGTGGGGTTT 1 GGTGGGTGTG 1 GGTGGTACAC 2 GGTGGTAGGG 1 GGTGGTCAGA 1 GGTGGTGATG 1 GGTGGTGCAC 1 GGTGGTGGCA 1 GGTGGTGGTC 1 GGTGGTGTCT 30 GGTGGTTAGA 1 GGTGGTTAGG 1 GGTGTAAACC 1 GGTGTATATG 1 GGTGTCCCCA 2 GGTGTCTGTG 2 GGTGTGCTGC 1 GGTGTGGAAG 1 GGTGTGGGGT 1 GGTGTGGGTG 3 GGTGTGGTAG 1 GGTGTGGTGG 1 GGTGTGGTTT 1 GGTGTTGTTT 1 GGTGTTTGTT 1 GGTTAAAGGT 1 GGTTAAGAGC 3 GGTTAAGCTT 1 GGTTACCTGG 1 GGTTAGAGCA 1 GGTTATACCC 1 GGTTATATGC 1 GGTTATGTCA 1 GGTTCAAGCG 1 GGTTCAAGGC 2 GGTTCAGCTA 1 GGTTCAGTGC 1 GGTTCAGTTA 1 GGTTCAGTTT 1 GGTTCCACTC 1 GGTTCGGCTT 1 GGTTCTCTCC 1 GGTTCTGAGA 1 GGTTCTGGGT 1 GGTTCTGGTT 1 GGTTCTGTGC 1 GGTTCTTACT 1 GGTTCTTCTG 1 GGTTGAAAGA 1 GGTTGAGTGT 1 GGTTGATCAC 1 GGTTGCAACT 1 GGTTGCAGTG 1 GGTTGCCAAG 1 GGTTGCCCAC 1 GGTTGCCTCT 1 GGTTGCCTTC 1 GGTTGCTCAT 1 GGTTGCTTCT 1 GGTTGGACAA 1 GGTTGGATTT 2 GGTTGGCAGG 1 GGTTGGCCCA 1 GGTTGGGGTA 1 GGTTGGGTAG 6 GGTTGGGTCT 1 GGTTGGTGGT 3 GGTTGTCTAA 1 GGTTGTGGTT 1 GGTTTAGCCC 1 GGTTTCAGGC 1 GGTTTCCCAG 2 GGTTTGATTA 1 GGTTTGGAGT 1 GGTTTGGCTT 4 GGTTTGGGCC 1 GGTTTGTGTG 2 GGTTTGTTAG 1 GGTTTTCAGG 2 GGTTTTCCCA 1 GGTTTTCCCG 1 GGTTTTCTTT 1 GGTTTTGAAG 1 GGTTTTGCAT 1 GGTTTTTTTG 1 GTAAAAAAAA 7 GTAAAAAATG 1 GTAAAAAGAA 1 GTAAAAAGCC 1 GTAAAACCCC 11 GTAAAACCCT 4 GTAAAACCTC 1 GTAAAACCTG 1 GTAAAACGCC 1 GTAAAACTCC 1 GTAAAAGTTC 2 GTAAAATAAG 1 GTAAAATCCT 1 GTAAACAATA 1 GTAAACACCA 1 GTAAACCCCA 2 GTAAACCCCC 1 GTAAACCCCT 1 GTAAACCCGC 1 GTAAACCTTG 1 GTAAACTCAT 1 GTAAACTTTG 1 GTAAAGGTCA 1 GTAAAGGTTT 1 GTAAAGTATT 1 GTAAATGAGC 1 GTAAATTGGG 1 GTAACAAGCT 1 GTAACATCCC 1 GTAACATTGA 1 GTAACCAAAT 1 GTAACCAGAC 1 GTAACCCCAC 1 GTAACCCCTT 1 GTAACCTCAA 2 GTAACGCAGA 1 GTAACGGCCG 1 GTAACGTCCC 1 GTAACTAAAA 1 GTAACTCAGA 1 GTAACTGGTT 1 GTAACTTCAA 1 GTAAGACCAG 1 GTAAGACCCT 1 GTAAGATTTG 2 GTAAGCACTT 1 GTAAGGGCAG 1 GTAAGGGTAA 1 GTAAGTGCCC 1 GTAAGTGGAT 1 GTAAGTGTAC 10 GTAAGTGTCC 1 GTAAGTGTTT 1 GTAATAAACA 1 GTAATACACA 1 GTAATACCCC 1 GTAATACTGA 1 GTAATAGAAG 1 GTAATCCAGC 1 GTAATCCTGC 24 GTAATCTTAG 1 GTAATGAAGC 2 GTAATGCTGC 1 GTAATGGCTG 1 GTAATGTCCA 1 GTAATTAAAA 1 GTAATTCTCA 2 GTAATTTTTG 1 GTACAAAAAT 1 GTACAAATCA 1 GTACAACCCC 1 GTACACGAGT 1 GTACAGCTCT 2 GTACAGCTTT 1 GTACAGTTAT 1 GTACATCCCA 1 GTACATCCTT 1 GTACATTTGT 1 GTACCACGAG 1 GTACCAGATG 1 GTACCAGGGG 1 GTACCAGGTG 1 GTACCATCAA 1 GTACCCGACG 1 GTACCCTGTA 1 GTACCGGCCT 1 GTACCGTGTG 1 GTACCTCTCC 1 GTACCTGGGA 1 GTACCTGTCC 1 GTACGCATTC 1 GTACGCGGTG 1 GTACGTCCCA 2 GTACGTCTGG 1 GTACTCCAGC 1 GTACTCTACT 1 GTACTCTGAT 1 GTACTGCTCA 1 GTACTGCTGC 1 GTACTGGAGG 2 GTACTGGCAT 1 GTACTGGTAC 7 GTACTGTAAG 1 GTACTGTAGC 3 GTACTGTATG 3 GTACTGTGGC 11 GTACTGTTAT 1 GTACTTAATC 1 GTACTTACCT 1 GTAGAAAGAG 1 GTAGACATCA 2 GTAGACCACT 1 GTAGACCCCA 1 GTAGACTCAC 3 GTAGACTGAA 1 GTAGACTGAG 1 GTAGACTTAA 1 GTAGAGCTTG 1 GTAGAGGCAA 1 GTAGAGGCAG 1 GTAGATGCAA 1 GTAGCAAAAA 1 GTAGCAAATC 1 GTAGCAAGCG 1 GTAGCACACC 1 GTAGCACACG 1 GTAGCACATA 1 GTAGCAGACG 1 GTAGCAGGCG 1 GTAGCAGGGT 1 GTAGCAGGTG 7 GTAGCAGTGT 1 GTAGCATAAA 2 GTAGCATATG 1 GTAGCATTCT 1 GTAGCCACTG 2 GTAGCCTCAA 1 GTAGCCTGTG 1 GTAGCCTTTT 1 GTAGCGCACA 2 GTAGCGCACG 3 GTAGCGCCGC 1 GTAGCGCGTC 1 GTAGCGGAAG 1 GTAGCGGGCG 1 GTAGCGGGTG 1 GTAGCGTGCA 1 GTAGCTAGTG 1 GTAGCTCACA 3 GTAGCTCAGA 1 GTAGCTGAAG 1 GTAGCTGTGC 1 GTAGCTTGCC 2 GTAGCTTGTC 1 GTAGGAAGTC 1 GTAGGAAGTT 1 GTAGGAGCTG 1 GTAGGAGGTT 1 GTAGGAGTCG 1 GTAGGAGTTT 1 GTAGGCACTG 1 GTAGGCAGCT 1 GTAGGCGCCT 1 GTAGGGCTCA 1 GTAGGGGCCT 2 GTAGGGGGCT 1 GTAGGGGTAA 17 GTAGGGGTAG 1 GTAGGTCTAA 1 GTAGGTGTAG 1 GTAGTAACAT 1 GTAGTAACCC 1 GTAGTACACG 1 GTAGTACTAG 1 GTAGTAGTTA 1 GTAGTATAAC 1 GTAGTCCAAA 1 GTAGTCGGTA 2 GTAGTCTCTA 1 GTAGTGAGCG 1 GTAGTGCAGA 1 GTAGTGGGCG 1 GTAGTGGGTG 4 GTAGTGGTGC 1 GTAGTGGTGG 1 GTAGTGTACA 1 GTAGTGTGCA 1 GTAGTGTGCG 1 GTAGTGTGTA 1 GTAGTGTGTG 1 GTAGTTCTGG 1 GTAGTTTTGA 1 GTAGTTTTTA 1 GTATAACCTC 1 GTATAAGAAC 1 GTATAATAGC 1 GTATAATTAG 1 GTATACAACA 2 GTATACACTT 1 GTATACCCAC 1 GTATACTACT 1 GTATAGAAAG 1 GTATAGCTGC 1 GTATAGGCGT 1 GTATAGTGAT 1 GTATATAAAA 1 GTATATCATT 1 GTATATGAGT 1 GTATCAAGCA 1 GTATCCACTA 1 GTATCCGAAA 1 GTATCCTCTT 1 GTATCGGCCG 1 GTATCTTAAT 1 GTATGAAATA 1 GTATGAAGTA 1 GTATGAATAT 2 GTATGACCAC 1 GTATGAGGTG 1 GTATGAGTAG 2 GTATGATCCT 1 GTATGCAGAA 1 GTATGGACCT 1 GTATGGAGAA 1 GTATGTAACT 1 GTATGTGCCT 1 GTATGTTCTC 1 GTATGTTGCC 1 GTATTCCCCT 4 GTATTCCTGC 1 GTATTCTCCA 1 GTATTCTCTC 1 GTATTCTGCA 1 GTATTGCATT 1 GTATTGGAGA 2 GTATTGGCAT 1 GTATTGGCCT 8 GTATTGGTGA 1 GTATTGTATA 1 GTATTTATCT 1 GTATTTCTTA 1 GTATTTGAAG 1 GTATTTGCAA 1 GTATTTTACC 1 GTCAAACAGG 1 GTCAAACCCA 1 GTCAAACCGC 1 GTCAAATCCT 1 GTCAAATTAA 1 GTCAACAGTA 8 GTCAACCCCA 1 GTCAACGGCG 3 GTCAAGAAGT 1 GTCAAGCCAG 1 GTCAAGCCTG 1 GTCAAGCTGG 1 GTCAATAAGA 1 GTCAATTTCC 1 GTCACACACA 2 GTCACACACT 2 GTCACACCAC 11 GTCACACCAT 1 GTCACAGATT 1 GTCACAGGAA 1 GTCACAGTCC 1 GTCACAGTGT 1 GTCACCCCCA 5 GTCACCGAGC 1 GTCACCTCTG 1 GTCACCTTTA 1 GTCACGAGCA 2 GTCACGCCAC 1 GTCACGCCCT 1 GTCACTAATT 1 GTCACTACAG 1 GTCACTCAAA 1 GTCACTCATA 3 GTCACTCATT 1 GTCACTCTCC 1 GTCACTGCCT 2 GTCACTGCTG 1 GTCACTGTGA 1 GTCACTTAGC 1 GTCACTTCAC 1 GTCAGAAAGG 1 GTCAGAACAC 2 GTCAGACAGC 1 GTCAGAGACG 1 GTCAGAGCAA 1 GTCAGATGTC 2 GTCAGATTTG 1 GTCAGCAGTC 1 GTCAGCCCAC 1 GTCAGCCCAG 1 GTCAGCTTGT 1 GTCAGGACAG 1 GTCAGGCTGG 1 GTCAGGTTAA 1 GTCAGTCCCC 1 GTCAGTGTTC 1 GTCAGTGTTG 1 GTCAGTTTCC 1 GTCATAAATG 1 GTCATCACCC 1 GTCATCATCG 1 GTCATCCGGG 1 GTCATCCTGT 1 GTCATTGTGG 1 GTCATTTTTA 1 GTCCAAACTA 1 GTCCAACAAC 1 GTCCAAGGCA 1 GTCCACAATT 1 GTCCACACTA 1 GTCCACCCGG 1 GTCCACGCCG 1 GTCCACTGCT 1 GTCCAGAGCT 1 GTCCAGGGCC 1 GTCCAGTCTC 1 GTCCATAAGC 1 GTCCATCATA 4 GTCCATCCCC 1 GTCCCAACAC 1 GTCCCAAGCT 1 GTCCCAGCCT 1 GTCCCCCAAG 1 GTCCCCGTCT 1 GTCCCCTGCC 1 GTCCCGGACA 1 GTCCCGGGCA 1 GTCCCGTACA 1 GTCCCGTTCA 1 GTCCCTAGCA 1 GTCCCTCTCA 2 GTCCCTGAGC 1 GTCCCTGCCT 3 GTCCCTGCTT 1 GTCCCTGGTG 1 GTCCCTTATT 1 GTCCCTTTAG 1 GTCCGAAAAT 1 GTCCGAAACT 1 GTCCGCCTCA 1 GTCCGGTGGT 1 GTCCGTACTT 1 GTCCTATTCT 1 GTCCTGTCTG 1 GTCCTTAATG 1 GTCCTTCAGA 1 GTCCTTCGGC 1 GTCCTTGCTC 1 GTCCTTGGGC 1 GTCCTTTCTG 1 GTCCTTTGCG 1 GTCGAGCGGA 1 GTCGATAATC 1 GTCGATTCCT 1 GTCGCCTCCC 1 GTCGCGAAGA 1 GTCGCTAAGT 1 GTCGGAATTT 1 GTCGGGACAG 1 GTCGGGGCGT 1 GTCGGGGGAG 1 GTCGGGGGCG 2 GTCGGGTGGC 1 GTCGGTATTA 1 GTCGTGGCGG 1 GTCGTGGGCG 1 GTCGTGGGCT 1 GTCGTTACAA 2 GTCGTTACAC 1 GTCTAACCAT 1 GTCTAACCTC 1 GTCTACTCCT 2 GTCTATGAAG 1 GTCTCAAACT 1 GTCTCAAGCA 1 GTCTCAATTC 1 GTCTCACACT 1 GTCTCACATC 1 GTCTCACGTG 3 GTCTCAGGGC 1 GTCTCATTTG 5 GTCTCCAGAT 1 GTCTCCAGTT 1 GTCTCCCAGG 1 GTCTCCTAAT 8 GTCTCCTGTG 1 GTCTCCTTCT 1 GTCTCGAGAT 1 GTCTCGCTGA 2 GTCTCTCTGG 1 GTCTCTGCTG 1 GTCTCTGTCC 1 GTCTCTGTTA 1 GTCTCTTGCT 1 GTCTGAACTA 1 GTCTGACCCC 4 GTCTGAGCTC 6 GTCTGATATC 1 GTCTGATGAC 1 GTCTGCACCT 3 GTCTGCCACT 1 GTCTGCCCTC 1 GTCTGCCGGC 1 GTCTGCGAGC 1 GTCTGCGTGC 6 GTCTGCTAAC 1 GTCTGCTGCT 1 GTCTGCTGTA 1 GTCTGGAACC 1 GTCTGGAGGA 1 GTCTGGGGCT 29 GTCTGGGGGA 1 GTCTGGGGGC 1 GTCTGGGGGT 1 GTCTGTATAT 1 GTCTGTCCAT 1 GTCTGTGAGA 3 GTCTGTGTAT 1 GTCTGTGTTG 1 GTCTGTTCAG 1 GTCTTAAAGT 1 GTCTTAACTC 1 GTCTTACCAA 1 GTCTTACCTA 2 GTCTTACTTT 1 GTCTTAGTGT 1 GTCTTATTCC 1 GTCTTCAGCA 1 GTCTTCCAGG 2 GTCTTCGGTG 2 GTCTTCTACC 1 GTCTTCTTAA 1 GTCTTGAAGC 1 GTCTTGATCC 1 GTCTTGCACT 3 GTCTTGTCCC 1 GTCTTTCCCT 1 GTCTTTCTAT 1 GTCTTTCTGG 2 GTCTTTGGAA 1 GTGAAAACCA 1 GTGAAAACCC 10 GTGAAAACCT 4 GTGAAAACGG 1 GTGAAAACGT 1 GTGAAAACTC 1 GTGAAAACTG 1 GTGAAAATCT 2 GTGAAAATGA 2 GTGAAAATTT 1 GTGAAACACA 1 GTGAAACACC 2 GTGAAACACT 4 GTGAAACCAA 1 GTGAAACCAC 6 GTGAAACCCA 18 GTGAAACCCC 362 GTGAAACCCG 7 GTGAAACCCT 170 GTGAAACCGC 4 GTGAAACCGT 4 GTGAAACCTA 1 GTGAAACCTC 32 GTGAAACCTG 6 GTGAAACCTT 11 GTGAAACGCC 9 GTGAAACGCT 5 GTGAAACGTC 1 GTGAAACTAA 1 GTGAAACTAT 1 GTGAAACTCC 27 GTGAAACTCG 1 GTGAAACTCT 10 GTGAAACTGC 1 GTGAAACTGT 1 GTGAAACTTT 1 GTGAAAGACG 1 GTGAAAGATT 1 GTGAAAGCCC 8 GTGAAAGCCG 1 GTGAAAGCCT 2 GTGAAAGCTC 1 GTGAAAGTCC 1 GTGAAATAAC 1 GTGAAATCCA 1 GTGAAATCCC 15 GTGAAATCCT 8 GTGAAATCGC 2 GTGAAATCTC 1 GTGAAATGCC 3 GTGAAATTCT 1 GTGAACCAGT 1 GTGAACCCAA 1 GTGAACCCCA 5 GTGAACCCCC 4 GTGAACCCCG 4 GTGAACCCCT 2 GTGAACCCTG 1 GTGAACCCTT 1 GTGAACTGTT 1 GTGAACTTAC 2 GTGAACTTCA 1 GTGAAGAGTA 1 GTGAAGCACA 1 GTGAAGCAGA 1 GTGAAGCCCA 1 GTGAAGCCCC 15 GTGAAGCCCG 1 GTGAAGCCCT 7 GTGAAGCCGC 1 GTGAAGCCTC 1 GTGAAGCTGA 3 GTGAAGGCAG 12 GTGAAGGCAT 1 GTGAAGGCCT 2 GTGAAGGCTC 1 GTGAAGGCTG 2 GTGAAGTCCC 1 GTGAAGTCTC 1 GTGAAGTTGC 1 GTGAATAAAC 1 GTGAATCCCC 2 GTGAATCCCG 1 GTGAATCGCC 1 GTGAATCTAT 1 GTGAATCTCC 1 GTGAATCTCG 1 GTGAATGACG 1 GTGAATGGCG 1 GTGAATGTAT 1 GTGAATTGAG 1 GTGACAAAGT 1 GTGACAACAC 8 GTGACACACA 1 GTGACACATA 1 GTGACACATT 1 GTGACACCCC 1 GTGACACCCG 2 GTGACACCCT 1 GTGACACCTA 1 GTGACAGAAG 15 GTGACAGAGA 1 GTGACAGAGT 1 GTGACAGATG 1 GTGACAGCCC 2 GTGACAGGCT 1 GTGACAGGTG 1 GTGACATACA 1 GTGACATCCC 2 GTGACATCTC 2 GTGACATTTC 1 GTGACCACAG 1 GTGACCACGG 76 GTGACCAGCG 1 GTGACCATAA 1 GTGACCCCAA 6 GTGACCCCCA 1 GTGACCCCGG 1 GTGACCCCTC 1 GTGACCCCTT 1 GTGACCCTTG 1 GTGACCGCCA 1 GTGACCTCCT 3 GTGACCTCTT 1 GTGACGGAGG 1 GTGACGGCGG 1 GTGACGGGTG 1 GTGACGTCTA 1 GTGACGTGCA 1 GTGACGTGTG 1 GTGACTATAA 1 GTGACTATGC 1 GTGACTCAAC 1 GTGACTCACG 1 GTGACTCATA 1 GTGACTCTTG 1 GTGACTGTAG 1 GTGACTGTGG 1 GTGACTTTGT 1 GTGAGAAACT 1 GTGAGACACT 1 GTGAGACCCC 11 GTGAGACCCG 1 GTGAGACCCT 7 GTGAGACCTC 4 GTGAGACCTT 2 GTGAGACTGG 1 GTGAGAGGTG 1 GTGAGATCCC 1 GTGAGATCCT 4 GTGAGATTCC 1 GTGAGCAAGA 2 GTGAGCCAGT 1 GTGAGCCCAT 2 GTGAGCCCCA 1 GTGAGCCCCC 1 GTGAGCCCCG 1 GTGAGGACCC 1 GTGAGGAGGG 1 GTGAGGAGTA 1 GTGAGGCCCC 3 GTGAGGCCCT 1 GTGAGGCTGT 1 GTGAGGCTTG 1 GTGAGGGCAC 3 GTGAGGGCAG 1 GTGAGGGCTA 1 GTGAGTCACG 2 GTGAGTCAGA 1 GTGAGTGAGT 1 GTGAGTGTGT 1 GTGAGTTAAA 1 GTGATAAAGC 1 GTGATACCCC 3 GTGATACCCT 1 GTGATACCTG 1 GTGATACGCA 1 GTGATAGAGC 1 GTGATAGCCT 1 GTGATAGGCT 1 GTGATATCCC 1 GTGATCATTA 6 GTGATCGAGG 1 GTGATCGCAC 1 GTGATCGTCG 1 GTGATCTGGT 1 GTGATGAAAC 2 GTGATGAGCT 1 GTGATGCACA 3 GTGATGCACG 2 GTGATGCAGG 1 GTGATGCATA 1 GTGATGCGCA 1 GTGATGGATG 1 GTGATGGCCA 1 GTGATGGCTA 1 GTGATGGGCG 1 GTGATGGGCT 3 GTGATGGGGC 1 GTGATGGGGG 1 GTGATGGTCA 1 GTGATGGTGT 3 GTGATGTCTG 1 GTGATGTGCG 2 GTGATGTGGT 1 GTGATGTGTG 1 GTGATTCCGC 2 GTGATTCGCT 1 GTGATTGTTC 1 GTGATTTCAC 1 GTGATTTGTT 1 GTGATTTTTA 1 GTGCAAAAGA 1 GTGCAAAATG 1 GTGCAACTCC 1 GTGCAAGGCT 1 GTGCAATGAG 1 GTGCACCCCA 1 GTGCACCTCT 1 GTGCACTGAC 1 GTGCACTGAG 12 GTGCAGAAAA 1 GTGCAGAAGG 1 GTGCAGCTCC 1 GTGCAGGCAC 2 GTGCAGGCTC 3 GTGCAGGGGC 1 GTGCAGGTTC 1 GTGCAGTACC 1 GTGCAGTCCG 1 GTGCAGTCCT 1 GTGCAGTGGT 1 GTGCATAGCT 1 GTGCATAGGC 1 GTGCATCAGA 1 GTGCATCCCG 2 GTGCATTAAC 1 GTGCCAAGCA 1 GTGCCACACG 1 GTGCCACCAG 1 GTGCCACCCA 1 GTGCCACCTG 1 GTGCCACGCC 1 GTGCCACGGG 1 GTGCCACTTT 1 GTGCCAGCAA 1 GTGCCAGCCC 1 GTGCCAGTGA 1 GTGCCAGTGC 1 GTGCCATACA 1 GTGCCATATT 6 GTGCCATCCT 1 GTGCCATTTT 1 GTGCCCAACT 1 GTGCCCACGG 1 GTGCCCAGCC 1 GTGCCCCCAG 1 GTGCCCGCCG 2 GTGCCCGTGC 24 GTGCCCTGGA 1 GTGCCGAATG 1 GTGCCGCACA 1 GTGCCGCCGC 1 GTGCCGCTTG 2 GTGCCGGGTG 1 GTGCCGTGCA 1 GTGCCTAGGA 2 GTGCCTAGGG 3 GTGCCTCACA 1 GTGCCTCCAA 1 GTGCCTCCCG 1 GTGCCTCGGA 1 GTGCCTGAGA 7 GTGCCTGCAT 1 GTGCCTGGGC 1 GTGCCTGTGC 3 GTGCGATGAG 1 GTGCGCACCC 1 GTGCGCACCT 1 GTGCGCAGAG 1 GTGCGCAGGT 2 GTGCGCGCAC 1 GTGCGCTAGG 6 GTGCGCTGAA 1 GTGCGCTGAG 20 GTGCGCTGGA 1 GTGCGCTTAG 1 GTGCGGAGGA 2 GTGCGGCCCT 1 GTGCGGCTGG 2 GTGCGGTACC 1 GTGCGGTCCT 1 GTGCGGTGGC 1 GTGCGTCTCT 1 GTGCGTGCTG 6 GTGCGTGGGG 1 GTGCTAAAGG 1 GTGCTAAGCA 1 GTGCTAAGCG 3 GTGCTAGGAA 1 GTGCTATGAG 1 GTGCTATGCC 1 GTGCTATTCT 4 GTGCTCAAAC 1 GTGCTCACGC 5 GTGCTCATAG 1 GTGCTCATTC 2 GTGCTCTGTA 1 GTGCTCTGTG 1 GTGCTCTTGC 1 GTGCTGAATC 3 GTGCTGAATG 13 GTGCTGATCC 1 GTGCTGATTC 3 GTGCTGCCTA 1 GTGCTGCGAT 1 GTGCTGCGTG 5 GTGCTGGAAG 1 GTGCTGGACC 7 GTGCTGGAGA 6 GTGCTGGCTC 2 GTGCTGGGGA 1 GTGCTGGTAG 1 GTGCTGGTGC 1 GTGCTGTATG 1 GTGCTGTCTC 1 GTGCTGTGCA 2 GTGCTGTGTG 1 GTGCTGTTGC 1 GTGCTGTTTA 2 GTGCTTATAA 2 GTGCTTCATT 1 GTGCTTGGGA 1 GTGCTTGGTA 1 GTGCTTGTAA 1 GTGCTTTCCT 1 GTGGAAACCC 1 GTGGAAATGG 1 GTGGAACAAA 1 GTGGAACCCC 7 GTGGAACCCG 1 GTGGAACCCT 4 GTGGAAGGCA 1 GTGGAATCTC 1 GTGGAATGAA 1 GTGGAATTTC 1 GTGGACACAC 1 GTGGACAGTA 1 GTGGACCCCA 5 GTGGACCCCG 2 GTGGACCCTG 1 GTGGACCGGA 1 GTGGACGCCT 1 GTGGACTAGT 1 GTGGACTATG 1 GTGGAGATCA 1 GTGGAGCATC 1 GTGGAGCCCC 1 GTGGAGCCCG 1 GTGGAGCGGA 1 GTGGAGCGGG 1 GTGGAGCGTG 1 GTGGAGCTAG 1 GTGGAGGACG 1 GTGGAGGCCT 1 GTGGAGGGCA 1 GTGGAGGGCG 3 GTGGAGGGGC 2 GTGGAGGGTG 3 GTGGAGGTAG 1 GTGGAGGTGC 7 GTGGAGGTTC 1 GTGGAGTGCA 1 GTGGAGTGGG 1 GTGGAGTGTA 1 GTGGAGTGTG 1 GTGGATAAAG 1 GTGGATAAGC 1 GTGGATAAGT 1 GTGGATCAGG 1 GTGGATGGAC 1 GTGGATTATC 1 GTGGATTCAT 1 GTGGCAAACG 2 GTGGCAAAGA 1 GTGGCAAGCA 2 GTGGCAAGCG 1 GTGGCAAGTG 2 GTGGCAATCA 1 GTGGCACAAG 2 GTGGCACACA 14 GTGGCACACC 1 GTGGCACACG 19 GTGGCACAGG 1 GTGGCACATT 3 GTGGCACCTG 4 GTGGCACGAG 1 GTGGCACGCA 11 GTGGCACGCC 3 GTGGCACGCG 5 GTGGCACGTC 1 GTGGCACGTG 16 GTGGCACTCA 2 GTGGCACTCG 3 GTGGCACTCT 1 GTGGCACTTG 2 GTGGCAGAGA 2 GTGGCAGCAC 1 GTGGCAGCAG 1 GTGGCAGCCA 1 GTGGCAGCCG 1 GTGGCAGCGC 1 GTGGCAGCTT 2 GTGGCAGGAG 2 GTGGCAGGCA 18 GTGGCAGGCG 23 GTGGCAGGGC 1 GTGGCAGGTA 2 GTGGCAGGTG 33 GTGGCAGTCG 1 GTGGCATACA 2 GTGGCATAGC 2 GTGGCATATG 3 GTGGCATCAC 1 GTGGCATCCT 1 GTGGCATCTG 1 GTGGCCACGC 1 GTGGCCACGG 1 GTGGCCACTG 3 GTGGCCAGAG 1 GTGGCCATCG 1 GTGGCCCAAA 1 GTGGCCCGCG 1 GTGGCCCGGG 1 GTGGCCGTCT 1 GTGGCCGTGG 1 GTGGCCTACT 1 GTGGCCTATG 1 GTGGCCTATT 1 GTGGCCTGTG 2 GTGGCGAGCA 1 GTGGCGAGCG 1 GTGGCGAGTG 2 GTGGCGCACA 10 GTGGCGCACC 1 GTGGCGCACG 13 GTGGCGCATA 2 GTGGCGCATT 1 GTGGCGCCCA 2 GTGGCGCCTG 1 GTGGCGCGAG 1 GTGGCGCGCA 5 GTGGCGCGCG 8 GTGGCGCGTG 11 GTGGCGCTCC 1 GTGGCGGACA 2 GTGGCGGACG 1 GTGGCGGATG 1 GTGGCGGCGG 2 GTGGCGGCTG 3 GTGGCGGGAA 4 GTGGCGGGAG 1 GTGGCGGGCA 26 GTGGCGGGCC 1 GTGGCGGGCG 25 GTGGCGGGCT 1 GTGGCGGGTC 1 GTGGCGGGTG 20 GTGGCGGGTT 2 GTGGCGGTCA 2 GTGGCGGTCG 1 GTGGCGTACA 1 GTGGCGTATG 2 GTGGCGTGAA 1 GTGGCGTGCA 12 GTGGCGTGCC 3 GTGGCGTGCG 1 GTGGCGTGGC 1 GTGGCGTGTG 6 GTGGCGTTCG 1 GTGGCGTTTT 1 GTGGCTAACG 1 GTGGCTAATA 1 GTGGCTCAAG 1 GTGGCTCACA 36 GTGGCTCACC 1 GTGGCTCACG 34 GTGGCTCACT 3 GTGGCTCAGA 1 GTGGCTCAGG 2 GTGGCTCATA 1 GTGGCTCATT 1 GTGGCTCCCG 1 GTGGCTCGCA 1 GTGGCTCGCG 1 GTGGCTCGTG 5 GTGGCTCTCG 1 GTGGCTCTGC 1 GTGGCTCTTG 1 GTGGCTGACA 2 GTGGCTGACT 1 GTGGCTGATG 1 GTGGCTGCAG 1 GTGGCTGCTG 8 GTGGCTGGCG 2 GTGGCTGGCT 1 GTGGCTGGTA 1 GTGGCTTACA 1 GTGGCTTAGG 1 GTGGCTTATG 2 GTGGCTTGTG 4 GTGGCTTTCT 1 GTGGGAACAG 1 GTGGGAACCA 1 GTGGGAATAA 1 GTGGGAATAG 1 GTGGGAATCT 1 GTGGGAATGT 1 GTGGGAATTC 1 GTGGGACCCC 3 GTGGGACTCT 1 GTGGGAGACC 2 GTGGGAGCTG 2 GTGGGAGGTG 2 GTGGGAGTCT 1 GTGGGATGGC 1 GTGGGCAATC 1 GTGGGCACCT 3 GTGGGCCAGG 1 GTGGGCCCGT 1 GTGGGCCGCT 9 GTGGGCCTTG 1 GTGGGCGCCT 1 GTGGGCGGGC 1 GTGGGCGTTA 1 GTGGGCTCAC 1 GTGGGGCTAG 2 GTGGGGCTCC 1 GTGGGGGCGC 1 GTGGGGGGAG 2 GTGGGTACAC 1 GTGGGTCCTG 2 GTGGGTCGCA 1 GTGGGTGAAG 1 GTGGGTGAGG 1 GTGGGTTGCT 1 GTGGGTTGGC 9 GTGGTAACAA 1 GTGGTAAGAT 1 GTGGTAAGTG 1 GTGGTACACA 3 GTGGTACACG 2 GTGGTACACT 1 GTGGTACAGG 18 GTGGTACCAC 1 GTGGTACGGG 1 GTGGTACGTG 2 GTGGTAGATG 1 GTGGTAGGAA 1 GTGGTAGGCA 1 GTGGTAGGCC 1 GTGGTAGGCG 1 GTGGTAGGTC 1 GTGGTCACAC 2 GTGGTCACGC 1 GTGGTCACGT 1 GTGGTCAGTG 1 GTGGTCATTC 1 GTGGTCCGTG 1 GTGGTCCTCT 1 GTGGTCTACT 1 GTGGTGAGCG 1 GTGGTGAGTG 3 GTGGTGATGT 1 GTGGTGCACA 13 GTGGTGCACG 16 GTGGTGCACT 3 GTGGTGCAGG 2 GTGGTGCATA 3 GTGGTGCATT 3 GTGGTGCCCA 1 GTGGTGCCCG 1 GTGGTGCCGC 1 GTGGTGCCTG 1 GTGGTGCGCA 6 GTGGTGCGCG 4 GTGGTGCGCT 3 GTGGTGCGGG 1 GTGGTGCGTG 15 GTGGTGCGTT 2 GTGGTGCTCA 2 GTGGTGCTCG 1 GTGGTGCTTG 1 GTGGTGGACA 2 GTGGTGGACG 1 GTGGTGGATG 1 GTGGTGGCAG 10 GTGGTGGCCA 1 GTGGTGGCGG 1 GTGGTGGCTT 1 GTGGTGGGAG 1 GTGGTGGGAT 1 GTGGTGGGCA 19 GTGGTGGGCC 1 GTGGTGGGCG 11 GTGGTGGGGC 1 GTGGTGGGTA 1 GTGGTGGGTG 22 GTGGTGGTCT 1 GTGGTGGTGC 1 GTGGTGGTGG 2 GTGGTGGTGT 1 GTGGTGTACA 2 GTGGTGTACG 4 GTGGTGTATG 1 GTGGTGTCTG 2 GTGGTGTCTT 1 GTGGTGTGCA 6 GTGGTGTGCG 3 GTGGTGTGGC 1 GTGGTGTGGG 2 GTGGTGTGTA 1 GTGGTGTGTG 7 GTGGTGTGTT 1 GTGGTGTTTT 1 GTGGTTCACA 1 GTGGTTCACT 1 GTGGTTGTGG 1 GTGGTTGTGT 2 GTGGTTTGCT 1 GTGTAAATGG 1 GTGTAATAAG 13 GTGTACAATG 1 GTGTACCGGA 1 GTGTAGGGAA 1 GTGTATATTG 1 GTGTATCTTT 9 GTGTATGTTA 1 GTGTCAAGGA 1 GTGTCACGCA 1 GTGTCAGGCA 1 GTGTCATCCC 1 GTGTCCATCT 1 GTGTCCCACC 1 GTGTCCCTGT 2 GTGTCCGGCG 2 GTGTCCTACC 1 GTGTCCTCCT 3 GTGTCCTCGC 1 GTGTCCTCTG 1 GTGTCCTGCA 1 GTGTCGCTGT 1 GTGTCGGAGA 1 GTGTCGGCTG 2 GTGTCGGGCG 2 GTGTCGGGGG 1 GTGTCTCACA 2 GTGTCTCATC 3 GTGTCTCCCC 1 GTGTCTCGCA 4 GTGTCTGACA 1 GTGTCTGTCT 1 GTGTCTGTGA 1 GTGTCTTCAC 1 GTGTCTTTGG 1 GTGTGAAACC 2 GTGTGAACCC 1 GTGTGAACTA 1 GTGTGACCGG 1 GTGTGACGTC 1 GTGTGAGTGT 3 GTGTGATGCT 1 GTGTGCACCT 2 GTGTGCAGTA 3 GTGTGCATTT 1 GTGTGCCTCC 2 GTGTGCGCCT 1 GTGTGCTGGC 2 GTGTGCTTAG 2 GTGTGGACAC 1 GTGTGGATTT 1 GTGTGGCAAT 1 GTGTGGGAGA 1 GTGTGGGCGC 1 GTGTGGGGGG 10 GTGTGGGGTG 1 GTGTGGGTAC 1 GTGTGGTATT 1 GTGTGGTCAC 1 GTGTGGTGGC 1 GTGTGGTGGT 2 GTGTGTAAAA 3 GTGTGTATGT 1 GTGTGTCTCG 1 GTGTGTCTGT 1 GTGTGTGCAG 1 GTGTGTGCGC 1 GTGTGTGCTT 1 GTGTGTGGAG 1 GTGTGTGGCG 1 GTGTGTGGTG 2 GTGTGTGTCT 1 GTGTGTGTGG 1 GTGTGTGTGT 2 GTGTGTTGAA 1 GTGTGTTGGC 1 GTGTGTTTGG 1 GTGTGTTTGT 17 GTGTTAAAAA 2 GTGTTAACCA 11 GTGTTAGCGC 2 GTGTTATTAA 1 GTGTTCAGAA 1 GTGTTCCCAT 1 GTGTTCCCCG 1 GTGTTCCTCC 1 GTGTTCCTGG 1 GTGTTCTGAC 3 GTGTTCTGCA 1 GTGTTCTTGG 2 GTGTTGAGAG 1 GTGTTGATGA 1 GTGTTGCACA 17 GTGTTGCACC 1 GTGTTGCGCA 1 GTGTTGGATG 1 GTGTTGGGCA 1 GTGTTGGGGG 1 GTGTTGGTGT 1 GTGTTGTGCG 1 GTGTTGTTCT 1 GTGTTTCAAG 1 GTGTTTCGAA 1 GTGTTTGGTG 1 GTGTTTGTTT 1 GTTAAAACCC 1 GTTAAACCCC 1 GTTAAAGCCC 1 GTTAAAGTTT 1 GTTAAATCCT 1 GTTAAATCGA 1 GTTAACCCTG 1 GTTAACCTCT 1 GTTAACGTCC 12 GTTAACTGGG 1 GTTAAGAATA 1 GTTAAGAATG 1 GTTAAGAGGG 1 GTTAAGATGA 1 GTTAAGCCCT 1 GTTAATACAC 1 GTTAATACAG 1 GTTAATCTGG 1 GTTAATTCAG 1 GTTAATTGCT 1 GTTACAAACT 1 GTTACACCCC 1 GTTACAGTGA 1 GTTACCCAGG 1 GTTACCCGCG 1 GTTACCGAGG 1 GTTAGAAGCT 2 GTTAGAGTTT 1 GTTAGATGCC 1 GTTAGGAAAC 1 GTTAGGAAAT 1 GTTATAATAG 1 GTTATATCCA 1 GTTATCAGTC 1 GTTATCCTTA 1 GTTATGAACT 1 GTTATGAAGC 1 GTTATGCGTC 1 GTTATGGCAC 2 GTTATGGGAA 1 GTTATTCAGT 1 GTTATTCCCC 1 GTTATTGAGG 3 GTTCAAGATG 1 GTTCAATCCC 4 GTTCAATTAA 1 GTTCACAGCA 1 GTTCACAGGT 1 GTTCACATTA 9 GTTCACGCCC 1 GTTCACTGCA 1 GTTCACTGCT 4 GTTCACTGTT 1 GTTCAGAGAG 1 GTTCAGCTCT 2 GTTCAGCTGT 2 GTTCAGGCCA 1 GTTCAGTCTT 1 GTTCATAGGT 1 GTTCATAGTA 2 GTTCATCATA 1 GTTCATCCTT 2 GTTCATTGTA 1 GTTCCAAAAC 1 GTTCCAAAGA 1 GTTCCAAGCA 1 GTTCCACAGA 1 GTTCCACTAC 1 GTTCCAGCAG 3 GTTCCAGCTA 1 GTTCCAGTGA 1 GTTCCCACAC 1 GTTCCCACGA 2 GTTCCCACGC 1 GTTCCCCAGT 1 GTTCCCTACT 1 GTTCCCTGAC 1 GTTCCCTGGC 19 GTTCCGAATG 1 GTTCCGGCGG 1 GTTCCGTGTC 1 GTTCCTCAGC 1 GTTCCTGCTT 1 GTTCCTGGAC 1 GTTCCTGGCT 1 GTTCCTTCTT 1 GTTCCTTTGG 1 GTTCGGGCCG 3 GTTCGTGCCA 24 GTTCGTGTCA 1 GTTCGTGTGC 1 GTTCTAGGAG 2 GTTCTCAGTG 1 GTTCTCCAAT 1 GTTCTCCCAC 4 GTTCTCCCCC 1 GTTCTCCCTT 1 GTTCTCCTTT 1 GTTCTCGGAG 1 GTTCTCTTTG 1 GTTCTGAACT 1 GTTCTGATGG 1 GTTCTGCTGC 1 GTTCTGGAAG 1 GTTCTGGGGA 1 GTTCTGGTTT 13 GTTCTGTCCA 1 GTTCTGTGGT 1 GTTCTGTGTG 1 GTTCTGTTTA 1 GTTCTTCTGT 1 GTTCTTTCTT 1 GTTGAAACTC 2 GTTGAACAAA 1 GTTGACAGGC 1 GTTGACAGTA 1 GTTGACATAC 1 GTTGACTTAC 2 GTTGAGACAC 1 GTTGAGACTT 1 GTTGAGGACA 2 GTTGAGGTTA 1 GTTGAGTGAG 1 GTTGATGAAC 1 GTTGATGTCA 1 GTTGCACACA 1 GTTGCACCAC 2 GTTGCAGCTG 1 GTTGCAGGTA 1 GTTGCAGTCA 1 GTTGCATTTT 1 GTTGCCAGGT 1 GTTGCCTACG 1 GTTGCGAGAG 1 GTTGCGGGGC 1 GTTGCGGGTG 1 GTTGCTAGGA 1 GTTGCTCACT 2 GTTGCTCTAT 1 GTTGCTGCCC 1 GTTGCTGCTT 1 GTTGGACAGC 1 GTTGGCAAAA 1 GTTGGCCCGT 1 GTTGGCTGGA 1 GTTGGCTTAA 1 GTTGGCTTCT 1 GTTGGCTTTT 1 GTTGGGAATA 1 GTTGGGAGTC 4 GTTGGGCCCA 1 GTTGGGCGTG 2 GTTGGGCTCA 1 GTTGGGGGTA 2 GTTGGGGTCT 10 GTTGGGTATA 1 GTTGGGTTAA 1 GTTGGTAGCC 1 GTTGGTAGCT 1 GTTGGTCTGT 3 GTTGGTGATT 1 GTTGGTGGCA 1 GTTGGTGGTT 1 GTTGGTGTCT 1 GTTGTAAATA 1 GTTGTACCCA 1 GTTGTAGGCA 1 GTTGTATCAC 1 GTTGTCTCTG 1 GTTGTCTTTG 3 GTTGTGATGT 1 GTTGTGATTG 1 GTTGTGCATA 1 GTTGTGCCAC 1 GTTGTGCGTG 1 GTTGTGGAGG 2 GTTGTGGGTA 1 GTTGTGGTAA 1 GTTGTGGTTA 103 GTTGTGGTTG 2 GTTGTGGTTT 1 GTTGTGTCAC 1 GTTGTGTCCA 1 GTTGTTCAGC 1 GTTGTTGCGC 1 GTTGTTTGTT 1 GTTGTTTTCA 1 GTTTAAAGAG 1 GTTTAAATCG 6 GTTTAAATGG 1 GTTTAAGTGG 1 GTTTAAGTTA 3 GTTTACATTT 1 GTTTACTAGA 1 GTTTACTATA 1 GTTTAGAGGG 2 GTTTAGCATC 1 GTTTATGATC 1 GTTTCAAAAC 1 GTTTCAAATT 1 GTTTCAATTG 1 GTTTCAGCTG 1 GTTTCAGGAG 1 GTTTCAGGTA 2 GTTTCAGTTA 1 GTTTCATTAC 1 GTTTCCACCA 1 GTTTCCACCG 1 GTTTCCAGCC 1 GTTTCCCCAA 1 GTTTCCGTGA 1 GTTTCTATCA 2 GTTTCTCTCT 1 GTTTCTGATG 1 GTTTCTGCAA 1 GTTTCTGGCC 1 GTTTCTTCCC 2 GTTTCTTCTA 1 GTTTGAAAAC 1 GTTTGACAGA 1 GTTTGACCCA 1 GTTTGAGAAG 4 GTTTGAGTTT 1 GTTTGATAAA 2 GTTTGCAAGT 3 GTTTGCAGGG 1 GTTTGCCTCT 1 GTTTGCTGAC 1 GTTTGGAGTC 1 GTTTGGCAGT 11 GTTTGGCGCA 1 GTTTGGCGTC 1 GTTTGGGGAC 1 GTTTGGGGCG 1 GTTTGGTTAA 1 GTTTGTAAAA 1 GTTTGTACAA 1 GTTTGTACAG 1 GTTTGTAGTG 1 GTTTGTATAC 2 GTTTGTCAAA 1 GTTTGTCAAT 1 GTTTGTGAAT 2 GTTTGTGATG 2 GTTTGTGGTA 1 GTTTGTTGGG 1 GTTTGTTTGC 1 GTTTTAGTGA 1 GTTTTATGCA 1 GTTTTCAAAA 2 GTTTTCAGAG 1 GTTTTCATTC 1 GTTTTCCATA 2 GTTTTCCCTT 1 GTTTTCTCAT 1 GTTTTGAAAT 1 GTTTTGAGAT 1 GTTTTGCAAG 1 GTTTTGTAAC 2 GTTTTGTACA 2 GTTTTGTATG 1 GTTTTGTGCG 1 GTTTTTAAAA 1 GTTTTTAAAT 1 GTTTTTACCT 1 GTTTTTCATT 1 GTTTTTGCTT 3 GTTTTTGTGG 1 GTTTTTTGTC 1 TAAAAAAAAA 5 TAAAAAAAAG 1 TAAAAAACAG 1 TAAAAAAGGG 1 TAAAAAGGAA 1 TAAAAATAGC 1 TAAAAATGGT 1 TAAAAATGTA 1 TAAAAATTGG 1 TAAAACAAGA 2 TAAAACATTC 1 TAAAACCCTA 1 TAAAACCTCA 1 TAAAACCTGC 1 TAAAACTCTG 1 TAAAAGGCAT 1 TAAAATAAAG 1 TAAAATACTC 1 TAAAATATGA 1 TAAAATATGG 2 TAAAATCAAA 1 TAAAATCTGG 2 TAAAATTACA 1 TAAAATTCTT 1 TAAAATTTCT 1 TAAAATTTGT 1 TAAACAAAGC 1 TAAACAGAAT 1 TAAACAGAGA 1 TAAACAGGTT 1 TAAACATTCT 2 TAAACATTGT 1 TAAACCGGAA 1 TAAACCGTAT 1 TAAACCTGAA 1 TAAACCTGAG 1 TAAACTGTTT 3 TAAAGAAGTT 1 TAAAGACTTG 2 TAAAGAGTGG 1 TAAAGCACTT 1 TAAAGCAGTA 1 TAAAGCTGTC 2 TAAAGGCCAC 1 TAAAGGCTAC 1 TAAAGGTTTT 1 TAAAGTAGTG 1 TAAAGTCCAT 1 TAAAGTCTGG 1 TAAAGTGCTT 1 TAAAGTGTCT 1 TAAATAAAAA 1 TAAATAAAGC 1 TAAATAAATA 1 TAAATAAGAA 2 TAAATAAGGA 1 TAAATAATAG 1 TAAATAATTT 3 TAAATACAAA 1 TAAATAGTTC 1 TAAATCAACT 1 TAAATCATTG 1 TAAATCCCAG 1 TAAATGAAAC 2 TAAATGAAAG 1 TAAATTATGG 1 TAAATTCACC 2 TAAATTCTGT 1 TAAATTGCAA 5 TAAATTGTCA 1 TAAATTTGGT 1 TAACAAAACT 1 TAACAAAGGA 1 TAACAAAGGT 1 TAACAACACC 1 TAACAATATC 1 TAACAATCAG 1 TAACAATTGA 1 TAACACACCA 1 TAACACCAGA 1 TAACAGAAGG 1 TAACAGCCAG 1 TAACAGGAAG 1 TAACAGGGGG 3 TAACAGTTAA 1 TAACATACGA 1 TAACATTAAA 3 TAACATTAGG 1 TAACATTGGT 1 TAACCAAACA 2 TAACCAATCA 4 TAACCATTTA 1 TAACCATTTT 1 TAACCCAAGC 1 TAACCCACAC 1 TAACCCAGAA 1 TAACCCAGCA 1 TAACCCAGGT 1 TAACCGAGTG 1 TAACCGCGGC 1 TAACCTAGAA 1 TAACCTATCA 1 TAACCTGCTA 1 TAACCTTGGC 1 TAACGAAATT 1 TAACGAACAA 1 TAACGTACAG 1 TAACGTCTGC 2 TAACGTTACA 1 TAACTAGTTT 1 TAACTATCCA 1 TAACTCATAA 1 TAACTGACCG 1 TAACTGAGGC 1 TAACTGGAGC 1 TAACTGGAGG 3 TAACTGGATC 1 TAACTGGTTA 1 TAACTGTAAG 1 TAACTGTCTT 4 TAACTGTGAC 1 TAACTTACTG 1 TAACTTAGCG 1 TAACTTCCAA 1 TAACTTCTCT 1 TAACTTGTGA 1 TAACTTTAAA 1 TAACTTTAGG 1 TAACTTTCAG 1 TAACTTTCCC 1 TAAGAAGCCC 2 TAAGAAGGCT 1 TAAGACCTTT 1 TAAGACGTGC 1 TAAGACTTTG 1 TAAGATGCAT 1 TAAGATTTCA 3 TAAGCAGATG 1 TAAGCAGCAC 1 TAAGCAGGAA 1 TAAGCCCAGG 1 TAAGCCGGGC 1 TAAGCTACAA 1 TAAGCTGTGC 1 TAAGGACGAG 1 TAAGGACTGA 1 TAAGGAGATG 1 TAAGGAGCTG 38 TAAGGAGTTG 1 TAAGGATCAC 1 TAAGGATTTT 1 TAAGGGAGAC 3 TAAGGTATTA 1 TAAGGTATTG 2 TAAGGTTTTG 1 TAAGTAAGTA 1 TAAGTACGGT 1 TAAGTAGAAT 1 TAAGTAGCAA 1 TAAGTAGCAG 1 TAAGTAGGGC 1 TAAGTATAAA 1 TAAGTATACA 1 TAAGTATCAG 1 TAAGTCCTTC 1 TAAGTCCTTG 1 TAAGTCGTCT 1 TAAGTCTAGA 1 TAAGTGAACA 2 TAAGTGATCC 1 TAAGTGGAAT 3 TAAGTTCCTG 1 TAAGTTCCTT 1 TAAGTTTCTG 1 TAATAAAACC 1 TAATAAACAG 1 TAATAAACTA 2 TAATAAAGAA 1 TAATAAAGGT 24 TAATAAATGC 1 TAATAAATGT 1 TAATAAGCAC 2 TAATAATTAT 1 TAATACCAAG 2 TAATACTGAA 1 TAATACTTTT 2 TAATAGTATT 1 TAATAGTTCA 1 TAATATAAAA 1 TAATATCAAA 1 TAATATCGTC 1 TAATATGAGC 1 TAATATTTTT 1 TAATCAAGCA 1 TAATCAATAC 2 TAATCACCAA 1 TAATCATCAG 1 TAATCCAAAA 1 TAATCCACAA 1 TAATCCAGCA 1 TAATCCCAAC 2 TAATCCCAGC 16 TAATCCTCAA 2 TAATCTCAGC 2 TAATCTCTTA 1 TAATCTTGGG 1 TAATCTTTAC 1 TAATCTTTCT 1 TAATCTTTTA 1 TAATGAACTA 1 TAATGACAAG 1 TAATGACCAG 1 TAATGAGTTG 1 TAATGATTTG 1 TAATGCTAAA 1 TAATGGAAAA 1 TAATGGATCA 1 TAATGGATGT 1 TAATGGGAGT 2 TAATGGTAAC 7 TAATGGTAGC 2 TAATGGTATC 1 TAATGTCACT 1 TAATGTGCTT 1 TAATGTTCTC 1 TAATTACTCT 3 TAATTCAGTG 1 TAATTCCAGC 2 TAATTCTACC 1 TAATTCTCAG 1 TAATTCTGCT 1 TAATTCTGGT 1 TAATTCTTAA 1 TAATTCTTCT 3 TAATTGCCAT 2 TAATTGCTAC 1 TAATTGGTAG 1 TAATTGTAGC 1 TAATTGTGCA 2 TAATTTCACT 1 TAATTTGCAT 2 TAATTTGTAC 1 TAATTTTATT 1 TAATTTTGAA 1 TAATTTTTGC 20 TAATTTTTGT 1 TAATTTTTTT 1 TACAAAACCA 5 TACAAAACTG 1 TACAAAAGTG 4 TACAAAATCG 46 TACAAACCTG 1 TACAAAGAGA 1 TACAAATACT 1 TACAAATCGA 1 TACAAATTGT 1 TACAACCTCT 1 TACAAGAGGA 8 TACAAGTCAC 1 TACAAGTTTT 2 TACAATAAAC 3 TACAATAACC 1 TACAATAAGA 1 TACAATAATT 8 TACAATGACA 1 TACAATTGCT 1 TACAATTGTG 2 TACAATTTAA 1 TACAATTTGC 1 TACAATTTTA 1 TACACACGGA 1 TACACAGATG 1 TACACAGGAG 2 TACACATTGC 1 TACACCCCGA 1 TACACCTAGA 1 TACACCTGAG 1 TACACGGGCA 1 TACACGTCAT 1 TACACGTGAG 1 TACACGTGCA 1 TACACGTTTT 1 TACACTAACG 1 TACACTGCTT 1 TACACTGTTA 1 TACACTTGCC 1 TACACTTGCT 1 TACAGAAATC 1 TACAGACTCC 1 TACAGAGACG 1 TACAGAGCTC 2 TACAGAGGGA 5 TACAGATAGT 1 TACAGATCCC 1 TACAGATTCT 1 TACAGCACAG 1 TACAGCACGG 7 TACAGCCCCC 2 TACAGCGAGC 2 TACAGGCATA 1 TACAGGTATT 1 TACAGTAATT 1 TACAGTATGC 1 TACAGTATGT 1 TACAGTCTGT 1 TACAGTGCTC 1 TACAGTTACA 1 TACATAATTA 4 TACATAATTC 1 TACATACACC 1 TACATACTAA 1 TACATAGAAA 1 TACATAGAAT 1 TACATAGGTA 1 TACATAGTCC 1 TACATATGGA 1 TACATCCGAA 2 TACATCTTTC 1 TACATTAAAG 1 TACATTCTGT 1 TACATTGCCG 1 TACATTGCTT 3 TACATTGTTT 1 TACATTTTAT 1 TACATTTTCA 5 TACATTTTCT 1 TACCAAAGCC 1 TACCAAGAAA 2 TACCAAGCTG 1 TACCAAGGAT 1 TACCAAGTAT 1 TACCAAGTTT 1 TACCACAATG 1 TACCACACTA 2 TACCACCACG 1 TACCACCTCC 1 TACCACTAAG 1 TACCACTGAG 1 TACCACTTCT 1 TACCAGCGCC 1 TACCAGCTGC 1 TACCAGGAAC 4 TACCAGGCGG 1 TACCAGTGTA 7 TACCATAGAA 1 TACCATCAAT 37 TACCCAAAGA 1 TACCCAAATA 1 TACCCAAGGT 1 TACCCACACC 1 TACCCACAGA 3 TACCCACTAT 2 TACCCAGGAG 1 TACCCAGGGC 1 TACCCATCGG 1 TACCCATTAC 1 TACCCCAAAC 1 TACCCCACCC 12 TACCCCACCT 2 TACCCCAGAA 2 TACCCCATAA 1 TACCCCCAAA 1 TACCCCCATA 1 TACCCCCGAG 1 TACCCCTGAA 2 TACCCCTTAA 1 TACCCCTTGA 1 TACCCGAAAA 1 TACCCGCCTC 1 TACCCGTAAT 1 TACCCTAAAA 19 TACCCTAAAC 1 TACCCTAGAA 12 TACCCTAGAC 2 TACCCTCAAA 1 TACCCTCAGT 1 TACCCTGAAA 1 TACCCTGAAC 1 TACCCTGCCT 1 TACCCTGGAT 1 TACCCTGGCA 3 TACCCTGTGT 1 TACCGATTAA 1 TACCGCCCGT 3 TACCGCTCCC 1 TACCGGCTTA 1 TACCGTAAAA 1 TACCGTACAT 1 TACCTAAGTT 1 TACCTATAAT 1 TACCTATATA 1 TACCTATGAG 1 TACCTATTAA 2 TACCTCAGGG 1 TACCTCCTGA 1 TACCTCTGAC 1 TACCTCTGAT 4 TACCTCTGGA 1 TACCTGAAGT 3 TACCTGTAGT 1 TACCTGTGCC 1 TACCTGTGTT 1 TACCTTGCAA 1 TACCTTGTGC 1 TACCTTTAAT 1 TACCTTTATG 1 TACCTTTATT 1 TACCTTTGAA 1 TACCTTTGCT 6 TACCTTTTCC 1 TACCTTTTTA 1 TACGAAGCCG 1 TACGAAGTTC 5 TACGACACGA 1 TACGACAGGC 1 TACGAGCATC 1 TACGAGGCCG 4 TACGAGGGCC 1 TACGATGAGT 2 TACGCGGGTG 1 TACGCGTACA 1 TACGCTAAAA 1 TACGCTTGGT 2 TACGGATTAG 1 TACGGCTGTG 1 TACGGGGATC 1 TACGGTGGCG 1 TACGGTGTGG 1 TACGTACTGC 2 TACGTCAGCT 1 TACGTCCACG 9 TACGTCTGAT 1 TACGTGACAT 1 TACGTTGCAG 2 TACGTTTCTC 1 TACTAAAAAA 3 TACTAAATAG 1 TACTAAGAAT 1 TACTAATAAA 5 TACTACCCAA 1 TACTAGAATT 1 TACTAGCACT 1 TACTAGGCCG 1 TACTAGTCCT 2 TACTATAAAA 1 TACTATTAAT 2 TACTATTGAA 1 TACTCAAGCG 1 TACTCAATGC 1 TACTCACACA 1 TACTCATCTA 1 TACTCCCTCC 1 TACTCCGTTA 1 TACTCCTAAG 1 TACTCGGCCA 1 TACTCGGGAG 3 TACTCGGTTG 1 TACTCTAGTA 1 TACTCTCAAA 1 TACTCTGTAT 1 TACTCTTGGC 13 TACTCTTGGG 1 TACTGAAACA 2 TACTGATGAA 1 TACTGATTCA 1 TACTGCCTCT 1 TACTGCGCGC 1 TACTGCTAGG 1 TACTGCTCGG 13 TACTGCTGAT 1 TACTGGCTGC 1 TACTGGTGTA 1 TACTGGTTTA 4 TACTGTACTT 1 TACTGTAGAC 1 TACTGTAGTC 1 TACTGTCTAT 1 TACTGTGATG 2 TACTGTGGAT 2 TACTGTGGTC 1 TACTGTTTTC 1 TACTTATTGG 1 TACTTGCTAT 1 TACTTGGCAC 1 TACTTGGGGG 1 TACTTGGTCT 1 TACTTGTATT 1 TACTTGTCAG 1 TACTTGTGCC 1 TACTTGTGTG 1 TACTTGTGTT 1 TACTTGTTAC 1 TACTTGTTAG 1 TACTTGTTTT 1 TACTTTATTT 2 TACTTTCCCT 1 TAGAAAAAAC 1 TAGAAAAATA 1 TAGAAAAGAG 1 TAGAAAATAA 1 TAGAAACCAG 1 TAGAAAGCCG 1 TAGAAAGGCA 6 TAGAAAGGTA 1 TAGAACAAAT 1 TAGAACTGCT 2 TAGAAGAATG 1 TAGAAGATGC 1 TAGAAGCCAA 2 TAGAAGTAGT 1 TAGAATAATC 1 TAGAATAGAA 1 TAGAATGAAA 1 TAGAATGGTG 1 TAGACAAAAA 1 TAGACAACCC 1 TAGACCCCCC 1 TAGACGCACA 1 TAGACTAGCA 22 TAGACTATAT 1 TAGACTCATT 1 TAGACTGGCA 1 TAGACTGGGT 1 TAGACTTATT 2 TAGACTTCCC 1 TAGACTTGAA 1 TAGAGAATGA 1 TAGAGAGAGA 1 TAGAGCAGAA 1 TAGAGCAGTA 1 TAGAGCCAAT 1 TAGAGCTTGC 1 TAGAGGGATC 1 TAGAGTTACC 1 TAGATAAATG 1 TAGATAATGG 3 TAGATAGCAT 1 TAGATCAGAG 1 TAGATCCCAA 1 TAGATGCCTG 1 TAGATGTGAT 1 TAGATTAGTG 1 TAGATTATTA 1 TAGATTCGGG 1 TAGATTTCAA 1 TAGCAAAAGT 1 TAGCAAACTT 1 TAGCAAAGGT 1 TAGCAATCAG 2 TAGCACAGTT 1 TAGCACCCAG 1 TAGCAGACCC 2 TAGCAGAGGC 3 TAGCAGCTGC 1 TAGCAGCTGG 1 TAGCAGGGGG 1 TAGCAGTCAG 1 TAGCAGTTAC 1 TAGCAGTTCT 1 TAGCATAAAC 1 TAGCATTTTA 1 TAGCCAGACT 1 TAGCCAGCAG 1 TAGCCATCTT 1 TAGCCCCAGC 4 TAGCCCGGCC 1 TAGCCCTCCT 1 TAGCCGCGGG 1 TAGCCGCTGA 4 TAGCCGTACA 1 TAGCCTCCTG 1 TAGCCTGGAC 1 TAGCCTGGGC 2 TAGCTAATGC 1 TAGCTACAGG 1 TAGCTACTCG 1 TAGCTAGCAA 2 TAGCTATGAA 1 TAGCTCAAAT 1 TAGCTCAGAA 1 TAGCTCCCAT 1 TAGCTCGATC 1 TAGCTCTATG 2 TAGCTCTTGC 1 TAGCTCTTTA 1 TAGCTGAGCT 1 TAGCTGAGGC 2 TAGCTGCCTT 1 TAGCTGCTGG 1 TAGCTGGAAC 1 TAGCTTCTGA 1 TAGCTTTCTT 1 TAGCTTTGTT 1 TAGGAAAATA 1 TAGGAAAGCT 1 TAGGAAGGCC 1 TAGGAATGAT 1 TAGGACAACT 4 TAGGACCCTG 2 TAGGACCTTC 1 TAGGAGAATC 1 TAGGAGAATG 1 TAGGAGAGCC 1 TAGGAGATGG 1 TAGGAGATTT 1 TAGGAGTAGT 1 TAGGAGTTAA 1 TAGGATCTAA 1 TAGGATGGGG 6 TAGGCAAGAA 1 TAGGCAAGTC 1 TAGGCACAGA 1 TAGGCCACAA 1 TAGGCCCAAG 5 TAGGCCGGGG 1 TAGGCGAAGT 1 TAGGCTGCCT 1 TAGGCTGTCT 1 TAGGGAAGCA 1 TAGGGAAGGC 1 TAGGGCAATC 1 TAGGGCTTCC 1 TAGGGGAGGG 4 TAGGGGCCGG 1 TAGGGGCTTT 1 TAGGGTCTTG 1 TAGGGTGCGG 1 TAGGGTGGTA 1 TAGGGTGTAT 1 TAGGTAAGTG 1 TAGGTAGCTC 2 TAGGTAGCTG 1 TAGGTATATT 1 TAGGTCACTC 1 TAGGTCAGTT 1 TAGGTCTTTT 1 TAGGTGAAGG 1 TAGGTGGAAG 1 TAGGTGGGGG 4 TAGGTGTATG 1 TAGGTTATTC 1 TAGGTTCTAT 1 TAGGTTGACT 1 TAGGTTGCCA 1 TAGGTTGTCA 1 TAGGTTGTCG 1 TAGGTTGTCT 65 TAGGTTTAAT 1 TAGGTTTGCA 3 TAGTAAAATT 1 TAGTAAAGTC 1 TAGTAACAGC 1 TAGTAACCAT 1 TAGTAAGGTG 2 TAGTAAGTCA 1 TAGTAATCAT 1 TAGTACTGCT 1 TAGTAGAGTG 1 TAGTAGATGC 1 TAGTAGCTCT 1 TAGTAGTTTT 1 TAGTATACTA 1 TAGTATTTTC 1 TAGTCAAATC 1 TAGTCAATGT 1 TAGTCACAGA 1 TAGTCACCAG 1 TAGTCATCTT 1 TAGTCCAACT 1 TAGTCCCAGC 4 TAGTCCCCGC 1 TAGTCCCTCT 3 TAGTCCTAGC 1 TAGTCGGAAA 1 TAGTCTACTC 1 TAGTCTTAAC 3 TAGTGAAACA 1 TAGTGAACAC 1 TAGTGAGATG 1 TAGTGAGCTA 1 TAGTGAGTGG 1 TAGTGCAAAT 1 TAGTGGGTAG 1 TAGTGGGTGG 2 TAGTGTATAA 1 TAGTGTTAGC 1 TAGTGTTCTT 1 TAGTTAAGCC 2 TAGTTAAGTG 1 TAGTTCCAAA 1 TAGTTCCAGC 1 TAGTTGAAGC 1 TAGTTGAAGT 2 TAGTTGAGCA 1 TAGTTGAGCG 3 TAGTTGCTAT 1 TAGTTGCTGG 1 TAGTTGGAAA 3 TAGTTGGAAC 1 TAGTTGTAGG 2 TAGTTGTGCG 1 TAGTTGTGTG 3 TAGTTGTTTA 2 TAGTTTCAAC 2 TAGTTTGGCT 1 TAGTTTGTGG 1 TATAAAGTTG 1 TATAAATAAA 1 TATAACCAAT 1 TATAAGGTGG 1 TATAAGTAAA 1 TATAAGTTGG 1 TATAATCTTT 1 TATAATGCAA 1 TATAATGTGC 1 TATAATTGTT 1 TATACAAACC 1 TATACAAGGC 1 TATACACTCA 2 TATACACTTC 1 TATACAGGCA 1 TATACATACA 1 TATACATTGT 1 TATACCAATC 4 TATACCACGC 1 TATACCAGGG 1 TATACCCGGA 1 TATACCTATC 1 TATACGATGT 1 TATACTAAGG 1 TATACTTGAA 1 TATAGATCCT 2 TATAGATCGT 1 TATAGATTTT 1 TATAGCCAAT 1 TATAGGCATT 1 TATAGTAGGG 1 TATAGTCCTC 2 TATAGTTAAG 1 TATAGTTGAG 2 TATATAAGAG 1 TATATAATTG 1 TATATAGAAT 1 TATATATATC 1 TATATATTTG 1 TATATCACCA 1 TATATCGAAA 1 TATATCTACA 1 TATATCTTCT 1 TATATGAATT 1 TATATGCTGT 1 TATATGGGTG 1 TATATGTGTT 1 TATATGTTTA 1 TATATTGATT 1 TATATTTATG 1 TATCAAAACA 1 TATCAACACT 1 TATCAATGGG 1 TATCACTCTG 1 TATCAGGACA 1 TATCATAGAG 1 TATCATCTGA 1 TATCCAACAC 1 TATCCAACTA 1 TATCCAAGAA 1 TATCCAGGAA 1 TATCCATATT 1 TATCCCAACT 1 TATCCCAGAA 7 TATCCCATCA 2 TATCCCGGAA 1 TATCCCTTAA 1 TATCCGTACA 1 TATCCTAGGG 1 TATCCTCTGT 1 TATCCTGGAA 1 TATCCTGGCT 1 TATCCTGTTT 1 TATCGAAATA 1 TATCGTGGCA 2 TATCGTTGCC 1 TATCTAAACT 1 TATCTAATAA 1 TATCTAGAAA 1 TATCTATGTC 1 TATCTCACTT 2 TATCTCGTCT 1 TATCTCTCTT 1 TATCTCTGAA 1 TATCTGATAA 2 TATCTGATAT 1 TATCTGATCT 1 TATCTGCAAT 1 TATCTGCCAG 1 TATCTGCGCA 1 TATCTGCTCC 1 TATCTGCTGA 2 TATCTGGTCT 9 TATCTGTAAG 1 TATCTGTACT 1 TATCTGTCTA 2 TATCTGTGTT 1 TATCTGTTGG 1 TATGAAAAAC 1 TATGAAAAAG 1 TATGAAAACA 2 TATGAAACCC 1 TATGAAATTT 1 TATGAACTGA 1 TATGAAGAAC 1 TATGAAGAAT 1 TATGAAGGAG 1 TATGAATCAC 1 TATGAATCAG 1 TATGAATCTT 1 TATGAATTCA 1 TATGACAGAA 1 TATGACAGTC 1 TATGACCACA 1 TATGACTTAA 5 TATGACTTTA 1 TATGAGACAG 1 TATGAGATAG 1 TATGAGCACG 1 TATGAGTATG 1 TATGATATGG 1 TATGATGAGC 1 TATGATTTGG 2 TATGCACCAC 1 TATGCATTTG 3 TATGCATTTT 1 TATGCCAGGC 1 TATGCCCTAT 1 TATGCCTTTT 1 TATGCGCTTG 1 TATGCGGTAC 1 TATGCTCAGT 1 TATGCTGTAA 1 TATGCTGTTG 1 TATGCTTACA 1 TATGCTTAGT 1 TATGGAAAGA 1 TATGGAAGGT 1 TATGGAAGTA 1 TATGGCCTAT 1 TATGGCTTTA 1 TATGGGGATA 1 TATGGGTTCC 2 TATGGTACCA 2 TATGGTTTCA 1 TATGTAAAAA 1 TATGTAAAAT 1 TATGTAAATA 1 TATGTAAATG 2 TATGTAATAC 1 TATGTACAAC 1 TATGTACTCC 2 TATGTAGGAG 1 TATGTAGTGA 1 TATGTAGTTT 1 TATGTATCCT 3 TATGTATGTG 1 TATGTCAGGG 1 TATGTCCATC 1 TATGTGAAAA 1 TATGTGACAC 1 TATGTGAGCA 1 TATGTGATTT 1 TATGTGCACA 1 TATGTGCAGT 1 TATGTGCCTT 1 TATGTGGGCT 1 TATGTGGGTT 1 TATGTGTCCA 1 TATGTGTTCT 1 TATGTGTTTA 1 TATGTTATTG 1 TATGTTCAGA 1 TATGTTCCTT 1 TATGTTGATT 1 TATGTTTCAT 1 TATGTTTTTA 1 TATTAAATAG 3 TATTAACGTG 1 TATTAACTCT 1 TATTAAGAGT 1 TATTAAGCCT 1 TATTACAACC 1 TATTAGACAA 1 TATTAGATAA 1 TATTAGCAGT 1 TATTAGCTCC 1 TATTAGCTCT 1 TATTATGATT 1 TATTATTAGC 1 TATTATTATT 1 TATTATTGTC 2 TATTCAAAGT 1 TATTCAACTC 1 TATTCACCAT 1 TATTCAGGGT 1 TATTCATAAT 2 TATTCATTGA 1 TATTCCAAAA 1 TATTCCCCAC 6 TATTCCCTAT 1 TATTCCTCAA 1 TATTCTATTC 1 TATTCTCAAT 1 TATTCTCACC 1 TATTCTCGCG 1 TATTCTGAAA 1 TATTCTGTCA 1 TATTCTGTGC 1 TATTGAAAAC 1 TATTGAAACA 1 TATTGAAAGG 1 TATTGAAGAC 1 TATTGAAGTC 1 TATTGACAAC 2 TATTGAGCTG 1 TATTGAGTAA 1 TATTGATTGT 1 TATTGCCAAG 1 TATTGCCTGC 1 TATTGGACCT 1 TATTGGCCTG 1 TATTGTATAT 1 TATTGTGTGT 2 TATTTATATT 1 TATTTATGGA 2 TATTTATTCA 2 TATTTATTCC 1 TATTTATTTA 1 TATTTCACCA 1 TATTTCACCG 2 TATTTCACTT 1 TATTTCCCTG 1 TATTTCCTCC 1 TATTTCTGAC 1 TATTTGCACT 1 TATTTGCTAC 1 TATTTTAATG 1 TATTTTACGT 2 TATTTTACTG 2 TATTTTAGTC 1 TATTTTCCAT 1 TATTTTCTGC 1 TATTTTCTTC 1 TATTTTCTTG 2 TATTTTGTGA 1 TATTTTTACT 1 TATTTTTCCT 1 TATTTTTCTA 1 TATTTTTGGC 1 TATTTTTGTT 2 TATTTTTTCC 1 TCAAAAAAAA 1 TCAAAAAGTA 1 TCAAAAATTG 1 TCAAAACCTC 1 TCAAAAGACC 1 TCAAAAGCCG 1 TCAAAAGCTG 1 TCAAAATTTA 1 TCAAACAACT 1 TCAAACCCAA 1 TCAAACGTGT 1 TCAAACTGTG 2 TCAAATAAAT 1 TCAAATACCC 1 TCAAATCACA 1 TCAAATCTTT 1 TCAAATGCAA 1 TCAAATGCAT 5 TCAAATGTCA 2 TCAAATTTAG 1 TCAACAATAG 1 TCAACACCCC 1 TCAACAGCAG 3 TCAACAGTGT 1 TCAACATTAT 1 TCAACCACCT 1 TCAACCCCTT 1 TCAACCCTCA 1 TCAACCTTAT 1 TCAACGGTGT 2 TCAACGTACA 1 TCAACTGAAG 7 TCAACTGGTT 1 TCAACTGTGA 1 TCAACTGTGT 1 TCAACTTGAA 1 TCAAGAAACA 1 TCAAGAAATT 1 TCAAGAACAT 1 TCAAGAACTC 1 TCAAGAATCC 1 TCAAGACATT 1 TCAAGACCCT 1 TCAAGAGCCG 1 TCAAGATGAT 1 TCAAGCAATC 3 TCAAGCCATC 6 TCAAGCTTAA 1 TCAAGGAACA 1 TCAAGGACCA 1 TCAAGGCAAT 2 TCAAGGCCCC 1 TCAAGGGCCC 1 TCAAGGGGGC 1 TCAAGTCCAG 1 TCAAGTGCTG 1 TCAAGTGGTA 1 TCAAGTTCAC 3 TCAAGTTTAT 2 TCAATAAAGA 9 TCAATAAAGG 1 TCAATACTAT 1 TCAATCAAGA 2 TCAATCTGTA 1 TCAATGCAAA 1 TCAATTAAGA 1 TCAATTCTAA 1 TCAATTGATC 7 TCAATTTTGG 1 TCACAAATTA 1 TCACAAGCAA 13 TCACAAGGAG 1 TCACAATACC 1 TCACAATAGG 1 TCACAATCTT 1 TCACACACAT 1 TCACACAGTG 1 TCACACTACC 1 TCACACTGAC 1 TCACAGATCA 1 TCACAGCAAG 2 TCACAGCTCA 1 TCACAGCTGT 4 TCACAGTACA 1 TCACAGTGCC 3 TCACAGTGCT 1 TCACAGTGGC 1 TCACATCTTT 1 TCACATTCCT 1 TCACATTTAA 1 TCACCAAGCA 1 TCACCACACC 2 TCACCACACT 1 TCACCACATC 1 TCACCACCCA 1 TCACCAGGAG 1 TCACCAGGGG 1 TCACCATTCA 1 TCACCCAAGT 1 TCACCCACAC 35 TCACCCACCC 2 TCACCCAGGC 1 TCACCGAACA 1 TCACCGACAT 1 TCACCGATGC 1 TCACCGGTCA 5 TCACCTATAA 1 TCACCTGCTG 1 TCACCTGTAG 5 TCACCTTAGG 2 TCACCTTCAA 2 TCACGATAGT 1 TCACGCACAG 1 TCACGCAGCC 1 TCACGCGTAC 1 TCACGGGAAA 1 TCACGGTACA 2 TCACTAATTC 1 TCACTATAAA 1 TCACTATAGC 1 TCACTATCGG 1 TCACTCAAAA 1 TCACTCACCT 1 TCACTCCTGG 1 TCACTCTACA 1 TCACTGAACT 1 TCACTGACTC 1 TCACTGAGTT 5 TCACTGATCT 1 TCACTGATGG 1 TCACTGCACT 8 TCACTGCATT 1 TCACTGCTCT 1 TCACTGCTGA 1 TCACTGCTGT 1 TCACTGGAAC 1 TCACTGGATC 1 TCACTGGTGA 1 TCACTGTACA 4 TCACTGTACG 1 TCACTGTACT 1 TCACTGTGAG 1 TCACTGTGGG 4 TCACTGTGTT 1 TCACTTCCAT 1 TCACTTTCTT 2 TCAGAAAGCC 8 TCAGAACAGT 1 TCAGAAGGTC 1 TCAGAAGTTT 2 TCAGACAAAA 1 TCAGACATCA 1 TCAGACCAGC 1 TCAGACCCAG 3 TCAGACGCAG 43 TCAGACGCCC 1 TCAGACTCGC 1 TCAGACTGAA 1 TCAGACTTTG 1 TCAGAGAACC 1 TCAGAGAATA 1 TCAGAGACAT 1 TCAGAGATGA 3 TCAGAGGGTG 1 TCAGAGGTAC 1 TCAGAGTAAT 1 TCAGATAATG 1 TCAGATAGGA 2 TCAGATCCGT 1 TCAGATCTTT 31 TCAGATGCTG 1 TCAGATGGCG 4 TCAGATGGTG 1 TCAGCAATAA 1 TCAGCAATCA 1 TCAGCACCTG 6 TCAGCACTGG 1 TCAGCCATCA 1 TCAGCCATTA 1 TCAGCCCCAG 1 TCAGCCGCTA 1 TCAGCCTGTG 1 TCAGCCTTCT 6 TCAGCGCAGC 1 TCAGCGGAGA 2 TCAGCTATAT 1 TCAGCTGCAA 9 TCAGCTGCCA 1 TCAGCTGCCC 1 TCAGCTGGCC 2 TCAGCTGGGG 2 TCAGCTTCAC 2 TCAGCTTCAG 1 TCAGGAAACA 1 TCAGGAAGCT 1 TCAGGAAGGT 1 TCAGGACAGT 1 TCAGGAGACG 1 TCAGGAGAGG 1 TCAGGCAATG 3 TCAGGCACTC 1 TCAGGCAGGC 1 TCAGGCATTT 4 TCAGGCGTTT 1 TCAGGCTGTT 2 TCAGGCTTTT 1 TCAGGGAGAT 2 TCAGGGCTTC 1 TCAGGGGCTA 1 TCAGGGTCGC 1 TCAGGGTGAT 1 TCAGTAACTG 1 TCAGTAAGAT 1 TCAGTACTAG 1 TCAGTAGTGA 1 TCAGTATGAG 1 TCAGTATGAT 1 TCAGTATTAA 1 TCAGTATTCT 1 TCAGTCAGGC 1 TCAGTGAACT 1 TCAGTGACAA 1 TCAGTGAGCA 1 TCAGTGCACT 1 TCAGTGCCTA 1 TCAGTGCTCA 1 TCAGTGGCCC 1 TCAGTGGCTC 1 TCAGTGGGAG 1 TCAGTGGTAG 7 TCAGTGGTTC 1 TCAGTGTATT 1 TCAGTGTTAC 1 TCAGTTATAA 1 TCAGTTCTCG 1 TCAGTTCTTG 1 TCAGTTTCCC 1 TCAGTTTGGA 1 TCAGTTTGTC 1 TCAGTTTTGA 1 TCATAAAGCT 1 TCATAAAGGT 1 TCATAACTGT 2 TCATAAGCAA 3 TCATAATGAG 1 TCATACACCC 1 TCATACACCT 1 TCATACCGCT 1 TCATACTAAT 1 TCATACTATT 1 TCATACTGCA 1 TCATAGAAAC 3 TCATAGTATG 1 TCATAGTTCA 1 TCATAGTTCT 1 TCATATTTAA 1 TCATCAAATA 1 TCATCAACAG 1 TCATCACAAA 1 TCATCACCTA 2 TCATCAGTCT 1 TCATCATATT 2 TCATCATCTG 10 TCATCCTAGA 1 TCATCCTGTT 1 TCATCTACAA 2 TCATCTAGGA 1 TCATCTCCCT 1 TCATCTGCAA 1 TCATCTTTGT 1 TCATTACACA 1 TCATTACTTT 1 TCATTAGTGG 1 TCATTATGCT 1 TCATTATTGA 1 TCATTCACAA 1 TCATTCAGCA 1 TCATTCCAGG 1 TCATTCCCAG 1 TCATTCCTTC 1 TCATTCGTTT 1 TCATTCTAGT 1 TCATTCTCCT 1 TCATTGAATT 1 TCATTGCACC 1 TCATTGCACT 3 TCATTGGCCA 1 TCATTGGCCT 1 TCATTGTAAT 1 TCATTGTACA 1 TCATTGTACT 1 TCATTTACTT 1 TCATTTAGGT 1 TCATTTCAGA 3 TCATTTGCTA 1 TCATTTTCCA 2 TCATTTTCCT 1 TCCAAAAAGA 1 TCCAAAAGAA 1 TCCAAACTAT 1 TCCAAAGCAA 1 TCCAAAGCAT 2 TCCAAAGGAG 1 TCCAAATCGA 1 TCCAAATTAA 1 TCCAACGATG 1 TCCAACTTGG 1 TCCAAGAGCC 1 TCCAAGATGT 1 TCCAAGCAAG 1 TCCAAGCCCC 1 TCCAAGCCCG 2 TCCAAGTCCG 1 TCCAAGTTCA 1 TCCAAGTTCC 1 TCCAATACTG 1 TCCAATCTTG 1 TCCAATGAGT 1 TCCAATTTTT 1 TCCACAAATA 1 TCCACACAGC 1 TCCACACCAA 1 TCCACACCCA 1 TCCACATTCA 1 TCCACCAAAT 1 TCCACCATTC 1 TCCACCCCTG 1 TCCACCTCCC 1 TCCACGCACC 4 TCCACGTCAT 1 TCCACGTTTT 1 TCCACTAACA 1 TCCACTTGGC 1 TCCAGAATAC 1 TCCAGAATTG 1 TCCAGACCTA 1 TCCAGAGAAG 1 TCCAGAGCAC 1 TCCAGATCTT 1 TCCAGATGAC 1 TCCAGCATAT 1 TCCAGCCAAA 1 TCCAGCCCAT 1 TCCAGCCCCT 9 TCCAGCCTGG 1 TCCAGCCTGT 1 TCCAGCCTTG 1 TCCAGCTAAA 1 TCCAGCTCTG 1 TCCAGCTTCT 1 TCCAGGCTCT 1 TCCAGGGCCG 1 TCCAGGGCTC 2 TCCAGGTTCC 1 TCCAGTACAG 1 TCCAGTATGA 1 TCCAGTATTT 1 TCCAGTGCAG 1 TCCAGTTACC 1 TCCAGTTCGG 1 TCCATAAAGG 1 TCCATAATAA 2 TCCATACAGA 1 TCCATACTAT 1 TCCATACTGA 1 TCCATAGGGG 1 TCCATATAAT 1 TCCATATGAA 1 TCCATATTAC 1 TCCATCAAGA 5 TCCATCAGCT 1 TCCATCAGGG 1 TCCATCCCTT 1 TCCATCTGTT 5 TCCATTATGC 1 TCCATTCAGC 1 TCCATTGCAA 1 TCCATTGCTG 1 TCCATTGTAG 1 TCCCAATAAG 2 TCCCAATACG 1 TCCCACAACT 1 TCCCACCACG 1 TCCCACCCCA 4 TCCCACGTTC 2 TCCCACTGCA 1 TCCCACTTGA 1 TCCCAGAACA 1 TCCCAGAGAC 5 TCCCAGGGCA 1 TCCCAGGTCC 1 TCCCAGTCCG 1 TCCCATCAAT 2 TCCCATCCTG 1 TCCCCAAAAA 1 TCCCCAATTA 2 TCCCCACACA 1 TCCCCACATC 1 TCCCCACCCA 1 TCCCCAGCTA 1 TCCCCATACT 1 TCCCCCAACC 1 TCCCCCATAA 1 TCCCCCGAAT 1 TCCCCCGCAC 1 TCCCCCTTAT 1 TCCCCCTTCG 1 TCCCCGAAAA 2 TCCCCGCATA 1 TCCCCGCATC 2 TCCCCGCGAC 1 TCCCCGCTCG 7 TCCCCGGAAA 1 TCCCCGGAAC 1 TCCCCGGAAG 1 TCCCCGGCGG 1 TCCCCGGGGC 1 TCCCCGGGTT 1 TCCCCGGTAA 1 TCCCCGTATG 1 TCCCCGTATT 2 TCCCCGTCCT 2 TCCCCGTCGA 1 TCCCCGTCGT 2 TCCCCGTTAA 1 TCCCCTAAAA 1 TCCCCTACAA 1 TCCCCTAGTG 1 TCCCCTCTGT 1 TCCCCTGCAT 1 TCCCCTGCCC 1 TCCCCTGGCA 1 TCCCCTTCCA 1 TCCCGAATCG 1 TCCCGACATC 3 TCCCGAGTAC 1 TCCCGCACAT 1 TCCCGCCCCC 1 TCCCGGAAAT 1 TCCCGGACAT 5 TCCCGGCCAT 1 TCCCGGGCAT 1 TCCCGGGGAA 1 TCCCGGTCAT 1 TCCCGGTCCA 2 TCCCGTAAAT 2 TCCCGTAACA 1 TCCCGTACAC 3 TCCCGTACAG 2 TCCCGTACGT 2 TCCCGTCATC 3 TCCCGTCCAT 1 TCCCGTCTAT 1 TCCCGTGGAT 1 TCCCGTTACA 1 TCCCTAAAAA 3 TCCCTAAATC 1 TCCCTACATA 1 TCCCTACATC 2 TCCCTACTAG 1 TCCCTAGGAA 1 TCCCTATAAC 1 TCCCTATACC 1 TCCCTATCAC 1 TCCCTATCCA 1 TCCCTATGCC 1 TCCCTATTCC 1 TCCCTATTCT 1 TCCCTATTGT 1 TCCCTCGTGC 1 TCCCTCTAAA 1 TCCCTCTCAG 1 TCCCTCTCTT 1 TCCCTCTGAT 1 TCCCTCTTGT 1 TCCCTGAAAA 1 TCCCTGCAAC 3 TCCCTGCACT 1 TCCCTGCAGC 1 TCCCTGCATC 1 TCCCTGGCAT 5 TCCCTGGCGG 1 TCCCTGGCTG 2 TCCCTGGGCA 3 TCCCTGGTAA 1 TCCCTGGTCC 1 TCCCTGTACG 1 TCCCTGTCTG 2 TCCCTGTTAC 1 TCCCTTAAGC 1 TCCCTTATAA 1 TCCCTTATTT 3 TCCCTTCACT 1 TCCCTTCGGC 1 TCCCTTGGCC 1 TCCCTTTTTA 2 TCCCTTTTTT 1 TCCGAAGGCT 1 TCCGACCAGG 1 TCCGAGACCA 1 TCCGAGACTG 1 TCCGAGATAA 1 TCCGAGTAAG 1 TCCGATAAAG 1 TCCGATGCTT 1 TCCGCAAAGA 1 TCCGCCAGAG 1 TCCGCCGCCC 1 TCCGCCGGAA 1 TCCGCCTCGG 2 TCCGCGAAAA 1 TCCGCGAGAA 6 TCCGCGGGCT 2 TCCGCTCCAG 1 TCCGGATTAA 1 TCCGGCCGCG 4 TCCGGCTAGT 1 TCCGGCTGAA 1 TCCGGTGGCG 1 TCCGTAAAGA 1 TCCGTAATCC 1 TCCGTACATC 1 TCCGTACTAA 1 TCCGTAGTAA 1 TCCGTATTAC 1 TCCGTATTGA 1 TCCGTCACAG 1 TCCGTGCTCC 1 TCCTAACCCA 1 TCCTAATGCT 1 TCCTAATTAA 1 TCCTACTGGC 1 TCCTACTTTC 1 TCCTAGCCTG 1 TCCTAGTACG 1 TCCTAGTACT 1 TCCTATAAAT 1 TCCTATATTA 1 TCCTATCCCA 3 TCCTATCTTA 1 TCCTATGCCA 1 TCCTATTAAA 1 TCCTCAACCT 1 TCCTCAAGAT 2 TCCTCACCTG 1 TCCTCACGGG 1 TCCTCAGGCA 1 TCCTCCCAGG 1 TCCTCCCATA 1 TCCTCCCTAC 2 TCCTCCCTCC 4 TCCTCCCTGC 1 TCCTCGAGCG 1 TCCTCGCCTC 1 TCCTCGGGCA 2 TCCTCGTTCA 1 TCCTCTACCT 1 TCCTCTCACC 1 TCCTCTCCAG 2 TCCTCTGAGA 1 TCCTCTGTAT 1 TCCTCTTACA 1 TCCTCTTTCC 1 TCCTGAAATA 1 TCCTGAAGCC 1 TCCTGAATGA 1 TCCTGCCCCA 7 TCCTGCCCTG 1 TCCTGCTCAT 2 TCCTGCTCGG 1 TCCTGCTCGT 1 TCCTGCTCTG 1 TCCTGCTGCC 6 TCCTGCTTGT 1 TCCTGGAGGT 1 TCCTGGCACT 1 TCCTGGCTCT 1 TCCTGGGCCC 1 TCCTGGGGAA 1 TCCTGGGGCA 2 TCCTGGGGCT 1 TCCTGGTGGC 1 TCCTGGTTAT 3 TCCTGTATCC 1 TCCTGTCGAA 1 TCCTGTGTGC 1 TCCTGTTACG 1 TCCTGTTATC 1 TCCTTAACAA 2 TCCTTAATAA 1 TCCTTAATAG 1 TCCTTAGCCT 1 TCCTTATTCA 1 TCCTTATTCT 1 TCCTTATTGG 1 TCCTTCAACA 1 TCCTTCAGCG 1 TCCTTCATCT 1 TCCTTCTCAG 1 TCCTTCTCCA 1 TCCTTCTGTG 1 TCCTTGACCA 3 TCCTTGCTAC 1 TCCTTGCTTC 3 TCCTTGGAAC 1 TCCTTGGACC 1 TCCTTGGCCA 1 TCCTTGTTGG 2 TCCTTTAACT 1 TCCTTTATTA 1 TCCTTTGAAG 1 TCCTTTGACC 1 TCCTTTGCAG 1 TCCTTTGCCC 1 TCCTTTGCGC 1 TCCTTTGGGG 1 TCCTTTTAAA 1 TCCTTTTAAG 1 TCCTTTTCAC 2 TCCTTTTGCT 1 TCCTTTTTCA 1 TCCTTTTTTG 1 TCGAAACCCC 2 TCGAAACCCT 1 TCGAAAGTCC 1 TCGAACCCCC 1 TCGAAGATAC 1 TCGAAGCCAA 2 TCGAAGCCCC 119 TCGAAGCCCT 1 TCGAAGCCTC 1 TCGAAGCTCT 1 TCGAATTACT 1 TCGACGAGGC 1 TCGACTAGAT 1 TCGAGCAAAA 1 TCGAGCCATC 1 TCGAGCCCCC 2 TCGAGCTGTT 2 TCGAGGACCA 1 TCGAGTCCTA 1 TCGATGCCCC 1 TCGATTCAAT 1 TCGCAACTGG 1 TCGCAATGCA 1 TCGCAGCCAC 1 TCGCAGCCTC 1 TCGCAGTACA 3 TCGCAGTCAG 1 TCGCCAGCCC 1 TCGCCCAGGC 4 TCGCCCGTTG 1 TCGCCGAGCG 1 TCGCCGCGAC 3 TCGCCGGGCG 1 TCGCCGTAGT 1 TCGCCGTTCT 1 TCGCCTGGCA 2 TCGCCTGGGA 1 TCGCCTTTTT 1 TCGCGGCCTG 1 TCGCTGCAGC 1 TCGCTGTACA 1 TCGCTGTCAT 1 TCGCTGTGCA 1 TCGCTTGCCC 1 TCGGAACCCT 1 TCGGACGTGG 1 TCGGAGAAAA 1 TCGGAGAAAG 1 TCGGAGCTGT 3 TCGGCACGGC 1 TCGGCATCCA 1 TCGGCCAGAC 1 TCGGCGCCGG 1 TCGGCGGAGG 1 TCGGGACTGG 1 TCGGGAGCAG 1 TCGGGAGCTG 5 TCGGGAGGGG 1 TCGGGCAGGC 1 TCGGGGAGGC 1 TCGGGGTGGA 1 TCGGGTGTGG 3 TCGGTATTAA 1 TCGGTCCTCT 1 TCGGTGGCCA 1 TCGGTTGTCT 1 TCGTAAACTC 1 TCGTAACGAG 2 TCGTAACTCT 1 TCGTAAGTGT 1 TCGTAATCAG 1 TCGTAATGAG 1 TCGTACTATC 1 TCGTAGTCAT 1 TCGTAGTGTG 1 TCGTATGTTG 1 TCGTCCGACT 1 TCGTCGACGA 1 TCGTCGTGCT 2 TCGTCTGTCT 1 TCGTCTTTAT 3 TCGTGCTCAG 1 TCGTGCTGCC 1 TCGTGGATTA 1 TCGTGTGCAT 1 TCGTGTGGAC 1 TCGTGTGTTA 1 TCGTTAAATA 1 TCGTTAGGAC 1 TCGTTATGCA 1 TCGTTGCATA 1 TCGTTGTCCC 1 TCGTTGTGCT 2 TCGTTTCCTT 2 TCTAAAACAC 6 TCTAAAACCG 1 TCTAAAGCCT 1 TCTAAAGGTC 1 TCTAAAGTTG 1 TCTAAATCCC 1 TCTAACACAC 1 TCTAACACCC 1 TCTAACAGGC 1 TCTAACATAT 1 TCTAACTACG 1 TCTAACTCAC 1 TCTAAGAATT 1 TCTAAGCAAT 1 TCTAAGCCCC 1 TCTAAGCTCA 1 TCTAAGTACG 1 TCTAAGTCAG 1 TCTAAGTCCA 1 TCTACAAACA 1 TCTACAAATA 1 TCTACAGAAA 1 TCTACAGGAC 2 TCTACATTGA 1 TCTACCAAAA 1 TCTACGTACA 1 TCTACTAAAA 1 TCTACTCAGC 2 TCTACTGACC 1 TCTACTTTTG 5 TCTAGAACAG 1 TCTAGACTTA 1 TCTAGCATTT 1 TCTAGCTTGG 1 TCTAGGCTCC 1 TCTAGTCACT 1 TCTAGTTAAA 1 TCTAGTTTAT 1 TCTATAATAA 1 TCTATAGAGT 2 TCTATAGCTT 1 TCTATATTGT 1 TCTATCAAGA 1 TCTATCCTGA 1 TCTATCTTCA 1 TCTATGCGTG 1 TCTATGCTGA 1 TCTATGTGTC 1 TCTATTGAAT 1 TCTATTGATG 1 TCTATTTAAA 1 TCTCAACTAC 1 TCTCAATTCT 6 TCTCACCTCC 1 TCTCAGACAT 3 TCTCAGATGA 2 TCTCAGCCTC 1 TCTCAGCTAC 1 TCTCAGCTTC 1 TCTCAGGCTG 1 TCTCAGGGCT 1 TCTCAGTACA 1 TCTCAGTTCT 2 TCTCATAAAG 1 TCTCATTTTA 1 TCTCCAACTA 1 TCTCCAAGAC 1 TCTCCAAGGA 1 TCTCCAATTA 1 TCTCCACGAA 1 TCTCCAGCTA 3 TCTCCAGGAA 5 TCTCCAGGGA 1 TCTCCAGGTA 1 TCTCCCAATG 1 TCTCCCATCG 1 TCTCCCCCAC 1 TCTCCCCGCC 1 TCTCCCTCTC 1 TCTCCGAAAA 1 TCTCCGACGT 1 TCTCCGTCAT 1 TCTCCTCCTG 1 TCTCCTGCCT 1 TCTCCTGCGA 1 TCTCCTGCGT 1 TCTCCTTCAT 1 TCTCCTTCCC 1 TCTCGGTTTA 2 TCTCTAAGCC 1 TCTCTAAGTT 1 TCTCTACAAG 1 TCTCTACCCA 9 TCTCTACTAA 3 TCTCTAGAAT 1 TCTCTAGCAT 1 TCTCTATTAT 1 TCTCTCAAGC 1 TCTCTCACAC 1 TCTCTCCATA 1 TCTCTCCCCT 2 TCTCTCTGCA 1 TCTCTCTGCC 1 TCTCTCTGTT 1 TCTCTCTTCT 1 TCTCTGAAAA 1 TCTCTGAGCA 1 TCTCTGATGC 5 TCTCTGATTT 1 TCTCTGCAAA 2 TCTCTGCCTC 1 TCTCTGTAAT 1 TCTCTGTACA 1 TCTCTTAAAC 1 TCTCTTCACC 2 TCTCTTCAGC 1 TCTCTTCTGC 1 TCTCTTCTGT 1 TCTCTTGACA 1 TCTCTTGCAC 1 TCTCTTGCTG 2 TCTCTTTCCG 1 TCTGAAATGC 1 TCTGAAATTT 1 TCTGAACTGG 1 TCTGAAGAGA 1 TCTGAAGGTA 1 TCTGAAGTAG 1 TCTGAAGTCA 4 TCTGAATGAA 1 TCTGAATTAT 1 TCTGACAAAC 1 TCTGACAAAG 1 TCTGACCACC 3 TCTGACTTCC 1 TCTGAGCATA 1 TCTGAGCCAG 1 TCTGAGGCCC 2 TCTGATAACG 1 TCTGATAGCG 1 TCTGATCTCT 1 TCTGATGGCT 1 TCTGCAAAAA 2 TCTGCAACCT 1 TCTGCAAGAA 1 TCTGCAAGCA 1 TCTGCAATCT 1 TCTGCAATGA 3 TCTGCACCCC 1 TCTGCACTGA 1 TCTGCAGAAA 1 TCTGCAGGAA 1 TCTGCAGGGG 2 TCTGCAGGTC 1 TCTGCATATG 1 TCTGCCACGG 1 TCTGCCCGCA 1 TCTGCCTCCT 1 TCTGCCTGGG 1 TCTGCGGGTG 1 TCTGCTAAAA 2 TCTGCTAAAG 10 TCTGCTCGAA 1 TCTGCTCTCC 2 TCTGCTGCAG 1 TCTGCTTACA 1 TCTGCTTGAG 1 TCTGGAAATG 1 TCTGGAAGAG 1 TCTGGAAGAT 1 TCTGGACCGG 2 TCTGGACGTT 1 TCTGGACTCG 2 TCTGGAGTGA 1 TCTGGCATTG 1 TCTGGCCCTC 1 TCTGGCTGGC 1 TCTGGGAATT 1 TCTGGGAGAA 3 TCTGGGTTAA 1 TCTGGTAAAA 1 TCTGGTCTGG 9 TCTGGTGACC 1 TCTGGTGAGA 1 TCTGGTGGCC 1 TCTGGTGTTT 1 TCTGGTTTGC 1 TCTGGTTTGT 6 TCTGTAAACT 1 TCTGTAACAC 2 TCTGTAAGTA 1 TCTGTAATCC 17 TCTGTAATCT 2 TCTGTACACC 3 TCTGTAGTCC 5 TCTGTAGTCT 1 TCTGTATCCC 1 TCTGTCAAGA 3 TCTGTCAATC 2 TCTGTCAGTT 1 TCTGTCATCC 1 TCTGTCATTG 1 TCTGTCCTCA 6 TCTGTCCTTA 1 TCTGTCTAAG 1 TCTGTCTACC 1 TCTGTCTGGA 1 TCTGTCTGTC 1 TCTGTGACCT 2 TCTGTGACTT 2 TCTGTGAGGT 1 TCTGTGAGTT 1 TCTGTGATCA 2 TCTGTGATGT 1 TCTGTGCCTT 1 TCTGTGCTCA 3 TCTGTGCTCC 2 TCTGTGGGTG 1 TCTGTGGTCC 3 TCTGTGGTCT 1 TCTGTGTCTG 1 TCTGTGTTGG 1 TCTGTTAATC 1 TCTGTTACCT 1 TCTGTTCGCA 1 TCTGTTCTGG 2 TCTGTTGAGT 1 TCTGTTTACC 1 TCTGTTTACT 1 TCTGTTTATC 4 TCTGTTTCCA 1 TCTTAAAAAA 1 TCTTAAACCC 1 TCTTAAAGAT 1 TCTTAAATCT 1 TCTTAACTAA 1 TCTTAATGAA 1 TCTTACAACA 1 TCTTAGATCG 1 TCTTAGGGCA 1 TCTTATCCCG 1 TCTTATGCAT 1 TCTTATTTCT 1 TCTTCAAGCT 1 TCTTCACAAG 1 TCTTCACTAT 1 TCTTCACTCT 1 TCTTCACTGA 1 TCTTCACTTC 1 TCTTCAGTGA 1 TCTTCCAACA 1 TCTTCCAGGA 5 TCTTCCCATC 1 TCTTCCCTGT 1 TCTTCCGTGT 1 TCTTCCTGCA 1 TCTTCCTTAC 1 TCTTCGTCCT 2 TCTTCTAAAA 1 TCTTCTCAGT 1 TCTTCTCCCT 6 TCTTCTGCCA 2 TCTTCTGCCT 1 TCTTCTGCTG 1 TCTTCTGCTT 1 TCTTCTGTGA 1 TCTTCTTTGT 1 TCTTGAACAG 1 TCTTGAATGC 1 TCTTGACCCC 1 TCTTGAGAAT 1 TCTTGAGCAG 1 TCTTGAGGCC 2 TCTTGATGTC 1 TCTTGCATCA 1 TCTTGGATCT 1 TCTTGGCCTT 1 TCTTGTAACT 3 TCTTGTATCA 1 TCTTGTGCAT 18 TCTTGTGCGT 1 TCTTGTTTCT 4 TCTTTAAAGT 1 TCTTTACTTG 6 TCTTTAGTTG 5 TCTTTAGTTT 1 TCTTTATTAC 1 TCTTTCGTCT 1 TCTTTCTCAT 1 TCTTTCTGGG 1 TCTTTCTTCC 1 TCTTTGATCT 2 TCTTTGCATA 1 TCTTTGCTCC 1 TCTTTGCTTC 1 TCTTTGGTTC 1 TCTTTGTCTA 1 TCTTTTCAAA 1 TCTTTTCATT 1 TCTTTTGCCT 2 TCTTTTGGAA 1 TCTTTTGTGT 1 TCTTTTTCAC 1 TCTTTTTGGA 1 TCTTTTTGGG 2 TCTTTTTGTG 1 TGAAAAAAAA 6 TGAAAAATGC 1 TGAAAAATGT 1 TGAAAACACG 1 TGAAAACTAC 1 TGAAAAGTAT 1 TGAAAATAAT 1 TGAAAATCAA 1 TGAAAATGAC 1 TGAAACAAGC 1 TGAAACAGTA 1 TGAAACCCCA 1 TGAAACCCCC 1 TGAAACCCCG 2 TGAAACCCTG 2 TGAAACTCAT 2 TGAAACTGCA 2 TGAAAGGCAG 1 TGAAAGGCCC 1 TGAAAGGTCT 1 TGAAAGTAAC 3 TGAAAGTGCT 1 TGAAAGTGTG 3 TGAAATAAAA 13 TGAAATAAAC 1 TGAAATACTG 1 TGAAATATGT 1 TGAAATCAAT 1 TGAAATCTGA 1 TGAAATGGAA 1 TGAAATGGGG 1 TGAAATTAAA 1 TGAAATTGGA 1 TGAAATTGTC 1 TGAACAAAAG 1 TGAACAAACA 1 TGAACACCGT 1 TGAACACTGT 1 TGAACAGACC 1 TGAACCAAAA 1 TGAACCAAGA 1 TGAACCAGGT 2 TGAACCCGCC 6 TGAACCTGGG 1 TGAACGATTG 1 TGAACGTGGG 1 TGAACTACTC 1 TGAACTCGAG 1 TGAACTTACA 1 TGAACTTGGA 1 TGAACTTTCC 1 TGAACTTTCT 1 TGAAGAATGG 1 TGAAGAATGT 2 TGAAGACTCT 1 TGAAGAGGAA 1 TGAAGATAGA 1 TGAAGATATG 1 TGAAGATTTG 1 TGAAGCAGCT 1 TGAAGCAGTA 3 TGAAGCATTA 1 TGAAGCCCCC 1 TGAAGCTATT 1 TGAAGCTTAA 1 TGAAGGAGCC 3 TGAAGGAGGT 1 TGAAGGATGC 10 TGAAGGCAAG 1 TGAAGGTGGG 1 TGAAGGTGGT 2 TGAAGGTTTT 1 TGAAGTAACA 4 TGAAGTACTG 1 TGAAGTATAT 1 TGAAGTATTC 1 TGAAGTATTT 2 TGAAGTCACT 1 TGAAGTGCAC 1 TGAAGTGCTT 1 TGAAGTTAGT 1 TGAATAAAAT 1 TGAATACTAC 4 TGAATATAAG 1 TGAATATACT 1 TGAATATGGA 1 TGAATCTCTT 1 TGAATCTGGG 4 TGAATGAATG 1 TGAATGATAG 2 TGAATGATTG 1 TGAATGATTT 1 TGAATGGCCT 2 TGAATGTGGA 1 TGAATGTTAG 1 TGAATTACTT 1 TGAATTAGTT 1 TGAATTCGCT 1 TGAATTCTAA 1 TGAATTCTAC 1 TGAATTGCTT 1 TGAATTTATC 1 TGAATTTCAC 1 TGACAAAACA 1 TGACAAAACT 1 TGACAACCGA 1 TGACAAGGAC 1 TGACAATGCA 1 TGACAATGGA 1 TGACAATTTA 1 TGACAATTTT 1 TGACACCAAG 1 TGACACCAGC 1 TGACACCCAC 3 TGACAGAAGT 1 TGACAGACCT 1 TGACAGAGAC 1 TGACAGAGCA 1 TGACAGAGCT 1 TGACAGAGTG 2 TGACAGCTGA 1 TGACAGGTCA 1 TGACAGGTTG 1 TGACAGTCTG 1 TGACATTTTC 1 TGACCAAAAC 1 TGACCAAACC 1 TGACCAGTTA 1 TGACCCACAA 1 TGACCCCACA 1 TGACCCCGCA 1 TGACCCGCCC 1 TGACCCTTAC 1 TGACCCTTTA 1 TGACCGAGGG 1 TGACCGAGTC 1 TGACCGGCGA 1 TGACCTATTT 1 TGACCTCCAG 1 TGACCTGCCA 1 TGACCTTACC 3 TGACCTTAGG 1 TGACCTTATA 1 TGACCTTTAA 1 TGACGCCACA 1 TGACGGCAGT 1 TGACGGCGAG 1 TGACGTCAGC 2 TGACGTGACA 1 TGACTAGTGT 1 TGACTCAGAA 1 TGACTCTTCC 1 TGACTGAAGC 10 TGACTGAGGA 1 TGACTGCCAA 2 TGACTGGTCA 1 TGACTGGTTC 1 TGACTGTCAA 1 TGACTTCAAA 1 TGACTTCACT 3 TGACTTCCCA 1 TGACTTTTAC 1 TGACTTTTCT 1 TGAGAAACAC 1 TGAGAAGAAG 6 TGAGACCCTG 1 TGAGAGAAGA 1 TGAGAGACAA 1 TGAGAGATCA 1 TGAGAGCCAC 1 TGAGAGGGTG 1 TGAGATGGAA 1 TGAGCAAAAG 2 TGAGCAAAGA 1 TGAGCAAGCC 1 TGAGCACACA 1 TGAGCACATA 2 TGAGCACGAA 1 TGAGCAGGCA 1 TGAGCAGGGA 1 TGAGCAGGTT 1 TGAGCATTTG 1 TGAGCCAGTC 1 TGAGCCCAAG 1 TGAGCCCAGG 1 TGAGCCCGGC 3 TGAGCCTCGT 2 TGAGCCTTTA 1 TGAGCGTACA 1 TGAGCGTGGG 1 TGAGCTACCC 1 TGAGCTCATT 1 TGAGCTCTGC 1 TGAGCTTCAC 1 TGAGCTTGAT 2 TGAGGAAAGA 1 TGAGGAAAGT 1 TGAGGACACA 2 TGAGGAGCTG 1 TGAGGATCAT 1 TGAGGATGCA 1 TGAGGCAAAA 1 TGAGGCAGCC 1 TGAGGCATCA 1 TGAGGCCAGG 3 TGAGGCCTCT 3 TGAGGCCTGC 1 TGAGGCTACA 1 TGAGGGAATA 3 TGAGGGCACG 1 TGAGGGGATA 1 TGAGGGGGAG 1 TGAGGGGTGA 6 TGAGGGTTAG 2 TGAGGTCAGG 1 TGAGGTGAAG 1 TGAGGTTTCC 1 TGAGGTTTTC 2 TGAGTAACCA 1 TGAGTAAGAT 2 TGAGTAGAGT 1 TGAGTCCAAA 1 TGAGTCTGGC 3 TGAGTGAAAA 1 TGAGTGAAGA 2 TGAGTGACAG 3 TGAGTGGACA 3 TGAGTGGCAG 1 TGAGTGGGGG 1 TGAGTGTATT 1 TGAGTTGGCC 1 TGAGTTGGGC 2 TGAGTTGTAT 1 TGAGTTTGTG 2 TGAGTTTTAA 1 TGATAAAGTA 1 TGATAAATTC 1 TGATAATTCA 3 TGATAATTTA 1 TGATAGAGGT 1 TGATAGGAGA 1 TGATAGGTTC 1 TGATATATGA 1 TGATATCACT 1 TGATCAAATG 1 TGATCACCAC 1 TGATCACCTA 1 TGATCATAAA 1 TGATCCATCC 1 TGATCCCAGA 2 TGATCCCTGT 1 TGATCCGCCT 1 TGATCCTCCT 1 TGATCTACTC 1 TGATCTCCAA 7 TGATCTCCTA 1 TGATCTCTGC 1 TGATCTCTGT 1 TGATCTGACA 1 TGATCTGCCT 6 TGATCTGGCG 1 TGATCTGTTT 1 TGATCTTATC 1 TGATGAATCC 1 TGATGACCAC 1 TGATGACCAT 1 TGATGACTGT 2 TGATGAGTCC 1 TGATGAGTGT 2 TGATGATAAT 1 TGATGCGCGC 3 TGATGCTACA 1 TGATGCTACC 1 TGATGCTCTT 1 TGATGCTGTA 1 TGATGGAGCA 1 TGATGGCAGA 1 TGATGGCTCC 2 TGATGGGCAT 2 TGATGGTATG 1 TGATGGTGAT 2 TGATGTCCAA 2 TGATGTCCAC 1 TGATGTCTGG 8 TGATGTGAGC 1 TGATGTGGAA 1 TGATGTTCCA 3 TGATGTTCCG 1 TGATGTTTCA 1 TGATGTTTGA 4 TGATGTTTGC 1 TGATTCACCT 1 TGATTCACTT 3 TGATTCATTT 1 TGATTCCACT 3 TGATTCTCGT 1 TGATTCTCTG 1 TGATTGAGGC 2 TGATTGATTT 1 TGATTGCACT 2 TGATTGCCCT 1 TGATTGCTTA 1 TGATTGGCTT 1 TGATTGGGCA 1 TGATTGTGAT 1 TGATTTCAAT 1 TGATTTCACG 1 TGATTTCACT 372 TGATTTCCCT 1 TGATTTCCTT 2 TGATTTCTGT 1 TGATTTCTTC 1 TGATTTTACT 1 TGATTTTCAC 2 TGATTTTGGG 3 TGATTTTGTA 1 TGATTTTTCT 1 TGATTTTTGA 1 TGCAAAGACA 1 TGCAAAGATG 1 TGCAACGTAG 1 TGCAACTACA 2 TGCAAGAAAA 1 TGCAAGCAGC 1 TGCAAGGGGC 1 TGCAAGGTAG 1 TGCAATAAGC 3 TGCAATAGCT 1 TGCAATATAG 1 TGCAATGGCT 1 TGCAATGGGC 1 TGCACAACAG 1 TGCACAATAT 5 TGCACACACA 2 TGCACACGTG 1 TGCACAGAGG 1 TGCACAGATG 1 TGCACAGTGG 1 TGCACATAAT 1 TGCACATCTT 1 TGCACCACAG 7 TGCACCACGC 1 TGCACCAGCA 1 TGCACCCTCC 1 TGCACCTCCT 1 TGCACCTGGA 2 TGCACCTTGG 1 TGCACGACTA 3 TGCACGAGAC 1 TGCACGCACA 3 TGCACGCCTG 1 TGCACGTTAT 1 TGCACGTTTC 3 TGCACGTTTT 67 TGCACTCCTT 1 TGCACTGAGG 1 TGCACTTGAG 1 TGCAGAAACA 2 TGCAGAACGA 1 TGCAGAACGG 1 TGCAGAAGAA 1 TGCAGAAGTA 1 TGCAGAATGG 1 TGCAGAATGT 1 TGCAGACCCA 1 TGCAGAGAAT 1 TGCAGAGACC 2 TGCAGAGCTA 1 TGCAGAGGAG 1 TGCAGAGGCC 1 TGCAGATATT 2 TGCAGATGCC 1 TGCAGATTGC 1 TGCAGCAACT 1 TGCAGCACGA 24 TGCAGCAGGG 1 TGCAGCCGAC 1 TGCAGCCGCT 1 TGCAGCGCCT 1 TGCAGCGGGC 1 TGCAGCTGTC 1 TGCAGCTTAT 1 TGCAGGAGGC 1 TGCAGGATGT 1 TGCAGGCCTG 3 TGCAGGTACT 2 TGCAGGTCCT 1 TGCAGGTGGC 1 TGCAGGTGTG 1 TGCAGTAATG 1 TGCAGTATTA 1 TGCAGTCATT 1 TGCAGTGTCC 1 TGCAGTTCAC 1 TGCAGTTTTA 1 TGCATACAAA 1 TGCATACACA 1 TGCATACTCT 1 TGCATAGACG 1 TGCATAGCTT 1 TGCATATCAT 2 TGCATATGGA 1 TGCATCCCCC 1 TGCATCCCCT 1 TGCATCCGTA 1 TGCATCTGGT 4 TGCATTAACT 2 TGCATTAAGA 1 TGCATTAAGT 1 TGCATTACCT 2 TGCATTCCCA 1 TGCATTTAAA 1 TGCATTTGCC 1 TGCATTTGGA 1 TGCATTTGGG 1 TGCCAACTCT 1 TGCCAATCTG 1 TGCCACAATG 1 TGCCACAGCT 1 TGCCACATTT 1 TGCCACCAAG 1 TGCCACCACA 3 TGCCACCACG 2 TGCCACTACA 1 TGCCACTACG 1 TGCCACTGTG 2 TGCCAGAAAT 1 TGCCAGACAC 1 TGCCAGACCC 2 TGCCAGATGT 1 TGCCAGCACG 1 TGCCAGGACA 1 TGCCAGGAGT 1 TGCCAGGCAT 1 TGCCAGGCTG 1 TGCCAGTACA 1 TGCCATCCGG 1 TGCCATCTGT 5 TGCCATTAAG 1 TGCCCAAGGT 1 TGCCCACAGA 1 TGCCCACTCA 3 TGCCCATACA 1 TGCCCATAGT 1 TGCCCCCAAT 2 TGCCCCCCCA 1 TGCCCCCCTA 4 TGCCCCCGGG 2 TGCCCCGCAC 1 TGCCCCGTCA 1 TGCCCCTGAA 1 TGCCCCTGGC 1 TGCCCGACAT 1 TGCCCGACCG 1 TGCCCGCGCT 1 TGCCCGGTTG 1 TGCCCGTAAT 1 TGCCCGTAGT 2 TGCCCGTCCA 1 TGCCCGTGCC 1 TGCCCGTGGA 1 TGCCCGTTCA 1 TGCCCTCAAA 10 TGCCCTCAGA 3 TGCCCTCAGG 23 TGCCCTCCAA 2 TGCCCTCCTC 1 TGCCCTGACT 1 TGCCCTGCAC 1 TGCCGAATCC 1 TGCCGCCCGC 1 TGCCGCGCGC 1 TGCCGCTAAT 1 TGCCGGGAGG 1 TGCCGTAAAT 4 TGCCGTAATG 1 TGCCGTGGGC 1 TGCCTACAGT 1 TGCCTAGACC 5 TGCCTAGTAC 1 TGCCTATAAT 3 TGCCTATAGC 1 TGCCTATAGT 2 TGCCTATCGT 1 TGCCTATTAG 1 TGCCTATTAT 1 TGCCTCAGGA 1 TGCCTCATTG 1 TGCCTCCAAG 1 TGCCTCCACC 3 TGCCTCCTGA 1 TGCCTCGTGA 1 TGCCTCTGCC 1 TGCCTCTGCG 10 TGCCTCTGTC 1 TGCCTGAGCC 1 TGCCTGAGCT 1 TGCCTGCAAT 2 TGCCTGCACC 28 TGCCTGCATT 2 TGCCTGCCCC 1 TGCCTGGAAC 4 TGCCTGGCCT 1 TGCCTGGCGC 1 TGCCTGGGGC 1 TGCCTGTAAT 20 TGCCTGTACT 1 TGCCTGTAGG 1 TGCCTGTAGT 14 TGCCTGTCAC 1 TGCCTGTGAT 1 TGCCTGTGGT 2 TGCCTTAAAC 1 TGCCTTACTT 1 TGCCTTAGTA 2 TGCCTTCAGG 1 TGCCTTCCAG 1 TGCCTTCCCC 1 TGCCTTGACT 1 TGCCTTGCTT 1 TGCCTTTAAC 1 TGCCTTTATC 1 TGCGAAAAAA 1 TGCGATGCAC 1 TGCGCAGGGG 1 TGCGCCTTTA 1 TGCGCTAATC 1 TGCGCTGAGC 1 TGCGCTGGCC 5 TGCGCTTACA 1 TGCGGAATAT 1 TGCGGAGACA 1 TGCGGCAAGA 1 TGCGGCCAGG 1 TGCGGCGGTG 1 TGCGGCTGAG 1 TGCGGCTGGT 1 TGCGGGAAAT 1 TGCGGGACAG 1 TGCGGGAGAG 1 TGCGGGATAT 1 TGCGGGGGCG 1 TGCGGGTATC 1 TGCGGTGCTC 1 TGCGGTGGTG 1 TGCGGTTAAT 1 TGCGTAACCT 1 TGCGTATAAG 1 TGCGTCAACT 1 TGCGTCACCG 1 TGCGTCACTA 1 TGCGTCCATA 1 TGCGTCTGTG 1 TGCGTGGAAG 1 TGCGTGTGCA 1 TGCGTGTGTC 1 TGCGTTTTAT 1 TGCTAAAAAA 4 TGCTAAAGGT 1 TGCTAAGAAC 1 TGCTAATTGT 2 TGCTACCAGG 1 TGCTACCTGA 1 TGCTACGAAA 1 TGCTACGATC 1 TGCTACTGGT 4 TGCTAGACCT 1 TGCTAGATGT 1 TGCTAGATTG 1 TGCTAGCACA 1 TGCTAGGAAG 5 TGCTAGGAAT 1 TGCTAGGCTC 1 TGCTAGTTTC 1 TGCTATCATT 2 TGCTATCCCG 1 TGCTATGTTT 1 TGCTATTCCT 1 TGCTATTGGC 1 TGCTATTTTA 1 TGCTCAACAG 1 TGCTCACTCT 1 TGCTCAGAGA 1 TGCTCAGCAT 1 TGCTCAGCCC 1 TGCTCATCCC 1 TGCTCCCTGA 1 TGCTCCGAAA 1 TGCTCCTACC 17 TGCTCGTACA 1 TGCTCGTTCA 1 TGCTCTCCCC 1 TGCTCTCTTT 1 TGCTCTGCTT 1 TGCTCTGTGC 1 TGCTCTGTTT 1 TGCTCTTCTC 1 TGCTCTTTGC 1 TGCTGAACGC 1 TGCTGAATCA 2 TGCTGACTCC 6 TGCTGAGCTG 2 TGCTGAGGAA 1 TGCTGATGAA 1 TGCTGATGTT 1 TGCTGCAGAA 1 TGCTGCCCTG 2 TGCTGCCGTG 2 TGCTGCCTCA 1 TGCTGCCTGT 1 TGCTGCTGCC 1 TGCTGCTGCT 1 TGCTGCTGGG 1 TGCTGCTTGA 3 TGCTGGAAGG 1 TGCTGGACAC 1 TGCTGGAGTG 1 TGCTGGCAAT 1 TGCTGGCTCC 1 TGCTGGGATT 1 TGCTGGGCAT 1 TGCTGGGCCT 1 TGCTGGGCTT 1 TGCTGGGTGG 4 TGCTGGTACC 1 TGCTGTAAAG 2 TGCTGTAGTC 1 TGCTGTATGC 1 TGCTGTCCGG 1 TGCTGTCTCA 1 TGCTGTGACC 1 TGCTGTGATC 1 TGCTGTGCAT 7 TGCTGTGGGG 2 TGCTGTGTCC 2 TGCTGTGTGC 2 TGCTGTTCCC 2 TGCTGTTGCT 1 TGCTTAAACT 1 TGCTTATAGT 1 TGCTTATGTT 2 TGCTTATTAA 1 TGCTTATTGG 1 TGCTTCAGAA 1 TGCTTCATCT 2 TGCTTCCGAC 1 TGCTTCTACC 1 TGCTTCTCTC 1 TGCTTCTTGG 1 TGCTTCTTTC 1 TGCTTGACAA 1 TGCTTGACAC 1 TGCTTGAGCA 1 TGCTTGCGCA 2 TGCTTGGAGG 1 TGCTTGGTAC 1 TGCTTGTAAT 1 TGCTTGTAGT 1 TGCTTGTCCC 5 TGCTTGTCTG 1 TGCTTGTGGC 1 TGCTTTAACC 1 TGCTTTAGGG 1 TGCTTTGAAA 1 TGCTTTGCTT 1 TGCTTTGGAC 1 TGCTTTGGGA 3 TGCTTTGTCC 1 TGCTTTGTTA 1 TGCTTTGTTG 1 TGCTTTTGTT 1 TGGAAAAAAA 1 TGGAAAACTG 1 TGGAAAAGAA 1 TGGAAAGAGC 1 TGGAAAGCTT 1 TGGAAAGTGA 2 TGGAAAGTTT 1 TGGAAATACT 1 TGGAAATCAA 1 TGGAAATGAC 13 TGGAACACAA 1 TGGAACACTC 1 TGGAACATTG 1 TGGAACCCTG 1 TGGAACCTTG 2 TGGAACTAAG 1 TGGAACTATG 1 TGGAACTGTA 1 TGGAACTGTG 2 TGGAACTTAT 1 TGGAAGCCTG 1 TGGAAGGACC 1 TGGAAGGCAG 1 TGGAAGGGCA 2 TGGAAGGGCT 2 TGGAAGGTAA 1 TGGAAGTGCG 1 TGGAATAGGA 1 TGGAATCAAT 1 TGGAATCACC 1 TGGAATGAGC 1 TGGAATGCTG 11 TGGAATGGGC 2 TGGAATTGGT 1 TGGACAAGTC 1 TGGACACAAG 3 TGGACACTCA 1 TGGACAGATA 1 TGGACAGGCA 1 TGGACATCTA 1 TGGACCAGGC 4 TGGACCCCCC 1 TGGACCCCTT 1 TGGACCTGGA 3 TGGACGCAGT 1 TGGACGCGAG 1 TGGACGCTAC 1 TGGACTTCTG 1 TGGACTTTGT 1 TGGAGAAAGA 1 TGGAGAAGAG 2 TGGAGAAGAT 1 TGGAGAATGT 1 TGGAGACAAC 1 TGGAGACACT 1 TGGAGACAGT 1 TGGAGAGAGT 1 TGGAGAGTCG 1 TGGAGATACC 1 TGGAGATGTG 1 TGGAGCAGTT 1 TGGAGCGATT 1 TGGAGCGCTT 1 TGGAGCGGGA 1 TGGAGCTAGG 1 TGGAGCTGAT 1 TGGAGCTGGG 1 TGGAGGCCAG 3 TGGAGGGTTC 1 TGGAGGTCCA 1 TGGAGTGGAG 10 TGGATAAGCC 1 TGGATAATTC 1 TGGATACATA 1 TGGATACATT 1 TGGATATGTG 1 TGGATCCTAG 2 TGGATCCTCG 5 TGGATGAGGT 1 TGGATGATTT 1 TGGATGCCAG 1 TGGATGGAGG 1 TGGATGGGGT 1 TGGATGTACA 1 TGGATGTTTT 1 TGGATTGCAA 1 TGGATTGGGA 1 TGGATTTCAC 1 TGGATTTGTG 1 TGGATTTTCC 1 TGGCAAAGTA 1 TGGCAACCTT 3 TGGCAAGATG 2 TGGCAAGTTG 1 TGGCAATCCA 1 TGGCACAAGA 1 TGGCACATAA 1 TGGCACGCCC 1 TGGCACTAGG 2 TGGCACTGAC 1 TGGCACTGCA 1 TGGCACTTCA 1 TGGCAGAATT 1 TGGCAGCAAA 1 TGGCAGCTTT 4 TGGCAGGCAG 1 TGGCAGGCGT 1 TGGCAGGGCC 1 TGGCAGGTGA 1 TGGCATATAT 1 TGGCATCTGA 1 TGGCATTTCT 1 TGGCATTTGT 1 TGGCCAAAAA 2 TGGCCACAAG 1 TGGCCACCAC 1 TGGCCACTCC 1 TGGCCAGATG 2 TGGCCAGCAG 1 TGGCCATACT 1 TGGCCATCTG 3 TGGCCATCTT 1 TGGCCCAAGG 1 TGGCCCACAC 2 TGGCCCACCT 2 TGGCCCATCC 1 TGGCCCCACA 1 TGGCCCCACC 21 TGGCCCCACT 1 TGGCCCCAGG 2 TGGCCCCCGC 3 TGGCCCCTGC 3 TGGCCCGACG 1 TGGCCCGGGC 2 TGGCCCGTGT 1 TGGCCCTCCA 8 TGGCCCTCTG 1 TGGCCCTGTG 1 TGGCCCTTTC 1 TGGCCCTTTG 1 TGGCCGGAAC 1 TGGCCGGGGA 1 TGGCCGTGCA 1 TGGCCGTGCG 1 TGGCCTAATA 1 TGGCCTACAC 1 TGGCCTCACC 1 TGGCCTCCCC 4 TGGCCTCTCT 2 TGGCCTGAGG 1 TGGCCTGCCC 5 TGGCCTTACC 1 TGGCCTTGGA 1 TGGCCTTGGC 1 TGGCCTTTCG 1 TGGCGATACT 1 TGGCGATCGG 1 TGGCGCACGT 1 TGGCGCAGTG 1 TGGCGCGTGA 1 TGGCGCGTGT 9 TGGCGCTGAT 1 TGGCGTACGG 11 TGGCGTATGC 1 TGGCTAAAAA 1 TGGCTAAAGC 1 TGGCTAAAGG 1 TGGCTAAATG 4 TGGCTAATAA 1 TGGCTACTGA 1 TGGCTACTGC 2 TGGCTACTTA 1 TGGCTAGATT 1 TGGCTAGTGT 5 TGGCTAGTTT 1 TGGCTATTTA 1 TGGCTCACAC 1 TGGCTCCTCC 2 TGGCTCGAGC 1 TGGCTCTGGT 1 TGGCTCTTAG 1 TGGCTCTTGG 1 TGGCTGAGTT 1 TGGCTGCAAG 1 TGGCTGCCAG 1 TGGCTGCTCG 2 TGGCTGGAGC 4 TGGCTGGGAA 2 TGGCTGGGAG 1 TGGCTGTAGT 2 TGGCTGTGAC 2 TGGCTGTGAG 4 TGGCTGTGCT 1 TGGCTGTGGT 1 TGGCTGTGTG 9 TGGCTGTTGT 1 TGGCTTAAAT 1 TGGCTTATTT 1 TGGCTTCAAG 1 TGGCTTCAGC 1 TGGCTTCATT 1 TGGCTTGCGT 1 TGGCTTGCTC 5 TGGCTTGTTA 1 TGGGAAAAAA 1 TGGGAAATAT 1 TGGGAACCGG 1 TGGGAACTCA 1 TGGGAACTGA 1 TGGGAAGAAA 1 TGGGAAGAGG 1 TGGGAAGCAA 1 TGGGAAGCGT 1 TGGGAAGGGA 1 TGGGAATAAA 1 TGGGAATCAG 1 TGGGAATGAG 1 TGGGACAGTT 1 TGGGACATCA 1 TGGGACTCTG 1 TGGGAGACAA 1 TGGGAGAGAG 1 TGGGAGCCCT 1 TGGGAGCTAA 1 TGGGAGGCAG 1 TGGGAGGCTG 1 TGGGAGGGAG 1 TGGGATCCTT 1 TGGGATGCAG 1 TGGGATGCGC 4 TGGGATTTTG 1 TGGGCAAAGC 56 TGGGCAAGCC 1 TGGGCAAGTA 1 TGGGCAATCA 1 TGGGCACAGT 1 TGGGCAGCTG 3 TGGGCAGGCT 1 TGGGCCAAAC 1 TGGGCCAGGA 1 TGGGCCAGGC 3 TGGGCCCACC 1 TGGGCCCAGG 1 TGGGCCCGCA 1 TGGGCCCGTG 2 TGGGCCCTTT 1 TGGGCCGGGC 1 TGGGCCGGGT 1 TGGGCCTCCA 1 TGGGCCTGCA 1 TGGGCCTGGC 1 TGGGCCTGTG 1 TGGGCGCCTT 1 TGGGCGTCGA 1 TGGGCTAACG 1 TGGGCTACGG 1 TGGGCTAGGA 1 TGGGCTGAAC 1 TGGGCTGGGC 1 TGGGCTGGGG 2 TGGGCTTGTC 1 TGGGCTTTAA 1 TGGGGAAAAG 1 TGGGGAAGCT 1 TGGGGAAGGA 1 TGGGGAAGTC 1 TGGGGAATAC 1 TGGGGAATAG 1 TGGGGAGAGG 3 TGGGGATGGG 1 TGGGGATTAC 1 TGGGGCCGCA 14 TGGGGCCTTA 1 TGGGGCTGAC 1 TGGGGCTGGC 1 TGGGGCTTGG 1 TGGGGGTACT 1 TGGGGGTGGT 1 TGGGGTACCT 5 TGGGGTATGT 1 TGGGGTCCGA 1 TGGGGTCTGT 1 TGGGTAAAAC 1 TGGGTCAAAC 1 TGGGTCATTT 1 TGGGTCCTAT 1 TGGGTCTGGA 1 TGGGTGAAGC 1 TGGGTGACCT 1 TGGGTGAGAC 1 TGGGTGAGCC 11 TGGGTGATCC 1 TGGGTGCTCG 1 TGGGTGGGAA 1 TGGGTGGGGG 1 TGGGTGTATG 1 TGGGTGTTTT 1 TGGGTTACAG 1 TGGGTTGGAC 1 TGGGTTGTCT 1 TGGTAAAAAA 1 TGGTAAAACG 1 TGGTAAACAG 1 TGGTAAAGGC 1 TGGTAACTCT 2 TGGTAAGTGC 1 TGGTAATGGG 1 TGGTAATGTA 1 TGGTACACGT 9 TGGTACCATT 1 TGGTAGACCA 1 TGGTAGATGT 1 TGGTAGCAGT 2 TGGTAGCATT 1 TGGTAGGCAC 1 TGGTAGGTCA 1 TGGTAGGTTC 1 TGGTAGTTAC 2 TGGTATAATG 1 TGGTATATTC 1 TGGTATGGAA 1 TGGTATTTCT 1 TGGTCAAGGT 1 TGGTCAGAAG 1 TGGTCAGACC 1 TGGTCAGCCG 1 TGGTCAGCCT 1 TGGTCAGGAC 1 TGGTCAGTGC 1 TGGTCCAGCG 2 TGGTCCCCCT 2 TGGTCCCTCT 1 TGGTCTGGAG 1 TGGTCTTATA 1 TGGTCTTGGA 1 TGGTGAAACC 1 TGGTGAAGGA 1 TGGTGAATCA 2 TGGTGAATCC 1 TGGTGACAGT 5 TGGTGATGGT 1 TGGTGCAGCA 2 TGGTGCAGTT 1 TGGTGGAAGG 1 TGGTGGACTT 1 TGGTGGCCGC 2 TGGTGGCGCT 1 TGGTGGGAGT 1 TGGTGGGCAT 5 TGGTGGTATG 1 TGGTGTACGC 1 TGGTGTATAC 1 TGGTGTATGA 1 TGGTGTATGC 114 TGGTGTGCAG 1 TGGTGTTAAG 1 TGGTGTTGAG 43 TGGTGTTGCA 1 TGGTGTTTTG 1 TGGTTACAAA 1 TGGTTACTGT 1 TGGTTAGTTT 1 TGGTTCACGT 1 TGGTTCGCGT 1 TGGTTCTGTG 1 TGGTTGAACC 1 TGGTTGACAC 1 TGGTTGATTT 1 TGGTTGCCAA 1 TGGTTGCGAC 1 TGGTTGCTGG 1 TGGTTGGCAA 1 TGGTTGGTGG 1 TGGTTGTTGC 1 TGGTTTATTA 1 TGGTTTATTG 1 TGGTTTCACT 1 TGGTTTGAGC 2 TGGTTTGAGG 1 TGGTTTGCAC 2 TGGTTTGCAG 1 TGGTTTGCGT 5 TGGTTTTACC 1 TGGTTTTATC 1 TGGTTTTCTC 2 TGGTTTTGGC 2 TGGTTTTTGG 8 TGTAAAAAAA 1 TGTAAACAGG 1 TGTAAACCTC 1 TGTAAACTTG 1 TGTAAAGATT 1 TGTAAATAAT 1 TGTAAATGTG 1 TGTAAATTTC 1 TGTAACACTA 1 TGTAACCTTT 1 TGTAACTACT 1 TGTAACTTCC 1 TGTAAGAAAG 1 TGTAAGCACC 1 TGTAAGCCGT 1 TGTAAGGCAC 1 TGTAAGTCTG 3 TGTAATAAGA 1 TGTAATATAT 3 TGTAATATGG 1 TGTAATCAAT 8 TGTAATCGAA 1 TGTAATTACT 1 TGTACATCCC 1 TGTACATTAG 1 TGTACATTCT 5 TGTACATTTA 1 TGTACCCCCG 1 TGTACCCCTG 1 TGTACCTAAC 1 TGTACCTGTA 14 TGTACCTTAG 1 TGTACGTCAT 1 TGTACTACTT 1 TGTACTTATT 2 TGTACTTCCT 1 TGTACTTGGG 1 TGTAGACAGC 1 TGTAGAGTGC 1 TGTAGATATG 1 TGTAGCCCTG 1 TGTAGCCTAT 1 TGTAGCTGCA 2 TGTAGGTATT 1 TGTAGTATGG 1 TGTAGTATTT 1 TGTAGTCAAT 1 TGTAGTCCCA 2 TGTAGTGAAC 1 TGTAGTGGCG 1 TGTAGTTTGA 5 TGTATAAAAA 3 TGTATAATAA 1 TGTATACCAC 1 TGTATAGCTT 1 TGTATATCTT 1 TGTATATGGC 1 TGTATATGGT 1 TGTATCCAGT 1 TGTATCTGGT 1 TGTATGCCGT 2 TGTATGGCTG 1 TGTATGTACA 2 TGTATGTTAT 1 TGTATGTTTT 1 TGTATTACAG 1 TGTATTCAGT 1 TGTATTCTTA 1 TGTATTGTAC 2 TGTATTTGAA 1 TGTATTTTAA 1 TGTATTTTAT 2 TGTATTTTCC 3 TGTCAATTTT 1 TGTCACCCAG 1 TGTCACTAAA 1 TGTCAGAAAA 1 TGTCAGAACA 1 TGTCAGACAA 1 TGTCAGAGAT 2 TGTCAGGAAC 1 TGTCAGTCTT 1 TGTCATAGAA 2 TGTCATAGTG 1 TGTCATCACA 1 TGTCATCCAT 1 TGTCATTCCT 1 TGTCATTGCA 1 TGTCCAAACC 1 TGTCCAAGCA 1 TGTCCACACC 1 TGTCCACTGT 2 TGTCCCCTAG 1 TGTCCCCTGT 1 TGTCCCGTCA 1 TGTCCTCCCC 1 TGTCCTGCCA 1 TGTCCTGGGA 1 TGTCCTGGTT 8 TGTCGCTGGG 1 TGTCGGCGTG 1 TGTCGTAACA 1 TGTCTATGCC 1 TGTCTCCTTA 1 TGTCTCCTTC 1 TGTCTCTGCT 1 TGTCTCTTTC 1 TGTCTGCACA 1 TGTCTGCCTG 3 TGTCTGGATG 1 TGTCTGGGTT 1 TGTCTGGTAC 1 TGTCTGGTTG 1 TGTCTGTAAG 1 TGTCTGTAAT 1 TGTCTGTACA 1 TGTCTGTCAT 1 TGTCTGTGCC 3 TGTCTGTGGT 4 TGTCTGTTCC 1 TGTCTTAGGG 1 TGTCTTCCCC 1 TGTCTTCCTG 1 TGTCTTTATA 2 TGTCTTTATG 1 TGTCTTTGCT 1 TGTCTTTGGG 1 TGTCTTTGTA 1 TGTCTTTGTG 2 TGTCTTTTCT 1 TGTCTTTTGT 1 TGTGAAAACT 1 TGTGAAATGG 1 TGTGAACACA 2 TGTGAACCTA 1 TGTGAAGATT 1 TGTGAAGGAA 1 TGTGAAGTGA 2 TGTGAATTAG 1 TGTGACACTG 1 TGTGACAGGC 1 TGTGACCTCT 2 TGTGACTAGC 1 TGTGAGAATT 1 TGTGAGATGA 1 TGTGAGCAGT 1 TGTGAGCCAC 1 TGTGAGCCCC 1 TGTGAGCCCT 1 TGTGAGGACT 2 TGTGAGGAGA 1 TGTGAGGAGT 2 TGTGAGGGAA 1 TGTGAGTCAC 1 TGTGAGTGAA 1 TGTGAGTGTT 1 TGTGAGTTAT 1 TGTGATAGGG 1 TGTGATCACA 4 TGTGATCACT 1 TGTGATCAGA 9 TGTGATGAGA 1 TGTGATGGCC 1 TGTGATGGGA 1 TGTGATGGGT 1 TGTGATTTTG 1 TGTGCAAACC 2 TGTGCACAAT 1 TGTGCACCCC 5 TGTGCACGCA 1 TGTGCATCTT 1 TGTGCCAGTG 1 TGTGCCATAA 1 TGTGCCCATC 1 TGTGCCCGGG 1 TGTGCCCTGA 1 TGTGCCCTTC 1 TGTGCCGATG 1 TGTGCGCACC 1 TGTGCGCATA 1 TGTGCTAAAT 11 TGTGCTAATA 3 TGTGCTCAGG 1 TGTGCTCCCT 1 TGTGCTCGGG 9 TGTGCTGCTA 1 TGTGCTGGCT 1 TGTGCTTACA 1 TGTGCTTCTA 1 TGTGCTTGCT 1 TGTGCTTTGA 1 TGTGGAAGTT 3 TGTGGAGCTG 1 TGTGGAGTAA 1 TGTGGAGTCT 1 TGTGGATCTG 1 TGTGGCAAAG 1 TGTGGCACTG 2 TGTGGCAGCG 1 TGTGGCCTCC 2 TGTGGCCTGC 1 TGTGGCCTGG 1 TGTGGCGTAT 1 TGTGGCTGTT 2 TGTGGCTTGC 1 TGTGGGAAAT 2 TGTGGGAACC 1 TGTGGGAGAT 1 TGTGGGGGTG 1 TGTGGGTATT 1 TGTGGGTCGG 1 TGTGGGTGCT 22 TGTGGTAAGT 1 TGTGGTCAAA 1 TGTGGTGGCA 3 TGTGGTGGCT 1 TGTGGTGGTG 3 TGTGGTGGTT 1 TGTGGTTAAA 1 TGTGGTTGTG 1 TGTGTAATGA 1 TGTGTACAGA 1 TGTGTACTGC 1 TGTGTACTTA 1 TGTGTAGAAT 1 TGTGTAGGGT 1 TGTGTAGTTT 1 TGTGTATATA 1 TGTGTATGCA 1 TGTGTATTAG 1 TGTGTCAAAG 1 TGTGTCAGAG 1 TGTGTCGAGA 1 TGTGTCTGCA 1 TGTGTCTGTG 1 TGTGTCTTTT 1 TGTGTGAGCT 1 TGTGTGAGGA 1 TGTGTGCCAC 2 TGTGTGCGCG 1 TGTGTGCGCT 3 TGTGTGCGTG 2 TGTGTGCTAA 1 TGTGTGCTGG 1 TGTGTGCTGT 1 TGTGTGGGGA 1 TGTGTGGGGC 2 TGTGTGGGGG 2 TGTGTGTAAG 1 TGTGTGTCTG 1 TGTGTGTGTG 4 TGTGTGTTAA 1 TGTGTGTTAG 2 TGTGTGTTTC 1 TGTGTGTTTG 3 TGTGTTGAGA 57 TGTGTTGCCT 1 TGTGTTGGTG 1 TGTGTTGTCA 2 TGTGTTGTGA 1 TGTGTTGTGT 3 TGTGTTTATG 1 TGTGTTTATT 1 TGTGTTTTGT 1 TGTTAACAGC 1 TGTTAAGTTC 1 TGTTAATGGA 1 TGTTAATGTT 1 TGTTAATTTT 1 TGTTACAGCC 1 TGTTACGCTA 1 TGTTACTGCT 1 TGTTACTGGC 1 TGTTAGAAAA 1 TGTTAGAACT 6 TGTTAGATTT 2 TGTTAGCACT 1 TGTTAGCCTG 2 TGTTAGGAAG 1 TGTTAGTATC 1 TGTTATCTGT 1 TGTTATTACT 1 TGTTCACACT 3 TGTTCAGAAA 1 TGTTCAGAAT 1 TGTTCAGGAC 1 TGTTCAGTCA 1 TGTTCAGTTG 2 TGTTCCACTC 4 TGTTCCCACT 1 TGTTCCCGGA 1 TGTTCCCTTT 1 TGTTCCGTCT 1 TGTTCCTGAA 1 TGTTCGGTTG 1 TGTTCGTAAA 1 TGTTCTACCT 1 TGTTCTAGGT 1 TGTTCTATGA 1 TGTTCTCAAA 2 TGTTCTCAAG 1 TGTTCTCATT 1 TGTTCTCCAT 4 TGTTCTCCCT 1 TGTTCTGAAT 1 TGTTCTGACT 1 TGTTCTGTGT 1 TGTTCTTTCT 1 TGTTGAATGA 1 TGTTGACAAA 1 TGTTGAGGCA 1 TGTTGCACCG 1 TGTTGCTACA 1 TGTTGCTGCT 1 TGTTGGCTCG 1 TGTTGGGGAA 1 TGTTGGGGTG 1 TGTTGTAGAA 1 TGTTGTATTT 1 TGTTGTGCCT 1 TGTTGTGCGC 2 TGTTGTTACA 3 TGTTGTTAGA 1 TGTTGTTGGC 1 TGTTTAAAAG 1 TGTTTAATAC 1 TGTTTAGGGG 1 TGTTTATCCT 4 TGTTTATGAG 1 TGTTTATGTA 1 TGTTTATTAA 2 TGTTTATTAT 1 TGTTTATTTG 1 TGTTTCAAGA 1 TGTTTCAATT 1 TGTTTCACTG 1 TGTTTCACTT 3 TGTTTCAGGA 3 TGTTTCCCTA 1 TGTTTCCTGA 1 TGTTTCGTGA 1 TGTTTCTCCC 1 TGTTTGAAAT 2 TGTTTGAAGT 1 TGTTTGAGAG 1 TGTTTGATTC 1 TGTTTGCATA 2 TGTTTGCCAG 1 TGTTTGCGTG 1 TGTTTGCTCA 2 TGTTTGCTGG 1 TGTTTGGAAC 1 TGTTTGGCAA 1 TGTTTGGGGG 1 TGTTTGTGTG 3 TGTTTGTGTT 1 TGTTTGTTTT 1 TGTTTTAGGT 1 TGTTTTGATT 1 TGTTTTTAAA 1 TGTTTTTATG 3 TGTTTTTGAG 2 TGTTTTTTAT 1 TGTTTTTTGG 1 TGTTTTTTTT 2 TTAAAAAAAA 1 TTAAAAATAC 1 TTAAAAATTC 1 TTAAAACCCT 1 TTAAAAGAAC 1 TTAAACAAAG 1 TTAAACACCT 1 TTAAACATTG 1 TTAAACCTAT 1 TTAAACCTCA 1 TTAAACTTTG 1 TTAAAGAAGT 1 TTAAAGATGC 1 TTAAAGATTT 1 TTAAAGGACT 1 TTAAAGGTTA 1 TTAAATAAAA 1 TTAAATAGCA 5 TTAAATGCAA 1 TTAAATTGTG 1 TTAAATTGTT 1 TTAACACTAT 1 TTAACATCGA 1 TTAACCCCAA 1 TTAACCCCTC 1 TTAACCCCTG 1 TTAACCCTCT 4 TTAACCTGGC 1 TTAACGCTTC 1 TTAACGGCCG 1 TTAACTATGG 1 TTAACTCATA 1 TTAACTGCAA 1 TTAACTTCTG 1 TTAACTTTCT 1 TTAAGAACAT 1 TTAAGAAGCC 1 TTAAGAAGGA 1 TTAAGAGGGG 1 TTAAGCAAAG 1 TTAAGCTGGG 1 TTAAGCTGTT 1 TTAAGCTTTC 1 TTAAGGAATT 1 TTAAGGCTAC 1 TTAAGTGCAA 1 TTAAGTGGAA 1 TTAATAAAAG 1 TTAATAAAAT 1 TTAATAATAT 1 TTAATAATTA 1 TTAATAGTGG 2 TTAATATATG 1 TTAATATGTG 1 TTAATCCTAA 1 TTAATCGAAG 1 TTAATGAAAA 1 TTAATGAATC 1 TTAATGAGGG 1 TTAATGCCTT 1 TTAATGCGTC 3 TTAATGCTGA 1 TTAATTACAC 1 TTAATTGATA 1 TTAATTGCAA 1 TTAATTGGGA 1 TTAATTTCCC 1 TTAATTTCTC 1 TTAATTTGCT 1 TTAATTTTTC 1 TTACAAAAGG 1 TTACAAAATC 2 TTACAAAGTA 1 TTACAACATT 1 TTACAATCAC 1 TTACACCTGT 1 TTACACTGAG 1 TTACAGAATT 1 TTACAGAGCT 1 TTACATTGGC 1 TTACCAAAAA 1 TTACCAGCAA 2 TTACCATATC 26 TTACCATATG 1 TTACCCAACC 1 TTACCCAGGA 1 TTACCCAGGC 1 TTACCCAGTG 2 TTACCCCCTT 1 TTACCCTAGT 1 TTACCGCAGC 1 TTACCGCTGA 1 TTACCTCCCT 1 TTACCTCCTT 5 TTACCTGAAC 1 TTACCTGGGA 1 TTACCTGGGT 1 TTACCTTTTT 2 TTACGAGAGC 1 TTACGAGGAA 1 TTACGATGAA 1 TTACGTCCCA 1 TTACTAAATG 7 TTACTCTAGA 1 TTACTCTCAA 1 TTACTCTGAA 1 TTACTCTTTC 1 TTACTGACAA 1 TTACTGAGTT 1 TTACTGATTT 2 TTACTGCACT 2 TTACTGGCCC 2 TTACTGTGGA 1 TTACTTATAC 7 TTACTTCCTC 1 TTACTTGTCC 1 TTACTTTGAG 1 TTACTTTTTC 1 TTAGAAATAA 1 TTAGAACTTG 1 TTAGAAGCAG 1 TTAGAAGGGT 1 TTAGAATAGT 1 TTAGAATCAC 1 TTAGAATGTT 2 TTAGACTAAA 1 TTAGAGAGAA 1 TTAGAGCCTA 1 TTAGAGCTGG 1 TTAGATAAGC 3 TTAGATAATA 1 TTAGATCGTT 2 TTAGATGTCC 1 TTAGCAAAAT 1 TTAGCAATAA 2 TTAGCACTGT 1 TTAGCATTTG 1 TTAGCCAGAC 1 TTAGCCAGCA 1 TTAGCCAGCC 1 TTAGCCAGCT 1 TTAGCCAGGA 8 TTAGCCAGGC 3 TTAGCCAGTC 1 TTAGCGTGGG 1 TTAGCTACTA 1 TTAGCTCAAA 1 TTAGCTCTTA 1 TTAGCTGAGT 3 TTAGCTTGGT 1 TTAGCTTGTG 1 TTAGCTTGTT 13 TTAGCTTTCA 1 TTAGCTTTTA 2 TTAGGAAGCT 1 TTAGGAGCTG 1 TTAGGAGGAG 1 TTAGGAGGGT 2 TTAGGATCAC 1 TTAGGCAAAT 1 TTAGGCAAGT 1 TTAGGCCCTC 1 TTAGGGCCCA 3 TTAGGTATCC 1 TTAGGTCTAT 1 TTAGGTTGGC 1 TTAGTAAAAA 1 TTAGTAAACT 1 TTAGTACCTT 1 TTAGTATTCA 1 TTAGTCAGGA 1 TTAGTCAGGC 1 TTAGTCTTGA 1 TTAGTGATCA 1 TTAGTGTTTT 1 TTAGTTAAGC 1 TTAGTTCTGG 1 TTAGTTTAGA 1 TTATAAAAGC 1 TTATAAAGTT 1 TTATAACCTC 1 TTATAACTGA 2 TTATAAGTGA 1 TTATACAGCG 1 TTATAGCACA 1 TTATAGCATA 1 TTATAGGAGG 1 TTATAGTGTT 1 TTATAGTTTC 1 TTATATGAAA 1 TTATCATTTG 1 TTATCCAGGT 1 TTATCCCAGT 1 TTATCCTGTC 1 TTATCCTTCA 1 TTATCTAATC 1 TTATCTGACT 1 TTATGATGAA 1 TTATGCAGTA 1 TTATGCAGTG 1 TTATGCTGTA 1 TTATGCTTTC 1 TTATGGATCT 1 TTATGGGACC 1 TTATGGGATC 36 TTATGGGGAG 1 TTATGGGGCC 1 TTATGGGTCG 1 TTATGGGTTA 1 TTATGTGATT 1 TTATGTGCTT 1 TTATGTGTAA 1 TTATGTTGAA 3 TTATTAGCTG 1 TTATTCAAAT 1 TTATTCTTTG 1 TTATTGCTAG 1 TTATTGGACT 1 TTATTGTATT 1 TTATTGTTCC 8 TTATTTAATT 1 TTATTTACAC 1 TTATTTATGA 2 TTATTTATTT 1 TTATTTTCAA 1 TTATTTTCCT 1 TTATTTTGAA 1 TTATTTTGAG 1 TTCAAAACAA 1 TTCAAAATGG 1 TTCAAACAGC 1 TTCAAACTAC 1 TTCAAAGCAT 1 TTCAAAGGGA 1 TTCAAATGAA 1 TTCAACAGGA 1 TTCAAGGAAC 3 TTCAAGTGAA 1 TTCAATAAAA 36 TTCAATAAAT 1 TTCAATGAAA 1 TTCAATGCTA 1 TTCAATGTCA 1 TTCAATTGCT 1 TTCAATTTCA 2 TTCAATTTCG 1 TTCACAAAAA 1 TTCACAAAGG 5 TTCACAAAGT 1 TTCACAAGTT 1 TTCACACAAG 1 TTCACACACC 1 TTCACACCGC 1 TTCACAGAGC 1 TTCACAGATT 5 TTCACAGCTG 1 TTCACAGTGG 5 TTCACCAGGC 1 TTCACCAGGG 3 TTCACGGCAT 1 TTCACGTACG 1 TTCACTAGCG 1 TTCACTGCCG 1 TTCACTGTGA 32 TTCACTTTAG 1 TTCAGACAGT 1 TTCAGAGCCT 1 TTCAGAGGAA 1 TTCAGAGGAC 1 TTCAGAGGCT 1 TTCAGATGAG 1 TTCAGATTTT 1 TTCAGCAACC 1 TTCAGCGTTC 1 TTCAGCTGAT 1 TTCAGGAGGG 2 TTCAGGGGGG 1 TTCAGGTTCT 1 TTCAGGTTTA 1 TTCAGTGAAG 1 TTCAGTGCCC 1 TTCAGTGCCT 1 TTCAGTGCTA 2 TTCAGTGGTG 1 TTCAGTGTTT 1 TTCAGTTCGC 1 TTCAGTTGCT 1 TTCATAACAC 1 TTCATACACA 2 TTCATACACC 180 TTCATACACG 1 TTCATACACT 3 TTCATACCCC 1 TTCATACGCC 2 TTCATAGCTG 4 TTCATATCAA 1 TTCATATTAA 1 TTCATCACCT 3 TTCATCAGCA 1 TTCATCTGAT 1 TTCATTAAAA 1 TTCATTAAGA 1 TTCATTAGGA 1 TTCATTATAA 4 TTCATTCATT 3 TTCATTGCTT 1 TTCATTGTAA 1 TTCATTGTAG 7 TTCATTGTAT 1 TTCCAAAAAA 1 TTCCAAGGCA 4 TTCCAAGGGC 1 TTCCAATTAC 1 TTCCACAGCG 1 TTCCACCAAG 1 TTCCACCCGA 1 TTCCACCCTG 1 TTCCACCTTC 1 TTCCACTAAC 5 TTCCACTGCT 1 TTCCAGAATG 1 TTCCAGACCG 1 TTCCAGACCT 10 TTCCAGAGCC 1 TTCCAGCCGT 1 TTCCAGCTGC 2 TTCCAGGTTT 1 TTCCAGTAAA 1 TTCCAGTGAG 1 TTCCAGTGTC 1 TTCCATACCC 1 TTCCATCCTG 1 TTCCATTATC 1 TTCCCAAACA 1 TTCCCAAAGG 2 TTCCCAACAA 1 TTCCCAACTA 1 TTCCCACTCG 1 TTCCCAGCTC 5 TTCCCAGGGC 1 TTCCCAGTAC 1 TTCCCATATC 1 TTCCCATCCT 1 TTCCCATTGA 1 TTCCCCAAGA 1 TTCCCCACCC 1 TTCCCCAGGG 1 TTCCCCGTCC 1 TTCCCCTACA 1 TTCCCCTCGT 1 TTCCCCTTCA 1 TTCCCCTTCC 2 TTCCCGAGGG 1 TTCCCGCACA 1 TTCCCGCTCC 1 TTCCCGGGGC 1 TTCCCGTACC 1 TTCCCGTTCA 1 TTCCCTAATG 1 TTCCCTGCAA 1 TTCCCTGCCC 1 TTCCCTGGAG 1 TTCCGAGAGA 1 TTCCGCGTCC 1 TTCCGCGTGC 9 TTCCGCGTTC 2 TTCCGGAAAC 1 TTCCGGCTTT 1 TTCCGGTTCC 9 TTCCGTGCCT 2 TTCCGTTCAT 1 TTCCGTTTCT 1 TTCCTACACC 1 TTCCTAGCAG 1 TTCCTATGAG 1 TTCCTATTAC 1 TTCCTCAAAG 1 TTCCTCAGCT 1 TTCCTCCAAA 2 TTCCTCCACC 2 TTCCTCCACG 3 TTCCTCCTCT 1 TTCCTCCTGT 1 TTCCTCGGGC 2 TTCCTCTCAA 1 TTCCTCTGCA 1 TTCCTGACTA 2 TTCCTGCCCC 2 TTCCTGCCCT 1 TTCCTGCTAC 2 TTCCTGCTGC 1 TTCCTGCTTG 1 TTCCTGGCCC 1 TTCCTGGCCT 1 TTCCTGGTAG 5 TTCCTTAATT 1 TTCCTTCCTT 1 TTCCTTGAAA 1 TTCCTTTAAC 1 TTCCTTTTTA 1 TTCGACCTTT 1 TTCGAGAACG 2 TTCGAGAGCT 1 TTCGATAGGC 1 TTCGCCTGGT 1 TTCGCGATGG 2 TTCGCGTACA 1 TTCGCGTCAA 1 TTCGCGTTCA 1 TTCGCTGTGA 1 TTCGCTTCCT 1 TTCGGCTACC 1 TTCGGGGCAA 1 TTCGGGTGTG 1 TTCGGTTGGT 5 TTCGTACATC 1 TTCGTAGCAG 1 TTCGTATATG 1 TTCGTCAGCC 1 TTCGTCAGGC 1 TTCGTTGTCT 1 TTCGTTTATT 1 TTCTAAAGAA 1 TTCTAACATA 7 TTCTAACCCA 1 TTCTAAGAAA 1 TTCTAATATA 1 TTCTAATTTC 1 TTCTAATTTT 1 TTCTACATAA 1 TTCTACCACC 2 TTCTAGGCAA 1 TTCTATAAAA 1 TTCTATCTTA 1 TTCTCACCAC 3 TTCTCACTCA 1 TTCTCAGACA 1 TTCTCATAAT 1 TTCTCCACTT 1 TTCTCCCCCT 1 TTCTCCCGCT 4 TTCTCCGGTT 1 TTCTCCGTGG 1 TTCTCCTCAC 1 TTCTCCTGTG 1 TTCTCTAATT 1 TTCTCTACAC 5 TTCTCTCCAC 4 TTCTCTCCCC 5 TTCTCTCTGT 1 TTCTCTGCCT 1 TTCTCTTCAT 1 TTCTCTTCTC 1 TTCTCTTGGC 1 TTCTGAAAGG 1 TTCTGAAGAC 1 TTCTGAAGTA 1 TTCTGAGCGG 2 TTCTGATCTG 1 TTCTGCAAGA 1 TTCTGCAATA 1 TTCTGCACCC 1 TTCTGCACTG 4 TTCTGCAGAA 1 TTCTGCGGCA 1 TTCTGCGTTT 1 TTCTGCTCCT 1 TTCTGCTCTT 1 TTCTGGACCC 1 TTCTGGCACT 10 TTCTGGCATT 1 TTCTGGCCCA 1 TTCTGGCTAC 1 TTCTGGCTAG 1 TTCTGGCTGC 7 TTCTGGGTGA 2 TTCTGGTGCG 1 TTCTGGTGCT 1 TTCTGTAGCC 4 TTCTGTCCCT 1 TTCTGTCCTG 1 TTCTGTGAAT 4 TTCTGTGCAT 1 TTCTGTGCTC 1 TTCTGTGCTG 4 TTCTGTGTCA 5 TTCTGTGTGG 4 TTCTGTGTTC 1 TTCTGTGTTT 4 TTCTGTTGTG 1 TTCTTAAGAT 1 TTCTTAATGA 1 TTCTTATGGC 1 TTCTTATTAA 1 TTCTTATTTT 3 TTCTTCCTAG 1 TTCTTCCTGT 1 TTCTTCTCGT 1 TTCTTCTGTT 1 TTCTTCTTGT 1 TTCTTGAACA 6 TTCTTGACAA 1 TTCTTGATCT 1 TTCTTGCTTA 1 TTCTTGGGAT 1 TTCTTGTCAT 1 TTCTTGTGGC 20 TTCTTGTTTT 1 TTCTTTAAGG 1 TTCTTTCCTG 1 TTCTTTGCCC 1 TTCTTTGCTC 1 TTCTTTGGGA 2 TTCTTTTAGC 1 TTCTTTTGCT 1 TTGAAACCCC 7 TTGAAACCCT 2 TTGAAACCTG 1 TTGAAACCTT 1 TTGAAACTCC 1 TTGAAACTTT 1 TTGAAAGAAT 1 TTGAAAGCTC 1 TTGAAAGGTT 1 TTGAAAGTCA 1 TTGAAATGTC 1 TTGAAATTTG 1 TTGAACCAGC 1 TTGAACTGAA 2 TTGAAGAAAG 1 TTGAAGAAGA 2 TTGAAGCTTT 2 TTGAAGGCAT 1 TTGAAGGGTT 1 TTGAAGGTGC 1 TTGAAGTAGA 1 TTGAAGTCTT 1 TTGAAGTGAC 1 TTGAAGTGGC 1 TTGAAGTGGT 1 TTGAATAAAA 1 TTGAATCCCC 13 TTGAATCCGC 1 TTGAATTGAT 1 TTGACAAAAA 1 TTGACAACTA 1 TTGACACCCC 1 TTGACACTTT 6 TTGACAGGTT 1 TTGACAGTTT 1 TTGACCAGGC 13 TTGACCCACT 1 TTGACCCAGA 1 TTGACCCTGG 1 TTGACCTGGC 1 TTGACCTGTT 1 TTGACGAGAC 1 TTGACGGGCG 1 TTGACTTTGG 1 TTGACTTTTG 1 TTGAGAAGCG 1 TTGAGAAGGC 1 TTGAGAATGA 1 TTGAGACTGA 1 TTGAGAGCTG 1 TTGAGATCTA 1 TTGAGCCAGC 8 TTGAGCTCTT 1 TTGAGCTTAT 1 TTGAGGGGGT 1 TTGAGGGTCC 1 TTGAGTAGGA 1 TTGAGTGAGA 1 TTGATAAATG 1 TTGATATGGA 1 TTGATCAGGC 1 TTGATCCCCC 1 TTGATCTGAG 1 TTGATGAAGT 1 TTGATGCCAT 2 TTGATGCCCA 1 TTGATGCCCG 4 TTGATGTAAT 1 TTGATGTACA 1 TTGATGTGCT 2 TTGATTATCA 1 TTGATTCCAT 1 TTGATTCGGG 1 TTGATTGCGA 2 TTGATTTTAG 1 TTGATTTTGC 1 TTGCAAAAAA 1 TTGCAAAACT 1 TTGCAACCGG 1 TTGCAAGCTG 1 TTGCAATGCA 4 TTGCACAAGC 1 TTGCACAATA 1 TTGCACGAGG 2 TTGCAGAAAT 1 TTGCAGGATA 1 TTGCAGTTTT 1 TTGCATAGCT 1 TTGCATATAA 1 TTGCATATCA 4 TTGCATTTAA 1 TTGCATTTCT 1 TTGCCAAATC 1 TTGCCAACAC 1 TTGCCAAGCT 1 TTGCCACAGA 1 TTGCCAGGCC 1 TTGCCATCCC 1 TTGCCATTGG 2 TTGCCCAAGC 2 TTGCCCACGC 1 TTGCCCAGCA 1 TTGCCCAGGC 33 TTGCCCAGGT 3 TTGCCCGGGC 2 TTGCCCTGGC 1 TTGCCGAGGC 1 TTGCCGAGGT 1 TTGCCGCTGC 2 TTGCCGGAAA 1 TTGCCGGGCG 1 TTGCCGGTTA 1 TTGCCGGTTT 1 TTGCCGTACA 1 TTGCCTAGCA 1 TTGCCTAGGC 2 TTGCCTCTTA 1 TTGCCTGGGA 4 TTGCCTTCCT 1 TTGCCTTCTC 1 TTGCCTTGCT 1 TTGCCTTGTT 2 TTGCCTTTCA 1 TTGCCTTTTT 1 TTGCGAGTGG 1 TTGCGCTGGC 2 TTGCGGAGCC 1 TTGCGTAGAG 1 TTGCGTGGGC 1 TTGCGTGTGT 1 TTGCGTTACT 1 TTGCTAAAAT 1 TTGCTAAACA 1 TTGCTACTAA 1 TTGCTACTTG 1 TTGCTAGAGG 4 TTGCTAGCTC 1 TTGCTATGGC 1 TTGCTATTTA 1 TTGCTCACAA 1 TTGCTCACAC 3 TTGCTCAGGC 1 TTGCTCATAA 1 TTGCTCATTT 1 TTGCTCCTCA 1 TTGCTCGCAC 1 TTGCTCTGCG 2 TTGCTGAAGG 1 TTGCTGACTT 6 TTGCTGAGGC 1 TTGCTGCCAA 1 TTGCTGCTTA 1 TTGCTGGAGA 4 TTGCTGTACT 1 TTGCTGTAGA 3 TTGCTGTGTG 1 TTGCTGTTGT 1 TTGCTTACAC 3 TTGCTTCTTA 1 TTGCTTCTTC 1 TTGCTTTGTT 1 TTGCTTTTCA 1 TTGCTTTTGT 1 TTGCTTTTTC 1 TTGGAAACAC 1 TTGGAACAAT 12 TTGGAAGTTG 1 TTGGAATCCA 1 TTGGACAATG 1 TTGGACAGGC 1 TTGGACAGTT 1 TTGGACCACT 1 TTGGACCAGG 1 TTGGACCTGC 1 TTGGACCTGG 12 TTGGAGATCT 8 TTGGAGCAAA 1 TTGGAGGAGA 1 TTGGAGGAGG 1 TTGGATATCC 1 TTGGATGCAG 1 TTGGCAACAT 2 TTGGCAAGAG 1 TTGGCAAGTG 1 TTGGCAATAG 1 TTGGCACACA 2 TTGGCACATA 1 TTGGCACCCA 1 TTGGCACTCA 1 TTGGCAGCCC 4 TTGGCAGGCA 1 TTGGCAGGTG 1 TTGGCATTGT 1 TTGGCCAAAC 1 TTGGCCAACA 1 TTGGCCAAGA 1 TTGGCCAAGC 4 TTGGCCACGC 1 TTGGCCAGAC 3 TTGGCCAGCC 1 TTGGCCAGCG 1 TTGGCCAGCT 1 TTGGCCAGGA 11 TTGGCCAGGC 138 TTGGCCAGGG 4 TTGGCCAGGT 3 TTGGCCAGTC 3 TTGGCCAGTT 1 TTGGCCCAGA 3 TTGGCCCGCC 1 TTGGCCCTCA 1 TTGGCCGGGA 1 TTGGCCGGGC 2 TTGGCCTGAC 4 TTGGCCTGTA 1 TTGGCCTGTG 1 TTGGCGAGGC 1 TTGGCGCATT 1 TTGGCGCCAC 1 TTGGCGGGTG 1 TTGGCGGTTG 1 TTGGCTAATT 1 TTGGCTACAG 1 TTGGCTAGCC 1 TTGGCTAGGC 6 TTGGCTCACA 2 TTGGCTGCTG 1 TTGGCTGGTC 1 TTGGCTGTCT 1 TTGGCTTTTC 4 TTGGCTTTTG 1 TTGGGAAAAT 1 TTGGGAAAGG 1 TTGGGACACC 1 TTGGGAGAGG 1 TTGGGAGCAG 2 TTGGGAGGCC 3 TTGGGAGTGA 1 TTGGGATTGC 1 TTGGGATTTC 1 TTGGGCAACT 1 TTGGGCAGGC 2 TTGGGCATCT 1 TTGGGCCTAC 1 TTGGGCCTCT 1 TTGGGCGAAT 1 TTGGGCTGCT 1 TTGGGGAAAA 1 TTGGGGAGTG 2 TTGGGGATGG 1 TTGGGGGTTT 1 TTGGGGTGCC 1 TTGGGGTTCA 1 TTGGGGTTCC 4 TTGGGGTTGA 2 TTGGGGTTTA 1 TTGGGGTTTC 67 TTGGGGTTTG 2 TTGGGGTTTT 1 TTGGGTCCTC 1 TTGGGTCTCC 1 TTGGGTGTCC 2 TTGGGTTGTT 1 TTGGGTTTCC 1 TTGGGTTTTG 4 TTGGTAAATG 2 TTGGTAAATT 1 TTGGTAAGGC 1 TTGGTAATAG 1 TTGGTAATCT 1 TTGGTACCAA 2 TTGGTAGGCT 1 TTGGTAGGTA 1 TTGGTATCAC 1 TTGGTATGCT 1 TTGGTATTGC 1 TTGGTCAGAC 1 TTGGTCAGCC 1 TTGGTCAGGA 3 TTGGTCAGGC 43 TTGGTCAGGT 1 TTGGTCAGTC 1 TTGGTCATAA 1 TTGGTCCGGT 1 TTGGTCCTCC 1 TTGGTCCTCT 70 TTGGTCCTTT 1 TTGGTCGGGC 1 TTGGTGAAGG 54 TTGGTGATGC 1 TTGGTGCGCA 1 TTGGTGCTGG 1 TTGGTGCTGT 1 TTGGTGCTTG 3 TTGGTGGCAC 1 TTGGTGGGAG 2 TTGGTGGGCA 1 TTGGTGGGGG 1 TTGGTGGGTA 1 TTGGTGGTCG 3 TTGGTGGTGG 1 TTGGTGTCTC 1 TTGGTGTGCT 2 TTGGTGTTGA 2 TTGGTTAATT 1 TTGGTTAGGA 1 TTGGTTAGGC 1 TTGGTTTCCC 4 TTGGTTTGGA 1 TTGGTTTTGT 3 TTGTAAAAAA 1 TTGTAAAAGG 1 TTGTAAAATG 1 TTGTAAACAT 1 TTGTAAACTT 2 TTGTAAAGTA 1 TTGTAAATGC 2 TTGTAAGGCG 1 TTGTAATAAA 2 TTGTAATCGT 15 TTGTAATTAC 1 TTGTAATTTG 1 TTGTAATTTT 1 TTGTACAACA 1 TTGTACAACT 1 TTGTACAATC 1 TTGTACTGTG 1 TTGTAGATAA 2 TTGTAGCAAT 1 TTGTAGCCCC 1 TTGTAGGAGG 1 TTGTATCCCT 1 TTGTATTAAT 1 TTGTATTCCA 2 TTGTATTGTT 1 TTGTCAAAAT 1 TTGTCAATGG 1 TTGTCACACC 1 TTGTCAGAGG 1 TTGTCAGCAC 1 TTGTCAGCCC 1 TTGTCAGGCT 1 TTGTCATCTG 1 TTGTCATTAC 1 TTGTCATTGG 1 TTGTCCAGAG 1 TTGTCCAGGC 8 TTGTCCAGGG 1 TTGTCCCATA 1 TTGTCCCCTA 1 TTGTCCTCTG 2 TTGTCCTGGC 1 TTGTCCTTGC 1 TTGTCCTTTT 1 TTGTCGATAG 1 TTGTCGTATG 1 TTGTCTAAGC 1 TTGTCTCAGC 1 TTGTCTGCCC 1 TTGTCTGCCT 2 TTGTGAGAAT 2 TTGTGAGCGG 1 TTGTGATACT 2 TTGTGATGTA 3 TTGTGATTAA 1 TTGTGCAAGA 1 TTGTGCACGC 1 TTGTGCAGGA 1 TTGTGCAGGC 1 TTGTGCATAT 1 TTGTGCTGAG 1 TTGTGGCTGC 3 TTGTGGCTTT 1 TTGTGGGAAG 1 TTGTGGGATC 2 TTGTGGGTAG 1 TTGTGGTTAA 4 TTGTGGTTGG 2 TTGTGTAAAA 1 TTGTGTAGGC 1 TTGTGTGACA 1 TTGTGTGTAC 5 TTGTGTTCCT 1 TTGTTATTGC 1 TTGTTCAGGC 3 TTGTTCCCCC 1 TTGTTCCGCC 1 TTGTTCTGCT 3 TTGTTCTTTG 2 TTGTTGAAAA 1 TTGTTGATGG 1 TTGTTGATTG 1 TTGTTGCAAA 1 TTGTTGCATA 1 TTGTTGGGCC 2 TTGTTGGTCA 1 TTGTTGGTTC 1 TTGTTGTTGA 3 TTGTTGTTTT 1 TTGTTTAGGA 2 TTGTTTCTAC 1 TTGTTTGTGT 1 TTGTTTTAAG 1 TTGTTTTCTT 1 TTGTTTTGGT 1 TTGTTTTTGG 1 TTTAAAAAAA 1 TTTAAAAAGT 1 TTTAAATAGC 1 TTTAACCAAA 1 TTTAACGGCC 11 TTTAACGGCG 1 TTTAAGAGAG 1 TTTAAGGTGT 1 TTTAATACAT 1 TTTAATCTCA 1 TTTAATGTTA 1 TTTAATTTGT 2 TTTACAAAAA 1 TTTACAAGTT 3 TTTACACAGT 1 TTTACACTCT 1 TTTACAGACC 1 TTTACAGCCC 2 TTTACAGTCC 1 TTTACATCCA 1 TTTACCTAGT 1 TTTACCTGAC 1 TTTACCTGCC 6 TTTACCTGGA 1 TTTACTGCTG 1 TTTACTGTCA 1 TTTACTGTTT 1 TTTACTTTAA 1 TTTAGAAAAT 1 TTTAGACACA 1 TTTAGCAAGT 1 TTTAGCACTT 1 TTTAGCGGCC 1 TTTAGCTTAA 1 TTTAGGGGGA 1 TTTAGGTAAA 1 TTTAGTGACG 6 TTTAGTGCTT 2 TTTATAAATC 1 TTTATAACTA 1 TTTATAGATT 1 TTTATCAATG 1 TTTATCTGCT 6 TTTATGCCTC 1 TTTATGCTGT 1 TTTATGGGGA 1 TTTATGGTCA 1 TTTATGTGCA 1 TTTATTAGAA 1 TTTATTCTGC 1 TTTATTGAAA 1 TTTATTGCAG 1 TTTATTGTGC 1 TTTATTTAGC 1 TTTATTTGAA 1 TTTATTTGGC 2 TTTATTTTAA 1 TTTCAAATTG 1 TTTCAACACT 1 TTTCAACGTG 1 TTTCAAGCCA 1 TTTCAAGGAA 1 TTTCAAGTGG 4 TTTCAATGCA 1 TTTCACCCCT 2 TTTCACTCCT 1 TTTCACTTGG 1 TTTCAGAAAG 1 TTTCAGAAGG 1 TTTCAGAGAG 8 TTTCAGATTG 1 TTTCAGGGAG 1 TTTCAGGGGA 4 TTTCAGTGGG 1 TTTCATACAC 1 TTTCATAGAA 1 TTTCATATCT 1 TTTCATCTCT 1 TTTCATCTGT 1 TTTCATTAAG 1 TTTCATTAAT 1 TTTCATTAGC 1 TTTCATTGCC 1 TTTCCAAGTT 1 TTTCCACCAC 1 TTTCCACCAG 4 TTTCCACGGC 1 TTTCCACTAA 4 TTTCCACTAT 2 TTTCCACTTA 1 TTTCCAGGGT 1 TTTCCATATT 1 TTTCCATCAT 1 TTTCCATTCC 1 TTTCCCAGAC 1 TTTCCCAGGG 1 TTTCCCAGGT 1 TTTCCCAGTG 1 TTTCCCAGTT 1 TTTCCCATCC 2 TTTCCCTCAA 1 TTTCCCTCTT 1 TTTCCTAAGC 1 TTTCCTATTG 1 TTTCCTCTCA 4 TTTCCTGCTG 1 TTTCCTTCCT 2 TTTCCTTTGC 2 TTTCCTTTGT 2 TTTCGTAGAT 1 TTTCTAATTC 1 TTTCTAATTG 1 TTTCTACAAA 1 TTTCTAGAAT 1 TTTCTAGAGT 1 TTTCTAGGGG 2 TTTCTAGTTG 1 TTTCTAGTTT 7 TTTCTATCTA 1 TTTCTATGCT 1 TTTCTCAGAC 1 TTTCTCAGCA 2 TTTCTCAGTG 1 TTTCTCGGTG 1 TTTCTCTCCC 1 TTTCTGAAAA 1 TTTCTGAAAT 1 TTTCTGAAGG 1 TTTCTGAAGT 1 TTTCTGATTA 1 TTTCTGCAAA 1 TTTCTGCTGG 1 TTTCTGGAAA 1 TTTCTGGAGG 3 TTTCTGGCTG 1 TTTCTGTATG 3 TTTCTGTCCC 1 TTTCTGTGAA 1 TTTCTGTTAA 2 TTTCTGTTTC 1 TTTCTGTTTT 1 TTTCTTAAAG 7 TTTCTTCTCT 1 TTTCTTGCAG 1 TTTCTTGGGC 1 TTTGAAAATT 1 TTTGAAATGA 3 TTTGAAGATG 5 TTTGAATCAG 1 TTTGAATGCT 1 TTTGAATTAA 1 TTTGAATTCA 1 TTTGAATTTT 1 TTTGACAAAG 1 TTTGACGGTC 1 TTTGAGAATG 1 TTTGAGACCT 1 TTTGAGAGAA 1 TTTGAGATGA 1 TTTGAGCTGG 1 TTTGAGTGCC 1 TTTGATAAAT 1 TTTGATCTGT 1 TTTGATGAAC 1 TTTGATGCAG 1 TTTGATTAAA 1 TTTGCAATCC 1 TTTGCACCAC 1 TTTGCAGCAA 1 TTTGCAGTGA 1 TTTGCATAAG 1 TTTGCATTTG 1 TTTGCCAAAA 1 TTTGCCAAGG 1 TTTGCCAGGC 2 TTTGCCCGGC 1 TTTGCCCGGG 1 TTTGCCTAGC 1 TTTGCCTGTT 2 TTTGCCTTTC 1 TTTGCGCTAC 1 TTTGCGGCAG 1 TTTGCGGTCC 5 TTTGCGTCAG 1 TTTGCGTCCG 2 TTTGCGTTGA 2 TTTGCTCTAT 1 TTTGCTCTGT 1 TTTGCTGAAC 1 TTTGCTGATA 1 TTTGCTTCAG 1 TTTGCTTGTT 1 TTTGCTTTTA 2 TTTGGAAAAA 1 TTTGGAAATC 1 TTTGGAATGT 3 TTTGGACAAT 1 TTTGGACCCA 1 TTTGGAGACT 1 TTTGGAGGAG 1 TTTGGAGGCT 1 TTTGGAGGGT 1 TTTGGAGGTA 1 TTTGGAGTCC 1 TTTGGATTGT 1 TTTGGATTTT 1 TTTGGCCACT 1 TTTGGGAGGG 1 TTTGGGCCTA 3 TTTGGGGCTG 6 TTTGGGGGCC 3 TTTGGGGTAT 1 TTTGGGGTCG 1 TTTGGGTAGG 1 TTTGGGTGGG 1 TTTGGTACAA 1 TTTGGTATCA 1 TTTGGTCTTT 2 TTTGGTGAAG 1 TTTGGTGTTT 2 TTTGGTTGTT 1 TTTGGTTTTC 8 TTTGTAAGTT 1 TTTGTAATCG 1 TTTGTACAAA 1 TTTGTAGATG 1 TTTGTAGTCT 1 TTTGTAGTGA 1 TTTGTATACC 1 TTTGTATATC 1 TTTGTATGTC 1 TTTGTATGTG 1 TTTGTCAGGC 2 TTTGTCCTGG 1 TTTGTCTGTG 1 TTTGTCTTCC 1 TTTGTGACTC 1 TTTGTGACTG 5 TTTGTGAGTC 1 TTTGTGATCA 1 TTTGTGCAAT 1 TTTGTGCCAT 3 TTTGTGCCCC 1 TTTGTGGCTA 1 TTTGTGGGCA 5 TTTGTGGGGC 1 TTTGTGGGGG 1 TTTGTGGTGT 1 TTTGTGGTTC 1 TTTGTGGTTT 1 TTTGTGTCAA 2 TTTGTGTCAC 4 TTTGTGTCTT 1 TTTGTGTTGT 1 TTTGTTAAAA 3 TTTGTTAAAT 1 TTTGTTAATT 6 TTTGTTCCCT 1 TTTGTTCGCA 1 TTTGTTCTGT 2 TTTGTTGCTG 2 TTTGTTGCTT 2 TTTGTTGTTG 1 TTTGTTTCAG 1 TTTGTTTCTC 1 TTTGTTTGTT 1 TTTTAAAAAC 1 TTTTAAAAAT 1 TTTTAAAATA 1 TTTTAAACTT 3 TTTTAAAGCT 1 TTTTAAAGTG 2 TTTTAACAAT 1 TTTTAACACA 1 TTTTAAGTAA 1 TTTTAATAGT 1 TTTTACAGTA 1 TTTTACATAT 1 TTTTACATCA 1 TTTTACCACC 2 TTTTACCAGT 2 TTTTACTCAC 1 TTTTACTCCT 1 TTTTACTTCT 1 TTTTAGACAG 1 TTTTAGAGAA 1 TTTTAGAGGG 1 TTTTAGCAGG 1 TTTTAGCCCC 1 TTTTAGGACC 1 TTTTAGGTAA 1 TTTTAGTGTC 1 TTTTAGTTAG 1 TTTTAGTTGA 1 TTTTATAAGG 1 TTTTATAATT 1 TTTTATAGAA 1 TTTTATATCA 1 TTTTATATCC 1 TTTTATATGA 1 TTTTATCAGG 1 TTTTATCTAC 1 TTTTATGCCT 1 TTTTATGGGA 1 TTTTATGGGT 1 TTTTATTAAA 1 TTTTATTATT 1 TTTTATTGGA 1 TTTTATTGGG 2 TTTTCAAAAC 1 TTTTCAAATT 1 TTTTCAACTA 1 TTTTCAAGAA 1 TTTTCAATAG 1 TTTTCACACC 1 TTTTCACTGC 1 TTTTCAGACA 1 TTTTCCACAT 1 TTTTCCACTT 2 TTTTCCAGAT 1 TTTTCCATCT 1 TTTTCCATTT 1 TTTTCCCACC 1 TTTTCCCCAC 1 TTTTCCCTGT 3 TTTTCCTGTA 3 TTTTCTAGGC 1 TTTTCTCTCA 1 TTTTCTGAAA 5 TTTTCTGCAT 1 TTTTCTGCTG 5 TTTTCTGTAC 1 TTTTCTTATA 1 TTTTCTTCAT 1 TTTTGACCCA 1 TTTTGAGATT 1 TTTTGAGCTT 2 TTTTGATACC 1 TTTTGATCCA 1 TTTTGCGGTC 2 TTTTGCTACA 1 TTTTGCTGCA 1 TTTTGCTTTG 1 TTTTGGAATA 1 TTTTGGAGGG 1 TTTTGGATGC 1 TTTTGGGGGC 1 TTTTGTAAAA 1 TTTTGTACGC 2 TTTTGTACTT 1 TTTTGTGAGT 1 TTTTGTGTAT 1 TTTTGTGTGA 1 TTTTGTTATG 1 TTTTGTTTTG 1 TTTTTAAATT 1 TTTTTAATGT 8 TTTTTACTGA 8 TTTTTAGAAT 4 TTTTTAGTGT 1 TTTTTATCCA 1 TTTTTATCTT 1 TTTTTATGCC 1 TTTTTATTGC 1 TTTTTATTTA 1 TTTTTCAAGA 1 TTTTTCAGAC 1 TTTTTCATTA 1 TTTTTCCAAA 1 TTTTTCCCCT 1 TTTTTCCTTC 3 TTTTTCTCCT 1 TTTTTCTGAT 1 TTTTTGAAAA 1 TTTTTGAAAC 1 TTTTTGAAGG 3 TTTTTGATAA 4 TTTTTGATCA 15 TTTTTGATGA 1 TTTTTGCCAA 1 TTTTTGGAGG 1 TTTTTGGATA 1 TTTTTGTACA 6 TTTTTGTAGG 2 TTTTTGTATA 1 TTTTTGTATT 1 TTTTTGTCAT 1 TTTTTGTTAC 1 TTTTTTATTT 1 TTTTTTCTTC 1 TTTTTTGCTT 1 TTTTTTTAAT 1 TTTTTTTTTC 1 TTTTTTTTTT 2 r-bioc-edger-3.4.2+dfsg.orig/data/datalist0000644000265600020320000000002312250253443017415 0ustar tilleaadminNC1 NC2 Tu102 Tu98 r-bioc-edger-3.4.2+dfsg.orig/data/NC2.txt0000755000265600020320000067611212227063704017040 0ustar tilleaadminTag_Sequence Count AAAAAAAAAA 39 AAAAAAAAAG 3 AAAAAAAGCA 1 AAAAAAATCA 1 AAAAAACCCA 2 AAAAAACCTA 1 AAAAAAGACG 1 AAAAAATGTT 1 AAAAACACCT 1 AAAAACATCT 1 AAAAACTTAG 2 AAAAAGAACG 1 AAAAAGCAAA 1 AAAAAGCAGA 1 AAAAAGCCCC 1 AAAAAGCTCA 1 AAAAAGCTCC 1 AAAAAGCTGA 5 AAAAAGGGTT 1 AAAAAGTGCT 1 AAAAATAAAA 1 AAAAATAAAG 4 AAAAATAAGA 1 AAAAATGCGG 1 AAAAATGTAT 1 AAAAATTCAT 1 AAAACAAGTG 2 AAAACAATTG 3 AAAACACAGA 1 AAAACATCCT 1 AAAACATCTC 1 AAAACATTAT 2 AAAACATTCT 134 AAAACATTTC 1 AAAACATTTT 1 AAAACCAGCC 2 AAAACCTGAA 1 AAAACCTTGG 1 AAAACGCATA 1 AAAACTCAAG 1 AAAACTCATT 1 AAAACTCCAA 1 AAAACTGAGA 4 AAAACTGCAC 1 AAAACTGCCT 1 AAAACTGTGA 1 AAAACTTGCT 1 AAAACTTTGA 1 AAAAGAAACT 3 AAAAGACTGT 1 AAAAGAGAAA 4 AAAAGAGCAG 1 AAAAGAGTGG 14 AAAAGAGTTG 1 AAAAGCAGAA 6 AAAAGCCATT 1 AAAAGGAGAT 2 AAAAGGCACT 1 AAAAGGTCAA 1 AAAAGTGTAG 1 AAAAGTGTGT 1 AAAATAAACC 1 AAAATAAACG 1 AAAATAAAGG 1 AAAATACATC 1 AAAATACTAG 1 AAAATCAGGT 1 AAAATCCATC 2 AAAATCGATT 1 AAAATGAAGA 1 AAAATGACAG 1 AAAATGGGGT 1 AAAATGGTCT 1 AAAATGTACT 1 AAAATGTTCT 1 AAAATTCACT 1 AAACAAAATA 1 AAACAAGAAA 1 AAACAAGGAA 1 AAACAATGGC 1 AAACACCAAA 1 AAACACCCCA 1 AAACACTTCT 1 AAACAGAATT 1 AAACAGACCA 1 AAACAGAGCT 1 AAACAGGCAC 1 AAACAGTGTA 2 AAACATCCTA 2 AAACATCTGA 1 AAACATCTTC 1 AAACATTAGC 1 AAACATTCCC 1 AAACATTCTC 2 AAACATTGGG 10 AAACATTTTC 2 AAACCACTTC 1 AAACCAGCTG 1 AAACCAGGGC 2 AAACCATCCA 1 AAACCCCAAT 1 AAACCCCGTC 1 AAACCCGAAG 1 AAACCCTGTC 1 AAACCGATCT 1 AAACCGTGTA 1 AAACCGTTAT 1 AAACCTAAAA 1 AAACCTAGAA 1 AAACCTCAGG 1 AAACCTGAGA 1 AAACCTTGTC 1 AAACCTTTTG 1 AAACGAGACG 1 AAACGCGTGA 1 AAACGCTGCA 1 AAACGTTTCC 1 AAACTATTTG 1 AAACTCACGC 5 AAACTCCGTC 1 AAACTCGAGC 1 AAACTCGGGT 5 AAACTCTGTG 3 AAACTGACAG 1 AAACTGACCG 1 AAACTGATTG 1 AAACTGCCTG 1 AAACTGCCTT 1 AAACTGGCAG 1 AAACTGGGGC 1 AAACTGTAAT 1 AAACTGTGAG 1 AAACTGTGGT 3 AAACTGTTCA 1 AAACTTACCT 2 AAACTTACTG 1 AAACTTGTCC 1 AAACTTTGCC 1 AAACTTTGTA 2 AAACTTTGTC 1 AAAGAAAACA 1 AAAGAAACCC 1 AAAGAAAGTG 1 AAAGAACCCA 1 AAAGAACTGA 1 AAAGAAGACT 1 AAAGAAGCCA 1 AAAGAAGGAA 1 AAAGAGAAAA 1 AAAGAGAACA 1 AAAGAGAAGA 1 AAAGAGAATG 1 AAAGAGCGAG 1 AAAGAGCTGG 1 AAAGAGGCTT 1 AAAGAGTGAT 1 AAAGATAATC 1 AAAGATCGGA 1 AAAGATCTTA 1 AAAGATGAGC 1 AAAGATGGTG 1 AAAGATGTTA 1 AAAGATTGGT 1 AAAGCAAACC 1 AAAGCAAGAA 1 AAAGCAATCG 1 AAAGCACAGC 1 AAAGCACGTC 2 AAAGCAGGAG 1 AAAGCAGTTT 1 AAAGCATCAG 1 AAAGCATCTT 1 AAAGCATTCG 1 AAAGCATTCT 3 AAAGCATTTT 2 AAAGCCAAGA 2 AAAGCCAAGC 1 AAAGCCCAGT 1 AAAGCCGTCA 2 AAAGCCGTCC 1 AAAGCGGCCA 1 AAAGCGTAAA 3 AAAGCGTTTT 1 AAAGCTAAGG 1 AAAGCTGACA 2 AAAGCTGCCT 1 AAAGGAAAGT 1 AAAGGAACTT 1 AAAGGAATAA 1 AAAGGAATGA 1 AAAGGACCCC 1 AAAGGACGTG 1 AAAGGAGAGT 1 AAAGGATGTT 1 AAAGGCCCGT 1 AAAGGCGGGG 1 AAAGGCTTTT 1 AAAGGGCTCA 2 AAAGGGGCAG 1 AAAGGGGCCT 1 AAAGGGGCGG 1 AAAGGGGGCA 5 AAAGGTAACA 1 AAAGGTGAAT 1 AAAGGTTATG 1 AAAGGTTGCA 2 AAAGTCAATC 1 AAAGTCAGAA 5 AAAGTCATTG 1 AAAGTCGGGG 1 AAAGTCTAGA 2 AAAGTGAAAG 1 AAAGTGCTGT 1 AAAGTGGAAA 2 AAAGTGGCCA 1 AAAGTGGCCT 1 AAAGTGGCTA 2 AAAGTGGGTG 3 AAAGTGTATT 2 AAAGTTAACT 1 AAAGTTCCCA 1 AAAGTTCTCA 2 AAATAAAAGA 1 AAATAAAAGT 1 AAATAAATCC 1 AAATAAATGA 1 AAATAAGCCC 1 AAATAAGGAG 1 AAATAATGTT 1 AAATACAGCA 1 AAATACATCC 1 AAATACCCCT 1 AAATACTTCA 2 AAATAGACCC 1 AAATAGAGGA 1 AAATAGATCC 9 AAATAGCTTA 1 AAATAGGTTT 1 AAATAGTCCA 1 AAATAGTGCC 1 AAATATGAGC 1 AAATCATAGG 1 AAATCCTGAG 1 AAATCGTCCA 1 AAATCGTTTT 1 AAATCTGGCA 15 AAATCTTTGA 1 AAATGACAAT 1 AAATGAGAAG 1 AAATGAGCCT 1 AAATGAGGGA 1 AAATGATGTG 1 AAATGCAGTA 1 AAATGCCACA 2 AAATGCTTAA 1 AAATGGACTT 1 AAATGGATGC 1 AAATGGCCAA 1 AAATGGCTTG 5 AAATGTAAGA 1 AAATGTCACC 5 AAATGTGGAT 1 AAATGTGTAT 1 AAATGTTCTG 1 AAATGTTTGG 1 AAATGTTTTG 1 AAATTAATAA 1 AAATTACGCT 1 AAATTATTTC 1 AAATTCGTTC 1 AAATTCTGGT 1 AAATTGAGTA 1 AAATTGCGCA 1 AAATTGGCCT 1 AAATTGTATG 1 AAATTGTCAA 1 AAATTGTTCC 1 AAATTGTTGT 2 AAATTTATAG 1 AAATTTCTCA 2 AAATTTGCAG 1 AAATTTTACA 1 AACAAACTGG 1 AACAAATTCT 2 AACAACTACG 1 AACAACTGGC 3 AACAAGAACC 1 AACAAGATCT 1 AACAAGGTGA 4 AACAATAATT 1 AACAATGAAA 1 AACAATGGCT 1 AACAATGTCA 2 AACAATTGGG 1 AACACACTCC 1 AACACACTTA 1 AACACAGATG 1 AACACAGGAG 1 AACACAGGCT 1 AACACATCCC 1 AACACATTCT 1 AACACCCAAA 1 AACACCCACT 1 AACACGCGTG 1 AACACGGGAG 1 AACACTCGCC 1 AACACTCTTT 1 AACACTTATT 1 AACACTTCTC 4 AACAGAAGCA 1 AACAGACACA 1 AACAGATATT 6 AACAGATCAA 1 AACAGATTTG 1 AACAGCAGCA 1 AACAGCAGCT 1 AACAGCCTTA 1 AACAGCTCAC 1 AACAGGACCA 1 AACAGGACTT 1 AACAGGGAAC 1 AACAGGGGGG 1 AACAGTCAAA 7 AACAGTGTCG 1 AACAGTGTGC 1 AACATAATGC 1 AACATATATC 1 AACATATTAA 1 AACATCAACA 1 AACATCAGCG 2 AACATCCACC 1 AACATCTCCC 1 AACATTCTAA 2 AACATTGACA 1 AACATTGACT 1 AACATTGGCC 1 AACATTGGGG 1 AACATTGTAA 1 AACCAAAAAA 3 AACCAAAAGT 1 AACCAAACCA 3 AACCAACAAA 1 AACCAACCAG 1 AACCACACTT 1 AACCACATTG 1 AACCACCACG 1 AACCACCCAG 1 AACCACTGCA 2 AACCACTGCT 4 AACCAGAGGT 2 AACCAGGTGG 1 AACCAGGTGT 2 AACCAGTATG 1 AACCAGTTTG 2 AACCATTGTG 1 AACCATTTAG 1 AACCCAAAAA 7 AACCCAAACC 1 AACCCAGAAG 1 AACCCAGGAG 22 AACCCAGGCG 1 AACCCAGGGG 1 AACCCATAAG 1 AACCCCAGCC 1 AACCCCCCAC 1 AACCCCGGAA 1 AACCCCGGAG 1 AACCCGAGAG 1 AACCCGCAGG 1 AACCCGCCAC 1 AACCCGGAAG 2 AACCCGGGAA 4 AACCCGGGAG 41 AACCCGGGAT 1 AACCCGGGCG 1 AACCCGGGGA 3 AACCCGGGGG 2 AACCCGGTGG 1 AACCCTCACC 1 AACCCTCGAA 1 AACCCTGATG 1 AACCCTGCCC 8 AACCCTGTTT 1 AACCGAATGA 1 AACCGAGACT 1 AACCGAGATG 1 AACCGCGACC 1 AACCGCTCTT 1 AACCGGGAAG 2 AACCGGGTTA 1 AACCGTACAC 1 AACCGTGAAG 1 AACCTACCAA 1 AACCTAGGAG 1 AACCTATTAA 1 AACCTATTGG 2 AACCTCCTGC 1 AACCTGAGGG 1 AACCTGCTTT 1 AACCTGGAAG 2 AACCTGGAGT 1 AACCTGGGAC 1 AACCTGGGAG 26 AACCTGTCTT 1 AACCTGTGGT 1 AACCTGTTTT 2 AACCTTCAGC 1 AACCTTGGCC 1 AACGAACGTG 3 AACGACAGCA 1 AACGACCTCG 7 AACGAGAACA 1 AACGAGTACA 3 AACGAGTATT 1 AACGCAGCCG 1 AACGCAGCCT 1 AACGCAGGAG 1 AACGCCAAGC 1 AACGCCAGGG 1 AACGCGAACA 3 AACGCGGCAA 1 AACGCGGCCA 33 AACGCGGTCA 1 AACGCGTCCA 1 AACGCTGCCT 2 AACGGCCCTG 1 AACGGCTGAT 1 AACGGGAGGG 1 AACGGGCCGG 3 AACGGTCGTG 1 AACGGTGCCA 1 AACGTATCTA 1 AACGTCCCCA 2 AACGTGAGGA 1 AACGTGCACG 1 AACGTGCAGG 31 AACGTGGCCC 1 AACGTGTAGC 1 AACTAAAAAA 7 AACTAAAGAA 2 AACTAACAAA 6 AACTAATACT 2 AACTACATAG 2 AACTACCACC 1 AACTAGCGGA 1 AACTAGGAAG 1 AACTATAAAC 3 AACTATACAA 1 AACTATCCTT 1 AACTATGCCA 1 AACTATGTTA 1 AACTATGTTG 1 AACTATTCAC 1 AACTCACGCA 1 AACTCAGCTA 2 AACTCAGGAG 2 AACTCATCCA 1 AACTCCTGGT 1 AACTCCTTGC 1 AACTCTCAAT 4 AACTCTGCTC 1 AACTCTGGAA 1 AACTCTTCAC 4 AACTCTTGAA 3 AACTGAGAGG 1 AACTGCGGCA 1 AACTGCTTCA 4 AACTGGAGGG 1 AACTGGCCCG 1 AACTGGCCTG 1 AACTGGGTCT 1 AACTGTACTA 2 AACTGTCCTT 1 AACTGTGTTT 1 AACTGTTCCT 1 AACTTAGGGG 1 AACTTCAGCC 1 AACTTCCATC 1 AACTTCCTAC 1 AACTTCTGTG 1 AACTTGACAA 1 AACTTGAGGG 1 AACTTGCCCA 4 AACTTGCCCC 1 AACTTGGCAA 2 AACTTGGCTG 1 AACTTGGGCT 1 AACTTTCTGG 1 AACTTTTTCA 1 AAGAAAACCT 6 AAGAAAACTG 4 AAGAAACCAT 2 AAGAAACTGT 1 AAGAAAGCAA 1 AAGAAAGCTC 6 AAGAAAGTTC 3 AAGAAATAGC 1 AAGAAATCGT 2 AAGAAATGAA 1 AAGAAATTCT 1 AAGAAATTGC 1 AAGAACACTG 1 AAGAACCAGC 1 AAGAACGTAG 1 AAGAAGACTT 6 AAGAAGATAG 6 AAGAAGATTG 1 AAGAAGCAGA 1 AAGAAGCAGG 16 AAGAAGCGGG 1 AAGAAGCTGA 1 AAGAAGGCAC 1 AAGAAGGGAA 1 AAGAAGGGTG 1 AAGAAGGTGG 4 AAGAAGTGCC 1 AAGAATGCCC 1 AAGAATTCCA 1 AAGAATTGGA 1 AAGACAACTT 1 AAGACACCAC 1 AAGACAGAGC 5 AAGACAGCGG 1 AAGACAGTGG 65 AAGACATCCC 1 AAGACCACCA 2 AAGACCAGCC 1 AAGACCAGCG 1 AAGACCCCTG 1 AAGACCCTCT 5 AAGACCTAAG 1 AAGACTCAGA 1 AAGACTGCCA 1 AAGACTGGCC 1 AAGACTGGCT 4 AAGAGAAGGT 1 AAGAGACACA 1 AAGAGACACT 1 AAGAGACATA 2 AAGAGAGGGA 1 AAGAGCGACT 1 AAGAGCGCAG 1 AAGAGCGCCG 7 AAGAGCGGCG 1 AAGAGCTCAC 2 AAGAGCTGAC 1 AAGAGCTGCA 1 AAGAGCTGCT 1 AAGAGCTGGG 1 AAGAGCTTCA 1 AAGAGGAGAT 1 AAGAGGATCG 1 AAGAGGTTTG 2 AAGAGTCAGC 1 AAGAGTCCAG 1 AAGAGTGCTT 2 AAGAGTTACG 1 AAGATAATGC 1 AAGATACTGA 1 AAGATATGGC 1 AAGATATTCT 1 AAGATCACAT 1 AAGATCCCCG 3 AAGATCGTGG 1 AAGATCTTTG 1 AAGATGAGGG 1 AAGATGCATC 1 AAGATGGCAG 1 AAGATTCGTG 1 AAGATTCTAG 1 AAGATTGGTG 27 AAGATTTGTG 1 AAGCAAAATA 1 AAGCAAAGTA 1 AAGCAAGGAA 1 AAGCACAGTT 1 AAGCACATCA 1 AAGCACCTTG 2 AAGCACGTGG 1 AAGCACTTCT 1 AAGCAGAAAC 1 AAGCAGAAGG 1 AAGCAGATCT 1 AAGCAGCTGT 1 AAGCAGGAGC 1 AAGCAGGCAT 1 AAGCAGGTAA 1 AAGCAGTCGC 2 AAGCATCTCA 3 AAGCATCTGG 1 AAGCATTCAA 1 AAGCATTTAT 1 AAGCATTTCA 1 AAGCATTTTT 1 AAGCCAAGCA 1 AAGCCACCAA 1 AAGCCACCTC 4 AAGCCACGAT 1 AAGCCAGAAG 1 AAGCCAGCCC 10 AAGCCAGGAC 9 AAGCCAGGGG 9 AAGCCAGTTT 2 AAGCCATCAA 1 AAGCCATCGC 1 AAGCCCAGGC 3 AAGCCCCGAG 1 AAGCCCCTGG 1 AAGCCCCTTC 2 AAGCCCTACA 1 AAGCCGGCCC 3 AAGCCGGTCC 1 AAGCCGTGGC 1 AAGCCTGAGC 3 AAGCCTGCAC 2 AAGCCTGTAG 1 AAGCCTTAAA 2 AAGCCTTCAG 1 AAGCCTTGCC 1 AAGCCTTGCT 2 AAGCGAATGC 1 AAGCGAGTCA 1 AAGCGCGCCC 1 AAGCGCTACC 1 AAGCGCTCTC 10 AAGCGGAAAA 1 AAGCGGACCT 1 AAGCGGAGTG 2 AAGCGGGACC 1 AAGCGGGCTG 1 AAGCTCATTT 1 AAGCTCCACT 1 AAGCTCCCAG 1 AAGCTCCCTG 2 AAGCTCTGTG 2 AAGCTGAAAG 1 AAGCTGAATA 1 AAGCTGAGGT 1 AAGCTGAGTG 5 AAGCTGCCTG 1 AAGCTGCTGG 1 AAGCTGGAGG 2 AAGCTGGAGT 1 AAGCTGGCCA 1 AAGCTGGGTT 1 AAGCTGTCAG 3 AAGCTGTGTC 3 AAGCTGTTCC 2 AAGCTTGAGA 2 AAGCTTGAGT 1 AAGCTTGCTC 1 AAGCTTGGAG 1 AAGCTTTCAC 1 AAGCTTTGAG 1 AAGGAAAAAA 3 AAGGAAACAG 1 AAGGAAACGT 4 AAGGAAAGTG 1 AAGGAACCTG 2 AAGGAACTTG 2 AAGGAAGAAG 1 AAGGAAGATG 3 AAGGAAGATT 1 AAGGAAGCAA 1 AAGGAAGTTC 1 AAGGAATCGG 1 AAGGAATCTA 1 AAGGACACCA 1 AAGGACCAGC 4 AAGGACCTAG 2 AAGGACCTTT 24 AAGGACGCTC 1 AAGGAGAAGG 1 AAGGAGACTG 1 AAGGAGAGCC 2 AAGGAGATGG 27 AAGGAGCAAG 1 AAGGAGCGGG 1 AAGGAGGCTG 1 AAGGAGGGTA 1 AAGGAGTCCC 2 AAGGAGTCGG 1 AAGGAGTGAA 1 AAGGAGTTTG 5 AAGGATAAAA 14 AAGGATGCCT 1 AAGGATGCGG 1 AAGGCAAAAA 1 AAGGCAAAGA 1 AAGGCAAATG 1 AAGGCAATCG 5 AAGGCAATCT 1 AAGGCACAGA 5 AAGGCACTGC 1 AAGGCACTTC 1 AAGGCAGAAG 3 AAGGCAGAGA 1 AAGGCAGGGA 1 AAGGCAGGGC 1 AAGGCAGTGG 2 AAGGCCACCG 1 AAGGCCAGCA 4 AAGGCCATCA 1 AAGGCCCAGG 1 AAGGCCCTCT 3 AAGGCCGGTG 1 AAGGCCTCGG 2 AAGGCCTTGT 9 AAGGCCTTTT 1 AAGGCGAGTA 1 AAGGCGCTCC 1 AAGGCTAGAG 1 AAGGCTATGT 1 AAGGCTCTTT 2 AAGGCTGAGC 2 AAGGCTGATA 1 AAGGCTGGTT 1 AAGGCTTAAT 1 AAGGCTTGCA 1 AAGGGAGAGA 1 AAGGGAGCAC 2 AAGGGAGGGT 6 AAGGGATGTC 3 AAGGGCAGTG 2 AAGGGCCGGT 1 AAGGGCGCGG 1 AAGGGCTCTG 1 AAGGGGAAGC 1 AAGGGGCCTT 1 AAGGGGCTGC 1 AAGGGGGAAG 1 AAGGGGGCAA 8 AAGGGGTAAT 1 AAGGGGTTTG 1 AAGGGTAACT 1 AAGGGTGACT 1 AAGGTAACAG 3 AAGGTAATGC 3 AAGGTAGATG 1 AAGGTAGCAA 1 AAGGTAGCAG 16 AAGGTAGGGA 1 AAGGTAGGGC 9 AAGGTCAAAG 1 AAGGTCATTC 1 AAGGTCGAGC 4 AAGGTCGCAA 1 AAGGTCGGGA 1 AAGGTCTGCC 1 AAGGTCTTTA 1 AAGGTGCCTC 4 AAGGTGCTCC 1 AAGGTGGAAG 2 AAGGTGGACG 1 AAGGTGGAGG 50 AAGGTGGAGT 1 AAGGTGGCAA 1 AAGGTGGCCA 1 AAGGTGGCCC 1 AAGGTGTCCA 1 AAGGTGTTTT 1 AAGGTTAGCA 1 AAGGTTCTTC 1 AAGTAAGATC 1 AAGTACAACC 1 AAGTACGAGG 1 AAGTAGCCGG 1 AAGTATGTCT 1 AAGTATTTGT 1 AAGTCAATGT 1 AAGTCACCGG 1 AAGTCAGAGT 1 AAGTCAGGAA 1 AAGTCAGGAG 1 AAGTCATAGG 2 AAGTCATCAT 1 AAGTCATTCA 4 AAGTCGTTTG 1 AAGTCTGCCT 1 AAGTGAAAAT 1 AAGTGAAACA 4 AAGTGAATAC 1 AAGTGAGAAC 1 AAGTGAGGAG 4 AAGTGATTCT 1 AAGTGCCTGC 1 AAGTGGAAGC 2 AAGTGGCCAT 3 AAGTGGGCCC 1 AAGTGGGTGC 7 AAGTGGGTGT 1 AAGTGGTGCC 1 AAGTGGTTGA 1 AAGTGTAGAT 1 AAGTGTTCTG 1 AAGTTAAGTG 1 AAGTTACACA 1 AAGTTAGAGC 1 AAGTTCAATA 1 AAGTTCCCAT 1 AAGTTCTAGT 1 AAGTTCTGCG 4 AAGTTGATGC 1 AAGTTGATGT 1 AAGTTGCTAT 3 AAGTTGGCAA 1 AAGTTGGCGC 1 AAGTTGTTCC 1 AAGTTTCCAA 1 AAGTTTCTGA 1 AAGTTTCTTA 1 AAGTTTGCAA 1 AAGTTTGCCT 1 AAGTTTGTCT 1 AAGTTTGTTA 1 AAGTTTTTTA 1 AATAAAACGG 2 AATAAAAGCT 1 AATAAAAGTA 1 AATAAAAGTG 1 AATAAAGCCT 13 AATAAAGGCT 11 AATAAAGGTA 1 AATAAAGTGC 1 AATAAAGTTG 4 AATAAATATT 1 AATAAATCTG 1 AATAAATGGA 2 AATAAATTCC 9 AATAAATTTA 1 AATAACACCC 1 AATAACACGT 1 AATAACACTA 1 AATAATAGCC 1 AATAATGGAG 1 AATAATGTTT 1 AATACAGAGA 1 AATACAGGAT 2 AATACAGGCT 1 AATACATTCT 1 AATACCTCGT 1 AATACTCACA 2 AATACTGTCT 1 AATAGCAAAA 1 AATAGCACAG 1 AATAGCAGTA 1 AATAGCTCAG 1 AATAGCTGAT 2 AATAGGGTCA 3 AATAGGTCCA 9 AATAGTAGAC 2 AATAGTTCCC 1 AATAGTTTCC 16 AATATAGGGT 1 AATATATCCA 1 AATATCCAAA 1 AATATCTCCA 1 AATATCTGAC 1 AATATGCATC 1 AATATGCTTT 1 AATATGGACT 1 AATATGGGTG 1 AATATGGTAC 1 AATATGTGGG 8 AATATTCTAA 1 AATATTGAGA 2 AATATTGATA 1 AATATTGTAC 6 AATATTGTTG 1 AATATTTATA 4 AATCAATAAG 1 AATCACAAAT 45 AATCACAGAT 1 AATCACCTTA 1 AATCACCTTT 2 AATCACGAAT 1 AATCACTGTA 1 AATCAGAAAT 1 AATCAGATGT 1 AATCATCAAA 1 AATCATTCAA 1 AATCCAAAAG 1 AATCCAAAGG 2 AATCCAAGAG 3 AATCCAGATT 1 AATCCAGCAT 1 AATCCAGGAG 1 AATCCAGTCT 1 AATCCCATTT 2 AATCCCGCAA 1 AATCCCGCCC 7 AATCCCTGTT 1 AATCCCTTAG 1 AATCCGACTC 2 AATCCGATCT 1 AATCCGGGAG 1 AATCCGGGGG 1 AATCCTAAGC 1 AATCCTCCAA 1 AATCCTGGAT 1 AATCCTGTGG 27 AATCCTGTTG 1 AATCCTTAGG 1 AATCCTTATT 1 AATCGCAAAT 1 AATCGCTAAT 2 AATCTAATTC 1 AATCTAGCAC 1 AATCTCACTC 1 AATCTGAACC 2 AATCTGAGCC 1 AATCTGCGCC 4 AATCTGGAGA 1 AATCTGGTTG 1 AATCTTGCAA 2 AATCTTGTCT 1 AATGAAAAGG 1 AATGAAAGGG 1 AATGAACAAA 1 AATGAACTCC 1 AATGAAGAAA 1 AATGACACCC 1 AATGACCATT 1 AATGACCTGG 1 AATGACTCAA 1 AATGACTGAC 2 AATGAGAAGG 3 AATGAGGTGC 1 AATGAGTTTG 1 AATGAGTTTT 1 AATGATACAG 1 AATGCAAAAT 1 AATGCAAGCA 1 AATGCAATAG 1 AATGCAATCA 1 AATGCAGGCA 2 AATGCAGTGC 1 AATGCAGTGG 1 AATGCATCAC 1 AATGCCACAA 2 AATGCCAGCA 2 AATGCCCACG 1 AATGCCCCAC 1 AATGCCCCTG 1 AATGCCTGCT 1 AATGCGGGAA 1 AATGCTGATC 1 AATGCTGGAG 3 AATGCTGGCA 1 AATGCTGTGC 1 AATGCTGTTT 1 AATGCTTGAT 1 AATGGAAACT 1 AATGGAAAGA 1 AATGGAATGG 4 AATGGACACT 1 AATGGAGACT 1 AATGGAGAGC 1 AATGGAGTAT 2 AATGGATCCA 1 AATGGATGAA 3 AATGGATTAC 3 AATGGCAAAG 1 AATGGCAGAG 1 AATGGCATTT 1 AATGGCCAAA 1 AATGGCCAAG 1 AATGGCTGCG 1 AATGGGAAGT 1 AATGGGATTC 2 AATGGGGTGC 1 AATGGTCCAA 1 AATGGTTAGC 2 AATGTAATCA 9 AATGTAGTCG 1 AATGTCATTG 3 AATGTCCGAA 1 AATGTCGTTT 1 AATGTGATGG 1 AATGTGATTT 1 AATGTGCCTT 4 AATGTGGCTG 1 AATGTGGTGA 1 AATGTGTGTA 1 AATGTTCACA 1 AATGTTTCCA 2 AATTAAGAAT 1 AATTAATTGT 1 AATTACATCT 1 AATTACGTGA 1 AATTACTTCC 2 AATTAGGCAG 1 AATTAGGTGC 1 AATTATGACT 1 AATTATGCGG 4 AATTATTCTT 2 AATTCAAAAC 1 AATTCAAGAC 1 AATTCACTAG 1 AATTCACTCC 1 AATTCAGTGA 1 AATTCCACGC 1 AATTCCCGTC 1 AATTCCCTTC 1 AATTCCTTGC 2 AATTCGATTG 1 AATTCTATCA 1 AATTCTCTCA 3 AATTCTGAGT 1 AATTCTGTAA 1 AATTGAAACC 1 AATTGAGCTA 3 AATTGAGGAG 3 AATTGCAAGC 4 AATTGCCACT 2 AATTGCTGGA 2 AATTGGGCAG 1 AATTGGGTGA 1 AATTTAGCAA 1 AATTTCCAGC 1 AATTTCTACC 4 AATTTCTATT 2 AATTTGCAAC 3 AATTTGGGAG 1 AATTTTAAGT 1 AATTTTCAGT 1 AATTTTTGCT 1 AATTTTTGGG 1 ACAAAAAAAA 2 ACAAAAACAT 1 ACAAAAACTA 11 ACAAAACAGA 1 ACAAAACCCC 4 ACAAAACGCC 1 ACAAAATATG 1 ACAAAATCAA 1 ACAAAATTTA 1 ACAAACCCCA 1 ACAAACCCCC 36 ACAAACTAAA 2 ACAAACTGTG 10 ACAAACTTAG 8 ACAAAGCCCC 3 ACAAATCCTT 11 ACAAATTATG 2 ACAACAAATA 1 ACAACACACT 1 ACAACAGCAG 1 ACAACATAGA 1 ACAACCACCA 6 ACAACGACCA 6 ACAACTCAAT 1 ACAAGAAAGG 1 ACAAGAACAA 3 ACAAGAATTG 1 ACAAGACCTC 1 ACAAGAGTAT 1 ACAAGCATAT 5 ACAAGCCATA 1 ACAAGCTTAG 1 ACAAGCTTGC 1 ACAAGGCCCC 1 ACAAGGTCAG 1 ACAAGTTCAC 1 ACAATCAGGA 2 ACAATCGGTG 1 ACAATCGTCC 1 ACAATGAGCT 1 ACAATGGCAG 1 ACAATGTCTT 1 ACAATTGGTC 10 ACACACAGCA 5 ACACACAGCC 1 ACACACCAGG 1 ACACACGCAA 2 ACACACGCTG 1 ACACACTCCA 1 ACACACTTGG 1 ACACAGAAGA 1 ACACAGACTG 1 ACACAGAGAA 1 ACACAGCAAA 3 ACACAGCAAG 118 ACACAGCACA 1 ACACAGCGAG 2 ACACAGCTCT 1 ACACAGCTTT 1 ACACAGTTTT 1 ACACATACCA 1 ACACATATTA 5 ACACATTGAA 2 ACACCAAGGA 1 ACACCACAGA 1 ACACCAGCAA 1 ACACCAGGCC 1 ACACCATAGT 1 ACACCATCAC 1 ACACCATTCA 3 ACACCCAGAA 2 ACACCCATCA 27 ACACCTCCTC 1 ACACCTCTAA 4 ACACCTCTCT 3 ACACCTTGAT 1 ACACGGCTTT 1 ACACTACGGG 2 ACACTCCCCT 1 ACACTCCTGG 1 ACACTGCACA 1 ACACTGCACT 3 ACACTGCATT 3 ACACTGCCCA 2 ACACTGCTTT 1 ACACTGGCAG 1 ACACTGTAGG 1 ACACTTAAAA 2 ACACTTCTTG 1 ACACTTGGAG 2 ACACTTTTTT 1 ACAGAAATCA 3 ACAGAAGGCA 1 ACAGAAGGGA 2 ACAGAATGGC 1 ACAGACAAAG 1 ACAGACACCC 1 ACAGACCATT 1 ACAGACCCCC 1 ACAGACGCTC 1 ACAGAGCAAG 2 ACAGAGCGAG 1 ACAGAGGAGA 1 ACAGATCCTA 1 ACAGATCGAT 1 ACAGATGCCT 1 ACAGATGTTG 1 ACAGATTATA 1 ACAGCAAAGC 1 ACAGCAACCT 1 ACAGCCATTC 1 ACAGCCCATT 1 ACAGCCCGGC 1 ACAGCCCTGA 2 ACAGCCTACA 1 ACAGCCTGTA 9 ACAGCGGATG 1 ACAGCGGCAA 8 ACAGCGTGTG 1 ACAGCTAACA 1 ACAGCTAATT 1 ACAGCTAGGG 1 ACAGCTCAGG 1 ACAGGAAACC 1 ACAGGAAGCC 1 ACAGGACTTC 1 ACAGGAGGCC 3 ACAGGCACCA 1 ACAGGCACTA 1 ACAGGCAGAA 2 ACAGGCTATC 1 ACAGGGCCTC 1 ACAGGGCGTC 1 ACAGGGGCCG 2 ACAGGGTACC 1 ACAGGGTGAC 13 ACAGGTGGGT 1 ACAGGTTTTT 1 ACAGTAACAA 1 ACAGTAAGCG 3 ACAGTAGAAA 1 ACAGTCAGCG 1 ACAGTCGGGG 1 ACAGTCTTGC 2 ACAGTGACAC 1 ACAGTGCCAC 1 ACAGTGCCCG 1 ACAGTGCCTG 1 ACAGTGCTTG 11 ACAGTGGATT 1 ACAGTGGCAC 1 ACAGTGGCTA 1 ACAGTGGGAA 1 ACAGTGGGGA 3 ACAGTGGGGC 1 ACAGTGGTAG 1 ACAGTGTGTG 14 ACAGTGTTTG 1 ACAGTTCCAA 1 ACAGTTGCCC 1 ACATAAGATC 1 ACATAATGAT 2 ACATACAGAC 1 ACATACCCCC 1 ACATATGCTA 1 ACATATTGCT 1 ACATCAAGGC 1 ACATCACTAA 1 ACATCAGACT 1 ACATCATCGA 18 ACATCATTTT 1 ACATCCCCTC 1 ACATCCCGCT 1 ACATCCTCAC 3 ACATCGGGTG 1 ACATCGTAGG 5 ACATCGTCCT 1 ACATCGTGTG 1 ACATCGTTGT 1 ACATCTGCCT 1 ACATTCACCT 1 ACATTCCATA 2 ACATTCGGAA 1 ACATTCGGTG 2 ACATTGAGCA 1 ACATTGAGTG 1 ACATTGATCG 1 ACATTGCAGC 1 ACATTGCGTG 3 ACATTGGGAG 1 ACATTGGGCG 1 ACATTGGGGA 2 ACATTGGGGT 1 ACATTGGGTA 4 ACATTGGGTG 334 ACATTGGTGA 1 ACATTTCAAT 1 ACATTTCATC 1 ACATTTGCCA 1 ACATTTGGTT 1 ACATTTTAAA 1 ACATTTTATT 1 ACATTTTCAA 1 ACATTTTGGA 1 ACATTTTTCC 7 ACCAAAAAGA 1 ACCAAATATT 1 ACCAAATGGG 1 ACCAAATTAA 1 ACCAACACAC 1 ACCAACACCC 2 ACCAACCGAC 1 ACCAACTAGA 1 ACCAACTTTC 1 ACCAAGAAAA 1 ACCAAGAACC 1 ACCAAGAGCA 1 ACCAAGGACA 1 ACCAAGGAGG 5 ACCAAGGGGG 1 ACCAAGTACA 1 ACCAAGTGGA 2 ACCAATGAGG 1 ACCAATTCAA 1 ACCAATTGGA 1 ACCACAAATA 1 ACCACAAATG 7 ACCACAACAC 1 ACCACAAGTG 2 ACCACACAAC 1 ACCACACCTA 1 ACCACAGGAA 1 ACCACAGGGG 3 ACCACAGTTT 2 ACCACCAACA 1 ACCACCAGTC 1 ACCACCATTG 1 ACCACCCATT 1 ACCACCCGGA 1 ACCACCCGTG 1 ACCACGAAGG 1 ACCACGCAGA 1 ACCACGCCGT 2 ACCACTGGGC 1 ACCACTTATC 1 ACCACTTCCT 2 ACCAGACACA 1 ACCAGACGGC 2 ACCAGAGACA 1 ACCAGATAGG 1 ACCAGCAACA 1 ACCAGCAAGA 1 ACCAGCAAGT 1 ACCAGCATAT 1 ACCAGCCAAA 1 ACCAGCCACA 9 ACCAGCCAGA 1 ACCAGCCCGG 2 ACCAGCCTGA 2 ACCAGCGAGA 1 ACCAGCTCCC 2 ACCAGCTCTC 2 ACCAGCTGTC 2 ACCAGCTGTG 1 ACCAGGACTT 1 ACCAGGCAAG 1 ACCAGGCCAA 1 ACCAGGCCAC 6 ACCAGGCCAT 1 ACCAGGCTAC 1 ACCAGGGTCA 2 ACCAGGTGTG 1 ACCAGTAACA 1 ACCAGTCTGT 1 ACCAGTGGCT 1 ACCAGTGTTT 1 ACCAGTTGGA 1 ACCATACCTA 1 ACCATCCTCC 1 ACCATCCTGC 6 ACCATCGTCC 1 ACCATCTAGG 1 ACCATCTCTC 1 ACCATTAGTC 1 ACCATTGACC 2 ACCATTGGCC 1 ACCATTTTGG 1 ACCATTTTTA 1 ACCCAAATTG 1 ACCCAACTGC 3 ACCCAAGATA 1 ACCCAATTTG 1 ACCCACAGCA 1 ACCCACCCCA 1 ACCCACGGAC 1 ACCCACGTCA 10 ACCCACTCCA 1 ACCCACTCTA 1 ACCCAGAAGT 1 ACCCAGAGCT 2 ACCCAGCGGC 1 ACCCAGGACA 1 ACCCAGGAGG 1 ACCCAGGTCA 3 ACCCAGTGGG 1 ACCCAGTTGT 2 ACCCATATGG 1 ACCCATCCCT 1 ACCCATTGGC 1 ACCCATTTAA 1 ACCCCAAACC 1 ACCCCAAACT 3 ACCCCAAAGG 1 ACCCCAACAG 1 ACCCCAACCT 1 ACCCCACCCA 3 ACCCCAGCCA 1 ACCCCAGGCA 2 ACCCCCAAGG 1 ACCCCCCCGC 38 ACCCCCCCGT 1 ACCCCCCGCC 1 ACCCCCGAGT 1 ACCCCCGCAG 1 ACCCCCGGCC 1 ACCCCCTCCA 1 ACCCCGCAGA 1 ACCCCTAACA 7 ACCCCTAAGG 2 ACCCCTCCCC 1 ACCCCTGGTC 1 ACCCCTTGGC 2 ACCCGAGAGG 1 ACCCGAGCCC 1 ACCCGATCAG 1 ACCCGATCTT 1 ACCCGCACCT 1 ACCCGCCCCG 1 ACCCGCCGGC 1 ACCCGCCGGG 12 ACCCGGCTCT 1 ACCCGGGCAA 1 ACCCGGGGGC 1 ACCCTAAAGC 1 ACCCTACAAA 2 ACCCTAGGCC 1 ACCCTCAGCC 2 ACCCTCGCCC 1 ACCCTCTCAC 4 ACCCTCTCCC 1 ACCCTCTGTG 1 ACCCTCTTGT 1 ACCCTGAATG 2 ACCCTGACAA 1 ACCCTGCCAA 1 ACCCTGCCTC 1 ACCCTGCTCC 4 ACCCTGGAGT 1 ACCCTGGCCA 1 ACCCTGGCCC 1 ACCCTGGGCA 3 ACCCTTCCCT 2 ACCCTTGACC 1 ACCCTTGCCA 1 ACCCTTGGAC 1 ACCCTTGGCA 1 ACCCTTGGCC 419 ACCCTTGGGC 3 ACCCTTGGGT 1 ACCCTTGGTC 1 ACCCTTTAAC 1 ACCCTTTCAC 1 ACCCTTTGGC 1 ACCGAATGGT 1 ACCGACTGAC 1 ACCGAGAGCC 1 ACCGAGCTGG 1 ACCGAGGTGC 1 ACCGAGTACG 1 ACCGCACCAC 1 ACCGCAGTGC 1 ACCGCAGTGT 1 ACCGCCGCGG 1 ACCGCCGTGG 55 ACCGCCTCTT 1 ACCGCCTGTG 19 ACCGCGTTGT 1 ACCGCTTGTT 3 ACCGGATCAT 1 ACCGGCGTGG 1 ACCGGGACGG 1 ACCGGGAGGT 1 ACCGGGGACT 2 ACCGGTCCGG 1 ACCGTATTCC 1 ACCGTCATTA 1 ACCGTCCACT 3 ACCGTCTGCT 1 ACCGTCTTGT 1 ACCGTGCACC 1 ACCGTGCGCG 1 ACCGTGCTCG 1 ACCGTGGGCT 1 ACCGTTCTCA 2 ACCTAACTTT 1 ACCTACAAGT 1 ACCTACAGCG 1 ACCTATAAGT 1 ACCTATCACT 1 ACCTCAATTA 2 ACCTCACACT 1 ACCTCACGAA 1 ACCTCACTTA 1 ACCTCAGCTT 2 ACCTCAGGAA 7 ACCTCAGTCA 1 ACCTCCAGAA 1 ACCTCCAGGG 3 ACCTCCATAG 1 ACCTCCCACC 1 ACCTCCCGGT 1 ACCTCGTGAT 1 ACCTCTCTAA 2 ACCTCTGGCT 1 ACCTCTGTCT 1 ACCTGAGGAG 1 ACCTGCATCC 12 ACCTGCCAAG 1 ACCTGCCACC 2 ACCTGCCATA 1 ACCTGCCATC 1 ACCTGCCGAC 4 ACCTGCTCCG 1 ACCTGCTGGT 7 ACCTGCTTAA 1 ACCTGGACTG 1 ACCTGGGCCG 1 ACCTGGGGAG 11 ACCTGGGTGC 1 ACCTGGTAGA 1 ACCTGTAATT 2 ACCTGTATCC 3 ACCTGTGGCA 1 ACCTGTGTGA 1 ACCTGTTCCC 1 ACCTTAATTG 1 ACCTTACAGC 1 ACCTTATCAA 1 ACCTTCAAAG 1 ACCTTCATCT 2 ACCTTCCTAG 10 ACCTTCCTTC 6 ACCTTCTCTG 2 ACCTTCTTCT 1 ACCTTGACAC 1 ACCTTGAGCC 1 ACCTTGATTG 1 ACCTTGCTCG 1 ACCTTGCTTC 1 ACCTTGGACA 1 ACCTTGGCAC 1 ACCTTGGCAT 1 ACCTTGGCCA 1 ACCTTGGCTT 2 ACCTTGGGGT 1 ACCTTGTAAT 2 ACCTTGTCAG 1 ACCTTGTGCA 1 ACCTTGTGCC 2 ACCTTTACTG 6 ACCTTTGCCA 2 ACCTTTGGCC 3 ACCTTTGGGC 1 ACCTTTGTCA 1 ACCTTTTCAA 4 ACCTTTTCCA 1 ACCTTTTTCA 1 ACGAAACACA 1 ACGAAACCCC 4 ACGAAACCCG 1 ACGAAACTCC 1 ACGAAATCCG 1 ACGAAATCCT 1 ACGAACCCCC 1 ACGAAGCCCT 1 ACGAAGGCAT 1 ACGAAGTCCC 1 ACGACACTCA 1 ACGACAGGGG 1 ACGACCGTCA 1 ACGACTTGAA 1 ACGACTTTCC 1 ACGAGACCCC 1 ACGAGTGTCA 1 ACGATGAGCA 1 ACGATGCTGC 1 ACGATGGTCC 1 ACGATTGATG 2 ACGCAACGAT 3 ACGCACTCTC 1 ACGCAGCAAG 1 ACGCAGGAGA 1 ACGCAGGCGC 1 ACGCAGGGAG 81 ACGCAGGGGA 1 ACGCAGGGGG 1 ACGCATAAGG 1 ACGCCACTGC 1 ACGCCAGGAG 1 ACGCCCGACA 1 ACGCCCGAGG 1 ACGCCCTGCT 1 ACGCCTTGAT 1 ACGCTGAATA 1 ACGCTGAGGC 1 ACGCTGCGGC 1 ACGCTGCTGC 11 ACGCTGGAAG 1 ACGCTGTCTG 1 ACGGAACGCC 1 ACGGAAGTTT 3 ACGGCAGGAG 1 ACGGCAGGGT 1 ACGGCCCATA 1 ACGGCCTCGG 1 ACGGCTACAA 1 ACGGCTCCGA 3 ACGGCTGGGC 1 ACGGGCCCAA 1 ACGGGGCAAA 1 ACGGGGGTAA 1 ACGGGGTGCA 1 ACGGGTATGA 1 ACGGTCCAGG 12 ACGGTGAGGA 1 ACGGTGATGT 5 ACGGTGCCAT 1 ACGGTTATGT 1 ACGTAAACGG 1 ACGTAACAGA 2 ACGTACTCTT 1 ACGTCACCAT 1 ACGTCAGTGA 1 ACGTCATCGA 1 ACGTCGTCGA 1 ACGTCGTGTG 4 ACGTCTCTAT 1 ACGTGAGTGC 1 ACGTGCAAAC 1 ACGTGGTGAT 2 ACGTTGGGTG 1 ACGTTGTGCC 1 ACTAAAACAC 1 ACTAAACACC 1 ACTAAACCCT 1 ACTAACAAAG 1 ACTAACAACC 1 ACTAACAATC 1 ACTAACACCA 1 ACTAACACCC 325 ACTAACACCG 1 ACTAACACCT 4 ACTAACACGC 1 ACTAACCACA 1 ACTAACCCCT 1 ACTAACGCCC 1 ACTAACTCTC 1 ACTAACTGTG 1 ACTAAGACCT 1 ACTAAGTCTG 1 ACTAATTTTG 1 ACTACAAATA 4 ACTACACCCT 1 ACTACACCTA 1 ACTACACCTT 1 ACTACAGCAC 2 ACTACAGCCA 1 ACTACAGTGC 1 ACTACATTTT 1 ACTACCCCCC 1 ACTACCTCCC 3 ACTACCTCTG 2 ACTACCTTCA 4 ACTACGGGTC 2 ACTAGCACCC 1 ACTAGGCAAG 1 ACTAGTACAT 1 ACTAGTGTGG 1 ACTAGTTTTG 1 ACTATAGGGC 1 ACTATCACCC 1 ACTATCACGC 1 ACTATCATAA 1 ACTATCCTAG 1 ACTATCCTGA 3 ACTATGAGCT 1 ACTATTAGTG 1 ACTATTCCAT 1 ACTATTGGCT 1 ACTATTTCAA 1 ACTCAAAGAC 1 ACTCAAATCT 1 ACTCAAATGG 2 ACTCAATAAA 1 ACTCACCCAG 1 ACTCACTAGG 1 ACTCACTGCA 2 ACTCAGAAAA 1 ACTCAGAAGA 4 ACTCAGACCC 2 ACTCAGATGC 1 ACTCAGCCCC 2 ACTCAGGCGG 1 ACTCAGGTGC 1 ACTCAGGTTG 1 ACTCATCTGA 1 ACTCATTCAT 1 ACTCATTCTA 1 ACTCCAAAAA 12 ACTCCAAGGA 4 ACTCCAATGA 1 ACTCCAGAAA 1 ACTCCAGCTA 1 ACTCCAGTGC 1 ACTCCATAGA 1 ACTCCCAGAG 1 ACTCCCGAGT 1 ACTCCCTCCT 3 ACTCCGAAGT 1 ACTCCTGTAG 2 ACTCGAATAT 3 ACTCGAGTAA 1 ACTCGGAGCC 1 ACTCGTAGGC 1 ACTCTATTGG 1 ACTCTCCCGC 1 ACTCTCTCAG 1 ACTCTCTGTG 1 ACTCTGCAAA 1 ACTCTGCCAA 5 ACTCTGCTGA 1 ACTCTGCTGC 1 ACTCTGGCGA 1 ACTCTTCTAA 2 ACTCTTGCTT 1 ACTCTTGTTG 2 ACTCTTTCAA 3 ACTGAAATCC 1 ACTGAAATGG 1 ACTGAAGAAT 3 ACTGAAGGCG 5 ACTGACACCC 1 ACTGACCTTA 1 ACTGACGCTT 1 ACTGACTAGC 1 ACTGACTATC 2 ACTGAGCTGG 1 ACTGAGGTGC 3 ACTGAGGTGG 1 ACTGATCACA 2 ACTGATGCAA 2 ACTGATGCCT 1 ACTGATGGTT 1 ACTGATGTCA 1 ACTGATGTGC 1 ACTGCACCAC 2 ACTGCACCAT 1 ACTGCAGACA 1 ACTGCAGAGC 3 ACTGCAGCAC 1 ACTGCAGTGC 1 ACTGCATCTT 1 ACTGCATTAA 2 ACTGCATTCC 1 ACTGCATTTT 2 ACTGCCACAG 1 ACTGCCAGAG 1 ACTGCCCCAA 3 ACTGCCCTTT 1 ACTGCCGATG 1 ACTGCCTATG 1 ACTGCGAGGA 6 ACTGCGCAGA 1 ACTGCGCCAC 1 ACTGCGCCAG 1 ACTGCGTTCT 1 ACTGCTCATT 2 ACTGCTCTCT 1 ACTGCTCTGG 1 ACTGCTGCAC 1 ACTGCTGCTA 1 ACTGCTGGAA 1 ACTGCTGTCT 1 ACTGCTTCAA 1 ACTGCTTGCC 3 ACTGCTTGTC 1 ACTGGAACGA 1 ACTGGACGTG 1 ACTGGAGTTT 4 ACTGGATAAG 1 ACTGGCTATT 1 ACTGGCTGCT 5 ACTGGCTTCT 1 ACTGGGAGGC 1 ACTGGGATTT 1 ACTGGGCCCA 1 ACTGGGCGCC 3 ACTGGGTCTA 5 ACTGGGTGCA 7 ACTGGTAAAA 3 ACTGGTACGT 7 ACTGGTATAC 1 ACTGGTTCGT 1 ACTGGTTCTT 1 ACTGTAATCC 1 ACTGTAGAAA 1 ACTGTCCACT 1 ACTGTCTACG 1 ACTGTGACCT 1 ACTGTGCAGT 1 ACTGTGCCAC 1 ACTGTGCCTG 1 ACTGTGGCCG 1 ACTGTGGCGA 1 ACTGTGGCGG 34 ACTGTGGTAG 1 ACTGTGGTGG 1 ACTGTGGTTT 2 ACTGTGTCCG 1 ACTGTGTTTA 1 ACTGTGTTTT 1 ACTGTTCTCT 2 ACTGTTGCTA 7 ACTGTTGTAC 1 ACTGTTTCAC 1 ACTGTTTCAT 1 ACTGTTTGTT 1 ACTTAACATT 1 ACTTAAGGAA 1 ACTTACACCC 2 ACTTACCTAC 2 ACTTACCTGC 30 ACTTACTCAA 1 ACTTATGGAT 1 ACTTATGTCG 1 ACTTCAACTG 1 ACTTCACAAA 1 ACTTCAGTGC 1 ACTTCCACTT 2 ACTTCCTCCT 1 ACTTCCTTGT 1 ACTTCGCTTT 1 ACTTCTGCCC 1 ACTTCTGGAA 2 ACTTCTTCAA 2 ACTTGAGAAG 4 ACTTGATGCG 1 ACTTGATTTG 2 ACTTGCACAA 1 ACTTGCAGCC 1 ACTTGCGTTG 1 ACTTGGAGCC 9 ACTTGGTGTC 1 ACTTGGTTTG 1 ACTTGTGTTC 1 ACTTGTTCGC 1 ACTTTAAAAA 1 ACTTTAGCGT 1 ACTTTATATA 1 ACTTTATCAA 1 ACTTTATGTG 1 ACTTTCCAAA 25 ACTTTGAATG 1 ACTTTGTATT 1 ACTTTGTCAA 1 ACTTTGTCAG 1 ACTTTGTGGG 2 ACTTTGTGTT 1 ACTTTGTTGC 1 ACTTTGTTTA 1 ACTTTTCAAA 7 ACTTTTCAGG 1 ACTTTTCCAA 3 ACTTTTGCAG 3 ACTTTTGCCC 1 ACTTTTTAAA 1 ACTTTTTCAA 393 ACTTTTTCAC 5 ACTTTTTCAG 3 ACTTTTTCAT 3 ACTTTTTCCA 1 ACTTTTTCTA 2 ACTTTTTGAA 1 ACTTTTTGGC 1 ACTTTTTTAA 1 ACTTTTTTCA 3 AGAAAAAAAA 23 AGAAAAAGTG 1 AGAAAAATGT 2 AGAAAACAGT 1 AGAAAACCTT 1 AGAAAAGAAG 1 AGAAAATCCT 1 AGAAAATGTA 1 AGAAACACTC 1 AGAAAGCATT 3 AGAAAGGGAG 1 AGAAAGTTTC 1 AGAAATACCA 1 AGAAATCACT 2 AGAAATGTCG 1 AGAACAAAGG 2 AGAACAACTC 1 AGAACACCAA 3 AGAACCAAAA 2 AGAACCAAGT 2 AGAACCACTT 1 AGAACCAGGA 1 AGAACCCACC 1 AGAACCCGGC 1 AGAACCGCCA 1 AGAACCTGGT 1 AGAACCTGTC 1 AGAACCTTAA 5 AGAACCTTCA 4 AGAACCTTCC 18 AGAACTGGAA 1 AGAAGAAGTT 1 AGAAGAGAAA 1 AGAAGATCTG 1 AGAAGCAAAA 1 AGAAGCAAGA 2 AGAAGCAATT 1 AGAAGCAGAC 1 AGAAGGAACC 1 AGAAGGAGGT 1 AGAAGGATCG 1 AGAAGGGAAG 1 AGAAGGGCGA 1 AGAAGGGCGT 1 AGAAGTTTCC 1 AGAATAACTT 1 AGAATACACT 1 AGAATACCCT 1 AGAATACTTG 1 AGAATAGCCT 1 AGAATAGCTC 1 AGAATAGCTG 1 AGAATAGCTT 67 AGAATCACTG 1 AGAATCACTT 12 AGAATCGCCT 2 AGAATCGCTG 1 AGAATCGCTT 14 AGAATGATCA 1 AGAATGCTGT 1 AGAATGGAGC 2 AGAATGGCGT 1 AGAATGGGCT 1 AGAATGTACG 4 AGAATGTATT 1 AGAATGTTAT 1 AGAATTAAAT 1 AGAATTACTT 1 AGAATTAGCT 1 AGAATTGCTT 8 AGAATTGTTT 1 AGAATTTGCA 1 AGACAACTTG 1 AGACAAGCTG 9 AGACAAGTTT 1 AGACAATGTG 3 AGACAATTTT 1 AGACACCACA 1 AGACACCGCA 1 AGACACCGCT 2 AGACACCGTG 1 AGACACGCCC 1 AGACACTCTA 1 AGACAGAGTG 7 AGACAGATTG 1 AGACATAAAT 1 AGACATAGTG 1 AGACATTCCT 2 AGACATTTCT 1 AGACCAAAGT 1 AGACCAAGGA 1 AGACCACAAC 1 AGACCAGGAG 1 AGACCATATT 1 AGACCCACAA 36 AGACCCAGCT 1 AGACCCAGTC 1 AGACCCCATC 1 AGACCCCATT 1 AGACCCTCTG 1 AGACCTGGAA 1 AGACCTTTAA 1 AGACGAGATG 1 AGACGGAGGT 1 AGACGTGGAG 2 AGACGTGGGC 1 AGACGTGTGG 1 AGACTAACAC 1 AGACTATTAT 1 AGACTCAGGC 1 AGACTCCGTC 1 AGACTCCTGC 1 AGACTCTGAG 1 AGACTGGTCC 1 AGACTTCTGT 1 AGACTTTTCT 1 AGAGAAAATG 1 AGAGAACTTA 1 AGAGAAGAGT 1 AGAGAAGGAA 1 AGAGAATATA 1 AGAGAATTTC 1 AGAGACAAGT 4 AGAGACTCTT 1 AGAGACTTGG 1 AGAGAGCCAC 1 AGAGAGGGAG 1 AGAGATACTA 1 AGAGATAGCT 1 AGAGATTTTT 2 AGAGCAAGTA 1 AGAGCACTAC 2 AGAGCAGAAA 1 AGAGCAGGCC 1 AGAGCAGGGA 1 AGAGCATAAT 1 AGAGCCAAGT 6 AGAGCCACCC 1 AGAGCCAGCA 3 AGAGCGGGCA 1 AGAGCTCCAT 2 AGAGCTGAGT 1 AGAGCTGATG 1 AGAGGAGCTG 1 AGAGGAGGAG 1 AGAGGAGGGG 1 AGAGGCAACC 2 AGAGGCAAGG 1 AGAGGCAGCT 1 AGAGGGCAAG 1 AGAGGGTGGG 1 AGAGGGTGTG 1 AGAGGGTTTT 1 AGAGGTCCCT 2 AGAGGTCCTA 1 AGAGGTGGTG 2 AGAGGTGTAG 6 AGAGTAACTG 3 AGAGTAGGGA 1 AGAGTCACTT 1 AGAGTCAGGA 1 AGAGTCATAC 5 AGAGTCCAGG 4 AGAGTCCTGC 7 AGAGTGACTG 1 AGAGTGAGAT 1 AGAGTGGACA 1 AGAGTGGGGT 1 AGAGTGTAGA 1 AGAGTTTGAG 1 AGAGTTTGGC 1 AGATAAAAAT 1 AGATAACACA 1 AGATAGCTTG 1 AGATCACGCC 1 AGATCAGAGA 5 AGATCAGGTA 1 AGATCCCAAG 14 AGATCCCCAA 1 AGATCCTACT 3 AGATCGTGTG 1 AGATCTGGTG 1 AGATGACGAA 1 AGATGAGATG 6 AGATGATATT 1 AGATGCAACT 1 AGATGGAGGT 2 AGATGGTAGT 2 AGATGTGACA 1 AGATGTGTAC 1 AGATGTGTGG 7 AGATGTTCTC 1 AGATTAATGC 1 AGATTCCAGC 1 AGATTGAAGA 2 AGATTGGTGA 2 AGATTTAACT 1 AGATTTCACT 1 AGATTTGGAG 1 AGCAAACAAT 1 AGCAAACTGA 2 AGCAAAGATA 1 AGCAAATATC 1 AGCAAATGTC 1 AGCAACAGAA 1 AGCAACTGCA 1 AGCAAGAACC 1 AGCAAGCCCC 2 AGCAAGCTGC 1 AGCAAGTCTC 6 AGCAATACAA 1 AGCAATCAGG 1 AGCAATGGCA 1 AGCACACCTG 1 AGCACAGAGG 3 AGCACAGAGT 1 AGCACAGGGA 1 AGCACAGTGG 1 AGCACATACA 1 AGCACATCAG 1 AGCACATTTG 3 AGCACCCCCT 1 AGCACCGCAT 1 AGCACCGTGC 1 AGCACCTCCA 37 AGCACGACCC 1 AGCACGTGCA 1 AGCACTGAGT 1 AGCACTGCAG 1 AGCACTGCTG 2 AGCAGAACCA 1 AGCAGAAGCA 1 AGCAGAATTA 1 AGCAGACAAA 1 AGCAGAGAAC 1 AGCAGAGAAT 1 AGCAGAGCCC 1 AGCAGAGGCT 2 AGCAGATCAG 94 AGCAGATCCA 1 AGCAGATTCA 1 AGCAGCACAC 1 AGCAGCCTTT 4 AGCAGCGAGA 1 AGCAGCGAGG 2 AGCAGCGCCA 2 AGCAGCTCTG 1 AGCAGCTTCT 1 AGCAGGACCA 1 AGCAGGAGCA 14 AGCAGGCTCA 1 AGCAGGCTCC 1 AGCAGGGCCC 1 AGCAGGGCTC 6 AGCAGTGACG 1 AGCATACCTT 1 AGCATCCATA 1 AGCATTCAGC 1 AGCATTTTTA 1 AGCCAAAAAA 6 AGCCAAAGTG 1 AGCCAACTGT 1 AGCCAAGACT 3 AGCCAAGAGC 1 AGCCAAGATC 1 AGCCAATAAA 1 AGCCAATTCC 1 AGCCACAATG 1 AGCCACAGCT 1 AGCCACAGTC 1 AGCCACCAAC 1 AGCCACCACA 8 AGCCACCACC 2 AGCCACCACG 9 AGCCACCATA 1 AGCCACCCTG 1 AGCCACCGCA 15 AGCCACCGCG 27 AGCCACCGTG 9 AGCCACCTCA 2 AGCCACCTGT 1 AGCCACGGTC 1 AGCCACTATG 2 AGCCACTGAG 1 AGCCACTGCA 22 AGCCACTGCG 7 AGCCACTGCT 1 AGCCACTGTG 14 AGCCAGACAA 3 AGCCAGAGAC 1 AGCCAGCAGG 1 AGCCAGCGCG 1 AGCCAGGAAT 1 AGCCAGGATG 1 AGCCAGGGAA 1 AGCCAGGGCC 1 AGCCAGTCAC 1 AGCCAGTGAT 1 AGCCATACAA 1 AGCCATATAA 1 AGCCATCACA 1 AGCCATCACT 1 AGCCATCGCA 1 AGCCATCGCG 1 AGCCATCGTC 1 AGCCATTGCA 1 AGCCATTGGG 1 AGCCATTTAT 1 AGCCCACAAC 5 AGCCCACTGC 1 AGCCCAGCTG 6 AGCCCAGGAG 4 AGCCCCACAA 1 AGCCCCCCAA 1 AGCCCCCGCG 1 AGCCCCCGTA 1 AGCCCCGGAG 1 AGCCCCTCCA 1 AGCCCCTCCT 1 AGCCCGAACT 1 AGCCCGACCA 8 AGCCCGACCC 1 AGCCCGCCGC 3 AGCCCGGCTT 2 AGCCCGGGAG 4 AGCCCTAACA 1 AGCCCTACAA 322 AGCCCTACAC 1 AGCCCTACAG 1 AGCCCTACAT 3 AGCCCTACCA 1 AGCCCTACGA 1 AGCCCTAGTA 1 AGCCCTCAAA 3 AGCCCTCAGC 1 AGCCCTCCAA 1 AGCCCTCCCT 18 AGCCCTGCAA 1 AGCCCTGGCT 1 AGCCCTTACA 2 AGCCCTTGAA 1 AGCCCTTTTA 1 AGCCCTTTTT 1 AGCCGAAAGG 1 AGCCGAGATG 1 AGCCGAGATT 1 AGCCGAGGAA 1 AGCCGCAAAC 1 AGCCGCACAA 1 AGCCGCATTG 1 AGCCGCCACA 1 AGCCGCCGCA 1 AGCCGGATGC 2 AGCCGGGATG 1 AGCCGGGATT 1 AGCCGGGGTC 1 AGCCGTACAA 1 AGCCGTTGCA 1 AGCCTAACGA 1 AGCCTACAAA 5 AGCCTAGGGT 1 AGCCTATGGG 1 AGCCTCAGGG 1 AGCCTCCACG 1 AGCCTCGGGC 2 AGCCTCTCAC 1 AGCCTCTCCT 1 AGCCTCTTCA 1 AGCCTGACTG 3 AGCCTGAGAT 1 AGCCTGATTT 1 AGCCTGCAGA 6 AGCCTGCCAC 1 AGCCTGCCAG 1 AGCCTGCCTG 2 AGCCTGCTCA 1 AGCCTGCTCT 1 AGCCTGCTGG 1 AGCCTGGAAG 1 AGCCTGGACT 7 AGCCTGGAGA 2 AGCCTGGGAG 3 AGCCTGGGCC 3 AGCCTGTAGT 1 AGCCTGTTTA 1 AGCCTTGCTG 1 AGCCTTTAGT 1 AGCCTTTCCG 1 AGCGAAGCCC 1 AGCGACAAAC 1 AGCGACCGTA 1 AGCGACTTCT 1 AGCGAGAGAG 2 AGCGATGATG 1 AGCGATTCTT 1 AGCGCCGATG 1 AGCGCCTTCC 1 AGCGCGAGGC 1 AGCGCTGGGG 1 AGCGGCCAGG 1 AGCGGCCCTA 1 AGCGGCCTGC 1 AGCGGCTACA 2 AGCGTAATAG 1 AGCGTCACGT 1 AGCGTCGATG 2 AGCGTCTGTG 1 AGCGTGGCTC 1 AGCTAAACTT 1 AGCTAACTTT 1 AGCTAAGTTT 1 AGCTACCACG 3 AGCTACGGAA 1 AGCTACTTCC 1 AGCTACTTGA 1 AGCTAGACTA 1 AGCTAGCAGG 1 AGCTATGATC 1 AGCTATTCCT 1 AGCTCACACC 2 AGCTCACTCC 1 AGCTCACTGA 1 AGCTCAGCCA 1 AGCTCAGCCC 1 AGCTCAGGAG 2 AGCTCATAAA 1 AGCTCCCCAA 1 AGCTCCGTCC 5 AGCTCCTGGA 1 AGCTCCTTGA 1 AGCTCGTACA 2 AGCTCGTACG 1 AGCTCTACAA 1 AGCTCTATGA 1 AGCTCTCAAC 1 AGCTCTCCCT 34 AGCTCTCGGA 1 AGCTCTCGTG 1 AGCTCTGAAG 1 AGCTCTGCTG 2 AGCTCTGGAA 1 AGCTCTTGGA 47 AGCTCTTGGT 1 AGCTGACAGG 1 AGCTGAGATC 1 AGCTGAGTGA 1 AGCTGATCAG 3 AGCTGCCAGT 2 AGCTGCCGCA 1 AGCTGCTGTG 1 AGCTGGAAAG 1 AGCTGGAGCC 1 AGCTGGAGTC 6 AGCTGGATGA 1 AGCTGGCACC 1 AGCTGGGATG 3 AGCTGGGCAT 1 AGCTGGGCCA 1 AGCTGGGGGC 2 AGCTGGTTTC 4 AGCTGTAATC 1 AGCTGTCCCC 6 AGCTGTCTCA 3 AGCTGTGATC 1 AGCTGTGTAA 1 AGCTGTTCTG 1 AGCTGTTGCC 1 AGCTGTTTCT 5 AGCTTATTGA 1 AGCTTCCAGC 3 AGCTTCTATA 1 AGCTTCTTGA 1 AGCTTGCAGG 1 AGCTTGCCAA 1 AGCTTGCGCT 2 AGCTTGCTTC 1 AGCTTGGAAG 1 AGCTTTAGGA 1 AGCTTTAGTG 1 AGCTTTATGA 1 AGCTTTTTCC 1 AGGAAAAGAT 5 AGGAAACCTC 1 AGGAAACTGC 2 AGGAAAGCTG 41 AGGAAATGAA 2 AGGAACAAAT 1 AGGAACAGAA 1 AGGAAGAGCC 3 AGGAAGGAAC 4 AGGAATCACA 1 AGGAATGCTT 3 AGGAATGGCC 1 AGGAATTGAA 1 AGGACAAACC 1 AGGACACCAA 1 AGGACACCGC 4 AGGACACCGG 1 AGGACAGAAG 3 AGGACATAAC 1 AGGACCAGCA 1 AGGACCCCAC 1 AGGACGGGCT 1 AGGACGTCAT 1 AGGACTACTA 1 AGGACTATAG 1 AGGACTCTCT 1 AGGACTCTGG 1 AGGACTTCTG 1 AGGACTTTGC 6 AGGACTTTGG 1 AGGAGAAGGT 1 AGGAGAGAGG 1 AGGAGAGCTG 1 AGGAGAGGGC 1 AGGAGCAAAG 1 AGGAGCAACT 1 AGGAGCAGAC 1 AGGAGCCGGG 1 AGGAGCGGGG 16 AGGAGCGTGG 1 AGGAGCTCGG 1 AGGAGCTGAG 1 AGGAGCTGCT 11 AGGAGGGAGG 2 AGGAGGGTGG 2 AGGAGGTCCC 1 AGGAGGTTAA 1 AGGAGTTTCC 1 AGGAGTTTGA 1 AGGATAACAG 1 AGGATAGCTT 1 AGGATGAAAG 1 AGGATGACAT 1 AGGATGACCA 5 AGGATGAGGC 1 AGGATGCCCG 1 AGGATGCCTG 1 AGGATGGCGG 1 AGGATGGTCC 19 AGGATGTGGC 1 AGGATGTGGG 14 AGGATTGGTA 1 AGGCAAACCA 1 AGGCAAGGGA 3 AGGCACACAA 1 AGGCACGCAC 3 AGGCACTAAT 1 AGGCACTGGC 2 AGGCAGAGGT 1 AGGCAGCTCT 1 AGGCAGGAGG 1 AGGCAGGGGC 2 AGGCAGTAGT 1 AGGCATAGCG 1 AGGCATATGG 1 AGGCATTGAA 1 AGGCCAAAAC 1 AGGCCAAGGG 6 AGGCCAAGGT 1 AGGCCACACT 1 AGGCCACCCT 2 AGGCCAGGAG 1 AGGCCAGGCC 1 AGGCCAGTAT 2 AGGCCATAGG 3 AGGCCATCCC 1 AGGCCCACAA 1 AGGCCCAGCT 1 AGGCCCATAC 1 AGGCCCCAGA 1 AGGCCCCAGG 1 AGGCCCCGGA 1 AGGCCCCTTA 2 AGGCCCTGCT 2 AGGCCGGGAG 2 AGGCCGTCCC 2 AGGCCTGGGC 2 AGGCCTGGGG 2 AGGCCTTGGT 8 AGGCCTTGTC 1 AGGCCTTTGG 1 AGGCGAGATC 5 AGGCGAGCTG 1 AGGCGCTTAG 2 AGGCGGAGGT 3 AGGCGTGCTG 1 AGGCTAAAAG 1 AGGCTAAGCC 1 AGGCTACGAA 1 AGGCTACGGA 46 AGGCTATGTA 1 AGGCTCAACT 1 AGGCTCAGAT 1 AGGCTCCTGG 1 AGGCTCGACA 1 AGGCTGAAGG 1 AGGCTGAGCA 1 AGGCTGAGGC 5 AGGCTGAGGT 1 AGGCTGCCCA 1 AGGCTGCGAC 3 AGGCTGGATG 2 AGGCTGGGGG 1 AGGCTGTCCA 5 AGGCTGTCCC 1 AGGCTGTGTT 2 AGGCTGTTGG 3 AGGCTTAAAG 1 AGGCTTACGG 1 AGGCTTTATG 1 AGGCTTTCCC 1 AGGGAAAATG 1 AGGGAAAGAG 3 AGGGAAAGGG 1 AGGGAAGAAA 1 AGGGAAGGAA 1 AGGGAATGAA 1 AGGGAATGTG 1 AGGGAGAAAG 1 AGGGAGAGGC 1 AGGGAGAGGG 2 AGGGAGGCAG 2 AGGGAGGTGG 1 AGGGAGTTGA 1 AGGGATGGAC 1 AGGGATGGAG 1 AGGGATTCCC 1 AGGGCAAACC 1 AGGGCAACTA 2 AGGGCACAGG 1 AGGGCACTAA 3 AGGGCAGAAG 1 AGGGCAGAGC 1 AGGGCAGAGG 1 AGGGCAGCCC 2 AGGGCAGGCG 1 AGGGCAGGGA 1 AGGGCAGGGT 1 AGGGCCAGCA 1 AGGGCCAGGA 1 AGGGCCCGGG 1 AGGGCCCTCT 1 AGGGCCGACT 1 AGGGCGATCT 1 AGGGCTAAAA 1 AGGGCTACTT 1 AGGGCTCCCA 1 AGGGCTCCTC 1 AGGGCTGAGG 1 AGGGCTGCCA 4 AGGGCTGGGG 1 AGGGCTGTGA 1 AGGGCTTCCA 41 AGGGCTTGAC 1 AGGGCTTGAG 1 AGGGCTTGGA 1 AGGGGAGAGG 3 AGGGGATTCC 2 AGGGGCACCT 1 AGGGGCGCAG 5 AGGGGCTGCC 3 AGGGGGCCAC 1 AGGGGGCTGA 3 AGGGGGGAGG 2 AGGGGGGGAG 1 AGGGGTCCAA 1 AGGGGTGCCA 1 AGGGGTTCTT 1 AGGGGTTTTC 1 AGGGTCAGGA 1 AGGGTCCCCG 1 AGGGTCTGCC 1 AGGGTCTGGG 1 AGGGTGAAAC 2 AGGGTGAACG 2 AGGGTGCGGA 1 AGGGTGTGTG 1 AGGGTGTTTC 1 AGGGTGTTTT 23 AGGGTTAAAG 1 AGGGTTCCAA 2 AGGGTTCTCT 1 AGGGTTGCGT 1 AGGGTTGCTT 1 AGGGTTTTTC 2 AGGTAATAAA 1 AGGTACAGCC 1 AGGTACTACT 7 AGGTACTGGT 1 AGGTACTTGA 1 AGGTAGAAGC 1 AGGTAGCCAG 1 AGGTAGGAGT 1 AGGTAGGGGT 1 AGGTAGGTGG 1 AGGTATTCTT 1 AGGTCAAGAA 1 AGGTCAAGAG 7 AGGTCAAGGG 1 AGGTCAATGA 4 AGGTCAGAGA 1 AGGTCAGCAG 1 AGGTCAGGAA 2 AGGTCAGGAG 61 AGGTCAGTTC 1 AGGTCATCCG 1 AGGTCATCTG 1 AGGTCCCTCC 1 AGGTCCTAGC 12 AGGTCGGGAG 2 AGGTCGTCGA 5 AGGTCTCCCT 1 AGGTCTCTGT 1 AGGTCTGCAC 1 AGGTCTTCAA 3 AGGTGAACAG 1 AGGTGACAAG 1 AGGTGACTGG 14 AGGTGATTTG 1 AGGTGCAAGG 1 AGGTGCAGAG 1 AGGTGCCCAC 1 AGGTGCGGGG 3 AGGTGGACAG 5 AGGTGGAGCT 1 AGGTGGAGGC 1 AGGTGGAGGT 1 AGGTGGCAAA 1 AGGTGGCAAG 88 AGGTGGCCAG 2 AGGTGGCGAG 2 AGGTGGCTAG 2 AGGTGGCTTT 1 AGGTGGGCCC 1 AGGTGGGGGT 1 AGGTGTTTAT 1 AGGTGTTTCT 1 AGGTGTTTTC 1 AGGTTAGGAG 3 AGGTTCAGAC 1 AGGTTCTGCC 1 AGGTTCTTCT 1 AGGTTGCAAG 1 AGGTTTTCAT 3 AGTAAAAGTA 1 AGTAAACCAT 1 AGTAACTGCT 1 AGTAAGGGAA 1 AGTAAGTGTG 1 AGTAATTTCA 1 AGTACCACAC 1 AGTACCACCC 1 AGTACGAATG 5 AGTAGAATTT 1 AGTAGAGATG 1 AGTAGAGCAG 1 AGTAGAGGGG 1 AGTAGCCGTG 2 AGTAGCGAAC 2 AGTAGCTTGA 2 AGTAGGTGGC 14 AGTAGGTGGG 1 AGTAGTCTGC 1 AGTATAACAC 1 AGTATAAGCC 1 AGTATAGGAA 1 AGTATCAGCA 1 AGTATCTGGG 2 AGTATGCAGA 1 AGTATGCCAC 1 AGTATGTATG 1 AGTATTCTTT 1 AGTATTGCTT 1 AGTCAATGAA 1 AGTCAATTGT 1 AGTCACAAAT 1 AGTCACAGCT 1 AGTCACCACA 1 AGTCACCTCT 2 AGTCACTGTC 1 AGTCACTTCA 1 AGTCACTTGA 1 AGTCAGCAAA 1 AGTCAGCTGG 4 AGTCAGGAGA 1 AGTCAGGCAG 1 AGTCAGGGCA 8 AGTCATTAGG 1 AGTCCACGGG 1 AGTCCAGCAC 2 AGTCCAGCTA 1 AGTCCAGGAA 1 AGTCCAGGAG 1 AGTCCAGTGC 1 AGTCCATCTT 1 AGTCCTAATG 1 AGTCCTCCCC 1 AGTCCTGACG 1 AGTCCTGCTT 3 AGTCCTGGGC 1 AGTCGAGATC 1 AGTCGGGAGC 2 AGTCTCCCCT 1 AGTCTCCCTG 1 AGTCTGATGT 7 AGTCTGCACA 1 AGTCTGCCCA 1 AGTCTGCTGG 31 AGTCTGCTTC 1 AGTCTGGGCC 1 AGTCTGTCCA 1 AGTCTTCACC 1 AGTCTTCCAG 1 AGTCTTCTGG 1 AGTCTTGGGT 1 AGTCTTTGAT 1 AGTGAAACTC 1 AGTGAATGTG 1 AGTGAGATGA 2 AGTGAGCCCT 1 AGTGAGCTCA 1 AGTGAGGGGA 2 AGTGAGGGGT 1 AGTGAGTATA 1 AGTGAGTGTC 1 AGTGAGTGTG 1 AGTGATAAAA 1 AGTGATGGCG 1 AGTGATGTCA 2 AGTGATTTGC 2 AGTGCAAAAT 1 AGTGCAAGAC 40 AGTGCACGTG 2 AGTGCAGTTT 1 AGTGCCAACC 1 AGTGCCGTGT 6 AGTGCCTGGC 1 AGTGCTAGCG 1 AGTGCTCACT 3 AGTGCTGAGG 1 AGTGCTTTTA 1 AGTGGAAACT 1 AGTGGACGGA 1 AGTGGAGGTG 1 AGTGGATAAA 1 AGTGGCACAG 3 AGTGGCCCAG 1 AGTGGCCTTC 1 AGTGGCTGTG 2 AGTGGGCGGT 1 AGTGGGCTCA 8 AGTGGGGACC 1 AGTGGGGATC 1 AGTGGGGTGT 1 AGTGGGTATT 1 AGTGGTATTT 1 AGTGGTGGCT 2 AGTGTAAATG 1 AGTGTAATGG 1 AGTGTACATA 1 AGTGTATTTT 1 AGTGTGAAAT 3 AGTGTGCACT 1 AGTGTGCGCT 1 AGTGTGGAAT 1 AGTGTGTGAC 1 AGTGTTATTG 1 AGTGTTTGTA 5 AGTTAGCGAA 1 AGTTAGGGCA 1 AGTTATGGCC 1 AGTTATTTCT 1 AGTTCAAGAC 5 AGTTCAGGAG 1 AGTTCAGTAG 1 AGTTCATAGG 1 AGTTCATCTT 2 AGTTCCAACT 1 AGTTCCACCA 1 AGTTCCAGCC 1 AGTTCCATAT 1 AGTTCCGAGA 1 AGTTCGAAGC 3 AGTTCGTCTT 1 AGTTCTATGG 1 AGTTCTCCCA 1 AGTTCTGGGA 1 AGTTCTTCCA 1 AGTTGAAAGT 1 AGTTGAAATT 2 AGTTGAGAAG 1 AGTTGAGTCC 1 AGTTGCAAGA 1 AGTTGCCTGC 1 AGTTGCTGCA 1 AGTTGGATGC 1 AGTTGGTATT 1 AGTTGGTGGG 1 AGTTGTATAT 3 AGTTGTTGGC 1 AGTTTAAATG 1 AGTTTAACAA 1 AGTTTACGAA 1 AGTTTATCTG 3 AGTTTATTTC 2 AGTTTCCACC 1 AGTTTCCAGT 1 AGTTTCCCAA 4 AGTTTCTTGT 1 AGTTTCTTTA 1 AGTTTGAAAA 1 AGTTTGCCGC 1 AGTTTGCTCA 1 AGTTTGTTAG 28 AGTTTTATTT 1 AGTTTTGGCA 1 ATAAAAAAAA 1 ATAAAAAGTT 1 ATAAAACAGG 1 ATAAAACCCC 1 ATAAAACCCT 1 ATAAAAGAAG 1 ATAAAATTCC 1 ATAAAGATGG 2 ATAAAGATTC 1 ATAAATCGGG 1 ATAAATGCAG 3 ATAAATTGGG 3 ATAACAGCCT 1 ATAACCCCAA 2 ATAAGAATTC 1 ATAAGACTTC 2 ATAAGAGAAA 1 ATAAGATGGT 1 ATAAGATTTC 1 ATAAGCCTAG 1 ATAAGCTTTT 1 ATAAGGAAAA 1 ATAAGGGCAC 1 ATAATAGCTT 1 ATAATCTTAT 1 ATAATGCATA 1 ATAATGCCAC 1 ATAATTATTG 1 ATAATTCTCT 1 ATAATTCTTT 13 ATACAAATAT 2 ATACAACTAA 1 ATACAATAAA 1 ATACACTAAA 1 ATACAGAAAT 1 ATACAGATTG 1 ATACAGGGCC 1 ATACAGTGAA 1 ATACAGTTCC 1 ATACAGTTTG 1 ATACATTACT 1 ATACATTCAA 1 ATACATTTAG 1 ATACCAAGAA 1 ATACCCACAA 1 ATACCCCACT 2 ATACCTGCCT 1 ATACTCAATT 1 ATACTCATCA 1 ATACTCCACT 59 ATACTCCCAC 1 ATACTCCCAT 1 ATACTCTCAC 1 ATACTGCTGC 1 ATACTGGTCT 1 ATACTGTCAG 1 ATACTTACAT 1 ATACTTTAAT 1 ATAGAATTTG 1 ATAGACGCAA 2 ATAGACTTCC 1 ATAGAGCGGA 1 ATAGAGGCAA 2 ATAGATGGGG 2 ATAGATTCAT 1 ATAGCAGTGA 1 ATAGCTTGTG 1 ATAGGCATTA 1 ATAGGTAGAG 1 ATAGGTCAGA 3 ATAGGTCTGG 1 ATAGTAACAC 1 ATAGTACAGC 1 ATAGTAGTAA 1 ATAGTCTGTT 1 ATAGTGGCGG 1 ATAGTGTCGG 1 ATAGTGTGCA 1 ATAGTTTACT 2 ATAGTTTAGA 1 ATATAACACG 1 ATATAATCTG 14 ATATAGGTCG 1 ATATAGTCAG 1 ATATCATTCT 1 ATATCGATGT 1 ATATCTGTAA 1 ATATCTTTGC 2 ATATGAAGCA 2 ATATGAATTA 2 ATATGAGAAG 4 ATATGAGGAG 1 ATATGAGTCA 1 ATATGGCAGG 1 ATATGGCTTT 1 ATATGTAAAA 1 ATATTAGCAA 1 ATATTCATTT 1 ATATTCTGCC 1 ATATTGTCAA 1 ATATTGTCCT 1 ATATTTAGGC 1 ATATTTGCTG 1 ATATTTTCCT 4 ATCAAACCCA 1 ATCAAATGCA 1 ATCAAATGCT 1 ATCAACCCAC 1 ATCAACCCGC 1 ATCAACGCCC 1 ATCAACTGGA 2 ATCAACTTCA 1 ATCAAGAATC 2 ATCAAGATGG 2 ATCAAGGCTC 1 ATCAAGGGTG 9 ATCAAGTGAA 1 ATCAAGTTCC 1 ATCACACCAC 5 ATCACACCAT 1 ATCACACCTA 1 ATCACAGGAA 1 ATCACCAAAA 1 ATCACCAAAG 1 ATCACCAAGA 1 ATCACCACGA 1 ATCACCAGGG 1 ATCACCCATT 1 ATCACCCCAG 4 ATCACCCCCC 1 ATCACCGACA 1 ATCACCTCAC 1 ATCACCTGAC 1 ATCACGCCAC 3 ATCACGCCCT 58 ATCACGCCTC 3 ATCACGGCAC 1 ATCACTAAAG 1 ATCACTTTTG 1 ATCAGAGTGC 1 ATCAGCAAGT 2 ATCAGCTCTT 1 ATCAGGCCAC 1 ATCAGGGGAT 1 ATCAGTGGCT 6 ATCATACCAC 1 ATCATAGACC 1 ATCATAGCTC 1 ATCATCCAGG 1 ATCATTCCCT 1 ATCATTCTCA 6 ATCATTCTTC 1 ATCATTGGTA 1 ATCATTTGCT 1 ATCCAAAAAA 1 ATCCAAAGAA 1 ATCCAAATTA 1 ATCCAACTTA 1 ATCCAAGCAC 1 ATCCAAGCGG 1 ATCCAATACA 1 ATCCACATCA 1 ATCCACATCG 7 ATCCACCCAC 4 ATCCACCCGC 1 ATCCACTAGA 2 ATCCAGAGCG 1 ATCCAGAGTT 1 ATCCAGCAGA 1 ATCCAGCTGT 1 ATCCAGGGTC 3 ATCCAGTATC 1 ATCCATAGTG 2 ATCCATCTGT 2 ATCCATTCTG 7 ATCCCAAAAA 1 ATCCCACCAC 1 ATCCCAGATA 2 ATCCCAGGAA 1 ATCCCAGGAT 1 ATCCCAGTGC 1 ATCCCAGTTG 1 ATCCCCATTG 2 ATCCCCCCAC 1 ATCCCCTTGG 1 ATCCCGCCCT 1 ATCCCGTACA 1 ATCCCTAAAA 1 ATCCCTCAGT 7 ATCCCTCATC 1 ATCCGCAAGA 1 ATCCGCCCAC 1 ATCCGCCCCC 1 ATCCGCCCGC 1 ATCCGCCTGC 2 ATCCGCGAAC 1 ATCCGCGGGG 1 ATCCGGAGCC 1 ATCCGGCGCC 11 ATCCGGGGAG 1 ATCCGTGCCC 5 ATCCTACTGT 2 ATCCTAGCTC 1 ATCCTATCCA 1 ATCCTCCAGA 1 ATCCTCCCTA 1 ATCCTCTCTC 1 ATCCTGCAGA 1 ATCCTGCATT 1 ATCCTGGCTA 1 ATCCTTGCCA 1 ATCCTTGCTG 2 ATCCTTGGCC 1 ATCGAACCAC 1 ATCGAGCCAC 3 ATCGAGTTCC 1 ATCGCACCAC 6 ATCGCACGGC 2 ATCGCATCAC 2 ATCGCGAAAA 1 ATCGCGCCAC 1 ATCGCGCTAC 1 ATCGCGGCGG 1 ATCGCGGCGT 1 ATCGCGGGAG 1 ATCGCTTCCT 1 ATCGCTTTCT 21 ATCGCTTTTT 1 ATCGGGCCCG 7 ATCGGGCGGG 1 ATCGGGGGGG 1 ATCGTATTGA 1 ATCGTGCCAC 9 ATCGTGCCAT 2 ATCGTGCCCG 1 ATCGTGGCCG 1 ATCGTGGCGG 92 ATCGTGGGTA 1 ATCGTGTCTG 1 ATCGTTCTCT 1 ATCGTTGGCC 1 ATCGTTGTAA 1 ATCTACCGCC 1 ATCTCAAAGA 2 ATCTCAAGGA 1 ATCTCAGCGT 1 ATCTCAGCTT 1 ATCTCAGGAA 1 ATCTCATCTC 1 ATCTCGAAAG 1 ATCTCGCCAC 1 ATCTCGGCTC 5 ATCTCTCTCA 1 ATCTCTCTGG 1 ATCTCTTTCC 2 ATCTGAAGCA 1 ATCTGACCCA 1 ATCTGAGCAG 1 ATCTGAGGCC 1 ATCTGCCCGC 1 ATCTGCCTGC 2 ATCTGCGCAC 1 ATCTGCTCAG 1 ATCTGCTGAA 1 ATCTGCTTGA 1 ATCTGGAGCA 3 ATCTGGCAGG 1 ATCTGTCAAA 1 ATCTGTGAAA 1 ATCTGTGGTT 1 ATCTGTTTAT 1 ATCTTAGCCA 1 ATCTTAGTCA 1 ATCTTATTCT 1 ATCTTCTTCG 1 ATCTTGCCAC 1 ATCTTGCTCA 1 ATCTTGGCTC 2 ATCTTGTGTT 1 ATCTTTCTAC 1 ATCTTTCTGG 12 ATCTTTCTTC 1 ATCTTTTAAA 1 ATGAAAACCC 1 ATGAAAAGAA 3 ATGAAAAGAT 1 ATGAAACCCA 1 ATGAAACCCC 8 ATGAAACCCT 3 ATGAAACGCC 1 ATGAAAGTAG 1 ATGAAATTCT 1 ATGAACCGCA 1 ATGAACGAGG 1 ATGAAGCTTG 1 ATGACAAAAA 1 ATGACAAATG 2 ATGACACCCC 1 ATGACACTCA 4 ATGACCCCCG 5 ATGACCCGCC 1 ATGACCTGAA 2 ATGACGCCAA 1 ATGACGCGTG 1 ATGACGCTCA 18 ATGACGCTTA 1 ATGACGTTGT 1 ATGACTAATG 1 ATGACTAGCG 2 ATGACTCAAG 8 ATGACTCTAA 1 ATGACTGTAT 1 ATGACTTTGT 1 ATGAGCAAGT 1 ATGAGCATAA 1 ATGAGCCAAA 1 ATGAGCGTCT 1 ATGAGCTATG 2 ATGAGCTCTC 1 ATGAGCTGAC 2 ATGAGCTGCT 1 ATGAGGAAAG 1 ATGAGGCCGG 2 ATGAGGTATG 2 ATGAGTAGCT 1 ATGATACACC 1 ATGATACCTG 1 ATGATATATG 1 ATGATCCATC 1 ATGATCCCAC 1 ATGATCCCGA 1 ATGATCCGGA 5 ATGATCCGGT 1 ATGATCCTGG 1 ATGATCTGCC 2 ATGATGAAGG 1 ATGATGATGA 2 ATGATGCGGT 7 ATGATGCTAG 1 ATGATGGCAC 32 ATGATGGGGG 1 ATGATGGGTG 1 ATGATGGTAC 2 ATGATGTCGT 1 ATGATTCAGA 1 ATGATTCCAT 1 ATGATTGTAC 1 ATGCAAACAT 1 ATGCAAATAC 1 ATGCAAGGAG 1 ATGCACAGTT 1 ATGCAGATAT 1 ATGCAGATTT 1 ATGCAGCAGA 1 ATGCAGCCAG 1 ATGCAGCCAT 4 ATGCAGCCGT 2 ATGCAGGAAT 2 ATGCAGGGAG 1 ATGCAGGTGA 3 ATGCAGTCTC 1 ATGCAGTGGC 2 ATGCAGTTCC 1 ATGCAGTTTT 1 ATGCATCAGG 1 ATGCATCCTT 1 ATGCCAAACA 1 ATGCCATAAC 1 ATGCCATCTC 1 ATGCCCAAGG 1 ATGCCCAATG 1 ATGCCCCGGG 1 ATGCCCGTGA 2 ATGCCCTATC 1 ATGCCGACAG 5 ATGCCGCCAG 1 ATGCCGCCGC 1 ATGCCTACAG 1 ATGCCTACTC 1 ATGCCTGAAA 1 ATGCCTTGGG 2 ATGCCTTTGA 1 ATGCCTTTTT 1 ATGCGAAAGG 3 ATGCGAAGGG 1 ATGCGAATCA 1 ATGCGCACCC 1 ATGCGCAGTC 1 ATGCGGACTC 1 ATGCGGAGAA 1 ATGCGGAGTC 13 ATGCGGCAGA 1 ATGCGGCCAC 1 ATGCGGGAAA 1 ATGCGGGAGA 39 ATGCTACTAA 1 ATGCTAGAAA 1 ATGCTAGGTT 1 ATGCTATGGA 1 ATGCTCAGCC 3 ATGCTCATAC 1 ATGCTCCCTG 13 ATGCTCCGCT 1 ATGCTGAGAG 1 ATGCTGATCC 1 ATGCTGATTC 2 ATGCTGCCAA 3 ATGCTGCCCG 2 ATGCTGCTTT 1 ATGCTGTACA 5 ATGCTGTTTT 3 ATGCTTATTG 2 ATGCTTCTGG 1 ATGCTTTATA 1 ATGCTTTCAC 1 ATGCTTTTCA 1 ATGGAAAATC 1 ATGGAAAGGA 1 ATGGAACCCC 1 ATGGAACTGA 4 ATGGAACTGT 1 ATGGAAGCTG 1 ATGGAAGGGC 1 ATGGAAGGTG 2 ATGGAATATG 1 ATGGAATGCT 5 ATGGACTGTA 1 ATGGAGACTT 1 ATGGAGAGCA 1 ATGGAGATCC 1 ATGGAGATTT 1 ATGGAGCAAG 1 ATGGAGCCCA 2 ATGGAGCGAC 1 ATGGAGCGCA 2 ATGGAGGGAA 1 ATGGAGTACA 1 ATGGATACGG 1 ATGGATATGA 1 ATGGATCAGT 1 ATGGATGCAC 1 ATGGATGGTA 1 ATGGCAACAG 1 ATGGCAAGCC 1 ATGGCAAGGG 7 ATGGCAAGGT 1 ATGGCACACA 1 ATGGCACATC 2 ATGGCACCAC 1 ATGGCACGCA 2 ATGGCACGGA 21 ATGGCACGTG 2 ATGGCAGAGA 1 ATGGCAGCCT 1 ATGGCAGGAG 10 ATGGCAGGCA 2 ATGGCAGGCG 5 ATGGCAGGTG 1 ATGGCAGTGC 1 ATGGCATCAC 1 ATGGCCAACT 2 ATGGCCAGAA 1 ATGGCCAGGC 2 ATGGCCAGGT 1 ATGGCCATAG 2 ATGGCCCAGT 2 ATGGCCCATA 15 ATGGCCCGGG 1 ATGGCCGACT 1 ATGGCCTCCT 4 ATGGCCTGCG 1 ATGGCCTGTA 1 ATGGCGACTG 6 ATGGCGAGGG 2 ATGGCGAGTG 1 ATGGCGATCT 7 ATGGCGATGT 1 ATGGCGCACG 2 ATGGCGCAGT 2 ATGGCGCCAC 1 ATGGCGCGCA 1 ATGGCGCTGC 1 ATGGCGGACG 1 ATGGCGGATG 1 ATGGCGGCGA 1 ATGGCGGGAC 1 ATGGCGGGCC 1 ATGGCGGGCG 1 ATGGCGGGTG 6 ATGGCGTCAC 1 ATGGCTAACG 1 ATGGCTATAA 2 ATGGCTCATA 3 ATGGCTCATT 1 ATGGCTCCGT 1 ATGGCTCTTG 1 ATGGCTGCTG 3 ATGGCTGGGC 2 ATGGCTGGTA 46 ATGGCTGGTT 1 ATGGCTTAAC 1 ATGGCTTGTA 1 ATGGCTTTCT 1 ATGGCTTTGT 1 ATGGGAACCA 1 ATGGGCAGCC 3 ATGGGCGCAT 1 ATGGGCTTGA 18 ATGGGGAAAG 1 ATGGGGCAAA 1 ATGGGGGTGA 3 ATGGGTGGAT 1 ATGGGTGGGT 1 ATGGGTTTGC 2 ATGGTAAGGG 1 ATGGTAGAGG 1 ATGGTATGGT 1 ATGGTCAGTA 2 ATGGTCCGCT 1 ATGGTCGGAG 1 ATGGTCTACG 5 ATGGTCTCGT 1 ATGGTGAAAC 2 ATGGTGACGG 1 ATGGTGACTC 1 ATGGTGCACG 1 ATGGTGCCAC 4 ATGGTGCCTT 1 ATGGTGCGCG 1 ATGGTGGAGC 1 ATGGTGGGAC 1 ATGGTGGGCA 2 ATGGTGGGGG 30 ATGGTGGGTG 3 ATGGTGGTAT 1 ATGGTGGTGC 1 ATGGTGGTGG 10 ATGGTGGTTG 1 ATGGTGTAAT 1 ATGGTGTATT 1 ATGGTGTGGT 1 ATGGTGTGTG 4 ATGGTTAAAG 1 ATGGTTAGCT 1 ATGTAAAAAG 1 ATGTACAATC 1 ATGTACATTT 1 ATGTACCTGA 4 ATGTACTCTG 1 ATGTAGAATG 1 ATGTATGCTG 1 ATGTCATCAA 2 ATGTCATCTG 1 ATGTCATTGT 1 ATGTCCTCTT 1 ATGTCGCTCT 1 ATGTCGGATT 1 ATGTCGTGGT 1 ATGTCTTATG 1 ATGTCTTTGA 1 ATGTCTTTTC 2 ATGTGAAGCA 1 ATGTGAGGAT 1 ATGTGATCCG 1 ATGTGCAGGC 1 ATGTGCGTGG 8 ATGTGCTACT 1 ATGTGCTCCG 1 ATGTGCTGCA 2 ATGTGGAGGT 1 ATGTGGCACA 2 ATGTGGCCTC 1 ATGTGGCGGC 1 ATGTGGCTCA 1 ATGTGGCTGG 1 ATGTGGCTTC 1 ATGTGGGCTC 2 ATGTGGGGGA 1 ATGTGGTTGT 1 ATGTGTACAA 1 ATGTGTGGAG 1 ATGTGTGGGG 1 ATGTGTTCAC 1 ATGTGTTTCA 1 ATGTTATCAA 1 ATGTTCAGCA 1 ATGTTCAGTG 1 ATGTTCCCAC 1 ATGTTGCACA 1 ATGTTGCCCC 2 ATGTTGCCCT 1 ATGTTGCTGA 1 ATGTTGGGTG 1 ATGTTGTCAA 1 ATGTTTTTAA 1 ATTAAAATAT 9 ATTAAAGGAG 1 ATTAAAGTAG 1 ATTAACAAAG 5 ATTAACACAG 1 ATTAACACCC 1 ATTAACACTT 1 ATTAAGAGGG 3 ATTAATCTGA 1 ATTAATTCCT 1 ATTACACCAC 2 ATTACACCCG 1 ATTACACTAC 1 ATTACAGTTC 2 ATTACCCCAG 1 ATTACCTGAA 1 ATTACCTGAC 1 ATTACGCCAC 1 ATTACGCCCT 1 ATTACTCCAC 1 ATTACTTCAC 1 ATTACTTCTT 1 ATTAGAAGGG 1 ATTAGCCTGA 1 ATTAGGAACT 1 ATTAGTCACG 1 ATTAGTGCAT 1 ATTAGTGTTG 1 ATTATAATCT 1 ATTATCCAGC 1 ATTATCCAGG 1 ATTATCCTGA 1 ATTATCCTGG 2 ATTATGATGT 1 ATTATGCCAT 1 ATTATGCCGC 1 ATTATGGGAG 1 ATTATGGGCA 1 ATTATGTGGA 1 ATTATTGAAG 1 ATTATTGGAT 2 ATTATTTTCT 1 ATTATTTTTC 1 ATTCAACTCA 1 ATTCACCCCC 1 ATTCAGCACC 4 ATTCAGCCCC 1 ATTCAGGGGA 1 ATTCAGTTAA 1 ATTCCAACTG 1 ATTCCAAGGA 2 ATTCCAATCT 2 ATTCCACCAC 1 ATTCCCATAA 1 ATTCCCCCTA 1 ATTCCGCCAC 1 ATTCCGGGCC 1 ATTCCTGAGC 2 ATTCCTGGGA 1 ATTCGAAAGC 2 ATTCGAGAAG 2 ATTCGGAGGG 1 ATTCGGTTAG 1 ATTCGTCTTT 1 ATTCTCATTT 1 ATTCTCCAGT 20 ATTCTGCCCA 2 ATTCTGCCTC 1 ATTCTGGTCA 1 ATTCTTAAGT 1 ATTCTTAGTC 1 ATTCTTTGGG 1 ATTCTTTTTA 1 ATTGAAGCCT 1 ATTGACAACA 2 ATTGACCACC 1 ATTGACCGCT 2 ATTGAGAAGC 5 ATTGATGACG 2 ATTGCACCAC 4 ATTGCACCAG 1 ATTGCACCAT 1 ATTGCACCCC 1 ATTGCACTGT 1 ATTGCAGCCA 1 ATTGCATCAC 1 ATTGCCCGTG 1 ATTGCCTGCA 1 ATTGCGCCAC 2 ATTGCTAAGT 1 ATTGCTGTAA 1 ATTGCTTGTA 1 ATTGCTTTAA 1 ATTGCTTTTG 1 ATTGGACACA 1 ATTGGAGAGC 1 ATTGGAGATG 1 ATTGGAGCGC 1 ATTGGAGTGC 85 ATTGGAGTGT 2 ATTGGATTTT 1 ATTGGCCCGC 1 ATTGGCTATA 1 ATTGGCTGGG 5 ATTGGCTTAA 1 ATTGGGACAG 1 ATTGGGCCAC 1 ATTGGGTAAG 1 ATTGGGTCTC 1 ATTGGTCTCA 1 ATTGGTGGTC 1 ATTGGTTTTG 1 ATTGTAAATA 1 ATTGTAAATT 1 ATTGTAAGGG 1 ATTGTAATTA 1 ATTGTACTAA 1 ATTGTAGACA 2 ATTGTAGATT 1 ATTGTATAAA 1 ATTGTATATG 1 ATTGTATTGG 1 ATTGTATTTC 1 ATTGTGAACA 1 ATTGTGAGCT 1 ATTGTGAGGG 19 ATTGTGATTA 1 ATTGTGCCAC 9 ATTGTGCCAT 1 ATTGTGCCCC 1 ATTGTGCCTC 1 ATTGTGGCAC 2 ATTGTGGTTA 1 ATTGTGTCAT 1 ATTGTTTATG 5 ATTGTTTTGT 1 ATTTAAAAAG 1 ATTTAAAATA 1 ATTTAACTCC 1 ATTTAAGAAG 1 ATTTAAGCGT 1 ATTTAATCAG 1 ATTTACAGTT 1 ATTTACTGCT 1 ATTTAGAACC 1 ATTTAGGCAG 1 ATTTATGCTT 1 ATTTCAAAAA 1 ATTTCAAGAT 21 ATTTCACATT 1 ATTTCACCCT 1 ATTTCATAAG 1 ATTTCATCGC 1 ATTTCATTGG 3 ATTTCATTTG 1 ATTTCCACTC 1 ATTTCCCAAA 5 ATTTCCTTGA 4 ATTTCGGCTC 1 ATTTCTATGT 1 ATTTCTGCTG 4 ATTTCTGGGC 1 ATTTCTTGCC 3 ATTTGAAAAC 1 ATTTGAAAAG 2 ATTTGAAAGC 3 ATTTGAAGAA 1 ATTTGACAAG 3 ATTTGAGAAA 2 ATTTGAGAAC 8 ATTTGAGAAG 600 ATTTGAGACG 1 ATTTGAGAGC 3 ATTTGAGAGG 3 ATTTGAGATA 1 ATTTGAGGAG 5 ATTTGCCTCT 2 ATTTGCCTGA 1 ATTTGGAAGC 1 ATTTGGCCAG 1 ATTTGGGAAG 3 ATTTGGGAGT 1 ATTTGGGGTT 1 ATTTGGTGTC 1 ATTTGTACTT 1 ATTTGTCAGC 1 ATTTGTCCCA 12 ATTTGTGGCC 1 ATTTGTTATT 1 ATTTTAACAA 2 ATTTTAGATT 1 ATTTTAGTGT 1 ATTTTCAATC 1 ATTTTCTAAA 22 ATTTTCTAGA 1 ATTTTCTGCC 2 ATTTTGAAGA 1 ATTTTGCTTT 1 ATTTTGGCCA 2 ATTTTGTCGT 1 ATTTTGTGCA 1 ATTTTTAAAA 1 ATTTTTAATT 1 ATTTTTCAAA 2 ATTTTTCAGC 1 ATTTTTCTGA 1 ATTTTTGCCC 1 ATTTTTGTAC 2 ATTTTTTCAA 1 ATTTTTTCCT 1 CAAAAAAAAA 19 CAAAAAAGCA 1 CAAAAAAGTG 1 CAAAAAATTA 2 CAAAAAATTT 1 CAAAAACCCT 1 CAAAAAGGTG 1 CAAAACAGGC 7 CAAAAGGAAT 1 CAAAAGGATC 1 CAAAAGGCTC 1 CAAAAGGCTT 1 CAAAAGTGAG 4 CAAAATACTG 1 CAAAATATAC 1 CAAAATATTC 1 CAAAATCAGG 5 CAAAATCCAA 1 CAAAATCCTG 1 CAAACAATCC 1 CAAACAGCTG 2 CAAACCACCC 1 CAAACCATCA 1 CAAACCATCC 62 CAAACCCCCT 1 CAAACCCGAC 1 CAAACCCGTC 1 CAAACCTTGT 1 CAAACCTTTA 1 CAAACTAACC 1 CAAACTAGTT 1 CAAACTATCC 1 CAAACTTAGC 1 CAAACTTCCG 1 CAAAGAACGA 1 CAAAGAAGCC 1 CAAAGACAAT 2 CAAAGCCAAC 1 CAAAGCCCTC 1 CAAAGCCTGA 1 CAAAGGAGTC 3 CAAAGGATTT 5 CAAAGGCCAC 1 CAAAGGTAAG 1 CAAAGTAATC 1 CAAAGTCTAC 1 CAAAGTGTGC 1 CAAAGTTCTG 1 CAAATAAAAG 12 CAAATAAAGT 3 CAAATAAATT 6 CAAATACTGG 1 CAAATATAGA 1 CAAATATAGT 1 CAAATATGGT 1 CAAATCAAGT 1 CAAATGAATA 1 CAAATGAGGA 2 CAAATGAGGC 1 CAAATGCAAA 1 CAAATGCCAT 1 CAAATGGGTT 4 CAAATGTAAA 1 CAAATTACAA 2 CAAATTCAAT 1 CAAATTCTTT 1 CAAATTGCAA 1 CAAATTTTGT 1 CAACAAAAAA 4 CAACAAATAA 2 CAACAAGGTT 1 CAACAATAAT 3 CAACAATACA 1 CAACACACTC 1 CAACACATTC 1 CAACACCACA 1 CAACACTGCT 1 CAACACTTCT 1 CAACAGCAGT 1 CAACAGCATA 1 CAACAGCCAA 1 CAACAGCTCT 2 CAACAGGCCT 2 CAACAGGTGA 1 CAACAGTTCT 1 CAACATACTT 1 CAACATCCCC 1 CAACATCGCC 1 CAACATCTGC 1 CAACATTAAC 1 CAACATTCAC 1 CAACATTCCT 8 CAACCACCAA 1 CAACCACCAG 1 CAACCAGTGC 1 CAACCATCAT 2 CAACCATCCA 3 CAACCCACCG 1 CAACCCACGC 1 CAACCCCACG 1 CAACCCTAAA 1 CAACCGCCAT 1 CAACGAAACC 1 CAACGAACAT 1 CAACGTCCTG 1 CAACTGCACT 1 CAACTGCCCC 1 CAACTGCCTA 1 CAACTGCTAA 2 CAACTGGAGT 3 CAACTGTATT 4 CAACTTAAGT 1 CAACTTAGTT 14 CAACTTTAGG 1 CAAGAAAAAA 1 CAAGAAACTC 1 CAAGAACAAG 3 CAAGAAGAGG 1 CAAGAAGGAA 1 CAAGAAGTAC 1 CAAGACAGAC 1 CAAGACGGGG 5 CAAGACTCAG 1 CAAGAGAACT 1 CAAGAGCGAG 1 CAAGAGGCAA 5 CAAGAGTTTC 2 CAAGATCCCC 3 CAAGATGAAC 1 CAAGCAAAAT 1 CAAGCAAACA 1 CAAGCACCCC 1 CAAGCAGAAA 1 CAAGCAGCCT 1 CAAGCAGGAC 5 CAAGCATCCC 211 CAAGCCAAAA 1 CAAGCCAACG 1 CAAGCGCTCT 1 CAAGCGTCCC 2 CAAGCTCAGA 1 CAAGCTCTAC 1 CAAGCTGTTC 2 CAAGCTTGGT 1 CAAGGAAATG 1 CAAGGAGATC 1 CAAGGAGCCT 1 CAAGGATCTA 2 CAAGGATGGG 1 CAAGGATTGT 1 CAAGGCTCTG 1 CAAGGCTTAG 1 CAAGGGCAGG 3 CAAGGGCTTG 9 CAAGGGTGAC 2 CAAGTACCTG 1 CAAGTACTGT 1 CAAGTCACAG 1 CAAGTCACCG 1 CAAGTGGAAG 2 CAAGTGGCAA 6 CAAGTGGCGA 1 CAAGTGTGGA 1 CAAGTTAGCG 1 CAAGTTAGTG 1 CAAGTTCTTT 8 CAAGTTGGCA 1 CAAGTTGGTT 1 CAAGTTGTCT 1 CAAGTTGTTA 1 CAAGTTTTGT 1 CAAGTTTTTG 1 CAATAAAAAA 1 CAATAAAAAG 1 CAATAAAATT 1 CAATAAACTG 6 CAATAAATGT 6 CAATAACCCA 1 CAATACATAC 1 CAATACTCAC 1 CAATACTGCA 3 CAATAGGCTA 1 CAATATCCCT 1 CAATATGCCA 1 CAATCAAAAA 1 CAATCAACGG 1 CAATCAAGCA 1 CAATCACAAA 3 CAATCATTCC 1 CAATCTTGTG 2 CAATCTTTCA 2 CAATGACCCC 1 CAATGAGCAT 1 CAATGATAGA 1 CAATGCCTAC 1 CAATGCTGCC 2 CAATGCTGGT 1 CAATGGAGCT 1 CAATGGGCCA 1 CAATGGTAGG 2 CAATGGTGAT 1 CAATGGTGTC 2 CAATGTGAGC 1 CAATGTGCTG 2 CAATGTGTTA 7 CAATTAAAAG 6 CAATTAAAAT 1 CAATTAAAGT 3 CAATTACCTG 4 CAATTCCTTC 1 CAATTGAGGC 1 CAATTGATTG 1 CAATTTGTGT 2 CACAAAAACA 1 CACAAAACAT 1 CACAAAATTG 1 CACAAACAAG 1 CACAAACGGT 61 CACAAAGCAG 1 CACAAATGCT 2 CACAACAATT 1 CACAAGAAAA 1 CACAAGCGGT 1 CACAAGCTTC 1 CACAAGCTTT 1 CACAAGGAGA 1 CACAATATTG 1 CACAATCTGG 1 CACAATGACA 1 CACAATGTAG 1 CACACAACAC 1 CACACAAGCA 1 CACACAATGA 1 CACACAATGT 2 CACACACCAG 1 CACACACCCC 1 CACACAGAGC 1 CACACAGTGT 1 CACACAGTTT 4 CACACATATT 1 CACACCAGTT 2 CACACCATTG 1 CACACCCATT 3 CACACCCCTG 2 CACACCCTCC 1 CACACGTGCA 1 CACACTAATT 1 CACACTAGAT 1 CACACTGAGA 1 CACACTTCCA 1 CACACTTGCA 1 CACACTTGGC 1 CACAGAAAAA 1 CACAGAACGC 2 CACAGACGGT 1 CACAGAGTCC 3 CACAGATCAA 1 CACAGCAAAA 1 CACAGCACAA 1 CACAGCAGTT 1 CACAGCCCTC 1 CACAGCTGTA 1 CACAGCTTTT 1 CACAGGCAAA 1 CACAGGCCTG 2 CACAGGGAGG 1 CACAGGGCAA 2 CACAGTATTC 1 CACAGTCAAA 1 CACAGTGACC 1 CACATAATTG 1 CACATATATA 1 CACATATGTG 1 CACATCAAGT 1 CACATCCGAC 1 CACATCGACG 1 CACATCGTCC 1 CACATCTCTG 1 CACATTGACT 5 CACATTTGGA 1 CACCAAACTT 2 CACCAAATTG 2 CACCAAGGAT 1 CACCAATGCT 1 CACCAATGTG 1 CACCAATTAA 1 CACCACCACA 2 CACCACCACC 1 CACCACCACG 1 CACCACCCCA 1 CACCACCCGA 1 CACCACCGCC 1 CACCACGGGC 2 CACCACGGTG 1 CACCACTAAG 1 CACCACTACA 2 CACCACTCAC 1 CACCAGACAA 1 CACCAGAGGC 1 CACCAGCATT 1 CACCAGCCCA 1 CACCAGCGCC 1 CACCATAGTC 1 CACCATCAAA 1 CACCATTATT 1 CACCATTCAG 1 CACCCAATGG 5 CACCCAATTG 3 CACCCACTGC 2 CACCCAGCCT 1 CACCCATAAT 1 CACCCATAGC 1 CACCCCACAA 1 CACCCCATTT 1 CACCCCCAGC 1 CACCCCCAGG 5 CACCCCCTCG 2 CACCCCTAAT 1 CACCCCTACT 1 CACCCCTGAC 1 CACCCCTGAT 169 CACCCCTGGT 1 CACCCGCAGA 1 CACCCTGATG 2 CACCCTGGGA 1 CACCCTGTGG 1 CACCCTTGAT 1 CACCGAGAGC 1 CACCGGACAC 1 CACCGGGTAG 4 CACCGGTCAA 1 CACCGTACAT 1 CACCGTCTTA 1 CACCGTGAAT 1 CACCTAAATT 2 CACCTAACTG 3 CACCTAAGTG 1 CACCTAATCG 1 CACCTAATTC 1 CACCTAATTG 474 CACCTAATTT 2 CACCTACAGT 1 CACCTACTTC 1 CACCTACTTG 1 CACCTAGGGG 1 CACCTAGTTG 3 CACCTATAGT 1 CACCTATTTG 1 CACCTCAGGG 1 CACCTCATTG 1 CACCTGAAGT 1 CACCTGAGTA 1 CACCTGATTG 1 CACCTGGTCT 1 CACCTGTAAT 14 CACCTGTAGA 1 CACCTGTAGT 6 CACCTGTATC 1 CACCTGTCAT 26 CACCTGTGAC 1 CACCTGTGAT 1 CACCTGTGGC 1 CACCTGTGGT 1 CACCTTAGAT 1 CACCTTATTG 1 CACCTTCCAG 2 CACCTTGATA 1 CACGAATGAA 1 CACGACTGTT 3 CACGATTAAA 2 CACGCAATGA 1 CACGCAATGC 19 CACGCCAGCC 1 CACGCCTGTA 1 CACGCGATAC 1 CACGCGTGAT 1 CACGCTCACT 3 CACGCTTGTA 1 CACGCTTTGA 1 CACGGAGACC 3 CACGGCAGCC 1 CACGGCATAT 1 CACGGCCCCT 1 CACGGGAACA 1 CACGGGTGTC 1 CACGGTGGGC 1 CACGTAAGTG 1 CACGTAATTG 3 CACGTATGCA 1 CACGTATTAA 1 CACGTCCAGG 1 CACGTCGCTG 1 CACGTGGAGG 4 CACGTGTAAT 2 CACGTTCAGT 1 CACGTTCCCT 2 CACGTTGGGG 1 CACTAACACC 1 CACTAATCAC 1 CACTAATTGG 1 CACTAATTTG 1 CACTACACGG 8 CACTACACTT 1 CACTACCCAC 1 CACTACCTCC 1 CACTACTAAC 1 CACTACTCAA 1 CACTACTCAC 200 CACTACTCCC 1 CACTACTTCA 2 CACTAGTCAC 1 CACTAGTTTG 1 CACTATCACC 2 CACTATGCTC 2 CACTATTGAT 1 CACTATTTCA 1 CACTCACAAA 1 CACTCACACA 2 CACTCACTGA 1 CACTCATCTA 1 CACTCCCCAC 2 CACTCGAGCC 1 CACTCGCAAA 1 CACTCGTGTG 13 CACTCTATCC 3 CACTCTCACC 2 CACTCTCTTA 1 CACTCTGCTG 1 CACTCTGGGG 1 CACTGAACTC 2 CACTGAGACT 1 CACTGAGATT 1 CACTGCAAGG 1 CACTGCAGCA 4 CACTGCATAT 5 CACTGCCTCG 1 CACTGCCTGT 1 CACTGCCTTT 5 CACTGCGTTC 1 CACTGCTGTG 1 CACTGCTTCC 1 CACTGGAAGG 1 CACTGTAAAG 1 CACTGTCAAG 1 CACTGTCCAC 1 CACTGTGACC 1 CACTGTGGGG 1 CACTGTGTGT 2 CACTGTGTTG 3 CACTTAATTG 3 CACTTACCAA 1 CACTTACCTG 1 CACTTAGAGA 1 CACTTAGCAC 1 CACTTATTTG 1 CACTTCCCAC 1 CACTTCTCAC 1 CACTTCTTGG 1 CACTTGACCC 1 CACTTGCCAT 1 CACTTGCCCT 28 CACTTGGTGA 1 CACTTGTCAT 1 CACTTTATGC 1 CACTTTCGGG 1 CACTTTTCTG 1 CACTTTTGGG 9 CAGAAAACAC 1 CAGAAACTGC 2 CAGAAAGAGA 1 CAGAAAGCAC 1 CAGAAAGCAT 14 CAGAAATGAA 2 CAGAAATGCT 1 CAGAACATCA 1 CAGAACCACA 1 CAGAACCCCC 1 CAGAACTGTG 1 CAGAAGAAAA 1 CAGAAGAAGA 1 CAGAAGAGGC 1 CAGAAGATGG 1 CAGAAGCAAA 1 CAGAAGCAGC 1 CAGAAGCTCG 1 CAGAAGTCTT 2 CAGAATCGCA 1 CAGAATGACT 1 CAGACACTAG 1 CAGACATTTA 2 CAGACCAACT 1 CAGACCAATG 1 CAGACCAGCA 1 CAGACCAGGC 1 CAGACCATTG 1 CAGACCCTGC 1 CAGACGAGCC 1 CAGACGAGCT 1 CAGACGCTCC 2 CAGACTAAGC 1 CAGACTATGT 3 CAGACTGGGA 4 CAGACTTTCT 1 CAGAGAAATG 1 CAGAGAAGTG 1 CAGAGACGGT 1 CAGAGACGTG 2 CAGAGAGACT 1 CAGAGATGAA 1 CAGAGCCCCT 1 CAGAGCTTGT 1 CAGAGGATCC 2 CAGAGTCCCG 2 CAGAGTGACT 1 CAGAGTGCTG 2 CAGATACCCC 2 CAGATATGCC 1 CAGATCTTTG 4 CAGATGACGG 1 CAGATGCTGA 1 CAGATGGAAG 1 CAGATGGGTT 1 CAGATGGTTA 1 CAGATGTCAA 1 CAGATGTCCT 2 CAGATGTGGA 1 CAGATTAAGT 1 CAGATTCCTG 1 CAGATTGCTG 3 CAGATTGGAT 1 CAGATTGTGA 2 CAGATTTTGG 1 CAGCAAAAAA 1 CAGCAAAAAC 1 CAGCAAATGC 1 CAGCAATAAA 1 CAGCAATAAT 2 CAGCACAAAG 1 CAGCACAACA 2 CAGCACAGAA 1 CAGCACATCT 1 CAGCACATTA 1 CAGCAGAAGC 24 CAGCAGAATC 1 CAGCAGCAAA 1 CAGCAGCACC 1 CAGCAGCCTG 1 CAGCAGGTTC 2 CAGCAGTAAA 1 CAGCAGTAGC 2 CAGCAGTCCT 1 CAGCAGTGCA 1 CAGCATCCTA 1 CAGCATCTAA 1 CAGCCAAATT 1 CAGCCACCCA 2 CAGCCACCCC 1 CAGCCAGGGG 4 CAGCCAGTCA 1 CAGCCATCCA 1 CAGCCATCCG 1 CAGCCATTCA 1 CAGCCATTCG 3 CAGCCCAACC 9 CAGCCCAGCA 1 CAGCCCAGGA 1 CAGCCCCAAA 4 CAGCCCCAGC 1 CAGCCCCATA 1 CAGCCCCGCC 1 CAGCCCCTTT 1 CAGCCCTCCA 1 CAGCCCTCCC 2 CAGCCCTTCA 1 CAGCCCTTGA 1 CAGCCGAGGC 6 CAGCCGGAGC 1 CAGCCTAAAG 1 CAGCCTCTAA 2 CAGCCTGCCC 1 CAGCCTGCGA 1 CAGCCTGTCG 1 CAGCCTTAGC 1 CAGCCTTGCG 3 CAGCCTTGGA 2 CAGCGCACAG 4 CAGCGCCACC 3 CAGCGCCTGG 1 CAGCGCGCCC 3 CAGCGCGCTC 1 CAGCGCTGCA 5 CAGCGCTTTG 3 CAGCGGACAG 1 CAGCGGAGGT 1 CAGCGGCGGG 1 CAGCGGGTAA 1 CAGCGTTGCG 1 CAGCTAGGAT 2 CAGCTATCCA 1 CAGCTATTTC 9 CAGCTCACCA 1 CAGCTCACTG 17 CAGCTCAGCC 1 CAGCTCATCT 5 CAGCTCCCAG 1 CAGCTCCGCT 3 CAGCTCTGCC 1 CAGCTGACTG 1 CAGCTGAGGA 1 CAGCTGCTTC 1 CAGCTGGCAG 1 CAGCTGGGCA 1 CAGCTGGGGC 6 CAGCTGGGGG 1 CAGCTGTAGT 2 CAGCTGTGGC 1 CAGCTTAGTT 1 CAGCTTCCCT 2 CAGCTTCTGT 1 CAGCTTGACG 4 CAGCTTGCAA 5 CAGCTTGCAG 1 CAGCTTGGAA 1 CAGCTTTGCT 1 CAGGAAAAAA 1 CAGGAACAGG 1 CAGGAACCAA 1 CAGGAACCAC 4 CAGGAACGGC 1 CAGGAACGGG 17 CAGGAATCTA 1 CAGGACAGAA 1 CAGGACAGTT 2 CAGGACCTTT 1 CAGGACTTGA 1 CAGGACTTTC 2 CAGGAGAAAC 1 CAGGAGAACT 1 CAGGAGCGGT 1 CAGGAGCTTG 1 CAGGAGGAAA 1 CAGGAGGAGT 11 CAGGAGGTAT 1 CAGGAGTAGA 1 CAGGAGTTCA 9 CAGGATAGTA 1 CAGGATGTGC 1 CAGGATGTTC 1 CAGGCAAACT 2 CAGGCAATCA 1 CAGGCACCCC 2 CAGGCACTCT 1 CAGGCACTGA 1 CAGGCAGAGT 1 CAGGCAGCTA 2 CAGGCAGGAC 2 CAGGCAGGCT 3 CAGGCAGGGT 1 CAGGCATCCC 1 CAGGCCCCAC 7 CAGGCCTCCT 1 CAGGCCTCTG 1 CAGGCCTGGC 3 CAGGCGGCAC 2 CAGGCGGTGA 1 CAGGCGTGCA 1 CAGGCTCAAC 1 CAGGCTCAGT 1 CAGGCTCTCT 1 CAGGCTGCCT 3 CAGGCTGTAG 1 CAGGCTTTGC 1 CAGGCTTTTT 2 CAGGGAAGCC 2 CAGGGAGCGC 1 CAGGGAGCTC 2 CAGGGATGTA 1 CAGGGCAAGA 1 CAGGGCAGTG 1 CAGGGCCTGA 1 CAGGGCGGGT 1 CAGGGCGGTG 2 CAGGGCTCAC 1 CAGGGCTCGC 2 CAGGGCTGAT 1 CAGGGCTGCC 1 CAGGGCTGTT 2 CAGGGGAAGG 2 CAGGGGAGTG 2 CAGGGGCAAG 1 CAGGGGCTGG 4 CAGGGGCTTA 1 CAGGGGCTTG 1 CAGGGGTACC 1 CAGGGGTGAC 1 CAGGGGTTGG 1 CAGGGTCCCC 1 CAGGGTGACG 4 CAGGGTGGTG 1 CAGGGTGTGG 1 CAGGTAAGGT 1 CAGGTATTTC 1 CAGGTCAAGA 1 CAGGTCAGTT 1 CAGGTCCTCT 1 CAGGTCCTGG 1 CAGGTCGCTA 1 CAGGTCTCCA 1 CAGGTGCACT 1 CAGGTGCCTC 1 CAGGTGCCTT 2 CAGGTGCTGG 8 CAGGTGGAGT 1 CAGGTGGTTC 1 CAGGTGTAAT 1 CAGGTGTCTT 2 CAGGTTGAAG 1 CAGGTTGGTC 1 CAGTAAAAAA 2 CAGTAAGCGA 1 CAGTACAATG 1 CAGTACCTGA 1 CAGTACGGCC 1 CAGTAGACAG 3 CAGTAGGCTG 1 CAGTATCCCA 1 CAGTATGACC 1 CAGTATGTCC 4 CAGTATTACC 1 CAGTATTCTA 1 CAGTCAAACT 1 CAGTCAAAGG 1 CAGTCAATAG 1 CAGTCAGCCC 2 CAGTCAGGCT 6 CAGTCATCTA 1 CAGTCATTCC 2 CAGTCCCCCT 2 CAGTCCCGTG 1 CAGTCCTGTC 3 CAGTCCTGTG 1 CAGTCGCTGG 3 CAGTCGTGTG 1 CAGTCTACTT 1 CAGTCTCTCA 7 CAGTCTGTGA 1 CAGTCTTCTG 1 CAGTGAACAA 3 CAGTGAGATT 2 CAGTGAGCAC 1 CAGTGAGCCA 1 CAGTGAGCCG 2 CAGTGAGCTG 2 CAGTGATCTC 1 CAGTGCCCCT 1 CAGTGCCTTT 2 CAGTGCGTTC 3 CAGTGCTCCA 1 CAGTGCTGGT 1 CAGTGCTGTC 1 CAGTGCTTCA 1 CAGTGGAATG 4 CAGTGGCACA 1 CAGTGGGAAA 1 CAGTGGGTGG 2 CAGTGGGTGT 3 CAGTGGTATG 1 CAGTGGTGTG 1 CAGTGTAATG 1 CAGTGTATAT 5 CAGTGTATTC 4 CAGTGTCTAT 1 CAGTGTCTGT 5 CAGTGTTAGG 1 CAGTGTTGCG 3 CAGTGTTGGG 3 CAGTTACATT 1 CAGTTACTTA 4 CAGTTAGAGA 1 CAGTTAGGGA 1 CAGTTAGTAA 1 CAGTTCATTA 1 CAGTTCCATA 3 CAGTTCTAAC 1 CAGTTCTCTG 9 CAGTTCTTGA 1 CAGTTGCTGG 1 CAGTTGGGGA 1 CAGTTGGGTC 1 CAGTTGGTAA 1 CAGTTGGTTG 2 CAGTTGTTGA 1 CAGTTTAGAT 1 CAGTTTCAGT 1 CAGTTTCTAA 1 CAGTTTGAAA 1 CAGTTTGCAT 1 CAGTTTGTAC 3 CAGTTTGTCA 1 CAGTTTGTTG 1 CAGTTTTACT 1 CATAAAAACT 3 CATAAAATGT 1 CATAAAGTTT 1 CATAACCTTC 1 CATACAACAC 1 CATACAAGGT 1 CATACGGCTG 1 CATACTAGCA 1 CATACTGTCC 1 CATACTTCCA 3 CATAGAGCCA 2 CATAGCTCTA 1 CATAGCTGTG 1 CATAGGACCT 1 CATAGGTTTA 39 CATAGGTTTT 1 CATAGTAAAA 1 CATAGTCCCT 1 CATAGTGTCC 1 CATAGTTTTA 1 CATATAATCA 1 CATATCACAT 2 CATATCATTA 1 CATATGTTCA 1 CATATTATTC 1 CATATTGGGG 1 CATATTTACA 1 CATATTTTTT 2 CATCAAGGCC 1 CATCAATTCC 2 CATCACAGTC 1 CATCACTACA 1 CATCACTCTT 1 CATCAGCAAG 1 CATCATTCCT 3 CATCCAAAAA 1 CATCCAAAAC 7 CATCCAACTA 1 CATCCAAGGC 2 CATCCACCTG 1 CATCCAGCTA 2 CATCCATACA 1 CATCCATCAA 1 CATCCCATTC 1 CATCCCCACC 1 CATCCCTGAT 1 CATCCCTGGC 1 CATCCGAGAG 1 CATCCTCCCC 1 CATCCTCGAG 1 CATCCTCTTT 1 CATCCTGACC 1 CATCCTGCTG 6 CATCCTTGGG 3 CATCCTTTAT 1 CATCGACCTA 1 CATCGCGCTT 1 CATCGGCTAA 1 CATCTAAACT 5 CATCTACAGT 1 CATCTAGCTG 1 CATCTCAACA 1 CATCTCAGAT 1 CATCTCTTGA 1 CATCTGAGAT 1 CATCTGCTAT 1 CATCTGGAGA 1 CATCTGGTGT 1 CATCTGTGAG 4 CATCTTAAAT 1 CATCTTCACC 12 CATCTTCCTA 1 CATCTTGGAG 2 CATCTTTACC 1 CATTAACCTG 1 CATTAAGAGT 1 CATTACTCAC 1 CATTAGGTGA 1 CATTAGGTTT 1 CATTATAACT 2 CATTATTTTT 1 CATTCAAATC 1 CATTCAACAA 1 CATTCAGGCT 1 CATTCAGTTG 1 CATTCCAGAG 1 CATTCCTCAG 1 CATTCCTCCT 1 CATTCGGCTT 1 CATTCTCTGG 1 CATTGAAAAA 1 CATTGAAGGG 8 CATTGACAGC 1 CATTGCAGGA 5 CATTGCATAT 1 CATTGCCTTC 1 CATTGCTAAC 1 CATTGCTTTG 1 CATTGGAAAA 1 CATTGGGTGA 2 CATTGTAGAG 1 CATTGTCCAG 2 CATTGTGAAA 1 CATTGTTCAT 1 CATTTAAAAA 1 CATTTAAGTT 1 CATTTACGAC 3 CATTTACTCT 1 CATTTATCAA 1 CATTTATCAT 2 CATTTCAATA 1 CATTTCAGAG 3 CATTTCATAA 9 CATTTCTAAA 1 CATTTCTCAA 1 CATTTGAAAG 2 CATTTGAAAT 1 CATTTGATTT 1 CATTTGCACT 1 CATTTGCCAG 1 CATTTGGCCA 1 CATTTGGCCG 1 CATTTGGGAA 1 CATTTGGTAT 6 CATTTGTAAT 27 CATTTGTTTA 1 CATTTTACTG 1 CATTTTAGGC 1 CATTTTCAAG 1 CATTTTCATA 1 CATTTTGCAA 1 CATTTTTAGA 1 CATTTTTGCA 1 CATTTTTGGA 1 CCAAAAAAAA 1 CCAAAAACGG 1 CCAAAAAGAA 1 CCAAAAATCT 1 CCAAAACGTG 1 CCAAAATTAG 5 CCAAAATTTG 1 CCAAACCCAT 1 CCAAACCCTT 1 CCAAACGTGA 1 CCAAACGTGT 43 CCAAAGAACA 1 CCAAAGAGTA 1 CCAAAGCTAT 16 CCAAAGTATA 1 CCAAATGAGG 1 CCAAATGCTG 2 CCAAATTACC 1 CCAAATTGTA 1 CCAACAAAAT 1 CCAACAACTA 4 CCAACAAGAA 2 CCAACACCAA 1 CCAACACCAG 19 CCAACACCCG 1 CCAACAGCCA 1 CCAACATCTT 1 CCAACATTCC 1 CCAACCACAG 1 CCAACCAGCC 1 CCAACCCATC 1 CCAACCGTGC 4 CCAACCGTGT 1 CCAACGAGGA 4 CCAACTACGA 1 CCAACTATCG 5 CCAACTGCCG 1 CCAAGAAAGA 1 CCAAGAAATA 1 CCAAGACCCA 1 CCAAGACCCC 1 CCAAGACTTC 1 CCAAGAGACG 2 CCAAGAGTGG 2 CCAAGATGGA 1 CCAAGATTTC 1 CCAAGCAGGA 1 CCAAGCCCCC 1 CCAAGCGTGT 1 CCAAGCTCCA 1 CCAAGCTGCC 1 CCAAGCTTTT 1 CCAAGGAATG 1 CCAAGGAGGA 1 CCAAGGATGG 1 CCAAGGATTG 2 CCAAGGCCAC 1 CCAAGGCCCC 1 CCAAGGGAGA 1 CCAAGGGCCC 1 CCAAGGGCCT 1 CCAAGGGTCC 3 CCAAGGTGTT 2 CCAAGGTTTT 1 CCAAGTAAAA 1 CCAAGTTCAC 7 CCAAGTTCCG 1 CCAAGTTTTC 1 CCAAGTTTTT 7 CCAATAAATA 1 CCAATCCTGA 2 CCAATCGTCC 1 CCAATGAAAG 2 CCAATGCACC 1 CCAATGCACT 1 CCAATGCAGC 1 CCAATGCAGG 1 CCAATGCATT 1 CCAATGGCCA 1 CCAATGTGCT 1 CCAATTACAG 1 CCAATTCAGT 1 CCAATTGCAT 1 CCAATTTATC 2 CCAATTTGAA 2 CCACAAACGG 1 CCACAACACA 1 CCACAACTGA 1 CCACAATCCT 2 CCACACAAAA 3 CCACACAAGC 1 CCACACACCG 3 CCACACATTT 1 CCACACCGGT 2 CCACACCTCT 5 CCACACCTGG 1 CCACACGCAG 3 CCACACGTCC 1 CCACAGAAAT 3 CCACAGATCA 1 CCACAGCACT 1 CCACAGCCAC 1 CCACAGCTGA 1 CCACAGGACA 2 CCACAGGAGA 7 CCACAGGAGC 1 CCACAGGGGA 1 CCACAGTCCC 1 CCACAGTGAT 1 CCACAGTTAT 1 CCACATCAAA 1 CCACCAAATG 1 CCACCAATCT 1 CCACCACACC 2 CCACCACATT 1 CCACCACCCA 1 CCACCACCCC 1 CCACCACGCC 1 CCACCACTGC 1 CCACCAGCAC 1 CCACCATTCT 1 CCACCCACGA 1 CCACCCACTC 1 CCACCCAGGC 3 CCACCCCCAC 4 CCACCCCGAA 33 CCACCCCGTC 2 CCACCGACGC 1 CCACCGCACA 1 CCACCGCACC 1 CCACCGCACT 5 CCACCGCCTG 1 CCACCTCACC 1 CCACCTCCAA 2 CCACCTGCTT 1 CCACCTGGGT 1 CCACCTGTTT 1 CCACCTTTCC 2 CCACGAAAGG 3 CCACGAAGCA 1 CCACGACACT 1 CCACGCACTG 1 CCACGCGGTT 1 CCACGCTAAC 1 CCACGCTCTG 1 CCACGGATAA 1 CCACGGCACT 2 CCACGGCATC 1 CCACGGGCCC 1 CCACGGGTTG 1 CCACGTATTC 1 CCACGTCCAT 1 CCACGTCCCT 1 CCACGTCTTT 1 CCACGTGCCA 5 CCACGTGCCC 1 CCACTACACT 18 CCACTACGCC 1 CCACTACTGC 1 CCACTAGAAA 1 CCACTATACT 1 CCACTCAAAA 1 CCACTCACCC 1 CCACTCCACT 3 CCACTCCTCA 8 CCACTCCTCC 3 CCACTCGGCT 1 CCACTCTTGA 1 CCACTGACCA 1 CCACTGACTC 1 CCACTGCAAA 1 CCACTGCAAT 3 CCACTGCACC 19 CCACTGCACG 1 CCACTGCACT 229 CCACTGCAGC 1 CCACTGCAGT 2 CCACTGCATC 2 CCACTGCATT 17 CCACTGCCAT 1 CCACTGCCCT 7 CCACTGCCTC 2 CCACTGCGCT 7 CCACTGCTGC 1 CCACTGGACT 3 CCACTGGGAA 1 CCACTGTACC 3 CCACTGTACT 17 CCACTGTATT 3 CCACTGTCCT 1 CCACTGTCTC 1 CCACTGTGCC 1 CCACTGTTAT 1 CCACTTAGTT 1 CCACTTATTC 2 CCACTTCACC 1 CCACTTCACT 3 CCACTTCCTC 2 CCACTTCTGG 1 CCACTTGTCA 1 CCAGAACAGA 22 CCAGAACTCT 1 CCAGAAGCAT 1 CCAGAAGCCA 1 CCAGACAGAC 2 CCAGACATCT 1 CCAGACCAGC 2 CCAGACGTAG 6 CCAGAGAACT 10 CCAGAGCAGA 1 CCAGAGGAGA 1 CCAGAGGCAG 1 CCAGAGGTAG 1 CCAGAGTGAT 1 CCAGATCAAG 1 CCAGATCTTT 1 CCAGATTTTG 2 CCAGCAGCAG 1 CCAGCAGCTT 2 CCAGCAGGAA 1 CCAGCAGTGG 1 CCAGCCACCA 1 CCAGCCCCCA 1 CCAGCCCTAG 1 CCAGCCCTGA 1 CCAGCCCTGT 1 CCAGCCTGAG 1 CCAGCCTGGA 1 CCAGCCTGGG 4 CCAGCCTGTA 1 CCAGCCTTCA 1 CCAGCGACTC 2 CCAGCGCAGC 1 CCAGCGGCCG 1 CCAGCGGGCC 1 CCAGCGTACT 1 CCAGCTCCAA 1 CCAGCTGCAA 1 CCAGCTGCCA 12 CCAGCTGCGA 1 CCAGCTGTCA 1 CCAGCTTCCT 1 CCAGCTTGAT 1 CCAGCTTTTT 1 CCAGGAACAA 1 CCAGGAAGAG 2 CCAGGACACT 1 CCAGGAGGAA 23 CCAGGAGGAT 1 CCAGGCACGC 1 CCAGGCAGGG 1 CCAGGCCACA 1 CCAGGCCACC 1 CCAGGCCATT 1 CCAGGCCCTC 1 CCAGGCGTCA 1 CCAGGCTAAT 2 CCAGGCTGCG 2 CCAGGCTGGA 1 CCAGGGAGAA 1 CCAGGGAGAC 1 CCAGGGAGCA 1 CCAGGGCAAC 4 CCAGGGCAGA 1 CCAGGGCTGA 3 CCAGGGCTGC 1 CCAGGGGAGA 66 CCAGGGGAGG 1 CCAGGGGATA 1 CCAGGGGGCA 2 CCAGGGGGGA 1 CCAGGGTAGA 1 CCAGGTATGC 1 CCAGGTCTGC 1 CCAGTAATCC 6 CCAGTAATGA 1 CCAGTACACT 1 CCAGTAGAAG 3 CCAGTAGCTA 1 CCAGTAGTCC 1 CCAGTATTGG 1 CCAGTCAGGA 1 CCAGTCATCT 1 CCAGTCCAGG 3 CCAGTCTACA 1 CCAGTCTCAA 1 CCAGTGCAAA 1 CCAGTGCACT 3 CCAGTGGCCC 18 CCAGTGGCTC 6 CCAGTGGGAA 1 CCAGTGGTCC 1 CCAGTGTCAA 1 CCAGTGTGCA 2 CCAGTTTTGC 1 CCATAAAGGC 2 CCATAATGTT 3 CCATAGCACT 1 CCATAGGCAT 1 CCATATGATC 1 CCATCAAGCC 1 CCATCACGCC 1 CCATCAGACC 1 CCATCCAGTG 1 CCATCCCGCC 1 CCATCCGCAA 1 CCATCCGCAG 2 CCATCCTGCA 1 CCATCCTGCC 1 CCATCCTGGC 1 CCATCCTGGG 1 CCATCCTTCT 1 CCATCGCACT 1 CCATCGCCTA 1 CCATCGTCCT 11 CCATCTCTAG 1 CCATCTGCAC 1 CCATCTTGGA 1 CCATCTTTAA 1 CCATTAGCTG 1 CCATTAGCTT 1 CCATTATGAT 1 CCATTCCACT 1 CCATTCCCCT 1 CCATTCTCCT 4 CCATTCTCTT 1 CCATTCTGGA 2 CCATTGAAAC 4 CCATTGAACT 1 CCATTGAATT 1 CCATTGACCG 1 CCATTGCAAT 1 CCATTGCACA 1 CCATTGCACC 2 CCATTGCACT 53 CCATTGCATT 3 CCATTGCCCT 4 CCATTGCTCT 1 CCATTGGACT 1 CCATTGGCCC 1 CCATTGGGTG 2 CCATTGGTAC 1 CCATTGTACT 4 CCATTGTCCT 1 CCATTTACTG 1 CCATTTCCTT 1 CCATTTGGTG 1 CCATTTTTAC 3 CCCAAAAAAA 1 CCCAAACGTG 2 CCCAAACTAC 1 CCCAAAGACA 1 CCCAAATGCT 1 CCCAACAACC 1 CCCAACACCT 1 CCCAACATAC 1 CCCAACCCCT 4 CCCAACGCGC 1 CCCAACGCTG 1 CCCAACGTCC 2 CCCAAGAGAA 3 CCCAAGCCAG 1 CCCAAGCTAG 12 CCCAAGGCGC 1 CCCAAGGTCT 6 CCCAAGTCAC 1 CCCAAGTGAG 1 CCCAAGTGCC 7 CCCAAGTGTC 1 CCCAATACTC 1 CCCAATCACA 1 CCCAATGGTC 1 CCCAATTTTC 1 CCCACAACCC 1 CCCACACTAC 4 CCCACAGCCG 2 CCCACAGTGG 2 CCCACATTAA 1 CCCACCAGCA 1 CCCACCCACC 1 CCCACCCACG 1 CCCACCCGAG 2 CCCACCCTTG 1 CCCACCGTCC 5 CCCACCTAAT 1 CCCACCTCAA 1 CCCACCTCCC 1 CCCACCTCCT 1 CCCACCTGCC 4 CCCACGGATG 1 CCCACGGCCT 1 CCCACGTCCT 2 CCCACGTCGT 1 CCCACTGAAT 2 CCCACTGTCT 1 CCCACTGTTG 1 CCCACTTCGG 1 CCCACTTGCC 1 CCCAGAACCA 2 CCCAGAAGCA 1 CCCAGAAGCT 1 CCCAGACAGA 1 CCCAGAGCTC 4 CCCAGATGAC 1 CCCAGATGAT 1 CCCAGATGGC 1 CCCAGCAAAT 1 CCCAGCAAGC 1 CCCAGCAGCA 1 CCCAGCATCA 1 CCCAGCATCT 2 CCCAGCCAAG 1 CCCAGCCACA 5 CCCAGCCACC 1 CCCAGCCAGG 1 CCCAGCCAGT 1 CCCAGCCCCA 1 CCCAGCCCTC 1 CCCAGCCTAA 4 CCCAGCCTAC 1 CCCAGCCTAT 1 CCCAGCCTCC 1 CCCAGCCTCT 2 CCCAGCGTCC 1 CCCAGCTAAT 1 CCCAGCTACA 1 CCCAGCTACT 1 CCCAGCTAGT 1 CCCAGCTATT 1 CCCAGCTCCT 1 CCCAGCTCTC 1 CCCAGGACAG 1 CCCAGGAGCA 2 CCCAGGATGC 1 CCCAGGGAGA 3 CCCAGGGCTC 2 CCCAGGTCAC 3 CCCAGGTCCC 1 CCCAGGTCTG 1 CCCAGTGCCT 2 CCCATAATAA 1 CCCATAATCC 2 CCCATACATC 1 CCCATACTGG 1 CCCATAGACC 1 CCCATAGCCA 1 CCCATAGCCC 1 CCCATAGCCG 1 CCCATAGTAC 1 CCCATAGTCC 2 CCCATAGTCG 1 CCCATAGTCT 1 CCCATAGTTA 1 CCCATATATG 1 CCCATATTTA 1 CCCATCAACT 1 CCCATCAGTC 1 CCCATCATCC 8 CCCATCCCGA 1 CCCATCCGAA 16 CCCATCCGCC 1 CCCATCCTAC 1 CCCATCCTGC 2 CCCATCGACA 1 CCCATCGACC 3 CCCATCGCCC 9 CCCATCGCCT 2 CCCATCGCTA 1 CCCATCGCTC 2 CCCATCGGCC 2 CCCATCGGTC 1 CCCATCGTAA 2 CCCATCGTAC 2 CCCATCGTCA 7 CCCATCGTCC 1377 CCCATCGTCG 4 CCCATCGTCT 10 CCCATCGTTC 6 CCCATCGTTT 1 CCCATCTACC 1 CCCATCTCCT 1 CCCATCTTCC 1 CCCATTCACT 2 CCCATTCAGT 2 CCCATTCCTC 1 CCCATTGGTC 1 CCCATTGTCC 2 CCCATTTGCA 6 CCCATTTGTT 1 CCCATTTTTG 1 CCCCAAAAAG 1 CCCCAAACCC 1 CCCCAAAGCA 1 CCCCAAGCTG 1 CCCCAATACA 1 CCCCACAACA 1 CCCCACAGAC 1 CCCCACAGTG 1 CCCCACCCAC 1 CCCCACCCGA 2 CCCCACCGCC 2 CCCCACCTAA 1 CCCCACTCTG 1 CCCCACTGCA 1 CCCCACTTGC 1 CCCCAGCAAG 1 CCCCAGCCAG 15 CCCCAGCCCC 1 CCCCAGCTGC 1 CCCCAGGAGA 2 CCCCAGGCTC 1 CCCCAGGTCA 2 CCCCAGTATC 1 CCCCAGTCGG 1 CCCCAGTGAG 1 CCCCAGTGTA 6 CCCCAGTTGC 48 CCCCATCCAT 1 CCCCATCGTC 4 CCCCATCTTG 1 CCCCATTACA 1 CCCCATTTGC 1 CCCCCAATGC 4 CCCCCAATGG 1 CCCCCAATTC 3 CCCCCACAAC 1 CCCCCACCCC 1 CCCCCACCTA 7 CCCCCAGATG 2 CCCCCAGCGA 1 CCCCCAGCTA 3 CCCCCAGCTG 1 CCCCCAGTTG 1 CCCCCATCCT 1 CCCCCCACCC 1 CCCCCCCGAA 1 CCCCCCGCGG 1 CCCCCCGTCC 1 CCCCCCTCCC 2 CCCCCCTGAA 1 CCCCCCTTCT 3 CCCCCGAAGC 27 CCCCCGAGCC 1 CCCCCGCACT 1 CCCCCGCGGA 25 CCCCCGTGAA 8 CCCCCGTGGA 1 CCCCCTCCGG 1 CCCCCTCGTG 6 CCCCCTCTTC 1 CCCCCTGCAG 1 CCCCCTGCAT 4 CCCCCTGCCC 3 CCCCCTGGAC 1 CCCCCTGGAT 81 CCCCCTTAAT 1 CCCCCTTGCA 2 CCCCGAAGCC 1 CCCCGACATC 1 CCCCGACATT 1 CCCCGAGGGC 1 CCCCGATCTT 3 CCCCGCAGCT 6 CCCCGCAGTC 1 CCCCGCAGTT 1 CCCCGCCAAG 1 CCCCGCCCCC 1 CCCCGCCCGT 1 CCCCGCTGCC 1 CCCCGGCCTG 1 CCCCGGTACA 3 CCCCGGTCCA 1 CCCCGTAAAT 1 CCCCGTAACA 1 CCCCGTAATC 1 CCCCGTACAC 1 CCCCGTATGG 1 CCCCGTCATT 1 CCCCGTCCGG 1 CCCCGTCTCC 3 CCCCGTCTTC 1 CCCCTAAAAA 1 CCCCTAACAG 1 CCCCTAAGTA 1 CCCCTAATCC 5 CCCCTACATC 1 CCCCTCAAAA 1 CCCCTCATCC 1 CCCCTCCAGA 1 CCCCTCCAGC 1 CCCCTCCCCA 1 CCCCTCCCCC 1 CCCCTCCCTC 2 CCCCTCCCTG 1 CCCCTCCGGG 1 CCCCTCTGAG 2 CCCCTCTGAT 1 CCCCTCTGTC 1 CCCCTGACCC 1 CCCCTGCACT 1 CCCCTGCTCC 3 CCCCTGGATC 1 CCCCTGGGGC 1 CCCCTGGGTT 1 CCCCTGTACT 1 CCCCTGTATT 1 CCCCTGTGCT 1 CCCCTTACCG 1 CCCCTTATCC 1 CCCCTTGGCC 1 CCCCTTGGGT 4 CCCCTTGTCG 1 CCCCTTTGCA 1 CCCGAACAGC 1 CCCGACCCTT 1 CCCGACGCAG 3 CCCGACGTGC 12 CCCGACTTCC 1 CCCGAGTCAT 1 CCCGCAGCCC 1 CCCGCATTAG 1 CCCGCCCCCC 1 CCCGCCCGGA 2 CCCGCCGAAC 1 CCCGCCGCGG 1 CCCGCCTCTT 40 CCCGCCTGCC 1 CCCGCCTGGC 1 CCCGCGCTGG 1 CCCGCGGTGG 1 CCCGCTGCAC 2 CCCGCTTTTT 1 CCCGGATCCG 1 CCCGGCAACC 1 CCCGGCCACT 1 CCCGGCCAGC 2 CCCGGCCCGG 1 CCCGGCCCTG 1 CCCGGCCTAT 1 CCCGGCTAAT 7 CCCGGCTCAA 1 CCCGGCTCCT 11 CCCGGCTGAT 3 CCCGGCTGCT 1 CCCGGGAGCG 8 CCCGGGATGT 1 CCCGGGCCCT 1 CCCGGGGCCA 1 CCCGGGGCCT 2 CCCGGGTGAC 1 CCCGGGTGCG 2 CCCGGGTTTT 1 CCCGGTACAT 1 CCCGGTTCCC 1 CCCGTAACCC 1 CCCGTAATCC 4 CCCGTAATCT 1 CCCGTACATC 9 CCCGTAGCCA 1 CCCGTAGTGC 1 CCCGTCAGCC 4 CCCGTCCGGA 84 CCCGTCCTGA 1 CCCGTCGTCC 4 CCCGTGGTCC 1 CCCGTGTCGG 1 CCCGTTGGGC 1 CCCTAAGGAC 1 CCCTAAGGAT 1 CCCTAATAAA 1 CCCTAATCTG 1 CCCTAATTGC 1 CCCTACAACG 8 CCCTACCTTC 1 CCCTACTCAC 1 CCCTAGCTGT 1 CCCTAGGAGA 1 CCCTAGGTTG 9 CCCTATAAGG 1 CCCTATCACA 1 CCCTATTAGC 1 CCCTCAATAA 2 CCCTCAATCC 7 CCCTCACTCC 1 CCCTCAGCGG 1 CCCTCAGGAA 1 CCCTCCAAGG 1 CCCTCCACCA 1 CCCTCCAGAA 2 CCCTCCCAAG 1 CCCTCCCAGC 4 CCCTCCCGAA 54 CCCTCCCTCC 1 CCCTCCTGGA 1 CCCTCCTGGG 6 CCCTCGACTT 1 CCCTCGTCCT 1 CCCTCTCTGG 1 CCCTCTCTGT 5 CCCTCTGTGA 4 CCCTCTTTGG 4 CCCTGAACTC 1 CCCTGAAGAC 1 CCCTGAGCTC 1 CCCTGAGGCC 3 CCCTGATGCC 1 CCCTGATTAC 1 CCCTGATTTT 7 CCCTGCAACA 1 CCCTGCACGA 1 CCCTGCACTT 1 CCCTGCCACC 1 CCCTGCCCCC 1 CCCTGCCCCT 1 CCCTGCCTTG 5 CCCTGCGCAG 1 CCCTGCTCCT 3 CCCTGCTTCC 1 CCCTGGACAC 1 CCCTGGAGAC 1 CCCTGGAGGT 1 CCCTGGCAAT 4 CCCTGGCAGG 1 CCCTGGCTGT 1 CCCTGGGACC 1 CCCTGGGGTT 1 CCCTGGGTCC 1 CCCTGGGTCT 2 CCCTGGGTTC 43 CCCTGGTCCC 1 CCCTGTAATA 1 CCCTGTCTCT 1 CCCTGTGCAA 1 CCCTGTGTAA 1 CCCTGTTCCC 1 CCCTTAAGTT 1 CCCTTAATTG 1 CCCTTACCTT 1 CCCTTAGCAA 5 CCCTTAGCTT 12 CCCTTAGGTT 1 CCCTTATCAA 1 CCCTTATTAA 3 CCCTTATTGT 1 CCCTTCACTG 4 CCCTTCCAAT 1 CCCTTCCAGA 1 CCCTTCCCCG 2 CCCTTCCCGA 1 CCCTTCCGGA 1 CCCTTCCTTG 1 CCCTTCGTCA 1 CCCTTCGTCC 3 CCCTTCGTCT 1 CCCTTCTATT 2 CCCTTCTCCA 1 CCCTTCTGCA 1 CCCTTCTGCC 2 CCCTTCTGGC 1 CCCTTGACCC 4 CCCTTGCACT 4 CCCTTGGCAT 1 CCCTTGGCCA 1 CCCTTGGCCC 1 CCCTTGGCCG 1 CCCTTGGCTT 1 CCCTTGGGCC 1 CCCTTGTGAC 1 CCCTTGTTTG 1 CCCTTTGGCA 1 CCCTTTGTCC 1 CCCTTTTTCC 1 CCGAAAAAGT 2 CCGAAACCCT 2 CCGAAGAGGA 1 CCGAAGCTGC 1 CCGAAGTCTG 1 CCGACGGGCG 15 CCGACGTTGG 1 CCGACTCCCT 1 CCGAGAGAGC 1 CCGAGCAACT 1 CCGAGCCCGC 1 CCGAGGCTCC 1 CCGAGGCTGC 9 CCGAGGGCAC 1 CCGAGGTCAC 1 CCGAGGTTGA 1 CCGATCACCG 3 CCGATCATCA 1 CCGATCGTCC 1 CCGATGATGG 1 CCGATGGTCC 1 CCGATGTTCA 1 CCGATTCTTG 2 CCGCAACACT 1 CCGCAATATT 1 CCGCACTAGG 1 CCGCAGCCCT 1 CCGCAGGTTC 1 CCGCAGGTTT 1 CCGCCAAGTG 1 CCGCCAGCTA 1 CCGCCAGTTA 1 CCGCCATTTG 1 CCGCCCACCG 1 CCGCCCCCAG 2 CCGCCCCGCC 2 CCGCCCTTCG 2 CCGCCGAAGT 5 CCGCCGGAAT 1 CCGCCGGATC 4 CCGCCGTACT 1 CCGCCTCCGG 1 CCGCCTCGTT 2 CCGCCTCTTC 1 CCGCCTGCAT 1 CCGCCTGTAG 1 CCGCGGCCGC 2 CCGCGTCCCT 6 CCGCTCACTC 1 CCGCTCAGCA 1 CCGCTCCTAA 1 CCGCTCTAAT 1 CCGCTGATCC 4 CCGCTGCACA 1 CCGCTGCACT 102 CCGCTGCATT 1 CCGCTGCCCT 1 CCGCTGCGTG 1 CCGCTGGCCC 1 CCGCTGGCGT 1 CCGCTGGGAC 1 CCGCTGGGTT 1 CCGCTTCTGC 1 CCGGAAACAC 3 CCGGAACACT 1 CCGGAATGTG 2 CCGGACCTGT 1 CCGGAGAGGT 1 CCGGCAATGA 1 CCGGCACCCC 1 CCGGCCAAGG 1 CCGGCCCGTG 1 CCGGCCCTAC 6 CCGGCCCTGA 1 CCGGCGCAGG 1 CCGGCGCGTG 2 CCGGCTAGAG 1 CCGGCTCTGG 1 CCGGCTTGAG 4 CCGGCTTGGA 1 CCGGGAGTCC 1 CCGGGCCGGG 1 CCGGGCGCAG 2 CCGGGCGCGG 2 CCGGGCGGGG 1 CCGGGCTCAC 3 CCGGGCTGAT 1 CCGGGGAGCA 5 CCGGGGATAG 1 CCGGGGCAAT 9 CCGGGGGGCC 2 CCGGGGTCAC 1 CCGGGTGATG 2 CCGGGTGCCC 1 CCGGGTGGTG 1 CCGGTAGAAG 1 CCGGTATCCC 1 CCGGTGCACT 1 CCGGTGGAGC 1 CCGGTGTACT 1 CCGGTGTGGT 1 CCGTAAAAAA 1 CCGTAAATCT 1 CCGTACCCAG 1 CCGTACGTCG 1 CCGTAGGTGG 2 CCGTAGTGCC 3 CCGTCAAGGA 1 CCGTCATCCT 1 CCGTCCAAAG 1 CCGTCCAAGG 60 CCGTCCAATG 2 CCGTCCAGGG 1 CCGTCCCAGG 1 CCGTCTCTCA 1 CCGTGAAAAA 1 CCGTGAAGTT 1 CCGTGAATTT 1 CCGTGAGACC 1 CCGTGAGGGT 1 CCGTGCACAT 1 CCGTGCACTC 2 CCGTGCTCAT 12 CCGTGGTCAC 5 CCGTGGTCCT 1 CCGTGGTCGT 4 CCGTGGTGCG 1 CCGTGTCCGC 1 CCGTTCTCCT 1 CCGTTCTGGA 8 CCGTTGCACT 1 CCGTTGCATT 1 CCGTTGTACT 1 CCGTTTCCTT 1 CCTAAAAAAA 1 CCTAAAGGAG 2 CCTAACACCC 1 CCTAACCCCA 1 CCTAACTCTG 1 CCTAAGGAAG 1 CCTAAGGCTA 1 CCTAAGGGAG 1 CCTAAGTGTG 1 CCTAATCTTG 1 CCTACAATCC 1 CCTACACCTA 1 CCTACAGCTA 2 CCTACCACAG 2 CCTACCACCA 2 CCTACCTGGA 2 CCTACTACGT 1 CCTACTGCAC 3 CCTACTGGAG 1 CCTACTGGAT 1 CCTAGAGGCA 1 CCTAGCAGTG 1 CCTAGCCGGA 1 CCTAGCTGGA 27 CCTAGGACCT 4 CCTAGGGTTC 2 CCTATAATAA 1 CCTATAATCC 15 CCTATAGTCC 6 CCTATAGTCG 2 CCTATAGTCT 1 CCTATATAAT 2 CCTATCAAAA 1 CCTATCGTCC 2 CCTATGAATA 1 CCTATGGAAA 1 CCTATGGCTG 1 CCTATGTAAA 1 CCTATGTAAG 5 CCTATGTGTC 1 CCTATGTTAC 1 CCTATGTTCC 1 CCTATTAAAT 1 CCTATTAAGC 1 CCTATTACTG 1 CCTATTTACT 21 CCTCAAAAGT 1 CCTCAACTAA 1 CCTCAATGCT 1 CCTCACAAAT 1 CCTCACCTTC 1 CCTCACGTTT 1 CCTCACTTTC 1 CCTCACTTTT 1 CCTCAGCCCG 1 CCTCAGCCCT 4 CCTCAGCCTC 1 CCTCAGCCTT 1 CCTCAGCTAC 1 CCTCAGGAAA 1 CCTCAGGATA 124 CCTCAGGATG 1 CCTCAGGCTC 3 CCTCAGGGTA 1 CCTCAGGTTA 1 CCTCAGTATA 1 CCTCAGTCGG 1 CCTCATCTTT 1 CCTCCAAAGG 1 CCTCCAACTA 3 CCTCCAAGTA 1 CCTCCAATAA 2 CCTCCAATCC 1 CCTCCACATT 1 CCTCCACCTA 10 CCTCCACGAA 1 CCTCCACTAC 2 CCTCCAGATA 2 CCTCCAGCAA 2 CCTCCAGCAG 6 CCTCCAGCCA 3 CCTCCAGCCC 2 CCTCCAGCTA 458 CCTCCAGCTC 1 CCTCCAGCTG 1 CCTCCAGTAA 1 CCTCCAGTAC 8 CCTCCAGTAG 1 CCTCCAGTCG 1 CCTCCAGTTA 1 CCTCCAGTTG 1 CCTCCATCCT 2 CCTCCATCTC 1 CCTCCCAAGA 1 CCTCCCACGT 1 CCTCCCAGAG 1 CCTCCCAGCA 1 CCTCCCCCGT 4 CCTCCCCGAA 2 CCTCCCCTGA 1 CCTCCCGAAG 1 CCTCCCTAAA 1 CCTCCCTGAT 14 CCTCCGCTAC 1 CCTCCGGCCA 1 CCTCCGGCGA 1 CCTCCGGCTA 1 CCTCCTATTA 5 CCTCCTCCCT 1 CCTCCTCCTC 1 CCTCCTCGAC 1 CCTCCTCGTG 1 CCTCCTCTGC 1 CCTCCTGACC 1 CCTCCTGCAC 1 CCTCCTGCAT 1 CCTCCTGCCC 2 CCTCCTGGGG 1 CCTCCTGTAC 1 CCTCCTTTTT 1 CCTCGCTCAG 18 CCTCGCTTTT 1 CCTCGGAAAA 10 CCTCGGAAGA 1 CCTCGGAATA 1 CCTCGGAGAA 2 CCTCGGAGAT 2 CCTCGGCGTC 1 CCTCGGGGAA 1 CCTCGTATGA 3 CCTCTAAACA 1 CCTCTAAAGA 1 CCTCTAACAC 1 CCTCTAATCC 2 CCTCTACTTT 1 CCTCTATCTA 1 CCTCTATGTT 1 CCTCTCCCAC 1 CCTCTCCTCC 2 CCTCTCGGCC 1 CCTCTGAGAA 1 CCTCTGCATT 1 CCTCTGGAGG 5 CCTCTGGCAG 2 CCTCTGTACT 2 CCTCTGTTTC 1 CCTCTTAGCA 1 CCTCTTCAGG 2 CCTCTTGCAG 1 CCTCTTGGTG 1 CCTGAAAAAA 1 CCTGAAAAGC 3 CCTGAAACAT 1 CCTGAAACCC 1 CCTGAAATCC 3 CCTGAAATTT 1 CCTGAAGAAG 1 CCTGAAGTCC 1 CCTGAATCTG 4 CCTGACAATC 1 CCTGACAGCG 1 CCTGACCAGG 2 CCTGACCCCC 2 CCTGACCTCA 1 CCTGACGCTC 2 CCTGACGGGC 1 CCTGACTCCC 2 CCTGACTTTC 1 CCTGAGAAGT 1 CCTGAGCACA 1 CCTGAGCCCG 5 CCTGAGCCTG 2 CCTGAGCGCC 1 CCTGAGCTTG 1 CCTGAGGTCA 2 CCTGAGTCTC 1 CCTGAGTTGA 1 CCTGATAACA 1 CCTGATAGGT 1 CCTGATCCTC 1 CCTGATGAAG 2 CCTGATGATT 1 CCTGATGGCC 1 CCTGCAAATC 1 CCTGCAATCC 14 CCTGCAATTC 1 CCTGCACACT 6 CCTGCACAGA 1 CCTGCACCCA 5 CCTGCACTAC 1 CCTGCACTCC 1 CCTGCAGCAC 1 CCTGCAGCTA 2 CCTGCAGTCC 2 CCTGCATCCC 2 CCTGCATTCC 1 CCTGCCAAAG 4 CCTGCCACCC 4 CCTGCCAGCC 1 CCTGCCATCC 3 CCTGCCCAGA 1 CCTGCCCCCC 30 CCTGCCCCCG 2 CCTGCCCCTG 1 CCTGCCCCTT 1 CCTGCCTACC 1 CCTGCCTCTT 1 CCTGCGCCCA 1 CCTGCGGGAA 1 CCTGCGGTCA 1 CCTGCGTGTA 1 CCTGCTAATT 1 CCTGCTCGGG 1 CCTGCTGCAG 34 CCTGCTGGGA 1 CCTGCTGGTG 1 CCTGCTGTCG 1 CCTGCTGTGA 1 CCTGCTTGGT 1 CCTGCTTGTC 23 CCTGGAAATT 1 CCTGGAACCC 1 CCTGGAAGAA 1 CCTGGAAGAG 26 CCTGGAATCC 1 CCTGGAGCAA 5 CCTGGAGCAG 1 CCTGGAGCGC 1 CCTGGAGGGA 2 CCTGGAGTCC 1 CCTGGAGTGG 3 CCTGGATAAA 2 CCTGGCAAAA 1 CCTGGCAAAT 1 CCTGGCAATG 1 CCTGGCAATT 1 CCTGGCAGTC 1 CCTGGCAGTT 4 CCTGGCCACT 1 CCTGGCCAGA 1 CCTGGCCAGC 1 CCTGGCCCAG 1 CCTGGCCCTA 1 CCTGGCCCTG 1 CCTGGCCTAA 1 CCTGGCCTCT 2 CCTGGCCTTT 1 CCTGGCGAAT 1 CCTGGCTAAA 2 CCTGGCTAAT 7 CCTGGCTAGT 1 CCTGGCTGAA 1 CCTGGCTGCT 1 CCTGGCTGTA 2 CCTGGCTTTT 1 CCTGGGAAGT 22 CCTGGGACTC 1 CCTGGGATGC 1 CCTGGGCACT 1 CCTGGGCCAA 1 CCTGGGCGTG 1 CCTGGGCTGG 1 CCTGGGGGCC 1 CCTGGGTACC 1 CCTGGGTTAG 1 CCTGGTCAGT 2 CCTGGTCCCA 1 CCTGGTTCTG 4 CCTGGTTGAT 1 CCTGGTTGGT 1 CCTGGTTTCT 1 CCTGTAAACA 1 CCTGTAAAGC 4 CCTGTAAATC 2 CCTGTAACCC 3 CCTGTAAGCA 1 CCTGTAAGGG 1 CCTGTAAGTT 1 CCTGTAATCA 3 CCTGTAATCC 227 CCTGTAATCG 3 CCTGTAATCT 18 CCTGTAATGC 5 CCTGTAATGT 1 CCTGTAATTA 1 CCTGTAATTC 11 CCTGTACCCC 3 CCTGTACTCC 3 CCTGTACTCT 1 CCTGTAGAAC 1 CCTGTAGACC 3 CCTGTAGGCC 1 CCTGTAGTAC 1 CCTGTAGTCC 46 CCTGTAGTCG 2 CCTGTAGTCT 3 CCTGTAGTTC 2 CCTGTATCCC 3 CCTGTATGGC 1 CCTGTATGTT 1 CCTGTATTCC 9 CCTGTATTGG 1 CCTGTATTTG 1 CCTGTCAGCC 1 CCTGTCATCC 4 CCTGTCATTT 1 CCTGTCCAGC 1 CCTGTCCCCT 1 CCTGTCCTCA 1 CCTGTCCTGC 8 CCTGTCTAGC 2 CCTGTCTGAT 1 CCTGTCTGCA 1 CCTGTCTGCC 22 CCTGTCTTTT 1 CCTGTGAATA 1 CCTGTGACAA 1 CCTGTGACAG 27 CCTGTGAGAA 1 CCTGTGATCC 7 CCTGTGCACT 1 CCTGTGCTCT 1 CCTGTGCTGC 1 CCTGTGGCCA 1 CCTGTGGTCC 19 CCTGTGGTCT 1 CCTGTGGTTC 1 CCTGTGTATG 2 CCTGTGTGGC 1 CCTGTGTGTG 3 CCTGTGTTCC 2 CCTGTGTTGG 5 CCTGTTATCC 2 CCTGTTCAAT 1 CCTGTTCTCC 3 CCTGTTGTCC 2 CCTTAAATCA 1 CCTTAAGGAT 1 CCTTAAGGTT 1 CCTTACACAA 1 CCTTACCTAC 1 CCTTACTCCT 2 CCTTACTCTT 1 CCTTAGGATA 1 CCTTATATTT 1 CCTTATGGAA 1 CCTTATTCAC 1 CCTTATTTTC 1 CCTTCAAATC 17 CCTTCAAATT 1 CCTTCAGCAG 1 CCTTCAGCGG 1 CCTTCAGCTA 2 CCTTCAGCTT 1 CCTTCAGGGT 2 CCTTCAGTTA 1 CCTTCCAAAT 8 CCTTCCAGCT 1 CCTTCCAGTA 1 CCTTCCCAGC 1 CCTTCCCTGA 6 CCTTCGAAGA 1 CCTTCGAGAT 12 CCTTCTGCTG 1 CCTTCTGGTG 1 CCTTCTTCCA 1 CCTTCTTCCT 1 CCTTCTTGCT 1 CCTTGAAACA 1 CCTTGAAATC 1 CCTTGAAGGT 1 CCTTGACCAA 1 CCTTGAGTAC 2 CCTTGATAGA 1 CCTTGATAGC 1 CCTTGCATTC 1 CCTTGCCCAG 2 CCTTGCCCCC 1 CCTTGCTTTT 5 CCTTGGACCA 1 CCTTGGCTGA 1 CCTTGGGTGA 1 CCTTGGTGCC 6 CCTTGGTTCA 1 CCTTGGTTTT 2 CCTTGTAAAT 1 CCTTGTGTAT 1 CCTTGTGTCC 1 CCTTTAAATG 1 CCTTTAATCC 1 CCTTTAGTCC 1 CCTTTAGTTG 1 CCTTTATAGA 1 CCTTTATTAC 1 CCTTTCAAGC 1 CCTTTCACAC 2 CCTTTCCATA 2 CCTTTCCCCA 1 CCTTTCCTTT 3 CCTTTCGTCT 1 CCTTTCTCCT 1 CCTTTCTCTC 2 CCTTTGAAAC 1 CCTTTGAACA 3 CCTTTGCCCT 4 CCTTTGCCTC 1 CCTTTGGCTA 4 CCTTTGGTGG 1 CCTTTGTAAA 1 CCTTTGTAAG 4 CCTTTGTCCC 1 CCTTTTACCT 1 CCTTTTACTC 1 CCTTTTGGGT 2 CCTTTTTCAA 1 CCTTTTTGTA 1 CGAAAAAAAA 2 CGAAACCCTG 4 CGAAACCTCG 1 CGAACAAAAG 3 CGAAGGCTGT 1 CGAATAAAAT 1 CGAATAGATC 1 CGAATATGCA 1 CGAATGACCC 1 CGACAACAAA 1 CGACACTTCA 1 CGACAGCCCA 1 CGACCCACAA 3 CGACCCCACG 1 CGACCCTCTC 1 CGACCGTCAC 2 CGACCGTGGC 5 CGACGCTTGA 1 CGACTGCACT 2 CGAGAATGCG 1 CGAGATCCAA 1 CGAGCAGGAT 1 CGAGCAGGCA 1 CGAGCATCCC 1 CGAGCCTGAA 1 CGAGCTTCCA 4 CGAGGAGGAC 1 CGAGGAGGAG 4 CGAGGATGGG 1 CGAGGCAACC 1 CGAGGGATGG 1 CGAGGGGCAG 2 CGAGGGGCCA 47 CGAGGGTCGT 1 CGAGTGCACT 1 CGATACATCA 1 CGATATTCCC 2 CGATCAGTTT 2 CGATCGGGTG 2 CGATGCCACA 1 CGATGCTGAC 2 CGATGGCCCC 1 CGATGGTCCC 6 CGATGGTGGG 1 CGATGTGTCC 1 CGATGTTAAA 1 CGATGTTGCC 1 CGATTATTTA 1 CGATTCTGGA 2 CGATTGCGCG 1 CGATTTCACT 2 CGCAAAGGAG 1 CGCAAATGCT 1 CGCAACCTCA 1 CGCAACTGCG 2 CGCAAGACTA 2 CGCAAGACTT 1 CGCAATGTCC 1 CGCACACACA 1 CGCACCAGCA 1 CGCACCATTG 7 CGCACGAACA 1 CGCAGAGCCT 2 CGCAGAGGCC 1 CGCAGCAATG 1 CGCAGCGCCC 2 CGCAGGCACC 1 CGCAGGGCTC 1 CGCAGTCTCG 1 CGCAGTCTGC 1 CGCAGTCTTT 1 CGCAGTGAAT 1 CGCAGTGTCC 26 CGCATAAATA 1 CGCATAATAA 1 CGCATCGTGG 1 CGCATCGTTC 1 CGCATCTGGC 1 CGCATCTTCT 1 CGCATTAAAG 2 CGCATTGCCC 1 CGCATTTCTC 1 CGCCACCACG 1 CGCCACCTCT 1 CGCCACTGCG 1 CGCCAGAGCT 1 CGCCAGGCGG 6 CGCCAGGTGC 2 CGCCAGTGTC 1 CGCCCAATAC 1 CGCCCACCTC 1 CGCCCCCACA 1 CGCCCCCTGC 3 CGCCCCTGAA 1 CGCCCCTGAT 1 CGCCCGAGGC 1 CGCCCGCGGT 1 CGCCCGGGAG 1 CGCCCGGTGC 1 CGCCCTACAA 1 CGCCGAATAA 5 CGCCGACGAT 14 CGCCGACGGC 1 CGCCGCCGGC 43 CGCCGCGGTG 20 CGCCGCTGTG 1 CGCCGCTTCC 2 CGCCGCTTCT 2 CGCCGGAACA 31 CGCCGGAGCA 1 CGCCGGATAC 1 CGCCGTCGGC 1 CGCCGTGGTG 1 CGCCGTTCCT 1 CGCCTAATTG 2 CGCCTATAAT 1 CGCCTATAGT 1 CGCCTCTGAC 1 CGCCTGAAGG 1 CGCCTGCACC 1 CGCCTGGGTG 1 CGCCTGGTAA 1 CGCCTGGTGA 1 CGCCTGTAAC 1 CGCCTGTAAT 8 CGCCTGTAGT 6 CGCCTGTCGT 1 CGCCTGTGGT 1 CGCCTTTACT 1 CGCGCACACA 1 CGCGCACCCG 2 CGCGCCCGGC 16 CGCGCCTGTA 1 CGCGCGCACA 1 CGCGCGCGCA 1 CGCGCGCTGG 3 CGCGCTGTGG 2 CGCGGCGGGC 1 CGCGGGAGAT 1 CGCGGTGGCT 1 CGCGTCACTA 3 CGCGTCCTCC 2 CGCGTCGCTT 1 CGCGTGCACA 15 CGCGTGCGCA 1 CGCTACCACA 1 CGCTCCTGCG 1 CGCTCCTGGA 1 CGCTCGCCCC 1 CGCTCTCTTT 1 CGCTGAAGGC 1 CGCTGAGCCA 1 CGCTGCCCTC 1 CGCTGGTCCA 1 CGCTGGTTCA 1 CGCTGGTTCC 42 CGCTGGTTCT 1 CGCTGTGGGG 53 CGCTGTGGGT 1 CGCTGTGTGC 7 CGCTTCCGCT 1 CGCTTCCTCT 1 CGCTTGAATG 1 CGCTTGTAAT 1 CGCTTGTAGT 1 CGCTTTAGGG 1 CGCTTTGCGC 1 CGCTTTTGTA 9 CGGAAATGCA 1 CGGAACAACG 1 CGGAACACCG 2 CGGAATGAAT 1 CGGACAAACC 1 CGGACAATCA 2 CGGACAGCCA 1 CGGACCCCCC 1 CGGACTCACT 45 CGGACTTACT 1 CGGAGACCCT 3 CGGAGATGTT 7 CGGAGCCGGC 3 CGGAGCCTAG 1 CGGAGGCAGC 1 CGGAGGTGGG 4 CGGAGTCCAT 2 CGGAGTGGTT 1 CGGAGTTTTA 1 CGGATAAAGG 1 CGGATAACCA 3 CGGATAAGGC 2 CGGATACCCA 1 CGGATCTGCT 1 CGGATGATAG 1 CGGATGATTG 1 CGGATGGTGG 1 CGGATTCACT 1 CGGATTCTTA 1 CGGATTTTTA 8 CGGCAAAAAA 1 CGGCAAGCCA 1 CGGCAAGGCG 1 CGGCACATCC 1 CGGCACTGAG 1 CGGCAGAACT 1 CGGCAGAGCT 4 CGGCAGAGTG 1 CGGCAGTCGC 1 CGGCATTCAG 1 CGGCCACAGA 5 CGGCCACCCC 1 CGGCCAGTGA 1 CGGCCCAACA 1 CGGCCCAACG 5 CGGCCCCCAC 1 CGGCCTTCAC 1 CGGCGATCAT 3 CGGCGCGACC 1 CGGCGCTCCC 7 CGGCGGAGTC 1 CGGCGGCGAA 1 CGGCGGTGGA 1 CGGCTGAATT 1 CGGCTGCACC 1 CGGCTGCGCT 1 CGGCTGGCCG 1 CGGCTGGTGA 7 CGGCTGGTGG 1 CGGCTTTCTG 1 CGGCTTTTCT 10 CGGGACTTCA 2 CGGGAGAACC 1 CGGGAGCCGG 1 CGGGAGGAAA 1 CGGGAGTCGG 30 CGGGATAATC 1 CGGGATCCAT 4 CGGGATCGGG 1 CGGGATGCAG 2 CGGGCAACGT 1 CGGGCAGCAA 1 CGGGCCATCT 1 CGGGCCGTGC 1 CGGGGAAATA 1 CGGGGAGAGG 1 CGGGGAGATG 6 CGGGGCAGGC 1 CGGGGCGTAT 1 CGGGGCTGGA 1 CGGGGGAAGA 4 CGGGGGAGTG 1 CGGGGGCTCC 1 CGGGGGGAGG 1 CGGGGGTGGG 1 CGGGGTGTGC 1 CGGGTCAGCG 1 CGGGTCTCTT 1 CGGGTGCTGC 2 CGGGTGGGAA 1 CGGTAATACG 1 CGGTACTGGC 1 CGGTACTGTG 1 CGGTCCCGTT 4 CGGTCTGGGG 1 CGGTCTTAGA 1 CGGTCTTATG 1 CGGTGATCTC 1 CGGTGGAACC 1 CGGTGGACCA 1 CGGTGGATTT 2 CGGTGGGACA 1 CGGTGGGACC 14 CGGTGGGGAA 1 CGGTTAAGAA 1 CGGTTACTGT 10 CGGTTACTTA 1 CGGTTATTTA 1 CGGTTATTTC 1 CGGTTATTTT 1 CGGTTGCTGT 1 CGGTTTCCAA 3 CGGTTTGCAT 1 CGTAAAAAGG 2 CGTACAAATG 1 CGTACATCGT 1 CGTACATTTT 1 CGTACCTTTA 1 CGTACTGAGC 3 CGTATAGCAC 1 CGTATGAAGG 1 CGTCACGGTA 1 CGTCAGGGGC 1 CGTCATCGTG 2 CGTCCCGGAG 1 CGTCCCTGCG 1 CGTCCTACGT 3 CGTCCTGCGG 1 CGTCCTGTAC 1 CGTCTCAGGA 1 CGTCTGTCCA 1 CGTCTGTGAA 1 CGTCTTCTCT 2 CGTCTTTCTA 1 CGTGACAGAG 2 CGTGACCTGG 1 CGTGAGCCAC 1 CGTGAGCGTG 1 CGTGCCTGCT 1 CGTGCGGCGC 1 CGTGCTGGCC 1 CGTGGAGTGG 1 CGTGGATTTT 1 CGTGGCCACG 2 CGTGGCTCAG 1 CGTGGCTTCT 1 CGTGGGGCCA 1 CGTGGGGTGG 2 CGTGGGTGCT 1 CGTGGGTGGG 10 CGTGGGTGTG 1 CGTGGTCTGG 3 CGTGGTGGCG 1 CGTGGTGGCT 1 CGTGGTGGTG 1 CGTGGTTCCA 1 CGTGTAATCC 2 CGTGTAGTCC 2 CGTGTCAGCA 1 CGTGTGATCG 1 CGTGTGCCTG 5 CGTGTGGGGA 2 CGTGTGTGTG 1 CGTGTTAATG 7 CGTGTTGAGA 1 CGTGTTGTGA 1 CGTTACTAAT 1 CGTTCCTGCG 26 CGTTCTGCGG 2 CGTTCTGTTA 2 CGTTGAATGA 1 CGTTGACATT 1 CGTTGAGCGG 1 CGTTGCCAGG 1 CGTTGCTGGG 1 CGTTGTCTTC 1 CGTTTAATGT 1 CGTTTGGAGT 1 CGTTTGTAAT 1 CGTTTTCTGA 4 CTAAAAAAAA 3 CTAAAAAGGA 1 CTAAAACCAT 1 CTAAAACTGG 2 CTAAAACTTC 4 CTAAAAGAAA 1 CTAAAAGGAG 2 CTAAAATGCT 1 CTAAACCATC 1 CTAAACGTGT 1 CTAAACTTCA 1 CTAAACTTTT 2 CTAAAGACTT 6 CTAAAGGAGG 1 CTAAAGTTGA 1 CTAAATATAC 1 CTAAATGGAT 1 CTAACACTGA 2 CTAACACTTC 3 CTAACACTTT 1 CTAACAGATT 1 CTAACCAGAC 4 CTAACCAGCT 1 CTAACCATAC 1 CTAACCATCC 1 CTAACCCCCC 1 CTAACCCCTG 1 CTAACCTGTG 2 CTAACGCAGC 7 CTAACGTTAT 1 CTAACGTTGA 1 CTAACTAGTT 3 CTAACTGCGA 1 CTAAGAAAAA 1 CTAAGAAAAG 2 CTAAGAACTT 1 CTAAGAAGCA 1 CTAAGACAAC 1 CTAAGACCTC 1 CTAAGACTCA 4 CTAAGACTTA 3 CTAAGACTTC 558 CTAAGACTTG 2 CTAAGACTTT 6 CTAAGAGTTC 2 CTAAGATCTC 1 CTAAGATTCA 2 CTAAGATTTC 2 CTAAGCCTCA 1 CTAAGCTATG 1 CTAAGCTTCA 3 CTAAGCTTTA 1 CTAAGGATTT 1 CTAAGGCGAG 6 CTAAGGCTTC 4 CTAAGGGATA 2 CTAAGGGCGA 1 CTAAGGTTCA 1 CTAAGTACTT 1 CTAAGTGAAA 7 CTAATAAATG 4 CTAATAATGC 1 CTAATACCCT 1 CTAATACTGA 1 CTAATACTTC 1 CTAATAGTTC 1 CTAATGATGT 1 CTAATGTATT 1 CTAATGTCTG 2 CTAATGTTCA 1 CTAATTCTCG 2 CTAATTGTAA 1 CTAATTTTAG 1 CTACAAAAAG 1 CTACAACTAA 1 CTACAAGAAG 1 CTACAAGGGG 1 CTACAATAAA 2 CTACAATGAC 1 CTACAATTTT 1 CTACACAATT 1 CTACACCCTG 1 CTACACGGCT 1 CTACAGCACA 1 CTACAGCACT 1 CTACAGCCAC 1 CTACAGCTAC 1 CTACAGGATT 1 CTACATAAGG 1 CTACCAGGAA 1 CTACCCAAGG 1 CTACCCCCCT 3 CTACCCCTTC 1 CTACCCGGTA 2 CTACCCTTTC 1 CTACCGCACT 1 CTACCGGAAC 1 CTACCTCACG 1 CTACGAAGAA 1 CTACGACTTC 1 CTACGGGATA 1 CTACGTGATG 2 CTACGTGCTC 1 CTACGTGTCC 1 CTACGTTTTC 1 CTACTACACC 1 CTACTACTGC 1 CTACTCGGGA 1 CTACTCTCCA 1 CTACTCTTCT 1 CTACTCTTTG 1 CTACTGATGG 1 CTACTGCACT 7 CTACTGCAGT 1 CTACTGGACT 1 CTACTGGATT 1 CTACTGTACC 1 CTACTGTCTA 1 CTACTGTTGG 1 CTACTTCCTT 1 CTACTTGGCA 1 CTAGAAAAAA 1 CTAGAAAGAG 1 CTAGAACATC 1 CTAGAACCAT 1 CTAGAAGTAC 3 CTAGACAGAG 1 CTAGACAGTA 3 CTAGACTCAG 1 CTAGACTTCA 2 CTAGAGCAAA 1 CTAGAGCGTT 1 CTAGAGTAGA 1 CTAGAGTGAA 1 CTAGATTCGG 2 CTAGCAATGG 1 CTAGCACTTG 1 CTAGCAGAGC 1 CTAGCAGGGG 1 CTAGCCAAGC 1 CTAGCCACTG 1 CTAGCCAGCA 3 CTAGCCTCAC 90 CTAGCGTCAC 1 CTAGCGTTAG 1 CTAGCTCACG 1 CTAGCTGTCT 1 CTAGCTTTTA 18 CTAGGAAGCT 1 CTAGGACAGC 1 CTAGGACTAC 1 CTAGGACTTC 1 CTAGGAGATG 1 CTAGGATGAG 1 CTAGGATGAT 4 CTAGGATGCG 2 CTAGGCCAGT 1 CTAGGCTGTT 1 CTAGGGCTCG 1 CTAGGTATTT 1 CTAGGTGATG 1 CTAGTGCTGA 1 CTAGTGGCCA 1 CTAGTGTTGA 1 CTAGTGTTGT 2 CTAGTTAAGA 1 CTAGTTCTGT 1 CTATAAAAGT 1 CTATAAGAAG 1 CTATATTTAT 1 CTATATTTTT 1 CTATCAGTTT 5 CTATCTTGAC 1 CTATGAAGAT 2 CTATGACTCC 1 CTATGCATCA 1 CTATGCCCTC 1 CTATGGAAAA 1 CTATGGAAAT 1 CTATGGCTTC 8 CTATGGGATC 1 CTATGGTAAT 1 CTATGGTTGC 3 CTATGTAAAT 1 CTATGTCTAA 1 CTATGTGTTA 1 CTATTAGCTG 1 CTATTCACTG 1 CTATTCTAAA 1 CTATTGCACT 1 CTATTTAGTT 1 CTCAAAAAAA 5 CTCAAAACCA 1 CTCAAACATA 1 CTCAAATGAA 1 CTCAACAACC 1 CTCAACAGCA 2 CTCAACATCT 20 CTCAACCCCC 2 CTCAACCCGA 1 CTCAACGCGC 1 CTCAAGATGA 1 CTCAAGCACC 4 CTCAAGCGGC 7 CTCAAGCGGG 1 CTCAAGGATA 1 CTCAAGGTGA 2 CTCAAGTCCA 1 CTCAAGTCGC 2 CTCAAGTTGA 3 CTCAATCTGG 1 CTCACAAGGG 1 CTCACACATT 12 CTCACCTGCT 1 CTCACGAGAT 1 CTCACGTCCG 1 CTCACTAAAT 1 CTCACTGAAC 1 CTCACTGCAG 1 CTCACTGCGT 1 CTCACTTCTT 1 CTCACTTTTT 1 CTCAGAAAAA 1 CTCAGAACTT 3 CTCAGACAGT 4 CTCAGACTTC 2 CTCAGAGCAT 1 CTCAGATAAC 1 CTCAGATTTA 1 CTCAGCAAAC 1 CTCAGCAGAT 1 CTCAGCAGGA 1 CTCAGCCAGG 1 CTCAGCCCAC 1 CTCAGCCCAT 1 CTCAGCCGTG 1 CTCAGCCTGA 1 CTCAGCTGTG 1 CTCAGGAAAT 8 CTCAGGAATA 1 CTCAGGATAC 1 CTCAGGCTAT 1 CTCAGGGCCA 1 CTCAGTCCCC 4 CTCAGTCCCT 1 CTCAGTTGCC 1 CTCATAAAAA 3 CTCATAAAGA 2 CTCATAAGAA 1 CTCATAAGCT 1 CTCATAAGGA 159 CTCATAAGGG 1 CTCATAATTG 2 CTCATAGCAG 4 CTCATAGGAA 1 CTCATCAGCT 14 CTCATCCGGA 1 CTCATCGTAC 1 CTCATCGTCC 1 CTCATCGTGC 1 CTCATCTGAG 1 CTCATCTGCT 2 CTCATTAAGG 2 CTCATTAGGG 1 CTCATTCAGC 3 CTCATTCTGT 1 CTCATTGTTA 1 CTCCAAAAAA 1 CTCCAACCCC 1 CTCCAACCTG 1 CTCCAACTCA 1 CTCCAATCGA 1 CTCCACCAAA 1 CTCCACCCAA 1 CTCCACCCCG 1 CTCCACCCGA 198 CTCCACCCGG 1 CTCCACCGAG 2 CTCCACCTGG 8 CTCCACTAAC 1 CTCCACTCCT 1 CTCCACTTTC 1 CTCCAGAATA 1 CTCCAGAGCG 1 CTCCAGCTAC 4 CTCCAGGAGG 1 CTCCATCCGA 2 CTCCATCGGC 3 CTCCCAACTC 1 CTCCCAATGA 1 CTCCCAGGAC 1 CTCCCCATCA 5 CTCCCCCAAA 1 CTCCCCCAAG 2 CTCCCCCGCC 1 CTCCCCTACC 1 CTCCCCTGCC 2 CTCCCGCCGG 1 CTCCCGGAGC 2 CTCCCGGCGA 3 CTCCCTATAA 1 CTCCCTCACT 1 CTCCCTCCTC 1 CTCCCTCTCT 2 CTCCCTCTGC 1 CTCCCTCTGG 1 CTCCCTGCTG 1 CTCCCTTCCT 1 CTCCCTTGCC 2 CTCCCTTTTA 2 CTCCGAACAG 1 CTCCGCAAGC 1 CTCCGCAGCT 3 CTCCGTACAT 4 CTCCTAATTG 2 CTCCTATTAA 1 CTCCTCAAAC 1 CTCCTCACCT 13 CTCCTCAGGT 1 CTCCTCATCG 1 CTCCTCATTC 1 CTCCTCATTT 2 CTCCTCCAAG 2 CTCCTCCCGA 1 CTCCTGAAGG 1 CTCCTGCTGC 1 CTCCTGGAAC 1 CTCCTGGGGC 4 CTCCTTAAGA 3 CTCCTTTGCC 1 CTCGACAGCT 1 CTCGAGCCTA 1 CTCGAGGAGG 3 CTCGAGGCCG 1 CTCGAGTTCC 1 CTCGCCAGCG 1 CTCGCCTTCC 2 CTCGCGCTGA 1 CTCGCGCTGG 40 CTCGCGGCGG 1 CTCGCTCCAG 5 CTCGGACTCT 1 CTCGGAGGCC 2 CTCGGCGAGC 2 CTCGGTGATG 2 CTCGTCCATC 1 CTCGTGGGAA 1 CTCGTTAAGA 7 CTCTAACCGG 1 CTCTAACTCC 2 CTCTACAACC 1 CTCTACAGAA 2 CTCTACAGTG 2 CTCTACTAAA 1 CTCTACTAAC 1 CTCTACTCAC 1 CTCTAGACAG 1 CTCTAGATTT 1 CTCTAGTGTG 1 CTCTCAATAT 1 CTCTCACCCT 5 CTCTCACTCT 1 CTCTCATATC 1 CTCTCCACTT 1 CTCTCCCGAT 1 CTCTCCGCCC 1 CTCTCCTGCT 2 CTCTCGCCCA 1 CTCTCGCTGG 1 CTCTCGGGTG 1 CTCTCTGCAG 1 CTCTCTGCGG 1 CTCTCTGTGG 1 CTCTGAGACG 2 CTCTGAGAGA 3 CTCTGAGGTA 1 CTCTGATGCA 2 CTCTGCACAG 1 CTCTGCCCTC 17 CTCTGCCGCC 1 CTCTGCTAAA 1 CTCTGCTCCA 2 CTCTGCTCGG 4 CTCTGCTGTA 1 CTCTGGAAAC 3 CTCTGGATGG 3 CTCTGGGTGT 1 CTCTGTAGCC 1 CTCTGTCCTC 1 CTCTGTGGCT 1 CTCTGTGTGG 2 CTCTGTTTAC 2 CTCTGTTTCA 1 CTCTTAAAAG 2 CTCTTATAGT 1 CTCTTATCAC 3 CTCTTCAGGA 3 CTCTTCCACA 1 CTCTTCCTCC 1 CTCTTCCTTC 1 CTCTTCGAGA 3 CTCTTGGGTT 2 CTCTTGTAGT 1 CTCTTGTGCC 1 CTCTTTATCT 1 CTCTTTTCAC 1 CTCTTTTTAA 1 CTCTTTTTTT 1 CTGAAAAAAA 2 CTGAAAATCA 1 CTGAAACATT 1 CTGAAACCCC 1 CTGAAACCCT 1 CTGAAACGAA 1 CTGAAATTTA 2 CTGAACCCTG 2 CTGAACCTCC 15 CTGAAGAGAG 1 CTGAAGCAGG 1 CTGAAGGTCT 1 CTGAAGTGCA 1 CTGAAGTGTG 2 CTGAATGCCT 1 CTGAATGCTT 1 CTGAATTAAG 1 CTGACACCCT 1 CTGACAGTTC 3 CTGACATTTG 2 CTGACCAGGC 1 CTGACCCAGC 2 CTGACCTGCC 1 CTGACCTGGG 1 CTGACCTGTA 1 CTGACCTGTG 130 CTGACCTTTA 1 CTGACGGGGA 6 CTGACGTCGG 1 CTGACGTGGG 1 CTGACGTGTG 1 CTGACTCACC 1 CTGACTCGGT 4 CTGACTGCTC 1 CTGAGAATGT 1 CTGAGAATTC 1 CTGAGACAAA 10 CTGAGACACC 5 CTGAGACGAA 14 CTGAGACTTC 1 CTGAGAGCTG 2 CTGAGAGGCA 1 CTGAGAGGGA 1 CTGAGATGGG 1 CTGAGCAAGG 1 CTGAGCATTT 1 CTGAGCGCCT 1 CTGAGCTCAA 1 CTGAGCTCTG 1 CTGAGCTGTA 4 CTGAGGAAAC 1 CTGAGGAACA 2 CTGAGGCCTG 5 CTGAGGCGCT 1 CTGAGGGCCG 1 CTGAGGGCTG 1 CTGAGGGGTG 1 CTGAGGGTGG 4 CTGAGGGTTA 1 CTGAGGTGAT 3 CTGAGGTTGA 1 CTGAGTAGTG 2 CTGAGTGACC 1 CTGAGTGTCT 1 CTGAGTTAGG 1 CTGATCACGA 1 CTGATCTATA 1 CTGATCTCTC 1 CTGATGAATT 1 CTGATGAGCC 1 CTGATGATGC 1 CTGATGCACT 1 CTGATGCCCA 2 CTGATGGGAT 4 CTGATTAAAG 1 CTGATTCAAC 2 CTGATTCCCC 3 CTGATTCCCG 1 CTGATTCTTC 1 CTGATTGTGG 1 CTGATTTATT 2 CTGATTTGTA 1 CTGCAAAAAA 2 CTGCAAAGCT 1 CTGCAAAGGT 1 CTGCAACCTA 5 CTGCACACTG 1 CTGCACCATC 1 CTGCACCCGA 1 CTGCACGCCG 1 CTGCAGAACT 1 CTGCAGACCC 4 CTGCAGATGC 1 CTGCAGCCCC 2 CTGCAGGACC 1 CTGCAGGAGG 1 CTGCAGGCCC 2 CTGCAGGGTT 1 CTGCAGGTGC 1 CTGCAGTGCG 1 CTGCAGTTAG 5 CTGCAGTTTA 1 CTGCATAGGT 1 CTGCATTTGT 1 CTGCCAACTT 10 CTGCCAAGTT 8 CTGCCAATTT 1 CTGCCACCTC 2 CTGCCAGCTA 2 CTGCCAGTGG 1 CTGCCAGTTC 3 CTGCCATAAC 1 CTGCCATTAC 1 CTGCCATTCT 1 CTGCCCAAGC 1 CTGCCCAGGC 2 CTGCCCCCAA 1 CTGCCCCCAC 4 CTGCCCCCAT 1 CTGCCCCCCA 17 CTGCCCCCCC 1 CTGCCCCCGC 2 CTGCCCCTAA 1 CTGCCCGAAC 3 CTGCCCGACT 1 CTGCCCGCCT 1 CTGCCCGGGA 1 CTGCCCGGGG 2 CTGCCCGTGT 1 CTGCCCTAGT 1 CTGCCCTCCC 3 CTGCCCTCGG 1 CTGCCCTCTG 1 CTGCCCTTGT 1 CTGCCGAGCT 1 CTGCCGCCGA 1 CTGCCTACAG 1 CTGCCTCAAT 1 CTGCCTCCGT 1 CTGCCTCCTT 5 CTGCCTCTTC 1 CTGCCTGGCA 1 CTGCCTGTAT 1 CTGCCTGTGA 1 CTGCCTTCCA 1 CTGCCTTCTT 1 CTGCCTTTGT 1 CTGCGACGCC 2 CTGCGAGGTC 1 CTGCGAGTGA 1 CTGCGCCGCG 1 CTGCGCGGCG 1 CTGCGGCGCC 1 CTGCGGGTGC 1 CTGCGGTGCT 2 CTGCGGTGGC 1 CTGCGTACAG 1 CTGCGTCTGG 1 CTGCTAAACG 1 CTGCTAAGGT 2 CTGCTAATAC 1 CTGCTAATAT 1 CTGCTACTCT 1 CTGCTAGGAA 2 CTGCTAGGGG 3 CTGCTAGTAT 1 CTGCTATACC 1 CTGCTATACG 12 CTGCTCACCC 2 CTGCTCACCT 1 CTGCTCATAA 1 CTGCTCCTAT 1 CTGCTCTGGG 1 CTGCTCTTGC 1 CTGCTGAGCA 1 CTGCTGAGCC 2 CTGCTGAGTG 1 CTGCTGATAA 1 CTGCTGATGC 1 CTGCTGCACT 6 CTGCTGCAGC 1 CTGCTGCCCC 3 CTGCTGCCGC 4 CTGCTGCTTT 3 CTGCTGGAAT 1 CTGCTGGTGA 2 CTGCTGTACT 3 CTGCTGTGAT 1 CTGCTTAAAG 1 CTGCTTAAGG 1 CTGCTTACTC 1 CTGCTTATAT 1 CTGCTTATTC 1 CTGCTTATTG 1 CTGCTTCAGT 1 CTGCTTCCCT 1 CTGCTTCCTG 8 CTGCTTGTTG 1 CTGCTTTCCC 1 CTGCTTTCTG 1 CTGCTTTTTT 1 CTGGAAATAA 1 CTGGAACCTT 1 CTGGAAGCAC 1 CTGGAATGTG 1 CTGGACACAA 1 CTGGACCAGT 1 CTGGACCGCT 1 CTGGACCTGG 1 CTGGACTTGT 1 CTGGAGAAAC 1 CTGGAGAAGC 1 CTGGAGACGA 1 CTGGAGACGG 1 CTGGAGAGAA 2 CTGGAGAGGC 1 CTGGAGCCCG 1 CTGGAGCTGA 2 CTGGAGGCAC 4 CTGGAGGCTG 1 CTGGAGGGTT 1 CTGGAGTAGA 1 CTGGAGTATG 1 CTGGAGTCGG 1 CTGGAGTGCA 1 CTGGATAGCA 1 CTGGATAGGA 1 CTGGATCTGG 21 CTGGATGCCG 6 CTGGATGCTT 1 CTGGATGGAT 1 CTGGATGGGC 2 CTGGCAAAGG 22 CTGGCAAGGG 1 CTGGCACCCC 1 CTGGCAGGCC 1 CTGGCATATG 1 CTGGCATCAA 1 CTGGCCACAC 2 CTGGCCACCC 1 CTGGCCAGAG 1 CTGGCCAGGA 1 CTGGCCAGGC 1 CTGGCCAGGG 1 CTGGCCATAG 1 CTGGCCATCG 4 CTGGCCCCCG 1 CTGGCCCGAA 1 CTGGCCCGGA 15 CTGGCCCTCG 52 CTGGCCCTGA 1 CTGGCCGACT 1 CTGGCCGCAA 7 CTGGCCTAGC 1 CTGGCCTCAA 1 CTGGCCTCGG 1 CTGGCCTGCC 1 CTGGCCTGCT 1 CTGGCCTGGA 1 CTGGCCTGTG 7 CTGGCCTTCG 5 CTGGCGCCGA 1 CTGGCGCGAG 2 CTGGCGTTTT 1 CTGGCTAACA 1 CTGGCTATCC 3 CTGGCTCCAA 1 CTGGCTCTGA 1 CTGGCTGCAA 18 CTGGCTGGTG 1 CTGGCTGTGA 1 CTGGCTTCTT 5 CTGGCTTGCT 2 CTGGGAACGT 1 CTGGGACCCC 1 CTGGGACGGT 1 CTGGGACTGA 4 CTGGGACTGC 3 CTGGGAGAGG 8 CTGGGAGCCC 1 CTGGGAGGAG 1 CTGGGAGGGA 2 CTGGGAGTTT 1 CTGGGATCAT 5 CTGGGATGTC 2 CTGGGCAAAC 4 CTGGGCAACA 1 CTGGGCACAG 1 CTGGGCACTG 2 CTGGGCAGCT 2 CTGGGCCATC 1 CTGGGCCCAG 1 CTGGGCCTCT 22 CTGGGCCTGA 9 CTGGGCCTGG 3 CTGGGCGACA 1 CTGGGCGCGG 1 CTGGGCGTAT 1 CTGGGCGTGT 17 CTGGGCTACT 1 CTGGGCTATG 1 CTGGGCTCGC 1 CTGGGGAACG 1 CTGGGGAGGG 2 CTGGGGCCTC 1 CTGGGGCTGA 1 CTGGGGGAGA 1 CTGGGGGAGG 2 CTGGGGGGAA 1 CTGGGGGGGG 1 CTGGGGGTCT 2 CTGGGGTTAC 1 CTGGGTCAAA 1 CTGGGTCTCC 4 CTGGGTGACA 2 CTGGGTGACC 1 CTGGGTGCCC 1 CTGGGTTAAT 24 CTGGGTTTTG 1 CTGGTAAAAC 1 CTGGTACCCT 1 CTGGTACCTG 2 CTGGTAGGAG 2 CTGGTAGTCC 1 CTGGTCCCCC 1 CTGGTCCCTG 1 CTGGTCCTCC 7 CTGGTCTCGA 1 CTGGTCTGAC 1 CTGGTCTGCA 1 CTGGTCTGGG 1 CTGGTGAACC 1 CTGGTGAATT 1 CTGGTGAGTG 1 CTGGTGATGG 2 CTGGTGCCTT 1 CTGGTGGCAT 1 CTGGTGGCTG 1 CTGGTGGGCA 2 CTGGTGGGCC 4 CTGGTGGTGC 4 CTGGTGTAGA 1 CTGGTTAGGA 1 CTGGTTGGTG 1 CTGGTTTCTC 1 CTGGTTTGCT 1 CTGGTTTTTC 1 CTGTAAAAAA 10 CTGTAATAGG 1 CTGTACAAAG 2 CTGTACAGAC 25 CTGTACAGCA 1 CTGTACAGGC 1 CTGTACATAC 2 CTGTACCCCA 1 CTGTACTAAG 1 CTGTACTAGG 5 CTGTACTATC 1 CTGTACTCAA 1 CTGTACTTGT 5 CTGTAGAAAT 2 CTGTAGCATT 2 CTGTAGCTCA 3 CTGTAGTTGC 2 CTGTATAATT 1 CTGTATGTTT 1 CTGTATTTGA 1 CTGTATTTTA 1 CTGTCACTGG 1 CTGTCAGAAA 1 CTGTCAGCGG 4 CTGTCATTAA 1 CTGTCATTTG 2 CTGTCCACCA 1 CTGTCCGCTG 1 CTGTCCGGCT 2 CTGTCCGTAC 2 CTGTCCTAGC 5 CTGTCCTGTC 1 CTGTCCTTGT 2 CTGTCTGTGG 1 CTGTCTTCTG 1 CTGTGAAAAC 1 CTGTGAACAA 2 CTGTGAAGTG 1 CTGTGACACA 1 CTGTGACAGC 1 CTGTGAGACC 13 CTGTGAGCCT 1 CTGTGATGTG 1 CTGTGCATTT 3 CTGTGCCAAT 1 CTGTGCCCAG 5 CTGTGCGGGG 1 CTGTGCTCGG 2 CTGTGCTCTA 1 CTGTGCTGCC 1 CTGTGGACCA 1 CTGTGGAGTG 1 CTGTGGCCGG 4 CTGTGGCTGG 1 CTGTGGGCCT 1 CTGTGGTGTG 1 CTGTGGTTAC 1 CTGTGTAAAG 2 CTGTGTAAGC 1 CTGTGTAATT 1 CTGTGTACAG 4 CTGTGTATAC 1 CTGTGTATCC 2 CTGTGTGAGA 1 CTGTGTGCCA 1 CTGTGTGCCC 2 CTGTGTGGCT 12 CTGTGTGGGA 1 CTGTGTGGGT 1 CTGTGTGTCG 2 CTGTGTTTCA 1 CTGTGTTTGT 1 CTGTTAAGGT 1 CTGTTACAAA 1 CTGTTACCAG 1 CTGTTAGTGT 10 CTGTTATAGG 1 CTGTTCACCA 1 CTGTTCCCTC 1 CTGTTCCCTT 2 CTGTTCCGGC 6 CTGTTCTAAA 1 CTGTTCTCCA 1 CTGTTCTCGT 1 CTGTTGATTG 3 CTGTTGCACT 2 CTGTTGCCCT 1 CTGTTGCTGC 1 CTGTTGGCAT 5 CTGTTGGTGA 19 CTGTTGTGTG 6 CTGTTGTTGG 3 CTGTTTAATG 1 CTGTTTAGTG 1 CTGTTTGTAT 2 CTGTTTTCAC 1 CTGTTTTCTC 1 CTGTTTTGGT 1 CTTAAAAAAA 2 CTTAAATATC 1 CTTAAATCAG 2 CTTAAATCTG 1 CTTAAATGGT 1 CTTAACCAAT 1 CTTAACTCCC 1 CTTAACTTCC 2 CTTAACTTTC 1 CTTAAGACTT 1 CTTAAGATTC 1 CTTAAGGATC 1 CTTAAGGATT 2 CTTAATAAAA 1 CTTAATCCTT 1 CTTAATCTTG 1 CTTACAAGAA 1 CTTACAAGCA 13 CTTACAAGCC 1 CTTACAATGG 1 CTTACGTGAT 5 CTTACTATGT 1 CTTACTCCTG 1 CTTACTCGGG 1 CTTACTCTGG 1 CTTAGACTCC 1 CTTAGACTTC 1 CTTAGAGCCC 2 CTTAGAGGGG 22 CTTAGCTGCA 2 CTTAGCTGGA 1 CTTAGGACTT 1 CTTAGGTTTA 1 CTTAGTGCAA 3 CTTAGTTTGG 1 CTTATAAGGA 2 CTTATAGGAT 1 CTTATCCTGT 1 CTTATGACAA 1 CTTATGATCA 3 CTTATGGACA 1 CTTATGGTCC 11 CTTATGGTTG 6 CTTATGTTGT 1 CTTATTATAC 1 CTTATTCCTT 1 CTTATTTTTA 1 CTTCAAAAAT 1 CTTCAACATA 1 CTTCAACTAT 1 CTTCAAGCTA 1 CTTCAAGGCC 2 CTTCAATGCC 1 CTTCACCCGA 2 CTTCACCCTA 1 CTTCACCGTG 1 CTTCACTCAC 1 CTTCACTCGT 1 CTTCAGAAAT 2 CTTCAGAGAG 1 CTTCAGAGTG 1 CTTCAGCATT 1 CTTCAGGATA 1 CTTCAGTTCT 1 CTTCATAATA 1 CTTCATATGG 1 CTTCCACAGG 1 CTTCCACCCA 1 CTTCCAGAAA 1 CTTCCAGCGC 1 CTTCCAGCTA 31 CTTCCAGTTA 1 CTTCCCACAG 1 CTTCCCACTC 1 CTTCCCTGTG 2 CTTCCGTAGC 2 CTTCCTCCAC 1 CTTCCTCTCA 1 CTTCCTGCCT 1 CTTCCTGGCC 3 CTTCCTGTAC 1 CTTCCTGTTA 1 CTTCCTTGTA 1 CTTCGAAACT 7 CTTCGAGCTA 1 CTTCGAGGCT 1 CTTCGCATTG 1 CTTCGCGATG 4 CTTCGCGGGA 1 CTTCGGGCTG 1 CTTCGGTGCC 1 CTTCTAACGA 1 CTTCTAGGGA 1 CTTCTATGTA 5 CTTCTCACCG 2 CTTCTCATCT 2 CTTCTCCCCA 1 CTTCTCGCCT 1 CTTCTCTCTC 3 CTTCTCTGTT 1 CTTCTGCACT 1 CTTCTGCCAG 1 CTTCTGCTGG 3 CTTCTGGAAG 2 CTTCTGGGGA 2 CTTCTGTCTC 4 CTTCTGTGTA 2 CTTCTGTTTT 2 CTTCTTCATC 1 CTTCTTCTCT 1 CTTCTTCTTG 1 CTTCTTGCCC 2 CTTCTTGCTA 1 CTTCTTGGCC 1 CTTCTTTACA 1 CTTCTTTGCT 6 CTTGAAATTT 1 CTTGAACTGT 1 CTTGAAGGAC 1 CTTGAATGAT 1 CTTGACACAC 2 CTTGACATAC 20 CTTGACTCCC 1 CTTGACTTCC 1 CTTGAGCAAT 3 CTTGAGCCGA 1 CTTGAGCGTC 1 CTTGAGGGGT 1 CTTGAGTCAC 3 CTTGATCCCT 1 CTTGATCTGT 1 CTTGATTAAA 1 CTTGATTCCC 9 CTTGCAAGGC 1 CTTGCAGGTT 3 CTTGCATCTC 1 CTTGCATTGT 1 CTTGCCACAA 1 CTTGCCATAA 9 CTTGCCATAC 1 CTTGCCATAT 1 CTTGCCCTTG 1 CTTGCCTGAA 1 CTTGCTGGTG 1 CTTGCTGTAC 2 CTTGGAAAAA 1 CTTGGCACCC 1 CTTGGCACCT 1 CTTGGCCCTC 1 CTTGGCCCTG 7 CTTGGCGATT 1 CTTGGCGGAG 1 CTTGGGAGGC 1 CTTGGGATGT 5 CTTGGGCCTA 1 CTTGGGCGGG 2 CTTGGGTACT 1 CTTGGGTCCT 1 CTTGGGTGGG 1 CTTGGTCACA 1 CTTGGTGTAC 2 CTTGGTGTGG 1 CTTGGTTCTC 1 CTTGTAACAG 1 CTTGTAATCC 16 CTTGTAATCT 2 CTTGTAGCCC 1 CTTGTAGGAC 1 CTTGTAGTCC 4 CTTGTAGTTC 1 CTTGTCAGTT 1 CTTGTCATCC 1 CTTGTCATCT 1 CTTGTCCTTG 1 CTTGTCTCAA 1 CTTGTCTGCC 1 CTTGTCTTGC 1 CTTGTGAACT 11 CTTGTGAGGC 1 CTTGTGCAGG 1 CTTGTGTGAC 1 CTTGTGTGTA 1 CTTGTGTTTT 1 CTTGTTAATA 1 CTTGTTCTCT 1 CTTTAAACAA 1 CTTTAACATA 1 CTTTAAGAAA 2 CTTTAGACTA 1 CTTTAGAGGC 1 CTTTAGCTAC 1 CTTTAGGCAA 1 CTTTATGCCT 1 CTTTATGTGA 4 CTTTATTTGT 3 CTTTCAACGT 1 CTTTCAGATG 5 CTTTCAGCAA 1 CTTTCAGGGC 1 CTTTCATTTT 1 CTTTCCACAA 1 CTTTCCACCC 1 CTTTCCCATA 1 CTTTCCCGTT 1 CTTTCCCTTG 1 CTTTCCTATG 2 CTTTCGGTTC 1 CTTTCTGCCT 1 CTTTCTGGCA 1 CTTTCTGGTA 2 CTTTCTGTTA 1 CTTTGAGAAG 1 CTTTGAGCTC 1 CTTTGATCAG 4 CTTTGATGTT 9 CTTTGCAAAT 1 CTTTGCGACC 1 CTTTGCTGTG 1 CTTTGGAAAT 2 CTTTGGCCCC 1 CTTTGGGAAG 1 CTTTGGGAGC 1 CTTTGGGAGG 3 CTTTGTAAGT 1 CTTTGTCTTG 1 CTTTGTGACT 2 CTTTGTGCTG 1 CTTTGTGTCC 1 CTTTTAAAAA 2 CTTTTACGTC 1 CTTTTCAAAA 1 CTTTTCAAGA 2 CTTTTCACTT 1 CTTTTCAGCA 4 CTTTTCATTA 1 CTTTTCCTCT 4 CTTTTCCTGA 1 CTTTTCCTTC 1 CTTTTCTCTT 2 CTTTTCTGTA 1 CTTTTCTTCT 3 CTTTTGCAGT 1 CTTTTGCCAT 2 CTTTTGCTAT 1 CTTTTGGCTG 1 CTTTTGGGGA 1 CTTTTGTCGT 1 CTTTTGTGAT 1 CTTTTGTTTT 1 CTTTTTAAAA 1 CTTTTTACTC 1 CTTTTTCAAA 1 CTTTTTCACC 1 CTTTTTCGGC 1 CTTTTTGCCC 1 CTTTTTGTGC 5 CTTTTTGTTC 1 CTTTTTTCTG 2 GAAAAAAAAA 6 GAAAAAAATA 1 GAAAAAAATG 2 GAAAAAAGAA 1 GAAAAACCCC 1 GAAAAACGCA 1 GAAAAAGTGG 1 GAAAAATACT 2 GAAAAATCTG 1 GAAAAATGGT 12 GAAAACAAAG 2 GAAAACAACA 1 GAAAACAGAA 2 GAAAACAGTT 1 GAAAACATTT 1 GAAAACCCCA 1 GAAAACTAAG 1 GAAAAGAATT 1 GAAAAGAGAT 1 GAAAAGCAGA 1 GAAAAGCCTT 5 GAAAAGGACA 1 GAAAAGGAGA 1 GAAAAGGGGT 1 GAAAAGTTGC 1 GAAAATAAAG 1 GAAAATAACA 1 GAAAATAAGG 1 GAAAATATTG 1 GAAAATGCAG 2 GAAAATGGGG 2 GAAAATGGTT 1 GAAAATTCGG 1 GAAACAAAAG 1 GAAACAAGAT 1 GAAACAGACG 2 GAAACAGTTG 1 GAAACATTCT 1 GAAACCAACT 1 GAAACCACAA 2 GAAACCAGGG 1 GAAACCCCAG 1 GAAACCCGGT 3 GAAACCGACC 1 GAAACCGAGG 7 GAAACGTCAC 1 GAAACGTCTG 1 GAAACTAGGA 1 GAAACTGAAC 3 GAAACTGAAG 1 GAAACTGAGT 1 GAAACTTCTG 1 GAAAGAAACT 1 GAAAGAACCC 1 GAAAGAGCCA 1 GAAAGAGCTC 1 GAAAGAGTGG 1 GAAAGATGAA 1 GAAAGATTCA 1 GAAAGATTTG 1 GAAAGCAACA 1 GAAAGCAGTT 1 GAAAGCTGCA 1 GAAAGGCAAA 3 GAAAGGGGAG 1 GAAAGGGGTT 1 GAAAGGTCTG 7 GAAAGTGACA 2 GAAAGTGGAA 1 GAAATACAGT 42 GAAATACATC 1 GAAATACCAG 1 GAAATAGCAG 2 GAAATAGTTG 1 GAAATCAAAT 1 GAAATCAGTG 1 GAAATCATTG 1 GAAATCCCTT 2 GAAATCCGCC 1 GAAATCTGAA 1 GAAATGAAAT 1 GAAATGAACT 5 GAAATGATGA 1 GAAATGCCTT 1 GAAATGCTGC 1 GAAATGGAAC 1 GAAATGGGGC 1 GAAATGTAAG 2 GAAATGTATG 1 GAAATGTCAC 1 GAAATGTGGG 1 GAAATGTGTG 1 GAAATTAACC 1 GAAATTAAGC 1 GAAATTCGAA 1 GAAATTCTGA 1 GAAATTGGTC 1 GAAATTTAAA 1 GAAATTTAGG 1 GAAATTTGAC 1 GAAATTTTAC 1 GAAATTTTTG 1 GAACAAAATG 1 GAACAAACAG 2 GAACAAATGG 1 GAACAACTAG 1 GAACAACTCA 1 GAACAATGGT 1 GAACAATTAC 1 GAACACACCA 1 GAACACATCC 22 GAACACATTG 5 GAACACGTTG 1 GAACAGCAGA 1 GAACAGCAGC 1 GAACAGCTCA 13 GAACAGGAAT 1 GAACAGGCCG 1 GAACAGTGGG 1 GAACATAAGT 1 GAACATCGGT 1 GAACATTCTC 1 GAACATTTAC 1 GAACATTTTT 1 GAACCACCAT 1 GAACCCAAAC 1 GAACCCAAGA 1 GAACCCAGCA 1 GAACCCGGTA 1 GAACCCTGCC 1 GAACCCTGGG 5 GAACCGGAAC 1 GAACCGTCCT 1 GAACCTAAAA 1 GAACCTCTGA 2 GAACCTGCCA 1 GAACCTTCAG 1 GAACGACGTC 1 GAACGCCAGA 2 GAACGCTCAC 1 GAACGCTGGG 1 GAACGGGCCC 2 GAACGTCTTA 4 GAACGTCTTT 1 GAACTCCATA 2 GAACTCCATC 1 GAACTCCTTG 1 GAACTGACAG 2 GAACTGCCCA 1 GAACTGCGTG 1 GAACTGCTTG 1 GAACTGTCCG 1 GAACTGTGTC 1 GAACTTACAT 1 GAACTTGGAA 1 GAACTTTGCA 1 GAAGACATCC 1 GAAGAGAAAC 1 GAAGAGAAGG 1 GAAGAGCACC 1 GAAGAGGAAA 1 GAAGAGGATT 1 GAAGAGGCCT 1 GAAGAGTGCT 1 GAAGAGTGTT 2 GAAGAGTTGA 1 GAAGATAGAG 1 GAAGATCTGT 1 GAAGATGAAG 1 GAAGATGCCT 3 GAAGATGTGG 2 GAAGATGTGT 5 GAAGCAACCC 1 GAAGCAACTC 1 GAAGCAAGAC 1 GAAGCAAGCA 1 GAAGCAAGTA 1 GAAGCACCAA 1 GAAGCACTGT 1 GAAGCAGACC 1 GAAGCAGGAC 64 GAAGCAGGCC 3 GAAGCAGTCA 1 GAAGCAGTTT 3 GAAGCATCAT 1 GAAGCATCCC 1 GAAGCATCGC 2 GAAGCATTTT 1 GAAGCCAAGA 1 GAAGCCAATG 1 GAAGCCAGCC 2 GAAGCCAGGA 1 GAAGCCATCT 1 GAAGCCCAAC 1 GAAGCCCAGC 1 GAAGCCGTAG 1 GAAGCGCTGG 1 GAAGCGGCTG 1 GAAGCTGAAA 1 GAAGCTGCCG 1 GAAGCTGTTC 2 GAAGCTTCCA 4 GAAGCTTTGC 10 GAAGCTTTTA 1 GAAGCTTTTT 1 GAAGGACAGA 1 GAAGGAGATA 1 GAAGGAGATG 2 GAAGGAGCTC 1 GAAGGAGCTG 1 GAAGGATGTC 1 GAAGGCAACG 1 GAAGGCACCA 1 GAAGGCATCC 1 GAAGGCATCT 3 GAAGGCCCGG 1 GAAGGCCTCA 1 GAAGGCGCTC 1 GAAGGCTCAT 1 GAAGGGATCA 3 GAAGGGGCAA 1 GAAGGGGCAG 1 GAAGGGGTAG 1 GAAGGTCCTC 1 GAAGGTCCTG 1 GAAGGTGCTC 1 GAAGGTGTTG 1 GAAGGTTGAG 1 GAAGGTTGTG 2 GAAGGTTTGG 1 GAAGTAAAGC 1 GAAGTAGAGA 1 GAAGTATGGA 1 GAAGTCACCA 1 GAAGTCCTGC 1 GAAGTCCTTG 1 GAAGTCGGAA 7 GAAGTCTCCA 1 GAAGTGAAGC 1 GAAGTGATCA 2 GAAGTGCCCG 1 GAAGTGCTGC 3 GAAGTGGAAG 1 GAAGTGGCTG 1 GAAGTGGGGC 1 GAAGTGTGTC 1 GAAGTTAAGC 2 GAAGTTATGA 3 GAATAAAATA 2 GAATAAATGT 1 GAATAACAAC 1 GAATAACTGT 1 GAATAATCTT 1 GAATACTATG 1 GAATACTGAA 1 GAATACTGTT 1 GAATAGACAG 1 GAATAGCCGA 1 GAATAGCTTG 1 GAATAGTGGG 1 GAATATACAC 1 GAATATGGCT 1 GAATCAACAA 1 GAATCACTGC 2 GAATCAGGGG 1 GAATCATTTA 1 GAATCATTTT 1 GAATCCAACT 4 GAATCCATAG 1 GAATCCCAGC 2 GAATCCGATT 1 GAATCGGTTA 3 GAATCGTCAG 1 GAATCTCTTT 1 GAATCTGCCG 1 GAATCTGCTG 1 GAATCTGGAG 2 GAATCTTTGG 1 GAATGAAACC 2 GAATGAACGG 1 GAATGACCCA 1 GAATGAGGAC 1 GAATGAGTGA 1 GAATGATGAA 1 GAATGATGGA 1 GAATGATTAG 1 GAATGATTTC 6 GAATGCAAAT 1 GAATGCAGTT 2 GAATGCATTA 1 GAATGCTGAC 2 GAATGCTGCT 1 GAATGCTTTT 1 GAATGGACAA 2 GAATGGAGGA 1 GAATGGCAGG 1 GAATGGGCTG 2 GAATGGGGCT 1 GAATGTAAGT 1 GAATGTATGT 1 GAATGTCACC 1 GAATGTCTGA 2 GAATGTGGTC 1 GAATGTTTTG 1 GAATTACTCA 1 GAATTCAGTG 1 GAATTGACAG 1 GAATTGTGCA 1 GAATTGTTAA 2 GAATTTAAAG 1 GAATTTGACT 1 GAATTTTATA 2 GAATTTTCCT 1 GAATTTTTTT 1 GACAAAAAAA 3 GACAAAAAGT 1 GACAAAAGTG 1 GACAAATACA 1 GACAACAAAG 1 GACAACACGA 1 GACAACATAG 1 GACAACATTA 1 GACAACCTTA 1 GACAACTATG 1 GACAAGATGC 1 GACAAGGAAG 1 GACAATAACT 1 GACAATATCT 1 GACAATATTG 1 GACAATGAGA 2 GACAATGAGG 1 GACAATGATC 1 GACAATGCAG 1 GACAATGCCA 4 GACAATGTGG 1 GACAATTCTT 1 GACACAAACT 1 GACACACACC 1 GACACACCCA 1 GACACACCGA 1 GACACAGAAT 1 GACACAGCAA 6 GACACAGCAT 1 GACACAGGAA 1 GACACAGGCA 4 GACACAGTCC 1 GACACATCCA 2 GACACCAAAA 1 GACACCAAGT 1 GACACCACCC 1 GACACCAGGG 3 GACACCCTCC 1 GACACCGGGC 1 GACACCTCCT 3 GACACGAACA 1 GACACGTGAC 1 GACACGTTTC 1 GACACTACAG 1 GACACTAGGG 1 GACACTCCCA 5 GACACTCCCT 1 GACACTGAAA 6 GACAGAAAAA 1 GACAGAGTAC 1 GACAGATGAT 1 GACAGCACCA 3 GACAGCAGAG 2 GACAGCAGGC 1 GACAGCCATC 1 GACAGCGGAC 1 GACAGCTAAC 1 GACAGCTGAG 6 GACAGCTGTG 1 GACAGCTTTG 1 GACAGGGACC 1 GACAGGGACG 1 GACAGGGCAC 1 GACAGGTACT 1 GACAGTCCTG 4 GACAGTGCCA 1 GACATAAATC 4 GACATATGTA 6 GACATCAAAT 1 GACATCAAGT 87 GACATCACAA 1 GACATCAGCA 2 GACATCAGGT 1 GACATCCCGC 4 GACATCGAGG 2 GACATCTTTG 1 GACATTCAAC 1 GACATTCAGG 1 GACATTGATC 1 GACATTTGTC 4 GACCAAACTT 2 GACCAAGATA 1 GACCACAAAA 1 GACCACACCG 4 GACCACCATT 1 GACCACGGCG 4 GACCACTGCT 1 GACCAGAAAA 16 GACCAGATAA 1 GACCAGATCC 1 GACCAGCCCA 21 GACCAGCCGC 1 GACCAGCCTA 1 GACCAGCGGC 2 GACCAGCTGC 4 GACCAGCTGG 5 GACCAGGGGC 1 GACCAGGGGG 1 GACCAGGGTC 1 GACCAGTAGA 1 GACCAGTCTG 1 GACCAGTGGC 44 GACCAGTGGG 1 GACCATACAG 1 GACCATTACA 1 GACCCAACAT 1 GACCCAAGAT 211 GACCCAAGTT 1 GACCCAATAT 1 GACCCACCTT 1 GACCCAGGAG 1 GACCCAGGAT 1 GACCCCAAAG 1 GACCCCAAGA 2 GACCCCAAGG 2 GACCCCACAT 1 GACCCCACGT 1 GACCCCAGAA 1 GACCCCCAGA 1 GACCCCGCCG 1 GACCCCTGAA 1 GACCCCTGTC 6 GACCCCTTCT 1 GACCCGAGAT 1 GACCCGGGAG 6 GACCCTAGAT 2 GACCCTAGCT 3 GACCCTAGTC 1 GACCCTGACA 1 GACCCTGACT 2 GACCCTGAGC 1 GACCCTGCCC 22 GACCCTGGGG 2 GACCCTGTGT 1 GACCCTTTCT 1 GACCGAAGGG 1 GACCGAGGTG 4 GACCGCTCCC 1 GACCTATCCC 1 GACCTCAAAG 3 GACCTCACTG 4 GACCTCCCCT 1 GACCTCCTGC 3 GACCTGAACG 1 GACCTGACCC 1 GACCTGCACT 1 GACCTGCGGC 2 GACCTGGAGT 1 GACCTGGCCC 6 GACCTGGTGC 1 GACCTGTAGT 1 GACCTGTCAT 1 GACCTGTGAG 1 GACCTTAAGG 1 GACCTTAGTC 1 GACCTTAGTG 1 GACCTTGATC 1 GACCTTGGCA 1 GACGAAAGCA 1 GACGAATGAT 1 GACGACACGA 32 GACGACACGT 2 GACGAGCTTT 3 GACGAGGGCA 2 GACGAGGTCA 1 GACGATCACG 1 GACGATGGCC 1 GACGCAAGAT 1 GACGCAGAAG 1 GACGCAGGAC 1 GACGCAGGGC 1 GACGCCACGC 1 GACGCCAGCG 1 GACGCCGCGC 1 GACGCGCGCG 1 GACGCGGCCA 1 GACGCGGCCG 1 GACGCGGCGC 47 GACGCTGGCA 1 GACGCTTAAT 1 GACGGCAAAA 1 GACGGCCAGA 1 GACGGCGCAG 4 GACGGCGTTC 1 GACGGCTACT 2 GACGGCTGCA 1 GACGGGTGGG 1 GACGGTATCA 1 GACGGTCCTG 1 GACGTATGGG 1 GACGTCAAGT 1 GACGTCTTAA 2 GACGTGATGG 1 GACGTGCAGG 1 GACGTGTGGG 3 GACGTTCACT 1 GACGTTCCTT 1 GACTAACACC 1 GACTACACCA 2 GACTACCCTT 1 GACTAGGAGT 1 GACTAGTGCG 1 GACTATGAGC 1 GACTCAAAAA 1 GACTCACTTC 1 GACTCACTTT 25 GACTCAGGGA 1 GACTCCCTGA 1 GACTCCTTAA 1 GACTCCTTTT 1 GACTCGACCA 1 GACTCTACCT 1 GACTCTAGCA 1 GACTCTCAGA 1 GACTCTCTCA 1 GACTCTGGGA 4 GACTCTGGTG 4 GACTCTGTCC 1 GACTCTGTTC 1 GACTCTTATG 1 GACTCTTGCT 1 GACTGAAGTA 1 GACTGCAGGG 1 GACTGCGCCG 2 GACTGCGCGT 1 GACTGCGTGC 3 GACTGGAAAA 1 GACTGGAAAG 1 GACTGGACAC 1 GACTGGAGGA 1 GACTGGGCCA 2 GACTGGGTGC 1 GACTGGTTCT 1 GACTGTACAT 1 GACTGTATCT 2 GACTGTGCAC 1 GACTGTGCCA 11 GACTGTGGGG 1 GACTGTTAAT 1 GACTGTTGCT 5 GACTTAAAGT 1 GACTTACTCA 1 GACTTCAAAA 1 GACTTCAACG 1 GACTTCACTT 1 GACTTCCAGC 1 GACTTGAGAA 1 GACTTGAGCA 1 GACTTGGAGG 1 GACTTGGCGG 1 GACTTGTAAG 1 GACTTTGGGA 2 GACTTTTACA 1 GACTTTTTCA 1 GACTTTTTTG 2 GAGAAAAACT 1 GAGAAAACCT 1 GAGAAAAGTA 1 GAGAAAATCA 1 GAGAAACAGC 1 GAGAAACCCC 21 GAGAAACCCT 15 GAGAAACCGC 1 GAGAAACCTC 1 GAGAAACTCC 1 GAGAAAGAGG 2 GAGAAATAAA 1 GAGAAATGCC 1 GAGAAATGTC 1 GAGAACAAGC 1 GAGAACCCGA 1 GAGAACCGTA 16 GAGAACCGTT 1 GAGAACCTTC 1 GAGAACGCCC 1 GAGAACGGGG 6 GAGAACTCCC 1 GAGAACTCTG 1 GAGAAGAAGA 1 GAGAAGACCG 1 GAGAAGACTT 2 GAGAAGCCCA 6 GAGAAGCCCC 1 GAGAAGCTGG 3 GAGAAGGCAG 1 GAGAAGTTAA 1 GAGAATCCCC 1 GAGAATCTGC 1 GAGAATGGGA 1 GAGAATTGCT 2 GAGAATTGTT 1 GAGACAACTG 1 GAGACAAGAA 2 GAGACAAGAG 1 GAGACAATTG 1 GAGACAGAAG 1 GAGACAGTAA 1 GAGACAGTGG 1 GAGACCACGG 1 GAGACCAGCG 1 GAGACCCTGG 4 GAGACCCTGT 1 GAGACCGTAG 1 GAGACCTTCT 1 GAGACGACGG 1 GAGACGCATT 1 GAGACGGTGA 1 GAGACTAGCT 1 GAGACTCCTG 8 GAGACTGCAA 1 GAGACTGTTT 1 GAGACTTCAT 2 GAGACTTGCA 1 GAGAGAACGG 1 GAGAGACACG 1 GAGAGACCCC 1 GAGAGACTCC 2 GAGAGATCCT 1 GAGAGATGAC 1 GAGAGCACCC 3 GAGAGCAGCC 1 GAGAGCCAGA 1 GAGAGCCCCG 1 GAGAGCCTCA 2 GAGAGCCTGC 5 GAGAGCGAGA 1 GAGAGCTACA 1 GAGAGCTCCC 11 GAGAGCTCCT 1 GAGAGGATGG 2 GAGAGGGAAC 1 GAGAGGTCTG 1 GAGAGGTCTT 1 GAGAGTAACA 3 GAGAGTACCA 1 GAGAGTATGG 1 GAGAGTCCCG 1 GAGAGTGCAG 2 GAGAGTGGTG 1 GAGAGTGTAC 2 GAGATCACAA 1 GAGATCCACG 2 GAGATCCACT 1 GAGATCCGAT 1 GAGATCCGCA 6 GAGATCTTCA 1 GAGATGACCC 1 GAGATGACTC 1 GAGATGGCAG 2 GAGATGTCTG 1 GAGATGTGCA 1 GAGATGTTTG 1 GAGATTGAGG 1 GAGATTTGAG 1 GAGATTTGTT 1 GAGCAAAAGA 1 GAGCAAAATA 1 GAGCAAACGG 2 GAGCAAGCGG 1 GAGCACACCC 1 GAGCACAGCC 1 GAGCACAGTG 1 GAGCACATCA 3 GAGCACCGTG 4 GAGCACGGGA 1 GAGCACTCAC 1 GAGCACTTGG 2 GAGCAGAGCA 1 GAGCAGAGTT 1 GAGCAGCTAA 1 GAGCAGCTGG 1 GAGCAGGAGC 1 GAGCAGGCAA 1 GAGCAGGCAT 1 GAGCAGGTGC 1 GAGCATAATA 1 GAGCATATCT 1 GAGCCAAAGA 1 GAGCCAACAA 3 GAGCCAACAC 1 GAGCCAATCT 1 GAGCCAGAGG 1 GAGCCAGGTG 1 GAGCCCAGCC 1 GAGCCCCCGT 1 GAGCCCCGAA 1 GAGCCCCTTG 1 GAGCCCGGCC 1 GAGCCCTACA 1 GAGCCGCCTC 9 GAGCCGCTCT 1 GAGCCTAGGA 1 GAGCCTCATC 2 GAGCCTCGCT 1 GAGCCTGCAC 1 GAGCCTGGCA 1 GAGCCTGTCC 1 GAGCCTTGGG 1 GAGCCTTGGT 11 GAGCGATAGT 1 GAGCGCACGA 1 GAGCGCAGCG 2 GAGCGGCCTC 3 GAGCGGCTAC 1 GAGCGGCTCC 1 GAGCGGCTCT 1 GAGCGGCTTC 1 GAGCGGGAAC 1 GAGCGGGATC 3 GAGCGGGATG 6 GAGCGGTCAT 1 GAGCGGTGCC 1 GAGCGTCTTA 1 GAGCGTGGCA 1 GAGCTACACC 1 GAGCTAGCCC 1 GAGCTCAGGT 1 GAGCTCCACA 2 GAGCTCCAGG 1 GAGCTCGAGA 1 GAGCTCTGCG 1 GAGCTCTGTG 1 GAGCTGAAAT 1 GAGCTGAATA 1 GAGCTGCAGG 2 GAGCTGCATC 1 GAGCTGCCAT 1 GAGCTGCCGC 2 GAGCTGCGTG 1 GAGCTGGATC 1 GAGCTGGGAA 1 GAGCTGGGCA 1 GAGCTGGGCT 1 GAGCTGGTGA 1 GAGCTGTTTC 1 GAGCTTACAT 1 GAGCTTACCC 2 GAGCTTCCTT 1 GAGCTTGTGT 1 GAGGAAAATG 1 GAGGAACAGT 1 GAGGAACCAG 2 GAGGAACTCA 1 GAGGAAGAAG 5 GAGGAAGGCT 1 GAGGAATATG 4 GAGGACAATA 1 GAGGACACCA 2 GAGGACCCAA 3 GAGGACCCAT 2 GAGGACGAGG 1 GAGGACTCAC 1 GAGGAGAAGG 1 GAGGAGACCC 1 GAGGAGATGG 1 GAGGAGCCAC 1 GAGGAGGGCG 1 GAGGAGGGGT 1 GAGGAGGGTG 6 GAGGAGGTGG 1 GAGGAGTCAG 1 GAGGATCACT 1 GAGGATGACG 1 GAGGATGGTG 1 GAGGATTCAA 1 GAGGCACACG 1 GAGGCACCTT 1 GAGGCACGGA 1 GAGGCACGTG 1 GAGGCAGAAG 1 GAGGCAGCTG 2 GAGGCAGGCG 3 GAGGCAGGTG 1 GAGGCCAACA 3 GAGGCCAAGA 2 GAGGCCAGTG 4 GAGGCCATAG 1 GAGGCCATCC 1 GAGGCCATTG 3 GAGGCCCAGG 3 GAGGCCCCCG 2 GAGGCCCTGG 1 GAGGCCGACC 3 GAGGCCGCTG 1 GAGGCCGGCC 4 GAGGCCTACG 1 GAGGCCTCAG 2 GAGGCGAGGC 1 GAGGCGATCA 1 GAGGCGCTGG 5 GAGGCTCAAT 2 GAGGCTGAAC 1 GAGGCTGGGC 1 GAGGCTGGGT 1 GAGGCTTCAG 1 GAGGGACCTG 2 GAGGGACTTG 5 GAGGGAGATC 1 GAGGGAGCTT 1 GAGGGAGGAT 2 GAGGGAGTCT 1 GAGGGAGTTC 2 GAGGGAGTTT 41 GAGGGATAGC 1 GAGGGATGGC 1 GAGGGATTTC 1 GAGGGCAGTA 1 GAGGGCAGTG 1 GAGGGCCAGG 1 GAGGGCCGCC 1 GAGGGCCGGT 15 GAGGGCCGTG 5 GAGGGCCTTC 1 GAGGGCCTTG 1 GAGGGCTCAG 1 GAGGGCTGAA 1 GAGGGCTTTA 1 GAGGGGAAAC 2 GAGGGGAGTT 1 GAGGGGCAAG 1 GAGGGGCCTT 1 GAGGGGGAAG 1 GAGGGGGCAG 2 GAGGGGGCGG 1 GAGGGTACTA 1 GAGGGTCCTG 1 GAGGGTCTTA 2 GAGGGTCTTG 2 GAGGGTGGCG 2 GAGGGTTCCA 1 GAGGGTTTAG 2 GAGGGTTTTA 3 GAGGTAAGGC 1 GAGGTCAGGG 1 GAGGTCCCTG 4 GAGGTCCGGT 1 GAGGTCCTGG 1 GAGGTCCTTC 3 GAGGTCGAGG 1 GAGGTCGCCT 1 GAGGTGAAGG 4 GAGGTGCCGG 2 GAGGTGCTCT 2 GAGGTGGGCG 1 GAGGTGGTCG 1 GAGGTGTCTG 3 GAGGTGTTCC 1 GAGGTGTTCT 1 GAGGTTCTTC 1 GAGGTTTGGG 2 GAGTAAATTC 1 GAGTAAGACA 1 GAGTACAATA 1 GAGTACACCT 1 GAGTACCTCT 1 GAGTAGAGAA 5 GAGTAGAGGC 3 GAGTAGCCAA 1 GAGTAGTTGA 1 GAGTATAAAT 1 GAGTATGAGG 1 GAGTATGGAG 1 GAGTCACGGA 1 GAGTCAGCAC 1 GAGTCAGCAT 6 GAGTCAGGAT 1 GAGTCATCGG 1 GAGTCCAAAT 5 GAGTCCAACT 1 GAGTCCCAAT 1 GAGTCCTGCA 2 GAGTCCTGGC 1 GAGTCCTTGG 1 GAGTCCTTTG 1 GAGTCGGCCC 1 GAGTCTCCCT 3 GAGTCTTCTG 1 GAGTGAAACA 1 GAGTGACTAG 1 GAGTGACTAT 2 GAGTGAGTGA 1 GAGTGATGTG 1 GAGTGCAAGA 1 GAGTGCAGGA 1 GAGTGCAGGT 1 GAGTGCATCA 1 GAGTGCCCTG 1 GAGTGCCTTG 1 GAGTGCGCAG 1 GAGTGCTGGT 1 GAGTGGAGAG 1 GAGTGGCACC 1 GAGTGGCTAT 3 GAGTGGGGGC 3 GAGTGTGCAC 1 GAGTTAGACC 1 GAGTTAGTGA 1 GAGTTATGAG 1 GAGTTCCCTG 1 GAGTTCGACC 5 GAGTTGCTAT 3 GAGTTGGCAG 2 GAGTTGTCAC 1 GAGTTGTCGA 1 GAGTTTCTGA 1 GAGTTTGAAG 1 GAGTTTGAGA 1 GAGTTTGGCC 2 GAGTTTGTGG 1 GAGTTTTTAA 1 GATAAATTAA 1 GATAACCCCA 1 GATAACTCCT 1 GATAACTGTG 1 GATAAGATGC 1 GATAAGTGTA 2 GATAATTTTT 1 GATACACTGG 1 GATACAGTAA 1 GATACCCTTC 1 GATACGTAAG 1 GATACGTGCT 1 GATACTGAGG 1 GATACTTCTT 1 GATACTTGAC 1 GATACTTTGC 1 GATAGAGGCT 1 GATAGGGTTG 1 GATAGGTCAC 1 GATAGGTCGG 1 GATAGTTCCT 1 GATATACCAC 1 GATATAGAGA 2 GATATAGCTA 1 GATATCAAAA 2 GATATCACCT 1 GATATCAGTC 1 GATATGCTGC 1 GATATGTAAA 10 GATATTGACG 1 GATATTTAAA 1 GATATTTCAG 1 GATCAAAATT 3 GATCAACTGG 1 GATCAAGGAG 1 GATCAATGGA 1 GATCAATGTG 1 GATCACACAA 1 GATCACCAAT 1 GATCACTGAG 1 GATCAGAAAA 3 GATCAGCCTA 1 GATCAGCTGG 1 GATCCAACCA 1 GATCCAGAAG 1 GATCCAGTTG 1 GATCCCAACA 16 GATCCCAACC 1 GATCCCAACT 29 GATCCCAATT 1 GATCCCAGCA 1 GATCCCTTGC 1 GATCCGCTCT 2 GATCCGCTGT 1 GATCCGTGGC 1 GATCCTATTA 1 GATCCTGCCT 1 GATCCTTGGC 1 GATCCTTGGT 2 GATCCTTTCA 1 GATCGCACGT 1 GATCTACACA 1 GATCTATCCA 6 GATCTCAAAA 1 GATCTCAATG 1 GATCTCAGCT 3 GATCTCATCT 1 GATCTCCGTG 3 GATCTCCTGC 1 GATCTCGCAA 1 GATCTGGCTG 1 GATCTGGGGA 1 GATCTGTTCC 1 GATCTTAGAG 4 GATCTTCGTA 3 GATGAAAAAC 1 GATGAAACTG 1 GATGAAATTG 2 GATGAACTGA 3 GATGAAGCTG 2 GATGAATCAC 1 GATGAATCCG 14 GATGACAAGT 1 GATGACCCAC 1 GATGACCCCC 49 GATGACCCCG 4 GATGACGAAA 1 GATGACTTGC 1 GATGAGCCTC 1 GATGAGGAGA 1 GATGAGGCCC 1 GATGAGGGAA 1 GATGAGTCTC 8 GATGATCTGG 1 GATGATGCCA 1 GATGCAAAAC 1 GATGCAGAGC 1 GATGCAGAGG 1 GATGCAGTTC 1 GATGCCACCC 1 GATGCCAGAA 1 GATGCCCCCT 1 GATGCCCTCC 3 GATGCCTCTC 1 GATGCGAGGA 1 GATGCGCTTG 3 GATGCTACCT 1 GATGCTGCCA 6 GATGGAAACT 1 GATGGAAATC 1 GATGGAATAA 1 GATGGAATGT 2 GATGGACTCT 1 GATGGAGATA 1 GATGGATGAT 1 GATGGCAAAG 1 GATGGCAGGG 1 GATGGCAGGT 1 GATGGCCAGG 1 GATGGCCTTG 1 GATGGCTGCC 2 GATGGGAAGT 1 GATGGGCTGA 1 GATGGGCTGC 10 GATGGGGACA 1 GATGGGGATG 3 GATGGGGCTG 2 GATGGGGTTC 2 GATGGTAGAA 1 GATGGTCAGT 1 GATGGTGATG 1 GATGGTGGGT 1 GATGTAAGCC 1 GATGTAGTGG 1 GATGTCACCA 1 GATGTCCCTG 1 GATGTCTCTA 7 GATGTCTTAG 1 GATGTGAAAA 1 GATGTGCGGG 1 GATGTGCTCT 1 GATGTGCTGG 2 GATGTGGAAC 1 GATGTGGAGA 2 GATGTGGTGT 1 GATGTGGTTG 1 GATGTTAGAG 1 GATTAAACCA 1 GATTAAGTGA 2 GATTACACCC 1 GATTACCCAG 1 GATTACCTGT 4 GATTACGTTC 1 GATTAGAGGT 1 GATTAGGAGT 1 GATTATTGGG 1 GATTCAAAAT 1 GATTCAACCA 1 GATTCAAGTC 1 GATTCACAAA 1 GATTCACTCC 1 GATTCAGCCA 1 GATTCAGGCC 1 GATTCCACTG 2 GATTCTAAAA 1 GATTCTAGCC 2 GATTCTCAAC 1 GATTGAAATA 1 GATTGATTCA 1 GATTGGAACT 1 GATTGGACTT 1 GATTGGAGAA 1 GATTGGCGGC 1 GATTGGCTTA 1 GATTGGGGAT 1 GATTGGTCTG 2 GATTGTATTG 1 GATTGTCTTC 1 GATTGTGGAA 1 GATTGTTAAA 1 GATTGTTAAG 1 GATTTCAACC 1 GATTTCACTT 1 GATTTCTATT 1 GATTTGAAAA 3 GATTTGAATG 1 GATTTGAGAG 1 GATTTGGCCC 1 GATTTGTGTT 1 GATTTTATAA 1 GATTTTCTGT 1 GATTTTGACA 1 GATTTTGCAC 2 GATTTTGGAG 1 GATTTTTAAC 1 GCAAAAAAAA 15 GCAAAAAAAT 2 GCAAAAACAG 1 GCAAAAACCC 1 GCAAAAACCT 1 GCAAAAATCT 1 GCAAAACACT 1 GCAAAACCAG 5 GCAAAACCCC 39 GCAAAACCCG 1 GCAAAACCCT 16 GCAAAACCGG 1 GCAAAACCGT 1 GCAAAACCTA 1 GCAAAACCTC 1 GCAAAACCTT 2 GCAAAACGCA 1 GCAAAACGCC 3 GCAAAACTCT 3 GCAAAAGAAA 1 GCAAAAGCCC 1 GCAAAATAAC 2 GCAAAATCCC 1 GCAAAATGCC 1 GCAAACCCCG 1 GCAAACGCCA 1 GCAAACTAGT 1 GCAAACTCGG 1 GCAAACTGAG 1 GCAAACTTTG 1 GCAAAGAAGT 1 GCAAAGATTG 1 GCAAAGCATA 1 GCAAAGCCCC 2 GCAAAGCCCT 1 GCAAAGCCGT 1 GCAAAGGTTG 1 GCAAAGTGCT 2 GCAAATCCCT 1 GCAAATGTAA 1 GCAAATTTTT 1 GCAACAAATT 1 GCAACAACAC 4 GCAACACATC 3 GCAACACCCC 1 GCAACACCGG 2 GCAACAGAAA 1 GCAACAGACA 1 GCAACAGAGA 1 GCAACAGCAA 7 GCAACAGGCA 1 GCAACCAAGG 1 GCAACCATAA 1 GCAACCGCCA 1 GCAACCGTCA 1 GCAACGACAG 1 GCAACGGGCC 3 GCAACTGTAG 1 GCAACTGTGA 1 GCAACTTAGA 3 GCAACTTCCA 1 GCAACTTGGA 5 GCAACTTGGT 3 GCAACTTTCA 1 GCAAGAACCA 1 GCAAGAACCT 1 GCAAGAAGGA 1 GCAAGAATTT 3 GCAAGACCCA 1 GCAAGACCCC 2 GCAAGACCCT 3 GCAAGACTCT 1 GCAAGAGCCT 1 GCAAGATCCC 1 GCAAGATTCC 1 GCAAGCCAAA 1 GCAAGCCAAC 57 GCAAGCCCCA 2 GCAAGCCGCG 1 GCAAGGAAAA 1 GCAAGGAACA 1 GCAAGGCCTC 2 GCAAGGGCTA 1 GCAAGGGCTG 1 GCAAGGGTTC 1 GCAAGGGTTT 1 GCAAGGTCAG 1 GCAAGTCAGA 1 GCAAGTCTCA 1 GCAAGTGGGG 1 GCAAGTTGAT 1 GCAATAAATG 1 GCAATAAGGC 1 GCAATAAGTG 3 GCAATACCCT 1 GCAATATCCA 1 GCAATATTGT 1 GCAATCAACG 1 GCAATCAGCA 1 GCAATCCACA 1 GCAATCCTGC 1 GCAATCCTTA 1 GCAATGACTG 1 GCAATGACTT 1 GCAATGAGGT 1 GCAATGCAAA 1 GCAATGCCCA 1 GCAATGGCCA 1 GCAATGTGTT 1 GCAATGTTTA 1 GCAATTAAAA 1 GCAATTTAAC 1 GCAATTTGTG 1 GCACAAAATG 1 GCACAAACGG 1 GCACAACAAG 1 GCACAACCTA 1 GCACAAGAAG 7 GCACAAGCCA 1 GCACAAGGAG 1 GCACAATGAG 1 GCACAATTGT 1 GCACACACAC 2 GCACACAGAG 1 GCACACTAGC 1 GCACACTGTG 1 GCACAGAGCT 3 GCACAGATTA 2 GCACAGGGAA 1 GCACAGGTCA 9 GCACAGTGAT 1 GCACAGTGGG 1 GCACATACTC 1 GCACATTCTA 1 GCACATTTTG 1 GCACCAAATG 1 GCACCACAAG 1 GCACCACCTT 1 GCACCACTGC 1 GCACCAGCAA 1 GCACCAGCGG 1 GCACCATAAT 2 GCACCCAACA 1 GCACCCAACG 1 GCACCCCACC 3 GCACCCCAGC 1 GCACCCCGAA 1 GCACCCGCCT 2 GCACCCTCAC 1 GCACCCTTTC 5 GCACCGCCGG 1 GCACCGCGGC 1 GCACCGGCAT 1 GCACCGGGGG 1 GCACCGGTCG 1 GCACCGTAAG 3 GCACCTAAGA 1 GCACCTAGTC 1 GCACCTAGTG 2 GCACCTATTG 2 GCACCTCAGC 4 GCACCTGAAC 1 GCACCTGCAG 1 GCACCTGTCG 9 GCACCTGTTT 1 GCACCTTATT 1 GCACCTTCAC 1 GCACCTTCAG 1 GCACGAGAAC 1 GCACGAGGGG 1 GCACGCGTAA 1 GCACGGTGGG 1 GCACGTGCCT 1 GCACGTGTAT 1 GCACGTGTCT 2 GCACGTGTTC 1 GCACGTTTGA 1 GCACTAAATG 1 GCACTAATAT 1 GCACTCATCC 1 GCACTCCAAG 1 GCACTCCACC 1 GCACTCCAGC 3 GCACTCCCAG 1 GCACTCTGAT 8 GCACTGAACC 1 GCACTGAATA 2 GCACTGACTG 1 GCACTGATGT 1 GCACTGCACT 3 GCACTGCCAT 2 GCACTGGACG 1 GCACTGGACT 1 GCACTGGCTG 2 GCACTGTCGA 1 GCACTGTGTC 1 GCACTTACAA 4 GCACTTCAGC 1 GCACTTCGGT 1 GCACTTGCAT 1 GCACTTGCTA 1 GCACTTGTCG 1 GCACTTTGCT 1 GCAGAAACAG 1 GCAGAAACCT 1 GCAGAAAGAG 1 GCAGAAAGTT 3 GCAGAAATTT 1 GCAGAACCCT 1 GCAGAACCTG 1 GCAGAACCTT 1 GCAGAACGCC 1 GCAGAAGAGG 2 GCAGAAGCAC 1 GCAGAAGCTG 1 GCAGAAGGTG 1 GCAGACAGCA 1 GCAGACATCA 1 GCAGACCCAC 2 GCAGACCCTT 1 GCAGACCTGT 1 GCAGACGCAC 1 GCAGACTCAG 3 GCAGACTGAG 1 GCAGACTGCA 1 GCAGACTTTG 1 GCAGAGAAAA 1 GCAGAGATGT 1 GCAGAGCCTC 1 GCAGAGCTTG 1 GCAGAGGAGA 1 GCAGAGTCTC 1 GCAGAGTTGC 1 GCAGATCACC 1 GCAGATGCCC 1 GCAGATGCTT 2 GCAGATGTTG 1 GCAGCAAAAA 1 GCAGCAAATG 1 GCAGCACGCT 2 GCAGCACTTA 1 GCAGCAGCCC 1 GCAGCAGGAA 1 GCAGCAGTGC 1 GCAGCATCCG 1 GCAGCATTTT 1 GCAGCCACAC 1 GCAGCCAGCC 1 GCAGCCAGCT 2 GCAGCCATCC 95 GCAGCCATCG 1 GCAGCCATCT 1 GCAGCCATTC 3 GCAGCCCCCA 1 GCAGCCCCTC 1 GCAGCCCGCG 2 GCAGCCGGCC 1 GCAGCCGTCC 1 GCAGCCTCCA 3 GCAGCCTCGG 1 GCAGCCTCTC 1 GCAGCCTGGG 1 GCAGCCTGTT 1 GCAGCGATGA 1 GCAGCGCCTG 2 GCAGCGGGCG 1 GCAGCGTGCA 1 GCAGCTAATT 1 GCAGCTATCC 1 GCAGCTCAGG 8 GCAGCTCCAA 1 GCAGCTCCAT 1 GCAGCTCCTG 47 GCAGCTGCAG 1 GCAGCTGCCC 1 GCAGCTGCCT 1 GCAGCTGCTG 1 GCAGCTGGCT 1 GCAGCTGGGC 1 GCAGCTGTGG 1 GCAGCTTAGC 2 GCAGGAACAG 1 GCAGGAAGAA 1 GCAGGAATAA 1 GCAGGAATTG 4 GCAGGACCCC 1 GCAGGAGAGG 2 GCAGGAGGAT 3 GCAGGAGGCC 2 GCAGGAGGTG 13 GCAGGAGTAG 2 GCAGGAGTCA 1 GCAGGATCGG 5 GCAGGATTGG 1 GCAGGCACTC 1 GCAGGCATCA 1 GCAGGCCCGG 1 GCAGGCCTAA 1 GCAGGCCTCA 3 GCAGGCCTGC 4 GCAGGCGCCT 1 GCAGGCTGCA 1 GCAGGCTGTG 1 GCAGGCTTAG 1 GCAGGGAGGG 3 GCAGGGATGT 1 GCAGGGCCTC 165 GCAGGGCCTT 1 GCAGGGCTTC 1 GCAGGGGTTA 2 GCAGGGTCTC 1 GCAGGGTGGA 1 GCAGGGTGGG 1 GCAGGTACAC 1 GCAGGTGCCT 1 GCAGGTGGCT 1 GCAGGTGGTT 7 GCAGGTGTAA 2 GCAGGTTGAG 1 GCAGTACGGC 1 GCAGTAGGAA 1 GCAGTAGTCC 1 GCAGTCCATC 1 GCAGTCCCAG 1 GCAGTCGCTC 1 GCAGTCGCTT 7 GCAGTCTAGC 1 GCAGTCTCCA 1 GCAGTGAACG 1 GCAGTGGAAA 1 GCAGTGGCCT 7 GCAGTGGGGA 1 GCAGTTATCA 1 GCAGTTATCC 1 GCAGTTCAAG 1 GCAGTTGGAT 2 GCATAAAAAA 1 GCATAATAGG 16 GCATAATTAT 1 GCATAATTGG 1 GCATACACTG 1 GCATACCTGC 3 GCATACTTGC 1 GCATAGATAG 1 GCATAGCTGC 1 GCATAGGCTG 9 GCATAGTTCT 4 GCATAGTTGG 2 GCATATGAGC 1 GCATATTAAA 1 GCATATTAAT 1 GCATATTTAC 1 GCATCAACCA 1 GCATCAAGCC 1 GCATCAAGGC 1 GCATCAGACT 1 GCATCAGAGA 1 GCATCAGGTC 2 GCATCCAGAA 1 GCATCCATCC 2 GCATCCGGAG 3 GCATCCGGCC 1 GCATCCGGGG 1 GCATCCTCAA 1 GCATCCTCAG 1 GCATCCTGTT 1 GCATCTAGAA 1 GCATCTGGGA 2 GCATCTTCAA 1 GCATTAAAAA 1 GCATTAGCCA 2 GCATTATAGG 1 GCATTCTCCG 1 GCATTCTTGT 1 GCATTGAAGT 1 GCATTGAATT 1 GCATTGAGTG 1 GCATTGATAA 1 GCATTGATGT 1 GCATTGGGTA 1 GCATTTAAAA 1 GCATTTAAAT 2 GCATTTACCA 2 GCATTTCAGG 1 GCATTTCCAA 1 GCATTTGACA 5 GCATTTTTAA 1 GCCAAAAAAA 2 GCCAAAACAG 1 GCCAAAAGGT 1 GCCAAAATTA 1 GCCAAACGTA 2 GCCAAAGCTG 1 GCCAAAGTCC 1 GCCAAATCGC 1 GCCAAATGCT 1 GCCAACACGG 1 GCCAACAGTA 1 GCCAACATCG 1 GCCAACCAGG 1 GCCAACCCCT 1 GCCAACCTCC 12 GCCAACTCCT 1 GCCAAGAAAG 1 GCCAAGAATC 1 GCCAAGACAC 2 GCCAAGATGC 3 GCCAAGCAAA 1 GCCAAGGAGT 1 GCCAAGGGCC 1 GCCAAGGGGC 7 GCCAAGGTAC 1 GCCAAGGTGC 1 GCCAAGTCGG 1 GCCAAGTTTG 3 GCCAATAGTC 1 GCCAATAGTT 1 GCCAATATGG 1 GCCAATCCCG 1 GCCAATGATA 1 GCCAATGTGG 1 GCCACAACCT 1 GCCACACCCC 2 GCCACAGCCA 2 GCCACATACT 9 GCCACCAAGT 5 GCCACCAGGC 1 GCCACCAGGT 1 GCCACCATCC 1 GCCACCCACC 1 GCCACCCCGT 3 GCCACCCTGC 1 GCCACCGTCC 3 GCCACCGTCG 1 GCCACCTCAG 1 GCCACCTCCG 1 GCCACCTGGA 1 GCCACGACTG 10 GCCACGAGGA 1 GCCACGGACC 2 GCCACGTGGA 16 GCCACGTTGT 1 GCCACTAAAT 2 GCCACTACCC 2 GCCACTCTTG 4 GCCACTGACC 1 GCCACTGTCC 1 GCCAGACACC 9 GCCAGACCCC 1 GCCAGAGAAT 1 GCCAGATGGG 1 GCCAGATGGT 1 GCCAGATTGA 2 GCCAGCAAAA 1 GCCAGCAAAT 2 GCCAGCAAGA 3 GCCAGCACGC 1 GCCAGCCAAC 2 GCCAGCCATA 1 GCCAGCCCAG 2 GCCAGCGGCC 1 GCCAGCGTCA 2 GCCAGCTGAC 1 GCCAGCTGTG 1 GCCAGGAAGC 9 GCCAGGAAGT 1 GCCAGGAGAT 1 GCCAGGAGCA 1 GCCAGGAGCT 9 GCCAGGATGG 2 GCCAGGATTT 1 GCCAGGCGCA 2 GCCAGGCGTG 1 GCCAGGCTGC 1 GCCAGGCTGG 2 GCCAGGGCCA 3 GCCAGGGCGG 4 GCCAGGGCTC 2 GCCAGGGGAG 1 GCCAGGTCAC 4 GCCAGGTCCT 1 GCCAGGTCTC 2 GCCAGGTGGA 3 GCCAGGTTAC 2 GCCAGGTTGA 1 GCCAGGTTGC 5 GCCAGTAGTC 1 GCCAGTCAAA 1 GCCAGTCCTG 1 GCCAGTGAAA 1 GCCAGTGATT 1 GCCAGTGCCC 2 GCCAGTGGCA 1 GCCAGTTGGG 1 GCCAGTTGTG 1 GCCAGTTTTC 1 GCCATAGCCC 2 GCCATATTAA 1 GCCATATTAT 2 GCCATCAAAG 1 GCCATCAACG 2 GCCATCACCA 1 GCCATCAGGG 1 GCCATCCAGA 1 GCCATCCAGT 1 GCCATCCCCT 22 GCCATCCTCC 13 GCCATCGACC 1 GCCATCGTCA 1 GCCATCTCAT 1 GCCATCTTGG 1 GCCATTAGCA 1 GCCATTATCG 1 GCCATTCGGT 1 GCCATTGCGG 1 GCCATTGGCC 1 GCCCAAGATT 1 GCCCAAGTCA 3 GCCCAAGTTA 1 GCCCAATCCA 1 GCCCACAAGT 3 GCCCACACCT 1 GCCCACAGAC 1 GCCCACAGCA 1 GCCCACAGTA 1 GCCCACATCC 1 GCCCACATTA 2 GCCCACCAGT 1 GCCCACGAGT 1 GCCCACGATG 1 GCCCACGTCA 8 GCCCACGTCC 1 GCCCACTGCC 1 GCCCACTGCT 2 GCCCACTGGC 1 GCCCAGAAAA 1 GCCCAGAAGA 1 GCCCAGATAA 1 GCCCAGCAGG 4 GCCCAGCCCC 1 GCCCAGCGCA 1 GCCCAGCGGC 25 GCCCAGCGGG 1 GCCCAGCTGG 1 GCCCAGGAGT 1 GCCCAGGCCA 1 GCCCAGGGAA 1 GCCCAGGGAC 4 GCCCAGGGAG 1 GCCCAGGGCA 1 GCCCAGGGCC 44 GCCCAGGTAA 1 GCCCAGGTAC 2 GCCCAGGTCA 447 GCCCAGGTCC 2 GCCCAGGTCG 2 GCCCAGGTCT 1 GCCCAGGTGA 1 GCCCAGTCAC 2 GCCCATCAAC 1 GCCCATCAGG 2 GCCCATCTTG 1 GCCCATTGAA 1 GCCCATTGGA 4 GCCCCAACTG 1 GCCCCAAGAT 2 GCCCCACAGC 5 GCCCCAGAAT 1 GCCCCAGCAC 2 GCCCCAGCAG 1 GCCCCAGCGA 3 GCCCCAGGTC 3 GCCCCAGTCC 1 GCCCCATCAA 1 GCCCCATCCC 4 GCCCCCAAAC 1 GCCCCCAACC 8 GCCCCCACTC 1 GCCCCCAGCC 1 GCCCCCATAC 1 GCCCCCATTG 1 GCCCCCCCGG 1 GCCCCCCCGT 2 GCCCCCCTGC 10 GCCCCCGAGA 4 GCCCCCGAGC 1 GCCCCCTACA 1 GCCCCCTCAT 2 GCCCCCTGCC 1 GCCCCCTGTA 1 GCCCCCTTAC 1 GCCCCGAGCC 1 GCCCCGCCCA 1 GCCCCGCCCT 7 GCCCCGGAAA 4 GCCCCGGGAT 1 GCCCCGGTCA 1 GCCCCTCCAG 2 GCCCCTCCGG 11 GCCCCTCTGC 1 GCCCCTGCCC 1 GCCCCTGCCT 11 GCCCCTGCGC 2 GCCCCTGCGG 1 GCCCCTGGAT 1 GCCCCTGTGA 1 GCCCCTGTGC 3 GCCCCTTTGT 1 GCCCGAGCCT 1 GCCCGATACG 2 GCCCGATCTT 1 GCCCGCAAGC 3 GCCCGCAGGG 2 GCCCGCAGGT 1 GCCCGCCTTG 2 GCCCGCGACT 1 GCCCGCGCTG 1 GCCCGCGGGA 2 GCCCGCGGGG 1 GCCCGGAGCG 1 GCCCGGGTCA 1 GCCCGGTGCC 2 GCCCGTAAAA 1 GCCCGTAAGC 1 GCCCGTGCCA 1 GCCCGTTCTC 1 GCCCTAAACA 1 GCCCTAGGCA 1 GCCCTAGTCA 1 GCCCTCACAG 1 GCCCTCAGCT 1 GCCCTCCAGC 1 GCCCTCCGGA 1 GCCCTCGGAG 7 GCCCTCGGCC 1 GCCCTCGGGG 1 GCCCTCTCGC 1 GCCCTCTGCC 1 GCCCTCTTTG 1 GCCCTGAAAC 3 GCCCTGAACA 1 GCCCTGAAGG 1 GCCCTGACCA 6 GCCCTGACTT 1 GCCCTGAGCG 4 GCCCTGAGGT 1 GCCCTGCCTC 1 GCCCTGCTCA 1 GCCCTGCTGA 1 GCCCTGGTGT 1 GCCCTGTCCA 1 GCCCTGTCCC 1 GCCCTGTTTT 1 GCCCTTATTA 1 GCCCTTCAAA 1 GCCCTTCCCA 1 GCCCTTCCTG 2 GCCCTTCTCC 1 GCCCTTGCAG 1 GCCCTTGGCC 1 GCCGAACCCC 2 GCCGAAGCAG 1 GCCGACAAGG 1 GCCGACAGCG 1 GCCGACCAGG 47 GCCGACGAAA 2 GCCGACGCCA 2 GCCGACTCCT 1 GCCGAGACCA 8 GCCGAGCACA 1 GCCGAGCAGA 2 GCCGAGCCAG 2 GCCGAGCCGC 3 GCCGAGCGTG 1 GCCGAGCTCC 1 GCCGAGCTGG 1 GCCGAGGAAA 1 GCCGAGGAAG 70 GCCGAGGCCT 1 GCCGAGGGAA 1 GCCGATCCTC 2 GCCGATGCCA 1 GCCGATTAAT 3 GCCGCACCCC 1 GCCGCACCGT 1 GCCGCAGCCC 1 GCCGCCATCA 8 GCCGCCATCT 5 GCCGCCCAGG 1 GCCGCCCTCA 1 GCCGCCCTGC 22 GCCGCCGCCG 3 GCCGCCGGGC 1 GCCGCCGTGC 1 GCCGCCTGCC 2 GCCGCCTGTG 1 GCCGCCTTCC 1 GCCGCGCCCG 1 GCCGCTCTCT 1 GCCGCTGCCA 1 GCCGGAAGGC 1 GCCGGAGGGC 5 GCCGGAGTTG 1 GCCGGCACCT 1 GCCGGCAGAG 1 GCCGGCCCGG 1 GCCGGCCGGA 3 GCCGGCCTGG 1 GCCGGCCTTT 3 GCCGGCGCTC 3 GCCGGCGTTC 1 GCCGGCTCTT 1 GCCGGCTGTC 2 GCCGGGACTA 1 GCCGGGAGCC 1 GCCGGGCACG 4 GCCGGGCCCT 1 GCCGGGCGCA 2 GCCGGGCGCG 1 GCCGGGGAAG 1 GCCGGGGTGG 1 GCCGGGGTGT 1 GCCGGGTGGA 1 GCCGGGTGGC 1 GCCGGGTGGG 149 GCCGGGTGGT 1 GCCGGGTTGG 1 GCCGGTTGGG 2 GCCGTACCAT 1 GCCGTAGTCC 1 GCCGTCGGAG 5 GCCGTCTTTG 1 GCCGTGAACT 1 GCCGTGAGCA 3 GCCGTGCCAG 1 GCCGTGGAGA 23 GCCGTGGGTC 1 GCCGTGTCCG 46 GCCGTTATGA 1 GCCGTTCACC 1 GCCGTTCCAC 1 GCCGTTCTTA 6 GCCGTTGGCA 1 GCCTACGCCT 1 GCCTACTGAG 1 GCCTAGATAG 5 GCCTAGCAGT 1 GCCTAGGTCA 1 GCCTATAAAG 1 GCCTATCATC 1 GCCTATCTAC 1 GCCTATGGTC 1 GCCTATTAAG 1 GCCTCAAAGC 1 GCCTCAGAGT 1 GCCTCAGCCA 1 GCCTCAGGGA 1 GCCTCAGTTC 1 GCCTCCAAGA 1 GCCTCCACGA 1 GCCTCCAGGG 4 GCCTCCCAGG 5 GCCTCCTAAT 1 GCCTCCTCCC 19 GCCTCCTCCT 1 GCCTCCTGAG 4 GCCTCCTTTG 2 GCCTCGATCT 1 GCCTCGGCTG 1 GCCTCGGTGC 1 GCCTCTCCCT 1 GCCTCTGCAT 1 GCCTCTGCCA 4 GCCTCTGCTA 1 GCCTCTGTCA 1 GCCTCTGTCT 2 GCCTCTTCAT 1 GCCTCTTCCC 5 GCCTCTTGAA 3 GCCTCTTGTG 2 GCCTGAAAAA 1 GCCTGAGCCT 2 GCCTGAGTGC 1 GCCTGATACT 1 GCCTGATTTT 6 GCCTGCAATC 1 GCCTGCACCC 6 GCCTGCAGGT 1 GCCTGCAGTC 42 GCCTGCAGTT 2 GCCTGCCCTA 1 GCCTGCGAGG 3 GCCTGCGATC 1 GCCTGCTAAA 1 GCCTGCTCCC 4 GCCTGCTGGG 13 GCCTGGAAAG 1 GCCTGGAAAT 1 GCCTGGACTG 1 GCCTGGAGGT 3 GCCTGGCACA 1 GCCTGGCCAT 34 GCCTGGCCCC 1 GCCTGGCGCT 2 GCCTGGCTCG 1 GCCTGGCTGT 1 GCCTGGGAAG 1 GCCTGGGACC 1 GCCTGGGACT 12 GCCTGGGCCG 1 GCCTGGGCGA 1 GCCTGGGCTG 5 GCCTGGTACT 1 GCCTGGTCCT 6 GCCTGGTGAC 3 GCCTGGTTCT 1 GCCTGTAATG 1 GCCTGTACAA 2 GCCTGTATGA 39 GCCTGTCATC 1 GCCTGTCCTG 1 GCCTGTCTCC 1 GCCTGTGGAT 1 GCCTGTTAAA 2 GCCTGTTTGT 1 GCCTGTTTTC 1 GCCTTAAAAA 1 GCCTTAACAA 1 GCCTTACAAC 1 GCCTTATAGT 1 GCCTTATGCT 1 GCCTTCCAAT 17 GCCTTCTCCC 1 GCCTTCTGCT 4 GCCTTGAAAA 2 GCCTTGATCT 3 GCCTTGCACC 3 GCCTTGCGCC 1 GCCTTGGACG 1 GCCTTGGAGA 1 GCCTTGGGTT 1 GCCTTGGTAA 3 GCCTTGTAAG 1 GCCTTTATCA 1 GCCTTTCCCT 3 GCCTTTCTAA 1 GCCTTTGCCT 1 GCCTTTTCTT 1 GCGAAAAAAA 1 GCGAAAATCG 1 GCGAAACACC 1 GCGAAACACT 5 GCGAAACCCA 1 GCGAAACCCC 46 GCGAAACCCG 1 GCGAAACCCT 566 GCGAAACCGC 1 GCGAAACCTC 12 GCGAAACCTG 8 GCGAAACCTT 6 GCGAAACGCC 1 GCGAAACTCG 9 GCGAAACTGT 1 GCGAAATCCC 2 GCGAAATCCG 1 GCGAAATCCT 1 GCGAACACGA 1 GCGAACACTG 1 GCGAACCCCG 1 GCGAACCCTG 10 GCGAACCTTG 1 GCGAAGAAGG 1 GCGAAGCCCC 1 GCGAAGCCCT 2 GCGAAGCTCC 1 GCGAAGGCTC 1 GCGAAGTTCT 1 GCGAATCCCC 1 GCGAATTCCC 1 GCGACAAAAT 1 GCGACAACTC 1 GCGACAAGGC 1 GCGACACCAG 2 GCGACACCCT 1 GCGACACGAG 1 GCGACACTCC 1 GCGACAGAGC 1 GCGACAGAGT 1 GCGACAGCTC 10 GCGACCGTCA 120 GCGACCTCAC 1 GCGACGAGCG 1 GCGACGAGGC 62 GCGACGCTGC 1 GCGACGGCCG 7 GCGACGGCGC 1 GCGACGGTGA 2 GCGACTGTCA 1 GCGACTTCAG 1 GCGACTTGGT 5 GCGAGAATCC 1 GCGAGACACT 1 GCGAGACCCC 6 GCGAGACCCT 2 GCGAGACCTC 1 GCGAGACCTT 2 GCGAGACTCA 1 GCGAGACTCC 1 GCGAGACTCT 1 GCGAGATCCT 1 GCGAGCACGA 3 GCGAGCAGCG 1 GCGAGCCCAA 1 GCGAGCTGAA 1 GCGAGTACCA 1 GCGAGTGGCT 1 GCGATACCCT 1 GCGATAGCCT 1 GCGATCACCC 1 GCGATCGTCA 1 GCGATGGAGG 1 GCGATGGCCG 1 GCGATGTCTC 1 GCGATTCCGG 3 GCGCAACCAA 1 GCGCAAGGCA 2 GCGCAATCCC 1 GCGCACACAG 1 GCGCACCGCT 1 GCGCACCGGA 2 GCGCACGCTT 2 GCGCAGAGGC 1 GCGCAGAGGT 16 GCGCAGGGAG 1 GCGCAGGGCC 1 GCGCAGGTCA 1 GCGCCACTGC 2 GCGCCAGGCG 1 GCGCCCCCCT 1 GCGCCCCCGC 2 GCGCCGCCCC 3 GCGCCGTCAA 1 GCGCCGTCAC 1 GCGCCTAGAG 1 GCGCCTCAAC 1 GCGCCTCAGC 1 GCGCCTCCGC 1 GCGCCTGCAG 1 GCGCCTGCCA 1 GCGCCTGGCC 2 GCGCCTGTGC 1 GCGCGAGGCG 2 GCGCGCTGGC 1 GCGCGGACGA 1 GCGCGGATTC 1 GCGCGGCTCC 1 GCGCGGCTGC 1 GCGCGGGCGA 5 GCGCGTCTGC 1 GCGCGTGCTG 2 GCGCGTGCTT 1 GCGCTAGCTC 1 GCGCTCCTGT 1 GCGCTCTCGA 1 GCGCTGCTAC 1 GCGCTGCTTT 2 GCGCTGGAGT 5 GCGCTGGTAC 1 GCGCTGTCTC 1 GCGCTGTGCG 1 GCGCTTCCCA 1 GCGGAACCCT 4 GCGGAACGCA 1 GCGGAACTGT 1 GCGGAAGAGT 1 GCGGAAGGCA 1 GCGGACACTC 2 GCGGACAGCA 2 GCGGACCTCA 1 GCGGACGAGG 3 GCGGAGAGAG 4 GCGGAGAGCA 1 GCGGAGCTGC 1 GCGGAGGTGC 1 GCGGAGGTGG 14 GCGGATTAGA 1 GCGGCAAGCA 1 GCGGCAAGGG 1 GCGGCACGCT 1 GCGGCACGTG 2 GCGGCAGAGC 1 GCGGCAGGTC 1 GCGGCAGGTG 1 GCGGCCCGAT 1 GCGGCCCGTA 1 GCGGCCCTGG 1 GCGGCCGCCA 1 GCGGCCGGAA 1 GCGGCCTAAC 1 GCGGCCTCAG 1 GCGGCGACAA 1 GCGGCGACTA 1 GCGGCGCCGC 3 GCGGCGCTGC 16 GCGGCGGCGA 4 GCGGCGGCGC 2 GCGGCGGCGG 1 GCGGCGGGCA 1 GCGGCGGGTG 1 GCGGCGTGGA 1 GCGGCGTGTG 1 GCGGCTACTC 1 GCGGCTCACA 1 GCGGCTGACA 2 GCGGCTGCCG 1 GCGGCTGCGC 1 GCGGCTGGCA 1 GCGGCTGTCA 1 GCGGCTTTCC 2 GCGGGACCGG 1 GCGGGAGGGC 3 GCGGGCATCG 1 GCGGGCATCT 1 GCGGGCCTCA 2 GCGGGCGCCC 1 GCGGGCGCCT 1 GCGGGCGCGG 4 GCGGGCGGAG 1 GCGGGGCAGG 1 GCGGGGCGAG 2 GCGGGGCTCC 1 GCGGGGTACC 5 GCGGGGTGGA 3 GCGGGTGTGG 2 GCGGTAAAAA 1 GCGGTCAAAA 1 GCGGTGAGCG 1 GCGGTGAGGT 9 GCGGTGGGCA 1 GCGGTGGGTT 2 GCGGTGTGTG 1 GCGGTTCACA 1 GCGGTTGTGG 2 GCGTAACCCT 1 GCGTAATGGG 2 GCGTATGCCG 1 GCGTCCCCGT 1 GCGTCGCTCG 1 GCGTCGGGTG 1 GCGTCGGTCA 1 GCGTCGGTGC 1 GCGTCTGGGG 1 GCGTGAACCC 1 GCGTGAATGT 1 GCGTGAGTGC 2 GCGTGATCCT 7 GCGTGATGCT 1 GCGTGCCCAG 1 GCGTGCGCGG 1 GCGTGCTCTC 10 GCGTGCTTGT 1 GCGTGGAAAA 1 GCGTGGAAGC 1 GCGTGGCTCA 1 GCGTGGTCAA 1 GCGTGTCCGC 1 GCGTGTCGGC 1 GCGTGTTACA 1 GCGTGTTCAG 1 GCGTTCAATA 1 GCGTTGGCTT 1 GCGTTTTTTA 1 GCTAAAAAAA 5 GCTAAAAACA 1 GCTAAAACAT 1 GCTAAACAGG 1 GCTAAACCCT 2 GCTAAACCGT 1 GCTAAACTGC 2 GCTAAAGTAG 1 GCTAAATTAC 1 GCTAACAAAG 1 GCTAACACGG 1 GCTAACTATT 1 GCTAAGAGGG 1 GCTAAGATGA 1 GCTAAGGAGA 10 GCTAAGGTGG 1 GCTAATAAAT 1 GCTACACACA 1 GCTACAGTTG 2 GCTACCAATG 5 GCTACCTCTG 1 GCTACGAATC 1 GCTACTATTA 1 GCTACTCTTT 1 GCTACTGCTG 1 GCTACTTGTG 1 GCTACTTTCT 1 GCTAGACCCT 1 GCTAGAGATA 1 GCTAGCCAAT 1 GCTAGGAAAC 2 GCTAGGAATA 2 GCTAGGCCAA 1 GCTAGGCCAC 1 GCTAGGCCGC 1 GCTAGGCCGG 3 GCTAGGCTTA 1 GCTAGGGCTT 1 GCTAGGTATT 1 GCTAGGTCTG 4 GCTAGGTTAT 1 GCTAGGTTTA 22 GCTAGTCTAT 1 GCTAGTGAGG 1 GCTAGTGATG 2 GCTATACGGG 1 GCTATCGTCG 1 GCTATCTCAG 1 GCTATGAAGA 1 GCTATTATGA 1 GCTATTTGAA 2 GCTCAACTGG 1 GCTCAAGCCT 1 GCTCAATGGT 1 GCTCACACCA 1 GCTCACAGCA 1 GCTCACATTG 1 GCTCACCCCT 1 GCTCACGTCC 1 GCTCACGTCG 2 GCTCACTGCA 16 GCTCACTGGT 1 GCTCACTGTA 2 GCTCAGACAC 1 GCTCAGAGCT 1 GCTCAGATCG 5 GCTCAGCGAG 1 GCTCAGCTGG 15 GCTCAGCTTC 2 GCTCAGGAAG 1 GCTCAGGCAA 1 GCTCAGGCCA 1 GCTCAGGTCA 1 GCTCAGGTCT 3 GCTCAGTAGG 1 GCTCAGTCGC 1 GCTCAGTGCC 1 GCTCATAATC 1 GCTCATACCT 1 GCTCATAGTG 1 GCTCATAGTT 1 GCTCATTGCA 1 GCTCCAAGCG 1 GCTCCACTGG 2 GCTCCAGACA 1 GCTCCAGCCA 4 GCTCCATTTG 1 GCTCCCAGAC 13 GCTCCCCTTC 1 GCTCCCGAGT 1 GCTCCCGGAC 2 GCTCCCTACT 1 GCTCCGAGCG 17 GCTCCGCGGG 2 GCTCCGGTGT 2 GCTCCTAAAG 2 GCTCCTCCGG 1 GCTCCTGACT 1 GCTCCTGAGC 1 GCTCCTGGAG 1 GCTCCTGGCT 1 GCTCCTGTAT 1 GCTCCTGTTT 1 GCTCCTTGAA 2 GCTCGGAGAA 2 GCTCGGATTT 1 GCTCGGCCGC 1 GCTCGGGATG 1 GCTCGGGGTC 1 GCTCGGGTCT 1 GCTCGTGGTC 1 GCTCTAAAAT 1 GCTCTACAAG 1 GCTCTCCCCC 1 GCTCTCCCCT 1 GCTCTCCTGA 15 GCTCTCGGAG 1 GCTCTCGGCG 1 GCTCTCTATG 5 GCTCTCTGGA 1 GCTCTCTTCT 1 GCTCTCTTGC 1 GCTCTGAAGA 1 GCTCTGAGCA 1 GCTCTGCCAG 2 GCTCTGCCTC 8 GCTCTGGCCG 2 GCTCTGGGCC 1 GCTCTGGGCG 8 GCTCTGGTTC 1 GCTCTGGTTT 1 GCTCTGTGAA 3 GCTCTGTGCC 1 GCTCTTAAAT 1 GCTCTTAGAG 1 GCTCTTAGTG 1 GCTCTTCCCA 1 GCTCTTCCCC 21 GCTCTTCTGA 1 GCTCTTGGCA 4 GCTGAAACTT 3 GCTGAAAGGG 1 GCTGAAATCA 1 GCTGAACCGC 1 GCTGAACCGG 1 GCTGAACGCG 1 GCTGAAGAAA 1 GCTGAAGATG 1 GCTGAAGCCT 1 GCTGAAGGAA 2 GCTGAAGGGG 1 GCTGAAGTAT 1 GCTGAAGTTG 1 GCTGACACTG 1 GCTGACCAGG 1 GCTGACCGAT 1 GCTGACGGGC 1 GCTGACTCAG 3 GCTGACTGGC 2 GCTGACTTGC 1 GCTGAGAGGC 1 GCTGAGCAGC 1 GCTGAGCAGG 1 GCTGAGCTGG 2 GCTGAGTCCT 1 GCTGAGTGCA 1 GCTGATCTAG 1 GCTGATGGTT 1 GCTGATTAAA 1 GCTGATTCTC 1 GCTGATTGGC 1 GCTGCAAAGG 1 GCTGCAATCC 1 GCTGCAATCG 1 GCTGCACCGG 1 GCTGCACGAC 1 GCTGCACTCT 1 GCTGCAGACA 1 GCTGCAGCTG 1 GCTGCCAGCC 1 GCTGCCAGCT 1 GCTGCCAGTG 1 GCTGCCCGGC 4 GCTGCCCTCA 1 GCTGCCCTGA 5 GCTGCCCTTG 6 GCTGCCGCAG 1 GCTGCCGCCG 1 GCTGCCGCGG 1 GCTGCCGGCA 1 GCTGCCGGGC 1 GCTGCCTACG 1 GCTGCCTGTA 3 GCTGCCTGTG 1 GCTGCGCAGA 2 GCTGCGGCCG 7 GCTGCGGCTC 1 GCTGCGGTCC 1 GCTGCTCCCT 3 GCTGCTGCCT 5 GCTGCTGCTC 1 GCTGCTGGCT 1 GCTGCTGGTG 4 GCTGCTGTTT 1 GCTGGAACTG 1 GCTGGAAGCC 1 GCTGGAATTG 1 GCTGGACACA 1 GCTGGACCTA 1 GCTGGACCTG 1 GCTGGACTAG 1 GCTGGAGAGT 2 GCTGGAGCCA 1 GCTGGAGCGC 11 GCTGGAGCTA 2 GCTGGAGGAT 2 GCTGGAGGCA 1 GCTGGAGGGC 1 GCTGGAGTCT 1 GCTGGATAAA 1 GCTGGATCCA 1 GCTGGATGCA 6 GCTGGATTAT 1 GCTGGCAAGA 1 GCTGGCACAT 14 GCTGGCAGAG 1 GCTGGCAGGC 2 GCTGGCAGTC 1 GCTGGCCCCG 11 GCTGGCCTGA 1 GCTGGCCTTG 11 GCTGGCTGGC 9 GCTGGGAACC 3 GCTGGGACAG 1 GCTGGGACTA 2 GCTGGGACTG 1 GCTGGGATCA 1 GCTGGGATCC 1 GCTGGGCACA 1 GCTGGGCCCA 1 GCTGGGCCCC 1 GCTGGGCGCA 1 GCTGGGCTAA 1 GCTGGGGACT 3 GCTGGGGAGG 1 GCTGGGGCTA 1 GCTGGGGGAG 1 GCTGGGGTGG 2 GCTGGGGTGT 1 GCTGGGTAAC 1 GCTGGGTAGG 1 GCTGGGTCCC 1 GCTGGGTGCA 3 GCTGGGTGCG 1 GCTGGTCCCA 1 GCTGGTCTGA 2 GCTGGTCTGC 1 GCTGGTGCGC 1 GCTGGTGGCT 1 GCTGGTGGTT 1 GCTGGTGTTG 1 GCTGTAATCC 1 GCTGTACAAA 1 GCTGTAGACA 5 GCTGTAGTCC 2 GCTGTAGTGC 1 GCTGTCAGAT 1 GCTGTCAGCA 1 GCTGTCATCA 5 GCTGTCCTTG 1 GCTGTCGGAG 1 GCTGTGCAGG 2 GCTGTGCCTG 42 GCTGTGCTCG 2 GCTGTGCTGG 2 GCTGTGCTTC 1 GCTGTGGATA 1 GCTGTGGCCA 3 GCTGTGGGAA 1 GCTGTGGTCC 1 GCTGTGTGGG 1 GCTGTGTGTG 2 GCTGTTCAGA 1 GCTGTTCCCC 1 GCTGTTGCGC 15 GCTGTTGCGG 1 GCTGTTTCTG 1 GCTGTTTGCA 1 GCTTAAATTA 1 GCTTAACCTG 2 GCTTAAGAAA 1 GCTTAAGAAG 1 GCTTAATAGT 1 GCTTAATTTG 1 GCTTACACCC 1 GCTTACACTA 2 GCTTACCAAC 1 GCTTACCAAG 2 GCTTACCTCT 1 GCTTAGAAGT 3 GCTTAGCAAT 1 GCTTAGTTGG 1 GCTTATAAAA 3 GCTTATAGTC 1 GCTTATGGTC 1 GCTTATGTGG 1 GCTTATGTTA 1 GCTTCACAAA 1 GCTTCACTCG 2 GCTTCACTTC 1 GCTTCAGCCG 1 GCTTCAGCTC 1 GCTTCAGTGG 1 GCTTCATCTG 1 GCTTCCACAC 1 GCTTCCATCT 7 GCTTCCCCAC 2 GCTTCCCCCC 1 GCTTCCCCTC 1 GCTTCCGAGG 1 GCTTCCGGCC 1 GCTTCCTCTG 2 GCTTCCTGCA 1 GCTTCGTTAC 2 GCTTCTAAGC 2 GCTTCTCTCA 1 GCTTCTCTCG 1 GCTTCTGTTT 1 GCTTCTTGTG 1 GCTTGAACTC 2 GCTTGAATAA 4 GCTTGAATTA 1 GCTTGACACA 1 GCTTGAGTTG 1 GCTTGCCTCA 1 GCTTGCTGTT 1 GCTTGGAGTG 1 GCTTGGATCT 1 GCTTGGCAGC 1 GCTTGGCAGT 1 GCTTGGCTCC 7 GCTTGGGAAT 1 GCTTGGGGAC 1 GCTTGGGGAT 8 GCTTGTCACT 1 GCTTGTTAGA 1 GCTTGTTTGT 1 GCTTTACTTG 1 GCTTTACTTT 5 GCTTTAGTAA 1 GCTTTATGTG 2 GCTTTATTGA 1 GCTTTATTTA 1 GCTTTATTTG 84 GCTTTCACTG 1 GCTTTCATTG 3 GCTTTCCTGA 1 GCTTTCTAAT 1 GCTTTCTAGA 1 GCTTTCTCAC 5 GCTTTCTTCC 1 GCTTTCTTTG 1 GCTTTGATGA 3 GCTTTGCTTT 13 GCTTTGGCTG 3 GCTTTGGGTG 2 GCTTTGTTTT 2 GCTTTTAAGG 8 GCTTTTATGG 1 GCTTTTATTT 1 GCTTTTCAGA 1 GCTTTTCCTG 2 GCTTTTGCAA 1 GCTTTTTAGA 3 GCTTTTTCAA 1 GCTTTTTCCC 1 GCTTTTTTTG 1 GCTTTTTTTT 1 GGAAAAAAAA 5 GGAAAAAAAC 1 GGAAAAACAG 1 GGAAAAATCA 1 GGAAAACAGA 68 GGAAAACCCC 1 GGAAAACTCT 1 GGAAAAGGAG 1 GGAAAAGTGA 1 GGAAAAGTGG 11 GGAAAATTGT 1 GGAAACAGAA 2 GGAAACAGAG 1 GGAAACAGAT 1 GGAAACAGTG 1 GGAAACCAGA 3 GGAAACCCCA 1 GGAAACCCTG 2 GGAAACCTTA 1 GGAAACTGAA 1 GGAAACTGAG 1 GGAAACTGAT 1 GGAAAGAAGG 1 GGAAAGACCC 1 GGAAAGATTC 1 GGAAAGCAGA 2 GGAAAGCCAG 1 GGAAAGCTGC 1 GGAAAGCTGG 2 GGAAAGGACA 1 GGAAAGGGAA 1 GGAAAGTGAC 2 GGAAATACAA 1 GGAAATATGA 1 GGAAATGGGC 1 GGAAATGTGC 1 GGAACAAAAT 1 GGAACAAACA 53 GGAACAAACG 1 GGAACAAAGG 1 GGAACAAATG 4 GGAACACACA 1 GGAACAGAGA 1 GGAACAGCTT 1 GGAACAGGGG 13 GGAACCAGTG 1 GGAACCATCA 1 GGAACCCGTG 1 GGAACCCTTC 1 GGAACCCTTT 1 GGAACCGTGA 2 GGAACCTGGT 1 GGAACGCTTG 1 GGAACGGATG 4 GGAACTGGAA 1 GGAACTGTAA 1 GGAACTGTGA 84 GGAACTGTGG 1 GGAACTTTGA 1 GGAACTTTTA 1 GGAAGAAAAA 1 GGAAGAAGAT 1 GGAAGACAGA 1 GGAAGAGAAG 2 GGAAGAGCAC 11 GGAAGAGGCC 1 GGAAGAGGGT 2 GGAAGAGGTC 1 GGAAGAGTAG 1 GGAAGATCTT 1 GGAAGATGTT 1 GGAAGATTGG 1 GGAAGCAAAG 1 GGAAGCAATT 1 GGAAGCACGG 6 GGAAGCAGTT 1 GGAAGCCACG 1 GGAAGCCCCA 1 GGAAGCCTCA 1 GGAAGCTATG 1 GGAAGCTGAG 3 GGAAGCTGGA 1 GGAAGGAACA 2 GGAAGGACAG 8 GGAAGGAGCA 1 GGAAGGATCC 1 GGAAGGGAGG 1 GGAAGGGCAG 1 GGAAGGGGAG 4 GGAAGGGGGA 7 GGAAGGTTTA 10 GGAAGTCAAG 1 GGAAGTGCAA 1 GGAAGTGCCC 1 GGAAGTGGAT 1 GGAAGTGGGG 2 GGAAGTTAGG 2 GGAAGTTTCG 1 GGAAGTTTGG 1 GGAATAAATT 1 GGAATAACGC 1 GGAATAAGGA 1 GGAATAATTT 1 GGAATACAAA 1 GGAATACACA 1 GGAATACGCA 1 GGAATAGTTA 1 GGAATATCTG 1 GGAATCACTT 1 GGAATCGCTT 1 GGAATCGTGG 1 GGAATGAGAA 2 GGAATGCACG 1 GGAATGCTTC 1 GGAATGGGGA 1 GGAATGTACG 18 GGAATGTTAC 1 GGAATGTTGG 1 GGAATGTTTT 1 GGAATTAGCT 1 GGAATTCACT 1 GGAATTGACT 1 GGAATTGCAG 1 GGAATTGGCT 1 GGAATTTCTA 1 GGAATTTGCA 1 GGACAAACAG 1 GGACAAAGAG 1 GGACAAGAGA 1 GGACAGAACC 3 GGACAGAGAC 1 GGACAGAGAG 1 GGACAGCTCA 1 GGACAGGGCA 1 GGACAGGGGT 1 GGACAGTTGG 1 GGACATAACT 1 GGACATTAGG 2 GGACATTGTT 1 GGACCAACCC 1 GGACCAAGAT 2 GGACCACCGC 1 GGACCACTGA 39 GGACCAGAAG 1 GGACCAGCCA 1 GGACCCACAA 1 GGACCCTTAT 1 GGACCTATGC 1 GGACCTGCGC 1 GGACCTTGAG 1 GGACGAGGGT 1 GGACGGAAGT 1 GGACGGCAGG 1 GGACGGGCGT 1 GGACTAAATG 14 GGACTCCTCC 1 GGACTCTGTG 1 GGACTGCGCC 1 GGACTGCGCT 1 GGACTGGACA 1 GGACTGGGTC 1 GGACTGTAGT 1 GGACTGTGTT 1 GGACTTTCCT 4 GGACTTTGAG 3 GGACTTTTGA 1 GGAGAAAAAA 1 GGAGAAACAC 1 GGAGAAACAG 9 GGAGAATTTT 2 GGAGACAGAG 2 GGAGACCCAC 1 GGAGAGAAAA 1 GGAGAGACAG 2 GGAGAGACCT 1 GGAGAGATGT 1 GGAGAGCCCC 2 GGAGAGGCCC 1 GGAGAGGGCA 1 GGAGATAATT 1 GGAGATAGTG 4 GGAGATGGAG 1 GGAGATGGGG 1 GGAGCACACA 2 GGAGCACTGT 1 GGAGCAGCAT 1 GGAGCAGCGG 1 GGAGCATCTG 3 GGAGCCAACA 1 GGAGCGTGGG 8 GGAGCTAAAC 1 GGAGCTCTGT 5 GGAGCTGCTG 6 GGAGCTGGCC 2 GGAGCTTAGA 1 GGAGCTTCTG 1 GGAGGAAGGA 2 GGAGGAATGC 1 GGAGGAATGG 1 GGAGGACACT 1 GGAGGACCTA 1 GGAGGAGAAG 1 GGAGGAGGGG 1 GGAGGATCGC 1 GGAGGATGGC 1 GGAGGATGGG 3 GGAGGCAGAA 6 GGAGGCAGGG 1 GGAGGCAGGT 2 GGAGGCATAG 1 GGAGGCATTT 1 GGAGGCCAGA 1 GGAGGCCGAA 1 GGAGGCCGAG 9 GGAGGCGCTC 11 GGAGGCGGAG 3 GGAGGCGTCA 1 GGAGGCTGAA 2 GGAGGCTGAG 9 GGAGGGAAAA 1 GGAGGGAAGG 1 GGAGGGACCT 1 GGAGGGAGGG 1 GGAGGGATCA 5 GGAGGGCAGA 1 GGAGGGCCCC 1 GGAGGGGACG 1 GGAGGGGCTT 1 GGAGGGGGCT 14 GGAGGGGTTC 5 GGAGGGTGGG 1 GGAGGTCATC 3 GGAGGTCGAG 1 GGAGGTCGTC 1 GGAGGTCTTG 1 GGAGGTGCTC 1 GGAGGTGGAG 1 GGAGGTGGGC 1 GGAGGTGGGG 16 GGAGGTGTTC 1 GGAGGTTCCA 1 GGAGTAGATG 1 GGAGTAGGAA 3 GGAGTAGGAC 1 GGAGTCATAG 1 GGAGTCATTG 7 GGAGTCCCTT 1 GGAGTCCTAG 2 GGAGTCTAAC 2 GGAGTGCAGC 2 GGAGTGCCAA 1 GGAGTGGACA 17 GGAGTGGACG 1 GGAGTGGATG 4 GGAGTGGGCT 3 GGAGTGTTAA 1 GGAGTTCTTG 1 GGAGTTGTCC 1 GGATAAAATG 1 GGATAAATGA 1 GGATAATAGG 1 GGATACAACA 2 GGATAGCACA 1 GGATATGGCC 1 GGATATGTGG 3 GGATCACCCA 1 GGATCACTGA 1 GGATCCAAGT 2 GGATCCTCGG 2 GGATCTTGGG 1 GGATGAGCAG 1 GGATGAGTTT 2 GGATGATGTC 1 GGATGCATTA 1 GGATGCCACA 1 GGATGCGCAG 5 GGATGGATAT 1 GGATGGCAAT 5 GGATGGCTTA 5 GGATGGGAAT 1 GGATGGTGAG 1 GGATGTACAG 1 GGATGTAGAG 5 GGATGTCAAC 1 GGATGTGAAA 3 GGATGTGGAT 1 GGATTAATAT 1 GGATTCCAGT 7 GGATTGGCCT 2 GGATTGTCTG 2 GGATTTGAAC 1 GGATTTGCTC 1 GGATTTGGCC 63 GGATTTTAAT 2 GGCAAAACCC 1 GGCAAAAGAG 1 GGCAAAATAA 1 GGCAAAATTA 2 GGCAAACAGC 1 GGCAAACAGT 1 GGCAAACGGA 1 GGCAAAGACT 2 GGCAAAGAGG 1 GGCAACAACA 1 GGCAACAAGA 1 GGCAACACAG 2 GGCAACAGAG 3 GGCAACAGTG 1 GGCAACCATT 1 GGCAACGCGG 1 GGCAACGGTA 1 GGCAACGTGG 5 GGCAACTGCC 1 GGCAAGAAGA 3 GGCAAGAGAG 1 GGCAAGAGGA 1 GGCAAGCAGG 2 GGCAAGCCCA 1 GGCAAGCCCC 29 GGCAAGGGGA 1 GGCAAGGGGG 9 GGCAAGTGCA 3 GGCAATACCA 1 GGCAATACTT 1 GGCAATTTAC 1 GGCACACACA 1 GGCACAGAGT 2 GGCACAGCCA 1 GGCACATTTG 3 GGCACCAAGG 1 GGCACCACAT 1 GGCACCGCGT 2 GGCACCGTGC 44 GGCACCGTGG 1 GGCACCTCGG 3 GGCACCTGCT 1 GGCACCTGTA 1 GGCACCTTCC 1 GGCACTCCAG 1 GGCACTGCCC 1 GGCACTGCTG 1 GGCACTGGGG 2 GGCACTTATG 1 GGCAGAAAGT 1 GGCAGAACAA 1 GGCAGACAAT 1 GGCAGACACA 1 GGCAGACCAA 2 GGCAGAGGCC 1 GGCAGAGGCT 1 GGCAGAGGGC 3 GGCAGCAACA 4 GGCAGCAAGA 1 GGCAGCACAA 3 GGCAGCAGAA 2 GGCAGCAGGA 1 GGCAGCCAAA 1 GGCAGCCAGA 5 GGCAGCCAGC 1 GGCAGCCTGG 1 GGCAGCGCCC 2 GGCAGCTCAG 5 GGCAGCTCCC 1 GGCAGCTGGC 1 GGCAGGAAGA 1 GGCAGGATGA 1 GGCAGGCACA 5 GGCAGGCACC 1 GGCAGGCCCT 1 GGCAGGCGGG 4 GGCAGGGCCT 1 GGCAGGGCTG 1 GGCAGGGGTT 3 GGCAGGGTCG 1 GGCAGGTTCC 1 GGCAGTCTCT 1 GGCAGTGCCC 4 GGCAGTGTGG 1 GGCATACCAC 1 GGCATCAACA 1 GGCATCAGGG 3 GGCATCTCTG 1 GGCATCTGGC 3 GGCATTAACA 1 GGCATTGTTC 4 GGCATTTATT 2 GGCATTTGGT 1 GGCATTTGTC 1 GGCATTTTGT 1 GGCATTTTTC 3 GGCCAAAATT 1 GGCCAAACAG 1 GGCCAAAGCT 1 GGCCAAAGGC 4 GGCCAAGACC 1 GGCCAAGGCA 1 GGCCACAGGT 1 GGCCACCACA 2 GGCCACCAGA 1 GGCCACCAGG 1 GGCCACCCTT 1 GGCCACCTGG 1 GGCCACGTAG 2 GGCCACGTCG 1 GGCCACTCTA 2 GGCCACTGCT 2 GGCCAGACCT 4 GGCCAGACTA 1 GGCCAGCAAG 1 GGCCAGCCAC 2 GGCCAGCCCT 21 GGCCAGCCTT 1 GGCCAGCGAT 1 GGCCAGGAAG 3 GGCCAGGAGT 1 GGCCAGGCAG 1 GGCCAGGCCG 1 GGCCAGGCGT 1 GGCCAGGGGC 1 GGCCAGGTGG 2 GGCCAGTAAC 1 GGCCAGTGAG 1 GGCCAGTGCG 1 GGCCAGTGGG 1 GGCCAGTGTT 2 GGCCAGTTCT 1 GGCCATCAAG 1 GGCCATCACT 1 GGCCATCTCT 2 GGCCCAAGAT 1 GGCCCAAGGA 1 GGCCCAAGTA 1 GGCCCACACC 1 GGCCCAGAAC 1 GGCCCAGAGC 2 GGCCCAGCAG 2 GGCCCAGGAG 1 GGCCCAGGTC 1 GGCCCATATG 4 GGCCCATTCC 1 GGCCCCACAA 1 GGCCCCACGC 1 GGCCCCATTG 1 GGCCCCCAGA 1 GGCCCCCCTC 1 GGCCCCCTAA 1 GGCCCCGGAC 10 GGCCCCGTGC 1 GGCCCCTGAA 1 GGCCCCTGCC 1 GGCCCGGCTT 1 GGCCCGGGAG 1 GGCCCGGGGG 1 GGCCCGGTCA 2 GGCCCGTTCG 1 GGCCCTACAA 2 GGCCCTAGGC 28 GGCCCTCCCG 1 GGCCCTCTGA 2 GGCCCTGAGC 13 GGCCCTGCAG 7 GGCCCTGGCT 1 GGCCCTGGGT 1 GGCCCTGGTG 4 GGCCCTGTGA 1 GGCCCTTGCC 1 GGCCCTTGGA 1 GGCCCTTTCT 1 GGCCGATCTG 3 GGCCGATGTG 1 GGCCGCCCTC 1 GGCCGCCGCT 1 GGCCGCGTTC 9 GGCCGCTATC 1 GGCCGCTCCC 1 GGCCGCTGCT 2 GGCCGGCCAG 1 GGCCGGCGGC 1 GGCCGGGGGC 2 GGCCGGTGTC 1 GGCCTAAGCA 1 GGCCTAATGA 1 GGCCTACATC 8 GGCCTAGAGG 1 GGCCTCATAA 1 GGCCTCCCAA 1 GGCCTCCCTG 1 GGCCTCGCAG 1 GGCCTCGGCC 2 GGCCTCGGCG 1 GGCCTCTCAA 1 GGCCTCTGAC 1 GGCCTCTGAG 1 GGCCTCTGAT 1 GGCCTCTGCT 1 GGCCTCTTCA 1 GGCCTCTTCC 1 GGCCTGAACC 1 GGCCTGAGAT 1 GGCCTGATGG 2 GGCCTGCAGG 4 GGCCTGCCAC 1 GGCCTGCCTT 1 GGCCTGCTGC 11 GGCCTGGAAT 1 GGCCTGGATG 6 GGCCTGGCCA 2 GGCCTGGGCC 1 GGCCTGGGGG 3 GGCCTGTGTG 2 GGCCTTAATG 1 GGCCTTCCAA 1 GGCCTTCCCT 1 GGCCTTCCTT 1 GGCCTTGGTT 1 GGCCTTGTCA 1 GGCCTTTCAA 1 GGCCTTTCAC 1 GGCCTTTCTG 2 GGCCTTTTTT 2 GGCGAAACCC 2 GGCGAAGAAG 1 GGCGACAACA 1 GGCGACAAGA 1 GGCGACAGAG 4 GGCGACATAG 1 GGCGAGCTGG 1 GGCGAGGCGC 1 GGCGATGTCT 4 GGCGCAAGGG 1 GGCGCACTCT 3 GGCGCCAAAA 1 GGCGCCACTC 1 GGCGCCTCCT 5 GGCGCCTCGA 1 GGCGCCTTGA 1 GGCGCTATTC 2 GGCGCTCATC 1 GGCGCTCCGG 1 GGCGCTGATG 1 GGCGCTGGCC 1 GGCGCTGGCT 2 GGCGCTGTTC 1 GGCGGAGGTG 1 GGCGGAGTGC 1 GGCGGCCGGG 1 GGCGGCCTCT 1 GGCGGCCTGG 2 GGCGGCGGCC 1 GGCGGCTGAG 1 GGCGGCTGCA 1 GGCGGCTGTG 3 GGCGGGAGCT 1 GGCGGGGGTG 1 GGCGGGTCGG 1 GGCGGGTGGG 1 GGCGTCCTGG 17 GGCGTCGTGG 1 GGCGTGAACA 3 GGCGTGGCTA 1 GGCGTGTCCG 1 GGCGTTTCCA 2 GGCTAAAACA 1 GGCTACACCT 2 GGCTAGAAAT 1 GGCTAGTGCT 1 GGCTATGCCA 1 GGCTATGTTA 1 GGCTCAAAGG 1 GGCTCAACAA 1 GGCTCACAGG 2 GGCTCACTTT 1 GGCTCAGCAG 1 GGCTCAGGAA 1 GGCTCAGGGC 2 GGCTCAGTGG 1 GGCTCATCTT 1 GGCTCCACAG 1 GGCTCCCAAG 1 GGCTCCCACT 8 GGCTCCCCAT 1 GGCTCCCCGC 1 GGCTCCCTGA 1 GGCTCCCTGG 1 GGCTCCTCGA 8 GGCTCCTCGG 1 GGCTCCTGGC 15 GGCTCCTGTG 2 GGCTCGGGAG 1 GGCTCGGGAT 11 GGCTCTGACA 1 GGCTCTGTCA 3 GGCTGAAATA 1 GGCTGAAATC 1 GGCTGAACCA 4 GGCTGAGAAT 3 GGCTGATGCA 1 GGCTGATGGG 3 GGCTGATGTG 4 GGCTGATTTT 3 GGCTGCAAAC 1 GGCTGCAAAG 1 GGCTGCCTGC 11 GGCTGGAGCC 2 GGCTGGCCCT 1 GGCTGGCCTG 1 GGCTGGGCCA 1 GGCTGGGCCC 1 GGCTGGGCCT 25 GGCTGGGCGC 1 GGCTGGGGCC 2 GGCTGGGGGC 77 GGCTGGGGTG 1 GGCTGGGTTA 1 GGCTGGGTTT 1 GGCTGGTCAC 4 GGCTGGTCCA 1 GGCTGGTCCC 1 GGCTGGTCTC 2 GGCTGGTCTG 2 GGCTGGTCTT 1 GGCTGTAAGT 1 GGCTGTACCC 10 GGCTGTCCAG 2 GGCTGTGACG 1 GGCTGTGATA 1 GGCTGTGATG 2 GGCTGTGCCA 1 GGCTGTGGGC 1 GGCTGTGGTC 1 GGCTGTGTGG 2 GGCTGTTAAG 1 GGCTTAAAAA 1 GGCTTAAGGA 1 GGCTTAAGGG 1 GGCTTACTGT 1 GGCTTAGTCT 1 GGCTTCAGAA 2 GGCTTCCCTG 1 GGCTTCCGTG 1 GGCTTCCTGG 1 GGCTTCTACT 1 GGCTTCTCTA 1 GGCTTCTCTC 1 GGCTTCTGGG 1 GGCTTGCAAA 1 GGCTTGCCAG 4 GGCTTGCCTT 2 GGCTTGCTGA 4 GGCTTGGCAG 1 GGCTTGGCCC 1 GGCTTGGTCA 2 GGCTTGGTTT 3 GGCTTGTCCA 1 GGCTTTAAGA 1 GGCTTTACCC 14 GGCTTTAGGG 36 GGCTTTCCCT 2 GGCTTTGACA 1 GGCTTTGATT 5 GGCTTTGCCG 1 GGCTTTGCTT 1 GGCTTTGGAG 5 GGCTTTGGTC 1 GGCTTTGGTT 1 GGCTTTGTAC 1 GGCTTTTACC 1 GGCTTTTAGG 1 GGCTTTTGGT 1 GGCTTTTTAG 1 GGCTTTTTTT 2 GGGAAAAAAC 1 GGGAAAATGC 1 GGGAAACAGA 2 GGGAAACAGG 2 GGGAAACCAC 1 GGGAAACCCC 3 GGGAAACCCT 5 GGGAAACCTC 2 GGGAAACCTG 1 GGGAAACCTT 2 GGGAAACTCC 1 GGGAAAGAGG 1 GGGAAAGGGG 1 GGGAAATCAC 1 GGGAAATCCC 1 GGGAAATCTG 1 GGGAACATCT 1 GGGAACCCTC 1 GGGAACCGTA 1 GGGAACGGAG 4 GGGAACTATC 1 GGGAACTGCC 1 GGGAAGAAAT 1 GGGAAGAGTG 1 GGGAAGATGA 2 GGGAAGCAAT 1 GGGAAGCAGA 17 GGGAAGCCCT 1 GGGAAGCGTC 1 GGGAAGCTCA 1 GGGAAGGCAC 6 GGGAAGGGAA 1 GGGAAGGGAG 1 GGGAAGTCAC 1 GGGAAGTTGA 1 GGGAATAAGC 1 GGGAATAGCA 1 GGGAATCAAA 1 GGGACACCAG 1 GGGACAGGAT 1 GGGACCAACC 1 GGGACCAACT 2 GGGACCACAG 1 GGGACCCCGA 1 GGGACCCCGG 3 GGGACCGTCA 1 GGGACCTCAG 1 GGGACGAGAA 5 GGGACGAGGC 1 GGGACGAGTG 6 GGGACGCCCT 2 GGGACGGCGC 2 GGGACGGGGT 1 GGGACGTGAC 1 GGGACTCACT 1 GGGAGAAATT 1 GGGAGAAGTG 1 GGGAGACCAC 1 GGGAGACCTT 1 GGGAGAGAAC 1 GGGAGAGATG 1 GGGAGCCACC 1 GGGAGCCCCG 1 GGGAGCCCCT 3 GGGAGCCCGG 6 GGGAGCCGAG 3 GGGAGCCGTG 3 GGGAGCGGCC 1 GGGAGCGTCC 1 GGGAGCTCCC 1 GGGAGCTGCG 9 GGGAGCTGGA 3 GGGAGGAAGA 1 GGGAGGAAGC 2 GGGAGGAGGG 4 GGGAGGAGGT 1 GGGAGGATTA 7 GGGAGGCGGA 1 GGGAGGCTGC 3 GGGAGGGAAG 2 GGGAGGGGAG 1 GGGAGGGGTG 1 GGGAGGTAGC 2 GGGAGGTGTC 1 GGGAGTGAAT 1 GGGAGTGCGC 3 GGGAGTGGAC 1 GGGAGTTAGC 1 GGGAGTTTAC 1 GGGATAAAAG 1 GGGATAATAG 1 GGGATATAAA 3 GGGATCAAGG 3 GGGATCCCCC 1 GGGATCGTGT 1 GGGATGAAGG 1 GGGATGCAGC 1 GGGATGGAAG 2 GGGATGGAGA 3 GGGATGGCAG 3 GGGATGGGGA 1 GGGATTCAGG 3 GGGATTCTGT 1 GGGATTGATA 1 GGGATTTCTG 1 GGGCAAGCCA 10 GGGCAAGGTC 1 GGGCAATAAA 1 GGGCACCAGC 1 GGGCACGCGC 1 GGGCAGAATA 2 GGGCAGAATT 2 GGGCAGACAC 1 GGGCAGACTG 3 GGGCAGATGC 3 GGGCAGCTGG 3 GGGCAGGACC 4 GGGCAGGCGT 11 GGGCAGGCTG 1 GGGCAGGGCC 2 GGGCAGGGGA 6 GGGCAGGGGT 2 GGGCAGGTCC 3 GGGCAGTCAG 1 GGGCAGTCTG 1 GGGCATCTCT 1 GGGCATTTCG 1 GGGCCAAAAC 4 GGGCCAAAAG 1 GGGCCAAAGT 1 GGGCCAATAA 4 GGGCCACGGA 1 GGGCCAGAGC 1 GGGCCAGGGC 1 GGGCCAGGGG 13 GGGCCCAAAC 1 GGGCCCACAA 1 GGGCCCAGGA 4 GGGCCCATTG 1 GGGCCCCAAA 1 GGGCCCCCAA 2 GGGCCCCGAG 1 GGGCCCCGCA 2 GGGCCCCGGG 1 GGGCCCCTGG 1 GGGCCCGGCA 1 GGGCCCTGGC 1 GGGCCCTGTG 1 GGGCCCTTCC 3 GGGCCCTTGG 1 GGGCCGAAAA 4 GGGCCGCTCA 1 GGGCCGCTGT 1 GGGCCGTAGC 1 GGGCCGTGGC 1 GGGCCGTGGG 5 GGGCCTGAGG 1 GGGCCTGCAG 1 GGGCCTGCCG 1 GGGCCTGGCC 2 GGGCCTGGGG 16 GGGCCTGTGC 13 GGGCGAGAAC 5 GGGCGATGAC 1 GGGCGCAGTG 1 GGGCGCTGTG 27 GGGCGGCGCG 1 GGGCGGGGAC 1 GGGCGGGTGC 1 GGGCGTGTCT 1 GGGCTAACTC 1 GGGCTACGTC 15 GGGCTCAAGC 1 GGGCTCAAGG 2 GGGCTCACCT 1 GGGCTCAGAG 1 GGGCTCGGGT 1 GGGCTCTCCT 1 GGGCTCTTTT 1 GGGCTGCCTA 1 GGGCTGCTCC 2 GGGCTGCTCG 1 GGGCTGCTGT 2 GGGCTGCTTT 2 GGGCTGGACG 2 GGGCTGGGCC 8 GGGCTGGGGC 1 GGGCTGGGGG 2 GGGCTGGGGT 55 GGGCTGTTTG 2 GGGCTTACTG 1 GGGCTTCAAA 1 GGGCTTCCAA 1 GGGCTTGGCA 1 GGGCTTGGTA 1 GGGGAAAGCA 1 GGGGAAATCC 1 GGGGAAATCG 79 GGGGAAATGC 1 GGGGAACTGC 1 GGGGAACTGG 2 GGGGAAGCTT 1 GGGGAAGGCA 1 GGGGAAGGGC 1 GGGGAATCAG 2 GGGGAATCGC 1 GGGGAATGGG 1 GGGGACAAAG 1 GGGGACACCC 1 GGGGACAGTA 1 GGGGACTGAA 7 GGGGACTGGT 3 GGGGACTTGG 1 GGGGACTTTT 1 GGGGAGAAGC 1 GGGGAGAGAG 1 GGGGAGATCG 1 GGGGAGCCAA 1 GGGGAGCCCT 1 GGGGAGCTGT 1 GGGGAGGACT 1 GGGGAGGCTA 1 GGGGAGGGCC 1 GGGGAGGGGG 1 GGGGAGGGTC 2 GGGGATAGAG 1 GGGGATGGGC 1 GGGGATGGGG 1 GGGGATTTGG 1 GGGGCAAAGG 1 GGGGCACCCG 1 GGGGCACTTG 3 GGGGCAGAGA 3 GGGGCAGAGG 1 GGGGCAGGAG 1 GGGGCAGGCC 1 GGGGCAGGGC 64 GGGGCAGTGA 1 GGGGCATAAG 1 GGGGCCAGGG 1 GGGGCCCCCT 2 GGGGCCCCTC 1 GGGGCCGGGC 1 GGGGCCTAAC 1 GGGGCCTGAT 1 GGGGCGAGAA 1 GGGGCGCCTG 1 GGGGCGCGCA 1 GGGGCTCATA 1 GGGGCTGCTG 1 GGGGCTGTGG 2 GGGGCTGTGT 1 GGGGCTTAGG 2 GGGGCTTCCA 1 GGGGCTTCTG 2 GGGGCTTTCT 1 GGGGGAATTT 2 GGGGGACACC 1 GGGGGACCTC 4 GGGGGACGGC 4 GGGGGAGAAG 10 GGGGGAGGCA 1 GGGGGAGGGA 2 GGGGGAGGGG 1 GGGGGATAGA 1 GGGGGCAGGC 1 GGGGGCAGGG 1 GGGGGCCACC 1 GGGGGCCCCC 1 GGGGGCCCCG 3 GGGGGCCTGG 1 GGGGGCGCCT 7 GGGGGCTGCT 2 GGGGGCTTCT 1 GGGGGGAGAA 1 GGGGGGCAGT 1 GGGGGGGATG 1 GGGGGGGCAC 1 GGGGGGGCCG 1 GGGGGGGTCT 2 GGGGGGGTGG 2 GGGGGGTGGA 4 GGGGGTAACT 2 GGGGGTCACC 14 GGGGGTGAAG 3 GGGGGTGGAT 2 GGGGGTTCTC 1 GGGGGTTGGT 1 GGGGTAAGAA 1 GGGGTAAGGC 3 GGGGTAATCG 1 GGGGTACCCC 2 GGGGTACTGT 1 GGGGTAGGGG 1 GGGGTCAGGG 37 GGGGTCCCAA 1 GGGGTCCCAT 3 GGGGTCCGAC 1 GGGGTGAGGG 1 GGGGTGCTGT 2 GGGGTGGCAG 2 GGGGTGGGCC 1 GGGGTGGGTT 1 GGGGTGTGAG 1 GGGGTTAGGG 1 GGGGTTGGTG 1 GGGTACGTCC 1 GGGTAGAGAC 1 GGGTAGAGAG 1 GGGTAGAGGA 1 GGGTAGCTGG 4 GGGTAGGAGG 2 GGGTAGGGGG 1 GGGTCAAAAG 12 GGGTCAAACT 1 GGGTCACTAG 1 GGGTCAGCTG 3 GGGTCAGGGA 2 GGGTCAGGGC 1 GGGTCCACCC 1 GGGTCCATAC 1 GGGTCCTCTC 1 GGGTCGGCTT 1 GGGTCGGGAA 7 GGGTCGGTCC 1 GGGTCTCCAG 1 GGGTCTCGGG 1 GGGTCTGCGG 1 GGGTCTTTGT 1 GGGTGAAACC 1 GGGTGAAATA 1 GGGTGATTAC 1 GGGTGCAAAA 1 GGGTGCTTGG 4 GGGTGGAAAG 1 GGGTGGACGC 1 GGGTGGCAAG 3 GGGTGGCAGT 1 GGGTGGCTGG 1 GGGTGGGCAG 1 GGGTGGGGTT 9 GGGTGGGTAG 1 GGGTGGTCCC 1 GGGTGGTGCT 1 GGGTGTCGGG 1 GGGTGTGCGT 1 GGGTGTGGTG 1 GGGTTAGCAC 1 GGGTTAGTAT 1 GGGTTCACCG 1 GGGTTCCAGT 1 GGGTTCCCTC 1 GGGTTCCTGG 1 GGGTTCTGTC 1 GGGTTGAGAT 1 GGGTTGCCAG 1 GGGTTGGCAG 1 GGGTTGGCCT 3 GGGTTGGCTT 63 GGGTTGGGGG 1 GGGTTGGGGT 1 GGGTTGGTGG 1 GGGTTGGTGT 2 GGGTTGTCTT 1 GGGTTTCCCT 2 GGGTTTGGTG 3 GGGTTTGTTT 2 GGGTTTTACC 1 GGGTTTTAGC 1 GGGTTTTCTG 1 GGGTTTTGCA 1 GGGTTTTTTT 1 GGTAAACAGA 1 GGTAACAGAG 1 GGTAACCTTG 1 GGTAAGAAAA 1 GGTAAGGGGT 1 GGTAATCCGT 5 GGTAATTCAG 1 GGTACAAAAA 1 GGTACAAATA 1 GGTACACTGC 1 GGTACAGCTT 1 GGTACCCATT 4 GGTACCCCAG 1 GGTACCTGAT 1 GGTACTCCTG 1 GGTACTCGAT 1 GGTACTGGTG 1 GGTAGAGATG 1 GGTAGCACGT 1 GGTAGCAGGG 3 GGTAGCCTGG 3 GGTAGCTCAG 1 GGTAGCTGCT 1 GGTAGGAACA 1 GGTATAGTTT 1 GGTATATTCT 1 GGTATCCGCC 1 GGTATGACAT 2 GGTATGATGC 1 GGTATGGGGG 1 GGTATGTTCT 1 GGTATGTTGT 3 GGTATTAGTT 1 GGTATTCCAA 1 GGTATTTTTC 1 GGTCAAAGCG 1 GGTCAAATCA 1 GGTCAAATGA 1 GGTCAAGCCA 2 GGTCACACTA 9 GGTCACAGAG 1 GGTCACAGGG 1 GGTCACAGTA 1 GGTCACATCA 1 GGTCACTGCT 1 GGTCACTGTG 1 GGTCACTTTT 2 GGTCAGAGAA 5 GGTCAGCCTT 1 GGTCAGGGAG 1 GGTCAGTCGG 13 GGTCAGTCTG 1 GGTCATACAC 1 GGTCATCACT 2 GGTCCAAAAT 3 GGTCCAACTC 1 GGTCCAGTGT 11 GGTCCATAAT 1 GGTCCCACCT 1 GGTCCCATTC 1 GGTCCCGTTC 1 GGTCCCTTGA 2 GGTCCCTTGC 1 GGTCCGGCAC 1 GGTCCTCTCT 10 GGTCGGAGCA 1 GGTCGGGAAG 1 GGTCGGTCCT 1 GGTCTACATA 2 GGTCTCAGGT 1 GGTCTCCTTG 1 GGTCTCGCTA 1 GGTCTGACTT 1 GGTCTGCAGC 1 GGTCTGCCCA 1 GGTCTGGGGC 2 GGTCTGTCTC 2 GGTCTTCTAG 1 GGTCTTTAAT 1 GGTGAAACCC 1 GGTGAAACCT 1 GGTGAAACTC 1 GGTGAAAGTG 1 GGTGAAGACA 1 GGTGAAGAGG 32 GGTGAAGGGG 2 GGTGAATACC 1 GGTGAATTAT 1 GGTGACAATA 1 GGTGACACAG 1 GGTGACAGAG 8 GGTGACAGTG 1 GGTGACCACC 3 GGTGACCGTC 2 GGTGACTCTT 2 GGTGACTGGG 1 GGTGAGACAC 14 GGTGAGACCC 1 GGTGAGACCT 7 GGTGAGATGC 1 GGTGAGCGTG 1 GGTGAGGGCT 1 GGTGAGTGGA 1 GGTGATCCTT 1 GGTGATCTCA 1 GGTGATGAGG 10 GGTGCAACTG 1 GGTGCAAGTC 1 GGTGCACCCG 3 GGTGCAGGGA 3 GGTGCATTCA 1 GGTGCCCAGT 12 GGTGCCCCCA 1 GGTGCCTGTA 1 GGTGCTCCCT 1 GGTGCTGGAG 1 GGTGGAAGGT 1 GGTGGAGGCA 1 GGTGGAGTGT 2 GGTGGATGTG 1 GGTGGCACAT 1 GGTGGCACTC 19 GGTGGCAGGA 1 GGTGGCAGGC 1 GGTGGCAGGG 1 GGTGGCCACG 1 GGTGGCCCGG 7 GGTGGCGGGT 1 GGTGGCTGAC 1 GGTGGCTTCA 1 GGTGGCTTTG 4 GGTGGGAACA 5 GGTGGGAACT 1 GGTGGGAAGA 1 GGTGGGATGT 1 GGTGGGCCCA 1 GGTGGGGAGA 2 GGTGGGGCAG 1 GGTGGGGGCC 1 GGTGGGGGCG 1 GGTGGGTTAA 1 GGTGGTGATG 1 GGTGGTGGCA 3 GGTGGTGGGC 1 GGTGGTGTAT 1 GGTGGTGTCT 39 GGTGGTGTTG 1 GGTGTAAACA 1 GGTGTAAATG 1 GGTGTACAAA 1 GGTGTAGACT 1 GGTGTCCCCA 2 GGTGTCCTCC 1 GGTGTCTGTG 1 GGTGTGGAGC 1 GGTGTGGCCT 1 GGTGTGGGTG 5 GGTGTGGTAG 2 GGTGTGGTGG 1 GGTGTGTAAT 1 GGTGTTCTGT 1 GGTGTTTTTG 1 GGTTAAATCC 1 GGTTAACGTG 1 GGTTAAGAGC 5 GGTTAAGTAG 1 GGTTAAGTGT 1 GGTTACCTGG 1 GGTTACGAGG 1 GGTTAGAAGA 1 GGTTATCAAA 2 GGTTATCTGT 2 GGTTATCTTC 1 GGTTCAACCA 1 GGTTCATTCA 1 GGTTCCACAT 1 GGTTCCAGCG 1 GGTTCCTGAA 1 GGTTCTCAAC 2 GGTTCTCAGC 1 GGTTCTTACT 2 GGTTGAACTG 1 GGTTGAAGAA 1 GGTTGACTTT 1 GGTTGAGTGT 3 GGTTGCCAGT 1 GGTTGCCCAT 1 GGTTGCTCAT 2 GGTTGGAAGA 1 GGTTGGGCTT 1 GGTTGGGGTG 1 GGTTGGGTAG 5 GGTTGTAGAG 1 GGTTGTGGGG 1 GGTTGTGTCC 1 GGTTGTGTCT 1 GGTTGTGTTG 1 GGTTTACCTG 1 GGTTTAGAGG 1 GGTTTCTGGG 1 GGTTTGATTA 2 GGTTTGGCCT 1 GGTTTGGCTT 10 GGTTTGTGTG 1 GGTTTTAGGG 1 GGTTTTCCTC 2 GGTTTTGCAG 1 GGTTTTTAGT 1 GGTTTTTCTG 1 GTAAAAAAAA 11 GTAAAAAAGC 5 GTAAAAAGTT 1 GTAAAACAAT 1 GTAAAACCAA 1 GTAAAACCCC 9 GTAAAACCCG 1 GTAAAACCCT 4 GTAAAATCCC 1 GTAAACACTC 1 GTAAACCCCG 1 GTAAACCTCG 1 GTAAACTCCC 1 GTAAACTTCA 1 GTAAAGAATA 2 GTAAAGCATA 1 GTAAAGGCCC 1 GTAAATACAG 1 GTAAATCAGT 1 GTAACAAAGT 1 GTAACAAGCT 2 GTAACACAAA 1 GTAACACCAT 1 GTAACAGTCA 1 GTAACCCCTG 1 GTAACCCTGC 1 GTAACTGTGA 2 GTAAGACCCC 1 GTAAGACTCA 1 GTAAGACTTC 2 GTAAGAGATC 1 GTAAGATCTT 1 GTAAGATTTG 2 GTAAGCGTAC 1 GTAAGGCAAC 2 GTAAGGCCTT 1 GTAAGTGACG 1 GTAAGTGTAA 1 GTAAGTGTAC 21 GTAAGTGTCT 1 GTAAGTTCCC 1 GTAATAAAGC 1 GTAATAACTT 1 GTAATACTGC 1 GTAATAGAAG 1 GTAATCCCAG 1 GTAATCCTGC 9 GTAATCTTAT 1 GTAATGAAAA 1 GTAATGCAAG 1 GTAATGGTTT 1 GTAATTGATT 1 GTAATTTTTT 1 GTACAACCCC 1 GTACAACTAG 1 GTACACGCAC 1 GTACAGCTCT 1 GTACAGGAGC 1 GTACAGGCCT 1 GTACAGTACT 1 GTACATCCTT 2 GTACCAGATG 2 GTACCCGGAC 2 GTACCCGTAC 3 GTACCCTGGC 1 GTACCGCTTT 1 GTACCTAAGG 1 GTACCTCCTT 2 GTACCTCTCC 1 GTACCTGCTA 1 GTACCTGTCG 1 GTACGAATGG 1 GTACGCATTC 1 GTACGTATTC 7 GTACGTCATA 1 GTACGTCTGG 1 GTACGTGCCT 1 GTACTAAAAA 1 GTACTCCAGC 2 GTACTCCAGG 1 GTACTCCAGT 1 GTACTCTACT 2 GTACTGACAT 1 GTACTGGAGG 4 GTACTGGGCT 1 GTACTGGTAA 1 GTACTGTAGC 1 GTACTGTATG 1 GTACTGTCTC 1 GTACTGTGGC 15 GTAGAAAAAA 1 GTAGAAGGGG 1 GTAGACATCA 2 GTAGACGCGC 1 GTAGACGGTA 1 GTAGACTTGT 1 GTAGAGTAGG 1 GTAGCAAAAA 5 GTAGCACAAA 1 GTAGCACAAG 1 GTAGCACATC 1 GTAGCACGCA 1 GTAGCAGGGC 1 GTAGCAGGGT 1 GTAGCAGGTG 27 GTAGCAGTGT 1 GTAGCATAAA 3 GTAGCATCAG 1 GTAGCCAGGC 1 GTAGCCATCC 1 GTAGCCCTAC 1 GTAGCGCACA 1 GTAGCGCACC 1 GTAGCGCACG 5 GTAGCGGGCG 2 GTAGCGGGTG 1 GTAGCGGTTG 1 GTAGCTGGGG 1 GTAGCTTAGG 1 GTAGGAGCTG 1 GTAGGATTGG 1 GTAGGCACGG 1 GTAGGCAGCT 1 GTAGGCGCTC 1 GTAGGCGTGA 1 GTAGGCTGAA 1 GTAGGGAGCA 1 GTAGGGCCCT 1 GTAGGGGTAA 21 GTAGTACAGT 1 GTAGTCACTA 2 GTAGTCGGTA 1 GTAGTGGGTG 1 GTAGTGTGAG 1 GTAGTTACTG 5 GTAGTTAGCT 1 GTAGTTCTGG 2 GTAGTTGCAA 1 GTATAAACCC 1 GTATAAACTG 1 GTATAAATTG 1 GTATAACTGC 1 GTATAATTTG 1 GTATACCTAA 1 GTATAGAGAG 1 GTATATGCAC 1 GTATATTAGC 1 GTATATTGTT 1 GTATCAGCAT 1 GTATCATTAC 1 GTATCCACAG 1 GTATCTATGC 1 GTATCTGAGC 1 GTATCTGTCC 1 GTATCTTCAC 1 GTATGACCAG 1 GTATGAGGTG 5 GTATGAGTAG 5 GTATGATCCT 2 GTATGGCCCA 1 GTATGGCTAT 1 GTATGGGTAA 1 GTATGTAGTT 1 GTATGTGGGA 1 GTATGTTGCA 1 GTATGTTGTC 1 GTATTACCAC 1 GTATTACTTG 1 GTATTCCCCT 6 GTATTCTCTT 1 GTATTGGCCT 9 GTATTGGCTT 1 GTATTGGGGC 7 GTATTGGTGA 8 GTATTTAACT 4 GTATTTCAGT 1 GTATTTGCAA 9 GTATTTTCTC 2 GTCAAAGAGC 2 GTCAAAGATG 1 GTCAAAGATT 1 GTCAACACAG 1 GTCAACACTA 1 GTCAACAGTA 6 GTCAACTGCT 3 GTCAAGACCA 2 GTCAAGCCCC 1 GTCAAGGCCA 1 GTCAATCCTG 1 GTCACAAAAC 1 GTCACACAAA 1 GTCACACACA 2 GTCACACCAC 5 GTCACAGATT 1 GTCACAGGAA 3 GTCACAGTCC 1 GTCACATCTC 1 GTCACATTAG 1 GTCACCAAAC 1 GTCACCCCCA 1 GTCACGAACA 1 GTCACGACTG 1 GTCACGCCTC 1 GTCACTCCCA 1 GTCACTGCCT 4 GTCACTGCTC 1 GTCAGACTGT 1 GTCAGAGACG 1 GTCAGAGATG 2 GTCAGAGGTG 1 GTCAGATAAT 1 GTCAGATGTC 1 GTCAGCAGCA 1 GTCAGCTCTT 1 GTCAGCTGCA 1 GTCAGCTGCT 2 GTCAGCTTCC 1 GTCAGGCCTC 4 GTCAGGCCTT 1 GTCAGGCTGG 1 GTCAGGGACC 1 GTCAGGGGTG 1 GTCAGGGTCC 1 GTCAGGGTTG 1 GTCAGGTATT 2 GTCAGGTTGA 1 GTCAGTCACC 1 GTCAGTTGTT 1 GTCATACACC 1 GTCATAGATG 1 GTCATAGGAA 1 GTCATCACCA 22 GTCATCACTG 2 GTCATCCTGG 1 GTCATCTGCT 1 GTCATTAAGA 1 GTCATTATGC 1 GTCATTCCCA 1 GTCCAAACCT 2 GTCCAAGTCA 1 GTCCACATCA 1 GTCCACCCAC 1 GTCCACTCAC 1 GTCCAGGGCC 3 GTCCAGGTAC 1 GTCCAGGTCA 4 GTCCAGTGTC 1 GTCCATCATA 9 GTCCCAAAAT 2 GTCCCAAACA 1 GTCCCAACAC 1 GTCCCAAGGG 1 GTCCCAGATA 1 GTCCCAGCAC 3 GTCCCCACGG 1 GTCCCCCCAG 1 GTCCCCCGAG 1 GTCCCCTGGC 1 GTCCCCTGTC 1 GTCCCGAGGA 1 GTCCCGATCG 1 GTCCCGGCAC 2 GTCCCGGGCA 1 GTCCCGTACA 1 GTCCCTGGAG 1 GTCCCTGGTG 1 GTCCCTTCAG 1 GTCCGAGTGC 3 GTCCGCCTCT 1 GTCCGCCTTG 1 GTCCGGAGTC 1 GTCCGGGCGC 1 GTCCGGTGGT 1 GTCCTAGATT 2 GTCCTCCAGC 3 GTCCTCTCTT 1 GTCCTGAACA 3 GTCCTGAGTG 1 GTCCTGCGAG 1 GTCCTGGAGG 2 GTCCTGGCAG 1 GTCCTTCAGA 1 GTCCTTCGGC 1 GTCCTTTCTG 4 GTCCTTTTTT 1 GTCGAAACCC 1 GTCGACTATG 1 GTCGAGCCAC 1 GTCGAGCTAT 1 GTCGAGGGAG 1 GTCGCACCTG 1 GTCGCAGTCC 1 GTCGCCACTC 1 GTCGCCCCAG 1 GTCGCGCTGG 2 GTCGCGTCCG 2 GTCGCTCATA 1 GTCGCTCGTG 1 GTCGGAATTT 1 GTCGGGACAG 1 GTCGGGGCGT 2 GTCGTGAGCA 1 GTCGTGCTAC 1 GTCGTGGGTG 1 GTCTAAAGAA 1 GTCTACAAGA 1 GTCTACTCCT 2 GTCTAGAATC 1 GTCTAGGGAT 1 GTCTAGTATT 1 GTCTATGCCT 1 GTCTCAATGA 2 GTCTCAATGG 1 GTCTCACGTG 2 GTCTCAGCCA 1 GTCTCAGCTA 1 GTCTCAGGGC 1 GTCTCATCAG 2 GTCTCATTTG 5 GTCTCCATCT 1 GTCTCCCGAG 1 GTCTCCCGGC 1 GTCTCCGCTG 1 GTCTCCGGGA 1 GTCTCCTAAT 13 GTCTCCTCCT 2 GTCTCCTCGT 1 GTCTCCTTAA 1 GTCTCGAACT 1 GTCTCGGCGC 1 GTCTCGTGGA 1 GTCTCTAACC 1 GTCTCTACTA 1 GTCTCTGCTT 4 GTCTCTTTGG 1 GTCTGAAAGC 1 GTCTGAATGG 1 GTCTGACCCC 7 GTCTGACTCC 1 GTCTGAGCTC 17 GTCTGAGTCC 1 GTCTGCACCT 10 GTCTGCCAGC 2 GTCTGCCCGC 1 GTCTGCGTGC 5 GTCTGGCCCT 1 GTCTGGGCTT 1 GTCTGGGGCT 15 GTCTGGGGGA 9 GTCTGTAGCC 1 GTCTGTCCAT 1 GTCTGTGAGA 4 GTCTGTGATT 1 GTCTGTGTAT 1 GTCTGTTCAG 1 GTCTTAACTC 3 GTCTTACATT 1 GTCTTACCTA 1 GTCTTATTCT 1 GTCTTCGGTG 3 GTCTTCTCTG 1 GTCTTGAACA 1 GTCTTGACCA 1 GTCTTGCTGC 1 GTCTTGGCAC 1 GTCTTGGCTC 1 GTCTTGGGAA 1 GTCTTGGGGA 1 GTCTTGTGCT 1 GTCTTTCTGG 1 GTCTTTCTGT 1 GTCTTTCTTG 1 GTCTTTTCAT 1 GTCTTTTTTT 1 GTGAAAACCC 6 GTGAAAACCT 1 GTGAAAAGCC 1 GTGAAACACT 2 GTGAAACATC 1 GTGAAACCAC 2 GTGAAACCAT 1 GTGAAACCCA 6 GTGAAACCCC 238 GTGAAACCCG 8 GTGAAACCCT 162 GTGAAACCGC 2 GTGAAACCTC 24 GTGAAACCTG 5 GTGAAACCTT 12 GTGAAACGCC 3 GTGAAACGCT 5 GTGAAACTAG 1 GTGAAACTCC 20 GTGAAACTCG 1 GTGAAACTCT 6 GTGAAACTGC 1 GTGAAACTGT 1 GTGAAACTTT 1 GTGAAAGCCC 1 GTGAAAGCTG 1 GTGAAAGGGT 2 GTGAAATAGT 1 GTGAAATCAG 1 GTGAAATCCC 6 GTGAAATCCG 1 GTGAAATCCT 5 GTGAAATCTC 1 GTGAAATGCC 4 GTGAAATTCC 2 GTGAAATTGT 1 GTGAACACAG 1 GTGAACCCAG 1 GTGAACCCAT 1 GTGAACCCCA 2 GTGAACCCCC 5 GTGAACCCCG 5 GTGAACCCCT 2 GTGAACCCGG 1 GTGAACCCTG 5 GTGAACCCTT 1 GTGAACCTCC 1 GTGAACTAAT 1 GTGAACTCTG 1 GTGAACTTAC 1 GTGAAGACTA 1 GTGAAGAGAG 1 GTGAAGCAAG 1 GTGAAGCCCA 1 GTGAAGCCCC 9 GTGAAGCCCT 7 GTGAAGCCTT 1 GTGAAGCTCT 3 GTGAAGGCAG 24 GTGAAGGCTG 1 GTGAAGTCAA 1 GTGAAGTCAG 1 GTGAAGTCTC 1 GTGAAGTCTT 1 GTGAAGTGCT 1 GTGAAGTTGC 6 GTGAATAACT 1 GTGAATACCC 1 GTGAATCCCC 3 GTGAATCCCT 1 GTGAATCTAT 1 GTGAATGACA 1 GTGACAACAC 3 GTGACACACG 1 GTGACACACT 1 GTGACACCCC 5 GTGACACCCG 1 GTGACACCCT 2 GTGACACCGT 1 GTGACACGTA 1 GTGACACTCG 1 GTGACACTTG 1 GTGACAGAAA 1 GTGACAGAAG 12 GTGACAGAAT 2 GTGACAGATA 1 GTGACAGTGT 1 GTGACCAAGG 1 GTGACCACAG 1 GTGACCACGG 113 GTGACCAGGT 1 GTGACCCACG 1 GTGACCCCCG 1 GTGACCCCGT 1 GTGACCCCTG 1 GTGACCGTCA 1 GTGACCTCCT 33 GTGACCTCGG 1 GTGACCTCTT 1 GTGACGCCCC 1 GTGACGCGCA 3 GTGACGGGTG 1 GTGACGTCCA 1 GTGACGTGCA 4 GTGACTCTCA 1 GTGACTCTTG 1 GTGACTGAGG 1 GTGACTGCCA 4 GTGACTGCCC 1 GTGAGAAGCC 1 GTGAGAAGTG 1 GTGAGACACT 1 GTGAGACCCA 2 GTGAGACCCC 16 GTGAGACCCT 6 GTGAGACCTC 5 GTGAGACCTT 3 GTGAGACTCC 3 GTGAGACTCT 1 GTGAGAGCCT 1 GTGAGAGCGT 1 GTGAGATCCG 1 GTGAGCAAAG 1 GTGAGCAAGA 4 GTGAGCAGCT 1 GTGAGCCAGT 1 GTGAGCCCAT 1 GTGAGCCCCC 5 GTGAGCCGTG 2 GTGAGCCTCA 1 GTGAGCTATA 1 GTGAGGATTC 2 GTGAGGATTT 1 GTGAGGCCCT 1 GTGAGGCTTT 1 GTGAGGGCAA 1 GTGAGGGCAC 1 GTGAGGGCTA 2 GTGAGTAATC 1 GTGAGTCACG 1 GTGAGTGCCT 1 GTGAGTGTCG 1 GTGAGTTATG 1 GTGATAGCCT 2 GTGATAGTTT 1 GTGATCACGA 1 GTGATCATTA 3 GTGATCGCAT 1 GTGATCTCCG 1 GTGATGAGCT 7 GTGATGAGTT 1 GTGATGATGA 1 GTGATGATGT 1 GTGATGCAAG 2 GTGATGCACA 1 GTGATGCACG 2 GTGATGCAGG 1 GTGATGCCCG 1 GTGATGCCTG 1 GTGATGCGCA 5 GTGATGCGTG 1 GTGATGGAGA 1 GTGATGGATG 2 GTGATGGGGG 2 GTGATGGGTG 2 GTGATGGTGT 6 GTGATGTACG 4 GTGATGTGCA 1 GTGATGTGCG 2 GTGATGTGTG 1 GTGATTCATT 1 GTGATTCCAC 1 GTGATTCCGC 1 GTGATTGTTC 1 GTGATTTTGA 1 GTGCAAAATG 3 GTGCAAACAT 1 GTGCAAAGCA 1 GTGCAACCCC 1 GTGCAATGAG 2 GTGCACAGGG 2 GTGCACGTCG 1 GTGCACTGAC 1 GTGCACTGAG 45 GTGCACTGCT 1 GTGCACTGGG 1 GTGCACTGTA 1 GTGCACTGTG 4 GTGCACTTCC 1 GTGCAGAATG 1 GTGCAGATAC 1 GTGCAGCCAC 1 GTGCAGCTCC 2 GTGCAGGCAT 1 GTGCAGGCTC 3 GTGCAGGGAG 6 GTGCAGGGTG 1 GTGCAGTACC 1 GTGCAGTCCT 1 GTGCAGTTCA 1 GTGCATACGG 1 GTGCATCCCG 2 GTGCATCTTC 1 GTGCATTGAG 1 GTGCATTTTT 1 GTGCCAAGCA 1 GTGCCAATCC 1 GTGCCACCAG 1 GTGCCAGCCC 3 GTGCCAGGAG 1 GTGCCAGGCG 1 GTGCCAGTGC 1 GTGCCATATT 6 GTGCCATTTT 1 GTGCCCACAG 1 GTGCCCACGG 1 GTGCCCAGTC 2 GTGCCCCAAG 1 GTGCCCGCCG 1 GTGCCCGGAT 1 GTGCCCGGCA 1 GTGCCCGTGC 1 GTGCCCTATT 1 GTGCCCTCAG 1 GTGCCCTGGC 1 GTGCCCTGTT 4 GTGCCGAATG 2 GTGCCGCACA 1 GTGCCGCCCA 1 GTGCCGGACC 1 GTGCCGTCGC 1 GTGCCTACTC 1 GTGCCTAGGA 4 GTGCCTAGGG 1 GTGCCTCCTT 1 GTGCCTCTGG 1 GTGCCTGAAA 1 GTGCCTGAGA 15 GTGCCTGCAT 2 GTGCCTTGTG 2 GTGCGCAGAG 1 GTGCGCCGCT 2 GTGCGCTAAT 1 GTGCGCTACC 1 GTGCGCTAGG 20 GTGCGGCGCC 1 GTGCGGCTGG 6 GTGCGGGACC 1 GTGCGGGAGA 1 GTGCGGTACC 1 GTGCGTGCCT 5 GTGCTAGATT 5 GTGCTATGTA 1 GTGCTCAACT 1 GTGCTCACGC 2 GTGCTCCCGT 1 GTGCTCGTAC 1 GTGCTCTGTA 3 GTGCTCTGTG 1 GTGCTGAAAA 1 GTGCTGAAAG 1 GTGCTGAATC 1 GTGCTGAATG 79 GTGCTGATGA 1 GTGCTGCAAG 1 GTGCTGCGTG 3 GTGCTGGACC 8 GTGCTGGGCA 1 GTGCTGGGGG 1 GTGCTGGTCC 1 GTGCTGTGCA 2 GTGCTGTTGC 2 GTGCTTATAA 1 GTGCTTCCTT 1 GTGCTTGTAC 2 GTGCTTTCAG 2 GTGGAAACCC 1 GTGGAAACTG 1 GTGGAAATCC 1 GTGGAAATCG 1 GTGGAACAAA 1 GTGGAACCCC 3 GTGGAACCCT 3 GTGGAACCTT 1 GTGGAACGCC 1 GTGGAACTCC 2 GTGGAAGAAC 1 GTGGACAAGG 1 GTGGACATAG 1 GTGGACCCCA 2 GTGGACCCGC 1 GTGGACCCTG 7 GTGGACTTCC 1 GTGGAGAGTG 1 GTGGAGCGGA 1 GTGGAGGACG 1 GTGGAGGCAG 1 GTGGAGGCTG 1 GTGGAGGGCG 2 GTGGAGGGGC 3 GTGGAGGGGT 1 GTGGAGTAAG 1 GTGGAGTACA 2 GTGGAGTCAT 1 GTGGAGTTAG 1 GTGGATACCC 1 GTGGATGGAT 1 GTGGATGTAC 1 GTGGATTATC 1 GTGGCAAAGA 1 GTGGCAAAGG 1 GTGGCAAGCA 1 GTGGCAAGCC 2 GTGGCAAGCG 1 GTGGCAAGGC 1 GTGGCAAGGG 1 GTGGCAAGTA 1 GTGGCAATAG 1 GTGGCACACA 21 GTGGCACACG 19 GTGGCACACT 2 GTGGCACAGG 2 GTGGCACATA 1 GTGGCACATT 2 GTGGCACCAG 1 GTGGCACCTG 3 GTGGCACGAG 1 GTGGCACGCA 8 GTGGCACGCG 6 GTGGCACGGA 1 GTGGCACGGG 1 GTGGCACGTG 32 GTGGCACGTT 1 GTGGCACTTC 1 GTGGCAGACA 4 GTGGCAGACG 1 GTGGCAGAGA 1 GTGGCAGAGC 1 GTGGCAGATG 2 GTGGCAGATT 1 GTGGCAGCCA 1 GTGGCAGCGC 2 GTGGCAGGAG 4 GTGGCAGGCA 36 GTGGCAGGCG 35 GTGGCAGGGA 1 GTGGCAGGGC 2 GTGGCAGGGG 1 GTGGCAGGGT 1 GTGGCAGGTA 1 GTGGCAGGTG 34 GTGGCAGTAT 1 GTGGCAGTCA 1 GTGGCAGTGC 2 GTGGCAGTGG 5 GTGGCAGTTG 2 GTGGCATACA 2 GTGGCATAGC 2 GTGGCATATA 1 GTGGCATATG 1 GTGGCATCAA 1 GTGGCATCAC 7 GTGGCATCTG 1 GTGGCATTCT 1 GTGGCCAAAG 1 GTGGCCACCA 1 GTGGCCACGG 3 GTGGCCACTG 2 GTGGCCAGAG 6 GTGGCCAGTG 2 GTGGCCCACA 1 GTGGCCCACG 3 GTGGCCCAGC 3 GTGGCCCCGG 3 GTGGCCGACG 1 GTGGCCGTGG 1 GTGGCCTCAC 1 GTGGCCTCCG 1 GTGGCCTGCA 1 GTGGCCTGTC 1 GTGGCCTGTG 1 GTGGCCTTAC 1 GTGGCGACAC 1 GTGGCGACTA 1 GTGGCGAGCA 1 GTGGCGCAAA 1 GTGGCGCACA 11 GTGGCGCACG 4 GTGGCGCAGG 1 GTGGCGCATT 1 GTGGCGCCCG 1 GTGGCGCCGC 1 GTGGCGCCTG 1 GTGGCGCGAG 2 GTGGCGCGCA 1 GTGGCGCGCG 4 GTGGCGCGGG 1 GTGGCGCGGT 1 GTGGCGCGTG 10 GTGGCGCTTG 1 GTGGCGGACA 1 GTGGCGGACG 2 GTGGCGGATG 3 GTGGCGGCAC 1 GTGGCGGCGG 6 GTGGCGGCTG 3 GTGGCGGGAA 15 GTGGCGGGAC 1 GTGGCGGGCA 27 GTGGCGGGCG 21 GTGGCGGGGG 1 GTGGCGGGGT 1 GTGGCGGGTA 2 GTGGCGGGTG 21 GTGGCGGTGC 3 GTGGCGTACA 1 GTGGCGTATA 1 GTGGCGTATG 1 GTGGCGTGCA 7 GTGGCGTGCT 1 GTGGCGTGGC 1 GTGGCGTGGT 1 GTGGCGTGTG 13 GTGGCTAACG 2 GTGGCTCAAG 1 GTGGCTCAAT 1 GTGGCTCACA 19 GTGGCTCACC 1 GTGGCTCACG 36 GTGGCTCACT 2 GTGGCTCAGC 1 GTGGCTCAGG 2 GTGGCTCAGT 1 GTGGCTCATA 5 GTGGCTCGCA 1 GTGGCTCTAT 3 GTGGCTCTTG 3 GTGGCTGACT 1 GTGGCTGAGC 1 GTGGCTGAGG 2 GTGGCTGAGT 1 GTGGCTGATG 1 GTGGCTGCAG 1 GTGGCTGCTG 5 GTGGCTGGAG 1 GTGGCTGGCA 1 GTGGCTGGCG 3 GTGGCTGGGC 1 GTGGCTGGTG 2 GTGGCTTACA 1 GTGGCTTACG 1 GTGGCTTATG 1 GTGGCTTGAC 1 GTGGCTTGAT 1 GTGGCTTGCC 1 GTGGGAAGTG 1 GTGGGAATAA 1 GTGGGACACG 1 GTGGGACAGG 1 GTGGGAGACC 3 GTGGGAGGGG 3 GTGGGATGCA 1 GTGGGATTCC 1 GTGGGCACCT 2 GTGGGCACGA 2 GTGGGCACTG 1 GTGGGCCAAG 1 GTGGGCCACG 1 GTGGGCCAGG 8 GTGGGCCGCT 3 GTGGGCCTTT 1 GTGGGCTGGC 1 GTGGGGAGAT 1 GTGGGGAGGA 1 GTGGGGATGT 1 GTGGGGCCCT 1 GTGGGGCCGC 2 GTGGGGCGCC 1 GTGGGGCTAG 3 GTGGGGGAAG 1 GTGGGGGCAA 1 GTGGGGGCGC 22 GTGGGGGGAG 1 GTGGGGGGGG 2 GTGGGGGTGC 1 GTGGGGTGAC 1 GTGGGGTTGG 1 GTGGGTGAGG 1 GTGGGTGATT 1 GTGGGTGCTT 1 GTGGGTGTCC 4 GTGGGTTGGC 13 GTGGTAACTC 1 GTGGTACACG 2 GTGGTACAGG 14 GTGGTACATA 1 GTGGTACCCG 1 GTGGTACGAG 1 GTGGTACTCA 1 GTGGTAGAGG 1 GTGGTAGGCG 2 GTGGTAGGCT 1 GTGGTATGCA 1 GTGGTATGGC 2 GTGGTATGTG 1 GTGGTCAGTG 3 GTGGTCCACA 1 GTGGTCCCCA 1 GTGGTCGCGC 2 GTGGTCTCGG 1 GTGGTCTGGC 1 GTGGTGAGCA 2 GTGGTGAGCG 1 GTGGTGAGCT 1 GTGGTGAGTA 1 GTGGTGATGT 7 GTGGTGCAAG 2 GTGGTGCACA 32 GTGGTGCACC 2 GTGGTGCACG 24 GTGGTGCACT 1 GTGGTGCAGG 2 GTGGTGCATA 1 GTGGTGCATT 1 GTGGTGCCAG 2 GTGGTGCCGC 1 GTGGTGCCTG 1 GTGGTGCGCA 4 GTGGTGCGCG 3 GTGGTGCGTG 10 GTGGTGCTCA 1 GTGGTGCTCG 1 GTGGTGCTTG 4 GTGGTGGACA 1 GTGGTGGACG 1 GTGGTGGATG 1 GTGGTGGCAG 11 GTGGTGGCTG 1 GTGGTGGGAG 2 GTGGTGGGCA 15 GTGGTGGGCG 26 GTGGTGGGGA 1 GTGGTGGGTA 1 GTGGTGGGTC 1 GTGGTGGGTG 20 GTGGTGGTGC 1 GTGGTGGTGG 1 GTGGTGGTTA 1 GTGGTGTAAT 1 GTGGTGTACG 2 GTGGTGTATG 1 GTGGTGTCCA 1 GTGGTGTGCA 10 GTGGTGTGCG 2 GTGGTGTGCT 1 GTGGTGTGTG 16 GTGGTGTTCC 2 GTGGTTAAGG 1 GTGGTTACCT 1 GTGGTTCACA 1 GTGGTTCACG 5 GTGGTTCCTA 1 GTGGTTGATG 1 GTGGTTGCGC 1 GTGGTTGCGG 1 GTGGTTGGAA 1 GTGGTTTGCT 3 GTGGTTTGTG 1 GTGGTTTTTT 2 GTGTAAAAAA 1 GTGTAAAAGC 1 GTGTAAACAG 1 GTGTAACCCC 1 GTGTAACCCT 1 GTGTAACTGT 1 GTGTAAGAAC 1 GTGTAATAAG 8 GTGTACAATT 1 GTGTACTGTC 1 GTGTACTTGT 1 GTGTAGGGAA 1 GTGTAGGGTG 1 GTGTATCTTT 2 GTGTATGAAA 1 GTGTATGTCA 2 GTGTATTTAA 2 GTGTCACGCG 1 GTGTCAGGCA 1 GTGTCAGTGT 1 GTGTCCACGG 1 GTGTCCATTG 1 GTGTCCCTGT 5 GTGTCCGCAG 1 GTGTCCGCCC 1 GTGTCCTCCT 3 GTGTCCTTCA 1 GTGTCGAACG 1 GTGTCGCATC 3 GTGTCGGCTG 3 GTGTCGTTGG 1 GTGTCTCATC 1 GTGTCTCGCA 5 GTGTCTGCCC 1 GTGTGAATGT 2 GTGTGAGATC 1 GTGTGAGTGT 3 GTGTGATCCT 1 GTGTGCACCT 1 GTGTGCAGTA 2 GTGTGCCTCC 2 GTGTGCTGGC 1 GTGTGCTTAG 3 GTGTGGAGGA 2 GTGTGGGAGA 1 GTGTGGGCAC 1 GTGTGGGCCC 1 GTGTGGGCCT 1 GTGTGGGGGG 16 GTGTGGGGTG 4 GTGTGGGTGA 1 GTGTGGTCAA 1 GTGTGGTCAC 1 GTGTGGTGCA 1 GTGTGGTGGT 2 GTGTGTAAAA 1 GTGTGTGAAT 3 GTGTGTGCAC 1 GTGTGTGCCA 1 GTGTGTGTGT 4 GTGTTAAAGA 1 GTGTTAAATC 1 GTGTTAACCA 18 GTGTTAGCGC 1 GTGTTATGTG 1 GTGTTATTGC 1 GTGTTCCCAT 1 GTGTTCGGTG 2 GTGTTCTGAC 1 GTGTTCTTGG 2 GTGTTCTTTG 1 GTGTTGACGT 1 GTGTTGACTG 1 GTGTTGAGAG 1 GTGTTGCACA 25 GTGTTGGACT 1 GTGTTGGCTC 4 GTGTTGGGCA 1 GTGTTGGGCG 2 GTGTTGGGGG 19 GTGTTGGGTA 1 GTGTTGGTGA 1 GTGTTTCTTT 1 GTGTTTGATT 1 GTGTTTTTGT 1 GTTAAACAAA 1 GTTAAACCCC 2 GTTAAACCTC 1 GTTAAAGTTT 1 GTTAAATCCT 4 GTTAACGTCC 3 GTTAAGAGGG 1 GTTAAGATTC 1 GTTAAGATTT 1 GTTAAGCTGC 1 GTTAAGTTAG 1 GTTAATCCTG 1 GTTAATCTGG 1 GTTAATTGCT 2 GTTAATTTTC 1 GTTACACGTT 1 GTTACATCCT 1 GTTACATTCA 1 GTTACCGAGT 1 GTTACTGAGG 1 GTTAGACTAG 1 GTTAGAGCAG 1 GTTAGATTGG 1 GTTAGCAGCC 1 GTTAGCTTCA 1 GTTAGCTTGT 1 GTTAGGGGAG 1 GTTAGGGGTA 1 GTTATAAGAT 1 GTTATAAGTG 1 GTTATAATAC 2 GTTATAGTGT 1 GTTATGGGAT 1 GTTATGTGCA 1 GTTATGTTCT 1 GTTATTCAGG 1 GTTATTCCCC 1 GTTATTGAAA 1 GTTATTGAGG 11 GTTATTTTTA 1 GTTCAAACCT 1 GTTCAAGAGC 2 GTTCAAGATG 9 GTTCAAGGTG 1 GTTCAAGTGA 1 GTTCAATCCC 11 GTTCACACGG 1 GTTCACATTA 6 GTTCACATTT 1 GTTCACTCCA 1 GTTCACTGAA 3 GTTCACTGCT 1 GTTCACTGTC 1 GTTCAGAACA 1 GTTCAGAACT 1 GTTCAGAGTG 1 GTTCAGCATC 1 GTTCAGCTCT 4 GTTCAGCTGT 6 GTTCATAGGT 2 GTTCATAGTA 1 GTTCCAAGCA 1 GTTCCACTCT 2 GTTCCAGAGA 1 GTTCCAGCAG 5 GTTCCAGCTA 1 GTTCCAGGGA 1 GTTCCAGTGA 2 GTTCCATCAG 1 GTTCCATTTG 1 GTTCCCAACA 1 GTTCCCCAGT 1 GTTCCCCCAC 1 GTTCCCCTGG 1 GTTCCCTGGC 31 GTTCCCTTGG 1 GTTCCTAAGG 1 GTTCCTAATG 1 GTTCCTATTA 1 GTTCCTCAGC 3 GTTCCTGAAC 1 GTTCCTGGAC 1 GTTCCTGGCC 1 GTTCGCGCCA 1 GTTCGGAGAA 1 GTTCGGCTTT 1 GTTCGGGCCG 6 GTTCGTGCCA 13 GTTCGTTGGA 1 GTTCTAAACC 2 GTTCTAAATC 1 GTTCTCAAGC 1 GTTCTCCCAC 5 GTTCTCCCTT 1 GTTCTCTGCT 1 GTTCTCTGGC 1 GTTCTCTGTT 1 GTTCTGGGTC 1 GTTCTGGTTT 6 GTTCTGTGCC 1 GTTCTGTTAC 1 GTTCTTCCTC 1 GTTCTTCCTG 1 GTTCTTGTGC 1 GTTGAAACCC 1 GTTGAAACTC 2 GTTGACCCCT 1 GTTGACCTGT 2 GTTGAGGACA 1 GTTGAGGAGA 1 GTTGAGTTTC 1 GTTGATGTCA 1 GTTGATTTTA 1 GTTGCACTAC 2 GTTGCAGATA 1 GTTGCAGCAT 1 GTTGCCACCC 1 GTTGCCCAGG 1 GTTGCCCTTT 1 GTTGCCTGGA 1 GTTGCGCCAC 1 GTTGCGGAGG 1 GTTGCGGGTG 7 GTTGCGTCGG 1 GTTGCTCACG 1 GTTGCTCTAT 1 GTTGCTCTTG 1 GTTGCTGCCC 3 GTTGCTGGCA 1 GTTGCTGGGG 2 GTTGGAACTC 1 GTTGGACAGC 1 GTTGGACCAG 3 GTTGGATAGG 7 GTTGGCCACA 1 GTTGGCCTGG 3 GTTGGCTACG 1 GTTGGCTGAC 1 GTTGGCTTCC 1 GTTGGGACAT 1 GTTGGGAGCC 1 GTTGGGAGTC 8 GTTGGGCGTG 1 GTTGGGGGAG 1 GTTGGGGGGG 1 GTTGGGGGTT 1 GTTGGGGTAA 1 GTTGGGGTCC 1 GTTGGGGTCT 8 GTTGGGGTTA 1 GTTGGGTAGA 1 GTTGGGTTGG 1 GTTGGTAATG 1 GTTGGTCCCT 1 GTTGGTCTGT 3 GTTGGTGTCT 1 GTTGGTTCCC 1 GTTGGTTGCT 1 GTTGGTTGGC 1 GTTGTAAAAT 3 GTTGTAGTTA 1 GTTGTATTTA 1 GTTGTCACAC 1 GTTGTCTTTG 1 GTTGTGATGT 1 GTTGTGGAGG 2 GTTGTGGGCA 1 GTTGTGGGTA 1 GTTGTGGTAA 2 GTTGTGGTCT 1 GTTGTGGTTA 153 GTTGTGTTTT 1 GTTGTTCCTA 1 GTTGTTTCCT 1 GTTTAAAAAG 1 GTTTAAATGG 3 GTTTAATTCA 1 GTTTACTGAG 1 GTTTAGAGGG 16 GTTTAGGGGT 1 GTTTATCTTT 1 GTTTATGCCT 1 GTTTATTTGT 1 GTTTCAAATT 1 GTTTCAGCAG 1 GTTTCAGCTC 1 GTTTCAGTAG 1 GTTTCAGTTA 1 GTTTCCAAAA 1 GTTTCCAATG 1 GTTTCCACAA 1 GTTTCCAGCA 1 GTTTCCAGGT 1 GTTTCCATTG 2 GTTTCCCCAA 2 GTTTCCCCAG 1 GTTTCTAATA 1 GTTTCTATCA 1 GTTTCTCTGG 4 GTTTCTGCAA 1 GTTTCTTCCC 3 GTTTGAAACC 1 GTTTGATGGT 1 GTTTGCAAGT 1 GTTTGCACTG 1 GTTTGCAGTT 1 GTTTGCCTGC 1 GTTTGCGGAG 1 GTTTGCTCAG 1 GTTTGCTTGG 1 GTTTGGAAAC 1 GTTTGGAAAT 1 GTTTGGACTG 1 GTTTGGAGCT 7 GTTTGGCAGT 12 GTTTGGGACC 1 GTTTGTGCCC 1 GTTTGTGTTG 1 GTTTGTTGGA 1 GTTTTACTAT 1 GTTTTAGTGA 2 GTTTTCAGGA 1 GTTTTCATAG 1 GTTTTCCAAA 1 GTTTTCCATA 3 GTTTTCCCAC 1 GTTTTCTCCA 1 GTTTTGACAG 1 GTTTTGCCTT 1 GTTTTGGAGC 1 GTTTTGTGCG 1 GTTTTTAATG 1 GTTTTTACTT 1 GTTTTTAGCC 1 GTTTTTCATT 9 GTTTTTGCTT 1 GTTTTTGTCT 1 TAAAAAAAAA 7 TAAAAACTTT 1 TAAAAAGCAG 1 TAAAAAGTGA 1 TAAAAATTGC 1 TAAAACTTAC 1 TAAAAGAACA 1 TAAAAGACAA 1 TAAAAGATGT 1 TAAAAGGGTG 1 TAAAAGTAAA 1 TAAAATAAGA 1 TAAAATCTGG 1 TAAAATGACA 1 TAAAATGTTG 1 TAAACAAGCA 1 TAAACAAGGA 1 TAAACAGAGA 1 TAAACAGGCC 1 TAAACAGGTC 1 TAAACAGGTG 1 TAAACAGTAC 1 TAAACCGTAT 2 TAAACCTGTC 2 TAAACGTGGC 1 TAAACTACAA 1 TAAACTAGCA 1 TAAACTGTAT 2 TAAACTGTTT 5 TAAAGAAAAA 1 TAAAGACTCT 2 TAAAGATCCT 1 TAAAGCAGTC 1 TAAAGCCTGA 1 TAAAGCCTTT 1 TAAAGCTTAG 1 TAAAGCTTTG 1 TAAAGGAGCC 1 TAAAGGCCAA 1 TAAAGGCTTT 1 TAAAGTCTCA 1 TAAAGTGAAA 1 TAAAGTGACG 1 TAAAGTGTCT 2 TAAAGTGTTG 1 TAAATAAAGG 1 TAAATAATTT 3 TAAATACAGT 1 TAAATACTTG 1 TAAATAGTTC 1 TAAATATTTG 1 TAAATCAACT 1 TAAATCACAG 1 TAAATCATTG 2 TAAATCCAAT 1 TAAATCTTTT 1 TAAATGAACA 1 TAAATGAATT 1 TAAATGCAAA 1 TAAATGCTAT 1 TAAATGCTGT 1 TAAATTACAA 1 TAAATTCACC 1 TAAATTGCAA 59 TAAATTGGTA 2 TAAATTGTAT 1 TAAATTTTAA 1 TAAATTTTGC 1 TAACAAAAAT 1 TAACAAAATA 1 TAACAAACCT 6 TAACAAAGGA 1 TAACAAATGG 1 TAACAAGCAA 1 TAACAAGCCA 1 TAACAAGTTT 1 TAACAATGAA 1 TAACACAGTC 1 TAACAGACAG 1 TAACAGCCAG 7 TAACAGGAAA 1 TAACAGTGAT 3 TAACATTAAA 1 TAACATTGGT 2 TAACCAACCT 1 TAACCAATCA 5 TAACCAATCG 1 TAACCAGCAG 1 TAACCAGTTT 1 TAACCATTTT 2 TAACCCAACA 5 TAACCCACCT 1 TAACCCAGCA 13 TAACCCCAAA 1 TAACCCTTAG 1 TAACCGTACA 1 TAACCTCAAA 1 TAACGAACCC 1 TAACGCAGCA 3 TAACGCTGAG 1 TAACGGAAAA 1 TAACGTCTGC 1 TAACTAAACA 1 TAACTCCAAA 2 TAACTCCATT 1 TAACTCCTAG 1 TAACTCCTGC 1 TAACTCTAAG 1 TAACTCTCTC 1 TAACTCTGTC 2 TAACTGCCCA 1 TAACTGCTAA 1 TAACTGGAGG 3 TAACTGGGGG 1 TAACTGTCTT 5 TAACTGTTTT 1 TAACTTAAGC 2 TAACTTGTGA 3 TAACTTTTAT 1 TAAGAAAGAG 1 TAAGAAGATC 1 TAAGAAGGTG 3 TAAGAATCTG 1 TAAGAATGTA 1 TAAGACACTT 1 TAAGACCCAA 1 TAAGACTTCA 1 TAAGACTTTG 1 TAAGAGCTAC 1 TAAGATATGT 2 TAAGATCTTC 1 TAAGATTTCA 1 TAAGATTTTC 1 TAAGCAGATG 4 TAAGCAGCAC 2 TAAGCAGGCT 1 TAAGCATTAA 2 TAAGCCATAC 1 TAAGCCATTA 2 TAAGCCTAGT 1 TAAGCTAACA 1 TAAGCTTCCT 1 TAAGGACGAG 2 TAAGGACTGC 1 TAAGGAGATG 1 TAAGGAGCTG 37 TAAGGAGTGA 2 TAAGGATGGA 1 TAAGGCCATT 2 TAAGGCCTTT 9 TAAGGCTTTT 1 TAAGGGATAA 1 TAAGGGTAAA 1 TAAGGTAGAG 1 TAAGGTGTCT 1 TAAGTAAAGT 2 TAAGTACCAA 1 TAAGTAGCAA 8 TAAGTATGGC 1 TAAGTCCTTT 1 TAAGTGGAAT 4 TAAGTGGGAA 1 TAAGTGGGAT 1 TAAGTTCCTT 2 TAAGTTGGCT 1 TAAGTTGTAG 1 TAAGTTTAAT 1 TAATAAACAG 2 TAATAAAGCA 1 TAATAAAGGT 11 TAATAAATCT 1 TAATAAATGC 2 TAATACACAG 1 TAATAGGAGT 1 TAATAGTACA 1 TAATAGTCAT 1 TAATATCAGT 1 TAATATTTTT 2 TAATCAAGAT 1 TAATCAGCAA 1 TAATCAGGAG 1 TAATCATTAA 1 TAATCCCAAC 1 TAATCCCACC 1 TAATCCCAGA 1 TAATCCCAGC 33 TAATCCCGAC 1 TAATCGGTTA 3 TAATCTACAG 1 TAATCTATAG 1 TAATCTTGGG 1 TAATGAACTA 1 TAATGACACC 1 TAATGAGCTG 1 TAATGAGGAC 1 TAATGCAGAT 1 TAATGCCCCT 1 TAATGCCTCC 1 TAATGCCTTG 1 TAATGCTGCA 1 TAATGGAAAA 1 TAATGGAAGG 2 TAATGGCACT 1 TAATGGCCGT 1 TAATGGGAGT 5 TAATGGGGAG 1 TAATGGGTAA 1 TAATGGTAAC 9 TAATGGTAGC 2 TAATGTAAGG 1 TAATGTGAGG 1 TAATGTTGAT 1 TAATTACTCT 2 TAATTCTTCT 1 TAATTGCCAT 1 TAATTGGACT 1 TAATTGTATG 1 TAATTTCATT 1 TAATTTGAAA 1 TAATTTGCAT 2 TAATTTTGAA 1 TAATTTTTGC 1 TACAAAAAGC 1 TACAAACCTG 4 TACAAAGGCT 1 TACAAATCGT 1 TACAAATGCT 1 TACAACACCG 1 TACAACAGCA 1 TACAACTAGG 1 TACAAGAGAG 1 TACAAGAGAT 1 TACAAGAGGA 9 TACAAGATGG 1 TACAAGATGT 1 TACAATAAAC 2 TACAATAATT 2 TACAATATAA 1 TACAATGACA 1 TACAATTCTT 1 TACACAAAGA 1 TACACACCCA 1 TACACATAAG 1 TACACATCCC 1 TACACCAAGA 1 TACACCAGCA 3 TACACCGTTC 1 TACACGAACA 1 TACACGTGAG 6 TACACTAAAT 1 TACACTACAT 1 TACACTACCG 1 TACACTACTG 5 TACACTAGCA 1 TACACTGATG 1 TACACTGGTG 1 TACACTTGAA 1 TACACTTGCC 1 TACAGAATGT 3 TACAGACAAC 1 TACAGACTGA 1 TACAGACTTT 1 TACAGAGACC 1 TACAGAGCTC 1 TACAGAGGGA 6 TACAGATCTG 1 TACAGCAAGC 2 TACAGCACGG 6 TACAGCACTG 1 TACAGCGAGC 2 TACAGCGGCA 1 TACAGGAAGT 1 TACAGGCGTG 1 TACAGGGGTC 1 TACAGTAGAG 1 TACAGTATGT 3 TACAGTATTA 1 TACAGTGTGT 1 TACAGTTCAG 1 TACAGTTCCC 2 TACATAATAA 1 TACATAATTA 5 TACATAATTT 1 TACATACACG 1 TACATATTAA 3 TACATCCGAA 1 TACATCGATA 1 TACATTCACC 1 TACATTCGGT 1 TACATTCTGT 4 TACATTTGAT 1 TACATTTGGA 1 TACATTTTCA 1 TACCAACCAC 1 TACCAAGACC 2 TACCAAGATC 1 TACCACAAAA 1 TACCACACAC 2 TACCACACCA 1 TACCACATAA 1 TACCACCACA 1 TACCACCACG 2 TACCACTGAG 1 TACCAGAGGG 1 TACCAGATGT 1 TACCAGCGGC 1 TACCAGGTTG 1 TACCAGTGTA 3 TACCATCAAT 28 TACCCAAGAT 1 TACCCAAGCA 1 TACCCACAGA 2 TACCCACCCA 2 TACCCACCCG 1 TACCCATCCG 1 TACCCCACCC 16 TACCCCAGAA 1 TACCCCATAC 1 TACCCCGGAA 1 TACCCCTCAA 1 TACCCTAAAA 13 TACCCTAGAA 6 TACCCTGCAC 1 TACCCTTTAT 1 TACCGAGAGT 2 TACCGCACTA 1 TACCGCCCGT 5 TACCGCTCCC 2 TACCGTACAT 1 TACCTAATTG 1 TACCTACCAT 1 TACCTATGAT 1 TACCTATTAA 5 TACCTATTAT 1 TACCTCAGAT 1 TACCTCGATT 1 TACCTCTAGA 1 TACCTCTGAT 21 TACCTGCACC 1 TACCTGCTGG 1 TACCTGGCGG 1 TACCTGGGAG 1 TACCTTAAAA 1 TACCTTATTT 1 TACCTTTATG 1 TACCTTTATT 2 TACGAAGTTC 1 TACGAGGCCG 3 TACGATGAGT 1 TACGCCAAGC 1 TACGCCAAGG 1 TACGGAATGG 1 TACGGCAGAC 4 TACGGCGACA 1 TACGGGGATC 1 TACGGTGTGG 13 TACGTACTGC 2 TACGTCCACG 13 TACGTCTTCA 1 TACGTTCTTG 1 TACGTTGCAG 1 TACTAAAAAA 1 TACTACAACA 1 TACTACAGCA 1 TACTACTCAC 1 TACTAGTCCT 8 TACTATTGAG 2 TACTCAGAGG 1 TACTCAGTGC 1 TACTCCAGAA 1 TACTCGGCCA 5 TACTCGGGAG 1 TACTCGTACA 1 TACTCGTGCA 1 TACTCTAGAA 1 TACTCTCCCG 1 TACTCTTGGC 11 TACTGAAACA 1 TACTGAGATG 1 TACTGAGCTT 1 TACTGATAAT 1 TACTGATGTA 1 TACTGATTAC 1 TACTGATTTA 1 TACTGCAAAA 1 TACTGCTCGG 12 TACTGGAGTA 1 TACTGGAGTG 1 TACTGGCTCA 1 TACTGGCTGT 1 TACTGGTTCA 1 TACTGGTTTA 1 TACTGTACTT 13 TACTGTAGAC 2 TACTGTATGT 1 TACTGTGATT 1 TACTGTGCAT 1 TACTGTGGAT 11 TACTGTTTAA 1 TACTTAATTG 1 TACTTACAAG 1 TACTTATTGG 1 TACTTCCTGC 1 TACTTGGGAG 4 TACTTGTGGT 1 TACTTGTGTG 3 TACTTTATTT 1 TACTTTGGAG 1 TAGAAAGGCA 7 TAGAAGAACT 1 TAGAAGAGTT 1 TAGAAGCCAA 3 TAGAAGCCCC 2 TAGAAGCCGG 2 TAGAAGCTGC 1 TAGAAGCTTC 2 TAGAATATGC 1 TAGAATGCAA 1 TAGAATGCAT 1 TAGAATGGTG 1 TAGAATTATT 1 TAGAATTTTC 1 TAGACAATGC 1 TAGACATACA 1 TAGACTAAGC 1 TAGACTAGCA 27 TAGACTGCTG 1 TAGACTGGCA 3 TAGAGCACCC 1 TAGAGCCATC 1 TAGAGGAGGC 1 TAGAGGCTTC 1 TAGAGGTTTT 1 TAGAGTGTAA 2 TAGATAAGAC 1 TAGATAATGG 2 TAGATCAGAG 1 TAGATGAAAA 1 TAGATGCCTC 1 TAGATGGCAG 1 TAGCAAGAAT 1 TAGCAATCAG 1 TAGCACATCG 1 TAGCAGAAGC 1 TAGCAGCAAT 2 TAGCAGGTGT 1 TAGCAGTTAC 4 TAGCATTTTA 3 TAGCCACAGG 1 TAGCCACATT 1 TAGCCATCAA 1 TAGCCATCTG 1 TAGCCATCTT 1 TAGCCCGGCC 1 TAGCCCTCTT 1 TAGCCGCTGA 9 TAGCCGGGAC 2 TAGCCTCACT 1 TAGCCTCAGT 1 TAGCCTCTGC 1 TAGCCTGGGC 1 TAGCCTGGGT 1 TAGCCTGGTT 1 TAGCTAGTGA 1 TAGCTCCCTT 1 TAGCTCGGTC 1 TAGCTCTAGG 1 TAGCTCTATG 17 TAGCTCTTGC 1 TAGCTGCGTT 1 TAGCTGGAGG 1 TAGCTGTTTT 1 TAGCTTAAAC 1 TAGCTTATCT 1 TAGCTTCTTC 1 TAGCTTGATG 1 TAGGAAACTG 1 TAGGAATACT 3 TAGGACAACT 2 TAGGACCTGC 1 TAGGACTTAT 1 TAGGAGAATC 3 TAGGAGGCAC 1 TAGGATGGGG 30 TAGGCAAAGC 1 TAGGCAACAC 1 TAGGCAGTGC 1 TAGGCATCCA 1 TAGGCCACCA 2 TAGGCCCAAG 6 TAGGCCTCAA 1 TAGGCCTTCC 1 TAGGCGATAG 1 TAGGCTTACT 1 TAGGGCAATC 3 TAGGGCAGGC 1 TAGGGCAGTG 1 TAGGGCCGCA 1 TAGGGCTCTC 1 TAGGGGTAAA 1 TAGGGTGATG 1 TAGGGTGTCT 1 TAGGGTTTTA 1 TAGGTAAAGT 1 TAGGTAGATT 1 TAGGTATCCA 1 TAGGTCCAGT 1 TAGGTGCTTC 1 TAGGTGGGGG 2 TAGGTTAGAA 1 TAGGTTCGTG 1 TAGGTTGTCT 39 TAGTAAAGAC 1 TAGTAAAGGC 1 TAGTAAATTA 1 TAGTAACCAT 1 TAGTAAGGTG 1 TAGTAATGCC 1 TAGTACCAGC 1 TAGTAGAGGC 2 TAGTAGATGC 1 TAGTAGGGCC 1 TAGTAGGGCT 1 TAGTAGGTAG 1 TAGTAGTGGT 1 TAGTATGGCA 2 TAGTCATCTT 1 TAGTCCCAGC 2 TAGTCCGAGA 1 TAGTCGGAAA 1 TAGTCGGGCA 1 TAGTCTCTCA 1 TAGTCTGGAG 3 TAGTGGGCCA 1 TAGTGGGTCA 1 TAGTGTACGT 1 TAGTGTGGTA 1 TAGTTAATAG 1 TAGTTCAGTA 1 TAGTTGAAAA 1 TAGTTGAAGT 5 TAGTTGCACA 1 TAGTTGGAAA 7 TAGTTGGAAC 1 TAGTTGTAGG 1 TAGTTTGGAA 1 TAGTTTGTGG 1 TATAAAATTT 1 TATAAACTAG 1 TATAAAGTAA 1 TATAACCAAT 1 TATAAGCTGA 1 TATAAGGTCA 1 TATAAGGTGG 1 TATACACTCA 1 TATACAGCTC 1 TATACATACG 1 TATACCAATC 6 TATACCCAGT 1 TATACCTGGG 1 TATACGATAA 1 TATACGGGGA 1 TATACTATCA 1 TATACTTGGA 1 TATACTTGGG 1 TATAGATTGC 1 TATAGCAGCC 1 TATAGCAGTA 1 TATAGCCCTC 1 TATAGGCCGA 4 TATAGTCCTC 16 TATAGTGCTG 1 TATAGTGGAA 1 TATAGTTAAA 1 TATATACATT 1 TATATGGCTT 1 TATATGTGCA 1 TATATGTGCT 1 TATATTGATT 1 TATATTTACA 1 TATATTTCCA 1 TATCAATGGG 2 TATCACAGAA 1 TATCACTCTG 2 TATCATCTGG 3 TATCATTCAG 1 TATCCCAGAA 4 TATCCCATCA 1 TATCCCCCGA 1 TATCCTAGAA 1 TATCCTAGGG 1 TATCCTCTGG 2 TATCCTGAAA 1 TATCCTGATA 1 TATCCTGATG 2 TATCCTGTGG 1 TATCCTGTGT 1 TATCGAGGCA 1 TATCGATTCT 1 TATCGGAGCC 1 TATCGGGAAT 2 TATCGTGGCC 1 TATCGTTGCC 5 TATCTACCTT 1 TATCTATTGA 1 TATCTCCTTT 1 TATCTGATAA 4 TATCTGCTGA 2 TATCTGGAGA 1 TATCTGGTCT 1 TATCTGTCAT 1 TATCTTACAG 1 TATCTTCTAA 1 TATCTTGCTA 1 TATCTTGCTT 1 TATCTTTGTG 1 TATGAAAACA 2 TATGAAATTG 1 TATGAACAAA 1 TATGAATGCA 1 TATGAATGTA 2 TATGACACAC 1 TATGACCACA 1 TATGACTTAA 4 TATGAGAAGG 1 TATGAGATAG 1 TATGAGCAAG 1 TATGATCCAG 1 TATGATGAGC 21 TATGATTACC 1 TATGCAACAA 1 TATGCAACAG 1 TATGCAATCC 1 TATGCACAGG 1 TATGCAGTCA 1 TATGCCACTG 1 TATGCCCAAG 1 TATGCCTGTA 1 TATGCTGAAG 1 TATGGAAACA 1 TATGGAATGG 1 TATGGACCTG 1 TATGGAGCTG 1 TATGGGGTCA 1 TATGGGTTCC 1 TATGGTACTA 1 TATGGTCTGG 3 TATGGTGAGC 1 TATGTAAAAA 2 TATGTAAATA 1 TATGTAATAT 1 TATGTACTCC 1 TATGTATGTA 1 TATGTCCCAG 1 TATGTCTTGG 1 TATGTGAGAG 1 TATGTGATTT 1 TATGTGCCAC 1 TATGTGCGTA 1 TATGTGCTCC 1 TATGTGCTGC 1 TATGTGCTGT 1 TATGTGGGTT 1 TATGTGGTGT 1 TATGTGTGTG 1 TATGTGTTTT 2 TATGTTGGCC 1 TATTAAATAG 1 TATTAAATTC 1 TATTACTTTG 1 TATTAGAGTT 1 TATTATACAC 1 TATTATGCTG 1 TATTATGCTT 1 TATTATTTCA 1 TATTCAAGAT 1 TATTCAGGAC 1 TATTCATTGA 1 TATTGACAAC 4 TATTGAGAAG 1 TATTGAGCTG 1 TATTGAGTTA 1 TATTGGAATA 1 TATTGGGAGA 1 TATTGGTACT 1 TATTGTGTGC 2 TATTGTGTGT 1 TATTGTTCAA 1 TATTGTTGTG 1 TATTGTTTAA 1 TATTTACAGT 1 TATTTACCTT 1 TATTTAGCCT 1 TATTTAGTGC 1 TATTTATGGA 1 TATTTCACCG 3 TATTTCCTAC 1 TATTTCTTCA 1 TATTTGACCT 1 TATTTGACGG 1 TATTTGGCCT 1 TATTTGGCTA 1 TATTTGGCTT 2 TATTTGTAAA 1 TATTTGTGAT 1 TATTTGTGCG 1 TATTTGTGTG 1 TATTTGTGTT 1 TATTTTAAAA 1 TATTTTAATG 1 TATTTTACCT 1 TATTTTGCAA 2 TATTTTGTAA 1 TATTTTGTAT 1 TATTTTGTGA 2 TATTTTTAAA 1 TATTTTTACT 1 TATTTTTCCT 2 TCAAAAAAAA 10 TCAAAAAGGC 1 TCAAAAATGT 2 TCAAAACCCT 1 TCAAAAGACC 8 TCAAAATACA 1 TCAAAATTAT 1 TCAAAATTGG 1 TCAAACAAAT 1 TCAAACCCAA 1 TCAAACTGCT 1 TCAAACTGTG 4 TCAAAGATAA 1 TCAAAGCGCT 1 TCAAATAAAG 1 TCAAATAGGA 1 TCAAATATGT 1 TCAAATCACA 1 TCAAATGACA 1 TCAAATGAGA 2 TCAAATGCAG 1 TCAAATGTCA 3 TCAAATGTGG 1 TCAACACAGG 1 TCAACAGCCA 5 TCAACAGCGT 1 TCAACATATT 1 TCAACATCTA 1 TCAACCACAA 1 TCAACCCCAA 1 TCAACCTTAG 2 TCAACGGTGT 1 TCAACTGAAG 3 TCAACTGGTT 2 TCAACTTGAA 1 TCAAGAAACA 1 TCAAGACTCT 1 TCAAGAGCCG 1 TCAAGATGAA 1 TCAAGCCACA 1 TCAAGCCATC 11 TCAAGCGCTG 1 TCAAGGCAAG 1 TCAAGGCCAA 2 TCAAGGCCCC 1 TCAAGGTCTA 1 TCAAGTCCAG 2 TCAATAAAGA 3 TCAATAAAGG 1 TCAATAAAGT 1 TCAATATTAA 1 TCAATATTCT 1 TCAATCAAGA 4 TCAATCAGCG 1 TCAATCAGTG 1 TCAATCTGTG 1 TCAATGCAAA 1 TCAATGGACA 2 TCAATGTGTG 1 TCAATTAGTT 1 TCAATTATCC 1 TCAATTGCAA 1 TCAATTTCCC 1 TCACAAAAGA 2 TCACAAAGGA 1 TCACAAAGTG 1 TCACAAGCAA 7 TCACAATAGA 1 TCACAATAGG 1 TCACACAAAG 2 TCACACAACC 1 TCACACACAT 1 TCACACAGGC 1 TCACACAGTT 1 TCACACCAGG 1 TCACACCCCA 3 TCACACTCCT 1 TCACACTGAC 1 TCACACTGTC 1 TCACAGACAC 1 TCACAGCTGT 14 TCACAGGCAG 1 TCACAGGGGT 1 TCACAGTACA 1 TCACAGTACG 1 TCACAGTGCC 7 TCACATATGA 1 TCACATCCAT 1 TCACATCGCT 1 TCACATCTTT 1 TCACATTGAT 2 TCACCACACC 3 TCACCACATT 1 TCACCAGCCC 1 TCACCAGGAG 2 TCACCCAACA 1 TCACCCAAGT 1 TCACCCACAC 42 TCACCCCCAA 2 TCACCCGGTC 1 TCACCGGACA 2 TCACCGGGTC 1 TCACCGGTAA 1 TCACCGGTCA 75 TCACCTAAAT 1 TCACCTAGGC 1 TCACCTCTAT 2 TCACCTGAAA 1 TCACCTGCAA 1 TCACCTGGGC 1 TCACCTGTAG 7 TCACCTTAGG 5 TCACCTTGAT 1 TCACGCGCTC 2 TCACGGAACA 1 TCACGGCAAG 2 TCACGGCACG 1 TCACGGGTGC 1 TCACGGTCAG 2 TCACGTATGA 1 TCACTACACT 1 TCACTATAGC 3 TCACTATTAG 1 TCACTCAGGA 1 TCACTCATTT 1 TCACTCCTGG 3 TCACTGATCT 1 TCACTGCACT 11 TCACTGCAGC 1 TCACTGCATT 1 TCACTGCTCT 2 TCACTGGCAA 1 TCACTGGTAC 1 TCACTGTACA 1 TCACTGTGAG 2 TCACTGTGGG 1 TCACTGTTAA 1 TCACTTAACC 1 TCACTTTCAG 1 TCACTTTCTT 1 TCACTTTTTT 1 TCAGAAAAAA 1 TCAGAAAGCC 6 TCAGAACTAA 1 TCAGAAGGTG 4 TCAGAAGTTT 2 TCAGAATGTA 1 TCAGACAAAA 1 TCAGACCCAG 1 TCAGACCCTG 1 TCAGACCTGT 1 TCAGACGCAC 1 TCAGACGCAG 56 TCAGACGGAG 1 TCAGACTCGC 1 TCAGACTTTG 1 TCAGAGATGA 11 TCAGAGCCCA 1 TCAGAGCGAT 1 TCAGAGCGCC 1 TCAGAGCGCT 21 TCAGAGGTGG 1 TCAGATCTTG 1 TCAGATCTTT 32 TCAGATGCAC 1 TCAGATGGCG 1 TCAGATGTCA 1 TCAGATGTTT 1 TCAGCAAAGG 1 TCAGCAACAG 1 TCAGCAAGGG 5 TCAGCAATAA 1 TCAGCACCTG 9 TCAGCACGAG 1 TCAGCACTGC 1 TCAGCAGGGT 1 TCAGCAGTTA 1 TCAGCCAAGT 1 TCAGCCAGGC 1 TCAGCCAGTA 1 TCAGCCATCC 2 TCAGCCGCTA 2 TCAGCCTAAA 1 TCAGCCTCAG 1 TCAGCCTTCT 3 TCAGCGGAGA 2 TCAGCTGCAA 16 TCAGCTGGGA 1 TCAGCTGGGG 2 TCAGCTTCAC 4 TCAGCTTTCT 1 TCAGGAACTT 1 TCAGGAAGCT 1 TCAGGAGGAA 1 TCAGGATAAA 1 TCAGGCAATG 1 TCAGGCACTC 1 TCAGGCATTT 14 TCAGGCCAGA 5 TCAGGCCCTG 1 TCAGGCCTGT 1 TCAGGGACAC 1 TCAGGGAGAT 6 TCAGGGCTAC 1 TCAGGTCCCC 1 TCAGGTTATA 1 TCAGTACACA 1 TCAGTACAGA 1 TCAGTATTCT 3 TCAGTCCCTG 2 TCAGTCTGGG 1 TCAGTCTGTC 1 TCAGTGAACG 1 TCAGTGAACT 1 TCAGTGACAA 1 TCAGTGCGAC 1 TCAGTGCGCA 1 TCAGTGGCCA 3 TCAGTGGTAG 2 TCAGTGTACA 1 TCAGTGTCGA 1 TCAGTGTGCT 1 TCAGTGTGTG 1 TCAGTTATCT 2 TCAGTTCTTG 2 TCAGTTTCCC 1 TCAGTTTGGA 1 TCAGTTTGTC 5 TCATAACAGT 1 TCATAACTGT 3 TCATAAGGAA 1 TCATAAGTTA 1 TCATAATCCT 1 TCATACACCT 1 TCATACAGTT 1 TCATAGAAGT 1 TCATAGCAGA 1 TCATAGTTCA 1 TCATAGTTGC 1 TCATATGAAA 1 TCATCACTTA 1 TCATCAGGAC 1 TCATCAGGTG 1 TCATCATCAG 2 TCATCATCTG 4 TCATCCCACA 1 TCATCCCTCT 3 TCATCGCATC 1 TCATCGGCCA 1 TCATCTATGT 1 TCATCTCCCT 3 TCATCTGGCC 1 TCATCTGTGA 1 TCATCTGTTC 1 TCATCTTCAA 2 TCATCTTGAC 1 TCATCTTTCC 1 TCATTAACGA 1 TCATTACAAA 1 TCATTACAGA 1 TCATTACTGT 1 TCATTAGAAA 1 TCATTATGCT 1 TCATTATTTT 1 TCATTGAAAG 1 TCATTGCACT 1 TCATTGCCCC 1 TCATTGGTTT 3 TCATTGTAAT 1 TCATTGTATG 1 TCATTTATTT 1 TCATTTCAGA 3 TCATTTTACA 1 TCATTTTCCA 3 TCATTTTCCT 1 TCATTTTGTG 1 TCATTTTGTT 1 TCCAAAAAAA 1 TCCAAAAGGA 1 TCCAAAAGTA 1 TCCAAACAAG 1 TCCAAACACC 1 TCCAAAGCAC 1 TCCAAAGCAT 4 TCCAAAGTAA 3 TCCAAATTCC 1 TCCAACAACC 1 TCCAACCTCG 1 TCCAACTTGT 1 TCCAAGATTA 1 TCCAAGGAAG 3 TCCAAGGTTG 1 TCCAAGTTCC 3 TCCAATACTG 2 TCCAATCAGT 1 TCCAATGTGC 1 TCCAATGTTT 1 TCCAATTCCC 1 TCCACACCAA 1 TCCACACGTC 1 TCCACAGCCA 1 TCCACCAAGT 1 TCCACCAGGC 1 TCCACCCGCA 1 TCCACCCTGA 1 TCCACCTGTC 1 TCCACGCACC 10 TCCACGCCTG 1 TCCACTAACC 1 TCCACTACCA 1 TCCACTGCAA 1 TCCACTGCAT 1 TCCAGAAGTT 1 TCCAGAATAA 1 TCCAGAATGC 1 TCCAGCACAA 1 TCCAGCACGA 1 TCCAGCATTT 1 TCCAGCCCAT 1 TCCAGCCCCT 11 TCCAGCCTGC 1 TCCAGCCTGG 8 TCCAGCTTTC 1 TCCAGGAACC 1 TCCAGGGCCA 1 TCCAGGTCTC 1 TCCAGTATGA 1 TCCAGTCATT 1 TCCAGTCCGG 1 TCCAGTGAGC 1 TCCAGTGCAG 1 TCCAGTTCCC 1 TCCATAAGGA 1 TCCATAATAA 1 TCCATACACC 3 TCCATAGATT 4 TCCATAGCTG 1 TCCATATTCT 1 TCCATCAAGA 2 TCCATCAGCT 1 TCCATCCCTT 2 TCCATCGTCC 1 TCCATCTGGT 1 TCCATCTGTT 1 TCCATTAGTG 1 TCCATTCAGC 1 TCCATTTAGA 1 TCCATTTCCA 1 TCCATTTGAA 1 TCCCACATCG 1 TCCCACGTTC 1 TCCCACTCTA 1 TCCCAGAACA 1 TCCCAGAGAC 2 TCCCAGCAGA 1 TCCCAGCCCA 1 TCCCAGGAAC 3 TCCCAGGTCA 1 TCCCAGGTCC 1 TCCCAGTATT 1 TCCCATAAGC 1 TCCCATCCCC 1 TCCCATTGTC 1 TCCCCAAGAT 1 TCCCCAAGCT 1 TCCCCACACC 4 TCCCCACATC 1 TCCCCAGACT 1 TCCCCAGCCC 1 TCCCCATTAG 1 TCCCCCAACA 1 TCCCCCACAG 1 TCCCCCGACC 1 TCCCCCGTAT 1 TCCCCCTGAG 1 TCCCCCTGTG 1 TCCCCCTTCG 2 TCCCCGAAAA 1 TCCCCGAACT 1 TCCCCGAATC 1 TCCCCGACAC 1 TCCCCGACTA 1 TCCCCGAGCC 1 TCCCCGATCG 1 TCCCCGCACG 1 TCCCCGCATC 2 TCCCCGCCCA 1 TCCCCGCTCC 1 TCCCCGCTCG 1 TCCCCGGACC 1 TCCCCGGTAA 1 TCCCCGGTCA 1 TCCCCGTAAG 1 TCCCCGTAGG 2 TCCCCGTAGT 1 TCCCCGTCAG 1 TCCCCGTCCC 1 TCCCCGTGAA 1 TCCCCGTGCT 1 TCCCCGTGGC 3 TCCCCGTGGT 1 TCCCCGTTAA 3 TCCCCGTTAG 1 TCCCCGTTCC 1 TCCCCGTTCG 1 TCCCCGTTGT 1 TCCCCTACTA 1 TCCCCTCAGT 1 TCCCCTCCCA 2 TCCCCTTAGG 1 TCCCCTTCCT 1 TCCCCTTTTA 1 TCCCGACATC 2 TCCCGACGTC 1 TCCCGAGGTC 1 TCCCGATTAG 1 TCCCGCACAT 2 TCCCGCCCCA 1 TCCCGGAACA 1 TCCCGTAAAT 3 TCCCGTAACA 1 TCCCGTACAC 1 TCCCGTACGT 1 TCCCGTCATC 3 TCCCGTTACA 1 TCCCTAAAAA 1 TCCCTAAATT 1 TCCCTAATAT 1 TCCCTACAAA 1 TCCCTACATC 2 TCCCTACCAA 1 TCCCTACCCC 1 TCCCTACCTA 1 TCCCTAGCCT 1 TCCCTAGTGA 1 TCCCTATTCC 1 TCCCTCCTCC 1 TCCCTCTCAG 1 TCCCTCTGTT 1 TCCCTGGCAT 2 TCCCTGGCTG 2 TCCCTGGCTT 1 TCCCTGGGCA 1 TCCCTGTAGT 1 TCCCTTAGAA 1 TCCCTTATAA 2 TCCCTTGGCC 1 TCCCTTGTGG 1 TCCCTTTTTA 2 TCCGAATAGA 1 TCCGAATTAT 1 TCCGAGACTG 3 TCCGCAGCTG 2 TCCGCCCTGC 2 TCCGCCGCAG 1 TCCGCCGCCC 1 TCCGCCGCGG 1 TCCGCCTCGG 3 TCCGCGAGAA 14 TCCGCGTGCA 1 TCCGCGTTCC 1 TCCGGAGGGC 1 TCCGGCCCAC 1 TCCGGCCGCG 5 TCCGGCTAGT 1 TCCGGGCCAC 1 TCCGGGGCTC 1 TCCGGGGGTT 1 TCCGGGTGGG 1 TCCGGTGGTT 1 TCCGTAATCC 2 TCCGTACATC 2 TCCGTGACAG 1 TCCGTGCTAA 2 TCCGTGGTTG 1 TCCGTGTACA 1 TCCTAAGACT 1 TCCTAAGTCT 1 TCCTAATAAA 1 TCCTAATAAG 1 TCCTAATTAA 1 TCCTACTAAG 1 TCCTAGAGGA 1 TCCTAGCCTG 2 TCCTAGTAGG 1 TCCTATATCT 1 TCCTATCCAG 1 TCCTATCCCA 3 TCCTATCTGT 1 TCCTATTAAA 1 TCCTCAAATA 1 TCCTCAAGAT 3 TCCTCACCCC 1 TCCTCAGCTA 1 TCCTCCAAGG 1 TCCTCCAGTA 1 TCCTCCAGTT 1 TCCTCCCCAG 1 TCCTCCCTAC 3 TCCTCCCTCC 3 TCCTCCCTTA 1 TCCTCCGTGG 1 TCCTCCTACA 1 TCCTCCTCCC 1 TCCTCGACAT 1 TCCTCGCAAA 1 TCCTCGCCCA 1 TCCTCGGGCA 1 TCCTCTCCTC 2 TCCTCTCTGT 1 TCCTCTGTTT 1 TCCTCTTCCC 1 TCCTCTTTCA 4 TCCTCTTTCC 10 TCCTGAAATA 2 TCCTGAACAG 1 TCCTGAAGCC 1 TCCTGACCAC 1 TCCTGAGAGG 1 TCCTGATCCA 1 TCCTGCCAGC 1 TCCTGCCCCA 5 TCCTGCCCTC 1 TCCTGCCTCT 1 TCCTGCTAGG 1 TCCTGCTGAT 1 TCCTGCTGGC 1 TCCTGCTTGG 1 TCCTGGAGGT 2 TCCTGGTGGT 1 TCCTGGTTAT 1 TCCTGTAACT 1 TCCTGTACAT 2 TCCTGTATAA 1 TCCTGTATGA 1 TCCTGTTATC 1 TCCTGTTCTT 1 TCCTTAGAAG 1 TCCTTATCTG 1 TCCTTCAGCG 1 TCCTTCATTG 1 TCCTTCTCCA 3 TCCTTGAATA 1 TCCTTGACCA 7 TCCTTGCTTC 1 TCCTTGGCGT 1 TCCTTTATTC 1 TCCTTTCATT 1 TCCTTTGCAG 1 TCCTTTGTGC 2 TCCTTTTCCT 1 TCCTTTTCTC 1 TCCTTTTGCT 1 TCGAAACCCC 2 TCGAAACCCT 1 TCGAAACGCT 1 TCGAAAGCCC 1 TCGAACCCCC 2 TCGAACTGAC 1 TCGAAGAACC 5 TCGAAGCCCC 125 TCGAAGCTCC 1 TCGAATCCCC 1 TCGACGAGGC 1 TCGACGGCCA 1 TCGAGACGTG 1 TCGAGCCCCA 1 TCGAGCCCCC 3 TCGAGCTGTT 1 TCGAGGACAG 1 TCGAGGCCCC 1 TCGATATGAC 1 TCGATCCCAA 1 TCGATGTGCC 1 TCGCAGATCA 1 TCGCAGTACA 1 TCGCAGTGCA 1 TCGCCCAGGC 1 TCGCCGCGAC 9 TCGCCGCTGG 1 TCGCCGGACA 1 TCGCCGGTCA 2 TCGCCGTCAT 1 TCGCGTACAT 1 TCGCGTTACG 1 TCGCTGTACA 2 TCGGAAGCTG 1 TCGGACCTGG 1 TCGGAGCGCT 2 TCGGAGCTGT 20 TCGGAGGGGC 1 TCGGAGGTGC 2 TCGGAGTCCG 1 TCGGATGCAC 1 TCGGCAAATC 1 TCGGCAGTCA 1 TCGGCCACTG 1 TCGGCCAGCA 2 TCGGCCAGGC 1 TCGGCCGCGG 1 TCGGCCTTTT 1 TCGGCGACAC 1 TCGGCTAGAG 1 TCGGCTGGTG 1 TCGGGAGCTG 4 TCGGGCCAGA 1 TCGGGCTGAA 1 TCGGGCTTAG 1 TCGGGTGTCC 1 TCGGGTGTGG 6 TCGGTCAGGC 1 TCGGTGATTC 1 TCGGTGCAGG 2 TCGGTGCCCG 1 TCGGTGTCTG 4 TCGGTTACAA 7 TCGTAACGAG 4 TCGTAGAGCA 1 TCGTAGCCAC 1 TCGTAGCCTG 1 TCGTATTTAT 1 TCGTCAGGAC 1 TCGTCCCAGT 1 TCGTCCCCGC 1 TCGTCGCAGA 6 TCGTCTGCAA 1 TCGTCTTTAT 2 TCGTCTTTCA 1 TCGTGACGCT 1 TCGTGTGTTA 3 TCGTTAAATA 1 TCGTTATGCA 2 TCGTTCACGT 1 TCGTTGAGAG 1 TCGTTGCTGG 1 TCGTTGTTTA 2 TCGTTTCCTT 2 TCGTTTGCAA 1 TCTAAAACAC 3 TCTAAACACT 1 TCTAAATGAT 1 TCTAACACCC 1 TCTAACAGGC 1 TCTAACTACG 1 TCTAAGCCCC 1 TCTAAGTACG 1 TCTAAGTCTA 1 TCTAATGAGA 1 TCTACACTGG 1 TCTACAGAAT 1 TCTACAGTGG 1 TCTACCAACT 1 TCTACCAAGC 1 TCTACCCTAA 1 TCTACGTACT 1 TCTACTCAGC 1 TCTACTGAGG 1 TCTAGACCTT 1 TCTAGTCACT 3 TCTAGTCTGC 1 TCTATAATCA 1 TCTATAGTCC 1 TCTATCAAGT 1 TCTATGACCT 1 TCTATGAGAC 1 TCTATGTAAC 1 TCTATTGATG 1 TCTCAAATAC 2 TCTCAACCCT 1 TCTCAACGTG 1 TCTCAATTCT 7 TCTCACCCGA 1 TCTCACTTCA 1 TCTCAGAACA 1 TCTCAGATGA 1 TCTCAGATTA 1 TCTCAGGCTG 2 TCTCAGGGCT 2 TCTCAGGTCA 1 TCTCCAACAA 1 TCTCCACCTA 1 TCTCCACGAA 2 TCTCCAGCTA 1 TCTCCAGGAA 6 TCTCCAGTCT 1 TCTCCATCAC 1 TCTCCCTTCA 1 TCTCCGCACA 2 TCTCCGTGCA 1 TCTCCTGCAT 1 TCTCCTGCTA 1 TCTCTAAAAA 1 TCTCTAAGCC 2 TCTCTACAAG 1 TCTCTACCCA 7 TCTCTACTAA 6 TCTCTCCACT 1 TCTCTCCCTT 1 TCTCTCTGCA 4 TCTCTGACGT 1 TCTCTGATGC 2 TCTCTGCAGC 1 TCTCTGCTCA 1 TCTCTGGGGC 1 TCTCTGGGGG 1 TCTCTGGTAC 1 TCTCTGTCAG 1 TCTCTGTGTA 1 TCTCTTAAAG 1 TCTCTTCAAA 1 TCTCTTTAAA 1 TCTCTTTTTC 1 TCTGAAGTCA 5 TCTGAAGTGG 1 TCTGAAGTTT 2 TCTGAATAGC 3 TCTGAATCGG 1 TCTGAATTAC 1 TCTGAATTAT 16 TCTGACAAAG 1 TCTGACCACC 2 TCTGACCAGG 1 TCTGACTCAA 1 TCTGAGCCAG 3 TCTGAGGTGT 1 TCTGAGTCTG 1 TCTGAGTTCT 1 TCTGATAACG 1 TCTGATCTTG 1 TCTGATGCCC 1 TCTGATGGAG 1 TCTGCAAACA 1 TCTGCAAAGA 1 TCTGCAAGCA 2 TCTGCAATGA 4 TCTGCACTGA 2 TCTGCAGCCC 1 TCTGCAGCCT 1 TCTGCAGGGG 3 TCTGCAGTCC 1 TCTGCCCTTG 1 TCTGCCTCCC 1 TCTGCCTCGT 1 TCTGCCTGGG 8 TCTGCCTGTC 4 TCTGCGCATC 2 TCTGCGGGTG 2 TCTGCTAAAG 6 TCTGCTAAAT 1 TCTGCTCGAA 1 TCTGCTCTCC 1 TCTGCTCTGC 1 TCTGCTGGGG 1 TCTGCTTACA 3 TCTGCTTTTC 1 TCTGGAACCG 1 TCTGGACCGG 2 TCTGGACTCG 2 TCTGGAGCGC 1 TCTGGCAAAG 1 TCTGGCAACC 1 TCTGGCAGTA 2 TCTGGCATAG 1 TCTGGCCAAG 1 TCTGGCCCCA 1 TCTGGCCTGC 1 TCTGGCCTTA 1 TCTGGCGGCC 1 TCTGGCTAAT 1 TCTGGCTGCG 1 TCTGGGAAGA 1 TCTGGGAGAA 5 TCTGGGAGAG 1 TCTGGGAGCG 1 TCTGGGATAG 2 TCTGGGCCTT 1 TCTGGGGACG 3 TCTGGGGGCA 1 TCTGGTCTGG 6 TCTGGTGCCA 2 TCTGGTTTGC 1 TCTGGTTTGT 15 TCTGTAACAC 1 TCTGTAACTG 1 TCTGTAAGGG 1 TCTGTAATAC 2 TCTGTAATCC 15 TCTGTAATCT 1 TCTGTACACC 3 TCTGTAGAGA 2 TCTGTAGTCA 1 TCTGTAGTCC 1 TCTGTAGTTC 1 TCTGTATTTG 1 TCTGTCAAGA 6 TCTGTCATAC 1 TCTGTCCCCC 3 TCTGTCCTCA 5 TCTGTCTACC 1 TCTGTCTGTC 1 TCTGTGAATT 1 TCTGTGACCT 2 TCTGTGCATA 1 TCTGTGCATT 1 TCTGTGCCAA 1 TCTGTGCTCA 8 TCTGTGCTCC 2 TCTGTGGTAA 1 TCTGTTACAC 1 TCTGTTATAG 1 TCTGTTCAAT 1 TCTGTTCTGG 1 TCTGTTCTTC 1 TCTGTTGAGT 1 TCTGTTGTTC 5 TCTGTTTATC 2 TCTGTTTCCA 1 TCTTAATCAA 2 TCTTAATTCT 1 TCTTACAAAA 1 TCTTACACAA 1 TCTTACATTT 1 TCTTACCTGC 1 TCTTACGCGT 4 TCTTACTGGA 1 TCTTAGCTTA 1 TCTTATCCTT 1 TCTTATTAGA 1 TCTTATTCTT 1 TCTTCAAACG 1 TCTTCACTTG 1 TCTTCAGTAG 2 TCTTCATTTG 1 TCTTCCAGGA 8 TCTTCCCCAC 2 TCTTCCCCAG 2 TCTTCCCTCA 2 TCTTCCCTCC 1 TCTTCGACAG 1 TCTTCGGCTC 1 TCTTCGTTGT 1 TCTTCTAACT 1 TCTTCTACTT 1 TCTTCTCAAA 1 TCTTCTCCCT 3 TCTTCTGACT 1 TCTTCTGCCA 1 TCTTCTGTTG 1 TCTTCTTCGG 1 TCTTGACAAC 2 TCTTGAGGCC 1 TCTTGCGGGG 1 TCTTGGTAAA 1 TCTTGTAACT 1 TCTTGTACTT 1 TCTTGTCATA 1 TCTTGTGCAT 11 TCTTGTGCCT 1 TCTTGTTCAA 1 TCTTGTTTAT 1 TCTTTACTTG 1 TCTTTAGTTG 2 TCTTTATACA 1 TCTTTATTTG 1 TCTTTCCAGA 1 TCTTTCGTCT 1 TCTTTGTGGA 1 TCTTTGTGGG 1 TCTTTGTTGT 6 TCTTTTCAAA 1 TCTTTTCACT 3 TGAAAAAAAA 3 TGAAAAAATT 1 TGAAAAATCT 1 TGAAAACTGA 1 TGAAAAGCTT 3 TGAAAAGGAA 1 TGAAAATCAA 1 TGAAAATTGT 1 TGAAACAAAA 1 TGAAACAACA 1 TGAAACCCTG 2 TGAAACCTTG 1 TGAAACGGAA 1 TGAAACGTGC 1 TGAAACTCAC 1 TGAAACTCAT 5 TGAAACTGCA 3 TGAAACTTCC 1 TGAAAGTGAC 1 TGAAAGTGTG 2 TGAAATAAAA 2 TGAAATCACT 1 TGAAATGCCA 1 TGAACACAGC 1 TGAACAGCCA 2 TGAACAGGCA 2 TGAACAGTAA 4 TGAACCCACG 1 TGAACCCAGG 5 TGAACCCGCC 12 TGAACCGCCA 1 TGAACCTAGC 1 TGAACCTTCC 1 TGAACTAACT 1 TGAACTATTA 1 TGAACTTACA 1 TGAACTTCAG 1 TGAACTTTTG 2 TGAAGAAAAG 1 TGAAGAATGT 1 TGAAGACTTT 1 TGAAGAGAAG 3 TGAAGAGAAT 3 TGAAGAGACT 1 TGAAGAGAGC 1 TGAAGAGGAC 1 TGAAGAGGCA 3 TGAAGATATA 1 TGAAGATGAA 1 TGAAGCAGAA 1 TGAAGCAGCT 1 TGAAGCAGTA 15 TGAAGCCAGT 1 TGAAGCCTTG 1 TGAAGGAGCC 15 TGAAGGATCA 1 TGAAGGATGC 1 TGAAGGGCAC 1 TGAAGGGTCA 1 TGAAGGTAAC 1 TGAAGGTGGA 1 TGAAGGTGGT 2 TGAAGTAACA 2 TGAAGTACAC 1 TGAAGTATTT 1 TGAAGTCACT 1 TGAAGTGACA 1 TGAAGTGACC 1 TGAAGTGACT 2 TGAAGTGTCC 1 TGAAGTTCCC 1 TGAAGTTTTT 2 TGAATAAACA 1 TGAATAAGTG 1 TGAATACTAC 1 TGAATAGCTG 1 TGAATAGCTT 1 TGAATATAAG 1 TGAATATACT 1 TGAATATGAT 1 TGAATCTGGG 1 TGAATGAAAG 1 TGAATGAATG 4 TGAATGAATT 1 TGAATGGCCT 3 TGAATGTCAA 3 TGAATGTGGA 1 TGAATGTGGG 1 TGAATGTTGA 1 TGAATTCTTA 1 TGAATTTCAC 1 TGAATTTCCT 1 TGAATTTGCT 1 TGACAAAAGC 1 TGACAAAATG 1 TGACAAAGGG 1 TGACAATTTT 3 TGACACAGCA 1 TGACACAGCC 2 TGACACATAT 1 TGACACCCAC 1 TGACAGAAAC 1 TGACAGAGAC 1 TGACAGAGGA 1 TGACAGAGTG 10 TGACAGCCCA 2 TGACAGCTGA 1 TGACAGCTTT 1 TGACAGGAAT 1 TGACATATGA 1 TGACATATTG 1 TGACCAAACC 1 TGACCAAGTT 1 TGACCACTGA 1 TGACCAGGCC 1 TGACCAGTTA 1 TGACCATTTC 1 TGACCCACCA 2 TGACCCCACA 3 TGACCCCAGC 1 TGACCCGCCA 1 TGACCCTTGA 2 TGACCTTGGA 2 TGACCTTTCA 1 TGACGACGAC 1 TGACGTGCAC 1 TGACTAATTG 9 TGACTAGTGT 1 TGACTCCTAG 2 TGACTGCTGC 1 TGACTGGAAA 4 TGACTGGAGT 1 TGACTGGCAG 4 TGACTGGGAA 1 TGACTGGTCA 2 TGACTGTAAA 1 TGACTGTAGT 1 TGACTGTTAT 1 TGACTTATTA 2 TGACTTCACT 2 TGACTTCCAT 1 TGACTTTCTG 1 TGACTTTTAC 1 TGACTTTTCT 4 TGAGAAGAAG 4 TGAGAATAAG 1 TGAGACTGGT 1 TGAGACTTGC 1 TGAGAGAATA 1 TGAGAGACAT 2 TGAGAGGAGA 2 TGAGAGGGTG 4 TGAGATAGGC 1 TGAGATCTTG 2 TGAGATTGAT 2 TGAGCAAAAG 1 TGAGCAAACT 1 TGAGCAACCG 1 TGAGCAATAC 1 TGAGCAATAG 1 TGAGCAGGTG 1 TGAGCATAAT 1 TGAGCATTAG 1 TGAGCCAATA 1 TGAGCCACTG 1 TGAGCCCGGC 3 TGAGCCCTGT 1 TGAGCCTCGT 5 TGAGCGTGGG 2 TGAGCTCTCG 1 TGAGCTTAAT 2 TGAGCTTTGG 1 TGAGGACACA 1 TGAGGACAGA 1 TGAGGACGCA 1 TGAGGAGAAG 1 TGAGGAGAGA 1 TGAGGAGCTC 1 TGAGGAGGAA 1 TGAGGATGAT 1 TGAGGCAGGG 2 TGAGGCCAGG 1 TGAGGCCTCT 5 TGAGGCTGCT 1 TGAGGGAAAA 1 TGAGGGAATA 15 TGAGGGACGG 1 TGAGGGAGCC 1 TGAGGGATGG 2 TGAGGGATTA 1 TGAGGGCAGG 1 TGAGGGGGCA 2 TGAGGGGTGA 2 TGAGGGTCCA 1 TGAGGGTTAG 2 TGAGGTAACT 1 TGAGGTCACC 1 TGAGGTGGTT 1 TGAGGTTAAA 1 TGAGTAAACT 1 TGAGTCTGGC 10 TGAGTGAACC 1 TGAGTGAAGA 1 TGAGTGAAGC 1 TGAGTGAAGG 1 TGAGTGACAA 1 TGAGTGACAC 1 TGAGTGACAG 68 TGAGTGAGCA 1 TGAGTGCAGC 1 TGAGTGGACA 5 TGAGTGGTAG 2 TGAGTGGTCA 3 TGAGTGGTTT 1 TGAGTTAATA 1 TGAGTTGGGC 1 TGAGTTGGGT 1 TGATAAAACT 1 TGATAAACAG 1 TGATAATGAA 1 TGATAATTCA 10 TGATAATTTA 1 TGATACAATG 1 TGATACTTTT 1 TGATATTCTT 1 TGATCAAATG 1 TGATCAACAG 1 TGATCAAGCA 1 TGATCAGCCC 1 TGATCCGCTT 1 TGATCCTAGA 1 TGATCCTCCT 1 TGATCCTTCA 1 TGATCTAGAC 1 TGATCTAGAG 1 TGATCTCACT 1 TGATCTCCAA 2 TGATCTCCCT 1 TGATCTCTGA 2 TGATCTCTGT 7 TGATCTGAAG 1 TGATCTGCCT 2 TGATCTGGGA 2 TGATGAAGAC 1 TGATGACAAA 1 TGATGAGAAA 1 TGATGAGTGC 4 TGATGCACCA 1 TGATGCATAT 1 TGATGCCTCC 7 TGATGCGCGC 1 TGATGCGCTT 1 TGATGCTACC 1 TGATGCTCTT 1 TGATGGCCCC 1 TGATGGCTCC 1 TGATGGTCCC 2 TGATGGTGAT 1 TGATGTCACC 2 TGATGTCACT 1 TGATGTCCAC 4 TGATGTCTGC 1 TGATGTGATC 3 TGATGTGATT 1 TGATGTTCCA 2 TGATGTTGGT 1 TGATGTTTGA 3 TGATTAAAAC 1 TGATTAAGGT 3 TGATTACAAT 1 TGATTAGTTT 1 TGATTCACTT 11 TGATTCAGAC 1 TGATTCCACT 2 TGATTCGCTT 1 TGATTGACAG 1 TGATTGAGGC 1 TGATTGATTT 2 TGATTGCCCT 1 TGATTGGTGG 5 TGATTTACTT 2 TGATTTAGCC 1 TGATTTCACC 2 TGATTTCACT 317 TGATTTCCTT 1 TGCAAAAAAA 2 TGCAAAGACA 1 TGCAAATCAG 1 TGCAAATGTT 1 TGCAACAAAT 2 TGCAACACGA 1 TGCAACCAAA 1 TGCAAGACGA 1 TGCAAGGGAA 2 TGCAAGTACA 1 TGCAATAGGG 1 TGCAATGGCT 2 TGCAATGGGT 1 TGCAATTACT 1 TGCAATTGCA 1 TGCAATTTGT 1 TGCAATTTTT 1 TGCACAAGAC 1 TGCACAATAC 2 TGCACAATAT 3 TGCACAATGT 1 TGCACACACA 1 TGCACACAGA 1 TGCACACGAG 1 TGCACACGTG 1 TGCACACTCT 1 TGCACACTTC 1 TGCACAGCTT 1 TGCACCACAG 2 TGCACCCTGC 1 TGCACGAAGC 1 TGCACGATTG 1 TGCACGCCTT 1 TGCACGGCAA 1 TGCACGTACA 1 TGCACGTTTC 2 TGCACGTTTT 43 TGCACTACAA 1 TGCACTCCTT 1 TGCACTCTCC 1 TGCACTGAAT 1 TGCACTTCAC 1 TGCACTTGAC 2 TGCAGAACGG 1 TGCAGACAGA 1 TGCAGACCAG 1 TGCAGACCCA 6 TGCAGACGGG 1 TGCAGAGAAA 2 TGCAGAGACA 2 TGCAGATTGC 5 TGCAGCACAA 1 TGCAGCACGA 185 TGCAGCACGG 2 TGCAGCAGAT 1 TGCAGCAGTG 1 TGCAGCCAAA 1 TGCAGCCCCT 1 TGCAGCGCCT 9 TGCAGGCAGG 1 TGCAGGCCTG 3 TGCAGGTACA 1 TGCAGGTATT 1 TGCAGGTGCT 1 TGCAGGTGGC 3 TGCAGTACGA 1 TGCAGTCAAC 1 TGCAGTCTTT 1 TGCAGTGGTG 1 TGCATACACC 1 TGCATATCAT 1 TGCATCAGGT 1 TGCATCTGCC 1 TGCATCTGGT 10 TGCATTACCT 1 TGCATTATTT 1 TGCATTCAAA 1 TGCATTTGAA 1 TGCATTTGGT 1 TGCCAAAAAA 1 TGCCAAACTA 1 TGCCAACACA 2 TGCCAACTCT 1 TGCCAAGTCC 1 TGCCAATAAG 1 TGCCAATCTG 1 TGCCAATTAA 1 TGCCACACAA 1 TGCCACAGAG 1 TGCCACCACG 2 TGCCACCGTG 1 TGCCACCTGA 4 TGCCACGGTG 1 TGCCACTGCA 1 TGCCAGAAAT 2 TGCCAGATGT 3 TGCCAGCCTC 1 TGCCAGGAAA 2 TGCCAGGACA 1 TGCCAGGGCA 1 TGCCAGTGGT 1 TGCCATAATT 1 TGCCATATCC 1 TGCCATTAAG 2 TGCCCAAAGT 1 TGCCCAAATA 1 TGCCCAACTT 4 TGCCCACACC 1 TGCCCACCCA 1 TGCCCACTCA 1 TGCCCAGCAA 1 TGCCCAGCTT 2 TGCCCCCAAT 1 TGCCCCCCAT 1 TGCCCCCGCC 1 TGCCCCCGGG 1 TGCCCCTACC 1 TGCCCCTGAA 2 TGCCCCTTGG 1 TGCCCGAGAA 2 TGCCCGCACA 1 TGCCCGGCAG 4 TGCCCGGGGA 1 TGCCCGGGTC 3 TGCCCGTACT 1 TGCCCTAGAA 1 TGCCCTAGTG 1 TGCCCTCAAA 14 TGCCCTCAGA 4 TGCCCTCAGG 18 TGCCCTCCTC 1 TGCCCTGAGA 1 TGCCCTGGGA 1 TGCCCTTACA 1 TGCCCTTAGA 1 TGCCCTTAGT 1 TGCCCTTCGG 1 TGCCGAATGT 1 TGCCGCCCGC 5 TGCCGCTAAT 2 TGCCGGGAAG 1 TGCCGGGTGG 1 TGCCGGTAAT 1 TGCCGTAAAT 2 TGCCGTACAT 1 TGCCGTAGGG 1 TGCCTAGACC 1 TGCCTAGCGG 1 TGCCTATAAT 2 TGCCTATACA 2 TGCCTCATTG 2 TGCCTCCACC 1 TGCCTCCCAT 2 TGCCTCCGAA 1 TGCCTCCTGA 1 TGCCTCCTGT 1 TGCCTCTAAC 1 TGCCTCTAGT 1 TGCCTCTGCG 18 TGCCTCTGTC 1 TGCCTCTGTT 1 TGCCTGCAAT 1 TGCCTGCACA 1 TGCCTGCACC 66 TGCCTGCAGT 1 TGCCTGCCCC 1 TGCCTGCTCA 1 TGCCTGCTCC 3 TGCCTGGAGG 1 TGCCTGGCAC 1 TGCCTGGGCT 1 TGCCTGTAAT 18 TGCCTGTAGT 10 TGCCTGTATT 1 TGCCTGTGAA 3 TGCCTGTGGC 2 TGCCTGTGGT 2 TGCCTGTGTT 2 TGCCTTAATG 1 TGCCTTACTT 1 TGCCTTAGTA 2 TGCCTTCAAA 1 TGCCTTCAGG 1 TGCCTTCCCA 1 TGCCTTGAAA 2 TGCCTTGTAG 1 TGCCTTTGGT 1 TGCCTTTTTC 1 TGCGACCGCA 3 TGCGCACAGA 1 TGCGCCTACC 1 TGCGCGAAAG 1 TGCGCGCCCT 1 TGCGCGCTGA 1 TGCGGATGAC 1 TGCGGCGGTG 1 TGCGGCTGGT 5 TGCGGGAAAT 1 TGCGTCACCG 2 TGCGTCCCTT 1 TGCGTGAACC 1 TGCGTGACAG 1 TGCGTGACTG 1 TGCGTGGAAG 1 TGCGTGGGCC 1 TGCGTGGGTG 1 TGCGTGTATG 1 TGCGTTGCAC 1 TGCTAAAAAA 2 TGCTAAAGCA 1 TGCTAACTGC 1 TGCTACGAAA 2 TGCTACTGGT 3 TGCTACTTGC 1 TGCTACTTGG 1 TGCTAGAACT 1 TGCTAGATGT 1 TGCTAGATTG 2 TGCTAGCACA 1 TGCTAGGAAG 2 TGCTATCATT 1 TGCTCAACAG 1 TGCTCAGTGG 3 TGCTCCCATC 1 TGCTCCCTTT 1 TGCTCCTACC 113 TGCTCGTGAA 1 TGCTCGTGTC 1 TGCTCTCTCT 1 TGCTCTGCTT 1 TGCTCTGGAC 1 TGCTCTGTGT 2 TGCTCTGTTG 3 TGCTCTGTTT 2 TGCTCTTACC 1 TGCTCTTGAT 1 TGCTCTTTCC 1 TGCTGAACTG 1 TGCTGAATCA 3 TGCTGACCTA 1 TGCTGACTGA 1 TGCTGAGCTG 1 TGCTGAGGAA 1 TGCTGAGGGA 1 TGCTGAGTTG 1 TGCTGATGGA 1 TGCTGATTGG 1 TGCTGCACCA 1 TGCTGCACCG 1 TGCTGCAGAT 1 TGCTGCATTG 15 TGCTGCCGTG 1 TGCTGCCTCA 2 TGCTGCCTGT 1 TGCTGCTACA 1 TGCTGCTAGT 1 TGCTGCTGCC 1 TGCTGCTGCT 3 TGCTGCTGGG 1 TGCTGCTGTC 1 TGCTGCTTGA 2 TGCTGCTTTC 1 TGCTGGAGAG 1 TGCTGGCAAG 1 TGCTGGCAGA 1 TGCTGGCCCA 1 TGCTGGCCGC 1 TGCTGGCTGG 1 TGCTGGGAAA 1 TGCTGGGCTG 1 TGCTGGGGTT 1 TGCTGGGTGG 9 TGCTGGTACC 1 TGCTGGTGTG 4 TGCTGTAAAA 1 TGCTGTCTCT 1 TGCTGTCTGG 1 TGCTGTGACC 2 TGCTGTGAGT 1 TGCTGTGCAT 10 TGCTGTGGCC 1 TGCTGTGTGC 6 TGCTGTTCAT 1 TGCTGTTGGA 1 TGCTGTTTCC 1 TGCTTATCCA 1 TGCTTATTCA 1 TGCTTATTGA 2 TGCTTCAAAA 1 TGCTTCATCT 1 TGCTTCTGCT 1 TGCTTCTGTG 1 TGCTTGACAA 1 TGCTTGATGT 1 TGCTTGCACC 1 TGCTTGCCTG 1 TGCTTGGCAA 1 TGCTTGTAGT 1 TGCTTGTCCC 11 TGCTTGTCTC 1 TGCTTGTGGT 3 TGCTTGTTGG 1 TGCTTTAACT 1 TGCTTTAGTG 1 TGCTTTATGT 1 TGCTTTCAAA 2 TGCTTTCTTA 1 TGCTTTGAGC 1 TGCTTTGCTG 1 TGCTTTGGAC 1 TGCTTTGGGA 2 TGCTTTGTAA 1 TGCTTTGTGA 2 TGCTTTTAGT 1 TGCTTTTGGA 1 TGCTTTTTGG 2 TGGAAAAAAA 1 TGGAAAGACA 1 TGGAAAGACC 1 TGGAAAGCGA 1 TGGAAAGCTT 2 TGGAAAGGCA 1 TGGAAAGGGA 1 TGGAAAGGTG 1 TGGAAAGTGA 36 TGGAAATAAA 2 TGGAACACTC 1 TGGAACAGCA 1 TGGAACAGGA 2 TGGAACCAGA 2 TGGAACCCTT 1 TGGAACCTTG 2 TGGAACTGAG 1 TGGAACTGTA 2 TGGAACTGTG 2 TGGAAGAGCT 2 TGGAAGCTTT 1 TGGAAGGACC 4 TGGAAGGATG 1 TGGAAGGCAG 2 TGGAAGGGCT 5 TGGAAGGTTT 1 TGGAATAGAG 1 TGGAATATTG 1 TGGAATCCCA 1 TGGAATGAGC 4 TGGAATGCTG 18 TGGAATGGGC 1 TGGAATGTGA 1 TGGAATGTGC 1 TGGAATTAGC 1 TGGAATTCCT 1 TGGACAAGTC 1 TGGACACAAG 1 TGGACACCCA 1 TGGACAGATG 1 TGGACAGCAG 1 TGGACATAAA 1 TGGACATCAT 2 TGGACCACAG 1 TGGACCAGGC 10 TGGACCAGTG 2 TGGACCCAAC 2 TGGACCCCCC 1 TGGACCCCCT 1 TGGACCCCGG 1 TGGACCTGGT 1 TGGACTAGCA 1 TGGACTTTGT 1 TGGAGAAACC 1 TGGAGAAAGA 1 TGGAGAAGAG 7 TGGAGAAGGC 1 TGGAGACAAC 2 TGGAGAGAGG 1 TGGAGAGCAA 2 TGGAGAGCCG 1 TGGAGAGTCG 3 TGGAGAGTGA 1 TGGAGATAAC 1 TGGAGATGTG 2 TGGAGCAACA 1 TGGAGCAGTT 2 TGGAGCATCG 1 TGGAGCGCTA 2 TGGAGGCCAG 3 TGGAGGGCAT 1 TGGAGGGGCC 2 TGGAGGGTGT 1 TGGAGGTGGG 1 TGGAGTAGAG 1 TGGAGTGGAG 19 TGGATAGATT 1 TGGATAGTGA 1 TGGATATGTG 1 TGGATCACCA 1 TGGATCAGAT 1 TGGATCCTAG 4 TGGATCCTCG 3 TGGATGGAAA 1 TGGATGGAGT 1 TGGATGGCTT 1 TGGATGTACA 3 TGGATGTATA 1 TGGATGTATT 1 TGGATGTCTG 1 TGGATTAACC 1 TGGATTGGCC 1 TGGATTTCTG 1 TGGCAAAAAA 2 TGGCAAACGT 3 TGGCAAAGCC 2 TGGCAACAGC 1 TGGCAACCTT 12 TGGCAACGTT 1 TGGCAAGTTT 1 TGGCACACAC 2 TGGCACACTA 2 TGGCACTAGG 6 TGGCACTTCA 4 TGGCAGAAAG 2 TGGCAGACAG 1 TGGCAGCTTT 4 TGGCAGGGCC 1 TGGCAGTACC 1 TGGCAGTATA 1 TGGCATTCAG 1 TGGCCAAAAA 1 TGGCCAATAA 1 TGGCCAATGT 1 TGGCCACAGT 1 TGGCCAGATG 1 TGGCCATCTG 24 TGGCCATTAA 1 TGGCCCCACA 2 TGGCCCCACC 19 TGGCCCCCGC 2 TGGCCCCTGT 1 TGGCCCGGGT 1 TGGCCCGTCT 1 TGGCCCTCAA 1 TGGCCCTCCA 7 TGGCCTAGGG 1 TGGCCTCACC 2 TGGCCTCCCC 9 TGGCCTCTCT 2 TGGCCTGAAA 1 TGGCCTGCCC 5 TGGCCTGTCC 1 TGGCCTGTTC 1 TGGCCTTTCG 2 TGGCGAGTGA 1 TGGCGCGTGT 8 TGGCGCTTGG 1 TGGCGGAGTC 1 TGGCGGCCAT 1 TGGCGGGCAC 1 TGGCGGGTAA 1 TGGCGTAACG 1 TGGCGTACGG 4 TGGCGTTACG 1 TGGCGTTCAG 1 TGGCTAAAAA 1 TGGCTAAAGA 1 TGGCTAAATG 2 TGGCTAAATT 1 TGGCTAATGA 1 TGGCTACTCC 1 TGGCTACTGC 1 TGGCTACTTA 9 TGGCTACTTC 1 TGGCTAGATT 2 TGGCTAGTGA 1 TGGCTAGTGT 6 TGGCTATTGA 1 TGGCTCAGCC 1 TGGCTCATAG 1 TGGCTCCTCC 1 TGGCTCGCAA 1 TGGCTCGCGA 1 TGGCTCTCCT 1 TGGCTCTGTG 2 TGGCTGAGTT 3 TGGCTGATGT 1 TGGCTGCAAG 1 TGGCTGCATA 1 TGGCTGCCCC 1 TGGCTGCGAA 1 TGGCTGCTTG 1 TGGCTGGAGC 2 TGGCTGGGAA 8 TGGCTGTAGT 1 TGGCTGTATG 1 TGGCTGTGAC 1 TGGCTGTGAG 2 TGGCTGTGTG 11 TGGCTTATTA 1 TGGCTTCAAG 1 TGGCTTCCCA 2 TGGCTTGCTC 3 TGGCTTGGAA 3 TGGCTTTAAC 1 TGGGAAAACT 3 TGGGAAAGCC 1 TGGGAAATCG 1 TGGGAACTGA 1 TGGGAACTTG 1 TGGGAAGAGG 3 TGGGAAGGAC 1 TGGGAAGTAC 1 TGGGAAGTAG 2 TGGGAAGTGA 2 TGGGACACCT 1 TGGGACATCT 2 TGGGACCATC 1 TGGGACCCAG 1 TGGGACTTCA 1 TGGGAGAAGG 1 TGGGAGAAGT 2 TGGGAGCAGA 1 TGGGAGCTCC 1 TGGGAGCTGA 1 TGGGAGCTTT 1 TGGGAGGACT 1 TGGGAGGATT 1 TGGGATGCGC 2 TGGGATTCTT 1 TGGGCAAAAG 1 TGGGCAAAGA 1 TGGGCAAAGC 50 TGGGCAAATC 1 TGGGCAAGGG 1 TGGGCAGCTG 2 TGGGCCAAAC 2 TGGGCCAGGC 4 TGGGCCATTG 1 TGGGCCCCTG 1 TGGGCCCCTT 1 TGGGCCCGTG 2 TGGGCCCTGA 1 TGGGCCGTTA 1 TGGGCCTGGC 1 TGGGCCTGTG 2 TGGGCCTTCC 1 TGGGCGCACA 1 TGGGCGCCTT 1 TGGGCGCGTG 1 TGGGGAAAAG 2 TGGGGACAGG 4 TGGGGAGAGG 18 TGGGGAGCTC 1 TGGGGATTAC 2 TGGGGCAGGA 1 TGGGGCCAGT 1 TGGGGCCGCA 11 TGGGGCGGGT 1 TGGGGCGTGC 1 TGGGGGAAAG 1 TGGGGGCACC 4 TGGGGGCCGA 3 TGGGGGGCTT 1 TGGGGGGTGG 1 TGGGGGGTTC 1 TGGGGGTGGG 1 TGGGGTCGAA 1 TGGGGTGGAG 2 TGGGGTGTTG 1 TGGGGTTAAT 1 TGGGGTTCCT 1 TGGGGTTTCC 1 TGGGTCCAGG 1 TGGGTCTAAC 1 TGGGTCTGGA 2 TGGGTGAACG 1 TGGGTGAAGG 1 TGGGTGACAG 2 TGGGTGAGCC 11 TGGGTGAGCG 1 TGGGTGGAGC 1 TGGGTGGGCA 2 TGGGTGGGGG 4 TGGGTGGTGC 1 TGGGTGTCAC 1 TGGGTGTTGG 1 TGGGTTCCTG 1 TGGGTTGTTG 1 TGGGTTTGTT 1 TGGGTTTTAA 2 TGGTAACTGG 1 TGGTAAGTGA 1 TGGTACACGT 17 TGGTACAGGT 1 TGGTACTTCT 1 TGGTACTTTG 1 TGGTAGAATG 1 TGGTAGCAGT 1 TGGTAGTGGG 1 TGGTAGTTAC 3 TGGTATATGC 1 TGGTATCATT 2 TGGTATGCAG 1 TGGTATTGGC 1 TGGTCAAGGT 2 TGGTCACACT 1 TGGTCACATC 1 TGGTCACTAT 1 TGGTCACTCG 1 TGGTCAGAGA 1 TGGTCAGGCT 1 TGGTCATCAG 1 TGGTCATTGA 1 TGGTCCAACC 1 TGGTCCAGAC 1 TGGTCCAGCG 3 TGGTCCCAGG 1 TGGTCCCTCT 2 TGGTCCCTGG 1 TGGTCCGAAA 1 TGGTCTCAGT 2 TGGTCTCTCA 1 TGGTCTGGAA 1 TGGTCTGGAG 2 TGGTCTTCCC 1 TGGTGAAGAA 1 TGGTGACAAT 1 TGGTGACAGT 1 TGGTGACATT 1 TGGTGAGACC 2 TGGTGAGCAC 1 TGGTGCGACC 1 TGGTGCTTGG 2 TGGTGGAGGC 2 TGGTGGCACA 1 TGGTGGCGGG 1 TGGTGGCTCT 1 TGGTGGGATG 1 TGGTGGGCAT 11 TGGTGTATGC 60 TGGTGTGCTC 1 TGGTGTTGAA 2 TGGTGTTGAG 43 TGGTGTTTTG 4 TGGTTCAAAC 1 TGGTTCAGAA 1 TGGTTCGCGT 1 TGGTTCTGTA 1 TGGTTGACGA 1 TGGTTGCGAC 2 TGGTTGGTGG 3 TGGTTGTGTT 1 TGGTTGTTCC 1 TGGTTTAGGC 1 TGGTTTCACT 1 TGGTTTCCAC 1 TGGTTTCGCC 1 TGGTTTGAAC 2 TGGTTTGAGC 2 TGGTTTGCAC 1 TGGTTTGCAG 1 TGGTTTGCGT 7 TGGTTTGGAC 1 TGGTTTTAGC 1 TGGTTTTCTC 9 TGGTTTTGCT 1 TGGTTTTGGC 4 TGGTTTTTGG 5 TGTAAAATCC 2 TGTAACACTT 1 TGTAACGTGG 1 TGTAACGTTT 2 TGTAACTAAC 1 TGTAAGCACC 1 TGTAAGGCAC 1 TGTAAGGCTC 1 TGTAAGGTAT 1 TGTAAGTCTG 5 TGTAAGTGTG 1 TGTAAGTTTT 2 TGTAATCAAT 3 TGTACAAACA 1 TGTACACAGT 1 TGTACACGTA 1 TGTACACTTT 1 TGTACATCAC 1 TGTACATCTA 1 TGTACATTCT 4 TGTACATTTT 1 TGTACCAAGG 1 TGTACCCCGC 1 TGTACCCCTG 1 TGTACCTCTG 1 TGTACCTGGA 1 TGTACCTGTA 10 TGTACTACTG 1 TGTACTACTT 1 TGTACTTATT 1 TGTACTTCCT 1 TGTAGAAAAA 3 TGTAGAGTGC 6 TGTAGATGTA 2 TGTAGCTGCA 1 TGTAGTCTAG 1 TGTAGTTTGA 4 TGTATAAAAA 2 TGTATAAAAT 1 TGTATACAAG 1 TGTATATGGT 1 TGTATCCAGC 1 TGTATCCCAG 1 TGTATGAAGG 1 TGTATGCCGT 1 TGTATGGCTG 1 TGTATGGGCA 1 TGTATGGTAC 1 TGTATGTGGT 1 TGTATGTTAT 1 TGTATTCCCT 1 TGTATTCTCT 1 TGTATTCTTA 1 TGTATTGTAC 3 TGTATTTCAG 2 TGTATTTGTA 3 TGTATTTTAT 2 TGTATTTTGA 1 TGTCAAAAAA 1 TGTCAAAATT 1 TGTCAAATGG 1 TGTCAATGGC 3 TGTCACACAC 1 TGTCACAGGA 1 TGTCACCAAA 1 TGTCACCACA 1 TGTCACTCAG 1 TGTCACTGAG 1 TGTCACTTTT 1 TGTCAGCCGG 1 TGTCATAGAA 1 TGTCATCGTC 1 TGTCATCTTG 1 TGTCCAAAAG 1 TGTCCACCCT 1 TGTCCATCTC 1 TGTCCCGGAG 1 TGTCCGTGCA 2 TGTCCTCTAG 1 TGTCCTGCTT 1 TGTCCTGGGT 1 TGTCCTGGTC 2 TGTCCTGGTG 1 TGTCCTGGTT 12 TGTCGAGCTC 1 TGTCGATGGG 2 TGTCGCTGGG 17 TGTCTACTGC 1 TGTCTCGAAA 1 TGTCTCTCCC 1 TGTCTGACAA 1 TGTCTGAGAG 1 TGTCTGCCAT 1 TGTCTGCCTG 1 TGTCTGGATG 1 TGTCTGGTGG 1 TGTCTGGTTG 1 TGTCTGTAAG 2 TGTCTGTGCC 5 TGTCTGTGGT 2 TGTCTGTGTG 8 TGTCTGTGTT 1 TGTCTTAGGG 1 TGTCTTCCGT 1 TGTCTTTAAA 2 TGTCTTTGCT 2 TGTCTTTTCT 1 TGTGAAATGT 1 TGTGAACAAC 1 TGTGAACACA 1 TGTGAACCTA 1 TGTGAACGTG 1 TGTGAAGATT 2 TGTGAATACC 1 TGTGAATTAT 1 TGTGACCAGA 1 TGTGACCTCT 2 TGTGACCTGC 1 TGTGACGTTC 1 TGTGAGCCAC 1 TGTGAGCCCC 3 TGTGAGCCCT 3 TGTGAGCTCC 1 TGTGAGGAGT 2 TGTGAGGCAA 1 TGTGAGGGCT 1 TGTGAGTTGA 1 TGTGATAGTA 1 TGTGATCACA 2 TGTGATCAGA 15 TGTGCAAAGA 1 TGTGCACAAT 1 TGTGCACAGG 1 TGTGCATCTT 8 TGTGCCAGGG 1 TGTGCCATCA 1 TGTGCCCTGA 2 TGTGCCCTGG 1 TGTGCCCTGT 3 TGTGCCTGGC 2 TGTGCCTGTA 1 TGTGCCTTTC 1 TGTGCGTGCG 1 TGTGCGTGTG 1 TGTGCGTTGG 1 TGTGCTAAAT 11 TGTGCTACAC 1 TGTGCTAGCC 1 TGTGCTATGC 1 TGTGCTCAGG 1 TGTGCTCGAA 1 TGTGCTCGGC 1 TGTGCTCGGG 12 TGTGCTCTTG 1 TGTGCTGTGC 2 TGTGCTGTGG 1 TGTGCTTACA 1 TGTGCTTGGG 1 TGTGCTTGTC 2 TGTGGAAACC 2 TGTGGAAGTT 7 TGTGGAATGC 1 TGTGGAGAAA 1 TGTGGAGCTG 1 TGTGGATTAC 1 TGTGGCAAAG 1 TGTGGCCCAC 2 TGTGGCCTCC 8 TGTGGCCTGC 3 TGTGGCGGGT 1 TGTGGGAAAT 2 TGTGGGACTC 1 TGTGGGGAGA 1 TGTGGGGGCG 1 TGTGGGTCAC 1 TGTGGGTCTG 2 TGTGGGTGAT 1 TGTGGGTGCT 35 TGTGGGTTGC 1 TGTGGTAACC 1 TGTGGTAAGT 1 TGTGGTCCCA 1 TGTGGTGAAA 1 TGTGGTGCAC 1 TGTGGTGCCA 1 TGTGGTGCTG 3 TGTGGTGGGA 1 TGTGGTGGTG 3 TGTGGTGTAG 1 TGTGGTTCAG 1 TGTGTACAGA 1 TGTGTAGGGA 1 TGTGTAGGTG 1 TGTGTATATA 1 TGTGTCAAAG 1 TGTGTCCTTT 1 TGTGTCGTTT 1 TGTGTCTTCC 1 TGTGTGAAAA 1 TGTGTGAGCC 1 TGTGTGAGCT 1 TGTGTGATTG 1 TGTGTGCCAC 5 TGTGTGCCCA 2 TGTGTGCGCT 8 TGTGTGCTCA 1 TGTGTGCTGC 1 TGTGTGGGGC 2 TGTGTGGGGG 1 TGTGTGGTTC 1 TGTGTGTGAC 1 TGTGTGTGTG 3 TGTGTGTTGA 1 TGTGTGTTGG 1 TGTGTGTTTG 5 TGTGTTAAAA 1 TGTGTTAAGA 1 TGTGTTAGGT 1 TGTGTTGAGA 53 TGTGTTGCTC 1 TGTGTTGTGT 2 TGTGTTGTTC 1 TGTGTTTATA 1 TGTGTTTGAA 2 TGTGTTTGAG 1 TGTTAACTAT 1 TGTTAACTGT 1 TGTTAAGTTC 1 TGTTACAGCA 1 TGTTACTGCT 1 TGTTACTTTC 1 TGTTAGAAAA 1 TGTTAGAACT 8 TGTTAGAATG 1 TGTTATCAAA 1 TGTTATCCTT 1 TGTTATCTAC 1 TGTTATTACT 2 TGTTATTCAG 1 TGTTCAGAAA 1 TGTTCAGGAC 2 TGTTCATCAT 9 TGTTCATTTA 1 TGTTCCACTC 7 TGTTCCAGAT 2 TGTTCCATTT 3 TGTTCCCTTT 2 TGTTCCTGTG 1 TGTTCGAGTG 1 TGTTCGGTGC 1 TGTTCGTACA 1 TGTTCTCAAG 2 TGTTCTCCAT 1 TGTTCTCTCT 1 TGTTCTTTAG 3 TGTTGATGTA 1 TGTTGATTTT 2 TGTTGCAAGA 1 TGTTGCAGCT 1 TGTTGCAGGT 1 TGTTGGAGCT 1 TGTTGGGTTC 1 TGTTGGTTAC 1 TGTTGTGAGA 1 TGTTGTGCGC 5 TGTTGTGTTC 2 TGTTGTTAAG 1 TGTTGTTTGG 1 TGTTTATAGT 1 TGTTTATCAT 1 TGTTTATCCT 4 TGTTTCAATA 1 TGTTTCACAC 10 TGTTTCACTT 1 TGTTTCAGAG 2 TGTTTCAGGA 1 TGTTTCATTT 1 TGTTTCCTGA 1 TGTTTGCATA 2 TGTTTGCCAG 1 TGTTTGCTAA 1 TGTTTGCTCA 2 TGTTTGCTTC 1 TGTTTGGAAC 1 TGTTTGGGGG 1 TGTTTGTACA 1 TGTTTTAAAA 1 TGTTTTCGCC 6 TGTTTTGTGT 1 TGTTTTTATG 1 TGTTTTTCCG 2 TTAAAAAAAA 4 TTAAAAACTG 1 TTAAAAGTCA 1 TTAAAATAAA 1 TTAAAATCTC 1 TTAAAATGTT 1 TTAAAATTTC 1 TTAAACAAAT 1 TTAAACATCA 1 TTAAACCTCA 2 TTAAACGGCC 1 TTAAACTCTA 1 TTAAAGGCAA 1 TTAAAGGCCG 3 TTAAATAGAG 1 TTAAATCCTG 1 TTAAATTATA 1 TTAAATTCAC 1 TTAACAGGTG 1 TTAACATAAG 1 TTAACCATTA 1 TTAACCCCTC 14 TTAACCCTCT 4 TTAACGGCCG 1 TTAACGGGGG 1 TTAACTTTGC 1 TTAACTTTTC 1 TTAAGACTTC 4 TTAAGAGCTA 1 TTAAGAGGGA 2 TTAAGCGTCT 1 TTAAGGCCGG 1 TTAAGTATTG 1 TTAAGTCAAT 1 TTAAGTGCTG 1 TTAAGTTTTT 1 TTAATAAAAT 1 TTAATAGTGG 3 TTAATCAAGA 1 TTAATGACAC 1 TTAATGCCTA 1 TTAATTGATA 2 TTAATTGGGA 4 TTACAACGTA 1 TTACAACTTT 1 TTACAATTTA 2 TTACACTAAT 2 TTACACTGTA 1 TTACACTTGC 1 TTACAGAGCT 1 TTACAGATGA 1 TTACAGCACA 2 TTACAGCATC 1 TTACAGTAAG 1 TTACATAGAC 1 TTACATTGAA 1 TTACCATATC 5 TTACCATCTG 2 TTACCATTGG 1 TTACCCGGGC 1 TTACCCTGAA 1 TTACCCTGTA 1 TTACCGGACA 1 TTACCTCCTT 5 TTACCTTTTT 1 TTACGAGGAA 4 TTACTAAATG 4 TTACTAATGG 1 TTACTATAGG 1 TTACTATCTG 1 TTACTATTCA 1 TTACTCCCTG 1 TTACTCTGAA 1 TTACTGAATT 1 TTACTGACAC 1 TTACTGATTT 1 TTACTGCAGA 2 TTACTGGCCC 4 TTACTGGGTT 3 TTACTGTAAA 1 TTACTGTGAT 1 TTACTGTGTA 1 TTACTTAAAA 1 TTACTTATAC 1 TTACTTGTCC 1 TTACTTTAGT 1 TTACTTTGAA 1 TTAGAAGATG 1 TTAGAAGGGT 1 TTAGACATCT 1 TTAGACATTA 5 TTAGAGCAAA 1 TTAGAGCCCT 1 TTAGAGGATC 1 TTAGAGTACG 1 TTAGATCGTT 2 TTAGCAATAA 2 TTAGCACACC 1 TTAGCACTGT 2 TTAGCAGTTG 1 TTAGCCAGGA 2 TTAGCCCGAG 1 TTAGCCTCAC 1 TTAGCCTCTG 2 TTAGCTGAGT 1 TTAGCTGGGA 2 TTAGCTGGTT 1 TTAGCTGTAC 1 TTAGCTTAAC 2 TTAGCTTGTT 4 TTAGGAAGCT 1 TTAGGACTTG 1 TTAGGAGGAG 1 TTAGGCAAGT 1 TTAGGCCCTC 5 TTAGGCCTGA 1 TTAGGCTTTA 1 TTAGGGAGGA 1 TTAGGGCCCA 7 TTAGTAGTTT 1 TTAGTCAGGC 2 TTAGTCTTCA 1 TTAGTGAAAC 1 TTAGTGCCTG 1 TTAGTTAAGC 3 TTAGTTACCT 2 TTAGTTGATT 1 TTAGTTTACA 1 TTATAAAATG 1 TTATCACCTA 1 TTATCATTTT 1 TTATCCTAGC 1 TTATCGTCCT 1 TTATCTGAAA 1 TTATGAAATT 1 TTATGACTGA 1 TTATGACTGT 1 TTATGATTCG 1 TTATGCACTG 1 TTATGGAGAA 1 TTATGGCTGA 1 TTATGGCTTA 1 TTATGGGATC 4 TTATGGGGAG 2 TTATGGGTCG 1 TTATGGTGTG 17 TTATGTTGAA 3 TTATTAAAAC 1 TTATTATATG 1 TTATTCAGCT 1 TTATTCCCTC 1 TTATTGCACA 1 TTATTGTAAT 1 TTATTGTAGT 1 TTATTGTTAA 1 TTATTGTTCC 2 TTATTGTTGC 1 TTATTTAAGC 1 TTATTTATAA 1 TTATTTGCAA 1 TTCAAAATGA 1 TTCAAACAAA 1 TTCAAAGAAT 1 TTCAAATAAG 1 TTCAACCTGC 1 TTCAACGAGG 2 TTCAACTGCT 1 TTCAACTTCA 1 TTCAAGCATT 1 TTCAAGCTTC 1 TTCAAGGTAT 1 TTCAAGTGGT 1 TTCAAGTTTT 1 TTCAATAAAA 14 TTCAATCTGA 1 TTCAATGGCC 1 TTCAATTTCA 4 TTCACAAAGG 1 TTCACACACC 2 TTCACACATC 1 TTCACACCGC 1 TTCACAGAGC 2 TTCACAGCAG 1 TTCACAGCCA 1 TTCACAGTGC 1 TTCACAGTGG 10 TTCACATCTT 1 TTCACCACTT 1 TTCACCAGGG 6 TTCACCATCC 2 TTCACCGACT 1 TTCACCTGCA 1 TTCACCTTTA 1 TTCACGTACA 2 TTCACGTCCT 1 TTCACGTTCA 2 TTCACTATGA 1 TTCACTGCAA 1 TTCACTGCGA 2 TTCACTGCTA 1 TTCACTGTAA 1 TTCACTGTGA 111 TTCACTTACA 1 TTCAGAGAGA 1 TTCAGCAAGA 1 TTCAGCAGAG 2 TTCAGCAGCA 1 TTCAGCAGCG 1 TTCAGCCCCA 1 TTCAGCCTTC 1 TTCAGCGTTC 1 TTCAGGAGGG 5 TTCAGGCCTA 1 TTCAGGGCTT 1 TTCAGGTTCC 1 TTCAGTAAGG 2 TTCAGTACAT 1 TTCAGTCAGC 1 TTCAGTGCCC 2 TTCAGTGCCT 2 TTCAGTTCGC 1 TTCAGTTGCT 2 TTCATAAAAA 1 TTCATAAAAC 1 TTCATAAACC 1 TTCATAACAT 1 TTCATAAGGA 1 TTCATACAAA 1 TTCATACACA 1 TTCATACACC 272 TTCATACACG 2 TTCATACACT 4 TTCATACATC 1 TTCATACCAC 2 TTCATACGCC 1 TTCATACTCC 1 TTCATATAGC 1 TTCATATTAA 1 TTCATCACTT 1 TTCATCAGCA 1 TTCATCCTAG 1 TTCATCCTTT 1 TTCATCTGGA 1 TTCATCTTAT 1 TTCATCTTCT 3 TTCATTATAA 5 TTCATTCCCC 1 TTCATTCTGT 1 TTCATTGAGA 1 TTCATTTGCC 1 TTCATTTGTC 1 TTCATTTTAA 1 TTCCAAAGCA 1 TTCCAAGCAA 1 TTCCAAGGCA 5 TTCCAAGTTA 1 TTCCAATGAG 1 TTCCACCAAC 1 TTCCACCCGA 2 TTCCACTAAC 9 TTCCAGACAG 1 TTCCAGACCT 3 TTCCAGAGCC 1 TTCCAGAGCT 1 TTCCAGCTCC 1 TTCCAGGGAG 1 TTCCAGGTTT 1 TTCCAGTAAA 1 TTCCAGTCAA 1 TTCCATCCAA 2 TTCCATTCCA 1 TTCCATTGGA 1 TTCCATTTAA 1 TTCCCAAAGG 1 TTCCCAACTA 1 TTCCCCAGAA 1 TTCCCCCTTC 1 TTCCCCGTCA 1 TTCCCCTTAC 1 TTCCCCTTCC 2 TTCCCGAGGG 2 TTCCCGCTCC 1 TTCCCGGATG 1 TTCCCGTGCA 1 TTCCCTACAT 1 TTCCCTCCAA 1 TTCCCTCGTG 1 TTCCCTGCAA 1 TTCCCTGGGA 1 TTCCCTGTGG 1 TTCCCTTCTG 1 TTCCCTTGTT 1 TTCCGAGACT 1 TTCCGCAGAG 1 TTCCGCAGGT 1 TTCCGCGCCT 1 TTCCGCGTGC 6 TTCCGCGTTC 16 TTCCGGTCCA 1 TTCCGGTTCC 8 TTCCGTCATC 1 TTCCGTGACA 1 TTCCGTTCCT 3 TTCCGTTTCT 1 TTCCTAAGCT 1 TTCCTATAAG 1 TTCCTATCTG 1 TTCCTCCACG 2 TTCCTCCTTG 1 TTCCTCGTCA 1 TTCCTCTTTT 1 TTCCTGCCCC 2 TTCCTGCCTG 2 TTCCTGCTAC 1 TTCCTGCTGC 2 TTCCTGCTGT 1 TTCCTGGTAG 1 TTCCTGTCAG 1 TTCCTGTTCC 1 TTCCTTGCCA 2 TTCGAGAGCT 1 TTCGATGCAG 1 TTCGCGAACA 1 TTCGCGACAT 1 TTCGCGATGG 1 TTCGCGTACA 1 TTCGCGTTCC 1 TTCGCTGTGA 2 TTCGCTTCCT 2 TTCGGAGGGG 1 TTCGGAGTCG 1 TTCGGAGTGT 1 TTCGGCCAGA 1 TTCGGTACAT 1 TTCGTAACGG 1 TTCGTACACC 1 TTCGTATACC 1 TTCGTATTAC 1 TTCGTCAAGG 1 TTCGTGCCAC 1 TTCGTGGACG 1 TTCGTGGTAT 1 TTCGTTCGGT 1 TTCTAACATA 5 TTCTAACTCC 1 TTCTAATTTT 1 TTCTACCACC 1 TTCTACCTGA 1 TTCTAGACCA 2 TTCTAGAGGC 1 TTCTAGTAAA 1 TTCTAGTCTG 2 TTCTATACAG 1 TTCTATGTAG 1 TTCTCAACTT 1 TTCTCACCCG 1 TTCTCACTCT 3 TTCTCAGGCC 2 TTCTCATAGG 4 TTCTCCAAAA 1 TTCTCCAGAA 1 TTCTCCAGAG 1 TTCTCCAGCT 1 TTCTCCATCA 1 TTCTCCCACC 1 TTCTCCCGCT 12 TTCTCCGTAC 1 TTCTCCTCTG 2 TTCTCCTGTG 1 TTCTCGAATG 1 TTCTCGGATG 1 TTCTCGTATA 1 TTCTCTACAC 12 TTCTCTATTC 1 TTCTCTCAAC 1 TTCTCTCACC 2 TTCTCTCCAA 1 TTCTCTCCAC 1 TTCTCTCCCC 1 TTCTCTCTGT 7 TTCTCTGTGA 1 TTCTCTTTTT 1 TTCTGAAAAT 1 TTCTGAAGCA 1 TTCTGCAATA 1 TTCTGCACGT 1 TTCTGCACTG 13 TTCTGCAGCC 1 TTCTGCATCC 1 TTCTGCGCGT 1 TTCTGCTAAA 1 TTCTGCTCCC 1 TTCTGCTTTA 2 TTCTGGACCC 2 TTCTGGCTGC 15 TTCTGGGCCA 1 TTCTGGGTCA 2 TTCTGGGTGA 2 TTCTGGTAGG 1 TTCTGGTGCG 2 TTCTGTAAAA 1 TTCTGTAGCC 23 TTCTGTCCCT 2 TTCTGTCTCA 1 TTCTGTGAAT 3 TTCTGTGCAT 1 TTCTGTGGCG 1 TTCTGTGTAT 1 TTCTGTGTCA 6 TTCTGTGTGC 1 TTCTGTGTTT 11 TTCTGTTTCT 1 TTCTTCCTCT 1 TTCTTCTCGT 1 TTCTTCTTCT 1 TTCTTGAACA 4 TTCTTGATTG 1 TTCTTGATTT 1 TTCTTGCCAG 1 TTCTTGCGGC 1 TTCTTGCTTT 1 TTCTTGGAAA 1 TTCTTGGGCA 1 TTCTTGTCAC 1 TTCTTGTGCA 1 TTCTTGTGGC 47 TTCTTGTGGG 1 TTCTTTCAGC 1 TTCTTTCCCA 1 TTCTTTCCTG 1 TTCTTTGGTG 1 TTCTTTTCCT 1 TTCTTTTCTT 1 TTGAAACCCC 3 TTGAAACCCT 1 TTGAAACTCT 1 TTGAAAGGTT 1 TTGAAATGAT 1 TTGAACAATA 1 TTGAACCCCC 1 TTGAACTGGC 3 TTGAACTGTA 1 TTGAACTTGG 1 TTGAAGAAAA 1 TTGAAGAAGA 1 TTGAAGCTTT 2 TTGAAGGCAG 1 TTGAAGTCAA 2 TTGAAGTGGT 2 TTGAATCACT 1 TTGAATCCCC 10 TTGAATTCCC 3 TTGAATTCTT 1 TTGACAAAAA 2 TTGACAAGAT 1 TTGACAATTT 1 TTGACACTTT 5 TTGACCACAG 1 TTGACCAGAC 1 TTGACCAGGC 1 TTGACCAGGG 1 TTGACCAGTC 1 TTGACCCTGG 1 TTGACCTAGT 1 TTGACCTGAT 1 TTGACCTGGC 1 TTGACGTATC 1 TTGACGTTGA 1 TTGACTATTT 1 TTGACTCTTG 1 TTGACTGACC 1 TTGAGAATGG 1 TTGAGACCCT 1 TTGAGAGAAC 1 TTGAGAGATG 1 TTGAGATTTG 1 TTGAGCCAGC 4 TTGAGCCATT 1 TTGAGCTTAT 2 TTGAGGCTAC 1 TTGAGGCTTT 1 TTGAGGGGGG 1 TTGAGGGGGT 9 TTGAGGGTCC 1 TTGAGGTTGA 1 TTGAGTACAG 1 TTGAGTCTCC 1 TTGATATATT 1 TTGATCAGGC 2 TTGATCCTCT 1 TTGATCGAAG 1 TTGATCGATC 1 TTGATGAAAA 1 TTGATGACAT 1 TTGATGCCAT 1 TTGATGCCCA 1 TTGATGCCCG 4 TTGATGCCCT 1 TTGATGGTGC 1 TTGATGTACA 1 TTGATGTCCT 1 TTGATGTTGA 1 TTGATTGCGA 1 TTGCAAAGGG 1 TTGCAACCAA 1 TTGCAATACA 1 TTGCAATAGG 1 TTGCAATGCA 1 TTGCACCTTG 1 TTGCACGAGG 4 TTGCACTGGT 1 TTGCAGCAAA 1 TTGCAGCAGG 1 TTGCAGGAAG 1 TTGCAGGGTT 1 TTGCAGGTAC 1 TTGCAGTACA 1 TTGCAGTGGA 1 TTGCATATCA 2 TTGCCAAAAA 1 TTGCCAAAAT 1 TTGCCAACAC 1 TTGCCAAGCT 1 TTGCCAGCCC 1 TTGCCAGGCT 1 TTGCCATTGG 1 TTGCCCAAGC 1 TTGCCCAGCC 1 TTGCCCAGGC 22 TTGCCCAGGT 2 TTGCCCGCGC 1 TTGCCCGGGC 2 TTGCCCTTGA 1 TTGCCGGGAA 1 TTGCCGGTAA 1 TTGCCGGTTA 3 TTGCCTAGGC 1 TTGCCTAGGG 1 TTGCCTCCAG 1 TTGCCTCGTC 1 TTGCCTGGGT 1 TTGCCTGTAT 2 TTGCCTGTTG 1 TTGCCTTTGG 1 TTGCGCTCAG 1 TTGCGCTGGC 4 TTGCGTCTGG 2 TTGCGTGTGT 1 TTGCTAATAA 1 TTGCTAATGA 1 TTGCTAGAGG 1 TTGCTATTTA 1 TTGCTCAAAA 2 TTGCTCAAGT 1 TTGCTCACAC 1 TTGCTCACCC 1 TTGCTCAGGC 1 TTGCTCTACA 1 TTGCTCTCAC 1 TTGCTGCAAA 1 TTGCTGGAGA 3 TTGCTGGGCA 1 TTGCTGTGAA 1 TTGCTTCGAG 1 TTGCTTTAAA 3 TTGCTTTGGC 1 TTGCTTTGGT 1 TTGCTTTGTG 2 TTGCTTTTGT 8 TTGGAAAAAG 1 TTGGAACAAG 1 TTGGAACAAT 3 TTGGAACCGA 1 TTGGAAGGTT 1 TTGGAATATT 1 TTGGAATGGC 1 TTGGAATTCC 1 TTGGACCTGG 31 TTGGACTGAG 1 TTGGACTGGG 1 TTGGAGAGGA 1 TTGGAGATCT 2 TTGGAGCTGC 1 TTGGAGGAGA 2 TTGGATATCC 2 TTGGCAACAT 5 TTGGCAAGGC 1 TTGGCACATT 1 TTGGCACCAC 1 TTGGCACGGG 1 TTGGCACTGA 1 TTGGCAGAGA 1 TTGGCAGAGG 1 TTGGCAGCCC 21 TTGGCAGGCT 1 TTGGCAGGTG 1 TTGGCATTGT 1 TTGGCCAAAT 1 TTGGCCAAGC 3 TTGGCCAATG 1 TTGGCCACGC 1 TTGGCCACTC 1 TTGGCCAGAC 3 TTGGCCAGAG 1 TTGGCCAGGA 17 TTGGCCAGGC 88 TTGGCCAGGT 3 TTGGCCAGTC 1 TTGGCCATTA 1 TTGGCCCAGA 3 TTGGCCCCCA 1 TTGGCCCTCT 1 TTGGCCGGGC 1 TTGGCCTGGC 2 TTGGCCTTTG 1 TTGGCCTTTT 1 TTGGCGAGGC 1 TTGGCGGACA 1 TTGGCGGACG 1 TTGGCGGCCT 1 TTGGCGGCGT 1 TTGGCGGGTC 2 TTGGCGTGCT 1 TTGGCTAGGA 1 TTGGCTAGGC 6 TTGGCTAGGT 1 TTGGCTCATA 1 TTGGCTCCGC 3 TTGGCTGCTG 3 TTGGCTGGAG 1 TTGGCTGGGA 1 TTGGCTGGGC 3 TTGGCTTATA 1 TTGGCTTCCC 1 TTGGCTTTTC 1 TTGGGAGCAG 2 TTGGGAGGCC 2 TTGGGAGTGA 3 TTGGGCAGGC 1 TTGGGCATCT 1 TTGGGCCTGG 1 TTGGGCCTTA 1 TTGGGCGAAT 2 TTGGGGAAGA 3 TTGGGGACCA 1 TTGGGGAGGG 1 TTGGGGCTTC 2 TTGGGGGTTC 3 TTGGGGGTTT 1 TTGGGGTCTC 1 TTGGGGTGTC 1 TTGGGGTTAA 2 TTGGGGTTAC 1 TTGGGGTTAT 1 TTGGGGTTCC 6 TTGGGGTTCT 2 TTGGGGTTGA 1 TTGGGGTTTC 184 TTGGGGTTTG 3 TTGGGGTTTT 1 TTGGGTATCC 2 TTGGGTGTCC 1 TTGGGTTGGA 2 TTGGGTTTCC 2 TTGGGTTTCT 2 TTGGTAAATG 2 TTGGTAAGAC 1 TTGGTAAGGC 1 TTGGTAATAG 1 TTGGTAATCT 2 TTGGTACATA 1 TTGGTATGAA 1 TTGGTATTGT 1 TTGGTCAGGA 4 TTGGTCAGGC 28 TTGGTCAGGG 1 TTGGTCATAT 1 TTGGTCATCT 1 TTGGTCCTCT 121 TTGGTCTTTG 1 TTGGTGAAGG 80 TTGGTGATAC 2 TTGGTGCAAA 1 TTGGTGCACA 3 TTGGTGCACG 1 TTGGTGCTCA 1 TTGGTGCTTG 3 TTGGTGGAGG 2 TTGGTGGGAG 2 TTGGTGTATG 1 TTGGTGTTGA 1 TTGGTTCACG 1 TTGGTTCCCC 1 TTGGTTGAAT 1 TTGGTTTCCC 5 TTGGTTTTAA 1 TTGGTTTTGT 1 TTGTAAAACC 1 TTGTAAAAGG 2 TTGTAAACTT 4 TTGTAAATGC 1 TTGTAACCGT 1 TTGTAACGTG 1 TTGTAAGAGG 1 TTGTAATAAA 1 TTGTAATAAG 1 TTGTAATCGT 19 TTGTACAACA 1 TTGTACAATA 1 TTGTAGCAAA 1 TTGTAGCTCA 1 TTGTATACCT 1 TTGTATAGTC 1 TTGTATTCCA 3 TTGTATTTTC 1 TTGTCAAATA 1 TTGTCAAGGC 1 TTGTCAGGAC 1 TTGTCATCTT 1 TTGTCATTGT 1 TTGTCCAACA 2 TTGTCCAGGC 2 TTGTCCGGGC 1 TTGTCCTCTG 1 TTGTCCTGAC 1 TTGTCGATGG 6 TTGTCTCCTC 1 TTGTCTCTGG 1 TTGTCTGCCT 5 TTGTCTGTGT 1 TTGTGAAACC 1 TTGTGAGGCG 1 TTGTGATACA 1 TTGTGATCCT 1 TTGTGATGTA 6 TTGTGATTTG 1 TTGTGCCCAA 1 TTGTGCCTCT 1 TTGTGGAAAT 1 TTGTGGAGAC 1 TTGTGGCAGG 1 TTGTGGCTGC 2 TTGTGGCTTT 1 TTGTGGGATC 3 TTGTGGGGGG 3 TTGTGGGTGC 1 TTGTGGTTAA 1 TTGTGTATAC 1 TTGTGTGTAC 3 TTGTGTTCAT 1 TTGTGTTTTG 1 TTGTTATATT 2 TTGTTATTGC 1 TTGTTCGCAG 1 TTGTTCGGTA 1 TTGTTCTGCT 1 TTGTTCTTTG 2 TTGTTGATTG 2 TTGTTGCTGA 2 TTGTTGTATC 1 TTGTTGTTGA 14 TTGTTTAATT 2 TTGTTTCTAC 2 TTGTTTGTAT 1 TTTAAAAAAA 1 TTTAAAACGT 1 TTTAAACCGA 1 TTTAAATAAC 1 TTTAAATAGC 5 TTTAAATTCC 1 TTTAACAAAA 1 TTTAACACAG 1 TTTAACGACC 1 TTTAACGCCC 1 TTTAACGGCA 1 TTTAACGGCC 67 TTTAACGGGC 1 TTTAACTGAC 1 TTTAAGATTG 1 TTTAAGTGAC 1 TTTAAGTTCA 1 TTTAATACTC 1 TTTAATAGCC 1 TTTAATGTGA 1 TTTAATTGTG 2 TTTAATTTGT 1 TTTACAAAGG 1 TTTACAAATA 3 TTTACAACCC 2 TTTACAAGTT 2 TTTACAATAC 1 TTTACACCAC 1 TTTACAGACC 1 TTTACAGATA 3 TTTACAGCTG 3 TTTACCAATC 1 TTTACCAGAG 1 TTTACCTGTG 1 TTTACGCGCA 1 TTTACGCTAA 2 TTTACTGAAC 1 TTTACTGAAT 1 TTTACTGTCA 4 TTTAGACTTG 2 TTTAGATGGT 1 TTTAGCAGGA 1 TTTAGCGGAA 1 TTTAGCGGCC 1 TTTAGGTAAA 3 TTTAGGTGTG 1 TTTAGGTTCT 2 TTTAGTGACG 3 TTTAGTTGGT 1 TTTATAAATC 1 TTTATATAGA 1 TTTATATCTT 1 TTTATATTGA 1 TTTATCCCAA 1 TTTATCGGAA 1 TTTATCTGCT 1 TTTATCTTTT 2 TTTATGAATT 1 TTTATGGGGG 1 TTTATGGGTT 1 TTTATGGTAC 1 TTTATTCCTA 1 TTTATTCCTC 2 TTTATTGAAA 3 TTTATTTAGC 1 TTTATTTCAA 1 TTTATTTGCT 1 TTTATTTGGC 2 TTTATTTTGA 1 TTTCAAAACC 1 TTTCAACGTG 1 TTTCAAGGAT 1 TTTCAATACC 4 TTTCACAACT 1 TTTCACACTG 1 TTTCACAGGC 2 TTTCACGTGT 1 TTTCACTCCT 1 TTTCAGAGAG 5 TTTCAGATTG 4 TTTCAGGAAG 1 TTTCAGGGGA 1 TTTCAGTATC 1 TTTCAGTGCT 1 TTTCAGTGGG 1 TTTCAGTTCG 1 TTTCAGTTCT 1 TTTCATAGCC 1 TTTCATCCAC 1 TTTCATCTGT 1 TTTCATTGCC 3 TTTCATTTTG 1 TTTCCACACA 1 TTTCCACACC 1 TTTCCACTCA 1 TTTCCAGCAT 3 TTTCCAGGGC 1 TTTCCAGTTT 1 TTTCCCACAA 1 TTTCCCACTT 1 TTTCCCAGGG 1 TTTCCCATCC 6 TTTCCCCAAG 1 TTTCCCGTGT 1 TTTCCCTCCC 1 TTTCCCTCGG 1 TTTCCTCCCA 1 TTTCCTCTCA 8 TTTCCTGAAA 2 TTTCCTGCTC 1 TTTCCTGTGT 1 TTTCCTGTTT 1 TTTCCTTACA 1 TTTCCTTCCT 1 TTTCCTTGCC 1 TTTCCTTTGC 1 TTTCGCCGGA 1 TTTCGTAGAT 3 TTTCTACTAA 1 TTTCTACTCA 1 TTTCTAGGGG 1 TTTCTAGTTT 6 TTTCTCAGCA 2 TTTCTCAGTT 1 TTTCTCCAGT 1 TTTCTCGGTG 1 TTTCTCGTCG 16 TTTCTCTCCC 3 TTTCTCTTAG 1 TTTCTGAAGG 1 TTTCTGCAAA 1 TTTCTGCTAA 1 TTTCTGCTCC 1 TTTCTGCTCT 1 TTTCTGCTGG 1 TTTCTGGAGG 1 TTTCTGGTCG 1 TTTCTGTACA 1 TTTCTGTATG 2 TTTCTGTCCC 1 TTTCTGTCTA 1 TTTCTGTGAA 1 TTTCTTAAAG 3 TTTCTTCTCT 1 TTTCTTTTTG 1 TTTGAAATGA 7 TTTGACGAGC 1 TTTGACGTGG 1 TTTGACTCTC 1 TTTGAGACCT 3 TTTGAGCTGG 1 TTTGAGGCAC 1 TTTGAGGTTG 1 TTTGAGTGAT 1 TTTGATAAAT 4 TTTGATGGAT 1 TTTGCAAATA 1 TTTGCACAAG 1 TTTGCACCAC 1 TTTGCACCGC 1 TTTGCACTTG 1 TTTGCAGCCA 1 TTTGCCAGGC 3 TTTGCCCGGC 1 TTTGCCTGGA 1 TTTGCCTTGA 1 TTTGCCTTTT 1 TTTGCGGCAG 1 TTTGCGGCCC 1 TTTGCGGCTG 1 TTTGCGGTCC 3 TTTGCGTTCG 1 TTTGCGTTGA 1 TTTGCTAAAG 1 TTTGCTATAG 1 TTTGCTCGCT 1 TTTGCTCTCC 2 TTTGCTTGCA 1 TTTGGAAAAA 1 TTTGGAAATC 2 TTTGGAATGT 2 TTTGGAATTA 1 TTTGGACAAT 3 TTTGGAGCAT 1 TTTGGAGTTT 1 TTTGGATCCA 1 TTTGGGCCTA 7 TTTGGGCTTG 1 TTTGGGGCTG 14 TTTGGGGGCA 1 TTTGGGGTTA 1 TTTGGTAAAA 1 TTTGGTCAAC 1 TTTGGTCCTC 1 TTTGGTGATA 1 TTTGGTGGCA 1 TTTGGTTCTG 1 TTTGGTTTCA 13 TTTGGTTTCC 1 TTTGTAATCC 1 TTTGTAGATG 5 TTTGTAGTCT 1 TTTGTATGAA 1 TTTGTATGTG 1 TTTGTATTGC 1 TTTGTCAGGC 1 TTTGTCAGTG 1 TTTGTCCTCT 1 TTTGTCTGGC 1 TTTGTGACTG 7 TTTGTGATCT 1 TTTGTGCCAC 1 TTTGTGCCAT 2 TTTGTGGAGA 1 TTTGTGGAGG 1 TTTGTGGCTA 2 TTTGTGGGCA 2 TTTGTGGGCT 1 TTTGTGGGGG 2 TTTGTGGTAA 1 TTTGTGGTGA 1 TTTGTGTAAA 1 TTTGTGTAGA 2 TTTGTGTCAA 1 TTTGTGTCAC 1 TTTGTGTCTT 1 TTTGTGTGTG 1 TTTGTGTTTG 1 TTTGTTAAAA 1 TTTGTTAATT 2 TTTGTTATTG 1 TTTGTTCATT 2 TTTGTTCGTT 1 TTTGTTCTAA 1 TTTGTTGAGA 1 TTTGTTGCTT 2 TTTGTTTCGC 1 TTTGTTTGCT 1 TTTGTTTTCA 2 TTTGTTTTTA 1 TTTTAAAAAG 1 TTTTAACGGC 1 TTTTAAGTGT 1 TTTTAATGAA 1 TTTTAATTCT 1 TTTTACAGTA 1 TTTTACCAAA 1 TTTTACCCAG 1 TTTTACTGAC 1 TTTTAGACAG 4 TTTTAGACCT 1 TTTTAGAGAA 2 TTTTAGAGAT 1 TTTTAGCAGG 5 TTTTATGCAA 2 TTTTATTTTG 1 TTTTCAACAA 1 TTTTCAAGAA 2 TTTTCAGTCT 1 TTTTCATTGC 1 TTTTCCCCTG 1 TTTTCCTGTA 1 TTTTCGCCGG 1 TTTTCTAAGA 4 TTTTCTCCCC 1 TTTTCTCTGC 1 TTTTCTGAAA 5 TTTTCTGATT 1 TTTTCTGCAT 7 TTTTCTGCTG 2 TTTTGAAACC 1 TTTTGAAGAT 1 TTTTGAAGCA 6 TTTTGAGATT 1 TTTTGAGCTT 1 TTTTGATGAG 3 TTTTGATTAG 1 TTTTGCAACA 2 TTTTGCGATA 1 TTTTGCTACA 1 TTTTGCTGTG 1 TTTTGGATGT 1 TTTTGGCAGC 1 TTTTGGCCTT 1 TTTTGGGAGG 1 TTTTGGGGCT 1 TTTTGGGGGC 2 TTTTGGGTGA 2 TTTTGGTGCA 1 TTTTGTAAAT 1 TTTTGTACGC 1 TTTTGTATGA 1 TTTTGTCAGT 1 TTTTGTGAAT 1 TTTTGTGCAA 1 TTTTGTGCAT 1 TTTTGTGGCC 1 TTTTGTGTAT 1 TTTTGTGTGA 2 TTTTGTGTTG 1 TTTTGTTTTG 2 TTTTGTTTTT 1 TTTTTAAAGG 1 TTTTTAAATT 1 TTTTTAATGT 2 TTTTTACAGT 1 TTTTTACTGA 19 TTTTTACTGG 1 TTTTTAGAAT 5 TTTTTCAAGA 1 TTTTTCCCTG 2 TTTTTCTTCT 4 TTTTTGATCA 6 TTTTTGGAGG 1 TTTTTGGGTG 1 TTTTTGTAAT 1 TTTTTGTACA 5 TTTTTGTACC 2 TTTTTGTATT 3 TTTTTGTGTT 1 TTTTTGTTTC 1 TTTTTGTTTT 1 TTTTTTACTC 1 TTTTTTATAA 1 TTTTTTGAAA 3 TTTTTTGTAC 1 TTTTTTTCTC 1 r-bioc-edger-3.4.2+dfsg.orig/data/Tu102.txt0000755000265600020320000115612112227063704017263 0ustar tilleaadminTag_Sequence Count AAAAAAAAAA 34 AAAAAAAAAG 3 AAAAAAAAGC 1 AAAAAAATCA 1 AAAAAAATTT 1 AAAAAACAAT 1 AAAAAACCCA 2 AAAAAACTTT 1 AAAAAAGACA 1 AAAAAATAAG 1 AAAAAATATA 1 AAAAAATTTG 1 AAAAACAAAA 1 AAAAACCCTA 1 AAAAACCCTT 4 AAAAACCTTT 1 AAAAACGAAG 1 AAAAACGCCA 2 AAAAACTCTT 1 AAAAACTGGT 1 AAAAAGAAAT 1 AAAAAGAAGA 1 AAAAAGATGA 1 AAAAAGATGC 1 AAAAAGCAGA 2 AAAAAGCCAC 1 AAAAAGCTGA 1 AAAAAGGGTT 1 AAAAATAAAA 4 AAAAATAAAG 5 AAAAATACAC 1 AAAAATATGA 2 AAAAATCTGA 1 AAAAATGACA 2 AAAAATGAGA 1 AAAAATGGGA 1 AAAAATGGGG 1 AAAAATTAAG 1 AAAACAAAAA 1 AAAACAAAAC 1 AAAACAAAGA 2 AAAACAAATA 1 AAAACAAGAT 1 AAAACAAGCA 1 AAAACAAGCG 1 AAAACAATAC 1 AAAACAATCT 2 AAAACACCAA 1 AAAACAGAAG 1 AAAACAGAAT 1 AAAACAGACA 1 AAAACAGCAC 1 AAAACAGTTA 1 AAAACATTAT 3 AAAACATTCT 177 AAAACATTTT 3 AAAACCACTC 1 AAAACCAGCC 2 AAAACCCAAA 1 AAAACCCAGT 1 AAAACCCTTT 1 AAAACCGAGA 1 AAAACCTTAC 1 AAAACTACCG 1 AAAACTCATT 1 AAAACTCGCC 1 AAAACTGAGA 1 AAAACTGCAC 1 AAAACTGCCG 1 AAAACTGGCA 1 AAAACTGGGT 1 AAAACTTGCT 1 AAAACTTTCT 1 AAAACTTTTG 1 AAAAGAAAAA 1 AAAAGAAAAT 1 AAAAGAAACT 16 AAAAGAAAGA 1 AAAAGAAATG 1 AAAAGAAGTT 2 AAAAGAATCA 1 AAAAGACAAA 1 AAAAGAGAAA 1 AAAAGAGAGA 1 AAAAGAGCGG 1 AAAAGAGTGG 7 AAAAGATAGT 1 AAAAGATATG 1 AAAAGATGCT 2 AAAAGATTCT 1 AAAAGCAAGA 1 AAAAGCAATA 1 AAAAGCAGAA 6 AAAAGCAGAT 1 AAAAGCAGTG 1 AAAAGCCCCA 1 AAAAGCCTAG 1 AAAAGCCTGG 1 AAAAGCCTTT 1 AAAAGCGAAG 1 AAAAGCTACT 1 AAAAGCTGAA 1 AAAAGCTGAT 1 AAAAGGACGT 1 AAAAGGAGAT 2 AAAAGGCACT 1 AAAAGGCTCG 1 AAAAGGTCTG 1 AAAAGGTGAG 1 AAAAGGTGTA 1 AAAAGGTTAT 1 AAAAGGTTGA 1 AAAAGGTTTG 1 AAAAGTCAGT 1 AAAAGTCATA 1 AAAAGTGTAA 1 AAAAGTTATC 1 AAAATAAACA 2 AAAATAAAGA 1 AAAATAAAGG 1 AAAATAAATG 1 AAAATAAATT 1 AAAATAGAGT 1 AAAATATTTA 1 AAAATATTTT 1 AAAATCACTT 1 AAAATCAGAA 1 AAAATCAGGT 2 AAAATCCAAT 2 AAAATCCCGT 1 AAAATCTGCT 1 AAAATGAAGA 1 AAAATGACAC 1 AAAATGACGG 1 AAAATGACTT 2 AAAATGCACT 1 AAAATGCCTT 1 AAAATGCTCC 1 AAAATGCTGG 1 AAAATGCTGT 1 AAAATGGCTG 1 AAAATGGGAG 1 AAAATGGGCA 1 AAAATGGGGT 1 AAAATGTACT 1 AAAATTAACT 1 AAAATTATTA 1 AAAATTATTT 1 AAAATTGCTG 1 AAAATTTACA 1 AAAATTTGTT 1 AAACAAACCC 1 AAACAAATCA 2 AAACAAATGA 1 AAACAACCAA 1 AAACAACTCC 1 AAACAATACA 2 AAACAATGGC 1 AAACACACAC 2 AAACACCTGA 1 AAACACCTTA 1 AAACACTAAA 1 AAACACTCTT 3 AAACACTTTT 1 AAACAGAAGC 1 AAACAGACCA 1 AAACAGAGCT 1 AAACAGCATT 2 AAACAGGGAA 1 AAACAGTAGT 2 AAACAGTGCC 1 AAACAGTGTA 2 AAACATATTT 1 AAACATCCTA 5 AAACATCTAA 1 AAACATCTTC 1 AAACATTAAA 1 AAACATTAGC 2 AAACATTCTC 4 AAACATTGGG 2 AAACCAATCA 1 AAACCACAAA 1 AAACCAGATA 1 AAACCAGCAC 1 AAACCAGCAT 1 AAACCAGCCA 1 AAACCAGGGC 2 AAACCATCAT 1 AAACCATCCA 1 AAACCATTCT 4 AAACCCAAGA 1 AAACCCAAGC 6 AAACCCACAG 1 AAACCCCAAT 1 AAACCCCGCC 1 AAACCCCGTC 1 AAACCCCTGT 1 AAACCCGAAG 3 AAACCCTTTC 1 AAACCGAAAA 1 AAACCGGGGC 1 AAACCGGTCC 1 AAACCTACTG 1 AAACCTCCAA 1 AAACCTCCAC 1 AAACCTCTCA 1 AAACCTGCAG 1 AAACCTGGAA 1 AAACCTGGAC 1 AAACCTGGGG 1 AAACCTTTTG 1 AAACGACTAG 1 AAACGAGTTG 1 AAACGCCCAA 3 AAACGCTACT 1 AAACGTCCCA 1 AAACGTTTCC 1 AAACTATCAC 1 AAACTATGGC 1 AAACTATGGT 1 AAACTATTTG 1 AAACTCACGC 2 AAACTCACTG 1 AAACTCCCGC 1 AAACTCCGTC 1 AAACTCGGGT 1 AAACTCTGGG 1 AAACTCTGTG 2 AAACTGCTTT 1 AAACTGGCAG 3 AAACTGGTCA 1 AAACTGTAGT 1 AAACTGTGAA 2 AAACTGTGGT 30 AAACTTACCT 2 AAACTTATGA 1 AAACTTGCTC 1 AAACTTGTGC 1 AAACTTGTTG 1 AAACTTTAAC 1 AAACTTTCAA 1 AAACTTTGCC 1 AAACTTTTAT 1 AAAGAAAAAT 1 AAAGAAACCT 1 AAAGAAAGAG 1 AAAGAAAGCG 1 AAAGAACAGA 1 AAAGAACGTG 1 AAAGAAGATG 3 AAAGAAGCCA 1 AAAGAAGCTC 1 AAAGAAGTCC 1 AAAGAAGTTC 1 AAAGAATCCT 1 AAAGAATGCA 1 AAAGACAAGG 1 AAAGACACTG 2 AAAGACAGAG 1 AAAGACCAAA 2 AAAGAGAAAA 1 AAAGAGAAAG 1 AAAGAGAAGA 1 AAAGAGATGA 1 AAAGAGCACC 1 AAAGAGCTGG 4 AAAGAGGGAA 1 AAAGAGGGCC 1 AAAGAGTATG 1 AAAGAGTCGG 6 AAAGAGTCTT 1 AAAGATAAAG 1 AAAGATACCA 1 AAAGATATTA 1 AAAGATGAAG 1 AAAGATGAGT 1 AAAGATGCCC 1 AAAGATGGAA 1 AAAGATTCCC 1 AAAGCAAAAG 1 AAAGCAAACC 2 AAAGCAACCT 1 AAAGCACGAA 1 AAAGCAGACC 1 AAAGCAGCCA 1 AAAGCAGCCG 1 AAAGCAGGAC 1 AAAGCAGTAA 1 AAAGCAGTTC 1 AAAGCAGTTT 7 AAAGCATTTT 1 AAAGCCAAGA 7 AAAGCCAGCT 1 AAAGCCCTTG 1 AAAGCCGTTT 1 AAAGCCTAAG 1 AAAGCCTTCC 1 AAAGCTCAGT 1 AAAGCTCCTA 1 AAAGCTGACA 1 AAAGCTGAGC 1 AAAGCTTACA 1 AAAGCTTGCT 1 AAAGGAAAAT 1 AAAGGAATCA 1 AAAGGACAAA 1 AAAGGACTCA 1 AAAGGAGGCA 1 AAAGGAGTTA 1 AAAGGATGAA 1 AAAGGATGTT 2 AAAGGCATCA 1 AAAGGCGAGC 1 AAAGGGAGAC 1 AAAGGGCACG 1 AAAGGGCCAG 1 AAAGGGCTCA 1 AAAGGGCTGG 1 AAAGGGGCAA 1 AAAGGGGGCA 7 AAAGGGTATT 1 AAAGGTAGAC 1 AAAGGTGTAG 1 AAAGGTTAAG 1 AAAGGTTAGT 1 AAAGGTTGGT 2 AAAGTAACAC 1 AAAGTACGGT 1 AAAGTATGGA 1 AAAGTATTCA 1 AAAGTCAATC 1 AAAGTCAGAA 2 AAAGTCATCA 1 AAAGTCATTG 1 AAAGTCCAAG 1 AAAGTCCTGG 1 AAAGTCTAGA 15 AAAGTGAAGA 5 AAAGTGCAAG 1 AAAGTGCATC 3 AAAGTGGCTA 1 AAAGTGGCTG 1 AAAGTGGGAG 1 AAAGTGGGTG 1 AAAGTGTATT 1 AAAGTGTGGC 1 AAAGTTATAA 1 AAAGTTATCC 1 AAAGTTATGA 1 AAAGTTCAGA 1 AAAGTTCGGT 1 AAAGTTCGTA 1 AAAGTTCTCA 6 AAAGTTGGTA 1 AAAGTTGTCT 1 AAAGTTTCCC 1 AAAGTTTGAG 2 AAATAAAAGA 6 AAATAAAAGC 1 AAATAAACCA 1 AAATAAAGAA 2 AAATAACCTT 1 AAATAAGGGA 1 AAATAAGTAT 1 AAATAAGTCC 1 AAATAATGCG 1 AAATAATGGT 1 AAATAATTGT 1 AAATACAGCA 4 AAATACCAGA 1 AAATACCCCT 1 AAATACTTCA 1 AAATAGAATT 1 AAATAGAGAG 1 AAATAGATCC 6 AAATAGCCAG 1 AAATAGGTTT 1 AAATAGTAAA 1 AAATAGTTCA 1 AAATATAATG 1 AAATATATCC 1 AAATATATGG 1 AAATATGCTC 1 AAATATGGGC 1 AAATATTCCA 1 AAATATTTTA 2 AAATATTTTT 1 AAATCAAATG 1 AAATCAATCA 1 AAATCAGAAG 1 AAATCAGGAA 1 AAATCAGTCC 1 AAATCATCAC 1 AAATCCATCT 1 AAATCCATTT 1 AAATCCGTCG 1 AAATCCTCAG 1 AAATCCTGGG 1 AAATCGGAAT 1 AAATCTGAAA 1 AAATCTTCAA 1 AAATCTTTTT 1 AAATGAAAAT 3 AAATGAAGCT 1 AAATGACAAG 1 AAATGACTAT 3 AAATGACTGT 1 AAATGAGATG 1 AAATGATACA 1 AAATGATGCT 1 AAATGCACCT 1 AAATGCCACA 1 AAATGCCCTC 1 AAATGCTGCT 1 AAATGGAAAA 1 AAATGGAAAG 1 AAATGGACCA 1 AAATGGATGC 1 AAATGGCAAC 1 AAATGGCCAA 1 AAATGGCCCG 1 AAATGGCTAA 2 AAATGGCTTG 1 AAATGTAATT 1 AAATGTATAG 1 AAATGTCACC 1 AAATGTGTAA 1 AAATGTTAAA 1 AAATGTTCTG 1 AAATTAAAAC 1 AAATTAAGCT 1 AAATTAAGGT 2 AAATTACTGT 1 AAATTAGCTG 1 AAATTAGTTT 1 AAATTATATG 1 AAATTATGAA 1 AAATTCACAA 1 AAATTCATCC 1 AAATTCTAGA 1 AAATTCTGCA 1 AAATTCTGGA 1 AAATTGAGTG 1 AAATTGGGGG 1 AAATTGGGGT 1 AAATTGGTGA 1 AAATTGTATA 2 AAATTGTTCC 2 AAATTGTTGT 1 AAATTTAATA 1 AAATTTCAAG 1 AAATTTCACA 1 AAATTTCTGA 1 AAATTTGCAG 1 AAATTTGGCC 1 AAATTTGTCA 1 AACAAAAATG 1 AACAAATCCT 1 AACAAATGAA 1 AACAACTGAC 1 AACAAGAACC 1 AACAAGCAGC 1 AACAAGGTGA 3 AACAAGTCTT 1 AACAATCCCA 1 AACAATGGCT 1 AACAATGTTG 1 AACAATTTCA 1 AACACAAGAA 2 AACACAGCAC 1 AACACAGGAG 1 AACACATCAG 3 AACACCCACT 1 AACACCGTTT 1 AACACCTTGA 1 AACACGCCCT 1 AACACGCGTC 1 AACACGGGAG 2 AACACGGTGC 2 AACACGGTTA 1 AACACTCAGC 1 AACACTCTCG 1 AACACTGACT 2 AACACTGCAG 1 AACACTTCTC 1 AACACTTGAA 1 AACAGAAGCA 5 AACAGAATAT 1 AACAGACAAT 3 AACAGACACA 1 AACAGACACT 2 AACAGACAGC 1 AACAGACATC 1 AACAGATGCT 2 AACAGCAAGA 2 AACAGCAAGG 2 AACAGCAGGC 2 AACAGCATTC 1 AACAGCATTG 1 AACAGCTGAT 1 AACAGCTGGA 1 AACAGCTTTA 1 AACAGGAAAA 1 AACAGGAAGG 1 AACAGGACAG 1 AACAGGAGGT 1 AACAGGATAA 1 AACAGGCGGC 1 AACAGGGACA 1 AACAGTATCT 1 AACAGTCAAA 7 AACAGTGGAG 1 AACAGTGTGC 2 AACATAAACA 1 AACATAAACC 1 AACATATAAA 1 AACATATATG 1 AACATCAAAC 1 AACATCCAAA 1 AACATCCCCT 1 AACATTAAAT 1 AACATTGACA 2 AACATTTAGG 1 AACATTTATT 2 AACCAAAAAA 4 AACCAAAGAT 1 AACCAAAGGA 1 AACCAACAAA 1 AACCAACAGA 1 AACCAACCAG 1 AACCAACCTC 2 AACCAAGGAG 1 AACCAATACA 1 AACCACACAC 1 AACCACATCT 1 AACCACCACA 2 AACCACCACG 1 AACCACCGCA 1 AACCACTGAG 1 AACCACTGCA 3 AACCACTGTG 1 AACCACTTGC 1 AACCAGAATG 2 AACCAGAGGT 1 AACCAGCCAG 1 AACCAGGATA 1 AACCAGGCCA 1 AACCAGGGAG 2 AACCAGGTGG 1 AACCATTCAT 1 AACCATTCTG 1 AACCCAAAAA 2 AACCCAAACT 1 AACCCAAGAG 4 AACCCAAGAT 1 AACCCAATAT 1 AACCCAATCC 1 AACCCAATGA 1 AACCCACATA 1 AACCCACCTC 1 AACCCAGAAG 2 AACCCAGCAA 1 AACCCAGCAG 2 AACCCAGGAA 2 AACCCAGGAG 52 AACCCAGGAT 1 AACCCAGGCT 1 AACCCAGGGG 2 AACCCAGTGC 1 AACCCATAGG 1 AACCCCAGGA 1 AACCCCGGAA 1 AACCCCGGAG 3 AACCCCGGGA 3 AACCCCGTAG 1 AACCCCTTGG 1 AACCCCTTGT 1 AACCCGAATT 1 AACCCGAGAG 4 AACCCGAGGT 1 AACCCGCCAC 1 AACCCGCGAG 1 AACCCGGAAG 7 AACCCGGAGG 1 AACCCGGCAG 1 AACCCGGGAA 5 AACCCGGGAG 93 AACCCGGGAT 1 AACCCGGGGA 2 AACCCGGGGG 1 AACCCGGTAG 3 AACCCTATAT 1 AACCCTATCT 1 AACCCTCTGG 1 AACCCTGCCA 1 AACCCTGCCC 1 AACCCTGGAG 3 AACCCTGTTT 1 AACCCTTCCC 1 AACCCTTGAA 1 AACCCTTGCC 1 AACCCTTGGG 1 AACCCTTTTA 2 AACCGAAGAG 1 AACCGACATT 1 AACCGGCAGC 1 AACCGGCAGG 1 AACCGGGAAG 2 AACCGGGAGG 2 AACCGGGGAA 1 AACCGGGGAG 2 AACCGTACTT 1 AACCGTCAAA 1 AACCGTGAAG 1 AACCGTGCAC 1 AACCGTTTCC 2 AACCTAAAAT 1 AACCTACTCA 1 AACCTAGGAG 1 AACCTCACAA 1 AACCTCCCGG 1 AACCTCCTGT 1 AACCTCGAGT 1 AACCTCGCGG 1 AACCTGAAAC 1 AACCTGAAAG 1 AACCTGAACA 1 AACCTGACCA 1 AACCTGAGGA 1 AACCTGGAAG 2 AACCTGGCCT 1 AACCTGGGAA 2 AACCTGGGAG 47 AACCTGGGCC 2 AACCTGGGCG 2 AACCTGGGGG 1 AACCTGGGTA 1 AACCTGGTAG 1 AACCTGGTAT 1 AACCTGTATC 1 AACCTGTGAG 1 AACCTGTTCT 1 AACCTGTTTT 1 AACCTTAACT 1 AACCTTCAGC 1 AACCTTGGCC 1 AACCTTTAGA 1 AACGAAAGAG 1 AACGAATTCC 1 AACGACAGAG 1 AACGACAGCA 1 AACGACCTCG 16 AACGACTCAC 1 AACGAGCACA 1 AACGAGGAAT 23 AACGAGGAGA 2 AACGAGGCCT 2 AACGAGTACA 1 AACGAGTATT 1 AACGATTTGG 1 AACGCCAACC 3 AACGCCAAGC 1 AACGCCGGAA 1 AACGCGAACA 3 AACGCGACCA 1 AACGCGGCCA 30 AACGCGTGAG 1 AACGCTGCCT 5 AACGGAAGGC 1 AACGGACACT 1 AACGGACAGA 1 AACGGAGCTT 2 AACGGGCCGG 2 AACGGGTGGA 1 AACGGTAAGA 1 AACGGTGTAG 1 AACGGTTACC 2 AACGGTTGGT 1 AACGTAAAGC 1 AACGTACACT 1 AACGTCTTCC 1 AACGTGCAGG 8 AACGTGGAGT 1 AACGTGTAGA 1 AACGTTATCG 1 AACGTTCTTG 1 AACGTTGCCA 1 AACGTTTTAT 1 AACTAAAAAA 11 AACTAAACAA 1 AACTAAAGAA 1 AACTAAATTT 1 AACTAACAAA 8 AACTAATACT 7 AACTAATGGG 1 AACTACAAAA 1 AACTACAGCC 1 AACTACATAG 3 AACTACCAAG 1 AACTACGAAT 1 AACTACGCTC 1 AACTACTCAC 1 AACTACTTTA 1 AACTACTTTT 1 AACTAGGTAT 1 AACTAGTGAC 1 AACTATAGAA 1 AACTATGCCC 2 AACTATGGAA 1 AACTATTCAC 2 AACTCAAAAA 1 AACTCAGCAG 1 AACTCAGCCC 1 AACTCAGCTA 2 AACTCAGGAG 1 AACTCAGTGT 1 AACTCATTCT 1 AACTCCATAC 1 AACTCCCGTG 1 AACTCCCTGC 1 AACTCCTAAG 1 AACTCCTGCC 1 AACTCCTGGC 1 AACTCCTTCC 1 AACTCGGGAG 2 AACTCTCAAT 1 AACTCTGAAA 1 AACTCTGACG 1 AACTCTGCCC 1 AACTCTGCTC 1 AACTCTGCTT 1 AACTCTGGAC 1 AACTCTGTAA 1 AACTCTTCAC 4 AACTCTTCTG 1 AACTCTTGAA 4 AACTGAAAGG 1 AACTGAAATA 7 AACTGAATTC 1 AACTGACGGT 1 AACTGACTTC 1 AACTGAGATT 1 AACTGAGCGT 1 AACTGATCCG 1 AACTGCAGTG 1 AACTGCCTGT 1 AACTGCGGCA 2 AACTGCTATA 1 AACTGCTTCA 3 AACTGGAGTC 3 AACTGGCTGC 1 AACTGGGCTG 3 AACTGGGGTG 1 AACTGGGTTG 1 AACTGGGTTT 1 AACTGTAAAG 1 AACTGTATCA 1 AACTGTCTTG 1 AACTGTGAGA 1 AACTGTGGCA 1 AACTGTGTTG 1 AACTGTGTTT 2 AACTGTTCCT 1 AACTTAAAAA 2 AACTTAAAAG 1 AACTTAAACT 1 AACTTACAGA 1 AACTTACGGT 1 AACTTACTGG 1 AACTTAGCAA 1 AACTTCAAGT 2 AACTTCTCAA 1 AACTTCTCAG 1 AACTTCTGTA 1 AACTTGACAC 1 AACTTGATAC 1 AACTTGATGG 1 AACTTGCCCA 2 AACTTGCCTT 1 AACTTGGCTG 2 AACTTGGGAG 1 AACTTGGGCT 1 AACTTGTAAA 1 AACTTGTATG 1 AACTTTAGGG 1 AACTTTCCAA 1 AACTTTCTGG 1 AACTTTCTTC 1 AACTTTGGGG 1 AACTTTGTGG 1 AACTTTTTAT 1 AAGAAAAAAA 1 AAGAAAAAAG 1 AAGAAAAATA 1 AAGAAAACTG 1 AAGAAAAGAA 1 AAGAAAAGGG 1 AAGAAAAGTT 1 AAGAAACCTT 2 AAGAAACTAA 1 AAGAAAGAAG 1 AAGAAAGACC 1 AAGAAAGCCC 1 AAGAAAGCGC 1 AAGAAAGCTC 5 AAGAAAGGGG 1 AAGAAAGTAA 1 AAGAAATACA 1 AAGAAATCAA 1 AAGAAATCCA 1 AAGAAATGGA 1 AAGAAATTCT 2 AAGAACATTG 1 AAGAACCTGT 3 AAGAACGTAG 1 AAGAACTAAA 1 AAGAACTGTT 1 AAGAAGACTT 5 AAGAAGAGGA 2 AAGAAGAGGG 1 AAGAAGATAG 34 AAGAAGCAAG 1 AAGAAGCAGC 1 AAGAAGCAGG 3 AAGAAGCGCA 1 AAGAAGGGAG 1 AAGAAGGTGG 1 AAGAAGTAGA 1 AAGAATAATG 1 AAGAATCACG 1 AAGAATGATG 1 AAGAATGCCT 1 AAGAATGGGG 1 AAGAATTCTA 1 AAGAATTTGA 1 AAGACAACTA 1 AAGACAACTG 1 AAGACAAGTT 1 AAGACAGAAA 1 AAGACAGAAG 1 AAGACAGAGC 1 AAGACAGAGG 1 AAGACAGTGA 1 AAGACAGTGG 51 AAGACATCAG 1 AAGACATCAT 1 AAGACATCTT 1 AAGACATTAC 1 AAGACATTCT 2 AAGACCACCA 1 AAGACCAGCC 1 AAGACCAGGT 1 AAGACCATTT 1 AAGACCCTCC 1 AAGACCGAGG 1 AAGACCTAAT 1 AAGACCTTAA 1 AAGACCTTGT 1 AAGACGGTGG 1 AAGACTAATC 1 AAGACTCCCT 1 AAGACTGAAG 1 AAGACTGACA 1 AAGACTGGCT 4 AAGACTGTTT 1 AAGACTTCTC 1 AAGACTTGCA 1 AAGACTTTGC 1 AAGACTTTGT 1 AAGACTTTTA 1 AAGAGAAAGA 1 AAGAGAAGGT 1 AAGAGAATGG 1 AAGAGACACA 2 AAGAGACAGT 5 AAGAGACCAC 1 AAGAGACCTA 1 AAGAGAGAGG 1 AAGAGAGCTT 1 AAGAGAGGGG 1 AAGAGATAAA 1 AAGAGATCAT 1 AAGAGATGAG 1 AAGAGATGCT 1 AAGAGCAAAA 1 AAGAGCAGCT 1 AAGAGCATCG 1 AAGAGCCAAG 2 AAGAGCGACT 1 AAGAGCGCCG 1 AAGAGCGGCG 1 AAGAGCTAAT 1 AAGAGCTGAA 1 AAGAGCTGCG 1 AAGAGCTTGC 1 AAGAGGAAAC 1 AAGAGGAAAT 1 AAGAGGACTC 1 AAGAGGCAGA 1 AAGAGGCTAA 1 AAGAGGCTGA 1 AAGAGGCTGG 1 AAGAGGCTTC 1 AAGAGGCTTG 1 AAGAGGGAAG 1 AAGAGGGCAA 1 AAGAGGTTTG 3 AAGAGTAAGA 1 AAGAGTCACC 1 AAGAGTCACT 1 AAGAGTCCAG 2 AAGAGTCTGA 1 AAGAGTGCGC 1 AAGAGTGGCA 1 AAGAGTTACG 1 AAGAGTTAGA 1 AAGAGTTGGG 2 AAGATAAAAG 1 AAGATAAACT 2 AAGATAATGC 3 AAGATAATGT 3 AAGATAGAAA 1 AAGATAGAGA 1 AAGATATGCT 1 AAGATATGGC 1 AAGATCAAGA 1 AAGATCACCA 1 AAGATCATTG 2 AAGATCCCCG 4 AAGATCCTAC 1 AAGATGACCA 1 AAGATGAGGG 3 AAGATGATAA 1 AAGATGATGG 1 AAGATGCACA 2 AAGATGCTCT 1 AAGATGCTGG 1 AAGATGGAGC 1 AAGATGGCCA 1 AAGATGGCCC 1 AAGATGGTGG 2 AAGATGTGTA 1 AAGATGTTTC 1 AAGATGTTTG 1 AAGATTCCAG 1 AAGATTCGTG 3 AAGATTGGGG 4 AAGATTGGTG 17 AAGATTTCAC 1 AAGATTTCTG 1 AAGATTTCTT 1 AAGATTTTCT 1 AAGCAAAAAA 1 AAGCAAAAAC 3 AAGCAAAAGG 1 AAGCAAACTA 1 AAGCAAGAAT 1 AAGCAAGATC 1 AAGCACCTTG 4 AAGCACTGTG 1 AAGCACTGTT 2 AAGCAGAAGG 1 AAGCAGACAC 1 AAGCAGCAGC 1 AAGCAGCCAC 1 AAGCAGCTAA 1 AAGCAGCTAT 1 AAGCAGCTGC 1 AAGCAGCTGG 1 AAGCAGGCCC 1 AAGCAGGGAG 1 AAGCAGTGAA 2 AAGCAGTGTC 1 AAGCAGTGTG 1 AAGCATATGC 1 AAGCATCCCC 1 AAGCATCCTC 1 AAGCATCTCA 1 AAGCATCTGA 1 AAGCATTCTT 1 AAGCATTTGA 1 AAGCCAAAAA 1 AAGCCAATGG 1 AAGCCACACG 1 AAGCCACAGC 1 AAGCCACCGA 1 AAGCCACCGC 1 AAGCCACCTC 1 AAGCCACTCA 1 AAGCCAGAGA 1 AAGCCAGCCA 1 AAGCCAGCCC 10 AAGCCAGGAC 10 AAGCCAGGGG 4 AAGCCAGTCT 1 AAGCCATCGC 1 AAGCCCAGGC 1 AAGCCCCGTG 1 AAGCCCCTGG 2 AAGCCCTCTA 1 AAGCCGGCCC 1 AAGCCGGGAT 1 AAGCCTGTAG 1 AAGCCTTCCC 2 AAGCCTTCTT 1 AAGCCTTGCT 3 AAGCGATGTG 1 AAGCGCTACC 1 AAGCGCTCTC 3 AAGCGGCAAG 1 AAGCGGGACC 7 AAGCGGTGTG 1 AAGCGTGCTT 1 AAGCGTTCAT 1 AAGCTAGAAC 1 AAGCTATAGC 1 AAGCTCACGG 1 AAGCTCAGCC 1 AAGCTCAGGA 1 AAGCTCATTT 1 AAGCTCCCTG 3 AAGCTCCTGG 1 AAGCTCTCCT 2 AAGCTCTGTG 1 AAGCTGAAAA 2 AAGCTGAGGT 1 AAGCTGAGTG 13 AAGCTGATCT 1 AAGCTGCAAA 1 AAGCTGCTCT 1 AAGCTGCTGG 2 AAGCTGCTTT 2 AAGCTGGAGG 7 AAGCTGGCCC 3 AAGCTGTGGG 1 AAGCTGTGTC 1 AAGCTGTTCC 3 AAGCTGTTTA 1 AAGCTTAAAA 1 AAGCTTCCCC 1 AAGCTTGAGA 3 AAGCTTTGAG 1 AAGGAAAAAA 2 AAGGAAAACG 1 AAGGAAAATG 1 AAGGAAACGT 2 AAGGAAAGAG 1 AAGGAAAGGC 1 AAGGAAAGTG 1 AAGGAACCTG 1 AAGGAACTCT 1 AAGGAACTTG 1 AAGGAACTTT 2 AAGGAAGAAA 1 AAGGAAGAAT 2 AAGGAAGACA 1 AAGGAAGACG 1 AAGGAAGATC 1 AAGGAAGATG 4 AAGGAAGATT 4 AAGGAAGCAA 2 AAGGAATCGG 4 AAGGAATGAT 1 AAGGACAGAG 1 AAGGACCAGC 1 AAGGACCCTT 1 AAGGACCTAG 1 AAGGACCTTT 17 AAGGACGCTT 2 AAGGACTGAG 1 AAGGACTTCT 1 AAGGAGAAGG 2 AAGGAGAATG 1 AAGGAGATGG 25 AAGGAGCAAG 1 AAGGAGCACA 1 AAGGAGCGGG 6 AAGGAGCTGG 1 AAGGAGGAGG 1 AAGGAGGCAG 1 AAGGAGGTCA 1 AAGGAGTGAA 1 AAGGAGTTTG 3 AAGGATAAAA 5 AAGGATGAGG 2 AAGGATGTAG 2 AAGGCAAAGA 1 AAGGCAAAGC 1 AAGGCAAAGG 1 AAGGCACAGA 3 AAGGCAGAAG 2 AAGGCAGAGG 1 AAGGCAGTTT 1 AAGGCATAGA 1 AAGGCATTAG 1 AAGGCCACCG 1 AAGGCCAGAT 1 AAGGCCCAGG 1 AAGGCCCAGT 1 AAGGCCGAGA 1 AAGGCCGAGT 3 AAGGCCTCCG 1 AAGGCCTCCT 1 AAGGCCTCGG 2 AAGGCCTTGA 1 AAGGCCTTGT 6 AAGGCGCGGC 1 AAGGCGGACT 1 AAGGCGTCTC 1 AAGGCGTTTC 1 AAGGCTACGA 1 AAGGCTAGTA 1 AAGGCTGAGC 1 AAGGCTGGCT 1 AAGGCTGGTA 1 AAGGCTTCCA 2 AAGGGAAAGT 1 AAGGGAAGGT 1 AAGGGACGCC 1 AAGGGAGCAC 2 AAGGGAGGAA 2 AAGGGAGGGT 4 AAGGGATGTC 1 AAGGGCAGTG 3 AAGGGCCACA 1 AAGGGCCCCC 2 AAGGGCTGGG 1 AAGGGGAAGA 1 AAGGGGAGCA 1 AAGGGGATCC 1 AAGGGGCCTT 1 AAGGGGGCAA 12 AAGGGGGGCA 1 AAGGGGTAAT 1 AAGGGGTCAG 1 AAGGGGTGCA 1 AAGGGTCTGA 1 AAGGGTTCTG 1 AAGGTAACAG 4 AAGGTAAGGG 1 AAGGTAAGTG 1 AAGGTAATAT 3 AAGGTAATGC 4 AAGGTACAAT 1 AAGGTACAGC 2 AAGGTAGAAC 1 AAGGTAGAGG 1 AAGGTAGATG 1 AAGGTAGCAG 4 AAGGTAGCTC 1 AAGGTAGGGC 5 AAGGTATGAC 1 AAGGTCAAAA 1 AAGGTCAAAG 1 AAGGTCAGGC 1 AAGGTCGAGC 9 AAGGTCTAGA 1 AAGGTCTGCT 1 AAGGTGACGA 1 AAGGTGAGAG 1 AAGGTGAGGA 1 AAGGTGAGTT 1 AAGGTGCCTC 5 AAGGTGGAAG 1 AAGGTGGAGA 2 AAGGTGGAGG 79 AAGGTGGAGT 1 AAGGTGGATA 1 AAGGTGGCAG 1 AAGGTGGCCA 3 AAGGTGGGGG 1 AAGGTGGTTT 2 AAGGTGTGGC 1 AAGGTGTTTT 1 AAGGTTAAGA 1 AAGGTTGAGC 1 AAGGTTTATA 1 AAGGTTTGGG 1 AAGTAAAGGA 1 AAGTAAAGTG 1 AAGTAACAGT 1 AAGTAACCTG 5 AAGTAAGTCT 1 AAGTACAATA 1 AAGTACGAGG 3 AAGTACTTCA 1 AAGTAGAAAG 1 AAGTAGAACT 1 AAGTAGATGG 1 AAGTAGATTG 1 AAGTAGCAAC 1 AAGTAGCCTT 2 AAGTAGCTGG 1 AAGTAGGAAT 1 AAGTAGGGCT 1 AAGTAGTTCG 1 AAGTATATCA 1 AAGTATCGCG 1 AAGTATTATT 1 AAGTATTGAA 1 AAGTATTGTG 1 AAGTCAAAAT 1 AAGTCAATAC 1 AAGTCAGGAC 1 AAGTCAGGAG 5 AAGTCATTCA 2 AAGTCCGAGG 1 AAGTCCTAGC 2 AAGTCCTGCA 1 AAGTCGCTCA 1 AAGTCTCGTG 1 AAGTCTGAGG 1 AAGTGAAAAG 1 AAGTGAGATG 1 AAGTGAGGAG 4 AAGTGAGTAA 1 AAGTGAGTTA 1 AAGTGATTCT 7 AAGTGATTGC 1 AAGTGCCATA 1 AAGTGCTGCA 1 AAGTGCTGTT 2 AAGTGGAAAA 1 AAGTGGAAGA 1 AAGTGGAATA 1 AAGTGGCAAA 1 AAGTGGCAAG 25 AAGTGGCACT 1 AAGTGGGGCA 1 AAGTGGGGGA 1 AAGTGGGTGC 5 AAGTGGTGCC 1 AAGTGGTTGA 1 AAGTGTCTTC 2 AAGTGTCTTG 1 AAGTGTGACG 1 AAGTTAATTG 1 AAGTTAGAAA 1 AAGTTCAATA 1 AAGTTCCTCC 1 AAGTTCCTGG 1 AAGTTCGGAA 1 AAGTTCGTAT 1 AAGTTCTGCG 3 AAGTTGAAAG 1 AAGTTGAAGA 1 AAGTTGAAGG 2 AAGTTGAGAG 1 AAGTTGATTT 2 AAGTTGCACT 1 AAGTTGCCTG 1 AAGTTGCTAA 1 AAGTTGCTAT 11 AAGTTGGGTG 1 AAGTTTAAAA 1 AAGTTTAATT 1 AAGTTTCCAA 4 AAGTTTGGTG 1 AAGTTTGTCA 1 AAGTTTTCCC 1 AAGTTTTTTC 1 AATAAAAAAA 1 AATAAAAAGA 1 AATAAAACAC 1 AATAAAAGAC 1 AATAAAAGTG 2 AATAAACAGG 1 AATAAACGTG 1 AATAAAGAGA 1 AATAAAGCAG 1 AATAAAGCCT 4 AATAAAGGCT 4 AATAAAGTTG 3 AATAAAGTTT 1 AATAAATCCC 1 AATAAATCTG 1 AATAAATTCC 8 AATAACAAAT 1 AATAACACCC 2 AATAACCAAA 1 AATAAGAGAT 1 AATAAGCCAA 1 AATAAGCCCA 1 AATAAGGAAC 1 AATAATAACC 1 AATAATAGCC 1 AATAATCAAC 1 AATAATGGCA 1 AATAATGTTT 1 AATACAACTT 1 AATACAATCT 1 AATACAATGA 1 AATACACATC 1 AATACATCAA 1 AATACCAAAG 1 AATACCTCGT 3 AATACGAAAA 1 AATACTATGA 1 AATACTCACA 1 AATACTGTGA 1 AATACTGTGG 1 AATACTGTTG 1 AATACTTAAA 1 AATACTTTCT 1 AATACTTTTG 1 AATAGAATGT 1 AATAGACTCT 1 AATAGATTGT 1 AATAGATTTT 1 AATAGCAATT 1 AATAGCCTGT 1 AATAGCGTCT 1 AATAGCTCAG 3 AATAGGAGGG 1 AATAGGCCTG 1 AATAGGGGAA 1 AATAGGTCCA 22 AATAGGTGGC 1 AATAGTCAAA 2 AATAGTTTCC 1 AATATAGCAA 1 AATATATGGT 1 AATATATTCG 1 AATATCAAGA 1 AATATCAGTG 1 AATATCCCCC 2 AATATCCCTC 1 AATATCTGAC 6 AATATGCTCA 1 AATATGCTTT 2 AATATGGAAG 1 AATATGGGTG 2 AATATGTAAA 1 AATATGTCGA 1 AATATGTGGG 13 AATATTAAGT 1 AATATTATTT 1 AATATTCATA 1 AATATTGAGA 3 AATATTGTGT 1 AATATTGTTG 1 AATATTTATA 2 AATCAAACAC 2 AATCAAATGT 1 AATCAACTTG 1 AATCAAGCTC 1 AATCAAGGTG 1 AATCAAGTTA 1 AATCACAAAT 3 AATCACAAGC 1 AATCACAGAT 1 AATCACCTTT 1 AATCAGCTCA 1 AATCAGTATC 1 AATCAGTTTG 1 AATCATCTAA 1 AATCATTCAA 1 AATCCAAATT 1 AATCCAGCAG 1 AATCCAGGAG 9 AATCCAGGGG 1 AATCCATTAA 1 AATCCCGCCA 1 AATCCGACTC 2 AATCCGAGGA 1 AATCCGGGAG 2 AATCCGTGAG 1 AATCCTGGTA 1 AATCCTGTGG 98 AATCCTTATG 1 AATCCTTCTT 1 AATCGCAGAG 1 AATCGCTAAT 1 AATCGGGCTA 1 AATCTCAGCA 1 AATCTCCCAA 1 AATCTGAGCG 1 AATCTGAGGA 1 AATCTGCACA 1 AATCTGCGCC 6 AATCTGGCGC 1 AATCTGTGAC 1 AATCTTCACT 1 AATCTTGTCT 1 AATCTTTGAT 1 AATCTTTTAG 1 AATGAAAAGG 2 AATGAACGTT 1 AATGAACTAA 1 AATGAAGCTC 1 AATGAAGCTG 1 AATGAATAAA 1 AATGAATTTT 1 AATGACAATT 1 AATGACCCCT 1 AATGACTCCC 1 AATGACTGAA 1 AATGACTGAC 1 AATGACTGAT 1 AATGACTTGA 1 AATGACTTTA 1 AATGAGCAAG 1 AATGAGCACT 1 AATGAGCTTG 1 AATGAGGAAG 1 AATGAGGCAG 1 AATGAGGCTG 1 AATGAGTTTG 1 AATGATACTT 1 AATGATCACT 1 AATGATCCCT 1 AATGATGAAG 1 AATGATGTGA 1 AATGATTCCT 1 AATGATTTTA 1 AATGCAACCT 1 AATGCAATTT 1 AATGCACTGA 2 AATGCACTGC 2 AATGCAGCTG 1 AATGCAGGCA 13 AATGCCACAA 1 AATGCCAGAA 1 AATGCCATAA 1 AATGCCATCG 1 AATGCCCCAC 1 AATGCTCAGG 1 AATGCTGATC 1 AATGCTGCAA 1 AATGCTGTAT 2 AATGCTGTCC 1 AATGCTGTTT 2 AATGCTTGAT 1 AATGGAAACC 1 AATGGAACAT 1 AATGGAAGGT 1 AATGGAATGG 2 AATGGAATTT 1 AATGGACAAT 1 AATGGACTGA 1 AATGGAGCCA 1 AATGGATGAA 26 AATGGATGAG 1 AATGGATGAT 1 AATGGATTAT 1 AATGGATTGT 1 AATGGCACTT 2 AATGGCCAAA 2 AATGGCCAGA 1 AATGGCCATT 1 AATGGCTTGG 1 AATGGGAAGT 1 AATGGGAGAA 1 AATGGGAGTT 1 AATGGGGAAG 1 AATGGGGGTT 1 AATGGGTAGA 1 AATGGTATCC 1 AATGGTCCTT 1 AATGGTGTTA 1 AATGGTTAGC 3 AATGTAAGCT 1 AATGTAATCA 2 AATGTCACTG 1 AATGTCATTG 1 AATGTCCGAA 1 AATGTCCGGA 1 AATGTCGTTG 1 AATGTCTGGT 1 AATGTCTTCA 1 AATGTCTTTG 1 AATGTGAGTC 2 AATGTGATTT 1 AATGTGCAGT 1 AATGTGGGAA 1 AATGTGGTCT 1 AATGTGTCAC 1 AATGTTACTC 1 AATGTTGACA 1 AATGTTGGCT 1 AATGTTTCCT 1 AATTAAAAGA 1 AATTAAATAG 1 AATTAAATCT 1 AATTAAATTA 5 AATTAACGGC 1 AATTAACTCC 3 AATTAAGTTG 1 AATTAATAAA 2 AATTAATGGA 1 AATTAATGTA 1 AATTAATTGT 1 AATTACGAGA 1 AATTACGATT 1 AATTACTAGA 1 AATTACTTTA 1 AATTAGGCTT 1 AATTAGTTTT 1 AATTATGCCA 1 AATTATGGCT 1 AATTATGTGA 1 AATTATTCCT 1 AATTATTCTT 1 AATTCAATTA 2 AATTCAGAGT 1 AATTCAGATT 1 AATTCAGCAC 1 AATTCAGCTG 1 AATTCAGTAA 1 AATTCATAGG 2 AATTCCAAGG 1 AATTCCACTG 1 AATTCCCGGG 1 AATTCCCGTC 1 AATTCCTGAA 1 AATTCGAGAC 1 AATTCGATTG 1 AATTCGCGTG 1 AATTCGGGAC 2 AATTCGGGGG 1 AATTCTCCAA 1 AATTCTCTGT 1 AATTCTGAAA 1 AATTCTGCCA 1 AATTCTGGAG 1 AATTCTGGGC 1 AATTCTGTGA 2 AATTCTGTGG 1 AATTCTTGCT 1 AATTGAAACC 2 AATTGATTAT 1 AATTGCAAAA 1 AATTGCAAGC 3 AATTGCAAGG 1 AATTGCAATT 1 AATTGCATAG 1 AATTGCATTA 5 AATTGCATTT 1 AATTGCCACT 2 AATTGCTTCT 1 AATTGCTTTT 1 AATTGGAACT 1 AATTGGATTT 1 AATTGGGGTT 1 AATTGGGTTT 1 AATTGTGCAT 1 AATTGTGGCA 1 AATTGTTGGT 1 AATTTAAAAA 3 AATTTAAGGC 1 AATTTACAGA 1 AATTTACTTC 2 AATTTAGGCA 1 AATTTATTTC 1 AATTTCACGA 1 AATTTCTACC 2 AATTTCTAGC 1 AATTTCTCAA 1 AATTTGAAAG 1 AATTTGAAGG 1 AATTTGACCT 1 AATTTGAGGG 1 AATTTGAGTG 1 AATTTGATGG 1 AATTTGCAAC 5 AATTTGCAGC 1 AATTTGCCTA 1 AATTTGGAGG 1 AATTTGTACA 1 AATTTGTCTT 1 AATTTTATTT 1 AATTTTCAAA 1 AATTTTCACT 1 AATTTTCCCC 1 AATTTTCTAA 1 AATTTTCTTT 1 AATTTTGGCT 1 AATTTTGTGA 1 AATTTTTAGT 1 AATTTTTCAA 1 AATTTTTTAA 1 ACAAAAAAGA 1 ACAAAAACCT 1 ACAAAAACTA 58 ACAAAAACTG 1 ACAAAAAGGA 1 ACAAAAAGTG 2 ACAAAAAGTT 1 ACAAAACCCC 3 ACAAAACTAG 1 ACAAAAGTGA 1 ACAAAATAAA 1 ACAAAATCCT 1 ACAAACACAA 1 ACAAACCCCC 25 ACAAACCTTG 1 ACAAACTGTG 2 ACAAACTTAG 5 ACAAAGACAC 1 ACAAAGATGG 1 ACAAAGCATT 2 ACAAAGCCCT 1 ACAAAGGAGT 1 ACAAAGGGCC 1 ACAAAGTGCT 1 ACAAAGTTGC 1 ACAAAGTTTA 1 ACAAATATCA 1 ACAAATCCTT 3 ACAAATTAAC 1 ACAAATTAGG 1 ACAACAATCT 1 ACAACACCCC 1 ACAACATAGA 1 ACAACCAATA 1 ACAACCACCA 1 ACAACCAGCA 1 ACAACCCCCA 1 ACAACGACCA 1 ACAACGTCCA 1 ACAACGTTTA 1 ACAACTAAAT 1 ACAACTAAGG 1 ACAACTCAAT 6 ACAACTCGTG 2 ACAACTGAAG 1 ACAACTGGCC 1 ACAACTTAGG 1 ACAAGAAGTT 1 ACAAGAATTG 3 ACAAGACCAG 1 ACAAGACCCT 1 ACAAGACCTA 1 ACAAGAGAGC 1 ACAAGAGGAT 1 ACAAGAGTAT 1 ACAAGATGCC 1 ACAAGATGGG 1 ACAAGCATAT 1 ACAAGCCCAT 1 ACAAGCCTAG 1 ACAAGCTCAT 1 ACAAGCTCCA 1 ACAAGGAGGA 1 ACAAGGATGC 1 ACAAGGGAAA 1 ACAAGGTCGG 1 ACAAGGTGCG 1 ACAAGGTTGG 1 ACAAGTACCC 1 ACAAGTCCTT 1 ACAATACATA 1 ACAATACCTG 1 ACAATAGCTA 1 ACAATAGTGA 1 ACAATCATCC 1 ACAATCGCTT 1 ACAATCTACA 1 ACAATGAAAA 1 ACAATGAGCA 1 ACAATGATCA 1 ACAATGCCAT 1 ACAATGCTCT 1 ACAATGGACC 1 ACAATGTACC 1 ACAATGTATC 1 ACAATTAAAG 1 ACAATTACTA 1 ACAATTCAGA 1 ACAATTGCTT 1 ACAATTGGGT 1 ACAATTTTTG 1 ACACAACCCG 1 ACACAATTTA 1 ACACACAACA 1 ACACACAGCA 1 ACACAGAACT 1 ACACAGAATG 1 ACACAGACAC 1 ACACAGAGCA 1 ACACAGATTG 1 ACACAGCAAG 5 ACACAGCTCT 2 ACACAGCTTT 1 ACACAGGCAG 1 ACACAGGCTT 1 ACACAGGTCA 1 ACACAGTGTG 1 ACACAGTTTT 3 ACACATACCT 1 ACACATACTA 1 ACACATATTA 4 ACACATTCTT 1 ACACATTGAA 1 ACACCAAAGT 1 ACACCAAGGG 1 ACACCATCGA 1 ACACCATTCA 2 ACACCATTTG 1 ACACCCAGGC 1 ACACCCATCA 3 ACACCCTGTG 1 ACACCTCTAA 1 ACACCTCTCG 1 ACACCTGACT 1 ACACGAGTTT 1 ACACGGTCTG 1 ACACTAAAAT 1 ACACTAAGAC 3 ACACTACGGC 1 ACACTACGGG 6 ACACTATCTC 1 ACACTCAGGC 1 ACACTCCAGT 1 ACACTCGTCA 1 ACACTCTAGC 1 ACACTGAAAA 1 ACACTGAGTT 1 ACACTGATCG 1 ACACTGCACT 6 ACACTGCATT 1 ACACTGCCCA 4 ACACTGCTTT 1 ACACTGGAAG 1 ACACTGGGCG 1 ACACTGTACA 1 ACACTTCACC 1 ACACTTCGTC 1 ACACTTCTAG 1 ACACTTGGCT 1 ACACTTGGGA 1 ACACTTTTTT 3 ACAGAAATGG 1 ACAGAAGGCA 1 ACAGAAGTTA 1 ACAGAATGAA 1 ACAGAATGAG 1 ACAGAATGGC 3 ACAGACAAGG 1 ACAGACAATA 1 ACAGACTCCG 1 ACAGACTTCC 1 ACAGAGAAGA 1 ACAGAGAGAA 1 ACAGAGAGAG 1 ACAGAGCAAG 4 ACAGAGCCAG 1 ACAGAGCGAG 1 ACAGAGGCAA 1 ACAGAGTGAG 2 ACAGATAAAG 1 ACAGATATCA 1 ACAGATCATA 1 ACAGATGAGA 1 ACAGATGAGT 1 ACAGATGGAA 1 ACAGATGTTG 1 ACAGATTTGA 1 ACAGCAAGAA 1 ACAGCAAGCC 1 ACAGCACTGT 1 ACAGCAGAAA 1 ACAGCAGAGT 1 ACAGCAGTAA 1 ACAGCAGTGG 1 ACAGCATCTG 1 ACAGCATTTG 1 ACAGCCAAGA 1 ACAGCCATCC 1 ACAGCCATTG 1 ACAGCCGCAG 1 ACAGCCTCAG 1 ACAGCCTCCA 1 ACAGCCTGCA 3 ACAGCCTGTA 4 ACAGCGGCAA 5 ACAGCGTCTG 1 ACAGCTAACA 1 ACAGCTAATT 2 ACAGCTACAG 1 ACAGCTAGTT 1 ACAGCTCAGT 1 ACAGCTCCCC 2 ACAGCTCCTC 1 ACAGCTGAAT 1 ACAGCTGCAG 1 ACAGCTGCGT 1 ACAGCTGGAG 1 ACAGCTGTGT 1 ACAGCTTCAC 1 ACAGCTTCCT 1 ACAGCTTTGT 1 ACAGGAAACT 1 ACAGGAAATG 2 ACAGGACCTT 2 ACAGGACTTC 2 ACAGGAGAAC 1 ACAGGAGCGT 1 ACAGGAGGAA 1 ACAGGCACTA 2 ACAGGCGAGG 1 ACAGGCTAAA 1 ACAGGCTACG 2 ACAGGGAATT 1 ACAGGGCAGA 1 ACAGGGCCCC 1 ACAGGGGCCA 1 ACAGGGGCCG 1 ACAGGGTGAC 6 ACAGGGTGCC 1 ACAGGTTTGT 1 ACAGTAAGCG 2 ACAGTAATGA 3 ACAGTACACT 1 ACAGTAGCTC 1 ACAGTATGAG 1 ACAGTCCTGA 1 ACAGTCCTTT 1 ACAGTCTGTT 1 ACAGTCTTGC 5 ACAGTCTTTG 1 ACAGTGAGCC 1 ACAGTGATTA 1 ACAGTGCCAC 1 ACAGTGCCAT 1 ACAGTGCCCG 1 ACAGTGCGTG 1 ACAGTGCTTG 1 ACAGTGGAGA 1 ACAGTGGATT 2 ACAGTGGGCG 1 ACAGTGGGGA 6 ACAGTGGTCC 1 ACAGTGGTGC 2 ACAGTGTGTG 6 ACAGTGTTAA 1 ACAGTGTTGA 1 ACAGTTAAGG 1 ACAGTTCCAC 1 ACAGTTGCAA 1 ACAGTTTCCA 1 ACATAAAAAC 1 ACATAAATAA 1 ACATAACACC 1 ACATAACCCT 1 ACATAATAAA 2 ACATACAACT 1 ACATACATAC 1 ACATACCTAC 1 ACATACTGGC 1 ACATAGCTCG 1 ACATAGCTTT 1 ACATAGGCCT 1 ACATAGTTAA 1 ACATATAATC 1 ACATATAGTA 1 ACATATATGC 1 ACATATGCTG 1 ACATATTAGA 1 ACATCAAAAT 2 ACATCAAATT 1 ACATCACAGA 1 ACATCAGACA 1 ACATCAGACT 1 ACATCAGCGC 1 ACATCATACT 1 ACATCATCGA 46 ACATCATTCA 1 ACATCCACAA 1 ACATCCCAGA 2 ACATCCCCAA 1 ACATCCTCAC 1 ACATCCTGTG 1 ACATCCTTGT 1 ACATCGTAGG 10 ACATCGTCGA 1 ACATCGTGTG 1 ACATCTTGCT 1 ACATTAAATC 1 ACATTAGTCT 1 ACATTCAAAG 1 ACATTCAATG 1 ACATTCCCTT 1 ACATTCCTGA 1 ACATTCTTTT 1 ACATTGAATT 1 ACATTGATCG 3 ACATTGATGC 1 ACATTGATTT 1 ACATTGCAGC 1 ACATTGCATT 1 ACATTGGGGA 1 ACATTGGGTG 33 ACATTGGTAA 2 ACATTGGTCT 1 ACATTGGTTA 1 ACATTGTCAA 1 ACATTGTCCT 1 ACATTGTGTG 3 ACATTTAAGC 1 ACATTTACTA 1 ACATTTCATT 2 ACATTTCGTT 1 ACATTTCTTT 1 ACATTTGCAG 1 ACATTTGGTT 6 ACATTTTCTT 1 ACATTTTGGA 1 ACATTTTGTT 2 ACATTTTTCC 2 ACATTTTTGA 1 ACCAAAAACC 4 ACCAAAACTA 1 ACCAAACTGT 2 ACCAAAGACA 1 ACCAAAGAGG 1 ACCAAATTAA 1 ACCAACAAAG 1 ACCAACAAGT 1 ACCAACACCC 1 ACCAACCCGG 1 ACCAACGGCG 1 ACCAAGAACC 3 ACCAAGAAGC 1 ACCAAGCAAG 1 ACCAAGCTGG 2 ACCAAGGACC 1 ACCAAGGAGG 8 ACCAAGTAAA 1 ACCAAGTGGG 3 ACCAAGTTCA 1 ACCAAGTTGG 1 ACCAATCCTT 1 ACCAATCTTG 1 ACCAATGCTG 1 ACCAATGTGT 3 ACCAATTCTA 1 ACCACAAATA 3 ACCACAAATG 2 ACCACAAGAC 1 ACCACAAGCC 1 ACCACACAAT 1 ACCACACCAC 1 ACCACAGAGA 1 ACCACAGCTC 2 ACCACAGGGG 1 ACCACAGTGA 1 ACCACAGTGG 1 ACCACAGTTT 1 ACCACATCCT 1 ACCACCAAGT 1 ACCACCCCCT 1 ACCACCCCTT 1 ACCACCCGGA 1 ACCACCCGTG 2 ACCACCCTGT 2 ACCACCGTGA 1 ACCACCTAGA 1 ACCACGCACG 1 ACCACGCAGA 6 ACCACGCCCT 1 ACCACGCCGT 5 ACCACGGGTA 1 ACCACTACCC 1 ACCACTAGGT 1 ACCACTTATC 1 ACCACTTCTC 1 ACCACTTGAT 1 ACCAGACAAG 1 ACCAGACCCA 1 ACCAGATCTG 1 ACCAGATGTC 1 ACCAGCCAAA 2 ACCAGCCACA 7 ACCAGCCAGA 1 ACCAGCCCAG 1 ACCAGCCTGG 4 ACCAGCGTGT 1 ACCAGCGTTG 1 ACCAGCTCCG 1 ACCAGCTCCT 1 ACCAGCTGAC 1 ACCAGGAAAC 1 ACCAGGAGGT 1 ACCAGGCAAG 2 ACCAGGCCCC 1 ACCAGGCCTG 1 ACCAGGGAGA 1 ACCAGGTCCA 1 ACCAGGTGGA 1 ACCAGTAATA 1 ACCAGTCCCA 1 ACCAGTCTGT 2 ACCAGTGATG 1 ACCAGTGTGC 1 ACCATAATGT 1 ACCATACAAC 1 ACCATAGACA 1 ACCATAGTGG 1 ACCATCAAAG 1 ACCATCACCA 1 ACCATCAGGA 1 ACCATCCATA 1 ACCATCGTCA 1 ACCATCGTCC 2 ACCATCTCCC 1 ACCATTCTGC 8 ACCATTGGAT 9 ACCATTGGCT 1 ACCCAAAATT 1 ACCCAAAGCC 1 ACCCAAGCAA 2 ACCCAATCAG 1 ACCCAATTTG 3 ACCCAATTTT 1 ACCCACAATA 1 ACCCACACCC 1 ACCCACAGTG 4 ACCCACCAGA 1 ACCCACCCAC 1 ACCCACCCCA 1 ACCCACCGCG 1 ACCCACGTCA 1 ACCCACTCTA 2 ACCCAGACAC 3 ACCCAGACCA 1 ACCCAGAGCT 2 ACCCAGGAGC 1 ACCCAGGAGG 3 ACCCAGGTCT 1 ACCCAGTTAC 1 ACCCAGTTGT 1 ACCCATAAGC 1 ACCCATCCCT 1 ACCCATCTAG 1 ACCCATTAAG 1 ACCCATTTTA 1 ACCCCAAACT 1 ACCCCAACAG 1 ACCCCACCCA 1 ACCCCACGAG 1 ACCCCAGAGA 1 ACCCCAGGAG 1 ACCCCAGGTT 3 ACCCCAGTTA 1 ACCCCCAAGG 1 ACCCCCCCAC 1 ACCCCCCCCG 1 ACCCCCCCGC 6 ACCCCCTTCC 1 ACCCCGACCC 1 ACCCCGGGAG 1 ACCCCGTGAG 1 ACCCCTAACA 32 ACCCCTACAT 2 ACCCCTAGAC 1 ACCCCTAGTG 1 ACCCCTCAGA 1 ACCCCTCCCT 1 ACCCCTCTCC 1 ACCCCTGAGA 2 ACCCCTGGAC 1 ACCCCTTCAC 1 ACCCCTTGGG 1 ACCCGAATAA 1 ACCCGAGTAG 1 ACCCGCCGGG 11 ACCCGCCGTG 1 ACCCGCCGTT 1 ACCCGCGAGG 2 ACCCGCTGCC 1 ACCCGGCTGA 1 ACCCGGGAGG 1 ACCCGGGGGG 1 ACCCGTGGCC 1 ACCCTACTCA 1 ACCCTACTTA 1 ACCCTAGGCC 1 ACCCTATCAC 1 ACCCTATCTC 1 ACCCTATTTA 1 ACCCTCAGCC 1 ACCCTCATTT 1 ACCCTCCACT 1 ACCCTCCCCG 1 ACCCTCCCTG 1 ACCCTCCTCT 5 ACCCTCCTGC 1 ACCCTCGGCC 1 ACCCTCTCCA 1 ACCCTCTCCC 3 ACCCTCTGTG 3 ACCCTCTTTG 1 ACCCTGCAAG 1 ACCCTGCCAA 4 ACCCTGCCAG 1 ACCCTGCCCT 1 ACCCTGCGCT 1 ACCCTGGGAG 3 ACCCTGGGCA 2 ACCCTGGTTC 1 ACCCTGTACA 1 ACCCTGTCTC 1 ACCCTGTGTG 1 ACCCTTAAAG 1 ACCCTTCCCA 1 ACCCTTCCCT 3 ACCCTTGACC 1 ACCCTTGCCA 1 ACCCTTGCGC 1 ACCCTTGCTA 1 ACCCTTGGCA 1 ACCCTTGGCC 208 ACCCTTGGTC 1 ACCCTTGTCC 1 ACCCTTGTGC 1 ACCCTTTAAC 2 ACCCTTTAGG 1 ACCCTTTCAC 1 ACCCTTTGGA 1 ACCGAAACCT 1 ACCGACTGAT 1 ACCGAGAATG 1 ACCGAGAGCC 1 ACCGAGGAAG 1 ACCGAGGTGC 1 ACCGAGTGCG 1 ACCGCAATGC 1 ACCGCAGCCT 1 ACCGCCGGGT 1 ACCGCCGTGG 20 ACCGCCTGCC 1 ACCGCCTGTG 10 ACCGCTGCAG 1 ACCGCTTGTT 2 ACCGGAAAGG 1 ACCGGCCAGC 1 ACCGGCGCTA 1 ACCGGGAGGT 3 ACCGGTCCGG 3 ACCGGTTACT 1 ACCGGTTCAG 1 ACCGTAGGGA 1 ACCGTATTCC 2 ACCGTCCACT 4 ACCGTCCTTT 2 ACCGTCGTAG 1 ACCGTCGTGG 1 ACCGTCTTAG 1 ACCGTGCCAC 1 ACCGTGCGCG 2 ACCGTGTCCG 1 ACCGTTTGCA 1 ACCTAAGCAC 1 ACCTAATCAC 1 ACCTAATTAT 1 ACCTAATTGG 6 ACCTACAGCG 1 ACCTAGGGTT 1 ACCTAGTAAG 1 ACCTATAAGT 2 ACCTATCCAA 2 ACCTATTTGT 1 ACCTCAAAAA 1 ACCTCAAGTG 1 ACCTCACCTC 1 ACCTCACTTA 1 ACCTCAGAAT 1 ACCTCAGAGG 1 ACCTCAGCTT 1 ACCTCAGGAA 6 ACCTCAGGCA 1 ACCTCATCGA 1 ACCTCATCTC 1 ACCTCATTCT 2 ACCTCCAAAG 1 ACCTCCACCA 1 ACCTCCATCT 1 ACCTCCCACC 2 ACCTCCCCAG 1 ACCTCGAGTA 1 ACCTCGGCGC 1 ACCTCGTACA 1 ACCTCGTCTT 1 ACCTCGTGCA 1 ACCTCTCTAA 4 ACCTCTGACA 1 ACCTGAAACC 3 ACCTGACCTG 1 ACCTGAGAGG 1 ACCTGAGGAG 1 ACCTGAGGGC 1 ACCTGAGTGT 1 ACCTGCATTT 1 ACCTGCCAAC 1 ACCTGCCCCT 3 ACCTGCCCTC 1 ACCTGCCCTT 1 ACCTGCCGAC 3 ACCTGCTCCA 1 ACCTGCTGGT 3 ACCTGGACCT 1 ACCTGGACTC 1 ACCTGGAGGC 1 ACCTGGGATA 1 ACCTGGGGAG 3 ACCTGGGTGC 1 ACCTGGTGTC 4 ACCTGTAATT 1 ACCTGTACCC 2 ACCTGTATCC 35 ACCTGTATTC 1 ACCTGTCATT 1 ACCTGTGACT 1 ACCTGTGGGG 1 ACCTGTTCCC 1 ACCTGTTGCC 1 ACCTTAAAGG 1 ACCTTACAAC 1 ACCTTACAGT 1 ACCTTACATT 1 ACCTTACCTA 1 ACCTTATTAA 1 ACCTTCAAAA 1 ACCTTCAAAG 4 ACCTTCATCT 1 ACCTTCCAAA 2 ACCTTCCTAG 7 ACCTTCTATT 1 ACCTTCTCCC 1 ACCTTCTGGA 1 ACCTTCTGTT 1 ACCTTCTTTA 1 ACCTTGAGCA 1 ACCTTGCGTC 1 ACCTTGGCAG 1 ACCTTGGCCA 1 ACCTTGGGGT 2 ACCTTGGGTT 3 ACCTTGTCAC 1 ACCTTGTCGC 1 ACCTTGTGCC 2 ACCTTTAAAA 1 ACCTTTACTG 2 ACCTTTCAAA 1 ACCTTTCTCT 1 ACCTTTGCGA 1 ACCTTTGCTG 1 ACCTTTGTCC 1 ACCTTTTAAA 1 ACCTTTTCAA 12 ACGAAAACAT 1 ACGAAAACTA 1 ACGAAACCCC 3 ACGAAACCCG 2 ACGAAACCCT 2 ACGAAACTCC 2 ACGAACACCC 1 ACGAACTACC 1 ACGAACTGTG 1 ACGAAGACTC 1 ACGAAGATGC 1 ACGAAGCAGG 1 ACGAAGCCAC 1 ACGAAGCTAG 1 ACGAAGCTGG 1 ACGACAAAGC 4 ACGACAGCGA 1 ACGACAGGCA 1 ACGACCCCCA 1 ACGAGACCCC 1 ACGAGACCCT 1 ACGAGACTGG 1 ACGAGATGAA 1 ACGAGCTGCT 1 ACGAGGAATT 1 ACGATACCCT 1 ACGATAGAAG 1 ACGATAGGTG 1 ACGATCCAGC 1 ACGATTGATG 2 ACGCAACGAT 1 ACGCAAGACT 1 ACGCAAGGGA 1 ACGCACGGAG 1 ACGCACGGGG 1 ACGCACTCTC 1 ACGCAGAGAG 1 ACGCAGGAGA 1 ACGCAGGCGC 2 ACGCAGGGAG 166 ACGCAGGGGG 2 ACGCAGTCCT 1 ACGCCACAAG 1 ACGCCACTGT 1 ACGCCCGCTT 1 ACGCCGGAAG 1 ACGCCGGGAG 1 ACGCCGTGGT 1 ACGCGAAGAC 1 ACGCTCATCG 1 ACGCTCCCAC 1 ACGCTCCTCC 1 ACGCTCTTCT 1 ACGCTGCAGT 1 ACGCTGCGGC 1 ACGCTGCTGC 3 ACGCTGGAGG 1 ACGCTTGAGC 1 ACGGAACAGG 2 ACGGACGTTG 1 ACGGAGAGGT 1 ACGGAGTGCG 1 ACGGATCTCT 1 ACGGATGAGG 1 ACGGCCCCAT 1 ACGGCCGGCT 1 ACGGCGATGC 1 ACGGCTATAA 1 ACGGCTCCGA 1 ACGGCTGGGC 1 ACGGCTGGTA 1 ACGGCTTCCA 1 ACGGGAACCT 1 ACGGGACTGT 1 ACGGGGAATT 1 ACGGTAATCC 1 ACGGTCCAGG 1 ACGGTCGTTG 1 ACGGTGATAT 1 ACGGTGATGT 5 ACGGTGCTAC 1 ACGGTGTGGA 1 ACGGTGTGTG 1 ACGGTGTTTT 1 ACGGTTGAAG 1 ACGTAACCAT 1 ACGTAACTAC 1 ACGTAGAACT 1 ACGTAGGGAG 1 ACGTCACCAT 1 ACGTCACCTG 1 ACGTCATCGA 2 ACGTCCAGCC 1 ACGTCGCATT 1 ACGTCGTCGA 1 ACGTGACGCT 2 ACGTGAGGCC 1 ACGTGATAAT 1 ACGTGCACTG 1 ACGTGCACTT 1 ACGTGCCTCA 1 ACGTGGGGAG 1 ACGTGGTGAT 3 ACGTGTCTAT 1 ACGTTAACCT 3 ACGTTGGGTG 1 ACGTTGTGAC 1 ACGTTGTTTT 1 ACTAAAAAAA 1 ACTAAAACAC 5 ACTAAAACGC 1 ACTAAAACTG 1 ACTAAACACC 1 ACTAAAGGGG 1 ACTAACAACC 2 ACTAACACAA 1 ACTAACACCA 1 ACTAACACCC 362 ACTAACACCG 1 ACTAACACCT 2 ACTAACAGCC 1 ACTAACATTC 1 ACTAACCCCC 1 ACTAACGCCC 2 ACTAACGTGT 1 ACTAACTTTG 1 ACTAAGCAAA 1 ACTAAGCAAG 1 ACTAAGCATA 1 ACTAAGGCAG 1 ACTAATCGTT 1 ACTACAACGT 1 ACTACACAAT 1 ACTACACCCC 1 ACTACACCGT 1 ACTACAGAGC 1 ACTACAGGGT 2 ACTACATCAA 1 ACTACCGTTC 1 ACTACCTCCC 1 ACTACCTTAC 1 ACTACCTTCA 4 ACTACGCACT 1 ACTACTCACC 1 ACTACTCAGT 1 ACTACTGCCT 1 ACTACTGGGT 1 ACTACTTAGC 1 ACTACTTATC 1 ACTAGAAACC 1 ACTAGAAGAC 1 ACTAGACCCT 1 ACTAGAGAAG 1 ACTAGAGTTT 1 ACTAGATGGA 1 ACTAGCGCCA 1 ACTAGGTTTG 1 ACTAGTACAT 1 ACTAGTAGCG 1 ACTAGTGGTC 1 ACTAGTTCTG 1 ACTAGTTTAG 1 ACTATAAGCT 1 ACTATAATCC 1 ACTATAATCT 1 ACTATACACC 1 ACTATCATTT 1 ACTATCCAAA 1 ACTATCCGCA 1 ACTATCGTGA 1 ACTATCTCTA 1 ACTATGAGCT 1 ACTATGTTTC 1 ACTATTGAAG 1 ACTATTTCAA 2 ACTATTTCAC 2 ACTCAAAATC 1 ACTCAAAGAC 2 ACTCAAATGG 3 ACTCAATAAA 2 ACTCACAAAG 1 ACTCACACAT 1 ACTCACCCAA 1 ACTCACCCCA 1 ACTCACCCCT 1 ACTCACGGTT 1 ACTCACTGAG 1 ACTCACTGCA 1 ACTCACTGTG 1 ACTCAGAAGA 5 ACTCAGACCC 1 ACTCAGCCCC 1 ACTCAGCCTA 1 ACTCAGCTCA 1 ACTCAGGAAG 1 ACTCAGGGAA 1 ACTCAGGTTG 1 ACTCAGTACA 1 ACTCAGTCTG 1 ACTCAGTTAT 1 ACTCATCTCT 1 ACTCCAAAAA 37 ACTCCAAACT 1 ACTCCAAAGA 1 ACTCCAACAA 3 ACTCCAAGAG 3 ACTCCAAGGA 3 ACTCCAATGA 1 ACTCCACCCA 1 ACTCCACCTG 1 ACTCCAGAAA 1 ACTCCAGAAG 1 ACTCCAGCTG 1 ACTCCAGTCA 1 ACTCCATTTC 1 ACTCCCCAGA 1 ACTCCCCAGG 1 ACTCCCGACA 1 ACTCCGAAAA 1 ACTCCGAACA 2 ACTCCGGCTC 1 ACTCCGGGAG 1 ACTCCGTCTA 1 ACTCCGTGGA 2 ACTCCTATTT 1 ACTCCTTAGT 1 ACTCCTTCAG 1 ACTCCTTCTC 1 ACTCGAATAT 1 ACTCGACGGA 1 ACTCGATCAG 1 ACTCGCACCT 1 ACTCTAAGAC 1 ACTCTACCCG 1 ACTCTAGAGC 1 ACTCTAGTTA 1 ACTCTCCAAA 2 ACTCTCCTCG 1 ACTCTCTGAT 1 ACTCTGAGAG 1 ACTCTGCACG 1 ACTCTGCCAA 4 ACTCTGGAGG 1 ACTCTGTAAA 1 ACTCTGTATG 1 ACTCTGTCAC 1 ACTCTGTCTC 2 ACTCTTAACA 1 ACTCTTATCT 1 ACTCTTCCAG 1 ACTCTTCCCC 1 ACTCTTGGTT 1 ACTCTTGTTT 1 ACTCTTTAGG 2 ACTCTTTCAA 4 ACTCTTTTGG 1 ACTGAACAGT 2 ACTGAAGAAC 1 ACTGAAGAAT 1 ACTGAAGGCG 6 ACTGAATAAC 1 ACTGAATATA 1 ACTGAATGTT 1 ACTGACAAAA 1 ACTGACACCC 4 ACTGACCAGA 1 ACTGACCCCC 2 ACTGACCTGC 1 ACTGACGCTA 1 ACTGACTATC 1 ACTGACTCCA 3 ACTGACTGAC 1 ACTGAGAATT 1 ACTGAGAGGA 1 ACTGAGGAAA 2 ACTGAGGAAC 2 ACTGAGGTGC 1 ACTGATCACA 1 ACTGATCTCC 1 ACTGATTGAT 1 ACTGATTTAC 1 ACTGCAATCC 1 ACTGCAATGG 1 ACTGCACCAC 3 ACTGCACTAC 1 ACTGCACTCC 3 ACTGCACTGT 1 ACTGCAGAGA 1 ACTGCAGAGC 2 ACTGCAGTGC 2 ACTGCATCAC 1 ACTGCATCTC 1 ACTGCATTAA 1 ACTGCCCCAA 1 ACTGCCCCAC 1 ACTGCCCTCT 1 ACTGCCGACT 1 ACTGCCTCCC 1 ACTGCGAGGA 4 ACTGCGATGG 1 ACTGCGCCAC 1 ACTGCGCTTC 1 ACTGCTACAC 1 ACTGCTCAAG 1 ACTGCTCAAT 1 ACTGCTGAAC 3 ACTGCTGTCT 2 ACTGCTTCAT 1 ACTGCTTGAC 1 ACTGCTTGCC 6 ACTGCTTTAC 1 ACTGGAACGA 1 ACTGGAACTA 1 ACTGGACTTA 1 ACTGGAGCCA 1 ACTGGAGGTT 1 ACTGGATTTA 1 ACTGGCAGGC 1 ACTGGCGAAG 1 ACTGGCTATT 1 ACTGGCTCCT 1 ACTGGCTGCT 6 ACTGGGACAC 1 ACTGGGACAG 1 ACTGGGGAAT 3 ACTGGGTCTA 18 ACTGGGTCTG 1 ACTGGGTGCA 4 ACTGGTAAAA 1 ACTGGTACGT 2 ACTGGTCTAT 1 ACTGGTGATA 1 ACTGGTGGCA 1 ACTGGTGTGG 1 ACTGGTTCGT 2 ACTGTAAGAA 1 ACTGTAATCC 5 ACTGTAATTC 2 ACTGTACAAT 1 ACTGTACCAC 1 ACTGTAGCCC 1 ACTGTAGGGT 1 ACTGTAGTCC 2 ACTGTAGTCG 1 ACTGTAGTTC 1 ACTGTATCTC 1 ACTGTATTTT 5 ACTGTCACTT 1 ACTGTCCTCC 1 ACTGTCTCCA 1 ACTGTCTGTC 1 ACTGTCTTAG 1 ACTGTCTTGA 1 ACTGTGAGGC 1 ACTGTGCAAA 1 ACTGTGCCAC 2 ACTGTGCCTG 1 ACTGTGCCTT 1 ACTGTGCTTT 1 ACTGTGGCCC 1 ACTGTGGCGG 4 ACTGTGGCTT 1 ACTGTGGGTA 1 ACTGTGGTTT 1 ACTGTGTGCA 1 ACTGTTCAAG 1 ACTGTTGCAA 1 ACTGTTGCAT 1 ACTGTTGCTA 7 ACTGTTGTTC 1 ACTGTTTAAG 1 ACTGTTTATG 1 ACTGTTTCTT 1 ACTTAAAAAA 1 ACTTAAAATA 1 ACTTAAAGTC 1 ACTTAAGGAA 1 ACTTAATCAA 2 ACTTAATCTT 1 ACTTAATTAA 1 ACTTAATTCA 1 ACTTACACCC 2 ACTTACCAAA 1 ACTTACCTGC 17 ACTTACCTGT 1 ACTTAGAGTT 1 ACTTAGCCTA 1 ACTTAGGAAA 1 ACTTAGGGGC 1 ACTTATACAG 1 ACTTATCCAA 1 ACTTATTCAA 2 ACTTCAACCT 1 ACTTCACACC 1 ACTTCACAGG 1 ACTTCCAAAA 5 ACTTCCCAAA 1 ACTTCCTCCT 1 ACTTCCTCGA 1 ACTTCCTTCC 1 ACTTCGCGGT 1 ACTTCTATAT 1 ACTTCTCCTT 1 ACTTCTGCAA 1 ACTTCTGCCC 1 ACTTCTGGAA 1 ACTTCTGGTA 1 ACTTCTGTAT 1 ACTTCTTAAA 1 ACTTCTTAGT 1 ACTTCTTCAA 1 ACTTCTTCAC 1 ACTTGAACCA 1 ACTTGAAGGA 1 ACTTGAATTC 1 ACTTGACAGT 1 ACTTGAGAAG 1 ACTTGAGAAT 1 ACTTGAGCAT 1 ACTTGATAAT 1 ACTTGATTTG 2 ACTTGCCATT 1 ACTTGCCCCC 1 ACTTGCGAAT 2 ACTTGGAAAA 1 ACTTGGAGCC 6 ACTTGGAGTG 1 ACTTGGCCTG 1 ACTTGGGGCA 1 ACTTGGGTGG 1 ACTTGTACTG 1 ACTTGTTCGC 3 ACTTTAAAAA 2 ACTTTAAACT 2 ACTTTAAAGA 1 ACTTTACAAA 1 ACTTTAGAAT 1 ACTTTAGATG 1 ACTTTATCAA 1 ACTTTATTAG 2 ACTTTATTAT 1 ACTTTCAAAA 1 ACTTTCCAAA 309 ACTTTCCAAG 2 ACTTTCCAAT 2 ACTTTCCGAA 1 ACTTTCCGGG 1 ACTTTCCTTG 1 ACTTTCGGTA 1 ACTTTCTCAA 5 ACTTTCTGTC 1 ACTTTGAATG 1 ACTTTGAATT 1 ACTTTGCAAA 2 ACTTTGGCCA 1 ACTTTGGGTG 1 ACTTTGGTCC 1 ACTTTGTCAA 1 ACTTTGTGAA 1 ACTTTGTTAA 1 ACTTTGTTCG 1 ACTTTTAAAA 5 ACTTTTAAAT 1 ACTTTTACAA 2 ACTTTTCAAA 7 ACTTTTCCAA 3 ACTTTTGCAA 1 ACTTTTGCAG 1 ACTTTTGCCC 2 ACTTTTGCTG 1 ACTTTTTAAA 25 ACTTTTTACA 1 ACTTTTTCAA 421 ACTTTTTCAC 15 ACTTTTTCAG 3 ACTTTTTCAT 2 ACTTTTTCCA 1 ACTTTTTCTA 1 ACTTTTTGAG 2 ACTTTTTTAA 1 ACTTTTTTAT 1 AGAAAAAAAA 18 AGAAAAAAAG 2 AGAAAAAATC 1 AGAAAAACGC 1 AGAAAAATTC 1 AGAAAACATC 1 AGAAAACTGG 1 AGAAAACTGT 1 AGAAAATATG 1 AGAAAATCCA 1 AGAAAATCCT 1 AGAAACAAAA 1 AGAAACGCTC 1 AGAAACTCTT 1 AGAAACTTAT 1 AGAAAGAAAG 3 AGAAAGAATC 1 AGAAAGCCCT 1 AGAAATAAAG 2 AGAAATAAAT 1 AGAAATACCA 1 AGAAATACTT 2 AGAAATAGAG 1 AGAAATCACT 1 AGAAATCTGG 1 AGAAATGCGG 1 AGAAATGTAT 1 AGAAATGTGA 1 AGAAATTCAG 1 AGAAATTTCC 1 AGAACAAAAA 1 AGAACAAAAC 6 AGAACAACAA 1 AGAACAAGAG 1 AGAACACAAA 1 AGAACACTTT 1 AGAACAGAGG 1 AGAACAGGGC 1 AGAACAGTTT 2 AGAACATTCT 1 AGAACCAAAT 1 AGAACCAACA 1 AGAACCCAGG 1 AGAACCCGGC 2 AGAACCGCTT 1 AGAACCTGCA 1 AGAACCTTAA 1 AGAACCTTCA 1 AGAACCTTCC 8 AGAACCTTTG 1 AGAACGCTGG 1 AGAACTACGT 1 AGAACTGCTT 2 AGAACTGTTT 1 AGAACTTCGT 1 AGAAGAAACA 1 AGAAGAACGA 1 AGAAGAGGCA 1 AGAAGATCCA 1 AGAAGATCTG 1 AGAAGATTAA 1 AGAAGCAAGA 2 AGAAGCCAGA 1 AGAAGCTGGA 1 AGAAGGAACT 1 AGAAGGAAGG 1 AGAAGGAATC 1 AGAAGGAGAG 1 AGAAGGATCG 4 AGAAGGATCT 2 AGAAGGATGC 1 AGAAGGCCCC 1 AGAAGGCCTT 3 AGAAGGCTCT 1 AGAAGGGCAA 1 AGAAGGGCGT 1 AGAAGGTACA 1 AGAAGTAAAG 1 AGAAGTACTG 1 AGAAGTAGTG 1 AGAAGTATGG 1 AGAAGTATTT 1 AGAAGTGCTT 1 AGAAGTGTCC 2 AGAAGTTCAT 1 AGAAGTTCCC 1 AGAAGTTCTA 1 AGAATAAAAT 1 AGAATAAACG 1 AGAATAAAGC 1 AGAATACGGC 1 AGAATAGAAT 1 AGAATAGCCT 1 AGAATAGCTT 30 AGAATATCAG 3 AGAATATGAG 1 AGAATCAATC 1 AGAATCACCT 4 AGAATCACGT 1 AGAATCACTG 4 AGAATCACTT 15 AGAATCGCCT 2 AGAATCGCTG 1 AGAATCGCTT 28 AGAATCGTTG 1 AGAATCGTTT 1 AGAATCTCTT 1 AGAATCTTCA 1 AGAATCTTTC 1 AGAATGACTT 1 AGAATGGAAA 1 AGAATGGCTT 2 AGAATGTACG 1 AGAATGTCAT 1 AGAATTACTT 2 AGAATTCATT 1 AGAATTCCTT 1 AGAATTCTGT 1 AGAATTGCCC 1 AGAATTGCTA 1 AGAATTGCTC 2 AGAATTGCTG 1 AGAATTGCTT 16 AGAATTGTTT 2 AGAATTTCCC 1 AGAATTTGCA 2 AGACAACAGC 1 AGACAACCAC 1 AGACAAGCTG 6 AGACAAGTTT 2 AGACAATTTT 1 AGACACAATT 1 AGACACATCG 1 AGACACCTGT 2 AGACACTCGG 1 AGACAGAAGA 1 AGACAGAGTG 7 AGACAGGTGA 1 AGACAGTGAG 1 AGACAGTGGC 1 AGACAGTGGT 1 AGACATACTT 1 AGACATCAAT 1 AGACATCTGG 1 AGACATTCCT 1 AGACATTTTT 1 AGACCAAAGT 1 AGACCACAAC 1 AGACCACATC 1 AGACCAGCCT 1 AGACCAGGAG 2 AGACCAGTGC 1 AGACCAGTGT 6 AGACCATATT 2 AGACCATCCT 1 AGACCCACAA 71 AGACCCACAC 2 AGACCCATTT 1 AGACCCCAAG 1 AGACCCCATT 1 AGACCCTTGA 1 AGACCTACAA 1 AGACCTACAG 1 AGACCTCCAG 2 AGACCTCCCT 1 AGACCTGGGT 1 AGACGCACTC 1 AGACGCGATG 1 AGACGCTGTC 1 AGACGCTTCT 1 AGACGGAGGT 2 AGACGTTCTG 1 AGACTAACAC 2 AGACTCAAAA 1 AGACTCCACG 1 AGACTCGCTT 1 AGACTCTGAG 1 AGACTGATCC 1 AGACTGCTCT 1 AGACTGGATA 1 AGACTGGGAA 1 AGACTTAAAG 1 AGACTTCAAG 1 AGACTTGGCA 3 AGACTTTGAG 1 AGACTTTTCA 1 AGACTTTTCC 1 AGAGAAAAAA 1 AGAGAAACCA 1 AGAGAACTGG 1 AGAGAACTGT 1 AGAGAATTAT 2 AGAGACAAGT 5 AGAGACAGAG 2 AGAGACATCC 1 AGAGACATTA 1 AGAGACCCTG 1 AGAGACGAGT 1 AGAGACTCTG 1 AGAGACTCTT 2 AGAGAGAAGA 1 AGAGAGCAAT 1 AGAGAGGAAA 1 AGAGAGTAAT 1 AGAGATCTAT 1 AGAGATCTCA 1 AGAGATGCTG 1 AGAGCAAACC 1 AGAGCAAGAC 1 AGAGCAAGCC 1 AGAGCAAGTA 2 AGAGCACACC 1 AGAGCAGAAA 1 AGAGCCAAGT 1 AGAGCCACCC 1 AGAGCCAGCA 1 AGAGCCATTA 1 AGAGCCCTAC 1 AGAGCCCTAG 4 AGAGCCGTGT 1 AGAGCTAAAC 1 AGAGCTCAAT 1 AGAGCTGAAG 1 AGAGCTGCTT 1 AGAGCTTTCC 1 AGAGGAAACT 1 AGAGGAATGC 1 AGAGGAGCAG 1 AGAGGAGGCC 1 AGAGGATCGC 1 AGAGGATGTA 1 AGAGGCACTC 1 AGAGGCCAGT 1 AGAGGCCTGG 1 AGAGGCTGAA 2 AGAGGCTGAG 1 AGAGGCTGAT 1 AGAGGCTGGG 1 AGAGGGACAA 1 AGAGGGAGAA 1 AGAGGGAGCG 2 AGAGGGCTCA 1 AGAGGGGCTG 1 AGAGGGTACT 1 AGAGGGTAGC 1 AGAGGTAAGC 1 AGAGGTCCAG 1 AGAGGTCTGA 1 AGAGGTGATA 1 AGAGGTGGTG 1 AGAGGTGTAA 1 AGAGGTGTAG 132 AGAGGTGTAT 1 AGAGGTGTGG 1 AGAGGTTCCC 1 AGAGGTTGAT 2 AGAGGTTTGG 1 AGAGTAACTG 3 AGAGTAAGTA 1 AGAGTAATGG 1 AGAGTACGTA 1 AGAGTACTAT 1 AGAGTCAGCC 1 AGAGTCATAC 1 AGAGTCCTGC 1 AGAGTCGCTT 1 AGAGTGAACA 2 AGAGTGGAGG 2 AGAGTGGTAT 1 AGAGTGTAGA 1 AGAGTGTATC 1 AGAGTTATGC 1 AGAGTTCACT 1 AGAGTTCTAC 2 AGAGTTCTGA 1 AGAGTTCTTC 1 AGAGTTGTTT 1 AGATAAAACG 1 AGATAAAGTT 2 AGATAAGCCA 1 AGATAATGTG 1 AGATAATGTT 1 AGATACAAGA 1 AGATACAGGA 1 AGATACATAT 1 AGATACATCT 1 AGATAGCATT 1 AGATAGGCTG 1 AGATAGTTAC 2 AGATATATGA 1 AGATCAAGAG 1 AGATCAATTC 1 AGATCAGAGA 1 AGATCAGGAG 1 AGATCCCAAG 21 AGATCCTACT 1 AGATCCTCTA 2 AGATCGGAGA 1 AGATCGGATG 1 AGATCTATAG 1 AGATCTCACT 1 AGATCTCTCA 1 AGATCTGAAG 1 AGATCTGTCG 1 AGATCTTACC 1 AGATGAACGG 1 AGATGACTGA 1 AGATGATAGA 1 AGATGATGAT 1 AGATGCAAGT 1 AGATGCACAG 1 AGATGCAGAA 1 AGATGCAGCC 3 AGATGCATAC 1 AGATGCCAAG 1 AGATGCCCTC 1 AGATGCCCTT 1 AGATGCTTCA 1 AGATGGAAAT 1 AGATGGCGGT 1 AGATGGGTTT 1 AGATGGTAGT 1 AGATGGTCAC 1 AGATGGTCTC 1 AGATGTCCAC 1 AGATGTGGAT 1 AGATGTGTGG 1 AGATGTTTGG 1 AGATTAATTT 1 AGATTACACT 1 AGATTATATG 1 AGATTATCAG 1 AGATTCAAAC 1 AGATTCAAGC 1 AGATTCACAT 1 AGATTCAGAG 3 AGATTCATAG 1 AGATTCCTAG 1 AGATTCGAGA 1 AGATTCTAAG 1 AGATTGAAGA 2 AGATTGAGTG 1 AGATTGGCAG 1 AGATTGTAAA 1 AGATTTACCA 1 AGATTTCATA 1 AGATTTCTGA 1 AGATTTGAGA 1 AGATTTGCAC 2 AGATTTGCTT 1 AGATTTGGAG 2 AGATTTGGCA 1 AGATTTTGAG 1 AGATTTTGGA 1 AGCAAAAAAA 1 AGCAAAAGCA 1 AGCAAACACA 1 AGCAAACTGA 2 AGCAAAGTAA 1 AGCAAATAAA 1 AGCAAATAAT 1 AGCAAATATA 1 AGCAAATCCA 1 AGCAACAGTG 1 AGCAACCGTG 1 AGCAACTGAA 1 AGCAACTGTA 1 AGCAAGATCT 1 AGCAAGCCAT 1 AGCAAGCCCC 1 AGCAAGCGGG 1 AGCAAGGCAC 1 AGCAAGTCTC 4 AGCAATAGCA 1 AGCAATGACA 1 AGCAATTACA 1 AGCACAAGTC 1 AGCACACCTG 1 AGCACACTTC 1 AGCACAGAAC 1 AGCACAGCAC 1 AGCACAGGGA 1 AGCACATTTG 3 AGCACCAAAG 1 AGCACCAACT 1 AGCACCAGTT 1 AGCACCCCCC 1 AGCACCCTGT 1 AGCACCTCAG 1 AGCACCTCCA 108 AGCACCTTCA 1 AGCACCTTCC 1 AGCACGCCCT 1 AGCACGGGCA 1 AGCACGTCCA 1 AGCACGTTTT 1 AGCACTCCAG 1 AGCACTGCAG 1 AGCACTGGCT 1 AGCACTTCCA 1 AGCACTTTAT 1 AGCAGAAACA 1 AGCAGAAATT 1 AGCAGAAGAT 1 AGCAGACGGC 1 AGCAGAGCGA 1 AGCAGAGGCT 1 AGCAGAGTTT 1 AGCAGATCAG 42 AGCAGCAGAG 1 AGCAGCATCT 1 AGCAGCCATT 1 AGCAGCCCCT 1 AGCAGCCGCT 1 AGCAGCCTTA 1 AGCAGCGTGG 2 AGCAGCTACG 1 AGCAGCTGGA 1 AGCAGCTTCT 1 AGCAGGAAAA 1 AGCAGGAAGA 1 AGCAGGACTC 1 AGCAGGAGCA 6 AGCAGGCCCC 1 AGCAGGCTCC 3 AGCAGGGCAG 1 AGCAGGGCCA 1 AGCAGGGCTC 10 AGCAGGGCTT 1 AGCAGGTGGC 1 AGCAGGTTTG 1 AGCAGTAAAC 1 AGCAGTAGAA 1 AGCAGTCCCG 1 AGCAGTGAGT 1 AGCAGTTTGT 1 AGCATAAAAA 1 AGCATAAAAC 1 AGCATAAGCA 1 AGCATAGCAT 1 AGCATAGTGC 1 AGCATATGTT 1 AGCATCAGGA 1 AGCATCAGGG 1 AGCATCATCG 1 AGCATCGCTG 1 AGCATTCAAA 1 AGCATTCGTA 1 AGCATTTAAA 1 AGCCAAAAAA 17 AGCCAAAGAA 3 AGCCAAATAA 3 AGCCAAGACT 1 AGCCAAGATC 2 AGCCAAGATT 2 AGCCAAGGAA 1 AGCCAATGCA 1 AGCCAATGTG 1 AGCCAATTAA 1 AGCCACAACG 1 AGCCACACTG 1 AGCCACAGCG 1 AGCCACAGTG 2 AGCCACCACA 19 AGCCACCACC 1 AGCCACCACG 7 AGCCACCACT 1 AGCCACCATA 2 AGCCACCATT 3 AGCCACCCCG 1 AGCCACCCGC 1 AGCCACCCTA 1 AGCCACCCTG 1 AGCCACCGAG 1 AGCCACCGCA 11 AGCCACCGCG 14 AGCCACCGCT 1 AGCCACCGTA 2 AGCCACCGTC 1 AGCCACCGTG 15 AGCCACCTCG 2 AGCCACGGTG 2 AGCCACTACG 1 AGCCACTATA 1 AGCCACTATG 3 AGCCACTGAC 1 AGCCACTGAG 1 AGCCACTGCA 28 AGCCACTGCG 10 AGCCACTGCT 1 AGCCACTGTA 1 AGCCACTGTG 15 AGCCAGACAA 1 AGCCAGAGGA 1 AGCCAGCAAA 1 AGCCAGCCAG 1 AGCCAGCGTG 1 AGCCAGGATC 1 AGCCAGGGAG 1 AGCCAGGGTA 1 AGCCATAAAG 1 AGCCATACAA 1 AGCCATAGCA 1 AGCCATATCA 1 AGCCATTATG 1 AGCCATTCAA 1 AGCCATTGCA 3 AGCCATTGGG 1 AGCCATTGTG 1 AGCCCAAGAG 1 AGCCCACAAC 2 AGCCCACTCA 2 AGCCCACTGC 1 AGCCCAGCCA 1 AGCCCAGCTG 2 AGCCCAGGAA 1 AGCCCAGGAG 8 AGCCCAGGTG 1 AGCCCAGTAG 1 AGCCCCACAA 3 AGCCCCAGAG 1 AGCCCCCCAC 1 AGCCCCCCGA 1 AGCCCCCCGG 1 AGCCCCCTGA 1 AGCCCCTCCT 1 AGCCCCTGTC 1 AGCCCCTGTG 2 AGCCCGAAGC 1 AGCCCGACCA 3 AGCCCGCGAG 2 AGCCCGGGAG 4 AGCCCTACAA 128 AGCCCTACAT 1 AGCCCTACTA 1 AGCCCTATAG 1 AGCCCTCAGC 1 AGCCCTCCCT 20 AGCCCTCCTG 1 AGCCCTCTAG 1 AGCCCTGGAG 1 AGCCCTGGCT 1 AGCCCTGGGA 2 AGCCCTGGTC 1 AGCCCTGTCT 2 AGCCCTTAAA 1 AGCCCTTGGC 1 AGCCCTTTTT 1 AGCCGAAACT 1 AGCCGACCGG 1 AGCCGAGACT 1 AGCCGAGATT 2 AGCCGAGGAC 1 AGCCGCCCGC 2 AGCCGCCGCG 1 AGCCGCCGCT 1 AGCCGCCGTA 1 AGCCGCGCAC 1 AGCCGCTGGT 1 AGCCGGAAAG 1 AGCCGGAATC 1 AGCCGGAGCT 1 AGCCGGCCCC 1 AGCCGGGATG 2 AGCCGGGCGA 1 AGCCGGGGAG 2 AGCCGGGTGT 1 AGCCGTAATC 1 AGCCGTCAGG 1 AGCCGTTCTT 1 AGCCGTTTCT 1 AGCCTAAGAC 1 AGCCTACAAA 2 AGCCTAGGAG 1 AGCCTAGGTC 1 AGCCTAGTAT 1 AGCCTCCCAG 1 AGCCTCCGTG 1 AGCCTCCTAT 1 AGCCTCGGCC 1 AGCCTCGGGA 1 AGCCTCTCTG 2 AGCCTCTTCC 1 AGCCTGAAGA 1 AGCCTGAAGT 1 AGCCTGACTG 3 AGCCTGAGAG 2 AGCCTGAGGT 1 AGCCTGCAGA 6 AGCCTGCCTG 4 AGCCTGCGTG 1 AGCCTGCTGG 1 AGCCTGGACT 6 AGCCTGGAGA 5 AGCCTGGCCC 1 AGCCTGGGAA 1 AGCCTGGGAG 6 AGCCTGGGCC 1 AGCCTGTAAT 1 AGCCTGTACG 1 AGCCTGTAGT 1 AGCCTGTGAT 1 AGCCTGTGCT 2 AGCCTGTTGC 7 AGCCTGTTTA 1 AGCCTTACAA 1 AGCCTTCCTA 1 AGCCTTGGAC 1 AGCCTTGTGA 1 AGCCTTTCCG 1 AGCCTTTGTT 1 AGCGACAAAC 1 AGCGAGGCCC 1 AGCGAGGTGC 1 AGCGATCTCA 1 AGCGCAATCG 1 AGCGCAGCTG 1 AGCGCAGGAG 1 AGCGCCACGG 1 AGCGCCCGCC 1 AGCGCCTCCA 1 AGCGCCTTCC 3 AGCGCTGAAA 1 AGCGCTGATG 1 AGCGCTGCCT 1 AGCGGAAGAG 1 AGCGGAGTCT 2 AGCGGATGCT 1 AGCGGCCGCG 3 AGCGGCCTGC 1 AGCGGCTACA 1 AGCGGGCGCG 1 AGCGGGGCTT 1 AGCGTATTAA 1 AGCGTCAGAG 1 AGCGTGCACA 1 AGCGTGCCGG 1 AGCGTGGGAG 1 AGCGTGTCTG 1 AGCTAACAAA 1 AGCTAAGTTT 1 AGCTACACCT 1 AGCTACAGGT 2 AGCTACCACG 1 AGCTACCATT 1 AGCTACCGTG 1 AGCTACTGAT 1 AGCTAGCCAT 1 AGCTAGGAGA 1 AGCTAGGGAA 2 AGCTAGTGTG 1 AGCTATCTCA 1 AGCTATGATT 1 AGCTATTCCC 3 AGCTATTCCT 2 AGCTCACAAC 1 AGCTCACGGC 1 AGCTCACTCC 5 AGCTCAGGGG 1 AGCTCATCCT 1 AGCTCCACGT 1 AGCTCCCCAA 1 AGCTCCTCAG 1 AGCTCCTGGT 1 AGCTCGCCAA 1 AGCTCGTACA 1 AGCTCTAAGA 1 AGCTCTACAG 1 AGCTCTATGA 3 AGCTCTCCCT 32 AGCTCTCCTT 1 AGCTCTCTTG 1 AGCTCTGCCT 1 AGCTCTGGAA 1 AGCTCTGTGA 1 AGCTCTGTGT 1 AGCTCTTAAC 1 AGCTCTTCCT 1 AGCTCTTCTT 1 AGCTCTTGGA 9 AGCTCTTGGG 1 AGCTGAACAG 1 AGCTGACATC 1 AGCTGAGAAG 1 AGCTGAGATC 4 AGCTGAGCTA 3 AGCTGATACC 1 AGCTGATCAG 2 AGCTGATGCA 1 AGCTGCCCCC 1 AGCTGCCTAC 1 AGCTGCGGCA 1 AGCTGCTACT 1 AGCTGCTAGA 1 AGCTGCTCCC 2 AGCTGCTGTG 1 AGCTGCTTAG 1 AGCTGGAGAA 1 AGCTGGAGTC 3 AGCTGGCTGG 1 AGCTGGCTTG 1 AGCTGGGATG 4 AGCTGGGCGA 1 AGCTGGGTTG 2 AGCTGGTCCA 1 AGCTGGTCCC 2 AGCTGGTCCT 1 AGCTGGTGGT 1 AGCTGGTTTC 4 AGCTGTCCCA 1 AGCTGTCCCC 8 AGCTGTCGCC 1 AGCTGTCTCA 2 AGCTGTCTCC 1 AGCTGTGAAT 1 AGCTGTGATT 1 AGCTGTGCTG 1 AGCTGTGGTC 1 AGCTGTGTAA 3 AGCTGTTAAC 1 AGCTGTTACC 1 AGCTGTTATC 1 AGCTGTTCAC 2 AGCTGTTCCA 1 AGCTGTTCCC 118 AGCTGTTCCT 1 AGCTGTTCGC 1 AGCTGTTCTC 2 AGCTGTTCTG 2 AGCTGTTGCA 1 AGCTGTTGCC 1 AGCTGTTTCA 1 AGCTGTTTCC 1 AGCTGTTTCT 3 AGCTTACATT 1 AGCTTAGGAG 1 AGCTTATTGA 1 AGCTTCGGGC 1 AGCTTGATTA 1 AGCTTGCAGG 1 AGCTTGCGCT 1 AGCTTGGAAA 1 AGCTTGGAAG 1 AGCTTGGCAT 1 AGCTTGTATT 1 AGCTTGTTAG 1 AGCTTGTTCC 1 AGCTTTAGGG 1 AGCTTTCCCT 1 AGCTTTCTAG 1 AGCTTTGCTG 1 AGCTTTGTAG 1 AGCTTTTCCA 1 AGCTTTTGTG 1 AGGAAAAGAT 2 AGGAAACAAT 1 AGGAAACCAA 1 AGGAAACTAC 1 AGGAAACTGA 1 AGGAAACTGC 1 AGGAAAGCCA 1 AGGAAAGCTG 36 AGGAAAGCTT 1 AGGAAAGGAT 3 AGGAAAGGCA 1 AGGAAAGGGT 1 AGGAAATCTG 1 AGGAAATGAA 1 AGGAACACAA 4 AGGAACCAGA 3 AGGAACGCTG 1 AGGAACTGGG 2 AGGAACTTTT 1 AGGAAGAATT 1 AGGAAGACTG 1 AGGAAGAGCC 1 AGGAAGAGGC 3 AGGAAGCTGA 1 AGGAAGCTGC 1 AGGAAGGAAA 1 AGGAAGGAAC 1 AGGAAGGCAG 1 AGGAAGGGGC 1 AGGAAGGGGT 2 AGGAAGTCAA 1 AGGAAGTGGG 1 AGGAATACTA 1 AGGAATCTAC 1 AGGAATGAGC 3 AGGAATGCCA 1 AGGAATGCTT 3 AGGAATGTTA 2 AGGAATTTGG 1 AGGACAAACC 6 AGGACAATGC 2 AGGACACACT 1 AGGACACAGA 1 AGGACACAGG 1 AGGACACCGC 1 AGGACACGGC 1 AGGACAGAAG 1 AGGACAGCAA 1 AGGACAGCTG 1 AGGACAGGAG 1 AGGACCAAGG 1 AGGACCAGCA 1 AGGACCATCG 18 AGGACCATTT 1 AGGACCCTGA 1 AGGACCTACT 1 AGGACCTGAA 1 AGGACGCATA 1 AGGACTAAAA 1 AGGACTCTGC 1 AGGACTGCGT 1 AGGACTGCTG 1 AGGACTGCTT 1 AGGACTGGCA 1 AGGACTGTGA 1 AGGACTGTTG 3 AGGACTTCAG 1 AGGACTTTGC 1 AGGAGACTCT 1 AGGAGACTGT 1 AGGAGAGAAG 1 AGGAGAGCGA 2 AGGAGAGCGT 1 AGGAGAGCTG 1 AGGAGATCCA 3 AGGAGATGGA 1 AGGAGCAAAG 2 AGGAGCCGGG 1 AGGAGCCTCT 1 AGGAGCCTGC 1 AGGAGCGGAA 1 AGGAGCGGGG 4 AGGAGCTCTG 1 AGGAGCTGCT 7 AGGAGGCAGG 1 AGGAGGCTGC 1 AGGAGGGAGG 5 AGGAGGGGGG 1 AGGAGGGTGG 3 AGGAGGTCAG 1 AGGAGGTCGC 1 AGGAGGTTAA 2 AGGAGTAGCT 1 AGGAGTCACC 1 AGGAGTCCAG 2 AGGAGTTAGC 1 AGGATAGTGA 1 AGGATATCCA 1 AGGATATTGG 1 AGGATCAATT 1 AGGATCACTT 1 AGGATCATAT 1 AGGATCTTTT 1 AGGATGAAAG 1 AGGATGACCC 7 AGGATGAGAT 1 AGGATGAGGC 2 AGGATGCCTG 1 AGGATGGCGC 1 AGGATGGCGG 2 AGGATGGCTG 1 AGGATGGTCC 8 AGGATGTAGG 1 AGGATGTGGG 3 AGGATTAAAA 1 AGGATTGATG 1 AGGATTGCTT 1 AGGATTTGAA 1 AGGCAAAAGG 1 AGGCAAACTT 1 AGGCAAAGCT 1 AGGCAAGATG 1 AGGCAAGCTG 1 AGGCAATGAT 1 AGGCACAAGA 1 AGGCACACGT 1 AGGCACCCAC 1 AGGCACCGTG 2 AGGCACTAAT 1 AGGCACTGGT 1 AGGCACTGTG 1 AGGCAGAGAA 2 AGGCAGAGGT 5 AGGCAGATGA 1 AGGCAGCAGA 1 AGGCAGCCAA 1 AGGCAGCTGG 1 AGGCAGGAGG 4 AGGCAGGCAT 1 AGGCAGGCTC 1 AGGCAGGTTT 1 AGGCAGTTGC 1 AGGCATACAT 1 AGGCATTGAA 1 AGGCATTTTG 1 AGGCCAAATG 2 AGGCCAACAA 1 AGGCCAACAG 1 AGGCCAAGAG 2 AGGCCAAGGG 4 AGGCCAAGTG 1 AGGCCACGGA 1 AGGCCAGCTA 1 AGGCCAGGAG 1 AGGCCAGGTG 1 AGGCCAGTAT 1 AGGCCATAGG 2 AGGCCCACAA 1 AGGCCCACCA 1 AGGCCCAGCT 1 AGGCCCAGGC 2 AGGCCCCAAA 1 AGGCCCTGAG 1 AGGCCCTGCT 2 AGGCCGAGGT 1 AGGCCGCGAC 1 AGGCCGGAGC 1 AGGCCGGCAG 1 AGGCCGGGAG 1 AGGCCGGGCG 2 AGGCCGTCCC 2 AGGCCGTGTT 1 AGGCCGTTTT 1 AGGCCTCCGC 1 AGGCCTCGTC 1 AGGCCTGGAC 1 AGGCCTGGGC 1 AGGCGAAGAG 1 AGGCGAGATC 3 AGGCGCCCCC 1 AGGCGGAAGT 1 AGGCGGAGGT 2 AGGCGGGAGA 1 AGGCGTACTT 1 AGGCTAAAAG 1 AGGCTACAGA 2 AGGCTACGGA 132 AGGCTACGGG 1 AGGCTAGACC 1 AGGCTAGACT 1 AGGCTATCCT 1 AGGCTCACTG 1 AGGCTCAGAG 1 AGGCTCAGAT 1 AGGCTCCGGA 1 AGGCTCCGTG 1 AGGCTCCTGG 2 AGGCTCTGCT 1 AGGCTGAGAC 1 AGGCTGAGCA 2 AGGCTGAGGC 5 AGGCTGAGGT 1 AGGCTGCAGG 1 AGGCTGCGAC 1 AGGCTGCGGA 1 AGGCTGCGGT 1 AGGCTGCTTT 1 AGGCTGGATG 2 AGGCTGGGGG 1 AGGCTGGTGT 1 AGGCTGTCCA 2 AGGCTGTGAT 1 AGGCTGTGTT 4 AGGCTGTTAG 1 AGGCTGTTGC 1 AGGCTTCAGG 1 AGGCTTCCAA 3 AGGCTTCGGT 1 AGGCTTGTAG 1 AGGCTTTAGG 2 AGGGAAAATA 1 AGGGAAAATG 2 AGGGAAATCG 1 AGGGAACACT 1 AGGGAAGCAG 1 AGGGAAGCTG 1 AGGGAAGTAG 1 AGGGACAAGG 1 AGGGACATAA 3 AGGGACTGAA 2 AGGGACTTGT 1 AGGGAGACCT 1 AGGGAGAGGG 3 AGGGAGCAGA 1 AGGGAGCCGC 1 AGGGAGTTTC 1 AGGGAGTTTT 1 AGGGATTCCG 1 AGGGCAAAGA 1 AGGGCAACAG 1 AGGGCAACTA 3 AGGGCACAGA 1 AGGGCACGTG 1 AGGGCAGAGG 2 AGGGCAGCAA 1 AGGGCAGGAG 2 AGGGCAGGGC 1 AGGGCAGTAC 1 AGGGCCACGC 1 AGGGCCCACC 1 AGGGCCCCAT 1 AGGGCCCGGG 1 AGGGCCCTCA 2 AGGGCCCTGT 2 AGGGCCTCAA 1 AGGGCCTCCT 1 AGGGCTACAT 1 AGGGCTATAG 1 AGGGCTCACA 2 AGGGCTCCAC 1 AGGGCTGAAG 1 AGGGCTGCCA 3 AGGGCTGCTT 1 AGGGCTTATA 1 AGGGCTTCCA 85 AGGGCTTCCT 1 AGGGCTTCTA 1 AGGGGAAAAA 2 AGGGGAAAAT 3 AGGGGAAGCT 1 AGGGGAAGGT 2 AGGGGAGAAC 1 AGGGGAGGAA 1 AGGGGAGGAC 1 AGGGGATTCC 2 AGGGGATTGA 1 AGGGGCGCAG 1 AGGGGCGGTG 1 AGGGGCTGCA 1 AGGGGCTGCC 1 AGGGGGAAAG 1 AGGGGGAGAT 1 AGGGGGCTGA 4 AGGGGTGGCC 1 AGGGGTGTTT 1 AGGGGTTCCT 1 AGGGGTTCTT 1 AGGGTAATTT 1 AGGGTATTGG 1 AGGGTCAGGG 1 AGGGTCAGGT 1 AGGGTCTCCA 1 AGGGTCTGGG 2 AGGGTCTGTT 2 AGGGTCTTTT 1 AGGGTGAAAC 6 AGGGTGAACG 1 AGGGTGAATT 1 AGGGTGAGAA 1 AGGGTGAGGT 1 AGGGTGATCA 1 AGGGTGCAGA 2 AGGGTGCTGT 1 AGGGTGCTTT 3 AGGGTGGGTT 1 AGGGTGGTTT 1 AGGGTGTATT 1 AGGGTGTTAT 1 AGGGTGTTCT 3 AGGGTGTTTA 2 AGGGTGTTTC 14 AGGGTGTTTT 261 AGGGTTGCTT 3 AGGGTTGGAA 2 AGGGTTTAGG 2 AGGGTTTTTC 1 AGGTAACTGT 1 AGGTAACTTT 1 AGGTAAGGTC 1 AGGTACGGAA 1 AGGTACTACT 5 AGGTACTGGT 1 AGGTACTTCA 1 AGGTAGAGTA 1 AGGTAGGTGG 1 AGGTATATCT 1 AGGTATATGG 1 AGGTATCACT 1 AGGTATGGGC 1 AGGTATTGGT 1 AGGTCAAAAG 1 AGGTCAAGAG 9 AGGTCAAGGT 1 AGGTCACGAG 1 AGGTCAGAAG 4 AGGTCAGAGA 1 AGGTCAGAGG 2 AGGTCAGCAG 1 AGGTCAGGAA 4 AGGTCAGGAC 4 AGGTCAGGAG 179 AGGTCAGGAT 1 AGGTCAGGGA 2 AGGTCAGGGG 4 AGGTCAGGTG 2 AGGTCAGTAG 2 AGGTCATTAG 1 AGGTCCAGGA 2 AGGTCCCTGT 4 AGGTCCTAAC 1 AGGTCCTAGC 17 AGGTCCTGCC 1 AGGTCGCCCC 1 AGGTCGGCGT 1 AGGTCGGGAG 6 AGGTCGGGGG 1 AGGTCTAACT 1 AGGTCTAGAG 1 AGGTCTATTC 1 AGGTCTTACT 1 AGGTCTTAGC 1 AGGTGAATCT 1 AGGTGAGAGA 1 AGGTGAGAGG 3 AGGTGATACT 1 AGGTGATTTG 2 AGGTGCAGAG 1 AGGTGCGGGG 5 AGGTGGAAAG 1 AGGTGGCAAG 3 AGGTGGGGAG 1 AGGTGGGTTC 1 AGGTGTAGTA 1 AGGTGTCTTT 3 AGGTGTTTCT 1 AGGTGTTTTC 2 AGGTTACGGA 1 AGGTTAGGAG 4 AGGTTCAAAG 1 AGGTTCGGAC 1 AGGTTGAAAA 1 AGGTTGATGG 1 AGGTTGCAGT 1 AGGTTGCCGA 1 AGGTTGGCAT 1 AGGTTGGGAG 1 AGGTTGGTAA 1 AGGTTGTCAA 1 AGGTTGTTTT 1 AGGTTTACAA 1 AGGTTTACTA 1 AGGTTTCCTT 1 AGGTTTTGAG 1 AGGTTTTGCC 1 AGGTTTTTAA 1 AGTAAAAAAA 3 AGTAAAACGG 1 AGTAAAATTG 1 AGTAAACCTA 1 AGTAAACTTT 1 AGTAACACCC 1 AGTAACACCT 1 AGTAAGATAG 1 AGTAAGCTCC 1 AGTAAGTATT 1 AGTAAGTGGC 1 AGTAAGTTCT 1 AGTAATCACT 1 AGTAATCCCG 1 AGTAATCCTG 1 AGTACAGACT 1 AGTACAGATA 1 AGTACCTGGC 1 AGTACGAATG 3 AGTACGACCT 1 AGTACGCACT 1 AGTACTTTGT 1 AGTAGAACCC 1 AGTAGAGGCT 1 AGTAGATTGG 1 AGTAGCGAAC 1 AGTAGCGACA 1 AGTAGCGAGA 1 AGTAGCTTGA 1 AGTAGGAGGC 1 AGTAGGATGG 1 AGTAGGCGGC 1 AGTAGGCTTA 1 AGTAGGTGAC 2 AGTAGGTGCC 2 AGTAGGTGGC 143 AGTAGGTTAA 1 AGTAGGTTCT 1 AGTAGTACTT 1 AGTAGTAGTT 1 AGTAGTGAGT 1 AGTAGTGGCC 1 AGTATAACAT 1 AGTATATCTA 1 AGTATATCTG 1 AGTATATTGG 1 AGTATATTGT 1 AGTATCAAGC 1 AGTATCTGGG 1 AGTATGACCT 12 AGTATGAGGT 1 AGTATGGAAT 1 AGTATGTATG 1 AGTATGTGTA 1 AGTATGTTGG 1 AGTATTGAGT 1 AGTATTGGAT 1 AGTATTTCAC 1 AGTATTTGTT 1 AGTCAAAGAA 1 AGTCAAAGAG 2 AGTCAACGCA 1 AGTCAAGGCT 1 AGTCAAGTAC 1 AGTCAAGTCA 1 AGTCACCAGG 1 AGTCACCGCG 4 AGTCACCTTG 1 AGTCACTGGG 1 AGTCACTGTG 1 AGTCAGAGAC 1 AGTCAGCTCT 1 AGTCAGCTGA 1 AGTCAGGGCA 1 AGTCATAAAC 1 AGTCATATAT 1 AGTCATCACA 1 AGTCATTCAG 1 AGTCATTTTG 1 AGTCCAATGA 2 AGTCCAGGAG 2 AGTCCAGGCT 1 AGTCCATTTG 1 AGTCCCAACT 1 AGTCCCACAA 2 AGTCCCCAAC 1 AGTCCTAGCC 1 AGTCCTGGAG 2 AGTCCTGTGG 1 AGTCGAAAGG 1 AGTCGCCTTC 1 AGTCGGGAGC 3 AGTCGTATCA 1 AGTCGTTATG 1 AGTCTAAATG 1 AGTCTAGCTA 3 AGTCTAGGTG 1 AGTCTCCCAA 1 AGTCTCCCCT 2 AGTCTCCTTG 1 AGTCTGAGAC 1 AGTCTGATGT 5 AGTCTGCACA 1 AGTCTGCCAA 1 AGTCTGCTGG 4 AGTCTGGCCT 1 AGTCTGTAAT 1 AGTCTGTAGT 2 AGTCTGTCCA 2 AGTCTGTCTC 1 AGTCTGTTGT 1 AGTCTTCACC 2 AGTCTTCCAA 1 AGTCTTCTGA 1 AGTCTTTTTC 1 AGTGAACCAT 1 AGTGAACTCC 5 AGTGAAGTCA 1 AGTGAATTTG 1 AGTGACAAAC 1 AGTGACATAT 1 AGTGACCCAT 1 AGTGACCTAG 1 AGTGACCTTC 1 AGTGAGACCC 1 AGTGAGAGGC 1 AGTGAGCAAT 1 AGTGAGCCAC 1 AGTGAGCCCA 1 AGTGAGCTAC 1 AGTGAGGCGG 1 AGTGAGGGAG 1 AGTGAGGTTT 1 AGTGAGTTTC 1 AGTGATGGTT 1 AGTGATGTCA 2 AGTGATTTTT 1 AGTGCAAAGT 1 AGTGCAAGAC 63 AGTGCACGAG 1 AGTGCACGTG 9 AGTGCAGCGG 1 AGTGCAGGGC 1 AGTGCCGTGT 10 AGTGCCTCTG 1 AGTGCCTGCT 1 AGTGCCTGTC 1 AGTGCCTTCT 1 AGTGCCTTGA 1 AGTGCGAGAC 1 AGTGCTAGCG 1 AGTGCTCACT 1 AGTGCTGCCC 1 AGTGCTGGAT 1 AGTGCTTCCA 1 AGTGGAAGTA 1 AGTGGACTCC 1 AGTGGAGGGA 1 AGTGGAGGTG 2 AGTGGATAGC 1 AGTGGATGCC 1 AGTGGATGCT 1 AGTGGCACAG 1 AGTGGCTCTT 1 AGTGGCTGCC 2 AGTGGCTGTG 2 AGTGGGAGGC 1 AGTGGGATGG 1 AGTGGGGACC 4 AGTGGGGATC 1 AGTGGGGCTC 1 AGTGGGGTCA 1 AGTGGGGTGT 1 AGTGGGTATA 1 AGTGGGTGGC 1 AGTGGTCCAC 1 AGTGGTCTAG 1 AGTGGTGGCT 1 AGTGGTGTCT 1 AGTGGTTTAG 1 AGTGTAAATG 1 AGTGTACTCC 1 AGTGTAGATG 1 AGTGTAGTCC 1 AGTGTCCGGC 1 AGTGTCTACA 1 AGTGTCTGTG 1 AGTGTCTTGG 1 AGTGTGACTG 1 AGTGTGCAAA 1 AGTGTGCACC 1 AGTGTGCCAG 1 AGTGTGCCAT 2 AGTGTGCGCT 3 AGTGTGCTGG 1 AGTGTGCTGT 1 AGTGTGGAAT 1 AGTGTTATGG 1 AGTGTTCAGA 1 AGTTAAAATG 1 AGTTAAAGCA 1 AGTTAAATAA 1 AGTTAATGTG 1 AGTTACAGAG 1 AGTTACCAGA 1 AGTTACCTGC 1 AGTTATAACG 1 AGTTCAAGAC 4 AGTTCAAGAG 1 AGTTCAAGCA 1 AGTTCAATTG 1 AGTTCAGGGG 1 AGTTCAGTCT 1 AGTTCATAGT 2 AGTTCCAACT 1 AGTTCCACAC 1 AGTTCCAGAG 1 AGTTCCCCAG 1 AGTTCGAAAC 3 AGTTCGAGAC 2 AGTTCGAGGC 1 AGTTCGCTGA 1 AGTTCTCCCA 1 AGTTCTGCCA 1 AGTTCTTCCA 1 AGTTGAAATT 3 AGTTGAGACC 1 AGTTGAGGTA 1 AGTTGAGTCC 1 AGTTGATCCA 1 AGTTGCAGTC 1 AGTTGCCAGG 1 AGTTGGAAAC 1 AGTTGGAAGA 1 AGTTGGACGG 1 AGTTGGATTA 2 AGTTGGCACT 1 AGTTGTAAAT 1 AGTTGTCACT 2 AGTTGTCCCG 1 AGTTTAAGCA 2 AGTTTAAGCT 1 AGTTTACCTA 1 AGTTTATCTG 8 AGTTTCCCAA 4 AGTTTCTGGG 1 AGTTTCTGGT 1 AGTTTCTTCT 1 AGTTTCTTGT 1 AGTTTGAGGC 2 AGTTTGGGAC 1 AGTTTGGGGA 1 AGTTTGGGTC 1 AGTTTGTACA 1 AGTTTGTTAG 24 AGTTTTAATA 1 AGTTTTACAA 1 AGTTTTAGCT 1 AGTTTTAGTC 1 AGTTTTATAT 1 AGTTTTCCTG 1 AGTTTTGCTG 1 AGTTTTTATT 1 ATAAAAAAAA 2 ATAAAAAGTC 1 ATAAAAATAA 1 ATAAAACAGG 1 ATAAAACATT 4 ATAAAAGCTT 1 ATAAAAGTAG 1 ATAAAATTCC 1 ATAAACAAAC 1 ATAAACAGAT 1 ATAAACTCAA 1 ATAAAGAACT 1 ATAAAGAGAT 1 ATAAAGCTTA 1 ATAAAGTAAC 4 ATAAATACAA 1 ATAAATACTA 1 ATAAATAGTA 1 ATAAATATAT 1 ATAAATGCAG 1 ATAAATGCTC 1 ATAAATTGGG 1 ATAAATTTAA 1 ATAACAATTG 2 ATAACACAGT 1 ATAACCACCA 1 ATAACCCCAA 1 ATAACCTCAA 1 ATAACTGGGT 1 ATAACTGTGT 1 ATAACTTATC 1 ATAAGAATTC 1 ATAAGACCCT 1 ATAAGACTAA 1 ATAAGAGACA 1 ATAAGAGCAG 1 ATAAGATAAC 1 ATAAGATGTT 1 ATAAGCCTTC 1 ATAAGCTCAG 1 ATAAGGCATT 1 ATAAGGCTCT 1 ATAAGGCTTC 1 ATAAGGGTGC 1 ATAAGTCAGA 2 ATAATAAAAG 1 ATAATACCAG 1 ATAATCCACT 1 ATAATCCGGA 1 ATAATCGCTT 1 ATAATCTTAA 2 ATAATGAACC 1 ATAATGCACT 1 ATAATGCTTC 1 ATAATGGACC 1 ATAATTAAAT 1 ATAATTCTTT 23 ATAATTGCAA 1 ATACAACAGG 1 ATACAACTAA 1 ATACAACTAG 1 ATACAAGTGG 1 ATACAATAAA 2 ATACACAGAT 1 ATACACGCAA 1 ATACACTTTG 1 ATACAGATTG 1 ATACAGCAGA 1 ATACAGTAAA 1 ATACATACTG 3 ATACATCCCC 1 ATACATTTAT 1 ATACCAAATT 1 ATACCACCGT 1 ATACCACGTC 1 ATACCACTTT 1 ATACCAGATG 2 ATACCAGGCC 1 ATACCCACAA 1 ATACCCATCA 1 ATACCCCTGC 1 ATACCTGAAA 2 ATACCTTCCG 2 ATACCTTCTG 1 ATACGAGATG 1 ATACGCAGAA 1 ATACGCCGGG 1 ATACTCCACT 3 ATACTCTTAG 1 ATACTCTTCT 1 ATACTGAACA 1 ATACTGCTGC 1 ATACTGTCAG 5 ATACTTAAAA 1 ATACTTAGAA 1 ATACTTGAGG 1 ATACTTTTAG 1 ATACTTTTGG 1 ATAGACATAA 4 ATAGACGCAA 2 ATAGACGGGA 1 ATAGAGGAAA 1 ATAGAGGCAA 3 ATAGAGTTTG 1 ATAGATACAC 1 ATAGATACTG 1 ATAGATGAAG 1 ATAGATGCAT 1 ATAGATGGGG 2 ATAGATTAAA 1 ATAGCAAACA 1 ATAGCACGTA 1 ATAGCAGATG 1 ATAGCCTCTT 1 ATAGCGGTTT 1 ATAGCGTTCT 1 ATAGCTGACA 1 ATAGCTGGGG 1 ATAGGAAAAT 1 ATAGGAAGGA 1 ATAGGAGGAA 1 ATAGGATGAT 1 ATAGGATTTG 1 ATAGGCCAAG 1 ATAGGGATGT 1 ATAGGTCAGA 5 ATAGGTGGTT 1 ATAGTACAGA 1 ATAGTAGCAG 1 ATAGTAGTGG 1 ATAGTATGAC 1 ATAGTCATTT 1 ATAGTCCAAA 1 ATAGTGAGTG 1 ATAGTGATAG 1 ATAGTGCCAC 2 ATAGTGCGAC 1 ATAGTGGGCG 2 ATAGTTTGCT 1 ATATAAAAAA 1 ATATAAAAAT 1 ATATAAGCAA 1 ATATAATCTG 5 ATATACATAA 1 ATATACCTTC 1 ATATACTCAC 1 ATATACTGTG 3 ATATAGGTCG 2 ATATAGTCAG 4 ATATCACCCC 7 ATATCAGCAC 1 ATATCCAAGG 1 ATATCGTAGG 1 ATATCTCTGT 1 ATATCTGCAA 1 ATATCTTTGA 1 ATATGAATGT 1 ATATGAGAAG 4 ATATGAGCTG 1 ATATGATCAT 1 ATATGCAGAG 1 ATATGCCAAT 1 ATATGCCACA 1 ATATGCCCAC 1 ATATGCCTGT 1 ATATGCCTTT 1 ATATGCGGTA 1 ATATGGAAAA 1 ATATGGTGTT 1 ATATGTATAT 3 ATATGTATGT 1 ATATGTATTT 1 ATATTACTGT 1 ATATTCAACT 1 ATATTCACTC 1 ATATTCAGGT 1 ATATTCTAGG 1 ATATTGAAGC 1 ATATTGATGA 1 ATATTGTCAA 5 ATATTTACAG 1 ATATTTGCCC 1 ATATTTTCCT 3 ATCAAAAATG 1 ATCAAACAGT 1 ATCAAATGCA 5 ATCAACAACC 1 ATCAACAAGA 1 ATCAACACTG 1 ATCAACGACG 1 ATCAACTGGA 1 ATCAAGAAGA 2 ATCAAGATGG 1 ATCAAGCTAC 1 ATCAAGCTCT 1 ATCAAGGGTG 6 ATCAAGTCTT 1 ATCAAGTGGA 1 ATCAAGTGGG 2 ATCAAGTGGT 1 ATCAAGTTCG 1 ATCAAGTTGG 2 ATCAATATTT 1 ATCAATCATA 1 ATCAATTTTA 1 ATCACAACAA 1 ATCACACCAC 9 ATCACACCAT 1 ATCACACCCT 2 ATCACACCGC 1 ATCACACCTC 1 ATCACACCTG 1 ATCACAGCAC 1 ATCACAGCTC 1 ATCACAGGCC 1 ATCACAGTAA 1 ATCACAGTGT 2 ATCACATAAA 1 ATCACATAAG 1 ATCACATCAC 1 ATCACCAAGT 1 ATCACCCCCC 1 ATCACCTCAT 1 ATCACGACCT 1 ATCACGCCAC 6 ATCACGCCAT 1 ATCACGCCCA 1 ATCACGCCCC 1 ATCACGCCCT 236 ATCACGCCTC 4 ATCACGCCTT 1 ATCACGCTGC 1 ATCACGGCCT 1 ATCACGGCGT 1 ATCACGGCTC 1 ATCACGTCAC 1 ATCACTACAC 1 ATCACTGGTA 1 ATCACTTAAC 1 ATCACTTATG 1 ATCACTTGTT 1 ATCAGAATGA 1 ATCAGACCCC 1 ATCAGACGCC 2 ATCAGATGCA 1 ATCAGATTTC 1 ATCAGATTTG 1 ATCAGCAAGT 1 ATCAGCCAAC 1 ATCAGCTGCT 1 ATCAGGATCA 1 ATCAGGCCTA 1 ATCAGTACCA 1 ATCAGTCTCA 1 ATCAGTGATG 1 ATCAGTGCCG 1 ATCAGTGGCT 3 ATCAGTGTGA 1 ATCAGTGTGC 2 ATCAGTTGTT 3 ATCATACACC 1 ATCATACCAC 1 ATCATACCCA 1 ATCATACGGT 1 ATCATATCAA 1 ATCATCCAAT 1 ATCATCCCAG 1 ATCATCCTGC 1 ATCATCTCAA 1 ATCATCTCGT 1 ATCATCTGCT 1 ATCATTACCT 1 ATCATTCACC 1 ATCATTCCCT 2 ATCATTCTCA 10 ATCATTTAGT 1 ATCCAAAATA 1 ATCCAACAGA 1 ATCCAACTGC 1 ATCCAACTTA 1 ATCCAAGGTG 1 ATCCACACGC 1 ATCCACAGAC 1 ATCCACATAC 1 ATCCACATCG 11 ATCCACATTG 1 ATCCACCACT 2 ATCCACCCAC 6 ATCCACCCGC 1 ATCCACCGTG 1 ATCCACCTGC 1 ATCCACTGCA 2 ATCCAGCACA 1 ATCCAGCAGA 1 ATCCAGGCCC 1 ATCCAGGCTT 1 ATCCAGTCAC 1 ATCCATAAAT 1 ATCCATACAA 1 ATCCATAGTG 5 ATCCATCAAG 1 ATCCATCTGT 4 ATCCATTCTG 4 ATCCCAAAAG 1 ATCCCAAAGT 1 ATCCCAAGCT 1 ATCCCAATAG 1 ATCCCAATTT 1 ATCCCACGAC 1 ATCCCAGAAA 1 ATCCCAGATA 1 ATCCCAGCTC 1 ATCCCAGGGA 1 ATCCCAGGGC 1 ATCCCATTAA 1 ATCCCCCCAC 1 ATCCCCCGCG 1 ATCCCCCTGG 4 ATCCCCGTGG 1 ATCCCCTTGA 1 ATCCCGCCCT 1 ATCCCGGAAA 1 ATCCCGGCTT 1 ATCCCTACAG 1 ATCCCTACTA 1 ATCCCTCAGT 5 ATCCCTCATC 1 ATCCCTCCCC 2 ATCCCTGGAT 1 ATCCGACCCA 1 ATCCGACTGC 1 ATCCGATAGC 1 ATCCGCAAAA 1 ATCCGCAAGA 2 ATCCGCAGTC 1 ATCCGCCCAC 4 ATCCGCCCCC 1 ATCCGCCCCT 1 ATCCGCCCGC 1 ATCCGCCCTC 2 ATCCGCCTGC 10 ATCCGCGGGG 1 ATCCGGCGCC 1 ATCCGGGGAG 2 ATCCGGGGCC 1 ATCCGTAAGT 1 ATCCGTGCCC 5 ATCCTACCAC 2 ATCCTACTGT 1 ATCCTATATC 1 ATCCTATTCC 1 ATCCTCAATG 1 ATCCTCCACA 1 ATCCTCCAGT 1 ATCCTCCCTT 1 ATCCTCGCCC 1 ATCCTCTGCG 2 ATCCTGAGTC 1 ATCCTGAGTG 1 ATCCTGATTC 1 ATCCTGCCAA 1 ATCCTGCCAC 1 ATCCTGCTAA 1 ATCCTGGACT 1 ATCCTGGCCA 1 ATCCTGGGAG 1 ATCCTGGGTG 1 ATCCTGTACA 1 ATCCTGTAGG 1 ATCCTGTCAC 1 ATCCTGTGGA 2 ATCCTTCCAC 1 ATCCTTGAGG 1 ATCCTTGCTG 1 ATCCTTGGCC 1 ATCCTTTTGT 1 ATCGAAAATG 1 ATCGAACAAA 1 ATCGAAGCTG 1 ATCGACAATG 1 ATCGAGCACG 1 ATCGAGCCAC 1 ATCGATCAGA 1 ATCGCACAAC 1 ATCGCACCAA 1 ATCGCACCAC 9 ATCGCACCAT 1 ATCGCACTAC 1 ATCGCATCAC 1 ATCGCCAACT 1 ATCGCCCTCC 1 ATCGCCGAGG 1 ATCGCGACAC 3 ATCGCGACAT 1 ATCGCGACCC 2 ATCGCGCCAC 5 ATCGCGCTAC 1 ATCGCGGAGG 1 ATCGCTTAAT 1 ATCGCTTTCG 2 ATCGCTTTCT 20 ATCGGCCGTA 1 ATCGGGCCCG 6 ATCGTACCAC 3 ATCGTGATCA 1 ATCGTGCCAC 10 ATCGTGCTCA 1 ATCGTGGCAC 1 ATCGTGGCAG 1 ATCGTGGCGG 10 ATCGTGGCTG 1 ATCGTGTCAC 1 ATCGTTCTGT 1 ATCGTTGTAA 2 ATCTAACCTC 1 ATCTACAGGA 1 ATCTACGCAG 1 ATCTACGCTT 1 ATCTAGAAAG 1 ATCTAGAGAC 1 ATCTAGCTGG 1 ATCTAGGTGC 1 ATCTAGTGCA 1 ATCTATGACC 2 ATCTATGACG 1 ATCTATTACC 1 ATCTCAAAGA 3 ATCTCACCAC 1 ATCTCACGGC 1 ATCTCACTCA 1 ATCTCAGCGT 1 ATCTCAGCTC 7 ATCTCATCAA 1 ATCTCATCGG 1 ATCTCCAGTA 1 ATCTCGGCTC 12 ATCTCGGTCA 1 ATCTCGTACA 1 ATCTCGTCTC 1 ATCTCTGAAT 1 ATCTCTGACA 1 ATCTCTGGTG 1 ATCTCTTCAT 1 ATCTCTTGTT 1 ATCTCTTTCC 2 ATCTGAAGCA 9 ATCTGAAGTT 1 ATCTGAATGA 1 ATCTGACAGT 1 ATCTGAGAAG 5 ATCTGAGCAG 2 ATCTGATAGA 1 ATCTGCCCAC 1 ATCTGCCCGC 1 ATCTGCCGGC 1 ATCTGCCGTG 3 ATCTGCCTGC 3 ATCTGCCTTG 1 ATCTGGAGCC 1 ATCTGGCCAG 1 ATCTGGGCAG 1 ATCTGGGCTT 1 ATCTGGTGGA 1 ATCTGGTTTA 1 ATCTGTACAG 1 ATCTGTCACT 1 ATCTGTCCCT 1 ATCTGTCGCT 1 ATCTGTGAAG 1 ATCTGTGCCC 1 ATCTGTGTCA 1 ATCTGTTCCC 1 ATCTTAAAGT 1 ATCTTAGCTT 1 ATCTTATGTA 1 ATCTTCACTT 1 ATCTTCGCTT 1 ATCTTGAACA 1 ATCTTGCCAC 2 ATCTTGCCCT 1 ATCTTGCTCA 1 ATCTTGGCAA 1 ATCTTGGCTC 2 ATCTTGGCTT 1 ATCTTGGGGT 1 ATCTTGGTTC 1 ATCTTGTGCT 1 ATCTTGTGGC 1 ATCTTGTTAC 4 ATCTTTACAG 1 ATCTTTCTGG 9 ATCTTTGAAC 1 ATCTTTTAAA 1 ATCTTTTGTA 1 ATGAAAACAA 1 ATGAAAACCC 1 ATGAAAAGAA 1 ATGAAAATGG 1 ATGAAACACC 1 ATGAAACCAG 1 ATGAAACCCA 1 ATGAAACCCC 24 ATGAAACCCT 14 ATGAAACCTC 1 ATGAAACCTT 1 ATGAAACTCT 1 ATGAAACTTG 1 ATGAAAGCAC 1 ATGAAAGGAA 1 ATGAAATCAG 1 ATGAAATCCC 2 ATGAAATTCA 1 ATGAAATTCC 1 ATGAACAAAA 1 ATGAACACGG 1 ATGAACAGCG 1 ATGAACCAGG 1 ATGAACCGCA 3 ATGAACTCAT 1 ATGAAGAAGC 1 ATGAAGAGTC 2 ATGAAGCCCC 1 ATGAAGGGGT 1 ATGAAGTCCT 1 ATGAATGGTG 1 ATGAATGTAA 1 ATGACACTCA 3 ATGACAGAAG 1 ATGACAGGAT 2 ATGACAGTAC 1 ATGACATCAC 1 ATGACCACGG 1 ATGACCCAAC 1 ATGACCCACG 1 ATGACCCCCG 2 ATGACCCGGG 1 ATGACCTATT 2 ATGACCTCAG 1 ATGACCTGAA 3 ATGACCTTGA 1 ATGACGATGG 1 ATGACGCCCT 1 ATGACGCTCA 4 ATGACGGATT 1 ATGACGGCAT 1 ATGACTCAAG 1 ATGACTCACA 2 ATGACTCTTT 1 ATGACTGTAT 1 ATGACTTGAA 1 ATGAGACCCC 2 ATGAGACCTC 1 ATGAGAGGAT 1 ATGAGATGAA 1 ATGAGATGAG 1 ATGAGATGCC 1 ATGAGCACTT 1 ATGAGCATAA 2 ATGAGCTATG 5 ATGAGCTGAC 8 ATGAGGATAA 1 ATGAGGCCGG 4 ATGAGGCTAA 2 ATGAGGCTAT 1 ATGAGGCTCC 1 ATGAGGCTGA 1 ATGAGTAACT 1 ATGAGTAATT 1 ATGAGTTTTC 1 ATGATAAAAC 1 ATGATAATTT 1 ATGATACCAC 1 ATGATACCTG 1 ATGATACTGT 1 ATGATAGGTC 1 ATGATCAACC 1 ATGATCAATG 1 ATGATCCGGA 5 ATGATCCGTA 1 ATGATCCTCA 1 ATGATCGACT 1 ATGATCGGGA 1 ATGATCTGAG 1 ATGATCTGCC 1 ATGATGAATA 1 ATGATGATGA 4 ATGATGATGG 1 ATGATGCACA 1 ATGATGCCAT 1 ATGATGCGGT 7 ATGATGGACG 1 ATGATGGAGG 1 ATGATGGGCA 1 ATGATTAGTG 1 ATGATTCCAT 1 ATGATTCCCT 1 ATGATTTATT 1 ATGCAAAAAA 1 ATGCAAATGG 1 ATGCAAATTA 1 ATGCAACCCT 2 ATGCAACCTT 1 ATGCAACTCC 1 ATGCAATGGG 1 ATGCACAAAC 2 ATGCACACAC 1 ATGCACTGCA 1 ATGCACTGCC 1 ATGCAGAGAT 1 ATGCAGCAAA 1 ATGCAGCATT 1 ATGCAGCCAT 2 ATGCAGGGAG 1 ATGCAGGGAT 1 ATGCAGGTGA 2 ATGCAGTCTC 1 ATGCAGTGGC 1 ATGCAGTGTG 1 ATGCATCTGT 1 ATGCATTTTG 1 ATGCCAGAGC 1 ATGCCAGGAA 1 ATGCCAGGGC 1 ATGCCAGGGG 1 ATGCCATCAA 1 ATGCCATCAT 1 ATGCCATCGA 1 ATGCCATTGC 1 ATGCCCAAGG 2 ATGCCCACTA 1 ATGCCCAGCA 1 ATGCCCCAGG 1 ATGCCCCTGC 2 ATGCCCGTGA 2 ATGCCCTAGC 1 ATGCCCTCCC 1 ATGCCGACAG 4 ATGCCGATGA 1 ATGCCTCTAT 1 ATGCCTGGGA 1 ATGCCTTAGG 1 ATGCCTTCAT 1 ATGCCTTCGT 1 ATGCCTTGGG 1 ATGCCTTTCT 1 ATGCCTTTTT 1 ATGCGAAAGG 7 ATGCGCAGGA 1 ATGCGCCTGG 1 ATGCGCGCGG 1 ATGCGCGTGG 1 ATGCGGAGTC 4 ATGCGGGAGA 6 ATGCGGTATG 1 ATGCGGTGGA 1 ATGCGTCAGG 1 ATGCGTCTAG 1 ATGCTAAATG 1 ATGCTACGGA 1 ATGCTACTAA 1 ATGCTAGAAA 1 ATGCTAGGTG 1 ATGCTATACT 1 ATGCTATTTA 1 ATGCTCAGCC 3 ATGCTCAGGC 2 ATGCTCCCTG 3 ATGCTCTATT 1 ATGCTCTTAA 1 ATGCTGAAAA 1 ATGCTGACAT 1 ATGCTGAGAG 2 ATGCTGAGGA 1 ATGCTGATTC 1 ATGCTGGCCA 1 ATGCTGGCTA 1 ATGCTTATGA 1 ATGCTTCACA 1 ATGCTTTCAC 2 ATGCTTTTGA 2 ATGGAAAAAC 1 ATGGAAAATC 1 ATGGAAAATT 1 ATGGAAAGGA 1 ATGGAACCCA 1 ATGGAACCCC 1 ATGGAAGACA 1 ATGGAAGGTG 1 ATGGAAGTCT 2 ATGGAATATG 1 ATGGACAAAC 1 ATGGACAGGG 1 ATGGACATCA 1 ATGGAGAAAA 1 ATGGAGACCA 1 ATGGAGACTT 5 ATGGAGAGGG 1 ATGGAGGTGG 1 ATGGATGCCA 2 ATGGCAAGGA 1 ATGGCAAGGG 5 ATGGCAAGGT 1 ATGGCACACA 3 ATGGCACATC 1 ATGGCACCAC 3 ATGGCACCAT 1 ATGGCACGCA 1 ATGGCACGCG 1 ATGGCACGTG 3 ATGGCAGAGA 1 ATGGCAGCAT 1 ATGGCAGCCG 1 ATGGCAGCGC 1 ATGGCAGGAG 28 ATGGCAGGTG 8 ATGGCAGTCG 1 ATGGCCAACT 1 ATGGCCAGAA 1 ATGGCCAGGC 1 ATGGCCATAG 3 ATGGCCCACA 1 ATGGCCCATA 6 ATGGCCGAGT 1 ATGGCCGGTA 4 ATGGCCTACA 1 ATGGCCTCCA 1 ATGGCCTCCT 5 ATGGCGACTG 1 ATGGCGAGGG 2 ATGGCGAGTG 1 ATGGCGATCT 2 ATGGCGCACA 1 ATGGCGCACC 1 ATGGCGCACG 1 ATGGCGCCTC 1 ATGGCGCGTG 1 ATGGCGGAGA 1 ATGGCGGCGA 1 ATGGCGGGCA 2 ATGGCGGGCC 1 ATGGCGGGCG 2 ATGGCGGGTG 7 ATGGCGGGTT 1 ATGGCGGTTG 1 ATGGCGTACA 1 ATGGCGTGCA 1 ATGGCTAAGC 1 ATGGCTAGGC 1 ATGGCTAGGT 1 ATGGCTCAAT 1 ATGGCTCACA 2 ATGGCTCACG 1 ATGGCTCCTG 1 ATGGCTGACA 1 ATGGCTGGAT 2 ATGGCTGGCA 2 ATGGCTGGCC 1 ATGGCTGGGA 1 ATGGCTGGGC 5 ATGGCTGGGT 1 ATGGCTGGTA 136 ATGGCTGGTG 1 ATGGCTTCCA 2 ATGGCTTGGG 1 ATGGCTTTCC 1 ATGGGAACCA 2 ATGGGAGCTC 1 ATGGGCACTG 1 ATGGGCCATC 1 ATGGGCGGGA 1 ATGGGCTGTA 1 ATGGGCTTGA 4 ATGGGGCCGC 1 ATGGGGGAGG 1 ATGGGGGTGC 1 ATGGGGTCGC 1 ATGGGTCACA 1 ATGGGTCAGA 2 ATGGGTTTGC 1 ATGGTAACGC 1 ATGGTAAGAT 1 ATGGTAATGG 1 ATGGTACTGA 1 ATGGTAGGCA 1 ATGGTAGGTG 1 ATGGTATGAC 1 ATGGTCAACG 1 ATGGTCAGGA 1 ATGGTCAGTG 1 ATGGTCGACC 1 ATGGTCTCCT 1 ATGGTCTGTC 1 ATGGTGAAGC 1 ATGGTGAATG 1 ATGGTGAGCG 1 ATGGTGAGGC 1 ATGGTGAGTG 1 ATGGTGATGA 1 ATGGTGATGC 1 ATGGTGCACA 2 ATGGTGCCAC 4 ATGGTGCCCA 1 ATGGTGCTAT 1 ATGGTGCTGA 2 ATGGTGGGCA 6 ATGGTGGGCG 1 ATGGTGGGCT 1 ATGGTGGGGG 2 ATGGTGGGTG 10 ATGGTGGTGG 7 ATGGTGGTTG 1 ATGGTGTACG 1 ATGGTGTCAC 1 ATGGTGTCTG 1 ATGGTGTGCT 1 ATGGTGTGTG 1 ATGGTTAAAG 1 ATGGTTATGG 1 ATGGTTCGCC 1 ATGGTTCTCA 1 ATGGTTGGAA 1 ATGGTTGTTG 1 ATGGTTTAAA 1 ATGTAAAAAA 12 ATGTAAAAAT 1 ATGTAAAGTA 1 ATGTAAGTCA 1 ATGTACCTGA 2 ATGTACGATT 1 ATGTACTCTG 3 ATGTACTTTG 1 ATGTAGAGTG 3 ATGTAGATTG 1 ATGTAGTAGT 3 ATGTATAAAC 1 ATGTATGGGG 1 ATGTCAAGAC 1 ATGTCACAGA 1 ATGTCATCAA 2 ATGTCATCTG 1 ATGTCCAGAT 1 ATGTCCAGCA 1 ATGTCCTTTC 1 ATGTCGCGTG 1 ATGTCGGGTG 1 ATGTCTACTT 1 ATGTCTCAGA 1 ATGTCTCATT 1 ATGTCTGAGG 1 ATGTCTGCAA 1 ATGTCTGCTC 1 ATGTCTTATC 1 ATGTCTTGTG 1 ATGTCTTTAT 1 ATGTCTTTGT 1 ATGTCTTTTC 1 ATGTCTTTTT 1 ATGTGAAGAA 1 ATGTGAAGAG 6 ATGTGAAGTC 1 ATGTGAATTT 1 ATGTGACACT 2 ATGTGACGTG 1 ATGTGACTCG 1 ATGTGACTGT 1 ATGTGAGAAG 2 ATGTGAGACC 1 ATGTGAGGCT 2 ATGTGAGGGA 1 ATGTGATAAG 1 ATGTGATTTT 1 ATGTGCCGTG 1 ATGTGCGAGG 1 ATGTGCGTGG 7 ATGTGCTGGA 1 ATGTGCTTCC 1 ATGTGGAAGA 1 ATGTGGAATC 1 ATGTGGCACA 7 ATGTGGCAGC 1 ATGTGGCCAC 1 ATGTGGCTTC 1 ATGTGGTGGT 1 ATGTGGTTGT 3 ATGTGTAACG 1 ATGTGTACTC 1 ATGTGTACTG 1 ATGTGTGATA 1 ATGTGTGCTC 1 ATGTGTTTAC 1 ATGTGTTTTT 1 ATGTTAAAAA 1 ATGTTACCTA 2 ATGTTAGGGA 2 ATGTTATGAC 1 ATGTTCCAGA 1 ATGTTCCGGA 1 ATGTTCCGGC 1 ATGTTCTCTC 1 ATGTTCTGTC 1 ATGTTGCCCC 1 ATGTTGGGAA 1 ATGTTGGGTG 1 ATGTTGGTTT 1 ATGTTGTCAA 1 ATGTTGTGAC 1 ATGTTTACAT 1 ATGTTTAGAA 1 ATGTTTCATT 1 ATGTTTCCCT 1 ATGTTTGGGG 1 ATGTTTGTTA 1 ATGTTTTGAA 1 ATTAAAAGGG 1 ATTAAAATAG 1 ATTAAACCAT 2 ATTAAACTTG 1 ATTAAAGTCT 1 ATTAAATGGG 1 ATTAACAAAG 7 ATTAACATTT 1 ATTAACTGCT 2 ATTAACTTAC 1 ATTAAGAAAA 1 ATTAAGAGGG 4 ATTAAGATGT 1 ATTAAGCACT 1 ATTAAGCCAT 1 ATTAAGCCTA 1 ATTAAGTTTC 1 ATTAATCGAT 1 ATTAATTAAT 1 ATTAATTCTA 1 ATTACACCAC 7 ATTACATCCC 1 ATTACCACCC 1 ATTACCGAGA 1 ATTACCTCAG 1 ATTACCTGGT 2 ATTACGAACA 1 ATTACGCCCT 1 ATTACTCGGC 1 ATTACTGAAA 1 ATTAGAAATT 3 ATTAGAGAAC 1 ATTAGAGTAA 1 ATTAGGGAAG 1 ATTAGTTACA 1 ATTATACCAC 1 ATTATAGGCC 1 ATTATCCAAG 1 ATTATCCAGA 1 ATTATCCAGG 4 ATTATCCTGG 1 ATTATCGCAG 1 ATTATCTAAA 1 ATTATGCAGA 1 ATTATGCCAC 1 ATTATGGAAG 5 ATTATGGAGG 1 ATTATGGGCA 2 ATTATGTGCA 1 ATTATTAACT 1 ATTATTAAGA 1 ATTATTATAC 1 ATTATTATTG 1 ATTATTGCAG 1 ATTATTTTTC 3 ATTCAACTCA 1 ATTCAAGATA 1 ATTCACAAAA 1 ATTCACAAAC 1 ATTCACAGCC 1 ATTCACGAAG 1 ATTCACGCAA 1 ATTCACGCCA 1 ATTCACGGAG 1 ATTCAGACTG 1 ATTCAGAGGG 1 ATTCAGCACC 4 ATTCAGTATC 1 ATTCAGTCTA 1 ATTCATAATA 1 ATTCATCCCA 1 ATTCATTTGA 1 ATTCATTTTT 1 ATTCCAAGGA 1 ATTCCAATCT 3 ATTCCACTGC 1 ATTCCACTTA 1 ATTCCAGACG 1 ATTCCATCAG 1 ATTCCATCCT 1 ATTCCATTAC 1 ATTCCATTCA 1 ATTCCATTCT 1 ATTCCCCTTA 1 ATTCCCTGGT 1 ATTCCTTTAA 1 ATTCGAAAGC 2 ATTCGAACTC 1 ATTCGAGAAG 3 ATTCGAGTAG 1 ATTCGCCCCA 1 ATTCGCCCTC 1 ATTCGGAGGG 1 ATTCGGTTAG 1 ATTCTAGGAA 1 ATTCTAGGTC 1 ATTCTATGAG 1 ATTCTATGTA 1 ATTCTCCAGT 28 ATTCTCCTGC 1 ATTCTCTGAG 2 ATTCTCTGCT 1 ATTCTGACAA 1 ATTCTGCAGA 1 ATTCTGGCAC 1 ATTCTGGCTT 1 ATTCTGTTCA 1 ATTCTGTTGT 4 ATTCTTTAAT 1 ATTGAAAAAA 1 ATTGAAAATT 1 ATTGAAAGCA 1 ATTGAATAGC 1 ATTGAATTTA 1 ATTGACACAA 1 ATTGACCACA 1 ATTGACCGCT 4 ATTGAGAAAA 1 ATTGAGAAGC 6 ATTGAGAGGG 1 ATTGAGCCAT 1 ATTGAGGGTG 1 ATTGAGTCAC 1 ATTGATCGGG 1 ATTGATGATC 1 ATTGCAACCT 1 ATTGCAAGGT 1 ATTGCACCAA 1 ATTGCACCAC 18 ATTGCACCAG 1 ATTGCACCAT 1 ATTGCACCCC 1 ATTGCACCGC 1 ATTGCACTAC 1 ATTGCAGATG 1 ATTGCAGCCC 1 ATTGCATCAC 1 ATTGCCATCC 1 ATTGCCCACT 2 ATTGCGACAC 1 ATTGCGCCAC 3 ATTGCGCCAG 1 ATTGCGCCTC 2 ATTGCGCTAC 3 ATTGCGGTGA 1 ATTGCTCCAC 2 ATTGCTTTTG 2 ATTGGAACCC 2 ATTGGACACA 3 ATTGGAGAAG 1 ATTGGAGTGC 19 ATTGGCATTA 2 ATTGGCTGCA 1 ATTGGCTTAA 3 ATTGGCTTAG 1 ATTGGGCCAC 4 ATTGGGCTAG 1 ATTGGGTCAC 1 ATTGGTGGCA 1 ATTGGTGGCC 1 ATTGGTTGTA 1 ATTGGTTTTG 1 ATTGTAAGCT 2 ATTGTAAGTT 1 ATTGTACACT 1 ATTGTACCAA 1 ATTGTACCAC 1 ATTGTAGACA 3 ATTGTATACT 1 ATTGTCAAGT 1 ATTGTGAACA 2 ATTGTGAAGG 1 ATTGTGAGGC 5 ATTGTGAGGG 19 ATTGTGCACT 1 ATTGTGCCAC 21 ATTGTGCCAG 1 ATTGTGCCAT 1 ATTGTGCCCA 1 ATTGTGCCCC 2 ATTGTGCCTC 2 ATTGTGCTAC 1 ATTGTGCTTG 1 ATTGTGGAGT 2 ATTGTGGATC 1 ATTGTGGCTG 1 ATTGTGGGAG 1 ATTGTGTGGG 1 ATTGTGTTCA 1 ATTGTTATTT 1 ATTGTTCTGT 1 ATTGTTTACG 1 ATTGTTTATG 11 ATTGTTTCTT 2 ATTTAACATT 1 ATTTAAGAAG 3 ATTTAAGACC 1 ATTTAAGAGG 1 ATTTAATAAG 1 ATTTACACTT 1 ATTTACATTT 1 ATTTAGAAGC 1 ATTTAGCAAA 1 ATTTAGTCCC 1 ATTTAGTTCT 1 ATTTATAATC 1 ATTTATACAC 2 ATTTATACTG 1 ATTTATGTTT 1 ATTTATTAAT 1 ATTTATTATA 1 ATTTATTGCT 1 ATTTATTTAT 1 ATTTCAAAAA 1 ATTTCAACTC 1 ATTTCAATCT 1 ATTTCACCAC 1 ATTTCACCCT 1 ATTTCAGAAG 3 ATTTCAGCAG 1 ATTTCAGTTC 1 ATTTCCAAAC 1 ATTTCCAGAA 1 ATTTCCAGAT 1 ATTTCCAGCC 1 ATTTCCAGCT 1 ATTTCCCAAA 1 ATTTCCGTTA 1 ATTTCCTTGA 7 ATTTCCTTGT 1 ATTTCGGCTC 1 ATTTCGGGAG 1 ATTTCTAACA 1 ATTTCTCTGA 1 ATTTCTGCTG 2 ATTTCTTGCC 5 ATTTCTTTTA 1 ATTTGAAAAG 3 ATTTGAAACC 1 ATTTGAAAGA 1 ATTTGAAAGC 2 ATTTGACAAG 1 ATTTGACAAT 1 ATTTGAGAAA 2 ATTTGAGAAC 3 ATTTGAGAAG 549 ATTTGAGAGC 3 ATTTGAGAGG 2 ATTTGAGAGT 2 ATTTGAGATG 3 ATTTGAGCAG 3 ATTTGAGGAG 4 ATTTGAGGTA 1 ATTTGAGTAG 1 ATTTGATCCT 1 ATTTGATGCA 1 ATTTGCAGTT 1 ATTTGCATTT 1 ATTTGCCAAA 2 ATTTGCCACT 1 ATTTGCCTCT 1 ATTTGCCTGG 1 ATTTGCGGGA 2 ATTTGGAAAA 1 ATTTGGACGA 1 ATTTGGCTCT 1 ATTTGGGAAG 5 ATTTGTCATC 1 ATTTGTCCCA 15 ATTTGTTTAG 1 ATTTGTTTTA 1 ATTTTAAAAG 1 ATTTTAAACT 2 ATTTTAAGTA 1 ATTTTAATCA 1 ATTTTAATCC 1 ATTTTAATTG 1 ATTTTAGAAG 1 ATTTTAGAAT 1 ATTTTAGTGC 1 ATTTTATCCA 1 ATTTTATGTT 1 ATTTTATTAA 1 ATTTTATTCT 1 ATTTTCATCA 1 ATTTTCCAAT 1 ATTTTCCTTA 1 ATTTTCTAAA 25 ATTTTCTATG 1 ATTTTCTGCC 1 ATTTTGAAAG 1 ATTTTGAATC 3 ATTTTGAGAA 1 ATTTTGATAA 2 ATTTTGATCT 1 ATTTTGATGC 1 ATTTTGCAAT 1 ATTTTGCCAC 1 ATTTTGCTTG 2 ATTTTGGAGG 1 ATTTTGGCCA 1 ATTTTGGCTC 1 ATTTTGGGGG 1 ATTTTGGGTC 1 ATTTTGGTTA 2 ATTTTGTAGA 1 ATTTTGTAGC 1 ATTTTGTGTC 1 ATTTTGTTTC 1 ATTTTTAAAA 1 ATTTTTAAAT 1 ATTTTTCAAC 1 ATTTTTCTGA 1 ATTTTTCTTT 1 ATTTTTGAAA 1 ATTTTTGCCC 1 ATTTTTTAAA 2 ATTTTTTAAG 1 ATTTTTTCAA 2 ATTTTTTCCA 2 ATTTTTTCCT 2 ATTTTTTGTA 1 CAAAAAAAAA 10 CAAAAAAACA 1 CAAAAAAATA 1 CAAAAAACAC 1 CAAAAAATAA 1 CAAAAAATTA 3 CAAAAAATTG 1 CAAAAACTAG 1 CAAAAAGAGG 1 CAAAAAGCAG 2 CAAAAAGCTC 1 CAAAAATATG 1 CAAAAATCAC 1 CAAAAATCTA 1 CAAAAATTAG 1 CAAAACAATG 1 CAAAACAGAA 1 CAAAACAGGC 2 CAAAACATAA 1 CAAAACCCGT 1 CAAAACCTAT 2 CAAAACTAGC 1 CAAAACTGTT 1 CAAAAGAAAC 1 CAAAAGAACG 1 CAAAAGAAGG 1 CAAAAGATTA 1 CAAAAGCAAT 1 CAAAAGTTCA 1 CAAAATCAGG 3 CAAAATCTGG 1 CAAAATGGAC 1 CAAAATTACA 1 CAAAATTCAG 1 CAAAATTTAC 1 CAAACAAATA 1 CAAACAATAA 1 CAAACACGCT 1 CAAACAGAAA 1 CAAACAGCAA 1 CAAACATCCG 2 CAAACCAAAG 2 CAAACCAGAT 1 CAAACCATCA 1 CAAACCATCC 80 CAAACCTGCA 1 CAAACCTGGG 1 CAAACCTTGT 1 CAAACCTTTA 1 CAAACGAGGA 1 CAAACGATCC 1 CAAACTAATG 1 CAAACTACCT 1 CAAACTGAAG 3 CAAACTGCTT 1 CAAACTGTAC 1 CAAAGAAAAC 1 CAAAGAAAAT 1 CAAAGAAGCC 1 CAAAGAAGTA 1 CAAAGAAGTG 2 CAAAGACAAT 1 CAAAGACACA 3 CAAAGCACAC 1 CAAAGCAGTA 1 CAAAGCATTT 1 CAAAGCCATT 2 CAAAGCCCCA 1 CAAAGGAAGC 1 CAAAGGAATT 1 CAAAGGATTT 1 CAAAGGCCCT 2 CAAAGGCGAA 1 CAAAGGCTAG 1 CAAAGGCTGG 1 CAAAGTAGAC 1 CAAAGTCCGA 1 CAAAGTCTTA 1 CAAATAAAAA 1 CAAATAAAAG 1 CAAATAAATT 1 CAAATAATCA 1 CAAATACTTT 1 CAAATAGAGC 1 CAAATAGATG 1 CAAATATAGT 1 CAAATCAACC 1 CAAATCAAGT 1 CAAATCCAAA 1 CAAATGAAAT 1 CAAATGACCC 1 CAAATGAGCA 1 CAAATGAGGA 6 CAAATGAGGC 2 CAAATGATGG 1 CAAATGCAAA 1 CAAATGCCTA 1 CAAATGCCTC 1 CAAATGCTGT 1 CAAATGGAAA 1 CAAATGGACA 3 CAAATGGGCA 2 CAAATGTTAG 1 CAAATTAAAA 1 CAAATTAGGG 1 CAAATTAGTG 1 CAAATTATAC 1 CAAATTCAGT 1 CAAATTCTTC 1 CAACAAAAAA 1 CAACAAATGC 1 CAACAACACA 1 CAACAACTGG 1 CAACAAGGAC 1 CAACAAGTAT 1 CAACACACCC 1 CAACACAGTT 1 CAACACCACA 1 CAACACTTTT 1 CAACAGACAC 1 CAACAGATAT 1 CAACAGCTAG 1 CAACAGCTCT 3 CAACAGGCCT 2 CAACAGGGAG 1 CAACAGTCCA 1 CAACAGTGCC 1 CAACAGTTGT 1 CAACATAAAA 1 CAACATAGCA 1 CAACATATAA 1 CAACATATCC 1 CAACATCTGC 1 CAACATTCCT 6 CAACCACACC 1 CAACCAGCCC 1 CAACCAGGTG 2 CAACCAGTTC 1 CAACCATCAT 2 CAACCATTAA 1 CAACCATTAC 1 CAACCCACGC 1 CAACCCAGAT 2 CAACCCAGGC 1 CAACCGATCC 1 CAACCGCCCC 1 CAACCGCGAA 1 CAACCTCTTG 1 CAACCTTTTG 1 CAACGTACCA 1 CAACTCAAAC 1 CAACTCACAG 1 CAACTCAGCA 2 CAACTCCCTG 1 CAACTCGCAC 1 CAACTGCACT 4 CAACTGCCTA 1 CAACTGCCTT 1 CAACTGCTAA 1 CAACTGCTCT 1 CAACTGCTTA 1 CAACTGGAGT 2 CAACTGGCAT 1 CAACTGGTGG 1 CAACTGTATT 1 CAACTTAATT 1 CAACTTAGTT 6 CAACTTCAAC 1 CAACTTCAAT 1 CAACTTCCTA 1 CAACTTGATA 1 CAACTTGGAA 1 CAACTTTAAA 1 CAAGAAACAG 1 CAAGAAACGT 1 CAAGAAACTC 5 CAAGAAAGAA 1 CAAGAAAGGG 1 CAAGAACAGA 1 CAAGAATTAG 1 CAAGACAGAA 2 CAAGACATCT 1 CAAGACCCCA 1 CAAGACGGCA 1 CAAGACGGGG 2 CAAGACTGTT 1 CAAGAGAAAA 1 CAAGAGAATA 1 CAAGAGAGAC 1 CAAGAGGATT 1 CAAGAGGCAA 4 CAAGAGGCCT 1 CAAGATAGGT 1 CAAGATATGG 2 CAAGATGGAG 1 CAAGATGTGG 2 CAAGATTGTC 1 CAAGCAAACA 1 CAAGCAACAC 1 CAAGCAAGCC 1 CAAGCACTTG 1 CAAGCAGGAC 5 CAAGCATCCA 2 CAAGCATCCC 105 CAAGCATTCC 1 CAAGCCAGAC 1 CAAGCCAGGA 1 CAAGCCCTGC 4 CAAGCCCTTG 1 CAAGCCTACA 1 CAAGCCTGCC 1 CAAGCGCTCT 2 CAAGCTCAGA 1 CAAGCTCTAG 1 CAAGGACAGC 1 CAAGGACAGT 1 CAAGGACCAG 12 CAAGGACTGG 1 CAAGGAGAAA 1 CAAGGAGAAC 1 CAAGGAGATC 1 CAAGGAGCTG 1 CAAGGATAAG 1 CAAGGATATT 1 CAAGGATCTA 1 CAAGGATCTG 1 CAAGGATTTT 1 CAAGGCCTCA 1 CAAGGCTACT 4 CAAGGCTGGT 1 CAAGGGCTTG 3 CAAGGGGGGA 1 CAAGGGTGAC 1 CAAGGGTGGA 1 CAAGGTATTG 1 CAAGGTCATT 2 CAAGGTGGAA 1 CAAGGTTATA 1 CAAGGTTTAT 1 CAAGGTTTCA 1 CAAGTAAAAA 1 CAAGTAAGCA 1 CAAGTACCTG 2 CAAGTATTTT 1 CAAGTCAAAT 1 CAAGTCAACA 1 CAAGTCAGCA 1 CAAGTGAAAG 1 CAAGTGGAAG 1 CAAGTGGCAA 1 CAAGTGTTTG 1 CAAGTTCTTT 2 CAAGTTTAGT 1 CAAGTTTGCT 1 CAATAAAAAG 1 CAATAAAAAT 1 CAATAAAACT 1 CAATAAAAGT 1 CAATAAACTG 8 CAATAAATGG 1 CAATAAATGT 67 CAATAACCCT 1 CAATAACTGA 1 CAATAAGATT 1 CAATAAGTGT 1 CAATACCCTG 1 CAATACTCAC 1 CAATACTCCA 1 CAATACTGCA 1 CAATAGAAAA 1 CAATATAAAA 1 CAATATAAGC 1 CAATATCAGC 1 CAATATCTGA 1 CAATATGCCA 1 CAATATTAAA 1 CAATATTAGA 1 CAATATTCAA 1 CAATCAGATG 1 CAATCAGCCT 1 CAATCATTCC 1 CAATCCCAGC 1 CAATCGGTGA 1 CAATCTACAG 1 CAATCTAGTT 1 CAATCTGATG 1 CAATCTTTCA 1 CAATGACCCC 1 CAATGACTAG 1 CAATGAGGAA 1 CAATGATCAA 1 CAATGCAAAT 1 CAATGCACCC 1 CAATGCAGAG 1 CAATGCAGGA 1 CAATGCATTG 1 CAATGCCAAA 1 CAATGCCTCG 1 CAATGCTGCA 1 CAATGCTGCC 7 CAATGCTGGT 1 CAATGGAAAA 1 CAATGGAGCT 2 CAATGGAGTG 1 CAATGGATAC 1 CAATGGCTCT 1 CAATGGGGTT 1 CAATGGTGAG 1 CAATGGTGCG 1 CAATGTGAGC 1 CAATGTGCTG 1 CAATGTGTTA 5 CAATTAAAAG 5 CAATTAAAAT 1 CAATTAACAG 1 CAATTACTCA 1 CAATTATGCC 1 CAATTCACAG 1 CAATTCACAT 1 CAATTCTACC 1 CAATTCTGGG 1 CAATTGAGGC 2 CAATTGCTTC 1 CAATTGGAAT 2 CAATTGGATA 1 CAATTGTAAA 1 CAATTGTGTG 1 CAATTTGAAA 1 CAATTTGATT 1 CAATTTGTGT 1 CAATTTTGGA 1 CACAAAAGAA 1 CACAAAATCT 7 CACAAACGGT 40 CACAAAGCAG 1 CACAAAGGCT 1 CACAAAGTAC 1 CACAAATGCT 1 CACAACCACC 1 CACAACGGCA 1 CACAACGGTA 1 CACAACTATG 1 CACAACTCAC 2 CACAACTGCG 1 CACAACTTAG 1 CACAAGATGA 1 CACAAGCTTC 7 CACAAGGTTA 1 CACAAGTAGA 1 CACAAGTCAG 1 CACAAGTTTC 2 CACAATCAGG 1 CACACAACTA 1 CACACAAGCA 1 CACACAATGT 5 CACACACAAA 1 CACACACACA 1 CACACACCAC 1 CACACACCAG 1 CACACACGCA 1 CACACACTAC 1 CACACACTCA 1 CACACAGAAG 1 CACACAGTGT 2 CACACAGTTC 1 CACACAGTTT 2 CACACATAGT 1 CACACCAGCG 1 CACACCAGTA 1 CACACCCACA 2 CACACCCATA 1 CACACCCCTG 4 CACACCGGTG 1 CACACGCGCG 1 CACACGTGCG 1 CACACGTGTG 1 CACACTACTA 2 CACACTCTCC 1 CACACTGCAC 1 CACACTGCTG 1 CACACTGTGA 1 CACACTTATT 1 CACAGAAAAA 1 CACAGAAAGA 1 CACAGAACAC 1 CACAGAACGA 1 CACAGAATGC 2 CACAGACAGT 1 CACAGAGAAA 1 CACAGAGCGT 1 CACAGAGCTG 1 CACAGAGCTT 1 CACAGAGGCA 2 CACAGAGTCC 1 CACAGATCAA 1 CACAGATGAC 1 CACAGCCGAA 1 CACAGCCGCT 1 CACAGCGCCC 3 CACAGCTAGT 1 CACAGCTCAG 1 CACAGGACAC 1 CACAGGCAAA 1 CACAGGGAGG 1 CACAGGGCCA 1 CACAGTATTT 1 CACAGTCCCC 1 CACAGTGACA 1 CACAGTGGCT 2 CACAGTTCAC 1 CACAGTTCAT 1 CACATAATTG 1 CACATACACA 1 CACATACCTA 1 CACATACCTT 1 CACATAGTAT 1 CACATATGGA 1 CACATCAAGT 1 CACATCCCCA 1 CACATCGTCC 3 CACATCGTGG 1 CACATCTCTG 4 CACATTAGCG 1 CACATTATTC 2 CACATTGACT 1 CACATTTTAA 1 CACCAAAAAA 1 CACCAAACCA 1 CACCAAAGGG 1 CACCAAATTG 5 CACCAACCGG 1 CACCAAGAAC 1 CACCAAGCCT 1 CACCAATGGA 1 CACCACAACC 1 CACCACCAAG 1 CACCACCACA 4 CACCACCACC 19 CACCACCACG 3 CACCACCCCA 1 CACCACCCGA 1 CACCACCCTG 1 CACCACCGTG 2 CACCACCTCT 1 CACCACGGGC 2 CACCACTATG 1 CACCACTGGA 1 CACCAGCAGC 1 CACCAGTAAT 1 CACCATACAT 1 CACCATACTT 1 CACCATCAAT 2 CACCATCATC 1 CACCATCCGC 1 CACCATCGTC 1 CACCCAAAAG 1 CACCCAAATA 1 CACCCAAATC 1 CACCCAAGAA 1 CACCCAATGG 3 CACCCACCTC 1 CACCCACTGC 1 CACCCAGCAG 1 CACCCCACTG 1 CACCCCCAAA 1 CACCCCCAGG 4 CACCCCCTCG 1 CACCCCTGAT 36 CACCCGCTGA 1 CACCCGTAAT 1 CACCCGTGTA 1 CACCCGTGTG 1 CACCCTAAAT 1 CACCCTAGAA 2 CACCCTATTG 1 CACCCTGAGC 1 CACCCTGATG 1 CACCCTGCCC 1 CACCCTGGAT 1 CACCCTGGGC 1 CACCCTGTAC 1 CACCCTGTGG 1 CACCCTTCCC 1 CACCGCCCTG 1 CACCGCCGCA 1 CACCGGAACA 1 CACCGGACAC 3 CACCGGGTAG 3 CACCGTCTCC 1 CACCGTCTGA 1 CACCGTGGGA 1 CACCGTGTGT 1 CACCTAAATG 3 CACCTAAATT 3 CACCTAACTG 2 CACCTAAGTG 1 CACCTAATAG 3 CACCTAATCG 3 CACCTAATTA 2 CACCTAATTC 1 CACCTAATTG 762 CACCTAATTT 1 CACCTACCCC 1 CACCTATACT 1 CACCTATAGC 1 CACCTATATA 1 CACCTATTGG 3 CACCTCAAAC 1 CACCTCCCTC 1 CACCTCCTCA 1 CACCTCGTCT 1 CACCTGATTG 4 CACCTGCAGT 2 CACCTGGAAT 1 CACCTGGAGG 1 CACCTGGAGT 1 CACCTGGTTT 1 CACCTGTAAA 1 CACCTGTAAT 16 CACCTGTAGC 1 CACCTGTAGT 14 CACCTGTATT 1 CACCTGTCAT 5 CACCTGTCCT 3 CACCTGTGCT 2 CACCTGTGGG 1 CACCTGTGGT 4 CACCTGTGTT 1 CACCTTAATT 3 CACCTTATTG 1 CACCTTCACG 1 CACCTTCCAG 2 CACCTTCGTC 2 CACCTTGAAG 1 CACCTTGCAT 1 CACCTTGCTC 1 CACGACCACA 1 CACGAGCCCC 1 CACGAGCCGA 1 CACGAGGTAT 1 CACGATCACA 1 CACGCAATGC 10 CACGCACACA 3 CACGCATCCC 1 CACGCCACGG 1 CACGCCACTG 1 CACGCCAGCC 1 CACGCCCCCA 1 CACGCCTGCC 1 CACGCTCGTC 1 CACGCTGTCT 1 CACGCTGTGC 1 CACGCTGTTG 1 CACGGACACG 1 CACGGAGCTG 1 CACGGAGGCG 1 CACGGCAGCA 1 CACGGCCAAT 1 CACGGCGGAT 1 CACGGGAGGG 1 CACGGGGGAG 1 CACGGGGGGG 1 CACGGGTGGG 1 CACGGTATCG 1 CACGGTATTC 1 CACGGTGGGC 1 CACGTAATTG 3 CACGTACCAC 1 CACGTAGTCC 1 CACGTCATTG 1 CACGTCCTTC 1 CACGTGGAGG 2 CACGTTATCG 1 CACTAATACG 1 CACTAATACT 1 CACTAATCAC 1 CACTAATTGG 2 CACTACACGG 6 CACTACCCAC 3 CACTACCTCT 1 CACTACTACC 1 CACTACTCAA 1 CACTACTCAC 467 CACTACTCAG 1 CACTACTCAT 1 CACTACTCCA 1 CACTACTCCC 1 CACTACTCGC 2 CACTACTCTC 2 CACTACTTAA 1 CACTACTTTT 1 CACTAGAATA 1 CACTAGCCCT 1 CACTATACAA 1 CACTATACGT 1 CACTATATTT 2 CACTATTCAC 2 CACTATTTTC 1 CACTCAATTG 1 CACTCACACC 3 CACTCACCCA 1 CACTCAGAAG 1 CACTCAGATT 1 CACTCATCAC 1 CACTCCAGCC 6 CACTCCCCAC 2 CACTCCTAAA 1 CACTCGACAA 1 CACTCGAGCC 1 CACTCGCTGA 1 CACTCGTGTG 4 CACTCTAATT 1 CACTCTAGCT 1 CACTCTATCC 3 CACTCTCAAA 1 CACTCTCACC 3 CACTCTGCTC 1 CACTCTGGAA 2 CACTCTTATG 1 CACTCTTGAT 1 CACTCTTTAT 1 CACTGAATAC 1 CACTGAATTG 1 CACTGACTCA 1 CACTGAGACA 1 CACTGAGCCA 2 CACTGAGCTG 1 CACTGATAAC 2 CACTGCAGCC 1 CACTGCATAT 3 CACTGCCTTT 2 CACTGCTAAA 1 CACTGCTCAC 2 CACTGGACGA 1 CACTGGACTA 1 CACTGGTACA 1 CACTGTCCAG 1 CACTGTGATC 1 CACTGTGCAG 1 CACTGTGCCT 1 CACTGTGCTT 1 CACTGTGTGT 1 CACTTAATTG 4 CACTTATAAC 1 CACTTATCTG 2 CACTTCAAGG 4 CACTTCAGGA 1 CACTTCCTCC 2 CACTTCGAGG 1 CACTTCTCAC 1 CACTTCTCCT 1 CACTTGAATA 1 CACTTGATCG 1 CACTTGCCCT 13 CACTTGGCAA 1 CACTTGGCTT 1 CACTTGGTCT 1 CACTTGTAAT 2 CACTTGTAGG 2 CACTTGTAGT 1 CACTTGTGGT 1 CACTTGTTTA 1 CACTTTAAAG 1 CACTTTAATT 1 CACTTTACCA 1 CACTTTGAGG 1 CACTTTGGTC 1 CACTTTGTGT 1 CACTTTTCCA 1 CACTTTTCCC 1 CACTTTTGGG 5 CACTTTTTGG 1 CAGAAAAACC 1 CAGAAAATTA 1 CAGAAAATTT 1 CAGAAACTGC 1 CAGAAAGCAT 6 CAGAAATATA 1 CAGAAATCTG 1 CAGAAATGAA 1 CAGAAATGCA 1 CAGAACAGAC 1 CAGAACATCA 1 CAGAACCTAG 1 CAGAACTGTG 1 CAGAACTTGA 1 CAGAAGAAGA 1 CAGAAGAATG 2 CAGAAGATAG 1 CAGAAGATGC 1 CAGAAGATGG 1 CAGAAGATGT 1 CAGAAGCAGG 1 CAGAAGCAGT 1 CAGAAGCTGA 1 CAGAAGGACC 1 CAGAAGGTGG 1 CAGAATAATG 1 CAGAATACAA 2 CAGAATACGA 1 CAGAATCCAC 1 CAGAATGACT 1 CAGAATGAGC 2 CAGAATTTAG 1 CAGACAATCT 1 CAGACAATTC 2 CAGACACTGG 1 CAGACAGAGT 1 CAGACCAGAG 1 CAGACCATTG 1 CAGACCCAAA 1 CAGACCCCTG 1 CAGACCCGCA 1 CAGACCCTCC 1 CAGACCCTGC 4 CAGACCTGTG 1 CAGACGACGG 1 CAGACGCACC 1 CAGACTAACT 1 CAGACTATGG 1 CAGACTATGT 1 CAGACTGCAT 1 CAGACTGCCC 3 CAGACTTCCT 1 CAGACTTTTA 1 CAGACTTTTG 2 CAGAGAATAT 1 CAGAGACACA 3 CAGAGACCAA 1 CAGAGACGGT 1 CAGAGACGTG 7 CAGAGACTTG 1 CAGAGAGATG 1 CAGAGAGGAG 1 CAGAGCAAGG 1 CAGAGCAATT 1 CAGAGCGTCA 1 CAGAGGAACA 2 CAGAGGAACG 1 CAGAGGAGCA 1 CAGAGGATGC 1 CAGAGGCGTC 1 CAGAGGGTTG 2 CAGAGGTGTG 1 CAGAGTCTCA 1 CAGAGTGCAC 1 CAGAGTGTGT 1 CAGAGTTGGG 1 CAGAGTTTTT 1 CAGATAAAAA 1 CAGATAACAA 1 CAGATAACAT 2 CAGATAATGC 1 CAGATAATGG 1 CAGATACCAG 1 CAGATACCCC 2 CAGATACGGG 1 CAGATATCTA 1 CAGATCAACT 1 CAGATCACTT 1 CAGATCATAG 1 CAGATCATTT 1 CAGATCTCGG 1 CAGATCTTTG 6 CAGATGACTG 1 CAGATGCAGC 1 CAGATGCCTT 1 CAGATGGAGG 1 CAGATGGGAT 1 CAGATGGGCC 1 CAGATGTCCT 1 CAGATGTTGC 1 CAGATTAAAT 1 CAGATTATGC 1 CAGATTCTGT 1 CAGATTGCTG 1 CAGATTGTGG 1 CAGATTTACA 2 CAGATTTCAG 1 CAGATTTCTG 1 CAGATTTCTT 1 CAGATTTGCA 1 CAGATTTGGT 1 CAGATTTTGC 1 CAGATTTTGG 2 CAGATTTTGT 1 CAGCAAAAAA 4 CAGCAAATCC 1 CAGCAACGCA 1 CAGCAAGGAC 1 CAGCAAGGTG 1 CAGCAATAAA 1 CAGCACATTA 4 CAGCACCAGG 1 CAGCACCCAA 1 CAGCACCTCA 2 CAGCAGAAGC 7 CAGCAGACGT 1 CAGCAGAGCA 1 CAGCAGATAA 1 CAGCAGATGT 1 CAGCAGCAAA 1 CAGCAGCAAG 1 CAGCAGCTAG 1 CAGCAGGCTT 1 CAGCAGGGCT 1 CAGCAGTAAA 1 CAGCAGTAGC 2 CAGCAGTCAC 1 CAGCAGTCCT 3 CAGCATCGCT 1 CAGCATCTAA 1 CAGCATTGTA 1 CAGCCAAACA 1 CAGCCACTGC 1 CAGCCAGAGG 1 CAGCCAGGAA 1 CAGCCAGGGG 1 CAGCCATACA 3 CAGCCATCCT 1 CAGCCCAACA 1 CAGCCCAACC 6 CAGCCCAAGG 1 CAGCCCACCG 1 CAGCCCAGGA 1 CAGCCCCTAG 1 CAGCCCCTTG 1 CAGCCCGGTA 1 CAGCCCTCAG 1 CAGCCCTCCA 1 CAGCCGAGGC 1 CAGCCGGAGG 1 CAGCCGTAGA 1 CAGCCGTGAT 1 CAGCCTACCA 1 CAGCCTAGGC 1 CAGCCTCAGA 1 CAGCCTCAGC 1 CAGCCTCCCT 1 CAGCCTCGGT 1 CAGCCTCTAA 2 CAGCCTCTAC 1 CAGCCTCTAG 1 CAGCCTCTCG 1 CAGCCTCTTC 1 CAGCCTGAAG 2 CAGCCTGACA 1 CAGCCTGAGG 1 CAGCCTGCGA 1 CAGCCTGCTG 1 CAGCCTGGCT 1 CAGCCTGGGA 1 CAGCCTGGGC 1 CAGCCTGGGG 1 CAGCCTGGTT 1 CAGCCTGTCG 1 CAGCCTGTGG 1 CAGCCTTGAT 1 CAGCCTTGCG 2 CAGCCTTGGA 2 CAGCCTTTGT 1 CAGCGAAATT 1 CAGCGAGCCA 1 CAGCGCACAG 1 CAGCGCAGCC 1 CAGCGCCACC 3 CAGCGCGCCC 5 CAGCGCTGAG 1 CAGCGCTGCA 5 CAGCGCTTCC 1 CAGCGCTTTG 1 CAGCGGCGGG 1 CAGCGGGTAA 1 CAGCGGTGCT 1 CAGCGTTAGT 1 CAGCTAAACG 1 CAGCTAAATT 1 CAGCTAGACC 1 CAGCTAGGAA 1 CAGCTAGGAT 1 CAGCTATCAT 1 CAGCTATTTA 1 CAGCTATTTC 4 CAGCTCACTG 24 CAGCTCAGCT 1 CAGCTCATCT 6 CAGCTCCAAA 1 CAGCTCCGCT 1 CAGCTCCTCT 1 CAGCTCGCAA 1 CAGCTCTACA 1 CAGCTCTTAC 1 CAGCTCTTAG 1 CAGCTCTTGA 2 CAGCTCTTTG 1 CAGCTGCCAG 1 CAGCTGGCCA 1 CAGCTGGGGC 1 CAGCTGGTAC 1 CAGCTGGTGG 1 CAGCTGTAGT 1 CAGCTGTCAT 1 CAGCTGTCTC 2 CAGCTTCACA 1 CAGCTTCACC 3 CAGCTTCTAT 1 CAGCTTGCAA 8 CAGGAAAATA 1 CAGGAAAGTT 1 CAGGAACAAA 1 CAGGAACACT 1 CAGGAACAGA 1 CAGGAACAGC 1 CAGGAACCAC 2 CAGGAACGGG 14 CAGGAAGCCA 1 CAGGAATTCC 1 CAGGACAGGT 1 CAGGACAGTT 3 CAGGACCATC 1 CAGGACCCCT 1 CAGGACGGGC 1 CAGGACTAAG 1 CAGGACTGTG 1 CAGGACTTGA 1 CAGGACTTTC 1 CAGGAGAAAA 1 CAGGAGAACT 1 CAGGAGACCC 2 CAGGAGACCT 1 CAGGAGAGTC 1 CAGGAGATGG 1 CAGGAGCCCC 1 CAGGAGCCTC 1 CAGGAGCGTG 1 CAGGAGCTTT 1 CAGGAGGAAA 3 CAGGAGGAGT 8 CAGGAGGCAC 1 CAGGAGGCTG 1 CAGGAGTAAA 1 CAGGAGTCCA 1 CAGGAGTTCA 4 CAGGAGTTGA 1 CAGGATCCAG 3 CAGGATGACG 2 CAGGATGGTG 1 CAGGCACACC 1 CAGGCACAGC 1 CAGGCACTGA 1 CAGGCAGAGT 2 CAGGCAGCAA 3 CAGGCAGTGG 1 CAGGCAGTTA 1 CAGGCATCCC 2 CAGGCCCCAC 3 CAGGCCCGGA 1 CAGGCCTCCA 1 CAGGCCTCCT 1 CAGGCCTGGC 3 CAGGCCTGGG 1 CAGGCCTTCA 1 CAGGCTAGCT 2 CAGGCTGCAG 1 CAGGCTGCCC 1 CAGGCTGGAG 2 CAGGCTGGGC 1 CAGGCTGTGA 1 CAGGCTTTTT 6 CAGGGAAACA 1 CAGGGAAGCC 1 CAGGGAATCC 1 CAGGGAATGC 1 CAGGGAGATC 1 CAGGGAGCGC 3 CAGGGAGCTC 2 CAGGGAGGGA 1 CAGGGATCAC 1 CAGGGATCTG 1 CAGGGATGCA 1 CAGGGATGTG 1 CAGGGATTCC 2 CAGGGCACTG 1 CAGGGCAGGC 1 CAGGGCCAGA 1 CAGGGCCTGA 1 CAGGGCGAGA 6 CAGGGCGGGT 1 CAGGGCTACT 1 CAGGGCTCAC 1 CAGGGCTCGC 1 CAGGGCTCGG 1 CAGGGCTGTT 1 CAGGGGAGTG 2 CAGGGGCTCC 1 CAGGGGCTGG 1 CAGGGGTGGG 1 CAGGGGTGTG 1 CAGGGGTGTT 1 CAGGGGTTGG 1 CAGGGTAGGA 1 CAGGGTGACG 7 CAGGGTTAAT 1 CAGGGTTCAG 1 CAGGTAAGGT 1 CAGGTATGTT 1 CAGGTCAAAG 1 CAGGTCAAGA 1 CAGGTCACCC 1 CAGGTCAGAA 1 CAGGTCATAC 1 CAGGTCTTCC 1 CAGGTGACAA 2 CAGGTGAGTA 1 CAGGTGCCTT 1 CAGGTGCTGG 4 CAGGTGGCAC 1 CAGGTGTCAT 1 CAGGTGTCTT 1 CAGGTTAATG 1 CAGGTTCCCT 1 CAGGTTGACA 2 CAGGTTGGCA 1 CAGGTTTCAT 1 CAGGTTTGGT 1 CAGTAAAAAA 1 CAGTACTCAC 1 CAGTAGACAG 1 CAGTAGCTTC 2 CAGTAGTCCT 1 CAGTAGTGAC 1 CAGTAGTTGG 1 CAGTATACCC 2 CAGTATCCCA 2 CAGTATGACC 1 CAGTATGTCC 2 CAGTATTAAT 1 CAGTCAATAT 1 CAGTCACCCT 1 CAGTCAGCTA 1 CAGTCAGGCT 5 CAGTCCACCA 1 CAGTCCCGGC 1 CAGTCCCTGA 1 CAGTCCGCTT 2 CAGTCCTCAG 1 CAGTCCTGAC 1 CAGTCCTTCT 1 CAGTCGCTGG 2 CAGTCTATAT 1 CAGTCTATCT 1 CAGTCTCAGT 1 CAGTCTCTCA 3 CAGTCTGAGC 1 CAGTCTGCTT 1 CAGTCTGGGA 1 CAGTCTTTTG 1 CAGTGAACGG 1 CAGTGAATGA 1 CAGTGAGCCG 4 CAGTGAGCTA 1 CAGTGCAAAA 1 CAGTGCATTA 1 CAGTGCCAGG 1 CAGTGCCGTC 1 CAGTGCCTAA 1 CAGTGCTTCG 1 CAGTGGAATG 1 CAGTGGGGTT 2 CAGTGGGTGG 2 CAGTGGGTGT 3 CAGTGGTCTG 1 CAGTGGTGAA 2 CAGTGTAATA 1 CAGTGTATAT 1 CAGTGTCCGT 1 CAGTGTTCAC 1 CAGTGTTGGG 3 CAGTTAAATC 1 CAGTTAATAA 1 CAGTTACTTA 3 CAGTTAGGGA 1 CAGTTAGTAA 1 CAGTTATACT 1 CAGTTATATA 1 CAGTTCAGCA 1 CAGTTCCTGC 1 CAGTTCGTAA 1 CAGTTCTAAC 1 CAGTTCTCTG 3 CAGTTCTGTT 1 CAGTTGAGCG 1 CAGTTGCCAG 1 CAGTTGGTAC 1 CAGTTGGTGT 1 CAGTTGGTTG 7 CAGTTTAAAC 1 CAGTTTAGTT 1 CAGTTTCAGG 1 CAGTTTGCAT 2 CAGTTTGTAC 6 CAGTTTTCTA 1 CATAAAAACT 4 CATAAAAGTT 1 CATAAAGACT 1 CATAAAGTTT 1 CATAAATCTA 1 CATAAATGCA 1 CATAACCTTC 1 CATAACTAAA 1 CATAACTTAC 1 CATAAGAATC 1 CATAAGTTGT 1 CATAATTACG 1 CATAATTTCT 1 CATACAAAGA 1 CATACACACA 3 CATACACAGA 1 CATACACTCA 1 CATACAGAAA 2 CATACAGAAG 2 CATACATACC 1 CATACCATCC 1 CATACTAATG 1 CATACTATCA 1 CATACTCTGT 1 CATACTTCTC 1 CATACTTGGT 1 CATAGAAAAA 1 CATAGATGGA 2 CATAGCAATG 1 CATAGCATCC 1 CATAGCCTCT 1 CATAGGCACA 1 CATAGGCCTG 1 CATATAAACT 1 CATATAAGAG 1 CATATAATCC 1 CATATAATGC 1 CATATATGAT 1 CATATCATTA 5 CATATCTAAA 1 CATATCTAGA 1 CATATCTCAA 1 CATATGATCC 1 CATATGATGG 1 CATATGCCTG 1 CATATGTACT 1 CATATGTTTA 1 CATATGTTTT 1 CATATTATGT 1 CATATTTCAC 2 CATATTTTTT 1 CATCAAATCT 1 CATCAATGAG 1 CATCACAGTG 1 CATCACCACA 1 CATCACCGGC 1 CATCACGCTC 1 CATCACTACC 1 CATCACTTCT 1 CATCAGTAAA 1 CATCAGTAGC 1 CATCAGTCCT 1 CATCATAGCT 1 CATCATCACT 1 CATCATCTGG 1 CATCATTCCT 1 CATCATTGGC 1 CATCCAAAAC 4 CATCCAAGGC 1 CATCCACGTT 1 CATCCAGAGG 1 CATCCAGGGT 1 CATCCATCTG 1 CATCCATTGG 1 CATCCCCACC 1 CATCCCGTGA 3 CATCCCTGAT 1 CATCCGCAGG 1 CATCCTCTCT 1 CATCCTGATC 1 CATCCTGCTG 4 CATCCTGTGC 1 CATCCTTGGG 1 CATCCTTGTA 1 CATCGGCTAA 1 CATCGTGCGA 1 CATCGTGGTG 1 CATCTAAAAA 1 CATCTAAACT 2 CATCTAAGAA 1 CATCTAGAGG 2 CATCTAGCGG 1 CATCTAGCGT 1 CATCTATATT 1 CATCTATCCA 1 CATCTATTAC 1 CATCTCCTGT 1 CATCTCGGTG 1 CATCTCTAGC 1 CATCTCTAGT 4 CATCTCTCCC 1 CATCTGAGAC 1 CATCTGAGAT 1 CATCTGCGGA 2 CATCTGCTAT 1 CATCTGGGAA 1 CATCTGGTGT 2 CATCTGGTTC 1 CATCTGTAAA 1 CATCTGTAGT 1 CATCTGTGAG 3 CATCTTAAAT 2 CATCTTAAGA 2 CATCTTCACA 1 CATCTTCACC 5 CATCTTCTCC 1 CATCTTCTGT 1 CATCTTGGAG 1 CATCTTTAAG 2 CATCTTTTTA 1 CATTAAAGGG 2 CATTACTAAC 1 CATTACTGTA 1 CATTACTTCT 1 CATTAGCTAG 1 CATTAGGAGT 1 CATTAGGGCC 1 CATTAGGTGA 1 CATTATAACT 3 CATTATGATA 1 CATTATGCAA 1 CATTATTCAA 1 CATTATTTTA 1 CATTATTTTT 1 CATTCAATAG 1 CATTCACACG 1 CATTCACCAT 2 CATTCAGACC 1 CATTCAGCCA 1 CATTCAGTTG 1 CATTCCACAG 1 CATTCCAGCC 1 CATTCCGAGA 3 CATTCCTCCT 1 CATTCTAAGA 1 CATTCTACCA 1 CATTCTAGTC 1 CATTCTCACC 1 CATTCTCTTG 1 CATTCTGAGT 1 CATTCTGATG 1 CATTCTTCTC 1 CATTCTTGTA 1 CATTGAAGGG 4 CATTGCAGGA 2 CATTGCATTG 1 CATTGCTGCT 2 CATTGGCTTA 1 CATTGGGGAA 1 CATTGGTAGA 1 CATTGGTCGA 1 CATTGGTGTG 2 CATTGTAAAT 1 CATTGTAATT 2 CATTGTACAA 1 CATTGTACGA 1 CATTGTATGT 1 CATTGTCATA 1 CATTGTCTTC 1 CATTGTGGCG 1 CATTGTTTGT 1 CATTTACTCT 1 CATTTAGATT 2 CATTTATAAT 1 CATTTATATT 1 CATTTATCAT 2 CATTTCAAGT 1 CATTTCAATA 2 CATTTCAGAG 1 CATTTCATAA 4 CATTTCCTTA 1 CATTTCTGAC 1 CATTTCTTAT 1 CATTTGAAAC 1 CATTTGAAGC 1 CATTTGAATA 1 CATTTGAGAG 1 CATTTGCAAT 1 CATTTGCGAA 1 CATTTGCTAT 1 CATTTGGCCG 1 CATTTGGCGT 1 CATTTGGGAT 1 CATTTGGGTT 1 CATTTGGTAT 6 CATTTGTAAG 1 CATTTGTAAT 125 CATTTGTCAT 1 CATTTGTGAT 1 CATTTTACTG 1 CATTTTATTT 1 CATTTTCAGT 1 CATTTTGGCA 1 CATTTTGGGG 1 CATTTTTATA 1 CATTTTTTGG 1 CCAAAAAAAA 6 CCAAAAAACC 1 CCAAAAAAGT 1 CCAAAAACGG 4 CCAAAAAGTA 1 CCAAAAATTA 1 CCAAAACAGA 1 CCAAAACCCC 1 CCAAAAGAGT 1 CCAAAAGCTA 1 CCAAAAGCTC 1 CCAAAAGGTT 2 CCAAAATCTG 1 CCAAAATGCA 1 CCAAAATGTA 7 CCAAAATTAG 1 CCAAAATTCT 1 CCAAACACCA 1 CCAAACACTT 2 CCAAACAGTT 1 CCAAACCAAA 1 CCAAACCTTG 1 CCAAACGTGT 38 CCAAACTGCT 1 CCAAAGAAAT 2 CCAAAGAACT 1 CCAAAGAATG 1 CCAAAGCACT 1 CCAAAGCTAT 11 CCAAAGGCTG 1 CCAAAGTAGT 1 CCAAATAATT 1 CCAAATCAAG 1 CCAAATCCTA 1 CCAAATGATG 1 CCAAATGTAT 1 CCAAATGTGT 1 CCAAATTGAG 1 CCAAATTGTA 2 CCAAATTTAC 1 CCAAATTTAT 1 CCAACAAAAT 1 CCAACAAAGA 1 CCAACAACTA 2 CCAACAATCT 1 CCAACACAGC 1 CCAACACCAG 1 CCAACAGATG 1 CCAACAGCCT 1 CCAACAGGCC 1 CCAACATAAC 1 CCAACATCAT 1 CCAACATTAA 1 CCAACATTTC 1 CCAACCGTGC 2 CCAACCTTGG 1 CCAACTAGAA 1 CCAACTAGAT 1 CCAACTGCAC 1 CCAACTGCGG 1 CCAACTGGGC 1 CCAAGAAAGA 6 CCAAGAATGT 1 CCAAGACCCA 2 CCAAGAGACG 1 CCAAGAGGAA 1 CCAAGAGTGG 1 CCAAGCACCC 1 CCAAGCACTT 1 CCAAGCATCC 2 CCAAGCCCAT 1 CCAAGCTGCC 1 CCAAGCTGTC 1 CCAAGGAATG 1 CCAAGGAGTT 1 CCAAGGATTG 3 CCAAGGATTT 1 CCAAGGCCAA 1 CCAAGGGCCC 3 CCAAGGGTCC 1 CCAAGGTCAC 1 CCAAGGTCAG 1 CCAAGTGAAC 2 CCAAGTTCCG 4 CCAAGTTGTT 1 CCAAGTTTCT 1 CCAAGTTTTT 7 CCAATAAAGT 5 CCAATAATCC 1 CCAATCAAAC 1 CCAATCACCA 1 CCAATCATCC 1 CCAATCCCCT 1 CCAATCCTGA 8 CCAATCTCCA 1 CCAATCTCCT 1 CCAATCTTGT 1 CCAATGACCT 1 CCAATGCACG 1 CCAATGCACT 2 CCAATGCGTT 1 CCAATGCTAT 3 CCAATGGCCA 1 CCAATGGGCT 1 CCAATGTCTT 2 CCAATTCGGA 1 CCAATTGAAG 1 CCAATTGCAT 1 CCAATTTCAA 1 CCACAAATTC 2 CCACAACACT 1 CCACAACCTG 2 CCACAAGGTG 1 CCACAATCCT 1 CCACACAAGC 1 CCACACACCG 1 CCACACAGCC 1 CCACACCGGT 3 CCACACGCAG 1 CCACACGGGA 1 CCACACGTGA 1 CCACACTGCA 1 CCACAGAAAG 1 CCACAGCACA 1 CCACAGCACT 4 CCACAGCATT 1 CCACAGCCAC 1 CCACAGCCTA 1 CCACAGCCTG 1 CCACAGCTGA 1 CCACAGGAAA 1 CCACAGGAGA 7 CCACAGGGGA 4 CCACAGGTGC 1 CCACAGTACT 2 CCACAGTGAA 1 CCACAGTGCC 1 CCACAGTTTG 1 CCACATAGAA 1 CCACATATGC 1 CCACATTACA 1 CCACATTGGC 1 CCACCAAAAC 1 CCACCAAACT 1 CCACCAACAA 1 CCACCACACC 3 CCACCACACT 4 CCACCACATT 3 CCACCACGCC 2 CCACCACGCT 2 CCACCACGTA 1 CCACCACTCC 1 CCACCATTGT 1 CCACCCACTC 1 CCACCCCAGC 1 CCACCCCCAC 6 CCACCCCCGC 1 CCACCCCGAA 13 CCACCCTAAG 1 CCACCCTACT 1 CCACCCTCAT 2 CCACCCTGAA 1 CCACCGCACC 1 CCACCGCACT 15 CCACCGTACT 1 CCACCGTGTG 1 CCACCTAAGT 1 CCACCTAATC 1 CCACCTCCAA 3 CCACCTGACT 1 CCACCTGGAT 2 CCACCTTTCC 2 CCACGAAAGG 3 CCACGAAGCA 1 CCACGAGAGG 1 CCACGAGTAA 1 CCACGCGAAA 1 CCACGGATGA 1 CCACGGTGCT 1 CCACGTCCAT 1 CCACGTCCTA 1 CCACGTCTTT 1 CCACGTGGTC 1 CCACGTGTCC 1 CCACTAATGG 2 CCACTAATTT 1 CCACTACACT 14 CCACTACAGC 1 CCACTACATT 1 CCACTACCTT 1 CCACTAGAGT 1 CCACTAGCCC 1 CCACTATACC 1 CCACTATACT 2 CCACTATATT 1 CCACTATGCC 1 CCACTCAAGT 1 CCACTCACCC 1 CCACTCACTC 1 CCACTCACTG 1 CCACTCCTCA 2 CCACTCCTCC 1 CCACTCTGCT 1 CCACTCTGGC 1 CCACTCTGTG 1 CCACTCTTGA 1 CCACTGAACT 5 CCACTGAATT 2 CCACTGACTA 1 CCACTGACTC 1 CCACTGAGAT 1 CCACTGAGCA 2 CCACTGCAAT 1 CCACTGCACA 2 CCACTGCACC 14 CCACTGCACG 1 CCACTGCACT 352 CCACTGCAGC 1 CCACTGCAGT 4 CCACTGCATC 1 CCACTGCATT 21 CCACTGCCAC 1 CCACTGCCCT 13 CCACTGCCTC 1 CCACTGCGCT 9 CCACTGCTAC 1 CCACTGCTCT 11 CCACTGCTGC 1 CCACTGCTTC 1 CCACTGGACT 4 CCACTGGCAT 1 CCACTGTACA 2 CCACTGTACC 1 CCACTGTACT 28 CCACTGTATT 1 CCACTGTGCC 1 CCACTGTGCT 3 CCACTGTGTT 1 CCACTTACGA 1 CCACTTACTC 1 CCACTTATTC 1 CCACTTCACT 5 CCACTTCCTC 1 CCACTTCTCT 1 CCACTTGCAC 1 CCACTTTGCA 1 CCAGAAAATC 3 CCAGAAACTG 1 CCAGAAAGAT 1 CCAGAACAGA 40 CCAGAACAGC 1 CCAGAAGCTG 1 CCAGAATCCT 1 CCAGAATGCT 1 CCAGACACAT 1 CCAGACACTG 1 CCAGACAGCT 1 CCAGACCAGA 1 CCAGACTGAA 1 CCAGAGAAAA 2 CCAGAGAACT 13 CCAGAGACTT 1 CCAGAGAGTT 1 CCAGAGATAT 1 CCAGAGCAGA 1 CCAGAGCCGG 1 CCAGAGCTCT 1 CCAGAGGAAA 1 CCAGAGGCTA 1 CCAGAGGCTG 67 CCAGAGGTAG 1 CCAGAGGTGC 1 CCAGAGGTGT 1 CCAGAGTCTC 2 CCAGATAGAT 1 CCAGATGAAA 1 CCAGATGTAC 1 CCAGATTTTG 2 CCAGCAAGAG 2 CCAGCACGCC 1 CCAGCAGACC 1 CCAGCAGCTA 1 CCAGCAGTAA 1 CCAGCCACTG 1 CCAGCCAGAA 1 CCAGCCCCAT 1 CCAGCCCCGT 6 CCAGCCCGGG 1 CCAGCCCTAC 1 CCAGCCCTGG 1 CCAGCCGGGG 1 CCAGCCTGGA 2 CCAGCCTGGG 13 CCAGCCTTCA 1 CCAGCCTTGG 1 CCAGCGCACC 1 CCAGCGCAGC 1 CCAGCGGAGA 1 CCAGCGGCCC 1 CCAGCGGCCG 1 CCAGCTACAA 1 CCAGCTACTC 1 CCAGCTCAAT 1 CCAGCTGAGG 1 CCAGCTGCCA 9 CCAGCTGCCC 1 CCAGCTGCCT 1 CCAGCTGCGA 1 CCAGCTGTTG 1 CCAGCTTGAT 1 CCAGCTTGGG 1 CCAGGAACAA 2 CCAGGAAGGG 1 CCAGGACAAC 1 CCAGGACAGA 1 CCAGGACTGA 1 CCAGGACTGC 1 CCAGGAGAAT 1 CCAGGAGGAA 8 CCAGGAGGAC 1 CCAGGAGGGA 1 CCAGGATTTC 1 CCAGGCACAG 1 CCAGGCACCA 1 CCAGGCACGC 6 CCAGGCACTG 2 CCAGGCCAGC 1 CCAGGCCCCA 1 CCAGGCGGCG 1 CCAGGCGTCA 4 CCAGGCGTGG 1 CCAGGCTAAT 1 CCAGGCTGCG 3 CCAGGGACAG 1 CCAGGGAGAA 1 CCAGGGAGAT 2 CCAGGGCAAC 10 CCAGGGGAGA 20 CCAGGGGAGG 1 CCAGGGGCCA 1 CCAGGGGGCA 2 CCAGGGGGCC 1 CCAGGGTGGG 1 CCAGGTACCA 1 CCAGGTCATT 1 CCAGGTCCAC 1 CCAGGTCCTA 1 CCAGGTCCTG 1 CCAGGTGAGG 1 CCAGGTGCTG 1 CCAGGTGGAA 1 CCAGGTGTGG 1 CCAGGTTCTG 1 CCAGTAAAAT 1 CCAGTAACCC 4 CCAGTAAGAA 1 CCAGTAATCC 4 CCAGTAATGC 1 CCAGTACACT 1 CCAGTAGAAG 2 CCAGTAGGTA 1 CCAGTCAGAA 2 CCAGTCAGAT 1 CCAGTCAGGA 1 CCAGTCCGCC 6 CCAGTCTACG 1 CCAGTGACTT 1 CCAGTGAGGG 1 CCAGTGATCC 1 CCAGTGCAAC 1 CCAGTGCACT 7 CCAGTGGCCC 8 CCAGTGGCCT 1 CCAGTGGCTC 4 CCAGTGGCTG 1 CCAGTGGGAA 1 CCAGTGGGAT 1 CCAGTGGGCC 1 CCAGTGGTCC 1 CCAGTGGTCT 1 CCAGTGTAGC 1 CCAGTGTATT 1 CCAGTTCCTG 3 CCAGTTCTCA 1 CCAGTTGGAA 1 CCAGTTGGCA 1 CCAGTTTCTT 1 CCAGTTTGTA 2 CCAGTTTTTA 1 CCATAAAGAT 1 CCATAACAGA 1 CCATAACTGT 1 CCATAATGTT 1 CCATACAGAA 1 CCATACCCAA 1 CCATACGTTC 1 CCATACTCAC 1 CCATACTGCC 1 CCATAGAACT 1 CCATAGCACT 1 CCATAGGTTG 1 CCATCAACCA 1 CCATCAAGCC 1 CCATCACACC 1 CCATCACAGC 1 CCATCACTGC 2 CCATCAGTGT 2 CCATCATCCG 1 CCATCCAGTG 3 CCATCCTCCT 1 CCATCCTGAA 1 CCATCCTGCC 1 CCATCCTGGG 1 CCATCCTTGT 2 CCATCGAAAC 1 CCATCGAGAC 1 CCATCGCACT 2 CCATCGGGTA 1 CCATCGTCCT 9 CCATCTTCCT 1 CCATCTTGGA 1 CCATCTTGGG 1 CCATTAAAAA 1 CCATTAAAAC 1 CCATTACACG 1 CCATTACACT 3 CCATTACGCT 1 CCATTAGACT 1 CCATTATACC 1 CCATTCCATT 1 CCATTCCCCA 1 CCATTCTCCT 8 CCATTCTCTT 1 CCATTCTTCT 2 CCATTGAAAC 2 CCATTGAACT 1 CCATTGCAAT 1 CCATTGCACC 1 CCATTGCACT 106 CCATTGCAGT 4 CCATTGCATT 6 CCATTGCCAC 1 CCATTGCCCT 1 CCATTGCGCT 3 CCATTGCTCT 1 CCATTGGACT 1 CCATTGGTCA 1 CCATTGGTGA 1 CCATTGTACC 1 CCATTGTACT 9 CCATTTCTCC 1 CCATTTCTGC 1 CCATTTGAGG 1 CCATTTGTCA 1 CCATTTTCTG 3 CCATTTTGGT 1 CCATTTTTAC 10 CCCAAACCAC 1 CCCAAACGGT 1 CCCAAACTTT 1 CCCAAAGACA 2 CCCAAAGCAC 2 CCCAAAGGGA 1 CCCAACATCC 1 CCCAACATCT 1 CCCAACCACA 1 CCCAACCCCT 2 CCCAACGCGC 2 CCCAACGTCC 2 CCCAACGTGG 1 CCCAAGAATA 1 CCCAAGACAA 1 CCCAAGAGAA 2 CCCAAGCTAG 7 CCCAAGGGTT 1 CCCAAGGTCA 2 CCCAAGTCAC 1 CCCAAGTGCC 1 CCCAATCAAA 1 CCCAATGATG 1 CCCAATGCAA 1 CCCAATGGTC 1 CCCAATGTGT 1 CCCAATTTTC 1 CCCACAAACC 1 CCCACAATCC 1 CCCACACCCT 1 CCCACACTAC 7 CCCACAGCCA 1 CCCACAGCTG 1 CCCACATTCA 1 CCCACCACCC 1 CCCACCAGGA 2 CCCACCCGAA 1 CCCACCCTTG 2 CCCACCGGTG 2 CCCACCGTCC 2 CCCACCTCAA 1 CCCACCTCCC 1 CCCACCTGCC 2 CCCACCTGCT 1 CCCACCTTTT 1 CCCACGATTA 1 CCCACGGTTA 3 CCCACGTAAA 1 CCCACGTACA 1 CCCACGTCCT 4 CCCACTCCCG 1 CCCACTGACC 1 CCCACTGCAC 1 CCCACTGCCA 1 CCCACTGTTA 1 CCCACTTGTA 1 CCCAGAAACA 1 CCCAGAACCA 2 CCCAGAAGGA 1 CCCAGAATAC 1 CCCAGAGACT 1 CCCAGAGGTC 1 CCCAGATAAT 1 CCCAGATGAT 3 CCCAGATTTC 1 CCCAGCAAAT 1 CCCAGCAAGA 1 CCCAGCCAAC 2 CCCAGCCAAG 1 CCCAGCCAAT 3 CCCAGCCACA 2 CCCAGCCACT 2 CCCAGCCAGC 3 CCCAGCCAGT 2 CCCAGCCATT 1 CCCAGCCCCA 1 CCCAGCCCCT 1 CCCAGCCGTG 1 CCCAGCCTAA 2 CCCAGCCTAC 1 CCCAGCCTAG 1 CCCAGCCTAT 2 CCCAGCCTCC 1 CCCAGCCTCT 1 CCCAGCCTGA 1 CCCAGCCTGG 1 CCCAGCCTTC 1 CCCAGCCTTG 1 CCCAGCGTCC 2 CCCAGCTAAC 2 CCCAGCTAAT 17 CCCAGCTAGT 1 CCCAGCTGCA 1 CCCAGCTGGA 2 CCCAGCTGTC 1 CCCAGCTTCA 1 CCCAGGAAGG 1 CCCAGGCACC 1 CCCAGGCAGT 1 CCCAGGCTCC 1 CCCAGGGAGA 3 CCCAGGGCGG 1 CCCAGGGCTG 1 CCCAGGGGCA 1 CCCAGGGGCT 1 CCCAGGGGTC 1 CCCAGGGTCC 1 CCCAGGTAGC 1 CCCAGGTCAC 2 CCCAGGTGTC 1 CCCAGGTGTT 1 CCCAGTCAAT 1 CCCAGTGAGG 1 CCCAGTGCCT 2 CCCAGTGGCT 1 CCCAGTGTCG 1 CCCAGTTAAC 1 CCCAGTTAAT 3 CCCAGTTCTT 1 CCCAGTTGTA 1 CCCATAATCC 2 CCCATAATCT 2 CCCATAATTG 1 CCCATACACC 1 CCCATAGACC 1 CCCATAGCCT 1 CCCATAGGTC 1 CCCATAGTAA 1 CCCATAGTCC 5 CCCATATAAG 1 CCCATATCCC 2 CCCATCAATA 1 CCCATCAATG 1 CCCATCATCC 10 CCCATCCAAA 1 CCCATCCGAA 17 CCCATCCGAC 1 CCCATCCGCA 1 CCCATCCGGA 2 CCCATCGACC 3 CCCATCGCCC 10 CCCATCGCCT 1 CCCATCGGCC 5 CCCATCGGCT 1 CCCATCGGTC 3 CCCATCGTAC 1 CCCATCGTCA 4 CCCATCGTCC 1236 CCCATCGTCG 2 CCCATCGTCT 7 CCCATCGTGG 1 CCCATCGTTC 6 CCCATTAAGC 1 CCCATTCACT 3 CCCATTCCTC 2 CCCATTCGGA 2 CCCATTCGTC 2 CCCATTGCAC 2 CCCATTGTCC 7 CCCCAAAAAT 1 CCCCAAACAT 1 CCCCAAACTC 1 CCCCAACACA 1 CCCCAACACC 1 CCCCAACTAG 1 CCCCAAGACA 1 CCCCAAGACC 2 CCCCAAGCCC 1 CCCCAATACA 1 CCCCAATCCA 1 CCCCACACGT 1 CCCCACCCGC 1 CCCCACCTAA 2 CCCCACCTCT 1 CCCCACTAAA 1 CCCCACTGCA 1 CCCCAGACCG 1 CCCCAGCCAG 18 CCCCAGCCCC 2 CCCCAGGAGA 2 CCCCAGGCTC 1 CCCCAGTCGC 1 CCCCAGTCGG 1 CCCCAGTGAG 1 CCCCAGTGTA 1 CCCCAGTTGC 24 CCCCAGTTTC 1 CCCCATACAT 1 CCCCATAGAC 1 CCCCATCGGC 1 CCCCATCGTC 4 CCCCATTAAG 1 CCCCATTTCA 1 CCCCCAAACT 2 CCCCCAAGTC 1 CCCCCAATGC 6 CCCCCACCTA 15 CCCCCACTTC 1 CCCCCAGAGA 1 CCCCCAGCAC 1 CCCCCAGCTA 1 CCCCCAGGAG 1 CCCCCAGGCC 2 CCCCCATTCC 1 CCCCCCACAC 1 CCCCCCACAG 1 CCCCCCACTC 2 CCCCCCCCAC 1 CCCCCCCTTT 1 CCCCCCGGAG 1 CCCCCCGTCG 1 CCCCCCTTCT 2 CCCCCGAACA 1 CCCCCGAACG 1 CCCCCGAAGC 8 CCCCCGACAG 1 CCCCCGACAT 2 CCCCCGCGGA 12 CCCCCGGAGC 1 CCCCCGTAAT 2 CCCCCGTGAA 10 CCCCCGTTGC 1 CCCCCTACAT 1 CCCCCTCCGG 3 CCCCCTCCTT 1 CCCCCTCGTG 1 CCCCCTGCCC 2 CCCCCTGCCG 1 CCCCCTGCTC 1 CCCCCTGGAT 38 CCCCCTTACT 1 CCCCCTTGCA 2 CCCCGAACAT 1 CCCCGAATCC 1 CCCCGACACA 1 CCCCGACACG 2 CCCCGACATC 10 CCCCGAGGGC 2 CCCCGATCTT 3 CCCCGCACAT 1 CCCCGCAGCT 2 CCCCGCCAAG 6 CCCCGCCCTT 1 CCCCGCCTCA 1 CCCCGCTCTT 1 CCCCGCTGAG 1 CCCCGCTGTA 1 CCCCGGAAAA 1 CCCCGGACAT 1 CCCCGGACCC 1 CCCCGGCCAC 2 CCCCGGCCCT 2 CCCCGGCTAT 1 CCCCGGGCCC 1 CCCCGGTACA 1 CCCCGTAAAA 1 CCCCGTAAAT 1 CCCCGTAATC 4 CCCCGTACAA 2 CCCCGTACAC 9 CCCCGTACCT 1 CCCCGTACGC 1 CCCCGTACGT 2 CCCCGTACTC 2 CCCCGTAGGT 1 CCCCGTATCG 1 CCCCGTATGG 2 CCCCGTCATC 1 CCCCGTCCAT 1 CCCCGTCCGG 1 CCCCGTCTCC 1 CCCCGTGCAG 1 CCCCGTGCAT 1 CCCCTAAAAT 1 CCCCTAAACC 1 CCCCTAATAA 1 CCCCTAATCC 4 CCCCTAATTG 2 CCCCTAATTT 1 CCCCTACACG 1 CCCCTACATC 4 CCCCTATCAT 1 CCCCTATTAC 1 CCCCTCAGTT 1 CCCCTCCCCA 2 CCCCTCCCCC 1 CCCCTCCCTC 6 CCCCTCCGGA 1 CCCCTCGTAC 1 CCCCTCGTCC 3 CCCCTCTGAG 4 CCCCTGACCT 1 CCCCTGAGCC 1 CCCCTGCACT 5 CCCCTGCTGT 1 CCCCTGGCAT 1 CCCCTGGCTC 1 CCCCTGGGCG 1 CCCCTGGGTG 1 CCCCTGTAAA 1 CCCCTGTAAT 1 CCCCTGTACA 1 CCCCTTAACA 1 CCCCTTAATG 1 CCCCTTATTA 1 CCCCTTATTT 1 CCCCTTCTTC 1 CCCCTTGGGC 1 CCCCTTGGGT 2 CCCCTTTAGG 1 CCCCTTTCCC 1 CCCCTTTTCC 1 CCCGACATCG 1 CCCGACGTGC 9 CCCGAGGGCC 1 CCCGCAAGAT 1 CCCGCACCTG 1 CCCGCCCATT 1 CCCGCCCCCT 1 CCCGCCCGGA 2 CCCGCCTCTT 1 CCCGCCTGGC 2 CCCGCTCTTG 1 CCCGGAAACA 1 CCCGGACATC 1 CCCGGACTTC 1 CCCGGAGAAA 1 CCCGGAGCCT 1 CCCGGATGAG 1 CCCGGCCAAG 1 CCCGGCCAAT 3 CCCGGCCACA 1 CCCGGCCACC 1 CCCGGCCACT 2 CCCGGCCAGG 1 CCCGGCCATA 1 CCCGGCCCAA 1 CCCGGCCCTA 1 CCCGGCCGCC 1 CCCGGCCTAG 1 CCCGGCCTAT 1 CCCGGCCTCT 1 CCCGGCCTGA 1 CCCGGCCTGT 1 CCCGGCGACA 1 CCCGGCTAAT 10 CCCGGCTACT 1 CCCGGCTCCT 9 CCCGGCTCTT 1 CCCGGCTGAG 1 CCCGGCTTTC 1 CCCGGGAGCG 3 CCCGGGCCCC 2 CCCGGGGCCT 1 CCCGGGGGGA 1 CCCGGTCTGG 1 CCCGGTCTTT 1 CCCGGTGGCG 1 CCCGTAATCC 8 CCCGTAATCG 3 CCCGTAATTC 1 CCCGTACAAA 1 CCCGTACACG 1 CCCGTACATC 9 CCCGTACTCC 1 CCCGTAGTCC 1 CCCGTCAGCC 2 CCCGTCAGGA 2 CCCGTCATCG 1 CCCGTCCGGA 124 CCCGTCCGGG 1 CCCGTCGTCC 8 CCCGTGACAT 1 CCCGTGATAG 1 CCCGTGATCC 2 CCCGTGATTC 1 CCCGTGTATG 2 CCCGTTATCC 1 CCCGTTTCCC 1 CCCTAAAAAG 1 CCCTAACCTA 1 CCCTAAGCCA 1 CCCTAAGGAT 1 CCCTAATTAA 1 CCCTAATTGG 1 CCCTACAACG 3 CCCTACTCAC 1 CCCTAGACTA 1 CCCTAGAGTG 1 CCCTAGCCTT 1 CCCTAGGTTG 11 CCCTATAAGC 2 CCCTATCACA 5 CCCTATCGCC 1 CCCTATTAGC 6 CCCTATTTAC 1 CCCTATTTAG 1 CCCTCACAGA 1 CCCTCACTCC 2 CCCTCAGCAG 1 CCCTCAGGCA 1 CCCTCAGGTG 1 CCCTCATCCC 3 CCCTCATCTG 1 CCCTCCAGCA 1 CCCTCCATTT 3 CCCTCCCAGC 1 CCCTCCCCTC 1 CCCTCCCGAA 7 CCCTCCCGGC 1 CCCTCCCTGT 1 CCCTCCTCCC 1 CCCTCCTCTC 1 CCCTCCTGCT 2 CCCTCCTGGA 3 CCCTCCTGGG 3 CCCTCCTGTC 1 CCCTCCTTTC 1 CCCTCGCATT 1 CCCTCGCCTG 1 CCCTCGCGGA 1 CCCTCGGTTC 1 CCCTCTCCCA 1 CCCTCTCTCA 1 CCCTCTCTGT 6 CCCTCTCTTT 1 CCCTCTGTCA 1 CCCTCTGTGA 8 CCCTCTGTGT 1 CCCTCTTGGT 1 CCCTCTTTGG 1 CCCTGAAGAG 1 CCCTGAATCC 2 CCCTGAGAAC 1 CCCTGAGGCC 1 CCCTGATCTT 1 CCCTGATTCT 1 CCCTGATTTT 6 CCCTGCACTC 1 CCCTGCCACT 1 CCCTGCCCCA 2 CCCTGCCTGG 1 CCCTGCCTTG 6 CCCTGCGGGG 1 CCCTGCGGTC 3 CCCTGCTAAT 1 CCCTGCTATC 2 CCCTGCTCAC 1 CCCTGCTCCT 2 CCCTGCTTCC 1 CCCTGGAATC 1 CCCTGGAGAC 3 CCCTGGCAAT 5 CCCTGGCAGG 3 CCCTGGCCCC 1 CCCTGGGAGG 1 CCCTGGGATG 1 CCCTGGGCGG 1 CCCTGGGTTC 46 CCCTGGTGGG 3 CCCTGGTTGA 1 CCCTGTAATA 2 CCCTGTAATC 3 CCCTGTACCT 1 CCCTGTAGTA 1 CCCTGTAGTC 2 CCCTGTCTCC 1 CCCTGTCTTC 1 CCCTGTGATC 1 CCCTGTGGCC 1 CCCTGTGTTC 1 CCCTGTTTAA 1 CCCTGTTTTA 1 CCCTTAAAAT 1 CCCTTAACTC 1 CCCTTAAGCC 1 CCCTTAATCC 1 CCCTTAATTG 1 CCCTTAGCAA 3 CCCTTAGCTA 1 CCCTTAGCTT 3 CCCTTATGGG 1 CCCTTATTAA 4 CCCTTATTGG 1 CCCTTCAAAC 1 CCCTTCAAAT 1 CCCTTCACTG 2 CCCTTCAGTC 1 CCCTTCCCCG 6 CCCTTCCGAG 1 CCCTTCGAGA 1 CCCTTCGGCA 1 CCCTTCGTCC 2 CCCTTCTGCC 5 CCCTTCTGCG 1 CCCTTCTTCC 1 CCCTTGACCC 3 CCCTTGAGGA 1 CCCTTGATGT 1 CCCTTGCACT 5 CCCTTGCCAT 1 CCCTTGGCCA 4 CCCTTGGCCC 1 CCCTTGGCGT 1 CCCTTGTGAC 5 CCCTTTAACA 1 CCCTTTAAGC 1 CCCTTTCTTT 1 CCCTTTGCAA 1 CCCTTTGCGC 1 CCCTTTGCTG 1 CCCTTTTAAG 1 CCCTTTTTCA 2 CCGAAAAAGT 1 CCGAAACACA 1 CCGAAACCCC 2 CCGAAAGATA 1 CCGAACCTCC 1 CCGAACTCTG 1 CCGAAGCCCC 1 CCGAAGCCTC 1 CCGAAGCTTG 1 CCGACCACAA 1 CCGACCTGCA 1 CCGACCTGTG 1 CCGACGGGCG 13 CCGACGTCTC 1 CCGACGTGCC 1 CCGACTTTCT 2 CCGAGATCTC 1 CCGAGATGAA 1 CCGAGCAACT 1 CCGAGCTGCC 1 CCGAGCTGTA 1 CCGAGGAGTT 1 CCGAGGCAGG 1 CCGAGGCCAG 1 CCGAGGCTGC 1 CCGAGGCTTG 1 CCGAGGTCAC 1 CCGAGGTCTG 1 CCGAGTTGGT 1 CCGATAATCC 1 CCGATAGCCA 2 CCGATATTGC 1 CCGATCACCG 5 CCGATCCTGA 1 CCGATGACCA 1 CCGATGAGCG 1 CCGATGTTCA 2 CCGCAAAAAA 1 CCGCAACCCC 1 CCGCACCACT 1 CCGCAGCCTC 1 CCGCAGGCTT 1 CCGCATCTCC 1 CCGCCACACT 1 CCGCCACGCC 1 CCGCCACGCT 1 CCGCCACTTA 1 CCGCCAGCTA 1 CCGCCATCCT 1 CCGCCATTCG 1 CCGCCCACCC 1 CCGCCCCCAG 2 CCGCCCCCCC 1 CCGCCCGGGC 1 CCGCCCTTCG 1 CCGCCGAAGT 6 CCGCCGCGCT 1 CCGCCTTAAT 1 CCGCCTTCTC 2 CCGCGCCCTG 1 CCGCGGCTAA 1 CCGCGTGATC 1 CCGCTCCTCA 1 CCGCTGATCC 3 CCGCTGCACT 30 CCGCTGCAGC 1 CCGCTGCATT 1 CCGCTGCCCT 1 CCGCTGCGTG 2 CCGCTGCTTG 4 CCGCTGGACC 1 CCGCTGTAAA 1 CCGCTTATAA 1 CCGCTTATCT 1 CCGCTTCCTT 2 CCGCTTCTGC 3 CCGGAACAAA 1 CCGGAATGTG 2 CCGGAGGCTG 1 CCGGCAAACG 1 CCGGCACAGT 1 CCGGCACGAC 1 CCGGCCAAAG 1 CCGGCCAGCG 2 CCGGCCCTAC 3 CCGGCCGGGA 1 CCGGCGCGTG 3 CCGGCGTGAC 1 CCGGCTCTGG 1 CCGGGACAAC 1 CCGGGCCAAC 1 CCGGGCGCAG 1 CCGGGCGCGC 1 CCGGGCTAAT 2 CCGGGGAGCA 1 CCGGGGCAAC 1 CCGGGGCAAT 4 CCGGGGCCTG 1 CCGGGGGGCC 3 CCGGGTAACA 1 CCGGGTGATG 3 CCGGGTGCCC 1 CCGGGTTAAT 1 CCGGTAATCC 4 CCGGTACCCC 1 CCGGTACTTT 1 CCGGTAGTCC 4 CCGGTGCACT 1 CCGGTGGCCC 2 CCGGTTCCCG 1 CCGTACAAAG 1 CCGTACCCAG 1 CCGTACGCGC 1 CCGTAGGTCA 1 CCGTAGTGCC 7 CCGTCATCCT 3 CCGTCATCTT 1 CCGTCCAAAG 1 CCGTCCAAGG 38 CCGTCCAAGT 1 CCGTCCACGG 1 CCGTCCGAGG 2 CCGTCGAGAT 1 CCGTCGGGCC 1 CCGTCTATGG 1 CCGTCTCAAG 1 CCGTCTTGCT 1 CCGTCTTTGC 1 CCGTGAAAAA 3 CCGTGAGCTA 1 CCGTGCCATT 1 CCGTGCGTGC 1 CCGTGCTCAT 2 CCGTGGGTTC 1 CCGTGGTCAC 5 CCGTGGTCCC 1 CCGTGGTCGC 1 CCGTGGTCGT 16 CCGTGTAATA 1 CCGTGTTGAT 1 CCGTTATCCT 1 CCGTTCCTTT 1 CCGTTCTCCT 2 CCGTTCTGGA 2 CCGTTGACTC 1 CCGTTGCACT 4 CCGTTGGTTT 2 CCGTTTAGCA 1 CCGTTTCCTG 1 CCGTTTTGTA 1 CCTAAAAAAA 1 CCTAAAATCC 1 CCTAAACCGT 1 CCTAAACGCT 1 CCTAAAGAGA 1 CCTAAAGCCT 1 CCTAAAGCTC 1 CCTAACAGTA 1 CCTAACGAGA 1 CCTAACTGAC 1 CCTAAGAATT 1 CCTAAGCTAG 1 CCTAAGGAGG 1 CCTAAGGCAA 1 CCTAAGGCTA 2 CCTAAGGGAG 1 CCTAATAGGA 1 CCTAATAGTT 1 CCTAATGTGT 1 CCTAATTAAG 1 CCTACAATCC 1 CCTACAGATA 1 CCTACAGCTA 1 CCTACAGTAT 1 CCTACAGTCC 2 CCTACATAGT 1 CCTACCACAG 3 CCTACCACCA 1 CCTACCAGAG 1 CCTACCTAAC 1 CCTACCTGCC 1 CCTACTAACA 1 CCTACTCAGG 1 CCTACTGGAG 2 CCTACTGGAT 1 CCTACTGTAA 1 CCTACTTACT 1 CCTACTTTGG 1 CCTAGAGGGA 1 CCTAGAGTAC 1 CCTAGCCGAG 1 CCTAGCCTAG 1 CCTAGCTGAT 1 CCTAGCTGGA 66 CCTAGCTGGG 1 CCTAGCTGTG 1 CCTAGGACAT 1 CCTAGGACCT 1 CCTAGGATAT 1 CCTAGGCCTT 1 CCTAGGCTGG 2 CCTAGGTGAC 1 CCTAGGTGGA 1 CCTAGTAAAA 2 CCTAGTGTGA 1 CCTAGTTGAT 1 CCTAGTTTTG 1 CCTATAACCC 1 CCTATAAGCC 1 CCTATAATAA 1 CCTATAATCC 43 CCTATAATCT 3 CCTATAATGC 1 CCTATAATTC 2 CCTATAGTAC 1 CCTATAGTCA 1 CCTATAGTCC 15 CCTATAGTTC 1 CCTATATATT 1 CCTATATTCC 1 CCTATCATCT 1 CCTATCGCTC 1 CCTATCGTCC 3 CCTATCTACT 1 CCTATCTCTA 1 CCTATGAATA 1 CCTATGACCC 1 CCTATGATCT 1 CCTATGCAGC 1 CCTATGCGTT 1 CCTATGTAAG 2 CCTATGTAGT 1 CCTATGTCCC 1 CCTATGTCCT 2 CCTATTAAGC 4 CCTATTAATC 1 CCTATTATCC 1 CCTATTCACA 1 CCTATTCTCC 1 CCTATTCTGC 1 CCTATTGTTT 1 CCTATTTACC 1 CCTATTTACT 14 CCTATTTAGA 1 CCTCAAAAAA 1 CCTCAAAAGA 1 CCTCAATTGA 1 CCTCACGATA 1 CCTCACTCGT 1 CCTCACTGAG 1 CCTCACTTTC 1 CCTCACTTTT 1 CCTCAGACTA 1 CCTCAGATGT 1 CCTCAGCACT 1 CCTCAGCATA 1 CCTCAGCCAC 1 CCTCAGCCCG 3 CCTCAGCCCT 2 CCTCAGCCTC 3 CCTCAGGATA 108 CCTCAGGATG 1 CCTCAGGCTC 1 CCTCAGTATA 3 CCTCAGTATG 1 CCTCAGTCGG 1 CCTCAGTGGA 1 CCTCATACAG 1 CCTCATCCAG 2 CCTCATTCTG 1 CCTCCAAATG 1 CCTCCAACTA 1 CCTCCAATAA 1 CCTCCAATCC 2 CCTCCACCCT 1 CCTCCACCTA 12 CCTCCAGACT 1 CCTCCAGCAG 5 CCTCCAGCAT 1 CCTCCAGCCA 1 CCTCCAGCCC 1 CCTCCAGCTA 147 CCTCCAGCTT 1 CCTCCAGGCC 1 CCTCCAGGGA 1 CCTCCAGGTT 1 CCTCCAGTAC 4 CCTCCAGTTA 1 CCTCCCAACT 1 CCTCCCAAGA 1 CCTCCCAAGG 1 CCTCCCACAC 2 CCTCCCACCT 1 CCTCCCAGAA 1 CCTCCCAGCA 4 CCTCCCCAGA 1 CCTCCCCCGT 3 CCTCCCCGAT 1 CCTCCCCTGC 1 CCTCCCGCAC 1 CCTCCCGCCC 1 CCTCCCGGCG 1 CCTCCCTCCC 1 CCTCCCTCTC 1 CCTCCCTGAT 7 CCTCCGGATA 1 CCTCCTAAGA 1 CCTCCTATCT 1 CCTCCTCCCT 1 CCTCCTCCGA 1 CCTCCTCCTG 2 CCTCCTCTGA 1 CCTCCTCTGC 1 CCTCCTCTGG 1 CCTCCTGCCC 3 CCTCCTGGAT 1 CCTCCTGTTC 1 CCTCCTTGCC 1 CCTCCTTTCT 1 CCTCCTTTTT 1 CCTCGCCCGC 1 CCTCGCTCAG 4 CCTCGCTCAT 1 CCTCGCTTCC 2 CCTCGGAAAA 18 CCTCGGAAGA 1 CCTCGGAATG 1 CCTCGGAGAT 2 CCTCGGCGAA 1 CCTCGGGCCA 1 CCTCGGTCAT 1 CCTCGTATGA 1 CCTCGTGGAG 1 CCTCGTGGGA 1 CCTCTAACCC 1 CCTCTAATCC 2 CCTCTAATCT 3 CCTCTAGACC 1 CCTCTAGTCC 5 CCTCTCAGGG 1 CCTCTCATCT 1 CCTCTCCAAA 1 CCTCTCCTCC 6 CCTCTCGACC 1 CCTCTCTACT 1 CCTCTCTTCA 1 CCTCTCTTTC 1 CCTCTCTTTG 1 CCTCTGAGGC 2 CCTCTGAGTC 1 CCTCTGATAT 1 CCTCTGATTG 1 CCTCTGCAAA 1 CCTCTGCACT 8 CCTCTGCATT 1 CCTCTGGAGG 4 CCTCTGGAGT 1 CCTCTGGGAA 1 CCTCTGGGCC 1 CCTCTGGGGT 2 CCTCTGGTAC 1 CCTCTGGTCC 1 CCTCTGGTCT 1 CCTCTGGTGT 1 CCTCTGTAAG 1 CCTCTGTAAT 1 CCTCTGTACT 2 CCTCTGTCTC 1 CCTCTGTGTG 1 CCTCTTCAGG 3 CCTCTTGGCC 1 CCTCTTGGGA 1 CCTCTTTCCA 1 CCTGAAACAT 1 CCTGAAACCC 1 CCTGAAAGGC 1 CCTGAAATCC 3 CCTGAAATCG 1 CCTGAAATTT 4 CCTGAACCAA 2 CCTGAACCAG 1 CCTGAACCCA 1 CCTGAACTGG 3 CCTGAAGAAG 3 CCTGAAGCCC 1 CCTGAAGTCC 1 CCTGAATCCC 1 CCTGAATCTG 1 CCTGACCAGA 1 CCTGACCCCG 1 CCTGACCTAA 1 CCTGACGGAT 1 CCTGACGGCA 1 CCTGACTGCA 1 CCTGACTGGT 1 CCTGAGAAAG 1 CCTGAGAAGA 1 CCTGAGAATT 1 CCTGAGACGT 1 CCTGAGACTA 1 CCTGAGACTT 1 CCTGAGATAG 1 CCTGAGCCCG 8 CCTGAGCTTG 1 CCTGAGGATA 1 CCTGAGGCCC 1 CCTGAGGGCA 2 CCTGAGGGTA 3 CCTGAGGTCA 1 CCTGAGTAAG 1 CCTGAGTCCT 1 CCTGAGTGCA 1 CCTGATAATT 1 CCTGATGAAG 2 CCTGATGAGC 1 CCTGATGATT 1 CCTGATGGCA 1 CCTGATGTAG 1 CCTGCAACCC 1 CCTGCAATCA 1 CCTGCAATCC 17 CCTGCAATTC 1 CCTGCACACT 1 CCTGCACGCC 1 CCTGCAGAGA 1 CCTGCAGTAC 1 CCTGCAGTCA 1 CCTGCAGTCC 7 CCTGCAGTCT 2 CCTGCAGTGT 1 CCTGCAGTTC 2 CCTGCCAAAG 2 CCTGCCACCA 1 CCTGCCATCC 1 CCTGCCATCT 1 CCTGCCCACC 2 CCTGCCCCAT 1 CCTGCCCCCA 1 CCTGCCCCCC 4 CCTGCCCCTT 3 CCTGCCCTCC 1 CCTGCCCTGC 1 CCTGCCCTTC 1 CCTGCCGCAG 1 CCTGCCGTCG 3 CCTGCCTAGG 1 CCTGCCTCTT 1 CCTGCCTGTA 1 CCTGCCTTTT 1 CCTGCGCCAC 1 CCTGCGGAAC 1 CCTGCGGACT 1 CCTGCTCAGC 1 CCTGCTCCCT 4 CCTGCTCTAT 1 CCTGCTGCAG 9 CCTGCTGCCG 1 CCTGCTGCTA 1 CCTGCTGGGG 1 CCTGCTGTGA 1 CCTGCTTGCA 1 CCTGCTTGTC 5 CCTGCTTTAC 1 CCTGGAAACC 1 CCTGGAACCC 1 CCTGGAAGAA 1 CCTGGAAGAG 16 CCTGGAATCC 2 CCTGGAATGA 3 CCTGGAATGT 1 CCTGGACGGA 1 CCTGGACTGC 1 CCTGGAGAGG 1 CCTGGAGCAA 1 CCTGGAGCGC 3 CCTGGAGGCC 1 CCTGGAGGGG 1 CCTGGAGTCC 3 CCTGGAGTGG 2 CCTGGAGTTT 1 CCTGGATAAC 1 CCTGGATCCT 1 CCTGGATTCT 1 CCTGGCAAAG 1 CCTGGCAGGA 1 CCTGGCAGTT 6 CCTGGCCAAA 2 CCTGGCCAGA 2 CCTGGCCAGG 2 CCTGGCCAGT 4 CCTGGCCATT 2 CCTGGCCCAA 1 CCTGGCCCAC 1 CCTGGCCCCC 2 CCTGGCCCTA 1 CCTGGCCTAC 1 CCTGGCCTAG 1 CCTGGCCTCC 2 CCTGGCCTCT 1 CCTGGCCTGA 3 CCTGGCCTGG 1 CCTGGCCTGT 2 CCTGGCCTTT 3 CCTGGCTAAG 3 CCTGGCTAAT 12 CCTGGCTAGT 1 CCTGGCTATT 1 CCTGGCTCAT 1 CCTGGCTCCA 1 CCTGGCTGAT 3 CCTGGCTGGG 1 CCTGGCTGTA 3 CCTGGCTTAT 3 CCTGGGAAGT 15 CCTGGGACCC 1 CCTGGGATAA 1 CCTGGGATGC 1 CCTGGGCAAC 1 CCTGGGCACT 1 CCTGGGCTCC 1 CCTGGGGCAG 1 CCTGGGGGCC 3 CCTGGGGGTG 1 CCTGGGGTGG 1 CCTGGGTGCA 1 CCTGGGTTTA 1 CCTGGTCAAG 1 CCTGGTCACA 1 CCTGGTCAGA 1 CCTGGTCAGT 1 CCTGGTCCAG 1 CCTGGTCCTC 1 CCTGGTCTAT 1 CCTGGTCTCA 1 CCTGGTGTAT 1 CCTGGTTATC 1 CCTGGTTCCA 1 CCTGTAAAAC 1 CCTGTAAACC 4 CCTGTAACCC 16 CCTGTAACCT 1 CCTGTAACTC 1 CCTGTAAGAG 1 CCTGTAAGCC 1 CCTGTAAGCT 1 CCTGTAAGGG 1 CCTGTAAGTT 1 CCTGTAATAA 2 CCTGTAATAC 6 CCTGTAATAT 2 CCTGTAATCA 6 CCTGTAATCC 458 CCTGTAATCG 4 CCTGTAATCT 29 CCTGTAATGA 1 CCTGTAATGC 6 CCTGTAATGG 2 CCTGTAATGT 1 CCTGTAATTC 21 CCTGTAATTT 1 CCTGTACATA 1 CCTGTACCCC 5 CCTGTACTCC 4 CCTGTACTTC 1 CCTGTAGACC 2 CCTGTAGAGG 1 CCTGTAGCCC 5 CCTGTAGCCT 2 CCTGTAGCTA 1 CCTGTAGTAC 3 CCTGTAGTCA 1 CCTGTAGTCC 89 CCTGTAGTCG 2 CCTGTAGTCT 11 CCTGTAGTGC 3 CCTGTAGTTC 8 CCTGTATCAA 2 CCTGTATCCC 3 CCTGTATCTC 1 CCTGTATCTG 1 CCTGTATGAA 1 CCTGTATTCC 5 CCTGTATTCT 1 CCTGTATTTG 1 CCTGTCACCC 2 CCTGTCAGCT 1 CCTGTCAGGC 1 CCTGTCATCA 1 CCTGTCATCC 9 CCTGTCATCG 1 CCTGTCCAAC 1 CCTGTCCACA 1 CCTGTCCAGC 4 CCTGTCCAGT 1 CCTGTCCTGC 4 CCTGTCCTTT 4 CCTGTCTAGC 2 CCTGTCTGCC 1 CCTGTCTTGG 1 CCTGTGAATC 1 CCTGTGACAG 1 CCTGTGACGT 1 CCTGTGAGTA 1 CCTGTGATCA 3 CCTGTGATCC 34 CCTGTGATCG 3 CCTGTGATCT 1 CCTGTGATTC 3 CCTGTGATTG 1 CCTGTGCACT 2 CCTGTGCCCT 1 CCTGTGCCTG 1 CCTGTGCGTC 1 CCTGTGGGCC 1 CCTGTGGTCC 35 CCTGTGGTCT 1 CCTGTGGTTC 6 CCTGTGGTTT 1 CCTGTGTCCC 1 CCTGTGTGCA 2 CCTGTGTGTG 4 CCTGTGTGTT 1 CCTGTGTTCC 1 CCTGTGTTCT 1 CCTGTGTTGG 5 CCTGTGTTGT 1 CCTGTTAACC 1 CCTGTTACCC 1 CCTGTTATCC 5 CCTGTTATTC 1 CCTGTTCTCC 3 CCTGTTGAGC 1 CCTGTTGCAC 1 CCTGTTGTCC 2 CCTGTTTCCC 1 CCTTAAAAAA 1 CCTTAAACAA 1 CCTTAATCCC 1 CCTTACCCAG 2 CCTTACCTTG 1 CCTTACTCTT 1 CCTTACTTGA 1 CCTTACTTTA 1 CCTTAGAAGT 2 CCTTAGCCTC 2 CCTTAGGATA 1 CCTTAGTGGA 1 CCTTAGTTCT 1 CCTTAGTTTC 1 CCTTAGTTTT 2 CCTTATAGTC 1 CCTTATATTT 1 CCTTATCCAC 1 CCTTATGTGT 1 CCTTATTATG 1 CCTTCAGCTA 4 CCTTCAGGGT 1 CCTTCATTCC 1 CCTTCCAAAT 3 CCTTCCAGAG 1 CCTTCCAGTT 1 CCTTCCCCCA 1 CCTTCCCTGA 5 CCTTCCGAGA 1 CCTTCCTACT 1 CCTTCCTTGC 1 CCTTCGAGAT 41 CCTTCGAGGT 1 CCTTCGCAGG 1 CCTTCTAAAA 1 CCTTCTCACT 1 CCTTCTCCAG 1 CCTTCTCTAC 1 CCTTCTGATT 2 CCTTCTGCCA 1 CCTTCTGGTG 3 CCTTCTGTTC 1 CCTTCTTCCA 2 CCTTCTTCTT 1 CCTTCTTGCT 1 CCTTCTTTCA 1 CCTTGAAAGC 1 CCTTGAAGCA 1 CCTTGAAGCT 1 CCTTGAATCC 2 CCTTGACCAA 1 CCTTGATAGC 1 CCTTGATGCT 1 CCTTGCACAT 1 CCTTGCACCA 1 CCTTGCACTC 1 CCTTGCCACT 1 CCTTGCCCTA 2 CCTTGCTGAT 2 CCTTGCTTTT 3 CCTTGGAGTT 1 CCTTGGATTT 1 CCTTGGGCCA 1 CCTTGGGCCT 1 CCTTGGGTAG 1 CCTTGGTCCC 1 CCTTGGTTTT 1 CCTTGTAATC 1 CCTTGTAGAT 1 CCTTGTAGTT 1 CCTTGTCAGG 1 CCTTGTCAGT 1 CCTTGTCCAG 2 CCTTGTCCTC 2 CCTTGTCTTT 1 CCTTGTGCAC 1 CCTTGTTAGC 1 CCTTTAAAGA 1 CCTTTAATCC 2 CCTTTACAAT 1 CCTTTAGTCC 1 CCTTTATGAA 1 CCTTTCAAAG 2 CCTTTCAACA 1 CCTTTCAAGC 1 CCTTTCACAC 8 CCTTTCAGTC 1 CCTTTCCAAA 1 CCTTTCCTTT 2 CCTTTCGAGA 2 CCTTTCTGCC 1 CCTTTCTGTA 2 CCTTTGAAAG 1 CCTTTGAACA 3 CCTTTGAATC 1 CCTTTGAATT 1 CCTTTGCATT 1 CCTTTGCCCT 3 CCTTTGCTGA 1 CCTTTGGCTA 3 CCTTTGGTAT 1 CCTTTGGTCC 1 CCTTTGGTGG 1 CCTTTGGTTG 1 CCTTTGTAAA 4 CCTTTGTAAG 7 CCTTTGTCCT 1 CCTTTGTCTT 1 CCTTTGTTTC 1 CCTTTTACAA 1 CCTTTTACTC 1 CCTTTTAGGA 1 CCTTTTAGTC 1 CCTTTTATTA 1 CCTTTTCCGC 1 CCTTTTGCTT 1 CCTTTTTAGT 5 CCTTTTTCAA 1 CCTTTTTTAG 1 CCTTTTTTTC 1 CGAAATTGTT 1 CGAACAAAAG 1 CGAACCATCC 1 CGAACCCATC 1 CGAACCCCCC 1 CGAACTTCCA 1 CGAAGCCCCC 1 CGAAGGATTT 1 CGAAGGCTGC 1 CGAAGGGGCC 1 CGAAGGTGTG 1 CGAATCGCTT 2 CGAATGCACT 1 CGACCAAAGA 1 CGACCACGGG 1 CGACCACTGA 2 CGACCCACAA 1 CGACCCCACG 5 CGACCGTACA 1 CGACCGTGGC 4 CGACCTCGCC 1 CGACGAGGCG 1 CGACGAGGGC 1 CGACGGCAAA 1 CGACGTCCTG 1 CGACTGCATT 1 CGACTGGGCT 1 CGACTGTACT 1 CGACTGTGGT 1 CGACTTCTGG 1 CGAGAGATCT 1 CGAGATTGGC 1 CGAGATTGTC 1 CGAGCATCAC 1 CGAGCCCCCA 1 CGAGCGCTCC 1 CGAGCTGGAA 1 CGAGGAGAGT 1 CGAGGAGCCA 1 CGAGGATGGG 1 CGAGGCAGAG 1 CGAGGGACCA 1 CGAGGGAGAA 1 CGAGGGAGAT 1 CGAGGGCACT 1 CGAGGGGCCA 32 CGAGGGGTCA 1 CGAGGTCCCG 1 CGAGGTGCCT 1 CGAGTGCACT 1 CGAGTTCACT 1 CGATAGATGC 1 CGATATTCCC 3 CGATCAACTG 1 CGATCAGTTT 2 CGATCGGACC 1 CGATCGGCTG 1 CGATCGGGTG 1 CGATCGTGGC 1 CGATCTTGGC 1 CGATGCCTGC 1 CGATGCTGCC 1 CGATGGTCCC 12 CGATGGTGGG 2 CGATTAATCA 1 CGATTCTGGA 4 CGATTGCACT 1 CGATTTCACT 7 CGCAACGCAG 1 CGCAACTGGT 3 CGCAAGACTA 1 CGCAAGATTG 1 CGCAAGCTGG 3 CGCAAGTCCT 1 CGCAATGCAC 1 CGCAATGTAT 1 CGCACACATA 1 CGCACACGCA 1 CGCACCATTG 4 CGCACCGCCA 1 CGCACGCTTT 1 CGCACGTGGG 1 CGCAGACACA 1 CGCAGACATT 1 CGCAGATCTT 1 CGCAGATTGC 1 CGCAGCTCCG 1 CGCAGCTGGA 1 CGCAGGAGAC 1 CGCAGGCACA 1 CGCAGGCACC 2 CGCAGGCCTT 1 CGCAGGCGCA 1 CGCAGGGACG 1 CGCAGGGCCA 1 CGCAGGTAAA 1 CGCAGTGTCC 6 CGCATAAACT 1 CGCATCAGAG 1 CGCATCGTAC 1 CGCATCGTCA 1 CGCATCGTCC 1 CGCATTAAAG 1 CGCATTCACA 1 CGCCACCACA 1 CGCCACCACG 1 CGCCACCGTG 3 CGCCACTGCA 2 CGCCAGAACA 1 CGCCAGACCA 1 CGCCAGCCGA 1 CGCCAGGCGG 2 CGCCAGTCTC 1 CGCCATCACG 1 CGCCATCTTG 1 CGCCATTGCG 1 CGCCCAGCTA 1 CGCCCCACGC 1 CGCCCCCACA 1 CGCCCCCTCC 1 CGCCCCCTGC 2 CGCCCGTGGT 1 CGCCCTCGGG 1 CGCCGAACAA 1 CGCCGAATAA 7 CGCCGACCCC 1 CGCCGACGAT 21 CGCCGAGCAC 1 CGCCGAGGTG 1 CGCCGCCGGC 22 CGCCGCGGTG 31 CGCCGCTGCC 1 CGCCGCTTCT 6 CGCCGGAACA 46 CGCCGGACAC 1 CGCCGGGAGC 2 CGCCGGTTCC 1 CGCCGGTTCT 2 CGCCGTACAT 1 CGCCTAAATA 1 CGCCTAATTG 3 CGCCTATAAT 2 CGCCTATAGT 1 CGCCTATTAA 1 CGCCTCCCCA 1 CGCCTGCAGT 1 CGCCTGCCGC 1 CGCCTGGGGT 1 CGCCTGGGTG 1 CGCCTGGGTT 1 CGCCTGTAAA 1 CGCCTGTAAT 20 CGCCTGTAGT 10 CGCCTGTATT 1 CGCCTGTCAT 4 CGCCTGTGAT 2 CGCCTGTGGT 3 CGCCTTCATA 1 CGCCTTGTGA 1 CGCCTTTACT 1 CGCCTTTCGT 1 CGCGACCACG 1 CGCGAGCACA 1 CGCGAGCACC 1 CGCGAGCCGA 1 CGCGATGGCC 1 CGCGCACCCG 1 CGCGCCAGAC 1 CGCGCCCGGC 7 CGCGCGCTGG 2 CGCGCTAACC 1 CGCGCTGTGG 1 CGCGCTTCGA 1 CGCGGCAAAA 1 CGCGGGCCCG 2 CGCGGGCGTG 1 CGCGGTGGCT 1 CGCGTAACTA 1 CGCGTCACTA 88 CGCGTCAGAG 1 CGCGTCCGCA 1 CGCGTGCACA 8 CGCGTGCGCA 1 CGCTACTCAC 1 CGCTATAGGG 1 CGCTATCACC 1 CGCTATCTGG 1 CGCTCAGTCC 1 CGCTCGAGGT 1 CGCTCTCCCT 1 CGCTCTGGGC 2 CGCTCTGGGT 1 CGCTCTTTGA 1 CGCTGAATGA 1 CGCTGAGCCA 1 CGCTGCCTGT 1 CGCTGCGTCC 1 CGCTGCTCTT 1 CGCTGCTGCT 1 CGCTGGATCC 1 CGCTGGCACC 1 CGCTGGGAAC 1 CGCTGGTTCC 48 CGCTGGTTCT 1 CGCTGGTTTC 2 CGCTGTGGGG 6 CGCTGTGTAT 1 CGCTGTTTTT 1 CGCTTAATAA 1 CGCTTCAAGA 1 CGCTTCACTA 1 CGCTTCCTCT 2 CGCTTCTAGT 1 CGCTTGTTTA 1 CGCTTTACGG 1 CGCTTTAGGG 1 CGCTTTGCGC 2 CGCTTTGGAG 1 CGCTTTGGGA 1 CGCTTTTGTA 1 CGGAAAAGGA 1 CGGAAATATG 1 CGGAACACCG 1 CGGAACCCTA 1 CGGAACTCCG 1 CGGAAGAAAA 1 CGGAATGTTA 1 CGGACAAACC 1 CGGACAATCA 3 CGGACGTCAA 1 CGGACTACTC 1 CGGACTCACT 10 CGGAGACCCT 16 CGGAGACGCA 1 CGGAGACTCC 1 CGGAGAGGTA 1 CGGAGATGTT 10 CGGAGCCGGC 3 CGGAGCGGGG 1 CGGAGGAAGG 1 CGGAGGTGGG 2 CGGAGGTTGT 1 CGGATAACCA 3 CGGATAAGGC 2 CGGATATGTT 1 CGGATCCAGT 2 CGGATGGGCT 1 CGGATTATCC 2 CGGATTTTTA 8 CGGCAAAAAA 2 CGGCAAGAGG 1 CGGCAATGCC 2 CGGCACAAAT 1 CGGCACCTTA 1 CGGCAGAGCT 2 CGGCAGCTGC 1 CGGCCAACGC 1 CGGCCAAGAT 1 CGGCCACTCA 1 CGGCCCAACG 6 CGGCCCCGGA 1 CGGCCTGGGT 1 CGGCGATCAT 1 CGGCGATTCT 1 CGGCGCATCC 1 CGGCGCCGCC 1 CGGCGCCGGC 1 CGGCGTATGC 1 CGGCTAGGAA 3 CGGCTGAATT 3 CGGCTGGGGT 1 CGGCTGGTGA 4 CGGCTGGTGG 1 CGGCTGTTTA 1 CGGCTTGAGT 1 CGGCTTTCAA 1 CGGCTTTTCT 5 CGGGAACGGG 1 CGGGAACTTC 1 CGGGAAGACA 1 CGGGACTTCA 1 CGGGAGAAGG 1 CGGGAGAGCT 1 CGGGAGCCGG 4 CGGGAGCTGG 1 CGGGAGTCGG 1 CGGGATATAG 1 CGGGATGCAG 1 CGGGATTCCT 3 CGGGCACCCC 1 CGGGCAGAAA 1 CGGGCATAGC 1 CGGGCCGTGC 3 CGGGCCTCAG 1 CGGGCTAAGG 1 CGGGGAAGAG 1 CGGGGAAGGA 1 CGGGGCCGCA 1 CGGGGCGCGG 1 CGGGGGAAAG 1 CGGGGTACCC 1 CGGGGTGAAG 1 CGGGTAGTAT 1 CGGGTGGGCT 1 CGGTAAGTAT 1 CGGTACAGGG 1 CGGTAGACAT 1 CGGTCACCTA 1 CGGTCAGATG 1 CGGTCAGGAG 1 CGGTCCCATT 1 CGGTCCTCAA 1 CGGTCCTCCT 1 CGGTCGGGCA 1 CGGTCGTGGG 1 CGGTGACATT 1 CGGTGAGTTT 1 CGGTGGATGC 1 CGGTGGCTCA 2 CGGTGGGACC 3 CGGTGGTGCC 1 CGGTGTCCAA 1 CGGTGTCCCA 1 CGGTGTGAGG 1 CGGTTAAGAA 1 CGGTTACTGT 14 CGGTTCATTG 1 CGGTTCCTCA 1 CGGTTTGCAG 2 CGGTTTGCAT 1 CGTAACCTGT 1 CGTAAGTCAA 1 CGTAATCCTG 1 CGTACATATA 1 CGTACTGAGC 5 CGTAGACCCA 1 CGTAGATTAG 1 CGTAGCAACG 1 CGTATAGCAC 1 CGTATGTCCA 1 CGTATTAGCG 1 CGTATTATTC 1 CGTATTTTAG 1 CGTCAAGATT 1 CGTCAGAATA 1 CGTCAGGATC 1 CGTCCCGGAG 2 CGTCCTACGT 3 CGTCCTGGTA 1 CGTCCTTCCT 1 CGTCGAGTAT 1 CGTCGCTGGG 1 CGTCTATCCA 1 CGTCTCACAT 1 CGTCTCCACA 1 CGTCTGTAAG 2 CGTCTGTGGT 1 CGTCTTCTCT 1 CGTCTTTATC 1 CGTCTTTCGT 1 CGTGAAAAAA 1 CGTGAATGCA 1 CGTGACAGAA 1 CGTGACCCCT 1 CGTGACCTGG 1 CGTGAGGGAA 1 CGTGATGGCC 1 CGTGATTGTT 1 CGTGCAGACC 1 CGTGCCGCCT 1 CGTGCGCGAC 1 CGTGCGGCGC 1 CGTGCTGGCC 1 CGTGGAAGCA 3 CGTGGCCACG 1 CGTGGCCTTT 1 CGTGGCTCAG 1 CGTGGGAAAC 1 CGTGGGAGCA 1 CGTGGGGTGG 2 CGTGGGTGGG 1 CGTGGTAGCA 1 CGTGGTGCCG 1 CGTGGTGCTT 1 CGTGGTGGCT 1 CGTGGTGGTG 1 CGTGTAATCC 5 CGTGTAATCT 1 CGTGTAGTCC 1 CGTGTAGTGT 1 CGTGTCGATA 1 CGTGTGCCTG 7 CGTGTGGGCT 1 CGTGTGGGTT 1 CGTGTGTGCA 1 CGTGTGTGCT 1 CGTGTGTGTG 1 CGTGTTAATG 3 CGTGTTGTTC 3 CGTTAAAACT 1 CGTTAAACTG 1 CGTTACTGCT 1 CGTTAGATTT 1 CGTTCAGGAC 1 CGTTCCGTGT 1 CGTTCCTGCG 5 CGTTCTGTTA 1 CGTTCTTGAT 1 CGTTCTTTGG 1 CGTTGAAAAT 1 CGTTGGAAAA 1 CGTTGTAGAA 1 CGTTGTCCGC 1 CGTTTAAGTC 1 CGTTTACTTG 1 CGTTTCTAGC 1 CGTTTCTGAT 1 CGTTTGAAAA 1 CGTTTGGCAG 2 CGTTTGTAAC 1 CGTTTGTAGT 1 CGTTTTCTGA 2 CTAAAAAAAA 7 CTAAAAACCA 1 CTAAAAATTC 1 CTAAAACTTC 2 CTAAAAGGAG 4 CTAAAAGGTC 1 CTAAAATGCT 1 CTAAACATCT 1 CTAAACCATT 1 CTAAAGAGAT 1 CTAAAGAGTG 1 CTAAAGATTC 1 CTAAAGCAAT 1 CTAAAGCGAG 1 CTAAATATAC 1 CTAAATATTC 1 CTAAATCTTG 1 CTAACAAACC 1 CTAACAACAC 1 CTAACACTTC 1 CTAACAGAAT 1 CTAACATTCT 1 CTAACCAGAC 4 CTAACCAGCA 1 CTAACCATCC 1 CTAACCTGAC 1 CTAACCTGTG 1 CTAACGAGCT 1 CTAACGCAGC 1 CTAACGGGGC 1 CTAACTAGTT 16 CTAACTGAAA 1 CTAACTGCTT 1 CTAACTGTGG 1 CTAACTTCAA 1 CTAACTTTGT 1 CTAAGAAAAT 1 CTAAGAATTC 2 CTAAGACATC 1 CTAAGACCTC 2 CTAAGACTCC 2 CTAAGACTTC 249 CTAAGACTTT 3 CTAAGAGACT 1 CTAAGAGTGT 1 CTAAGATTAT 1 CTAAGATTTG 1 CTAAGCACTG 1 CTAAGCGAGG 1 CTAAGCTTCT 1 CTAAGGCGAG 44 CTAAGGCTTC 2 CTAAGGCTTT 1 CTAAGGGCGA 1 CTAAGGGGGA 1 CTAAGTCAAG 1 CTAAGTTTAA 1 CTAATAAATG 3 CTAATAATAG 1 CTAATACAAG 1 CTAATACTTG 1 CTAATATTGG 1 CTAATGCAAA 1 CTAATGCGAA 1 CTAATGTGAA 1 CTAATTACAA 1 CTAATTCAGA 1 CTAATTCTCG 1 CTACAAAAAG 3 CTACAAGATT 1 CTACAATCAG 1 CTACAATTTT 2 CTACACACGA 1 CTACACCAGT 2 CTACAGAGCA 1 CTACAGCACG 1 CTACAGCCAG 1 CTACAGTGTC 1 CTACATAGGC 1 CTACCAACAA 1 CTACCAATGA 1 CTACCACACC 1 CTACCACGCC 2 CTACCAGCAC 3 CTACCCAACA 3 CTACCCACTA 1 CTACCCGGTT 1 CTACCCTGTT 1 CTACCCTTTC 2 CTACCGCACT 1 CTACCTCTGA 1 CTACCTGACT 1 CTACGAAAAG 1 CTACGAAGAC 1 CTACGAGTGA 1 CTACGCTCAA 1 CTACGGTCGT 1 CTACGTTTTC 1 CTACTCAGAA 1 CTACTCGGGA 1 CTACTCTTCT 1 CTACTCTTTG 1 CTACTGACTC 1 CTACTGCACT 13 CTACTGCCAA 1 CTACTGGAGA 2 CTACTGTACT 2 CTACTGTCTA 1 CTACTGTGAG 1 CTACTGTTGG 1 CTACTTAATA 1 CTACTTATCA 1 CTACTTCACT 1 CTACTTCCTT 1 CTACTTGCGA 1 CTACTTGGGA 1 CTACTTTTAG 2 CTACTTTTTA 1 CTAGAAAAAA 1 CTAGAAAAGA 1 CTAGAAAGAG 3 CTAGAAATCC 1 CTAGAAGCAC 1 CTAGAAGGAG 1 CTAGAAGTAC 1 CTAGAAGTTT 1 CTAGAATGGA 1 CTAGACAAAG 1 CTAGACGTTG 1 CTAGACTATT 1 CTAGACTTCA 2 CTAGAGACAA 1 CTAGAGCGGC 1 CTAGAGCTGA 1 CTAGAGGACG 1 CTAGATCTCC 1 CTAGATCTTT 1 CTAGCAAGCA 1 CTAGCAGAGC 2 CTAGCATCCC 1 CTAGCCAGCA 9 CTAGCCAGGA 1 CTAGCCTCAC 58 CTAGCCTCCC 1 CTAGCCTGGG 1 CTAGCCTTAC 1 CTAGCGCGCG 1 CTAGCTCAGT 1 CTAGCTGCCT 2 CTAGCTTTTA 17 CTAGCTTTTT 1 CTAGGACTTC 1 CTAGGCAAGC 2 CTAGGCATTC 1 CTAGGCTTAA 1 CTAGGCTTCA 1 CTAGGGAAAG 1 CTAGGGACAG 1 CTAGGGGCAA 1 CTAGGTTTAT 1 CTAGTCAGCT 1 CTAGTCAGTT 1 CTAGTCTACC 1 CTAGTCTCAG 1 CTAGTGAAAC 1 CTAGTGCACA 1 CTAGTGGATG 1 CTAGTGTGGT 1 CTAGTGTTAT 1 CTATAAATGT 1 CTATAACTGA 1 CTATAAGTAT 1 CTATAATAAA 1 CTATAATCCC 1 CTATACAAAC 1 CTATAGGAGA 1 CTATAGTTAC 1 CTATATGTAA 1 CTATATTTTT 1 CTATCAGAAA 1 CTATCAGTCT 3 CTATCAGTTT 3 CTATCATAAT 1 CTATCCATTA 1 CTATCCTCAC 1 CTATCTATCT 1 CTATCTCCTG 1 CTATCTCTGT 1 CTATCTCTTC 1 CTATCTGTTC 1 CTATCTTGCC 1 CTATCTTTTC 1 CTATGAAGCT 1 CTATGAGACG 1 CTATGATGTC 1 CTATGCACTT 1 CTATGCAGTA 1 CTATGCGCGT 1 CTATGGAAAT 1 CTATGGCTTC 1 CTATGGGAGG 1 CTATGGTGTT 1 CTATGGTTGC 5 CTATGTATCA 1 CTATGTCTGT 1 CTATGTGTTA 1 CTATGTTACA 1 CTATGTTGCC 1 CTATTAAAGT 1 CTATTAAGAA 1 CTATTACTGG 1 CTATTCCTAG 1 CTATTGCATT 1 CTATTGCCCG 1 CTATTTAATT 1 CTATTTAGTT 2 CTATTTCACG 1 CTATTTGGGA 1 CTATTTGGTC 2 CTCAAAAAAA 3 CTCAAACAAG 1 CTCAAACACT 1 CTCAAAGCTT 1 CTCAAATAGT 1 CTCAACAATA 1 CTCAACAGAG 1 CTCAACAGCA 4 CTCAACAGGA 1 CTCAACATAT 2 CTCAACATCA 1 CTCAACATCT 53 CTCAACATTC 1 CTCAACATTG 1 CTCAACCCCC 6 CTCAACCTTC 1 CTCAACTTCT 1 CTCAAGCACC 1 CTCAAGCTCT 1 CTCAAGGATT 1 CTCAAGGGTT 1 CTCAAGTTGA 1 CTCAAGTTTG 1 CTCAATAAAA 1 CTCAATAAAT 1 CTCAATACTC 1 CTCAATGCTC 1 CTCACAAGAG 1 CTCACAAGGA 1 CTCACACATT 10 CTCACACGGA 1 CTCACACTTC 1 CTCACCTGCA 1 CTCACGCCTG 1 CTCACTAAAC 1 CTCACTAGTG 2 CTCACTTCTT 1 CTCACTTTAT 1 CTCACTTTTT 1 CTCAGAACTG 1 CTCAGACAGA 1 CTCAGACAGT 5 CTCAGACTTC 1 CTCAGAGTTT 1 CTCAGATTCA 1 CTCAGATTTG 1 CTCAGCAATG 3 CTCAGCACGT 1 CTCAGCAGAT 2 CTCAGCATCA 2 CTCAGCCAAT 1 CTCAGCCACC 1 CTCAGCCTGT 1 CTCAGCGAGT 1 CTCAGCGCGC 1 CTCAGCGGCA 1 CTCAGCTAAT 1 CTCAGCTCTT 1 CTCAGCTGGA 1 CTCAGGAAAT 5 CTCAGGATTC 2 CTCAGGTCCC 1 CTCAGGTTCT 1 CTCAGTACTT 1 CTCAGTCAGT 1 CTCAGTCCCC 2 CTCAGTGACT 1 CTCAGTTAAG 1 CTCATAAAAA 3 CTCATAAATG 1 CTCATAAGAA 2 CTCATAAGGA 111 CTCATACACC 1 CTCATACGGA 1 CTCATACTCC 1 CTCATAGCAG 4 CTCATAGGAA 1 CTCATAGGGA 1 CTCATATGGA 1 CTCATATTGA 1 CTCATCAATC 1 CTCATCAGCT 3 CTCATCCCCG 2 CTCATCCTTT 1 CTCATCGTCC 1 CTCATCTGCT 2 CTCATTAAGA 1 CTCATTAAGG 1 CTCATTATGA 1 CTCATTCACC 1 CTCATTCAGC 2 CTCATTCCCC 1 CTCATTCCTA 1 CTCATTCCTT 1 CTCATTCTTT 1 CTCATTGAAA 1 CTCATTGCTG 1 CTCATTGTAG 1 CTCATTTATG 1 CTCATTTCAG 1 CTCATTTGTT 1 CTCCAAAAAA 4 CTCCAAACTA 1 CTCCAAATCC 1 CTCCAACCGG 1 CTCCAACCTG 1 CTCCAATAAA 2 CTCCACAAAT 2 CTCCACACCT 2 CTCCACCCAA 1 CTCCACCCGA 114 CTCCACCCGG 2 CTCCACCCGT 1 CTCCACCCTA 1 CTCCACCGAG 1 CTCCACCGGA 2 CTCCACCTGG 2 CTCCACGGCA 1 CTCCACGTAG 1 CTCCAGAATG 1 CTCCAGCAGG 1 CTCCAGCATT 1 CTCCAGCCAG 1 CTCCAGCTCT 1 CTCCAGGACA 2 CTCCAGGGCT 1 CTCCAGTACC 1 CTCCATATAT 1 CTCCATCAAC 1 CTCCATCAGC 2 CTCCATCCAG 2 CTCCATCCGA 2 CTCCATCGGC 1 CTCCATCTGC 1 CTCCATCTGT 1 CTCCCAAGAC 1 CTCCCAAGCT 2 CTCCCACAAT 1 CTCCCAGCTA 1 CTCCCAGGTC 2 CTCCCCACAG 1 CTCCCCACCT 1 CTCCCCATCA 2 CTCCCCATCC 1 CTCCCCCAAA 5 CTCCCCCAAG 4 CTCCCCCTTC 1 CTCCCCGCCA 1 CTCCCCTGCC 2 CTCCCGAATG 1 CTCCCGGAGC 1 CTCCCGGCGA 2 CTCCCTAAGA 1 CTCCCTCACC 1 CTCCCTCCCT 1 CTCCCTCCTC 1 CTCCCTCTGC 1 CTCCCTCTTA 1 CTCCCTTATG 1 CTCCCTTGCC 1 CTCCCTTTTA 2 CTCCGAGAGG 1 CTCCGAGGCA 1 CTCCGCAGCT 3 CTCCGCCAGC 1 CTCCGCTGAT 1 CTCCGCTGCT 1 CTCCGGATAC 1 CTCCGGCAGG 1 CTCCGGCCCA 1 CTCCGGGACG 2 CTCCGTACAT 3 CTCCGTAGAT 1 CTCCGTCCCA 2 CTCCTAAAAG 1 CTCCTAATTG 3 CTCCTATTAA 1 CTCCTATTAT 1 CTCCTCACCT 75 CTCCTCACTG 1 CTCCTCACTT 1 CTCCTCATCA 1 CTCCTCGGCC 1 CTCCTCTATT 1 CTCCTCTCTC 1 CTCCTCTGAG 1 CTCCTGAATG 2 CTCCTGACTG 1 CTCCTGAGCA 1 CTCCTGATAG 1 CTCCTGGATG 1 CTCCTGGGCA 1 CTCCTGGGGC 2 CTCCTGTAGT 3 CTCCTGTGAG 1 CTCCTGTGCC 1 CTCCTTAAGA 3 CTCCTTAATT 1 CTCCTTACCT 1 CTCCTTAGGA 1 CTCCTTATGA 3 CTCCTTGAAA 1 CTCCTTGACT 1 CTCCTTTTGC 1 CTCGAACGGA 1 CTCGAGCGGC 1 CTCGAGGAGG 7 CTCGATGAGT 1 CTCGCACTCT 1 CTCGCATCAT 1 CTCGCCCGGG 1 CTCGCCCTGG 1 CTCGCGCTGG 19 CTCGCTCAAG 1 CTCGCTCCAG 1 CTCGCTGCGT 1 CTCGCTTCCC 1 CTCGCTTCTA 1 CTCGCTTCTC 2 CTCGGAGACC 1 CTCGGAGGCC 3 CTCGGATCCA 1 CTCGGATTCA 2 CTCGGCGAGC 2 CTCGGTAAAT 1 CTCGGTCTTT 1 CTCGTAATCC 1 CTCGTATGAA 1 CTCGTCGAGT 2 CTCGTGGGTA 1 CTCGTTAAGA 14 CTCGTTAAGT 1 CTCGTTCCAG 1 CTCGTTGCAC 1 CTCGTTTGGC 3 CTCTAAAAGC 1 CTCTAACTGC 3 CTCTAAGCCA 1 CTCTAAGTAC 1 CTCTAATGTA 1 CTCTACAACT 1 CTCTACAGTG 4 CTCTACCCTA 1 CTCTACCGAG 1 CTCTACCGCT 1 CTCTACGGTT 1 CTCTAGAACC 3 CTCTAGACAG 1 CTCTAGATAA 1 CTCTATGAAA 1 CTCTATGGCA 1 CTCTCAAAAT 1 CTCTCAATAT 1 CTCTCAATGG 1 CTCTCACCCT 6 CTCTCACTCT 4 CTCTCACTGT 1 CTCTCATCTC 1 CTCTCATTTT 1 CTCTCCACAA 1 CTCTCCTGCT 1 CTCTCCTTGC 1 CTCTCCTTGG 1 CTCTCGAGAA 1 CTCTCTTCCA 1 CTCTGAAATA 1 CTCTGAAATG 1 CTCTGACAGT 1 CTCTGACTCA 1 CTCTGAGAGA 1 CTCTGAGGTA 1 CTCTGAGTGG 1 CTCTGATAAC 2 CTCTGATCTT 1 CTCTGATGCA 2 CTCTGCAATG 1 CTCTGCACTG 1 CTCTGCAGCT 1 CTCTGCCAAT 1 CTCTGCCCTC 21 CTCTGCCCTT 1 CTCTGCCTCC 1 CTCTGCGGAG 2 CTCTGCGGTC 1 CTCTGCTCGG 2 CTCTGGACGA 1 CTCTGGATGG 3 CTCTGGCCCC 1 CTCTGGCTCC 1 CTCTGGGATA 1 CTCTGGGGCC 2 CTCTGGGGTC 1 CTCTGTAAGT 1 CTCTGTCTTG 1 CTCTGTGGCC 1 CTCTGTGTGG 3 CTCTGTTGAT 5 CTCTGTTGTT 2 CTCTTAAAAG 5 CTCTTAACAC 1 CTCTTAATGT 2 CTCTTATCAC 1 CTCTTATTGT 1 CTCTTATTTC 1 CTCTTCAACC 1 CTCTTCAGGA 2 CTCTTCAGGT 1 CTCTTCCCTG 1 CTCTTCGAGA 6 CTCTTCGTTA 1 CTCTTCTAGT 1 CTCTTCTCCC 1 CTCTTCTCGA 1 CTCTTGAAAA 2 CTCTTGATTA 1 CTCTTGGGTG 1 CTCTTGGTCC 1 CTCTTGTACT 1 CTCTTGTGCT 1 CTCTTGTTTT 1 CTCTTTGATT 1 CTCTTTGTGA 1 CTCTTTTCAG 1 CTCTTTTTCT 1 CTGAAAAAAA 2 CTGAAAAACT 1 CTGAAAACAC 1 CTGAAAAGAT 1 CTGAAAATCA 1 CTGAAAATCC 1 CTGAAACCCC 7 CTGAAACCCT 1 CTGAAAGGCT 1 CTGAAATACA 1 CTGAAATTTA 1 CTGAACCCTG 1 CTGAACTCTT 2 CTGAACTGGA 1 CTGAACTGTG 1 CTGAACTTGG 1 CTGAAGAAGC 1 CTGAAGAATG 1 CTGAAGACAT 1 CTGAAGACTG 1 CTGAAGAGGA 1 CTGAAGATGA 1 CTGAAGGACA 1 CTGAAGGAGA 1 CTGAAGGTGC 1 CTGAAGTCTA 1 CTGAAGTGTG 4 CTGAAGTTCT 1 CTGAATACTC 1 CTGAATCAGA 1 CTGAATGCCC 1 CTGAATGTAC 1 CTGACACAGA 1 CTGACAGCCC 1 CTGACATCCC 1 CTGACATCTA 1 CTGACCAACT 1 CTGACCAATT 1 CTGACCACGG 1 CTGACCAGAG 1 CTGACCAGCA 1 CTGACCATTA 1 CTGACCCAGC 3 CTGACCCCCT 1 CTGACCCCTG 1 CTGACCCGTG 1 CTGACCCTCA 1 CTGACCGGTG 1 CTGACCGTGT 1 CTGACCTGAG 1 CTGACCTGGT 2 CTGACCTGTG 46 CTGACGGCGC 1 CTGACGGTGC 1 CTGACGTGGG 1 CTGACTAATA 1 CTGACTATAT 1 CTGACTATTA 1 CTGACTCAAG 1 CTGACTGAAG 1 CTGACTGCTC 1 CTGACTGTCC 1 CTGACTGTGG 1 CTGACTTCAA 1 CTGACTTGTG 2 CTGACTTTCC 1 CTGACTTTCT 2 CTGAGAAACC 1 CTGAGAAACT 3 CTGAGACAAA 16 CTGAGACACA 1 CTGAGACACC 1 CTGAGACTTC 1 CTGAGAGATT 1 CTGAGAGCTG 6 CTGAGAGCTT 1 CTGAGAGGGA 1 CTGAGCACAA 1 CTGAGCCAGC 1 CTGAGCCATA 1 CTGAGCCCGA 2 CTGAGCCTTA 1 CTGAGCTAAG 1 CTGAGCTAAT 1 CTGAGCTGTA 2 CTGAGGAAAA 2 CTGAGGATTG 1 CTGAGGCAGG 1 CTGAGGCCGA 1 CTGAGGCCTG 3 CTGAGGCGCT 3 CTGAGGGCCA 1 CTGAGGGCCG 1 CTGAGGGGAG 1 CTGAGGGTCG 1 CTGAGGTGAT 1 CTGAGTACTG 1 CTGAGTAGTG 1 CTGAGTATAG 1 CTGAGTCTCC 2 CTGAGTGAAA 1 CTGAGTGAGG 1 CTGAGTTAGG 2 CTGATAAAAA 1 CTGATAAGAA 1 CTGATACCAC 1 CTGATATGAT 1 CTGATATTCT 1 CTGATCAGCG 1 CTGATCCCCC 1 CTGATCTGAT 2 CTGATGAGAA 1 CTGATGAGCG 1 CTGATGGCAG 8 CTGATGGCGG 1 CTGATGGGGA 1 CTGATGGTTT 1 CTGATTAAAG 2 CTGATTCCCC 2 CTGATTCTTC 1 CTGATTTATT 2 CTGCAACCTA 1 CTGCAACGTG 1 CTGCAAGGAC 1 CTGCAAGGGA 1 CTGCAATACC 2 CTGCAATACG 1 CTGCAATCCC 1 CTGCAATGCA 1 CTGCAATTAG 1 CTGCACACCC 1 CTGCACAGAC 1 CTGCACAGCT 1 CTGCACCCGA 2 CTGCACCTCT 1 CTGCACTTAC 3 CTGCAGAAAT 1 CTGCAGAACG 2 CTGCAGACCC 4 CTGCAGAGCT 1 CTGCAGAGTG 3 CTGCAGCGAC 2 CTGCAGCTAT 1 CTGCAGGACC 1 CTGCAGGCCC 4 CTGCAGGCGG 2 CTGCAGGGCC 1 CTGCAGGGGT 1 CTGCAGTAAA 1 CTGCAGTACA 1 CTGCAGTCAC 1 CTGCAGTTAG 2 CTGCAGTTGA 1 CTGCAGTTTT 1 CTGCATAAAC 1 CTGCATAGAT 1 CTGCATTCGT 1 CTGCCAAAAA 1 CTGCCAACTA 1 CTGCCAACTT 13 CTGCCAAGCA 1 CTGCCAAGGG 1 CTGCCAAGTA 1 CTGCCAAGTT 6 CTGCCACCCT 1 CTGCCACCTC 1 CTGCCAGCTA 1 CTGCCAGTTT 1 CTGCCATAAC 1 CTGCCATCTG 1 CTGCCCACTC 1 CTGCCCAGGA 1 CTGCCCAGGC 1 CTGCCCCCCA 6 CTGCCCCTGC 1 CTGCCCCTTT 1 CTGCCCGAAC 1 CTGCCCTAGA 1 CTGCCCTAGT 1 CTGCCCTCCC 4 CTGCCCTCTG 1 CTGCCCTGGG 1 CTGCCCTGTG 1 CTGCCCTGTT 1 CTGCCGAGCT 4 CTGCCGAGTG 1 CTGCCGCACT 1 CTGCCGCAGC 1 CTGCCGCTTT 1 CTGCCGTCCT 1 CTGCCGTCTC 1 CTGCCTCACT 1 CTGCCTCAGA 1 CTGCCTCCGT 3 CTGCCTCCTT 3 CTGCCTGAAG 1 CTGCCTGCCA 1 CTGCCTGGCA 2 CTGCCTGTAA 1 CTGCCTTCTT 2 CTGCGACTCC 1 CTGCGAGAAG 1 CTGCGAGGTC 2 CTGCGATTCC 1 CTGCGCCGCG 1 CTGCGCCTCC 1 CTGCGGCTCC 1 CTGCGGCTGT 1 CTGCGGGGGG 1 CTGCGGTGCT 2 CTGCGGTGGC 2 CTGCTAAGGT 3 CTGCTACAGA 1 CTGCTAGGAA 2 CTGCTAGGGG 1 CTGCTATACA 1 CTGCTATACG 30 CTGCTCCAAA 1 CTGCTCCCCA 1 CTGCTCCCCC 1 CTGCTCTACT 2 CTGCTCTCCT 1 CTGCTCTGCG 1 CTGCTCTGGG 2 CTGCTGAAAA 1 CTGCTGAAAT 1 CTGCTGAGTG 6 CTGCTGATGT 2 CTGCTGCACA 1 CTGCTGCACT 6 CTGCTGCCGC 2 CTGCTGCCTC 1 CTGCTGGCAA 1 CTGCTGGTTA 1 CTGCTGGTTT 1 CTGCTGTACT 1 CTGCTGTGAT 4 CTGCTGTGCT 1 CTGCTGTGGG 1 CTGCTGTGTT 3 CTGCTTAAAG 1 CTGCTTAAGA 1 CTGCTTAAGG 1 CTGCTTACGA 1 CTGCTTCACA 1 CTGCTTCAGC 1 CTGCTTCAGT 1 CTGCTTCCAT 1 CTGCTTCCTG 2 CTGCTTGGTA 1 CTGCTTGGTG 1 CTGCTTGTAC 1 CTGCTTTTAT 1 CTGCTTTTTT 2 CTGGAAAAAA 1 CTGGAAAATC 1 CTGGAAATAA 2 CTGGAACAAT 1 CTGGACACAG 1 CTGGACCCAC 1 CTGGACCCGG 1 CTGGACCCTG 1 CTGGACGGCG 1 CTGGACTCCG 1 CTGGACTGCA 1 CTGGAGAGGG 1 CTGGAGCCCG 1 CTGGAGCCGC 1 CTGGAGGCAC 1 CTGGAGGCTG 1 CTGGAGGGCC 1 CTGGAGGGTT 1 CTGGAGGTTT 1 CTGGAGTACA 1 CTGGAGTGCA 6 CTGGATCAAA 1 CTGGATCTGG 10 CTGGATGAAG 1 CTGGATGAGG 1 CTGGATGCCC 1 CTGGATGCCG 1 CTGGATGGGC 2 CTGGATTGCC 1 CTGGATTTCA 1 CTGGCACCTT 1 CTGGCAGATT 1 CTGGCAGCCT 1 CTGGCAGGCG 1 CTGGCAGGTG 1 CTGGCATAGA 1 CTGGCATCGA 1 CTGGCATCTG 1 CTGGCCAAGA 1 CTGGCCACCT 2 CTGGCCACTG 1 CTGGCCAGAA 1 CTGGCCAGGA 1 CTGGCCAGGC 3 CTGGCCATCG 1 CTGGCCATTG 1 CTGGCCCCGA 2 CTGGCCCCTC 1 CTGGCCCGAG 1 CTGGCCCGGA 4 CTGGCCCTCG 14 CTGGCCGACT 1 CTGGCCGCAA 4 CTGGCCGCTC 3 CTGGCCGGCC 1 CTGGCCGGCT 1 CTGGCCTCGG 1 CTGGCCTGGG 2 CTGGCCTGTA 1 CTGGCCTGTG 1 CTGGCCTTCT 1 CTGGCGAGCG 7 CTGGCGATCT 1 CTGGCGCCGA 1 CTGGCGCGAG 1 CTGGCGGGCA 1 CTGGCGGGTG 1 CTGGCGTGTG 1 CTGGCTAACA 2 CTGGCTAACT 1 CTGGCTACTA 1 CTGGCTAGGC 1 CTGGCTATCC 1 CTGGCTGCAA 6 CTGGCTGCCT 1 CTGGCTGCTT 1 CTGGCTGTAA 1 CTGGCTGTGC 1 CTGGCTGTGG 1 CTGGCTTCGG 1 CTGGCTTCTT 1 CTGGCTTGAA 1 CTGGCTTGGA 1 CTGGCTTGGT 1 CTGGGAATCG 1 CTGGGACAAA 1 CTGGGACTGA 2 CTGGGACTGC 1 CTGGGAGAGG 5 CTGGGAGGGA 1 CTGGGAGGTG 1 CTGGGATCAT 2 CTGGGATTAC 1 CTGGGATTGC 1 CTGGGCAAAC 6 CTGGGCAACA 1 CTGGGCACAG 1 CTGGGCAGAC 1 CTGGGCAGCA 1 CTGGGCAGGG 1 CTGGGCCCAG 3 CTGGGCCTCT 3 CTGGGCGACA 1 CTGGGCGGCA 4 CTGGGCGGGT 1 CTGGGCGTGT 14 CTGGGCTAAG 1 CTGGGCTAAT 1 CTGGGCTCTG 1 CTGGGCTGTG 1 CTGGGGAAAC 1 CTGGGGCAGC 1 CTGGGGCTGA 1 CTGGGGGAGG 2 CTGGGGGGTC 1 CTGGGGGTCT 2 CTGGGGTAAT 1 CTGGGGTGCT 1 CTGGGTAATA 2 CTGGGTATAG 1 CTGGGTCTCC 1 CTGGGTGAAG 2 CTGGGTGACA 1 CTGGGTGCCC 2 CTGGGTTAAT 112 CTGGGTTAGT 1 CTGGGTTATA 1 CTGGGTTATT 1 CTGGGTTCAT 1 CTGGGTTGTG 1 CTGGTAATCC 3 CTGGTACCTG 4 CTGGTAGGCA 1 CTGGTAGTCC 2 CTGGTCAGGC 2 CTGGTCCGAA 1 CTGGTCCTCA 2 CTGGTCCTCC 3 CTGGTCCTGG 2 CTGGTCTAGA 1 CTGGTCTAGG 5 CTGGTCTCAG 1 CTGGTCTCAT 1 CTGGTCTTAA 1 CTGGTCTTGA 1 CTGGTGAACT 1 CTGGTGACTC 1 CTGGTGAGCG 2 CTGGTGAGTG 1 CTGGTGATAT 1 CTGGTGATGG 2 CTGGTGCATA 1 CTGGTGCGCT 2 CTGGTGGCTG 2 CTGGTGGGCA 3 CTGGTGGGCC 1 CTGGTGGGGG 1 CTGGTGGGTA 1 CTGGTGGGTG 1 CTGGTGGTAG 1 CTGGTGGTCC 1 CTGGTGGTGC 4 CTGGTGTAGA 1 CTGGTGTGCA 1 CTGGTGTGCT 3 CTGGTGTGTG 1 CTGGTGTGTT 1 CTGGTGTTCA 1 CTGGTGTTTT 1 CTGGTTTAAA 1 CTGGTTTCTC 2 CTGTAAAAAA 7 CTGTAAAAAC 1 CTGTAACATA 1 CTGTAAGGAT 1 CTGTAATAAC 1 CTGTAATCCC 2 CTGTAATTTC 2 CTGTACACCA 1 CTGTACAGAC 18 CTGTACATAC 1 CTGTACCTGT 1 CTGTACTAGG 2 CTGTAGAAGC 1 CTGTAGAATA 1 CTGTAGAATT 1 CTGTAGAGAC 1 CTGTAGCACT 1 CTGTAGCATT 3 CTGTAGTATG 1 CTGTAGTGGG 1 CTGTATGTTT 1 CTGTCAAGCA 1 CTGTCAAGCT 1 CTGTCACCCA 1 CTGTCAGCGG 5 CTGTCATACC 1 CTGTCATCTG 2 CTGTCATTTG 3 CTGTCCCGCC 1 CTGTCCCTCA 1 CTGTCCGCAG 1 CTGTCCGCTG 1 CTGTCCGGAA 2 CTGTCCGGAT 1 CTGTCCGTAC 1 CTGTCCTAGC 1 CTGTCCTTGT 6 CTGTCGGGGG 1 CTGTCGGTGA 1 CTGTCTACAA 1 CTGTCTTACT 1 CTGTCTTGGG 1 CTGTGAAATG 1 CTGTGACACA 3 CTGTGAGACC 27 CTGTGAGACT 1 CTGTGAGGGC 1 CTGTGATCAC 1 CTGTGATGTG 1 CTGTGCAATA 1 CTGTGCAGCA 2 CTGTGCATTT 9 CTGTGCCCAG 3 CTGTGCCCTG 1 CTGTGCCGCT 1 CTGTGCCTGT 1 CTGTGCGGAA 1 CTGTGCTAAT 1 CTGTGCTCAC 3 CTGTGCTCGG 5 CTGTGCTGGT 1 CTGTGCTGTG 1 CTGTGCTTCA 1 CTGTGCTTTT 1 CTGTGGAAAC 1 CTGTGGAAAT 1 CTGTGGAAGC 1 CTGTGGAGGG 1 CTGTGGATGC 1 CTGTGGCCGG 1 CTGTGGCTAA 1 CTGTGGTAGC 1 CTGTGGTGAT 1 CTGTGGTGCA 1 CTGTGGTGTG 2 CTGTGGTTAC 1 CTGTGGTTCG 1 CTGTGTAAAG 1 CTGTGTAACT 1 CTGTGTAAGC 2 CTGTGTAATT 2 CTGTGTACTT 1 CTGTGTCCAA 1 CTGTGTCCCC 1 CTGTGTCTGT 1 CTGTGTGACT 6 CTGTGTGTCG 1 CTGTGTTAAT 1 CTGTGTTGAG 1 CTGTGTTTGT 1 CTGTTAAAAT 1 CTGTTAAATG 1 CTGTTAAGCT 1 CTGTTAATAA 1 CTGTTACTAG 2 CTGTTACTGT 1 CTGTTAGCCG 1 CTGTTAGGAG 1 CTGTTAGTGT 2 CTGTTCACAC 1 CTGTTCACTT 1 CTGTTCATTC 1 CTGTTCCCTA 1 CTGTTCCCTT 1 CTGTTCCGGC 5 CTGTTCCTCA 1 CTGTTCCTTT 1 CTGTTCGTCG 1 CTGTTCTAAA 1 CTGTTCTACA 1 CTGTTCTCAC 1 CTGTTCTCCT 1 CTGTTCTTTG 1 CTGTTGACTG 1 CTGTTGAGTT 1 CTGTTGATAA 1 CTGTTGATGG 1 CTGTTGATTC 1 CTGTTGATTG 27 CTGTTGCTGG 8 CTGTTGGAAA 1 CTGTTGGAGA 1 CTGTTGGCAT 3 CTGTTGGTGA 61 CTGTTGGTGC 1 CTGTTGGTGG 1 CTGTTGTCTT 1 CTGTTGTGTG 2 CTGTTGTTAT 1 CTGTTTATGA 1 CTGTTTGGTG 1 CTGTTTGTGC 1 CTGTTTGTGG 1 CTGTTTTAAG 1 CTGTTTTGAT 1 CTGTTTTGGT 1 CTTAAAAATC 1 CTTAAAAGCA 1 CTTAAAAGCC 1 CTTAAAGTCT 1 CTTAAATACC 1 CTTAAATATC 1 CTTAAATCAG 1 CTTAACGAAT 1 CTTAAGAGAA 1 CTTAAGATTC 1 CTTAAGGATT 1 CTTAATATTT 1 CTTAATCCTG 2 CTTAATCTTG 2 CTTAATTTGA 1 CTTAATTTTG 1 CTTACAAGCA 3 CTTACACAAA 1 CTTACACGCC 1 CTTACACTGG 1 CTTACAGTCT 1 CTTACAGTGT 1 CTTACATTAA 1 CTTACCAAGC 1 CTTACCCTTT 1 CTTACCTGAA 1 CTTACGTGAT 1 CTTAGAACAA 1 CTTAGACATT 1 CTTAGAGCCC 1 CTTAGAGGAA 1 CTTAGAGGGG 1 CTTAGATTTC 1 CTTAGCAGGG 1 CTTAGCTCTT 1 CTTAGCTGGA 1 CTTAGGAAAA 1 CTTAGGAGGC 1 CTTAGGCACT 1 CTTAGGTTAA 1 CTTAGGTTCA 1 CTTAGGTTGC 1 CTTAGGTTTA 1 CTTAGGTTTC 2 CTTAGTCTAA 1 CTTAGTGCAA 1 CTTAGTGTGT 1 CTTATAAAAA 1 CTTATAATAA 1 CTTATAATCC 5 CTTATAATTG 1 CTTATAGCAA 1 CTTATAGGCT 1 CTTATATAAA 1 CTTATCCATT 1 CTTATGAAAA 1 CTTATGGTTG 2 CTTATGTTGC 1 CTTATTAATC 1 CTTATTAGTG 1 CTTATTATAC 1 CTTATTATTT 1 CTTATTCAAA 1 CTTATTCCAG 1 CTTATTCCTT 1 CTTATTGGGT 1 CTTCAAACAA 1 CTTCAACTAT 1 CTTCAAGAGA 2 CTTCAAGCTT 1 CTTCAAGGAC 2 CTTCAAGGCC 1 CTTCAAGTGA 1 CTTCAATGTA 1 CTTCAATTCT 1 CTTCACAATG 1 CTTCACACCT 1 CTTCACACTT 1 CTTCACAGAA 1 CTTCACAGAG 1 CTTCACTCGT 1 CTTCAGAGAT 2 CTTCAGATTC 1 CTTCAGGCAA 1 CTTCAGGGCC 1 CTTCATAACC 1 CTTCATAGCC 1 CTTCATTTTT 1 CTTCCAAGAA 1 CTTCCACAGC 1 CTTCCACAGG 1 CTTCCAGCTA 19 CTTCCCACTC 1 CTTCCCCCTG 1 CTTCCCCTGA 1 CTTCCCGCAA 1 CTTCCCTTCT 1 CTTCCCTTTG 1 CTTCCGAAAA 1 CTTCCGTAGC 1 CTTCCTATAC 1 CTTCCTGCCT 1 CTTCCTGCTA 1 CTTCCTGGAA 1 CTTCCTGGGC 1 CTTCCTGTAC 3 CTTCCTGTCC 1 CTTCCTGTGA 1 CTTCCTGTTA 1 CTTCCTTGCC 3 CTTCCTTGTA 1 CTTCGAAACT 4 CTTCGACGAA 2 CTTCGAGACT 1 CTTCGCGATG 2 CTTCGGGCTG 2 CTTCGGTGCC 2 CTTCGGTGCT 1 CTTCGTGGGT 1 CTTCGTGTAC 1 CTTCTAAAAT 1 CTTCTAATAT 1 CTTCTACTAA 3 CTTCTAGCAA 1 CTTCTAGGAA 1 CTTCTAGGGA 2 CTTCTATGTA 3 CTTCTCACCG 5 CTTCTCACGG 1 CTTCTCAGGG 3 CTTCTCATCT 11 CTTCTCATTT 1 CTTCTCCCCA 1 CTTCTCCTCA 1 CTTCTCTGGG 1 CTTCTCTGTT 2 CTTCTCTTGG 1 CTTCTGAAAT 1 CTTCTGAGGA 1 CTTCTGAGGG 1 CTTCTGCAAA 4 CTTCTGCACT 1 CTTCTGCCCT 1 CTTCTGCTGG 2 CTTCTGGGTT 1 CTTCTGGTCA 1 CTTCTGTACT 1 CTTCTGTATT 1 CTTCTGTCTC 1 CTTCTGTGTA 2 CTTCTGTTAT 1 CTTCTGTTTT 1 CTTCTTAAAA 1 CTTCTTCATC 1 CTTCTTCCCC 1 CTTCTTCTAA 1 CTTCTTCTGG 1 CTTCTTCTGT 1 CTTCTTCTTC 1 CTTCTTGCCC 1 CTTCTTGCTT 1 CTTCTTTGCT 2 CTTGAAAACT 1 CTTGAAATCT 1 CTTGAACCCG 1 CTTGAACTGG 1 CTTGAATCCC 1 CTTGAATGTA 1 CTTGACACAC 3 CTTGACCCAA 1 CTTGACTCTT 1 CTTGAGCAAT 3 CTTGAGCATA 1 CTTGAGCCAC 1 CTTGAGCTGC 1 CTTGAGGGGT 3 CTTGAGTCAC 1 CTTGATAATA 1 CTTGATCTGC 1 CTTGATGTAT 1 CTTGATTAAA 1 CTTGATTCCC 5 CTTGATTGGT 1 CTTGCAAAGC 1 CTTGCAAATT 1 CTTGCAATAA 1 CTTGCAATAT 1 CTTGCAATCC 1 CTTGCAATCT 1 CTTGCAGTCC 2 CTTGCCACTC 1 CTTGCCCTGA 1 CTTGCCTGAA 3 CTTGCCTGAC 1 CTTGCCTGCT 1 CTTGCCTTAG 1 CTTGCCTTAT 1 CTTGCCTTCA 1 CTTGCGACAC 1 CTTGCGACGC 1 CTTGCGTGAG 1 CTTGCGTTTT 1 CTTGCTCATA 1 CTTGCTGAAG 1 CTTGCTGATG 2 CTTGCTGCTG 1 CTTGGAACAC 1 CTTGGATACT 1 CTTGGCAAGG 1 CTTGGCACCC 3 CTTGGCAGCA 1 CTTGGCCTGG 1 CTTGGCCTTT 1 CTTGGCTCCT 1 CTTGGCTTAT 1 CTTGGGAGGC 1 CTTGGGATGT 2 CTTGGGCATA 1 CTTGGGCGGG 1 CTTGGGGTTT 1 CTTGGGTAAA 1 CTTGGGTCCT 3 CTTGGGTTCT 1 CTTGGGTTTT 21 CTTGGTCGAG 1 CTTGGTCTCC 1 CTTGGTGTCC 1 CTTGGTTTAG 1 CTTGGTTTTG 1 CTTGTAAATC 1 CTTGTAACAG 2 CTTGTAACCC 1 CTTGTAATCC 33 CTTGTAATCT 1 CTTGTAATTC 2 CTTGTACCCC 1 CTTGTACCGC 1 CTTGTAGACC 1 CTTGTAGATC 1 CTTGTAGTCC 5 CTTGTAGTCT 1 CTTGTAGTGC 1 CTTGTAGTTC 1 CTTGTATCAA 1 CTTGTCAGAG 1 CTTGTCAGTC 1 CTTGTCATCT 1 CTTGTCCCTA 1 CTTGTCTCCA 1 CTTGTCTTTA 1 CTTGTGAACT 3 CTTGTGAATT 1 CTTGTGACAG 1 CTTGTGAGGT 1 CTTGTGATCC 2 CTTGTGCAGG 1 CTTGTGGATT 1 CTTGTGGTCC 1 CTTGTGGTGA 1 CTTGTGTGTA 3 CTTGTTGCTG 1 CTTGTTGTTT 1 CTTGTTTGCA 1 CTTTAAAATA 1 CTTTAACTGC 1 CTTTAACTTC 1 CTTTAAGAAA 3 CTTTAAGGAA 1 CTTTAGCTTG 1 CTTTAGTATG 1 CTTTAGTGAG 1 CTTTAGTTCA 1 CTTTATAATG 1 CTTTATATGA 1 CTTTATGTGT 1 CTTTATTCCA 1 CTTTCAAAGT 1 CTTTCAGAAC 1 CTTTCAGATG 4 CTTTCAGCAA 1 CTTTCATTGT 1 CTTTCATTTT 3 CTTTCCAAAA 2 CTTTCCACCC 1 CTTTCCAGAC 1 CTTTCCAGAG 1 CTTTCCATCT 1 CTTTCCCATT 1 CTTTCCCCTT 1 CTTTCCCTTG 2 CTTTCCTATG 1 CTTTCCTGGC 1 CTTTCCTTGT 1 CTTTCTAAGA 1 CTTTCTACTT 1 CTTTCTAGAA 1 CTTTCTAGTC 1 CTTTCTCCTT 1 CTTTCTGAGA 1 CTTTCTGCTT 1 CTTTCTGTCC 1 CTTTCTTCCC 1 CTTTCTTTGA 1 CTTTGAAAAC 1 CTTTGACAAG 1 CTTTGAGACA 1 CTTTGAGCCC 1 CTTTGATCAG 4 CTTTGATGCG 1 CTTTGCAAAT 1 CTTTGCACTC 2 CTTTGCAGCC 1 CTTTGCATCT 1 CTTTGCCTAT 1 CTTTGCTGTG 2 CTTTGCTTTC 1 CTTTGGAATT 1 CTTTGGCACC 1 CTTTGGGAGG 1 CTTTGGTAGA 1 CTTTGGTGAG 1 CTTTGTACAC 1 CTTTGTAGCA 1 CTTTGTATTC 1 CTTTGTCCTT 1 CTTTGTGACT 1 CTTTGTTGTA 1 CTTTTAAAAT 2 CTTTTAAGAG 1 CTTTTACTAT 1 CTTTTAGTGA 1 CTTTTATAAA 1 CTTTTATTGG 1 CTTTTCAAGA 4 CTTTTCACTT 1 CTTTTCAGCA 4 CTTTTCCTCT 3 CTTTTCTCTT 3 CTTTTCTGCC 1 CTTTTCTGTG 1 CTTTTCTGTT 1 CTTTTCTTCT 1 CTTTTCTTTA 1 CTTTTGAGTT 1 CTTTTGATAT 1 CTTTTGCCAA 1 CTTTTGCCAT 1 CTTTTGGCTG 4 CTTTTGGCTT 1 CTTTTGGGTC 1 CTTTTGGTAT 1 CTTTTGGTTT 1 CTTTTGTACA 1 CTTTTGTCAA 1 CTTTTGTCGA 1 CTTTTGTGCT 1 CTTTTGTTTG 1 CTTTTTAAAG 1 CTTTTTAGAA 1 CTTTTTCGTT 1 CTTTTTCTCA 1 CTTTTTGCTT 1 CTTTTTGTGC 6 CTTTTTGTGT 2 CTTTTTTAAA 1 CTTTTTTCAA 1 CTTTTTTCTG 1 CTTTTTTTCT 1 CTTTTTTTTC 1 GAAAAAAAAA 9 GAAAAAAATG 2 GAAAAAAGAA 1 GAAAAAAGCA 1 GAAAAAAGGC 1 GAAAAAATAA 1 GAAAAAATGT 2 GAAAAACAGA 1 GAAAAACATA 1 GAAAAACCCC 2 GAAAAACCCT 1 GAAAAACTCT 2 GAAAAAGAGC 1 GAAAAAGCTG 1 GAAAAAGGGA 1 GAAAAAGGTC 1 GAAAAAGTGA 1 GAAAAATAAA 2 GAAAAATCAA 1 GAAAAATCCA 1 GAAAAATGGT 27 GAAAAATTGT 2 GAAAAATTTA 1 GAAAACAACT 1 GAAAACAAGA 1 GAAAACAGTT 1 GAAAACCATC 1 GAAAACCCCG 1 GAAAACCGAC 1 GAAAACGGCC 1 GAAAACGTTT 1 GAAAACTCCA 2 GAAAACTGCA 1 GAAAAGACAG 1 GAAAAGAGAT 1 GAAAAGAGCT 2 GAAAAGCATA 1 GAAAAGCCGT 1 GAAAAGCCTT 2 GAAAAGCTCA 1 GAAAAGCTCC 3 GAAAAGCTGG 2 GAAAAGGATG 1 GAAAAGGGCA 1 GAAAAGGGGG 1 GAAAAGGGTT 4 GAAAAGGTGA 1 GAAAAGGTTA 2 GAAAAGTACT 1 GAAAAGTCAC 1 GAAAAGTTAC 1 GAAAAGTTGC 2 GAAAATAGAG 1 GAAAATAGGA 1 GAAAATATAT 1 GAAAATATCC 1 GAAAATATTC 1 GAAAATGCTG 1 GAAAATGGGG 1 GAAAATTAAC 1 GAAAATTCAC 1 GAAAATTGAT 1 GAAACAAGAT 6 GAAACAAGCA 1 GAAACACGAT 1 GAAACAGACG 1 GAAACATTGG 1 GAAACCAACT 1 GAAACCAAGC 1 GAAACCACAA 1 GAAACCACGA 1 GAAACCAGGT 1 GAAACCCCAT 1 GAAACCCCGT 1 GAAACCCGGT 3 GAAACCGAGG 2 GAAACCTGAC 1 GAAACCTGAT 1 GAAACCTGGT 1 GAAACGGCCT 1 GAAACTATAA 1 GAAACTGAAA 1 GAAACTGAAC 24 GAAACTGAAG 2 GAAACTGTTG 1 GAAACTTCTG 2 GAAACTTGCT 1 GAAAGAAAAG 1 GAAAGAAACT 1 GAAAGAAATA 1 GAAAGAATTT 1 GAAAGACACG 1 GAAAGACCAC 1 GAAAGAGCTG 2 GAAAGATTGG 1 GAAAGCAAAG 1 GAAAGCACAC 1 GAAAGCATAA 1 GAAAGCATAC 1 GAAAGCATTA 1 GAAAGCTGGG 1 GAAAGGAGGC 1 GAAAGGATCC 1 GAAAGGATTT 1 GAAAGGCAAA 5 GAAAGGCAGG 2 GAAAGGCCGG 1 GAAAGGCTAA 1 GAAAGGCTTC 1 GAAAGGGACA 1 GAAAGGGCCT 1 GAAAGGTCTG 12 GAAAGTCAGG 1 GAAAGTCGGA 1 GAAAGTGAAG 2 GAAAGTGATT 1 GAAAGTTGAC 1 GAAATAAAAC 1 GAAATAAAAG 4 GAAATAAAGC 4 GAAATACACA 1 GAAATACAGT 33 GAAATACATA 1 GAAATAGTTG 1 GAAATATTAA 1 GAAATATTGA 1 GAAATCAAAA 1 GAAATCAGAG 1 GAAATCAGTG 2 GAAATCATTG 1 GAAATCCCAA 1 GAAATCCCAT 1 GAAATCCCTT 2 GAAATCCGCA 1 GAAATCCTCG 1 GAAATCGGAA 1 GAAATCTGTC 1 GAAATGAAAC 1 GAAATGAAGA 1 GAAATGAGCA 2 GAAATGAGCT 1 GAAATGATGA 4 GAAATGCATT 1 GAAATGCCTG 1 GAAATGCCTT 1 GAAATGGAGA 1 GAAATGGAGT 1 GAAATGGATG 1 GAAATGGGGA 1 GAAATGTAAG 10 GAAATGTTAT 1 GAAATGTTTG 1 GAAATTAGGG 1 GAAATTCACT 1 GAAATTCAGT 1 GAAATTGAAC 3 GAAATTGCAT 1 GAAATTGCGG 1 GAAATTTAAA 2 GAAATTTAAC 2 GAAATTTGAA 2 GAACAAAACC 1 GAACAAAATG 2 GAACAAGAAT 1 GAACAAGGTT 1 GAACAATTAC 1 GAACACATCC 46 GAACACATTC 1 GAACACATTG 1 GAACACCACT 1 GAACACCATT 1 GAACACCTCC 1 GAACACTCTG 1 GAACACTGGT 1 GAACACTTCC 1 GAACAGAGCC 1 GAACAGCTCA 30 GAACAGTATG 2 GAACAGTCTC 1 GAACAGTGTA 1 GAACAGTTTT 1 GAACATTAAC 1 GAACATTCTC 4 GAACCACAGG 1 GAACCACTCA 1 GAACCAGAGA 1 GAACCAGGGG 1 GAACCAGTTT 1 GAACCCAAAG 4 GAACCCAGGT 1 GAACCCCAGA 1 GAACCCCTCA 1 GAACCCTACT 1 GAACCCTGGG 6 GAACCCTTCT 28 GAACCGGGGG 1 GAACCTACTG 1 GAACCTGACA 1 GAACCTGGAG 2 GAACCTGGAT 1 GAACGACGTC 1 GAACGCCTAA 3 GAACGCCTAC 1 GAACGGCTTT 1 GAACGGGATG 2 GAACGGGCCC 1 GAACGTAGTG 1 GAACGTCTTA 3 GAACTAGAAG 1 GAACTCAATG 2 GAACTCAGGC 4 GAACTCCATA 2 GAACTCTGGT 1 GAACTGAATA 1 GAACTGACTT 2 GAACTGGAAG 1 GAACTGGATT 1 GAACTGGTTT 1 GAACTGTGAG 1 GAACTTAACA 1 GAACTTAATT 1 GAACTTATTA 1 GAACTTCTCT 1 GAACTTGTCT 1 GAACTTTCCT 1 GAACTTTGCA 1 GAACTTTTCT 1 GAAGAAACAC 1 GAAGAAAGAC 1 GAAGAAAGTG 1 GAAGAACAAG 1 GAAGAACTAG 1 GAAGAACTCA 1 GAAGAAGAAC 1 GAAGAAGAAG 2 GAAGAAGTCG 1 GAAGAATTTG 1 GAAGACACCT 1 GAAGACCATT 1 GAAGACCCTG 1 GAAGACGCTG 1 GAAGACGGGG 1 GAAGACGGTG 1 GAAGACTCTA 1 GAAGACTGAA 1 GAAGACTTGA 1 GAAGAGAAAC 1 GAAGAGAACC 1 GAAGAGAGCT 1 GAAGAGATGG 1 GAAGAGCCAG 2 GAAGAGGATT 1 GAAGAGGCCT 1 GAAGAGGCTG 1 GAAGAGGTTG 1 GAAGAGTATA 1 GAAGAGTCAC 1 GAAGAGTTCC 1 GAAGATACAG 1 GAAGATAGCC 1 GAAGATGAAG 3 GAAGATGCCT 2 GAAGATGCGA 1 GAAGATGTAC 2 GAAGATGTGG 6 GAAGATGTGT 3 GAAGATTAAT 1 GAAGATTCTG 1 GAAGCAAAAT 1 GAAGCAAAGA 1 GAAGCAAGAC 1 GAAGCAATAA 1 GAAGCACAAA 1 GAAGCACTGC 1 GAAGCAGACT 1 GAAGCAGCAC 1 GAAGCAGGAC 33 GAAGCAGGCC 1 GAAGCAGGGC 2 GAAGCAGTAG 1 GAAGCAGTTT 2 GAAGCATCGC 2 GAAGCATTTA 1 GAAGCCAATA 1 GAAGCCAGCC 2 GAAGCCCTGG 1 GAAGCCGGAA 4 GAAGCGAACT 1 GAAGCGGTGG 1 GAAGCGTAAA 1 GAAGCGTACT 1 GAAGCTAAGG 1 GAAGCTCACA 1 GAAGCTCTGC 1 GAAGCTCTGT 1 GAAGCTGAAC 2 GAAGCTGTGG 1 GAAGCTTCCA 2 GAAGCTTTCA 1 GAAGCTTTGC 11 GAAGCTTTGT 1 GAAGGAAAAA 1 GAAGGAACTA 1 GAAGGAAGAA 5 GAAGGAAGAT 1 GAAGGAAGCT 1 GAAGGACAAA 1 GAAGGACTGG 1 GAAGGACTTC 1 GAAGGAGATA 2 GAAGGAGATG 3 GAAGGAGCAC 1 GAAGGAGCTG 3 GAAGGAGGCA 1 GAAGGAGGGT 1 GAAGGATCCC 1 GAAGGATGTG 1 GAAGGCAAGA 1 GAAGGCACGC 1 GAAGGCAGAA 1 GAAGGCATCC 1 GAAGGCATCT 2 GAAGGCCTCA 1 GAAGGCCTCT 1 GAAGGCGTGT 1 GAAGGCGTTG 1 GAAGGCTATA 1 GAAGGCTGAG 1 GAAGGCTGTC 1 GAAGGGAAAA 1 GAAGGGAACA 1 GAAGGGCAGA 1 GAAGGGCTGG 1 GAAGGGCTTT 1 GAAGGGGATG 1 GAAGGGGCCC 1 GAAGGGTGGT 1 GAAGGGTTTT 1 GAAGGTGCTG 1 GAAGGTGTGC 1 GAAGGTTCTC 1 GAAGGTTGTG 2 GAAGTAAAAA 1 GAAGTAAGTC 1 GAAGTACAGT 1 GAAGTACCTA 1 GAAGTAGACT 1 GAAGTAGGAA 2 GAAGTATGAA 1 GAAGTATTTT 1 GAAGTCAGAA 1 GAAGTCCTGG 1 GAAGTCGAAT 2 GAAGTCGGAA 271 GAAGTCGGAG 2 GAAGTCGGAT 1 GAAGTCGGTA 1 GAAGTCGTCT 1 GAAGTCTGAA 1 GAAGTGAAGC 1 GAAGTGAGCT 1 GAAGTGATCA 1 GAAGTGCCCA 1 GAAGTGCGTC 1 GAAGTGCTGC 1 GAAGTGGAAG 1 GAAGTGGCAG 1 GAAGTGGCTG 1 GAAGTGGCTT 1 GAAGTGGGAG 1 GAAGTGGGGG 1 GAAGTGGTGA 1 GAAGTGGTGG 1 GAAGTTATGA 3 GAAGTTCTCA 1 GAAGTTGCAG 1 GAAGTTGCCT 1 GAAGTTGCTG 1 GAAGTTGGAA 1 GAAGTTTTAC 3 GAATAAAATA 2 GAATAAACCA 1 GAATAAAGCA 1 GAATAAATGT 1 GAATAAATTG 2 GAATAACTCG 1 GAATAAGCCC 1 GAATAAGTGA 1 GAATAATAGG 1 GAATAATGGA 1 GAATAATTTG 1 GAATACCAAA 1 GAATACGACT 1 GAATACTGAA 1 GAATACTTGT 1 GAATAGTCCT 1 GAATAGTGTG 1 GAATATACAC 1 GAATATAGGC 2 GAATATCCTA 1 GAATATCCTG 1 GAATATCTTC 1 GAATATCTTT 1 GAATATGTTT 1 GAATATTCAA 1 GAATATTTTT 1 GAATCAACAA 1 GAATCAATTT 1 GAATCACATA 1 GAATCACCCT 1 GAATCACTGC 1 GAATCATACT 1 GAATCATTTT 1 GAATCCAACT 7 GAATCCAGGA 1 GAATCCTTAT 1 GAATCGAAGT 1 GAATCGGTTA 3 GAATCGTCAG 1 GAATCTACTC 1 GAATCTCATC 1 GAATCTCTCT 1 GAATCTGATA 1 GAATCTGATG 1 GAATCTGTGC 2 GAATGAACTG 1 GAATGAATGG 1 GAATGAGGAC 4 GAATGAGTTA 1 GAATGATATA 1 GAATGCACTT 1 GAATGCAGTT 2 GAATGCCCAC 1 GAATGCGCAG 1 GAATGCTGAC 3 GAATGCTGTA 1 GAATGGAATA 1 GAATGGCTTG 1 GAATGGGAGA 1 GAATGGGCTG 6 GAATGGTATA 1 GAATGTAAGA 1 GAATGTAAGT 3 GAATGTATCT 1 GAATGTCCTT 1 GAATGTTAGA 1 GAATGTTATT 1 GAATGTTCCT 1 GAATGTTCTT 1 GAATGTTTTT 2 GAATTAACAT 2 GAATTAATTA 1 GAATTACAGT 1 GAATTATGAT 1 GAATTCACTA 1 GAATTCCCTT 1 GAATTCCTCG 2 GAATTCTATG 1 GAATTGAAAG 1 GAATTGAATC 1 GAATTGACGC 2 GAATTGACTT 1 GAATTGAGCT 1 GAATTGTACA 1 GAATTGTCTG 1 GAATTTAATG 1 GAATTTATGC 1 GAATTTATTA 1 GAATTTCCCA 3 GAATTTGATA 1 GAATTTGTTC 1 GAATTTTATA 7 GAATTTTATG 1 GAATTTTCCT 1 GAATTTTGAG 1 GACAAAAAAA 1 GACAAAAAGT 1 GACAAAACCA 1 GACAAAACTC 1 GACAAAAGGT 1 GACAAAATTC 1 GACAAACATC 1 GACAAACCCC 1 GACAAAGAGA 1 GACAAAGCAA 1 GACAAAGGTG 1 GACAAATAGC 1 GACAAATCTC 1 GACAACAAAG 1 GACAACACAA 2 GACAACAGAG 1 GACAACAGGC 1 GACAAGAAAA 1 GACAAGACAC 1 GACAAGCCCA 1 GACAAGGCCT 1 GACAAGTATT 1 GACAAGTGCC 1 GACAATAAAT 1 GACAATAAGG 1 GACAATCTGA 1 GACAATGAGA 2 GACAATGCCA 2 GACAATGGAT 1 GACACAACCG 1 GACACAACCT 1 GACACAAGAT 1 GACACAATGA 1 GACACAGCAA 2 GACACAGCTT 1 GACACAGGAA 1 GACACAGGAG 1 GACACAGGCA 3 GACACATCCT 1 GACACCAAAG 1 GACACCAACT 3 GACACCAAGT 1 GACACCACCC 1 GACACCACGG 1 GACACCGAGT 1 GACACCTTGT 1 GACACGAAGA 1 GACACGCATC 1 GACACGTGAC 1 GACACGTGCA 1 GACACTAAGA 1 GACACTACAC 2 GACACTAGCT 1 GACACTCCCA 2 GACACTGAAA 21 GACACTGAAG 1 GACACTGAGG 1 GACACTGATA 1 GACACTGGAA 1 GACACTGGCT 1 GACACTGTCA 1 GACACTTCTC 1 GACACTTTGA 1 GACACTTTTA 1 GACAGAACAG 1 GACAGACATC 1 GACAGAGAAC 1 GACAGATATC 1 GACAGATGGA 2 GACAGCACCA 1 GACAGCATCT 1 GACAGCATTG 1 GACAGCCAAC 1 GACAGCCGTG 1 GACAGCCTTA 1 GACAGCTCAC 1 GACAGCTGAT 1 GACAGGCCAG 1 GACAGGCGCA 1 GACAGGCTGG 1 GACAGGGACC 1 GACAGGGACG 1 GACAGGGGCC 1 GACAGGTCAT 1 GACAGTCACT 1 GACAGTCAGA 1 GACAGTCGGT 5 GACAGTCTTT 1 GACAGTGACG 2 GACAGTGTAG 1 GACAGTGTGG 4 GACAGTTGAG 1 GACATAAATA 1 GACATAAATC 6 GACATAAGTA 1 GACATACAGA 1 GACATAGGGC 1 GACATATGTA 3 GACATATTAA 1 GACATCAAGT 17 GACATCACAA 1 GACATCCCCT 1 GACATCCTGC 1 GACATCGAGG 1 GACATCGGGC 1 GACATCTTCC 1 GACATTGCTG 2 GACATTTGAG 1 GACATTTGCT 1 GACATTTGTC 1 GACATTTTGG 2 GACCAAACTT 2 GACCAAAGGG 1 GACCAAAGTG 1 GACCAAGATA 2 GACCAAGGAT 3 GACCAATCAG 1 GACCACACCG 1 GACCACCAGT 3 GACCACGAAT 2 GACCACGGCG 2 GACCACGTTT 1 GACCACTCAC 1 GACCACTCTT 1 GACCACTGTT 1 GACCACTTGC 1 GACCAGAAAA 9 GACCAGCAGA 1 GACCAGCCCA 5 GACCAGCCCC 1 GACCAGCGGC 1 GACCAGCTCC 1 GACCAGCTGG 1 GACCAGGCCC 2 GACCATTTTA 1 GACCCAAAAT 1 GACCCAAGAG 2 GACCCAAGAT 138 GACCCACAAC 1 GACCCACCGC 1 GACCCACTAC 1 GACCCAGATG 1 GACCCAGCAG 1 GACCCAGGAG 2 GACCCCAAGG 3 GACCCCAGGC 1 GACCCCTCGC 1 GACCCCTGTC 2 GACCCCTTCT 1 GACCCCTTTG 1 GACCCGGGAG 3 GACCCGGGAT 1 GACCCGTTGG 1 GACCCTAGAT 1 GACCCTAGCT 2 GACCCTGACC 1 GACCCTGACT 3 GACCCTGCCC 29 GACCCTGGTT 1 GACCCTTCTC 1 GACCCTTCTT 1 GACCCTTGGC 1 GACCCTTTGA 1 GACCGAGGTG 4 GACCGCAGGA 1 GACCGCAGGG 1 GACCGCGCGT 1 GACCGGGAGC 1 GACCTAAAAA 1 GACCTAAGAT 1 GACCTATGAG 1 GACCTCAAAG 1 GACCTCCTGC 1 GACCTCTCTG 1 GACCTCTTTC 1 GACCTGACCC 1 GACCTGCACT 1 GACCTGGAGC 1 GACCTGGCCC 1 GACCTGGCTG 1 GACCTGGGTT 1 GACCTGTACA 1 GACCTGTCAT 1 GACCTGTGAG 3 GACCTGTTTT 1 GACCTTCAGC 1 GACCTTGATC 4 GACCTTGGCC 1 GACCTTGTCT 1 GACCTTGTTA 1 GACCTTTGAA 1 GACGAACTAA 1 GACGAATGAT 1 GACGAATGGC 1 GACGACAAGG 1 GACGACACGA 48 GACGACACGT 3 GACGACATTC 1 GACGACTCTG 1 GACGACTGAC 2 GACGAGAGCG 1 GACGAGAGCT 1 GACGAGGAGA 1 GACGAGGGCA 1 GACGATGCGT 1 GACGCACCTG 1 GACGCAGAAG 2 GACGCCAAGG 1 GACGCCATCA 1 GACGCCGAAC 1 GACGCGGCGC 17 GACGCTGGCT 1 GACGCTTTCA 1 GACGGCGCAG 3 GACGGCTACT 1 GACGGCTGCA 1 GACGGCTTCC 4 GACGGGGTGC 1 GACGGGTCAG 1 GACGTAGGCT 1 GACGTATTAA 1 GACGTATTAG 1 GACGTCTTAA 2 GACGTGATGG 1 GACGTGCGGG 1 GACGTGTGGG 7 GACGTTCACT 1 GACGTTGCTG 1 GACTAAGAAA 2 GACTACCATA 1 GACTACGGAC 1 GACTAGAGGC 1 GACTAGGAGT 1 GACTAGTGCG 1 GACTATAAAA 1 GACTATGCCT 1 GACTCAAGAT 1 GACTCAAGCA 1 GACTCACTTT 12 GACTCAGGGA 2 GACTCAGTGA 1 GACTCATTGA 1 GACTCCACAT 2 GACTCCAGCA 1 GACTCCATTC 1 GACTCCCAAT 1 GACTCGCAGA 1 GACTCGCCCA 1 GACTCTACTG 1 GACTCTCAGG 1 GACTCTCTCA 3 GACTCTCTGG 1 GACTCTCTGT 3 GACTCTGACA 1 GACTCTGAGA 1 GACTCTGGGA 4 GACTCTGGTG 1 GACTCTGTCA 1 GACTGAAACT 2 GACTGAACTG 1 GACTGAATCT 1 GACTGACACG 1 GACTGAGAGC 1 GACTGAGCTT 7 GACTGAGGCC 1 GACTGCCGCC 2 GACTGCCGTG 1 GACTGCGGCG 1 GACTGCGGCT 1 GACTGCGTGC 17 GACTGCTCTG 3 GACTGGAAAA 1 GACTGGAACT 1 GACTGGACTC 1 GACTGGAGGA 1 GACTGGGAAG 1 GACTGGGAGA 1 GACTGGTCCT 1 GACTGTGCCA 3 GACTGTTAAA 1 GACTTAAGAT 1 GACTTATAAC 1 GACTTATTCA 1 GACTTCAAGG 1 GACTTCACGT 1 GACTTCACTT 1 GACTTCCAAA 1 GACTTCCATT 1 GACTTCCCTT 1 GACTTGAAAC 1 GACTTGATAT 5 GACTTGGACC 2 GACTTGGAGG 4 GACTTGGCAA 1 GACTTGTATA 2 GACTTGTTCC 1 GACTTTACGG 1 GACTTTCTGA 1 GACTTTGAAC 1 GACTTTGGAA 1 GACTTTGGGA 1 GACTTTGGTG 1 GACTTTTAAA 1 GACTTTTCAA 1 GACTTTTTCA 2 GACTTTTTGG 1 GAGAAAAACA 1 GAGAAAACCT 4 GAGAAAAGTT 1 GAGAAACACC 4 GAGAAACACT 1 GAGAAACCCA 1 GAGAAACCCC 27 GAGAAACCCG 1 GAGAAACCCT 12 GAGAAACCGC 1 GAGAAACCTA 1 GAGAAACCTC 2 GAGAAACCTT 1 GAGAAACGCT 1 GAGAAACTAG 1 GAGAAACTCC 4 GAGAAACTCT 4 GAGAAACTGA 1 GAGAAAGAGG 1 GAGAAAGAGT 1 GAGAAAGGAG 2 GAGAAATATC 1 GAGAAATCCC 5 GAGAAATCCT 3 GAGAAATCGT 1 GAGAAATGGG 1 GAGAAATTAG 3 GAGAAATTAT 1 GAGAAATTTA 1 GAGAACAAGG 1 GAGAACACAC 1 GAGAACCAGT 1 GAGAACCATA 1 GAGAACCCGT 1 GAGAACCGTA 7 GAGAACCTCT 1 GAGAACGGGG 7 GAGAACTAAG 1 GAGAACTCAA 1 GAGAAGAAGC 1 GAGAAGACAC 1 GAGAAGACTG 1 GAGAAGACTT 2 GAGAAGAGGA 1 GAGAAGCACT 1 GAGAAGCCCC 3 GAGAAGCCGG 1 GAGAAGGAAG 1 GAGAAGGCAA 1 GAGAAGGCCG 1 GAGAAGGTGG 1 GAGAATAATT 1 GAGAATATTT 1 GAGAATCAAA 1 GAGAATCCCC 1 GAGAATGGGA 1 GAGAATTAAA 1 GAGAATTAAT 1 GAGAATTCTT 1 GAGACAGAAA 1 GAGACAGGCA 1 GAGACAGTTG 1 GAGACATACT 1 GAGACATTCG 1 GAGACCAATT 2 GAGACCACCT 1 GAGACCACGG 2 GAGACCACTG 1 GAGACCAGAA 1 GAGACCAGAC 1 GAGACCCAAA 1 GAGACCCCTG 1 GAGACCCGCA 1 GAGACCCTGG 2 GAGACCTGGA 1 GAGACCTTCA 1 GAGACCTTGG 1 GAGACGCCCA 1 GAGACGGCCA 1 GAGACGGTCT 1 GAGACGTCCA 1 GAGACTACAT 1 GAGACTACCA 1 GAGACTATTG 1 GAGACTCCAT 1 GAGACTCCTG 4 GAGACTCTGT 1 GAGACTGAGG 1 GAGACTGCTG 2 GAGACTGCTT 1 GAGACTGGCT 3 GAGACTGGTG 1 GAGACTGTTT 2 GAGACTTATT 2 GAGACTTCTG 1 GAGACTTCTT 1 GAGAGAACGG 3 GAGAGACAGA 1 GAGAGACCCC 1 GAGAGACCCT 1 GAGAGACCTT 1 GAGAGAGAGA 1 GAGAGAGCCC 1 GAGAGAGCCT 1 GAGAGAGGAA 1 GAGAGATTAC 1 GAGAGCAAGG 1 GAGAGCACCC 1 GAGAGCACTG 1 GAGAGCAGCA 1 GAGAGCAGCC 2 GAGAGCCTGC 4 GAGAGCGGGA 1 GAGAGCTATT 1 GAGAGCTCAC 1 GAGAGCTCCC 1 GAGAGGAAGA 3 GAGAGGAATC 1 GAGAGGACAG 1 GAGAGGATTG 1 GAGAGGCCCT 2 GAGAGGCTGC 1 GAGAGGGAAG 1 GAGAGGGCAG 3 GAGAGGGGCA 1 GAGAGGGGTG 1 GAGAGGTGCA 1 GAGAGGTGTA 1 GAGAGTAACA 3 GAGAGTAGCA 1 GAGAGTCAGA 1 GAGAGTCCTT 1 GAGAGTGTAC 2 GAGAGTGTCT 3 GAGATAAATC 1 GAGATACAAG 1 GAGATAGAGA 1 GAGATAGCCC 1 GAGATATTAA 1 GAGATCAAGG 1 GAGATCCAGG 1 GAGATCCCCA 1 GAGATCCGCA 12 GAGATCTGAA 1 GAGATCTTCA 1 GAGATGAAAC 1 GAGATGAAGT 1 GAGATGACAT 1 GAGATGAGCC 1 GAGATGCCTG 1 GAGATGCGCA 1 GAGATGGAAC 1 GAGATGGAAG 1 GAGATGGCGC 1 GAGATGGGAT 1 GAGATGTAAA 1 GAGATTATAG 1 GAGATTATCA 1 GAGATTGATT 1 GAGATTGGCT 1 GAGATTTAGG 1 GAGATTTCAC 1 GAGCAAAAAA 1 GAGCAAAATA 1 GAGCAAACCT 1 GAGCAAAGGA 1 GAGCAAATGT 1 GAGCAACAAC 1 GAGCAACCCC 1 GAGCAAGGGG 2 GAGCAAGTAC 1 GAGCAATAGT 1 GAGCAATGCA 1 GAGCACACTG 1 GAGCACCGTG 1 GAGCACCTCC 1 GAGCACCTGC 1 GAGCACCTGG 2 GAGCACTTCC 1 GAGCAGAAGC 1 GAGCAGAGCT 1 GAGCAGATGC 1 GAGCAGCTGG 2 GAGCAGGACG 1 GAGCAGGAGC 1 GAGCAGGAGT 1 GAGCAGGCAA 1 GAGCAGGGTT 1 GAGCAGTGCT 1 GAGCAGTTGT 1 GAGCATTCAG 1 GAGCCAAACT 1 GAGCCAACAA 2 GAGCCAACCC 4 GAGCCAATAT 1 GAGCCAGAGG 1 GAGCCAGAGT 1 GAGCCAGGTG 2 GAGCCAGTGA 1 GAGCCATTAT 1 GAGCCATTTG 1 GAGCCCATCT 1 GAGCCCCAGT 1 GAGCCCCCGT 1 GAGCCCCGGT 1 GAGCCCGGGA 1 GAGCCCTCAC 1 GAGCCGCCAA 1 GAGCCGCCTC 3 GAGCCGCGGT 1 GAGCCGTACA 1 GAGCCGTGTG 1 GAGCCTACTC 1 GAGCCTCACA 1 GAGCCTCATC 1 GAGCCTCCAG 1 GAGCCTCTGG 1 GAGCCTGAGG 1 GAGCCTGCTT 1 GAGCCTGGTG 1 GAGCCTGTAA 1 GAGCCTTCCT 1 GAGCCTTGGG 1 GAGCCTTGGT 8 GAGCCTTTTT 1 GAGCGATCGG 1 GAGCGCACAC 1 GAGCGCACAG 1 GAGCGCAGCG 2 GAGCGCAGGG 1 GAGCGCCGGT 1 GAGCGCCTCG 1 GAGCGCGATC 1 GAGCGCTGGG 1 GAGCGGAGGA 1 GAGCGGCCTC 8 GAGCGGCTCT 2 GAGCGGGATC 3 GAGCGGGATG 2 GAGCGGGCAG 1 GAGCGTCTTA 2 GAGCGTGGGC 1 GAGCTATTCC 1 GAGCTCAAGA 1 GAGCTCAATT 1 GAGCTCCACA 1 GAGCTCCGGC 1 GAGCTCTGAG 1 GAGCTCTGCG 1 GAGCTCTTCC 1 GAGCTCTTGT 1 GAGCTGAACC 1 GAGCTGACAT 2 GAGCTGAGAT 1 GAGCTGAGCA 1 GAGCTGATGG 1 GAGCTGCAGG 1 GAGCTGCATC 1 GAGCTGCCCT 1 GAGCTGGACA 1 GAGCTGGCCT 2 GAGCTGGGCA 2 GAGCTGTAGC 1 GAGCTGTCCT 1 GAGCTTACAA 1 GAGCTTACCC 1 GAGCTTATAT 1 GAGCTTCAGG 1 GAGCTTCTAG 1 GAGCTTCTTT 1 GAGCTTGATG 1 GAGCTTTTGA 1 GAGGAAAACT 1 GAGGAAACAG 1 GAGGAAACCT 1 GAGGAAATCG 1 GAGGAAATGA 1 GAGGAAATGC 1 GAGGAACAGT 1 GAGGAACCAG 2 GAGGAACTCA 1 GAGGAACTGG 1 GAGGAAGAAG 15 GAGGAAGAGG 1 GAGGAAGCAG 1 GAGGAAGCTG 1 GAGGAAGGAG 1 GAGGAAGGCT 1 GAGGAAGTGA 1 GAGGAATATG 1 GAGGAATCTT 1 GAGGAATTAT 1 GAGGACCCAA 1 GAGGACCCAT 1 GAGGACCCTG 1 GAGGACCTTA 1 GAGGACGAAG 1 GAGGACTCCG 2 GAGGACTCTG 1 GAGGACTCTT 1 GAGGACTTCC 1 GAGGACTTGC 1 GAGGAGAAAG 1 GAGGAGAAGC 1 GAGGAGAATG 1 GAGGAGACAT 1 GAGGAGAGCT 1 GAGGAGCAAA 1 GAGGAGCCCC 1 GAGGAGCCCT 1 GAGGAGGAAC 1 GAGGAGGAGC 1 GAGGAGGGTG 6 GAGGAGGTAG 1 GAGGAGGTGG 1 GAGGAGGTTG 1 GAGGATATGG 2 GAGGATATTG 1 GAGGATGAGG 2 GAGGATGGTG 6 GAGGATTCTT 1 GAGGATTTTA 1 GAGGCAAGAC 1 GAGGCACCTG 1 GAGGCAGAAG 1 GAGGCAGAGG 1 GAGGCAGCTG 1 GAGGCAGCTT 1 GAGGCAGGCG 1 GAGGCAGGGG 1 GAGGCAGGTG 1 GAGGCATATG 1 GAGGCCAATG 1 GAGGCCAGGT 1 GAGGCCAGTG 2 GAGGCCATCC 5 GAGGCCCAGC 1 GAGGCCCAGG 5 GAGGCCGACC 3 GAGGCCGCGG 1 GAGGCCGGCC 2 GAGGCCGGGT 1 GAGGCCTCAG 1 GAGGCCTCCA 1 GAGGCCTGTG 1 GAGGCGATCA 7 GAGGCGCGTG 1 GAGGCGCTGG 1 GAGGCGGACC 1 GAGGCGTGAA 1 GAGGCTAAAA 1 GAGGCTCAAT 4 GAGGCTGAAC 1 GAGGCTGAAG 1 GAGGCTGGAG 1 GAGGCTGGAT 1 GAGGCTGGCG 1 GAGGCTTACT 1 GAGGCTTCAA 1 GAGGGAAATT 1 GAGGGAATTT 1 GAGGGACACA 1 GAGGGACCCT 1 GAGGGACTAA 1 GAGGGACTCC 1 GAGGGAGACC 1 GAGGGAGGCG 1 GAGGGAGGTG 1 GAGGGAGTAT 1 GAGGGAGTGG 1 GAGGGAGTTA 1 GAGGGAGTTC 2 GAGGGAGTTT 51 GAGGGATCCA 1 GAGGGATCCT 1 GAGGGATCTA 1 GAGGGCAAAA 1 GAGGGCAATC 1 GAGGGCAGTG 1 GAGGGCCAGG 1 GAGGGCCCCA 1 GAGGGCCGTG 2 GAGGGCCTTG 3 GAGGGCGATT 1 GAGGGCTGAC 1 GAGGGGAAAC 2 GAGGGGAAGC 1 GAGGGGAAGG 1 GAGGGGAGCT 1 GAGGGGAGGA 1 GAGGGGCACA 1 GAGGGGCCCA 1 GAGGGGGAGG 1 GAGGGGGCAG 1 GAGGGGTGTA 1 GAGGGTATAC 2 GAGGGTGAGG 1 GAGGGTGCCA 3 GAGGGTGGCG 3 GAGGGTGTGA 1 GAGGGTTTTA 1 GAGGTAAAGG 1 GAGGTAATGG 1 GAGGTAGCAG 1 GAGGTAGCCA 1 GAGGTCACAG 1 GAGGTCACCA 2 GAGGTCACCG 1 GAGGTCCAAG 1 GAGGTCCAGA 1 GAGGTCCCTG 4 GAGGTCCTTC 1 GAGGTCGGAA 3 GAGGTGAAAC 1 GAGGTGAATG 1 GAGGTGAGCA 1 GAGGTGATCA 1 GAGGTGCAGG 1 GAGGTGGACA 1 GAGGTGGCGA 1 GAGGTGGCGG 1 GAGGTGGGGG 1 GAGGTGGGTT 1 GAGGTGGTCT 1 GAGGTGGTGC 1 GAGGTGTTCT 2 GAGGTTAACA 1 GAGGTTAGAT 1 GAGGTTCTTC 1 GAGGTTGAGA 1 GAGGTTGCAG 1 GAGGTTTGGG 1 GAGTAAAAAA 5 GAGTAAATGT 1 GAGTAAGAAG 1 GAGTAAGAGG 1 GAGTAGAGAA 7 GAGTAGAGGC 2 GAGTAGATGA 2 GAGTAGCGAA 1 GAGTAGCGTC 1 GAGTAGTAAT 2 GAGTATAAAT 1 GAGTATATCC 1 GAGTATCTCA 1 GAGTATTCTT 1 GAGTCAAAAG 1 GAGTCACAGA 1 GAGTCACTGA 1 GAGTCACTGG 1 GAGTCAGCAT 2 GAGTCAGGAG 7 GAGTCCACGG 1 GAGTCCATCT 1 GAGTCCTGAC 2 GAGTCCTGAT 1 GAGTCGGAAT 1 GAGTCTAAGG 1 GAGTCTCACT 1 GAGTCTCCCT 1 GAGTCTCCTT 1 GAGTCTGAGG 7 GAGTCTTAAT 1 GAGTGAAAGC 1 GAGTGAATGC 1 GAGTGAGACC 2 GAGTGAGCAG 1 GAGTGAGTGA 3 GAGTGATGTG 1 GAGTGATTGT 1 GAGTGCAATA 1 GAGTGCAGGG 1 GAGTGCAGTG 1 GAGTGGAGAG 3 GAGTGGCTAT 1 GAGTGGGCTT 1 GAGTGGGGGC 5 GAGTGGGGGT 1 GAGTGGTTCA 1 GAGTGTACAA 1 GAGTGTATAG 1 GAGTGTATTG 1 GAGTGTCTGA 2 GAGTGTTGCT 1 GAGTTACGGT 1 GAGTTAGTGA 1 GAGTTATGTT 1 GAGTTCAGTG 1 GAGTTCGACC 2 GAGTTGAAGT 1 GAGTTGAGCT 1 GAGTTGGCAC 2 GAGTTGGCAG 7 GAGTTGTGTA 1 GAGTTTAACA 1 GAGTTTAATC 1 GAGTTTACAA 1 GAGTTTACAT 1 GAGTTTAGTC 1 GAGTTTATAG 1 GAGTTTCACT 1 GAGTTTCTTA 2 GAGTTTGAAA 1 GAGTTTGCCA 1 GAGTTTGGGC 1 GAGTTTGTCT 1 GAGTTTGTGT 1 GAGTTTTCGG 1 GATAAAACGT 1 GATAAAATGA 1 GATAAACCAT 1 GATAAAGAAA 1 GATAAATATA 1 GATAAATATT 1 GATAAATTAA 1 GATAACAACA 1 GATAACATCA 1 GATAACTGTG 1 GATAACTTTA 1 GATAAGACTT 1 GATAAGCTGT 1 GATAAGCTTG 1 GATAAGTCCT 1 GATAATCAAG 1 GATAATCATA 1 GATAATTTTT 2 GATACAAATT 1 GATACACAGC 1 GATACACTGG 1 GATACAGAGA 1 GATACAGCCC 1 GATACATCGG 1 GATACCTTCA 1 GATACTAGTG 1 GATACTTGAC 1 GATACTTGGT 1 GATACTTTGA 1 GATACTTTTT 1 GATAGAAAAT 1 GATAGAAATC 1 GATAGAAGAT 1 GATAGACGCA 2 GATAGACTTA 1 GATAGAGACA 1 GATAGAGCTG 1 GATAGCAAGG 1 GATAGGAAAA 1 GATAGGTTTA 1 GATAGTTGTG 2 GATAGTTTGT 1 GATATACCAC 1 GATATACCAT 1 GATATAGAGA 3 GATATATTGT 1 GATATCAACA 1 GATATCAGAC 1 GATATCAGTC 1 GATATCTCTA 1 GATATGCATC 1 GATATGGAGA 1 GATATGGAGG 1 GATATGTTAT 1 GATATTAAGA 1 GATATTACTG 1 GATATTTTTT 1 GATCAAACAA 1 GATCAAAGAG 1 GATCAATTAA 1 GATCACAATG 1 GATCACAGTT 4 GATCACCTGA 1 GATCACTGTA 1 GATCAGAAAA 1 GATCAGAAGA 1 GATCAGATCA 1 GATCAGGCCA 2 GATCAGTCCA 1 GATCATTCAC 1 GATCATTGGC 1 GATCCAAACC 1 GATCCAAATA 1 GATCCAAGCA 1 GATCCACATC 1 GATCCACCTA 1 GATCCACTGG 1 GATCCAGAAG 1 GATCCAGAGG 1 GATCCAGTTG 3 GATCCCAACA 11 GATCCCAACT 1 GATCCCACCA 1 GATCCCAGGA 1 GATCCCTAAA 1 GATCCGCGCC 1 GATCCGCTCC 1 GATCCGCTCT 1 GATCCGCTGT 1 GATCCTATCG 1 GATCCTATTA 1 GATCCTCGCG 1 GATCCTGAAG 1 GATCCTGAGG 1 GATCCTGTGG 1 GATCCTGTGT 4 GATCCTTCTT 1 GATCCTTGGT 2 GATCGCACGT 1 GATCTAAATA 1 GATCTAGAAA 1 GATCTATCCA 2 GATCTATTAC 1 GATCTCACTG 1 GATCTCATCT 4 GATCTCCAGA 1 GATCTCCGTC 1 GATCTCCGTG 1 GATCTCCTAA 1 GATCTCGCAA 1 GATCTCGGAA 1 GATCTGAGCC 1 GATCTGCCAA 1 GATCTGTTGC 1 GATCTGTTTT 1 GATCTTAGAG 1 GATCTTAGAT 1 GATCTTCCAT 1 GATCTTCGTA 4 GATCTTGTAT 2 GATCTTTTGT 1 GATGAAAAGG 1 GATGAAAATC 1 GATGAAACTT 1 GATGAAATAA 1 GATGAAATAC 1 GATGAAATTG 1 GATGAACAGA 1 GATGAACCTT 3 GATGAACGGA 1 GATGAACTGA 1 GATGAAGCAA 1 GATGAAGCTG 2 GATGAAGCTT 1 GATGAAGGTA 1 GATGAATCCG 2 GATGAATCTT 1 GATGAATTCT 1 GATGAATTGA 1 GATGAATTTA 2 GATGACCCCA 1 GATGACCCCC 3 GATGACCCCG 3 GATGACGACT 3 GATGACTGCA 1 GATGAGAATG 1 GATGAGACTA 1 GATGAGATTG 1 GATGAGCCTG 1 GATGAGCGAG 1 GATGAGCGGC 1 GATGAGGAAT 1 GATGAGGACT 6 GATGAGGAGA 4 GATGAGGCCC 1 GATGAGGGGA 1 GATGAGTCTC 4 GATGAGTGGA 1 GATGATAGTC 1 GATGATCTGG 1 GATGATGAAT 1 GATGATGACA 1 GATGATGACC 1 GATGATGATC 1 GATGATGGTT 1 GATGATTTTG 1 GATGCAAAAC 1 GATGCAACAG 1 GATGCAGCAG 1 GATGCAGGCA 2 GATGCAGGCG 1 GATGCATCCC 1 GATGCATTAC 1 GATGCATTAG 1 GATGCCCTCT 1 GATGCCTACC 1 GATGCCTCAT 1 GATGCCTCTG 5 GATGCGATCC 1 GATGCGATGA 1 GATGCGCTTG 2 GATGCGGCCA 1 GATGCTAACC 1 GATGCTCATC 1 GATGCTCCGT 1 GATGCTCCTG 1 GATGCTGAGA 1 GATGCTGCCA 14 GATGCTGGAG 1 GATGCTTCTG 1 GATGGAAATG 1 GATGGAACTT 1 GATGGACACT 1 GATGGAGCAC 1 GATGGAGCCC 1 GATGGAGCCG 1 GATGGAGGCT 1 GATGGAGTCT 1 GATGGATCGA 2 GATGGATGAA 1 GATGGCAAAG 2 GATGGCAGCC 1 GATGGCTAAG 1 GATGGCTGTC 1 GATGGGAGAG 2 GATGGGATGG 1 GATGGGCTGC 2 GATGGGGACA 2 GATGGGGACT 1 GATGGGGCCG 1 GATGGGGCTG 1 GATGGGGTTC 1 GATGGGTAGA 1 GATGGGTCGA 1 GATGGGTCGG 1 GATGGGTGTG 1 GATGGGTTTC 1 GATGGTCAGT 3 GATGGTGCTG 1 GATGGTGGAG 1 GATGGTTGGT 1 GATGTAGTAT 1 GATGTCACCA 1 GATGTCAGGA 1 GATGTCCTTT 1 GATGTCTCTA 3 GATGTCTGGA 1 GATGTCTTAG 1 GATGTGACTG 1 GATGTGAGAT 1 GATGTGCAGG 1 GATGTGGAGA 2 GATGTGGTCT 1 GATGTGGTTA 2 GATGTGGTTG 2 GATGTGTGCT 1 GATGTTAATT 1 GATGTTAGTA 2 GATGTTCCTG 1 GATGTTGTCC 2 GATTAAACCA 2 GATTAAGGAT 1 GATTAAGTGA 3 GATTACAGAG 1 GATTACATTA 1 GATTACCTGT 1 GATTACGTTC 1 GATTACTTGC 1 GATTAGGCAG 1 GATTAGGCTG 1 GATTATATGA 1 GATTATTCAA 1 GATTATTCAT 1 GATTCAACCA 4 GATTCAACGC 1 GATTCAAGTC 3 GATTCAATAA 1 GATTCACAAA 1 GATTCACTTC 1 GATTCAGGAC 1 GATTCAGGTT 1 GATTCAGTCC 1 GATTCATTCC 1 GATTCATTTA 1 GATTCCACAG 2 GATTCCACTG 4 GATTCCAGTA 1 GATTCCATCC 1 GATTCCGTGA 1 GATTCGCAGC 2 GATTCTCAAT 1 GATTGAAGAA 1 GATTGAAGAG 1 GATTGAGAAT 1 GATTGAGAGA 1 GATTGGAACT 1 GATTGGAAGA 2 GATTGGAAGG 1 GATTGGAAGT 1 GATTGGACTT 1 GATTGGATTG 1 GATTGGCAGC 1 GATTGGGAGA 1 GATTGGGGGG 1 GATTGGGTTC 1 GATTGGTCTG 3 GATTGGTGAG 1 GATTGTCTAA 1 GATTGTCTCA 1 GATTGTGCAA 3 GATTGTGCAG 1 GATTGTGGCT 1 GATTTAAAAA 1 GATTTAAAAT 1 GATTTAAATC 1 GATTTAATTT 1 GATTTACATT 1 GATTTACCCT 2 GATTTAGCAG 1 GATTTAGCCC 1 GATTTCAAGC 1 GATTTCAAGG 5 GATTTCACCT 1 GATTTCACTG 1 GATTTCATTG 1 GATTTCCTTC 1 GATTTCTACT 1 GATTTCTATT 2 GATTTCTCTT 1 GATTTCTGAA 2 GATTTGAGAA 2 GATTTGATAC 1 GATTTGATTA 1 GATTTGTGTT 1 GATTTTAATG 1 GATTTTACCT 1 GATTTTCAAA 1 GATTTTCAAG 1 GATTTTGTAG 2 GATTTTTCAT 1 GATTTTTCCA 1 GATTTTTGGT 1 GATTTTTTTC 1 GCAAAAAAAA 7 GCAAAAAACT 1 GCAAAAACAA 1 GCAAAAACCC 2 GCAAAAACCT 1 GCAAAAACTA 1 GCAAAAATGG 1 GCAAAACACC 1 GCAAAACCAA 1 GCAAAACCAC 1 GCAAAACCAG 3 GCAAAACCCA 4 GCAAAACCCC 64 GCAAAACCCT 31 GCAAAACCGC 3 GCAAAACCTA 1 GCAAAACCTC 3 GCAAAACCTG 1 GCAAAACCTT 5 GCAAAACGCT 1 GCAAAACTCA 2 GCAAAACTCC 6 GCAAAACTCT 7 GCAAAACTGT 1 GCAAAAGCCC 2 GCAAAAGCCG 1 GCAAAAGGAT 1 GCAAAATAAC 1 GCAAAATCCC 1 GCAAAATCCG 1 GCAAAATCCT 1 GCAAAATGCT 1 GCAAAATTCC 1 GCAAACAAAA 1 GCAAACAAGC 1 GCAAACCCCA 1 GCAAACCCCC 1 GCAAACCCCG 3 GCAAACTGGG 1 GCAAACTTTG 1 GCAAAGAAAA 1 GCAAAGAAGT 1 GCAAAGCATA 1 GCAAAGCCCC 1 GCAAAGCCCT 2 GCAAAGCTCC 1 GCAAAGGGAA 1 GCAAATAAAT 4 GCAAATAACA 1 GCAAATAAGC 1 GCAAATCCAA 1 GCAAATCCTG 1 GCAAATCTGA 1 GCAAATCTGG 1 GCAAATCTTT 1 GCAAATGCCC 1 GCAAATGGGG 1 GCAAATGTGG 1 GCAAATGTTA 1 GCAACAAATT 1 GCAACAACAA 1 GCAACAACAC 65 GCAACAACCA 1 GCAACAACGA 1 GCAACAACGC 1 GCAACAACTG 1 GCAACACACA 1 GCAACACAGG 1 GCAACACATC 1 GCAACACCCA 1 GCAACACCCC 3 GCAACAGAGT 1 GCAACAGCAA 7 GCAACAGGCC 2 GCAACATCAC 1 GCAACATCTG 1 GCAACCAACC 1 GCAACCACGA 1 GCAACCATCC 1 GCAACCGCCA 1 GCAACCTCCT 2 GCAACGGCGC 1 GCAACGGGCC 2 GCAACTACAC 1 GCAACTACTG 1 GCAACTAGAT 1 GCAACTATGA 1 GCAACTCTGG 1 GCAACTGAAC 1 GCAACTTAAA 1 GCAACTTAGA 2 GCAACTTGGA 4 GCAACTTGGT 1 GCAACTTGTC 3 GCAAGAAAGT 1 GCAAGACAAC 1 GCAAGACCAA 1 GCAAGACCCC 6 GCAAGACCCT 6 GCAAGACCTC 1 GCAAGACTCC 3 GCAAGACTTC 1 GCAAGAGCCC 2 GCAAGATTCC 1 GCAAGATTCT 1 GCAAGCATAG 1 GCAAGCCAAC 39 GCAAGCCATC 2 GCAAGCCCAA 1 GCAAGCCCAT 1 GCAAGCCCCA 2 GCAAGCCCCT 1 GCAAGCCCTA 1 GCAAGCCGCG 2 GCAAGCGCAG 1 GCAAGGACTT 1 GCAAGGAGCA 1 GCAAGGCATA 1 GCAAGGCCCC 1 GCAAGGCGAG 1 GCAAGGCTCC 1 GCAAGGGACA 1 GCAAGGGCCC 1 GCAAGGGCTA 4 GCAAGGTTCT 1 GCAAGGTTGC 2 GCAAGTCCCA 1 GCAAGTTCAG 1 GCAATAATGG 1 GCAATATAAT 1 GCAATCAACG 2 GCAATCATCC 1 GCAATCCACA 1 GCAATCCTGC 1 GCAATGAAGC 1 GCAATGACCT 1 GCAATGCAAG 1 GCAATGGTCT 1 GCAATGTCGC 1 GCAATTGAAT 1 GCAATTGCTG 1 GCAATTTAAC 1 GCAATTTATG 1 GCAATTTTTA 2 GCACAAAACA 1 GCACAAAAGT 1 GCACAAATAA 1 GCACAACCCC 2 GCACAACCCT 1 GCACAAGAAG 8 GCACAATATG 1 GCACAATCCC 1 GCACAATCTC 1 GCACACAACA 1 GCACACACTC 1 GCACACAGAA 1 GCACACGGTA 1 GCACACGTTT 1 GCACACTTTT 1 GCACAGACAC 1 GCACAGAGCC 2 GCACAGAGCT 2 GCACAGAGGG 1 GCACAGATTA 1 GCACAGATTT 1 GCACAGCACC 2 GCACAGCTGT 1 GCACAGGTCA 1 GCACAGGTGA 1 GCACAGTGAG 1 GCACAGTGGC 1 GCACAGTGGG 2 GCACAGTGTG 1 GCACATAACG 1 GCACATACTC 1 GCACATCTCT 1 GCACATTAAC 1 GCACATTTGA 1 GCACATTTTA 1 GCACATTTTT 1 GCACCAAAAA 1 GCACCACGCA 1 GCACCACTGA 1 GCACCAGCCC 1 GCACCAGGAG 1 GCACCATAAT 2 GCACCATCCG 1 GCACCATTCC 4 GCACCCAACA 2 GCACCCCTCA 1 GCACCCGCCT 2 GCACCCGGCC 1 GCACCCTGGT 1 GCACCGCCGG 1 GCACCGCTCC 1 GCACCGGCAC 1 GCACCGTAAG 2 GCACCGTCAA 2 GCACCTACCC 1 GCACCTAGTC 1 GCACCTAGTG 2 GCACCTATTG 5 GCACCTCAGC 2 GCACCTCCTA 2 GCACCTCCTG 1 GCACCTCTGT 1 GCACCTGCAT 1 GCACCTGCCG 1 GCACCTGGTT 1 GCACCTTATT 3 GCACCTTCAG 1 GCACCTTCTG 2 GCACGAGAAC 1 GCACGAGCCT 1 GCACGCATCA 1 GCACGCCAGC 1 GCACGCGTAA 1 GCACGGCTCC 1 GCACGTAAGG 1 GCACGTGGTT 1 GCACGTGTAT 1 GCACGTGTCT 2 GCACGTGTGT 1 GCACGTTTGA 3 GCACTAATGG 1 GCACTACATA 1 GCACTATGCC 1 GCACTCAGGC 1 GCACTCCAAC 1 GCACTCCAGC 5 GCACTCCCAA 1 GCACTCCTGC 1 GCACTCTCTC 1 GCACTCTGAT 2 GCACTGATGT 1 GCACTGCACT 8 GCACTGTACT 1 GCACTGTCAC 1 GCACTGTGCT 1 GCACTTACAA 1 GCACTTACGA 1 GCACTTCATA 1 GCACTTCTGG 1 GCACTTGATG 1 GCACTTTAAA 1 GCACTTTGAG 1 GCAGAAAAAA 1 GCAGAAAATT 2 GCAGAAACCC 1 GCAGAAAGTT 1 GCAGAAATGG 1 GCAGAACCAA 1 GCAGAACCAT 1 GCAGAACCCA 2 GCAGAACCCT 3 GCAGAAGAGG 2 GCAGAAGGTC 1 GCAGAATTTT 1 GCAGACATCA 1 GCAGACATTG 10 GCAGACCCTC 2 GCAGACGACG 1 GCAGACTCAG 4 GCAGACTGCA 1 GCAGACTTTG 1 GCAGAGAAAA 1 GCAGAGACAA 1 GCAGAGAGAG 1 GCAGAGATGG 2 GCAGAGCAAG 1 GCAGAGCACA 1 GCAGAGCCCA 1 GCAGAGCCCT 1 GCAGAGCCTT 4 GCAGAGCTTC 1 GCAGAGGACC 1 GCAGAGGCCT 1 GCAGAGTAGC 1 GCAGAGTGAA 1 GCAGAGTTAG 1 GCAGATCCCT 1 GCAGATCTGT 1 GCAGATCTTT 1 GCAGATGCCT 1 GCAGATGCTT 1 GCAGATGGAC 1 GCAGATTCTC 1 GCAGATTTAT 1 GCAGCAACAC 1 GCAGCAATCC 2 GCAGCACAGG 1 GCAGCACGCG 1 GCAGCACGTG 1 GCAGCACTTA 1 GCAGCAGCAT 1 GCAGCAGGAA 2 GCAGCAGGCA 2 GCAGCAGTGT 1 GCAGCATCCG 2 GCAGCCAACC 1 GCAGCCACCC 1 GCAGCCATAC 2 GCAGCCATCC 154 GCAGCCCCTG 1 GCAGCCCGCG 3 GCAGCCGCGG 1 GCAGCCGTCC 1 GCAGCCTCCA 2 GCAGCCTCCG 1 GCAGCCTGAA 1 GCAGCCTGGA 3 GCAGCCTGGG 3 GCAGCGATGG 1 GCAGCGCACA 1 GCAGCGCTGG 1 GCAGCGGAGG 1 GCAGCGGGCG 1 GCAGCGGGTC 1 GCAGCGGGTG 1 GCAGCGTGCA 1 GCAGCGTTAG 1 GCAGCTAATT 1 GCAGCTATAC 1 GCAGCTATGA 1 GCAGCTATGT 2 GCAGCTCAAA 1 GCAGCTCAGG 2 GCAGCTCCTG 3 GCAGCTGACT 1 GCAGCTGCTG 1 GCAGCTGGGA 1 GCAGCTTAGC 1 GCAGCTTCCA 1 GCAGCTTCCC 1 GCAGCTTGGG 1 GCAGGAACAG 1 GCAGGAAGAG 1 GCAGGAATGC 1 GCAGGAATTG 1 GCAGGACCCT 2 GCAGGAGAAG 1 GCAGGAGAGC 1 GCAGGAGAGG 1 GCAGGAGGTG 1 GCAGGAGTTT 1 GCAGGATTCT 1 GCAGGCACCT 1 GCAGGCACGT 1 GCAGGCAGAT 1 GCAGGCCAAG 1 GCAGGCCGCA 1 GCAGGCCTCA 2 GCAGGCCTGC 1 GCAGGCCTTT 1 GCAGGCGCAA 1 GCAGGCGGAT 2 GCAGGCGGCT 1 GCAGGCGTTG 1 GCAGGCTGTG 1 GCAGGGAAAA 1 GCAGGGAGGG 1 GCAGGGATAT 1 GCAGGGATTG 1 GCAGGGCCAG 4 GCAGGGCCGC 1 GCAGGGCCTA 1 GCAGGGCCTC 51 GCAGGGCGCA 1 GCAGGGCTCA 1 GCAGGGGAGC 1 GCAGGGGCTC 1 GCAGGGGGCC 1 GCAGGGTACT 2 GCAGGGTGGG 4 GCAGGTCAGC 1 GCAGGTGAAA 1 GCAGGTGCAG 1 GCAGGTGCCT 1 GCAGGTGGAT 2 GCAGGTGGTT 3 GCAGGTGTAA 3 GCAGGTGTCG 1 GCAGGTTGTG 2 GCAGTAAGAA 1 GCAGTATATG 1 GCAGTCTTCA 1 GCAGTCTTTT 1 GCAGTGATCA 1 GCAGTGCATT 1 GCAGTGCCAC 3 GCAGTGCGTG 1 GCAGTGCTTC 1 GCAGTGTTGT 1 GCAGTTACAC 1 GCAGTTCGCC 1 GCAGTTGACT 1 GCATAACCCA 1 GCATAACCCC 1 GCATAACCTC 1 GCATAACTCG 2 GCATAATAGG 21 GCATAATATA 1 GCATAATATG 1 GCATAATCCC 1 GCATAATCCT 1 GCATACAACT 1 GCATACCACT 1 GCATACCTGC 3 GCATACTATA 1 GCATACTCAA 1 GCATAGATGA 1 GCATAGCCTC 1 GCATAGCGCT 1 GCATAGCTGA 1 GCATAGGCTG 19 GCATAGTGTT 1 GCATAGTTCT 1 GCATATATCA 1 GCATATCTGA 1 GCATATGAGC 1 GCATATTAAA 1 GCATATTCTC 1 GCATCACCAG 1 GCATCACCTG 1 GCATCACCTT 1 GCATCAGCTC 2 GCATCAGTTG 2 GCATCATCCT 1 GCATCATCGA 1 GCATCCAGGC 1 GCATCCCAAA 1 GCATCCGGAG 1 GCATCCTCTG 1 GCATCCTGCT 2 GCATCTGAGT 1 GCATCTGCAT 1 GCATCTTCAA 1 GCATCTTCAC 1 GCATCTTGGT 1 GCATTAAAAC 1 GCATTACCCA 1 GCATTAGCCA 1 GCATTATGTC 1 GCATTATTTG 1 GCATTCAAAA 1 GCATTCATAG 1 GCATTCATTG 1 GCATTCCGCT 1 GCATTCGCCT 1 GCATTCGGGG 1 GCATTCTTCT 1 GCATTGACAG 1 GCATTGAGTG 1 GCATTGATGT 1 GCATTGCACT 2 GCATTGGCAG 1 GCATTTAAAT 7 GCATTTGAAT 1 GCATTTGACA 20 GCATTTTCAC 2 GCATTTTCCA 1 GCATTTTGCT 1 GCATTTTGTG 4 GCATTTTTTT 1 GCCAAAATAT 1 GCCAAAATGC 1 GCCAAACCAC 1 GCCAAACCCC 2 GCCAAACCCT 2 GCCAAACCTA 1 GCCAAACGTA 2 GCCAAACTGG 1 GCCAAACTTG 2 GCCAAAGAGA 1 GCCAAAGTGT 3 GCCAAATCCA 1 GCCAAATGCT 1 GCCAAATGGT 1 GCCAAATTAT 1 GCCAACAAGG 1 GCCAACATCG 1 GCCAACCCTC 2 GCCAACCTCC 69 GCCAACCTGC 1 GCCAACTTTA 1 GCCAAGACAC 1 GCCAAGATGC 6 GCCAAGCCGT 1 GCCAAGCGGC 1 GCCAAGGAGT 3 GCCAAGGCCC 1 GCCAAGGCGC 1 GCCAAGGGCC 2 GCCAAGGGGC 4 GCCAAGGGTA 1 GCCAAGTTTG 1 GCCAATATGG 2 GCCAATCTAA 1 GCCAATGTGG 1 GCCAATTCCA 1 GCCAATTGCA 1 GCCAATTTTG 1 GCCACACCCC 4 GCCACACCTC 2 GCCACACTGG 1 GCCACACTGT 1 GCCACAGAGG 3 GCCACAGATC 1 GCCACAGCCA 4 GCCACAGGAA 1 GCCACAGTAT 1 GCCACATAAC 1 GCCACATCAC 1 GCCACCAAGT 1 GCCACCACAT 1 GCCACCACTT 1 GCCACCCATC 1 GCCACCCCCA 1 GCCACCCCCT 5 GCCACCCCGT 2 GCCACCCCTC 1 GCCACCCCTT 1 GCCACCCTAC 1 GCCACCGTCC 53 GCCACCGTCG 3 GCCACCTCCT 1 GCCACCTGGA 1 GCCACCTTGG 2 GCCACGAGGA 1 GCCACGCAGA 1 GCCACGTACA 1 GCCACGTGGA 1 GCCACGTTGT 1 GCCACTCTTG 1 GCCACTGAAA 2 GCCACTGCTT 1 GCCACTGTCC 1 GCCACTTCTT 1 GCCAGAAGGG 1 GCCAGAATAG 1 GCCAGACACC 2 GCCAGACGCT 1 GCCAGACTAC 1 GCCAGATCGC 1 GCCAGATGGG 1 GCCAGATTAA 1 GCCAGATTGA 1 GCCAGCAAGA 1 GCCAGCACAG 1 GCCAGCACGC 2 GCCAGCAGAG 1 GCCAGCAGTT 1 GCCAGCCAGT 3 GCCAGCCATA 1 GCCAGCCCAG 16 GCCAGCCCCC 1 GCCAGCCCCT 1 GCCAGCCTCA 1 GCCAGCGTCA 1 GCCAGCTAGC 1 GCCAGCTCCA 1 GCCAGCTCTG 1 GCCAGCTGAC 1 GCCAGCTGCC 1 GCCAGGAAGA 1 GCCAGGAAGC 3 GCCAGGACAC 1 GCCAGGAGCT 11 GCCAGGATGT 1 GCCAGGCACA 1 GCCAGGCACG 3 GCCAGGCAGG 1 GCCAGGCCAC 1 GCCAGGCCTG 1 GCCAGGCGCA 1 GCCAGGCGGT 1 GCCAGGCGTG 1 GCCAGGCTCC 1 GCCAGGCTGG 1 GCCAGGGAAT 1 GCCAGGGCAG 1 GCCAGGGCCA 4 GCCAGGGCGG 1 GCCAGGGGAG 2 GCCAGGGGCC 2 GCCAGGGGCT 1 GCCAGGGTCC 1 GCCAGGGTTT 1 GCCAGGTGCA 2 GCCAGGTGGA 3 GCCAGGTGTG 1 GCCAGGTTGA 1 GCCAGGTTGC 1 GCCAGTAAAA 1 GCCAGTAGTT 1 GCCAGTCCCT 1 GCCAGTCTCC 1 GCCAGTCTGC 1 GCCAGTGATT 3 GCCAGTTCTA 1 GCCATACAAA 1 GCCATACTGG 1 GCCATCAATT 1 GCCATCATCC 1 GCCATCCAGA 5 GCCATCCAGC 1 GCCATCCCAT 1 GCCATCCCCT 78 GCCATCCCTA 1 GCCATCCTGA 1 GCCATCGAGG 1 GCCATCGCGG 1 GCCATCGTCC 1 GCCATCTTGG 1 GCCATTGGGA 1 GCCATTGTCC 1 GCCATTTTCC 1 GCCCAAAACC 1 GCCCAAATGA 1 GCCCAAATGT 1 GCCCAAGAAG 1 GCCCAAGATG 1 GCCCAAGGAC 6 GCCCAAGGCC 1 GCCCACAAGG 1 GCCCACACCT 2 GCCCACACTC 1 GCCCACAGTA 1 GCCCACATCC 3 GCCCACCAGC 1 GCCCACCATA 1 GCCCACGCTG 1 GCCCAGCAGG 5 GCCCAGCCAC 1 GCCCAGCCCT 3 GCCCAGCGGC 6 GCCCAGCTCA 1 GCCCAGCTCC 1 GCCCAGCTGG 4 GCCCAGGAAG 1 GCCCAGGACT 1 GCCCAGGAGA 1 GCCCAGGAGC 1 GCCCAGGAGG 1 GCCCAGGAGT 1 GCCCAGGATG 1 GCCCAGGCAG 2 GCCCAGGCTG 1 GCCCAGGGCC 1 GCCCAGGTCA 22 GCCCAGGTGA 1 GCCCAGGTGG 1 GCCCAGTCGA 1 GCCCAGTGAT 1 GCCCAGTGGA 1 GCCCAGTGGC 5 GCCCAGTTGG 1 GCCCAGTTGT 1 GCCCATAGCC 1 GCCCATCGTC 1 GCCCATTGGA 7 GCCCCAACGG 1 GCCCCAAGTA 1 GCCCCACAGC 2 GCCCCACTGT 1 GCCCCACTTC 1 GCCCCAGAAT 1 GCCCCAGAGT 1 GCCCCAGCAA 1 GCCCCAGCGA 2 GCCCCAGCTA 1 GCCCCATCCC 1 GCCCCATCTT 1 GCCCCCAACC 1 GCCCCCAATA 2 GCCCCCATAA 1 GCCCCCCACT 2 GCCCCCCCGT 4 GCCCCCCGGC 1 GCCCCCCTGC 3 GCCCCCGAGC 1 GCCCCCTATA 1 GCCCCCTCAT 2 GCCCCCTGAC 1 GCCCCCTTCC 1 GCCCCCTTTG 1 GCCCCGAACA 1 GCCCCGACAT 1 GCCCCGACCA 1 GCCCCGACCT 1 GCCCCGAGCC 1 GCCCCGATCC 1 GCCCCGCAGT 1 GCCCCGCCCT 7 GCCCCGGAGC 5 GCCCCGGCTC 1 GCCCCGTGCA 1 GCCCCGTGTA 1 GCCCCGTTAA 1 GCCCCTAGGG 1 GCCCCTCCGG 8 GCCCCTCGGG 1 GCCCCTCTCT 1 GCCCCTGCCT 10 GCCCCTGGAG 1 GCCCCTGTGC 1 GCCCCTTCCA 1 GCCCCTTTGT 2 GCCCGAGATG 1 GCCCGCAAGC 2 GCCCGCAGGG 1 GCCCGCAGGT 4 GCCCGCAGTG 1 GCCCGCCTCG 1 GCCCGCCTTG 3 GCCCGCGGGA 2 GCCCGGAGCA 1 GCCCGGCAGC 1 GCCCGGCCTC 1 GCCCGGGAGA 1 GCCCGGGGGT 1 GCCCGGGTGG 1 GCCCGGTGCC 2 GCCCGGTGGT 1 GCCCGTGCCA 4 GCCCGTGGCC 2 GCCCGTTCCC 1 GCCCGTTCTA 2 GCCCGTTCTC 3 GCCCTAATAT 1 GCCCTACGCT 1 GCCCTAGCAA 1 GCCCTAGCCT 1 GCCCTAGTGC 1 GCCCTATCAA 1 GCCCTATCAC 1 GCCCTATTAG 1 GCCCTCAAGA 1 GCCCTCACAG 2 GCCCTCACTG 1 GCCCTCCACA 1 GCCCTCCTGC 1 GCCCTCCTGT 1 GCCCTCGGAG 3 GCCCTCGGCA 1 GCCCTCGGCC 3 GCCCTCTATC 1 GCCCTCTGAC 1 GCCCTCTGAG 1 GCCCTCTGCC 6 GCCCTGAAAC 1 GCCCTGAAAG 1 GCCCTGAACA 1 GCCCTGACCA 1 GCCCTGACCT 2 GCCCTGAGCG 4 GCCCTGATCT 1 GCCCTGATTA 1 GCCCTGATTT 2 GCCCTGCGGC 1 GCCCTGGTCA 2 GCCCTGTAAT 2 GCCCTGTAGT 1 GCCCTGTCCC 2 GCCCTGTCTC 2 GCCCTGTTGC 1 GCCCTGTTGG 1 GCCCTTAAGG 1 GCCCTTATTA 2 GCCCTTCCCT 1 GCCCTTCTCA 2 GCCCTTCTCT 1 GCCCTTGGAC 1 GCCCTTGGCC 1 GCCCTTGTGT 3 GCCCTTTACA 1 GCCCTTTTAA 1 GCCGAAAACA 1 GCCGACAAGG 1 GCCGACCAGG 9 GCCGACGAAA 2 GCCGAGACCA 3 GCCGAGATCT 1 GCCGAGCAAA 1 GCCGAGCAAG 1 GCCGAGCAGA 1 GCCGAGCGTG 1 GCCGAGCTGG 1 GCCGAGGAAG 46 GCCGAGTACT 1 GCCGATCCTC 2 GCCGATGGCA 1 GCCGCACCTG 1 GCCGCAGACA 1 GCCGCAGCCC 3 GCCGCCATCA 3 GCCGCCATCT 9 GCCGCCCGTC 1 GCCGCCCTCC 1 GCCGCCCTGC 21 GCCGCCGCCG 2 GCCGCCGTCC 1 GCCGCCGTCG 1 GCCGCCGTGC 1 GCCGCCTCCA 1 GCCGCCTGCC 3 GCCGCGCACA 1 GCCGCGCTAG 1 GCCGCTCGCC 1 GCCGCTGGGT 1 GCCGGAAAGG 1 GCCGGACAGC 1 GCCGGAGCTC 1 GCCGGAGGGC 2 GCCGGAGGGT 1 GCCGGCAACA 1 GCCGGCCCGG 2 GCCGGCGCTC 3 GCCGGCGTTC 1 GCCGGCTCTT 4 GCCGGGAGCC 2 GCCGGGCACG 2 GCCGGGCCCC 1 GCCGGGCCCT 1 GCCGGGCGCA 1 GCCGGGCGCG 1 GCCGGGCGGG 3 GCCGGGCGTG 1 GCCGGGGTGG 1 GCCGGGTGGG 67 GCCGGGTGTG 2 GCCGGGTTGC 1 GCCGTAAACG 1 GCCGTCGGAG 3 GCCGTCGTAG 1 GCCGTCGTCC 1 GCCGTGACCG 1 GCCGTGATCG 1 GCCGTGCGGG 1 GCCGTGCTTC 1 GCCGTGGAGA 7 GCCGTGGATA 1 GCCGTGTCCG 29 GCCGTGTCTG 1 GCCGTTCTTA 8 GCCGTTGAGT 1 GCCTAAGTAA 2 GCCTACAACG 1 GCCTACACGT 1 GCCTACCAGG 1 GCCTACCCGA 5 GCCTACCGCT 1 GCCTACGTGG 1 GCCTAGAAAA 1 GCCTAGAAAT 2 GCCTAGATAG 1 GCCTAGCACC 1 GCCTAGCCAT 1 GCCTAGGGGC 1 GCCTAGTCTC 1 GCCTATAATC 1 GCCTATAGCT 1 GCCTATCATC 1 GCCTATGCCA 1 GCCTATGCTG 1 GCCTATGGTC 2 GCCTATTAAG 1 GCCTATTAGG 1 GCCTATTCAG 1 GCCTCAAATA 1 GCCTCAAGCA 1 GCCTCAATAA 1 GCCTCAATGA 1 GCCTCACAGC 1 GCCTCACAGT 1 GCCTCACCCC 1 GCCTCAGCCA 3 GCCTCAGCTG 1 GCCTCAGTTC 6 GCCTCCAAGG 3 GCCTCCAGGG 2 GCCTCCATAA 1 GCCTCCCAAG 1 GCCTCCCACA 1 GCCTCCCAGG 1 GCCTCCCCCA 2 GCCTCCCCTT 1 GCCTCCCGAG 1 GCCTCCGAGA 1 GCCTCCGCTA 1 GCCTCCTCCC 9 GCCTCCTCTT 1 GCCTCCTGAG 1 GCCTCCTTCC 1 GCCTCCTTGG 2 GCCTCGCCAT 1 GCCTCTACGA 1 GCCTCTAGGA 1 GCCTCTCTAC 1 GCCTCTGCCA 1 GCCTCTGCGA 1 GCCTCTGCTG 1 GCCTCTGGAT 1 GCCTCTGTCT 5 GCCTCTTATT 1 GCCTCTTCCC 2 GCCTCTTGAA 4 GCCTCTTGAG 1 GCCTGAATGT 1 GCCTGACACC 1 GCCTGACCTT 1 GCCTGAGCCT 1 GCCTGAGGGG 3 GCCTGATTTT 3 GCCTGCACCC 1 GCCTGCAGTC 26 GCCTGCCGCC 2 GCCTGCCGTC 1 GCCTGCCTAG 1 GCCTGCGAGG 1 GCCTGCGGGG 2 GCCTGCTCCC 3 GCCTGCTGGG 6 GCCTGCTTTA 1 GCCTGGAAGA 1 GCCTGGCAGT 1 GCCTGGCCAT 14 GCCTGGCCCC 2 GCCTGGCTGT 1 GCCTGGCTTG 1 GCCTGGGAAA 1 GCCTGGGACC 2 GCCTGGGACT 6 GCCTGGGCTG 13 GCCTGGGGCC 1 GCCTGGGGCT 1 GCCTGGTGCA 1 GCCTGGTGTG 2 GCCTGTAATC 1 GCCTGTAATG 2 GCCTGTACAA 13 GCCTGTATGA 31 GCCTGTCCCT 3 GCCTGTGCTG 1 GCCTGTTAAA 1 GCCTGTTAGG 1 GCCTGTTCTC 1 GCCTGTTCTG 1 GCCTGTTTGG 1 GCCTTAACAA 3 GCCTTAACCA 1 GCCTTAACGG 1 GCCTTAGGTG 1 GCCTTATTAA 1 GCCTTATTGT 1 GCCTTATTTG 3 GCCTTCAACC 1 GCCTTCATCT 1 GCCTTCCAAT 4 GCCTTCCAGT 1 GCCTTCCCCT 1 GCCTTCGTCC 1 GCCTTCTCTG 1 GCCTTCTGCT 2 GCCTTCTGGA 1 GCCTTCTTCT 1 GCCTTGAGCA 1 GCCTTGAGGT 1 GCCTTGATCT 2 GCCTTGCACC 1 GCCTTGGGCA 1 GCCTTGGTAA 3 GCCTTGTCAC 1 GCCTTTAAAC 1 GCCTTTAAGG 1 GCCTTTACAA 1 GCCTTTCATA 1 GCCTTTCCCT 2 GCCTTTCTAG 1 GCCTTTGAGA 2 GCCTTTGCAG 1 GCCTTTGGAA 1 GCCTTTGGAG 1 GCCTTTGTCA 1 GCCTTTGTGA 1 GCCTTTTCCC 1 GCGAAAAAAA 2 GCGAAAAACT 1 GCGAAAAAGG 1 GCGAAAACCC 2 GCGAAACAAT 2 GCGAAACACC 1 GCGAAACACT 1 GCGAAACCAG 1 GCGAAACCCA 1 GCGAAACCCC 60 GCGAAACCCG 4 GCGAAACCCT 98 GCGAAACCGC 1 GCGAAACCTA 1 GCGAAACCTC 8 GCGAAACCTT 3 GCGAAACGCC 1 GCGAAACGCT 3 GCGAAACGGT 1 GCGAAACTAT 1 GCGAAACTCC 3 GCGAAACTCT 1 GCGAAACTGT 3 GCGAAACTTC 1 GCGAAACTTT 1 GCGAAAGCCT 1 GCGAAATACC 1 GCGAAATATC 1 GCGAAATCCC 7 GCGAAATCCT 2 GCGAAATCTT 1 GCGAACCATA 1 GCGAACCCCA 2 GCGAACCCCG 2 GCGAACCCCT 2 GCGAACCCGA 1 GCGAACCCTG 4 GCGAACCCTT 1 GCGAACCTTT 1 GCGAACGCCC 1 GCGAACGTGG 1 GCGAACTAAT 1 GCGAACTCCG 1 GCGAAGAAGA 1 GCGAAGACCC 1 GCGAAGATGG 1 GCGAAGCCCC 2 GCGAAGCCCG 1 GCGAAGCCCT 1 GCGAAGGAAG 1 GCGAAGGCCC 1 GCGAAGGCTC 1 GCGAATCCCT 1 GCGAATTCCC 2 GCGACAAAAA 1 GCGACACCAG 1 GCGACAGAAA 1 GCGACAGAGC 1 GCGACAGCTC 3 GCGACAGTCA 1 GCGACCAACA 1 GCGACCACGG 4 GCGACCACGT 1 GCGACCAGGC 1 GCGACCGTCA 76 GCGACCGTCC 1 GCGACCGTTA 2 GCGACGAGGA 1 GCGACGAGGC 16 GCGACGGGTC 1 GCGACTGGCG 2 GCGAGAATCC 1 GCGAGACACC 1 GCGAGACACT 1 GCGAGACCCC 5 GCGAGACCTC 2 GCGAGACCTT 1 GCGAGACTAC 1 GCGAGACTGC 1 GCGAGACTGT 1 GCGAGCCCAG 1 GCGAGTAAGA 1 GCGAGTACCA 1 GCGAGTAGCC 1 GCGAGTCCCT 1 GCGATAGGCT 1 GCGATATCAA 1 GCGATCCGCA 1 GCGATCTTGG 2 GCGATGGCCG 2 GCGATGGCCT 1 GCGATGGGCG 1 GCGATGGGGG 1 GCGATGGTGT 1 GCGATTCCGG 2 GCGCAACAAC 1 GCGCAAGTGT 1 GCGCAATCTC 1 GCGCACAGAA 2 GCGCACCGCT 1 GCGCACGCTT 1 GCGCACTGCC 1 GCGCAGACGC 1 GCGCAGAGGT 1 GCGCAGGAAG 1 GCGCAGGACT 1 GCGCATCCAC 1 GCGCCACAAG 1 GCGCCACCGC 1 GCGCCACTGC 1 GCGCCAGGCG 1 GCGCCCCCGC 1 GCGCCCGGCT 1 GCGCCCGTCA 1 GCGCCCTGCC 1 GCGCCGCCCC 5 GCGCCGGCAC 1 GCGCCGGGTG 1 GCGCCGGTCC 1 GCGCCGTCAC 1 GCGCCTCCCG 1 GCGCCTCCTT 1 GCGCCTGCCA 1 GCGCCTGCCG 1 GCGCCTGGCC 1 GCGCGATGCA 2 GCGCGCTAGG 1 GCGCGGCAGC 1 GCGCGTCTTC 1 GCGCTAGGCT 1 GCGCTCATCT 1 GCGCTCATTC 1 GCGCTCCCTA 1 GCGCTGCACT 2 GCGCTGCGAT 1 GCGCTGCTGC 1 GCGCTGCTGT 1 GCGCTGGAGT 5 GCGCTGGCGT 1 GCGCTGGGCA 1 GCGCTGGTGG 1 GCGCTTGCGG 1 GCGGAAACCC 1 GCGGAACCCC 3 GCGGAACCCT 4 GCGGAACCGC 1 GCGGAACCTC 2 GCGGAACGCA 1 GCGGAACTGT 1 GCGGAAGAGT 2 GCGGACCACA 1 GCGGACGAGG 2 GCGGACTACT 1 GCGGAGAGAG 2 GCGGAGCAGA 1 GCGGAGCTGA 1 GCGGAGGGCA 1 GCGGAGGGGT 1 GCGGAGGTGG 2 GCGGATCCCC 1 GCGGCACATT 1 GCGGCACCCG 1 GCGGCACCCT 1 GCGGCACCTC 1 GCGGCACGCA 2 GCGGCACGTG 2 GCGGCAGCCT 1 GCGGCAGTTA 1 GCGGCCAGTC 1 GCGGCCATCC 3 GCGGCCGCCA 2 GCGGCCGCCC 1 GCGGCCGGCA 1 GCGGCCGTCA 1 GCGGCCTCGG 1 GCGGCCTGAG 1 GCGGCGCACA 2 GCGGCGCGGG 1 GCGGCGCGTG 1 GCGGCGCTGC 14 GCGGCGGCCG 2 GCGGCGGCTC 13 GCGGCGGCTT 1 GCGGCGGGTG 1 GCGGCGGTCC 1 GCGGCGGTGA 1 GCGGCTCACA 2 GCGGCTCAGC 1 GCGGCTCCCC 1 GCGGCTGCCG 1 GCGGCTTACA 1 GCGGCTTTCA 1 GCGGGACCCC 2 GCGGGACCGG 1 GCGGGACCTA 1 GCGGGAGAAT 1 GCGGGAGCGG 3 GCGGGAGGGC 5 GCGGGCGCCC 1 GCGGGCGCGG 3 GCGGGCTTGG 1 GCGGGGAAGG 1 GCGGGGACGC 1 GCGGGGATGA 1 GCGGGGCCCC 2 GCGGGGCCGT 1 GCGGGGCGAG 3 GCGGGGTACC 4 GCGGGGTGGA 8 GCGGGGTGTA 1 GCGGGTGCCT 2 GCGGGTGTGG 1 GCGGTCATAC 1 GCGGTCGCCC 1 GCGGTCTTGT 1 GCGGTGAAAA 1 GCGGTGAACA 1 GCGGTGAGGT 5 GCGGTGCACG 1 GCGGTGCTCA 1 GCGGTGGACA 1 GCGGTGGGCG 2 GCGGTGGGGA 1 GCGGTGGGTT 3 GCGGTGTGCA 1 GCGGTTCCAG 1 GCGTACAATG 1 GCGTCCTGCC 1 GCGTCGATCC 1 GCGTCGGTGC 1 GCGTGATCCT 2 GCGTGCAGCC 1 GCGTGCATCT 1 GCGTGCTCAC 1 GCGTGCTCTC 4 GCGTGGCTCA 2 GCGTGGCTTG 1 GCGTGGTATT 1 GCGTGTTACA 1 GCGTGTTCAG 1 GCGTTAGCCC 1 GCGTTATGTA 1 GCGTTCAAAG 1 GCGTTCGCCG 1 GCGTTGGGCG 1 GCGTTTACAC 1 GCTAAAAAAA 2 GCTAAAAAAT 1 GCTAAAAGTG 1 GCTAAACACC 1 GCTAAACAGG 2 GCTAAACTCT 1 GCTAAAGCTG 1 GCTAACACCC 6 GCTAACACGG 1 GCTAACATCT 1 GCTAACCTCC 1 GCTAAGAGGG 1 GCTAAGCTGC 1 GCTAAGGAGA 19 GCTAATACTG 1 GCTAATAGTA 1 GCTAATCTGC 1 GCTAATGAAG 1 GCTAATGCAA 1 GCTAATTTTG 1 GCTAATTTTT 1 GCTACAAAAA 1 GCTACACCTT 1 GCTACAGGTA 2 GCTACATCTG 1 GCTACCACAC 1 GCTACCAGCA 1 GCTACCCAAC 1 GCTACCCTAA 1 GCTACCGTCC 1 GCTACCTTGA 1 GCTACTATTA 2 GCTACTCAAT 1 GCTACTCATT 1 GCTACTCTTT 1 GCTACTGCCT 1 GCTAGAAAAC 1 GCTAGAACCT 1 GCTAGAACTC 1 GCTAGACATC 1 GCTAGACCCT 3 GCTAGACCTT 1 GCTAGACTCC 1 GCTAGAGCAG 1 GCTAGAGTCT 1 GCTAGCCATT 1 GCTAGGAAAC 2 GCTAGGAAGA 1 GCTAGGAAGG 1 GCTAGGAATA 1 GCTAGGAGAA 1 GCTAGGCCAC 2 GCTAGGCCGC 2 GCTAGGCCGG 6 GCTAGGGTTA 1 GCTAGGGTTT 1 GCTAGGTCTA 1 GCTAGGTCTG 2 GCTAGGTCTT 1 GCTAGGTTAC 1 GCTAGGTTAT 1 GCTAGGTTTA 170 GCTAGTCAGT 1 GCTAGTGCCT 1 GCTAGTTTAT 1 GCTATAATCC 4 GCTATACCAT 1 GCTATACTGT 1 GCTATAGAAC 1 GCTATATGAA 1 GCTATATGTT 1 GCTATATTTG 1 GCTATCCCCT 1 GCTATGCTCC 3 GCTATGGAAC 1 GCTATTTCTG 1 GCTATTTGAA 1 GCTCAAACTG 1 GCTCAAAGAT 1 GCTCAAATGT 1 GCTCAAGATC 1 GCTCAAGCAG 1 GCTCAAGGAA 1 GCTCACACAG 1 GCTCACACCT 1 GCTCACATCT 2 GCTCACATTA 1 GCTCACCCCT 1 GCTCACCGCA 1 GCTCACCTGC 1 GCTCACGCCT 4 GCTCACGGAG 1 GCTCACGTCT 1 GCTCACTCTT 1 GCTCACTGCA 15 GCTCACTGCC 1 GCTCACTGCT 1 GCTCACTGTA 2 GCTCAGAATC 1 GCTCAGACAC 2 GCTCAGACAG 1 GCTCAGCACC 1 GCTCAGCAGG 1 GCTCAGCGAG 1 GCTCAGCTGG 38 GCTCAGGAGT 1 GCTCAGGCAC 1 GCTCAGGCCT 1 GCTCAGGTCT 5 GCTCAGTCCA 1 GCTCAGTGTG 1 GCTCAGTTGT 1 GCTCATACCT 1 GCTCATTGTA 1 GCTCCACTGG 3 GCTCCAGCCA 1 GCTCCAGCCG 1 GCTCCAGCTA 1 GCTCCATTGA 1 GCTCCCAGAA 1 GCTCCCAGAC 8 GCTCCCAGGA 1 GCTCCCATAC 1 GCTCCCCCTG 1 GCTCCCCTGT 1 GCTCCCGGAC 1 GCTCCCTCAG 1 GCTCCCTCCA 1 GCTCCCTCCT 1 GCTCCCTGCA 1 GCTCCCTTTT 1 GCTCCGAGCG 13 GCTCCGGTGT 1 GCTCCGTTCC 2 GCTCCTCTTT 1 GCTCCTGAGT 1 GCTCCTGGTG 1 GCTCCTGTCC 1 GCTCCTTACT 1 GCTCCTTGAA 4 GCTCGAACTC 1 GCTCGCGAGG 1 GCTCGCTGTC 1 GCTCGGCCGC 1 GCTCGGTGCT 1 GCTCGTGGCC 1 GCTCGTTCGG 4 GCTCTACTGC 1 GCTCTATTTG 1 GCTCTCAGGG 1 GCTCTCCAGC 1 GCTCTCCCCT 1 GCTCTCCTGA 7 GCTCTCGGAA 1 GCTCTCGGCG 2 GCTCTCTATG 11 GCTCTCTTTT 1 GCTCTGAACT 1 GCTCTGATCT 1 GCTCTGCCTC 3 GCTCTGGCCG 2 GCTCTGGCTT 1 GCTCTGGGCG 3 GCTCTGGGGC 1 GCTCTGGTCC 1 GCTCTGTGAA 3 GCTCTGTTCA 3 GCTCTTCTGG 1 GCTCTTTAGC 1 GCTCTTTCAT 1 GCTCTTTGGA 2 GCTCTTTTTA 1 GCTGAAACCC 1 GCTGAAACGG 1 GCTGAAACTC 1 GCTGAAACTT 1 GCTGAACAGC 1 GCTGAACCTT 1 GCTGAAGATG 6 GCTGAAGGAA 2 GCTGAAGGGG 5 GCTGAAGTAT 1 GCTGAATAAA 1 GCTGAATGTA 1 GCTGAATTTA 1 GCTGAATTTT 1 GCTGACAACT 1 GCTGACAATT 1 GCTGACACTG 1 GCTGACAGGC 1 GCTGACCAGG 1 GCTGACCTCT 1 GCTGACGGAA 3 GCTGACTCAG 1 GCTGACTGAC 2 GCTGACTTGC 2 GCTGAGACAC 1 GCTGAGAGGC 1 GCTGAGCAGC 1 GCTGAGCATT 1 GCTGAGCCTG 1 GCTGAGCTGG 2 GCTGAGGTCA 1 GCTGATAAAG 1 GCTGATAATT 1 GCTGATCTGG 1 GCTGATGAAA 1 GCTGATGAAG 1 GCTGATGTTA 1 GCTGATTCCA 1 GCTGATTGGC 1 GCTGATTTAA 1 GCTGCAACCT 1 GCTGCAACTG 2 GCTGCAATGC 1 GCTGCACCGG 6 GCTGCACTCT 1 GCTGCACTGG 1 GCTGCAGGAC 1 GCTGCAGGGC 1 GCTGCAGTAA 1 GCTGCAGTTC 1 GCTGCATAGT 1 GCTGCCAGCC 1 GCTGCCAGCT 2 GCTGCCCACG 1 GCTGCCCGGC 5 GCTGCCCTGC 1 GCTGCCCTGT 1 GCTGCCCTTG 18 GCTGCCGGGC 1 GCTGCCTCTA 2 GCTGCCTCTG 1 GCTGCCTGTA 4 GCTGCGCAGA 1 GCTGCGGCCG 1 GCTGCGGCTG 1 GCTGCGTTAG 1 GCTGCTATCT 1 GCTGCTATTG 1 GCTGCTCCCT 5 GCTGCTGAGA 1 GCTGCTGCCC 1 GCTGCTGCGC 4 GCTGCTGCTG 1 GCTGCTGGCA 2 GCTGCTGGTG 4 GCTGCTGTCA 1 GCTGCTTCGT 1 GCTGCTTTAG 1 GCTGCTTTAT 1 GCTGGAAGTT 1 GCTGGAATAA 1 GCTGGAATTG 1 GCTGGAGAAT 1 GCTGGAGAGT 2 GCTGGAGCCA 1 GCTGGAGCCC 1 GCTGGAGCGC 2 GCTGGAGCTA 2 GCTGGAGGCA 1 GCTGGAGGGC 1 GCTGGATGCA 2 GCTGGATGCG 1 GCTGGATGTT 1 GCTGGATTTT 1 GCTGGCACAG 1 GCTGGCAGTC 1 GCTGGCCCCG 1 GCTGGCCGGA 2 GCTGGCCTAC 1 GCTGGCCTTG 1 GCTGGCGCGG 1 GCTGGCGTGA 2 GCTGGCTCCC 1 GCTGGCTGAT 1 GCTGGCTGGC 7 GCTGGCTGTT 1 GCTGGGAACT 1 GCTGGGACAG 1 GCTGGGACCC 2 GCTGGGACTA 1 GCTGGGAGGG 1 GCTGGGATCA 2 GCTGGGATGC 1 GCTGGGCCCT 1 GCTGGGCGCA 2 GCTGGGCGCG 2 GCTGGGCGGC 1 GCTGGGGTCA 1 GCTGGGGTCC 1 GCTGGGGTCT 1 GCTGGGTCCA 1 GCTGGGTGCA 1 GCTGGGTTAC 1 GCTGGGTTGA 1 GCTGGTAAGT 1 GCTGGTAGCA 1 GCTGGTAGTT 1 GCTGGTCCCA 2 GCTGGTCTAG 1 GCTGGTCTCG 1 GCTGGTGCCT 1 GCTGGTGGGA 1 GCTGGTTCCT 1 GCTGTAACTG 1 GCTGTAATCC 3 GCTGTAATCT 1 GCTGTAGACC 1 GCTGTAGCTT 1 GCTGTAGTCC 3 GCTGTAGTCG 1 GCTGTATAAT 2 GCTGTCAGCA 1 GCTGTCATCA 3 GCTGTCATCT 1 GCTGTGAACA 1 GCTGTGCACC 1 GCTGTGCCTG 8 GCTGTGCGCG 1 GCTGTGCTGA 1 GCTGTGGATA 3 GCTGTGGCGG 1 GCTGTGGCTG 1 GCTGTGGGGA 1 GCTGTGGTCA 1 GCTGTGGTTA 1 GCTGTGGTTC 2 GCTGTGGTTT 1 GCTGTGTGTC 1 GCTGTGTTTG 1 GCTGTTACGC 1 GCTGTTCAGA 1 GCTGTTCCCC 1 GCTGTTGCAG 1 GCTGTTGCGC 10 GCTGTTTATT 1 GCTGTTTCTC 1 GCTGTTTGCA 1 GCTGTTTTGT 1 GCTTAAAAAA 1 GCTTAAATTA 1 GCTTAACAGA 1 GCTTAACCCT 1 GCTTAACCTG 3 GCTTAACTGG 1 GCTTAATAGG 2 GCTTAATCTT 1 GCTTAATTGT 1 GCTTACACTA 1 GCTTACCTCT 1 GCTTACCTTT 1 GCTTAGAAGT 9 GCTTAGCAAT 1 GCTTAGCACA 1 GCTTAGCCCC 1 GCTTAGGGGT 1 GCTTATAAAA 1 GCTTATACCT 1 GCTTATATCT 1 GCTTATCGCA 1 GCTTATCTAT 1 GCTTATGTTA 1 GCTTATTGCA 1 GCTTCACTCG 1 GCTTCAGCGT 1 GCTTCATAAC 1 GCTTCATCTG 1 GCTTCATTAG 1 GCTTCATTTG 1 GCTTCCAAAA 1 GCTTCCATAA 1 GCTTCCATCT 6 GCTTCCCAGT 1 GCTTCCCCAC 4 GCTTCCCCTT 1 GCTTCCCTGG 1 GCTTCCGAGG 3 GCTTCCTTAT 1 GCTTCGTGCT 2 GCTTCGTTAC 2 GCTTCTCCAT 1 GCTTCTCTCG 1 GCTTCTCTGG 1 GCTTCTGACC 1 GCTTCTGCGG 1 GCTTCTGCTG 1 GCTTCTGTGA 1 GCTTCTTTCA 1 GCTTGACATT 2 GCTTGACCTT 1 GCTTGAGCCC 1 GCTTGAGTTA 1 GCTTGATTTG 1 GCTTGCCAGG 1 GCTTGCTGAG 2 GCTTGCTGCA 1 GCTTGCTGGC 2 GCTTGCTTAA 1 GCTTGGAACT 1 GCTTGGACTT 1 GCTTGGAGTG 2 GCTTGGAGTT 1 GCTTGGATCT 2 GCTTGGCTCC 3 GCTTGGCTGG 1 GCTTGGGATG 1 GCTTGGTACT 1 GCTTGTACCT 1 GCTTGTAGCC 1 GCTTGTGCCT 1 GCTTGTGCTT 1 GCTTGTTAAG 3 GCTTGTTCAT 1 GCTTTAACCA 1 GCTTTAATTG 1 GCTTTAATTT 1 GCTTTACTGT 1 GCTTTACTTT 6 GCTTTAGCCT 1 GCTTTAGGGA 3 GCTTTATAAG 1 GCTTTATACC 1 GCTTTATTTA 2 GCTTTATTTC 1 GCTTTATTTG 93 GCTTTCACCC 2 GCTTTCATTG 3 GCTTTCCAAA 4 GCTTTCCCAG 1 GCTTTCCTGC 1 GCTTTCCTGG 1 GCTTTCTGTG 1 GCTTTCTTGG 1 GCTTTGCTTG 1 GCTTTGCTTT 3 GCTTTGGAGC 1 GCTTTGGCCA 1 GCTTTGGCCT 1 GCTTTGGCTG 2 GCTTTGGGAT 1 GCTTTGGGGT 2 GCTTTGTATC 2 GCTTTGTCAA 1 GCTTTGTGCT 1 GCTTTGTTTG 1 GCTTTGTTTT 1 GCTTTTAAGG 17 GCTTTTACCT 1 GCTTTTATTC 1 GCTTTTCAAA 1 GCTTTTCACA 1 GCTTTTCAGA 5 GCTTTTCCCA 1 GCTTTTCCTG 4 GCTTTTCTTG 1 GCTTTTGAAT 1 GCTTTTGAGG 1 GCTTTTGGAG 1 GCTTTTGGGC 1 GCTTTTTAAA 1 GCTTTTTAGA 8 GCTTTTTCAA 3 GCTTTTTTTG 2 GGAAAAAAAA 6 GGAAAAACGA 1 GGAAAAAGAG 1 GGAAAAAGCC 1 GGAAAAATTA 2 GGAAAACAGA 41 GGAAAACCCT 1 GGAAAACTGC 1 GGAAAACTGT 1 GGAAAAGAAG 1 GGAAAAGTGG 11 GGAAAAGTTC 1 GGAAAATACT 2 GGAAAATGCA 1 GGAAAATTGT 1 GGAAAATTTG 1 GGAAACAAAC 1 GGAAACAAAG 1 GGAAACAACT 2 GGAAACAATG 1 GGAAACAGGA 1 GGAAACCCCA 1 GGAAACCCCG 1 GGAAACCCTG 1 GGAAACCTTA 1 GGAAACCTTG 1 GGAAACTGTG 1 GGAAAGAAAA 1 GGAAAGATGT 1 GGAAAGCACC 1 GGAAAGCGGC 1 GGAAAGCTCC 1 GGAAAGCTGC 2 GGAAAGGAAA 1 GGAAAGGGTT 1 GGAAAGGTGG 2 GGAAAGGTTT 2 GGAAAGTGAC 2 GGAAAGTGGG 3 GGAAAGTTCA 1 GGAAAGTTGC 1 GGAAATAATT 1 GGAAATACCA 1 GGAAATCCCC 1 GGAAATCCTG 1 GGAAATCTCT 1 GGAAATGGAG 1 GGAAATGGTA 1 GGAAATGTCA 3 GGAAATTAAC 1 GGAAATTCAT 1 GGAAATTGAT 1 GGAAATTGTC 1 GGAACAAACA 27 GGAACAAAGG 1 GGAACAACGG 1 GGAACACGAT 1 GGAACAGACA 2 GGAACAGCCA 1 GGAACAGCCC 1 GGAACAGGGG 2 GGAACATCTT 1 GGAACCAGCT 1 GGAACCCCAA 2 GGAACCCGAG 1 GGAACGCCTA 1 GGAACGGATG 6 GGAACTAACA 1 GGAACTAATG 1 GGAACTCCTG 1 GGAACTGATT 1 GGAACTGCCT 1 GGAACTGGAA 1 GGAACTGTCT 1 GGAACTGTGA 2 GGAACTTAAC 1 GGAACTTGCA 1 GGAACTTTTA 2 GGAACTTTTC 1 GGAAGAAGAA 1 GGAAGAATGA 1 GGAAGAATGG 1 GGAAGACCAG 1 GGAAGACTCT 1 GGAAGAGAAG 3 GGAAGAGCAC 5 GGAAGAGGCC 2 GGAAGAGGGT 1 GGAAGATCCT 1 GGAAGCAAGG 1 GGAAGCACGG 6 GGAAGCAGAA 1 GGAAGCATTC 1 GGAAGCCAAC 1 GGAAGCCCAC 8 GGAAGCTGAG 2 GGAAGCTTAG 1 GGAAGGAAGC 2 GGAAGGACAG 8 GGAAGGATAA 1 GGAAGGATGA 1 GGAAGGCAAG 1 GGAAGGCAGT 1 GGAAGGCCGG 1 GGAAGGCCTA 1 GGAAGGGAGG 1 GGAAGGGATG 1 GGAAGGGGAA 4 GGAAGGGGAG 2 GGAAGGGTCC 1 GGAAGGTAGT 1 GGAAGGTCTA 1 GGAAGGTGTC 1 GGAAGGTTGT 1 GGAAGGTTTA 4 GGAAGTCCTG 1 GGAAGTCTCT 2 GGAAGTGACC 1 GGAAGTGCAA 3 GGAAGTGCCA 1 GGAAGTGGAG 1 GGAAGTGTCA 1 GGAAGTGTCT 1 GGAAGTTAAA 1 GGAAGTTTCG 3 GGAATAAATC 1 GGAATAAATT 6 GGAATAACGC 1 GGAATAAGGA 1 GGAATACCTG 1 GGAATAGAGA 1 GGAATAGCAG 1 GGAATATGCA 1 GGAATATGGT 1 GGAATATTTG 1 GGAATCACTT 1 GGAATCCAAT 2 GGAATCCTGT 1 GGAATCGCTT 1 GGAATGACAG 1 GGAATGAGAA 3 GGAATGATAG 1 GGAATGGTAT 1 GGAATGTACG 10 GGAATGTTTT 1 GGAATTCGAA 1 GGAATTGCTT 1 GGACACATAA 1 GGACACATCC 1 GGACACATTC 1 GGACACCCGG 1 GGACACCGTG 1 GGACAGAAGC 1 GGACAGATGG 1 GGACAGCTCA 1 GGACAGGATT 1 GGACAGGGCA 7 GGACAGTCTT 1 GGACATATAG 1 GGACATTAGG 1 GGACCAAAGT 1 GGACCAATTT 1 GGACCACAGA 1 GGACCACCGA 1 GGACCACGGG 1 GGACCACTAA 1 GGACCACTGA 83 GGACCAGCGG 1 GGACCAGTCC 1 GGACCCACAA 1 GGACCCAGTG 1 GGACCCCACT 1 GGACCCCCTG 1 GGACCCCGAA 1 GGACCCTCTC 2 GGACCCTGTG 1 GGACCGCCAA 1 GGACCTATGC 1 GGACCTCAGG 1 GGACCTCTGA 1 GGACCTGACT 1 GGACCTGCGC 8 GGACCTGTCC 1 GGACCTTCGA 1 GGACCTTTAA 1 GGACGCCACA 1 GGACGCCGAG 1 GGACGGTCAC 1 GGACTAAATG 1 GGACTCACGC 1 GGACTCTGGA 1 GGACTGCGCA 1 GGACTGCGCC 1 GGACTGGCCC 1 GGACTGTAGT 1 GGACTGTGGC 1 GGACTTAGAG 1 GGACTTGCGT 1 GGACTTTCCT 5 GGAGAAAATG 1 GGAGAAAATT 3 GGAGAACAGA 1 GGAGAACCTA 1 GGAGAACTAA 1 GGAGAAGAGT 1 GGAGAATAAA 1 GGAGAATCCT 3 GGAGAATCGC 1 GGAGACATTC 1 GGAGACTATT 1 GGAGACTTCC 1 GGAGAGAAAA 1 GGAGAGAAGC 1 GGAGAGAATC 1 GGAGAGACAG 1 GGAGAGACCT 1 GGAGAGGAAG 1 GGAGAGGCGG 1 GGAGAGGGCA 2 GGAGAGTAAC 2 GGAGAGTATT 1 GGAGAGTGAA 1 GGAGAGTGAG 2 GGAGATAGTG 5 GGAGATGAGG 2 GGAGATGCCG 1 GGAGATGGAG 2 GGAGATGTTT 1 GGAGATTTTC 1 GGAGCAAAAT 1 GGAGCAAATT 1 GGAGCACATT 1 GGAGCACTCT 1 GGAGCACTTT 1 GGAGCAGACG 2 GGAGCAGAGA 1 GGAGCAGGCT 2 GGAGCCAGCT 2 GGAGCCAGGC 1 GGAGCCATCC 1 GGAGCCATTC 2 GGAGCCCAGG 1 GGAGCCCATC 1 GGAGCCGGCC 2 GGAGCCGGGG 1 GGAGCCGGTG 1 GGAGCCGTGA 1 GGAGCCTCTT 2 GGAGCCTGAG 1 GGAGCGTGGG 2 GGAGCTAAGC 1 GGAGCTAGAG 1 GGAGCTATTA 1 GGAGCTCTGT 6 GGAGCTCTTG 2 GGAGCTGACC 1 GGAGCTGCGA 2 GGAGCTGTAA 1 GGAGCTGTCT 1 GGAGCTTCTG 1 GGAGCTTGAG 1 GGAGGAAAAT 1 GGAGGAAGAA 4 GGAGGAATGG 1 GGAGGAATTC 1 GGAGGACACT 1 GGAGGAGAGG 2 GGAGGAGCCA 1 GGAGGAGCTG 2 GGAGGAGGAG 3 GGAGGAGTAG 1 GGAGGATCGC 1 GGAGGATGGG 1 GGAGGCAGAG 5 GGAGGCAGGT 1 GGAGGCATCA 1 GGAGGCCCTG 1 GGAGGCCGAC 1 GGAGGCCGAG 5 GGAGGCCGTG 2 GGAGGCGCTA 1 GGAGGCGCTC 1 GGAGGCGGAA 1 GGAGGCGGAG 2 GGAGGCGTGA 1 GGAGGCTAAG 1 GGAGGCTCTC 1 GGAGGCTGAA 3 GGAGGCTGAC 2 GGAGGCTGAG 15 GGAGGCTTGG 1 GGAGGCTTTT 1 GGAGGGAACA 1 GGAGGGAATA 1 GGAGGGACCA 1 GGAGGGACCC 1 GGAGGGAGCT 1 GGAGGGAGTT 1 GGAGGGATCA 1 GGAGGGCTTG 1 GGAGGGGAGA 1 GGAGGGGCCG 1 GGAGGGGGAG 1 GGAGGGGGCT 8 GGAGGGGTGG 1 GGAGGGGTTC 4 GGAGGGTGAG 1 GGAGGTACCC 1 GGAGGTCATC 1 GGAGGTCGAG 1 GGAGGTGAAG 1 GGAGGTGGAG 4 GGAGGTGGGG 11 GGAGGTGTAG 1 GGAGGTGTGG 3 GGAGTACAAT 1 GGAGTAGTAG 1 GGAGTCAAGA 1 GGAGTCAGGG 1 GGAGTCAGTG 1 GGAGTCATTG 3 GGAGTCCTAG 2 GGAGTCGGAA 1 GGAGTCTAAC 2 GGAGTGAGGG 1 GGAGTGCAAA 1 GGAGTGCAGC 1 GGAGTGCAGG 1 GGAGTGGACA 16 GGAGTGGGAT 1 GGAGTGGGCA 1 GGAGTGTACA 1 GGAGTGTGCT 3 GGAGTTAGCA 1 GGAGTTCCAG 1 GGAGTTCCTG 1 GGAGTTGGCC 1 GGAGTTGTCC 1 GGATAAAAAT 1 GGATAAACAG 2 GGATAAATGC 1 GGATAACGCC 1 GGATACAAAT 1 GGATACAACC 2 GGATACAGAA 1 GGATACATAG 1 GGATACCCAG 1 GGATACTAAT 1 GGATAGACCA 1 GGATAGCTGC 1 GGATAGGGAA 4 GGATAGTACA 1 GGATATAGTC 1 GGATCAACGT 1 GGATCAAGCA 1 GGATCACCAG 1 GGATCAGGAA 1 GGATCAGTGT 1 GGATCATTTG 1 GGATCCAAGT 1 GGATCCAGTA 1 GGATCCCAAG 1 GGATCCTAGT 1 GGATCCTCGG 2 GGATCGCTTG 1 GGATCTAAGG 1 GGATCTGCTG 1 GGATCTGGCC 1 GGATCTGTGC 1 GGATCTTCAT 1 GGATGAGAAC 1 GGATGAGTAC 1 GGATGCATTA 2 GGATGGACAG 1 GGATGGACCT 1 GGATGGCAAT 2 GGATGGCGGC 1 GGATGGCTTA 1 GGATGGGCCA 1 GGATGGTGAG 1 GGATGTAAAC 1 GGATGTAGAG 2 GGATGTATTG 1 GGATGTCAAC 5 GGATGTCATC 1 GGATGTGAAA 6 GGATGTGGAA 1 GGATGTGGAG 1 GGATTAAAGA 1 GGATTAAGAG 1 GGATTACAGG 1 GGATTACTTG 1 GGATTAGAAA 1 GGATTATACA 1 GGATTATGGC 1 GGATTCAGAA 1 GGATTCGGCC 2 GGATTCTGAC 2 GGATTGATGT 1 GGATTGTATG 1 GGATTGTCTG 11 GGATTTCACT 1 GGATTTGAAA 1 GGATTTGCCT 1 GGATTTGGCA 1 GGATTTGGCC 81 GGATTTGTCC 1 GGATTTTAAT 1 GGATTTTGTA 1 GGATTTTTCT 1 GGATTTTTGA 1 GGATTTTTTT 1 GGCAAAACCT 1 GGCAAACCCC 1 GGCAAACGCC 1 GGCAAAGACC 1 GGCAAAGACT 2 GGCAACAAAA 4 GGCAACAAAC 1 GGCAACAAAG 1 GGCAACAACA 1 GGCAACAAGA 1 GGCAACAAGG 1 GGCAACAGAA 1 GGCAACAGAG 2 GGCAACATAA 1 GGCAACCAGA 1 GGCAACCGCG 1 GGCAACCTCC 1 GGCAACCTGC 1 GGCAACGGGA 1 GGCAACGTGG 6 GGCAAGAAAT 1 GGCAAGAAGA 7 GGCAAGAAGC 1 GGCAAGAATA 1 GGCAAGAGAA 1 GGCAAGAGAC 1 GGCAAGCAGA 1 GGCAAGCCCA 1 GGCAAGCCCC 46 GGCAAGCCCT 1 GGCAAGCCGC 1 GGCAAGGACT 1 GGCAAGGCCC 1 GGCAAGGGCT 1 GGCAAGGGGG 6 GGCAAGTGAT 1 GGCAAGTGTC 1 GGCAAGTTAC 1 GGCAATATAG 1 GGCAATATGG 1 GGCAATCTGA 1 GGCAATGTGG 2 GGCAATTCAA 2 GGCAATTGGC 2 GGCACAAGGA 1 GGCACAATCA 1 GGCACACCTT 2 GGCACACTTT 1 GGCACAGAAA 1 GGCACAGAAG 1 GGCACAGAGA 1 GGCACAGAGT 1 GGCACAGTAA 3 GGCACAGTGG 1 GGCACAGTTG 1 GGCACATACA 1 GGCACCAGTG 1 GGCACCATCT 1 GGCACCCACG 1 GGCACCCCCA 1 GGCACCCCCT 2 GGCACCGTCC 1 GGCACCGTGC 4 GGCACCGTGG 1 GGCACCTCGG 1 GGCACCTTGG 1 GGCACGCTGA 1 GGCACGGCCA 1 GGCACGGGAG 1 GGCACTGAAT 1 GGCAGAAAGT 1 GGCAGACCAC 1 GGCAGAGAGC 1 GGCAGAGGAC 2 GGCAGAGTGA 1 GGCAGAGTTT 1 GGCAGATCAC 1 GGCAGATCCC 1 GGCAGATTGC 1 GGCAGCACAA 2 GGCAGCAGAT 1 GGCAGCAGCA 1 GGCAGCCAAG 1 GGCAGCCAGA 3 GGCAGCCCTG 1 GGCAGCCGGT 1 GGCAGCCTGG 1 GGCAGCGAGT 1 GGCAGCGATG 1 GGCAGCGCCC 1 GGCAGCTATA 1 GGCAGCTCAG 1 GGCAGCTGGC 1 GGCAGCTGTC 1 GGCAGGACAC 1 GGCAGGAGAC 4 GGCAGGAGCG 2 GGCAGGAGGA 1 GGCAGGAGTA 1 GGCAGGATCA 1 GGCAGGCACA 7 GGCAGGCACC 1 GGCAGGCAGA 1 GGCAGGCGGG 3 GGCAGGGAAG 1 GGCAGGGCCT 1 GGCAGGGCGA 1 GGCAGGGGGT 1 GGCAGGGTAC 1 GGCAGGTGGT 1 GGCAGTGCCC 1 GGCAGTGTAG 1 GGCAGTTTCT 1 GGCATACACT 1 GGCATAGCCC 1 GGCATATCCT 1 GGCATATGCC 1 GGCATCAGAG 1 GGCATCAGGA 1 GGCATCAGGG 2 GGCATCATCG 1 GGCATCCTGC 1 GGCATCTATT 1 GGCATCTCTC 1 GGCATTAGGG 1 GGCATTCTTA 1 GGCATTGAAG 1 GGCATTGAGA 1 GGCATTGCTG 2 GGCATTGTTC 3 GGCATTTGAC 1 GGCATTTGCG 1 GGCATTTTGT 1 GGCATTTTTC 4 GGCCAAAAAA 1 GGCCAAAAGC 1 GGCCAAACAA 2 GGCCAAAGAG 1 GGCCAAAGGC 6 GGCCAAGCCT 1 GGCCAATAAG 1 GGCCAATGGA 1 GGCCACCAAA 1 GGCCACCAGC 1 GGCCACGTAG 1 GGCCACTAAA 1 GGCCACTCTA 5 GGCCACTGCA 1 GGCCACTGCT 1 GGCCACTGTT 1 GGCCAGAAGC 1 GGCCAGACCT 3 GGCCAGAGGA 1 GGCCAGCAAG 1 GGCCAGCCCT 6 GGCCAGCCTT 1 GGCCAGGAAG 3 GGCCAGGAGA 1 GGCCAGGAGG 1 GGCCAGGCAC 1 GGCCAGGCGC 1 GGCCAGGTAT 2 GGCCAGGTGG 5 GGCCAGTAAC 1 GGCCAGTATG 1 GGCCAGTGGC 1 GGCCAGTGTT 2 GGCCATAAAG 1 GGCCATCCAA 1 GGCCATCTCT 2 GGCCCACACC 6 GGCCCACGAT 1 GGCCCACTGA 2 GGCCCACTGG 1 GGCCCAGAGC 2 GGCCCAGGAC 1 GGCCCAGGCC 1 GGCCCAGGGA 2 GGCCCAGGGG 1 GGCCCATATG 3 GGCCCCATTG 2 GGCCCCATTT 1 GGCCCCCTAA 2 GGCCCCGGAC 5 GGCCCCTCCC 1 GGCCCGAGTT 1 GGCCCGCTCA 1 GGCCCGGCTT 3 GGCCCGGTCA 5 GGCCCGTACA 1 GGCCCTACAG 1 GGCCCTAGGC 12 GGCCCTCCCT 1 GGCCCTCTGA 1 GGCCCTGAGC 5 GGCCCTGCAG 1 GGCCCTGCTA 1 GGCCCTGGAC 2 GGCCCTGGTG 5 GGCCCTTGCC 2 GGCCGCCAAG 1 GGCCGCCGCT 1 GGCCGCGTGC 1 GGCCGCGTTC 5 GGCCGCTGCT 2 GGCCGGGCCC 1 GGCCGGGGGC 4 GGCCGGGTGC 1 GGCCGGTTCC 1 GGCCGTGCCC 1 GGCCGTGCTG 2 GGCCTACAAA 1 GGCCTAGGCA 1 GGCCTATACC 1 GGCCTATGAG 1 GGCCTCAACC 1 GGCCTCAGGC 1 GGCCTCCAAG 3 GGCCTCCAGC 1 GGCCTCCCAG 1 GGCCTCCTGA 1 GGCCTCGCAG 1 GGCCTCGGCC 1 GGCCTCGGCG 2 GGCCTCTCAA 1 GGCCTCTCTT 1 GGCCTCTGAG 3 GGCCTCTGAT 1 GGCCTCTGGA 1 GGCCTGAACC 1 GGCCTGCAGG 4 GGCCTGCTGC 5 GGCCTGGAAG 1 GGCCTGGATG 1 GGCCTGGCCA 1 GGCCTGGGAG 1 GGCCTGGGGA 1 GGCCTGGGGG 1 GGCCTGTAAT 1 GGCCTTAACC 1 GGCCTTACCC 1 GGCCTTCCTT 2 GGCCTTCTCT 1 GGCCTTCTGC 1 GGCCTTGGGA 1 GGCCTTTAGG 2 GGCCTTTTGG 1 GGCCTTTTTT 3 GGCGAATGAG 1 GGCGACAAAG 1 GGCGACAATC 1 GGCGACACAG 1 GGCGACAGAG 7 GGCGACATAG 1 GGCGAGGTGG 1 GGCGATCCTC 2 GGCGATGCCT 1 GGCGATGTCT 1 GGCGCCAAAA 1 GGCGCCTCCT 5 GGCGCCTCTT 1 GGCGCTGGCT 1 GGCGCTTTTC 1 GGCGGAAGAT 1 GGCGGCCTGG 1 GGCGGCGGAG 1 GGCGGCTGCA 1 GGCGGGTCGG 1 GGCGGTAACT 1 GGCGTCAGGA 1 GGCGTCCTGG 3 GGCGTGAACC 2 GGCGTGAGGC 1 GGCGTGGTAG 1 GGCGTGGTTT 1 GGCGTTGTAA 1 GGCGTTGTCT 1 GGCGTTGTGT 1 GGCTAAACCC 1 GGCTAAGACT 1 GGCTACAAGA 1 GGCTACACCT 20 GGCTACGCCT 1 GGCTACGGTA 1 GGCTACTCAC 1 GGCTAGAATC 2 GGCTAGTACT 1 GGCTATAGGC 1 GGCTATAGGG 3 GGCTATATGG 1 GGCTATGACA 1 GGCTATGCCA 4 GGCTCAAAAC 1 GGCTCAAGCC 1 GGCTCAAGCT 1 GGCTCAAGTG 1 GGCTCACACC 1 GGCTCAGAGG 1 GGCTCAGCAC 1 GGCTCAGGGC 1 GGCTCAGGGG 1 GGCTCCACAG 3 GGCTCCACCC 1 GGCTCCACGG 1 GGCTCCCAAG 2 GGCTCCCACT 15 GGCTCCTACC 1 GGCTCCTCAC 1 GGCTCCTCCT 1 GGCTCCTCGA 9 GGCTCCTGGC 11 GGCTCCTGGG 1 GGCTCCTGTA 2 GGCTCGCCAG 1 GGCTCGGGAT 5 GGCTCTACGG 1 GGCTCTAGGC 1 GGCTCTAGGG 4 GGCTCTAGGT 1 GGCTCTGCTC 1 GGCTCTGGAA 1 GGCTCTGGGA 1 GGCTCTGTCA 1 GGCTCTTTTC 1 GGCTGAACCA 1 GGCTGAAGGG 2 GGCTGACAAG 1 GGCTGACCCC 1 GGCTGAGAAT 1 GGCTGAGCTC 5 GGCTGAGGAA 1 GGCTGAGGGC 1 GGCTGAGGTG 1 GGCTGATACT 1 GGCTGATGTG 8 GGCTGATGTT 1 GGCTGATTAT 1 GGCTGATTTT 2 GGCTGCACCG 1 GGCTGCAGGT 1 GGCTGCAGTC 1 GGCTGCATAC 1 GGCTGCCACT 2 GGCTGCCCTG 4 GGCTGCCTGC 2 GGCTGCGCAG 1 GGCTGCTCTA 1 GGCTGCTGCA 1 GGCTGCTGGA 1 GGCTGCTGGC 1 GGCTGCTTCT 1 GGCTGGAGAC 1 GGCTGGGCAC 1 GGCTGGGCCT 8 GGCTGGGCGC 1 GGCTGGGCTC 1 GGCTGGGGGC 26 GGCTGGGGGG 1 GGCTGGGTCT 1 GGCTGGGTTT 5 GGCTGGTCAC 3 GGCTGGTCCC 1 GGCTGGTCTC 2 GGCTGGTTAA 1 GGCTGTAAGT 2 GGCTGTACCC 6 GGCTGTACTC 1 GGCTGTCCCC 1 GGCTGTGACG 3 GGCTGTGGCG 1 GGCTTAAGGG 1 GGCTTAGGGA 1 GGCTTAGTGA 3 GGCTTCACGG 1 GGCTTCAGTG 1 GGCTTCCAGG 1 GGCTTCCATC 1 GGCTTCCCAA 2 GGCTTCCTGC 1 GGCTTCGCAG 1 GGCTTCGGGG 1 GGCTTGAGAT 1 GGCTTGATGT 1 GGCTTGCCAG 4 GGCTTGCCTT 1 GGCTTGCTGA 3 GGCTTGGACC 1 GGCTTGGGGA 1 GGCTTGGGTT 1 GGCTTGTCCC 1 GGCTTGTTTT 1 GGCTTTAAAA 1 GGCTTTAAGG 5 GGCTTTACCC 19 GGCTTTAGCG 1 GGCTTTAGGA 1 GGCTTTAGGC 2 GGCTTTAGGG 391 GGCTTTAGGT 1 GGCTTTATGG 1 GGCTTTGATT 2 GGCTTTGGAG 10 GGCTTTGGGA 1 GGCTTTGGGG 1 GGCTTTGGTG 1 GGGAAACAAA 1 GGGAAACCCA 1 GGGAAACCCC 7 GGGAAACCCG 2 GGGAAACCCT 5 GGGAAACCGT 1 GGGAAACCTG 1 GGGAAACCTT 2 GGGAAACTAG 1 GGGAAACTTC 1 GGGAAAGCAA 1 GGGAAAGGAC 1 GGGAAATCAG 1 GGGAAATCCC 1 GGGAAATCCG 1 GGGAAATTTT 1 GGGAACACAA 1 GGGAACCACC 1 GGGAACCAGG 1 GGGAACCCCA 1 GGGAACCTAT 1 GGGAACCTGT 1 GGGAACGAAA 1 GGGAACTCCT 1 GGGAAGAATG 1 GGGAAGAGAT 1 GGGAAGATGA 1 GGGAAGATGG 1 GGGAAGCAGA 9 GGGAAGCCAG 1 GGGAAGCCCC 1 GGGAAGCCCT 1 GGGAAGGAAC 1 GGGAAGGAGC 1 GGGAAGGCAC 1 GGGAAGGGAG 1 GGGAAGGGCG 1 GGGAAGTCAC 2 GGGAAGTCGG 1 GGGAAGTCGT 1 GGGAAGTTGA 1 GGGAATAAAC 2 GGGAATCAAA 1 GGGAATGAAG 1 GGGAATTAAA 1 GGGAATTTTC 1 GGGACAAATC 2 GGGACAACAC 1 GGGACAATCT 1 GGGACACCCC 1 GGGACAGGAT 1 GGGACAGGGG 1 GGGACCACCG 1 GGGACCACGG 3 GGGACCAGGC 1 GGGACCCCGG 2 GGGACCCCGT 1 GGGACCTAGG 1 GGGACCTGAG 1 GGGACCTTCC 1 GGGACGAGAA 1 GGGACGAGGC 1 GGGACGAGTA 1 GGGACGAGTG 1 GGGACGCCCT 3 GGGACGCGAA 1 GGGACGGCGC 3 GGGACGTCAC 1 GGGACGTGTA 1 GGGACTCCGG 1 GGGACTGGCA 1 GGGACTGGCG 1 GGGAGAACAA 2 GGGAGAACTT 1 GGGAGACACT 1 GGGAGACAGA 2 GGGAGACCCC 2 GGGAGACCCT 1 GGGAGCACTC 1 GGGAGCCCCT 3 GGGAGCCCGG 3 GGGAGCCGAG 2 GGGAGCCGTG 1 GGGAGCTGCG 1 GGGAGCTGTG 1 GGGAGCTTGT 1 GGGAGGAAGG 1 GGGAGGACCT 1 GGGAGGAGTG 1 GGGAGGATTA 1 GGGAGGCCCC 1 GGGAGGCCGA 1 GGGAGGCCTT 1 GGGAGGCGGA 3 GGGAGGCTCC 1 GGGAGGCTGA 1 GGGAGGGAAG 4 GGGAGGGACC 1 GGGAGGGCTG 1 GGGAGGGCTT 1 GGGAGGGGAG 1 GGGAGGGGTG 2 GGGAGGTGGC 1 GGGAGTAATA 1 GGGAGTATGC 1 GGGAGTCTCC 1 GGGAGTCTCG 1 GGGATAAAAT 1 GGGATACACC 1 GGGATACAGA 1 GGGATCAAGG 1 GGGATCACTC 1 GGGATCCACT 1 GGGATCGCCC 1 GGGATCTGTG 1 GGGATGATTT 1 GGGATGCAAA 2 GGGATGCAAG 1 GGGATGCAGG 1 GGGATGCAGT 1 GGGATGCTCT 1 GGGATGGAGA 2 GGGATGGAGG 1 GGGATGGCAG 4 GGGATGGGCC 1 GGGATGGGGA 1 GGGATGTACG 1 GGGATGTTAG 1 GGGATTATAG 1 GGGATTCACA 2 GGGATTGAGG 1 GGGCAAGCCA 3 GGGCAAGTAG 1 GGGCAGAATA 1 GGGCAGAATT 1 GGGCAGACTG 2 GGGCAGAGCC 1 GGGCAGAGGC 1 GGGCAGATCT 1 GGGCAGATGC 4 GGGCAGCGCG 1 GGGCAGCTGG 3 GGGCAGGACC 8 GGGCAGGAGC 1 GGGCAGGAGG 1 GGGCAGGCAC 1 GGGCAGGCGT 6 GGGCAGGTCC 2 GGGCAGGTGT 1 GGGCAGTACG 1 GGGCAGTCTG 1 GGGCAGTTGG 1 GGGCATAGTT 1 GGGCATCTCT 2 GGGCATTCCT 1 GGGCCAAAAC 2 GGGCCAAAAG 1 GGGCCAAATC 1 GGGCCAACAT 1 GGGCCAATAA 2 GGGCCACAGG 1 GGGCCACGTG 1 GGGCCACTGA 1 GGGCCAGAAA 1 GGGCCAGATT 1 GGGCCAGCAA 1 GGGCCAGCCA 1 GGGCCAGGAT 1 GGGCCAGGGG 1 GGGCCAGGTG 1 GGGCCCACCC 1 GGGCCCAGGA 3 GGGCCCAGGG 1 GGGCCCCAAA 9 GGGCCCCAAC 1 GGGCCCCACC 1 GGGCCCCCAA 2 GGGCCCCCTG 1 GGGCCCCGCA 3 GGGCCCCGCC 1 GGGCCCCTGC 1 GGGCCCCTGG 3 GGGCCCGAAG 1 GGGCCCTGAC 1 GGGCCCTGGC 2 GGGCCCTGTG 1 GGGCCCTTCC 1 GGGCCCTTGG 2 GGGCCGAAAA 1 GGGCCGGGAG 1 GGGCCTAAAC 1 GGGCCTCAAA 1 GGGCCTCCGC 1 GGGCCTGACA 2 GGGCCTGCGG 1 GGGCCTGGCC 1 GGGCCTGGGG 17 GGGCCTGTGC 3 GGGCGACCGG 1 GGGCGACGAT 1 GGGCGCACAC 1 GGGCGCGTTC 1 GGGCGCTGTG 5 GGGCGCTGTT 1 GGGCGGAGCT 3 GGGCGGCCTC 1 GGGCGGCGGG 1 GGGCGGGAGC 1 GGGCGGGAGG 1 GGGCGGGCAG 1 GGGCGGGGCT 1 GGGCGTACTA 2 GGGCGTGACC 1 GGGCGTGCCC 1 GGGCGTGGCA 1 GGGCTAACTC 1 GGGCTACGGA 1 GGGCTACGTC 9 GGGCTAGGGT 1 GGGCTCAAAC 1 GGGCTCAAGA 1 GGGCTCAATA 1 GGGCTCACCT 3 GGGCTCAGGG 1 GGGCTCCAGG 3 GGGCTCCCTG 1 GGGCTCTCCT 3 GGGCTGAACA 1 GGGCTGACAG 1 GGGCTGACAT 1 GGGCTGAGCC 1 GGGCTGAGGG 1 GGGCTGCCAA 1 GGGCTGCCAG 1 GGGCTGCCTA 1 GGGCTGCTCT 6 GGGCTGCTGC 2 GGGCTGCTGT 1 GGGCTGCTTG 2 GGGCTGCTTT 1 GGGCTGGACG 1 GGGCTGGAGT 1 GGGCTGGCCC 1 GGGCTGGCTT 1 GGGCTGGGCC 8 GGGCTGGGGA 1 GGGCTGGGGT 75 GGGCTGGGTG 2 GGGCTGGGTT 1 GGGCTGGTGT 1 GGGCTGTCTC 1 GGGCTGTGGT 1 GGGCTTGCGC 1 GGGCTTGGGT 1 GGGCTTGGTA 1 GGGCTTTAGG 1 GGGGAAAAAA 2 GGGGAAAGGG 1 GGGGAAATAG 1 GGGGAAATCG 47 GGGGAAATGA 2 GGGGAAATTG 2 GGGGAACATA 1 GGGGAACCCC 1 GGGGAAGGGC 1 GGGGAATGAT 1 GGGGACAAAG 1 GGGGACAGAA 1 GGGGACAGGG 1 GGGGACAGTA 1 GGGGACCCCA 1 GGGGACGGGA 1 GGGGACTCTT 1 GGGGACTGAA 5 GGGGACTGCC 1 GGGGACTGGT 1 GGGGACTTTT 1 GGGGAGACCT 1 GGGGAGGAGT 1 GGGGAGGCCT 1 GGGGAGGGGG 1 GGGGAGGGTC 1 GGGGAGTGGG 1 GGGGATGGGA 1 GGGGATGGGG 2 GGGGCAAGGA 1 GGGGCAATCG 1 GGGGCACGCG 1 GGGGCAGACG 1 GGGGCAGAGA 1 GGGGCAGAGG 1 GGGGCAGCCG 4 GGGGCAGCTC 1 GGGGCAGGAA 1 GGGGCAGGGC 31 GGGGCAGGGG 1 GGGGCAGGGT 1 GGGGCCAGGC 1 GGGGCCAGGG 1 GGGGCCCAGG 1 GGGGCCCCCA 3 GGGGCCCCCT 2 GGGGCCGATC 1 GGGGCCTGAG 1 GGGGCGGGAG 1 GGGGCGGGCA 1 GGGGCGGGGT 2 GGGGCGGTAG 1 GGGGCTACGA 1 GGGGCTATGC 1 GGGGCTCAGC 2 GGGGCTGACA 1 GGGGCTGAGG 1 GGGGCTGCCA 1 GGGGCTGCCC 1 GGGGCTGGGC 1 GGGGCTGTGG 4 GGGGCTTAAG 4 GGGGCTTCCA 2 GGGGCTTCTG 3 GGGGCTTTCT 1 GGGGGACACG 1 GGGGGACCAC 1 GGGGGACCTC 2 GGGGGACGGC 8 GGGGGAGAAG 4 GGGGGAGAGT 1 GGGGGAGGGA 2 GGGGGCCACC 1 GGGGGCGCCT 13 GGGGGCTGAA 1 GGGGGCTGCT 3 GGGGGGACCA 1 GGGGGGAGGG 1 GGGGGGCTGA 1 GGGGGGGAAC 1 GGGGGGGGGG 4 GGGGGGGGGT 1 GGGGGGGGTC 1 GGGGGGGGTT 1 GGGGGGTGGA 4 GGGGGTAACT 13 GGGGGTACTA 1 GGGGGTCACC 3 GGGGGTCAGG 1 GGGGGTGAAG 3 GGGGGTGGAT 2 GGGGGTGGGT 1 GGGGTAAGAA 7 GGGGTACCCC 2 GGGGTAGCAC 1 GGGGTAGCGA 1 GGGGTATAGG 1 GGGGTCAAGA 1 GGGGTCAAGG 3 GGGGTCAGGA 2 GGGGTCAGGC 1 GGGGTCAGGG 134 GGGGTCAGTG 1 GGGGTCCAGG 1 GGGGTCCGAC 1 GGGGTCGGGG 1 GGGGTCTTGA 1 GGGGTGAGGG 1 GGGGTGCAGG 1 GGGGTGCCGG 1 GGGGTGGCAG 1 GGGGTGGGCG 1 GGGGTGGGGG 1 GGGGTGGGTT 1 GGGGTGGTTG 1 GGGGTGTGTA 1 GGGGTGTGTG 1 GGGGTGTTTT 1 GGGGTTGTCC 1 GGGGTTTGGT 1 GGGTAAGGCC 1 GGGTAATCAA 1 GGGTAATGTG 1 GGGTACACCC 1 GGGTACTACT 1 GGGTAGCTGG 1 GGGTAGGACT 1 GGGTAGGAGG 1 GGGTAGGTTA 1 GGGTAGTAGG 1 GGGTCAAAAG 5 GGGTCAGAAG 1 GGGTCAGAAT 1 GGGTCAGCTG 1 GGGTCAGGAG 4 GGGTCAGGGG 5 GGGTCCAGGG 1 GGGTCCATAC 1 GGGTCCTTGA 1 GGGTCGGGAA 1 GGGTCGGGAG 1 GGGTCGGTCC 1 GGGTCTAGAA 1 GGGTCTCCAG 1 GGGTCTCCTG 2 GGGTCTCGTA 1 GGGTCTGCAG 1 GGGTCTGGCC 1 GGGTCTGTGA 2 GGGTCTTTTT 1 GGGTGAACTC 1 GGGTGCAAAA 4 GGGTGCTTCC 1 GGGTGCTTGG 4 GGGTGGACTC 1 GGGTGGCAAA 1 GGGTGGCGGC 2 GGGTGGCTTG 1 GGGTGGGAGG 1 GGGTGGGCAG 3 GGGTGGGCCG 1 GGGTGGGGGA 1 GGGTGGGGTT 6 GGGTGGGTAG 2 GGGTGGTGGG 1 GGGTGGTGTC 1 GGGTGTAAAA 1 GGGTGTATTG 1 GGGTGTCGGG 1 GGGTGTGCAT 1 GGGTGTGGTG 2 GGGTGTTGAA 1 GGGTGTTGAG 1 GGGTTCCCCG 2 GGGTTGCTTG 1 GGGTTGGCTG 1 GGGTTGGCTT 64 GGGTTGGGGG 1 GGGTTGTCTT 1 GGGTTGTTGT 1 GGGTTTAGGC 1 GGGTTTAGGG 1 GGGTTTCCCT 2 GGGTTTGAAC 3 GGGTTTGAAG 1 GGGTTTGAGC 1 GGGTTTGGTT 1 GGGTTTTGTG 1 GGGTTTTTAA 2 GGGTTTTTAT 4 GGTAAAAATA 1 GGTAAAATTG 1 GGTAAAGGTT 2 GGTAAATATG 1 GGTAACAAAT 1 GGTAACAACC 1 GGTAACACAG 1 GGTAACAGAG 1 GGTAAGCCCC 1 GGTAAGGGAA 1 GGTAAGTAGT 1 GGTAATCAGA 1 GGTAATGATG 1 GGTAATTAGC 1 GGTACAAAGT 1 GGTACAAATA 2 GGTACACTGC 2 GGTACCCATT 1 GGTACCCCTT 1 GGTACTATTG 1 GGTACTCCGT 1 GGTACTCGAT 2 GGTAGAAAGA 1 GGTAGAGAAT 1 GGTAGATATA 1 GGTAGATGAA 1 GGTAGCAGAA 1 GGTAGCAGGG 1 GGTAGCCTGG 3 GGTAGCTGCT 1 GGTAGGAAGA 2 GGTAGGAAGG 1 GGTAGGCCCT 1 GGTAGGCTGA 1 GGTAGGTATA 1 GGTAGGTGGC 1 GGTAGTAAGG 1 GGTAGTACAG 1 GGTATATGAT 1 GGTATCCAAG 1 GGTATCCAGT 1 GGTATCTTCC 1 GGTATGACAT 4 GGTATGGCAC 1 GGTATGGCAG 1 GGTATGGTAT 1 GGTATGTTGT 1 GGTATTAACC 22 GGTATTAGTT 1 GGTATTATAA 1 GGTATTTATA 2 GGTATTTTGA 1 GGTCAAAGGA 1 GGTCAACAAC 1 GGTCAACTGT 1 GGTCAAGGCA 1 GGTCAATTAA 1 GGTCACACTA 7 GGTCACATCT 1 GGTCACATTT 1 GGTCACCGAA 1 GGTCACTGCA 1 GGTCACTGCT 1 GGTCAGAAGG 2 GGTCAGACAC 1 GGTCAGAGAA 1 GGTCAGCCGG 1 GGTCAGCCTT 1 GGTCAGCTGG 1 GGTCAGGAGA 1 GGTCAGGGCC 1 GGTCAGGGTG 1 GGTCAGTCGG 75 GGTCAGTGGC 1 GGTCATCAGG 1 GGTCCAAAAT 1 GGTCCAGCCC 1 GGTCCAGTGT 8 GGTCCATAAT 2 GGTCCCCCTG 1 GGTCCCCGAG 1 GGTCCCCTCC 1 GGTCCCGTTC 2 GGTCCCTCCA 1 GGTCCCTCCC 1 GGTCCCTCGG 1 GGTCCGCGCC 1 GGTCCTAAAA 1 GGTCCTAGCC 1 GGTCCTATCG 1 GGTCCTCACC 1 GGTCCTCCCC 1 GGTCCTCTCT 6 GGTCCTGCCT 1 GGTCCTGGCC 1 GGTCCTGTGC 1 GGTCCTGTTC 1 GGTCGAAGAG 2 GGTCGACTGA 1 GGTCGCTTTG 1 GGTCGGAGCA 1 GGTCGGGAAG 1 GGTCGGGAGT 1 GGTCGTCGGG 1 GGTCGTGCCT 1 GGTCTACTTT 2 GGTCTAGCCC 1 GGTCTAGCTA 1 GGTCTATAGA 1 GGTCTATTGC 1 GGTCTCAAAA 1 GGTCTCCCTA 1 GGTCTCCTCT 1 GGTCTCCTGC 1 GGTCTCGGGG 1 GGTCTCTTAC 1 GGTCTCTTTT 1 GGTCTGAGAC 2 GGTCTGAGGA 1 GGTCTGCTGA 1 GGTCTGGCAT 1 GGTCTGTGTG 1 GGTCTTAACT 1 GGTCTTATTT 1 GGTCTTCCGT 1 GGTCTTGCCT 1 GGTGAAAAGA 2 GGTGAAACCC 3 GGTGAAAGAG 1 GGTGAAAGGA 3 GGTGAAATAC 1 GGTGAACACT 1 GGTGAACTCT 1 GGTGAAGACA 1 GGTGAAGAGG 9 GGTGAAGCCG 1 GGTGAAGGTA 1 GGTGAATAGA 1 GGTGAATTGT 1 GGTGACAGAA 1 GGTGACAGAG 8 GGTGACAGCG 1 GGTGACAGGG 1 GGTGACAGTG 1 GGTGACCACG 3 GGTGACCAGA 1 GGTGACCGTC 2 GGTGACGGTG 1 GGTGACTATC 1 GGTGACTCTT 1 GGTGAGAAGA 1 GGTGAGACAC 48 GGTGAGACCT 13 GGTGAGATAA 1 GGTGAGCGTG 8 GGTGAGGAGG 1 GGTGAGGCTT 1 GGTGAGGGGC 1 GGTGAGGTGG 1 GGTGAGTAAA 1 GGTGAGTCGG 1 GGTGAGTGCC 2 GGTGAGTGTC 1 GGTGATAGTC 1 GGTGATCCTT 2 GGTGATGAGA 1 GGTGATGAGG 5 GGTGATGGAG 3 GGTGATTACT 1 GGTGATTTCA 1 GGTGCAAAAG 3 GGTGCAATTA 1 GGTGCACCCG 2 GGTGCAGACC 1 GGTGCAGGGA 1 GGTGCCAAAA 1 GGTGCCAAGT 1 GGTGCCAGAG 1 GGTGCCATTG 1 GGTGCCCAGC 1 GGTGCCCAGT 3 GGTGCCCTGA 1 GGTGCCCTGG 1 GGTGCCTGTG 1 GGTGCGGCTG 1 GGTGCGTCCT 1 GGTGCTAGCC 1 GGTGCTCAAA 1 GGTGCTCAGT 1 GGTGCTCCAT 1 GGTGCTCTGC 1 GGTGCTGAAT 1 GGTGCTGCCT 1 GGTGCTGGAG 4 GGTGCTGGGA 1 GGTGCTGGTG 1 GGTGGAAACC 1 GGTGGAACTG 1 GGTGGAATCT 1 GGTGGACACG 1 GGTGGACAGG 1 GGTGGAGCAG 1 GGTGGAGGAG 1 GGTGGAGGCA 2 GGTGGAGGGT 2 GGTGGAGTCT 1 GGTGGATCTC 1 GGTGGATGTG 6 GGTGGCACTC 8 GGTGGCAGAG 1 GGTGGCAGAT 1 GGTGGCAGGC 1 GGTGGCAGGG 1 GGTGGCGCCT 1 GGTGGCGCTG 1 GGTGGCTGCT 1 GGTGGGAACA 3 GGTGGGAACT 1 GGTGGGAAGA 2 GGTGGGAAGG 1 GGTGGGACCA 2 GGTGGGATGG 1 GGTGGGCTTC 1 GGTGGGGAGA 1 GGTGGGGCAG 1 GGTGGGTGTC 1 GGTGGTATCT 1 GGTGGTCCGG 1 GGTGGTGACT 1 GGTGGTGGCA 1 GGTGGTGTCT 61 GGTGGTGTGT 1 GGTGGTGTTG 1 GGTGGTTCAC 2 GGTGTAGCAA 1 GGTGTAGGCA 1 GGTGTATATG 3 GGTGTCAGCC 1 GGTGTCCCCT 1 GGTGTCCTGC 1 GGTGTCTGGA 1 GGTGTGAGCC 5 GGTGTGCCTC 1 GGTGTGGGTG 2 GGTGTGGTAA 1 GGTGTGGTGA 1 GGTGTGGTTA 1 GGTGTGTACA 1 GGTGTGTCTG 1 GGTGTGTGTG 1 GGTGTTCCTG 1 GGTGTTTGAG 1 GGTTAAAATA 1 GGTTAAAATC 1 GGTTAACGTG 1 GGTTAACTGG 1 GGTTAAGAGC 2 GGTTAAGCAA 1 GGTTAATTGA 2 GGTTACCTAT 1 GGTTATCTGT 1 GGTTCAAGGC 2 GGTTCACACT 1 GGTTCAGAAT 1 GGTTCAGTTA 1 GGTTCCCCAC 1 GGTTCCCCGG 1 GGTTCCTGGT 1 GGTTCCTTCA 1 GGTTCGCATC 1 GGTTCGGCTT 1 GGTTCTCAAC 1 GGTTCTCCAA 1 GGTTCTGCCC 1 GGTTCTGTCT 1 GGTTCTTCAC 1 GGTTGAAAAT 1 GGTTGAAGAG 1 GGTTGATCAC 1 GGTTGATCAG 1 GGTTGATGTC 1 GGTTGGAAAC 1 GGTTGGAACT 1 GGTTGGCTTA 1 GGTTGGCTTG 1 GGTTGGGGTA 1 GGTTGGGGTT 1 GGTTGGGTAG 3 GGTTGGGTGT 1 GGTTGGTGGT 2 GGTTGTAAGG 1 GGTTGTCTTA 1 GGTTGTTCAG 1 GGTTGTTGGC 1 GGTTTAATTC 1 GGTTTACTCT 1 GGTTTAGAGC 1 GGTTTCCTTA 1 GGTTTCGGTG 1 GGTTTGAACT 1 GGTTTGATTA 2 GGTTTGATTC 1 GGTTTGCCTT 1 GGTTTGGCTA 1 GGTTTGGCTT 17 GGTTTGGGCA 1 GGTTTGGTGG 1 GGTTTGTAGC 1 GGTTTGTGTG 4 GGTTTTAGGC 1 GGTTTTCAGG 1 GTAAAAAAAA 4 GTAAAAAATA 1 GTAAAAACCA 1 GTAAAAACCT 1 GTAAAAAGCT 1 GTAAAACACC 1 GTAAAACCCA 3 GTAAAACCCC 27 GTAAAACCCT 10 GTAAAACCTC 3 GTAAAACGCC 1 GTAAAAGTTC 2 GTAAAATCCC 2 GTAAAATGAA 1 GTAAAATGTA 1 GTAAACACCA 1 GTAAACCAGC 1 GTAAACCCCA 3 GTAAACCCCG 1 GTAAACCGGG 1 GTAAAGAAGC 2 GTAAAGACTG 1 GTAAAGCAAA 1 GTAAAGCCTC 1 GTAAAGCCTT 1 GTAAAGCTTG 1 GTAAAGTCTG 1 GTAAATAGTA 1 GTAAATCTAC 1 GTAAATGACT 1 GTAAATGAGC 1 GTAAATTTGC 1 GTAACAATCC 1 GTAACACCCC 1 GTAACATATG 1 GTAACCAAAC 1 GTAACCAAAG 1 GTAACCACGG 2 GTAACCCCCA 1 GTAACCTAAA 1 GTAACCTCAA 2 GTAACGATCG 1 GTAACGGGCG 1 GTAACGTCCC 1 GTAACTCACA 1 GTAACTGAGG 1 GTAACTTAAA 1 GTAACTTGGT 1 GTAAGAAGAG 1 GTAAGAATAA 1 GTAAGAATAG 1 GTAAGACACG 1 GTAAGACCCC 1 GTAAGACCCT 2 GTAAGACTTC 1 GTAAGAGAAA 1 GTAAGAGGCT 1 GTAAGAGTTC 1 GTAAGATATG 1 GTAAGATTGG 2 GTAAGATTTA 1 GTAAGCAACA 1 GTAAGCCGAT 1 GTAAGCCGTG 1 GTAAGGATCA 1 GTAAGGCAAC 2 GTAAGGCTTC 1 GTAAGGGGGC 1 GTAAGTATAA 1 GTAAGTGACT 1 GTAAGTGTAC 12 GTAAGTTGAG 1 GTAAGTTTTT 1 GTAATAAACA 9 GTAATAACAG 1 GTAATCACAC 1 GTAATCCCTG 1 GTAATCCTAC 1 GTAATCCTGC 97 GTAATCCTTG 1 GTAATCTCTT 1 GTAATCTGCT 1 GTAATCTTCT 1 GTAATCTTGC 3 GTAATGAAGC 3 GTAATGAATG 1 GTAATGGGGT 1 GTAATGGGTA 1 GTAATGTTAA 1 GTAATGTTCT 1 GTAATGTTTT 1 GTAATTTCCA 1 GTAATTTTAA 1 GTAATTTTGG 1 GTACAAAAAT 1 GTACAAAATT 1 GTACAACGCC 1 GTACAAGATG 1 GTACACAAGT 1 GTACACACAC 2 GTACACCCCC 1 GTACACCCGG 1 GTACACCTGT 1 GTACACTATA 1 GTACAGAACT 1 GTACAGAAGG 1 GTACAGTGTT 1 GTACATCCAT 1 GTACCACGGG 1 GTACCAGCAT 1 GTACCCGGAC 3 GTACCCGTAC 1 GTACCGAGGG 1 GTACCGGTAC 1 GTACCGTATG 1 GTACCGTGGC 1 GTACCTCACA 1 GTACCTCTCC 1 GTACCTGACC 1 GTACCTGATT 1 GTACGAGCCA 1 GTACGATGGG 1 GTACGGGGGT 1 GTACGTAAAG 1 GTACGTCCCA 3 GTACGTCTGG 1 GTACTAAAAA 1 GTACTAAGGG 1 GTACTCCACT 1 GTACTCTACT 1 GTACTCTCCC 1 GTACTCTGAG 1 GTACTCTTGA 1 GTACTGGCAA 1 GTACTGGCAT 2 GTACTGGTAC 7 GTACTGTAAG 1 GTACTGTACA 1 GTACTGTAGC 1 GTACTGTATG 1 GTACTGTCTC 1 GTACTGTGGC 4 GTACTTTTCT 1 GTACTTTTGT 1 GTAGAAAAAA 1 GTAGAAAAGA 1 GTAGAAAATG 1 GTAGAAAGAA 1 GTAGAAAGAT 1 GTAGAAGCAA 1 GTAGAAGCCA 1 GTAGAAGTGA 1 GTAGAATGGC 1 GTAGAATGTT 2 GTAGACCACA 1 GTAGACTCAC 3 GTAGACTTGT 1 GTAGAGAGAT 1 GTAGAGATGT 1 GTAGAGCGCC 1 GTAGAGCTTG 1 GTAGAGGGAT 1 GTAGAGTCTC 1 GTAGAGTTGG 1 GTAGATGAGG 1 GTAGATGCAA 1 GTAGATTAAA 1 GTAGCAAACG 1 GTAGCAAGTG 1 GTAGCAATCG 1 GTAGCACACA 1 GTAGCACACC 1 GTAGCACAGC 1 GTAGCACGCA 1 GTAGCAGGAG 1 GTAGCAGGCA 2 GTAGCAGGCG 2 GTAGCAGGGC 7 GTAGCAGGTG 7 GTAGCAGTGG 1 GTAGCATAAA 1 GTAGCCACTG 1 GTAGCCATCC 1 GTAGCCGTGC 1 GTAGCCTCAA 1 GTAGCGACGG 1 GTAGCGAGCG 1 GTAGCGATCG 14 GTAGCGATGG 4 GTAGCGCACA 2 GTAGCGCACG 2 GTAGCGGGCA 3 GTAGCGGGCG 3 GTAGCGGGTG 2 GTAGCGGTCG 1 GTAGCGGTTG 1 GTAGCTAAGA 1 GTAGCTCACA 2 GTAGCTCACG 1 GTAGCTCTTC 1 GTAGCTGCAT 1 GTAGCTGCCT 1 GTAGCTGGCA 1 GTAGCTGGGG 1 GTAGCTTTGC 1 GTAGGAAACA 1 GTAGGAAAGC 2 GTAGGAGATG 1 GTAGGAGCTG 2 GTAGGATCGG 1 GTAGGCACGG 7 GTAGGCCTTT 1 GTAGGCGCCT 1 GTAGGCGGAG 1 GTAGGCTTTC 1 GTAGGGAGCA 1 GTAGGGCAAA 1 GTAGGGGCCT 1 GTAGGGGTAA 15 GTAGGGTGTG 2 GTAGGGTTCC 2 GTAGGTTGTA 1 GTAGGTTGTC 1 GTAGGTTGTG 1 GTAGTAAAGA 1 GTAGTAAGGG 1 GTAGTACGCA 1 GTAGTATACA 1 GTAGTCAAAT 1 GTAGTCCAAA 1 GTAGTGCACG 1 GTAGTGCACT 1 GTAGTGCAGG 1 GTAGTGCGCA 1 GTAGTGGAGA 1 GTAGTGGGCA 3 GTAGTGGGCG 1 GTAGTGGGTG 1 GTAGTGTGAG 1 GTAGTGTGTG 1 GTAGTTGCTG 1 GTATAAAAGT 1 GTATAAAGCA 1 GTATAACAGA 1 GTATAACCAC 1 GTATAAGCTG 1 GTATAATAGC 2 GTATAATCAG 1 GTATAATGAG 1 GTATAATTAA 1 GTATACACAC 1 GTATACACTT 1 GTATAGAAAA 2 GTATAGCAGC 1 GTATAGTTGG 1 GTATATATGT 1 GTATATGCAC 1 GTATATGTGG 1 GTATATTCTT 1 GTATATTGTT 1 GTATCAAATG 1 GTATCAAGCA 2 GTATCAATTT 1 GTATCATTAA 1 GTATCCACAG 1 GTATCCTGCC 1 GTATCCTGCT 2 GTATCGGGGA 1 GTATCTCACA 2 GTATCTCATT 1 GTATCTGAAA 1 GTATCTTGAC 1 GTATGAATCC 1 GTATGACACA 1 GTATGACGCC 1 GTATGAGAAA 1 GTATGAGTAC 1 GTATGAGTAG 3 GTATGATCCT 1 GTATGCACTG 1 GTATGCTTTC 1 GTATGGTACA 1 GTATGTAATT 1 GTATGTACAG 1 GTATGTACTT 1 GTATGTCCAT 1 GTATGTGAAT 1 GTATGTGCAG 1 GTATGTGGGG 10 GTATGTTGCT 1 GTATGTTGTT 1 GTATGTTTGA 1 GTATTAACTC 1 GTATTAAGTT 1 GTATTAGTCA 1 GTATTCAAAG 1 GTATTCACCA 1 GTATTCCACG 1 GTATTCCCCT 9 GTATTCCCGT 1 GTATTCCTGC 1 GTATTCCTTT 1 GTATTCTCCA 1 GTATTGGAGA 1 GTATTGGAGG 1 GTATTGGCCT 1 GTATTGGTGA 1 GTATTGTAAT 2 GTATTTAACA 1 GTATTTAACT 2 GTATTTCCGG 2 GTATTTCGAA 1 GTATTTCTGA 1 GTATTTGAAG 1 GTATTTGCAA 1 GTATTTGTAG 1 GTATTTGTTT 1 GTATTTTCTC 1 GTATTTTGTG 1 GTCAAAAAGT 1 GTCAAAACCC 1 GTCAAAATCT 1 GTCAAACCCA 1 GTCAAACCCT 2 GTCAAAGAGC 1 GTCAAAGTTG 1 GTCAAATCAC 1 GTCAACAGTA 1 GTCAACCCTG 1 GTCAACCTCC 1 GTCAACCTGA 1 GTCAACGACC 1 GTCAACTCTG 1 GTCAAGACCA 3 GTCAAGCCAC 1 GTCAAGTATT 1 GTCAAGTGGG 1 GTCAAGTGTG 1 GTCAATCTGA 1 GTCACACCAC 13 GTCACACCTG 1 GTCACACTGG 1 GTCACAGAGT 1 GTCACAGCAG 1 GTCACAGGAA 3 GTCACAGTCC 3 GTCACAGTGT 1 GTCACATATG 2 GTCACATTTA 1 GTCACCACAT 1 GTCACCCCAA 1 GTCACCCCCA 10 GTCACCCCTC 1 GTCACGCCAC 1 GTCACTATAA 1 GTCACTATGT 1 GTCACTCACG 1 GTCACTGCCT 2 GTCACTGCTC 1 GTCACTGTTA 1 GTCACTTATA 1 GTCACTTGTA 1 GTCAGAACAC 1 GTCAGAACTT 6 GTCAGAAGTG 1 GTCAGAATGG 3 GTCAGACTGT 2 GTCAGAGCAA 1 GTCAGATTTG 2 GTCAGCAGTA 1 GTCAGGATGG 1 GTCAGGCCTC 2 GTCAGGGACG 1 GTCAGGGTTG 1 GTCAGGTTCC 1 GTCAGGTTGA 2 GTCAGTAAAT 1 GTCAGTCCTA 1 GTCAGTGGTC 1 GTCAGTTAAC 1 GTCATAATCA 1 GTCATACACC 3 GTCATCAAAA 1 GTCATCGCAC 1 GTCATCGTCC 1 GTCATCTCAA 1 GTCATTATGC 2 GTCATTCAGC 1 GTCATTCTTA 1 GTCATTTGGA 1 GTCATTTGTC 1 GTCCAAATAA 1 GTCCAACAGA 1 GTCCAACCTA 1 GTCCAATAAT 1 GTCCAATGAG 1 GTCCACGCCC 1 GTCCACTGTC 1 GTCCACTTGT 1 GTCCACTTTC 1 GTCCAGACAC 1 GTCCAGACTC 1 GTCCAGAGCC 1 GTCCAGAGTG 1 GTCCAGCTTG 1 GTCCAGTCTC 1 GTCCATAGTT 1 GTCCATCATA 4 GTCCCAAAAT 1 GTCCCACATC 1 GTCCCAGCGC 1 GTCCCAGCTA 1 GTCCCAGCTG 1 GTCCCAGGAT 3 GTCCCAGTTC 1 GTCCCATCTG 1 GTCCCCAAAG 1 GTCCCCCAAT 1 GTCCCCCTGC 1 GTCCCCTCCT 1 GTCCCCTCTG 1 GTCCCCTGGC 1 GTCCCGAACG 1 GTCCCGATTA 1 GTCCCGCCTC 1 GTCCCGTGCA 1 GTCCCTACTA 1 GTCCCTAGCA 1 GTCCCTCCAC 1 GTCCCTCGGC 1 GTCCCTCTCA 2 GTCCCTGATC 1 GTCCCTGCCT 1 GTCCCTGGCG 1 GTCCCTGGTT 1 GTCCGAGAAG 1 GTCCGCCCAC 1 GTCCGGAGTC 3 GTCCGGCCAG 1 GTCCGGGCTC 1 GTCCGGGTAA 1 GTCCGGGTCA 1 GTCCGGTGGT 1 GTCCGGTTTT 1 GTCCTAATTA 1 GTCCTACAGA 1 GTCCTACCAA 1 GTCCTATAAT 1 GTCCTATATC 1 GTCCTATTAA 2 GTCCTCAAGC 1 GTCCTCATCA 1 GTCCTCCAGC 1 GTCCTGAAGA 1 GTCCTGATTT 1 GTCCTGGAGG 2 GTCCTGGTTG 1 GTCCTTATGA 1 GTCGACGGAG 1 GTCGAGGAAG 1 GTCGAGGAGC 1 GTCGCACACA 1 GTCGCACCAT 1 GTCGCCCCAC 1 GTCGCGTCCG 2 GTCGCTCACA 1 GTCGGAAAGA 1 GTCGGACTCT 1 GTCGGGCGCA 1 GTCGGGGCGT 1 GTCGGGGGAG 1 GTCGGGTCAC 1 GTCGTAACAT 1 GTCGTGAAAA 1 GTCGTGGGCA 1 GTCGTTATCA 1 GTCTAATATA 1 GTCTACAAGA 1 GTCTACAATC 1 GTCTACATTT 1 GTCTACCACT 1 GTCTACCTGA 2 GTCTACTCAC 1 GTCTAGAAGA 1 GTCTAGAATC 1 GTCTAGCAGT 1 GTCTAGGGTT 1 GTCTATGGAT 1 GTCTCAAAAA 1 GTCTCAAGAG 2 GTCTCACTCT 2 GTCTCACTTC 1 GTCTCAGGCA 1 GTCTCAGGGA 1 GTCTCAGTCA 1 GTCTCAGTTA 1 GTCTCATTTG 2 GTCTCCACTC 1 GTCTCCAGGG 1 GTCTCCCACT 1 GTCTCCTAAA 1 GTCTCCTAAT 1 GTCTCCTCTG 1 GTCTCCTGCA 1 GTCTCCTTAT 1 GTCTCGACAA 1 GTCTCGCTCT 2 GTCTCGTTCC 1 GTCTCTAGGT 2 GTCTCTCAGC 1 GTCTCTCTTG 1 GTCTCTGTCA 1 GTCTCTGTCC 1 GTCTCTTTGG 2 GTCTCTTTGT 1 GTCTGAAATG 1 GTCTGAACTA 1 GTCTGACACG 1 GTCTGACCCC 11 GTCTGAGCTC 10 GTCTGAGGTG 1 GTCTGAGTTG 1 GTCTGATATG 1 GTCTGATCAG 1 GTCTGCACCT 7 GTCTGCAGAC 1 GTCTGCAGGC 1 GTCTGCAGGG 1 GTCTGCATAT 1 GTCTGCCCCT 1 GTCTGCCCTC 2 GTCTGCCCTG 1 GTCTGCCTCT 1 GTCTGCGGAT 1 GTCTGCGTGC 5 GTCTGGCTCC 1 GTCTGGGGCT 28 GTCTGTATAT 1 GTCTGTCAGA 1 GTCTGTGACA 1 GTCTGTGAGA 6 GTCTGTGTAT 1 GTCTGTTGGA 1 GTCTTAAAGC 1 GTCTTAAAGT 1 GTCTTAACTC 3 GTCTTACCTA 1 GTCTTACTTT 1 GTCTTATAGA 1 GTCTTATATG 1 GTCTTATCAA 1 GTCTTCAAAG 1 GTCTTCCAGA 1 GTCTTCGAAG 1 GTCTTCGGTG 1 GTCTTCTAAA 1 GTCTTCTCTA 1 GTCTTCTCTG 1 GTCTTCTGTG 1 GTCTTGAACT 1 GTCTTGAGCC 1 GTCTTGCTCT 1 GTCTTGCTGT 1 GTCTTGTACT 1 GTCTTTAGGA 1 GTCTTTAGGG 2 GTCTTTCCAA 1 GTCTTTCCTT 1 GTCTTTCTGG 1 GTCTTTCTGT 1 GTCTTTCTTG 6 GTCTTTGCCG 1 GTCTTTTCAG 1 GTCTTTTCTG 1 GTGAAAAAAA 2 GTGAAAAACA 1 GTGAAAAACC 1 GTGAAAACAG 1 GTGAAAACCA 1 GTGAAAACCC 8 GTGAAAACCT 7 GTGAAAACGG 1 GTGAAAACTC 2 GTGAAACACA 2 GTGAAACACC 8 GTGAAACACT 5 GTGAAACCAC 4 GTGAAACCAT 3 GTGAAACCCA 27 GTGAAACCCC 398 GTGAAACCCG 21 GTGAAACCCT 228 GTGAAACCGC 5 GTGAAACCGG 2 GTGAAACCGT 1 GTGAAACCTA 4 GTGAAACCTC 48 GTGAAACCTG 6 GTGAAACCTT 18 GTGAAACGCC 6 GTGAAACGCT 10 GTGAAACGTT 1 GTGAAACTCA 3 GTGAAACTCC 36 GTGAAACTCT 15 GTGAAACTGT 3 GTGAAACTTC 1 GTGAAACTTT 3 GTGAAAGCAA 1 GTGAAAGCCC 6 GTGAAAGCCT 2 GTGAAAGGAT 1 GTGAAAGTCA 1 GTGAAAGTTC 1 GTGAAATAAA 1 GTGAAATACC 1 GTGAAATCCA 2 GTGAAATCCC 22 GTGAAATCCG 1 GTGAAATCCT 14 GTGAAATCTG 1 GTGAAATGCC 1 GTGAAATGGT 1 GTGAAATTCC 2 GTGAACAAGA 1 GTGAACACGG 1 GTGAACACTG 1 GTGAACATCC 1 GTGAACCACG 1 GTGAACCCAC 1 GTGAACCCAG 1 GTGAACCCCA 5 GTGAACCCCC 7 GTGAACCCCG 2 GTGAACCCGT 1 GTGAACCCTG 7 GTGAACCCTT 3 GTGAACCGGG 1 GTGAACCTCC 1 GTGAACCTGG 1 GTGAACTAAT 2 GTGAACTCCT 1 GTGAACTGGC 1 GTGAACTTAC 1 GTGAAGAGCC 1 GTGAAGAGTA 1 GTGAAGATGA 1 GTGAAGCCCA 1 GTGAAGCCCC 17 GTGAAGCCCG 1 GTGAAGCCCT 12 GTGAAGCCTC 1 GTGAAGCGAG 1 GTGAAGCTAA 1 GTGAAGCTCG 1 GTGAAGCTCT 1 GTGAAGCTGA 2 GTGAAGGACT 1 GTGAAGGCAG 11 GTGAAGGCCC 1 GTGAAGGCCT 1 GTGAAGGCTC 1 GTGAAGGTTC 1 GTGAAGTGAA 1 GTGAAGTGCT 1 GTGAAGTGTG 2 GTGAAGTTGC 2 GTGAATAAAC 2 GTGAATCCCA 2 GTGAATCCCC 3 GTGAATCCCT 2 GTGAATCTCC 1 GTGAATGACG 3 GTGAATTGAT 1 GTGACAAAGG 1 GTGACAACAC 6 GTGACAACCC 1 GTGACAACGG 2 GTGACAAGAA 1 GTGACAATGC 1 GTGACACCCC 5 GTGACACCCG 2 GTGACACCGC 1 GTGACACGCA 1 GTGACACGCG 1 GTGACACGGG 5 GTGACACGGT 1 GTGACACGTG 2 GTGACAGAAG 19 GTGACAGAAT 1 GTGACAGACA 4 GTGACAGAGC 1 GTGACAGAGT 1 GTGACAGCCC 1 GTGACAGGCA 3 GTGACATATG 1 GTGACATCCC 2 GTGACCAACG 2 GTGACCAAGG 1 GTGACCACAA 1 GTGACCACAG 4 GTGACCACGG 928 GTGACCACTG 1 GTGACCAGCA 1 GTGACCAGGG 2 GTGACCAGGT 1 GTGACCCACA 1 GTGACCCACG 4 GTGACCCAGC 1 GTGACCCCCC 1 GTGACCCCCG 1 GTGACCCCGT 1 GTGACCCCTG 1 GTGACCCGGG 2 GTGACCGCGG 4 GTGACCGGGG 1 GTGACCTAGG 1 GTGACCTCCT 8 GTGACCTCGG 2 GTGACCTTAA 1 GTGACCTTGT 1 GTGACGCCCC 1 GTGACGCCGT 1 GTGACGCTGG 1 GTGACGGGCA 1 GTGACGGGCG 1 GTGACGGGTG 1 GTGACTCACA 3 GTGACTCACG 1 GTGACTCATC 1 GTGACTCGTG 1 GTGACTGACC 1 GTGACTGAGT 1 GTGACTGCCA 9 GTGACTGCGG 1 GTGACTGGCA 1 GTGACTTACC 1 GTGACTTCAC 1 GTGACTTCTC 1 GTGACTTTCT 1 GTGAGAAAAC 1 GTGAGAAGAG 1 GTGAGACACC 2 GTGAGACACT 1 GTGAGACCAC 1 GTGAGACCAT 1 GTGAGACCCC 26 GTGAGACCCT 13 GTGAGACCGC 1 GTGAGACCTC 6 GTGAGACCTT 1 GTGAGACTCA 1 GTGAGACTCC 3 GTGAGACTTT 1 GTGAGAGCGT 1 GTGAGAGTTC 1 GTGAGATCCT 2 GTGAGATTCT 1 GTGAGCAAGA 5 GTGAGCAAGG 1 GTGAGCAATT 1 GTGAGCACGG 1 GTGAGCATAA 1 GTGAGCATCG 1 GTGAGCCAGG 1 GTGAGCCAGT 1 GTGAGCCCAT 7 GTGAGCCCTG 1 GTGAGCCGAG 3 GTGAGGAACC 2 GTGAGGACGC 1 GTGAGGCCCC 5 GTGAGGCCCT 1 GTGAGGCCTT 1 GTGAGGGCAC 5 GTGAGGTACA 1 GTGAGGTGAG 1 GTGAGTATTT 1 GTGAGTCACG 3 GTGAGTGCCC 1 GTGAGTGTCT 1 GTGAGTGTGT 2 GTGAGTTCTG 1 GTGATACCCC 3 GTGATACCCT 1 GTGATACCTT 1 GTGATAGCCT 1 GTGATATATT 1 GTGATATCCA 1 GTGATATGTG 1 GTGATCACGG 2 GTGATCATTA 1 GTGATCCGGG 1 GTGATCCGTG 1 GTGATCCTGC 1 GTGATCGAGG 1 GTGATCTCCG 2 GTGATGACAT 1 GTGATGAGCT 1 GTGATGAGGA 1 GTGATGAGGT 1 GTGATGATTT 1 GTGATGCACA 1 GTGATGCACG 2 GTGATGCACT 1 GTGATGCATA 1 GTGATGCCTG 1 GTGATGCGCA 4 GTGATGCTCA 1 GTGATGGCCA 3 GTGATGGCGT 1 GTGATGGGAC 1 GTGATGGGCA 1 GTGATGGGCT 1 GTGATGGGGA 1 GTGATGGGGG 1 GTGATGGGTA 2 GTGATGGTCA 1 GTGATGGTGT 9 GTGATGGTTA 1 GTGATGTCAC 1 GTGATGTCTG 3 GTGATGTGTA 1 GTGATGTGTG 1 GTGATGTTTG 1 GTGATTCATT 1 GTGATTGTTC 1 GTGATTTATT 1 GTGATTTCAC 2 GTGATTTTTA 2 GTGCAAAATG 3 GTGCAACCCC 2 GTGCACACAC 1 GTGCACACCT 1 GTGCACATCT 1 GTGCACCGAA 1 GTGCACCGAG 1 GTGCACCTCC 1 GTGCACGGCT 2 GTGCACTATA 1 GTGCACTCAA 1 GTGCACTGAC 1 GTGCACTGAG 13 GTGCACTGTG 4 GTGCAGAATA 1 GTGCAGAGGT 1 GTGCAGCTGG 1 GTGCAGGCTC 1 GTGCAGGGAA 1 GTGCAGGGAG 3 GTGCAGGGTT 1 GTGCAGTACA 1 GTGCAGTCCT 2 GTGCAGTCTT 1 GTGCAGTGCA 2 GTGCAGTGGC 1 GTGCAGTGTA 1 GTGCAGTTAG 1 GTGCAGTTGC 1 GTGCATCCCG 2 GTGCATCTGT 1 GTGCCAAACA 2 GTGCCAAATG 1 GTGCCAACCA 1 GTGCCAATGC 1 GTGCCACACA 1 GTGCCACCAG 3 GTGCCACGGG 2 GTGCCACGTG 1 GTGCCACTTT 1 GTGCCAGACA 1 GTGCCAGCCC 1 GTGCCAGGGG 1 GTGCCAGGTG 1 GTGCCATAGG 1 GTGCCATATT 8 GTGCCCAAGG 1 GTGCCCACAG 3 GTGCCCACGG 4 GTGCCCACTG 2 GTGCCCAGTC 1 GTGCCCATAC 1 GTGCCCCCAC 1 GTGCCCCCGG 1 GTGCCCGCCG 2 GTGCCCGGCC 1 GTGCCCGTGC 4 GTGCCCTCCT 1 GTGCCCTGTT 7 GTGCCCTTGC 1 GTGCCCTTTT 1 GTGCCGCACG 1 GTGCCGGGTG 1 GTGCCGGTGG 1 GTGCCTAGGA 1 GTGCCTAGGG 1 GTGCCTCAAA 1 GTGCCTCCCG 3 GTGCCTGAGA 3 GTGCCTGATT 2 GTGCCTGCAT 3 GTGCCTGCTT 1 GTGCCTGGCC 1 GTGCCTGGCT 2 GTGCCTGGTG 1 GTGCCTGTCC 1 GTGCCTGTGC 1 GTGCCTTAGC 1 GTGCCTTTTT 1 GTGCGAACGG 1 GTGCGATGCT 1 GTGCGCACAC 1 GTGCGCAGAT 1 GTGCGCAGGT 2 GTGCGCCGCT 1 GTGCGCTAGG 7 GTGCGCTGAG 18 GTGCGGAGGA 1 GTGCGGATGC 1 GTGCGGCCCC 1 GTGCGGCTGG 4 GTGCGGGCAC 1 GTGCGGTACC 2 GTGCGGTACT 1 GTGCGGTGGT 1 GTGCGTAGCT 1 GTGCGTGCTG 2 GTGCTAACGC 1 GTGCTAAGCA 2 GTGCTAAGCG 5 GTGCTAATAT 1 GTGCTAGAGA 1 GTGCTAGATT 1 GTGCTAGCAG 2 GTGCTATAGT 1 GTGCTATCCT 1 GTGCTATTAT 2 GTGCTATTCT 3 GTGCTCAAAC 2 GTGCTCACAC 1 GTGCTCACGC 4 GTGCTCAGCC 1 GTGCTCAGGC 1 GTGCTCATTC 10 GTGCTCCCAG 3 GTGCTCGAAA 1 GTGCTCGTAG 1 GTGCTCTAGT 2 GTGCTCTGTA 2 GTGCTCTGTG 1 GTGCTCTTGA 2 GTGCTGAATG 17 GTGCTGAGGC 1 GTGCTGATCC 2 GTGCTGATTG 1 GTGCTGCACG 1 GTGCTGCCCA 1 GTGCTGCCGC 1 GTGCTGCGCG 1 GTGCTGCGTG 3 GTGCTGCTGC 1 GTGCTGGAAA 1 GTGCTGGAAT 1 GTGCTGGACC 21 GTGCTGGAGA 4 GTGCTGGCAG 1 GTGCTGGCAT 1 GTGCTGGCTC 2 GTGCTGGGCG 1 GTGCTGGTAA 1 GTGCTGGTAG 2 GTGCTGGTCA 1 GTGCTGTGCA 1 GTGCTGTTTA 2 GTGCTTATAA 1 GTGCTTATAC 1 GTGCTTATCC 1 GTGCTTCCCA 1 GTGCTTCTCA 1 GTGCTTCTGG 1 GTGCTTTCCC 1 GTGGAAAAAA 1 GTGGAAACCC 2 GTGGAAATCT 1 GTGGAACCCC 5 GTGGAACCCG 1 GTGGAACCCT 4 GTGGAACCTC 1 GTGGAACTGC 1 GTGGAAGAGC 1 GTGGAAGGCA 1 GTGGAAGGTG 1 GTGGAAGTTT 1 GTGGAATCCC 2 GTGGAATGCT 1 GTGGAATTTC 1 GTGGACACAC 1 GTGGACCACG 1 GTGGACCCCA 6 GTGGACCCTG 3 GTGGACCTGA 1 GTGGACGGAG 1 GTGGACGTGA 1 GTGGACTGAG 1 GTGGAGAAAA 1 GTGGAGAGGG 2 GTGGAGCACA 1 GTGGAGCAGG 1 GTGGAGCCCA 1 GTGGAGCCCC 1 GTGGAGCGGA 2 GTGGAGCGTG 1 GTGGAGGGCG 2 GTGGAGGGGA 1 GTGGAGGGGC 1 GTGGAGGGGG 1 GTGGAGGGTG 1 GTGGAGGTGC 5 GTGGAGGTGG 1 GTGGAGTACA 1 GTGGAGTATA 1 GTGGAGTCCA 1 GTGGAGTTTG 2 GTGGATAAGC 3 GTGGATGACA 1 GTGGATGGAT 1 GTGGCAAAAT 1 GTGGCAAAGA 1 GTGGCAAATG 3 GTGGCAAGCA 1 GTGGCAAGCC 1 GTGGCAAGCG 1 GTGGCAAGTG 1 GTGGCACAAG 4 GTGGCACACA 18 GTGGCACACG 23 GTGGCACACT 2 GTGGCACAGG 2 GTGGCACATA 2 GTGGCACATC 1 GTGGCACATT 1 GTGGCACCCG 1 GTGGCACCTA 2 GTGGCACCTC 2 GTGGCACCTG 2 GTGGCACGAG 1 GTGGCACGCA 14 GTGGCACGCC 1 GTGGCACGCG 8 GTGGCACGGC 1 GTGGCACGTC 1 GTGGCACGTG 39 GTGGCAGACA 2 GTGGCAGACG 5 GTGGCAGAGA 3 GTGGCAGATA 2 GTGGCAGATC 1 GTGGCAGATG 8 GTGGCAGCCA 1 GTGGCAGGCA 25 GTGGCAGGCG 31 GTGGCAGGCT 1 GTGGCAGGGC 1 GTGGCAGGGG 3 GTGGCAGGTA 3 GTGGCAGGTG 34 GTGGCAGGTT 1 GTGGCAGTGT 1 GTGGCAGTTG 1 GTGGCATACA 1 GTGGCATACT 1 GTGGCATATA 1 GTGGCATATC 2 GTGGCATATG 4 GTGGCATCAC 3 GTGGCATCTG 1 GTGGCCAAAG 1 GTGGCCAACG 1 GTGGCCACCC 1 GTGGCCACCG 1 GTGGCCACGG 7 GTGGCCAGAG 1 GTGGCCAGCT 1 GTGGCCATAC 1 GTGGCCCACA 1 GTGGCCCACC 1 GTGGCCCCGG 2 GTGGCCCGCA 2 GTGGCCCGCG 1 GTGGCCCGTG 2 GTGGCCCTTG 2 GTGGCCGCGT 1 GTGGCCGGTG 1 GTGGCCTATA 1 GTGGCCTATG 1 GTGGCCTGCA 2 GTGGCCTTAC 2 GTGGCGAAGA 1 GTGGCGACTG 1 GTGGCGAGAG 1 GTGGCGAGCA 1 GTGGCGAGCC 1 GTGGCGAGCG 1 GTGGCGAGTG 2 GTGGCGATCT 2 GTGGCGCAAG 2 GTGGCGCACA 11 GTGGCGCACC 2 GTGGCGCACG 6 GTGGCGCACT 2 GTGGCGCATA 2 GTGGCGCCAT 1 GTGGCGCCCA 1 GTGGCGCCTG 1 GTGGCGCGCA 5 GTGGCGCGCC 1 GTGGCGCGCG 2 GTGGCGCGTG 14 GTGGCGCTGG 1 GTGGCGCTTG 1 GTGGCGGACA 1 GTGGCGGACG 2 GTGGCGGAGA 1 GTGGCGGATG 1 GTGGCGGCCA 2 GTGGCGGCCG 1 GTGGCGGCGA 1 GTGGCGGCTC 1 GTGGCGGCTG 2 GTGGCGGGAG 1 GTGGCGGGCA 22 GTGGCGGGCC 2 GTGGCGGGCG 24 GTGGCGGGCT 2 GTGGCGGGGG 2 GTGGCGGGGT 1 GTGGCGGGTA 5 GTGGCGGGTC 1 GTGGCGGGTG 31 GTGGCGGGTT 1 GTGGCGTACA 2 GTGGCGTACG 1 GTGGCGTATG 2 GTGGCGTGCA 12 GTGGCGTGCC 1 GTGGCGTGCG 3 GTGGCGTGTG 10 GTGGCTAATG 1 GTGGCTACGC 1 GTGGCTACTG 1 GTGGCTCACA 35 GTGGCTCACC 1 GTGGCTCACG 26 GTGGCTCACT 2 GTGGCTCAGA 1 GTGGCTCATA 3 GTGGCTCATC 1 GTGGCTCCCA 1 GTGGCTCCCG 1 GTGGCTCGCA 2 GTGGCTCGCG 4 GTGGCTCTGG 1 GTGGCTCTTG 1 GTGGCTGAAA 1 GTGGCTGACG 1 GTGGCTGACT 2 GTGGCTGAGC 2 GTGGCTGAGG 3 GTGGCTGATG 2 GTGGCTGCTG 3 GTGGCTGGCA 1 GTGGCTGGTG 2 GTGGCTGTAC 1 GTGGCTTACA 1 GTGGCTTACG 1 GTGGCTTACT 1 GTGGCTTATA 1 GTGGCTTATG 3 GTGGCTTCTG 1 GTGGCTTGCA 3 GTGGCTTGCG 2 GTGGCTTGTG 1 GTGGCTTTCA 1 GTGGGAAAAA 1 GTGGGAATGG 1 GTGGGAATTT 1 GTGGGACCAT 4 GTGGGACCCC 2 GTGGGACCCT 1 GTGGGACCGT 1 GTGGGACGTG 1 GTGGGAGAAA 1 GTGGGAGCTG 1 GTGGGAGGGG 2 GTGGGAGGGT 1 GTGGGATGCG 1 GTGGGATGGG 1 GTGGGCAAAA 1 GTGGGCACAC 1 GTGGGCACCT 1 GTGGGCAGGC 1 GTGGGCCAGA 1 GTGGGCCAGG 2 GTGGGCCGCT 10 GTGGGCGCCT 2 GTGGGCGGGT 1 GTGGGCTAGG 1 GTGGGCTGGC 1 GTGGGGAAAA 1 GTGGGGAGGG 1 GTGGGGCAAG 1 GTGGGGCACG 1 GTGGGGCAGG 2 GTGGGGCATA 1 GTGGGGCCAA 1 GTGGGGCTAG 5 GTGGGGGACT 1 GTGGGGGAGG 1 GTGGGGGCAA 1 GTGGGGGGAG 1 GTGGGGGGCA 1 GTGGGGGGCG 1 GTGGGGGGGA 1 GTGGGGTGAC 1 GTGGGGTGTG 1 GTGGGGTTAC 1 GTGGGTACAA 1 GTGGGTCACG 1 GTGGGTCCTG 3 GTGGGTGTCC 2 GTGGGTTGGC 7 GTGGGTTTGC 1 GTGGTAAAAC 1 GTGGTAATCT 1 GTGGTAATGG 1 GTGGTACACA 5 GTGGTACACG 3 GTGGTACAGG 13 GTGGTACAGT 1 GTGGTACCTC 1 GTGGTACCTT 1 GTGGTACGTG 4 GTGGTACTGC 1 GTGGTAGCTG 1 GTGGTAGGCA 1 GTGGTAGGCC 1 GTGGTAGGCG 2 GTGGTAGGTG 1 GTGGTATATG 1 GTGGTATGGC 2 GTGGTATGTG 2 GTGGTCACTG 1 GTGGTCAGTG 1 GTGGTCCGTG 2 GTGGTCCTCT 1 GTGGTCTGAG 1 GTGGTGAAAC 1 GTGGTGAATG 1 GTGGTGACGA 1 GTGGTGACGC 1 GTGGTGAGCA 2 GTGGTGAGCG 2 GTGGTGAGTG 2 GTGGTGATGT 1 GTGGTGCAAC 1 GTGGTGCACA 25 GTGGTGCACG 13 GTGGTGCACT 2 GTGGTGCAGG 1 GTGGTGCATA 1 GTGGTGCATT 1 GTGGTGCCCA 1 GTGGTGCCCG 1 GTGGTGCCTA 1 GTGGTGCCTG 1 GTGGTGCGCA 9 GTGGTGCGCG 1 GTGGTGCGGG 1 GTGGTGCGTA 1 GTGGTGCGTG 15 GTGGTGCGTT 1 GTGGTGCTCA 1 GTGGTGCTCG 1 GTGGTGCTCT 1 GTGGTGCTTG 2 GTGGTGGACA 4 GTGGTGGAGG 1 GTGGTGGCAG 3 GTGGTGGCCA 1 GTGGTGGCGG 1 GTGGTGGCTG 1 GTGGTGGGAC 1 GTGGTGGGAG 1 GTGGTGGGCA 32 GTGGTGGGCC 2 GTGGTGGGCG 18 GTGGTGGGGG 2 GTGGTGGGTA 1 GTGGTGGGTG 29 GTGGTGGGTT 2 GTGGTGGTGC 1 GTGGTGGTTG 1 GTGGTGTACG 4 GTGGTGTATG 1 GTGGTGTGCA 7 GTGGTGTGCG 6 GTGGTGTGCT 1 GTGGTGTGGA 1 GTGGTGTGGG 1 GTGGTGTGGT 1 GTGGTGTGTA 1 GTGGTGTGTG 19 GTGGTGTGTT 1 GTGGTGTTCA 2 GTGGTGTTTC 1 GTGGTGTTTG 1 GTGGTTCACA 3 GTGGTTCCTA 2 GTGGTTGCAC 1 GTGGTTGCTG 1 GTGGTTGGCA 1 GTGGTTGTGG 1 GTGGTTGTTG 1 GTGGTTTACA 1 GTGGTTTATG 1 GTGGTTTGCT 2 GTGTAAATGG 1 GTGTAACACC 1 GTGTAACCAG 1 GTGTAACCCC 1 GTGTAACCGT 1 GTGTAAGAAC 1 GTGTAAGGAG 1 GTGTAATAAG 9 GTGTACAATC 1 GTGTACAATG 3 GTGTACCAGA 1 GTGTACCGGA 1 GTGTACTCAT 1 GTGTACTCGG 1 GTGTACTTGT 1 GTGTAGAACA 1 GTGTAGACAG 1 GTGTAGCCGC 1 GTGTAGTCCA 1 GTGTAGTTGA 2 GTGTATAATC 1 GTGTATATGG 1 GTGTATCTTT 1 GTGTATTTCC 1 GTGTCAAGCC 1 GTGTCACCCA 1 GTGTCACGCA 1 GTGTCACTTG 1 GTGTCAGAGT 1 GTGTCAGGGG 1 GTGTCAGGTG 3 GTGTCAGTCC 1 GTGTCATTCG 1 GTGTCCACGG 1 GTGTCCACTG 1 GTGTCCATCT 2 GTGTCCGGCG 1 GTGTCCTACC 1 GTGTCCTCGC 1 GTGTCCTTCA 1 GTGTCCTTTG 1 GTGTCGACCC 1 GTGTCGGCTG 2 GTGTCGGGGT 1 GTGTCGTGCG 1 GTGTCTCACA 1 GTGTCTCATC 3 GTGTCTCCCG 2 GTGTCTCGCA 7 GTGTCTGCAG 1 GTGTCTGTTT 1 GTGTCTTCTT 1 GTGTCTTGGG 1 GTGTGAAACT 1 GTGTGAAATA 4 GTGTGAATGC 1 GTGTGAATGT 3 GTGTGAGACC 1 GTGTGAGATG 1 GTGTGAGTGT 4 GTGTGATGCA 1 GTGTGATGCT 1 GTGTGATGGG 1 GTGTGATGGT 1 GTGTGATTAG 1 GTGTGATTAT 1 GTGTGCCACA 1 GTGTGCCTCC 4 GTGTGCCTGT 1 GTGTGCCTTA 1 GTGTGCGTGG 1 GTGTGCTGGC 1 GTGTGGAACT 1 GTGTGGAGGA 1 GTGTGGGAAG 1 GTGTGGGAGA 2 GTGTGGGCGA 1 GTGTGGGGGG 11 GTGTGGGGTG 3 GTGTGGTAGT 1 GTGTGGTGAC 1 GTGTGGTGCA 1 GTGTGGTGGA 2 GTGTGGTGGC 1 GTGTGGTGGT 4 GTGTGGTTAA 1 GTGTGTAAAA 7 GTGTGTAAGG 1 GTGTGTAGGA 1 GTGTGTCTCG 1 GTGTGTCTTT 1 GTGTGTGGTG 3 GTGTGTGTGT 2 GTGTGTTAGT 1 GTGTGTTTCT 1 GTGTGTTTGT 15 GTGTTAAAAA 1 GTGTTAAAGT 1 GTGTTAAATC 1 GTGTTAACCA 19 GTGTTAATCA 1 GTGTTACCAA 1 GTGTTAGCGC 1 GTGTTAGGTG 1 GTGTTCAGCC 1 GTGTTCCCAT 1 GTGTTCCTGG 1 GTGTTCGGTG 1 GTGTTCTAAA 1 GTGTTCTGAC 2 GTGTTCTGCA 1 GTGTTCTTCA 1 GTGTTCTTGG 5 GTGTTGAAGC 1 GTGTTGAGAA 2 GTGTTGCAAA 1 GTGTTGCACA 15 GTGTTGCACT 1 GTGTTGGAGT 1 GTGTTGGCTC 1 GTGTTGGGAG 1 GTGTTGGGCG 2 GTGTTGGGGG 3 GTGTTGGGTG 1 GTGTTGGTGC 1 GTGTTGTGAG 1 GTGTTGTGTC 1 GTGTTTACGT 1 GTGTTTACTA 1 GTGTTTACTG 1 GTGTTTCGAA 1 GTGTTTTGCT 1 GTGTTTTTGC 1 GTGTTTTTGT 1 GTTAAAAATT 1 GTTAAACACC 1 GTTAAACCCG 1 GTTAAACCCT 1 GTTAAACCTG 1 GTTAAATATG 1 GTTAAATCAG 1 GTTAACGTCC 12 GTTAACGTTC 1 GTTAAGATTT 1 GTTAAGTCCT 1 GTTAAGTCTA 1 GTTAAGTTTA 1 GTTAATAACA 1 GTTAATCTCC 1 GTTAATGATG 1 GTTAATTGCT 3 GTTACAATCA 1 GTTACACAGA 1 GTTACACTGA 1 GTTACAGTGA 1 GTTACATTAA 1 GTTACCAAGA 1 GTTACCACGG 3 GTTACCGACG 1 GTTACCGAGG 2 GTTACGTAGT 1 GTTACTGTTA 1 GTTACTTTTG 1 GTTACTTTTT 1 GTTAGACAGT 1 GTTAGAGCTG 1 GTTAGATTGG 1 GTTAGGACCC 1 GTTAGGTTTA 1 GTTAGTGTTT 1 GTTAGTTGTG 1 GTTATAAGAT 2 GTTATACCAG 1 GTTATAGTCC 1 GTTATCCTTG 1 GTTATCTATG 1 GTTATGAATA 1 GTTATGGGGG 1 GTTATGTGAT 1 GTTATGTGTA 1 GTTATTCTCA 1 GTTATTGAGG 1 GTTATTTTGA 1 GTTCAAAAAG 1 GTTCAAAGGC 1 GTTCAATCCC 2 GTTCAATTCA 1 GTTCACAAAG 1 GTTCACATTA 28 GTTCACGTTA 1 GTTCACTCCC 1 GTTCACTGCA 2 GTTCACTGCT 3 GTTCACTGGC 1 GTTCAGAAAT 1 GTTCAGAAGG 1 GTTCAGAATT 1 GTTCAGATTC 1 GTTCAGCACC 1 GTTCAGCCAA 1 GTTCAGCTCT 2 GTTCAGCTGG 1 GTTCAGCTGT 2 GTTCAGGACC 1 GTTCAGGCTG 2 GTTCAGTCAG 1 GTTCAGTTGA 1 GTTCATAGGT 2 GTTCATCCTG 1 GTTCCAACAA 1 GTTCCAAGCA 2 GTTCCAATTT 1 GTTCCAGGGG 1 GTTCCAGTGG 1 GTTCCATTCT 1 GTTCCCCAGT 3 GTTCCCCCAC 1 GTTCCCTGGC 19 GTTCCCTGTG 1 GTTCCGATGA 3 GTTCCGGATT 1 GTTCCGGCGG 1 GTTCCGTTAT 1 GTTCCTCAGC 3 GTTCCTCTCA 1 GTTCCTGAGC 1 GTTCCTGGGT 1 GTTCGAGCCA 1 GTTCGCCGGT 1 GTTCGGGCCG 2 GTTCGTGCCA 18 GTTCGTGGTT 1 GTTCTACGGG 1 GTTCTACTGA 1 GTTCTAGGAG 2 GTTCTATGGC 1 GTTCTCAAAA 1 GTTCTCACAA 2 GTTCTCACTA 1 GTTCTCAGGA 2 GTTCTCAGGC 1 GTTCTCATTT 1 GTTCTCCCAC 5 GTTCTCCCAT 1 GTTCTCCTGT 1 GTTCTCTTTT 1 GTTCTGACAG 1 GTTCTGAGTT 1 GTTCTGCAGA 1 GTTCTGCTGA 1 GTTCTGGAGG 1 GTTCTGGCAA 1 GTTCTGGGTC 2 GTTCTGGTTT 3 GTTCTGTGTA 1 GTTCTTATCA 1 GTTCTTGCAG 1 GTTCTTGCTG 1 GTTCTTGTAT 1 GTTGAAACTC 2 GTTGAAATCG 1 GTTGAACCTT 2 GTTGACACTT 1 GTTGACCCAC 1 GTTGACTTGC 1 GTTGAGAACC 1 GTTGAGATTA 1 GTTGAGCAAG 1 GTTGAGCTGC 1 GTTGAGTAAC 1 GTTGAGTGGT 1 GTTGAGTTTT 1 GTTGATCACA 1 GTTGATTTTA 1 GTTGCAACAG 1 GTTGCAAGGG 1 GTTGCAGATA 4 GTTGCAGCGC 1 GTTGCAGCTG 1 GTTGCCAGGG 1 GTTGCCTCAA 1 GTTGCGGAGG 1 GTTGCGGCAC 1 GTTGCGGCAG 1 GTTGCGGGTG 1 GTTGCGGTTA 1 GTTGCGTGCA 1 GTTGCTACGG 3 GTTGCTCACA 1 GTTGCTCTTG 3 GTTGCTCTTT 1 GTTGCTGCAA 1 GTTGCTGCCC 4 GTTGCTTACA 1 GTTGCTTGGA 1 GTTGGAAAAG 1 GTTGGAAGGG 1 GTTGGAATGC 1 GTTGGACAGC 4 GTTGGACATC 1 GTTGGACCAG 3 GTTGGACCCT 1 GTTGGAGGAG 1 GTTGGATAGG 2 GTTGGCCTGG 1 GTTGGCGGCA 1 GTTGGCTACG 1 GTTGGCTGAC 1 GTTGGGAAAG 1 GTTGGGAAGA 2 GTTGGGAGTC 2 GTTGGGGAGT 1 GTTGGGGGTA 3 GTTGGGGTCT 3 GTTGGTAGAA 1 GTTGGTCCCA 1 GTTGGTCGTG 1 GTTGGTCTGT 6 GTTGGTGACT 1 GTTGGTGGCG 1 GTTGGTTCCC 1 GTTGTAAAAA 1 GTTGTAAATA 2 GTTGTAATGA 1 GTTGTAGAAA 1 GTTGTATAAT 1 GTTGTATCTG 1 GTTGTATTAA 1 GTTGTCGTCA 1 GTTGTCTTTG 1 GTTGTGATAT 1 GTTGTGATGT 4 GTTGTGCACT 1 GTTGTGCCAC 3 GTTGTGCGGA 1 GTTGTGGAGG 1 GTTGTGGATG 1 GTTGTGGCGT 1 GTTGTGGGTG 3 GTTGTGGTAA 1 GTTGTGGTTA 51 GTTGTGTCAC 1 GTTGTGTTAA 1 GTTGTTGATA 1 GTTGTTGATT 1 GTTGTTTATC 1 GTTTAAAAAT 1 GTTTAAACGA 1 GTTTAAAGGA 1 GTTTAAATCG 3 GTTTAAATTC 1 GTTTAAATTT 1 GTTTAAGGCC 1 GTTTAAGTTA 1 GTTTACAACT 1 GTTTACATCT 1 GTTTACCTCT 1 GTTTAGAGGG 1 GTTTAGCTTT 1 GTTTAGTCTC 2 GTTTATAAGA 1 GTTTATGATC 3 GTTTATGCGT 1 GTTTCAAATT 1 GTTTCAATCA 1 GTTTCAATCT 1 GTTTCACGAA 1 GTTTCAGCTC 1 GTTTCAGGTA 2 GTTTCATACA 1 GTTTCATTAT 1 GTTTCATTTG 1 GTTTCCAAAC 1 GTTTCCACCG 1 GTTTCCAGAA 1 GTTTCCAGCT 1 GTTTCCAGGT 1 GTTTCCCCAA 2 GTTTCCGTGA 1 GTTTCCTGGA 1 GTTTCGCTTC 1 GTTTCTCAAG 1 GTTTCTCTGG 2 GTTTCTGGAG 1 GTTTCTGTAC 1 GTTTCTGTTG 1 GTTTCTTACC 1 GTTTCTTACT 1 GTTTCTTCCC 2 GTTTCTTCTT 2 GTTTCTTTCC 1 GTTTCTTTCT 1 GTTTCTTTTC 1 GTTTGAAGGG 2 GTTTGAGAAG 1 GTTTGATAAA 1 GTTTGATTTT 1 GTTTGCAAGT 2 GTTTGCATTT 1 GTTTGCCTGA 1 GTTTGCGGAG 2 GTTTGCTCTT 1 GTTTGCTTAG 2 GTTTGGAAAT 1 GTTTGGAATG 1 GTTTGGAGCT 4 GTTTGGAGTG 1 GTTTGGCACC 1 GTTTGGCAGT 5 GTTTGGCGTC 2 GTTTGGCTGC 1 GTTTGGGGCT 1 GTTTGGGTTG 5 GTTTGGTTGG 2 GTTTGTCTAC 1 GTTTGTCTGA 1 GTTTGTGAAT 1 GTTTGTGATG 4 GTTTGTGGTA 3 GTTTGTGTAC 1 GTTTGTGTGG 1 GTTTGTTCTA 1 GTTTGTTGAG 2 GTTTGTTGCC 1 GTTTGTTGTT 1 GTTTGTTTCC 1 GTTTGTTTTT 1 GTTTTAAAGC 1 GTTTTAAATT 1 GTTTTACGCT 1 GTTTTAGGGA 1 GTTTTAGTGA 1 GTTTTATTTG 1 GTTTTCAATG 1 GTTTTCAGAC 1 GTTTTCAGGA 1 GTTTTCATTC 1 GTTTTCCACT 1 GTTTTCCATA 3 GTTTTCTTCT 1 GTTTTGAAAT 1 GTTTTGATTT 1 GTTTTGCAAG 1 GTTTTGCACG 1 GTTTTGGATT 1 GTTTTGGCTG 1 GTTTTGGGCC 1 GTTTTGGTAA 1 GTTTTGGTGG 1 GTTTTGGTTG 1 GTTTTGTACA 1 GTTTTGTAGA 1 GTTTTTAAAT 2 GTTTTTAAGG 1 GTTTTTAATG 1 GTTTTTACTT 1 GTTTTTCATT 1 GTTTTTCCAC 1 GTTTTTCTGT 1 GTTTTTGCCC 1 GTTTTTGCTT 7 GTTTTTGTTT 1 TAAAAAAAAA 13 TAAAAAAAGA 1 TAAAAAACAA 1 TAAAAAACTT 1 TAAAAACTAC 1 TAAAAAGATA 1 TAAAAATTGC 1 TAAAAATTGG 1 TAAAACAATA 1 TAAAACAGAA 1 TAAAACAGGG 1 TAAAACCACT 1 TAAAACCGTT 2 TAAAACTGGA 1 TAAAACTTAC 2 TAAAAGAACA 1 TAAAAGACAA 1 TAAAAGCACA 1 TAAAAGGCTT 1 TAAAATAAGA 2 TAAAATACAT 1 TAAAATATTT 1 TAAAATCAAA 1 TAAAATCTTC 1 TAAAATGCGT 1 TAAAATGTGC 1 TAAAATGTGT 1 TAAAATGTTT 1 TAAAATTAAC 1 TAAAATTTTC 1 TAAAATTTTG 1 TAAACAAAAC 1 TAAACAACAA 1 TAAACAAGCA 1 TAAACAATAC 1 TAAACATCCA 1 TAAACATTCT 1 TAAACCATTC 1 TAAACCGGAA 1 TAAACCTATT 1 TAAACCTTCC 1 TAAACGTTCT 1 TAAACTGAAA 2 TAAACTGCAC 1 TAAACTGCTT 1 TAAACTGGGT 1 TAAACTGGTT 1 TAAACTGTTA 2 TAAACTGTTT 8 TAAACTTCAA 2 TAAACTTTGT 2 TAAAGAACTA 2 TAAAGAAGTT 1 TAAAGAATGG 1 TAAAGATCCT 1 TAAAGCATTC 1 TAAAGCATTT 1 TAAAGCCTTT 1 TAAAGGAAAA 1 TAAAGGCTAC 1 TAAAGGTCTG 1 TAAAGGTTTT 1 TAAAGTCAGC 1 TAAAGTGTCT 1 TAAAGTGTTG 1 TAAAGTTGCG 1 TAAAGTTTAG 1 TAAAGTTTTG 1 TAAATAAATA 2 TAAATAATAG 1 TAAATAATTT 2 TAAATACAGT 1 TAAATACTTC 1 TAAATACTTT 1 TAAATATCCT 1 TAAATATTCC 1 TAAATCAAAA 1 TAAATCCAAA 1 TAAATCCTGC 1 TAAATCTATA 1 TAAATCTTCT 1 TAAATGCACT 1 TAAATGGTTC 1 TAAATGTTGA 1 TAAATGTTTT 1 TAAATTACCA 1 TAAATTACTC 1 TAAATTCAAG 2 TAAATTCACC 1 TAAATTCACT 2 TAAATTGAAA 1 TAAATTGCAA 3 TAAATTGCAG 1 TAACAAACCT 1 TAACAAAGGA 1 TAACAAGAAT 1 TAACACAGAA 1 TAACACATAA 1 TAACACTATA 1 TAACACTGAT 1 TAACAGAAAG 2 TAACAGAAGG 1 TAACAGATGC 1 TAACAGCCAG 1 TAACAGCTCA 1 TAACAGCTGG 1 TAACAGGCGC 1 TAACAGTCCT 1 TAACATTAAA 2 TAACCAAACA 6 TAACCAACAC 1 TAACCAACCA 1 TAACCAATCA 5 TAACCAGATA 1 TAACCATCAC 1 TAACCATTTA 1 TAACCCAACA 2 TAACCCAGAA 1 TAACCCAGCA 5 TAACCCATAA 1 TAACCCCAAA 1 TAACCCCAAG 1 TAACCCCCGC 1 TAACCCTAGG 1 TAACCCTAGT 1 TAACCCTTAG 1 TAACCGAATA 1 TAACCGTTCA 1 TAACCTGCTA 2 TAACCTGGGT 1 TAACCTGTTC 1 TAACGCGAAT 1 TAACGCTTGT 1 TAACGTATAC 1 TAACGTCTGC 1 TAACTAATCA 1 TAACTAATGC 1 TAACTAGATG 1 TAACTAGTTG 1 TAACTCCAGA 1 TAACTCGTGA 1 TAACTCTTGG 1 TAACTGATGA 1 TAACTGCACT 2 TAACTGCCCA 1 TAACTGGAGG 5 TAACTGTAAC 1 TAACTGTCAA 1 TAACTGTCTT 3 TAACTGTGAA 2 TAACTGTGGA 1 TAACTGTTAC 1 TAACTTATTT 1 TAACTTCAAA 1 TAACTTCACA 1 TAACTTCTTG 1 TAACTTGCTT 1 TAACTTGTAT 1 TAACTTTTAG 1 TAAGAAAACT 1 TAAGAAACAT 1 TAAGAAAGAG 1 TAAGAAGGTG 2 TAAGAATGTT 1 TAAGACGCCG 1 TAAGACGTGA 1 TAAGAGAGCC 1 TAAGAGGCAA 1 TAAGAGGTTT 1 TAAGAGTCTG 1 TAAGATCGTC 1 TAAGATGGAA 1 TAAGATGTCT 1 TAAGATTACA 1 TAAGATTCTA 1 TAAGATTTCA 1 TAAGCAAAGC 1 TAAGCACCGT 1 TAAGCAGATG 1 TAAGCAGGCA 1 TAAGCAGTGC 2 TAAGCATAAA 1 TAAGCATCCC 1 TAAGCCATTA 1 TAAGCCCCTT 1 TAAGCTAAAC 1 TAAGCTCATT 1 TAAGCTTTGC 1 TAAGGAACTG 1 TAAGGAAGGC 2 TAAGGACACA 1 TAAGGACTGA 1 TAAGGAGAGA 1 TAAGGAGAGG 1 TAAGGAGCTG 54 TAAGGATCTC 1 TAAGGATTGC 1 TAAGGCCTAG 1 TAAGGCCTGG 1 TAAGGCCTTT 1 TAAGGGCTGT 1 TAAGGGGCTG 1 TAAGGTAGAG 1 TAAGGTATTG 2 TAAGGTGATG 1 TAAGGTGTCA 1 TAAGGTTATT 1 TAAGGTTGTC 1 TAAGTAAGTA 1 TAAGTACACT 1 TAAGTACGGT 1 TAAGTAGCAA 2 TAAGTAGCTG 1 TAAGTCAGTA 1 TAAGTCGCAA 1 TAAGTGGAAT 2 TAAGTGGATA 1 TAAGTTCCTT 1 TAAGTTGGAT 1 TAAGTTGTCC 1 TAAGTTGTTT 1 TAAGTTTAAT 2 TAAGTTTGCC 1 TAATAAAACC 1 TAATAAAATT 1 TAATAAAGCA 1 TAATAAAGGT 27 TAATAAATAA 1 TAATAAATGC 1 TAATAAATTC 1 TAATAACTCT 1 TAATAACTTG 1 TAATAATTTT 1 TAATACAAGC 1 TAATACATAT 1 TAATACTTAA 1 TAATACTTTT 2 TAATAGAGCG 1 TAATAGAGGT 2 TAATATGGCT 1 TAATATTTTT 1 TAATCAACAA 1 TAATCAGTTC 1 TAATCATCAG 1 TAATCCAAGT 1 TAATCCACCC 1 TAATCCACTG 1 TAATCCCAGC 13 TAATCCCAGG 3 TAATCCCATC 2 TAATCCCGAC 1 TAATCCCTCA 1 TAATCCCTTC 1 TAATCCTAGC 1 TAATCCTAGG 1 TAATCCTCAA 2 TAATCCTCTC 2 TAATCCTTCT 1 TAATCGAAAC 1 TAATCTCAAT 1 TAATCTGCCT 1 TAATCTTCTC 1 TAATCTTTAC 1 TAATCTTTTA 1 TAATGAAACT 1 TAATGAACTA 1 TAATGACAAC 1 TAATGACAAT 1 TAATGAGTGG 1 TAATGATTGT 1 TAATGCAGCA 1 TAATGCAGCT 2 TAATGGCAGT 1 TAATGGGGAA 1 TAATGGGGAG 1 TAATGGGTGA 1 TAATGGTAAC 11 TAATGGTAGC 1 TAATGTACTC 1 TAATTAATGA 2 TAATTACATC 1 TAATTACCCA 1 TAATTACTCT 1 TAATTAGTTT 1 TAATTATGCA 1 TAATTATGGA 1 TAATTATTTT 1 TAATTCAAAA 1 TAATTCCTCT 1 TAATTCTAGC 1 TAATTCTGGT 2 TAATTCTTCT 7 TAATTGAAAT 1 TAATTGAGAA 1 TAATTGTGCA 1 TAATTGTGTA 1 TAATTTAAAA 1 TAATTTCCTG 1 TAATTTCTCA 1 TAATTTGCGT 1 TAATTTTGCC 2 TAATTTTGGA 2 TAATTTTGGC 1 TAATTTTTAA 1 TAATTTTTCT 1 TAATTTTTGC 37 TAATTTTTGG 1 TACAAAACAA 1 TACAAAACCA 1 TACAAAACTG 2 TACAAAATCG 14 TACAAACTCA 1 TACAAACTCC 1 TACAAAGAGG 1 TACAAAGTGA 1 TACAAAGTGG 1 TACAAATAGG 1 TACAACACCG 1 TACAACATTA 1 TACAACTAAT 1 TACAAGACCT 1 TACAAGACGA 1 TACAAGAGGA 31 TACAAGATCG 1 TACAAGCAAT 1 TACAAGCAGT 1 TACAAGCTTC 1 TACAAGGGCG 1 TACAAGGGCT 1 TACAAGTTTT 1 TACAATAATT 3 TACAATATTA 1 TACAATGGAA 2 TACAATGGGC 1 TACAATTGAA 1 TACAATTGTG 2 TACACACACA 2 TACACACGGA 1 TACACAGAAC 1 TACACAGAAT 1 TACACAGACA 1 TACACAGGAG 2 TACACATCAT 1 TACACATCCC 1 TACACCAGGC 1 TACACCCCCA 1 TACACGAATC 1 TACACGGATG 1 TACACGTACA 2 TACACGTGAG 2 TACACTACTG 1 TACACTGAGT 1 TACACTTGAA 1 TACACTTTGA 1 TACAGAAAAA 1 TACAGAACAC 1 TACAGAATAC 1 TACAGAATCG 1 TACAGACAGC 1 TACAGACCCT 1 TACAGACTCT 3 TACAGAGCTC 1 TACAGAGGGA 1 TACAGAGTTT 1 TACAGATCTT 1 TACAGATTAT 1 TACAGATTCT 2 TACAGCACAC 1 TACAGCACGA 1 TACAGCACTG 1 TACAGCATTA 1 TACAGCCGGT 1 TACAGCGAGC 1 TACAGCTGCT 1 TACAGGACAG 1 TACAGGCTGA 1 TACAGGGTCG 1 TACAGGGTTA 1 TACAGGTCAT 1 TACAGTAAAA 1 TACAGTAGCA 1 TACAGTATGT 3 TACAGTATTT 1 TACAGTCTCA 1 TACAGTCTGT 1 TACAGTGAAC 1 TACAGTGCCG 1 TACATAAAGC 1 TACATAATAT 1 TACATAATTA 5 TACATACATC 1 TACATAGTCC 1 TACATATAAG 1 TACATATGGA 1 TACATATTAA 1 TACATATTAG 1 TACATCATCT 1 TACATCCAAG 1 TACATCCAAT 1 TACATCCAGT 2 TACATCCGAA 1 TACATCCGTA 1 TACATCGTCC 1 TACATCTTGA 1 TACATTAAAA 1 TACATTCTGT 3 TACATTTAAG 1 TACATTTCAA 1 TACATTTGGA 1 TACATTTTCA 2 TACATTTTGC 1 TACATTTTGT 1 TACCAAGAAA 1 TACCAAGCCT 1 TACCAATAAG 1 TACCACACAG 1 TACCACACTA 1 TACCACAGAA 1 TACCACAGCT 1 TACCACCAAT 3 TACCACGGAC 1 TACCACTGAG 1 TACCAGAATT 1 TACCAGATGC 1 TACCAGCACA 3 TACCAGCGCC 3 TACCAGCTCT 1 TACCAGGTGT 1 TACCAGTGTA 6 TACCATCAAC 1 TACCATCAAT 126 TACCATCACT 1 TACCATTAAA 1 TACCATTTTG 1 TACCCAAAAA 1 TACCCAAATA 3 TACCCAAGAC 1 TACCCACAAA 1 TACCCACAGA 3 TACCCACCGT 3 TACCCACTTT 1 TACCCAGCAA 1 TACCCATAAA 1 TACCCATCAT 1 TACCCCAAAA 1 TACCCCAAGT 1 TACCCCACAA 2 TACCCCACCC 10 TACCCCACCG 1 TACCCCACCT 2 TACCCCAGAA 3 TACCCCAGCT 1 TACCCCATAA 1 TACCCCCGAG 1 TACCCCGGAG 1 TACCCCTAAA 1 TACCCCTGAA 3 TACCCCTGGA 1 TACCCCTTGA 1 TACCCGAACA 1 TACCCGTACG 1 TACCCTAAAA 32 TACCCTAAAC 1 TACCCTAAAG 2 TACCCTAGAA 11 TACCCTCAAA 2 TACCCTGAAC 1 TACCCTGACA 1 TACCCTGGAA 2 TACCCTGGCA 4 TACCCTGTGT 1 TACCCTTGAA 1 TACCCTTGTG 1 TACCCTTTAA 1 TACCCTTTAC 2 TACCGAACAT 1 TACCGATTAA 1 TACCGCAGCT 1 TACCGCCCGT 3 TACCGTACAT 1 TACCGTAGAA 1 TACCGTCAAT 1 TACCGTGTAC 1 TACCTAAGGG 2 TACCTAAGTT 1 TACCTAATAA 1 TACCTAATCA 1 TACCTAATTG 1 TACCTAGTAA 1 TACCTATAAT 2 TACCTATTAA 9 TACCTATTGG 1 TACCTCACCA 2 TACCTCAGAT 1 TACCTCATAA 1 TACCTCCCAA 1 TACCTCTGAT 8 TACCTGAAGT 1 TACCTGCCCA 1 TACCTGTAAT 2 TACCTGTAGT 1 TACCTGTCTC 1 TACCTGTGGT 1 TACCTTAAAC 1 TACCTTCCTT 1 TACCTTCGCG 1 TACCTTTATG 1 TACCTTTGAC 1 TACCTTTGCT 1 TACGACTACT 1 TACGAGGCCG 1 TACGAGTCTG 1 TACGATCAAT 1 TACGCACTCA 1 TACGCACTGT 1 TACGCCGCCT 1 TACGCCGGCC 1 TACGCCGTAC 1 TACGCGGCCA 1 TACGCGTACA 2 TACGCGTCCA 1 TACGCGTTGT 1 TACGCTATAA 1 TACGCTCCTT 1 TACGCTGACA 1 TACGCTGAGA 1 TACGCTTGCA 2 TACGGCCTCT 1 TACGGCTCAA 1 TACGGCTGTG 1 TACGGTGGCG 1 TACGGTGGGC 1 TACGTACTAA 1 TACGTACTGC 2 TACGTATTAA 1 TACGTCCACG 7 TACGTCTATT 1 TACGTCTTCA 1 TACGTGGGAG 1 TACGTTGCAG 1 TACTAAAAAA 2 TACTAATAAA 2 TACTAATTCC 1 TACTACATCT 1 TACTACGATC 1 TACTAGCAAT 1 TACTAGGGTT 1 TACTAGTCCT 2 TACTATAAAA 1 TACTATTAAC 1 TACTATTCCC 1 TACTCAATGT 1 TACTCCAGAA 1 TACTCCCCAA 1 TACTCCTGAC 1 TACTCGGTTG 1 TACTCGTTGT 1 TACTCTCCAT 1 TACTCTGCAT 1 TACTCTGCCC 2 TACTCTGGTG 1 TACTCTGTAT 1 TACTCTGTTT 2 TACTCTTGGC 8 TACTGATAAT 2 TACTGATTAC 1 TACTGCAAAA 1 TACTGCAAAG 1 TACTGCAACG 1 TACTGCCCGA 1 TACTGCCCGG 1 TACTGCCCGT 1 TACTGCCTCT 2 TACTGCGTTC 1 TACTGCTCGG 40 TACTGCTCGT 1 TACTGCTGCT 1 TACTGCTTGA 1 TACTGGCGGT 1 TACTGGCTCA 1 TACTGGGAAG 1 TACTGGTAAT 1 TACTGGTCGG 1 TACTGGTTGG 1 TACTGTAAAA 1 TACTGTAATT 1 TACTGTACTG 1 TACTGTACTT 3 TACTGTAGAC 1 TACTGTATGG 1 TACTGTATGT 1 TACTGTGAAG 1 TACTGTGAGT 1 TACTGTGGAT 1 TACTGTGGCG 1 TACTGTTTGA 1 TACTTAGTAG 1 TACTTATTAA 1 TACTTCAAGA 1 TACTTCAAGG 1 TACTTCACTG 2 TACTTCCGAA 1 TACTTCCTGC 2 TACTTCTGAG 1 TACTTCTTTC 1 TACTTGAGCT 1 TACTTGCCAT 1 TACTTGCTAT 1 TACTTGGAAG 1 TACTTGGAGG 1 TACTTGGCCC 1 TACTTGGGAG 2 TACTTGGGGG 1 TACTTGGTCT 1 TACTTGTAAA 1 TACTTGTCGA 1 TACTTGTGTG 1 TACTTGTTAA 1 TACTTGTTAC 1 TACTTGTTTG 1 TACTTTAGGG 1 TACTTTAGTC 1 TACTTTATAC 1 TACTTTATGG 1 TACTTTGAGT 1 TACTTTTTCA 1 TACTTTTTGA 1 TAGAAAAATA 3 TAGAAAACAA 1 TAGAAAAGAC 3 TAGAAACCAG 2 TAGAAACTGG 1 TAGAAAGCCC 1 TAGAAAGCCG 1 TAGAAAGGCA 4 TAGAAATGGT 2 TAGAACGGTG 1 TAGAACTAAA 1 TAGAACTGCT 1 TAGAAGAAAG 1 TAGAAGAAGT 1 TAGAAGAGTT 1 TAGAAGATGG 1 TAGAAGCCCC 1 TAGAAGGTAA 1 TAGAATACTA 1 TAGAATCATT 1 TAGAATGGTG 3 TAGAATTATC 1 TAGAATTTGT 1 TAGAATTTTC 1 TAGACAATGC 1 TAGACACTAG 1 TAGACAGTGA 1 TAGACATTAT 1 TAGACATTCC 1 TAGACCAGAT 1 TAGACTAAGG 1 TAGACTAGCA 4 TAGACTCTTG 2 TAGACTGGCA 3 TAGACTTATT 2 TAGACTTCCT 2 TAGAGAATGA 2 TAGAGAATTA 1 TAGAGACACA 1 TAGAGCCTGG 1 TAGAGGAACT 1 TAGAGGATTG 1 TAGAGGCCTG 1 TAGAGGTAAC 1 TAGAGTGGTT 1 TAGAGTTTGC 1 TAGATAATGG 1 TAGATCCGCA 1 TAGATGACTT 1 TAGATGAGAG 1 TAGATGGTTT 1 TAGATTCAAC 1 TAGATTCAGA 1 TAGATTGTGT 1 TAGCAAAAGC 1 TAGCAAAATT 1 TAGCAAACAT 1 TAGCAAATAC 1 TAGCAAGGAC 1 TAGCAATAAA 1 TAGCAATTAA 1 TAGCAATTGC 1 TAGCACAGCT 1 TAGCACGGGC 1 TAGCACTTCT 1 TAGCAGAAAT 1 TAGCAGACCC 1 TAGCAGCCCA 1 TAGCAGCCCT 1 TAGCAGCTGG 2 TAGCAGGGTC 1 TAGCAGGTGC 2 TAGCAGGTGG 1 TAGCAGTTAC 4 TAGCATATCT 1 TAGCATCTCT 1 TAGCATTTTA 1 TAGCCAACAG 1 TAGCCCCAGC 2 TAGCCCGGCC 1 TAGCCGCTAA 1 TAGCCGCTGA 5 TAGCCGTGCA 1 TAGCCGTTGG 1 TAGCCTAACT 1 TAGCCTCACA 1 TAGCCTCACG 1 TAGCCTCTCC 1 TAGCCTGGAC 1 TAGCCTGGAG 1 TAGCCTTGGC 1 TAGCGATCGG 1 TAGCGATTTA 1 TAGCGCCTTC 1 TAGCGCTCGA 1 TAGCGGATCT 1 TAGCGGTACA 1 TAGCGTGGTG 1 TAGCTAGTGA 2 TAGCTATAAC 1 TAGCTCAATT 1 TAGCTCATCT 1 TAGCTCGATC 1 TAGCTCTATG 11 TAGCTCTCGC 1 TAGCTCTGGG 1 TAGCTCTTAG 1 TAGCTGAAAA 1 TAGCTGAGAC 2 TAGCTGAGAG 1 TAGCTGAGGC 2 TAGCTGAGTT 1 TAGCTGCTGG 2 TAGCTGGAAA 1 TAGCTGGGAT 2 TAGCTTCTGA 1 TAGCTTGCTT 1 TAGCTTGGAG 1 TAGCTTTCTT 1 TAGCTTTGCC 1 TAGCTTTTCT 1 TAGGAAAACA 1 TAGGAAAATA 1 TAGGAAACCC 1 TAGGACAACT 10 TAGGACAGGG 1 TAGGACCTAA 1 TAGGACCTGG 1 TAGGACTGTG 1 TAGGAGAATC 1 TAGGAGAATG 1 TAGGAGATTT 1 TAGGAGCTGG 2 TAGGAGGACA 1 TAGGAGTGCC 1 TAGGATATAG 1 TAGGATGGGG 1 TAGGATGTGG 1 TAGGCAACAC 1 TAGGCAATCT 1 TAGGCACAGA 1 TAGGCATCCA 1 TAGGCCAGGC 1 TAGGCCAGGG 1 TAGGCCCAAG 6 TAGGCCCTAC 1 TAGGCCCTGC 1 TAGGCCCTGT 1 TAGGCCGAGC 1 TAGGCCGGGC 2 TAGGCTACGC 1 TAGGCTGTGC 1 TAGGGAAGTT 1 TAGGGCAATC 3 TAGGGCAATT 2 TAGGGCCCCA 1 TAGGGCCCTT 1 TAGGGCGGCT 1 TAGGGCTCTC 1 TAGGGCTGGA 1 TAGGGCTTGC 1 TAGGGGAGGT 1 TAGGGGTAAA 1 TAGGGTAGAG 1 TAGGTACCTG 1 TAGGTACTGC 1 TAGGTAGCTC 1 TAGGTCAGGC 1 TAGGTCTCTT 1 TAGGTCTGTG 1 TAGGTGACTC 1 TAGGTGAGGG 1 TAGGTGGGGG 7 TAGGTGGTAA 1 TAGGTGTATT 1 TAGGTGTGGA 1 TAGGTGTGTT 1 TAGGTTCTCA 1 TAGGTTGTCA 1 TAGGTTGTCT 36 TAGGTTTCTG 1 TAGGTTTGCA 1 TAGGTTTTTG 1 TAGTAAAGGT 1 TAGTAAATAG 1 TAGTAACCAT 1 TAGTAAGAAA 1 TAGTAAGGTG 1 TAGTAAGTCA 1 TAGTAATGCC 1 TAGTACTTAA 1 TAGTACTTGC 1 TAGTAGAATT 1 TAGTAGCTTT 1 TAGTAGGTAG 1 TAGTAGTGGA 1 TAGTATTTTC 1 TAGTCAAGAA 1 TAGTCACATC 1 TAGTCACCGG 1 TAGTCAGCCA 1 TAGTCAGCTG 1 TAGTCATCTT 3 TAGTCCAGAG 1 TAGTCCCAGC 4 TAGTCCCTTG 1 TAGTCCTAGT 1 TAGTCCTCTG 1 TAGTCTAAGG 1 TAGTCTTGCT 1 TAGTGAGATT 1 TAGTGAGTGC 1 TAGTGATTTT 1 TAGTGCATTG 1 TAGTGCTGCT 1 TAGTGGAGGT 1 TAGTGGGGAC 1 TAGTGGGTCA 1 TAGTGGTCGA 1 TAGTGTATGC 1 TAGTGTGGTA 1 TAGTGTGTAA 1 TAGTGTGTTG 1 TAGTTACTAA 1 TAGTTCACTG 1 TAGTTCTCAA 1 TAGTTGAACA 1 TAGTTGAAGT 3 TAGTTGAGAG 1 TAGTTGAGCG 5 TAGTTGCACT 1 TAGTTGCAGC 1 TAGTTGGAAA 2 TAGTTGGCTG 1 TAGTTGTAGG 3 TAGTTGTCCG 1 TAGTTGTGTG 1 TAGTTTAATA 1 TAGTTTGTGG 2 TAGTTTTAAC 2 TAGTTTTAGC 1 TAGTTTTCCC 1 TAGTTTTCTA 1 TAGTTTTCTT 1 TAGTTTTTGC 1 TATAAAATCC 1 TATAAACTGA 1 TATAAAGTAA 1 TATAAATAAT 1 TATAACTGTG 1 TATAAGAAGA 1 TATAATAAAG 1 TATAATGAGG 1 TATACAAAAT 1 TATACAATAA 1 TATACACAAA 2 TATACACACT 1 TATACACTTC 1 TATACATACA 1 TATACATATG 1 TATACATTAT 1 TATACCAATC 3 TATACCCAGT 2 TATACCTACC 1 TATACCTATG 1 TATACCTGAA 1 TATACCTGTG 1 TATACTTCAA 1 TATACTTGGA 2 TATAGAATGT 1 TATAGACTAT 1 TATAGCAAGT 1 TATAGCACTC 1 TATAGCAGAC 1 TATAGCGCCT 1 TATAGGATAG 1 TATAGGCCGA 1 TATAGTCCCA 1 TATAGTCCTC 5 TATAGTGCTC 1 TATAGTGCTG 1 TATAGTTCCT 1 TATATAACAG 2 TATATAAGCT 1 TATATAATGT 1 TATATACAAA 1 TATATAGGTC 1 TATATATAAT 1 TATATATGCA 1 TATATATGGG 1 TATATCAGAA 1 TATATCATAT 1 TATATCATCT 1 TATATCCTGC 2 TATATGCCTA 1 TATATGCTGG 1 TATATGTATA 1 TATATTTCCA 2 TATATTTTCT 2 TATCAAAATA 1 TATCACAGCC 1 TATCACCAAG 1 TATCACCATA 1 TATCACGTGG 1 TATCACTTTT 1 TATCAGATCA 1 TATCAGGACG 1 TATCATCATT 1 TATCATCCTG 1 TATCATCTGG 1 TATCCCAAAC 1 TATCCCAGAA 12 TATCCCAGAG 1 TATCCCAGAT 1 TATCCCATAA 1 TATCCCCAAA 1 TATCCCCAAT 1 TATCCCTTAG 1 TATCCCTTCA 1 TATCCGTACA 1 TATCCTAAGT 1 TATCCTACAT 1 TATCCTAGAT 1 TATCCTCCGG 1 TATCCTCTCC 1 TATCCTCTGT 1 TATCCTTACT 1 TATCCTTGAT 1 TATCGCTCAT 1 TATCGGACCT 1 TATCGTGGCA 2 TATCGTGGGA 2 TATCGTTCGT 1 TATCGTTGCC 1 TATCTAGTAG 1 TATCTCAAAA 1 TATCTCAACG 1 TATCTCAGAA 1 TATCTCCCTT 1 TATCTCGCTG 1 TATCTGATAA 1 TATCTGCTGA 1 TATCTGGCAA 1 TATCTGGTCT 1 TATCTGTACT 1 TATCTGTCTA 5 TATCTGTTCC 1 TATCTTCTTC 2 TATCTTGCTT 1 TATCTTTTGG 1 TATGAAAACA 1 TATGAAACGC 1 TATGAAACTG 1 TATGAAATGC 1 TATGAAGGAC 1 TATGAAGTTA 1 TATGAATAAT 1 TATGAATCCT 1 TATGACCACA 1 TATGACCTAT 1 TATGACTTAA 5 TATGACTTTG 1 TATGAGAGAC 1 TATGAGCACA 1 TATGAGCCAC 1 TATGAGGAGG 2 TATGAGGCGA 1 TATGATCATA 1 TATGATGAGC 5 TATGATGTCT 1 TATGATTACC 1 TATGCAAACA 1 TATGCATAGG 1 TATGCCAGAA 1 TATGCCCCCT 1 TATGCCCGAA 1 TATGCCCTGT 1 TATGCCTCCA 1 TATGCCTTTT 1 TATGCGAATC 1 TATGCTCAAA 1 TATGCTCAGT 1 TATGCTTTTC 1 TATGGACCCC 1 TATGGACCTG 1 TATGGAGTCC 1 TATGGATTTT 1 TATGGCAGAC 1 TATGGGTTAT 1 TATGGTATTT 1 TATGTAAAAA 2 TATGTAAAAG 1 TATGTAAAAT 1 TATGTAAATG 1 TATGTAACAT 1 TATGTAATAG 1 TATGTAATGC 1 TATGTACTCC 2 TATGTAGGAG 1 TATGTATATA 1 TATGTATATG 1 TATGTATGCT 1 TATGTCCGGA 1 TATGTCCTCC 1 TATGTGAAGT 1 TATGTGATTT 3 TATGTGCGCT 1 TATGTGCGTG 2 TATGTGCTGT 1 TATGTGGGCT 2 TATGTGTGCT 1 TATGTGTGTG 1 TATGTGTTCT 1 TATGTGTTTT 1 TATGTTAATG 2 TATGTTAGCA 1 TATGTTATGA 1 TATGTTGAGT 1 TATGTTGTCT 1 TATGTTTAAT 1 TATGTTTGCT 2 TATGTTTTAT 1 TATGTTTTCT 1 TATTAAAAAA 1 TATTAAAAAC 1 TATTAAATGA 1 TATTACCAAG 1 TATTACTATG 1 TATTACTTAC 1 TATTAGAGTC 1 TATTAGCTCT 1 TATTAGGGTC 1 TATTAGTCAC 1 TATTATAAAA 1 TATTATATAA 1 TATTATGGAA 1 TATTATTCAA 1 TATTATTTGA 1 TATTCACTGG 1 TATTCAGTTG 1 TATTCATTCA 1 TATTCATTCC 1 TATTCATTGT 1 TATTCATTTC 1 TATTCCAAAT 1 TATTCCAGAA 2 TATTCCCCAC 2 TATTCCCTCT 1 TATTCGTAGG 1 TATTCTATCT 1 TATTCTCAAT 1 TATTGAAACT 1 TATTGAAGAA 1 TATTGAGCTG 1 TATTGAGTTA 1 TATTGATTAA 1 TATTGCACAG 1 TATTGCCGGA 1 TATTGGGCTA 1 TATTGTGCTG 1 TATTGTGGCC 1 TATTGTGTGG 1 TATTGTTGGC 1 TATTTACTGG 1 TATTTATCAA 1 TATTTATGGA 1 TATTTATTCC 4 TATTTATTGA 1 TATTTATTGG 1 TATTTCACCG 3 TATTTCCGAA 1 TATTTCGTTA 1 TATTTCTATA 1 TATTTCTGTT 1 TATTTGCTCA 1 TATTTGGCTT 1 TATTTGGTTA 1 TATTTGTAAT 1 TATTTGTAGA 1 TATTTGTCTC 1 TATTTGTCTT 1 TATTTGTGAT 1 TATTTGTTTC 1 TATTTTACGT 2 TATTTTATTG 1 TATTTTCTGC 1 TATTTTGCAA 1 TATTTTGTAT 1 TATTTTGTGA 3 TATTTTTAAT 1 TATTTTTGGC 2 TATTTTTGTT 2 TCAAAAAAAA 3 TCAAAAAAAG 3 TCAAAAAAGA 1 TCAAAAACCC 1 TCAAAAACTA 1 TCAAAAAGAA 1 TCAAAACCAG 1 TCAAAACTTC 1 TCAAAAGACC 2 TCAAAAGAGC 1 TCAAAATTGT 1 TCAAACACTG 1 TCAAACAGTG 1 TCAAACATTT 1 TCAAACTGTG 2 TCAAACTGTT 1 TCAAACTTAC 1 TCAAAGAACA 1 TCAAAGAAGG 1 TCAAAGCCCC 1 TCAAAGGTCA 1 TCAAAGTTCA 1 TCAAATAAAC 1 TCAAATAACT 1 TCAAATACTG 1 TCAAATGCAA 1 TCAAATGCAT 5 TCAAATGCCC 1 TCAAATGTCA 2 TCAACAAATA 1 TCAACAACAC 1 TCAACAATCC 1 TCAACACAGA 1 TCAACACCAG 1 TCAACAGCAG 3 TCAACAGCCA 1 TCAACAGCGT 2 TCAACAGGCA 1 TCAACAGTAG 1 TCAACAGTCT 1 TCAACAGTGT 1 TCAACATCAT 1 TCAACCTTAA 1 TCAACCTTAT 1 TCAACGATAT 1 TCAACGCCAA 1 TCAACGGTGT 2 TCAACTAGAG 1 TCAACTAGGA 1 TCAACTCACA 1 TCAACTGAAG 2 TCAACTGGGA 1 TCAACTGGTT 2 TCAACTTGAA 4 TCAAGAAAGT 1 TCAAGAAATT 1 TCAAGAACAG 1 TCAAGACCCT 1 TCAAGACGCG 1 TCAAGACTGC 2 TCAAGAGCCG 1 TCAAGATGGA 1 TCAAGATTCA 1 TCAAGCAATC 1 TCAAGCCATC 1 TCAAGCCCCC 1 TCAAGCCTTC 1 TCAAGGCCCC 2 TCAAGGGATT 1 TCAAGGGCCC 1 TCAAGGGGCA 1 TCAAGGGTTA 1 TCAAGGGTTG 1 TCAAGGTACA 1 TCAAGGTTTC 1 TCAAGTGGAC 1 TCAAGTGTTA 1 TCAAGTTCAC 3 TCAAGTTTGA 1 TCAATAAAAA 1 TCAATAAAGA 7 TCAATAAAGC 1 TCAATAAAGG 1 TCAATAAATT 1 TCAATAACTA 1 TCAATATAGA 1 TCAATATGTC 1 TCAATATTCT 1 TCAATCAAGA 5 TCAATCTATT 1 TCAATGATAG 1 TCAATGGACA 1 TCAATGTATC 1 TCAATTAAAA 1 TCAATTGATC 1 TCAATTTCTT 1 TCACAAAAGA 1 TCACAAAATG 1 TCACAACACT 1 TCACAACAGC 1 TCACAACCTG 1 TCACAAGAAA 1 TCACAAGCAA 38 TCACAATACC 1 TCACACAAAG 2 TCACACACAG 1 TCACACACTA 1 TCACACAGAC 1 TCACACCCCA 1 TCACACCTAG 1 TCACACCTGT 1 TCACACGCAA 1 TCACACGTTA 1 TCACACTGTG 1 TCACAGAACA 1 TCACAGACAC 1 TCACAGATCA 1 TCACAGCAGA 1 TCACAGCTGT 6 TCACAGGAAA 1 TCACAGGCAA 1 TCACAGGCTC 1 TCACAGTACA 1 TCACAGTACG 1 TCACAGTCAT 1 TCACAGTGCC 4 TCACATAACA 1 TCACATATAA 1 TCACATTCAT 1 TCACATTCCT 1 TCACCAAAAC 1 TCACCACACC 4 TCACCACTGG 2 TCACCATACC 1 TCACCATAGA 2 TCACCATATC 1 TCACCCACAC 26 TCACCCAGGG 1 TCACCCATAC 1 TCACCCCCAA 2 TCACCCCCCC 1 TCACCCCGAA 1 TCACCCTAGC 1 TCACCCTCCA 1 TCACCGAACA 1 TCACCGAACT 1 TCACCGACAT 1 TCACCGACGA 1 TCACCGATCG 1 TCACCGCACA 1 TCACCGCACT 2 TCACCGCTAT 1 TCACCGCTTT 1 TCACCGGTAC 1 TCACCGGTCA 6 TCACCGTACC 1 TCACCGTATA 1 TCACCTACGT 1 TCACCTCTAA 1 TCACCTGAAA 1 TCACCTGAAC 1 TCACCTGAGT 1 TCACCTGCCT 1 TCACCTGGGA 1 TCACCTGTAG 7 TCACCTTAGG 1 TCACCTTGAA 1 TCACCTTGCG 1 TCACGAGGCG 1 TCACGCGCTC 2 TCACGCGGGC 1 TCACGGCAAG 9 TCACGGCACT 1 TCACGGTACA 1 TCACGGTTTA 1 TCACGTACAA 1 TCACTAAATG 1 TCACTAACAA 1 TCACTACAAA 1 TCACTACATC 1 TCACTACTGG 1 TCACTAGAAA 1 TCACTATCGG 2 TCACTATTAT 1 TCACTCGCCC 1 TCACTCGGCG 1 TCACTCTGAG 1 TCACTCTTCT 1 TCACTGAACA 1 TCACTGAATC 1 TCACTGAGTT 5 TCACTGATCT 2 TCACTGATGC 1 TCACTGCAAA 1 TCACTGCACT 15 TCACTGCAGT 1 TCACTGCCTG 1 TCACTGCTCT 1 TCACTGGGGC 1 TCACTGTACA 1 TCACTGTACC 1 TCACTGTGGA 1 TCACTGTGGG 3 TCACTGTTGA 1 TCACTTCCCC 1 TCACTTGCTG 2 TCACTTTCAT 1 TCACTTTTTT 1 TCAGAAAAAA 1 TCAGAAAATT 1 TCAGAAAGCC 5 TCAGAACAGT 2 TCAGAACTAA 1 TCAGAAGCAA 1 TCAGAAGCAG 1 TCAGAAGGTG 4 TCAGAAGTTT 1 TCAGAATTCG 1 TCAGAATTTC 1 TCAGACAGTA 1 TCAGACATCA 1 TCAGACCCAG 1 TCAGACGCAG 24 TCAGACTAGC 1 TCAGACTCCT 1 TCAGACTTTA 1 TCAGAGAAGG 1 TCAGAGAATA 3 TCAGAGAGAG 2 TCAGAGATGA 6 TCAGAGCGCT 1 TCAGAGGCTC 2 TCAGAGGTGA 1 TCAGATAAGT 1 TCAGATACTG 1 TCAGATCCGT 2 TCAGATCTAG 1 TCAGATCTCC 1 TCAGATCTCT 1 TCAGATCTTG 1 TCAGATCTTT 87 TCAGATGCAC 2 TCAGATGGCG 2 TCAGATTTTT 1 TCAGCAATAA 3 TCAGCACCTG 12 TCAGCAGTGG 1 TCAGCCACGT 1 TCAGCCAGGA 1 TCAGCCAGGC 1 TCAGCCAGGT 1 TCAGCCATCC 1 TCAGCCGCTA 2 TCAGCCTCAA 1 TCAGCCTCCT 1 TCAGCCTTCT 3 TCAGCGGAGA 4 TCAGCGTGGG 1 TCAGCTAAAT 1 TCAGCTACAC 1 TCAGCTCATC 1 TCAGCTGACA 1 TCAGCTGCAA 3 TCAGCTGCCC 1 TCAGCTGGCG 1 TCAGCTGGGG 2 TCAGCTTCAC 3 TCAGCTTCTT 1 TCAGCTTGTT 1 TCAGGACAGT 1 TCAGGAGAGG 1 TCAGGAGCAT 1 TCAGGATGAC 1 TCAGGCACTG 1 TCAGGCAGTG 1 TCAGGCATTT 3 TCAGGCCAAG 1 TCAGGCCTTC 1 TCAGGCGGAG 1 TCAGGCTGTT 4 TCAGGGAGAT 3 TCAGGGCGCA 1 TCAGGGCTAC 1 TCAGGGGCTG 1 TCAGGTAAAC 1 TCAGGTACTG 2 TCAGGTGGAG 2 TCAGGTGTGC 1 TCAGGTTATA 1 TCAGTAAAGA 1 TCAGTAACCC 1 TCAGTACAGA 1 TCAGTACTTA 1 TCAGTAGTCA 1 TCAGTCCGTT 1 TCAGTGAAAA 2 TCAGTGAACG 3 TCAGTGAACT 2 TCAGTGACCT 1 TCAGTGATGC 1 TCAGTGCTGT 1 TCAGTGGCAT 1 TCAGTGGCCA 1 TCAGTGGTAG 24 TCAGTGTCTT 1 TCAGTTACGC 1 TCAGTTCCAA 1 TCAGTTCGCT 1 TCAGTTCTTG 2 TCAGTTTATA 1 TCAGTTTGTC 3 TCATAAAAGA 2 TCATAACAGG 1 TCATAACCAC 1 TCATAACTGT 3 TCATAATGAG 1 TCATAATTAA 1 TCATACACCT 1 TCATACAGTT 1 TCATACCGCT 1 TCATACTATT 1 TCATAGAAAC 4 TCATAGTATC 1 TCATAGTTCA 1 TCATATCGTG 1 TCATATTAAG 2 TCATATTCAT 1 TCATCAAGTG 1 TCATCACAAA 4 TCATCACCTA 1 TCATCACGAC 1 TCATCAGGCC 1 TCATCAGGGC 1 TCATCAGTGT 1 TCATCATCAG 1 TCATCATCGA 1 TCATCATCTG 8 TCATCCAATA 1 TCATCCCAGC 2 TCATCCCCTC 1 TCATCCCTCT 2 TCATCCTCTA 1 TCATCCTTGT 1 TCATCGATCG 1 TCATCGCCTG 2 TCATCGCTGC 1 TCATCTAACA 1 TCATCTAGGA 1 TCATCTCCCT 2 TCATCTCTGT 1 TCATCTGCAA 3 TCATCTGCTG 1 TCATCTGTGG 1 TCATCTGTTA 1 TCATCTTCAA 4 TCATCTTCCT 1 TCATTAAACG 1 TCATTAAATA 1 TCATTATAGG 1 TCATTATTAA 1 TCATTATTCT 1 TCATTATTTC 1 TCATTCAACA 1 TCATTCCACT 2 TCATTCCAGG 1 TCATTCCTAA 1 TCATTCCTAC 1 TCATTCCTCC 1 TCATTCTCCA 2 TCATTGACTT 1 TCATTGCACC 1 TCATTGCACT 2 TCATTGTAAT 2 TCATTGTTAC 1 TCATTTACAA 2 TCATTTCACT 1 TCATTTCAGA 4 TCATTTCTCC 1 TCATTTGCTA 1 TCATTTTATC 1 TCATTTTCAG 1 TCATTTTCCA 4 TCATTTTCCT 2 TCATTTTCTT 1 TCATTTTTGT 1 TCCAAAAACA 1 TCCAAAACAC 4 TCCAAAACTG 1 TCCAAAAGAA 1 TCCAAAAGGA 2 TCCAAAATAA 2 TCCAAACCAG 1 TCCAAAGCAT 2 TCCAAATATT 1 TCCAAATCGA 2 TCCAAATTAA 2 TCCAACAGAA 1 TCCAACATAT 2 TCCAACCCCC 1 TCCAACCTCT 1 TCCAACTACA 1 TCCAACTCCA 1 TCCAAGCCCC 1 TCCAAGCCCG 1 TCCAAGCGAG 1 TCCAAGGAAG 2 TCCAAGGTTG 1 TCCAAGTACC 1 TCCAAGTTCC 1 TCCAATCCCA 1 TCCAATGATG 1 TCCAATTAAG 1 TCCAATTTAC 1 TCCACACAAA 1 TCCACACACA 1 TCCACACCCA 1 TCCACACTCT 1 TCCACAGCCA 2 TCCACATTCA 1 TCCACATTTA 1 TCCACCAAGT 1 TCCACCACAT 1 TCCACCAGCT 1 TCCACCCCGT 1 TCCACCCTGA 1 TCCACCTCCC 1 TCCACGCACC 2 TCCACGGCAT 1 TCCACGTACT 1 TCCACGTCAT 1 TCCACTACCA 1 TCCACTCCGT 1 TCCACTCTGC 1 TCCACTGCTA 1 TCCACTGGCC 1 TCCAGAAATG 1 TCCAGAATAA 3 TCCAGAATGT 1 TCCAGAGAAG 1 TCCAGATCTT 1 TCCAGCAATC 1 TCCAGCCAAC 1 TCCAGCCCCT 2 TCCAGCCCGG 1 TCCAGCCCTC 1 TCCAGCCTGA 1 TCCAGCCTGC 1 TCCAGCCTGG 1 TCCAGCCTTG 1 TCCAGCTAAC 1 TCCAGCTAAT 1 TCCAGCTACC 1 TCCAGCTACT 1 TCCAGCTATG 1 TCCAGCTCTC 1 TCCAGCTGCA 1 TCCAGGATGC 1 TCCAGGGCTC 3 TCCAGGTAAT 1 TCCAGTCAGC 1 TCCAGTGATG 1 TCCAGTGGGA 1 TCCAGTGTTC 1 TCCAGTTCCC 1 TCCAGTTGCA 1 TCCATAAGCC 1 TCCATAAGGA 1 TCCATAATGC 1 TCCATACACC 2 TCCATACACT 1 TCCATACTAA 1 TCCATAGATT 1 TCCATATCAA 1 TCCATATTTC 1 TCCATCAAGA 7 TCCATCGTCC 4 TCCATCTGTT 2 TCCATCTTAA 1 TCCATTAAGC 3 TCCATTCACT 1 TCCATTCGCT 1 TCCATTTGCT 1 TCCCAAAAAA 1 TCCCAAAAAG 1 TCCCAAAACA 2 TCCCAAACAT 1 TCCCAAATAA 2 TCCCAACTAT 1 TCCCAATAAA 1 TCCCAATAAG 1 TCCCAATACA 1 TCCCACCCCA 6 TCCCACGTTC 1 TCCCAGAAGT 1 TCCCAGACAT 1 TCCCAGCAGA 1 TCCCAGCCCA 1 TCCCAGGAAC 1 TCCCAGGGCT 1 TCCCAGTACT 1 TCCCAGTCAT 1 TCCCAGTTAA 1 TCCCATAAAA 1 TCCCATAAGC 2 TCCCATACAT 2 TCCCATCAAT 2 TCCCATTAAA 1 TCCCATTAAC 1 TCCCATTACA 1 TCCCATTCAG 1 TCCCATTGCC 1 TCCCCAAACA 1 TCCCCAACAT 1 TCCCCAAGAA 2 TCCCCAATCG 1 TCCCCAATTA 2 TCCCCACACC 1 TCCCCACATC 3 TCCCCACCAA 1 TCCCCAGAGA 1 TCCCCATACG 1 TCCCCATAGA 1 TCCCCATCAC 1 TCCCCCATCG 1 TCCCCCCAGT 2 TCCCCCCCAT 1 TCCCCCGCAC 2 TCCCCCGGAG 1 TCCCCCGTCA 1 TCCCCCTTAA 1 TCCCCGAAAA 1 TCCCCGAAAT 1 TCCCCGAATC 1 TCCCCGACAG 1 TCCCCGACGT 1 TCCCCGAGCA 1 TCCCCGAGTA 1 TCCCCGATCA 1 TCCCCGATCG 2 TCCCCGCAAT 1 TCCCCGCACT 1 TCCCCGCATC 5 TCCCCGCCAA 1 TCCCCGCCAT 1 TCCCCGCGAA 1 TCCCCGCGTA 1 TCCCCGCGTT 1 TCCCCGCTTT 1 TCCCCGGAAA 1 TCCCCGGGGA 1 TCCCCGGTGC 1 TCCCCGGTTT 1 TCCCCGTAGG 2 TCCCCGTAGT 1 TCCCCGTATG 3 TCCCCGTATT 13 TCCCCGTGTA 1 TCCCCGTGTC 1 TCCCCGTTAA 2 TCCCCGTTCG 1 TCCCCGTTTT 1 TCCCCTAATC 1 TCCCCTAATG 1 TCCCCTACAC 5 TCCCCTACAG 1 TCCCCTCATC 2 TCCCCTCCCA 1 TCCCCTCTCT 1 TCCCCTTAAG 2 TCCCCTTATT 1 TCCCGAAAAT 1 TCCCGAACAT 1 TCCCGAACCT 1 TCCCGACATC 6 TCCCGACTAT 1 TCCCGATCGT 1 TCCCGCAATA 1 TCCCGCAGTT 1 TCCCGCATCG 1 TCCCGCCCCA 1 TCCCGCCCCC 1 TCCCGCCTCC 1 TCCCGCGTGC 1 TCCCGGAAAT 1 TCCCGGAACA 1 TCCCGGACAT 3 TCCCGGCCTC 1 TCCCGGTCAT 1 TCCCGGTCCA 2 TCCCGTAAAT 2 TCCCGTAACG 1 TCCCGTAATC 5 TCCCGTACAA 4 TCCCGTACAC 15 TCCCGTACAG 2 TCCCGTACCA 1 TCCCGTACGT 3 TCCCGTAGAC 1 TCCCGTAGAT 1 TCCCGTATCG 1 TCCCGTCATA 1 TCCCGTCATC 9 TCCCGTCATT 1 TCCCGTGCAA 1 TCCCGTTAAG 1 TCCCGTTACA 1 TCCCGTTCAC 1 TCCCTAAAAA 3 TCCCTAAAGC 2 TCCCTAACAT 1 TCCCTAAGCC 2 TCCCTAATAC 1 TCCCTACATA 1 TCCCTACATC 5 TCCCTACCAA 1 TCCCTACGAA 1 TCCCTACGTA 1 TCCCTAGAAC 1 TCCCTAGTCA 1 TCCCTATAGC 3 TCCCTATAGT 1 TCCCTATATG 1 TCCCTATATT 1 TCCCTATCCA 1 TCCCTATCGA 1 TCCCTATTCT 1 TCCCTATTGC 3 TCCCTATTGG 1 TCCCTATTTT 1 TCCCTCCTCA 1 TCCCTCTTGT 1 TCCCTGCTCT 1 TCCCTGGCAT 6 TCCCTGGCTG 2 TCCCTGGGCA 7 TCCCTGGTCA 1 TCCCTGTAAG 1 TCCCTGTTCA 1 TCCCTTAAGC 2 TCCCTTACAT 2 TCCCTTATAA 3 TCCCTTATAC 1 TCCCTTTAAT 1 TCCCTTTACA 1 TCCCTTTTTA 1 TCCGACATAT 1 TCCGACATCG 1 TCCGACGAGG 1 TCCGACTCGT 1 TCCGAGCCCC 2 TCCGATATTA 1 TCCGCACGTC 1 TCCGCCAGCC 1 TCCGCCATCA 1 TCCGCCCTTG 1 TCCGCCGCGG 1 TCCGCCTCGG 6 TCCGCCTTCG 1 TCCGCGAGAA 2 TCCGCGCGCA 1 TCCGCGCGGC 1 TCCGCGGGAA 1 TCCGCGTGCC 1 TCCGGAAGTC 1 TCCGGCCGCG 4 TCCGGCTGCT 1 TCCGGGCCCC 1 TCCGGTATTA 2 TCCGGTGGGT 1 TCCGTAACAT 1 TCCGTACATC 1 TCCGTAGTCA 1 TCCGTAGTCC 1 TCCGTATAGA 1 TCCGTATGAA 1 TCCGTATTAT 1 TCCGTATTGA 1 TCCGTCACCA 1 TCCGTCATCA 1 TCCGTCATCT 1 TCCGTCCACT 1 TCCGTCCTGA 1 TCCGTGCGCA 1 TCCGTTACAA 1 TCCTAAAGCC 1 TCCTAAGAAT 1 TCCTAATAAT 1 TCCTAATGCT 1 TCCTAATTAA 1 TCCTAATTGA 1 TCCTACAATC 1 TCCTACAGGA 1 TCCTACATCC 1 TCCTACGGAA 1 TCCTACGTGA 1 TCCTACTGGC 1 TCCTAGATGT 1 TCCTAGGGTG 1 TCCTAGTAGG 4 TCCTAGTCAC 1 TCCTATAAAG 1 TCCTATAAGA 1 TCCTATAAGC 5 TCCTATAAGG 1 TCCTATAAGT 1 TCCTATAGCC 1 TCCTATAGGC 1 TCCTATCCAG 1 TCCTATCCCA 1 TCCTATCTAT 1 TCCTATGCTG 1 TCCTATTAAA 1 TCCTATTAAC 1 TCCTATTAGA 1 TCCTATTAGC 3 TCCTATTAGG 1 TCCTATTTAG 1 TCCTCAAAAA 1 TCCTCAAGAA 1 TCCTCAGCCT 1 TCCTCAGGAG 1 TCCTCAGGGA 1 TCCTCAGTTA 1 TCCTCATCCT 1 TCCTCCAAGG 2 TCCTCCCCAG 1 TCCTCCCTAC 1 TCCTCCCTGC 1 TCCTCCGAGG 1 TCCTCCGTCA 1 TCCTCGGGCA 4 TCCTCGTACT 1 TCCTCGTATC 1 TCCTCGTTTT 1 TCCTCTACCT 2 TCCTCTACTT 1 TCCTCTATCG 1 TCCTCTCAAT 1 TCCTCTCACC 1 TCCTCTCCAG 1 TCCTCTGAGT 1 TCCTCTGTGC 1 TCCTCTTAAG 1 TCCTCTTGCC 1 TCCTCTTTCA 1 TCCTCTTTCC 4 TCCTGAAATA 1 TCCTGAAGAC 1 TCCTGACCAC 2 TCCTGAGCTA 1 TCCTGCAAAT 1 TCCTGCACAG 1 TCCTGCACCA 1 TCCTGCAGCT 1 TCCTGCCCCA 16 TCCTGCCCTC 1 TCCTGCGCAA 1 TCCTGCGGAG 1 TCCTGCTGAT 1 TCCTGCTGCC 6 TCCTGCTTGG 1 TCCTGGAGGT 1 TCCTGGCCTC 1 TCCTGGCTCT 1 TCCTGGGGCA 1 TCCTGGGGCC 1 TCCTGGTACA 1 TCCTGGTGTC 1 TCCTGGTTAT 3 TCCTGTACCT 1 TCCTGTGGAT 1 TCCTGTGGCC 1 TCCTGTGTCA 1 TCCTGTTGGT 1 TCCTGTTTCA 1 TCCTTAAAAA 1 TCCTTAAGCC 1 TCCTTACTAA 1 TCCTTAGCCT 1 TCCTTAGGAA 1 TCCTTATAAG 1 TCCTTATTAG 1 TCCTTCAAAG 1 TCCTTCCAAG 1 TCCTTCCCCT 1 TCCTTCTCCA 5 TCCTTCTGCC 1 TCCTTCTGTG 1 TCCTTGACCA 2 TCCTTGAGGG 1 TCCTTGCAGC 1 TCCTTGCTTC 1 TCCTTGGAAG 1 TCCTTGGCCA 1 TCCTTGGTCA 1 TCCTTGTTAG 1 TCCTTGTTCG 1 TCCTTGTTGG 2 TCCTTTAAGC 1 TCCTTTACCT 1 TCCTTTCCAA 1 TCCTTTGACC 1 TCCTTTGCAA 1 TCCTTTGCTC 1 TCCTTTGGAA 1 TCCTTTGGGT 1 TCCTTTGTGC 1 TCCTTTTAAA 1 TCCTTTTCAC 2 TCCTTTTCCA 1 TCGAAAAACC 1 TCGAAACCCT 1 TCGAAAGTTC 1 TCGAACCCCA 1 TCGAAGAACC 1 TCGAAGCCAC 1 TCGAAGCCCC 162 TCGAAGCCTC 1 TCGAAGCTCC 1 TCGAAGGAAC 1 TCGAAGGCCC 1 TCGAAGTGCC 1 TCGAATGTCC 1 TCGAATTTTA 1 TCGACATTTG 1 TCGAGCCATC 1 TCGAGCCCAG 1 TCGAGCCCCC 1 TCGAGGAGGA 1 TCGAGGCCCC 1 TCGATATTAA 1 TCGATCGGGC 1 TCGATGAAAG 2 TCGCAAAACA 1 TCGCAAGCAA 1 TCGCACACGC 1 TCGCACAGAA 1 TCGCACGTCA 1 TCGCAGCCCA 1 TCGCAGGTCA 1 TCGCATACAT 1 TCGCCAACGT 1 TCGCCACCGC 1 TCGCCCAAGC 1 TCGCCCACTC 2 TCGCCCAGGC 1 TCGCCGAACA 1 TCGCCGCACA 1 TCGCCGCGAC 2 TCGCCGGGCG 3 TCGCCGGTAC 1 TCGCCGTACG 1 TCGCCGTTCA 1 TCGCCTCTGC 1 TCGCCTGGGA 1 TCGCCTTTTT 1 TCGCGCAGGC 1 TCGCGCCGGA 1 TCGCGGTACA 1 TCGCTAGTAA 1 TCGCTCAGCA 1 TCGCTCAGTG 1 TCGCTCTATG 1 TCGCTCTCCG 1 TCGCTGCACT 1 TCGCTGCCAA 1 TCGCTGTACA 1 TCGGAACAAT 1 TCGGAATTCT 1 TCGGACATCT 1 TCGGAGAAAA 2 TCGGAGCCCC 2 TCGGAGCTGC 1 TCGGATATGA 1 TCGGATCTTT 3 TCGGATGCAC 1 TCGGCATCTG 1 TCGGCCAATG 1 TCGGCCAGGA 1 TCGGCCAGGT 1 TCGGCCCCAG 1 TCGGCCCGGC 1 TCGGCCTGCC 1 TCGGCGCCGG 2 TCGGCGTACA 1 TCGGCTAAGC 1 TCGGCTGACA 1 TCGGGACCCG 1 TCGGGAGCTG 5 TCGGGAGGAG 1 TCGGGCTTAA 2 TCGGGGCCCC 2 TCGGGTGTGG 2 TCGGGTTGTT 1 TCGGTCCTTC 2 TCGGTGGCCT 1 TCGGTGTTCG 3 TCGGTTACAA 5 TCGGTTTCCG 1 TCGTAAACTC 1 TCGTAACGAG 1 TCGTAATTAC 1 TCGTACAATA 1 TCGTACCCAG 1 TCGTACGTAC 1 TCGTAGAAAC 1 TCGTAGAATT 1 TCGTAGGTAC 1 TCGTATGGAG 1 TCGTCAAACA 1 TCGTCACACT 1 TCGTCAGGAC 1 TCGTCGCAGA 4 TCGTCGTACA 1 TCGTCTGGTC 1 TCGTCTGGTT 1 TCGTCTTTAT 3 TCGTGATTTG 1 TCGTGGACAC 1 TCGTGGATCT 1 TCGTGGCTCT 1 TCGTGGGGGT 1 TCGTGGTAAT 1 TCGTGTGCAT 1 TCGTGTGTTA 1 TCGTTAAGAG 1 TCGTTACTAG 1 TCGTTCTTTG 1 TCGTTGCATC 1 TCGTTGTGCT 2 TCGTTGTTTT 1 TCGTTTCCTT 3 TCGTTTGAAC 1 TCTAAAACAC 9 TCTAAAATAA 1 TCTAAAATAC 2 TCTAAAGGTC 1 TCTAAAGTTC 1 TCTAAATTTT 1 TCTAACACCC 1 TCTAACCCCT 1 TCTAACCTGT 1 TCTAACTACG 2 TCTAAGAAAA 1 TCTAAGACAC 1 TCTAAGCAGG 2 TCTAAGGTCA 1 TCTAAGGTTG 1 TCTAAGTCAG 1 TCTAAGTTTC 1 TCTAATCTCC 1 TCTACAAAGA 2 TCTACAAATA 1 TCTACAAGCA 1 TCTACACAAA 1 TCTACATATT 1 TCTACCAAAA 1 TCTACCAAAT 1 TCTACCAGCT 1 TCTACGACCT 1 TCTACGTGTA 1 TCTACTAAAA 5 TCTACTAAAT 1 TCTACTAAGA 1 TCTACTAGTT 1 TCTACTCAGC 1 TCTACTCCTC 1 TCTACTGTTA 1 TCTACTTTTG 1 TCTAGAACTG 1 TCTAGAAGCA 1 TCTAGCACCG 1 TCTAGCTTCA 1 TCTAGGGGAA 1 TCTAGGGTAC 1 TCTAGTATTA 1 TCTAGTCACT 1 TCTATAATCC 1 TCTATACTCC 1 TCTATAGAGT 1 TCTATAGGTC 1 TCTATAGTCC 1 TCTATCAAAA 1 TCTATCTCAG 2 TCTATCTTCA 1 TCTATGCACA 1 TCTATGCAGC 1 TCTATTTAAC 1 TCTCAAAAAA 3 TCTCAAAAGG 1 TCTCAAACAC 1 TCTCAAATAC 1 TCTCAACTCA 1 TCTCAAGAAG 4 TCTCAAGTAG 1 TCTCAATTAT 1 TCTCAATTCT 4 TCTCACAGCT 1 TCTCACCTTA 1 TCTCACGCCT 1 TCTCAGATGA 2 TCTCAGCTGT 1 TCTCAGGACC 1 TCTCAGGAGT 1 TCTCAGGCAC 1 TCTCAGGCTG 1 TCTCAGTACA 1 TCTCAGTGCA 1 TCTCAGTGTC 1 TCTCAGTTAC 1 TCTCATATGA 1 TCTCATCTAC 1 TCTCATTAAG 2 TCTCCAACAA 1 TCTCCAAGGA 3 TCTCCAGCCA 1 TCTCCAGCCT 1 TCTCCAGGAA 10 TCTCCAGGTG 1 TCTCCATAAC 1 TCTCCATAAG 1 TCTCCATACC 1 TCTCCATCAC 1 TCTCCATTCC 1 TCTCCCAGGA 1 TCTCCCAGGC 2 TCTCCCCTTT 1 TCTCCCTTCA 1 TCTCCGAACA 1 TCTCCGTATA 1 TCTCCGTATC 1 TCTCCGTCCA 1 TCTCCGTCCC 1 TCTCCTTACA 1 TCTCCTTCAC 1 TCTCCTTCAT 1 TCTCGACCTG 1 TCTCGTCATC 1 TCTCGTTCAT 1 TCTCGTTTTG 1 TCTCTAAAAA 1 TCTCTAAATG 1 TCTCTAAGCC 1 TCTCTACAAA 2 TCTCTACAAG 2 TCTCTACCCA 6 TCTCTACTAA 4 TCTCTACTGA 1 TCTCTATTCA 1 TCTCTCACAC 1 TCTCTCCACC 1 TCTCTCCTCA 1 TCTCTCTTTT 1 TCTCTGAACA 1 TCTCTGATCA 1 TCTCTGATGC 3 TCTCTGCAAA 3 TCTCTGCAAG 1 TCTCTGCATT 1 TCTCTGCTAA 1 TCTCTGCTGC 2 TCTCTGCTTA 1 TCTCTGGGGC 1 TCTCTGTACA 2 TCTCTGTAGT 1 TCTCTGTGCA 1 TCTCTTCACA 1 TCTCTTCACC 16 TCTCTTGACA 1 TCTCTTGCCT 1 TCTCTTGTCC 1 TCTCTTTAAG 1 TCTCTTTACC 1 TCTCTTTTTC 2 TCTGAAAGAA 1 TCTGAAATCC 1 TCTGAACTAT 1 TCTGAACTTA 1 TCTGAAGTCA 2 TCTGAAGTGG 1 TCTGAATCGG 1 TCTGAATTCC 1 TCTGACAAAC 5 TCTGACAAAG 1 TCTGACCACC 5 TCTGACCTTC 1 TCTGACTACA 1 TCTGAGAAGA 1 TCTGAGACCC 1 TCTGAGACCT 1 TCTGAGACTC 1 TCTGAGATTT 1 TCTGAGCCAG 4 TCTGAGGAAC 1 TCTGAGGCCC 1 TCTGATAGCT 1 TCTGATATGG 1 TCTGATCCCC 2 TCTGATCTTG 1 TCTGATCTTT 1 TCTGATGTGA 1 TCTGATTTAG 1 TCTGCAAAAA 2 TCTGCAAAGG 3 TCTGCAACTG 1 TCTGCAAGAA 1 TCTGCAAGAC 1 TCTGCAAGCA 1 TCTGCAATCC 1 TCTGCAATGA 3 TCTGCACATC 2 TCTGCACTGA 2 TCTGCAGATG 1 TCTGCAGGGG 1 TCTGCATTTT 1 TCTGCCAAAT 1 TCTGCCTAGA 1 TCTGCCTGGA 1 TCTGCCTGGG 4 TCTGCCTGTC 4 TCTGCGCATC 2 TCTGCGCTCA 1 TCTGCGTCTT 1 TCTGCTAAAA 5 TCTGCTAAAG 6 TCTGCTACTT 1 TCTGCTCACA 1 TCTGCTGAAT 1 TCTGCTGTAA 1 TCTGCTTACA 2 TCTGCTTAGC 1 TCTGCTTCTA 1 TCTGCTTGAG 1 TCTGCTTGCT 1 TCTGCTTTTG 1 TCTGGAAGTG 1 TCTGGACCGG 1 TCTGGACTCC 1 TCTGGACTCG 1 TCTGGATCCC 1 TCTGGCAATG 1 TCTGGCAATT 1 TCTGGCAGTA 1 TCTGGCATAG 1 TCTGGCATTG 1 TCTGGCATTT 1 TCTGGCCCAT 1 TCTGGCCTGC 1 TCTGGCTAAT 1 TCTGGCTCCT 1 TCTGGCTGAT 1 TCTGGCTTCC 1 TCTGGCTTGG 2 TCTGGGAAAT 1 TCTGGGAGAA 2 TCTGGGAGAG 1 TCTGGGGACG 3 TCTGGGGCAA 1 TCTGGGGCTT 1 TCTGGGTAGA 2 TCTGGGTTTA 2 TCTGGTCTGG 4 TCTGGTGACA 1 TCTGGTGCCA 1 TCTGGTGCCG 1 TCTGGTGGCC 2 TCTGGTGTTT 1 TCTGGTTCTT 1 TCTGGTTTGT 8 TCTGTAACAC 3 TCTGTAAGCT 1 TCTGTAATCC 25 TCTGTAATCT 1 TCTGTAATTC 2 TCTGTACACC 4 TCTGTAGGCT 2 TCTGTAGTCC 5 TCTGTAGTGT 1 TCTGTATACA 1 TCTGTATCCC 2 TCTGTCAAGA 3 TCTGTCAAGC 1 TCTGTCAATC 1 TCTGTCATCC 1 TCTGTCCAAA 1 TCTGTCCCCC 1 TCTGTCCTCA 7 TCTGTCCTTT 1 TCTGTGAATA 1 TCTGTGACAG 1 TCTGTGACCC 1 TCTGTGACGG 1 TCTGTGAGCT 1 TCTGTGATCC 3 TCTGTGCAGG 1 TCTGTGCGTG 1 TCTGTGCTCA 1 TCTGTGCTCC 3 TCTGTGCTCT 1 TCTGTGGCAG 1 TCTGTGGTCC 6 TCTGTGTCCT 1 TCTGTGTGCA 2 TCTGTGTGTC 1 TCTGTTACAA 6 TCTGTTATTG 1 TCTGTTCTGG 1 TCTGTTCTTT 1 TCTGTTGACT 1 TCTGTTGAGG 1 TCTGTTGAGT 1 TCTGTTGTCA 1 TCTGTTGTTC 1 TCTGTTTACA 2 TCTGTTTATC 2 TCTGTTTCCA 1 TCTGTTTTGG 1 TCTGTTTTTC 1 TCTTAAATAG 1 TCTTAAATCT 1 TCTTAATGAA 1 TCTTACGCGT 1 TCTTACTCAG 1 TCTTAGGTTG 1 TCTTATGCCG 1 TCTTATGTCT 2 TCTTATGTTG 1 TCTTATTAAG 1 TCTTATTCCA 1 TCTTCAGATT 1 TCTTCAGGCT 1 TCTTCAGGGA 1 TCTTCATCAT 1 TCTTCATCCC 2 TCTTCCAATG 1 TCTTCCAGCC 1 TCTTCCAGGA 4 TCTTCCAGGT 1 TCTTCCATTT 1 TCTTCCCCAG 1 TCTTCCCCAT 1 TCTTCCCTCA 2 TCTTCCTCAG 1 TCTTCGGCTC 1 TCTTCGTATC 1 TCTTCGTCCT 2 TCTTCTAAAA 3 TCTTCTAGTA 1 TCTTCTCAGG 1 TCTTCTCCCT 6 TCTTCTGCTC 1 TCTTCTGCTG 2 TCTTCTGCTT 2 TCTTCTGGCT 1 TCTTCTGGGG 1 TCTTCTGTTA 1 TCTTCTTCGA 1 TCTTCTTTCT 1 TCTTCTTTTT 1 TCTTGACAAC 1 TCTTGAGAAG 1 TCTTGAGGCC 1 TCTTGAGTAC 2 TCTTGAGTTT 1 TCTTGATGTC 1 TCTTGCACTG 1 TCTTGCCACC 1 TCTTGCCCTT 1 TCTTGCCTCA 1 TCTTGGACAT 1 TCTTGGAGAT 1 TCTTGGCAGC 1 TCTTGGCCTT 1 TCTTGGGACC 1 TCTTGGGAGG 1 TCTTGGGCTT 2 TCTTGGTGCA 1 TCTTGGTTAG 1 TCTTGTAACT 1 TCTTGTATAT 1 TCTTGTCTAG 1 TCTTGTGCAT 12 TCTTGTGGCG 1 TCTTGTTAGG 1 TCTTGTTTCT 1 TCTTTAAAGT 1 TCTTTAACCC 1 TCTTTAATAA 2 TCTTTACATA 1 TCTTTACTTG 4 TCTTTAGTCT 1 TCTTTAGTTG 1 TCTTTATCAA 2 TCTTTATCTT 1 TCTTTCAAGG 2 TCTTTCCACA 1 TCTTTCCAGA 3 TCTTTCCAGG 1 TCTTTCCCCA 1 TCTTTCGTCT 1 TCTTTCTCCC 1 TCTTTCTGGC 1 TCTTTCTTCA 1 TCTTTCTTGG 1 TCTTTCTTTT 2 TCTTTGAATA 1 TCTTTGAGGT 1 TCTTTGAGTG 3 TCTTTGATCT 4 TCTTTGCACC 2 TCTTTGCCCA 1 TCTTTGGCAA 1 TCTTTGGTCC 1 TCTTTGTGTG 1 TCTTTGTGTT 1 TCTTTTATTT 1 TCTTTTCAAA 2 TCTTTTCAGA 2 TCTTTTCTCA 1 TCTTTTCTTC 1 TCTTTTGGCT 1 TCTTTTGGTG 1 TCTTTTTCAA 1 TCTTTTTGTG 1 TGAAAAAAAA 8 TGAAAAAGTG 1 TGAAAACCTC 2 TGAAAAGAAG 1 TGAAAAGCTA 1 TGAAAAGCTT 1 TGAAAATACA 1 TGAAAATCGA 1 TGAAACAAGC 1 TGAAACAATT 1 TGAAACACTA 1 TGAAACCACA 1 TGAAACCCAG 1 TGAAACCCCA 2 TGAAACCCCC 1 TGAAACCCCG 3 TGAAACCCTG 1 TGAAACGCCA 1 TGAAACTACA 1 TGAAACTCAT 4 TGAAACTCGT 1 TGAAACTGCA 1 TGAAACTGTA 1 TGAAAGAAAA 1 TGAAAGAAGT 1 TGAAAGATAG 1 TGAAAGCACT 1 TGAAAGGAAT 1 TGAAAGGTGA 1 TGAAAGTAAC 1 TGAAAGTGAC 1 TGAAAGTGGT 1 TGAAAGTGTG 1 TGAAATAAAA 11 TGAAATACGA 1 TGAAATCTGT 1 TGAAATGCAC 1 TGAAATGGGC 1 TGAAATGTAA 1 TGAAATTGCA 1 TGAACAATCC 1 TGAACAGAAT 2 TGAACAGCAA 1 TGAACAGCTC 1 TGAACAGTGT 1 TGAACCAGGT 1 TGAACCCAGG 3 TGAACCCGCC 10 TGAACCCGTT 1 TGAACCGCCA 1 TGAACCTAAG 1 TGAACCTCGA 1 TGAACCTGGA 1 TGAACTACAA 1 TGAACTAGTC 1 TGAACTCCTG 1 TGAACTCTCA 1 TGAACTTGGG 1 TGAACTTTCC 1 TGAAGAAAAA 1 TGAAGAAAAG 1 TGAAGAATAT 1 TGAAGACAAA 1 TGAAGACACA 1 TGAAGACACT 1 TGAAGACATT 1 TGAAGAGAAG 1 TGAAGAGACG 1 TGAAGAGAGC 1 TGAAGAGCCC 1 TGAAGATATT 1 TGAAGATTCT 1 TGAAGCAGTA 1 TGAAGCTCTG 1 TGAAGCTGGG 1 TGAAGGAGCC 14 TGAAGGATGC 2 TGAAGGATGT 1 TGAAGGCCTC 1 TGAAGGCTCT 1 TGAAGGTTGA 3 TGAAGGTTTG 1 TGAAGTAACA 2 TGAAGTCACT 2 TGAAGTCTAC 1 TGAAGTGCAA 1 TGAAGTGCCC 1 TGAAGTGCTT 1 TGAAGTGTAT 1 TGAAGTTATA 1 TGAAGTTCAA 1 TGAATAAAAT 2 TGAATACATA 1 TGAATACTAC 1 TGAATATGAT 1 TGAATATTTA 1 TGAATCACTT 1 TGAATCGCTT 1 TGAATCTGGG 1 TGAATGATAC 1 TGAATGGCCT 2 TGAATGGGGG 1 TGAATGGTTA 1 TGAATGTAAG 1 TGAATTATTG 1 TGAATTCACT 2 TGACAAAATC 1 TGACAACTCT 1 TGACAACTGA 1 TGACAAGCTG 1 TGACAAGGAC 1 TGACAAGGAT 1 TGACAATTAC 1 TGACAATTGC 1 TGACACACAG 1 TGACACAGCC 1 TGACACCCAC 1 TGACACTTAT 1 TGACACTTTC 1 TGACAGAAAC 1 TGACAGAGTG 4 TGACAGTCAA 1 TGACATATAA 1 TGACATCGCT 1 TGACATCTGA 2 TGACATTCCG 1 TGACCAAAAA 1 TGACCACAGT 1 TGACCACCTT 1 TGACCACGGA 1 TGACCACTAA 1 TGACCAGGAA 1 TGACCATATT 1 TGACCCAAGA 1 TGACCCAGGA 1 TGACCCCAAA 1 TGACCCCCTC 1 TGACCCCGGA 1 TGACCCTATC 1 TGACCGAGGG 1 TGACCTATTT 1 TGACCTCACA 1 TGACCTCCAG 1 TGACCTGCTT 1 TGACCTTACC 4 TGACCTTATC 1 TGACCTTGTC 1 TGACCTTTGC 1 TGACGAACAC 1 TGACGACGAC 1 TGACGATAGC 1 TGACGATCGA 1 TGACGCCCAG 1 TGACGCTCCC 1 TGACTAAGTT 1 TGACTAATTA 1 TGACTAATTG 3 TGACTACTGA 2 TGACTAGCAC 1 TGACTAGCCA 1 TGACTCAGGG 1 TGACTCCGTC 1 TGACTCCTAG 1 TGACTCTCCG 1 TGACTGAAGC 3 TGACTGAATC 1 TGACTGAGAC 1 TGACTGAGGG 1 TGACTGCTTT 1 TGACTGGCAG 3 TGACTGGGAA 1 TGACTGGTCA 2 TGACTGTCTA 1 TGACTTAAAT 1 TGACTTCACT 3 TGACTTCAGT 1 TGACTTGTAA 1 TGACTTTAAT 1 TGACTTTGCT 1 TGAGAAAAAC 1 TGAGAAAATA 1 TGAGAAGAAG 20 TGAGAAGCTA 1 TGAGAATAAC 1 TGAGAATTGC 1 TGAGACAAGA 1 TGAGACCCAT 1 TGAGACCTCG 1 TGAGAGCTGG 1 TGAGAGGAGA 2 TGAGAGGATA 1 TGAGAGGCTG 1 TGAGAGGGTG 2 TGAGAGTATT 2 TGAGATACAA 1 TGAGATACTG 1 TGAGATAGGA 1 TGAGATCTTC 1 TGAGATGGGT 1 TGAGATTGTC 1 TGAGATTTCT 1 TGAGCAAATG 1 TGAGCAACTG 1 TGAGCATAGG 1 TGAGCATATG 1 TGAGCATTCA 1 TGAGCCAAAT 1 TGAGCCAATA 2 TGAGCCACCA 1 TGAGCCAGGA 1 TGAGCCCGGC 1 TGAGCCTAGA 1 TGAGCCTAGG 1 TGAGCCTATG 1 TGAGCCTCGT 8 TGAGCCTCTC 1 TGAGCGATCA 1 TGAGCGTCGT 1 TGAGCGTGGG 3 TGAGCTAACT 1 TGAGCTAAGG 1 TGAGCTCAGG 1 TGAGCTTGAT 1 TGAGCTTGTG 1 TGAGGAAGAG 1 TGAGGAAGCA 1 TGAGGAATCC 1 TGAGGAATCT 1 TGAGGACACA 3 TGAGGACACT 1 TGAGGACAGT 1 TGAGGAGAAA 1 TGAGGAGCTC 1 TGAGGATGCA 1 TGAGGCAAGC 1 TGAGGCACAT 1 TGAGGCAGAG 1 TGAGGCAGGG 1 TGAGGCCAGG 6 TGAGGCCTCT 5 TGAGGGAATA 31 TGAGGGAGCC 1 TGAGGGAGGG 2 TGAGGGATAA 1 TGAGGGATCT 1 TGAGGGATGG 1 TGAGGGCAGA 2 TGAGGGCTGG 1 TGAGGGGAAG 1 TGAGGGGCAG 1 TGAGGGGTAA 1 TGAGGGGTGA 3 TGAGGGGTGG 1 TGAGGGTTAG 1 TGAGGGTTCC 1 TGAGGTCACT 1 TGAGGTCAGG 1 TGAGGTGAAG 1 TGAGGTTTGG 1 TGAGTAAACA 1 TGAGTAAGAT 1 TGAGTAGGGT 1 TGAGTAGTAA 1 TGAGTAGTGA 1 TGAGTATCTA 1 TGAGTCACGT 1 TGAGTCCAAC 1 TGAGTCCATA 1 TGAGTCTATA 1 TGAGTCTGGC 1 TGAGTGAAGA 3 TGAGTGAAGG 1 TGAGTGACAC 1 TGAGTGACAG 7 TGAGTGGACA 2 TGAGTTAATC 1 TGAGTTCACT 1 TGAGTTCAGC 1 TGAGTTGAAG 1 TGAGTTGGGC 1 TGAGTTGGGT 2 TGAGTTTACC 1 TGAGTTTACT 1 TGAGTTTGCT 1 TGATAAACTC 1 TGATAACTAC 1 TGATAATCAA 1 TGATAATGGA 2 TGATAATGGT 1 TGATAATTCA 4 TGATACAGAT 1 TGATACCCCC 1 TGATACTTTT 1 TGATAGCACA 1 TGATAGGTAT 1 TGATATAATC 1 TGATATATGG 2 TGATATCACT 5 TGATATCCTG 1 TGATATGTGA 1 TGATATTAGG 1 TGATATTGGT 1 TGATATTTTG 1 TGATCAAAAA 1 TGATCACACT 1 TGATCACCTA 1 TGATCATACC 1 TGATCATAGT 1 TGATCCACTC 1 TGATCCCTTC 1 TGATCCGCGC 1 TGATCCGGGG 1 TGATCCTCCC 1 TGATCCTCTC 1 TGATCCTGCC 1 TGATCCTGCT 1 TGATCTAACA 1 TGATCTCACT 5 TGATCTCCAA 5 TGATCTCGGC 1 TGATCTCTGA 1 TGATCTCTGT 1 TGATCTGACA 1 TGATCTGCCA 1 TGATCTGCCT 3 TGATCTGGGT 1 TGATCTTACT 1 TGATGAAAGA 1 TGATGAAGCC 1 TGATGAATGT 1 TGATGAGAGT 1 TGATGAGTGC 1 TGATGATGTA 2 TGATGATGTT 1 TGATGCAGCC 1 TGATGCCTAG 1 TGATGCCTCC 4 TGATGCGCGC 3 TGATGGCAAT 1 TGATGGCTCC 1 TGATGGGATA 2 TGATGGGCAT 1 TGATGGTCCC 1 TGATGGTGAC 1 TGATGGTTTT 1 TGATGTAAAC 1 TGATGTCACT 1 TGATGTCCAA 2 TGATGTCCAC 1 TGATGTCGGG 1 TGATGTCGGT 1 TGATGTCTAG 1 TGATGTCTCC 1 TGATGTCTGG 2 TGATGTCTGT 1 TGATGTGAGC 1 TGATGTGATC 1 TGATGTGGTG 1 TGATGTTCCA 1 TGATGTTTGA 3 TGATGTTTGC 3 TGATGTTTTT 2 TGATTAAAAC 1 TGATTAAAGG 1 TGATTAAGGA 1 TGATTAAGGT 6 TGATTACAAT 2 TGATTACACT 3 TGATTACCCT 1 TGATTAGGCT 1 TGATTATCTT 1 TGATTCACTC 1 TGATTCACTG 1 TGATTCACTT 8 TGATTCAGTT 1 TGATTCATTT 1 TGATTCCACT 10 TGATTCTGTT 1 TGATTGAGGC 1 TGATTGATGG 1 TGATTGATTT 2 TGATTGCACT 2 TGATTGCCCT 1 TGATTGGGCA 2 TGATTGGTGG 13 TGATTGTGTT 1 TGATTGTTGT 1 TGATTTCACC 3 TGATTTCACT 502 TGATTTCAGG 2 TGATTTCAGT 1 TGATTTCATT 1 TGATTTCCAC 1 TGATTTCCCT 1 TGATTTCCTT 1 TGATTTCGCT 4 TGATTTCTCA 1 TGATTTCTCT 1 TGATTTTACT 3 TGATTTTCAC 1 TGATTTTCCA 1 TGATTTTCTT 1 TGATTTTTAA 1 TGCAAAACTG 1 TGCAAACACA 1 TGCAAACTAC 1 TGCAAAGAAG 1 TGCAAAGACA 4 TGCAAAGCTT 1 TGCAAAGTAC 1 TGCAAATTCC 1 TGCAACAATT 2 TGCAACCAAA 1 TGCAACCAGG 1 TGCAACGCTG 1 TGCAACTACA 2 TGCAAGGCCT 1 TGCAATAAGA 1 TGCAATAAGC 2 TGCAATAGGG 1 TGCAATAGGT 1 TGCAATTGGT 1 TGCACAAAGG 1 TGCACAAGGT 1 TGCACAATAT 5 TGCACACAAA 1 TGCACACACA 2 TGCACACATA 1 TGCACACCTT 1 TGCACACGGA 1 TGCACAGGGG 1 TGCACAGTAT 1 TGCACCACAG 2 TGCACCAGTG 1 TGCACCCAAA 1 TGCACCCAGA 1 TGCACCCTCT 1 TGCACCTACA 1 TGCACCTTTA 1 TGCACGAAGC 1 TGCACGACTA 1 TGCACGATAT 1 TGCACGCCTG 1 TGCACGTACA 1 TGCACGTATA 1 TGCACGTCTT 1 TGCACGTTAT 1 TGCACGTTGT 1 TGCACGTTTT 54 TGCACTACAA 2 TGCACTGAAT 1 TGCACTGTGG 1 TGCACTTCAC 1 TGCACTTGAC 1 TGCAGAAAAA 1 TGCAGAAAGC 1 TGCAGAACGC 1 TGCAGAACGG 4 TGCAGAATGT 1 TGCAGACCCA 5 TGCAGACTCA 1 TGCAGAGACA 4 TGCAGAGTTT 1 TGCAGATATT 1 TGCAGATCAG 1 TGCAGATGAT 1 TGCAGATTGC 2 TGCAGATTTT 1 TGCAGCAACC 1 TGCAGCACGA 16 TGCAGCATAT 1 TGCAGCATTA 1 TGCAGCCGAG 1 TGCAGCCGCT 1 TGCAGCGCCT 1 TGCAGCGGGC 1 TGCAGCTAGA 1 TGCAGCTCTC 1 TGCAGCTGCT 1 TGCAGCTTAT 1 TGCAGGCCCA 1 TGCAGGCCTG 4 TGCAGGCTCC 1 TGCAGGCTGA 1 TGCAGGGGAG 1 TGCAGGTGTT 1 TGCAGGTTTG 1 TGCAGTAACA 1 TGCAGTATTA 1 TGCAGTCACT 1 TGCAGTGCCC 1 TGCAGTGTTC 1 TGCAGTTCAC 1 TGCAGTTTGT 1 TGCATACAAA 1 TGCATAGGGG 1 TGCATAGGTG 1 TGCATAGTTG 1 TGCATATGAA 1 TGCATATTGT 1 TGCATCTGGT 10 TGCATCTGTA 1 TGCATCTTCT 1 TGCATTATGG 1 TGCATTCTCT 1 TGCATTTAAA 1 TGCATTTGAA 1 TGCATTTTAG 1 TGCCAAAAAA 1 TGCCAAATTA 1 TGCCAACACG 1 TGCCAACTCT 1 TGCCAAGATT 1 TGCCAAGCAT 1 TGCCAAGTCC 1 TGCCACAGAG 1 TGCCACCACA 4 TGCCACCACC 1 TGCCACCACG 1 TGCCACCATA 2 TGCCACCATT 1 TGCCACCCCA 2 TGCCACCCCG 2 TGCCACCCTG 1 TGCCACGCAT 1 TGCCACGGTG 1 TGCCACTATG 1 TGCCACTGCA 3 TGCCACTGCG 1 TGCCACTGGG 1 TGCCAGAAAT 1 TGCCAGACAG 1 TGCCAGATCT 1 TGCCAGCAAC 1 TGCCAGCTAC 2 TGCCAGGAAA 1 TGCCAGGCAC 3 TGCCAGGCAT 1 TGCCAGGGAA 1 TGCCAGTAGA 1 TGCCAGTGGA 1 TGCCAGTTTA 1 TGCCATAAAT 1 TGCCATATTT 1 TGCCATCAGG 1 TGCCATCGTC 1 TGCCATCTGT 1 TGCCATCTTT 1 TGCCATTATG 1 TGCCATTGTT 1 TGCCCAACTT 1 TGCCCAAGAT 1 TGCCCAAGCT 1 TGCCCAATAT 1 TGCCCAGAAA 1 TGCCCAGCTG 1 TGCCCAGGTG 1 TGCCCAGGTT 1 TGCCCATACA 1 TGCCCATATT 1 TGCCCATTTC 1 TGCCCCAACA 1 TGCCCCAAGT 1 TGCCCCCAGG 2 TGCCCCCCTA 2 TGCCCCCGGG 1 TGCCCCTAGA 1 TGCCCCTATG 1 TGCCCCTGAA 2 TGCCCGGCCC 1 TGCCCGTAAT 1 TGCCCGTGCA 1 TGCCCGTTTT 1 TGCCCTAAAA 2 TGCCCTAGAC 1 TGCCCTCAAA 11 TGCCCTCAGA 3 TGCCCTCAGG 17 TGCCCTCCTG 1 TGCCCTGATG 1 TGCCCTGCCA 1 TGCCCTTACA 2 TGCCCTTCGG 1 TGCCGAGAGA 1 TGCCGAGATT 1 TGCCGCACGA 1 TGCCGCCACA 1 TGCCGCTAAT 1 TGCCGGTAGT 1 TGCCGGTTTT 1 TGCCGTAAAT 3 TGCCGTAATT 1 TGCCGTACAT 2 TGCCGTCGGA 1 TGCCGTGAGC 1 TGCCGTGCCT 1 TGCCTACTAA 1 TGCCTAGACC 4 TGCCTAGGAA 1 TGCCTATAAT 2 TGCCTATAGT 2 TGCCTATCAT 1 TGCCTATGGG 1 TGCCTCATTG 1 TGCCTCCAAG 1 TGCCTCCCAT 2 TGCCTCGGAG 1 TGCCTCGTAC 1 TGCCTCGTGA 2 TGCCTCTAGC 1 TGCCTCTAGT 1 TGCCTCTGCA 1 TGCCTCTGCC 1 TGCCTCTGCG 11 TGCCTCTGTG 1 TGCCTCTTAC 1 TGCCTGACAA 1 TGCCTGAGAT 2 TGCCTGCAAT 2 TGCCTGCACC 32 TGCCTGCAGA 1 TGCCTGCAGT 1 TGCCTGCCTT 1 TGCCTGCGCC 1 TGCCTGCGGT 1 TGCCTGCTCC 2 TGCCTGGGCT 1 TGCCTGTAAA 1 TGCCTGTAAT 15 TGCCTGTACT 2 TGCCTGTAGA 1 TGCCTGTAGC 1 TGCCTGTAGG 1 TGCCTGTAGT 24 TGCCTGTATT 1 TGCCTGTCGG 1 TGCCTGTGAA 1 TGCCTGTGAT 1 TGCCTGTGGC 4 TGCCTGTGGT 9 TGCCTGTTGG 1 TGCCTTAAAC 1 TGCCTTAACC 1 TGCCTTAATG 1 TGCCTTACCT 1 TGCCTTACTT 4 TGCCTTAGAC 1 TGCCTTAGGT 1 TGCCTTCCAG 1 TGCCTTGGGC 1 TGCGAATAAA 1 TGCGACTCTG 1 TGCGAGCCAC 1 TGCGAGCCGA 1 TGCGCATATC 1 TGCGCCTGGG 1 TGCGCGAATA 1 TGCGCGCCCT 5 TGCGCGTACA 1 TGCGCGTGCC 1 TGCGCTGAAT 1 TGCGCTGCTT 1 TGCGCTGGCC 3 TGCGCTTACA 1 TGCGGAGCAG 1 TGCGGAGGCC 1 TGCGGCCTCT 1 TGCGGCGGTG 1 TGCGGCTGGG 1 TGCGGCTGGT 3 TGCGGGATAT 1 TGCGGTGGAG 1 TGCGTATGAA 2 TGCGTATTAA 1 TGCGTCACCG 6 TGCGTCCCTC 4 TGCGTCCTTT 1 TGCGTCTGGT 1 TGCGTCTTCC 1 TGCGTGCGTG 1 TGCGTTGAGA 1 TGCTAAAAAA 5 TGCTAAAACT 1 TGCTAACTGC 1 TGCTAAGGTG 1 TGCTACAATA 1 TGCTACGAAA 1 TGCTACTAAG 1 TGCTACTGCT 1 TGCTACTGGT 1 TGCTAGATTG 1 TGCTATCAAC 1 TGCTATCGCA 1 TGCTATGATC 1 TGCTATTTGG 1 TGCTATTTTA 1 TGCTCAAGGA 1 TGCTCAGAAC 1 TGCTCAGAGA 1 TGCTCAGTGG 1 TGCTCCAAAA 1 TGCTCCAGTG 1 TGCTCCCCAG 1 TGCTCCCTCT 1 TGCTCCCTGA 2 TGCTCCCTGG 1 TGCTCCTACC 22 TGCTCCTCAC 1 TGCTCCTGCT 2 TGCTCGAAAT 1 TGCTCTCTCT 5 TGCTCTCTGT 1 TGCTCTGAAT 1 TGCTCTGGCT 1 TGCTCTGGTT 1 TGCTCTGTGA 1 TGCTCTGTGC 1 TGCTCTGTGT 3 TGCTCTTTCT 1 TGCTGAAACT 2 TGCTGAAATG 1 TGCTGAACAA 1 TGCTGAACAC 1 TGCTGAACGC 1 TGCTGAACTG 1 TGCTGAATCA 2 TGCTGAGAGA 1 TGCTGAGGAA 2 TGCTGAGTTT 1 TGCTGATAAG 1 TGCTGATGAG 1 TGCTGATTTA 1 TGCTGCACGT 1 TGCTGCAGAA 1 TGCTGCATTG 3 TGCTGCCCTG 3 TGCTGCCGTG 1 TGCTGCCTCA 3 TGCTGCCTCT 1 TGCTGCCTGT 15 TGCTGCTACA 1 TGCTGCTGCT 1 TGCTGGAATG 1 TGCTGGAGAA 2 TGCTGGATTG 1 TGCTGGGGAC 1 TGCTGGGTGG 6 TGCTGGTACC 2 TGCTGGTAGT 1 TGCTGGTGCG 1 TGCTGGTGTG 4 TGCTGTAAAC 1 TGCTGTACTT 1 TGCTGTCCTG 1 TGCTGTGACG 1 TGCTGTGATC 2 TGCTGTGCAG 1 TGCTGTGCAT 3 TGCTGTGCCT 1 TGCTGTGTAT 1 TGCTGTTCCT 2 TGCTTAAGAT 1 TGCTTAGAGC 1 TGCTTATACT 1 TGCTTATGAA 1 TGCTTATTGG 1 TGCTTATTTT 1 TGCTTCAACT 1 TGCTTCATCT 8 TGCTTCCACC 1 TGCTTCCTGG 1 TGCTTCCTGT 1 TGCTTCCTTG 1 TGCTTCGTGA 1 TGCTTCTGGA 1 TGCTTCTTCT 1 TGCTTGAAAT 1 TGCTTGAAGG 1 TGCTTGACAA 2 TGCTTGAGCA 1 TGCTTGATTG 1 TGCTTGCACC 1 TGCTTGCGCA 1 TGCTTGCTCA 1 TGCTTGCTGG 1 TGCTTGGTGT 1 TGCTTGTCAA 1 TGCTTGTCCC 8 TGCTTGTCTC 1 TGCTTGTGGT 1 TGCTTTAGGT 1 TGCTTTGATG 1 TGCTTTGCAA 1 TGCTTTGCGT 1 TGCTTTGCTT 1 TGCTTTGGAC 1 TGCTTTGGGA 1 TGCTTTTAAA 2 TGCTTTTCAA 1 TGCTTTTCAG 1 TGCTTTTGCA 1 TGCTTTTGGA 1 TGCTTTTGTA 1 TGCTTTTTGA 1 TGGAAAAAAA 2 TGGAAAACTA 1 TGGAAAATAG 1 TGGAAAATCG 1 TGGAAAATTT 1 TGGAAACAAA 1 TGGAAACCTT 1 TGGAAACTGA 3 TGGAAAGCGG 2 TGGAAAGCTT 3 TGGAAATAAA 1 TGGAAATACA 1 TGGAAATAGG 1 TGGAAATGAC 5 TGGAAATGCT 1 TGGAACAGTG 1 TGGAACCGGA 1 TGGAACTGTA 1 TGGAACTGTG 2 TGGAAGAAGT 1 TGGAAGATTC 1 TGGAAGCAGC 1 TGGAAGCTAG 1 TGGAAGCTTT 1 TGGAAGGACC 1 TGGAAGGATG 1 TGGAAGGCAG 2 TGGAAGGGCA 2 TGGAAGGGCT 5 TGGAAGGTGG 1 TGGAAGTGTG 1 TGGAATCCAG 1 TGGAATCTGG 1 TGGAATGAGC 7 TGGAATGCTG 13 TGGAATGGAG 1 TGGAATGGGC 1 TGGAATGTTT 1 TGGAATTGTG 1 TGGACACAAG 1 TGGACACTCA 3 TGGACACTCT 1 TGGACACTTT 1 TGGACAGGAG 1 TGGACATATG 1 TGGACATCAG 1 TGGACATCTA 1 TGGACCAGAG 1 TGGACCAGGC 6 TGGACCAGTG 1 TGGACCCAAC 3 TGGACCGTCC 1 TGGACCGTGT 1 TGGACCTCCA 1 TGGACCTCTC 1 TGGACCTGGA 2 TGGACCTGGG 2 TGGACGCTGC 2 TGGACGGGCA 1 TGGACTCAAA 1 TGGACTGATG 1 TGGAGAAACT 1 TGGAGAAAGA 2 TGGAGAAGAG 1 TGGAGAATGT 1 TGGAGACTTG 1 TGGAGAGAAT 1 TGGAGAGAGT 1 TGGAGAGGGC 1 TGGAGAGTCG 2 TGGAGAGTGG 1 TGGAGATGAG 1 TGGAGATGTG 1 TGGAGCCACC 1 TGGAGCCTCA 1 TGGAGCCTGG 1 TGGAGCGCTA 1 TGGAGCTATG 1 TGGAGCTTCT 1 TGGAGGCCAG 1 TGGAGGGGCC 2 TGGAGGGGGG 1 TGGAGGGTAG 1 TGGAGGGTTA 1 TGGAGGTGCC 1 TGGAGGTGGG 3 TGGAGTAACA 1 TGGAGTAGAA 1 TGGAGTATGC 3 TGGAGTATGT 1 TGGAGTGCAG 1 TGGAGTGGAG 16 TGGATACTGA 1 TGGATAGACA 1 TGGATAGCCA 1 TGGATAGGCT 1 TGGATATCTC 1 TGGATATGTG 2 TGGATCACAA 2 TGGATCACAG 1 TGGATCACCA 1 TGGATCCTCG 2 TGGATCGCTT 1 TGGATCTTGC 1 TGGATGCAGA 1 TGGATGGATT 1 TGGATGGGGA 1 TGGATGGTAT 1 TGGATGTACT 1 TGGATGTTCC 1 TGGATTAAAT 1 TGGATTAGTA 1 TGGATTATGG 1 TGGATTCACT 1 TGGATTCAGC 1 TGGATTGTTA 1 TGGATTTCAC 1 TGGATTTCTT 1 TGGATTTTAG 1 TGGATTTTGA 1 TGGCAAAATT 1 TGGCAAACAC 2 TGGCAAACGT 2 TGGCAAAGCC 4 TGGCAAATCA 1 TGGCAACCGT 1 TGGCAACCTT 8 TGGCAAGAGT 1 TGGCAAGTTA 1 TGGCAAGTTT 3 TGGCAATAAA 1 TGGCAATCTG 1 TGGCAATTCG 1 TGGCAATTTA 1 TGGCACCAAG 1 TGGCACTCCA 1 TGGCACTGTT 1 TGGCAGAAGG 1 TGGCAGCTTC 1 TGGCAGCTTT 1 TGGCAGGAAC 1 TGGCAGGGCC 1 TGGCAGGTCC 1 TGGCAGTAGT 1 TGGCAGTATC 2 TGGCAGTGGG 1 TGGCATAAAA 1 TGGCATCCCA 1 TGGCATCGCA 1 TGGCATCTCT 1 TGGCATTTTA 1 TGGCCAAGGC 2 TGGCCAAGTC 1 TGGCCAATAC 1 TGGCCACGTG 1 TGGCCAGATG 1 TGGCCAGCAG 1 TGGCCAGGAT 1 TGGCCAGGCG 1 TGGCCAGTGG 1 TGGCCATAAA 1 TGGCCATACT 1 TGGCCATCTG 4 TGGCCATTTC 1 TGGCCCAGAC 1 TGGCCCAGGC 2 TGGCCCCACC 27 TGGCCCCAGG 2 TGGCCCCCCG 1 TGGCCCCCGA 1 TGGCCCCCGC 4 TGGCCCGACG 2 TGGCCCTCCA 2 TGGCCCTTTG 1 TGGCCGAACA 1 TGGCCGAACC 1 TGGCCGGATG 1 TGGCCGGCGC 1 TGGCCGGGCA 1 TGGCCGTACG 1 TGGCCTATGA 1 TGGCCTCACC 1 TGGCCTCCAT 1 TGGCCTCCCC 3 TGGCCTCTGG 1 TGGCCTCTGT 1 TGGCCTGCCC 8 TGGCCTGCTC 1 TGGCCTTCGG 1 TGGCCTTGGA 1 TGGCCTTGGC 1 TGGCCTTTCG 1 TGGCGATCGA 1 TGGCGCCAGT 1 TGGCGCGTGA 1 TGGCGCGTGT 5 TGGCGGAGTC 2 TGGCGGTACG 1 TGGCGGTGAA 1 TGGCGTACGG 36 TGGCGTATGC 2 TGGCGTCATC 1 TGGCGTTCAC 1 TGGCGTTCGG 1 TGGCTAAAAA 4 TGGCTAAATA 1 TGGCTACTAA 1 TGGCTACTTA 2 TGGCTAGCAA 1 TGGCTAGCAG 1 TGGCTAGTGC 1 TGGCTAGTGG 1 TGGCTAGTGT 3 TGGCTATCAA 1 TGGCTCAAAA 1 TGGCTCAAGA 1 TGGCTCATAC 1 TGGCTCATCT 1 TGGCTCATTT 1 TGGCTCTCCT 1 TGGCTCTGGA 1 TGGCTCTGTG 1 TGGCTCTTAG 1 TGGCTCTTGG 1 TGGCTGAATA 1 TGGCTGAGTG 1 TGGCTGAGTT 2 TGGCTGCCTA 1 TGGCTGGAAG 1 TGGCTGGACT 1 TGGCTGGAGG 1 TGGCTGGAGT 1 TGGCTGGGAA 4 TGGCTGGGGT 1 TGGCTGGTGG 1 TGGCTGTAAT 1 TGGCTGTAGT 3 TGGCTGTGGA 1 TGGCTGTGTG 5 TGGCTGTTGT 1 TGGCTTAACT 1 TGGCTTATTA 1 TGGCTTCAAG 2 TGGCTTCACT 1 TGGCTTCCCC 1 TGGCTTCTGA 1 TGGCTTGCTC 1 TGGCTTGGGG 1 TGGCTTGGGT 1 TGGCTTGTAC 1 TGGCTTTCAA 1 TGGCTTTCAT 1 TGGGAAAGCC 1 TGGGAAGAGG 1 TGGGAAGGAA 1 TGGGAAGGCC 1 TGGGAAGGGA 1 TGGGAAGTGC 1 TGGGAATTAT 1 TGGGAATTTT 1 TGGGACAAAA 1 TGGGACAGTT 1 TGGGACATAA 1 TGGGACATCG 1 TGGGACATCT 1 TGGGACCCTC 1 TGGGAGAAGT 2 TGGGAGAGCA 1 TGGGAGAGTC 1 TGGGAGCATC 1 TGGGAGCTTT 1 TGGGAGGGAG 1 TGGGAGGGGG 1 TGGGAGTAAA 1 TGGGAGTTGC 1 TGGGATGCGC 1 TGGGATGCTG 1 TGGGATGTTT 1 TGGGATTTGA 1 TGGGATTTGT 1 TGGGCAAAGA 1 TGGGCAAAGC 85 TGGGCAAAGG 1 TGGGCAGAGC 1 TGGGCAGATC 1 TGGGCAGCAT 1 TGGGCAGCTG 8 TGGGCATACA 1 TGGGCATCAG 1 TGGGCATCGT 1 TGGGCATTCA 1 TGGGCCAGGA 1 TGGGCCAGGC 1 TGGGCCCCTT 1 TGGGCCCGGG 1 TGGGCCCTGC 1 TGGGCCTCGT 1 TGGGCCTGCG 1 TGGGCCTGGC 1 TGGGCCTGTG 2 TGGGCCTTCC 2 TGGGCCTTTT 1 TGGGCGATAA 1 TGGGCGCCCA 1 TGGGCTAAAT 1 TGGGCTACTT 1 TGGGCTGGGG 1 TGGGGAAAAG 2 TGGGGAAACT 1 TGGGGAAATA 1 TGGGGAATGA 1 TGGGGACACA 1 TGGGGACTGG 1 TGGGGAGAGG 7 TGGGGAGCAG 1 TGGGGAGCCA 1 TGGGGATATA 1 TGGGGCCAGG 2 TGGGGCCAGT 1 TGGGGCCCAG 1 TGGGGCCGCA 10 TGGGGCCTTA 1 TGGGGCTGGG 1 TGGGGCTTCC 1 TGGGGGAACA 1 TGGGGGATAT 1 TGGGGGCTTC 1 TGGGGGTCCC 1 TGGGGTACCT 4 TGGGGTCAGC 1 TGGGGTCCCC 1 TGGGGTCCCT 1 TGGGGTCTGT 1 TGGGTACTTG 1 TGGGTATAAA 1 TGGGTATGCT 1 TGGGTCAGGC 2 TGGGTCAGGG 1 TGGGTCCAGG 1 TGGGTCTGTG 1 TGGGTGAAAG 1 TGGGTGAAGG 1 TGGGTGAGAA 1 TGGGTGAGCC 13 TGGGTGATTT 1 TGGGTGCGGC 1 TGGGTGGGCA 2 TGGGTGGGGG 2 TGGGTGTACC 1 TGGGTGTATG 1 TGGGTGTGCA 1 TGGGTGTGGC 1 TGGGTGTTGG 1 TGGGTTGAAA 1 TGGGTTTAGC 1 TGGGTTTCCA 1 TGGGTTTTGT 1 TGGTAACACT 1 TGGTAACCTG 3 TGGTAACTGA 1 TGGTAAGGAG 1 TGGTAAGTTT 1 TGGTAATTCT 1 TGGTACACGT 11 TGGTACGCGT 1 TGGTACTTCT 1 TGGTAGACAA 1 TGGTAGATGC 2 TGGTAGCAGT 1 TGGTAGTACC 1 TGGTAGTTCA 1 TGGTATATGG 1 TGGTATTAGA 1 TGGTATTTCG 3 TGGTCAAAAT 1 TGGTCAAAGC 2 TGGTCAAGGT 1 TGGTCACTCT 2 TGGTCAGCCG 1 TGGTCAGGAC 1 TGGTCAGGAG 1 TGGTCAGGCT 2 TGGTCATACT 1 TGGTCCACCC 1 TGGTCCAGCG 1 TGGTCCAGGG 1 TGGTCCCCCT 1 TGGTCCCTCT 1 TGGTCCTCAG 1 TGGTCCTGGC 1 TGGTCCTTGG 1 TGGTCGCCAA 1 TGGTCGCGCT 1 TGGTCGTAGC 1 TGGTCTATGG 1 TGGTCTCACT 1 TGGTCTCTCA 1 TGGTCTGCCC 1 TGGTCTGGGA 1 TGGTGAAAAA 1 TGGTGAAAGC 1 TGGTGAATGA 1 TGGTGAATGC 1 TGGTGACAAT 2 TGGTGACAGT 5 TGGTGAGGGG 1 TGGTGAGTCA 1 TGGTGAGTGC 1 TGGTGATCAA 1 TGGTGATGAG 1 TGGTGATGCA 3 TGGTGCACGT 1 TGGTGCATTG 1 TGGTGCTGAT 1 TGGTGGAAAC 1 TGGTGGAAGC 1 TGGTGGAATG 2 TGGTGGACCT 1 TGGTGGACTT 1 TGGTGGAGGC 2 TGGTGGCAAA 1 TGGTGGCATA 1 TGGTGGCGGG 2 TGGTGGGCTC 1 TGGTGGGGTG 2 TGGTGGGTGA 1 TGGTGTAAGC 1 TGGTGTACAA 1 TGGTGTACGC 1 TGGTGTATGC 264 TGGTGTATGG 1 TGGTGTATGT 1 TGGTGTATTC 1 TGGTGTCACT 1 TGGTGTGGCA 1 TGGTGTGTGC 1 TGGTGTTGAG 82 TGGTGTTGTG 1 TGGTGTTTAC 1 TGGTGTTTAG 1 TGGTGTTTTG 1 TGGTTAATGG 1 TGGTTACTGT 1 TGGTTAGATA 2 TGGTTAGTGT 1 TGGTTATGCA 1 TGGTTCAAAG 1 TGGTTCACAA 1 TGGTTCCAGC 1 TGGTTCGTAA 1 TGGTTCTATA 1 TGGTTCTGTT 1 TGGTTGAACC 1 TGGTTGATTT 1 TGGTTGCGAC 2 TGGTTGCGAG 1 TGGTTGTCCA 1 TGGTTGTTCC 1 TGGTTTATGG 1 TGGTTTATTC 1 TGGTTTCACT 1 TGGTTTGAGC 5 TGGTTTGCAC 1 TGGTTTGCGT 8 TGGTTTGTGT 1 TGGTTTTGGC 5 TGGTTTTTAT 1 TGGTTTTTGG 2 TGGTTTTTGT 3 TGTAAAAAAA 1 TGTAAAAAGT 1 TGTAAAACCT 1 TGTAAAATGG 1 TGTAAACAGA 1 TGTAAACATC 1 TGTAAACTCT 1 TGTAAACTTA 1 TGTAAAGATT 2 TGTAACCTTT 1 TGTAACGCTA 1 TGTAACTCTT 1 TGTAACTTCC 1 TGTAAGAAAA 1 TGTAAGGCAC 1 TGTAAGTCTG 3 TGTAAGTGAA 1 TGTAATCAAT 11 TGTAATCCCA 1 TGTAATGGTT 1 TGTACAAAAT 1 TGTACACCTC 1 TGTACATTCT 1 TGTACCCATT 1 TGTACCCCTG 1 TGTACCTAAC 1 TGTACCTGTA 20 TGTACTAAAT 1 TGTACTATTG 1 TGTACTGCTT 1 TGTACTTATT 2 TGTACTTCCT 1 TGTAGAAGGA 1 TGTAGACTTG 1 TGTAGAGCAC 1 TGTAGAGTGC 3 TGTAGCCCAC 1 TGTAGCCTAT 1 TGTAGCCTTC 1 TGTAGCTCAA 1 TGTAGCTGCA 3 TGTAGCTTGC 1 TGTAGGCTTT 2 TGTAGGGGTT 2 TGTAGGTATT 1 TGTAGGTGAA 1 TGTAGGTGTG 1 TGTAGTCCTT 1 TGTAGTCTCA 1 TGTAGTTTGA 5 TGTATAAAAA 5 TGTATAATCC 1 TGTATACAAG 2 TGTATAGTTG 1 TGTATATGGT 1 TGTATCATCC 1 TGTATCCCTA 1 TGTATCCTAA 1 TGTATGAAAT 1 TGTATGATAC 1 TGTATGCCGT 2 TGTATGGAAT 1 TGTATGGGCA 3 TGTATGTACT 1 TGTATTCCCT 1 TGTATTCTTA 1 TGTATTGAAG 1 TGTATTGTAC 1 TGTATTTATG 1 TGTATTTCTG 1 TGTATTTTAC 1 TGTATTTTAT 1 TGTCAATAGG 1 TGTCACACAA 1 TGTCACACAC 1 TGTCACCACG 1 TGTCACCCAG 1 TGTCACCTCA 1 TGTCACGAGT 1 TGTCACTCTC 1 TGTCACTGGG 3 TGTCAGCCGG 1 TGTCAGCCTG 1 TGTCAGGACC 1 TGTCAGGCCC 1 TGTCAGGGTT 1 TGTCATAATT 1 TGTCATATAG 1 TGTCATCCAT 4 TGTCATCCTT 1 TGTCATTCGG 1 TGTCCAAAGA 1 TGTCCACACA 1 TGTCCACCAT 1 TGTCCACCTT 1 TGTCCACTGT 1 TGTCCAGGAA 1 TGTCCATTTG 2 TGTCCCAGCC 1 TGTCCCGGGC 1 TGTCCGAGGG 1 TGTCCGCGTG 1 TGTCCGGTTG 1 TGTCCGTACG 1 TGTCCGTCAC 3 TGTCCTAGAA 1 TGTCCTCAGT 1 TGTCCTCGGG 1 TGTCCTCTAG 2 TGTCCTCTGG 1 TGTCCTGACC 1 TGTCCTGCAA 1 TGTCCTGGGA 1 TGTCCTGGGG 1 TGTCCTGGTC 1 TGTCCTGGTT 7 TGTCCTTACC 1 TGTCGATATA 1 TGTCGCCTGG 1 TGTCGCTGGG 8 TGTCGGCACA 1 TGTCGGGAAA 1 TGTCGTAAGT 1 TGTCTACCCA 1 TGTCTAGGAG 1 TGTCTATGGG 1 TGTCTCACCT 1 TGTCTCCTGA 1 TGTCTCGAAG 1 TGTCTCTGTT 1 TGTCTCTTTA 1 TGTCTGACAA 1 TGTCTGATGA 1 TGTCTGATGC 3 TGTCTGCCAG 1 TGTCTGCCTG 1 TGTCTGGGCA 1 TGTCTGTAAT 1 TGTCTGTAGC 1 TGTCTGTAGT 1 TGTCTGTCAT 1 TGTCTGTCGC 1 TGTCTGTCGG 1 TGTCTGTGCC 1 TGTCTGTGCT 1 TGTCTGTGGT 1 TGTCTGTGTG 2 TGTCTTAAGG 2 TGTCTTCCGT 1 TGTCTTCCTG 1 TGTCTTTAGG 1 TGTCTTTGCA 1 TGTCTTTGCT 2 TGTCTTTGTG 1 TGTGAAAACA 1 TGTGAAAGGA 1 TGTGAAATCC 1 TGTGAAATGG 1 TGTGAACAAC 1 TGTGAACACA 1 TGTGAACACT 1 TGTGAAGATA 1 TGTGAAGATT 2 TGTGAAGCTC 2 TGTGAAGGCT 1 TGTGAAGGTG 1 TGTGAATGTG 1 TGTGACAAGT 1 TGTGACCAGC 1 TGTGACCTCT 1 TGTGACCTGC 3 TGTGACGCCT 1 TGTGACGTAA 1 TGTGACTGGT 1 TGTGACTGTG 1 TGTGAGATGC 1 TGTGAGCCCC 4 TGTGAGCCCT 2 TGTGAGGAAG 1 TGTGAGGAGT 2 TGTGATCACA 1 TGTGATCAGA 6 TGTGATGGGT 1 TGTGATGTGG 1 TGTGCAACAG 1 TGTGCACACA 1 TGTGCACCCC 1 TGTGCATCTT 2 TGTGCCCTGA 3 TGTGCCCTGC 1 TGTGCCCTGG 1 TGTGCCTTGA 1 TGTGCGCTGA 1 TGTGCGGCGA 1 TGTGCGTGTG 1 TGTGCTAAAT 14 TGTGCTAATG 1 TGTGCTCGAG 1 TGTGCTCGGA 2 TGTGCTCGGG 5 TGTGCTGAGA 3 TGTGCTGTGC 3 TGTGCTGTTT 1 TGTGCTTCTA 2 TGTGCTTGTG 1 TGTGGAAACC 1 TGTGGAAATG 1 TGTGGAAGAT 1 TGTGGAAGTT 1 TGTGGAATCC 1 TGTGGAGGTG 1 TGTGGCAAAG 1 TGTGGCAAGA 1 TGTGGCCACA 1 TGTGGCCCAC 1 TGTGGCCGCA 1 TGTGGCCTCC 3 TGTGGCCTGC 1 TGTGGCTTCC 1 TGTGGGAAAT 2 TGTGGGAGAT 1 TGTGGGCAGC 1 TGTGGGCCAA 1 TGTGGGCTCA 1 TGTGGGGAGT 1 TGTGGGGCTC 3 TGTGGGGCTT 1 TGTGGGGGTG 1 TGTGGGTCAC 2 TGTGGGTGCA 1 TGTGGGTGCT 10 TGTGGTAACC 1 TGTGGTATGC 1 TGTGGTCCAT 1 TGTGGTGGCA 1 TGTGGTGGCG 1 TGTGGTGGTG 4 TGTGGTGTAG 1 TGTGGTGTTG 1 TGTGGTTATC 1 TGTGGTTCAC 1 TGTGGTTCAG 1 TGTGGTTCCT 1 TGTGTAAAGA 1 TGTGTAAGAG 1 TGTGTAAGTT 1 TGTGTAATCC 1 TGTGTACAAT 1 TGTGTACTGC 1 TGTGTACTGG 1 TGTGTAGGTG 1 TGTGTATACA 1 TGTGTATGCA 1 TGTGTATTGT 1 TGTGTCAGGG 1 TGTGTCTTCC 1 TGTGTGAAAA 1 TGTGTGACCC 1 TGTGTGAGCT 1 TGTGTGCAAT 1 TGTGTGCCAC 4 TGTGTGCCCA 1 TGTGTGCGCT 2 TGTGTGCGTG 1 TGTGTGCTGT 1 TGTGTGGGGA 1 TGTGTGGGGC 6 TGTGTGTGAC 1 TGTGTGTGTC 1 TGTGTGTGTG 4 TGTGTGTTCG 1 TGTGTGTTTC 1 TGTGTGTTTG 6 TGTGTTACCT 1 TGTGTTAGTC 1 TGTGTTCCCT 1 TGTGTTCCTG 1 TGTGTTGAGA 58 TGTGTTGAGG 1 TGTGTTGCTC 1 TGTGTTGTCA 2 TGTGTTTATG 1 TGTGTTTGTG 3 TGTGTTTGTT 1 TGTGTTTTAT 1 TGTTAACTAT 1 TGTTAAGAGT 1 TGTTAAGTGT 1 TGTTAAGTTT 1 TGTTAATGTT 2 TGTTACACTA 1 TGTTACCAAG 1 TGTTACCTGG 1 TGTTACTAAC 1 TGTTACTCAC 1 TGTTAGAACT 6 TGTTAGCCTG 1 TGTTAGGCGC 1 TGTTAGTGTT 1 TGTTAGTTAT 1 TGTTATAAAG 1 TGTTATCTGT 1 TGTTATTAAA 1 TGTTATTTGC 1 TGTTATTTTT 1 TGTTCAAAGT 1 TGTTCAAATA 1 TGTTCACACT 1 TGTTCACAGC 1 TGTTCACATA 1 TGTTCAGAAA 1 TGTTCAGAAT 1 TGTTCAGGAC 1 TGTTCAGTTG 2 TGTTCATCAT 3 TGTTCCAACA 1 TGTTCCACTC 8 TGTTCCCAGC 1 TGTTCCCTAG 1 TGTTCCCTTT 2 TGTTCCTCGA 1 TGTTCCTCTC 1 TGTTCGTCAA 1 TGTTCGTGGT 1 TGTTCTAGAA 1 TGTTCTAGTC 1 TGTTCTATTT 1 TGTTCTCAAG 1 TGTTCTCATT 2 TGTTCTCCCC 1 TGTTCTCTCA 1 TGTTCTCTTT 1 TGTTCTTTGC 1 TGTTGACAAA 1 TGTTGATTTT 1 TGTTGCACCG 1 TGTTGCAGGT 1 TGTTGCCCCC 1 TGTTGCGCAT 1 TGTTGGCATT 1 TGTTGGCCAG 1 TGTTGGGTGG 1 TGTTGGTGAG 1 TGTTGTACTT 1 TGTTGTATTT 2 TGTTGTCTAG 1 TGTTGTGAAT 1 TGTTGTGACT 1 TGTTGTGCGC 4 TGTTGTGTGG 1 TGTTGTGTTC 1 TGTTGTTTAT 2 TGTTGTTTGG 1 TGTTTAATAC 1 TGTTTAATGT 1 TGTTTACTAC 1 TGTTTACTGT 1 TGTTTACTTA 1 TGTTTATAAA 1 TGTTTATCCT 1 TGTTTATCTG 1 TGTTTCACAC 1 TGTTTCAGAG 1 TGTTTCAGGA 2 TGTTTCAGTC 1 TGTTTCATCA 1 TGTTTCCACT 1 TGTTTCCCAA 1 TGTTTCCTGA 1 TGTTTCGTCA 1 TGTTTGAAAT 1 TGTTTGACTG 1 TGTTTGAGTC 1 TGTTTGCAGA 2 TGTTTGCATA 1 TGTTTGCTCA 4 TGTTTGGAAC 1 TGTTTGGGGC 1 TGTTTGGGGG 3 TGTTTGTAAA 1 TGTTTGTCTG 1 TGTTTGTGTG 2 TGTTTTATTT 1 TGTTTTCAGT 1 TGTTTTCCAC 1 TGTTTTCTTT 1 TGTTTTGAAT 1 TGTTTTGGAA 2 TGTTTTGTTC 1 TGTTTTTATG 1 TGTTTTTCCG 2 TGTTTTTCTA 1 TGTTTTTTTT 1 TTAAAAAAAA 2 TTAAAACCCT 1 TTAAAACTGG 1 TTAAAAGCCT 2 TTAAAAGCTT 1 TTAAAAGTCA 1 TTAAAATACA 1 TTAAAATGTT 1 TTAAAATTGC 1 TTAAAATTTG 1 TTAAACAAAA 1 TTAAACCCCT 1 TTAAACCCGG 1 TTAAACCTAG 1 TTAAACCTCA 6 TTAAACTCCA 3 TTAAACTCTT 1 TTAAACTTAG 1 TTAAACTTTT 1 TTAAAGAAGT 1 TTAAAGACCC 1 TTAAAGAGCA 1 TTAAAGATTT 1 TTAAAGCCAG 1 TTAAAGGACT 1 TTAAAGGGAT 1 TTAAAGTCCT 1 TTAAAGTTTT 1 TTAAATAAAT 1 TTAAATAGCA 1 TTAAATATTA 1 TTAAATCCTG 1 TTAAATCTTA 2 TTAAATGTAC 1 TTAACACTCA 1 TTAACACTGT 1 TTAACAGTTA 1 TTAACATTCT 1 TTAACCAGAA 1 TTAACCCCTC 5 TTAACCCTCT 5 TTAACCCTGC 1 TTAACGAGGC 1 TTAAGACATT 1 TTAAGACCCC 1 TTAAGAGATC 1 TTAAGAGGGG 2 TTAAGATATC 1 TTAAGCCCCA 1 TTAAGCTCTT 1 TTAAGTCAAT 1 TTAAGTCTGA 1 TTAAGTGAAA 1 TTAAGTGCTT 1 TTAAGTGGTT 1 TTAAGTTGTA 1 TTAAGTTGTT 1 TTAAGTTTGA 1 TTAATAAAAC 1 TTAATAAAAT 1 TTAATAAATG 1 TTAATAAGCT 1 TTAATAATTC 1 TTAATACGGG 1 TTAATAGTGG 3 TTAATATGGC 1 TTAATATTCT 2 TTAATCCTAA 2 TTAATCCTAT 2 TTAATCGAAG 2 TTAATCGAGG 1 TTAATCTGGT 1 TTAATCTGTG 1 TTAATGAACA 1 TTAATGATCT 1 TTAATGCGTC 1 TTAATTAGCT 1 TTAATTATCC 1 TTAATTCCAG 1 TTAATTGATA 1 TTAATTGGTG 1 TTAATTTCTA 1 TTACAAAGCT 1 TTACAACATT 1 TTACAAGCCA 1 TTACAAGGTT 2 TTACAAGTTT 1 TTACAATGCC 1 TTACAATGCT 2 TTACAATTTA 1 TTACACCCTA 1 TTACACCTGT 1 TTACACTAAT 1 TTACAGAGTC 1 TTACAGATTA 1 TTACAGCAAC 1 TTACAGGCTG 1 TTACAGTCTT 1 TTACATCTTA 1 TTACATTTCA 1 TTACCAAAAA 1 TTACCAATCA 1 TTACCATATC 22 TTACCCAATT 1 TTACCCAGAC 1 TTACCCAGGC 2 TTACCCAGTG 4 TTACCCGACT 1 TTACCTAGAA 1 TTACCTCACT 1 TTACCTCAGA 1 TTACCTCCTT 7 TTACCTTCGA 1 TTACCTTTTT 1 TTACGACTTG 2 TTACGAGGAA 4 TTACGGAAAT 1 TTACGGGATC 1 TTACGGTCCC 1 TTACGTATCT 1 TTACTAAATG 8 TTACTATTCA 1 TTACTCAGTT 1 TTACTCCCCT 1 TTACTCTGAA 3 TTACTCTTAG 1 TTACTCTTTC 2 TTACTGAAGC 1 TTACTGACTT 1 TTACTGATCA 1 TTACTGCACT 1 TTACTGCAGA 1 TTACTGCCCC 1 TTACTGTACT 1 TTACTGTGAA 1 TTACTGTTCT 1 TTACTTAAAA 1 TTACTTAGTG 1 TTACTTATAC 53 TTACTTGCCT 1 TTACTTTAGT 1 TTACTTTATC 1 TTACTTTCTT 2 TTACTTTGGC 1 TTACTTTGTA 1 TTAGAAAGGT 1 TTAGAAGGGG 1 TTAGAATGTA 1 TTAGAATTTA 1 TTAGACAGGC 1 TTAGACATCA 1 TTAGACATTA 1 TTAGACTCCC 1 TTAGAGAACA 1 TTAGAGACAA 3 TTAGAGAGTT 1 TTAGAGCCTA 1 TTAGAGCCTG 1 TTAGATAAGC 8 TTAGATCATC 1 TTAGATCGTT 3 TTAGCAAGAA 1 TTAGCAATAA 4 TTAGCACAGA 1 TTAGCACTGT 1 TTAGCAGAAA 1 TTAGCAGTTG 4 TTAGCATATA 1 TTAGCATTAC 1 TTAGCCAAGA 1 TTAGCCAATT 1 TTAGCCAGGA 9 TTAGCCAGGC 7 TTAGCCAGGG 1 TTAGCCAGTC 1 TTAGCCCAGA 1 TTAGCCCGGA 1 TTAGCCTTGC 1 TTAGCTCCTG 1 TTAGCTCGTT 1 TTAGCTGAGT 4 TTAGCTGTGC 1 TTAGCTGTGT 1 TTAGCTTGCT 1 TTAGCTTGGT 1 TTAGCTTGTT 42 TTAGGAAAAA 2 TTAGGAGCTG 1 TTAGGAGGAG 1 TTAGGATCAC 1 TTAGGATGTT 1 TTAGGCAAGC 1 TTAGGCAATG 1 TTAGGCACGG 1 TTAGGCCACA 1 TTAGGCTAAA 1 TTAGGCTTTA 1 TTAGGGGATG 1 TTAGGGTAGG 1 TTAGGGTGTC 2 TTAGGGTTCA 1 TTAGGTTTTT 1 TTAGTAAGGC 1 TTAGTCAGGC 2 TTAGTCAGGT 1 TTAGTCCACA 1 TTAGTCCTGG 1 TTAGTCGTGG 1 TTAGTGCAAA 1 TTAGTGGCTT 1 TTAGTTAAGC 2 TTAGTTACCT 2 TTAGTTAGGT 1 TTAGTTCTGG 1 TTAGTTGATG 1 TTAGTTGCTA 1 TTAGTTTGAA 1 TTATAAAAAG 1 TTATAAAAGA 1 TTATAACTGA 4 TTATAAGCTG 1 TTATAAGGCA 1 TTATAAGGTG 3 TTATAATAGG 1 TTATACACGG 1 TTATAGAATG 1 TTATAGAGAG 1 TTATAGATCC 1 TTATAGTCAC 1 TTATATCAGA 1 TTATATGTAA 1 TTATATGTGT 1 TTATCAAAAA 1 TTATCAAAGA 1 TTATCACCTG 1 TTATCATCTC 1 TTATCCAGGC 1 TTATCCAGGT 1 TTATCCTAGC 1 TTATCCTCTA 1 TTATCGAGCA 1 TTATCGTCCC 1 TTATCGTCCT 3 TTATCTATGC 1 TTATCTTTGC 1 TTATGAGGCC 1 TTATGATGTA 1 TTATGATTCG 1 TTATGCACTG 1 TTATGCAGCA 1 TTATGCAGGA 1 TTATGCCTCC 3 TTATGGAGTG 1 TTATGGATCT 1 TTATGGCTAT 1 TTATGGGATC 47 TTATGGGGAA 1 TTATGGGGAG 3 TTATGGGGAT 1 TTATGGGTTA 1 TTATGGTTAA 1 TTATGTAACC 1 TTATGTGTAT 1 TTATGTTTAA 2 TTATTATAAT 1 TTATTATCAG 1 TTATTCCTTA 1 TTATTCTTTT 2 TTATTGGTCT 1 TTATTGTAAT 1 TTATTGTTCC 1 TTATTTAACC 1 TTATTTAAGC 1 TTATTTACAC 1 TTATTTCGCC 1 TTATTTGACC 1 TTATTTGCAG 1 TTATTTTAGG 2 TTATTTTTGT 1 TTCAAAAAAA 2 TTCAAAAAGG 2 TTCAAAACTG 1 TTCAAAAGGA 1 TTCAAAATTT 1 TTCAAACACC 3 TTCAAACAGC 1 TTCAAAGGAA 1 TTCAAAGTCT 1 TTCAAATGTT 1 TTCAACAACC 1 TTCAACAGGA 2 TTCAACTGCA 1 TTCAAGACTG 1 TTCAAGCGAT 1 TTCAAGGAAC 1 TTCAAGGCTA 1 TTCAAGTACA 2 TTCAAGTGAA 1 TTCAATAAAA 50 TTCAATGAAA 1 TTCAATTTCA 3 TTCACAAAGG 2 TTCACAATAA 1 TTCACACACC 2 TTCACACCAC 1 TTCACAGACT 1 TTCACAGAGC 2 TTCACAGATT 2 TTCACAGTGG 6 TTCACATAAC 1 TTCACCAACT 1 TTCACCAGCT 1 TTCACCAGTA 1 TTCACCATCC 1 TTCACCCCTC 1 TTCACCCCTG 1 TTCACCGAAG 1 TTCACCGTGC 1 TTCACCTTGG 1 TTCACGCCCT 1 TTCACGCCGC 1 TTCACTAATG 1 TTCACTACAT 1 TTCACTAGCG 1 TTCACTATTA 1 TTCACTCCCT 1 TTCACTGATG 1 TTCACTGCAA 1 TTCACTGGAG 1 TTCACTGGGC 1 TTCACTGTGA 18 TTCACTTCAG 2 TTCACTTTTG 1 TTCAGAATGA 1 TTCAGAGTTC 1 TTCAGATACA 1 TTCAGATTCA 1 TTCAGATTTT 1 TTCAGCAGAG 1 TTCAGCAGGA 1 TTCAGCCTGA 1 TTCAGCGAAG 1 TTCAGCGTTC 1 TTCAGGCACA 1 TTCAGGCACT 1 TTCAGGCAGA 2 TTCAGGGCTT 1 TTCAGTAAGG 1 TTCAGTATTC 1 TTCAGTCCCC 1 TTCAGTGCCC 1 TTCAGTGCCT 1 TTCAGTGTTT 1 TTCAGTTGCT 1 TTCAGTTTGA 1 TTCATAAAAG 1 TTCATAAACC 1 TTCATAACAC 1 TTCATAAGCA 1 TTCATAATCC 1 TTCATACAAC 3 TTCATACACC 367 TTCATACACG 1 TTCATACACT 2 TTCATACAGC 1 TTCATACATC 1 TTCATACCCC 3 TTCATACGCC 1 TTCATACGCG 1 TTCATACTCC 2 TTCATAGAGG 1 TTCATAGCAG 1 TTCATATACA 1 TTCATATGAC 1 TTCATATGCT 1 TTCATATTAA 2 TTCATATTAG 1 TTCATATTAT 1 TTCATATTGA 1 TTCATCACGT 1 TTCATCCACC 2 TTCATCTCAA 2 TTCATCTGGC 1 TTCATTAATT 2 TTCATTACCA 1 TTCATTACTA 1 TTCATTATAA 9 TTCATTCACC 1 TTCATTGCTT 1 TTCATTGTAA 1 TTCATTGTAG 1 TTCATTTCGC 1 TTCCAACACA 1 TTCCAACCAG 1 TTCCAACCTC 1 TTCCAAGAAA 1 TTCCAAGGAA 1 TTCCAAGGCA 8 TTCCAAGTCT 1 TTCCAATCAA 1 TTCCACAATG 1 TTCCACCAAG 1 TTCCACCACA 1 TTCCACCTTC 1 TTCCACTAAC 5 TTCCACTTTG 1 TTCCAGACAG 2 TTCCAGACCG 1 TTCCAGACCT 7 TTCCAGCACA 1 TTCCAGCCTT 1 TTCCAGCTAC 1 TTCCAGCTGC 9 TTCCAGGTCT 1 TTCCAGGTGA 1 TTCCAGTACA 1 TTCCAGTCAA 1 TTCCAGTTGC 1 TTCCATAAAA 1 TTCCATATAC 1 TTCCATCTGT 1 TTCCATTAAG 1 TTCCCAAAGG 2 TTCCCAACAC 1 TTCCCACTCC 1 TTCCCAGCTC 2 TTCCCAGGCT 1 TTCCCAGGTG 1 TTCCCATATC 1 TTCCCATCGT 1 TTCCCCAGGA 1 TTCCCCAGGC 1 TTCCCCAGGT 1 TTCCCCATCC 1 TTCCCCCACC 1 TTCCCCTAAA 1 TTCCCCTTCC 1 TTCCCCTTGC 1 TTCCCGAGGG 1 TTCCCGATCA 1 TTCCCGCAGT 1 TTCCCGCTGA 1 TTCCCGCTGG 1 TTCCCGCTTA 1 TTCCCGGACA 1 TTCCCTCAAA 1 TTCCCTCAGT 1 TTCCCTCCCA 1 TTCCCTCGTG 2 TTCCCTCTGC 1 TTCCCTTACA 1 TTCCCTTCTT 1 TTCCCTTTCC 1 TTCCGAACAT 1 TTCCGACGAT 1 TTCCGCACCA 1 TTCCGCGCGC 1 TTCCGCGTGC 10 TTCCGCGTTC 2 TTCCGGTCAT 1 TTCCGGTTCC 5 TTCCGTACAT 1 TTCCGTCATC 2 TTCCGTGTCC 1 TTCCGTGTTC 1 TTCCGTTCCT 1 TTCCTAAATT 1 TTCCTAATAA 1 TTCCTAGCAT 1 TTCCTATGAA 1 TTCCTATTAC 1 TTCCTATTAT 1 TTCCTATTTA 1 TTCCTCAAAG 1 TTCCTCAAGG 1 TTCCTCAGGC 1 TTCCTCCACG 4 TTCCTCCAGA 1 TTCCTCCGCT 2 TTCCTCCTCT 2 TTCCTCCTTT 1 TTCCTCGAAC 1 TTCCTCGGGC 1 TTCCTCTAGA 1 TTCCTCTCAC 1 TTCCTGACTA 2 TTCCTGCAGG 1 TTCCTGCCCC 4 TTCCTGCTAC 2 TTCCTGCTGC 1 TTCCTGGACA 1 TTCCTGGATT 1 TTCCTGGGCT 1 TTCCTGGTAG 2 TTCCTGTAAG 1 TTCCTGTTCC 1 TTCCTGTTTA 1 TTCCTTAAAG 1 TTCCTTATAC 1 TTCCTTATCT 1 TTCCTTCAAC 1 TTCCTTGGCA 1 TTCCTTGTTG 1 TTCCTTTCTA 1 TTCCTTTTTC 1 TTCGAGAGCT 1 TTCGAGGAAT 1 TTCGAGTACT 1 TTCGCAAACG 1 TTCGCCAAGC 1 TTCGCCAGGA 1 TTCGCCAGGC 1 TTCGCCGTGC 1 TTCGCCTCCT 1 TTCGCTGAGG 1 TTCGCTGTCG 1 TTCGGAAATC 2 TTCGGAGGCC 1 TTCGGCGACC 1 TTCGGGTGTG 1 TTCGGGTTCC 1 TTCGTACACC 2 TTCGTATTAC 1 TTCGTGTATA 1 TTCGTTAAGA 1 TTCTAACATA 13 TTCTAACCCC 1 TTCTAAGCTT 1 TTCTAAGTGT 1 TTCTAAGTTG 1 TTCTAATGTT 1 TTCTACCGGG 1 TTCTACGCTG 1 TTCTAGAACC 1 TTCTAGAATG 1 TTCTAGACCA 1 TTCTAGAGAG 1 TTCTAGGGCT 1 TTCTAGTAAC 1 TTCTAGTCTG 1 TTCTATCAAG 1 TTCTATGACT 1 TTCTATGATA 1 TTCTATTAAG 1 TTCTATTTTG 1 TTCTCAAGAA 2 TTCTCACACT 1 TTCTCACAGC 2 TTCTCACTCA 2 TTCTCACTTC 1 TTCTCAGCAA 1 TTCTCAGGGT 1 TTCTCATACA 1 TTCTCCAGAA 1 TTCTCCAGAG 1 TTCTCCCACC 1 TTCTCCCGCT 2 TTCTCCGACA 1 TTCTCCTCAC 1 TTCTCCTCTT 1 TTCTCCTGCC 1 TTCTCCTGTG 1 TTCTCGCACA 1 TTCTCTACAA 3 TTCTCTACAC 3 TTCTCTATCT 1 TTCTCTCACA 1 TTCTCTCCAC 3 TTCTCTCCCC 3 TTCTCTCTGT 4 TTCTCTGCAA 1 TTCTCTGCTC 1 TTCTCTGTGT 1 TTCTCTTCTC 3 TTCTCTTGGC 1 TTCTCTTTGG 1 TTCTGAAGAC 1 TTCTGAAGCC 1 TTCTGACCCT 1 TTCTGAGATA 1 TTCTGAGCGG 1 TTCTGAGGCA 1 TTCTGAGGGA 1 TTCTGATGAT 1 TTCTGATGTA 1 TTCTGCAATA 2 TTCTGCACGT 1 TTCTGCACTG 6 TTCTGCAGGG 1 TTCTGCAGTG 1 TTCTGCCGGA 1 TTCTGCGCTG 1 TTCTGCTAGA 1 TTCTGCTCGT 2 TTCTGCTCTT 1 TTCTGCTGGA 1 TTCTGCTGGG 1 TTCTGGAGCT 1 TTCTGGAGTA 1 TTCTGGATTG 1 TTCTGGCACT 1 TTCTGGCAGT 1 TTCTGGCATT 1 TTCTGGCTGC 10 TTCTGGGGAT 2 TTCTGGGGCG 1 TTCTGGTCTA 1 TTCTGGTGTA 1 TTCTGTAGCC 2 TTCTGTATGA 1 TTCTGTCGGT 1 TTCTGTCTCA 1 TTCTGTCTCT 1 TTCTGTGAAT 1 TTCTGTGCAT 1 TTCTGTGCTT 1 TTCTGTGTAT 1 TTCTGTGTCA 4 TTCTGTGTGG 3 TTCTGTGTTT 4 TTCTTAAGTG 1 TTCTTAGCAC 1 TTCTTAGGAT 1 TTCTTATCAC 1 TTCTTATTTT 1 TTCTTCAACA 2 TTCTTCAGCA 1 TTCTTCAGGA 1 TTCTTCAGGT 1 TTCTTCCATT 1 TTCTTCCCAT 1 TTCTTCCCCT 1 TTCTTCCTCA 1 TTCTTCCTGA 1 TTCTTCTTCC 1 TTCTTGAACA 7 TTCTTGCCCT 1 TTCTTGCTTA 2 TTCTTGGGAT 2 TTCTTGGGCA 1 TTCTTGTAGC 1 TTCTTGTCAT 1 TTCTTGTGAT 1 TTCTTGTGGC 37 TTCTTGTGTT 1 TTCTTTCAAG 1 TTCTTTCAGC 1 TTCTTTCCCA 1 TTCTTTCCGC 1 TTCTTTCGTT 1 TTCTTTCTCA 1 TTCTTTCTGC 1 TTCTTTGCCA 1 TTCTTTGGAT 1 TTCTTTGGCG 1 TTCTTTGGGA 2 TTCTTTTCAT 1 TTCTTTTGCC 1 TTCTTTTTGG 1 TTCTTTTTTC 1 TTGAAAAAAA 1 TTGAAAAACC 1 TTGAAAAATA 1 TTGAAAAGAA 1 TTGAAACCCC 4 TTGAAACCCT 3 TTGAAACCGT 1 TTGAAACTAG 2 TTGAAAGACA 1 TTGAAAGGTT 4 TTGAAATAAA 1 TTGAAATCTG 1 TTGAAATGAC 1 TTGAACCCCC 2 TTGAACGGGA 1 TTGAACTCTT 1 TTGAACTGAA 2 TTGAACTGGC 1 TTGAAGAAGC 1 TTGAAGACAA 1 TTGAAGCCCC 2 TTGAAGCCTC 1 TTGAAGCTTT 3 TTGAAGTCTA 1 TTGAAGTGGC 1 TTGAAGTGGT 1 TTGAATAAAA 1 TTGAATCCCC 2 TTGAATCCCT 1 TTGAATCCTC 1 TTGAATTCCC 2 TTGAATTCTT 1 TTGAATTGAA 1 TTGAATTGAT 1 TTGAATTGGG 1 TTGAATTTGT 1 TTGACAAAAA 1 TTGACAAATT 1 TTGACAAGGC 1 TTGACACTTT 3 TTGACAGTTT 1 TTGACCACGG 1 TTGACCAGGA 1 TTGACCAGGC 9 TTGACCCTGG 1 TTGACCGTTA 1 TTGACCTAGT 1 TTGACCTGAG 1 TTGACCTTTT 1 TTGACGACTA 1 TTGACTACAA 1 TTGACTTACA 1 TTGACTTATG 1 TTGACTTGGA 1 TTGAGAACTG 2 TTGAGAGAAC 1 TTGAGAGATG 3 TTGAGCACCC 1 TTGAGCCAGC 9 TTGAGGACGT 1 TTGAGGGGGT 3 TTGAGGGGTT 1 TTGAGGTGGC 1 TTGAGTGCGG 1 TTGAGTGGAA 1 TTGAGTGTTG 1 TTGATAAATG 1 TTGATACACG 1 TTGATATTTG 1 TTGATCAAGC 1 TTGATCACAA 1 TTGATCAGGC 4 TTGATGAAGG 1 TTGATGAAGT 1 TTGATGACAA 1 TTGATGCCAT 1 TTGATGCCCG 2 TTGATGGGCG 1 TTGATGTACA 1 TTGATGTCAA 1 TTGATGTCCT 1 TTGATGTTGC 1 TTGATTCTAT 1 TTGATTTCCA 1 TTGATTTTGG 1 TTGCAAAACA 1 TTGCAAAGAG 1 TTGCAAGAGT 1 TTGCAAGCCG 1 TTGCAAGGCA 1 TTGCAATACA 1 TTGCAATAGG 1 TTGCAATGCA 4 TTGCACAAAG 1 TTGCACAGGA 1 TTGCACATTA 1 TTGCACCACC 1 TTGCACGAGG 1 TTGCAGACCC 1 TTGCAGGAAG 2 TTGCAGGCTA 1 TTGCAGGGAT 1 TTGCATTATA 1 TTGCATTTAA 1 TTGCCAGGCT 2 TTGCCATCGC 1 TTGCCATCTA 1 TTGCCATTGG 2 TTGCCCAACA 1 TTGCCCAACC 1 TTGCCCAAGC 3 TTGCCCAAGG 1 TTGCCCACAC 1 TTGCCCAGAC 2 TTGCCCAGCC 2 TTGCCCAGGC 30 TTGCCCAGGT 2 TTGCCCATCA 1 TTGCCCCAGG 1 TTGCCCCGTT 1 TTGCCCGGGC 5 TTGCCCTGGC 1 TTGCCGCCGC 1 TTGCCGCTGC 2 TTGCCGGCCC 1 TTGCCGGGTA 1 TTGCCGGTAA 1 TTGCCGGTTA 4 TTGCCGGTTT 1 TTGCCTAATT 1 TTGCCTAGGC 2 TTGCCTAGGT 1 TTGCCTCCTA 1 TTGCCTCCTG 1 TTGCCTGCCT 1 TTGCCTGGGA 2 TTGCCTGGGC 1 TTGCCTGTAT 1 TTGCCTTGCT 1 TTGCCTTGTG 1 TTGCCTTGTT 1 TTGCCTTTCA 1 TTGCCTTTTT 1 TTGCGACTGT 1 TTGCGCTCAC 1 TTGCGCTCAT 1 TTGCGCTGGC 3 TTGCGGAATG 1 TTGCGGAGCC 1 TTGCGGTGAG 1 TTGCGTGCTG 3 TTGCGTGTGT 1 TTGCGTTCAA 1 TTGCTAAAGG 2 TTGCTAAATC 1 TTGCTAATCT 1 TTGCTAGAGG 7 TTGCTAGGAC 1 TTGCTATGAA 1 TTGCTATTAA 1 TTGCTCAAAA 1 TTGCTCAAGC 1 TTGCTCAAGT 1 TTGCTCACAA 3 TTGCTCACAC 2 TTGCTCACTT 1 TTGCTCAGGC 4 TTGCTCATTG 1 TTGCTCATTT 1 TTGCTCCTCT 1 TTGCTCGCGA 1 TTGCTCGTTA 1 TTGCTCTGCG 2 TTGCTCTTTG 1 TTGCTGAAGG 1 TTGCTGAATT 2 TTGCTGACTT 1 TTGCTGAGGA 1 TTGCTGCATC 1 TTGCTGCCTT 1 TTGCTGGAGA 6 TTGCTGGGCT 1 TTGCTGTAGA 1 TTGCTGTGTC 1 TTGCTGTGTG 1 TTGCTGTGTT 1 TTGCTTAATA 1 TTGCTTAGTG 1 TTGCTTAGTT 2 TTGCTTATTA 1 TTGCTTCCAT 1 TTGCTTGTCC 1 TTGCTTTTGT 3 TTGCTTTTTT 1 TTGGAAACAA 1 TTGGAACAAT 113 TTGGAACTAT 1 TTGGAAGCGC 1 TTGGAAGGAA 1 TTGGAATAAT 1 TTGGAATAGA 1 TTGGAATTCC 1 TTGGACAATG 2 TTGGACACCC 1 TTGGACAGAC 1 TTGGACAGGC 2 TTGGACAGGT 1 TTGGACCTGA 1 TTGGACCTGG 16 TTGGACGAAT 1 TTGGACTCCA 1 TTGGAGAAGG 2 TTGGAGAATG 1 TTGGAGAGGA 1 TTGGAGATCT 8 TTGGAGCTCT 1 TTGGAGGAGA 1 TTGGAGGAGT 1 TTGGAGTATT 1 TTGGAGTGCT 1 TTGGATAAGC 2 TTGGATAATT 1 TTGGATATCC 1 TTGGATCATT 1 TTGGATGAAG 1 TTGGATGGTC 1 TTGGCAACAT 6 TTGGCAAGGC 2 TTGGCACCAC 1 TTGGCACTAA 1 TTGGCACTCA 1 TTGGCAGCCC 6 TTGGCAGGCA 2 TTGGCAGGCC 1 TTGGCAGGCT 1 TTGGCAGGTT 1 TTGGCAGTAA 2 TTGGCATATA 1 TTGGCATTCA 1 TTGGCCAAGC 5 TTGGCCAAGG 2 TTGGCCAAGT 1 TTGGCCAATG 1 TTGGCCACGC 1 TTGGCCAGAC 5 TTGGCCAGAT 1 TTGGCCAGCC 4 TTGGCCAGCT 1 TTGGCCAGGA 25 TTGGCCAGGC 141 TTGGCCAGGG 8 TTGGCCAGGT 5 TTGGCCAGTA 1 TTGGCCAGTC 2 TTGGCCATTC 1 TTGGCCCAGA 1 TTGGCCCCCC 1 TTGGCCCCTC 1 TTGGCCCTCT 1 TTGGCCGGAC 2 TTGGCCGGGA 2 TTGGCCGGGC 7 TTGGCCTCCC 1 TTGGCCTCTG 1 TTGGCCTGGC 1 TTGGCCTTGC 1 TTGGCGAAGG 1 TTGGCGACAC 1 TTGGCGAGGA 1 TTGGCGAGGC 1 TTGGCGGGTC 1 TTGGCGGGTG 1 TTGGCGTGAG 1 TTGGCTAAGG 1 TTGGCTAGGA 1 TTGGCTAGGC 7 TTGGCTCACA 2 TTGGCTCCTA 1 TTGGCTGAAT 1 TTGGCTGGTA 2 TTGGCTTATG 1 TTGGCTTCCT 1 TTGGCTTCTC 1 TTGGCTTGGC 1 TTGGCTTTTC 3 TTGGGAAATC 1 TTGGGAAGCT 1 TTGGGAATTC 1 TTGGGACAAT 1 TTGGGACCTT 1 TTGGGAGCAG 2 TTGGGAGGCC 1 TTGGGAGGCT 2 TTGGGAGTGA 2 TTGGGAGTGG 1 TTGGGATGCT 1 TTGGGCAGGC 1 TTGGGCCAGA 1 TTGGGCCTGG 1 TTGGGCGAGA 1 TTGGGGAAAC 1 TTGGGGAACT 2 TTGGGGAAGA 1 TTGGGGCAGA 1 TTGGGGTCTC 1 TTGGGGTTCA 1 TTGGGGTTGA 2 TTGGGGTTGG 2 TTGGGGTTTC 50 TTGGGTGCTC 1 TTGGGTGTCA 1 TTGGGTGTCC 7 TTGGGTTACT 1 TTGGGTTTTC 1 TTGGGTTTTG 3 TTGGTAAATG 1 TTGGTAGCCT 1 TTGGTAGCTG 1 TTGGTATGCA 1 TTGGTCACAG 1 TTGGTCAGAC 3 TTGGTCAGCC 1 TTGGTCAGGA 5 TTGGTCAGGC 54 TTGGTCAGGT 3 TTGGTCCCCA 1 TTGGTCCCTC 2 TTGGTCCCTG 1 TTGGTCCGGC 2 TTGGTCCTAT 2 TTGGTCCTCC 1 TTGGTCCTCT 129 TTGGTCGGGC 2 TTGGTCTCAG 1 TTGGTCTCTG 1 TTGGTCTGAG 1 TTGGTCTTCC 1 TTGGTCTTTG 1 TTGGTGAACT 1 TTGGTGAAGG 90 TTGGTGAAGT 1 TTGGTGAATG 1 TTGGTGACCT 1 TTGGTGACGG 1 TTGGTGCAAA 1 TTGGTGCACA 1 TTGGTGCCCT 1 TTGGTGCTCA 2 TTGGTGCTGG 1 TTGGTGCTTG 2 TTGGTGGAGG 2 TTGGTGGCAG 2 TTGGTGGGAG 1 TTGGTGGGCA 1 TTGGTGGGTA 1 TTGGTGGGTC 1 TTGGTGGGTG 1 TTGGTGTACA 1 TTGGTGTACT 1 TTGGTGTATG 1 TTGGTGTCAC 1 TTGGTGTGCT 2 TTGGTGTTGG 1 TTGGTTAACT 1 TTGGTTGAAG 1 TTGGTTGAAT 1 TTGGTTGGCC 1 TTGGTTGGGC 1 TTGGTTGTCT 1 TTGGTTTCCC 2 TTGGTTTGCT 1 TTGGTTTTAT 1 TTGGTTTTGT 1 TTGTAAAAAA 2 TTGTAAAAGA 1 TTGTAAAAGG 2 TTGTAAAGTA 1 TTGTAAATGC 4 TTGTAAATGG 1 TTGTAAATTA 1 TTGTAACAAT 1 TTGTAACGTG 1 TTGTAACTAC 1 TTGTAACTGG 1 TTGTAAGAGG 2 TTGTAAGATT 1 TTGTAAGCAA 1 TTGTAAGGCG 1 TTGTAATAAA 3 TTGTAATCGT 22 TTGTACACAA 1 TTGTACATTT 1 TTGTACTGCT 1 TTGTACTGGG 1 TTGTAGAGGG 1 TTGTAGATCT 1 TTGTAGCACC 1 TTGTAGCTCA 1 TTGTAGGAGG 1 TTGTAGGCCA 1 TTGTAGGTAG 1 TTGTATATTT 1 TTGTATCAAG 1 TTGTATGTAT 1 TTGTATTCCA 3 TTGTATTTTT 1 TTGTCAATAT 1 TTGTCACCAT 1 TTGTCAGAAA 1 TTGTCAGAGG 1 TTGTCAGCGT 1 TTGTCCAACT 1 TTGTCCAGAC 1 TTGTCCAGAG 3 TTGTCCAGGC 6 TTGTCCCAGC 1 TTGTCCCCTA 1 TTGTCCTCTG 3 TTGTCCTTTT 2 TTGTCGAGGC 1 TTGTCGATGG 5 TTGTCGTCAA 1 TTGTCGTGCT 1 TTGTCTATTG 1 TTGTCTGCAG 1 TTGTCTGCCT 1 TTGTCTTTGA 1 TTGTGAACCG 1 TTGTGAAGAG 2 TTGTGAGAAT 3 TTGTGATGTA 4 TTGTGATTAA 1 TTGTGCACCT 1 TTGTGCACTA 1 TTGTGCGTGG 1 TTGTGGATTT 1 TTGTGGCCTC 1 TTGTGGCTGC 1 TTGTGGGAAT 1 TTGTGGGATC 2 TTGTGGGTGC 2 TTGTGGTGTC 1 TTGTGGTTAA 1 TTGTGTAAAA 1 TTGTGTCCTG 1 TTGTGTGACT 1 TTGTGTGATT 1 TTGTGTGGCC 1 TTGTGTGTAC 3 TTGTGTTCTT 1 TTGTGTTGAG 1 TTGTTAAATT 1 TTGTTAACGG 1 TTGTTAAGCC 1 TTGTTAAGTG 1 TTGTTATATA 1 TTGTTATTGC 1 TTGTTCAGGC 3 TTGTTCTGCA 1 TTGTTCTTTG 3 TTGTTGAAGC 1 TTGTTGAGAG 1 TTGTTGATGG 2 TTGTTGATTG 1 TTGTTGCTGA 1 TTGTTGGAGA 1 TTGTTGGATA 2 TTGTTGGCAC 1 TTGTTGGCCC 1 TTGTTGTTGA 4 TTGTTGTTGT 1 TTGTTGTTTT 1 TTGTTTCACC 1 TTGTTTCGAC 1 TTGTTTCTAC 3 TTGTTTGACT 1 TTGTTTTTGG 1 TTTAAAAAAA 2 TTTAAAAACA 1 TTTAAAACTT 1 TTTAAATTCC 1 TTTAACCAGA 1 TTTAACGGCA 1 TTTAACGGCC 30 TTTAACGTCC 1 TTTAAGAGCA 1 TTTAAGATCT 1 TTTAAGCAAT 1 TTTAAGGACA 1 TTTAAGTAGA 1 TTTAAGTAGC 1 TTTAATAAAA 1 TTTAATAAGT 1 TTTAATAATT 1 TTTAATGACA 1 TTTAATGAGG 1 TTTAATGGAC 1 TTTAATGTTA 1 TTTAATTCAT 1 TTTAATTCTG 1 TTTAATTGCA 1 TTTAATTGTG 2 TTTAATTTGA 1 TTTAATTTGT 1 TTTAATTTTT 1 TTTACAAATC 1 TTTACAATAC 1 TTTACAATTT 1 TTTACACACT 1 TTTACACAGT 1 TTTACAGCCC 5 TTTACAGCTG 3 TTTACAGGAT 1 TTTACCAAAA 1 TTTACCCATT 1 TTTACCGCTT 1 TTTACCGGCC 1 TTTACTCATC 1 TTTACTCCAG 1 TTTACTGAAA 1 TTTACTGTCA 5 TTTACTGTGT 1 TTTACTGTTT 1 TTTACTTTCA 1 TTTAGACTTT 1 TTTAGAGATA 1 TTTAGATAGC 1 TTTAGCATCT 1 TTTAGCGGCC 1 TTTAGCTACA 1 TTTAGCTTAA 1 TTTAGCTTGT 1 TTTAGCTTTT 1 TTTAGGAAGG 1 TTTAGGGGGA 1 TTTAGGGTGT 1 TTTAGTCAAA 1 TTTAGTGACG 1 TTTAGTGCTT 1 TTTAGTGGAA 1 TTTATAAGTT 2 TTTATAATAA 1 TTTATACACC 1 TTTATACATA 1 TTTATAGCAG 1 TTTATATCTT 1 TTTATCAAAT 1 TTTATCTAGC 1 TTTATCTCGA 1 TTTATCTGCT 2 TTTATCTTTT 1 TTTATGAAAA 1 TTTATGATCC 1 TTTATGTAAG 1 TTTATGTCCT 1 TTTATGTCTG 1 TTTATTAAGA 1 TTTATTCCTC 2 TTTATTCTAA 1 TTTATTCTAG 1 TTTATTGAAA 2 TTTATTGATC 1 TTTATTGCAC 1 TTTATTGCTT 1 TTTATTGGAT 1 TTTATTGTCT 1 TTTATTTAAT 1 TTTATTTAGC 1 TTTATTTCTA 4 TTTATTTGGC 2 TTTATTTTCA 1 TTTATTTTGG 1 TTTCAAACAC 1 TTTCAAATAA 2 TTTCAACCTT 1 TTTCAACTGT 2 TTTCAATAAG 1 TTTCAATACC 1 TTTCAATAGC 1 TTTCACATAC 1 TTTCACCCCT 1 TTTCACTAGG 1 TTTCAGAACT 1 TTTCAGAGAG 11 TTTCAGATTG 2 TTTCAGCAGG 1 TTTCAGGAAG 1 TTTCAGGGGA 4 TTTCAGGGTG 1 TTTCAGTCAG 3 TTTCAGTGGG 1 TTTCATACAC 1 TTTCATCCAC 1 TTTCATCTCT 1 TTTCATCTGT 1 TTTCATTAAT 2 TTTCATTAGC 1 TTTCATTGCC 2 TTTCCAAAAG 1 TTTCCAAATG 1 TTTCCAAGAG 1 TTTCCAAGGC 1 TTTCCAATCC 1 TTTCCAATCT 4 TTTCCAATGC 1 TTTCCAATGG 1 TTTCCACACC 3 TTTCCACCAA 1 TTTCCACCAC 1 TTTCCACCAG 1 TTTCCACCTT 1 TTTCCACTAA 6 TTTCCACTAT 1 TTTCCACTTA 2 TTTCCAGAAA 1 TTTCCAGCAT 4 TTTCCAGTGA 1 TTTCCCAAAC 3 TTTCCCATCC 14 TTTCCCCGCA 1 TTTCCCTCAA 2 TTTCCCTGCC 3 TTTCCCTTCT 1 TTTCCGTGGC 1 TTTCCTCTAG 1 TTTCCTCTCA 3 TTTCCTCTGC 1 TTTCCTGCTC 1 TTTCCTGCTG 1 TTTCCTGTTT 1 TTTCCTTACA 1 TTTCCTTCAC 1 TTTCCTTCCT 6 TTTCCTTGCC 1 TTTCCTTGTG 2 TTTCGGATGA 1 TTTCGTAGAT 1 TTTCTAAACC 1 TTTCTAAGAG 3 TTTCTACAAA 1 TTTCTACAAG 1 TTTCTACCTT 1 TTTCTAGAAC 1 TTTCTAGGGG 2 TTTCTAGTTT 6 TTTCTATCCC 1 TTTCTATTTG 1 TTTCTCACGC 1 TTTCTCATAC 1 TTTCTCCAGG 1 TTTCTCCTGT 1 TTTCTCGTCG 2 TTTCTCTAAG 1 TTTCTCTCCC 2 TTTCTCTCCT 2 TTTCTCTGCT 1 TTTCTGAACC 1 TTTCTGAAGG 1 TTTCTGACAC 1 TTTCTGACTT 1 TTTCTGCTCT 1 TTTCTGGAAA 1 TTTCTGGAGG 3 TTTCTGGGTT 2 TTTCTGTATG 4 TTTCTGTCTC 1 TTTCTGTGAA 2 TTTCTGTGTA 1 TTTCTGTTTT 1 TTTCTTAAAG 2 TTTCTTAGTT 1 TTTCTTCTCT 1 TTTCTTGGGT 1 TTTCTTGTTT 1 TTTCTTTCCC 1 TTTCTTTGCT 1 TTTGAAAGGA 1 TTTGAAATCT 1 TTTGAAATGA 2 TTTGAACATA 2 TTTGAACCAC 1 TTTGAACCCT 2 TTTGAACTGC 1 TTTGAACTGT 1 TTTGAACTTG 1 TTTGAAGACC 1 TTTGAAGATG 4 TTTGAATCAG 1 TTTGACAACC 1 TTTGACAGCT 1 TTTGACCTAA 1 TTTGACCTTT 3 TTTGACGAGC 2 TTTGACTCTC 2 TTTGACTGAT 1 TTTGACTTGT 1 TTTGAGAAAG 1 TTTGAGACTC 1 TTTGAGCTGG 3 TTTGAGGATT 1 TTTGAGTCTC 1 TTTGATAAAT 1 TTTGATGCAT 1 TTTGATTCCT 1 TTTGCAATAA 1 TTTGCACCAC 1 TTTGCAGATG 1 TTTGCAGTCC 1 TTTGCATTTC 1 TTTGCCAAAA 1 TTTGCCAAAT 1 TTTGCCAGGC 2 TTTGCCATCA 1 TTTGCCATTG 1 TTTGCCCCCC 1 TTTGCCTCAG 1 TTTGCCTGAT 1 TTTGCCTTTT 2 TTTGCGCCAC 2 TTTGCGCTGC 1 TTTGCGGTCC 2 TTTGCGTCAG 1 TTTGCTAAAG 2 TTTGCTATTG 1 TTTGCTCAAG 1 TTTGCTCGCA 1 TTTGCTCTCC 1 TTTGCTCTGT 1 TTTGCTGAAA 1 TTTGCTGACT 2 TTTGCTGCCT 1 TTTGCTGTCC 1 TTTGCTTGTT 1 TTTGGAAAGA 1 TTTGGAAATA 1 TTTGGAAATC 2 TTTGGAACAA 1 TTTGGAACGA 1 TTTGGAATCC 1 TTTGGAATGT 2 TTTGGATCAA 1 TTTGGCACCG 1 TTTGGCATTC 1 TTTGGCCACT 1 TTTGGCCAGG 1 TTTGGGAAGT 1 TTTGGGATCT 1 TTTGGGCAGG 2 TTTGGGCCTA 4 TTTGGGGCTG 3 TTTGGGGGCA 1 TTTGGGGGCC 1 TTTGGGTAAT 1 TTTGGGTGGA 1 TTTGGTCCGG 1 TTTGGTCTTT 3 TTTGGTGGGT 1 TTTGGTGTTT 6 TTTGGTTTTC 4 TTTGTAAAAC 1 TTTGTAATCC 2 TTTGTACAAA 1 TTTGTACACC 1 TTTGTAGATG 5 TTTGTAGCTG 1 TTTGTATAAT 1 TTTGTATACT 1 TTTGTATAGA 1 TTTGTATATA 1 TTTGTCTTCA 1 TTTGTGAAAG 1 TTTGTGAAGA 1 TTTGTGACTG 6 TTTGTGATCA 1 TTTGTGCACT 1 TTTGTGCCAC 2 TTTGTGCCAT 1 TTTGTGCCTT 1 TTTGTGCTGG 1 TTTGTGGAAG 1 TTTGTGGATA 1 TTTGTGGCTA 1 TTTGTGGGAG 1 TTTGTGGGCA 6 TTTGTGGTCA 4 TTTGTGGTGG 1 TTTGTGGTTA 1 TTTGTGGTTC 1 TTTGTGTATA 1 TTTGTGTCAA 1 TTTGTGTCAC 4 TTTGTGTCCT 1 TTTGTGTCTT 1 TTTGTGTTCC 1 TTTGTGTTGT 1 TTTGTGTTTG 1 TTTGTGTTTT 1 TTTGTTAACC 1 TTTGTTAATT 2 TTTGTTATTC 1 TTTGTTCATT 2 TTTGTTCCCA 1 TTTGTTCGCA 1 TTTGTTCTAA 1 TTTGTTGAAT 2 TTTGTTGGCT 1 TTTGTTGTAG 1 TTTGTTGTAT 1 TTTGTTGTGG 1 TTTGTTGTTG 1 TTTGTTTGTG 1 TTTGTTTTTA 2 TTTGTTTTTG 1 TTTGTTTTTT 1 TTTTAAAACC 1 TTTTAAAAGG 1 TTTTAAACAG 1 TTTTAAAGGT 1 TTTTAAATTA 3 TTTTAAGAAC 1 TTTTAAGCAA 2 TTTTAATAGG 1 TTTTAATCTT 1 TTTTAATTGA 1 TTTTACAAAG 1 TTTTACAAAT 2 TTTTACAACT 1 TTTTACAGTA 2 TTTTACATCT 1 TTTTACCAGT 2 TTTTACTTTT 1 TTTTAGAGAA 1 TTTTAGCAGA 1 TTTTAGCAGG 2 TTTTAGTGTC 1 TTTTATAAGG 1 TTTTATCTGG 1 TTTTATGGAA 1 TTTTATGGGT 2 TTTTATTAAA 3 TTTTCAAGAA 1 TTTTCAATAA 1 TTTTCAGGAG 1 TTTTCAGGTA 1 TTTTCATCTG 1 TTTTCATTGG 1 TTTTCATTTG 1 TTTTCCAAGC 1 TTTTCCACAT 1 TTTTCCAGGC 2 TTTTCCCACC 2 TTTTCCCAGG 1 TTTTCCCCTG 1 TTTTCCGAGG 1 TTTTCCGGTT 1 TTTTCCTGGA 1 TTTTCCTTCT 1 TTTTCGATTG 1 TTTTCGGCAA 1 TTTTCGTACT 1 TTTTCTAAAA 1 TTTTCTAAAG 1 TTTTCTAACG 1 TTTTCTAGCG 1 TTTTCTCACA 1 TTTTCTCAGT 1 TTTTCTCCTG 1 TTTTCTCTGA 1 TTTTCTGAAA 16 TTTTCTGACA 1 TTTTCTGAGT 2 TTTTCTGATT 1 TTTTCTGCAT 2 TTTTCTGCTG 9 TTTTCTGGTA 1 TTTTCTGTAC 1 TTTTCTGTAT 1 TTTTCTGTGT 1 TTTTCTTGCC 1 TTTTCTTGGC 1 TTTTCTTTAG 1 TTTTCTTTGG 1 TTTTGAAAGT 1 TTTTGAAATA 1 TTTTGAAATT 1 TTTTGAAGCA 3 TTTTGACTTG 1 TTTTGAGAAG 3 TTTTGAGCTT 1 TTTTGATGAG 2 TTTTGATGTA 1 TTTTGCAAGG 1 TTTTGCATTT 2 TTTTGCTGTG 3 TTTTGGAAGA 1 TTTTGGCCAG 1 TTTTGGGGGA 1 TTTTGGGGGC 2 TTTTGGTCTG 1 TTTTGGTGCA 1 TTTTGGTTCT 1 TTTTGGTTGG 1 TTTTGGTTTT 1 TTTTGTACGC 1 TTTTGTACGG 1 TTTTGTACTT 1 TTTTGTCGAG 1 TTTTGTGACA 1 TTTTGTGACT 1 TTTTGTGATA 1 TTTTGTGGCC 1 TTTTGTGTAG 1 TTTTGTGTAT 1 TTTTGTGTGA 2 TTTTGTTGGC 1 TTTTGTTTCT 1 TTTTGTTTGA 1 TTTTGTTTTG 2 TTTTGTTTTT 1 TTTTTAATGT 7 TTTTTACTCA 2 TTTTTACTGA 1 TTTTTAGAGC 1 TTTTTAGGGG 1 TTTTTAGGTA 1 TTTTTAGGTG 1 TTTTTAGTTA 1 TTTTTAGTTT 1 TTTTTATATA 1 TTTTTATCCA 1 TTTTTATGCC 4 TTTTTATGTG 2 TTTTTCAAGA 1 TTTTTCCCTG 1 TTTTTCCTTC 1 TTTTTCCTTG 1 TTTTTCTCAT 1 TTTTTCTCCC 3 TTTTTCTGGC 1 TTTTTCTTAA 2 TTTTTCTTAT 1 TTTTTCTTCT 1 TTTTTCTTTC 1 TTTTTGAAAA 1 TTTTTGACTG 1 TTTTTGATAA 3 TTTTTGATCA 12 TTTTTGATGT 1 TTTTTGCACG 1 TTTTTGCCAC 1 TTTTTGTACA 9 TTTTTGTACT 1 TTTTTGTAGG 1 TTTTTGTATC 1 TTTTTGTATT 2 TTTTTGTGAA 1 TTTTTTAAGG 1 TTTTTTACTC 2 TTTTTTCACC 1 TTTTTTGCCC 1 TTTTTTGGGC 1 TTTTTTGTAA 2 TTTTTTTAAG 1 TTTTTTTCTG 1 TTTTTTTGTT 1 TTTTTTTTTC 1 TTTTTTTTTT 3 r-bioc-edger-3.4.2+dfsg.orig/inst/0002755000265600020320000000000012227063711015741 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/inst/CITATION0000644000265600020320000000401112227063711017070 0ustar tilleaadmincitHeader("Please cite the first paper for the software itself and the other papers for the various original statistical methods implemented in edgeR. See Section 1.2 in the User's Guide for more detail.") citEntry( entry="article", title = "edgeR: a Bioconductor package for differential expression analysis of digital gene expression data", author = "Mark D Robinson and Davis J McCarthy and Gordon K Smyth", journal = "Bioinformatics", volume = 26, pages = 139-140, year = 2010, textVersion = "Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140" ) citEntry( entry="article", title = "Moderated statistical tests for assessing differences in tag abundance", author = "Mark D Robinson and Gordon K Smyth", journal = "Bioinformatics", volume = 23, pages = 2881-2887, year = 2007, textVersion = "Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881-2887" ) citEntry( entry="article", title = "Small-sample estimation of negative binomial dispersion, with applications to SAGE data", author = "Mark D Robinson and Gordon K Smyth", journal = "Biostatistics", volume = 9, pages = 321-332, year = 2008, textVersion = "Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332" ) citEntry( entry="article", author = "McCarthy, Davis J. and Chen, Yunshun and Smyth, Gordon K.", title = "Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation", year = 2012, journal = "Nucleic Acids Research", volume = 40, number = 10, pages = 4288-4297, textVersion = "McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297" ) r-bioc-edger-3.4.2+dfsg.orig/inst/NEWS.Rd0000644000265600020320000003516012227063711017007 0ustar tilleaadmin\name{edgeRnews} \title{edgeR News} \encoding{UTF-8} \section{Version 3.3.8}{\itemize{ \item predFC() with design=NULL now uses normalization factors correctly. However this use of predFC() to compute counts per million is being phased out in favour of cpm(). }} \section{Version 3.3.5}{\itemize{ \item Refinement to cutWithMinN() to make the bin numbers more equal in the worst case. \item estimateDisp() now creates the design matrix correctly when the design matrix is not given as an argument and there is only one group. Previously this case gave an error. \item Minor edit to glm.h code. }} \section{Version 3.3.4}{\itemize{ \item plotMDS.DGEList now gives a friendly error message when there are fewer than 3 data columns. }} \section{Version 3.3.3}{\itemize{ \item DGEList() accepts NULL as a possible value again for the group, lib.size and norm.factors arguments. It is treated the same way as a missing argument. }} \section{Version 3.3.2}{\itemize{ \item Update to cutWithMinN() so that it does not fail even when there are many repeated x values. \item Refinement to computation for nbins in dispBinTrend. Now changes more smoothly with the number of genes. trace argument is retired. \item Fixes to calcNormFactors with method="TMM" so that it takes account of lib.size and refCol if these are preset. \item Updates to help pages for the data classes. }} \section{Version 3.3.1}{\itemize{ \item Updates to DGEList() and DGEList-class documentation. Arguments lib.size, group and norm.factors are now set to their defaults in the function definition rather than set to NULL. }} \section{Version 3.2.0}{\itemize{ \item The User's Guide has a new section on between and within subject designs and a new case study on RNA-seq profiling of unrelated Nigerian individuals. Section 2.9 (item 2) now gives a code example of how to pre-specify the dispersion value. \item New functions estimateDisp() and WLEB() to automate the estimation of common, trended and tagwise dispersions. The function estimateDisp() provides a simpler alternative pipeline and in principle replaces all the other dispersion estimation functions, for both glms and for classic edgeR. It can also incorporate automatic estimation of the prior degrees of freedom, and can do this in a robust fashion. \item glmLRT() now permits the contrast argument to be a matrix with multiple columns, making the treatment of this argument analogous to that of the coef argument. \item glmLRT() now has a new F-test option. This option takes into account the uncertainty with which the dispersion is estimated and is more conservative than the default chi-square test. \item glmQLFTest() has a number of important improvements. It now has a simpler alternative calling sequence: it can take either a fitted model object as before, or it can take a DGEList object and design matrix and do the model fit itself. If provided with a fitted model object, it now checks whether the dispersion is of a suitable type (common or trended). It now optionally produces a plot of the raw and shrunk residual mean deviances versus AveLogCPM. It now has the option of robustifying the empirical Bayes step. It now has a more careful calculation of residual df that takes special account of cases where all replicates in a group are identically zero. \item The gene set test functions roast(), mroast() and camera() now have methods defined for DGEList data objects. This facilitates gene set testing and pathway analysis of expression profiles within edgeR. \item The default method of plotMDS() for DGEList objects has changed. The new default forms log-counts-per-million and computes Euclidean distances. The old method based on BCV-distances is available by setting method="BCV". The annotation of the plot axes has been improved so that the distance method used is apparent from the plot. \item The argument prior.count.total used for shrinking log-fold-changes has been changed to prior.count in various functions throughout the package, and now refers to the average prior.count per observation rather than the total prior count across a transcript. The treatment of prior.counts has also been changed very slightly in cpm() when log=TRUE. \item New function aveLogCPM() to compute the average log count per million for each transcript across all libraries. This is now used by all functions in the package to set AveLogCPM, which is now the standard measure of abundance. The value for AveLogCPM is now computed just once, and not updated when the dispersion is estimated or when a linear model is fitted. glmFit() now preserves the AveLogCPM vector found in the DGEList object rather than recomputing it. The use of the old abundance measure is being phased out. \item The glm dispersion estimation functions are now much faster. \item New function rpkm() to compute reads per kilobase per million (RPKM). \item New option method="none" for calcNormFactors(). \item The default span used by dispBinTrend() has been reduced. \item Various improvements to internal C++ code. \item Functions binCMLDispersion() and bin.dispersion() have been removed as obsolete. \item Bug fix to subsetting for DGEGLM objects. \item Bug fix to plotMDS.DGEList to make consistent use of norm.factors. }} \section{Version 3.0.0}{\itemize{ \item New chapter in the User's Guide covering a number of common types of experimental designs, including multiple groups, multiple factors and additive models. New sections in the User's Guide on clustering and on making tables of read counts. Many other updates to the User's Guide and to the help pages. \item New function edgeRUsersGuide() to open the User's Guide in a pdf viewer. \item Many functions have made faster by rewriting the core computations in C++. This includes adjustedProfileLik(), mglmLevenberg(), maximizeInterpolant() and goodTuring(). \item New argument verbose for estimateCommonDisp() and estimateGLMCommonDisp(). \item The trended dispersion methods based on binning and interpolation have been rewritten to give more stable results when the number of genes is not large. \item The amount by which the tagwise dispersion estimates are squeezed towards the global value is now specified in estimateTagwiseDisp(), estimateGLMTagwiseDisp() and dispCoxReidInterpolateTagwise() by specifying the prior degrees of freedom prior.df instead of the prior number of samples prior.n. \item The weighted likelihood empirical Bayes code has been simplified or developed in a number of ways. The old functions weightedComLik() and weightedComLikMA() are now removed as no longer required. \item The functions estimateSmoothing() and approx.expected.info() have been removed as no longer recommended. \item The span used by estimateGLMTagwiseDisp() is now chosen by default as a decreasing function of the number of tags in the dataset. \item New method "loess" for the trend argument of estimateTagwiseDisp, with "tricube" now treated as a synonym. \item New functions loessByCol() and locfitByCol() for smoothing columns of matrix by non-robust loess curves. These functions are used in the weighted likelihood empirical Bayes procedures to compute local common likelihood. \item glmFit now shrinks the estimated fold-changes towards zero. The default shrinkage is as for exactTest(). \item predFC output is now on the natural log scale instead of log2. \item mglmLevenberg() is now the default glm fitting algorithm, avoiding the occasional errors that occurred previously with mglmLS(). \item The arguments of glmLRT() and glmQLFTest() have been simplified so that the argument y, previously the first argument of glmLRT, is no longer required. \item glmQLFTest() now ensures that no p-value is smaller than what would be obtained by treating the likelihood ratio test statistic as chisquare. \item glmQLFTest() now treats tags with all zero counts in replicate arrays as having zero residual df. \item gof() now optionally produces a qq-plot of the genewise goodness of fit statistics. \item Argument null.hypothesis removed from equalizeLibSizes(). \item DGEList no longer outputs a component called all.zeros. \item goodTuring() no longer produces a plot. Instead there is a new function goodTuringPlot() for plotting log-probability versus log-frequency. goodTuring() has a new argument 'conf' giving the confidence factor for the linear regression approximation. \item Added plot.it argument to maPlot(). }} \section{Version 2.6.0}{\itemize{ \item edgeR now depends on limma. \item Considerable work on the User's Guide. New case study added on Pathogen inoculated arabidopsis illustrating a two group comparison with batch effects. All the other case studies have been updated and streamlined. New section explaining why adjustments for GC content and mappability are not necessary in a differential expression context. \item New and more intuitive column headings for topTags() output. 'logFC' is now the first column. Log-concentration is now replaced by log-counts-per-million ('logCPM'). 'PValue' replaces 'P.Value'. These column headings are now inserted in the table of results by exactTest() and glmLRT() instead of being modified by the show method for the TopTags object generated by topTags(). This means that the column names will be correct even when users access the fitted model objects directly instead of using the show method. \item plotSmear() and plotMeanVar() now use logCPM instead of logConc. \item New function glmQLFTest() provides quasi-likelihood hypothesis testing using F-tests, as an alternative to likelihood ratio tests using the chisquare distribution. \item New functions normalizeChIPtoInput() and calcNormOffsetsforChIP() for normalization of ChIP-Seq counts relative to input control. \item New capabilities for formal shrinkage of the logFC. exactTest() now incorporates formal shrinkage of the logFC, controlled by argument 'prior.count.total'. predFC() provides similar shrinkage capability for glms. \item estimateCommonDisp() and estimateGLMCommonDisp() now set the dispersion to NA when there is no replication, instead of setting the dispersion to zero. This means that users will need to set a dispersion value explicitly to use functions further down the analysis pipeline. \item New function estimateTrendedDisp() analogous to estimateGLMTrendedDisp() but for classic edgeR. \item The algorithms implemented in estimateTagwiseDisp() now uses fewer grid points but interpolates, similar to estimateGLMTagwiseDisp(). \item The power trend fitted by dispCoxReidPowerTrend() now includes a positive asymptote. This greatly improves the fit on real data sets. This now becomes the default method for estimateGLMTrendedDisp() when the number of genes is less than 200. \item New user-friendly function plotBCV() displays estimated dispersions. \item New argument target.size for thinCounts(). \item New utility functions getDispersion() and zscoreNBinom(). \item dimnames() methods for DGEExact, DGELRT and TopTags classes. \item Function pooledVar() removed as no longer necessary. \item Minor fixes to various functions to ensure correct results in special cases. }} \section{Version 2.4.0}{\itemize{ \item New function spliceVariants() for detecting alternative exon usage from exon-level count data. \item A choice of rejection regions is now implemented for exactTest(), and the default is changed from one based on small probabilities to one based on doubling the smaller of the tail probabilities. This gives better results than the original conditional test when the dispersion is large (especially > 1). A Beta distribution approximation to the tail probability is also implemented when the counts are large, making exactTest() much faster and less memory hungry. \item estimateTagwiseDisp() now includes an abundance trend on the dispersions by default. \item exactTest() now uses tagwise.dispersion by default if found in the object. \item estimateCRDisp() is removed. It is now replaced by estimateGLMCommonDisp(), estimateGLMTrendedDisp() and estimateGLMTagwiseDisp(). \item Changes to glmFit() so that it automatically detects dispersion estimates if in data object. It uses tagwise if available, then trended, then common. \item Add getPriorN() to calculate the weight given to the common parameter likelihood in order to smooth (or stabilize) the dispersion estimates. Used as default for estimateTagwiseDisp and estimateGLMTagwiseDisp(). \item New function cutWithMinN() used in binning methods. \item glmFit() now S3 generic function, and glmFit() has new method argument specifying fitting algorithm. \item DGEGLM objects now subsettable. \item plotMDS.dge() is retired, instead a DGEList method is now defined for plotMDS() in the limma package. One advantage is that the plot can be repeated with different graphical parameters without recomputing the distances. The MDS method is also now much faster. \item Add as.data.frame method for TopTags objects. \item New function cpm() to calculate counts per million conveniently. \item Adding args to dispCoxReidInterpolateTagwise() to give more access to tuning parameters. \item estimateGLMTagwiseDisp() now uses trended.dispersion by default if trended.dispersion is found. \item Change to glmLRT() to ensure character coefficient argument will work. \item Change to maPlot() so that any really extreme logFCs are brought back to a more reasonable scale. \item estimateGLMCommonDisp() now returns NA when there are no residual df rather than returning dispersion of zero. \item The trend computation of the local common likelihood in dispCoxReidInterpolateTagwise() is now based on moving averages rather than lowess. \item Changes to binGLMDispersion() to allow trended dispersion for data sets with small numbers of genes, but with extra warnings. \item dispDeviance() and dispPearson() now give graceful estimates and messages when the dispersion is outside the specified interval. \item Bug fix to mglmOneWay(), which was confusing parametrizations when the design matrix included negative values. \item mglmOneWay() (and hence glmFit) no longer produces NA coefficients when some of the fitted values were exactly zero. \item Changes to offset behaviour in estimateGLMCommonDisp(), estimateGLMTrendedDisp() and estimateGLMTagwiseDisp() to fix bug. Changes to several other functions on the way to fixing bugs when computing dispersions in data sets with genes that have all zero counts. \item Bug fix to mglmSimple() with matrix offset. \item Bug fix to adjustedProfLik() when there are fitted values exactly at zero for one or more groups. }} r-bioc-edger-3.4.2+dfsg.orig/inst/doc/0002755000265600020320000000000012262114163016503 5ustar tilleaadminr-bioc-edger-3.4.2+dfsg.orig/inst/doc/edgeR.pdf0000644000265600020320000014031212250253443020225 0ustar tilleaadmin%PDF-1.4 % 3 0 obj << /Length 1720 /Filter /FlateDecode >> stream xڍX[sD~ʎi^*\qYʹ4#k孚UaUqVaU/tENtب[`ځR%Q Jd~ww L2d8¸b%[%ia}W% b2˂Fm' Y6’F٣`I p -tGMPZ\ 4Hci7r?y"FO`{iΎ+ko}: 6nPL.Ιqf)o%{Cp'/K4 i)rBď:YR}3x;e \;4 0* p!vBG CT/lz{U6-"vW|,e(390zo2c` )@{Xuz4/3R Ead /s UWi|v8)| )h` qBy=(:`;:"Ű*:;L6`|-٤dL9"tT8=5jU~o (#5{Qk3O#ԁZz Y0OTk4@e8"n5}y 7-q4,/:XcgItLѸ`ƕK)qaX>~fIt)~F$dz/:rpb}и>ë}`V\&Z` 0I~Ʃ~鹮5eӮ7I7OAPTMPdHNR$6R H$Y`Q8lM)\玼#Hϱa>މ(o#򋶩lٮddh iyvs:$G;Glu:VO%}hLOiXg  endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 612 792] /Parent 8 0 R >> endobj 1 0 obj << /Font << /F26 4 0 R /F20 5 0 R /F37 6 0 R /F39 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 9 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 10 0 obj [514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6] endobj 11 0 obj [571.2 544 544 816 816 272 299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 761.6 272 272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2] endobj 12 0 obj [525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6 458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 510.9 484.7 667.6 484.7 484.7] endobj 13 0 obj << /Length1 2249 /Length2 16439 /Length3 0 /Length 17760 /Filter /FlateDecode >> stream xڌpk ǙV'ضmul۶mLlۓLI&'{~_uNuUs-_^~ɈUL쌀vtL9e&f## =##3,5bX2u-? D2QC;9;[5`fd#7@ G:{8Z;#Ҙ A;@halh 3t6|d46[='%=7?- t:MŌ jn/#!0:}xؚ*R{ee@ woLL oYlhllgcohaak0eݝi&Z;}ZX}]!@\H `A-읝,W.ٚm`Ohv׿_$L\l-\R6l\nlWxU{J |$>X/'CW O"X&&3hfa 'h/qƏc0xZ{1|%5i:aa;w + `coO@)[S;׿(|?4\=*fe 21|1]_Q&$bmorvaM5d9J9~lh$n4Qp66>[[,ktLGoVY~53kbXPߓ `sp|9ulDB? qD .Ab0HAd G?#AῈ1|*+AȮ}dW>kA>tGeFЇG_`11k|1?MRZ?Gz?|57X|?7*Oۏ?Qp.v@#kk韎|`U8OX_1Ӈ?gR?-qh?GJLJ?GK<?(yiG$OR8:~Y??'4]]3 l ~s;';HZuqyANv|J@\#z ֙Ka BM0tGoVd.hOnCMÕKJGu2pst1jѺe dF9$PtQܑQ߉h`}cXJwc=7Up>hcߣN̒{ Jc-{l;N-bL$3YPz+?9蓓MsS`3KEEowJ&ڔ'B\mHoKpt9*$Z+Xs4)q5y@Sb4jR)c45#`moos!te7nmJ-\K{΅S[_g}=t2M!ki ;Ll!pyč!M`iQx*k )|lR]&3F:. ,lwSbf[t 5lW:<7ehFK":F^J3a$xyd4\xX6<}Ae2Ԑ?a߽#kaKb8{,6* <; Swn/oXٰ?&d PQ.۪45a4Z㵁ZdvK} 1c :z %h;}q@ˢ2b[&=%K@uKFp//ZM/1Ԭb}8s>}JTU:X[O7ysR^&)R/N]Cf.F;4POIWl)^șٽ M̑"_c, ̮ 䪦u䡫o 34?-Je3N861X~F( QqHq@rRf͒i2]g>ӜMl !$z^ 6U@safџZEt/:ژQ>699u>V{$ԣs%@mJ0KY(v'W *x9\?/$G;^3UI1qva|ծ~F>YHJUȉ2,.N=QyxÌH[_G_Bm\غ4Fnz Md=Du# m:ɏJDv~:UVnŽ4O1|_2-j~_iΪwV aZdv Xny&; vL^ПI"9s }IMF %Q@ָxjk=]6 8a~9RʗC"k}} V:.m`CR6H7H$ctmE ʃ\^+.:JI645I.5PKj-˴ޓAhՑDA*3:5hßmU{w?:k FLi ")qܹI3)j߰`~OR۽wcKY"RPɳ[b"GrĭaQ0x>o>c=J1X>jbsb$P#R2-T/Wo vAhݱ8{)zJB;ה#f.P*:ZP"OzI4/; w_1n)Rq~̰lXQ·RV")S՜ I8qC 6&!W95F4T^ӯ?Ç d+wॎMG )7uР[My bwN0w$4wƋ`f.q^^  v}p DG®b}1JpBӒN_6NVͳ2r1{60W71eӆcm61x F2,=(7 U B#Me\yxR6&iEɲxG!&=pY~-P\GX*â&hV+F_ԯGB+SY}ـ [C5R% m;%8(օMDY gk 0 (ۈ[ڴzhny.o.ӷW1S$KrT/N.(|2٤ }11/,{Q4 -N;sH#m)fmF>6,OA:I5b3AVaGhPS5ٴvB3^$+d vX5_Q #"{YClZBLҙpTuh|b(ugT߿|*i1Y7Rb(͙v  P jcE)ųfM}-8}ǶG_;g>3~j!V%?SAN@ndۮsK&z&@cWɫ |>mҜJkBO:gǽ-)Zmu4>-b)Q.B&YiTRFЖ߃XXt)iTmYQâ;#)r|KA1Nnh\5h(t S{ewf.CAZQBPjNzFimNq˄'DmY8qb CЯ B)/TDžew>9A <+GX߿̉#w$+:[YBK=O*;ܗ*#u~V{s-ỵAi"Q"\ۆ!ͮ,0޼1juЄEv<ؕ4Wͧ(ycd70S`r"dTSti?CgL/"ˬ\ ʞ7sl OR-? e|#UJĪPTٺ2~綜ϋ^K;[09`QBrJ 77 hAy鏦uCA[Kdh%Q.F ٬|䈺ٓTX^ AL(jA 6Ϲ`4$XzUnHRr"Ns4\xNLqV$I60^@?04-/b{WFF݆< H4VV)P#8˷_g|f0RD˰p&5rį-,mT`j:i4qAr{F|wD󾺔~)vQ0q>oZ2ۤ+[-J\m*Sza)EAaiH>NR0h IfVs8|YدGPpri5  ^)#.1h2acu^N\ض$tt"OM@`=3IOUVP,Vd 8Q Xpn" pk M|/ ηobnM Tjh,Ch4(w ȋuX(54Pv؏0I,ڝb9{p='FgS_~$=7h{pi^}Z0ͰC:wKjk_ 3YkҴFt!B/̕ 4b FP-59;NlUPSt1 =w3,_U/ZWTf]3 -X534Jm>(n怊6,zrJ-4o4I3P$S mGmаN  ;hz.}L 4w!! @eO"AI?Wv{9׏2 FCt׎T'x$(}89W5O7h U/Ԙ 4SiPTY?Q%5x5 Y|Jȶb?$oTi@TKwBNFrՑNb3 qݚ'4K%DyfcBdģSE铰NxM M/КE@)?* Ћ uJ*GR]9w+@KmX`c;GZ`RfQ~uǛozӥ1JLyv,:JhY*pu9+ X q " >)Y³. @[Xۑ 眶{5M+ܐ-SGPrЀ7zoIw*փ_jw(gr[t>{MF沔rd +n5 OV) lР%3㲼w,,ZYOnVË2y|/Wz2j+"RW v9&.<=Вig"K.kaGPtSP;Bn/+砰#h37BԖ:/lZh0zEMp-gNf9u)YGMtd:ۍ_!SZb)(+-)@0H6t翋!{P;~K ]LQ&e'M폞mQUybu)i3Tۡ]ЕOY%\ n+mS3Ł-cr鵂7 Ųqkn.})iE5,Zl MHOPOԐ ~P-B9/=m%3|_^Yr*bR3Tw22_qi564"އ)d2\`R}lanWK3WS؉Jf̳X97Vk0ʅ"|Ê|'ށFY2TJ 1 ,q[ ݽ*|bTin0H1teO%K'w̮?;<\$$J&2SnL|f%s̑tTɈzґ‚AIJe4?}d , 7M 苖,cS<*^cYuNϐ1RI \uN&`~2'/ j-ωAKWtsdT y`ffRQ 50>?nFwª/ b@؍P'gaj(y0MK猌d7e(X0x$c<%cQAOEB9u'dѪ80//EW#cfAQ2_7N3V/7q kUQ-NkJft7(AMb~`چ4 $_Ji1N -K/*d"n:xx:{fμ$M5c{atZ\arZ$ ѹ=XIбYpfQ}kV)vFM ,@rIC4c|nr4mICx|bֹD/2>>egEo.Iu:ŋ#ؼL-gąoZrTȦ6`H0U8QSV$x-A~S0琐v]씴}XW(UdaDg w*6 k9J#8 zLI pz+9؄K ,ȝ^ ؚzzV9s / ;P*K Gjؤ3iOE@J,p7~2F¸D>EYfeD a ~FRXŘ0i_(x _w[ -fm'_^߭|&:E+*MkLd7hL>ݝ'/#wە}& cyN5_itxǯJ}U܉.ˉ#;:LMu!J5J'YTLLq8O>l`6jlz^~d{V67z85^"WB("x\IJO_]'}@quHQC[oԆEɒ5sIf6:zD!'۪w5Pc{ 3'OяDZAJ- j-.FR,}n *TK>-γ>x|MtZ*)K-{IXBٖ1DEK!/m6'Rr.I ЪS6jR)rbњ Q2W$u~!O]f` :Gݙ=V8:oX'qBV>%&iX_H^` m8WOǐfBlF>E֡&iդc3"ht׆XdW.t1<[lTpM. pgGjhG+1`vi*S#'g+Pw{:hqXV ٵ!?kC(=~1 s"]Eȟgt< 2(W't2i%*CPĠ$۴} 1qin> 4o,z79\$>J:HIg"prശ=l 6ଢ଼8Wd$.XyW <ݓK?InQ-< އf5HY%20 Y˫VLD)4Txk)YsYt) >~bUZS&Q5 -[\c1řtpVɹ9ie r; '.~F-%u2Ya$  WmC nLVF#dhcFPo0gҊArLgC6܁tT;WWS~ *;`&,,d^J*w|-`(H3' \]5q[f?뗐`0pk5hɹr|]Z,N F..'} Th]Q|7}kt/8ndF:!rv)H0C0I2%T:îk`~}OY~ .zizB &1M 8ѡb\3╎n>vd%FS67:饄bt2Wξ_doq uDz$i3ҭ%Ǔ/y8ՠ?utӗ=yGH)پ;}VmaH8⫮UJZo4AAr)QzSn_uzmՠ9^ n.P2W+gUWK]jx᫗gF2uUΡj:C%YG.Qjql*A ʆ(ߤ I4%6';pwG}gWz vi\KU|]yZk b*X%G epm'}_N#ן'˾cuawÜ>!>\=u\@NxԨmgfyˤfN(6 6*れ4N~fBy񩜕Ս'%)Jxx=Wڦ`*6-NRSR؊Wr&X/アenwJ?}xcLH?ո 06޸@MAvclORZ`y? `͹UdJPoZc82ѕWqA$JUff(1*92]ȔF)B9ѩK bQ|Gͼ-pv^GZr2}qq$U7T'41_\xd0+xc2qDQߺH[F@o~p~ npRbT<6~?,]"`v^CjwvIv[ޤgr lYe(h]6Ыlgֽ\S$yQj][>w|DTt,ݻK(5)1WrzYݞ@xXʹkeC n>~%Y$?^ 1pq5 .F@oIS$8L7@BěYgJe[XdX5:`6?EAr~6o(MN8E)oWyʦ9M|©vҍ'z2*1pO6F~i0SWp/\Ods9u_.NެG+L{iryc[Z}y2g6RS@ooU`+z A1aOj&VcS:a1I J˚xA3וW_+ŏNc؆xѨ&m;MLΡ _`8"|%>l Jշyjy{tm_a[NWCa(ҟQxVޔ ~xjϠ s1mS /]06{pigko"Vֿ?8Y ^j$+Xd4gz:l%h̏1YW d Z%+ہV(4C4s]<&NM oX좀R6ʥgeؔ MX?v0¢z#Zj։7N1&>$4eSjr! TR)Ю /tz Dp5Se>+AceM MvXt=l|ܴ0lqq\ڳ 8V Lm\]񮆄f=~W&NPsU5xR0퀙! D߄awsdzOP:CXm0lzBWpl."!(j[w7tbڥ L 8Mt[v~V-ĽB**vjgEscsޓ\K66XXCYPcJֻ{J#]SyK܀ _gt6<6Q*=K.'H Pc\cXcpdȦ&!t-~2 ;^9kmn0–ѶKAbY8&^l[|0ɚc3(n$85YLPT DDVuPZtf'="FFopKU"veLOyR}G2I2@JT%ߊgL28mŗRd)N\*_jѸUlGfsXU3 'A} jBf_I`rX;O^ԝv?%Hy{b@ŝ7y%՛y`3͖6!]urPUzl?Nɘ[e9bzmѥaOi%wBq u^&':sXGZ70yxHYB1\5/#]blE$X9 z'6=!"r{吳h?}ȉ>8!+K4lC5A4)S[Z% ]U"݃W3x5 Bi1!an!`U*!unXCP "L2k:q#G 8t~Wę'7BRk=,lтr~Ĝ~$D8J? l_*mσ"F<"j_s"_1cK J"3D)-YCA }nȼ4U-+Żkƨ»x[|)/XXJnA԰6S;:xy;0N3gIBoJV2r_M:"E| S1=%`Ou+J!qrlM'lOϾO?0ס6`גMSxi:wБb$)s^4V*=9!!f#{/4 N웁SZ8 >i/GCk(3{LX $.d,HMSpH V~j p Jc;rq`@S{j;(b,Q8;er@>/ޑ_O*^3r۾Fh#66-m6+xR1ņ}vވ `WL7Jl7 = r$kOjWbt=g8(aV&seRn-1)r΢XhP 곶+hY>Ew@KY/d?:b+_]w9q~J!.xAM؁Qj4 9\pkG_}<ǕH"(HC~f5QG*`%]qYga]w|{bjA-x}- R~uYթѵ]jD3w3n/e1Jz16GCYs](zZݚy-1GZ)''G6bT.Eͅ3D> 'I /:Ha^ Lt=߾ݦ\"kI #~BڟFz] eH7Xl'2?MU00+[>B+{zld(. ݙWIgנq8%M󻳁\ڧA8/~!$\a>A4UBJ8sMwmp \ɢ-+8%+MxH1-S\0Y@,} BXƛPVA4}mf`=yJI6[Spg0޿YeBT;oQf}b>S{fɻ: ˎ4a"=AM Lhݚ+"JP!]?-v˞mMab8 )3hX gpFLbQJ(Pk}mH . B$[^fZDGsCButN}UCUEx@oW6aP2P] ] J2 .h_ӃF`j>zpkwc[!331/LP OE鸯`${|2ƥN8ݐ͎ch ByY؊~͟ϓ'K j4!& (p0ϠJe]ݠjEi~ 8˹xҲ0 #yT[/kbczFq^`cNeRTӾn#7:t-~wSB 5Odo*CLM,>~݌'xz}Hvd+ćitq0pb;kSM=ЊHQ8ջS! G}.-5QcM7ɼ!h2A~^ܭ '媸3?d,UDpe37`1~Ǒ_r (8:q[GQd;@<ˈo &R-[=F>f_\e'Z_Ҵ<-#J8Rv|t".N; O g#fIhO+0db*zNT;r&AVqHA'b/ 堗oJ'MJȼK/M5%?$lq 9J-=Mcb̀{ga|͓ʇ qp~@Ǿ5KCx85\Wr;PmlG3&CIYtϲ}%0hx&vtڢَwYT X7\;U*,Jhet>MPߌI$E]vi]䥼3퐢-]?_p1['B1y] N=_24t5U`Gl_fL3زLlaNͫ_{{PZ~=]S$>!etTMdM &bMɨd)nw1;;Dge.ltQ;a͡c@_n,\OHtv3x*~;wS#ustq]c4P^tmx;%%#/D,݈) w8 H:VZӡpb+{1BЬoZ_v" 73+@u0Q bzbv@p'%5U[p BUU^QqiUW-:٤> endobj 15 0 obj << /Length1 1641 /Length2 9352 /Length3 0 /Length 10411 /Filter /FlateDecode >> stream xڍT-Cq ݋;$[K-^CKqʣ={1#\2מ{R]U bX98R*|n6.ZZmo3 +G &mׂ|.B\ + @JA]@6n/e`cp,s7[KEKst/ a[77'AvvOOO6sGW6(# f ]IIU8CwwW0=1 yie ?oaR7wA #Nvw{ l7T$@Up3 ÿ* Z,mj  T~5VN̛}rV\q2`K} 0wq1Fxi/.^^/ˀZt6 q{IXC\P~(?]-!/K ٭92? 7|)ܗB R׾Z7:e\n@eyb)fW~_-Aɺ?!2KcUVȦ˭ć^]'ߣz$~ m(KSEGudȤ_ö@w)9c{~/[XZZ lNQpmEb5r<)fG,)R2M( Jny#:F# ȶK#~ חiu $cY`vϻ(Ng,8:7Zb޽rICa|cSޟKkܦ@?ڥAR[pS}VJAz:_'zfTQXS6"B!q *;?'|,Q٦[6HԮNwȖ!8FO|b ?yK՝? >eڱil SLqBIΑ_8~Cp18I12Sk"y8تz]7Oa1d6m@6RM(qaƲ_,aZqIwA̹6+TIrAٌuP^U2 2#6˙o#߄`mjڳNWdӓ hlދ[02w?ZX{ P&=4 ;5Cy: `|#P?N6_ƈST®;\% >}LJyXfF| oFJ77V$$}Q/̃w :_$G/W4>)p%̞@Śd6ъHI^C&p M ŏXdՍgȒuϯ[A©U Փ$c'\=)' qԘTFf`j=$qn>o2Z%WA: vBqnaZK Mp|Si'+LM% wM~"/xS'r]1\w9D\  ;~oFJIHQ;BM>xtϾGG<'ϚHE cR>`HJSDVMJ޸t#eteA@smt'6a^N3pۇb]}ލݠS7K !fD&%L=[o@Knڏض'$|v,j^M7kiQ+J}t>B;%.|)}i:M{$ FFZ;óU`{ fV&Ǖ(TV i.W?= R 3 fq(JGh֭M^iχ#-ͱ A:SVgZZ]AwcgPnixrd]x$&m:6a׎fMtFz|, SyόcgN XIvmW|axhz\w#obk&wҠ.`PA!g'BG\ ΋p!mon`G@g  G`IJs0VP&+yy˫l|`WFMJ1[Rƚ//E4N&l`T(7EFv >ܯ?+=(qL \}c"-RxF=B\q}O %a Bivp̻1Vc0YP. b,G=)U[Vp+1jW3nMM|ȯ– M՜Y1ⷍo?ಋ4Z-<}S B`Cx~Nv̎q1Vҫ \$3s011.ڈ83-hC]= zg'':hy3=P\ʰfʊ?: RvJ'Y3 FdկT/WKUc3sIb<H xBO6 MApTvW(d%ay˽㢆=Nv}LgfH=]nҴ|XvYP#'tsQrŃ%`+΢Usm,/jߘ=vbXWQ2w"] ׾[|ХFIęb\rw|ag[̓/dɇlT|vo&Zgj ?YFzTVߤy}\oN~<䲮YcjlmH O ?hreVm{|Å RF|ar,^c:Á8+kS.]:@EzֶSQ,?69 y U&Xe:JSOa̰Ek#!P/5&{FR:kI7n$# o,F&(1N.کXKJZj2nڄObˎ3T~o?(g5"c{LR SQw485R4;;\ $vYA7fkq--^I`CTH ٶ+C#`??Y|' ^{,0>[JD豪.rF ՛mkΚM<1Bg1 lpH26ynS/$6Flh_u[O>4_gXIG (I"K%ᨉPfBp}Y~8zKOyDSҴuXsZ1V]l~90Nj{jz;йAt)|u]vM XGM[1]QJ򛰀n}5"U d4QJ<|f^QX`N\eԋɡRٵ'UazK12SFyKOmqqF >i諦pl+B<;R^ܠ)n՚xʩɩa"},3|HnZiwY* ekG+/M-z%Y$2J@< @_.kT ;lHw>G7BfءԇFFAx)91X^ahӆ=ɾb*I.L\وp $Q/e>EUAhF@G|VJwM7xxEyTiab95;:+ai}#mPOS9`zcj>_ MyYf-os q+ŗ0Źm_6/$5H:䥴)Nb9=zA,vѠ<ŸpYF/tүE%+CNdB=7CDVi7tN9I;E37&nDksx쁃~600C{fBq^=ƯNPG|A,Bk6wLWz\;ٝj$ V5LbAW;=hZQתY%Rb -[h 2d V* 7~|#%1V1'1l#swUrRy_ 4ZX8TD>D`c1,6x,GQ` ]*AG2y9۾Кhh)$ ʙRՙ3z[aU%x&dW6+-r4Μ2׀3iնu0t3ǗZ2i,aYz7u G x[ii&'"LzVF5l ٔ![蝴Z-t`q3Fk eqrjc$ւ,Kb.sET/4rD'X-E\gKd,q饄_>xeHpƍ^f+!ճo)n3u &"[aMbkJyWɮq/]p<W%?̹(L/-Prq2Xц?[EOVs[aWßǁz]Ã7t%\5EW+ f!7Y[ǃ/tK1[)f5;PlRi0kȢLh(#+VBK?.|Սpj/AR t<#"k5Ac_ 3 V{09}"SӢzt/5=If"[lqly_F[;)dO܄] MO_SvJLɒc`ȹwh: a|*\.l5& L(m9^Mڧ!jcnx^DNFssy@ O5zW}?fEOv<(͹A폰 Kt${#n7=IKT )3!}A^R5vK?@"HrMxYL]QTRu@T_ ,%P.ZꥇEXjQ ]+Nzʑ0FrNr2?),TFg^W"aGծ>!؁_˥Kd/˧񂽌nz%cNsVe`%\$Ү.`]0q՗x1ڧ#aރI#vy Pm  Lqɜ_KW ql$b{I*BzºT,q_e?IX}ljfDbM.BðdHQS& U$_Iu)NJWtƖƓR9㑯:ÃD.V0arcGwg>,>f-aq\EۿOJ52lfEU+}w̖lU0gl=CBtgT\;9`k il m:"C]>P64-& 1l H |cϰ;#1DMoQˮv(Rc*j;R]{겕k#ˇ\ 't|cK i3n6Y㞎/S\"2@8 (>j ܜnj!7抄IVfՈk"8MfS-ݜ3C+JHG62'qR!v)^d%$pŎWzʧNL܇YPQt#Gp9KC,s_Wߞ;H|ˬq}n g0NrG$h$g2cU x𘇢kIba|4Ըsaz0q6+k]BԔIUi]@a1t?|6Rz| ~WQk_.lу&df8&2B>ta3P0ؽmDB@i7f^0ˁW0!fHxzJkq# a J=[x`ޥj.aޚb;Wx3x:=N!R츒SJ|+Ӄ&1'b,%IiLS7zB.pQ+?j\Ry {@vR+Flbv4FWH3:|%IX,>}'eR:x聵;@)8~ U&MТH};ݜ!&jm]"/ZPbY o,\s6zEvg6₞B)9p ĚRfD~@j0@M%wQ |d'3ceɣ-QQ% zEs=FxeTNnR_uQLG"NbAf{@>NU6of4~R. /G$CY8Bk|;@E j d0*pL@ tɯLF_Ԧtw@vYH[F5 4'69Fb.];X )?z" @QXIkdJaJC%  (MargM޳8* |TL.4Jf=|g`^;ӳ,qVIbV+A(g -v{ 5Y ȣ.#8iwѷRC4{ u(xo:iEϕ443m0|⛷~י0+K]mjHn& 'WG*-vQ*1!6ȝ$ jun%a2-~lIM;j@ծػt2^ .'mdv0 <꾣8j83ɖّYpG9 OHߥ|)orǞXW(]>Z8kkٔ ijRJdHBO*u6^s;)6-3u,͛>Gj:G5+i)c[P\7[{fCѧ rZk41F(O46'WW 2F^NsjEkq;ղa#źƒ;C2ձSCǟd mOE'wLIRF"$]ap'ڐLe,>,m9FB zq!}$K ٿhսAny(QS16Fp5t[kWO֓HKZV -ejRL#*em,96YjIpCC*8DZ}(X$6QwBpۜsidZP $LpkNnh2UrjΰB~Cº o_>ue4?Hg9ݏ.*@%y\1~ȗ NJ ->ߓ1n`Cl6𷼹i˜u%7NBA/s&^H<ϔ ~PKYjS+j 0{`2}i.Mq 20O@IFt |McrP_ !Baf;BUlT J92HFy w[Km;7HP.,_8HK@?c!ļm!8c>%T՟\Pq'."ط(ضp`,Rc7w$;t25#ӟ;R{yVSVH$tua1&TEKYdrb]'@,7 endstream endobj 16 0 obj << /Type /FontDescriptor /FontName /WZEVRQ+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/R/a/colon/d/e/f/ff/g/i/l/n/o/p/r/s/t/x/y) /FontFile 15 0 R >> endobj 17 0 obj << /Length1 1667 /Length2 8711 /Length3 0 /Length 9783 /Filter /FlateDecode >> stream xڍvuX7 ) aC@@[f#FtHJ(HHH+! - ]}x]vs٘xek"%z N4xl07w{\_y7y'{ FQ5p$HD%@(&x 48Mfok# 6:!`8@9Ez= H ~~///>;Vean0(WM3v6H/ p'pwFp( pr AY?96C g0n wHE;#`{'EY.?3tٻ ~e]Py3 tun0]}n#á6Rz]=`*d݉a (vX+ D[ %#K`os{H7X߿Ex jAap߉a6)pd~7gPFikrj997WD"":[ xrA|exp=FD܍5 /y~V3)z89fpE`g{'?9w큼[ ݪ7nk[-,nyDۻ+{àHw0m  )6xwɸ5 v` 6Q@XvsFM@X[Y( . WkEA~_HLEo;AAP.Pb ޹w ywN0?RП?fo[_Aw 9 SV۝c _my xc3gMg^+"'BxqNK|h5irRkIk'*ĉz95a)Gl<Ԕ $RڐTe*=1f# GPҟja2y>)~"䧖S _[B"U?}:gW5}Jjtpp%+5Au1 bMwQ ȗaOsr!wb@Aw7Ye'Pר1\쏨r}b""_|خ%QF h0iC-ӄ!]I+Y=ƀN?L@g6YOGIN2&\X'L(V/!$zG:LF賩TYmYUn:ҿvX諶(>Vo9ّ<^/hD'>8Fm-E$08N#6e7H*m* ͝ Fr։γBD]'5]lm;r}Gѵ:RHʮס*{뱶^&薓ڲ: ҆6ﺒYE*2>R>`CAFGyEX' M{2Ĕ0-SO:o:kҵf>fySgd2>%GE L輘!=,&b>c?>E⫡emL&DdY:DW,ME*^Xz tn!fIM{@bẕS%皽0'`̰1uP(`ށwx5EyeQѩ_uWEJgkʎ?fNS~,U.iZ܀gB!iUKw߂N|f=i0ɽQ鵿)pTU‡{OH2%FՠeEoLxZ"1c^O*!5 'XˎvHk#]V4ur#~ӣ]Bk-w4 WnV:eFiuQ>Dej2%Gg 5O +g]zHhDŒ|KnOU[۞9%՜ |IfuAФ23eg[Ŗؠ< Jm [Zً_38QaQe+~J%:~:ț}ڸIĝl)WڌUc7AEcjgain]Eb,mUl%&)R b]ɭҶln\!ƜYSP8?i6ŋ ' $~ktD[ZQAQ<#DtJZ6AtDJ4CN(*e_$ؤFkl:}1RC j3wq>J!G6D8 xO[_ԙ|"zOv,zCi/IO:;A ]겸C#؇f1֙" ÇRR h,s|PSM?Îo=Tc?Q蜸p VÕ=gЪ7f*2+w=XECLmnƗg'3:K.p(dk$?/XÍ 5~&^~{38ݳ 0Y,uGAr^ʧygO'Qk ȺXxE=IGFZG/\%GhIF"- tYr7nԧ};$ɦD4>j)΄Y/|BBEkǐ6dfR7H Wm*+)bAAz^MU2=a,,̽fឆmd%(*"E#r1J@~=oynZ='TYܐ[ =6OܴY|:HV;{3lrM;=vb moq+0L:= "r FM/X[,9OHL ]~ ~94M%²eԟ],:TJlPݷ&B̿uHV6u$m~Jmzߵj#7NDЖ޼bnZ>qzn+"C^񨂗Kik cĝ79+׆6c/}=U <'mMTcʣaf[4qIf$>C4yO Wԑ k.6u%IPF94nδ]@dGJ>1<﨔L?X>)8{EmkyA{,zʹ12gJ-9›4gei/u&4skN7a@\Ks]#+ =hc%ƩI% om$+Ra_=Wƿڠw>lFsGPr$}Byfex鵟ד}qm MWqz > [1fܭ6C~9LnX40ؗKq4(9J-mMM)B{Kd$7y^*udnZ4O3gCY'Rqn:-(e E8nJ[ G +Y˃ .*tCs#ZJߤ2 X0&1"wH5[=B,F}2ݠ^}qNy'lQ.: T{ )lp };snQUXtً"Nl9 -?=OL8Xe^~uԻo\Af6kwazj ~\Yt)+D7R64" bdz]Sti%ۮʪY|M;2>U.u>hR3a-4Ԝ32Z/)ymIVy;gm$ rV7ʡVZK*sPe ]~z#>:B3պ0[lI^W~v*Ry{lN#_USbhws*<٣ ijsN@5@?o'p"OSÀc?b_=S ^-7lU`/JۤW )RlT6o*>=~_"nj{ N2@x3QW-B0W1, /m±ǀ[K!f9R4β̲S뾑%GWf`6OfZ .g'!! 1W!AIFۣV΍|f)%k/ 7#&ffMA]Wf^_|W*U\I|Bxc݆?V83y}O\RC,"ZCv 3nVOOCbŸiM`U$v %//; `t;b%fϿэ%_x m]w:i;H0w{~Cl aA煇ڙ򍇠7Y!Oмzd9Wɋ;% K+%=niJ]z!':c((Dkgg𢺕P>l:=Ԡr޵OdTQ-H+O8lEPB340[3{Q7[UTM.mΔt4-6+2p S%͕߁/ƾ:88'y`u: :wU + G"IH:s;l"l/P|~!8<qSi"\ת'w_ k8.Dʣ57Q9ꖹߚB;pnvQ>6EXa;v6j揷O= $[c\Bm 9|S~L"'@Q;^#)IW:/TD'<(P#MPl#i$63Wɋ7mXyϥbĮGd*rI4upl{RSOقM+ǀ**]Q̛BB,$JlpɅqd}^ݓ%<[KBIꣶC{^7#9xaKpY,Z6u0y>xUlu8C9U~,RbgTw}ES-) AIMˡ}ɷ월 1UzB~HXЉ1$vi9qə tHEWڢm3NdZO!7,fi\z: 4tW{"M .'mqV#\\ŔW /w)͕:V!d^eށC?WBuVbʑZ܅+iw~o[5cr+d)v'Cڔcg1~FȪEi,'aGIqpfi<+J]- k7Au127lK69Jtm+ }ytLxidtMSa4u cu X2G5|: c٘MZ'fw2|\X2Y2r (ve hTrg=fNRf:Ǝֳ~dxob0M?ҥB:a$âAߧ1/}۝wLq=/w۲:AP2mZ$Pao><}-۟3@|9ٜWrGX|<"z LDi--))ywx[dD<|3=_DVe`G(A )VDޟM'zFt,Z7\h>X>m |{gH1>UI"D4h3/kg:Hte@?'_?v>VLFYbi-`yHV76=!Jks*rwӷgqjc<,ԎI5a1d1é|Feʪ⧇ٗx$7Aγ2nT 02!8;z lYfq)c,ڠcNjs~{|K\dXB:BI9~̝qgpض;N䡍k>ӗjBofĄԹ@m?$^;ߔ(,@IG-WEc^ L֞<E%J)˸8|hV!Gd/68S \#GNM="sg71T 0oWAssU:\hAz{g\&Kظ j?[Qv'勸fkCksp{k 4vsצRYI}RGKtRU (}t2 b WV5].U%*,t2,@GRiPZm$>YAG[luEy.+J>Be˫vOծ-yj`Ged/ @4kqb8]{ڭlϥzu=ٽ-j24aU 9xdJj~WtQc N:gԅGGue#kR]+ofr :%cqNKۚ0gm/?lFCUϻi\T͚Gٴ$FOr Ʃg{\Ž`z/ó[vTUf3!S>?rS:yȊhmpRήvKoϦD#ʇʮBX ?v?,10"ݍ$=@fZp𑄞䕅?4^]"c5jh27MJF$u.ڥH-znn:6F %{Vɉ,̭=i@Ϯ E:ږQ_,g/$Z'o!3ڟumCVQ, endstream endobj 18 0 obj << /Type /FontDescriptor /FontName /LKPOWA+CMSLTT10 /Flags 4 /FontBBox [-20 -233 617 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle -9 /StemV 69 /XHeight 431 /CharSet (/G/R/U/a/b/d/e/g/greater/i/l/parenleft/parenright/r/s/u/y) /FontFile 17 0 R >> endobj 19 0 obj << /Length1 1568 /Length2 3050 /Length3 0 /Length 4037 /Filter /FlateDecode >> stream xڍt<0CY|}++kswpF$QY9"#}#+Y2*+Ȍ.E__#x~{<|%Dlt1xO#)!0 @`0E `Òv {@qE@n3@x`J\ELG q EBJz}~2\]]U~; X4 XH>`#XG iR(*d ؀D b- TC "`x/EqDz  ;`kbX䁝pgBXv2 pX7K#s)$p@?OG(OzQ53GD$"*C!q$" M{(trpx .0^[40@_8l41؉X~ټA 0C>Эves^t` Q @""8`$X~UA~l>?Co_1NHLnO>W E%@+Vm s6دz&8/<}v?hBzgid?; ҿ S_ lUOdDKN]d}3,7 Kׄo. D#l’>ۊq Xh'b@G_9M!/k7ώ84zeE BY`t}!p8}G1`ȶ('S: O`ٺR52m#uUOu:(7oPz(7H/*+ҟ#?EeXkg.\ ~A=,t14@O%mk>xAz>[RW0مPbo[I197<ѷqo/B&z:eS _:V_wq[;J7ĤDe,)IȄ nc)gYn|ٹC4BH}ɲ>[ a4ۤ3̸ ֑[Eh-7U 4{K"\T sCA2|‚}'-xww[.< tv̋]ֵRS'Kjj1s^J1]q3:X ֨At| @/zyԝ Z=$i@1^TQlYv.@Grа>a<g U jnZu`MS0~/Z)_̄NG ?mM?)p^]/1 s墪֩f,:GId7b7j~LBG#1HܶKUу6yi&cRfuKnz9!T8Z1=pDh0Yg2$2hGO3&!.=fpvIJ!:MeG~,|U}>$km||:LaA"ɮQn{СZn$J٭u?yT}sN. 9.dngйTR[3/qfsM .@B1ۢ9C%bQ35ٰ1 joZ5/Kb9BF:x`ubqg,G&9}Ǵ&%w\1,/&_ 0A?MX̛=}AޅJӱQˀ*{M"cmUHκ\s,,$g&J{799\#ȷ2z^(s]SKS(2ħ{cS[T^`Q/$.G9ׁ%6;Ub,.Os22ɣ "76_:GsSc#%miKW"ʽ4Ea4 o}[߀ZFwGJ; #W񶴫3_e~ ٸa}ʴyyvmYq[f}tYq[<#oM:ɘ4!K3RnhTޚ$:s1La= yŤ+-Fsr8 ğ?x?Yx4{Y0 eC=%olZ \|[r2Vr{,ut`Zau"F"Iܦzi=c,hA'Pnwuܞ~`dg"[فHX]tդ:MlROu.䫵[WlXҎ~2`d%`a4ka׈3qK~9c e>z+|yDȡ61=Zh>$ᑛ5I/ѵmR75 03ޛWOwZZW%eށIbuAP.k;m-u%w-7dd~M]'$y,]YwDfXWh'V6!nM^+_ڥ{ ;6Cm4ϨZ8)6!|̘AT56NۿNH[3oޭo.+yw͍M_G?va Y=5if]& a+ R1"sf89{9C:iփYgہL>Y;Υ']J*W]+fWl=s>#& Tړ{/8:QwEvtiv(ݬI>O8q&KoC5ǖV\89PRkUb[P؝ IWOp+&zC N)Ehad/3&l(Qfe9yJZ f<%z{*Vm=8 'kk d3/R CiWT-ME{_"-l`+cۯa>H6vr|-#Hu$ىSV&C 2  vf/ $8D}<?= ml<%B(硆 .~F= q*RRDo%?( 3Ƀ4EQ:'z5U m%$1[I 7`oNzѭ$ԑT9=aq<Ìf MOSW5->SmߦqrrvWa.i<9`m\LM?C^.M#Be/zdtnV\ʚ+cʴ.KЃ4~sUfVkY endstream endobj 20 0 obj << /Type /FontDescriptor /FontName /TCRFAK+CMTT12 /Flags 4 /FontBBox [-1 -234 524 695] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/R/a/b/d/e/g/i/l/parenleft/parenright/r/y) /FontFile 19 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /BaseFont /JGMPWF+CMR12 /FontDescriptor 14 0 R /FirstChar 11 /LastChar 122 /Widths 11 0 R >> endobj 4 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WZEVRQ+CMR17 /FontDescriptor 16 0 R /FirstChar 11 /LastChar 121 /Widths 12 0 R >> endobj 7 0 obj << /Type /Font /Subtype /Type1 /BaseFont /LKPOWA+CMSLTT10 /FontDescriptor 18 0 R /FirstChar 40 /LastChar 121 /Widths 9 0 R >> endobj 6 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TCRFAK+CMTT12 /FontDescriptor 20 0 R /FirstChar 40 /LastChar 121 /Widths 10 0 R >> endobj 8 0 obj << /Type /Pages /Count 1 /Kids [2 0 R] >> endobj 21 0 obj << /Type /Catalog /Pages 8 0 R >> endobj 22 0 obj << /Producer (pdfTeX-1.40.10) /Creator (TeX) /CreationDate (D:20131205204834-08'00') /ModDate (D:20131205204834-08'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian) kpathsea version 5.0.0) >> endobj xref 0 23 0000000000 65535 f 0000001918 00000 n 0000001814 00000 n 0000000015 00000 n 0000047944 00000 n 0000047805 00000 n 0000048224 00000 n 0000048083 00000 n 0000048364 00000 n 0000002019 00000 n 0000002364 00000 n 0000002874 00000 n 0000003485 00000 n 0000004165 00000 n 0000022045 00000 n 0000022432 00000 n 0000032962 00000 n 0000033217 00000 n 0000043119 00000 n 0000043394 00000 n 0000047550 00000 n 0000048421 00000 n 0000048471 00000 n trailer << /Size 23 /Root 21 0 R /Info 22 0 R /ID [<0FDFABC307C551B0C82312EF04F3FAF2> <0FDFABC307C551B0C82312EF04F3FAF2>] >> startxref 48737 %%EOF r-bioc-edger-3.4.2+dfsg.orig/inst/doc/edgeR.Rnw0000755000265600020320000000344212227063711020230 0ustar tilleaadmin%\VignetteIndexEntry{edgeR Vignette} %\VignetteKeyword{RNA-Seq} %\VignetteKeyword{differential expression} %\VignettePackage{edgeR} \documentclass[12pt]{article} \textwidth=6.2in \textheight=8.5in \oddsidemargin=0.2in \evensidemargin=0.2in \headheight=0in \headsep=0in \begin{document} \title{edgeR: differential expression analysis \\ of digital gene expression data} \author{Mark Robinson, Davis McCarthy, Yunshun Chen,\\ Aaron Lun, Gordon K.\ Smyth} \date{18 October 2012} \maketitle edgeR is a package for the differential expression analysis of digital gene expression data, that is, of count data arising from DNA sequencing technologies. It is especially designed for differential expression analyses of RNA-Seq or SAGE data, or differential marking analyses of ChIP-Seq data. edgeR implements novel statistical methods based on the negative binomial distribution as a model for count variability, including empirical Bayes methods, exact tests, and generalized linear models. The package is especially suitable for analysing designed experiments with multiple experimental factors but possibly small numbers of replicates. It has unique abilities to model transcript specific variation even in small samples, a capability essential for prioritizing genes or transcripts that have consistent effects across replicates. The full edgeR User's Guide is available as part of the online documentation. To reach the User's Guide, install the edgeR package and load it into an R session by \texttt{library(edgeR)}. In R for Windows, the User's Guide will then be available from the drop-down menu called ``Vignettes''. In other operating systems, type \begin{Schunk} \begin{Sinput} > library(edgeR) > edgeRUsersGuide() \end{Sinput} \end{Schunk} at the R prompt to open the User's Guide in a pdf viewer. \end{document} r-bioc-edger-3.4.2+dfsg.orig/inst/doc/index.html0000644000265600020320000000126312227063711020503 0ustar tilleaadmin edgeR User's Guides

edgeR Analysis of Digital Gene Expression Data


User Guides and Package Vignettes