genefilter/.Rinstignore0000644000175100017510000000002712607264530016226 0ustar00biocbuildbiocbuilddoc/whbiocvignette.sty genefilter/DESCRIPTION0000644000175100017510000000163012607321410015420 0ustar00biocbuildbiocbuildPackage: genefilter Title: genefilter: methods for filtering genes from high-throughput experiments Version: 1.52.0 Author: R. Gentleman, V. Carey, W. Huber, F. Hahne Description: Some basic functions for filtering genes Maintainer: Bioconductor Package Maintainer Suggests: class, hgu95av2.db, tkWidgets, ALL, ROC, DESeq, pasilla, BiocStyle, knitr Imports: AnnotationDbi, annotate, Biobase, graphics, methods, stats, survival License: Artistic-2.0 LazyLoad: yes LazyData: yes Collate: AllClasses.R AllGenerics.R all.R dist2.R eSetFilter.R fastT.R filter_volcano.R filtered_p.R genefinder.R half.range.mode.R kappa_p.R nsFilter.R rejection_plot.R rowROC-accessors.R rowSds.R rowpAUCs-methods.R rowttests-methods.R shorth.R zzz.R biocViews: Microarray VignetteBuilder: knitr NeedsCompilation: yes Packaged: 2015-10-14 00:34:16 UTC; biocbuild genefilter/NAMESPACE0000644000175100017510000000440012607264530015140 0ustar00biocbuildbiocbuilduseDynLib(genefilter) importClassesFrom(Biobase, ExpressionSet) importClassesFrom(methods, ANY, character, factor, matrix, missing, numeric, vector) importMethodsFrom(AnnotationDbi, as.list, colnames, get, mget, ncol, nrow, sample) importMethodsFrom(Biobase, annotation, exprs, featureNames, pData, rowQ, varLabels) importMethodsFrom(methods, "body<-", show) importFrom(Biobase, addVigs2WinMenu, subListExtract) importFrom(annotate, getAnnMap) importFrom(graphics, abline, lines, par, plot, points, polygon, rect, strheight, strwidth, text) importFrom(methods, is, new) importFrom(stats, IQR, anova, lm, pchisq, pf, pt, quantile, sd, t.test) importFrom(survival, coxph) export(Anova, allNA, anyNA, coxfilter, cv, eSetFilter, varFilter, featureFilter, fastT, ttest, shorth, half.range.mode, rowttests, colttests, rowFtests, colFtests, rowSds, rowVars, dist2, filterfun, findLargest, gapFilter, genefilter, genescale, getFilterNames, getFuncDesc, getRdAsText, isESet, kOverA, maxA, pOverA, parseArgs, parseDesc, setESetArgs, showESet, kappa_t, kappa_p, filtered_p, filtered_R, rejection_plot, filter_volcano) exportClasses(rowROC) exportMethods(genefinder, show, plot, "[", sens, spec, area, pAUC, AUC, rowpAUCs, nsFilter) genefilter/R/0000755000175100017510000000000012607264530014124 5ustar00biocbuildbiocbuildgenefilter/R/AllClasses.R0000644000175100017510000000332712607264530016302 0ustar00biocbuildbiocbuild## Classes for package genefilter ## ========================================================================== ## class rowROC: objects model result of call to function rowpAUCs, ## pAUC or AUC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setClass("rowROC", representation(data = "matrix", ranks = "matrix", sens = "matrix", spec = "matrix", pAUC = "numeric", AUC = "numeric", factor = "factor", cutpoints = "matrix", caseNames = "character", p = "numeric"), validity=function(object){ if(any(dim(object@sens) != dim(object@spec))) return("\n'sens' and 'spec' must be matrices with equal dimensions") if(length(object@pAUC) != nrow(object@sens)) return("\n'pAUC' must be numeric of length equal to nrow(sens)") if(length(object@factor)!=ncol(object@data) || length(levels(object@factor))!=2) return("'factor' must be factor object with two levels and length = ncol(data)") if(length(object@pAUC) != length(object@AUC)) return("'pAUC' and 'AUC' must be numeric vectors of equal length") if(nrow(object@cutpoints) != length(object@pAUC)) return("'cutpoints' must be matrix with nrow=length(pAUC)") if(length(object@caseNames)!=2) return("'caseNames' must be character vector of length 2") return(TRUE) } ) ## ========================================================================== genefilter/R/AllGenerics.R0000644000175100017510000000302612607264530016440 0ustar00biocbuildbiocbuild## Generic functions for package genefilter setGeneric("rowFtests", function(x, fac, var.equal=TRUE) standardGeneric("rowFtests")) setGeneric("colFtests", function(x, fac, var.equal=TRUE) standardGeneric("colFtests")) setGeneric("rowttests", function(x, fac, tstatOnly=FALSE) standardGeneric("rowttests")) setGeneric("colttests", function(x, fac, tstatOnly=FALSE) standardGeneric("colttests")) setGeneric("genefinder", function(X, ilist, numResults=25, scale="none", weights, method="euclidean" ) standardGeneric("genefinder")) setGeneric("pAUC", function(object, p, flip=TRUE) standardGeneric("pAUC")) setGeneric("AUC", function(object) standardGeneric("AUC")) setGeneric("sens", function(object) standardGeneric("sens")) setGeneric("spec", function(object) standardGeneric("spec")) setGeneric("area", function(object, total=FALSE) standardGeneric("area")) setGeneric("rowpAUCs", function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")) standardGeneric("rowpAUCs")) setGeneric("nsFilter", signature="eset", function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) standardGeneric("nsFilter")) genefilter/R/all.R0000644000175100017510000001067512607264530015030 0ustar00biocbuildbiocbuild#copyright 2001 R. Gentleman #FILTER FUNCTIONS -- some trivial changes allNA <- function(x) { txt <- "'allNA' is deprecated." .Deprecated( msg=paste(strwrap(txt), collapse="\n")) } anyNA <- function(x) { txt <- "'anyNA' is deprecated." .Deprecated( msg=paste(strwrap(txt), collapse="\n")) } kOverA <- function(k, A=100, na.rm = TRUE) { function(x) { if(na.rm) x <- x[!is.na(x)] sum( x > A ) >= k } } maxA <- function(A=75, na.rm=TRUE) { function(x) {max(x, na.rm=na.rm) >= A } } pOverA <- function(p=0.05, A=100, na.rm = TRUE) { function(x) { if(na.rm) x<-x[!is.na(x)] sum( x > A )/length(x) >= p } } cv <- function(a=1, b=Inf, na.rm=TRUE) { function(x) { sdx <- sd(x, na.rm=na.rm) if(is.na(sdx) || sdx == 0 ) return(FALSE) val <- sdx/abs(mean(x, na.rm=na.rm)) if(val < a ) return(FALSE) if(val > b ) return(FALSE) return(TRUE) } } Anova <- function(cov, p=0.05, na.rm=TRUE) { function(x) { if( na.rm ) { drop <- is.na(x) x <- x[!drop] cov <- cov[!drop] } m1 <- lm(x~cov) m2 <- lm(x~1) av <- anova(m2,m1) fstat <- av[["Pr(>F)"]][2] if( fstat < p ) return(TRUE) return(FALSE) } } coxfilter <- function(surt, cens, p) { autoload("coxph", "survival") function(x) { srvd <- try(coxph(Surv(surt,cens)~x)) if( inherits(srvd, "try-error") ) return(FALSE) ltest <- -2*(srvd$loglik[1] - srvd$loglik[2]) pv <- 1 - pchisq(ltest, 1) if( pv < p ) return(TRUE) return(FALSE) } } ttest <- function(m, p=0.05, na.rm=TRUE) { if( length(m) == 1) function(x) { n <- length(x) if( m>n ) stop("m is larger than the number of samples") sub1 <- x[1:m] sub2 <- x[(m+1):n] if(na.rm) { drop <- is.na(x) sub1 <- sub1[!drop[1:m]] sub2 <- sub2[!drop[(m+1):n]] } t.test(sub1, sub2 )$p.value < p } else function(x) { if(na.rm) { drop <- is.na(x) | is.na(m) x<- x[!drop] m<- m[!drop] } t.test(x~m)$p.value < p } } ##a filter based on gaps gapFilter <- function(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE) { function(x) { if(na.rm) x <- x[!is.na(x)] if(neg.rm) x <- x[x>0] lenx <- length(x) if( lenx < 4 || lenx < Prop+1 ) return(FALSE) srtd <- sort(x) lq <- lenx*.25 uq <- lenx*.75 if( (srtd[uq] - srtd[lq]) > IQR ) return(TRUE) if(Prop < 1) bot <- lenx*Prop else bot <- Prop top <- lenx - bot lag1 <- srtd[2:lenx]-srtd[1:(lenx-1)] if( max(lag1[bot:top]) > Gap ) return(TRUE) return(FALSE) } } # Apply type functions genefilter <- function(expr, flist) { if(is(expr, "ExpressionSet")) expr <- exprs(expr) apply(expr, 1, flist) } filterfun <- function(...) { flist <- list(...) #let the user supply a list if( length(flist) == 1 && is.list(flist[[1]]) ) flist <- flist[[1]] f <- function( x ) { for( fun in flist ) { fval <- fun(x) if( is.na(fval) || ! fval ) return(FALSE) } return(TRUE) } class(f) <- "filterfun" return(f) } .findDBMeta <- function(chip, item) { connfunc <- getAnnMap("_dbconn", chip) dbmeta(connfunc(), item) } .isOrgSchema <- function(chip){ schema <- .findDBMeta(chip, "DBSCHEMA") length(grep("CHIP", schema)) == 0 } .findCentralMap<- function(chip){ centID <- .findDBMeta(chip, "CENTRALID") if(!.isOrgSchema(chip) && centID == "TAIR") { "ACCNUM" ## a peculiar exception with historical causes } else { centID ## should cover EVERYTHING else } } findLargest = function(gN, testStat, data="hgu133plus2") { lls = if(.isOrgSchema(data)){ gN ##not a chip package so try the IDs presented. } else { map = .findCentralMap(data) unlist(mget(gN, getAnnMap(map, data)), use.names=FALSE) } if(length(testStat) != length(gN) ) stop("testStat and gN must be the same length") if( is.null(names(testStat)) ) names(testStat) = gN tSsp = split.default(testStat, lls) sapply(tSsp, function(x) names(which.max(x))) } genefilter/R/dist2.R0000644000175100017510000000114412607264530015274 0ustar00biocbuildbiocbuilddist2 = function (x, fun = function(a, b) mean(abs(a - b), na.rm = TRUE), diagonal = 0) { if (!(is.numeric(diagonal) && (length(diagonal) == 1))) stop("'diagonal' must be a numeric scalar.") if (missing(fun)) { res = apply(x, 2, function(w) colMeans(abs(x-w), na.rm=TRUE)) } else { res = matrix(diagonal, ncol = ncol(x), nrow = ncol(x)) if (ncol(x) >= 2) { for (j in 2:ncol(x)) for (i in 1:(j - 1)) res[i, j] = res[j, i] = fun(x[, i], x[, j]) } # if } # else colnames(res) = rownames(res) = colnames(x) return(res) } genefilter/R/eSetFilter.R0000644000175100017510000002727112607264530016326 0ustar00biocbuildbiocbuild# This widget allows users to pick filters in the order they are going # to be used to filer genes and set the parameters for # each filter. # # Copyright 2003, J. Zhang. All rights reserved. # eSetFilter <- function(eSet){ require("tkWidgets", character.only = TRUE) || stop(paste("eSetFilter requires the tkWidgets", "package. Please have it installed")) descList <- getFuncDesc() buildGUI <- function(){ END <<- FALSE selectedNames <- NULL filterWithArgs <- list() setFilter <- function(){ currentFilter <- as.character(tkget(filters, (tkcurselection(filters)))) args <- setESetArgs(currentFilter) if(!is.null(args)){ expression <- paste(currentFilter, "(", paste(names(args), args, sep = "=", collapse = ","), ")", sep = "") filterWithArgs[[currentFilter]] <<- eval(parse(text = expression)) selectedNames <<- unique(c(selectedNames, currentFilter)) writeList(pickedF, selectedNames) tkconfigure(selectBut, state = "disabled") } } cancel <- function(){ tkdestroy(base) } finish <- function(){ END <<- TRUE tkdestroy(base) } viewFilter <- function(){ currentFilter <- as.character(tkget(filters, (tkcurselection(filters)))) tkconfigure(description, state = "normal") writeText(description, descList[[currentFilter]]) tkconfigure(description, state = "disabled") tkconfigure(selectBut, state = "normal") } pickedSel <- function(){ tkconfigure(remBut, state = "normal") } remove <- function(){ filter <- as.character(tkget(pickedF, (tkcurselection(pickedF)))) selectedNames <<- setdiff(selectedNames, filter) writeList(pickedF, selectedNames) tkconfigure(remBut, state = "disabled") } base <- tktoplevel() tktitle(base) <- "BioC Filter Master" # Pack the top frame with a brief description introText <- tktext(base, width = 30, height = 4, wrap = "word") text <- paste("Bioconductor's gene filtering functons are", "listed below. Select one from the list to view the", "description and formal arguments for each filter.", "A filter can be selected to the set of filters", "for filtering genes using the select button.") writeText(introText, text) tkconfigure(introText, state = "disabled") tkpack(introText, expand = FALSE, fill = "both", padx = 5) # Pack a frame with a list box for selected filters and # buttons manipulate the selected filters infoFrame <- tkframe(base) filterFrame <- tkframe(infoFrame) tkpack(tklabel(filterFrame, text = "Filters"), expand = FALSE, fill = "x") listFrame <- tkframe(filterFrame) filters <- makeViewer(listFrame, vHeight = 10, vWidth = 12, vScroll = TRUE, hScroll = TRUE, what = "list") tkbind(filters, "", viewFilter) tkbind(filters, "", setFilter) writeList(filters, getFilterNames()) tkpack(listFrame, expand = TRUE, fill = "both") selectBut <- tkbutton(filterFrame, text = "Select", command = setFilter, state = "disabled") tkpack(selectBut, expand = FALSE, fill = "x") tkpack(filterFrame, side = "left", expand = FALSE, fill = "both") descFrame <- tkframe(infoFrame) tkpack(tklabel(descFrame, text = "Description"), expand = FALSE, fill = "x") dListFrame <- tkframe(descFrame) description <- makeViewer(dListFrame, vHeight = 10, vWidth = 30, vScroll = TRUE, hScroll = TRUE, what = "text") tkconfigure(description, wrap = "word", state = "disabled") tkpack(dListFrame, expand = TRUE, fill = "both") tkpack(descFrame, side = "left", expand = TRUE, fill = "both") selFrame <- tkframe(infoFrame) tkpack(tklabel(selFrame, text = "Selected"), expand = FALSE, fill = "x") selFFrame <- tkframe(selFrame) pickedF <- makeViewer(selFFrame, vHeight = 10, vWidth = 12, vScroll = TRUE, hScroll = TRUE, what = "list") tkbind(pickedF, "", pickedSel) tkbind(pickedF, "", remove) tkpack(selFFrame, expand = TRUE, fill = "both") remBut <- tkbutton(selFrame, text = "Remove", command = remove, state = "disabled") tkpack(remBut, expand = FALSE, fill = "x") tkpack(selFrame, expand = FALSE, fill = "both") tkpack(infoFrame, expand = TRUE, fill = "both", padx = 5) # Pack the bottom frame with cancel and finish buttons endFrame <- tkframe(base) cancelBut <- tkbutton(endFrame, width = 8, text = "Cancel", command = cancel) tkpack(cancelBut, side = "left", expand = TRUE, fill = "x", padx = 10) finishBut <- tkbutton(endFrame, width = 8, text = "finish", command = finish) tkpack(finishBut, side = "left", expand = TRUE, fill = "x", padx = 10) tkpack(endFrame, expand = FALSE, fill = "x", pady = 5) showESet(eSet) tkwait.window(base) if(END){ tempList <- list() for(i in selectedNames){ tempList[[i]] <- filterWithArgs[[i]] } return(tempList) }else{ return(NULL) } } filters <- buildGUI() if(!is.null(filters)){ filters <- filterfun(unlist(filters)) return(genefilter(exprs(eSet), filters)) }else{ return(NULL) } } getFilterNames <- function(){ return(sort(c("Anova", "coxfilter", "cv", "gapFilter", "kOverA", "maxA", "pOverA", "ttest"))) } getFuncDesc <- function(lib = "genefilter", funcs = getFilterNames()){ descList <- list() lines <- getRdAsText(lib) for(i in funcs){ rd <- lines[grep(paste("\\\\name\\{", i, "\\}", sep = ""), lines)] desc <- parseDesc(rd) args <- parseArgs(rd) if(length(args) > 0){ temp <- "\n\nArguments:" for(j in names(args)){ temp <- c(temp, paste(j, "-", args[[j]])) } args <- paste(temp, sep = "", collapse = "\n") } descList[[i]] <- paste(desc, args, sep = "", collapse = "") } return(descList) } getRdAsText <- function(lib){ fileName <- gzfile(file.path(.path.package(lib), "man", paste(lib, ".Rd.gz", sep = "")), open = "r") lines <- readLines(fileName) lines <- paste(lines, sep = "", collapse = " ") lines <- unlist(strsplit(lines, "\\\\eof")) return(lines) } parseDesc <- function(text){ descRExp <- ".*\\\\description\\{(.*)\\}.*\\\\usage\\{.*" text <- gsub(descRExp, "\\1", text) text <- gsub("(\\\\[a-zA-Z]*\\{|\\})", "", text) return(text) } parseArgs <- function(text){ argsList <- list() text <- gsub(".*\\\\arguments\\{(.*)\\}.*\\\\details\\{.*", "\\1", text) text <- gsub(".*\\\\arguments\\{(.*)\\}.*\\\\value\\{.*", "\\1", text) text <- unlist(strsplit(text, "\\\\item\\{")) text <- gsub("(\\\\[a-zA-Z]*\\{|\\})", "", text) for(i in text){ i <- unlist(strsplit(i, "\\{")) if(length(i) > 1){ argsList[[i[1]]] <- i[2] } } return(argsList) } showESet <- function(eSet){ end <- function(){ tkdestroy(base) } if(!is(eSet, "eSet")){ stop() } colNRow <- dim(exprs(eSet)) vl <- varLabels(eSet) text <- c(paste("Genes: ", colNRow[1]), paste("Samples: ", colNRow[2], sep = ""), "Variable labels:", paste(names(vl), ": ", vl[1:length(vl)], sep = "")) base <- tktoplevel() tktitle(base) <- "BioC ExpressionSet viewer" dataDescFrame <- tkframe(base) data <- makeViewer(dataDescFrame, vHeight = 10, vWidth = 25, vScroll = TRUE, hScroll = TRUE, what = "list") writeList(data, text) tkpack(dataDescFrame, expand = TRUE, fill = "both") endBut <- tkbutton(base, text = "Finish", command = end) tkpack(endBut, expand = FALSE, fill = "x", pady = 5) } setESetArgs <- function(filter){ on.exit(tkdestroy(base)) cancel <- function(){ tkdestroy(base) } end <- function(){ END <<- TRUE tkdestroy(base) } END <- FALSE argsVar <- list() desc <- list() entries <- list() ftFun <- list() args <- getRdAsText("genefilter") args <- args[grep(paste("\\\\name\\{", filter, "\\}", sep = ""), args)] args <- parseArgs(args) argValues <- formals(filter) base <- tktoplevel() tktitle(base) <- "BioC Filter Argument input" tkgrid(tklabel(base, text = "Arguments"), tklabel(base, text = "Descriptions"), tklabel(base, text = "Values")) for(i in names(args)){ argsVar[[i]] <- tclVar(as.character(argValues[[i]])) tempFrame <- tkframe(base) desc[[i]] <- makeViewer(tempFrame, vHeight = 3, vWidth = 55, vScroll = FALSE, hScroll = FALSE, what = "text") writeText(desc[[i]], args[[i]]) tkconfigure(desc[[i]], wrap = "word", state = "disabled") entries[[i]] <- tkentry(base, textvariable = argsVar[[i]], width = 10) tkgrid(tklabel(base, text = i), tempFrame, entries[[i]]) if(any(as.character(argValues[[i]]) == c("FALSE", "TRUE"))){ ftFun[[i]] <- function(){} body <- list(as.name("{"), substitute(eval(if(tclvalue(argsVar[[j]]) == "TRUE"){ writeList(entries[[j]], "FALSE")}else{ writeList(entries[[j]], "TRUE")}), list(j = i))) body(ftFun[[i]]) <- as.call(body) tkbind(entries[[i]],"", ftFun[[i]]) } tkgrid.configure(tempFrame, sticky = "eswn") } butFrame <- tkframe(base) canBut <- tkbutton(butFrame, text = "cancel", width = 8, command = cancel) endBut <- tkbutton(butFrame, text = "Finish", width = 8, comman = end) tkpack(canBut, side = "left", expand = FALSE, fill = "x") tkpack(endBut, side = "left", expand = FALSE, fill = "x") tkgrid(butFrame, columnspan = 3) tkwait.window(base) if(END){ for(i in names(argValues)){ argValues[[i]] <- tkWidgets:::formatArg(tclvalue(argsVar[[i]])) } return(argValues) }else{ return(NULL) } } isESet <- function(eSet){ if(missing(eSet) || (!is(eSet, "ExpressionSet"))) { tkmessageBox(title = "Input Error", message = paste("filterMaster has to take", "an object of class ExpressionSet"), icon = "warning", type = "ok") return(FALSE) }else{ return(TRUE) } } genefilter/R/fastT.R0000644000175100017510000000200412607264530015324 0ustar00biocbuildbiocbuild ##FIXME: this could replace the code further below at some point, ## but only when it has the var.equal option ##-------------------------------------------------- ## fastT ##-------------------------------------------------- #fastT = function(x, ig1, ig2, var.equal=TRUE) { # fac = rep(NA, ncol(x)) # fac[ig1] = 0 # fac[ig2] = 1 # .Call("rowcolttests", x, as.integer(fac), as.integer(2), # as.integer(0), PACKAGE="genefilter") #} fastT = function(x, ig1, ig2, var.equal=TRUE) { ng1=length(ig1) ng2 = length(ig2) if( ncol(x) != ng1+ng2) stop("wrong sets of columns") outd = x[,c(ig1, ig2),drop=FALSE] nr = nrow(outd) z = rep(0, nr) dm = rep(0, nr) Z = .Fortran("fastt", d=as.single(outd), as.integer(nr), as.integer(ng1+ng2), as.integer(ng1), z = as.single(z), dm = as.single(dm), var.equal=as.integer(var.equal), ratio = as.integer(as.integer(0)), PACKAGE="genefilter") return(list(z = Z$z, dm=Z$dm, var.equal=Z$var.equal)) } genefilter/R/filter_volcano.R0000644000175100017510000000300712607264530017255 0ustar00biocbuildbiocbuildfilter_volcano <- function( d, p, S, n1, n2, alpha, S_cutoff, cex = .5, pch = 19, xlab = expression( paste( log[2], " fold change" ) ), ylab = expression( paste( "-", log[10], " p" ) ), cols = c( "grey80", "grey50", "black" ), ltys = c( 1, 3 ), use_legend = TRUE, ... ) { f <- S < S_cutoff col <- rep( cols[1], length(d) ) col[ !f & p >= alpha ] <- cols[2] col[ !f & p < alpha ] <- cols[3] plot( d, -log10( p ), cex = cex, pch = pch, xlab = xlab, ylab = ylab, col = col, ... ) k_grid <- seq( 0, max( -log10( p ) ), length = 100 ) p_grid <- 10^( -k_grid ) lines( kappa_p( p_grid, n1, n2 ) * S_cutoff, k_grid, lty = ltys[1] ) lines( -1 * kappa_p( p_grid, n1, n2 ) * S_cutoff, k_grid, lty = ltys[1] ) segments( c( par("usr")[1], kappa_p( alpha, n1, n2 ) * S_cutoff ), -log10( alpha ), c( -kappa_p( alpha, n1, n2 ) * S_cutoff, par("usr")[2] ), -log10( alpha ), lty = ltys[2] ) if ( use_legend ) legend( "topleft", c( "Filtered", "Insig.", "Sig." ), pch = pch, col = cols, inset = .025, bg = "white" ) } genefilter/R/filtered_p.R0000644000175100017510000000141612607264530016366 0ustar00biocbuildbiocbuildfiltered_p <- function( filter, test, theta, data, method = "none" ) { if ( is.function( filter ) ) U1 <- filter( data ) else U1 <- filter cutoffs <- quantile( U1, theta ) result <- matrix( NA_real_, length( U1 ), length( cutoffs ) ) colnames( result ) <- names( cutoffs ) for ( i in 1:length( cutoffs ) ) { use <- U1 >= cutoffs[i] if( any( use ) ) { if( is.function( test ) ) U2 <- test( data[use,] ) else U2 <- test[use] result[use,i] <- p.adjust( U2, method ) } } return( result ) } filtered_R <- function( alpha, filter, test, theta, data, method = "none" ) { p <- filtered_p( filter, test, theta, data, method ) return( apply( p, 2, function(x) sum( x < alpha, na.rm = TRUE ) ) ) } genefilter/R/genefinder.R0000644000175100017510000001016612607264530016361 0ustar00biocbuildbiocbuild# genefinder.R # # genefinder functions. genescale <- function (m, axis=2, method=c("Z", "R"), na.rm=TRUE) { ##scale by the range RscaleVector <- function(v, na.rm) { mm <- range(v, na.rm=na.rm) (v - mm[1]) / (mm[2] - mm[1]) } ##scale using Zscore ZscaleVector <- function(v, na.rm) (v - mean(v, na.rm=na.rm))/sd(v, na.rm=na.rm) # # scales a matrix using the scaleVector function. # which <- match.arg(method) method <- switch(which, Z = ZscaleVector, R = RscaleVector) if( is.matrix(m) || is.data.frame(m) ) { rval <- apply (m, axis, method, na.rm=na.rm) if( axis==1 ) return(t(rval)) return(rval) } else method(m, na.rm=na.rm) } setMethod("genefinder", c("ExpressionSet", "vector", "ANY", "ANY", "ANY", "ANY"), function(X, ilist, numResults, scale, weights, method) { gN <- featureNames(X) if (is.character(ilist)) ilist <- match(ilist,gN) ans <- genefinder(exprs(X), ilist, numResults, scale, weights, method=method) names(ans) <- gN[ilist] ans }) setMethod("genefinder", c("matrix", "vector", "ANY", "ANY", "ANY", "ANY"), function (X, ilist, numResults, scale, weights, method) { X <- as.matrix(X) METHOD <- c("euclidean", "maximum", "manhattan", "canberra", "correlation", "binary") method<-pmatch(method, METHOD) if (is.na(method)) stop ("The distance method is invalid.") SCALE <- c("none", "range", "zscore") scale <- SCALE[pmatch(scale, SCALE)] # perform scaling if requested. # X <- switch(scale, none=X, range=genescale(X), zscore=scale(X), stop("The scaling method is invalid") ) N <- nrow(X) C <- ncol(X) if( !is.vector(ilist) ) stop("the genes to be compared to must be in a vector") ninterest <- length(ilist); if( is.character(ilist) ) { iRows <- match(ilist, row.names(X)) names(iRows) <- ilist } else if ( is.numeric(ilist) ) { iRows <- ilist names(iRows) <- row.names(X)[ilist] } else stop("invalid genes selected") if( any(is.na(iRows)) ) stop("invalid genes selected") if (missing(weights)) weights <- rep(1,C) else if (length(weights) != C) stop("Supplied weights do not match number of columns") ## Do a sanity check on the requested genes in ilist -> if the ## gene exceeds the # of rows in the matrix, can not be processed. if (max(iRows) > N) stop("Requested genes exceed the dimensions of the supplied matrix.") Genes <- array(as.integer(NA), dim=c(ninterest, numResults)) Dists <- array(as.integer(NA), dim=c(ninterest, numResults)) extCall <- .C("gf_distance", X = as.double(X), nr= as.integer(N), nc= ncol(X), g = as.integer(Genes), d = as.double(Dists), iRow = as.integer(iRows), nInterest = as.integer(ninterest), nResults = as.integer(numResults), method= as.integer(method), weights = as.double(weights), NAOK=TRUE, PACKAGE="genefilter") Genes <- extCall$g+1 Dists <- extCall$d Which <- vector() ## Get the number of genes/dists per selection. There should ## always be a number of total genes such that they are a multiple ## of ninterest numPerList <- length(Genes) / ninterest Which <- rep(iRows, rep(numPerList, ninterest)) byGene <- split(Genes, Which) names(byGene) <- rep("indices", length(byGene)) byDists <- split(Dists, Which) names(byDists) <- rep("dists", length(byDists)) ## Need a better way to stuff these together retList <- list() for (i in 1:ninterest) { retList[[i]] <- list(indices=byGene[[i]], dists=byDists[[i]]) } return(retList) }) genefilter/R/half.range.mode.R0000755000175100017510000000217212607264530017204 0ustar00biocbuildbiocbuildhalf.range.mode <- function( data, B, B.sample, beta = .5, diag = FALSE ) { if ( length( data ) == 0 ) return( NA_real_ ) if (missing( B ) ) { # Just one run on the full set... if ( is.unsorted( data ) ) data <- sort( data ) .C( "half_range_mode", data = as.double( data ), n = as.integer( length( data ) ), beta = as.double( beta ), diag = as.integer( diag ), M = double(1), PACKAGE = "genefilter" )$M } else { # Bootstrapped if ( missing( B.sample ) ) B.sample <- length( data ) M <- sapply( 1:B, function (x) { d <- sort( sample( data, B.sample, replace = T ) ) .C( "half_range_mode", data = as.double( d ), n = as.integer( B.sample ), beta = as.double( beta ), diag = as.integer( diag ), M = double(1), PACKAGE = "genefilter" )$M } ) mean( M ) } } genefilter/R/kappa_p.R0000644000175100017510000000034512607264530015664 0ustar00biocbuildbiocbuildkappa_p <- function( p, n1, n2 = n1 ) { n <- n1 + n2 t <- qt( 1 - p/2, df = n - 2 ) kappa_t( t, n1, n2 ) } kappa_t <- function( t, n1, n2 = n1 ) { n <- n1 + n2 sqrt( n * (n-1) * t^2 / ( n1 * n2 * ( n - 2 + t^2 ) ) ) } genefilter/R/nsFilter.R0000644000175100017510000002250212607264530016036 0ustar00biocbuildbiocbuild##RG introduces two new functions, varFilter that does what nsFilter ##was supposed to, but never did, and featureFilter that does the only ##useful stuff that nsFilter does rowIQRs <- function(eSet) { numSamp <- ncol(eSet) lowQ <- rowQ(eSet, floor(0.25 * numSamp)) upQ <- rowQ(eSet, ceiling(0.75 * numSamp)) upQ - lowQ } ##For NOW, we will need to check the schema from within nsFilter and ##featureFilter to decide what the internal ID is that needs to be used. ##LATER, when we haev annotation packages that will make this sort of access ##easier, it will make more sense to just access the central ID for those ##packages. ## It looks like I can take care of both nsFilter and featureFilter in this ## way by just altering what the helper function findLargest() does varFilter <- function(eset, var.func=IQR, var.cutoff=0.5,filterByQuantile=TRUE ) { if (deparse(substitute(var.func)) == "IQR") { vars <- rowIQRs(eset) } else { vars <- apply(exprs(eset), 1, var.func) } if (filterByQuantile) { if ( 0 < var.cutoff && var.cutoff < 1 ) { quant = quantile(vars, probs = var.cutoff) selected = !is.na(vars) & vars > quant } else stop("Cutoff Quantile has to be between 0 and 1.") } else { selected <- !is.na(vars) & vars > var.cutoff } eset <- eset[selected, ] } .getRequiredIDs <- function(eset, map){ annChip <- annotation(eset) if(.isOrgSchema(annChip)){ IDs <- featureNames(eset) names(IDs) <- featureNames(eset) }else{ IDs <- mget(featureNames(eset), envir=getAnnMap(map, annChip), ifnotfound=NA) } IDs } featureFilter <- function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, feature.exclude="^AFFX") { annChip <- annotation(eset) if (nchar(annChip) == 0) stop("'eset' must have a valid annotation slot") nfeat <- function(eset) length(featureNames(eset)) requireID <- function(eset, map) { IDs <- .getRequiredIDs(eset, map) haveID <- names(IDs)[sapply(IDs, function(x) !is.na(x))] eset[haveID, ] } if (require.entrez) { map <- .findCentralMap(annChip) eset <- requireID(eset, map) } filterGO <- function(eset, ontology) { haveGo <- sapply(mget(featureNames(eset), getAnnMap("GO", annChip), ifnotfound=NA), function(x) { if (length(x) == 1 && is.na(x)) FALSE else { onts <- subListExtract(x, "Ontology", simplify=TRUE) ontology %in% onts } }) eset[haveGo, ] } if (require.GOBP) eset <- filterGO(eset, "BP") if (require.GOCC) eset <- filterGO(eset, "CC") if (require.GOMF) eset <- filterGO(eset, "MF") if (length(feature.exclude)) { fnms <- featureNames(eset) badIdx <- integer(0) for (pat in feature.exclude) { if (nchar(pat) == 0) next badIdx <- c(grep(pat, fnms), badIdx) } if (length(badIdx)) { badIdx <- unique(badIdx) eset <- eset[-badIdx, ] } } if (remove.dupEntrez ) { ## Reduce to unique probe <--> gene mapping here by keeping largest IQR ## We will want "unique genes" in the non-specific filtered gene ## set. uniqGenes <- findLargest(featureNames(eset), rowIQRs(eset), annotation(eset)) eset <- eset[uniqGenes, ] } requireCytoBand <- function(eset) { MAPs <- mget(featureNames(eset), envir=getAnnMap("MAP", annChip), ifnotfound=NA) haveMAP <- names(MAPs)[sapply(MAPs, function(x) !is.na(x[1]))] eset[haveMAP, ] } if (require.CytoBand) eset <- requireCytoBand(eset) eset } setMethod("nsFilter", "ExpressionSet", function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) { if (!is.function(var.func)) stop("'var.func' must be a function") annChip <- annotation(eset) if (nchar(annChip) == 0) stop("'eset' must have a valid annotation slot") nfeat <- function(eset) length(featureNames(eset)) filter.log <- new.env(parent=emptyenv()) requireID <- function(eset, map) { IDs <- .getRequiredIDs(eset, map) haveID <- names(IDs)[sapply(IDs, function(x) !is.na(x))] logvar <- paste("numRemoved", map, sep=".") assign(logvar, nfeat(eset) - length(haveID), envir=filter.log) eset[haveID, ] } if (require.entrez) { map <- .findCentralMap(annChip) eset <- requireID(eset, map) } filterGO <- function(eset, ontology) { haveGo <- sapply(mget(featureNames(eset), getAnnMap("GO", annChip), ifnotfound=NA), function(x) { if (length(x) == 1 && is.na(x)) FALSE else { onts <- subListExtract(x, "Ontology", simplify=TRUE) ontology %in% onts } }) logvar <- paste("numNoGO", ontology, sep=".") assign(logvar, sum(!haveGo), envir=filter.log) eset[haveGo, ] } if (require.GOBP) { eset <- filterGO(eset, "BP") } if (require.GOCC) { eset <- filterGO(eset, "CC") } if (require.GOMF) { eset <- filterGO(eset, "MF") } if (length(feature.exclude)) { fnms <- featureNames(eset) badIdx <- integer(0) for (pat in feature.exclude) { if (nchar(pat) == 0) next badIdx <- c(grep(pat, fnms), badIdx) } if (length(badIdx)) { badIdx <- unique(badIdx) eset <- eset[-badIdx, ] logvar <- "feature.exclude" assign(logvar, length(badIdx), filter.log) } } if (remove.dupEntrez) { ## Reduce to unique probe <--> gene mapping here by keeping largest IQR ## We will want "unique genes" in the non-specific filtered gene ## set. if (deparse(substitute(var.func)) == "IQR") { esetIqr <- rowIQRs(exprs(eset)) } else { esetIqr <- apply(exprs(eset), 1, var.func) } numNsWithDups <- nfeat(eset) uniqGenes <- findLargest(featureNames(eset), esetIqr, annotation(eset)) eset <- eset[uniqGenes, ] logvar <- "numDupsRemoved" assign(logvar, numNsWithDups - nfeat(eset), envir=filter.log) } if (var.filter) { if (deparse(substitute(var.func)) == "IQR") { esetIqr <- rowIQRs(exprs(eset)) } else { esetIqr <- apply(exprs(eset), 1, var.func) } ##note this was not happening in the first ##version - despite the documentation if (filterByQuantile) { if ( 0 < var.cutoff && var.cutoff < 1 ) { var.cutoff = quantile(esetIqr, var.cutoff) } else stop("Cutoff Quantile has to be between 0 and 1.") } selected <- esetIqr > var.cutoff eset <- eset[selected, ] logvar <- "numLowVar" assign(logvar, sum(!selected), filter.log) } requireCytoBand <- function(eset) { MAPs <- mget(featureNames(eset), envir=getAnnMap("MAP", annChip), ifnotfound=NA) haveMAP <- names(MAPs)[sapply(MAPs, function(x) !is.na(x[1]))] logvar <- paste("numRemoved", "MAP", sep=".") assign(logvar, nfeat(eset) - length(haveMAP), envir=filter.log) eset[haveMAP, ] } if (require.CytoBand) eset <- requireCytoBand(eset) numSelected <- length(featureNames(eset)) list(eset=eset, filter.log=as.list(filter.log)) }) genefilter/R/rejection_plot.R0000644000175100017510000000374112607264530017274 0ustar00biocbuildbiocbuildrejection_plot <- function(p, col, lty = 1, lwd = 1, xlab = "p cutoff", ylab = "number of rejections", xlim = c( 0, 1 ), ylim, legend = names(p), at = c( "all", "sample" ), n_at = 100, probability = FALSE, ... ) { if ( is.matrix( p ) ) { legend <- colnames( p ) p <- lapply( 1:ncol(p), function(i) p[,i] ) } if ( missing( col ) ) col <- rainbow( length( p ), v = .7 ) col <- rep( col, length.out = length( p ) ) lty <- rep( lty, length.out = length( p ) ) lwd <- rep( lwd, length.out = length( p ) ) if ( missing( ylim ) ) ylim <- c( 0, ifelse( probability, 1, max( sapply( p, length ) ) ) ) at <- match.arg( at ) steps <- lapply( p, function(x) { x <- na.omit(x) stepfun( sort( x ), ( 0:length(x) ) / ifelse( probability, length(x), 1 ) ) } ) plot( 0, type = "n", xaxs = "i", yaxs = "i", xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, ... ) if ( at == "all" ) { for ( i in 1:length( steps ) ) lines( steps[[i]], xlim = xlim, col = col[i], lty = lty[i], lwd = lwd[i], do.points = FALSE ) } else { x <- seq( xlim[1], xlim[2], length = n_at ) for ( i in 1:length( steps ) ) lines( x, steps[[i]](x), col = col[i], lty = lty[i], lwd = lwd[i] ) } if ( !is.null( legend ) ) legend( "topleft", legend, col = col, lty = lty, lwd = lwd, inset = .05 ) invisible( steps ) } genefilter/R/rowROC-accessors.R0000644000175100017510000001532712607264530017415 0ustar00biocbuildbiocbuild## ========================================================================== ## show method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("show", signature(object="rowROC"), function(object){ cat("matrix of ROC curves for", nrow(object@data), "genes/rows", "with", max(0,ncol(object@cutpoints)), "cutpoints\n") cat(" size of class ", object@caseNames[1] ,": ", sum(object@factor==levels(object@factor)[1]), "\n", sep="") cat(" size of class ", object@caseNames[2] ,": ", sum(object@factor==levels(object@factor)[2]), "\n", sep="") cat("partial areas under curve calculated for p=", object@p, "\n", sep="") }) ## ========================================================================== ## ========================================================================== ## subsetting method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("[", signature="rowROC", definition=function(x, i, j="missing", drop="missing") { x@sens <- x@sens[i,,drop=FALSE] x@spec <- x@spec[i,,drop=FALSE] x@pAUC <- x@pAUC[i] x@AUC <- x@AUC[i] x@data <- x@data[i,,drop=FALSE] x@cutpoints <- x@cutpoints[i,,drop=FALSE] x@ranks <- x@ranks[i,,drop=FALSE] return(x) }, valueClass="rowROC") ## ========================================================================== ## ========================================================================== ## plot method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("plot", signature(x="rowROC", y="missing"), function(x, pch=20, cex=0.7, xlab="1 - specificity", ylab="sensitivity", main=NULL, sub=paste("class ", x@caseNames[1], " (", sum(x@factor==levels(x@factor)[1]), " cases) | class ", x@caseNames[2], " (", sum(x@factor==levels(x@factor)[2]), " cases)", sep=""), ...){ sx <- sort(1-x@spec[1,]) sy <- sort(x@sens[1,]) spx <- c(sx[sx<=x@p & sy>0],x@p) spy <- sy[sx<=x@p & sy>0] if(!length(spy)){ spy <- 0 spx <- c(0,spx) } spy <- c(spy, max(spy)) len <- length(sx) nn <- names(area(x)[1]) if(is.null(main)) main <- paste("ROC-Curve", ifelse(length(nn), paste("(", nn, ")", sep=""), "")) plot(sx, sy, pch=pch, cex=cex, xlab=xlab, ylab=ylab, main=main, sub=sub, ...) if(mean(x@data)==1 || all(sx==sy)) polygon(c(0,1,1), c(0,0,1), col="#ececec", lty=0) else{ rect(spx[-1], 0, spx[-1] - diff(spx),spy[-1], col="#ececec", lty=0) lines(sx, sy, type="s") } points(sx, sy, pch=pch, cex=cex, ...) lines(0:1, 0:1, lty=3, col="darkgray") atext <- paste("AUC: ", signif(x@AUC[1],3)) tw <- strwidth(atext) w <- diff(par("usr")[1:2]) cex <- min(1, (w/2+w/10)/tw) th <- strheight(atext, cex=cex)*1.1 if(x@p<1){ ptext <- paste("pAUC: ", signif(x@pAUC[1],3), " (p=", x@p, ")", sep="") tw <- max(tw, strwidth(ptext)) cex <- min(1, (w/2+w/10)/tw) abline(v=x@p, col="darkblue", lty=2) text(x=1-tw*cex*1.1, y=0.02+th*cex, atext, pos=4, cex=cex) text(x=1-tw*cex*1.1, y=0.02, ptext, pos=4, cex=cex) }else{ text(x=1-tw*cex*1.1, y=0.02, atext, pos=4, cex=cex) } }) ## ========================================================================== ## ========================================================================== ## pAUC method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("pAUC", signature(object="rowROC", p="numeric"), function(object, p, flip=TRUE){ if(length(flip)!=1 || !(is.logical(flip))) stop("'flip' must be logical scalar") flip <- as.integer(flip) res <- .Call("pAUC", object@spec, object@sens, p, flip) names(res$pAUC) <- names(res$AUC) <- names(object@AUC) object@pAUC <- res$pAUC object@AUC <- res$AUC object@p <- p return(object) }) ## ========================================================================== ## ========================================================================== ## AUC method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("AUC", signature(object="rowROC"), function(object){ object@pAUC <- object@AUC object@p <- 1 return(object) }) ## ========================================================================== ## ========================================================================== ## accessor method to slot 'sens' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("sens", signature(object="rowROC"), function(object) return(object@sens) ) ## ========================================================================== ## ========================================================================== ## accessor method to slot 'spec' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("spec", signature(object="rowROC"), function(object) return(object@spec) ) ## ========================================================================== ## ========================================================================== ## accessor method to slots 'AUC' or 'pAUC' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("area", signature(object="rowROC"), function(object, total=FALSE){ if(total) return(object@AUC) else return(object@pAUC) }) ## ========================================================================== genefilter/R/rowSds.R0000644000175100017510000000032312607264530015526 0ustar00biocbuildbiocbuildrowVars = function(x, ...) { sqr = function(x) x*x n = rowSums(!is.na(x)) n[n<=1] = NA return(rowSums(sqr(x-rowMeans(x, ...)), ...)/(n-1)) } rowSds = function(x, ...) sqrt(rowVars(x, ...)) genefilter/R/rowpAUCs-methods.R0000644000175100017510000001025612607264530017417 0ustar00biocbuildbiocbuild## ========================================================================== ## core rowpAUCs method for objects of class matrix ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="matrix", fac="factor"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ ##check argument 'p' if(!is.numeric(p) || length(p)>1) stop("'p' must be numeric of length 1") ## check argument 'fac' f <- checkfac(fac) if(f$nrgrp != 2 || length(f$fac) != ncol(x) || length(unique(f$fac)) !=2 ) stop("'fac' must be factor with 2 levels and length 'ncol(x)'") ## check argument 'flip' if(length(flip)!=1 || !(is.logical(flip))) stop("'flip' must be logical scalar") flip <- as.integer(flip) ## compute cutpoints cutpts <- matrix((0:ncol(x))+0.5, ncol=ncol(x)+1, nrow=nrow(x), byrow=TRUE, dimnames=list(rownames(x), NULL)) ## rank data xr <- t(apply(x, 1, rank)) mode(xr) <- "numeric" ## call C function and return object of class 'rowROC' res <- .Call("ROCpAUC", xr, cutpts, as.integer(f$fac), p, PACKAGE="genefilter", flip) sens <- res$sens spec <- res$spec rownames(sens) <- rownames(spec) <- rownames(x) pAUC <- res$pAUC AUC <- res$AUC names(AUC) <- names(pAUC) <- rownames(x) object <- new("rowROC", data=x, sens=sens, spec=spec, pAUC=pAUC, AUC=AUC, factor=factor(f$fac), p=p, ranks=xr, caseNames=as.character(caseNames), cutpoints=cutpts) return(object) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=matrix, fac=numeric ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="matrix", fac="numeric"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ cutpts <- matrix((0:ncol(x))+0.5, ncol=ncol(x)+1, nrow=nrow(x), byrow=TRUE) rowpAUCs(x=x, fac=factor(fac), p=p, flip=flip, caseNames=caseNames) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=ExpressionSet ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="ExpressionSet"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ rowpAUCs(x=exprs(x), fac=fac, p=p, flip=flip, caseNames=caseNames) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=ExpressionSet fac=character ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="ExpressionSet", fac="character"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ if (length(fac) == 1){ if(!fac %in% colnames(pData(x))) stop("fac must be length 1 character indicating a ", "covariate in the phenoData slot of the expressionSet") cn <- as.character(levels(pData(x)[[fac]])) fac = factor(as.integer(factor(pData(x)[[fac]]))-1) rowpAUCs(x=exprs(x), fac=fac, p=p, flip=flip, caseNames=cn) }else{ rowpAUCs(x=x, fac=as.factor(fac), p=p, flip=flip, caseNames=caseNames) } }) ## ========================================================================== genefilter/R/rowttests-methods.R0000644000175100017510000001537312607264530017777 0ustar00biocbuildbiocbuild##--------------------------------------------------------------------------------------## ## This file contains methods definitions for rowttests, colttest, rowFtests, colFtests ## ##--------------------------------------------------------------------------------------## ##----------------------------------------------------------------------- ## The core function for row- and column-wise t-tests - it uses C code ##------------------------------------------------------------------------ rowcoltt = function(x, fac, tstatOnly, which) { if (!missing(tstatOnly) && (!is.logical(tstatOnly) || is.na(tstatOnly))) stop(sQuote("tstatOnly"), " must be TRUE or FALSE.") f = checkfac(fac) if ((f$nrgrp > 2) || (f$nrgrp <= 0)) stop("Number of groups is ", f$nrgrp, ", but must be >0 and <=2 for 'rowttests'.") if (typeof(x) == "integer") x[] <- as.numeric(x) cc = .Call("rowcolttests", x, f$fac, f$nrgrp, which-1L, PACKAGE="genefilter") res = data.frame(statistic = cc$statistic, dm = cc$dm, row.names = dimnames(x)[[which]]) if (!tstatOnly) res = cbind(res, p.value = 2*pt(abs(res$statistic), cc$df, lower.tail=FALSE)) attr(res, "df") = cc$df return(res) } ##------------------------------------------------------------ ## The core function for F-tests - it uses R matrix algebra ##------------------------------------------------------------ rowcolFt = function(x, fac, var.equal, which) { if(!(which %in% c(1L, 2L))) stop(sQuote("which"), " must be 1L or 2L.") if(which==2L) x = t(x) if (typeof(x) == "integer") x[] <- as.numeric(x) sqr = function(x) x*x stopifnot(length(fac)==ncol(x), is.factor(fac), is.matrix(x)) x <- x[,!is.na(fac), drop=FALSE] fac <- fac[!is.na(fac)] ## Number of levels (groups) k <- nlevels(fac) ## xm: a nrow(x) x nlevels(fac) matrix with the means of each factor ## level xm <- matrix( sapply(levels(fac), function(fl) rowMeans(x[,which(fac==fl), drop=FALSE])), nrow = nrow(x), ncol = nlevels(fac)) ## x1: a matrix of group means, with as many rows as x, columns correspond to groups x1 <- xm[,fac, drop=FALSE] ## degree of freedom 1 dff <- k - 1 if(var.equal){ ## x0: a matrix of same size as x with overall means x0 <- matrix(rowMeans(x), ncol=ncol(x), nrow=nrow(x)) ## degree of freedom 2 dfr <- ncol(x) - dff - 1 ## mean sum of squares mssf <- rowSums(sqr(x1 - x0)) / dff mssr <- rowSums(sqr( x - x1)) / dfr ## F statistic fstat <- mssf/mssr } else{ ## a nrow(x) x nlevels(fac) matrix with the group size of each factor ## level ni <- t(matrix(tapply(fac,fac,length),ncol=nrow(x),nrow=k)) ## wi: a nrow(x) x nlevels(fac) matrix with the variance * group size of each factor ## level sss <- sqr(x-x1) x5 <- matrix( sapply(levels(fac), function(fl) rowSums(sss[,which(fac==fl), drop=FALSE])), nrow = nrow(sss), ncol = nlevels(fac)) wi <- ni*(ni-1) /x5 ## u : Sum of wi u <- rowSums(wi) ## F statistic MR <- rowSums(sqr((1 - wi/u)) * 1/(ni-1))*1/(sqr(k)-1) fsno <- 1/dff * rowSums(sqr(xm - rowSums(wi*xm)/u) * wi) fsdeno <- 1+ 2* (k-2)*MR fstat <- fsno/fsdeno ## degree of freedom 2: Vector with length nrow(x) dfr <- 1/(3 * MR) } res = data.frame(statistic = fstat, p.value = pf(fstat, dff, dfr, lower.tail=FALSE), row.names = rownames(x)) attr(res, "df") = c(dff=dff, dfr=dfr) return(res) } ## ========================================================================== ## rowttests and colttests methods for 'matrix' ## ========================================================================== setMethod("rowttests", signature(x="matrix", fac="factor"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, fac, tstatOnly, 1L)) setMethod("rowttests", signature(x="matrix", fac="missing"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, factor(integer(ncol(x))), tstatOnly, 1L)) setMethod("colttests", signature(x="matrix", fac="factor"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, fac, tstatOnly, 2L)) setMethod("colttests", signature(x="matrix", fac="missing"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, factor(integer(ncol(x))), tstatOnly, 2L)) ## ========================================================================== ## rowFtests and colFtests methods for 'matrix' ## ========================================================================== setMethod("rowFtests", signature(x="matrix", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(x, fac, var.equal, 1L)) setMethod("colFtests", signature(x="matrix", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(x, fac, var.equal, 2L)) ## =========================================================================== ## Methods for 'ExpressionSet': only for rowttests and rowFtests ## -========================================================================== setMethod("rowttests", signature(x="ExpressionSet", fac="factor"), function(x, fac, tstatOnly=FALSE) rowcoltt(exprs(x), fac, tstatOnly=tstatOnly, 1L)) setMethod("rowttests", signature(x="ExpressionSet", fac="missing"), function(x, fac, tstatOnly=FALSE) { x = exprs(x) fac = integer(ncol(x)) rowcoltt(x, fac, tstatOnly, 1L) }) setMethod("rowttests", signature(x="ExpressionSet", fac="character"), function(x, fac, tstatOnly=FALSE) { if (length(fac) != 1) stop("fac must be length 1 character or a factor") fac = factor(pData(x)[[fac]]) rowcoltt(exprs(x), fac, tstatOnly, 1L) }) setMethod("rowFtests", signature(x="ExpressionSet", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(exprs(x), fac, var.equal, 1L)) setMethod("rowFtests", signature(x="ExpressionSet", fac="character"), function(x, fac, var.equal=TRUE) { fac = factor(as.integer(factor(pData(x)[[fac]]))-1L) rowcolFt(exprs(x), fac, var.equal, 1L) }) ## ------------------------------------------------------------ ## convert fac from factor or numeric to integer and then ## make sure it is an integer ## ------------------------------------------------------------ checkfac = function(fac) { if(is.numeric(fac)) { nrgrp = as.integer(max(fac, na.rm=TRUE)+1) fac = as.integer(fac) } ## this must precede the factor test if(is.character(fac)) fac = factor(fac) if (is.factor(fac)) { nrgrp = nlevels(fac) fac = as.integer(as.integer(fac)-1) } if(!is.integer(fac)) stop("'fac' must be factor, character, numeric, or integer.") if(any(fac<0, na.rm=TRUE)) stop("'fac' must not be negative.") return(list(fac=fac, nrgrp=nrgrp)) } genefilter/R/shorth.R0000644000175100017510000000317712607264530015566 0ustar00biocbuildbiocbuildshorth <- function(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05) { stopifnot(is.numeric(x)) if (na.rm) { x <- x[is.finite(x)] } else { if(any(!is.finite(x))) stop("'x' contains NA or NaN, and 'na.rm' is FALSE.") } if(length(x)==0L) { NA_real_ } else { sx <- sort(x) width <- round(0.5*length(x)) diffs <- sx[(width+1):length(x)] - sx[1:(length(x)-width)] ## cannot use which.min since we want all minimising points not just one: q <- which(diffs==min(diffs)) if(length(q)>1) { ## deal with ties: maxq = max(q) minq = min(q) ## take the action specified in "tie.action" q <- switch(tie.action, mean = { if (maxq-minq <= tie.limit * length(x)) { mean(q) } else { stop(paste("Encountered tie(s), and the difference between minimal and maximal value is larger than 'length(x)*tie.limit'.", "This could mean that the distribution does not have a single well-defined mode.", paste("q=", minq, "...", maxq, ", values=", signif(sx[minq],4), "...", signif(sx[minq+width],4), sep=""), sep="\n")) }}, max = maxq, ## largest midpoint (maxq) min = minq, ## smallest midpoint (minq) stop(sprintf("Invalid value '%s' for argument 'tie.action'", tie.action)) ) } ## if mean(sx[q:(q+width-1)]) } ## if } genefilter/R/zzz.R0000644000175100017510000000037312607264530015107 0ustar00biocbuildbiocbuild.onLoad <- function(lib, pkgname) { if(.Platform$OS.type == "windows" && interactive() && .Platform$GUI == "Rgui"){ addVigs2WinMenu("genefilter") } } .onUnload <- function( libpath ) { library.dynam.unload( "genefilter", libpath ) } genefilter/build/0000755000175100017510000000000012607321410015011 5ustar00biocbuildbiocbuildgenefilter/build/vignette.rds0000644000175100017510000000072612607321410017355 0ustar00biocbuildbiocbuildRMk@U$PhɩΥB0i9iK&VAwVZَFh7ogG?I44I3Yf'2\|2$S`2hLLn[L> stream HrίA. HYJ[Yt|s#1>, BKJ̠wnZ"Y:,grS._~{tv؎.7wNm@zXBSM4Wm~ ;g]ȭUx~/7H"$rzS]>FV ޼ZXJwy^mF].rC;!/V1 fzo;[Rũ[Cedy/ԉVWuoyݶy]]xcUvzW5q4Xs\XX,Fs' ,1genefilter/docs/gcluster.tex0000644000175100017510000000322312607264530017225 0ustar00biocbuildbiocbuildNotes from Cheng Li, on what he does for clustering: I basically followed the methods in the attached paper (page 2, upper-right corner). it's not the standard avarage linkage, instead, after two genes (or nodes) are merged, the resultant node has expression profile as the avereage the the two merged ones (after standardization). A description for anther project using dchip is as follows: Hierarchical clustering analysis (3) is used to group genes with same expression pattern. A genes is selected for clustering if (1) its expression values in the 20 samples has coefficient of variation (standard deviation / mean) between 0.5 to 10 (2) it is called Present by GeneChip? in more than 5 samples. Then the expression values for a gene across the 20 samples are standardized to have mean 0 and standard deviation 1 by linear transformation, and the distance between two genes is defined as 1 - r where r is the standard correlation coefficient between the 20 standardize values of two genes. Two genes with the closest distance are first merged into a super-gene and connected by branches with length representing their distance, and are deleted for future merging. The expression level of the newly formed super-gene is the average of standardized expression levels of the two genes (average-linkage) for each sample. Then the next pair of genes (super-genes) with the smallest distance are chosen to merge and the process is repeated until all genes are merged into one cluster. The dendrogram in Figure ? illustrates the final clustering tree, where genes close to each other have high similarity in their standardized expression values across the 20 samples. genefilter/docs/gfilter.tex0000644000175100017510000002166012607264530017036 0ustar00biocbuildbiocbuild\documentclass{article} \begin{document} \title{Using Genefilter} \author{Robert Gentleman \thanks{rgentlem@hsph.harvard.edu} } \date{} \maketitle \section{An extended example} Consider an experiment to explore genes that are induced by cellular contact with a ligand (we will call the ligand F). The receptors are known to transduce intracellular signals when the cell is placed in contact with F. We want to determine which genes are involved in the process. The experiment was designed to use two substrates, F and an inert substance that will be referred to as P. A large number of cells were cultured and then separated and one batch was applied to F while the other was applied to P. For both conditions cells were harvested at the times, 0, 1 hour, 3 hours and 8 hours. Those cells were processed and applied to Affymetrix U95Av2 chips. This process yielded expression level estimates for the 12,600 genes or ESTs measured by that chip. The goal of the analysis is to produce a list of genes (possibly in some rank order) that have patterns of expression that are different in the two subsets (those cells applied to F versus those cells applied to P). If there were just a few genes then we might try to select the interesting ones by using a linear model (or some other model that was more appropriate). In the subsequent discussion the form of the model is irrelevant and the linear model will be used purely for pedagogical reasons. Let $y_{ij}$ denote the expression level of a particular gene in contact with substrate $i$, ($i$ will be either F or P) at time $j$, ($j$ is one of 0,1,3,8). Suppose that in consultation with the biologists we determine that a gene is interesting if the coeffecient for time, in a linear model, is different in the two subsets. This can easily be done (for a small handful of genes) using a linear model. Let $a$ denote the substrate and $b$ denote the times. Further we assume that the expression data is presented in a matrix with 12,600 rows and 8 columns. Further assume that the columns contain the data in the order F0, F1, F3, F8, P0, P1, P3, P8. Then we can fit the model using the following R code. \begin{verbatim} a <- as.factor(c(rep("F",4), rep("P",4))) b <- c(0,1,3,8,0,1,3,8) data1 <- data.frame(a,b) f1 <- y~a/b-1 f2 <- y~a+b \end{verbatim} The model \verb+f1+ fits separate regressions on \verb+b+ within levels of \verb+b+. The model \verb+f2+ fits a parallel lines regression model. So comparing these two models via: \begin{verbatim} fit1 <- lm(f1, data1) fit2 <- lm(f2, data1) an1 <- anova(fit1, fit2) an1 \end{verbatim} From \verb+an1+ we can obtain the F--test statistic for comparing the two models. We would reject the hypothesis that the slopes of the two lines were the same if this $p$--value were sufficiently small (and all of our diagnostic tests confirmed that the model was appropriate). In the current setting with 12,600 genes it is not feasible to consider carrying out this process by hand and thus we need some automatic procedure for carrying it out. To do that we rely on some special functionality in R that is being used more and more to provide easy to use programs for complex problems (such as the current one). See the {\em Environments} section to get a better understanding of the use of environments in R. First we provide the code that will create an environment, associate it with both \verb+f1+ and \verb+f2+ and populate it with the variables \verb+a+ and \verb+b+. \begin{verbatim} e1 <- new.env() assign("a", a, env=e1) assign("b", b, env=e1) environment(f1) <- e1 environment(f2) <- e1 \end{verbatim} Now the two formulas share the environment \verb+e1+ and all the variable bindings in it. We have not assigned any value to \verb+y+ for our formulas though. The reason for that is that \verb+a+ and \verb+b+ are the same for each gene we want to test but \verb+y+ will change. We now consider an abstract (or algorithmic) version of what we need to do for each gene. Our ultimate goal is to produce a function that takes a single argument, \verb+x+, the expression levels for a gene and returns either \verb+TRUE+ indicating that the gene is interesting or \verb+FALSE+ indicating that the gene is uninteresting. \begin{itemize} \item For each gene we need to assign the expression levels for that gene to the variable \verb+y+ in the environment \verb+e1+. \item We fit both models \verb+f1+ and \verb+f2+. \item We compute the anova comparing these two models. \item We determine whether according to some criteria the large model is needed (and hence in this case that the slopes for the expression are different in the two substrates). If so we output \verb+TRUE+ otherwise we output \verb+FALSE+. \end{itemize} To operationalize this (and to make it easier to extend the ideas to more complex settings) we construct a closure to carry out this task. \begin{verbatim} make3fun <- function(form1, form2, p) { e1 <- environment(form1) #if( !identical(e1, environment(form2)) ) # stop("form1 and form2 must share the same environment") function(x) { assign("y", x, env=e1) fit1 <- lm(form1) fit2 <- lm(form2) an1 <- anova(fit1, fit2) if( an1$"Pr(>F)"[2] < p ) return(TRUE) else return(FALSE) } } \end{verbatim} %$ The function, \verb+make3fun+ is quite simple. It takes two formulas and a $p$--value as arguments. It checks to see that the formulas share an environment and then creates and returns a function of one argument. That function carries out all the fitting and testing for us. It is worth pointing out that the returned function is called a {\em closure} and that it makes use of some of the special properties of environments that are discussed below. Now we can create the function that we will use to call apply. We do this quite simply with: \begin{verbatim} myappfun <- make3fun(f1, f2, 0.01) myappfun function(x) { assign("y", x, env=e1) fit1 <- lm(form1) fit2 <- lm(form2) an1 <- anova(fit1, fit2) if( an1$"Pr(>F)"[2] < p ) return(TRUE) else return(FALSE) } \end{verbatim} %$ Thus, \verb+myappfun+ is indeed a function of one argument. It carries out the three steps we outlined above and will return \verb+TRUE+ if the $p$--value for comparing the model in \verb+f1+ to that in \verb+f2+ is less than $0.01$. If we assume that the data are stored in a data frame called \verb+gene.exprs+ then we can find the interesting ones using the following line of code. \begin{verbatim} interesting.ones <- apply(gene.exprs, 1, myappfun) \end{verbatim} The real advantage of this approach is that it extends simply (or trivially) to virtually any model comparison that can be represented or carried out in R. \section{Environments} In R an environment can be thought of as a table. The table contains a list of symbols that are linked to a list of values. There are only a couple of operations that you need to carry out on environments. One is to give the name of a symbol and get the associated value. The other is to set the value for a symbol to some supplied value. The following code shows some simple manipulations that you can do. \begin{verbatim} > e1 <- new.env() > ls(env=e1) character(0) > ls() [1] "a" "an1" "b" "data1" "e1" "f1" "f2" "fit1" "fit2" [10] "y" > #this ls() lists the objects in my workspace (which is itself > # an environment; it gets searched by default > assign("a", 4, env=e1) > #this assigns the value 4 to the symbol a in e1 > #it has no effect on a in my workspace > a [1] F F F F P P P P Levels: F P > get("a",env=e1) [1] 4 > #so the a in env1 is separate and protected from the a in my > # workspace \end{verbatim} In R every formula has an associated environment. This environment is used to provide bindings (or values) for the symbols in the formula. When we write \verb=y~a+x= we have in mind some values to associate with \verb+y+, \verb+a+ and \verb+x+. We can use an environment to specify these. \begin{verbatim} substrate <- c(1,1,1,1,2,2,2,2) time <- c(0,1,3,8,0,1,3,8) response <- rnorm(8) assign("a", substrate, env=e1) assign("b", time, env=e1) assign("y", response, env=e1) environment(f1) <- e1 environment(f2) <- e1 \end{verbatim} Now, both of our formulas (from section 1) share the environment \verb+e1+ and both can be used in any modeling context without specifying the data; it will be obtained automatically from the environment. \section{A weighted analysis} The Li and Wong (2000) algorithm for estimating expression levels for gene chip samples also provides an estimate of the standard error of the expression level. These estimated standard errors can potentially be used in the analysis of the data. For example, since we have observations of the form $Y_i, \hat{\sigma}_i$ we could consider taking weighted averages, within groups. The weights would be determined by the estimated standard errors. \end{document} genefilter/inst/0000755000175100017510000000000012607321410014667 5ustar00biocbuildbiocbuildgenefilter/inst/doc/0000755000175100017510000000000012607321410015434 5ustar00biocbuildbiocbuildgenefilter/inst/doc/howtogenefilter.R0000644000175100017510000000604712607321410020773 0ustar00biocbuildbiocbuild### R code from vignette source 'howtogenefilter.Rnw' ################################################### ### code chunk number 1: howtogenefilter.Rnw:41-47 ################################################### library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) ################################################### ### code chunk number 2: howtogenefilter.Rnw:70-74 ################################################### f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) ################################################### ### code chunk number 3: howtogenefilter.Rnw:85-88 ################################################### f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) ################################################### ### code chunk number 4: howtogenefilter.Rnw:100-103 ################################################### ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) ################################################### ### code chunk number 5: aggregate ################################################### knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } ################################################### ### code chunk number 6: aggregate ################################################### gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } ################################################### ### code chunk number 7: aggregate ################################################### library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) ################################################### ### code chunk number 8: aggregate ################################################### sort(sapply(aggenv(Agg), c), decreasing=TRUE) ################################################### ### code chunk number 9: howtogenefilter.Rnw:207-208 ################################################### toLatex(sessionInfo()) genefilter/inst/doc/howtogenefilter.Rnw0000644000175100017510000001473112607321410021337 0ustar00biocbuildbiocbuild% % NOTE -- ONLY EDIT howtogenefilter.Rnw!!! % howtogenefilter.tex file will get overwritten. % %\VignetteIndexEntry{Using the genefilter function to filter genes from a microarray dataset} %\VignetteDepends{Biobase, genefilter, class} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{Using the genefilter function to filter genes from a microarray dataset} \maketitle \section*{Introduction} The {\em genefilter} package can be used to filter (select) genes from a microarray dataset according to a variety of different filtering mechanisms. Here, we will consider the example dataset in the \verb+sample.ExpressionSet+ example from the {\em Biobase} package. This experiment has 26 samples, and there are 500 genes and 3 covariates. The covariates are named \verb+sex+, \verb+type+ and \verb+score+. The first two have two levels and the last one is continuous. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) @ %$ One dichotomy that can be of interest for subsequent analyses is whether the filter is \emph{specific} or \emph{non-specific}. Here, specific means that we are filtering with reference to sample metadata, for example, \texttt{type}. For example, if we want to select genes that are differentially expressed in the two groups defined by \texttt{type}, that is a specific filter. If on the other hand we want to select genes that are expressed in more than 5 samples, that is an example of a non--specific filter. First, let us see how to perform a non--specific filter. Suppose we want to select genes that have an expression measure above 200 in at least 5 samples. To do that we use the function \verb+kOverA+. There are three steps that must be performed. \begin{enumerate} \item Create function(s) implementing the filtering criteria. \item Assemble it (them) into a (combined) filtering function. \item Apply the filtering function to the expression matrix. \end{enumerate} <<>>= f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) @ Here \verb+f1+ is a function that implies our ``expression measure above 200 in at least 5 samples'' criterion, the function \verb+ffun+ is the filtering function (which in this case consists of only one criterion), and we apply it using \verb+genefilter+. There were \Sexpr{sum(wh1)} genes that satisfied the criterion and passed the filter. As an example for a specific filter, let us select genes that are differentially expressed in the groups defined by \verb+type+. <<>>= f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) @ %$ Here, \texttt{ttest} is a function from the \texttt{genefilter} package which provides a suitable wrapper around \texttt{t.test} from package \textit{stats}. Now we see that there are \Sexpr{sum(wh2)} genes that satisfy the selection criterion. Suppose that we want to combine the two filters. We want those genes for which at least 5 have an expression measure over 200 \emph{and} which also are differentially expressed between the groups defined by \verb+type+. <<>>= ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) @ Now we see that there are only \Sexpr{sum(wh3)} genes that satisfy both conditions. %%FIXME: need to replace this with something else %Our last example is to select genes that are %differentially expressed in at least one of the three groups defined %by \verb+cov3+. %To do that we use an Anova filter. This filter uses an analysis of %variance appraoch (via the \verb+lm+) function to test the hypothesis %that at least one of the three group means is different from the other %%two. The test is applied, then the $p$--value computed. We select %those genes that have a low $p$--value. % %<<>>= %Afilter <- Anova(eset$cov3) %aff <- filterfun(Afilter) %wh4 <- genefilter(exprs(eset), aff) %sum(wh4) % %@ %%$ %We see that there are 14 genes that pass this filter and that are %candidates for further exploration. \section*{Selecting genes that appear useful for prediction} The function \texttt{knnCV} defined below performs $k$--nearest neighbour classification using leave--one--out cross--validation. At the same time it aggregates the genes that were selected. The function returns the predicted classifications as its returned value. However, there is an additional side effect. The number of times that each gene was used (provided it was at least one) are recorded and stored in the environment of the aggregator \verb+Agg+. These can subsequently be retrieved and used for other purposes. <>= knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } @ %$ <>= gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } @ Next we show how to use this function on the dataset \verb+geneData+. <>= library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) @ <>= sort(sapply(aggenv(Agg), c), decreasing=TRUE) @ %$ The environment \verb+Agg+ contains, for each gene, the number of times it was selected in the cross-validation. \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/inst/doc/howtogenefilter.pdf0000644000175100017510000034065212607321410021346 0ustar00biocbuildbiocbuild%PDF-1.5 % 5 0 obj << /Length 2038 /Filter /FlateDecode >> stream xɮ60d bDjHM"4Y3b[%?HQܼ zef8gճdset,VE4ы,)Tf)[`weGQø1.Hsd̻[_u(4Z wH@߁v5mT&W?/t2Ѫ"fpL4=B|˅45({ dF,c92^&cLhX_8N,(P'*N2!*5"L*'!l.tHRɐPD"b+>.U@݉m@mD- Vf,,4*:X4ulp=˅Xlӈ V5S"+x&%Vo]`xjՁ [51/$Y$`,̴2- a:&aI%ѧ],9XGbD ߓwCaeO,8Ija'|ZݢnÈQ!Dq,8-<L#ϋTC)ur; sx[9Dz'?bO}6ǍLxID~rɕ;TE3+kzQɔNݾ<`,޲ARF>; hH$Xn@+΃AExǡ[W81{XFt+1n giCƦ0NR! 0eG2Dc,UE:r,݉-tL[32eb<X@47f؃[d3#GvFu)qP-WX2!' VbjF!T]7i2S0w8ėqXsޒ@ʱ(L2K?.!bEs|)Rx^X Ih;ťOnmΞtA륿.<~x-{!96W^ +)}f~{f4g-EIpꃽnV~iZz'F4cФgLڮ+3c(HA:∘5nE\Uǎgd𞫃DCT3%v(HŔy8̓5jR%!5 tz EU8ڊ#[Զw/6=eI~4Ccdag|&96_,<8&A}{u' SwرW!iԈQQJm&į]z%c/Rji`#lac&.SF-c;~B~A:]{pEylj%Y2h@> 5xz's (i]yUv.fܭxz&A+det> >g/H"Rm/&:K?Y >Z=}>a#:;oyꕊǏл.Ҏ4w3jm\a5<**'&ȥؒKwMmф# z4p Xl4{9G4P@IpXF}ڭW35r" _"GQFH-uzys,}%?Uq۬Z|&wcb![!ѽ!VvNԒ_Pm,zd,oif"y Kϭ;UFDxEܐ~ygo%|,BljWJwCj>a>]I5睳RViH׾~|eq[d.2XCe;iJ *L庴} l={z7 endstream endobj 22 0 obj << /Length 2302 /Filter /FlateDecode >> stream xZo6EPY[E;wdBXJ-9bz8>\?0)rf83q_}C/JUf:K/2Ry_\.nf^Smfw,ׯuίoЎ^C{\# \hiLFf2X]"X'LYk阍6*<6ᘤQ:)-)k :SRm;Ѫ>Duˣ͉l1|.6'?DC9<\Ž(b BAdd ymE>cZEdCiWdy+g}wIT,;ti20]` f#hsđywQp'h+lu#KwDzY`[ѠLkXs@}QڄΛC0&U8(`&) {k[ezz[&3@e,P,j#g^2'fvQc7j,NKrhp^𺭋1 K_fJa/d<XHɆfʏM'h1Z_>>Wesh)ZE-˭<&\9َOvD,,ZS¸EZF~S^:̜N{H5NxߊJ%]!0# 7N G.w$$gz"D(wW&—yVK/SBR|'E<]79ԒNZ $=O7SM%\M\׌nD@Ja:M3 B 5dyc(QQV~nTPQb~®kcAR AmiCЌqyu8AG*=S W'^MIfNNKqLKpmk'm /^B<[=a(4ciѧuΣ$Yz~8C)Hqw)ftI< 8=a `$:fb0L "&V-Ô]fĸuȼ)J \<<8hgZ2cSw Zq8k\ n.8\YeϱΔ]@6c2e]w϶N C5ΏE@iFڂǐ`#{$4G$tU@2SһD;}4SBnꏨ\%)<ρ)Sa2̋J0O(]Ľ$Sw/G^g&|$lqi{W-lybEO=JN ūQ1P7Ij5ks _*+/b9_[̲ۢسќ(ž bYR$j6kl'q; Ti]*'3QϙL#8 6 P)ģXW{\婃Dʴ,' p]VD[4ʂ򛸴G^fߖLţWp pA5!gw"kZNbҨ.b[%DB>DohZ| L0yJpD7*XП[V}/AQZJ;sw^I%ވ:Q13E6uڵ<=LrLaE5peۡVnHhۧo/%; h4$>sp`yҠ/P9nͳn*igN ?+IψN3~B?h)+ٻ mj|p> stream xڭXYo6~ϯ0>(hĈDI#=[Yh -A۰'A^Cq(ɲ99㣳r &F( <"iNG2$B?'W_F(I/'46zcxls`u춲]^ zcZv Fi%J"9 vzc(),)Y{3JkCwe\>b,vW y8+EJ΁] ~̵NjFmZ&cS,cM}bZ.h\&xK1m_ïZw -;ԏ~N;`"-IbDfۡ†;{ބmdooB/z$N.$cY|#89˖3 ؂Ve@nh}w%kiEϻG# a?,R h m&}Jͬ‹oy5I~Z>j92tZӑj0f̴=+`҅|zSm:D\k-@PB xF(j~JOv@L]hB$ mK5Wg*L-d*aHn ۠b.$! -ΰA-=-p7Ϭfk::B9L5yD"o Vÿ+*%)nqxd]ٓ3lZ#J?4Jh|F%WPNJKDmMՏ5*`K{CVM,{a;s2op_򄾅3>t3*ZX},؋0hqIҚhOfێ5M|ֽ;܂geX ~[U'$StO>YŲ}$StҎn *bC^`Dĉ yWh" ~@х)'Q&|.Uo~Q>x{8=u6V}Rjwiʹ$\N g'ĪRCT}.;@[zE'g0Gk{mOpAKÙz1;)DrߣmCW6kCE\I~cIyQެ|`NaIl!ˣAF 8YfNI,HiQ eAYLԦQo(>VIOsTA lV3ؿAh~52)*3ʺN>5&kJP.$Aayo'AL[ǂ铑O83bs~. K $UT[\[Z.eYN9=XC|XNXԜy ϲU1WQZo+5yYͧc QIGmX^z+3:&bFYH)/ eIxj%=A&pwU< ᖙE2!0lIe6 mGGk endstream endobj 34 0 obj << /Length 1019 /Filter /FlateDecode >> stream xVn8}WQ"MR>]"IS-hbQ'FJ/_p(ѷmtcgPѓ-;9ˍ0NXL䜥yO;+ONӾ%\NWXѤXv-vFBI>u۷y(`nS ׳ku/ZIcD4ټ=ikEGov_2ڍ/Ծ0ڷQ"`[z `g!-mpw-=}; %? })2`(Re\O,c( G^2 endstream endobj 36 0 obj << /Length 149 /Filter /FlateDecode >> stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 48 0 obj << /Length1 1658 /Length2 8946 /Length3 0 /Length 9999 /Filter /FlateDecode >> stream xڍT\. Ht3t3tt 1Cw(!HHwttE_5k̳<<0ip0;/7@N]֐ÇĤ qwcd 0rp0&rTA*N^~G@\ Թ*0( Iٻ?/՚ +**; CAP:ЁYC>UUE 9qvRl/=@{m(4@࿩qc2t!n9t`^ 8`pXn)P0xW'xy-wBd5@'0;'rr=.N_~.0 p?0yy6kwO3/pp7A~_=(uO+iqM_,%y] Ut< D"0x ֿ׆ 4`zX#SA/%_U)z89!N>G kp{ԁ`k̅Yx2^\SLl\~ V+\dʷ3. '~;5hQMIZ7͘$}cvd{1tlߺ8>jDlWaq#Q-<9U)uS2RiH4SU =;5:;7A=J"fϗ~_.g|t:ɍɨ O0~KQ!+zޖ|^*PE׾ Q246D"Doc"2ZkIvNvANp-E>V-ol[xt&_TZ+'SViԶoQRzE'Yj^=Iu7y! _)AѳLNtvt@xQ-w *)_N : WwkdXI/Kl]>F2窻>oSbKwS"^?g`z7S֊@zL1QzBewRxI-6Z3Q<ݦRr^Sshu10>of)AR~G q 7\4D.OZp8+yFh?qV zCTC}`-GޝWM cu5 nVI}-֮Ǹ(2GNnꑚ%Xmq>:>EkV_t[zPi$|ϲIz̈́Nȏ.6ujNǚ7ТttLc~*cL_x4wSK ifwvmwS I'ٛ P cB邪ӫ8|o+ uʒU Z! +τܢn7fhԾA16Πv&GU% *:Gj DB^>!1%U΀#"'<D_\ٍ(C|$eq6MmU M|j-ybا+>VSQ<䞅F$qzcIa㣀K f;2}4Oε\m_1.֗7LH6XTMqk 8/8}SKXFwB`xd{/dP"/!~^,(N2PUPfmhFG?tAnIH8Ěx6VZ B-X,k/m#_s-1يZHi @W|W|V.2J\.B- FCP!E$w|L-!4¼tQO21J (iR6E8tth&/*IqX܈Ⱥ1TgDzQPeK }> hۤ6y+%(͂t؆rhTJM sȚRhj*2n)Ōj\ϒԚk獳N/O˞4ۤ\81[^jrڒ^:(U֭#Љ"!rmL$젠bly;3oÌ5>rcA=de Z~l #-6R0 E d H8+{x3zv՗jCVﳍ#'Cv٘HUm-WjL%TrՀ[A/h@lmXïa%uf(e+ipw;vHԯRHf2,qfGA5#4.qssu AQ$GcďKb tɷYs RH9,9\ +Km^t*TR(j:0CZuWO*+4V'㮏ژd_}f\;ފ8}W}H4sw/P7*_7"̢RZLݟ1qTnͫv픣50]Yɻk7XQeZoI>K wKo}PQ=n! | V;ǜz$6tbNq~~бV=O)AT?~1Zi}>URGˎ Eon"h]4Eвѹ tM]I R:ԗ0W `qIGj,CܔCXš5ؚ^ cyE(͆nn?*k~fΨnKƑA'8 Sc[8PDw\2zak0yУ4*^xynZlji1xlcN8ȀY, VU7m:&KD|0m|Yٲd""Q|:I[{H|&O1SfqbG wKK~9JٳYO>:]D-)5M?m>QyܒԶS0(aٸ%wj&uCH>_a9z{eV AP]GCԘ̾RC*+7&#bE zrvY8oݤg}*L*D~8{V@|v&zZ݊X~ފ"y:dF*f~܍`4/UE[FVGoԜ "b0H `%9O=`s〽Kl9QҢm/h1fx1{A ̻#aKO+#.>MzEOj`=L&oi9i%W>5-1QѲ3A f>" Mo/B"Bg f{]lB3R͜7cB]'W!@1TrLl? O)"HbC9E~Pa~^ss{fh1HA >jް8o~?ГSYdLoB vGK0SY;]#쉄v)sT=! g?A`Dajɻ](_ 3u_:bTfʘ"hO3Ŋj訨-P9gE]GE6;8jHJ%>UE$U*Pt`ųs= 5PpRd(Hc1K^YOT%;O`jᐧg$;twǵ'yZڬ75DtU<9ڪ<=d;20~*ϵq 3sA`UD]\^c[)ҕ~AZ\Ҭ,]I/t m93? ́7қ@ &k횐5h 2{Qz(s% < uش{(w̅<ŵXbX 6:h]Bz^殃v$%hs&L#yob>Y'g3ƨ16%Xm|S5. J劖H̲@FX.>Аb+MA髌~s:YuUϾ'V_I?~)MCv:!HP/|Ud J7Fhm=56l2̀^B-i\BB݈-Aŷl''bB[T(<䕢Dutڍu &-TsQn fbyTEUɘف3G@osmkj:yS; ~j-e1fƸpӌ4O؞maki)s'(>^ p?趰9Dqen|ǷF .IB\ۚB'†&9hm XUdNUXrqt598X2bg9m8 EX$I:h$[zjDR!3-eIaxGub܏vG.Й˯#ju1^#QjV+JrF[Af{G% c[I&,@!uá581}hWyӝWdIV[݊mM x2.7& zӛusIk%S5B!L4+._97.$4jnl *>Y *|d႓' CqFeRT(QhŹUg`󽬼[vHn» ]((|iu'!#4U90:;m R4'd9̪.޺&sR@׷-;ٮϨN^͝d]Ǹ "#ⱩY987}%iCE n}6$EtT`tJ>5חq.d7l2ӈ ݯK1u6sVa-EȹTQςERJ]$_zh/?~=&jo_+ojD %A={l#0M]t uw`,wOy"Я-R'G<_#hg܅@;cc' 3?u)Iaa|SzĒB"XEᒟ:w@ xPMxQ#7W(LhySzrF86!ޅ>tf6_72㼔+8r 'dRv\ݹQ OFISM-d#PoemBH Y &h1e/>DN-e^q\sEe Uh@7U%zzQ_2bP4uPH~#07=;* |A0#]l1hNj^'qsĊaf4Ct^ڭ(YӴ*ߠw[4)`k|Bi0TD_7 W{̾Dͭ?G6]kd Co^e7Cڌ%ZiXGnnK K$%(3}u3t`-xY#d|ph*8mO'Ţ;lbX;A~[ ilb_ D?~}u]%.Cx5pE:ɷ%ޛ}E|% $atKwL:sqJxP9Fh[.Qlp$tm[/93SFl>շKܳ_dK}$.wtz!1Y$&@W+Pr@c\nݫxx=&`ق#gځ lw5#OOqʴQߔ9I)GxFUUMEKڛp`R*5…vy^:2I\:Uܚ`u_ޏsLWחqQ1( #:Z#b\;.7|XH'Qլp&JdJ4z,3%F ~۷2gH-c֟yRwLwbO.fN/2.ɂrЕXQ\` :o'T0R 6Ob7M͙!kUcasErZ`ئ'L  6f@$լ'V\2Qɩ(!zK JB'!֭>zTvטjՄt|T8ZFu =;eP@ QLy9/4mi 88{*RM^M7"/p@c{S+1 O%.Uk߼ =u\> 9 K ?b[-V[Bhv٩gx)}X1 &]XÌٻ.9|fl8dqFۃ jӨ-lLKN7f`Zlԩ ިo˗~L {UTEbIЫ++7͕tEDǑ2&ŘX'Yn݄>F*T9]D6l~v iˋW3mxW*YVk!ʱdGK4a] aK4q*i )q&6"$ uAO}QƉݜUұ( FZhFwx[a醙}nL=jZ@uT3w?GYݳG9}VfDΆK}Gy|=T6U+Y] r꒖p( ny^)k2on"U L9Zۇ U)EKk k:b힚\>桥ͯx񦓒r#*z6۪Pb\.%Z wu#V}1E*XV,4QԧaXyA$RIb˅fmXD\ A~/AaXO79(roFt>a ]b=_q荄)+/ f 5,6 Rr(x')@QqyȃM ņ_KUz)ZYosZ2H4z7=V~ҋ!oʆts,M߄S95K0NἌyEXPvIze>L1Jr½%s0u܏ _Re{ pp{78^=O\,+de':S D{ yEэenN?8%47XW\pQԾg$ Un"/Ol)dIGdF*+L|#(k䮁e%fcK@,SĹ2ͣ `$DZ0e! 2r7 Z>DbjmpGHQ*K#%}l5ILVIeAP< a[W.YΡ'9Gao]^oGȯKz8%j E!OVtaI TO/\ ~E_GL9=#S @$ɦ;VԪ{>f[CblpڦH6NiG4Ȱ~Դ\F%; Xs2(SmnRJ.F4 WHNmTJoY{WNt&6 .ſyITM3oI!pzG5CcV%sQAȹ+"S}dd_"JAM.7oX>!eD~  TK_8^2hM0`qY]?ZA8Iqk e>~>=F 7M?8B\ z38doWά k2#3žvL;ox K g?w\m#DfS:x&q evMagOkUQaHŸ_\=hg硑7[$#Lc'QO +NkC7 _ׯwL`_ endstream endobj 50 0 obj << /Length1 1416 /Length2 6103 /Length3 0 /Length 7065 /Filter /FlateDecode >> stream xڍwT6 * {#BBHAzޛtA* J) J/_xZ߷V33̻ps(c`u KU ` ," Mo;#1h@PѦ %z4P> Bĥ!`0P IUH{ PF*D { y))ۿÁJE'+"`H)@NVZHCyo='1#쁿(?@S'$/ Ɓ!D GĐh{H4`n\"W?ѿ!ѿp8 E{!ю@$ 4P$xnh_@( !CݡHF>:dᇇX^D(+ *WW:*KOs];$ X!34>BKh "b@ wU 29`1X |PwO?wh0# wvמh&keCT=7w4 TPSY  $Pg[ ?Zh W_,7?^?KcFAֿ5X '~AS;'_YWPDyA}@= qD @5z{}j!QB;.eGՑ{C$ Fb_b_>]#<k($!@"g?hX(G^}X E||ek[X=d7 ޣ$t'dgM޼3j3vXX:ZVo{ANsqw%mUBϔŻÅʞY[I9OIܡL0,TB垏iv[2τ[e:>{v7&Du<:Zu~ϷsFSW*m]l4Fȑd=28Y%FBW28{RgG;Loz0$"uu >[MHxo~75g?[R E]'" |}>mL-Rt!Ko i&A2&a6=2Fa3͛-vL^ߚ.'ܐr#9u/'VJ71u^6 _'lpu>#얐9'*%wcU/>NLyWD_"["-)+Pb/"Edj{wv/ (ׁ.;?_4 148* t@n6- 3+"͜'k198kTlqz7"!AOCmH&\swJ{|/5u>UZ|`^ r+]OiTժ: 82'~:A [*&J;"[. = y;k5-cz{ӿ` XTʼ c{2W ]YDG)DwfkΜ2GŒVP V]2VV(tH!Vyԭ@Q!q C18oi-;!F (-fޑ.?OǸ%TT^|=RzX#U`ݧwr\jj8twƵ5<7K\ꅡL5#^]SY!_`M2ws~O$fPA!)Raskoս> 鐒>8{Syj<jj qM’]+ZV{a<58WlzԘH#E_Uh1_yrg=5V@AoʁETIdǓ D  vk,sֵ;l8zv#0]?!!1rFLb?oJ'ofˤk_U_bDo=r t=o×..|Ӣ3[uMr%kkw+Q=r0nQWCKJe#3 ~s8-gⵟB F=ן&WoIq)9~s5jZqƶP򇎻-TcVd11X#)L%*H*yu޾M_b?3pBivu/JFDwU]2@ JcvvmBԤWI> 8;5+;gݠ<8/ۿdͅ%s.Y$#KgOr_u|ǯXd;_4U.l^O/S ] dW=}% Cc A%LT(7ް5}tq=MP׌q%᝽:S(B^F5^Bfܞ.'*R_l+~VҀ\׽gNx]*3TEg4w6+MZ] f#0v -8Xo**ޫ ]~2lA vS}[d@GCE˸7w/|Ar5j;/9{bjс,\f.&G/:!/ȵ$D6j9(\ 0U%g/(JEqau64핷7 Pyn <.XpR:n"Esm %噫q|->p +[7jsAe 1Zd כWa~q9џN:MV!Ԝ`WRQQ3Nvs{뒅\{f" nuc *7G5:ґ(M (6. lzYe4+B^(j$E;ʂ5$5xlhrԉ˱В,p&s(!ћEtء=z?G'&bOrZɑ'C8SUFoJ\|xl=ZiÕdblm[qzBԝ+*O$4c_J*Iq^ѻ̕({焣 @ɬ \,8Q(BbK*~q,?e3;n5vs8UXp'㳻k,6#գ196.9ϗZNjrA%E6 68iBߥ 2Y*n^* ;~mEU xlf2GG|#`}&=4طXnЪ𚫏N}_ 8-jzj[،@f(;wIIzf:Ńo5Α)*BAS!I5[g% \Ud IA}/&m2:;C393eLZ50Շh!qHgKenA|vy8}%D3ɞnLZʥ61F$D{ d wGsӠ$G$cդ_p(ziєw"P_hv)H"ϲoLG QPv`Q{R'o2I4lj=0a LNK?JьwJ,y^r?S-_e7<}l/,L7#e1ɹSܐP5M;DOGn6&K$*BSq ? [y|U";&K!zzo{4&9_B4mH"jܬ{5o )녌$?x*P9Y{H#W4־VAq?O'Ï=%tu<.-׵#չyIX[Wg)fxnjaƀHK ]iT gOzx10^ Bp 1h?kӠnK޻2 6]Z:'`/:)',Ժ%(vaC^ORzVA?/&1'+ ~Ȩ7[ gSxcWzi3BabMvJ&/+lӵNo jrShT/i>;RУռ)~pX%WXW槰s)Xd9)dž39XsZA*;HJNUR(:n^ PL=ēG l6-X CV>6b9nlQ(xA[FEy裕S ){P=,W;1)E^ky+P_TѸ OV<5%D<)*Z$Is4IrdӻrFPWIńT0GMW}=ءx9v5"_~@IR@k6 ߻44zNdJ~DG?ͱ;7 YX2t>\uA*' ({Gjuv!qW=|X˾RopKj董ti ܴI^ 'i}X0R΋];-&2ИWzna _h}޽*Fߓ3+*}4H'9vCѡܚB6ϾZ)VPXQS "#?R endstream endobj 52 0 obj << /Length1 2398 /Length2 20569 /Length3 0 /Length 21960 /Filter /FlateDecode >> stream xڌP\.www 4;Cp 4www H߫VUO\jN@'Gwfv6{v6' 5&o16 (IW;X&eSvr(x9<ll66: /*NB`fdoSR53п_5:<t>2e qY?]_,o[MGmx=B |8_GYh pZyw3woAn2 o_;)A@5'7_ <8 ;* `/eAV?*qX p Ԇ.mm\\& .jq,b6I*ت;ke@"ZȭqES|2[W+{__x6ynCFqoOZbfBCX|d5~qÚ95'XGӬVjJBXEskF(ۖtae)b >A_rJģ3ѹ2 RwRF6Z|%N곧|\_o{.*IkY7NR] te)~uh6X 8DLJ ̒Dq6}"̚*"d=&n nvAj9,Gߕ`aLjGa RϯET{ @0%;٤dTOƋUG<#S6f ii' tVh B8Y Dy.a$`\|'$˵Awκ;GuE$WW*\HoC,5u"4pRٰ˛SoGx[f|(8d5]q08}39ˍ2㍈%Sp45S{f7'P!Lv󹣌MCR\m to ~Fu7jIdRRG*=jI> K1e|Sv*b g~Υ؇j '};aAT)99;~/ǹ5ݭ&E=u]yPI-9rLm& ClLAYn|@5ǡsk=bThBKȸN/ :SXzĨTC"5&Uܑ ҤH48RZAM7}©kIm?֙ 0~$_H2Z҅7a]r_D &嗷ܩ?wt>L8έ|콢u du4qLVP*EFKCz?:TݤB(Ӵzilm3TaլX9 sBis+' ,Ws4잁kGMhv#nNb~I> 䒒d1~x,:AN/H̝#>YR1ONe( 9lABo n;zdKh51SFmU·fC^/QϹ87zu!͊W?[{-#! h^EAeV?;I,W x=5Gˤo>KoDZݫysEyn\%]~E){~[ΐb=}"̂[垿YW]ɍ<5ݯrou&4wYTF<4Q>5&hc۞;$%x7/|V.<8_žNJoFo" *{b-_. 0M=?![Pm,=Ds/@ gY#[rĩtMgq-Sy]\Y 1=&Cd$b;)0w A0ΔnLQ%[YmR HuH Yo9M%׬q(ƭ{0 b?+¤dG'pV]S4i[/s %9.y+I 3\\fJBDb|%5{IPȜ +#itWMTma}VgnE^H`?}҆Y\z~l-GV_epZitӟsszeyG%ҵ-OcFDp7m6hcJ6z>fe5=)AR~8b#i<=ܘ1i:BI"9aRr z#L-LeԬ ҤR d]魦d|ME w- 4h҅`;a|X!92Ć7f>>WعEޗʯ Y87ӳOF RȖcTZ)Mϑh<555#-Rێu^Ĩʽ! Ǔ<|5*4$ ^Fn@uGS4-jN|u~jD*] P5DFe WhYV j7,7"[Nߐ:As uwkT"·:XEs0~ɖhB=.,goZbd؋]{OALqe{g2|BɆ~&o&M_Yc_v.>ֳW;F]bnѹD\;}czl/>ѣQ&:SKgj ꑡjKTè'L.k0{:˸{E '@%S"7rPme~RX9_= ~lUTyzmkii!]S h]+zG$43G (Q?Z0W0oU x@?"4OiQ+D تbޡG"aRO iy)YZ.i55 ~?ܨ{-@k4NMt+g"?$ucdFbgOkBZݺ0+w[g*ka q }4;uV2PbqcSv#U]{|KJ"i\3-%LYBmˆD(,-_A: 1#Ӂk_jRYSqgi,xi W[(x&-K(W&hHaVVS EMjTȅ'lÉ*ծ㇏ڶG5w=d4m>1_Ʈs7Ӫr2)jD-똏$f!#e9/!r2)}1K$,.#:ck%2^60|'fܐ ՛SE3^)3]߀ԫW,3"ןq15Ն-Hiߎ +D=^ġZH3p|))kj6s4 my9Qi0 ĘK.<[bOԥ!%1S{u0 g cGlG;1C(VH3"vwxdHV-Gw/h?I*W*ZU b>xK&ܩ M8)壜tT 7tizP1Oy_ ¸9ޡ@&T'QR7a#+,Y*58Nx\{q;NyU4Qw2Ẅ́3t\p { ׸N2] ! T kɍ6VQjc{ڈ+Wr)R娠 P&9ڠ՜;fŢPnI hkN*?[yiq*=|<7%k̸%}-Λoǣ6;]ES=s9+"!b6c^ī7Q:.e0 ̤a4+g$vf<m;xW` bB> $pKeLxgE>r!J{u?Pʻ"^tCp\qOo (a:G2F[*yjW| ꍽSHdiq]^ZHA dg8U֌+&1TE[k}SBB*% Ro)B V]lTzmbk_+":>.?eJ/" BR=3%ݎ$mO=|7#x*U?y'`ӳSK4lFNOAفw\SՔSlD'M~ka^ MQ?ꥏDS l@(U5vƫSV7zpJzR?2.%EDvC4 !|\s۱&Kf5@, $q7!Rdw`5g#ɔ6YK~9؀|\^"+ݒDԳ(jφRU bP>l2PI~V3= \{.~6ϨfX+gԄ3QH{l`!(cNRTg7HVt+_i¤8oWk`%,$|t}qC+krO3C8*dQ{yaȥ1?\F}+ʫo{IhƃI"*TJ\;+^oi@ :AyKǐ hL>>>Y|z-ϵ3<ٙyX~q̔` #HvRMSv3pBbY]Le (gʠrYNsLyk]׃13crصAQ Óu'"1 WmGA<7]y$xgk;*v UN 4'ΌStXtWTv_/³X3J94?kHVs]tI_BVˆ,2}*B27r1#N.˨*|hLMNYҜ@+, rNN{NCv7]{VuY=jY/`f.~  {ե6D/]eG˴M[=Pj.sg_MBmv~^5^U^ >DڍP~fD΍6r ܉[Bu~pa=A:(J\M*Eg{ONqEkm}nx<Á.(Vc }VʉerrGioAJZ._̜|lȺ R̬x]Ǟ1b1lIgP&^i[s;R&`$]oc΢ͦ^)|WήS%0r+j-Eekuz{yTblo{MU{-a r[X/%M3fu^;[$ V](zW2n ݿv_J 9ъ7]8 E;{5+5s 8TlJy7_w y$jnM*"ݗ1rgwma-iwzL=\L:J1n$)Oz+1e%aCt{o sx]\뙦DM1#5ۈ^!2;޾,€|ҠkU_%WgMeᆙ-m:£$>E c8wp^Puk_gi*<=h M:J.hYGQBձ?MrmaVF8C~C{hE%.dþ&'ppzLpVl^_h,g֘&d/MOQ\ ȞD88SQ\Bal8Ar}VuQݘ*>\P.qESYI6"s(YИ +%Aw` mK׬/6+($7Dhm `;ӑ*#VH_bTriC `T֍l˓DI;.SvOwQ8Jv4gCga9(_  DIBxE}byC2=I*Z 8{f)!9v N_Sl/?c>bA4`Z tIɥ?1pw y̎q,ţ?8ƼL#*XڽWpT^\}SGjaV$'oÚp+[ l̝{\!r3j}e{'Bԑ{=Kr>"KUڵ`W'vPG9B'tvѽY5^6Ehz5=,%UDCbVXjpJeZBC#j>{0cl1cG'+twJ,꣮*/A~ +mlgvK{qhܖí( *WV_w(&p~PY Z⽡]jDTar4#z sXQfI:7h8ʪ}+FQTmmy\DW`">a`Z#MMuIeW'c\HoX܄ jgW)с+^a (z2O&0DSfU_?UvE 2Hy%bmD.ߪGߘ`KŵزE3XCt<?!\)#*/ Uq^au@K!#  ?2:xCBZ(v͋LË ]<2]aUZ\Zdr# vb}+h"'8GAbF qj%DqO~s1G־֪`+%_UߗbIx!""@%ˇA1#辍g;Q1&0U{s[e}܅6#L(R IؙӘUThȿ({EB\n?rCnb"w\C$k-pxU{_0@. --,aɐ`j AS4d)ߨ79Dp?8>p̋Tx,?޴YVPȄt1cXeلtc3ll%'3һšPv! Q+ldo2'< u]ʆt:1 VbwsB}>2'\:H3 ~A2Ĝv%,m93뗦jJ"l#㼠=L^m5!qCL_!y}Iۧ5+ ҽ3l6OyKP"ʉ"HznY0W61'_69 #~_|=~?,QS@C:# w07Fe j[}ɓsWxqVD/~";JQ52INh~ȓYVY=Q:j֔ei:9Z?@$v̅\;ptm>WD MA\ݱڼAF۝PCxađuSxY24N_͡6qvIdz:޵VN}?j,#"J ;MD.hˤ@Vce10pB7D7wκsI oNy?G;AUM92kVER$A\cM AcZ{Kvt%'7.fidĴw15* tl;~5ҟ5Ϣxd2M6a) Anvִ9eCa;B~cȮk*S8C ~ɡ .chR ڶ6NF}""~\?RDA@-83CuzuߗLU$ r~1oI2FK{pk6yQ"r|B9FCl K41[^zOkx ԩIۅqCZ&qK8WS6{Ef_l, E7*hNpNaGS̝r֌ףG2BEԖZ%>y2B9}z/ŦZ(jG1XT AZFgNd L <SxF7YC>uDloN#o8ɉƱB敒=NpyneRve1YAn;$m;8.wjķOwoAAad< . g΂J;<W ey? 3ϻU+Z'W3"e8Lnx"^$[n wTAlk^?] mҷ}wDV^z͂?c,:.Yo y|׈Ǝf+ߤ.ߩ=*Eh2kpP߇;f$H!pNנa7$Sq^F4vg?wv(Fi8hlKws }za˄Q([%>tlb\إVrӺR*OR21iT/Vkܠ(Z- (z؜uPOsT־W5'W3ǹBWS~ B-Pv2Y9(j$%+PNbW 9dK ng^5zr̅N2a<3cGbeqpo]TTxZYJ#]{D\~pH# )scV֯T%&vPft[__>E97hPpI&cF(a$֞@VXRU-U*@|.QYFA\Fv2IXy&Lq&/5^1崧nXpWlp'l~P wYdB)'0 c'}oX"; =f" ~ŞGfK (_J-QjE1_PБJ{e!Zoqw=%]Fʍ/SUdD9Nrwp7.Q~wd/ߩMY?Rʾƣ | )VK(j˹ʲs0+͊<76]FBa:aM, w̙^R3vpЀ;XrK&ECMfNiB~HU\-ĭgI@;JAq*["En~YաҮ(gXkt޿G]kbsN\8Ppձ%}s VB!st9 ]jpkslRI, A0+'ג{~vҫ+sxk,|ԏ8N!v.rdZ c[ÛO8 ˻8rdE"3|=ߕtӃ=PYGa M<')@}tf>cԄ"5`EdHZ䫕cD>1,m*c=NbBqf>D&&VS|A @WhfC t+torɊnvǃ?u~AV)_:y#Ն$ęh-6Juڣt.u懛+cr% 2aFrEـT9%׀b{UeF KB Ax3@`9xMȲgKR#q7CœfDm %ȋN`X` O {>@eBcd5y~F<뛾]Vq>0s%M]F݉?h?m2jkyw 7JgXB'Ք<\:m:0D^{P'y1ԲbF\24*96e+';Md ސ^,1=ڰ 4A Dl!7ErGYA,^Uf#/T i0_[es/_kDu Wp-g46:AV ~[ԘmFot A<}4ƏmtxgCR?0 X^*e(}zZLT,L۟_oIr(mA._a2I9CXv)0`\^:_ HY5A^r5QS˟ߣDІ7sI̖GVa#/~G&ܶ˧[qusp'Has/4# CfBr薌L: uu94inr3׌r#w^й;2ѵ^]uw(a_43`u`)M}/ zƗtLN('qeXŽyѕӢ+2QtZjBkfMxR,n~HL'+m(@33˼rVC|;;2Ľř3粬:#Rܜi8by9Uv=n:hٹןX}ͨ-(AT_ު^{;7 [(bd#+)S볽(`!1$%r*dxB.u״E1_QABrYT"0奟] yUMLKc8W:68,[kc~]= 8+ .DpM/I=@?}W\|Ui`(dA9N>l䭾U`ICK!vr=v}pyXzZmd9dCeQǵ={߁YuDZǙpKWUF'{7Mxs˚z7 A3y`"%N:7uU\gBb#az(TRĸ5s줔V٬xqݞx~-AreAh朘Øwu%h=붬s1OuGsK0DY3o0E(Y_XMr:YFjq*"i*;ȥ W}wp;wŃ[6UcdJFh/G~E<`Lt.Κ h;K"IJi+tlH 7_fwL. _ 7uP跺tGMAxcȘw(7J{v79tg}5 tzGE[ݱ+D ޶ToӘcu0bAmYG2Q;@rW}9;|A]5KG9F4qxk7ad_u9w|%Ѻ|eo `\+4t :qz[Nm``Q߀^XDT>ς˦A-.Cֵ_wOfP]˺7ym5a@턏5)W^ 83$Zpe!TK> Bqd$dD?^oUCMoKޗ,Fuȶ~>FsºvVa]Vslc3[F ? '֬PX6JOo1C1&ԔB*U=arƒG܅&\5Aqj?br-O/p%%+PBX<dT4^QU+u\%ϙJM>jzXP\| rϔ?c"l"0D*b*Oy<(gƗs Js&vLFf6DɅ5VNfK3\̰.ik~s!]$S''fE2:9n ,azx|Y6W2 ծz=)K#PgԚeH3.b\{d52 $@aE:9#ۨ["~Сfܹ ުύZTu K?SOS>PΒH^ )V7%4l`&Rjl?\7].eq>3 5~kh/ݍaH! h]P h` 5@>%–HySRaLg֑rDɁ y,|wXs@6@ _& h$ꟷc"cP\`oԊ!"u*˩6Q (9{fC40: ֑4)Bg72A %a@:˝EyVZmaGX8Nj@_ܬ@=>n>yȘݸJ+m`X|KK?%`YAP 8+sEҼz%] ֭!7QcTw(~17.~ɥUJ'A[2X7ս}I h@=G:m- 7}*i0? Xyk85OXEI*5߿#DR!}u&Z sGޞ|K#tJ34P UOont8J BCGH:MuUY9?cZc"uL'(EhL!+MCBtOg JWs6)<5w7OÔ!6^IKSiQ[ CԮQj&XY55e %"JO*b =Dle5Hw"uT־67q9.E`V`wk1sפ:~MzU'=PHyyl7Ί+i6g#S{/dE>]bJjf7HkR*F~֛_*r=VYXG; jaT[<ڝܳ(;F!_ ])MU%A{z#,p骼LZE^JPVAϦ-Q6pʲ,Xg3t,B܇^ec%]ɀ1vtrdlu,oÕFFf {TDMRSr8EH``Z]Y e[ƣX8G^6N3>B/-!WpxU%ư1ńp6$W}7F%Y#Y3cdO<4' +p)*\4Щc1w_ԩx&bO62wEhկ>5;R名iTypIrT1n}O:+`HxHwxhb/773˒9TɥγFfpem ho;m?yvBC_I ?7\Z| dE~UôZ3UR$AQtEӈ374 SnYW-7rZENgسl#+ͷ ;S6Etg%dB NQ6=Fɓo1wgz6\rŲ BD}@LPIKF x( ?Jt˴GRYZ97^*ƏVa5:z|tf k;p3JA;ԕ++G{9I9n^ycRiJY{Rr wVqcz \ߌ !U0t$ڞfr|9X59; OtLx<.8ENzXaCmK2y':V%>p(G㣍MpZ7$r;|G|4UVw=5yL_ݸN-߽#?׹#Ղt Y ^ wi`bAtoQ_-5e ҨIxv ]\:KFb)V4:+]J6V8*Gʟ!KO0L}z_@[dJMA&6#cCkNt+nTj”5j/| ɟH>=xL8͖J@ iL - $Z5-izr)## j!vu*`98-Ct~VHɾ_k ;H'ϗr~U'J}iTftyl.b.(}-& ' Gh0j?<%Ɗ~=݇8T81+JszR!5VKr )&SRvZlq޻WSe;j,&1O &P O=8c;#eB}Y:5ӶIԻ%ُ -DH7F.i(4Nv]o`C"3D?W(YvSC+jQ MOpW)1>VJ($/@ȿɜ᧼**vϨEk=ftkh/+S=k&B_#PvsM hiQh)g\j yTMsqcSvխƃӧcMmytEr_@G#1Njț91#lk` 1 VqO R(Խ3X{Nw/B2fN\>c9靸D7@mt㶀\c)-*We&~n:ENA'Ǚ6v ooJ4&Y4-ZEN-5? 嚣H> [)dqա0n S)X=(acd Z\%-Ho#\mi$ˣw  $p 9m_sԂoqALQ?MIGo{I['`xYojpxGRzvDlfZ XPNnԃ0^_ @ެۇZI<S> stream xڍT-LHwH=tw#݊0 0004HJI#%!)R""!E o[5k}wjh"쀰h (aA @UXX "P 'LaAz@p"! Suz8@KK PBR::8ăC:9 KKKn(AP0!n BPsFeAn?rC< H/`> 2A3!!4!pt'h !?u(y6aAEn7w w8Ba ~`t? wh(@h#(A(D_4SV;" pA0}YW8g;8.d>hY (8@ >`g_I_0ZA; :B? /;߈@X'(v4 q#F_>' m/OR3U0C9_@T ". He[_ {C wD>dx ?'h+C8!PF ?wߜ~?igɞ(T!гR qzoVBO2 1B=4>C( 4= "<0?9]~ qp0܉K@H$ȗ8_= (t -/@QIi/w$-'BGbb=aK !G?0Bt_i4#_@匄FŇެC{"m'We@| `X6ܥ!N[`ǦE</6'ty:G}r /#ŨGmf'{%_Lbcp<"1,<i\4ڪGxU9)g0l>]\m^})$>qVE/>-Wx~ Ny r4Mؚ3aߦ9rІc\6ؕd2d\%Cv{~dLQܘPz2o7ؙ:/ɄIU4tGxydMN;SNw)(u^18gk f*GssN]Gj!S\&Sv8ԜvfC![/<ٵ;Qש**ok rK/Z"VAArnD]FP?q;4E#fspoG^syV$d%;|Qo&nRQ'Mi%|nF\ksڒE M.,⃑ *iTĊCNe ߖ= 6v '4Y₻Tؗ:8>D2[K{ǝ6׾E.X+"?yYV?NpkQ$"f?ہ|[,68Uۨϓ.E>ngUYt5^ 6|CJ!`WG9eb(WjvEeJFهw}uɉN+q97ொqzU"N;TOL$S.[Sx۱KUoSI|rΫ8ёz{D<y|@vt?sY xfhd6"1%c/2>?q'XaP~\& y.vͱN|GF-ShCr&o|<}qhQ@SHJz=^md tFUUM g1d.Ay1Ig.u>T1ŧ3jL26- ͅSbsO>qWklglWMU hB#iG|Ο Zbb)`*Cj<9WNZJ!-Vt-NS3fԳcKaؔU1 Mh0}V8A8L]n"=W҃ǴzP'5b:ub )EP۶Aѷ\x:~ q$F>bFI3c?EgШݙRTT&5X[| po_}ӢWN rh=s$Q7W7 i %T#ˈXwmj:nfcԑ-@&iL { 5,ҬSz.WaIǶG\iw]s5%jᮩ'7V*!U.TOX 1eEe5lHoК 9P'۳] ETڠ!IZڥx\waE,7|@#y7:[Yu[\.g]Rl &1.$nܭ~ZV+Č. %q5Hyrܓʧ`Ze0cc2w8L9".HY><6B^[l\9<)O&Iw5PO$73u d3 (w^<O GP`U 5RUvuyk)Mɏ@ȋb^|yk+62ZfG)^\SQᩂbC,Sp P)[}VJ,? o: T'_m@+ \Vk{ךnRP͹4LXm]S+uICkER8]W{BvXҿN\x_$RbMgy6&wZZ   {tS]P\R2Bܱy x#1CDf˅6T O9>ys.!o壚j;{6_zIwWN5󰶗uJdЕَ=Zuͥ&Y/s1͆]Nuu09bPdhM4PFBc)+e~8sXXWAJNDp0QLJ>&[xp}"qd~vy}!rP|ÖH'WiU\7})_<Ŷ-E2/"]Ҧe&tI9%eO 3ւ]~9=9(* 嫐`l ͘؛щ5 mqb5}">Q(^XYNSzĔ-L֘&ORlѦusmZGޕp>jQv͂\zw \BQpys"hFQ㓂;_cA7ؚĜ `08 >"z)0?I9wl-\SBpP=B;X\9Q>D{|Yoiˡf{GW`ZL{ҺOhOJuUVTZeyN:zJ- QGK?PJ!}]^to}!ҒjQq+6uₕwE>@[[֥ڟ(ͬPgh;d o hcwE>{e(ȭÜԪx~5_x9N@pe<ϐg}Yw|M,{!?@lKDJ4 ?6BAf`4zCNǵwSk&/[bVk*d%.xVZ]7!N0uү)m3|A 05KOF݇2~e*-LgRm?6 fZŘl%`0&]/݆L |8gQ.ȝsmxॽ|5J]hD(S~s"g,'I :.5moH 5-`!XOo-'Up8{`pv3+cFņMs\KhSIsWWTd~On1MfhZh 4|p9NXs!L'}Ү]ӆØ&/zU bKK@S~ؑ&3[|lvWvw!]r\E69lwM;G;(/pDګ:ծLOz}t#aM畫2izӇ%7*hdh,v,§'/ |d=AwSCYcX(m+O>羷vI='A#Nn{߭u=;b"M~t0ZZ&Pqblw`'w;{]﨎!h'xzHzB`Gw&(*o). M,BsWnT ~Gyyxbcr3ő{IՉ ;< }\&bV;&\{B"ԠdDŽ.X2s@]-oG)sPwD9Ո|Fէ\fl)$7UVV#O\+.cR~NؼT} J "^hعx  dyY~ƌYV EkAF4ۏw8!bs7ځz}p>ҤӍGt3 bG"w;?f(W[ c~FdɂpؔW*v9*6hn4R7 TJ-Ff3Gw6TESFiQ <{vSQ"53..v5A]!'{xKiBāCO4f,3gքTY) d ut nwkelHGz}p!$e8<۳V.-󣜴2ۙ8M*[ 5+%_Zl}}FpHK]O,]_P%`x!)mx˨F-U = $.ا40O2dmT+ #=4YF[nکmyCs{bªZϘʜ,JG_3V\:k11Y^[lF/ȉ*Ij#~2zd+ܤMw;7pۇ8iL*M)gn1os&vT )X#JcfdTj"7O-:&*< \C k@ջIqFח66,#.Y=p'oyOUjk@s_xFo&{phj[ 3k5RvAԴiu_J2A_iWx R+^8Pz%Q(^ m: WX>s$I0 $Wmb~ObACi!ŏO37Ņt^d(MUu|\>o-^r+dG9bLkĤԅ#)3tRkNre0~ X%ʜ(]S `,H}<'ftMOa%hw'zPT6'F  O/G(D9Qf[ʰI!zy/3R{S+VfáJ?؞rx:9K4l&[9jlMFe1s}Q}8ðVYuRc+c0W&җIU\y䬛L)B3ĞP'Ͳ~"."FR}[FTGgXNVGE7}[8sPԼMòS-.CN{\x ?){2 .3th[UWc/n.iS%q^JZvÎ&lqW5}ň2S,s܈c4l#L|⨪q`8A$ɢ~c$Lʨ~Qν#GXՋ1]C#Ctv2 endstream endobj 56 0 obj << /Length1 1652 /Length2 9316 /Length3 0 /Length 10371 /Filter /FlateDecode >> stream xڍT6 ҝ1J )tw4 LЍtHt4Hwwt7{=5kͼ]}wjY@p'; @BI vc2hp SӃw8/998\.` ;@9b2HVN`2gp vAA`sS@}8ЀAN镵 n ud;X 3\Nu#dEl Ōi vKtr5u9 9h)T@2`]';+3aVK0PVdwrsb,~B.`كMbjs4w99;!(yB`N;0+o` YX"alԂAr<0Y|=fn ^[Kn| [~0=M]@'g矊F  daA ?40x=Nǯ k@%me-u1N\dqrxx|<p-U5ǿ`p_j a Q_oEM&$ V3ԦP0oIvvz %nT&+,9>l 2n U_#OC0*qrpamLJ^V鿏-~ ;&xq<9{@v@` wQ~^P7MEЯ@N--7hIiBi@ii/@?]?r~W͝KP{rcN_T6]Qm 3l$1y:4;_3~_v8ڎ.t&:G{S_^8F}tsf{8wGMStKMKTLTr ns~RjDzae:4Coj%EqQ[5XԾ0Uo/VMܤ4N[މZ+fpSL?Y?pچּ{3>5]nY}iVe;GԽ;(0-AZļƺ>3\/ OeM+1a-:sdACyeUB:?^a9tGBSRZE DayGB\t[D̤X>.^Lǯy:zKNO&{Zs3|$N٣\aUq=[HtkQPS~v+! i>oT|[]XnaRi%V=bdOR6Yp(Kk&aUʌ,hN$n^MwLe}يZ2UIkTRGNsiGf~Pwj" q"ur;:ET/k !g_Ng$×&#XXfTݠ-e4ۏW#}Łخ\~ot# F֒㪶// pLɵ(|$R<*A^7k>CTw|?)pOu^mA:vqcEG̩?OwRL}[J}5Iф(Qc7~9*k=xft}n|+YT$癲Vz˾ؠBR̅,̪9VB*)Eצz$5 w;3  |ÙHQu3cVv}ғ&fĐrav @v +% `:96'y8WW͜Wn5x)uJ!O[ 4%W^cQܸf+s8җ aĢCކdh br[5rgN3Ft6lP|4%&:[4 ZJRaRޏ.H$`+~JǑImݰ)tk'[{4밨WnE iN|~umȗ:ES=%C<+VL/ ~d$%h C2\JB: >^#g >Ý 0OlPo~aGnxUB9~.!7[hPȿp^&HsQ{LȖmTk+qG̻5,ء"-V_FG< ;̽ ͗x(% 87Hn& ucz!߫?_<"N1KvNBX^-PK"L#Q 1ۡi/d zqhռ`.kE@G}W!5X{iõ hƽx9˼VKBīXm',)s&)PV80gVi2tbB =90-&ESdR!_ަFiR i8sI[mQ*%&wa[3*}cDCMƎ&e!AD㧦>8n+jYKpZ>mΚu/jQeQ@{۪]%k9ypd鳓6l PRS"+o#-_VY~Մŧginaw7Z7qQ(#IɉSgp(ibӐ3MW%];?Y"b) XLKE_,ĺ?"B@WUBNDHayi=FؑC²Hv[^s+҈ 3N[WW:k /H+5xbJ3~]ȷjA>_ofԊ˻n%[+'jx7] ÉVq!2;ɉo֬F|Y!`RKY Npro+} *)60kss.. *"YuT%H]r!NdʈѢDX^k㬙n0*U}S:<5D|ɿ/v+j3sl>||JJi+?M7I*{5W|fB:&(gH#B4OLnrZ,Tp'< Gq~I#c0?!\n :Z _ =Ȝ7\Ya.,ltvm[A6̗zi=&/+BSk/M.Bv=yRX w {la*i_DH_.F2rӥ> _B-?ٽ6kHz7"؇"[AU!*Pە7Jl:^acy<Zң?k~ƹH0DȮMĉV }w˺!m`E)i' gέa0P"VpMHڙ܃DXZ]2MTxOH8:2&]|𼼠EKWK ,M <&T NV!ӈ;)Pk&9룬M|yݚfj7] `Mg/ؿv L£@nvyO>ךK Ƈ(M,ʾtKauKRW^̉$S%M j=GPA;1{tmmt{Xg:Hh"[#vJ(JYD>nݐICiD7$X{wHDd8t31?CPG?gL"?n 5۰ C 7,>[Wpneugj⾋MFW"/|8];R s7gloO7M xOvBğD Gb`ݜդo8ey$7K5˕'HY|rntܝ#t˖ӾĩQ$թ|̋Ze/!ղ$t O#eu}1Eg"Z4.1yB|cTv xPǟ4!LH9_2b] m=M3~F#c2cDXOPG. 3S2A>}{"ӴPNc̗ll2[M$pNK--hCm~u\jׇhc y[[ P&Jxs_FWfб#G$Άb'B/lE9.lA;u-,:\p?[Q\$)L cq pN)qsTďNJ(r͛\dx:دe/ߙ)54~M;C۪ak5/MB Ä"C"`yhE~17y/\2u t-NKR G')?u8֓O#ɮ237l1恏*Y7 nJL( BfG;>5 % 0X 3{Hl]a:lmGsƒT7Ocn (FJ߹URLYle 5kDWo /rfўvu(czZO~ ^q`Qqs @PP}df,@9 xjҁxm2v 4qd5N\'ٲd#׽U"%79@F 7YH:Azj*|aZ߸lFX%"j3=<6|yˎEBŎ]!;Fhq\yZG2_R@ 4HFbeV=,e@QatvɼI.; cEmUƷ ~6Ekn$ikeVs7lNI`YuaT2pz]Uޣ\I?B} TXY3Ph{;11r4){%V#B'x@ݼlHOo2+5S@#s|qTd7TK$&̨a҄TzDCѧh/ZtH~ y:Oa6' mKrv$yNg8-҆w-̧;`ǟDnf)+κ-|2J,"Ut+G"'hZ~Z()#NB.KeCr>Q8 PiH_of ٽO&-b7_M9 D7*c.# \Iq)GIEaG N2 9f?)b@3oPْ/:Z_k=BY:Ȗ 2aQzKWπ;?z3UGZ~HE3˩(m1AmՁP*l%hB:(,R) GsHp$= TA| ,tNE|6܈??cXf׳}j't9~8"zA2Kk.ɩB zU1{k־x쏠o'M#(߇*qdK}; G#@c HXGLB-xFPgиM4UeK@z '* n2;Ձ֗PBn[H3#z `Ra}F".rg56nT)7u44<\Eot F<њ'Oɒs#)AYjc1shUOE_ar/Fш 5Vf9+*P.K 4oQSEW^m~S$iYR8LR?0`kj#pPF%6OXD>FAt_*;Db͈/q"ջ]{mARbdl[/}&N˔chZzic)%nؕ`ЎBήV YYyc|t *01͇4LH=$IogE KX7C.!ûQ5DL@2E݁%ƭ-` |>qEqJ'iLEOK&F@S1F[d%Ve=6bHxY_~GҘ5rvKBFk3L߮h 1!1#@T9C(UMV^IJeW5 zT;[M-P}x0J.#YZ6bڶ{X\ c>kٓCe_Ŋf 'ͪ$-1"Ŝ[0 s{Db\Ϊ_= \"Aݲ q讓/.}+r]Z$.' NԆ JzYۑ0Sa)Xj0t[i+4UCӔo7ahl+^,ӫZ\.܇+Nڰ',~Se8X[Ҟa(~XYPsa)H23NW<\fg-GྪvP+53#n a~|"Ǥ\h[y0My`QN6y]c+֗e{_Sy'rNEt r)R.W bkQ&,5t# Vo}e#^GBw8Nk=_LY^jpXa y܌N7i>* їaKɧmeQtkhqI˪n*8F ίtW,hBTnBj5䴱Vg8& a҄yרP 韫|;S-'_8.Mxh}X!e] Ѷ+#sSɃQs#~TdD6&^ӥ3.)=>eEw%¢n?(kH9c.þ'O@ endstream endobj 58 0 obj << /Length1 2438 /Length2 15195 /Length3 0 /Length 16620 /Filter /FlateDecode >> stream xڍeT.;ww-݃]Cpw@!u}3?f>=ނH^N(fcHD QVRbb02322Ò)9Zh`Tf6;DMelRN&;77##뿆6}g3# =@K&lcfofbT&..ڿV@{3C}k)=%@ ?!(?::r30[9؛Q\M_@{g7mrd%S3U6Ǝ.@hdm(JJlKm@ O{LL@f9X[Y,91izGWGZoC}Kw}g}3K}w *9o ü7ZH h>3{{9b kk?7#'[ek3;'Ed&@G###@WCSIl)~yxyߩ̌`=G{'ǿ`Ff5b} \C`'93tcA3ȨVR?j!!W3#`bxoZ_IS޿JZf޾2qxPg{A}?[h.؂[_5Y[Y}ߗD}U*ݖ9Y_Z<=+b313W_x`if q0}{(7qx?T߬ֆ6F7oo>jll55zkw;C/=eg0 BA0A\#Az"A~r w??b0(A?j?=OAzS-ƎG?\,;W{nCO}'NR_Uod? ޻h'{qf%&[~ـ^2afk Ż_TT ѿ7|fymde1WkOQ!ޟ߉Q}X#szTöy&Z:%vN6@#]1Dž7:mL}MXo9Ϳg#;{{q~/wWw)f1t__׃ al ykq]&XؕߜYa#-Awze,JpYs83EGM*5eAbpE#9\,:PPQ$BqN>r_BSN]1F`%g H\ݫ (٠88%(˫;\w.'a 97)h '8H!xEo~_\8cz wx/ӎݴa(nh .Kys(`z Eƙ[$#m]&Sa]|O L%Σܳ8JN}g%(/QffH e?aH /MI 4b߿Ycè?' :n"(I i>؃ˉ};󤙢L=-*ԢC7m?㬭qS_T7)3D[~:]yEO7IP{j {.լ 0aOWF[[;_%ar9,  r%M4-#$5dNIF5ܒyez OسbU9 XgP܎<] ; (~x!q! "sL G#Po]`G UgJb |6Q.v%sjWf\µF`G:W>f#>VJj&"v+1h ca)Y: Jtv"2^pRѡm:])|K,gÂl:}aȭAKA[XdFr\zYNL(4e+"E  =COuYr JIOs?ѝw5;:N0ko4)J'>}~făivwzAXbPUZ| P>' !PʫOŲ_ Pg@LD`gYt\~YQۍlGK;^kitaHI=/Cq՘i8ڢDZԛںz%.Z@B\)y} \h,025ZHx{{B&./8YP=̩LgB귻a ˟n$>FFh. *h wV ƓA0:{ZvaHIsGNpA|54#f}\M{=idB!3(|I9&vP@Ks-_M$bއ"o&\.璸ÀSydҎddaLN_+) 3]۩V؀Z#@/*+0_k:KsXhG<;Fv^S;,'omFqs@gad8Z֩ Ab1lmX p2CяTy{pT,]` v]#e_z|>ʟ}MatȟJ 2yUʧmnF-?tI$<h"ܧOib'G|pneۀ`YUrB.y AzXK[4383%MEI~Ty:uTw)Wݖ Rk# B-N]e]kƯ!N֢DA׵nӶ=lt+n=GګQKWe PYBjW[FhIgM*&~ql ⑆zזYu* EeZn_>RPBhPFdrOpG_ћɞ0n:;.P~+}i%)YQ7| "]\ʴKD[re_tVP穆 ^9dxIbr ]>j\3JoZvDʞ2Ss&/BR$>+Eꂜg]x!r1Ө$7jt͠y;y\}FuNO X\Y5)mi`3d.|g~zԆnǮ#QR̪pL:񐳔WT~>$c_%TQ\l.ze5$/'-8iv+ kɁ2\7+} !%=:ƇLL/pTStwV_[wi$tY:kiMpG]E15Mut( Znpcv'YcĉVKvS J0d4gf-ͯi"31`,HkfIAP.8 .3 *K,X A)u,nYkhw=)H2͍^ɷp"تl~mGTt?:4eN,Px?th9ⷄ~^.;>]ŋ2nFްQ4҃jO%Qx$<A,jgI m7S=0VwKZ5'1(V&ACS8Ȱ| L # oCio졿NoqRG@Q}c*E %q=@ 3(ZMit|?}еi9L6׻ RnO!w@ء*;tt95C` J+ AiA˺ïT+nt w8b cMs/@y4'%~ /^q+/SdnX~~.Q (-iҭ3#ܯ?uS{\;$8| }b1o]R!8ڝvkG}KJn|8%ax { *&2gAKlɃRli9W"-X/SrHxa'T ڣu/m!c tWT>61~bvZ1w2T<qd tB%MY|e> h\j/fKGڪ$5So.A>0}ne)^rr`Wqt6l0I*7eEI=Ѩx47yHc\m)Raf Z0nH( N y^^>@HؒBeC(ב- fa_X) ^*?$6BNp"`PnnțlZV&8X7:AXXx;6M5 aך& #o贘f\R6Xa!bW鞱56r.dh7-j+.`y.$vZKnVUo 9'=* Bh|lԟE8I9@rPEc>ˡ9tƝn.xh]M i8gq"^܃9|tJ-݈+#iQ:fqCl;,SIFɪƥZ@A쑬^UQc/Љ,Moʉ*@,M@q5EpBkR8®HzJob8 f  ˀDq u`˚"s4$  &0,wijZ+mȹrm J)xlă!Xky dy0z2EڇC-q#_J}xT 4qwӑ} ooB7iC(VҖߔrrNe9MZOTVȧ˪J=~iݼ#,61$vAg4N~ kf3 ORGQܦUM~]u)F}{Sd*}6+g,~O/ͺTSMj v2,F6]DŽ$oh.%&DCvu6>&#g>Kc5"'8EUSWfjP,[S:כA(ܲ9tw~ #zoC85&6meK'[lKQsI1u̥(Q` 9P$9)~}!zJBZV}6` `8XoÒ# EqVu4SJg Z$>O, \YT$ZVogOhJE07_W8tC|Dz޿]+f\*lTtbBu:q4xrR#cao ҂wUIܮ1XLC$?*t&>C gnӽ/!z6Gcct.y7p  vAR:mbP]pE+00KDg8}!}bx+϶V ʿ.C#cXOVxH@wmj'N:0x3(;հLJ*Iꕒ;yUiK~uh@:yddJXaxG {u%κ'|AaGhja鶡d2jcH4Խ. B'K::eMr]iմSj07/bPkhLq`Q9ω=8WsDd䜻[9YT:Z_vLCj' c IBKo]IףjXwƹhr姙ӐTʓG(c!;X #ΌO`)3a蚿wf}Yu Þ4o{UF 1ATMs[GZƈ%(IðJ:(52F'*>u"s5ȘMɥ_/kW(فli\1t(L>W> ک8}5oG7mAv ǀTcm')1"+eH5651#)FU.cݯY<]{'WflES_b"I~ 9EYKU3+EPo>d$dy֯iri?&љQw:ȫe}YO+jߒ]+1А@gO[]?GC-RD8j %< &ϧ[ν(%:cQdjEizs]5rK/2)*)tzR3-"V.Ge,k+Ӓ6֫wx\eEc&'yQf&Fɂ(#qn3궔H0~bUM!{3SdH9sB ;P=O3P?1M  p㕾V*UDž!dT!ZVv.kI\ "f^ +uJSn*egO[1%zXzhd%3q#a@X֊qB 2hM߰1=Q'"_cO}އC}Y#+ )c9hpMȇ<Dra}6ODZG{i62)I 6<lj8|_5&s0Tii:n=BÜJ⏿O)Z-;lATYvRnɴrwwoS<ۚ4-3ɏPWo1-#Bji< A0(Sa6~jL&YCamxcqn$}3ap_ cACOqD $)\CX7h#0ªEB;pA H򀢳_u` 9rqS˳r~F_=]ֿ^܋Tb&49 =CkLR7[*K9lYy!?*9}"E]}Νbrƥ݃'682UN|%3˗P,|{$E^q(拎pv~9Q& 2Ʒ," ̝h=2]+/z:ѷk#~K([FqU`ѥNFAC/IvCE/=]6c+t$rlUAAn{TIx׾|ry!kK[;'^QwvQNt . G.sT^3lLcH9i(tYћjebC+]u"?~\˰]+tnqdeHG|% kGn~'ݶ@t&7U3w"i6^lǙg1"ko3{2^%JW>f1~n8yu/Hi:L{{dٹpg'X'~VHZSO0L5m<ž6q\#9G gkD S >H8ӤY~xΧ3ʯxNOdlklMDd܎&^s3`ذPTh|h0S OvIS0;o͢G"hbK P"Av}w(b0XJ'*>غO>hՃ3C`J62RbwB=Q7"?H05(p;|l~4} ޱ%rCg?4C :Y M]> suJѿ}"* _\q,VX'&XkG#!4CD#ؔ^>Эw˺lvι\BPDWzAn *Ox+?,Jn6|Qj>})Z35Vq3ܑz+ p}h\/[{fsr!#ߤ&%ONл= [:0rVN~X«Dg8ޜXrkLr|L"&Q\`{Mj[D#4RA 3˩XO]w{1R6GVQ@y"fm=!Ȝ% ӛ|ug.8 .IŔU[fs"Rr 9iiL RN |SDC. T1i*? uƅ؂sobAvXn~ϷMCFD'Syx!"*B02APZo1{Kf5zSkH!ZL(  Suxg=-)˱uwkg/aR +>SۖH(k ågD!#ƾ6YM++ZH`)?cZs7Zh~"\rx)vR*#/2"]#>B&R}t^MmT^7PF9Z}$`iJ~`jeo~Ǚ8^ K>ֺjrmsZ QFr<9Q`  ?׈EHH#{o>#T0*PxpD"@:nM]\1Gʱ-#Zd>u@QtѤ$凰Ҝ2`R&s -FJOjO9|zz~lIާ /Ol5"h.Cbx~nb^L,%kgMy3$1Gf0sg]Ba]t5ɫjlrVĂ0<.`Un:0s+Zw@k9xmg!`%Ro 2o"m1BGgq,fsWdn ;l\gk,[GJlNƫMq-;|Z좽O_wd1jeϘp4^ai*l7Isxv PT`?۽P';  -;aU&^CO"KBjE*7eKwtεsq\jo / 8 I&)&FcsrLYաyej7GđȘ{st}k miۯK=wgď pO)@Re5ᰚJRcx΁:='$BC>w;ĸH41#\rwud,dTC&&N*wp$nηD#r 5 &Uh䴞N Y/Z.oE^_l5+Վ,$ Ƙb em5+IN`*/1y0?*"Jk]7?MpX6<%Wtn$w]{jyPޡI=)RV"ka:3׮~#_3ˑ?LA F`H`_}" +ބ{Ĕ~9@ UJs~Qwt!p0^=8ƊgwZ^TgjYJV^{uoP7V# yҊ>R: ~I;Q%/v.L~m fgWp%~]}*R`P(#H6N%c3mV/mL~M}>wi01~ ʯɻ؞DA嘄SV.@H.ʊ?QDDQԚ쮧1Wɜ|QS$U4\PCsȨT0DsO3%JL2SѪ/r#☼,\)RsN~.N'Pɖ`X?,1eQ .ZU=-Dʤ?S1lIjyfЧI 4d%J1kWn [~G8AWD`|I$#h.˽1_6 |¨0+%? n$oս-8SS {:8ym܉=k<{Y72&dGWʾPӵ$*^ l%Vh7Yt{WMW)po]q}^qLd`A gc6Fq""LHV22=ţIMjQzlꖓ$(aݯoK in$fa g]?kR5@=`j!p>FwL1N. [X4t[5PR`9SIQu5ꧩEb5B#Њ>,Z{H\{Q湤"=^%#}0d*aR,p7snRv#Wgy} ǵƩ˛#lkH.i6nGU>g7T^\=$@/~Dg'?me%}SQGA^Z5>Uj,Klvhֆ74 T@H^LֻVXa0M\XQdS:T$q~j>;-mS WKrQ)Z jzE.9uMSD潟B;%@ҳ̋u.֒z6v-1 +x3U}PVWḡtOs uNYRR'+F]6m|Vt^x40P}tV*'f̨?>°Fɮ\<_ 8]~oDz=6 Ĝ1i4d7rC,>bWJ=>;7M8Z ~n+jd[g1"kEvg.D܌,͝Wdkz; ߻UYsP`Vxf5>kN ::?mpz\žw ]"KFOzS8,P4Wo)h3ټLP>)gA0CfaJR{Gk1DVHD@jpDڍ>/& o6E} x(l늶. =Ի8iYfdAcUXҰ Q?dПhM\k% /7fsL-?prr,+s_np+m4FҐX]3Nn~dAI.I"F6vvU#LT#q薕{Q+e"ENE=M{Jv>0{Qwa($kZma' B@vמN#Zp?qp{m9G -wpcd m^.ASȹt8vC>KiR:K_8RB#h {>PHÐؕ|]s}7|2ik Pm9; @tMMr$̴ :bfjRj(,k[)m`ּ̮iO%XUPZ7 3R12ŊhrYs-[tDQ7ؽA1&K;?X7{%^](ZC_1N|ydPP$ƥA v|y7_,rNJh n@G[,&s깋>?r]*Q.%?D_n_I͈EfKóC53dtCU1߇ 9CP2e1zӍ7k w'\t洨g lI0ԊV5DxWs Duc,"]d'rzf1AS5,܌61 Tv`d 19T`د7fw^hѤ~iSbU*BVn.!v#"\H.uBG>rdEm=Jt:I煼qtv-W^K$`?]Ew?9Cu Df=Y5ȂDž0D{8eAArN}0;& 羃 ߣH"]+唅z OXgJ 5%8oq@/ ~e#2FD 3}a10fq[s.͊b'>.>Os;l}#lY/^9}) tBto/- .[פJ;_*!w(l2?ӹQGk^PjUϷ˜n\mި\b;=&9N3Dr#fڦp?L IYfJF9%Tk3-Ia۶~" (#RCyPP\wdYlR͋B_QfB&69`&AELZdФ#]3*ٔ& 6NME\C6ܥRC[~~ sTd Aʹ)ȵ Gma:yqߖV}7bHi&{RVcS3_-R'g$kh1&yez+^)J4]#. ? jr< e'o HHSfhY"ݘ[ayʆ"z˽ڳ*edV2EH }uݧU endstream endobj 60 0 obj << /Length1 1639 /Length2 9977 /Length3 0 /Length 11041 /Filter /FlateDecode >> stream xڍP-3[pdp !$@p ,[5@`9rϹ+ou{f吱[.NnQ 7AqmGc0{.bȹ-!6yK3QxrsxE&E^ :' vuC `fq-]{sEkK'.W fq{Uۛكn'A:@e38z ?`[;lpY]wW Ww\<h@kYXCmXu 7/?fi9׶v_~L؛5}ޒFG#"nGՀXQ/Vxj?U;:^Z5 zKOld*36U^U!35ĀE&À klnW8;HTܽѿX Z tU=ܓ|-Hj1bV Kd=o {lMWN,KesTt3NEǮIy` /^n-x U擏311 iz~|LeJ_apUjfziYS#tx֨#oAm:o`WB!5= 41'wTtߔD@ZajIzlns /ig>2ؒ1@ZϠVTD.:zjF%Jm9N7Ȃ[00KmΝU'[TT0Ѩcm9Y:`'U'C!#~L?;cEj#n_ qQ_ϒZh`R?Y=o[Co;¡(M*rڌ}Eeѝ (E `lfjֹ8+Q_ߘޑʼna_}d)_vx!uriTSM5 6'-= VgażҫrBy uƆ!7VsO(~/es'&mBMz_\E32!T!ZenZ`kX )7M1El㥾:-F4h^Vc0Z<گy(m0lc'B[ğ *r3cr!jrTvY_utխ-O%mct\ڔNV6HM7bo!jGm`nPV~5I.DD@ߗ61K[Z!cM!APP@4^J7ǝ67o؋sDޮG S },bocqkHZm13f1oٮY4e,ɜf(нOOfvN'{a˷Pzě$|%!kMN\nQy23Zj滕2R[r0H%?*ua^AZK#*L: _(ZB`]h\A-oܔ %cxo/u.h; Rn0^|a|ZnR.ഉp/ -8ٞs*z2<$i\][-{\fS6(,p ^5)r'xfmL6.r[ 3ٱ 튚Tc2NuWjIk̸Zg|+\2FIgA\ˉ^6?SEBjcr ށ?3 w++]ϼE=T{Myu\B0uu옾&Ȥ$‡mjڮ* bN7IݮE.RH'IP\ (T< 3z^.l3O ,: V+ 9o?ֻ(hsQczSm~]qZo9TBxFxi,~_E=Ji,`ƦneQv{ƐQ2ʅkE1=ks)gW߱ĐwVq+Xfo N_jgW?pn'"udeYs.o7 >Sף{Ōisܯ?BeMmg~J5Rł3~K[fnz`vI%$QC d]qN.NvM/VA)".QS XJ}J C,) M{O(lOѧ3ξk6{}Jj5E#AU7vS.nFiW1 f^-Squk4'^5LSᄳTj Bh-b:VaQEu/w@  V&k/ܷ!bQk/x&}M9ynP6`yoaLJ  :WwٜCSfjKY #UrOx5YБ>i~-oZ8Y@ǎWV"Mo4tJZPU֎87ZY eǰkz#0Т{n\iafc4C;lUH*/n}1nvVv t{h)7% XU85ͱVk|Sd⇄.aYFȳ8եQk}WSX{]Ps pCtU#|qE$lGvKN(/ ]o~n:]'9( S;녁`zA$r/{rGpC][Tk[awe יCӚZtDUwdRXⲍJsp̡wϣ1%=9\y'VVTl?}/@DEs!PÞsD0ym|6c5K-)̌7ŬSbb;|aa~n1 )l fm[wK4d.S5 .N=>؉8DEU <4i09 uTsKw j|iHftFLHwQD*NvfHfmU" 6T{ ~C$ULOPnCppc1I,e> UNCWu ;A)TapjyS0bḦ۷ʃI%GC,Ԁb7pj8;^r2;"2=l\aA /)ԜՖ$G '/pC=&m Ǔ%u~*ȄXm }#|dAd ,Zv?e e`qXָ╌I~(tbZђ+q҇Xذֵ%*)z5h?=T.&\̻tau`Tp ~1ZorFbƂ%/-6xY&:|=I!jL"rc> tUb#]+2ڬmv$Wm\of!Q'L/r!&=uqi]hhX\e-iyTYE7 o*Wvj *e}PA@w~9aX`hʴ]MF6\Ų(YnIV1bfʒ}G<9cu01c~G8uwǶQs5 箝u"FhdJ؃¼n`YAy6:46|vV MDabW[O/ͯ"f+1O'an$"ŏx:g];,mٷٺkeyph84ڬ_3X#D`eϵf5BߵKH)n|By,1 Z}D>ljk /\`rM' gۯ{~0j⇼2R]qbDS Uݫnxt/ֆOE )Z&m!tBZdw"o= - AxaأBd3%4Vqaޅs4hq S?OH qז `w (/&|PлDa6:(heG/쎌*- [Nx7GI*Ymi{I˹5nR op7,ѨG1h,7Fth(oy@Pd~헍o;s?$[#*?i`*'#rѲP81#4Sy)OXw5I̠0XS{ֽrg@Ի)㍰4(x2/9+\)eO\n䘋mzRsA;[k+M6Bs$3I><ږy[JX&%֎.I9yi+VVq:j !- s28:`UGnp[$h6B ,jZʧh:#ٙb#7^ ,B3)%)IL` aqrahH"FEEd`?KO#sтvzC5JFR^8/v`0:/a1ÙruN7't 8 ǹ[J|y*P )w2q$i@xF QȠCA!]6EMz0ʽ|ߴ#5FU!"fF9dnqpP:YR`~Ĵs ?FqCXV;Pc({ހؙ}vځzX\P'VwxUniX4k "ӍΨ&}  u뱴τ$͗߁m=)op.8о7\-[8o>/DQ\W_T TW&3n ic>}{S*uO,c!kH@Y;3s"ƆSo# )H$=_$܏|sj;qR]W*$=&\aA?!eF8 ~h:l/'36K5X%ȦJ^6-PߺvVN w䞠`ٳuNeʕPǖC1e2yq2^r1KB5&8ߓWLZmC)wb`+O݆W p@c ֛GAb7oTΘ3bZr:N71lT/ʮ.90SP!OZ&}0#Uҡ}'+8-7𓨊*g k[NT+oN/iA}ak}Cۇރ;N!bN4"|jnרEXnr.hĺ=Uӂ>t[n*{DjZƾFb2=Yc\fAsUmyD'es;3Sˣ6Vq.Cp2"_ԉI+*h݋tKKױ_ uhw]_0yDbgL"}8Wb oӨ?RbkC/Bt޺" &v EtzS9l(D͎ٲ8#L&}mVa?C^KN%SjKJe}hbߋ5m"Q].}bj>"`PwF{ t_K'CBIÀ0m73ƁWSuD5۠B6nLPZD'2y'M`mch]qU.vY`_G⳰UdTYrzi۞Ysq47xosOF }wٛu%H۷y L(u?6k܂G4Y? _b>Z rl0w2hߠTjԫ B& ڽi5Gl:%$@˨T<rl! 6W=B(&MbW.uRHܖ\bדΦYZgNOzjNA7#T K r}лUœ^g;VZ\DlOP S nt&.5+hq>zDZUt&Xm0&>$*$^)ƼC`c!"Ҫ-j櫔;Wٻ-gѨL fRzP1ӵ.ãXQBZ, scyԁ?p0GBTʱ(]2#~63:jwg/c.,/)3E`Uh&1eljʖž h[~dl}qqTU+cDPbk3.BdBrLk&H ]ݷ]s}P7{ĮPcbYr}Aգ]s99FgB16mP;Foө_rS8Ұ/c֯^cГTMxA3V`MB,Tǖ2'ȄeĮpn/7L[@n ++V9ح`έƳ7 S^IHftR@פe =\bċBӅVizp3PnkẗP2SpjwP1$5Gt^I/+%=:K]3B3Yr#;3<":i >F#ܴT~׶C)N=YzM8/UǖSa {jB+ u8ۃ xK ~FEJ\zuK0q"i|L/GiM 4 \ՙLkGx˜/^C >n2#"@QAAnbɳv(X<Э*X , S%ulb?,³nl& n98y,Y~zg@{٨%H2lMNF ^'Y8k 3T)fCW !KlP9of*ŀ^w" ,8P,M ;H +Gi &ތi/>^W#%қ7BMOf Pma7Ɩ|X6E>OJ%2JvZp0 }ʴaUEhES1o]Uҙ/C3cך $1{B:3b2s\rC;xٻRE 撀$n{k(5sk%u?) zXƩ(4{&ʊ4'ˏ%nGʴ%?pQ@4W}ZISbই ܝd6zDI-䁥J]&Al?'ǿ\Δr Q(yB RNT.%HˆX/~<#Mlce)cw mJ-1$ķK[K5)Z8ùGLo`ZRҶEܪc&qm 8T^3(xL_i=|L,+UҢAm-C@ )ꎭ+UתugҫYoIu #nn82+׏RoJO|h9V |mU6vh޸:]Dϟ̀gE#0R͍-?8nn5 ýYx} q endstream endobj 62 0 obj << /Length1 2302 /Length2 16071 /Length3 0 /Length 17431 /Filter /FlateDecode >> stream xڌpk Ǚ$۶mض5=mNlۜX &''Ş~_uNuUs-_^~ɈUL퍁v.tL9UU&F## =##3, rX2u?,DF.2Q#C9{; `fd7@ G:Ò;x:Y[|#҄ A/w- gbhbdP7xOJ^ nwwwz#[gz{'s~*Z@ tr 7=,@ {3w#' C`cispq3:>Td @ۀY`fi(һxL24q7r3120WFq!%s6qtpqw#_a>,fg*bok sq>QK'G=svvEfvf0uu`PttJCGft122r0_ T=R2%`04~z;.N@_*21L-M\@sK;??@w0~Ozfjog_G̠"#/*A+=t:f Q_*Yē3pGK?sAoyi( .#+ߊ]ml?raM5^g9J}lߍt*ZXkb{ m,퀊Ζ7:&FX9;~lf37kFNNFfQSǿF@og` 0wH B A0A\#Ab0HA? }>A| #Ώ|G?# `P>تA|G>GeF?c'#kǻ叜ooG0v3s僢Dfn&m~c!`lќAbp?l??q3؛-bhj">`AOJ{E99[#џM .N4?>b9ԏ|z:;G?غA=?z) &NNow^@vmބ'Ī!C;4١F:St UmvЎo~}1;uW&$gNYᙢs!|<:U#WG@kvi.ymU2;bbkcߡLΑ{ JcxD0RуLL֑BdqZ㒘$ld }b@pEc..QV24sDc*-}} NNGÌ׸ fk/ޯ#^"rz #JKWX袔 D$ԢzTV]ZNc>*1uq z72^x͞63%Rl(V& ?ѫ2"i8r*dH7Lk:/@ *MIiZO#!iEߡEJi1j7 %bMLLH,>JEIJp6kש&~0Wΐ)o2ϫWUwW37WG>Ч91Z^?A.p E|رC̅۝30gtlEo:>!Iؼew07 ׺@a۶qU6 OtZ`(.Xy{GgfTYb{Nf6&ffֈ7Akի JMi=Kc,2~RaBr <[ђ4a9< 9hGVCZwb+ F:6Ⅵ|ϏT`q8(uŰ2Jf,.^\ku f~e2;?6^ݔ-`+#8>ipa$)@1sh@$⠼rrfPE.Hiy|UYlSip[.8-0PGA"&T@f#p6gOۙ]f[  0 R龦|/q&zf2w?fge(mcӭ0:c;Jqu%E1Zq!nggͼ׵lv9a%8WJ/<;ϳ;vl9|,*!P»ESp0zh~ԃ](;{hͰL 2 ?pf ȟs'||PnQ@PK)יzr@5_V!nΆɳ/, o&|0˰F)!cN Ńz+߼G 8 ] iҦΒ?T{WQLC@SѻHY8&EP39^tȣ r p)\91߶; =rBh9u}a؀4jꞌ/!К}"IѭMe $cUn3h76nXi2"/ǎw6:*M U;_VVw:N'>5w.E \؎S AENЂڜT B5.\$ǍdCj -ܮMq6c):Dc{ l]}sy+ :"+r"\|Y |o$qBAOpQ`vV㮠Q!#X x=} Z7e2Ss&Ե.W3Zb~uqiվIJ050΀$n0ƀ'$n(|wI;pnL1.&q}LieieJPv:UD1sZ rͯp՟jˡV* %EC4KFʘeA!>_ XPqO3!NM"`hrAjdb!e'Eo}a:`?~%f55eiݦU]N۹n}Ś&(U'zjcL1Inǥx:0Qƚ1A{R^NR:iG&7Ν}Yܐ!n; sN4Z.wC$ ] HWf.p $0cA$z܊)SB۝kQq0LG S1<Jvz?@x&3S_ XZTEwsX+ܐ=)zp(zR5WYV9I)a~VfGς98T?]O2sci knݮrLRyY(:q>y G:xTR|P*\L 0D@LZ:3K$Wr3(EJ<}=cg/Q# ~V,W6>i՛$tP2vm3/t>帼*\$ J{4p.(m|7tzA%l.Evѯd&/M|5s'^m]yӭ`ՓօS~DYu.[ROxHOۅRle{2%e@k@%2.TCnf:U kn3-MVf/PZV0(mIy7n}f#jZo?5?jɗ&e6P@Aj;k;^˓i  7k Czgn!deIk>E.7vqs񂉵'@UX)/}jx( b a@rt(ξƌ9w ִA]˒p-ÝvjઞM/"֯~^۞jG"aiZaz;_æٟ}NU2 X" .pYO1fϮ# ۇIjhhS>JŒ Os* 8jD%`nVcp;cAPNB{YqKBX,m!&E>/֚+QpVTa-Q࿅2aò)o6xe U9TSpГ,4y(f!Kyg(?I…9 ⍦p `Lhl*U , ܜ60 >ƛAUX3dxt^Pc1DS D#qՒ z^J8Ihm{ zT{n28i3[՛ZQnlTx0O>s$cr7٫dͦzGd#yC~@o+IK؏i}nlh`gl@AQ3eV>EKw NY[ۨ ZٳAlIjVhtO~Sq]o0b1]c>`&D1 XtCIXK)jC5_(}:"("r =kp_f `)`! :P*3`c3hrZPFg :%gEm }8Pn%ɸoZx)+%j=Od1vBE'ڒIZ93w|5'O"Y^)hTC>w~\݉PI4Wɟɖ,@`]C:]-MaM}Z IEFu,#WWp <8,>B ^ߵXk@IK/9{G#.5AVAUvif+ 8 YbK5)g+qV9.@e }]Sx+t~3 FkLk6o9{1?y5#L2~#40Dݻn1\ML%?tUR-UDŽT[nPր'0ʝn6>ՖW]J sNOJn^YCWk8òI`}z@:E:~S0#~Qr"" $1;e:gM{~Y|^%+a"cMޖCFXJa 7%F$ϐ% Pw #ҔUokؙ(kf+UeYio6ϛ允a_|Ym>EʫJ7DmO]54g0t*E<;ef/{rd)3rb_Ҽh& -òcCi]ESTDED$Gi܍cQHg1(qkIn37쑝b֍\u]P2RߕLg-c# }&s/Ynm;^˿y@SGg @&\Z2I=Og+/zX[9wE‰"cY 9g*0猍KFqA˽P*!l)t_>-ceQcIy3 Eh5@`;)$PJ|ñKGa'DWe϶c,*@H@.zH`Er )7ml^GN& ]4MB', :yRbG[ VfyQ%%DZމw/ bN)XƭSڋix rלϜI1Wjg  K_Yѝۯ(Hh\2_Ï8Bvlɣd5&e9&L%G~{7D eR"aʍ±J\ALQу6˫<}n1Ɲ&=%4Ԋ669%»ArިÒۏx7#/:ATY|C{|ED#j~t@UTD.d|(A &K 8sr4 64.22zV>/NRf6s|TߙM Xyb+УlvBʃ|>6^ kwrq~O-k7"vZz#3EXe}4cR WD͠-iJۣp0ÃAMY퐜V48Cod{%1Y+.s1qe>pfqCs#m2 |]KWvPNQN@5JA<8 ٸD ~0ǶeQXƒ3?./Pœ\d݆L׬kyΝWz8α-2¤d_ACSߩ{Czk҇ X`)XtUdTz-j^mʦGTN7ngp"{ &F~S~݋`հY8-]C<7me@@#cY0~;QjuAGzQ;E&tY*Uؽ'zpq@M=/nEް]i\Fcg Ǹctcf/y Ygãr@'v?Ƒ34LmËܑF<}}HIBA\3.c z*bb&F_*$ eP`HRznzD#daD K\&ڟ[feϛJd=.w$QN.̨ 礶?b6U¨,?^=;tgtײШi4XH$.1hA%tA Ǯvf8iVOE΀sX\BT$S7DB|Fɮn+ B3CJNHڛb?"1u{# `F:3k\7(RA &e˷_EKk@ua&=% m*T]]"苽RR5{~/To }@TGjLFͳ1J[>OGpܹv9ʈwrXWC6Ϊ հ9q%"̎K'pq7Ճa:!fI>%ͭ1.m]h7fRÏlW_*FpEޯ]#M@*՚fWŠ]b7hX6P)vC/:=2!+}筀$52i@eI_l,!Rɉ ) PJuG 7Ԫ踀_JPC<W Erϲh aDq'AF'эы0 nn1DҜeQxlQ0RJQ?oK_1;ɦG徇j.op(Aїm:ȍd5P`-!יK; g:z1|I͒"x s|&g< bۉ,II]6MMaUP+ ̌jNN ,I#qsU)[ʃјrgY v\_ؼID@TU`Z5!Gm!\{ ޑ($G!1P„ļз`)f0/$\L̽KǪfG(설hgЬfYmߐ`aP/o)6?Q;&c5 vx9%B⾰8|+7i7KoV Vӟ;}pE{k<_.XjrѸ`g{jG?t«~lSKO>|*r]+lҩ9Ҏ-L îRw`2[+nqhygȊ{,T:8B8^J8GϵEq=gu 74*tܡmA^WTͪ64ڬ٭?ZFP gj3_2\TW [ $kBަ[,7鞩Y(I|(Ki,!15>|a8砘:陋ߢo/66Ew#r]Yl<b0tj…e5aj,F:]fB=\$GE8 q|،mxӆzvZUlҘj3o_+#mIDHz^<[Ds~1 #+Ur͌.+pqpd>G:$Ae2ȲV C鱎- Rm&-~-k޷K."ɲ~H)W=KmKLuF?UC\[5Fo#(!Nn.U.hyD]e8ak'yX*UeY|VN'8wԧM広@TG/ ")XrHU'W\*Ϛd¹pH"Br@`aQYJ@S:¦1xW&O`ij,"xKhvgU/xSa⨝UiЎ oZ8j\=|Ŭ6kJnCX݈tXKK26#E(Q:KLb|Ol#|~M1Tk(_Q>_eǩƕttraƅ~W}BQ .NXٕMX/PJ9qDgq3х'v&.dC bcPƧ9O`1~BWէs~&ٸr2'm_<ڭ:4M9jyY&Wյg ;!OSbV c)>).KlXZmp̩_jk$9,Al9xEaڶ>oOZ]zޫlSĚ'\*s]|88plbjTe;瓱HS}f,U%n+3fl͔uCsw% {cU.iH>l9JѾXR?XUO ?k6B6D*s~:F)=27;/qo٠8!3 s _}2eeCZPH8[dXPH1TVE1vV#[]v&DE( .k.Z=bU ӌs =ÏczlB|{K]iDK?p#[AO۫m~W)-#1وC\iҼ~5<"W+(GEUK]VU֮&sߌХ~'trtٚ'Ffi]" ­tn,8O>1 InHnR>hq&^Tm.t>L=a=bs6P\Uf|E8r,#IiH|e951oMf@/kzʚ|YW69C=Q\I~N%Yd8NZf@IfsUhp9<4wlenx 27$6j;Xd|;ۏ Ap5ͲiiT2˥dФ% wEتݔxֹ/V~5⮿=v "/(1"uNEϜsc~>Jk)&=[%nbaH;ڷxn)l0 "hvʳF'ӛS"YYJQ5+Zps~-ydk7lԣe<|,EM9{>E :w#@-kfEiGZ;-,iU0 ?% ޅ.bHׁ❿7E5G;+)-G#s+F$/,w-Y[ awj60j}8s5AD+uUN kr*0LC%hMBZ!- xՍ ,(ͥeE9gRǯG8x ɐ߼*&)r.i4򞑧Tel%}[! dZ voeFo}[ EқS _>3Ml@\OFzDRTOEw W[02W߇>G{D9귾RΘ˙IQhz Tg~>Ia1CH5Gg+LDQ P.ǸgdP%AD6:;!OWC<414ؑ`Ϟn)v]i?& ÀWMM)o7qh%v1ןϦhPIpuMr!V^N jK$KrW&4 +F~QMh|cۿVeض=#ldxU Jd΁M-n + \,;rfÛ6sӱĪbպ S$d#o(6ۘEׄ&xX"o -q4o)Ͻ6P;ykH܄!3wl~Z^EcxK* Ԇ+g%cZ_U<8B:Bz =·_.xzW>"Qxщ_y/#2W+$f)kJNif v{B?ktw,Nk]\5YzuM]0S+qd~"@mb3PWoΕyYD0pvO9KǭJb;yKK#/D!ԆF7!~5rίqԑK}k) E PdA.CJlkou0JF>M޺ў2WgEjh}#Q|o- ic_%USf{x"̻ScPf^q #ufv-ɨND!q[=I$ օ4կDBÇ s(ѷagm#xCd+jJ@jXV_eX*ah`}3ܼ83b&*֗Q{"9}u)VGb2C8s#vc *85 l ShK1$(sރЊcYG@i%D^BDo,k2 ~\PTqAaT3uS壵}KS⠜0gUkɗXÊ4#kv{HnGnFzjGg*]]]mH>h%9.˰rw(Zvz0"PJHGJѦ݉"A#IeT@F:ma+OxV}MKx|3GHyn`$>y_ooxSKW 2/ybPc9 G(\xuLTa)1=|iLV-]:Xm!+1C3тb'iOt$ホSRG%Q\>hG%< 6a/5)U 3O\~ۘ#&ƢCoȅW{ʽޛaUzi6.:zm:MX[uM=[ƷЀ {y '>\]GqxD=`@&y(Gߨw5?GCW$aHkuv"UU/{IvmT`&ZY=KJbq C)I0U$S"^> 0>J}/!A𞙔-A476XZW+}oRqnˁK_;neT5q^ř< 8{fٲ'T mvp̛2@A7ZHV/f"ӴI&ZQոMPdI]mHu~&^i$xZ$.D gd`xAg h-$ Bb Ps F \H}imT?(B6nl+\4Mz7ϴ-Uw@^}V_9EcHCO"X4ti>phzۜL!װ|Zju\}ZإիpiF^o,T_q@Q>wa6皭$hD}VM5t7602Y2% O0:Γ&E# :ΩJB'~`u:]rFJq {iPmP8)0ypn>̬g QE2>m/zEwhuoC) *#xDU%$1a~<V?x \CQ$Z"L=OZKA{5! Gߩ 3(-Ι-ߖ>k/x#{h+@nH۫r T9Py,GPd5L%4۱>Y AVh*08OYw{m^&_h Ro+P9|Cɴ?}k/D#L6 ñY$!pdXL"̘ ^᫡ntXFէ" txF3?Jq˃II(ѐzI)ŗ79IB '== endstream endobj 69 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.14)/Keywords() /CreationDate (D:20151013203414-04'00') /ModDate (D:20151013203414-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) kpathsea version 6.1.1) >> endobj 2 0 obj << /Type /ObjStm /N 54 /First 405 /Length 2565 /Filter /FlateDecode >> stream xZ]sS7%i[Gt$ eHM eraC}Lﳒl'1IWZ:' 1$tI1exx`ipxQʂ9`bL* ;ɴ`AH F1!@eR v`T0xx12Z d0RW3iEQmtItTPJfX X[1$HGAvU}ʲJW0R gUe4Vy6ipvhki;2o,8m:_~aބ}^#H' s޷˺&73fOd>3+aw 82>O1#,y na±|4:"V}|ք^>iC i ܽ|2tnw1rFtᑐq2===E9խH:_O'Ӻa{׆-UCATǢ¸G~Jv)m7iqDE=;wzzw[Y)ZxH#6.6mh!Ӿ|Ї"~:&u%<7!A )UF(ȴP(XHJtы'~ySt,U /8IS8ԵǪ.N8Cᴈ1]##e/iyIqt%\#8d2I,{%Y2,ʤIh஄U37W&j>p PHRARHNI4~-RbJY۲c""3K2b1{(#~|ox;ɾ!_ޠ==z!pqs\ܧ,WeSŊmqr XN6A1bE@YF΅@]o?#W~'~@xdCEz|џ]!_4շztb<Ȋ ~CSF&զQM=N.gy>iȰh$JYgïHjZ׼{ d-Nj8z1Nf68ÂL0'Ʌ5m9>;9 u`z`vbzCB,JgzZ_R¿uہ{{ަh&ja+^j.*ZkJr&:34?L:ΆXKSfIF=ud4Oi~GѯȣK~9M=mOQ=;POgh>[bO2iynGv=U*o n^4c ^xwT%bNrY9!ޘ&Տm$i9c{JL򾱖zf#ڞN?ahov:ܿu.[}IW+]*e7*7v{SҺr+ʥJ.:״[e[n^mۺZx}¸uv͖n[tW?J8]ٕzc/W^Z= 1CጾΡ _/fo-?= 'Ӧ?mvX{+hW_jDd;"}MMKՂ9*-IlA3 h[R-MI.tICqp| V5줠-f.O@;\lV7#﫛z,b?Ͷ endstream endobj 70 0 obj << /Type /XRef /Index [0 71] /Size 71 /W [1 3 1] /Root 68 0 R /Info 69 0 R /ID [<11926C6F12E9A0DD57167889D9EF0394> <11926C6F12E9A0DD57167889D9EF0394>] /Length 194 /Filter /FlateDecode >> stream x9RBQs2(<'@a,s7bnUDH: \w;HQr<؀!\&\n!Ya?m(@*co1-AaRF!TjPch@ZжiXר5Zuj'3{R:ߣ.F0?]j v endstream endobj startxref 114669 %%EOF genefilter/inst/doc/howtogenefinder.R0000644000175100017510000000155712607321410020756 0ustar00biocbuildbiocbuild### R code from vignette source 'howtogenefinder.Rnw' ################################################### ### code chunk number 1: howtogenefinder.Rnw:45-52 ################################################### library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) ################################################### ### code chunk number 2: howtogenefinder.Rnw:61-64 ################################################### closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 ################################################### ### code chunk number 3: howtogenefinder.Rnw:106-107 ################################################### toLatex(sessionInfo()) genefilter/inst/doc/howtogenefinder.Rnw0000644000175100017510000000742112607321410021317 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{How to find genes whose expression profile is similar to that of specified genes} %\VignetteDepends{Biobase, genefilter} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{How to find genes whose expression profile is similar to that of specified genes} \maketitle \section*{Introduction} In some cases you have certain genes of interest and you would like to find other genes that are {\em close} to the genes of interest. This can be done using the \verb+genefinder+ function. You need to specify either the index position of the genes you want (which row of the expression array the gene is in) or the name (consistent with the \verb+featureNames+ of the ExpressionSet). A vector of names can be specified and matches for all will be computed. The number of matches and the distance measure used can all be specified. The examples will be carried out using the artificial data set, \verb+sample.ExpressionSet+. Two other options for \verb+genefinder+ are \verb+scale+ and \verb+method+. The \verb+scale+ option controls the scaling of the rows (this is often desirable) while the \verb+method+ option controls the distance measure used between genes. The possible values and their meanings are listed at the end of this document. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) @ The Affymetrix identifiers (since these were originally Affymetrix data) are \verb+31539_r_at+, \verb+31572_at+, \verb+31594_at+ and \verb+31658_at+. We can find the nearest genes (by index) for any of these by simply accessing the relevant component of \verb+closeg+. <<>>= closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 @ %$ You could then take these names (from \verb+Nms1+) and the {\em annotate} package and explore them further. See the various HOWTO's in annotate to see how to further explore your data. Examples include finding and searching all PubMed abstracts associated with these data. Finding and downloading associated sequence information. The data can also be visualized using the {\em geneplotter} package (again there are a number of HOWTO documents there). \section*{Parameter Settings} The \verb+scale+ parameter can take the following values: \begin{description} \item[none] No scaling is done. \item[range] Scaling is done by $(x_i - x_{(1)})/(x_{(n)}- x_{(1)})$. \item[zscore] Scaling is done by $(x_i - \bar{x})/ s_x$. Where $s_x$ is the standard deviation. \end{description} The \verb+method+ parameter can take the following values: \begin{description} \item[euclidean] Euclidean distance is used. \item[maximum] Maximum distance between any two elements of x and y (supremum norm). \item[manhattan] Absolute distance between the two vectors (1 norm). \item[canberra] The $\sum (|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing. \item[binary] (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are {\em on} and zero elements are {\em off}. The distance is the proportion of bits in which only one is on amongst those in which at least one is on. \end{description} \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/inst/doc/howtogenefinder.pdf0000644000175100017510000045055312607321410021332 0ustar00biocbuildbiocbuild%PDF-1.5 % 5 0 obj << /Length 2194 /Filter /FlateDecode >> stream xڵXY6~ϯ0>߹x Ù7wZ]r*UUnRY&Cnjv:+<;_gsm:.|n?x-4N o Ǒ:.[EloL=ni]N?TѪѢf:3% XɶݸJ;L4,/KƪTadVeH \e;h mçKf <V1Q)&3+]6'QJES-OpˬܤQMe*d.UBWevm:n-Z:evMR;&.p~nW ͳ4"ѯIGmѲK^l]j` tt^2e-J)a(#ӓDMm,Bj;kJUsjHzX+^T葵`X%:`SMgzDۂ4, WQ2O0ƩBkKϊ΍i)J01 .:mORQ)H)ά &g\CB۳ [Gŭxb^a58i̎NxKctHD%F'@VΔ(֟g\FIZ 7:?XB̶bMG=c"!h䱕j>Y*S&2t)@#bQCs)QSHBgWXVB]~dK2FsJUoW0b * {ҮLۍ Ј^ KC7_I#7(RK*Lj# *0r5E."ޮ$G6\6(f\B)uq6'547*b2LR\bwݑ#p:tN{?8-CņW,ӳ:Tob^$0_!k (zAey?v n 1oInՈCA)@".pH|FT:{KQ!]Xϐtn̓"W+0dՌ}  xS;x%{PǦVʦ Γ9t̹ (SG6Vd&X*]hUČKߎcLBnXp[=;3ԂlQQ,52Lɥ=8)G\[v)یUy^ˈP&Τn"^diYA:%njt%Nݷ~^@2z&.٥C m$G6]zYQrΦ,ܦ nr$w\3 8C=/dAܗ#+/譽dS\&WosLjU_ՈZ[fP t\sʃa,uދĉ;&ZҋsLOJ 3I4}ZRUؑȰI}'_H_xU\M~_m`,^A~.ӂB0Y9qKjp.k=[|7;,|p9~%k͐YbkTw a\Ե^_rY(AsRO 9i)iG;,62j]hpZՃ1ʞ\iUuS=*T췩>lsXn U>WBk}x̋A.I",k64ڭ`ɥ>u͍҇(Y,9)/UU{b(e(r`nxmc>?(4nًww;( >k_NWĬg)s%>fRpF˹k[.hH,?u༽:zђx6AD6jtT4<} ֒? 5T?H*T I,+$I$Bym{/-Z_ǚ ƫƒV{I,-AR8T]m9r~C Tɿ>'Nl\$8N(;AלFfQCߌ> endstream endobj 19 0 obj << /Length 2917 /Filter /FlateDecode >> stream xZs۸_S ~f&v.'thHO;}w (;qm\`wŊg?G(R&WzRdMfF&ZFh 7*Z5 ^UsHQTg5R}( Wpm֫MD̈̌-Эp1Rrİ\z@b;=Fil}V1J<TjzQFr+"p b.>+|oH)Ʊ)L:EƣRH+/56 $J@; d/:M`ݟa$\7԰@k i4#XօvCv OTB˕<[Sّk"9a']#n3EQ- 8ޕ%dE\u^3K6n9mX|`mhh1s58={SY CD٦8 Mf(5\oN]fد?`y+2ʭX׭N}) >\<[}G4wP%GΕH+MS<"Q\+祋VXM \i-6]kt 0FG+?`1ln%z¬Pes#¥F*&N5*  ȠnC+7}a5D.s$ȽD;N}GN߲1k!b1͆0~`H^|ҠןKA4 ~КERN%CJ"m~ܶ' NK!AxU+YN܉;]}{|{ bT!O`J[T) HqG1#SaDĀDGw=v 2+؃GA(QX p5"@ N}"__(&{ u΁CJ2u=6z"y_O> hZ{h%EQ"Rcz"uv:H>ݞv@B5J4 D;BHcfp[#5 ڜ*/V҈T]MoŕdMx[1{ۍog+n n|2κ_|%6PיdAw iKn) f1̪eKʡi@XıEi+|ye/,V/qUqBuOZ.*}V V[W uli CN% oՕ;>oQΣnI"îfO*V{Bhs ڹqaʥ2x;Aٺ>,8U|Tj6ax:ľ)Ҵ"B2gڕ߃28 vP@VհSOQy UH$3¨,wHWuVjL?N(tIL~H-[ZAv[}+j$l_]OjmkM*w@l;g$ Vn)9mɝ~܄xq,lPd lAkSijӍA">./1aGA;j;mR 2Kw#PLsTw \pj__:xϱii#sN7a ֢9lɒlYK7 80jq`uATvsk ȸ>8e6u 5WA!L6?Jez"!hn;n o܎ ظ~pmP /]R/s%ʓxZ)[?fAY9E6^ei)6(/7Fgcߐ%JUBu|Q+ շk!K3ERP$ #ov߅^\w!9e-mb+_a7$!BA 7 - 8^1޿?x'ׯ[Gi93QbBqΘK'-{w?TEq2TZcAlKKyMk [oX3#V͵{Y`΍; KI.Yw̥t8ջWC_ 7o,B,)U WIsg[L*W)usɱs?ךi~@ ^)TgZPǖ!o h #D?XH%:S긭&8L ->l!DEuN,vCn=`l_ٶ&K:wnUr8k;:e9f,+N-\{ *9S{)g?h|/p_YgiS;۾ yHsڣHM{,/{BVc~ñg98BǦ&ΙGY/Q{Z qj26u/ZW㣙O$N~\NuBX$M? gw0cB8nIKKP6 "U$oB>kk|C ` endstream endobj 30 0 obj << /Length 149 /Filter /FlateDecode >> stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 47 0 obj << /Length1 1659 /Length2 11082 /Length3 0 /Length 12140 /Filter /FlateDecode >> stream xڍP\.w/ݡAwhX)E{q--|;Iy^9PddNVvA;FFf v+yI!`' +'dg!U (N 7d) 5Ͽz  G ؀_3Z` [B @ ΂ll@G7V(3b\=@?(T"llRh @WU`krr{uqw^4 2`]+ǿG [?`Gg5PUbxA@'? nWhjՁY u,\m!nnpd#ke, 'uYݛ;=|l,a̦dU5agg\ / ?hy;Tr!~ vXZ^}݀ O#d`uBOW1/W[/!qd:a`'b6i%Y]])[)) X8y׃wO# ߓA0; uA;7DHO=_=oyv2uCTBK,W'nÿh&kTX5Dkp['?ם}T^{ RRlq F~m+r.%:!.Wr++lA6?nf`rجl6<6<_g55?kd@^ kd6?s ^/[y,Bavuaw5Ğ,"34 ,?H `l_/?4 oMQo{{2MҘmC1?0Q|,QOD¢%lݩ@SΏVs'U_<1WͫT1k\:KSh;GHBȈ}1{}3?\! $`3~g[5!)5Ao٧u<9E"5Bװr N|OW -y=o8MU2\g*Rd=hKod]'gڝ~ qd7"8[Oo*SrJiVPkTK*c2nq ž Y?ݲڽq4ZC'P4Wk8H9?}.L6l 4ܞpp4 c$D?R\gut#цѝT; Cy8[V?>>iļC1fr4#'>l~^,b`e6lY @ltJ߅( ВfT Xc!vlewy|b?7vuѠ| zJu6?(HrQ({"ޘbU 8.ҙqATR`2BiB{(.#f)] $K̇=#J7 Q鴕܋{GCʐTvԢ*?Q^ NaXK9IbڍtADEy$x)dl*>ȬPzn&͞{89>>ӹbvcr(pk]p>M "7Y1+rfl0x Ow*. /=ui:>_nx Gj?9FM&Fm+W%>XktS U#m++O]P1E>gBIuSċŊο}x^$0ʑv3i?Z/>Ď_y{SEރqɲG윑}-8 ~870Ypo:HTߪ{ p^u 83J.!>Ӧ޽qF_lʙ\LcϾPKƷyb{ZF<wpNC$~h(K=e%{j0?ZQIg B*B;N gP#{V'X>'"׵ 拍7Ŷw͡/|QlZ)׸۰x/nw"3Y~3I wFrAܖ* $_})C_u/$ED&\:;&7^$DFj(_ z%&[泔k5Va(¶EvȌat=/G-YFYHF d6-ٵeVr/b߮xE&j&0 2]D"Vc}kVm()cYfQCN$( ɥԡ0,2}ϴ"~#RcrVƺ=u:xmT-nWMTIy l.e!6ٰMp22yH,^]x(M%rOqK~×rx#!]dpj$|"hQua섂#@e15슟d~jd sJ:$]kҷj4ҀԌua1:$0odGt!NI zY\)A%mIlN~oWSD @d>0l.{k̶ .DHPGxkb+aOoowG埤PAXgn -?60LDec2=a`I~ˋGgKU<И]u 3ɑk#fbKIxxȜ$uQ1lLlGʴ8Y>M È|h'Z gq~G)3nbȶwP [FHqL#ovƙHapIcXiC:wF<(Xvm -K-$#z͚~BjƶA FBVߒ,4RȨ dцn6ͨľIg1(lѩf{s]u,JNnhClE\e=\8ЏXsO&?XNU3IQRX/tm+a"Оb$oF?r5`z #D~`+xw0QD?J#x7y_&uB&96{dX9 MܬkP6*NThļ|Z*v)]*ݰaF}lQF{Z˻Ջ' q(8Hh¨4^ĥWUg6[" E딜F-;3 2t}h}Ÿf(Κb4_mC oͅE?L O:5 l^\d3?0dG.-:x^bsV H#]jAgB:{*gaA"L|j^mGa/.Sr=0|qX3ڵ:C\,gI$ƪ=^'G*\b)axh-Y>zr j(w'mZ<$әLd@Y+Jj1tv> t\/A+]3-6 v,Lͪ1=YǫSpL6q)KĒ~s3_f[J u| *7hH&,,?ȴbtj(U )[֭ʊbSSc2Ȯx|2?EPٚriuT#bn>\xC^Z$ t2O\"WG@T3!"WȎII?30/L*% f~3)YψF)*K]~GbQ$͟Q'ҬK g,~.Lv-ChҠT/}MzaDzTn뻉"N7O ҬbcPV7Sz--hTd>Ĉ .kD.m͓}5 ,d7 3'})4=³Qɘyߚq*?KS,w)JO[t &O;lAz9^pwF,A髅f%&4}yӓ2MCV|Z?>srD?r7tT ;~88NpGndĶ@uSF PUf79w|eG4nd8b4z:5Rccs;ʭh~̟_n-7U&'z7L_ւ /RHojNT(gs5gYC]Z1НxY3}$| 52\McнM/ˣJ1u3ޕE?j/!rL޺EC&~qoouc =R GQ#^^bSDž 'ʞAB0ZGW LEwqqBR᝔.&5CHOD/''? 6c$Jvk3UKC>(7bV+C7"˟Jpi*fa1TI%{#;!9Z6G87l_˱vIWA*AY0BI3Yb5.hQD+GGo6:S] "U)IrG17DF#;3+rb[G MMh\OX.)w\ʨWno l8_Pϒ0RkWa>?2*Ji$@nSM۷Ԡ1(#<}# ԕG#(}i[99:fgZU"-^> )Tzy ;76dp{VΥ8ԮTD#2T?~cŻdWwtHѤ50Pjr,s Zl4r[Vyt&Gh, pT TvѦogՁR8lH\Տ*(_ZBeV> yyP'=[m_ iNݰ w'E8h5':宨:ܲLHu?YUUp3)m6l^_~*F#PL41ǀ@PA-G f:(m좹HoV|iʅƭWT#R\k7fr{/9\I*3?T>|ۯ-M!&fhX~yDЗt ÿUa^ZU,%q=m{F੢̫;*."xVP%}T8N 'B½S# Ds.{owpwN"oR gYD훷cD7E&XunOģ[$tpάS}COXxs (8NL~p7qFM~^q3JIمKZYp}(ʫ^Ze(}ΐL ^U`ߋ4O1@ľ ^ƋP|(z QYE1Z4=V7i_? .z֭2 y4{4ca諡~kyF]7RB5R㵺4,fe9Jm#Z7ގTy6[4/(ă(dzUsRSVqu!D\ݜ}Iی.~r^vA@6">;pwq鹰\}k*s,Մ'K ec3\ÀA.[yZF] h5Y pd@|Jl(S~0>fˡZGbCj%46iӳAڦp#/0 c'i(=Ņ}Ec;s+MwO-C.uVfb md 'dR-P-q՚1yVЌz{ wCIb;egVb;ܔr0PͫM ʨT˿B} ML]ȴ ,2ਲ਼ƒSZ觺̃=nvw oGR,6_r1D 4Ujm\n{{ڵ$\MϐāSSx΄+\7tƎ Y5hkK3a },n $$_bQjfq^UHn+Wg~Q`*YEEݢꩢ6b|pzi]T<7ӻ8dpM1ppA}l SR6EF)ǗXGʬ=挀cŦ*TŎ6y(Nk]Z1vS˕fP73 _+$~]+ƻ1[X>y{v, n=!"߱4&$}ê(&;=Z/Ŀ|_dndqV?8#Vj~qnX`v3g;J(g&b2G/U7CMyg:򵌜Ydvٮ1n78DNh;Jx9<)djgy65*VJبx*!j;qoQ \n'o2Es$ԊiᾌpFAYv3ђ6y l;W|s}{|D鞕f4!~bUk3cdhJc1tZel_;`Gd/46>#AĮw (cׇOBE\#0mrM-!je#yX$Tu(1jq*+$ANB>q $ȸO3|OT5-!"<"mrx'yDKzFؿ:cN\.:TO5,E-0dYg>% qiS"*Jo6[\ߢ8ct2 e| ҥN3 m/K -i;8<ے/!;d@xܫ@#[PuN:i.QcS`:6^isaCF5?|]}dF+e%e&:Mx^%fa0 s"YXJ<1(;(!P;]W*Yk>f[1P1[H*Ӳ5g@QxN+g5@AB܌6O[9yz Mwx`m V?5+gqMCUGӤCWTiVNi7+gݩi.jPΝ6K6=Bf+rµr)T5n*s&wT~;J ~ᑯE\xsf)v/817G3~AO:] 7XClo,]50K)H+0$߲7Ա#o6]%G7*t´_S9nzPF)-0G7xxO7H_C$V1`@c}Q >i8:VڅˈVmJ,a= o͕y.4@ loDYXm&yflm1:U*>>EZac;++5=/uUm jVw 5ԃ$Z=ŪFEU|m wejPz?9 |!:gK9ys@@(L.,쇆lqoQԷk~Ą*Xд (X0G>z,1l?ck["bҪ GIÑ~F. ~n4H{.?.TS۝/kxCEȖJ"aGzmênǶ&Gw%^''|>}5*pq7Ϗ'ŎY<\?@_T,mfKbj7l0߾_- .MF e>B8B2fK Dd]>iHnAbF֕ꘝר*: `^%}V*%I=d9a]QKEEkO6(nj*GR\uijVr & 7f3]Z[L%fB|>1i!w\ߟigtղ\nfqi5:%17 2a_QY-ӵse@  ޡNsRo Hu; \ՏRoo-^pt?^"3&-QD!L>[_Q$G`6'%p yd0c=`$ɇ,˔#\)> stream xڍT- )C7Cwtw9Cݭ4JJH7 -%-HH<[5k>sh4u8a`ԍK &c``Ѕ9c0T_p0&r{TAn^K@\ X80(A ڹ=/ي-,,; C@PP ЁYAn`sss===9AN0 ;f`k/uOi ];'<!V`C; oa[Rj{<z0~~/ÒZ~6 =l`p_7* *2FB\?7A ao@An/ > f 3_/\@Zh?ɰi;owAKa~?N[\g>ZkClyzwk=ي17F;vO1%Ԗߝ~R3b2Cf>'Eڞ/C3Z[*e/^O1Y&EuBg?:;VNdx'jgBǵ̘ hWf'Udַ(^9"Ȇ|QWC9/V68uElxDL7GRZ;n W;bʩP^}MȌIOΘ%Q;v"wRg{{&x,L>; ^UgK!PӁhrDQgV;H Rb?TsQ={*Tr\lJ ꬋ{؜u x<.^DyP&G'I^K|ɡ 5X{mjt>ySi&HxD7j$qgQjU`:9C7 9N:9fuKI*C>ebeI48gKY}c㶎>aؚWuNBf C-&'8(SҒǎxJ"4/0;mtKtZ>\؝9\s/᝺;|EUݮ4n:dOnd>Ty?ic5JWGɈ𗧼 =IB}6DMR|L'j)#. M+#g 3W2Y8sD= +nT*Fd*X4OPI:ef39K 'c,*'?+XXdMBpS:BD4#yws<˔F+ <7>}aix?. I1yia:8MM(- -T.Ybv/)nIXA>[z#W4cT'µ/|h&Q9:XWֻV9S?TeL,:Wc75_hr%V\Sކn8ك.6X@bn쳐Cw }TVmi(z (s>\3TQ^IpĊh&NFg?J5DtmjepO\YKV hl-$4wޖWJm4mj?CgS&G"sxB%&,ʼQO: r 0IbET$je[S&dj 7&iqвhܰК1N*XNt<$J"1JCN;!B2YxĚF,ِ &P6 SF<ӹ)3OU *VD:n=ވX'xS.7o~+E>`qF7}fĒ7r$ѯ ujy'2z˙=~6wm T֔?2n}ރ$hhXeCМ.ڜQFnx.X i4 DZ~Rפ2/>n f- #.g9ϧC8RI~t(*/qT5 W|,qr#&.YHTTl4xpVSuz uvx`΋cw,f-LOb- p$\u޸`t:Ymk)Ru|E|j"R1B~B Z2V: @Fa X,Y0  .b캙dT,'k3|ovծKRf<Lqfǁu]OfgՒ} ~WLH=VDOb/x uɶ2]t}'rgr9.;<4t\(Z?= n]h<'KRw]9 ` ]{qrDV$ J78SraA&VYǕVܚJK _/8ssJ40Z},yj ؜TÚ{?۰.y >Uޜ ?T8bV2 R-{iov] rtg|ӏWEO:/Jr(3$(<"_R\h A|#' vjǽ \*Gx;$ftaKk<(nprL.u'-}Lځ ͲMX^jA*Ґ:,MO zQzְ(Z{CVCW;58ܮ|u7Ӫ;4YmHٲhGaKw{ ќĈGaZ7_(v.i^>>M`L_ljedv8sKIeֵ ZR}uF*'ܶ[{.)_p"^V-=39P!xHM@5xnOxYg?E $f"?8ʍs)VӒD59Cvl#1׽Yٽ:IPJ!5?Ƈ?xnm s c羔9=iwX!zi8&€)XgX9gM^RC_{Md|Hڠy~[V`q݀ 3 Ķn o?^ _sh6)Q7n"Oj1hk ^we`?vK~5D)?<(GvP7+l;g0e?q*8ꬍ㘁㑲^o;]C) 'yU$ql0rࡐZ>.caگ?gYqtIA^ǭE>`zG }w:ʏ;-Ӓ_n=Ѕ7{0FSz3pFָԩ6fĞs `bk77߮93ݰuƞqrmO)=K7yIT OY&tT5PCP5%?.{|X3EE`i4ߦCRͽ/exɍ6ʽh!'P+v˥ͷ/j7~0xj('4a5<\wثAm0K+p3/IJ ߨňP}z+CSC.Ls4+y+ם&I_gҮ mAf ]?&$^Tu}݀Ex~nXwvv?UZO)`MvTY-PyA+?{H5vt'Q:w܄6܋fƙoˏԜaXB}1Zc&XLD#?gW 9J4nW~Z/Ba:"_plbv6 "0jǏ| &y!حnhJ/ZTF@&A{`Әjo\e/^Zg=4<"j 4|B "5-H^gHdE0Ha%c;ȣTYd)6$Yh-ӱKwV0DeԻѤqvޛ|.l=yn7m&]g Th8ܾT&MO9C3<7 ^ccw^5-{е ,=zW8 Wt:#ӣ2ڒ$ӫ,$kQTc*R隚wPyl|!Vz6↴'7ek:3\Ak+(_|N-7Hޅ+Wyp2NfpGgh7%0ѱ}r:e0Sc@zX Ny۴[Kp>?'PƸۓIyzgmxPOxl(Pz?<| ljUJ p ')&Ne#\ZSg ^B5!] (_B$AG&LIM_a FNBVJ) 9{=_]Qظo}V皺pk\YQƉlIM_32/&+>8=@ja]qk*xIe~\N3| M]TI.^,"7k|&Ve3e!&},UMݚ.zJ-ty.YD?PV޲H Wv:h#[ wzZDr҅:3#mBqY3>5p"d\3VD>NFPPU g׳uHp2Ѿ-hJW7H>Ģ(gD5=6uhc"KKt8f;j-Ygkj7g4,;&gC??U 0cs6Pz͍fYNfȇXӁ64/="|2OH31^Neqpb\4&ZiuҶGJsmtJH_mv;$&%0U>b3頩 TZUm*" C'@+E2򀋶>YkOh ml7DžMEX)^M+vj,:2".cp#QSpRGq25j'C~+u Lt? &srVqShЬL=p!@j.]E>BʰZ6Et#D+XϴfD[|cXic%97qvxWLp0xUL9>od iF؆JR} e4P/h8=Zm %6q&qͤ 7j"KrCZnwKZW}_tI)HtRIQ@>lt*6:s?1i#J؟V&WA#'QK%xΠ6N׶VWřr\x"5sbܲ.c :s 2X*jCUYe?>SR fd_bFAXM|o ^Z$Kgc q/5KI`Q5u &pWuK N2Chy f.ԼÃI$JxZL]LuFZ^}aJ5&b7ԭ&ԋ1e uv\A n6]t5b, T_F;/ iU(U&/4T64$:2)\Ӂ}<{1Y2A-{CHn0yH oqBӳrs7ϨkޜeRGNJ V_H y{:6r3~GiaYM*$ 棸lIf #YVH@ +(籔"M|iyT*8qi_;]1E!GQ+Р@C;N w/*PÇ_0;Wcw<ۣͭN|=T"Rmp34y/e]CLh8EbR<1 [O9y"!.jYi 7ҫ#2uo"2 ۯFj/ܺ=jEӚFYܬZ~^C҅r6b/  % ĥ4u:zصˆVت&րwI/ |)l>yy8|NNʍN˭(0pį=ܾ[ycwq=MS2^,v%{Ŷt \`¼*ikNmO6闩jf9 $v GG"?i{~m8[Fэp}" g m/dV]qj)WLJm3{T R=%/2_(~QK"704Jv 830(W+(?ER`w9WCslZ}P{\a I05d$ͮ<$>ͥB(an&ū]צT#] *et->~>lw59Y&WlWH|lWfZw!U+˝R\hl%6[AeI=mp`Q} e [֭)e@GK 7g' hr2g18R.O īveqIN6m3gdLVgUXg5WlgaXzd,/?͓f;c44Z(PgBO4*(S`3V u,۠f$I?nF6;eY,@`T6=\ :dN~ uԐ jjA 6u}RO}XX +GztKI"TO._o}2B7%sy?i!ņ>{bsiM`OeY pr|Wr0 ~1k<{oP8uG5noOKkk=b&RDw1TˢOvq#\O!ĜHY>k{?ͧ4L,YO Vl7:Az+Cs[{͡ISRcLxj3}ez;ۢRT%?=#~yG3e;|a(/-%O>Ğf5 c7 1p>ͦ7J;b2ٌ)yk $V7Cq1s:_( Bq]R[:~LnO*qZF a#/Sdu@4N,9- R[`i`\kfэs72 4PfEϜZ]o[%3 ɣXْx)"I/]W`_1'qd7@CfQemn+?z7ywQY!X g,61`a|@+{pv)vhMnA&G෡I$Ƴ "37Ja<3\QܨN0w654Jץ5~Z?Va%wLOKVBX/"-:9О^8BU\YΆӅ\xC:: Uo*gH L> stream xڍuT6U:ҋ {/"!%j轋HQt邂T))s>ֽ+k%;XPi@"Ђ ! @UWB@) NeCy@`4֦AcH$ IȀ$e@(7A|]!=$EʥG:?xp; B]掭P8  }u@C2 {n8 Jm:ACHO A}3\WG88!l{zô`&ۜ`h8PZDRB¿ {~;AXAKwaH1^a)pC{AX33v(]?'0v7XXG\E͜9UT~@PDZ$%EALMsHpDbmL|YA]hoB_ ~WuFnn<?]ho4VHD 5h]ZhV$'59P9`ӻ0; ˇ^N U?K#H_@P(?)vؓ8{B$ 8"Qf*{y~a~_nzPX^lϿ3SHlK]dIM_\y13vD cneu#OlGgV[IGm)4QZ 4 soǕ-EiPH{۫WW]ԪZ6yٸ`iMXW}$5 1͞4y=' N-X-$NUxflĂDnFe=GLi dG+MEc0w68>}ZJeP%}[ Lxg$Ӕ {7oQ6-;6&N A@5uqrpQ⨧}9 2w *+$`dE#>g<4_b$hQj Z=w {POi/EbLӝ ]:~JsŅzI?g\`TR".Uru&Qzbj{b[Rӧ4 “//9+n>20sIjܺ!wgzĕ nrOD;o|g,o,I)GS@ C3_pkя)V;oZ9} EtX}uīcP]%ʾv 0VDݺz(T{a`SuRc`[XfoW<-鷤5!6eJkSo~܍zQ;6挐p˰h%kץe~lKNP^筚/>*8f jO!3%d~2y!fHQB%sɎ/)b3 ˾7HM{Q}SQ}XAəc\Dam\^t-'ؤѼAocDu`t/p.kQ:5jôc Xrg#+_bl>Ib-~\!=N*n\Y(*|-vmz̸Ņ߫ۆZ+> 9 O}[t\]lx-R뎭Λo60d(*)Nվ JS SJ]'-tEdQTsN_{ӏ` 7OR>T[&ިdc|kXfP?h#rOW{.%vW2gҩo;? *UP8L_wQp4@7]!Di.*75ەb)*|8;=łe%Qx?Z|M/߷Y9-?޻ύI<75{\"ZYLΒ&UE`J$?%H&YgԩrURPHEEkKh3 w`@r6{x &ܐ:ՖSCIk 6iUY)2O OdBW|+stUe!˫ʘcN2<ԋ$74)Y~Q{fUl$᯸>&PNÄDjI'1ɮ)hmկ=_ujb.P5O1q|SMөSnwCv<Y&]r"f=nN dDbQJiiCZvXnnǝj46+)8fSH+` '& -z$eɓdfORFWH$\aTiHNd5.' r՚ώٷ81K I1%*қȚvdm3QN,kO:\H:yiwpqš3Z{;krz|*uuU 8J' ]Y{Lb\x/h߲xxKw@,ё9b&)ζHʀfcq6oحi.|jƃ,Hc f$ŠD\A{+N)[<Ӻ磰:f a,,w%o(vgg7hXJ kR\ꣀSԁKjR0pc)uHd }Lտ[S^*!8ᤒq]%m$+~-xF>, EF)qPs9#W k'9lT㫇vVFv&NwĖr>r(f\s_3/SQ.5K"[\K4zMlܽo6G4>rS]FLtc9z- v7,ud4YUq'x1jz=}5}G*ZOOqeAж9Qoj| D3ʒiF7hp%f顭Jkʛ[yF%g4f÷VT 0Uژ+&';lc]'q[#VdW.'MBJR:Dd5P2*a[,QMLnH6()%(D?E4GA; 23l~fO3NIH\t'&9~˴̛SVGpWCw-L0RZ3 W,i]?QǨ 砅We.}aʠZCy󊪪BXv"f@L f7r͙G@4gʪBWPlؗ~'ƕGD )խ̦-ya4,R7oUS 22FWʜݞ @mTfWwfۀK}{u\uEUExa)CDO)_"{5\Q=]?,1x]{=~0L[ycB *`%NGe^ ܯ'2U,[}hߊQ>y$D3`6 r .S{vlTuslr;6HҖd3BCJ5,6G>Q̌=_kPj)p_ab1N>)dNM]? Y}:1&d`Wg9M a nOFCvXNXث,338^Dh, ?iY|jĕXr4&'"E GxF̭{К4F<ꩤ.2Q+dJ٪pB ~E9&m6|{xV֪]!CM'|Btv "`WK8Zfv-^~sOȈw 5 *'{y77gH|diA#/%hF6I$嫗%I3jOžÃw e2rbZS16 =bD6W5PzrWd!x$6"Ou=[g7*~C(u qBFFLX\5&L|$!!/ z%ev\2x"ev^ fÕih@^[ -NZZS/fLc` ^?v%%͋>\-k8gOK\~\d)i6ޥ!̂+77Wx*8 Tf:H}4W=$=Lc8ǔB2#"(WXՋWE!\lfŏq$֒+D1^V6ͮ^_(n.I3xg aO NsQ,eNGrtvњ9B98ZG%^j̼U1.REfd ԜL-j/ʰT*Oj cUv%neNȱ'4-/ȧ.F0CsFW,*4_?2#(iqQMP(b@3p:_Χ}7f+_=zB*deɹKyPIwYL3)sqWSP-G'+嗭q`@d/u/>d_Y@4j zP8㨵Av:ZG'ɭ}el>+V#N3 1;7/+oI0sk9pʊKm]cpZViqL9CIqG~&oMP} endstream endobj 53 0 obj << /Length1 1464 /Length2 6543 /Length3 0 /Length 7528 /Filter /FlateDecode >> stream xڍwX}?R%Lݝ 9ƀ&1BT)%DJT$%C<׮ks>so\w (: ajHV,(jAHX2c`)Lah 2u*,DX\ @h) h!0 2僆;9cy~@y`II{04 At!Xg;>#0BB0?B8c() KDxXg! C{ZAa&H0vc4!^4 W0CF:} 'XO=_ /_(鎂 |'# Wzc _@xBn{_j.Bov;[sA:فZr\Rי;Qf835=&yOt@Φm)Dp{ý.V8Bu=!/-1 .,9x 3[)Fm|k=XV2p&- Y)x|zm:!2G,yQܐ{SKvkc×.Y@3ʕM@V՜ |6 Uqh6ȡNSȓ"㒛E-zq@fqoo]5]w.6\꓃xۋ4O[Gace#7[dh|ٽ0˟0Eٜhd05;:se4Wŝʔ.$׼V YhMHQc܇˿6XCXu>5E{ɥ[wQQGO#/|[zV# )? +$7;QHQoґQP^x*dgUM<$]V2miPh Y D3FE]id _Ӌ`J}-}ƁzUkF;ȥޠ{zm0{\MIݼ;j C#-L3:Ҷ( Ҵ49z,y>0лziY2$8NSIK{.V-h2 @b)=yp|޴T߂OΕַD;& 4߶ɻ+Lџ%I&|Rm%,1wI~{FcpAv W| 81bJ צOi'ӿ4a(9lV> tOkYu6^;,@!!&tM͞e ~gflT rH -!1Âz^gEhnя>ܛQ0^/1nQ^R FR x먼R̈nztާW:fHЉ&“<({vi,zϧy"=U˧D7Cʃpi*%J(u _Zՙ&F@ TdZz2JuԮ/Z\K^hU)+Ad7 =NC%Qe\w*`{(JRds wEǃ/9zwW2HǓ;Q ZKo&<]h_&Fխp45`g"$M>>¤T^RLXNKe`wW6^>*z6s aR7nіVCy [&Beib]IT!SXܹo:&(~2Y7,-,\8? e78U%iĹ.ܞ/&.³8A\ޮwΕ3%7؎ w Wau^6y][ ꗂd7³|s^V3m~dPT= F="Y[ |asOc;ܜvK(*aUg0gR6J~TUu;[O[HQS{OBF ةx>Z0INEw8`T9N?m혏,~ NT56y< :v5Fw(~'t.Cc(:"H$_ƴ:Oq .V1ۥ.+H@Z)$Cӭ 7q]0<2PgZ KF0<%RC(SpOk[lkeF˜߸{HPшjBu["D*UC>sd~JPw K8?!/yE6$L[V y۷yg+u;+6fNAaj=e/=bZ\. 3OgY'D1RBUaun] uP: %Gw`dE6LD{s3x 2{64M?v:ujVS+NQgIym3 awҚVT'9$=*ml:)4'wU::o\[S~*55%YI΃?8N7*ׇoN ;_T3F +M%qhgGZTRM8]^ʙyPtz({p`*Lޝ*L"ibâKMgUف$k48z7೯BsUK"3/6,k)%A.%H k7?U`dztxܣ"PɬaJƺN dnr5d2^;ZtHQ?*ڱg 5I7I*R{'&~y_C=t2-zޡӅ'B:'M g NoBS?ޣi)?QV*XYC'ۥyTYuesS@e(pJt]j]ʫi3ggsE89-Q[-L +uՒC72{ވab,"/)Jmx5}&MC8K0-楢T:rU4==QeZv_z'm$z 8sh0n B^k\[o * tўkP y|v:/eQl(j8[qr탲 /*DvU9~"&Rn.r')iQ^kX3K4W N۱.>/{R $YƜ뚺K>1Y"@]V.|Y;1~BDuQ !6uRԜ+ lҲ׳?=z7B8\V(,5f@t#_ݦeWfˤՉEg][RKŒzו\Pj'{LuΟ^=/?PhEcs󞬷m&$/ "\f%C#Hd|못Y-G} 2ϋZnfec:rQw|: v!q&JoԽz>2 `O~`kOD1ikC\P>2lKޔ9?X~A3 N/Td-9~*(jx2  5k%N׮o9mL)#¸9X =-ef۞XvzVܨ A}5™;oFzRE8o.Ls c3Ů/f'Q<:`%xwx5 dzީNٲ6p2{pFop^0,+=%(tn_i}~t0ݏM> stream xڍtTk/)tC ] -  1C H#!HIIw7 % H"HHIJI|u޿gd喱[C07$SWW@< E8CR P8L9ȹCHT<`~XH ,,@ ѿby+/-@AA!/HIF-7<08@bq~ BH o_Um<ݑm& Yۈ;6w^P{soK`d\qc#,VusU+=nN|θ['ޝN0҉h=|s_~@Hv>śLQX%SM]YޚzHoC5o%g1/U%/qk~Z& U 8dD* `,_z$~L,d=,i#kp#8ve3~ӳP/q:[SxkwOBUNF(Cu&J+uhj+k4t``ӗFjq6޷ -1ؾxR>Seqlɭ-TS EDz!dȤܨM{hu"{$Z9: OmWݬT+P[L}r<'|*&Ȳ鹇76IJ-ʛ%xLϗ6~>Hf}+2`9h-W:h葡3A8׻"5~- #Xȱ\(4*`[0N~=RGi=GUyY?QlOF ?Q^' [euXUmUOW<xm а(8d+ +Df6c69Nb9j!bAݜ𢹸HCIÿR?5&e2\$j ~ϝ)*Ql@<ϺKn9Zy6}9Qy@J{̀~|hg?ʾϘz|G)Ք(p7N pXb" ų&r>( $ :7w!ǥ i4DI$?ovE}GvL] .xB"rM0".λ8ko|)fix񮪁1#Js;|ڻe>=&Nk^QDHA+屉ѝ햰ܓr\C3plu /{. OI,ѳΎ'c)?J/Лdž0t+B, rmN]#;{ ߒEޜ pSes(9%]D`?]o6il,hxn ΉYH FvF~!!#A#u##5h2icj:X|pNhhƩ B}.Zixgv 傠ʘ9 z4R 3a I>1̅e[r/E74Q! WMım0=h/D};.bh]4<ɱK20TAX~p%wI8>m բ=UEM]bz'ym_~zj,6CLbbd=YW??>Z~iv2׵~ԆLVVH)ܭ&o VLJDM-UaF61Iͅ{R{3^nHdZ:56HII~)=~rk2LS˴ڹ wл0bӮ%?!Xʱ*>J9 Nf5b3K@/ }jM@b{% '5Qspys^I,Ŋg7OPuqjzeLbufKn=g<%Iv f4s*>=||SIѱ=M0+Yc@mKLC5X~7d[< wՄ~2~3QփF8ooZQ³J 1R9_VsS纚4I vW5^%+TJ{=\Q54$P4툀"Wy~f4'JPa ioVլF~%ee- HWOr}Ъ̡y'37 z$57/L[ MY;< .$B$?p*(?je" L_Sh~I۵ܳ6I/1aG)tm^ŞRҍ ʇnu:Loٝckay m6]?ɃSVp-ެ8ԣ;Gt.?mkw~b82p꼌N,#g$5|F"cfB[`r4(#pK,= 6=0c}w=Ű43iW/"6kѿ\ƎXɨh=)M1ƙl*$aݓ? Fc6 LǧJ*V:y၎(4%ػ+" :\@BϳZ~6V0M D[d;x Ϊyhaa&݂ "Ty-GDvL]"ނȴaql Y LY|^D?gӳl(/S_+_YzŤ;O7P>V g}yaԿcWUsX"a#"S`U!m}ܢ!{3E7*?E _ӭgj590)H1JT)Θv+/Og-zĈ׳c u078HP՘ΒQn$/zuUӵwbXX7T]3J c_v-'ieuӄ[\ _.0?v>puɽ eq"o#SSMsEn5H|z2K;XΖR<9ׅyJI*d|ȋUM%~2L+iAcHTÚMhb0Zjbܱ l`wA۵Šy3z1K1;XsX,6OϦo/*_romJB:m[QmѹRT|fjۺlowK%H#D$]k RN:7t{iҚV H$f%T$Ekcrh>V LrQSEut" lV]>c|t*"O~|gW9e6 9ɘ{TUK}A?23<Lc-,\O5/qan>|4WVH.̼`56KfȬ@]ˉׁ2{McpٜP+3WJ>:^l}7@͡<7mSuݻGا5˝ԟ5+1\=rtZ:3'Ժu/Bfè aQDz4ę@DYJ0$UpE]y'NvILͨ gj:{PUU%{>!˄m\ZokkbXNwU66 2:[?eIc_: <ԉhaq RR"Y"5䔐ؤqGk^4UķwVJ?SwXmsD5brfܪZ*S!y áq o)#;ptx&B]®,\Y1 ۣ'nn&t# - R)-]EϚ3yi1Bl w,3U* Pgc+8l nwa#^{[K޸ZWVs٫.2֯KcH>kK:ڝ?PD P>7kaQB=[%Ȳ_Y3KG1Hqq$jߤnYP 9x1%VeV/0N"p0kV[s+X< 9m% >b2=~\~,&-;~637>Ж7z$-dF?T*#ꔠ 4=Óʝ!YP6؈BGkg؃lGnm {)8;m=V={nXmO22SPBVw}qO4C Əì* f?0DMW&Ww\aҰ%#qMFU^~q)2@3i/6q'cDʫD g,Qu.7;SՋuCg0ʎ`K]'-cyh4jWf!kK FHiPEӤ.*iFOȓ1`ZhW[ʜ4 :zYXnUҺ>|ISL]u4dOr"}u 9KR-稕|R|}ts3)/IާTkmX\L|jA[[JoTI # /{fڄbЌ WN_Ӈ=&P˃#hHǤ]y5{A:;^S6(qVPBq13R;qL޸,̿ajpdgGỬY ǫkHe_{v 맼Y>ϱץ+aaٸTL:M{E(D5ňjXDbyQ$A%aF@DO!wbسüc1^ ն u c:3LSxL:&'WZ+/F I_} xSr'j,1aףYx&\?i3HM?__˺9o( \6Mk|;M{,B󑛋uk[Q&f?Zo9"h:{Ov)O\H+n\4 {@vT7Z }-nj~uҒg\I>ucFF))z)V4N軙K τ4B5>Is4Eb7v kT n2;']e7SzS `Cc-9[gA@'rySwiXҖ[-~\7KhоZHw)LVY=96+)f@ \&Lb\dRsv_&>e$j'[  endstream endobj 57 0 obj << /Length1 2429 /Length2 21061 /Length3 0 /Length 22464 /Filter /FlateDecode >> stream xڌtZ MMkǶmvvl;hlll۶7yޑ1v359rF6@kGjz:=Xo3 ƚ@}G5@@gg堣0ѱ'ƞ lfHX`mlLL?+̐@Jw: hofo w4Z}T4Է(іŅFʁބ bh P:흁F[ 1@_vEcG}{ `ifvp6>ť@K+ om4w_Df'X[Y,Y)GWG*_6f\ /h9ڛ::8Y"_4* [ XY`:=Cv7M&li윀B0tttjhJ-o'_O^ _rVe k1~|XVHo7ۿ>VZH|\ U9Y_6f"f@#93GCAoif q0P >.ǃ1]% mx ,}{{}7 f 5ZkǏG{^c{& /XVb hE zG=?裞QO'_QO'}S>)ALZ?裺Q]}TW/b>" H"pcabbe'~tqܟpfod9zٚa3Pe= >[Cd`?s>qPq~Y[HDo(dG}1l-a/d(od>L?T` !Gǫ'(>IZGS{?ї?>trP.؉cwPL@CBǿ >ޡ@W!Ҽ!gyM@c? 8 j29ǒ}34 {na;eWO-q=_tcZa'Q'Nkp>cS+{yZ7 βsbA~tu+Y ߓ߯d})P-%6HC'rƁ@tEAʜxǓ:`d|s_+Sbp @C"8L@[(__tm˄JZF9dH4Snv]Jb#U7~ӵ'El Cvfv ݫt'a/O׾fMO7uy[~JjyjR-6q6 ]]HI,qTCZvN`{xƤΣ`>g*؜`邤"n+2ÔQX/-,;UGzԨr)C ҳ0=?2CaYUdO!_f,<8i]مn:uq:8 !@ 4m]*|\{:3^TwV;RnNuP !ϓ/, ӮX?C1v*3`@Ъ53~~!7T6< 5Gm&*JYQ8?+ͷI~x JȥAq VhjB_ɞΓy90ax(+"w_y$X)=t\zbOw#ƧŴ!UUCz7'Y 7lr\Ls87܎b p,)M^NG* @Ds,wCǝ6%ڰҲ$䌯 ޒSuQ[ҿoISz--$NW6?ϴI4.I*~NI? 8LkoczGi 3FcaېwrPCѭ֯QJKQ;T%M9``=cdo<#ꡊ bvX <R,lƦU[ A,(2= SyA-M;}6au˟dqrm^sw*/Ib?Aɔ`Oip,;bb ֬zrRj幸b o1 Wơ ag6'?l]}'bوT7E cZ >Hu~I^u|0i`fQvWu*@= .'(&~^u` scCȤLldh gnl3bMh(V[Y3rė P석>pvz(8Aa@^bq|>D%Smr z;p˪O23wx|P_tpTI\-afT/k\Oe sd 2T{(Dh J? k'tcP)^EtsjeZ$Y*)RO5S_^mՋ_ՃoaE@sNo/g$;Iky@5ė6sw:5Y{I:^LǭӿTcήw7(\nZZ'KHeB%dL)XԱH5X>F=ӓՆ^Smx Ar޾XmaO&A?wHsmN]0pwì#m_P/FGwv6A.وzJr|6DR%f:gJw"g-̠[^6h(㛶5P\|6<+ĕ`t%O0Џ{"3Rʟ,m>%;=6}Yx>/ 3~se.yIsEw:2-㖘L&#}xʙ!#{-DM-yh m+<#f6XC_/67g+ rzP#{բ0^}_'Y 5҅+.B?!G#c5 [Z׋??"Q>X;/L%Qx0(WgpfIo>QzշCeǑ_Z :1,RwUG7p[lwjgnY@% k2 'mLfi ygPCS}5m'E /:w|\KkD9[PV"-H/393w|-zcI0v1 va􂊔عr=޸!0E1XRDKz"h $++0ԓgeq]?T,|Sy)BW_Am7eHz1,8^L&$ape)TnQqmP›AR%{~ފoni9uIN\vlm)4u԰@>kSd0i1<=CBb9;((~04<˓I˖$\?S"z9; |b$\m@gk6dt?lƾr~|7o~o?h7SOF vDK;L}SSU~zolRﭏЁ>@l>6/q&+=4y\3~- _㫽JCaTДח9+@l/=OR} C,mTAɮA W&=W=-q*ZH-^}6^f亇O=s+/mu`}MOd-Swl9_'$8{P2wy㿮iϥ?c=v+Sv8fq]guUe}pDT:&Pyʜ7{E9Bz3S4Ϝ;Ap&wt7G"܈(m750rWlY}}Da x1Y[5hR9I{u&>`ED:-:dEn^^RԉYW4c}oGYط͈KM!xl(KLMp@.uE%9K\NZ!v.6Կ9}^n8FRG<爊X6w儺$v~IPl;:d,F^%b}5]Ym00,\7q6sDfNz/OSNwmdhV2 މ4_>KNP=G>0LOS<Րú:,XnS/ B5+C;F3r]0 Oqd]K!yW qEؿPmgLgM_iɫQ~0tvgK-5E2BRWWDܭskȡy_GE,Vq J[z@ 爥BmS7&&cNu"YS)\=jnkM%e`m`&Lj LEb?rRtMImjҒn9|m.vk[6>y@M0qx sBbEsY|dzP e~ȯVhe$D="EL%?W+ޙ xSA&HOz|DЌTD(PPD6uhz AMʞ4p0>~fJ/sJ/ {o7T$wz+zĜfY^'I 8] "oG9J 79J|Ζ}?OñWYpծjj!߾nlӁy=)‰H%CRDlVU-#%~-6;v;ɫqƷ(rv IQktSuʷɸYD4jfV \Gr7 6DCIeRV6BX={6ӰxŬ&⭛F[? ʇ<"pz1lgB u^cQyٽjiW$|t)/Nnh\8: E9?م9tncȜ0r%l~Z u3_,$(kAd0~@3+WjN94qɜU[a7?E",C/7F̼fQb܋Dj-*n952'OsTPΩ7Q n*I佪ʲoc,$`VHV 6r;B+R6vi6!gNX y> sF@$Mt<> - 61[o~ߥ7D$З bv0'UE:U8U1fq/8wc<&Vg/AT^* T$zs~?"pn )ȏSm~LQNuEyV͕-po`!A^؁$m\'˷ }]mtd@x6%U&yS6`@SÙǻdwFih5vs,H$#$mhaiu_k!VsQihAlg% =⒇yze t[sgl@vqEO4xt5'dDq\RC_\mp w|wg`].X QPHnҥ88@=8!ʓP'P'N![y̖Ul[7> JoٚmpDquiD+E.r}_9^&J`_1}d߶y@ޗzdPp5V:k3Yims{LL,15\eT)LBм$iT׬ʭq>|rjg)H՝j# dL/(EZC?ؼiqo㇖G/:1u4:*@DF( =ȁ"3"${ !}`us)a99>NR#埙2qV|"|8!xeTuȺ$b 9'dY}$OZە\rignX?S4o~E*pIA`Gd+KS .i.fp'>Jcup kwdUFuHMć)# \y0xt*B ht̲ѻk5lL,wGZP2&LiY:GI_O$<W RpNdc&;bF5^7``@U;rU+D $+i>|~ў}CSQDg:14[ȚTTNP}ʛ0+O\Y&ѱvRx;F$Xc4M*Цs[Z=ALGm =-Efz#եHZ<܉&2l߈ `r{iQY8 kO,p!|a4d8a=ưO \\tl#ŃdktϬ#补#p QkX+b%> =hYx{| dq0\<_b=@_<-CC\۠:QʮaW~&=D2U2ה"g5<`=ӳ8tuoQh((1`1ۦsy׈b(ʐQm5Vc6dX+[n1a(yvqܲ,DA@K_ B޼9Q"q1##nmRsD>.@%96tff#6\od y4Yocrf]%gz7L_LJУ ՌVM&V6$q_岣l7&+˭O嗳_`֠c\9)JY$O)Y8=360/%Z:5f7CBlyg+Nwh"gn,Vy @GNDr0cYB\K{ޙfmV -PE'`&rnX)F/!ѓAH3uIȗ0ZO}q@FVB? rPH.+r!@yt}WQ_5!܂Q1L mjcZ Ks(f]]@1652wp;:YWZcśfwŝK¼%hnnRlD TuL9Wb^:;XG_@Kw3]M:'W='p=?S@ V-Y.rh!}Sko5@;7 0ȯSM&#<~8*saTeu#IcL*1ͬ'2B6i*Z r'tse^m\0b}?d`L.{ ybʤs3?-]OI\5_2[$Ύfd D8Z;Sβap7+ ʟ1r&MܬkMN``tj\[Pu屻I];wy*+m}GNR-E-kpѧˆ''D{{ۓI5.UuT̠dO ȮcLOW{SpLaůEN,fhiZ+UV?j 7XcH>0J)R̾b1b@2a; "]w¯d@HF O s橃GX6^4b7ւ(,F NV Y}md=4|ֶV{?9H $~f$^3M~xBGGu|X9ʱgV[bu`R!wqLm 4ݔU7sB%ʡ^AQͻn3R^srҘ/CElK)T9`=4&3m..z!]_kh׭ {"]G2{sdjIiSU̱EY@@?b]ko-Bh&wÎ^fbS<;ѢN뷲r`Tub.1*E Iۘ/(U #ڎ~pvKRh'}m [iNEK!qƟʆ|lrF]Y߆Blb1S:K-O`>7:Թio:sa7{ghba:E8ܜF)M9Xn[nOIt!O'\WeДTcdS19Q?k_ohSDƋ#PCh[{8'lT7:V,n;wmW@K[BBSeaW)k_lh0پKYRYkBٮPlaKda s{o][ZB_p Y@fkY+'mRx rW'gj:uDbXAok_<64 g-YCk!E'2 5 gzr#yVYp_ VJn^*}:===2Z 4er)sO=./n2~J148}YL%R2U"B&"b7iQ#|H4ii 4h/r(GNltKc\TZ#+uW[Z&|c5 IpIZPg>Ss~0^5!39zg+XF/\ݳrm:/I>W;UE?~3U!(VctY>C il=4BCڵLo-;BɎKcGsgBMٞe|(y=+TV]E͓N3AʋhU9E#G!#?k]~<3h )Y7WVC$oypL(j oD lph\+>pdnCT qC6a;8f)^ɐmѸ0˛w!InA8_}4c?`p4 TKjO^h88R!}S|NĞI4c0'HF\2uo!Ry@;G {D?,Z$0& 8<|ZdK\,Y@Z!:5sŌKA7 Dn`X XW"?EvzD$FVXS![[ϲa_mES˪EmDm G= BfOW({âbY"_4Yi Q/hLC%!äʥ-D''T376tC%&@3_F&22Ӈ "ċ3uPLF+?132o!83!dJ9(OLcG 0 {hUyS|8߂x[Ymcjs|| P;4zk55s(Y:%4P&6_ j4s99#?2ƎS8V7X}$F,K5[(9дY}2E"Rz_fZdʖmOgJD6c8T Y[_wjSm efѴ&||58Ǧ[_Ҝ~VIf$|]'zFZJ/[X҅`Hn}dFz||fh֯Qb?OĽMl~(Wft>4u]FO\ v=B 2K;)_vBYv5*Q@ O)PJC_n${H a8H"-5"OwӖIEW t9Y *-nYqq|hB̼<;=:?ִ}?v~,x&?ۏws!**fmt]LcWRӕ.զ:wWlDoCKTe:[LjtH4펌B@z ;5^@BPwCn̘@ڧK*cnbc^DyPU2p(z4b,FYNQ@E&ick wMֹSr)iC_ڜt>|d@:ueN4o(v Ic#UX4LHY0A Q'FN: }I(r_u{fd݆wv. H[^=uj`!hEˤPLiZe ls 0-Vz2 !Wbw HƤkT?y8dA *DXJ#7h}5T6/^,hHQixx86?eRImrvW#(%dGn䐭f᝞QZt#YpF2r&P5]̈́`Z0: _FANB'^ULˇ@VQv% RUw$DHf,3p"$Ktoh18"eR(ĕ{}p#l5ְ0C;7BR|aoK𳫸9k%?"h'=I{┅.u`ݫFZɛN1Ҽ.դp*^i$m Rf t$\5Z#̅" w^>LRuâdUdu` +UtRVibf e}\:oM x0x]5aS`*y܂VȡdJz0ΊQJmC3YL@'C&b^_s"Tk.VfwBgpز eU`x{߬BeTPg͘fԿ/Z5P^vRw19w}Rg4$!UFkGiSaqك>$meNAQ0}h*am=-) VĀ-kSG wwՆI;F=I6  h1Da m 7or/\, &$WV |NM,%ejTpV\''az2ÿ8hkB~ZW"),+wjg@9IXےYЂin. 2UEPDıTxRrHUѶ:iK?w\4OZF!Z_4#4F"QOdfTQ#ׯY+spi7rP6&SqQr1=ÓW.KUxgs2Ob wP>>A'~t2yAssG\j[7(*CO9*p3 0ר^3kEO23>|5!QdcEYL r!}FݸT$Co cG;7E|WC:pR#^R#]dø㹮ʒՔz9)%gn ʂ0{ 4AkC# %Aܕ8DqK[uqbWހd9jdEXȆs!es\u?47jR̴6PLΨOʾ=Qc>tYwLev of ]4|ݨ;b*6qu 05ϳǻi;B4pr{Pԗl,-~RnpM[xsrL]}N(47-s ive/9C~0POYyF t/]լ`N!'EN4%ˤ ]Gg4DZRzx)d2ZE֮ޱ PT1Y`xK=x%VwD>~w1DL pTRD r, E2y}܅l93>~XIU$BҲ006zI|#L^ ?,<))G.8S&BFsĂ7ݸCEȚ6vDhkgsZs#3$,9vqeCr!ǹ'>>8oӊ @ Zk9, K1|6ov (ޚ"u6x+ =Bsd6,11ͪ@4hʡHeoݪqӹLÕ?r^kfB#wɽsRS2Ʒ]Z@kaʜH!c&=$%3&Bʰs }54P@p68Lp~rB|8c}u0av8B0'Ky4 7u xi~2)-ys<>_tQuGQo[3E=36+( fAd). b/9:m Α;kG2ZBqŖ 9'qB!EXr*=aKWn.C]4&s1x*ҾEM\õ&t_<ʅPڡ[:)+KիDL^<KQ<Φd)UJ] Ӧr3VҠH4Z6@dBJ#[%5u7OdUqwܴENԣ, ];CJed]eQI=WV4Q B}^Ⱥ);Y]dFZXG6Pv ; hQIkb4~]w# qv˞$_ 3O2rrk$%o{+N,)VvEE9-R>Fa },ȜoٟeRqPQ`QF] !پE1PfGk {Xne!.ٴ#}q%Yp⌘D)/%* 4=W{g5mg46l3 3a(=gN6` ӨJ ֐ޥ fS63 '~([TGj }vTIa]LUې~抙>+v5ë,2]\3_G6Ao6ӕM]& y| u,ƇrHt969Ux׃nƦ(B%x*r'd*rYYg<,ʕ0/uSjs."Z4 >[O2k7$b9]Ǔ{-Ls Ȉʗ!!g,c-E䱛1c5]͆cCT #6Ǐ<9D1Q% %Z-C 1?\p>TNTvbjwS@$ne0Iߖ)̱c=VcE ‹pa(%(0z#(N iJ<%1R*E*bl:mroI-HϞGvm'S4_݇j ۛhF[ڨu ))PL0s[[ûyvb=$ [ I5nݚg.zOa-o P:~âCխ#Ȳa_L=ɵ.Gs\BNHW) m+4|Fb:\Z~ngs Gd{chzzp"(rveU'anCo0[wx B|' D0+4navJbP&^8xW,7!$-*<ٷ$`-U%h5 +}:46*۶z*3b:[T(te,>p *dh: ? p?gewOz>Ylc=M<q[:ek8ߒZm&Bد+٪ws|ˠ(XٓPVӾx8g$3Ǚ$p5"뢇f W=)e`f'xBw gHP;ߕEvf`b?Ж^2||}ߙ%iOP7p X<0&AXmb&v:ホ[ŏGN!OP}S(o!WcFz4{]VC S5I :><JxC4-٬ J7bJ獮'^˵;$/i}W0׎s^%p,U1P喾ކwz|GI%&VF'JޡMGݚ_\g|WR jqӳ95vB"r 5l$iRܩeRe1[\rn +,ʰ8oyYXK՘+F>5+V ,# |rOû#Gefqɍayq]o`}υyTo]0`cˣ&ٯ쏉>*"˧a%hEh⒃pڽwJ)]O ,J 'Wb?[Z50mz+GʵMR6鹈 7dxr]g1|ZG'3$YT3 jƞbs I aYSP?p<<9\}tKיW$y'r}Ѵ'p8S]kQD8 grl@ۘ}!4ISZ#!s"S˾([fȩ{T?!_ۘ/[X^%h#pBfMq8a,#{T f+8-+PdRcۜExzvI=Hܦ Z!Qbګ]jcv47=̀7q֮mA37/7jPvO/xLx}O0XZpe k &6MH/17/aEB"ŊN4 !hs%@|e7x_sIR1'ZLy+N>0,3.eX49:O Uv7ZxGlrիIhƎFS>Nۨ9 7 \"NfxXۧwP 8ܱ(ǡsUS,t}dڎ՜PH&g^7h)CZPqTwȯkɏo /U &Έ#IB<+릆 4j@=CJG ı(jZG`MI3&4$ (._:ɼD5Kd^+ޑW][)߁GeQooXHʀꖿ{y&15-AZR ] O4bai,kpB n.s=[O8٪,cغ[>VNLaz|p]YY(kUhr3ats"47l5N&b5+-' B@ܛ_QJHNt*_I,ݛtL>$$PufP./Na*լ#mDWul+yMr})<^P(-bѴxD@S &zŞN+d^q㸫T[,ϑCx6l/\Ryr"0 n'H{lPuJֵ!д24ؾ L9i:.$N t>1+2YγokV⠰x^jO(xoV 3#ύj%gY G|ZnLVXaoM؝|M,O,.עyxB1?J%K! )ِ,dc3U ױ+ƞ fv-N8{ p}~hEgO=9 [5 0QWӧA/ y [{b k*pTM<>^o-t6ی$'|tKs͵2ݟ!3B YT ֻځ,ёVqc;=,)9$ ݢ{LL:mHxVu_Ti r*QmL秙ciF`R+ȆYe~dR>ϯbDN.Kr3x> stream xڍT-LHwH=tw#݊0 0004HJI#%!)R""!E o[5k}wjh"쀰h (aA @UXX "P 'LaAz@p"! Suz8@KK PBR::8ăC:9 KKKn(AP0!n BPsFeAn?rC< H/`> 2A3!!4!pt'h !?u(y6aAEn7w w8Ba ~`t? wh(@h#(A(D_4SV;" pA0}YW8g;8.d>hY (8@ >`g_I_0ZA; :B? /;߈@X'(v4 q#F_>' m/OR3U0C9_@T ". He[_ {C wD>dx ?'h+C8!PF ?wߜ~?igɞ(T!гR qzoVBO2 1B=4>C( 4= "<0?9]~ qp0܉K@H$ȗ8_= (t -/@QIi/w$-'BGbb=aK !G?0Bt_i4#_@匄FŇެC{"m'We@| `X6ܥ!N[`ǦE</6'ty:G}r /#ŨGmf'{%_Lbcp<"1,<i\4ڪGxU9)g0l>]\m^})$>qVE/>-Wx~ Ny r4Mؚ3aߦ9rІc\6ؕd2d\%Cv{~dLQܘPz2o7ؙ:/ɄIU4tGxydMN;SNw)(u^18gk f*GssN]Gj!S\&Sv8ԜvfC![/<ٵ;Qש**ok rK/Z"VAArnD]FP?q;4E#fspoG^syV$d%;|Qo&nRQ'Mi%|nF\ksڒE M.,⃑ *iTĊCNe ߖ= 6v '4Y₻Tؗ:8>D2[K{ǝ6׾E.X+"?yYV?NpkQ$"f?ہ|[,68Uۨϓ.E>ngUYt5^ 6|CJ!`WG9eb(WjvEeJFهw}uɉN+q97ொqzU"N;TOL$S.[Sx۱KUoSI|rΫ8ёz{D<y|@vt?sY xfhd6"1%c/2>?q'XaP~\& y.vͱN|GF-ShCr&o|<}qhQ@SHJz=^md tFUUM g1d.Ay1Ig.u>T1ŧ3jL26- ͅSbsO>qWklglWMU hB#iG|Ο Zbb)`*Cj<9WNZJ!-Vt-NS3fԳcKaؔU1 Mh0}V8A8L]n"=W҃ǴzP'5b:ub )EP۶Aѷ\x:~ q$F>bFI3c?EgШݙRTT&5X[| po_}ӢWN rh=s$Q7W7 i %T#ˈXwmj:nfcԑ-@&iL { 5,ҬSz.WaIǶG\iw]s5%jᮩ'7V*!U.TOX 1eEe5lHoК 9P'۳] ETڠ!IZڥx\waE,7|@#y7:[Yu[\.g]Rl &1.$nܭ~ZV+Č. %q5Hyrܓʧ`Ze0cc2w8L9".HY><6B^[l\9<)O&Iw5PO$73u d3 (w^<O GP`U 5RUvuyk)Mɏ@ȋb^|yk+62ZfG)^\SQᩂbC,Sp P)[}VJ,? o: T'_m@+ \Vk{ךnRP͹4LXm]S+uICkER8]W{BvXҿN\x_$RbMgy6&wZZ   {tS]P\R2Bܱy x#1CDf˅6T O9>ys.!o壚j;{6_zIwWN5󰶗uJdЕَ=Zuͥ&Y/s1͆]Nuu09bPdhM4PFBc)+e~8sXXWAJNDp0QLJ>&[xp}"qd~vy}!rP|ÖH'WiU\7})_<Ŷ-E2/"]Ҧe&tI9%eO 3ւ]~9=9(* 嫐`l ͘؛щ5 mqb5}">Q(^XYNSzĔ-L֘&ORlѦusmZGޕp>jQv͂\zw \BQpys"hFQ㓂;_cA7ؚĜ `08 >"z)0?I9wl-\SBpP=B;X\9Q>D{|Yoiˡf{GW`ZL{ҺOhOJuUVTZeyN:zJ- QGK?PJ!}]^to}!ҒjQq+6uₕwE>@[[֥ڟ(ͬPgh;d o hcwE>{e(ȭÜԪx~5_x9N@pe<ϐg}Yw|M,{!?@lKDJ4 ?6BAf`4zCNǵwSk&/[bVk*d%.xVZ]7!N0uү)m3|A 05KOF݇2~e*-LgRm?6 fZŘl%`0&]/݆L |8gQ.ȝsmxॽ|5J]hD(S~s"g,'I :.5moH 5-`!XOo-'Up8{`pv3+cFņMs\KhSIsWWTd~On1MfhZh 4|p9NXs!L'}Ү]ӆØ&/zU bKK@S~ؑ&3[|lvWvw!]r\E69lwM;G;(/pDګ:ծLOz}t#aM畫2izӇ%7*hdh,v,§'/ |d=AwSCYcX(m+O>羷vI='A#Nn{߭u=;b"M~t0ZZ&Pqblw`'w;{]﨎!h'xzHzB`Gw&(*o). M,BsWnT ~Gyyxbcr3ő{IՉ ;< }\&bV;&\{B"ԠdDŽ.X2s@]-oG)sPwD9Ո|Fէ\fl)$7UVV#O\+.cR~NؼT} J "^hعx  dyY~ƌYV EkAF4ۏw8!bs7ځz}p>ҤӍGt3 bG"w;?f(W[ c~FdɂpؔW*v9*6hn4R7 TJ-Ff3Gw6TESFiQ <{vSQ"53..v5A]!'{xKiBāCO4f,3gքTY) d ut nwkelHGz}p!$e8<۳V.-󣜴2ۙ8M*[ 5+%_Zl}}FpHK]O,]_P%`x!)mx˨F-U = $.ا40O2dmT+ #=4YF[nکmyCs{bªZϘʜ,JG_3V\:k11Y^[lF/ȉ*Ij#~2zd+ܤMw;7pۇ8iL*M)gn1os&vT )X#JcfdTj"7O-:&*< \C k@ջIqFח66,#.Y=p'oyOUjk@s_xFo&{phj[ 3k5RvAԴiu_J2A_iWx R+^8Pz%Q(^ m: WX>s$I0 $Wmb~ObACi!ŏO37Ņt^d(MUu|\>o-^r+dG9bLkĤԅ#)3tRkNre0~ X%ʜ(]S `,H}<'ftMOa%hw'zPT6'F  O/G(D9Qf[ʰI!zy/3R{S+VfáJ?؞rx:9K4l&[9jlMFe1s}Q}8ðVYuRc+c0W&җIU\y䬛L)B3ĞP'Ͳ~"."FR}[FTGgXNVGE7}[8sPԼMòS-.CN{\x ?){2 .3th[UWc/n.iS%q^JZvÎ&lqW5}ň2S,s܈c4l#L|⨪q`8A$ɢ~c$Lʨ~Qν#GXՋ1]C#Ctv2 endstream endobj 61 0 obj << /Length1 1667 /Length2 9904 /Length3 0 /Length 10970 /Filter /FlateDecode >> stream xڍP\[.LpwƂ;';4@cKpww']w %ɽ3sg[֮CK"f1IC\Y8XJvv.VvvNdZZMo126 q3")Anv.^vv';; !I; 8\i% ^`+kח4zЛ38yA`s@ j hh@ W A/d( wa8[00<u dM Ōi vKt:/;9 xIАS82Vˀ8X9o߁{G ` TY]=]@߆@;ȋ?S_MMwSrۃ\]' v_ux8x ,IX9i9@r#xyy 'ܚwxM/G%o _oG#l zCvn _*!sp,3?_ ˿Ke, v^1_6e5I['.xpqX8y<^n~G7q#U?,!(ݿh=o 3(C^F󰛿<8-Hڃ6xd7חPd%rs1] U_#.;T!.w t/fnr NRb{8y@/dxs,dX /.zK3rd ~^?fo:6@%o f `ӘfR K/e@_;$r|I^yun/7џxiǿk#/-@ClB:>xMd0x/9w=#2| pK\ݑ]x>jm@oKVkh>׎u pH~ EStG;UM^ ܿpL%VaW-tlja,Ms0򵘎_'tJYLqu#S //"4.yՎ͗2Qd%+11 -Ӫ*)Ys{k'v@gq))AGfsQWP8)W#\^-Ѽ<^K.GC%SDI) g Z # YQiKM:F~myΛSte:z};>sCLO_1tx*͹hcYg0xΆ7_fhE,w)|VSKԕzGP[48iq\$Q: tOP:8n2SL%4y$<4L>i[A[u2e٪o> '{C_urF%43+QCdF/W5wmy?ϱ~Q2[FkZRMN{}܇ДoH8⵷Q8DkX &JW7K>ZQ뙕ь'K?zgT=>9mEMhvzrhGڂo% ݠ M2o];br] q8?]2k׾o5+ۅ#7,m.C_Fq8Jo7!JF:bR>0nirC(+K&8F$_z9O0Az;›Xbh^-mciH;,1֛{׸Eu/ڟFm qqbOz:>ZWqM[:rδ`=F~) Ȼ&3ޥ':9"xH靾.1Qb:eʝPZP&va) F%b+a5/9zIIvj:s^O @6''G"鹢ONɚ_f[L¦=ꕩ`'1ت@,cb'T?A`(I@&1Je)2$EkżqI.Y']gDV~iUHyZ! 4xl AɃDo:ȩ$Bjc֦>>iZ^I5kD@YңAcut2k \ZI9ę| 9_ŞH koed)8UTv6ړm3u ̞#ʼW3Tq*^ qBqcmfm"V;Bw.Yn Us=>@7=*{Zr&6KqkCGjNIUJq#&R#j[.nکh jJ;E .gR{^>P*DL5c,<7 XU~r~ 켗;;"l1$/#f߆iQFQ O}h̩ ->&^o4ُ|(h53l9V v*A//ֽ^h9KbybMRd%-|DlovGdy,8x栾^\50|=eK]JD,;@gXH`߾mF1/,p;oTy4Yyc9yre>&/+8[tk&xk2ɛZ]1W-{D%M{O%L޲ %;U X9`mToswˠǂCs^hUMY)˦4 eOVkb3 tEK&9hq4+GMK>)=2Lg`CSp͸nD؊Q4Ct|GmV~s lp fg[IGfժ9D#aiqˤjx~H o@t?yS缚f ORW%2+-|gHO'ՏMs^uytU\3~? } G3-Ot) SH*m8A^vJix9lMu XH|::^Qpg|FROm2788yYtܡi!b-nz aI=C-pos%׶@jSr!o-4Ue@zOSqEuYŹ-ho/DUH_3Bk(M0#D (L@6jty%"^y!$GcuJ+`Ws],i>fXc/g} 0+o+n*?T{i^WCR*0mV[cX|ԝܮasomج;[x2U3l ]njE_)MKmlTC "nTJvӁ«6biSeaS<Uzuš22wqMF߮8Wَ]I;9Ru ~)rvOŢd+ m*j 4b0\#!N 5*p-Ft$꒙j>JQ}Ci8M"ZYxύmJX{ ֍~#;0"&fS9*ƸmRRG5[PT~}fykfdO ɼgk;]t؊(\-t;tmX胤n`y-- 7H;QD#)]Tn ށ ,3"ӳB !|4lq 2Y,,UYOVW6.ֻ$*j Dz(7+ %nV܆)JŴ~T~'n2rcb&_NFk &m8 Idc0]u9GF53?9F_'"^N3{8b}'&n t~TbFM"霃YFI_ iz=AG&feG"ʬ&x7?š]:,^i_ĭJaTgAUM}#땸xQ[t!C,߈¯L!o6\H,̷0q7 '6 ;DUl? 7qET凷1B(<>)iaY)]r_AM/+J;'|*NNixpReyaP 0~~ ڄ+d62P"^[A jf =b?Qͤvy!}Ct8S8 oVKJo^h6S;S2wac͗R)zp28@F$:Y G#D6Zn-50lʨUqaګ_KFO#p2| N)GJ8sjfY5ƚٳm,/@z4ץt#l:ܙ Ÿ]p}Q %Mj:reb lsIϠg=+ <|Z?/j8?c?cW?LZ[\WP4%^G Ą$5ygDukPE?9K/EP?Г.[kib6gvG?pG; 3ex[ -3}tT;su Rmq;G_?4`< b-?}?W̊EE ͡1:𩽪R8Ǡq܅Cnt+N>hf%a)ͭ-&д :I~IA̓@eou1~3^+Ix/IPB^lj}.CSA892~zN;Ш=ek۔IBQu"xVcNY{"m'_"~nc<}ΧQ鯉CߩU † 55DZNo]aNYt [0o c#fhÄԍJ-)eEO\'%o)`߯Jv+s&G ,d"%4̃t82æ?ՠ UōvYJ ,pQb,| m zSCiɯQ(iP=Ы7aH" HWy B ʋd}J":j:AE2أ6gs֯ R40`hEP~|Is9{ju2b;=j:)Ɉ$K"ksDg76sU@OyR½]8OURvyq'@\-?FiITE( -F4]HQO}we4!۫;/[/*5c4'[քkUƝ>J.c+ ےtPX m4|0b^NERJ`% IRE'†DMH[66G8m"2aA[z6S9eu6|/5o+]=8sxp!#j?<\X)]dчy9pꖧX3 toXKy%%f0Iooꂥ0Q]~[ KhwšR1X4pi!&!{>;5$n0o**SE+Nyq\ٸJ)X ;PD \M D~hJkZdA4 P1~l$"A˜ÇM8Py' >)`az+<`[&UpwVa ˕e/l'[>_K$ͺbL ccHڌ *OJIZ+"xbA>rj>7Qy?v߻ Wd 23ѣ5k9:՞*:C|h^[|]Y83a[ϵz/Z_8Ꝫ50lPX3E9{H5, Geyj-]q롱V4Ww pSy]vpCb S*'=$H7.B0G%nf6?$TM4ۍE4uVeW]%f{Ύz3,ki҉= J_ hGKO 59޳4;ʹx1tVZmx\s;Jrk-eCʸda c@2ݓqҾ)Tuɧωz¤UWSGrjz5UsKtna^Ƥǯww }Q J;Vp6[D)n 1`8M˘Z篑wTѲP~ Qvvچ GFɰ V;t۳qf2s͖g׶xujF@aKmTJkr65v<[)t͉Jx3|*$q&]׹WAD!w.,.Nsv~&zę2(Vq=# .>%o×r\jr׋ėb GmbӴ&xni&|xel[jC<'1nB *sO5˛dN% -`O=y9"؟obe84ox/OZTL&Xȍާ>lrk6uj^.EΨ>k)^Ma*C_ǢװlbCLntAy-WʛTFD pXO%?<ͯVf Um}qFb9x :(bK!Q"iSW<51ރϵe:EzJ<3Q"Y]'Xr$9F_YV̯JϵQMd gvH/B]ԛgWEob.qznĀ ^g3dRFcwiU`w(,f\/1z=Pj\v]}WM GOwLmP;*|M[BiV [i02QiW;щqD-q3ҨU&E'KʘNRP&BU)-vڟ=+N*As[8iC"y`l4nPD*T1b)DìK0kj)J ~Hs[dSIBH{(&ʞR8ic2a7TJ l3[('3EKU~@9yy'oʲoZ,'Izط'AU$Gs9s肌B[}GhN~EG2۟2RRWF[3is6NM{n3{(z[թuٗ JqJ2)[E2R'RD6^3⯍y> d`$7kڰ5N$>X p<V:De!d/b%m-%-&zSP6ܾߚ\jCcXH֧#{PM} y 1@i"~tZbz@Vx;WMyx6mw42$z>Xu(%T)sYs5#g3^ѱB~xl\'dBaۿ5 0})dg+KzC Ik&8A^ "앖i?|*Bߡn8,LyLVt:'ByF}Q(r42v;VZʼ:j%w<. X3S}NfbֆW`;!T`xZ}܏%"*LǪrL:195ۧu:Nfk 3)\8PAbxC8vϮs/g/LgaxAνݢr7GVaJ&9z",^r\+棫0ch!&&qd@' mz Λ=UIӧ8]@-_099#SQw?ե L+O11lVd1]QCR?9w9yh墚Zr endstream endobj 63 0 obj << /Length1 1424 /Length2 6179 /Length3 0 /Length 7139 /Filter /FlateDecode >> stream xڍvT6%1:I(.N16 J R"HJ+"HKHIH()%i4{sx빯9bd*qkb818Xo" %` ,Xo$-jX8Gԡ8> B$y< v`P_3P_Aýj,G8%P&ɊX$ CqpDh!Ḁyʃ@~~~P8($ C\&po8 EhE\`S  >hg8H8h48qu5@8? 0(O(:v"p8' 9B=1x/u"8. T1B b "=qH_ A.YAh7W}H,Fﶺ1~h5vF 2G#|y ? r` ~%7 6B~O @D ?7a}m0 DN?{BHm0Ax ?+;1h7g"L ^LB(&! B @Y"YoQ#(dF#0@?w7 ߿4!׸}c8Pۂ0[Co!GUBQH!]-XAU%L ?DÝ8Bz$nFzfb0lYoB~QhIHX,4@hT[TX|$$6Q u0|\S9o4jL6n::qH2YnL_z3tCKLy%+"̝UG :Q>_uw̻ȉe2'elÊ򜞌ĸ)vGrytDxyたIx۰q1W]Ka/)-)Fd2H%{3tR/hQ鴧+w*^[Hk(ZGM]+JayJEBiy8I;VbSmץt~$2R (֐߁Q|NYv$m'srjG^w{T#5J i%2ֿjDc\ri2T3ٱ-]\CrMq}>¨,n=ԁg9m3KctUvSDZv|Q܈ͳ8$<TYQEΓ;k3fB!ϽiU3%Yuwo*Ͼbӑq y82]97\/48؞"']؃P ws#j!_>i=|hSvT ¶W$h%~TH/iIXճ շp<jNqq6LD٘÷\ᴁܨ</ vO&D'|U_0gZJU= FzCPmN3;wS1:eSf3A.ݤ"mVb;إyRju+a md2K2z~ElI;`Ta3ٹ}W^=};U.S̸$-UJ=$xf]HOXv%.(0MwќltT֦F' Я*L5O<HxPXCن0zkL+o r'z5\LzItvI e5ҲneV|VvehS$)>a2bot[d!cl2̬,jŲWck$(3s)TH56R΋t*&cV-_x+lѕnB; iyx$+] ⤵E/.7,>vMCHl bZn^ߑ ^-#*JS׀0p}->m1ISOSNg!+z>|B@V1U|N~zlQfs"7korcǒp \̦![Aeݗw܇k'\D.D!뒦Ϯ JdpS$mZ*QԺlC%Ê|/f0FQg)} ۰cInٴM?)#LbhؐՇY Ah~R -gOk7P痃c߼cBAlmziJ+L,2s2cZjyxA#+b꺢. =o!C?gwo|pwL5øXZ$1͌]dcr:5|Os!|a7(d쪎ɎUSz<_%e098Q1@Ak45X͗c.}MQ19W22G~xi)]⨭jKO?c$o3$joLu%(ꊄrh|rnz}M˘!xKQSHvS'Z~fVl Z_pWu8_ܼd5~g7PRZePF4z# zUN(ǮM9ـ(bWݻ!̳#ɑ B=YjWlx][~ bYH?]RQ跐U9䟁"1×,%wJk'Ň㼻;LҸ mÕ7|Kxg[57woo8N%}nD69Bx36c?`l]}Q/bDWU~ϊjjFqR-Ownj͡t)f[Efw47Vx=.Dɇi'WQӛ>%0Kl_UڛKR4mlrew=TZe+!MRdq7K:TsNf0tTXo5HQ]4EpEIUB{ݎ[,m}'_O ϶U£^*esnրL#pS`9{@T"S?yГTrvB3˒gUp#7VJ*Egn؀q)=BwMÒ$x#Βmfg%K L T#nTJR'N\ \Z*Uh )_Sof?^ N :X1h2` fzʴlV@C '50(,v_Œ j{@ 5Jq B0FD J'9D1@^6/ Wp^93R1: ѿbYVo(vt/lRG%¾#E),ɕ"H2^I>Xn Y}iM~iK͚ kgf)wlЄ$mV=nַ8۸oiD <7[6T2!~ j 2 .-R;H".ْ={rߣ5P3!A͸dlߢ1tʾJdM^ 0T\r&ܷ3KvaRSe[ID'/P/H:r(;n_NoVd}+/:bp#GG{y k7jXMZXjRϊݫuʴV4>3ݺ%.kbidA)-Ij@yo4,Kn"pzϊNxԏ;MXuzSzÄXKۃPu/%0fu{or7#@f!'bTktoL/ؿ=z=—\ljpD`:0lT!kV6O`S\_ʳE]2)4ߛSNY^[dL].n W'cɃfH@d$K$\$ubf [ɞe~O >RKN Pe;$?r5B.ty܎μ5Ll%ϰԋˌF)i8SNs>V$4[D 7gK wy1/u;Gf+C^֡BH+"<R$eĢ=ǔXv"IhƉ_} 0-nakÊƤTs|Z~$7Q/B@ւvsGcۡ20oG#GC͆F)Fv7Ex\78 SyKb[T&n:9h3#OӰGw:ÜA;S!ۇӂfz`/w3B=@VcX%jVpr/ɶ㬲,;e x_Bnא$2{P! F3uU ZFK̨]'Y7U/G,Y93jh w_D-#/>^╋ta^SWB &{-w1*j}wdm7/ X I37rZ~ctMnQf#uڅ%=]2Nt$t2él>>#']Y,M.T"TT|oh MNZ=+-\BM>.|;rq1 S~Yε:DSYU>ࡍo1>2uĆ> stream xڍuX/Lw#0tHt7 0twwKtIJ7- ttqs><̬~}PV9],lq5yuuv6'  -Fb`//3 I\!P{-#+`c/Y r2(.(4^VO 7e2;[ WKģ)`jvo,]]XY=<@  6#i_"0d׫MA^(lQCV הXY\!*H~sg߭fMX%xP|V(~^+A!3 9P\\ r]VHNHf ! >M9Aj oۿ-B ,BC ZBy9ZBg/R?1@?rH!%gcRr{PĸﵴSbuĦÿ!8C|8B*.pQfulßfpAh' NHQ\f&*?;ʱCBW@31Crw3/f.BA. H?Bj v0CnΐL]:w/ף ,-8 Zׇv֊{'8y4_ȹPbm7Y` l>sK͑PփUO dA Á":bix(vD?uOC/E攢ZFX|G-/VwwI Yio}HupD\w.j nU'€:w\4k '^n{wo{v/GnayU^GRJ$9~*8zO1 ,[#{[ʜy~: 䙕?Ù鶚3چS|ux,uVžLhkmOQ#!|ʐ:pf.1VIwHؗi>st+I)u=Vg&RἀYoNWxä4;S'm2IN`*vj$,QE]¹dr n ,<Ȧǧh2~P/c^pըi(L";w3pfhM^>EciOLiZfǾXpZ;dzKxX`u%:F < .ׁ/Em~ڗF c1EHm,~^ e(qh ++19qRQSrqDB%@5%قY1?_Q~FRkjZ׼VƸ58pJ2j0;7BHCb6g2$OՕɅ|KAV1$m}AiE(Dhz]VPM\r*=*K~b V hUP2D߆`YAභAUpzͳÜ fGK@r&4tT`+{47h|LYtlA{=)a8XT Yq]PXhu'W,l,e6}KXf^/.9Ӡ2ԕb_tl}\R$[$2ƅ*YZ߼n=7G̱HFuP~f0rb9eiPG$mfkЋk"n] U\D^vcqFEV Ǹ=3Yv̸ ]X%eQVT aMNd[)5,Pfo3܅n <RBkv}L,0}㏮eAB/J+e.iCoQFW00 _Mq45&YzvNce?*[,?\:oԄsC;LS("liۛ _A죓!QoOL\9|zt5}?\.N|mH"Ntx5"gd[@z s2lNgǡ1)y7Pw NVWװQJ:WY 6cs&DUl/Jm5JVru}S,Du%ҋad(yNHţgfƠ2ؼ/N>DOY=n3*ًȺ"ߗT|Kx:Ev%w nӽg Jw*G-قRtE|?4ߔ1LVuQCƌ#Y4x&Eg/t Ow5̯4ZֱD?KQ_{M;{rSKL z VL.c{+(raGօȳ[2SdYFdVSaOu'o8|2 qO77~d =U"xW/uk^$~927ڂf1JE G4]36/{ϻ ުhҏ*؊旛U v sǻs.)Sd$9L5%(6z*T IWp[:K.(\ڤ}>E-Hn4c`ic}L6_jɎާZ5,-8V3|%`6 P$K*Ffl$yַx`1QlzD ߓ~SFmXRR]+%kzHCFOV#-5WfńM,aw9 Wk~ZrEjw-fI~b[xsg>X|[4fA̰dG ?^, {~@bi3"eC]͑NUŸC=e=B i:`J1g\$ ~ygihDgRQU*j8akd+[Q}Vr'U_9ss WY o*1 ,h*Ê$Zsrhq&¤Yl-=B24J B9XB.1]*LmFh&Ժu1C<]gvA{3EHV|3n-Kȳu+ik4*@}(RG+$I[Aoc7diZ+ NN%2v&{Ǚ&+y"ُp([F$SZqc0uB+5id$+d"޿Jd,sb][>uqDGs,w1]`1=_l`B#kamIDCSy* 6)C^̸qƊ&L_$L^CN3׷ZÙN y'Yq2ag}8qPDY %1kSD>atx$fgUW>ưeAS1p7"w)vAYS4^qMqZ33 ۼgѾ <&~w}4FMK, LDUÿ Ȁp۪;O+%sD3 e?/YJʕ;6*i&!^_j݇^k-On62g?6BnEϽ->cେ*5Msat}8!/nX8#r5t=#R*3b镐|>w15p+j^lI.oTS[A |Or Mņ^$:ay1Yvjl*%J' ŷޅf]?q kv(y-ƪ 8o~Z/y|ĝ#|L=X'oČ5݂?Fa|`">AG]f6yu yHk|3zRtIvfz6EpF9yBӞxXcʽj`/ۣ9P,H9ڠelM) p|y zd9ڷ5˵T~q܈j܇o[UΏx]v|]pqOZ Z.F Ϩ}t4q@$T?{kϮqҠWU &L f|'G-D i^iO2AދGKWW}$gqn{.y25[;KQ[ Xg'z.}POיo@8E2 @cmU֗Fo!@Y%1 * c3 oߺnGt<~5y6J. ׀*:;EAjJk`ji]Xǥ} Z ^ ի kxVˇT>̷jpKH9>x-Ke{NfnAa5t2=5PX+mt篣W*vvJ + |5Q00%ٜ0chbi`ѮFPyü/^6"EBJ qwvҙQ]RqwC:O u)61` c9nc.OK T\O|󳤽}L?Z"V^ rlf>B5dh¶r2My"kP;pCZzl Z >7XbD%3Ea^/&QKH)al ?幔Ӿs>dnn>Vl-Y\~v@d_;=s&p _/yH,E ?!NJK R BQg6tj1Y Kxۤ` 5 ʾ=Hq@ Twh-P_DP)LbDco{HO6n=Pk*/;()ӧ8TvOF}>[xVd xoOJ;IM2N&r-, k؉԰UOwxM S]c/C4~8}x^g7Pӵkܴ ؠ4 䉳$rQU} IeK=k3I O^&zj2u3#߬5#9-7ӽh#g"uZ$(0N_ҷqzy^| 1VZUV eyUeT0V"S_?I57*ug*߇O*~p%~=p$KOyc'\eEθPǙ tZ5p ՘ߓ#5H+Q)޺(3lqlղ 4,)EڭtCד-rI흔t@ͅ g@HU 6Bʾ_RU$S{ j |i'6 ] m|qN㒧#j\>cǹ쭱q+lv.8FCuvZx'Wt&}3e;d"8K?5N>FhƒWk6`7W%!odU{" CiK1h ".1.|4)Ѫ*nW07˂lOR0@3k͏fl6om ԓBsӬGW'>_SŹ/b Y zEbv#2;f' ː`gu2F 6`c/xBA0G*z͍2$=R܃)<~—s٠5NhaR_p,e^M,waЍ rOuJָI皎Ce)A87莭".ׂeo:Y5x,BdUeMiCdޥ0fU"[ZiA1 ,dI#14v -U&=w[PZ)vbH0a9HwelBUD(N!փ"Q5C%AmF~rEf.yMFۚ;&s4HGⱎM,Cُ,w#_V)QB˪0" e{Krwx_rv\p#SgۉGφp甴3;,& "P2 $ tVkm2F l#dZ~,%"wEd݅ kdChF䂒G ZQ(s%^ %r1܌줎?:mFa6SؐNY6jWXK̼X3/FJ_캙E55 xp^U)'gj{^^ꉃpe80H&s𿚧%7c%A 9onBg/2[0 Ԃz E ry)+rbMhHjM IǹOPxuuŁik$4m3-])X3E W9pӌ]듵e{I2"{3b~] :ѣRB"'Iy ;3C@(C3[Nq\K(zW4/SBnqs邜.?SQTԽDKBLq[AyBq ӜWљ0eotB| [!ߦHDP+r,4#~z"Ro}dm@ZǮqa7 \ZG_(ht2OxQNW5GneLRS\5!jAQ.aZe*&Cۥ!\'5ߏ]6Dy;'ފ=Ƒ\cZ4[aZV/KÈ嫧MŇݥCHJ "xgb>m)`[Ȍ~WMEoYw&zz39Ja9799w -1U҆>f/$*>^o,¸apG mN Ɋ cSC<.Bwn[o?+̚2 2I 2y~eHHte)Sؤ(=\1a4Jնd9Į\_C$P^QlobW#{2& 7rAC;U=HwDq+}='ch\ӄLn7 [^1k%1,6ip*f 6IJ-3vDikLoj-r*ư_|*̈́KHy|pŨ.l~_ş+4]{+>d[DS4>J[؇2o=jCHw@U6HZk.Cpv~rpl'.ǟW+^>n!X+KjP;P[>X+x;ys$Vc'vW6 C1>Y 4Uиj*a لifOoq~ϒ.s a+ceڍ3쵛R٩9+"Ń!Y~UDC37rFz\Sn[8hZ(cT!tvHĆ%Lk6-'GHu% !q+k8/ ;F ^_J̟RigR;3Waa*gF%.D0914mdG[C8]sbLN{:4lCLCY*mŰRQqSb\[>[2Զ1<\CN3ߙxU ,TQ]; Z5V#DZhI+'(mXQPʛ{rE w>>qSLiieN߬v8L .>ܿVz"v` sP2ԋLM^AG%V#zKSU=?Sn W#NCC?#F]6Ly?HSTȺ%1׻ S3"ʼ[F _iZ/Aw3'ɋpi)6Gڀ7e " 62PyG6i\̭twlQ~Dܷ{ޱrnJ]zTL@ӳ*$7jyBQ?{F?$fUς5;jԤx,Z[^vkK#ɕksz]˦u^9hSPw{_\3Y xF!%V< }EVm4ta7nۍüg];w̕cIyEOc@{Xhn4b :܃_ŔaH,[fmn.\gٗgI-zݺ E哲*"eW c͑D-ƿ(n&pV\ J{z(XI-Ca M#ɮUA6ZTj5ҦoNm@Ƚ 7pskqðk 6=]:8fBw]6_n G.>[tZpPp GoQxcϳŖlŵ r0ʚrfcw%bJi9J70ؑ.tf}W/9i[wd Cl7}6OKsDffj CS~S?j ר O&|p,8k$)}NS 1V2Dx1jP?#86`eAQ 'kILUN7S/F>cxN[n-f6e(ru{3nvilsD>˩2H]Sֽe֠ ճᖧU[ 3Ӡ'".wSG.%,[sdYV(6M5jFG &rgng j؜p<ھQ{tT=)6oבV- )P$5h?򾔐(mz:ߪ 0K>L\IH,D3eueWQS sr m Dh忟㏒ v'N9^8h2s {U3BR]L FūO2)B+[k;2 Bѓvc^Yv \*ƶ#{S61_vp4:, 9[#(F%ţ6~PTOͰo o /܆I(#w҇gzV Rn#-7#]8?}$tU # 2L9?ܧ$w5Ґ:7,9$~v.$}0mE=)k5xAGHv 6&BOf6,'fκ+z[z|bO^ߨ3vj Ḱ!S?B18>s*49;##0NvAqI`z4ڪ:>OD]1[J7s_kPŔmG%{o]Z)?tIE[ruIx )6.gj@<#"ݒ3<%Y[>D~1W`p}c(:xtRSU{;/e1{F8I*Γy+y#ځ)ֿ8E􄡹mMA]EW3nP;u7AQ=:#QrRjASxȲ9SAvL|bէjYP Q{ڊG4y]Byv _DP9`"**t}hqn<Ԧ"*,A`+6K9ayqJFU *iǙ`rx+ڏPWxjaNx; zR㴐OȪ@xA?CtD Is6g 8V+¡6GS-ƙ}_aC=D%@vtȸI-a+V㪲wլ̍xСydЏ$]+iki;e%Wq)[!JעC]jp}`^pЍ- Y=~XЊʑ/X}PzaPӾ^$돖-bxJN>$c$l{jȁZBulKˏt$[p-+ޡoD̄3)C瀩ZY,ھZ OOqcl2BAqC˧ 7=@4 C+~}c'l1gF/C%g_\EOE%h DL=7Psg-ybl/YN H>ϼێca{,ݽfaT+'xiK1 xxu(7.FSGSM,N|:J4Y+!YAEl'"8{ZhdK'1j(<t![ɽ1{";n,<dn4-NLѷ@f${B0I:*g:#%:QIf磞/S N|4?0 $pԩmOQGCEB{tE%FoSɛxG_RȺ|2g8kN~k+\SշFgJfL5Wh} #UڷlƢKEhhJt/E-;y_0W<1d+BNOciq[ W=M2\isi*wK6ؓkY5C{P#:T}-ɾ,T)R'y8""r~o5RsU"#OB\v o<.pC[Gw_)HLBotw[\~q'+}F V]I{\&e7<𜜎~4@P U.'|Z%TY SųiƿlnzF'Rkƫlw/]ģiAU{O V.zjm $Nd2Q${v7jM8Znz3\a's>9L2tb vhu}j.9j 99VD }J| s:) CTu ֓CMH3mke`Ht$vfBky|j(.(7~sqͪUA&0 mP~G5vvndyT3V]4Ctwjvg)'mv3uhL8i+ pOQk9W n"n%&g- XkZuJ` endstream endobj 67 0 obj << /Length1 1418 /Length2 5966 /Length3 0 /Length 6933 /Filter /FlateDecode >> stream xڍxTS6Ez^{ $*IG HR H&E@@s=v;Nd34TrB:BՑ H( P3@(Bi Cáۉ8͡^(!/(@4HBR^U 'F"("N- III(y@`0FB=0!`8 AH#F{J =PBH/y^/ 0^>P'/}5!"N+ {A"Po 0xBu$W?ѿ!\08`+C _@0ă}08u0@]0yQB(G_i0ǬpRAzx@hѯ¼̹ i;{ C89)lj`LD@1A\0v6c8z"=`3E@h/ohp:"N0u!c: b}ugQ7wMTPSYJ H !!g[ ?Zg$@/e^?+#1zx-{@1 swO{<? =$fB 5zP'{`̌(!\0:CN04/- L 8 5D`;( |уc-(L~g]5kE`//?F U'oH4& pFzj,(v{607 ^^i >^}( !ZCBd"ݞGv^+1 nᯬvǥX Ċ=t%՘#詹 Fq{Ö4XjGN^@Y .)Slpm-殢$zE}*FmYK<glYD=Vl{I^6ަZfaIʝ mrF^<=.MEOV86DOť,vRN_͵ }d#uHԻE_%7-ލH9c&X,TjeL?ye=Ĕrs_w斟f㈆{d%Y]ei&fyJƹ1\FvʪJ2()z\Rı!$_%)I"s!,W {ڒ=Gg}LKT LCspu>> [WB4<۲Ϩ׆kuw$*yMڑȺHۭmUH@"4=.wO7}PB8W-|?-y;Wz6U'] lcW3B/O'c$*^H&Yd|}so9]q'j 򷰊Hj$6[ gߺ՘=zB&͗!oE;h7T3j TdvH2N4-*{47_A>Bal|^9M1U&#An@zEM=o-tSx>*eFD3Cd]-% C;߅\r'awȹh&#fZ΁:Uc((1}>'l۾ϳr+hFDS.r'i?] Ihbw5S8mSXM䛋!}G'hBk+꧉fƙn6J:Gc" x#Hj39InFj^<:9q Pup*Q9;|rp%̭r⿼Vo?l晢-E2 q; ثrt?jiKHtܱJDZyφ=dG;\ 'Ƕ6W)kkvl`ڃUڰ.b+o;,8"%qe9b:Ӝ䆉N**[a1ةaŢ,L0U'bxqil`5~U8֡+'[Q!ݪ~)mfpU¬1#J. ֧׾xMT p6/W2eY=>,RI͚i2 nI#Hڥ< v R/vC֘xh6ǧm?w%ݙ.salk!~-%8Ø0c4DTrB"dyI]Y]IK!oW!VceEy7$\;*6)O'&Ϫ&ådN K 4T<VQV/evVyN؉s?{Dv`%<"3?Wݥ7lyY_@އAJiKZ3$4wOϘiQ8WC-v `$E͠b% A[<m_V5*k:Ό^Er5F[yzne6DhlY jS2xW*Pm߳%Dih50*|FF۫.4a\45We J.w.usB+AX cO; 2k3WPRlI;t7M k6h~ԓ7:6McUCS*|&f#uΨ܊ۅn ];!ʃY㈆ "]ܲV]+P ҄">5;b"mU9~ pa{lǚs+=ll)X2y@e)3dGE.4[0޻@kϫ j8xĖ{CJG30 ϗgI,#4l1!ˈdg_>1c9tJkjĻ-Ԕ2"tϘWYǽHWYpD~6oYP+w?7`~9B4O:uʯ >^3N ĭRig:ϖ_:sƖuiҸin2́4\uv,uz[O(1罉888kڙAї;Bwxc )?F|heBlsuyY}ð 3bA}ۨ\/,I|D.JjD(T%f5?g"VddndW㱅ؙ|Į =s1&GJ!kF4;=,8JiS*j }D\fz(lo}V\|hufxҔ3Coo̙֞ w1=*I]z𑸳{"iO߹"Ȳ [o2^T}Vɀ7䦆~ʙ+hW/~d;Hkb>ǣ¥'l=2_Fᴤ?٧U4/ $ߺͦ_{3v*MepJZ1tzd!-&%~Ze- sg*쒘R Xdk^ ɮ>:fbدP͟!}"[3J6l'Lʓ;¨ rm\]+ó^>ӈ%_ȅZk;uRᯝzxrhzbÔh5w N^r[j,YY,N>`M>B'x^] j"u XH}r/ݓ)|{\ކY˼[zzD͍$}ZFUV6EZtQށ ‡O>jPjvaޡ3_9m Rdœsud\ ^QXi $}=q4I)&#(yCs(7bj*T1z,MՅcscGmԆ˜rC1g g:󆮍lZqFwcCULionݔH p^]p6ON>^e(Śs -!ZBt쳺sh7,.9J 5kJy6 ^2k͸ Kd!U-"6XЭ(8gf",ܺNkz[sT~`G҅`Tj(s\ g^ܸwz>_4̤Ql%Fayk}2"›}QIfVOW =ifB@-|S:F3@z)/?j7WKB C{!bG%kUe/jbo4C>O'0-JPrY3'{Ñ(+>'AFƼd]:|=7:tE D ~Q B O4馛F˺D;|jL0+Q=<4A,*z:.NK nviobBim`|9`jt~zi Wu\Eǖ#2?D_xX< .ujf(?p9%ЋΘO713 xؔ}1st/+x~\NOF+kV.mTaSdqG[p /hʜ|ZaG[e`EzRH+ oOI?e{咮_0>`xt*lglP.Ohc7Ŋ "{|D/Wƒh6 󯆆wov/wd0ϮȌ-q??7+dJmoOԉ=#+hyxGnquq*=:,bx\}msF{mvC%Կؑ)Z3cjCLpiں|9 \Xvsw&/"m ]t{dفg J10EB(vC2n_6K߯4e YGʎUp6.#<ŪNŸ]zǰ?gs{Ѱ/~6%u>}qw6G0Ar[ܥqeo=BXS_eԵkf nhq19Q m B@CESJ'>uq|9.:\dBNIK- 2X*=` 2*? }:ȢqשԻ|ۅ 'n+Tɟw$(3n4]>PChg +\Y%7R~(șL3|dXԺxU}㴤qP].ȣ!D`u yUF@G1)ӟX>#v NS_#„NbXm7jYy+CƉ ilW7qMWO+")_2VLqፇ&o["[ާ}KgݻP]P*I$s 4b61z+_QXk4)dϿ,!"ز_č8Yh%U V0EP|8?|W}f}q|yII&sUDU/wr endstream endobj 69 0 obj << /Length1 1562 /Length2 8863 /Length3 0 /Length 9888 /Filter /FlateDecode >> stream xڍT[6Lw%]J 03 ҠH)!Jt"!=oZ}}ݛI׀OnQÐ|-C5Atmc3x p?"< `MԂ.A!# AQ H@@@@h0MupD{ wx@m0qh vmJpJ9"n@7?pxC} BƏ0t"t`)0;;@Mg/ _ٿ Aa$mmn`/@:ʚH$/ vA^` >z=ÿ!l=nH?#wcV)]]!0$su07oda4A=!jܛks "b 1un`)|!  C`/ OP`El Pߛ! O Ž0q@C=Oxp?$" DV]0M/ep56\wІDl?CGWwπ u+^ϞЂOCM ^5$~Fa:E(C} vPZ2{@a]8ݹ:߿-+U~ HŻW= Ϫ08>p1`} O$ /G b?@?}2 " FoS@lᶒN {cqL֕h6B.wNx~L *kr6} l\\}+o(6BC㉵{r\Tߧ6UWsh'@{M-&&D&VF~b]q(7+^y"g$pkM8kKOh5Gl럔^r?A ȲHfǩ;W[FICWX~ɼ+džcRCC\aG٧rrie\Y\屝Z5cIBށLF]#1[܁aPmka(oⰝf\CG5F]ĪlLıW ,tFvUġiWV`g$6J.M_e|Zd๕Jt4ާ75`/Mf70+b<ƨ@aˊ? {jIu^X|t j?qӼF7eq^'Mw]|咽ovAoT3h_8gi!W]7SޒlAGmYw kJ1V^^[9Dmş8 Ge%ցdA( _t|aҒ.!;\FB0Aд],wY1!˷eZvw}_*´X$d4O8Y7LhM^ u1n`F=`FQӾq4 lt ^T+ ,K)MwEWj$15 ^ysbm_)@O{X=f[_Ų YR|}'*}+@2xpjڐS]5Th<"SD)gֳ*O)}Ff}l83l7oqՅٶ^:ď3.C-8u?  I_Ű-%FL8(D<,W-7nE[]X`o Ol7K`5蜔V6dOt\6E3׭m'19H5U:䤲E9ҜGI{ 8Jz| CWMw6WJ QS^0ohEb V*Qq?>X@0aS; ]S;q˖?)&wn.t`Vw$}xxjE\PMj\bVat.q4b-2t(ܞm8ݳᔬ,:=}GcArlh]1^1y-7S?d},CÌd.-}y9i(H>OAn##+Nvi֩vV 5q$عAwzƏW ekvvރ֦'&#Zz#滝E-#/9wVrge]L%qz?7Ubە ۥ;a+' 'hII<FrxmTXr祀kK cW+D). zv%el}Ym~f4]V;SC=a}{wK r&K#s -Wk5q?R Pr"M]/ (pvJׂKA'k/1Hض|XpༀsLL^RrZ֚.^6FQj?wYɰѩaSfT\\ByQ&X?+&\̆Hkx~q-Ig[*Y65m.y%? 'hA*=%[<7cKÂ. sM' s y "$oJ'iV}n(^~0:A_tN?_ZOYR:&$yL:b@ܙ܌}AǦ^Gg Ē͍7-z) lP(4eL5mr?vfW6'eo\1L,3b١IT,+i=' %ŘYFvRrVT_+V%r !oѴ\^5@{oԣgfk,vi瞮i58$#謪jQ l#81Vd+"/yĕF@؃?Pߏi~Y7E^9qNx8p!%/\@o*YƉ-SEt^=-mٶ~msh;ߴ[?XŚ "6}3Ӛ>8]ZVym)sVO2h{ )G>r6k1ZH4~ڵs,϶^BؖRJ|'˅{"g7n[3A"Zz`6b"Q28p)Kz?Fu^_4e뽫'&]jLI&DGޝX}l}Tڛ;bw`ؖt?zل?BQ c&CugYLhVlP~MЭߓ0L#'9*ٮc}w3X.UH`脧 !QHhg6dSmiA,x8HoY@hTym`ϙU"ޯ`GV7DFIEf.;{=ҁNLwϛz-_EIZ%kREɝ?&gil^W7-t"RF1qLU/ɲ泓ڃ|`7.v` *W} E57(N̨ټz*'3MubrD1UռD?%/)n4o k?.9\EYU4.Na./i0ije=k,F?(1Sq̢WGMBՋ|M҈5q m d‡#܋X'Ow%y4نoo[H=ա%zU*,̎276a>FT/LH #UB7?=ME3x6kh5<2Ӝ9(*8UKEEJ:r(0Tce2==LL8:~0?ګtjJbBF6V"I'BNxUGdv##mrB=F"O$Em{Wd|^XiSݣ /:A⶟Y΋mmh>Li }ͱ~~zq@{R _9af_Rfk ͚z7ξvWYԖlM4$jK2>/믘.(O'%fblքh%y)շY='W}t 2:3 ?ۄ:(FZ=fY0T)R>B5g-|2ןRۺ^z%vvndBx˛#.)%ů$h QH2 lCiUXIO'FdBQ2Ui?+N%TE'8tXJ>sNlޏar$xF.)מ/,rx-ե@5@M TyY% ږtwaaVx$Y!ચN Rk椢gԖc(oIeT'mj+R*F2n"SkF?JIxҙɜӵ+uOz* Ҋ|-4-'[&뮝:3־L5]`2bCQdh΃V)"Tcp[KZm OW( NmV0zbL~tSa\*Ds[4S,>txf$ro4Eh&;<.la Ϝ㎯_tU~$c~ CڔY&qˑpY#td"~;R LiI%͓~}\!7zn4X ą%C Qfl|P٪oy4'~vky?2m`r8WʵX-+ґKl^㍒֐ac3zvBιl6 OtgB]oM T  ӌbz1`tTp6r}.RR"p5oHXz,fATE$Ԑ;i,Q GQ,}gcGz`t֝| *q5֗P Q'Zf1!_Xk3B7]hwrUc 4`zeʤ}%m6X\NXo~fGIINzrnJ\#hFAQoБ 4(gJӮۖ ?.d@nn>,꘍ ]얔KԉƇhБu)Dگi(L3mP\cJpОFS1gqA3Olt3?LjU{(@ iyę5'l 8}ΗY g1O g@%ET鑝k>$V^hlK,APAano w-0(+q[`mK=<5Z$mEܨL[gN.U׷0=ύ\]reJ^8ϴ:U\j"OǝdZ1B%Ze1aW?`{D;ԊR#;:֖V*=4)vHn]ߔ~(|sϋ\dew꠮$eT+r's>>}s}(uȅ6zfVAua'Ld|؅a!ˏhG\HIK6sIQEow,ۄҬ8'qY!#/_ce|93%;qEٌ&i]к.yV]aj-R&|a*OޥD ߵD_v!7l<7a>~W/$ fƝ!-TSV!A21_MZZ8!Q3GG-JbZ9$n~XD206{>dxq;7hZסU٠Wvi3Gw@ ֡j8Dk(F݂g3KC"hF]̝}[4;Y]qڴ;K[ JR Pg/ [yo{ @UYgt 9T*3_~Hy^"M᧠ )w`/r28Ϧ֤hW6,`QF\2DOϯC Ygu !a.JlЋ}weS PxW ѡ񪠔jE5Eγ=[Tq!ja'ѴڹBe`q]Q|Ys]rCiWe}eމorpa(_5f7YK)V,wQKEUNn,PH.S,~bS҆'U6Ž:VaT^dȆz=@l,#=s`,ͬ4V QSY6 M̫Q]u~>|({ۀU΄8KPfe84V N%0Z]U$4OM+m+7^L">GƧo.^O]&|v!Ǜһlp"K򼽟պ|hgh@dq%IN<M9v?5EPLVY,U vo7 [G, TȜTqQ p"n? IvF M(DP@մc1*a1P?;ݪ.ݩ+>zi.oTA w,bR.~u`N:{^9fVm^I/JPƿ7TtԼ 8IWmT^M86:kh1`Gd,q ,c77~-ol0q endstream endobj 71 0 obj << /Length1 2248 /Length2 15597 /Length3 0 /Length 16941 /Filter /FlateDecode >> stream xڌP\ 4];4qwAww&+9>sj*2u&QsS 3+?@\QCʎ@Eab Jrv8h.0qy7Ttȹ8ll<vVV:&nEf=Jdmi?Z3:Q; hb{hfb Pw0xOZA+G~wwwf;gf:F@ Q(M ae/ xZ]\́ {v@h/c03@;99{Z[,me)fF_&&n&ֶ&nU37?g33_Y fI{sq;;3_IXf}d;{YXۛ[EՑ壽+PV6"?2K t=̬XJ[#l\T/B`c[L豾 'G"(+oU9x8L.77-U1wm'koۿKC J ~}V.V/++ߊ\mmGobgmoivuy EZ"je]L7DvXY=19@g+ѽ~X%Z=v.n d>_\\o5z=f{w;;_#%y?"X$xX,REbA?S)AxA 'EzzϠg/{zgd 21/,\9+hW诣d1/xgm`kk{' _z'N{)n9M,[c_+OG{Ż_|zXr}fg'ݻu~o47GlPd{O!?(q;_b\N9glw?Y8+,+.N}_@ ayL S]H}(;ބ,՞V*2+]ufVp$ Iklx[jϳQ^;dhbx"& }'@Vn9'W^<{~ie?Tfb>~,56GD Gq:ws;=F*π{Q譻akBݹ_cl[0Ywѻb+3Rn3~=Y \V[2o{=Kw$=ucG:E< ww)<喢~p[,2ԍɍYݤ׈6<6jؚK/" >oORZ&Og==;% |MCE,Hoԇk7_b,wL7Wݝ6iHY.vJZc"Ovp|-=O*vSq^'st K'QPsM[SndtXVvu  r$JNP"q"ޅIFųrhPҫ̤{TK/7TU jyC()#lPC:;۫91T.v0PZB/~,qm^=T+~'fQ5YYzy}̠=̊8G oVno,]V>SjP5svZk$y/vRkˉ5ţ sIh*>)D1 |Y,3`]%[p野k9iG>`81َ(usijg 'L<繫)Noz.S3#+2ӢZL3^闉!( (*HhA9t_J}>N(=l P)Xr6gW#T5~@TO/Չ[ 6:>tĨ ؔS)ڻV$ɠ<\6uRjL߾~+r 5${ Af~wޓR-R_x.y3*0Z#Hm+B_Sv<̂a;R!GiAxfTgK]dĽ㋢ Sn'A ReZQW}u` 4v=DϾ/ɝTe|lL[!Tpo/ݢlē7qa(RM2'2 TDr4GF2pH9 5PU jjvz+ 2 š ^(E϶N(VEih!^~H!34rþX@1|,9F($ph_|,5}Иk, ]#1< ,2͇lLM%F~C(uiv5nMayC7R8NVߡt/lLJǖ>:WV^o+aYΘm u8h$UJ@ k9[亷'B~3޴2CЈ-6w'\~cvp)!q@*akݿ-=]Qr@eL}JB'Yz\/C۶I^lrsTz?uV-c-3@9n%48I`bDuќ9 $3Ù}g2V[H7~Wj<)mooQ)gbca:RV/>e&FJ1 [["82M`. SkeQoan*@)#cm9XeWt. )IpU^Xd>&U`]d_#HY!s~T8Qct(v?O٥I' y8 U+IBGg3:!s$Bdi7/C.]ʐe%ʼnޘ/hc_ y6ѿiQablڌri8$ 3W"/`fQҵM|Gp oð:=e.FiY5Ba.}|:&s4C\qԛ3ѓPr7`r>+`K!L>"D>Z1WjL;)r)tqA<]ldAN[I,3fS̘FlD\Eb">@܂390.U:A_rѠ]!8 B؊z E"69 5YQG46+W'%7%vSۧ=m.Z xMC=Tam"WUСR—QavG}dt9 :Nt0Ո,̸@{.FpE+xïmICowLŲ''y}VJOfhAB؂1cب ՞a#BoMCq #L:}2$J畞  lXѥdqA[M67~icᬙ)@ knmq/Jdh2YBSC1@jTgExw)K+E:%ko~m=^m랁ŧDRt% F7\Mp?*K2k6ϷqDi5ρi T;"%)j<>BAA.uKKݍ꣥Kr<%?,>c=$I+:$z7 ֍\Qp $hq>tW*~bîv/c= /PYe.\k( |',sğDw`{@T2[q@;a1#LJ8);qJ^d Upc/tb(d<\ܛĚ '/ <& ;*xÒ%ͣ=Fil`#/,r, G_YXy]wTHaUl4 7O#\&#Tmbo5Y5IVrrꄡYR^jW$L`>b:8E̻Rzܪ!2j fB*o?y_ HVV+dT'Ԇ7(naGjzPlPnvCw%!(8Q_dpb:hP0+08&AsEsEF .Ilt (%ŵkrKTUGKSIlpbM1? bAw(#b(4.rzq]jqpA# ׾-<"aIlCVS(4(oZf*IoTq%@~)zm\-6oP91 ^y M$oIh!IYIEoMu88xΤfe{Iu%,$b"NMށCSrA'N jw6wߕ pG0iłқ&Z#ΐ߁=mv p{Impj.ɌmgaQeu+ !:(Yɕ/L 0_%+"IF$~' GO=F,_p KMRۄ5iM<αIqsů"nXgAUB}3#HOzsOsdLEl5\ IL^qdSdbN LdF.PR*eo;fT~`&ldhåﰆKT]Cv~cC %%GB|OZ0y9c)>ゃ삦~?O ˡ= FOaDUI\%4JT nFC [f~o%yL }1C\]Jni􁱟@~{I~gmaSv@T-u:r[SGQ;RB#?x2ڈ?P0P\I,ސ7h{T-¾"BΟٚzc yF%.qlM f޻傂nw-8c^ ႏ`CSk`|c u@L TJϣ\SV2^܇V,Rf-zb]၌(cyXܶ6=ZwLFR=2MB۹ĐCBaG5:HWYoyx?Df@xF@U !D` TFHSՍO(-bf6̟mO2G34؎IOx>}?I%їi_{lަ8~DPͲzם/$TsZ5;j(}/$eJye6+mDŽx~TRP @&+I iE\$¡rf˼ؗh ^|;QġY2l^G.2߂/ P84c,oΦkgBkz襵G *'뻱R)Mql`Aisئ:#@Kl,!p2ZPR~a k\e`J G x[QK7yPT'0ύ; WG5BgMK<! v*3!p_XxRSx-:c\ݸ=u OtV"H!%L8H*3u%3ʦG阫}bZuUhi̟эlZ:D*Zv 3QQ $])?_0D }>l/OjT*>Bϕ]у8~ O7.RA'7b&ﵠT!n̷lCy<'q0f =2Q:=:z\%wgvenمgm9xH3^Ce7Xf&nڼ'̥F\B`FbRWYen \G6j&Km7y@S`=3f><#D"7/1-c>Z* 5$شLQ_t aSUL쌻7Ӆ_ȭ/x_~R?+'<@hZa`\F$s3e7|Tzk>2DF( ~  xm]fS."D2V|%54_K(Q$6m#9QAfJ F!]eúlB5-*Fywq KQ J5mpf![R-a47 l8Osɔ1Xmwh6.ysmHVx؜?8hC:YѨm!o-B["PIv}yv96M)6ޓ* l 4zW橈j}2Ծ ytu(g*V_?aOsY@C %aÙ |*+Z}+abDXIS[P }Lhn9 +R7FMĘhBA,V+-%ޔhvj& ?DuIoh,sv8bP h}scir‚~e@#w-V)S+w"x,fdtmlHV}S O3/8|Ɵ! PA{> }!Hېv"Pщrm$$);:Y, u8k ``P*dɺΠN0yfL# u'1#7.WGF,$`k*eHl{X`xe>\KW߸Pɴ,y-sp]\M| ;;exU)b到5NѾ6\sTܻl8U\0r4d|ŧU0A1/n׃QM4 e^#8V)9*7l%9ۘrRCי9ƮeXe0ѴFtָpT~~,OCvTqpY!:mIOg 6nHߤG7~}<9.9AA =;~W~S!%?R }{J4-cĕ8ɯ6O,CGYsSU>[txɿ pZFRww^C?ɶX4s-t.C"~F=rJRZ, t&s<\Rl^-Kk]Oܾ} EЍs1PX oI}dc-O.}qѣ"9w@=M*OQ=ޙ'[FRvjgZiDz'c @.ehOS@kL4.6Pᕈ.~E 1;@ڮ֜"o1D[6kBc׶+.s{A$m+ 02Hkz/q|e0{t䯓gmsmkO Fc?a5zC5- O Y8`EWvP ^M+blю< zH)u+7^FGZv:H7ƶڙ~>F=^ f-~q0s ZyX(y;֭bo+I^k۵x@v159cȨh'1NSb`vSL_˾i1C>7tG<Bu+`ɑ+Џ<8нE WP0t<˃#|*&Q*޴w{u Zyl'ƃƳG7VWvBj8.Xs@ͪ5 ]*1ɽ`My~F.OnenR,qC/s cT paqSyy4%(@G1r(cvms <%Y ~Ig }Q @LID8|ͭ9~ d9+Dk7#ڏaoTNe'i("(Bo/E&z?8ތ8H^)# ܲȂ]?=n*bl˃HT>[Y9 Z۵gx?̓rfۢpS#n6]ҧ5MuMFR腐lȓ`(~ma?L8 "~]Nt%fCQHI`G:?c}5MfT^YgOF-͌IC/@3*+JO۞[RL)w)'B$I~!>n&_A?@I5p{&S@#`eHf0إܱ১ nV^^~xGaXD 7G767bU0/鱡RTKee]3,è8-cn°hbցu)7>'81Y-lb5`WG_nj*s}.9<ղj1WݖҢv=Lo zdкRm\XP7 G ;UF;6^Q:f`,.JV6EcPh.=E@;Pla%SGZuf/(skid?<IognՖk z8H1PEg6;w.y` 5P_+_$=y?]O飩>j!R%&bɤd- JN-6Rfs>sZEJU4ZԖrSZH8VaTs׶aXfF'nBSY4p0xbVPޯᶊ68#Nsǜ۳ex #fwt-?\1>in* ~*'`S bA 1SUݦg%*D]>h*ׁVd,K'Tfx)lR=P& (#]z𜝾{kQ!ЏCH13:r}]Assxb}r|VVqv U\"UIOzB^/YP1bPj,hDmo, @ RV* 'N[_@ ҹ'r=RwVlq|B4R:M|{$bM!4/ӦSmbf*.%-)])xTO%GӪS1|jY7dxpkgu'B䔁>_F/Rd(~Kor*jR;%kUmkeifĭ5kAOU8 U *ڭf,Jdp3 ;;QǾɗ,=_sܹ|/)ETT Z P\Mif{Pכ"eWyEHd' 6lo߾D8x\;y&IIH*铪[ض949v7:] 9Bo2rauvY=)@?6'e/Olt}I$7c_WbuuLX~)޲!|Bx언-iCG(.rF|(m&r:.o wʞ /s]%Ɯփ}ml\l:tex^*$HYA@ z׼ZKȄKP:Ddb"YJw! p˄ee0в_)wBy%_DkrN`NewZx%J^4֤fM` Bk{C̓)C6M:X`&Jy]6ͭyCy%⳷92W*ۉmNUOLڬ2:}&:ۭ̓Nw(:\*5u~c>.5-jxs?5S ч $r+`+s4wC~<%fJMM4ã S,'pmqtlyuLp S t8{eIU1z_ؐTo#}~FJ)^Z9sB>ھF(1<םYiT?tʐUOEDMB"ް^8'#&'w%(5x.!kT<ииzZ;r:?ZM-HVА=({aA,[UbZMF!;w& 'kz=WFoB6癉n3/ g_6~ ~3^ =k r;} v4SgaM^n}pdyG3rC0gF_ZrT(:kvts@+Mil~^q=}bfR1:r.\n,R~I2"1d$V}wr׳>."rgRmǐfB?PHCˮlYq(nצ%UWIa>ͦ}HMC t0 ~"-4 Z k/])ہ>+{:șS5 /{Pg7@(UM|iApFgc:ysRoV#pk 6:D .I y}HК_@2 // $/A{GPRo}s,'ӭjߔ*} g6+]Fls957sȸn vs E1~Cp❬[&O*GL$ H4Bx2lV}/*gɨ)+_d#tav.EdF96x%kHfƻ QZ>hegiU7H1%Ȥp=' ~Cqج/,:LoPM<ׇ[e- SۣM$u+&Shh1m㙺zjj0^jx@۱0_e9pa N.a7Oˊ _xm(2m@{b{N t-08 yǖsJ vGE"O*<sVrh XOPɤ;ҶZyiI6DKl·޹܂zc_oӤg8p1.p0|YYňO̍"B54[@{Ǒ Wbo֑HOq"hi|wv[ lv _EAui%!햽2~>fFH,4Y#UIod@TX&KNž2 i\ }/s)#seTFzA,1AN)sꢌ< 9FgQ^/CLJfͬc:WrpyTWf,T*{t(%qCt#0vסB,c:n9:GHљ_D E8/ܸf-W0;dW’2I !i~^dĈX7ZБ 0EXl]+{"6,SC" g *NnuWsCǰ5𙱨v_əd/,^mb7EvcT !VW3I>=9WċߦYLJ RC|jҦm^w~KO9{dqSW퟿m|,?YHCnԳ04 Sv}5F\m|dtQY(eDL[ť<چISu䄅!J;P7\R }6ռ:C?1I7ڂ(M6#EK -=DMP!C7E-\lTm{_tQ{%l|6b[ 2x̒2,nqb;>טmBa]&57TDb@6c_ZY{Ï4{)*.6c?U"?ua_Ur(?.EFދuk+,\6oV޶ثt6B,=ۛ`Y)AjD8_z5~ɶl5Tv:1;5ZuQ> endobj 2 0 obj << /Type /ObjStm /N 58 /First 449 /Length 3236 /Filter /FlateDecode >> stream xZ[s~ׯcsDf:(Ic;N5%G+I}kob9['6%Af%L3-cRItI0e!04 0c-O`VzTdI+cZkd_`Andy`P#0HcF2HB_ئ)H@BY =ѳ9!-Rl1gp>0猇I慃Aż0h8^0X> :W,8@( f5:j 4(JPJ5z!IT)(؝$bI0{r **WƏ2;1>j0+)7GËwgE5]"]r>j6 T (` ian 2獼w?0@-l_86]N&dD[]:kU@0> E!~@C:N}Kj}$Əq`Ae{O/ }.el+^ڔnlС}<|%6] -UT]]+zIg 7a<9p=~<[#?^U.!:.cT}M4Qy<-ЮցEǟ>U: Y X9A}hCֺط,POsE k! ԷڽhvGW6#IٗTQEJ>!]jQDAP“bIC}*}%B %1hj]˅I@!6j<.=`iT3SʬAv 4+kRQjɕ)}ﲏ619cwXZhGaZ chPZPIDSq%PkޢνD#'dXhHpq3EQDTP0 4qDg0{jp)l@GRLPKp5Tڍ 25P쨄8C;5K2Ԝ&?1`D xHƁ`C5"8.P-ylҢ@0H5jJ:Rt14exC].\S' R VU٠IO-)? uSC0 1ZEZ`<Кfu99~.aLR 8W`%*rMD'Dc&嬶Hޥ<6*i҈7?/0{d&E(cLItpoC}(E&ĂSJy>KP*&IB6FS$z-RbJ#h3){=Vdd9^k9TV.AkئO¡(edM/k|BQ% E!$I̦WRۻmc].WCTnsHR)vX%'W,R&>ifk&uJ2m l_XF6UI(tD)$ @꧖$c'z(#PR]< ,j#;AcAyM~!:H o,lTTMUϩh1T#`|hL8פшmg m7a`^Qrj{:~ú8TOjӈPYEyr;nJjD-UBJE^i^K+3o!TrOszqWգz17P۷=y'LL53;ֱ 3Q=.i5zCxhz1?^TWo̼ˋ d7R>g|y/% S>s^_/+A` \/_f~O޿|F\;>G@'ȟ 5nuZqeX~jD U@%zyu5\Em0 v^g]*L4'ݲJoOJN? S_h6h}8:z~h^uȈD8ks#w  nCK  w}=d6% ~'rNe5Aj8Z7Vpg^k_Iizsw]dzs~=Y3-4羮 D弪?_)aLIA0s,d;-"k]%&o *>| !8bZ'* v D,JO.Lt9/MTWCetIU Y˫j^/[ 1g^`-rzFy"K딹B׻hVQ8n^xTJ]@Wn`*V<`:.90]Ąlt~QDĭba2,YCgn +]dzYyhc8^W7rv:9CӕG}|Gn}F*}qN0~qD T )܊pK]pc޾ ~EKivu޺dl)lCxo/Up7);{zmv7 oυm>v1v{٭%oչqnVh-7|͔~n@}xjImtxPzFh m%r)v.o۞^z[Y%\}G녻ݒR \(zYco|eo6zxX"k`җ+jop$=t5$Ƌؒr`U%]Wgf]W/ $uˋjd& endstream endobj 77 0 obj << /Type /XRef /Index [0 78] /Size 78 /W [1 3 1] /Root 75 0 R /Info 76 0 R /ID [<8F89DEF82E3AF6F7C6ACA93DE8EBB8CD> <8F89DEF82E3AF6F7C6ACA93DE8EBB8CD>] /Length 216 /Filter /FlateDecode >> stream x%9NPs88ZP@b: has. [_/+ɓ$%95ۢ Lp p gp 0V3 A``!k^blr0y )(@afadcuuh>E-Y^Tz~Z^Q+vj?*M=jn=D۝֊ڰolB .ҩG4H endstream endobj startxref 151448 %%EOF genefilter/inst/doc/independent_filtering.Rnw0000644000175100017510000005001112607321410022461 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Diagnostics for independent filtering} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Diagnostics for independent filtering: choosing filter statistic and cutoff} \title{\textsf{\textbf{\thetitle}}} \author{Wolfgang Huber\\[1em]European Molecular Biology Laboratory (EMBL)} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date: 2014-10-15 13:50:07 -0400 (Wed, 15 Oct 2014) $}{8}{18})} \begin{document} <>= options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section @ % Make title \maketitle \tableofcontents \vspace{.25in} \begin{abstract} \noindent This vignette illustrates diagnostics that are intended to help with \begin{itemize} \item the choice of filter criterion and \item the choice of filter cutoff \end{itemize} in independent filtering~\cite{Bourgon:2010:PNAS}. The package \Biocpkg{genefilter} provides functions that might be convenient for this purpose. \end{abstract} %----------------------------------------------------------- \section{Introduction} %----------------------------------------------------------- Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance, in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance is differential binding detection from ChIP-Seq data. The idea of \emph{independent filtering} is to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the false discovery rate. A good choice for a filtering criterion is one that \begin{enumerate} \item\label{it:indp} is statistically independent from the test statistic under the null hypothesis, \item\label{it:corr} is correlated with the test statistic under the alternative, and \item\label{it:joint} does not notably change the dependence structure --if there is any-- of the joint test statistics (including those corresponding to true nulls and to true alternatives). \end{enumerate} The benefit from filtering relies on property~\ref{it:corr}, and I will explore that further in Section~\ref{sec:qual}. The statistical validity of filtering relies on properties \ref{it:indp} and \ref{it:joint}. For many practically useful combinations of filter criteria with test statistics, property~\ref{it:indp} is easy to prove (e.\,g., through Basu's theorem). Property~\ref{it:joint} is more complicated, but rarely presents a problem in practice: if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without filtering, the filtering should not change that. Please see~\cite{Bourgon:2010:PNAS} for further discussion on the mathematical and conceptual background. %----------------------------------------------------------- \section{Example data set} %----------------------------------------------------------- For illustration, let us use the \Robject{pasillaGenes} dataset from the Bioconductor package \Rpackage{pasilla}; this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate samples the were measured for each of two biological conditions: normally growing cells and cells treated with dsRNA against the \emph{Pasilla} mRNA, which led to RNAi interference (RNAi) mediated knockdown of the Pasilla gene product. % <>= library("pasilla") data("pasillaGenes") @ % We perform a standard analysis with \Rpackage{DESeq} to look for genes that are differentially expressed between the normal and Pasilla-knockdown conditions, indicated by the factor variable \Robject{condition}. In the generalized linear model (GLM) analysis, we adjust for an additional experimental covariate \Robject{type}, which is however not of interest for the differential expression. For more details, please see the vignette of the \Rpackage{DESeq} package. % <>= library("DESeq") <>= cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) <>= res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) @ % The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in the columns of the dataframe \Robject{res}: \begin{itemize} \item \texttt{filterstat}: the filter statistic, here the average number of counts per gene across all samples, irrespective of sample annoation, \item \texttt{pvalue}: the test $p$-values, \end{itemize} Each row of the dataframe corresponds to one gene: <>= dim(res) head(res) @ %-------------------------------------------------- \section{Qualitative assessment of the filter statistic}\label{sec:qual} %-------------------------------------------------- <>= theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) @ % First, consider Figure~\ref{figscatterindepfilt}, which shows that among the approximately \Sexpr{100*theta}\% of genes with lowest overall counts, \Robject{filterstat}, there are essentially none that achieved an (unadjusted) $p$-value less than \Sexpr{signif(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE), 1)} (this corresponds to about \Sexpr{signif(-log10(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE)), 2)} on the $-\log_{10}$-scale). % <>= with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) @ <>= trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figscatterindepfilt-1} \includegraphics[width=.49\textwidth]{figure/figecdffilt-1} \caption{Left: scatterplot of the rank (scaled to $[0,1]$) of the filter criterion \Robject{filterstat} ($x$-axis) versus the negative logarithm of the test \Robject{pvalue} ($y$-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of \Robject{filterstat} and its quantiles.} \label{figscatterindepfilt} \end{figure} % This means that by dropping the 40\% genes with lowest \Robject{filterstat}, we do not loose anything substantial from our subsequent results. For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal number. The analogous scatterplot to that of Figure~\ref{figscatterindepfilt} is shown in Figure~\ref{figbadfilter}. % <>= badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) @ <>= stopifnot(!any(is.na(badfilter))) @ <>= plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figbadfilter-1} \caption{Scatterplot analogous to Figure~\ref{figscatterindepfilt}, but with \Robject{badfilter}.} \label{figbadfilter} \end{figure} %-------------------------------------------------- \section{How to choose the filter statistic and the cutoff?}\label{sec:indepfilterchoose} %-------------------------------------------------- The \texttt{filtered\_p} function in the \Rpackage{genefilter} package calculates adjusted $p$-values over a range of possible filtering thresholds. Here, we call this function on our results from above and compute adjusted $p$-values using the method of Benjamini and Hochberg (BH) for a range of different filter cutoffs. % \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figrejection-1} \includegraphics[width=0.49\textwidth]{figure/fignumreject-1} \caption{Left panel: the plot shows the number of rejections (i.\,e.\ genes detected as differentially expressed) as a function of the FDR threshold ($x$-axis) and the filtering cutoff $\theta$ (line colours, specified as quantiles of the distribution of the filter statistic). The plot is produced by the \texttt{rejection\_plot} function. Note that the lines for $\theta=0\%$ and $10\%$ are overplotted by the line for $\theta=20\%$, since for the data shown here, these quantiles correspond all to the same set of filtered genes (cf.~Figure~\ref{figscatterindepfilt}). Right panel: the number of rejections at FDR=10\% as a function of $\theta$.} \label{figrej} \end{center} \end{figure} % <>= library("genefilter") <>= theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") <>= head(pBH) @ % The rows of this matrix correspond to the genes (i.\,e., the rows of \Robject{res}) and the columns to the BH-adjusted $p$-values for the different possible choices of cutoff \Robject{theta}. A value of \Robject{NA} indicates that the gene was filtered out at the corresponding filter cutoff. The \Rfunction{rejection\_plot} function takes such a matrix and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. % <>= rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") @ The plot is shown in the left panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering cutoff}\label{choose:cutoff} %------------------------------------------------------------ If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires you to choose a particular $p$-value cutoff, specified through the argument \Robject{alpha}. % <>= theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") @ The plot is shown in the right panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering statistic}\label{choose:filterstat} %------------------------------------------------------------ We can use the analysis of the previous section~\ref{choose:cutoff} also to inform ourselves about different possible choices of filter statistic. We construct a dataframe with a number of different choices. <>= filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) <>= library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") <>= matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) @ % The result is shown in Figure~\ref{figdifferentstats}. It indicates that for the data at hand, \Robject{mean}, \Robject{max} and \Robject{sd} provide similar performance, whereas the other choices are less effective. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figdifferentstats-1} \caption{The number of rejections at FDR=10\% as a function of $\theta$ (analogous to the right panel in Figure~\ref{figrej}) for a number of different choices of the filter statistic.} \label{figdifferentstats} \end{center} \end{figure} %-------------------------------------------------- \section{Some more plots pertinent to multiple testing} %-------------------------------------------------- %-------------------------------------------------- \subsection{Joint distribution of filter statistic and $p$-values}\label{sec:pvalhist} %-------------------------------------------------- The left panel of Figure~\ref{figscatterindepfilt} shows the joint distribution of filter statistic and $p$-values. An alternative, perhaps simpler view is provided by the $p$-value histograms in Figure~\ref{fighistindepfilt}. It shows how the filtering ameliorates the multiple testing problem -- and thus the severity of a multiple testing adjustment -- by removing a background set of hypotheses whose $p$-values are distributed more or less uniformly in $[0,1]$. <>= h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") <>= barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) @ \begin{figure}[ht] \centering \includegraphics[width=.5\textwidth]{figure/fighistindepfilt-1} \caption{Histogram of $p$-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do not pass.} \label{fighistindepfilt} \end{figure} %----------------------------------------------------- \subsection{Illustration of the Benjamini-Hochberg method} %------------------------------------------------------ The Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995} has a simple graphical illustration, which is produced in the following code chunk. Its result is shown in the left panel of Figure \ref{figmulttest}. % <>= resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 <>= plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) @ <>= whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) @ % %----------------------------------------------------- \subsection{Schweder and Spj\o{}tvoll plot} %------------------------------------------------------ Schweder and Spj\o{}tvoll \cite{SchwederSpjotvoll1982} suggested a diagnostic plot of the observed $p$-values which permits estimation of the fraction of true null hypotheses. For a series of hypothesis tests $H_1, \ldots, H_m$ with $p$-values $p_i$, they suggested plotting % \begin{equation} \left( 1-p_i, N(p_i) \right) \mbox{ for } i \in 1, \ldots, m, \end{equation} % where $N(p)$ is the number of $p$-values greater than $p$. An application of this diagnostic plot to \Robject{resFilt\$pvalue} is shown in the right panel of Figure \ref{figmulttest}. When all null hypotheses are true, the $p$-values are each uniformly distributed in $[0,1]$, Consequently, the cumulative distribution function of $(p_1, \ldots, p_m)$ is expected to be close to the line $F(t)=t$. By symmetry, the same applies to $(1 - p_1, \ldots, 1 - p_m)$. When (without loss of generality) the first $m_0$ null hypotheses are true and the other $m-m_0$ are false, the cumulative distribution function of $(1-p_1, \ldots, 1-p_{m_0})$ is again expected to be close to the line $F_0(t)=t$. The cumulative distribution function of $(1-p_{m_0+1}, \ldots, 1-p_{m})$, on the other hand, is expected to be close to a function $F_1(t)$ which stays below $F_0$ but shows a steep increase towards 1 as $t$ approaches $1$. In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative distribution function is expected to be close to % \begin{equation} F(t) = \frac{m_0}{m} F_0(t) + \frac{m-m_0}{m} F_1(t). \end{equation} % Such a situation is shown in the right panel of Figure \ref{figmulttest}. If $F_1(t)/F_0(t)$ is small for small $t$, then the mixture fraction $\frac{m_0}{m}$ can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit is shown by the red line in the right panel of Figure \ref{figmulttest}. % <>= j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) @ <>= plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/sortedP-1} \includegraphics[width=.49\textwidth]{figure/SchwederSpjotvoll-1} \caption{\emph{Left:} illustration of the Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995}. The black line shows the $p$-values ($y$-axis) versus their rank ($x$-axis), starting with the smallest $p$-value from the left, then the second smallest, and so on. Only the first \Sexpr{sum(showInPlot)} $p$-values are shown. The red line is a straight line with slope $\alpha/n$, where $n=\Sexpr{length(resFilt[["pvalue"]])}$ is the number of tests, and $\alpha=\Sexpr{alpha}$ is a target false discovery rate (FDR). FDR is controlled at the value $\alpha$ if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in \Sexpr{length(whichBH)} genes. \emph{Right:} Schweder and Spj\o{}tvoll plot, as described in the text.} \label{figmulttest} \end{figure} %-------------------------------------------------- \section*{Session information} %-------------------------------------------------- <>= si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \bibliography{library} \end{document} genefilter/inst/doc/independent_filtering.pdf0000644000175100017510000222046012607321410022475 0ustar00biocbuildbiocbuild%PDF-1.5 % 57 0 obj << /Length 2236 /Filter /FlateDecode >> stream xYK6ϯ2$-k'v[Ifr}P"dv)i-W'BW_?yk/򾿊MyqXIvi(>Eܻ]zXe4W"df70{~bYo@_n6_DEx;/.򰐙8,bfFKZ^Hp)"bXWDa)/Hde!2Vknnۂ nKSM) w޷͎Ve2 ;mf@Ǿtl/O~Tq1c<¢ƣ03bamj3 [eM@nmj-#o~fZsú y! VrpRXHU((˼L葩ga"SzW0I<eĺ|=XL.z}{U SiIr{s-a\SwVnyƕwsƿ# 0"̉,D 6/BEۺoѦc/{ B:1+ D yD`8lXy*CԽ&GLE32C?ueћX]gn;Do'`0E#G0E(bjdF23vؕNu RqVA?{JyéՂR9w`q$jK$!IM)xr?\*#f?'؀QޒA?>V7*o^Ε=ROO0dAMex:j׮jzNv.>nWFo4N= %hbU#4kcvYak`)c`ӧ! SOU(BLYTaOAW{ӝ%_ .PgAI] 3+9a%K@xi_6` ;5-CZ!e\FM%rsՏYIw@7_?EMU$g^k>EWĺR^i'+X_<7PD'9؁²pZv]Gߔo5zcݵ2^+UߥE6-rg4kvCڝ!5m/;6ae2@i( Vv;t[P!4kkDrݮz7I;>)A]M `@c ig7SC83'7ոK.mc,£]+tCg&T@O;[!C#`4\>"Irː]ؖHݾ5[vu HiŅt>^ugc4 {yu2?/YW3G+HY"Mɥ,Y͖F6o$wǑ_*% B5L#(, bl2Qy:iRi~GƄC*Zy!fsSqv }vB2 ܷLlFu/XپxAd mv3 @ Qv3gX:r8m~duC™pJ{a@KxB?\!|D ~ "V^{-N&ib> stream x[[sܶ~ׯ$Z ;}v&ښĮ!rW,EKOD< | Y9_^I$Ct&‰d1ΙHWuE/DX0JuPdRS{e٫Wώ2NTMmDTc}QKZT6}Oo0W& i4>1#}:d9 !8LXx["`́O?v+}MJvJQ0 썺 &7XR;mEGϴ^6˭KSԆ^uFc,`E\kh::"^9vVuxSSO!?ڍzS8{R4j ]Z—^<)tږmSaIL݉^,Bm%i7da%KRH{zٴhxw* ܊9xVbҲ -RLdۮcm m c$xL88/S i hW(?DnH`4ʹ"KӸrSR \Mmu7Y[Szw]Nk5~ c8j.}Wi"V?< UÑr+m6+%@O1k"tbbGlh,:j\F*ײ|ӫ6%f˛>T /x祪CC{zO#:K)0 զuij) aeje*lcl’A4x ^ɆQjF`Sѥ;"02jp4=:$"]J7t0HSYgq,`^)ZX^y)͛NA_;K@.]麂?A*"-QFEnTu!<.W{P.r `@- cZi_D}JȱSڪG/O~=Й9B  '>0'w $s)+{r ywAc]@XLmu? ]HY ?P}\m"f /@i?0"&-1j%ml,yK2NybgL~~Q3ԯTkt'a\l/W E]"J>-JuJ*ͩ1a.5ꡱ}Lj@4pКZVgxZu0L ϋlVz5WhBcgj"ʆ5$lAi`+NxKy1ViQ#zCpXr ǷH"sbf'b$|  *EKP7nW d$q4NiQ QqqYȰļv k6׹&b @?IAWc.D!z` "#md(tĐ5` #r?O1#IioM{W$8o^F@;K^sSL x1Qn7ߙfGE D#_d@ąA>bݹ[Q+Dg&˭sDE7ޕ@Mg}@Gh2KD')L`{Hwp̒R@sI1Ce.-0 VIb^ JH>RvQ] fC5Bj;Q (C$DeC@?"CZHLX>r&^eJo8_\M =E>hDì>B/ Gî@`ſ,jEzzE8Gu\?gB]1`_;r&dĠ O/BovؾƾD En`fZWihf.Xo,G_݋ft,JD@v✐UPQgmFxhtv ~gc(°\iQjvS wUjjFKF`?lp.,"` <ΟP#%q73g\E W FOQ{yoϔ/nN̔ce5!u (ϋ`#pX۝~:{o?,n<~/|-g[6i '|O'`L 6 UD-۴R_\mR/ P&Y޼O!bA6?@hqW 7L A=p}^X jMN. N"aa ϫ!PvL8Yo>PӅ}g9A^+B*tFCPg6*$\o6Dڣ]o5vj΂לY(:7zcy1#Og{.UqTz @Bcj\C5{hg[w9TNH܏<)_7g<KÁ6~g="~dzhh}L_=g endstream endobj 101 0 obj << /Length 2075 /Filter /FlateDecode >> stream xZKs6W&**a"Hf+dR$y@SčDj>hPZ]D)_ԓͺ)wD,5 2̤*a\ף&|_dj"oCeL85V(GvEZ(-Q?qgr`4̧m2Qi""JVwmjW7ZW@'c:Kpܻ䃹r%@: R,\#Y@h&2st0K7 ?MJ" <*I 5sfT{N>`9"%18&JCvTf"Z+[,2k}1Z;{ A<$Lli}_֏66~lFʶyKdchXd\[ѡ{N$guALKt@44 T1Tbf(U_[e[\D(7wvk%=?we6o״v5%k,!}J0%]63n)b,x](UrRCA,BUY/^SNm-' M}" V&H m <ÌqJ@x+-ǣ0-d__40V,w,#f86Þy; =RwEp?} .+[մ?nN حA5Xh!].u7LC q݄svSmE?B}_K~fݷwXv,t[Og<+HOЩ~ӳA߼؅ 7 (bZo_XZ5$q%w}^ѺvCšG KJ* X{!RCiL(3"Y )-Ǝǡ@$ +ls_GXA $G0k~=JbDۇfZ}I~=t@sotRéȬ$اbIIJE&]2 Yrcw͆>qXډQ !!d*6X[ +a"XIa]3rp~+LC,R 0MS)VB Bݼ6hںܙQ> stream x YD zU5b]*^֢vvAJ54H! A-BD'y.sfvg!̝<;gs( sܹ 7MK2]i"Wড_r [| -4 o3oV?;'piO _I /////////BSC&k ouoЧ IZ`珍vה.Y`A u\.)/$Dx-iO:[J>_HV_הj֟y񷰃} zYwj_>}h}!{~/v.oNds$c%~"WxZBε><]}57ΰ>̯^ [T]Bͅ*/[fu j]EYb%UV)ef_:x>!J ZQ y+P\]m_L3zA]ݯf3_uU=c桩`hu'_RǏPd3գhw^eo_<+:W*L\|/R~_x_߼ Wsxfx愁 [on:P unk{s{_߆¦ [_r5ޅPKV/B(}3!0/7 ////$/8G _<y~@!*_ȫ B\/B}S5_7^!s/Bõ> /U_V/Bk __^h*/·!EmƎl&Mf/GdҘ7_n s.__fe.v_/ Q y7q %!+_?jreLC^Cq+%yS߸)ؠduֿ!_.If|X_3 Pm^Uy5oP9t~̫ݠsBmWzRb|m,OIdÙ'Gߊ㝵V'dMD`e烵g=pvMcu/Fx7Z4W7Q{lJwړ_їL~As+2 ,pClJ8?NƱ8+z>#"Ou+&Yw6Rɽ)jۘb"(r?o߾"kN)?gǠ͖Fkt"{s،g/jcy"&2S"e񷎏i;)2H~u]f/D'[ #lsĕDvPKI-^tsj}7#^cet^َ Ζ[Q}&x-ڪ{y7}oN<2o8YE`Cc;<{qgޮgS(mW]z`%o21q>nK'EC+y״^}![5}v^T"o{jD8pk?ᒷ^2qs 0?/hT}Yx>RX7Gfjx(֧_kٖsv| 3]mNf_e{Ccpl՗oF(o߆njи/L(f7[e⪘א_E 83oV䙌/ x6_mocE;Rivœ0 o#ET_|E7' _uqg_%[_6~s{WՀ;:s Y>IG~ĸvu$nXVsm\7\1l;Yd@l8.TT[TuZӊYtm^7{ An+rvs/GdQ[^)CKC+UU3tinmV B5dM1"[?$g"_&8M٧a5/!VJ;>}C-u'/Ī/&XavV#o=4}FOGIz/BcG]D~[tss! @d! >ۧc'+_+(5]dw;`BnLI[LT\J?~ee}/$k0\h6pgM$5%d¸M:mA)-o+Ѭ)Ilrf_ǽoU({s-6oJ+~W+;o,z)_e8oZeH_Qu7ۥ 9JwwU$zQ@Hֻ=mfމ.7mt%4+W˞/VF~ TdN̴X儗5} yL.ķf[{V1#, /vǥ-7ֽVhrjWc9oo c{o,;..o v7c*^Go #w nT=rݳ< y'VL&rZempa '+gf{1m@vlpk?YtïVWLĒ_t[\nv6뿋Yzt$CΚDoc&}^';?f&Bv‚-^ާk/$TcnؾR5Ӣt;H؜疮glG{_HD+7OٗuCm/'lc}s-*]a};E=:|=׺g[K/Ę~Wl^hS9]nռ"# [(u[)JlNJl]hkU 0v>Yy9ےEX#rB͂DvT'reU cW5+O2( Dve"VkMi]4ɞO?}}O[wTLyVm- ,%4 ׹-%pLBH' I ' 7'\4٠K+/UvC%1iڌ ,.Uڟ 3wKQ/_ZBJGZs)sª㝵} !i.~z7cԹ9GqgEm/9F%v! SYg;可$B&Uy7/ƧK6!II E.ӯQ~fWd~)"W/Pȸk֭JO!eߍE.ׯMd,9n;T)2H~,mYxWC*wпuF} nw'$_ml؁ }ko nSo yu_|J';XI.Gyj/VM_>nK'eYM`I@.Aw QUo.Rxw?/_e:o>3(yy[/N8W2+i`V!K*TQLƉXu_0+6M4+W.s !jXt__Uʍ *~Rߓ2kn YW6*7jʭ{@}Xw2TmҰC5oT3tboj\[Fs 7ZaݜD ho]qȒ>'Gʲ :נ`A oOEGS'zWk̲$Uj1~errW/K !xzLޅUv 3,7o"cY jNzo=_CI9!J5_IܞKP/&Lݗ([Es/ʮA 7O58琮kSDg^pؗokT3c%"d_GچͯGr VUE-6ouTjm,uϻv⿽O?}ٟ=)#`z|^[Ods~خ !",4Ҋu&ٷqu<+=%W|Vo 0X,M*%QS~T=DG5/=J#E~.ppfh|&u'F5s䩬awq͒OV/?L  G,;tFfJ'}ݢ"7V&JusF^F"-:PJwy85xFF8 ?`^%KݢD.)~XIoI+cv8& ~\ϖ( MNJZPMOy"oKTi4<5+׋ϰsfYVo.9[߆avafaZWH* 7vn:@FFaOCi_׹٬03WuBj{ַ+Y mon__pd_u_7;8|GZz!ssSo֤1W^6Vo+0_uд+wƹˎ^;T@]?˯u,z}l|RZ2yf۠n  y7/omg\^S>0x(>/@CX Nm =~cV7:lR/t҅_ |+6-i#jr俑M= x|l?o+ )$YߨW. //O\W K F(>PSIrA_زԾJ)yCo7ϝ5۩8*=~]tw,gK,Wi uG #u>ބ_RBQrިG>m'V]9^o$@^eӱ)篫5k7ƖW<RzIpdF[n{g=y׬;oxKr"!+Eg>l}Ss=v/HۘQe~]I ңHm;7WOcW{ Pxv+~"WxZf'^ϣMc-IHahnZZѾ}JnUA44g9Άh 5;\7s 74VaH g;QOwaIE.m`_uuSOd ;Egĩ_Yw K8C俉K$=JDnZ~WR3M܉Du,4/lH.7|ԭ1'^|G&SMF_:x>!J ZQN=֧9D_TWNu7=eS6{8ubm¥j[,﫪k$8AK)o;R~Ņg?_7Ug^grL _[XyjQK!I[?_MV5k}5xswGD7z| ½w8X|KhJ]uZ;V{,w+AhJ]uKОNVt7L,}7oOFoX17;^!*gVj 6o$վ'CdLJo0j>oQ7C#o_ڠ7^ݒ>mK.MoI _fqZת(FqvVcu߂yj}V)!/6X6$qGgI+.R,7u$˺_zq۱J& iQ|ť/-sg9_o|/Y5k'lGA_kritw_w/f_11×$_DU<_MQcf*3lo ora,0oDicWr9˴.hOSsf5)duWjTQ m{il@ys(}hqrVG5_APTe f_ù9TcfS5}huϪ(?o~#Agbt/ (/6_Iأ?qがWw_ rסQvǖz&!CesuVx!kCڨedo33w46c8GY~g~MIƫ2lxށzb^S(2 ⯙xXc_]~^5hr+cčcZpd`(G+WvY֠*M]w~feyP\27"M8n gkMں #}ܼ J$n ꯳mUO@/j]_VzU'/o,߆TʭGwz%W]ʣϊM0Wtr#/F^-q7ϭQ_.zMޣ|I``/띒|ZlXuwJ0iNlL3c_ٯHҧ(ڶjOi_('MLXTyv,V^zX<ڏ3ר kSu}X}kQZmʳ׶wnWϦ\V"9!@/FnBRU m޾ &Pne̫{.r_x̮g߆ Yl6͓{Jt6:o mS>u^i'Op6FkfuhmSn Qi!zr= yoR`)Ě|*A*~$^)/{bT3 *`ӭj~maϢ|h?o0rPҡS0j0{hٜjO|ѵL$DꯟFOU/#_zAU _5휍N .U!v}).ӗ-{(2av׳wFv8k,U`_-c`E^ϖ01."Կv9i#W7y e:<rqZyCtW1od< PUC 2CmXwۅ!omAf,S߼ ߆@x*f"gQ@/翪.Pnئ-_tMaS {b=I=n!+Uj)?MSɌʯo. H6*1ko+kI[cܔ4U,Us9!H \ER&U5쥨hZ=^E ,V(ErsߚU^ʷT"uH>[_LY믾7cÜP+!82GlPz?bQ$J׭W=2F*n_Vi.+#>)w&dkp4.=/WA}}}0{ _-)r e&,WVJU<*s?9J`1o+WPU2")2r{gcۨr&lKURma1IDi$ _&ʈP/Fi*7ID!%wOK)kUv`oS17x{V[ [_N:{SH![`[ܛMu,UafWR<0/,x_ d<~[_mfPځ.M%gV3eiboKTbSg Iwj ]r>17VL_5x& '}qpFo]˨c֨ySlw?Tqyf ^_{YooQ2赶Y˄Io:e@kI`h`k׫ /o7}6(o+'Z)!06VW&ӏ-_FІ6qcjrJޯV﷣oKWiUگ|~n+>e.fw^> u>Xxi4QbEϸ+hov^{5VK&o-\eY;可$S Pߖ)=DVLl2\_>?ݵ$SD/߇ 'ל{ne /hJE.ׯMdlȝ^n_IGF Ҷ_=e]Yl{}V/ čF0|eo@%̉?: n%h5+]7k#^cnSZ_h uU>o;ߜxXd_1oWm /BiIQ:`/o(v^?|i `┉{uns7////////////},f>ɼd5.R dpӄeܔ082}AC3f=QP{f617R [ qB8N M8U-}2 j(:Y7)dBy. abX|+Ycm#d'۴_MF>?ހ7S ĸNJ5cQ~rknZx9aj)%FnpϪ (@S[(0 76P։Wdt<K}Vw%IøkeƅM!5Hu׺'/Y4|&>a_;K UaLYAˁc{)1޾ \;okz8psWj.֟C__׶>_Je#Q}h2-~['Q6^S>nPH,}&o' ?ϷEy Sa]p*FEIGcJo%J%i֑X˴d߯9 N$k򗓬/368Z6ۏo/FD6aٹ]GN%e7$s=DAb\a]),ҿr[4Q'ƫֲ:=xקoe_N_ÿ$^"vYXEdߺ lS[p!0|uQ*A}øH(Y//']7 s 2hA6۠O+_Bٽ=I}Gd QF_ΰ=~|ekGHןO7oϭ7`yѺW]oh{k])"GD n*5:[uGJǧ-fT x Xכjpղ°yH_0m-9gŜOG5Īt x &Z|lX..i%k.uJ_00f13|ƍO_8Q_.- @2L;[N;lvJa| U1:ZY[k{_kx !鶛{p80  mK_0GrL,uGP*63`&H ?o*_ϵCT3쟩qHr ίӴ))ѾHwB &H5?}6ҶwBzag9;DwL!)NqM_IRd87+[W,M3uV)\j7G_BG*_'X_L_VUjh_J75֬MVBMG~a_=|AF|5H<0GXRGMe) }5)!+;RHj/ճ(*r}].*.JǷP^ʌ:"&VtaM_biu}"f_K VEKVyM@CJ>C{ ;}ȔtdWgtߵ])ȊÆ 36k"VAsnNWך';ÚewVZᄊ(U]Ե(dYTNYbМ`g=w:p;-[s4_ٰB. [H2M7E+7Ybm|_k;JmQɫO5UZ֟h'7:x#ZlClέہ>ZJ\T[ t5.g~i}hL_GWG=w. _+=ZIL'V,&Ee-nCKn۩RUcv-Fk=uiPu]"=NZ=bp)ևߗ6߃K;si җq֗ruM[l)mmfrAwX?߹0Z5?iȐZG6xO>WԥA}uVJ 8ūR(/\Ubť<{P'6eu}gH7쨶ེw9x% ꣮K<`9{ ~D;O:X,X.. u+ TUk[U*Tj ;%ҏ%c*;x`}XQz_pM6H],'϶jS]ZQ4K;.zD;)6Tu[]`Ikwbε|iMu̴V|Yvz8}EU;å\+uPf&oX*Uy]{7)mq0>tTu]"gx9R㼷^k{o:ť\;G.'!Cw9Z?s`fg"=zdowAmuZ\q5: h@{xv:vs}viKֹ2si }Q^FCC\_ǟTw'0`.3:6٩Vw"1lj.Q;;ۍ/]U1tݖYٿ4s#gJgeY3w馝yv7NԨ^r/|) >NO/v%E/u_.8rއ[Ko*-;Nf@[\RuTqZ~gCR3*J 9F+mCh6}d}ܼv\Z|<,{\f.QWf[G]1Tm{9>HﲿKo>7^iggn:Q"{{폃9;VjӝaoooU1>V}U%\oo)1t=H.hi;Kw*FW'-~5m?.K9ܭ*֚ kU]V,5WvI&⯺> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 90 0 obj << /Type /XObject /Subtype /Image /Width 960 /Height 1080 /BitsPerComponent 8 /ColorSpace [/Indexed /DeviceRGB 255 107 0 R] /Length 13864 /Filter /FlateDecode >> stream x xe_R(WCQKQXW* Xw/v=تTCr9 I&̛~gM&7e&9n -pVcĵj|fSU^h)U3N`;|IO)G3F^[{Yj>gLTLz>~7-ꢗm*sK_[XzC)"kk,:ٙ"#C?Ad~HVG_ЯH~mȨЏ\)A_;%R/Ed ~,SevcsSD.w/Ί7 cV55!~Aгdw?<<=csO,~dG琻zWyM_Bϸlk׊Q~AQVzIܬe?~A_/K/+z* 5R%TzeC_)-үM.؍'f/ƺm5JlY+ol+_ƝX{wKloO2?&_L{^rЯs\AØ췆~o_}1x#_{+w:Ovmz@Nޔ^yz5H^bј<~+Ko~:~wJGnuzrRw<:wUco:~ez?I1C6:/gݹ~A9ݳ~A},|~cgn])N|KK~A_}u/8w;@k:*x~DLk__5Sg~H|_5V"g_5Uʷ@k$Bk[_#ű_5c*_Sמ~LUG_S\~}\_>ٙ{x~]/=|O ,7_c-~3Onoү u>/ RtՙapnopcHs}nk{?E?kmjEH 6sNP3 [T")G~Y:ENWhKԽksCzQpp{B ?JD,~*ܮ)Hkk/.8_K_֟}ʬ?l F^/roxWr8l~_Vs[ߏW]Ejүu?UY=X[CAas93oX7d~T^cV'7~^;,p[n]7Ws 3~m,]?)ʙxΟ~~vZ0/Wo~Եg~;_5iq~mEO~me+-O*ځԀ~wb7~N7l _w?8,-td2 [uCڑ7Q_Я~] ү үu~XGT3 [F._[/~9~V,mV}g_[z\}>-hF2_TO6$,~7N!wJNG}0{ Rߓkj>gLTLz~meI-E/k. hU0+c.Kuvݠ`Y3SD:ү2 ["uCfuk'uu~K9W 2~m=Qߒd~d,~7D١I_-~0 1R$~/,~鷌^"Bn\.k>832m)"6߲7 cV}շ_ΚCe7^OϘ{<7KWS} G-cG/T6[&3 jzEeNizEZ1[ѯ߳-G%9srs9/FFoE~H3~Xʉ ߓuKfK_#qX_c=I~MqKfZ ү_/a_5WL_5V-6>/=Q_5B\_5V~~MuZ~0/s/b/eg_3ų_5o+~H@k,}a_5uˮKf+__ⷐa_5u(/Ak,o%F~HUE үV|0/='~I-~c~Y~7Sߏ_#|`~Ԕ]7~M^Vd~Ԉ/үɋk_#%_5"e үkAk&}o_`~ĎK:U-~f~ >@k3?//*7_ ./kK:0/~~uZ~0/WKJz)KOG~Եg6^/z~_5y{@k$NYGk3T0 G2l]g6^o8vֶ㌑7*/ល&K{W~OnVOЯ8n~snֻzVu_b0d-QsPҤ#8}M/7;ѯA>aO$afk/RKkx֞7e7D2ߞ,ȥ"ѯu6~G[|7J{%tNo ~HޛCE6Яe8~#P]=7wvMɶg gW?έ,rgԹk8I1Q_C*_~C#i'wӯUog7rI(C]k_vf7"7)So0~Y{(r}MqUa=&K߈;/f/\7grݤa_ld~X{a_5* ү9j~Bw=od_?/=XAC1mb~ Ew @w~c%_y~-njڐ:E~mW!]¶+_SV&0 K&/үnNK*\`^[]y/|w1kת=%ުQ3-Яf,mAA\(~S0oTS@'n}OϘ<zV~FU<[4,}7;#iN|_eͣ&6ҡk"B?rH^ە=:[\},PsroXf~^bwWvٹjw'9n,;}nn a oVsz`KCggE]1><~áMdnU?!vZ{sA~CrV1'?yo~z/g[C{nyro![WyM'lgŵD~g\-aFь; Oь?UB|Ũn{X~' W(+X$gnV|ΟOtO v~\@%L.T{/P% chrRS566P +/|:TZ2 r@~>f343|I^:VJ߲~V2D9e}{k+`f RS-.|}nrd+.BDzz5TCl;+~YE)³DBYt1Ek+=+@#[CLг?үT-O9,:#_)*>J6q@oB-|lrQ]4Zbvo,ЧJx{eƊOׅ]śK߿~O=۝!-H?U>H;moۤIrK'd_(~}e/w{m9Y'x~O޲pgM@Or<sFѥ/ * OL_y '5,rYS;Voc*$ #J<~uԯ"=.kiN]/~u[k~@5D)W<˼/gM3K ī?\;"3-YwcU!2ОhWyFmxtbuW[^ڝW_P'A\p]xbߟ|RhOG*^9bҕug_:s/g璠/^^O~RaЯ6_+/ax9Y Z˘7L[NݞAY~lЯLC^"&3dbߣV$=o3R{jf MQRt0nψ~ *37B'F91y"7o4,g;FRII֛[dfȚ(._h6:FUk{켑Y~#o^mIo$m-yEs:F\ j\ S3ӯB?~#= 1/p—~-(̪sw%j2/wk#U)/--E|jy+W~-t7Vk 5sEXh~w75y~Я1 cCl_}#Q hK[t>ՃKz2W/fj0sjg_H,Mk^kZlMk^@| Mo^˖-c7Uwf~ߘwA۸۫=s3үynXfk~wۅuy~cJ%nZ"eVL;Z^#ͬ*Ra32F_ rfFKHOT=5Kߢ,WS7_輼~אSLoPD؊"r U 7|B]~~W5&}>˕~cUs('Rz7=c>'r^SV}[~ƪw>ijYU_,Z)bv˲Fd[Ni .ѯ{1ntXǜ vޤA1]q~#%z^> Яyy,@&;X<sE*,⣀3]S?mqH~]Q1¡fH+OVՒgcds| -OM ]~F[9wD㓻jS_W8߰~ŋtk^ | @UoO~wS5-\`^[].QNfU8_ת=%ު&K+sgbN-ѲUׯ>s,cF)TI[~--m )\S<<=cƻ[f{G1QuځK6Z̹A_0(ר~f6X+|)"we5[g6]PdיdI5~"ꟛI~d~dS2; (ovG 귉Z^ \dTG0߶ߞ̡p\D~Jb)\v-犅T q)"]ܹ취㡼7f%!nj~'7F2zvgL}}Onle-'د{G/TymDFN]4㢲'({>s±ݮ5 #bvo܉ף`Y:k̛p|~LMObAF{^ߟŀ~M}g5_׆kw1ޠ_{o߇~bA&%mЯܸqsmЯ5ߣ?]kb~P~MwiP~M_~A{|5qWS<&d`A?/X/@ ~_~A_/K/׶\KޞᚢiϟO_+Ws@)%RSks/K/$)M٫]UZ+s7NpjVCwߕ}VŋsswSo}ղ[gHܗ۫;_k"-!E~A8MdR*i 5D49L_3$dC_34_"U/7\*qkH 5S%~GME_7uoWz_Яz/.ԶA߄]gו~Atw˃8~ u﹍~Ap}>S㤒\pKUc_Я/~_~k=)x~?᜚!U_Я}Ui RSߓi¢__/K/׶ -pV~ Z5GDO[}~AF(ѲU~>gc{;P%M?>k|=-=v3xxzq=ЫMEϤOfm|=zj4hUܓwbwcX/6"d o]Pd/ŗ_Я=U k~C?F_k.2*#Wd/z sYC_;TXv "}ߤߘ [~C~=ѿo CP-7~ =㢲'@FkŨn{XG(+X$gnV|Οu2/@ /~_~A_/K/~_~ /@ /~_~A~_~A_/K/~_~ /@ /~_~A_/K/ _~_/@ /~A_~_/K/ _~_/@ /~P._ЯA\h(>[}~AF(RJ:(~A4~Av'n}OϘ<z<~mE/k. hU0551~A 3SD:/n+Y*u 3EF~4Y5Џ C_4\sQR$~AvK^WYʴƲ禈\_Яuo<,U$/zvgL}}O_o*okUw@8/7z\+Fuk8~z>FY%9srsЯ/~_~k=)[[h_TÞ녁i>⋿gڄ ק~Lc N6`,CދN:O)k#Әi/oIiƥ M46wM{e_Ρ(4شqOsL('-L _~_VM-~7~Ăw/7:~7~l\~AQa\~AQa~C?F_ KMߨ KMݪߟv)iw~/`?\LaNMo~wVzEE?E兮 -Bvt^$G c}wIP樼RyKU$-:/tʼn<"f___//~~~AK__///~~AKK _/~~~K _____//G ͔JB%':o~S~#H({::/TQzKfF酾|(:/J~t^`rI}{eEqq[ԨpzjUBrÛ&g5FV>A ]#>]p}#_-;kzHh|VSEY$>򰻝Wl%Xo/44kJW֣_VT|3ԍ+^>p΍Soع&ֳ%z!o^<_GXc~ѯYfO.ς9se_*VPē޵Bg{q>n.WϿ(X$ijie׸Ϟ{ukB"G-OY^hv%F?-~gij + 1gʲJY߻S֚:[kf;A[ۯz |ηmFN"KI޶fA/u&ZQ}$R)t% tUݬ7۳S9k-~W W_]WQwqdԄmX+ |Ʃ1oͺ޸8nm^mUD*H4 e#z"p1uwy,;ݳW6?T~]h;w1>[ww/]ohkjvOu//oizKi\j~dnnf*[*{v]@hg} &%A{ Q_ܦYjl#K}IwzIT,H_Uaɝ#evn׵QZ?K|^=K7Ab߯՛oSkV٣ۯn]$bk*\s"1mn mxWPWa0G;~ _ޛz{Տ (QYX{[Rx~*?m~'Mh|ϙ.$u[лċ= [l;q ~^n״}/(hm_wbQ0F~{mo<;lkl~Ɋ"uSY뻋,T4T_oSka|{K͖=R{ c HDY*{%K Zg }q^짽IN>WfQWDɿu]'-a~# h¶kħk~+K".;E%X%Wo_$ҥ_^^+>M;p^pGEW';O?qqE*tu/ۗJF;&x/f=?ln E߸jմo8AgYM.ёb ٪"RuC5V>NH- uwug% ^-DًWFy#wƍ7;ҫ|.먛[˾{m;sf/j|pn7zJij=Bϝ!" ꨛH]Z%EXry^)ޭ!ZEvuVv='?~9wL\[׫gPG6ynPiw~'V?)O^kg((:s#n}_>s·rǛ.U- LuHbqzxG֯Բ("_%eyz7:M$ֶ^"ZGϖn<or'Yԃ_GB|pfSՍ|_{wPwѷ х%dž_Z'\[辤n~US췝HSVS?tmON/hztuw\Kΰ['?3fKɗ@MSP8ǃԋin"&U,e?y"ci7[J>_'@~$gJL_^=krNRE>PuQwr[\J*_WۥܽDkG/gֹ7_罍|uQw?qLY_%"mڈ4NWOg|w(o/Egn" GV~+P+j_U_e(ٯ^Q4qđyeN]֢~~W‘[T/>OwTI,r΍"UxnMQU}C=mWoqo_v;O|{gu3n> t~O;_l]**$HRE|}+;E$YԯZt>O8_@?9>S力;T首ћ_kxH[XS$'گځ}&.(سqi= .[Fpb=E:[Yq¹\_g-s/L;m}Ș;i}%ZfqiꟌ|p/'5'LGGѣAG[PY/D'DZ |@@I[QOh>;V=%ZfqAV^o'> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 111 0 obj << /Length 2068 /Filter /FlateDecode >> stream xZmoF_AWpwFK- -TYR$Z a0ռrrƓHȀ3ulj 6o3 i@f0]HoʪiL1u5Q<ƆE9W@0liw.EEydI+7j`l{5Di[ Iٺ`}D1Xtp[NLXXAVXEnƀtd%TIO;ӁFabAdĔAy]ܬܣT(őܹZT-=HtQTn['7 zIr- -9L sLJbم*]. D2n-y]###QTpc*@'eT HtR:a2|7 d6}VO rA}× Kwy0gEIb[7s E3#0o}i]'i|tl]\Wef{v?SžB ՝`q# u\cN!g[ˍ>Csǃo~]kGaut(|PTeA2Dl@fnii yq[^)ץt{Q3K [0a5\7]~ Ef0:A"ڃ&x F34 x`; h fD۰sGʒK48kG޴(r'8I9=,gv ]_/_OYXw8 GaV ==2wh B0P # -nJQΊ`]dӶD3rhgv\>wd;)hjx䨊~ =e(NyY>lOçw{=<ƑQx6$ta3" endstream endobj 93 0 obj << /Type /XObject /Subtype /Image /Width 960 /Height 1080 /BitsPerComponent 8 /ColorSpace [/Indexed /DeviceRGB 255 113 0 R] /Length 22270 /Filter /FlateDecode >> stream xwE)@QPJȋA@򣽠BPT(tH 1T)J!"$s\ݙݛ-ݳ;;>@",\qR4F!7 R \O,@x7oăۻ<15J<ň:>/////t/Щ  i703oq*n'] O,8 ͛WQo{KX8?qbz!=gn)uz5 /+>[}/=r;/#}kzu m|ߒ{Ƞ/Nds L.(8>$r\z_Plã _.r+:އ(r :\âov9WyW)r"4|z7N.GyW}U䐥ݥ(ͽu\|Ǯe_\3n5ei?S w>;cF?ާAc c*K^z[wЗW븾M6poce7{n@;97+&/g_L`U____-G/௳,yYQygg<yDMYJ/௳r :#n__L`_E`_E`___b//'/BU ____/kD:/://sNK$oK4o*⯻///:,0///w_HX Z}s+0~i2-3뷚!E_r'+o5C BW3g__mX뚿 E> L[ge__"C Jq  [E//R_鎪o1`/D{7/:/`]$5_HdP":/8*0/8+2_|K 8m+#w8y /`~Bw={?}oBW֨_jW X௛/_xkƞ w׫% ֭7/?:DO/XCX=I^Ëݭ>wU_oREI^w8=dXeQn_DV];Ջ7<;A䣪_)٫D_*D+cD._hAGG/jeCDn_p>;O䞥 |߇=/^nWm)n"~ ]. 3[xW*N.[_9'گKJvEW,޾[ ).hXrFTs}~ R}]|GֿzۯsQ_u*0묿/o87]=<;"%*ӝxȯ-u gĄ+ҷD__'U*8/)_5FK."׹oI{0Nݜ5K[\"I'xIOO,*nwDC+)$尿eW셏븿DwY d yW-!1I_w____ƼP J( /@unI]uz/wkgL+9wp\:kcO웥"Sɿ]1[SgM}֡K3.wÁ4l#_s( gݿ9rϝ[zȉ7/ߐh#>خA}dž 检v 눿{7iԏGdc;|ivڕ0b|Εo5>vp 넿oze^MuWYܾ4}M0Jyr^swy>*Dfq,SiQr뀿E|Ho|:p&T:?G9Q"A "z?";~Vͩ~ tYOGeìw Md(@rKexV?T>],p^\Lj~G/o1+ N^|gzIi"3x;v~܇lJWr_ Zo&F 2S'WJFeC-, 3<~ӚoL SuY<_q_uvD'{nmǝnX})\9a|a/68}%#F_'-ݹi=_vo#2 GyJ ~/;kUW{s~[ƽ[YS>d~^#ΎE58זy̻JIŧ<8gfG鵿L8זy,j_ z69+n)4[Eyۢ|ݿ;_t[lKI9H9/@R_U{䱇|L*giZ"Y'Sܤz?uٻTگub\mP)+Uɠ/~넳 .\BϔcWyk_lVW';>2n>;)j7Xx8SH):oL=0woڟl-ݽ !fZ%M_k}>:c5koPX3nO-^A@ sj5fwN\}`o>J WDEwejnq+r󉛗7P7bo,'<. S:NF,E_))w|ij|~-%|8m>ddi.W_ڟm ߹0mvaöbP}:%]Vz%_'qcfbSn9sx+.zuEv׷#}_.}zxtgPv{'n[~l}גƲ{-oZ7% oYՇ^-; /ߗ;zHSu ޞWoŻgz{oaE"{-6m n5Z|5* "۴F&5q!#]:[*5;M{$2 ;v37'Y,ϓ/Gg7?.Z02D.j1yYnZH[}{6wٯ I9oJ0 jLpG| wZqٝM\,,/itp̻Q[O$gGWXLs]~*;^o_m)ҡW$TZװ`vUI+ (ҡ%OUvJ{wAG]5aso1ߞ{ϥ_&,&R/o_n\3ZodJJ0F:ɂ򰫚˟99jN#U"Y͋л䲍Ɩנ}duE{"+UwU)-Ɗo)r[֡"˿]`.G$ϊlַp%/m(rcf~rnW7͹Q95{Qc֭"?*Y iM_T9A pl2ʜUcJ&F IҬUo!NG"{_UDv^JG9NX MkbW'\ӘJ_ɑ_ȣK ͲuE_?K=˜"2rvӥ^8"__3{EU.zlփk#TU EW|v˿*/_s)5qW6Wo#zU:^^3:eT?/S<#~|c # N;N+ᯋR~Z߼7)NfەFZlMYhQYo}j`u%qMWQϔEF3<~AjGt1]ȊW_?۱y*9Zg0Ow濫e[{9'=vWc+tpI5,R,]\=* }M y\t_{//Eׂ*r@TW> rVA5[NCRO66N}{fg"Uݵ%]oLð&EAdЛ-D~Z3oE[ޝ97jzKIj\5z}i\a_v{r"lz o$Icl}mZ-/~^/TQm2&zxpMRy=_ϲNzKCzg,;{hB<Բ5e'tT3m&_߆HcQO_㚱gKE7GHNVjnZR`%oRgIѷNZloM1>QR:DOoiqԭ,kxGU.M;⠿NZR5Xb雊 76wtkWrȪK fߩT^^.pzouB";A䣪_)H}?KψB{^- r̪eB?ٱQ"wab;KNjZjw:;KgypU蛮)F $o}f oJ嬿FhvxWj~єK6!#< vf6|K/(Ho ,9c`U uxV]SKn~W||TI?X w +ӿs$7xoo/B+N{w)A~J]J~JEW^Wܥep7#3vX S~n*qٕ&l&qG8u}r7Ю*5~6?w^#i>Ŀ͜Շ{YYAw7)?7U&v⇳*im_u_(2I?Γ@u Yn\3vo8{v\2vow:ZT x\seK~톿ټ ,b81 eu-n=)1G.$b1 7x܂̿n'M묿Dc.:s{Lx}cp"G_ ל΋tiziʂuGѼUs7Zԡmr$M;N24?,eJ{1+qixE'>wp-;mQ*xo#"ij^QHz8aɕB.GY*b+q~͒'l7N~9M7w ;j# YLn!"{l2#[kgoސ-4.ozrۍ?Kf^+H: DcgnQ㯛l+1 c%-]+M-ߥ=ϾY*> _X7Tx?*͸d ;l#_UpC?uTέFn 9qvU6׍}^ M1ZFKi$^A-!ڕHO> ׏ѷƌTbku;doOyE6/heWX+r=Dc}1ɻ3&]Y.f\4|ߍDfGۜ7řGT kw2wEIߜ(rQw+k!}%Mߜ겿i4d,9&"Ur)%xk98M1"k_;79+V],Rr_ 2!ܶ}}+|Vo$ʦk=V#ߝ<~cg Rx FyU1U͓UU׭j{q9WNpXud~'#ЎS_5gW +,}do -v_6^9d>,+ʯJ_~G7j=U/x8RUeM_7;_VXSS3 ~U6);p}{d_0esc2 h篥֫*8+ +ם;[9]Ukr Y֞?2z3_f[៉ǏdI<{8E_\Lܼ|rsQqWʕsVl*9(9z(?'67D˹zǗsrf$!9aZ\jHq,lL ^4"Fzҿ;t*mI%؅ݰKhXy8;'q#&T^ӍQBu pZPkޟbEYw.W+%hc)◃ײK&x[ichbw_L$9~D_vf_5W:W"{VQ7&SSlw\mDǮj~PCa5}dsno//z7v:HÇ` 'k!OQ=κx;=y7~~oýU_MpT(WMI%FJ&- }͒Ξ ef{z'!e* 1Kfq7~h@hY(>',r[?Z{h!|Ծk?K-lkK!N=`6WlN|^/վjUMco;;o=}x{>ƻMnӇXփ[W֭/6ɩ#7J#o]t&͆zyS}l'y֡ x{e}ڕ5Qge2/75 )ri"_ﲕDkQSW;+J\ ljqY_deM{YN>a-;h=ܚ&J%ƈQ4mAUoپe"TڝVYYovDϯ*;݋5oOp mE Dnu/+֕}X"gk^גAmrk}6y)b]Zv$rn2FW^~"ixхcUgsTdsRϢ0W{y, 2x^٬ 2aȺ6_䚆/^/r__kZ:j^@Lf=ߴtUpȁ;Rn _!oNͺr"A^j$ӼeDv(zl+G>*rvWiZj?*LƺO/_Y8γ3Sg,TzԒ?WI!"C_ٹ]<[I8lFF5Ae/[{enP)֮|{{-dmq;կ!_yZT栙(mwQf-ݫ7&uxN{jyXcӒ8vJIaS/x绫ݳYwᗼe9/?ol{mN v˥vWYl~Q퀿J-nG;6~$¹7mJ->i@29__ Z_d(e~Ombzؘ'YˈlV+N[:WotUu.㮈n ip;heX{ҫv߿X*V _)9~$iI~ |ׯQտ.h"_XYlMF&w&[ ;$w_ ~UVZ{Pj]/q1BKvK2"KUarhehxp={}}|;7Wvy;7\ҭv} nxgI'Z l2̙^]'m>Ԧ_)=MqceI1knkM=-Kx㠊7YTd OP; !y5'}JfF>,};)M{<ە/h66W"$kb|]oJ "7綥uDnߠIקBo*տ5~&S EmٵE]pekc=5]R_yc{sZv/rgJ2Y[]4#?h;85"hٵkc6 y}cfA-5ow)ޙ>Ӵocnc^WEieAoPntU7XȈeNkMbt͔Z ƎN.%m>zvݤI {N{oN|fǬm}.7}\]b??)Up}@ߤ_ۉiOf ‘glr_U@y7#I]`ڇ_mh+{u76襟!pn18$$1zɓY`w{ƉgkL1mSCočWxq:JVJuo AoJTH ߨk9~0rتrof -4i\APF{§`L7ڑ#QRyX7RJ (1S˟k kCZ 9 #VDJx0QJ>KŰ#E'̓f@UL,Z2([Ǭ_%b1@ӁOtF,_[%#kr.✿ۘZW֭o#E5 7a-q,ɭnbg ӔSshXp;F lVW(PU D`16̰d ^ol7t*oF`><]l5gց6DX14ܖk536:n6+@9_W{ ǃMlt6x3m waJm7( 5|X/c6̀\c˕'b((AFWM#G/~,g!692u% ]/p~nWw] fmv$d̐ӏ[ Q %xTEfߌ Rd o#/Im66~7mnɘJ amxj=L"иk!q {`XWZDx7|Mh᯽XOS2hkIz9Ztml0-@WE>TTpW\L_vSȴG-<nx\HҥA@iN_az;< WEH5ov#5:\&Vc\~Ni\=WGO7 %t2N 5wEbt(E7*Uy GX7<1?7s?}ñ)^קHm:'=p,i֬M_[ٸlޙbXD{U@!h/݃GDi2hЊZW#joBQ۳Ho֑X5(v6Uq5j~FB*‘˥Jˀ< B v7i|gtگX+ml~=gHu >Hw D;fэZLj54YeYQOY&mni7D*_峒L<UpNkpa63ؠx-xcqּ1{kt>`K~P>Nlw@뎯{'J]C'Z?B^iڨ;jU]rR Tt27c}匈wo`҈9mRao27`DK&Wy!2X2o&}@'Z>5DWZx9'U%uoxU#ne/6@ysc_e_7I" 밉SÃ߄   T>Ԛr诊ٙz"Fа6 ;d"8ʆ N JY7Bk!̦aEaJkRO;7C#_UxRh`$i~48npo <= <*xvb){exd lQ& -j_vkx%0kZ OUVտ]Ѱ-K;(ѰqE\\ o߄۟&0h __/%Hf_*tNMLQ{qe|5E̴0y: N_Q7`y߁qf\m&=/J7#/y5 &82j1sK6SXPYlxdo:j^t98z*V&rwc!udSk$p\ *bgp8䯙m&ʨ% +';ګ1W4uڧef9#N moĆ= F\k_elo< zX"MI_ Yi!PtT%b8N;3ʂb͝&<0%dq [U6*+óLUaCfl6M]i$(!0e.է+ ̫$~8Ks &5S87 }S PY"B&SqGf(eb`Ib J;0| Bg*:`? "ڃ׉ڷ?J_oIҿ{Gk:)¬64-ġ-ܾJ.FTZe2eopESoj*Wud y3kbFyg(1;xd[cƆF"gF#C% q)~>'M;Ft4jq2_ {eofATrx*'8bfBATBk!!9 * so`1y t  :d@T'!,uŦsk./DT}7`C`;?㺖IxmI%Y$RfMc&i>TW߆qPP?p@۹PP&ix6.w˰jT0:{u\ *kTFX{ EoTaI*0_)1Lӆ#B-J J;drsצFgu kQ3Ѯۤ2ot=m׼kICT,{'DЏkP|r&MiMÚ6(]? -tHciA/׮FB+UCFޞUSV)=4Z_gӖU #Giq ]*O*UP5%yWM/ꨊT mVWWly %_}5pf3&dRKP`J˒j {hW *E46Sc~{soI ]A1TӉ*kVm'nG&wW=oYY_ᯊ4Pn7N@j & )BtnKT FgeQA ʤ/KƤ1٠W yxkyW\4v`kڿFc)(}CmW>5/䯊oɃ濍Õ3wok$g*\BR&d6{(XqjM➡hX؎ܐaؾ L(QvCoFk[ubTma%"bȼR>[6ki7௾Wq3oRSQ s$b-3K>84\T~MWA55pR@ur0m2,wV רDoƼ\ߚ ee?39oP܄+Wޅۍ IwŊ´7ہgnP_orTп!¯ Zs/Y\wBFi R-_k8T-t7ؾC7%(Sͮ! yh`BWV!wU[꿙@S ] ?//__ _///DK7,5'M}:Di%n8vö> =wnvCN}#`oh" \LXr#\9?֘Q*~9/<^ktSբ{|3oym^n";\sb 3F"m?~+"9Q"_}o/P~Nߜ=e iMMD.f7 1z!BZY[LLj~G/^믊>B7OxgS-]Ձ!r}}+|VYo%OtxҟhW(~aطh7sHb <ӚoL;`J"dB1O^RXm#N9 ~ svC 7E;lo(u ٯSfыOMyp|u_________.L{kč#7 Koҟca=3 zQc& H~7/͎"d}"g{9!cFA+4___________________________________XG.('K=2H(iozFAX6ôd z y5/dkdek4HGl6PO$R*wԃ^8a1O=x^9?v;![{Jѳ o^_{?ݠ>B䨔[i/Zjȷ[HiKF:hᝑǺs ϑ6~#͠kĶ_KS >~R[M,c=Ga?H,y'=|[?8k\,=e9~^|)vRy%[/y?H*x{R|~tm%]t 6%^N}S ~'{i%K?>nXJ@KdE)/~%O W9ˋJ-* >.}kFT//6mLwOTrn2݋6m̈Bﱾz[O+*Njl>̮ڠK#{޾{ҿw#juu:!ʅ^dwBȰs:t/,?r6g}wmq9O}3kۂ7DVxYOҪ"FAb!'msWi]U3dr/bxrmcqǫ KdgdS͋ |uK+J2WdjGr{)SGm¡A&Ȋ΢~"G7&2pi$;wnCFt^J+Jd+^_fZꝮf E)-KdgR'{ [ +lң "+j^_r}҅酬ԌDsʜ9SňUZ& S^TS,xĂoL=Jpe_mv^gJD}ϪM,)^T]Y߼+;_-M{#k_mB]E]%U͇ ,re JOOQ^}vO^ovѥ+V?8Vuz& $/76'EAb!]d9=m.Zc"?P <߳bp|/ >W_}M,'y}sD$rtxѥ/l$ A]kGÖ߷g/T/6HY)q}G~XȽ2rg_RDFWtyʊm{ͦrf"+\ۚ'K)X"+<:-oh?H,J9vL&ҽ=g2Li)] }}votB.)X"+<%/yVtY&مӾuR f9tB.uyyCJ&Ȋϧ{ ;E'l5v$]g6N_Pj'Y9JdТƢAM$4N_Uޔ>/i'S& JۘR&݀ ڠ~S-|/X#Yᙷ~?H,/n6ڠRIVYNslޗ ^Z&Ȋ ^zyR;[g8?H>;MWty/.T*oD;l;f%sAr/Z$EI]:~k5͐oo0v%3eꤗɇ|l/:1A?M%&?x/ݐ_;~X^S\"^ᅷEg )ycלw5//r76_{m,rVC.UC7Y~I /"Q>udiy;,r@{RIopY}iS5n+ ^ n7:o{rI}FT} 8F˕^c/PK+yӽwx H-1q~gd|woHwV>$rjH{-kh:jzt5/5~s5$ѱ}_V&nջs.CJh>Wʻ;ɞr>>ۿ7jJc_wg j{W}ߊ|ȸ$z]k! BN۵MƒG\olWϏD^o7>Wm+v\gYur*r1 mЭ{)}2O;jޭz}w[GdF=~iE>dJfݾA*k[y?]nJ˨QY~ԨQhOG0KLt^k2”Z +*_&Z AruOzV78oJޑ[lTɩ ⯧=7߫XyHyx@'|X>_){MV.gnro+["׻·_,\[_5]}ߊ"{$zkum{fuEQzբIR5]X/V8wLo7mW~՟~ _P_ .Ernm*kGƛO ~+y>h_91~Sn[PO{;w.j{GL^pX_Ovael-ac]UEv5X;locK{pmɓPK)Fu}0Dfu^PVֈIt##pW[/Rkr/-.h{qZ/VHk^EiFTcG߲2"7p7KW90(}E>ܗnUψHImoA{w]_Dh%s!hrۿ>h~C;m/7v}ߝ׫44 ?ܥᐛl~ _m)>b>ek.l/k7mWVoPnD8{Ԯkz7~򂟿k~A_0@j9[_m8~"c~HIvicυ9ގ+#T!hDvg/HsYm,םuɵ65 - 7x|7R=vao3XP;Z1ڮ"5vmgF{eW74Vȗ\/{ *iPk7g1FJ7{{^\Xwj2taFǨ^MM9ి1=T]ܔy=ĆN >)ODgy/.Z_"wJyLK-O73wf}9 voL wQ%,U:u%їW[bbV Z[bb_Ǩ9wimwɵ 7N}kpop柴m4W~COoK ITMTQMb*$yG[s%[Z唹?^"ruy?M_iѰfU~R9ϼ|}M\ТpP2Ɲ{o1 [.>1.=3Ÿ]l׻g t9ݿWV.D@.13%nKh#~fs=ܝ|"d;ǭgWEFa^tP׹ao~j{ yy\}l4wglbS rQ$ҁ9:/-> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 119 0 obj << /Length 2425 /Filter /FlateDecode >> stream xnܺ_! xR$u9yI\u !9(]WVJcob#6,^Fr8w9J{>q=ߜp7'//N^$ Bb鐅"2WEY7ٲ>]0~ϊAZECPyct_nJ U06^ݜ ?m2DD#iƲmJ\ՃDPJ8ݫF~1Ͽ]hpOx!g\B[nO>PIbM;%v' xUޫV TB.Co1(]>b:j+sBK17GK ~1n0/z bnQKh>^1kGli9&:E3gkE;:ںrl7qi(6`6نepoXd$ 1ԙbJMY,{"G49LG0Kik](Sz AG=wC#i, ׽+WbH p˴pV^_nKh|^n;d˕S;l8'|gi] t10j:/:|ޑ_DuQ6iN jK3S/'.fCB$v9 šodKTEH3D<|UgnLD_? qqadOŸ1\Sz֒F[mWVfU"S{oCtiNmm6OI!poNi^̫ڌ4rU\/ ziۤsq[8XL b<ԏ?0]ѣg@<&=R2H z{tp6O첃m,?!zef:H<`񳸊gp17:Cq0>ķX'nMzIoG]L] KL[U98iւoAS)CZ_o&^CbF^ΕmPO6ng<ϖm̪ď> >> stream xy\0:((n(j KiYnZ?FuKmS[l1Ӳ{ն[+if [ *Ȫ 0S\+|gΜϨ=|("@V.                                                                            Hg QTTT\\\\\lee]]]=<<4 EQ7ob08ϯO>F sppR(bO?-\066Fuppx'fϞFmzF6܉'ر.UVw}f* `1os MKK***j^|z~fc4GizçM֫WV^^矯_ԣbf˖-wyfoo'22r„ "2x:ZXx͗_~ijxyym޼R 6lݺuΝ;SRRSfcj̜9յ.S 2dРAL hfej۷u `)oVjץ> fejeqx$#T0_lY^^^]ڵkWTTTC6iӦw}wZZ1fS{]t1O}K xMXX؈#L}u;|p-OJ///߸qѣn:[վ[*V PqԚ!!!-[tuuuqq3WQQQ%K7qO?}IR74 V(6mڶm[bbbjj~G9tP^_ϥC'EEE%%%%%%:Nzww֭[k4KP7*Y`0ddd[YY9::zWWW@SEV(ɛ7oJLLLII1 Wi\O>F sppRo3?… cccoZ'xbjgo3͝8q;2^_j}gC6дnnn!!!qqq)--ͯ!999..˗/ꩧ̌m6FqĈz><<|ڴizi呑M=:n޽!!!* Pllrw!!!k֬y"##'LPPP "ueq|嗦͛o.uȰa֭[gjܹ3%%<,m6111̙3]]]2Ր!C tɴƈm6YYYF߾}>[pp^B6lv]:,m6^^^YWOR=-1"xM e˖e]vEEEAAAu `9o6m~w<cƌ1إKل1޷o_ݟ{Ç7=zCZ[obij QgϞ MMMڲeKWWW<ӯIIIqqq5/\ds=W_`no3;wܤImVIW\9ydsU{DDĺus?'O$u@o(iӦm۶%&&^/00pȑC\*@=zR^^^TTTRRRRRz^wwwoݺFTaaugӦM^^^4ym۶u: iW_}Z jPeHU]/NZǚ ~>uŋ.z:<1uHNNNj&`0ddd[YY9::zWWW .5.**}FPϥh˧M;+"VϜrw/Ɵ~i…_XX駟:88<gPNM/<Сrm``sݧ-N(WՋުөk)3:t[}{K.?k k%mJݓ'{nc1wKGu/!yhL9kc8xSvvvhhhZZZN77OOO׿אWQQax˗/ꩧ,=4VǎMv0&悈8:/1}zLMgs6國8g?OΦJro1>`uӦMիWmN+//ׯ_oygBBBBBBT,@SQUW_=^Vf=[]WW,K9㙂qZ6yeI֒KX|F6HS;$$d͚5޵###'LPPP`0̙cUЄ}Wg7:OEngf~izf\{<\h Nfcj̜9Sɐ!C k.ӴoWtۗ/"Zf<__;n`7w%m3!xMV֟-[قM;==hbFwO͟TZZ%"ݺ9~-<.Ƈ3m[3ۼͯ6[]N +0nݚ[䊈F#K;:X0VO,:qb cQD|q*E7o;JLLoU/\T*e۶syyN//+zFg+_pCEDDcTG7t$DUj6}5e˖=uy{׮]QQQvPPyʞ=vmvNNyu.sq9V~RCglu GwlM_Hzzww&扈8q=p.]J}dgfUwQ<&MֶV71mnD+Et~|_|U f6bĈ-[Ⱦ}wcM>= 6O}oݺ>۸qGվ[ ))z?]cggu]'M5á9b(Emu: D6++UVHqqﻻxzzlť"???//kRRR\\\EEE /^|mY1c DZ3|xI<njiTV~|+ *5ZM Rw!xGttImVyܹ_~汷_rɓ] ->pԨ贴R2[6^U%UGRvw6˴y$nݺ>}O?ɓ'I@swY13;ED+u"sAD<;I+xոqƎiӦm۶%&&*rNNN~~~#G:t^X'FNÞ7U$-HOuX`ƙQoh4^DӋJJJJJJt:^[kJWLggݚ5A7q.5dLz=ID5AkG}#x[[ۮ]Z KAAQQDcGZq}9$XlzÇ~`IIGrr }l8iZi̸c*x}'Gբ(󽽽}}};udeURRR233MY&ˈ.3&:;\DƍkW}?r1gE=]qxͯ?~222jw^2eNw?3%kӦ bKKDdΜ.oʜ^+Uʁ Hg:'Ǎ813ʺ[yKR$&&>ɱHmo7.J|yŋ͛+Uy4gs;f7;TXX8dȐk۶nکSz+ @{f>(bo]&{<8 f4E1pMF6F63gVn++ӧ8GgϞݱcǿ/ȉ'Fcgggzԫ^HX896l<,*J٩SUw:;ovas#xMRRW_}ejwo[߽{Ν;v~MD=ꫯ;@23~ak O[z2̨,4h5&49Y櫯2"h.I&Z;+"K,7n\-P+zd0(ӧLۺ5߿'{.KZe,7zlm:ufE6HSod'NݸtױMVt({MvUwt|DO+;nfs)So0oo~}]v„ PWTd=:zǎ"ҫӖ-ڴYۛ3?)=]ZݭsԵ߽z"xM^ޟ#}G"/3Fԯ+߿M!-[VgIYkdmH~-='{zNm}1m6EEE"ZvҥC 'O~>l}Wy "rm?r#LI kv:qvb[:,VGqww75=z~MW^yɓ*V-ZlJ#Fں_SwYVY}11T=Z7vӅ&00E˗HII?\UUn}KJJ[omaCV)i;Ϭ;#".>/ >} fذaݻ|f6m|']k4|Mbׅv,R4!Cة07ZPZm6SNuuu5_}1c߿YzrʩSVں5Έ#eƄs!8ttK^e};"x^_tiˍ7o[iiZ|7t'rZoqqq;w|oΝ;~o'L@yy"dI)gW]?\~\DZ; ?+[YtMF4hРAn5k֔&%%:u*%%ԩS*U|(bŊ'NX4MHHȸq,]/~Aj(\|¹mL/;w[sJs`4%޾w7X裏Z 4ӧ۷ooB{Xebm?z\VɒO=YKֶ~ ?^cMnh L '''m*TTT+r7 įnڔ#"T*"begiV/tvᨰfb޽0kN0UT},XiOO'T Gmƶv7G?ǫ̓ u'.+li-"ȑYGRt_u7SoyUqѣœOv4u{)uynJ;if 77+Ewu:u4eY8tvuv^v.Iqp)"r]ﺫ}ɡnnO5kkwcKg8tt追}{K 7Ήȣzwx?%"vv"{'7QyIH˖&/HN^,"mmo覆th@\ nSܼ9GD+W6? m۹wRwϞ-$^<>︈ظۄn usthpp}"1bNNe x]x*A;;HbF+[[ oe2јOO}/4V""緟k0j5ԍCʑ#.w??J4:MwAmƶth| qb+3:>\gw!zltUIJ^m%uf4w"=thǎ"2vl7t_e~hze81݂IWgHhhիXYifM3E#=?o,]#17fmժ_O]6k^OJz#Iksݨ#7+2ܣRizÆ`w7#3~*"66hɓTV*֚ h{_gDľ}[XF4oQnnȑϟ?y{}E~mkkD4;UGG{-wL V{[F ə6mگZ3!!!!!믿1bĪU<<Bb!SD>KKPPY)"n66w>9;ҥ52o CCCSRR6`˖-1y似إKYfȐ!W߸q̛7OK1VO|:ݓeDDD:S;sLx1<>~_5][ۢ"4\FqҤIթ]v3g۷DGG/_<33SDRSS'Nyɚݻw9`0^:::VUUȹs]vU_;jOV⋉%JL"?Ιt-UajNj ikk, `|۶x: ׆ L퐐9s愅͝;СCwo߾aÆז=SPPPXXHEEԩScyM[nݹs̟?FԐ[[tD>߷dIuh`<}IuD@)`S[ׯYյ775k888^.\PQwW^mچ-((h׮]AAAZVӅo"~K>h4K"ҽ{x@TQ|8vB{勈A/'E.^:Eӧoٵko^tstտ={X[[F JLLԒ?wPs?zbJA~}_OKg&ee:%7WD4ٝ;kϢ?s#xhLXDBBB5M~L/__ߘEQo>zKھ}SYVV믋СCjJ1* 8~yo99v[ܭ͘6BUj4b33g9b:^hE5Mo Qyyyjjymf3%%`0t:;vիEd֬Y 1[^^31Ƕh"s}PwQ):\d w̯dGiV'po`P&NbE4KHHq-[ɼBVz.\ȸ/jVV1377WTa,.c3M/m[ۺ_>R? UDBB\V͆-_P1.^qϞ^#xfsnGthOCKJJ׽]s@q޽{{N0!!!Kzvڮ]^?tԩS{Q@ Ye+z4XD4"߿-?oo ^ߧ=怚҂ ^~~ٳk]v;/򫯾zyudh8o2E*`y@׽x1))%"FB̲9 ffst\֣pN 7f~˻:.qĉ+VȬYڴӋ/~.o0ϟt pmEb'^<~QD::'ХoWV*O>Owdm@C^ݾ;݉`pqq={vu_|ES{[AAOn\l/rC!mEڞ~{L՝ Mͭ}+WH`_Ҝ[.Zmǎ={̬04::tN.n7uNNNr#w[hQO9tз~+"sέyhM?F__ߗ^z4fȑ7xD⋉""2K4.V*"!!.;84m3>9}ӴrSV{vOuxek @Ch|}}cbbD$99ڃtMs#?6=ݦM3fTw^p!""BD:t`K&={W_}dddxyyN.9iJ.ַct~iO=u("3gvzZd&Fe))Ο7*G{:uBGk@@mfyyy\\ݧOϿwM6+R$ "*N7l0G%xP)LI "mmowZ*+:i"bcc|y@x-6`kzGT?ձhms^pP@Ut {j9(:uV󭢢"Sj֫öi%<9'>q"b]&u=[)u{xn SAQ$'mJz1oÃGkӆ0q@fggWVV&"}Bnj:oٲe׮]"2|oUm~ȑ+^[CϓN s;O^@{(}1ҵiMޱi\ "͋>>tbmmp@9::>c "##/?O<񄃃Cmf6=z/yϴzTTԱc.y7##c"bgg׷o>/& mzU2 ͔Nڽ斺+zeJ}4ח(4\sε7'NgϞرc^3gN-]v jnjMdžUVVN2%%%gN2Ŵ}ʔ)>2(ba뮪R^{-顇57/z5 s0xϞ'Om ޢBm@նm+VnJ8p၁UUUΝ;Go+H~F}1/·~߻w$%%[.77WD\]]x 3|C:}âM]'uKܹ G^[Əo[/6Uԩ׏/3E[nInl)SdffΝ;h4֭[nZsN{&LP WZ$"-cnnn?ӈ#Ο?_TT-ZXnp28#uhdSk1{aΜmΙ^vo%M:/?_D<}|>j^+44F?]n4hО={fΜY˩ϟ/"Æ Ƞu]r;۔׬ :|xP3I%UU{?ujҁ{Rw'}}Iݍw4v۞={N8)"^^^!!!:uyRSS~a.]/'NرcGNNw~s_g=|HRھ?u|agΔ+ EDt/3cFGKdiJ%? ((؟Ƞ(jD½;nx]vڵ.3t_+:V7%Xak7 v˜"…|Z\\%":+>6n2Vgf~sBpmmC\\fvxGV_̋ @-BC콱&?AC//9O>y$5r%K^xPRU#_jC\\sq)M**%v|E[Z^HX4ŴqbQjuRIT\<>&pQxٍh{:9x"xPE܈\i;m].y7)xʔ\^?5yZڌ#GLgMhvE-xxlI^,"-轲o^4ʌ"rm|"u֛*#CDlw`PO̬Dq)FE Zso˫|CןV3oϼy>MF  E. b,ܲG?v{Ri rMΛﳲ7m]>Uoqiʻroh|"L6cۘ: |3Jѣ=VݴO  qƑ#F+>>ZvPk~&eYJ淙"6kX-Zg;7Yd0l8{EI[ٻ}mZ.Xy;1kg}FQY2mJկ^d.ڔ]V/99UU^NNk|z "x0̲؉A Zda{DqxxEDjtiG&AʍƭgetEI{C7Z k3c1v|lr^}]~o$Ve_DnYY?9SPYYՎyWvVV, @]%/_DNhҽ;N(V_} }>]֭'{zs5'OJDW8j?|Y޽,\:>KK3nkfXV<=Ƕi#a kf)R≷Oϝw8:|';tMs肂G,]47:SDfWWn~׷nUV6::hj&un;)솳"-2Ԙ#jz}>RQ&ƞ)/ǹ3"xVX޲eYfY̦B~:R$""\<^oթńE;tt9h@3k,^zѸm۶|GNNNNNNݻw:ujddhTG}t%%%*}jZGRwb뙯fd [wOk;uJD:;`rhp@#SYY7\pL6_ٙ_1bժUW>>cǎ1c͛7OQ3gֲTeRYl^e{I-=w"V-*z$>^Dml~ۗQ{Mɖ-[Ο?_ϟ MIIƄ1y似إKYfȐ!W߸q̛7Oo%KN\ag}glo<"\0h0h5;["4&@cRRRK/~h4iRun׮ŋ~vڙSSS'Nxݻw9:u;::s_sEyEcǎ/%!ue)n oo@I݊ȴE5_ߡWa=p o(;v;>\6lejϙ3',,,,,lܹ 6} 6Լ0 "SPPPXXHEEԩSM.u֝;wmlln`I2**DZHFt7.̻'Ot挈ۦ<KƧ @#sC=z~;rٻ&5o3,"ddpWժuBmrm:V=*ΫTA**Q!$$d|O|}sr󝼱"y2t/Ad`kkkK6 wpp 7?ۼy3(/?9{lii))((swwͽ|d"_paw>6B!$#߳O(F=e`7Cw[tí5YY``9;MI x#ڜ9s:լRRRŋ^n#9<)))77W|daϞ=⬛sN|ƍv}^x|͛7hBɄ@@v5LLf90B ǺŷMRRA111ӧOowWLL Yanܸ;$B!$+"qHڵYuum@S<4VPnA gc0f_b@utHMM >BSB+**"ˆ7600 ]gΜI$+Vk$c۲eKG!zݻ../YNfS |租}BX6іVm"ђG" v7''ņzAJKK 63YeeedyَPTT|ܹg:99 ȑ#'OLgXd=k,& !gxh{`azיVVv-e܂0h yox=0Tx?TRf**G:(4Ts() cdQ(--!dHX,qyРA77hϏ=Ξ=K>O?P(f!\.&ׯ^\Egp#l6a'II\.榧(7BRS[=Re~З<ol6[\;wnfff[~+++e]]yG}B!**?_ytYF˓&`k[XOXGK@}oM:--cH-,vqz9LuuæFց 55;% $o--K6L!===<<ҥKyyyAX[[ϙ3gܹgto۶YAA\ !?<"!,07Wݽ~֬!ߛ&:n?BO_?~LN/WR;:.65uPh!QRҟ81[Q}kkkqkk,:.ٕS8K,TVVvјj]]ݱcJnBI]MMۅ Ww=yHMhR-]30DmkG5PrUzQT<꭫+7Bh`b0!ƒ $oP.n:yժUY}\\܎;֭[w߽#B=!O=[]+o;:ϟo8u~: h &^ "accBCCBcK@䤡qBUU o$?; eZמ充@PPА!L۾}ի_n/6mаw.B!ԱGO_Z[37\AKThLl U2Pr}^CCrSšqp`0n!40J҈wbkZZZVW&$$Y,~7ٿ`߾}&M2eJ !z;ɬDe ]]5я'ZJC,-e\UYzzݿhL--9rއ7Bh`֏B &)) rss;n,n0l0JW~ l2qeSSSdd$pժUN|aYYq!zٓ' SE"BKKEdz~9ffLz1 Eh+(vv= #ԫpkЀFRRRx>>dɓ';BeٳX,F woQrLXDsr߻Gf㴵SǏǬ&K<~hycӦMdA3-,,>3K,,nֺx BuPH̛͛^Ozk-i-h/3 .M99Q(Če"!4pyyy>fG! ***ޝ͛qqqi&EEEK322^yKBv֮͊mF@ֺ,Wö Jx}ϞwGhcCõH>`Ԗ,YB^rK.Kvn_SHDw;88jkkKvW._ ]<!gw#œ{! .v̵ Kӧ'&ִQ"$sx#͛w]ɫd`w .7oL{O|>ϯP|ٳg~~~\t??N!P;~+]বoB0qFbR`X32\jQgJJe*uM:! D daaatCCøq{=WWWP;w[;v clzsΕ;;;:::\x)|BBojo2+RT^nj52n hye EΔq@vjj\]54dB7Bh+// Dp֭[nI6v;wn';ջƌsݼr066f2]ꧨhѢEЙrKK7nVWW7޾#B#GJ,{ϳ=K"v[,{#zĆB)sv$zLBo+++++0lذ7"B|>zu=``tRwK<1!$(ta'@Fڋ 8FPRw-P7B!Br;~J||= tHCCu1' JsUNm,*Εb5㬫B0F!BH~]X'{zgθ*vA kmV"PRp3AGHӟoh&CAC@H4:~"B!$|bʧP-[[<BXiwټJ(*{>\]',_Jc }҉6qNx(p LB!; @__Y//nSWUOɓ@kn*f?/,.V\55Ϲ0pߪUI*m#F,LB!/QQ)55m0jԠp7c./ꮏƄF򥪥855hzkn #iH8'3Z nPqC70F!BH^D?cPH@H?ӻpr 83+/T8a&PGzzQZZ5ʧ\\g5OpEVPlw:~oB!B}=? s9sHz7s)>X,jUjdab0HW"6HQ96&Nf(>lN'fX,YG_bB!dSJJZI?ll ټ*Y?MnZoDrl&`h 1.!S|~#%)'I*  SW]ò _!B!ۻ0$$g館L\v:򥦫N{iz7 `vYQ s _33N!vH oB!dEϜ)UUگ. |"g~9" wRc9w@phi郆SSӽ M x7n)}ZGt9e,wV?NۤoB!d##뛜VV?p1Bޮ}1; eʡ6TAJ+-#Z 63WQT`\ǛB8s!B!8w|--5 ss~=.#-tt:f/-=^VV+MTT*w4U?IZ](6cLr_`: oB!'Z<СPP˗[t 2MԨTۍCJc}'YYyv]xe2:sȐOLL|tuxFwkjq8fƴ-m7B!B}3wnrJJ*?:vv'mm{Ir򥖇ag%s\ԇ57k45?1172?9 NKy'SUB%se[oB!O8Qn]vu5ƎwW#NfjtmͿ6}8VST\hdt?,`}YHU^z:ֲ킉7B!BK($N.ᇜP(7Cmwz~xsZs¤3 ~_HLKs=.ͥKf>HQߜ>``B(,,tРAAAA! DWlڔ&k;w͘1D$J`2IJWb埤DT er YG6Z>rjoN;:&~9s&***99:g…o+%bcc?\ZZ nnn^^^ye \Bo8ztּwڪΙ3ڕC.Vx" +^ W6C(Sg\]gƒ$Aۂ?Tevz{awgϞ  駟_Z: ௿<}IN8w\fmm=se˖ijԖ|}VBPHnۖWX<嶶fl<)7/M,:eıFBR&"O+,-K: ]sVIQd8z;[e[ >"X,fT*UMM`hkkS^c۶mk֬頁H$:zh|||LL <== _͛7===uuu_`zqMrrrrr޽{'Nn߿5X~=# HjWLNn"_(YcxRgWT'@UvMkˏVpajꥪ*0QQ`2p>p[nղ^ L{ AYYY-544lmm]\\>///UU>!vZ1c̙3qРA?9uy);;{񊊊=D狳n##˗@bbh޼yQQQSL𪩩 V/077_x<B5Oo_!yLJW[~񅙊 eߞtu+#u&AF>VRRl]8kh`2 ;g;g5O|BR^}WWWښxZ'/!Pf&kĈ;17mkit/<\nlx H{K1 ׮kdv_DF0w}z}_ɾs^zw󗲚ooٳg'''wvk.KK?ĝݻ="ӦM۰aˋ2Ǝ{Yq]r % #<<\[[[vp4͛7K~Yr6778777F===ݻ/_nH$".\أ?Br `#=j1c*Wʆʣ%別')){ >׏RPx㍨*缃E7 *Br֭[u^˜1c;iiiq򬬬xb33o'OkccC^~:Yسg¿=())ܹsp ___ɫ/^$w4Zwu!/xnݪ~֝?^ʧg@H㖇\/f JJvTpd禦 N zM}Rk@F` [5@cb-0Hnx ''񢢢9"=[bd24BrݻdACCƏO&-Noܸ!n"""ĉ72NKNGl&&6lL&sƌB LS.1pa6ZzFzZ?mm .*Su֋%!)[F]OSWq[ sx#sU\[j"##2 ())M:uԩQQQsmll.BrO޾WrCCMtuu۝}ˣzrZ(| ɓYYYe<!6ѪUKO s`'(_Ԙ({WoĉJJR X[Z6坯hzk멃S_/Ⱥ-euF*2,M'$W0񖚓'Occ㈈vKI;ŋ^^^pΝB EP3 Ww$x 00r` !y $%%3}vwĐkkkq%ݸq#x{{{{{w6B~SޭEEͶ~kՔ%`OAgg( R0]lj)ZNLll!7FuŖ(C,-v{/{KG5i<"`fGlޓih0񖚤$|ngݤ'?>..ov*++# JJoxqYrHr5`Xd=k,ܝ!6QBB۵o&$4x"ɫ&;u봈+*@;MPh!-69].HI*2{ȐVVn]{܀:u/6uLha,7?44SxKTVun!+ c:P(L-!dH{fjii!_]J}~J"74hPHfi4GTVV]gϞO?TSSCPg!Z[V_wֳуBuf^WTz4g>'C4͗;pԚ6dƻPԭ/~i>PG/|:|9}={F;166&W&%%;=MSy粎PRSjl$@QRRpx򥻻*8-ـfslw/\`eeE۹s'|Go\BHnMKsN\Cĉ:C3a^fſ+=5z_[|m-\ bӧ *z5 O*_ ,E!<>,r^I  xK;x۷oѢE=Y'ލM:`ðiu Nn`YGP( il|%H&o.@2K.amm=gΜsJѽm۶frs5BQskKK#m}.o0a[^!z1A]^2p!U*{A %zVP82u| 0R\7D8E8ˍV?vlCo 8}4N::022r޼ydyܸqҌ&}%ٲb JOO_vmH&mmm*.KvTs%KXVVvјj]]ݱcJnBHNֶG`!ι*v+Cpr-?SN  )1\,9CK777ޅfV4]e[=nn2ZqނxyyM4͛{{%K:::vf7ǻuÇ]Fh[n+Ϟ=/\ P(~mhhl3"y+I6BCC\u$UVIfqqq;vXnw}rBHV*+y33[Au9I7/rLԱ қ'{Iڬ r vvJ KN|iep|N"0*z OOO#6{ݻw2LCCCmmAikkkii544דnPncƌ͇AHK,gѝǞ={Fs}}}ǝK&j]3&///,, "߾}ի_n/6mаw.B^R^~aa]ͺEm_sCs(`02R٩:D#v }wk&غp6Dhso{P4'&&Ο?7ntG.X@"/544,_\A:t֭[Νt]E4 ;@j*qeBBš5kȲ7|coo믿?~7iҤ)StBI]Y~n.-29|؉JBM#992.Y?Ma]y;+*V>}ZPU?\^Y3 @ߣLLWW722ʕ+]]EEeɒ%BNEE7s!.[LQ | D!Yc{{?()i ={:zImT-RBnݐ9C(]-&`cv"A;S/˝r򌫣B &޽B٭\x<^ii)p8N3 ;x.}G_O>СC{xx<%WS\\\:||`Æ rrrL0]ty0'O0F!xYm'o4 7fZLFc,j(]?}āM99 |>(Q--U%NDRPt 9J"Srmi>AA֟ה:9L"%$$`…aaa]}D5eʔ~ "##Mf _eA3-,,>3K,,nֺ8&g#c-&%Yc٬bUƲ n(4"MJ]>[=y|d=}8w<|t|F*=H\A!!$vMtuu׍!^^^\.>ȑ#dAEEۻ߼y3..6mnxo󌌌W+zrB=>]&m:s#uFե*Dnz>]V򏌍qeݺ;mMM4wتV`:4$x@PVVbl6ͦRjjj C[[[__#%gqy8IMMmɒ%]W^i&::ҥKdyҥY$FGG?}^jYY˗@YYݽ !P7WBg|W!!!jmmy]zuر⫱d`w].\@. ߼y3p4-00pΝ|>␞={GEßwm۷=?J̘bC?OoJmv{J[oDW\ټysrrrg777'&&&&&:tHUUuҥV -WPP .߼y͛q̙AXX9(0nܸ{U(>|Ν;ǎϝ@ ذaxxxL>mV^}ܹtggg___GGǜ/?BZ[WXP!kTUi}fb{  !' :t4WTּؾDDEet}8ٲR2Ο6IJ$(U%|c̢Do)7o^lllnp8v:x'̙#O Օ_yyyHHH$[nݺuKNߵkܹs;'rrr`˖-['sʕI&ձXcǎI^UWWx"gBIpdٮ]A_?04l+5>ݥرã]qM6W--[!Y?a„_~oB=GXVr8Br K55W*XUVR[!'jo; ^|4|lO{,1b]?U]1.O1o"L&3<<̬+))M:uԩQQQsmllݞzUOz6lƍMB%8wС&q:pb3777o)/=Z|4Pd 9.nv(*rjjnǔ[Jg]ٛkj?ْ**>ԑ 75a&RsI`llѽӏŋ;wvuD!Bh`mڔ{lyc?K5?hw'64b+"(4d=ESt6(tKnnK UUf6se>b>GZ g۬*+[j˻u&N8~8[LB!Ğu.}czF I&RSQQA{ȑ#Ļ!B 5s&75 GwRi+*vv6!$RY7Uj0SSwt@S&`Mfo%%"#eVV*Rtyq~OcT!nuk|רoeh0lFt:A!׭ *{}PPg>^g=F{䵑 o.TU}Q2z2=Wx{Ń9BU:9*j-ڇ'oހٝgee@RR;_B!>LJ]pW; ,9\Ly>T7ɗ~>u:lQc@G4yqww'}-Z'˼⢣ɲtC!Ꟛs&GFʵk#4Iax!Y v @OQ:%/ jkò EzMBRO8YTTl6{ݻwe2ڃ jkkkhh'?'''55M۷3F6!BHΞ-_(|M7vmJiJM&U~]}U(x{~~5ff4q+"a F 2l*[I__?11qoW޸qK=zt!BH=j~ :oҥf荝N ` (Tʈ#t&H=DJJVxdoNNzajh, uZ@ҢPYRxKndd+WBCCSSSzʒ%K pB!6C$MMzx{u[3^”6p`8PjKIPhg~~iXq_}R5#QYf͜93++o***zbo [[[WW)Sx{{3>!Bq~+/7Ԥ5hn;;EpCN>XiÀ+-,]PPbۆqذ9CP1]ߺh[tWOlB0= nʕJKKY,p8t:`0 ]]S_XBD"̙KJZ%(L-&SVߏ͂&0Zh4l󰞇--B8S^CNN>C)+Twߥ K!e1?P(4 >dee%(^?a?UUUR!BXTTmppfjjDe8m2vqTVBY](&86f#LK'_QRZmeLS~sk[ 1k)Z& `uV||; R !BC||U7/-,To5?![YKzp(EM,.^)[(=E`K/Ui8}DD6@xO+ /YP{xAyyy[k׮3}t2FI +--4hPPPcAV]۰!رR>eejPEpE"xӒ%@N(I-WX6+#ډ#eB]w!bY)S|}}]]]uuu\nqq۷:TSSyyyo8zOO455-Z~xe:OOpMOOW>ꊌ\`Ah 99999y޽'N|]߿v_`B 0UU<:PS`"%tǬԏS5Uje%&5 yxi)ueUUQhvQ` @_DYu[;嚚YDžP`G_e}}K6 OOsd.BaѢE[WWwVVVMMM[zz:y544tѓ'On׃H$?8622Z|;$&&߿͛Q=e@@TSS P[[;y丸8#'b͚5`nnxb)y 믚>Jm&S+!(anggyy湺N8/LNN_~˝\z5::,3`///9WZZȑ#ɫ111W^.\̺===߿ mmm}8-t֭;wMq! ի3LI -->>nD\\OPhcOOJH zz'L_2ywj1F&}A(FEEŋtXAAadǸU8zk;vL\޻wkt͛kHNN.))l@Dhh(Yf0N WU} p͒;#={܆-..͍FtOO{9::@nn˗&֮] .G`|v޽VӖ}zbbbȂnܸ;!)zٶmy d#ckoflJiIN{m7O.VUmxl44MϘ^ g'5,wY@EExOCbX+*BՒ8@%s`WTTD%gY(,,R>sL$y7ׯX]38xٻ(.wvKG4*RFb JK vA%F4Q6޷f?r;y;fsٻ޽T=ݻw! l[۠è[Yd۷uE }5u3͙}ڟoY7,f@OUտGq,D0\g;YG`"\!PMuVj-A\PDdEE۷gΜiccCA>ttqkҢͮ:i$jyJJիW333333}}}Q<ʷ'N$!dm[sgŃ:|ئS'4Mp?.dWЙt? %K`b=rvVgbHs`rJ7!i¥-ʊFQعs^p?|$w}iѣl#Τ%TT:#I]}lÈ}֒+@CC;Kf tkWRRf%˧}ZUx< =B+*=rpr^:ҹ HkDs|ah 4&kL䵤ҷ_6@7%:B׋*l0 ''&&-E$%'''''?z)__Ox<_uѧORGh4UeEK!҇o-I{qEEɢk >P!ӉUpp)Sk\bkk{ q᷂جYjBmTzzӋE|̵kMf6PPڒIR@M+NكiΔ[̵!'wѱ[J確TT`N Eot{:( oӧϐ!Clxk][Ŷnݺg#;wtvvr%Y3y<i,V9?&&rܹnpĻ"*͂uxx߭[H433oL"٣{Ϟ=rrr}%!Ԧ$̝NeݽzyzLOK^7 yb6Ĕ+تX4SV96Dj$t=''{UUYՆ?[p^ ~:.oo[p8III %%C\]^^{-4*]ءCeE{faaE"QVVVBB_^^. O<'ν%ws5DVAZ1cƌK222o ,066&Nuuu?{7lP+BiCCCCCaÆǏ5ܾ}ʕ+d&eEEEYr䅍cqFG]fdVq-[BHHX<LLm+*ROV`0nڄl_Z\AmdNml̛ q׳)2$(Wőh5FP 3111119rg' 2յ*P!1==/ٓ?xhVdbCBB™3g`ٲez缽׭[W{@ ***Q!Z PY)$8uʞ씘ɇKޔj辢8]vP/TT~vڷMxd}3U?i8mLCCKĻw$B5ۍ7Ç IOVÖ-[5kCBB֯_O'OrJ++Ǐ?>mkF`j AVVVAAV}k%Nߍ۷\.Wvh\.ݻwԸW^288޽{yf-qqqX9>|8<22oPqp˗Exa I=|(<jQejjct55m LgҎ&Fɤ7]ka6 UJ TÈOx)0픬BH0FFqxxzEEEQ%%%}}}ѣG{X]sj#IZ1nllC |ꪨH}v!~%ի"XĨ_JZ87)s(&I@SS&&WUQGbr?îV\~ESa,':FZܲjH;v/"^ Bŋ ?vttojSIIO:ŋg'OLLڵkۍ7mvk>T;q>,>N!BEEFm ]z3SP&BeݪvksYw`AAT֭͡Qv!f`-5iii%9Bͧp…cٳ۷'\￯ݵKի\ԠA|||Ç3!$$dɒ%<<>xcǎB2A`jkZeR*+@o^o46"1& m57הkKe׻w3Ys`褞fkLAo3gΕ+W dB ASL2e ~eVVViiSz\C_xNNNM'%%ܸqǏǝMMMeB탁AWԴ>c۶m_MBH239[ĝ?.ػr@NvF]%$&z'&Rk[X,44dF|}xew|q/U!1 ]&$''7vaÆ >˗sΝ;W!Bn;q""m2cOOSHdp$L x/;+++F?衣 ڀ7k`eߔ2!F0>ee;vnB!$\dB>hܹ]7m2UĽW2Deͷшers}Ԏ:66$nV U*buCCĻEZYYEEE:Buh$ 7ndm_AqutpV}s!EŴjo6"OJ-RR$ > z =0mizT% E vAD~0F!Dݻ9މ^QG̘?c$;Iᛑt }ucTB2[hD$kJʎh6+_}7V4W@MQ+'ImWBm~$YB'}}3||ʨ#:ob`\ؗى>e3i 4&M/R\ǏaIܮ=wFú卐ÓTI8zB=Ļ 2$SHBNdsrr"##KKKMLLlll\B! ۷߿+T_?uLtUrSN X*e倾}5>ӄ&2 dUV{'}B%H3^j񢢢K^|Y|#F#Bu\H$3Fd:!!prhG5{]d.63[I*7_R |536dBt+W9sF$1L[(=իWcccGyҥoV* B{$ $PGh4b8ݵkMըB:j0dfɌ`\\]wMN]xBC6pxg|_990E_i2ތ\@l#B5P(5L}}ee%}8Kөif ֭[+VhpH$zٳUUUUUUf͚D0<<|޼y^^^ԇ!B5(8OTmg2_ďo<ʺ;+Z:|y;ȺzY{{E)^:IZs=N![Ci$ͮqÇAEEټ=S!5#ʪ`xxxvv^$Ix5*//5_B$<<< 3%99 =rqq ֮}ɓ'ӧO͛7o:toСu˗'lڴd6&TPU\pN6(+ӏ=3cv'd^WQ3b3FG$E|>`dQ۰.p##BUko}x7WlS &Ըѣ޾1 :C=y13E"ѴiYw.]ӥKxJJԩSk9ѣY7RRR_uHHgߗ$!:n##ͺCCdž>~ƾĦn]7~ ;V=ep~^Xf~F{%t0eBHsx3ӧ={Ξ=料yAj%5&I2::̙3 u¢1 :u5rݻw899=x@SSz:wQF@@@ݻw%(p83grȑ={$xoxYfEEE1j-|gK^^y1B={hܸ|^SSfE {r̩N&&>N(WGGҾO_#Q˳oAwz![eee@=G<~q{zzzJ]tiZ!T3fxL&IrǎԘdn5Ul׮]Ǐ(CPP\WaO>oߞ|\R#M2%kڜ9spX*ib`T$BHD.[MƸyd} UUBLy8ݡCN1M呑#_mldK,,`BtFRk`jj+ kϱ_zQ܃B剓={6{ME[[T5e˖Qǩ_B!ϯ& ?{/ݻq+ B6G# hhhggm$fusu[%pB'厈t:zرcǎ;":$ᇜ>|x#bS 0899ՓL=_aaa$I7UL|l۶ 6lذPJJ'%gC7/ /Nt_|9], WFE@'yy/,8A~c82AI:KBE>>7nܲeKcj#ڴ˼ƚry@Uz MVN i29`Dux?B `}vYj&ޑ"cƌivH!.]ee˗/5d^Ļ?&$$9s-[o9oou՞/e!9\*د*#u\HbE]#i}LL@XSZ+O"pB;>>`֍۷SYfz>O rrrL-hkkg6wjزe@ PWW_f`HHɓW\iee{ÇG9z&B NxDఆeișn05^bLS/ /0QOoć6;S:%pBMĻի P5@@ N|z*xzzJ6-v^LJ prrrrr277߰a5oګ;-2|tfWhMT @`MFX!V$ @l25vuD&h]t  F/ sssj,^S=zMYHm[d`IIɓ'O[n;vq5kXZZׯMv͞~8O3S@4u﫽1KR\ w7mzq< +`pݪeBixQ"@ ޾}rr߽{Gx'88޽{yf-qqqn`0N###vJ~aٰvxMI ؈ꕒ#f%芈{=FuP&knmkk <(((FH!)))dC ,֙S y<!IԊqccsJ*++uZ700:v#,؞0uF_1\hAxb>F[͟L:+oR w`% ^jPc߾} b !$sΧNk'ҰayG)qm󈈈^+>ޤ֯4Ȑ$ =X ĆabIKKM9;}l37c%]}ӨYt`QA!#)$ 8y$A׮]8qb\\\Bb,X@޽מ-jpBeeY$Qg̘Q㬅US?**Y6MSTTӧOPVZw =JYla+(mI hh4 y?-#X\ahj1IA!;tB˸b@|Bt䧆b;})oޔ ib_>QmoN  C M I022&IPxҥK.5rB}}3gP8bĈ޽{ ׯ_?{L<ܹs\-6o ƍu]z5###<<~666qqq7oMMMqrP/nM= BB'?vNLya!1zi3-z+lu`neBH x6&!B322<=="?~)S4.\޽cZZZw9rdAAAYYٹs$ϪܼyS\b !V~.=z]4/<_lfo*d,uQYYXXlUTdZWնyr"Q@H4:h?["A!ڿիW388ƩAPxyy]]]dɒHcQW#I3??…7nܨgNnn .\0uǏkjjJB!%vت*jif 4oo˥K;22`uTԩ4TTN)묔O5D^ai }=[jEx0 --BCCB!PF*-^*ApunKKիUe(/杻 `ݷcr7y% ` >N3W~`xsQFIf݃ 3fQnݺt钗t޽ jNrr1cBBBB!Ps)~$Reb>9 7+eyTVM쭦vή&ՂBH d GLEĨ%n7qU9B賤x=z422؜={QrB׮]{ k׮}w}޽;uԢEB! ⊲d<}UL @SSIIIY][TUBObwbbPrr-,2:FHLy{*EOzs喳vRq!Z&$I8p[[[iԻ%((wޅ bsB}Q$/d J@!^NNNffn110b:.NUOS'al~Gٲ !47gɓgݔN:8qbذamee0B!W˸~.}`@ {.:XV$"YAr66b+{ޞ;#=Á#б+dB-inj`bbү_F^5tPCCTx&!jiyN#⊪ш4x( _pݼydl[bcH*)+Z~!`ť\;mlB9M򨁕UWaccC%999͌!BUU#r+ӌI3Jpu̺**23O9C^z'$֒OCBHꚛxե>M-`T@ hf !BEc1be`~5CMuR>ղeƲIʺ55ĵICVP@F{Gh88P[GG$$$4BZ&BȲET2+ȲaC_`>+4/$/3/+]Iq'u%3tȥnSQBVP,rN7̺q65nUQQQ5B!$rAؔc)%@M*su}mWjYw>w6=/3:w޹b?_|Z T!3VN( $BRYSS-ZyZ\x͑Մ۴52/77o7?sukpjCΜ9l2YǂP}\1zRkI;^܉_}*' 6>ܽ-)9ꗕUVSm`0^Wר>߮ȻF+8 MH8Tj2MtEAv1"ڳ&~ .dgg'O,,,f͚5jԨݻX\tPOOoݺu!Ԏ]|9,,>{J$?͛7```0gWWWEϛ7$ݻ B-.AnpN,vs*l6-2ڹÕ2/3\X(>b0ߵMM&C<^eKo?gVHX>PqRuƮ !1H!VSS!CJKKǏ2̊W޿_MM ڱ3g6rΝ;?xΙ3Ç/_uҥK666RywP;;$''5ѣG...ڵ>ydO޼y͛C :۾|?M61̺!K"RO]nwNwjOmu+ nnn`CL̉TIRG(*10լ줱C,%?eJʙnSVB%A^zuڵcǎziNNN-rwwoBq86ݜ;DiӦ.],]O>믿fdd@JJԩSkΟ?>zhA UUU_9;;~_$ׯ_FFFoΟ/610 ^XI-M7mZõs^6NW]GtDo7+'7#w1@RiWCY!i>5k֬Y _zW\\\^^b͝-))'**Ҳw{?5vrrz槍s5jThh(ܽ{w„ k9̙3ȑ#={$I2,,lo߾xf͊bZgϞΈP ))2*:+}A|S'yw.SA\4bAxx`Ar^KK:*\toN,H)R^2C:u\! [LSSsѣGn#::sֽ{ۺ$cjd24uee%ڵkħET6 999긋?ӧO۷oO[zT :Pzӯi HZf涸 `Ċݷ+w4%O;2 ]nxxl(I֡!5!>tx.))ҪQ*''zr` bɣ780mLBoP+ j>|0qD===uuu+++ ɓ'߿q\;7EF__$''+/[L7X48qUmݍKB /urz]uj{Yu{GDPYk:lMK Sgf``/$kF k׮ׯfϘ1U#B !ߗΞDz+ זwߩ]f?'$􋡋S1::rxu5=Vn2 ʵXz;^!P5!>qgGJ Զ u-Ԭ1r$oXzW_}[YY￟>}@FFɓ]*?튄F}ZYYz8hРAcƌ{$@+! -ZZG]Umqk{Ug{"AA@0dq1Nh=7^p}s ::?Tͩxg>v ^^^ ǎ;uTzz:I 4hP˗/Ң!>ZZ`Ԩ)--ba\98vzVHAYO7a..>)JEWYq5X$=#QG"mD̉zߍ쵝 JЗC7Ubս1T*յox i&%h:8a͚5 [~_9rKV?~}VX2lѢEeeeׯBImߞss;;[[horZA CLgr;?eFFtyrҐnn|caa>%gﳋd:BݻDjԓx'''Sm~B)U r^o?X5ϗdFFFfRNFFFx3fLMMݺu 6lѣGϞ=jJ%7fmڔYZZ^_gKM5pjT[B':##U 6>ήeS/1Gf=zo%' BL BW Ў/>xӧOl߯:::~;Bv,faaa``PQQy㭯p> -Zz8s̕+WRι\.m޼9ss0F_ԪG$5`4ok^4Yys׹&B^u?y ef:;[k]N_=x]j7^!; ==ʕ+o]G```}/A׈bXѼyǏ@ZZ<ݝ(jSԩS׮]{{%KvYf8pӧ=ɱC{lCrҚ\QXK>*ʒg$˖s5Ҏ5O<\\Z[kIHR~Ze : nmrk!F_͛B˷npBRmllc???*񎉉߯űǧA޿… 0o޼[ʟ={&SN, Fnݨɘx/A~{y))v_]j)) !$MwOۼK<L[vvlmbVSND XFۯpFB~GܼuA΃^b+VA СrgϞ/(Drڵ^~ ew&$NNNƍQee%5xתueMGH˻|P&yŭEmo$$NHeuq'h9}4X,8 ȡn##I=j^̺e䟓ޡn]G[k"dd\\;wNGl@?}iYw5zb* "۶{WǬ!^=`}r͙3ѣKsxb…VVVԧ2,222,,޽{7رC$Ϟ=۾}{姷n8p 5fٳgϮcl'N>G^zT*6lӧ FE6lX|Sܩi"@AAcobA? r~"A#ٹ/u6ЭrܔٳRi_]\f9;=ЄE9Y2S&Ӫ' :BHs 駟rL&*/_|ƌ@;vXXXܘ |7ݻeee:t޽\.۷gݻ e2UM6{~9aaaMHHhժ={vIŋ!KOݺښ5av:﹪aYrм/=7GyPV65))&*؄o+=yO(NB. w0!Nj.J#""Ν;ɓԮ- ׯ_4hπƌc``j~s* 鯝־}'O&Æ nrիW>`YfРAuj߾}Ϟ=Ka3gzQRRRYYwڟee??SP yXT[{M_zfľsA\f]H|g\p }izÚZZ..S8WP>3fqrUޏlm Jr͏7$2Zg)Cm?Qߴ`hhtj5M <==byxxgϪjg d5f]&1?fP0K4m8{\X)-ˇĜ/(smqut>xaFG[ob'h h+0e+ B}qx)..ׅ!BAqʕ"*ӎ-_JоرvZO_$OOVZsL&&gt nJaq߻z"`B[Çukn###}c@!Pݽ[ڧO2V@Q6F\k0xC)_?:噗@סvXUU>LK}gnWXZNX-8TA!Зwǎbŋ׬YS~wرcc@!P]:ocEnmH\Q imwзN?ee!J0a7#̣64BA1f !Po5bĈ[ڵkMLLw-%Irݺu|omB!ڶŔ)Ir9Elbp[Awe'MMRT+jU=Rbah\=w\{|]ugzϥ<$[pBjNoƍ#FHOOWN3J&&&vׯJ~:B!ުB֯㈈bpw׻|Ƿ3gBʗI{#v$9=9ySVikr;Okߥq+D>ՖS+Oc25e=B!% ۸qm^xGfm=$BO(7o"+}{g?0K|s\$ geC#ʕ gd/-+&R6 'tڴILh葰XaBSv,66k֬$$$;;;m۶Czzz*!zSjj7<V022ceF\RVSŸq{2܏%%ù22*+7=\Ft^z"E[L6 CuOݡ!z'A\.!BBJ`DMz.8W"~)uH omhfZ#$Wdx??CcWWySW&-L֖SouIV0q{uB7B!eɝ;CCVT`l=۾rQ%!A'ZhHʝS]*#cW%Q3l\W!L ڵh+-[PGL UvB'Iy<^TTϯ7o5/!B AԩI11@kzNT˥|iق45Cg86ӒI"lheF^O()'֜͞<ֶܩWy<^Bн0. !P=2 ˗/?tk+C.!z˗ⰰ$֭-۰E/DY[xx 5g8LppىeEe33ERnQK_VDQIZnh]zZTwh!Me͛7ǎsR۷o߾bŊ[U?!2UW+/O_*C(cbɓu7^r$scfR^S;MYq;-#xD.WddyZXN'oml~vr1lM$ly e[0FK5wtttppP(۷~J@!@.SrzvJ:, JwfBQM0~NӜLڛ|ڠ87'%%Wzx4>a2dѩۘů14[oZB!P*HBBBYw@@InjY1cƤ@yyy 'B!<.>=5ڴ; *e_l}!K>vG=7 y 4%ɫ&amxz7OkVnKQPd:cGToT!TBm̙3.]Jf̣O>!!!K,Yp!x˗/]1 B_7nϘ?ufZZZ[NBܧVUSznzmG2 4IlyOSN+<<ZY5͝xhƓE6 E>d2rz4V"lݺwmʕ{kh _o߾h",B}PY?[YY)mV򊄊Iwjrt0qռ9hR:[%~tgv$Mtvn-QS̉}͗ITiksOuBHx+_wo޼YRXX֭[%Iiiill,m`!PVQ![d_3>[\(~:i tt{qB84!J:A[ܼ5K#j )i~^LV^jK !54̤666͛7U1117B!Vee+7o~QU%f\pn>x-)'6e=[Mc\B]C:ZQИRyyWwPJL7uM;57B5a MZlY Ļ1 BMOylٲ-[^P p2Pz4ijRE|uh;};V^ +HrNJʌ FKg;;kwUJI4kSi<^ݡ!xkkkS@P ԙLC!(儅=}RL͟:t5Tʗ-;?@. @AkeOtUdcc!q׷$r~n\BSk\!>&ޖ5_III$Iq\.OLLm3C!h&%$yͿΆN7BVrVIɭ RNR4yK ]W֖@jUUǏSMO3S𿻬оU*֚g:O0vuA/HC@jPZZѵk׺\uMeo__ƀB5cI֊FٽORVzJcʕ6Ƣq9+cFS(Hcc7js$%_SxHmAv15 23nkԔVdd"'Iuvwwm\#"T>f QWw\!ԣ7,Xo߾ٳnݺ<%%:={vW#qh45ؽ{z#AHMҥ#rͦ_}3&$o/eNDB4BYiSN }|RbbJRҮl"ޓꝹ9gzl*օ|Cݻ'OjjС]tN.,,=sH }@@رcBѮ]͛;TEQ {thDdN+NG&'ԡIiNMʹ?{)bT\\\Ekkh>KQIث |&o]%guDžBHTxqرcǎ;'8a M6;rB.:<$P(g0#G|_k&~)Nz/NHc*M*Q(槦y\F褿5:_@*EfA; Fy2Bӡ.:::/_^`AÇ?zȢ A!Ӫo,/hݭwABXq&uX wJԸt?Ȑ$ 湺m׮ew8j0vh)fܲݻdC̺BQTYKKk…ƍۺu<¢gϞӦMQE!,a$~ȑʏJ&MNHYy,*o%'ϟ/LMV(p^JE;.}Kr.%%z$̨j%BK+mmmËKKK|3RC!(⯿ɩ O,Z;ɗ5Vm} )+:AuuUcO h,@g7SC!q>kss A!ޮTڣt̜pasa0goo/OQX4.uS`Cf朔\nzzZncdTcv=`dz53$r0BHsam3BsX #Zk%%+nփ]:7[]=-)˗k== -ժn#ȔfZN tcBiFEB5"+Wf;'Fx\(=W1f];pzshL@DryLy#>g Լ%e`Nc3\-BA tMucD!8#駟)S(fee*:nccC5?5BQ}qZ֝;4p ʹmg$RU̴+*$9hajz 'RvB~j@ *Y;\-DBP=+}U&NNN* H__k׮۷ofc!5a*<"|aq Lsa~=ϝ  Udo`52u65dj#hyqWG>*$wv"E!XiRӧO>yDWmlC!@.'MIQLf{v6F^GXG$@\ys}͢| dklxQ%Ӟt.5~B:mqk@B5xS^xgϞ)S;B~iʙ2|-¤WCl{kk17/^((ȩ7LLZ4`y"~xP(Y\[.7pJQo@ߨ!JBMT= &(qTTJB O{rt\.!U8{Hn\\@@3Ԣ8[%%ӯQ4ጶfnΦG IS,;p-jMifL6==KBKqV>}cA!"%jժs%jn[A-I jFN'''F~3#V?FZ-Da7mBjIo+***++͛Grzߟ"*d999@ h4===6mbbpƶ_!LXq~)uLۿXp:ϕkt\#;{}ffPHiiMwrTol$]H26 #D=B&FP(\|C?^{^x:~u8t5,ޟĉ {o1r ɑ$1Znc-*~̔w" @,ic !H ,--ARRIu9rybb"5p8 ACR?~ܹsMpֶB!K G+)M]R2aBBliӼ7zۏWwu$  b]luV?iϯpBɫ}7xZB!w`` 5(--ڵk]y﷯ocTaÆc6d;wnܸATB!D1ujҎ@g; уK;gҾt ={v$7WJ vvs\]ttZD=+z|AL 1cя׫5.BH5|LJOZSͭ1hQFQ׫W/eCvZ>}qUB}񲲄?nyZ`h3A@yt={Tm`qϺs'$$xܼy 'GJtoo֥-W}Žt/-f0@:+f![[`5xYnݔ*99sԛa={JvDk=zPzzz/$IrX|ܹ޽{wޝN_ !j\\p/*m?~ܡKS?Ovi˲e9J~lEwվ-O5TwSEwuE$kuU#zlWw!*W޽O~VڥK*ϟ;wN;ho߾@у@ Xvڵk̸\D")+++--ٳg WXѮ];cB ~KY2 uww dʜ@ Zlnɛe$yˍYYkub7##5V_UU/^+1Y lNMCB!u|~"(888""޻w¢?]2^)ޤgϞC*ϠwΝ<+++uB5^sV 2u߾ " > -Y,O$f7okl$+OƍZ:+9 w{Rol!ꮲV^/;A5=ttt._.>x7mdԨבٵkΜ9dɒ^3a„ٳgcB 4( Ok**FWVi=w=56׋gf^*,zJn=q5Kÿ֣ x$2kH0"aH'Z70B3PYh-- 7n֭ǏOKK{ ={N6MYIh۷oJJʅ """RRR޵׷gϞ]ve7/!H֯ {*+˽{[0 @NDP39mpp7=)lm*< S^~ O$34Vwh!go***JLL,--&&&...MZ}bWYY) B!`l6¢ g!QX(=:ҥB֦-[yĄ܃@h<9.~pn.uH#S67װH?L*z2pnB%Ra*貕e uBR𩞚}7FL&EQ PwlKU+Ç}=<Ie誔*q;gY;H<ެ'OJR0kgsU^;s)YVP~Zmik?DXH*]Xo<(!B N{p ʕ+GVAPB8sLxxxttt]ίڱcIf͚h֟!JJ$pK֦\1mA?1+XBCC~dH"x+lS8 b۬B![__˖- R('N?J"k|֭\(Yf۶m0`JCC&%2hù/_NAFyfnGg:֓Ԕ9xYYb1h͛tvmG OOnyN/Fb#dvm=Z=!BJU[СQFI$^z={ۻmkOr\kkkWD"QY-iiiD  8pƍSLQǿ!4W\\ѣyGef [nݽHލ!bjt'Φj ? ř/x׊zyv65Ѳ+ޯML9y>6^. 6ڨ7B%I<{S]Mt15]g^Vx0)#_ mF9>a!3a2...-.^ثW/]/B_ٳ޸Q<ƆrGW=FhXA0>C5͒YODS-zyu33SoTR\WMh9fRB! /dL fxrdwQU=5LzR1EI@4#]"H""ҋ"Rҫ =@*nzd1 f2={^;fֲe~cƸ+=ZfLe,rf&%*(|mY |}p8?:7sjWbLXzfØW2 Х xR˓H$G,D"+++{{{N5HNN}?S1cADUQlѢU(X"22L> sU!-b;'&V)D$pzz~҂WP+-s1JKDT'씷+ DԿ%_~,--_ye'N;w.%%%33ST띚ڶmۯ_={TоxT7d._^^ "(Ǖ+}}E:Uڒ{+ 3mm X&KagJfJ#?޾ٶIJ t{jӦO%gxm=u@4vVpII@察o%%%zjdTvZooYÅm\ҤVD?ʕ]X֦xƭ4ۢE׫] KAoOפ nnwwoɩԕ5W uGx5v=--.\e##YUPPйs眜G/Z[[999Y=daaQWWW\yvׯ  *+&ݫ)))OT VGِE"ф FҘd2ٳgo߮ygf̘֌E4իÆdeIhϞ=zXj6s]fty8B\\ܮP(&|8]+asH@`تKӟΌC4T⸵Hdk56x/[_~JDT__޽ RSSu\3̙3gϞ8pݽ ˆg4RTΙ3orNf.M_"]d_?;Cml+&VzADD-RyZ"2ss36{iSJo%gG#0h] ^^^ǎ4i cݚ'NX={{>|pϞ=ŋ:igȑϗ wӦ#]fnQ:e :Y_?;9?jW6-r0gu77e! βz`. t x߼y355%.\HDΓ&M}ώ[niMԩ[Gݻwt钦Yo0~+;6TND!!f~*X"bTV[̚o W\^T]'o˪]D=ksݖ|i]j#@Э[nݺ=zQ]\\,XҞ5:hZǎ5;77WZAlɒsjFrY;']jZs]]֦hw^z"0[ ]_;i|5 x,{~JTCWgqRcR{"UYs/֪ܜeߝ5Đ@VZ>r'I$=WZ9 °U=*+kӏrcJ' 9tw "277׾gf[nkZu-h*ݵ+wѢz͕l *$=}P""( RS7ee)X/;;ۯL)TcnZE/O@_׾@4o;v6y_tܹs>9x`ZiT[)>&%5JnV~K{X9ZT4 Ts:im`a""|!e,S>Rzھ0 c@?e>3˲yyyUUUb['Ӱ[QFD~77h̙3޺]Z1sfD$"h+hΣYt[gZSjEŢԆb^66JйI WX yn[Z.Lto߾iӦǏ?y;;7xcԩ(nϞ=s)"~z``ĉGԘ?7dӧOo۶~\r+Wlޢ(#C:wnCR0Q?#Ng1%r*al^iagJΗ.JKR^9mQs &\~̴Y)zݰW@xa1,>F(--%%%++fk׮o߾zDzPc*ťV[榔}W3>yy}%8"J[QjuuOݽML X^rۮL D.ƾ͝ X!d︸8́w.]T=ݳ(&&Ey@T_n+ YE9Y/1-6ggVTTR5\t624)P3OB /7+?9@5A]RR9 l|ia40N~l^rk5Kb{G_l躨F9;';p'nݔ d!rU2f }6x+ mZ7Q*ZJTs|f68bo[nVOxL/(/!4ѱ k^5.Y)ި ժwvm} [< vvv{5AjDdooe O9=T*HʐcI+[jrVRҶ@w{-!!BÿgND'|6dA%">фZb|ï4m 11ݻ[nSwMJJ[ +g/8EQ#a_1tQDDeIDd}4EdU4_#"Qp;JTCmwNˉhʔ)gΜ!\.oػo~6X5}yDfzyv+Ѩk]V*V݆66;CC[`DtO5Shbߗnmxk/] %r8lF3v'Dr nh ЋDboKHΝ[BV(>3r@MD^ )5IAvě͛љ3gFoxyy⚚'NٳG"htpp;w:X8,]&2>㿫Mw ]թTk22)XڛߦMkS'>S~=}dHAD ͎w,] ]a|t(00߸q붰)S;O\3jԨ{xO,SJ+f˘/˻QY<=xqլF]>0wzy7M\*7G6j 7nbݻwm[ptH 1bĈׯ_OKKZԩ{lQ֭[f͚'OΟ??!!zN||| X<rMه\VRDGC11{ i̔!zxW¦Bn={ LJJ2t! ۽;oΜ"żs}:V*PMo!&xU*?箼ʆ|D7B=דuyεĥD%+zs%Y0 ӥKox:99u''?^9}5/:-H-,ό};@e),ܚ}Lp4>ü0ݽ5}~riÉA擇F~J_]S^ר8DD2.CG$ `5^ޱJ0yfIf5sqݾvff,FRMJHؓGD\Y?`I??qqJLD'PUT omW\9>z%Fe%Y۶gJLu~ !T'\mv U 㒒oR]#XQ}^=y>.ؾakioǖoשݹuuvY:lD54=?rRկM5H=m~4iKZ6QJ)S7djb65-UU)[YR1B__!JN⾹w'\0QF%+z1:mӧ}QQ:uj:( 9Rt(qJb]nqtΙJe4Ѱ^_~zTȨQ*0S<</&9[ EZNN4mƍ V:hѢT˩KP|XsjZ] s[Vߩ[Ų;rsk rt\/":pnmWDu*Wܹ1##fUͣ;j(\믿i,UYR*Dķ rZz2:""6m f;hQ))I洭llZQUUSÉڭbC7ۉ :uÇo׮[oգGgggKKK汿.=<+3ó\.'"Bq6qe|@-S.N2UDT"|)W'j>ur25e<cc=$,IK;TP5rgxz~c_]eU?j5zYN*fh}М?-w=o^d%'Kgݭ[CDjD{z";l.]Zm9Ӵ5 9qnn||TQEe֚Ӄ neX2!"b & 3ZnAUu|u% o҉BCƌq6F!3zAj걢Qi3mh_\tѤFpGp3ո5B xGGGk>>uajޮ<uD.YvYLjMԟ 5FtOϏB]'mwX>Eż[vVl}S@KݡCx(*iӲ7gj"Jt„c\B>ɔJGn\&".ü䴨U+_Dvލe ?qv9CdLDcTîPv[W+H%`+Y9ѐ!N[cPJ='竌:K>dww_>es 7+ܒQnH ]?cWn]&߬zEEBn-1æy6 ʽN$y=^YPQaWk'u^sM}vddT*m ݺu;{,VDH.W''$&J%_ ;h^9DR&c-LVTUi{#/qnn"s#v煌we)xeYyeHHP:C* emO_~ cǎ'Oܹ1cnܸcƌIMMMII!D333kڵ./-FdyD^'""97DD".kD:^Dqە G H¢''N XrV12OP9SA޼ysAAx֬Y}m[lْ%K(77wժU}5hI.W{wԊh.Q՘p᫶;<=9O.Wii+S?]:ZXthn¢yŸXڰ3Kdj@aίw)~`m6m?g;p/^\QQn:"ڲe˧~QQ.]*'"__ѨΖ!G Y[vY^&;wΖ˝ҲC>埑 \T̗#^Z`bbh qqq 6lx|n0wM6򘘘0-xj˫'~|.m]LMD<2Ͷ;a11%r9lW$zSK.ꉈ!|?I$C/ gffj[jȧ4ӲvXqW5{ޢ25cZպ͔,$-퍛75{nmtMTNC u4mG i҃nnnw!2-kx:~wU*ckQfւvi~11NJȄ<ťzBQ7PwjQzOyytC/2m& =FQ؏>JL"r5m`~ٛ::tgI3u}r9uuDmbrC6zNai#RLUD#^;  rMLLdYxTͱ54IurȐ'O0Dj| l96_23?NND4qGh?6h[ J@DdFC@Ν;kϟ?߫Wm# [ܪR&_ 8&""Kֿ|q@ϴ DxbAZZZ޽w OIIќΙ3!('L)~-@".K r֯X7SyܹS(ѫݻfKľdbs1(.E/5wO:xQQQ&+W:G555rrrcbb=o,ޱcDZcj_]T>ztlVt p"zbqȶVԩefd|VR~zYbϩd[EDD,}10?yy"޺u֭[npwwSGeU!xa(gLڶ-DŽD#`ϿW]MDcy㕖g9i%!"T'WC7?:OGM+Y"cu E08K,7nܦM<{;mڴL3'ojv 8j""!N!Bx͕OHHHH0yy-nʘۼ{eg^=r{K'ĕ*}c_h$tqqYbŊ+JJJ+++MLL|||4;wF{W""e:Xb#rLV+RR6ggY,,5Sw9yѿYy;Fe|xDj|Ef}lmm{L+/X ^AXȱäv,_OHȫ'"So:-$ſK/6., BW~@KX UUʱcc.$>f DdǶm64nrBb/B²E~mt#uR8xiIs}sΙ3g_]QQQ__oiiimmݶmΝ;GDDSxUt~z;@3^DIJҟ%ˮX&UxcppD3yIYSSӱΡe|ja@tO8x]/,,$˗/_^$ >O?fܫ~Q1U+gk[]d|| "2tnymm_;6VT,+u4+LTT|͛xgmm-[8}(/VɖQ^qfeōJY~=рc޼OD>".S~`Y" 45R}wb4hЏ?8d 4Kzk]gx&Na,BW(lc4naYx풨8DDm;:m/7:ǎ{4uwy:ﯳ.~e˖Z=ztǎ^en-/kN+&eӈ:X|vIstZP)*:TVk.37V+Vo5)K?y,4NЬtϟpp%Kp8fll<|AM4i׮]DT__?k֬Çk_<2L*Y"hVe 2 }|Ƿ# N4m"r56s'O;}6inћоO L xiݻ9;vҥKP(ܱcG~~ӧ~+//8TqH)l5㝈$"33ΝoþT *)=ACXY$pgղ1Lfq})YXX㓁uVZ՘G8W_}պuk"R*/^0`SƵAQr:TND!!fiJݐ<=T.odd4yKkSgk(oe5...Mz]R5ԩ㳳 Ҭ*vBĕvݫڈź.;%%S/e~~o;: mM|[#+mŒ;_W@ˤWgggAÑF45F9{v-|fX.lB_eFDt_*|@¥~~c]]ujڝ}$f"S,58|?mܹʕ+2L(6橊Xqhh5sʕQbߗ:2~*6[m_2rs,KD\o"]\2GĥJ""sf?`/"mRzyyQEEԪUr9u!((HV[81嗯fݗ 0uuM[Ͳ.^ܚ`Yhc+,iJWeU+~p5gR%C%6Ib}ŤW%7nءCT' D*LM^5D{GNNKib]+]0uϺoemrY7z!uv叿!22~"}۷ѱ(333===77Ws30˗/SRRw '&jDKDƒe#}BjuucΖafyy-3ݢUU3wk]oJD! &c]uϴ 6ݜeϟ?ِ ^,Ke~IIjQG%"p됭!"_nۚ3;)Z$"6mt;# [sWXy33v:]xb٘1qǏw'OdADD\nO[y}t9Н__?>>xq11DS==Wnϼf=Zsd72rFc_ϽӧKFUʖ5Lvr6XبpavUn~53#񉈬"7Ox]uϓfcRjҤ={M&2#"" pmH87K[U1;{GNfw{!!B{Uzg_̊FDD|5kO;:k><0W||;$If0oV|t!UΕ+.>VTW_hkzWVc3L*8lךi]-74oɜ;7mz399߹uuNJ/+S(ncpS7rd_8\QP=o#742{ş?R8Ë.#\ZӚoJQQqXqq\uq8֑vv&&OW-?q8?#mX zC zVRRRju4ijS+-Kɔ~KdEDDkA`AO&VW/-PVvF|SG0>ή)gd]7F*+/*%MwK]j-_}Z smgI7ԩSӦMKKK{gu7+oެq":J) F4fúwmݛ0[Ͳ1gKKϖ\u&9a^goՔ팬+3K"_{tatt?ɲM"1Qrd7oV=Q[쉈k_9ͳK'H$_gd(..XںMi{wIܷ,rXrUpb_rmcީP_Mj1 Jrʔ)K"H˖ڼ9UahuϐjXthI?\,+ŏflFԕ_I P023_9, O,@#i㳳5˖-0`=ng^hI/N[{%°00N,<2KDqW4v[ͲG>zE aۿagI#"Um9:[š8Dj3]>uӵ  usǏi]PJ%;yr9Ddg'Х%դOO\s@ǠABTrr̒>${zNvw>R[[x=<DD~OiS7 t YYY>} u<ǪQQΝ+%"ɓݍr[}O]&"#Z\>+kCVV\dd4{O=&έߖo`K56l``(oKZ-TQ,"UDԵկvWި'Ia<>[3ʡ xx77v[0`iKDdҠE/psMZ6xi.Z_)%HqOR*X"24 lǶ1əbY" 45Ѳ? nG]rTND)5A8%6xD*^|YTڵ~D4q A5#c%I"btO~\Q62#cVRKd 쬓e=fM1s{6cu0h;$>C"Yt.JĉW_IݫVl6/]֤n Ӯ׻ lLf%&LJb/.R7˪>?TCDQcj>R7(:^hٳgo޼|r##Yf ڱ#gҤ-[Bncv%] q~^3^eߋ۝GDNFFg:u 45վ‚„/u&h,| 7 [:Bӑ/_?ݻlkۨ>_ukWϟיj5+pX}yRn6fmocbdj;wəΝ=vkGvD|Tv+{n^.++c~Ah nݪ5*.)IBDffCZyF%1\k?QcRQ*߼u|i)Q ,>e59^־7 tݻVQQ}S`@ bEJ%KD]^u:ġB-;[6*2DxNV|Epj]WLꉈC4Qah24ji7A>|8R7Ν#cޕ( iɚDD e ϴ 27oTUQ/_:tfʬ dBDd S ︸7nhB3|Moooccck}P(؅ S֮0S}X%DDdl- &Y vzDBDmlO}'q 3>|1GԣV1숏gϧk@ ޷on8>rH>}l)%fΠ&ω|"Tku6oٴf[?k'4yBf;' Tpt{53.xv}MmP EEE={"un<* qpzO_(4oRkm63{PHH~<>Jd+j-v|yGsӴqbtllzm-&{x4\>AazJͦ9z§( %6x{xxh$^P)G&J3u>֮Q*g&%m;mM6,=씛ΉkX>KCj|t h ޽z*//r ˲L>)]U3DDí\Kcc3R"xkǻ5鋠d0͖ޯ Y%*CW<##9sQJJʶmtQ4?$ΚUQC6[VO{ǵknmн&F:k4[FDD֊c ={˗/=ztڴiƸ7@Ksy_1J29Ntj6 &H$bc5t 8E4i߽a,#.L4 T xs8yʔ);v:tmۢmmm󸿿5c|;!f[ e[ՋRSfd(YYYjۤ +uwl_kLD$$Yeᩫht5뫱Uϝ;wܹ? \Ur+W;UsXHiv$-Ԍ^QAD]kj"#cIjjZMDff߷ijf֤Fœɒ/DDDjx Q;>:qMOH!5މ( "6T<<{9ٻv {C Mj$@Bh!mKu~,F~z0ߙ?BPy:Pw䯲;p᩻QRΜ0O$EY,wjHqGrGv$o[%DWG'i?88vLz$f0kM,*urWR7w?##ΐ?}Ԋ'$JOt(EUewol-/ubr#xW fa᫛7pHZ,wjpvQQGtצGTJRNOvo਷nEYڴ: mD_wmzm [x[ƾޭ۹fL-P|U`Gg:@1!og}v3ǧ;ȥۃ/ڔ5諾N?CIK_7eY-ohS}&my{nDCy=#cBP RÍG)_åKbV[$k-sNv\c3͛7\-QE]ۢŠC^2/+/p]V͜X^jzyfΗc Ḱkk~|XyEwy#xoYqq%aң޼[hp; 7^>qQB'JUܭ|֓]Yò.?Gm#pl2xϔo ռ_Y6kHiVJ_wranmMK**j6vMNuK%yG mlzT 2@ٙǬo~^oAA-Zꫯ:Ίݻ?SQGdsܰí~*c,o~v))E.~iӦw-6eXFdg~>7oxҪv4ȑ:4MMiVǸ襤CֳgÇu]?k3޽{„  16%{G[n~ѶIIYRSv<#&Ɩ-m<+.VT?ErGjYObZ"K6l+DGG?7(--}Ǯ ,C]5w-*>e{6nvԒ֬y 2A7hp8e[o=W u4ӳ}_ggyZbb9oܸq…'t)1:k˗Z䑊zAf}[5veVTVJgyZhxԧVGKR3rOIFz?9gIJuQ>oɍ+w5XS&؀aoՍ+ ~伪ٳot:ΝWN[Rďzꕒr*rJI%Ep$}pFnÌf9>[dIpܶm[S2uG_js$Efα@ko|-Owusxƫ%$IOn+0[N8G nԩS$3u_["CK,O+QK.Fn7n|I튖ܳ%b";##0v:{oׯ_ Ƚː_*ޗf%۾3;Uq㸍+}>ISR>իa<>uJ%fX$tV%%5+{&M{オV/))_n;}@bA6z,?[zCtw~SX=34V#q&3 0aBzzYUmZ0pkKwҫRq=s_.(xfÆ'zS: 8ƗryGٖdZy}3~쁡ꫯ{j8n9 -*Թs9͚Joƍ7m ^40#vr{ޗ i=Ң_P^WO_O>je?Cϝ33}sͶ~5/n$)byS[~gw׸XIj근 @#l<Rmw~~~pЯ_?Z7[>/ N$E }e|0ww ]kn~S'A~&I='׼i@նxWVV={uc7 =Z,Z_,j!C'7CZ_͚IW-ʬ>-M4 RSSk8c%ۿ2g54Q^ø_'Iʌo>7uK{μC<asWnݺ5k΁ol -z6 }M~~`n3Nol */uG]p O{PD^RR_imN?ov;A ,)tRZ-p)\cnY \Om{f9o W-9W3$o}bbqy+*$}~:Asa3IKop@؄x|-'|2lذu@]V:wXn:`Yz}kƯݶZRff9JKO7o%-ZL'1*j'zoI0$:~?ž(&}ZW_ݢE/_}մi.~m۶e˖Բeːd"#,Ľ-3ExoZ?wv~cLjK]~;vuL+hZ0a|m/ nZG7mzw6a~[ƻ-I˃7,rS!(}I8}ATWKZ>h=t/qv;%=:Z̈l ~ N.KRtKIɊܔD ḰC-1mvz$M9_ҷojSjA^ܚ}C˖iH%y~ɒdFTf=5`r}#7EfW\pǐ>ښ3onY\^6~wnf/ޞ-cھxҹDh&LBhϥ\!:)%4lTiu pannuwJNuQMDO>w团=oz];&"`27?N9 $EÉ{na\lُwKqOzrOj{Vt߃Ύo`?~xp?V2 IF%MԐ|۶I:Aкg.;r׿vm2ggg o`_sǬ/?!Isf%ߔߺURzצIU_5}x0WX+&_q%KLm%棖o%o6$U #@D{_j\Q>XFR'vJ/mrDC/6zP7QIȷJv)W>v}۵_5Nh:/)3`N͹92Y|EEEvt:N՚iMˆ퓷/|Y间\zfϒKx #jon^[cHRmo~}#@]F0O>k֬M6|Y^8p`\GEXmh+~C7Rqq/}>Nׯ͸/ۣ$LgҗnLLl:w)Sv{Q鄇=up[h%首-ohrOު}}MzzK#hPڶm[~lٲdee.55l/˖-xK**.-4qt9_7eԚW'%%z= W^yeMNLLkGݭ[yv9s &Or1bi¡~Y>X}`ֿXQK4+kbֽ~/L9ATG$Y?~o+#8G w̘1c̙qNNΧ~ڢE?<66vСC9s}>w?%qֱ̱`€oH㥁ۺqʕo")bykk7t#07JU╋W$Ex2'N 6m:}#j{;3&Mϙ3gӦMI5on7jut-Xl ccgxޭwX-غ3z? h2/nڜO0`>E\ct{%}~RISR|^o5znUNs&Y1̗"=Gw}l-߶ $]Ѵ7~?zo&oK~lܨkg=ޡw8R;$M(yVuH^]j~Pø//  )byC[)5}މeqo3cJ\M!Y^sO T u,{^ZӺ]~e˖ݰlO{y5eVIHY~zZ7#B/biiimN5wYfǽ{m⫖W-i&ukݗ-[Iq6 QGvTBCfdyFz+&hEѣGCy1c\r)[MUSw~\,)_ƯeN{˛}䓻$'Y4$%5[4}aߘQ2<묳 v;Xras:u?xrIQQQcƌ c@σNwtٰ͛ARi99/u;o)2$w->5!=cO ׯ@7nܸq222rrrSSS=OYYYiiiu-[}±cߜ-ۯ2T!Mh?11KӬ[W$.nr>QQ|>_?^!Y_b2m~P1bٳk6|͑R뭷FFW;Z-|Գ^?k_t^d0':ͭW%)q݈McKC,##cƌ&Mٳ8<>>n۰a6|r=%I/Ko>O˼ssK^nSR$-]I[Mo:suѺWCj6 /˛6mٳ twzڷo߫Ws9gРA|1ƒKk쒾vvj>pHz]K7wyn^NZФ1pX,;vرw)vvrl6[bbbbbbFFFÆ -!Oô%w{U斖JI۵'z-t=6Ʀ!mڴ1;űo7(i#zWKon"7wH+&[Q L=8v*Yu*IG[ЧyՒO7juJ/]s"IOz|l8@q;B|>_QQnw:Nj&%%%&&gffԼ9 _bx EO&yպ/v~ҥ~HҧOXIMitݣ73=c;\ ϟ>}Y6mgj={<Og9e^Cgh:eg񜟛[Y-={LI$Jz|38QC/L2'\d_YY'$$\wuWfffs; -bkK<]v 4袋.:ֽϷn/yccm}Oj07|IqW;vHqG۷T^Qx֛%/]:oVrxҶme˖7֯_?'''+++wUUUe{_l t:/tMfb(|I6ހ!]6 ~q*IM₏1tɷ7'b 8A@ pWִkvݺu;g3gN0a-~{NNNNNNCMVBҧ>)]qE /lTkx$sz6G??eVSRjۛfRǰ3fΜ^zܸqݻw?':/1cFjj$ww1^'b*5i k>n׮ntaF7n,ycYRz@̌I2)8;d&N4mt-Zs93&Mϙ3gӦMw,vj/ Zz>?Vr.v]]r"4>-O519KCf-ܒ^S~ ;wn!w=жmjy?0ڨ]!}-uY j>}dݺUUo>+.Nҥ{'̾첗#q2A>}j}waaav|ɋ/ j.wOg}5-./a&IohB=ԧ*K"Dülh|ꩧ:ZgB}--[&?VFZ׮Ve_&)#`D !QCiӦyyy/^|il5 כ6mZS\˖-ڟϟ:ujsܝmk>ƍ+*+%պudc-c}6YвI j!T_,--ͩΝ;k֬w޵MvrMNOHG֭1)m%];W͐7GnFѣGCy1c\r)[Mc3ZwN?<@ސbEo^-jx-'oԥ%k xEuY… ;utw\09vO:qݒmO_ȬRȘ1cƤIz'6l@ޯ/w_zeOݱ㣭[%9"+k۫^6xzVuذa^xa^^޴ifϞWPPpի׾}^zs9 JLLpEriNbԊ'W^-)!*ߝ;Kv$Km>=;_bZbxbرcǎNInn\.e3226lhX{1yGh~ڵ\.Ik*!W}\*OU̓D6mژ(f~T.-k7Vv|@j$_w zLXL o-vLrOOJIRUuŲeQϞVo3Ni;Nv@\6aׯ_pΝ;NgFFF&MN9tEFX}Rik$a\|yk޽al[GOK.S&Ir^78NJJ:nos=aÆ}>X,{ ]{<:YI6n{h1amN4J24TXj2sOϦMN<믿[$0~C:t {49|+n]-Rq%-*/?/OR;u9JҿI]<?(ޑgΜ_{={II291;~7X.]jСCp}pŪ*U\ i,Z-*///ORtٶ}%{$4/191;8#,2CnZe m}@aˇza?-2$]eo1zQ#!55f; 6XuU;e$}#%tLfo|ؿڴ青rgwKʩym:AQ#O jv5TkժUc=ݞg/=x^6HꝒPv]FFIY~Sl1&'xڵkn[yg:?p dXuԺyv{$#81߳vH/wb gHqo|F] `3;SNVEڵk۶mρΞ=~k}]m?aÌ?{ox<_/<{F(n`74Ot N>9&&p(ޡשSN:nٲgffؘ#Gw}۷Hغ"|oWһR _.(rIu;(Jz%Ǝm;B[nݺu:k;vi}8p`ZZZgU(itӵ͓l/sr#&%7uKF#E+>l#"'S)=_J&~Hj泼~&#Gwm2[%x_-(tflEz.&#g5;w+*%͔g~{׮bTxKPg myc$4CƖ)۷K(--ǒ4a!wuqu7wY%ݶ&ڡx45U^:/$Mkq:{x(0VI2QKrx Ȉ1zlc@mQa⏋UVj8v^RIG-tI19"jRe~mQKjxR@Paef0$IQ˧\b%$B N({KRK%-g#ӟ2; w>(Pz._SZ@o (ވO}>IIQQғ$/Y{BH >VĪgԟ($-wKxs@QQ+I. Cj{^Ru I[utVgB⍈IfH)).IR| EIZbna3+vIi)tcզ$ɐ8aH~opoDNjRvv敒RiqCaBFWI҅#|dø7̍aBF/w bQ`u:R͍aBF$<l6Z"pB%I;W4x>oDk˳#*G6SZ*I0gj:#7"[ ʥXTkug8,(@XBMKC6!I&[.w8q) Yg>rz&px#jxԏ.3lii "XjHplwK2!d}XThO17W eURI咤y]ܶ.77Vms. 11DK ^dLTNjr,?x#^IYYr\qY{ "HT$%%I2.=LoDJq6$j5^7;DgV ~GJRR#S3@PvJ% I8I4Q&gHx#< 鷌@A15Da-$I93mS@Pv=QORUo55DaRT5y (;6ANJ67 Dag/Ijkn07α#-yR"⍰dj8Qo{GCRYf/@DQvr$dIhܨq (;O]%[,Qfx#N$GbFF٪1J0fgHx#Ձ(!8io67 D-d7|ȣx#. -s@Q^jon<7^3HSts@Q^[7B$Ex#Ģ6Iiav0!玒dV]x#Qq{GF%$bx#lIDYNx#d$9<&GPJRFpP]$PGPJ |).s@AF(ՋiiNs@AF(OS) QZiq{67 oR5E!5iev?;>\*!B/!$ҤI&R>~,R|NJ"J臏HQPBKh~淟Kr]ffw߻3NTY#Y. 8oؒW"]'ZVoS -UBS - !E. 8oؒw"S -y^.8 o،N|:!Df}<FF233/^ܸqۼl㉷-ݺu+<<ڵkUֹs:uVVVŋO<1jԨ?^r 'ʨ{۶mki999vZ|ƍO^{Ν;wYB4FWsٹs]Ν;GEE}ڵprOOoذaΝB7xCGm3VRիm۶ӷo_UY޷o_||mpǕiӦXU^z~%`ϴT+3S]mu8 G!𶙛7o* ;v>N:)׭͌cǎ;==V*+Nt9ULt5= _6NDbccmu \"4%|}}(_~)((2d… ]Ox\A9TPP#G7o7ߌrww_z˂)--M K<,'.;w[Gݻwoܸmpoݻw#GjjƌgϞ5 o :_~<BX:،ʕ+Õ1222>O?400su Zj@@nnnrrrRR N<?ڵc~ Fmf͚ǎ{'#?w֭[K׊+z)[`ot5;w믥uW_|2Q7<=#F ><66v˖-{쉍r助7o:hР>}x{{۹xkEӵlٲe˖3gB\~=---33333;00F xzz6iѥx!o4D 7"@Ch x!o4D 7"mԨQC負ܪ^Ђr(V GhťZj⿕ KhGp(+ 7GĘ1c\]]6mFVl_=S.ʭɓ'W\9$$D9,(t:Ν;ϝ;ǡ yU肠rss۳gŋx G Grth x!o4D 7"@Ch x!o4D 7"@Ch x!o4D 7"@Ch x!o4D 7rstDz}DDď?xĉׯ !իסC~w..6McMٿ++WlР3gl9Xffڵkwuĉ{eff6jԨo߾ƍkڴC5;qO?k׮%%%UTZj:t۷}||.6l0i$!ĤI,YV$4fk֬9~?COOOk6W`0ܾ}{IprժUB6g8';ԱkڄɓSSSmsf6lUTYb^/q%SBBrB^zڵN 89ԁg !\b}pZvc;w߿|ӦMr``s=׮]&M,[L̶m]ol9Yvvvʕ-446l CΝ߿޽{:u 6ls{ҥ̓'uL׷o^{ 4}U? Gj)Woٲe~yyyoLӡC~.N>mt'YTT!::F/+:^ oo+WN_re%MǎKR6'g:t{.$$D/ul:=cV?xNSկ_Yybj6uTYvQd<ի1pJdlݺyO5ۼyKvv- ^xWtkJꫯdϟwM٭!a #.PΝ+=|ʀ'Oh+pfvf-[Wf}r7o.&u4m4%6m)}լ')))7o VZÈBɑ,թS|ڵk+ nnU;lN:٧ݸqCY0 !'bWnءX2Ε+W eO>,//OniӦO~w>,oL=裓'O8pNd B~$a3lN:٧dwޕ3߶h"88M9Pf0222nܸqٍ77.$$$11QtRk2Ssvu-E&(sSͮ]VPP,=ƍRSSׯ_?x޽{ߺu?,iR& !Vj>qWt&КԱ#F+}뭷xTn8?^u|b_|@b:;nܸ,!3<3jԨ2>L3BٳLʈN:B^ZN܍>Li.3f_UT) G_}Çk֬9qď?hyew(5X鏤6'G["""BCC(j?Qy85ou,99y„ [oV׮]KXLmf5k6lذaæMjժʕ+NӡCY?/W\Vhrf +:|prhQuۣGիי3gOt:̙3O8ѨQ#krrT5tnnnAAA}yw.^عsgۍ7]֚

mp;ԱիW[NQr5kȗlQq8ϡLȑ#ZlyY(Ktӫ 89f:}:33Ȟ([P{=ea„ IIIE9۷omڴp+pfNu(B;wh A]ըQ/55U䦗 6'GYn޼٧OX^^^/QҬPء(1k;\ܸqYfnNu,??_YXlٲe'V +:t8~[3s2r?.]+4N'O/^4X&hѢOu 89f:ڻwouw̙33f PͦNZzի[2O"8%%Mq8[5S"%C_ef'O*=mN:٧M2IۤIe,((HYu'V_1W^qh]Ͷo>{ٳg[~\n]˷RxWtr,ܝ;wJ{nr{1guZC;zO?,7gFj~-7%::ZY][3Ӻ]rPjժ)y!YFFƇ~.\7xϞ=ʂN޽[)m~(ȨC5lĈJ// gq<88Dۂ3P֯_}"''G}ӠA&M$''dgg5jx= K؁լE->}`0|}pppÆ ܹtqk֬;:͜ܖ.]jj] Z vfFx]hT/^l*O#|PiJ۶m/\寄#t)Ļк(`nܹOt.%9svZ=z\tWQ֭v+Ǐ_tʕR |`s*{cǎ.Kî3C}U#ʼ\ YvmlllNNSRRiii:txw###ݻPm}G.\hܸĉKnVV׷n:s ,\Pח$Z2eyW]Ӵ?+UԴi)Sؤ@YQ֏9)ݺu{GSRRfΜ@Cހ,XЦM˗/k:tpy-2;;k֬hSL1sߏɶ._C1|wwwkz뭷Ə̱7`۶m73gNdddJJJNNΥK-[Gpv8|{wk֬ptY7Gpӧwu)Yfoì۷oGEEmٲ%99Y0..gϞ7.vs&L4hP_^v-...""B>NNN~O>Vl2!DǏ&"##] &{uuuu VZ,lrŊڵ(ņ K/ݬYcǚJ<55ի/_޴iSvvO?ԡC3f<(v5t|...iiiB^?k,??)S8q.C8p۶m/©SJw'WƮ[޽íϧgϞ 0m^^7|3gBƍ?Nj}SOOSPPxb6rtt?0uWToT۔J… K[n߾]1w\3w@qf̘[s`(233'OD-ZX|?,~9!ĬYF]Z5`~{۶m111_~k }}G޽+8s̒%Kx 3wuu}7>qF_[n) 3 !4ib͆.]*5j5ԭ[wʕgϞBرcȑ䩅ӧ;slaJA$7^~]yM*o۶u֩6lxgmRlc`^Ν[lO6M5xkٲ֭[]\{\y)Hqa[e[.{$w…;w !q//RTߝ2C-4k֬Yy!4-M2?pХKu+ի7x`eرc(+10OӍ7NtC9C Cǎye9##C"^-dH]rZYPΚkݺ\fjIDؠACʮ1c( _~cK-3glŊmG:unܸ!2/߹sǧA]tQMje۷o׬Ym۶!!!:α5jݻMT]zb_~É999 6 n׮])FV?wܙ3gnܸQJf͚n p˗/_~]8]^u6iҤf͚%'''gW\III]vhhh۶mdffٳիiii5j֬YHHbQV-e!..QQQBPPve!ۯ(_={611jժM6mժϖrʑ#GnܸRv`WI;MOO߱cŋkժONp}ݸqA<+իu^_~XXXÆ m[R|/_lp(K @!^!Ć Jϒ%Kd>۶m|E9pKzzѷ۶m.Y,,&&(7|300p/Y$;;h,qƕhcLb*M͕4AAAo|7͛7wСS|p"Wey<ݥ:eʔ[nA_V׫W/SUwYrjx- 0!<<ҥK*999s6J\d;5S~bC_9rD~?.aÆ ,_Q]JSk۷f(uꔩܤׯײg3(+^Tޓ&MRһ b]SΉ' k[X̝(S92y-ZTx]u3d3e{Aף Ncoc-Z(ԯ__^_2mٲe~~~W..]U+O! ::(ue˖ʕ+aʔ)6iJ?c!{ݺuǏbbb iAכ[}͚5 S.][~.X능lb~?zD DyKh̘1fRzykԨQAAʚhʿBҥK3Pu'Nt<'"ѣTVz+Wdee !}z=֗YQV-%LS{kٲ1::GZjմih9svz TREč7EN~em۶Jvڻwйshb„ Evv-? =}͛7o޼ٽ{-[ʕ+0Yf'O'FFFZ"ƍw[jUn܄gfϞݭ[]`xg͚5ڵk*UN:.N;z^zݺu[nTTԎ; _~9::/bhs,?vE_~}[n]riӅ~~~?3|[+.\P;`&Mܿرc'OT$%%M4E>F2wڵk.((P|7:2Z׆ٳ'N45ǖ-[ƌ#SR[n=zիC ׯe}~뭷>#'mڴSν{N:UPP7i$SGM]|5ݽM6 4HOOpµkה:4}tenaj`]wٙ3g*ͭ} !Ļᡮ Yf߾}!om>ӧcccɓ'CN+Uco۶{^^^dddzz ;qt؏ßx_rٳg}['QQQ:5(((##?`0 ђ_yd{^xmf6C,ǜ߿usssCCCݺu;sV߿_^!x™']eTOVEQ]-!߿Wߘ7RԳgnܸQ=3|ǎ PhߤI%ȔG&T.UZUy)nF]6oެ>9rDOzUVwyW^;vL0a_!<==kܶm:N3g9rD=իW-,;f͚%Rjժ?~ܚմxm}Ux'W֭SעӧOn/?ʒ n߾-{(onlNDO>Z !&M~`Æ $&&l\fe5~K>/x >>^&pssS7g 27J&t:KZ?֩S'%a<(sQo^[=BRᗁ- sss;uT+ tAEF S>!^z\G-E/܃K{3˥Ś8qƍr.]IϜ9SfQX2t"}Wr0VW_}ȟ/;k[טbotcI),bĈ^@(u]:oۯ5(?O~"(#*i  ?jx[WVwR ?AF ၷMO}[w h|9rvL.o{饗vpV>>>7n0 @Sߌ:f.W9|%M^K޽7on4֭[2Ͳe,,;?nx/X/XEmej&2Ou5JjAAz|۶Swwwg򊬬,|^LՍڵkJx[٨O:%WٳB}ʔv T)!!>o͜ˬ6uRަ!??_L6eԨQroy3$֭[Z4𶾱}JR<ހjرC]r'Nz+zS[~KkIII2?~|ݺuM ޽ /l2¶ܾ}{/^,eᩧ23LRرc5kVW>>>*,,l޽{c%9~Ȑ!F=5k֔DK7˽w岲fϞ|Ŋm&o6<@M8T3Y%SmuPsqqB]ve۶aÆ?OgϞ$eyƌN.>>>>2FuVo*NS *U"֩թS'] ee5;wڮf.{ܹp~IY:tܶmc>}|ƼR6E=M;rNTRFF%*wn߾裏={Vo~/Bq'|r۶mgǕ?3+7?X~Ÿ[~mx2?꡺"Aզ 8RJBmNL!oprРAGw7F- YfGyL&ݻwVKWҩTRpp:g}ֱcQFλ. V㣌x1BS/cϗetaӊmټˉ۷o [=x޽є\jU3)'L`R5))ŋ۶m;"!!?xC=TѼ+Udim@@Q ӘQF7lP.:$Vez"Ϛ5Ky811qĈ1112ʒbѢEJeJ~~\~AiWi-++… NZzzW3Wn4cϝ#%$$GiʠqwssKLL_v>}?O%W\)Pߠ)QFYg-2Uy J[F W\Q>y;5uX;}Pn"}HlC4˗/+ aaaƍ9B?^;:77'x衇Fٯ_[sj`]פI4߿_\pe˖=rJFL۱iӦ\uݳgϝ;we (iŶlDfffzz- #G}%ZQRhhh٢EΝ'!233|۷j] ! CTTԮ]bcc/^xES=뜖v;SO)Q˪Uƍ|?^pAH?m*M4siMeԁ&M(w SSeUϬQG7J,WF-Ffܹϟɓ'O;wwxx#<2bĈ֭[*Z_ ,r3Yzт<ǎ<ؽ{?gZxOVl՗o&.7xXQj-GDD?2.C(=ل>S_9\ZZ8׶FNnذA.G^,0jZA׬YӸq6mڼk˖-۳gQFX|Bc9ҥKe-޼yD^8x`~~ƍO'ۯ PVc" t8SS+v |ͳQ+3 ^53"v-[{iӦYfʼgk}5󮳤PmϞ=e]U(jE>vӊ{*U:GYo~٣,["SLy嗅999ΝS[,fc0m9ynC=b=VuuuUboSgRkݺr/?!^*>8ʕ+o߾]v͛7o֬Y-6lt“-CNu۪US}~>}=ͻyB So9@YBNbl2R.ٶsr]yZZo|RIN+ri7`˖-S}||x [|Xҷv*e7"}8pѣ rrr\ zuye13L5j԰r㒒͟xdff*դI9wӨnڴiÇ=z|]SϟbԩfHء[ߨ׉ʀئ;v̚ҥ;o||GZ=<<\# LOoj`]~2L);vFZ":n̘1 7mڤ4(N+?6o֪U ǾExywޱ(\r uMI]t`شiܾ}tݻwJVXzҝHGSw0g)%Κ5K.+=:nof"I׿曛6mڴiݻw+O]M%;jA޽{M,!DAAHr|g}&,X`ꫜ99vʕe۴[;۷xɒ%vTNN[R7jtfѢE*)h͛7oެY{xFvu^B0`@"{۷O3g 7VJWlCv }aaarW^yņs;3(_tiɾ+ykԨQs;W.rݷ~ے`j(`^xAYHMM4iR]ݻ^ds6$o_3##_޲e*Ui0Ǝk# e);PjQ˗#_7-|Rԧ~ȝs=Z4iRDkʶ֯_\O:UM1~xuO; O}]͛W~7M[Y޻w|Pd&˗//#+G;?B=UeVVw]a?u n0Ν{a忏>jݺuve˖رCY^Mӊ3m첋MI 믿5Æ gɒ%2YfTȊ+-Z4a(Me>(O-,5;f̘7n ?x@~駟g)5jHIIkM!Ǻuz6##Cbm۶@ J{Y^|#OB={FEEuz޽{7o.=o7o^[u@ C*UJ&X(-Yg5>+|\ hժݻ?11W_ ڴi#B=j.oItΝ;W'Nx<<<ڻw:sK.;M$-K$''۷o1MOOB 6L.feehs u&iii(>u+ۯ5(xeٔ...gNNN bbb]!DժUoݺe}˗e޼y?bRR@+'FlҨ=L8ڵkYf)ZPС{ѭ[w?tuwޝ3gLмysueVVw]^Tqss{w *>>^+\\\"##K ?իW)mRWYFG9\XWV݅onѮDA DrM43mV:uKs֯_ѣGQFuM}q֯_o ԩԩSϟ?qD믿.M )%QZgϞ5ߦMÇ2Dshذ{ @o=66TuQ"'O6S$''tBԯ_#FرFB9shuMcKy *MK/]?Po g{f4ЎrP?9:ujI7g&6آe[3<<F=/3[;]|z+^^^z5jT=d@2p_]Y={ Q eҶmB~ʲ偷Qo)__=z1bС:t0 CeVVw]dݱcGbuӻ zjSfo-g++[p~ި@xϙ3'33| {zƌEi[N}J(cW3ɓ͜\RxJ@ĉ7Ԯ]"oWvʕҔ"裏AOnݺE>4LNN6?S}@@͛ ?\<6 |WaUV]n855U_*4 V_CiP6 cbb/^lifۧ Ky}Ȑ!26ŲQ ^?{l3(|շo_3+<==WZUx{.X%6gΜ5k(k2o޼R\iI (0h>z`_Y!pҥKw(xoٲ!C/_~>Km 4H./^XcBG3fL[N7|ȿoW >s w {߿ȑuuwwSNN&9 } _!4ht:uXk5 `?ͭVZ<… ^u3W5k<|_~iPQj7xܹs:uT%_~p饗Ο??d!իgΜYN*UyDzg6cƌ=QTTiѣGV>]j*=[ M>}ݡF6ܹs^FNMvȑ.]}^F%KlڴrvaX6i:n…7%<UTiK.55EO?5a„{.h댌7ݻw/Uxx{=[b8vXSOZV6jRtPBBoƍ{-71tPeߥVڵkgbbbnnn:u:vh{0K9`9}tbbbzzzJlrjP]W;*sϙ3G[޺uյv]v5!>zƚr׮]:.^rl^τ۶mf2‹`#((ڵkBSN+8h8p֭[]]׿[ʃ^/>}Zܚ6mj?,⋎- V|@q5k裏ܹsÆ %},tt__+Vdee !rss[S)/^,ӧ,8|3 k׮BWs O6y>8,-rF\]],]ѣE&[fիe9,_1ǣ/25\"4hrz.:pB>>>ga7xC)33| CTTԔ)S&N|ҢE"vfsPB-Zϼ"t_|񅧧ŋbȑ#v,*ӧG`N:-ZHYNIIyCBB-[ b M;99=e!W_}UZ(,a lqsB{yyy.&2224h`R믯\_~*?i֬ٞ={~aG8"?bzrtYo7xYfqqqVrtY4QJ tmҥ5jpt'^r嫯:th+WVZ-[>3?sTT ᘃr;vR'|@C x 7"@Ch x!o4D 7"@Ch x!o4D 7"@Ch x!o4D 7"@Ch x!o4D ~ ž`$0o7F #xH`$0o7F #xH`$0ot endstream endobj 96 0 obj << /Type /XObject /Subtype /Image /Width 1320 /Height 1320 /BitsPerComponent 8 /ColorSpace [/Indexed /DeviceRGB 255 122 0 R] /Length 19531 /Filter /FlateDecode >> stream xyL ׾d+()K+J;hUWmBP QQIY6;swfܧ;g FP#hxO=x0gOyx)N$@'$:I'I: NItNt@'$:I'I: NItNt$$@'A'I: NItNt$@'$:iY+Ϛ:m΢n: N^:s$Ҳ=t,3JJNy6)*~B'Iu rXS1;Nɽ:ٓ~J{4ŋwyf.ƭI$d5s~` 7[*}jR;:y]źuZ_#vtV_f+$b{hcsu3jGMa*t2]Y_i+Uz{{W^ddUJ_:raCݴiƄ 0:NN~t1/d}o{}r>fD'㣩-1bXo[ 9x&>~7Dl=hA}Aߐu7NKդ3BS:6c2}WƘӼbd1{=}3ٸ5q&DeL;7%ִ G~H7?0}/=so,āe/MNSUރz[xdTDzE:L/]\ͻ Gcҥx dDpE:@߼N?Tw4:0 ӻME)hڪGNIɚG69fc>IpB :.?|vIؖ1=kdc<4t2i7swYBN:ByK)uh^ˣC'#ƹ{D0;&glg'+o:Y XkP"tUJOmƿZ7ixjRWq(CkHwPKyd6vw]5~gҩyk۸:>,'Pul$:1Ì{i Nn+U uWvߥMCģD'#bM] ?RƵ9t~dUð灢R_z-Fά,K'QڎRe;XћNFJyijMF'}Uk餣>Nj~R+:NN6t~ZOxW-:ݯ](ͻbo+{E'#bqz| k$|ġ×s/Z^atҦ(~flVK%|cF'#awML\1>#U;r_3GIUX~+]**KU|bƫ|nlh%Bg;ydD&<qt~KԃǎNFwʺKZ}4NjS7mtѶtotQ~!q7#"ym$òԝGNIDϦ. V)x $D .%--f4SyI:h=Aj0y$DG֕Rl)nM'$"eᒫmNID `)NIeA }6ܲ#t/Z5wmOIsx$D' y$Dxv] H'$’}tƞ$ƣL'$K:'>J'(I:0 Ni-|JL'$B6¥{'N7ɪy*䡦t[Yﯤa:I'Ȕ J6MwJ'I: dDuG!`gt~ww??tN D ` C'$J؛~Iu,:N_#{&kLNIkQCm`2jSth}.fQ=r-c tN"sƠF$`%R_@'餳ԡj[8J;K53:I'k݇=mß1LNIgZ޵^^#[7eLNI:y<#r-e tN:OOmd깃p8-d tN:ɇ5r|z3AiLNIhdB,HS@'SL:T=r(tSt:vݡN0TCC0U)I:i{O&_ B/U3:I'moRt7ɹj$)EgLNI[[R,ߥv^Yj29][W1:I'k]'{/ժ$kK}4)I:ik9dJZi:!I:iC{'HW3C/qR*G@'U-ұ!StҪ.Q wc~b tNZwL!V68StbWL!vN`tNZSL!v*i'StRv 14)I:i)/J2SNV$1u1:I'dSLNIlٌ!H#1Bz)Vv ]$45d 1v+a:I'-cS7LNIpz,s˥1AbH$֪S^J$oL!JӘ^28ؖV0S)EKdtNZ)CJ<tSiX@']5L!>2*St&St$CtSL!^3:I'MnYf qStz)aSw=]$4ʩ SkU#I:inw5)ѻ@'餙mLUG'LNI3{H)1:!I:ib۪ _)I:i^OJB|f tNwj $@'i=/}t$4uu<g$4ץB($4jGA/g tNӻ[L.֡NIS>Z 3 "q*:I'Mc`JC4]'w<G=0p.btt|D0i1SJh: ӥM}%M'8N&S>9VD`E)X,=d1{S: [%=ɵ ^]=I 43: y{Is#pϷhyxH3+uҳT쟙ɤ"q}V*=lLLRx7qn}}z]d?O'av`NFRYt(e褷sҌVB'5SNz^H)]<(,ɜY=YB:Lokt(/a V:~|'")$ljg Vj'=_;xR|n(4B)X=s0GD;Lij: [M3tr}ToخqNzcurW {0,ɩF&F|SՎ.$g)`NS4Sל?$l5d`uץ2 Mg ҃17?E'gK9ug |XvkGtx.d餧*natSD'g$: ^N}d m.ZJ'{X,I:JVnXdIt¥:ٰa|wTI˙ s : {X@'$j,_@LRj`NZ ̑d tNAF9LNI oE:^3e̛Yf\:v[650t6 :5+q1N-d&m} LI/ȗ[=): nԝ: zSz)I: PGe1:I'^F1suaߕI S`NzܞR${ϙ@`;%St1`N2,5?tՖ)D'aoJ?0:I'6TyL\d KvI#: MI ۥVt5))X9.F'QL/I >N5L<|c.JUI NT_L4쯀@Lnڕ$쯳W1trB\!|jAtv7[)Jci$lʳI: 1])CXtNp*nf ꤏ,7KiS0['3'~?tНtS0W'i,ie^'KuI J:v|:)ypcUg/c0Q'K2X­W?tqi?O' #:c݅WݯHI 4\gdv[7^yo@t0+S0M'|'/$`\S0G'ȤI۝q#2._,N4_SIUNtjwEwMkwI>6ߧ?'0ޛYbt045Ƞa<=yݞ>R C'tKoXc<}~|St0j-g'GKy|:9YN'sJޣ16XT]t0i7<"-ҋt0)gv,QR O'S$`R{jD;\ ;9Ÿe i"R}:tYgguN.<ѸnIIyDF'c}*=G}\\O1,: x<[*l:[{ۗX +B:kkj75$uMߎ}ï,: xNNf#F'^ ďHKK[F'k3Aɘ(': XLW%2ty.B'cgב\rX4AI$`1?KɘF ,2): hMt2f柠䮯mBt0od5RIt06AN: ):I'$D E'c$`~c$$XαNNII FjA'A'^FII *-NN=/@`щngl*@h&II ԚN@Nh}/$PƒT:iiC;7N*x='졓@$m褅kQ }7I H3em:﹈*~B'Y[NO'kŚz70}!٭uJMI rzJɨ8\̽([y>oŸ5i6"fy.QQNZNN2jUۧTI r)a2l"]/F:|/L3N8Ad2GIJL: DΥJ\F'`yPI+}C?Y=ݥ^t2E"C'!c[OÞ,%wTzWLPtgthM}I ڨf:iNN1rxҷO&Id|OQߜ{xtJ Өtl{~{o :~}n1􍥓K'67A'kys7"9^aTwI' d:yP~Q/?bsqKWpBG'R=v8wr>%bk.~S#Wyz{};@ KOy5 JXod bipXsV_t2ޖ+qS؛%t2fZsBY1-q]NFZV mF2ÿc[JjE'#s-{"papOI LAvrG]#npg U6 kw/q }Tc U )8|n$6lRݯdO0VC'#nY"OZ{eE >TnVӛީl5"#2wz@|,Lt2~9C5Xo^x:i ɦj:j?[ŀIaE >UeشWt*Xo [bmY9&ټD's1YW93?AJI+<.m/l=οqt8H9-Ta43'Ks/~WȠ#@t:iv{;y}NUdDHKK[{_?{Gy_{0ښT5ϡ0OѸ`8ĸx^y7^n\yNFލ?J:fo͍gSF'ijՑI?X.iP׽@/iG~+cnB1@'2pt2FQVӨ wO}L: .]A'#b JV,{m\ZyZR+I/I Rv:FP—^{gI I=x$^K .>*UGTt(ymN;\wbua/;@\*ؒv"q%=kr?_DtQax'ԴlOB6={Z{SNe#EwI3GC?%ʨc۞2#Rl?;;@$ͣӷgaxvD@K/0$PV ׯ餪w}t: R: ӦzF[un'?oj\Ӭ@YӅt2LOa7i)$`S;NfO';xjSi>RLNNe6^Ne1XNOftRt(u h0O'=',@'X`SNv_uNVUuN'HmKt"lccyߛF'GI5>N>}cd8VJ)%=-E'\jX'72y$]E:N.aT<ךxYt: C^]W0}q~$k0̓@HVU/Okq6};^f$)t!$)M'$ VC:ui~DcNtt2_,zb tUғt2tٷ>YS: qjE'C_n7kO+x1!%X'M>&f.2: F)%tL'CȢC9JI[$`37[|yxv}|nYdsl s:v%nJ^MU:gkKdD'9t2$JyOUG' fɐ,e[Nv!AМ)=s)}@'Pqt24S<7]JN'yJZF'C3t.4Ĵ@۔|UO.68Ƈzo\r=d lɲPPtV^NI H2H N6YMWIۣ@8tN4NIHV:I'޺ƹ9IN4DO'C0 \zNݗ.Xe07k==t~3"YnkLNIzN()qe&E'EtJ[gRtSUC'^: 8tcMtvAB.O'cK?2Jr%: kKɲqv{_G'jdY-oyRZA'fYu> 8P:Y6YG pF:N<i: םJF''YfRtdi,g֙—YJ3C'_\t &J=$(H2WCMݖ"`[^FAR:,I'"B*($ /J dYd~%IΖJO2hذU^M'"8m2@l&m?tUc%: DȗUtNJs:I'N'$ޕnk$`*a<(8JJG'$!ujǎ$٧(2Èk'm{+JgvRt?*"W3߽3Nu6qA;MO: DcN:2NKt~3ާe.a᪹N-@: 8Z:YVtp˥tFKNNG'dr)R-tpt2>*~t^NNQxzA 3d0~΂qV: 8ȊjNg4$ dJ'E'hjt&$'tW$ޣUy ΥNt2Y=Y das0D'[Wxr]ų$\?HZI4Lz9yXs:I'0tNac$LĔǚI: )5t03kN'$`&f<֜NITXs:I'S|ǚI: 5t0kN'$`.Yv9 t@`+0۱tNfcc$LdǚI: ңtN\ǚI: 5t0LSkN'$`B:֜NILu9acmɬgM6gz7,Lǚ۷C;7NR*-{NC'rfk'sƵPI}7I*LtM;LS: Xy5g'5bN=>zĐ:%W$`Ht2z/;x;=͛&ͦ5dW95e''AlSI$`9ܖF:|/L3N`cm&ҳVC'CG'4WJ/I"V$F:NN~tknN6t knNvo 0tM'hZ{dTL1rxҷO&I q=3=Ǚ7Jętskn-n8"Cοy@[ }c$8ܦy0* .$[RՑNF+yW8@<"H'ŽN\EExh@<6t2/;s 7`QJEI .Tq~˛NIH7`E: ۮjI'xAN'W_SެH' d@IvSI'#[% zF:Q^:QaWjI ~ڨZ:Ia8\ggdԋNF [~Փcg⥣zI ~uZ:AQYoNqu~$WKtH'1n+@"aU_I?"⬷4NFw[@mxH'xXNF\[@,:ibt:I'05O'{?[$`u(,n] ;*_[J: _摪;-;Ǩbŏ괅N6RzNFsћ$`eǪX6 og?!v9tqCt2`\}^f\Nv*ziw)en홧II&Kwv2tG/0N^)d:0rjKIt\'J[i("%.vχ:HOI$r:Nz>4^]+t2bXzMŭHQG:N.} 7KP?C'ӸEF'uKq)Lc]ZpvH3>-o5$`IdX?X'/νˡiN汥ωٟf[4:X~ƥ!#L?3B'K{ҫwduqWt0uÜ>ןl |,Wެ#F'K$aJNI-F;$P+swFI: MT9tN59A-2$X_l)tNlYe@'$ޖ:ETtNvu^I: 8Ž#Tnf{$6:I's9[[CWI: OvtN4NIn$r:r'{AN'$JI: uUi))tN.!:I'I: eu:I'6\B'$ I: ͇Z:I'6YO'$ Na?.}M'$v+覔MtNl4NIqtNIi'QI: NNIޣt@`L:I'q\$Ba:I'*'àttK:I'3UI: "z2 :I'^zNIA4ձtNi6[tNBU0$h4NIeU;:I'q\I: ?]zNIA_NA'$`OoI$خʺNIAܨtNlfF'$`WǨ),͢t@`?:I'q*t@`_HI: Cu'-t@`K]zNIAYtNi]E]$JZO'$fII: fJsI: OtNlcnt@R?tN6QzNIetN!i1[R?:I'Nu2$H :I'.t@NI͖I: $aI: i&ۘI: KNIMt@T~-INIAr>tp;$DǐPI: 8,v:I'qʭt@`t褔tNWnt@+9'tNNzBy @+$ eO:I'qa(O($7W'6tp!ν.4nڧn}ܸmE弓 Zepא:촱GJ~fߍ͵4cNp[uʏ~;tK!h\oVz]`b_wcs:Kr,n++3\$%e촱۷{qmߍ&UcNx[wҕ{#{Fby;\ˊg\]YoƖxIZIjc]RA|'{<[0GYZKJu3o56t.\s),4}66yc3NnXVNW s켱E}Ed.l3A]M9.栾N[ӽycIvڠ?[z/jG=~`=W-Z\&]tuqujپN[$;գ7x0cNp[kFQ4RMv~`oT.7[d.lӌA_tuquZپN{Xv~d=ءɹx-{ bi0*<f\]ToO6dGJxx'O TQx{LnlN3k++I'p`P6SStN}66h7o%#{YH]̷z?ݦXp>3KgJҽш}6oSvϰ#P]t}`CDHJS|>ZjYozvz =}Yu>H]f77O? dz(F/)e)>7ic=W;ՍYxd>|򹱭#lD>ۦI|Q_WƗ촱?]v#[σqm}VX*Wv l㌛^-!0]奋 \"USo^!GF}qo(G>?M:yG><ය(zP;y0%q1MTi m?䁷uRoȮ]%}Y6?^7ic:i[W̛3Y<ퟳ<֍x핌so f#Ue J[P8ùKc PgR⿹V0?7Jf1'/0.HF'_o\HGs/o0.7g$PƕWI 8 0g(PjҌk?0(fQN7g(Pt>Cb k7}PF^v{l(V׸@1Ǚ[p%Ir`(P\g_n\>6NͿqF>~1bO˟0u9RL&FH^ʨ+@Ӥs/+5@55֥.fP:ґUk]X~33o  C endstream endobj 122 0 obj << /Length 779 /Filter /FlateDecode >> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 131 0 obj << /Length 2025 /Filter /FlateDecode >> stream x]o6=B6@jN% ú[ ai޺a-VO#)Gr<,jΊ!u< ^]sEūoKH"^(L I]ueմټL!2k^Zy\~;8`U Hi'Wm Y*Sۙo w@oأW$H΁CD a?\_PhIcODA͋?/2I Fkx"C𛷅^Wni77IP'"$l56|"ȿ^9@)f)}-mkQ۬*P]I⿙L% !f)϶YE,Q_+& ᄁ*U^-[\۱RgEk֪Թf' f a fnpQ}5Y֝DϛD P!%IZrcfhzC6E- "F99A >dl?&rAALXО (ԫ?x*UO[+`+P*,2T&.HB!5˃qw/VE }j #Ұ}5jC_WhUvNi֌\,ĸ'Vp_[3֮1p8YR}=vKfR((쁣6S ƟWmd6,P,P}z~>}Ӷ^ lQ PCO/xw=?F2x:,XQ?/_t9Ǝxxs#Xƒ@ؤ#X#٬Vɦ@uʫ﫼_Vח'W!{͌ZW/=Υ.떞;w:N/fs_6]U;t]~ONO}_[ήgqwgA࿯ m˧j©ra)Y +ڳu~XTO ڤܯ|-R{ `H@!!8!tk6%`b⊤BB0UY`5mM?r V&38;i,X c$I$qŘ+f;f=e"! !a$z1Ǵ\avG% |t' `VQVγLk.N Hl D RέpR`6 Ժqd}mi C bla7rg( EXo !CvHZ֪p˛mG$gہ=dvہ 9YC1Xfj>> >> stream xwtUBtD&  kAX" "ҤP @@B$LL&!AHx>3s~n3yͽ{UC2 ]37 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 "x 7 6tNXo&-- iӦi$+\cw_CWT/ ]ERsFfffC3pB" oCW0 ( ( ( ( ( ( ( ( ( ( ( ( ( ]dsb`(%XjMNN6 j+ $$DR5t&=#9$䜖ӒsJ iM#宕ŕc [)6lغukBB¹sVk=}}};vثWc>ӳKW\$'%dwVJI?7,;KYW#xn_fkv+_XXxbOO{lΜ9!!!J .ᐂJ9]zEb],=kEvɓ'رvE}K.4iKKƘ#'Və󶵴 fs2>5h<ޮ<'O7ey̙3}p)ɓ 9UV!QA S(Cv*ydܧup@ xn{S#{_rJ'}Q p,[ADDĆ j7Έ#VZ5|pٹssZn*ago"oƮ1lH)qTwV>I$"x́\+y'\2}- xuֲ}qM}4jv\cu\^ .4{^fLfLE. ۢZьm1werty'V˒N@]ꫯD$))i̘1+VhѢE-ټyɓ4m۶F@rN].pSf>~)QR{|}}|}efgNܳQ2#PPigu7e>rM6޽{;wrҤ86f;'$SVK!n2jzҥ111ϟwyw hҤI@@l-SJ.\8`y3ԛCKd3b.rxfg%v;WO?ېz=缗)GcZzG`sWGnҢ?\bX&d5&d-dծ0׹k/Nb;c{_; 4[pT,:?OW[IgĿ^鰴x0hi{%k~(Y󃈨<=}EG飣Unn.ՊӘWrr-Vm>[V~rJ! 2ux5U6eR"#####}Y1LIIIh4FV|%p=(HU®K_9ZYPZ` -2:GfwMzxwp͖GLKo;(ʻU*]"b9yJjܙh4eڵ v꫏vҹzY%)-,Rf*2m›:J/"|8Ӿ}}G wnQ}z㎉V5[~#i9Ƶ}ԨͽH霵/nV^x^)n_+]9%6v? ] oʚ!!MCSܹ\NOp#xەbbb_RRfsO3g;=7"ѱo%]&j?cJW;4!`MH:8X QhBUʼ:m]aϩ5DݼsxU3緾ҟJ>ٿm+Z~/UkM!fsW] o#GܲeKS//Gy޽f2lٲdɒEٳ'::Z] 8jf Js>jne^VIk4aꠦPMP:(Vh,q]qc)]|ë[_iz?6^Ѵ߲JGsP޵@vM65qttw}ײeZe˖+??_D RU žw)_Ŗm%4U=[۪3O{҆dKO7oUW_.S۶mtu+ ƿ|~5n׺iosH'k+]Fk ]cٲee"""6lP-"#FXjU;w;w5ܢFj;4uɋ ;eԭm[<I" y]_|~-9?/&o:O."axJ#_ۑRX4CiU鲳[d?]J-ĥ8P੧ PÆ \ۼccc R̙3m۶|kq֮]+"aaa ]Όْ[.JnIǟIn萺UH҉݇yI}T/DM ~_*¦\y:g틛⺏@OEMqeC^ax+v5z}W ))i̘1gǏ/{rȲ{ܹٳ=zk L&ڵkǍw뭷hx +@DN8vg_2F,+&VJO0Z2 Z[hSAoÇo撻όVLמ[Ӆ]C?O*o顔# KE C>"YK])###&&΍AAAM4 7yyye?uT||lvq`94"CTI4$TVhN7t(\(OPvTJ|Oh[Pd=;;}kZ43]dpjǕy&,]GyuK*pay-+M2l2ׯq<<<>S@Αd!]V&+fۤuH)l4:,rUu@W%V|[K_}nKL?{z6 ;s>S-慱w9%V\FkRo ڼy5k,X{xx̘1cܹL\˞t:ە|;DclV)czQ{ܣ-["jcZk[Gk[ֶnmZ|Qt ܹW֊Źyo-H-L5%?p[F<\Q~_RH汊kn2tbn ,5WHHHXnݶmΟ?_oǎ{}m|^^^\KY;miOo{:wH)S! -խ{tjiR[?5>-3JMaM"g78?v˿ 1uܹ\Nqi=L$`4FV ξ&x5v`m3:IƏ{;9CzQvFVEn;m˨Kqed>*֭L۾2VXZPi#mlOnFi{)+{6!91xfԥVAZ*\m=f+| MrwwiD̓Y'~:Sb)l^k[:Qdgu\2V\fxC7)"G\\u6`*7rZj޼yGunj&Lx:tP%-ټtR]lir$cLB]D4zM;YoaC18|zϗh5snX✒ă)-yl}V-z/YUi %t[?Ϟ>}ڹG+VرcӅ >5˻[B]KO},K%PS9l̀S_UևBsaZQjjqj +4+,+\_jPS7Wi|D߫shMy΍Fw"_{ v{˃?6WvW_}u޼y9rdK,L_&uw\f)OM"n藇][D꘺5m 8m{ziTuںV;eoL_[q Il3e Zc*톏>64}CQz:my{i):#|W)LVr45Tך}ŋ42C`0ȱcǢ\],d[.T[zPnq\n2ƥurn{NjM#zV+9.qӸ  nV*lvk1#85(%(58-85ӘiwثrJuzDFh6Op2CCd·f}͛ԾQkTzƂԊi#i?/90pFH 2Eٹbf.5~K|:MDrVMrqU?&:PߠU'~q;m;wWlvxGJ\9UkyG4pn-esiiE ^f_k;wxj=.&p=˼?-%k~(8k--o}~.0]ԫYPQ厯RX19jt7e6m$"'O1bĥ8qy5 p8;V>+48wʟ͘:jCFН;u2n=zzώ#6etn.] Zܧyseq"?)ͩBո#izGӞ v_4ɿq=?ynQv["zE/+[Q>!'eHr}IV'kT#ݻwكoIﯿݻ/3Աc\ܹj4$L^ןxYOP]nr]e667G,fwv4uܵ5mNkt[D9lO=C:^z*s`|zslqCl3ǥ;0mW%m-[WH7UјYbΝGupn)-(]6sYDphqˮo=ztك>;>-*xy@e;env7{tllfn 7#] >9>Ҟ-"&;.Zƺ~mg秃 r+O_\V\Y~M&pIwxNb/\Nn7='4҂m8p˛X)Kk_Avӧ=~ꩧu֝;wnǎs-?ODF)S b2̙m۶>VX>5k< lj9rѿu6jP Q/ QveedMpnlpC*ohq2Ûܓzenͅڶm[ |hڵ˹EӌzqX]R~^rPDD%w~[im**&re@crN`(|iӦ]CnVZջwﲣ|}}g͚rȑ?~+{ĉ(ƍvZIMM krPl_9Sju8T֒PGqϩC[tz{+>^zFKS+-}[?? X*|wʮҼw|=F@785.f͂7oR9wO.\=wc}+s~q۪p]2 "oϞ=iMu̙3/rX]v .|Ep޼y57 ĐWjWtaS[l4u/v} ^>hFT-N4:٠v;v˃ޛh)m^C߷ﳳ Ŗ̬?s{˜AT|~ͺWt(pK/f͚Wiի?\v|>` /_>i$ (\$;8k:L~"wS&_?r>Kw3Vb_7|sʟD5 XO]hڨmߖi9ǟ_|{TR't>-v}؂T2UG$Wqc"G\\{1`*~w;qsV0a믿~itƱb}Kb.uk|<9n`Q ݾnn"wN,t|{H-/|8+dzkgWyIROwR;|9[zz[yUi/ dtڹ?w⛣^z9XyNeU RZ x7$/:u*99׷e˖Æ |UcAp㲚d{b̮uQcW]z4cǿ1d]RDϰ!3czp8flM7~GV{su\d܇vnut:sl[Җ,[`oʩ+;qW\ ޵= IV0` ]V6Lv.TD]t2D;-Iul[M}K[R.\硋w[7̨=5*͵y]l5O7[Zi_gxzn :5Tm"1zS˿-o$,\/9w5#_ EYw%IqfCZu=ʱqY; Z|s=զ#\ۺjRw舩<:L"i~nrו?ܻJ{vI r_rXOK8ִm=u΍{eWRY۔)%7WN&Y9Y2]î2Ɋv nziٶC^jȬ ];٤[6uȮD mZꉯiZ^lc_,:VjSyz|J用gf۳7$o1-feED:M./eJF KeȗC%j^uH E8kyՎ[Ɗk>~6+zM`l1ˉ2n XOPww~}3yǬO'[u;ǹŞ7k\qnI{}m}}tj]dd5C9$)>6t;C:ݱhtuzGRkJG ibDG7-v\k[q ?<[ɿU7iV|KCOEDpݟĉC@zRò e*F]Cq$zPKoe7y9?Qܦ"Mo:},ܵy=n]^}g ۀ4Zp;Ut~c!*Mhhyɔ̦UY*yǛ۞{yKҡOuAnyK_+z/Iszro ̘#/~XrN]V̶bMA_)/MpHcn!S'~:c.~mvÞߤE\g?|V}*2vZ!ѹDϜgN^\2~rTw*=?'P1e߲QA23&Y.2<n`7FK։i%_6pט)Z33}xp ړ)]]{Ӎ4]\x(suED=6y<ԩn4_39SRnGpM?_hޞ n2llywvl%\oUou-6z$EUtâ?mĞǓgs/3NPOl2}K{Rvۜn`صxh=F=ߣiO~nþ<3g3[]o<<>|?qK#o?UYCۜ~%hƉg"om'7=+ KK$i{K}&]˅XKwIaJ]Ֆl%Go֕$;jzPƼcNxr2w v{"yQefo?Kl5_qod3?moߤCg3 ,oggK>&I3V,8a>^2q|[;dدq}eR"I{I-針~ݿJ:KޜJx9ɷ&j)GҎMHM{{hlp~iùuwNpa+xMx[ syQRēMA-R}2+[߼w_L\&u?ΐotp!xm)K. u\aWYtl}٭]6h[T[WG Yp~_Zc Z7mؚ{Y+$sn،k74 ۋ,EK};%n3vQ 1c?{IH E{/u+ZZ_{jWŽA"  3$?p/BHȇsOVxr=g„͛K;wr~]f;msE˃fo%Y:9B> o;6^2 ˟VrBei<.'F=H$tt5h ,tv~y+/(ɉԼaM{Jvp)vwcKO'']S'88-쟨 փ_\cS62̿%rhثs'^-yp9$II>׬cjO/kr}ɳՅ¨]T\`&9YgYNԈ.XEq6Q~e󁞍 G.-̾w˕Y3fZo]..666C7!% ΋ \7#Ґ.R$Dz7<"6qug:&y>Lm* zy4iVD'-瞞laciLl{3$䲿"מN8Us~~aȩKJ³6oNm#&vJLZԱ-? yoGwC]1m(ц"mn'Wbo|X3s0Am|wtBWň$4xkKo`U!MI؏|h((r{z#SӼwzŤw1BWWwwnCuz>Xdb dx]wل3lIKDDEʢq{&,[ is"nj߾$ݸdT9wsK=)}r$9*>CC+t1t3B[EهG15|U4*)鿏fmZt;1l_-i]w]T,|tvb0ֆֳ,ff, [sˌ⛚|{VW 5w4&[#du<\_MZ,@?wF[;v j CyaLj˞q_ K|$+InlݠI(nS1doLSomvce ˍIN7كCsnF]\:ZJQBbmU 53/:_pg2MK5tA3|gVg5KʗÕiwHߝTf؋8^,VY~y¾=J*̦sifsXjPH7kii5{Q%^# Ҏ>:R {&ה,>]fc,RĞzNKW0gꠧWib[!AVW>KQ"kᆳ[8'I or*k*e"yX飀j=z:U/1Hrvi 2fr֓$lgKuCKΊ)x MW)ydUDH}NjeKĵu_M,X֬jܗN&κ*^p4qқ?<^^9Mg}xH ]g.8W)T/{St'(zOu Ch|6(piɜ>f38P+eVšk%/:@Ioس gIg箺)F{1-Ww^ žd+V[! vm|4&Du̜x&ynuj7-`U?Cyuc}D\SebbƄ 64hRfC> K&=λCMˊ -`]^4MBO$3'3/- 2e' }'I6ILRМtox'?/RjG㏑ϡɘ0QPͰW/J*.T\فawjݡzjF4a*.m}Uj{L(AMdWT4X$uٞ{X/fPWӳxS K yȐF%K*LPdMV|AfVVRMr+7wq;4*wg'&/fݫΜ3xOho*:z6Kp3r~\u:7޻w61"F@C7QU&/ y::ZoȘTבv?ޯ}=:7wZp;-"0䥁c-6mmK-w7WgB>-lE7|Kz7bY<缡O.ѭS@ ߞݢHz̧fTpAdVoM֛7 _P)UgW\aU :ܦvjy~8)jX(9J HU9M>Qt6A$afGDD?'Oy_o= mPvw_ie U&ワ_~E"k <+B"Gggs>&rr%n^.&aIEFDrn{SXI" _AԸ0@_f$K⅞e*|9{2JZ,ٰ[j'n&6^FJh"䥱Կ^끊&2T ØL ϜR5Z޲ܻf#yCo+x%(^Xχm%A6BS<|Glq174tZX:B^Z^ tֆʬ3oV,ĶyzcO+&g[7)YeE+eLMnhY5@M+λ;(3֙1Ibng M~ =Q抶A>/}(Ȥu74%BWk^@ .B7CswL_ #]En(nb"[ͅ &fLZP;$]+%/-$-m[Tsvc)4xHsk\f[$b_TB"|K9shtGZ ;Ȯy&Qf}*۩XjF"F?7 e_;N IDYԂsu: &6PpGk<#LV<|q-O D 4O+T$s4 @C@M[7 ,kuwbDriޯoUP'dfN NweO(7VhgWZ^fW/nr=YJ.?}g'ո6B 72bi`R+ge6n=H$Tק+/;Wb"n?umRmc@oo2Q((]W^gc$x_٫Lx%0** Hj}쓲ChC^*mG{, Wͷa,/WĪ A԰+o)@@XHO.BF4pX1!҉LgJekkbasDenw9:W4 @nr"ߧ2uՓ~0Y`Zz!+VxTrx3njBJLPU$4(iՇƻ(ǏGFF^zԩSgΜ ~8xv-;F֯?J&˘0m%I?XRՖÚ;~%P 48.SqibUcj|8??_ׅ@ ]C%" KVUDȚ:873hzퟌȿ)X:z*gAq?~bnQa:;Gj h7x~}'4!#dsoP3^(Ղ$G&%|;hȻ,V94ڧR9kุ֬8BQеk4vܹ)j7ǽ`:614tt4_|Yx,7:8XoȘTª<5CTvw36F*c[ ;5M`e%3nؠQsWOwKgsnrmSUg otS:>뜵+--mȑgϞ$RtƍÇRQ!00088jg:ҋLQM@͑bnr=nV_BaveKJy3Z@,̔+%/?u8ctU);_}i2mK|j1o^uvk} -mYyP2̌-Z4g]S77[rrr۶m}.uFw -j?ZmA&7, $do@qsgy%ƨ~HلNNF#Y֮.cXទ\"G?,IBjئ@_E(=[)#(n>d"4ZR&NXuK?0((EkH(**:yu8"={v@@@@@@ ]g5Vu Zu.zn".7D5W>P d¢ed޽|C[&4q=%n3y3 0O$ى9N=hۃȺu~_zZ׬<ڄ&$$ɓ/ZdtD$H  "R(ͫ u ڔ]OahDǺjO=u]TW'n漝7GoR*fDTcs{nBus0[joٴiӋ/;<={ܷoߋϝ;#fw6C^OԎB)uZ͑Y>`CLO:.a&6 &Odgh<ܥ]Ռ'ܥ?yQG;AdHWFЩ4.ּQwWtƍ/9sUu֭[Νϟ?bZWWW-f=y}s6cp1(6tg1D,F9alg8K;DBuHbKj;2=$sgxySpxIztHC{O6]M(IiC,yfP{|%PkxkMR&[_/J۸⽴$&[4 lêwOsv߉  kGi.8/w">>>Q#\&U|hJr{Q;m'z>Kq*|R4* UP \^nD %DMyzeS&U4^=M {&+Jv\+gOޣwM给uwA :>Kjoqv~ydyuLR2-B*|P3nR W?Rc$H((W>g35R_pKZi!+o]TχwUtg+ihd+233VNz񵟟_u+{uMn?zx88oStfJ:u&9˖JfƖFzr>B ][~k ߠY5 4!!a%zWUHH_|ݩS'wwwaN&Vdq4\D4kD()y)Wwx6Ofp_*b CNwx3 2VQb,O{ PsxkMW6mtΜ9,Z˞{MDBp5XH,v@Ph}Br@7)'MMl6IvntI,{')8w~B]wJAFЃ͊9k:RRRڶmcnhccheeeiiieeeaa!˳233_3666<<\.s/\hќ9sjP DࠃWrw{7J yyVsL Oɘ0XobصKren0Vmtl&][K$f4,9jV'TJ&Q]kXt [gk}hhQN>]=zJmذa.M6SJ9vq6hYMH C=o$PfؽاKIL{J6޿L 5&`؄۷WYf͚tUe 0XTe'Hê@6F6%/YbDox6q_ʯ]WvW/Kgsnrmc8qk 4l3t]&KM(7ER CEGG/\_~j6332eҖ.]o7;>O.Xv UtY. ᲕLgRs[{wScKU%a!;B;P0B㎒twtZ"H<<<|}};tЫWnݺ4k] 曡ͥ'J̕Wt !`cqثIW4x7-[} ϓrzPv#M !/|xK,:C o Y}Iv|(]Pupf떷lQJM֬bD Eԩl5N> ՈnlP=Lb^N~Iڃƻ(ǏGFF^zԩSgΜ ~NtӺAז_|3QWi LhMs=8l&3gpE?6[r׶g9rqNN🦼./֬Z35eٸcǎ:u*&&ѣG 1334hPݍk7ҼAM#dg$KmhlyϾus;%[;8v3dOf9+/Il1ðG.vkRj{n$1yFi?oqw???2Ae >J~OOYfUuQNNNhhڵk dkk;wܔ~Q]/q*hf _ Gp.rJF*-MX6{}.o}g&p~$y~[{SVPGk2jgyJuk[K5M4ӥ{{V%~c|=.VM!W}G3(bSiRO齋dAcT>}i]]]P_X=|prrr5牏|̷ü'yX"Ql^*Ucih9٤5V$IIcwk2^ \t=TXYұWOb{nr轂m3˲!ԺCC4@O㳴g4Kfe>tZ֭[W6wBBBgScΝcƌJRiɔ+W$e,?~\Ӱل3Zٹs}&05\(}Xo!V.dC EFz_ZZdXp.Bq]M[asNkP3@`CDHbq^Pn[p382bf4v bU,ikcG&wȖ-h|~5&q=[Ш}$ P%h%kΫdikH2o߾5Zg y>8ptfϤ͜L5M3N<22keVo,w0#`|ބƜ|p]uڍl$ ozjxMhd+23qO:k???O*ZVAy+􍝙^$;OKpTE@MywڐYoAXl|omB5}WxCSI/۵\fBxi>G,BwiV6@5AAA/HHH0`'O4'$$d/ԩv""ұGz|LĊ@E |3T]~qȿ4ysٳ"*\ njyZnªS.U=uWsn s ?OmRxtEuum>(W~s"鳘si`KӠfJ1HIIi۶ǏM@@\.|pE̙Sj &$]Ss1m&n+&ƾxo\6GϋJw 5]wCf*⟤޵ٝ>),wJdކQ(u=< =胄_ԒdfffTBeF:]粯hÆ GVUn5DӁ;+G4@Us:Բ%dǰwyd71j] eEVwWE^/컴BtC,52}jpѬYlj[wQuo#md߆d%iP3xkŋ[nݺux]Ujvr ޏ[]|c1*<z[zm؏H tY V+WPXEEYf]bh*y*of۔zK$c%xkMBBBXXXXXXppώ;t]Tɺ4u2/Ŏ[5{ڐO+xBqddőe\bfFk!/sXYg /yBWU`Wϟ?3fLPPPNNkem"Y=ɿ]\L괿C3s: n1Odfn 4&U7oQW=IE aL{Ğ5 w DiӦ-[^zU2 rd[2yt>NzGx7>:yW rR4R(dhd5coȊ"7@5W\$Guqܹ. ^@|kv?/_ {)>S E,*͕1ht."E|?D dzdbc = Vњ{/j;ݥ?j\hk͛7gΜIDJrnnn?seAj`tKC!7v68&I|TgNiS%rM OVsaļWl?//'Ej%xcc˗&M߸:ܶ,m=r%dJ6˕+Xka_~M));W5|@7ZmB},?T84ƻYXX7nٳÇ^z&O|E7O_iЪL~γCxBqVgN ݺr6oVUZ)l$/y|,`4:hk_HHHHHߋ$77w:ujܸӸI<矨3b|^PdN8*JUlfdI6s"F wmcwމ>p@~:9eo޼|wy=((hڵJ0 M"!~_?:rS!"3ѠA]܌j^hњKgj?dާs* P>4޺!|G}We<|pӦMSLIyPNK\vug*=G&ZV) MϞz\Ul'r٩ABc...?S||} bjj늠nߦ7dYZwχ*lP儦A$17qo\NVV|}VѭsFk J/i?ؠ^o```0tgdd;w/c\kOq=e7EoLO洒v,~lyE.i^<gW\qZа-T ڇrhkT[y$'/>QEzJ"Ȧ@Q񨑦&B1ꖡu(aqVŞ^z_Р#ud>4*"h/]-WWnʫ@n3o܄fLzW^%]<:5]bO/TG tgU[{G׵ uշCbxzVPIɆ; *l_X,^$ؑ)OWx6}ö5qgbTʎNfC 5ںŝ,v8:$2YW%!CG-q#VWfF$w;q̏£BAy)q-]*^RMqT76M1}CnbG^MQE_=IWf͖[nXx竻J(5{Yv|&Pq$]UӪ @fP_{XH,ɟ?/z^ [osܿ]AUg]k{d݈?zzUӪM@>ش7ѵb圭7o?UUTl:Tn#pgV&\u}\% z߉VϹ؄UtAt)W>ixh@rb圭a9 @tpα=79pkZh@E*Ujzq߻A벽_M(;a9/Ɉi=Hс hjH<ҧUC+n(+T|9,>=OWU蛏ZL310&F^(&M;ッ|g|J YxW.9)>ʹ=գA{rM&@ PS$…c}:sì<7@]gihnIZAƨ5Mi&rԭA}ԂJ ||(.t t];I%[7g Ss glgDD=]zڵ&ʸمB+ 7fظ&j{{;zsCBu񡉼V4bIyUMhQ=:#w7 oej(Z>>̟),?q!3 EF% ˲WȵtsJ7o:.r%+Dn_= f&ƗUE9mDHg|hjTbbzFAl"vv㛌&;mB;;-f;wɖP;ɼt~ėN{B;to<4p&n*]U? nbݔw?5nd/,\go%͡Vȕ: —:pЋv7@-om|}أ/wR(Y]U'P\(Y力˔*oo^IJs]BpC\y|/t;;p20p0q:e? %hjBnx^7{"T*s6uh$7yhJHWQ3sVȜ2U Q.RlRdJ%j`LF=Y9D>Hbn|^*HW2-hjUsgc[ED?Ţ;#ݹɎ 'Z| MT'_nd Ec?ISYHBh&) DYk<uojHGUIzBgD($ŪUDa~r3哄)SXy%m뽓RPČ|&`<=pA,.,(rkx@'Ooz ^jsx㹙vMe}tDoZAؠ>7_5SlX*}[~]8ә{3/{೟P_԰K5U o7uKuS5đlY^ۘUf Tbx=lݭxWQX{,63ˆ'uo]el܄eU917Ns> rigHڵ\_}VJ547,ʕ_iK*Ф&˨ ~ұYtm&@ c3x齕*]QO"0{6Fd .F}_ݭTfΘY|Ne+.(s8fC6dV&)c~ұO*z7Mݸ7+T_[ުo0c񴖼S&iIA܄˘LLZ_X7[[{̲ى9UaJOY::Tx螀aѓ煟/VhR+IF?|oث7Qʩa627S/a9Z3w8|nIUi"39@@/̏#|->2\-PhjAfLlqqWYvnF:@TŜ|cڡ:05OY:2BI@Fb ~vfXDt$0kÝZ#zF#˗?5g027l=Ř?n!13;ĄahjOY:1{!h􈍩dX_C!7\w~HdJй.]8&'O l)[Y- $Ǵnhɭ-n}ʏHc4xL,F7|@xOoy3O9|,5rշV*4:K-Ɩ![}U{ט?Zjm\!]3UJ޻x~ґitkc @ w7ٝ+mOͩy$o+CM'qw7{vj^IJs]n"C ktܱc/dgYvy紃1J¹B/LEߣMU- jo}a7qtYW׵mKnrمxhi?Rt]ESoc|mzC][x{sU#o0[f'A͟-F4^?5TJUSM5t`ުqaPx/S1e79t;tUn vfMIMb$6xo'5SRWÐ_[E?++~ЀU^D۪Y4z웡lr;NBh,!Stxݚ]L`iieښ>˯Zgn\)͌.Z<yJI'Rv-Z@hVobGg/69O&Vrp{rq5v"u1 7^QkݾUyڷ~+2y{ I\&9١@+xSzxt&鲢yË9x1)y1Ꟛ{;q$ͷ!!Z|{O׽6!yߟ)^`U({@^w-Մ0[4;nR/Ѻ* @B&IDڭ)a5Fo./R*3,yfM4SO#sҭQ! /sҘPLRڊiH7@`$.ke""6]xt[䟨ٚWWF$NPYL{g>ȺIB @("bnAbvY*Uײ`_uذwqUD, " ҔKC83&;}1gs P?Pxdhe2m%e+*%@Q0 q>\K\oar/W|D7WQI 7bn܊K*N,JjhRjۗTsQ/ oVZzZ#"o>fQ=9:wұGμ;%UM9riA)?CH@}*+z9jKv^Q\yU.`QnHg PWPxxMNYW.=_Z>@6b*c7~|'Wc:gN G W).#-/Pf"σ ۉ+k_iBP$DCV y|4=s@hrYXB4_ YбwGǝ+t>Xv|qMmBpwJғw*{M%dUŀaGY'49I+OqcUb9þ.,O%2;w1/6o^K#qS;1O~qm݂BBTEM@Vɣ؇.@|>T o$}[m5B;B9 M/ȵWKxr~GsqzX\r7r[yř%H~FҕЈ(q7_PE<2|4U69?49si2Ɣ~._jϞ5sy' >}h Z]\:-O^1 ؁m%rCem7MukCM^yMLZh㎏IS\J~ ,Qqi>YoH"/y㩠\r4ģ(tSih|6yA49a<~ y5čtL++|!>l1Iw1C&)rsҜ2BT42bIȷ'|% $Px>}zH49T4l5XL|ZD{q"D~4>Gb_tA%<Ec(h6Lt6?OY|64t*aS'JN{ oqњOz_&R!$<\- ѭY(t\'w111aaaAAA=x]ffX /$5tVzZas'|.ު@1v潍ʎjXCK g^wz_ K'ە]{#̼ee5]B 2Ҟl"qЎR©LU4&Nitq5O~B Wxgee=|ƍ111xruNNN߾}GY˹\Ν;̮^Jyn1xT{:X΄$-;]V O4gΆ.9N E.`9Dȁmos6ިX W{궔<*'?8333(((33sʖ I#:tطo߀u#윚J1RGGȈ--h?~ !nhhtBeWq>n3} F,d4ؼؕOG0Ԑ933s{fM}o-6=Nq27i1 نDX&CM4M%%%l6!cRjBM]ZZxǏD"55oSYBa=ª^u̙I&~FB$ 8jjjgϞ2e5U GVYYcǎݸqCa0rL:Px7N<1ޑ/h27qh_Y/U8U[?&&gh s͵kԽfK|&vhuU5g:n$6E<M@Ts7pGD?=tPU7Bh̙III'HJnGG]vԦF)++4끁ZZZ!@BD<˼iM|3gB_@d4װ|ě ʊs ܕYRRe/ϽI}LAc"&q6\A:eg,((mٳj$w-9655}vxxܰa 4O߽{ĄRw5'Oӳ &0`Dž"-bjM k^Մ%NCMkFBH$*}^D%w7B58hWhQzu:xw&!XNA)݇7ۿX]]ҟ$&&Jϟ??h m۶ZJ|rEE94/_~˴`#P}quu% ,;2ñ睌+THV\MAܙ/P+hٽФJ\VQ>g4ْgΞ=Hӛ7籵urr.\d2Bo޼1F"= 9HKK}4Bf'fT]&pUzM] Umn4|&kװ<NmL= ?? U ͊@v ]yrN[Z6 2ǏK<<{{946\} 'PG=&0%s+:]!Y3ۄ/w>ѴԵ+>&1o 1q_awImc䰴5| 6ESnGB rϗtЁTp|i[^z.466&IDL"JiؼWzZ2鄿 $SQ9uѦ >{^_&9`%Z!4[Oqgyr UUUҏ^zrBt:ŅSo }4!888((Hrlgg'kfT1Tue|P,FgB.t!0%(ξSH&4G/M򾵖q5 -ʨۜ./R7 oAqrK[[[[rgҏݻ'9 4'ꚪ?jL"9HKK4hPjj=lϞ=̨"Z';Ig 9ӏU{gq) 㘒>Xg/eyߺjR-O5=pWk@bEW'"|,Zx[XXH޼y)WJeTiiׯ%Ypss8p8,,bɒ%1110`@aa!BNoٲE[ 'w#R<5lֱ fAz,=|T E%줽g7".,\GeSy~Mk{B‡Coj"Q(hjY֤E)ӧO?z(FC]xqܸqsbccĶmVX!9~}ǎ MVVVsrr2>hddp9+((ϗhƎ;,YҠxzz# & F5ډ hYmm5/o;wڍ`zׯ1;u}yekKvbee*QGۇIYy 6ZX3fJ;x={|۷o%}b?k.>| x#;v؇2>hn%䬽ֆzZ*3 H,Zp~jI4bi "*,Z½LaN70л}.R/05}Zّ'}: ~>5Rחkт»djZntvPPТE|||$U7BhΝ_g>>>Ҫ!`Tu#tuu]fkk[Y,wbbbӪA3\TMR}T^^rx۷TSSStf1wM:̞{|NqżO@)KWT2!LCs+>,ڸI޷vh-/Ɂ0yXo@(X' sss555UTVB&Y5Lͷb+&u7ϜּVڨHGmGU|wm0719#G\|PmD-dժ,]_z4;a54x<z K4+1 1X]MV!CL:nֆ&vR%2*3!Ikw ?S-TN|BLk+;H-\ D򻯲>JL|0TTZtz~'DcQJ%@!GhO $''Ą=z(""ݻwN:*v3s\,ZjAo3yJ|r҆mڳ+>r%J b 9D5`_bWWhM$RYZ#B$l- hXw^OO۳X,SSSkkk~9::ZZZjii9::zyyݾ}KbbUMw!o.W6؋Oy d) C/p;7 Y4# ~_ ڻs+ۑUm}" e4qnݜJ3!ekE"QxxxTTT~~~.\z5% 4"͛6mDsYlYk1& ADuAa5TQv;IJ?*ѕ;S`JmDکKOoαX 9e'm| >εM%= 3i7M x5wllɓqm3h3f̘Ǐ2کSFIQR  fYB+oJ2iglP'&hJ*g6׺ LI̙?WVw+;;:6Z6ʳc5g06}r^(@w=PPxgddtܹ/Sᝑ윚8::qU^^^M?(g[誫[kmkQW*q:{Z|A^sFږ{Z%8\A)nZ<._ѱAYU7,A%" e43 tSz»((9ؼ8h$D"}Zr`ll|U~]vMrɓ$rybiؼWzZu]{s 0^Ԍ֏hކ>xRUv?y I OcjQc"n?>Tt n!-8n)7.Yg$$$H $s>M˗/% ,6O>aMM5Z 8q"11Qq޿OI>jglbt~b1:)t(kjN + %uhNS;7e[Abbΰ/2LZS~G뷬%wJ1ϖ.vq{ޚZ: Qqqg2'ӴKeARx>w?~( |h[kr|t\:@h|>m?I!}ՕԷGl79fxַ4S`n!eg]3*.]9wKmP~G򀕽n.~OqhUZuBv~ps hC'|%_-[JdN&@o mllܲNS8hZUfAnvU2Ih`NsYT + YޥK4mm|PKn[N1VHǼw?a8I~Gb4Q֒󟖱@:\AʉuvvXfC kb)72{SKa)J κVzpT CCJya0;'w8wKSBwhZ~F۶zׯ2;׊JJrO|9OVG})Lfґ<^<+AAA'Nʢ&Lpvv677oӦ mЉQQA]]]GGG###px<^AAA~~GGGxWMk?zOOOPzz$|D_7ڵc d _rgxV}zi 5S7n<9|He@j> ! |~X"iiRP6ZXʹ+!rssǎCYaXƍ*7 9,xNl1N-JHfO  pXLW#?=>1~FbYq9Io " /BĤ'`f z`yQu7?׮],;11iUT5[9h)Bx˭]wDf>|)*de OmhzW/+up\FuѿY!G"jn6C|xddw|||<<QM SeܶZ WVYYVRRr\.PSSSSSmѢw/!-ZjЕTU@(ᾨ=B1X Uu6To$\n镡(i_>}Uw/㭦:'S!_0IUJ@Q`y=P\ !wy-"7fhFJh3_lj)kLKKKL #@C4GSuOv#:L|<ܠ Rա*%PxL51bGGqrGzA/P{NmPeV Y*;ZQYI`:~g]{"Q?Tݥ]6[KS|{J/A0|>?$$ѣ7n9u۷oah:lc$t4-)/<y5e GG¶BP!l]藐jsJ~x }]?"8p8 ,C< gg#bϟ?|PPPPTTpڶmkff 3Fnnٳg߿?x9s~cǎÇ~Բe˅ Ν;WM &߂fB_OCy²oBѺ13S`n@m0׳ߞE|J۸+07LYshwJܫWgdZXPr M# Qc9qA0^M{NC㩡doҦ$+?xGFFΜ9e˖[߿1cf͚5~L:522ڛ6*|>ƍZsNQQ'OXYYTB_|?_z ЬZiZhI,F'nV I;}Uݷ tl}5@$PTb!ڵ| Dś6Sx Q/NFUWxaW49\cgDj,QVx=՞}){{c7UC]fMEEE'gggO>u=**J9x-9Gg:ٴ&?7" E~_jCOŞq* MCd1>RIGTP͑0~Ier7CElBss$)\R/]doo_S}t-\o{tuu۷o/X^^>j(iMb.]zׯ_'$$ܸqc͚5ZZZr\OOjߊ h2Ooe@G|ʛ}EfaBjOCIcCM]= *Ͼ?3}Q{>}RHnj&2 7mFBaMU+[#S Ĭ8֡k\ФHYL{`7)PPxWVVzxxJ#۶mxSSS###/_m6WWW9III 'HDGG=zTrvĉ#FHO8|pZ}||Femmݮ]C_ÇF˗;w6d֏ٛ$Svc/N[z?}H^ q\fw_]ӪX~ܡxڵK{[Ν}}}j:9,,lڴiqqq;w 4ÇBt:=,,ޞtSxx8BSN,qx&&&cɜf@$e˖U_͎V- út"9̤(Avg97 1ו|~5(5|Vz},'ro&\)qy3ϕo`Ѣ]KbHJj_i^GL$t+0C Y  -,,0T0sΒ㬬,sh$%WxFFFjO vPWW4zlC]uI枌((kض4@}1h-{{oVn5?fI;ԒdҶHSd o< [yvW'fѸAR 7͍En]1{&4={;t 9v[5 3cbb?˕NW4{ʌoE~.y4,%hJi[d;NPsX< Aք |!F/b/Yi|{#mp| eI]𑢌Wbޟ C͌w-$?~Ӆ }}}sh$&N(9zj@@@&L 9Rn˖-_T@FaˇX,HC|ֱ) ' g|ljGa5@͠sH:ư-x(Qj1{6>RYصi@;H/-Πq% ÐP0Y ok޷owޑFh &m.F}E GI6Ç7m$9vqq.2dK:P| HYW2Ն ;*5z65Ӿ=xWSuk߼-C!xGa:׉FuP Czkvhl>:?jolZx;99q8ܹs+IcMFC7_>}ZEE!4gΜy,]t֭k?P;9j*|Q7#h#Z9:oHc#GմwRQҲ'3ҩEHe؋@JhYx^}ۂ{ת7h.d- ƬY$NO/ OO`Yfuqxc֫Wcǎ1LGyzzr8WW׉'.YիW466ѣ̙3]\\ w)~Ep+O@`Z)Ub\ @pMrsք,ˠvj3;6)ڸQkq*>K~Eoa yљta8TR# }qmuQ땺ɓ=<<ڶmkbb^ZZt3gΔ|2 ..NSSSɓ''%%2Ț5k֭[WF JOO744Tt:Y)X|6*!T׶^nMo P=H,٭O7?Ǒ~QlXXTϛ>ھMmG3e]xw]HK=f#vرdE4PPx#{M8-VVVM#b6c[[[x'On߾=11׺mٲQ@њ+o'>8p0+oAl-/6_56t؆m*V>{&HoB?)Kڠ/ѱ;1ծﮠ+޿T3( Ts [[ϟW[EW[uw%44V!%%ٳg'$$l޼yРAfffjٲeoÇ&Wu oLmϮo2Er+ɮ~r:eE+./U+n0;Qه#]JRPr8n[YB#!LGB>5Yy-.^xqtt;w㕔j:HOO/------++c2jjj؄obtA:&u%aln?IU*uZS~#B;UQb \:5(ՉޝFQA7@e-_XXXZZվ}{'''jZGf o`.GFOmd{}M.աJ]J:ڢ,# RR{:VMIOxwRiDECyAOv':nNGb!h1<bA]r)O oАNxPDw~? + ׄJ)N42..\fm ܠ 沌I~Nڹs@!Tuh2»Y h8[e&a3ܒ9'"b @!-e-=k7?N{$iuAvYKk|$.01+.9AC#XDD weK7IAod;uBr/'**+BL6vtEbў]R=,Q;)sQ2+C?b8Kmm!w0 y2@éTsooo۵k'9NNN%6mr9h$`9PO٥ DWL:m aưor^fY{ n;~c+*zK#Jz7=e}m+|HK_뵱QvX!Cv`y=ԡp=zԻwzE@Q y1 >Änm@JaA aӭf5V1.,YpaQ, D.Lؖw}gS}Qn8 N*@]0дiOwjob/ÁxxP+q˙SMc^;_1UGbv$Lb/޲U,t~=sHobo_̓-A&txC[ngB6ވc90h?Vt7A;{K~NgZ>}=W eY~ >" o .)X:"BczMh ///鱑8"N PW,%],|W% I-&Ac,sX05pE$M<Cu[ܳgӧH]#F`dBΥ٥Fwpj^DI"w"HʄPx@$ofgRܶ g-:'x̱WKl_H$h,f/xծH(wmP[V]"Ζ5K"+@LJq:cu:{?ߍ2_p6w\\\\\\6RSSeO0 nGGbvo89ae5{lqG"wEuk^SR~s%;wQ%ޤ寯OA_#%oEtg>iqԩSNƍ#2UG= lvxgP{{(* ii[7EڏCoe6u >RvC<)i췴'inyȡplzIקdN9RTs6-Y$hmU!T/y')*+B#GMR{gb#Oȫ8 iZZ> [R!I+;#]P58nu[:""n  /)ccc%Mrr굉Bz;&vUS&T+ _~6hFc3<2rƼHPʲ2²cv{Tǭ[zDWB!(GW~~~~~~`@@BffRP֭SRRjh9hrJ&vVѰ5:{tЄ$;z?鋽Z2Tk32˵Atѻ} ձMzmeyckЛ>b44=UId]n|QRfWU\\\ӏٹ@ˌoE"otZ 6!R./voj3^`"iU۬!CsU]/[Y* Erն ؉E_?EB4@4:NL[[{͚5 Lh;۹!kV lu1 #|,6/#G6oVTVb*WWc\]m DbPA*bu{dooE >|!7bĈZa٘1cZn]~ՔO_z.uj4(w4lC+PO+7%ҎHb?\;W}Ci\;a4 LM+;>c:"tLu5pMC a.z}} yu-)MYmwC`B),,@kAV_z$.٧f I Ԡ=QwmݾNX$X? ihP"Ng^#*l>lsF"᷈x4u92X]j Im͂أ߰hx}Za#?ԡ \Ѿ҃P\:&d[Q\y~KȌlB$<ݻw-P o :q͠.~gB|y`F̌XX۵NXj}b5Y.>Tpwhf݂43.5 PPx{{{{{{7 ٧h4l0Q%oN4q[hn\\5/ǔeeS s(ˏD.a۳䰴k;&귕K@vP r9?ۗ/_H?}vuuݻwoqq10N\LH/]Є0g))޺ڔ)OOA|e)jWaG_y8CXOF}Q'@V߷tww?pG|~sJKK>}ݾ}ׯSuk C"T x7!>}U4#Մ:X;M؆S9gPR$49mJ[1 љ"r\)}}}=<<j ,++kȑm[yɍ^\q!/)$%@vtcH|$Z^N޷SVEy's\,K"SV!Ox˓\n׳@. =wTTH*BBZxJ,,,$tmtIrRۍ @Xe͠jOEPo͆1Ur+V~)dmK%v,]&Pّ0EuL Z3fM\xB$(J{NazԞ:Brv߸q#GʘCS,&>YTuE|$R$k᭢2vڴiP)ݻwܹSqȑ~ {{-U%|0rɈYhUxBPS4mm YÆOs {TY} *G^Ju}ԇj0# E07jI!~zi?իW۟8q"33ڵkzZx$i&io>4QWH7DĻ/@1h^I@J,bJJk,^Dr{߾ep6/j<ԒfjTBsj[WW֭[_zj醆,ܼW^666#G|hgϞk/thxmjQ'.)/Q@en冏\KʶY&,1]QYY9#FU<|(DNڪ>;,GW0tp S+&@mPPx#zԮ];|Ǐo޼).&|7p8W\1b%wy3k4l|_U\WTV@i?}+A * ReVu83i,oڌ3gd_bqGx\|=:9>QAMrvv~Ֆ-[[CC>|8U`tGC->WZ^R@Ͱ{ȕ}ȕ]{޸Foْ WY/$~ P+;}S">z+nFj- A%YP!55+V$&&xbӦMիW^}Ν}Qx_h-Y;"6VUz\E0['S22cG=L++RoosT.3XZ hG"*K4a{K%Sxyj!nhhtICK*0bםDU@#ưoY0 慜,Hq%;;i::"1$S|C_ \~Dip9H zNYII Fرcɒ%Ni7 5U=:#>(*Nu(KBѣIq^ddlmԥ5>!(1-G1ry bL]hZ7{6"Lm;ճ@"Iл˲QYxsܵkךnzȑ3fXhڵk'7wgϞ 0i[imm[΃Njq&? 3ghٍ)%{>6y>R]WۊM !.jrGY#KK 6|s|'O&Mdgg[n @SeN_s|$DE^GNκ.h΋œUG9wfŻTRY~fƶBgeLUB˞GM9xZӣG/_RrwPlZk#'Rt:~,㧢hs$6G D~Qu3S?Ld=%q z P| !Cp\G__w999Μ6mZǎ%EEE#F(..=PwaQ\[V:,* RDA@PAEA5*nKbwEc]Q"(I۲fYa)(fΝ9/ gs¦VTHlFhv+ħW+AtvYWVRp)RFB#ErG%ԩS5kDDD̝;O>d-BǏOLLܾ};cNNݻOPCaPlsaեhfI%ZNq|)VN.}Y3ױFI,Lo)!4b'.R^BaH›`}:C-p OO/v)X98po#{vF_T? e ХN$*a8_[}6`!9y 2#l{}q | 6PTNbdfff&$$DFFFGG@7$D$loM&}ׯ͆:4"NF%?^22jg$cU2M_n56RQ^K ;H,zb"lᝑuFY+GX[/dIII9r䈗.Fstt}!o<1Q6I̭&[J5DE_"}Ij'#rTlZ`a\{_RS-+4h .ŝ2$ldncc#D~={ CGf޽`nnrʀT&5k %0@x 6TFN~ã4@d[}]\\c i#6©_2D̙HVڰYa-O,i"Oנ>>^[[{۷o<7P㭉6anPmymGNKoBIň "!x㚴& LmaY;fl}z|r7JH2Q[[[ɝH~~Sv6n~h4Z]]]Fjjj\\8qҥKG9_ ø/vR D$N<{]SPLw٘[un5넹6Yor3\3tWOIg4 /}$\C}!q$a o'''Nو#Z3*44N:6=k,^խpٳgشyDCCCppٳgݻǍZQIDjiDrQAŷ@m۶qRRRy֚8lذ$uֵ..]:A 00аsܹ= t Φca#/SC ƨx;b̐!*"i4NI٘z"n1 ^^^>>_EDD`vvvLL̙3gƏ߷o_a>"&&{|r555' 6|pWWW:-Ⱦkh I  *+n|Pynn93#gae.U ζ7jYf-T7xDPx˗/}];QYY㏼a…<୸055}!,"#/l{{{=jIR2XTMJHfK+[S,,jzf{a#i/23#[ZnEDd oܿm۶VӧO;LJ$ܭum]^dZZ$O{$3"AW?]X]@04^lTTCuKCZ^-fT+L&pFQ(۷gddlڴԴs̙˗/su%L]wY@ƣ )|y#>2Xj'![HFk2! ڲ7߶ yCLP/kw200KII)** y3g\ZPPp^.7ѣtPCBB 634h(,iTԟ IV>@Jcb#3U1}_klh.aрH=ISA7 ›GSSmĉϟ6mѣ{e7i܃ކm4~xhH:6r;*]VZۇJ"Y0t &7Z mwA4ַ4l^<^۝H|w76j(qddիxkhhB$i׮]b fe%G6w켟` M6p6rߘ@P=ba5W8Kʫ9*0e4 Ӫ|lK!DheYZɉo's GGG===555UUU555`0t:SRR \^Z!xyy tuuȵWGVqhDӽ0+-\fxf%pkVNnј20A q}۟aGm ]Bɘo"pnw]IUU2ltuʕ+yK.ݻ7D';{xmm)S<{,))yq#''wS:ALq6|0!_f m,Ŭhk5,;tmo؟z8^2cN/kȽM^7fs8o&K$ ,:CQ_l-E$Q4 o+CCC }\xJJJ#F8}tlf߿ǎqqqm+''nݺNx @VI͌13Mu.,t&r ח!G{Ց{a#dcc|f,n!mLiaث) ^׾xrUUս{kkkK;?~ܷoߘ1c}Yuuuo߾}ӧO={͛>GEE:uKAAAډbk/-ElbeOjȋ/;_Ճ)]9iF V &aڝ{™ ;IhiDl0X/i_ko___ޱ8::Z$~qΝ9997n,]T$WdddxDm=6봽F&?9V:)ae}/|8G҄&n jʻ?ŲO2^,Ÿ  "iOPUwZ;rYj1dQFFkh#Og3Z*/bwNlD냃Kߚ4 o%6},܎?lp5vFeD^-5ڑCkۡM5wtt$HODLffffBBBdddHHHhhhttǏ :ڳ6Pr,(%NZ  &XQ]]i)nj7З]Zڎ6 ڒ~UEbo<{-Aڑ:\MPƏ?j(oooi"r///333999cccgggwww777GGG+++]]]RҦVةu ־GЂy斿i]yY3-d SSr]2ig}blf:YNEޞGϚ9&eyNNNtttyyyeeeUUՖ-[q}ݵq󋍍mXyyyڵM|`9n£wI=kMTS qړ 6aRFd1:hn;*MA/{yeff~Gի"uǑ䔝 ;::FՕa1 @Nx&)ū zo"9?HPSldlWHII%&qd\\/ERz5zVݵb*P']pE"$*Z4-zxC 66vܸq_0dȐ`{{3::6=k,^խpٳgZWPCCCppٳgݻǍZQIdG= 0Y_)׀9<5[}p)W.#lxbӧmu!/NE5}/w")L 1#bW(p9`gPnW\\ɫΟ?ǁ9w\ qEEOe"tLAAAcGGăׯ5U7BHFFݻAAA4 !d2׭['ƌRw O/[]lr ETuZnUJ 2}Rz v˱Ve)N-N][IAǛ9oDPx:u*??{f͚sӇc'&&n߾1''g'A\t{```hht+߹s{Uhh%#w"ˤ{SR%Us@T2Y3Db -A/[^{v[q5%N*zl>fF |0l;"AQIr;ax3 ###nS !CDDD o+W9r!VPP@PPgnnڻwڵkСCB7nܘ4ikFCCÞ={|"u=QGEld/FB cVkj0I-K$sP^NutE!Dvڲf!͸HY: 誄-utt>|h}6=2b܃ކm4~xht g8VlΞgCӤФ(`#wSDi|qPټIat\*[Xea? 7>dKu32spB!PJJJLM;ԩSE@ ȱ؜]};R3Lw,@A]o"qZ8bDӨ/1-7QYY?6Tj[3'Un5z@\Piw;)8""_~ׯ_cbbΜ93~}ny @t[[v [rϟ;W yAF|ҥckM $Vj:7|]QDӐUdWVLLkC]kmIBJyErj`2T.OoBuuuƍkk^SSӗ/_jii $%%=zٳgIII_lnnngg7v#F(((H8U7/3Nbpx=_ t@ZRʒ׿Xl'F~LUVUi++K&Mi[MӼsԣr8G[C/ec>ALE ]МH%xh oPcc}ӧO?vFk.!''L&+(((((hhhhiiuUPx V|7VP92s : -Rn\xac${#%%&&iܽMjk[+W6"Dk͎= %u94@";@Poߞi&SS&Қ3g۷o/_ܭnL޽mmm\ZYXL'iv,J(y' jhh\~Ytvykh*˻0Y}/qEB6„V'2S\\@zmbbEfWoWjpd)]S;jH++bERz=!H~CvY[I8fff|XEͨks(>1ty8jIF~@ຶh~$"Qے{GoA\7ᤥEFFhhh뻸ӛFA.i.I;????-֯_pvv?˗LЉRd|jܨ=Fjx@&OkSocgBU;y@` ak!6QXY/=ȣ W sGݛڞ>:-{;NNNj][^^ސ!CZ000ɩDY:#uEY*M~[RX; q G 67FIHZu|sL30䓑uzH`%3fͿ0tз{]YP~<ve3.Rֵ>g[x5J[[{8ԩSxcǞ?ݻwiii!!!7o?AZZĉ٭{h s5 Bv>Hr_1gCӢKLii[E)f'O?[2<}EV]УG^C[[;,,ѣGsׯ &pO 2vOaO$jÈ:+:.ƌr_ePG&3oxUEH~dՃjoV^^OY$ } U7e=LtiFYd}Q-C5EHt"ʕ+T*dzxx|Akv=ϟP@WW&OSRRvڠAw%Dmdv3[ȤV5 ש%BR}E|ԩȴ:K9>Y̰L' _Y!d'OR޸FLf]e˖sjkWU4a1XE49)BmOt"N,!!aƌ߿P(Ç700WUUwH+W9r{*RUUB-]_^|=444C"ۉA1Xre,m,cK/C}}/N/u1B4zE_]Mllv4O_'$pWPoj2]@fF;28`;vAmaa=`0m~pePxp_x1dbٺEEEׯO2E t@l6'}vytzilU[ d)I{r$Kkܰq,D&^ ~Q'r|Ō8AFSXϼqE^%6H3P{3wU:a˪#_nL5m'֎ fmmD"8@\i:"KKork]u^1Bŷ_fL>F ,W~wʪ>?=r{mD j޾d1_PfmيRd#׹Ps+l *jO<" ā݋ o"===ޱ\kPTAuuXrt3D"Ά{}a~yk*67q'àldfqh3U3xlaUU͆LV޴QY7n{0nY%l޺YM oѳ^7G۝;D00::Ztm4MKK;ugϖ'|7V% %V:#tBwYe1Ă E#L]-,.BMVm='{Śuid>Gi>~H_ۘ7&$P?*6Ɂ&jv?R_xmY-P7V0$ʉ@9"WT!}}йs͛'Ryyy=zn1cƈ!_5t5+2Gf5~OL:npwf"8rSčS__K (-Yy:D"59<2`KP-*P=ii.揬kG"U?vbӧܾ۷oݻ1۶mVA<9?uHˆx47xzQ ξ˔O[SA6}1±L6SdeUMk`ӾoE3Pƨa<R^ 3k>Gك/Uј&G){[(Ψm|-K|>#" s\n)dS[\lvFFƓ'O;|1c<{իW`0ܹ믿r#D"q˖-MKKor3wN/sZ kWuIO<_V*|(}j=~nV~~Ī'՞LfQqy4*"aa3dw}Pxazњ}"۶m0a8Gq}{Numol'$`걗K?L۠߯./bP CTUUtQyFuLf]%K95M&*'<5;rلu"Jt\Px̌3BCCkkkկeee HG122jGIID 㗊_>W3*wjthrrֆm_6hTܳ?68'߶ N⛋q|ޮF#VAeY Sۡwzzz߾}kk[XLtpPxڡ,0 ˻,zs? LuNsi] '0fGo$"AMD&x7]% 09l4޵נ-tc 7(.iaAjޫWGMB_\Ö4WԂW62a7m?r66b3wGHzA33)_]^.`8I<^xSWQ,'"EiQ / dl-[ -ZhYlJ+y˔"&dqYe?mb:ӉyyO"Us/OQp2dSS +Ƌ *lU?*`To#k^!W B/oP>f:z d2C@BZ;\%`;1S"_{>49XZ)PXlW~(m5@~6"zE.:!"S;yBSïRBӱQ9@dY4?]SAQ-1U>0ݎB:]RС tt˜K/J!"Qa 6V~ͷ8Ũa uS'Tf=9WNEw`````CegpЮKEi<N-t!aWVZF2! ڲHns멨٥)"H ѣG=YK~!Cp?7]2'-oQez 64v|z%>!Cg($le9 yٳg_Ӵ49 @,{L?=lj!t(N3Fl5Og7Ic HŽig"tQ[~~B( '&#Ѐf)dDSx 0֭[<ƍЌjixL),t(Tu-r`d˟|2*[~%zT}ZUU!Ngff~F;mhdWP] d)|M%hɪ095k m'Zc#ũ {c?R5 <(c F_ 4nhh=2ʪZHiuêom Tq+d[rʛ6b#-[h fwU!$KCA$lQ?g&c 6_lXZZ _ nH$6LW(^-ŖVV:*&__M"LΑuý~}. @"x b2Xa"PWnNA,Zݡ [xڒH$g!)p7y{rTv:*ֵo3{>J+%N[H\y46Vq3HPgPMSu}~Y B[xK[Kd6 LMߍ94d!0˅J @KdՀkrw$,Yii;qeee+W!SUF"z[]RB q^Aɂ^67vÇMZG+mKKqT[ дr ccuuuۏ 0V[7p1tiCj36RV_7z7C;`v$c#` kSl$;KZxF ͸U6Q$ DO›L&/X{>nܸ6`4nFAotZZۜ!`a=([ \ 9@6ь@kT CA}_41ӯMD96); l F22` [ˁ #zْ,[S_ 4x~xt[|FTE' DA47B222ҥKNNNNstt믿޼ycmm-[!yT`A)J @7hFnڝ?^X},Fi ",lͥ8ă)FRgΜ9sL:R^^^]]H.;Xr~bW"2dȳ]zctκVYn$˪/o"gΐt67tqzDV\^^zo@D\0//P^^.HSHbfh)nk,tN?&ޒIZ4f,n9v☜gsCju70j UR?"+ʗQUUիWKȦ+?U/8JD& O9 YO%TyF\.[!"! jrgFc j:(tAx 2lɋ.DJ%+}L'b#9?K$<Ņ p 02bbb9L6 0X\)с@D ^ֳ\_>|WDfAsf[c<asb6[-p 9uusb5=\ $S5p8_` o]DXnvA߯od LZpMVI{^&fPa 3D2 6c%?Ng59BEOi6HyneܭD1& D o]NKFIs+f| X @X5``!`aʛy,dgpJgbWT49fo^Qq7Jb o]D9BgS%LQ-"~6~lfW[r%ANNd\[ƤdO9 MO$ ]D$}+,N7x܁A [0Q:icwrgz X HJ dTnP 4.M^GXMV7R?mqjě% *dy |_54,: !lqfBýv./^/Yܤ=ԯ]%*? *kMVIFbWU1E (t/}{.-r9ĘHh9IyG`AM%BY \\u'($E`ݒHO8vPxvd(%#Ns4Pu<(eť؂z@TdT~􇶼66:w-ՍH@Y D"a\ɺVZͰz$v@7eӓvyN߽FӏG܋Ʌ7hi* Wz[=KdeGp7l{g*j|{k%@[x_x?itH/c,ϴV; qآJx ݋PH'Ehd7J Y3-ŅXeoΤS6BFGYGzHY޽{ Rd2sssjjjjjjD6-$eŃ%ߋ*2d#ͽ 0T6Mu:^0ݾ=7$cEBy:VIIt;(3U Tpw>@HJ;99Y v'555000$$$)))##d6y-deϟ#2SRKJ  *(^~} _3wrrC0RSS vҥ W@@B(//OWWW*wOL+QI 0Vkr.YvȑC|lL'Jb/o֗/ؠ"kۡJYY!իWK>H47B(!!aƌ߿P(Ç700WUUH$ H5jTpp0… gϞmccӚ gϞw7B&#""Ř@ B >XQaK!wLGQ[)7/} ! r#zJYcrJ|TF w;𶰰0U/uO<=z4ƍNppIBC}(]U~yݚ+o?Uc2oR?W .w\SWd  ȲZUVZumN[*UPA lB !yHƀ$p}srrK%O9hG.]8vVBPq_!4B]kw \?[cVCVx)vyQNCԚͽ5r\h-U;.̛֖gzRs58\ԔZSZ#}hh:录ׯ[uyxs8uZZZ7 ZnxɓΝ;W[[+U2d'''7r.0x`!4m۶m-14B|?z5ծ1\'@ .h7Idg;?x~uṳ4SSqZWSP&uٳgyS=ztHHA...ϟJ%z{{1 }}}JKKE'&&x<

n//ǏH5k]QQ1vJP(W^uwwoK,yne1͢RE/&rkrq3mlvmδ[c6 6[TrH:/j/]4**j֬Y]vQRRR6l zd2o.{J3&>>>55uΝÆ ipo//{b6rfH'?(^r6&+=7jhHv>}+vGöwx֢{og{"$x-YdA0UUUYbP \.dX,pTTTt:N744466n$-W #Tt5$ukkj$;wGP/= 瀤$~?L+WȳCSNjhNVT@YwQxy%''&&&2Ơhk׼,Y񡬛 #G-]5fl쮮:üoV|*hKFv8MGH=; '4&޾Fii{x~{xxB)**0`رcq9ٽ{?`t3K83}6* G|S2NG(IVH@ Y[[['&&`$u^+//oDm[[[cPْfffUWWIHLLfǏ/,Zn84kr*k~&2kz/IVTdLYZ_o=`wN  $INJ_~A8ٳ2mڴ4˗b/gt:}޼y3gtuum{rw ~'((ۻ=ІٛTl1+_-<'ٳ{Өm!Hn 9|ÜNɖ mr6p&16h5r= `رvTT[``ŋDqqqG5j0//ٳgs玨흒g77&~6bĈk׮/_ނ@6“աS5CSf,nuP( :wG[WdEh9rdxѥKHccc_]AL6AXXX$%%1fOuگ_O-) 44 Tvgdd$ޥNXXX8[\\xZjuDDx@9,oˤwS n6_k22P7秕Ƚ?>ܴI Z T>|x]QGЖZLO t6UT@)j] b Z;v3ɩO>/>h5r4sLQd1B| 5jݧO[[[ ̫=Lt3ohay5Ldָ}DfJz2mB٬$F-DnU  [~}llc_ӧ&&JSoݺ%zHnݺ5e7˽}ѣG i4ڃzՂA:ļ3K 0U6ÜJ>@w!܅=fZf?GWGy3'񮫫[hѡC8^__?88xرB),,}dg0zzz<Tgzzzbb"ǓP~xLTچp0Y3(7!!dyQzH(`$ [(=zTS]]svvvfff,++++!!FbJk/Cw35OCEcז_~y1*/@xYF^vmTTȑ#C1}gϞ}嗢KRcƌOMMݹsalll正RTTw^11 QꗉPH|:L<@̵,{}(fȺ<33K.ٳ;Kan߾MJaa!%rL&p8GEENtCCCccT_SpXj -sEzKX) MR_h\|{7wE ۷7%Խ{|>2Ơ{5hР~y{{;;;ZGw+cs}GK~jơǏ^#%*ɎS?3{HܪܽxEĻ@իQrrrrppsrrdPU0Jgljq"+0|IRIA̅ E[틅']hee%jp8cPjɞ";P=-L*) O_{RU@5XhR )=YosVUTT|҅Ƨfm ͎ٱ2581HK?<`'5 ^ Bk?К55\n*++{&c C\>RsF|w ;Lrxtj~-Z6Y!dM;wGDYY/īo֭1[j*;&wFēOH d4qZO${PhMI p8W8qbッwIJ5چOP8tLa@[GR悔9$Erww-_Z%CTL(ew9&+[ S4xSL"bʔ)+V\(&&&n޼ڵk{.YDWWzzzѽ);- @e 34M[]߶@kʭw{e/$Fs͛rECKKK[[[kkkSS¬ &ϫR(7o;v,A ^ F @bw\G 4wM27x('1[b6I&*;?mmEVHHdU=R]6wܒqj#Q[[[YY)jP\\, [oQlM[[Cu7o~";쥗${̵wWԱVĻd-bcƌy٠A=VVV/nԭ[@[%B];%hԾnVu풳g" g4ޒ=U{PhM4uC6__r%KNNھ}ŋT|g!}$V _) O,dpVS4BY|PhMy55NKKk8 *4`Spܠ7n o;ֳ퓻h| >k ]L`cY/&mxb;wFM'9>u'3˿<](,s- (ۈpl[&BR444fbbBDYYل f͚%. 5TM1TQeǟ%I`c;adO5z[࠘xC&''wUWWgeew͚5k׮ac2HkZqPHxWVz* _( 1YLq瓂//LqJb`иݸ[n-^8==׶fҦM zuҞ={zx(ʚBoTw}zRO[#UhBPVxjBk8ǻ͛7 ּ]qtt|+( A'O$;.hGtT'b˫I >BER~MĨ&|>RjtArСݻgaaA9|0A@c{0G{;'-#).},2VLiɚx?{8p ??b7oA={lĉd$_:Iv[Ɋ /KV 4N[œFݼys;vH}_xԩSV";(h_tۗ^z 6\}|?2&&wcFȚxyF2dwc= /|/#vǥ^\NB!jKs~Wh;ho3^vzvLEasE%qbZZZ@k`h]~!1)ݡ 5&uQ;cMޫɎ>B;ޖF^^ t5U9ȥTW%=)!%*6C{ADFF|yMUq?[WFW@ kMӗ,YBDvvƍB![LW$ <$*7A֭Uۼy֭[y(Yxq;$$dȐ!2Nf:qgqFwbJblO֥慅FuUL~SA/Xg3Ɋ @)Țx2Yf& W?ʪ5񶶶5X,b6 n͐Ȭ:)(2Y0 p"7@w_W~V D')%%0%k⭮|r Ҏ=*@ҶM>϶S'b9]UpeFIŋ/]mBgtDWƾ.u$j^]gY#J[`c&O|ѱcǺ5rGGGc7rP7c^$[ xwnm݉fv%J!+H!W{ݻw~9(/]M9n7,-mԳڽai7 st'%Ba۷o߾}-TMu5TO?Yz.!c o z;]\k 7~GM-t'~@"/^}hTi3z u5=p'gyRɸug"z?@anfA7$#c]&X KKfK=[TYZO9t#%Bք"u|nZgSs+jrIchMHP(fgmOB!7~<ZohYhsٝ mkPj^]pīǼ*iZx_\>tPcX/<|9g=7[Κjr|8mذa\.*x mWϺ&QI={ysfIݝuI %`9*2܂=̩+Yx2vr>)rr ֌6;gK>Uͫ[+UidE /rHY,Vjkk߼yɓ슊 77[hm ~YLfN򩰤|8A_&%P@=-1אO|SgD Ҏ5ɊΉy=} *kxr&2KUTHKDbŤwz O_y1OVlsBallmllLJ B***q MjjjdG^P(Č6NkO*I> ]֑m/I\/jw҅tڕZВ%KKvHk.'%3ݝ]žs4zUsBU œ[Θ1CԣԚ1",,cCgխД: Mw k|HMM ͖o dڤcǎ=yDNdQ) w뤷Zq9/*Nn']@A!.))iޅV=P(f&; {'OȎ]fKI Y/*g0Υ~!tE@ZUDFF2 ci@?>gT9t6t~x===z4*ݺYBrwPHzUXa*HC_> @Ӎ6p%ŕ;諣;&wIc0H[j VEz_7"R7(+]MS=cC_ͫ[u\xoPbT*e@_gz1:H 6]', tr-"CT`՗3%ÒKػz;|Z%;??o߾z aaawMKK qpppww߿f+ 6hF9GLaeH'+6hxoذA*붲RWW}f%%BBBlߔ񕕕GԜ?eLLLZ:NFw1Wܲ1;&wwfS&Ν;O~O,**8qbDDD.p8w>tЩSƍ'ڋIVZj?^Kgm)@;$k❒"+ŋ#F9$%뛝-i``mff^uuuD'f?_~Yh@ HG}rOYlYžώ55|}}y- qM͛7sLWWצNrw ~'((ۻh\-J: W5+Uh(n A֣5*++E wwwQnwSRRĊjjj#FvZxxA|>-1@[g j'gbnȗ!۳ӧOaaaVVV͛gW^|0BtҘ1ceSYXXrY.D<-W:꒝p{B!Y@&۪g϶6mqƍSvZUUk<==gϞ-6޽{Wѣ| D\%$/G}WQa*MC-Μy<AuuugΜ9sL/gΜyY L#.]diiٌy'N(jV HGl5WgKG(\xfVbGKLٔW "jGGG;99}Mf円 < m۶TS5cg'9o٤Dm*x J=uꔯ7o`{ٳgg0zzz<Tgzzzbbhɀ؎;zEΛhhT 'k#^J+crwkC+$mIllIݻ',..y'ͣqɓ';@6P[ǫ<k=fP73cA\n3 CBB6mڔkhh._Դ%8w4Q_v>:גsJ9sّXj.T*u̘1GNKKqƽ{޼y:::Ç0`No^\&d[($#^WԬwVQH BPvڵkץKrL&p8GEENtCCCccc Hf<:gĤH}WQuRwmu|pVfgj MWSי''HǾ. <gGG= b% Uqnsl_h̋JR;ޭX,6fTNg0&&&Xj8(bN?;c +RR]p}I " 322޽)*߿MMV aaS6ռ ucIbl\x˟@  ٲeK|||SWVV9rDSSs˖-311i8Z]]]e58 +jĝpRΒTY&@-gEEE'Nhg݇:uԸqZۿ|ɒ%{m@ٙhݹ4be[}}}%; ӫ.D/-"}(GPMDXXodvxIgI?H{D쮩 dJ/Buy͜9յ)Ӹ\;w_. nPOzj[w~'@9}WcsLamD'+6P|H&<<Ν;˗~ڈ#FqΝ &˗7{z{0Q%1k6hchTNVH|KWV=X̎=$ xӧE Oʺ% 8իlnjfU~{:>,)@Ꮇʼn/f0dλ_~}}hZ9 .|ꕌdff%H[mمrj%rCs[nSټD7`Y\z- \.ݻo޼055puupݻ[չsg{{nݺ4j&も.kmmmcc榪^zd2E?vvv8Ϟ=յwvv666IZK'cs|&dŝB!*ze* ?H)>Ǝ{-~iqq\BjoҺvJ՛7oΝ;RagϞ%mܸq߾}l6[ŕ ?Xy33 6Ç7l`>}[nM -[ca4mܹׯرc#aΜytϊOߖIxWXQm:>e?+An,,,q6u j?  }v?hoo︸81dȐc~֭Afϝ?8p 44ã1۶m[zu#?zhРA۷o_bE#8qD```mmT]]ݡC._#''' /_xnvrd\V==L4Ȋ  o%?ٳeûw=zO|B… EY}^tuu>}*l_ZZ_P(Qmaaѻwoss󔔔۷o $|Mjj**G>?rHAzzzݺuNJJoӧύ7ytuɬN;99xdQA\w޽z;wޜ9sСCMfggZ󢇇P]YY9uT@0a„Hl :ujUUA񱱱>>>(bN?;c]L d\:t@{Irӿ!CNNN}rrr[ar.//'Fm۶#tԩZRСC$l޼y͒|||6m$~(Z|!+~>KNN4hK888/]T0++Kg˗%K֯_/uaiiyiqٳ€/J'駟>4 A:::gϞUWW9BٺukDDs6n(~ŋy F7<sϘ1C.D7_Wcs5;PXQ##>XG}Nf 'I&ݻwOY\\|OGCC'Owƍ`U|:t?ĄN꜋[\rEԘ`:022IFV4\\:==ӧgΜވ.]4e@>ļ78=.z\K'=w: ?-Btڵk׮\.dX,pTTTt:N744466npu1\IIIM~P(LIIsNZZZFFFFFԐ?Jy̒uOf'3w|`Xw3&4*>5H[Q@{X,ɇ֭jp|Ν bcc?:jBP.4joF,nXR 9N#k"CmanfzXX04[9Zh9H8M>}yM>ŋvzMICmmfI˫ϼ,WbLd֙,G3=: q5@kp$($$cٹFFFfff Ve{޽{׼{۶m{+WׯςLg7xU 0DZ^_nh|TMĝ;wRRRXhQ[RLLWZ0Vh7(ʈ#DV )**'ع1w+W)jvJxu62ogg񡑵u5&yʚ֌ wرc[lгs=ycD=ݫ%ݻwƍQSSkP@P'5)E!(=zL2… A$%%_~ׯ@aa]\\&M${jjj\. ۷kjjQ]]ŋÇ4RT𽌡nf6FZ'4o9{leebŊ͛7;jԨ)Sp84 CBBLLL&yf>}ؽ{7[nrQ>8p 66633 tյCL&399YWs9ɣtY:DP(\vڵk444F-]tǎ355ݺu_~jo-VWiW'f ֳ?s *^[^]ͅi nnG9) ܄ݻw߲eTΝ;dZti[D]]}׮][o޼nє)Sh4ZUUUKL>hРtzzz#F `2L&Sjk\\\mSqOyyyyy!8y򤿿FFիWE55 NsH ӏ`<.T`PH&!!A l ĉwdz-^[ԩSɎB<~ѣvʒzV__ܹVjpޣGV^\]]-ׯ_ohhHę3g:w|y6ݵkW[[ۖ{G Bl٠{yAhBnf!|ݔ)F:C]Mxvj`Pf J2---Qe?Oo߾ldݻ'%%ŋ@rJDee6@cBajjjbbbaa!c0=zY,Vjjjff&d0;wӧO;)8mڴۿ|X D5n=˯52Ja s3ll +CĮ]$\A#p[n$68`ۦ&b5e6@Q(gggѩJ[[GQ@&4A ƾ.}]rN073sK -)-I2| Qu"|,'X-f{ini,Ȭ3Yl @!^:.Z"^N7UVV7@!} A8ӆAlc=G yoӧ^#G/^\+ ؔ9"nSA@A:ti1Sip$ 1Ub:֫jiӦEEE.nݺfQ w f=;>Ldğ#W]zwF@ʻr;r/읚:x`OOnݺ-_\U#{JJJN>}iq+WxvQ)_;C_;C6\p3)YvkkS jkp6e٥#)$t __Lø8 Fﲲ2gg|3g32bś"kk\q4f6LG5dd``IWϺ>ڈp}1#iy{FXs9)u+ w?xɉ'"""'zAP4joFE5=˿l;84>'*_vpīSY;; wˢhFFF=|PJmoިyxfZ^e#k;  u5[4@KCPFHZ`{]syA50KʋL/g;۲@ \-\-pz]Ӽ3ͪv9&{.;'R@ SUp8"vhbNXR^i!d95ɠ663!{zD,kДО!&Q)=-|{U}u D^~[Wo]:@{>w/ճagYյ{ҦwFQxkСݷoc u6jԨǏ[h' {5Ü&,=[i Rl|QYij*r+-----MII?˗^YZHo#_;f򥞍L/~U<2] ;¿|bcc_UU/Yd޽-13-[\p۶d6(|8w #!W1~r{)s<̩8%$ޠ|=zBY7AaaaHŠ+w.Y]]]XXrƍ2Qׯ"""{Cmc<;]&l1=4ZnD@"$ޠ|J:*ioUO ϯ}"Zf ""''gرqgÚ8$0R@!VԺJ+*jmu[[Ѻkm]p+ ( F k5!ɹ'AhEE}@]65 vH.("4#OkCmi$B@ -~/Jvi dKQQq֬YӧOaa!!ɓ'ˢEd@+G~} >TWWw7?{ɓ'999ZZZMFR1| P7!ѣHA QYoU|7eQi();:2qO}  @K@^Ο?xJEEűcڵKWWwŊ6l ̙3gΝu{O?#vӫh777BYFF! .|h31mڴիWk׮O1HGDD!ѣGd6g0©brĎ n-?uy4QVdt`YD[H6 ˗EnBHMMӧ]\\j̘1Æ BVXoyyye݄w{{Di YT6Ku3d+}fo5ʮM?؝4K #wʕ Snwww==H_4Cmm_~&vppЈˣ*zuʕ}6UxxԩS|ڠAccc=zD5(**{ޓ; qNNNrLLgXjlׅ©)~[ST]T]TQ~l|@Xʳգ5Tql$#$2VTTOe4m˖-Р~zNzeZZZCŒj߾}ŋ3gΤTTT'$$s[ii/3f̾}DBbbbݥ4X[[ sShSYM_VWU.+/hD^r7l@`9ϯ_ʿƍY7!ĉ~`ԙXu[*ӧ l8ccc`ezzƍիWÆ ;{Jl-[_M` Ҡ/a%%%v_X Ww=חxv4/AF&ZZjl.y,qHd~^^^3gάۆFر} uZBSTTTvuu^>} ֭[ŦS&L ,}Vz1H賌f/H\34닽o,Llcsn-_zV]k3@ KEEETyEQWW:ujCT믿677oOҲm+:1[, 33fAD }eTU36nuuw.2@;4rȐ!&''Se//o!,GEE}M]eK<+--E@KZ&Zbo8SG<͗ITb,Sccc%VرcO>7mڴgϞF:fSZܩSFzh$ݻw²Nʁ!"2E+=(?V&%$$\)n!%%%.WLu"7 2FH<Bڵk<7f@qpg{cMA Vw_yWq\vt@]x K‘XCC[z3O4.++^QO@x '8@2 n.V&GMYa%>b|AԅgbK+kdYHdʊ*4{@CBHllck:y[ne 4&뾟\Abz %Hdӓ*x鴩^V۾骩*~lGp|Ȝ m v5,vY V믿f̘h"uR\\|B**e;!$>>gϞwtիW6mڹs'qܸqí[_NHHfffϟWPxmTN'gX~.Y{H.(xv8sPhy ׹prصk5׭[m6]]ׯ_GDDp\B}TUŷٷo_TT˗/ !СRvvӧOOú?cؼys[ZYYݸqcǎs;h TLrO╸|xm۶]љ6mҥK$mm[YY >|zzzһD]L,#.{S frН7V.eذaAAARl9RSSYoSNOȋrw tjֺ2 ٝĘ$%%B '|fWXoU}M(*Iiϛǯ*; i!] OO?~//z/z'PTT?#a믿}NWw ...y}eee%p(U%T/3g߮J./V ?6*$3qD=tP+$$dTW^@] c7j̪,\xZw;th0\bxuBHDD]@@I껺ƍ j ƍ4ȫ갰w޵o߾[nNNNbm***333,,,$;gϞ֭[l[q)j]vΝ;9hss} 4H};vXuwB.\C ƴiV^ݮ]=S0&6RST1Ha*B$ޒdhh5nܸpa7o^Q=zT\.wY"""lvtt48p`ddd6C ~>-~- F8pܹsw޵.= #< NxFR%'R,SQd*B|H%LOO/$$֭ط,Z}{===ᥠ __rBHLLLTT$>1F#ud-;Nҳ߽Wp3Ux9xK F]`!:;;BAAd2L===mǍ'Z3hРym޼YX~e˖qww_nOLJJĻ2lذgϊ hlٲEǏxHʁ!"2E9յōq7:0/Lvڳgxyyl{{{CCCd =vغ#Fmll9bF),Sۤ},uzO0AX@J?f{r."s7eղ > o9W_ F8w%%m ںKfff'|AFMQ_|blf%TfR[[SVVp8NWWWg2, Xo\@o FSQQ;`xxx4rUE4̣<_zJÝ{2fro t  @^[[[oKjs]x{{5s ?%tIJ=QSV0˹7^۩JM/]=QCUQ@S`/̝;7(((%%RZZu!}} zӱcGYh42lD7= eK^N>RP&xKXaaa~F oؾ}%@@Nu195X}NQŔcrd4KR~~GVVh.622bK[[XDJJJll,uP3!=z?,>m .RNO7pkN,^ch$Y7ɜ>}ĉwZuuuhhh``Kyl6-Š`i3X;j꽕y6b†ArS%&$$$44*섄;v8;;7qreeC^x1$$D[[R[[h")F -P/ӻ[j'x(:$s `bbɇ… T钉ZjG{ f"Vϩ]~.nGp sH%&::*̞=b}NW^^^{@HIlȹYǣޔU*65G\]]?777;wB?FM4)553)((H<S+\~-_R]4!]LXj/,,r8bgڲ xK^u7NAj\D07J7h;w>EB޼ySokCoojB9cٗcrv]OD/|U6ozteoǏ p8;vرCOOfX,r?ccc&m޼gϞ0bhd Rwg3D/'b7@sB-IQQQƍ o7o\zQUU=z_-0Q;ɭޡSG8JoÏ酄\pk׮vUUչs禦"D }ѣ%_p^_$66#ޒGG9bĈ+W'%%edd4VSSƦ[nC ׯl3fvAơ/kjR_7!fkkkkk`BHuuuvvvYYYEEEEEd2zzzM} 6.>K}'z~Hflee%(2W?K~csn-oH+F8a_ Ts ѣǼyIJnBHRR__~-DYj1sC|piv߁'1ِxKRiiǏiݳgf ! O݌uT.U$?F&H%iTNo= ?:u˗>>>UUU?]t~syuSL ,,$''Q-<VVQ H%F8}0n׮݁;wOΛݻR<88XJ=\Z*- 5D+jx N?h)0\b&L|rjUVEEE-_f?Qѣ}}}Ϝ9C9zhuub/IbEu;8?RW?mѝjxƯmg(oa2v0a2(((((HSS~D޽;&&ŋӧO߸qc̘1zôʇ5Mۤb|uɘg9V3~0]e7olhw0`b7o ɓ'WUU}onn#G}@ȠoOu2k֬D:j.]Zl%ɴ366rO>NYdgϞ=Տ?޻wo@f͚M6E;B9EZ:bN z+Z~zvP[:~+@ ?w ]]6|p.Kw!F-[l͚5ݑC}-!ŋ999ž˅/׬Y3w\---[/]:RrAě9m۶Bn:j(6-zԩ+WP#GKkN-栦G{;]ʮ !TsrNtxРAYܔׯ_^t5wwu _&%%Ebb"U;wիEnB'ݩO<غu먵Ԅs ys̡ӧO:t}`hh42wPgY} _277;vl#F666 ,fȑrFFϟ ӧO cTn'N0 BHbbڵk !`ƌńKK۷7u6uT yZllM-_&Q $r䫯wu49GIInCCC&I )7o޼y[:wU8e}gϞ|2!N8q=@6Ӽn}Eq\Іa7qtt^UUUX{7Fbdddd$ݨ@pF|򠠠X\ti=>vh&x)R -[ώm t,67iʶdݺ:7>..ɓaaaltqWWW.+޵kUVI0*h&VS9YNɒq,u]Ǻk0Bf  III))))))ۉڵk,YBTVV>uTb\4&sOKQ`g1Xmo69sfժU6ՍjJocƌYt@ uA@0ҵ Ojy⻚Wry/Dew6nc{Ckx~ٳg5jjj]tqvvܹsǎwՔě }zpH+zh9c+ IySϙ)ҵ:m͘Z'|g~7nf[du0'عs6l3fL~>7PhuvdNs|9wLNU nג&oۣcv'T81VjΝTyذaׯ_߿Y7`o ˖-۷on>eʔ2 7V۪&0HdXB/>AB ʽx۷Tyƌ t w)o˝0aBuu5!sܹG鄐EI.jh4Ty{Xg'S톚=*Y~.~ہ7_i7@++,3̆x?l~)66r::|r q Z?v >٨mޔUJ~ OS_ablX -Xe /gЧJ+%,իn~q8eMM=>|i&~zkkkO?]t)%%2eʔOjh`]|Xg#գbT_Q%zVqkyyN<̼l t-oh̕u-@.]6mRSS 'TVV>ǎ]w֭} k8'ϝW^UU500O> o-T/oz_32+ fOJdXj,f`4uHs*#mMLɓ@ XrˡC\.Xx]^^^FFFǎ^.X˗%%G-ݻ3Ûs@k6c)~ k|U6-0rSPB%WbF?~<(//F Fqƈ8aMIIIIiXcǎ\pϯ" ^f][lڴ&c9|gSgSBι @@.E<*Y9HS&A|,$(((:D[[ݻ˖- ߮^ZOOrI 3gp8[[[KK˷oN2jܭ[ { MM̓2`9|E_?"2 G\^z8dΪJ  'h 6lXPP!Cr,11˗,¢W^ʲeoΜ9cmm YІIOKO}WƪQg)++$l۶Mx 4#mh*:egrLήIb_*t7=:NRTV F##\MN߳[G%>_p^ă$6B -InK|N{]>pސ_&47=]'O:E>A Ƙouu.?o/His5Rw儂zۼ-K(K( htL>y 7fn3V~]ZuI'U%NS4oh3X$6-\^TۨugSjMVm+=+b7.868.]^U{?~r!!DEAL՜l5Hڄ+Vlذ-pdFegegH)*,,~$#7q] 4U5lHExM#Q$-'u= !< ,>IVɣe5|{Bλ l՜%`C -OTTwyy4:;w/"@1F4ysKc32J*kz׻ybbԜB˂ZwJ)&#ht'Sm'S퉽!$2>Ivq˷u%寻iv!vw Z@DT$-|$40P0P~"ѫ/|]mk*BO8h)sa&V]wGzJ&QB tڏ;/[]-#noH2k_j G***bbb bSޞ|>ߡCww;J9d6msٸbWX)s*VtTUb0<HB^^ޚ5kΜ9p.kn֬Y ,PRjpE۷/^)VߧO]v9;;K>b ls,c_䗊և'z[շk{mUYrSd͛uB /_UU@x}ͺ !ovss;}jg5lE $2_bnFѿSSSau߾lٲ-[8::8Ņ`Bjjj&O|}i~NUq\|Tpg32KVok$ݻ7o[~}_^v޽{kjjnݺ<͢Os#Uryz_e ؉moi)))aaaIII鵵ԴڵZ3 2._L#Fl߾#0___a%K-sڵ+W`Ϟ=ϗ'B!ۙ1/Y86{Ts/^tss;wnPPPJJJCY7!4**СC>>> ,x o޼wfB>>> ***iii;w=k>|H H^z}&RdЗ 3v5'WryKNc9zj#xK fL&s'NtrrjJU]]x%f޼yl6fK1h~ڵk !\.wر]vꫯ.](**6TND F3W +x+5 gE Ã恩JlvBBŽ;8zXbܸq—+V`:::_nݳgτ;**mann.t592@]>YȂ`V Ĝ8q*}Z?pU}vzzdyx+Wڊs8UV9::Z[[߿6ell,ٖbeG].jp3fhxKLtt4U={6%GݻXк 2$!!ӧׯgbۛ|ٳgqqRKK*xcLl [&Nk)6#ջA\pqXB_TGhxKL^^UpuuܨBvv-FsppX|ydddIIɵkז-[,l1gKjI!$''烝chd X /pqZ& &.nk444aÆ Wh72cwYrʕ+/^P3CCCa*|ʟ~AM6I"XM_u97sj_vZ* 5+*瞾{?y/PKgH%fĉT!;;{С?VHHér^,--%_kTRE%Wx !Gi_%, %:uMo޼~zxE f˜euan]ٷS`4j5|oH{Ql- K_N 4iCSV}WWW߸qAAAT ظqtnLum ۷̜9d yfΝ[l^888nܸ{1cVzzlڴz. otg?M}UVo˚Z~XBAXB@#];ԿV oǏ p8;vرCOOfX,r?cccl޼gϞ0@zKڵkwٳzxwUWW>}Tc׮]ql+֮]K|xbk֬r>\EEb;;;~`N>}>|u.kddjkkK5ܹsg}lHs7_>(7{/ x'$Blmmmmm,X@.++PPP`2L&SOO)AGD9X 䇲"c gbs.mAWMVAx7eee+++YG-jմo{QX[o-Р~HZ:֣~NU*kk1V^!n&999eeetuuu&b 1> 2;i)))aaaIII鵵@HmֵkWooo55,h=xKϿ| bbbҾ4*****СCjjj3fXpf@uMaaa~FĬ[LEE---ϟ?/a[=<A7VJ6Nڶmۺ 5jԨ#F5,"7[nM6\;EKFQy溏V۶m8|/u׬Iix3@MΝKKK(Zjȑ#8Z Ν;q]s5۷ozkɒ%$ <8xo}[uҥK-Zl{jqu{jK66o/9uCZpW\l_xg}vlѣǍl[%%%zڵk2yÇ_|/|ر{쉢q3g bsyiԨo~aÆmܸ1Κ5k֬YC ԩS۶m۴iӶmۢݻwڵ+>߮H߆cǎ+W4ikzl޼ye˖կ^ qsy=+..^p??px{˖- wkԨUW]uWKZiiƍwaaa^ t饗3 J^^^>}3mڴ(>y7iҤCyyy^/A1i޼y= 7     lϞ=^Կ(> 6d{-O~~~fLY"xSf:t˫>#[Þ*@O>-[b??WXѼyK.$IYfxCsȐ!5&iǎ .K_Rǎ8+VZh1a„lNRň#&OۤZ8qb&fD7r˓O>'s7?۷_IСΝ;oZdFh#GrdDgO '=̟?ƌk׮M=?t=zdqad]6m|e̘1]t˓O^_}v@wϿ; ;ѣGd{dD^^矟U}w(_B߿v(j޼y@ޡ9,۫ ˜j             ޜڷo/1T*cN]v|(/*kQ^^]޽8I˗/4iR~~~'i޼yQ]z^$(  @@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7ٔH$^{۷oaaaaaaIIɵ^ꫯ&Se r\ 5V^^#L4GEEE͚5ԩ\?)qUΙ3B.:+ݻwAAAaaa߾}owy b]vڵgϞ]^^^/SP*Ȓ;v\|Uqo PcO>dqqquS4j[־}esMUnٲ]vYLb rD<5t.]T7˔)S> 9+2~gjDѮ]z^ɎݻW~Rnvِ Pc3gάy^zmݺ7ܑ]#G/9iFNp襗^駟vSb(~v.*GDbر-J>>7uGQr_[lI4jԨW_}29.[pqR{Ç_ЦMk.^OuoƙgND֮w9K"G991pEEEPdV͛wT+V';lٲ䷇'>Q$x 9;%A%.((ظq}6lؐ6xjlҥ?]vYuo7ݺt颒\v}?O Ϟ=;UO?qWJO5rX ebŊT}~_ۤIRVXQ-D^KJKKW^l;ڵ}u|'^jUmjW^Ig̘JG>|7d{ͮK沵>}u(ׯ_aaa$gPUUU?ϒ#G^}o|#u j r\ ejժT{uKOS 7q7o^ ǺR_~MA|dpС51bDjrYVvOؼy'|iӦu\C _>JU׭iӦgϞ9s̙38ZwܙjT-\P_o►tDqqq~ֿm39.۴iSQRRRw,w;wL}OZäjxܹF-Ǝ[CO>}wk59.2NE\]bj5[iii1dȐD^^^(_- g r\ 5cǎd_V3㞢󮲪v\/袩SPC /[,8ZlyR˄PsN]ھ I@n9|ƍN:3H66lPYY٤IFxj/KѼy{.Y$ٳgU>/bEmڴPxj8ptnڬY; 䜴x .0`5k({/䒑#Ggɒ%sOݿÇg88gXm޼nJ:a:c*++S!!LAƊOvܙq޽Sż,--Mݵ{ٟNbHC :thÆ 駟EѮ]~ٳuֽz޽{AA:td6Ϯ8//gM=~ȑ1cx˖-++++++[lٍ78z#G$gygk'=bTM65wN1SNoꪫ8|x;H,㊊ɓ'o j;+޺uk"HO?E]{۶mKSUU|˗Ϛ5K2Pl={.YdҤIH$~_<[z^zjp2#*//OO^z6)q 6m4v-2~YNھ+N}EG}te}#FXtiC﮸^8ӪP\\CÃ8q0vUUU?[]?裵 *=TTT9y^bR'09.54hʔ){I>SRR`:}prG}j~/M6e8۹瞛l^u;|ol8MAn?ŋѣ㳫TC rȺujm&\2N-[j K/M6***.\X]Enpe5)q1ǧ~:ٞ6ԯeqƪi׮])SRO:Ϝ Ű+;vlv䭘zT;Bqy睚;w85بQE/]uU>-[K5]q7d(N'iӦUmǎEEEn:uJ$\wޝ_~g"8=4igϞm '7qkժՔ)SsYhќ9s~鿛Jڰa 1 t:t襗^J'N{5jԨd?ŋo޳gO-Rd.t]qڵkg̘QuUUUy_|xW|NF?h֭-[LV`6mxW/^ڸ`ǎ0cƌT O<9Pef͚Kƍ5cn6-1k7uC QF\^^|)Hۃ Ju֭Cl)a˸4cƌY~}꼌D"f͚#G:4k֬42$ 8G}kh^xرc tȑ+V,Y$;|09.hN,X` xWv޽Vs*9PC;(ĝwy8Yfk֬Ir~~?~oD2իc=6yEm۶ۻwoz{W^u&'ɟuw7jT4irW e D2{k;(:krD {8M]ÉDoy۩SUVD>Bs=׺u˸ oɚiӦ-]tǾ4bĈ7|sԩ  r\K? Ur ]yyy/ϟ?dȐc_m׮wܱ~z3.B ֯_?u'[nYn݄ 2 5ȫ:!N}ѪUܹ!C\ ǩ1>1jxÆ +Wܶm[yyy3lذƍ,e\YYjժחEQT\\ܷos=]KC @@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$ NU۶m{WnڱcѣGw-+Hj?YDɯ|+wgŅ@Tsv֭[ׯ_{UVw9gΜ38_8py@hX򪪪}aÆ}Ǎ77oرcϯY .8x`zdwp8 d*H\yqEӧOO( p}EQt'߿?kF25w?Q5nosN;8 d$=xO. /0T x7n\O#G $8%@Fo{%'H$'{8 HN_y-[kn̘1g}vW 7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7$x@@7E S endstream endobj 142 0 obj << /Length 1830 /Filter /FlateDecode >> stream x\_s82gbU$<䚛kon I$Hlǝݢ`ΓivJXcn1!ۆ0c},ҬY9ٌlhc!J~I*^|se*+lH=ՐATIf2 ?_Ưۈ6H#yuzd;c" "*.ڷms -"& Ϟ*^tsULTe*5 },Mp6Yq–Qpc>7O6#|,A*>S[e@gLFԢu.|$S;' gLqC*jͿɊO~?oP"<3bL+ڭ'm<)ۖ0g`a*̉6niPu@q"h<ɪ˷{vƈSZi}pr'{rr,Ɋ}Hp-[ aYa6`8ʄun]/F(7Tg7Qp§Ǥ]ȋ),guo-k>i,FO|QK(F5m:"kAEԶ$F4NCrif*s ~EG׳eZw-'!sg =s}{Ѣe~8WXce7e{$^h^Og 8E`|ߛgV{vt=s*.?F-8YZaYIon}0E C#T{-6 r :e. WhY3~ۃ.C* D8Ii2{^C6g^29mK^ղ_Ws41?xacy 1ʨXU{ukᯩ5mU2<,[Zp.ŪÑ eET|vw#n}w`(6鴥jp CUTJG5Kz* p1%D0UKմQC+2Td%onJ݉&:N5ql!}RqH $Mp]Uۺ_gSBA'2NT F"!!bz]]W)*PF.TZbfӌ Ȃ!WI*",U C1N$w<,4}PHY4+lQ \@#1ڊ"ܐ`KIAԭGwGP,WIIM/GBlAA\*Q&ߟI5W5PT7 Cx6юZ5e͎f35QUAcTG8.p5r`ceucKiow uZ[g*P*UaKZkeuv>+B^\U=HLP{EvwV=-x~f?wa;RQU{NC>C?n!>rue'`%CZdY> /ExtGState << >>/ColorSpace << /sRGB 147 0 R >>>> /Length 1295 /Filter /FlateDecode >> stream xXnFcrdgpHGr|d A>5 ݤ^z9,"IQԗ[Odtvketؗ_`ߛWlQOD)팊^[ݩˍRLu@R…d#YE\!RXHau) kiO"Eνf 5"&^RDQ%\EwN H"ErEn!w,E$֩SpД$%EF T$mgHuZ5"Ed&p9kK-pŸwaŌ"z(!):8SZ$ꈒv,e萐EH^^\7%8 ٩v:B2D9^uV|G`+Ou^yΫT|u 0acp^/~8=O`/QQDL/>%S\5cq^.3,Bnt )p3*'ZvطwZ {sV j6To~PspuUGvW9fLmGob߼pYW09fl)t5nOOEx}'/5?u# endstream endobj 149 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 163 0 obj << /Length 4369 /Filter /FlateDecode >> stream x2)2?Tt 8Jh\ϘIXMٲچܯ9"Qdf"גsw34%tfG|XnYrR(bѧwKHK_|(X˴JTL#[b8#,[,w;-qʝYT]]xc܅C v^U4nt&Z#":p$uͼ(x$b@@-@2V*_ey׵Ek:}[c8ziڸI!sspSeI殛a*[l=:H*L=@ Tps*`טX#7n%-B#L8pA Y?Jݦȼ)Z9Uvq#~WRvL R§.C=c*D {Fx x !UzcٙhjJwv3#/teT$ua.":/2T[cmaL 7gSj6U+,2&:Y;k]<.[;whW}Gk&|"#چۉ`GrWW?f/Xp6M5BԎ.Ò"-*ɳX['A"CU7c%Xe*}\C)3H/}9 '1p BHF_ $ 5a$.1"0ާH$fq@KE3c/yUg۝az`$U(A (6;DeԚMCx ͖6DLN(Ɂ c"xVnu$~dbOSgȍDLZWy m):Pn#%A<Gu@cs\m= M ['T(0eT0WW\V^ՀY}272՘Iv]ȣՁZ) ^Sml}6)0PUU p~X^]Z %d}05z_VqHs{M]t˺Ym=OrH@:q'6 3 ̨~ ۬Uifo ) ܿH<3Qcf{v!ܷcU#cDꉻVPXM Pt_[᧑|`hF(U ȜK׭M ԅ"v?nݚy/쵟RC[v]iuL\*i6a71X0CJlgl1gN); {>&"&VqYs8H_pARao޼텱xB&T*$9Bz2[xOHkue)1w+%'Sfԉfe&B㨧 q(C.wI 9ƈ>c rNp̬ 5 92JdߧSE)S@Tztq߇nM:k67al\Rn 4TL5ph kp(㍭st^}H(=\sG{0?dA& 5²r"c}$yʼT?&T-~VO`GXCry  e0T=h:T]`<-Ӕ. qOMGSV Gz& ۜMy0Ү ς7Mi3"<q'#hFly7yrqrPzϕfLXA6X2\ ؏c+R|qeyNŰӎt>4 B?օÍ0>z>s{8 GOǧ$i^:sHZrS̟?[lU"ӠLs|Aԟc!GKI~ 9BD?fʕS0S V) W<0oZ'< $As>sP{ cxEԵ2ML)A>ր _4ֶ?ɧtQlsUnO|I)_'_&Ejw|.EM!NYZNj*Y/YJs8oVʋ*1v?<-̾5jA` &O>,7wKg/ݞJ*t#Sh Od"k1mm BHY0n3O>KEZ!, g!kA;Q:>r{>PԁʺK 3pi*VD)XǙ9)-7բ,|YNA5Dz$t$=r.\$ԘDm.)#*zg4MxF;5y( i"3"xbEyv H촄dn\۽wIA6wW#5Hv lCly .PzQ^L0rg.'Y -f}r||}}ER#G,9ҝח CspD(3ĕ,:M_UVd?Ͽola6{3ji2ќ`n GsSnY ߭P#sY7@&$CI2rzVEfMG鮫Md<[̆b1&F*B{е"'9> stream xڽZms_qţIGb[6I-wV 2% bowo; ƙa3˴c9g34.?gj&!dJI&<8p "cP#q)ǬLyfbZ0HKǴzc4L-!H8IC$c`JYDpjd xIq R`fs0z: P:ЄМ 桪 Q /tց3RJGfSb@w0yH #OBRB1= iu&S,HhHx {|0(TrDJ YZ>6V>uC}[A-bJ*L7"Zh=K) qo"`${*#6Hbp2vW0d+sWPF$`;j,X+"^o4;n>H V$w d~'a d a~e,P}Xz41oL˶]h#%k6O#gmƚnD (.mweMf˖U7즘f 4mof}~cm۪jLXVk<4mU䑄xdrC>cj٬#OaXEI6ֳnmrU,T UcHQe.60K撝OgKdw͊c^zfϰUK]䷿1#._o7KDgXh(PcCĀӫMv "v 5 "{RUw BH(ߣZw=u&|QP#ϒ{xhqgGn z|F4}RWEWl:{j'~m)S^^=ݠun ybI*E̊Ej@Nm4wAB ۤ8LE-M-lfR8)c՚ ^ qإW!)FLBH~C=1dl{BeZ00"&?耥^!nOZ.tc`4~7_?`lR{XM2 GDѻo$GDg`()Piy^OՇR ttQйv([vZ4$hCva#glY3:C^=_~B%gE$ |{hxϟ UtjSֆ%HQhǁbv ro\"-{EP۫EXs ^- a4-#:^B1$.td+b9V::p4[ي{.t )4Jg4Yfya ; !Voa/<Կ tC.R"Db/1/F Z|K(Y0$bX{E D+&AetB'xPpOzA'sΙ>Љ@W4@ [tg.@W)7t+,p7sAP!Њ~?!Q U? 69cP/H]|oD ^^ ԗ^h MSNM $-A󃁃n3WA-@=B:7gYٛ3 XI4Go\S|bl~[ k]{k屦Ydu9*zuZ}+O/(1ќgM8w-lP՘.p?K,/SSEoVY~10>WQMmd_ tVw87qH'uv,ژEwitYU^4$slR:.DS4i=Ǜ~4yەfӬkjR4ψ!{$X8\${G?J]Ĉn; V`K;IYi &nuŴViQ6v;ovutJb [핟ƳuCRROcٵ{aūBO-bc av"0 endstream endobj 175 0 obj << /Length 1108 /Filter /FlateDecode >> stream xڕVKo8W(57iX`omMLe+Iwȡd;Vs4fیf_gwd%)5r)Mt)2#52[M{ ui]0k$-PGdm|!2_(¯Y^y !jHa1 UgR-D}-Ȍrƀ4%L0Ebj?oF2~ +0?/v/\NS]Zd iXONbu8o ; 9S27-ϳ 听LK"8\]{AeU\.lj (&%ˏPڻCP&IUkxkQ ؇9f>v U;֛R2( ԘuuvO2_(C]~!Y&1{edzDBR)Z feiX1d0{9~TG (:R(Éߓ*<^\*}]Tpu2߰(%#y4KyeC^ŢbgwHŶ }US'&ޙIԿ1j@B xk? (0>`- +eqnq2<󶁶4oB^]Srb&DQFgϩˁr=nU(A @8HbP"Nfثq/d" DCmʟwR,; + b?T䅖f0jrłKNjTp,u N]qzuu+Kb ueNߘ.ttZ7M9 !*ł7U[$׮_0J~'i#L|Bb] Z'kI=DD7*P^0&m^)Ǝa"NmmWAGtÝ|a +vDg<`Ф[RGgmW&e5nƛ+;LyPSw?־ǃA)52bs^>4V;g"dY?AC Pq2Y(s1Do1@O&gW endstream endobj 155 0 obj << /Type /XObject /Subtype /Image /Width 1080 /Height 1080 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 29262 /Filter/FlateDecode /DecodeParms<> >> stream x|u~(n%-I1 T_k5ʏ$Jv둢"z[JĽJ*G#Q.WQ7P K•#nؾ 79;sN^{ߟONWWW% 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"G#T*@ r 9BDP"'?^{}g_xW^yeРAC?~'@ رcO|SꪫW_}{mܼoW/}) d rrR=wޅ Ο?7 `7z駟_}Ճ rq=G;W*+*aڳgϧ?˗{:+0y檪gyfܸqaҀP W򕞕RZZz 'tgϞ3ftWJAA~'pBaa ֯_x_=s=sQQ) l M}}}H,я~~~~s&:;|A^}/˿o_xַ?w+n //oڵ&L G{ F~^YYY__Aii/@xJhz_JimmK\ϝ;*%?g?Yzǎݟ!TBuŔ)S/r>G> / =tvv&.w}tߛ_i6JhOw/4lذa?퉋1;H'B%4#GL\t߳#&.|oKzo`={$~.27Ї>uGq\rI7ܹOL9[riӦ%w>6sAGG/۷z"uG_z;]穧Eɓ'gkkkx#8"_җx㍞onnk{>5'?!{]ts=omiCυ9s$O>Gqĉ?}{7k֬o='{1cN<}mذ矏ݣ}+_'>?Lꫩ@+S }?>566&^y7ye͚5k֬yo˿˷$N4i7HVT´}ʗ^zC 6lX[ٳM6׷'>g̘x⫯:H1YfuWJ,+fϞ=f̘ޜokk;~+sέH l MMMMmmm⺢bÆ էrJ/5hРӧ?C555Attt̛7/3*{˗/>|3mڴ%K$~pCfݺuk?CMd/E(P M[neΝjժU+VH\?3tcQhfϞ}}A4}xc9qjjj.i6bĈ0gy knn { e2M23|ǃ Xvѣ̙setI|O#C` %~Օd;K.dʕ/رG8wu̙3Þ|3?ӟAnOP YiiiMMҥKo~`Μ9;裓1ϿK?%BO/77 .8y䑕+W644lٲF9nܸ>{ԩXl' Q#T%''gԨQF hkkkjjjiiimmmmmϏbXtС<#s:%"4hY@zp[]"Š $jcE%r^xwy}p2a*+_ R/*$Tȱ+r~ 7zYZJd 9coT 8)~J@R"HغukKKK<㹹b%%%eeeNq@OB%Y6mڴ|+V444466vttEEE#G;v93eʔ*@+J:;;.]:uuuuuu~{aaUW]uח%{YNtJ^{S^xᅽ.ZhĈ>`staE%L۷o|饗z8dȐaÆxϞ=zشiS}}}{{{#x|ƌ/S 6}EP MggY+%]qg3fLoVjkk·~8ܹs+*****8i,#N҅_M\WTTlذSN>AM>)..c޼yI1@yK'»*{˗/>|3mڴ%K$~pCfݺuk?CMSb0@Ƴ+d5jԨQ ښZZZZ[[[[[cX,+--:t]_TJ:*dРA|g- 89DP T*@2}_A9*d ) %''32>$VTȱ@&p cEgW*7l 2ҕ fE_XKB9BXQo,0 }h C[R0B^ٯR,Tb B )aȡRŊ pD€*"Q`BP Q T80B >! qWbRN$ !TT !T؟P z,_D"Š A Q+*@ d@(DP!r @6깜R uT J=֭Kd "Jקz@BZ KLd#BsٳzWʷ?iЃg.Jh~n{BKwXN!l"NJJh~_~ߺ_)**:{677' @* >я^ve555W~|ڵk?%wؑYY̎/҈_a6lc=V]]}AO8?Agggdz"+B%dsέ; hkk;wg׿5S!Tb̘1uuu\sMړO>7MjgB$KAA˗Ak׮.|y B$Ygϟs9/_|#YfMjgdGSH;B%.][o-((qҤI7x޽{S=5(2rrrƍ nڸqcd>)#2p>w׿fQWW7v_*2?~+W,//nKRH/B%N??O_|q'd BOQGӧOё{ӗJ! ə5k֬YR= 8=O YN!MYQ [nmiix<77wX̏=Ef*յiӦ˗X΢9rرsΔ)S x5B%|K.?{溺o𪫮ʒ=O ئApF%dԩS/^V~Z[[-Z4bĈ|0þ/ҝ0m߾^!C*** V={aӦM퉏3f,^ꫯNşHKNIJh:;;g͚])X+={1czV[[{w>ÉWΝ[QQQQQI@$uEEņ O9^n4hz衚 :::͛"''2P =ܓ(//_|miӦ-Y$qO7663? ;Ef*Yn]k)))P'O4i~Pϣ)*!TBm۶ń ?ĉMMM ҋP _(;Dk)dE("# t[vٟVZbŊ;3 s% ̞=;q4}{555w^N1bD8 DhLrg>A]vs̹N:^>';-[x%//oɝtۿ9ΟPGѓJhrss-[AǫKKK+** VRRrQGڵkΝ_7nX__s VUU%{ڿ/o8}B x'{لJ.䒕+WvcǎG}Ou]3g {p駏3f_nmm ///ye9$TBVZZZSStқn/((3gμy>dL??s޴$T—{ <ʕ+lN?(**9rq>Sb0,J5jԨQ]w]mmmMMM---X,:SO偌'TȠA?T*l9*ʾ/2PHK*f@ڰ!T"^?~w_ 'DJ!yW/ Ψ)dN,%lÇp -l#T"cS= Z[ / r @9IO*RNΨ [x<;xX,VRRRVVP!dڴiWXqw9rرsΔ)S x@di&YKsҥ_~}o\WWWWWw^uU_}YYY )dgTBkM: /e짵uѢE#FxC^oIRBVT´}ʗ^zC 6lX[ٳM6׷'>g̘x⫯: l" tvvΚ5RbW\1{1cM[[[mmw'^;wnEEEEEE' DD֯&+**6lP]]}){͠AOCA1o޼$J{I\/_|6δiӖ,Y~ÙVޒ@jЬ[.qq5הgɓ'O4iac$l۶-q1a„6qESSSG"TB_ TBS^^eV g*_rΝ;3ԪUVX?~|gD)ٳg'.Oc{K\vi#Fg~@T) TB3eʔ3<3qvѣG_{?|/ݴ-[s=3^ ,XRۡͽ+++lA<.--6lXIIQGURRR\\޾k׮;w&~ݸqc}}}{{{.\XUU? 0 P SYYY]]%\rw裏ik̙aO/=Қ%K;>^PPկ~_T)% .ohhxGV\аe˖w1IQQȑ#ǍwgO:5  jJ5jԨQ]w]mmmMMM---X,:ԏR *dРA|gDV;qF 5T PH1 @*8 DPHT 9B`u/8DJ* DP8S Y) R]zZ  r @r9@/$ RO @t/+@9$T*Id9PHL1z?DP"'?4@YQYNNc*OBZ_OB)DP"G-!DB ݕ BPK~'Ƭ@XQP"/CN_#uuu6lصkoQXXXRR2bĈgu 'DJTs/_ٹom޼yݺu<@gq'L4l҇_]]]xG^)y'*++o&9 40r7|=_OAwo۽~{{{&M?x38*"W#<2[n]~<~sIeDMoCCЯ~ O|O=Tgg?.9s}~|aN <999*"O_z{E}k_{7WXbŊ?`yy-[l޼Sƍ{ #'^6TN;s{{O|dJv&~z Q'ub9"nݺ`XK .U&dBYJ@  [\NQ)qB *ҋP2|A2HVT ׽R  iJK@*@flGHk͈!YQ2J4%T*@ƲK0=@dOPt'T"Q 3 stW_ 9BS  rܞR  / %1dDP[ c TBHW*2PҞJ#T~Đل 9BH?Oi̾/T@xBH3C6 H'N@*@P)=l~bd<+*@Q) u=ST d [  lfE: )Qd9P"y@Jtuuظq]~ '{챹*ƿSO=5貖L[o]h֭[{>/Z(q{4Y ֯m۶ܹs f͚}W_M T MyɿuUUU566ج SYNkٸqc:77 _{nٲe^{sΛo@ГP ƍ13g?&NO}{͛?'ްaÆo1uhQ)~Jh rrr~_u7IUUU/wY@:*M\̚5핒PPPpA}'eJh6oޜ8ÇM\]7M'QӽK݄Jhvܙ8/~cƌI\looO 'Ů]μ_|G?QrgQ);*)--M\lذ]|Ϙ1#q///bgsW`9xq%.||]x!C hmmo߾"B JhMxgnwm}?O׫V+0 ,忀 |s+))I\xw޳>{3f̸Kwu> $ NJhbX -[VYYY\\}_={ŋ92q}1cH7#zCwܼvڟgmmmHIIɊ+>%|~<1]pN$TBo~;Szuuu3gLެ j,'Twg?7p駟~qb=yϯ~w]tQaaRE*?L999&M4iR>UYY_zϞ=7nܼyscc͛4Cx}'T"SN1>_@XQ [nmiix<77wXlnI PIM6-_|Ŋ |gQQȑ#ǎ{9L2az*\tׯ_ߛ777~텅W]u__VVyk84Ψ^:u^JOkkEF>7H-޳۷WVVK=_2dHEEŰaJR\\gϞ]=lڴ=x<>cƌŋ_}թs@T 'B%4fꮔX,vW̞={̘1Ynkk;~+sέH _M\WTTlذSNAM>)..c޼yI1DP =ܓ(//_|miӦ-Y$qO7663?XS*Yn]k)))P'O4i~@*ٶm[b„ mĉr OB%|0>?}HW*?E(҂'<*u-ܹ?CZjŊwfn/ ٳ Os10NMM_>F,W_I_=z.P ͔)S<<k׎=zΜ9]vI'>>wqDze-X իWO:=g k DB%4w}wee-[ եÆ +))9ꨣJJJwڵsį7n߯.\XUUi!VJ!@ZGr*?K.dʕ/رG8wu̙3Þ\xO>kq.\~ ˜J*!+--YtM7T__׏̙3g޼yG}t2w@~z{@֒(@Jrss/?GYreCCÖ-[wQQȑ#ǍwgO:5 1$B%YrrrF5jԨ뮻.X,JKK<i*dРA|gIa:|E T>R$*@8 gT"^?~w_ ' 9P ",/,fExwv|LDoTM_*s|ͩDRG_ $ Ա}APyK*8=fCC|͚<{_\A{O+}ѱu֖x<sssJJJ R AWGǞݫW~kth*յiӦ˗X,**9rرc9)STb93?lb$vmݩQ*\tׯ_ߛ777~텅W]u__VVy8;kִZ_ڻ73LB%d_SO[[[-Zӟ?9ԾegI_? @IIfyJo^YYK/|qȐ!Æ +yKqq={viӦg̘x⫯:)Э-^W_57u#NUU >ԎWRl5YfuWJ,+fϞ=f̘|okk;~+sέH L `'Wnlm>xҤ:jЇ?x%f>uEEůÇ >}kkk/_c޼y J!75~k^k߾}>'pܸUUSO\Uuذaəf6*{˗//9 ӦM[dɔ)S x=f "N"]]oω2YӶys_9ĉ2}C&cЬ[.qq5r$L:H{b]W^qr 1ORK/77 .8y䑕+W644lٲ~vUTT4rqƝ}SNy)I`9EJ$KNNΨQFuuAښbXiiСC=R)/Be 4O,v*dkoll9'H7κ=$P$/23* GN J@!ERH@^N(/B K@FBo$\[_E"H@pEҋP d9_$} 6}a<~ VU񋤜PgW/>쾖?dȑSx"BHo*%;۵+Q&H*9ll/<~,!T \NQ)/ځ_$} HW*%#y"$H{*%݅šCE2P }ر'99Gd0Ǧ4նysɡ=~1EUQFEQqdEKW2kjYnZm7[QMs4S4PѴP00RQWg;߉qn\3zkfι沽΁7\7_#3]E!/"WP~õ٨ /irZ%&*" ;VAAS~h Ayq\(xAՙm"yd^^;vM&G{huJ/! y-7 q4Θ۷ 1( ]K} *rŠ֭XBEp P~| A(++c^:>e[X}0 N[*wy.e)&t쨼OJ/"|\SVV]Xxq۝Y ߤZu^aX.aoP/^ܼ-5[6TW;ڃR *yY_zG{h,obӈµA JQ]7o\^.f.8dHhN6%*oRE*/"$DPx"u"R'Tn_T#\g[\6HKs BPhLABbb1HA2򋥥Wsv{{!a]~T\lxl_t+"  ^(֗SH)+*[\HGPGP~X*/"fP~ `SDƍ_)A@X.ME/^T/Jو"H)T?/ǂw T'/JZ  Q.W/6,"--<%@J؉5ee_T/(*9g>@]*HKkݧ r8,*9@P 6(EN(H)TH~۽N#&/4APiZ_T#ֻ7%Ry@P _{\Hh],8p`hǎn#4B;T<СC&d2EDDz_ԧEDc)&wX,֭+//߿} k׮W^5jTVVVxx R[{o'_ p@{fyŊfھ}=_pdSLy'ccc=Ni_QFPɓ'Ǐ_TT555o￿p;Cӡ."D"4GPѣGSSS裻[6#''gĈ'Ot#G=zTmlzÿ%Bz6'T4]PPbŊ_~۴i3y䧞zSN^Sqqqo̘1ُ-7@n;v̘1VZ~}yyyeeeKn׮]^GmoТbDzzDZZĐ!_@wt}ӧr&$$D蘘IvB*ı@qq݁ OKHK t *֣Go½: KؿKp+==<%%uk >O HO2$"=͍7 o!ZNmx؃Ѕ''"HK o"y֬Yŋ{q0,!n{iCv>55_/!H՗>T 1M~m۶ |H@:%g}ۣ"W^yۣ[H@:a:td2L^o0bccu:H."??ݺuﯯovvիF PTg6WX1k֬۷۳ JJJJJJϟ>eʔ'|266o@nn}bbbT|VZy{8~iȑ#J#%%4\ -iRfkd+ 0Wwy̙3tiӦu):2T44rrr}_AAѣvzzzݵ;*>|...NJJz'~G;][[rn[o=w"88xn1 +Vlk&((h…B4o޼yEGGƸ8e0"##Ξ={嗲:̙ U-Ɩu]ׯW}gƌBڪꚚ^룣cbb4 ۣ|kTH@:!At*CP  TH]s5~) ?ÔBDEEz{,:1-ڵkWIIwݺukoÇW^}wc4p…?<33[n +W,Y$)))99cA| t*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@: fsQQ}*!D||rssHŋڹ9sš)AW|cǼ=F ϥv栀+:t HHHs&--qtJs&iHԩSO"]v=yGp׺)A\R'vV'äeG4grFP,#ssYnݺu^{Ν;eff644x{s.]txs}JsPE&oT&=0i)͙T /B=VFӧ?=u ob׮]|۽{=>9(4ټaÆ3ĞdL{4˹)͙T ٜz6WIII1͞'Ǘ_~L˗/;SN(**z'Mt 7߻ou2LZ=qeJ[8> {n3}6{"̛7OiN栀Eͺou2LZ=qeJ[8>)^Zm-m:$_UiӉ]0&-L*ºuFttNn`04p{*뮻Ή]p›o 4}eL{4ʔ}!ra4mK.>}zƍSL U>=|qjkk]0&-L*>#922p$M!?>`BBB֭ СC{.66VfS&äeC[AOKԶuN=zѣMh"f|g˹s>9(a2LZ=řxbx^WgϞ;nf#GTyݻ_U栀0igr?@bYgΜ17n...VOi x ioL.- /::Zm;'.M-99Ym8qBi>9(a2LZ=3*𾘘v)mжm[u-?叮Oi x ioL.- OSiWTTXݠw:ν#Y:ק4ź@XΝնS&äeC+AR9rҨ+((hiu֩?Od3gΜ9sfϞW_xJCӥ>9(a2LZ=™OX TWWnZv[K;V٦M6&ɓ#D8sLVe6[… \s!C?r}JsP@&LPfHBB-eL{\S3 @= nPXXn#D6k֬f;;F>9(:EI˴mOi~Y9rM6ʁ7XaÆHS^1oV&Mt+Wl޼yȐ!ꏖ#F4sSs(0i)͙,駟s=[o599a۶m7nT_tw"ԗ]v=qDyyݻoݺCM;q}JsPE{o!DBB0i)͙y;)3wܠo{{٨2dȉ'lt栀+a2G4grFPt6oޜ0:thqqGR\\?G_|I}}U;q}JsPiNif919.n~Ç !Fcbbum۶ݻ… zcǎ ֭C>9(a2LZ=™THCP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  Thdz~˷~;xR~ " }嗽{~~a~Q~ze4'O|~ l6?G6 n>護ޚ?A֯X,R0'|ұc۷y_z^x!666??^WT>l̘1:N{.veXyO>$$$dٲeL)B{.##z= ' B`_C <߮͛N:5j(l*ݻwO6MSOye vz駽2A蔛._,xZoWw}a *@WTT'OőtuРAJW^H*fXHׯ_?;TWޱcw^DP"59Ryw<ƍS۳gH*h"ő(zV /^+**:v옛t'OݻJ߹s=z:]?Ν;:Ծ}={^111X,k֬Q_:ɡC87x`w׮]BټzS* WRRիN^^^ǎڸqcfffK7M͛7hCppC=tѦ==Zf„ ~EeeebbMHHH^^֋@ڷoo6m0`7|cX***Fo޼vW6jWGvi%K7رc~:{oyÆ  [neΜ9W_M_wvhT |cǎrJ޽Zz\l67o2dȋ/n]TTD' `ˏ?8qĦ+/_3Ϩ/z}RRRΝ>?;Μ9sȐ!iii-}|A>bĈ={={l۶mgΜ8qmۚ^hՔ矫_Tk׮U۽{[ŏ?8cƌ!DHHH~ Ç[?[jeN7x>ۍF|;o&!Dpp]wݵ`͛7/ff9))I/;wκs=w_K_,e;OJg^^hA.]-Zwޭ[ !v={Vqm}g.5_ᇕZ%PۚnvԩjemwkM)c?w3fXߵk?]tyׅ>_~iBpr5*[MSVۓ&MjvÇ+ss6{[}ݧO>m{ZlY)ETm쑕O4}_ӽ)))UV>|ءڵS'Nptw-G۷o 4hÆ 6l(**p=ٳ餪*33S=7jԨ6>Thi}pp>fW_}PAɓ~[deeQ\\\\\-ƍ"5L5!6TUUedd333?d2Y^rUoANNNDDŋ%%%'OF -Nuҥ~a…r˪UsTN)BW7zohh_ףG MNNV֬Y?sL[ .?0\QҹsncXvUXXX^^^QQQQQwH׮]oFN;fXS ׯM7ԫW={ݻk׮oZ/ŭ7lؐ0k֬cǎ !͛w6|LX WcƌWRa Aٳg)%;;{̙^LBBƍZ!Ddd[o^lhh+4 77Wm唔^x!&&È#nO?T^^sm۶7*'͞=_~;wѣK_k~ѣG/_Q 1gd믿ɔ)Sʌyyyv9|E)E*kkk׮]hs=s9:Nd?i$  I|ͣ>ڦMM:uϞ=FB|'3f̈k߾}jj  y)zl6o~ԩJĉvv;a„nڴ饗^rbyɪUFHHȴizݿkUU`֭[zzE~'NHHHP|&Mji˔۷ !}Y.}mٲѣ:uJKKKHHhv/mVfsRRx{LTWmvРA @3s_|QCWBu릖ttъ+ҡC^xA>GqgINNB/[+cX,/2 A+k|I/WرC裏;TBnݺ}zW_۷Oyرcե*Ojj _~ŋ{{ǎ{ܹѣG!!  Ve˖뮻/=l̽{> >> stream x}\u (8" J N`JffBzsPknxli',qGFt,,Aɂ3vqkf.|LJˇsHys}WeZ( = !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P !P t&zsy4hC=ONLo.MR-Z]t L<~GOt<@fuuu@A=ECP87inn7L&IVk4VR< WZ999yyyF+bbbf̘V!bݻwݺu\_WWWPPPPPe??%K^:$$}]p!))iܹN;fyÆ w7Ν;_^^`z}hhV[L&Ӽy6mڴtRO|TdcXRRRl)EѤ;֙򍍍[n}#+WzޅM/ \'O7noINN޳g` B477YƅJEPMVVT䄇wlSfggKCJKK:*9vT,[Lvf)SLؿ^&((⢢&4o޼M6-]_l,KJJ-h4Աc:V177w֭tdʕz^׻i@%+zɓƍs^>>>{1 AAAB5kָc@*ʒ3ul>tPii<]AE6ǎe˖i 5eʔɓ' TUUIE\\\G8qTTTTt~4k!Om潽yz.l¤BZAl=AE6_7nP˓ &t3!&55U****}t`5kTO4)""B *ILL{ѣGNOO?qju}͜9sڴi/^Bxyy_ޅJŊm٨۷Ǘ !L&SfffffNZ_~Z6((F̙3EEEMMMHHHxAEN!!!Ϸoj__m۶-X@_2t!;;;&&X'*Ss̙={hܿ~~h,++bӧ'%%i477 a%}T\EREGGGGGZJXQQQ__o6fFh4:.88؃O>dIII'9w,6>>> ٻvq@ *=ܹs44TO555H9s bp3Z?Naޗ,*r )((?~~~`uu~xSn۶mr7"ȅ_2t!;;;&&XU:x"?Z=gΜٳgƲӧ'%%i477 Y8EFWQTѫVB466VTTכfh4N &tQ "7񉌌tk]5*'*dZӧO:tʔ)}t_1A%VkAAAaaauuN/fgg]ĉz{{Ϟ={ݺuFro R+TZqƽ;QQQ҇O?|o?wGyw5֨g5k]JB|WwyS[nm3455=Cwva(&}AEN;w\vVWW?CW<3߿Çoڴi̘1{챪*W ³ d2-[ >YFV !?>a„/ !O8vÇO4iҥǎ[r4B]]݆ <ܰaCEEEX˗Ku߾}mzO!߿T/[l…/--=x5k,o߾B<rAW^/}_ۍ_<eh6mCI[o5v[vvvlll}}#Gn8qbttٳgW_}o. LOOwkH)EP_3  v#OuWwٝo]vvwQ@O]Se))SSF'*f|ɐR,Ƙǔyȼ,=OT>㫩oca;v=ZDݜ3l9um)E5gy00P/W8bvҥK=3ǏK}q ɝw[oَoذ꯼\Gg) _}e;ami;xx- (o~(Xh֧<(qqqw}w{{{?CgJGyD+**ZȓR,N;hn<27!n @q_~e!_y֧,ӧz̘1 ݊O?T*oo'Oն+Kd{g~r)[ tiiWzAr%9Ν;X,lgl mѣqjkkkeKR٥Se16gُ߫矏:rOZ@/(ˊ+***˗/;jzigoVGEE>u[[6op{2eWsuuO BPB֯Q^VVf3d|eeT3գF YRʥ{OKkGjuՃy=R܏o~#k֬߿wYV\[[[[[[RRݻd2 !t:ܥ t~…W_}UoÇESJK}}œO\B^aax#`ԎN @) "$$dxfoݺ0gΜ˗/KU[@:R.:T#Mee ٴɫoNb1=j>R?U[:˧MٵUtqqqvHvC}L)$&:5,+Y({w1!Ĉ#~_v~@O\zZZZl2n8+###ݑgP'SJƸ7niknn~'տz}SGEE]z,77gȴl޼t2'|饗ڹxݷz{g;rg/mWnqJ)N#G{ϏjiOzYDEEw}RW_$ަvѢE-1b;sǽ&]!)fRժg\۲w[ BzJաp) }O::U QO)95~|ݵߊ:䩧w7 W _u~GOB%K 0`μ7$$V_tD(}xw~ά㗫pC+R(->ܹ.؝=dcϫ;1FP'?wBR-ZׇKŹsl󵮧V0'xR裏8p 22ɞ3<Stii|bxRVVT@;Z?İz[4h_|oK… _&E@:RN7n(Op% <իR=i$gn:u6UVVK]wc;):nƍ7o@;:R7n93o_zxѣG믽|%O*۷o7 m^ؘjcGrj7v{XJvr<t#j(c>c[dPB=tjΘ1O? mii9rHzz_~)8q~wri$%%%Vr>Çp=SRRRLG:;S@:,jqƪ`?_Z=?>00P/{'*BniӦ+WرvcǾ{v Cpԁg)WϞk5Gwa;v#[p;KLw$>>>۷oߵkWlllDDD//Fiw@m5;w~;fcJQyyt))ū_vؽғDqA,%\Px* 117zuDp*\1n<27inn7L&IVk4VB řTQ90a؎}]X✜QQYY%+c.\4w\'SټaÆݻw\T*)Ҿ}ƌi#T˖RTDJAx"sǗ>ؿ^&((⢢&4o޼M6-]_i3X._.կjvpH'eM?S _KKpAP,{4gV!l1ƚ>޽?ȃ}Fpa* Y&k kZl3\=w$9|►:S}n%OCz1f|mܸ3C>|8//O'L\/!ĥ{OO!O=uKQߵ@Td*v>:`0̚5K'M!O7\ٳT!CF~WFTdx=HѣGG~ĉ6vظo߾3gN6ŋB//׻cV%|Щco^}Dԩ.= SeVo_VV&0L:Nׇj~iڠښ3g5550###!!3_ aI)Ƴkip8ݿW_ 7υ-!)$$`:lm,X wmp&-r㩾3f }^!!=Sd CvvvLLLn]bEII ) Sڵo1mȎ'*Ss̙={hܿ~~h,++Dӧ'%%i477 z&go׿RRLG8?iҰ{гT\EREGGGGGZJXQQQ__o6fFh4:.88X=")z˖V޻wjU-#OddhcDZU/~QG7lnsKkXЃm9N)95~|)EyꩨGI)pIssseee}}d2Lj_hڐ~WsfEJKmmŵxODİ,O~DPqZ\\g4KKKۼRZL3cƌD???7 =gRJ?h;ޮKK ^p@Pbٻwu `˖-~~~K,Yzu2 -fsʕկ渓cAnwt׶8`.\4w\'SټaÆݻwnRq-[SJY'#x"sǗ>ؿ^&((⢢&4o޼M6-]_&O)֖{uԽ6%-APbIIIF:vXg766nݺߗ\Rz6 .Ji>dڵ^(Om潽 pVR䑦~KK^yvz;9͙}xQC*IMMdmg0f͚%Փ&M?]8FRW}wq)˼k׈l\( $&&s=R}ѣG8q;6566۷o̙ӦMxk.t5׋(޸r;<|)Ǐ{7 t+eVo_VV&0L:Nׇj~iڠښ3g5550###!!3_ P6_Xο¹gu#E?=RUTRPP0|?ݶmۂ ntUKq3cGѣ] 7~L 옘bŊR aJٱ1cSHJAW9s̞=h4߿???h4]oJ```TTTllӓ4J~Ji+,}]}FvAUT*UtttttUfl6{{{k4F邃e#L&;?,O)ס?uuT'22] 11˞nko'˗+ӫ_{q^o8m;Z\ӕțRZZZd rOOMm;ǻ y AM+++M&dRFՆxp}||.\q|B///9GkT?a)ZW_etWZ999yyyF/>&&fƌ~~~SR͙3 v~}e5nӇz]VY,{[Й ldɒիWO4ם%v[MXf&;9a]p!))iܹN;fyÆ w7dK)MӦ}iǔw˱c4R ܹs_ׇj jhhmId2͛7oӦMK.z)z˖W_߫WsqٲX,)))hRSSǎZܭ[ґ+Wz^¦t'.5ɢOT԰;&NtS'0K6!77Wzɓ'333Ǎ|||c0k֬qaT*U?*\ScƴRꐧn", 8SNΖCP^VrrYJJɬYWϟWXȏ?~*9vT,[Lvf)SLر5;v8^]h7L ȦJ*:?ks+**:?P_VT|)S&Sx?|׮aYY^}MXL/?Y tG?'Xֆ-jwЭ[{z&,,L*de6,XgdǔysR3Tdcqƚ uἼ<0aBg; RKJLNw9=AE6RQQQl ìYzҤI<1Tob5}{~>܍ CPMbb=#G=ztzz'l6q߾}3gΜ6mŋ^^^ׯwa-RJSUտO/_qy߱co9v,䩧o٨۷Ǘ !L&SfffffNZ_~Z6((F̙3EEEMMMHHHtvϞS7juՃ֮Ue#)$$`~Mm۶  p'E3Cf@bZ~L 옘bŊR ]]J?x6wrԥE )9s̞=h4߿???h4]oJ```TTTllӓ4jRz Qlٙ)SO:W_ ~vt WQTѫVB466VTTכfh4N eHY"[ܸ3gwp[DFFz B#ZDžXܫו'.S_))bX )eǧ az2ɓG8AJn'*s/ԩSϟ 0a­40vX ??ѣ 7FPq;w,Ybw|7o\/__%t S!>޺>v?l1cЅev2dȊ+>K.]pСn^pL)BgϮYfرǏwKZ)BPGxy<-GR9544999׻/{\8}]BB'|+w@(} wty9-_uJtF}0o<[J}'oQFB 1WrɱנA᯿y;`l6o,^^^|GZ!o-٭SMppΝ;cbb׿kpT*R!\!SJ_}EJ:"J?gwl6Hʕ+}}}7N޽_u<QB,b#o]#0 AE6Rx~^˄ jAAAR})z7QB!D^uWtQQps{@wEPb;jc+ۤRƏ/?L f(*!~.B8cXK#{=#ƶhP[v_M`!^b>F/_.Z* ]v"""ĉe6uzt!v xנg:zϭ=' f…R{?zH*֯_ ՎK1CpgQ~:hZ\*={4b<+V8pw;_nTqvl)%A˖E?w|@6oZB/X 11q߾}g#Z6++O>B%K}L8qȐ!8p`JJʖ-[_w1v[oɓ'N0Lі/_~w{'=H-sB m]p+x]BKTd裏5jѢEґ+W|'m^\__g}g~8RKX)ZW_e%ѸyfknJbb_|?Q[p1tp! H;9&&ND%z㏟nn >}1b?bg{ }t7?)~gQT}m{'**<+K׻-ONjuSORTDJ'*z R9B8.m[ ;APݜR G!uvѢ!7#(НT^B޾Ck*SE6 ]֝W$G S:or}A?trWlS)_E>1R''w߽/I)@KÎ R~S%`V={Z'APEDѼbgw/5`4`myTթ{w eR *EQ|"2TGRYQ拌3y= TP"]MǍg߾{XT++wt bgTk۶K\\ۉmFgTeggottb*2$QR cWrq~q TWEf*뛐ЪGk P";{Vn#G:tŋ.]t˗jZ޽}ﯰ @TUXۮ"S%{MHPw{qP9uԞ={RRRꫫWgv 6lĉ?KMݻ󗿘>q4%KT @Stdɒ-[Z_ݴiӦMZn3}Ν;7OШD:uYmp2z92$$dͷRj+))Ylw=cƌ+W:1]]Ǜ:o^GR UwGEΛ7oժU[֭[juڵïeeeWUU7n\fرc>)}E /]ɨdt^3RܙSN5꧟~=ٳg>}ݻW^{ܹyMv?u/f#`ܸq?eyMt98u ,_`>|xAA˰'>#>>>_յo߾}5|YUUuݻwر#;;[D{?|?.oΛhTQޱ~{Fɓ=PAA(O>d^^_|J) t'N|{l۶mҤI: 1✩ү_@FGt4)@D_1bĥK|ȑ>ķQy#G|;vx7-ǟݻ$%μi[ؤ1͌JD͛w^{---Ͱa!<#}yW8`̫_OMx&&\V~9w.0>`Ŋ ,q~~~|M^O^]]m]'zu *ܹGo4['6m5k֭wqԩ7ZۥvLL/GW^X;q< _|ypp_|ѭ[7kPO׾:/*"7 N]66h @ `{Vܚ$ KJu~}Nr`Q<*ɓˎ3N)m.k:xzڠ--ʼy ϯ^ZD[>C oNw/,\~NE|9'937;wNn~ oEɓ}qu@ v~WZ&]gѱӒ%H) ;*k׮^kwk*(8se6sPobs @ gR9WW׆ Ν.]38wnDž UZ٤1-o.)DYoq0]g޽;==EEEW^uqqh4~~~0WǍN۹sŋ>\닋]\\}ٳg{zzZO@Q/yڃKGD"ss}}J}|;wn^:x1coj_?gΜ7T\|yСǏgJt~~~[n5{opqJY&Tu5)@#TӧOʗ]vǎ3fZi@ueǎ3U/י׉tz;#׭_ϟ7 zݥKz.ݵk=z.\暖䔔844㱱AAA|SDDۓEE50ꢢG=5nqJq- R4r *z0kn;))6lضm }暧?@PW'l1.yDG9~w^AfVvNSaL>]4d!C 4βܚ焇W>]бc.qqv[ۤ7] *aaa*JD233z.}գG o7|5@Wzȉ}/X!7>vl߻=M;S~XD*++_z.;^c5h ߖC3oogqZ2}u  ~xRH͛޾ݾ}{w稼;[+VM6tppXjUl ܬUHͲ+ӟ.y~ /ĉ6i A{|򉳳̜9W_}錯駟L2iҤj;;ۜ-7V5w|X!K߿?550۷oC;4Kz;qY w9]{7|ӦM˗ׯ_OMMMMMh4ݺu_N:U'N˷Xٰ DEEmܸQD#""6mTW9ז裏3gfܹ{\BB|[8!(o:s3k5ҥY)LK\\R fϾG>hFF5q\\| gϖhZVR\]]jF/Aٳ|89ٸȄ~jh͛~1c$%%yyyY&&&N6m…VNG֤srrRSSrss060ɱJgɒ3{Rj~o߾~ "##nS͏N۾}{_x]v,Hqqqzzz||Qڷo?k֬/ZaUkEF"=s\R E%"cƌyo^'ȘRuh-[f^{ӧO'&&Z*..{LLLPPYtׯ_w߉ZNJJ{rcs…3?3]v^^^ʊj̬0|DN0aʕSNV{MxQ5C79 ߂J]\\*++W^zj//#GZ۶mꫯt:a}}Y~ؚNI)j::::**O>OW^^v;vff̘ʿ@3uoOGF:e\-+Wn]@#>.]ׯY矿~zڴiצMWWWWW֭[;88\vʕ+??x)e˖]ZDz?2CCC7os뤤L8ʕ+"~WflrFk.9|ǎm4j <ț"lKII,[l̙nicyDGG0۷o_իW;ý[wy޼y/Ý7۸%$$III6lضmEd߾}5@t=++/24=ݸ"R gϞ_~-[ ڴi#//o8HFFa0};N)C 4hPeMލSJbDPEQ&L:eʔXdə3g/^ܡC?0087 ,6U ~n1˫yY>4#̩z|jD*" ^6(JPPPPPܹsz}AAAnnիWZmuuG۷oh,q흕%"nj5w|y{{7p) Uy+~j\yE$[_oѻWK,M֯_?CPYbœO>ِTߟj<]g~::8r6R&L?;eGDD9njc8<HwZ^dѣSEDVR*f>bСC=z9scnjϓ1|׮]G>|;;z˂,_ԧOabqiȣ"Z,6JaÆ<j^^^m۶ݽkvvvfffEEE.]:`0;I˖髫딮)*BD gzzc=V3YPPgϞZyݺu&M2w *ɓˎ3.yCW" J@@)#99yΝ-̼ݏ;;;̙3cǎh`:ŷ߾p)"KEF ܦV}4'*jܸqcǎڽ{wZZZVVV^^rss 9rСCj4DɓyKGD#/KQ%00000p֬Y"R^^_RRRZZZZZjooVjGrF[n=yd_4-fϮ..3_)&)J[q/_6R͆Snl݅ 6m_jfLL̕mیK?"r 𻠲cǎ.wܹNJyG,,ϯUV׍ncvvvZ ;wt|IhUUU_vZͤU"""]gϖhZVR\]]jF_/((f;ݻ,-@cV]Rs&H9+@{" yJFFFLL̑#Go]{3g.X,ߢ999IIIYYYUUU&4|>ǻ<쳳gtӗ3ʕbC D^p)Duǟ4-*00pŊ5)m۶k֬ٿM)/_:tR(--]|֭[ΔffҊ)+|+I)`Fw;u:GFF.[}hIpBXXؙ3gjOk.44Ks{YYYQ-9995h &\rԩ9WWwѢN$G%vP}j&!C&FEFF֤ZէO<+_^^vښw͘1#44444ԂMn_"#*rAD ,noCBB͛WR^INNNII1CCC?T7z999EDDl߾=99]D̙c7WbR*DĐRTbbb?5W^y25% wRRϝ3lذm7۷o_nnyO<𙘘꒒:E&򉈞R87Lzzz~ǟyzj8#HH)`-7}|ɒ%of3˃>T%ۛ,N@}|'8}μ^dJ/(`-wTpšV/_AJooo,7k,R,tgbbr5N)EMJ[T.]9t1cƜ8q_o掯+V6d}mhg(=r$xD*R/R X|X3ӹs;wرsVשּ2 #""Xcƌ1g諫/,\}]:b"Ej.&n䩧m}1?C#&&fʔ)z灏_|Ś5kve{뭷,4Hy3.e*_QVڿ[-^-7/՞ h4m۶h4EEE_333k@D-[6sL 0zhC:|ǎm܄^iŊ/qrq"EE:JJJܤ϶xĜ<=={{P{칭u׭[7i$s7-Zs?7.Y rJD(8.j[lxxx$''ܹsѢEqgg瘘9s)UGSV_RgJ}Dj!@r5[ќTqƍ;6++kiiiYYYyyy7?$$dȑC%.yU?Lі-ƥ" D~%)nEQg͚%"%%%jZV{xxtrO@ Wvzʔ:W$@#CP''nݺٺ hAtZ_,XK"%)! *ȋ~qi?EJn|IJƉbcǎ{' ㌌ 6̀+\Z\_UUT,X$Ťh*6j>l.ϧ##qE~%9tKfZX)EדRcGU={'Kߋ՞~O!͌3nS/^?3^Am@sW?mZիuGG_7 )ЄTfW-qqqƓ_Y'9 MHP̐Ri@t>ѫRyΝEJ&Y~O?5o777[0n׮'9:vT~wK֞$@SDP1qw}SLI4G}Իw[|СCa\PP`.7O2.yDGw?sw=IJ&[k޽"rر:֭@87o^ΐ!)ž]l񉏷Rx 14i3ST3fHOOٳϘ1cĈnLse?տťKϛo3jTm'N=IDb}IOO>}˔޽{駶 $ҥ?w_?ԩ\]uߵj&H恠b)^RRM8'yt*s?7o:%ׁ{CB 4Kz衇;6j(×~ڶ+h O]Zg^qtdI_;}wyR9!X\w;;;HnnA,XPYYi*(85a™权227[J(TAQgyȑ#!!!"-Z4`l[>;ѫו[T*Ϲs{>}jOAz<8w\EQD$===88?u_X]ˋ<9fLŋuJN~~OtKV~AŪ,Y-"qqqn kԧOabq#:'$)мTl`?ã>jFQ$:%{">Qu-T۶m7""_2: ZG&O.GR1cBw,$Z(iF6՗-p)v[\R;w=Z Ő8`\r}!5CDgTVbR''w $*kpdDę:%/P$GR X\ݹĽ^ݳμbg/;3I)В KJ{)Nݺ=/?~ ,ھ}yQQO/f( R̹rŏ"yAPXDiff׏7.})X PA`f.Z7WV)ٵm;(D)9EEi4.e,,*Pk^O 0{^㔢rqY,ȅVOJ;*3<^wq)KSf(?Ď l~{SbgW#EH)EPܹꢢG=5~|uJNY]k7f PC%_~yzʔ3g(BP6]i3 ֬1>kzOR=EF^'RRZ3D!뷓/WU),$GTR;Rȫ"o|ID4AGK+V%]YYJHv]KJAp+Ν~/0.$@$ )`.Mnܘ?mZ+uDI}F{4o UɱT":" *BU=%))ƥ" DQCP0!!WWI"lJeVU믹>eRrD&I)#@ r>ѳy:E&eQAZݵkgbbN]ybEzU+1Q7EFV<~]p h,0yGիy&pkh~!o~0.=K|>xF#ҥ?wqJQns')ИME~'(IM5.a՛JA|^S|%)$DUAguq{}{~WvT9g'z2N):Ϲs$vTi]v KNݺnؠ~w@T ^TTE^q#:'9, 4Iss\ZJt:%}>mfAP*%.ξCkY0=4%K~o*عwݼI)fh2%/*J{Q>~cvTi(W{@yIH)h*/\X5T%$7!UϞ cG+;v3R;),T+glwMHP٠-QW_2qAQ:L[*wp4.?m*8xyuKJ~=R cG!!~"Q}.W۷oo:vTQWW_Xǐ'9mu滷n%ZvTsr{zMux]ؠ-l6?RMmTQxOb|#AlNf*뛘*0=8 PEߩFC%K"Z2vT(|MZ$$CC AJΞ=[RRjZJruuUSt(e\0d]T,E$%%feeVUU?88xԨQ.4SΊ2Sd3R:uYA[4Jt;w\xÇs}qqqzzzzzz||˳>;{lOOOK jE (TUu^mЈ0]|yСǏgJt~~~[n5{olB_Y9Mdbtݼ71@쨘Ӆ Μ9S{]v^^^ʊj̬0|DN0aʕSNl|u)Jm""]pUAlt:]dddMJQQQQ}ϳ)))k׮ݱcafƌhT2I'ZI~MrrrJJazؠz)""b"RUU5g v 2ETU"L#:-T&!!0NJJu m6x߾})(H"aUGNKt+As4)0 OhԐ!C TgY(n"KE6 Ϲs{TA~Z Eȧ"Ìk*ܹ.7w g~f9fޞsEQE拌3uc>ֵf"[`Gl ܬUHͲ)A"DƛJ)сǎRkŊ Yjq߾} PAdNFU{lgצ #MTTaQKNN3faa;!Mxx# Cc̙ǎxyy]F=|+W[oeEz\]}7l3OO7@sfR6l'"Z666666#44KѴmVѸWTT~̬ҥK `)xTu@ vv[4GsLOOj& s[8;;[nҤInSe"%GG_0kbg|#ef۶m ;;; 'O$,o*8ddxΝKJQ1?J5nܸcfee޽;---+++//f9rСj SqA=…VARE 5k痔۫jZѡC t׮-h:)N~~ A[+qrr֭pB5Jѝ~=bT.GEyF$);vYȑ6h b%UUUgϞ-))jZVRjFɭ_@QELn3'>޾Ck@CP^[UUeJF wqqr %R$TJkݺUH@DP1?Nsŋ>|>ǻ<쳳gXk:+Z S%CG__+@K9*fvC?)˗mݺGcS)Eqr~{bN.\ ;sLvڅzyyinpww/+++%'''33V;a„+WN:?ЂTӾ|S%`V={Z'@P1#NYRjutttTTT>}|yyyJJڵkwa1cFhhhhhZPy_k|mn2䔔844㱱AAA|SDDۓEjΜ9hKJ)J杺u;.\HJ*f`x{{'%%:Æ ۶mao߾\k'E*yDG9~k~b65 C 4hPe4|d=Q˫[RR8֭m=ٜ?0ׯ_W߿aHѣj5o|=C6h gc? `6'cDJvmvk;q 7ǎx{{fYfeܙ.~Q!GRh*fSs׊+ SSS }63RpcťK\\T.]l#2 #""Xcƌ1g| ?AQVq1*{DG9n@P1#FƇѣ̙3;]v=zW\;;z˂EDdѼbgWU6h OlJڰaCXXX^^hXP///FӶm[F^QQQTTTXXh5;;;33K.0/ZnYnt= vOT3==KKK,((سgmnݺI&A(t4.(JiӼ,Q9;[+p<<HR#|]wY'`&nԨQ{vZ9zhAAٙ/VT2IV%;69#&b%UUUgϞ-))jZVRjFi[ouFk׮Woүobbk̍b)z>''')))555+++77䕆郃Gb|6EQk*(^u9S5D7?Nsŋ>|>ǻ<쳳gt@FQ 3Ujҿ{9*fvC?)˗mݺMW|b2TsdfRhfQ1 .9sdvBCC47ՒYQQaV0aʕ+NjhDt Er]0,i#NI)j::::**O>yV<%%eڵ;v0̘1#44444ԂM[EY$2TI3yr+ڴvO*lSRR Ǐ^NNN۷oONNvww9sXcWVNW "]Juݼ7!@3FP1;))6lضm }暧?USDi?y4{0 OhԐ!C TgYEPODzUT]>́wTA~Z0oj@(]4'<9ob~f9fޞCb((HM"W;-Y/?-x{{fYfeQڈ,Y$>}22yj_Ν;v,X6 PoEL]z`?tZc9/ILLt"(Jbо}\l%0SxMwR#MJJaiR ?#www/"/BRRE/6%$$?/" "ͩS 2%KƇO-p5͋`-"u|UCZi@3DP1Bàw޷򩧞ӧaK/UTTX3aj""E4F8u~7t\Pqpr{Y"aPTTt+{=ɓVlg@Ԥ"L7(OՖ5ld7 OF~{#Ͱa 7ìr]w^0޿tt4oC#a(*? 57nhn@K@P1ɓ'k4=c`1c|w&Lx uM<|V )"Ѧmy*fVk]vO=TYYO\0裏{F )pcťK\\.]hQ*7߬}twqqC>rh4ݻw7|ynvSJ"ƏƻI *fK/ݻ7((ԩSzzI,E"%NK<*0b~Çܷo|w[M6|'Nk^aume2FV|ܹ*<,BQA 4>y沲SN:uB5+" *_}Uu0S!4:AAAupgt "8x{[?۠-nZ#GM=#"-…ۨd߮]͛}8~-Kyv3*v]w٠-#-^J5MQEV{z<4g}GUI#ҨD%IQ`Ui \ ,EYP] H (.puQzS Rb.D@% &$8woLB9̼8Ϝo/ITPWQe{t^ʧ`!"u;|:'2F G'++ys~hL{j4o׾5O\ݻ>l;d͏#iqFpA漼7 a/+{2,r jeS@ݑFnq$)ȏ3*ܻ7{1R<¢- 2D*3*(8sfSvGr[:EJAkskf~4@veMͪcѩu]TO{x m3#00CF2*#{ x衘+cbt. @7<`E9d!@.u!&ۛצM5 @w@tb!<tg::APR#IQB7G``mPT^ԔRW!:kЭ[̪U11fz5 bDn={H) ܂Qj 1[Yt. vqFOM)]`/(SR>LJgTEb|i#96iTqFLQB|\H qFIQ/!^,e$G/׀P EQ 1C?xTjgzr#x(SBvVZQK:TP!zw! =zJhk@T"E$!mg43رB2"Reo_۶1W׈ӻ&TA՛( AYL7ye@e 1E.D{|6IKQTWe3΋/Ϟmտ*8AՏ5aՠAeA}PHڝ?Qcݐ#N" Kq9sNifgHHc֬628~z(k" !,%^i֬uƍ&~P.\0GQ'ƎREѣ[nWg!smEEݻwE5_> .!8̕+WԉĪ/}jPtR՗V={U_Tӄ8fX p{0{"8Cԩk233RJ.,!zdee]BAPqL!đ#Gw^ťiEDDTqQe1bGճ֭[l!Pk׮-..oӦѵ1NC!DBBB˖-.qرӧO{xx1Z[n3jCX,F"׬Y#<~xUnSٿC=N;wqƎ)љ͛/ !rss.[PPk͚5Z3fx7EEEF(..VOO>}ԩFxgϞ]F;6#}vPPoĉ.z)LO.]߿aoǎZڵkH)cTgϞ}Q:7qē'OUaag}裏֭[B{1LVرzT^^ϟRVwܼyS~8vݻw8gΜΝ;fCTnݺÆ ۽{bvv^._|.vرq=%^_R gTd2 8ܲeݻ333JY%(((66m۶ի!8(-ZhѢK.ݾ};??????,,N:fX#ǧI&FWTܣ@:!At*CP  TH@:!At*CPcԩSGkt-pڵkk5jhh翋0L? ǯ itp#Fhڴ'Tc˖-G>|хay??x@Qkc(cǎSN^x!44m۶Fܽ{ٳgx k6bt   TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*fݻGsN\]VtK.6lX&Mût׿ٳYmڴ)88888x[ҧ[ ֯_c5o?(((>>^8q℣Vn 󋎎4hPjjj~~CV7.88UV\&KX,˵k[I>}~gWt~aXXXi0L}J쨠R X{ 43gή]v5{ hzQ\\,*P|튢hܹoߞ|dBMb~4|$8>W_yyyQek׮=puƌc`fΜ7tO?zر{キ};v,\g9=blR *,"i&W?))ƍs۷o5شi@ fuMf6K/6nޒ3j?:qℷqAŁtֻwj|%>|Om뛝]]>~6m-a%>~f{ァ5hڴ3l6ٳSNFvHP`Aݙm۪YYYm.\ KLL@ :lk (ǿ+Kdd$=[iFG*Oj}vZm/_n}[wСO>uֈ#Jk6l0Ç+N`c޽ ,=z?ҚY_hѢ vi?צzҚ=_|!*PR':tPFnݺigΜZ1d?ںuzχ~Gѡ[322Ν;N[啚:k֬Yf 0B5t\\\iͬυZ]wk.u",,L'VBBBHHHg(Am~Eu"..z[,srr*hߏ_={v+EЭ5jݻw- kk=\Vk:?ciʹOi v;K*%*.33SHJJ*pSQmo~DUk Jk)Zy?X,վ{ᇵ X:tԉVLT}j=`ߩoݺUHNNoiUVKvy]TXXNݸ~ą <=ˣ*P>ꄏO-ۧM7k֬ˇ5%KԪU~b޼yw^;} ;w.aJv%ŢNkgKk.**ReXJgGه8ׯ__x:ݼyctޏ233'LNZ?C\pAW͛)))͚5 mذN{bʼ XgWUeݺu\?8ٳX]˺uʾ@`4p_o֦kժUvc= _Jg߹sgI&|٧w9r;wO=Ԑ!C*z٬N׫Wo׮]W^ncX|x\\\```bb1c=ڷo_k״QQ}[>zُɓnzŋ/nݺuҤI݃nӟ4w -`4.P6m\X7AW׮]:th=;EQ^~oQFUY2tSϪeo7ިx>?o{dtR/w^9Wk|nذaʔ)tǎ333gΜ٧O>}W^yeƍ_>Ri*n͛e71YJ0dOW:tps֨QҋJ>]z~~~k֬az 0{ZFDD tnnÇ˹ XӡOf_Wu:00?mk6mP)Hpɸ[B wz 6;v5kW5j4k֬C@LGѡOON$''߼yСCmoٯ]5g,ѡ[bʸZa=vFFU}z uzĉe3au>aX,ԩ+*֭+*Pʕ+zF1cƋ/]E :iQQ:dɒ%Kx͛7oV۵kwȑrtV1pnl=kʹ XӡOmϒNJJҦϜ9CPK/(ٳe74o޼ߔ 6ٳRtwM8pG.In FV+6SU}j=_-nll/s!vکG-,,,Yaac6mȶ 6gϜ9N?{iҤIŋE$U;T=}t-JsvZ?4~*uiC.ׯ:q;vl׮]  *PoYv:=re˖1LS9O,63f"}Uj޽Չ'O=:ЧJ;fBE9Oo?qDٍؽ`ɾek}PG}fTɶ 6'ԟ qFK}Ȱ * U8S/ڵk(rfBk}}+Բe˂ZN:-===oݺUwr9r(>%DPeܸqڟ;v6عs`„ Ο??222 TSΝ;ڳygj*ΠCC;Zݽ{m¡Cjk3gNߗ;sv}L,;m4vղTAn~شd:uj~~:l6;vm۶Z۷o;㝺giff3Kzꕑ|ݻk 333f\ K5_l !rrrvڻwm>|x߾}Z+VTAx:%8u?^޶m۶m?xÆ +.h؏\ڡC)S̜9Sa6g̘1o޼6mx{{?~zL??7r>]bvk׮_~nbŊت'y;NJܹsMR`~_Ve'uy*a#%B%谫3*n5=Ï9ⴷvݧ6l ,O6lഷQQqd~;qnݾ꫱cʿ mn}F:c?rIVEQ.\uV5SLa_>2dHFFرc>w8((hܸqO2dHU!oMX,F;wȑ##""~@ lsC$… W^ϯ]v-:vص@>-**:rHFFFvv",,,>>]v<2C^THKH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  T7n\pppV. b]ݻw~7n܈2\80ƶmnܸatITϟ4iUEPbݻG9yѵito߾'N>}믿>udGPaܑ(? qC&)< @%^ٻwA>bĈ\Y_u.]RRRRRREѿ6py< ;N<9tP5xzz&&&;>>޺ʹif͚eP*1a„|! /pʕm۶:u… Çךep v!Ν׮][{=&&棏>zWM<٘TgϞ'N}]Qz+11Q-[~'}KGP)Svv"l6_ұ.p  y衇hпu:==]TI&&SY%ڶmN>}ZغukDDDDDk1 ѣGU`|׭ZoR'rrrԉ~[nUB ;wUK1_ R'~Jf-4iRf7nܸo-/?btm APhw8UVV}hO% qn5~;Ο?_vbVF(lݺչ#`ǥK222h}v֔Ν;R ͝;YfyƌKEF*طr۾nXLrA t*CP  TH~0*pFt ΨAt*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  TH@:!At*CP  ?rh endstream endobj 193 0 obj << /Length1 1653 /Length2 9321 /Length3 0 /Length 10403 /Filter /FlateDecode >> stream xڍT}7HH4-#& -"!) HK!λys{]nce㒵Y`P$W sᲲC帬`7D@H& P{ Bb@a1^^/߆071b `.< w@`aEEuAl@P&vAe9`60BI8 p1n f/A:t;dWiܸ}OrPg @ڂ=U 6 XOr @  @vg0@[I| Am0?qY 8:$ BUW}7F@; ͊P[y D> l_u<>#;w/<P _6(d`$@WD_Dv=mx~'PQ5ap A Ͽp@- CĨA<(_<f :{()+qU?J99'' Q~]R+*w]_`koB "4 ڠހ[GO=۟=/ЄVF?7Zl yZU$$P{ѹܼ!%'VqLOʋtݳqB].TED1Z>"f{' 77.($b ldz^Nz|P±KK"wegKAiǞ:~t9-,a+ZQX[?]4Q7}+IʕB;:ʳ5(hE }EYo P>*x#,2M+I]7ѣhmpxh':P=hKXQ|VAAR!2LkeR}Uԋ#ͣ}sFnad7K:b\[~vbn8ƛAsaoDJ:'Puމ_/TMB؞j&JVm~kf}n.xS"}.p9g-tڈT$ݡC_tI4=^c@uAəmqghh,IZofq!CMF}o纹Ơ įڻEq\ L z+*$=zq/┾ =\+$׽<0jf= o_C.n8e/4X؏.5T{v,.lِO'g!E&(z(ָf "[~ٳW1k'myS4vKbsoOC}-I`ipg}$!GkXz54Ȉ;fKN5.B;=$Ж#FmԩŜ~M@5X]@ζl UClKCǼ?ф.qIބ>ҏ~5g7k]Z8 x@u׺,c2޾ )F7qYrazqWZX'fiፄ Xam'YrN,O#f7 e+\gWFbtzJ ͩ4^2+8fEp^mnR2ӉE6 'yY9*K--E%bO7ɘm_q,͊sz?0%w<*~6/rƪ^=9Oسkk+nũląŜ(Ct/8Hc%eS )54?2n&WiZhVؗ>#qsD7K׮WI6?t=2pmmv" rC|cyj_˻VxX l8PHED=P(!~vbKЇؚLXt5KcBid'1&mv-qqO~},%m0rU0 'b04>{/FfHDyxqgcJU!ft ^3$>euZuQQ5;lAL_/]ЏDQ]l!O=Ұbm̃Q2nH#'Ĉ[)=/*&u$H6XٚZ# v[r6.3NVe9'ßU7క~ {o"(#~+& }d[+2Tz2 -{zGIMI;mlOy/.ybxk >0Y~<'kUy7\QRN  - iugYp+}!WV``"Ts); 0k5ܦn \֪yBHEj:)IScAgQ޻t 3fv#\Ý *K,N!'Ph)Ҩ]z}Iڜ*Dz$& ;k5DI5-l̸3P⪰Ӻ=;o{&xVRZÏGjLЉ3B[a _4b)sO ,)4tili@gR#nsd6Qىf9=e|:<zK$nY*KK{jgJ ]"5SDY" ѧB_Y=xo_=/ |%w<+;ݿqm6 N7U$u>hbz=BlO a.|Eτm]|gr>DO08_bq3)e0ywQv7P{[VͿc۴v=u 6xihTuԄ [W33!-WBO lv[zk׎O1AgɞԠQh~l"d)b|u w#6 vk.7N vߥnrO6R"WUU028@&wr BaxٞVO!ZƶCᆋةm[@S[ueb'sۧIq\L1cc#?j~Da/%ވzϟ~ƴgĚH,vR+$i}ʫ[?8"]=tCUݭA)+Ǖ-8cu@G/2R)V}kΠbǤ=1ԯ=RE~%}0ܷ0Jso=OM]o\Q[Kyt΃[o,?@eM,J*.h쫏VW!Wu Y,N7b_-Ǹ9kL|^DYϢSmVGz*BaS;! pR<,ycR',`jź+]rSQg3' s%v*f@^aSa7ƤEYn[}r Y'>KͶ#Ǫ=ft 6}U<6$@6oI5GLCDvoX=1R&:Ew*+:L?ޑ&XlȈF3d4@iHo]O9z ø'B`o,w n־/S򛺧+oKd]un' 9ޢQmdC>5<6:*΂rx?]͚c+_|nM/U2 B2 zL^8 ѐ?ikfƱ};S[bXY7ۂNAqw ]M 6d$h:%'`=.$035`DXJҍ5ϖ*D2,k,4o%"ʬđo4M\Ao޳2V$D}Y eLmTbIgW'i/0)pYrgxyR?ꏭJRm$^kae4br,~SdqJ8rp#L9飖`97 8 y:2e #lgj6> -0MN2o#7I80'El9:MVF"73>ӹY8'*VnxI"x8!%bəS nB 471k<"dŏguC`JXpN ^R^oUndڠՏ캞+}8  *T{yC6=mj%7ZK\1)ԗn%L>=|3MLzuSP{(g1Xt\}› G|MRБP7kY>ږVd 4Uj6v†tt-ochMNZ2'ZGR}=؉U{! /h[-G?$+xKw/SA&qށ11zutI2<ը=Vlǣ•"/'Sދ004kuP~SړO[{gA!鋌yj3K氮#B°j8|^J*(w7L0xdѶ He^Xe/5ڸyf6 3)$KpdÛ:UnmODϯ?.[FEԕ,xga'ޥF?FG bXFGi]f1=FWu: -i$=32HlW7kJD?—1;)(xb[m ¾9k:qy#%7Ϟ[zC#ȺSF9rESu-~'We;ںǥ&U1v3YmO0¡cW[E3 vӞ=le\ I2Ѣ,x%$LsA-a%QWI7vf~#nmŸEV%|W'1juinayB1,h;H2v(tZU% J*Ҷ}ghkNxq@wY=v. P6X9Z41Z(+;2Fg Fڕ4{[+YC>saOopZnLwA\Ĉi\Ƴ0C)sod\ W;T5TDfT,TU[˽/4/] ZPG奯{`QVg[$=Bl=q j-|Y_&B/l0~}oV̔l|4uqĞbaB^ y}= )x'ImQ  /=0φ<3S6lJ׮@\[,~(s1dH􅼞 @n=T`8<7ZK* Z\ZG_DkQ@òrC3;U=sQڞGQuxZwZw&E.DJҫbMZj?73qe6̽%?:ˏ.bm˶Z-5Xi#\ 谤I)* \R^"&]Ն#2%cZ=Qm8Ti-TwgiV~3:61! l^5/MewB]/._=r8}SXL&;RG Co*see4{:_I"3eVFBkzvDA c$zIrvV5[p\ofۥmn6$T4k*lCE!< ^orIɯnFI>Gz0\خǢ3 Xm[K`<9θnz_33p$,=p+^:@?i7$ Wa0whsu#;^Bezgc­סov)WXM(#^ŎH&(u7?Ye,WLYPOoc;mW 9pM~̐kfM˷N+,u']Ǟhu+#|0l{>9]P>~ iy5{&]p_ys4)}ߌOVΣlhr;T,fI#q 4 O{{*xJ8+ n^vsȦ0" (Bu:E/g vuTR[r[q3ϜVH#m7[| @'w4K}GgjCA4LQ5687lv FƗ6'8.I=ݩc떱ed`{T6?{^m06 .< jT3R'/{n Ë׷vݦ^zC~J LI$=<(g TGV>MURY?d;2oMkG nKPW&IɆ`ɗ[;W2eYvVwbMk6: ^Vk3E4* l!+]97xLQQQL$pnR_1YDv`l[1t7~'h"qz1+W]}Т\psVQ<vnGofY {CTXoʥފ=&n~o@SKz\]$j-eŭ>Q (uMt_,/|מBT|h~˓RC+Z^NK7Sd匭O 4^)4kʄE~mday#w%ř;!/zGޓiJ2A\3}ǫhR M \zbQߺE3Dᰢ>w*WMrM+M; vQ|ooqY~ӄ#a1Uurho,yْ<5m0c亹ͩ ѫn^qFsbjg&}V:j-+15ѿQ4,yJ(T1Y~岠6T;VĸG\KxT\?d`<|u900lT%?o\qi4Rk)`B C*c)̨R8]q6s:/;{ Q:<{fns$nD^c+i&`ؙ$`u<< q^- QM&?w~lt%}qWɀŷ^2ƲYOIrdF=l O2R\u~H#OTG|/Fƶ\PDݓ&Q?̒ \>>7t3-T+z4Cæ>Y,Yw2xӿ:akZles"[<4|A0Qhh9E ޘݭrwls?seIma Jm :QJFM\r>$^*č-o0ؗCz/R3aY6pUS2T< 4~QJ‰S pRω"&Vjj-"ZPۮ}̇`FDCֈGe> -vo#*]/y<^pj}F q'k`vw bB)},>s%Ae>d>1Qd)w8dBQJʬ㩰yr\c(YK> stream xڍuTk-(Rt)BoҤH BI HJ&A EH{Gw{WJޙ3gag畷FZA /O@PSS$1пPDH/C,P9AB@$HLR@(( 7*]@M>E"Qp[G w0 ؎=P C1*! `%]]]h>$V zP4 ;@P `p> FAX=E)k( Wj;B[((" .&$. :n_AO7#h@?O4 Ġޞ;o  j GuCm~n@3@@"@0 v`%D ZC~iχ@b)@,go 9hVX?}Յ8PƿmkP7(0>HU6s]꓾X/ߒӡ4[~Fz]ӏ̙7yWm^\}yL2B'(QQՁAJ$kmۡNu},be1Ft70VK"^%iK7b]+z?0Ss_e Ɛ+Iu+ T<%9*rHR|xW_3Y07~.= ؠ&mM])!}NDē؆{ZKO+6׏ RߘY# VV~]k)/Q6t2+Dq (I-#?9H>8'We;"fGw ռFLa+ `k$.W*-OO5oY' #LI8 /!2bT8Ol3xfPG?&ys{oƏ #Pae?AIl!JD φmS޹'Y{ȑJ+`b͓cteq@1.Qx6Nq2W ӿM(CEG<2|xT+εԮ~GO#m `O KWZB Z4Xpp'ZfR $6kD<#/KJ')\csK^o|vb'z_ >^BbG"YKUNnN7Qk 1jB]jX70D4>IU\'br9LLdyCM':e%luWgeB.!C pz\M &V'=%);OY"^Z=mQCzc*&8#ou+_\j[<qyU;$_ 5 rYEYbTޟ,ufHos]J˨Y8OL֟ŒLQ\yI{Y<RiWB`` vau.<ҺNeT͘dP)mY$~D* 4_ SvUzh˹T2ӮP& WU=m7.#Yn:|yړVxkB.gx/(pJqo;]r52(t驩j/ b`̚]T~IX+Te*m.a܇ }Dާh4I?ad,`:bBfRƏ~}PY䑎٢@c2wIo[N}GO^2ޏu`EM_ԙ+ [#ڒgjΝ䃫B(?aIvuDq%f>5ivdi^FП)0hjݽtSy[{W mKX|(:d @۴ha[ʴf'p2C/mSLN2GpEgKl5qEl%RCF᪘]LQ6cٻ5XW\;nlx*&CTz*I_upI ˴-(Nj.) ŻJ(,=6+ou5CKJ/_u> \s=Z1؏"j7sاiyD>VY=Ihp?y'3puTL6葞ΪZM k=Nr?Xė"9yU.dz 0) 0}:9?yzkz6vtiy}`gGzN掞D|<*qQ5bCVI5ǰ{l.4krNeJzLzmbTqtGS11&: w8e0B\خv qZzTn|Dրk`fTൠ!Y[_gaADRmXP[iD<+y㾛zrrVt) AF^%ӹ!klq%w˕v`#sJH- yO8_ O F\ ;|~ɫi݆:]y xo[4mn)_ҝJln8b O$|ͬwD9\ =@}qɓ#'mSw6Rb&q}DW1=nrU7]F/\M F4]U"ŁZʖJ&c_уp1Ũa|Fm߯/X> ;uF>k.o\8R:WɚaL΄ 5gZYs/W.?2m{nԱ~/,fL+ WVكל,OYPD>x物ӂ9R̆}Bf ShG{7/0hhZemrLLlL'^v(rڽQ\.E Խms.grLȏei]8+VYo.> cvt FGpa }`]m)>-Uf/lTj*\?.R,a0pTIR+ LOsa;KUny/cێ4"buΟY)ɵg޵um>eFⱑϤD›g'4;sAAEnh*2QQMӉ(U(&?Sivt^$?"s Y$Lڻ^ri½*b~=[fwBZT^inDG+ьOQ{xeUF-EBιSIJƖ}%>eCVNN.1Ͻ>@uFngiG/-b[8|Pob MPңƽye2kMMSЗ[>ѣ NY@ ={࡚bҾû I[n{VMS[q~UG{z׋.vF5C Wm:jַAi?PGȈy<*99({ycxKD@VvzUOp>\*>9Y%Ӣ_2ڜ.F3n @+T#ո 'sEqQ"' =>,K29]*O q1 *@W%lZ@X?&q-^/Xn3N?4'*{r%n j$m_kx-G|,Yܲ,]S-Z-\5u`͋]|a9\tG&v;4^S7-3TBڿȫy%&}#mc܈w4dL}~e@[=N7QMgħ{һ.wnc^Denz"ȝS"00Drߞ ޴Sy&OZc5Y1ءνr+vn승۩8!Jпp=I©zOWogvp'OuOj.*ofⶂ*N | frZvE+BZoȲn ? Е!E[4MD)z^¿ܳ*Qe ,CKc^涼7͋F7L#R^xGgC{ֵG.XVDLs+FvxIS}xK^O攟Rḱl5yo/hNzVXv-MW\'<[)MZ~ʤ2L0[Uc /XSn?(Ҹ[`%ge*MhTm +< |)#.9rԨRet  ygT#[_ YNrUJYJ'1cMꄫ/6?i-ƦȮeo%Z ^_3gvz~wBU30?pa:;UK 9k oe_N_;zl]zf>7$YEtyl6"ڟ֙GHFڬaw) 5ӬeS3q< Jb6;3ތocئdoэ)?::_)kl SvߞW. dӓbZoH1s>iϥppB7O^1d'?{n֋0L!әÖBfلѼɿɓT^5TkIQlVrBtRgƓ`1\Ւ84_k;&%sө{:DeQ)P>Dܹ}t#3~b%Ko %E5c/5|Qc55sXؤᇺxXpd0k9 #;p|0Xl%4&(!zf<}6OKӧ[O\_LaQY ύe!kn6J]a YDeHJ8Y3!/^lmCFYy5yufYU ˷DU0v<^hPȬ-|H ;̡/wMK!5Il\F:hWQ$|^|qU!\y\hḪv> stream xڍtTk/) #% ҝ 0 14HH  HHHIJ79{ZY?{o?L5u8 dԔ@ 7ȋĤ E8BR1C\ݠpru(S$( @ߎpWQj P(a7<&Y+*jqH;A\V`@ 8*Z:p+(v('7ɍj+ "7 0@ kuׁ <JP0k+U p8qu77?  ;9aP-h(r#0# {`Ki-/xnVPgD_iP,;9A`7_A]!Vk3Y`YạCrAB0/xYJ mR:Ý6( mV% ';J # Q~9e 9z{<22 &#r\@$cC OB% qxE ֿV p!oZ>,/wC ͬuEewj-*ANmUBQ! EQ )@ ֚P"= T G( wzqPQ@P[gzUPcV{dj݇< nky`WW7(I B57<08@a]~@EcH^lFBS6UF[b_˧$2lƓl¸^m!W9b]WiҟCji ,F~T}R> [η/Nb+±BD=~{wG7qPHm?z=] ϣm+'lZSHSF\9|,` ነVSkcGDD;]MNױi02y^ 6ҷ/OI_gF>hfux&mbv"nSs"5_NǓXr^/d)#^tyKvwJkJ聁#^g_x9| aԣw@h_oNC!:M\Q=$;dK]O;,gপ*]Yɇ~h0zY) f6X[ktdʾ{Mza+knpΰ:ճ#8S-z74gW. /Ecvmi5!}r֤V櫫)ϺY!Mb58s j8>3v5.H{g`JmEY_E)]0qxGv)APӔ<|Rڜf;43gvqj̕6uj̽R5>=#2Ag},ޑ,SڏshqEMS׷$LBD*kcz#7$uz׽ONߕF[# :+l cfOT X63PPvaʒ}@֯2lһw*"þC#GW_1 Ac^;ǰsXa}$db{1_\^ *~FSOCXY?o=+"Bd ٲ_&]F xDH`N2<&^V5o1$ rx=~g6{]5y'W>2,D?}ҕ (ˀ VH.R>LڶzCX_UMT܊1FY'(N.U~|[CYHFX:}ʶ" c=Lkw4.O5T9Ie}- G㘊),yqD͌"y>!gްR,#{0еprAP\F+'6@R-{L˧NN޷e`r!@[|MBtIò1R汵Yw,fZs\'"bEZxML_m0'9ghe5 ?~!SzG9}&5{)ZW$Q"g`2թ-'u [== ̶P(Eify(p["xɨ/ )5;ڻì#6o,ZYmjxD>S#h-=%E( QKμkDdEXnr`4ӱ|҈O:ƁM8cZOsl*XuL4“a ki${Gg"#ڕ%v=\I764U Q^*5c<|]~aX1n+V~D,d,HWq}Uk =tѕ]} YQu->M zmv|_~dį+yf tIh9rBdgX Cc&zYD#wfv^rϹ4IP<6U&ʜ(u;ey̤llk<7 %]j"@vW\Fq&=w=NXRE!ڥRsL+D|#յo*}-3t5à.4,5G|7XS뫠E]>SҞg`aPKAAp./o^HA%#z՛[2-LA%(_=#gp?3N <#UBu^AC:Ykl4e`E9s ҈w & &,}[ >=֦dispjEIzL$%=(3@^wҨ,L)|pRl1գ!5'9VMC. .#b1ƪ"U%*WI^ևU9P,f`^r]ؽJI iah]#3'!~;\nj_[lbLFl=^QHiTʆVSBjrBׅ#LAPê;]q2VSV,l `z ):`oSc|m_%a:9jmγU&r"/3ٚ>Z#kKX.w€v SjG،We!bb/7rp:X"y)~1\bJ5srl} _RXWևrNHh]nxQoZ|s?&,'LܝQq=Z Ҍbfg*\'R ד{91BxfL-bxJ* 2KK7B|Ͱ0 jHv0(~Jaa?jG.yab\L2lA'AK[KtZmpӑh;Z߁3?侀VVTD{q8\El>/6ew̯潄uJ;ԈhaSgu¾C I9"4.kK^5䵖>Pg,r7أ}˪7r:`pghRԠ^ ],q ţvUح/R%ߧlvp9{I,L]̦/_2ωI1?KC˳GCk@Msے Ȧ\1HzKAV[k}f ׇLL%9kхpP+n?рy+6 3oﲻS؝ &s^SG ~Ӓ9&*PnoA-ɔ/]/F},kzQ isM^vBw%NaY|&Xj]p;ϙG%p!S͆9e+z([e-BR!s%"epm pp>'C9^ڧ' \lO{7M` 9>#Vb߼aOȯ#[;!Akp֮|\)83 $XFDfՐ;2^Rޜch 쭚FwWSNWlt%Jό rMپJ5j&{yKZ&Y8 ?/Ƒmo&etFX7K\[Q]O!y~0P=EDZNK!,^^Ĩg~)ejs) 7&:ߪУO A>sT0ԲPQG7-.Í7;H<uG #asqoLr? 4&_i\`[Nv1MEs.ñOJ䵎 TMђE{͕s^^z[YթXsG㎤ i[8"H@56à[|e '0y mBzх4KInx5BTV: pc]mآۡ{u@ۻwnL9QߖEw՜ uhiH R1wVϺl^E=rqWvD +l"37:h)Nh]tY 5);:?hɣnv_H̤|%=ZLRؓx+A r,7WU7#32aebTC'P}4}ǟwgfxebŏ[24WN3MKC,򷺸ߌ_1iVof a4glsf^xpQuO{}UH=ELtTA$Y&W;GcDc3Zc?"LTYsu*CT7 #h U(]km4N0dg fhttƬzJloP 7 1Vs}L|H?CXD'|Z[DT`IP6xIm{vz_56@jpuD930a洍_oưuN6s˫:; D6CcCpiܲ #d5>;k[ endstream endobj 199 0 obj << /Length1 1683 /Length2 10345 /Length3 0 /Length 11442 /Filter /FlateDecode >> stream xڍP\-V,H  XP]J{q(VŽHqw)P̽rL4Y-f`!Tr88888 0;0:u3{Ƥ@g2jr@>'Pg bPf(@.PGOg5Ϳ&sf͟`g9 Y=Ps_&a0Gvvwww6 J h]n`  T@2cChYC\50w3 A.7\,΀gMy%#/_7dc8ydnw9xB;0@UF {9XAٹ@@;3Aqu9s1w8\\ vWvۃ`.'q??'_u;x-XB,,HՑ] <|\any-OGJsގPGs`_%]o X@a3֟a_s!8s2zn/ ֗]CM^_C_zY9<M|o3<UA?,;XBx`{dA`ӿ[ߐ <^?ZqSC<&<+y,T]_ Vzq+"[A`пlV@X6ymsT]J;C-;wsuw|<v~F'?bz _0wu~sFR]_ň".9kT03pb3iMtN_Iij]zuA=4AmWaXNEK`O;[f|l\v'NEi 90f,+&xNʲYkt1Y& )6l׃[ C۾C6Wݡ,-tRE?E=3 G\m{QLm.|7 nCh&.D_K::UwqLv\w˛96@gk}jZn,,ď; Orf8OST]hdg#ƸB@'_Gu 79+Q|I 5=K'0A2쭇7pL6z-7%ț u- I#UԌO^zPN?77\q:7lnVv6H7orT[uOػmcTYF9[|8͛w$y 4FE*|SOmQdo 젢7(\R_B6 se"ch*DŽJ^y5::_卬Iī$Q}PIg8魒ͪ®IS߸B+svx-&M򲤵|*>R"ڝLdL24zfxl `-و>s@woKn˱P1lL/W+}Ddr ~/!,V}~#C/uCfϟkPi *o=+a(L,P|:bZ{> *&QreOO|g-֠;ZARPahF1 4m;7i%+Ӯ^M3WRGYSB}[T2K<*N{y r" j'D܎n-bMc3G?E2 G]ܕG6,M'^j+, UL˞ 'sB˓6u[YyfLGaѾk4Z ϮSAbVG"NWwG9ŢfMQrёQ#Qa[LLbiZ&nҋqIL FTai=]ܠ$:>ο rNmLr%:6}m ~5o"fIJnE 6EK^2 %Kf_ ^U>3GPAa u.]/*UTV!oZ߾- : 6^YU5M' ֎Ϊ#sgEunTԐ [He=Ihbl;"6WB*JEN4RQ,q3Fda^iԷ(eY>~:y%#Cٚ'|Zj"־ڏXqqA$vy ;z[3us#pc[A yGR4vd+Y֫NI}^rS\l9MK0kEi&(w,{ksPĚ\jf &fk>GwRlLtEtk0W6 *դתUiV䋫B}:}`\~߯wу[ Z=KYu5v{>"-wp}<>-XS/.6-? |Jh7(ffvc=␉YMKqrUJ*D\" T14z oEcctNDMP@ڹM=xnGJ+yIOt~O.:{NWYR[K].fb ԒTQl~_(90VC\>Yб^VL3( 9~׈m>-@wז#}^nATk&5^a١眢n{g3a]AoI SHQQd<5ޟd#VA%'QdQs6D$b.H -xps2(R.bUi5F{ONy126`z(E $mȖV0Z*LR~𽿬oh뮏1🜡G-(JU uG,(ݰSuFܗ5Fts( ֢ 8v1fUmM37o1+޺z.9,}pE5wzah* omi7ՐJj/ oNcD"宻ݬk'^AY!rqڿf(Ƽ6IV$bxSk1W>/wzyٳ>(Jg[naQX{>GYJtdEsN|WuvTy<-:^WZz $JGwDF/nd-td߼!r!,},X5fo,qz1p o݃]~sOY,U㥥g*ϊ0 Zn*< <_֑RwH9W_ÒS~b R$DHVNK[ÝWWƓI1S}4R݁XrO=c3չ=hcΨ4Jmp/7PEsU3(u:I=4!0ewe @Qa(fćDVwȟM8j-6+sD򄁢cZzUw9۲IF:nmV Xi2 FJ4$yFޫs!YG58b&1AY>Q‚eŰqx1 Rw/EtLD>sMxqi{ ndX"\2KLJ.̸ug<"tX-lZ$ Fq(hub6%+"mT!lnO\|B}󻕦4# -K[:Ź⦏518I j-f2 k(+OIo}`l;Ώ㕏 no|NBF?,gOW3X\x'@"p~A%j5oE M렎Z,Z]_Kf%= L5,thw]f褍cj.=BPb珂d6x^/!S EW,?YIgt 5Ԣ~T2uu/׎>S ;Z#iecK4#(\b.pzHrRgIT<铺q=v7vbjW䨔s\e ŕyE4h%\9lPs/jA9QN4zM\4)Fi@CLtFlE]5MnM m/S3 T}Kvn+/h@Fy*aԳ!#WM[36=[c"b]&*..97Õ[/]#'Lz\{9g2],n",3#LnɡNEbDm14=B zoGo3af2TqX9¸p\Mr!W;m/H0O +"q lylŸ>/BOYV>hw+ͮgk15\2b0'yK>oOفV.62o6 nIJ;ƈ!'ԅԨ+ozL ~<7I,3;V~moMٔR^mNx 4ȍaY se ϰ.{'ܥ9 x@L@87;1 &߹"S}?0(8W\c4Rw|P#!mFvhgȺ[S؝O=5|آN[c?it\qު'ee+lNc(΍sJɿjq1,۰ udE]2Slt~9fkcR 噘)7N;p"$G2Q$MѵN돼fJnCi˦'*kbRG7ڮۊ7j S_TˎdNX?p4OJ!|!<+7V,cm̗uI)Ia|Ff 3lXйK֤heK$K@AlNv*7ߚ1!_AU-iw6I<=[}Iw.o[ lh34|n9ҾY& gb’0c45"ɀabs_Jcf*[j{X.G8- CT8^9ahL'HdtL;;/Uom+^՟`@7>|48 CW,uGn\@jBZByيxqY6(M~,vQSkG& WtT4 m0S:Ӻ:f2.<ZcϒpXeON%[bHOE| - vD%܌]_C9+0ݖW:8\q {KEgUwQSgmI'/R=/6"Hr8SFP[eFs#PCa 7l=lkPJʲk6HOY;Vӷ? ;3$7k8X 4gZe-Mȁ4UCl/%Jα5hwg::]T%{3<%{=Z.ԡ(0W}#/sxI[ئt j0Dd,M%d!I=|r9<ɲkGS~Jpq8PU&zǣqkN]h{U'yOtП a\&QQ-IFѳ腓hIop2oIThHDyDx#PgA^àbmڋ=JbIr~GyҮ3ˮ'#,iAv.3b|?_9w: mym%HF &bN̗W'U󒅳J0K;$i|7UNr`ѭ4mvEw 闕}nwƼWPG+dPޏDzWK37ѬKa82v ~v=f`&9{" KUicpk58_L6~%jh ^TPa!F̤G|GϘid"j)qt ۷3mr; ^@l) l*XTiu1EU\?ܔ~Ipdgݠ 6"NKj0Y@A8 3-/Tia罥5 R{5êD_!'uZ'ͨ.Ln\~7ضHč1HYʠW3 ^CkmZRd !jC;LHm3uefbZ=JUZC8"sw#NFAXzޖ:8Ru֛'ĄNUe%nՓZTw$؝PPu"wzi&3u J𗂯rxE.ڈ$lhEpSAnvHP {>R.lXf#:oުy^اk7Dʻ291DR$w lGrԾ(vcbWLt,P#B-fk %WۅZk 4_XD">q` foY#cb6 J]P(ܛG|N 2 *X:ˍe$Lse?}w1*1i#dMf–SL3j!bm8/i|MPTrXRq ~BZ) W{DӲsO C w5v`=667б^K K8䑶j^xI{v*JC6-OmL-:$@(G=5Pd8/gD^o/ ]&A69\6LVDO.͎]M TPFx2$Z21ՂZ܋+q1Ҏ}W~ZxWaGK+8.U@˚()'i.,2U:@ȤDɖtSRy 0|C&wiHƝ -S#nuq-Yw2w[TR֋ӨehLHeR[M'ĥ@ 0uƣ&Nte~n y0c6 ayIk٣m<P'/8MJמt+ih:4*P9.Bg.KDIQ˪N4Z{yhF8_y L^0F' aɁ)~> stream xڍVT';薐鐮FlIEAiIFJRDiw{ν=g|<=5Sp@ATp4 ?X x_[_ B ! J 2 Q0\#!hM F@Aa % D J^06?PHAHmTp ap- qvu aJp@hw)ooo~[7?t CCq |` 4P ho[$5!p6AZ@w`?x^ P_rf*NG}ap'#QGyp_(6jk }p[Ot({$G\!U{p77"u>%bu_cu#ap_<0OҟX?6'( %$ *𫸡;S{@w; s`_([/wǿw@=hqI5Cc'X WXn9 ா}c5uRTD@>!Q0`8v* o-ϳwD%`x ?w,!@hocqWyOW^_uDzU6 @6^u-V p'׿/R@tah{k08Dc5{o+T#~iNHT hDb݉t5P@cSXx@G{ҙItsUxi7'к >d'(<#t yz~MH~v;DMzFYIn 0qome{xJPНzwTw >\R.Id/("p.sJ|'W#W75- =?[(5Bn̘XhG97R4{}doMzY{_58*9;C9ɮsRº8`?y?(+͇V:|i~w\qnO^(O1md=՟|}C޵4h US\VA )")λ|ohdfk\"vVV>mg*QY ,O 3wV?|^ay0eY\2,ᐓm䟸ø.ꓹU0i+FH_F |ȺQ9 [Dl"wZkLBh9(g&xΗg=b6~iNS}q)!L @"IȮ8_`0eP`*24rk1Gۓ𣄀]*vY7 zLJLc,b h\UB|*bkӽ83-G&e䃩\<:W2ao cy|-utT> B85Qf*m_XJ L8_J S9p=T#γtN7:FgDDdB&e4e)gNy6j/3Z6I1lkPN;q>W^ >Y&L '1."d&spS*1 j/+>h\٬& ?f_jM nnɈb;cm≅e#]!Ju9ϸzP s`7+a/g'BUp.[8 [\[vo ]`'8AkŨߔ3 ci<8*ռ|i#DA: >&7Vw|yiLXe֘FNmp&@tz7h=EWu\ z0d\O-"3p{48mV@4Vi?^Q,8?\6,@<ދŘ(9܏dtW)3Z5zÅmx#MmO*5ghod=7i. 2UĆDkܪ~:={=)˾c 9|? m%}DO3QZ.}3Ǒ8]ZU;q goG%hZdᄇcL橧A({NWRQFtk\jê YQK5OkPGZZYBXV\FShISWn@C"s,%K/y)f-PpxnS[Pn-$s ~p Ijg-:{S[Nyrb&#> &>@{=?[yv @PRT nWx)<2۟D{\ A{ӻwvxS Smh w]~C*\$`;?tѠnmZU8;5yj7WAy_hpvMՇwQ_iHMX;eAG*R#fU⍫8= "jܬuU.?IȜܯ_7g8Vj=fiJf1:lY.N^^*O_ZKw^߽brN<4ʊ&e=G, g|/dN6c%MoϝFMxCFa*86"9]v,DH+lcfnlD9כ(q<1.fpxAHixN_bu%sw|^9*`odb!e7jR-͇u&e u[w7| GncfJw)Ks܊0FKItɺMfw-Tgp-뵸Z}42\emd=1H yt~c8/hK̐ǖeB# ] iY}cpJ 9 Uk*DD 0qpٔ 3Cms4oYAk3}D̯176~R;EESe[jt~?UCϊF`pWX *2C9!9MtT$Rs!^g%TuKaV JVU1{ᔹ+Nmlc]z6rNkh.+ƳB6{}s)oh%zp+Xz*=E}ӜɣLS+e^cA,CFUcㄩN|#z?Y-%bx; v&(4.ezw4#Mƶ"^|VeO(+D:>vX2?pNdu,EnC,IotӒ$OMk1(RY=T4ċP[_el!:@WnoTw;g۔$Cf.;_YDOnSyO8*.4kIn.g t9t.[wg]Y}pT\T[G'ԻjCv*&)kݏ}Hf"#IpfB㵒E>ї;~s:MJ[N#'w!Ǚ@+\`7InP,>E8,4Ǡ.Dݥɭ\W8Q܉kBknAS.Z2r*w%5LkڿXWR]q{O!9Y|t7ծ3e4lz'vٱ;e*s @֧ [o|c) {з@W /Xl5Ϧ̦X bvZ myEEԢPdifO^b.R-z/A6caU&g?&1=@i +QW}S^{pw990V﷥,- ;_^(TwJLwH~УLf?lUgS8o*"%j[rWއ׈dlW WUe6DyDYuS -Dvoḡ^I:Y4/ѵ-uاfbz"ӽ¢ʒ[̱'ŧL 4&ugJ#ۄ)d=ڮM9?qoǿ~㡮g+ y3\u6%jVe Y`hלY7>4m(3'*Bӟ/+Dֱ6)Ҁol* H?Y*0ًj`}`]$K&u*N_kF'۲AO^RF8)QOOwsv~ٱ$w?ޅL~6l#15`9qHϒ֭)YnHܫ-slv.et )}^sY/ܥ6wt0^{?";Y˅(oU7V{GW0lի>kM$q. .lYq}{~W. :sLE$]5p@@&,mTOۓɦK'ͬHsf*Q7΃t u )Ѥsz^W4\sYIk:Φ/ywo&&xSCl8^% Q$L_LT~6!r.$EB]u?'ŠZ3GMήIް4Rq494[dk?i9yqN_!}2>_8]9WGIDmQ74&{ UG=<,#qxs?o9Ʋ:uЬX2edj}EUB쏺Cّ'Tf [ ~gn8r}oRӱnK6Ijgh ~ftC]}[nӵ oیR =lny1~HW,$nTl_gG}F =2r}[L|R}|8f3Y,$79cF6%e:Y:RoVoշ6f1%]!m-Hm৭9.GqIicY[ÎxElH ݈ BgDq*I&=A>H:(g2#;^ؠZ(HhO"r=v}2)Kػ%)駌*m&J&dY />@Kp`с_q"hi+khy;a 5Wj=݅w#;f PS{Juye8GLSO-b$H,MLD46p߷[?r`էԖn endstream endobj 203 0 obj << /Length1 1413 /Length2 6198 /Length3 0 /Length 7154 /Filter /FlateDecode >> stream xڍvT6%1:I(;0`l#H(%HҊR""* sy빯9bb.vkQ818Xnh& %`  ,R_vu #`Py!@DV J;1 @ ?h(CX:'p „yyY@U$AQ@C($TAh W 8 Ebw%!Q`4c+] ML @`h7\o Pp Phk48qu5@8? H(*r!@c-q\ NErzcфx? u!8>8j  |pXq,CЯ4KDH8 :n=^(t g@D!|y ?;` y~%6B~}>@7x( NP8;tEp@;';:Ao ƒ>Y9Fy ssu- 5߄cRSCb@1 i0s@ OF](&!+ :=X #|A;_Yhy{ 2V(b?a" ф@5]~⠄PE{X-D y= F&h,3e#̋` mF%5Q0믙B1hxN[@8 # Bnh W? c |r@P0 4!oip`r ~۳˃jUAe,!1$"]9̾jz+OK{*S<1ͩ-!'N)f[× =^WPY 9 "m"n3)d>xX]1.z|t噌>IDQGcl81nJa@ѽs@Fd1n^X l;?7ӻWjkzeųE~%q:do!R+^Yq_N؏Վxr*ZyʇDze{a ?]T_~XVEEp=+{xv0wyxw3DhyLi _u9 wsy ;J4E'Tzuw8Dw" 9׉zyx~ */v7_28f*1vc*ѫ+c%>y3iCZh7ɜ:Cx@9,sڲu;-e+tmUK'B=h6Gk*H9do| ܄jkDr+s{lsGN]frk(> P'/ Oi4\Y'$RgۙIѬ/i^{otx,/2af+]uD7IId-t`EPyE~]s&|bLCkV^t7Tf_N?dӓ~8:U=7\/2<ٟl*]؃#޽xm/E~4|] 2 BLecC?9!8NH= Cʼ"aM3l1f6AJ b=[V_wg9';s?8)vv\3QLҦPm]+?gm}\YqvB%X}[!Uue0@%M:^iR.qAvk7C{x:")vmip'Dj6f)`Jzʘb2^!xO]Yj"QdtnN@NOx?vaӞx_IkG5kfOlz=PqfkI D~LDSiNI62yc)Kco'[{SugkHȈv?FoGm^ ryAd,m YˑId.G1טR_#(YVjWo?̭mɆs4c7FR^s+,D9Mޒ`C {MxZ |en3hcIt ƗA25wtVnjdWgl2finS9D$uZ}K:A:~6G6YWJ9".V\3o~bybTՆdJs%yOK^uD]j+o=43zЍ&\Ц2f TxAn_`3[wx%: IҤi6Wy1[ 嶥¶o*h+h1G8ne!3Uq*C!Cyi :&CI}`ޖ6KWm7lrKpϴ޶bꃚl^Mյ \:ٻm8o6xϤ[cțO}X'ج#9"/Kes cG8~{iy@x9w>mkߺve)K-:Q##ꤏֶxs(kY}CZTl߽͚@--'(`)#~ЕctવuR_Lq*'nՌjA$ J#+d|8ysw0}a}xK+{Eն*eͽeGk x{$J.F֠_lDJ(v*o5et; 2-d#m]IE~s;HHF aWS \Bw%0Kދjq.殽ԯ1m\y[=kSaZ&K~Oøy`6hp)8o?ӓ *f>qE+t=J IGsM3Tt]@ ~uR|j|FK?@y&/󳐙 =wca|16XMo "}>FnhZΛ|\>סG)Tؖfev{?gzHSe3!ZHjIN8˖HWܝ(실ē+r/Dfi3Y_4d.iV[~7݁<64}QjG:xDb28uBvbH~>TUWN5vَǍ&|OcveY5/HWN o[UPF?e?{{2OodhCFaf_@ӿ(PSp۱Hò|9c̪a1I\B4by2@KtC.oE@::y7$i{޳8E{`go}7+7΋y\S~ [qWhSJpm D4G6)ӫ xT.`UHV&k옣%8盡sۤd>$ʹCt٧cr:uBs!|a7(d⪞ٶUSF"_5m058/#bGl9ƃ+ћ@}vǺSrheD>:r&Υ1*3?$luҒ&_f)DrhMYxznˬt?)C=UǐܺmZ~Nf|u߮q+t^ܸd3 }0PV ZePƜ4c%F.>|nXRuwk|"eMz;,Z_PW%Z| ׊䪧d]@%gq^ݕY@ˌ>,б+<mMҙhZ**?i623E4z$yBybwxpقXwlczvFkOl{yd͝6IA(|'[o:b$lv}M}!۴"A'⿊uvwV 1m?siy(:Em= Um5z9 ғ]8LIVN-[߁ jG6W|.'7D cO <''W S~e0K|_MK%)1\62ʉ~م}*+)MZdy7K:Rw*Nf8|D`7DYC,EhE)5BO|"Kn|imyүPOߖUbVY/F] uܿp}`US^eG:A4:IٳdG{ObIi'Bk˦/-U+Qp%NKƥ / 7r,,X~oC+zuFn;)lKȯaF?l@5Is rcD'g')!d,{I2dj P[( Eucz8{dI3ͺγи3Q4^uzHI\!r'Fyf9`mJE␳D£z=Rt{-HGu9FN*aJfDMs9lUu'z3]C/͛}cm]5ۮTZC\i=4^XjT ̜ŵo8YYr\t姨M-g'WƽeO'U[_mrT{snI8sx5%iJ=*C&.쥾'LI欰jw=;h Y 5Z Qo }C WwPbٓ}o憧)C^3z2MB啄&Cf)ԂiWd: ?L`ժfў'$ʋ>GR}DBؓ%I{Uwuje mWB4|fZpY |;֡1t<+K=Nc͸o)þHMWlϞ|nFl/`gk*= 챗~\mP|lK &ǧ=YȻw۴\x'4/N?#kt'-6QOƪS>m*jAKF9bif^ 48݌Ա&Sczmti d,q34i$g ⟏nT f|4ѳ7M%/`Ԓ phWwR-n*nFtήuQLleO0ԋˌXL4{X%KSswZ|tsAeX-aas%^Ga KQ s{i 2b1ޕʬ;Q$4c/~\h77̶7N?fERj9>o}0mvG-|a| [AR9iOq|[P~[GV,Ƒ4PxIwCu%wBe"taۘE/Vթj1TgDjt6_#wMh# °]+ohSr1IՇKK-5۴c7^sKoLL@d{G],vҞH-^O>0]SIVG>u+g7W8m5KkTX]KY+D oR/85$ĸTIxЁI."3P7._|ފV33W7h[.woFOĽ~^n>99l Oڔ}HG9l~H{qW L'ɘ]u0;GRÆ endstream endobj 205 0 obj << /Length1 2609 /Length2 13857 /Length3 0 /Length 15322 /Filter /FlateDecode >> stream xڍT  өtH-)54 -HtJwI tKww g{[kX yJR%UF3 PdWUee3!QRY'G:9[se.`Cy=@`cca7v23d@@g$J1 4V^^n"v@'+Sc{%hjl PZ]<FŁݝΙ d!DprNn@3 vJcBYZ9P;`)jotrEr0ipx de)`ne (J1x0~:nV&`R7H(S3YL dgwqFwOkcr273U+PZdaaaa@SK_j|@sp@_+s  S_ 02u-~Gc<,c>x@1;JW)* x3r8YnN^ۀT(mo]yŠjhePz,,_o/+ߌ$]mmm7ή.ӐjgyJODFZ9KZy͔\L-ޢr0LmOgR7_J {Sٯc;9{"7 R3_ `f]| '_30̢7Y70Ff7 Y7b0R;Y70F`v.~#0⿈̮ٕ#0ofWj8oE7/[F`K 2w-gW6ql? /o_+lSG+TΖG|Àh VIA?XANXehXfaӟhG vzpqɀAAζW=/[w:_r%1Ff^]Ag ]f7w`'g7 ^s8_IN 7-bcppg6=@p~'t?ESW'p]zwo(@iadb]qW#Bθ nu32^{ Ӆj.R>ݤY囑TY1M3Ƽ ;wj&i2..uS(w/nNN]C4%Vc!T6)źWm=8 '4W5i?nE;b=7uҿ158~/WU%Cq<,fg*QD>ܑpG|MSݠ#[M5NHZby@&LϨ,=0 mqu)}ԝ&>Q1ӷl+:P,˻ a0tۜdU(8Spw ky+>T^h֘[]M_w SľuS^W/|A3ܕ", oτ|RtFnb<Ҋsܚބs%"'99(Ȼr>Drw#bm[1mO4za4i>,xk6 "g%hAՄ rJ2Y`q.}W7~iM:*1|C[Ay |ƉFg^-| {*HU='"IFC@~VwT-]CrürNJ(0kN3"=1/C֊ /;,=ᝂ;~0JX֦Z Iw՘;1*#nzspT&#}k=.Z}bQ+o?Dq#D{pysLiÞq9]Y mG_Dؗ KT*j)8br-%MǞڀ*Oӹ eo"߇5|,/qѰ|c[<\zqiI͏W`kb>MT^3&P6Bw?]%tz~Ȫ6'E6:fQTL.n;S@Ihfv dW\lKNAH4+7,QâDhq_DB*ЕO62h~ɪ؛8cc8"I%XLI6|lJOE#HFɏ6Ŏsb wD`8ų1%L(Y Lϕu$NL8yBJ s1fHwz-i&IӼoX$Ӕ{匘M}4ce9Q{R*͡0R}ZzQ=wn^!7iͺ'>5d1,%_aǺ[?~~гI r{Ln<}q3C})y[EB6nTׇ ' B$w(3pρx^ رOֶ;ccͩսطK\_ FS8CG/K,ˤPUX h j18}2m4`%W?N2hibjmr8v"}dX UJ.=yEAymf?x@% Z4=)T15]GM]pbLxJn1_B?$a; ljj|F9 ]h\xs~8bE4s sNGwF3YU^p1qV,nlD3v)'ѳWyt}wah  )R[Kw*do$V M$T/-_yCT8UkNҋь1Ӯi"hM ]n+{WH|iűBhU!?P'Vr]yy_\b8xNH0{ BZڑtQB~I%6`/<0ќ& \BLqՊlW2~_j9]i`jь#Dek]-;&iut90u,3,W~h*];ڍ(-}fVcTPYCެ͑-.5TzaŮ1~#?$R>3be7GSml"=˲A,L6[U)`.pJ~ryʷQB lJ9yD/?Q(7h8,2[+D` |<3uM}kUW%'1zsA 2So[Hi +; zn+넯H#޼,#_l)Q E<;XMe*\6J΂:;W1iʨ^-bqWM,3aN#$/GȽZC6=;zf<a}=FN`+ÙOd=qyX8&>a~$y4]y%--qCoFub_$vb5L0a2@ׂ$O)$lC0 Q|*,Z=,U1VV.Tj #ݲʘ7=pwq.)ʏ?\cۮ6h1bq !&ܦIw1( LB bٲ)z :oX4sQt| ^?Y0 @`*2+o?uX g?Q3Z[%_ӥ7> 28$4eIg( gMr/&M|f Z:UfQ-d8 h]%sa[5rƹ &I?i5SӃplr 7<nTV1ކcE8d{WoBSDM9phzF @.~HoKX5>,MH3$1?|:vwj5>x<@^;u:HOyu仇$~ mh80t@b7$ٗ{/?,B crO=EUvI/<|țĶ"gQjz6fO#X$Z./ND IpBXVБw}#: yPCHU s[]~B).OAاϥVʙo(GoP{Nky!?YV| .mJU3s܃Ӎ^a4$= [/G)].V3C9bu]:GKa0:@58s $tY:S+kT]) *s!0VOu o_S״?~Ȱ;.tZe-͐#L6|&ցXۢr{FOIjtTU3f˸*v>?<ٸb})@aQF鬺f:{~ד2rA Eqq'6loSyAT+^'! %!zI "Y> `gRjXD!kQӨ:"FD ȇ8 ާn~ݵ,WoLaEA  Np)J$xz 3!}&AG#߆ߜO=lu1ru==7\G%UADL(=o_ Y&;< [qmn/M)|j,1k LK~ &Z[g(KՋH'I9{yO;; *I3c[ `=u': SZ'+=iqX*^ j-nDR\+P淓5VrGCR_"0*<.Η.% ;&`Ʉ˓_B:F:C-hi7WA9 `xs\B"^fU6 4k ,J\鏏Or msJ?E{/O˫ pIOȇ(+3Q'cR6S#h>n H)?`0"A!1~]g%P׬Xʢ(=jQLTNZLf[}u`BjCX=j HW A&zT:RdcV4yВU^N蒾WءEyu#nw̺.R'g7v~U'yAN ^e,¬Nrܓ-P[Mim <5Ho*dRkگt'"fU˸~.1۲ZĎ}aYCz"+W?9qH($z3u[?C(qëO$nh@*{ xgbc|8۪@}Z)+znP~Bm,A9`9;2OWbqBsho6h2CRjZFrݽYndPw:xBSXq_oI9u_tFZ"<箓$*ϓAU|F;fnEeO23^3>uwi]tBLĶ'<)nqED-r.-dmUNz"XXree/o}&vҷۯwq]YPgz~`D 7{ m?Ʀ2j„إMn]uWE$8m1q.?(],¢]>Rg^>S,\1Z7g4)T ߑUU<]Mn1@0_|-0/Њ|[y4<,av^ףƤʹҪֲS3 ; Cqﲱ cN~ww+ud":|u,]Wp5'inmc\mg`H`ccs &Qp'9# ydջ--y4r_cҟ ćձ2vr= So674]맒W9uQy.dd-E( ]07|9?aPWj[RK?b-j?-V蘹Oy .{[v%t_|ޯ{QZd&^5KexXh#t8rXr|m9kOW-*9/*o~0F+̖ vݽN$[l-BcV—S `ɸT-R9$:<]2BeU&1wB)Lyz#vU|%G{4i+kUE' >KmƬkxATQ*D)/RͩYO )ZЊ^(*g5Xki#ϔ a?]2V-7Us|#{̞?j+9 r#Ú LJ/L}+7,&U׾h/U(AYzI?9cŸkcʝ٫fհFBA]"+*4PkOȽ0nGD>7C,oxc3Be8FnI SKxJove=_51qʥv۷]ǕƦL˰|.o v>]u+i L-(^n01ȂK|'{IH䘴E^P$[G(hBExzNbQVY,8hα"m^tW^I\Ч$qOI.Z b`TyK8.3Am#=4Y;$l_{t|&!VIi;͒S@KV܂s"f{`'2<څH`˶\,Z[磊{,LL夎ꃗ ƛvbyW*ő֪Lpb&Z?0$葮J`տ Λ@6~oZoޞbΏGDO 72c;zX.MQ`[?p8{EAtG;z le) +'epɏ\|Ϣ~kcdSE'2pCc[>5)X̡&l£(L|2;H/Ql'Sp^vp˅&+_cXc?f3*UtXe&ݸڲmNv '_jax<13-(S7=:yz7cY~J&R{f@GKR% yutD";Da=r_߃O+h|"( Gֈ^j•Ym& !V@scsFݼ2W-gvz+fؼܪ#Ԍr,R}L ZAs9S %NʵQ'W$9Ⳙ0iX:c ­,i)D4ws:?OSp @l3.ra>S5o hV[X^t }MЬHvi}89Z RG QUz󽛉 yF [,eNOC:jn[.ȪTL oh%r:." w*Q']E~p{;MD&+|P)-xf ~@\zlO-&H?rnHLz|+#6D/_6FԶ3+[_L3j\\ +6Ԍ$cl_9{+IgPͪ6xFrY,܊zQ.xp\'0ϠI[\Qɋ꣇`#kk1e|=S{ޗ@|(L'K}'|㷛c!wVJ ==+)ִcedKLeWIx~\z}Wt۲O?9> 4o 3ZXAr/V<[X0W}Xţ|nQU,W Ɏ\zQt.c!_)SٛIHI[k]eVBMXW'rطX(\OM%xm2ɶ#1zGvofM_ {|(S*%(կ 5WP; FQF\QPP͂{]fd.y>!.NԶ!I'}q1w.;RIK3*m#*rN80}oq1ղUlx49bVCtOiWu lЮ̈́uB#1䤽ݎVr.Z""8G5؍3j.v6IJ;%4{Ù?MCx^C ~ isQ"Տt.L-]`Sb--1 {^]gD$ڤ+w*DC(I3 --7^FĄUpR\_ln7􎩝j4T.WpQN"ՠ>Np2,)! Ay_5g1f>è$9bLDiR]E $c~bd-ʒQXg:kz;MmB0-Ըߋ\)x"9L8TB$W̐k6źWΫPYE +[5r?1h胅A63';rtxԀВl&.A氈Q5SaH7Haө\Pv!ˉ,( QRY!49zp|iKSZ wv$17Ayb`}ԨhYހĂuϧX9¯^+ :A"!z1PD{|{+b _L6 j)8Ux5.ʃS7 o:n!ñ|1:&/EDO=S'4tDv&qΘ:Q~hm+t*zyλո4r2:0$3([jB+/swNX5Ro &oDOc&hh@Eoؐfsm6ZQ*ˁ~'=_Wf.leCA#{Z"-5`mj_O|VUiHs|b&@F&E<`DCBxT|l5S3~ۖZwW.29%? 1\oWS\R4Hel̐)i+qy""< l˝L"Nrq[cK̮>8@/U1%bU448s'rE{Oa:.j3i_:cDRCkObt'R :OI,RJB z~"DE~sԪdo$W"m  ^ug` $==a=ntL)CJ]4恦 O@\݌0n48,跘GTfrRل3qo4p -E /FkO>Aץȷ.[r7 ;lC-%v0_{ ThxNjN6삿zE]2\Z~)o+|W^ejڷop)MAfQ+3AOHWHSõL F#t'3,d< VfxS2,voOO=YR 1U&~k3%e( s_=TCbk XSkJ!8v|U`p g" C~%ޞA; ;@[ں"4YLB9۽V\knSe] (‘4aˡ5-6jžzp֧.μJ3A0yK+Ϧ棆Ѐ%\,o %|E%,etDoNs:}OMMa\ew,Gߓ+j0Sy#E[LOk&Np4~{pE_/wI0hW*a|v {s_^D[,\!Mmh9B_h9-T@l^m]zNk!]-t-䥨E+02Wmhn2Ź+1;&aY h>FqŲza暽Ň' CR{'*Y`]"lP7⬀5 5>s̔NhG*`qxWna“pNp\j|lL}SbWTbr< y!*NV17!|_w 9?X4sZ.]*P$ llS}79k zMuwfGTYP|CB ߻Fzm-shjeS" :ip\YWrДIɬٯ$4wRl"ofkˠM_اrÖT< uo8JҔNGs,X l[u*l򁸞0i./DYʃl _Qt+&JS5Ϯ)wL|y HrVJ,^ iu SXGlT2#7Ce)X YA''Z.EO|N^b).3ٌ@Lj)=SΚ4wJѭr6[Z޴7L|uzU:C$=(CЛ;5<._* J %cy.ڢlE>1d2RqMJ%_k&.؄^4i`"/+6*l`#ަٕ,aZWTzr0bSQ?7Py%.pt:jO-b]j]/)EJR^&:cb҇'iAձ2BuL[vUCXM6{2Uk5F(U| PjtRc,d>EtlZ"03;Wv߭x*}A!SYVj?#i65·eG 5Ө|C( endstream endobj 207 0 obj << /Length1 1880 /Length2 9392 /Length3 0 /Length 10562 /Filter /FlateDecode >> stream xڍTk6L+%H( HwH 1҈ )(HKw -"xs_֬5\}D%c + .^n(@NCWs|8LLz#o9>AEe! !2yiT^AQ^!Q msȃ! n* 0\!vdVl^!?2N`W !NȌV G. Fx', rs\m%8@ Z<9j gЅ <@`RCH75UQh:i k8^n+3 zA#΍Dp@P_ G8 rAAH?Je dr8#py~AYj-srCp_C\Vȹ{uPodZj͙V)-#@ Pv=x~%r%F s Bl8 @}}/XCK-;:R # 0" dd5 #QSא0O O "$ 7??Z _T"}E ֿ OaH:oZ!xw?eVOqIg7r54`s9VB ABOae'>dxGC~8.^ tȥr@*pi#w)V0_' pH |x[j n( t \q~ GO$Q !!-#!?HD x,#d/<AdF?A~anr@x켜wo /7xeXpZwοH_g u ~KyI9# W'‹/<_j}|*~'G*z>VnR8[?.r0l3? iZ^m 5@0ةKSp L֚+ yAɾ1iґ%I9н.{ȕLc J_xFØ%KNʯ7-#茐.-պiHǸ04!|Mj⦧l-\9׺ԁd4zPSkh$ )`oQD_0tm͔& ^GƉ$YK ťWeS`!o%^V'L#j$[ *bUpP&Ņ2wNGӷ j!O ϭuZ7h۩sg^4( tRyD1-)} G1ǽlU&M|m䌦XLTZC?WASp[tݻ\@#'`†h%k 4ZaK=2Wѝ箳`z~N 6!jy1& y-+vd毹=ݛ0EPdUU~qՅxfs+Bub۽`Jag;:V -bO((&8ȬHeֺւ+Oz2*x"Ul`5g!|~!GN1MҙL~@q};ƭ8%ȜV~ކUWPQޞV/_8LqZ@'#SuWtswnGc[(ی%ͼåuGU]8e*' k ;@a8${SAM\KuEPywzʧ%UQ6|yhG*3h TTJ(kHd9vjtfUJ5'(,TVŏTֶPg603;"WA?mts8M: ֏D[o0{bd4O}ݓj's͛o ۙ=(Ovw[uF*K-A5m }u8GU׊j7pL ey$ "cXb$qhiQ"ҕ9t6wܫ__r:CngWs'[=^08.cV-]S>{*SA58G,}klJݳm͹; _|\pLY52 ƙ,>ztFpr1;S!i86*%]Qrױ\d;q%{G'R˧Lŕ p DĎsKaRt V+DBHc0]RӔE _OLvv>OTDK*@Cm+-B'=J][5AJ7\6N+gRR: \bg,SFC['}x7#4i*񯟬?Vs'oYWѯVuL%>5jV\2cVaN:_LE;J>E49Rg>92xfGwc͞CS>p(_F_k';b(2BH /GfCR$u"Dp8?B~z rE|#$ta`nr8a%䛚jڡ#)]`^0ċ=N7x'ͺ+XeLͼc*4ut")[LEƥn6ac`L^jĶ)ۥFiL=jQ$_Eݡ}{揋M1y*Irh\VH m /BE6#!®נּ,Ln4!$֝l/گW M=YۣRu祩y/)0uAMuXN#=jhkn8u97tfJ%[0.O;}tBBnA7Y#h$Y3H6z٢گ,Q4[q9WdClg$8>u4modUHTw^L\aoyc у-N(Xʺ2dN+b2L) isaΓX|o4-(<ߵ)BԊ,JfОm5~bN`~0zznGjתndML# ܰR]_n>Metܽlcb;!4/MFX> }7-qu^[XmZۨO?(J %Iюg!fpaE = nx2!^G};z,9ʅ򝖹UO~94e[Dr$ InIHU5b0l,u8yyv&WVUػSbW3:W2;P::ϰ=YpkM?~ejGè0+k|c]#gCIZͳc|l*HGmɈLIS%qz6O@ޗjGT}^?LH NΖ6s\xN崷~Qǧzy~#a"}>ƃPf#'ccʔil&GZxt<5f?hl{:o=b }:Fe1H@mr~y3y.gF-vbPQ2;ΥY7/~RCA}b^Rv>:C}Y8l&X o9H[ՄByt8rܴ,I |(?GJ;mVV}>鍋h, <璾ثzȲ7# V6lH^ޱ ɓ6pҚ])"wMAY? ţkSȌ :~8:Īmh`y౾r7lP<嬶t1ofɞKXU^ll6|0t:4%i?K|Ͽ5sgX4R/Εv yO5+ RdbW xmBFq_IVpZU=o-Zɲzt03]g0u#'q=w7L\xCa}`]yώj+^m Iu[]܈';E T?/B4ZRGn]%ShsK//„9b1[Xz/tPJ/R%IPAPVOb. DL䦞+9|pP=ռD}{w*3j!A<$-ˀ?Zp ?}LofEk}NCg5mazF2Z۠Rlf|HaYBoRӃNBUFKu'J [g +9.4HjiKY^'HFfx=NەUI&&M3E-Yj=iQQyN%#Yѳy4AsQlN}l7YxyKrvlTEVW8mq˘y05S%u7@ I9h(qZA0vإ8AF5i>< ?ggl^go~jx'Eb[bŮXfmP0K%eia8le h=Af@f"Y[sT|!Yq+P4 kwrO\ 2f47ڷnK33Zm.oҼܠW0YbyߞaM h==6BfVZ{NݹfTWg3ZQE#6kUh:,Ӌ'x5/Udi! 0l TƐ*wO+猗b&[\\ Jm5wImj]sc^9D05/øZ]PzE-(-dĆˢ/{h#J2 |kEM-d6)4gqPFًڇogURDʈwgW}hsI@v3Ihl#~Y2zT\0;': sOⳃΉ]HZޙ X6% ׿ĕt̜ 3+\<k|)8nX'xY-AX'YZ.'V<Ϊ{H龣jpOR׹ݎrѤ]# Ε6ePp&K [r2PE_e5.!"" 1[!|xG~Cƹ+C!Ɲ˗~cnmcE]6:X@ٓsJ1f.`]Z (zTp'Җ.̝ntFÏJ/[): MRZXsdE*'w Ar54 8RΛZo#/D4"X X&V@B-cQzS]|SZ q7B?QZ1t߱,ʇ̺<(9z_YGa't\'OMk?@Q_х̤z_捑Y&^8l=U93_s'9&qnp~Ϋ(uXW `IVưC?F5#}}Xy{&ObQ2 ,Z|L$Ytܫۖ>ge'1)|Qd{R7$yX|%kjzcc(:Z)Sd`U(}:Ubw lF˻?Cnv*ܝp mH'@o-;s[ lz-K'D- MeqwFt ["ٶ¥fq C o^jz*ݞ <}cg>Ed?,908=U'~mS6 #\%EAԠX] -ZNsNҪ;"6*PP[Xz"?#VH=u:> stream xڍTk6L#%C04" ) 3 1C7 Hw 4J7HwtHZ߷fgkuY[O)!| ~I@@@_@@]j[nsv#;(eD@B$HLR@ ( C$@4 ><nmJWu9!`@js@ezH_!l\]%@~ ?!7/jЅaP/M/f}_r=@ ᆀœ=Uu# _o_`Fx+= # .H? [ ~W((s8]]](A"*tp!\]էwAPvo`G@~9 p'7&(2k+@D@@@\@s|B>AH@P &*0j'oDU cp;&50׿o& "A=@ oEfo[[Q^FHr UրAnUuCam1]06b pLu@C-uz[CTD@_'(" ;;QG!PHW E`tQqaP7"q_B!g0=\ #($@?9   VBK `4FqHQE:U$F٢?ԨUjJsJs<\JJ u3^Qta0Ov yd[xQ.K>g&1cFyIZJZ{0dtʗgbӬ-=`!Y%MkUmq5k=,:|{= S,S'S7bB6r4lHgѲͻlˮ}f1Φ)n?0"1rQt^1}ӻ^ S(- ~̜ٟCG ș|a>=B?j}/̓} x%Z* ʙ2 ' h!X!(%t uuѻfED{˿Σő%OtHUuIVŏb;08odzv HqJFZP=!0ɨ@c&Sp~mP=X=iGNtP!#f}>$6߾ >_^ΫVȐL#yF68ysRb7[l&aɊQm"0߁w>l%as\Y{5 R&MI#o)_h߼$xduq"YJӮ&R=?Hyj9ݷvOnX?M{Jng |BfozސkCBu+jFJr:e5qT$&) f>iJ4{'9wtIQ||<r¢6׼=hHfAS :b8]ˀ6瞑 Ժ/`a@ V]`ˎXa 2j/.6 %h8~&<~_/Rs =lF{&:D]CA1ضT%f CRU ٠+8b<|/md} X,Q-NTfɓiMw{QGuM (@{kdKmk86bu+lKt]XxTuK +cjsvϹSS>aB 1|m3)^j<з,i#v_4s h.W]ns9y#7u}v܃Hpjn%({ܣ<@povH Az@}g \#r^S"Oyu&.#F:ooDT?"ڮE[>! &%!DD߽%I!Kc'/kiί9W̓5o\z׷4 cQt\M*c") Jx$ ,|y2F)05WnHߵjCܸ}D:}x8 _HW+"Ul%EuLptmf~uVs'* ,!M'+cm6pbybPbl>N/9 ȶ5L洢4G /q߇gΥz|jd EȉڨP6]sQP,^eU`)t'&Q;w.V*l}j5;5 _T˪˰SO۹K(Y]xuOݞ^&St ^zck>l&ة}k*{2YZG{ O;Ao>3m*H#$K/TrhSoɰǸ ۹:5>˫@TE?nРangx',ٵbHUf ϕߚ4˾Z"VJe'"Nx> 8(taOnD0#lGitB|*ϖ*YZ &csED:GRMRx_\KZ>r-WKnw:0^ 1_ c6ަGZ&7xL{;R؋t*X9qChhGthP_LjrSjV}]V.q46?.#aTsXc氎sSEC$Ò. Nz˜q"y^2Q=|^t2QzcV,Pr`Ŝ}Td&k%#~Papwb82fez$8udr2-ډZBWG#JeY,,!6^*O_ӊ6˴&1 n@7+x՚C}zmc#9jvRoKIj˛vw5“Kbeɔgjߪ_[ZO*X~oPN<&nxwXo(wR)DX'RLݾ~ qe^ 9k-4yN&ӽ}SuF u5cOjM`I|Tv#!$ YYJҧ5`ÔgUEq+a|RTOuV?J087p^aqդX;^[ OAhVȎ i "{Va#]rx<-v c«}Dh2ŬuJp֋;ΟSO#K%tRHK 2S׬,U=C!S[a샃I40:-]7%GaZ%xm&.sO`s.jKsK,tG$YaB.\]/"MP>F@~1 r. O5 e#EOaNa]<ֳlA8W Og)@HX N>v]Π_{J}ph˥'710O5GLdlJ)frk߱u]^x?tOA%0\ ;YJNbIzh-{{m\/ؿSEzOPk gpNE8FD{3c2;-˪.ad輒Z3/_ֺeʌ=]Dc?R \ḏv84\[n&D@EAD2= #,,% ?|x4}qY =[BBU]ZŒ84SAj!Zäa׻7GRVqS0Qr+\6ѹ!ބx~噖=ck'[`@а&7_sd1V*AhPL~U1r1?w OZnx`x #Q2yz. /pNEX4T gs3fP\$ zŗС/rA{kVSMdA{-X[ꚀxezUG ͗vzvH1OSJY}]+R;M;izW:^ZKft*䑭lݟضp|%?Yxd~hÜu"<糚쑚?"FD|P^cp&:$}8^q&/fKqvUzTv6(qz5#)|Q_7ۚ! o҇ ӛ T8aD +v@Bs2§c9-r.YTۮޒUn@<Ͷi^ZmZcA16`%,5&\1Jg!vZm@yf~%c٠)A=F=νCF f*A]<'o}@}iLoREaK`.1HA/ͭze:Xҽz<76򑃁}>bb3\%zӱ$ T3 rfl5Է0 fB2#&jpE07)F"47j"CA; yf[KIqkA{xF^UfN{n-6a퍅m+֔n𧉛p‚n$͸X{MmED~M.0%)lx#}2>lkH=Ot[M{:l8Kͷ-K8Ǎw*cv#ܩt$WjD=hZϏh z[v@W,W=Q6ҷN|*\[jOYnN?|)Ǭ?x2xxEv1a%z+)1އ rT{iHдz%ڼL:pȸnռJGWh-杧[}"ߋ#9mߙ&Bw^RW$rb2 u #vS)aqlΧ>Mes>"ՋRnf1\@UIx*:|Խ*?n-yΞ,.%f_qJ G &ErK *AVg,|ҡ>NӶ̺YnszxLR}˽]*RG}Lqtu h-bp_ 9˵]/5#$2+dy/<X} @Ci]7B@9$Oe3eU6+N8d=W9O] ?\oS=\2FErz /MJ0}|/mvPs>@FNt*M1[: 9@avMԧt-Eh^{,R9/BTn aHT~X*>Wod,Q ItW}L015VF6"7StzjG*\ޯ4\M[UN 7uDh7b+i松5MO1IN\!6|$tgKN&Gcǽ'ƚ-@w8>8ߏsnl.X LrxQ_Oh&U͓.CՖ!iamoe)Us:xF]5Q^ i؎uf՘+ڵ?He/Qq+ SeN&>Zc-aEPق0AKe 7T|tF,Uv@4HYΔ3DRU4߾FͨzM ޡm%@-w׶i7"KkekUhY6HL$˄,ֱKwI۫F+x6nSwIþ~FZ9-/ | USnn(BkF_dflv+mjIKi 3~#Rx ~(tZ^$Y+[ XpSP oO ZsGc:7vkar{&43Lw*k{+ibS(yTiƢԞb2ղB"& ݹ\ NT$/y,jnÈk lfXBWA C${ߋ|8h swtV-\K'fxU 6EKaN)JL-epTm۵:˿`4-!C=epb6 鎦4ә_SqD-{hIPlia *E,;On{Z4;a)sZdDK*i$ M~d-[S^(K߃5_kzcȦC4E6dASЀtMVH_pNjgj#n& ]k6:C&.SIv):s')%A0E:nj?Ͻװ1gJe85AE3 r?fU _)Eԗ~kRÑjP{@d*4[i7zZ e3bwXu2avsۼJ-R/g!3 "C y80^ 5s(Z vnJj>0 fDxvg:_= // ݱT5Zm)K?:&,neNZ>J9][FG^u _PeG%RvZvuזU 7)BwG𸣊NTƩyd*sW8#N1F@W,6I2?3te oPV̖O9OFW4}]|υ8>OH٥lWq\B1)ò!cMvi]\_F_HwU%]~9DCmb0oٱ$L\ȁ嘱ch)߆Τ)T\Ck4BZ g&s;ՄOꙶFMNB?Nj<{&X;Xo b#۰H [}Q䘒Lio![CH:B7Sb#&v/Ӑ1~Îf N ^ /MHnAbWEڣ$*9Jq۪>4G9Qߧ[)bxGVY ma4_r=Zq8(ܰ[ԏpzUA}w{X*;9^G21{En6%:tiM.SC񋍿 dG$4dSDB|^?ͺS+hH]x'x>-BњvG94nCrf~x^5qw`M&!{rЃY|~g-hH+<#7v>ʫPď QCa5i'GWtM m2iR#SzeHmrKRNTyP |J=Y >I]{# &zUyiH1QUCZ؞=-Q3ܔQXLbV<sܶu#z,h6a@{<خy_aoq*jwWV{c-y2OF_nzyW1_"[1O AJz9ۥDA 1 W{p Z0x0teϜΘ7 ng='){0s@~lW9 aM'6߀p']̜u7zX VαvbV%KcǕǥ@|tMX 4'azB2PYx]JK[/l嶥mJLv>YsyVgֱ[%<1(6j?req&N"SdɃNT93}$<hy/ڭ7k0塯lu meuw92j9CaUEaE'љKms/Șh)KƇ ^©*zV'}, l6i1C#inFg25Ց4{m%qɫb%xBe]9}tO^t+cj..*TFs3on@I  QXD"o1 P{9cL^R2+eЈGs,<>zKd@x^v[F_ endstream endobj 211 0 obj << /Length1 2100 /Length2 12559 /Length3 0 /Length 13813 /Filter /FlateDecode >> stream xڍveT\[&ܥHp/ 4݂[];wz_=cVUu>{[j" S I# & d1"QR۸[ QjZڀys0qM G=rxYX,,<1M3; >Uf 󿶐`b>~0jnAn`שrrE qE#.o `x .Vo`̲ n Y7F`?8on8:3=If? 87+-)m~g zKrw#&ld72? @0? łAm/0+8pN=-N0%Pv3LwOJWe[ [ .&Yyp\{+킙 ^_O^fHs 3ڐj"OƝ1~Ӕ;mVƱC>)8̌%2^m]K:zoF2}+2Әșx[so rDIy] I";̭(߼Y.ئY]!Ḳyl:qOV)γ }}`xp+"P#h" CoXJs%)( T KȼwK_Gj]B,od£|(,՚ Awtk=ܾY^O(@̇JΤ%&O@{߶$^_ kbF[Y uUB#4Nt>4j\?@Kd~pxr8zJΞ:{7(@f5J_ECWu$Ƴ #M {ՕpG@zQt'YH`Xu{M4=kwȵ$"EN} 3P7-ڞ負`V7r&U2$c.oz}콕R >Js)epeCXJ{zLͪp6T(Ũ`lG>c Crۂ/UBZ)M?P~.ߕ;>ïVdJ;MTK쿶K*Dv pUe pb[4Q>B=VQ*;"e#WGJ;}c_3lgT ۮFIMJc|3~Мu~Z~ Z$M!Ur[g(GKɕ6]yd<&ărSAs#_v9m~gя`:CZKR[f$=c&6%(d|x|9Lpc6Ekt̄{);T,CRJf%"nRad`FYF;:L0l&늶 +$x5K. x̑M= *|ݍV0jfͱnH {,,#LOcR> ^QLbBX Ug)AojSɀN|̵R8& j>3?c'(fWD*+X̸L}=  Tr˔GWGr obE?(k5J' |Q㤟G(\ tA1 <$Z;ANl;Wx5lYbJ>T0YY"E%%?GlE1vG1tQgfe.$&Ȫ^·E Q&,X|@S)0C&ٹ07Qluk {~`bi7N0gU\b >rǙ?ƥrYnlfg64+ά /j$uלLs٫\6UH'ݥz%tvrHs?VSmUʊ{Z\h}!坘^nclv-Q2_;'_+xfb(,jay\ 2#Q!fꫠ")a{n"~$JQ7=Ch;$#UTŊam.LC f"x,O07̬`0bצ/60)c|v~{ԍ\ZMF(:i0})E9Į 0wB{/ex@ͤ  !9G^ E]QL01t-pկ Dm%|ݣ#gdJ|Sz?ƲNN (2 W'WTb'mN(2,3hq'FZi5I9qK["Mͨ +al˜!~C`Gx.>/IK (7LS-*Tfi5"u v)m_1T}Gxc/JA_HԸheeK9 ۳kT|2eӽ4R\jb2IdSP~@gB(Rhg&6LpM.:/,/X lK;_i˴UY)a$S=YF 5jC$ b`5@=S:xyهFu$X!+?()Bp$v]YBڡSoUf:!3DVYqozH;QET[7Ru#MDAϰB/RXGzQxw*_u5CԋAkf^@ޚ\AzT(Yѯ=%nsi S 2+` m( E qw~D!#ް y7?s@'q NfpasDjZQ!V/lW_*8hSWӂoY1s dgI32 wQOφ^(rBb "!=Z7|?BŌQoQtF^m p(h>YZ0 ?( -=~Zܑi JOs~(;eJBT`uxZfU('Gc@#xSd!'0CApBs!:v(vN"+XK#y5N HA#= L`}Zb2-v4"_sY%7閞@Q*@Æ.sQj:fU-fz^Jaco\O2^}$< ioBj|o1S&.cMo|t<}[מ k3k7;fT\!WE R|x@T捠'X~bLb6T@>6C,fyv"Ӧ* j=y?ˁb{FaѨˤ^8lRI(T0e-p_UWK /cTpW-SQ}?MyM^3l8\$~43'$Yq t$y 奞/sD\e#+6w[e-Mrv< mx] |siCyjgOҠP6mG֠H;}7oGcy*ʜr\PU;֘0Ff}sFBCBNr0Q|kJE+2;x m%cTH{Ez ufur~/yk,=oB?RW+y=$~:|P:-[8`#}VaQU 3޶ALNt'Ӓ=  z|V jX.^: F3)g1:%n橳e{r, HhXM:h4xY϶0c8K熺VGq7Nx,^:$C?4+j!}00p6!i@o$j$d%i]BeEunq e?3@E5=i(}Ks/߃\@ɗwG_ o-~bh1svϭQȿ 6J]ĆpU-nD_wQ$'&jt)qp&5B2Ƨn{3]3>ߦIՙH]B2Cq=ѫZW4)VEX Uz1z} %aApuLўu-UW1@'m4vwz2G?*Z^ > ,J^-WSW'ro竴~H\̙so=zp>~ك~k@BPGti8\̢v<96ҁmԣWyD>Ffn~k] kDN+ZDG]#i_Dt_e:xl)5x+S 'KG GtUTw$,(D5gǗ*>+7atuPo&=KzKaerwʔIha%.Lg<+7ÛU_U Ӭƌ#?ޢԚp׾ hXҔzEk!ǬOwbPlOm8Y*mOĬdLݘn$*~c lIX4?dڞ?|@z7p.=Q8jYMuKUπ>FPc:`xtƍH?NV hGn.9##c_Buꀨ?dnyb2MYG5)O79XJ~-sT6n(kǐ(~j݇dےw}V18~${fנQ&e7lUz9{ 9!] _LR[&bMBùWӤHyDxJnݰ-4z͊}KKN }|X3þvA2:z!q|K@V&`̔6RUy8\gNai{ʂ,MWm`2t@3̯jb%(D-p?)+ߟs;^<:쾘{q߇(7oj=pcDa:曱[# g3hP MOc'w#oUa_I*g2 往q9_*C4`HdCyBX5Q89YqeC'͏yEQ"YگL~p)H`7Edtl)[UIo/\rGTr`T:wғ>M~.Dkp u8vk䩑xs'Nl/%XbMdQyRL\9?BczZIס;`@ܤ5 3-4s]/ 5c"*iҸέb!vct~@'st'If,ֶ0h `F;J'ˮJLV ?D߻|d=i2AY'`|.u qgYZ_[w=6쥥 fhfJ d=9ɔao9;-~8[*}1 QIL6XTgvpY%u@W[[-M \ sKg̣\X=brC*[!KĬ7'C*C0OӘǻB('Veڬo!*sP ud>NF5HQzˣh>2e /ʂhq)ո)7? 9&%%0W,bNL+uk%Лܬ7,Uje@_jZ0c}4p#6fWv[Zyfh۬'AZe|r~$yF!lE˶*l>Y^=<["֑@X= oP@0~Ut.Ǧ[Xg~O0r>3D; i{=9YPV$WTyܢ9J0G9Scy",faIid6i+Kbh-\ '/H' ^L13G( ͨy*M~%;v8^sF+3t3C ތ@ϪE)_ zRGe>YFfjVBAÉYGS<#ѲMc??@}ہri`IK ]O@dwH" ao{#e03`cHmQ~-Dmu~uScȾN3Ö Xɳw}kh-2iGBE?FpZRQ%;ɱ޼Kn(*;`h)6oMz.6JKCծhkNYxfնhMqC7ޜVI.h(™±p-@ʠ em][*F٥$v -Èټ6T]?E`2@^vLݸq/@ַ cvg{La򷝒t_X㛠M F~>`ˇ9yE]ASlѷvIce(QlrbvLes!8ࡥ6wԛ1sSa4؄?"yC2^AmYG,lۊָj]uthf.GP:/ Cd&$r+ats-/MX%q_뱋{ގuÛvJ)hӱ_"4ǣ]J#IeRDu^@7âA6t1S0f9 Ƭ?!ڂ03#ݺaf0tt͊I5!vmcfC{7w;3T SSy])[cH42FVz-OͼPƆ&EtM|Z"hx˶q~s.2o!橓m+K$ Ds)Q3\-DI(O>ijJSPv=6WG *׉iE_?׏ ?|9U|!Z\+Ϳ4WiZ_vZ/\F~Lce\>3[BPV=m,JgY켇<eUa8yn 7n }oC$~Y&FI28Ue~M>[)LLp<y…iD6yڐk=rF1>FKoa_+^}he}JH¢W77~G$͎M3'r:MLj1;ۋ.È .? v:MC)ȂZ2c>]Bm,C?ģ Z]g`!ۆ 7ᡰjHoA2w2IBRy=N`?`ܚJrfٵQ[7sFGҘXm5ndׂ_]rmJ#N]uQ&:=U*:sVt=pObuGzYP#ys=am{ϛL7^%b^)NS?{6AGSKj].oV ]@`t<𒵌Nfcoꅣ Qc} >/ djka|RrƋ:{jSe֔qS̵ ?{Tgv%/Щbo:۱Jyq^S 97{VC JWG%'k +| H9v.H7+G?f\}ܜ1Ͻ28ߖ \DvuΌ5tM*:޾)3Z%.u雾k9-Z'ISdklh<<3 'U>|]`]/,{1!N{۠% Q:@`d3[!sjwr cyMqYxe.TΖMQH;c뉗yz;"o.;A5: ;ѽ1옭e\G9䠺'ۭ8?w#V ^b Yr9uvAiz_Uhu$ 4;8D) (s=&mWwj' |X5'JYVV{ *6#i|:^D]Qg`Dmm˜-ka^r4:Tvy(,\RcW Ǧ$DmSHPvo-h-͍Ll^!ٺ7J)L֮Sγ3f "|o H׫)( +zI_Ԭ`[&Tym=cW&4L+Dj7^\q+ {DhD~&M24F's0%ԓ[TZf pn20C=ݑ\.B()|k8z5 *3 [|2eb;f2!BOB|ݎI9_ ($K%BwZVJhKpM2e׵=fIH '>}7Fq9V4(NtMM5 3a@$w:90`/.˽X M+P7ϑ9~0ȉP5VA_\2 fm.r̫z%L endstream endobj 213 0 obj << /Length1 1860 /Length2 9558 /Length3 0 /Length 10697 /Filter /FlateDecode >> stream xڍT\MH# 0t= 0C7"! ") "!- ݝw|]8;`UdZ堎0v.@ZYS%pܘ Z=&uDldapKe#@z./@ .Bsw%@ub2HC\ 60x?@.AA~?`l;#P L"60'+Z 4`w%Wsߵq`2l j4V0s0.p7GK R vXO6_pqps_޿8lA +=*-ۻB{s $*qrBxe-`G+d .`^߯#8ZZ*͉S~)\ @p CK X?0}\w ` `k#濧`?>.O!>\௯>ÇhRKAWFJIA=>vn> ZwH!ۉ/?JV*PLL^?\)ߔ0`c`>n0(Ck?Zl qs_K9|Q$*[A` ?gﻀ8ՠ_O|@v~coPYGr={aN|.Z=q'#w XA]0s>/џ)/ 8e%A? T~JO8%nƿi/!> =MK~u7pCx A~[jl~CxS~7eS y:-IK y84Cx.!< doၼx`O0sz zY&I6 rz>g1]HQ,n3mVr̜MX( HOr0 fF~,,jwdL3:kxCD}Pc,9w8)㋚,^ƃLAN;~v cP`̙ͤ43Pu=ҖQB6~Z 8 ~ sA5Cqy1̒M5yw?W\Tk]^Dd> ϗ.k:|= ѝZ:l _ZWO拡=0rWt/\r7 DWcqQSAo5j n>pf73l3[v01zH#H-%Wo_^Y%ZlG5 /(9m(3(X!3;,f 2ɀx.ZC 7vs`b]ӎ#{M4 :;KpϬcBݼO1>{銝G IFsM?ڐ’3evW z5qϔ2&n_~C_- szU:'f8n 50Ov@;#J)SsAsGg~K{x$|w(ٯ!/_{$JerS@oX/M)rڣMfS-Z֯ |i1\Dh$#j{y"9QamNŴZca,ہCEmu/b Od;g|M-#4H\|;}k:i76TE 4<ۦ@L& 'c:25r\\,v# 85T@:J; Hֈg@r j~>MsBg'VӮDע k>-c#OPSKq Pzܱ;tJ>e 37jd1$c#yڋ_N8?qjB5Æk/舐][FHoo}ϜomPlРSےR}@ 9=`xiv+A+doS@{ Zm&H< 8ݎ#4\A> Jl e8ieƇCklLu[k,?\.֑QU qAuaIrPॣ#+"&! +KBoBuaz9o|z/8WEG!@d ;ĻFIEfn` ƏղfKJECZq&S:bQiی9v:gmj:Ġv.b i=_CϺ:)wgCnUMd\Ó j=D0{VOb C4[4NQ "‚ְ^;t_ }HiDfP: oȏ&_GwrIS+sTR(a_Qr>8JOgyz1r9t]]l:2ES w2̘CxFF}6z\6z$;)M!6|bcrˠ c˩T܌fJk@:|zFeb.{5 x |U3٦|Kv1N:7EMh|hI$/Ӊx e챮I3j6C{mH5:uۛ27zϣ]:G5O0l>ۍ$z>:ܯ)%CW8Ěj8Ue.`{Ot dȝ5m:!U4[ΏCVm$Q ǐPsh ӎ=;GcxWBw&z"(<}n]*K$?J,C2~:_~?/|mi2. ęQ ǗϺI-%%3cL ^dc !EVz nwPK<8? Y*HXAMy tíŶC cahU~~vinT]Ub' f@ŞdۃޘNΨ~πnPkK!.qA '*?fߥII ?sCtH02e2Cd|]H{H3᪡$CgY9݇Jg=ń㑆}Zg&w)bُ)x^j }A83 ilѥ~; O2da\":̴(Z6:{@% J:~@qy5QClvvŌ@}Bf; -v辂h 8c΄n3L-: ި#w(~j;8? ucDY6cgU.L-e)`nzD4,r}oD'Jy#6,gXب9PCFՔQk 1v$l'DZ#j{fVcnx!6PUp+򓬹5Jd[hvFٚUύ%<L_1pkL:^7{`9 q n ǫ&'}iύ5*\<'67@dgƻe0흾:[*)=SsﱎictM^DĒ-ƄZndvN; qyIĬ}j"GPZ= UL#X*~"i3" P%c<-6A{7ff0Mo[BFnj:<"nH7w\{nuL9n}> Gr:3|Aӌ TIA ySG\OkEQ WAGO" u35jI۫ k?IwT2ZUU\ܩ,&4^ʼt#|~uߝeIpꛋ!["ҵG̳lĦonͩK+@V՘&;ˡyGRslN,gZy _N=9|f< ގXxN l..egJpN'Tp#2:5ufG.AGJ~4uI-/_q7dFnKơwtʗ.OFaswj6AN XnY5zOBIaqO#kUsei v Tŭi6w-G>7C\;Non;p>]:ʦjYf,%!r3bn&<6qG'_)$Sqjr)%9P,cY ꂏņ_u͠&؋e {Zaxpԭ4}] o*j:Tu*QuhG*ВMMr6P0EͿWӲ|,!h1˲A@T07ynɂeI뢏GVz?)ձĪCH3;P*w"㙾&;K Y eq$Ek)"W7N?:{U| \'GCoat,~|Mh&9#} $?r>}G|n7cqq^hGw?e,~WqJ7ZXgl>U7}Z[T}G@];|k6s:yއ|Uk  ^#x֜$,F%C8hUՐ%]E\&X4ts1gxj0,3#O©;ʳ +.G~/$*jRgBi t1 f2RJPGFGQG2\AX S>1|tp' )*?d3!&bK lC @B3Tki(Cj/7(14>VAöUm_ānZʠ.@&a(^`IQ_ޅG:uaG!U 2$2GIm b"Mt6ʥC׋}N"2)mCCOMKv9(nTNNVc5VFo]u('d{ 7h lB4,>JK}Q0gD|3P@rɰPʰ&]!=oxwY(w[:H#6tWE*U;rt (vV54[/Fbt`]tG1-PYd-nK;)yk# =2O˹v\ԯ[f{ekvbۓнݱ»(gnEM9g]HocW{F(͖[d*@E/@r,K| mI$RZSR; t{' C2GUX_φM^E=h#s r6Ts`P6OxֺѹRX߃ytHb*k㫺A脘!嗠E݃<[,|Q:7orMKIa)i44c<4_yBvSk[4.dC. ƯUgq,)y"c"y~MM5;`ozoM33Æ9Bj ~ og!}oN-#%5Ϥ ),(l2O=-HS'oVpYSa)G* lkLuˆbb`Ɛf:Z'#w{`u}9C0Fӊ^TC{wqCU/ ϞbRՎE/QĚs&ВjHZnݸ%qJrP׻l,iP:I w]AЊ,xEN&;Lev ٻ  \O>­xqpVB$ͺe˱<_̎`,V!$:) 7_hgP1UBmIm%'yJܲ5* i iJ{3cqqqUt0vs,{ðjpaOmNG .2zv-). FAص%fZT2Fblvk茫NAE^OSVM!#$ PaSahE=>#8XEҏX#gu1gz'j6MsG/FL3TH~BL|7׭@)J#OW/El$|aŶ1}|I)苻mO{]Q+l^v/ay:Q fXVFܗN)lH{B'lSD1$NatRbk4w|#)V3*OB4&(Þ'r6@Wq.kƭf:KV[n,u3)F[NtC$Eug.szc1J5bt0Ε%;.( kzeT6TqGk+mx).2+Qu_plZ/HF5azMW a;; 8AJ*Nzѷ|{Ԧ؍bEUU3tfCtyR· 9o0- mڂb9" $PdjK#= s⚎_OVRu5G#TEStYEB a }c-jiY(' T_ \w땝x]:I%nN]00k}ՃYYzoVg)\_# endstream endobj 215 0 obj << /Length1 1494 /Length2 6789 /Length3 0 /Length 7778 /Filter /FlateDecode >> stream xڍuT6%t,RK]ҍt+, .K 4Ht7 )Ogٽg暙`7WGAUpX ch!(`!B#wꁄ!RQڢn|ʶt Ťť`,!Pt8Iȡp9:nB|PбE9A]o:Bl] W  &y{{ غ"r|o `EB=_п r`?"ppApM'i0AUl \l0#j |P|[/ qoe s>-@U> )" UUJWW($u>ers񾠿 Gx0/"n c8'E` AA8~0uv߰G!7D0!i<< "lvPG7n x| }~Y2{)TU xw=/)E ۫o x*j?X\_L\.f?!7_g!N*H..?'f=Q7APSց<];"f P?vY4p$׫& ؍ 7~7wS8aKBb[[_B͞ Ђ7j^qH@ݤn*xr / @aJ@.`mOYެ:ٿ!PB8=H>}ZͿY^꩙||Tȃ̌NAUG-O&ѫ5,",,vǘcƻd9/1Kzta3E;vr=J*R|^(CQd{`c&zDj5.KUDn]-3 9N M}0t^\.W^[vjJԆ:9RҔ&Y{fll-KG"l ǁ74-F^ag̕C㐴w>bP }z8\jq@|v!{;W4ACk| 2HF"'/Gk5ZaO.e/@g?xr**'F*XP3mF$|1nЈbYM,$h}p[ \oap 㒏>GpHg!cU֒}虿y>%n?ضq&^}%$|HRh^>,a5Ekv:,` [}9MId6.1/8mgrIHw[?%kWw ښ9̠Od{ȔvJ$_ `HN,݈?;S\z돆Q }w6TbVEH'P0 pinjʪq;Tb-W{pmo2c< PM*bscl ʩj_JerΖ6\x';_M\fp{EPcXCJ]i5}h82$Vwt^[FCRù_LWSr\[ϊP= ,^G{ %2nFd'BI *?Q<7Gfi0:!4Cum/Y6:s =~$281<$#0Y12QK[=#[g`p~*mdμ`0wh,r2Tv{"W 4 lMu#1$ǦkW,E"!Nܠv/ڒruʰ.*~ْ9Y ojgtxB.E>Qn-@=dATɷ(QzI`s4[8{*[N&>A mSW|O.:@j40;B{OMwKr=;)1'iH|lrP6k<Ȋ$s$oo3a}XMQXUn-z)~ L7|- I!b]BЉ#wQY}Lp"c@j~0Ǖ%QRr&u>~"cá ɐk'Bf%vmڌeJ%[S]]o qCL n&`I} *2 K?/<ď*"n?HJĢh Fw֟qH8t#+SҘa4 N>mj䃰iab:]k]I}NOY)QIY"L?,.f# BjEm;c\M{at|1W'X|ɁC( K l=zM&a}*ڶ@":s  yW@ENbdqIM?LM̵eS8:vD&` rZ'8h5c}({4dII98oשMx,PjhWT8V?ȃ -6XqLh鎊;?6,7̇qǾ JOfJPL7y-i.]RW1X9v3 yH{l0LL&\_?Sݠϳ& ea%/_WQ=O:XCc{8Y~l̦NRs7@W#%W|xS>+۞|~CMS8Ž]̯TGGB\SП/3)͝ݘ,(aM`qmVֳvM#>k#92}*x ^WVVṔHQ/ay^AԑYnnǵw$ms6["ƛD-yיW$HFJ2]cG&47=Sk&DOyj~nF&?ä"qʾ٧)F&fs0tS;eqNWߚ>*6[zU0fc~%am qa2]mK6r6b"a >a䢁+ȓ7  ҋ<4v:&,L&G{@wQ"5 XjbA01~ yz٭.gJp   @0zE@9Գ)v :r(Dglj2;'.VL`0Q"?Ux^Q 7n/R%&CKXg>FL iy|^\:&6+/QI+égi?6|B.50[%ہr`*lab yFępOͭ:ߙQ7M`'7i>_ :z>mIKǎ/Vy76z"u?&:gVȭD{fξxP1Y8h)}]I;-KkaN[׊ĭNUEP1/*$ @y -P) m zV>m ~4|ɾSnsݒd-(>f'|JT;<>k{`\%VWC7́MmL}Z "D[L9"J*u^QbfZe -24tkxˑGY Xv҆8lx|TC.R _%>ች$$S[׹(T0MQSTp(H6 A*QE]tu&rI}Ũ㟇/ n bTxy=ՄxqX톞/X/ wWl}'gF`l⻮鯵ڔJ(ge 9'cařEмRSۑ{=wfĵsIUl=N"C@K.X`nh~|&ڲi?R>dW' " BVz$Jb`1~A%Q=~HAvno*i%rbOI@ kfyR\<]0zc.,v_ 54b}Iwj#INTNFÂ1چY ^`y~4,coD[V]SU6W?c~Up=ہG`GqG:"OvóeFG9i}=1QyY.e5$` ̦O>2:!䫭#M҈"aՁbEr8Knps ,aTk]N<d.7oPSI5KnlȾ?t8m[4Pq 4S~`;e S$sl'ĄVD[I6on,Vj,*Sq]Dz]cXke 7@@"ρ 2K/r>\ރ$10xmUF@W+>G5h1n36}ݞv@:TNkJݭ &u%ʁ7uSHqm22L=O}-")pquN*{8x>>"쿍s=Ng غS/.D8[cu]b4")*amX.@pl grP)ԪT'|CO:aGO1jxK ٟD22|>op;d4daiVRZ=7u8Q> d|>8̋+M&Zӱ*fzuLK}-˟&?NekSR5bU|@%F$whg8:ӑҘ Y;dѢ7/vWL{$2/Ow ~d0"⺰GJp*כGyAecXz.{猤]ۭ):2/8t%S?B$V-,?J endstream endobj 217 0 obj << /Length1 1486 /Length2 6768 /Length3 0 /Length 7765 /Filter /FlateDecode >> stream xڍTk64")H %! 3 C#tHK % ݠ(]{Z߷fg{_ac~'g*!h>0?H*A A>`3\H!PP{AcHPE%b PDIB@M~u) - [P[8Ouj󗍙? 4a~fQ54tTuyPOP^擐 `0H(& >w{AN* &Gֆ ZH@o Ya%_U):8s!p?]јDb6PC_ :oT s>_Nj%'iG@!]>:b|X\0bMVH_'(" POfK ,5㷾$|A M)ce1 LaLQ[P+ ߟ(jBZn:w|j$7gNVXHS/V+۵j;f.Mxo0z 1)}e|9u}|c"eVa]BT7#mDm|8;goQS iji|A auM`٫)rHÑiʢ.rs _]bl9B~/Ca ˬBTJoKe*%h+:-A4uڔ;#sNL)P&:dF"̤oɝ">r9%r')RqpHYKoڸbTp \ӵGуg7 CM?q5p 0`&5}C?MgV1oM4 q䭔;"+y]{]h=gpjd3h[:+bFfND >j^|ƟDMKBĒ K2Psײ}z$lNwGg5J2n8䃆;jXltcⷘ\oLf/zG 'We}yG$}3.8PQ]uD >)ݻw9!sN-ցع/R8`¯L~&Gjp 妃'{nxFUAºw, vwM(BZ;x]=RЖimwLYzڰK%w'\#0ުHȢ)}zp].Wuo+eǁpb"[l -}9!x 7^5"+$o/!({"zD!߉ǶjF*_ '9`{4Z<@ΔqNN(n;l=yImB$m?8R}8su\I,F0L~$ߑ07vᔄdnKjٰ>OI-|NZb,$AzRHJ#g ւae<'%T{ϵcLʅAYUKw޻p4B7oĴ~8v̅+*-|/&flRd }E)la]w6=bއq/ g!~;-ݛuIK7'GYuNY,?`*WXe5`i1SanR"~ˡwܜ^Nc)ԥUU 3A޹b.GR+<>̾׏+b݀_̞pƒ5D]6E#F璶=,P%Jcy0u>:Cm$H#RμVW""NV75no: Sz {w968 T ު-*T8_zwoJ7m y+I`a}4cD;'6OX}yuASM٬ ZK% +y{fW.9Nk5ڒǹ‛{[=S 46pGJSl>iYh.HFeqe!j@;VeZ#O)A t kWD`gU$c>ePlJ!!SwG<N';.#AE|bj7/. ׊6#ٽKti8,Ɗ0kr55W?>}-a[lqy-TE\&H`8rq@6sbiAVv߈BxZ4f׏FF5|ɺ%ayDnr9KyO^ʭW4|u8^tn^X'~-ã);7Q+ˆQ-Q7/eObs:rmgOY%:5ŅUxLG >2n;Ѩ*;!B)ʱt5W|Aq_Lw\,)}e$Y2ZV>wք{ ZFVŎ2ߠݫYzU `ZEGl`̷t>u;-b08/78=@h{/~kBV8mz{ʂ: xj[.%dpG|9~cyɪc@y(৮٪Ŧۭf] 3@59Zeߟ9'ԎFY&*ڟ)OZ=.iWwsdȉm@9t;􇔝 M/cY"j:TE3̈́vBKx7q.F?f2v8X,x&C*M-˞-y"xḛ}%V`(Z2dFЖ;CZ*wIy uI98aKA(N}  \x |⭹Rno,I| hgeY,a5M|"!1]%*%zE3Bu2kGS."|5n *iIk0&V;C4ˣe=Bz+w[~$XamL#W7;5i20Ak*Zϔ^y/qK/&M!2(|)(t xTNk? ~. wȾ z/ 8{AdG+hq~f% }>lBT)-;r[vTGfp{/!_v !7mtqᆰ!T'YrC/vF;=VzQ=ÖFcx{`[Z9"]2#a'ᷪNɕznTYeeNxc-z4\viPqz~/=KW2$bzV[Wz'Oe]'JX15| %y ?#)|B'VyT_ơ(Ie9Ĝ'r糇>CCGW Iŗ<@wJe"2!KRgjOfiHӇr6#"5|Y#*q.QѕRpd:h?ٚhhijw~xOhbHXGj|xU9Rip[7Ȗ3oi,QR!j?Xl/Fd}qw)djZ?1J4ϛ2 iq9ϋםnӤG׃2~X;I)a՞8֗:^<)p X+aG,!Ó R?gs}bUoHܢ_Fv{[7x"Tg;6t 'إ.ÌߣzXl, igsoO|^~gQede#<9E&]c-MuvkM= ^=yZ _R#sen0K& > ;o*!&Vi>?btk!I) Q8ルGDKcKz{<m}S5 Q8ZӜiUFgډ^vMH% {WD0}.Ώrbicn 0܇bPJ~D0*c#V3MyggN%~19~*-brG`Oy1be-zDeƌ35g8}#B&Xh}LY3[Zٙ"H%ABD iGH#zz)2ܐ[ov2쿮&{0Rχ_V#9K [ͻU=CX[/蕐E|&Nfxϙ6\7S5CWWj#LH]!SBݘ] dt l@Գdo8ݡ6xNfl~W/|δB)Wvq)jwI7C-^4qN"bASCce5*^Z'[VhY1mfU>|7f"vb9f{o<ֺ[ӆ t33/ιMٸ'Ӵv~t4SeO,Wkwz`~ꯗ2 CK }, <,is~~Mnf ̲0#efhmRW#;s|3 I5kPi=NJ\p 28{:8 Goh|C:ކixS/8$HWjN'w>Vv막'{ulxz]I̵czB`G@lrζ$VqE\/zQu} ivt\(*ꙣdpHh!h3T|%4Z$ ht*88ʼne}~9ᶁ$~}>ukFȵp&x"򓻪FfEj3Y :JBө]Eغo'  y,nmdroqr\ل+ƒJq{̖72} ô]]QVjN\8 "(7 !k:&0mQב2EͲX\6Nb&r芶`:Rg6[|AC7x~9AlCc:7%6}qn#ERI1߳/ɩ>|F=P{$ endstream endobj 219 0 obj << /Length1 1440 /Length2 6223 /Length3 0 /Length 7199 /Filter /FlateDecode >> stream xڍx4ڶDއu{0ØN;!D/AtQ5zDDM=5k<}{f  !%# A ،!H(o쉀aP!QEԁ^P0@PTRPLធe;o@ lJpw?O3G' (!!`;3 dA0!8HwI~;7?IA: 7eOklcg/c (!P.^0'` s"kE l`~TH^ P;{wvU?!@w$QW6nn`>e'w?? ^9B`pr0A<8(ߘ J/YWc?wooCP;jq>v` `vZ 'z08 o#0U򿌊p_@OB_;wQ};ȟ# ݈ep.?3Qz8-+z?oE_zAҳ5:pԄjku/j P3sBO?_8 ;C 翴ar@!0>uF䊺[#m&yU` ïyzZQ-q? DP=VP `#QoJ a( BQTu_`/8IE踬S^[MA?pQP|PC=P55H}x9k6/t5CҿxW8N4!Izl@Ӓ#l:RGx.C=9T!k3:rŠ$ឧe H…bGuT+ -Ťd`7t-/,їq ||4'YP:]*>񅢨>}lZ:@FF5rۋ~H9S*s뻎c8!thyg^nr{RSnQd<ۖ+1?q&ذ SuCyIDSaBcyc,]< H"2 KբeZeC'('o5edy, kUQ.&Ay/tjO`[VO$|9k:*0WhyM޴}1p >~o'Gz91 KD 9Q]ie"rN׳gԱ;ԃPwMG?*=9"%7ktB%0 bL #l 9;6oA崖(,YƑ6\ү h.0JTx (`'O]xõN9L ;ZiT+iEhʱЦPݚ zz 4 .GwMk8.aJIAv[ ,(-U6)KF|5A ь-o Hq=ʧK}ʆlR!uWNЅp$Ƹ}a}1m$EmG ¶ lz{QW94_,{'68ȝ5ɭsEyS, "6ՈSuSDlcۣ~mz\@OlDxjW)/NODOڐ*;8* PLٝ z3rP:[ݨ|9R(ZtG+ *9@J(>\*'WDbKW- glY[OOIš[-6I6\9}!vՇ 딡F,RӯlЌbDNEeHaƛ5ى,Sdc|A1SC3)1M=Pg%սt|ml_>PD>+&xs4r4'_DV/y߮9+G>2/uIA|2[G| 8{7tgyHbbzs L2pȾ W]&7 ҟ26,p.N-o"^ŏgW<1n({FtqRqc_J(Eys=B$Ƶ:8'jQ_hA>!NAu`Uқ4:έ6ٯkqjP0-G:3rUj,FuԽQG4{F*axG}rGTap=7:BVZN$~\81S H,u,Bq]fT-O<= c2, m5t߻#>]"pg4mS:G٨0Mi›;XcVۓ O .&Zd.xc 0%_5 E˸]4bq$nC?4z:P6>{GD/P3"GkcBv*7>Bo[@*!R0o)GM $_TFEHü8t~z03-M7~s֜ɡf4Q~##xWa:XlÀK"cc v$'r|jmE/JTfLtesdk:2Sa5o_\|Ojep_y!k-uX~JIdv2m{Wd,i<]/B4ݒ~ҁ#tncI_ TIu4%qpQѧ[EXmSlYrndk<5{PxqEAݽJ4QMHtc?}tɗP wf.2o[jGXYDco\Ne5 Bdt/#txP[pʲ,s~54Z'| ߈D9U!LTh.!KsxB1\'tf=t}Ǚwj`ZxUKZ ,CdLw&ATOٱwNztNcU Mǹ-rJ`u;ٴNP6Myab|vw=rpcuvP0D^.D{Ki9=X:z(AQzFw7 rݚRTYDM뀲;g< f"4,3US2{__V}̣>עz+AOC{#"E# <դ%-5oLa9/*vRq D<6LHDFY3pUn-gbxoqP!7_'`_rǭ Gͨ#ic܈_$ZvQMfu]!XC@F*8J'hSrX/wI0VS4fE➊b2<4,9 ۀV#E6ORcNCn%o^z+xUyDJcءgm03< IdB8hEHͲclٕkIQE'y-GCR+:MnUںN%bK%Uv,*Y&q?KZcQ=E-ӄZv_1wV 롟-+c<;o9D}N6E_)t+k1мvtv,5 ~/ w5^t-}o|mի ;~)`eYLCGI2X~f1[Wɵ;~oL֯pЫ.5 8S2&cWD?Js(\ڵBCĒ|u8H,,4jlĶ:+!Fbwpb q|&7:nn^WBs4fTގƺ{c<Nς".>1p}p7\]|SB-䅟N[C=<%o+q>q^K9 Ǜd5d1?.ya\.&ThTF NE 4X,9Mk(4*;$3.yͷz?A.*  d2{b,/*5TG yb PݫjMU}qƌE@<; ]l> wܾ`~TAړc_j6b_pc?Lr4 箭x,çge{ =Ũg޼CI Zܒ߽0 NZ GȆϠw@…YV~+gr丠um'eIl|RUk[Պ`X4 =Tf'Xxʊu'P-?qWX3ޱPh.2IWEoi9L/ILOC^fn:wLyb{vq'\SΦΫtsCɐjÂvΘFt\g.u@Q<ˏT[x.hWV̷ʲ9!˷YYRRqiC $'hp/G@jٞ9Q$ol2&XQKyբ}_m\GvĹLP fh{L5/)3\*#X1pYZ{r2~eF8Uv/V*itMD;շXsdB?GC_%b|z[Ͳ˫uw #ddF:K 'Y*zWы@4RyP?I endstream endobj 221 0 obj << /Length1 1395 /Length2 6052 /Length3 0 /Length 6999 /Filter /FlateDecode >> stream xڍTXSZSRA mlCnA$D@ZAE A;|sk=_~caUD`Du]cK9(!Sp3!-@ aq[ ,.Nh{b1iy1y  Dn2W£IO=R?szxTHR%Es^@3,3{t-^CGlM=xLm Oaz9{GWRxsyFҷJKfD +y3:{NaYYf,I὜A8z%Z_zQJҞZ+xϗc\ 6j&Zh8f+P].\YeNdR<*,<Ygu&NslM%_Ԟ" a#/Wk#Zk|s}K; xKV+p S)n4*~'A51i RIu2%ޡiq&& t\Sj**I׶kǓI;:|t|7}N<&X)nTwAmZƚ=b/2W؊EU)CSI5Kւ'{F:zBFS)>V8u}ڬ_kͽ!.K B0&f6A{&YF!u^§⼓c U<7}{; 1H6P 5jVf߈j/L5{!UÎD97r\*+C/IE~A XhBsvK7WHuT#,m.#t"&z<^(;F|,7t6uD# >3%X|]H"V=䚥(>Z,\_fq١Bm՗S7G$;}OI0ynpp8]gy5M1|8 r y-1֑1=/M&'jM /3iQW4VC7L6ωE~<~KSrivc^[}zǥRrbVA{KwȔ}s2ح]$*ֳͻ/,>>H'srʴRTVd*>u42i*ol(D IH<6dܣc3cAڤ9qT ^2WOY<6ʲ&dE/r'M(-Ryz}Ojo]鍻^HĜ׼fۛfl.jdܹ8;E Kʔh/aԞ(n-r VVϟJ3 $2fcy Mξ.48~vOWZ)Z3;lY1kjV()UB,@5&W⇗4+ \P+tꎑk$!mW*b<+f#OY~ J=wyk]%Mn3s̀EKi쨢[ZDfO\?SQtUvLG1hЖ-_@,ܧs]jևE۰[mM*ˋi5cշi  M94y<)W^?bߧDm(Bsا#kTs?^/400WޅHd!N2ӗJX.!f~C| ZTt PU>۽8TH(\G<:gewA&WY>[it֫OA͞9lՄuS?Judru%4cTn1"~`&W7u3%u21n'xL"4]qNLsSGamZp=k/oO%^ٶz:K:-xrBE)kwhnwZ>3p_#ȝoqEH !.n*Eo՞ֲQ(ѨigQÄe.x]Ug"fݒvx"zj%t]_R dd&/eiz+qp2QMU}.I++iv?cn 8hݔK,!蹥Y zr113'@t>a6(O/!Y V UUt 4pW y܃s<\&giاWfm* d%%F8(r_HO';O ~8"9c\{SwꭠDr,볗1Qڊyh\fȖGhQ<C&Nɪ *S6R \g#RLp8F+Pz#@KZzH!}ҏ4ING^X0t`OE>޼ sHړX*cZ2vH3f;؈{1*_q n-;;7Z d)g*~`fK mdE T/HϖNvrP&6Hkq=Ռe׿'e|f`ĝaYq9ɥ5t5%nMMm=\G#ŷ?ѽ!@TP5i,zJB`MFE},Whꋗ#|_|F4 UnǓ4H'~6Q!I:r|LIՋĂ2'I $֐pG^[Ӏ Fi®+]JTZO1Irg_SZZ&[_H֍8mo8G0l*!|԰=,"؞{l| W5lW2#!iR;-%k0Osf.ܜ.v@-w]]d%Q<ꅻM}kþƋLQ |ju^7THC+*S8}:qwȈi/7s؏ˌcJb AĚzviK>U&S@XxX=az C_pRf[3r;#R{hb*e) HI;UNZ3n@NW}ֳT;JFޘ H>R\]P91RQRpI:ޝZ`$0BY(r:v ڽI_J{;t+~w. y^g {$ouo/S=U ]sԨ^:{#eLAp SajZіB U62/K| &o#Ib(t맫O?1/`򣦆lRg4T *ևǐzF1dgTLMgQCyl(\:*hʹ$w2jp'(.[M*f)9 ??HE2g }JQ1B]A[,S3Yϼ,^UkWuֿb&$նga9{|x2pw-w{m0h]HcT$_Mmx-@rcC2{U^̛N6>05CfmzU%nЉij":C/ywy,@;!$sTV^9HͳN\fx'Ao76zoBO$pJI"MwzִJI Tӥ }kٙ\kO\C:u,R&/=1o7ċD56ίwroq8^qɎ0 XتIbJ<(,hŹmMD_UKӴ#U+QY}|ҍ̳",EuZG *tʹ}ލ0;tPzuYO?ը oä$7&b1 endstream endobj 223 0 obj << /Length1 2605 /Length2 18363 /Length3 0 /Length 19885 /Filter /FlateDecode >> stream xڌP\ # ]wwnƵqw'kpwwwx}=$s5$UVc5s0J:ػ02YY,,L,,lV.)?AV|X.`{c=@`ccaxofeP`:)=AV.`? 1r3} jY],v`ƶ5S+PX8133939,hV.U342@OjLuK+(]܍A@X`ke wq7`5y#?1`S+tƦvVs+[ @IRÅ`lo Ѝ*cpl rtqfr+Ghe7wڻ8{+\wOkcn_dneofWfVN@؀Ee@' ;zZ2@/18_oGG98 9l\*̬L]&@ +{`1?@<~>Oo[,DO*<ތF6vv';7 ,*[|2pg.hYZzPtO3@{X8YLX?GM_,#t[O?ivuox?&?4rZc[[H+gI+6mV7FV Nq7oQQc@ƞ,bxw h\G| Z `K߈,Ff7 Y7b0KFlf߈,F` ؟⿈A7sF`N߈/svj fl`lLaS5srـນ8d/ c5s5aw9`SNx*l`klan_j?݂M,~Cp. ?Nx,=-XeV@p@pl`S|7#oW`.{J.ص_!lfA98 .o5؇#j?`G?@0[f:ں7 N.@3?l?z 7_G9οN9;[Aw໛c ;q{>~p6uY@p`R? ث\|1D?+\}\+ h 8`b]zW)Jθ=&8ML "=h t#u uyKZd69^v vxhM/;BFug'6MN<w=R5?GUv*c5b f(L0ѡy\Lg~=eYgx?R܁GK}>2I-(3]&8 bmgOW^+5BRՍ.}[ȑy]R*[1`g mL-V{gc͵qא;MN 0W;<>iEUG;j?J$N\asbsS~{WbNVwoIR' qֈN2ܣ;amx zcR((xܹb*;rٟf"-G ỷYfh {BQoft76$iF)^cFIsj3/m TfCbHQe tq IDt1oP-K{PM+я$6W'x];B_I<3ݩ91PS^I^>Dzv,?/aKoI9k&̥aiX>ii:Y$e$&6F'Gso>\"%+,}' TE߬V@ۥ,Si.D{7d=I௜}Mj'XMd$)'--𨤌qSUVw~/w1w{%]KHZs8[~iȊR`?er;`1N8s=Brѝ}RNLmUJTI "EY_Q@914-/,(ci_a9} \;LҴtVzkNC+$M4Z<Ɉauf | OM .AS +"H8x9Ւ‰߾~w5H'}cpe`hdo)ԫiu0JOrv-MSK4Kn ZO ֟H? j ,- b:L檀 E~w}$q(=J.>g &ǾصɄN{~^>6ƌ0sO A}bnHߓnӡ\HYP]ק:2N{ͻBq-%ƞ2{pQC/P+hһө+Q17#UwIhϩm9(woc31N-'ݜdTCu@\D]14ŁN\7,9O U+A.€1] M$QrƑhw=l uf}"DkLnj_ leĢdEWz%nhO)ɮ5@(2Md.RSB/ܝ`QuG6]!1's8bo0cy5%d+u9Y,tfu|)<Ӏ ]m xy#/~|J~C·c2U+i`*6F<'Jɥ˨NwA; aDPLPWqS{ cF.+ϊ-P; A֛fR0҉Lxdn01Q `a{SBn\0Pm\ ^$"7sVy=zb9z/T_jۯ "J2kMxiޟ xy2Fq= ~< V'C=5@qY9)L5?K(+6 |+,}ȟX`KX8]z}O5f>%HB8f?kz[O}]8 E`S!ȃjxYm:7WO08O0AŖk)-Y}l'*%2rA mӷɧ#$6V񹟐"\Ɣ"(ڎݨ{鱨#S-mg*f"V eIHr{=~?MЪBZZ`-dj嘏7k+NLuĬ:hNb7Wo0Tzu.%uf.: 'DYA~OZ|WeUxzn`{v>e 0p[xƅ}s=l'e V@M~S勭n<Q2e6c2roHF+:Vxwe<_KNe(Im^uیdVg!z0ao4.!.{a] 4ޚUf69;7-ƒN)CSgOM7['y@o}AR|zU ) }+&ezn;py/?V{ZSDg0wmrX-(j==+g_2RCϜm\H uc#Iq-uDW ?gHW 9Rm!DZf]#BԄGYtZ/ ;H@m̝& hE ߑ" I5zZ ԒJe՜dbfg.{uY$T[ll)|ʬnX~x@LT"jRܼwzπqF#"fgXĈ]t [ů#Y@icj;P]SC33 hh2B/س 2'f貼'T)2qСU^kt-bheX˒fa ڮ)& Aen† 6:=+ 3j3àp֎fG#2P3K,l$x03#a Pv6ج \0lAfB4Zţ o"U" wd *։- f1xI. znKOwL𒌽Mdv'5B g-.ؿt|Vms"F;+~(BفT{sSjNb :VpM:<%3ZE!^->j,q#8\QmX0yI_~0}+81BWeѷ 8Roxͨ{Y.}x[A )gj]̞d]\?@0`Liȯᖨ*_{oy?3>莬3eRܔ|b=`4|U" vtܸ=5w.0 q80;Yŭ $K7 rOJܟ(pL횛YbvO+AHG|/-JZ`CY8栱fm*αܑAp3}؋it82qެMaQk:5`@JiѹH0[y8L?+VSw!!An3W[}݇tT31wKkʽ'b - Fo 2=/RhAMMy=̍AN R<ͽԯڕu+TZ|2%rAkt?i aǛXs37RY,3j }Ks7mU ҖnŠkk|dhb:7M= ɯ7'xV R2 y%{0' Fx&WĶ\4k4cۅ?(tPNX]jms6So&#D$j7r,x޳Ck>70NL`1N(#gb?b ՝I-qn#fj|)ޙGuRD|ZI(n7q.W7Bl(ol }}~J2s(/֫*ih.qx;?]YP0'rhCkjictGor$ BVҡ.)Jjmz({8 ##Pb+6cbXh^SU§pAg{#tOU^ݏYQ%/ddJ,;2Qԟ>8fT|ژt/^RrdH}~|A0NLE] +}~_8*v[(Ͼ\t]ICrur2MŊNwQi%PGw.]I;:/fZkPQ6mۖO6wOl3OxGޞ*8 5;!7;9j-gu-2S9CTwH|kꋰ`fV \FJ*[{s|@D7i QXj_&DIZZmCgȍ-< xX=gxj@} !bAsxWȸ?_-ܾUg*f %^HRJR 6yd<+kڅ{r~S `[*N},;GM%е~tYG\eH* PnK0o#-qd f5N y"rQMl=_@ }Bփ v뤌?Wx-_>/xZT+޴ۡj{g)N)%ʢtZQF|Rh/Hw;N+)o%ã!TEK/_$ޞĠꬸU2guuzHi@TssjcwselCI,|Ԯ>iBi5m!tR?$:Bv5<z5k$=tafB{1HJA a&$@~{+=>Hw#D8a q+#c܁}DQ =d ,A̤gMqeơ WvbSeC Rro0hBtfC*XǍ1}p)NĽi$WvV֎C^vBʍ9.oA65 jfM6;O!|g; =gԽ2Ѩʣ7GՈamId釗CoT“+oL?a`̚#bo:iaf]zsEUҵlq/_,y`*XsqlNТمn,=l p.q׬nHך h"'/S)c[!E^@EOd %_)\;w4}KW%!5rڶq4g5td[wȯEx |~ў(^8RV)C 2V(哼kqjlU5DJ`͋I1I5!w+,r%AtpN]q>k*} diMyxӬ K|;!"_-W,p6"Qb4v]뙖#aж{/ze^CN肰+݋ψ͐o>INLMterJ`+b*3~S Mf~۔ y~`_: +%tؘyHU}n6cuEu^i`2'|@FHv93'h}gJϩn(i01~6A"VltQ=.&ʨW<q砀w0C?zvٳhcvCV;Xg/b9hmXYVk gA헌_LIZ *{Խ6;iWe)rH9aa7>Ftz*o˭vN赊Ϧ,iҐa| wU_{>z%@WAWDI UjEYPiDar?Aqx7{+;C~l/& ` bDRc^a"WybXpg>Uǫz3@z#^Oȥ ok0o,hq 8D$ 2 Tm9^DEDk52P aG% lV𧣀 _L l(*$ X7X^4AiUj*N9P3/; h~sx,/Dq"^ Is-ϴNAZI ?/%$QnE oZEwd2OP/i0?V芧l5V!|85̠G4e|!eㆵ?w6 @VV'E0'Vw$E I!rG<ɖ\jUmE\=kr^體oWeOj}/Sh} r$T9mAZNuV!H='T:10{^娫G=%ό̀NF.c5edʶ!},5]ߙƌU-oA$U:2h >׏2a3ĠOsq;”;^0y( XzS@XY_ah/ўc<k_mc!G&A5H+՚^Q%) փ-]CcůOK_tWy(O,E]wI ;Wz0vMd! ){"B>f \zhKm:5I$MK<3޺=kT\r{:̳b6 㑠ڻQ(JO{VĎ7 ჊ϳz sőR<#b }4DjnQӒo[߿bUrB}K^Vb`?F6!(#tO*[iU4~>7n'N3SHl,1姈a Pw3"FYֈ4frIwtd29++j&d$چYv&pe?(Dɯa{SF$6AJZhV|s 97,UV,Mc">T(P񆧂OD8ëC `K:̪:ԭ;tϛ*湂TriFؾHq ۭ=wuUG,_^ieʰDb,gCh/YXS/5WVzv@ uL*6@ݦPm0<*_8xafqĕx,ܧNa8B1e G+ `nKËc\A,o(Z/8rAs#4RnjA.߯+{U3fP^(1\mxhF|pQ 0ؿq}&{0M-a `9|Ҧy@ / *dd#$ݴHL ÅdBh*&zO}.S.Gl*`Uhz_O ]#$ܬ:ʮV嫭"KSS }1r35dM>14x@4##3TCsHE-hC:Lq$H5(t{q!O(MZCG1m0Ug.mo& ]@ɶ֩Ucz>H !se Ft'ӆEW/F v%󁨇U~,S3+<"h$?ZWPqQ;Wu "} H PW\lɬl[t4*e'~}UcTz⪆I/~*,9{&Ufd SWe]f pΪgt% ,*WΖh rӿxSջ)w)@Oih]A>ߴ#,@tZ:3Gh([*1?O:[^݈rgC-nXLt=.ΤFvT1=^-]g$ӴF -v/8z#QNk@ϳޝ"ӱU'ݬ6uRr'B1mQry3ha,]dϦ)x_Sde; MefA%J !+stÙw>S̋ g@^2ѐo'NLvpCP)<f.8\׽+>?ynrTnCrE*X-l1B )+@Ӈ\/Qܑ(\/~shvent' Hf{96*X %R) 7&V13gʶQ?۠Jpp[*@|.U@ 0ɿ'_"G LCorKoy[HF_"J5縔 u=fiB(3Ôp3HD]# 'Cؽ2|-jQ1$cA!p*. QZm>Py)d'\`X,袉Y/'B}N+Pviɡ/0;<@T-TwSٽ+%<\&<&Si]&B* Yt`7ćzJW&! BRY a(F̱;ئߛDk]|54i*<'z/0ܗB=%9<Ȃʻ;&UZy*77LgoaiS3bFU [Rq3YOł<:\5)&+{SƓ0Yc\~#| ?"'<(LkB>Rť3Uk־Ѣ;.)Qٱ#W_CL]KH Q+&k$k0 \wlZxT_O z+W AAqclb[@=WBO*,>$Y2kd\2~ P1NՅ* U-<\%8j;8hVT>LG f aՀDad@@Ͳtb)^HnN_2sD^bAF Q {}>ii,?iw 3 "h dĨdwBQK<DR\G%jUo*'[m4 -aBqy?cz4-Ay!}ZP<΋5>@w Aҵo |3ZBJ 7,tv VF''d3c>c̪AZ}-۩VCӇ%|E᮵cEFPfً.~ߜN ]^RIyE荟K[co"ޝJƬ=+"%LCN<ȸ ÞUWΖCMRmǃv^(n:Krkw,vXvӄl*!%^Ʈmr| )) I3璪p#T+Z@DP쇥--DI/o@ڎnǖƬ շso<:!04ڄb5["8[RLdУ:\`  °lnN덙}0QV nm$$ـi]9f#L'x~rAe)}tDFtFy*hwE\HhWjЎw$\TiȌUY!ړ2t6aE.GUL %p~ [p?g;KPlTk*7{һ9s9I;riܩ1T}fe 1\%CT뼛 Ϡၰ:lډ 1Ӽ };|""esїF~BA9~_|J3W]{ ^AzG"0Ҍ ^ 须 Ѧ$ ۛ3!#laRJvc{b?;R:cw}@L_f voBoCjq&Ndag~$!(a ׷0u{ZVʹOM)Z2^M3Twɲ;ϡc?*XI T.}H)1 gy Xhe$x6l{{)N(Lcj!kkDhG| ºaa% \9;ˇLẢfq 8(;ޡ :ye3o ҥcGl*{e``c (^y'h\:@}\t(Llzٚlj,]F_U2keS{|HyDGhycQN0dtfRTz+ʡ=@}{E7:4O3+)M FZ:M] EuX5i{]o9ugHZ~@HSW T<:9_dsr0Y:h~o):FNVPlT*UU5F |da0<C\4!mB8bQa;9W@{Gn3;_ xQ T:}vݬ7hXf4&hkw;Lf8]ϯ~2>cM1ўr!2(uDRnugNC )I'+.A"viee"[8.VՌt!% ۫鸰: zNcDBny%%:\fe@/"ѵ|X9Ecޭ-Hz 9x 'Qx;bHə(9o0r"kRm~ۭE-يȗWk "QE2rov<`C&lc$ogǨ6$uZ@&֌?U&T"%`pE=^\T U![ 泷 EPm6t0N*!=U@9UD"b`5_3TՁ@ QBosf`"8@y6i?R < WclIc`j f5KdFRvjFz0g[H)~r9輲άVk ~؏ּZN ں ?)_AdS}.sw#tl(Sv =DfmLJ!x-<%Qju %1/K7)FkC- X- |i* U %kC i 0e:-.:~2gZ+ Ͱ?qUޤ j?T#8(N˒DEPjbs_3(Pv/1 gx̝.?FpLQnxb!cU%։=TM=x %oe05XPP/#C-;hvL*+mn>voYȕjvnG[CIM*)斟]2`m+RzF2֎uA$+rtVH ӘBe۹Y >3k&-mbbф/ZoN8Z`4ȟ$1H !%uaփ׸Gc@@GD]|M17RMzj;WdzLjbJ* ؊L$9k@Fk+qN kݖʆMɧ!bN.1=)O{_҂Ò/RQh/]Ì;Oʳ5l)6=-oWxfƱ.`'1O]1s썅OtaRu( p-~(Qp-vrk"( " 17G#OQ#A~ˉxa ~yu (Ԓ ~"b#o28> endobj 172 0 obj << /Type /ObjStm /N 94 /First 861 /Length 4514 /Filter /FlateDecode >> stream x\OI_1ÝvZE' al1YqգǞ?$:HUuUATB9 S-v;=/`")Er~0'XPPXXT @5bn[p 4 hBxU- GSRq jqDzA`c " G|acYpfH xiRO & , TEԖ*E,wq*b8 ] B+iTJ=DI[+45"Ѩ *_ ڢ=F$EcAT:ydWF>A@|ap3A;B^a@]aFe \jp@XYZD͢]p;x_Yv`f28Ac#&0&`_t[d9r!tbz1`Utd@\B5y85$׆ cA.Svq@=nq=w>g߮B<ƳqzqF/vxr^MK؁x&2aGTY, @X"3W-@xx:>q?UiKk^9}z׿v燈)EW\z,%׾ ޯfR b6?62iĔw%,-z%O;q-ZD;4E(5q:ÇD<8Or6U/_ף޴O.D1ͤ_M7Z[{H4!iӧu&7Fo8,fwW3ʄ6m)H) "u "d),/~}{J5c:@w5MZPWβkq}OT:0͎T {qyo-&  j mxwh4De}5[4!RlM8ZLQskp˫*:<6e4 A)@@t*B !CU1Wp 3WR;PBn-fE}rEGb 65$,0âwjх >Rzi/anWj~L=97矟Z*p&m2d@v0{֋0@4*^D [&? s,r#on$5kR\P7*!p^P{Yr)YזcFQQoD=mZz<b悚[Chr~S5{>cNFV7Nڀ'$F>(xh$G"4MznC73p5!DUw;k~:&ǫ9r\g/l%m9&K8Y%K%'Qgk18\3X@䃕ʻlto%Jg%wK%ξ*鴇mS`<Ҏ5mPq)9M`ϫ<Eqio4=/6s2 [dKК$S-?z$ IyQC;l0NcI\a?8꾑У {pN*e ~tk&l Άlf_'}4#g̦ B yn[C06?YMi1cErZ(8 )]'>3G_db<*EzjüG9:~$C-=IxNjXBuD74 1c1UĤczaC\obZ}Fb:*f_?d,m<;|5Ư2ނ^q=^]]TrzG֡dz]Ȗhe5gϏ= Jsi7hJiVxybC+kZ={b_<O >%WX!TFDO|\ Q碪cu sUKq6@)~4y9_߲81-*7,b-Ǥh݈ &*?폗l5S:'Mد5 vԆ稵jQQGGWZg_8xxa{E=H`?]uJI.a5.Glpq{, za 7U7sOMš^ig^oZ_i.=qi Cz0LghW_hz38]NEwxtej!mϿ>.^{yfou؛R #z2/暇y]K^pz|->osSYa[=9t+Yyv_>Dtз/X#^ . *>ޝ}t۳z}^Vw ~{ݚ}bH|"mF I68-]j2taȯF6!O f"/3P,c2]-z}9>MPi v8Gډ+1eeh*tgjߞ9F ZAc.A噛/[˫zJz+gJ.TsLݤRT݌J<^M+Va lsjzت!qYo2-5U-l\kVk[p7s1=:-98\ fЕ{K˪`t0R{LH)]kd WMM6ILcw-ԴhB _kCFQnYS-E(\&Dl @Iv-@ܥH:"j%Tg12e AܞKyKmoPsu<]8'$K+A2mɝZ1.+&h;˲7 >ګu(%9꬯8KF~sNĘp[+FcV~o/v.Y4uшd]Hr|^jQF^{a endstream endobj 240 0 obj << /Type /XRef /Index [0 241] /Size 241 /W [1 3 1] /Root 238 0 R /Info 239 0 R /ID [<0BBA749CB41BE31DA8F7DD736EDDA579> <0BBA749CB41BE31DA8F7DD736EDDA579>] /Length 629 /Filter /FlateDecode >> stream xOTQy7 " "("ʨ cLZ*-L\bL$; 5&Vhg{{|oB`qn 5gH"iR lCfI1HfH ȀԦIYP""pQ1(AT 6&I[VHi(l;N Tݠ `/B~ZP3a0BG(8̒F}[Ahtn~QlNz` a8`epAKA 41+,[5D\!Pާu؏:)ps~ՃQt›%ϕ81?U?&-5Uᬥ83EH)6-5g9NOfq&&4\9;ix ".yq͑Sr]:ްxD`DA^l·Z^jRh((((((((((((((u~S;[}Pj FKdISfK#o$jɓ56K>SjdRe*:-3J2-pR2/~(Zf}UIXXZz}s=fVzh endstream endobj startxref 597435 %%EOF genefilter/inst/doc/independent_filtering_plots.Rnw0000644000175100017510000001601412607321410023707 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering_plots.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} \title{\thetitle} \author{Richard Bourgon} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering_plots.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date: 2014-10-15 13:50:07 -0400 (Wed, 15 Oct 2014) $}{8}{18})} \begin{document} <>= options( width = 80 ) @ % Make title \maketitle \tableofcontents \vspace{.25in} %%%%%%%% Main text \section{Introduction} This vignette illustrates use of some functions in the \emph{genefilter} package that provide useful diagnostics for independent filtering~\cite{BourgonIndependentFiltering}: \begin{itemize} \item \texttt{kappa\_p} and \texttt{kappa\_t} \item \texttt{filtered\_p} and \texttt{filtered\_R} \item \texttt{filter\_volcano} \item \texttt{rejection\_plot} \end{itemize} \section{Data preparation} Load the ALL data set and the \emph{genefilter} package: <>= library("genefilter") library("ALL") data("ALL") @ Reduce to just two conditions, then take a small subset of arrays from these, with 3 arrays per condition: <>= bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] @ We now use functions from \emph{genefilter} to compute overall standard devation filter statistics as well as standard two-sample $t$ and releated statistics. <>= S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic @ \section{Filtering volcano plot} Filtering on overall standard deviation and then using a standard $t$-statistic induces a lower bound of fold change, albeit one which varies somewhat with the significance of the $t$-statistic. The \texttt{filter\_volcano} function allows you to visualize this effect. <>= S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) @ The output is shown in the left panel of Fig.~\ref{fig:volcano}. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/filter_volcano-1} \includegraphics[width=0.49\textwidth]{figure/kappa-1} \caption{Left panel: plot produced by the \texttt{filter\_volcano} function. Right panel: graph of the \texttt{kappa\_t} function.} \label{fig:volcano} \end{center} \end{figure} The \texttt{kappa\_p} and \texttt{kappa\_t} functions, used to make the volcano plot, compute the fold change bound multiplier as a function of either a $t$-test $p$-value or the $t$-statistic itself. The actual induced bound on the fold change is $\kappa$ times the filter's cutoff on the overall standard deviation. Note that fold change bounds for values of $|T|$ which are close to 0 are not of practical interest because we will not reject the null hypothesis with test statistics in this range. <>= t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") @ The plot is shown in the right panel of Fig.~\ref{fig:volcano}. \section{Rejection count plots} \subsection{Across $p$-value cutoffs} The \texttt{filtered\_p} function permits easy simultaneous calculation of unadjusted or adjusted $p$-values over a range of filtering thresholds ($\theta$). Here, we return to the full ``BCR/ABL'' versus ``NEG'' data set, and compute adjusted $p$-values using the method of Benjamini and Hochberg, for a range of different filter stringencies. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/rejection_plot-1} \includegraphics[width=0.49\textwidth]{figure/filtered_R_plot-1} \caption{Left panel: plot produced by the \texttt{rejection\_plot} function. Right panel: graph of \texttt{theta}.} \label{fig:rej} \end{center} \end{figure} <>= table(ALL_bcrneg$mol.biol) @ <>= S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") @ <>= head(p_bh) @ The \texttt{rejection\_plot} function takes sets of $p$-values corresponding to different filtering choices --- in the columns of a matrix or in a list --- and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. <>= rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") @ The plot is shown in the left panel of Fig.~\ref{fig:rej}. \subsection{Across filtering fractions} If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires a $p$-value cutoff. <>= theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") @ <>= head(R_BH) @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) @ The plot is shown in the right panel of Fig.~\ref{fig:rej}. %%%%%%%% Session info \section*{Session information} <>= si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \begin{thebibliography}{10} \bibitem{BourgonIndependentFiltering} Richard Bourgon, Robert Gentleman and Wolfgang Huber. \newblock Independent filtering increases power for detecting differentially expressed genes. \end{thebibliography} \end{document} genefilter/inst/doc/independent_filtering_plots.pdf0000644000175100017510000117042512607321410023722 0ustar00biocbuildbiocbuild%PDF-1.5 % 36 0 obj << /Length 1777 /Filter /FlateDecode >> stream xZnF}WAP@;A_4 Au d&4]}g/EIVdAi˙3sf)coaC?}~OGBD^oIГR!F#.~?knGyԺA٥үtN"*o찿0yVY1KdERqe$֝HajNM4zG)`/Vidqy#JZiv "_=Nq5, 7as)&z##*/E4γ:ЯcY""0:Np٦\(dP36;$(ºgq'UzMƅ>"Í@8F Q(qzpGWTy#ƥ51F9ޖE~6z;DR1O0V^rӹ^}MޝyGH6RJ{0D(I7PۛԼc %YLL\yb-S 巸 !O.~=&Vf1"ݖy4d%,yE|yUDŶ "fx0BD #nLTe]p'd&1;D#7bvi`q>N@dܔ:;y| a  KJD^ "ȝrfxu^[̓*6_pVvRIe;cRP) 2(NviCR̖B*o~:<a?EY7Yѕhd*Qٖ-uHۈT/ߴz@́LEbl )ݚV_ |#2Ժ K4)ᴈFS#p\%qid+.-"1v}́v]1DY@IB>O=20U_bpK].82KQXjw>YNFGw_0$m+B(Tdo%vAbшBDGۅ f)&*@la[5N!pZJcqbb¹]a7J 8@aSNi}Z& N%b0vV:B-dh4tATz*8Xy/s],)g'n{2k&9gt E=B@≠f>GLSjgҎhEctVp<~#t-_{ J8 Ȏlw_hBLXs@V~.>cRO3{LeӬaQW부Lަ5/nN/ |Ncnyn㫩Db=񾞼)okCS]\KysPTsxAۡFvI΢/FN*IXNf!wTͷv!Gf>{}ug5Jc]|}`:s.˾m,vk4Wܔys?z.~w%?loHY(24V6y/׈!v&GN}Ai= _=}rz|j\%U|A]T.YNj p鍭>k\.wՅR @C:xQ.QquOY]?6AE endstream endobj 57 0 obj << /Length 2108 /Filter /FlateDecode >> stream xn_6{'Y= ZECJbJ*/vӯ^(Rc%vR0`퍳sۙDHEtl}`*zyٳLE4:RLDb&ItW+*/Bx_]'qBJ_|@ܚ_)egڸZ6&o!cJg lY,Ī4IGi[r 72텛M] Krqǂ1)or(2Rfh! =Iǿ5i ׇ̽z:q$5_fҹ],մ&)ny^-18ի]-l_<얌f$r'Gοq$WE]B'wNŐo8l+S8w'WT?WFh'_+v+p:l#D6·:l08!>C^@ww۪6M^nj8tFV:G\o~ ;oңO+0s~X%c \SE4X腽\٘ m fLz[ݕ7od0E Oܛ>vύ ݪ/b_8;( %IG1Ns Vv%}}d\edž׳H5<"&pSi(7U Thѵw}c&e;\X&L|Y9&vKĠ$ia.WہGW:J>֮YOv` \~_&b %a-]>`ze*; X_ _yp=#q+ˉ#Di|?E0/g`$c~Js,,˺ 4w *OQݴ́PYT -> stream x|U.*^g'[ga@轉{"B iBB tRHO6;sgvvw6 |̝;s9                                                                                                                                                                                      MA!iu`ӊM+MSBK// ~!_B/ ~! ~!_oKeoK=~rےeoW /B_ ~/~o3wl1LT. ~mw-Qm'kGP/D;m;Q Q$*f~r_k';l;Q5N~WoT. ~wm'j;$~n_3~r_kk_k3[W6S~/vN~ˈr_k~/mn_T@ ~w_[]O 8 _;dۉJ/vN~Kr_k'S _F߲XgLR'Q/ߨƗ디m.`{̩(T. ~wC LVg_ ~wSuG:u(HT. ~w}c˫ueIWln [[bw*mY(٫V2cF%q~Grs*5ԳqMԯeX~o[WSpmŞC߿/#t >DcPo[v@3ٓQP~R;[Tȯa3(VMwfۖd~vߪ:̴v; :]AwwCtwo{H *)J7#}/{C[& :no|0_JKnvoln|`;%ߝv{Pw 9k?~{_Y9.I|҃!wE~Wo\7M0Pۈ.U'o5%~'~woT.R57+^IVd~C/*MwGl:]nc= ~o{<oP>B0)4\fc=D4 &V~r?T #Gr-)i3PoH[o<\~x PywBԋ9ſ,Զǚ ~o˥z[d~'x!w9;_7f~'r*ƀ>woq]Cm5h * -~"=~Bw%eo~wkK._zrEl Xdk+D]΀<4\7IC..ّ<̋. #v9c}66i\7Xgj7m6{!" s#Zdc=~ohWUա ~wy`9^r \෵ѩ Z{vz%\|mP{&ncM*m Z6B~ xO<5݅-Nڍk ߌ3jL5݅sߘD=V~8> ~v/v%g~[̙k wJYwB͛߆ʝ8cHj%sy?< V˯mbonF6~.\N_ _|~C, _k'qMy\ƯSd~-O`~+9N6__G"&we#,FHy)vgډˑ^{sDmuׇ^nj~ku;(.#g4͍G'*(~Gl"Z /]vE5!yoYD#|~KX7mB!8u~nHⷪ ѷC~WsPz ~C&NjWIru6'~[nn ՑuDQoHɄ෷0{]&v5' I* )~}GHrWCl A緖(ҶǺh7* 9~9.}oÆMRht~oTwdg ՗:=VmD!o d~Wʶo/o9-**j_0uyv⃧DѨ\EӞ:P -xsCN ŽzD1\E},4ӷv$e9Qv/1>m{K/mV=,rt#({4~sXŢrߖ/yL)or{!n%Z(x޶=EDq\ෙ_E ϩYU#]ƟMwsmgnkdoתCvm;Q*mK%j_d~ӏ]DT.zuDYAws]<\_$ yF%JB]mN\q]]l~Ol9DQo+WY :qS<MQok旛vqept7׉g J=}ay{n|~OmD" *@5ߠKwsҗh:O~;eh Diw|@-jAtܶMSCQ/ *g#M&U5 ߠ{&}jۉ&Sz)*EU7vOl;DÂ#j߳m'($' ߠ{}dۉ~kY*foɃ#-Hs҇hD$ܟʽh9cáF(락|om'K$.. ]:Rfoޕ"g4;t6s~ ǯrϵ[^:^@vQD\7=dI뭄)휢~ކ m;H"T.znyDG!$j.q)9***8{Ƕ *Fo51~ʮ@tsNRzgM _Gɗ~JBoߌk> Q~矨vQR{%j9[N,~CE |M *|\h|OԔ^Mq<ߏ9Ѩ_7t'E~Ks|/ j۔^C/5u"tb oBmo?^wGK0Z~)^e|Gbӹ 'EuvZe,²5) vÝ!.3 7w 0ϮU<ƭwrx$NIn/:>jh+'92ߊZ?c^mi{{=kYJ9S]^7k0)С?N9MNS_%)G!o'20\zLؔBOv- -~g<5\{HݚING! ݗoUW]e{3+,ô'7%ۘꀺ~C_nALH>+ naIMsaǂ[zmjN@/7mKn3l:K*"j9HG7)wQ >t:I[7>?em9<(]yPۃ;%I1GP'-zr\W‡[3Qos۪Y:o>gI=Uۧ}znJ 'u 6{~ʩ=xm =jgi2yhh0Îoz0߀TqSI̪jy{zCzt^寋ɳ_k6ҝ+>IW2O]Bv=$w.7H*ի-}EubQ{5~I ').~}nn;tAjV?/ ^$C<[ߧVN_6,#$t՜Z׮D.t߆ꚦm'z;M4~/ UKN9et>G7v7o~o4 - qׄ@7v7õ53/ J=}ay{nEζFW]&YJws/ӵ*=Ive+tm']r7_6tks/ktm'zƾy+~dm B9;/~xnFF~XYPނ~_b b`t| _h~mdA%` ǃ~!+=U|Q1ǴW&y샚BW>T|D6 &cgNUm%nDQI ._f5/ 4I)$~ƿ>@n_kJzHHcXG5k;_j|E6"߃ƿCn_k/ɍ)k?!̵I/~~T4rmWS]6'P_ʗ *̵Gw;1- ~ZCJ+"z=tϻQ/;ڗԶUg; LvBO[9)M\TD ~-ܜ%ֹL7LZ8=%\om@)A]f& {w-V% ⓬IKRBdPoPZҸ~D{ I0п~m[2'/t QeОc2(ɯW݁~o``Uԅ_No?h;D*D+|БT~P/ H#UVo"zQC|DE70"* wm׫4(߆>ۇ&_rUcBn_k~%: GG[ڨDW3}~Lj533-Gɻko5(ͮO/A!T${eɇ ~D)v}2} Q+oN}Fs=~Dv}"} ^bNeMk>@?BػRظ/zvT ~ W|8`  N>l풾]R/~xdi5`# 9@!i,wbJҳۈ m_(_%YΖ m俥@hw7l-Q_P~uFq! ǹN _2UJ*+Y_bBD{x~3D49J+m*+^WX^h(:k˝Z͗Smm_ Wsx~7PEiF뀾\L4_n%QNJJҼ&Ky@h}*ۯ FBDa05V_DkUa(h,(:1֤ƭHt;~vUA+L￑O>%Xo{/G4ܚE"uHjz͙E4_ /&|E+hMEgMS~ $|oxVo,bN# v~pu[#7 ӊM ݦSfBk&Wjmɫh}Dl*z?VMVo2,k߫BWP*tk~!+(hME!Z~:L4ѦDP/QDTN[ڨBE!Jl/tܰŵWB[+ޣ#Jף"ǿsU]._#[1m՚4b5R=*yŕDo  >U\zdww. {?>4laRz$P.E#<ȿiǟ_wuE[)1+g 3@K+N'QvhOC[/~'Q ~-'87>zώVXfػc=ڠ|05fS/}]HOOIxZ/"Q\nm}&zxe (Э%Qݕ_A7R kEs_]|:Pc^7אB9S+ɶ)YjɝKeO5 ebltΗ|п [W;^Dk֒Z>lAe궤[N~O ~ {^0n* K_!Q.{_BtaӵDZ)qޚоMFuG$Ϭh`q2Qkhgܛc5aSOAf`dd~KpFوܽZɿ_Gݰ{3XŪ5{'-ZHhm4 ͍P >!Wf[7zt$J;4 p3&bme*e7檮VJvpׂ TAt/~CVշҭdQ0qe$A )17U~DCYùC< ]eu"6dSl^tF5t &gvz<'=%/v` ּ~hA7)M *%L az:;,#f-Nߤgu˷PtQ 9MIm@S5nRqH⏜yR">H| R+esֺ9|_%/R~:ͣQQgY)!T6IRۛd̽4ŏQ7+艱[} \E tVJI]t1_}!N2y<՚_ lu1[g;Vуt[3Cg}@mq! U6'&8=HZP'*pNmސʩ9]ջ]++OSoP16Z, ~>Coh7&Ct'ދh}LipDKx OLC.ﮪ򙃣#s: u](G{_f[`zY_q6'}I 0*фթ`6:%'ȪoNP2](=䫺fo$ sNccT Z msBle?b&WmHc8,w1]ziTX&lz /gvƧk4ߴtg *VW8DietADun]ZW.dT[o<=P/ y]%it ^%t}nMJΡӅ7T1;6㉼ff5#~%ɱo)b>V.grc5RV4֒9ͧ\oj}Is~BGLsS%_504BƯ>@i䅂 ˽?eou"{<-znkPYMן3Wiux^9nrLT6]ê~Rvwꈐn+6Nc)CzGXG]k.ޘk(QTSegz5B8ԊV-vԫyHn~SW%Rk*_٢}?֮+'z/T󡓔KxEQ'~mՍ/V 㴵N+=S״gm_0{{>Ho+OQ:ڮAZ+DmԾ%hQ|[Zs`exdHzVx?~b6T5>"=VӥvUݬ)x_DZA-gIwjn`~t4HWELt}=J6EZLR$Z~dH,}tؓ_f͒-:$tk.1;:Tr/2U$g1^itJ*m ޫJ˻~aY>z[ۻғ_yV_^]˫B./7F8r*cXaG??yZyib];ɭ&'^Bvd^帱o2lsj!םKV=WM"gjsO;X?;~Rܙt|>`aiHoT2MuZ ߯)8|d5 }x1c 9>6:]\˲V4jhbσW)z u߆(h~B4;2eǚotT~ u߆ᔃٞI3gc9Tw((h9"X在;u߆S)*n~7o+'%NTF)h⸱.k= Y~!i>@d;+55k}HaWr]`ǴrqC4SϣV.4vѯW[vʮP.sY2{m]`Gfx_1OkQ5~I[W,*U(g,{ y8P/_T7Ё]2VzGtuP~w==ռM*חC)_3׉P @A~wQ4~'zcoTWM ɋaFR[@9%{=5(SD/`s,|5DmөYU;BѨsgz=dAYJSGk9nGbR-*\:G=3YLe)N ܌ǿs~(.3YӁ.BOkZhO'&r Y'Lg/HX.h$aW-shnwELFFiVr\#9~&:H-sP,;VL,Y&HuD~+Ti }o웽Y]׼HU5`ز4eMߚ+Ly!bZstF}9XٱSJfRԃ_M6g~K5BKN ϜErSOLkt5|ߗqCs|X jK%H.t'^zN]gY jLmrߪ!yjzB  {| RHn;`z:r'x "M+);1/u/^(do O:%4/ܻ_6]8z@'<yMTxyLM )B8Io4Y>Һ{vo sO} ug^܇tZp}f `]-j~tA=ïSg!ڋ=MpnWtpdU'RGz6lPǩ;O"1QWOKL%~uvkPvw[uaug0=tӰ]ҮWwhs;ލbFSTLˁA*_3gDžPʩбdP7?u8ڬW@ZѵE#e=xcA71(KzwK)sЂ?IZübºޞSϹ ^J*v_{UUGbE }A>royOW_]\ml:JZ݃W˚%uȒoԾuު&zF 3}_>bS`ԅ]"?G}=%8Tr)a g)ScUV=9lmm^#zS7rzh!VfHC%tk%AUs >)Vl~^c*@牖xoSITk2Hӊ.?zO@|rZʁinbT6&I'}5CC}f 6`1ƱUcYkfVǝxwU;Eæ9.i5M1n&BIYYj tTWΘ`W;DFAH;æp/#7"i'eE=r?Rf~F:JtGM^ o)GByD'?N$!|(mR-&VHIV&&d2!|J5FI[Im|R1g˙L~)P7--?vP0(DX`~XJYR~f}c(վn" +YۤP u:#\»_[;u^^&N^:c60qG+eזU=WQD_*P/1 k?A1OO4JKHKC_nٹqhm;ASmN?! 6nL:s F~?gdKzs]O_k|N;kM;>e+ ~/Vx[zuzɁ`[;ЉwMIIM3xA*{>1y__IϏ\9q )챨erO/2ч%vײm&7'mNgWy> s֤oOf&dY6]?|mA {OMR(=eRSC:4ZC/~M[ ?nڛ `}j04`JrFQN7o= l¯UB3j4~ ^f/Ug5QCghYt +Mhc&!cKop{z'hvyd<1w,Z ~Rբށ^0^koP5rKkGɷj"XyiLߦP_!~5)Amb2U?)e˖oMOϥtN%|})-4Iǒ6JV#v?ܞC>cfo. 5U_AtqzåN}oir?bN_z;w^9hdu7n9X7ZcWq v9Y]֮MX۲߲78r/4Uq}/Y],Iq?]Ţ;ݮCgĭfFJBչ!w#)52}#ྈhf0OQz%\zIȦhH fU RquC[1QKsg3ðX~1,톆ߦI'| Cm;eײNѭ-?B-f! /VdtMlt@̦&vo~W Y u2۔꯫ nd~MY.t۲͹#L~ƐB_bʂ#U\cr.7)%On=?MID6]o=Ŀ_ ~5LbO0vR5m{DX{x=S`繧?˕|x,_r n\9N/gn@{HlG9x}~/\u<9ôgpxۍjWiɞ>߲z>pk-տWy/۵LwdsD*Җe 퉘׍DXwPGh~bt_cQ82G|:1G)M>amYeN_"zzoY'kOq(iq?㯍R9dSDX &qe>t) NNYPq:]tsG~q^ͯ<˕WCK.$ElؖK;fml ?B|w)\kgyeBK/}DTfZr)]7OG#߈,(1)d1A-|jiE[Nr[:lx_ U##޹U`6jW3. W;4L4`& ŀv|]%+R@tk̏]-qZyRnA*͏tBr@[DF _BIl燤Co摺v&Un>٫Yjowtt%I0rjߩ}jMKEͱ/-rynih|;nBc ݃rݔ[?P-ek|GS<*bQϖ!R*P9\8Ấ#DN0ݠ}mU?w.TT *6oJ qݮ4jM݉St1w .k\͓7mᘛ-j ׺67(KM$ՑAȾjpmߊ>ŭP??Gq`։v>(6']W`T>y(On"3AN\]ݙ!B63fl c7E۴2DK&=\+-_౨]-48}VT}qY`Zj2悛o I>F@r/vxTUgec#5F k7^`ϸE'saS3Y}۸c=e>/=Aԩ=\3 1!!UꦾU/ 9|f\w 8s~f2+\STjq!١$@8,)S+;&)"ŭ-]g"M/Txb ]ND{r_1\z9ߤtDžk&Z_#ػxGM.̗'SGo/e`eW*Vv({pBӷ*~ί+7݋ 6N'14G Ց3*'ZŽ^[xcr X5mPΆ72_;Pݝ}-JjȺ;"_[pS,h!S5y7Ǭ noC;,8M _AޮWEDo]$pWKƌ.LSoZkwO_*Uטq;3c={cfZ+w |ty3la˜jl6KI_Ѓn4:Fw57Y΢|~/3}V嬃`pղpu \Hfߌ#N&=JP^цRWu gf+ר~F4H7"~zSw$y6|Ǎզ(3ɤ0^$؅e:d`˕'wI44l/v*K[bJKq}XI(z ~}(Κ=S܍٫F6R%uVYg։ǥ<=BeFc B%iLW\i OW=m`#tƭ1uUkΝ1Z0otIҏy <:; 0sAjf^gASIpdKb/o# YL}: u~>lF(h=XC_,3)S8OV&JB0z_dvZ&<^֭sGѻ='Ea|c)ٺ`A}_YÙsG7Wo,L-my ~a~6[f U5l;qaFnqcAjōkJu:ϣeЀja*Փyc5P󗈧aB ϱ;ml7ZQ/) Qm6c]Z*f1R*_+8:#LDtՍ-eSEԋ'S|5,eѽꮆuyRd|`#LXU~OUqjdH8iS'YΫx%*Glj̦`T=V^jk5 *2S}C c1^344?_m*ϝ0԰\j@HwMN*mmSܱi;0w8f[}L M4CX)4a/׌~ BYbǫ^ }] |9Wc>dC[ًbbHz#h~2σGiLJc! ~t_9K+{ -6>㸁ΒZYtD~('{1s4 9H\B尿* L1{Yaj:Ob'xDVa^< !L|~+} ߖRΝ|00p̣FVkeiRtN.3czVdHG[㚦d,9~$CۧwI$H/-w]eq }֏{9KSZ,2RvTz[FUlN9~[ZΕYر\_>Nn`Ra>Zs@'kd1RtՋ<|*Ң4_>~90zn62!ٕzR_ƙK~:E>YZzJu))+"HqHcd!ZDϪw@rCt];:\tb2di+E[{]2q*9|Ӭ3lY*('dlŬA" Kr5u0İW=Icr8ѳ6W_Y$̛/dɍjR't4e7{g7ɞD3}&3M)+MpMt1{|_,8\Td$-% ~f[e\7{"'iE9DX@{me&u6lM^/A-u1J/F{$ZR3`LK:MM/G o*[O0խХ7 ~o(́A1Neάo1.7l Q?kx LV"Q}LWc]~!-r gm8`yBZ;,ocYn!q'k[1_ / Woɞ\%y_ipJ-`Յ/ u~񫼍cntG6 sù+kJf;dyB;`قo]2_(g"%I4@#몆zP3kcH.)w:w}`_cb^|gUwumno ,&2k~jAyg u39.]@575*/Y ~qYslCǏQ]e|%E!IMizRbj.7>"1IlEa)RǹRSeJV^Q8s$2"Ca>YHs3Es\vYwQGuwf^׿hL;tP~o)`kCM`gȡ#>8'B̀5n6ZFo1d (!:cGW^' Y#^`wut%fŊ͈ɢAkiңc>GEaVHt_r*:u[&j3Nr.oxa3Hcj*RcrDe,Bׁ.F=b=z{7Z$s$߿M&ˏlc]vBdlڨ(mӇ cע32{M?;I.c1W74qL9Fn|;==C<}6NgD)f.~,F+[ìIJJQ2.{DD/:Ą.]zf9k(n}_LbZ>)M}㻻-9UKv%ȑl 9q[pyp1;1Fm [pŋ;"lWrǎ wu_fPy.=sMJ2|S7ߗDhPo~}tzq#""3NNc wo:Qڀ*\qUT\3Ձ۶4{f~jeҋ v,9S2,"~1:Uo~WtpW?W8D]r9:];/⠳sfc2TUjU\Q ~%{OMKzUlLmHvٚ?6`赂:YcS=˕LU;33j4?*EyE w}q]T vdZ(c׎LacYi_ z`ٹp¬? ug֖"*\\Q܆QlK>ݷz߳rmeX>&(?T>Szm9Vl9zҬ[.`Qed U0MYгc5D|5jbusrs3s*=ϾQH=w9lI1’<#{-&񿌔`BPƿڬ`[~|8[fyv1-Jz|dS=T[30or2 ̏ٗc7KoCu~.{;Y|y!AG*0؃d%c%W?Qy%Iab--FVjzZR;XW92Z[B.{i<=>縇f\}Ynja{kټF-Ugs@F+q̄`xunTm1.UۂWz8n}wxD-U%tޑXTƬt۝N24ƠfCG<5vKc %Jx<2]s18f=RSE FQ}◩5~Y}}f2k|.=qxMtfo6t~ZU.ilcxHϥdUxQY`4;%-8?vѴO ~C:Śho!t =r1|)MX6}̐s2w\Đ-63{(zC/9"x Ҵu.!T+o[foM$ʼeEntWrd^Ow9['/ntrJ>]*G~t8b]2/GёV_m 蠥"uҶ}vLоo\JZטbqd,F>$|b}Bm6pEz CeX3sT۴~_ೂܽkdhʐ{)#>Jo[?ÎŪUGPi#Ǥ{pW$qm$u)}3 #Ņ*y ~[. 8 X"ġkk%1U`H[{l܇h?~YRe}OVsʹV>*i2Gk'-J^ZÇ/A1SX'ú۬6>8+~_܁s\g&GŜ@ʎvhR3fI,ًq6AV"qة5cЀ_*[: e~È> 0d rbv1W]LBuocAL 3S<Ǝ8~oPdc.N3pn[6uhfM~@ҍYf9qW*ڶtF|r8)(5w˂{:)WaN+/ {ssM3Kd#T,_T_fCAcdO1fxAKYlٹ8r  ]hgt!w: RyʈnB%?!t1xYͮV^scfVshy& Fpd[녇TTMHwXX}ϴ?vx=lݷ ; VC{VJUDRY58_3bf";_(eG eֳ͖k} z7I]fZ?/8Ή^6d'e22ίa.]P镲M2lAy]?eA0@` 'ؚF;~_ee[l/zǚ<[QR#DD2iJ:O;Xi˻cL}Mʬ\oIkY0wѨU-GINQ+&뗵n~]#uq kTL)T;ollԼ%cڅeo"&eZR!Fo/f/Azܕ$Λ$gKPS嫌b}D mS6oŖI;WmX(fI{UXЧ?nX2IkVkg$q 1I%Jt8.W4l uE߿-`\c'iH1Fs[뒾7 kw:{We}:W|&x:,D%YG\2*Zn>7T ~[/Q9գ|7=P@UC-;tQ$?'tNQ68n TTjuU\2ģ:943\2bq+ ~D]6}&!+tGm뉾de7q}|7s~)oYG𽎜f=ho( ؏M}d.~[-o}1\tX=Ҙ`+_^(3&nޜR9wD9|k0=/e%&ջ t/L:yhN-ǹw kz1 >ԯUD{ ,gxF~5(&D:TE˥&ֵ^6itЊLG>;4C ['d& &wi֤ 5Ƙ4Cw 8Ro _Pf` s}%$i;3]?|ucӵnrp 3a][ML!ۊqf0 @Z01`J_G0u]4;Ոb_J';2z>龕FkܽŌ^sɆL!]-5QRWk4_iw";65tNfgCw~\.P-[@o0NYwqT>1I q tPB$R IHήz%KlE.r{-[.^d˶|3SάvW~X;Nvι'R<NmZji!YB|UfRN[hۻel Mn 3 Wmm.z4Y(<dؑ6ќP*}=r=t}N2>3J?L5q=Ey1OPjBuR`5]$ u#ޣ9{Sظwgpl]myBZ7om=os%),RWʓ>KIwUV{^G/!޲kL0gљS}3VAo9}HƓ6I>G[ и ^怤ẹY$iֹ739ތVЎ@Яv_1<{0>پ yݱ XWnŎD굓(SXmgnp d Ŷa]i|$9\  DכUezY`˛]Jvr+sU/6 ?s\P3VJz'}ꏈd_,yFYh4gp_9fՃO o\0 W0[/\4 #T?8cML8c73c JӁZl%MZѨ׉-IIiI7@ #ZlmLY~RY2E̗fVK#ϰAl6leԵR/4ݢ>Y懯iwbkQXCheGViI~0N3ca]9٨u* RVҜb]\E ;Y̿0{:xlmu'd]|M-RӋZ˕!uZ ^գņ][wиF71ة?ﱪgK`eNX7I/}q vކ%΁ԩgEW< [ٌ><)cz=ޝK~ZXPU/}w7]g+>OC ͎er#*|~~ہ~wޞฐP3gW3guMtkGI lhN6xMvo;6ӼoZ!0+~Dleǭm/ƏMz XӚvn􁋛W&~WY_\D3բBV ZaK, bl+]P`D~5zĆ<ꄥGO[l)Xdz^O Z?d{b'Uy {&R,u?rǯeaA8|*T{I%d?6Puo~l7{TQbQ]׈E,u{bC[3 qDNƧv./ 9b܌C6́6˾am/k(Bm=*u[U©iKʼn=ZDI~Oe~ImGeaxgDe΂~vl:jky>I.("4F)<6Mr YR+Q 4cr 7VH7~Tq"'bP} B4VS¥is/WdidgR JzpUSJ"*NB20ٗ ˡbfI!}Fg5\S_7$e>A˦3|mtePx(u{ڹn[90h=86]$Tc[N;,paD[Ek6?F>Y{-r,,9Ug hƿy&?a2źqhfv 3z?bXVkܱ: ~0WFȑ W$#HÈ"jA%fF9o$LZ{gF%t2BBM{6O۵1^=D$Fl rL4Q}ݍg'nXm}j%vSYoy*I-P<FNckg՟O9F&"|w*z.h-ch#9yo=8`=h)6ۙYwX Sc6-c?PdYdv/)^lZffY-;Wdؤ<_C@'2`zR-ci`Qe:\wH͗L.?h8JQd)>oɏ<]O"Lj,M&=*2 3;X4 ߍ?4oAm >U E6=S9~3i*Cb=h`N:ѲwIh(C&]@V>Ѯ^:P7_CFvD"Gf ^v̕ok>Z^L22<YN%JG;~|+OIypי&f<[c8@4͕o2Z%jɰhkAoSXjbRi]_O;G쑃6aXYb[I@~1{>wiXp+g]rw0ҏǕIא Rz}(8>6;:P iS^ީty/zZKˢ2̱[L(uoi <BZ*suDstߚv15GS$5C~OynIJvlYJU>84O ;3D|.Z+ Mxn(cWa\K4gͧ\ ƽY5+?cYT=a9fH'җ:ki|m,1`l}hX Ȏ44WBqol1ዛ5l_v$`:r/oxzu[M+m4-Nb|иY؏\>2(;or ۾˷,q)Cw-i&&4 S 5@x ,[B.MiUWx'3މIՎy O7-[THU=o֯gH3LZ\!>lGVA4ؖUQ04I 8L:T* \`m/ b!-9sTgv(fYWn='?+-Ɋwa6h8z _W PZNW ю*)'ҏ{JDKc28]Q^Ηad7=-4VlvƟ7S#%юʕdAk!˽1EFՎ)pmvkjʮ_N[(Sk_U*IF& :Ztj{9c?0R_W5Cf+n{BNag۔F(vzBNY:2 ױ2U6^A<]/ۛD;vד] Mߚ%s/;`G]IF>D'[DXhSpdiD =goZO6}3VSWW6lh(BG#7#C}aQ_Dn{;b~u #sNRnl̈2(M@ uet+/D}T8A\a+f Wph^Tf} ^϶#KaA8qDp\s}z+.ZeYǙ $M*MC0%Y8aF~]Zcq @8-UsrW6/oZ6-xSk8h Tǻ^*=WV&y[!V;m1*5 +DtdO`UTԚsuDgLS}TVyD}Q.( 7f)k8_m8YYT15wGg.SzBml^ $8J?8BM *#Z=,%{ZWk&qL,8/K2P'#kR[sh5< _~F@(CxV=n>5>"UwoCt+W63ԇt|լ1XPl~_lӇg 3S 1KVsD݅ψ> 5kAB6X\ F6` :=޸'*sIYY9n@2u-ޯq\A8G<ӈ( ;S¼_.L`r$sT:9޵TQK'z*LGλDi\WOOUxoei: 距7hFn)QAXڍ=q~W꼪l#7)†ib(_H/4BYs9.eQ9MtZ"Cg7HLǨ/|A%Eu>ka4u,^3jc6 bxE 7}q#1=Ec;UW~K8.6y4ݽë&W< fj+ێ;Fg,W{SyV8_cSX3"hB"HLù]S{z#ϛ gG~ۃ~k3^GcoZA }\q{/s 4pU:㮴#WIM0}Pv!\[y~۱~Wgq`6kJ3Cu͢& BJR9DF7-!ƞ{6Ifu@x3BW#z_0g0i6)1C֑~fiD>f%N?H]|ѣPDr{8m'_s^nگ|_3hqLqb.tOacǚK|~۱~#;eddj ~+E}t}۞kn?j䛷,?b $#PK9刳o{3K?&ju*pO_5n s"Vo cR7t}a+gUBX'dj6m6cvVT  rDwL-h/VNY+vX|6Zy ȳNG{oarB qTkl~۱~Nw8_Jl2+CҾ*_pFFkͦۆۚ֠.q=hOjbkJ g|Sɵ6=L`au\EUM8wЯM5Z4!*-[cSX MnnpvB}M3ʢ& fn6ǯYvKxGMwYX13B,FFc.?&ن|~odfaDMW[9g_4=488{TN Bm@>벥W+5k#ݵ',:Xư3"h׵NSld+ )u6TL nYY}q׫'\jךuZ_^Y\Ym2إ7~ۀ]r XқUn.ۍnWpOi_5s} vBmɲ)=Fn4$Ҭ18`Yʩa56| Dwsy7ȷ)ݧ1au -3/Rt-E?kVv/(ɑ~qF+ʉ򙹧 fsW*5,zUw`% L? pҤ 7m MjhʤPW龶>B6k9/,=bIlGŐЧHd V/~oQyQ5IP0\5J >ɟL4Ė|vziʚ%̶f'U|h7ɥ{>wbM/pYI¼ rA|zxO#Jg9-C$3A'wVV3k`WmP c%kH'm>uV:и'|o.[[}.å(C9T4Yk\O\<~S*%O6NȊX.OKeݣԱ_/3ú [J0MFŵJߢPJW Y*V:-3hݡ^e< =6AmjmY2|g߱׍:}j`[~0F\r{CNKCO.?Ҟ9}~߸Ѥf pj~aXtuMoP'$5ko,Nj-Z{Ve{:Q,WB~Z(y 1Y˫>#s{2ŒzYɷjXIWM5JR~:O^,/F$qoؾRV34=1FAFEtE2R8W ar5<&Lik_Mhٷ/c Ɠ@\reNe|󚙃S~PJ/w3]mq]X#Dtv ㉴@DfQWMW3de$u|RԸɽ9.<+\݁~CjtOyYL _~,Tf)*ei$_eid(J!%68Og|톥"P}ѸN-ԟ/8ȸxj/L=Տ7܈q$qq$腒VOL)84o\do"Q϶~}KL\j5nZTdxq,o9ך&`~/gh<>HGפa8r>.iSxX`u%g ԻNoVGFm; o -3lHvPlMazDcD> QOj3vt./挝VUPBmnf]yOsT&|TA3.s"`vǯA6et' uڣ8[=c\ Bmz#Iޢ#ߡ묉/r 'M#uuxR!'w8DN?s%{W 3jqi񊳶N5-6Fj=Ey wZ'aF8:` !uL>H|0Z?z/h|+]ቛHt9̧oYR `rn8Zś+7= Y?F3!M>@7$iPsd(0~L6r3kaüYŶpjq齓[!;# DwzZ-^]HvCo [kڙ#"WElmݰԚrN԰Jv_e {?^ԟ@͆3yMۑ nDѓJjoQRJd$vFFQ{y  mj:5Ÿ]j4YȾ}|SKfWZ_eo*fĤ 6F,ƛ̧^?'e?钲YE:Zܞ+Ovި shmZCKӯ]+klpo9D)WM;pP5Ugܖ(Š?ESEcUt[4}P5xF_~Qprz֎$]K_˙J] qV>R*|G~۹~qӫicۖdZg2)~_@VQNj*ieV1=+Xiֽ=ygi!c09uV׭D~lhSSw.Z߫E%qn=BMZ sUN=,&֒QA4 ~MU tEJΟrcؽYU7mA~_N0f@dg5OƮ_:YZf"`3?@Яș<Dw[auV| "Λ8V/;C}hLMk*TY%~;4.ա*2 rh:*uP,yV2$ :kRFc:?uP:/ TekHzZ_EW*΢CpOCO8w~극fͲBN#q.͊#wLzE4EÞ BFuͽ^S@NaZ<-Ӵ0-n>O& FFk ~# LJ\A 3l4XeƜ$t;#(d-_Üq87,4O/B߮AF+G[9SSk%^ nJzCqhҬ Y^>ԣxЯiGbYպNi?^PƇ)pPe^t \4uoi5e X]E$/옯N{g> __ih485  '~-cMgQ8Ҳ3]8? ?w.^O N,-OF9r-kp^ ; D[>$d p h"f*V]Ng_0It{! :bĞe[b'(_MmYOL<^>#%烵({_'Eta uE>Or|AKKΛ4uN ιqu.Oq^/73sƿ7$u5)x#(ߘ9MqzaIqeoԳo8%y@~)0ốgk 0_ /AoVoӰu9U3o~~_B@// _~~_}]52_pp.2ڴCB1uze~I4I]NyNZ$':׌l6 >KNQ?5vD3Nz$J#C/ _/ B/ _/ ~_/ ~_/ ~ B/ ~ B~ B~_ByE$\LNIl@~v}~ZX2&vk\S\Obî13^֕Cn ]9o`^q=o5?|k/!۷F^K2̈́[8x`"^c/+IЕEAvA:1ܵŔ+H]cwi|Ax?̙S]Vjt~x+?p7dΛq@]۽%+ Ә̟#I_.fw/x\~T?,hfap{B 揅]‹JShPFh~޻ߖ*m]3RJo!9懄] g{\.#,r!kFWR),lNopqSr$ 'C:&_( \j6x DBE mD?7"/]W^JopD8i4IX\FmiVg֛n[^ԩĺ6{ &u)EHb sĉG[ݖP]Мm Rug/';P*dbM^C5k!÷/PJӵEъiMװQhӜX],\sXIHdލo*~O, %b87kPN5!ӷ*${ r᪋šbyln9Zs8|f"pU1t4UukbU7ޯ1$ U2'u[f.uB^m#,OT5Xb!o A!ſ S.+Ģ Ԑ[xht?%7 ڢ+ __C#ǙE%WжKxmm\,='~ !WHo9#VzOXGtap!ѻ __çB GiڊJ5FM.Wd֑f^. ^C~h9ހNt1>[w1ϔWLy&{:_FW> ˲Ϲ 6y OuP4<#DGb;+4F x[x~#N>厂SNp} p]}>eҋult_3j ?V7va_(y4b`[YwR;+1@wTOo,AĢ'Fnn [nΨ%*S-.|߻D,l(Gw U'/{/>QX.t/>}ڮ;j~V^>9V go_Ņ?_6ç_4MOpCX -Ȍl+% ^(B*~ykşG^5zMlL\X]iqG>asį&QɷEbǏF>(5>$F%˿Ŵg+}=5LQOLhS?ֵg!X_w_;{ѣI#a {՚bPh>}Ù~ Ϩ&Zr"r yP v+ %{n+yN?&w$(" Y$~ ~B..ܑ~Ϩ&(8iVK?d'kdPe}[~MNwջ7@WSu=B۔9}`٫峘b95y"KF_No(LRc~J6\gT:aF&76gnRu k|Gc)\ 82fna@ڛe ؀y.`_3 ^I } CD7P|f[_;$ PPLPn*,|F5}mdt_z̵ԯv݅Kwlh9G\cX(cwlgT|eG#+mW4|EЯV#3կ~\DtE3LiPgT̯kSEŽ'3g60 Y 3կXk|^'kv2K]sDk|F5|ukU .W4~(U]o_~y$~.ph-[SJɆoECNjbBDDOZ + u.ԯ '{Dߡeˆ#r ? ]G?DgerF5gNށFcFq{w$vg_;ʧ(IX(FEd VI YR~ywjUt "jaHCPj^wL^( T~#z: $~WH?IJA%O S]M}ZIj#H+i#hL$C~z]q5g2 ܮHЬ6s߾P#%]Z)I?{mw@dyG+};u [۹]IVhHV)K*hD֯^v*;H,jK/ߍi LSe endstream endobj 60 0 obj << /Length 779 /Filter /FlateDecode >> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 53 0 obj << /Type /XObject /Subtype /Image /Width 960 /Height 1080 /BitsPerComponent 8 /ColorSpace [/Indexed /DeviceRGB 255 61 0 R] /Length 14906 /Filter /FlateDecode >> stream xyֱ79Nr3D_U׷-#tHQi;TDE_QIZ$Brln vw];dw?{g{Os}Ȝ$:3ihLBhhbFQ'w~K/@ ~_~A /K_/~_~K/@ ~_rdC׷@ dXm[i_o76KKN`VC {nuO%l_]W=yVtkK2»F_ؑIw[n\+_EI7C^ '_?ݎ~ŷg榛svK(ĸmO3یK(l_Z?R/^y+vz-m~qvϹs?:+~q4N%n.v\_5dnrÄ/,wme^y">>ݽJK拞_1F]h="X5rc1lK(hsrSge7_E~;߿ܝv|.6*_A=#"p2*%U/v qT[IG@K3$ ~;ͪZ>0/à_<*ZͿqjs/x>yn΁զ Ge|~vXn Zn?gG-=&~qx=/'~3B~rFEHY sך{7wXNwg7l\ߟ}OxO|ۿݸ~qO(z._I}'/E+~3%7johy'?4޿*4aL$nu`R{~EɊSb)?Fz4Em_+9?ӯ~/ޚw~h?IrvvL}_seo[5:K>8 1~3-[8g[<eUo;W(DoUc5NboH6u_D=yo LhPM,u"J1ѯ;|s~g(VaR^[bY5ۧ|)/`(}ϵw/ *}F\Y)-|8wa,Oe̮,u_S)F Et{T7䉘ZZ5Ҧ|8|&҈?i/CZU 퍁~KsCdk}k?-~`5חIq|HHMrBFeBu?21ooؐ_}iM5k/ε~kwqYv^5Ɯ#YF"~c7u[@zܾ~i KVA&L~;~w~o wmb$b_N!_(;KFXpp`'#z6+\]% ~E?Xٵa\`~_n}oL뗾zɂYsqS~K2k'u®AeV2K]zm)#Ak`_5ck0_5ί=}{;H/fR! ~8Y/Ւ^H/&k|@/gS8阉~8GTJ߿_5ΧM9үy6^i{,~8Εd$~3;/g-R үyԒ<@/gŒ.Sg_d -#AkgI񷳧үON_5S/үot.G_5&RY үq @/Dw,{/g:~~t[zS˺8nJ5ʌc2 (]e疞oK ~CwI)it}^SҷkR+h=Rk5ˤzCzû-h y%bkkMCԢkKdbR:K6zQ ;J:S1k;9}C >zIoӯ$=0tkZo ZZ~oJ'1 ݯ*=3ԺK7:Ne1 羭';}Sg^GzOƩ[mЯwi-!^u9ϽRz{?CnϷTGƁ~}8;_-vHѯS0kN]i׌Yꑢ_Hgle4kE: /{Ԛ|~M~q/S~d/hg_i~6uLvR ~#]ab79֓ cF*Axm~;pԝ|7p65!g_o7/.ٗ~ X&]ЪZx]R'6۠BZ)y{niN)|S~,ao!uuAqswZv?mH [DRB!KWc +z|w\CEst6:ߐRf.})P٫2W>ݝKYWOOߢxBjnRc=i1zևՖZ/s;Z(F*ߐ0κK.VH]~,1Tg5ЯV9/khh~Plz܋[=?RYC"d܋?X{tVRBK^7ߖJQYWGS~WCz'^OJP@Q\2(:UJ{$b%#FT۩~(\}kI /4Ij߿}ԓod&uc9 q%xSZE[~+uَ~|NΒ<^N`;{v.ydiM/ڶw+ﶜ|{wv)^O[D*4`g5yl*D[dۥi%}Oď ~ᯪ:.ۥ##:Iz.XzK_oet" -7n.& -[a9# -Os^[C:;Swf:MQ>Ui~IRw#m?# =ZՂ$~+ ]~oyM{B<#[;R_]/#-IsHE{äs9G(⑊~?Nб[~Ut /9 NR4cuuΙxAօblKS>[fW81-NG1DS'ܼ7|gfOm^r785O [dۮ**1Toa?W CE^ړֵۭϽ&>{J/z~ Xs(~,d_R퇧,4c}ϵw/ zG>4qRqBߢ{ Ň.lj]g~jNgW:oǤ=@EtZK lKIuCk~9T;RAK>,/ 79췙g&__*2b(5 ~ԗ( @) >-QR..~_ n"b&(47T'I){+RL"ΞS ,:ɖ0 ՗52>[L RZKg[7gUokO"-̪R| 2Kl8avgo1wN„j1 bluAࠬ}g 5o,Y 2>w٨wtomUi{{Sun[ny[/\+vy;k1\6+\]% 0QOeo, Y1kø>*fկi ӟ~K(cRC|=O_dR8~N7=k~x%7sЁC~7 v27vDS+ R_##Jv>o_gLd3>nr*ۘ[bYC[} 6_;xnW[KouN7܆J[r}ɶM|-J5/^~mp상Ro_Fa*aoɭrgJ;7zJ1Z-Yn=~ht9~0OYWI`ӯFH ,^@?Iaubӯ-ޔ.)-xT_{*UIZ3I~DΜ_t,xAY^ +ΈS:{4ν>.=r%GZMUX˄oxdϹA뼙҅~mpo8QCU717f$C_##!_5RZuCHkA_#)]Hk+Nj_57WK.=/Lꪹ~~{Ko/4үYO~af&/w~gA 2w6,ہ177|=x\^Wtx A^]o8m8FwԟF˓ԌSo|WNAҷkO;%|pZJū+Zu=kq f8`9j]&+}p FN)U=HB Naz]$i#7Ot7_ҋkT%M3\Z06#/o+i4eI )RUOPYܻQfVn u;Z~K5߰k&59]MF-5T/&7ׇmuM=].Ť~H07<[V;o_4η5e&qԦ߰ߩߒʡzK߸ֿ+o~o,IU^%LxS~wɃ"A0u~K|^h^j#ݯgʄNsUJk=5_A0pKq{>ZtIO/|'UpHnJZE}JyտeKG0\E*ҹjs*T~R_%KSѽ{_-f~~Ud[p˷xN<z;X޽?'GmqϪ'}u[E9.} ROzBN|S4=G1m~g]x(lCn@~& fzoչ5ws=UaR^[%=kxUa;*xT)mmy|AZa-M\dtK0i~//{nS+Ԗ!6Q]Y`r檸I k뤺!\)ah3~H#B}~=gn,݊z`ޙ#i(S1?lrf/a9YSid蟜'tMn ՗1߳T=[~nwu+|Ve~MR?ly~, ~cUگLU/ӯirZ3{n4lBg'g#+ҙN!_(;klg3\0pvf뽫$F]|jduc|ϊ]QɶpU+\ iW/Y0k4ӏ]{F~zl|~/T-V_ެ7z(,3Y~}ǫj- W.~?_KEG:"-J%pAЯ1UAfK2U~="-]L[5S?~7֥ ?\o~C(-b•>)n-d[:1O~?k,i]N֥ZS鷠l)+ Wqof~;vKr偓koLS߮V{{Kzo~k.w 7z~y^,}_*\*4 :^2K~HgXt,w<>VnO1 |"p3I~_:XVz~Dz9 wT:uJI!US(/ Z2P*4) Mݬ^^s62E~{ƫ[(zuzͳ"^71C~SU_KynVP_ノ}U6Vw&(ܯa[M^=d0zYti.㽮)UQ혟p{ptFkduub65פWtЯfz85ikfUic5߅= 9~`ЯN8~+n#5mt!5r#Яf7~_`~QD2pk:i8kf]T>ý +Z˫:u)qʕR W0)Q˜=t&zcߛy ]RJ/)wsi]ʹ Zp:}Pi ]kd2_C0+aBoI- ,jMw.&;BR`Qg~H'Q&;J:S1Lo7Lv,{*ɤj >Af/km7`NOX_Pzo ˶0}[Ov"`ϼc_݀IzXݽ_~0%aLpԒ sz8;_-vHߗf$L]DkWw5cVzޯ5E\zaJ0~8(=Xůb>rvWPg#~GK3AF@'z0O(6@z5SxjcЯ bAfW kbدgw^jO.c.~S'7|d.¸~]U;b߬ |ps,S~Sn}W~;~"L)+SXԺ>./``wyXj~)7f"Lw ow@rDqN?zGJ3a\n],=cfשC0z=4y}E:cT=`` $-I,~I0̪R| 2Kղb[i~tCW7w獩~Wf!wwm+MKݛ:_|"[>#`~K*g%vUf7R[C.o?rq|˰4ISfLj}gswT3nJ$Zv3t13wKUxY\rOױw^p[wGAկU֔ds0o J<'ץ70߰=~[vSXX3ʼj&Tj3.g~w8/>~w45߮'kdkՏ5ҏL?[[DfugU !Mf~}Jdg]t ϿK\|MC,x{+ :~=Я>Qal(=ٯlw$ ;-3w-7{lc~"unUWlw>Gz3@=yO LsE#/y1g﹠jz\us )yޭ|Hx>Ý{{iЇV3zXKE=O}'3\_xRH>A}wúN#Zapq24FI{{Z2@W^'"+L;'#i=?9OJht;{cC~~5^ŭ`ց~`iǷUYjdbξ7, ~cUDL:5o,Y 2>wY[ma'Ak[/-jwt/s/6+\]% Ў~*gyV0.~*oz ]u1,5wQj+3Y)mc2HЯ$=8~%l`AF2'MG #~V,kd?H1_3EЯUO@ ^~%^~M{i(c5+~c5Յ!/^~5{~Mw){~=AO@;Yzo{O@fB=_~7Gmo59 ~Wi5o1j~w4Ezx؁~a'kdYuՊK ~/W ~7'fFkfOJ0r_#8ЯΕf@f{`@Fc@f;V˸~D50n_#],=ʰ~췟62l_#3j_3}Yƨ~lN 5Ti5kjtc5w3ЯvVuNz5!/oֱ6kjI/2b_3Ƃ~Mwk0`_3}Fπ~췩Nf@fPz*Փ ~Vl kd҃~(~5_5w9~ kdo kfK?2V_#:Vg2T_3#=P~ZP~wkz1R_3#}H~50R_#],=@~V%ld@v\l᜹o8JŒjlƉUE$]f䲧6WA9CA%BI~/]L(omϵZ>n*ɿ |sK>JZ(\f'o}jr}+K Į܍`0{a>~K4"OK?JNߒ+/ ?;Jy28luk?9OJ K 'M_ ՗քߛl+ֿ^>~%L&Я;,xiVJX~_2@HkXE76!e3y}ſG췭jg2@) exJ׶S;Xq?3@ٵa\`~U;Bkln髗,5wQjZX2S bG跻*e@F9Q71>_3.-`|@Fioep&7IC~~oR4& QCv]M]TG3?p.!Q_ף_/K/׵l<7~cM_ uF8M_g^< uDXM_G uDXM_G uy2~A.w/a97~w/a97~w[nƵ@m =6pp}T&1SF|sBhj;2..ЪLܻLlwaߛQwV нwT®jD1e|_'ƛ~x/~o0_M|bD7OK|b~~oe>1K'ƛ~OxDK'ƛ~~o0_M|bi'9UJЪIwlw[HzHy߫+o[? N=;;2뿣ҩXjTT6Cqz lQT=#>R];Sm\"TY=^O'W{ފUUODMդ~ή%;lo" LW6|_yuX Ӄy5 '.K}FYq֝m3zַ^Nge8f߳oR;4ߚ?C>Z{ ~k4[?.~=ΑzΰVH΋cZbke'Md]n#c.ָ0ϔ\^Wz&rO=߱~e{zn8֩}Y3ϲ#d94)Ϭ`Pޝw.*W^-ZCnКO z!;GԊNkӆ)cޕ|%~;JϸY}/xnU'Re/3AW*usp^i|Iߓwf۬U=vڇֵ󭵤1^, tQP͍z9o'pm=ݻkY+vvO7lm$=c{lQzts?w׮]2Z_W[:Ul:铥=~U9CwvYm{b奦>-x}Y:ޕewƚW}q3d5W}[%-~$g׹2w&v6ߌ3s?=sO8fc5W'}ַUfDm{"sT_Z`Ǘmw}b]KfMlF_%;Z)~7mk\.ҳ\k,'n]Co|үNד~P}z8κ8gu-)\cbߴ+|s B?*"ǿ6ZP>uuyV\F:ݩMm~_uhf 坁[WF;{=.%/|/9FV sU^[,̽^jQgˋ*둼>p՚<1簾$*;*޶mgCa iIѷ&⬠-[Yo9vZN[WkHC_ƥ'I}c_#ݔpgw{n~?<|t>V!̌;_u^GbS?zϺv-.ͻr5BWI#2(zߝNօlr5f\c]~$Kpw{򎟓wb_ ^>Ӻ2lTeҼRrZ, kZg֪K?;t|-cߕp\_nG |ۛwa+ۼ$=8wjݷWWS2?kB9M8Ǿl32>o'>퍉~`[iڌ[N koosf:Ԗ~򛮹<9lzʨQoe;O?:51&p댧֯<lR3P:@3%O+QyW/~]yĿ~/@ /@_ ~@__~/~@__~_ ~@D@p endstream endobj 61 0 obj << /Length 779 /Filter /FlateDecode >> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 66 0 obj << /Length 1651 /Filter /FlateDecode >> stream xYYoF~ iE`qZP#i}gR$[88xupruptJDXR\B"@ R$'N<#XȊrm1*,8|B T^;eO#ǥN*muнeOZN$LHdI0 J]Uz:=>)rZ%]b!9lbJ$V!H0g1bq+BG4 _r$[V[ŭàY7 '8D!| OiSjEjkDG~:cJĤy1lzMȏN]1DYҥ`mn#n p&j8 >[ya&RYp a.VdT!='ֺ^x`Mʻmrkr_YJPe9m3%RKl[Z""h+V+$:G&LL/[ίfcsmUoO>N , o1'`XD J);]V tn'G4GKjxαA>x8 kĤ EcqNJ2zc#$ *KNz5.YP+CQB;v<.rCk VQ[@ /׌"%Zѧ$kOS^*tPG%Beml<+ڈXuŔn:|),/^GK wSFCY4_hL޷={`p> >> stream xi\W6kA7 W*j}ۭT[k*nUغqWkR@PTDPA@} !'wfa2s$˓3p("-uW#AP4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 h% @( (_~}}>8P***zO9e߾}wq}u?͛7KJJ]/ ?7ot +W,[l:::#FX~}VV?m۶)xY觯]VuVaÆI=SS6CzjV* `Ŋɓ'Rm8t& QUVVyҥk2'!!A'##cԨQcƌٷoDzn޼޷oE֪vr劯&uALLСCo޼)8]SSӞC~޽{BP/FqqR:z;Cw*2P(}}ʕfkkk#G9RGGG~! {\B(*55ĉW\),,,))155֭ۨQf̘1f#ĉR;KJJdŋg޻wÇeeeByAAAnnnr.ӻwoW޵k!㑑/^(..677޽yނٳw)**ppp^` B޽+ԴR0 ^]Y]tѣ~|q}}zjE5P(LLLrJ^^^iiiUU={z{{ZZuvǧr\+++{{ѣG{yyڹGtR^^^QQG}4p֕Y\\|syzz͔궋RYYw%$$<~ƍ8qDlllnnnyyynݜ>@Q~e˖I' :moPxԩׯWUU{gϖ)҆߹swߕ:fƍ6mU1c^*ٳ7oLNN.**233ruu>}-ϟ?%477}E^^^C mkG$ o j\$k%BEf&P*7 rӓ:ۛrƕF+XVz?Ⱥ(chǏ[ZZ*v޼yB?~,'hiiXAV\NE/*(꧟~d5B3~])asssDDĠA#"...'OԤx͚5zrdrƾϟ?L9+Sj$=}WV9ΝX]~o1!dƍr*YYYlٲRNI/ط~+>K>JD4u/lC'.X@`ҥ BNZWW'4?Bt3b?BȖ-[/* k]~аŃЖ]EgժU?offVSSJi]QQ1yIǏ/++_w(X Y~EƷ[ L:Œ=<<YZ5y<ޟ)繷CEQԑ#G:Ǐ[|#SSSY,6zb';JNKK֭b/!8p@vt{~PY iu_>xӧ++6|pYG`ɮn qqE[=Êg4+/4EQ'OU}rQ)!wޯ^U}}}e\~=cioի,vɒ%2TtuuccckmwJJ fz~I׮]_--FO$**JԨb\.Ѵs9rHeht;hg=4F-9ү_?Yl";wTVʢE TB3gЋU}tڕW{yimmHb|UBĉزeX"c600OΈq cnjj3f9w׊Kx"@ۭ. 2R̊mkѣG \F/_Z BP-tCX *"D?5t+R2eJSSU222C@@@@dd'O=zt &0M/SU.]F=e9q&LHKCEdȑ7n~嗰Ç3F(366>|x@@"`&&&#F2e;#7nП8+/4EQ_ŋm;Fz۶ms8qm۶۶m?~Ι3`''/b;w awttfffk[n*0%K~mK`YuVYnȑ/Ь7zEʚ~~~K,i iii<|Ɔ@J}+¶?@VVի3*駟O駟H Џ5jLYTNNNR_޸q022g&E_7DN,=.[[QF͟?}:ƱOMMIDD[YodXKɧsi9z۷oN_:Ғ>n%ڊ_˿%00P FwHGxibA4ݻw:ϏTWWӻ.]*uVqƍ޴ikҏꫯG%@eWi~1yvֵOfr<;;VS/y_|A?fŌeFGGc Іر~a4˽uX>X є"vB\]];tkk낂Ɍ:@͝;^QFfȑruYï5*@b_~X-[FVt|tz XHme˖72:B]˖-%ĥ"5t㽪#GƩ]Ϝ98p``RUQn%^Al >~ darʙ>9))I0恖qɒ%31vȚ6++~xY)r&ǕhV^vU@*xǕ]qqR)>4V)-LMM155!ӿ|Wrܹsstt aw%Ww1s89S8S|b]DݖbMMM\ mZ>=S)ӧS@3` ۇ%%%əM@GIG4h[nM6Mj BHrrԞFCCC \.Mpvv3RP\}}}jjjDD֭[gϞ;ϭ.M{[}|۩egw}755/_1cFccG^|)yڢIͥ~y{{˟pԨQR;KKKEO>wɺQL$444eee8^>}d=!z)z*"ܹsGnmÑ!$++^FFF ?kݻG^W]KJٸqܹs9RXXnj糾`),++ё_(~:;;b+Wj@KKK^ZST2~#z *..sNVVP(dWjR._cc)S^z%rǎC  |ڵk+VzNQUhv1~AJ x"4Q,//B_ |"naB 'hgϞ~5}gsxxx(>iwfݛu~7|DJKKO:u)BȠA&L0aooo'nv(ܟ3<խ[#FܹѣGJ1~[ˣF(<} mwGI4iӧO,Xx?O9rCm0hEt` 77(qX3g]5˖-|/"XU:]hFhob|.|>_nmW7Yr1jZoذa)))˖-5 ]nnu.tz5oܸq)))?KuטmQAouqq8p[ (~'W_}%&lْv%ɝ`ҤIRq„ Khr0#Oq;i͗#ϟw_LiwBZ[,S!g<bTZ?y.?w.Kr:vw!+]v۷IIIϞ=UE7uŮ] SGGG}]666tӧO:?hZA7zC:A)p9-øz4hq8777޻wSfdd($4tZ_j1cЏ9|رcmnn^pm߾}{aSWTT0*8/2sL7y-[_~Uc„ uM0qLaNN2Rk3Fj !$44422zTB`X__ϸ:QēgkTMě7o:u|YE덞q@hll\pK:11ĉT\ÁJ|Ie^z84ԩS)))R]6T;{iya9544deeڵŅۙ@]\\_:u*""~.EQ?siwٳGj܋/0OsrrG )duӞ>}Zg($$>RG^BHRRҘ1cw[ZZJxbVZ%5^<'''((>ZCVWehllB/477wS$-_\Qmׂ ;333'M$q0rHPEǸh_\\ԩS%kNQ'N( [[[WUBpR,/_X;7l ʢH5N^ZGs^X@w`< J97[;((Hjghh(}|ٳccccjjZZZxQ7ݺu[<ؙwiӦ>z?T`ϟ?/ҥ_ſ֭ӳU]](066^j/^xxxL4ʪ$...&&x͚5Rݙnnn/_:rϞ=.\5kcMMMZZ`kkҀggÇfff1v999HќkĈ5oܸѧOcӇ'&&*=ҫz%{{c:::ݼySrtGG'O(X?Ǔzq8R,X uQơ/f|".]x0GիG 155]+(֭[9sZG)[]Ŷq)kҏlhhh->>>b322 Tӓ:劖 m؝;w8>>GM{QCGa[g֭SNp8bEwwi+H/Fݺu'ZF޲񂂂SN޽;!!A//\jUEWWٳ36_~gΜa_~nE QΔ~)SڮaÆ)Z54#v3gc~bdjjaaa((44tȐ!~qqq 5ͅFH_X跈O?ĸ͛7o !ƧNZr% c9puG'&&w^}}jjqV|gɒ%| 8dccll {5/Ň~_~R`ݢE߉q8~IVSQm\bŭXÂ_ 16nܸ *rtttΝ;r111YPkъ+nЇ~؊E^r%KȿZ`駟Ϟ=ʲڵkrw666޾}7wngg'hqqE(C(#/_~qΜ9Gϟ^Uŋ'NPd\NҤILHHի.]}a֭[Ν~zaaammѣG$g̙WZZZzzׯkkk|q׮]]\\\]]7:tyyy3#{Cc_Xؠy20= @ yW(7nԩS:5k$vفІC'hP?.;yɓ'">s"@aw~V\zFjQd}|-: @CǓ*H 7Ⱥ oO;i$TN N:'Nhiiݻw!FA۶msww)~Gzr3gTm-m8t&:!C}?~|@@@=E3?<~~غumۦpL "ÇGcǎek]m8t8XH:N't [_pH: @C7vإK2mڴO~ #G;vL___uLhá#h0{tZ---;;޽{O:?fq9\V^t<ή500011ҥ]v6:h%` h% @(@ J@P4 h% @(@ J@P4 h% @(@ J@P4 +555|>kiix< kkk BUl@xI~\]]|}} ۹8EQCg# ϟ?칆K, VEYVRR2s+WwȑӧT)` 4 rss%wZZZzzzvyBBVVVjjjcc@ Y# 'L'-Z($$dРA#w(.{MOOOV͚'===#""ZQN\\\pppee%!ۻA]5Gm#::u2vHիW٩5m,_¢-E=ZXЬ)((m :yxx6^},+bM͚=z6Xt!.D\,hhֈGnݻ-E]v->>^֚{Y"˛󵴴x<5ptЪBQTVVVttt|||FFFvv@ `Vr &BfM=D ".44k#7[^^ޖ]/vwwok=Ь mM|xl ؂!,tuum+W|93fBPq˗/gddzMLLڹ8vАWSSSWWWWWry<dzڵ++k@ 8ydaaa˹xb=0@ckk;w\ ݱc>uѣWw-:~Hݵ5+..Vw: tԷ@_SS|dzVxBHAAm vPSScbbZt0ЪBQTVVVttt|||FFFvv@ `PxdENJJJJJ_ ,Yjmmz[ෂd1Vwu: fYII{ァ`zRWWܹs B5Sŗef9G+b]zufSaaWnnNKKKR"fffo޼%7ϟ1cƾ}>3u<蜚*xثzBRGSc:h>@y<ޢEBBB = qqqYj + oY)%%mv,I<9͚ظ8ѶgDDMUUO 1\$Y;a;wW^CRhnņ .?m6:/3(!8pRw]:ܩ--#GxyyB|w}wYYY677-XQQQ^^.733Sr)o;v1B=O:ؒK!vx}yN&kk뤤Yf]|YҥKJc``pٳg]AxkP$ B׈>M!,tuum+W|93ZmFmĪ{Uwּgu*fִiӦNq˗/gdd mbbү_?777???߰@+57eeC5QCC5eЪp֬YCihh˫r<YYYuڕWmF5Q9?d~TDp9vKij t;sttTw-s*ǵOkE?vyzkY!@tl55SEc6x<]N6A6Tg б=^j8ڜ{쭥Y"T +((+%f j7N'v@訞>K3uWm !=basaOuW-1ғ'o |j˚΄t *:³7o]!u+W>&d!%Y3hРj֋aC={L`6m+ %}5:}Ԋjk۶=BB!ֱͬ3CfMnnnUUkљ'8˗/{EP_^֤B9wWfr&inӖ_4kBBBN8QVVtZ mmmV|>*hPPci O !><5M|~ݽT//p{?)ײSCf͞={v_ÇÆ sttTc:7o0@ݵ`ٳg] H(x㦊&BHJ-:xjY@@RMҫm^[[v^l ;v۷E;.\pBV :A eVJqt1!6VscbJ{^]]3C֯嗎:04 7oެZ@R[l2;?yrb]] ͛!=J:;;ITޫ>zjBTFPÇ>As3u9sohp8ÇWw-3( !}79Th= >hn. VeM* ڊ"r.}H (i;Q{WzLQȈ{PK*$驻.4n?{8'h]O(rnii}bns钧W+W+:hU3fLiik %],h~7}?=LM+Rqq?A U/&fؐ!&[@ g۞ȭ/4hkA!=ttO9;w>xO~Fzv颫JԬ..98^G n24S#G.}$64Ԟ1v^#GZp8[@/~TD1b{Eng#=f҇[[;gNwSS< Fer%p8}6鳡G[~jԩf]](Oz7ɕIs!GXOQzEҲ~H_,N[&_Q#e 9p ̙BHPd@h'**ښU}AxzG{{~4QթWϷ?Isw9ZԫUW fLj9fn$w.hj~Ӝ[ދ]/D{t,tz/m^ײ34>oقj *OB&z6zOƭ`G拆>ewة((}UUW>.V.wz}KK_-޸Qxq![7cdžhia @7g E!zzN۝zAڜu33SޫpwUV@`Q/'ssJ@ղ_f>:f,䗟_{QKs옫e˄A`O>~jӉׇJᵵW !fJ:mRe eMvdX fLII",[fn#[%C @R]Nݓϟ;2pl;öÝ%-Y0:2m.l rW jg|pgI۷?;x0'Njkc CPZܴOD]'uu٨W9qO !vv 50PzoPh:⇄"z]6WU\ܹ?/R:.yb:M W^ݟj_<R.]*;7U S%T7/Boka/U\%=f[m/[f[O<رc555555O<9~q^QQjdddjj:t-[TUUxݯ(kk˗lh٣+e^ z9sT%RSƌ]X@ٴ:\X!Nʼe啔de0066v={쉈U۷/\@ꫯx4((oO?SU]  g͚%Nݻw߱cG|||||ۻw.ڟ3sLXׯӳhtĉwe.EQ_|!~ѢE?/ʯ?!!DZ짦$>=:鹣@Nj===>s_____ߵk>xChBBŸ)yn}}y!޽{շovss#466Ο?_tի0]]]>GLg&SMz*XF;2u``R]] y~ PhP96o,x.eDDpďGE3'Q9~uL* *"^hwC,ݻ%~ŋݻwHk.Kʌ]7<<\[[goǫWܩ Zث=X/?7Z Ezp@$~(밐vttx[4r劇yH"zZB Fٰ`M`ŊG++]X/4VCCCNNh[glSNmXBrhBHyyU#߿_t֭[XͩS|,lrt8.߻GsMTVƦMYnSuTZyyy)5&ߠm|{'j#''gN*(((((8yADAcĉkjjDyڴi*xNye}W.={MT3+5jϞlBȈ dIV21!{ V"`BQ=Sw=p<=mMk+Ԉ[ J2aO>sëΝK?ɓZZKJJ8x<FEoh"kC_E ŋ67S::jέO|O~[-B`P'ꮅp8cӌuuu{%mgg7o?yDꔁ={QcYYhb绸YQ醧v<#!^[g SII+0XuRJFLM ! A>h..}KJ]0rrڵ.',yd&EDDϞ=(O>ӧOy:::rꒃUBt,t\vV/2!aa}Uz-=}B~[50Y[<}Zt\3fZ7oވC2$;w.}ثW~Bŋ{xÇ'$$[YY9?%Om,m$7w;f@ }RQDٽP#uʩwnQC!;F.\  Cx튊 K y6o\__ohh~z?chhd:vΝ;ׯ__ӓ:tJ2"C>w迥?g;O8ԩ6" ݽ !dM^""]Z9Xj::mddԅ={v!BȊ+ll#jǎ}dzaaaYK_|sBv'U粲yRgN(b`2WjOeyB88|7 eee%V;|,44Tݻ_|h{ƌnݪ{xE{J4U}لcI#SQQ z+B WCU_EMMcyTSCYlg 4V׮]MLLDۊ@[[+N:EYvdyaaaY׬Yzzzo5VtD ?O(gu˨r_p)~ʔi~@ 6M#o+=~u5!dhdz 4MʒYN4fٲeUUU^zm޼YP'''BHbbx(r? bTDD !FFܟ~CmT*x+<9OץIWWLF @ʹ6RRRDw|3ihhHMMm*^͛7/^HٰaLzҋ#pܱcNJ?~c1$6Aήf:}}F/Yb91u]FF3Eii4HO^;P9FccKQ||x)S(X8EQ_~%!w .|H =zmTWW+x9Xj֤BxQY&}͚tQz]Gopa/ L1%%7 !iĀ ڵk Ù3g޸qC+W̘1C>s={htxx"ڢꚚ̙-~hΜ91sQ0@Rv3~cdZbooស?]\Y (BgdBut9:: :%[[C:+**F5~x77īWP!6l@6lX`` 1֭;uԫW8Ý54D}@vYY\ClWv8JL<==KJJmǏ?N̙3^t)++ Q;UU{M0d^pA𬼼|HHA#uC*; ?*(Pms3#(Q_Nʢrq~Vl` p4A;**ť1cƼ|r]쪹յ+'Mرc߾};v.>AJq" )K&Eȑʏ;~ WX,fh(GG#@ -..f2,bh4999YYY nm ˗/srrbccKJJ@KKQ__[/[ 2bmhhYYY:zh } 2F#iUݴhe2fFFȑʡN {@[Z{==a3p~ 찰|Y;sfl}}+ƍ#K\ͱ<@E\:ʞJ)se۳~CBB7FAD B9|>.##l䈥8ueeί^7FME AX~z^M7nܘ1cn[AA--3bk_5W}o LA}llL`0!.9ni)-?;S(Lii)ppp}o#F 袢  LC|CԘfИawNL1 HH6nѫ֥ +*ڟ;imXKGA 4(V6DAT>|?= z,Xbb-(hy2t({}>Mcp v`weiدBHA{~Tc4Ⰵʆ-1 |(#Mii-|>,Zg%/jZDHrƱcjkk{UTTTDDѶmd 2 ||ʞ%ДYd (**2eJT.<<|D{ц&AA>37;.XHiIvќIaO2\6{SW7<*ϊ =zEPMWW &oZXXlٲ%99pFn孬LlRWWW[[K?++Kp+opA7'ݴS\VRZ 6sMKf>a?m54% (FLL̼y>}J V?ϟ?>" H?SgEg?22ŋqqqVZZZK,quu䃵+W8A6 ܔ) $:N]Y+V((D^% ,4|#B(_III###aG ڵk TVV.Y䯿<~ &\tICC;vl111cc3f[NQQڵ q w1TAz#}[:6m.{#G>]wO_rr=$B%AJGtgg缼N:tvvQSSk6<<|oƍ7o|8㱱޿ҲhѢ4:OǏ?$LD{y'L05֑G9SaCJs3&MRreq222`ݧ!Bh{۷/..+33gȬYǧIO=<11155)))ݺ{mYY`2{&[ZZlطovQQQqggׯ_;88dgg߽{C[>O [XX,X'_6 \ܜc((l~Obƕ+@cY_/8~엜41rLHPhUUU͚5sl6; ۔dž 5{ 69s3dddhZJW#Xfgg>|H49BfIIC{ݷo,A^T. X~ÔT/y`'O7lr܊##Od꒒WmmŅ#B#T*++svv.,,y}ܸQjUwwkl%}D4xEEss #j)}>"PM>xb2{]jՒ%K ֕5ɓ'Ν{.qdӦM}4|FGp8GΝ;ݕ{jjj]fccBو w@w)A!O Ń&Dƌ3`Æ Fݴi,q)b!zAZUczG*9)ҡY'Դrpv袧+lѡ!v2Dc=Ξ ƍ3fLnUTT` |KUˈD{֬YVVVoccsҠaÆ#&NH\d2y̙hP̈({I҆(H(y<|iby2O=׶΍s{Ȟghjf.ʞ)4MRAK#FW{)//_reYYY/ɡ$X0LIQSs&I;X0&oyȑ#DrѪ* yPokj`nGWKQPMҒ --V~n{Ny4պ(qPM=Jܿ͡?Îc/ϒV ;II v]Ev&|rZE-,,^z5gΜ6X[[ߺuȈxYSSC[he/G%z ]ĩ!YiW/--僂l SA]dnLM&^6L2ZZZĢد37zUf͚Əu^"F\yyKYY*a'%%ՅE7&JJJ_,x` IIIwqxsw믿2 qqqb! -Ñ o-pہ칢~Z  Q1!jZZvge)(8(73 <(@;vlٲeE&?L62HJj)( ~ CKH?UnU;Nj?TRRr XzuϟYeeڨQ.]*XAmNIMG)N?.\(I';hزe s3kNΡ\4v##o2K,YիPTT4eʔ7odqxxܹsѣ A!YYY]WWłE{mnnٹsG0;:pΝ;w>SGT.~aR3Edrr99y@B#Дh.]rvv& ֲXÇ>|XMM[YYʻVVV|1"JvF;j\.WIILJ<cyf ̓'O^x;6a„ɓ'wYHNqك)ǿ.B02}YWW5 o~>|J `(FLL̼y>}J V?ϟ?>"H`0;#o,11m6by~~~H 8:::::5(F̲[e0dڊ/^F)XYɇ;kj g3 Xqq 5ʞ64bjjj!!!=]ZZzƍ({Fa&&&D;;; ̺USn:`CCCxx8ݻM>>>;rAHY?f|cf(춹?{v,=(DD?{W==nC4M=6s3fddd<|ӧMVPP055___,. cǎjsNwww' KuI_2Z%cH&ެYUaaJJTuc,;- 4%%LMPW0 377777STTd2l6ͦ鲲jjj콂 ɓO> ---|G/ ttM{831WX!x˰ dg= ـFnjwQVekI)4T$g8[ ?*ru6ŸŽ$ *%% gϞ(9>wѐvssb=??? m#LHIInͷF/srXSbر4&>#k sIeP^P.X 4A~@NNnDO|>%}Źg|\㡩]haq<::?c޽ DDm۶MZUs}H-++u.v{-b}oD/&&tRhmm#OUTTxzzs<<==#ȗ~`(%'Oi0G[dd~ 㪪ee5tW|_r~oJJwo 111qqqjjj...m&:ٳ'99Y N1cƾ}ȚH Ս=zvvv<ݻwϟ?'pB'Tp\___prr6mGپ}KJJlll<<_ab64O߃S8;ʞq'rA?߽{Gp8{}"ʕ+Dĉׯ_:u_Ao޼If$IIɀ1c/ϟ?II H?P<҃~˳"gII֭IIc6-MH gU ?7_]  l6쨄VDo薖'Nm99ӧO+rɹDSL1bΝ;3_ ٯZp-[| Î=J߿" K

NvG6nLe00{ഴDV؋0XR2"uHl]\|z@WVVk׮ZJp{y|Æ ؘDzyy}t9ѣGwvjj*u1" xl޻)K漍i[@Q[ Dz<1R4ڳl` 7:^lw%io\D6&_]]ݩS9I4ڬ^4hh~ d6ȶy"1 #/ EAє2Cv$B}|=##}ffrx NŸ7}?Nu#z@~MMM ۗy"˦= 8 =[T&2?DLo&ʬ[GyxDN?=a8rNd$rY&&&$$lꫯڜ%0s >effG/ DA8N EAQSZ-d eab^𡲒?l&!Agƹah"ɣ_gfgY=Ql^\\ޞK"g&?OB_vl|RSSRw " ͊_q1Y1qnvZV9t(JY&eeeXkb'o9w 4%%%q'7қ>}zf/c<ׯ_IHgϞ%_}7l@ɼAAD3-0l0Lޝb_Emx7Їࠨ7$}5Z 0smۄe222l6eΝgϞ%)3766m^ ".\sΚX~۷o,,, BCC|>(**644yݸqM1;sΧO//_NK}A*;ט5gd,,%yBL)jk9|Kh66tQ?ۺbZ-` 6 ;Ɓəϟ?ϟ/((oJKKJdA >L166fE#++{q///ePPPPPPkCBBL7oKJJO:E%QPPAA>(z KQjqS mKpqqW^76v#a =\̊llOabOYcnL&""""""9;X~GK&S999wY557o;0Nv>`QmA /8]Px J^m'աbi7Fuu##a%d,-&.>Xj As?hpx(Hܹ3uԦ6<=='NHlii<;~5k>kcc흝-x͛wvԉĥKfϞ" HpG SBG}zRgqo4PPjjp|:HD0G%0\I꓂d@f~[RRݻݻf1 _hewۧ?Yn 6mԩScbb⪪TUUmll\\\ȱv vebbgϞ6t3O "\yYPFg-!RO*HLdƍIP(B++=x<1 ;oc3Rc"ncF>ďZEA5## W]](%.bhrҤIT=Za5sxMVVVqqq?[ ҉Wii g.7:fl/^,:(/ >>JKy8.Erp.숺AŃ5`JYa󥠸ƒX'ԩSo%h......AAjny?=Ť{=T>zTOVrrRi\ad>GZUUu ]aa $47EUw={vܸryNqrm/JJxaKZ@?tt"Z5:X٘ [ @[>(F"eeer#rr+C+`P5=뤱hQ<=+)/X0trm[[њOZH?ttt?3؝7lv8_h>ݻv]vQ f_vɓ'qqql6[MM}]Y>###/^G詥eoodWWWZ,OJJZr%DԾؑ&֧{MkcU8wZJHTr*OZLZ|ap* 1D}?xDrrr=k׮]SSSF[l複 mL0kkk3|pYYY{{{2r_Fccc쎡ՈTqh?yJ>wGG=İH3؃ɝABPixvQv<>7]1>tU x Ք3&>>]!2 ,>#F}􂚚gg=z#Íٓb F\\ѳg:͛7<]vvr%w&^Ҫ&0khF8rr3gig W'%Q#GZpe5_hX?(V=P0cϞ=mm~ _~|2{l+++eegϞ]r89mڴW^IH:,ϟ7o^^^rСׯwppǏ@~~ܹs}ⅎyѣG\p򬣣cMM#FܹsGlSS6q966嶶yΎ8nll>xrҥKTa WN5'sw_=Lq8=0*FQx{&,]h%&&222޿OWZZS,bccɟNCqq/[[13Æ2DuU e{v(wA!~L>}~J^o:h()):ABaaa3ҒlՑ툈fmaUZbYsDD 1xZ[[/qxF~44em :KjHZZs&%=s8UxbŊ7o655ʉF5gP3P\63, 5Ç30LAᖽ,fmݛ7(e WT6~ƫI"!_jf>-[LWWw𡗗^QT$ʤŽ` *@p^"^:88xzzg}h X,ٶx՜9sbmm}-###eMM QnѢE SII/Vq$a2ԧk/7qp ӧEsPIOZhKK::*Щyzo=Up/˯8"9)9MR4qD;E;=r$OQ̀[ZZ]rܕ7;@a)oi"kRR%@ ܶm[}}=qÇt_u 'g^ @eRRRpp;wrrrp766={9sk< C\\XD +j+b3Fôh7ԤxlVmQQld`!>?L`0z@FL얽vw"2tKږƿ8O4q*S/o O_% tAAA;A!9.!aÆ$򈅅Ń &N455K2tW)'NիI؄?{RMMmԨQK.,܁ ""7ȞG*[f@}ٺ։yF}fϩLթLfG0,Q*2S7m~\Rr-OV,ܨmXa\7D A4k׮uyð-[ݻ}fYYY-X/,##sN`vu;w޽-FD3Yv bd}8|mb^v4gSL.fii`Qv?h4+yኊ8hP+%4$3rq@I\w:qs\?eN1= "T|PQ@Ao^zuMM yȑ#_}G̃MR:!@uo᜜@ذaZo߾\.ϯ~փd8F~6Ƚw/J.0%0lpኊrrt! 7V$ഝ!-^tL+)Z^_. hw ȗnW^%/sd{5-E'W{n.CޱcؼyEffɓ'/^ǎ0a(A;HKP/e]`n.v-hp##ZRRjk/'_owp8$HpQV]]]AA`@wF544^bb`۶m }GGGGGG~%Ј(ޛ 8`txgίn|bb:/kk_ 6UCc΄AĄzJ\З_VvpѬFE\nffva#gP `0\]]33^9jԨ .:a7dggw~1yY'555׭[Glhh{ʕ+޽+..rDFYHh-gŋa +Ϸ 8t.C[XjgoW.;qDaә/@Ww2m}@8^\\YWW ''b```hhحg }=gΜw&=@t%8É'ڶ]իW>___)YYY\.Ǝ~u#Nwww' K ?s*kw#>uQ||he%Ȋ^$k)̔E`"=3I;@N" ;:..ɓeeeϪO4iݺu>AQM̎ vɓO> ---|G/ utM{831WX!x˰ dL0Aa/kwSSӧ?D#..=?D&GmOy4vc s0L ӷ!FY]]]fTUVV^tҥKs=ydw O>|h;vDJII577ٳg;Jϝ;G4ܺGϯ̈́lGJJG%wk5POZ/NrqqqE9>YҒf(Y,`e[[Omo,,O<|.0L|X^~4 FFрfQ=PTT4jԨ.^իS "s;g99իW߿v"""ܹC׬Y#ӵ%|>~lZuuuDDDZZwGQ?2=<∪9;+6779%a?029| 2b2 ;ڗEErCJJ#LL|VFAp&M$=3fʔ)zzz:::CÇ>|H @^^ޔ)SE$ $ܶmۙ3gLΝ{QFg###=<<֭[[nӦ'7ALLlҥjmm{.REE'1ӳ:jڵիX,̚mHm%%hJJEgkj BPiP"#6o*5TߒwCZl`\) =55h[YY?~Ĉhkk֭[߾}uϞ=>ADևG=zg̘!@<800$=zx<޻w?N^y….Nr4mڴ^}ׯ$%%xxxXYYeeeTUUO?/ A(Hd. R8b.X^ p.)Q_VQq(6#}hHj0!p0.nn}}4 \C:^ohǏ9B---맶B:x5kPi=%%%۶mǏ ^@̙/]{&LPSSd2/\ xV^^>$$@(Ìw.dW1=<``7njeK?|glv=/?^\ ƾWگsUUT2mRR'eh?))h>}0hРSN| ty{{o۟3f˗/ׯ_Ůյ+'Mرc߾};v.>A(W, "gֽ? Νѣ_ٳrt>͞+8_rrNQqq{/ZRK/`.gZw ѓZZ0CmeB3z;H4 GŻƍPm 28qĉv˜ؒrtt˖-XDFFVVV=B11~a<ŕM6eo˗ ^nޡCkL.YX'U-U[Ҷ4p`:&際K߿O".4|% ONCz@L ìm Huq#Îٳ3?AR=)bt~g?xxXXe``Ç8qPQ~yPeX ` ATUqܰʰEstuXߩ}o[ ; tkk+hzg2b/AA=74jnj=ŏph^I*YYɯXpPUUNʎVð4fڅ WsɃrOc ̱󦦢m%%7p2dްag"3!{@mN4rrr: b!A|Ҫ#@[m-=!tibLL=R^>u>_!XKZ^\v-Gs]tʨNnk<^Sn<Ĥ 1/DohSӿ']ZZvÂԴ6=  IyG@AUݳ'ܹCdeIr/[@VLg\}Gr:[og-+&+pWT) ik01-%J&NNN***߇j t>>em HK:vIuo_\\ҥ ))Lnb@ aw`8R2~ &l`y 33dHJIYK,EE;K#**c 4N_r?DEE}7/^2eeee~-ʕ+;yAAL%13c|tGW&%123Ym15/88g?-=4%% ?mMݛ)cb_)u򈓒p"MIY7Sӟ`XKAڠʎ;.]T^^ᦦ-4i\cccAAA^^^XXؕ+Wo@SSsAA<.77SӟMUFuXcpgtM$%rq?''FFrtWk#0pujisyC w c''). F74jdN7]UTT  466o}'$߼P?[tC䉲x%w+#zGyyHV*C@Hf3~l<w{LYyy ln% MNL|V_?Dl8PAy/ -Z5DmF1vPUV^Z rrQkn_~hii/@'%p\imh|O`c7%bй\8:TUZZ54$_׎VA_ޯVVQQ&J& t[^)i-@ dVK-ZvĉR v"u!*[[mjc NN$ٓ.ճuw@%)`K<R(fAA@ قSIN=lͲC?\ jsJ67.7[%9yVmm89{y=VPГnHnA@ "$$Jjjj]Vڱ >M T^1:C sI}T; ]}fT">?O=Ct.Fkz]I<31qJ}3@NN:}"=zٲe±%&&eD&99?xyyyyCC TTT=@ xbrr2Jccc77 _6##cɒ%۷?Ώ@P/R  @Q/wX--;JgamҌVД;0HUyVl]4f -eDr'I;DnH1遀>}{V{/^|=э\.b_[l_@.\ѣGssssss^:nܸK.wJӏ?~Bdee5mڴիWw1 _fxOHZ @@Yoxŋ?kN5%mefjRrrkZ6lY}hh|8qҍ &ǹF#p I]XXŜŋٳ뽽KJJ:;Ǐutt:;wnCCpKrrrrrcBCCGi_~۷oWVV) @cJcʜHS̺RQor\x"'%h`#iE,<76p ]kܙT).uzM DyiuuO32aK`D !>} @QQQ|C:.[\\  D~DxbzYtecccnn3g222{:t۝A |BlddfXbb'*++tΜ9QQQr9^x***|>Əs//cuV033[ti;X٬q\|Ysfg3(v{^E$Ǝ)SK+nTUr1 &2d$lV *0h~Ɗҗ<^Sn沲;9'ЂkxyyNǏ}Y`iUUU?]w7233~"!!Ackkv\͛s:Ν; {<<_Jѽ---.흔\ׯ]]]VVV\.u".]+W|8 _(lZJ c֬$"@ieelIF+|y9 _RCTVDЗCҎ4ZttyXADJio&vP?:$X>$U㈯!O .ǎ똣L&0 ۻw/>VVV ۀvhh(wPP&1unnn$L&{{{PXXxv m۶?#))nL\[]/_6%uZ DŒ{ykģCߤ1L[^g}-cik0~尗 ܆9qqcן4zt i= Pkƿh4T@ $66C&+tѽyyy)))xҥ b$oC|/IAAСC8<<9o߾_7((Dr>S]ʎ"SAVP]=GDL7_cQ][rs7b^^2gp&'NNiL[7Zln&3 @")qw0@q`\nv(TUI;\zիݕ1g񽴶&''c)/"F c|3DՉa…GϜ&ɢiBE x;vOOϩSv9#8՜/[-`re L&o„t&(*-i4-0rs..#E(obNJ Ebc?hp#%'X|QEEnDa0<Le 袢ǏwlWħJCC@ ǖ텂(l6[8ttt;;-x/|.(>޳]|/޷o_zD2 tk).=;W o;`eM@-/7`)  q 粲SYYk0G llZXlzAkכÇ1|>"{濢&@ >aXw~[ ].odee 6n YB//C:)) ð)S;*&&XNkmmݽ{73f̘1]@ +E=OVgn;N '4k ۭKg2Ә4&3jBȢ]E={Q/R0nfw@NN/$h+'HS֮E=g]!Ι3g@WWwƌb@ XXX̙3y!3fp8X {0]ZaII #0mڴׯڵk.Zа~z|~$8 Q/w99Ig@03)))'符欮6@,8gkkË@t㾥jKKYB$+ FߑזnH8³/ [(Iz' R^^,@੡1]{{{;w^t臻fm&pD@tƍC666VTT}~ѣGi4@z!=>`1 YȥS/4oׯccpO55)|AzMCyjjfo\q96iS6d4?blXUՍ[[@_uIK-b/|1b5777777Q}SWxQZ:3x˗/&ov-:Y'ݫWfϞGG[n qc;vRLܯ)>XL{/D0{Z:&loBwH o#oބ=..$bj5<&"O5OoT=3Csuvv_2-begQQfA7/gn:qx<QFDDDGGfcc2ydbjLkkv Lz~'NukΊNh={{;wafee5sٳgz<8pdEDGj#j T66ɪd6 R햛4sfRK H$\*݈͹`A\U Hh?=?__UtjimwVT4;bh8GQ@S~~+?,hk5''՜ק@_!rO> ɹr劑ިٳg̜9sѢEjjj}xiB ܻw/((Hhw5L&311111ٳ eŊ6mت !IGv2666\.W TWWxMMM|>̙3555B MIlWMKKp,Lk!e\l變 >< z9Ⓡ{Sl3rA3ǎ#vӧKvnQsT>)Hݵ_Vy xkz?\>7@") )m[Z=y6"]\o$Ymj};AVq?:L@?ydժU_\.㜦/^xbN>}z_]]vhs])l6çOt̙344B ,6555553f˧Nw޽v횰atzg zݻB㏢OaZ[@kЗC{s'Ohӧ'|2pF0봴&da1CV˙|9f"x岑^+Q|v^_1LjjGGIV[RɩlQ^^kH TJO>)))˖-g%%1ctpvv޶m۽{ðãb믿geeK.\pȐ!d~s8sݽ{߲~zOOOd`cc3iҤ[n@zz:KtDchۊvܹihhlڴI1>>~֭x֬Y6l?uŋƍѵ) -| ^9ܹvܔ6es18'{FkkɰZ: -6/`^-I$e[+$P,ZUUq"…梢(KnX0al˖-kjjb@ _3g}2£Ggii針'22RX5jԨ>>>ٳvLŊ+0`@UUUדEg@{qТ3#<`բ1DFF޽{۝pӦMW\MHH066r9#mb.&WT|M:)(u$锌[Xz = —ׯR(;\|1;Y3ѣGG)>z>AJJ өIMM.=yÇ`ǎ)Q;8gd___|'!>ahi1`ܔ2CF1  .Lr1 tԩR9`L\=P f~f 9g(ߨƫի=RMIW\g-Fo,pf3Y]t቉#VFYV@ S~_HVTT6!+++e 2piݽgT*gC h/%% 3%-,Ɲ4ibm6077oEw {v,)\uE|`|,gSiY3 -J۽@]9vn5< OK;SVV1}&׸hy9|T@)+;c24翳'Ȫ?,BHlv)5ڐ!O z{+Dا@$&¯F]O>i#j|@|hˣ;7خx)>D(**{gܹsf3Ǐ?}#[őcۑwM V& ,7[mʔĸ8:ب<|ia!ŰUUਪ/{=hmc%~-Nu`_k*/? 7HjjCԜ՝\TUH$>~Ƥ$qwU]Vvg.DI҅$(c``0j;wK.u~p.\(_h^e˖GEEu(*ܪ9?^y(&OOLճƳCeJ=0^+k}zh \=;:^w-O=Olճïc҆ 7S4Z/uǎ CY魀ַʼn`0񱉉I/c_Ǐ֪k? Pðɓ'9rD|>˗#G.?{xxtl$?()3gNYfcee͛7ۭ[頠 ц8$ r+))7oD͛'^G|MkU+!*{ŋC_c/--)tp&%&>wupOOMiwԆՄ.='y3{p%gGKl?2#Cה%:ڤ`W[[={xycfRbYʿGdaa$"ţEت`Æ b(**vm{!]VVaynĈ}dl]dɒv>&&&>>>...:s~̱cnٲeӦMnP1rՙ]]]ѻ -:|e˄5ZZZT*^W-al3ƈ4g!uu<놽zJ N R) $'%`FG[taaKUU@;( %R.x.zŊﭟ~忷@ 8rp{Ǎ'|j6lӉB $˗v_4kZ[[; RPPy~.fcǎ0g:::iIII「jllWlM|=najH$^tۻ9ra+oMMMw[[Nohh_PP Æ ΓA K.M<)))'XXXlذaDٸqg}?zݮ#G{yyRkkk`` zj=ΨQ~7;^uC5joU85rKԟ;{ӌbvppѥKλۍ+oÙTS ;mm˺ta?޶/UsSR--`, %eE(Q~z~~z~ʖgōc0@33z~۴?aN,~A!o҆_$ҟcֹsO'W)ttt"##ݻw^aCQRRZl͛EpO cccq4kXZZZZ;xwEIS^SdV6 Ȫd_\7+uu?DUBB@n:T.ްiLfZccdf & kEm-9CNЛ@!Iq;իy@ 8`!v4B;;--ĉO7j@@-[ ҲH>}i>|Ӽ<(lll\]]ƌ# @ MYVMs,3ӴS~4Μ$W ?y󬾞y"j33#luꓥ'X8;Fj53s۷w`Bo]ZddҴi|6@$: Q-a..WeD=s'z7}OD"yzzzzz?jН_Z-)sRqtӒs7Q').fϟcʤ۷%vfQQ"oQ g३鬦椦*F<0m`j9@AW="Qܴ)//{zڣG@ /\0Z@A!z@ tfxN-nQzd&ONhhpː!I A |*y=zSP򊐗2'Ob\.Ԝ/^4K>yE@SDd2Y,֎;|>c<b577777Deee--v~W \:LWbOT=} rs`&3 >Ppoa@SNnZssm~qSdVy yD_A_XII36B$`NѣEp ˛_or-6E})l]B=w\dɒ9sIhaXaaaDDDttt^^^II {Le>>>!0@'I|6@&8_p6ZAAw??i-HM}B2;SSjtPJGUǘbj'VWk rNCCZpkNfee[G5''i=}Yx1C3\gϞ={vׯ;88e @p޽dq3ijgR(+VlڴI__?흷)sSm岋z{w*]L$]ĨRRhmm0DM햛5]9w3*>~,EdTV^rI! <$-Ak+M68`4)ăSF@'''O4 o"Çrwwd6gΜ;f>|ӗ.]9sf@ i*T/NxQvM҇SxXpp=|>Ds]W(𴍟 KLL;8(v^ZDE}-fgTy!_"U hiUp/Rϟoi7h&5ku`@@hɓ' ճNJ+-Z/:sѢEyyy8cƌ,5iF'E7jkk [yhhhE(,,m5K30>FR"v! YiII /OtE#}G3(-fu5Hѹ[23fr1Q;UI *-=!`X"QA?N5.99}??Ez>ЧO7nܷoL5uɓ'ݻER8o߾ Z.]p!CS#pΝ;w]|! @ғk1>Fzpv>q႓}, DI)KC*Z+<&/%޾BR(] 555p'N81**j m޼Ake.ˬ^ dUO=NMJb,Zb`"+asq죣sUG&o7&Nl@s%yԜ CeeK[ۃӤ$ʕŋ1rY BV@ O<)ۖ-[N:Аi,^|GDDhi}` ۷}||ٳg%%%}%@g`eg'75e햛zO2.rsk#"j?r1ppPxͭ6ajj`]wwyKzbܗ /kスW\ l.P0Lrr?!396<´Fb0 []RR{V?sfr}}F &[.o h=Vͩ1K@D }DWKjkg_{t`Xե'O..R !z+I0CAAMXOz}x6Y,PIϏfHjiqHm??=??=kk .ξTQOdOJ ț#4}M)6{r_0i`bdȐ3 ehLM}sHիtCBH޾? 5/0LL333'1wKJJ{y6aBq/O5_~FyN<nBpj9qqxҳڮ*Fs۹sS8_7RVGv,-A} icݨC-@9mpWw'JJkJHg#y*]^LK÷(zGEJ+$魀 O>3f8G}]]]{ Ǐ/^7iϟ?nnn}_'ӧ<<4BR555׮]+XKƏճ2S_e/[c**=FHEl}Fm(:HX55UZ#@К4N S/^XꦼFz.fg$%~WfJ":\<0\=)>RTMN. nR 7oaYgܸq?8;;e˖888Hɓ'{XXD"߿F d%K466@KKKדkkk.\#эW^7nܥKH Ǐ{naa!D6mիջ1&۾};ak֬!$ŋgf0Ǔb߳`׮֖ث_Dpv矧Ryjd6+5ffJRMk6ՄH$^tw&inn>rȑ#Gttt555Vmmmt:AAh+o6L:O @L7zooo{fG?~흘qoddܹs[;:zNkە%TR~3?aB#s ψ-ճ\DԳR̈%%6 |ihxTI5 9sZ^M[ifX+*r8o@M+L֏B FkP44XZ*++)(UT; @ \zuҤIO>&yٳg '!Ճ$5!K yΟ??wD:!Rرc_~5kp'NTVV@ii9s6}⅟||nϟ?x] ön fffK.AW ?I Խ|nk,[y"<2-j8ȺGuup/C55 { 01_l@A˨J`$79y{?*׷)7 Nuq!URRzѮ]OHHDFF޾}僜 ֭[W\\3@FFƖ-[Ĝ|}aqgFF͛}|||||~t|oLLEmmm?> |5^/ע}i>|ӼRaJ;lll\]]ƌn##|W2:ð{ceevF7ڡx_PPԩSׯ_{=\0oo=++ݻf=@ ضm͟?WOw`\ג=\=z0k816uv(j&&ͨ!'竣3NWw@i'lܬ9ws)(f7]okH<)H/46^Ho#^!EEq-ee0p!g%+K88(((((Feff6440 eiiiaaɔ v @ݸq#p8*bl6&:::zzze˖lptt,++c2]L{ҥKߛX=z ]>ܿv:4~xo'o߾_7((y9rp:BZ_gϞϘBB/L\=mlKC$3I9_6Nԛx岄 zz ^[{4AnӬ/} ֯;|U"Ruuu}||# Ҏ=ztqPPPvZ|8M[p!. ""B(i2,LEg߮<ر<==)Lgfˮ}Wr6DΘvoMpk]~+-ZY tu/89eFUV+x_ 7'H/ QYy Dy&&.3h)+KCS>>Q@ф""~b-x/|.ءKEg/_{n۷&.+,(:Pq1Ӕae\g ={ 0 g8 hS7Qϭf~3(Zrj[[&3#%eNSS>P(nn7qXGZ^BՎ6{H8 R(((鹹ۣiħ a|MMM i,4=B """Dkk뤤$ bbbL _[[[w cƌ*pRJ{Z2tnkyrE 7ttu6y/SR8@+ ErX9ق"F]oMKcuN֪ףFzFu ǫV&$}D222jg>1RWWwڵ'OL4iŊ:t̙3>֮]wߡRBħʙ3gpOeMM͋/~p8CCî'0x<hڴiׯ_k>\A sip߾}>7D?!enJkU+: )93:V~Ҳ?Z57.kQ ^ZwzsA1:M9 XZn#ܜ8"ش槟$cرciӄܼ/dUUUnjs̙bDϞ=3gNmm{ܼyӧ/gg~,yyy6lgϞ522(**4ig$ ǫΘ1!++)88xԨQyf@/%ӧ{zzY"Lm+. |m-Q첿f?f !nVWX]e%>oJ%BV9lwx; ў|a\IdǍkm| K`XwMMMɡP(g̜9}^Ək.xͰa^x;"$AHH9A <=5O7ϟ. hw,K87WTa $H7n:thcccEEW_}ׯ Ï=J;!a8y6d =}aڴ6NJclSk>ڣCB% II6"Q#LG <+ϏF 8< hϯZJځk׊g ̚5KV\emmMPO8`0fO2%''GMc!:#&nɒ iG_@ov܉[™h dggիٳg;֭[»j{{{D ZNR6بtSuA۟Vq8vw 46ֆPH \prғjj uB„lV6(m=Iihhxk\4rHGGÇPk~,9sH؎/lmmo߾NTzzz׮]+..NMM~mΝ}Wƙ!>t:c޶m۰azt8^mB_UU%XzFll,>XdIGfKׯzƑ ] Ö/_^QQ;wDMitzדE'|޽{[[[)ʏ?(ɓ6mUϟ?w xI q&F6p`@͡$#.>gN *7o1D\[omOWѯGg`}l Vd56r`k{k N @0;CzFrrrSNmnnVWWv,=o߾u쬡'C"rJhh(P(W-:oZ($$֮]k`nٲ|H{ҍҘkϵ@lT )B>5kUT쯟4+@[^HmmED}|3Yaig:oqccR.fA%ߵ*;]R}Ah*`0L&{'᯿ꏨ@rcnggg|I۷}"! Ӟ߿!..F8AYYo:^=Z;wx6mnߺu+>5kֆ O:?;m+L{oQH{Usj֊*(콷L!@BB}6/ G?7ɽOg̘AR.]:mڴϘ TtG]VTTX[[w7BϞN!H_v?o0-11(2xHh%%%m6KKK7*l޼cݻw_:tiiim6@HKV˛ao DccEiEE 07W uuqWGc`)&9)qқ70]oYf7.0.A^TEEY' ]@)(Hc8ւоxz왝ݞ={:e/^̙3-33SXCVVV^C%%%3MS3227}G S?ں]ዞutt֬Y9** 7n~rF>55vDl{];j3]6'Ϟ^71q4mg^X((t}C |zkف1OOsv fdd2+OM gݾ=ax<{6ZrHz:ʞN4vX{zgdd 4[j̞=?}G{;ٿ? ȗs 99աdX',E>>tP.d/~%p2F)#8^k=˗ NN/N*0EEnvKO;+%#! *T(1ao>Tzf5+eu,Q2{ʂB@_|Ҙ  RSwwl!$T*uܸqB.\߿3.\_g=z%޽[8>|[_7xǴd ##=Fnެoهyꊣ%Ӻ%%੪<d0J`ڀu&낝ӆiMt'z gstrLL_;a#H}rf{,KWW/%uu^Ч\pHYYϚ5kÆ Zl%%%%ooe˖-^˫SڀIiz`ܸqxUUU"͛"@w'Tp~]ìT]54ϟ;pLyHC)1Q"1|Pz뢤?dyc>{{dHKKe}wnnnppCV%8e?=]]ݠ |3nccGr_x?ŋ.p8x?lٲڵkNNNSLϿsJuuu~k#N ';024}5;}kWL&o޼|نtXv(쩈ЪTjQ(z=3y0-nb7Pd( +%%eqDiKD8tasjjO)Camͯأ 1A˖-[tiVVVxxxLLLnnnII J'}݄  ߚ3gVVVn޼ǏwAK444<}TQϞ=׍vuue |{VEkkk~UM uX )ӛzOq`&=̿{*F0"1ãd;wJs l36@mXIIjjcDRwosRo٢6OpoJo@}Zd~򒦦&~\333~lAnbǍóg 7ޟ=?yR7zt! g:B8fk;Tt\T\vXt8\n[b$<{VU?p Ieύ{e?#P?v;++kذaM6 AW@Cuˁ =J֭jx:+#C s_\}X9J&XYMssSr0Ii176yy=LGFn[[ڢECq:Хkڍ?~w''3f >?6%%ؿm<<< ȗ(YZnndrx|t.#ݾ6fȋq0lFRRfK 26na!:suUR{61!a|C+N&q;1SRSRhɬwz^% !&W\;vӧOF;wܹs>0`aaqA/1,}gexTi@@&}!CıbSNC*|45U0V{ jk#ӗ1@"zP̻7޾M[)!o>M֯OҕpÇgٳgS(}< S/ΗdS=9vݺ,<{wC<_KJNI鶛4Q8 {|E Жr l0NsZڢx?<{ӛزgټ.:=DE++mtyg! MKIIڵkɒ%gΜyfAAAs(ڵkA/N{}{ʌLqAFs߻Wzu&JEFzzycY-V0LL*% ӂ[}`uU,V-HKk98EP4TAz3g(98L'{ݻw/JhhhhjjWWW777733C[Ah5j2dYl{p!|[{NNܹ)xcEE--X^ {Tɩ(j,PM22VUWN?-#l>wf0}f'DYKK^ ȗ%%{]65?\BJm3&FɄ[Ė=1+(W3 2Z26lsS$Y3-HIoè{F+Vz@߿?>j1 a7v=`O<5\`3g&}ڌ)hCFFK"pp /EyRM%t0+k-=S(~de%n d%%m$|Jo꼼o䫺v%36n$ieẋxϟ'%%}||ɐӗ.]aؾ}2&K[cR Np&/_ oDm*8kɯ:V{#騾yyE;ERa4y0aB; V{$Z#A! _ϟ x&еa'srrrrr\2jԨm֋hllU-kǎikk]V?—ג&0hzϸwXecvB<^@VJI]Yg6ml$|tzAF H=*0nH]d`zӧK*hwwA^QQQ/P__URR=z啐eQQQ3fhhh?믿>c}Mxx8رCA[D^@ۙJvJ?Y ˗74,/,,++|!,hQT;UUU/ph`nMAAhxח< $yy˗u&O$ Aoɬx<ٳ8oeiӦxN?~~~YQQQ"YuuuGmݺ-X}\QøXƪ .K 8e{j`4cPIZp9 FF+l %]x59lvmkK>Ϟett<{g hAġ_r';;Eݻ{zzoڴgiiiϞ=w^kLٳ9xyy%&&655h7o޸@{{ܹs:y/`_ieV +غ'u`H}p ֲV Ei{S@ʌvD vp Gs7O@KK˗.΀66bY>>շnDUOO1ǀ hAā~H$r ك+((' ݻc̿ nK777D&^~mooaaax۶m[[ٳg4/B? /]^?ege6º uup옭X?{\|Q_+$V"F7]/E`$bb!C44>rIt8c4!e%A>JBc5/[Cw\bXPPǥ9r?t;wݻD7B-9fUdɠA$1?^Z #Gj͚%=Y}v* "CYjT2i22q8ӧ7''Y^KK#|&@#"s*uLm,Xϟ?+d2GG^^^Op8;wOO &|F}]\"@rb>76,Ieesb^@57#66ʒ.QNKy¨nn7~%J "ΛW:&9_LNl(FDK8,,>7G[ ;99v/|WqҥKo>D -SM?GīVe Οt|Y И*xb`0JaDR8=Kk6`իA@w@777PԮE3:Y&%t P Þ={*{&k.1bĈ#¬bƎe1@{*n\%|bU0cނx1yRS&G" =4 )SW81u媲Dݻ@=X?Y!pAc٥EZZڤItttTUUmmm)ڔ)S""":cXKWW?())W՘8q"~б4444_ipY|zi@}<ԄfM&ʝ9 ۷%-}ݦK!1bVN r$%RS緶vDFE/[&C􏌔PvA+++/8|KXXXMM vmNkO78ɓRNNN׮]믿Dc---x|Ç-[x~{'>մ]dYfu]WYYoMLL:TQQq…gϞjjj4hWO)!̅~m:-rczd }ٷg+E00Yc0J8U"EUU3g6| RN:_]%u'h=||;N{{{I&M =>A7oaÆ=S TAANccc7xB g&)//}ϟ>}zƍ/_:th?SLOa7S`QJnG)Scܩ]Wh~_XX::W=8ݻUuY &7f3Cٳ.d71@"qwWS%6%Lr$MM>}UT\zfUK N8;_AvCC]ttΝx7}WP|eddܹd,AiZ@C@ra'?QUUݸq#ɸ[SLyuSSS\\ɓ';vkޞ}[qFk.6oݪ#FhfgOѹɉ l6dtO?#bG4+9 eeI$y7&&d ߵ+a„h#G(-md%l^DQt {~~>\t)44߯RSS?#u̕[)2 Ch%%%mmmNKKvl޼cݻwU:/ܶm~cCfr֔v,l6}T Hعb 1=csSRi443#ʝ<>>{A$:3Ypmo=UU/gǏڥ (ZY9yy: A={{LfTb ?'211 kkn~w/zYf 樨(044ܳgOnܸ999'jBzҔ$Z den >gNTPQ!9}PI{ ~P(>kFB*B-b\Yl[8qnRi7tz((Xxz>PP7o'Nd*..*βA$N+V@Y2 =ϟHܵkt7'[v~_nnnxb%;aX)))A|С+*d___tVVVI/gq@ki~ki :/\\TBC]ElwfW~>Ʌ8;%-N S$+7\C{).>N2%^RW~GZ;BCS1@ X 侱Aĩu q+Ν;@__ŊA/N?x ~>yrw_p?=**jر<::_ctadɒ%_2j~Ҍ08n7cyF  6 _exhQӧdݍxpw~>H;Z~ #EG6lS!?H}G,/X cUDhc<^%'OI^en9#WgT 4h&`ǎ A4מ>}zҤI[Yr9ۻ@YYY|܈#ѣG/_ݻww {ZD8-xBvv֙(U'O\^k?$) O"]qqqUGjY̊*fU5o)JFxF P {DPTTTTTT\2mmUߺ2::wz|5Y! 6}˗/ӧOߏOvf.\ȯe˖***.__{=y׷oxʕfxxPRr]jjRfͪ{,-=>>oƟ=ztע7oÏMի>_CZAAaӦMv-|޽{I]qH$\͞9sfI/<9s&c̙z*9Uޯ=74gHf1))"/ð]yaܠAbΞ\I+>){V&+[)Zy1g&"&f =x{NJ?{vvx>d({F!@=7A+fmm} 6aΝ 211166ؠʕ+]yč9r+ˍ̋/ ?~e˖k׮UVV;99M2>??Ν;|/ң(ҹ`{̖$'| V^^jZ9e*+@@8hcT{U'5'~z2zZ2Zbkܜ0ɬ ܳ@z.cwaa~ 8=K^d ayyy͊ꦦfff=* WcL&sǎ<\naaaׂ s玆Ƈ+ ̜9rM?~'GN:UBBB ػݻwGU__rŎ*))ݹsG7E2YO:}4<Ə޲ES--Sr[[@V@5$4%OjrMQ+q/lb@_Sv?7nh p Ubbŋuu?\B̟??11Q"}q﫟VUUh7oCdddhDbccnjT7yꕷw; 2$66V`~sZsoUbbpC'½yW#" <}߼eD=bW*>ppXIR_p  x QV;jT8?H2YS#1:r䈤cbmnʕnڐiӦ9s]v?""Jh4 xooW^&&&VVVI)--]h2cmffQXXZ wS()4Z_U;EWQyi4),H$\$ҥ΢;pvY9=V{[ltzANweeNuޗNZ pA x~hhhBBBLLiii&dmmk.1* 1F X 7nTmڔS^;wZ!ri4Ԥ|:ee KJsʺu/^,Q69xtbla< ~12ZI$uk^^ȑxLsJ-.....~^lJJJ⤤DAkwo~?KHJjȊisCߨZukz]>T-vGގ  [ F7A_99C>X__VM 8`y@/ӧOgee.\xB~\]]`ӦM .?sժUA۔S>e? !--eYu~ Ha)StE^\^{bk18\te,QvfH⫗dVٳq55/()y=d7YN1  4a vvv/_Tv˗/ +WD9A>C:jVVǎK>ڵ&۷[VDmJ&ԥ.Q("냞?[25O?b{ZZ1Scc}"050UU}gϖ?g޾3WTTG3NKKٳxҜ>AKA\ +-j;o^[Ls萭P[tT޾*#tvpВbЪ9)s5RU<03hcsHጢ"0۴rn _&iii>|۷o %%% =U) L֙Hk~~YSÚ0!!. N:uvuLibM~²e\+G;bsd22ATf7ō³g#660Fʕ6H$ -o x]SSA5ۙRRURR UUL0AUav1ؐuv9GG1w iHHUO]!|NK|?~ YemDDݻRЛ>)@+*D0Ml6~@"=L~?4e  ߚ-9Tm2RZF53g&\X1[ITÖ_,/U)vv%ѾqKΖE"CyEE1xi=ز綷ok##k#">Ǎs|-mMwGז7v/c@Ԅ/e'Ϟ~>ydÆl.#G M1lnJʍ*SRzؿ'you3o'VB+-.Q_6^sCSsMA\16+h?PIY&VV߀233*+++;;AOb3RRRw=ϸɎy{,E3kp'$<jjbxξ= rQ^Q (1ϫ{{x%EAYQQ52Q3NVO2f֘1Z}GVfJv6߿zCCZ***JS;544:FA>%MK4srF=.]ayT)hhH$ž4gl|? 0BS󮇇x T˃/_,'"Q_FF_"e54hko ԫʃmk{wvYPPa $OkggAz 4L^t˗cǎ dFuu… .] ߬I`X{\׿qؒ%`j*a v oo ˋ q"j#Η`w+GyEhP&~mmD]]4K!GijDӥ9%<(UvSIi--??#AbB(ܳu֐w@TTܹsnjcjjjddے˗/lٲ | oW*7=Ɲ:5ZprR~?"# Vef 嶛XּjV5IGe/H(A[Z2 VUO H{S(~%%{Q S̙d2sNF ~"A'ZEE%""bذa4 Z[[Ϝ9sU:*ee刈 c3җYvÍ(ӳ3n\‹пjddϭѽZJeJ&\suqGBB+cbO*g\oj54*,! ׸wCQQ}CQSs"[W;;Vb=~ .A.;U$~XM D㏥O5;qBY<#҉HoJ6m?rqѳgφ|B A/CS\Sf@fSi]UOUvj{ 67s.Lw -MfxGҹ\%כn57W" Q˪=V{DWøGwsmhtQMK1JJMkNL]]'uLtha*++TUU;(((HIIioo/SL9uի%@DboU'HƸџߣ=i-S$|hhi izzmlVN Ok ?nwII@kk^Z7@ LMv`W׮e,[imʘ1Η/K3!B xyge˖͟?Q=,ɓ'ϟ ßY~F/a\@2dfhF;w-Zկ_wZwbeFUvvEn{,,3A J|֖|y@ 5۴ 5D%B344HeddLѝr4Q%P?4|AMmU]w-YYv%.P>=XZ1"fff r#bc}V)-}eu FƎsLōfFFmlJx??vc#8`y@D@o_o bO'ϧϞ׮5bгg `IZ%\sug\V[ͪ,:nw\ skk^\H6@ \vp8#.::}| ʞ/C Wnɓt.H8sA;1\ $շ׏gρf{aP&*6;&@Tjsj*-%Oٳ.Q Qo꼼;[SW.t>y>}0 *x o0 :'NTTQQQϟܹþ0 ?>(J>/r\.hffffff<+s3gVҽ %Z;w 5qG$vɦNH?]'#!4OkB1ekUUL^--$xYf1Egalvd?`gΙH:U(g7qvS"A^|C7zh__ǧ7/Sq;J\/ תui:[|}΅'O!7˔b٢s0'82$ggSgV"IJS%T4.hVNNc--0xф鸿9Na{ 3`"A,$;vHӧO>}Z_؀ "4KY9G;w\ۑњ 8.NpNBN bfs8]\WBya;F"#y={1kʳ e *PT*T*S0jkK ԰dއӧ8N53s>{2)0''0Тsgѿr f!!Fih42BY[[١y{yz+^66usZ5X:5,,hw҆X N Z]]TK:#[/dz7" T Uk L*M^D$/r+-\`bp 'ںQ Zr%v|" DV͍vZVVVaa_6 8O>,?^* $ʘYN?tjHՅŋo;܀UT*-Z]7`q<^kkZ+/8[UʪJe@)Mq3sL4֒niRVsSL0 ;SS'ԉc{hQwc+W,HM G-@B` oϝ;nݺ$}J {aX3fX`][Ae|Q,|-֐\+Ww[ϘъnMŇb$#.1kzm}}}גn9i)A .Z9 K`2]Hi/vSgWͽp:AL$]3m% Gv\.vuaÆ4AVΊ]lm~-ܰW|eA)e. +cKK3e&&㜜99p8VElԁg1x  OHǏ*뻥mg9st3%Ut:AP(L%%%O4ֱT(frss򮯯>|m۾Ws jy1y9sz+îux\rUqXXةSZ`0^:bXh.\hp6 % 2anW3Qs*ׯKHهرN&_r;Ȥ3Mg,Q\\Zo){K&`^y,Mu[eG̬ K*UzN9}EZ.?~zBpԩ#G$N:8r9..ڰq>ógn޼YXXخi#uYux,h]~b 򘘼G3i4ޤI.Lkr\=S0m{{f=PV,zڳ/ZF~v E'P(8p`S:cƌI&ݿ&MD2tG/I{V_}{xx=oq;4(XYKHU*͛ J~ʜ?\LCcQEKt%pX-vhsFclhӹ}eCi)lxMA %޵kW?Yϟ~z]~!Af͚+WϏY~kx8;;~7HLL)!ȡZZ]]/2v˗/$y#<^X]~'C᯿~eKSښsFv?ޙN7쵹(Pue7tUl%ǏV(J{5UvDr>&B-clR~'~aÆR(+VD-[ݻWZvl(ҥ.޺uɓI믿];i, atDS#0܁ۏ۷km+{{FV@vPyswG\ng-+@;`̶N,1G${Ea-|EIɣ3agpo#5yǎzf/,ZjkkSRR\kbĉ>T;]reРA={z57g<y4~ㄅ~˲e^ڑ=Ҭ,S0l)@N\`]~hX o E,VaaV)acƨbGF6 kJ''zFuձd8p`4z( /3p%Q0~ߤq`2P($'^YyO$Y9"˳,? ݭ :FENde-SS砠#66h"(=r${2?u#Ft\˫fD-fǢ}G陫ZÇc;;;#Zrٳg dΞ=;??E*=\*"hg':fY]WwҫT8 3%m~*imZ2:zڦN t+m=eg?L8Q=ڷrlȩS(zF`>oL~z߾}ƍMuӂ\B 2dYYY.]~zVVVQQы~`}53#^AR+2d`bk=| {wsۓ%%r9,h"Yfׄ5Ķ&JӒBann&I)j8w hK3} +a{PP̙3L_ݢX,/uFa@T|L&r9F333333x^A\T? M/gbogi 2%]!LM)m(/xڳXsw'wR#Fh ʺvуV%  (G{>PdСgϞ۷o=wMݡKJJAJJŋ/\Д:yd B"%A܌ƍ4isUճ?|([.8KSj#<+߿ZS3/sŪWwdH r֬YXl0lɳ #!0رc ЕJ{ٳgOnn)ug}k>|8i$qSnA^9BK3O3^D&&NLUp:;p F#>LH wO$ܵ[ pWx1B+?bK`kfrgUSKtiYP3 md^|yݺu֭h4/~ܸq۷o|oW yשU9E;5tK7^_SLZJؼ %Es $£f__rWͅN t k:Uj0^  UK[Xur$ΥJ4H|>pB/\0ur"q|AH{LW\gOO}9k,J!K^( 5Z0:{I>~\|y6tdjɛWWv,֙{E*a{˦N8d~,բ5EE;py( "ڵF8,33aya!𢢂O κBÇbbY[[{zzzxx#[ymf.n{\-n?n:YZt'LIS*q*ۿߟ so_\>")IC,*l.6&/ [%.k|`ylaP'MqMtK.c.7Nj`0//K5J#e F}~ Y*ӧ=͙3GPӧ?{]Z Zv'MMy<Ǒ[xǎwE0s[6LьJJU`o ̐57%ӥmLsVa .3s^]cK.bkF¿5ÇIZ]ϸR j7zL H{'?[kϞD4dO.zhU7+^$c.Hϗ/Z</^OZWR<'GT 7\]m1[KhimߎiH\&̜/^ֽ43iRW +VK` 41cHA\r޽bH`eeeccᐙ 'u:{Y6ڱz&[ `4\awoENe2HG6>'s­O1)#k4ug@k7B!!W n]V#FО;fݣ!:..nŊ O[nm۶lV#?:xԩSkjif VRƦ ׇ LYn5,z}Jnܨ)S\{&4tnfj,֏RVΘ}$3χ 5rLqGRwh3;tXIBGf-YPV;a7`ߛky@k/Bdݻw:uj߾}Cs2dH׮]\;vq??w^nt iҒ% 00<g?t2x1&U"IJŧպTfFqB 6V,I&/]tc>0+F*[N2ΟL27h@YU%8Psφ C?8 )H 1c޽{455m߾L&+,,LNNnhhн+F?5>/_e˖ET̚5f xy9}wUU1cRR /ݺHiiD*99}ljjt ~lxa|_#x'Op(Ȋ*(ؤT6n}PLLrcQA?R %OZ7߸%R$ F"!tR9<<|ҥˠB_׬Y8GGGo5>(ʜ9s;v، R9gΜK.:t UGWLEZp̀nݪ5*ƌq6A{ = ?=ΚNfeC0Kݮ='sN$: `Np/"ժ+PjnSE3,VvrrgbbT 5?p9M%VVNcvX„5f A@BtҦe˖\O[LG1}C@CCϞ=k^7 -ںu+\zoϞ=ÇKCwV͜ FZ{;AM=h7io/V(>KKO;f7pܘ֮YE򢯳>]~ZaI^D/žao2Y&dFZXzz.rtmde:yaaåˋNbT*K^~-P9gA^[yyyɓ'^ pBmm5c_L&s˖-UUU-[I- HWqmGE>1)ׯWu.*IKQh@@@7+2F Uo9?&qVy>n\lZ\^~?$o:tZbg7 OHgϦ< Ð!v~ K ț޽{h111BP6o ͛Cޭ!)S.\yѣG{KP+c29ڹU޽+5*W@Ng΄ :nrZ6}ަˎ][ qNb|bL O#ZipӘV#p\tNŋWJSS 1۾}ݦM8b\7 ZWz;SSNPZZj^s\.ܹsw;wB(,,|.]lٲCHY -`\Uܼ`"B QQ#G|!%%?j4bkoÖ~ڡCU6> %*ܰ1ZEM͟AlUy<2y"eN Ν7<9ϰw?9:ڂZ %ch[hM@˟܍V0l|q㒓q_f˗; oڿkN(G+n(6n߿ Tljŋ=/̐m&ÇK4qݘnWMp`A@ bkjnhJesqmLFk4?Ǎw TY]bcǎw]| HHH O_T{@Ռ srcb+U tnqcef ;:w6>?_\~ ~#L*sh>6}(q B~F"*6^q:VѣFS93s~Sdp<^4-FGAؼj׎aA^۷OHm۶sWLLJ.]t5q>ӧ:uUABg*Rƥ*a^\7…˿}VFƌqZУsgH&[*MqqY۱#׈WW$7 <[VZzp XZe[QO ""Q [,;wvE./Yuȑ-_o߾7BN<zj31XҴ)izN!d3g*6/%1Ԕ2mڵc0 b]\P4͏̫> kBzڵ-_0`'O'N8PUUUXXucvgeeuјADxwqW@Er ߿5 n߮=tԩr;33inwtԫ7YYI]kXvyvGy}@/[U㖔] .]TA0j:sN&hZ05>\z0?'߬b;;ƴif7Y9V ؘa׻u3#7!F:\치 =}D_8;_G_~ FoC9  UD&OKo(k[rB8j5q|xV[ e^tKDFkEB|\J `kbk.G'O~Yo@Ql*+;66n&eLssij]BhcL 7nu ZΜ?ؘf7o_Df~ѣeʀI.9ȹ G%'j H`3M$I&@ؚ؞=oNR-9H$Iba605u ÌznK5uuOmz6f|A7YYYmAVGJL&sF&7դ++qN&^5yQVVX <<"xOJ4P%8LUP1,wcFjO%TVoW r00PoU_Jxhlv`m>C~A7J@ Qe}Uq/%+W`|͔)Æ9U :v<S$IJ$ Êm?4xLZ\TpJ%|-͜X`eխj81'NPNP;0QȬ C4 o \(]nIyåV3ɓ]= YP'ErH$)U*Ț5~7^6R)(,hF#՝,@'2 13.?x IJ$%23ńV.%:qsԇ Ȼ WeϬm,aN?S's*LI#cܹ! Ƥ>W(+f-=\z'H~0v{kq>h[IɾT 6s k6GeEE!He$ހ#,"5H q/--***Ÿ̐kZ o%Q ?O­|ZYcSŽzb()s^}å|lnZŦM11u:0v dr}}h҇ڿX ߭)VV<= *xh  INn:Cd9AA܏?F5A#'5kVNNAHͫ<[Ih [ӽWzph+N˵4/!]X3WFs wmm3p+>>%WfPV|Jmjee/lm?Zbccx BI5J=pNi:*S''+Gս dc/^PsDthVV"y ۈ R'L!NadWFy@k43g>=]*Aw0^m^K9qע2$13S_1m/)9ZVVt҃Ś6gZ Bהk]q)'%69y.zf0x/#:ݨMrV.;qÃ~E 06NOO/..جYfȐ!vvvqyhڊ_+5:SI. =XlQnެa֯o]u9%8XZz2.ť?K5K&E'qG_VU].KF7fY <=Cϟ2$ 36n{RaaaF/ Aw莈_~\#m̠\?wm?U*|ǎ5krE"5tnuh ҊxWK=IhV8Ù28Ow0Mss]tYxJi@tkM\Gy@뇢gARKe+apvMMΟ??32vd.`OI.z514%6עE+N@o=^L[hT*9tiiIÇj5ws6J" u:u2z1+$I{Sպs‹a;wDgg$neoXXS#jeЎzԫ|mE6oos3]ΘPz-^IK @V]1{.ѽ{I#FhR0~ٓAЮ{wˍ^ Y~e8'܋l)7/S%ښrn4!wfeըT/ɘv 8k1III BM0BC77'0A㯿&jbˤI 06۷/Œnh44jm HKWU_psdhشinWwy&COiRޒ~bgg uOtolX-5] ؎Θrw} ʪq㪯]xd Niu}ӧ͞=JJJV^Mƒyk wzi(o[_==Z:s#kk;=vlpL|葖 ׸OJ K*(@.] oݥ.zA fl ˗/m\vU*c"i(oѽ谪-\|xYtt7U LEŭZ b{YP1cF:4x(srVݿO7ޤ=(ڹ^߾ 0|x[:t kpAw  ?0`[.]zȑO>Ϗ_QA^s*>rڣS'NLq‚ߨBrv^f&pMLV8(UWZB <9ytm@q1x4BefJSS%TijZ,NaCTA8,45#޸qi$չD|ҮK~ffԸ]m}~>_VtJ) 3 /D" M(OIRUr̬Q>шܩrE7!bսDA@充D"B#f͔ea>#߸Q3bDJ3~ңQ,X6{!"H'Z}\.B/ HRO@pr緛FxMUU8All+fath NH'8OhADAFB=~x=#u3K^/xF}a|hȐBKb~ ge)Z `{)Q I,I/]jjߪ4PxE  I w }F p\ 6V+INf_aTehU@NH7F!a c贴 Ɯ9s d2^ o*U*gUNbBM݊ae=_^' Z ={Gv4v 8Kyɲ2doUA8A@>gBXѭA&{$ qtϛp8A8F/ǫebkc^d$_?[d ! ϝ;ׯ_?#DFhE9r"5`Tug[s7w`Ć`Γ'tsYP򽡭RӥM'NyK{ jtqBQ-*Ռˍ"BiJJF@ ED"#-0R  -36EY;cKz.2%M%tѠQ |,TN%tΝ=X,!H TIn9q$I]->FB[W%$K$IIX|Ǖ/07")*U]vJQZj(-UVU)e= tKKۏ>ED""dFAglf77z1٤tcnoY0ӧCxQ^XUU 7c`{innmlL}WW*eUy Fk79z&19M64) eJ@(H$TaT<^$by4K'hyx8V=zX聡 LfZy*B~8cF@9u"iHȥ[`[.^8k,3rHA)Hph~Dۋl)y7Z8]wEIiiuuOv"xt?msUW3Y>qy=ꔔ/< aOQI#FT_ LЋh B3gܿѣ;tP???.W&;v4~ B $)hX+֮=|TlL,fx?^^f&&/ljl.(ХjQ}mmuq>MpiRL'L0=^Z 2k8:z J'EV5aAA^$к}?׮]vy2e˳EX4@%^|b`H4)--TZo3ZT/E2>u|,SҜf<90]KHXS'XYu D0դe*G23O_[8 ʑ@? o"BK+qj-޷DmŸG%K<#"xzZi423kk߽5UH4!C`Mݗ_ico.1qHSܵk,1`맋'N ػ  Ayzdo''^@,Vc%W ݻy{vvzVq~֬GtVtXaAkE18VADm-ӥ9UK-[nOv H?~l )-!+ i$fM/>6&'$uk1&9Y=w:mn` ?|D6vڈA+bVW&&E<^THrևAd.zv7Ν(zFy @].H4*qBu<ZZ̾Xsgg(Q|8x ށ Wn@.g1t B8h=p92ai kp J¢E$FL|ΩKXYї/*+@7+E8O/H`n B  sb/33esd8x0-Ğ99*P1lV>ԢJeeECŎg+2]7l8=S$]jQI;_[[ 7o.޽[a];v` ;0 d@Ahu ۹s'N߶m{9qx ɲdӍz.*m[ڵZ ;r$ѱ fff7_RY)T ,*kx,`>۶LÙ7+S,a..SllztKŕZ~^薖-ߋ ^A4a~kkkW^駟RP{[iQxѱ3!/rǺgXij_?S4͚X V ȫo=Spԉ ٷ0F;w.L+'%h=GhIUիbbmc=,Ay뽚Mfffǎ+((w^_2]4[)%^]<55U:wnƍ5g>㢸8gwaYޑދt5vh,1v%hĖ[b5Q%Xh1EE ;y?"jT |oܻw6 ˝s4Wv87.tqR7qF~g^b~|,԰4ZjXMVֶ뛕5>S3 3kZZ.ySUqܺpL{q|fv'k4vvvwsE%''SMRi AN_9=tB9J% @WWNӦ٩7IK$o]``6mh4kGnLܘMO;[ͼ5ݺ5%;{;55=#FF6R*MY4u U:g݀uٝB蒒Aaaaḱ7\7:U[RVSso3-6)8"8]I~y͚55 :WW7lVLY8erV& '&hѪc'|Lyq|ݛ;aMT `B zod1Nڵ3P{ .~6ocoTeeTddpo9Y%ntw[s}rظ׮>VX826Vjc:wwoVIWbjr5}wON^`FkոfvDW ڷ > !Z .++{{ B>>qnbyr"FWZ*0 ʕr°@GGa3]>;1Qɲ\Y>ݮ5P̾ϓpC^U\~ jj6ًBA+fxwon``Z MWMK])pv΋UgE");;`ht r4>~kVM.g_+N1<)00L(l={V00Y !He˖^OOߟ$E+ DqX}3UwY|2)#,vwT*u@p*0У!NMѠ㱀cK@")_U@Wׯ]m۷8woUlگ=By*-@G?!J6~j|ֻ)u}uݿs7|~x޸q7$N,GDnhѧT)ݐᛔoUFZ߬ly?99ZsMo;/>}̙+WT oL C!(U!Vƍۗowr%ù /Z 7ޏ*J 03+rvz N*JYk篙f%64Mww_0P9SV|t]vvSVczm< ! y(%ʘa1 h{h_ٕ؏>sg##ڷos' KFS&܈y{˪^:^߷a'MJ[ZzeGԴDcO()(67 M1>nH!<hB^jyD߈Oot~,N.曔 VVSyy4gX.NN65UɲY6&V*-474'T*-uY:z"*YY[f(::>VV,,F4Yb?hhvlڧI>O5sB!Q-@+ʈW_^fr<77F$D"% LMMOKC뽮WEW0fx; @d)X<5.Zuɓڻ\, XZ @MmO?SӧXxE1dePcԦNYP_Bry[p4ll&YYiX6u; r9󴴞j΄BL0jԨg,˦9sŋIIIr_qqqׯ_׮]5)-yzkkgwЏd}+V&'-`Û:v'Y{ϖ-J708gY`g8Ga߻i5ٱztкlmhi6%1Ç5==;l !hSNOS*'Nos}uuuddddd?OGdLqdp*z6 6;s]6,&;Nuiv|b߬ 2)iUZ 0lo\]jshD숋hr5xnm9932'&Q*%ڴ'Yi򪢣 gdrs?trByZ ^hCѳ,SNJJJzg.׮]uݻw4EF^Oaűce2}sk(/И5~$' %11SS)R~eX̰\B}>Νrrv`RG9h*Aќв?`J#FxnJ6! @n߾]uz#Gj? ̖ehhئM{*IIIJ."h7nOZ>ȫUwoa'Wŵk9v<(Rp44~͟0!7NHHP*:p@ppsOUT*G= I&3˫9J$ .l߾㪖3fIWV]V]Jjj>}Lu)eIV}$gY7xxhp|+XS߬ qf'xݕLVhl'7\/e}}7&&64ML,F?88888… C g~ 5Vr$vDT @m}~+D9p`TBB Y*zVT@9Ҳ}J龼}+RWF :,+%-mUMFuu6m[Y{kjnM_NfһոqTSBy껉|}}{2={,--Ϝ9c`֭ѣGv ?ȰkYW_w鉳Y9 zzbظ˗az{njUWASH@NRD9;VΩQO>vޣ+;Wřgjڏj޲ 26n{BvT#-!=aFRL6홣g.]t鯿R K4i871mesHS_}t@> onfŒzrwNά۷E |}՛ImbhN=E"UO(˞i&+kkz:1ong7rFǽ:.֪ε>Q)(B!yxyyrU?ZvTtNNF^,gn  vmSiF#*+wϯpfWNN'ޕʃw ohtt8guLVY][UW]WTtJ&xi8t=WVVU5lPw?t; ![ou3gΔ6Q_M"eyFael=Roؑ}\)@@S',HMihnl^JVy] )ft24zm>h(ʭPed3G[apy+\VQdIͬL yq\^pkB5ktE$M:_~Ἡ+CIII:w5ll\uWF.:U@[soMoؑwonI|>رvM"Y,,sggN*t72omcsisvݭŭb-k5v{M5.?4G7be[/Z.WB@ݡCm۶M0uuuWvvv~a_9zÆ !!!ϳ x߿eG^M:EQ%<xj7ߤ\v?ȑ}dѳDܐmJJսz68+qVVvZn- 7{خ]92YeDDpn@`,>}7$3/uTӞB˪e ،1~ >|xPPZSlmm[dn̘1|AkH"CUw%gI^) "jPTzoZX84X=3)66݌FǎW5;b.O_燇wM`i9{磛4R0cFٳBggkM}r/B!յ@ ){ݻ{M~uڵgϞgϞ>yczxx4ʹs~駓'OZ\_K66zpt;.Na1 ɝ9~8+{'-S^>#!!^׷mۮ9b6:GYk5M ]wU;B~d&ʆ^{<]] l?ӌBHk:++y p8ݻweffD֭[nQC)o}}}U)oTZQQQ^^orrrR*+Wl߾} imoN)0m?-WH1GmeeMW,Cu..M.&NٿNQe;wkj!Y$J .mK<=tpBB\oB!/JВLMM###?K.54>};w6lXKObŭn5vK${_/+غճ9rZBey 3v~3Iw/іRSs+<*nnsv9iPp441y+By@6Ο?ĉK>mw@0yٳg鑗(U=$:ߌwCXѷodz_:J샘Rc AA4/H! gqVRR{l(l7Mv3<-v'O>wB!t yp80 ))),,ҥKIIIקOw}W(*nMP|8nTL @a@` 0fҥ.OFfV53z?0r"EM HIY *8;/vvwI;7mJ<037B!eC[8^a>s$''F,b' BI^!.yo{ޚVqb C*-QRr+fa1ɷhՍw]H!E;::,˨b 7řb<-6OS6d[[5&+ijne37#-~Ԙ'.)9;B*-D(l [ZV4gN )z&V³ѻF;6w+;V8cmVV@&[Kcc,kS,+Yor:c ޶ k8'J37oNYTVQoftG#B^f@GrynnnMMH$DGKKK(7P[ݒJym2rk*FU*Y]]ӁOS:]]L LZ6:n4'۝|.w*/ovhZ[O<~osQJi~6 !REaY6%%̙3/^LJJȐ߫Cڵ&U0~ݱ 6qvbw骅g޻MIYWPW;C16<[ϗ7XR CaW-GgZ^wv# Ba=' ^}3J%svww;=!J)'N|͹:22222㏿ SS=O*"Eߊp48.K]g3()}T `.]HW_.=}Sf&K m^^OsU.IYM7 V`m7 H$E99;rrvD 즩6PTFF=[R @M_y")SSC!A?ZXIIСC/_lbڵknݺ{AHϯYS@OgA9$ ݩ]//OT1/~~O])wc9VO촴99;:U 73`e5]s789xye9r$=,H!uEtQ*GnBIƌ՜g%Ʌ o~qUˌ3ٔ*ǍS+8/tv^hE.;[z>UST/,ܞ}Temst~>"IѺu[kT-uMի*£GTUQptohR"RSϜ)9wb3u##ݍ{4ٓof ! Ŝ?… C4;p!C*++rٳy7yy$/JN^ ,eR]uXМhK9B!l-X3ggݽ g0l_<cj\RsI .ptL1[7 <By]Qb٣:Ynݎ=ڵkWgFF]͒X{[;tyG5U(#G /OqZbaqtyCsrjjziooJ^9sƌ'ĝ_hL2e|!zyyGG>}LzR76n'A!>(n1QQQiӦ=sҥKN:_a_h]ZZ:ŝ'..E:WɣG^( jѢV~P))"UoTۙ3 xJKϖ-.(n1L/LM9%Ғ7elW=a~``а,>] e2lhh >>|ssF6VV "!vک蜜 =wPPh.q8odMB ƕ^&Sss닊$yy55On7cEc.G ݴZY4U-k^zfOm|(Қ,o,;:aXV(>}:wޢ~SJ$F3rh9ގB!QZ ʛۿ3g>8qqq<`5mY^fa'ZQ[auu11iȭd.)8"U[3ǀّP~yA᚛qt0(wϞ;k5,--G;Vҟ!ZXZZ&%%ܹsְ!9z233cǎ=8?yhpWTB!\DD'5pYT<(>lIZc>&&M-愆f3u8]w̌ ?$4аke5NSӡ Nb=QW7}=io!@UaÆ_]xQu2#/BK &Nd, ;۷H"pyy\&|R++^`HE'CsBϖUcxsl~9uuwWFԴUIooEo5hmk5~QFk$BH(n1cƌٷoZ[[?8ϟ:tcǎO Vfl(\Z"K$ymR`p~Bg]BSv))R)L^ҸH!ږmmFwmcGZ4HHQQqUuVK*r4@xYEEҥ6Vy::m mB!QbvڳgϳgwwwuŊk嵵8|g9ΝBi-޽;(((33H$Znݺu댌JyJyKҊrVYre[fc26۔e)n7HU)Vu*H؜Y-P=Ĥ"IwmR-hq30WeeWNfemQ(8 G/y<=iSmbŰKB!< [idd|pҥӧO?8`ΝÆ k RwTFq]j?>)U4cFٳwtr\߶waqT49y{NNݽt::si#{3V}t|9l>p⌬%%gKK/6`f6}ꥼ?JΞ-9{VpυByPŒΟ?ĉK>mw@0yٳgg³I-sJ)*#-8;vjjFFffk~[_ci==9u9nN8WrNAya^6`^#wU-}Taaa;e̙ H!7- 8pIIIaaa.]JJJdY_qqqӧϻ+ '%wdU%uf84[o]SUP 1&,^ld޸!Ur9nFF󝜺6@<,՞ V{771ilȨ5nE[z0gO===_B!(~QqsssssH$X,y#c Uc-Iɒ,Jr . U{7e`/ᯓgWW0{} ;wjjA!F(|GG֞iF4?)wo^Z: [6jrss}79Nul<ޑn$Z 0J^Z`k{w g32OH &&) ]s@G7~MJ^ltU( IY&A5O0ëBy(nayTRRѣ7lfҨ|y( 2>|++eݻ_uĉk<ڦDnܸR^zwwSRZ|e߼9 ˠ ZZ.L>g5k<tpi=!%UWWw%99 DEEoܹsvvvHRTTp?ƧģFV0<bc.HJZ.cYNBNo ?o$J :/d`wܾ=K.ykC^]eKK XYϚeuuB!?GtK6mZCpƎ۱cǶm]|y۶mRSSA-^e.ONe_ݴ)s޼$XgOxvED!7nsoywm>mCL[mʷ Va8VϴpV$Jq# 켐{/#GnL R:99̙c9j΄BH+$''ݻWulmm g;gΜ\z@BB_jժ֙+iD^-1dn!!qUaM]̕ϿhLUջ2 z?-{(u\>}͕ɋ:ZZ.;x]nN*t32>B!= [޽{J%aU/\н{+WXf~V+i$az8C u]&}Ѣ;J>>:vx{4PSuUKU/==C}B%*bcG0e|ik{>!r\pAu0zGg@?TVV,;s̫WRV0?gW&v&Ne8Om-sԼ"u/JlֶYuY_H,jՃ7lz#"&~2~0ĹsVnlٳ/ !4GzzsOfŊ#G艑g?ynG VE/mGwjk;^Z YN[,X>7޹1|HC\QqʕUѳw޹/9YI3!Ŕ{WN0Ku}Ts>޹}CѳX=ڵYW׿CpmmyUUD> 3ܤwoy꒜!"gB!%Gt5j_{w'ă>|xΝFjx8H;z%6ژɧLMǎzK^}}+W"++{aaӧ]-32Dp[ByO#  pɠ ==~{„ uuukƍ..wïuԩŌ07',ROO㋋%vy4իI[[2Y `΋|%5uRY0#t켈`ؑ#K/^`1|?MM_mB!QݒFlٲƻw!HŋT/KJJ~ᇳg}.۟A펅>\``GO\)'//Gi m74²qqqCp_߽ ?tA;vPeAB!Et 7o.Æ {qzIK| )^իu_;;׶*]lG?8bb> @ ;о?zz dnެ*pGDByUPz~嗝;w Ok׮ 2DSS֔[b f.)ظP)/qZ|GΪ={J &,0LE. QPpyF6 OH>$iuCzBy( 0LN:uT:TWWP<_ hA`' 0h!捯dus, [W׆j)NM9>p̜\^\^#nr}ѣY>ioB!(~ooBGZ"-|& ٔ)շlyz\>..Xa!>c5 de)ˮW^cx_Zzzhffp gKΟO]e`PB!/! )Ս?t3?ڵ7o\ &F][P?ojnjnۤwC/ <[Mm|}pe OH]22Ru%w[&B E4ym(ݛ lp?,۱#@#GZ6\2-$նmllk+RE ty[iYTZ\__ {:m'Kj27nIHP 6&Ϛaa>!B^ IV)@M_cGTTa1J%G/U:bj||hN.,qq R% Ɵ6;1ręFj:kϜy@5==O?6M%!BZ8'>J3+GFNmИL~~jL԰W{Ua9 suP.K-G6dg`I6,ByQM^C%l``gnݒ7Y={|U7OyF._MKVbf7m*>֭),+c kjjaaG> P71ᛘꦦތZ~By(&=7'd,WݥiI ##'"[2̷c-Smr[ɲ7'gg?llC)ޜ<90ӂN_}蛈By~aqg᝔oRQc[ ~:] Y(T[ OO-^m5m ˫a%NO:*:ݦB!uPM^ "vdlB5ڞN [N !jk"Fe|Sݻ>쯫!3szBe`NO+Xmh~{R?ɴ* %UQqϞttZ ! OƎUNhrw,0q?xx/yyS9LO&l%Ϳ&-@:({-l>cFGBiE 䥖2-$V2<檷*˖Λ j͛Ԙ:roEU9Je]&%p1_7~ V !Bhb)L]"СmTs^}}߈:LGC2ONJƆ:KW]](o_ٺE!W%(Y=;5& frpt*I7fNu%@+t, (z&BbELBG[eRYw߹xfxE4pidWd uXi3yr!B^֞!"`t΍VMM/ (EN08>B!erWhWIy۶y؝sDk+#OsBQ0ޡBS}~~4mmwôB!C+KV-zK*eى5MH#pv^`f6@ʫ0޻vB!uD4ydmQ=>2Mf `qrrT `범%ԍ>X`li!' `1l;mB!E4yTFTV߬ _T,駶o㣨vIR(kG(/rʵar(A,ȱ QzR @@zv3w!!g%dvjpͬ,_#9_"ѿVRr`,iٲ…Єq4jK{Hhbbɓ |*Ar>ϱEiiD䮻5#CZeEv{HL D`ϔ)լY 0bSqLDb:|QDVK̄-"`Nᾶ9HG(;?""͖zꅟ^Plo\50X?sKH:)1"di  ~KYU;VΝZDyy6Hy\M0"G??7BD՚sD,sDW_߰Hކ ~o\e0RƼߊE$?[~JD("V.]_T]$"SleY^^OMJRl6-_n7] F:1n6-sEdؐŧEH/\$"}Ew4K&%U>-"/1)lY6䗔DZ"e<ݵ#sle"T],"QQ3||B9m\0̱DchO?=)"ZlT "ڶ]z|$%й삭[S7 -\0FYvY9"vžD~U^EQϪRD|"tIJu{Չ cdT)b.OvyUUN(qa܏"2?vq̶믯8{VDz/^ܯ.>q M W\dqi?]Dʪ?*+2S"bv褪BO>xfjhIJ"nVwj+DT$LG[R_[l|~TW54^iW>?-YY"2rVP\""[ ߲)"} w6\ur甋HEs5C[M,Jӳy=~EZ 曰q㌬@Dp?ok+zvniՀώN:~ȯuY܊oƌ1h!@í7)#݃~ߔ/";'""m|{]9 ^o N!dHkpD[e-SD,gS DY%""7/>zV""ZV} ,hO3ߟ^ ,RMD/˂7N+I{DQl,'^߮U4O(6ED>."DdjpKD4`AA P+ǗV1i/r$(7t\6b$ŭXAz 7:\+""Z%!+ZD$GqK,^^V PNရd-"lUDzK蠔QTZnͿ;!rj|=se\@ r>"y"bIy;;(ҥb])rfl"򃈴%G":u2J!@õV'"7>y  6[$@q4\+oM^RQ~%/u|je,V~ApkW+ "i|wNߵ,޷OD=\PV .TYzvY(Rf@Gu}IkЇ :bWDGF$I^Yi;oN"&C .4,-;DQ;Dc3< @UJ)"K?熕}MDBGyEhW9UDn.R~MDZ_}ʕV__#h(@UHHV[!_MKY%dĈUp Ŧ]{ND(c*TWZ%\լ4.QZd+Qi''{hati9puyjcoru [}CC 8 8ɿ[СE8G|[ю"> {׬Kp4`kZ_ѓ6"8_nYٟP9t3@+p4/\9$bfm_6g"@ɪTY^oIS]3d)5ve;X .p#HȉN5p2&'OpBIIIIIj 4ô., p2(rgdddffVWW_gpppll?$&&6kͥ:QT&"7Lh?p>W^IMMO]vڵkҥ͚59s?:](I[jt99NvܹQFgzDii믿ޥK鵹A\kEH!?sg$qڙrss r '[nЮ]iٲeYYYÇݻR}IIIɤI/^hȐ!9%%% ,X`Ahhv+VZ򮬬,,,,((P=t㭼U6l1o @;SDDĮ] 6hO^Zz;bpS8,44tڵ|̀򀀀~ѣghZz-ܒ?lذ!###++cccx75*00ЮbXzѣG{LD***/\PZZZZZ{ n׵kW@cq4Ё @t @:h@4Ё @t @:"`t-$R4FXX/CC玳EQMAuu˻uot-k׮ÇO~ݻ빡y5q衇>裎;۷clL>lݺuyyy;w=ztRRRn<4ќ fjj_|e˖'NnzРAG:ujPP')\Μ93nܸڦرcO>m&PSx`^wu .4slݺDEEyl ɴ|gmjO*..64˜T\?'Nh߷QWN:!::ܹsn E:)CuܑQ +WkgcZA`2-Usέƞ:uʨ"#i9~0G_jTlQFiӷ}[~}ڢ믿f 7̲2rǐOCxIII>}'1-w05k8ða,Xf͚]vw} UTT3HbN*nLcϡ<̗_~aÆ%Kq )oV K~!pCNaߵiii ܼvƍ>iyY L(v^|Śߺukǎ>o񆛋t S)ܹs=z<ˢ' 4Ez tgN}2335k 'Wl E:)SQ^]jZun6mZh}׻wowW|LK4f0(emn^Сc7SLKSb9e0gΜ 5k.ۧ*..Nvq7M\ZZ6yں=Zyn()L1,X@]ԩS'][wq+nuǴDcSaZ*(=m۶sZϽ{3H*f[G |n.5rV^ںM6Mk'''yn()L1"rknc=n"-"-" )MwiժUݝ ] 7Lqlذ5lڴ)>>>%%%:::))ɴ[oŋgyF;sYH7.hȐ!˖-n+^ءmpCNaTؿYYYeee7o9swI&UTTԳB07Eb:tĉ1cø)SxZu"I1ÜLU?'{TDnu˖-ءaapCNaȔ)SsFEE9ڶm[DD'55?gNa=n" />#)f(##G3f̨r|ޣt'tS󢲲eeeZ_=n&PSb0E$""bĉ'N|?cO C{8|w~K{EydZmӦM_ry={OSd=b$ sRت*ہ֭{烂Df'OvЦ9MY``־59vp|7")"O>d}uux=z] {EydZ̙3fꫯg,ٳ̙!Eb3I1n0-F5cƌ'ܹSDVXgi7L1ŴtsqvqZkgn()L1L4Iko߾khSqS)橳i_1 <?e3)v)FRxoӦ o-"݌ݔjm]^{N܄t S .gϞm{EyꬿdZ}ݓ&MWܹ_~m۶kClS.FI={M7~M;٣t'tS{a͵Man()L18s9LMQS駟^{ɓ'}WjSnS.FIq`]1ʿQ)+2Ţxuw:t޽?z 7L]/ j(RSg5iY\\x={I]9sfXXXXXo."mEz&t7h gϞ:aYQQw^=`7o E:?SO=S< |UDڷoF27Eb:f̘qA=}7vӊl$IIq`FEE\48㰰0M܍7ި6*++׮][[k?Dܶ 7?%%%͛7oܹsWZUoY,#F誳LMQNfǎ_|NJJz.8'x?ft))h3==];bXSNiKRRR0nܸ:Fthe?LKEQ~Wmرcg۱cǜ[xHeN*O?iK^bmiuu֭[>6E矋1c|vСCSRRx 88ni޽5_oZn]ǚ/\*99Y}r…u|ܤ_~:44f:,\$''sԈ)`իW4hʕvE_xcbb,YR\\\sU>~=z̝;7//Gy$..ɓ )`?c@k}^|E__gyFw1f># JOO/++{722np;jӦEرcΝ=zK6rHd߳gnݺUWWeffO8p`ذaQ-Z8yzgA??_RIYYپ}v߾}DK.Ny)V)Z|Ξ=u̼;ӵnݺikx衇 yyy4&&J[ژS84_Ecǎʁj/>|bL̙olR[ںu%KV:thÆ y#z}{Q7púu-X,#FHIIի˵ `ٳg|bqqq~A=]>l6v_~O?e-\P=ADV\y뭷FPP|WOHH{W% `{yyyivUǏzۈ&&&mdz]`۶mj{ԩ۷GW^4˔th0FHHȵ^[G &]vs?~|=?O>+o۷ko&LP?Fctڵh_Abu 0:tHkwܹZ;##E%^h0c:MǎFaaa=W[PP6"##=f~ϟQQQuwvPW#@1"##G`QQQ=W%v50x NP>%%%jYf\vm cNWUUհjD ӵQr ph0FVVhߜ j[j6kqB},+R_cǎic8˲l7};ֳO_ѣu|"9rh,n)8Dp5@1faÆs=ŋǏ?~o+**Ν;Y%zjޥKm ?~mv9sƍ:.hѢB(}߿u\xK/;wwީg=hݺuBBON>][;vl޼Ym7(E|˗/(=vǾṅ5o{Q[lYhe[ڵ'M=xGm7Xy?Uyyy'~Q\\<}ʚ}O=5kV}6A#%%%K3YYYIIIsUZW^yE:z)<O|xzzk!#..nϞ=?:`-Z8p?7>o~ٲe&MR-Z4dȐӧOkWгX,oviILLTO>>ڵ^0xkFmرEvSp(_tqqq"Ͼǎsssڶm;lذ(gmŋ7o>qDAAApppǎGQ>w\DDDll5\c:KuuΝ;> stream xy^mwN "GD} _D9BB(BR)sJ!E}l9=;;;;lߝg|gf>)(){C.v3$`Y\ߺR\b\GG]szJ|R;Jϯy*'5mlF0I.暿}s#~߰3p}u7lG0SfZk;[%oWǯ]0볔<TGNiW wJE1y{cKPs;&AˆrVM Qr5M2e}grLpM>}4pdhiョYIFzx6lJb3{g 3u7{\TlFdGǶTj˜]/e[B5q.2uW}=9U5=/C\sF_b[)vjh~[-sq+\9#ѳ<`(5zqmP>O.\~q믑#G=mȑy`p7[9g!v1p:3~w>BI-6$53ฒ׌G<1qv <&s-~]K\3L~ x;BSpKqO135ݟ Q7qs7~|ިoV u~_r35}#o7d# X5}읗{;?9~yd{C.qO=zk.Oz[t\3~51!j?f\w|xM-'"{kB䢆w\w5cgڽ1,>9랾\߷]U6xvSf~rXzߎ f7rݳ3Ե3]~akUEwCE_nflΨ> 97->r}ov%T4ovv\~Ͽ+3g1<~Ch{5Qwg:5} ֯g2aǷwկAwkꉼrfLrM Q/׎jp;=KC]fm)~ݟ~~Q>}p8Nw{_gzkA6& hoFj {׌Eo=?\n]WWݟ(mr3kzh}>:aN̿߬:xQ(3yؘ`~߰9-~}j$6fxru]syk{coqg=qC/,g1J_?\ W;uvB6%D ꔼkqA_{37:^81>c/,r =s/V&6%akw='YJ:sg{/~r/;lI0SIomj*7\o~_߰u{:Z+Mѯ}lH0Q{=$n:-g};17~!t#Գ6?tڍR=k>_5Ete~O^~Ҥ0L2o47=WCR`FCb3X `Y췉J{.&/n}cw/,#vΟYY:N_38~eoLj̍O_s\odȨ1'_o)uQз'k]g䭷V;~ c|b>uKϜp?~AE_跈__ЯE]ozEs{X׬_Я|șl ~A7Slw?~A&/7U*>=uox ~MpU=XXj:]kj#NG8o͋u7*|r6~J>FOxXjL-_ЯՕr(v[E}YiN;{̲^[.91*[O5C۾~GmleNf|r{_Tmi+[xvԚ~ͰqIS^+u3ͣ|&F;zxyQgvT)~Tv NjemƩ=l[I:pzAe݇R7i;ϡ2mI?J,2B%8ղGz~2My_9fц E>Nj>~`Ӕ߸ޯ<&6E0J\*.~Vη;.7Q UMձ&IozXn/ݷI#7N{Xµ~Sܶ*NFm^&n .4fCkGjGN2nVԈ~ius7IO{3;76/rۣU|A|a;{GvySE [UN, Hv&=--r$^oTKK77Bi0"xioT]NQUCyWu|g_S߿U~4fժU&5A^gM({AW+ ?B-2+~LFYImIMn^ߨ8rŽ{NϘb>o5JZ?}nߨ}C9{k/ݮ*[E'FQk~wjK((F;Cqޗ2p+F_N߁?⾦߲'ˀ+跬2U):I~pN5,O K8Qr͹C6_Xޙ;~i[K劽/J~aK!BWIq !KաT%/"@_=Es~Ao}":V꾅~gTqh&/"m=O'M_3kPѯMХ%z5)?[^KJ/f5vn_"|cn?D᠊-EǼIAbl() ƦDfW7>B,~œVGuDߢK(!بW&oZD/)~ˢ˻~Q tEv]Ob覸r5_E~n\qG~3j3_};Kڪw4)~azF0ClMQk[4.%/",Hk~%%EDp\]åvZ2;E_&p42(i4p^u~Qtz ._ՁQ=t[i6/iL_i/"mŨK(DmD-~QD'M0r؉S2\b_R^n6]#P}4~~E 6Nx|1/_M_=]Ʀ\GHo?j6_J\ʺ}sHwn,c|mW8^?n*/Zkzs.hiV/UsxBqKstɌW/nyc~cf]sn]~ג2u[sW]/G 鍥5f]7Υt?fk /\ws|G.竞mn_ÁrLmH~ax v#բ_ݾR/ɛ2m)]ֆe f]b~ˈIe}!mL:𱴒~6kwm/6}I_3Dl_o%ۿ&oLnܒo_문?,9W/nޤ`?_k!r#[Uó37d[9sֹCFM`Sܶs֛ke-KzZ۸;~Cyx}7ҧ:>_H4K:H1~y jL;yϪ,߿k=S#X~GhߣJ:A8Wg~9iE5j9r{YG!:Ez9=B͉:3* {>~~ -ҫkU^Mho  y@k.fLDz%=Kע.T* -iݾʺ~CtT7W?4ѯ%ޔz[i8t]A!ednS3+.%KT QN'. <~cQӯ;N9Z; =g6No7p,Y2jGo c7j;NNÛ3oHv] k7K]guXfo.3ۯ8o-wm9˥O(/?Vҹa}>\GІ1]Ö>鷨-?s9ik^'%rD_G+cGM+c1>זK7VUALa{c{=-]켨`E9C{ضDu}}9rڰ0?7^ x.GVևLE\uoغڂq,i>Lj{cE8rlϊ/#.!OV_e8~>B}wQ7fB[RS10I8c]ew WRĀtS-62&̤ߨ#a/{٪f;bՙFmo4r|&:Fd$c@ԗ~aUa5 :Xv:;p~*5eS~ 7 ;+ mIקh 1 $.-U-åj@k ?J1 ^oY!~cQBz~ io\gmQm(R/2.~sFWzv3uJN|z~7xkE.er,cJ~{Xµ~h-鷴U BnCN1ڼ6KMf[}.TH_߈Godܬ=hk:֨lyX7nSt},-g,}Η"zH/bz./}Jkb2 y̓fZmޛo65_,}[7i)N0ym޶zU󉱝"k%63wυ_͝~t:0yfcw#{kH+wS=bLJWnժUW?*ċ0 AGYߌRʨ-ƭ?~;UJ'W~gB*1ba)\_lS7Nj{Km/w8C8Z:+9=cLazA:(1)5}Q3H^o}0߆kNOު }^漱H;Mz.zw\r7lox:!=f~6q=/Tl ]$,Il~; O utK?m-s|c^;}Gۋ~Hwδt>5Wx^kIG~òG^I;-?=M:/iLayU(5Eg'xql-SV!N?{bN|:o}(Rg hxv{vOSzG~rn`QO7[_ˠpd{ .T;_3[+eqj/wҏB>^[ߜo= %o2j\Zb~<,dߥVwkUoE-qo~88%MtnRFZ JWY^XƓTˌ5ac1.w ,Hk59mYbҬK][&v-g45ؗvf+'_3RE2ˬ_<'Pdˤk,q塙v:nUko[`<麜(@em~9[KV)'9ː{vݚ?k跬8!O¯3^'Mܯ}q̵|ldnզk~e< 0P>WW[~*\+3EGJk |kW eJ(vP_-EǪm>Ji] Zg( d+J1گoIg: Usu)p|{~KJcjxQ\K%cc:/V[Lg`Bt4)N]ݯmINF3@ 7IUzq ;Ҧ~MTǛ_{r\k1̋9=0/HQF뚀ώCRS4R;[;eW J.PIfws\6JUfE9CyKr*xhBAj͞|32:?fīԜa)OйOz~fA'j;1ZKs,iМ/j/w(5ǔHHj`_˸Qu\7nJ"O)oK+[i~gY0g LVquҶ||RL>0e㤓7;GZdۂ.x)5UCK( ,>g $pߜ֦w-׬+oѯE[طQ8 >[4~2 Yub_TQ;=s0 6\Zz4ǔWӯet)/jix;bNi9g|[Yd:!s{[_5i=ӆ=aL~)BeW (>J :dֵ_\8RBluw~7^e@"@o͓_[tYپ&~:`"NWG!"Qw8mäJfS]f~o6ϳs2K(Ezs5rw-f_ߥȮ$nYp%FH/F}uүVwT~-j Dr:S1?;n4kurR; EGpRACQjDOcUf㽎~`f"gծe n.j~IVDHNR|e~-oF!*LFv%0sewk_U1 4Yz;VU5K%"Cdv;^K3{ÆM_+Uo '6{"^.`JRT͜~υ:o}rkUg P{ml3;կqkz+*)y PrNwLU5]'* m2.7M9fTekjiC`"v6{;iQNC@פnU1V# 5ү-ڧ3 kw^%)֣U)kbJu&5sVӯ ]g,o)`5|~Q8+CCzhiT~} ҷk^ӤYDCNGS ׼V~_d}1}~r5uUۜ~ \t~-89uUM R[o{Ru\Q_ .ķL=RkV$CDɆ@kMJc7/ s4~Mn'Я'Otweܼ悏3TJ6ЯWJ_k)~}~MR@~MHYHؕm~Ę{~j4bY#؇׼sӏѯYsOwvRL5I0x]cw[9i!Tc]N05Qy)_s ~^:귛4~ivhWƱ0?OVz~i'Я-$iu߰!?s &Wuq<3vo=)--rR4jG"Nz~#'ZF֕΋_ڰl칋Vloѵq$BE7_m𮍼GgMq 0dƩ\~AVyȓo"C)~N:A_S'N!ۓ~ SZϙkν2jÞ10ٍ@*tt<>{VSsoxN-P\?thݍyϪ,]@a`~K7JuB_X7gN+y}oJH/|iGtݾA)뇦Hs_z~󷥻A(뇦 b shE\RĮ$S_%~SObC~蠛ƿoP{Į긌RMyϬ\E~ӍPqh&EoJ9o<,)FOA"uB~va!/!&~Ơ{ ?l1J. v 5K [$%xМg䭷_q,.M^?Զ c|b2UGZߢ&VM_t̹ o9;LK [d\?;KPF@zC9daWFi7|%sP?ɪ5??qjIq|c~͆O`Ɛ7rO 9O\lvq|%AE7sBM/M:>6yS:˴FTڊD0wu6UM=H6&t*{_' vx~ U|V]e6=rݬ.3:vF[{gug>`mz[=?POΎe8ut >GG ݖem[ޭ&nL6b˖%2-'Iweי~.spd?('/϶kLZ:l_#&; dי~;1ؤtƾN166z-xiwo#8:o8D15!On@iԙ67"No*B8ϭJ<ĆNVO^7Tlk~9TSsZ'?Silk~#Ȣװ/Z)_k~Y!k~7MZ筌-o?wv{c+cW԰aߺN?qOn>Z~#o"l=r~_X7+gX~kb zN dc#u=9Z+6KMfW6]h~Ks6r ?%v G[K~oTQ6rn` PswqzH/. l~'Kb73;GKc>ӯKK o2N˅(Iэlk55|gi?dwq:҈c_×lk5UV<`ű &NVO#($NԙyO/'3ǻkI3Ū0{NϘb>[-ݥGzv:wŽ\szڎ~3V4N k~w9wIR}{ؾע$6wfo*lke;sw}Mm~7V1vfq/,owVŠ.c_Ed}wk~a~6P-.7Hf/KﱲwWeʢ_XIsXW K"^YU kůdU/,,/k~a~sNW’ 욠_ST0+~a~W.wDfDVšI#UA%`5/o3Z_XMAlIYK k{j}5ͮYI k4DfO+f+~a~tššN沎췗R2XG Kk;A]YE k\*_Xߡ:Vš^XC kVAw;kšS!5m XA kQzDf9ªf6qz~a~_~ww5d/,%]W/uYڡ_XߟycVIrw(~a~8@fIojww5f/,7xg/R]MRY/(X%H_@iO xE˻ʗYT̮m:cU~XĠ;Wzo~g~-oVu. j3Y_k{*#Я5ͬ+Y_k;]f3ךfTQ7ך~'gm~o/%bm~-oFe]Zi' Я5gЯU5vf]~TSךTrk~+VךN&*@Ϡ_{4Uױ&@wc3b60kk~ϺjMV:nc;Zg:{Π_ ;6wՖ2_ ;ۗo =Ja>fk~w4P4k~K/2ޠ_K{t d/J/ג~w3ڠ_+(QW2ؠ_+bfAek~7TP[C dW+f!# d?J70Р_Kk;K60Р_K diutAk~_F0̠_Ke1̠_K{đW_k{VSsǥA봳*Kw|FΞ`w5^o~$8 tJW<_d~VUb6Aoin{K߽3-y`~.dDz%=KMoo;qT7W?HNgo^Lm;fe<{wjmfqƃߘb&6Ta![7 KVG>~2 a뢠_H`z{HM~߅|Fz'\~`[+_0_.Ls]lw[:܅˷9* :oiD;*v2C bIIod4?~{I7q$p_֎S]a(g*HC7ߢ8-̑ΎZ.p %Qwycѓjugʎ}Qw|-Rt8 k|[RRgIM'8xVΎNto=~CXu+-Fļ *og-+xlT!7n6?KMBϫOR~oWbkMY<BcW;^d EZ͓N؞f<3v eি1DN; ݖ3~7dNw7d=Nc{)ƭfG 64oJ\gyQrc; )}Qh`;;~g~~}jJޑ:!c;,^7B:)=שE~+J&վZ~i7t HIr> Ot~va5[F>gƌ^RwN F]+FcM{JߵU ;S\:tOccݝJ߽3m b\oy?yݤ7 --£-ubb0ÉG>-6T}Sj{- aG~=% k*!a@Vw_|`~oysגngЯ%}]jǩbAwjnc@VT%@~Ά8~-;:5gЯ={kxk~Girs_~_~A /K_~_/K/@ _~_~A /~7 @ 7~C0 ɇl)0i3YGSn6ST vt9yer>,,ǜ vjsIXec]/.uNKuIs__%u 9.~Y:_%X˺_9//~Y˺~Y:_e/se]uNK˺_9.:_T 2 ҩ\reXַjl9,m*ٴi˲.qjŊMo`i;RBO5ېMT4Nxݿn]^U/1U(Hv\&N{@l|ub{4Ւm&5ׂXG̴`zeOhv7W]< Z 6D~o5ђys.Q[}{YYY }bcNxiΜO0n\SDkfۿ6s:4KJl~s`,H{c7v.C1\gqƸen}S=p JB,xLysQ,벑1u纴ald#Δ7no0Vik[QX]<3uͲdnGt-|F3}{#,"cY{&7&QfhVg1ւ=a[͘$Kv<4-tl'KՌW&YySGRfhg {> Z AJ;OMd.I嗕υ.rcWީ/ y$ 1ogo ]g[UkQ;Qj6$K8iT-t^*1F6X{<󌉷)34 vnTDk޾oI̹v:n.ye<`LD!InMⳊh-}߾}~%+/s HʿR;IК G̴9?Ks?'ЬnؘPDkrHMrYUg;+=hÚ_?jTbk2C!IMˊh-X#?4ɐ2Δnr.㍡gT<#4W-Wf579*3\WY&2KJBcN N*`UɳX7ef579ј]Dk|GU6=yYn?WOXqp;[4ˈީw{p}[Dk|pS6֑͐z.Lgo&H,Uitץ oef1Xo& h-kdCG3d6o `Uwz1BI4Ǻ{yc[c ㈜AɧE{@jmfqRs㒲;m),TFԆ d1&5&Z0͎zOh3Րd4-UfXfs719 6?of(l7iPVDk [8^5 0ِWL`?&oG?gs|jor196C:(bG> Z f?x uh[8t]QT؂=}}iRʥ{&`j-|C~ }e,XG `݌foo7ny[hv{"˸A,C2MFlԏ `NkLMaP>bP1 `Kbk~ܘA,bQlw `{㍉?"olLK1*᾽ϸݒ!,cl1$e,6}}s `Hu3:>*v8^z,$J6Wu?vI*d8kYxRZ3e0z)=w1m(~JRc endstream endobj 70 0 obj << /Length 779 /Filter /FlateDecode >> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 75 0 obj << /Length 2873 /Filter /FlateDecode >> stream x[o8Bb Pscqnޭ+ FmJr7|$m|I_l 9p#E_?@SgD)J#'@D(JY p'ud6ۼ*eq8aj4'e9S MB4ra+2lC0Jso0Sڎ,LI.rRk͠VMfpJ'y'6F:(j;c)e(!t4(43l֪r0 vZtfl]i+=i>>?HC>;Ͱ\4grJƋTy?(.|ilu-˅+өrZ{ܙ3;HVʹ+#_e{?pt"L:f~nW~ G3ر=뭆?h@i73^=]>]GȈ eKUi:2U޹8?ݪ0ҁ> pM,2պPZ;^8Î"_ϵ}l[%p\Cpvmv@d/۶-`cP&/S?R;܆/ly}w]AhK*& A5x0@,:E..1Ak>qPb]U'\A0/|S0 E34Vj$dMB- 'vWg4 va(6Gv ᓬ=QEQ8 FCہ A;/aRhJ`kˍ* reit_:f}MSң"ݱ /c )*ax3Yފ{a/*ҽӺ/]#,.9Hxuؽށ5ldl/a) [Z^݀ zQc-ρB5P Uk{ .7SJ*|'4CFi Lt×k=Fu"`c0! E\XH<|BEBۣ_˦CFp]/oߑ=}־`<^jC/{~ld9Eq¿} 8H@f\R>vxlE`!/P_`}A|(3 bep1Ƥl$̤dѳuRq_fڥY> W|n??DBr製7Xh_狥~@9LS}OW-6_NJ`NBT++R0$O}@E0>̹'(A?$KOAA}}d꜄*1Ʉ'\!s/m'lRb(70!ۙ7H6^9efȅeHtJQ⮛-L_p͋Z!4̿aOL'Bie_ڴy|Rd; w['%~m'zndGyu抇Ѱň=W%Ι`W#Gç?+ݻӿU|j5 ysO_DۆVЮe<먐mk _l;0ݵl]h fc8˥hoKR 7 u7 ̖j7_Zyz{Y?iv 0;n"\K(%Z==z駀usr%kk6=UvLq1IZ$ɿuP uV&~xbUEӭLWwWnEj%Zx˱3'-l@{Ʋp?y}7MK.&bhͦ>$Ut ui]UlË' V'huT<}c`x$>߽wt5AO&oNq8ͳ`FƬQLirև&NSm SynBj SWظN.܎'nM 4\wydZɈ@1ٺ7׽׽h?, endstream endobj 89 0 obj << /Length1 1495 /Length2 7185 /Length3 0 /Length 8193 /Filter /FlateDecode >> stream xڍT-H*P'{EBAދAw)Ҕ*RHP:skݻygf̳vDPi@"B 0 @"\\`OeEc`H!TPS`q@}$ %d%e@ $7A`}!Őr"Qh G/@XZZRt; s   `PJȹ`( [Bx0 ߔw_ԄH`π AC8E`p)G(0?z]@XHre.C qp@ _CzBXp 1H\> Cq?h( 88a(,F]wGU;Ő> uݻ/!-'7 GOjHsb )IQ)qqpnEA v8(4}c ^P -Raa# :sCqG| ߟq sD"1b؀/UT>AQ8 H]_'$w,p74[A?[GWO Cap߿8A{bqˡĭ?7Ztߨ6[e3NbB ?0xupSLOC@#1/\?19^. A0E16j>:{'E%4K @!K8h߃@?tP<88L S g@uLO4}8mB}aam'ʌނ#rw3N,DGmKI&93/5>kظvx_c;dXwf:}utm2}y L)>s,U's eOte:me9zLf_- '.YEdʵ&yWQ-a YR˾cRQe6[xW~V&Җc޴Z.+?xR:%]RℷNQt*肢/yM Ln:Ế3㋿ \PhM7 sW ]6Nѽo/o]^ yꧬ*Q ~yBBg.t#)!My%?C w2`b!rDdleBSa2+^8 Ӝ췋ȇDްb]G-q+>h)M}z{}P粛D-9:/!v.y:Xr\Sj-$}OIi3\4r_Ht@ΧmI{b~ffxRU_@Zb9LIzIfJɓhB[M}R֞` 1l0\Vhy:yș. k "(dyΫhvZug`.,w1d++ 9Ԋl ?;Wx6ر1HQ\BY\F`̋A7ovZo *? 7b ޽ >{Ux]*pEq|ԦSKܞ'8ݚG\T˂= zΞfG ޥCD?Әjs"?Zob;t"WzyNÂb0J=;䎱wև%Hlh.)'It:3S曁aصVvɠذEN)Bir0"6mKT\ ȅUWy3ԗێ]bhbnx=S8!؄,*u4(aL*-sCrq ]5[R_|L|>sh83MG σjrōD061{9/|r`}@~ w {i!b,_23_{~r\`uA7m]"Q/@%oWK@oBld>%x! ڱ5ywT`4觛JRT%|G;ibSփ>B/7A+tl< ~njFXٺ=nd+w*>f,^*e9OD%yMv0ڈ”5Le>${ҭ' ְ%-~C</{F[Ae 'Cb12Sqb0JDi'f_oYY<\'jj,z;7^GZL=PӾ_peٜd(H5+:seѯ%xΠ;n攩RCP_\樆_ O@]|G' f_Z--`T_j|>c;>E&o2|x[CtﰜctX9eѤt曳t#OC/NjJd<;a&eB=m`6?*z f *l3y^Jҋ`I(PhjKw_1ඁj嚉lwbF!&uq*QݹjR뱜??ck҈Yi1,k(MG5;O E: I^I}m+|V7 & dʓ pek-OivI:rW? ~EYp&m+ZkpENlW| 8%LpP(&LbB\7/hb9}/`{Uq#LL'xZQۚem{唨݅W% 5%73}$ v=3cV/wGbX ^$V3g>k-/O{~ٖ7a-J A|{XuI)6+N6ܡ911@/{SϚOZvf: l68 EЯgByj}uMۇ7C˂ޤ&+Sn.Np$<&ӬBɘ71")&d&Ћ/l^RnKs+Y:8R;4o[|oc4PI5Kxԣʽh2"d )weχr dW21'ڎo5Q|~3(`,IB,@ƎUdJ 6úK\|gVU֖g6Wq\+:6yXeɼ_7%{၅VoZ7vNY2jK$0h2y&Aܳ*ыBՑГ(RǪ;LL6_8? /4xn^/.² .7 L o#+}^bPS˧M^%+b-㈬;Utٶ1 Nn]/gOVAnđCk A]ꛑ[E}7V_߆zn Ey%-oG'+rTGnռn1~w#* y\JZGjJ*٧6S51_y2?q;~!An&17{.h Y(:ɗnm-C.늷BEvJұlH+%d8KMQu._ױldk׹񕪦_oDR^mxv,Ŗ2Wdo< 7*_SOTjMYDו0k)CgMV,,"Rg/΁ D)ڰ>)M.hH&2Ro9L^&嵂Rc(5>ZQ#!%K} !sf^ab}GmG_d/$5dgx3h¼Wѱ%H=cix^Ix$Vc҃$B3.eĭjZw6?;4;?˺ԝR?C+}UXN@8|.Q_ic!EP򌉝*9^UL_*g_BBak'`sC=1!CN$o?X4)(tդձO# dֵuz{Hg6%s˘?iL,;,nsT׽Mt.:ecb #3bSyޕIc{d\SPƺBrO# $W/-ŇKne<;@yWd͋,]yL C$ jsqB D;(m!q.;E!v?^7nq,,ΐZgS:BPb&S6/Xr^~tYG\ⵋ S:$~٢#m WlVw'j@b|kt>]smpgdoȝkZi(XڕK539Tbdb¹xoA}/꥟)2u;XKl*K1 z3aYEvNu~oRR _~HXTSy0Y_|joc[^4K͂uk75zowү$e0^Ϋ_B'sc%{FJ)f>ܗG\z~wM>!eNA< /?u{K."{q6놁׌er`~ Rim( ;?,:2-ʑ1X u6ju"<=mTg594 \s(WyUޏ]YMf3xϫMy<-L d C+?"`icnQUVO8|74ZNһa@6EK-X+L{ok+7rf2xHm[.hq"I_ =LDWgK6a{D|#Ģ>|I#QwRi?zOM;Ǯ}ㅒ}Ng%7zvue'~?sp_pU^ 詥{"yH6rFC#)y&PionINUOyZ @˭m'ivv-?=ӯw["BHƵ&/]Y-VET=#QfJI/j B;MS#Or_, LJ-oo`xk0U\a1.Â5Ax'o.?spY *Fs<ӜX )i)tRU860CiLgAc SB)Q+3 Zo,Wв\ڠŮ!>52@fKͲZ!l9MrA{s΄cm͏i?4TGN1Kk+^iT97kIAH1v=cisAGZ9YzSeý,'ʜk/t Y uNcԆ"6Y5v_ﳆ-^z[if[^k 8=%f Y -hU3=3ql`kz%*U-ɺ8ұJMĿO]%N @}u]U݇"c%Inyh6r}TYcjH(آD- #0Ї6RݛH 8\2< ?G endstream endobj 91 0 obj << /Length1 1416 /Length2 6064 /Length3 0 /Length 7020 /Filter /FlateDecode >> stream xڍuTk-(Rt)BoҤH BI HJ&A EH{Gw{WJޙ3gag畷FZA /O@PSS$1пPDH/C,P9AB@$HLR@(( 7*]@M>E"Qp[G w0 ؎=P C1*! `%]]]h>$V zP4 ;@P `p> FAX=E)k( Wj;B[((" .&$. :n_AO7#h@?O4 Ġޞ;o  j GuCm~n@3@@"@0 v`%D ZC~iχ@b)@,go 9hVX?}Յ8PƿmkP7(0>HU6s]꓾X/ߒӡ4[~Fz]ӏ̙7yWm^\}yL2B'(QQՁAJ$kmۡNu},be1Ft70VK"^%iK7b]+z?0Ss_e Ɛ+Iu+ T<%9*rHR|xW_3Y07~.= ؠ&mM])!}NDē؆{ZKO+6׏ RߘY# VV~]k)/Q6t2+Dq (I-#?9H>8'We;"fGw ռFLa+ `k$.W*-OO5oY' #LI8 /!2bT8Ol3xfPG?&ys{oƏ #Pae?AIl!JD φmS޹'Y{ȑJ+`b͓cteq@1.Qx6Nq2W ӿM(CEG<2|xT+εԮ~GO#m `O KWZB Z4Xpp'ZfR $6kD<#/KJ')\csK^o|vb'z_ >^BbG"YKUNnN7Qk 1jB]jX70D4>IU\'br9LLdyCM':e%luWgeB.!C pz\M &V'=%);OY"^Z=mQCzc*&8#ou+_\j[<qyU;$_ 5 rYEYbTޟ,ufHos]J˨Y8OL֟ŒLQ\yI{Y<RiWB`` vau.<ҺNeT͘dP)mY$~D* 4_ SvUzh˹T2ӮP& WU=m7.#Yn:|yړVxkB.gx/(pJqo;]r52(t驩j/ b`̚]T~IX+Te*m.a܇ }Dާh4I?ad,`:bBfRƏ~}PY䑎٢@c2wIo[N}GO^2ޏu`EM_ԙ+ [#ڒgjΝ䃫B(?aIvuDq%f>5ivdi^FП)0hjݽtSy[{W mKX|(:d @۴ha[ʴf'p2C/mSLN2GpEgKl5qEl%RCF᪘]LQ6cٻ5XW\;nlx*&CTz*I_upI ˴-(Nj.) ŻJ(,=6+ou5CKJ/_u> \s=Z1؏"j7sاiyD>VY=Ihp?y'3puTL6葞ΪZM k=Nr?Xė"9yU.dz 0) 0}:9?yzkz6vtiy}`gGzN掞D|<*qQ5bCVI5ǰ{l.4krNeJzLzmbTqtGS11&: w8e0B\خv qZzTn|Dրk`fTൠ!Y[_gaADRmXP[iD<+y㾛zrrVt) AF^%ӹ!klq%w˕v`#sJH- yO8_ O F\ ;|~ɫi݆:]y xo[4mn)_ҝJln8b O$|ͬwD9\ =@}qɓ#'mSw6Rb&q}DW1=nrU7]F/\M F4]U"ŁZʖJ&c_уp1Ũa|Fm߯/X> ;uF>k.o\8R:WɚaL΄ 5gZYs/W.?2m{nԱ~/,fL+ WVكל,OYPD>x物ӂ9R̆}Bf ShG{7/0hhZemrLLlL'^v(rڽQ\.E Խms.grLȏei]8+VYo.> cvt FGpa }`]m)>-Uf/lTj*\?.R,a0pTIR+ LOsa;KUny/cێ4"buΟY)ɵg޵um>eFⱑϤD›g'4;sAAEnh*2QQMӉ(U(&?Sivt^$?"s Y$Lڻ^ri½*b~=[fwBZT^inDG+ьOQ{xeUF-EBιSIJƖ}%>eCVNN.1Ͻ>@uFngiG/-b[8|Pob MPңƽye2kMMSЗ[>ѣ NY@ ={࡚bҾû I[n{VMS[q~UG{z׋.vF5C Wm:jַAi?PGȈy<*99({ycxKD@VvzUOp>\*>9Y%Ӣ_2ڜ.F3n @+T#ո 'sEqQ"' =>,K29]*O q1 *@W%lZ@X?&q-^/Xn3N?4'*{r%n j$m_kx-G|,Yܲ,]S-Z-\5u`͋]|a9\tG&v;4^S7-3TBڿȫy%&}#mc܈w4dL}~e@[=N7QMgħ{һ.wnc^Denz"ȝS"00Drߞ ޴Sy&OZc5Y1ءνr+vn승۩8!Jпp=I©zOWogvp'OuOj.*ofⶂ*N | frZvE+BZoȲn ? Е!E[4MD)z^¿ܳ*Qe ,CKc^涼7͋F7L#R^xGgC{ֵG.XVDLs+FvxIS}xK^O攟Rḱl5yo/hNzVXv-MW\'<[)MZ~ʤ2L0[Uc /XSn?(Ҹ[`%ge*MhTm +< |)#.9rԨRet  ygT#[_ YNrUJYJ'1cMꄫ/6?i-ƦȮeo%Z ^_3gvz~wBU30?pa:;UK 9k oe_N_;zl]zf>7$YEtyl6"ڟ֙GHFڬaw) 5ӬeS3q< Jb6;3ތocئdoэ)?::_)kl SvߞW. dӓbZoH1s>iϥppB7O^1d'?{n֋0L!әÖBfلѼɿɓT^5TkIQlVrBtRgƓ`1\Ւ84_k;&%sө{:DeQ)P>Dܹ}t#3~b%Ko %E5c/5|Qc55sXؤᇺxXpd0k9 #;p|0Xl%4&(!zf<}6OKӧ[O\_LaQY ύe!kn6J]a YDeHJ8Y3!/^lmCFYy5yufYU ˷DU0v<^hPȬ-|H ;̡/wMK!5Il\F:hWQ$|^|qU!\y\hḪv> stream xڍT  )0Hw=C%ݝҝ4HwIyƽu9`;gRQg3w0I;CX98n6.TZZ 0?9*`/􇅄3$=@ pqpY tr TZ GOg3F ?_1;3 hPB@vPF3-@ x'(sasped!V5 dU2@ h46TZo @`3  eʎ 6`'l3h XmAei67euq݀`[)ԁi1UZ?9!.l.`_5 m+?I3 wOkcn?d7U#=$+ T[f x9888 '̊#/%/1_oGG /t ή _?Es` ۣ,;=p!tm=5bvI9Yi -JW).frr+/ Orp]y`jePr3{ 8x9̠8?_.VWIgGzc]gW4bMA߳"j D-mm$E2WC̬ޢlRqpzX998ztf6Ч tZ@Л/ xsBr P<_3ꯙ~F|v߈. @77K9ҿ'o`첿O7)FP>ʧ/FP>ʧA#oeڿ]_$#7:l@w䷜_WZٿ:Ixx~I~Z v? ; 8!@v@?} !,!A?8~\5B@ dTBB;lvmC;2/z,9N5jh0G?G@v>B;:@@榶[ߠ܂h+zqNh]~W 0/27Wh_\l@+gc4:? 4q?vB;9h$/Ty:C}.9 i#sgGZ]}R@N3$nb^E<2_65Ct|;aН,?eqm 0w O9W%2GЧOО{^S]O`(ƦJ&ĈewERѬCFt cqS]5d5'7oI~xnǦ|69П}/[WG%G=~ >SNZ,d&wtiTR5+ >L@)R[R!iFwS',6ҁغd<ꅥ>QognV p9,LJ!0m$6,u>Fo4I0Ybܮ8$(:xa[B"ݮTd?`).AI BP-sc|:/. 9N<K9gYӭWiQp[HSჂƛSY-\ rбO.U/H}`b+^E< _Q/(/O%8^xL$Heo ̱q{fniZc0x,Hk8z鎥E6eaA#eL`cR#PU)>Ɲq+Od vo-R`̝Z){s֓ҡb?ǴNM>HaEm2wo,,S+HH8sl S\a-WڰksTTd(ģnc2}E 2%i=e]r4/WW'=˗e')\b!N| 9$$3j.ҏCDQ^&Tn*X\ZT& ̐a^*EOdJe,Ӑr,*L\L=xg X;CDȶ_ =3¡_&m\6hg+j]c[ajJ FT(>i!!9J>8/ ;:KYp&"Aqaip ϫ}hh_Ȯ^Zvc. *ḯئpbt"Ge[6ooO9WX'^|a:ҽcƭrAB{T+'3k?+,nXKiۺ.Hɫ7'E6:_ (+' *nd:0ЌLjfw S^hMNFN0/~/;*UJȡAU"'&P8j]߯wp}gx?l׶pC#Q V u{+xlcJ.A3u s$;̣=&uQWyu0/oǤvjn@qJ'{LD n9FڽQ9fS-kXcК2T\R>RZAF/XuLIFw|{k7Lsv#Nf1&kh:S ۪}?k J{&:tH{c9aluЎ%.ùebw{EiL(6 9["3U'MŌx>rbͻ6ŲA P[  )^ɧm-cus0 _a>/ܺ5nQ/Z3nj4~aɛe84"Kk0{D_N5eՍ b㲩6EjLUY` PMph^P.p_r^9ZY̎d!õ\˦f9ETKT~q~|N I945"L"/AmdYuBR: :䚼 R14JY5)_v1$ӺP% [-Bۀc5r:sh߉QC\N_[i3S+$`AUw21%}Vf\q ~qk.45m̯t =:GU %1@ٸ)fcD'XFK4dVƫ)*aCUmdtBϙ#īQA#ݵ9Vt74iY0[NJ:2έS>Qv[+y~ZA:VӛnjiF\'?=) zNV3~=zb0LIdD-T29J)h^(ꀄ@R1 @L੭T ֏),"% #zPmnf ͛ƅ u]kmq6sS&F/( hfS^IuH7τ;48S{4r׈/ya]U,#$n,q^4Ȼ96(MZ|W'n&#ȵ D'Sz|O1H^v;&M&*@+x8ߓD| 2P7JLy̭6!a`QF?$RqY!83z#LprR2]j)@zU5[0UWq.ڷd?\Sma+<ՄMIg!6oGc.QƟKf'_Лp"Ю7ZFx:ʳa9VKV m?tXEI׳(OR3"n|: 1r(-|ʤ$\=e6M|8&^82(SXae`$?Irp,@AP~&"Q}v;q7sԁiRNaJS8_!%eC" y4> G ZJ뺷Qh:4 E!D΋)8><9>\Q7-gM?J"v;wq,s6e}\ɁxqBuR;R ~?2:#ŶP@poU\|>nyjS w>egLIqxP~}'Ŭ KyT]t_pfk⣘[4o=e#7%-u4(,lU!YBƕKa j+ xCYRby'A5X1!Q;8,ėp]%?)Źk]ǰn2z]~McˮĖ~~Pb9lэLl⤼& K/p+mU&$<׉@f3Q9 mYbӨx%-)Z m:pPr)R qq;Yˏz w=~Wd6 YqpkA*(pШƵ$!cթFv8DZY;BKVy]KzOѷk>; U(kwE̫t eu,E{ps~p9>/BAC֣jt_AIZ7{Z[Ϙ G:OKa3>LBfH])bNq(&d_ޖ2f)ۆvAۂ|#oRj*9;_.a',Xzx[0=\'m,ۗ̚pks Z&WU⽢k>!}ݯfoeQ㗷>`uʷ˯gia s;QY:7K/{66y.iL) ] 6Xu $A"NSg 0o: x0"( ̑1T[_;)@W9$'iŽ FI\N~qHd^vuC Nbԭzs]ses5I~z:3Rt=ż10 5h9s/^&a ݏ#,晌TŒIy":9Y掛m$I{q&۞- ,cΥ~p>A֙Ҷᤩ{5$:3E.1]ֹƕid@O#w|M,FNwgBWY0up@X\ub~AFadty q_mE!pym:3k+ïƝ;VjqeI·Ѷ]|r+BQR ,B `7|7u<ܠAzmw-upMc"P`Yˎ?^jms~iDU9h`bLaIyQep!jP+R '64u/C.Vaf%^5|m; 20J9%Bt߃W+zh_+"F Qw ?lhX/FsfN;~қ/7D1:se n~|,\eXT ೏@n+jȐ4pѢ jOGDKeZQfu 3$ Zm+~Jbyb#UF MΎ%-R#CP(a|#d>es]&ke_V`zUۜjHblЮa), $鮠[&d" lSyrMP{,>lc Hu}at@:.LMZ7'X XU2OEfI,~$oi x{),&:Mh߳XJ]"1zڸLȩ }MOr2cm CG*?˨%4Gpvz[J+] ג_-'LU4ݒ2k l`v|dY5J3Era&:/yґ?o;kNЋeCל,T"[־g? dFVtE3s;I.m9r#BlҍP1aF>!^`U+rǒ x.HU| SBap{?MG"TTRyX߱38`WzTsJw11)8tC3GWщ>G},HC B F$.2V?Vbά ǗMn8{gzDu9 vc AEq+rvn]^ws"╋1m<ǽ8y/$?)&se* i\MɣN,| vՓ)#V Y'v[I/INKm\i__> ڳ\lu/KzNn:(8Dsș7<N4z;y!T&NЃE*u}a)}Q+nW$b.UT~0`x1l88 wmz#B,sVk N AgWmG~1y/d,{b_5Qi ݰW*[PX u8gc8gBlDvjUtB}*^q'9wۗUSN9hhE3V4°q`XtԏOȯuʹg)89^lf" t?e\Ie^,R\`v!%ߋ@C\jFnDz/&DܓkEURl>ա-c߬Xqj͏@cYKJyW]нg'ղYC^ ,Q1wo}ia1-W_q_~2yKxH*3C21|S5}Q2Jx²Qb !*<µKaF4M{;qL$WxOYgƔOS#pڤ?4x k+ m4Sba%~^$/,ς 7Jq" ӺY ,qurCͰ ӶԉS]CweQX*Bҥ)VmWơ \YwƤsx&RjwpXW~AG&ؤc3釅`csa!5Uy?{P8yK#Y=Ϊ[=w`}35fg)b/gbkq.  #aզ.* 0h>ocqKg Mlyzv4Ƽ)9͇ b-,ZmYLn\`#T%XnG q~+&/af@4פxclf/$J#sm =9~E,O~,`ew:eD_pY3#CLC JᶺXrB@p\Kr6;]dN=ZKT܂$5,ԋS='Udx]/d."ܛNzdH^F[U~\hc^r%Yfdp'z+]C .$R C|K4},H\!=餷ywҢբI[?{}x +٪}gǽ( YvSZ8{ZWkԍfզWg}pApy7%vV?>3)`'Sr'dPm0pdװG bP!ÿe >A?+T|c8gڴqa/"~xrf?,u|KPTG޲Ӌj׳9IF42wӟXHҕWޠƁjc.YNr}hkۚэZ 1[_!H݃MBS R99Q~sKxpSX>i&@o@ĬW;3wJGu#d'LE b(iY:c$Ibb^ia=,P"zObmaĪldGYUƺU5i/^ "1l8l\ZJOP DOa )C\ms2$mЊ}m 0,]z (JOp1aÀ +?Q!ҘNe3P)#>7y I<2[ZX&Pp} ?QتOm}V7>d9iFOeAꘀD[}#3`g'ß)~<~acܷeFv_΅(N#J~ xSTg-냼z YqİZ]\. V a^-:M>\I蟧|Hښ6m{M9JeHCEWWᾞ6V';-%^AQ2mdt%ý Q鸻jdق`aA)o5\كn[C*-<f=:,[䑷9"`D0 {L;ngTFW1~l%ro9Q{"5X4NYc!z]¾$KG6v;0uŘ0GÀg96ǂ}wiSwۏϹ4r&G"M+M'c? (P]Q\Y{4}=m"#)Upg9nan_A.CL3EM..4op&+pDti;'VK9U`FX|iF:z)0?5%Tj*Z8Qb v9AEc;"~WCzC:*~`{kD<_T EZ=Sa"<2""n?#3"2iw1}/XvEqH 514S1,[Tz>=~6p7Q0ɔS1*Omg *PS< Y)2Pk$8ߏ4}1@Fh)P).,Fk:w'P0F֜`QŇW U]=#H{4Bo9q h+C9qV_ Ozn1ү5_н6Y"Sc}M.aG-FI(ftҐ_׹!Cq!.9̈M7f's|`WZհby0ɇHvVsmpE%*wiL^̗o#/wxV;BD\SQSZ]_c̤odX[i$$_v'Q[ƛ6W}\!`q9p*\)|lBⶑJmnWqVN:%;W&Rrxrc>pRKnpHIY>rw\X~M&#EpSɚ7eR Ԗkj*nӧ2>`~.乎J`巡?LT foǾ0b3(gyjCp.Qn~A P/8e Y*&F`Oe)n)tʹ[VpZ412}/z+PV:y֋H.HuЏу<ӣ.7F VۏsGkׄ ʯp S[oi^cE!՚o8G5@ZJ`t08y[ҷn2AMqi^7k:O'ނ|4#)d\B7Dqop̉+sY)iCn!Adl/'ߞ{3!6ahH'T|ԡ@ {_&o-K!#Qs;tPT;}2le)t*׆'eoB#1@G?I?ЯoPd]^2U2fj)]`DbT~㼥q0sirV&=^Qn=[r*ƍo AK')3qY"Z"_u5bE$t khXل AaG/ޫ$ Zޢl1:mA<;hQy=^Za.X0ŭfbG6Y[/]~ʀ횈 eA'p|2mXyԐHXjPg@FFԻ i}BΈS4nx_0vP):0)=ꨋ6\!ctEg=f_e{!<]^L ~5XCi`pM W UOf+cZ endstream endobj 95 0 obj << /Length1 1794 /Length2 8795 /Length3 0 /Length 9922 /Filter /FlateDecode >> stream xڍT6ҡ42aP6`l4HJ7(! )t( % JosXu xp[2 Z ( ೲB.CbDm(Pt aq8"=6^P0@A p7_#篟;NHLL9@lWTD; A#&g{8HsHG>Jh۸B,`E0#m< j!P&000PA`5 lݟֿAamn60_(`ut5>H hむml.6(mrzTև!|˯AY VB`H;T}3 Ca`_e=`PwO ;c+K! G CP_/ vH- ;J Q}e00 L5,o<+,DD"B[k39?`p5W^.ǟW om8j!(C?oo='ΞHihQ_#C=]WAFBPXscʽ х#^/Q 5*R f:>!a/>aBBJ (@=LD iD#1?H o79?_ P P2@QPD@ɠ@*c6Qd7{s#Q-qCm*_P+y*Ŀ {Q}{ 3h;OTnLjڂ'$[/jhy7FWڣLzly8Y*UTsefh/|;C"єzyt:@4"k$zDff쩏ft nZtݎ4JΈ"rwĚ0 L̉H=2< ՌƯB[%d-.d htW WEQ3 SOVoD )%EŬ72ޯ~j6C3,'͆Z{3@&By 3eS\m* ΐ!bMRG™"ro%S|8GXMs[d#)/ŸW3Э2_1 "oM&R7["j'iL/T;[kFv,<; DQ٩b[ 1* qU3RHv-ZWkX}q#8'q㝜HKuYkl)yP.R Is (h/P5^J(>cBQ磟R{L]=fh yž!?ݑ7iqz=nKF@b.LrW|>oq5"zן_R>˲Q8\{!K'q׀&L܄k>n^ӿT60TנHx1gS\>VsfLDӼ~(&"B:Nxs W{.\n1M6Tu͵ !`Dp#bkU0:$NNKVxqgeI=w7зc|ŋs.TNO )-x/^]abVGGezB̋Gl *mq>? ߲.T%c}1_|^aӍ Mwn?F8 ~XwT|r!x }|eHr#]4 ݎ9#BC'x+7./e^=\O֢+,6u{Em*pK7(1?;:ѸI|/e8e=Pu|wx|h[Co96r'zO$k41,ԲDm\gM]N?_tu) qXX_(P˒vQ)Nuq) 1,tRo0}z'Bl.m?fs2&ia<9UK3,mAMak"K[o=m=$/tew3JyKc[4q9y8%hٹdABUheoZ2h{G cU.W/ V:<DJ L+ tkÆ2s@+bU B`={uyOQ 39E'_Zgs6Y# j ~8砾%rM掑.M?;,1zr;׹kR~wʀ&pwwEȑLOuCk;1Y5ߍQT {Չ6ZF}h:Sې3//><⭂i')m9 N 72O_)Op ?ǹ!)]!pU}*?\3(x}>^K%WTܞ͚>}t o%ni~|6( $ bDܳ[l!/}ӎd'YrsiZע%[FuEOt h-~{9`SlPH/h]s5k1h@K+WG"Rw&$V|x8}frtD6MP(6P Gw0gx;ѷ1T]Th:V,]*JIN8u3;Kɡ'VcX33B `-˩NߘgB4t>XY /D <'m=(g7TwAEz驩NK-K;A[Mm%袖 a A߇\rQD}9ܲsëRYP)ZbDقIlZtnm.}pJA3|(9s(儛Զ{,BY1}qK^0^䀐מe)>smiUo=W+ёzppDŅs)yIQLjHFq=/TԲٯWv2މ<3[cxzP7'%$,(Ӿ Q*nDh&=^Yi**ET5ƿV [',,suo>Ɣ!TjAPw0|3-R+q׭U}"-v(;kc'c8cU`%[S}JuM/xle^)&B⇗Y%/'U-\#^N+c1O)qγ 穽j[,;wHRwKHZř+L=Wr{.h愆pF15;Y(${RڶJ z1[  mռp&5#C2u'mkȪZCX;.ro*W Mw]vIf AehOPoJQ%ojUuh"Ҭtm`$VϏK>Fw:SpS1>!F"g ʇcrv*LBX@GtH/O}N6o-n*sUJ6+/E8*S W7/B?MQ`;|yYz(Z[h3X j2?ҢQdk#1 Qw4Oy8)~#X͆' б8j1D6q=]q.$eօ&ϰ+qM|*#SW dInucu81"d;7'aВ|x "~M_O-O,\f5ra" 8-; m$kˆ?u]% {ΞThRP?%PdIq!^5 !;xВ4TOְ.szI왊~a,_B> 뱕sPgjZyn)ˤMr7*tհg$$6}lopBH/!Dڃ][7#xA쉹si+cJuO&SNDF)];30*tZ<+[IނƪzZ)ݟmGkkawsSKbx[ų'=p$b?-U*GIT?j#;N}ɱ} 4XiIMv 3YЄ6}rʾvº.p"9¼{Jўu>itÐ :ZmcC7\aJL "d?/E^D!Ǐ%w7 7Zʊ_ X}.;O?Eqg$7eS 3Wzd:~kSzs*?8F,?l6KEV#hh}dEL2US}NFkY&jO, +h}f=$})%3F!l6^nx!h <3! Dy_UNZCo'X꽄텦=wxl_ʬ]9yU&o,ٴD-cLv1$&4Yͤqq{d5îec9WQB- fp>5Wà-6‰b[q5y <1O7գ|W-5=)w#Ȳ*Em%-ަ;5kȺx&,q N8%n[#ˈXfǥI)Sgek/4 UKymYVbTb M(lY ',fbѬ;Iu0xD)6ݳf̱+6|@%&4GwGO{LvHi}:T B.߹PM];B~iUz|KT|^"%_hEex'`ow2ox AydL_>]uh𾽕^. $-̳΂! :x{EXӊHC?(d6A18?[6XXNUh"L$m{v0Mtz4ySz5p."^Pg2`fUx3uBtn;zK]O7 <>oۖ%:,5JSh Ж ؛& zXֆI"j{)zk.NrUU늰a=ml >Ͽ551j!Ck]=IBLq(6>!?YK=?A:̽?Sɮ7j!'mD]˳KT8\祐~[ - cOݯ ()K m/g+88bEVꖽ;^]eGg&V(ft,ﲁ(`)_´R)FʩIo{M E{Ԙrq锪cKwJDdl)qAul]k|ө`>*8 &{y$ uJ =4JoH$c/AX!^)M"aθy: ;<' s-{acR{wB@_&3.SV#5%S7eZ"Ԏh][g1gs[޺7}l$teVZ,~+%X8,dMRE+= *Յ UF%OZoΚCcc1v#%4b*),9V].,c†U>zPӡkbNJ}xXK;?_1xl`6ze*OѕZ;5+x'eW+"[/{b+bn6޹,{VX6Htת(&` m$6.qכX$Hآ?|p w*tca\iADc$zurBk]JcwFggJN9+g,c:8a֬eƑqȊX\A>*DG~5;*iD)z{X&9R"+1=?;Ǚ}{squ[RljKiG/LS\DJp)J^~13{ů\@1StZH|G :c@9HVixEV`;3ȥJ {AJ G,a%?aB!׉9jq|3?@޷~f9߁O7O:*!d'WS3k!V aᜄ1̩+hˀ;ǔRhDոׄH6E/ʅAf99}Qqb[A;+@fILmZetG*YBSWh<,y)\gV6(q46~}hfɾerMoC- VgG,\;j[$忭rB#Goz8r6^<|x&0s^L+!i]Wm׍RƋ,߈C7i'5fZKVwpY@[9 ~56Z4AE!IKXɟ&!{4j2ΔaK#~WKa6|$AXK-IrV$~_ b1-;- qJ :ot#'bXMR ^jYP~{бs-?[ nR.۲Ig* DVZzU%Ϩ`>o p.|V<(%:k.%#ĺ)IpN[Ȏhhrn.S +*w^I;hWeTjJ7وIvu&_I,y,,(FTi$/\n |wfE˩1c?֛NHüǸmR}]E)7]u3-h4k䊌:nH ٧_/+Db,&m6l@NJ9לUq}u^$%Yjd|',[-B3GF0g~W$b"1vUgQ+hZS*RU1 7.CJ>)" l2Թas)M3gqwY,İM<&~H{4+t% =|4Nn9hѯ!G.o;D!miOfz=6**g2/y6o%feI!;8̊uxd6?EKH}Y|mwޟ[r+¦n8>79 J6}#M}}y+9wl1eP?Е0!Ç,@KD[0ĘC--VS5zQ4u[=zbȷU۷B;6*!q䊯p)I@-/X[nHuO4Hy*h endstream endobj 97 0 obj << /Length1 1909 /Length2 9565 /Length3 0 /Length 10736 /Filter /FlateDecode >> stream xڍT\5 HHt!C 1tҍ HK Hk}ߚffgϥaX!.Pvn. ^ umG{!."Eȸ0q({:y"܂"\\..!"Y+/ @ qy@\}vP90‚lA` @ jrr@`?%PWNNooo+g83 h<@^ /u+g_8`?:[;38 X ; pg9)WB`?@/` v4U9>P6ͯ@+', de u+ /~@w+ԃ#21˹@A.P_ɂA@}9\Gbc+ $W ̄sqq q@nО?ܿ0W-(l {XyPwOP"4nn X.hVAb}&\0q~}gS ?SZKGWE/8!>v~!;?@W -&U Ws\Tr<_[ Ao}q?)UH?ӟ3=PC @^%lE\$CC{w4!_/|:^mvGʹ!6_`nS??6 ? p@a)@-ם 8~D0uyJ"!?H /EV"a'$'ߌ_s r8AA r uf Rs]~ҐaGY'-_+_?3lή0C~c o֩oo>L Poon=^ ,7k^`3Y?z:0xA mi}N̛}{$(~(b*J¬M5D槊2)Ӿ7kiyP8MS>; nZ0=z$Yф1``?nNCǮPzCF>@5 72Ixnᩫ7 N#4I_]}3<{V2P+PGL;2BBFARhn\蓑=BY5yYD-HWs 1ՇӀJ8 B#j̢wM>x. ~0܌Y򋈭W.ih["a նI%Qe"r/-U:Eذh%w9Exfk:/i:PvAZ#iZ^.PbFuH<8`2'C5M3@&<65Kn^Fz+3rlnW~t* }@}eJ-svwS %="h™*nʌ^ڴEq~H^@1:ťr$mU@/$>ևx!r2QL*TȪlB3f@Fv[evdKW1ׅl‹3~ƱŶP%3%V*[H&wVשC>-,2#;$}o2f SʵMO?ˊjQh'WxMqsX56; XR. AviieհhhS;6ǻ4XE~R(ٿ GnDUٱ%R)(s_%—S}J/Y_Br?-e#+=u<]#RIkc?OC6aqަ|^4GW탞^3Q nFK$ sG ې^1i{'ϩ"p6J2YAb_NmRO3]yR蚰8G҈bH;1)\MiˮBIC?RKN"K&M):I䘒pcb4֜wzгLP[ED '.UDǬ?197Z?6.soh!mqvcJS>Q5" ;sٸ g˰C}},o.s.^*d=,uQ k 焪z,-M4"׃lzKrp =ʷT3E3~q!7ǧCZ hÒ}vDӢIAG8ѕ`RS!L]p̚+)Kǒ OSHGg:F?cQTt^!*%`F$fS{"g -bHe8)OgRL\4H0ϠQ ߳n,,Tt .ܞ!Dp߈Swj $!;U8fyļЇrEL֍ YEеA?8M=e¼5ӷRaTM)Woݹ+xNW'=9FX-6Ha"Zvj"|ҽI!aŷիM7WZ+G(>rݓC{#YLKjyzAPc`>!tSIƴxX-~-y ύ%U>Jzլo{AȍfS\15f\%&e,ykngRO܌?Uo2dn W/gYL=?=z{iQ\NH%:ZsKTyaV^r>66ᾶ[].bhh5Ï"ے06#A{ԟM˲ޛ 5>*=_P!F$S/+C ݤr/VEqd37w82瘲 B]+B&tAB~=Ѷ6MJ{ E7߽)RŠ]%n6MƟifJk;ɕ^"wןX qCXp[!&/ntdH?G7HV徆} pHl\Xh*6 _0|ZKX*3j@Ng4?z fF3-lL*4VۀݏEbt"ǵ; ʳ6lK#-doݍОS7ҸV4*p-ɝ!5=lWO:{3fXǟ4nq)b>Hr~o%h2[IO4B2t:hۣzǧt?!U֐m!uxmkYƱh% c i-F{!Fnj"`bcGYnzBףS󠀡4U {|Ɵ8Gdhi4 [UkrCRِ4 aȗ=3I ).5IܬRǴDSӑi0MJi~SCF KWesD ekmGZ i4썀.a0Ғ:rDlH'zI@Ubi+ 5wW?:/g٘isoUTwQV> F9k_ 뉹T İ]ul}wOwg&Q);q 8E LZDf/|ih[g sQOmŏa>#-ڵ׷zI !)]l2~>/V(Pڊlr8 ٘/p:2*^W51 o_ϊskZ2Srm'9l-_p 5z ЩASQ1웗Fk?*W|Qe,͊mc_zMPnci{Zc1y!0!O*{KHgGv9Ѵ-ȱûuR{]o;7Ͼ0GJ+aV4[ҵx7> ɕJgrn;mh>}hLw\DE}kԈlʏ19\ǐlZoO 310qRfq} 1W7Mכ&d!E`Ea4UH]NgYөHyyƭW-u>QciO*amTAWƣ{nys|'Guߦ8nGE BwitݡHM QR$7ш{AڍM OQ%^S$,h>q}55ʐUP`&-S;jvLms[).|xyL,YA1e? ۅ>yݧ _FHRni_W<1_L:"+xGSլjD#i7'屡!wkGZ7~Xc1Lؤ+7hf2FptJw뚻IqYWJ*Uc |R"B OG,Y1kfip; 7w(!N'wq則j{V6-U;W9rL'M^jr?^(OQB^lEu'AuCH$cGEV!Ի4OU6K?Ő+lZ|7NPb5lpI$Z{l&^n #s>ym(lDI a 'ni^eš?p6AfQt9y/ `Az;A:f'/(!/DZii OGFD{m⇗S^ؙ[o?.m bI^VT+N@t;AQRobr$ȭA/Guf}% ]凯8 |A}<%`@L7Gӌ=X!oU,|td3#4\yqrI,<00`w^!1IK'vLˊ}X\;5_EY+rA} El[:6Pk.s!4I$yn;<)q-E8By,f mD ^lb2EZq=o`cCeceXCR~KW|{ؑp`’L*:IqF~B!㒹EdQ.ϫ Q0,&Sgj2S1N 2 |?iSgJt* FN/Pi4Dב|L5UkĮ =|C?Cze#CDJ"(XˢVc[# Г`\Jy]=6J"g]:F*t`,i;i\Spm,@ ]ULd:ob./:3³Ϊ_)}9qO6㎴ḍJų[]OZrCOzʄ?W}~i*=j&,I2pJn{N74Uo&}S7ڏ`c⋃d8؈f 3@. 3oBliD͟jmr#TЧ%%$VMkF]G<0Rv+PI6 xjrތƩYX꧞ǝ8ȘSD}Zm9zxN;Vf'60Pɒ }u^K'⧾o)*pJDnBFr%(]FC?;”FY?ܡ<: j,4Yxit4d n5].l56*wM4Y:szuexG?{ܻ0hhY\ U>];_rD˾!q]~Ě'K9L'zs]#c~K+aȭ}6:xՀ;:LDh" xedh-~WښuЁ3$LSC{T(=0a0װe~:a,rHSjrT]dՐz.8W-{ ׹ 23xvav mV:^lXC |`.] ]XtN5~Yg)1Pm#?:=BU6-ԉwɍ=ljC>nlB]RltQT{NE84}V}I=yEϣ֛F5F>F0NҵD|atc54aPq6Ǣ ^qBr;⢂ZHGeoTf` Pw]\, b'#Qȏa'ɮHr}d4݁u*5.vB"H~HepimuvO@m ioW2Ϳp,QԤ%U r3#_o ,gaI!|yȚX ~(ܝF$NTSJ SnC cmt!t-u Vxӄ >r.f clne6^3qxf"hy$=8=m$WmPۓj7@qŭqT9@9YwMX@LsddK#l߈ Fm0̈́ɼ" RVH}_F*߂W(W%9VTe"?u,YϝFke$d, &W."k݂C>Kbh2%gIsᎍT׼e ~6Wup "\ggfH>gc5~4+Ƴܢyt)/ϔUVohzcRz_򜓏[~ UkYU5K K<6GmW .gFԦixk$ KVޫyd30Φ0 5F2*E8'UugZˇ;:O@6!A*?&X}6Ɛ8h] ukU`Q77,x&^,Xzd!PorЙV10R U_'t_Tv kDTDTKA">Ѵ 8k`e`rzCw 67O} }Ǘ 7{JiH j ({ +p:KOfG3ʀOuurDub?tc#09KQ^Edؿ( ʩP?41PhIGr:Ub!;fmV%~k7+a-O"z^g߫r|Mxnk#f|,ʓ^b c۟$Dp c lkč>80E}3eUDXQz En*j^|Ћ 6;NN.|7ӻM6pWV/sֲC-Q&.W_].RXd(bVpB:EAORE>RsqmwpS?o (3p8rdZK1 yx4+sQwc ;6Uu[?SN'*՘.)wLf*<4Mr.h2tir󷩟VBoOȱ.9$hk1(}QX'(Qw՝) z Қ X:Ԟqpcq BEJ7P(rMfb`~zX; YTWa_~EEâELŀ|:5g@ASʔ o쎫dӠEi3Elj95ywA/5e9N(sltd3M *J^mm$b@ً=~sHFdՁo^)[vl|ȯ(:+ï&r evˣkjp=#?嶨=It,V Fk` GGȿ'!mRMꂋʔWpf`橼Ƌ{imm=t(3cڡڹair5u_p4N}$pAGϔCgMcug}/H-wg*eʫF'4\+ TC-LZ^> stream xڍuUTZ-N wwk%8wwAݝGܛ>UdSuz$j1IB]̬|w jjb@V++;3++2:J y2qyP YW[rXYyC8Mf,LryZ3:p lfbP0qٽT43A JA+`lb qc] g[6@8fd*_.5b_\AN5y_d>wGN+ b`b XmA%IyfFo3%lkbBy E:9\UNr vv {g@f/'C`{sR]X4 ^L,A.NVVVV.0b]Dx[^M@'WF@ l0YbY L2@߿ ^bofՔc[n11`bdYyy<G_Ve#//)n+(B^g Y9Y^ᯐۓ_ P/ߜvuyˮ/U ؚOeWD-m>J$d v1(&^ۂAgdeټ<0/ \]R b{ 8&NN&/8u5y5f{KE/V8,MBw ߈"bx,߈%?b7/i-/N?o'oB\~io"b,h?RnO??/9~)2?9,4|i֗b.VN ;䏀Swhq :9h@ 39umpM(;Iڍ6X+^)%2uM/:zO+&2K2Ӹ+Dkb9&|1R^(eH$as^5*tDwjOܲ!m՟y5l|5PxCeA.'vch`32@-p2SXJCnQȑyogsgj]x&nɮ{HJY; YםTFGGyagz~Q1ࡺIJ/KTS7 AW$ِ,9^_H[ll#5ĥW]_&tG ͿƛP:<:N A8창+6%Lpwc?\ *ƹ59F_UxaL O[(:%~ppVVq*?z As |jC|_# SjzN+##V qQJ B |,V:Gk$<(+֎1E3-x'xmȷL"W:A$qwes<Ϥzr~!Yf P,WcL"H-(AbM9G%B8~}D&6i`/?"2cmH{PprsiwP'F 0^37TV [cw-M9̺REY`vEr}왆'kga}EKrsOANo;IFK+s hܮ*~h7fu=#V*Iʾ,'? -[WdBFJW*R;,r8+o$7p=-%9SѿD;iedת쀓|nf"8Ѕh2ŧba}9gif >}ο9B\zXh5x# /-&eB+i\:̷UU.2y4ǖ?M (>'odI=K&O GGo=Tk&U$՝'PߒQT?/e8 {ۑɊ+Bn~\2@j3٩2xɉ8E1Cߔ)#Q6>d|,6*M>V-KLVXqr%OPﺕ]g! {R!8߄!$` .ptU4ˎ̤-H',6\->y̆(Z}q;# -H+.G G |4H=)R+ǒOɾi+ 3T+98#a2ݱM}8;OǓRfAj2}Mܑ&TD§e/Fܖ[M%[!(U#}BM9D.%1 >;3Bvn|)8λ ݘ̴+8o6<,1'>iE&I vV| eޮU)90ݡ,xGK$; Rbt[fbl@Qz"YqpC Fu$;6C|H8Sj;/, m0hvҜ֫V^ 0]EU[ro <6].rQk'6kyD)Xu@]JE|0)j,u޼WAtP3TN?ZbTۏ eƤeM|k[N̩Y1OAX,'nWt)bbpͬ?*KI_ %\ Uj 6#9N`kL^Y,bEtsw`gSs* nS&j 1c|1GKͼnJ7B5IHNoH(^9 Jd=$|k,tz">*V!cF^6ޅ ]r k,j_HL4W#s&C,lNrwX% +@"AC?frW5V._$5?Ky=0w6ڬ)]qwȳ\vqqnA,|Y΀cSw!xd\3᷻`݄z``a5:G({h\Vh.( "ȣK(Bq5YXĭv '&~~>~9g/^*%݃fs#?5sL@IX}MQoɤ;V)U 9ٌV|X][Jfc0q?4ZM&Qmcj.CL\ yTJiޡnȐNjg&Ux$bqU9e9 LY6l9C~*1>Nd?GzO^PM'p:T,ਸk jFOY/ L3B̷@h[W .ǪE'vw!fBMYӨf&!#ܔ SkSK6 ,mI+wܮB+= r!Dx0MEq8Kx z{̽bAcYNk؏./uGDq oʚ&lx!^E;F{=)IG>W-v|{. e~4%~ò:{0!u$(^eE^S 'Tuf,aYPPQINF`a*FN[q&t bÇ2&g4z;b]'ifl>GIkcr:v9zN£+|nf"D7)kv\YJgE? ~Oaq9ΨRq\7zNLE!6dẅr_O2f;GR\cnDiiu?4ʺYM. c#6rudH'~ހ#Må[?3?JO~spgЩ"\Ҭb30,;4 +4F![h[?xXRr^IG/m-4PQMi2ahNq #:83xaj^3ruέSʣt]Hヹp>/n^vQ&%9k#f;}sht$3B6zC q|lw^(^g"u0H| 0χ 4SIje[-ڤ9:X"QN%aAPuLZJ\UNI_{֥E+RjL;8c̢fQ0RjxXrh^QcҺYsQ2z j-_xwvS/?BB^gJ%ղ D_<#o`[e 2zm'%:Ê2Q'pF,0W+ !}i[]WS 9tI8;u+#Imœ1iUa3tqveZ 26,!WFkPй^OƥOӳvha hu囅!2o3$˸P)vVⷴ]̞7.\} U#HLuw0N-U|k`s^=|Β:T|>Wj`<,::!}9:ר^5q~vyƹ?i (JkΩ2)ǜNNpdD^g\ y-߭'>ȳ:<кc+J@vʭ"⮇uZْ2W&{6% M J2Rlp 5k%|![+M)Վvvį:U'cN*Sr:b]vb5u cJ ,a1GdaY5j^ 'p=znX\L@ 븍.Yj-Iu P;V5, kޅDwL/y9Ev-LCh/v:EE,Tv+>F1ӁwGja,1Q_\߼bcˠR33cOX ^ǘ鏨2Dq'" o]Z[yO5<eM8O_]h3;m+?{+nVULQ|D>Fы4_4w=GJ0kTml{xNbKU3u/E-?TrZ%}o(i:#i%R-8l<R˶1-yK@AԉUgX7NhmRVjB'[LadzENݭƐ*(ͱK5-yMk O3xa'ёcԿ9~n+u_"0 |k Mz/w7qMy#\z'w+Ul*+vMO*i*W0.nNlg,R65F;_}rv깶-,70QIqqJ12v[_{f("I͈`7(ʏQI~= &x :r2tD#^vg>e؉Ǯ?|Jp|%.ag.:NJ=]ʴY>>}TcrXN |v>GM"@睥6E=q/5,~ MmǗb=Ze݃~ |ع1 [`b_u뢵>OTN{xܵ$yA+-#v/֨=JCn*i=oܐŎaS( HUdަ5vJ{ gK'v#q6Օ3镦X QS+Cę.eΙoPRnTc6Y$9^)7 >3k-a"ÀgсT5@(o\M*}O+ ?^V/P{TZz[זikC<}-OzUBiplm>mU|EJlQ7G^]^@]޻_7 TQ:`eO"dO%s>71oߖy2[7z3ٙ8%g2wb.W3&Fij!%,#В@Y}r] zӈblID61wc+FtfUAO5]:$.06 ౔U04YM+kT{zZ ҙр#Pld89ӻv**Gc)xT&jߩyk3dsGh,NO'B1U ,ʫC7k#9*D,F_uhvVI/bg2ޕ;:0WuЛ: ,m[q6ԾK{z#oY^f 4VP+'_۹SD2=qH0-iy hPi|niT->B;١%-GΣ$JY!VlΏVC htbSeM$Qy `@M;m.T^(2d}ILJfPh:tkBkg4.e?cP4"&z;7rH#‰->P wInd. @,vhz~F'-yAMrIg 5 FxbI>5fbݔ(s1KA䎀OaSC_R%'te*`F|B5ƒR}{a me\ j\mMdxՃAɅb\<'閦vqDt"k55 LC'e,-ښ8S4Q]/j)'Vc_dвΒ]ܒ&(#P0';{eY$DY70Ej6[\_M.^Nɼm*i:҈~oNՄ/"Wms5E As%yhWTO`=u`%s4>%"9zmL_D5T!#ɶK_A 3p~6ar B-ζ!~ j]ݕGLgx+%HKLSM&;`_>oKظjHsض]!E22Q'ڊ 2ܟVEL\SqgBB׼o_p%0m\%ar8hyDt^tD[ݏ׳f'V(PL,A gl<~/̬yN83|* r>=Wtgڗܟ`k0{{mX|n*%͸w$+GsesA9a\ݛؤmø/\-PUHB|M~d>Vc(v*um]uCu#&.ASs#vUծ\:WE޲VcZX_r]V,҆Z66E2gA]M֓'5KfvVnV ʑq+qNiV8ëCm I*\6: $)IѥE\5ȯĄԋ,ԛ+nZ8L"Xnk*| o>qǞUkPqIm"|Yf a/Y0.w䟰'N# ۄ'df(Ж")'Ҩ-9m'N٘uߔb+o3D/ϝ"ۈKաv"vv;r謔ׅ'㰏bAhuLe7 ]#+. RҾ$F_z~+"m/4ĕ4կ4G z%KO_e GQ^+VVË( MM kjDBIx#y~ļETO⭁i22c?}'Ѥ3#Nɩķ԰e^VuSr h6 Oj=:v'ձqLfi+DP^^w!%rEqR9T9S&TaBnb9k 3M(΅A*GeXr^h-6Pi_򑆲3eC\wFEdS/ 2.SL[,o`GmA^ #UvɹWoB3|)F~3 JP(X7|f=IZQi2jy<?űVxsχ fgyV[A ?9Vbr<ذlM&Y7 endstream endobj 101 0 obj << /Length1 1494 /Length2 6808 /Length3 0 /Length 7799 /Filter /FlateDecode >> stream xڍ86^hj+>ĮUԈb$DjԬYTڭZ7wz+ו|99繟>OfM.)+%L@srE5%^0s| ff]8wĬCAdP0㓅1H5$Pvux^!Q^aQ0E"Q, nqH,tDmlјF=P6WDDw: CA1@ О)*nF;𸻻sC](Gl;m h\`(74qō ]  8P㊰L{@GIp!rf*GN@HG'0@C^ _@ q Cy)-'A( vv;" fV2HGG>Y8 l'_k@#6+_D\xpgW `CLy@my~trcXz;!k /y@` wCр%SYac${&`yOY!2_JK#=o.aO aAނjB._H@۟`st؀vPGb4 X'`A0<S}wI"?#OFԮh̀!1c_쏱VY]7`E a;/N<f GCm_giG4._W& fsbC0l5|Bx0X7/fZ`%p#hL ! X#Q_ʋెcLx2ԿL!ϊ(f+ C/yq$T,خ,q;r8Nұ!WMn|>V'-uZP~W̮A]8āGrO#.z5z˘#8woW_2H'jIAxCʦMKYdyagK RU)o-hk,;uaXp~$L3Ty-ڷʞSxTCJ愵ĥZokL/6?dJ[MUa*_ 6c*~ݔ1tl CRGq;$yu9dj^3vej\j, W,(J\җiYS8Rb+|XX<ԡMź*S8«I%JD5>Ik$+/̠D4ʘW2&eGwNiX!UMۏ.鴕XT&61-7Ó^>t"~;^1r=^e"W[Yrg񍲐iNQ"e\%[Ͷ,s Ґteq˩KFD0/g=b!ktp} , !3IFE@ 1{zcN{VdL,ES$ԺVXǣ7+v+{ ҰM1 {I}lB㢆}zph i77$0 7{H;wz]5Ajέ0P]`X>aXY:l"C6֛KY!\|2x) 62=??5ecLNANCQPPAEPK@^>ѓS ydD:@KXhY4jȉvϝ; &-~t+9}:E!nRHnQF䐨mڷ"eZYL/=2DgIPO*HcR?p&[raRFzwMc!q \]=}oiz&c%`/9~LYk9Q^ΑFN>$ ?Kyq ͬkHol| )wQSYH,h^E)=[\hŝ57R]U0UcQ5_cvqT%'5s(4XA>$(R1U6X6~}*u"pfC@53 \u=Kwk>gw ?}'3ywс_٠Tx*ԃUYIByc967eg_mfy%lcKYL9%街kxa!7˽I~B+͏vjorW_,jv-}>vo'\qp#Og;Kql)!XICu&.^6<\οnR~OrKCݠ2!/W^d|h+?}\$"Pϡ9D01.jOQ1E"a%[=ލeɷOCZō>ig߯MR(c݈3- Gyrq^%esT}{÷ӻ]:s0p eSUф|uʦHžΆ}*#MLs5ƶ- ?~`(zb 9e *(ɭ\/7,淀c-kuY2si 8p&]"Umvix <0е$WwܫΒ_~TOײuϜ~'H!hV|WV®F @$%4Sq,G{OEIIۭRr{UFh$e\p+٘M{n6o#R6n&):A^B&qOKT_Sjh/H4X ej/Ddhra7 DވNۚ;O PI}y[c 5p^ċWtf64YQfsGMk)7Z|V~s<Yٰ&$u֞UYS5kn$==5QS~IAΦ͊eWa~\u}q؍5e},ʕ/I,$P?.$S}Wdg×QNJyW QR}qD JpvՇմG ,K̾r(%i 9{ۯ_r!^1YN\Pvgr=i^.Z Fva 1?OL۬ 7q=$'Rﺐ7e;͉%' q-ڨ*u}U\YOv}%4~̲)ΞkiZ:N1w/i.CH} {5b l͜d1|L_UmH2w)i~da!J;C3SFwYjkvWdsuaG`<h}wD*D.!p5"dxfjk]QVQ~f[ uXMs;oc1?.g5j6U/\4R|& H}#*[P炖?K[- obC4֥L"ER'tμ8G'qu.{ZM ~bD{iN=c*>w.HY'|MmqPG50):%^:"}5̘)-n"hnپGĈfS@Р;>c346×ӈ]w+_(?;>௰t?-5HԠXWΙZ|H2H{=J,J2fzuAO5j>}u+zQ³W᪡`dq 2`%lk?V2>ꂞ'@zˮqeXD@uf]ц,?Ɣ$3Tjp7J`x@텦iZ7*:? ܵ($}c 2N/|_8uڜ=KaOg܂$Ÿ2'?P_5M?2[TG\)r" ϛBW˻9v .tLTIBmLWK"F|>q%~ HPSJ}Drr*vLgZ[{IaJM?֢~*GƟV{$fP{ 'dQ.i2i;|{:2A!|BZGpwг$Wب)u+'ݛq${N+?X{e S5:R͍YnZl]hE \cw?q|.EF/je\ۺ 9<LWm)fX5oږ RZ >J<~"zqelf(%8Bو<'͂3Wg|Ou]ӭ3QE`iP0gnP1'||4pL^\slea?9JRa'x]BYS6ynF6,!{'ט5dH>niP(j8P0t%tGoDyw !mdeEy%E,f:G0$x_X3?couP7֧h =s۽-Maj\mY$Qqa׵x=!{NNg \q ST鵪|su=agHrA&K hFsNf(#3Zjy(iC@ ԯƚ0l>E}<<عyO;Q/Wj;A33ʢ0(\g rƒHȖȳ79̳Py]X[-WGӳvoNTn.?sNq?@'1R['pȢ5dg?:X@CSl[fWo!0#!Њ?ʊoz{hKKl[`L{VmysN'mULx3ur5wh];f1wCV'D O_'FE@e|F?F}-1M`mV$#P[htx %x{qt{Uꔘ8׺G nYXuɈ?yeCUJv;$meRyf_Z-SRaN/M(qc~?Mh 1%N(% h?vjϻv90D i$q<0EXtMhc)n $1}G9JCpbɖX4N:|ڜDc\ΖV?a #Ac߁g9Jw qK`#=_9׀G*g`9׆KyEVRt~W_RsIf8%ػ_Itr|{ÃgKk}&evB\D#VHz QCL&6,915<Yl}y~膜K}WdwbKi)hn]^R36&;!jyg%Zk5' 5J7nk<[\mRljm4Qb;Z}S]]ER?JSː侾*- xHd->JЍ^0R|%(Onnk@z5޳gS鹵F@HNuy+u1[_+?S} Kkno_׾Lj1q6~ծp,48AKFa HC>T`X࿂*#s-ΓӹvJ A̤9r5O>7pU 8na[Z\9D8Q-X ѝA^|=2䝂I,\}"HMΞF>]j.pχ,ˢ!ÆBF:Q*Rgb=h >4I-@=3LL:wqju+*[#QF!UxZ1Vn Fݬ^ih0 [00`Q&v>`~likt1r@)/w(B>E+<T/*tО_eIҐd_y%|ςSؚ=%mwXMoϞ{_d+nFHxCuWC4xLKz2[%x#υj{I$3:x hs'wظ{| Ԟ( 9q*pT*|/ƭh?h.r8h-?Zzy촟eK S2zK@(_mď[w+o4uF0_ܺ;$#xf#pim.r" jÁ1f~wb'5 endstream endobj 103 0 obj << /Length1 1494 /Length2 6789 /Length3 0 /Length 7778 /Filter /FlateDecode >> stream xڍuT6%t,RK]ҍt+, .K 4Ht7 )Ogٽg暙`7WGAUpX ch!(`!B#wꁄ!RQڢn|ʶt Ťť`,!Pt8Iȡp9:nB|PбE9A]o:Bl] W  &y{{ غ"r|o `EB=_п r`?"ppApM'i0AUl \l0#j |P|[/ qoe s>-@U> )" UUJWW($u>ers񾠿 Gx0/"n c8'E` AA8~0uv߰G!7D0!i<< "lvPG7n x| }~Y2{)TU xw=/)E ۫o x*j?X\_L\.f?!7_g!N*H..?'f=Q7APSց<];"f P?vY4p$׫& ؍ 7~7wS8aKBb[[_B͞ Ђ7j^qH@ݤn*xr / @aJ@.`mOYެ:ٿ!PB8=H>}ZͿY^꩙||Tȃ̌NAUG-O&ѫ5,",,vǘcƻd9/1Kzta3E;vr=J*R|^(CQd{`c&zDj5.KUDn]-3 9N M}0t^\.W^[vjJԆ:9RҔ&Y{fll-KG"l ǁ74-F^ag̕C㐴w>bP }z8\jq@|v!{;W4ACk| 2HF"'/Gk5ZaO.e/@g?xr**'F*XP3mF$|1nЈbYM,$h}p[ \oap 㒏>GpHg!cU֒}虿y>%n?ضq&^}%$|HRh^>,a5Ekv:,` [}9MId6.1/8mgrIHw[?%kWw ښ9̠Od{ȔvJ$_ `HN,݈?;S\z돆Q }w6TbVEH'P0 pinjʪq;Tb-W{pmo2c< PM*bscl ʩj_JerΖ6\x';_M\fp{EPcXCJ]i5}h82$Vwt^[FCRù_LWSr\[ϊP= ,^G{ %2nFd'BI *?Q<7Gfi0:!4Cum/Y6:s =~$281<$#0Y12QK[=#[g`p~*mdμ`0wh,r2Tv{"W 4 lMu#1$ǦkW,E"!Nܠv/ڒruʰ.*~ْ9Y ojgtxB.E>Qn-@=dATɷ(QzI`s4[8{*[N&>A mSW|O.:@j40;B{OMwKr=;)1'iH|lrP6k<Ȋ$s$oo3a}XMQXUn-z)~ L7|- I!b]BЉ#wQY}Lp"c@j~0Ǖ%QRr&u>~"cá ɐk'Bf%vmڌeJ%[S]]o qCL n&`I} *2 K?/<ď*"n?HJĢh Fw֟qH8t#+SҘa4 N>mj䃰iab:]k]I}NOY)QIY"L?,.f# BjEm;c\M{at|1W'X|ɁC( K l=zM&a}*ڶ@":s  yW@ENbdqIM?LM̵eS8:vD&` rZ'8h5c}({4dII98oשMx,PjhWT8V?ȃ -6XqLh鎊;?6,7̇qǾ JOfJPL7y-i.]RW1X9v3 yH{l0LL&\_?Sݠϳ& ea%/_WQ=O:XCc{8Y~l̦NRs7@W#%W|xS>+۞|~CMS8Ž]̯TGGB\SП/3)͝ݘ,(aM`qmVֳvM#>k#92}*x ^WVVṔHQ/ay^AԑYnnǵw$ms6["ƛD-yיW$HFJ2]cG&47=Sk&DOyj~nF&?ä"qʾ٧)F&fs0tS;eqNWߚ>*6[zU0fc~%am qa2]mK6r6b"a >a䢁+ȓ7  ҋ<4v:&,L&G{@wQ"5 XjbA01~ yz٭.gJp   @0zE@9Գ)v :r(Dglj2;'.VL`0Q"?Ux^Q 7n/R%&CKXg>FL iy|^\:&6+/QI+égi?6|B.50[%ہr`*lab yFępOͭ:ߙQ7M`'7i>_ :z>mIKǎ/Vy76z"u?&:gVȭD{fξxP1Y8h)}]I;-KkaN[׊ĭNUEP1/*$ @y -P) m zV>m ~4|ɾSnsݒd-(>f'|JT;<>k{`\%VWC7́MmL}Z "D[L9"J*u^QbfZe -24tkxˑGY Xv҆8lx|TC.R _%>ች$$S[׹(T0MQSTp(H6 A*QE]tu&rI}Ũ㟇/ n bTxy=ՄxqX톞/X/ wWl}'gF`l⻮鯵ڔJ(ge 9'cařEмRSۑ{=wfĵsIUl=N"C@K.X`nh~|&ڲi?R>dW' " BVz$Jb`1~A%Q=~HAvno*i%rbOI@ kfyR\<]0zc.,v_ 54b}Iwj#INTNFÂ1چY ^`y~4,coD[V]SU6W?c~Up=ہG`GqG:"OvóeFG9i}=1QyY.e5$` ̦O>2:!䫭#M҈"aՁbEr8Knps ,aTk]N<d.7oPSI5KnlȾ?t8m[4Pq 4S~`;e S$sl'ĄVD[I6on,Vj,*Sq]Dz]cXke 7@@"ρ 2K/r>\ރ$10xmUF@W+>G5h1n36}ݞv@:TNkJݭ &u%ʁ7uSHqm22L=O}-")pquN*{8x>>"쿍s=Ng غS/.D8[cu]b4")*amX.@pl grP)ԪT'|CO:aGO1jxK ٟD22|>op;d4daiVRZ=7u8Q> d|>8̋+M&Zӱ*fzuLK}-˟&?NekSR5bU|@%F$whg8:ӑҘ Y;dѢ7/vWL{$2/Ow ~d0"⺰GJp*כGyAecXz.{猤]ۭ):2/8t%S?B$V-,?J endstream endobj 105 0 obj << /Length1 1420 /Length2 6093 /Length3 0 /Length 7058 /Filter /FlateDecode >> stream xڍx4\ڶ .JtC2{'z'1 ft׈ !$.JѣQM=5kw繮=6D )A aBcOa uGPv IA"=!$NDKT0;p9>0G4f߷n@HRRw9@0ꂙFH G nG4UJP vAr</`EA=v_`h@B# WiC"P0B%k9!п] @.` =5m #~%($ K ` ?Pw+D0 jfU2@O`G:#^-{ ;WA'"$DP7(k+w! 졘/B? @{@3OPH`P1n_6aK~BЯϿ0 C">N}Ă*&| + K$@!!!1( }?:j"ɿ@`vo G6<NEb pA "u_+RǹJ`Oh6t ; uv0j("0<Cv04/.}pD~=w0U 0҃8c-(̑A1\UiK¢b;؇% hA Ɣ0Hw_+ڂyrbl̦atawwB™I$D:MXy"Ať(Q4s?Gm,17Gvh"F'xwχv/i䡱TWu8@+{Ld,q-&/;E_^Hn\ŧi 觊m[O,Xٗn[fxk _a?ŝ)}Y쟟ӝ.rXU)*>k@R/ubrYj]K#=o{E<tANv.2ڬf$mLvJgW⨴:ثu0juƑ%gسCEFh=JJK~y$gv7IPsPk:-y U$#7?wF#wǂ[o&6h~0UCWkM!mxs rq߶K?Pa7!72^нe!4NNJ[z!As#7T ɫW :ߴNu&k{D>^~+rCb,x_|r!OI eyOĝ+D=Gؼ'1vW+W꺷F)>mT/[X>^Yy:IJrHѾ;`W:=nJ*d\"+t8%pLUHN$nGB'@,GzU,M% u.yjF35"}QDW>Z2scP i‹XrHQ`?\_u_JxFUSR#ՏPU&W{[$酙. ajaNfS8Δ 85@m lCGjů"$V⢹Nn0FO d(0mKM\»Ŷ:UK*'XIV^X&Q7?iO )~ڠͤ3?dz(p-G~,'2yrrbV Im;}ɀ_8N0S,|,]:k0D*Y>ٜ$Y"S-;Y?g![Ԭ;;7= Sps T Hls{irZo<+j[cdzdQii:sCDB$0oki Éw-*[w=;-~L37js+lejF$ߖY犻b`.3qѤDGfK~)ٕw2Lܓt윾*`E,YP7Iz_$5k}sǠ82I'%H||m4V:qE ʣ#o~#*eV 23R6'.䢄|lz_V0K$W#ݸBnhE]s֓BaT?T}pgS&/8,+EC)دGVTgXX`5OA`#쥗3#5K4FlXFфbJsLW-lgeVx~Q=} yi|O`7 !WDJ rݲ=Go%Bկ/MgWzCeYV;|xr#X^gM ᷏5 FkV׳[ gMbg-E56{V=%}(h4|\UVNt;B9#RaV/m}Օ8BE^ibO 7[?Ʃޝ(zA0 C7 . r!vb I%<  #f_dkk}j||T˓q75I|[}Fc#|mS+2Qi_!|95.%wEh3g]:w;j2J5iߜk wg'9A؊W.aobȾ]B|m~?9~֓<)uOofptz_2lq.5Y3ʵYOL]zҗJ>:(%%Mkκ!{W(@͉7KL;钱=ON&;ZN[x|BUo4*{pDV.E<9ilxp,tȃBd\rO[#Q/X7b> ,|<2p+dMIz6ԹUMm >* [h86`8NH+c|`E{\5[tCo87M"hM@ݖw BU~ IruT(=^sB# )p%Cy+ͥNz[xRwI&q߂"o*&9tUinkubϙs<84s {:LT3aܒBѕ0=Hzk ʲx_ %sp'ՂI6V]a[&1ngcױY3z]x,Ƀ渀կɼL|AUN¢}!'I{iuӌoj }M4aRs 6 JHON:z{?YPU|m8(Rl@]1jA3M,+y@3?6d"gEj5)enfo+V^ju{3?@Ʋna^~ sdaȮk}{O^Oud|^Xb8 qK]wٯŠ6MCDSJ|nSLTUg%Ҿgsw'>P[afI/ UKS%=w9TAmTYc';7e|st=H)E=lnm(FgEMH;:dFki3:xxqL\,eKΆ>š6Qכ3|)WA2}\Q2&߂%]YmڰK ZfOVuknfȑbws81+?${~A펭یƓARsr9g@QJ'IrӹUaq+Cs?$'^3tK@vjӥuGztΩ33սJj}}cE%[e\4Á"N]Yϓ 2qmJ]n=g4NvkS9HԎآ4]+-3ўrb 8LS​<-0|(H _&BǓ;0lT\ps{Ǭ_9y ks tlTrɞ%ztAO 7T_Br7D c OGɰO=}>enaV#}(5ӳu`Dq|зIjlb&*:1g-0[xŨVN7T9GK1y` @(~@Y K]2ԘB^Oo,zl\#{|dz,U|]{ yiMJ<ϯNw%+NՐUG3pD(R`싸W -d ue Y"rt ~CgInih|ix {ZQeed 9/S\S6-GZ_ >zD$Gq]^M]TGq%͛FǷ4֥;) xF&zCR'aeˢ/zrfEe\ovirȨ;eLJLIh#PS"ręwF\vԒ|xv~V.M#zsNQ{=H;t<ɚ^+dgC3qJze"yDjB=oq5{H7l?}"d`($@@@}WhPtGoXU fmUb[WnVl ˌo;˫,s,S(I YF. xH$h2ucFs*l&)gP 9_,nw*(g+];M$׎qÎM]3w^|#_#!K!cT%{H#WFMbe5rc Qp,QG#Iqr5T˖~ /f?]_ VŰj-D YSTm-&2vVGL(l~v?AkR_b4+eAg.T>6<}\pHuK[1SZBMNlarҏpɺ=pV[@&B1l&NO+|bўRv4|l۱%[ЋWz:\3LޮŬOiee_l9ix+VH7fk2Eϗz=*ox^|5n\S=;a34 z9${a/-?Rj>ԥʏ [\9Q_ QARP ߇~)7mFn`׽x忢/6DrS[!Az%QΨA82d>Clݼ+.ߩ@սa?{D6C9rkh{usӎ{9G8M)HG3s;GU|1s}~JUu#8y4g<dbIsX5k߼V>x8/0F  y:?oՊW $@ 9pI8 yXS"e棁yA2%,po EQD+u3֎W!g ab!҃ỎK' ˙) Uj\ ̈́/&)I@VzbdZ5հKZU=(sYEz\;X&_L1&4Z'N1ntS1EDC.76y9+;"X 9 xH<<ퟲnK_\&TI܂N l:z.=J>{#]> stream xڌPh4qww >ƿbv@g+Sc{%`jt,,v.t+WK42@OjT K+0]=hRq7:@rʎ@#ؘ5_V665us4[]=]f ۺ8ݍlM@n S2'?Sg+GWf+ۿrd Rfvv@{W⓴rOsm<}̭J͑E (' ftprN%_43"rqtpYA|\݁Wg7ϟEll3+SW uh 꿳'@4~lֿ~03{[EAK]F?)w0q98\<n>nZ77U'goO 7 %4+)[euoDni#7G4nPtgfVnv+j 1{  i"m 4Sr5{bu[+{_x3PfAMZ=v.n+hع>l5z=f{W ᯖrsX"qX#o`Xd~#vo7(xAjE7hF +E|XE v9+7v12r6uMIFMMm7__(qȘ-_prE_d(3[[c?$@QI)_|'7BV (\s+?lvpHwԠ[z9ZѬA7(cۿ7T=`)߮@AF nv&?B]PAl:J7Oc9o[Aב4AQiVfUNn@3?ZQx6P2+Qh. &@ t8Y\-t ngz7dz tAnΠL@O)򢃩@u}hZ1B)9}t:&eN'M{>]);F؏mIϾ f M5 1i8lsrEQ)1 0X:zPíSḟy| x0LpWwso ~g>[׫4]z)u!0&f}ďRq|Jb6rX6'I}ǻa:/LP7i#g9;,1{xH( |pf0StU9^9S8=3߁G^k_|䇥C〷Ƿ:ΧzqSsR (% (+h]&v0tz+ҚN DM^%r\&֦ͤ U(QI>89M(J+JKeeWP~(`8du^b=rL**ys^u6ѱ> xA97Ըb eZ ݹ^^c#51놃%1T6g _bVeIb N~yč)6{ڵ,|IÚ>[CfvǬw4a<=,Re;=TM jcVa.`Zk-7z}؇Nz`scZ7B(GNx1(ؚⳲ J1pğ9Xփ:wRKn\펫r%Q_y< Wnzg:9;\g4fXȈj1~_& D0*6!eE]}*՜*?1DžyĔl*r6oW'T5y@šJ- gs|6b\l)@smF!-Uj:[z(lA .~aH*7}%N8d1l=,%y-ݢ;jyWOfو"2nK>=sG ](P0ۖpiқv[ xF_3+o5sZk=HNl~!ҘXab)G<# \wjޓ5 b (>b "⧔kt'Z4^e*'4SptPCm>CRLUJg]/l=] 5ҦTe<#*Р*!gKm(1+DsȰraZ0ю \= avL~!̽y 6(XV8YjT]c'SfK⛉ND@ИƷdjHQ~-'2|$r(>-K>$ 8J{HěOyFAK2LjMZ!Jփ<٪23'h *#3"PZu*k.fO6ĆKd:K'̊d6| sDM {Wn#H:dGV{(PP,Ո!md$K5r`7k@1ICMx(X:fW9"KzV<P%aMA!ґ-ԁ@>eׯzW\άC_nh9IvnT4bL,#Ҝ}$KӥK ]q7hSܐ.D'"8AMw01l8BB24~Iq 79;jIU.|vK[2rwd .?FIS6#]Ѿfv41%[,F#o%ua7<cyHnwgڷ(dLdhm U–-_C*OWra{[AAA{D. B"AqP3L2}%/:m #]z5.z Oa]^d/FkX7Ba.iH׈c9!@9NY|͛I,ׄ ^H?z.D!ZSՄvr&|fS$jzLdٱ^:`F4M/p5c*bC D1P"WRDSD2w'`PH"t,h!IdmMWh͊ѐڬޝlܔ~AZlV;<܇/]u@a}F| 7#Vk?&2]IVOltf8!cr0*M׭8jݯ)R GD>'NOZ][X &`? cYI=F&¿ޚJAҿ#B:b N6-Ҟ$ϐ BΔC݊EMB<M֍W1{QN`0VZ ႐O͠P^U-CG\t#TПayema#dLˏлsYM3FU]C'Jۓq qT9kKsxS]Flƚ EY`i'H˫Y<3ry*JA?Gh'W3, p%oӯ홥\2ZrhyJ" ]}oic-Ɗ aN<.M!y$lp2f̙i_uLA?r\߾:Kv.(lH]S#Zf3fAHT긕7"WO߇gp%yҦ雌N):iE'׬URГ+ N{/X)}N⊵\XGedBٞ{HE2\p06[c!!Q\=#yI7TrUd),KmF'Tiۀ^.P /a"!!Ymw{Up8xs ːM Z9Mv ,ՠJ, G?9XƮK5 RX+- xS)DLۉ{ $T#+yJyH"ЬioW6%`0;8Dͺ*zk Nڲj ͦB*Vo. į3vvсR5Ne}Փj>6(FaK~7V>fFnBչQpEdp:hP0+0u~8SY%W% ltb(>e?/wMCj*˼UUԗImqǙ`Z~,ǂt3,#b(6d9 PfcF^ }Gdɺ:ai\=C|1Y炝rnjٙd E;gh~z[G*7ί_7h+-d kbt'[8b08 4L|IOٟ{xM‚r3i+s>@N_wB4v7&c_ZȁS0M(yɜd㎉Й&Aoܦfl+ u~e^Cp#iZppGPhUd Q4q^LFԎ03* o52tm ɴzY 6NU}ERwAhYwX5«۸RV[=:9^u"z:;>F4d{_f \#9ʆ'&m"ij=I'q%$~D~IcFI5.Bҳ S e-׻ Ett9&Wd 0f|rqauAO_Mʪפt2LT 3ME -mtֱrBCn t:Wka3!ŋ,8Bpj瘝 uEo@tW@dLؙ{wA9TC": L>R,RǨHPfIJtL`fz~CaIwr~B܁fC ǂ GbBoZU%S9ӢV#ѱzMgD_ _jhx=P#`cC![*.K5!=M co./M\tLj˲8b3uCK;BgjoMkUO54;%JMhc8# b"|BF|ۣS;w\W̹^ob0䤌2\JA,M 'SGf &a6ȳM]fSzT,?k-~.\eA U)Ol֢'֕ʊR9Q ?em8\0m ZiWJy` Yf͢m6.;ذY9V>{#jk]E類]22>#F5y1{┉{Vk#5B,ٯ2zaI*=-rxoEqVBiyGz~Lʓ'EYC9[/^*?@yz Zk#a|N@YS%izEC̐.nӎ:ք<;$ۄɄ=o4Z\ű`~;ktH &n,VOBA=g^%Ed}AK(AO?T`3,i*?!I?+q^bzP Ȩ0!AU@j;Hfe4.wU2j}<5\hnj@ښՅ*P`T(c Ѹ~ X;Rm>Z9\>`{ #nyůƮpudRZbQشmVFl>RAuKvH\WnMUsNPLR6*jD\OB֩#UAt{( _6R`{k%x{4 dtLm`.~Sh. 3(aG )_2$&ENڑD$gBS~9߉|ћs 6<08";E+oKUF <&lQEB)\{.E߮_C9R-[*#Ze{(,0撸Rz\dr;h7t!}=ݑm Sg)%_mCdcGHxZx]J^<+ݐ4o4G5WOi'?Db{{ģp"D_ se^z'&FqD`30n"¹*&1frޏܴz oŭalRN_&ķ7?`!t+D :'TگqҀsUFХdf>_d!Xaoyi%Ö8s=i 1`]|˺z.>^׊3[x[ Wx;L:T#촚=n[7?@Z1;;t!I^|zRoNgtrD5j#N/ n~j&\k;[n׫vV8gWk[+<33$ 4Vت5<ǭh>J(BmtϜ<`E]:W{՜@Z!UmA:^7dw,13a4;4޿Xۨ%ca``R]o ` U9j(}eq}#g6@|ޅ\F̺مJ5 $ Xq_"˜RoJdJ ]4'*@NwN9BWo.- nQ~u}5XM w߆".q5c[ogO ʬ }, ij78ۜKdCfGJ}yן1f.A(߰24@kB!d(|~c':lr8V7'q7rJ -՗V7WI$ LB}y 6g,"ch?\9ޏ, @-g%Jנ}¼S8JY!O(-C%k/nā=;F}F_h1g[rKM)qNpOMwQԸcXV8"o3b ? G2@od”i%Fˤ<(9њe~, f'[j!qk(2cԯOD*N:vSFM[/pl7N%NΕtҏwJ'u9&]x\=m> eXVvj;rú'LUB"e.D[U.D%P<OcJj/,bjR/VJ]ed'x04Ӯ&ѧ4 fLs@Qth=cK2ۙO.ŷNb)T(Tl۫"DۚSi){H,<#, ;!>O;0gӢ8B6亶@4|Қ!>XFh|};Bq2UIꘫ c>1/;_O ե-<"WoUU~YT kp=mk`U$mI5rxҾ\թwL= GKZ0fPB6llD\ᮮrIT'ŌBϺ&ţGZ!VDZLm UTӝcȪpO?,AYyH=noD(>ǘy tXi'T4R$SuuZ}Q3_n~ooTN%]EJG.3 )2Sr@SJ֯I{'l⽜Xwew0%h@leY,GܔhL„ʍ*JjA/yx&eb+4(h;:( \ {8.Euc5a@aNVw OʼmX޴yрpUn)zGTQc dWW][]eE[QIqa$K©`[.IDMCy5>N ;U.Q,O_f_) *eP{07rux(!e!@J%PmdOQjBZ:Ñe5,zXB.g }I2% I|}qU)x)U98MdtlS3rn0B0 @)kNO0ISw,JI_7F@qp'D]d}hsR8ׯdA1y@Uڬ%;i#r]n!) I쵅I<x17i?MB}'񤅜!M ~鶆|X%xj(MM>a@]8?U:xDI{in~:-\x̛SSl)m~P1(ާo2I/twqb,ErNp mJ6-dbq{~啾Ltoέec"ƏuqiynNI[wIP՗Sgvԓ/E@ď6C:gNhDO!2\ԁLW[V +ˣ3SʉZaf<'?,ޗϛJ[NV&ZQv=G?#x'`)#<6+U{W"l{WP8FphSt .CX Ƈ UX_). ~ BPW02~L_r Ӊ y\p"͜0#1ns7U| ',+LlJ# XhFɬRׇXfEL> }xZNI`M#Sk+N -^Q˪9*@Ҫ jUq"V棨B]N0w%~ugϑrӳMe\Ӣp+N7=$k$D)= ܩSLoQN +XLz8}KɪˏKLҗx||~*H8;2ڕ_r6hl;/< q 7Pm}s 1-<6#UX(#_5!zU*y_S,&O֡*6Q >kETg۲PUI*b(AnKUYShqdMKN൧=S4T`nG:ыN͢z;WM~:D3] WtE毘B I+y#O:nnc%*e2tMZ䬷LKoo^^p4{}w&&Mܵj|d kgNڤ㥪Lvى"z\1Mpp5LT Bk9cb7>ŠFI;}F+4vL ʹ}g/K=F$80DJdm=ĔTq:Hh "s32E,HO,b5ZJc[l=Fmn."dx Q, Ǖdx PXߺwpVc__5`$[JjQ ru:G7ftG޹Xd}fc4-ggcEGQ[([{ ߖ lF|e#l V\/Z$vy{L-0,`"nsaQ:}0d0̲O#1qő~H쩫\^ 1JzR `*6%̲+aTw1j׉څ"6hL Df!U,qMha嶜/Co}5>n3Aa9_L%ѽb>z3̒>Kѩi90 (  LK&/K!}+[JgeMW"l>z ta1xƣ݉.3X c4E<NS-HX>'QQv$O%X 1 %=ԆtfZ(w+%Q $f[Hgq-ՇJ_j26f9cviNO?~,E)KRR"P!< e}/r[Tr@ ;1Opaf<BzDZrwK͵Zp>x<p$Cl1 $F&5B ySBNF$__J!D˽/ۑNMoT%cDuwDf5Xzg5RrVћҰf7۬77CgdDdۗ4 r&)oxGNf[+'h#<=n}k Vh_w*!S3u|lTkA@Oݹo2!,0j1/Pb:E,b DdPpCLR1\ sTZECJnGݎBIh!%6$+Zo/r DS+QUn*ͨ[tZOR%wwK=b$!2VbnsQ{'ǔ|, CytnybU&F*q 0f_,,%ui,"{unΧQ<.G AR=1o&Q:&T9> Ygy)Z'!r-6jzdSDæ OF/Y]e N|Eßkj켨}g?~HMuU| nAm(=_Mġ)rӰ*vI1<'i{~DPV7bB.U3+]IQ [(4kߊzBx&)/0m: )s ;ͯ]=']~cJDwԛ6`dVna3%~w9=9І6GYƆ|ǰ1*DCFG~ŁCHsj|L¡W_6<ʲ܅eSp o6 gJB1pp1d֓l㷷~:QbspoL̈cr h`W`FQ5{J`$La^^@u:ܝ=E4KbG\ҡJ8!9%c./o&ҪE‰V3%OgIC [;`>!%F'Jg>`fgѤ0 0iVBYi&l˧0gxvA@ ,F%?(CfSha ~w̐8n:ݜY  sGA PehP!ffmTPvide$9mr&YQq澳GnȇPA>ʾ8:*8P-0L;b{qr0 NPxݙ7932YAmb-_>CX[ DDڿ:6E;}ɪ΀1ʒX(`⸻Af)W؅$[аMpS OǢU#TC*Sh[0%ƂNkmsXMTg{-Q{:}<2SI ZW<%Zzfe,h.;oKU&]|'ƪ͇~9ky~ÝT?;6+:s 3jײv|dSh,xJ6vq̀SqFfƃ'x|myT@U~|_nvHZPX8Ъh2p >}82;3'26.LmåzHdXbd5Dpj⚼fvBpG`4ȢʬPW&Nbߍ)#v]`Ç;d᛬IS(?<xN3Mg,}؇8?7x*׾z_zXZi1ܸ*dH]Z4+Zyyde[6P+.޳*u#Ҏۜ\sZ>-kgR. >|YBKnmKDv夕:9O ^c+mkfȷUs*4ɘ}WuwZBʺPOP3ܗ_yByv؜K"0+ZzmuqC!R!p0ƕhq6Vi_Y$BregA.8c/rUx%RcڷPk4PETMbN/NVc3NNi8|) tu*S[{Yat1&I.Q?Ч60+Ͼm%1Y8^;N,qL}3l*Y!W{zL& =ZIGOj_z4Hv0~@1Q䛛-aP)ch6QPf9`:ĉv% `~xUTeA*x~VQbLˮl;zQWz4Z7 mO3i?Fט~yⶮ+ѕhq#싙;=%*lՈAL-< EN:yxн;O)*'PL8$ъaS$JyF)f^Q ^tJy 8N04>3(z5 Kkroe2@JLD"~{FX Y`6pD~0I%z ݹ0Qa5z]SyaR9Lʡp|8'9*4KX5K;aDm^dZXhjvH[?D/]}ʼndNZniSkqrq_ʤsQٛ;L 0} 3T`{mfʻIw?'i"6X K]_cGQeZ!/f)|>>Qbk`>fH zw۪gH(dߑ"{W&+`lng hx2P9R9ΐ}\l4LZid+g=`p] aP{t<5ql2G~idR"o׉J*;eMtG[i4D3^5ޏT 9O5FI$>B@@ /i&DẼ`мrZmڵQuٕWGf: +;&-'-2]?7ѢHʾdŘ"k L4-;:``.c-g_I'A`$/+bֻA],O0 LG? }/٭; Ihm3f؛5/ #A|m!S 簫Er7P:~=3`V憐Jp8EI5GvUrIeXqCC[ !gO( {M)̤.Fǔ^`CgPCRڝK[%ĢяXB3v8lʡpbY)QtWT`5N_(^,jҎ DlvY,eh\s K>)FGX^* `x!0 ?(RhѨE@Z~˱Oa5b<>Y(]B,!{1T\O=>R;*TQs+R5,tj}4.xsoVc71I2uZ|009~r3S؊f,-# C 1q"U_,]$3;lj5w]aBMVZw;  M:I<1o'3ƘEGH H\9tt+=xyUTGqak-Ҳ/AXjc\Y~㳲զWyjܴ$'QVh7 %0K;ri*V59ަa =S24C5}bl]لflT"xHZzٓx;mac"AY[Sş$ݺ (ܔ+P܊;qS#;q Bծ [2|at~q ;+ %Sc rR?>*2cgdhE# oXk\NC > xHk9 X* \=_{lMO z֋ܔ_|fX!D[k%ئ+LkP'RdEfj٬ ZC %,\)@~0W?'Kd3~)ܻp͇i`Tb 2_ǝ%e79^R!Hx5IK<%bkw49r Dwweopxm4ţޝ%樌o^։%t&Q:ȾvÚ[U"h\5P_JRCظ 0Jq!d~\(Y' .jw aS-.6V&ꂌ&p( F ШAFhVk!K bpJiج&͒dsIxŪ|ZqQQy|e/ ~XNﷶ%|oWLOVۡ)=see;d{-]BMr[2?i+yHezH ::?7ӄ;l զ/O+"(}֙ 16> endobj 2 0 obj << /Type /ObjStm /N 93 /First 754 /Length 3976 /Filter /FlateDecode >> stream x[[oƶ~ׯùN$Mbi L;ڕ%WϷPEYԺP@ kFTNRxaH"JPF(+sBa9' B[Z~^k" -F"{?: 0F E g@0 pMy:0SrBkc{.@ >@ $ }1' a)K 7Hp4y}IDk-iD`x %zЊIYTcXAAW"b FzIcqlE#%i,5,Uҗ.DgC[h:=CMB>KVepJCq’- B()2%|1S7&d 6+OHx11P(^u$X(0L JS件Δb"ɲn[!υ|6y,Uz8׿z(q:9> 3/]߽-F Gu5oėhOhRohF+Ϊ%15oݳo~ܺ d0fh^\_m^׋K}ygB Oo{J7'Nu5gɳj6OՌ"W^UW7e|6DCbϠj<]SQO!|3՗:{v Q?9y?>քaD=y>pKOMWՔ.?T>XO$+<- e"UHWcMED)迄 8c(tv2bF-,0w-u;H( tj.(F_JH͌. Gi:VF(x_ga}%QoMrS(߯#䘛t|UU2k%~(. u<>mQ( DuDjIrkR<&DŽq4sEB#UZXTuME}y! iWL) .t˂˂S5RCRETXTc20u:f>փv~ol+:&k]˴vCp͇Z>w'ZOK_!3}I =EϞ+/Mn7k"^T aEsa4"h/=o/mR˾`D\U|W+-ձWhr^P=!qIWREjF n}3f^-&3bAnN᪁)3jm*= {1 c7 RȭcKe|yyϸоa呒F$/0e#hfԆ~qX 5DS ՌӨWm(=txu-9KJ~usZ1hҹh7 Cb[Efnp%7n`Kf--[cd#}j6E0vhX2l /s\#>K zز@R/H H謇]wu$_";I<5rtJWWQF$ l$RJ$#̀S4Da;PRܕd,mOM5؞GqǕVl"xn5W7l$Nm e8(^[ȓ]a?})\l#lOQ ʍo`gf4Ʀ(I3R,eqEpAR\V#sI{mvp4pà=YoMw1OT{-װ4c@[PMӎ{QAk2&89TL ,9N^ڒaove'6cC1cs5vHX'p.R .9Wz9y*qLPfkn-0LΔ+ܔUP?3zAj橊џ Y#I>N\?yG^_yXyA,cۂϣ l<? QV87<'A>M5;-׹? {g%QJiz.X*C KQf}T81̄G|WF'FړOwϫڲ$2tu4<ߌ*`Ἦn!{} n ~#wחw? $[k}K?|-ҩt?tm-KRr;r~R%%RMEK3Ŗ ֶy"Sy,'U)_kFaw'^奼T)a9&c}y%+du{՟}!>_*y=O,?~ˡEp\ɉ`?YtWM+u>,2 T2or6"nU%L\~dͮ}l->9:0yv=`c UP4)^jCE=xqUWt>*2eOo{_`2VUoZbBh܁.NYM 8PH? 3z`^C\o'uԻkݤ&Jti:}8E{K"m^:W$W+p}:yzc'p5K~6ׇߨ]vpZեxʵ-pݚҥynr:=6l|1- nmˏu{=G糆Xӛ;|!* 'Nq橵Ů7 f9T*޻z I͝*,wejUmo^Ej6"zD_@[\*=w m$zR~$q-Qs<<>zGYyo=Pڊ~D\ Lh㼋ٿe#zo>y՝5P \!1]t[@ދYBZ_5K6TgHW-]%w9UQ~e.]߆ J-_duULT&WqVk8ݓ^P*U endstream endobj 117 0 obj << /Type /XRef /Index [0 118] /Size 118 /W [1 3 1] /Root 115 0 R /Info 116 0 R /ID [<47AFDE890EA5E0683716CC4C63D7FD6A> <47AFDE890EA5E0683716CC4C63D7FD6A>] /Length 295 /Filter /FlateDecode >> stream x7NA@hhr2dL@!- \h i>YX@$o?BU!(P CCdB AdC+BB@ ("(R`V`a aa`z!yLZ%+i{5Pp>U4Hٴ T/lͰ.^k{1>hW7zmN!0(ABB`Pw{n5jJմгՌDjV}*f5Yͫ [-@Rpp5>M(a endstream endobj startxref 323310 %%EOF genefilter/inst/wFun/0000755000175100017510000000000012607264530015617 5ustar00biocbuildbiocbuildgenefilter/inst/wFun/Anova.xml0000644000175100017510000000144512607264530017411 0ustar00biocbuildbiocbuild Anova cov numeric main TypeIn TRUE p 0.05 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/coxfilter.xml0000644000175100017510000000144012607264530020337 0ustar00biocbuildbiocbuild coxfilter surt numeric main TypeIn TRUE cens numeric main TypeIn TRUE p numeric main TypeIn TRUE genefilter/inst/wFun/cv.xml0000644000175100017510000000144112607264530016751 0ustar00biocbuildbiocbuild cv a 1 numeric main TypeIn FALSE b Inf numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/gapFilter.xml0000644000175100017510000000234412607264530020261 0ustar00biocbuildbiocbuild gapFilter Gap numeric main TypeIn TRUE IQR numeric main TypeIn TRUE Prop nemeric main TypeIn TRUE na.rm TRUE logical main Radio FALSE neg.rm TRUE logical main Radio FALSE genefilter/inst/wFun/kOverA.xml0000644000175100017510000000144312607264530017532 0ustar00biocbuildbiocbuild kOverA k numeric main TypeIn TRUE A 100 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/maxA.xml0000644000175100017510000000110712607264530017226 0ustar00biocbuildbiocbuild maxA A 75 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/pOverA.xml0000644000175100017510000000145012607264530017535 0ustar00biocbuildbiocbuild pOverA p 0.05 numeric main TypeIn FALSE A 100 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/ttest.xml0000644000175100017510000000144312607264530017506 0ustar00biocbuildbiocbuild ttest m numeric main TypeIn TRUE p 0.05 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/man/0000755000175100017510000000000012607264530014476 5ustar00biocbuildbiocbuildgenefilter/man/Anova.Rd0000644000175100017510000000263312607264530016035 0ustar00biocbuildbiocbuild\name{Anova} \alias{Anova} \title{A filter function for Analysis of Variance } \description{ \code{Anova} returns a function of one argument with bindings for \code{cov} and \code{p}. The function, when evaluated, performs an ANOVA using \code{cov} as the covariate. It returns \code{TRUE} if the p value for a difference in means is less than \code{p}. } \usage{ Anova(cov, p=0.05, na.rm=TRUE) } \arguments{ \item{cov}{The covariate. It must have length equal to the number of columns of the array that \code{Anova} will be applied to. } \item{p}{ The p-value for the test. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ The function returned by \code{Anova} uses \code{lm} to fit a linear model of the form \code{lm(x ~ cov)}, where \code{x} is the set of gene expressions. The F statistic for an overall effect is computed and if it has a \emph{p}-value less than \code{p} the function returns \code{TRUE}, otherwise it returns \code{FALSE} for that gene. } \value{ \code{Anova} returns a function with bindings for \code{cov} and \code{p} that will perform a one-way ANOVA. The covariate can be continuous, in which case the test is for a linear effect for the covariate. } \author{R. Gentleman } \seealso{\code{\link{kOverA}}, \code{\link{lm}} } \examples{ set.seed(123) af <- Anova(c(rep(1,5),rep(2,5)), .01) af(rnorm(10)) } \keyword{manip} genefilter/man/coxfilter.Rd0000644000175100017510000000206612607264530016770 0ustar00biocbuildbiocbuild\name{coxfilter} \alias{coxfilter} \title{A filter function for univariate Cox regression. } \description{ A function that performs Cox regression with bindings for \code{surt}, \code{cens}, and \code{p} is returned. This function filters genes according to the attained p-value from a Cox regression using \code{surt} as the survival times, and \code{cens} as the censoring indicator. It requires \code{survival}. } \usage{ coxfilter(surt, cens, p) } \arguments{ \item{surt}{Survival times.} \item{cens}{Censoring indicator. } \item{p}{The p-value to use in filtering. } } \value{ Calls to the \code{\link[survival]{coxph}} function in the \code{survival} library are used to fit a Cox model. The filter function returns \code{TRUE} if the p-value in the fit is less than \code{p}. } \author{R. Gentleman } \seealso{\code{\link{Anova}}} \examples{ set.seed(-5) sfun <- coxfilter(rexp(10), ifelse(runif(10) < .7, 1, 0), .05) ffun <- filterfun(sfun) dat <- matrix(rnorm(1000), ncol=10) out <- genefilter(dat, ffun) } \keyword{manip} genefilter/man/cv.Rd0000644000175100017510000000201212607264530015370 0ustar00biocbuildbiocbuild\name{cv} \alias{cv} \title{A filter function for the coefficient of variation.} \description{ \code{cv} returns a function with values for \code{a} and \code{b} bound. This function takes a single argument. It computes the coefficient of variation for the input vector and returns \code{TRUE} if the coefficient of variation is between \code{a} and \code{b}. Otherwise it returns \code{FALSE} } \usage{ cv(a=1, b=Inf, na.rm=TRUE) } \arguments{ \item{a}{The lower bound for the cv. } \item{b}{The upper bound for the cv. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ The coefficient of variation is the standard deviation divided by the absolute value of the mean. } \value{ It returns a function of one argument. The function has an environment with bindings for \code{a} and \code{b}. } \author{R. Gentleman } \seealso{\code{\link{pOverA}}, \code{\link{kOverA}} } \examples{ set.seed(-3) cvfun <- cv(1,10) cvfun(rnorm(10,10)) cvfun(rnorm(10)) } \keyword{manip} genefilter/man/deprecated.Rd0000644000175100017510000000072112607264530017065 0ustar00biocbuildbiocbuild\name{genefilter-deprecated} \alias{genefilter-deprecated} \title{Deprecated Functions in package \pkg{genefilter}} \alias{anyNA} \alias{allNA} \description{ The functions or variables listed here have been deprecated and should no longer be used. } \details{ The following functions are deprecated and will be made defunct; use the replacement indicated below: \itemize{ \item{anyNA} \item{allNA} } } \seealso{ \code{\link{Deprecated}} } genefilter/man/dist2.Rd0000644000175100017510000000321212607264530016010 0ustar00biocbuildbiocbuild\name{dist2} \alias{dist2} \title{ Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix. } \description{ Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix. } \usage{ dist2(x, fun, diagonal=0) } \arguments{ \item{x}{A matrix.} \item{fun}{A symmetric function of two arguments that may be columns of \code{x}.} \item{diagonal}{The value to be used for the diagonal elements of the resulting matrix.} } \details{ With the default value of \code{fun}, this function calculates for each pair of columns of \code{x} the mean of the absolute values of their differences (which is proportional to the L1-norm of their difference). This is a distance metric. The implementation assumes that \code{fun(x[,i], x[,j])} can be evaluated for all pairs of \code{i} and \code{j} (see examples), and that \code{fun} is symmetric, i.e. \code{fun(a, b) = fun(b, a)}. \code{fun(a, a)} is not actually evaluated, instead the value of \code{diagonal} is used to fill the diagonal elements of the returned matrix. Note that \code{\link[stats:dist]{dist}} computes distances between rows of \code{x}, while this function computes relations between columns of \code{x} (see examples). } \value{ A symmetric matrix of size \code{n x n}. } \author{ Wolfgang Huber, James Reid } \examples{ # example matrix z = matrix(1:15693, ncol=3) matL1 = dist2(z) matL2 = dist2(z, fun=function(a,b) sqrt(sum((a-b)^2, na.rm=TRUE))) euc = as.matrix(dist(t(z))) stopifnot(identical(dim(matL2), dim(euc)), all(euc==matL2)) } \keyword{manip} genefilter/man/eSetFilter.Rd0000644000175100017510000000306212607264530017034 0ustar00biocbuildbiocbuild\name{eSetFilter} \alias{eSetFilter} \alias{getFilterNames} \alias{getFuncDesc} \alias{getRdAsText} \alias{parseDesc} \alias{parseArgs} \alias{setESetArgs} \alias{isESet} \alias{showESet} \title{A function to filter an eSet object} \description{ Given a Bioconductor's ExpressionSet object, this function filters genes using a set of selected filters. } \usage{ eSetFilter(eSet) getFilterNames() getFuncDesc(lib = "genefilter", funcs = getFilterNames()) getRdAsText(lib) parseDesc(text) parseArgs(text) showESet(eSet) setESetArgs(filter) isESet(eSet) } \arguments{ \item{eSet}{\code{eSet} an ExpressionSet object} \item{lib}{\code{lib} a character string for the name of an R library where functions of interests reside} \item{funcs}{\code{funcs} a vector of character strings for names of functions of interest} \item{text}{\code{text} a character of string from a filed (e. g. description, argument, ..) filed of an Rd file for a fucntion} \item{filter}{\code{filter} a character string for the name of a filter function} } \details{ A set of filters may be selected to filter genes in through each of the filters in the order the filters have been selected } \value{ A logical vector of length equal to the number of rows of 'expr'. The values in that vector indicate whether the corresponding row of 'expr' passed the set of filter functions. } \author{Jianhua Zhang} \seealso{\code{\link{genefilter}}} \examples{ if( interactive() ) { data(sample.ExpressionSet) res <- eSetFilter(sample.ExpressionSet) } } \keyword{manip} genefilter/man/filter_volcano.Rd0000644000175100017510000000407312607264530017777 0ustar00biocbuildbiocbuild\name{filter_volcano} \Rdversion{1.1} \alias{filter_volcano} \title{Volcano plot for overall variance filtering} \description{ Generate a volcano plot contrasting p-value with fold change (on the log scale), in order to visualize the effect of filtering on overall variance and also assign significance via p-value. } \usage{ filter_volcano( d, p, S, n1, n2, alpha, S_cutoff, cex = 0.5, pch = 19, xlab = expression(paste(log[2], " fold change")), ylab = expression(paste("-", log[10], " p")), cols = c("grey80", "grey50", "black"), ltys = c(1, 3), use_legend = TRUE, ... ) } \arguments{ \item{d}{Fold changes, typically on the log scale, base 2.} \item{p}{The p-values} \item{S}{ The overall standard deviation filter statistics, i.e., the square roots of the overall variance filter statistics. } \item{n1}{Sample size for group 1.} \item{n2}{Sample size for group 2.} \item{alpha}{Significance cutoff used for p-values.} \item{S_cutoff}{ Filter cutoff used for the overall standard deviation in \code{S}. } \item{cex}{Point size for plotting.} \item{pch}{Point character for plotting.} \item{xlab}{Label for x-axis.} \item{ylab}{Label for y-axis.} \item{cols}{ A vector of three colors used for plotting. These correspond to filtered data, data which pass the filter but are insignificant, and data pass the filter and are also statistically significant. } \item{ltys}{ The induced bound on log-scale fold change is plotted, as is the significance cutoff for data passing the filter. The \code{ltys} argument gives line styles for these drawing these two thresholds on the plot. } \item{use_legend}{Should a legend for point color be produced?} \item{\dots}{Other arguments for \code{plot}.} } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/filtered_p.Rd0000644000175100017510000000505712607264530017111 0ustar00biocbuildbiocbuild\name{filtered_p} \Rdversion{1.1} \alias{filtered_p} \alias{filtered_R} \title{ Compute and adjust p-values, with filtering } \description{ Given filter and test statistics in the form of unadjusted p-values, or functions able to compute these statistics from the data, filter and then correct the p-values across a range of filtering stringencies. } \usage{ filtered_p(filter, test, theta, data, method = "none") filtered_R(alpha, filter, test, theta, data, method = "none") } \arguments{ \item{alpha}{ A cutoff to which p-values, possibly adjusted for multiple testing, will be compared. } \item{filter}{ A vector of stage-one filter statistics, or a function which is able to compute this vector from \code{data}, if \code{data} is supplied. } \item{test}{ A vector of unadjusted p-values, or a function which is able to compute this vector from the filtered portion of \code{data}, if \code{data} is supplied. The option to supply a function is useful when the value of the test statistic depends on which hypotheses are filtered out at stage one. (The \pkg{limma} t-statistic is an example.) } \item{theta}{ A vector with one or more filtering fractions to consider. Actual cutoffs are then computed internally by applying \code{\link{quantile}} to the filter statistics contained in (or produced by) the \code{filter} argument. } \item{data}{ If \code{filter} and/or \code{test} are functions rather than vectors of statistics, they will be applied to \code{data}. The functions will be passed the whole \code{data} object, and must work over rows, etc. themselves as appropriate. } \item{method}{ The unadjusted p-values contained in (or produced by) \code{test} will be adjusted for multiple testing after filtering, using the \code{\link{p.adjust}} function in the \pkg{stats} package. See the \code{method} argument there for options. }p } \value{ For \code{filtered_p}, a matrix of p-values, possible adjusted for multiple testing, with one row per null hypothesis and one column per filtering fraction given in \code{theta}. For a given column, entries which have been filtered out are \code{NA}. For \code{filtered_R}, a count of the entries in the \code{filtered_p} result which are less than \code{alpha}. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } \seealso{ See \code{\link{rejection_plot}} for visualization of \code{filtered_p} results. } genefilter/man/filterfun.Rd0000644000175100017510000000223512607264530016765 0ustar00biocbuildbiocbuild\name{filterfun} \alias{filterfun} \title{Creates a first FALSE exiting function from the list of filter functions it is given. } \description{ This function creates a function that takes a single argument. The filtering functions are bound in the environment of the returned function and are applied sequentially to the argument of the returned function. When the first filter function evaluates to \code{FALSE} the function returns \code{FALSE} otherwise it returns \code{TRUE}. } \usage{ filterfun(...) } \arguments{ \item{...}{Filtering functions. } } \value{ \code{filterfun} returns a function that takes a single argument. It binds the filter functions given to it in the environment of the returned function. These functions are applied sequentially (in the order they were given to \code{filterfun}). The function returns \code{FALSE} (and exits) when the first filter function returns \code{FALSE} otherwise it returns \code{TRUE}. } \author{R. Gentleman } \seealso{\code{\link{genefilter}} } \examples{ set.seed(333) x <- matrix(rnorm(100,2,1),nc=10) cvfun <- cv(.5,2.5) ffun <- filterfun(cvfun) which <- genefilter(x, ffun) } \keyword{manip} genefilter/man/findLargest.Rd0000644000175100017510000000261212607264530017230 0ustar00biocbuildbiocbuild\name{findLargest} \alias{findLargest} \title{Find the Entrez Gene ID corresponding to the largest statistic} \description{ Most microarrays have multiple probes per gene (Entrez). This function finds all replicates, and then selects the one with the largest value of the test statistic. } \usage{ findLargest(gN, testStat, data = "hgu133plus2") } \arguments{ \item{gN}{A vector of probe identifiers for the chip.} \item{testStat}{A vector of test statistics, of the same length as \code{gN} with the per probe test statistics.} \item{data}{The character string identifying the chip.} } \details{ All the probe identifiers, \code{gN}, are mapped to Entrez Gene IDs and the duplicates determined. For any set of probes that map to the same Gene ID, the one with the largest test statistic is found. The return vector is the named vector of selected probe identifiers. The names are the Entrez Gene IDs. This could be extended in different ways, such as allowing the user to use a different selection criterion. Also, matching on different identifiers seems like another alternative. } \value{ A named vector of probe IDs. The names are Entrez Gene IDs. } \author{R. Gentleman} \seealso{\code{\link{sapply}}} \examples{ library("hgu95av2.db") set.seed(124) gN <- sample(ls(hgu95av2ENTREZID), 200) stats <- rnorm(200) findLargest(gN, stats, "hgu95av2") } \keyword{manip} genefilter/man/gapFilter.Rd0000644000175100017510000000346712607264530016714 0ustar00biocbuildbiocbuild\name{gapFilter} \alias{gapFilter} \title{ A filter to select genes based on there being a gap. } \description{ The \code{gapFilter} looks for genes that might usefully discriminate between two groups (possibly unknown at the time of filtering). To do this we look for a gap in the ordered expression values. The gap must come in the central portion (we exclude jumps in the initial \code{Prop} values or the final \code{Prop} values). Alternatively, if the IQR for the gene is large that will also pass our test and the gene will be selected. } \usage{ gapFilter(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE) } \arguments{ \item{Gap}{The size of the gap required to pass the test. } \item{IQR}{The size of the IQR required to pass the test. } \item{Prop}{The proportion (or number) of samples to exclude at either end.} \item{na.rm}{If \code{TRUE} then \code{NA}'s will be removed before processing. } \item{neg.rm}{ If \code{TRUE} then negative values in \code{x} will be removed before processing.} } \details{ As stated above we are interested in } \value{ A function that returns either \code{TRUE} or \code{FALSE} depending on whether the vector supplied has a gap larger than \code{Gap} or an IQR (inter quartile range) larger than \code{IQR}. For computing the gap we want to exclude a proportion, \code{Prop} from either end of the sorted values. The reason for this requirement is that genes which differ in expression levels only for a few samples are not likely to be interesting. } \author{R. Gentleman } \seealso{\code{\link{ttest}}, \code{\link{genefilter}} } \examples{ set.seed(256) x <- c(rnorm(10,100,3), rnorm(10, 100, 10)) y <- x + c(rep(0,10), rep(100,10)) tmp <- rbind(x,y) Gfilter <- gapFilter(200, 100, 5) ffun <- filterfun(Gfilter) genefilter(tmp, ffun) } \keyword{manip} genefilter/man/genefilter.Rd0000644000175100017510000000427512607264530017121 0ustar00biocbuildbiocbuild\name{genefilter} \alias{genefilter} \title{A function to filter genes.} \description{ \code{genefilter} filters genes in the array \code{expr} using the filter functions in \code{flist}. It returns an array of logical values (suitable for subscripting) of the same length as there are rows in \code{expr}. For each row of \code{expr} the returned value is \code{TRUE} if the row passed all the filter functions. Otherwise it is set to \code{FALSE}. } \usage{ genefilter(expr, flist) } \arguments{ \item{expr}{A \code{matrix} or \code{ExpressionSet} that the filter functions will be applied to.} \item{flist}{A \code{list} of filter functions to apply to the array.} } \details{ This package uses a very simple but powerful protocol for \emph{filtering} genes. The user simply constructs any number of tests that they want to apply. A test is simply a function (as constructed using one of the many helper functions in this package) that returns \code{TRUE} if the gene of interest passes the test (or filter) and \code{FALSE} if the gene of interest fails. The benefit of this approach is that each test is constructed individually (and can be tested individually). The tests are then applied sequentially to each gene. The function returns a logical vector indicating whether the gene passed all tests functions or failed at least one of them. Users can construct their own filters. These filters should accept a vector of values, corresponding to a row of the \code{expr} object. The user defined function should return a length 1 logical vector, with value \code{TRUE} or \code{FALSE}. User-defined functions can be combined with \code{\link{filterfun}}, just as built-in filters. } \value{ A logical \code{vector} of length equal to the number of rows of \code{expr}. The values in that \code{vector} indicate whether the corresponding row of \code{expr} passed the set of filter functions. } \author{R. Gentleman} \seealso{\code{\link{genefilter}}, \code{\link{kOverA}}} \examples{ set.seed(-1) f1 <- kOverA(5, 10) flist <- filterfun(f1) exprA <- matrix(rnorm(1000, 10), ncol = 10) ans <- genefilter(exprA, flist) } \keyword{manip} genefilter/man/genefinder.Rd0000644000175100017510000000647612607264530017110 0ustar00biocbuildbiocbuild\name{genefinder} \alias{genefinder} \alias{genefinder,ExpressionSet,vector-method} \alias{genefinder,matrix,vector-method} \title{Finds genes that have similar patterns of expression.} \description{ Given an \code{ExpressionSet} or a \code{matrix} of gene expressions, and the indices of the genes of interest, \code{genefinder} returns a \code{list} of the \code{numResults} closest genes. The user can specify one of the standard distance measures listed below. The number of values to return can be specified. The return value is a \code{list} with two components: genes (measured through the desired distance method) to the genes of interest (where X is the number of desired results returned) and their distances. } \usage{ genefinder(X, ilist, numResults=25, scale="none", weights, method="euclidean") } \arguments{ \item{X}{A numeric \code{matrix} where columns represent patients and rows represent genes.} \item{ilist}{A \code{vector} of genes of interest. Contains indices of genes in matrix X.} \item{numResults}{Number of results to display, starting from the least distance to the greatest.} \item{scale}{One of "none", "range", or "zscore". Scaling is carried out separately on each row.} \item{weights}{A vector of weights applied across the columns of \code{X}. If no weights are supplied, no weights are applied.} \item{method}{One of "euclidean", "maximum", "manhattan", "canberra", "correlation", "binary".} } \details{ If the \code{scale} option is "range", then the input matrix is scaled using \code{genescale()}. If it is "zscore", then the input matrix is scaled using the \code{scale} builtin with no arguments. The method option specifies the metric used for gene comparisons. The metric is applied, row by row, for each gene specified in \code{ilist}. The "correlation" option for the distance method will return a value equal to 1-correlation(x). See \code{\link{dist}} for a more detailed description of the distances. } \value{ The returned value is a \code{list} containing an entry for each gene specified in \code{ilist}. Each \code{list} entry contains an array of distances for that gene of interest. } \author{J. Gentry and M. Kajen} \seealso{\code{\link{genescale}}} \examples{ set.seed(12345) #create some fake expression profiles m1 <- matrix (1:12, 4, 3) v1 <- 1 nr <- 2 #find the 2 rows of m1 that are closest to row 1 genefinder (m1, v1, nr, method="euc") v2 <- c(1,3) genefinder (m1, v2, nr) genefinder (m1, v2, nr, scale="range") genefinder (m1, v2, nr, method="manhattan") m2 <- matrix (rnorm(100), 10, 10) v3 <- c(2, 5, 6, 8) nr2 <- 6 genefinder (m2, v3, nr2, scale="zscore") \testonly{ m1 <- matrix(rnorm(1000),100,10) v1 <- c(3,5,8,42) nr2 <- 35 genefinder(m1,v1,nr2,method="euclidean") genefinder(m1,v1,nr2,method="maximum") genefinder(m1,v1,nr2,method="canberra") genefinder(m1,v1,nr2,method="binary") genefinder(m1,v1,nr2,method="correlation") m2 <- matrix(rnorm(10000),1000,10) v1 <- c(1,100,563,872,921,3,52,95,235,333) nr <- 100 genefinder(m2,v1,nr2,scale="zscore",method="euclidean") genefinder(m2,v1,nr2,scale="range",method="maximum") genefinder(m2,v1,nr2,scale="zscore",method="canberra") genefinder(m2,v1,nr2,scale="range",method="binary") genefinder(m2,v1,nr2,scale="zscore",method="correlation") } } \keyword{manip} genefilter/man/genescale.Rd0000644000175100017510000000237412607264530016721 0ustar00biocbuildbiocbuild\name{genescale} \alias{genescale} \title{Scales a matrix or vector.} \description{ \code{genescale} returns a scaled version of the input matrix m by applying the following formula to each column of the matrix: \deqn{y[i] = ( x[i] - min(x) ) / ( max(x) - min(x) )} } \usage{ genescale(m, axis=2, method=c("Z", "R"), na.rm=TRUE) } \arguments{ \item{m}{Input a matrix or a vector with numeric elements. } \item{axis}{An integer indicating which axis of \code{m} to scale.} \item{method}{Either "Z" or "R", indicating whether a Z scaling or a range scaling should be performed.} \item{na.rm}{A boolean indicating whether \code{NA}'s should be removed.} } \details{ Either the rows or columns of \code{m} are scaled. This is done either by subtracting the mean and dividing by the standard deviation ("Z") or by subtracing the minimum and dividing by the range. } \value{ A scaled version of the input. If \code{m} is a \code{matrix} or a \code{dataframe} then the dimensions of the returned value agree with that of \code{m}, in both cases the returned value is a \code{matrix}. } \author{ R. Gentleman } \seealso{ \code{\link{genefinder}},\code{\link{scale}} } \examples{ m <- matrix(1:12, 4, 3) genescale(m) } \keyword{ manip } genefilter/man/half.range.mode.Rd0000755000175100017510000000636012607264530017725 0ustar00biocbuildbiocbuild\name{half.range.mode} \alias{half.range.mode} \title{Mode estimation for continuous data} \description{ For data assumed to be drawn from a unimodal, continuous distribution, the mode is estimated by the \dQuote{half-range} method. Bootstrap resampling for variance reduction may optionally be used. } \usage{ half.range.mode(data, B, B.sample, beta = 0.5, diag = FALSE) } \arguments{ \item{data}{A numeric vector of data from which to estimate the mode.} \item{B}{ Optionally, the number of bootstrap resampling rounds to use. Note that \code{B = 1} resamples 1 time, whereas omitting \code{B} uses \code{data} as is, without resampling. } \item{B.sample}{ If bootstrap resampling is requested, the size of the bootstrap samples drawn from \code{data}. Default is to use a sample which is the same size as \code{data}. For large data sets, this may be slow and unnecessary. } \item{beta}{ The fraction of the remaining range to use at each iteration. } \item{diag}{ Print extensive diagnostics. For internal testing only... best left \code{FALSE}. } } \details{ Briefly, the mode estimator is computed by iteratively identifying densest half ranges. (Other fractions of the current range can be requested by setting \code{beta} to something other than 0.5.) A densest half range is an interval whose width equals half the current range, and which contains the maximal number of observations. The subset of observations falling in the selected densest half range is then used to compute a new range, and the procedure is iterated. See the references for details. If bootstrapping is requested, \code{B} half-range mode estimates are computed for \code{B} bootstrap samples, and their average is returned as the final estimate. } \value{ The mode estimate. } \references{ \itemize{ \item DR Bickel, \dQuote{Robust estimators of the mode and skewness of continuous data.} \emph{Computational Statistics & Data Analysis} 39:153-163 (2002). \item SB Hedges and P Shah, \dQuote{Comparison of mode estimation methods and application in molecular clock analysis.} \emph{BMC Bioinformatics} 4:31-41 (2003). } } \author{Richard Bourgon } \seealso{\code{\link{shorth}}} \keyword{univar} \keyword{robust} \examples{ ## A single normal-mixture data set x <- c( rnorm(10000), rnorm(2000, mean = 3) ) M <- half.range.mode( x ) M.bs <- half.range.mode( x, B = 100 ) if(interactive()){ hist( x, breaks = 40 ) abline( v = c( M, M.bs ), col = "red", lty = 1:2 ) legend( 1.5, par("usr")[4], c( "Half-range mode", "With bootstrapping (B = 100)" ), lwd = 1, lty = 1:2, cex = .8, col = "red" ) } # Sampling distribution, with and without bootstrapping X <- rbind( matrix( rnorm(1000 * 100), ncol = 100 ), matrix( rnorm(200 * 100, mean = 3), ncol = 100 ) ) M.list <- list( Simple = apply( X, 2, half.range.mode ), BS = apply( X, 2, half.range.mode, B = 100 ) ) if(interactive()){ boxplot( M.list, main = "Effect of bootstrapping" ) abline( h = 0, col = "red" ) } } genefilter/man/kOverA.Rd0000644000175100017510000000133012607264530016151 0ustar00biocbuildbiocbuild\name{kOverA} \alias{kOverA} \title{A filter function for k elements larger than A. } \description{ \code{kOverA} returns a filter function with bindings for \code{k} and \code{A}. This function evaluates to \code{TRUE} if at least \code{k} of the arguments elements are larger than \code{A}. } \usage{ kOverA(k, A=100, na.rm=TRUE) } \arguments{ \item{A}{The value you want to exceed. } \item{k}{The number of elements that have to exceed A.} \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \value{ A function with bindings for \code{A} and \code{k}. } \author{R. Gentleman} \seealso{\code{\link{pOverA}}} \examples{ fg <- kOverA(5, 100) fg(90:100) fg(98:110) } \keyword{manip} genefilter/man/kappa_p.Rd0000644000175100017510000000200212607264530016372 0ustar00biocbuildbiocbuild\name{kappa_p} \Rdversion{1.1} \alias{kappa_p} \alias{kappa_t} \title{ Compute proportionality constant for fold change bound. } \description{ Filtering on overall variance induces a lower bound on fold change. This bound depends on the significance of the evidence against the null hypothesis, an is a multiple of the cutoff used for an overall variance filter. It also depends on sample size in both of the groups being compared. These functions compute the multiplier for the supplied p-values or t-statistics. } \usage{ kappa_p(p, n1, n2 = n1) kappa_t(t, n1, n2 = n1) } \arguments{ \item{p}{The p-values at which to compute the multiplier.} \item{t}{The t-statistics at which to compute the multiplier.} \item{n1}{Sample size for class 1.} \item{n2}{Sample size for class 2.} } \value{ A vector of multipliers: one per p-value or t-static in \code{p} or \code{t}. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/maxA.Rd0000644000175100017510000000125312607264530015654 0ustar00biocbuildbiocbuild\name{maxA} \alias{maxA} \title{ A filter function to filter according to the maximum. } \description{ \code{maxA} returns a function with the parameter \code{A} bound. The returned function evaluates to \code{TRUE} if any element of its argument is larger than \code{A}. } \usage{ maxA(A=75, na.rm=TRUE) } \arguments{ \item{A}{The value that at least one element must exceed. } \item{na.rm}{If \code{TRUE} then \code{NA}'s are removed. } } \value{ \code{maxA} returns a function with an environment containing a binding for \code{A}. } \author{R. Gentleman } \seealso{\code{\link{pOverA}} } \examples{ ff <- maxA(30) ff(1:10) ff(28:31) } \keyword{manip} genefilter/man/nsFilter.Rd0000644000175100017510000002137712607264530016565 0ustar00biocbuildbiocbuild\name{nsFilter} \alias{nsFilter} \alias{varFilter} \alias{featureFilter} \alias{nsFilter,ExpressionSet-method} \title{Filtering of Features in an ExpressionSet} \description{The function \code{nsFilter} tries to provide a one-stop shop for different options of filtering (removing) features from an ExpressionSet. Filtering features exhibiting little variation, or a consistently low signal, across samples can be advantageous for the subsequent data analysis (Bourgon et al.). Furthermore, one may decide that there is little value in considering features with insufficient annotation. } \usage{ nsFilter(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) varFilter(eset, var.func=IQR, var.cutoff=0.5, filterByQuantile=TRUE) featureFilter(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, feature.exclude="^AFFX") } \arguments{ \item{eset}{an \code{ExpressionSet} object} \item{var.func}{The function used as the per-feature filtering statistic. This function should return a numeric vector of length one when given a numeric vector as input.} \item{var.filter}{A logical indicating whether to perform filtering based on \code{var.func}.} \item{filterByQuantile}{A logical indicating whether \code{var.cutoff} is to be interprested as a quantile of all \code{var.func} values (the default), or as an absolute value.} \item{var.cutoff}{A numeric value. If \code{var.filter} is TRUE, features whose value of \code{var.func} is less than either: the \code{var.cutoff}-quantile of all \code{var.func} values (if \code{filterByQuantile} is TRUE), or \code{var.cutoff} (if \code{filterByQuantile} is FALSE) will be removed.} \item{require.entrez}{If \code{TRUE}, filter out features without an Entrez Gene ID annotation. If using an annotation package where an identifier system other than Entrez Gene IDs is used as the central ID, then that ID will be required instead.} \item{require.GOBP, require.GOCC, require.GOMF}{If \code{TRUE}, filter out features whose target genes are not annotated to at least one GO term in the BP, CC or MF ontology, respectively.} \item{require.CytoBand}{If \code{TRUE}, filter out features whose target genes have no mapping to cytoband locations.} \item{remove.dupEntrez}{If \code{TRUE} and there are features mapping to the same Entrez Gene ID (or equivalent), then the feature with the largest value of \code{var.func} will be retained and the other(s) removed.} \item{feature.exclude}{A character vector of regular expressions. Feature identifiers (i.e. value of \code{featureNames(eset)}) that match one of the specified patterns will be filtered out. The default value is intended to filter out Affymetrix quality control probe sets.} \item{...}{Unused, but available for specializing methods.} } \details{ In this Section, the effect of filtering on the type I error rate estimation / control of subsequent hypothesis testing is explained. See also the paper by Bourgon et al. \emph{Marginal type I errors}: Filtering on the basis of a statistic which is independent of the test statistic used for detecting differential gene expression can increase the detection rate at the same marginal type I error. This is clearly the case for filter criteria that do not depend on the data, such as the annotation based criteria provided by the \code{nsFilter} and \code{featureFilter} functions. However, marginal type I error can also be controlled for certain types of data-dependent criteria. Call \eqn{U^I}{U^1} the stage 1 filter statistic, which is a function that is applied feature by feature, based on whose value the feature is or is not accepted to pass to stage 2, and which depends only on the data for that feature and not any other feature, and call \eqn{U^{II}}{U^2} the stage 2 test statistic for differential expression. Sufficient conditions for marginal type-I error control are: \itemize{ \item \eqn{U^I}{U^1} the overall (across all samples) variance or mean, \eqn{U^{II}}{U^2} the t-statistic (or any other scale and location invariant statistic), data normal distributed and exchangeable across samples. \item \eqn{U^I}{U^1} the overall mean, \eqn{U^{II}}{U^2} the moderated t-statistic (as in limma's \code{\link[limma:ebayes]{eBayes}} function), data normal distributed and exchangeable. \item \eqn{U^I}{U^1} a sample-class label independent function (e.g. overall mean, median, variance, IQR), \eqn{U^{II}}{U^2} the Wilcoxon rank sum statistic, data exchangeable. } \emph{Experiment-wide type I error}: Marginal type-I error control provided by the conditions above is sufficient for control of the family wise error rate (FWER). Note, however, that common false discovery rate (FDR) methods depend not only on the marginal behaviour of the test statistics under the null hypothesis, but also on their joint distribution. The joint distribution can be affected by filtering, even when this filtering leaves the marginal distributions of true-null test statistics unchanged. Filtering might, for example, change correlation structure. The effect of this is negligible in many cases in practice, but this depends on the dataset and the filter used, and the assessment is in the responsibility of the data analyst. \emph{Annotation Based Filtering} Arguments \code{require.entrez}, \code{require.GOBP}, \code{require.GOCC}, \code{require.GOMF} and \code{require.CytoBand} filter based on available annotation data. The annotation package is determined by calling \code{annotation(eset)}. \emph{Variance Based Filtering} The \code{var.filter}, \code{var.func}, \code{var.cutoff} and \code{varByQuantile} arguments control numerical cutoff-based filtering. Probes for which \code{var.func} returns \code{NA} are removed. The default \code{var.func} is \code{IQR}, which we here define as \code{rowQ(eset, ceiling(0.75 * ncol(eset))) - rowQ(eset, floor(0.25 * ncol(eset)))}; this choice is motivated by the observation that unexpressed genes are detected most reliably through low variability of their features across samples. Additionally, \code{IQR} is robust to outliers (see note below). The default \code{var.cutoff} is \code{0.5} and is motivated by a rule of thumb that in many tissues only 40\% of genes are expressed. Please adapt this value to your data and question. By default the numerical-filter cutoff is interpreted as a quantile, so with the default settings, 50\% of the genes are filtered. Variance filtering is performed last, so that (if \code{varByQuantile=TRUE} and \code{remove.dupEntrez=TRUE}) the final number of genes does indeed exclude precisely the \code{var.cutoff} fraction of unique genes remaining after all other filters were passed. The stand-alone function \code{varFilter} does only \code{var.func}-based filtering (and no annotation based filtering). \code{featureFilter} does only annotation based filtering and duplicate removal; it always performs duplicate removal to retain the highest-IQR probe for each gene. } \value{ For \code{nsFilter} a list consisting of: \item{eset}{the filtered \code{ExpressionSet}} \item{filter.log}{a list giving details of how many probe sets where removed for each filtering step performed.} For both \code{varFilter} and \code{featureFilter} the filtered \code{ExpressionSet}. } \author{Seth Falcon (somewhat revised by Assaf Oron)} \note{\code{IQR} is a reasonable variance-filter choice when the dataset is split into two roughly equal and relatively homogeneous phenotype groups. If your dataset has important groups smaller than 25\% of the overall sample size, or if you are interested in unusual individual-level patterns, then \code{IQR} may not be sensitive enough for your needs. In such cases, you should consider using less robust and more sensitive measures of variance (the simplest of which would be \code{sd}).} \references{ R. Bourgon, R. Gentleman, W. Huber, Independent filtering increases power for detecting differentially expressed genes, Technical Report. } \examples{ library("hgu95av2.db") library("Biobase") data(sample.ExpressionSet) ans <- nsFilter(sample.ExpressionSet) ans$eset ans$filter.log ## skip variance-based filtering ans <- nsFilter(sample.ExpressionSet, var.filter=FALSE) a1 <- varFilter(sample.ExpressionSet) a2 <- featureFilter(sample.ExpressionSet) } \keyword{manip} genefilter/man/pOverA.Rd0000644000175100017510000000211612607264530016161 0ustar00biocbuildbiocbuild\name{pOverA} \alias{pOverA} \title{A filter function to filter according to the proportion of elements larger than A. } \description{ A function that returns a function with values for \code{A}, \code{p} and \code{na.rm} bound to the specified values. The function takes a single vector, \code{x}, as an argument. When the returned function is evaluated it returns \code{TRUE} if the proportion of values in \code{x} that are larger than \code{A} is at least \code{p}. } \usage{ pOverA(p=0.05, A=100, na.rm=TRUE) } \arguments{ \item{A}{The value to be exceeded. } \item{p}{The proportion that need to exceed \code{A} for \code{TRUE} to be returned. } \item{na.rm}{ If \code{TRUE} then \code{NA}'s are removed. } } \value{ \code{pOverA} returns a function with bindings for \code{A}, \code{p} and \code{na.rm}. This function evaluates to \code{TRUE} if the proportion of values in \code{x} that are larger than \code{A} exceeds \code{p}. } \author{R. Gentleman} \seealso{ \code{\link{cv}} } \examples{ ff<- pOverA(p=.1, 10) ff(1:20) ff(1:5) } \keyword{manip} genefilter/man/rejection_plot.Rd0000644000175100017510000000530312607264530020006 0ustar00biocbuildbiocbuild\name{rejection_plot} \Rdversion{1.1} \alias{rejection_plot} \title{ Plot rejections vs. p-value cutoff } \description{ Plot the number, or fraction, of null hypotheses rejected as a function of the p-value cutoff. Multiple sets of p-values are accepted, in a list or in the columns of a matrix, in order to permit comparisons. } \usage{ rejection_plot(p, col, lty = 1, lwd = 1, xlab = "p cutoff", ylab = "number of rejections", xlim = c(0, 1), ylim, legend = names(p), at = c("all", "sample"), n_at = 100, probability = FALSE, ... ) } \arguments{ \item{p}{ The p-values to be used for plotting. These may be in the columns of a matrix, or in the elements of a list. One curve will be generated for each column/element, and all \code{NA} entries will be dropped. If column or element names are supplied, they are used by default for a plot legend. } \item{col}{ Colors to be used for each curve plotted. Recycled if necessary. If \code{col} is omitted, \code{\link{rainbow}} is used to generate a set of colors. } \item{lty}{ Line styles to be used for each curve plotted. Recycled if necessary. } \item{lwd}{ Line widths to be used for each curve plotted. Recycled if necessary. } \item{xlab}{ X-axis text label. } \item{ylab}{ Y-axis text label. } \item{xlim}{ X-axis limits. } \item{ylim}{ Y-axis limits. } \item{legend}{ Text for legend. Matrix column names or list element names (see \code{p} above) are used by default. If \code{NULL}, no legend is plotted. } \item{at}{ Should step functions be plotted with a step at every value in \code{p}, or should linear interpolation be used at a sample of points spanning \code{xlim}? The latter looks when there are many p-values. } \item{n_at}{ When \code{at = "sample"} is given, how many sample points should be used for interpolation and plotting? } \item{probability}{ Should the fraction of null hypotheses rejected be reported instead of the count? See the \code{probability} argument to \code{\link{hist}}. } \item{\dots}{ Other arguments to pass to the \code{\link{plot}} call which sets up the axes. Note that the \code{...} argument will not be passed to the \code{\link{lines}} calls which actually generate the curves. } } \value{ A list of the step functions used for plotting is returned invisibly. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/rowFtests.Rd0000644000175100017510000001472312607264530016774 0ustar00biocbuildbiocbuild\name{rowFtests} \alias{rowFtests} \alias{rowFtests,matrix,factor-method} \alias{rowFtests,ExpressionSet,factor-method} \alias{rowFtests,ExpressionSet,character-method} \alias{colFtests} \alias{colFtests,matrix,factor-method} \alias{colFtests,ExpressionSet,factor-method} \alias{colFtests,ExpressionSet,character-method} \alias{rowttests} \alias{rowttests,matrix,factor-method} \alias{rowttests,matrix,missing-method} \alias{rowttests,ExpressionSet,factor-method} \alias{rowttests,ExpressionSet,character-method} \alias{rowttests,ExpressionSet,missing-method} \alias{colttests} \alias{colttests,matrix,factor-method} \alias{colttests,matrix,missing-method} \alias{colttests,ExpressionSet,factor-method} \alias{colttests,ExpressionSet,character-method} \alias{colttests,ExpressionSet,missing-method} \alias{fastT} \title{t-tests and F-tests for rows or columns of a matrix} \description{t-tests and F-tests for rows or columns of a matrix, intended to be speed efficient.} \usage{ rowttests(x, fac, tstatOnly = FALSE) colttests(x, fac, tstatOnly = FALSE) fastT(x, ig1, ig2, var.equal = TRUE) rowFtests(x, fac, var.equal = TRUE) colFtests(x, fac, var.equal = TRUE) } \arguments{ \item{x}{Numeric matrix. The matrix must not contain \code{NA} values. For \code{rowttests} and \code{colttests}, \code{x} can also be an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}.} \item{fac}{Factor which codes the grouping to be tested. There must be 1 or 2 groups for the t-tests (corresponding to one- and two-sample t-test), and 2 or more for the F-tests. If \code{fac} is missing, this is taken as a one-group test (i.e. is only allowed for the t-tests). The length of the factor needs to correspond to the sample size: for the \code{row*} functions, the length of the factor must be the same as the number of columns of \code{x}, for the \code{col*} functions, it must be the same as the number of rows of \code{x}. If \code{x} is an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}, then \code{fac} may also be a character vector of length 1 with the name of a covariate in \code{x}.} \item{tstatOnly}{A logical variable indicating whether to calculate p-values from the t-distribution with appropriate degrees of freedom. If \code{TRUE}, just the t-statistics are returned. This can be considerably faster.} \item{ig1}{The indices of the columns of \code{x} that correspond to group 1.} \item{ig2}{The indices of the columns of \code{x} that correspond to group 2.} \item{var.equal}{A logical variable indicating whether to treat the variances in the samples as equal. If 'TRUE', a simple F test for the equality of means in a one-way analysis of variance is performed. If 'FALSE', an approximate method of Welch (1951) is used, which generalizes the commonly known 2-sample Welch test to the case of arbitrarily many samples.} } \details{ If \code{fac} is specified, \code{rowttests} performs for each row of \code{x} a two-sided, two-class t-test with equal variances. \code{fac} must be a factor of length \code{ncol(x)} with two levels, corresponding to the two groups. The sign of the resulting t-statistic corresponds to "group 1 minus group 2". If \code{fac} is missing, \code{rowttests} performs for each row of \code{x} a two-sided one-class t-test against the null hypothesis 'mean=0'. \code{rowttests} and \code{colttests} are implemented in C and should be reasonably fast and memory-efficient. \code{fastT} is an alternative implementation, in Fortran, possibly useful for certain legacy code. \code{rowFtests} and \code{colFtests} are currently implemented using matrix algebra in R. Compared to the \code{rowttests} and \code{colttests} functions, they are slower and use more memory. } \value{ A \code{data.frame} with columns \code{statistic}, \code{p.value} (optional in the case of the t-test functions) and \code{dm}, the difference of the group means (only in the case of the t-test functions). The \code{row.names} of the data.frame are taken from the corresponding dimension names of \code{x}. The degrees of freedom are provided in the attribute \code{df}. For the F-tests, if \code{var.equal} is 'FALSE', \code{nrow(x)+1} degree of freedoms are given, the first one is the first degree of freedom (it is the same for each row) and the other ones are the second degree of freedom (one for each row). } \references{B. L. Welch (1951), On the comparison of several mean values: an alternative approach. Biometrika, *38*, 330-336} \author{Wolfgang Huber } \seealso{\code{\link[multtest:mt.teststat]{mt.teststat}}} \examples{ ## ## example data ## x = matrix(runif(40), nrow=4, ncol=10) f2 = factor(floor(runif(ncol(x))*2)) f4 = factor(floor(runif(ncol(x))*4)) ## ## one- and two group row t-test; 4-group F-test ## r1 = rowttests(x) r2 = rowttests(x, f2) r4 = rowFtests(x, f4) ## approximate equality about.equal = function(x,y,tol=1e-10) stopifnot(is.numeric(x), is.numeric(y), length(x)==length(y), all(abs(x-y) < tol)) ## ## compare with the implementation in t.test ## for (j in 1:nrow(x)) { s1 = t.test(x[j,]) about.equal(s1$statistic, r1$statistic[j]) about.equal(s1$p.value, r1$p.value[j]) s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) dm = -diff(tapply(x[j,], f2, mean)) about.equal(dm, r2$dm[j]) s4 = summary(lm(x[j,] ~ f4)) about.equal(s4$fstatistic["value"], r4$statistic[j]) } ## ## colttests ## c2 = colttests(t(x), f2) stopifnot(identical(r2, c2)) ## ## missing values ## f2n = f2 f2n[sample(length(f2n), 3)] = NA r2n = rowttests(x, f2n) for(j in 1:nrow(x)) { s2n = t.test(x[j,] ~ f2n, var.equal=TRUE) about.equal(s2n$statistic, r2n$statistic[j]) about.equal(s2n$p.value, r2n$p.value[j]) } ## ## larger sample size ## x = matrix(runif(1000000), nrow=4, ncol=250000) f2 = factor(floor(runif(ncol(x))*2)) r2 = rowttests(x, f2) for (j in 1:nrow(x)) { s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) } ## single row matrix rowFtests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5)))) rowttests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5)))) } \keyword{math} genefilter/man/rowROC-class.Rd0000644000175100017510000000673012607264530017251 0ustar00biocbuildbiocbuild\name{rowROC-class} \docType{class} \alias{rowROC} \alias{rowROC-class} \alias{pAUC} \alias{AUC} \alias{sens} \alias{spec} \alias{area} \alias{pAUC,rowROC,numeric-method} \alias{plot,rowROC,missing-method} \alias{AUC,rowROC-method} \alias{spec,rowROC-method} \alias{sens,rowROC-method} \alias{area,rowROC-method} \alias{show,rowROC-method} \alias{[,rowROC-method} \title{Class "rowROC"} \description{A class to model ROC curves and corresponding area under the curve as produced by rowpAUCs.} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("rowROC", ...)}. } \section{Slots}{ \describe{ \item{\code{data}:}{Object of class \code{"matrix"} The input data.} \item{\code{ranks}:}{Object of class \code{"matrix"} The ranked input data. } \item{\code{sens}:}{Object of class \code{"matrix"} Matrix of senitivity values for each gene at each cutpoint. } \item{\code{spec}:}{Object of class \code{"matrix"} Matrix of specificity values for each gene at each cutpoint.} \item{\code{pAUC}:}{Object of class \code{"numeric"} The partial area under the curve (integrated from 0 to \code{p}. } \item{\code{AUC}:}{Object of class \code{"numeric"} The total area under the curve. } \item{\code{factor}:}{Object of class \code{"factor"} The factor used for classification.} \item{\code{cutpoints}:}{Object of class \code{"matrix"} The values of the cutpoints at which specificity ans sensitivity was calculated. (Note: the data is ranked prior to computation of ROC curves, the cutpoints map to the ranked data.} \item{\code{caseNames}:}{Object of class \code{"character"} The names of the two classification cases.} \item{\code{p}:}{Object of class \code{"numeric"} The limit to which \code{pAUC} is integrated. } } } \section{Methods}{ \describe{ \item{show \code{signature(object="rowROC")}}{Print nice info about the object.} \item{[ \code{signature(x="rowROC", j="missing")}}{Subset the object according to rows/genes.} \item{plot \code{signature(x="rowROC", y="missing")}}{Plot the ROC curve of the first row of the object along with the \code{pAUC}. To plot the curve for a specific row/gene subsetting should be done first (i.e. \code{plot(rowROC[1])}.} \item{pAUC \code{signature(object="rowROC", p="numeric", flip="logical")}}{Integrate area under the curve from \code{0} to \code{p}. This method returns a new \code{rowROC} object.} \item{AUC \code{signature(object="rowROC")}}{Integrate total area under the curve. This method returns a new \code{rowROC} object.} \item{sens \code{signature(object="rowROC")}}{Accessor method for sensitivity slot.} \item{spec \code{signature(object="rowROC")}}{Accessor method for specificity slot.} \item{area \code{signature(object="rowROC", total="logical")}}{Accessor method for pAUC slot.} } } \references{Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from microarray experiments. \emph{Biometrics. 2003 Mar;59(1):133-42.}} \author{Florian Hahne } \seealso{ \code{\link[genefilter:rowpAUCs]{rowpAUCs}} } \examples{ library(Biobase) require(genefilter) data(sample.ExpressionSet) roc <- rowpAUCs(sample.ExpressionSet, "sex", p=0.5) roc area(roc[1:3]) if(interactive()) { par(ask=TRUE) plot(roc) plot(1-spec(roc[1]), sens(roc[2])) par(ask=FALSE) } pAUC(roc, 0.1) roc } \keyword{classes} genefilter/man/rowSds.Rd0000644000175100017510000000210012607264530016237 0ustar00biocbuildbiocbuild\name{rowSds} \alias{rowSds} \alias{rowVars} \title{Row variance and standard deviation of a numeric array} \description{ Row variance and standard deviation of a numeric array } \usage{ rowVars(x, ...) rowSds(x, ...) } \arguments{ \item{x}{An array of two or more dimensions, containing numeric, complex, integer or logical values, or a numeric data frame.} \item{...}{Further arguments that get passed on to \code{\link{rowMeans}} and \code{\link{rowSums}}.} } \value{ A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The `dimnames' (or `names' for a vector result) are taken from the original array. } \details{These are very simple convenience functions, the main work is done in \code{\link{rowMeans}} and \code{\link{rowSums}}. See the function definition of \code{rowVars}, it is very simple. } \author{Wolfgang Huber \url{http://www.ebi.ac.uk/huber}} \seealso{\code{\link{rowMeans}} and \code{\link{rowSums}}} \examples{ a = matrix(rnorm(1e4), nrow=10) rowSds(a) } \keyword{array} \keyword{manip} genefilter/man/rowpAUCs.Rd0000644000175100017510000001305212607264530016471 0ustar00biocbuildbiocbuild\name{rowpAUCs-methods} \docType{methods} \alias{rowpAUCs-methods} \alias{rowpAUCs} \alias{rowpAUCs,matrix,factor-method} \alias{rowpAUCs,matrix,numeric-method} \alias{rowpAUCs,ExpressionSet,ANY-method} \alias{rowpAUCs,ExpressionSet,character-method} \title{Rowwise ROC and pAUC computation} \description{Methods for fast rowwise computation of ROC curves and (partial) area under the curve (pAUC) using the simple classification rule \code{x > theta}, where \code{theta} is a value in the range of \code{x} } \usage{ rowpAUCs(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")) } \arguments{ \item{x}{\code{ExpressionSet} or numeric \code{matrix}. The \code{matrix} must not contain \code{NA} values.} \item{fac}{A \code{factor} or \code{numeric} or \code{character} that can be coerced to a \code{factor}. If \code{x} is an \code{ExpressionSet}, this may also be a character \code{vector} of length 1 with the name of a covariate variable in \code{x}. \code{fac} must have exactly 2 levels. For better control over the classification, use integer values in 0 and 1, where 1 indicates the "Disease" class in the sense of the Pepe et al paper (see below).} \item{p}{Numeric \code{vector} of length 1. Limit in (0,1) to integrate pAUC to.} \item{flip}{Logical. If \code{TRUE}, both classification rules \code{x > theta} and \code{x < theta} are tested and the (partial) area under the curve of the better one of the two is returned. This is appropriate for the cases in which the classification is not necessarily linked to higher expression values, but instead it is symmetric and one would assume both over- and under-expressed genes for both classes. You can set \code{flip} to \code{FALSE} if you only want to screen for genes which discriminate Disease from Control with the \code{x > theta} rule.} \item{caseNames}{The class names that are used when plotting the data. If \code{fac} is the name of the covariate variable in the \code{ExpressionSet} the function will use its levels as \code{caseNames}.} } \details{ Rowwise calculation of Receiver Operating Characteristic (ROC) curves and the corresponding partial area under the curve (pAUC) for a given data matrix or \code{ExpressionSet}. The function is implemented in C and thus reasonably fast and memory efficient. Cutpoints (\code{theta} are calculated before the first, in between and after the last data value. By default, both classification rules \code{x > theta} and \code{x < theta} are tested and the (partial) area under the curve of the better one of the two is returned. This is only valid for symmetric cases, where the classification is independent of the magnitude of \code{x} (e.g., both over- and under-expression of different genes in the same class). For unsymmetric cases in which you expect x to be consistently higher/lower in of of the two classes (e.g. presence or absence of a single biomarker) set \code{flip=FALSE} or use the functionality provided in the \code{ROC} package. For better control over the classification (i.e., the choice of "Disease" and "Control" class in the sense of the Pepe et al paper), argument \code{fac} can be an integer in \code{[0,1]} where 1 indicates "Disease" and 0 indicates "Control". } \section{Methods}{ \describe{ Methods exist for \code{rowPAUCs}: \item{rowPAUCs}{\code{signature(x="matrix", fac="factor")}} \item{rowPAUCs}{\code{signature(x="matrix", fac="numeric")}} \item{rowPAUCs}{\code{signature(x="ExpressionSet")}} \item{rowPAUCs}{\code{signature(x="ExpressionSet", fac="character")}} } } \value{ An object of class \code{\link[genefilter:rowROC-class]{rowROC}} with the calculated specificities and sensitivities for each row and the corresponding pAUCs and AUCs values. See \code{\link[genefilter:rowROC-class]{rowROC}} for details. } \references{Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from microarray experiments. \emph{Biometrics. 2003 Mar;59(1):133-42.}} \author{Florian Hahne } \seealso{\code{\link[ROC:rocdemo.sca]{rocdemo.sca}, \link[ROC:AUC]{pAUC}, \link[genefilter:rowROC-class]{rowROC}}} \examples{ library(Biobase) data(sample.ExpressionSet) r1 = rowttests(sample.ExpressionSet, "sex") r2 = rowpAUCs(sample.ExpressionSet, "sex", p=0.1) plot(area(r2, total=TRUE), r1$statistic, pch=16) sel <- which(area(r2, total=TRUE) > 0.7) plot(r2[sel]) ## this compares performance and output of rowpAUCs to function pAUC in ## package ROC if(require(ROC)){ ## performance myRule = function(x) pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 , data = x, rule = dxrule.sca), t0 = 0.1) nGenes = 200 cat("computation time for ", nGenes, "genes:\n") cat("function pAUC: ") print(system.time(r3 <- esApply(sample.ExpressionSet[1:nGenes, ], 1, myRule))) cat("function rowpAUCs: ") print(system.time(r2 <- rowpAUCs(sample.ExpressionSet[1:nGenes, ], "sex", p=1))) ## compare output myRule2 = function(x) pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 , data = x, rule = dxrule.sca), t0 = 1) r4 <- esApply(sample.ExpressionSet[1:nGenes, ], 1, myRule2) plot(r4,area(r2), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") plot(r4, area(rowpAUCs(sample.ExpressionSet[1:nGenes, ], "sex", p=1, flip=FALSE)), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") r4[r4<0.5] <- 1-r4[r4<0.5] plot(r4, area(r2), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") } } \keyword{math} genefilter/man/shorth.Rd0000644000175100017510000000541412607264530016300 0ustar00biocbuildbiocbuild\name{shorth} \alias{shorth} \title{A location estimator based on the shorth} \description{A location estimator based on the shorth} \usage{shorth(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05)} \arguments{ \item{x}{Numeric} \item{na.rm}{Logical. If \code{TRUE}, then non-finite (according to \code{\link{is.finite}}) values in \code{x} are ignored. Otherwise, presence of non-finite or \code{NA} values will lead to an error message.} \item{tie.action}{Character scalar. See details.} \item{tie.limit}{Numeric scalar. See details.} } \details{The shorth is the shortest interval that covers half of the values in \code{x}. This function calculates the mean of the \code{x} values that lie in the shorth. This was proposed by Andrews (1972) as a robust estimator of location. Ties: if there are multiple shortest intervals, the action specified in \code{ties.action} is applied. Allowed values are \code{mean} (the default), \code{max} and \code{min}. For \code{mean}, the average value is considered; however, an error is generated if the start indices of the different shortest intervals differ by more than the fraction \code{tie.limit} of \code{length(x)}. For \code{min} and \code{max}, the left-most or right-most, respectively, of the multiple shortest intervals is considered. Rate of convergence: as an estimator of location of a unimodal distribution, under regularity conditions, the quantity computed here has an asymptotic rate of only \eqn{n^{-1/3}} and a complicated limiting distribution. See \code{\link{half.range.mode}} for an iterative version that refines the estimate iteratively and has a builtin bootstrapping option. } \value{The mean of the \code{x} values that lie in the shorth.} \references{ \itemize{ \item G Sawitzki, \dQuote{The Shorth Plot.} Available at http://lshorth.r-forge.r-project.org/TheShorthPlot.pdf \item DF Andrews, \dQuote{Robust Estimates of Location.} Princeton University Press (1972). \item R Grueble, \dQuote{The Length of the Shorth.} Annals of Statistics 16, 2:619-628 (1988). \item DR Bickel and R Fruehwirth, \dQuote{On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications.} Computational Statistics & Data Analysis 50, 3500-3530 (2006). } } \author{Wolfgang Huber \url{http://www.ebi.ac.uk/huber}, Ligia Pedroso Bras} \seealso{\code{\link{half.range.mode}}} \examples{ x = c(rnorm(500), runif(500) * 10) methods = c("mean", "median", "shorth", "half.range.mode") ests = sapply(methods, function(m) get(m)(x)) if(interactive()) { colors = 1:4 hist(x, 40, col="orange") abline(v=ests, col=colors, lwd=3, lty=1:2) legend(5, 100, names(ests), col=colors, lwd=3, lty=1:2) } } \keyword{arith} genefilter/man/tdata.Rd0000644000175100017510000000067412607264530016071 0ustar00biocbuildbiocbuild\name{tdata} \alias{tdata} \non_function{} \title{A small test dataset of Affymetrix Expression data. } \usage{data(tdata)} \description{ The \code{tdata} data frame has 500 rows and 26 columns. The columns correspond to samples while the rows correspond to genes. The row names are Affymetrix accession numbers. } \format{ This data frame contains 26 columns. } \source{ An unknown data set. } \examples{ data(tdata) } \keyword{datasets} genefilter/man/ttest.Rd0000644000175100017510000000314012607264530016126 0ustar00biocbuildbiocbuild\name{ttest} \alias{ttest} \title{A filter function for a t.test } \description{ \code{ttest} returns a function of one argument with bindings for \code{cov} and \code{p}. The function, when evaluated, performs a t-test using \code{cov} as the covariate. It returns \code{TRUE} if the p value for a difference in means is less than \code{p}. } \usage{ ttest(m, p=0.05, na.rm=TRUE) } \arguments{ \item{m}{If \code{m} is of length one then it is assumed that elements one through \code{m} of \code{x} will be one group. Otherwise \code{m} is presumed to be the same length as \code{x} and constitutes the groups.} \item{p}{ The p-value for the test. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ When the data can be split into two groups (diseased and normal for example) then we often want to select genes on their ability to distinguish those two groups. The t-test is well suited to this and can be used as a filter function. This helper function creates a t-test (function) for the specified covariate and considers a gene to have passed the filter if the p-value for the gene is less than the prespecified \code{p}. } \value{ \code{ttest} returns a function with bindings for \code{m} and \code{p} that will perform a t-test. } \author{R. Gentleman } \seealso{\code{\link{kOverA}}, \code{\link{Anova}}, \code{\link{t.test}} } \examples{ dat <- c(rep(1,5),rep(2,5)) set.seed(5) y <- rnorm(10) af <- ttest(dat, .01) af(y) af2 <- ttest(5, .01) af2(y) y[8] <- NA af(y) af2(y) y[1:5] <- y[1:5]+10 af(y) } \keyword{manip} genefilter/src/0000755000175100017510000000000012607321410014501 5ustar00biocbuildbiocbuildgenefilter/src/genefilter.h0000644000175100017510000000032212607321410016773 0ustar00biocbuildbiocbuild/* Copyright Bioconductor Foundation NA, 2007, all rights reserved */ #include #include void gf_distance(double *x, double *kval, int *nr, int *nc, double *d, int *diag, int *method); genefilter/src/half_range_mode.cpp0000755000175100017510000000632712607321410020312 0ustar00biocbuildbiocbuild#include #include #include using namespace std; double half_range_mode( double *start, double *end, double beta, int diag ) { // The end pointer is one step beyond the data... double w, w_prime; double *last, *new_start, *new_end; vector counts, J; vector w_range; int i, s, e; int N, N_prime, N_double_prime; double lo, hi; last = end - 1; N = end - start; // How many elements are in the set? Terminate recursion appropriately... switch ( N ) { case 1: return *start; case 2: return .5 * ( *start + *last ); // Main recursive code begins here default: w = beta * ( *last - *start ); // If all values are identical, return immediately... if ( w == 0 ) return *start; // If we're at the end of the data, counts can only get worse, so there's no point in continuing... e = 0; for( s = 0; s < N && e < N; s++ ) { while ( e < N && start[ e ] <= start[ s ] + w ) { e++; } counts.push_back( e - s ); } // Maximum count, and its multiplicity N_prime = *( max_element( counts.begin(), counts.end() ) ); for ( i = 0; i < (int) counts.size(); i++ ) if ( counts[i] == N_prime ) J.push_back( i ); // Do we have more than one maximal interval? if ( J.size() == 1 ) { // No... the interval's unique. new_start = start + J[0]; new_end = start + J[0] + N_prime; } else { // Yes.. What's the smallest range? for ( i = 0; i < (int) J.size(); i++ ) w_range.push_back( start[ J[i] + N_prime - 1 ] - start[ J[i] ] ); w_prime = *( min_element( w_range.begin(), w_range.end() ) ); // Set new start and end. We skip the more cumbersome V.min and V.max of the Bickel algorithm i = 0; while( w_range[ i ] > w_prime ) i++; new_start = start + J[i]; new_end = start + J[i] + N_prime; // If there are any more maximal-count, minimal-range intervals, adjust // new_end accordingly. for ( i++; i < (int) J.size(); i++ ) if ( w_range[ i ] == w_prime ) new_end = start + J[i] + N_prime; } // Adjustments in rare cases where the interval hasn't shrunk. Trim one end, // the other, or both if lo == hi. Originally, this was inside the else // block above. With discrete data with a small number of levels, it is // possible, however for |J| = 1 AND N_double_prime = N, leading to an // infinite recursion. N_double_prime = new_end - new_start; if (N_double_prime == N ) { lo = new_start[1] - new_start[0]; hi = new_start[ N - 1 ] - new_start[ N - 2 ]; if ( lo <= hi ) { new_end--; } if ( lo >= hi ) { new_start++; } } // Diagnostic output if requested if (diag) Rprintf( "N = %i, N'' = %i, w = %.4f, |J| = %i\n", N, N_double_prime, w, J.size() ); // Clean up and then go in recursively counts.clear(); J.clear(); w_range.clear(); return half_range_mode( new_start, new_end, beta, diag ); } } extern "C" { void half_range_mode( double *data, int *n, double *beta, int *diag, double *M ) { // We assume that that data is already sorted for us... *M = half_range_mode( data, data + *n, *beta, *diag ); } } genefilter/src/init.c0000644000175100017510000000054212607321410015611 0ustar00biocbuildbiocbuild/* Copyright Bioconductor Foundation of NA, 2007, all rights reserved */ #include "R.h" #include "genefilter.h" #include "R_ext/Rdynload.h" static const R_CMethodDef CEntries[] = { {"gf_distance", (DL_FUNC) &gf_distance, 10}, {NULL, NULL, 0} }; void R_init_genefilter(DllInfo *dll) { R_registerRoutines(dll, CEntries, NULL, NULL, NULL); } genefilter/src/nd.c0000644000175100017510000002016412607321410015251 0ustar00biocbuildbiocbuild/* Copyright The Bioconductor Foundation 2007, all rights reserved */ /* this is patterned on the R code in library/stats/src/distance.c as we want to have similar values, but does not handle NA/Inf identically, allows weights and solves the problem of finding distances to a particular value, not necessarily all pairwise distances */ /* Modified in April 2007 for use with S-PLUS ArrayAnalyzer by Insightful Corp. Replaced all int declarations with RSInt declarations. RSInt is defined in S-PLUS's R.h as: typedef long RSInt; Other changes are if-def-ed with if defined(_R_) around the original code. */ /* and further modified since S.h in R defines USING_R - not _R_ !! */ #include "S.h" #if defined(USING_R) /*( R-specific stuff */ #define S_CDECL typedef int RSInt; #ifdef HAVE_CONFIG_H # include #endif /* we need this first to get the right options for math.h */ #include #include #include #include #include "R_ext/Error.h" #include "R_ext/Applic.h" #else /*) Splus-specific stuff */ #define S_COMPATIBILITY 1 #include "rsplus.h" #endif typedef struct { RSInt geneNum; double geneDist; } gene_t; static void detectTies(RSInt geneNum, RSInt nResults, RSInt nRows, gene_t *data) { /* Will scan through the first nResults+1 distances in the */ /* data array, and if it detects any ties, will flag a R */ /* warning */ RSInt i; /* Loop indices */ /* If nResults == nRows, do not exceed nResults - otherwise exceed it */ /* by 1 in order to see if there were trailing ties */ if (nResults == nRows) { nResults = nRows-1; } for (i = 1; i < nResults; i++) { if (data[i].geneDist == data[i+1].geneDist) { PROBLEM "There are distance ties in the data for gene %d\n",geneNum WARN; break; } } } static int S_CDECL distCompare(const void *p1, const void *p2) { const gene_t *i = p1; const gene_t *j = p2; if (!R_FINITE(i->geneDist )) return(1); if (!R_FINITE(j->geneDist)) return(-1); if (i->geneDist > j->geneDist) return (1); if (i->geneDist < j->geneDist) return (-1); return (0); } static double gf_correlation(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { RSInt i; /* Loop index */ RSInt a,b; /* Used as array indices for i1 and i2 */ double xAvg, yAvg; /* Averages of the i1 and i2 rows */ double wA, wB; /* Weighted x[a] and x[b] */ double upTot = 0; /* Upper summation */ double botTotL, botTotR; /* The lower two summations */ double botVal; /* Bottom value for Rho */ double Rho, ans; botTotL = botTotR = 0; xAvg = yAvg = 0; a = i1; b = i2; /* Calculate the averages for the i1 and i2 rows */ for (i = 0; i < nc; i++) { if (R_FINITE(x[a])) { xAvg += (wval[i] * x[a]); } if (R_FINITE(x[b])) { yAvg += (wval[i] * x[b]); } a += nr; b += nr; } xAvg /= (double)nc; yAvg /= (double)nc; /* Reset a & b */ a = i1; b = i2; /* Build up the three summations in the equation */ for (i = 0; i < nc; i++) { if (R_FINITE(x[a]) && R_FINITE(x[b])) { wA = (x[a] - xAvg); wB = (x[b] - yAvg); upTot += wval[i]*wA*wB; botTotL += wval[i]*pow(wA,2); botTotR += wval[i]*pow(wB,2); } a += nr; b += nr; } /* Compute Rho & Distance (1 - R) */ botVal = sqrt((botTotL * botTotR)); Rho = upTot / botVal; ans = 1 - Rho; return(ans); } static double gf_euclidean(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double dev, ans; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { dev = (x[i1] - x[i2]); dev = dev * dev; /* Apply weight and add the total */ ans += (wval[j] * dev); ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return sqrt(ans); } static double gf_maximum(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double dev, ans; RSInt ct, j; ct = 0; ans = -DBL_MAX; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { dev = fabs(x[i1] - x[i2]); /* apply the weight */ dev *= wval[j]; if(dev > ans) ans = dev; ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; return ans; } static double gf_manhattan(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double ans; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { ans += (wval[j] * fabs(x[i1] - x[i2])); ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return ans; } static double gf_canberra(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double ans, sum, diff; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { sum = fabs(x[i1] + x[i2]); diff = fabs(x[i1] - x[i2]); if (sum > DBL_MIN || diff > DBL_MIN) { ans += wval[j]*(diff/sum); ct++; } } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return ans; } static double gf_dist_binary(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { RSInt total, ct, ans; RSInt j; total = 0; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { if(x[i1] || x[i2]){ ct += wval[j]; if( !(x[i1] && x[i2]) ) ans += wval[j]; } total++; } i1 += nr; i2 += nr; } if(total == 0) return NA_REAL; if(ct == 0) return 0; return (double) ans / ct; } enum { EUCLIDEAN=1, MAXIMUM, MANHATTAN, CANBERRA, CORRELATION, BINARY}; /* == 1,2,..., defined by order in the R function dist */ void gf_distance(double *x, RSInt *nr, RSInt *nc, RSInt *g, double *d, RSInt *iRow, RSInt *nInterest, RSInt *nResults, RSInt *method, double *wval) { /* x -> Data Array nr -> Number of rows in X nc -> number of columns in X g -> The nResults closest genes to the genes of interest d -> The distances of the genes from g, 1 to 1 mapping iRow -> rows of X that we are interested in nInterest -> Number of elements in iRow nResults -> The top X results to pass back method -> which distance method to use */ RSInt i,j, k; /* Loop indices */ RSInt baseIndex; /* Used to index data arrays */ gene_t *tmp; /* Temporary array to hold the distance data */ double (*distfun)(double*, double*, RSInt, RSInt, RSInt, RSInt) = NULL; /* Sanity check the nResults vs. number of rows in the data */ if (*nResults > *nr) { warning("Number of results selected is greater than number of rows, using the number of rows instead\n"); *nResults = *nr-1; } /* Size of tmp == *nr, as each gene we're interested in will generate *nr distance points */ tmp = (gene_t *)R_alloc(*nr, sizeof(gene_t)); /* Determine which distance function to use */ switch(*method) { case EUCLIDEAN: distfun = gf_euclidean; break; case MAXIMUM: distfun = gf_maximum; break; case MANHATTAN: distfun = gf_manhattan; break; case CANBERRA: distfun = gf_canberra; break; case CORRELATION: distfun = gf_correlation; break; case BINARY: distfun = gf_dist_binary; break; default: error("invalid distance"); } for (j = 0; j < *nInterest; j++) { /* Get the distances for this gene, store in tmp array */ for(i = 0 ; i < (*nr) ; i++) { tmp[i].geneNum = i; tmp[i].geneDist = distfun(x, wval, *nr, *nc, iRow[j]-1, i); } /* Run a sort on the temp array */ qsort(tmp, *nr, sizeof(gene_t), distCompare); /* Detect any ties */ detectTies(iRow[j], *nResults, *nr, tmp); /* Copy the 1<->nResults data points into the final array */ baseIndex = *nResults * j; for (k = 1; k <= *nResults; k++) { g[baseIndex + (k-1)] = tmp[k].geneNum; d[baseIndex + (k-1)] = tmp[k].geneDist; } } } genefilter/src/pAUC.c0000644000175100017510000001152012607321410015434 0ustar00biocbuildbiocbuild/* * F. Hahne 10/24/2006 */ #include #include #include #include #include #include /*----------------------------------------------------------------- internal c function for calculation of pAUCs -----------------------------------------------------------------*/ void pAUC_c(double *spec, double *sens, double *area, double *auc, double *p, int columns, int rows, int flip) { int i, j, k, d; double *x, *y; double a, ta, tmp, lim, xsum ,ysum; x = (double *) R_alloc(columns+1, sizeof(double)); y = (double *) R_alloc(columns+1, sizeof(double)); /* this computes pAUC for roc curve in row k*/ for(k=0; k ysum){ for(i=k*columns,d=0; i x[d]){ for(i=0, j=d; i<=d/2; i++, j--){ tmp=x[i]; x[i]=x[j]; x[j]=tmp; tmp=y[i]; y[i]=y[j]; y[j]=tmp; } } x[columns]=1; y[columns]=y[columns-1]; /* compute area by trapezoidal rule*/ lim = x[0] < (*p) ? x[0] : *p; /*right border of first segment*/ a = (lim*y[0])/2; /*area of 1. segement (from x1=0 to x2=lim)*/ i=1; while(x[i] < (*p)){ a += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } if(i > 2) /*last segment (from xn to p)*/ a += (((*p)-x[i-1])*(y[i]-y[i-1])/2) + (((*p)-x[i-1])*y[i-1]); ta = a; /*compute full AUC and flip curve if necessary*/ if((*p) < 1){ ta += ((x[i]-(*p))*(y[i]-y[i-1])/2) + ((x[i]-(*p))*y[i-1]); i++; while(i < columns+1 && x[i] < 1){ ta += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } ta += ((1-x[i-1])*(1-y[i-1])/2) + ((1-x[i-1])*y[i-1]); }else{ d=1; } if(flip && (*p)==1 && ta < 0.5){ /*rotate 180° if area < 0.5*/ a = (*p) - a; ta = 1-ta; } if(a>1){ error("Internal error"); } area[k] = a; auc[k] = ta; } } /*----------------------------------------------------------------- interface to R with arguments: spec : matrix of numerics (specificity) sens: matrix of numerics (sensitivity) p: numeric in 01)) error("'p' must be between 0 and 1."); /* done with p */ /* check input argument flip */ if(!isInteger(_flip)) error("'flip' must be an integer."); flip = (int)INTEGER(_flip)[0]; /* done with flip */ /* allocate memory for return values */ PROTECT(area = allocVector(REALSXP, columns)); PROTECT(auc = allocVector(REALSXP, columns)); /* Do it! */ pAUC_c(spec, sens, REAL(area), REAL(auc), p, rows, columns, flip); /* return value: a list with elements spec sens and area */ PROTECT(res = allocVector(VECSXP, 2)); SET_VECTOR_ELT(res, 0, area); SET_VECTOR_ELT(res, 1, auc); PROTECT(namesres = allocVector(STRSXP, 2)); SET_STRING_ELT(namesres, 0, mkChar("pAUC")); SET_STRING_ELT(namesres, 1, mkChar("AUC")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(4); /* done with res, namesres, pAUC, auc */ return(res); } genefilter/src/rowPAUCs.c0000644000175100017510000001475612607321410016325 0ustar00biocbuildbiocbuild/* * F. Hahne 10/26/2005 */ #include #include #include #include #include #include /*----------------------------------------------------------------- internal c function for calculation of ROC curves and pAUCs -----------------------------------------------------------------*/ void ROCpAUC_c(double *data, int nrd, int ncd, double *cutp, int ncc, int *truth, double *spec, double *sens, double *area, double *auc, double *p, int flip) { int i, j, k, pred, d, rsum, csum, rcount, ccount; double *x, *y; double a, ta, tmp, lim, xsum, ysum; x = (double *) R_alloc(ncc+1, sizeof(double)); y = (double *) R_alloc(ncc+1, sizeof(double)); /* this code computes roc for a given n * n matrix at given cut points */ //printf("Computing ROC curves for %d rows at %d cutpoints ...\n", nrd, ncc); for(k=0; k cutp[i]) ? 1 : 0; if(truth[d] == 1){ rsum += pred; rcount++; } else{ csum+=(1-pred); ccount++; } } /* for j (columns)*/ sens[i] = (double)rsum/rcount; spec[i] = (double)csum/ccount; } /* for i (cutpoints)*/ /* this computes pAUC for roc curve in row k*/ xsum = ysum = 0; for(i=k,d=0; i ysum){ for(i=k,d=0; i x[d]){ for(i=0, j=d; i<=(d+1)/2; i++, j--){ tmp=x[i]; x[i]=x[j]; x[j]=tmp; tmp=y[i]; y[i]=y[j]; y[j]=tmp; } } x[ncc] = 1; y[ncc] = y[ncc-1]; /* compute area by trapezoidal rule*/ lim = x[0] < (*p) ? x[0] : *p; /*right border of first segment*/ a = (lim*y[0])/2; /*area of 1. segement (from x1=0 to x2=lim)*/ i=1; while(x[i] < (*p)){ a += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } if(i > 2){ /*last segment (from xn to p)*/ a += (((*p)-x[i-1])*(y[i]-y[i-1])/2) + (((*p)-x[i-1])*y[i-1]); } ta = a; /*compute full AUC and flip curve if necessary*/ if((*p) < 1){ ta += ((x[i]-(*p))*(y[i]-y[i-1])/2) + ((x[i]-(*p))*y[i-1]); i++; while(i < ncc+1 && x[i] < 1){ ta += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } ta += ((1-x[i-1])*(1-y[i-1])/2) + ((1-x[i-1])*y[i-1]); } if(flip && (*p)==1 && ta < 0.5){ /*rotate 180° if area < 0.5*/ a = (*p) - a; ta = 1-ta; } if(a>1) error("Internal error"); area[k] = a; auc[k] = ta; } } /*----------------------------------------------------------------- interface to R with arguments: data : matrix of numerics cutpts: matrix with treshholds for ROC curve calculation truth: int with values 0 and 1, defining the real classification p: numeric in 0=0)&&(truth[i]<=1))) ) error("Elements of 'truth' must be 0 or 1."); /* done with truth */ /* check input argument p */ if(!isReal(_p) || length(_p)!=1) error("'p' must be numeric."); p = REAL(_p); if(((*p)<0)||((*p)>1)) error("'p' must be between 0 and 1."); /* done with p */ /* check input argument flip */ if(!isInteger(_flip)) error("'flip' must be an integer."); flip = (int)INTEGER(_flip)[0]; /* done with flip */ /* allocate memory for return values */ PROTECT(spec = allocVector(REALSXP, nrd*ncc)); PROTECT(sens = allocVector(REALSXP, nrd*ncc)); PROTECT(dim = allocVector(INTSXP, 2)); INTEGER(dim)[0] = nrd; INTEGER(dim)[1] = ncc; SET_DIM(spec, dim); SET_DIM(sens, dim); PROTECT(area = allocVector(REALSXP, nrd)); PROTECT(auc = allocVector(REALSXP, nrd)); /* Do it! */ /* note nrc is the same as nrd */ ROCpAUC_c(data, nrd, ncd, cutp, ncc, truth, REAL(spec), REAL(sens), REAL(area), REAL(auc), p, flip); /* return value: a list with elements spec sens and pAUC */ PROTECT(res = allocVector(VECSXP, 4)); SET_VECTOR_ELT(res, 0, spec); SET_VECTOR_ELT(res, 1, sens); SET_VECTOR_ELT(res, 2, area); SET_VECTOR_ELT(res, 3, auc); PROTECT(namesres = allocVector(STRSXP, 4)); SET_STRING_ELT(namesres, 0, mkChar("spec")); SET_STRING_ELT(namesres, 1, mkChar("sens")); SET_STRING_ELT(namesres, 2, mkChar("pAUC")); SET_STRING_ELT(namesres, 3, mkChar("AUC")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(7); /* done with res, namesres, spec, sens, dim, pAUC */ return(res); } genefilter/src/rowttests.c0000644000175100017510000001421512607321410016726 0ustar00biocbuildbiocbuild/* * Copyright W. Huber 2005 */ #include #include #include #include #include /* #define DEBUG */ char errmsg[256]; /*----------------------------------------------------------------- which=0: t-test by row which=1: t-test by column -----------------------------------------------------------------*/ void rowcolttests_c(double *x, int *fac, int nr, int nc, int no, int nt, int which, int nrgrp, double *statistic, double *dm, double *df) { int i, j, grp; double z, delta, newmean, factor; /* Currently the following provides for one- and two-sample t-tests (nrgrp=1 or 2), but it should be possible to generalize this code to more samples (F-test) without too many changes */ int n[2]; double* s[2]; double* ss[2]; if(nrgrp>2) error("Please do not use 'nrgrp' >2 with 'rowcolttests'"); /* allocate and initialize storage for intermediate quantities (namely first and second moments for each group) */ for(grp=0; grp=0)&&(fac[i]=0 and < 'nrgrp'."); PROTECT(statistic = allocVector(REALSXP, nt)); PROTECT(dm = allocVector(REALSXP, nt)); PROTECT(df = allocVector(REALSXP, 1)); /* Do it */ rowcolttests_c(x, fac, nr, nc, no, nt, which, nrgrp, REAL(statistic), REAL(dm), REAL(df)); /* return value: a list with two elements, statistic and df */ PROTECT(res = allocVector(VECSXP, 3)); SET_VECTOR_ELT(res, 0, statistic); SET_VECTOR_ELT(res, 1, dm); SET_VECTOR_ELT(res, 2, df); PROTECT(namesres = allocVector(STRSXP, 3)); SET_STRING_ELT(namesres, 0, mkChar("statistic")); SET_STRING_ELT(namesres, 1, mkChar("dm")); SET_STRING_ELT(namesres, 2, mkChar("df")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(5); /* done with res, namesres, statistic, dm, df */ return(res); } genefilter/src/ttest.f0000644000175100017510000000330012607321410016007 0ustar00biocbuildbiocbuildc By R Gray, March 19, 2000, DFCI c Copyright (C) 2000 Robert Gray c Distributed under the GNU public license c c t-statistics c first ng1 columns of d assumed to be group 1, other ng-ng1 assumed to be c group2. Note: single precision stats c c Modified by R. Gentleman, 2004, just extracted the ttest stats and c computed a ratio on demand - or fold-change subroutine fastt(d,n,ng,ng1,z,dm,eqv,ratio) real d(n,ng),z(n),dm(n) integer n,ng,ng1,ng2,eqv,ratio c initialize ng2=ng-ng1 do 61 i=1,n call tst2GM(d(i,1),ng1,ng2,n,z(i),dm(i), eqv, ratio) 61 continue return end subroutine tst2GM(d,ng1,ng2,n,tst,dm,eqv, ratio) c columns 1 to ng1 in group 1, ng1+1 to ng1+ng2 in group 2 real d(n,ng1+ng2),tst,dm double precision dm1,dm2,dss1,dss2 integer ng1,ng2,n,i,eqv, ratio dm1=0 dm2=0 dss1=0 dss2=0 do 10 i=1,ng1 dm1=dm1+d(1,i) 10 continue dm1=dm1/ng1 do 11 i=1,ng1 dss1=dss1+(d(1,i)-dm1)**2 11 continue do 12 i=1,ng2 dm2=dm2+d(1,ng1+i) 12 continue dm2=dm2/ng2 do 13 i=1,ng2 dss2=dss2+(d(1,ng1+i)-dm2)**2 13 continue if( ratio.eq.0) then dm=dm1-dm2 endif if( ratio.eq.1) then dm=dm1/dm2 endif if (dss1.eq.0.and.dss2.eq.0) then tst=0 return endif c intermediate calculations in dp, so stats with many ties give same sp result c regardless of order of calculations if( eqv .eq. 1 ) then tst=(dm1-dm2)/sqrt((1.d0/ng1+1.d0/ng2)*(dss1+dss2)/(ng1+ng2-2)) return endif tst=(dm1-dm2)/sqrt(dss1/((ng1-1)*ng1)+dss2/((ng2-1)*ng2)) end genefilter/vignettes/0000755000175100017510000000000012607321410015722 5ustar00biocbuildbiocbuildgenefilter/vignettes/howtogenefilter.Rnw0000644000175100017510000001473112607264530021636 0ustar00biocbuildbiocbuild% % NOTE -- ONLY EDIT howtogenefilter.Rnw!!! % howtogenefilter.tex file will get overwritten. % %\VignetteIndexEntry{Using the genefilter function to filter genes from a microarray dataset} %\VignetteDepends{Biobase, genefilter, class} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{Using the genefilter function to filter genes from a microarray dataset} \maketitle \section*{Introduction} The {\em genefilter} package can be used to filter (select) genes from a microarray dataset according to a variety of different filtering mechanisms. Here, we will consider the example dataset in the \verb+sample.ExpressionSet+ example from the {\em Biobase} package. This experiment has 26 samples, and there are 500 genes and 3 covariates. The covariates are named \verb+sex+, \verb+type+ and \verb+score+. The first two have two levels and the last one is continuous. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) @ %$ One dichotomy that can be of interest for subsequent analyses is whether the filter is \emph{specific} or \emph{non-specific}. Here, specific means that we are filtering with reference to sample metadata, for example, \texttt{type}. For example, if we want to select genes that are differentially expressed in the two groups defined by \texttt{type}, that is a specific filter. If on the other hand we want to select genes that are expressed in more than 5 samples, that is an example of a non--specific filter. First, let us see how to perform a non--specific filter. Suppose we want to select genes that have an expression measure above 200 in at least 5 samples. To do that we use the function \verb+kOverA+. There are three steps that must be performed. \begin{enumerate} \item Create function(s) implementing the filtering criteria. \item Assemble it (them) into a (combined) filtering function. \item Apply the filtering function to the expression matrix. \end{enumerate} <<>>= f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) @ Here \verb+f1+ is a function that implies our ``expression measure above 200 in at least 5 samples'' criterion, the function \verb+ffun+ is the filtering function (which in this case consists of only one criterion), and we apply it using \verb+genefilter+. There were \Sexpr{sum(wh1)} genes that satisfied the criterion and passed the filter. As an example for a specific filter, let us select genes that are differentially expressed in the groups defined by \verb+type+. <<>>= f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) @ %$ Here, \texttt{ttest} is a function from the \texttt{genefilter} package which provides a suitable wrapper around \texttt{t.test} from package \textit{stats}. Now we see that there are \Sexpr{sum(wh2)} genes that satisfy the selection criterion. Suppose that we want to combine the two filters. We want those genes for which at least 5 have an expression measure over 200 \emph{and} which also are differentially expressed between the groups defined by \verb+type+. <<>>= ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) @ Now we see that there are only \Sexpr{sum(wh3)} genes that satisfy both conditions. %%FIXME: need to replace this with something else %Our last example is to select genes that are %differentially expressed in at least one of the three groups defined %by \verb+cov3+. %To do that we use an Anova filter. This filter uses an analysis of %variance appraoch (via the \verb+lm+) function to test the hypothesis %that at least one of the three group means is different from the other %%two. The test is applied, then the $p$--value computed. We select %those genes that have a low $p$--value. % %<<>>= %Afilter <- Anova(eset$cov3) %aff <- filterfun(Afilter) %wh4 <- genefilter(exprs(eset), aff) %sum(wh4) % %@ %%$ %We see that there are 14 genes that pass this filter and that are %candidates for further exploration. \section*{Selecting genes that appear useful for prediction} The function \texttt{knnCV} defined below performs $k$--nearest neighbour classification using leave--one--out cross--validation. At the same time it aggregates the genes that were selected. The function returns the predicted classifications as its returned value. However, there is an additional side effect. The number of times that each gene was used (provided it was at least one) are recorded and stored in the environment of the aggregator \verb+Agg+. These can subsequently be retrieved and used for other purposes. <>= knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } @ %$ <>= gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } @ Next we show how to use this function on the dataset \verb+geneData+. <>= library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) @ <>= sort(sapply(aggenv(Agg), c), decreasing=TRUE) @ %$ The environment \verb+Agg+ contains, for each gene, the number of times it was selected in the cross-validation. \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/vignettes/howtogenefinder.Rnw0000644000175100017510000000742112607264530021616 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{How to find genes whose expression profile is similar to that of specified genes} %\VignetteDepends{Biobase, genefilter} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{How to find genes whose expression profile is similar to that of specified genes} \maketitle \section*{Introduction} In some cases you have certain genes of interest and you would like to find other genes that are {\em close} to the genes of interest. This can be done using the \verb+genefinder+ function. You need to specify either the index position of the genes you want (which row of the expression array the gene is in) or the name (consistent with the \verb+featureNames+ of the ExpressionSet). A vector of names can be specified and matches for all will be computed. The number of matches and the distance measure used can all be specified. The examples will be carried out using the artificial data set, \verb+sample.ExpressionSet+. Two other options for \verb+genefinder+ are \verb+scale+ and \verb+method+. The \verb+scale+ option controls the scaling of the rows (this is often desirable) while the \verb+method+ option controls the distance measure used between genes. The possible values and their meanings are listed at the end of this document. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) @ The Affymetrix identifiers (since these were originally Affymetrix data) are \verb+31539_r_at+, \verb+31572_at+, \verb+31594_at+ and \verb+31658_at+. We can find the nearest genes (by index) for any of these by simply accessing the relevant component of \verb+closeg+. <<>>= closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 @ %$ You could then take these names (from \verb+Nms1+) and the {\em annotate} package and explore them further. See the various HOWTO's in annotate to see how to further explore your data. Examples include finding and searching all PubMed abstracts associated with these data. Finding and downloading associated sequence information. The data can also be visualized using the {\em geneplotter} package (again there are a number of HOWTO documents there). \section*{Parameter Settings} The \verb+scale+ parameter can take the following values: \begin{description} \item[none] No scaling is done. \item[range] Scaling is done by $(x_i - x_{(1)})/(x_{(n)}- x_{(1)})$. \item[zscore] Scaling is done by $(x_i - \bar{x})/ s_x$. Where $s_x$ is the standard deviation. \end{description} The \verb+method+ parameter can take the following values: \begin{description} \item[euclidean] Euclidean distance is used. \item[maximum] Maximum distance between any two elements of x and y (supremum norm). \item[manhattan] Absolute distance between the two vectors (1 norm). \item[canberra] The $\sum (|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing. \item[binary] (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are {\em on} and zero elements are {\em off}. The distance is the proportion of bits in which only one is on amongst those in which at least one is on. \end{description} \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/vignettes/independent_filtering.Rnw0000644000175100017510000005001112607264530022760 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Diagnostics for independent filtering} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Diagnostics for independent filtering: choosing filter statistic and cutoff} \title{\textsf{\textbf{\thetitle}}} \author{Wolfgang Huber\\[1em]European Molecular Biology Laboratory (EMBL)} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date: 2014-10-15 13:50:07 -0400 (Wed, 15 Oct 2014) $}{8}{18})} \begin{document} <>= options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section @ % Make title \maketitle \tableofcontents \vspace{.25in} \begin{abstract} \noindent This vignette illustrates diagnostics that are intended to help with \begin{itemize} \item the choice of filter criterion and \item the choice of filter cutoff \end{itemize} in independent filtering~\cite{Bourgon:2010:PNAS}. The package \Biocpkg{genefilter} provides functions that might be convenient for this purpose. \end{abstract} %----------------------------------------------------------- \section{Introduction} %----------------------------------------------------------- Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance, in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance is differential binding detection from ChIP-Seq data. The idea of \emph{independent filtering} is to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the false discovery rate. A good choice for a filtering criterion is one that \begin{enumerate} \item\label{it:indp} is statistically independent from the test statistic under the null hypothesis, \item\label{it:corr} is correlated with the test statistic under the alternative, and \item\label{it:joint} does not notably change the dependence structure --if there is any-- of the joint test statistics (including those corresponding to true nulls and to true alternatives). \end{enumerate} The benefit from filtering relies on property~\ref{it:corr}, and I will explore that further in Section~\ref{sec:qual}. The statistical validity of filtering relies on properties \ref{it:indp} and \ref{it:joint}. For many practically useful combinations of filter criteria with test statistics, property~\ref{it:indp} is easy to prove (e.\,g., through Basu's theorem). Property~\ref{it:joint} is more complicated, but rarely presents a problem in practice: if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without filtering, the filtering should not change that. Please see~\cite{Bourgon:2010:PNAS} for further discussion on the mathematical and conceptual background. %----------------------------------------------------------- \section{Example data set} %----------------------------------------------------------- For illustration, let us use the \Robject{pasillaGenes} dataset from the Bioconductor package \Rpackage{pasilla}; this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate samples the were measured for each of two biological conditions: normally growing cells and cells treated with dsRNA against the \emph{Pasilla} mRNA, which led to RNAi interference (RNAi) mediated knockdown of the Pasilla gene product. % <>= library("pasilla") data("pasillaGenes") @ % We perform a standard analysis with \Rpackage{DESeq} to look for genes that are differentially expressed between the normal and Pasilla-knockdown conditions, indicated by the factor variable \Robject{condition}. In the generalized linear model (GLM) analysis, we adjust for an additional experimental covariate \Robject{type}, which is however not of interest for the differential expression. For more details, please see the vignette of the \Rpackage{DESeq} package. % <>= library("DESeq") <>= cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) <>= res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) @ % The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in the columns of the dataframe \Robject{res}: \begin{itemize} \item \texttt{filterstat}: the filter statistic, here the average number of counts per gene across all samples, irrespective of sample annoation, \item \texttt{pvalue}: the test $p$-values, \end{itemize} Each row of the dataframe corresponds to one gene: <>= dim(res) head(res) @ %-------------------------------------------------- \section{Qualitative assessment of the filter statistic}\label{sec:qual} %-------------------------------------------------- <>= theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) @ % First, consider Figure~\ref{figscatterindepfilt}, which shows that among the approximately \Sexpr{100*theta}\% of genes with lowest overall counts, \Robject{filterstat}, there are essentially none that achieved an (unadjusted) $p$-value less than \Sexpr{signif(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE), 1)} (this corresponds to about \Sexpr{signif(-log10(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE)), 2)} on the $-\log_{10}$-scale). % <>= with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) @ <>= trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figscatterindepfilt-1} \includegraphics[width=.49\textwidth]{figure/figecdffilt-1} \caption{Left: scatterplot of the rank (scaled to $[0,1]$) of the filter criterion \Robject{filterstat} ($x$-axis) versus the negative logarithm of the test \Robject{pvalue} ($y$-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of \Robject{filterstat} and its quantiles.} \label{figscatterindepfilt} \end{figure} % This means that by dropping the 40\% genes with lowest \Robject{filterstat}, we do not loose anything substantial from our subsequent results. For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal number. The analogous scatterplot to that of Figure~\ref{figscatterindepfilt} is shown in Figure~\ref{figbadfilter}. % <>= badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) @ <>= stopifnot(!any(is.na(badfilter))) @ <>= plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figbadfilter-1} \caption{Scatterplot analogous to Figure~\ref{figscatterindepfilt}, but with \Robject{badfilter}.} \label{figbadfilter} \end{figure} %-------------------------------------------------- \section{How to choose the filter statistic and the cutoff?}\label{sec:indepfilterchoose} %-------------------------------------------------- The \texttt{filtered\_p} function in the \Rpackage{genefilter} package calculates adjusted $p$-values over a range of possible filtering thresholds. Here, we call this function on our results from above and compute adjusted $p$-values using the method of Benjamini and Hochberg (BH) for a range of different filter cutoffs. % \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figrejection-1} \includegraphics[width=0.49\textwidth]{figure/fignumreject-1} \caption{Left panel: the plot shows the number of rejections (i.\,e.\ genes detected as differentially expressed) as a function of the FDR threshold ($x$-axis) and the filtering cutoff $\theta$ (line colours, specified as quantiles of the distribution of the filter statistic). The plot is produced by the \texttt{rejection\_plot} function. Note that the lines for $\theta=0\%$ and $10\%$ are overplotted by the line for $\theta=20\%$, since for the data shown here, these quantiles correspond all to the same set of filtered genes (cf.~Figure~\ref{figscatterindepfilt}). Right panel: the number of rejections at FDR=10\% as a function of $\theta$.} \label{figrej} \end{center} \end{figure} % <>= library("genefilter") <>= theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") <>= head(pBH) @ % The rows of this matrix correspond to the genes (i.\,e., the rows of \Robject{res}) and the columns to the BH-adjusted $p$-values for the different possible choices of cutoff \Robject{theta}. A value of \Robject{NA} indicates that the gene was filtered out at the corresponding filter cutoff. The \Rfunction{rejection\_plot} function takes such a matrix and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. % <>= rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") @ The plot is shown in the left panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering cutoff}\label{choose:cutoff} %------------------------------------------------------------ If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires you to choose a particular $p$-value cutoff, specified through the argument \Robject{alpha}. % <>= theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") @ The plot is shown in the right panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering statistic}\label{choose:filterstat} %------------------------------------------------------------ We can use the analysis of the previous section~\ref{choose:cutoff} also to inform ourselves about different possible choices of filter statistic. We construct a dataframe with a number of different choices. <>= filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) <>= library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") <>= matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) @ % The result is shown in Figure~\ref{figdifferentstats}. It indicates that for the data at hand, \Robject{mean}, \Robject{max} and \Robject{sd} provide similar performance, whereas the other choices are less effective. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figdifferentstats-1} \caption{The number of rejections at FDR=10\% as a function of $\theta$ (analogous to the right panel in Figure~\ref{figrej}) for a number of different choices of the filter statistic.} \label{figdifferentstats} \end{center} \end{figure} %-------------------------------------------------- \section{Some more plots pertinent to multiple testing} %-------------------------------------------------- %-------------------------------------------------- \subsection{Joint distribution of filter statistic and $p$-values}\label{sec:pvalhist} %-------------------------------------------------- The left panel of Figure~\ref{figscatterindepfilt} shows the joint distribution of filter statistic and $p$-values. An alternative, perhaps simpler view is provided by the $p$-value histograms in Figure~\ref{fighistindepfilt}. It shows how the filtering ameliorates the multiple testing problem -- and thus the severity of a multiple testing adjustment -- by removing a background set of hypotheses whose $p$-values are distributed more or less uniformly in $[0,1]$. <>= h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") <>= barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) @ \begin{figure}[ht] \centering \includegraphics[width=.5\textwidth]{figure/fighistindepfilt-1} \caption{Histogram of $p$-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do not pass.} \label{fighistindepfilt} \end{figure} %----------------------------------------------------- \subsection{Illustration of the Benjamini-Hochberg method} %------------------------------------------------------ The Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995} has a simple graphical illustration, which is produced in the following code chunk. Its result is shown in the left panel of Figure \ref{figmulttest}. % <>= resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 <>= plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) @ <>= whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) @ % %----------------------------------------------------- \subsection{Schweder and Spj\o{}tvoll plot} %------------------------------------------------------ Schweder and Spj\o{}tvoll \cite{SchwederSpjotvoll1982} suggested a diagnostic plot of the observed $p$-values which permits estimation of the fraction of true null hypotheses. For a series of hypothesis tests $H_1, \ldots, H_m$ with $p$-values $p_i$, they suggested plotting % \begin{equation} \left( 1-p_i, N(p_i) \right) \mbox{ for } i \in 1, \ldots, m, \end{equation} % where $N(p)$ is the number of $p$-values greater than $p$. An application of this diagnostic plot to \Robject{resFilt\$pvalue} is shown in the right panel of Figure \ref{figmulttest}. When all null hypotheses are true, the $p$-values are each uniformly distributed in $[0,1]$, Consequently, the cumulative distribution function of $(p_1, \ldots, p_m)$ is expected to be close to the line $F(t)=t$. By symmetry, the same applies to $(1 - p_1, \ldots, 1 - p_m)$. When (without loss of generality) the first $m_0$ null hypotheses are true and the other $m-m_0$ are false, the cumulative distribution function of $(1-p_1, \ldots, 1-p_{m_0})$ is again expected to be close to the line $F_0(t)=t$. The cumulative distribution function of $(1-p_{m_0+1}, \ldots, 1-p_{m})$, on the other hand, is expected to be close to a function $F_1(t)$ which stays below $F_0$ but shows a steep increase towards 1 as $t$ approaches $1$. In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative distribution function is expected to be close to % \begin{equation} F(t) = \frac{m_0}{m} F_0(t) + \frac{m-m_0}{m} F_1(t). \end{equation} % Such a situation is shown in the right panel of Figure \ref{figmulttest}. If $F_1(t)/F_0(t)$ is small for small $t$, then the mixture fraction $\frac{m_0}{m}$ can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit is shown by the red line in the right panel of Figure \ref{figmulttest}. % <>= j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) @ <>= plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/sortedP-1} \includegraphics[width=.49\textwidth]{figure/SchwederSpjotvoll-1} \caption{\emph{Left:} illustration of the Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995}. The black line shows the $p$-values ($y$-axis) versus their rank ($x$-axis), starting with the smallest $p$-value from the left, then the second smallest, and so on. Only the first \Sexpr{sum(showInPlot)} $p$-values are shown. The red line is a straight line with slope $\alpha/n$, where $n=\Sexpr{length(resFilt[["pvalue"]])}$ is the number of tests, and $\alpha=\Sexpr{alpha}$ is a target false discovery rate (FDR). FDR is controlled at the value $\alpha$ if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in \Sexpr{length(whichBH)} genes. \emph{Right:} Schweder and Spj\o{}tvoll plot, as described in the text.} \label{figmulttest} \end{figure} %-------------------------------------------------- \section*{Session information} %-------------------------------------------------- <>= si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \bibliography{library} \end{document} genefilter/vignettes/independent_filtering_plots.Rnw0000644000175100017510000001601412607264530024206 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering_plots.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} \title{\thetitle} \author{Richard Bourgon} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering_plots.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date: 2014-10-15 13:50:07 -0400 (Wed, 15 Oct 2014) $}{8}{18})} \begin{document} <>= options( width = 80 ) @ % Make title \maketitle \tableofcontents \vspace{.25in} %%%%%%%% Main text \section{Introduction} This vignette illustrates use of some functions in the \emph{genefilter} package that provide useful diagnostics for independent filtering~\cite{BourgonIndependentFiltering}: \begin{itemize} \item \texttt{kappa\_p} and \texttt{kappa\_t} \item \texttt{filtered\_p} and \texttt{filtered\_R} \item \texttt{filter\_volcano} \item \texttt{rejection\_plot} \end{itemize} \section{Data preparation} Load the ALL data set and the \emph{genefilter} package: <>= library("genefilter") library("ALL") data("ALL") @ Reduce to just two conditions, then take a small subset of arrays from these, with 3 arrays per condition: <>= bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] @ We now use functions from \emph{genefilter} to compute overall standard devation filter statistics as well as standard two-sample $t$ and releated statistics. <>= S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic @ \section{Filtering volcano plot} Filtering on overall standard deviation and then using a standard $t$-statistic induces a lower bound of fold change, albeit one which varies somewhat with the significance of the $t$-statistic. The \texttt{filter\_volcano} function allows you to visualize this effect. <>= S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) @ The output is shown in the left panel of Fig.~\ref{fig:volcano}. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/filter_volcano-1} \includegraphics[width=0.49\textwidth]{figure/kappa-1} \caption{Left panel: plot produced by the \texttt{filter\_volcano} function. Right panel: graph of the \texttt{kappa\_t} function.} \label{fig:volcano} \end{center} \end{figure} The \texttt{kappa\_p} and \texttt{kappa\_t} functions, used to make the volcano plot, compute the fold change bound multiplier as a function of either a $t$-test $p$-value or the $t$-statistic itself. The actual induced bound on the fold change is $\kappa$ times the filter's cutoff on the overall standard deviation. Note that fold change bounds for values of $|T|$ which are close to 0 are not of practical interest because we will not reject the null hypothesis with test statistics in this range. <>= t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") @ The plot is shown in the right panel of Fig.~\ref{fig:volcano}. \section{Rejection count plots} \subsection{Across $p$-value cutoffs} The \texttt{filtered\_p} function permits easy simultaneous calculation of unadjusted or adjusted $p$-values over a range of filtering thresholds ($\theta$). Here, we return to the full ``BCR/ABL'' versus ``NEG'' data set, and compute adjusted $p$-values using the method of Benjamini and Hochberg, for a range of different filter stringencies. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/rejection_plot-1} \includegraphics[width=0.49\textwidth]{figure/filtered_R_plot-1} \caption{Left panel: plot produced by the \texttt{rejection\_plot} function. Right panel: graph of \texttt{theta}.} \label{fig:rej} \end{center} \end{figure} <

>= table(ALL_bcrneg$mol.biol) @ <>= S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") @ <>= head(p_bh) @ The \texttt{rejection\_plot} function takes sets of $p$-values corresponding to different filtering choices --- in the columns of a matrix or in a list --- and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. <>= rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") @ The plot is shown in the left panel of Fig.~\ref{fig:rej}. \subsection{Across filtering fractions} If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires a $p$-value cutoff. <>= theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") @ <>= head(R_BH) @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) @ The plot is shown in the right panel of Fig.~\ref{fig:rej}. %%%%%%%% Session info \section*{Session information} <>= si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \begin{thebibliography}{10} \bibitem{BourgonIndependentFiltering} Richard Bourgon, Robert Gentleman and Wolfgang Huber. \newblock Independent filtering increases power for detecting differentially expressed genes. \end{thebibliography} \end{document} genefilter/vignettes/library.bib0000644000175100017510000001306312607264530020060 0ustar00biocbuildbiocbuild@Article{Anders:2010:GB, url = {http://genomebiology.com/2010/11/10/R106}, author = {Simon Anders and Wolfgang Huber}, Title = {{D}ifferential expression analysis for sequence count data}, Journal = {Genome Biology}, Year = 2010, Volume = 11, Pages = {R106}, } @article{BH:1995, author = {Y. Benjamini and Y. Hochberg}, title = {Controlling the false discovery rate: a practical and powerful approach to multiple testing}, journal = "Journal of the Royal Statistical Society B", year = 1995, volume = 57, pages = "289--300" } @Article{Bourgon:2010:PNAS, ISI = {ISI:000278054700015}, URL = {http://www.pnas.org/content/107/21/9546.long}, PDF = {PNAS-2010-Bourgon-9546-51.pdf}, author = {Richard Bourgon and Robert Gentleman and Wolfgang Huber}, Title = {Independent filtering increases detection power for high-throughput experiments}, journal = {PNAS}, Year = 2010, volume = 107, number = 21, pages = {9546--9551}, } @article{Brooks2010, author = {Brooks, A. N. and Yang, L. and Duff, M. O. and Hansen, K. D. and Park, J. W. and Dudoit, S. and Brenner, S. E. and Graveley, B. R.}, doi = {10.1101/gr.108662.110}, issn = {1088-9051}, journal = {Genome Research}, pages = {193--202}, title = {{Conservation of an RNA regulatory map between Drosophila and mammals}}, url = {http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110}, year = 2011 } @Article{Tibshirani1988, author = {Robert Tibshirani}, title = {Estimating transformations for regression via additivity and variance stabilization}, journal = {Journal of the American Statistical Association}, year = 1988, volume = 83, pages = {394--405} } @misc{htseq, author = {Simon Anders}, title = {{HTSeq: Analysing high-throughput sequencing data with Python}}, year = 2011, howpublished = {\url{http://www-huber.embl.de/users/anders/HTSeq/}} } @article{sagmb2003, title = {Parameter estimation for the calibration and variance stabilization of microarray data}, author = {Wolfgang Huber and Anja von Heydebreck and Holger {S\"ultmann} and Annemarie Poustka and Martin Vingron}, journal = {Statistical Applications in Genetics and Molecular Biology}, year = 2003, volume = 2, number = 1, pages = {Article 3} } @misc{summarizeOverlaps, author = {Valerie Obenchain}, title = {Counting with \texttt{summarizeOverlaps}}, year = 2011, howpublished = {Vignette, distributed as part of the Bioconductor package \emph{GenomicRanges}, as file \emph{summarizeOverlaps.pdf}} } @article{Anders:2012:GR, author = {Simon Anders and Alejandro Reyes and Wolfgang Huber}, title = {Detecting differential usage of exons from {RNA-seq} data }, year = {2012}, journal = {Genome Research}, doi = {10.1101/gr.133744.111}, } @article{CR, author = {Cox, D. R. and Reid, N.}, journal = {Journal of the Royal Statistical Society, Series B}, keywords = {CML,Cox-Reid,ML,dispersion}, mendeley-tags = {CML,Cox-Reid,ML,dispersion}, number = {1}, pages = {1--39}, title = {{Parameter orthogonality and approximate conditional inference}}, url = {http://www.jstor.org/stable/2345476}, volume = {49}, year = {1987} } @article{edgeR_GLM, author = {McCarthy, Davis J and Chen, Yunshun and Smyth, Gordon K}, doi = {10.1093/nar/gks042}, issn = {1362-4962}, journal = {Nucleic Acids Research}, keywords = {edgeR}, mendeley-tags = {edgeR}, month = jan, pmid = {22287627}, title = {{Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation}}, url = {http://www.ncbi.nlm.nih.gov/pubmed/22287627}, year = {2012}, volume={40}, pages={4288-4297} } @article{SchwederSpjotvoll1982, author={Schweder, T. and Spj\/{o}tvoll, E.}, title={Plots of {P-values} to evaluate many tests simultaneously}, journal={Biometrika}, year={1982}, volume=69, pages={493-502}, doi={10.1093/biomet/69.3.493} } @article{Haglund2012Evidence, abstract = {{Context: Primary hyperparathyroidism (PHPT) is most frequently present in postmenopausal women. Although the involvement of estrogen has been suggested, current literature indicates that parathyroid tumors are estrogen receptor (ER) alpha negative.}}, author = {Haglund, Felix and Ma, Ran and Huss, Mikael and Sulaiman, Luqman and Lu, Ming and Nilsson, Inga-Lena and H\"{o}\"{o}g, Anders and Juhlin, Christofer C. and Hartman, Johan and Larsson, Catharina}, day = {28}, doi = {10.1210/jc.2012-2484}, issn = {1945-7197}, journal = {Journal of Clinical Endocrinology \& Metabolism}, month = sep, pmid = {23024189}, posted-at = {2012-11-23 08:40:12}, priority = {2}, publisher = {Endocrine Society}, title = {{Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas}}, url = {http://dx.doi.org/10.1210/jc.2012-2484}, year = {2012} } @article{Wu2012New, author = {Wu, Hao and Wang, Chi and Wu, Zhijin}, day = {22}, doi = {10.1093/biostatistics/kxs033}, issn = {1468-4357}, journal = {Biostatistics}, month = sep, pmid = {23001152}, posted-at = {2013-02-26 17:09:19}, priority = {2}, publisher = {Oxford University Press}, title = {{A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data}}, url = {http://dx.doi.org/10.1093/biostatistics/kxs033}, year = {2012} }