genefilter/.Rinstignore0000644000175400017540000000002713175713327016240 0ustar00biocbuildbiocbuilddoc/whbiocvignette.sty genefilter/DESCRIPTION0000644000175400017540000000165713175725026015453 0ustar00biocbuildbiocbuildPackage: genefilter Title: genefilter: methods for filtering genes from high-throughput experiments Version: 1.60.0 Author: R. Gentleman, V. Carey, W. Huber, F. Hahne Description: Some basic functions for filtering genes Maintainer: Bioconductor Package Maintainer Suggests: class, hgu95av2.db, tkWidgets, ALL, ROC, DESeq, pasilla, BiocStyle, knitr Imports: S4Vectors (>= 0.9.42), AnnotationDbi, annotate, Biobase, graphics, methods, stats, survival License: Artistic-2.0 LazyLoad: yes LazyData: yes Collate: AllClasses.R AllGenerics.R all.R dist2.R eSetFilter.R fastT.R filter_volcano.R filtered_p.R genefinder.R half.range.mode.R kappa_p.R nsFilter.R rejection_plot.R rowROC-accessors.R rowSds.R rowpAUCs-methods.R rowttests-methods.R shorth.R zzz.R biocViews: Microarray VignetteBuilder: knitr NeedsCompilation: yes Packaged: 2017-10-30 22:39:18 UTC; biocbuild genefilter/NAMESPACE0000644000175400017540000000451313175713327015157 0ustar00biocbuildbiocbuilduseDynLib(genefilter) importClassesFrom(Biobase, ExpressionSet) importClassesFrom(methods, ANY, character, factor, matrix, missing, numeric, vector) importMethodsFrom(AnnotationDbi, as.list, colnames, get, mget, ncol, nrow, sample) importMethodsFrom(Biobase, annotation, exprs, featureNames, pData, rowQ, varLabels) importMethodsFrom(methods, "body<-", show) importFrom(S4Vectors, rowSums, colSums, rowMeans, colMeans) importFrom(Biobase, addVigs2WinMenu, subListExtract) importFrom(annotate, getAnnMap) importFrom(graphics, abline, lines, par, plot, points, polygon, rect, strheight, strwidth, text) importFrom(methods, is, new) importFrom(stats, IQR, anova, lm, pchisq, pf, pt, quantile, sd, t.test) importFrom(survival, coxph) export(Anova, coxfilter, cv, eSetFilter, varFilter, featureFilter, fastT, ttest, shorth, half.range.mode, rowttests, colttests, rowFtests, colFtests, rowSds, rowVars, dist2, filterfun, findLargest, gapFilter, genefilter, genescale, getFilterNames, getFuncDesc, getRdAsText, isESet, kOverA, maxA, pOverA, parseArgs, parseDesc, setESetArgs, showESet, kappa_t, kappa_p, filtered_p, filtered_R, rejection_plot, filter_volcano) exportClasses(rowROC) exportMethods(genefinder, show, plot, "[", sens, spec, area, pAUC, AUC, rowpAUCs, nsFilter) genefilter/NEWS0000644000175400017540000000024613175713327014436 0ustar00biocbuildbiocbuildCHANGES IN VERSION 1.54.0 ------------------------ DEPRECATED AND DEFUNCT o remove deprecated anyNA(); contradicted base::anyNA o remove deprecated allNA() genefilter/R/0000755000175400017540000000000013175713327014136 5ustar00biocbuildbiocbuildgenefilter/R/AllClasses.R0000644000175400017540000000332713175713327016314 0ustar00biocbuildbiocbuild## Classes for package genefilter ## ========================================================================== ## class rowROC: objects model result of call to function rowpAUCs, ## pAUC or AUC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setClass("rowROC", representation(data = "matrix", ranks = "matrix", sens = "matrix", spec = "matrix", pAUC = "numeric", AUC = "numeric", factor = "factor", cutpoints = "matrix", caseNames = "character", p = "numeric"), validity=function(object){ if(any(dim(object@sens) != dim(object@spec))) return("\n'sens' and 'spec' must be matrices with equal dimensions") if(length(object@pAUC) != nrow(object@sens)) return("\n'pAUC' must be numeric of length equal to nrow(sens)") if(length(object@factor)!=ncol(object@data) || length(levels(object@factor))!=2) return("'factor' must be factor object with two levels and length = ncol(data)") if(length(object@pAUC) != length(object@AUC)) return("'pAUC' and 'AUC' must be numeric vectors of equal length") if(nrow(object@cutpoints) != length(object@pAUC)) return("'cutpoints' must be matrix with nrow=length(pAUC)") if(length(object@caseNames)!=2) return("'caseNames' must be character vector of length 2") return(TRUE) } ) ## ========================================================================== genefilter/R/AllGenerics.R0000644000175400017540000000302613175713327016452 0ustar00biocbuildbiocbuild## Generic functions for package genefilter setGeneric("rowFtests", function(x, fac, var.equal=TRUE) standardGeneric("rowFtests")) setGeneric("colFtests", function(x, fac, var.equal=TRUE) standardGeneric("colFtests")) setGeneric("rowttests", function(x, fac, tstatOnly=FALSE) standardGeneric("rowttests")) setGeneric("colttests", function(x, fac, tstatOnly=FALSE) standardGeneric("colttests")) setGeneric("genefinder", function(X, ilist, numResults=25, scale="none", weights, method="euclidean" ) standardGeneric("genefinder")) setGeneric("pAUC", function(object, p, flip=TRUE) standardGeneric("pAUC")) setGeneric("AUC", function(object) standardGeneric("AUC")) setGeneric("sens", function(object) standardGeneric("sens")) setGeneric("spec", function(object) standardGeneric("spec")) setGeneric("area", function(object, total=FALSE) standardGeneric("area")) setGeneric("rowpAUCs", function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")) standardGeneric("rowpAUCs")) setGeneric("nsFilter", signature="eset", function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) standardGeneric("nsFilter")) genefilter/R/all.R0000644000175400017540000001031713175713327015033 0ustar00biocbuildbiocbuild#copyright 2001 R. Gentleman #FILTER FUNCTIONS -- some trivial changes kOverA <- function(k, A=100, na.rm = TRUE) { function(x) { if(na.rm) x <- x[!is.na(x)] sum( x > A ) >= k } } maxA <- function(A=75, na.rm=TRUE) { function(x) {max(x, na.rm=na.rm) >= A } } pOverA <- function(p=0.05, A=100, na.rm = TRUE) { function(x) { if(na.rm) x<-x[!is.na(x)] sum( x > A )/length(x) >= p } } cv <- function(a=1, b=Inf, na.rm=TRUE) { function(x) { sdx <- sd(x, na.rm=na.rm) if(is.na(sdx) || sdx == 0 ) return(FALSE) val <- sdx/abs(mean(x, na.rm=na.rm)) if(val < a ) return(FALSE) if(val > b ) return(FALSE) return(TRUE) } } Anova <- function(cov, p=0.05, na.rm=TRUE) { function(x) { if( na.rm ) { drop <- is.na(x) x <- x[!drop] cov <- cov[!drop] } m1 <- lm(x~cov) m2 <- lm(x~1) av <- anova(m2,m1) fstat <- av[["Pr(>F)"]][2] if( fstat < p ) return(TRUE) return(FALSE) } } coxfilter <- function(surt, cens, p) { autoload("coxph", "survival") function(x) { srvd <- try(coxph(Surv(surt,cens)~x)) if( inherits(srvd, "try-error") ) return(FALSE) ltest <- -2*(srvd$loglik[1] - srvd$loglik[2]) pv <- 1 - pchisq(ltest, 1) if( pv < p ) return(TRUE) return(FALSE) } } ttest <- function(m, p=0.05, na.rm=TRUE) { if( length(m) == 1) function(x) { n <- length(x) if( m>n ) stop("m is larger than the number of samples") sub1 <- x[1:m] sub2 <- x[(m+1):n] if(na.rm) { drop <- is.na(x) sub1 <- sub1[!drop[1:m]] sub2 <- sub2[!drop[(m+1):n]] } t.test(sub1, sub2 )$p.value < p } else function(x) { if(na.rm) { drop <- is.na(x) | is.na(m) x<- x[!drop] m<- m[!drop] } t.test(x~m)$p.value < p } } ##a filter based on gaps gapFilter <- function(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE) { function(x) { if(na.rm) x <- x[!is.na(x)] if(neg.rm) x <- x[x>0] lenx <- length(x) if( lenx < 4 || lenx < Prop+1 ) return(FALSE) srtd <- sort(x) lq <- lenx*.25 uq <- lenx*.75 if( (srtd[uq] - srtd[lq]) > IQR ) return(TRUE) if(Prop < 1) bot <- lenx*Prop else bot <- Prop top <- lenx - bot lag1 <- srtd[2:lenx]-srtd[1:(lenx-1)] if( max(lag1[bot:top]) > Gap ) return(TRUE) return(FALSE) } } # Apply type functions genefilter <- function(expr, flist) { if(is(expr, "ExpressionSet")) expr <- exprs(expr) apply(expr, 1, flist) } filterfun <- function(...) { flist <- list(...) #let the user supply a list if( length(flist) == 1 && is.list(flist[[1]]) ) flist <- flist[[1]] f <- function( x ) { for( fun in flist ) { fval <- fun(x) if( is.na(fval) || ! fval ) return(FALSE) } return(TRUE) } class(f) <- "filterfun" return(f) } .findDBMeta <- function(chip, item) { connfunc <- getAnnMap("_dbconn", chip) dbmeta(connfunc(), item) } .isOrgSchema <- function(chip){ schema <- .findDBMeta(chip, "DBSCHEMA") length(grep("CHIP", schema)) == 0 } .findCentralMap<- function(chip){ centID <- .findDBMeta(chip, "CENTRALID") if(!.isOrgSchema(chip) && centID == "TAIR") { "ACCNUM" ## a peculiar exception with historical causes } else { centID ## should cover EVERYTHING else } } findLargest = function(gN, testStat, data="hgu133plus2") { lls = if(.isOrgSchema(data)){ gN ##not a chip package so try the IDs presented. } else { map = .findCentralMap(data) unlist(mget(gN, getAnnMap(map, data)), use.names=FALSE) } if(length(testStat) != length(gN) ) stop("testStat and gN must be the same length") if( is.null(names(testStat)) ) names(testStat) = gN tSsp = split.default(testStat, lls) sapply(tSsp, function(x) names(which.max(x))) } genefilter/R/dist2.R0000644000175400017540000000114413175713327015306 0ustar00biocbuildbiocbuilddist2 = function (x, fun = function(a, b) mean(abs(a - b), na.rm = TRUE), diagonal = 0) { if (!(is.numeric(diagonal) && (length(diagonal) == 1))) stop("'diagonal' must be a numeric scalar.") if (missing(fun)) { res = apply(x, 2, function(w) colMeans(abs(x-w), na.rm=TRUE)) } else { res = matrix(diagonal, ncol = ncol(x), nrow = ncol(x)) if (ncol(x) >= 2) { for (j in 2:ncol(x)) for (i in 1:(j - 1)) res[i, j] = res[j, i] = fun(x[, i], x[, j]) } # if } # else colnames(res) = rownames(res) = colnames(x) return(res) } genefilter/R/eSetFilter.R0000644000175400017540000002727113175713327016340 0ustar00biocbuildbiocbuild# This widget allows users to pick filters in the order they are going # to be used to filer genes and set the parameters for # each filter. # # Copyright 2003, J. Zhang. All rights reserved. # eSetFilter <- function(eSet){ require("tkWidgets", character.only = TRUE) || stop(paste("eSetFilter requires the tkWidgets", "package. Please have it installed")) descList <- getFuncDesc() buildGUI <- function(){ END <<- FALSE selectedNames <- NULL filterWithArgs <- list() setFilter <- function(){ currentFilter <- as.character(tkget(filters, (tkcurselection(filters)))) args <- setESetArgs(currentFilter) if(!is.null(args)){ expression <- paste(currentFilter, "(", paste(names(args), args, sep = "=", collapse = ","), ")", sep = "") filterWithArgs[[currentFilter]] <<- eval(parse(text = expression)) selectedNames <<- unique(c(selectedNames, currentFilter)) writeList(pickedF, selectedNames) tkconfigure(selectBut, state = "disabled") } } cancel <- function(){ tkdestroy(base) } finish <- function(){ END <<- TRUE tkdestroy(base) } viewFilter <- function(){ currentFilter <- as.character(tkget(filters, (tkcurselection(filters)))) tkconfigure(description, state = "normal") writeText(description, descList[[currentFilter]]) tkconfigure(description, state = "disabled") tkconfigure(selectBut, state = "normal") } pickedSel <- function(){ tkconfigure(remBut, state = "normal") } remove <- function(){ filter <- as.character(tkget(pickedF, (tkcurselection(pickedF)))) selectedNames <<- setdiff(selectedNames, filter) writeList(pickedF, selectedNames) tkconfigure(remBut, state = "disabled") } base <- tktoplevel() tktitle(base) <- "BioC Filter Master" # Pack the top frame with a brief description introText <- tktext(base, width = 30, height = 4, wrap = "word") text <- paste("Bioconductor's gene filtering functons are", "listed below. Select one from the list to view the", "description and formal arguments for each filter.", "A filter can be selected to the set of filters", "for filtering genes using the select button.") writeText(introText, text) tkconfigure(introText, state = "disabled") tkpack(introText, expand = FALSE, fill = "both", padx = 5) # Pack a frame with a list box for selected filters and # buttons manipulate the selected filters infoFrame <- tkframe(base) filterFrame <- tkframe(infoFrame) tkpack(tklabel(filterFrame, text = "Filters"), expand = FALSE, fill = "x") listFrame <- tkframe(filterFrame) filters <- makeViewer(listFrame, vHeight = 10, vWidth = 12, vScroll = TRUE, hScroll = TRUE, what = "list") tkbind(filters, "", viewFilter) tkbind(filters, "", setFilter) writeList(filters, getFilterNames()) tkpack(listFrame, expand = TRUE, fill = "both") selectBut <- tkbutton(filterFrame, text = "Select", command = setFilter, state = "disabled") tkpack(selectBut, expand = FALSE, fill = "x") tkpack(filterFrame, side = "left", expand = FALSE, fill = "both") descFrame <- tkframe(infoFrame) tkpack(tklabel(descFrame, text = "Description"), expand = FALSE, fill = "x") dListFrame <- tkframe(descFrame) description <- makeViewer(dListFrame, vHeight = 10, vWidth = 30, vScroll = TRUE, hScroll = TRUE, what = "text") tkconfigure(description, wrap = "word", state = "disabled") tkpack(dListFrame, expand = TRUE, fill = "both") tkpack(descFrame, side = "left", expand = TRUE, fill = "both") selFrame <- tkframe(infoFrame) tkpack(tklabel(selFrame, text = "Selected"), expand = FALSE, fill = "x") selFFrame <- tkframe(selFrame) pickedF <- makeViewer(selFFrame, vHeight = 10, vWidth = 12, vScroll = TRUE, hScroll = TRUE, what = "list") tkbind(pickedF, "", pickedSel) tkbind(pickedF, "", remove) tkpack(selFFrame, expand = TRUE, fill = "both") remBut <- tkbutton(selFrame, text = "Remove", command = remove, state = "disabled") tkpack(remBut, expand = FALSE, fill = "x") tkpack(selFrame, expand = FALSE, fill = "both") tkpack(infoFrame, expand = TRUE, fill = "both", padx = 5) # Pack the bottom frame with cancel and finish buttons endFrame <- tkframe(base) cancelBut <- tkbutton(endFrame, width = 8, text = "Cancel", command = cancel) tkpack(cancelBut, side = "left", expand = TRUE, fill = "x", padx = 10) finishBut <- tkbutton(endFrame, width = 8, text = "finish", command = finish) tkpack(finishBut, side = "left", expand = TRUE, fill = "x", padx = 10) tkpack(endFrame, expand = FALSE, fill = "x", pady = 5) showESet(eSet) tkwait.window(base) if(END){ tempList <- list() for(i in selectedNames){ tempList[[i]] <- filterWithArgs[[i]] } return(tempList) }else{ return(NULL) } } filters <- buildGUI() if(!is.null(filters)){ filters <- filterfun(unlist(filters)) return(genefilter(exprs(eSet), filters)) }else{ return(NULL) } } getFilterNames <- function(){ return(sort(c("Anova", "coxfilter", "cv", "gapFilter", "kOverA", "maxA", "pOverA", "ttest"))) } getFuncDesc <- function(lib = "genefilter", funcs = getFilterNames()){ descList <- list() lines <- getRdAsText(lib) for(i in funcs){ rd <- lines[grep(paste("\\\\name\\{", i, "\\}", sep = ""), lines)] desc <- parseDesc(rd) args <- parseArgs(rd) if(length(args) > 0){ temp <- "\n\nArguments:" for(j in names(args)){ temp <- c(temp, paste(j, "-", args[[j]])) } args <- paste(temp, sep = "", collapse = "\n") } descList[[i]] <- paste(desc, args, sep = "", collapse = "") } return(descList) } getRdAsText <- function(lib){ fileName <- gzfile(file.path(.path.package(lib), "man", paste(lib, ".Rd.gz", sep = "")), open = "r") lines <- readLines(fileName) lines <- paste(lines, sep = "", collapse = " ") lines <- unlist(strsplit(lines, "\\\\eof")) return(lines) } parseDesc <- function(text){ descRExp <- ".*\\\\description\\{(.*)\\}.*\\\\usage\\{.*" text <- gsub(descRExp, "\\1", text) text <- gsub("(\\\\[a-zA-Z]*\\{|\\})", "", text) return(text) } parseArgs <- function(text){ argsList <- list() text <- gsub(".*\\\\arguments\\{(.*)\\}.*\\\\details\\{.*", "\\1", text) text <- gsub(".*\\\\arguments\\{(.*)\\}.*\\\\value\\{.*", "\\1", text) text <- unlist(strsplit(text, "\\\\item\\{")) text <- gsub("(\\\\[a-zA-Z]*\\{|\\})", "", text) for(i in text){ i <- unlist(strsplit(i, "\\{")) if(length(i) > 1){ argsList[[i[1]]] <- i[2] } } return(argsList) } showESet <- function(eSet){ end <- function(){ tkdestroy(base) } if(!is(eSet, "eSet")){ stop() } colNRow <- dim(exprs(eSet)) vl <- varLabels(eSet) text <- c(paste("Genes: ", colNRow[1]), paste("Samples: ", colNRow[2], sep = ""), "Variable labels:", paste(names(vl), ": ", vl[1:length(vl)], sep = "")) base <- tktoplevel() tktitle(base) <- "BioC ExpressionSet viewer" dataDescFrame <- tkframe(base) data <- makeViewer(dataDescFrame, vHeight = 10, vWidth = 25, vScroll = TRUE, hScroll = TRUE, what = "list") writeList(data, text) tkpack(dataDescFrame, expand = TRUE, fill = "both") endBut <- tkbutton(base, text = "Finish", command = end) tkpack(endBut, expand = FALSE, fill = "x", pady = 5) } setESetArgs <- function(filter){ on.exit(tkdestroy(base)) cancel <- function(){ tkdestroy(base) } end <- function(){ END <<- TRUE tkdestroy(base) } END <- FALSE argsVar <- list() desc <- list() entries <- list() ftFun <- list() args <- getRdAsText("genefilter") args <- args[grep(paste("\\\\name\\{", filter, "\\}", sep = ""), args)] args <- parseArgs(args) argValues <- formals(filter) base <- tktoplevel() tktitle(base) <- "BioC Filter Argument input" tkgrid(tklabel(base, text = "Arguments"), tklabel(base, text = "Descriptions"), tklabel(base, text = "Values")) for(i in names(args)){ argsVar[[i]] <- tclVar(as.character(argValues[[i]])) tempFrame <- tkframe(base) desc[[i]] <- makeViewer(tempFrame, vHeight = 3, vWidth = 55, vScroll = FALSE, hScroll = FALSE, what = "text") writeText(desc[[i]], args[[i]]) tkconfigure(desc[[i]], wrap = "word", state = "disabled") entries[[i]] <- tkentry(base, textvariable = argsVar[[i]], width = 10) tkgrid(tklabel(base, text = i), tempFrame, entries[[i]]) if(any(as.character(argValues[[i]]) == c("FALSE", "TRUE"))){ ftFun[[i]] <- function(){} body <- list(as.name("{"), substitute(eval(if(tclvalue(argsVar[[j]]) == "TRUE"){ writeList(entries[[j]], "FALSE")}else{ writeList(entries[[j]], "TRUE")}), list(j = i))) body(ftFun[[i]]) <- as.call(body) tkbind(entries[[i]],"", ftFun[[i]]) } tkgrid.configure(tempFrame, sticky = "eswn") } butFrame <- tkframe(base) canBut <- tkbutton(butFrame, text = "cancel", width = 8, command = cancel) endBut <- tkbutton(butFrame, text = "Finish", width = 8, comman = end) tkpack(canBut, side = "left", expand = FALSE, fill = "x") tkpack(endBut, side = "left", expand = FALSE, fill = "x") tkgrid(butFrame, columnspan = 3) tkwait.window(base) if(END){ for(i in names(argValues)){ argValues[[i]] <- tkWidgets:::formatArg(tclvalue(argsVar[[i]])) } return(argValues) }else{ return(NULL) } } isESet <- function(eSet){ if(missing(eSet) || (!is(eSet, "ExpressionSet"))) { tkmessageBox(title = "Input Error", message = paste("filterMaster has to take", "an object of class ExpressionSet"), icon = "warning", type = "ok") return(FALSE) }else{ return(TRUE) } } genefilter/R/fastT.R0000644000175400017540000000200413175713327015336 0ustar00biocbuildbiocbuild ##FIXME: this could replace the code further below at some point, ## but only when it has the var.equal option ##-------------------------------------------------- ## fastT ##-------------------------------------------------- #fastT = function(x, ig1, ig2, var.equal=TRUE) { # fac = rep(NA, ncol(x)) # fac[ig1] = 0 # fac[ig2] = 1 # .Call("rowcolttests", x, as.integer(fac), as.integer(2), # as.integer(0), PACKAGE="genefilter") #} fastT = function(x, ig1, ig2, var.equal=TRUE) { ng1=length(ig1) ng2 = length(ig2) if( ncol(x) != ng1+ng2) stop("wrong sets of columns") outd = x[,c(ig1, ig2),drop=FALSE] nr = nrow(outd) z = rep(0, nr) dm = rep(0, nr) Z = .Fortran("fastt", d=as.single(outd), as.integer(nr), as.integer(ng1+ng2), as.integer(ng1), z = as.single(z), dm = as.single(dm), var.equal=as.integer(var.equal), ratio = as.integer(as.integer(0)), PACKAGE="genefilter") return(list(z = Z$z, dm=Z$dm, var.equal=Z$var.equal)) } genefilter/R/filter_volcano.R0000644000175400017540000000300713175713327017267 0ustar00biocbuildbiocbuildfilter_volcano <- function( d, p, S, n1, n2, alpha, S_cutoff, cex = .5, pch = 19, xlab = expression( paste( log[2], " fold change" ) ), ylab = expression( paste( "-", log[10], " p" ) ), cols = c( "grey80", "grey50", "black" ), ltys = c( 1, 3 ), use_legend = TRUE, ... ) { f <- S < S_cutoff col <- rep( cols[1], length(d) ) col[ !f & p >= alpha ] <- cols[2] col[ !f & p < alpha ] <- cols[3] plot( d, -log10( p ), cex = cex, pch = pch, xlab = xlab, ylab = ylab, col = col, ... ) k_grid <- seq( 0, max( -log10( p ) ), length = 100 ) p_grid <- 10^( -k_grid ) lines( kappa_p( p_grid, n1, n2 ) * S_cutoff, k_grid, lty = ltys[1] ) lines( -1 * kappa_p( p_grid, n1, n2 ) * S_cutoff, k_grid, lty = ltys[1] ) segments( c( par("usr")[1], kappa_p( alpha, n1, n2 ) * S_cutoff ), -log10( alpha ), c( -kappa_p( alpha, n1, n2 ) * S_cutoff, par("usr")[2] ), -log10( alpha ), lty = ltys[2] ) if ( use_legend ) legend( "topleft", c( "Filtered", "Insig.", "Sig." ), pch = pch, col = cols, inset = .025, bg = "white" ) } genefilter/R/filtered_p.R0000644000175400017540000000141613175713327016400 0ustar00biocbuildbiocbuildfiltered_p <- function( filter, test, theta, data, method = "none" ) { if ( is.function( filter ) ) U1 <- filter( data ) else U1 <- filter cutoffs <- quantile( U1, theta ) result <- matrix( NA_real_, length( U1 ), length( cutoffs ) ) colnames( result ) <- names( cutoffs ) for ( i in 1:length( cutoffs ) ) { use <- U1 >= cutoffs[i] if( any( use ) ) { if( is.function( test ) ) U2 <- test( data[use,] ) else U2 <- test[use] result[use,i] <- p.adjust( U2, method ) } } return( result ) } filtered_R <- function( alpha, filter, test, theta, data, method = "none" ) { p <- filtered_p( filter, test, theta, data, method ) return( apply( p, 2, function(x) sum( x < alpha, na.rm = TRUE ) ) ) } genefilter/R/genefinder.R0000644000175400017540000001016613175713327016373 0ustar00biocbuildbiocbuild# genefinder.R # # genefinder functions. genescale <- function (m, axis=2, method=c("Z", "R"), na.rm=TRUE) { ##scale by the range RscaleVector <- function(v, na.rm) { mm <- range(v, na.rm=na.rm) (v - mm[1]) / (mm[2] - mm[1]) } ##scale using Zscore ZscaleVector <- function(v, na.rm) (v - mean(v, na.rm=na.rm))/sd(v, na.rm=na.rm) # # scales a matrix using the scaleVector function. # which <- match.arg(method) method <- switch(which, Z = ZscaleVector, R = RscaleVector) if( is.matrix(m) || is.data.frame(m) ) { rval <- apply (m, axis, method, na.rm=na.rm) if( axis==1 ) return(t(rval)) return(rval) } else method(m, na.rm=na.rm) } setMethod("genefinder", c("ExpressionSet", "vector", "ANY", "ANY", "ANY", "ANY"), function(X, ilist, numResults, scale, weights, method) { gN <- featureNames(X) if (is.character(ilist)) ilist <- match(ilist,gN) ans <- genefinder(exprs(X), ilist, numResults, scale, weights, method=method) names(ans) <- gN[ilist] ans }) setMethod("genefinder", c("matrix", "vector", "ANY", "ANY", "ANY", "ANY"), function (X, ilist, numResults, scale, weights, method) { X <- as.matrix(X) METHOD <- c("euclidean", "maximum", "manhattan", "canberra", "correlation", "binary") method<-pmatch(method, METHOD) if (is.na(method)) stop ("The distance method is invalid.") SCALE <- c("none", "range", "zscore") scale <- SCALE[pmatch(scale, SCALE)] # perform scaling if requested. # X <- switch(scale, none=X, range=genescale(X), zscore=scale(X), stop("The scaling method is invalid") ) N <- nrow(X) C <- ncol(X) if( !is.vector(ilist) ) stop("the genes to be compared to must be in a vector") ninterest <- length(ilist); if( is.character(ilist) ) { iRows <- match(ilist, row.names(X)) names(iRows) <- ilist } else if ( is.numeric(ilist) ) { iRows <- ilist names(iRows) <- row.names(X)[ilist] } else stop("invalid genes selected") if( any(is.na(iRows)) ) stop("invalid genes selected") if (missing(weights)) weights <- rep(1,C) else if (length(weights) != C) stop("Supplied weights do not match number of columns") ## Do a sanity check on the requested genes in ilist -> if the ## gene exceeds the # of rows in the matrix, can not be processed. if (max(iRows) > N) stop("Requested genes exceed the dimensions of the supplied matrix.") Genes <- array(as.integer(NA), dim=c(ninterest, numResults)) Dists <- array(as.integer(NA), dim=c(ninterest, numResults)) extCall <- .C("gf_distance", X = as.double(X), nr= as.integer(N), nc= ncol(X), g = as.integer(Genes), d = as.double(Dists), iRow = as.integer(iRows), nInterest = as.integer(ninterest), nResults = as.integer(numResults), method= as.integer(method), weights = as.double(weights), NAOK=TRUE, PACKAGE="genefilter") Genes <- extCall$g+1 Dists <- extCall$d Which <- vector() ## Get the number of genes/dists per selection. There should ## always be a number of total genes such that they are a multiple ## of ninterest numPerList <- length(Genes) / ninterest Which <- rep(iRows, rep(numPerList, ninterest)) byGene <- split(Genes, Which) names(byGene) <- rep("indices", length(byGene)) byDists <- split(Dists, Which) names(byDists) <- rep("dists", length(byDists)) ## Need a better way to stuff these together retList <- list() for (i in 1:ninterest) { retList[[i]] <- list(indices=byGene[[i]], dists=byDists[[i]]) } return(retList) }) genefilter/R/half.range.mode.R0000755000175400017540000000217213175713327017216 0ustar00biocbuildbiocbuildhalf.range.mode <- function( data, B, B.sample, beta = .5, diag = FALSE ) { if ( length( data ) == 0 ) return( NA_real_ ) if (missing( B ) ) { # Just one run on the full set... if ( is.unsorted( data ) ) data <- sort( data ) .C( "half_range_mode", data = as.double( data ), n = as.integer( length( data ) ), beta = as.double( beta ), diag = as.integer( diag ), M = double(1), PACKAGE = "genefilter" )$M } else { # Bootstrapped if ( missing( B.sample ) ) B.sample <- length( data ) M <- sapply( 1:B, function (x) { d <- sort( sample( data, B.sample, replace = T ) ) .C( "half_range_mode", data = as.double( d ), n = as.integer( B.sample ), beta = as.double( beta ), diag = as.integer( diag ), M = double(1), PACKAGE = "genefilter" )$M } ) mean( M ) } } genefilter/R/kappa_p.R0000644000175400017540000000034513175713327015676 0ustar00biocbuildbiocbuildkappa_p <- function( p, n1, n2 = n1 ) { n <- n1 + n2 t <- qt( 1 - p/2, df = n - 2 ) kappa_t( t, n1, n2 ) } kappa_t <- function( t, n1, n2 = n1 ) { n <- n1 + n2 sqrt( n * (n-1) * t^2 / ( n1 * n2 * ( n - 2 + t^2 ) ) ) } genefilter/R/nsFilter.R0000644000175400017540000002250213175713327016050 0ustar00biocbuildbiocbuild##RG introduces two new functions, varFilter that does what nsFilter ##was supposed to, but never did, and featureFilter that does the only ##useful stuff that nsFilter does rowIQRs <- function(eSet) { numSamp <- ncol(eSet) lowQ <- rowQ(eSet, floor(0.25 * numSamp)) upQ <- rowQ(eSet, ceiling(0.75 * numSamp)) upQ - lowQ } ##For NOW, we will need to check the schema from within nsFilter and ##featureFilter to decide what the internal ID is that needs to be used. ##LATER, when we haev annotation packages that will make this sort of access ##easier, it will make more sense to just access the central ID for those ##packages. ## It looks like I can take care of both nsFilter and featureFilter in this ## way by just altering what the helper function findLargest() does varFilter <- function(eset, var.func=IQR, var.cutoff=0.5,filterByQuantile=TRUE ) { if (deparse(substitute(var.func)) == "IQR") { vars <- rowIQRs(eset) } else { vars <- apply(exprs(eset), 1, var.func) } if (filterByQuantile) { if ( 0 < var.cutoff && var.cutoff < 1 ) { quant = quantile(vars, probs = var.cutoff) selected = !is.na(vars) & vars > quant } else stop("Cutoff Quantile has to be between 0 and 1.") } else { selected <- !is.na(vars) & vars > var.cutoff } eset <- eset[selected, ] } .getRequiredIDs <- function(eset, map){ annChip <- annotation(eset) if(.isOrgSchema(annChip)){ IDs <- featureNames(eset) names(IDs) <- featureNames(eset) }else{ IDs <- mget(featureNames(eset), envir=getAnnMap(map, annChip), ifnotfound=NA) } IDs } featureFilter <- function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, feature.exclude="^AFFX") { annChip <- annotation(eset) if (nchar(annChip) == 0) stop("'eset' must have a valid annotation slot") nfeat <- function(eset) length(featureNames(eset)) requireID <- function(eset, map) { IDs <- .getRequiredIDs(eset, map) haveID <- names(IDs)[sapply(IDs, function(x) !is.na(x))] eset[haveID, ] } if (require.entrez) { map <- .findCentralMap(annChip) eset <- requireID(eset, map) } filterGO <- function(eset, ontology) { haveGo <- sapply(mget(featureNames(eset), getAnnMap("GO", annChip), ifnotfound=NA), function(x) { if (length(x) == 1 && is.na(x)) FALSE else { onts <- subListExtract(x, "Ontology", simplify=TRUE) ontology %in% onts } }) eset[haveGo, ] } if (require.GOBP) eset <- filterGO(eset, "BP") if (require.GOCC) eset <- filterGO(eset, "CC") if (require.GOMF) eset <- filterGO(eset, "MF") if (length(feature.exclude)) { fnms <- featureNames(eset) badIdx <- integer(0) for (pat in feature.exclude) { if (nchar(pat) == 0) next badIdx <- c(grep(pat, fnms), badIdx) } if (length(badIdx)) { badIdx <- unique(badIdx) eset <- eset[-badIdx, ] } } if (remove.dupEntrez ) { ## Reduce to unique probe <--> gene mapping here by keeping largest IQR ## We will want "unique genes" in the non-specific filtered gene ## set. uniqGenes <- findLargest(featureNames(eset), rowIQRs(eset), annotation(eset)) eset <- eset[uniqGenes, ] } requireCytoBand <- function(eset) { MAPs <- mget(featureNames(eset), envir=getAnnMap("MAP", annChip), ifnotfound=NA) haveMAP <- names(MAPs)[sapply(MAPs, function(x) !is.na(x[1]))] eset[haveMAP, ] } if (require.CytoBand) eset <- requireCytoBand(eset) eset } setMethod("nsFilter", "ExpressionSet", function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) { if (!is.function(var.func)) stop("'var.func' must be a function") annChip <- annotation(eset) if (nchar(annChip) == 0) stop("'eset' must have a valid annotation slot") nfeat <- function(eset) length(featureNames(eset)) filter.log <- new.env(parent=emptyenv()) requireID <- function(eset, map) { IDs <- .getRequiredIDs(eset, map) haveID <- names(IDs)[sapply(IDs, function(x) !is.na(x))] logvar <- paste("numRemoved", map, sep=".") assign(logvar, nfeat(eset) - length(haveID), envir=filter.log) eset[haveID, ] } if (require.entrez) { map <- .findCentralMap(annChip) eset <- requireID(eset, map) } filterGO <- function(eset, ontology) { haveGo <- sapply(mget(featureNames(eset), getAnnMap("GO", annChip), ifnotfound=NA), function(x) { if (length(x) == 1 && is.na(x)) FALSE else { onts <- subListExtract(x, "Ontology", simplify=TRUE) ontology %in% onts } }) logvar <- paste("numNoGO", ontology, sep=".") assign(logvar, sum(!haveGo), envir=filter.log) eset[haveGo, ] } if (require.GOBP) { eset <- filterGO(eset, "BP") } if (require.GOCC) { eset <- filterGO(eset, "CC") } if (require.GOMF) { eset <- filterGO(eset, "MF") } if (length(feature.exclude)) { fnms <- featureNames(eset) badIdx <- integer(0) for (pat in feature.exclude) { if (nchar(pat) == 0) next badIdx <- c(grep(pat, fnms), badIdx) } if (length(badIdx)) { badIdx <- unique(badIdx) eset <- eset[-badIdx, ] logvar <- "feature.exclude" assign(logvar, length(badIdx), filter.log) } } if (remove.dupEntrez) { ## Reduce to unique probe <--> gene mapping here by keeping largest IQR ## We will want "unique genes" in the non-specific filtered gene ## set. if (deparse(substitute(var.func)) == "IQR") { esetIqr <- rowIQRs(exprs(eset)) } else { esetIqr <- apply(exprs(eset), 1, var.func) } numNsWithDups <- nfeat(eset) uniqGenes <- findLargest(featureNames(eset), esetIqr, annotation(eset)) eset <- eset[uniqGenes, ] logvar <- "numDupsRemoved" assign(logvar, numNsWithDups - nfeat(eset), envir=filter.log) } if (var.filter) { if (deparse(substitute(var.func)) == "IQR") { esetIqr <- rowIQRs(exprs(eset)) } else { esetIqr <- apply(exprs(eset), 1, var.func) } ##note this was not happening in the first ##version - despite the documentation if (filterByQuantile) { if ( 0 < var.cutoff && var.cutoff < 1 ) { var.cutoff = quantile(esetIqr, var.cutoff) } else stop("Cutoff Quantile has to be between 0 and 1.") } selected <- esetIqr > var.cutoff eset <- eset[selected, ] logvar <- "numLowVar" assign(logvar, sum(!selected), filter.log) } requireCytoBand <- function(eset) { MAPs <- mget(featureNames(eset), envir=getAnnMap("MAP", annChip), ifnotfound=NA) haveMAP <- names(MAPs)[sapply(MAPs, function(x) !is.na(x[1]))] logvar <- paste("numRemoved", "MAP", sep=".") assign(logvar, nfeat(eset) - length(haveMAP), envir=filter.log) eset[haveMAP, ] } if (require.CytoBand) eset <- requireCytoBand(eset) numSelected <- length(featureNames(eset)) list(eset=eset, filter.log=as.list(filter.log)) }) genefilter/R/rejection_plot.R0000644000175400017540000000374113175713327017306 0ustar00biocbuildbiocbuildrejection_plot <- function(p, col, lty = 1, lwd = 1, xlab = "p cutoff", ylab = "number of rejections", xlim = c( 0, 1 ), ylim, legend = names(p), at = c( "all", "sample" ), n_at = 100, probability = FALSE, ... ) { if ( is.matrix( p ) ) { legend <- colnames( p ) p <- lapply( 1:ncol(p), function(i) p[,i] ) } if ( missing( col ) ) col <- rainbow( length( p ), v = .7 ) col <- rep( col, length.out = length( p ) ) lty <- rep( lty, length.out = length( p ) ) lwd <- rep( lwd, length.out = length( p ) ) if ( missing( ylim ) ) ylim <- c( 0, ifelse( probability, 1, max( sapply( p, length ) ) ) ) at <- match.arg( at ) steps <- lapply( p, function(x) { x <- na.omit(x) stepfun( sort( x ), ( 0:length(x) ) / ifelse( probability, length(x), 1 ) ) } ) plot( 0, type = "n", xaxs = "i", yaxs = "i", xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, ... ) if ( at == "all" ) { for ( i in 1:length( steps ) ) lines( steps[[i]], xlim = xlim, col = col[i], lty = lty[i], lwd = lwd[i], do.points = FALSE ) } else { x <- seq( xlim[1], xlim[2], length = n_at ) for ( i in 1:length( steps ) ) lines( x, steps[[i]](x), col = col[i], lty = lty[i], lwd = lwd[i] ) } if ( !is.null( legend ) ) legend( "topleft", legend, col = col, lty = lty, lwd = lwd, inset = .05 ) invisible( steps ) } genefilter/R/rowROC-accessors.R0000644000175400017540000001532713175713327017427 0ustar00biocbuildbiocbuild## ========================================================================== ## show method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("show", signature(object="rowROC"), function(object){ cat("matrix of ROC curves for", nrow(object@data), "genes/rows", "with", max(0,ncol(object@cutpoints)), "cutpoints\n") cat(" size of class ", object@caseNames[1] ,": ", sum(object@factor==levels(object@factor)[1]), "\n", sep="") cat(" size of class ", object@caseNames[2] ,": ", sum(object@factor==levels(object@factor)[2]), "\n", sep="") cat("partial areas under curve calculated for p=", object@p, "\n", sep="") }) ## ========================================================================== ## ========================================================================== ## subsetting method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("[", signature="rowROC", definition=function(x, i, j="missing", drop="missing") { x@sens <- x@sens[i,,drop=FALSE] x@spec <- x@spec[i,,drop=FALSE] x@pAUC <- x@pAUC[i] x@AUC <- x@AUC[i] x@data <- x@data[i,,drop=FALSE] x@cutpoints <- x@cutpoints[i,,drop=FALSE] x@ranks <- x@ranks[i,,drop=FALSE] return(x) }, valueClass="rowROC") ## ========================================================================== ## ========================================================================== ## plot method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("plot", signature(x="rowROC", y="missing"), function(x, pch=20, cex=0.7, xlab="1 - specificity", ylab="sensitivity", main=NULL, sub=paste("class ", x@caseNames[1], " (", sum(x@factor==levels(x@factor)[1]), " cases) | class ", x@caseNames[2], " (", sum(x@factor==levels(x@factor)[2]), " cases)", sep=""), ...){ sx <- sort(1-x@spec[1,]) sy <- sort(x@sens[1,]) spx <- c(sx[sx<=x@p & sy>0],x@p) spy <- sy[sx<=x@p & sy>0] if(!length(spy)){ spy <- 0 spx <- c(0,spx) } spy <- c(spy, max(spy)) len <- length(sx) nn <- names(area(x)[1]) if(is.null(main)) main <- paste("ROC-Curve", ifelse(length(nn), paste("(", nn, ")", sep=""), "")) plot(sx, sy, pch=pch, cex=cex, xlab=xlab, ylab=ylab, main=main, sub=sub, ...) if(mean(x@data)==1 || all(sx==sy)) polygon(c(0,1,1), c(0,0,1), col="#ececec", lty=0) else{ rect(spx[-1], 0, spx[-1] - diff(spx),spy[-1], col="#ececec", lty=0) lines(sx, sy, type="s") } points(sx, sy, pch=pch, cex=cex, ...) lines(0:1, 0:1, lty=3, col="darkgray") atext <- paste("AUC: ", signif(x@AUC[1],3)) tw <- strwidth(atext) w <- diff(par("usr")[1:2]) cex <- min(1, (w/2+w/10)/tw) th <- strheight(atext, cex=cex)*1.1 if(x@p<1){ ptext <- paste("pAUC: ", signif(x@pAUC[1],3), " (p=", x@p, ")", sep="") tw <- max(tw, strwidth(ptext)) cex <- min(1, (w/2+w/10)/tw) abline(v=x@p, col="darkblue", lty=2) text(x=1-tw*cex*1.1, y=0.02+th*cex, atext, pos=4, cex=cex) text(x=1-tw*cex*1.1, y=0.02, ptext, pos=4, cex=cex) }else{ text(x=1-tw*cex*1.1, y=0.02, atext, pos=4, cex=cex) } }) ## ========================================================================== ## ========================================================================== ## pAUC method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("pAUC", signature(object="rowROC", p="numeric"), function(object, p, flip=TRUE){ if(length(flip)!=1 || !(is.logical(flip))) stop("'flip' must be logical scalar") flip <- as.integer(flip) res <- .Call("pAUC", object@spec, object@sens, p, flip) names(res$pAUC) <- names(res$AUC) <- names(object@AUC) object@pAUC <- res$pAUC object@AUC <- res$AUC object@p <- p return(object) }) ## ========================================================================== ## ========================================================================== ## AUC method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("AUC", signature(object="rowROC"), function(object){ object@pAUC <- object@AUC object@p <- 1 return(object) }) ## ========================================================================== ## ========================================================================== ## accessor method to slot 'sens' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("sens", signature(object="rowROC"), function(object) return(object@sens) ) ## ========================================================================== ## ========================================================================== ## accessor method to slot 'spec' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("spec", signature(object="rowROC"), function(object) return(object@spec) ) ## ========================================================================== ## ========================================================================== ## accessor method to slots 'AUC' or 'pAUC' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("area", signature(object="rowROC"), function(object, total=FALSE){ if(total) return(object@AUC) else return(object@pAUC) }) ## ========================================================================== genefilter/R/rowSds.R0000644000175400017540000000032313175713327015540 0ustar00biocbuildbiocbuildrowVars = function(x, ...) { sqr = function(x) x*x n = rowSums(!is.na(x)) n[n<=1] = NA return(rowSums(sqr(x-rowMeans(x, ...)), ...)/(n-1)) } rowSds = function(x, ...) sqrt(rowVars(x, ...)) genefilter/R/rowpAUCs-methods.R0000644000175400017540000001025613175713327017431 0ustar00biocbuildbiocbuild## ========================================================================== ## core rowpAUCs method for objects of class matrix ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="matrix", fac="factor"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ ##check argument 'p' if(!is.numeric(p) || length(p)>1) stop("'p' must be numeric of length 1") ## check argument 'fac' f <- checkfac(fac) if(f$nrgrp != 2 || length(f$fac) != ncol(x) || length(unique(f$fac)) !=2 ) stop("'fac' must be factor with 2 levels and length 'ncol(x)'") ## check argument 'flip' if(length(flip)!=1 || !(is.logical(flip))) stop("'flip' must be logical scalar") flip <- as.integer(flip) ## compute cutpoints cutpts <- matrix((0:ncol(x))+0.5, ncol=ncol(x)+1, nrow=nrow(x), byrow=TRUE, dimnames=list(rownames(x), NULL)) ## rank data xr <- t(apply(x, 1, rank)) mode(xr) <- "numeric" ## call C function and return object of class 'rowROC' res <- .Call("ROCpAUC", xr, cutpts, as.integer(f$fac), p, PACKAGE="genefilter", flip) sens <- res$sens spec <- res$spec rownames(sens) <- rownames(spec) <- rownames(x) pAUC <- res$pAUC AUC <- res$AUC names(AUC) <- names(pAUC) <- rownames(x) object <- new("rowROC", data=x, sens=sens, spec=spec, pAUC=pAUC, AUC=AUC, factor=factor(f$fac), p=p, ranks=xr, caseNames=as.character(caseNames), cutpoints=cutpts) return(object) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=matrix, fac=numeric ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="matrix", fac="numeric"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ cutpts <- matrix((0:ncol(x))+0.5, ncol=ncol(x)+1, nrow=nrow(x), byrow=TRUE) rowpAUCs(x=x, fac=factor(fac), p=p, flip=flip, caseNames=caseNames) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=ExpressionSet ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="ExpressionSet"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ rowpAUCs(x=exprs(x), fac=fac, p=p, flip=flip, caseNames=caseNames) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=ExpressionSet fac=character ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="ExpressionSet", fac="character"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ if (length(fac) == 1){ if(!fac %in% colnames(pData(x))) stop("fac must be length 1 character indicating a ", "covariate in the phenoData slot of the expressionSet") cn <- as.character(levels(pData(x)[[fac]])) fac = factor(as.integer(factor(pData(x)[[fac]]))-1) rowpAUCs(x=exprs(x), fac=fac, p=p, flip=flip, caseNames=cn) }else{ rowpAUCs(x=x, fac=as.factor(fac), p=p, flip=flip, caseNames=caseNames) } }) ## ========================================================================== genefilter/R/rowttests-methods.R0000644000175400017540000001537313175713327020011 0ustar00biocbuildbiocbuild##--------------------------------------------------------------------------------------## ## This file contains methods definitions for rowttests, colttest, rowFtests, colFtests ## ##--------------------------------------------------------------------------------------## ##----------------------------------------------------------------------- ## The core function for row- and column-wise t-tests - it uses C code ##------------------------------------------------------------------------ rowcoltt = function(x, fac, tstatOnly, which) { if (!missing(tstatOnly) && (!is.logical(tstatOnly) || is.na(tstatOnly))) stop(sQuote("tstatOnly"), " must be TRUE or FALSE.") f = checkfac(fac) if ((f$nrgrp > 2) || (f$nrgrp <= 0)) stop("Number of groups is ", f$nrgrp, ", but must be >0 and <=2 for 'rowttests'.") if (typeof(x) == "integer") x[] <- as.numeric(x) cc = .Call("rowcolttests", x, f$fac, f$nrgrp, which-1L, PACKAGE="genefilter") res = data.frame(statistic = cc$statistic, dm = cc$dm, row.names = dimnames(x)[[which]]) if (!tstatOnly) res = cbind(res, p.value = 2*pt(abs(res$statistic), cc$df, lower.tail=FALSE)) attr(res, "df") = cc$df return(res) } ##------------------------------------------------------------ ## The core function for F-tests - it uses R matrix algebra ##------------------------------------------------------------ rowcolFt = function(x, fac, var.equal, which) { if(!(which %in% c(1L, 2L))) stop(sQuote("which"), " must be 1L or 2L.") if(which==2L) x = t(x) if (typeof(x) == "integer") x[] <- as.numeric(x) sqr = function(x) x*x stopifnot(length(fac)==ncol(x), is.factor(fac), is.matrix(x)) x <- x[,!is.na(fac), drop=FALSE] fac <- fac[!is.na(fac)] ## Number of levels (groups) k <- nlevels(fac) ## xm: a nrow(x) x nlevels(fac) matrix with the means of each factor ## level xm <- matrix( sapply(levels(fac), function(fl) rowMeans(x[,which(fac==fl), drop=FALSE])), nrow = nrow(x), ncol = nlevels(fac)) ## x1: a matrix of group means, with as many rows as x, columns correspond to groups x1 <- xm[,fac, drop=FALSE] ## degree of freedom 1 dff <- k - 1 if(var.equal){ ## x0: a matrix of same size as x with overall means x0 <- matrix(rowMeans(x), ncol=ncol(x), nrow=nrow(x)) ## degree of freedom 2 dfr <- ncol(x) - dff - 1 ## mean sum of squares mssf <- rowSums(sqr(x1 - x0)) / dff mssr <- rowSums(sqr( x - x1)) / dfr ## F statistic fstat <- mssf/mssr } else{ ## a nrow(x) x nlevels(fac) matrix with the group size of each factor ## level ni <- t(matrix(tapply(fac,fac,length),ncol=nrow(x),nrow=k)) ## wi: a nrow(x) x nlevels(fac) matrix with the variance * group size of each factor ## level sss <- sqr(x-x1) x5 <- matrix( sapply(levels(fac), function(fl) rowSums(sss[,which(fac==fl), drop=FALSE])), nrow = nrow(sss), ncol = nlevels(fac)) wi <- ni*(ni-1) /x5 ## u : Sum of wi u <- rowSums(wi) ## F statistic MR <- rowSums(sqr((1 - wi/u)) * 1/(ni-1))*1/(sqr(k)-1) fsno <- 1/dff * rowSums(sqr(xm - rowSums(wi*xm)/u) * wi) fsdeno <- 1+ 2* (k-2)*MR fstat <- fsno/fsdeno ## degree of freedom 2: Vector with length nrow(x) dfr <- 1/(3 * MR) } res = data.frame(statistic = fstat, p.value = pf(fstat, dff, dfr, lower.tail=FALSE), row.names = rownames(x)) attr(res, "df") = c(dff=dff, dfr=dfr) return(res) } ## ========================================================================== ## rowttests and colttests methods for 'matrix' ## ========================================================================== setMethod("rowttests", signature(x="matrix", fac="factor"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, fac, tstatOnly, 1L)) setMethod("rowttests", signature(x="matrix", fac="missing"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, factor(integer(ncol(x))), tstatOnly, 1L)) setMethod("colttests", signature(x="matrix", fac="factor"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, fac, tstatOnly, 2L)) setMethod("colttests", signature(x="matrix", fac="missing"), function(x, fac, tstatOnly=FALSE) rowcoltt(x, factor(integer(ncol(x))), tstatOnly, 2L)) ## ========================================================================== ## rowFtests and colFtests methods for 'matrix' ## ========================================================================== setMethod("rowFtests", signature(x="matrix", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(x, fac, var.equal, 1L)) setMethod("colFtests", signature(x="matrix", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(x, fac, var.equal, 2L)) ## =========================================================================== ## Methods for 'ExpressionSet': only for rowttests and rowFtests ## -========================================================================== setMethod("rowttests", signature(x="ExpressionSet", fac="factor"), function(x, fac, tstatOnly=FALSE) rowcoltt(exprs(x), fac, tstatOnly=tstatOnly, 1L)) setMethod("rowttests", signature(x="ExpressionSet", fac="missing"), function(x, fac, tstatOnly=FALSE) { x = exprs(x) fac = integer(ncol(x)) rowcoltt(x, fac, tstatOnly, 1L) }) setMethod("rowttests", signature(x="ExpressionSet", fac="character"), function(x, fac, tstatOnly=FALSE) { if (length(fac) != 1) stop("fac must be length 1 character or a factor") fac = factor(pData(x)[[fac]]) rowcoltt(exprs(x), fac, tstatOnly, 1L) }) setMethod("rowFtests", signature(x="ExpressionSet", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(exprs(x), fac, var.equal, 1L)) setMethod("rowFtests", signature(x="ExpressionSet", fac="character"), function(x, fac, var.equal=TRUE) { fac = factor(as.integer(factor(pData(x)[[fac]]))-1L) rowcolFt(exprs(x), fac, var.equal, 1L) }) ## ------------------------------------------------------------ ## convert fac from factor or numeric to integer and then ## make sure it is an integer ## ------------------------------------------------------------ checkfac = function(fac) { if(is.numeric(fac)) { nrgrp = as.integer(max(fac, na.rm=TRUE)+1) fac = as.integer(fac) } ## this must precede the factor test if(is.character(fac)) fac = factor(fac) if (is.factor(fac)) { nrgrp = nlevels(fac) fac = as.integer(as.integer(fac)-1) } if(!is.integer(fac)) stop("'fac' must be factor, character, numeric, or integer.") if(any(fac<0, na.rm=TRUE)) stop("'fac' must not be negative.") return(list(fac=fac, nrgrp=nrgrp)) } genefilter/R/shorth.R0000644000175400017540000000317713175713327015600 0ustar00biocbuildbiocbuildshorth <- function(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05) { stopifnot(is.numeric(x)) if (na.rm) { x <- x[is.finite(x)] } else { if(any(!is.finite(x))) stop("'x' contains NA or NaN, and 'na.rm' is FALSE.") } if(length(x)==0L) { NA_real_ } else { sx <- sort(x) width <- round(0.5*length(x)) diffs <- sx[(width+1):length(x)] - sx[1:(length(x)-width)] ## cannot use which.min since we want all minimising points not just one: q <- which(diffs==min(diffs)) if(length(q)>1) { ## deal with ties: maxq = max(q) minq = min(q) ## take the action specified in "tie.action" q <- switch(tie.action, mean = { if (maxq-minq <= tie.limit * length(x)) { mean(q) } else { stop(paste("Encountered tie(s), and the difference between minimal and maximal value is larger than 'length(x)*tie.limit'.", "This could mean that the distribution does not have a single well-defined mode.", paste("q=", minq, "...", maxq, ", values=", signif(sx[minq],4), "...", signif(sx[minq+width],4), sep=""), sep="\n")) }}, max = maxq, ## largest midpoint (maxq) min = minq, ## smallest midpoint (minq) stop(sprintf("Invalid value '%s' for argument 'tie.action'", tie.action)) ) } ## if mean(sx[q:(q+width-1)]) } ## if } genefilter/R/zzz.R0000644000175400017540000000037313175713327015121 0ustar00biocbuildbiocbuild.onLoad <- function(lib, pkgname) { if(.Platform$OS.type == "windows" && interactive() && .Platform$GUI == "Rgui"){ addVigs2WinMenu("genefilter") } } .onUnload <- function( libpath ) { library.dynam.unload( "genefilter", libpath ) } genefilter/build/0000755000175400017540000000000013175725026015033 5ustar00biocbuildbiocbuildgenefilter/build/vignette.rds0000644000175400017540000000074213175725026017375 0ustar00biocbuildbiocbuildSMk@U,'i Js)LconR([J#v7(J+qԈ7oΌ~ $%iR٦2x"/ߑXL_h*M>q8(;lҲp"Gs* ~<WbF7V2׻)vS]`=M/lzzv 荊dcMoE<:xʵ{m>tIO/ _w}jI A~uH'kv8s\Tl@GaqHlCm_N7sMgenefilter/data/0000755000175400017540000000000013175713327014646 5ustar00biocbuildbiocbuildgenefilter/data/tdata.R0000644000175400017540000036557213175713327016110 0ustar00biocbuildbiocbuild"tdata" <- structure(list(A = c(192.742, 97.137, 45.8192, 22.5445, 96.7875, 89.073, 265.964, 110.136, 43.0794, 10.9187, 751.227, 76.9437, 105.378, 40.4826, 58.1706, 257.619, 129.056, 61.7251, -40.9349, 284.407, 178.745, 79.7368, 9903.19, 61.2671, 120.544, 50.0962, 42.5285, 36.8936, 234.698, 26.9561, 58.124, 40.616, 125.063, 49.9943, 33.1246, 148.494, 66.6936, 19.1364, 165.75, 179.989, 151.72, 553.87, 72.2579, -30.1595, 65.1004, 1781.95, 3311.18, 4478.99, 3835.31, 4252.98, 5449.81, 79.7636, 3.75133, 44.3623, 197.782, 831.418, 541.391, 117.151, 144.719, 70.46, 55.4337, 224.167, 238.342, 130.794, 54.0728, 107.263, 382.255, 36.9832, 22.9605, 6.29927, 17.1529, 216.932, 190.178, 113.476, 50.7945, 1139.56, -18.287, 17.2761, 17.7039, 15.8655, 123.621, 174.661, 25.4169, 17.0339, 102.591, 67.8606, 754.361, 1.86526, 121.892, 14.5586, 3175.57, 40.8068, 18.1273, 22.5912, 14.4076, 64.5555, 17.8468, 412.283, 8.93417, -28.9985, 28.59, 316.157, 139.423, 8.50093, 60.8199, 37.7096, 35.6071, 192.835, 24.9388, 29.4782, 268.752, 13.0213, 65.5145, 464.122, 65.3482, 185.137, 165.366, 240.969, 51.1941, 6.66395, 48.6114, 36.5343, 412.338, 141.939, 36.4318, 52.9437, 61.3229, 65.3667, 68.6627, 10.9786, 23.8657, 5.01524, 177.065, 45.8588, 50.9341, 407.17, 16.8144, 24.3676, 139.241, 101.986, 126.172, 81.2844, -7.15113, 57.5308, 118.845, 3351.76, 286.108, 183.669, -0.944537, 21.8096, 16.7794, 405.217, 78.5843, 1705.65, 71.6915, 16.6355, 3211.06, 80.4291, 15.9308, 86.4344, 12.4541, 13.0163, 138.419, 16.6741, 20.1171, 323.881, 132.963, 3.27231, 113.622, -4.52738, 145.533, 19.0251, 28.0719, 128.004, 333.392, 17.6846, 92.238, 141.285, 17.7226, 1937.11, 54.0638, 15.8039, 29.8451, 76.3667, 445.892, 143.263, 202.725, 24.9869, 963.851, 79.9563, 56.2773, 321.199, 738.774, 100.949, 188.097, 18.1364, 355.357, 74.2606, 133.454, 98.7327, 694.948, 92.4006, 25.0186, 250.085, 3876.44, 117.049, 122.154, 67.1931, 7.30897, 84.6283, 49.592, 335.108, 66.4654, 86.0123, 72.9268, 44.994, 9.38836, 444.915, 92.0446, 10.0007, 18.8823, 58.7393, 13.3018, 569.842, 37.662, 40.3649, 226.662, 12.82, 391.518, 110.782, 7.59043, 194.394, 27.4265, 7.68662, 65.2073, 119.647, 16.0125, 1281.78, 226.635, 10.8538, 17.5639, 1335.61, 86.3719, 62.4806, 195.822, 244.137, 14.4861, 46.9659, 195.317, 5.81787, 184.517, 22.0721, 199.422, 16.2109, 6.64863, 161.7, 44.5963, 505.617, 110.631, 185.215, 27.4203, 24.4519, 216.36, 255.058, 309.114, 4667.83, 112.576, 91.4096, 633.803, 2329.11, -31.0105, 2809.33, 9.45511, 2.93526, 245.995, 132.075, 25.4559, -78.1238, 9.77901, 66.6104, 78.5702, 60.3145, 40.4373, 50.5534, 93.9559, 152.835, 57.4955, 2847.08, 90.0681, 336.346, 333.8, 117.994, 36.3703, 75.0352, 53.314, 286.113, 291.484, 73.877, 3858.49, 11.1541, 26.7391, -19.123, 8.3213, -175.867, 316.537, 3205.89, 1633.98, 490.371, 69.9426, 24.3604, 148.338, 42.0539, 166.386, 11.0695, 466.869, 918.454, 105.831, 6336.55, 94.5106, 124.549, 78.9894, 57.1918, -10.0784, 3.87075, 109.668, 77.1675, 457.371, 90.2235, 2193.88, 97.9357, 67.4934, 12.5044, 87.9604, 1136.1, 52.8251, 205.778, 47.9478, 37.0896, 29.8769, 163.502, 52.9366, -6.26854, 24.8778, 2172.91, 2117.27, 34.5438, 3.18616, 181.501, 32.5297, 105.013, 292.29, 63.8859, 174.173, 95.0869, 280.535, 109.507, 1354.61, 1961.83, 64.2933, 34.5335, 92.1684, 6.89252, 118.755, 40.8079, 229.027, 100.052, 26.8675, 48.7903, 145.687, 1698.05, 165.572, 3.01315, 14.9219, 115.39, 222.809, 52.0182, 17.2658, 33.2661, 61.0926, 13.8854, 638.578, 622.462, 1695.75, 685.856, 122.788, 13.867, 234.63, 327.099, 45.4667, 34.1512, 10.0776, -57.7591, 33.2443, 43.9199, 345.91, 157.343, 276.585, 551.108, 401.466, 26.783, 344.651, 99.7442, -80.8385, 19.5091, 66.3027, 87.1783, 8.25017, 37.6927, 113.722, 78.6986, 24.9035, 6.32616, -36.7863, 30.8709, 48.0258, 347.951, 6.1035, 20.7713, 59.5264, 119.503, 27.8618, 35.1162, 92.8325, 190.052, 11.9853, -53.8608, -0.760266, 789.487, 349.556, 252.402, 148.234, 158.495, 7.5498, 258.37, 4.04513, 2.94722, 11.3329, 37.8421, 29.3296, 153.122, 328.971, 287.74, 59.2783, 52.3302, 70.1602, 285.172, 110.687, 442.733, 55.6486, 37.2868, 81.0269, 239.965, 582.627, 858.9, 230.119, 58.5767, 13.7181, 1739.95, 72.151, 286.243, 265.477, 652.056, 5.14324, 27.5791, 238.494, 310.136, 35.5071, 23.6182, 2080.61, 376.363, 545.377, 66.1117, 82.6331, 54.9434, 11.3511, 259.183, 153.759, 16.8873, 30.2569, 1505.73, 1937.31, 233.214, 3250.14, -22.2448, 269.912, 84.6064, 233.003, 248.216, 150.127, 4.59592, 129.867, 19.7505, 24.819, 63.576, 190.533, 26.7016, 446.512, 22.4641, 299.434, 253.692), B = c(85.7533, 126.196, 8.83135, 3.60093, 30.438, 25.8461, 181.08, 57.2889, 16.8006, 16.1789, 515.004, 40.907, 97.4932, 7.45801, 15.7926, 113.69, 74.6095, 50.2372, -83.9302, 208.099, 101.3, 55.5632, 8501.62, 37.474, 75.9854, 27.9532, 33.7186, 35.1697, 102.467, -2.37297, -1.69785, 34.713, 98.0369, 19.8722, 4.91484, 70.9219, 5.60854, 20.8099, 300.024, 790.943, 546.343, 1758.42, 159.484, -64.7658, 19.7163, 2370.97, 3270.14, 3937.24, 5529.02, 5758.12, 5870.02, 36.0172, 20.7365, 54.8022, 44.7054, 501.091, 377.234, 128.234, 181.278, 93.6398, 64.7447, 180.978, 190.311, 67.1193, 30.2595, 73.1682, 237.818, 42.2591, 13.4121, 19.1633, 27.1722, 162.563, 120.161, 84.9185, 53.818, 5154.31, 3.74538, 36.0095, 15.2357, 23.9183, 95.3586, 103.08, 42.3577, 23.4741, 92.3486, 24.4368, 777.105, 5.41691, 92.031, 34.3359, 3548.02, 3.2361, 9.65582, 9.13811, -1.38469, 56.5676, 1.12837, 440.35, 4.28296, -30.0532, 16.6452, 278.807, 169.568, 21.1695, -394.553, 16.4941, 38.4721, 78.9517, 3.10118, 30.1089, 167.865, -3.0867, 44.0921, 436.574, 44.5892, 163.138, 194.529, 214.829, 55.8029, 11.3476, 14.958, 25.3529, 384.259, 72.7142, 12.4748, 27.1124, 66.3107, 66.8159, 63.0803, 92.1722, 0.177197, -38.9859, 171.192, 34.0826, 4.07801, 373.017, -0.769524, 6.01475, 89.9168, 84.6254, 107.521, 74.2868, -20.7531, 148.301, 94.944, 4323.17, 232.94, 121.714, 69.4382, 5.72227, 7.3986, 415.275, 28.8216, 1315.01, 36.1148, 67.0027, 2593.65, 24.3428, -17.6152, 50.0729, 9.31312, -23.0799, 86.1644, -8.1025, 19.6846, 235.001, 73.4631, 13.8193, 59.9681, 2.94767, 157.69, 47.6266, 61.1661, 104.139, 379.143, 23.7638, 71.4745, 87.7626, 30.7267, 1499.43, 39.9567, 7.69656, 2.28445, 59.4088, 330.876, 105.898, 176.47, 1.81061, 851.733, 20.8281, 45.8031, 649.608, 1163.7, 55.8623, 151.278, -16.7101, 277.792, 42.7732, 241.785, 131.357, 616.905, 54.4591, 41.0307, 212.55, 4456.75, 212.208, 115.759, 58.1292, -15.082, 90.8461, 20.9174, 277.822, 44.4367, 68.6069, 16.3172, 3.4138, -3.38286, 285.917, 126.127, 0.609841, 59.5828, 4.21187, 8.49004, 870.198, 13.2164, 14.4078, 203.901, 14.9982, 252.349, 74.7691, 10.7374, 170.651, 97.6762, 33.0937, 35.1276, 200.758, 24.2109, 808.399, 176.946, 10.668, 23.3083, 2208.33, 62.0363, 40.6219, 64.4413, 104.971, 22.7284, 600.467, 361.212, -6.01692, 291.5, 21.2316, 473.545, 20.4983, 31.2972, 150.28, 111.154, 182.812, 93.91, 372.524, 72.3758, 15.8334, 147.966, 267.088, 813.374, 2995.08, 66.3044, 46.9761, 1468.57, 2370.87, -59.0063, 3676.6, 148.159, 12.0201, 220.69, 111.018, 55.0777, -66.3389, -13.7223, 76.5278, 53.8695, 194.842, 131.637, 235.74, 240.715, 247.238, 122.939, 3743.96, 573.17, 387.269, 251.052, 107.653, 37.0203, 137.625, 33.853, 238.052, 863.607, 35.8266, 3568.89, 1.50669, 27.7993, -5.28788, 11.2962, -125.024, 408.582, 3515.46, 2218.3, 511.181, 41.3118, 15.083, 116.584, 9.54446, 142.225, -26.1006, 363.157, 728.89, 93.9206, 7294.08, 22.3793, 107.922, 31.4733, 101.262, 57.8828, -28.1437, 59.2715, 66.1019, 377.694, 78.6573, 3324.68, 50.878, 71.3438, 9.54178, 54.2085, 2764.5, 20.1416, 167.67, 10.6369, 22.4401, 48.3359, 70.4437, 19.7066, 52.0355, 25.3512, 3017.39, 2812.14, 11.6979, 77.0231, 212.566, 16.6308, 82.0771, 185.749, 34.072, 101.539, 181.17, 197.009, 75.3342, 2147.25, 1587.88, 151.32, 30.4737, 123.478, 2.23759, 69.8942, 26.9286, 79.6353, 117.308, -34.0231, 42.9693, 217.778, 1353.85, 116.874, 3.5022, 22.7868, 57.4058, 161.722, 29.8741, 9.53801, 33.8521, 24.413, 17.7637, 520.449, 591.734, 2062.22, 996.584, 78.1948, 45.329, 167.125, 401.967, 34.1303, 21.5371, 2.24541, -26.3753, 32.5026, 29.1886, 206.237, 93.309, 200.928, 487.538, 337.674, 30.2136, 278.321, 118.652, -52.243, 17.923, 21.0778, 55.3885, 2.27909, 47.3832, 88.2588, 49.7464, 32.1044, -1.05329, -4.33992, 18.2626, 40.7261, 333.625, -7.93034, 19.45, 57.6465, -755.812, 21.0434, 33.7346, 106.43, 268.848, 8.83568, -46.6535, -1.72494, 623.697, 231.072, 198.967, 469.976, 269.123, 68.4686, 316.445, 7.37585, 33.8574, 8.8682, 21.018, 10.5003, 67.5913, 1110.82, 295.222, 83.4115, 11.1847, 126.866, 373.091, 71.2689, 713.406, 58.4652, 22.5675, 232.293, 236.371, 469.914, 762.529, 103.91, 60.7067, 5.59537, 3355.81, 84.9986, 230.098, 272.078, 563.61, 24.53, 13.1461, 221.654, 274.996, 5.44171, 24.4863, 2227.03, 392.032, 508.608, 93.93, 31.5536, 31.0355, 3.83873, 230.849, 242.947, 13.9151, 3.29854, 1556.68, 1911.55, 146.58, 4013.99, -13.4229, 211.98, 72.7237, 186.692, 165.056, 214.073, 9.80107, 84.4112, 89.002, 26.9743, 11.6784, 169.962, 33.1578, 271.494, 23.4589, 233.138, 183.306), C = c(176.757, 77.9216, 33.0632, 14.6883, 46.1271, 57.2033, 164.926, 67.398, 37.6002, 10.1495, 622.901, 62.0314, 74.0299, 19.4069, 25.1962, 187.796, 82.8271, 61.671, -28.705, 239.039, 118.699, 68.5976, 9453, 44.7525, 126.374, 29.261, 35.842, 36.5703, 97.901, 34.4333, 52.6747, 82.4409, 77.1769, 32.2058, 24.6518, 118.632, 60.3028, 10.7195, 152.424, 150.249, 173.624, 599.857, 42.4559, -28.2104, 39.1968, 1693, 2670.94, 3822.94, 2961.39, 3739.82, 4788.63, 82.2737, -0.597615, 44.8314, 206.137, 620.729, 436.198, 84.4842, 191.682, 64.3478, 79.7282, 237.773, 207.319, 97.155, 38.0971, 74.1949, 388.945, 23.294, 16.9304, 3.03659, -0.338279, 166.482, 169.273, 177.832, 58.2412, 600.494, -3.03599, 0.533814, 10.2753, 22.7978, 94.4468, 177.465, 28.9386, 18.9332, 120.461, 84.3285, 1208.68, 11.7631, 201.403, 16.3046, 1820.51, 18.7009, 8.06063, 17.7927, 4.91404, 64.3351, 9.33222, 495.373, 11.3434, -26.9727, 32.8212, 309.36, 132.574, 4.76155, 85.7358, 41.2689, 63.5624, 96.1371, 13.489, 40.0346, 288.847, 32.9084, 53.8278, 371.229, 68.3952, 128.63, 266.452, 269.956, 47.743, -0.199725, 67.7454, 30.8355, 394.639, 99.8759, 32.5865, 49.5398, 56.054, 78.8531, 85.9725, -3.55993, 26.8936, 0.485286, 277.25, 60.7702, 36.151, 466.838, -4.87448, 9.19057, 137.726, 117.944, 122.385, 91.1349, -9.44844, 90.8404, 78.8022, 2793.21, 217.035, 142.901, 58.8769, -25.6195, 16.2116, 472.011, 76.1839, 975.155, 25.4608, 23.3196, 3219.65, 98.2355, 11.5571, 62.0855, -3.89868, 0.364566, 133.15, 14.9364, 30.4366, 247.264, 230.803, 0.868223, 114.364, -1.38195, 202.254, 24.8141, 56.6022, 142.538, 404.582, 26.6696, 110.596, 159.432, 20.0713, 1981.21, 79.788, 20.2375, 32.2108, 78.4334, 534.38, 194.198, 268.142, 19.7106, 1151.71, 33.9701, 40.1148, 189.034, 458.814, 111.326, 243.659, 11.1631, 410.494, 64.8875, 86.9771, 150.6, 897.232, 70.4278, 41.771, 266.278, 3561.69, 96.4136, 139.54, 65.321, 1.92815, 70.2624, 23.7333, 334.227, 37.4708, 55.9757, 42.6704, 24.337, 56.2867, 462.89, 176.691, 6.97726, 12.3479, 61.623, -40.8948, 496.399, 12.4289, 16.7948, 234.34, 18.1656, 744.438, 52.0471, 26.1707, 277.678, 59.6709, 8.88736, 67.9387, 166.966, 38.5175, 2748.11, 285.982, 11.8812, 17.6829, 1051.91, 156.014, 48.2021, 159.216, 139.037, 18.6021, 45.0407, 180.731, 2.32048, 184.486, 16.5329, 105.691, 41.7953, 0.693056, 116.963, 26.7144, 244.615, 117.343, 108.422, 59.9884, 23.0708, 201.693, 373.406, 331.275, 2239.38, 114.994, 116.796, 628.728, 1887.55, -81.7433, 2448.39, 8.64014, 5.43453, 255.595, 117.117, 76.3595, -37.4766, 6.22211, 136.229, 89.6268, 50.2193, 77.6374, 95.2023, 98.8803, 175.198, 125.214, 2868.78, 173.548, 471.518, 404.532, 181.375, 39.4546, 103.158, 105.342, 387.073, 537.699, 75.7463, 2560.07, -0.373076, 12.8639, -12.5198, 15.1326, -117.8, 395.382, 3143.06, 1271.65, 721.257, 61.8619, 23.3659, 172.881, 28.6697, 171.244, 14.1655, 375.339, 840.046, 93.8486, 6579.89, 40.5256, 138.575, 62.4509, 109.496, 24.4152, 24.7544, 105.943, 71.9599, 331.429, 105.756, 1786.61, 128.158, 84.3728, 20.6126, 157.824, 1300.7, 48.2448, 229.14, 61.0324, 21.6207, 32.5197, 173.512, 33.0107, -3.57515, 38.8318, 2115.7, 2353.56, 37.2077, 26.4637, 204.545, 45.8613, 170.981, 324.006, 46.7089, 243.086, 84.3667, 312.187, 83.842, 7748.04, 1548.52, 131.897, 47.1247, 131.118, 4.11246, 124.225, 34.5025, 197.734, 91.6667, 22.7796, 84.4513, 143.789, 905.632, 179.091, 1.12619, 33.9309, 69.3337, 190.008, 51.8768, 21.6014, 26.3087, 55.8036, 2.06138, 629.873, 494.789, 1648.93, 627.546, 104.333, 9.70183, 196.457, 264.936, 30.9323, 23.3243, 2.87676, -56.3115, 40.8574, 29.4056, 243.143, 155.89, 368.955, 729.211, 331.715, 28.1446, 513.724, 123.675, -68.25, 15.495, 86.2276, 76.1181, 5.3182, 33.6867, 134.632, 48.2266, 24.8465, 0.541914, -19.0799, 12.4705, 64.7863, 362.379, 8.82454, 12.3041, 73.1326, 147.117, 40.8124, 50.4434, 76.3825, 264.597, 12.1591, -75.3722, 4.81662, 650.118, 239.454, 215.675, 206.716, 129.04, 1.6552, 240.097, 10.8357, 9.03269, 15.9011, 26.9514, 10.7637, 106.479, 301.017, 362.135, 72.0019, 55.6966, 174.68, 332.694, 388.184, 337.534, 18.5135, 12.4759, 118.672, 261.799, 207.092, 600.212, 192.576, 47.1807, 4.08804, 2498.19, 63.1878, 312.842, 326.4, 455.249, 1.25862, 24.361, 278.501, 324.997, 10.9836, 10.5946, 1666.93, 553.31, 634.472, 64.7392, 62.0543, 37.4184, 17.2002, 260.407, 185.728, 16.1287, 21.148, 1761.11, 1776.92, 257.1, 3288.88, -8.50769, 338.949, 66.6674, 336.641, 298.4, 195.258, 0.368562, 116.449, 16.639, 39.5593, 55.6773, 156.71, 31.7113, 304.809, 39.417, 355.204, 291.385), D = c(135.575, 93.3713, 28.7072, 12.3397, 70.9319, 69.9766, 161.469, 77.2207, 46.5272, 9.73639, 669.859, 54.4218, 54.5277, 20.6246, 46.5057, 210.58, 101.534, 93.2235, -27.9979, 236.428, 131.834, 55.6881, 8595.65, 43.902, 90.4021, 38.6436, 43.8173, 37.0274, 146.239, 17.5947, 55.7056, 42.4596, 107.861, 37.0137, 30.3256, 118.691, 63.5276, 13.9764, 118.693, 82.6372, 135.163, 426.569, 3.26054, -37.3464, 24.3987, 931.981, 1916, 2995.59, 1712.31, 2266.59, 3491.7, 51.4973, -8.47943, 31.2879, 116.343, 668.082, 560.846, 101.776, 202.534, 63.019, 102.178, 216.3, 217.761, 109.506, 35.9229, 103.339, 336.965, 31.0905, -15.2399, -0.903413, -14.1061, 248.735, 173.702, 117.493, 59.7341, 658.421, -5.98093, 11.4078, 12.9648, 24.8195, 124.794, 174.559, 19.3623, 26.6189, 113.723, 84.2596, 730.314, 8.62522, 134.993, 18.4485, 2612.13, 28.5711, 5.85333, 19.1999, 11.1325, 56.7737, -1.59376, 501.236, 13.8976, -23.0042, 37.1873, 403.88, 109.777, 10.3207, 67.3778, 47.4344, 55.8759, 108.988, 13.9802, 43.1862, 208.604, 2.65486, 48.6217, 465.519, 60.0952, 129.701, 250.405, 265.694, 36.3271, 17.8139, 60.2125, 28.2217, 362.904, 114.494, 16.9474, 45.4437, 52.1385, 40.8464, 81.6387, 0.849691, 21.6048, -2.29043, 190.222, 66.5821, 46.4369, 467.278, -0.835582, 18.1039, 115.949, 98.4812, 128.012, 67.5637, 11.2539, 77.5852, 91.8056, 3072.51, 192.841, 161.071, 40.22, 31.2705, -61.0733, 436.333, 60.0639, 1420.69, 41.971, 16.3495, 2453.11, 104.167, 13.7932, 89.1047, 4.4386, 8.19584, 89.7832, 14.4443, 54.3745, 249.8, 187.791, 6.62558, 127.032, -5.58777, 191.617, 17.9258, 78.5784, 148.488, 364.183, 46.72, 97.8402, 130.051, 11.396, 1414.58, 117.664, 26.8048, 35.6676, 51.7222, 382.114, 196.659, 264.509, 14.1542, 1326.21, 64.8629, 39.6481, 175.793, 529.609, 80.6403, 118.342, 12.7879, 358.9, 58.4443, 123.854, 126.945, 763.094, 63.7269, 27.4686, 229.632, 3045.6, 94.6744, 108.665, 65.6258, -2.53157, 80.7287, 42.6169, 346.969, 37.3218, 57.9184, 48.6221, 32.3597, 17.1126, 475.902, 139.969, 2.52464, 13.3328, 50.5703, 8.63196, 724.818, 13.4701, 25.8875, 175.004, 26.7092, 628.343, 74.8407, 9.15695, 270.383, 43.9764, 10.0378, 66.9586, 159.203, 42.1448, 26.7318, 223.828, 3.47616, 15.4544, 1094.93, 112.442, 34.9869, 136.226, 173.703, 18.477, 40.0883, 153.399, 7.51711, 160.627, 11.9868, 215.151, 54.3479, 3.20111, 134.432, 44.7578, 371.959, 115.912, 58.0414, 89.2656, 25.785, 199.259, 238.99, 303.492, 3536.17, 129.548, 139.689, 2010.77, 2790.52, -77.6557, 3973.05, 7.47499, 1.14975, 254.188, 81.2887, 71.8499, -57.1317, 5.93088, 172.465, 79.6828, 29.3946, 50.5614, 73.798, 78.9586, 147.887, 106.963, 2915.08, 138.89, 385.115, 360.427, 115.041, 41.4827, 76.5293, 60.0774, 341.52, 761.418, 75.7623, 3682.01, 7.51078, 12.0506, -7.89719, 15.0758, 7.52292, 408.186, 4604.16, 2217.51, 505.422, 54.4029, 23.8248, 200.161, 26.5075, 116.292, 8.75973, 523.481, 968.806, 100.517, 4694.22, 64.1784, 119.122, 140.46, 63.7561, -22.7521, 12.7108, 116.718, 79.158, 322.951, 94.8393, 3026.42, 111.845, 74.4425, 44.2425, 97.9837, 2370.01, 29.0707, 180.18, 39.32, 24.889, 38.6347, 225.425, 31.989, 6.76259, 27.4242, 3134.73, 2830.51, 43.1838, 47.3681, 153.038, 19.7044, 224.179, 304.823, 82.7017, 226.486, 59.1124, 248.867, 88.2029, 1392.41, 1592.51, 72.3257, 43.4622, 128.944, 1.62062, 95.1037, 27.9533, 196.074, 86.6898, 20.6985, 86.8609, 104.507, 1146.21, 188.642, 0.59902, 41.9507, 92.7837, 224.49, 40.3968, 14.2285, 34.5061, 57.1294, 5.34327, 506.241, 522.548, 1160.22, 666.347, 97.9268, 17.7801, 218.052, 297.688, 32.3167, 19.5057, 26.6114, -37.5517, 43.6972, 24.0573, 288.353, 185.134, 254.767, 677.218, 346.054, 22.2505, 390.636, 124.853, -65.7515, 21.0519, 80.5353, 73.7944, 7.61247, 29.269, 119.968, 17.3605, 20.3198, 10.4502, -25.2877, 22.1264, 72.1742, 369.995, -5.68748, 11.8066, 50.6633, 173.014, -16.4234, 51.4102, 99.1137, 242.912, 9.02829, -77.6078, 7.24242, 528.138, 304.759, 189.418, 159.408, 179.094, 21.2023, 215.018, 6.69187, 0.00887041, 21.1965, 22.7721, 16.2251, 96.8354, 365.602, 347.427, -0.262678, 59.5886, 79.8423, 278.584, 145.429, 323.227, 54.4142, 10.4668, 76.9657, 284.822, 68.987, 825.444, 189.224, 40.9088, 1.28765, 2874.21, 69.2813, 288.84, 286.696, 481.875, -0.170312, 22.9568, 311.733, 331.046, 7.13579, 18.7409, 2532.58, 528.613, 548.603, 31.1731, 80.8461, 33.7246, 10.1153, 268.561, 155.212, 5.48352, 16.9418, 361.75, 179.567, 217.952, 4233.25, -13.5292, 212.173, 60.0119, 338.307, 315.376, 177.603, 1.57145, 166.478, 29.04, 46.9514, 42.201, 211.624, 36.6217, 340.978, 25.7452, 314.818, 270.719), E = c(64.4939, 24.3986, 5.94492, 36.8663, 56.1744, 49.5822, 236.976, 41.3488, 22.2475, 16.9028, 414.165, 29.0704, 54.9849, 25.0496, 15.3157, 137.39, 83.4986, 38.113, -29.9097, 152.327, 109.355, 56.396, 9198.53, 40.5637, 99.6214, 34.4854, 21.1038, 24.0568, 127.068, 30.9068, 36.449, 50.3563, 72.3561, 38.7689, 23.3383, 82.8794, 33.5234, 10.7876, 95.3272, 163.14, 193.159, 859.045, 11.4879, -45.8195, 38.9076, 2813.41, 3973.08, 4775.69, 3090.42, 4237.75, 4789.47, 76.4602, 5.07097, 27.6003, 41.1004, 571.461, 390.73, 96.9881, 190.287, 55.4916, 59.3796, 167.976, 186.738, 136.675, 30.0487, 43.4217, 218.95, 24.8622, 10.0734, 1.39476, 23.0263, 183.237, 102.385, 88.0268, 75.8551, 3378.38, 3.59555, 65.0242, 12.96, 99.2189, 89.2497, 121.01, 22.2028, 26.8139, 90.0344, 74.5531, 679.41, 13.4006, 117.134, 13.4128, 3201.35, 23.3641, -5.30554, 20.1253, 9.54839, 38.7718, -4.62199, 348.54, 13.8821, -18.3141, 17.2074, 306.792, 104.859, 12.6733, 94.0531, 21.6537, 43.6782, 89.4138, 13.6566, 38.0548, 189.276, 28.5149, 31.4913, 361.772, 62.0669, 152.595, 177.347, 153.814, 91.3033, 15.3481, 24.1763, 8.74242, 240.273, 138.468, 23.0748, 35.8972, 66.074, 44.1937, 52.9221, 25.4535, 11.5091, -23.6341, 138.393, 25.068, 22.5468, 407.637, 4.04739, 20.0476, 77.704, 82.5094, 63.1586, 81.2566, -14.8375, 83.8227, 92.7443, 3811.76, 193.545, 134.644, -17.3857, 19.9229, 7.74658, 340.509, 73.6392, 1432.34, 18.8084, 8.87588, 2627.62, 35.1561, 5.30396, 70.8928, -13.8029, 11.239, 114.716, 5.44362, 21.3368, 204.602, 136.36, -2.31789, 85.5356, -0.247811, 173.264, 12.6704, 90.7857, 104.594, 247.158, 4.83192, 69.3472, 89.6663, 20.5333, 1435.34, 31.4634, 47.8388, 21.6173, 36.6126, 304.094, 90.4853, 176.797, 5.51239, 1034.81, 42.2959, 31.9282, 561.815, 1445.61, 83.6597, 137.314, 20.7974, 284.287, 58.4877, 96.2139, 114.396, 572.889, 50.0257, 21.7261, 215.397, 4848.85, 138.355, 95.7016, 41.1985, -2.8474, 63.9182, 17.0448, 325.229, 66.8436, 43.8797, 22.1161, 26.9722, 17.6747, 416.37, 132.339, 1.41274, 8.88926, 27.3809, 6.57349, 1139.67, 7.90949, 16.9425, 161.962, 13.7585, 621.043, 94.3556, 8.18545, 198.797, 207.15, 13.595, 59.9965, 156.247, 37.4272, 1797.91, 173.597, -7.73911, 9.15676, 1813.15, 55.28, 44.1372, 139.674, 139.307, 5.67999, 12.0538, 199.397, 6.77999, 120.684, 14.8007, 385.285, -3.4299, 2.18153, 91.8316, 48.117, 367.658, 114.124, 65.8494, 65.9354, 7.48233, 143.672, 199.44, 657.109, 4029.17, 59.3436, 49.4573, 1927.59, 2961.98, -33.9927, 3411.82, 60.5111, 0.298467, 181.269, 74.6144, 37.7439, -110.18, 19.0457, 29.6359, 60.9489, 28.0187, 26.8489, 33.3419, 85.0067, 133.816, 137.412, 3241.26, 98.0283, 395.614, 184.099, 94.8942, 42.2762, 101.342, 40.6483, 253.774, 923.643, 25.4809, 3804.5, 17.1477, 16.7315, -17.8845, 7.19612, -99.2543, 328.887, 4042.05, 1991.19, 456.9, 35.7412, 22.631, 114.018, 19.7603, 118.914, 4.47381, 312.442, 141.333, 73.7581, 6317.23, 44.7439, 90.1649, 47.5125, 41.0167, -5.88861, -1.31689, 50.2078, 52.9975, 306.946, 55.2381, 2807.46, 62.2553, 56.1606, 18.2972, 71.7201, 2288.21, 16.0303, 192.889, 24.1359, 11.582, 35.1956, 138.472, 19.3633, 31.5201, 22.3016, 3295.13, 3040.62, 40.9435, 198.743, 166.185, 27.0079, 111.59, 289.5, 51.6072, 128.174, 116.62, 195.124, 94.2059, 1940.92, 1827.06, 58.5186, 45.1064, 124.442, 118.75, 94.8991, 1.10459, 101.25, 72.7004, 8.5148, 48.5702, 238.499, 1447.28, 122.661, 5.3293, 28.0415, 86.0212, 128.135, 76.4239, 12.8664, 30.3877, 19.3263, -8.55452, 403.789, 426.469, 2773.18, 1844.36, 82.3998, 13.0372, 153.673, 352.845, 23.6871, 15.78, 55.5372, -18.7618, 23.9722, 41.5831, 271.406, 120.728, 224.949, 541.299, 233.333, 22.2221, 254.824, 155.811, -35.171, 6.93843, 43.0696, 91.5986, 1.78595, 36.7053, 81.0342, 52.6775, 32.0319, -14.4679, -24.2608, 21.3777, 62.3007, 286.02, 11.041, 8.48455, 68.3051, 128.355, 36.9841, 152.66, 37.0811, 168.305, -7.80055, -37.1137, 9.36955, 753.432, 304.638, 180.115, 366.813, 162.324, 51.4895, 425.48, 11.9353, 37.1344, 11.3044, 15.0707, 2.81377, 87.062, 890.038, 275.697, 82.7545, 48.8611, 134.64, 442.328, 92.7822, 297.06, -4.19166, 23.5474, 210.476, 284.862, 326.488, 643.018, 149.103, 57.9264, -4.35968, 2422.79, 90.8871, 214.643, 214.658, 673.626, -14.3901, 23.2702, 253.467, 314.393, 14.1398, 21.0437, 2730.59, 458.75, 440.822, 101.206, 71.8985, 27.3093, 2.20914, 193.891, 125.925, 20.2388, 16.0322, 1773.4, 1622.36, 167.252, 4208.54, -1.83895, 194.467, 52.4202, 155.889, 170.929, 146.268, -3.25423, 92.3306, 28.2821, 36.1026, 52.9031, 105.939, 26.8284, 356.127, 14.4032, 238.684, 212.025), F = c(76.3569, 85.5088, 28.2925, 11.2568, 42.6756, 26.1262, 156.803, 37.978, 61.6401, 5.33328, 654.078, 19.5271, 58.0877, 12.4804, 16.6833, 104.159, 73.1986, 51.0869, -26.9004, 159.505, 98.1799, 31.3003, 8729.83, 28.5819, 59.8854, 15.9339, 26.0026, 19.8649, 65.0798, 19.4564, 27.137, 34.748, 104.56, 19.4119, 20.5827, 69.0769, 38.0418, 3.04198, 81.5155, 147.757, 163.458, 552.006, 13.402, -30.6321, 22.4197, 2773.8, 3533.69, 4276.28, 4859.32, 5339.43, 6045.84, 61.8061, 13.5139, 64.2732, 66.8357, 534.92, 557.232, 97.7246, 183.791, 74.0598, 72.8653, 158.024, 209.394, 66.7261, 42.101, 45.9945, 234.313, 12.8276, 12.8547, 13.4486, 17.9294, 129.778, 93.4386, 90.2193, 65.7247, 265.693, 2.95618, 1.60701, -0.761071, 25.1805, 113.248, 128.501, 13.2872, 33.0942, 143.403, 62.9061, 472.386, 9.46665, 146.648, 20.1751, 2055.84, 10.4128, 1.51498, 7.61478, 10.1273, 50.1046, 17.1919, 416.904, 16.3986, 316.922, 31.7997, 271.918, 140.767, 3.43293, 93.2234, 30.2287, 60.9735, 81.2301, 13.1852, 15.6828, 244.004, 8.03442, 41.195, 450.588, 101.569, 122.576, 203.771, 165.58, 47.3593, -0.578794, 40.8826, 19.258, 317.049, 95.6767, 35.6291, 37.5118, 9.52143, 26.7085, 57.821, 7.38804, 21.5466, -4.09123, 174.045, 26.0275, 28.2087, 372.743, 7.89114, 9.26315, 77.7341, 92.1451, 40.0276, 59.0001, 11.3105, 109.624, 71.8631, 2826.91, 183.907, 115.486, 30.823, 25.6218, 4.40317, 456.183, 42.8331, 1406.38, 9.25876, 21.9462, 3057.25, 43.3653, 13.7308, 45.042, -5.66411, 1.81244, 92.4059, 3.38841, 27.4057, 195.913, 170.641, 13.7318, 77.4835, 11.8705, 170.034, 27.2993, 48.4951, 112.256, 288.233, 15.8018, 90.4763, 135.063, 17.4997, 1447.35, 20.3943, 9.1535, 11.2232, 52.4492, 263.404, 88.8359, 240.531, 13.914, 952.742, 25.8131, 33.9627, 399.248, 981.156, 99.5194, 113.287, -3.55475, 321.253, 64.8132, 153.21, 108.544, 689.428, 40.1967, 24.1371, 219.8, 6103.53, 183.204, 117.629, 66.3195, 1.21957, 50.7251, 13.9721, 215.827, 33.5278, 29.0743, 26.98, 3.84226, 15.2119, 416.473, 94.0782, 5.65606, 6.8239, 29.7649, 33.117, 922.994, 2.95855, 25.7804, 182.436, 14.506, 558.625, 50.9544, 7.1015, 232.798, 176.539, 13.849, 55.0411, 112.844, 38.1649, 2629.76, 208.982, 8.91111, 3.69219, 2237.49, 87.4336, 29.7085, 92.6406, 108.641, 12.5881, 24.5561, 277.109, 0.0555992, 168.556, 21.9422, 242.008, 13.2175, -5.18207, 67.707, 18.8392, 200.762, 93.2498, 131.197, 38.8349, 11.7789, 150.893, 281.69, 697.327, 2363.54, 98.4533, 49.2495, 1184.74, 1743.97, -146.388, 2625.96, -0.550366, -20.5783, 166.122, 111.555, 47.8556, -13.3038, 10.5148, 96.0369, 50.6197, 17.8413, 29.8171, 29.9881, 68.2329, 338.401, 242.223, 3103.45, 51.3296, 407.96, 247.109, 131.532, 38.6406, 100.263, 14.9409, 363.97, 1696.09, 55.9993, 3141.21, 10.7468, 9.4833, -10.1759, 4.94772, -94.8137, 363.273, 3357.76, 1370.01, 1055.43, 37.2194, 11.6967, 151.487, 45.4293, 122.312, 9.85712, 312.931, 619.899, 86.0735, 6098.96, 35.2556, 118.982, 42.6033, 50.3781, 8.79439, 10.0094, 77.1799, 41.375, 356.719, 79.1635, 2399.43, 93.6127, 87.3683, 8.51886, 80.539, 1489.71, 23.1329, 196.416, 32.6198, 28.1255, 27.9306, 120.298, 36.3136, -6.53911, 11.5249, 1818.98, 2629.42, 20.5239, 25.569, 176.01, 16.4979, 106.83, 255.7, 47.4432, 202.329, 148.584, 166.122, 72.5939, 1147.63, 1571.36, 64.2836, 40.9947, 149.732, 6.98837, 76.7431, 32.6061, 241.995, 193.953, 71.849, 43.091, 231.441, 1173.24, 148.46, 6.25035, 27.2836, 61.9131, 116.848, 61.847, 26.8595, 6.40947, 30.8911, 0.516717, 420.763, 460.661, 1361.44, 591.884, 53.3154, 11.9007, 168.517, 250.081, 17.9015, 16.7667, 7.98321, -32.7506, 44.1567, 33.2017, 203.785, 118.136, 30.1383, 623.624, 321.933, 15.0102, 304.391, 109.031, -35.2096, 7.28756, 68.1562, 76.94, 3.84083, -8.66032, 74.518, 45.4732, 5.2473, 0.674253, -38.8464, 58.6034, 54.2982, 400.585, 1.74185, 11.5801, 59.9533, 165.597, 41.3708, 49.7561, 53.7959, 173.169, 1.11088, -44.2055, 0.345534, 788.229, 233.738, 193.153, 503.509, 170.926, 47.5674, 250.997, 5.58086, 23.2777, 19.559, 32.0773, 10.4892, 84.8054, 591.492, 310.91, 89.6526, 62.3684, 388.848, 401.377, 87.3499, 492.338, 28.0653, 9.77436, 165.732, 180.625, 486.538, 543.039, 110.879, 53.3282, -2.68911, 2656.67, 48.7383, 212.146, 226.983, 507.041, -4.7378, -7.00055, 303.127, 344.683, 12.0315, 20.7854, 2086.7, 136.541, 442.067, 55.9435, 39.8863, 38.2014, 6.7952, 184.694, 172.747, 11.6976, -5.41524, 1350.98, 1425.73, 166.823, 3207.93, -5.10412, 250.141, 35.7243, 188.316, 202.637, 156.022, -13.1372, 78.0865, 51.5613, 33.0572, 43.5617, 171.992, 38.991, 279.015, 27.166, 205.697, 225.357), G = c(160.505, 98.9086, 30.9694, 23.0034, 86.5156, 75.0083, 211.257, 110.551, 33.6623, 25.1182, 704.781, 56.3164, 96.632, 21.9102, 93.1759, 296.287, 110.631, 69.0242, -45.6312, 316.931, 177.533, 84.8437, 10085.3, 49.2893, 129.419, 55.8445, 47.7015, 57.4157, 262.579, 18.5628, 59.6477, 26.4046, 103.898, 42.146, 42.6331, 147.797, 60.9828, 9.54646, 152.298, 169.078, 145.287, 499.943, 20.5481, -56.7485, 67.8308, 1331.06, 3001.52, 3922.8, 4656.49, 5809.61, 5387.85, 84.3291, 0.756365, 54.4841, 73.8793, 622.534, 510.803, 84.813, 146.505, 51.5387, 80.7284, 194.901, 226.182, 56.4972, 40.503, 95.5123, 367.258, 68.4181, 10.4643, 5.74156, 35.7209, 270.832, 183.729, 117.556, 93.8117, 2347.97, -6.84587, -3.51601, 16.7883, -6.77262, 143.695, 173.604, 25.7165, 22.5593, 95.8189, 100.242, 875.514, 5.64484, 159.059, 12.8777, 1445.57, 56.5075, 6.67706, 20.3672, 16.6175, 71.0378, 0.121618, 770.457, 16.0536, -21.241, 35.6843, 289, 130.207, 23.7289, 76.6311, 28.5373, 41.6551, 103.677, 23.7724, 24.5001, 227.616, -17.4642, 88.1088, 390.704, 46.2814, 241.579, 239.095, 246.333, 68.2692, 3.72669, 43.3918, 34.893, 430.311, 139.544, 18.7085, 39.5034, 65.418, 60.8044, 87.8751, 20.2779, 30.6158, -1.06324, 181.367, 59.5764, 46.5235, 526.11, 11.1662, 24.8809, 125.538, 107.588, 102.268, 71.5763, 19.1748, 97.0634, 86.1694, 2280.98, 185.979, 143.129, 59.7806, 20.6691, 4.16593, 458.62, 80.0684, 1405.23, 114.141, 15.0017, 2784.51, 67.3431, 12.9932, 82.6335, 2.46988, 8.19852, 126.301, 58.2465, 21.3715, 342.757, 92.0834, -0.662, 132.709, -6.37538, 173.21, 7.82848, 145.062, 126.06, 389.761, 28.5087, 95.2023, 151.083, 18.2265, 1746.7, 81.1804, 13.7397, 33.0161, 80.331, 500.006, 168.432, 199.011, 22.4592, 1266.08, 96.4681, 52.4657, 165.172, 439.903, 58.831, 232.393, 20.3798, 390.69, 76.8212, 102.604, 115.513, 694.082, 95.4191, 31.7582, 292.824, 4843.85, 243.369, 150.37, 73.6126, 13.5536, 84.8325, 44.2015, 397.304, 52.6378, 56.2434, 58.5563, 48.2016, 22.27, 533.109, 180.547, 10.7022, 15.3744, 66.0203, 2.8568, 380.877, 23.7808, 23.4922, 192.561, 18.2562, 395.242, 160.002, 25.6545, 277.682, 44.8341, 3.6194, 64.0872, 145.975, 51.5657, 143.639, 241.318, 16.6696, 22.2736, 979.66, 101.48, 14.9272, 194.998, 272.543, 30.1638, 38.2265, 156.142, 4.26759, 162.979, 25.2755, 123.551, 23.4759, 2.36219, 141.662, 36.5043, 675.211, 135.162, 74.976, 206.357, 20.2907, 205.251, 318.483, 363.072, 1549.66, 74.9918, 77.6235, 730.908, 2267.07, -15.9843, 2228.87, -1.32209, 16.2259, 287.157, 113.905, 28.5838, -71.7309, 6.32725, 59.1934, 103.09, 124.573, 168.993, 274.755, 452.09, 306.868, 62.5394, 2406.87, 759.884, 520.693, 322.543, 99.4452, 69.2543, 82.2784, 47.2046, 302.587, 425.728, 70.1185, 2643.65, 25.8529, 15.5019, -27.9583, 21.1836, -159.404, 411.162, 1610.64, 847.52, 619.837, 55.6259, 11.2342, 129.321, 29.6711, 128.191, 2.12969, 458.098, 967.869, 139.49, 6744.25, 61.7619, 125.268, 63.4657, 70.7754, -29.0252, -4.19204, 91.809, 69.6631, 308.223, 148.843, 1253.53, 95.4669, 58.6777, 7.81241, 103.607, 1040.22, 28.6589, 235.102, 44.9815, 24.0025, 19.831, 212.84, 31.8595, -26.5714, 32.8036, 1424.39, 1609, 42.2412, 3.4899, 146.294, 31.1852, 70.3539, 367.704, 74.8138, 210.733, 73.2453, 290.952, 154.544, 1375.25, 1880.28, 115.808, 67.2951, 125.921, 2.02108, 142.316, 36.4292, 130.832, 87.7579, 13.7819, 62.8137, 131.189, 1762.44, 234.36, 2.26835, 24.7566, 130.982, 267.213, 50.1711, 11.7085, 45.9508, 47.0628, -5.0788, 642.114, 690.187, 1158.76, 224.69, 129.032, 10.1764, 219.981, 320.364, 48.4923, 22.6838, 4.00794, -51.6805, 40.6299, 62.9865, 405.183, 213.955, 349.216, 787.593, 375.517, 52.7782, 576.754, 133.512, -81.2397, 30.8676, 93.9739, 116.764, 0.861936, 27.6728, 110.052, 89.8018, -26.8523, -29.9146, -33.5474, 49.7079, 33.9368, 323.446, -2.84178, 19.3021, 63.4884, 134.071, 91.5641, 27.7786, 94.1995, 219.683, 4.70264, -76.1152, -7.59186, 770.503, 487.319, 190.619, 146.871, 193.463, 1.49736, 433.626, 8.95326, 8.46145, 32.2166, 30.7369, 82.9398, 163.432, 487.778, 308.937, 30.117, 41.7749, 39.3079, 288.488, 121.753, 478.74, 36.5597, 17.859, 50.2198, 371.859, 670.302, 2002.02, 224.547, 64.1557, 0.410534, 1522.33, 91.8752, 293.092, 308.702, 576.066, 6.09243, 32.27, 284.832, 318.128, -0.548151, 16.6889, 722.22, 571.163, 667.587, 45.1672, 90.5216, 47.5207, 17.3392, 314.547, 112.627, 11.9066, 15.2477, 1232.75, 2182.13, 212.534, 2586.28, -28.1626, 273.352, 88.6858, 235.716, 288.56, 147.061, -52.4786, 182.97, 36.2152, 33.1716, 58.5177, 181.279, 70.0673, 393.73, 35.3598, 400.955, 267.019), H = c(65.9631, 81.6932, 14.7923, 16.2134, 30.7927, 42.3352, 235.994, 47.769, 31.4423, 38.7576, 472.087, 36.2044, 52.731, 23.772, -2.286, 110.536, 116.742, 51.7352, -62.9474, 152.188, 124.795, 33.4283, 5398.15, 7.59488, 52.935, 20.0904, 23.8035, 18.3142, 67.9807, 5.85058, 26.2214, 35.91, 61.4678, 26.795, 20.733, 53.9483, 40.4661, 5.0816, 122.23, 255.646, 144.067, 701.339, -18.0681, -50.5899, 46.573, 3409.56, 3670.05, 4113.84, 4652.41, 5529.77, 4934.23, 72.5007, 21.6755, 49.6503, 123.648, 645.022, 405.539, 174.681, 138.473, 76.3049, 41.9885, 175.705, 186.137, 61.5467, 32.3343, 28.5536, 190.158, 19.6626, 1.0001, 19.8489, -3.43857, 126.72, 113.821, 124.49, 48.9977, 1474.59, 6.59068, 26.293, 15.1744, 31.0988, 164.839, 105.427, 15.3515, 7.64309, 75.7023, 58.9412, 426.069, 22.7863, 93.8675, 36.6998, 3752.44, 15.5375, -37.2626, 40.972, 2.83778, 29.8097, 7.85899, 383.393, 8.59187, -14.6747, 22.0106, 314.445, 91.1368, 3.31941, 55.9907, 13.6873, 85.1964, 75.6375, 24.9673, -19.4126, 154.493, 9.51653, 7.00295, 172.512, 54.844, 206.315, 114.929, 161.489, 18.9867, 17.967, 20.58, 16.5985, 317.839, 68.4194, 0.632673, 24.8422, 42.741, 55.0761, 29.1132, -9.59971, 1.92886, 24.2057, 212.31, 23.1776, 46.685, 327.569, -19.7231, 16.127, 102.909, 89.4731, 88.002, 55.5039, 3.78602, 98.7201, 59.1011, 3677.21, 168.304, 97.5727, 62.7741, 6.98695, 7.7722, 287.765, 31.1771, 1034.85, 41.1973, 14.484, 1973.97, 26.3003, 13.0387, 70.2444, -23.7586, 3.61405, 144.866, 12.9588, 12.1978, 228.561, 69.1006, -12.9076, 33.1189, -12.0223, 107.954, 20.2041, 56.6382, 72.1951, 231.902, 4.51244, 59.7258, 97.1518, 14.8023, 1446.33, 31.1922, 17.7331, 23.9397, 34.4429, 275.279, 89.5355, 150.161, 12.1368, 733.126, 33.8044, 32.9493, 428.544, 908.692, 55.2216, 122.623, 12.5489, 234.033, 12.3606, 79.2471, 132.363, 477.632, 48.276, 18.9685, 170.293, 3218.18, 133.185, 71.059, 42.2979, 17.1591, 62.4136, 20.5905, 328.759, 23.5485, 28.9632, 32.4677, 15.6095, 29.6611, 263.733, 83.1204, 10.8203, 0.0645667, 20.8901, 17.402, 2317.54, -1.71971, 15.5579, 175.414, 17.9223, 132.269, 49.3328, 20.0075, 161.866, 96.6339, -1.22723, 28.5114, 69.8331, 19.9071, 3594.62, 184.264, 36.2862, -0.250289, 2657.7, 66.4338, 45.9629, 158.683, 84.2689, 11.0174, 12.8382, 461.884, 1.2479, 186.49, 40.9668, 410.214, 35.1459, 7.58523, 86.1551, 74.4591, 147.043, 50.2503, 155.398, 38.0677, 17.9086, 81.876, 262.617, 923.903, 3372.24, 65.0195, 56.1913, 1989.38, 3297.89, -48.9684, 3520.01, 21.7884, 29.6134, 186.365, 93.1961, 103.971, -22.6964, 8.73567, 93.5217, 99.9293, 319.164, 444.212, 623.513, 437.966, 126.152, 79.5352, 4437.69, 981.041, 287.177, 166.311, 91.5453, 43.8078, 137.337, 17.6704, 163.841, 1149.64, 21.6281, 4237.01, -4.72068, 6.06603, -8.07375, 31.8066, -59.8348, 267.843, 4094.25, 2536.1, 392.48, 30.4019, 16.2788, 103.038, 23.8032, 63.9377, -3.16035, 280.371, 679.892, 60.1188, 5272.74, 36.681, 77.0613, 9.46983, 82.3953, 23.5921, 7.82025, 53.0366, 38.2291, 162.251, 71.3313, 3289.3, 71.1382, 36.5156, 10.9756, 96.3876, 2250.24, 23.9772, 155.927, 11.0189, 32.6098, 26.072, 63.7697, 10.0424, 54.173, 28.7016, 3204.18, 2521.5, 14.6506, 45.914, 140.744, 55.0265, 55.2523, 173.877, 40.5893, 88.8999, 244.048, 208.946, 84.1878, 1234.61, 1959.86, 100.845, 34.196, 121.971, 6.00279, 65.4532, 25.6252, 205.105, 145.486, 14.5797, 28.9883, 418.138, 1054.41, 192.451, -6.77577, 3.52808, 43.4975, 133.57, 29.8818, 5.54331, 28.0327, 17.1614, 4.50518, 438.525, 568.957, 1341.85, 823.083, 11.0206, 5.28213, 145.935, 238.488, 20.9897, 17.3526, 5.4934, -24.8509, 27.9785, -11.0401, 170.731, 60.0793, 147.971, 354.996, 333.375, 37.7786, 352.022, 115.454, -30.8254, 9.93972, 47.3987, 68.3317, 67.7091, 49.2164, 77.5302, 36.9154, 8.39283, 4.92543, -20.5218, -0.730059, 47.7373, 518.214, 9.22062, -24.8561, 49.1153, 105.805, 29.2637, 15.3461, 45.0949, 179.074, 12.3872, -16.1917, 9.87644, 785.672, 164.981, 181.252, 397.135, 215.004, 56.6237, 304.372, 25.614, 65.028, 8.81296, 18.3069, 9.54185, 25.4821, 1084.56, 225.453, 44.6071, 38.2034, 47.3505, 405.11, 80.4995, 317.942, 19.5663, 18.4398, 160.898, 180.688, 313.737, 1445.36, 99.1103, 48.6681, 12.3674, 2653.13, 83.7136, 229.497, 249.714, 488.489, 54.2498, 23.6874, 174.373, 258.626, 72.8444, 5.42297, 3475.67, 259.205, 396.013, 56.4187, 31.3486, 48.0814, 13.669, 168.408, 159.795, 29.286, 0.992278, 1970.63, 2206.93, 93.7185, 4695.35, -8.87077, 220.34, 81.2755, 132.113, 159.9, 87.984, -9.8868, 88.2923, 38.6535, 7.80274, 8.33834, 164.635, 37.4181, 173.935, 21.2248, 218.935, 213.479), I = c(56.9039, 97.8015, 14.2399, 12.0375, 19.7183, 41.1207, 175.64, 24.7875, 23.1008, 31.4041, 456.496, 34.4118, 35.4588, 24.184, 9.00485, 123.767, 149.329, 48.4943, -31.4359, 182.803, 86.0768, 42.3172, 7851.25, 23.629, 64.1861, 24.7383, 11.3737, 13.9659, 67.9566, 26.2278, 8.82339, 25.1295, 95.496, 20.6417, 25.9931, 55.5277, 39.5032, 6.61344, 91.9547, 135.592, 138.774, 662.183, -71.7969, -43.3654, 53.0483, 2500.59, 3411.11, 3853.04, 4628.45, 5465.07, 5404.54, 62.1373, 48.0582, 49.8266, 46.3265, 539.881, 420.27, 121.429, 101.841, 67.6596, 49.3447, 155.066, 240.654, 30.8823, 25.8423, 35.7027, 208.684, 14.2983, 2.92394, 15.392, 7.00862, 159.539, 77.6879, 71.3888, 44.6516, 966.339, 18.009, 14.3594, 16.2639, 32.865, 135.098, 124.688, 10.4324, -158.624, 77.4182, 52.9351, 541.812, 9.68571, 110.694, 21.3595, 3766.64, 11.7948, -41.5181, 32.1378, 18.3991, 44.214, 25.6868, 332.747, 20.8813, -22.3464, 41.9897, 372.205, 89.3285, 0.688826, 47.3014, 7.46991, 87.8979, 69.1955, 24.0044, -5.65372, 178.113, -27.5173, 16.9593, 308.891, 51.437, 180.81, 116.305, 257.957, 28.8561, 41.9913, 9.78746, 32.055, 337.631, 78.1148, 14.6921, 15.7892, 72.4446, 46.0098, 38.0461, -7.25167, -77.7694, -6.12358, 151.401, 50.853, 31.6659, 375.203, -15.4885, 23.6577, 82.6901, 79.2893, 77.364, 64.7703, -5.01044, 70.8695, 109.516, 3949.6, 143.33, 95.621, 43.3468, 17.4263, 0.0576889, 316.743, 36.0296, 1039.75, 20.8679, -7.13015, 2136.31, 32.4043, 35.4223, 57.7617, -19.3941, 15.0063, 137.011, 15.0828, 10.3074, 209.233, 26.6425, 75.8138, 42.3457, -12.372, 129.54, -0.808758, 115.298, 111.984, 277.088, 48.9072, 60.702, 89.4102, 11.8831, 1280.76, 7.54955, 21.8121, 26.8602, 27.1097, 276.223, 69.8056, 141.762, 9.92208, 471.624, 18.7722, 34.121, 330.872, 803.91, 89.2639, 202.322, 17.1598, 204.002, 19.8715, 69.9369, 139.112, 475.68, 38.5653, 10.3207, 179.287, 5019.1, 131.735, 96.5819, 52.7207, 118.578, 66.3749, 11.2237, 262.136, 37.3264, 37.2226, 44.4505, 9.80769, 28.258, 311.98, 145.188, -13.876, -6.60292, 27.446, 52.3413, 1437.92, 14.9031, 6.43931, 191.186, 62.2038, 533.959, 52.2601, -0.812122, 163.045, 97.5818, 4.27843, 49.925, 117.116, 26.2354, 107.634, 183.655, 44.0061, 10.6966, 1861.3, 68.6117, 55.3026, 120.201, 143.756, 24.2935, 7.63267, 273.163, 6.46505, 130.595, 24.3482, 570.118, 10.9965, 18.2516, 73.701, 42.386, 281.665, 51.0993, 156.168, 71.8904, 15.0406, 96.8189, 267.787, 1033.72, 4213.76, 63.4817, 29.8674, 2468.85, 3093.27, -23.3657, 4172.56, 54.6128, 25.3713, 141.131, 50.7424, 64.7935, 39.3548, 9.35458, 97.9677, 77.4194, 36.3783, 56.15, 80.5102, 160.375, 422.177, 186.838, 4189.58, 261.971, 290.421, 145.819, 110.678, 30.1821, 62.6842, 32.8513, 212.074, 1073.22, 14.7815, 4803.12, -52.8976, 9.0613, -7.8137, 12.2626, -79.6776, 256.768, 4118.03, 2597.5, 487.991, 32.4547, 22.1637, 87.9791, 31.6146, 66.199, 23.917, 219.436, 676.787, 66.6259, 6602.19, 28.4735, 96.0434, 31.4449, 51.5631, 62.1528, 14.7575, 38.9174, 50.5804, 226.292, 1.33535, 3972.17, 79.3392, 82.5123, -8.05703, 57.3154, 2779.82, 50.7459, 362.999, 31.716, 45.9685, 32.3122, 83.0068, 17.4939, 25.959, 15.3953, 3793.5, 2909.96, 28.6528, 32.7872, 125.396, 45.0034, 59.3125, 207.221, 67.8755, 95.7511, 134.838, 221.671, 92.718, 953.289, 1358.65, 115.183, 42.0618, 260.924, -5.67053, 106.906, 15.4698, 86.5805, 138.179, 6.36567, 42.2539, 263.136, 1555.94, 152.362, -0.750177, -10.2169, 39.3872, 10.9171, 38.3977, 24.2579, 37.0798, 22.001, -68.9469, 364.56, 513.066, 1020.6, 725.306, 74.2402, 4.32573, 152.556, 149.95, 30.4155, 9.87658, -2.83936, -14.2585, 37.5048, -4.54525, 231.427, 40.9725, 179.04, 472.655, 298.223, 30.6501, 226.595, 217.446, -11.2347, 7.99247, 44.5376, 34.1872, 56.2715, 65.826, 68.4123, 33.5924, 27.0132, -0.932949, -26.6856, 22.9653, 54.7115, 385.224, 52.8945, 4.19935, 39.7645, 126.784, 10.7498, 25.48, 30.5649, 230.8, -49.7404, -19.0299, 0.534617, 761.77, 199.883, 145.558, 381.822, 330.34, 130.641, 331.091, 19.2022, 61.6367, 3.28127, 21.4743, 21.9916, 58.4991, 676.788, 206.801, 256.74, 53.8124, 250.424, 275.746, 49.6752, 682.774, 5.10634, 24.2536, 265.575, 259.757, 114.583, 789.964, 113.886, -120.217, -17.5734, 3283.41, 77.2334, 190.75, 246.745, 438.071, 17.5467, -6.3988, 190.05, 250.068, 65.1947, 22.333, 2626.26, 342.48, 354.569, 97.9919, 39.7226, -4.73579, 71.337, 140.925, 253.267, 39.1377, -0.0626833, 2094.61, 2349.06, 100.454, 5027.34, -5.0921, 197.648, 33.0178, 154.763, 215.446, 74.4776, -30.5011, 71.1762, 78.434, 9.63535, 38.429, 95.5045, 35.9276, 350.806, 41.0651, 155.007, 147.564), J = c(135.608, 90.4838, 34.4874, 4.54978, 46.352, 91.5307, 229.671, 66.7302, 39.7419, 0.398779, 601.335, 54.0765, 60.2642, 29.7032, 13.1253, 165.21, 113.737, 66.3324, -26.3253, 275.02, 143.596, 124.882, 9906.75, 57.0429, 101.061, 38.8725, 40.5822, 37.3897, 85.4896, -16.7811, 58.4851, 49.3878, 74.32, 31.5766, 36.5884, 127.344, 29.8857, 16.9064, 129.385, 134.197, 161.823, 603.143, 14.8066, -24.1965, 49.6252, 1397.65, 2582.35, 4196.47, 1871.55, 2697.63, 3957.01, 52.7505, -1.9, 33.6619, 105.523, 538.821, 404.586, 82.7721, 231.526, 65.5417, 103.837, 254.894, 167.249, 63.5263, 33.6277, 82.7237, 447.998, 22.9679, 17.0239, 6.46696, 14.6832, 173.033, 173.092, 236.388, 95.0014, 1603.25, -4.79112, 14.3931, 12.9168, 45.525, 123.521, 160.284, 63.7235, 52.2413, 115.725, 76.4369, 647.946, 10.8287, 196.504, 30.8472, 2082.26, 24.9831, 7.45908, 29.2904, 3.96332, 63.3964, 5.05391, 523.434, 3.81431, -26.9582, 25.5166, 272.893, 104.55, -3.29841, 29.0413, 34.7569, 123.341, 136.982, 21.1208, 33.4306, 252.045, 28.2319, 46.8118, 460.704, 36.2471, 140.332, 322.058, 301.488, 28.6611, 17.8804, 69.2656, 30.5353, 428.04, 89.2726, 21.6357, 40.5838, 64.8148, 81.0943, 89.0303, 9.78984, 31.5737, -64.844, 181.883, 69.0185, 36.0617, 396.731, -5.39451, 18.3907, 135.384, 99.2002, 102.87, 97.414, 815.247, 102.809, 87.5921, 3294.23, 293.865, 170.835, 57.4489, 14.6789, 20.4225, 467.575, 65.7655, 1022.23, 36.5604, 17.9342, 2621.21, 69.9044, 5.62125, 61.0467, 7.16121, 8.74683, 159.503, -6.5198, 30.0345, 215.707, 242.766, 9.23312, 122.68, -3.09805, 230.551, 25.0568, 73.4859, 148.278, 309.373, 29.2142, 133.58, 161.551, 25.4871, 1284.19, 110.777, 27.8657, 33.4392, 99.1692, 382.291, 180.04, 290.715, 26.878, 1354.88, 49.6606, 32.0053, 100.544, 275.601, 139.466, 145.483, 18.9868, 350.785, 62.5827, 142.035, 166.257, 824.404, 54.5118, 41.2395, 214.626, 2876.39, 117.19, 145.883, 77.1433, 21.0514, 88.9109, 35.9333, 342.005, 31.9545, 92.5985, 53.7139, 21.4681, 27.0079, 421.99, 191.869, 10.0729, 24.6545, 73.4274, -5.67084, 508.396, 16.2005, 20.4873, 199.64, 20.8818, 602.088, 53.0939, 11.985, 283.946, 33.3808, 7.65265, 79.7055, 179.645, 71.8716, 2280.1, 271.502, 18.3756, 16.292, 899.497, 106.102, 36.3051, 172.514, 84.6076, 14.9555, 42.3853, 76.7314, 9.74661, 177.697, 28.1345, 79.7277, 46.0504, 3.37234, 173.442, 37.7323, 281.782, 192.507, 65.114, 54.3543, 28.8901, 207.512, 302.66, 312.493, 2511.98, 115.631, 84.6329, 767.382, 1931.97, -74.91, 2442.8, 6.76813, 9.87214, 280.934, 164.196, 45.6826, -55.5401, 11.0881, 126.062, 188.277, 17.0563, 95.9991, 148.692, 109.747, 149.315, 464.839, 2018.08, 295.362, 520.54, 361.875, 118.235, 39.8868, 76.292, 52.8225, 393.946, 411.312, 82.4469, 3684.05, 5.70422, 15.3688, -18.2261, 20.1009, -139.096, 322.853, 3536.29, 1415.81, 782.34, 58.8639, 19.9128, 172.436, 37.7876, 145.228, 8.84162, 527.972, 978.775, 115.247, 3620.29, 39.7757, 117.731, 73.8482, 82.0633, -8.08212, 8.88042, 114.975, 74.6192, 412.158, 116.883, 1723.88, 140.51, 55.4878, 29.5934, 126.615, 937.356, 25.1989, 80.04, 8.7691, 21.9003, 76.7322, 310.711, 35.1739, -11.3853, 31.0779, 2667.19, 2861.65, 55.9846, 24.2809, 201.009, 37.3568, 245.946, 321.117, 55.7212, 248.928, 83.1845, 301.538, 65.4351, 1978.58, 1469.72, 128.82, 51.2861, 129.685, -17.8222, 135.186, 16.9915, 148.667, 68.2773, 35.807, 130.481, 63.6107, 1220.17, 162.351, -0.850396, 29.6177, 65.2407, 199.876, 45.451, 17.4884, 1687.26, 65.1685, -0.458492, 640.976, 443.544, 1000.16, 530.158, 92.305, 16.7319, 211.431, 421.328, 42.7661, 23.1612, 19.5893, -41.9418, 67.1385, 24.0513, 278.235, 207.151, 354.466, 796.341, 370.781, 12.3542, 340.021, 101.469, -77.2604, 20.2691, 90.9995, 88.3706, 11.782, 31.0455, 105.789, 87.4514, 20.9132, 2.51492, -21.3631, 18.128, 97.4119, 289.648, -0.886138, 6.81447, 81.1169, 197.282, 25.0956, 42.3875, 108.956, 231.877, 11.0389, -81.2323, 7.01839, 732.505, 264.916, 224.387, 218.727, 161.252, 9.47757, 354.758, 11.3622, 18.4517, 28.7067, 31.1141, 27.7379, 123.108, 383.613, 297.234, 11.0615, 90.0501, 89.7434, 345.844, 129.75, 365.013, 29.9642, 33.6507, 64.2794, 272.773, 265.781, 752.182, 223.423, 50.9474, -4.21796, 1864.68, 43.8291, 270.01, 318.279, 587.201, -5.85108, 23.5828, 287.82, 330.953, -2.55689, 16.6618, 1450.23, 567.114, 589.9, 78.5015, 39.0382, 42.769, 29.0629, 276.211, 135.465, 3.88573, 12.61, 912.208, 663.228, 288.022, 3034.4, 189.179, 286.524, 62.3556, 379.114, 292.434, 197.347, -4.49651, 120.196, 27.3089, 59.2932, 68.8523, 178.683, 37.8029, 285.409, 25.2501, 320.904, 258.658), K = c(63.4432, 70.5733, 20.3521, 8.51782, 39.1326, 39.9136, 222.287, 62.9876, 35.1225, 2.98167, 674.334, 48.572, 90.2266, 19.6438, 7.90277, 172.95, 74.9809, 65.8276, -18.7649, 217.385, 104.273, 41.7587, 9269.15, 46.7404, 59.8996, 17.0458, 41.1433, 19.2095, 113.046, 9.25781, 31.0843, 23.1894, 80.0615, 22.9088, 19.8219, 64.5628, 1.59616, -3.92957, 106.196, 198.033, 242.284, 780.726, 21.2847, -37.9727, 33.1548, 3225.72, 3930.01, 4756.24, 5051.09, 5411.19, 5341.82, 48.9417, 18.8431, 77.9987, 61.1681, 579.578, 398.83, 87.6531, 141.597, 54.4746, 44.0052, 148.141, 201.392, 88.0201, 15.68, 32.9481, 203.989, 10.3677, 11.4256, 19.3874, 37.8795, 170.047, 90.0128, 109.125, 42.046, 389.255, 6.18134, 51.0467, 22.6883, 74.2571, 144.772, 122.08, 3.81317, 26.7613, 64.7226, 72.9707, 642.128, 1.42032, 107.479, 27.3876, 4332.08, 12.988, -17.4797, 27.6168, 25.2248, 35.1496, 2.71006, 412.996, -3.03517, -23.2741, 13.488, 429.321, 119.51, -0.0278592, 63.9798, 32.4618, 46.5545, 89.1795, 57.5241, 14.5249, 209.735, -1.74408, 29.3106, 369.08, 43.4709, 173.913, 138.194, 119.037, -29.4263, 6.58678, 50.6164, 25.5873, 368.14, 110.281, 14.0098, 35.9248, 55.6823, 27.6514, 33.9682, -6.56723, 7.08044, 1.08545, 141.452, 32.0375, -66.6585, 422.12, -1.94732, 14.131, 99.5792, 82.1444, 106.177, 92.9003, -10.7343, 53.8349, 94.3465, 4913.77, 163.125, 121.302, 38.5655, 4.60806, 22.7875, 474.352, 57.8392, 1343.88, 37.8733, 11.6468, 2134.67, 20.7209, -0.262148, 60.1439, 9.54504, 11.0515, 85.3045, 17.2096, -10.0328, 249.915, 80.3918, 12.3823, 79.3767, -24.3948, 154.531, 65.6515, 45.5399, 120.194, 286.588, 20.0277, 84.3456, 114.626, -3.70138, 1408.67, 55.6233, 86.996, 44.146, 56.8192, 330.901, 94.1995, 198.394, 20.956, 1004.99, 34.7985, 43.6125, 458.303, 1105.91, 85.4095, 239.99, 14.5133, 367.98, 70.3372, 159.58, 113.518, 627.214, 48.9686, 18.9257, 215.514, 5072.36, 198.417, 108.445, 43.7502, 15.3726, 60.6967, 28.7406, 372.747, 26.8717, 36.0099, 28.4521, 16.6598, 16.615, 395.562, 89.2151, -3.48287, 0.949098, 24.0036, 17.1753, 2020.4, 9.37298, 22.2364, 194.071, 17.2649, 733.02, 63.9442, 12.6841, 161.425, 97.0986, 8.80042, 58.5091, 110.127, 30.2948, 792.965, 185.47, 25.4438, 15.206, 1653.84, 96.7924, 46.6804, 129.393, 139.963, 3.9302, 23.1836, 349.028, -13.9703, 205.086, 23.3787, 565.436, 11.5014, 25.2942, 115.304, 30.4287, 467.942, 78.5613, 332.408, 68.0818, 26.654, 139.279, 305.494, 968.042, 4295.6, 66.1099, 47.9075, 1671.49, 3009.75, -51.6177, 4419.01, 1.49445, 33.3544, 208.223, 80.8896, 109.391, -47.5517, -1.54634, 112.731, 55.4344, 121.317, 126.149, 186.27, 234.836, 431.412, 199.881, 4633.97, 550.201, 313.787, 260.752, 97.9721, 26.1838, 57.8575, 41.7102, 212.398, 1386.77, 42.3915, 4815.65, 7.77927, 16.2139, -14.3346, 7.23423, -36.5622, 382.237, 5040.27, 2787.18, 663.805, 47.069, 13.1205, 120.841, 25.3661, 123.813, -13.3061, 296.745, 768.182, 62.1101, 7337.71, 51.5785, 93.0793, 59.6659, 55.9502, 6.17613, 15.2514, 61.4079, 64.7212, 282.774, 87.2862, 4089.22, 49.6829, 57.329, 10.3485, 66.0395, 2900.05, 26.7714, 179.807, 16.8715, 21.8325, 41.8975, 93.0038, 17.5775, 4.26559, 9.86239, 4223.25, 2841.06, 20.8292, 31.5969, 124.771, 13.3185, 101.18, 220.587, 24.4661, 114.014, 217.8, 222.152, 97.8749, 1328.36, 1628.74, 119.543, 55.8618, 198.105, 17.7912, 131.838, 12.0612, 89.1887, 160.229, 16.6904, 55.4143, 297.18, 1501.55, 177.512, -3.47425, 7.49265, 73.3793, 130.814, 49.1007, 20.585, 22.3491, 28.9578, -14.2241, 477.958, 695.053, 1797.77, 1188.65, 75.4384, 5.40401, 148.423, 168.659, 21.3487, 23.8646, 13.9465, -31.1664, 10.517, 42.0685, 185.579, 127.054, 255.91, 405.051, 452.185, 17.8215, 418.522, 183.725, 20.8731, 20.8792, 31.9397, 62.6096, 5.9791, 17.6778, 64.7069, 30.6733, 17.734, -0.770045, -12.5623, 5.15007, 40.9506, 408.107, 2.22234, -2.07164, 58.2916, 129.924, 57.7661, 16.038, 58.9447, 213.212, 26.9509, -26.1956, -3.61176, 648.933, 272.632, 131.979, 386.255, 313.417, 87.9249, 374.494, 22.2172, 53.833, 46.8675, 49.705, -13.3931, 60.8839, 829.741, 263.664, 171.084, 32.7409, 171.323, 253.907, 105.42, 553.365, 12.8651, 27.5378, 522.891, 439.887, 489.785, 806.483, 135.509, 57.6252, 4.23123, 3305.96, 62.7559, 223.958, 300.78, 586.625, 60.3832, 16.7481, 203.739, 329.75, 29.9522, 2.0116, 2821.25, 456.575, 442.349, 88.1746, 33.6031, 6.54673, 30.7566, 197.82, 212.203, 24.5808, 22.5957, 2147.63, 2914.48, 175.206, 6133.12, -12.2493, 264.909, 81.9187, 120.393, 197.285, 152.217, -14.6336, 90.9128, 37.7668, 16.6599, 31.4279, 138.896, 22.406, 316.208, 22.2439, 244.162, 216.155), L = c(78.2126, 94.5418, 14.1554, 27.2852, 41.7698, 49.8397, 181.522, 46.2777, 28.1342, 17.7506, 540.255, 42.9071, 72.4584, 20.6693, 24.6885, 124.837, 108.469, 45.7015, -34.298, 162.256, 120.737, 49.9029, 7969.59, 30.7302, 77.3764, 36.5985, 29.1573, 30.6495, 108.717, 24.0504, 28.6438, 29.9055, 94.9414, 27.9779, 16.9136, 82.0327, 52.7458, 10.6833, 104.433, 141.173, 155.572, 489.626, -23.2247, -47.1546, 36.6282, 3832.06, 4173.52, 4636.95, 4251.54, 5318.93, 4684.27, 74.8463, 10.7062, 57.8296, 49.8605, 480.33, 427.257, 86.2199, 130.797, 67.4093, 32.5288, 163.479, 189.271, 59.1629, 33.477, 31.8509, 226.835, 20.3279, 7.70438, 17.391, -17.6818, 178.158, 126.103, 106.483, 65.3268, 192.701, 5.72163, 7.87614, 17.3802, 7.25462, 107.479, 130.882, 19.0447, 22.8006, 95.6079, 64.857, 540.998, 2.98843, 104.51, 13.8843, 3127.05, 15.1634, -20.1506, 31.8186, 9.41495, 62.762, 2.31336, 318.532, 15.8975, -31.2221, 28.2393, 358.525, 113.643, 2.6089, 79.5849, 27.9021, 72.6205, 118.595, 19.8483, 11.0152, 192.243, 44.7104, 40.9957, 309.898, 68.6476, 141.44, 175.615, 212.777, 30.6944, 10.4933, 17.5478, 17.2951, 284.513, 115.904, 7.71463, 22.3834, 63.3352, 51.9875, 41.5452, 5.70349, 17.5473, 3.36623, 196.457, 32.0315, 40.8864, 390.245, -6.20708, 18.8825, 107.995, 89.682, 83.529, 86.4903, -14.662, 80.7351, 77.1165, 4714.97, 174.416, 125.587, 34.9933, 15.3988, 7.72275, 373.108, 58.9034, 1091.26, 22.5644, 10.6076, 2825.84, 31.0684, 3.06087, 66.2265, -12.3439, 18.2999, 156.12, 3.64407, 8.4741, 202.573, 99.9544, -3.61491, 66.551, -4.67678, 143.992, 7.87179, 102.047, 112.608, 232.685, 16.5717, 65.0425, 101.624, 15.5074, 1336.5, 28.023, 19.2818, 21.8167, 54.3966, 319.706, 103.576, 203.31, 3.55299, 1068.35, 28.3274, 26.3981, 252.545, 703.073, 54.1925, 217.043, 6.1789, 257.203, 51.0011, 122.56, 104.892, 669.295, 55.4482, 14.6155, 192.87, 3837.67, 164.49, 98.1155, 44.7301, -3.83686, 65.8807, 15.7527, 224.901, 35.5609, 42.3085, 38.2248, 23.7824, 36.5926, 329.908, 151.346, 2.20718, -6.77795, 32.9619, 9.10169, 1484.18, -1.97644, 9.40026, 184.919, 18.7039, 675.331, 80.7041, 7.85682, 157.12, 292.043, 5.51988, 54.3092, 113.512, 22.944, 0.00333823, 203.611, 18.8989, 15.0135, 1072.25, 84.0077, 45.5236, 166.489, 143.034, 16.4508, 24.3721, 270.51, 0.128169, 231.787, 15.2198, 491.515, 56.7006, 2.14923, 76.0331, 25.3416, 315.647, 60.7932, 93.3669, 61.774, 24.7379, 142.502, 273.436, 559.009, 4565.57, 91.3635, 51.3326, 1216.42, 2264.58, -10.6544, 3693.04, 2.36806, 7.91398, 182.291, 68.3882, 99.9411, -29.8436, 13.0513, 111.624, 60.5107, 56.3676, 43.5945, 57.6264, 92.3869, 222.841, 117.365, 4733.16, 154.346, 378.059, 194.359, 111.34, 23.7334, 109.848, 32.1758, 206.46, 1041.33, 5.56239, 4024.79, 10.4667, 14.2839, -17.2184, 20.4523, -79.7605, 264.947, 3918.19, 2872.76, 628.093, 39.0135, 18.5584, 137.049, 25.2468, 99.8514, 6.99163, 309.396, 812.051, 55.7119, 4544.12, 43.3877, 91.4044, 34.6002, 32.6657, 24.6652, 10.2426, 54.852, 57.2348, 303.057, 87.6017, 3190.4, 67.4407, 62.8154, 6.78031, 73.504, 2679.17, 14.6392, 132.44, 29.5628, 33.7716, 29.6722, 115.932, 23.4293, -5.8544, 14.3031, 3444.45, 2869.71, 28.9977, 4.27229, 186.639, 28.0031, 89.4065, 246.739, 48.2378, 103.241, 161.446, 270.958, 125.482, 1006.52, 1669.62, 164.343, 60.0043, 163.457, 3.32663, 74.8823, 21.1182, 150.393, 153.827, 23.2867, 39.983, 295.462, 1489.4, 198.153, 8.37534, 9.11512, 77.9832, 116.607, 81.8224, 30.7223, 19.276, 26.9488, 2.9106, 411.878, 445.727, 874.957, 500.034, 69.2402, 32.9342, 150.361, 151.8, 31.3103, 16.5552, -3.76102, -45.0008, 54.7287, 41.5445, 218.859, 119.3, 216.473, 601.634, 417.205, 16.8544, 385.101, 92.1054, -34.8347, 7.67655, 20.2027, 62.5156, 19.8893, 36.8451, 84.4214, 43.7161, 20.6758, 14.1665, -17.9138, 3.66986, 51.094, 386.478, 2.78177, -23.3501, 85.6016, 106.723, 24.712, 19.2536, 63.4195, 141.174, 4.08547, -40.6516, 5.0975, 852.823, 297.981, 185.162, 353.931, 197.236, 51.9685, 254.8, 21.2191, 23.4201, 19.4266, 15.4119, 6.83701, 57.5619, 788.663, 192.798, 92.6476, 58.0558, 103.424, 402.939, 78.4368, 482.728, 12.8727, 20.3747, 304.571, 280.536, 868.772, 681.686, 154.107, 56.8466, 4.34006, 3009.56, 78.9415, 224.968, 260.592, 495.764, 27.1459, 25.2768, 271.342, 280.424, 67.1491, 11.4204, 2824.45, 379.401, 432.295, 86.7501, 51.2107, 13.8727, 12.0495, 162.998, 144.218, 29.2461, 10.0415, 1747.69, 2279.5, 194.048, 4077.38, 10.459, 267.847, 63.0694, 173.069, 268.178, 108.644, -11.9445, 71.3147, 72.9171, 42.753, 46.8353, 106.018, 39.0425, 297.051, 19.9168, 239.654, 175.866), M = c(83.0943, 75.3455, 20.6251, 10.1616, 80.2197, 63.4794, 177.979, 61.8372, 20.6908, 13.764, 364.233, 34.743, 46.9686, 51.7133, 30.1908, 133.826, 141.43, 74.9533, -37.9804, 199.741, 101.196, 45.6627, 8569.94, 21.5053, 71.6353, 45.2345, 16.2124, 29.3611, 155.95, 17.4717, 6.67245, 25.5961, 84.4995, 34.4475, 27.0618, 87.2791, 53.0348, 22.1029, 83.485, 145.652, 78.7713, 552.023, -7.45341, -38.1208, 52.3868, 951.709, 2054.2, 3593.47, 2363.09, 3394.98, 5280.83, 73.6465, -3.59805, 11.6322, 39.7948, 474.48, 446.417, 83.9094, 82.0596, 4.65439, 25.0958, 132.912, 160.376, 46.9679, 21.0982, 39.5596, 172.825, 57.0022, 15.1321, 6.89282, 10.249, 231.956, 84.717, 162.506, 105.706, 368.552, 20.8338, 3.34395, 22.629, 16.5794, 112.52, 120.17, 25.3857, 18.5757, 76.1544, 56.769, 710.362, 25.2881, 104.82, 17.9295, 2166.34, 33.6051, -68.8391, 27.5807, 6.22118, 87.7027, 11.1385, 226.395, 15.0665, -8.00193, 38.6553, 297.233, 97.0745, 14.7636, 36.9007, 27.4486, 93.4518, 133.967, 1.93178, -31.4089, 125.988, 27.2904, 34.3379, 306.955, 76.0012, 117.52, 127.058, 162.262, 26.3359, 9.83787, 9.8701, 2.59895, 221.225, 120.925, 13.4816, 16.825, 55.9125, 50.2382, 20.5871, -8.9378, -0.825097, 4.93097, 87.2036, 38.8415, 63.1551, 342.044, 1.55868, 43.3275, 59.2687, 76.2816, 54.1066, 35.1053, -18.1485, 87.1477, 69.0928, 3061.22, 142.504, 61.3115, 19.8458, 16.7309, 26.7999, 291.012, 68.0085, 1341.42, -5.03949, 11.985, 2462.38, 33.7193, 31.9753, 87.5545, -0.64562, 23.9027, 118.133, 4.938, 16.1042, 202.256, 54.5443, -18.7757, 42.8026, -23.1493, 109.216, 20.9903, 168.211, 96.529, 255.983, 24.6469, 57.3531, 60.9461, 16.7617, 1194.77, 65.8861, 41.8083, 35.2495, 39.6414, 315.246, 91.0557, 99.0671, -13.6988, 735.746, 41.1719, 47.3791, 177.377, 614.182, 59.8693, 30.885, 22.5553, 243.968, 35.9511, 63.6658, 99.4039, 522.82, 60.6395, -1.66086, 159.967, 4483.8, 129.281, 39.2241, 32.5089, 10.4541, 33.5574, 26.8906, 213.557, 39.2447, 45.558, 42.9064, 41.2092, 25.2691, 416.211, 131.378, 14.8044, -12.8104, 41.5559, 25.2181, 910.831, 43.8009, 26.3252, 154.752, 12.9101, 687.584, 88.6125, -0.336495, 198.312, 94.2741, 17.5389, 51.9669, 88.3272, 36.4551, 461.577, 165.445, 36.2047, 24.8808, 1081.74, 36.55, 23.7109, 159.069, 233.972, 12.9205, 28.5951, 108.56, -6.12013, 191.418, 12.2177, 231.754, 37.0556, 6.70182, 87.9948, 36.1115, 612.477, 84.2877, 40.2468, 80.9183, 20.9539, 127.597, 149.293, 690.077, 3202.51, 68.2316, 36.8647, 2056.22, 2154.64, -9.95432, 3391.38, 25.0875, 8.04776, 165.387, 38.9222, 34.9766, -69.0935, 15.7108, 63.4733, 94.4522, 24.1385, 45.2206, 61.5433, 70.8851, 185.287, 135.227, 2325.45, 147.141, 439.105, 249.862, 60.6961, 28.8159, 67.1284, 0.982107, 222.603, 862.449, 30.9948, 3355.67, 2.58366, 11.8532, -18.402, 13.2898, -102.745, 346.194, 3064.76, 1603.25, 369.522, 18.631, 32.082, 88.5522, 17.4802, 80.5616, 4.62538, 260.651, 728.888, 81.0913, 4699.84, 99.8263, 83.0734, 37.3094, -12.5336, 61.8152, 15.6515, 60.4089, 63.2578, 340.254, 69.8406, 2758.39, 46.0112, 48.4845, 3.00775, 29.5308, 2099.51, -6.78946, 174.172, 9.25558, 45.1605, 26.3615, 156.608, 31.6536, 24.1051, 6.58549, 2570.12, 2601.37, 27.6198, 9.27717, 127.368, 55.0356, 62.7111, 242.408, 37.2933, 89.3639, 80.0193, 181.817, 116.242, 902.432, 1249.58, 80.8068, 52.1335, 136.944, 9.19369, 71.6054, 18.0322, 88.5453, 98.5185, 20.4774, 55.4713, 149.533, 1363.19, 149.736, -1.52306, 4.68956, 110.182, 101.287, 41.1006, 12.8158, 48.2847, 38.6703, 6.17504, 315.271, 417.669, 917.604, 526.949, 86.7901, 5.49079, 143.844, 167.758, 47.3894, 21.3244, 2.5463, -7.53348, 26.1854, 49.2212, 385.217, 96.6181, 210.713, 551.058, 243.31, 15.2205, 219.578, 72.9952, -46.7619, 7.65478, 47.2021, 53.3323, 134.446, 30.1702, 60.0559, 72.6591, 27.7802, 11.7253, -21.2467, 19.6256, 43.3206, 260.447, 22.5582, -12.5203, 83.1298, 100.778, 73.4488, 19.4349, 60.313, 83.9283, 12.583, -42.8756, 6.82419, 793.746, 326.453, 137.1, 256.042, 131.438, 29.7611, 318.512, 13.3918, 13.7316, 27.2708, 54.9233, 18.3137, 110.58, 875.888, 253.193, 40.8993, 44.3985, 70.4717, 352.11, 80.2816, 311.052, -21.727, 20.0393, 70.7562, 179.195, 217.285, 569.148, 198.792, 62.9297, -7.06251, 2414.78, 116.931, 194.218, 159.881, 385.724, 23.8568, 14.4838, 245.611, 197.367, 99.2812, 2.62564, 1601.98, 300.787, 375.428, 117.816, 70.1534, 25.8099, 25.0521, 242.021, 143.848, 24.7516, 9.49541, 1610.07, 1234.16, 100.479, 4545.04, -15.8535, 132.319, 54.0656, 168.764, 231.665, 73.7824, -13.5897, 134.05, 52.493, 13.629, 32.2955, 71.1854, 58.7573, 389.896, 17.564, 159.716, 143.938), N = c(89.3372, 68.5827, 15.9231, 20.2488, 36.4903, 24.7007, 105.778, 54.7061, 27.6193, 12.9047, 620.004, 28.1586, 49.6642, 16.4545, 27.6512, 125.316, 83.1231, 62.1944, -43.3921, 179.797, 108.527, 61.2552, 8328.77, 27.2929, 61.2444, 24.9717, 23.3693, 24.7045, 80.3862, 13.1025, 14.058, 25.7586, 95.8448, 17.5522, 11.7202, 46.8633, 19.37, -3.87819, 97.6268, 126.247, 151.156, 593.651, 12.4314, -33.8106, 22.1085, 4461.43, 5802.7, 6060.91, 4086.23, 5676.56, 5252.6, 113.113, 122.966, 423.178, 48.5391, 711.508, 541.712, 110.042, 165.886, 76.3206, 39.4698, 183.316, 179.084, 70.8899, 29.984, 36.0984, 212.015, 10.657, 12.9578, 12.4452, 9.72711, 135.855, 112.589, 100.713, 43.1201, 65.7495, -4.33284, -0.353979, 9.78135, 2.40246, 113.384, 108.119, 15.8645, 16.1352, 77.5753, 28.2062, 550.153, 11.4208, 108.602, 12.7647, 4361.74, 18.7189, -6.71526, 13.7928, 2.6998, 42.8679, 3.04152, 577.023, 6.81695, -33.8613, 28.6891, 323.837, 144.178, -0.204522, 54.4277, 12.9936, 46.847, 61.8186, 15.4617, 19.7307, 233.956, 13.7186, 19.5749, 359.412, 52.5534, 197.571, 141.737, 142.417, 17.3591, -1.58291, 20.88, 16.6252, 239.4, 110.505, 13.056, 4.91238, 48.4446, 26.072, 40.4425, -0.057119, 4.31744, 3.55702, 211.343, 35.0582, 32.3002, 432.547, -19.1825, 9.51985, 84.1913, 94.2885, 123.165, 79.0483, -11.4864, 78.9365, 82.8418, 2930.72, 155.284, 107.217, 39.1289, 26.7801, 9.41311, 385.342, 40.9863, 1405.31, 20.5272, 16.6352, 1806.13, 36.4705, 2.26179, 45.9531, -1.86616, 9.38855, 164.578, -0.27847, 13.6962, 218.181, 120.039, 11.5751, 51.5134, -6.85612, 190.775, 8.15471, 62.5651, 82.6708, 298.427, 18.8969, 55.542, 93.0269, 21.6652, 1345.85, 44.3509, 14.3534, 17.6052, 25.6272, 334.12, 100.373, 178.179, 55.6927, 688.725, 42.0559, 18.2529, 223.116, 530.782, 67.9175, 99.6496, 5.35416, 256.393, 35.4812, 111.821, 92.1831, 531.768, 45.3206, 19.816, 142.631, 4859.73, 249.207, 103.439, 47.2751, 9.05566, 52.3237, 10.8053, 261.957, 38.8147, 29.6072, 39.9453, 18.349, 23.3791, 413.473, 113.186, 2.09751, 7.43113, 11.7495, 12.2955, 1782.61, 19.2064, 14.4603, 209.874, 6.45993, 1194.03, 77.9975, 19.6906, 186.337, 60.5553, 5.50611, 32.9364, 92.4704, 15.2531, 7.7857, 188.105, 11.737, 7.2607, 3617.54, 71.8314, 31.2533, 111.588, 121.778, 15.4925, 10.2916, 373.124, -5.67633, 263.947, 28.3399, 511.64, 28.4413, 0.574707, 68.9702, 20.9132, 272.211, 63.9764, 48.3643, 30.8804, 21.9132, 122.642, 233.14, 1010.75, 5954.55, 69.8307, 43.5644, 685.638, 2882.43, -83.7943, 3310.72, -0.662038, 15.7596, 188.547, 61.6832, 52.9313, -30.2268, 8.68393, 73.6295, 83.5782, 122.053, 276.064, 478.966, 220.497, 100.523, 203.143, 4325.4, 1204.45, 317.819, 165.436, 105.013, 17.2486, 89.6286, 19.6521, 165.066, 1597.74, 32.3071, 3807.53, 8.59767, 23.1666, -12.7933, 8.29188, -76.8493, 250.028, 4850.56, 2571.96, 649.683, 35.8371, 13.2905, 109.861, 18.661, 88.348, -7.57178, 285.068, 774.966, 66.5567, 4813.55, 32.302, 83.0898, 20.6217, 46.1896, -8.74484, 19.2316, 50.1061, 53.0092, 336.649, 52.5886, 4113.01, 66.7013, 69.1918, 13.2679, 81.2299, 2784.21, 57.2455, 493.228, 51.2349, 22.1017, 24.0103, 74.66, 7.29694, -6.52568, 14.8964, 3829.49, 2508.11, 27.265, 13.3097, 191.151, 52.0473, 59.4327, 508.603, 18.7608, 138.484, 142.005, 208.164, 87.9654, 956.885, 1678.65, 126.171, 33.5949, 209.168, 3.14731, 86.6463, 12.9521, 188.472, 247.983, 14.3525, 45.611, 325.842, 1110.41, 250.488, 0.118744, 15.712, 57.1836, 148.356, 22.0745, 10.0903, 29.8132, 22.3227, -6.73099, 452.967, 642.795, 3101.61, 1906.24, 83.7163, 6.33219, 144.829, 172.174, 16.5198, 6.6039, 11.7319, -15.1945, -8.16856, 69.3211, 183.732, 118.473, 164.074, 496.539, 546.727, 15.4349, 460.542, 112.704, -24.5723, 14.6984, 58.4225, 65.6001, 3.60186, 25.3583, 71.0586, 36.3139, 10.6933, -5.65051, -18.0382, 0.915797, 15.0201, 694.094, 1.26846, 8.0124, 55.5302, 97.4134, 31.2342, 17.4901, 57.458, 106.358, 9.61853, -12.591, 0.139887, 592.938, 241.521, 190.222, 796.422, 507.855, 172.553, 334.769, 14.3157, 50.7952, 8.26035, 20.5055, 19.4919, 78.6369, 1046.35, 367.375, 15.7459, 42.2202, 392.361, 626.004, 94.4381, 293.149, 13.0971, 18.8269, 187.413, 229.444, 475.299, 808.413, 110.807, 57.2558, 1.20242, 3338.31, 58.0464, 235.895, 268.525, 585.18, 0.460327, 25.8225, 365.538, 328.021, 11.4567, 22.2974, 4049.75, 363.501, 443.315, 88.0459, 37.9932, 28.3565, 22.1575, 191.576, 148.362, 10.7204, 9.84052, 881.215, 756.276, 123.841, 3855.89, -7.62355, 227.628, 44.8431, 134.087, 223.436, 95.7585, 9.15849, 75.5934, 34.1658, 19.5753, 35.3076, 69.8382, 26.808, 216.754, 1469.03, 190.992, 182.317), O = c(91.0615, 87.405, 20.1579, 15.7849, 36.4021, 47.4641, 223.689, 62.0684, 40.6454, 13.3902, 569.133, 48.5457, 65.2693, 17.8828, 17.8083, 132.419, 54.7312, 84.2989, -30.5948, 195.324, 109.446, 52.2385, 8663.51, 42.2334, 88.0712, 24.4171, 35.6076, 39.693, 100.474, 21.742, 30.3021, 43.7021, 116.99, 23.6911, 27.313, 84.3709, 49.9739, 13.2802, 217.396, 367.256, 332.381, 930.928, 5.36648, -52.6525, 23.6439, 1362.9, 1763.15, 2298.72, 3454.28, 3828.45, 3727.14, 62.2097, 13.5778, 56.544, 53.5262, 481.904, 402.718, 99.6078, 162.308, 69.0339, 61.0306, 155.209, 206.509, 59.7551, 33.1553, 52.3652, 278.303, 16.0722, 11.0232, 12.9863, 24.7943, 150.402, 139.517, 94.6878, 45.6489, 1290.84, 3.43024, 12.9193, 7.68004, 33.7241, 119.821, 173.552, 34.6971, 31.6987, 131.983, 85.5727, 621.437, 3.78157, 162.985, 18.0843, 1465.47, 17.9788, -9.77655, 19.0585, 4.2578, 48.7836, 6.20112, 465.464, 11.8042, -17.8159, 36.906, 344.095, 117.624, -60.686, 70.5839, 24.5116, 57.8507, 106.437, 23.974, 29.632, 199.984, 23.5255, 18.0818, 465.204, 47.253, 110.568, 210.712, 189.16, 25.4456, 14.1781, 33.2616, 29.6363, 312.489, 112.39, 19.7958, 31.6101, 23.2446, 67.7264, 63.1741, -1.28236, 15.6809, -22.4669, 164.455, 35.2809, -16.8447, 308.41, 15.6924, 13.6633, 108.893, 89.4569, 97.3631, 80.1768, 353.866, 114.01, 75.672, 1931.77, 216.261, 154.741, 24.8446, 11.0583, 10.2016, 437.672, 44.1626, 1150.15, 33.3331, 25.9648, 2849.15, 56.2084, 21.5655, 61.6313, 0.5633, 6.6802, 142.206, -1.52441, 14.2807, 227.428, 154.188, 2.73304, 135.888, -6.55262, 146.762, 13.6927, 59.0275, 149.335, 322.438, 18.4279, 131.005, 124.646, 12.9452, 1413.51, 63.8342, 15.1334, 24.8349, 53.312, 329.991, 112.056, 260.494, 15.5461, 1383.65, 37.1371, 26.8427, 243.959, 606.582, 98.9069, 61.6406, 16.9089, 340.449, 49.6253, 149.616, 120.192, 667.523, 49.9381, 24.8398, 225.262, 3546.96, 136.091, 121.874, 51.4883, 8.84598, 69.2017, 20.1963, 285.056, 41.1304, 47.4723, 45.6532, 21.6557, 34.7265, 446.774, 84.824, 11.7275, -7.08199, 48.6305, 28.8085, 1075.68, 12.0825, 25.3304, 192.562, 26.608, 392.937, 66.2018, 6.86363, 251.672, 91.9728, 22.2643, 74.2767, 126.254, 37.9815, 209.963, 191.709, 12.6392, 6.46965, 1395.67, 95.0177, 42.7501, 125.366, 101.043, 24.6033, 34.9832, 459.64, -2.3563, 194.104, 32.6242, 208.027, 104.251, -0.780733, 105.502, 37.781, 291.185, 1161.23, 235.632, 46.5727, 27.6308, 159.657, 300.935, 557.992, 2116.27, 1054.46, 73.9035, 1217.01, 1460.15, -88.8, 1992.36, 6.53622, 5.29332, 225.701, 125.598, 116.968, -27.5739, 9.55741, 179.675, 89.3978, 88.787, 315.728, 345.216, 335.878, 168.616, 439.822, 3306.11, 1049.26, 547.481, 286.447, 99.1406, 38.4488, 114.556, 45.9393, 273.941, 1111.15, 39.4502, 2902.01, 6.15638, 23.0667, -14.1021, 9.35298, -116.857, 452.608, 3544.92, 927.414, 756.701, 41.3498, 23.6982, 211.032, 35.4816, 123.105, 23.9056, 353.035, 743.73, 79.2366, 5514.38, 42.0635, 127.181, 44.6466, 43.0307, -0.20449, 19.4447, 66.9031, 55.2938, 399.75, 81.2312, 2672.37, 64.994, 67.4257, 10.9589, 71.4969, 2093.8, 14.6523, 28.02, 34.3509, 21.8848, 29.0589, 128.662, 20.666, -1.34474, 21.2585, 1646.82, 2867.21, 37.065, 42.8606, 207.514, 26.1821, 153.811, 274.655, 45.6786, 170.145, 173.887, 234.359, 60.399, 1349.8, 1600.49, 78.0854, 43.6012, 203.56, 6.03428, 131.07, 26.5348, 97.5548, 161.412, 16.7075, 71.5095, 280.713, 1207.67, 155.317, 6.33112, 30.6113, 62.8205, 164.324, 47.1694, 16.4894, 24.9893, 38.3245, 1.62452, 499.28, 442.922, 1074.38, 605.84, 60.6398, 16.3385, 188.24, 272.834, 30.0742, 22.7793, 6.38199, -41.293, 37.8102, 33.2661, 223.882, 126.257, 295.781, 524.562, 420.12, 16.3514, 287.683, 95.448, -39.3764, 15.5204, 65.131, 69.1624, 7.15867, 23.082, 106.437, 53.8414, 13.3305, -0.569408, -24.9162, 30.1215, 80.6879, 429.743, 7.23502, 6.9824, 55.0579, 178.074, 15.6577, 58.2782, 66.9708, 163.589, 9.62151, -61.7727, 1.91402, 805.173, 262.389, 80.9406, 322.827, 125.727, 18.9264, 204.438, 38.7136, 40.4771, 13.2167, 31.9875, 5.56237, 82.045, 542.137, 304.213, 40.4456, 57.2924, 116.115, 283.383, 88.494, 402.55, 16.2518, 16.7579, 245.128, 287.116, 367.802, 1390.38, 175.099, 55.0086, -3.22419, 2509.98, 49.9448, 240.87, 250.352, 577.222, 17.2906, 10.8333, 290.135, 354.61, 3.13894, 47.0525, 2374.41, 394.607, 452.372, 57.5241, 42.6069, 40.0522, 20.0476, 202.874, 146.704, 18.5251, 8.70428, 747.181, 746.294, 210.542, 2534.57, -4.78982, 265.571, 47.9046, 255.362, 222.945, 202.534, -1.89679, 75.6935, 108.222, 31.3858, 47.6782, 134.868, 18.6868, 315.229, 23.4902, 256.412, 183.381), P = c(95.9377, 84.4581, 27.8139, 14.3276, 35.3054, 47.3578, 183.585, 40.6705, 35.5333, -6.86196, 520.495, 36.3279, 80.8682, 16.4829, 12.1731, 101.991, 83.9226, 48.5502, -37.918, 182.143, 109.243, 72.062, 9703.19, 33.9123, 59.607, 11.2079, 28.1836, 29.3086, 87.4065, 12.4074, 33.7019, 34.2866, 60.5425, 28.0745, 8.17936, 56.7914, 43.755, 1.30735, 380.761, 949.318, 873.601, 2133.17, 8.94132, -49.4911, 13.8909, 3635.18, 4155.44, 5029.35, 5097.63, 5885.63, 5158.47, 76.3571, 40.6937, 129.156, 44.6594, 532.827, 407.366, 150.024, 166.733, 79.4228, 52.9089, 146.577, 212.089, 58.6137, 25.1409, 57.365, 218.192, 22.9141, 9.60791, 16.0146, 16.0711, 193.675, 131.629, 90.5224, 78.5255, 2666.04, 1.83676, 107.723, 8.9607, 166.211, 87.4163, 137.844, 58.0048, 18.4808, 84.3373, 69.2211, 501.736, -0.0219398, 110.627, 27.8748, 3428.02, 18.2661, -0.552943, 9.04877, -7.55392, 34.7136, -22.0775, 438.31, 8.01353, -10.6556, 11.7081, 286.784, 142.977, -1.75306, 92.0008, 17.9923, 43.3699, 69.9862, 7.03824, 15.2385, 266.447, 13.9918, 44.109, 343.971, 106.388, 193.132, 259.72, 146.305, 27.5627, 11.8241, 28.1245, 10.5465, 298.405, 72.1411, 8.54124, 19.1003, 28.5318, 19.2189, 50.9797, -6.94101, 12.6264, -19.0878, 132.13, 32.4503, 34.6964, 356.571, -4.75583, 15.0408, 90.0344, 83.563, 72.9321, 89.6479, -9.24438, 112.635, 89.945, 4708.72, 307.156, 106.495, 35.6991, 21.3087, 11.8785, 403.283, 45.9825, 1190.18, 17.3389, 12.962, 2253.57, 26.0812, -9.33715, 45.8318, 4.25198, -0.235197, 95.423, 12.242, 21.7191, 207.132, 110.167, 18.8907, 62.423, -2.17878, 188.407, 4.73582, 57.3755, 91.7946, 346.722, 5.35646, 88.8214, 112.848, 12.5417, 1366.66, 55.1934, 13.0844, 33.9986, 60.4339, 318.644, 107.152, 207.756, 10.0655, 908.623, 24.9347, 30.1607, 784.132, 1581.78, 61.0361, 208.332, 9.41051, 272.553, 35.7506, 287.011, 130.155, 675.119, 37.0291, 27.0153, 197.177, 4754.66, 130.537, 106.092, 67.2723, 6.46507, 102.061, 32.6796, 343.667, 49.9468, 37.6753, 17.743, 23.795, 28.4899, 391.945, 100.785, -5.28743, 24.6998, 36.4727, 5.44548, 1542.53, 15.6564, 1.72514, 175.246, 16.8081, 592.958, 58.0536, 16.8238, 196.898, 173.092, 19.4727, 32.409, 157.622, 40.8702, 1926.03, 209.951, 19.1415, -1.09743, 1946.8, 90.6256, 54.4008, 133.856, 87.6597, -6.63018, 31.2292, 373.655, 4.77085, 326.268, 36.6104, 415.757, -10.3339, 5.03371, 145.241, 98.7188, 232.926, 65.1305, 305.526, 39.0101, 16.5698, 133.832, 318.781, 1051.04, 3344.31, 57.0384, 52.8896, 2427.39, 3146.21, -33.1885, 3671.85, 53.1269, 0.677284, 226.086, 112, 58.5344, -26.5842, 14.5561, 69.9531, 57.5755, 159.83, 196.863, 377.648, 271.063, 130.595, 473.57, 4174.7, 926.876, 384.274, 269.828, 174.097, 8.58941, 98.2331, 31.5614, 230.974, 1317.19, 34.6345, 4225.96, -7.23611, 32.0804, -8.18457, -19.4876, -79.0781, 318.325, 3938.1, 2173.5, 627.963, 36.4799, 30.1577, 104.443, 20.5033, 100.631, 11.327, 310.695, 737.578, 93.6738, 6463.77, 28.3647, 78.8394, 40.2777, 41.681, -9.14832, -1.23541, 59.2399, 39.7863, 330.049, 51.3537, 2981.12, 48.1936, 44.3643, 2.1581, 71.4727, 2383.25, 25.6787, 195.431, 18.1804, 18.4473, 13.8278, 89.4967, 13.0111, -36.4418, 14.1874, 2983.45, 3025.66, 27.0738, 100.308, 166.18, 19.0582, 73.1515, 268.685, 35.5036, 137.303, 194.318, 233.562, 76.5329, 1958.33, 1834.38, 83.1306, 43.8636, 188.715, 4.5986, 86.2513, 14.9692, 37.6332, 80.6467, 8.96311, 46.4031, 361.995, 1489.12, 152.357, -11.4613, 42.1186, 60.9955, 145.517, 49.2345, 22.0977, 26.0827, 29.9162, -4.43161, 498.882, 516.328, 1400.31, 753.996, 67.8413, 11.8069, 128.401, 314.835, 15.3117, 14.2839, 5.99399, -27.0365, 25.2353, 26.3329, 205.1, 108.31, 208.561, 440.486, 485.368, 24.4458, 332.205, 108.732, -33.8566, 3.19337, 64.9522, 71.5209, 4.01805, 36.4773, 88.9457, 39.8483, 21.7754, 1.84143, -20.8023, 9.08591, 48.9682, 312.86, 2.54359, 10.9099, 39.17, 141.846, 40.0549, 26.9255, 54.3649, 213.655, 14.2068, -21.6539, -3.26063, 610.592, 240.758, 181.643, 705.632, 323.292, 112.908, 669.242, 21.5416, 77.7138, 9.21672, 28.6409, 8.29647, 52.3091, 1202, 299.665, 181.463, 49.5697, 118.863, 366.126, 99.5636, 271.68, 22.9561, 21.5974, 330.821, 275.754, 551.549, 755.334, 142.136, 45.7811, -6.41456, 3184.69, -7.71132, 269.67, 334.009, 579.92, -11.1694, 37.5901, 224.289, 312.906, 23.2579, 14.2944, 2260.91, 453.288, 511.297, 63.2891, 35.8314, 36.5171, 21.961, 165.049, 126.496, 17.4001, -4.83672, 2869.42, 3314.75, 216.978, 4321.76, -3.40488, 302.999, 55.3171, 215.658, 234.406, 229.894, 2.80647, 51.6358, 46.0148, 30.7832, 36.3961, 104.452, 28.7967, 270.453, 10.2954, 299.513, 298.381), Q = c(179.845, 87.6806, 32.7911, 15.9488, 58.6239, 58.1331, 192.221, 53.2711, 57.5078, 21.5091, 401.43, 57.8427, 53.4837, 6.53565, 26.9214, 204.75, 103.289, 74.191, -30.488, 144.421, 107.088, 36.6448, 6945.46, 26.3551, 72.2323, 34.9787, 31.9271, 39.3662, 88.351, 20.2063, 47.751, 39.3882, 93.421, 38.4229, 24.4473, 97.0614, 48.2842, 20.4114, 149.48, 91.9974, 99.0099, 489.616, -47.5854, -50.1208, 40.9994, 2056.61, 3297.7, 5375.36, 1481.99, 2634.74, 5005.51, 58.5187, -2.27154, 49.6001, 104.546, 589.112, 435.819, 197.43, 162.421, 88.937, 59.6806, 220.031, 148.895, 145.55, 38.3616, 130.29, 441.142, 22.7215, 5.45075, 0.541475, -2.7933, 143.731, 151.581, 122.392, 64.1095, 241.961, 9.33198, 2.84321, -0.0813966, 13.0512, 137.274, 152.312, 17.9966, 24.0255, 56.6119, 19.8654, 602.892, 18.9863, 128.256, 5.18994, 3225.78, 20.0576, -22.8684, 24.0201, 23.255, 52.3609, 9.78681, 378.532, 7.86409, -10.9199, 39.3368, 509.703, 98.3465, 4.3278, 30.9841, 15.7241, 72.934, 131.086, 17.678, -8.3158, 206.659, 15.5542, 30.9563, 526.82, 40.1954, 157.392, 186.118, 463.845, 25.6804, 18.7586, 30.2144, 26.5379, 426.224, 72.4541, 27.7973, 43.7178, 38.8451, 29.4314, 65.894, -1.37091, 17.5584, -18.2047, 175.757, 43.0175, 59.291, 360.72, 2.91078, 8.54141, 144.081, 107.063, 115.136, 118.639, 14.3273, 78.5512, 77.0416, 3784.57, 205.474, 129.544, 46.1631, -6.58117, 6.7294, 407.759, 50.2326, 732.503, 31.4596, 22.3868, 1987.59, 135.708, -2.7049, 85.6406, -1.73791, -0.253871, 128.843, -3.70685, 48.5898, 210.508, 211.484, -16.6187, 69.303, -20.0826, 159.374, 28.6098, 45.1189, 138.511, 418.071, 24.5252, 58.6564, 113.994, 9.71542, 1149.7, 62.2579, 28.4784, 50.1206, 53.1632, 382.944, 205.593, 292.019, 4.40127, 972.107, 11.6381, 33.2306, 137.403, 382.1, 107.61, 274.315, 3.02641, 402.868, 51.989, 161.62, 144.589, 700.349, 72.0878, 12.6023, 195.966, 4706.92, 92.8416, 92.2657, 41.3558, 7.73853, 70.9883, 18.9096, 306.337, 35.7701, 77.9582, 44.4995, 22.9144, 39.9449, 370.19, 129.158, 18.4312, -3.72863, 33.1532, 16.5481, 750.471, 15.7297, 17.9517, 227.91, 29.0455, 1137.05, -10.154, 17.0133, 205.213, 27.6867, 9.59297, 64.6394, 171.64, 20.2732, 551.24, 215.793, 22.2288, 13.2424, 2093.72, 118.054, 55.8656, 181.877, 114.434, 25.1648, 37.2732, 199.615, -2.11748, 194.627, 20.2581, 225.932, 125.897, 14.3432, 97.1932, 17.4086, 236.933, 73.5888, 59.5797, 55.2935, 22.0871, 195.733, 225.552, 383.538, 4529.62, 88.9723, 147.116, 818.793, 2845.39, -117.257, 3771.48, 9.29057, 40.9826, 197.999, 138.397, 98.8488, -66.7108, 18.8726, 147.691, 59.8272, 155.593, 127.694, 169.62, 116.026, 124.979, 123.351, 4635.37, 489.761, 411.588, 329.29, 94.3519, 36.1513, 92.763, 33.1402, 247.683, 589.211, 17.2803, 5472.93, -0.0945169, 20.9166, -16.4756, 4.16099, -103.032, 310.225, 5160.17, 2308.51, 711.944, 67.0825, 26.3465, 252.606, 30.0716, 81.0213, 10.7387, 415.856, 831.018, 77.574, 5768.87, 38.7843, 188.789, 57.3272, 19.5062, 4.65378, 21.8456, 59.9341, 55.3942, 286.712, 145.81, 3762.74, 125.689, 65.3176, 63.5216, 114.212, 2204.63, 105.805, 734.733, 21.1044, 31.2069, 24.5646, 141.729, 14.2803, -0.0164678, 7.31915, 3652.55, 3571.21, 18.3819, 23.5022, 126.492, 57.9871, 378.767, 275.041, 86.5916, 194.384, 84.5018, 268.68, 66.6054, 1165.89, 1102.24, 131.127, 39.04, 127.934, 6.77768, 93.8452, 36.2621, 244.989, 113.863, 19.5587, 83.6092, 90.1186, 1144.37, 222.243, -0.112485, 3.04715, 39.3341, 174.551, 9.39525, 8.86476, 34.0683, 38.2249, 21.4314, 534.847, 423.109, 1412.79, 1009.59, 69.7896, 5.09325, 184.737, 197.544, 19.5185, 1.42929, 0.732096, -25.099, 48.13, 22.9186, 194.558, 133.921, 302.006, 589.515, 316.913, 6.54445, 244.15, 140.078, -54.1407, 5.48896, 54.3901, 49.1413, 32.6048, 35.0332, 115.283, 45.2265, 21.2021, 2.61183, -23.157, 23.1803, 60.5066, 644.764, 7.54052, -10.2434, 80.3851, 120.091, 28.2656, 38.8046, 69.4305, 211.22, 16.6813, -51.1497, 15.4236, 773.751, 236.359, 220.25, 444.252, 197.603, 22.1516, 163.368, 4.38515, 32.3105, 21.5567, 34.8164, 7.38586, 83.7836, 690.248, 289.526, 55.7817, 58.9882, 376.087, 409.305, 135.194, 479.253, -7.37725, 0.122464, 93.6764, 187.529, 100.787, 663.026, 156.812, 46.7963, -3.89443, 4278.74, 53.7028, 236.132, 274.988, 476.378, -19.3199, 32.5085, 185.91, 297.545, 21.7566, -28.1106, 3377.88, 361.914, 433.109, 63.4572, 54.1816, 33.141, 18.6417, 195.832, 131.329, 26.9925, 15.6661, 2709.4, 1378.63, 237.151, 4236.67, -12.2979, 277.669, 60.6225, 364.282, 250.075, 168.212, -24.2041, 93.1122, 16.1807, 38.0609, 49.8754, 118.717, 32.9751, 239.852, 20.653, 237.043, 310.96), R = c(152.467, 108.032, 33.5292, 14.6753, 114.062, 104.122, 305.567, 107.237, 41.1337, 3.10536, 757.495, 83.1914, 108.545, 42.4696, 40.3873, 265.771, 140.76, 74.7106, -54.5634, 316.037, 188.792, 94.3601, 9186.23, 70.3766, 131.602, 56.8246, 40.0859, 48.3323, 187.831, 40.0367, 63.2577, 23.5424, 133.267, 40.1676, 26.7121, 157.43, 93.5228, 27.2889, 195.412, 267.395, 209.605, 582.488, 25.0043, -29.4005, 41.4228, 1071.56, 2141.77, 2913.78, 4131.25, 4546.89, 3987.55, 60.5533, 8.11091, 70.4294, 91.2818, 621.923, 558.21, 86.4503, 157.802, 72.6112, 46.4297, 176.787, 196.865, 92.815, 50.2916, 85.7762, 331.161, 48.8162, 20.6512, 10.9181, -0.905975, 233.632, 204.266, 172.993, 103.938, 1614.46, 20.4997, 12.0684, 15.2499, 37.1182, 133.572, 145.011, 29.0069, 20.7526, 72.8516, 102.421, 734.952, 10.8608, 148.424, 14.2887, 1699.09, 40.0938, 4.5551, 22.2042, 20.2862, 66.5785, 8.12938, 438.409, 9.16017, -26.0217, 40.6845, 334.96, 166.697, 11.0599, 85.3465, 65.1488, 70.9823, 226.982, 18.595, 30.777, 213.079, 17.112, 47.8895, 488.479, 80.2266, 206.459, 170.515, 305.913, 59.6001, 12.9898, 66.436, 38.64, 452.142, 147.568, 31.2212, 39.9977, 86.5661, 37.2774, 76.2522, -5.98051, 26.4634, -30.1757, 144.372, 65.8211, 61.777, 448.511, 17.0231, 39.0015, 141.992, 107.897, 105.584, 80.5216, 203.611, 79.6198, 110.707, 2188.94, 418.162, 185.003, 40.7064, 16.2165, 13.4062, 427.505, 93.5351, 1818.93, 62.4827, 16.2637, 2446.46, 70.9351, 19.1831, 99.676, 2.48638, 27.4741, 141.248, 27.3096, 25.9065, 252.931, 113.078, 6.87179, 116.856, -18.8597, 147.415, 36.6545, 109.731, 120.15, 318.348, 22.4257, 107.673, 135.75, 42.688, 1507.05, 64.8156, 12.377, 38.9106, 72.865, 483.677, 150.884, 183.042, 30.0473, 1264.23, 67.7055, 43.9821, 83.8563, 235.309, 83.3796, 153.38, 21.2252, 339.996, 64.6378, 173.331, 98.6056, 743.576, 87.6906, 50.6009, 267.82, 3831.35, 133.764, 103.796, 65.1927, 4.23406, 102.03, 38.5771, 412.567, 80.7445, 84.7391, 66.967, 51.0009, 26.7375, 480.525, 124.697, 10.7221, 27.7304, 59.3173, 69.1332, 415.189, 34.8442, 30.0275, 196.203, 8.14025, 170.304, 111.209, 9.7514, 266.524, 49.1039, 18.0585, 63.3793, 193.721, 30.783, 120.978, 227.752, 11.044, 14.0334, 1425.13, 63.0943, 42.0432, 197.522, 223.889, 22.6631, 51.5177, 250.103, -4.79409, 200.241, 16.6868, 102.159, 22.8715, 4.64345, 209.266, 49.3408, 468.176, 106.673, 172.501, 43.7646, 34.6348, 216.858, 260.969, 302.636, 1863.93, 111.276, 81.7995, 685.466, 1808.08, -10.9104, 2189.63, 17.3143, -0.330623, 290.932, 141.705, 11.9967, -93.7383, 17.2784, 47.8672, 113.007, 68.5187, 60.3833, 107.685, 111.365, 95.6294, 16.0335, 2125.74, 189.074, 403.838, 266.738, 106.865, 34.9085, 106.845, 66.5682, 325.85, 296.042, 63.2891, 2926.16, 14.8828, 25.1732, -18.4655, 14.9405, -182.623, 345.625, 2151.06, 622.274, 515.647, 40.7728, 28.5061, 117.372, 35.1721, 121.707, 12.6398, 452.022, 1037.91, 99.5648, 6397.87, 83.2929, 112.015, 70.6735, 42.6805, 75.0421, 24.7328, 117.228, 67.4218, 359.033, 98.0862, 2005.45, 57.4873, 57.8876, 7.38197, 77.2251, 677.15, 30.288, 81.2351, 32.8085, 35.7945, 29.5189, 151.22, 48.3396, 7.56941, 33.6318, 1287.71, 1373.77, 45.7599, 31.5629, 109.559, 54.1209, 111.934, 339.228, 72.705, 131.702, 71.9102, 263.616, 120.872, 1364.11, 2092.8, 87.4137, 56.3817, 95.6377, -4.18302, 130.424, 45.2359, 187.043, 65.6953, 18.7438, 55.2051, 105.641, 1499.26, 167.485, 2.11053, 21.5399, 117.773, 217.44, 51.3506, 18.8601, 40.4956, 53.5845, 5.83571, 660.491, 664.955, 1574.65, 478.21, 129.376, 15.2661, 260.743, -8466.18, 49.5091, 33.2026, 9.27869, -61.5478, 66.153, 40.8323, 360.081, 178.816, 218.49, 485.663, 352.142, 25.7411, 348.956, 149.195, -85.781, 22.1877, 74.7517, 88.4789, 2.98481, 41.6607, 87.5974, 80.5128, 40.4506, 2.68361, -41.1939, 30.8733, 64.0993, 310.536, 16.2474, 16.2138, 48.1475, 178.396, 26.3308, 32.5856, 77.08, 161.854, 39.5347, -79.1266, 7.97024, 791.045, 366.511, 245.5, 77.9898, 164.441, -4.43778, 290.684, 3.41354, -0.254222, 34.5304, 48.6374, 14.6504, 4470.95, 319.764, 203.609, 28.2099, 53.0766, 55.7597, 257.995, 149.451, 354.238, 69.3679, 29.4672, 93.0593, 319.169, 169.189, 983.872, 237.993, 57.6727, -2.76582, 1531.69, 33.0223, 262.881, 253.669, 772.192, -2.05733, 30.0128, 262.16, 321.552, 6.10686, 18.6129, 889.943, 504.265, 567.512, 93.0405, 88.32, 58.962, 30.366, 271.145, 149.116, 27.7497, 28.916, 1564.67, 1988.77, 229.076, 4052.49, -20.0849, 304.424, 94.6692, 234.158, 280.213, 163.26, -0.523823, 95.161, -5.09898, 35.5848, 51.4191, 218.051, 43.3184, 501.531, 27.493, 287.333, 262.567), S = c(180.834, 134.263, 19.8172, -7.91911, 93.4402, 115.831, 300.689, 119.666, 79.9829, 5.95347, 595.908, 66.6783, 136.044, 41.4669, 17.6882, 317.314, 177.441, 112.964, -49.0879, 269.485, 240.35, 71.4727, 9889.05, 72.777, 136.208, 46.6026, 49.1144, 56.4269, 247.966, 30.2897, 15.9976, 43.3184, 98.5873, 52.8215, 29.895, 104.566, 51.2824, 14.161, 105.061, 121.308, 98.4066, 449.081, 90.946, -3.12303, 52.178, 787.855, 2671.19, 4881.61, 1094.09, 1992.91, 4568.23, 43.1294, -2.45485, 35.8078, 194.779, 1149.07, 472.645, 153.465, 155.811, 78.5674, 67.3687, 196.392, 224.741, 103.921, 37.9265, 121.149, 330.471, 44.5184, -25.7326, -5.03244, 12.0736, 249.667, 152.511, 106.064, 91.2649, 163.929, -15.2783, 22.2097, 32.284, 19.4569, 90.3666, 154.363, -2.0974, 28.5418, 56.7267, 66.856, 807.89, 16.8584, 107.983, 20.4714, 3460.35, 47.6155, -5.06083, 36.6995, 25.7782, 67.9857, -7.1937, 510.066, 8.34297, -22.6467, 17.5439, 409.735, 115.789, -2.30007, 27.6526, 31.344, 46.8879, 149.112, 20.8777, 57.4851, 259.185, 1.47103, 50.97, 345.388, 42.0308, 240.033, 129.362, 257.606, 31.0306, 4.59672, 45.0933, 33.1438, 436.701, 175.625, 33.768, 39.8363, 80.3382, 29.0026, 49.2988, 5.05956, 23.5987, -10.8797, 176.337, 54.4923, 58.8794, 439.405, -3.61493, 38.4084, 128.262, 92.448, 157.364, 96.7016, -26.1654, 90.6717, 132.453, 3486.82, 246.219, 187.849, 15.8017, 16.9958, 3.98389, 506.407, 76.9606, 1854.34, 61.4706, 7.87159, 2154.92, 63.9216, 21.003, 126.628, 15.2875, 14.8456, 155.615, 12.7579, 33.5934, 316.255, 98.0338, -0.155925, 114.746, -1.48718, 154.094, 17.3349, 147.235, 156.007, 418.399, 21.6388, 108.515, 142.459, 24.9952, 1218.14, 11.8222, 7.9083, 37.2163, 85.4512, 491.36, 183.883, 208.501, 50.3986, 1077.88, 124.843, 50.9061, 135.342, 408.804, 99.3985, 192.397, 22.2958, 286.63, 70.1096, 55.9491, 137.51, 721.507, 98.5957, 19.5054, 251.092, 4551.91, 122.042, 152.411, 60.2571, 27.1888, 100.811, 39.2265, 467.092, 64.3961, 76.1911, 83.2083, 46.4905, 18.0486, 489.009, 74.2649, 4.50381, 29.8879, 49.1869, 0.631129, 1000.79, 11.3707, 18.8654, 238.469, 23.2369, 718.064, 89.7505, 9.75831, 170.33, 28.7157, 8.9678, 112.746, 78.4019, 25.9762, 169.867, 206.853, 23.486, 6.17877, 1152.77, 192.186, 58.7668, 225.352, 306.653, 30.2744, 32.5775, 69.0377, 8.76418, 167.482, 12.9271, 212.637, -13.1019, -10.4586, 155.464, 56.8248, 599.134, 92.2997, 51.1154, 33.7343, 23.6795, 203.75, 179.768, 436.384, 4338.32, 118.207, 111.672, 1810.67, 3395.32, -38.9316, 4429.26, -5.22744, 14.8681, 271.399, 145.53, 35.5675, -92.9327, 27.1228, 101.219, 70.1528, 144.957, 104.611, 156.323, 158.986, 185.459, 73.1768, 3557.53, 318.342, 360.28, 392.819, 134.733, 37.7964, 67.7007, 49.1147, 243.646, 643.462, 36.4443, 3379.99, 6.81798, 23.0309, -17.2907, 19.7955, -93.9038, 331.732, 4460.44, 2559.39, 403.001, 19.597, 18.4828, 201.77, 39.4426, 128.766, 9.73723, 568.667, 964.267, 91.0142, 5593.77, 80.4497, 91.9147, 96.3875, 77.823, -10.0185, -0.552131, 104.977, 67.3361, 298.984, 103.676, 3175.74, 76.1713, 42.9305, 23.5164, 80.5255, 2942.06, 46.0359, 211.746, 24.4057, 36.5004, 28.4086, 189.812, 24.9993, 2.04241, 8.26861, 3992.39, 2822.58, 6.13577, -24.8298, 114.667, 45.6519, 113.635, 345.131, 41.3414, 204.028, 46.206, 286.119, 137.48, 874.469, 1530.73, 144.398, 50.0945, 106.27, 18.9696, 185.828, 42.4012, 109.506, 106.629, 0.265347, 114.964, 79.697, 1196.91, 181.206, -5.2015, 34.0159, 105.566, 275.02, 36.3232, -2.9961, 44.4439, 52.9923, 14.0299, 662.469, 689.304, 1951.98, 1049.51, 110.576, 6.38378, 257.273, 272.63, 46.4421, 8.63581, -10.7732, -50.931, 62.8756, 35.9405, 363.809, 210.738, 326.868, 518.104, 360.48, 17.5659, 389.966, 147.554, -85.8457, -4.62999, 67.4847, 72.5869, 17.7463, 72.1119, 106.536, 52.8706, 30.1552, 1.41616, -38.1398, 42.2391, 48.2987, 245.317, -2.8878, -8.54974, 67.0057, 85.5775, 68.6865, 58.0009, -100.96, 153.806, 8.89852, -52.7776, 13.7009, 741.804, 342.906, 213.806, 246.234, 249.977, 6.98249, 313.301, 4.85294, -6.65, 11.7382, 44.1473, 26.9037, 150.331, 373.791, 225.069, -13.2615, 71.2087, 77.8136, 316.181, 121.96, 535.475, 4.9466, 23.6025, 102.613, 253.591, 38.0866, 1595.16, 184.578, 67.1935, -1.492, 2918.08, 45.1199, 272.804, 333.432, 845.986, 4.28768, 32.6207, 233.91, 363.863, 21.951, 11.784, 1891.02, 329.09, 486.907, 64.4783, 66.7354, 46.4086, 33.8196, 233.154, 136.06, 47.6797, 6.52799, 340.142, 141.886, 266.149, 5408.5, -0.330254, 249.207, 91.4136, 217.254, 223.499, 125.535, -26.3701, 124.581, 23.0902, 27.3877, 63.5235, 91.5899, 30.2485, 414.683, 32.0805, 292.537, 337.14), T = c(85.4146, 91.4031, 20.419, 12.8875, 22.5168, 58.1224, 146.081, 24.0654, 23.4953, 5.66012, 381.23, 24.8852, 43.8619, 21.6548, 38.31, 88.0773, 75.8888, 63.2349, -22.5916, 148.114, 94.9754, 24.3627, 8872.19, 16.6944, 25.9624, 14.2291, 26.7874, 18.7009, 67.1026, 22.4741, 9.27033, 47.5063, 63.1381, 15.6287, 16.4874, 48.3661, 29.3514, 5.19944, 80.6699, 130.446, 92.6789, 991.455, -47.5568, -27.8809, 34.8781, 1764.84, 3354.22, 5156.98, 2924.77, 4220.09, 5945.49, 54.869, -14.7753, 17.6952, 106.033, 752.364, 315.533, 201.13, 132.043, 53.3268, 38.1879, 153.224, 164.918, 84.4463, 21.762, 54.4231, 199.737, 8.43104, -21.5154, 24.0447, 16.0306, 175.385, 123.68, 85.9635, 69.9593, 838.797, 42.3079, 9.28645, 7.80179, 41.7727, 147.448, 124.652, 14.7371, 31.7192, 37.8179, 42.2796, 488.885, -46.2152, 132.058, 5.27287, 4440.33, -0.0718337, -57.624, 4.71695, 5.46426, 39.1079, 12.6737, 321.994, 9.97344, -17.4564, 26.4203, 428.175, 105.465, 2.87448, 38.7378, 9.81193, 62.2688, 78.2701, 21.3358, -49.4748, 144.854, 23.4393, 19.4808, 341.139, 32.9906, 129.144, 185.672, 168.829, 6.00401, 33.8803, 9.36118, 14.9659, 247.173, 82.8192, 13.4658, 22.9884, 47.6126, 45.9863, 14.9616, -17.078, 13.3633, -10.6613, 149.949, 16.9201, 32.2351, 303.763, 17.3263, 12.6098, 90.374, 67.1811, 96.5753, 30.4414, 5.25392, 97.9433, 84.0109, 4791.92, 158.83, 70.5196, 25.2591, 10.6006, 4.74133, 328.929, 29.5291, 1108.02, 25.4939, 9.86538, 1881.79, 38.0273, 18.6363, 47.8304, -10.7556, 19.3657, 156.49, -4.6479, 24.3279, 177.577, 99.0255, -20.2743, 18.2502, -21.5958, 204.768, 13.9135, 30.9209, 41.149, 384.304, 4.3501, 56.0264, 84.2963, 5.9091, 1111.55, 18.1803, 35.6877, 36.4223, 28.7847, 336.821, 113.682, 153.298, -12.3375, 703.197, 6.54321, 3.4003, 365.171, 948.665, 57.6749, 140.807, -47.5884, 230.304, 35.2882, 92.0679, 119.55, 594.026, 47.8285, 1.59722, 141.695, 4590.73, 91.6325, 73.205, -7.3732, 4.2271, 54.6507, 13.1526, 354.281, 25.637, 31.0081, 29.8338, 2.26946, 26.7666, 362.02, 115.711, 11.7932, -32.3943, 32.0935, 29.629, 2198.45, 10.5357, 2.06974, 160.126, 17.9661, 557.344, 30.7372, 5.81217, 173.58, 28.031, 113.638, 44.2328, 119.839, 13.3271, 3588.49, 180.036, 12.2911, 6.12067, 2513.45, 130.452, 43.649, 164.033, 86.9239, -4.89138, 2.61077, 318.083, -9.8494, 226.599, 27.9181, 709.636, 58.3088, 8.21628, 53.439, 27.9726, 152.485, 56.2261, 35.4081, 49.3529, 23.6595, 101.075, 201.208, 1349.67, 4097.11, 57.5865, 46.8813, 2496.72, 4302.08, -14.5668, 4226.52, 7.23516, -10.6584, 199.645, 25.6556, 88.8947, -27.3404, 7.1847, 123.708, 54.1917, 95.0836, 53.2071, 87.2175, 65.777, 141.115, 127.916, 4586.4, 188.076, 373.932, 177.252, 58.2959, 22.0144, 78.9151, 8.43176, 264.651, 1104.78, 17.8202, 4534.5, 3.39535, 11.9647, -7.74796, -0.772443, -26.6313, 295.923, 4712.16, 3425.1, 614.955, 22.927, 10.8969, 148.503, 14.3999, 80.8697, 12.8348, 329.268, 673.343, 56.6204, 5771.56, 24.6675, 110.65, 35.7516, 41.8782, 44.7822, 19.8892, 41.73, 19.3424, 298.774, 37.7131, 3728.22, 36.5436, 48.8184, 28.1586, 54.0515, 3337.96, 20.775, 279.927, 18.8433, 32.674, 14.6679, 29.86, 12.9458, 19.2027, -2.83335, 3800.89, 3485.23, 20.018, 6.81922, 171.361, 23.6272, 82.1207, 183.374, 27.095, 260.132, 108.528, 184.085, 61.5014, 1167.08, 1433.71, 135.186, 31.2864, 434.736, 17.5452, 91.0749, 21.8009, 99.108, 210.107, 20.1143, 54.7748, 175.689, 1361.39, 270.05, 1.2547, -11.7241, 29.3876, 138.432, 10.7093, 10.0032, 10.2681, 18.3958, 7.03457, 512.672, 440.222, 1362.39, 910.424, 44.8842, 3.24524, 103.19, 183.772, 15.0041, 5.54029, -8.76264, -22.0844, 38.0021, -25.9207, 264.602, 55.2672, 206.417, 594.362, 448.783, 20.5519, 336.445, 171.817, -39.842, 8.79081, 50.1709, 58.1773, 46.4573, 46.5964, 43.8317, 37.5065, -2.50102, 9.116, -12.1285, -5.29367, 36.3098, 370.765, 6.12811, -26.2998, 59.922, 99.4379, 23.3231, 38.6395, 41.8341, 163.323, 2.35223, -33.2088, -0.318706, 700.347, 149.244, 149.939, 444.315, 197.612, 65.3287, 672.978, 20.2036, 60.3929, 2.13584, 16.3533, 25.6992, 33.6586, 1906.36, 228.049, 17.1178, 48.7949, 146.708, 209.255, 89.5143, 329.467, -84.1617, 9.28273, 73.3277, 150.263, 402.813, 724.912, 93.5619, 26.9338, -3.23502, 4343.81, 84.6119, 176.598, 273.432, 468.032, 20.1705, 20.3546, 250.216, 300.855, 31.8932, -0.101973, 2796.81, 353.51, 464.394, 110.78, 19.739, 21.7774, -1.61634, 189.76, 178.32, 10.1773, 29.4681, 2330.43, 1832.11, 163.47, 4295.36, 1.24901, 169.036, 51.2922, 162.709, 210.078, 101.101, -44.4698, 60.07, 31.3394, 30.0544, 26.2902, 162.19, 23.6549, 193.004, 15.0567, 284.328, 304.22), U = c(157.989, -8.68811, 26.872, 11.9186, 48.6462, 73.4221, 142.913, 98.8425, 51.5609, 52.9338, 501.744, 61.9548, 49.8289, 34.6108, 18.0297, 156.179, 87.3699, 37.4892, -21.2394, 193.205, 104.147, 48.4806, 9682.71, 36.3847, 76.8974, 24.4563, 50.9666, 51.7285, 73.0255, 24.2106, 81.0265, 47.44, 82.9362, 22.7492, 30.1752, 86.5914, 36.8239, 14.7646, 162.673, 253.176, 234.595, 516.142, 3.69034, -48.9365, 65.8244, 1617.96, 2640.46, 3657.65, 3819.17, 4090.65, 4454.83, 74.8586, 30.8665, 115.707, 89.1666, 506.21, 387.529, 136.212, 126.173, 62.8923, 40.0836, 202.828, 177.232, 78.8619, 45.8239, 79.8199, 403.987, 19.3334, -4.33529, 11.4801, 9.01189, 195.923, 148.046, 137.08, 88.7213, 1731.1, 5.7097, 65.7457, 11.6924, 164.186, 62.7575, 170.711, 27.103, 19.0265, 77.2922, 43.5574, 689.458, 17.2022, 158.953, 19.0796, 1570.76, 11.1243, -47.8425, 10.6524, -0.824531, 67.9613, 18.0697, 456.784, 4.19371, -26.2001, 62.0666, 313.22, 106.68, 5.68857, 98.9954, 27.1199, 81.5302, 135.078, 13.4029, 2.27847, 222.449, 27.6569, 36.3149, 319.741, -3.24216, 86.4926, 279.68, 302.545, 0.710896, 9.79766, 35.8284, 20.4802, 428.874, 93.8246, 8.23201, 37.7287, 72.151, 65.6202, 47.0053, 0.315092, 21.1461, -8.71233, 164.907, 41.8224, 39.359, 424.272, 3.92809, 14.0193, 129.938, 118.107, 110.441, 57.8896, 903.554, 84.1557, 90.7458, 2653.41, 355.276, -1816.64, 7.02804, 8.16405, 9.63254, 371.113, 68.6348, 875.156, 22.8315, 12.7834, 2908.65, 73.0268, 19.0389, 97.903, -18.5831, 30.1621, 141.008, 15.9366, 20.1853, 627.3, 247.215, -17.4408, 89.5689, -11.199, 164.223, 25.376, 43.2611, 165.297, 467.893, 13.1353, 98.6927, 140.993, 11.9114, 1813.87, 67.8542, 25.6188, 22.4116, 82.7, 460.699, 124.313, 238.174, 8.88709, 1043.82, 25.7917, 39.0679, 109.691, 209.892, 103.859, 245.403, 10.1044, 311.758, 35.0417, 156.112, 129.443, 773.753, 54.0158, 19.2496, 195.573, 3191.4, 60.8176, 85.4708, 78.6881, 8.26688, 106.968, 22.7105, 343.198, 33.6467, 58.9204, 30.6993, 21.9813, 34.1661, 397.846, 172.861, 18.11, -14.0195, 49.0661, 19.4589, 485.993, -5.94627, 19.3554, 203.228, 15.4995, 182.748, 33.6588, 12.4801, 250.566, 89.4413, 1.24338, 62.8193, 135.39, 26.084, 66.58, 304.39, 15.5656, 0.0976848, 2026.74, 93.9433, 50.5064, 136.347, 107.083, 0.193948, 56.348, 559.336, -1.34568, 131.805, 28.0195, 78.0697, 40.3857, 4.25619, 106.778, 46.9773, 146.015, 120.829, 175.308, 45.3821, 24.7305, 164.084, 298.482, 265.155, 1623.42, 120.842, 74.8246, 873.725, 1696.78, -58.2311, 2161.09, 154.495, 21.3336, 230.491, 137.396, 34.7623, -58.6789, 11.4523, 69.9525, 116.551, 48.5494, 151.926, 187.422, 154.078, 123.855, 95.9424, 2044.5, 491.992, 529.63, 340.004, 120.157, -10.32, 69.8532, 34.5671, 327.885, 636.459, 80.0114, 3073.94, -1.47433, 16.6172, -27.206, 24.0632, -93.0832, 310.202, 2273.54, 1030.79, 692.127, 50.6523, 0.0949905, 163.055, 35.4072, 126.346, -0.203757, 441.602, 770.905, 125.032, 5956.98, 36.5848, 162.222, 51.3298, 20.8305, 15.5991, 25.9609, 58.655, 52.9268, 333.587, 96.7429, 1602.47, 97.4173, 86.7895, 21.8971, 89.7959, 1174.03, 25.7309, 35.7276, 57.156, 44.3944, 28.3338, 128.169, 32.7755, 138.659, 15.3786, 1535.37, 3200.62, 62.304, 183.76, 149.049, 8.71382, 196.735, 309.498, 178.323, 237.073, 96.5753, 272.477, 80.7959, 1641.59, 1393.03, 88.4958, 49.7455, 107.804, 1.72709, 216.482, 37.8761, 263.464, 95.4082, 18.0926, 73.9372, 119.028, 1342.88, 259.724, 1.22813, 23.9773, 57.3953, 183.088, 45.7202, 18.3849, 26.61, 55.6054, -0.706882, 556.393, 421.879, 1167.84, 517.988, 59.9694, 3.20685, 206.993, 312.68, 22.9889, 18.4686, 4.63857, -30.2465, 89.4418, -33.5483, 234.894, 140.073, 299.794, 647.004, 226.003, 15.86, 335.638, 67.1859, -51.8662, 31.7451, 83.9066, 41.8285, 42.0325, 32.7291, 119.85, 39.4677, 30.8266, 5.43731, -28.7512, -1.65284, 78.5071, 261.552, 8.97927, -51.5476, 51.7288, 150.168, 14.6407, 45.8702, 87.2712, 130.708, 6.04671, -55.0078, 3.91318, 826.722, 190.35, 215.967, 315.772, 185.466, 37.9453, 186.14, 14.3975, 23.4929, 25.426, 17.2156, 6.52523, 68.4645, 390.197, 373.666, 48.2707, 70.0616, 151.743, 201.533, 140.316, 349.969, -33.2442, 15.2186, 98.48, 276.547, 25.9707, 517.012, 214.317, 33.5505, -2.96451, 2726.88, 90.5135, 245.165, 318.465, 467.27, 13.3121, 23.4317, 308.334, 305.01, 47.6936, 5.27658, 1097, 378.496, 613.637, 52.5746, 39.5571, 49.8384, -12.1801, 195.255, 178.577, 11.7318, 12.5255, 1648.03, 1427.1, 243.458, 2091.88, -6.21422, 272.611, 59.9022, 424.443, 250.476, 211.563, -42.4763, 97.4135, 21.3433, 34.6708, 59.0011, 191.443, 28.995, 282.507, 21.9004, 223.679, 247.843), V = c(146.8, 85.0212, 31.1488, 12.8324, 90.2215, 64.6066, 187.132, 92.0846, 48.1247, 15.7267, 659.613, 58.0325, 88.3787, 36.9725, 28.012, 249.872, 130.509, 69.9946, -38.734, 294.238, 168.992, 79.3437, 10396.1, 58.1014, 104.428, 59.6125, 27.7013, 60.7026, 189.186, 37.1239, 87.2832, 32.3454, 129.234, 49.4815, 39.3013, 144.819, 89.547, 19.1634, 192.314, 233.304, 232.416, 691.134, 15.2424, -29.8916, 37.2982, 1198.8, 2378.58, 2860.87, 3879.76, 4507.62, 4098.65, 54.4923, 16.7083, 98.5723, 84.3737, 596.467, 434.575, 73.1467, 163.036, 53.4802, 58.4489, 204.88, 196.61, 89.4526, 47.7735, 90.0391, 348.738, 51.0633, 11.8902, 2.31597, 9.60877, 242.327, 149.534, 153.576, 132.633, 3006.34, 2.60968, 109.943, 25.9401, 70.5182, 118.336, 173.694, 17.664, 5.00616, 93.2511, 73.8148, 848.672, 14.9824, 104.303, 18.5045, 2350.16, 52.1706, 4.98633, 24.2924, 15.9269, 63.3791, 4.59506, 336.982, 17.333, -22.031, 35.598, 288.123, 154.099, 6.85971, 196.454, 46.4389, 45.5724, 129.7, 16.933, 31.0391, 193.007, 11.3017, 68.8202, 365.599, 81.2111, 171.59, 180.212, 300.681, 32.2205, 8.08239, 55.0635, 43.0479, 415.1, 140.86, 27.6083, 50.3935, 108.081, 46.7669, 93.0661, 4.387, 32.655, -36.8072, 128.504, 67.4608, 49.1855, 430.627, 7.29553, 30.7981, 115.461, 99.4041, 120.119, 79.4284, -8.70355, 129.377, 111.452, 2636.2, 283.657, 152.508, 10.2713, 21.833, 12.0283, 384.157, 111.401, 1552.5, 70.0416, 9.38613, 3105.92, 69.0755, 14.0697, 72.8632, 1.86091, 12.6286, 165.686, 23.575, 29.6849, 291.643, 136.994, 12.2572, 116.667, -9.89752, 162.058, 14.9847, 135.385, 134.205, 282.957, 31.3019, 79.3672, 129.701, 25.2638, 2063.8, 85.4085, 22.2778, 35.5618, 68.1409, 477.608, 159.587, 177.912, 12.3833, 1504.4, 89.2294, 36.7813, 100.322, 178.409, 74.2343, 145.029, 22.5529, 338.865, 70.4458, 143.998, 137.354, 718.835, 92.2865, 44.6636, 294.612, 3153.36, 107.572, 127.595, 66.1574, 20.5912, 123.183, 38.7749, 538.56, 54.1507, 73.0012, 55.4213, 58.4307, 28.2636, 558.944, 130.972, 9.68121, 34.9358, 75.5451, 10.1148, 242.757, 25.2692, 31.3001, 186.852, 23.7675, 243.991, 124.371, 12.6768, 219.736, 74.2949, 15.8069, 64.9143, 141.896, 46.0688, 18.6799, 228.678, 17.3736, 14.7902, 904.369, 30.203, 39.7144, 200.381, 242.083, 29.385, 39.6679, 217.316, 0.453118, 146.591, 27.3242, 99.2733, -6.54072, 6.56623, 172.795, 67.0636, 498.539, 140.281, 126.26, 77.8774, 31.0841, 234.303, 259.19, 271.516, 3717.97, 94.2988, 71.7809, 694.162, 1565.52, -7.65442, 2008.76, 56.0799, 14.7563, 254.124, 152.548, 3.96758, -112.889, 23.7309, 43.959, 115.697, 21.7522, 84.5736, 143.954, 144.098, 98.6888, 48.2402, 1436.37, 341.351, 401.483, 309.221, 93.2162, 48.3087, 76.9098, 46.6884, 273.507, 266.358, 67.4139, 2866.11, 20.2726, 16.3465, -29.4872, 11.5116, -204.174, 332.45, 1994.19, 1184.78, 392.023, 44.7525, 36.1219, 110.905, 39.2748, 117.471, 22.0005, 513.787, 927.413, 125.58, 6498.24, 84.7558, 104.13, 57.8553, 58.1969, -28.5082, 6.40566, 107.818, 92.3361, 404.992, 83.7837, 1459.51, 76.4665, 66.6122, 7.24202, 113.211, 954.436, 22.4689, 32.1727, 48.0985, 27.3616, 36.9859, 179.13, 47.7911, 188.365, 28.236, 1653.81, 1759.21, 48.8833, 146.243, 159.633, 35.2368, 116.22, 359.115, 77.2792, 145.838, 81.4343, 290.231, 152.031, 1603.45, 1937.63, 75.9467, 61.9098, 80.9726, -7.0814, 134.276, 49.8239, 185.681, 94.0413, 17.4167, 59.2552, 106.439, 1243.49, 162.989, 9.0091, 38.2842, 146.055, 211.768, 48.178, 23.925, 73.9306, 64.0879, 45.589, 662.33, 516.529, 687.539, 140.826, 134.102, 11.9479, 255.559, 640.483, 50.5054, 26.5233, 13.8135, -62.5521, 50.5043, 56.0148, 340.46, 193.713, 234.002, 565.911, 286.525, 28.1796, 349.433, 101.645, -92.2694, 10.4707, 75.8019, 98.9545, 2.58892, 45.9471, 159.292, 98.5365, 29.5933, 5.29836, -33.1193, 22.5066, 63.4782, 291.064, 17.8339, 13.534, 89.7338, 138.021, 53.3355, 47.8456, 114.431, 128.613, 13.7885, -87.8064, 3.74718, 738.26, 314.237, 239.549, 134.137, 186.247, 3.33742, 190.915, 8.25899, -1.16246, 27.3675, 39.4051, 25.0474, 148.14, 212.304, 266.504, 11.992, 54.1384, 35.5603, 284.945, 148.733, 329.237, 36.8865, 18.7155, 77.6382, 324.99, 42.4623, 979.981, 210.802, 68.029, -0.70452, 929.993, 122.7, 286.294, 204.529, 657.229, 4.27519, 29.4157, 249.475, 231.63, 10.1838, 15.7454, 1418.74, 554.93, 590.865, 83.5738, 96.2179, 65.2052, 28.1082, 274.239, 144.532, 18.8459, 15.9159, 568.05, 826.803, 177.082, 2839.7, -25.3921, 214.296, 88.9582, 262.805, 197.053, 159.425, -1.24586, 152.398, 20.8587, 32.8964, 87.765, 159.64, 58.8501, 504.189, 31.6534, 273.78, 202.284), W = c(93.8829, 79.2998, 22.342, 11.139, 42.0053, 40.3068, 170.583, 53.3866, 31.8358, 15.2116, 590.156, 28.7707, 91.5539, 16.9959, 24.8743, 141.803, 91.7096, 42.8123, -44.2136, 197.745, 109.586, 42.6647, 8365.8, 40.3792, 68.447, 22.6792, 30.9739, 43.9691, 104.818, 23.3193, 30.0672, 36.1116, 96.675, 24.9362, 18.2112, 79.414, 73.7415, 11.4693, 125.129, 234.052, 180.548, 780.294, 20.5804, -27.1269, 27.4847, 2573.87, 3477.17, 4471.09, 4331.77, 5276.04, 5664.37, 67.9535, 25.6475, 76.769, 68.6645, 569.912, 448.872, 84.3918, 151.687, 70.5891, 46.049, 163.378, 205.215, 85.3799, 20.69, 52.4086, 217.039, 28.319, 8.98009, 2.49221, 7.2658, 132.225, 113.424, 90.7812, 49.4236, 194.233, -2.22783, 12.3812, 2.20869, 11.5695, 99.7647, 128.898, 19.5615, 35.292, 94.5332, 67.4591, 554.534, 7.66178, 125.216, 14.4581, 2937.07, 16.2097, -13.3297, 8.89613, 0.268704, 53.3312, -3.18541, 400.768, 7.91864, -22.0276, 27.0425, 307.79, 117.905, 1.04752, 62.4551, 47.2319, 47.9187, 95.9799, 22.9395, 20.0366, 186.816, 31.649, 46.0998, 480.031, 60.3285, 164.009, 200.208, 161.315, 56.6931, 9.0717, 23.3418, 29.9439, 311.585, 105.587, 18.0468, 27.286, 52.2595, 41.7338, 41.9092, -6.27292, 15.0346, 2.49389, 158.706, 47.6087, 63.6269, 371.786, 14.0691, 20.6185, 83.1104, 88.1335, 74.1428, 88.3365, -16.7579, 109.776, 78.3542, 3723.43, 181.918, 127.877, 39.8845, 36.89, 6.36301, 370.387, 60.0514, 1250.16, 45.784, 17.0307, 2659.47, 39.4764, 8.75707, 67.4581, 3.32201, 6.27112, 109.75, 0.0379001, 18.788, 219.604, 83.3589, 0.223356, 72.8466, -3.92575, 115.845, 15.8586, 100.997, 110.407, 293.455, 34.1911, 77.0416, 120.623, 13.4395, 1331.91, 31.2241, 8.70833, 25.7259, 59.1483, 305.94, 77.5733, 178.913, 16.5687, 1227.09, 25.6378, 25.5943, 424.363, 1060.22, 66.4364, 214.827, 10.2609, 326.249, 58.4576, 316.629, 103.313, 630.475, 56.2809, 20.6089, 197.695, 4188.16, 130.831, 85.652, 54.0967, -0.698646, 50.5705, 16.5062, 228.745, 39.6945, 45.1939, 13.7713, 24.4483, 23.2166, 421.695, 141.163, 5.23799, 14.9818, 42.4541, 14.3148, 1018.29, 44.1777, 18.0954, 174.692, 1.13532, 177.388, 76.7073, 6.18476, 211.823, 91.4271, 3.23425, 43.7706, 118.826, 27.0587, 2702.13, 235.38, 10.0865, 5.50446, 2175.88, 51.4997, 50.5894, 95.3916, 148.45, 6.40436, 23.5829, 330.852, -0.310719, 207.436, 21.3795, 284.009, 36.3695, -7.45753, 108.835, 28.6744, 351.821, 81.5486, 162.442, 66.8129, 7.60735, 162.102, 287.533, 631.07, 3388.32, 79.7706, 57.3322, 1271.83, 2471.53, -29.1697, 3267.69, 5.95262, 32.91, 194.936, 86.4109, 53.1509, -41.465, 15.2884, 72.1419, 64.2053, 201.034, 164.92, 232.637, 267.261, 104.615, 246.293, 3545.06, 668.983, 390.615, 206.928, 113.631, 17.5142, 107.777, 23.6411, 285.105, 894.496, 30.4761, 3370.49, 9.77489, 18.472, -14.7844, 16.7371, -113.75, 389.444, 3420.63, 1801.31, 572.056, 43.4844, 11.8425, 99.7886, 17.1879, 101.741, 12.4638, 282.006, 757.723, 68.368, 7042.88, 49.1817, 100.521, 41.5229, 48.4048, 1.87017, 1.50182, 73.7493, 47.2105, 326.063, 51.7689, 2653.49, 66.4281, 77.9568, 11.6907, 52.1105, 1675.42, 34.4654, 294.214, 24.6104, 17.815, 28.1464, 124.825, 28.0614, 5.60878, 17.4288, 2473.69, 2296.06, 14.6744, 4.47085, 168.622, 27.3937, 86.2253, 270.465, 40.3882, 117.987, 86.8032, 230.207, 85.7811, 1289.93, 1702.7, 145.237, 63.6695, 125.432, 3.0438, 89.7088, 21.3173, 132.6, 116.694, 15.4594, 45.2788, 184.129, 1587.01, 157.617, -0.493317, 9.90994, 97.5666, 144.692, 34.5865, 7.931, 40.2999, 27.9275, -3.58742, 485.435, 437.813, 1452.56, 574.669, 86.8385, 23.5322, 171.905, 224.899, 32.7434, 13.9438, 13.343, -40.59, 25.1954, 44.9909, 245.033, 127.305, 177.074, 440.508, 290.957, 15.9839, 294.587, 101.032, -35.4977, 6.72849, 46.2628, 58.8674, 0.475095, 34.3861, 130.95, 54.8103, 15.4945, -0.39281, -21.281, 6.00761, 72.1088, 250.751, -0.406172, 7.80526, 59.6821, 132.221, 36.7295, 23.074, 56.5949, 293.273, 6.76556, -46.7689, 3.47536, 748.806, 294.336, 146.912, 271.733, 219.698, 62.569, 345.02, 3.13008, 30.308, 6.17931, 18.9706, 13.9386, 89.2086, 748.361, 358.791, 109.327, 49.8742, 110.424, 319.118, 98.7191, 310.937, 29.6553, 22.2504, 123.248, 201.381, 272.266, 1368.36, 143.957, 51.4594, 4.59039, 2751.79, 72.3933, 219.441, 271.931, 494.064, 10.4994, 15.2219, 236.647, 314.185, 5.56465, 11.6035, 2087.89, 422.794, 390.361, 66.1281, 66.8283, 41.6442, 17.8877, 207.359, 185.938, 15.4422, 0.0721809, 2390.02, 2842.8, 188.211, 3583.67, -13.5936, 213.801, 72.5324, 184.59, 223.815, 144.363, -0.491996, 95.4303, 53.5745, 23.847, 43.1828, 122.662, 50.3786, 318.681, 22.925, 283.962, 180.556), X = c(103.855, 71.6552, 19.0135, 7.55564, 57.5738, 41.8209, 133.279, 52.0164, 29.9264, -5.35282, 461.23, 48.5346, 40.2298, 8.39896, 17.7428, 117.473, 77.9277, 63.8059, -23.6993, 203.531, 106.757, -12.6489, 9345.94, 33.9219, 84.325, 26.541, 20.4447, 12.9576, 129.619, 39.302, 32.4333, 36.6902, 94.5572, 27.0847, 15.2479, 64.4091, 52.7497, -2.53228, 77.664, 85.4302, 81.7355, 981.646, 38.5142, -17.5833, 27.7867, 1552.46, 3626.69, 5900.96, 965.54, 2335.83, 5219.36, 56.3916, 11.4089, 8.23804, 45.1092, 590.292, 404.212, 158.902, 172.453, 70.8063, 75.0311, 132.294, 227.772, 40.4406, 32.6849, 55.5681, 186.463, 15.9432, 7.08868, 9.96418, -12.0555, 204.795, 136.208, 67.8371, 47.1633, 130.277, -3.05798, 15.524, 0.394058, -0.575181, 116.937, 137.411, 15.8249, 27.7821, 56.4698, 72.6469, 793.019, -3.20777, 166.785, 20.0154, 3257.57, 27.9982, -0.0363981, 25.4436, 10.4671, 38.5609, 3.58018, 404.834, -4.70361, -11.9295, 43.1111, 84.1063, 69.6939, 1.9759, 77.2344, 12.9422, 45.3537, 51.7135, 8.80947, 7.73061, 130.009, 9.35285, 34.4833, 433.679, 27.4743, 158.522, 215.065, 179.114, 26.4954, 9.3366, 23.7929, 13.452, 199.349, 105.274, -0.691375, 17.7547, 4.10314, 35.5965, 44.8385, -0.221245, 14.5359, -16.4445, 105.255, 38.4129, 66.9824, 382.957, 15.7831, 14.7568, 67.7456, 74.4817, 85.8083, 79.3688, -11.9028, 95.3734, 88.6175, 3638.23, 179.778, 81.8201, 21.4498, 25.1334, 13.3877, 373.739, 41.2316, 1690.04, 42.6084, 26.4521, 2174.18, 35.9456, 17.0905, 26.4139, 12.1516, 7.7893, 101.429, 3.61813, 25.9043, 165.546, 165.029, 2.21347, 41.351, -15.7535, 196.906, 5.87379, 71.1112, 112.901, 307.683, 13.0548, 71.6915, 87.8448, 13.656, 1324.22, 68.4614, 13.8467, 15.6624, -2.11244, 297.141, 107.993, 217.546, 8.23705, 872.009, 70.5007, 20.4041, 198.528, 839.796, 78.6212, 64.8983, 6.00077, 245.485, 54.9742, 172.73, 102.901, 624.53, 66.6335, 29.4896, 180.67, 5833.66, 116.569, 74.2093, 58.8941, 11.4795, 38.9307, 24.9464, 238.739, 50.3452, 25.8187, 30.6562, 27.1836, 24.7247, 461.369, 149.096, 4.03206, 31.8861, 58.9681, 4.73846, 1079.05, 10.5102, 10.7358, 171.903, 21.6532, 1614.61, 69.1148, -1.06577, 246.209, 60.9519, 8.55947, 53.5345, 107.852, 15.5495, 1089.79, 100.743, -9.84966, 8.50146, 2509.63, 88.4241, 11.468, 93.436, 136.846, 14.834, 12.8876, 87.0857, -4.64621, 227.816, 12.562, 421.94, 16.9143, 2.74598, 63.8839, 17.5857, 413.069, 87.988, 46.8763, 79.4983, 23.5537, 156.533, 142.026, 625.897, 3069.9, 93.4094, 50.3598, 1902.77, 3014.6, -71.304, 3680.73, -1.80914, 19.1538, 190.056, 52.2877, 60.5452, -23.5987, -1.91455, 103.818, 31.699, 134.021, 37.0279, 52.1777, 73.3428, 276.737, 287.212, 3643.06, 113.995, 339.686, 198.545, 79.3342, 98.5352, 82.1863, 22.447, 239.447, 1430.28, 32.5284, 3884.78, 15.1339, 17.3066, -6.03283, 29.8269, -58.3026, 313.006, 4781.54, 2323.54, 536.467, 29.7574, 10.0447, 152.661, 18.8966, 109.161, 2.93635, 301.283, 646.211, 59.3143, 5632.2, 42.6628, 82.368, 50.862, 63.6873, 6.28557, 6.79988, 64.1165, 61.7862, 296.761, 68.4204, 3511.48, 62.6788, 66.0424, 16.0121, 83.9819, 2693.64, 33.3963, 541.391, 24.8203, 25.8722, 20.7669, 405.887, 16.5432, -11.8931, 9.47242, 3512.12, 3913.11, 28.1157, 0.942018, 198.992, 24.5918, 133.321, 320.601, 45.0174, 152.439, 49.5598, 168.985, 72.77, 1044.1, 1593.03, 99.944, 41.6344, 239.253, 8.03384, 87.8811, 27.0239, 50.1334, 137.746, 18.3693, 123.532, 217.189, 1474.25, 160.646, 6.16888, 6.51786, 69.9984, 131.152, 16.941, 3.84455, 34.2437, 24.9068, -3.62168, 379.14, 373.372, 1373.67, 1082.74, 83.0411, 12.5, 133.863, 195.145, 23.0121, 6.82277, -9.81922, -3.47117, 56.0757, 31.1144, 260.057, 144.496, 207.943, 650.587, 296.833, -2.61181, 309.397, 84.0845, -43.7302, 14.4997, 120.602, 62.3774, 2.61724, 20.4225, 101.752, 37.9427, 12.9264, 7.63623, -20.0477, 25.8764, 65.8894, 314.29, 7.61551, 10.3069, 53.5564, 145.203, 68.0812, 86.306, 55.2896, 122.202, -1.52974, -65.4116, -0.873269, 628.029, 288.948, 178.474, 669.091, 180.865, 48.6863, 312.838, 7.52951, 49.6373, 15.7523, 26.4832, 19.6958, 88.0791, 1157.78, 369.865, 2.1029, 56.2654, 225.17, 370.433, 102.009, 376.608, 26.6551, 15.7319, 40.9501, 158.392, 127.145, 1200.37, 146.255, 36.6009, -2.10472, 4898.71, 45.5338, 188.234, 170.369, 404.419, 9.80528, 11.8492, 255.268, 323.192, -8.35253, 12.1275, 3268.36, 445.377, 382.372, 50.5897, 52.3964, 32.0701, 5.56768, 212.712, 106.366, 9.38988, -15.6778, 2116.01, 678.949, 264.591, 3558.35, -10.315, 182.813, 51.2728, 221.997, 214.561, 231.79, -3.55962, 98.0544, 21.0206, 52.5622, 46.7389, 144.45, 30.4269, 304.96, 14.9017, 230.878, 247.59), Y = c(64.434, 64.2369, 12.1686, 19.9849, 44.8216, 46.1087, 187.407, 65.9154, 37.8611, 13.1884, 367.433, 31.1489, 36.2151, 41.0271, 34.7923, 126.114, 129.627, 50.1246, -38.6532, 181.623, 90.1958, 37.4389, 8252.65, 23.7046, 46.6156, 30.6529, 14.6951, 16.9243, 91.4007, 25.4601, 20.7603, 30.3978, 59.0705, 24.7106, 16.143, 72.0106, 30.1115, 1.63297, 197.797, 499.756, 352.708, 1662.26, 6.94581, -38.1436, 53.7229, 2323.13, 3276.53, 3914.43, 3999.14, 4771.61, 4448.73, 81.5114, 13.4753, 55.5644, 39.1224, 489.808, 346.004, 118.373, 107.175, 76.3004, 30.3936, 143.483, 173.181, 52.6598, 27.0883, 48.0123, 209.379, 30.3679, 2.3115, 28.1439, 3.83654, 188.775, 87.3997, 136.297, 100.923, 3595.46, 7.79922, 187.656, 16.3697, 141.183, 79.4596, 112.344, 20.7649, 16.9782, 84.3264, 44.8918, 629.055, 22.3966, 99.9854, 26.0274, 2532.94, 18.3218, -23.3218, 33.7587, 11.0642, 56.9848, 14.2393, 293.748, 15.9607, -14.1471, 29.6764, 382.133, 128.27, 4.71653, -220.107, 12.1819, 79.097, 205.179, 13.0671, 3.55578, 151.32, 16.0169, 30.5214, 198.184, 76.6212, 140.886, 113.38, 178.667, 22.2304, 13.2707, 26.3927, 23.7605, 264.064, 95.6504, 19.7899, 21.6213, 56.3858, 30.2128, 48.8188, 3.19005, 18.608, -20.9676, 151.208, 35.7417, 47.3164, 333.499, 8.86286, 55.5017, 94.081, 86.7739, 54.8253, 68.9776, -18.072, 129.709, 67.4869, 3659.51, 277.895, 84.8364, 28.3289, 33.0593, -11.8278, 360.766, 57.256, 1069.6, 18.9821, 8.01176, 2442.02, 38.3782, 12.7976, 77.7258, -3.5095, 8.89093, 161.079, 9.12265, 8.02902, 220.578, 74.5015, 3.18391, 46.0466, -12.0782, 113.445, 30.5579, 149.118, 115.344, 285.885, 11.0866, 63.4076, 119.496, 21.3215, 1227.09, 51.6233, 45.6924, 35.5513, 34.4882, 299.461, 86.7734, 120.669, 5.09833, 672.499, 38.728, 52.5188, 515.891, 1046.02, 72.8346, 92.867, 12.066, 282.087, 44.848, 274.913, 130.913, 538.964, 60.7766, 25.2943, 217.75, 4273.07, 104.672, 87.2302, 60.3566, 11.6709, 83.4133, 19.6816, 239.786, 73.9264, 36.0309, 33.3687, 26.1832, 28.3214, 337.965, 127.288, -0.606596, 54.0417, 31.1683, 13.4045, 805.616, 10.0587, 20.1677, 187.757, 11.2774, 328.201, 84.7311, 2.97481, 216.429, 119.826, 15.2975, 77.9347, 92.9012, 22.1988, 349.427, 189.126, 38.4599, 40.6279, 1433.23, 48.5369, 28.5485, 160.872, 143.716, 4.11928, 21.8384, 239.402, 10.6622, 278.97, 21.3151, 294.656, -10.3959, 8.45477, 97.329, 60.5502, 278.355, 107.299, 245.074, 44.4103, 7.58657, 134.182, 252.512, 497.34, 2769.34, 86.3409, 34.5141, 1142.92, 1870.69, 2.52721, 2870.88, 79.2371, 37.1837, 169.325, 107.026, 30.3164, -42.5712, 17.7072, 63.9556, 82.9713, 105.271, 210.32, 312.184, 385.856, 132.273, 86.1813, 3268.61, 1024.69, 442.88, 159.222, 90.5501, 30.9035, 129.247, 34.7197, 196.487, 730.505, 44.1833, 2962.86, -1.73042, 34.7037, -17.6214, 16.2378, -134.863, 191.506, 3243.49, 1811.76, 489.651, 50.6778, 23.61, 114.661, 22.8506, 101.677, 10.8915, 231.014, 642.812, 94.4195, 5150.34, 59.8757, 101.893, 32.2673, 17.2878, 45.2713, 13.6043, 80.8419, 55.7107, 366.833, 55.2646, 2756.04, 99.2655, 57.991, 4.07751, 73.0566, 1760.5, 26.4565, 120.745, 29.9676, 44.3971, 30.3502, 111.041, 35.1207, 134.878, 26.4519, 2476.15, 2520.83, 50.1819, 157.964, 128.774, 44.9872, 81.1903, 197.019, 33.9799, 108.207, 116.09, 240.46, 120.025, 1987.3, 1480.16, 64.9968, 136.84, 109.756, 11.1087, 78.8428, 38.8894, 123.502, 93.0791, 27.0456, 40.8247, 180.841, 1124.35, 148.854, 0.0595516, 10.5117, 72.4034, 108.195, 41.2199, 27.2082, 33.6403, 34.726, -11.3763, 361.092, 480.253, 795.996, 373.703, 64.0276, 20.7283, 180.364, 456.108, 27.8536, 28.7937, 1.9343, -21.0062, 40.4928, -92.5084, 277.745, 94.2212, 165.025, 449.793, 202.659, 17.8172, 251.218, 83.4933, -38.6925, 23.1082, 54.3242, 65.7657, 38.7528, 74.0051, 47.5855, 52.602, 7.69903, 1.74712, -29.3427, -2.28681, 42.1297, 294.078, 18.4532, -8.80464, 60.0974, 116.354, 9.94368, 21.8901, 58.8993, 177.867, 10.6735, -52.5324, 14.8375, 978.88, 273.75, 172.095, 286.423, 146.15, 26.1367, 168.8, 23.6742, 45.756, 32.3425, 9.63194, 14.6851, 83.4002, 529.178, 346.757, 49.8069, 35.9698, 116.649, 322.733, 101.629, 397.616, 19.1037, 13.7456, 104.526, 79.0888, 246.038, 1287.93, 177.426, 57.425, -3.21138, 2319.23, 113.941, 204.927, 223.964, 441.536, 85.3879, 13.6376, 227.602, 57.5928, 130.555, 5.87376, 2155.53, 290.081, 376.909, 92.0564, 59.0583, 31.764, 16.2211, 215.908, 142.984, 16.4043, 7.04334, 1406.45, 1583.27, 131.581, 3462.2, 7.78682, 172.987, 45.3099, 220.598, 198.221, 165.068, -19.3646, 100.473, 51.6015, 20.089, 28.9834, 102.521, 35.5309, 318.736, 22.7341, 216.652, 137.959), Z = c(175.615, 78.7068, 17.378, 8.96849, 61.7044, 49.4122, 144.784, 75.0043, 60.4772, 10.0385, 790.943, 72.4567, 73.5309, 21.088, 40.2213, 210.561, 91.7803, 134.588, -40.7251, 234.953, 116.069, 62.0706, 4652.85, 45.1485, 74.5315, 29.4477, 33.8544, 35.2928, 102.621, 28.4838, 89.5884, -53.8352, 71.216, 31.3545, 23.4662, 68.812, 38.833, 16.6207, 188.116, 312.653, 309.973, 976.528, 19.5267, -29.0792, 51.8841, 5396.98, 6268.57, 8007.31, 2593.41, 2792.5, 3654.3, 58.9553, 6.23455, 57.7551, 143.242, 721.32, 547.635, 96.8654, 185.231, 96.0878, 57.448, 214.696, 204.236, 119.729, 30.2444, 85.6485, 334.249, 28.3019, 12.3808, -0.686965, 8.30199, 201.313, 154.514, 120.003, 128.271, 3949.66, -3.90832, 1.37556, 0.115654, 186.293, 120.317, 131.966, 33.6554, 4.97229, 30.5327, 38.4677, 695.874, 12.178, 130.613, 15.9664, 5821.41, 16.7248, 6.4599, 24.2949, 9.85454, 57.8458, 5.81503, 386.676, 1.52247, -33.954, 33.4058, 476.008, 126.252, 1.43033, 197.113, 30.9481, 55.8244, 162.076, 31.361, 12.9281, 225.702, 25.0649, 45.294, 320.477, 64.669, 127.117, 183.385, 217.682, 39.2494, 6.07408, 40.667, 38.1994, 441.567, 89.4277, 46.6241, 41.042, 78.1778, 55.5426, 74.4574, 7.8187, 37.2687, -41.0933, 179.983, 48.8883, 30.8553, 419.733, -3.71759, 17.7796, 124.578, 127.804, 163.667, 96.6763, -13.882, 124.082, 102.447, 4538.63, 324.173, 180.668, 30.695, 24.5073, 16.98, 477.005, 62.9815, 1144.85, 39.2256, 28.1562, 2343.16, 123.996, 11.7146, 83.3672, 3.66428, 8.77839, 116.246, 4.90859, 66.3551, 246.004, 221.677, 24.1278, 93.6095, -4.99042, 163.165, 22.1886, 95.5136, 125.46, 359.16, 29.7101, 86.7899, 163.985, 55.433, 1347.3, 102.779, 12.6033, 21.714, 57.3163, 335.173, 192.821, 263.324, 8.9268, 789.193, 49.4697, 50.0177, 240.026, 484.841, 101.277, 248.77, 7.27135, 318.83, 34.0554, 346.501, 111.967, 689.406, 55.0139, 43.8142, 233.662, 3559.32, 69.8729, 146.993, 67.9381, 9.17022, 110.155, 33.0339, 451.23, 37.8454, 53.2007, 65.4184, 23.8741, 41.1479, 439.898, 137.748, -0.908171, 78.0279, 33.4717, 8.48149, 586.873, 11.0941, 20.149, 279.665, 18.8279, 254.824, 69.7076, 21.5575, 221.416, 91.442, 13.8932, 77.73, 155.463, 26.8256, 29.1519, 245.039, 6.1962, 28.6359, 2230.02, 56.2641, 54.0002, 198.39, 127.556, 19.2836, 23.3047, 311.924, 5.13927, 169.6, 31.9776, 350.559, 59.0126, 2.91583, 141.862, 68.935, 256.027, 112.449, 282.703, 42.7275, 26.8873, 280.86, 337.124, 184.335, 4173.32, 109.806, 108.091, 562.811, 2741.53, -84.3726, 4270.95, 179.225, 18.4595, 243.641, 143.951, 48.7157, -70.68, 21.74, 104.49, 87.1547, 88.9827, 73.4805, 91.6722, 105.905, 187.846, 45.3425, 5038.63, 180.624, 379.443, 287.845, 131.404, 55.7563, 73.7012, 70.7104, 279.954, 373.029, 67.3803, 4449.96, 31.9084, 23.4199, -22.3056, 13.9423, -123.237, 342.9, 5462.8, 2935.58, 702.04, 52.6377, 22.3381, 154.689, 23.6823, 89.1286, 12.0212, 526.41, 956.31, 177.783, 4498.55, 53.5631, 130.637, 54.5388, 61.6913, -43.8786, 3.27369, 157.966, 74.2671, 313.025, 93.83, 4302.85, 141.049, 50.9147, 68.8394, 104.932, 2188.28, 117.768, 274.929, 34.8144, 27.2235, 74.775, 129.955, 28.7763, 90.857, 13.7552, 3576.69, 2815.26, 52.9943, 365.15, 137.886, 30.0445, 274.657, 274.697, 37.5881, 128.01, 44.2284, 305.179, 88.4655, 2241.64, 1805.29, 69.6289, 70.4976, 125.397, -5.50171, 143.371, 45.7598, 297.246, 77.6654, 14.813, 48.7161, 127.716, 896.443, 186.552, 1.34836, 34.5627, 63.0341, 179.091, 50.86, 20.601, 30.4051, 37.0237, 9.2402, 540.935, 490.287, 4264.45, 2419.55, 99.7098, -30.8367, 200.178, 464.518, 37.6414, 16.7089, 1.40506, -2.41517, 38.5733, 50.9868, 214.045, 154.325, 249.752, 595.099, 383.625, 21.3787, 406.865, 64.4162, -43.9011, 14.5308, 72.7384, 75.3724, 12.3926, 45.137, 113.16, 32.784, 20.6045, 6.76257, -11.4918, 16.1775, 60.4131, 441.265, 1.55004, 10.2899, 91.4198, 150.975, 27.8935, 23.1338, 108.075, 139.205, 1.73812, -66.9157, -7.14961, 699.37, 246.651, 229.445, 210.434, 179.067, 31.2431, 122.683, 4.80586, 33.7739, 17.8987, 42.1504, 26.7045, 113.626, 316.855, 322.177, -10.3397, 44.6522, 198.4, 292.841, 147.858, 409.597, 39.3989, 15.6542, 113.361, 211.954, 261.276, 738.004, 184.868, 61.379, 6.79516, 2955.87, 62.8045, 297.49, 304.946, 746.325, 7.84412, 43.0373, 186.879, 319.566, 1.83518, 14.2545, 3321.83, 545.889, 611.534, 133.235, 53.9387, 41.8259, 6.69247, 225.888, 150.876, 19.3394, 17.7364, 497.67, 345.194, 157.833, 3569.07, -15.6659, 259.549, 77.8127, 390.22, 296.982, 277.797, -26.6793, 124.435, 23.6537, 59.3599, 63.8332, 114.49, 39.6802, 291.709, 24.2746, 297.74, 287.749)), .Names = c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"), row.names = c("AFFX-MurIL2_at", "AFFX-MurIL10_at", "AFFX-MurIL4_at", "AFFX-MurFAS_at", "AFFX-BioB-5_at", "AFFX-BioB-M_at", "AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at", "AFFX-BioDn-5_at", "AFFX-BioDn-3_at", "AFFX-CreX-5_at", "AFFX-CreX-3_at", "AFFX-BioB-5_st", "AFFX-BioB-M_st", "AFFX-BioB-3_st", "AFFX-BioC-5_st", "AFFX-BioC-3_st", "AFFX-BioDn-5_st", "AFFX-BioDn-3_st", "AFFX-CreX-5_st", "AFFX-CreX-3_st", "AFFX-hum_alu_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at", "AFFX-DapX-3_at", "AFFX-LysX-5_at", "AFFX-LysX-M_at", "AFFX-LysX-3_at", "AFFX-PheX-5_at", "AFFX-PheX-M_at", "AFFX-PheX-3_at", "AFFX-ThrX-5_at", "AFFX-ThrX-M_at", "AFFX-ThrX-3_at", "AFFX-TrpnX-5_at", "AFFX-TrpnX-M_at", "AFFX-TrpnX-3_at", "AFFX-HUMISGF3A/M97935_5_at", "AFFX-HUMISGF3A/M97935_MA_at", "AFFX-HUMISGF3A/M97935_MB_at", "AFFX-HUMISGF3A/M97935_3_at", "AFFX-HUMRGE/M10098_5_at", "AFFX-HUMRGE/M10098_M_at", "AFFX-HUMRGE/M10098_3_at", "AFFX-HUMGAPDH/M33197_5_at", "AFFX-HUMGAPDH/M33197_M_at", "AFFX-HUMGAPDH/M33197_3_at", "AFFX-HSAC07/X00351_5_at", "AFFX-HSAC07/X00351_M_at", "AFFX-HSAC07/X00351_3_at", "AFFX-HUMTFRR/M11507_5_at", "AFFX-HUMTFRR/M11507_M_at", "AFFX-HUMTFRR/M11507_3_at", "AFFX-M27830_5_at", "AFFX-M27830_M_at", "AFFX-M27830_3_at", "AFFX-HSAC07/X00351_3_st", "AFFX-HUMGAPDH/M33197_5_st", "AFFX-HUMGAPDH/M33197_M_st", "AFFX-HUMGAPDH/M33197_3_st", "AFFX-HSAC07/X00351_5_st", "AFFX-HSAC07/X00351_M_st", "AFFX-YEL002c/WBP1_at", "AFFX-YEL018w/_at", "AFFX-YEL024w/RIP1_at", "AFFX-YEL021w/URA3_at", "31307_at", "31308_at", "31309_r_at", "31310_at", "31311_at", "31312_at", "31313_at", "31314_at", "31315_at", "31316_at", "31317_r_at", "31318_at", "31319_at", "31320_at", "31321_at", "31322_at", "31323_r_at", "31324_at", "31325_at", "31326_at", "31327_at", "31328_at", "31329_at", "31330_at", "31331_at", "31332_at", "31333_at", "31334_at", "31335_at", "31336_at", "31337_at", "31338_at", "31339_at", "31340_at", "31341_at", "31342_at", "31343_at", "31344_at", "31345_at", "31346_at", "31347_at", "31348_at", "31349_at", "31350_at", "31351_at", "31352_at", "31353_f_at", "31354_r_at", "31355_at", "31356_at", "31357_at", "31358_at", "31359_at", "31360_at", "31361_at", "31362_at", "31363_at", "31364_i_at", "31365_f_at", "31366_at", "31367_at", "31368_at", "31369_at", "31370_at", "31371_at", "31372_at", "31373_at", "31374_at", "31375_at", "31376_at", "31377_r_at", "31378_at", "31379_at", "31380_at", "31381_at", "31382_f_at", "31383_at", "31384_at", "31385_at", "31386_at", "31387_at", "31388_at", "31389_at", "31390_at", "31391_at", "31392_r_at", "31393_r_at", "31394_at", "31395_i_at", "31396_r_at", "31397_at", "31398_at", "31399_at", "31400_at", "31401_r_at", "31402_at", "31403_at", "31404_at", "31405_at", "31406_at", "31407_at", "31408_at", "31409_at", "31410_at", "31411_at", "31412_at", "31413_at", "31414_at", "31415_at", "31416_at", "31417_at", "31418_at", "31419_r_at", "31420_at", "31421_at", "31422_at", "31423_at", "31424_at", "31425_g_at", "31426_at", "31427_at", "31428_at", "31429_at", "31430_at", "31431_at", "31432_g_at", "31433_at", "31434_at", "31435_at", "31436_s_at", "31437_r_at", "31438_s_at", "31439_f_at", "31440_at", "31441_at", "31442_at", "31443_at", "31444_s_at", "31445_at", "31446_s_at", "31447_at", "31448_s_at", "31449_at", "31450_s_at", "31451_at", "31452_at", "31453_s_at", "31454_f_at", "31455_r_at", "31456_at", "31457_at", "31458_at", "31459_i_at", "31460_f_at", "31461_at", "31462_f_at", "31463_s_at", "31464_at", "31465_g_at", "31466_at", "31467_at", "31468_f_at", "31469_s_at", "31470_at", "31471_at", "31472_s_at", "31473_s_at", "31474_r_at", "31475_at", "31476_g_at", "31477_at", "31478_at", "31479_f_at", "31480_f_at", "31481_s_at", "31482_at", "31483_g_at", "31484_at", "31485_at", "31486_s_at", "31487_at", "31488_s_at", "31489_at", "31490_at", "31491_s_at", "31492_at", "31493_s_at", "31494_at", "31495_at", "31496_g_at", "31497_at", "31498_f_at", "31499_s_at", "31500_at", "31501_at", "31502_at", "31503_at", "31504_at", "31505_at", "31506_s_at", "31507_at", "31508_at", "31509_at", "31510_s_at", "31511_at", "31512_at", "31513_at", "31514_at", "31515_at", "31516_f_at", "31517_f_at", "31518_i_at", "31519_f_at", "31520_at", "31521_f_at", "31522_f_at", "31523_f_at", "31524_f_at", "31525_s_at", "31526_f_at", "31527_at", "31528_f_at", "31529_at", "31530_at", "31531_g_at", "31532_at", "31533_s_at", "31534_at", "31535_i_at", "31536_at", "31537_at", "31538_at", "31539_r_at", "31540_at", "31541_at", "31542_at", "31543_at", "31544_at", "31545_at", "31546_at", "31547_at", "31548_at", "31549_at", "31550_at", "31551_at", "31552_at", "31553_at", "31554_at", "31555_at", "31556_at", "31557_at", "31558_at", "31559_at", "31560_at", "31561_at", "31562_at", "31563_at", "31564_at", "31565_at", "31566_at", "31567_at", "31568_at", "31569_at", "31570_at", "31571_at", "31572_at", "31573_at", "31574_i_at", "31575_f_at", "31576_at", "31577_at", "31578_at", "31579_at", "31580_at", "31581_at", "31582_at", "31583_at", "31584_at", "31585_at", "31586_f_at", "31587_at", "31588_at", "31589_at", "31590_g_at", "31591_s_at", "31592_at", "31593_at", "31594_at", "31595_at", "31596_f_at", "31597_r_at", "31598_s_at", "31599_f_at", "31600_s_at", "31601_s_at", "31602_at", "31603_at", "31604_at", "31605_at", "31606_at", "31607_at", "31608_g_at", "31609_s_at", "31610_at", "31611_s_at", "31612_at", "31613_at", "31614_at", "31615_i_at", "31616_r_at", "31617_at", "31618_at", "31619_at", "31620_at", "31621_s_at", "31622_f_at", "31623_f_at", "31624_at", "31625_at", "31626_i_at", "31627_f_at", "31628_at", "31629_at", "31630_at", "31631_f_at", "31632_at", "31633_g_at", "31634_at", "31635_g_at", "31636_s_at", "31637_s_at", "31638_at", "31639_f_at", "31640_r_at", "31641_s_at", "31642_at", "31643_at", "31644_at", "31645_at", "31646_at", "31647_at", "31648_at", "31649_at", "31650_g_at", "31651_at", "31652_at", "31653_at", "31654_at", "31655_at", "31656_at", "31657_at", "31658_at", "31659_at", "31660_at", "31661_at", "31662_at", "31663_at", "31664_at", "31665_s_at", "31666_f_at", "31667_r_at", "31668_f_at", "31669_s_at", "31670_s_at", "31671_at", "31672_g_at", "31673_s_at", "31674_s_at", "31675_s_at", "31676_at", "31677_at", "31678_at", "31679_at", "31680_at", "31681_at", "31682_s_at", "31683_at", "31684_at", "31685_at", "31686_at", "31687_f_at", "31688_at", "31689_at", "31690_at", "31691_g_at", "31692_at", "31693_f_at", "31694_at", "31695_g_at", "31696_at", "31697_s_at", "31698_at", "31699_at", "31700_at", "31701_r_at", "31702_at", "31703_at", "31704_at", "31705_at", "31706_at", "31707_at", "31708_at", "31709_at", "31710_at", "31711_at", "31712_at", "31713_s_at", "31714_at", "31715_at", "31716_at", "31717_at", "31718_at", "31719_at", "31720_s_at", "31721_at", "31722_at", "31723_at", "31724_at", "31725_s_at", "31726_at", "31727_at", "31728_at", "31729_at", "31730_at", "31731_at", "31732_at", "31733_at", "31734_at", "31735_at", "31736_at", "31737_at", "31738_at", "31739_at"), class = "data.frame") genefilter/docs/0000755000175400017540000000000013175713327014665 5ustar00biocbuildbiocbuildgenefilter/docs/Cluster.pdf0000644000175400017540000000056213175713327017004 0ustar00biocbuildbiocbuild%PDF-1.2 % 2 0 obj << /Length 6114 /Filter /FlateDecode >> stream HrίA. HYJ[Yt|s#1>, BKJ̠wnZ"Y:,grS._~{tv؎.7wNm@zXBSM4Wm~ ;g]ȭUx~/7H"$rzS]>FV ޼ZXJwy^mF].rC;!/V1 fzo;[Rũ[Cedy/ԉVWuoyݶy]]xcUvzW5q4Xs\XX,Fs' ,1genefilter/docs/gcluster.tex0000644000175400017540000000322313175713327017237 0ustar00biocbuildbiocbuildNotes from Cheng Li, on what he does for clustering: I basically followed the methods in the attached paper (page 2, upper-right corner). it's not the standard avarage linkage, instead, after two genes (or nodes) are merged, the resultant node has expression profile as the avereage the the two merged ones (after standardization). A description for anther project using dchip is as follows: Hierarchical clustering analysis (3) is used to group genes with same expression pattern. A genes is selected for clustering if (1) its expression values in the 20 samples has coefficient of variation (standard deviation / mean) between 0.5 to 10 (2) it is called Present by GeneChip? in more than 5 samples. Then the expression values for a gene across the 20 samples are standardized to have mean 0 and standard deviation 1 by linear transformation, and the distance between two genes is defined as 1 - r where r is the standard correlation coefficient between the 20 standardize values of two genes. Two genes with the closest distance are first merged into a super-gene and connected by branches with length representing their distance, and are deleted for future merging. The expression level of the newly formed super-gene is the average of standardized expression levels of the two genes (average-linkage) for each sample. Then the next pair of genes (super-genes) with the smallest distance are chosen to merge and the process is repeated until all genes are merged into one cluster. The dendrogram in Figure ? illustrates the final clustering tree, where genes close to each other have high similarity in their standardized expression values across the 20 samples. genefilter/docs/gfilter.tex0000644000175400017540000002166013175713327017050 0ustar00biocbuildbiocbuild\documentclass{article} \begin{document} \title{Using Genefilter} \author{Robert Gentleman \thanks{rgentlem@hsph.harvard.edu} } \date{} \maketitle \section{An extended example} Consider an experiment to explore genes that are induced by cellular contact with a ligand (we will call the ligand F). The receptors are known to transduce intracellular signals when the cell is placed in contact with F. We want to determine which genes are involved in the process. The experiment was designed to use two substrates, F and an inert substance that will be referred to as P. A large number of cells were cultured and then separated and one batch was applied to F while the other was applied to P. For both conditions cells were harvested at the times, 0, 1 hour, 3 hours and 8 hours. Those cells were processed and applied to Affymetrix U95Av2 chips. This process yielded expression level estimates for the 12,600 genes or ESTs measured by that chip. The goal of the analysis is to produce a list of genes (possibly in some rank order) that have patterns of expression that are different in the two subsets (those cells applied to F versus those cells applied to P). If there were just a few genes then we might try to select the interesting ones by using a linear model (or some other model that was more appropriate). In the subsequent discussion the form of the model is irrelevant and the linear model will be used purely for pedagogical reasons. Let $y_{ij}$ denote the expression level of a particular gene in contact with substrate $i$, ($i$ will be either F or P) at time $j$, ($j$ is one of 0,1,3,8). Suppose that in consultation with the biologists we determine that a gene is interesting if the coeffecient for time, in a linear model, is different in the two subsets. This can easily be done (for a small handful of genes) using a linear model. Let $a$ denote the substrate and $b$ denote the times. Further we assume that the expression data is presented in a matrix with 12,600 rows and 8 columns. Further assume that the columns contain the data in the order F0, F1, F3, F8, P0, P1, P3, P8. Then we can fit the model using the following R code. \begin{verbatim} a <- as.factor(c(rep("F",4), rep("P",4))) b <- c(0,1,3,8,0,1,3,8) data1 <- data.frame(a,b) f1 <- y~a/b-1 f2 <- y~a+b \end{verbatim} The model \verb+f1+ fits separate regressions on \verb+b+ within levels of \verb+b+. The model \verb+f2+ fits a parallel lines regression model. So comparing these two models via: \begin{verbatim} fit1 <- lm(f1, data1) fit2 <- lm(f2, data1) an1 <- anova(fit1, fit2) an1 \end{verbatim} From \verb+an1+ we can obtain the F--test statistic for comparing the two models. We would reject the hypothesis that the slopes of the two lines were the same if this $p$--value were sufficiently small (and all of our diagnostic tests confirmed that the model was appropriate). In the current setting with 12,600 genes it is not feasible to consider carrying out this process by hand and thus we need some automatic procedure for carrying it out. To do that we rely on some special functionality in R that is being used more and more to provide easy to use programs for complex problems (such as the current one). See the {\em Environments} section to get a better understanding of the use of environments in R. First we provide the code that will create an environment, associate it with both \verb+f1+ and \verb+f2+ and populate it with the variables \verb+a+ and \verb+b+. \begin{verbatim} e1 <- new.env() assign("a", a, env=e1) assign("b", b, env=e1) environment(f1) <- e1 environment(f2) <- e1 \end{verbatim} Now the two formulas share the environment \verb+e1+ and all the variable bindings in it. We have not assigned any value to \verb+y+ for our formulas though. The reason for that is that \verb+a+ and \verb+b+ are the same for each gene we want to test but \verb+y+ will change. We now consider an abstract (or algorithmic) version of what we need to do for each gene. Our ultimate goal is to produce a function that takes a single argument, \verb+x+, the expression levels for a gene and returns either \verb+TRUE+ indicating that the gene is interesting or \verb+FALSE+ indicating that the gene is uninteresting. \begin{itemize} \item For each gene we need to assign the expression levels for that gene to the variable \verb+y+ in the environment \verb+e1+. \item We fit both models \verb+f1+ and \verb+f2+. \item We compute the anova comparing these two models. \item We determine whether according to some criteria the large model is needed (and hence in this case that the slopes for the expression are different in the two substrates). If so we output \verb+TRUE+ otherwise we output \verb+FALSE+. \end{itemize} To operationalize this (and to make it easier to extend the ideas to more complex settings) we construct a closure to carry out this task. \begin{verbatim} make3fun <- function(form1, form2, p) { e1 <- environment(form1) #if( !identical(e1, environment(form2)) ) # stop("form1 and form2 must share the same environment") function(x) { assign("y", x, env=e1) fit1 <- lm(form1) fit2 <- lm(form2) an1 <- anova(fit1, fit2) if( an1$"Pr(>F)"[2] < p ) return(TRUE) else return(FALSE) } } \end{verbatim} %$ The function, \verb+make3fun+ is quite simple. It takes two formulas and a $p$--value as arguments. It checks to see that the formulas share an environment and then creates and returns a function of one argument. That function carries out all the fitting and testing for us. It is worth pointing out that the returned function is called a {\em closure} and that it makes use of some of the special properties of environments that are discussed below. Now we can create the function that we will use to call apply. We do this quite simply with: \begin{verbatim} myappfun <- make3fun(f1, f2, 0.01) myappfun function(x) { assign("y", x, env=e1) fit1 <- lm(form1) fit2 <- lm(form2) an1 <- anova(fit1, fit2) if( an1$"Pr(>F)"[2] < p ) return(TRUE) else return(FALSE) } \end{verbatim} %$ Thus, \verb+myappfun+ is indeed a function of one argument. It carries out the three steps we outlined above and will return \verb+TRUE+ if the $p$--value for comparing the model in \verb+f1+ to that in \verb+f2+ is less than $0.01$. If we assume that the data are stored in a data frame called \verb+gene.exprs+ then we can find the interesting ones using the following line of code. \begin{verbatim} interesting.ones <- apply(gene.exprs, 1, myappfun) \end{verbatim} The real advantage of this approach is that it extends simply (or trivially) to virtually any model comparison that can be represented or carried out in R. \section{Environments} In R an environment can be thought of as a table. The table contains a list of symbols that are linked to a list of values. There are only a couple of operations that you need to carry out on environments. One is to give the name of a symbol and get the associated value. The other is to set the value for a symbol to some supplied value. The following code shows some simple manipulations that you can do. \begin{verbatim} > e1 <- new.env() > ls(env=e1) character(0) > ls() [1] "a" "an1" "b" "data1" "e1" "f1" "f2" "fit1" "fit2" [10] "y" > #this ls() lists the objects in my workspace (which is itself > # an environment; it gets searched by default > assign("a", 4, env=e1) > #this assigns the value 4 to the symbol a in e1 > #it has no effect on a in my workspace > a [1] F F F F P P P P Levels: F P > get("a",env=e1) [1] 4 > #so the a in env1 is separate and protected from the a in my > # workspace \end{verbatim} In R every formula has an associated environment. This environment is used to provide bindings (or values) for the symbols in the formula. When we write \verb=y~a+x= we have in mind some values to associate with \verb+y+, \verb+a+ and \verb+x+. We can use an environment to specify these. \begin{verbatim} substrate <- c(1,1,1,1,2,2,2,2) time <- c(0,1,3,8,0,1,3,8) response <- rnorm(8) assign("a", substrate, env=e1) assign("b", time, env=e1) assign("y", response, env=e1) environment(f1) <- e1 environment(f2) <- e1 \end{verbatim} Now, both of our formulas (from section 1) share the environment \verb+e1+ and both can be used in any modeling context without specifying the data; it will be obtained automatically from the environment. \section{A weighted analysis} The Li and Wong (2000) algorithm for estimating expression levels for gene chip samples also provides an estimate of the standard error of the expression level. These estimated standard errors can potentially be used in the analysis of the data. For example, since we have observations of the form $Y_i, \hat{\sigma}_i$ we could consider taking weighted averages, within groups. The weights would be determined by the estimated standard errors. \end{document} genefilter/inst/0000755000175400017540000000000013175725026014711 5ustar00biocbuildbiocbuildgenefilter/inst/doc/0000755000175400017540000000000013175725026015456 5ustar00biocbuildbiocbuildgenefilter/inst/doc/howtogenefilter.R0000644000175400017540000000604713175725025021014 0ustar00biocbuildbiocbuild### R code from vignette source 'howtogenefilter.Rnw' ################################################### ### code chunk number 1: howtogenefilter.Rnw:41-47 ################################################### library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) ################################################### ### code chunk number 2: howtogenefilter.Rnw:70-74 ################################################### f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) ################################################### ### code chunk number 3: howtogenefilter.Rnw:85-88 ################################################### f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) ################################################### ### code chunk number 4: howtogenefilter.Rnw:100-103 ################################################### ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) ################################################### ### code chunk number 5: aggregate ################################################### knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } ################################################### ### code chunk number 6: aggregate ################################################### gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } ################################################### ### code chunk number 7: aggregate ################################################### library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) ################################################### ### code chunk number 8: aggregate ################################################### sort(sapply(aggenv(Agg), c), decreasing=TRUE) ################################################### ### code chunk number 9: howtogenefilter.Rnw:207-208 ################################################### toLatex(sessionInfo()) genefilter/inst/doc/howtogenefilter.Rnw0000644000175400017540000001473113175713327021362 0ustar00biocbuildbiocbuild% % NOTE -- ONLY EDIT howtogenefilter.Rnw!!! % howtogenefilter.tex file will get overwritten. % %\VignetteIndexEntry{Using the genefilter function to filter genes from a microarray dataset} %\VignetteDepends{Biobase, genefilter, class} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{Using the genefilter function to filter genes from a microarray dataset} \maketitle \section*{Introduction} The {\em genefilter} package can be used to filter (select) genes from a microarray dataset according to a variety of different filtering mechanisms. Here, we will consider the example dataset in the \verb+sample.ExpressionSet+ example from the {\em Biobase} package. This experiment has 26 samples, and there are 500 genes and 3 covariates. The covariates are named \verb+sex+, \verb+type+ and \verb+score+. The first two have two levels and the last one is continuous. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) @ %$ One dichotomy that can be of interest for subsequent analyses is whether the filter is \emph{specific} or \emph{non-specific}. Here, specific means that we are filtering with reference to sample metadata, for example, \texttt{type}. For example, if we want to select genes that are differentially expressed in the two groups defined by \texttt{type}, that is a specific filter. If on the other hand we want to select genes that are expressed in more than 5 samples, that is an example of a non--specific filter. First, let us see how to perform a non--specific filter. Suppose we want to select genes that have an expression measure above 200 in at least 5 samples. To do that we use the function \verb+kOverA+. There are three steps that must be performed. \begin{enumerate} \item Create function(s) implementing the filtering criteria. \item Assemble it (them) into a (combined) filtering function. \item Apply the filtering function to the expression matrix. \end{enumerate} <<>>= f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) @ Here \verb+f1+ is a function that implies our ``expression measure above 200 in at least 5 samples'' criterion, the function \verb+ffun+ is the filtering function (which in this case consists of only one criterion), and we apply it using \verb+genefilter+. There were \Sexpr{sum(wh1)} genes that satisfied the criterion and passed the filter. As an example for a specific filter, let us select genes that are differentially expressed in the groups defined by \verb+type+. <<>>= f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) @ %$ Here, \texttt{ttest} is a function from the \texttt{genefilter} package which provides a suitable wrapper around \texttt{t.test} from package \textit{stats}. Now we see that there are \Sexpr{sum(wh2)} genes that satisfy the selection criterion. Suppose that we want to combine the two filters. We want those genes for which at least 5 have an expression measure over 200 \emph{and} which also are differentially expressed between the groups defined by \verb+type+. <<>>= ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) @ Now we see that there are only \Sexpr{sum(wh3)} genes that satisfy both conditions. %%FIXME: need to replace this with something else %Our last example is to select genes that are %differentially expressed in at least one of the three groups defined %by \verb+cov3+. %To do that we use an Anova filter. This filter uses an analysis of %variance appraoch (via the \verb+lm+) function to test the hypothesis %that at least one of the three group means is different from the other %%two. The test is applied, then the $p$--value computed. We select %those genes that have a low $p$--value. % %<<>>= %Afilter <- Anova(eset$cov3) %aff <- filterfun(Afilter) %wh4 <- genefilter(exprs(eset), aff) %sum(wh4) % %@ %%$ %We see that there are 14 genes that pass this filter and that are %candidates for further exploration. \section*{Selecting genes that appear useful for prediction} The function \texttt{knnCV} defined below performs $k$--nearest neighbour classification using leave--one--out cross--validation. At the same time it aggregates the genes that were selected. The function returns the predicted classifications as its returned value. However, there is an additional side effect. The number of times that each gene was used (provided it was at least one) are recorded and stored in the environment of the aggregator \verb+Agg+. These can subsequently be retrieved and used for other purposes. <>= knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } @ %$ <>= gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } @ Next we show how to use this function on the dataset \verb+geneData+. <>= library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) @ <>= sort(sapply(aggenv(Agg), c), decreasing=TRUE) @ %$ The environment \verb+Agg+ contains, for each gene, the number of times it was selected in the cross-validation. \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/inst/doc/howtogenefilter.pdf0000644000175400017540000034324713175725025021372 0ustar00biocbuildbiocbuild%PDF-1.5 % 5 0 obj << /Length 2038 /Filter /FlateDecode >> stream xɮ60d bDjHM"4Y3b[%?HQܼ zef8gճdset,VE4ы,)Tf)[`weGQø1.Hsd̻[_u(4Z wH@߁v5mT&W?/t2Ѫ"fpL4=B|˅45({ dF,c92^&cLİ1tdA:Qq ټTabTQL=i%H`sDMDXL"D[OtNlst"m֦G$ZelQO5efA PՑǢf,Y.\w /gFdgX ]P]5) CfSlhxH"f'yǤ6`)Ē?&8 : ( ~rdMW;%putF\:!ciE89`y^HiݨwI#';= }~곡=nd%M"p ODݡ.ZY ^[nԈJweY J LKg*ґcNlSe);QpƲ1X4g> )93H]$lbǕ 9@] S3zIs@q ÚRp쥥Daf\q 7&{-HARsBZG> stream xZo6EPY[E;wdBXJ-9bz8>\?0)rf83q_}C/JUf:K/2Ry_\.nf^Smfw,ׯuίoЎ^C{\# \hiLFf2X]"X'LYk阍6*<6ᘤQ:)-)k :SRm;Ѫ>Duˣ͉l1|.6'?DC9<\Ž(b BAdd ymE>cZEdCiWdy+g}wIT,;ti20]` f#hsđywQp'h+lu#KwDzY`[ѠLkXs@}QڄΛC0&U8(`&) {k[ezz[&3@e,P,j#g^2'fvQc7j,NKrhp^𺭋1 K_fJa/d<XHɆfʏM'h1Z_>>Wesh)ZE-˭<&\9َOvD,,ZS¸EZF~S^:̜N{H5NxߊJ%]!0# 7N G.w$$gz"D(wW&—yVK/SBR|'E<]79ԒNZ $=O7SM%\M\׌nD@Ja:M3 B 5dyc(QQV~nTPQb~®kcAR AmiCЌqyu8AG*=S W'^MIfNNKqLKpmk'm /^B<[=a(4ciѧuΣ$Yz~8C)Hqw)ftI< 8=a `$:fb0L "&V-Ô]fĸuȼ)J \<<8hgZ2cSw Zq8k\ n.8\YeϱΔ]@6c2e]w϶N C5ΏE@iFڂǐ`#{$4G$tU@2SһD;}4SBnꏨ\%)<ρ)Sa2̋J0O(]Ľ$Sw/G^g&|$lqi{W-lybEO=JN ūQ1P7Ij5ks _*+/b9_[̲ۢسќ(ž bYR$j6kl'q; Ti]*'3QϙL#8 6 P)ģXW{\婃Dʴ,' p]VD[4ʂ򛸴G^fߖLţWp pA5!gw"kZNbҨ.b[%DB>DohZ| L0yJpD7*XП[V}/AQZJ;sw^I%ވ:Q13E6uڵ<=LrLaE5peۡVnHhۧo/%; h4$>sp`yҠ/P9nͳn*igN ?+IψN3~B?h)+ٻ mj|p> stream xڭXYo6~ϯ0>(hĈDI#=[Yh -A۰'A^r8II6xG'l\01FiNHIs:OGw'!" 92F!$Og|r]-z`5(\  \a--N&Qa=fsa6zh |Tq/ZB~G3k9,7jj92_-tģ3gtɧ76CϥީN 5*V[D g$i,h{mĔe wM򘤔2{M)*C AՁls[tbgka1pb/pAMDs2vl˝鞵q. ccceX ~GU'$StOğ|leeZI4#Uty_8ǯNxչ FDw&w ]re'R/Gu83ߜg<งSnSouA.v $ΘOJ6QsG֣.ҟ0>?a=9^S-w$_Q4ɨ}CL$s\?c~(ȣM1a 7ӻo612c|,1/ݡٛ2̩ , y8'5tUYRVPDmZhGi\~:=εzP%Yw{cUk2)*=ʺNA]i܁ҁj`4ܝ$"( |P$z+X08$sA8#?.8y@_TQ}opni hgF;}2C|XN~jN[{^nULwJJ=HxlmѴ<|A$ΗfP Ò7/Fm'5ay`JLބЁE4U3CH}Q(HS# 3,&ؿsP"okY$dYfҰva|/ endstream endobj 34 0 obj << /Length 1425 /Filter /FlateDecode >> stream xWQs6 ~ϯ}"%RR`wɖI3mv^ȵ@ТkX G=OUITKݙ螺/"iǩL߻R?&?OWD'0*ɸ;ˊ 8+B(.7 s% kuށ\ H=D~q?Vw.929|dNK_G keOS_$A-ȈeN&xBR͞ 65acΈf Grł^}gdw.Kf-i?M/ xZrǦw,wa/a~g%ހzj.ػ:rM U %hߍ}V7c4aX璯J[cvSު)P:od Pg\,9$ǸHaReU2 lW7osT,WB`6kcI֜آ*԰1-%5(Pp~1(cc8gsmRK#v5 ½hjAPv"w _ 1F YX' !B21LlӢ8'nQ>=PѦ"U~/n sidr70 endstream endobj 36 0 obj << /Length 149 /Filter /FlateDecode >> stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 48 0 obj << /Length1 1636 /Length2 8946 /Length3 0 /Length 9994 /Filter /FlateDecode >> stream xڍTT6LwI7C7CwHKJw 030tw"HH4twIwHHw9s[{u}?0kr¬J078@^CΈ+ˏ̬pKlC`P?,`ǣLhT=|>aq>q^^?/ؿ apq b  `w,fy/b_6v_Y0b4@`nj6 g.l@7ŝfxC<:`w0 l 2@5,fo.0j tU]п63߿;3 B;3\Iǃ 69A^ 3A%YmsC\=y!ο{8fE< p]y/u¼Bv6l=]P'XEGd`//8'u-~! {l?~A^`bCX(>ҏ#laPgu@u}-uZRNp "BS|Uv0>_%{߱4aCt3^!^3rc(WoEJ6A.g,]!Օ9N P{jA"#1$h@~(:@Pt>u{ >]ϿMgځ u>`9D㧈ˏT[cR[i6k<waksٔnMEKtwM-7I:[-X wekh0nܹ:!7!v2yi]z*~ޮVþ-~,h9:k̓|0gN5++BW~+zL&4g#,rSU?$F}kn Vw,J /ߜJ`ᬛNN[#R4ugYݾsGW1.䱧ڙ6M{y>)O{H"GPlS==i !Fg> 4lJ'iDWHj#k~x=ٻ62KWOqλmyF,ؖ'3U(j7/u?˒&)@ E|*ާR6F۟]hшNL`}0R:;Fl̨pU&`\32qҡC*<_9C#G1N:NFQ6@Θ)`u?TǙ]pu[˔gblPG`@s{:Q ꌬ̱%{WFVE)v{o\'=Vb4Z5=sR%aS cy]Z3qE t3X߸9F o>+& GBoÛ[y3Ib\JZE-#PDBڗiN'mypUC6r%y"*ws[M:uzQML2i\l`ՉCa*f.QQA7?ps)x(q2( s(){0VF3+:%#>.mӅǽ WH(E |f_H>"y|Y{ŒQ1ys*mme3G1u4yJzMI|P̀Y tk==Vr<<1Ct1@{+]ʺ \z :$D_7#)ڔ`]T4m G |bv] G9F1AT&I\U6A-Y7Ϯ au..RtH.hoMs"{]tW?1[BA*u.ɥ`cƐS̆" 9y^Oj _m,[_d'18kV ާI1Vq"*VyXq+.81M8,qNM+W꺙!IY=dyI4nnqe'’ġ* *ō0n' 9P14MTi!ໃ,jW`|Njw9O+C+^%Bm1 |eN]g9'R6 Pصr^!B A dL.$ L,gwx5eT:&e<ky'"#)tT^TnR >r-jE9 8}@;m7B5@vS qwV@ԩ,:Ʌz!#6e™Co}4j=[8~:;U.5Na\"14e'!U[hA]mJР4e)2ݿ]I.wwa 6j/J"D*J(?L2]S(!`Z]Q;^i Y}1|cg&S_P{ΏR9SX] ~h<)k}L*ӳiU07W7Xεg~4بG'^ꩢ{QFn1ռ h 9W;S` XFsq7~ze~%ո.N%EȜW< ƛךtjҺ"W j%"ԓYmH-_(!Rf,%@;-rXs3QBVC.۽5%V) kS5^wcބ魶7WP$UjM3˅/9}7;tDDATsPi7ɡ!g&cfn$U\SzF"3@HhҸP } Q|Ԙ~7Gj]^gZүs1C|[6-/Z> 4`E&<Ÿy Ֆ? ,܉18 A_,r3xNְҡ1iʕ/l b0:t09S8u=bۋ9G2՚ Lu7Y3)&8q?M]U_jG7ii٧&&LeIxQTHؤ6Xz W6,0Qۢv5@ J_ny-{ ׈>;O"ݥ?{Π8L3qx+#O?iKd;?U*O9Ξk fmר%7%8zLٮ~_1y~gͬs.x,]SnYՉ t˝ "FnD}gHBdhO KR&ۀ6ьICN'3h¯ wcXZFApPDs訚"N*kh|R "ߜ-["޲ CIӟC偨"!" ;!N@~zX֊"odk $N%R.wۅbXD\λ&nnO?Zƒ}X 8֧ɔqdkԲ#ZM;Җ7#߱Ԫz`//L$;<9IAwfhxoIk<\&gl,0<*7/c(H%A1t(ë"ʚ4ç4,t}8iCW8:YC'5U|BvZ7Y^ s!k_N} KH[7IǜzI { AJ}#ą;'_g -/nܩ;_6KE{sJ9a]A[:&#@w{`C9%DwhXqDk%ɚDJ[ MfUm4 1LŊNRTGr *)X9AKUvj%'B@¾_K]#{Zz&e K0az=u)v֤h˜,_ā}igy9JKgӵh~> %dI0U^B&JnQYS)"<"ߧ!"F8q?l Y[TeoTLA4!(j5ز &]II@J%U8ݗ ZcK^MwD2Zas7*#=:]k <ȻAc,7Quzoԩ4j8Acm<|T [-VXC6Fm[-Hry'mxmC&:bJ5]|oڥaݞ~jW>Q-8b]Y"A8vB{FٶLH3ڪ$Mk)zgg[CeO|eFjʅ{E&wfI P1TՓEB*u: YeXɇ ok]pۈnCKJ~_[<Hɼ̱4f9-//kuU5~ v B/A1K ŞVo4%$R5x]] AĮ@s~ӗ컙7qBi(Ρ$!#{@HQ z_Ї7 rlouJnE0zc.J sQ([ƙHG~YCADx#)Ecl@Ϥn ,|O﷮S Pc5R3]6/+Eݖ]ޡ' zlJtw /ra,z!^ز+wGvote%xcEᡭ`o~`K+ؽ+bpy>$־(Y)zClEď1C9/uVmrVcfۣ}x!RE:meu)դ>4̘%|e4c-$@gyD2_ Ly~pJo* %|>LX*2B̓g#.K5(q:d akaX972‚na_-'j^~6/NtT@$.xGd_ŏ[INQ,&H$`]=[]iQY ;siƇ4 o[}yEŸNu,k"zH|QdW0九?ރ\^r >i¦ҝ ێ CJfmL+j0GXD(NoyF8W{HL 43G^gf07Xg#:tt;U{pp3J~_)C1L{S-{'I~cw59 ZV6kK 7'7eY/MdsY{}9Pm~(Y){eS2o=S M%6#Tv:ז@$ 9S7a;bg)Y!]*.Nl~jt^JSD㥉psC-Nq.bq!F:Qҳ0@ZÖ%#8L:ios1r<ԍ ?<#F Kp'A<ǰOs[,R]]?#`ʉDmhckxv,ys\zgYp09SPMNįObbdy4Ҳ7Cp1TMҙL2d8Q9y)EvZa_Uz]q׋~Jh ;ȥ. t{x@,.jkhqbУd+S^H6xt _]_RQbˆNEUC9B{@lX[YJ9"7L@Vl|4_C) oDkh Z4?d;Er$=)~~ƨ(*򓅖uJ@Y6phŗu+Nv}[4MyYs \h<} 0Ij+1" 5w1Ez[Ki0vSQ'z;V0'X^|2e>bpϓZ#I"Ra< 22Zٶ9p?Q♵8&bRjuމE^N\96eŊ_'Ṉ &"^(r_u/~%V2N?7:SM9*X})Vee7 ~Z2@4Ɍ@L\be>)P.W $ѲOsqL \~Vl6OM.Xe %hDtލ!z%=)}'ѹCΑWäo®N?L[>"8+׻>FOv|k49Uu<.8r02m~X7HDʿ']•ZRuaWQaZ(iCc}0ȳҼx*~695ĸ`AG O/kՈwOܜ3k$tY sT+xgMrk,YbRlԔE)z|f_wr]X_ ٟgS!OC""jlqCL8#o*a2{g3k yj MÑ-0ls B93sk|#vQQ6wXa_3JNhק(oND;J~O8I؄\&K9>,f\i5tٲǔїǙOG)T>*bK1rPl^5cጘY:Q,5ýp;WiBOs䬑<4>Zn uzg ^%ֲ{-;@9?wYEE8$^qJ}FD}3EkliYAn?#Nf)p<Š ϊ,y-5/8]⛝])6ZD1ڥ'W(͑mAԆ=!.Q.zdbfl0(5]sm]ltULe;_M[6-+GLݨo0׈tc !^}KG0fZ홍FQUkǫma,'/fIss G\oVK9X4^c> stream xڍwT6 *v{ D:ҫޤ"TQtHQPzs>ֽ+k%FDn6Aĕ#OA\֡cn8A%1_ 1 س4,B~#&Ebҿ_+@x"LsMpAҐ,fma»n ' wrfo,ry p8r΍%i"yd|]MbEA`mMWMDRu V,]&6)/ Ͱ>%r?> ZHϸ#vH𨤝b`W(NMMUBT%>0 u)5[N[6 '$hCv:r.`9~2'W>qoޙ|9S519{v7&DU<:Zu~ϷsFSW*u=]l4Fȑx=28Y%FBW28{RG;L{0$"uu >[MHxo~75[g[R E]'" |}>mL-Rt!{Ko i&A0&#<R sG uy0Ҁ뙈MUD ; f&MZnHl:藇xB%ϛNJ/vN6:BqYvKȜXP^YcWxvg'&QH w=T)"v/wAw("2l5J;ɆoWm~b ^ y|eJ7bd fnd퓵͵XA8'6p$t~OtLn5.d]:}w>XFx0_[/W.'HjU qhkej_ca? yг B%-rBxϩˆG5O1U==3, peȄ1rQF0LmU¦l>˞h(alԙ_Hѓ*Pg*Kf*XkEN)*( #0Xa9G5v"݈[҅{PBOW#>PV Zy"z;j|oЙI^m UPyC7QoYj^P/T=rم09Q:? Vڤ/.z7NW$_KxgQ":F;-샐){qOIX2*emsFgA42kz^U ,)9XQА<+&AZ|V,rzL"ܭW&=h0[ f eճ7e 0yJ0*V-B|}oU}eww&/_]Ml5ɕ(Q߭FȦk2F)Z\ -)}Ln+ V dRR~j 9*R?[fr\P!z{\i{`A\³<M8/+T,O]GL&՚I, &R_DTib/C5)ߠ.K7)3gh AmvdߌDP5hl hr͉YsNO h~ רiBwierS"+|AMq{*QDUm27)J۰{WXT4/$ͭ\P뵳[ls&Jra٩Y17ߑ8ĉx%h.,sy@GϪG'!Y:(~2c ܬ{~Ų%9/`vaz@u~ ZNV&m͉KATxU8 T4q_25[;MX. wZh MړuW٫3"eY%d y. vH_wXײ4>uƋlFRIFwxj ƇRҬ3f܉p\Pg4j}{t3d!kT/ߧ \=Bm- uKm'6úVAfXysɆ^}:6F`[pW _ތUTf9SBQxق|:S}[dyOGCE˸7w7|Ar^rl;wԢYN ΀P&؇ϕ:!ȵ_'Z5ԜxV *X풳80֊PTcʿ7 Pyf 4.XpR/:n"Esl %噫qo}-s +[7jsAe 1Zd |כWa~q9O:MV!Ԝ`OS]6f5`% 3@3[}wD*2v7Uo<=soju>#QH=Pbm\,Kh W}zp,y7h{fxyl>/w{D5zZ 56#&]R@^zr`k͵sdJP+jn1vHuR0y6Zgӿ*#)wOmh5)*+S\x4QkPȞ0{TZߤ7#<=^0tzAJ]*Fi\ܰ]c[9Hf=]eP2u kf&O-vDΚK}8Vd٣2 z>R<uydOo7&vxIhUSDoGs"ބV2llEgiͧsjm9LjpzβN9Ո^on{n$ƑuyR N8ޤlQdY#hf.ڴX$vKgT]F,mN߭Tct ;BbM.ZkoAK8j/c0v1zd?::Ҭ3VݣkcEw:rg#(xM%J62RJGM&'yl 3/!|$L viܬ{5o )녌$?x*P9Y{Hw#W4־V~q?O'=%uu<.)׵#չyIXϯR).ø'0эi+zyӨ O{-tc`^ Bp 1h?mӠnK޻" 6]Z:'`/:)',Ժ%(va^SzVA?.&1'- ~7[ gSxmWzi3ݠBabMvJ&/+lӵNo jrShT%_|b}0wvGySֱ !̏a4S3sS #i旴\7")9UKIHByI/0B2<Ozo);o Hxb+ %[ϻ`6FM'WNUX*XhΧ< pg1މIQ-Jp < <\[r_ƭmUxU8}< ) 8[&X>(jPzKȮi{ܺ0k0:Yt;hH_CAwQWTA3y^#ߏԄ_Y^Hm(MdVbxrS.kQ$첖u1SSKēB15NR4}& QY,pz[t˜\# x*z(дqsj缗#zW#:;ċ/RivCS!t@qqWP9Mt{TPs#z9Ϻ;E N]B^cK&ۇ .H\$%w/=Vy .3[.YsոfWޯe_)h~0NBQN5Qn$>,)qb ]mN밉 4╞|ٰh\4y¾^`>ъb`^d$ ~qt(ͳqtTdd endstream endobj 52 0 obj << /Length1 2419 /Length2 21209 /Length3 0 /Length 22602 /Filter /FlateDecode >> stream xڌp] .';fܱmMҤ4N4ll{s&3;q^DIA(ag `ffcdffPp+P::Ya 4t Avvk  yb&yF- B4v- m@PDcCk(̝y mhn怏@'+WC?1ST-ؙ:: 1 bktT@1 #ogCcc;{C[ [35(!L05ojhamh2;sC2T9;Z;;1:YXU"_4.ۚmOh j?sZؚU= PZ_ `ff:LѫzV%Ueog00{9Ύ.@?YX&#-ovh  =_yo$"sx13X9,-i -M_i[S;2vw=s)؁:ƠUob-NHo5_Һ8@tTM,\lVt¶fi;DmGוY[,z@_:i[^N[]53X98!t&@hk r95QN_'h~#.o `>L I7b0IFl&]7E@#Pt]?]7EW@?F*;I7EW@5~#POA@:3@qtv֠/odꟕ+:*7QRZd /t ? (AC37aYAY[A bAr]zPqv9To5􁳵n!;˿R,;(k{+i>L "wpsY#oT)dzveer6w1=Pnv8Zuj#+wC@@cj.3y-k߻1Pj|aZr :#pVmqezذD'gv'' #`P~qVlqpFVøwtW2:W)\6Pe5cmSORN@0~&L}GRE6( Z6+ AZze ooY$Mcnz~Дnb>A37Zqst21. 4&*gh> G|ff-nQ_9> h nAoA oF)xlԹqTʼu٠2JlFRb-ŋBviɞ݅H@ˇ+9IvNEBz?ܚlݖaک?W T ΍夘*)Qt=ΈTUĕĦ)ECq{ٍLZpIO/{IwQ_;ɟ=5bZ,E $&W|*yd`= c$#S^֕:^THϔ$ iWёjnQ(2l̘'RRuB:̷,-LGf*'ur~.Mp 1pw{Ϝ_%smߧEXTS'e,L˱jg]oѐD| 3>@曣K&KSF:),R['*3&\FY O>3u<7/5>*tYb̍T#)B%ܻ-No|<a/.款a1c}|='x&]p@+A4ZK;Ľ2 /gjK !S(EvseԌϭ.1ΆÙNk"+vtk^ٷg=(| KylM8W/ ܤycP)dR괦,,M7=䰬adwx"BjHYVE*Ni%rrNJfDM.YP>%+YQg؝(^*|k/KBjN,'mZmR%I4#w?uͲ+)Kc'zlaTݾ'(6/+Ojp;șLWm;aQg~<%aN̵| ?}rU׮gP"(m>r+bKn1tЃ.ky@(T+gˡrFYpPW]m AFBRdTڴo.' : 1"|W5zC= ֚ڬ;sh2fl.ynD˃!2 Nͨ/Özash! I4$6s7le~<\'n,y#Bda^YXG$ri9WDE?m9=dI(6\ɾ=V+Pv M[Σo]ZX ca1YXvygC{SXp. ރR;ǽek͙Eإ,^xQ=_e-\ZKkN 6ZGJBSKeS掇% !^5zNڒ,pПHѺ c* ݯ%+sz?ϡ) xwANhx,fR6f6c=nѦ2Iu<}qS]/2 C?.0:| Dzmeyu.3"+Rϙ:MxAXV,YhZ<y=(vF0FSW8$QqN)g ތb^}8ԛHg:>QDSNijj8,;Uuf!a> 7\ |J ,<=׮;M!]ߋlk;Êwə$MIkJ7 MBr`5yW$1Q51HD9JΔkܳ$s((`iyjpbhF}]ꎥL,]=(C.'&eGE^С[(ޏ"zE ;ݿ,hfqWCmZ<ňmDixWdYٷKnXRlg^S 9F>ʨtAe;9%M E[rdTՀpH rHQ)z!+f Yq1D5%"aUI֝CfhB3 /bxaUZnxvdj-0˿S3Kb(;@Ė$YRgf;]q peI Ow0] 5"BEKPaC`+I_bM}1@G ReWxFz,FJ%WnjTĨt\`HF5=̂KjdRW7=,JWa]ʹ#j+ʙi28zr4%K&y>@BNhaGq'mLQg|@ j Cvr t_Mc!<9_];aRlK\MƷVs 1ڑL7hhۖ6RL{nOtȔ$V-c2&h湘2&w?N4dö~t"Ū#q͋+ #:՘%kgb\D0t{ef Ku [$eoy9a ۠v΄KL74,\*\~:;FtD=$剋Y6!XHvFC^k_0lOD]Rnn B`Sԡj<A3XY} ($`Içan#.7y.&3 gX1r_uPxk~B/t$L g՜&dG};DHB|Hw]Gb:HR.o}/_2xɚcٮUFy,NW(e>2 * tT_[.@uݠoaׁ;)J@YBaQS-})5;v=I%s*(q{|Sc&;iXy 7U=)[7zp-fqIQ;Ml:Χ?9 p$|ݻc ղ>%4 K ͣrJ# < ?A }fi!ZĂ;cS[rّ0]*Q(F |V+xt:7Èr4$+l^ 7u@(hwCbhJ&V +{h]z:yի`Dٴf;?WA`<ͤi1Y&Cg6Q%%27̈s%Tk$VUT+ިzYbow!_3>+ku! \^4ج}wж*!>xLYi|o7=R>8:Zr@L Vdtvceg!_a(%c {xK8Έ%Kd,;>X,šFʮRXp$UP/v#ηQ3I)%njS!:!tq i"[`|-{[{z?GOjȖLݦ ,->8&yzp^+obD4ڕU >jG)h(r1"_H9ïٗEZmp^icSkFn #ZK0J> Ɩ B)LKcu]?-z6I)nЏ"kcR"k~};sHV8Й#d ̃De*"Л5n1O 8UtE'В=gB!Y 0\嬉?N2Jt(JXkMDMNԙ3MY1c(GݫTPhг)ڣtI} 3`6BzSA#BIi-m$x[Kqү,V*b$4Ycj0m/ώa&8/zrdU=P4fES02F0L&`Bq%7Nn?5pl~DxQ܋SТ:ѩưt/ܪ $J`=*&-wGW~ qh6H[2Gv_L/>&W*PGͷ3,,zOەLğ?TBK b{9leDWPC_J1W]1sKE.cCA8-M9=DWrb?bTVV,Ҡ$)rȵK7$q{VH%vۮin`pH"m㲶/a&ܧG '2ztҿr2|cb8f~^PVNo$B*X* oY+siČq!B<ܷcE 6[R3 Fٯ=—y^daU'BpoV~NI 3ma+!gjP˿W}m$+c0fzWOA OQ4qik}pf| һΒuzShiV?RC';NT8'Fff.\l }(]54Y^tϠJ[ӜDDLWO-LwEOs\=(|@02 4ζjm>%~"RPK\<|' ;l?QHerp>]nwZؘ֤XM-$[V>Kkb,uՖ(͏LotPw|&桓 ~PQ[<޲[NUL2Ѽ?nkJ_ :l|3܇?9\M]4?ƣ"Sȸ~+Vd:N*>Bpg H' )YIX܂wzRn@RɈM] C xA/#x-gEWe(a$HY5!t]fκϼeduy `=@>{v)8Umi$.-}/ƾ8_8CIx7fsLSW,\S0$ښr2Myo^^ho((.MtWABI]<HN3kRmD4=S-) )Lb9ƚc^* X-uf6Ehjzctt鴗_6> EݩlԖ^-͞o谱I >YaOߊ!z CsɥJ#D"|%ʶ(4,8R8xUu;m'eQyWJ1.s.|̢ i a~k⦊Qynd)yQ#" *A _$Ta#bVmJjIY9.H5Ƈu3nr'lrn1B0ckŔwE]%KT'3 ?F `C?Th>WfμbZ~v:hjAZoyێ$7yGgt<~{ks6ntc<_i%2>1 +Sw K&~^0ݵt@+@B{7zʆ %n{r7v]`gB#^MPokR"]Uko0QxgWx=P]ӚNZ&d5%[Ioka툑ٌyC{A=UKY1@[Q.W*o/(1] Fno~q{T]9C0k&e^UzHy}Un&N D0[/R8a˒Gsd[Y? R_9Pt.C^ #w,g DmiZߪA,^Kۉys7E9 (dvNmgg5lد:yBK㭻, 8"S9sm^WYW}OyHظL yܒw%iM* UⲺښniZzwLMg eg!LW܍l5An~rdmd5*.]$u 陗fFVzi~<|c OjRB|Dغ쓍ܿH?<iUE0w]}'oV. )BqW}{S8†W#5;g^LSmO)EnNO._j'#g.L[=3шlUd$)n(Y7oͤԒ$[Wd"#`,Ƒþn~C^AA"{fFGv{=`ۤVRb,B !5E#G&A'n? f~/yuT54Mct[mD58._Q{~ImNt cPWa-BN_[A=e9z^Jߘ<瀵l<݉^tz0%!>r8Rse6g3`5.*/<Ԧx+73!GІpob6@!PKv`VבcI.iyݻ% U `}jޖR%՚ޔ5h;D;!|6z(u%ۊٜF QĞg=.P\ f=OPzѥޣeNd72[/03fCKlm-l\2FX;aBæDU‰@,ϊDׂfP˅zfD Dm+o-D.А:F=wǑ.1U,ZLԫI-dXM#ҟ_ 1EǰI\Ȕ_F`8E#vϭ-hqn$Ԥ~`T_D+W{A>]-!=Ɲvko0Mzi2n]p̩ .dNoQ:sՕfY;Tֹů y C$y(jsenBQp4lbue L߼ 1at]P)Ma\R9$TW?SMT۴WtI HwƇ l_]1}&.wf4^h碾-AmE^,іǎ%Z[B'!( -BF&Tc|v QQmNIUڣz [ϚH'Tus|lS"zCĂr-r7wJ`/g,yUV].Ie_YX9}S VYrޖO1F"D2.ktn{?SL6UųN#'--hcT5UN<0}Rfͮo:я|8uO]5:WC c(a}z 3 uaرFu_ eSi-sKfQuR> #"NC'ョ/-%pn3~ >GeRtCwK}g2u 1*3Vc1a^IƻB'"-E1[bցZ,Qx9P%54e|]H3x^'zyb(q* ?' `AvsS#8͏R`mY'󠘤JQr|$bv+*;\ᲶСuoHQg@%^xs^KS~[)ޫySF80V򧻔 n^Yr=}ZѼ>w!~ڧPc_B. V&W ! Iƪs~E((j>_xtKpLσ$ 7P* P \od›&/%hMHr1d-i:~U!8{䠚KrȚ6pZ҈4w%lwC]C=JVw#5rm*\FHN)UH%b}J,%Φ ƙ6FwNb'vҷ*Q0%WуOyf]0*4'XԤ?`w{De|<' B|< SE)7g[l;4~_y*8%FB c}E*P4niJ(QWz9s+'R]yraSd_wc"R&eH  D|]W[ t19y.Y6w0t S+;hhEk<0 Egs0<3g*"UWjP4- ɚBZ̈ Gλ{?1 =4R{n7 kS#VK#w/[.#l\Q̗ULL KQ#:?4EZ(ׁA |h`Q2 WT HDwhn9MPTtꄑW: B}:䊪S*6Šb45LI?&@BE뷕YU\[;M,cd91r[.5GW *w>r,]n7$֢Î7Nj~ب)AlҸ#Y[e4[.[뛄' ob0_D-V!>:_N&r`+O?Hc"8V[^<Eؐ g0߫b#tRf[Y"==Y,A0&IV? =)U> epn—fL Uy sM!k'b^ɬviDQI@.J\[Ũkw8XLLYB{dFͯ9>ijtx\fQ; NrYUBTEvgrD>/>]F ȯx 1ZD:fp0#W7&|$WQhY?Ț oܤf^.iֲ2 so`]YquEM˙2+'C"춘z.8IzlVZ@@566K#Rj)⻾8[1[x<].Uj(ݜ&v#X/P[qZ',.-?养e'[6<ɳtKC!~-;~*ۚFa=cD^ɮ]%WDFT\ZK]p4I P=]>uܱrl&Z Z=oȕUʁ˚޻<΅Vp~L_~FŖ+j9H3#tA˳!FR dJ7 D= f{ hG#vt(AI@4KVlv+w9{BXrm:uWMql}h:H&Wܕv -u?Sh@']ua_.6 ъOnā4& vsn6ri4*;=,Tz f1 sF}=5j}}B;65͉aèúf-Wqa&-):s 6GnϪtcXɡg#AW3Ƅ7su%Z[5?Xv,]ɎLnin,t+ERgNOSwx$v7c#9vmg뽉j<_zTBua{ױl}|YGbmH<<`6[${瓞btI5DZ#7Pj@~|/kڗ3fTp ajh oxo:ڇxh&~:`p>a{'™eQrG}KhF4Dy`8]Id ZCɘ 0.- B Xq4k*x&6Rǝ$l) Gv|c_<0ζ ŷLN+t`}=KA?+RC74ED {4~mRtM•/nxg!wsgf@sB\,Ы1U&O"ŕ،|$s m˝6^^ ;*p~p3vհW[NT ap^V;W(̰Qz}k_>z쉀yvGq3rdGDzKv8(t#pJͿèeIȸnAvlEGֻGγDJD-ZJB<(N0yX +J#3}`amN$ɶb+8k5 .K |c@ERf-P@Hwy/ 4wsrt.[O;Y2 @;caIXLL-ѹYc7(HckOOM/@* ߬Q*؂5\PP:e=ZY]rzu&?|riLfs\&r?#t`k|//PkyD>{åKT/]^bхQ^R*?sN$82/+GؠJ,F9LY>3G^5sBlu{"Q h½5 K;ʫKm}gλF >P"c\Ԥhj*;^EDFb^Q O͐ _64S m*hUt۪%Qdʓ٠@Qc]p3_^kP4!>x4{Qc N ZFP{˟KHi9cf֊&hëH?{+M8ocl4Ko0EZcގu-ЬT֠г8wf1ӋdgRFGkׅ:}Qi ^m*JkwXiaNWSc)hU.dyFYoyvAj K"l47CZmKFNٷN={؈Q Jv_KcKiPT襆M} J5'EJ> gW̬~=r:ط43\)lqP S40+V-rS_>do!-a,cٳK3?P7LF(]ͫqᒾr"|?Ai q|; /~5`|Lk{zLd_:Mk!$߸}kWd2bKQRw?V+6J?7l.&y&ZIZ{iyd< ꀺ!AsY{~Ȥ $c|ʍPy')BO@@2jܖ?0S3 dɶ3{TV)X{p"SU)SF=gKP钀eHXvdzYyؿqZ|ُ9Sd:4]>w'v7U&;d ut;EA Mn3 5 9o76H f/"K *ϑ~_`UH)[U'?Ox?<:L']O5@|HS[pm}8ZV\yT Nu8e+cM\=Y|=AFcZ[2R˧h ⻦fF}:F#Ȇ˕W01e3"u6dma΀W# A Dk2갞md&"g֨JYK l .k[װ˒hկȓPҍ_͠l,CI:-Cfe d+1RYNy<_=% ~RWWcצ(Y iAPu=%fHCs7!j 7z0ϰ,L1K9ۂ99b3ک7-{6P*>Ox &P `2T){Njf5f2 0nrq uiC)hv-dc.9٢'PJv' vXJT#k|\3:@ְ,Ȕ 99. nt@ тE?ǝf.b L ;>=VNG '_;z^cN{]1";Ds/H:5A^:$Kq3f`ڞE t~  *7l*pH35XiX \˄r!ǭ #=jv;Z=ӇBɒ (F%~^!HF=7Iʽ _I`3_"7|`cSAb! xbOQ3fٖb^gTj#8C VX mcEH;sJ,kǬ7c5o/,tJpouuŸN*@Ch-ؠOI p !|HKi _J5| `醠ʌ  Χ$U-@ U#^,"( UnTm';8 C $_wħx`̶BeLm< g{*UN^+^ND) YN,GBM#!]SYX\ VtAN ) [ϝ'2|C~ji6*7+-1U2ُ W_{vxcFq 9'˧QYq7KB]5Y nTu93ޱ W՛y82;L*cR|l!~BK٤mFSAy.Mju:2z+c,.c÷)g2H, i(.p?p0.;gɒNFj,'99Y*0q^nط BTLۧ*?JPdJ8ӈIdՋZ̋Zo],ێtPyC{4jbjh-?bH+g,cw˾# SMzK5Pd|4a*lnkDX!1 p(_қR- >dWmKH4)0 LTm%w"shj%#Sq}vcbu'K̗f%Rc#2; ;';c mJ̓)Egg}RCvfoqRG?rj+eAӚ8J|;2l41EQ/\#?J f oO;ј_dqHIrd1LGPqdq 4Pep+ ]A6^p.;hH<09@c{#5קQP=sC2?j. )VFoކH5`Z!c)uֺBQNZ@l첤$;.1܎V'ޭ FdR[V:Mp&t);ƭDsX D}oE7;Lő2:SNۛ "=Z.vPHY Ph7(_k(3tB ͸iݡ<2` zul^,+.d.>r(89ꚗq~hk]_055I㋉g \2B$sە"M06/7Ҩtcbhƽ.݄A5r=S]ژP~eo濗oٱ QIޅ,{8 z*g=V#$?(ZLS<7H x\NS endstream endobj 54 0 obj << /Length1 1553 /Length2 7662 /Length3 0 /Length 8694 /Filter /FlateDecode >> stream xڍTm7NHwH.J)- ,tJIw"HK *]"|>}>g{f~3\&ʎp{TED@(Ji AA8H&_U$@( NxB"bIY)Y  G@^G@{q>H s><)ew0@(;D`wQ> #B!d@Bpr=H/#W};OeBDS By`<L2h#{G70r}? !ҦG!n-؝:< ϼ43FՒ/+&bMsgdG&>>*fI' 'Vg,cG-[V ,T\~*:~Kьtc+"m }3΁-,-a\'KZey{tR-ɐkT1FEA6m%_ mZ=W",dy2ӃA#ieYZ:WsCv>@iONFyAircl8Cn״3=cxs8pצD(/TlBNM7Hݝ*`i襹-ʇ](4گ7\1.t+ǣvzWmKzQeη[$r| Q7֊qk> XEBLkeu}:]fߋz-H},1>Et$8pW^dc ^z]G|O;9{szyͧk0v?M!g$E7bQ~)O);"w nx||7qYӻ~uqv\/b-KT4BM:~IAyE6}C}ZEIzd%lIwNԇEL.q>iތF}2+sR n\lsmTvi&I@>vMخ7U'eK@b_࡫IdK6?0wܐ ~ځ]WpG"(9-'?)V?Tk#n-(~ZɏW."Һ&,O<8cZD^qi5 :1;]p9y4uJZ7Z±A+q97ொgqzۋB4MR.^y*\*L7]u~#W@JߕwH:Nt/kkmrtJK$5R㻂DV6e/Uh?'`3^<*\ J#^,%uYx>A~ơq} #* Rڧ!C?A4їe$יJRJXyۅbOp#*'i^cuOF)5g(Xd3Bm_%4M$q#搫 0.ka yҾ 6U-h+G2JKOJmW cb)42Ke"N]VHVS[E1YRF#]o5mBzSd~ W䲕 *E>ou2֪% 9H'|A~:^ c ;r2]O#:dzA)1][۟ mK<ؘ)5:ߊݶ:h֩vp:7N\IؾJ+7c ڐ.:ʃY eT2^S>|L*YG;%SL cta/KGcbԜFBuBz~5Gj^d{ [Tx8铖~OvA$r魕qJhq=[DQug;hሁiM 6&v&>K6վf^??%5. 9shY0+r,byڐ3 P3 ]8KHxQ}Ǐ<|g8Gbe CAӤȝjԍd;Pg)pyKt{ G >uBDZ3S[^2mLyϧor TsP4o_0a$Q42rPk}_ ̉ Ͻ%MKXM:uw_=,yP}CyU7:(:|2"9@T@ [ 9 _NH(1AU$63˰%n8j `ůͰ. ڳb;Uފ݈ޕ뱔ޟ+<:.">Gd_#I@ʤҁ ܫErߖcߍW{\Cvj0LXDW8:ƽëf==v @e=)+]۠#MmrfiWT/0OvfQ>Hd[aEuϑ'\tkțQ Am2گo<xkwZ#;0HoO|||vZT(ٚǶ BZAnrH^v-QKkG5V3$}Mˡ)-uo{V~ĕlQ=34ˋcL$ F K0}F6ǰ{,tW;KfaC4]/t/) fFS3;_du$2 | mJ+i^ݔZt"O)~gguZMk1岠3g_|xMZAW(e@B!2'Q$]$L:o޺V]v4_{GgvGĐi39Xr70ѽ7u/57-ޜ'GV1q,Q3T2\dR+aM]h#o18 )ƞ2K ;qR_jW7[!t UR HC"b ?ݒA&aPyIIp0;(?73˺4 X,'od_4>E\L"6XLX517--{t^[I٢*s뒞mMg3wP?སk8?Ͷ*zY я &ԩoy觚=d^'s15:fbLT77Mƒk#%^uy#nsݯQq𭝉Wo Mz/TMr~S4ٸT=|IXYn;7CC0%.[ P~#rsrz\,~/dLQB0nopPbр;XKٰ%a7V""3/z~cD'SzB.whNkn(wv=BVQꨴO(sKܯ%_zRkV_m2p9p&BZ6NnET 3W^)E=o[{~hAõU΋wlpMv"zDMì*y^7vmTwmC&b[F6-EƆlDJMKg@Mo 6N p?1]8|W䛢\x($f6c}U>t(`|PUL3혉Wi#To+gCI=&AXjrz΁ֵx5t3cTwJSsL8plqJfFSIj/~I=[/Z[3a&Tii }2ԧVCrzpz˜\/MeDv SʐկlL&[;e=f9|U+&+xVcB:f>yialD^I,nGD22h񔟯j-ndAɌ&Ks\7Q .0ۺ۷}':QF9*LFGګ:WN Lyp#aO哯67*`bh,r,ʯ$qy)+}P5&-66{[ O$x\N)DW*NwlDŽ,viѩIcIeϏq//p RO`".r"8o9}A |w'!&/ڼd[RtqJAsÄBL蕸;bMt[,*Eӂzڡ amSDjq$ mU~! W#wKֱiVG,pXU䚌PWLkyU1VKT qن6Uisjo8R(.m[&yurӘ~T˜qj7~h#Ě_Bu3p' ,>w`7 'O:YEp@hDW K0vC;@r՞0TX7OG ϨY,MI>yᖣbF*tsAt[t+=MoX )2˅OKbsYZIYq$J-wm"1daҀ3D3+"8"D$ovB[Zl^#d<b6Xgޝy{ַ>C?oMy9Uh`AVc};x+DV~.r:t|T<|-4^HUZ M*$Sp=j;l׶< 3LMu۬|&Gƭ،z`H`Pkm#65㈇n_PʒROij¦} SN3J}9QZv9*AzA*ծgYnmm7Gn5ewÜz:Ҽd{iHɱ4;U/#&nOF0+H&ahC0k^S!Pv.A響8^b'Z["~iQ,a-*;R6z]ՎU i벏ը>"I2L}g˻|Χ٣+hQ:.7t0~>_D>p5!.̿"[FiNyaM7?!Ԋ.tJ\F_=_]$e1sJ/-!`$ϫL杓o}l kp+XXu/Cpr#ꇡ(,'Cƍ}_Er:/kL/$vR n珠mXR}5ڄ%+J}c@}SqTRsBr +B?4'=\/+ >ާ_ ~C]Ӆ뾸<}]p0ss[dr z5Kl ?8^T,@vr:Qly]pK!8Q.aeى ݁>^vT(ـŬ24JDMFNxTgi}32rGe2]N?|FŞjŊ?PKH01[^^6NHdcdU]qɖ-XZU9vbc9KGJȻ!VN ,IpPr=q,%γIp (?Pv;|`^CG<pE Ҕ\'k97VYI";7SGN$[_c}#0 dHpP7+Q8=;.J n{ u;:M`5r0+3T{߂a(M]4zLXcAd5M;_$D5/Rbhc +[[?4f-R'ű= ̄}ohe-5[?o' endstream endobj 56 0 obj << /Length1 1630 /Length2 9316 /Length3 0 /Length 10366 /Filter /FlateDecode >> stream xڍTk6 ҝ1J )tw4 LЍtHt4Hwwt7Ykv{{=DUMnÜ89J|nv.LMA0p:=$M03 |!'!A i(0#&lepLN>1(ln (:Y'Bps0_!^Y;9 PGv03+d P9\@_M*cdhZk-\M@l9>x8,@r;/cſ Xp{ v657CLa` TٝܜX0_G)bj`;sSs4w99;!J e) 1' v?0Ͽ%fa g; l A  7skvJ_ =vˇ"@`K  So ;@V`? ˿;p^p TVRWWՉl6.^/G(࿳Uf Cl0K@Z0fo?&$ V3ԦP0o:;=_ 055J 3rNs `GiBdnYk2R;m'&as8>0 08>R f5a\/Dxr>7@vP7Fy@_H4 EZ9@ B?>$1?>r>>>Dv>Dv:C(_-6wvpxX272ǜ l,tegIbfuhvEg.p.a]Lts -Z׭qf#IpXe5ם-R=yL{g~\lKNʮM XclQZ&&ɞ:QMf <ލ詿jcX˱\p`S{tϹIiD'ǝzg[Wম~"Գ!04 ˭yfj}g?jܲFӬw{w.Q`H[8 9yݍu}gLE_,Wbž[7uhɆdo0x03f\48yg)\$m!gR!َdiKDlFj qP*+؂0([I{˹fXl2J)n6 +>zA01d8NPE@o,qȳ]̖y 0Co0J fXw˸H'g*1@ A>dF eƳb(9/?Eu fժ:͂G,:{xGcaӵv-1fH`Ggê6R{Z7עСDWN#B|ةx0ҶK p{rW'$Ģɞ m"xt ='ا}/+MPd\~iK ujީ9ﯽ.vndw|P L.ª ?YМ 8HܰD`ge8s9֨?{%ZħDADvt֍_Cξ(ziI/%MF tA[hFu45]/u.iG.%Um_@h5_|l\kQHyTvo֨}?V_=&`)R%ڂt9,y^ޢ2T+$w~V2%L~ogo檂ٲd_7J/TL06#}^Z!辝qGkIC„ri/Q#Rln6%?1q- r7/WWm>ml4'&rhf )%fA AMQj] dJ,0߇9jZ@ -_}!&$*9+<S\;$?0CYj =Pأƌo679rT0z&;z{ W.NI3e }'sA9 YUg r U,S'W=MbIb!j:,w f@*3Uɑf 7 ޭ@I'UOM͖!<~#VJ$OuhsmN0qZs3h'7vst9.j6t%R2Ctן $-f!5hJzqʹWpҥ/A6f ꣍&EO jfqm:5٠iLU1 ȗKLt,y+Fi\[+,äI]HW#h=0VaukSNrX.hʯaQn,ZPL;:J`/u<ʧtu}+(3ĕ{T3sUkKyܧW^@lɂIKŇd/tH|F5 #|P/;`ء<ߨŽ-ۨ{+s{VrjܙwI1jXCE Z0xv {/P$Jq3o>BLrBпW!y`EbL.을, `Z D#Q 1ۡi/d zqhռ`.kE@G}W!5X{iõ hƽx9˼VKBīXm',)s&)PV80gVi2tbB =90-&ESdR!_ަFiR i8sI[mQ*%&wa[3*}cDCMƎ&e!AD㧦>8n+jYKpZ>mΚu/jQeQ@{۪]%k9ypd鳓6l PRS"+o#-_VY~Մŧginaw7Z7qQ(#IɉSgp(ibӐ3MW%];?Y"b) XLKE_,ĺ?"B@WUBNDHayi=FؑC²Hv[^s+҈ 3N[WW:k /H+5xbJ3~]ȷjA>_ofԊ˻n%[+'jx7] ÉVq!2;ɉo֬F|Y!`RKY Npro+} *)60kss.. *"YuT%H]r!NdʈѢDX^k㬙n0*U}S:<5D|ɿ/v+j3sl>||JJi+?M7I*{5W|fB:&(gH#B4OLnrZ,Tp'< Gq~I#c0?!\n :Z _ =Ȝ7\Ya.,ltvm[A6̗zi=&/+BSk/M.Bv=yRX w {la*i_DH_.F2rӥ> _B-?ٽ6kHz7"؇"[AU!*Pە7Jl:^acy<Zң?k~ƹH0DȮMĉV }w˺!m`E)i' gέa0P"VpMHڙ܃DXZ]2MTxOH8:2&]|𼼠EKWK ,M <&T NV!ӈ;)Pk&9룬M|yݚfj7] `Mg/ؿv L£@nvyO>ךK Ƈ(M,ʾtKauKRW^̉$S%M j=GPA;1{tmmt{Xg:Hh"[#vJ(JYD>nݐICiD7$X{wHDd8t31?CPG?gL"?n 5۰ C 7,>[Wpneugj⾋MFW"/|8];R s7gloO7M xOvBğD Gb`ݜդo8ey$7K5˕'HY|rntܝ#t˖ӾĩQ$թ|̋Ze/!ղ$t O#eu}1Eg"Z4.1yB|cTv xPǟ4!LH9_2b] m=M3~F#c2cDXOPG. 3S2A>}{"ӴPNc̗ll2[M$pNK--hCm~u\jbk4ymC[V@w-v(%s<ӹ/S#UnDn3seؑ#gChӏ՝.[Y(yc _\~8ׅX8h9* ID1-#RzۗwURg'%9M.2P[o^{qW_2̔WiP?ܦmհc5&N!aBU <"`<—h.W:]%)~ٔ:r {pɧdWxsAQiGh7Rk&BtR!z@ YJZ ,=$eg0SfA 1 {^#%ܪW)e,6J2ƚ5+7tehO:MH X1=e'?m/8(ȸMO~ HrHzR>23g TEѰ}-o\u6#,X`Mlm HHnu>e"bG`뮐#t48TiaҼb- /)h$ #1]+20@dޤ؄"*[b?q7h5֏a`v6$_0,0*xwKS8*QuѤ!~x,٬k\~=^L=p}ۘ,-U*I sʇ,(,X-0P-m駽>*5-EptoQXc;pqWra b9Y8ߴQj@ίs2uUwޡ]' AJ=z{UԽخ TAl3 *W4.=kȽlO=8jb\_H&ι2>\x;B]͕d^C9JkQ`Ttgݖj>e%xêt#c4R-i-nݔ@z'{i]DzN!XD47x'bU/& Jy"כQ1 mƑ|$8o $"m|^#Qw uKȏ 鉟AqbT{7(ylIžF@@zdKd(Ol=%׫g@[Wfኪ#-WRew֊X@ (O`|gO !WtflJ )^ݔ9Y8HyG|n*R}KكH g IYALg:X\A">eepnD`uW1W KBfKz3Y{J#< GE7(),+U/(+yQmf! qchU_vi3 #(4,ݙ}W]޿ "IMmQLOiwqs3q2'u iLܕmi%)!q^TQ:Cet]F{ȝNvZ熣| ȱT{$#~&J!<#3hDՃ&*2% M g_WORr@K ! f$ؙS0T>DFuԳC@7͛xe:H.~Y}qݢ7:w Ggz#҉h͓BGQԧdIP _`,59}}"Ư~hDm+3LMQs(Q Ea() qƢŊb6[)sgf4,Q&k58 z?Ƨ ,"#d? ޠ_e"Uzfė8u. )12B-G>Zq'e1qD-Ia`PDL\0hGmhgW+lɎT:B~qKC&"omnt!]({E & r{\qVB0o>^v]8UL4&%m}O-p|d@$Z,Qد|Oi̚B9%m!?d`oW4C٘Q *E{t!jrL+/bٲ=*ĭ&{l>u%-rHt1m[?aKZ,SEP!k2bL3ufUVFIߖb-w9e}ψ=UB"1.ggUUDtѯޞȠnY8tɗY9. n-M\rUNz'}jφzF=۬MzE,C5`u-!iJpշ}PﰂD4J/Uv.Õ]'UmXߓm)TN{{,-i0EO?P,9|0$\cv.3Qp_UPZ;(ufZ0?>cR.< k&؏S](]'.ImKIJkQ<ۓ Eo9p:) tnwLBY/#P;/,/{{H˲.XԄhە b?* ied"P z /Z_R\ʔa bĢGTɻYaQ5x$؜1 a_AK: endstream endobj 58 0 obj << /Length1 2416 /Length2 15195 /Length3 0 /Length 16613 /Filter /FlateDecode >> stream xڍeT.;ww-݃]Cpw@!u}3?f>~ނH^N(fcHD QVRbb02322Ò)9Zh`Tf6;DMelRN&;77##뿆6}g3# =@K&lcfofbT&..ڿV@{3C}k)=%@ ?!(?::r30[9؛Q\M_@{gwY}+?ÒLV);K3Cû() Zm,-?03?޿Yohhceoffm06Ĥ]iF -l, *^ &?:ڛ::;YwAZ XY`'bf4|?GlambYnɖA ()w ~@;Дw%7[_J>Zv6o߈ q N`q0(л'| _  `PޫVAA\=A:{ {}C%_b&?L-c8jb{mhc~XY7,XZ cd}//Owko9 3S8LlMx O_?do-?YC[;YlLeS{_FlCھtsRL9o*a;'Gf.ܘK=6L_ ?]o9ͿPz mg/:u|wWw)f1t__ al ykq]&XؕߜYa#-Awze,JpYs83EGM*5eAbpE#9\,:PPQ$BqN>r_BSN]1F`%g H\ݫ (٠88%(˫;\w.'a 97)h '8H!xEo~_\8cz wx/ӎݴa(nh .Kys(`z Eƙ[$#m]&Sa]|O L%Σܳ8JN}g%(/QffH e?aH /MI 4b߿Ycè?' :n"(I i>؃ˉ};󤙢L=-*ԢC7m?㬭qS_T7)3D[~:]yEO7IP{j {.լ 0aOWF[[;_%ar9,  r%M4-#$5dNIF5ܒyez OسbU9 XgP܎<] ; (~x!q! "sL G#Po]`G UgJb |6Q.v%sjWf\µF`G:W>f#>VJj&"v+1h ca)Y: Jtv"2^pRѡm:])|K,gÂl:}aȭAKA[XdFr\zYNL(4e+"E  =COuYr JIOs?ѝw5;:N0ko4)J'>}~făivwzAXbPUZ| P>' !PʫOŲ_ Pg@LD`gYt\~YQۍlGK;^kitaHI=/Cq՘i8ڢDZԛںz%.Z@B\)y} \h,025ZHx{{B&./8YP=̩LgB귻a ˟n$>FFh. *h wV ƓA0:{ZvaHIsGNpA|54#f}\M{=idB!3(|I9&vP@Ks-_M$bއ"o&\.璸ÀSydҎddaLN_+) 3]۩V؀Z#@/*+0_k:KsXhG<;Fv^S;,'omFqs@gad8Z֩ Ab1lmX p2CяTy{pT,]` v]#e_z|>ʟ}MatȟJ 2yUʧmnF-?tI$<h"ܧOib'G|pneۀ`YUrB.y AzXK[4383%MEI~Ty:uTw)Wݖ Rk# B-N]e]kƯ!N֢DA׵nӶ=lt+n=GګQKWe PYBjW[FhIgM*&~ql ⑆zזYu* EeZn_>RPBhPFdrOpG_ћɞ0n:;.P~+}i%)YQ7| "]\ʴKD[re_tVP穆 ^9dxIbr ]>j\3JoZvDʞ2Ss&/BR$>+Eꂜg]x!r1Ө$7jt͠y;y\}FuNO X\Y5)mi`3d.|g~zԆnǮ#QR̪pL:񐳔WT~>$c_%TQ\l.ze5$/'-8iv+ kɁ2\7+} !%=:ƇLL/pTStwV_[wi$tY:kiMpG]E15Mut( Znpcv'YcĉVKvS J0d4gf-ͯi"31`,HkfIAP.8 .3 *K,X A)u,nYkhw=)H2͍^ɷp"تl~mGTt?:4eN,Px?th9ⷄ~^.;>]ŋ2nFްQ4҃jO%Qx$<A,jgI m7S=0VwKZ5'1(V&ACS8Ȱ| L # oCio졿NoqRG@Q}c*E %q=@ 3(ZMit|?}еi9L6׻ RnO!w@ء*;tt95C` J+ AiA˺ïT+nt w8b cMs/@y4'%~ /^q+/SdnX~~.Q (-iҭ3#ܯ?uS{\;$8| }b1o]R!8ڝvkG}KJn|8%ax { *&2gAKlɃRli9W"-X/SrHxa'T ڣu/m!c tWT>61~bvZ1w2T<qd tB%MY|e> h\j/fKGڪ$5So.A>0}ne)^rr`Wqt6l0I*7eEI=Ѩx47yHc\m)Raf Z0nH( N y^^>@HؒBeC(ב- fa_X) ^*?$6BNp"`PnnțlZV&8X7:AXXx;6M5 aך& #o贘f\R6Xa!bW鞱56r.dh7-j+.`y.$vZKnVUo 9'=* Bh|lԟE8I9@rPEc>ˡ9tƝn.xh]M i8gq"^܃9|tJ-݈+#iQ:fqCl;,SIFɪƥZ@A쑬^UQc/Љ,Moʉ*@,M@q5EpBkR8®HzJob8 f  ˀDq u`˚"s4$  &0,wijZ+mȹrm J)xlă!Xky dy0z2EڇC-q#_J}xT 4qwӑ} ooB7iC(VҖߔrrNe9MZOTVȧ˪J=~iݼ#,61$vAg4N~ kf3 ORGQܦUM~]u)F}{Sd*}6+g,~O/ͺTSMj v2,F6]DŽ$oh.%&DCvu6>&#g>Kc5"'8EUSWfjP,[S:כA(ܲ9tw~ #zoC85&6meK'[lKQsI1u̥(Q` 9P$9)~}!zJBZV}6` `8XoÒ# EqVu4SJg Z$>O, \YT$ZVogOhJE07_W8tC|Dz޿]+f\*lTtbBu:q4xrR#cao ҂wUIܮ1XLC$?*t&>C gnӽ/!z6Gcct.y7p  vAR:mbP]pE+00KDg8}!}bx+϶V ʿ.C#cXOVxH@wmj'N:0x3(;հLJ*Iꕒ;yUiK~uh@:yddJXaxG {u%κ'|AaGhja鶡d2jcH4Խ. B'K::eMr]iմSj07/bPkhLq`Q9ω=8WsDd䜻[9YT:Z_vLCj' c IBKo]IףjXwƹhr姙ӐTʓG(c!;X #ΌO`)3a蚿wf}Yu Þ4o{UF 1ATMs[GZƈ%(IðJ:(52F'*>u"s5ȘMɥ_/kW(فli\1t(L>W> ک8}5oG7mAv ǀTcm')1"+eH5651#)FU.cݯY<]{'WflES_b"I~ 9EYKU3+EPo>d$dy֯iri?&љQw:ȫe}YO+jߒ]+1А@gO[]?GC-RD8j %< &ϧ[ν(%:cQdjEizs]5rK/2)*)tzR3-"V.Ge,k+Ӓ6֫wx\eEc&'yQf&Fɂ(#qn3궔H0~bUM!{3SdH9sB ;P=O3P?1M  p㕾V*UDž!dT!ZVv.kI\ "f^ +uJSn*egO[1%zXzhd%3q#a@X֊qB 2hM߰1=Q'"_cO}އC}Y#+ )c9hpMȇ<Dra}6ODZG{i62)I 6<lj8|_5&s0Tii:n=BÜJ⏿O)Z-;lATYvRnɴrwwoS<ۚ4-3ɏPWo1-#Bji< A0(Sa6~jL&YCamxcqn$}3ap_ cACOqD $)\CX7h#0ªEB;pA H򀢳_u` 9rqS˳r~F_=]ֿ^܋Tb&49 =CkLR7[*K9lYy!?*9}"E]}Νbrƥ݃'682UN|%3˗P,|{$E^q(拎pv~9Q& 2Ʒ," ̝h=2]+/z:ѷk#~K([FqU`ѥNFAC/IvCE/=]6c+t$rlUAAn{TIx׾|ry!kK[;'^QwvQNt . G.sT^3lLcH9i(tYћjebC+]u"?~\˰]+tnqdeHG|% kGn~'ݶ@t&7U3w"i6^lǙg1"ko3{2^%JW>f1~n8yu/Hi:L{{dٹpg'X'~VHZSO0L5m<ž6q\#9G gkD S >H8ӤY~xΧ3ʯxNOdlklMDd܎&^s3`ذPTh|h0S OvIS0;o͢G"hbK P"Av}w(b0XJ'*>غO>hՃ3C`J62RbwB=Q7"?H05(p;|l~4} ޱ%rCg?4C :Y M]> suJѿ}"* _\q,VX'&XkG#!4CD#ؔ^>Эw˺lvι\BPDWzAn *Ox+?,Jn6|Qj>})Z35Vq3ܑz+ p}h\/[{fsr!#ߤ&%ONл= [:0rVN~X«Dg8ޜXrkLr|L"&Q\`{Mj[D#4RA 3˩XO]w{1R6GVQ@y"fm=!Ȝ% ӛ|ug.8 .IŔU[fs"Rr 9iiL RN |SDC. T1i*? uƅ؂sobAvXn~ϷMCFD'Syx!"*B02APZo1{Kf5zSkH!ZL(  Suxg=-)˱uwkg/aR +>SۖH(k ågD!#ƾ6YM++ZH`)?cZs7Zh~"\rx)vR*#/2"]#>B&R}t^MmT^7PF9Z}$`iJ~`jeo~Ǚ8^ K>ֺjrmsZ QFr<9Q`  ?׈EHH#{o>#T0*PxpD"@:nM]\1Gʱ-#Zd>u@QtѤ$凰Ҝ2`R&s -FJOjO9|zz~lIާ /Ol5"h.Cbx~nb^L,%kgMy3$1Gf0sg]Ba]t5ɫjlrVĂ0<.`Un:0s+Zw@k9xmg!`%Ro 2o"m1BGgq,fsWdn ;l\gk,[GJlNƫMq-;|Z좽O_wd1jeϘp4^ai*l7Isxv PT`?۽P';  -;aU&^CO"KBjE*7eKwtεsq\jo / 8 I&)&FcsrLYաyej7GđȘ{st}k miۯK=wgď pO)@Re5ᰚJRcx΁:='$BC>w;ĸH41#\rwud,dTC&&N*wp$nηD#r 5 &Uh䴞N Y/Z.oE^_l5+Վ,$ Ƙb em5+IN`*/1y0?*"Jk]7?MpX6<%Wtn$w]{jyPޡI=)RV"ka:3׮~#_3ˑ?LA F`H`_}" +ބ{Ĕ~9@ UJs~Qwt!p0^=8ƊgwZ^TgjYJV^{uoP7V# yҊ>R: ~I;Q%/v.L~m fgWp%~]}*R`P(#H6N%c3mV/mL~M}>wi01~ ʯɻ؞DA嘄SV.@H.ʊ?QDDQԚ쮧1Wɜ|QS$U4\PCsȨT0DsO3%JL2SѪ/r#☼,\)RsN~.N'Pɖ`X?,1eQ .ZU=-Dʤ?S1lIjyfЧI 4d%J1kWn [~G8AWD`|I$#h.˽1_6 |¨0+%? n$oս-8SS {:8ym܉=k<{Y72&dGWʾPӵ$*^ l%Vh7Yt{WMW)po]q}^qLd`A gc6Fq""LHV22=ţIMjQzlꖓ$(aݯoK in$fa g]?kR5@=`j!p>FwL1N. [X4t[5PR`9SIQu5ꧩEb5B#Њ>,Z{H\{Q湤"=^%#}0d*aR,p7snRv#Wgy} ǵƩ˛#lkH.i6nGU>g7T^\=$@/~Dg'?me%}SQGA^Z5>Uj,Klvhֆ74 T@H^LֻVXa0M\XQdS:T$q~j>;-mS WKrQ)Z jzE.9uMSD潟B;%@ҳ̋u.֒z6v-1 +x3U}PVWḡtOs uNYRR'+F]6m|Vt^x40P}tV*'f̨?>°Fɮ\<_ 8]~oDz=6 Ĝ1i4d7rC,>bWJ=>;7M8Z ~n+jd[g1"kEvg.D܌,͝Wdkz; ߻UYsP`Vxf5>kN ::?mpz\žw ]"KFOzS8,P4Wo)h3ټLP>)gA0CfaJR{Gk1DVHD@jpDڍ>/& o6E} x(l늶. =Ի8iYfdAcUXҰ Q?dПhM\k% /7fsL-?prr,+s_np+m4FҐX]3Nn~dAI.I"F6vvU#LT#q薕{Q+e"ENE=M{Jv>0{Qwa($kZma' B@vמN#Zp?qp{m9G -wpcd m^.ASȹt8vC>KiR:K_8RB#h {>PHÐؕ|]s}7|2ik Pm9; @tMMr$̴ :bfjRj(,k[)m`ּ̮iO%XUPZ7 3R12ŊhrYs-[tDQ7ؽA1&K;?X7{%^](ZC_1N|ydPP$ƥA v|y7_,rNJh n@G[,&s깋>?r]*Q.%?D_n_I͈EfKóC53dtCU1߇ 9CP2e1zӍ7k w'\t洨g lI0ԊV5DxWs Duc,"]d'rzf1AS5,܌61 Tv`d 19T`د7fw^hѤ~iSbU*BVn.!v#"\H.uBG>rdEm=Jt:I煼qtv-W^K$`?]Ew?9Cu Df=Y5ȂDž0D{8eAArN}0;& 羃 ߣH"]+唅z OXgJ 5%8oq@/ ~e#2FD 3}a10fq[s.͊b'>.>Os;l}#lY/^9}) tBto/- .[פJ;_*!w(l2?ӹQGk^PjUϷ˜n\mި\b;=&9N3Dr#fڦp?L IYfJF9%Tk3-Ia۶~" (#RCyPP\wdYlR͋B_QfB&69`&AELZdФ#]3*ٔ& 6NME\C6ܥRC[~~ sTd Aʹ)ȵ Gma:yqߖV}7bHi&{RVcS3_-R'g$kh1&yez+^)J4]#. ? jr< e'o HHSfhY"ݘ[ayʆ"z˽ڳ*edV2EH }uݧ|] endstream endobj 60 0 obj << /Length1 1617 /Length2 9977 /Length3 0 /Length 11033 /Filter /FlateDecode >> stream xڍP-3[pdp ABw'\#{꽢jVj{f吱[.NnQ 7AqmGc0{.bȹ-!6yK3QxrsxE&E^ :' vuC `fq-]{sEkK'.W fq{Uۛكn'A:@{d38z ?`[;lpY]O| W\<@ݟ<h|\] od r=+ "لpss n=z?<3]cAh^@o#4 ځ\lx,?|>++ӗPgk8ee>>7 y,AX[0@v_ \g݄[Yw#EO'??~Kg_gzB@ .K5@zU bh~Nn? EF S5~ad֎ϯdz4pw*Xm~/ y+m><g ؂~_ K$" A".߽r @^-_^> lwsi೬E~^$.s5A~sf!:GkOwG? Z-̂jZdȽ9x1OQ 7HCorce:ܬ=58q;ň-|mE`P҂ƎQg\zdk&}WI'Xl 20\XLz[lt ǩAMZvXzyǝnA2U f{ְVt2T6'NO7cUtR|ba&!_'T]Z/;VW5@zh瑒1>^Kj:=.F&3a|%tRڃ@}rGOjG 8~MIM펫i/kt6 W4ˣ,#˷"O]0N.겊aa0_T b~Ҳ3 `p&\Y+*%P`"qc@a?gHz◘OQa_cV$٤ W\iYPޑˁq($qC7*DmrUPl Z!7{|pVřXpuPݠ͋:d]5#% mTZaS]^=]V yxt6AM.cYG/g)P:ТCB4J.{Ol!0af/:@ǥMiE}qq1kDp#vv-!kEhaYOJZ~dD4ap}ighxs@ @Yd쳩͟raDtCpx.``QqL"jޭv=Hbc }\%,^G"lQu49oxv=Π.)dM4G}y6p2= SF_e#:sI["q4K'3f[)M,*\(#TS P R\_O߻Yl>Ы4`<GEBzjx̔( {{fQFs))PGt|G'58NrzkJ2*&¥`j{Ђdd{q801Dh`Wq> t w?mqNb{WۨIR=۰~eld"@0\+jRj8]& R=ckղίbL:^0zNzs'_{aGLqU;jw~)TyLk߭ct= Pv"7q9 dֆZֲcR ![I㥱}5Hc)\36(+lp7oTNB)T.\3d. Y=솈U=;䧗yUEJ[6{qbs=Bzsk?#Sbeټ{8毃ʉLq.^2jqj Q7ʹ1)UcJjNy/y{:gaک'@&mӒG w7eDw+:X ; 2b 4HbgO7`)Er;).X4!J=?G_6; ڄE(A[ŽׇNN ŵ\˟ĘҘyLQ]ќLzCDsSߥ3pLy 7F w Q5|X9)׽9).!^46L${z6^oAkGC,b/Ě>A߮ۛ5Aـacކ1)SoRĿ\QdssO%)f%@T=uըgqCGdai9dG6;^[ 7~)vkAaV%[;he%ܫ&ͮEy @ow,TUWeɯ¦z6LSq"[w*T^(bBykz*](?┄oqbծw:2ъ&Y!'\(`RWPۑo5ZH_?$$p cQ>O'D✕. _ j2C$oCEycq0 DG-"g;ʹ6]rtt\u ҕ'Lյq;}03^ƭI!''9D / ;ԵE[uvy\pyI;4J=HG_xhL6"*.4% Gz <chT/ 98 Ve#{-vh\N"-+:;v̌?'ٲ(?m.z+%鐗+# voijb0HzDAUs^A.pYt0,??}EDYPC3U_UaH9~Hv>q)Zp—dF7hԯ?qDČBg:dkhgV miV%b7DO;P_E)zxQ9 '9jQlpJ b]77ՇʪJۣN;b7(:.\;¡| ѾP vVq6h=v~蟗P|CoJ%'cCߏ,+")/#, ê*Đ񒒊IMZmhJ0pp> '<P3cf&ySw>Pl{vntܵӣ6R}n]rLTV)zPWVp,+3(F%aІ gQE8SqfӫkIHcZ^5~B8X5ҏ?. }|m"}<6qL+Hs3Fsi{@ͮRk4tân[jBG -%lӉ|k_w2 !qB׫zXcu;QT7*8ޯ݋'5SQAz49H2]n/*7]ZsHK7^L _w!1 Z-+y*(eQ5䥻ECx3҄"kn|ߙ%ҿͮVLLWY?kj ҈tY<RI3哙LJ+w!g3NRВ&V"ؕ񤺯sqHߊaGH|"-^RFC{0 20XUYdEED$ 9a'm$Fy8א=QX>r#Pw2~T.l'i/{Եi06?TDh4ײ+m2(xCoYī;~a6ocSe/61}ځoit-#5~_a]A꽐K_0̦0"Pu dlzXQYĮJRJ]2zF){ogVX}!U4v2`piwM?rLchK,5Dm| 1TmI Ev E,nǺNOGF S96=JE!jo4*"hgto}iJ4\/6(b=Hw]PjmJ.ޥ,,fEcyu/$}+(w5N\]}F:l*Vac oCM޼ra lJU)N*;k0D˪ra`(.;WZrra-g,j3 8˓Gdc0`2Uj'd= AhE_'ue=TJVV2f9UXy o}}G[4'3+܉t~Qb3Cu~* {?^<@y% \ѱx(K/v9eٖ~nE#!#]GwM!hZ( X[@$J%簊ʬI+$qb.I%+@!97h,ezJΟ&FxpԱ9PIFNQ7ksb*6Wj?'v uIO1Hy%\SyPie+U1:rr7'IDJ8ToNR>IkyQX` N) MLJe{H`. CChT$M[[Lvlc 1^4>=>-*jk8Td$y\8 r`3sS8)G^.|cApB3M}*ŗ)ߏM77P@ l")*m:փQٌw7 I63!scΒZ$c94hr5n5Y_(N)޷_ o[_Xeubt_A閆}L pKN6n .pF5cWNP[}&$i6K~&~Bp@dj^0-D"h HPPP^mL1<L| |)U|ZaKאځv(fD FuFcH|{H0: UtQ/_/y\܄%$Y7aM-X _5+|Ҫg$uhȀ_flRM]]#lxPc2na)s۹TCFQM5YzK#Jۉoc繴В1hQjT`BB\=%7U= ,7|ѻܣvJ[e;Ȣ> 0h<^G>AJ1u:dLs~1\x c! jPLl\;>-PߺvWNw䞠daٳuNeʖPǖE1e2yq2N4%!;`]JgM1J F`ۄt j?YtxNx:0㍪bVqbUJe8'aǭ/Y鈸M8&*P,!ق2lwZl"uKmtCw#{ NL/[Q; Q:?ͽa14>SPFTkBQz?{PeqF(F!H,NXaz&89EɇL5,Bw9F- ~/֠GU(kϦAi-O\n.ݞ~~V %Lx τ_^27N jSLZ ۠C'Q v|iA&;jN4Mu UVl@e|ft~ bVq٧ͲDdYRz)۞s47qxOF~}wy%H۷yh t☷ik+Gn*^ù0h2~X"3.4|RAe,a$d` #QѾAGc;ШS[M,d%{/4R>4vKHH0QͫxD8g}>ٚCl{:^QL:$Ĭ\|C$ W!-FO]'vOMU/^ NGLUnӧUuF0sթ_A:w/{+ '6v5AS홞L:ާdMYmpk\WGra\􈰵$Mat=[R쫐8etrύH㚮޹<ލU;o8Mbl.F. 3]Bxc0V ,(O-4LAQI9G$s, p N9%{ċ饋#KAmc*w/&?焠IL&e(V~_;%db%zr$`jԌ[ zr3.)98)KVhd'4|mSJ\m?沯萸xRK_u[rf-&y,mok]E8@'J-D>qTU+c>V)_OrV`MB Tǖ'ȄeĮpn/7t[@n WI$Va*DtJm^ҦpAe4\ULkGx˜^C3 >nf3#"$AQAAn3*w(X<Э*X k- S%ulb?y;vYgDrpWY<\!π!QKN=eu1rNILSMf9pC>陠b (z߉d,2@]P7/"z *H:ITxӦ^^W!қ6dBcMOfPm?`7}X6E>OJgx `GFϟni$ ֊>eۺ«3˳_:.SG5Hb2 th7c2s]r/C;xٻRI 撀$n{g(5sm5y?! jXƩ^hL.?"q@,#ݖ-@2\B Kjǯ6Xw7=y'\\|'ca#JPm%,FPꢏ2 by>p0? wLЏ|RZgH0tBBu!,^\6tzYJ|7)%)*31)hƐt4.e-`3k;@f/2iKuKb6V3kkI⚙W@;k=UJsdIį mk e j&N.Wul^V=^EȐe~OAuCvá(^5V~D|S$/PuAˑ&֐kK#ML'q֞UT(>h@F}5*#<&$xdt># ID4(on$lɁpsӮIm Lm_kq endstream endobj 62 0 obj << /Length1 2309 /Length2 16407 /Length3 0 /Length 17770 /Filter /FlateDecode >> stream xڌtk Mj$m۶'mnƶmMi̓_t[뜕\kf+Emmhh9B2 zz&ZzzFes'+0$@Gs[X9 >dN26Ig+HOC[N1@ ikt!sw075sϿr# k @ hhd`P52:Orn3'';N::WWWZkGZ[S^ j@tp* k` wi0$e3s)lM\ `(IH625027ܿ dn󷳁) urseh`hob`ne`awQGɑ fc![kk#_ ;>Nǵu2116 cg;:s{gm>D0d@' ===;#hEn[oO;[;G@osOG O"hjn'h/n-ct>&OL' $Kux0h,LlVVF70w1p+ُ.'aO׃dm? 3,F?.f(c3u[O/->cdl?62@csgp2S6Q h,oddlKמYm,zX.#ˏ1"6F-# +cYX h t{t6N.&0=)+ N/ѿ+Nb A:?@'_Ftb#NbIA|'}A  S>U>U>?O㿈#3? 1q#g_K_Gh#McS|o1R:;Gf=2s38,>d?8EtB||L?apGv8:I0|HQ1GP:~FHDqhGUNp?::V~T2~u`u䇫_s>>Wt,qY?T M̑쩥Qx8t8?!@%STel8 $"툐zC&*={+,Oc N A({{[vI;#G}ps(9_*R:K_4Ogm҉3%ʥJ;d<i4S&cz2c761&- a$gqaR6=-X & 8w[zt֞e w~P0*cX(YwO'R'gSZZ&0kM¯h27^%5}SvsnnJe"0PHl$#5Um =Z#ث*?iߘ5إ=\]qܭ %X Q,4#rGJj8K4i= =+{6FjJUtt{i^[osSn-Z8f`a~^@"(D$inl/|.d "ISVE uh/bTINDҜ|@s;blym8n_NWq͹eQ᪨К!5Ra#LR."ܶ`yGE Z1quhAؑ99J7}Tq5xZ=8;Ozn/Vo\:tUf^SӴE~TK̓[gY鮑aFy7}|~Q> gu!})NTG#CM`MYN!+f=.J|>H=yru<orȦ,5̡g"?v&.z4[_Q Z{>{ gbJ" ]=4IYCWTv~Q$ npÀN5{B_<׶DOPQd{fpʱe6@ 1}(w;i~wKb| rOe -we*]3trO0$AXRBR߻hP]E^XbsWZ_"2oX ShrՇ[в6bPMC52I`7=Gt`Pg>)([]@4Zo[D?)S O/ӎ2;x|d1ol$/,b"U.Pe8BO-YxI35NW\yac} qz~}/- %G]17C@>Uq x@4}B7  ظOPNfKoa~5~UAC*Lñl~rNZL^ї,[ߞ١6p텥:c I{ \ԣa_{b|Z]_8(ޣvSvV8m\k+&QM쪊aEkW&JHU "h[ar8u0_DC%vbSٿ/Z`l 6'!r87ѷ[R0mb'E(u<2r ހ 3'S8p ArA.qБnF?QHp$N!QbcW[x?3(+C܀`iSVc-qBD`w%#>(LJT*[]fZf'%پ(¥K%ɷ*-=p^M0qfl ihU$&:H㚶a$Fson v1n,'&> xS9;~0jl(z`]m#pQ@#vt =Ⱥ9 Ky`^ Y7x$񕯟*Aً50lQ<_jh>g;z˿&9/tKf_SE9CPtCr֫`"+Ip9u+ZaY^ [q)gѕrcuJ eaڱDfA55!-w&T䕆X&{i7C+WIi >Ta>TLâq܋*XnS+x*)+c|?=(q̀5cqKUu}]ߤ׼s$o2f=Ǫ.=96):8O4Xn&8yO(l3WAKsJJvrxxb6Y~Yϫ{(ّ WlT,%.(>=?'IdKzvU:eN]^4/ h.hPES6}iXk/4#'GXul[$볷a&BOSs\zf#X<-./5MǠiqiI6cAj!Ukٜ$P.D2iGKi,f 4ډ=Ur6d#/å_DCȸނ0;!Ydؿ 4VswlDy~ʳ)D 8Iv f u\dS}zXĺaHzq8zƩTVeDz.r?1|3L9 (5 0Kwk˫9Sa6:GS/Cj!%8F9w/v(?N%oi} y4) ?a5{IM ;O2,+ WAj~&}Y^_Q8@ršy)qѸ4'5/lHd#oXS=-c~:/'HEqNWRbouMhpTW^}Auw bm-c`:H1bEYPC)*d7rAdX@XN ziNaۥzSC#"FŎQRun|Y&U}DFUdՅ,w52$R([mˏkR<,IL8Pћ1 SAf 9s" r=KSs7wNiy9փg:$20}NbVP+v( P[1q}wo,Q> 5_S2ٶ` G;b@Ghlo0\`&5KگetmE/Ì R>CM~TЄb-.ED GgrF8%GA 妨ykaCbW)eȌBX]A@%0l9VxhXbxWJVevK5=)'$t=2~!1sRIrw}Yky^E: 2 B9C,IstX5ӘF#6AdP 5Q5)E tCy #>=SKM~u]✺Yp̍3^冓0S0v&>e}0Y:};"ă#FFs'1hr:~/. ֝[ fjv9pp }I=M|y#Tv8B!..i򡋃LîB)TOC[L} fSkhxN{<>2}PE[EU~:ʦÑZz z!?ޒXd]eHD8]`"FJ/J| 04bk&%D_4mF3{5˶υSǦ'2mIN#RFلN&!8.9Q"n_:>P9aO';Ro}oX?sT7h;ݕ16z,ͼTyqsgޯ5o`{,ބr?N\ OXwOeԘ>F~4]z QK]C|K /ФF)42!}}B_w`0 T2|Oy~c'YB2֓a%D "mCsnA.\34;,¯dҽ{(DG j.u2&.- !P!H3bZ&g褉%n(X'.ĽN'4Sw/Δa!ܙI%lzCk .iIXrNTZ_yd)XD\0~%&S4EXx'RTS54bZ+)f˲Ϫp1 5k{ni18׊sCޫұ$u]mm:*h DZ B) 68UnM6?od!Q(e>ݹBP@@1`t==G'T'p Hs$o`aK[A Qr לw{+!aL5{,*l+<ɔmհ7 Qu`#//I~8,[(lɘn8C~uC59­L4=GmB5Zup­` `Z tjMwT7}$#N>-_=b.teCE ٖϋYvh#Di#W}޼u="nwW]X\tZ2ĖnUPgjc8sFOeJ:$\eRڭaDR ܽ*'v2W?bswZ7&[gCA ~)rypثIKP؈nD>KH%XUC$Oz_w%ժT5ɈJtcaF@&ʧ Njy 栌:a1# ؆QAZ)S[BW2.Ҋ8LZZ#ھ1ᯯp_^i]ALdW_/DT<-)mBC!W Ƕ5H)#t8THfy]V ڏ,le7z1gm;4fb~B//#[Flgk}S,(s`I-"kL%9rs*9GM-.7mz^)' @wnGy Kdi.,*K;U$^^[CL#vf*-[6׫/Vr;$F;R4mg |dBE%Ia[CI7΂bU'jfF$@2_~|>F?k V)&aM}ewWyѻn&X=\J/ӟO)_{4a&!Z0jww4X[f垳i؍rDPFSU[AD572}y]m|r m.A)?$U=p"=GgF(KZvTQAC@1|+Z;nxJVJ3_I Bštw}ϊV'pTXH0l:=.S߉D^CZ`JC Z*gThcΠkͅe-B[g?!$# fy+P`:FW~fmad%441dS_$l嚲o5&t)/fqhgܤd5e~fAµMitv}A2&ƎU{h/U3,ꑁVʚ48':UUgGCZl#hƌ̢!E`eD<s`7sxUaA=nIS˴©k\$ 颒C}Y =4߱ f/)lbslӸsW;`H/kQ;&yMj{S}4hy~$W/cL{9L/teYEB!A-$`\6uMr8\َLU¯*FR-KDno#vз%(ܺ&C+_sϡ+i7 ђR&%.0Fvw#Ly`ܻML.U7PR7MxB]Dk].dz9\ݤМ.R Riо'ABoִV:]mTAdI Rl&pԋ5~9-hk'hk0[@m 0.'+ O$*'e nx,$gkixi}>{foO0I^Cߧ# Уc$"'@T%Wͳ@F3.ϫ#Z2#[uQ- s扈Ke.9yxsɦ֠bI}5{̔a(RU* g8B`=! +nl&=z(g~|L3_6 JDq:Ų8Cy=/w)ѮTE}sz-LYQ[px/zk_Lsy4\F"E!}/7YH "r7sqY9+囒`xt؎榢߀nڰ QqQ-ZZE5y+v΅B *鬍=cj؄~ )ؔάa4#bVovlSyo<؃!cG1sIw@ӽtm5FQn<:^Ϫ4PT{JSsr})vx PwI_Sll`J:]*K)QмO>?GXyXV=Am@ )Bbff`DGjC7k.w1w2$Fع,2}kzIm%䜼uHwgq;Rqfw҇g5Ll78 uQmR$քiő\4Ŭo$g"DMmSMܨ!BsqZFNW[Q^1kS@l_O%=Ѥ$6;F3ug'>?7]$h2A Ju;F1-gKSѿCalK<1,1P&}u'4>Y9v9+A;)Q PH2QA0SQvN#[KIbH{(v݃Ī-1N6DoзG\N p<ڪ\Ť~䇇FႝifMcz ݄Ce#M \O_DFG ^@dvHxtAb4ʛ3Dt5t.z ˍ4!)Fi3T%6~;*k{-}v~71f(gutnmcFJx8emӾ'vUg+*z6PNxO,-MsөP|F2Vl{|x[D lRhIL'xDpIEYzk EBSebM#*֘c^WU%9QA!id&0,R.M@6WV08g9NsV86)ob&Sb= ŷsb-{+zaqsĕPҦ hN yϮN_|?pSћ~Q.]1 agc8=ޣ P\nYG$Z y}혉Y/bMЉItK+/jT(D®O^6+SF'ݲ&;3?U`qi^4i16` h &fE 1یu[λn|ҁxn_a&d uT„p].~YX5ܠC}1F3琗oZb|L"(8ڻM>+ "eفeYEXoi@h3ʯ= ]͜~pD7ƳgzAVJQ+yc 3 tr넿^'A.(it A>w`FC R38cBcq6:`y_vy i >k{ǰ9ٿzш=7܍2quĻa Kz7y+h/rfmQ<#-LYqֱPU n텕%EZB#V,>3t>rԊCa®˗l-T ƴuvy`:`x44g[<ĊF^*9/im Ȫ`-2r˚`F+'Y b[cDflOƮgQho>K\7ւ-ﺜxT-摡 T.F 5i] :\j8whp6խИӐ_7"}in9I39)b<"6H mۚf]3|2 a{9%ISW.bcXpCM' {L;NO($SQͫyiغdnI~bR/܅*c_Cs9E+(LA|E:O='C-n ZwCSCU_AEC_Hg/s6,#:7u7XEq$G?]mREH3ibB'N8B2N; rK%Q\j67NuU)U^+S>3ـ(\"ؙ1)es;NŊKo^U|vF"f2(Q2Kpļ En 7ix@ӣYX1*=d3Ч5R3_ReI='`v;K3KU.u*MB-j/(W&qOcxn Ok‘1Yå^[h(5F¶bXjdHk4̄ϗWfJSm 1QN^׵; LZ!oOm}I{p 3oU)UI _ ʀ"UԸpW4떒夤f)9Aޣ|jDsAr'p{(_pD 7'):e\RWW `7{bKR݄C=; 8;Yߎ;FHpRL^y8u䂴O oؚsψgB:xAvFC(~( ]q#1IBS.!﵇|?*~bN`{vj#pK11i=H|+a-RZ"Ax{H&S?|5&;3eZn&!oFvB9(m*J/V4Yp݃8x5M_N -MY6wZ2K󇶤P֣XmN$)uGDIN4}NeѢ&9kt"\ qJ[i6td19巫: 9$lSɈtȌ3y.2sQ:PX eFNb derh)+ 3a^`۔ "J57ݲk1S 7YV1V֩/Rpկ?)iMA\pt:gTO9qlWDͦO[ 3Dt{Fp AC߈E>brVBxf0 V``,ZP\Nc6jף:sZ & IUWu{9_z_+PsG<{ӹ^B  \E2^+u X~Vb"WXkjV;:ҏ.@4!B(+ϥ]brD)0J"AE4uXƱ\<]+-69^+ɜ=~"P1+neTMGJ|a'gd#iPSNrX[+ n!N5r.b^zĈl%I#( ~R|l3oŶБ^EyIJpT^Yr II!1\[~ p>JaOx(4[6RS|_KܨN( ~"p#>E%x 8ryCq M<SIFq8ފS~*gi56>Ą ԺR&`|w:jPf w kLjP 5FTCXϖ ;#7L:w'%@.ZL 3%]i0׳I/"uLaVd-;KHٔM"_ĊE%{AwX= *0ZT@9BƳ3m2{6cs ̬A*N,QLIz ,g3M*ET#">/K1n){ b9#^F {LP+є;_M`+b{P{ȾUHz{^vmW3G'dAݛ97,DygLqq.rLRb9Lqȫ4 H7pٞrhPF,&!zWB62P"h 9?Y^ `)~q- ?/?X v>JBExW.xADiG!f EXYS,yY:+ p4$ct6ь{M^_Jԫ`8-Z!I| U endstream endobj 69 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20171030183916-04'00') /ModDate (D:20171030183916-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1) >> endobj 2 0 obj << /Type /ObjStm /N 54 /First 405 /Length 2578 /Filter /FlateDecode >> stream xZYs~#)]jUMMIK! Ry0Nn3p$r'&1LXEKw$L3-cRItI1eLUxTL+ ӠtGifsϼ LV9ɴ`AH F1@eR Oo;P@*q(`*̪ P-0icYXf`T11fҊ1,4VB1+`b1XZ3SĢ`\TG4 eS[iXTZ1ThUU*IP` ueDŜC$8 ; Ƨcw{ '37hcOԌ.zL%?٤_OqX_ z@#:`H="˜޼}<]P fDòY`G'mx^:]uDQ~1\&娶D?=MRfEd4 ^hh17N{7*ڃp8a*"4?KP8,!Q2S8%v-RbJ=E+{WΡ9]"?%C1V^6Me''Q\}?mB[*Z#Ρvdi#?#v$$fY+p Ecٗczw)niO24/,G(\fB@vK/ܑ2<ɜRxKbڮ&̲7zػS]aW9:>!h\9hdo1[ i9Szi!z,OXtKc(S5#5R$9Ԣ7sFtr3=97PzbIƍ%= f ȕKLI\?C#2x|B[*M =Y df5L# Q,=fftւ ?)[4,jm"6FxTr<Έ}Tv%U1tE:b7iIR%ي $S 'D.ma1d`d`?eXYJЂLS >,uKeƢ)Szv5 (9Q uԊhx__>SVoo*o}vpp.nK[4s^x,~*X wOvx#PD( Ϲw.3CG?cOk'xztћ^_$շz/b4Ո1~CoU&&M=/gy6nH0o$ ijR׼kg x[jo=}5y,YYv^f֛doA6@>|8_Y  l@UKȢ|V,+Օ%+ X؝ot]B*JHM3,x\K^Tki &ANÔgHÔ&~!R.PS,QO픽 eYod䗓ԓ2_)[tRvvL%p6]kY:]g<'F[]8tVa* Wuv^7c [wXn%bцիxmVT~M0~51[l-eSQ~"Cڥ6Afhz%{:uD[}Toͽ.ߚқߚiUmRR(ͥ8-pYVz)l.ad۶l:V_~0ns٭%­Vp˥l#YK+Е]o/>zs%\߃0yN pQ|p1ϟwpVgP>4Iݣ}]E$l-ke[oџ T zW4A<~04-Qs[~0WfJb{ZxKTPHimMRJ*Ʉ.1r{(߂ݑ;=lWNr3mrgb߀_ԣ'Q[K޺( endstream endobj 70 0 obj << /Type /XRef /Index [0 71] /Size 71 /W [1 3 1] /Root 68 0 R /Info 69 0 R /ID [<94F9CF231908F54724D084D2075F8A8A> <94F9CF231908F54724D084D2075F8A8A>] /Length 195 /Filter /FlateDecode >> stream x%;NQEDPDTQq6:z;jfDcm)qN]˺977GV^LEqL`R0 [4d` 9+;G ;Vie(Y՟YϨ}8*B Ѐ&[=Q0ZFITάܵ_ޣz)wp0GӯF_ endstream endobj startxref 115945 %%EOF genefilter/inst/doc/howtogenefinder.R0000644000175400017540000000155713175725026021000 0ustar00biocbuildbiocbuild### R code from vignette source 'howtogenefinder.Rnw' ################################################### ### code chunk number 1: howtogenefinder.Rnw:45-52 ################################################### library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) ################################################### ### code chunk number 2: howtogenefinder.Rnw:61-64 ################################################### closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 ################################################### ### code chunk number 3: howtogenefinder.Rnw:106-107 ################################################### toLatex(sessionInfo()) genefilter/inst/doc/howtogenefinder.Rnw0000644000175400017540000000742113175713327021342 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{How to find genes whose expression profile is similar to that of specified genes} %\VignetteDepends{Biobase, genefilter} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{How to find genes whose expression profile is similar to that of specified genes} \maketitle \section*{Introduction} In some cases you have certain genes of interest and you would like to find other genes that are {\em close} to the genes of interest. This can be done using the \verb+genefinder+ function. You need to specify either the index position of the genes you want (which row of the expression array the gene is in) or the name (consistent with the \verb+featureNames+ of the ExpressionSet). A vector of names can be specified and matches for all will be computed. The number of matches and the distance measure used can all be specified. The examples will be carried out using the artificial data set, \verb+sample.ExpressionSet+. Two other options for \verb+genefinder+ are \verb+scale+ and \verb+method+. The \verb+scale+ option controls the scaling of the rows (this is often desirable) while the \verb+method+ option controls the distance measure used between genes. The possible values and their meanings are listed at the end of this document. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) @ The Affymetrix identifiers (since these were originally Affymetrix data) are \verb+31539_r_at+, \verb+31572_at+, \verb+31594_at+ and \verb+31658_at+. We can find the nearest genes (by index) for any of these by simply accessing the relevant component of \verb+closeg+. <<>>= closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 @ %$ You could then take these names (from \verb+Nms1+) and the {\em annotate} package and explore them further. See the various HOWTO's in annotate to see how to further explore your data. Examples include finding and searching all PubMed abstracts associated with these data. Finding and downloading associated sequence information. The data can also be visualized using the {\em geneplotter} package (again there are a number of HOWTO documents there). \section*{Parameter Settings} The \verb+scale+ parameter can take the following values: \begin{description} \item[none] No scaling is done. \item[range] Scaling is done by $(x_i - x_{(1)})/(x_{(n)}- x_{(1)})$. \item[zscore] Scaling is done by $(x_i - \bar{x})/ s_x$. Where $s_x$ is the standard deviation. \end{description} The \verb+method+ parameter can take the following values: \begin{description} \item[euclidean] Euclidean distance is used. \item[maximum] Maximum distance between any two elements of x and y (supremum norm). \item[manhattan] Absolute distance between the two vectors (1 norm). \item[canberra] The $\sum (|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing. \item[binary] (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are {\em on} and zero elements are {\em off}. The distance is the proportion of bits in which only one is on amongst those in which at least one is on. \end{description} \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/inst/doc/howtogenefinder.pdf0000644000175400017540000045352013175725026021351 0ustar00biocbuildbiocbuild%PDF-1.5 % 5 0 obj << /Length 2194 /Filter /FlateDecode >> stream xڵXY6~ϯ0>߹x Ù7wZ]r*UUnRY&Cnjv:+<;_gsm:.|n?x-4N o Ǒ:.[EloL=ni]N?TѪѢf:3% XɶݸJ;L4,/KƪTadVeH \e;@_q`>]3S-L׍*M1\a? Pj/lyȄ[f&j*S!Tu*nqkw75.۝SelB81qS6v~Wh?v <~M:h]dPK)kQDLwG&jh`RYSlPuD3?U^Ƣ]Q¤@3Z.j:0%jqgIhNYJ:y1NZ{\zVtnLMQ!Lpi}BJGN9wf?`049:ޞ t:.nu /Lcvt«DXC<$*}7:2L& rD,8ح%6MRdbkJ<"ɕA#dV FRm7(=0LhͭuBKQԅ&7@B?4=3v2oDzk'[1"pS}JSPIx3vdnH&F JJqC37JG[ xslW|FE_9'{f,$Vƛ.٫:6rP6qϱ+Pg΅t=^ F"XD`?·"6RGU)B"f\pv$p6gr#ǂRQ[Kxe/@kiU':SUig1IJwV1.e|@^ڒ`8$u |UMigf݉Idb1!φdJ.ٌH!nn<@b8șNySC)C>@+ctn{uAq^Y@~>fXr2t%ft@G0^5 6ݣMRgn\ jơ|n#Ιŕ|DJ9> stream xZ[sۺ~?Bo Ivⱕ9st(HD%q~}w  ;vih _M~9~ Q:LY! - 5>ʣz7GZgpKf}.?t> @3V<}+6蟓Mǐ"EiyV\R乲aoeuc<ǑI@*qnQHgϣ$ו%Top"v 2W13hGXgx0VJIbpe$W/07&0O0NZ+700ox0H7-cYjXھ"،Z40K?Q BX,dAȎ$U\M&$Z%iMmfʍWѻr#)\gUām△WfS+ӳ=y P0-봞ˡ')&˽ۭSy"+o5^Ը{,ukj<ܔKOj7`G|na׻/VZJEa}+MS<"^l+KE-;-*7-pq("QoB2zD+{0Dn%Z *eb#*Qj|=|!lve;7F}a7D.sċ@;N]GΘ޲]Qk!bQ͆c13vⷉ 0k=#%34R:Kx jhѣPʡ$$D.VkCmK/{<,2Yᴥ1»FجH{u w 43t}q3 D@)B@J-opdd'#˔Vp>25WnowۓZEƬu Mu+_JvGrgc_8$7~^\1 '$ j`^B]"M n N:? Qq6 Am"\ ʬWG&T9DPG0 JjSp6m7mdΡq& ;e^t{M#s@2SaR6t]MԸcgɃdgr~G}OTߒî,+W$E3]^!B~t ?ы.$iV2!2-‰u ݏCgZUrȼ>e!/CBAK^d:͂ҷ+6&m1LLnI*Įo^<qySa:>^3 <_?ny_/bKNGy v:zřhC3b[B.zſ4Bs3Gz5ǯ7ܗY]wvunZGnmG\Rwɯu`px>7~q1/0Y 5$s΁SH"[ޛb*|:ǰŬ=J\R fGQgΔFi#CyfMuˬdD|ZcXKgS=דU>r%BdH ׭5e1|T.P"|r7_en endstream endobj 32 0 obj << /Length 703 /Filter /FlateDecode >> stream xڅTM0WH7n+-*Bb9Im%ٲEE{3Ynfw" VH.͏d2E}-|D7sW$j}GqRMoqS) ~?Ax* `{YoAmqg,o27ޗȳbyHxQGdf4Ǭ¤aMZ*;CƵ ZwψB6B?ߪF#onӧm8덡xEK\7]IT_QxI[5%«Ċ)۱.Ф I > stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 51 0 obj << /Length1 1637 /Length2 11082 /Length3 0 /Length 12135 /Filter /FlateDecode >> stream xڍPZ-wָCpwmqhq  !Hp55+3sgz{OPiHXA`' + @JYRΉLCe qKLru; BʤWCe@dgp *zZY `'2_GC@Ow#PBl@-M-_!m gA66OOOV+Zi h@ K-T[cEhغ[A< d rfh+TAN+e {8V@N:-,@'o['k* 0N@ҁY uÿspu:#a^,d)vt9AܐOd:wo/ /dediGlN. ym^EY vvv>^~a#3O%}6@Vd_7quS`ikmU ޿~?>>2?MZIVGW{|Yxx,<^nmNV`__%{߱TCt#vv/g?_ɺ;8::xm\w(_wMuA$u.H8Y;{n^ K5[_tKǢ9:n<-vѽn?U2N`?@oK~E<_uybxm`vEFl?D!~,9l@.? 7f5+{ٜ__#FvA_s|'[>4.|@ / jjIEzL_Fc-װw![;X~ Fk}(^jj )%6Æ5xۓ&a觕C sn$0z'$Sb3Ϲbg'ܧ wq(3ѬY΁c$bwo݋S L؆3+{WCs%ZrϞJ@kl5nM.;/S n.ϓՃTO.gx@wI9·2 EuBS*A:35.J LSv3 [Ȑ}"o #w, uxadyGv5:#Yf9*{qaWV?N"Z [Q%:P2TX%_c1ޯfM0ks~j+zLKWTEddVg*x@n.h~mH!SL4XBz:VM BkM;.Oi.83VDw3ѧ]eJ c''gb:WCnL%{n 81)cAӅ@K9(27]em<K9, V9d.6:K+bgJǓ\>dH&vMʎ)5d[w\J/[*uwC%̓EPaK$F$f]^k7ī<^[ߡ{V~TbB'rmFi4;jyJo\Ĩ+M~w텑='P8^5-=bğ"jY:-n>]iOhmhrd3EMd>R-akxrG!]F0+ƓzCֳ#쓍\[E7A#51`"n5M WÔHg h¡HmrۀJdp>SK=zy}qrjҲmeż]`i*h4W؇LZh3sxXwA˗F9X<b&@>GE݇ r+zo| c3h{Uܙ<.9?Yԑ3g6}G& Mi[uRnQ '~Rܣus;RHBR;ےs]%a/%ýQ4~ rĹĝ5@g$qt䗈H KAdS9d˔|ryͷ*[ض1 ;(= B&3%Vj]e~_5[DmQ"D6Ղ&arUHjlrͪ %ew1+:j|h?i3Rא;6=:EݱVBD/1quyDoZ.ꓢX'XQАjj*)o[p^,wֆ266NF&B  ġ6RiT9|arS#o:ˁ=3 N-āޞZd0_>Psȸ,]sOlatNI7PvMV `WP4.9,&0@,.)IA[O# :+ E>($Mtݷ1PЩWدmJt9ٜHs-Ep|vԅH J?}OVwMlE8(B;_ءs>#myT{xL_FGa;0_ryh,`Q2`59MzdQLl) ½<SC.J4ڙ(C>+ǡD}$\ 2.^p~ӏ(Q|Ml.r)N]w@ރbMN[8S2?Ln:ɽw @>mHvYHWܑkbܮMei1·#d_oYOHy4Pؖ"}H[ŖU 3{a\<ӦVB4;#b4E@::ìy=qeSi0S\w:,5 'kNG˩"&?\ em%x:X3TmXπs1Q/5aҀl&*Gi$X&Q49ϟ#ˤ]Ȅ:#&[y P00_P F։cMoCKN>K6̨>hR7"_Kt}yz񄷵Rw!%G ^ˁ6y ,@fKdChӨŘy'pVD_ ìYS櫭{!-=1i>IƷ!MSk ]lg ܥ\ϫrPl*=4iBU퐔=4 AXB##Ol<,6(_AY3( ŅcBn^|f~?S/ q&CVYgP0 A>)DXaHP9% %_2[/].QR ED"mVK=vߟq:w~2`%}\I-ΧN%hŵ`:צ\qE[Y5fa1:xu Ɇ=.piXonxsKBc2AT ɄӘ Q N ~ҺUY13Wlj*oL&ӸwWg`(*[SNS<4rjcVǘCo`(K^C}@_᠂V4ɓYj|g7QXx7j50o#[3B_gi 9Eii#]"=DBw-h\#{`Ө%h0}ެ$ڄc ozQ4\iê_OsNGCNԔJaǏi^N#ΓbHq Cr ߁_=9&_b!ƍ gXC BO7CYg_||{uA-я a#"*1dY列ZPӼE Mmۉbn\{1{K+'nqCN!DtW8؉PYJhh$;>OGT9ofRF[%u7lw wKu%ſlވUZCaRiȕc)\/B&)_GC[z< +Kd34(Rp~{۝ X  JKdvAq)c m˝jpL92Rʖ>iPmq R-u=K`|1(]7+Xs(e [Ldmou8ʓ!7cڌ-= J'k/vw35ϷF[]ٚ+ rWI?2%qy4ߡQ)cҢ.|&ܻG- %$cB [5 HwD/y>u:xpeHW3lS(J(U'v6k齺̣X?u`r~,hmTZWM _cAy3Z,jtQf5RXQ1E< 't%!4ă"Ru|JKQ7T?&C_VRTjYf˄Ș=KMtE!.壑F xL %D ROs#hcyF2*<慵)qc{x#;&9dB+dWcuxRG9Fe3=k+c,5rĀ :Z/&U?:ldplNFOH(Xdk8Yүa,|3ӪPJ[|Gr58CTq!s(jkxKlaBX3hP@*)\ðκ47.^A*>ݤ|c}qq)dAfLxDInmw@jwէԼFjsFv3yB.@V,,*T dod4D>s^u~2DjJ.:_ ǖ-B)cyVE\kXh,JާMTиʘ=}D}Ln%4]>Gv7I`gʇoP[>2ĤŒ/b_5aWZڠ "K U637bw(~x/Ep"*˴(pSǪ؀<kgGVUuDg_g暫f) ^JѝƒSɐמ,1liﮐ/B؏6FHf~S{G+LWm+{ p19*[/)CRfӘIT3pA& ^j&bR%;yr$n7Q]2;=nMZ]E1^ N(^CW4fyjAtDZx}OGӽѺZ :tf v? }5o-oTH[FSH{X_jVUW,ҳ,3wZ ްSvc\&єz9Fxx]|EL/ aQj*1cJ3!=8/Ixq[B%Anܗ:h7輰" nT:ZrsfW=oaMU3~x窐oN6|2ݳҌq?"@tÏBjPbcܸGv ?:[fŢhsB[b\Un8*TU=8/w?I:/|+g^bž6SJr1 W1wq`,?3(R;97c"Vb_#% 70$k%$7RXdPpS9JaM;ǿ"l7u&lQDRkH{gVꊕ7UUi5_ԈΙDr.f-  v-+t\+WY߈ P?{W>4:X0C%^ 3药ptk8e.7Kn$vgMny$Qј{RKCí_V# _Y ˪%k {y$ud(M4Җꊍ^D 2UUL: +ՎX{!xd[EO/P_>qc"t#Uسr.V˵klp=(LUƆg"7㎡"}"[PV0IhkDM%dPt$?d%|]-1NeU32> W';ᚄ)b5Oj]>tw%wr\DB-Q^6D^ haI1Wg} ?~R)XeQF]ԃء44̗s;#mJr^WE'\jOBΉm'v[_;$9{ {hdrx+ΘI'M%J~xl*Oqc\džx 3 ܀: {.lHQШһ}OhQ0D Oݫ,QaND6:Kg<e~Cu08j*QO%kͧ}z+f*f IetZ,?jwr嬆4H} ;08y}T"U[!Oq#~-꧆wBb9i(Vqt;Iܞ5f;=>}"4E#|عf?֦GQcbU`|%].uXVn=7FMeoGI#9=)REt]5֫gW'ة:p ks2#adk.M$#ڄc!2VYǽP;7@775AJݹtmQ| q]][51|#Ut9 ΉZL2KH@ck-](6I Zr/^uOD`v~3,ҳ1?1,/H >ݰ";{AS'l_b"L ~k(…AƥvQ@j~$#$Twٽɝ5gSA;`"='̀5~o2܈CXj:0T,]qwbz$6$)ɄLO fc8$}IES|3>)dTΙin4e8Q[ʙ-XKclZ:JA Q|@&@wf9{GDFeVk*Y(8?q?0/c+wTcq*]~C¿wsTH~½@>6_001mpXZBjqWp Mb%;;x12υh"m/ Y|Bw$/ݬ P-FZUǧ[+llg}Uո祮 AMnR!zDXԨjYޓ/8-n9L 8J'G0RWL4q9'S0;or.ÅА3n-J#7vMԏP6}kpGŔ4mb`cr zKD@L[Z5t(`8H ӥ^qAM<iP'%*' ]{2!o C.9,6f\(TnJ7A[Œ7;U.|yƇ`pS@r vR \2Z$C^~zQmXmv$npa=ӰҧoFŷn4T11C5纛苪QmRUތcIC-fͳ0W ve>==ԥшT\GH8c?9YHlilڻ'ɰm5HȺR?UU@U[ J$,7L+*s(cmU☱?" PH !z{#8.‘x? C$lFKtیBg=&0y3팮ZVk~L1.`1-\"BZ$F4Vf ˰ *Se{A@]v;t< 7sOtsw|\] ÂKdĢe0 ߞu6iڇcbz +ʝLFRw!! &y,1ePqQ>C0zWQ X q23GHV%IrC Nל-A8BSc<'ދ"P 1='X%\U&j:e8Vp"7Ҍ[^@q߬ƀd1me endstream endobj 53 0 obj << /Length1 1605 /Length2 8614 /Length3 0 /Length 9651 /Filter /FlateDecode >> stream xڍT\. )C7Cwww 0 JItt# R҂t7_5k̳9{@!m+ܜ\"Yu#n/'  w"A69c: PppDE<\\"9' PAn 08Y‚p5 PۃO9taQ0ٻ^^^ g7NNqpO w 381z?0[w/ x48AP x<tC V3pܜ+7G2@v[Am~` O dG 6_Y!.nn=.?ܿ͏=\m  ?7'`vX P`?!SGq~Qa60?\1PDX[㔑y8y<nn^a ? y@'Wj Y./ 0 ,Ҁ=* `Gf\\֏_r#OYBߊ<3!N>E<*q aPC+s_;qvN#M т[)? k 7p{.Pk-pףx~܏hC 'xl.` cQA^P$j}A‚ $ Zh/ y@G^A~/~d >2@#ۿ/؁Fh?>$q?^-0l0  w~^‹ckT|a0oqR&t~!:Ѓ!|.H}RZ2Igb c~oݾt]/SJ=m{WG.06E1=3>G r䊢81p@({5DavUFξu䢅֓9W-yrSD|G(m,n{Ӕ޷2VÕꈡ5 л&(K-*h6526J^c`:9# c8OT8檧2~6HI*5BaeK48|/h`Us㮞>q7C N"fI#mʼfg8(Ғ'Nxn#.1;}lu}JvY=B؃%Bk?|EMþ,~&t_nt!tEIiS35Jw4&G騯>缕;JE^$a["OfڨqfpLY{z3g⋙ g~ΪCb{ؑυ7|+2WC8`]H,]/l0r2gВcF3I65 ,<61d T9R!2uuGeFvo GENm#`W Gԗ |Ȃ,LAh66s՞پ}ˍM-q+aRq8"9?"e輛J :*hHJ.4bIԸ@c&/!+X1+Gi'I82F}/\" l~(5y}u݂k01eˀEjZmy/u_ί+cl2ߍCnv4_0:^h :S_9+V74c "ЈR?Aqe]{R>5Hz>>&̄J ,e{ ?4ADŽ^>Ov+-4AUW5/D> <e=|Ag_wm! Ke'L;M%oge<( .~t0o}exAWGR$1.C,j]>rC# haTᩉMq}TZ⇸e+. nHo[Ղ4%Ns`ΦJߒw#,9cRS 8:Ӣj`^M~48 xIZT{dj!OIϥUc; zUZzw#U3Hs31 ѵ͠P @`ۑê{pQ45!|w)kMa6åuAUpCM}T*h$rYl"L=,_i坴9SH;m'B>8wy/XpERR/lҧ>l}J\vVmmJ!uQvcu-ZϏ0;93gJگgmK,R6_˩@CyϤ%觕|ڪ~, #r6m0rޢIB*9$+`_yAB+Х GZhh 8$z2!䀅Dm^Vw:d} 1]XQ~<ҩhyD,ʴA` kEx"#֣ۃЩ|{o[k+=TSJQ헒1WqD5P Gj IB%h&o {]f7Ԭ$r%E {O~SF<=g7? 7yҏ?7X Jf@&zVtɫPHÔ뷐x07˔Ǒ݌p饮X#禒1MZ1mHJgOYRd nP'Lآ˓sN%rOaUiގL+xFeJGTjڨdOTYsk)/'~tӞFtP`p-ժ>l5 ^QgsVm obN ,\#z{&XX%>a^Q4RJAw(՛Kd.`8_H :"|8OPpA+Ś a1Zq߳)Uھ Eoq*h]8eв)?ʓ}t©oaB{7]t`qqG*L+i /s0B뱴(K5 KiPڌܐ{5?Ψ`%e˦AԗI|.ɋ߽-SDs+AOp{9:QDgU |UDPҺ4+3{amc.2",&ˆ/Vsm4n(2늄A4TϸK+]3S"pGi_V2=T!zJMB7zLd=<:cp\ 6C_\M3-blxZIN,-Emm(K}wum .t*NڶY(|w"멵V;y܍VaQ0.Dy[>EJdfO#"K V9*MVC!3DwnlA7} n9}HRK} ?'ZOxrV 濖9ۿxe X)z ir4zS]aoZgtyV'mmCj?bTD{6Ə;#זPa3؍?w8NSv;xVtܥ>fĞs(` jg??2p4vة u9;ӸmցiJ]oΤ==KڲE/T }Y&UMnPBQU%?x~\xECd2ߡGҘ i(cxō>ʽd)'P'tDOAC&UiBֻW '>'u[?NMLbU \1ZIam8CWԡXΘ:T5U85B=YW$oUbE(?)%ѐ V!=apIܢZl0XԇD~ md  R/izXnĢfWH$G;aJEl3/էjpR/L&O?Xlۂ6vU +|#O/ 5F\+;O$vYoFvd& |#.90;5PZ GĐ 1` F4-tf T(#y\-/F*LTf D-³eQJcryz~d){n$/GU,f7P",0ߚQnta*BIſ"jYԭ7_NtfH]"iU RBٸ8d'dLy]5omYQ>mi7yƒ|FDzUN.,Ex3ӧN,u-#7]W+^4ٳ >gۚ*;-E~ 4]PKŒKwm&N`2jw[{gL& plK|LѾ2 H*0ei7U0LD.:?b'%WDt_nҲE#^l/! U. [\+j|#qdHi?p4 6rAi pb8hlcxBz 7oSB;&0UŖ3=|@t?Iơiš=U"cM?kwfZAoY^a4UofmH:[PUi9W,\ue-=kZ۠@n4 B4#>UŢt'vxg8xxI|PQ4| oD r3CKPqB/+}0Csj`WEZ;1,9o1إ}No'Mn^s1I O(=:Zt grU'\YzoB"Ew7 -xlT6;Q ? x];miebP0Su=ݷSOz- wA[ G5-G؆.v̝+&UGs (o(&ٮ_-y&};)L:"Q˻MUw[rrޅ~kl 02=.L2S`w!fى-Ztuьcw#>hXO19LL\btfm_bⴡǒ[mm'LzQuйǩiyW *9}N_4,2d;*Zc0+-j2T\Rq4I(0rvYT=ogE]Â":6H!8[HqM},1S  *q\(kl>xq0[Pjv؜eyVh6dw;G<0t3hq{ƻ _{b$Ffu{*kY[XYzUތ kPlahhV+Iýd\A iSU@<2BuTIE=g$H֏SQ4{cO ~(y:T=2 mTt/1ȧ|d>A\gb sY[=ET]n,5r9Wc suWU B%v<"`l"' kOb5X0COa^n_]A#j(|UBPκեa۞gU9-_怤h>7&~Ǣ+1}z؊rӐܛPo#ˊ>J*<"W\rճ7z,=u4V(\p5G[S9_CTOOڞM᳐}w y\1aVDiױhG=l BhRbhքO% (K,B֗~)%MeIu^{H,~XqKX2Ƴ]jVھӡLD$BpH݂Edv,Qw֥pӿsU}+A!uc-IKE>l&`67Y񤫒sc9U)~  qL/V7d4?]wT$ Ty%x'(毨owJ㬔JO=BK;ZvU^I~ȿ(0ъx2AjYv BvWL4y,PY#X"[g.53ba~D+{xv%vdm^aG\I$Ý`bs.ʨ<^\Iܨ]=Q0A; Kk4a7e?`Lku*JWôY#ŭ8?Ҟ]:B\.F3E\WxúC n՞o|H> +L> stream xڍtT6)t(1H "ݭ C0"* H tHK}{y}Yy}]{_fg5SE@Up( PR1@?(HnC9CC0\?JH(ucSnZ8ࡇ3$J$@ (7(=a-~CNȮpAP7upB 1(Z`" 0@@`P?RpJ;P^^^`w~^C9P'kd6g4~Bv/FB7g w BuM+X//@+ ; \\p`stT5Q(^n vvGă=0g w`|3!H+ʝkF_inYnpqQS!}sNp5UW1fEDb qU ep݌Ao>hw'Bz@ ( 'w3#a @_V7 E} }&&<FSQ @ %D0@LLD`؟F#XnHFݳpQ7ԅ8tKr;G_YWwGο?qC]ԍ 7b7v07rP;k#a0o. q1ٍ~i"an/ߍ N77 -7gI8aKh"0 !9曕 Q-7p&p3?$u@ Fro{[P7B85H9V5V*[¾b=lIU2CUK7?`'̶9n⤺y^]j5_?EVj]YdѱB1sSy=:BSBx`٘l{{tGRN ^$ع^Y<28DhtuSO=5W?7*ij1`Gܷ43Dy|4RkT % .)'ԝI#yC;Jq!(󼃓[C uRU\'s.%N|K^pzxz"+8?[jtCţ\fPн0?Zô͸;- I.wMR`pئ3YU04[I^/=KF^Q6610]:!pI[Q+gGX \qnJQx,J\ΐѸJ;( Czx;gEn9kW )x-v#x6 :.M݊rAw6Ƽ?O(B[-FTk%9ڈ NW^r 2,t ڃNep/r1;*ȒZ?W=y^Z=$.q)~*oqt2;wV[nKhgxM|uahJI]?ލ[W ٓcFR뒃2VcL[/oFn<-}-ܶx(1ITERɤ=oj4) J;pv $zogKӮEdrR2KOcFŧ鏤ʖ)r1϶NP]ֹz U?2a̚"c/.0Gx ;6Gis`ZJx}< -v}rph+\ƥ+QBiYߵZ1\|#G%*꜏f,nFZmYn]G!ɔ ߔ{q KʰV.iq+Mg~S8\}+t`י5Mm(Ǫ'69NC /W^dӾsg`q|=zQM1TxְM/fh^^%_i%8|Y ?zPT,nēDIvC2k[e<‰ )mnRb95p9,B)Es+g%{8q\ƟjryA@s+F1%A*9 QB?1^!<}MII8"ý5D_$_ut]Q:JҖh= >xGlꛖKH%t ל}ma[4z fX )q"AKo=T9)1QYgxrxG>@NZCA}YyF'%x<*>0BsOzs,U VIIUnm {84kъOy? T{YKVʓ{J9==VV4եwo$nXX=V6, bGGZUlY}ճb_ϒd[|굧qD2MYqiڥp8-Dە/Vse~YHXmZ@vd"yN pRمUIu 2;( 36 vN5%;׶/W*R/b#uwcWYaX=-2%P-Wʈt0'e %/-۶μ2/c;[ a=RQOQRL;#aw`1ћ>*>\Ւ`z~IPʐc3/VsJF|,wq= ?"}KI }`B.{ (?uJN M_77-۰JEB2U^Q>*սuI ӱuoZY?yce´\򠳾5Rf&ڨޥdWUv9c(#;r!ǩ΄:6fj?競+IVEUIT6O1 H>!kMޖM{8F&鸳BX+FT^6Gu9ZZq)_PkG cY̸$ jL)B[څ3'8$3N689ԺPwR߱6Óu0Ukݍ:i5'K"iۧ)!dPF^$0l882Q,0<CcJRgjT(!80UWJ ^,&)OxLη0́faY<Nf{Gm`jY8nҒ󀺊XEM~0.UDNyY{6m xOD6WiɱN Ǐd, Xcwt&iiv 5&^ojLϣߺ+逬;8 %uGP$lE19lJHXn TV*0f!p8?!G3n[EpR-r6<|&6fa=HDh3!fal]bmryj]qJ#%[+5A t%yY&]Q+vP `_Ӊ8ley*:$G.T,:/rmIܭH<Í(~SHPU[d>=B72Vw)qā5bR*-NSڵ{(IfZjg嫘4)TgRfcJ$"Lҏqʍl2,T<:4 :W^Nh_mhOq/<;{6A`"J~'V/c 红c:*%?;@UvgT" ` fAE0/bR/kO3,ژiٌ_'ۯM~@/S UŨՁ\Da)ܷI@+_ǝ3@?Ȝ k),>?~ZyYYWsAFc>ҾRVJg`]8i[я4kb&x1)?#嘹G`%;u`%뀷N2#|yP!4`m0|@*KOblwP~֭=RmxҸ&wM.Xs;"zMStubM6lrEĹ T.h!瀮EdmlvJ |Oa ۑk;Q.ꊾhf, `,wzrX@ok9h5RR>bط2c:+yԼ º9'|+-$5ɾ91f+ݴz,wZH2ӑ=y}?MM_YϦ8 p@c>i$8&㗼?LJr}^߳"Jw#3 _C\t5^{UhPAQ}εcϗdWL/vu'Al&xC smejnvlDt/2x3[7* Rz'|)Ah|"fYI,} gi'vm7͈]%ʐجn䧚ɗcc;F YbzeB  : ˳ej:6ʐc8yʖeh.Rz,S1bR> stream xڍwTm?R%Ҭ <ݝ , ,tIwK*!(!*R!9wsf7s\y뮑D` )&A ! NNc8 @(a,^⁺H@, Iť@ $7@<]APp*#Q>h3K7PtP :;B!n#$#3!A$I: aY2@S 'm0B:b hpCa >wiQ0oo?3"Qpj:Xo,?p ax'~) ԇ(,FwY#g1"0C3?8şOs]H/ߒ# ( qWQ[DA ueTkE!QG|0# @? (`ÜGǫae|po%O?00$_-*)k)_F%%7W@X $ A"qqB_M#3|wΞHgBx S7ӭ@ (/F_wse w1EP3Յ9U " Oi HQ{±Pߴ79pnp.y@ ꊿF0xn6A0jO桊"~NFC|(K_0~L`޿ "X _?h0Xx q,C#|~z'@$] 07 Ja q i?QdX!N?2-!.&dOk?U VqS8ʝ{\#r n?uqpi2T%6Rt]hnry>#~O+S m)֡g4dm4^c+{\RUd^mmcDj^AZWqaUYTD.W<#s3^Vaӡ|'Noyygwr]c x wJSJGF9| g'jK:Ęd5^U~bu [q_;Mu7ny#gGca_5˪|<9rfC'̈́,%ҝۍJf$CͩzӫL?\.8ʼn?TFg2 N Ќe_΀;ؿ.e=FWTH,`[ʏKlez'{AeA1'MLG i.'}r/˵j+F Zy};ӷ-HR/ﯼM^W/@Շtq1 {y<̓_ J>'̴-{ݲӖi{iIM;fٿ0.7dX#axB8vZbUNh#grKC-^US5.}gkS]sl^PK.K:sq#' tgF\$iPS6-Et}w aj S%&%Gx dd)=s緉On%P*.mВ̜Ʀ'.]2kB!UN#:iԟX[z6ko1HK~o&WDw7ŐyPy9 ȯ^RlYm yd+sz/-Cñ揃nx`COiVǒyj$ 'S|ndc\Rmۨ8ę䴅.M+(#W@7>:ӋED]R)3sK;X,(t5ʓYꂔZYal{WnWjCWm)(~a-emy9|S#dRX#j tOX!yPB}|t5d!E>Ć:> !"۬<}>V;>Pg"ҋIwP7S_id͚bk0Lx"'B5b.u Gv\#ݾy%Ιo|Ұ'\VȺeOwb`hRқJx R9A*r7_?sțe4n𴶎pPUe+eI:%w4% h/m{U.?&ĺE/;n|gX^eƵUq0%5+4 % 4/mV%stjsXg%}AfWHh%=nf16&흣&ﬥ#,. g'UTIOI݊adaA7>0fʍl1x=?qY*c[z C7Vt·^KF0bwaw.wzrT6$֢9v&vro5ED3O$I>p0HhjK~@nF{Xeɐ8EE$ɟZ.V-p" @l ?<8N>rwJqoǍΥgD&4_ȻyO$?; LN=^Ze eMf+:{A` Qu1%GGkSLuE}̴pKi\CMepW-: ۝y柣`+fO?Z`2k*p9o'Sanv3W47XmyreN¨Ta@E^)/*D?DR x먼RLjzp֧WƐ %۱{UH;"nz*#|&'1=c?jvU-U5o_[ . uġHo,s+=!FjQLͽ TgYc(R2ےkEK׿)՝ P?kOu-^;}V=0g[{m4d0rIKXTo3Ig:o/g0%un0*\ L{WwO}U䀝r&sN1fMJI 2C+wc8PD.^=P>xHdnI@Iq7̚E[Kc X Cl@ !r_8wJQLA5s3iКp#УRd|__|rp}^oP}N3sH;orqz:Sΐ \l;*5@gLWe{mʝoVg%'067/Ȯo2eދRFg<*?d;c 1轕{ [}@>:O\u#~;_c+̜vS02a×N aH;6MɪlǷʣ7HkL&w]I*Sq]f|G}`&&r~J7>,{e68Q՘ Fa9аQ*Cs)CaG*5uD]ykMFp(v.%gIA2V:JA' bfmܺtJh.Bɝr[= /mYoqF GdWUےlRyܬr#Շe |o]Ta01z0- tIv aZZDWuDin_眭/@$29vmLi=2&vIn_xvE컜Sʧ +N4 a:5B;ݺt4wn ?n` 2a)I3gyddh>mHܫ~b uNHhfR)'PMf[Os@)QBo6,Oܑ`bC̚gQ#qBCЬ;eX[vtFRu$gwMLӣR׏d%9/dmK?tF_߿L^8n'Xp~RM_%'(S/7zkLz\Ii.OB}v*һc=?e=pz.+X@w߸U!UXwދRۓT  5UeK#nm_5~es88|ϒ&m"OaQu؆gǣ=,oL(JFS"4urN +gCDx;:KDyUa3QHPQ5K{·d'qoH׻5\9б>n?Ulp SOzg4M#6$VRbZ ,:~.u.ͣ[z+CƜ gݒ/GSSĦ\Amw7]V{B^xU9+o7m!Da.=$daRPLKh<9TL2C0WX+ vG bB>êC>4=[^mj|\i1&7*5;F L_,2ٜ{{.q=כ\tLpڹYF !1y+V񕥰b)bAgنs5i7?zvʛ'i讳m^†e N7(rWYOD۪ivgU^wCaE;y{ F'~Z<{V̤t&*2<éEYgE_S}K4fy As1ǚO4APկNS? !I*qJv^%<>6i٫YQIuݬN}4"ϋZnzec:rQV}:x$% %NEcLޔ)|#Mm d`K]ߊ9cNR5;W<| e)e=#hfLU~w7L]2s~r=* V3W.\0_j¥[h\LnRGuCRM^*f!9?e6+ݳTe!Mnb~5P*␽cb꼯Ajj f0Ju{yJ1Q]-d\#A羅/w`^u\<1K /6:5o4ȘyT Ǔ ywz>S?!Eg*T$q=|O_Zt@UP0+viN Cqqf}}1% kۅNLёy c~Ű:WP),0\jԬo8Mǔ1'pNb$.)3ӢFpBYWNZ}5ғ((ˉxdD~gyОst&%vuw '\?ɀ+E?׌2n#aNSe!m`y. Hwy5fٻrI0[w|lkPH4¹}mOSPs;Sy?I30hZqP$I!ަ4x.!|52LTNnՅ#NK6PݎsN~uք/ڽ4:>- JM= 1F 2\?Qԯٺ-vi#<|'CפK(x)9ך|ZϬT *u;QdT B9y/Atnꤝȳp= m Y{so(J{be[ykV L#Nĭ+3V1^'N-t `4كLU)Θv '; :_G\@nT򫜏?Yqqw_N:b}S~wxs-[x8N{nA)֨rwWPi e&He+xpz1K|y4HY&Kq8:NlݕV o %t0PyI@Wb Zv-d%wXAYNGCէ`\LVwoXS|ɼ_`HdEc­cvi4$ϝ6s2s"Wgw=nj:rTʷX]y֖K?toĴR16zfdH ׃c; vȫwzI+6ѩpe} tMF鹗g|#'^8͂03e9{/ε5tF[w\ meGt*EUYW3OR=Bf|(_6@ 'eNdJ2ZU\o7n xxnX(uև^2[cIq^;/_J/#ٺ|thޮ}TS-Έ1ii@&e * RotCПM+ +/YSK8Zt nHMG3,X O C^s UJgq)|Z -ϝT*x(Xwd^Q /}uDoTC lkaQ~Kq{J) "uW}N?8^4YQz:D1ǴDORݺ tyaXhE*xs5-pA~rXruBP̤P23H|P`­ֺ)S{:t%mL +_SF6nG~˘wzezK:{k_zDj+7=]]~jұy:c-Lw./μ {]:A# endstream endobj 59 0 obj << /Length1 1415 /Length2 6602 /Length3 0 /Length 7573 /Filter /FlateDecode >> stream xڍTTk&nb蘡Ka!fi$))FBiP )I);sZYo Z2pk"rg_n 7; [!8u8 Bb`a1 w[yAm<8 Cc `aEE~d\ P+@ qAhc Ѕ@!`p@ \xyy\Yۈ;6w^P{soK`d\qc#,VusU+=nN|θ['ޝN0҉h=|s_~@Hv>śLQX%SM]YޚzHoC5o%g1/U%/qk~Z& U 8dD* `,_z$~L,d=,i#kp#8ve3~ӳP/q:[SxkwOBUNF(Cu&J+uhj+k4t``ӗFjq6޷ -1ؾxR>Seqlɭ-TS EDz!dȤܨM{hu"{$Z9: OmWݬT+P[L}r<'|*&Ȳ鹇76IJ-ʛ%xLϗ6~>Hf}+2`9h-W:h葡3A8׻"5~- #Xȱ\(4*`[0N~=RGi=GUyY?QlOF ?Q^' [euXUmUOW<xm а(8d+ +Df6c69Nb9j!bAݜ𢹸HCIÿR?5&e2\$j ~ϝ)*Ql@<ϺKn9Zy6}9Qy@J{̀~|hg?ʾϘz|G)Ք(p7N pXb" ų&r>( $ :7w!ǥ i4DI$?ovE}GvL] .xB"rM0".λ8ko|)fix񮪁1#Js;|ڻe>=&Nk^QDHA+屉ѝ햰ܓr\C3plu /{. OI,ѳΎ'c)?J/Лdž0t+B, rmN]#;{ ߒEޜ pSes(9%]D`?]o6il,hxn ΉYH FvF~!!#A#u##5h2icj:X|pNhhƩ B}.Zixgv 傠ʘ9 z4R 3a I>1̅e[r/E74Q! WMım0=h/D};.bh]4<ɱK20TAX~p%wI8>m բ=UEM]bz'ym_~zj,6CLbbd=YW??>Z~iv2׵~ԆLVVH)ܭ&o VLJDM-UaF61Iͅ{R{3^nHdZ:56HII~)=~rk2LS˴ڹ wл0bӮ%?!Xʱ*>J9 Nf5b3K@/ }jM@b{% '5Qspys^I,Ŋg7OPuqjzeLbufKn=g<%Iv f4s*>=||SIѱ=M0+Yc@mKLC5X~7d[< wՄ~2~3QփF8ooZQ³J 1R9_VsS纚4I vW5^%+TJ{=\Q54$P4툀"Wy~f4'JPa ioVլF~%ee- HWOr}Ъ̡y'37 z$57/L[ MY;< .$B$?p*(?je" L_Sh~I۵ܳ6I/1aG)tm^ŞRҍ ʇnu:Loٝckay m6]?ɃSVp-ެ8ԣ;Gt.?mkw~b82p꼌N,#g$5|F"cfB[`r4(#pK,= 6=0c}w=Ű43iW/"6kѿ\ƎXɨh=)M1ƙl*$aݓ? Fc6 LǧJ*V:y၎(4%ػ+" :\@BϳZ~6V0M D[d;x Ϊyhaa&݂ "Ty-GDvL]"ނȴaql Y LY|^D?gӳl(/S_+_YzŤ;O7P>V g}yaԿcWUsX"a#"S`U!m}ܢ!{3E7*?E _ӭgj590)H1JT)Θv+/Og-zĈ׳c u078HP՘ΒQn$/zuUӵwbXX7T]3J c_v-'ieuӄ[\ _.0?v>puɽ eq"o#SSMsEn5H|z2K;XΖR<9ׅyJI*d|ȋUM%~2L+iAcHTÚMhb0Zjbܱ l`wA۵Šy3z1K1;XsX,6OϦo/*_romJB:m[QmѹRT|fjۺlowK%H#D$]k RN:7t{iҚV H$f%T$Ekcrh>V LrQSEut" lV]>c|t*"O~|gW9e6 9ɘ{TUK}A?23<Lc-,\O5/qan>|4WVH.̼`56KfȬ@]ˉׁ2{McpٜP+3WJ>:^l}7@͡<7mSuݻGا5˝ԟ5+1\=rtZ:3'Ժu/Bfè aQDz4ę@DYJ0$UpE]y'NvILͨ gj:{PUU%{>!˄m\ZokkbXNwU66 2:[?eIc_: <ԉhaq RR"Y"5䔐ؤqGk^4UķwVJ?SwXmsD5brfܪZ*S!y áq o)#;ptx&B]®,\Y1 ۣ'nn&t# - R)-]EϚ3yi1Bl w,3U* Pgc+8l nwa#^{[K޸ZWVs٫.2֯KcH>kK:ڝ?PD P>7kaQB=[%Ȳ_Y3KG1Hqq$jߤnYP 9x1%VeV/0N"p0kV[s+X< 9m% >b2=~\~,&-;~637>Ж7z$-dF?T*#ꔠ 4=Óʝ!YP6؈BGkg؃lGnm {)8;m=V={nXmO22SPBVw}qO4C Əì* f?0DMW&Ww\aҰ%#qMFU^~q)2@3i/6q'cDʫD g,Qu.7;SՋuCg0ʎ`K]'-cyh4jWf!kK FHiPEӤ.*iFOȓ1`ZhW[ʜ4 :zYXnUҺ>|ISL]u4dOr"}u 9KR-稕|R|}ts3)/IާTkmX\L|jA[[JoTI # /{fڄbЌ WN_Ӈ=&P˃#hHǤ]y5{A:;^S6(qVPBq13R;qL޸,̿ajpdgGỬY ǫkHe_{v 맼Y>ϱץ+aaٸTL:M{E(D5ňjXDbyQ$A%aF@DO!wbسüc1^ ն u c:3LSxL:&'WZ+/F I_} xSr'j,1aףYx&\?i3HM?__˺9o( \6Mk|;M{,B󑛋uk[Q&f?Zo9"h:{Ov)O\H+n\4 {@vT7Z }-nj~uҒg\I>ucFF))z)V4N軙K τ4B5>Is4Eb7v kT n2;']e7SzS `Cc-9[gA@'rySwiXҖ[-~\7KhоZHw)LVY=96+)f@ \&Lb\dRsv_&>e$j'[ /B endstream endobj 61 0 obj << /Length1 2436 /Length2 21532 /Length3 0 /Length 22940 /Filter /FlateDecode >> stream xڌPZ N=wwwwww;ww3gڻ 2P֙ "`bbe`bbPp[ Ott#$5tXY<̜FeWw1OŮ^_ǒm-@guؙA0?\6(%X[KM/GmhcaoҺ8.oSuߗVhbbRΆ dkf1Z8[M,ޖ2k [_ t4KZV RA7SۙuX9C;tMZb#3j`j׉rMF? `C\F? `q23Q%+QK!Pv?.@( ]+!Pv?ʮ*]!Pv?ʮY!YA:c;kQ/v'ƿA?27#_z;A)t\@Xd@P@p XA14v|AdE]AԠԠ`o;[k 1[_e5bzh6.N8YA\@3h13hbbE@dz8J2:;q?4u LX@= z('T8Fo #?} h hglX'F0?Gqkű&6+p^(eu}ONpYk#LX[b~A;4TљзAB8zCjV_(\ 0$ܿ V.(rH#VǨFSe/B;~B2w?;N%M?庶іuރ8ލ~,5g3 ߌRm6U0ܮf- Ie_5L^&%T3a]pV^HE?q0"2}or{_Y)ub-\x4vG38?K?I>]B(CB?م+Ms DOɫ](U _hq?n v]?KC#5bF,E~hگ7nk'F`qǗ(Y(̒j=ӹV xn$s|hT4؇T9=Y%0P(mLcaGYs5@^-ʙ[gayHKf`:;1lݙ>c0` Sbfð?@u(]EF|aKq=d 'm%1g[wR( ( 0U`_cTn=d[xA&k[րN$ 奴l;z__#7?io;Y}Ź4u7N$}wʼzCbXAy|l0_Y=Qde%~ohCTyNEAá[Wgۂr(?4,_[T|YZQ%kBZ@5YMoluIqBOl}ܻj-ŀD'='L[dτ^X£"EO\XAr]QR2oIBf;a_囮&cp\C6g (5V&W({ oXp+.pF9x}"\B  yB.وBS l,FnɴK9 9x i: ~%/-N;.Xq:AzkDj"!DfKfu.˽ϼ?uD bcT@8p5I!owP`)&M)tΠWwΰv<(p/qk8qSU!;?%8 '7 B!foP[{"ϳ_a4m sʗbMG`,1V MQLTn+XOpo_(kTLMM3V)}\۱8uDnBQLX| ?)*Vp~sN:gE23$ʶ3E{jVv ekm6b=&aw_T~[錶)_d`S~LgW7zI7mԳ4=ž0-ԅ]3,Roz GwݽZo;,`KeJh#~锂7tsm)a]&W",qGcXu?WDLmC̜NgRwCXc zf6r?3~5(s "o eppzq֯nXH…PdcBy )衬+$CzIUqj+ qsxr eؖvx飂;dH)k#"&&)-㎤\6#sd1#wg/¿o!.#Qߖc)!;֮Hpl !V" 񨡱ht=W/P#T6>s.[Z uxy ^҄WhY=Oi|y&JN?RJ-Uz2,UT7IKp1Uv=KuYH^65*MJ[O?d 37{(7ƀnLZ8l'p{:qmB cnEP9OM׌10ʸTzw<ΐ_-O1+Q3INa):|-NRjʛol-#œ1`KwHXp-؏dQ!(T`%~Pf@`*:bMk 8xhc/. Mӿi)Z:W=8p[ !r~ D2.;yP6+Mql\,VrN/2. kC3GV 1Ф?Uv|0d*hJ/LqCB|Î dOؚƃJ<**iV辞 yuz6*fz2h5Oc:/i<,P'e &,IՑx t$S`1"5GcLR*5hJm1bԇu+5GDy*Z ^>,ͶJHWB CK9:\ niYTm_w\Ϣk:Ŭ(Cl+0iv +FwK]apqT 5Fi~pw*􀔢N}De)1n6'!OPwk׌]3yu40U4}d7py YuN~ܘ1ʁɘ1b`3d)Rv2`k\, ܐ1Z0#XѨKaϠ;w(0دLk=oRУ>q]P@\I|4Q\nt:Uhy[qlL4vk38ǎ.fTslp?6ޥQU qx*18}r:(ҸM4-,Ϛ}BR!v^:pC3O˚2'rϪ&Q-,1ԕ!DvXUtTre<M5w#L)'?&j2tGNXUoEz-у(UOOZDU΂@ceϖ4|ߗ F}wj_4P|fJE#G>#01Y*tC~l2A%YY|!o:\@Tg Ie]qWlE#^wXbbq K#5/ 0/6puZ;>^6[g?AujOQQaXG)J]KON\._}<{GQ`竢i7V_d3mm6[cXFOj(7B\ִm&Bɳo'kǬe狷7v1A9QTMa(R:G_yF_>~^($=פC굌{Ū9ke_<b|(NalF,> %U8ٍF,ymKupsa';$VDxi θ=jokO'@Febӊ>!֫ş, L^d&&6>_}Be<3)tU3S;ŵN1d*Em3>> kbp&jdꚀ1=v=܅\2;wcP7Łof*'zFꃰk nU4XI{!zr$|šxLD |-:?QGfI}]P/V>P Xmzv\eyZRc-х(}(l’nƈpn.9:/ >]Cs:aa/{`B0gSb;XnǤ U/[>ʺ7 {M*E{b9%y &C;x$GKiBzx5jEy)Ci[{[0HgVdFsLľObD#riX=&vO惢"͒t"Hps,rn'Nx"UN&pa#wP輌%Pz#6xU!\$w:&{N"_,akc5ΚjTkDzB73Eq0SJ9;s+7AMrI8h xm j*֘ߑ\7;Q5Rtfzjl k>SXI-[^j}ga/Jj o@J~VOx ukpPJ =OeΊYTegP9ImiM\ w]]qvb_[]3 *P:(5#D-`A4fJR O셭غ@"_dCd4AQv~3vq>5ӻJ+'ϑxqcuDs g!ƽ8Px HZ ܵk9q1"~VXБ!xֺ-~JJFz2jm{xH"'G&khi3>#VE p)!Kuy2ʗ6EWfU\讴o~\NT@ 8 TO$'[bo&p+gjI|W*=/%"] obo ofU[ni?ȏ'ǜ#BDi"ݞh"]xE 忊}-ݽU$mD=1?rz AZLsf3sTYR }tTG*t2M;Y(-B<@ΗrfeUr0+v7X AK?~Rxui\ fcN򳏒+SKH} v?}`ʾLDPno:aZkKZi_:Z7Wq;=~7@6ef 3jȆ,4JTLa (@ۓPۧ BJvX+4UbË Uzߏ_EKv~>UѪby\#:ːM#mU$H;BV/UYRxFؘ2ҙ6@5*J7u$g\>( GүHbQ)0<)"||LܸF\?*GS7:m9?6hDhN1Q#Zx| J.rȬwLJxgsKJ=\& HӺڬ:ӚSش7 i+%;53r&ܪ;oȹUo 2 XDřcRQ_ByuʽJNy>K+/gt2tB5#;r҈"6sE)=T*]~;^k* Da3r m>6f.ﲼGws(WTDnbk2D\|=H[u74pR4ꦎO׌*&wK؊໹d+^}E;HUM_'M5Njayͨ59/^HS<8'X,S$M=R`ub?' 2hr6ag ] 9v1ZPEkiFqBOnYoϔ(NωQti,LnYĞ*K)5ck"Wh O |E;+T*"X{Vעg NL 3uWyy'їһw0V(;7Oo7?t)ŏ3x\YS5W F0cuqޯ[6X$ Ӽ`GidU b*Q[LgT%q˧dPfQXbC9%&Ȗ:xdƱb[k~ Đ4 f+r}jT‰|/0TTݱR'gd oCa;;& #nJX[8 %ɍaSt&O Y]j05 %la 'q%l={c}h]X:obZ8|Uwl~?N@Am!~uZ@F1$ykUP&hMBT,'wVU ; 9G;[)\:!$)\/b]6;0pS%UCߴ3誢'V}s!QٟF45 O**fuAvL#O:bqR8\fIzѨmb[sX =isP Z`-KTSvT+xxKpR_:ܱ>Xk^{;kMߠ-Bn聼DȬqRp!mhR  uRP3|O-=I|LQRo'88} DG.d,b"Y%)[FDB֧ ;:V'#X5Pd{ ґ=FDi8>UZd5f+62Rq1ĻեU®CkJ{| \靯dwVmm {D\zVta7=4␓#u [;M4P,@@;Ono`H|Ti D3>"}vL!dI^oaSm hНPغCx C4eTlWvp,h]tnL;%v @8+@`ee+ǘ`<,wa> >zvZ"l>`9+L?dqT_M1k¬t/MO?U/uLpt2p!VXI> a3Oh E̫`k)wrNǟ}ڌЈ-QB9"S ]+S -VMĖ{bkNPblxd[$u}'\fRIW/f>'{ >&4bӴQLN-C(zyw7k+6臫9\\w ! m(&0,le´ V0QʵGX1NP^axHGT_j@C=\HJ#4*(=/D0m %@ܘ8CeQ4 ԯǵ7_oDDu_>m+{Eup_,9$Bl{,'Ė*fX`{0{f?`Zn[GfYkmq=WJ%%G>wiaM8nZ!lfb5#" v7N4˒AHLOFY/}`@/|V cI+oo'h^hva{%5)k.f'fTپ%o_%bƩ 2=/ܙK="pO v>9*+m8WwFTidi<E#ȮNho VLȗ๩_܆[EJ/D&qZvL  t}'*\(̇f$1q#D浆3 !ߤXc Px ;׋HvY|y@YyK{Hƪp|<}'[ T.SRf1VWp{?vR2]!D|c>\=)eVWf 'aЬ_!!l.ókPO4P2׵\'X/[1_Ѹ*47h)+)YX]jU JU'Ĺ| DH >Ob_g%_z7ӌ K7Ǫug)S['%8sSpbm܅VxaE[]R3x"$a}^S|丁{m Lfs VyKB­D9A\g! zlܡXM1Q_|V\Ep7my‚^X[G.{NsQ2,?Pow:GExNW%D9?ɅdS^=V|{1ߗF3NTj,Yv1WfE 8!.L-~ ULgAŖ$)y :wˁ} [ُۼ;ZCFa _r?y jY։OV}2ʁ}qv4pZ3T/RKeO?M8Z<yj\%O*:unclh0f氀DGڹQD4_9/J^xEĢp4T7;"Uƹ$U`7m%2"3…@ү!Oܴ4M;|Jhp}D{HeG4ܩJR+4)0W,gV"yTUK-,jt3nhg0…T;4OY~A ݪJB#}duK7^z7  bZ r>*dTrz3IBo(8 v0l89~X .)dčBB qx\H1@%qn'ǽѷ$o5DW!;Z@$ }L޹ɶX' h2 j\z“%q'ύ_1ƄQI3Unخ[AzئiSݐMu[Ecٱh@ws3>eB$yIL̯/\<LY|\=Q4l}د66%ֆJWy,7)p=XtVxZ2_:hYT5񄔁Rg~]Ͽ@;!WųiȢFb71J,]1f 32n;J7Jݢq˖&/Ac}$YrJܲzyv1ȮCVYc eȷ\TiJ2jRp+he];ϝcG/Ś4zhV4 ]+U.]wiIڅ Da㜶kUbS? ~G˜U+EܾGXwG)fh5 x@.!8V>%~ PkN4yYk7(T؝dmvZπM`yB4ӑ|Ɗ9 @u*~ ;)vitŽ\!Y[2IkaO4P<؎Sݑ}3+#r|GhjT{hlB8ie j&#R`ZUwәP: GxW$>q8~Z1V/LSixNWtlo!_DL3tuW@IP2Ro`}v9Hz#Jb^玵 ۸:_.xͦCU_)x#by^t `>o8ǡMd:/O~" 旃jf4i'̫\22%tS'Y]5zyU HB1T`NbEMѻ:Fy6g{`O;͐V{Md/ W31nkt.0Y]$~{y@pf}|8 L/둊l&'MipnWJOS*.[ul[:'gLV;ȩ;&FfkM cFoYj1<ІZͮ(B^lBwڊD4gݒ d amɴ|ڏʩ଼pqjœwpq6F*򵱛kqZ!4!l_mcyC_w"Wepx2Xr$l}Z. D6|OTYɞ=LnQ 1B&,.(.0ȸYG7bXvR;fB3w5[EgnSs(bC?ᓛ,R&r7.dG"OFqԪQ^A$^¼[A7$29קoc!GcnװNGJ!,'PuA&Q(qѢ)*/!!qU=bBrs#Eecm}C A"q f"T5ϱʾj#4bI] R56_0R)]넘T{hzǃj^v#\=WP՞zYjqr4N–=>L)^ hs=iT4J1y#(M"9lL5pB!M^L4=n24s:s7Ri[#QoRΖOSGjpW#/@c*cgҞ"ݲ쭷bM}JLYg$~.L B7k2WפMM0SlPc|.~bw@q}~FLݝ>F"Q$h;c׉EA>t#"'Ʌ١ ĀQ~"oi9d- nm*' t|ӲJV5M[!@c@ǯI-7'F4̀o'++,s(,&78V2}vxDrJj]t1mK3#t@dҷVJZsnpJa`ܨen]vY R(dI=:Jk5šy W^EnDw2`tUYfV9G w{./v$NV Zd>G*@}vyҵmwLz/♴}6iL?ۃҒA?oO#4V,↲(*z/{ۯ9kn0/> dKz֊0{Ry#ʕC:2~ʄ"%C.3C 0to 6G#I0Iu+T r2chKnAjk7@~h&}:Bү/P" V,~,4a%@rl}Iz6g?Rg|ICB\8fΛüFY19Ffeng@dm6O~?JZJ N@ZG}Ϛ[aHryӐS쌏])3*=\k8]\tԻ:W\<~ v YOF9%ԕ~XT%lS21.<:#K mp*J6wH{q,Ӛ`6) oHtC7%'7Jqƭ: h Χ >T8nQD,(]JεŅMtt9i'9-_ڃAjigG " _W2Yg$ՊC Ͽoڦ'~7䯩_V@hSt@gM}BcΓAߗ.~:4lD0BE9]L Q03e dtI}X_H :]\j[|eE)"&}Ǽ|t(/S'p)b{4u$7I=8rur;Tk:S~?KGU1]:`a_R-X۳hlaHv訅gK|:)TkyQ)Ţ]gz+ vgo4>,HcPys`iI A\|WA`&2=_A£) ;r|vH^9>_a%+Ĕ# K L1cKί^uȦh9Vx7IA~]Un ""MK9#<|իnM=-_s*{lܲ;<֢gʘ$ ` ?Q5F)<j$|˜/| ee]J,zp)2ZfmLrsFb[r}*#I!m) q>@/P1 @#>d7p,4 +$d[ϏťXºZ33Re?V"ch6Wm"`̓bV&ЯYDj ( 菺A\ȸHR PcymҎ9 PjK8})wIˮ%( qKCݞ A G ޥ3y[!͸&q4 0gZ.~ng@.О#nQz^~i}ٹAAb{/~y]jͤ|/B58g( #UA/l4 dzXE9ŧg>E!r$f&&t`io ;' 4V˶rL[T7~V#OREifƮ3I&Ԍև´Dd~ʒȚyn_C(+351;eZ9^E2Hx:D[\$~kqqpI~sA8]1$ؾH.CV/Ӭ}g#i~GΤAy:9P9.ٵq޻r?9ZNٙ΅ %psRRT?33,d/Hf?33bҰ"ڈ5LY_%~SFgˁ3D{A 8y ac zW"p9-n.jXLOOy>[FM"I_75=c;@M G9؛MPZNg !zE̬oxi凵dlh<9aA1ٶx{~0,Ăi7F/aڸfiPZXd~)9WJ\xS 4Gq0? ϭΖ{/ȯ̋P`ېD籆G!~VO3[\OH%sŘÔjP =#|f-+JjC^vy:=:Zյ 6f<<_ҋ983'{4>g2mgP3y'د_: HPczv05D :s=Nddz%~;5[ٝ/4J^_ Q]7=?_r=-Qѳ5~7vͲ#)'%@Tyrs>EY0+33p3eɹȞy ?ye }@Ӷjy~ҶJr8WT~떧-Հ |['QzBs(+ ,^rMbv GΏo8@3ɰMM++Gd ͫ*73 ؼS$vOKLy~eV>0R4$'LL&y (m3ܦ'JJ~GP1 fno/p kfRj\GJ@hWf&c;61ɜF2at٘Xޱn ,|H:*0s5D$6ykwtwƝ/Rxs3Z_ӭp哲P"D*l=crTnV_3l؞9H߇*eD@6b]jA>W`+W2hN7{l >4%7sց6BQC)Yϊ6) 8Fғq[ڌP0@M:59S3[tPx8W|yHr!+kh7 qJXxa#qG3_0?Ӈ gȦ!N<v:,25A4U,] XFYN97B^^eF2֭xI}hR-=ઢh;Lvp'xUk,ވT+S@"]/(׋IuE]wFoqi.)A~YZ&A)v#,Du;ܾaL7jQ\dz1TYz F34܇2\rO$$y!QnBBӏc.{tm˹CjԆ7I*AA[,^c,.?-VKSPiGup H#º<nMgWS"Pu,0J\FUVW\gtQH貱`aXMS9)#NkPu{Җx~@^5>7&Yfw)!]_$Ag= >6Q4yu1 u;~Tm(v<9U [ƕ"!|suY _"j cd&mc˩?N}fe\j* h˞ I 0qG错>r+X2bT'o@#=e%wܓxⴃ/C;/4$~Ȥnk`xZɔbe,KATlUwL -׌IsJw 5zmNȚf"ʐ+l.JoW'&53z@ -c]o>2˄FnKƔwg6=ɒEdg>b@s{$)w3 E~gaF,kYw3bJ4Pi;z<4FM9iάUri9sz]qKa^7fq7[IŘwj'iL}^{ny)Esk.&'٢Nr^ݹ6Ekb?9 h-A_2> stream xڍTm7NHwH.J)- ,tJIw"HK *]"|>}>g{f~3\&ʎp{TED@(Ji AA8H&_U$@( NxB"bIY)Y  G@^G@{q>H s><)ew0@(;D`wQ> #B!d@Bpr=H/#W};OeBDS By`<L2h#{G70r}? !ҦG!n-؝:< ϼ43FՒ/+&bMsgdG&>>*fI' 'Vg,cG-[V ,T\~*:~Kьtc+"m }3΁-,-a\'KZey{tR-ɐkT1FEA6m%_ mZ=W",dy2ӃA#ieYZ:WsCv>@iONFyAircl8Cn״3=cxs8pצD(/TlBNM7Hݝ*`i襹-ʇ](4گ7\1.t+ǣvzWmKzQeη[$r| Q7֊qk> XEBLkeu}:]fߋz-H},1>Et$8pW^dc ^z]G|O;9{szyͧk0v?M!g$E7bQ~)O);"w nx||7qYӻ~uqv\/b-KT4BM:~IAyE6}C}ZEIzd%lIwNԇEL.q>iތF}2+sR n\lsmTvi&I@>vMخ7U'eK@b_࡫IdK6?0wܐ ~ځ]WpG"(9-'?)V?Tk#n-(~ZɏW."Һ&,O<8cZD^qi5 :1;]p9y4uJZ7Z±A+q97ொgqzۋB4MR.^y*\*L7]u~#W@JߕwH:Nt/kkmrtJK$5R㻂DV6e/Uh?'`3^<*\ J#^,%uYx>A~ơq} #* Rڧ!C?A4їe$יJRJXyۅbOp#*'i^cuOF)5g(Xd3Bm_%4M$q#搫 0.ka yҾ 6U-h+G2JKOJmW cb)42Ke"N]VHVS[E1YRF#]o5mBzSd~ W䲕 *E>ou2֪% 9H'|A~:^ c ;r2]O#:dzA)1][۟ mK<ؘ)5:ߊݶ:h֩vp:7N\IؾJ+7c ڐ.:ʃY eT2^S>|L*YG;%SL cta/KGcbԜFBuBz~5Gj^d{ [Tx8铖~OvA$r魕qJhq=[DQug;hሁiM 6&v&>K6վf^??%5. 9shY0+r,byڐ3 P3 ]8KHxQ}Ǐ<|g8Gbe CAӤȝjԍd;Pg)pyKt{ G >uBDZ3S[^2mLyϧor TsP4o_0a$Q42rPk}_ ̉ Ͻ%MKXM:uw_=,yP}CyU7:(:|2"9@T@ [ 9 _NH(1AU$63˰%n8j `ůͰ. ڳb;Uފ݈ޕ뱔ޟ+<:.">Gd_#I@ʤҁ ܫErߖcߍW{\Cvj0LXDW8:ƽëf==v @e=)+]۠#MmrfiWT/0OvfQ>Hd[aEuϑ'\tkțQ Am2گo<xkwZ#;0HoO|||vZT(ٚǶ BZAnrH^v-QKkG5V3$}Mˡ)-uo{V~ĕlQ=34ˋcL$ F K0}F6ǰ{,tW;KfaC4]/t/) fFS3;_du$2 | mJ+i^ݔZt"O)~gguZMk1岠3g_|xMZAW(e@B!2'Q$]$L:o޺V]v4_{GgvGĐi39Xr70ѽ7u/57-ޜ'GV1q,Q3T2\dR+aM]h#o18 )ƞ2K ;qR_jW7[!t UR HC"b ?ݒA&aPyIIp0;(?73˺4 X,'od_4>E\L"6XLX517--{t^[I٢*s뒞mMg3wP?སk8?Ͷ*zY я &ԩoy觚=d^'s15:fbLT77Mƒk#%^uy#nsݯQq𭝉Wo Mz/TMr~S4ٸT=|IXYn;7CC0%.[ P~#rsrz\,~/dLQB0nopPbр;XKٰ%a7V""3/z~cD'SzB.whNkn(wv=BVQꨴO(sKܯ%_zRkV_m2p9p&BZ6NnET 3W^)E=o[{~hAõU΋wlpMv"zDMì*y^7vmTwmC&b[F6-EƆlDJMKg@Mo 6N p?1]8|W䛢\x($f6c}U>t(`|PUL3혉Wi#To+gCI=&AXjrz΁ֵx5t3cTwJSsL8plqJfFSIj/~I=[/Z[3a&Tii }2ԧVCrzpz˜\/MeDv SʐկlL&[;e=f9|U+&+xVcB:f>yialD^I,nGD22h񔟯j-ndAɌ&Ks\7Q .0ۺ۷}':QF9*LFGګ:WN Lyp#aO哯67*`bh,r,ʯ$qy)+}P5&-66{[ O$x\N)DW*NwlDŽ,viѩIcIeϏq//p RO`".r"8o9}A |w'!&/ڼd[RtqJAsÄBL蕸;bMt[,*Eӂzڡ amSDjq$ mU~! W#wKֱiVG,pXU䚌PWLkyU1VKT qن6Uisjo8R(.m[&yurӘ~T˜qj7~h#Ě_Bu3p' ,>w`7 'O:YEp@hDW K0vC;@r՞0TX7OG ϨY,MI>yᖣbF*tsAt[t+=MoX )2˅OKbsYZIYq$J-wm"1daҀ3D3+"8"D$ovB[Zl^#d<b6Xgޝy{ַ>C?oMy9Uh`AVc};x+DV~.r:t|T<|-4^HUZ M*$Sp=j;l׶< 3LMu۬|&Gƭ،z`H`Pkm#65㈇n_PʒROij¦} SN3J}9QZv9*AzA*ծgYnmm7Gn5ewÜz:Ҽd{iHɱ4;U/#&nOF0+H&ahC0k^S!Pv.A響8^b'Z["~iQ,a-*;R6z]ՎU i벏ը>"I2L}g˻|Χ٣+hQ:.7t0~>_D>p5!.̿"[FiNyaM7?!Ԋ.tJ\F_=_]$e1sJ/-!`$ϫL杓o}l kp+XXu/Cpr#ꇡ(,'Cƍ}_Er:/kL/$vR n珠mXR}5ڄ%+J}c@}SqTRsBr +B?4'=\/+ >ާ_ ~C]Ӆ뾸<}]p0ss[dr z5Kl ?8^T,@vr:Qly]pK!8Q.aeى ݁>^vT(ـŬ24JDMFNxTgi}32rGe2]N?|FŞjŊ?PKH01[^^6NHdcdU]qɖ-XZU9vbc9KGJȻ!VN ,IpPr=q,%γIp (?Pv;|`^CG<pE Ҕ\'k97VYI";7SGN$[_c}#0 dHpP7+Q8=;.J n{ u;:M`5r0+3T{߂a(M]4zLXcAd5M;_$D5/Rbhc +[[?4f-R'ű= ̄}ohe-5[?o' endstream endobj 65 0 obj << /Length1 1645 /Length2 9904 /Length3 0 /Length 10963 /Filter /FlateDecode >> stream xڍP\[.LpwƂ;';4@cKpww']w %Lf[֮CK"f1IC\Y8XJvv.VvvNdZZM126 q@t}I]_ y7;;;_g$lPbC@.ȴG/gKA`s@ j hh@ W A/d( wa8[00<u d0@h3VdZ5o  7 3%9@CNrXof?pr;?޿rC^`+%PVdute,~\ /@w hbW@?;]]X]v[deR{{ $ {}%wnlZ`'7?&/"Ȭ@vvv^~ 4f^_oG# /t\@*!sp,3?_ ˿;=/^;ul j 2Lwo8`asxE 9XB2 y!-@󰛿<8Gq vKMڃ1xᬛ /[:wV dv_+e=F4d v5,˵~/ qU,{,sۗ兑@/)!7 Bf!'e-@qq}q 8#>Q^No_`_YF?\6? 7`Әf|)? ?K?Kb?K"?K"?%-$ ݜ_v8@ O9\0Ħ.ބ,Ns:B*ǜ >)ke'd>&{_'KȐHY4E}|maZ_u8yxT-|X1cX:G[h;OHBȈcf;B> 8뽷&g*MN""}B2k >Dcr=G"7 m3Ћ y|9 tDbNgp)$eSnD~4 l6޵眎L/W񵤷U@gFq=,= ٷ2Ep+]kٽ"&DرABw1 ҚJ?'ߗ)BoQ.N{tPj~Juϕ&8FO~b S=M{3xszc;L#m$I(Oo67/5Or䬏:#%M̏_tbϙ5)̾ hZ“yx SbXx,Bڣ|oXV?Ja/O:UA\g"3Q Lf*eu|1pz=r coU#gtSJ#>3Ƿ*AԲU+z6!Y/)øwFn۷v@ nꀼS5e2/"J]E5ڼe D(ۑ{ a%a4~\/~-昙FFq H_=?eJ8{ÁRgQE.8,^Ʃjm); 2Rr}zWߙy| _H+Q(L YBlF~*Bwq뚁-4#_HzbN|YW7R1 _P"BW|@*O&K\b@bIۢ8z᫒BI5w(vo w'aq~T}l>q #!r5µr4TaO]^nW_A6YN9EH,~?ܞZQٷ>pJy37a=Ą<Cڋߜ=u : lxj[Drg5T_K]9P~ehI O3mI@:N p,s1Un^!_GGCc>~쓶DU'YXfpG=%`h0X']aT2L3~9DfjrUs>,}wK_=0U,ja%,Xtؽ׷}8 MԈ#^{5*NHmݾ~ؽ`~ݭtu%Y98~8wFӾ+3!V4$&oz8.ǝ.gୟΈvt--Z|x ʡ,3VE>#&ץGO vk9Y/ѱ]gj:x |x)Ͳc9'p[TW8`ynaіJz]'Ks!L1c&6!z6ςk}njXa J9fcZܒ#]47C,jPqq+㣅乵NC.LKskߛఉk2]{9#gAqb],aթ.S֪ \N ebb`dPM_2(k`\Xёd3bdCqrd++4I(Xe$l8Hϫ^*&,} b:+FBtbTJodat(\"CR Q̛4ur uz6a>Kd(*Pg°IdžSt,K"P9W>,`JG8nV6ڼ.b#}WŸx* Z9wnc tӣ¾gʹ%gb70t$ ZT4{17b 51F5ꦝJ^,FMTSɘRjy&.<BĴY3(*2q̀_*W{ÿ#M28"hmpai?`4`'˜ ?!rk&9I·]c>ϖh bBbƜ$.'o(E *Z"ItfwD͢`Pg.Z.KnUU#ݬ< G kzY6ԥTKβlQ~&9mXJq A2 WcFI37{ {,==u=QZv_L*lJs;Zd.m!6iJ^@(_d˞LS"yP/toL` =4ٌF4e)N9DG:~dVk57R~`q%}tlonvl\ʜ3N$_>VjǾLvW:}o MS=uΫo$uUR *|PtqX\47^GWL0C ' p?D0=?f x؎ao`T7_ 5ϧ#g wƇIh+Զ],M"Qⶱ$3T6Wrm 6)BsZUV T9Q_ǜ[ۂloBh]5#tm^n3ҸM$x 8dFZ>W"'RA+p46Zt^v%>ۘzj6!=¾z+ ӏᘽ~ 9LUL%q5_8讟,9lJ;eKi6'&ۆͺc G-[5Jɖ v/ZrN4Me?@z)F i!Aĭo>(n#f:eQ;Q'+Qh-)#sd$ SxZؕ#UG 02p]N)^n)^Y,JV­&y@j!5rA┠Pӡr>bTHGr.7>#$5<,8~ΎԈ9)yH֮Q6P}ÁZE~9̝@H@`¼1+2=+ (ڹM&׸+ßkZuȘ4~hezeRy:aKB暀HrK[FjmD]LM} HIPxg}ⶸ,/W=(`roT0&y`F<Ӑ O<3A,5aL_è}4nt[3Cjdu"UD8n[#wrPli@wM%iOo *$9Ho 2 ߪ7>!tob]&qD-jg}Sڥ\ENܪjaFuT%ה7rK\^ *Kw(2R(zy흡oN|nÅ|CwۀxokaJDIZ LxWDY~x3/{ Njei+-t0S}§䔦 ']ρ*l6 uSygOMBf#%?N{EԠFnF )Lj]<IS0i hESuDAz@LX)HQwNXN~zU^=yaNf&nSf'|_xĹP9Sm%2cЉ_G'J53W' sk5ÏIC G0sŬXTSn|ګ>/Us ]8AdSoVRpzђlMݠ䧝< \PV7ű͎ %56'h21)^kW?4мSƱMĮ(EI*Y'BmE9攥a W,Ҧ{%f;^>&)Ql>+S)a?[0J A}}(-5 e3ʹVb5Y'zF? I$Xj_#O![P|\a[yO_D'ZtV:8Ha<{Fl𾒴!XFv ʏ/i.gQ-sYC=0w61Qm=^;?:dIqMxnƲ}nj)OZP7oҿJJ.#O<38nț?-I^ ԱHr#6 9 c Cה24t{4evuByz wdКq*׸@ixle{[2N KcFLU cbHJ̣D:)=TP*7$Z`ii+]-PDFUW 2Sz+Qf:#lոצo%z%g.d\7 c:ž,~>0Lj9_["ѓ--iҴ=j0&f.pFzG%1EU*-2zGss;U evVL $dO]@SÇcXC MCeyo)>4n+6UI! gU(A`Mx[K5A*׏D4h_C;y>^2D!@>,LowlKФ Ζ*̾ar̃q7UdkɔY^LiA{l IQ12A՞5 Q9IzEdO,GN&zvYv}76BL#C?ڳ'/[ ׂ+w}KWs4`(9Ja YG(>Sۍ_]Cgi:Ds9}H(< 6ز$$4UG`Dr 낃PP]h?-RE \n+D س| 7H^g;eD1ʥd+kTg';zyy1g SE3. ^y $I0sUh,m l]iTEƍ.ަ-#kz9aVxFg"kL*k';݆(|)c|K:J'v1h0?aݻ\g±쪋Ҍbwps[ѕݳZϷ`em5M:1ڢu^GAwSkx&'{_f/a\J +r1}4y2prRXiAn9,rH,,Ds {^{25]709XZW7 ~jHC _bzfJp5tڙ-+ؘN!~9Ai NfQ9eCíAbP]z ;9Y)oF[\$wߤ+1:*h8<Ӆߥ)xNQ:9.c/٤rP83CJ=G[x$y>~>Rq1 +J)tVSrGGvn _IGvmp{+S񓗛3ftݝlGnS5~Nus Z8ܭєe!dt4E@ ɲ"(!TA )yCG'/GV^DML3_tY IK$ MS|&3.pY͋H5vRt-qk) AeXT@b]lt2ҝ.(;/}eJy[ރ.? z5ӌ` ֽҽ2HUcY}<ϓvX|2`BElb)$j\Pd0mjj]&{c62L^ѺСBRGs&R$˴uqvKD8(+ U)[6j^~L!nUzH-C%NUӍ!k`VlLjޗy.L5l^~>FJˎK\O [] jQr U(9Mcܪ!r+F;7MjGY=:}>%~Wu"ʤ(dISh.g]1QXh+o\ϣȑHb3PXJq(`k&m)i tfYo:. 25rUAi"nTIv0e+?3hCFj>Uj{فhƋtZ1s  l]wMWi4{8k7[<nJ,E?D/wt~WʦZ܃[+Uu_>?t k~D{o)/1O?sus>!00#f m[CKLP oӵ!\/FcMRߗCONŠdו*8x.8`.f$\9l+:V ¯كϲ L(UQ z&P# bl|ebSo!im'1;ȋZ2oSE;ԍ)/56 ׊ND;oѨ'ۄփսW51 u>'!TXOI 6G m9]ku|΂ {+:_%ߎ}"pU- Rݔifڋ w|^[t OsUJJ={1Ꮰ(b+ɦ+g7NBJgx|kp .EzmV1e.a-R0z;ۏVZ9 Mn93&֢`OXiT_obg T߮ SPqeՆ2&rY礉?y-wǖ$(Gʋh4D⭍D՝7B!?_yԍJCj'2TIHg=XڪPg&#t)R`?H~A- I$.<̕'*EF7PbJ]_wV'`X.c%P?}fWX~L̺*Vl8 ,~O2DDB]Xu^N tsX'&|N B٩l tr&E 15b*u@ oǎp}~e,/عw[Tny*Zɤ 'R@O$E~Kk%|tust M>9D1n dM\ygփ*iǷK=a&'' {d528.g{ܷue)&M,Fq3+J> stream xڍVTڲI (]"EIқ^@$B Ei4JWD.D)J&Q{Z̜3{Ί#S1g\ƉA@5}Y ,)K̐8 `z#1hƫaPSf4PBd!`0P !+T"@  Px`.8)ZaB@ow E h> GNA= G8<'Eyc.B@?$hc}_ (@3WAp @hoj =?z D] "wB;Ca0 @]h'ljh_Po  Ez@5UPB}U "=qH_~!\Y B8oԑX8pmuGc?kU'keAc.pP ʁp/  , =1@x0'P_8;:#a8c` @ϿWvm9cn.HGSUCDwTU1@,PLB @$$E?AeW$K%W !?c`-X #|A2WCoV?X( OЫ}} aij 3pg?Ym0*h_"[w6B`75`H4 `p oSpH 4 k$eP, !1tV0$.@By@ O)9 ,@'1@{Q_^K qUBH_a ]*U8ĖF- ᧰>GtB/*} 4yN (NLF× =P3S^ : s'm nNg|ץ_]6.rbx兌.I{x8۰1<'l81nJa]Qs$@fd!f^xgfm6lܤ{LFUtX?K g l}b$?iL,R @&]Kzeef+u}?ZT+b:ʩh O^NmwSmoSYWebBup((]KޟQVq%DcLI*B]C潂,mJ3+tP9'ؗd' rV#Z:JfkjhRhƻhed~etPvr}6An"xδTǭxu) LiJ5w`AS-]0-IIo+ڑ]-ȣ}RByI̾oXl/\LlD';~vlˬi(7PnܥvS5@oi03$o,zuYgxN9)r?]#E]1_Ը07bpx,'2~1j=UuT;AQd-x`̲YƹPiE~msF|bLCktݛʳfmtd\Cw/N+LW #ghK8M6β-7%@¬ݓI* _F?O/U IwW9O)z:Z7G"R~\_O9d*M$1"%*VzR d@ ՞$Z,/_ckȿQ|aI녊Gc"`iMhPt5ܰmcN]':2W"BrL8|,Rhf2EY;~N}CGa֊ }Bcyn]]uy08O9m:OvrUkǹ!o[Tv#T|YC bap7Hjv)`rzZJB ^=!_G[G"1DLvv_@fWxv=a3nx/IK{UkO> 2Y]&k JD>LD]4$6< $ Sӹ=65/Paᩭ>Z<\޴dMG2^9G]cBY{[fYU%]#ڔgjGoO VY3<$ e93+ DXɫ9ʌ=ӭV'*9!_|uHQg^Q.f|Ħ1ڼMOc>ZR1\>&ku}mns]˯r9*ĸ}k1+i.97k;UW& =mdtЎFEyZ%. J(8im>:t9˻]S}P$)4[¼탴ָw}Boh5` rوybOW)mfD*,o[ K~ :&Dey [̝eWk?޶I/5| h-xņiqȳwOK8dLQzf=oK\5'k;1Un|"==䁔;evE3~ߏ/Nlfkj0-+:A;/7GQ )h ۽tHC?t[8bmC˗,]\J%-O3xj= CpبDa Yqʈ8Nl3v_HGbE٭ Jk5:vIEwVë0j>mFH(*mn5f81dn bIE| n;#e#>l\Ms!i=Q|CAvp0w~ꭻwXBvӪ4ZS0~"P+:Gn7]765Q/,vho#\T})"KؓI47 .6.OOuQV\v_u[L|dYĊ0_;PU o">FjhZ書\ر$\>סitȶVynk?gjPCe]3!(zp 5! QȺ+g\I|T?.wI;򋽙6ƱxY.{w_6kXd[6uO!6:FaBPn.TEgf%Ϗ] vd%"F>˲,יj\j,H5̞1+yES`iKeX"VV9{]j:zLD}_ާp" ^ifQSM:/ԇ rzĂ5[o]vaT]!wW>tn$ĥXZ4E gYCdq$pIFm# <`B"P1`<Ś|yw0'7ؼ=qj'[^wJ  X=Z,;{^;ޤCHB(BaKfrO,śEY[&\E0.*4E+%>[cY}Gf- ,8),bF\/g@+X#k:nŜIIsxQC +5IE;z|_|#'N++\g63-djUg H%1KIZ }84Hp'~!)bvM[-Syq߶MNތ )-wG_g@ '<Uo{akՠ3.𳢮ڸQܠ{%Tb:_aZDzC$ơts(nJVQo@.jo፩iOfru8Qh)l8bai7%eqw|Gy )WM|\ļ]bظ7Gk^2-[I &]ׅ0{.P|Ck.겂r6Qp Bγu=QL&|ͅ #U-5<*:n xN0;HoXָ59v|&]6AK9;x;稇Qerɱ>{QJs4˩kncr̽WFBV_}gZ}'ߦDڒouڙ*Y!4"/IۿgUu%6oZm: oELâKbij(O<^X(sw[B> ] yt?aOhv4LjHt3.3÷` '8o9YӶ) p#W 7yغDV ; N;eε7YK\H6Q^"ڷͭZVS`8ZD)T7~j]E2U #*Ln ڄX+YPJvKPk ˒&m7'$x8dV]T0!s4ֽ`w{:5v} Yq~%m@\tkM=YȻ*Z4v{Ƌ4/jϼ ^)'.4 U5xHztƚUS'0Wla,鳾w AV#ljlרjp;%*S bX`I 7I]iggӾE9oԒpp{I&ď\heA ]83owM[3,2$7QJ=TӜ1;M>D QMBoaaKΑ"AwУuJp9I(f1%ְݩxqW߯FC7 hg&_1)1MsT)~K>>z%<4v([4PDQG] E|%TaؾɪwNZH>#G4ѝ0gcNTHᴠ92]=!PPVv$wp7܆'843\6K8,N7?t+^ie53 ;e.c`;B®fGG]Cp҄!3jc iֿ;qKkuz qiΌ# eA;}ȾꋏrGx"{.U>;D^?+`ݭg lryo߆Yg[ tVm&gmL\Vn]zp[=zquݻv!clii97 p*/[Ey-ψIWֺ# 6@K/0Հ.('[39zS7VJGwP)O j\\x”}sN+~vVո3xh#[La`3Oy endstream endobj 69 0 obj << /Length1 2138 /Length2 12486 /Length3 0 /Length 13797 /Filter /FlateDecode >> stream xڍweTk.( ť8S w)(Z\twΏf-fJ$w灆BYE$`.PPWW`ss"Ш[ڂhh4A.VH8`$LUpȹ8|Nvv!:8 $VfV=F|Л282فL%|)`jr/o,]]<<@MV,78X9qߎ2:9-V <+3houq݁V@0i12t1urtuau%o7BKٛI8ف]]~'i 2Wދ+wͭbȦao ,B#x r,N../WߎV _bvO#gNK ~ga7L_Glmbbl+xCaZXdff@X[[Eo'L6[{lA.VW fj^'.K*eo`{8yx@gg;8yx>4y6V{W F6?M`S ؀iq3^\ncMA`?/LП<~#'7p[!pESs$G-E!bUWdHCnEn>Ů2_G ZnBOk.Ot{W#IT|*xI酓qζ_J"s (ֈAGŖ2q޹|Fygeffƌv`? ϗXҊ8 km9&yMܑM44j$DyOr@CTӬ<1#:C+I2Mg\Vhzl- ̸VV{7L*Ls0%~>n s2"|iN3Z#+ {cUuSaZG6W8:9Ckx-F6MDbݽ1NGkOduo<1ɮMy}&6ci ϗ.;dt Y$^%*Z+, 6ס/Em~Fb&:;hh#ʂHDSQ^kq9 RQSr DBQ%@ue]Yq?ߐ~F(5 tNj^g+W:bhb3f%!Pc5uNFc9 eU΂msAiM(DhzSV WCXrn0UPWNA@B\vZ1RV6U~B(}1"2V4UYZuj[s[bz.--C7ĂW&$4tT`+{47X|LYdlA{=)a8HT Yq_Xhu/W,b"m6}MT^+!9Ӡ2ԕj_tl}RJ$[$2ƅ*Y-R߼nڢX$U}C:{l3I92,P8mʅF 9F%rȡ%bfS(;3D|\z>QQ=)jL=n?ChYYLY,CD˼ j(N/t(K-!% s&`NCҰP]?DFrE{Pekfj{F'aF65K 7#<T>T@ׇ%wS{e,MIV2wuݳ Y傋uXe rѕ粟kr0N~(Gi*0s[=ɦ^vo DތmzK||d2ף;qSrwkEDo7fj$˨49#hj^0~оas=IǺC J*X2JnVR; _6bxITxS痫Bt`%ƘFyVȾ12j/sm"{B3DER tߴHZ`:O5=:qM aX+(/r 7Ovqk0&'A_U:xadH΂I^N%gf 2ؽ/Ί>FO[=!i5*ݏȺ"?RrKx6Uv5w fӽg Rw*'-RɃTE|?4ߔâ1LVuQCƌcYGZI Wjwg{.fX~# muOnR(^ӎ<,%&+^E&qKW0Lь#BV]jsߘgj,#2YROuD&o |2 ^6>=l?@x."x_/uk^$~%*73ʂf1je g$}3&/ ުh҂_AQE+M*MKJS䃌]9qW")2՜&KRA=Jp$I- %.m>걯?1}d wZ>lF, %+H6_jʎ>Z5,?Q1|%@c6 P$O*膛aj"~ַ xP1Ql%zD ߳~sFmXRR]+%kFhCFOU6ڵc}jf]K [ Yr߮-7rrH&[͒"f+ŷqC|0'iOYW"Q땣c[2sp3f*ؤ axM* z+F8,:}\ҽa͝fo3 y'Eq2`gc8~PDY51{KT!atx$f gMW>ưe~s H"{;TՌ)/`8&Xęm3(P_\>ezv '&"_xdum~ D+-f9A4ҋ+OlT T4Cv>x9;<2稇?$BAEK/ݗw->cǣ*5M ĶT}aݯnȿ#r5u=éQ*3b镐|p15p'fZjI.=lVS[A|y@g9y" XjC+۰,;86B=JIKQ"8}Y2dw-YWhAga S%X52W8,s0đq\X[igē"1'M %lQf6oz-9$J t.k~ m^DZ!;_`]&]Ѷ8ݹYL״qewVF6C$qqH`:*H6,q9y׾H_1a`4ۼYꑾ疸Dj̇빐{Uזx1:B )4˒ǪudXqD}/bJ>'Fۗ a=]*l@}7,[˿vDp>NJ-|=)ى^A b-+uf1E6NQ ))2fjrd~1$Eriz}VݘpL 7o]u7sQ[ubw_>@ gpuMGg4c)o N+;NQ|:ؤZZ]||d[kԽzm^=bjʇ.B B`y 2@Ge,l_i46e0m7_&Cu|J;A2[I?Mϱ0 Bud>:S}x`뗣VT, F}&S]u\\i7c'R$CYzo.3Kz@0$Ti{a9PW&Rk"$XNXے=a' ,i@&0We3E< K1Y!s= 9RYbQu6B]!y=vx\ ss-?4]EK@NVxO/GW(ekHW0v҅\Ji_~2Wv4(,Q|)?J^?$9Y=<"I_|c% aFy3 Cjtʗ B%ǻz#6)TJM>p]2`e;RPeD:c#=$JK"ķq~<$tJd&kq "=_&@B<APk*_:()ӧ8UvwϴF0}>[xUd xLs 0dLbE^FZa*A1G SS{c?cG4~}x>g7`kܴ ؠ4C ĉ]$rqU} ͫz*SxLBոl_䭌Ofl׮ha?n(ZM"oVN9hex A9}MߖoT=6{ '_c4AC ưSuT(Z"K_?I-7*uw*B_j G0HנNcˊqsjnl(.Wc&O~gc*^|3<2VJ RJ 1fNٺmv2ihRxiwa* ];%wB8 .Ph.m薙̀$85$ )~mUuRL5ȝ3󥑞t_44uǹx>r}KNswW粿Σ`յ)kev^ҙUϔ䳽Ұ.8 OK^:_zbo 0\`:#ȪNE!lGйӖcf6%#?HUU]CS{lh?yJCѳp2m H)!A9TO"nN6_|~JgNbu/r``z_+w)(14K^^ ]^GmOA;`K8M@g$Ks"D!1't5+m$(3&$qB : f1$S(%n+W.K 5nWIWxS5 Ntd%pyM QAvl9LOuq xǦV{l:%.cbj\NWծ";h>Մ>0c4r J 1fXp!K![x%kݓyS+ 2S;Rî8V Z 4`";ᾌ]Ï 46QzdFy$ ջۏ;CEc?{[/@dWY ehQz9˽H<%l> B,Qߒ0lOb]U<` #YOoaw:;l;qٱnqvGbEEV}e4kmCjomaWn9C7@rۄM<]нfAFJPgnD.Hyȱ ܸ Bke)h59_t P2 X͈NhNBeH0eC wU]AgU@Rͼ(Uf~hF֠ #3Ů{%WzM>|loxe'–D#fPP[N뗼BzpmFnhR ꁈWq @qTk뢚рGuuŁi$4m2-]D*yi`ʜS8iFZzq{I:&{3b~S <գR&D<8vnQ4,!cZ3PBhO1 >=9]ׄ0[ٷB݅98љPeotB@O "|!ыS$bGaoJL]Q6i=L{w6 @ -^ kѸRg&/AzFm7<ƨs7ūd/p*&)q.[`rb2!JrtϚ`'.S[zb|o^dHn1m>/-ŰZ-XU>李b&ÊIj 31x[#lF?@īgbd2jڽɓ >qRAXmNN$f=4zKA|;C#P޳}nr8yFokŹ`U0,?Vyr-Igu(Lء|LL_vߍte뵎Sآ(;Z5b2Jն9n\_B$.q(tv6XV#{2^!!&E7DX *vhxڷk"GbXmҾ w=sMu_|w-)іn!X;KzP3H[8~ys$V/.b' C1>Y 4߸f0bM}4W4j?oI )2cwJM̜ ,⠪L^]n{3 5b{dK)-te4-QJUÉY>JPI;$bKK1B]n` 7O}CH@&NЋ*ÎQ!ϗ<'t9g`.hܱ8L0^Ds|R֨DυhJ8G8xrpk.7_ѩ{2B}ȑPnVb48Fʶ3&vj@Qx`kPKT6(F;f(]i;E l*(~О=pwf&d"t-sv5yH085hkM[O_9=WUY 7HofSUaA6:zv0p'@%ɏP›a7pe|)}9 eYYYR >}aݾ E时."P c͑}3\2"/a&xxBAĄnr-=vQ1sՍ+M#U~JTZתuҦE'6 bf-ٜz04MuEO; 3{1R.Z뎵Q[eV^;#Wfd_,d8_y\qQ۫{{&^`8l1>uqoA冾X]`}T1%0@[HFJa'Y!D=ȧe/{Ĵ;2`Bۄŀk1@>a^JZ"NiVc+`~5&ri3΄6'Aէ@)J>PWiJ;j`#^ S%ďCH9Mh١A u¾Z bT+s],KMDrݾ̧nϻ4CMsb] _Tw?~¨~m 6v FskPrxێON5Fp1hM ~rcQcc!,S>9^@9_|l2~4S;BR]L JūO*)][;2 Bvc>Y l̴*ƶc3֧[61_ov0G4:臬 9ۂ#H.4 $6BPTOͰ}*t_ Y ,RcMY#88K= ܊teFCnT6\C-uʨ42 BuG2(Nv{8I&Nu>k~OmY&$z!E{AunCYjbI.S$Db!ѴN=}$.&5O4?!"]LtF` a6,gfkz;zOP4%<՟7y*3vka KYCN5~ㆢq~UiswDFx-! H9[xAhTUGsFvw}"f~oZ/Q7)qڎJ޺R`4^weRh$mZ/HFD%f̯;yK}Ŭ ~1W`p]|{c(<|tR띫\fB_SrS'@uiY'7.LW8*FF=9Sqa\+)Csd ۫fgݠdw^B>=~zt #QrrZasDȊ9S;Ge G혌v/3KPL yPg};r(Mex NW:Kh(n ܍r#2 I.We @U$]>ѭ$G2qSQ]b'}z͂fu:DKAe1|QE#qDq;Isv_UڪhNOY0 Ùrި& h_uWR$#F,:wcmTY/rv߭l\D @УMg{{0:zr OlO3P_Wn j+Y*Qkż ߯drFlK{<싊("j(RGSP#8 &jO[qb1K_*ײ/'tB<*G,VP[N#~c^.T͟PD_ P%r#l„ac7',/Xͨ AbƖ0W%]-IV )2^-0O]YmZ,2>< [>VN_O NGHB >`M &~wޙO:[On}XQNtN^#6&*OIg&2qSŖѥc&JʮXj5B37A}#?v큦pߐM4JP)? ވ u= ` [>'#MS@>ʠH%[錜6"9}.E 󧇏#'j Eב-±lcT5H!U¿rfb26nvhuͲe5Ċ\YpzcӭGV '4[Z~5/b(h2,\Ǡ=XaK)>CH\6:1?+,|**c@bdf;2?j&ޓ\ Κj?T!Uv_EjD30J>&O 8Z]@jګKfkxx6H_D*_hfryœ?!m{j"xV3Q#r^ 򵝦%;*e8*vLьUN{ўh9MrWST]8cJh-[o>5N3Kgck}NMP[``hԮ"MxxFl%tw2iP.{EB=إF}@DξUqBKƇBQnԈO÷mCӊUhJ}y_4hTZ-Lu$u!0*sF=dPnPq[0v1ӟ{^^t:nJ\8R}9- ]X,UgE'nPL`sfc\>Mzk[8>5NF?%8f*S%mP~W5\zndeX5V]4Ct{jvwzF["t ^R%gT0U¥UjQ][[n'bA{W D MW(I㵱!5C㣛Gi9hi2C؝L;oBmS eS!mvsuhLXxIZاH,9B[@n"ne&gmG B! TWW endstream endobj 71 0 obj << /Length1 1396 /Length2 5966 /Length3 0 /Length 6925 /Filter /FlateDecode >> stream xڍx4\ڶF{'ä5z.D'A5BѢE 7ɛ_֬g?}ykϬfh"t#hAPgb@Q! PCqCP0$B?*^P0cS1@=$ D qi4"`@OD@QD*HO/+S[Pz `@vz`*Bp G{^._` EA|N_#? qL]a&Hg/ 0„x#^Lu. @gs !п @`? pu]!ZF8($&u%#3P/'%(+ fN*H("՟* 컿uG }a'_c8y{ !`Z0ѿm.P4@ (%..@~W_L=͘=g`3E@h/ohp:"N0u!c:Ɯ`0'$o#757S3H?@@PJ@ 1@?aX-3 W}e?#^?s#1̅xM{@1 s;_YWwGpo?_ 0FcThP _Ճ:=۫cԠp0ZtWx/; :׿X0z`aDq\Z~cOdE幕.v&o_8$概Dl3C(YJJt^(T .qy*WIJdsBչhdφakΕ gUI{/DEKӉ`8ʅ-l0yJ|n+=錢@h>Y;%m3|KI1w!IkX3r.=%~8ɈVsx!`̪x_ϫ ,Ŋ{9锲ˆIOFC|Rg9]*NV="%|H-Pd銥ibvGq6&Z̧iNҨĥiONNwc&(T]?n)g_\(D8s/=yh aLo@0H玠tC'ꮻ93@Z!R2'w9|ql޳>|1>=snWɱ-$<3y+2pښo.f({`aq6˄X&y;$HI8G\YbcN4'a=j꼊VL0$80vjpXh&!S.u<^\o8XM_uʉVsTj{_JYk~c|(\k{0+@.g4鵯7y(b1g3<*KLYuv<;?Emf u@>(R8Ҷv)1@CE3<T˶ݐ5&8ZflEϮ]Ijw˜k6{Z_` 38$,0&#b/%xy=i@R/`jmpzRț~!EXGYQ "*{7 @JskFɳ*Ip)R% .OUDTE}ymƬ>}v"@lX d; Uw6iFP'a<RZҟ Iz|'Mop3f=|Ε&47zPiG`]C<3AQm3X.eBV=F엕xZD3uWw @껣іzr} ч[u#To $ Tlg6l=QZ%m|J?ߪ n׼.2 C0G5=B˝˻|fJV&'9?šj`=q'[A=eN?Ms=>=Z_Ee>$pe{ MX~ԁh $3#AYH:}3*?vc_઺F8a-iqU >T3H4H",OM#/Ȥ@[jy87\&c ۱f +{4.p ?s M0&{4z0K^E7Jyo"&n5ΚvfP,ꎯjة*mʏQZEzپP/\ae&f$T+"+A+λY).Tg@H?1 dƮ0|u\?Op/[{r쥛m%DR^8@aAu?TN"F#91><$1J Z@Iz/IZۅmi(qc ͞@4a 9B4[ wwwۻ{u4G:\,ѓg:V{h>yd~[}JǬEZb-@ٞB0uě ڦ'_h[@eg܏ D)MjJ7={jJo^ l2ʥ' z̡^6KSu؜AQ2\GxРr Yμk&V\P#Sڀi[7eg2n8*洹;W8oⓅWJ/\>AzkK6,Z,*KN;&mA/CMÚEg&̚v3’*YpUKFʹ4 t3ΙƳ4)Ě^ƇzUpؑt-W'7 3aEsIdg2:.wߟL%ȼei`5ztUABvDp:P=P~ L$}dfJn/ jgy?mPPhQhU#-Eًڧ/%P6G LTĮ4\p$='})JvuO/2#=MnP8^ιˢ[5][EFoZs9,y~G|z/)%t=Wѱ QW +KZO"\NojoI+3SM !n"*6ek $-.JG-#0ʚU<(tr[D#%'ι%k mD#ů&pO 8`{V Ck yaǻ$2'VVYg?X}T;9l9j ndRkO^+$,$(%T~S%x5H-k6`A)#MFhh,]7plzn^tN]e F3VL7k2P,K _!A7GDchv\;3Www z o9EǴl/v. bhtz2GT44lC3ZdEI;pY~3@3@x)_Y(C37ZqZ|v򔫉5e2)θm#r|7 j8 ÍH>85`<βh(7? j<2r?F!5P*{a7 }s!Ll]SҹV/&0bw)ӒVZlߛ˙[HGnˏE8 |`}_gj÷= bdzk<2cpK\?BJ{;z[S?7ubO~ȿ v^[x] y<E_[r^ݐ{ o;,vdJ>7 |ZDn\n._ݰ Hjg9+}vR L9ݐLW4l+>M!H`֑D/O*a&S1b=1O!#A4l߁Mt}Ofe |aVo0w)Bn\Dz{5hWe2u亣0]5<,@![;Wq^z/{\/ffF&9y=.^Vi&V]/ԣ**fr5zpzTo,r83c/= O]u~NK 5ӣCRR iC?JO3-Lb߽Ng'1hapu*.Av!H$ƊjU]= 9Mgv#Z+ WosVIl(&}퍀)c- r, ٷ=V,.7{U8-7x\T {+{}0Qf;,X( qdBk1pbQ*sph8ED t'SȾ$0ģ)VuCyZnk PqD xMa+U{Eʗ̼S\x!6Ϲ$ij<&T}|,MpMFި6 *c8M /x%KO > stream xڍT]6Lw%]J 03 ҠH)!Jt"!<}kֺ\{_{Ϲac5@0$ @APMP / cc3"] ،!(&)D-8 >&=$`/@Axl p7_#~N[.(yW hm.-W N)G$M"2\o(A@< v-Zc:B: HopopB`Op;@MI pIWDP`[[ 9.&? ~.}< u( P;? G@]~`v pWW ]"b{.0;my`PwO_{m$@D@@@ $ >Ap 6w߷ C`/ OP`El Pߛ! O Ž0bc'<p?$" DΣ U?b`pޟ%{ο \{BGYw"eO??~+/ƽr=SRM ^5$~aE(C} vP㟪n{\0.G ~l_Ľ4pAg*lv $= O108>pc bE@oӟH_x@@?}0 " u[OwޟGMm%Ýj[ϫz} 㘬+xm*H] ?blTrl@r) ăVL{5ހQ2m'FGk!Ã&xOemH<{縇ѸO6ZLL-M>qd+PnW2EzHdk/*t%q֖럟jX&?)Q_ =n i4eV[=T=\SwxڷޓyW Ǫ$wbɇعTB?!O*ʸݳc;oI54kǒ, 酼䍺G3c<⡼ׂPa;͸X- k ZU٘cYB Cs)dIm].Qos+iO1oj^n`tW|%yQÖ9Ql5<~yn .N -fz%{$.ިf>1̶R/.i;eس2OTWd"Դ!$K  j'?yX9ESvgUSi#Dpgْo% )˳m˽tΉg\>[q8~ 8+2a[JpQx=Xbf[`oR݊,Hl1n4&Bk3 9)l ɞb}lPg[c NJcsmk7%tdIeym82$T@epȞ#7ehUbͳt*sbڧN5J8zvԮtxŢ4߬DfEp&ڀC= 06R{gqfBTE־,U__\@J/l=ycX4w:CF>JG"!$,\x#_=_TD־Xڞxk,mA`DD%48G?<b ِ?z,4vs> fzQVo)E3nAX`+\ᒳq̉E"yn[Wl\i;[_ǭ‡>+Tn~ ㅋ*GAL,UNWypP9%iÁ D'#<Õ"jA2&8G&ԚՂe:bw<0 2 RGWAb͌-[@˴ ;8O~uUS<)CjF /f\"_6%̫Cߚx16k<Qmփ*4#Y-*o4*8wY(Pv9TGVO[f@ۑWgkcdW4.T" \KhMcF-ۦ @|?2R n<5[4,"A⺴LgkL_u4.m+ >\F6.}/6bsN9a](3q 4&;l0ꧼa2oъ֫NOխT,~}FYuaBv@v-RL\ 5IԊȹ4=\h,ZjeP=yql'.gY?{])Y Yu<7{$ǂЖǻbvcZoL6X0<6؇\=[`sP6&,},_8GF|S}W~yƢg MK]iȅg\|ETT*?tI/KL'b 9U1 e{{sN&(DRnK%LqK)i"Ai|!C#k!;nütX^]J_lxdCݳH-C5HKέ_"6tp+CUA_l iLOFU:н&'BeLӄ#L0#-ڍs?8/?Ia]7:ߴ[,v kuWNEVQ$;tI)p 2'H΍D6[Mm<`I~Y*qw^p2Ħ PH*p@: }F:,O!S4ڭj ;'I3s?CcՍů"젃MOLFXo;$tGZ;w;N[G^rN磊4S" ʼc*/ؙJ4'~~coXĶ+'xKw`cC rVnoONBxǩ6!KזfEbWRS]vA4\K0vhvZz.Y:LFޓ+ ;Z תk^=~G;0U 24VE0y\R\%Kkr QMƕ;}KCH=buWSKg{LKϓJf$9;pv!ӿ$;;Э뤱N_ZY04~LbL&0e5.'uڝppGBL.ھT s5>l;|_PF'UO^bN\_qmy11yQu瘘\/: de,L5';#]l䣢~2ob/agSæ:&24n3,L$~V L"h=Q9 Z<϶T>m*k\PJ"[+bOZǃhU!z0Kny>n|]޳O.EHzߞNҼݭ.:Q`d2ud+׷^Pfzu*MzI7|LuN2 ȁ13r1I'mӃM-~ڏW>Y%goZ2Rz# p٠Ph 0y-s?Xhx\e=Mylϣw( `FF9}k\MmBO߸bzXfP!Cɓ5XVڕzhO$hsK1͍;1䬨/VKj|Cޢij޶GXl{C]?(=]-jqIRU{@/FYUX]m (TTGpc-#VPE^+ P4nrpB:Jj_n)kف>U C[/zZ$mڰ)*vziαh55Elf5}h q&U2S(m!e-nDOOSt{|1m%b81i\k*Xms0-GYSЕj/Nz Dpoܶ>g E\յ TRmḌ epSGw~뼰h6{W)OLL;mAS7OuOw+- =8 `ͳ D(55yM7m;tˡϲf2 $# P[ i'aF:OsTd]*4v6f\t]6b͗x}? O?B~lȦ 0X.p=ޜ׳tѨŸ3D2-_#y|-Un,%|U0,\ SwX{!L#P7)4[ Nj 6G۩4K֬;LN)XϾ6~WgԼńlhZEN0zYiFG"zDds-H60cRlWj3&z;G_u z%'ܕm?ڦ|No+}5A Jr͚E@ʛ5(o:}5O5Fǯv7$ - G)iH`* e}^_1]Pk ɟOJVܭ A ..KSioϳ){fO#=z+dtfv~1G P u&Pʍ { `Rj}- i:61e؆籞N种rY:]{eӌ~W LK6Op3J}h~3iO&I03۫\3R=_};H 21]%i$}Mwwyt]V9g+_9~Id){uM#5PGAK{ɘEPwF]FӒJ'˻:PCnz <hF"_ KF/$x. 2ٳU,u_֚;X @?$N,eFlz3Sn>q 3G]XBR" %R@{꽴mXfWcTMH˫i4c3ΘB!R sDݲe}; -p1>"U_߀?`5i-iN0O~TeqkZvW#ؼ%٭!7à.>f !isWl$SA΄ ޶:0:BeOs ub ,wlr;\Dj:BYz 뵡H!wX+F,(l3XƎI;U-)Oj7#$SX_+1/WQf۠x<7Y7B43>9uB:tl4.|G mb8}12btoWˆP砥DcƦk-YV%~QC-xOj\M@{Ǔ'^Ft~ r}Ɣd+)xΗP߀2>ѣ/olbcFK<|0+=鍘bt  efvdk f~P@/|93knOL*p/챻ϻumdk7cϜ\ J7yƔ( $u:V2 X>zN8opRYsLy`"祂\糾|ўr;"RݫO5l4^RaإF&a2Rb5Za5JI{gYH~5*)݀-{e(O\Y{PzwPfNBH*CK~WCD*3Ml(dTP>Wڊ QRƜ nj 95 ^"c>T F"\d!mݫYTi@6է^`󝲍D_,PNVY#w-^26";ގ8rry_ 8NjX) A{A.;>Ɲ^;OE|#;|H=ýGѼ)xޮZlq49iQn_~PV%P!ږP[{Tqyki)3GuIڊWQ1a֍ϟ]׫&=y%oa,zU?:-'g!2Kˈ Hcq@iu/)չ D2F;ɴcx QJ' rM2W3bdî~v<5ƥ0Fw:uB-{TzIi R"J/ݺ<)Pɹ6A]-HHsUWNz+|}Hi{5SbTg bbvx"BQczޢR~ ;Sj~D"uCS Og^de)N$3Wte31st'_ctK9F?ϰQwrtb:͟ej$PֱKҩ\H(#⹤FYt t4'I UE! ׬XQ.Ch3_.=.N-+R NK=SDy晆*o]'ڡ6'£4 %}Off]UFT`+I/'Xo.He > stream xڌpk ǶLlۙv&Zm۶Ķ&6'cb~:VZպZ$*&vF@q;[gzf&*3\_9:Ζ@CgCC9;[5`ab#ೡ @ mg t#p03w#ʘI/w  gl`46[='=#5 t:M 748rӿ*vn@hbkt|Td @ۀY `ja (28; mM24v7t5640Wqa%Gى f1[Q;_}p݃?kekf_djakbW&.j.@LLL\,nl=_J5xL?X?~༜ ]gG?&#-ܟb;Zt>Ə' 3c#fSS,IVع,vVN7(Z'xJٚG&?A Xvs Ps]&v&//3W1X[KOo,>c>6jr@ r6a[3i$n4Qp66l[מY[,YLLG\VHK؝e53kX9pLbF`k`jבrqE .?(7d0AF?( '}A| #>?A`PG}j74>3r44~'LY{V|6u&C֏Y[:78JFK \>`#S KmOF >eaoqY~tELd?bc(?ma&~db 41GTQӟ$B@Taq󑦓?B|P96f._T'c;ޏVz%+cF݁pKvƼ_4ҩV\SSFQĨֈ_ړ:~{|IP=[.>n$%W:~uVo&wpBR,Dtpo1ttX!R9GP@^`C LOCy~-oX:o98X 3kmI Èdb\Ӯ*>..L,ȏg;^|GއJE12m ש&y4SΐhЋSW l}G.Ύՙ o|ǘH]t}ط : ' YhM틼!>O> [=g ,N䯍K7m>ō˵Ӹ۴.bjզaL#28Wۛz1}:;;e6ax,S*nm}N1ERF|o㲊01m1c5^\W +SKSx]"R$oF|E\^\CA-;e*""R;*|N{6&cPɌE_.:nZ]S3srX:ugFR׊o3"[whV LJ "!!Y<(WԱjCgѦPOU蟛QL'o:hZrYaRΆ28㩭ψ|{ocNvk(B-f^T/,Js_ M;ሥ4?GjW+CYf_7QbZ#~,]PKn1/ǬFyRzaّ}<KQIWM{ ~Y\+QQzU-֏#U(>_6LO=,Ǵ'\C.̓?[}L EUOn1q}#XFxa6_}ysc(18 ǀU_ .O׽eJQ:WO;"gdGԧB(hh hskeTט{\@5_V-I!nO( -VnBǽqrB]E{6cN ăvHz< 1Ps g;ЦMٝ& ybxNC@S38K;$,0;o_'p,9;:D<͉<ϭܬݑ ~h VF:gX zd|`D wOƖcInmUbظ!mXb>-:YMh;VcAv/>l-#_:Դ߹*$jw\ظ p'w|OwSTBM{5\FDM%^4xdbZY4yAs˜ЁZxWQt ɍ-G~Zo8T;7> ]Bf*<1yT9T]P.EƉ!L5XIZ9d%ٻXS0HE_xi[Ȱzo$$@:> r3{ ;DL}5[UTNM^~ r~5)3J`&gf -f]NWno@Я :שUc6k+&r=I&XMjxXQAnƤ&y;ѺFڰA{R^SڥIGrDF^HLnn\K"@oչkNAa3lc`9"%H6bNƶ̩Ӟ?#[?+sy F Z7m8@p="@D:?BÍ[k" Ȭrby sE3Ānvg2gO 2ތT,K3\$*˪l4b{[,jOw5/Ic=Ǭ]ږЦjg$ue@nGkH#ios5%@qЇ.& ĩ+KTӸ#w Jk.pE`REgI3s0m!X!C V/Mz\$ Uӂeۊ>3>&}GqS-Ik_xKgm`4q[ukxUu=|ueOZ^!m#oqƩBnQ=-1=oRJKj<񼗹䓴,3 \ :`QلRewq|ccW4TQ{zᶝ5[)1|X:鉿'5_C\I6OWBX~Θ,R|@!א1"}Ζ6@mQeF\ӢqK(im\oP; M* >e:GWAըIu7 kzaO|F|68B_;HHvi}=mTO3BaS& ߋǂ4B qksyɡ]hH&=Nw-t!Ӈc7u"e0l)0G_F*kjIB)y Ba{c~7C#{'҂)#9TR%d7),̤EsM^ʻFRdi>v^` ʗx)}x|/&iU^D_:+* 7J= 42cp(*?{14"xm&C) =N`8]p1߃*ARqB $Sr=śdokO  ;ٖpL+\1N۳فMi[-ޝ~h&pe.Dg=˖QI-n8acގ!J#z=Cu S/`ϾVP-U3t5o>XSyU`Y fy o4K:'3P /!ym?^-O*TQHSYV>0!>^3B sr2XCZ;?8mn!mvG/ٔ!@o;Z.F-5GƂ_ص60 LC}.$^V&P̬Fĸ[V  ʐvOXX,˟auyEK@ 955Z:E"A@## ʏ m-8\s!2\O =T_e$zdIΪ۵-^&-x'(w; |@>Uy^ZRgj6eK˹e(Am[2{q]9<\894k4\i0x|eNa;BA ÷!`eӶ,hU7ߥ~s姖gȺ?aAn0y/g{ C[R?y:۴ _BNɜO}Fg_\[&^| _R]#ѵu\dYD >Rvq{}iUhfc'eXWW[. Q2Ɣ6Zۈe{ 5z}dO*A sv_Vv3qʾv0X=R{jldqg)& HlUw3GH|FF3%2GL=iPM}"Uƃݱb_ x,)/0w>|Ob7+,YU$RW74|xim'C[l{ |9p@ Iq\Wjk(@rC ʀ0<8 sX ?FjlOGB=[Xlss Fo'<"( Ѩ_Zf .[J K><|/L2O>(Ln);@-JVs82ˢ(-ܥ;q.)Z> 侀0Y>QxDT-oJp4T^\ؾÂ+cq -&+1h7a|+mؒ҄XB>DDVF%A&1Ll q TVl`@/K"wzb9`am@KA[R&%/g/k>}E>A`J/2*5V9v@i\7ffaNt6Kjq1ԑNT9ij{{` puZ8&/W!Ex:-+ s(ϗICާ>b&ZB3534Cp<-Re)H?G@uM[WTj$*H,t]db=MuKfOA|Oc69P3Gji܉e|U(L/Ac9$hE~TDC"bJEsJK 9$o,uR,&cۯ Q2:rbS8z(+3?}5Ж lÍ=O_ƶҊ(љct#T7l,e\|_AA}bEݖՠ*ck'MM@ {@Dݣ`"Ĩ ڣGI6.hj>pĺ/(YBJ4;F?G4Wt䖦RPuٕi~N0ub^Vn=׭A 3=K 3f H3e5鋔%' 5\ǭ4J!_ԀꬿQ+=8 8_7c̴=EgDe Hp$z#1v^ 7/Zeq!*_z+ĺ^OQo,:NR {^"Ҫfa#{jA 懛{+Er+}InzZDtiQ^ ϫC7:[Z/B#8a_P#gr&A^vV;]_6B2lsX2ѠGQVך,T"?WX^KdX+*oW0^b,1HP{@tCOH}ئ^] 4%r))I#@;#zv4Tz4W=cI4.K80(UB{0Rfu|:8d#Y 8-y)qQۙϤq6M#쓹Nz' ҂7Ⱥ(hVFFI+3 ^&0lߨ71Q@߽.D9'C<~.26Xl\wjbp+11hե?/GcLeO1sO/1[ڛ2I3Iģth0Ц>Aٛ^ yPDr#  E*yv/@D3Lfs9TL }yP[e!].Z!\ς`]|ԐߘZ_Tk&;#-A.sDYY~>fϘ}_qוbiFF5Cn^0q(I16iN[]?pCT,0 lrL-# w/>x^@rFLSx+ϫr#ۓ8$Vazi $ du{}g2 j.:!Ecqڐr*KhQ.$}Z<딉_ѯ;Q#dS2ZJ+MUs^IE/%U-h?{~\j&9[GAҧWwax Ȅveʉ-`AFCEmBAbOQS$9vE2+sj?z1}GtK2h\{IsT,dnoP0#&;zZmDRh;s ٵ /K?ԑ6N bqhy*I<@/ '?,#' =NrX56nqo5ߢH7`*CgPiXvW ϕq+?c7:f$S%$Z-9&YP?i`!&% yl/4Q*X6C#T2WޔmF]&%{(Lfpq ޔ5ڻX214 wǙC,钿gn$3_2%&N]"oTromͦ$!8*/ǩf{\Q?߽Nq8|0E]\'L3<#?xo=E8JWV0LRwj6{gl?[䀃2Ae\Z;R( ,/ak0K-GC5qkLrXX Ao D?=wXIBu1Q15F^oA9Huj&Xɢl`c˄Y,5,pk=Fy+^#cw]W"L tX άǽ4y\L-R#؉MH2*Lï MJ5Tf5W\1D_od4iקɖbr7 ^42aA!psf%9sV0#!WȩC.fj|j<>( ĵOZJgi("m@oq6]QW/\ oV<&D - )4;+WӴsžzP֭9t3#0Xڏ~n'< Vf*R< fd`d3˜ V8zXH"r)2ahH$(ޔdUo j۹=}%zně(uhӏi0Q~ٛ^6vR`Xʂw>7g/;-xKBo1Ķ#M+NRSXWyT:Gq痦 mXymJ9Wv19 Ogk6YNx(s`{xx%[8+/8ҍ/E /GkY=NKt5nk HKe+ " nZWe4_EƵ((lk=#FAL1LKvڌO"?eJ ` .ŕ6# ёrJt:Z9Em%Ťso%Thjqd\yvf]Zaޮe뽒Ió-R{<(PY+i3>ꙇ0fs[hat#WGL.cCs(Jk^qzL~M85n}mtIp ;Nat!֐Ѫ­UƧo}x%6̒tFdžMW#BX Dr)k6n:)]R0uB̷M[f={Y\YzMпVg*R9h v ]8X:jECܽL$ {Mhzc(18bxG󬛠DG-?rJ0Na#ǿkH?|,lo3`NJu-rb+'ֿǾA0q QEP{ZпUD(kyK\ژֻioc^XjoӀ3fH%l_OU=>_%C9!I{@?l #}8vfWF鉝]S/OFf,Ad[q)BkQTr읞}d]/j' rKi|Q LS5[طMY):T[EY=QMj{ 3&ڋj)~mG 5`Qd"/C?;5 +BZ]wÏ<5NѸ-aI|ړYFªBX]W"LWq5h҅p);VP- $pfߺOר&c[̊ÅԀ8IN!=4編Z'bZ|py=Υmo$Ję\xdMkDxoHgvr@Z ߍrHdWG~G_{':' n۾  /ƙ>iZ*b੄SX0x:Y Œᙏ ,8>YJiTj >lW`p'}HLy'V׳Yy>Iz˿9@(q f/8!-ΩtBT0 ;!t?;8iOiw.ܓB& C)#6cWy|b3CC3Xz˼I:.q:].֙'?"j4*37 |{ASWHQCᵾ4+VYM{/Afte r&~@]N3 Y0`L;x'e,DӋ%~9٢3%/Z%r݅m ;5z%C2N=jq\6JE^ר8+W19G87ql v1{(Zf jW֔S@+0dg|C a@crKnqX" ~n**)H0ˬ [:߼!b6!e$M&F&`z&-8-|~ܪ ?GqFݯf2g_&!RT<[^*l1G&/<úy5(x d`MޝW*&'K$exn!$Ty/+xK@A$kvTC%H ] mXf֩#7hՔ4DžhՠՇJ͓ۉ`P}Gѯ* $JbT#lx{־|0Qh5 LicPJm5a\ GCBm$DS z!&?؞ Ɠq֞g}C։M.`͙ vADF.ff3O7F ߜ-.K\ϋ|=e:ŜR"]8֫JeC,p}^+X)jixFf\q*#V.ڎ[i.Aś:Ul+7ntmG.  9b2ٛhѭ~*YlLǹˣ-|sÙWy'__VK2 sM #zQK6\;b=书a-]5x>|+g= SK(c@TP+;Rxx${j#%p*@ӳGPmkyPL[7#IѬrW7AS͂kd_ PvV,\=Ö5U+ -d#q\F'$.5GR^;ѵ_ F %-Td+-P;<^r3璄^^'`3#W{v =Ea}@34YɡYWrZu8:kQw5<[qexysI;vLvqX[?YAQɣCA!T[+dIBEl;gAYV`t8T:ңDC Цը+:=>O7bt6^> endobj 2 0 obj << /Type /ObjStm /N 63 /First 491 /Length 3311 /Filter /FlateDecode >> stream xR_ɽkߪ*@H2B,Ń1c/3|=Hn:$6 75-`iJ2ϤL `)iakg{< i,Y4iˤp=7RҀH H37Vi`MV ~=+1E f Yǜ309wDa^9[P {{^0M4"ف22XT,j`X#,aP% e1D *#/A 'K@*40my`E AbYJ%|_?fdGg`OT.ߞNd1gzOa5b4ؚ~a,8Guփ38L"XƼ`cx| L߅V- B0|WJ嘧m2!Wˤ4Gf5Wh~~8*e`5;u)c[`iSzr1 m *UT.<, Y1C"/c0e,@x;{`5+qQ"̉`1!}:Y"!-dg26C/A[d|}5] ʧj)4t2^&HϑnG#VgsѧOY$Z71A}hFb2ZixbяyzqLs =]Б͎) wW /x'6C:y !҈eQyL$R i,L| mgS9{/ e@,mBKxH>PD D  Q |K,(cHt_FL-dXNsǸҾ&\ RP q T}ᰈ9 G,nkFK[\!>L"T<5: tDX FlEQAAJ Јǡ%8*T a*8bB,]PQ.hȈ8䄑m`GQsĀyt2FpCɀ!up@ƐK!Ң@ϰj԰ E\OS i'j1ЪVE'k#JeinФ?@nXurf0Ta=|5Ru99~.ǰc`CE+QrL&"t}11 c-¯}g1&Z%LZV,ŪI*S:0ӄX`J%g *RDU=QH4ƈxʕdRVJ ڌV?e}k\MKʞS)Y[㘪Rٹ>8R_8.KFR zVBX׏EŠ}cnҰQUjER."bY T OZ-) n Hɓؽaoq 6yИhPRg/%RBǛit[-uSr5s^+z̯{LZ8}Xæ}c'@H<`ԍ,wg?0"ՏwIcZpsor^`9ꛒ5AiKݩtRD:WɌzH5+9L:QC=M58G׋؆ћa?x1ZU Dji<gʈFRq!Ƽpy0宐5>c[,|JWz%5tQ$‹RCf v0~J);w]?C~+~ɯ5)9_%¿%vG=I\!Fq񕩎?G\;}1DB7D՛u}iYe@Ԉi2֠߭e5U-CP 9,/hd7ikwkiELZeo&||[{N[.>W &Rppw %WO)NF_M9rtuȈDqjsS'|og9KAsN ?!Re7Wt?%phRAOa7׋qif3xSF ~3^gy9]Tic^ x/W⋿$fLnL{/LPc?JJQ+Ͳ JoQFle0\{Z0 *vmOFJ:2]6 x+v9-_&y)(Y>tw:O.tʄ‚t ~Qd%7;wIdvf+voj@+C "YS4g]S,Ѝ`j୯ @[yE-ܺ5LV_D_~9Eܴ{]:"6'޾´6 WЦdCr-ڜxFФDA|-o5-M.wnu-ڷ /Ӆ}1r7[Ά ީs+6Zo)ĵ?@mTmtyy[B-o+%0ޮ-۞^z{H5m֋vsn #]Wj wsG\/;`x~|\g:y5<#R\FףEd yzR5^\8t7^ v{ӋW1`W7 bu?K9v endstream endobj 83 0 obj << /Type /XRef /Index [0 84] /Size 84 /W [1 3 1] /Root 81 0 R /Info 82 0 R /ID [<1F71EC0D96AB40BDF9EEBB4C41C13BBB> <1F71EC0D96AB40BDF9EEBB4C41C13BBB>] /Length 224 /Filter /FlateDecode >> stream x%96a{?B11,1$iPـ4 ;j~6$$)ɩ2,♠ ݰp 'p=V;Vz!P=!B  XZ ZVTF``0P `f``*1Zڹhue&j.?Fڭ}[Z;QgԆ Єsp|{,E endstream endobj startxref 152949 %%EOF genefilter/inst/doc/independent_filtering.R0000644000175400017540000001572113175724774022160 0ustar00biocbuildbiocbuild## ----knitr, echo=FALSE, results="hide"----------------------------------- library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) ## ----style, eval=TRUE, echo=FALSE, results="asis"-------------------------- BiocStyle:::latex2() ## ----options,results='hide',echo=FALSE------------------------------------------------------------ options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section ## ----libraries,results='hide'--------------------------------------------------------------------- library("pasilla") data("pasillaGenes") ## ----DESeq1,results='hide'------------------------------------------------------------------------ library("DESeq") ## ----DESeq2,cache=TRUE,results='hide'------------------------------------------------------------- cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) ## ----DESeq3,cache=TRUE---------------------------------------------------------------------------- res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) ## ----headres-------------------------------------------------------------------------------------- dim(res) head(res) ## ----pass,echo=FALSE,cache=TRUE------------------------------------------------------------------- theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) ## ----figscatterindepfilt-------------------------------------------------------------------------- with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) ## ----figecdffilt---------------------------------------------------------------------------------- trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") ## ----badfilter1,cache=TRUE------------------------------------------------------------------------ badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) ## ----badfilter2,echo=FALSE------------------------------------------------------------------------ stopifnot(!any(is.na(badfilter))) ## ----figbadfilter--------------------------------------------------------------------------------- plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) ## ----genefilter,results='hide'-------------------------------------------------------------------- library("genefilter") ## ----pBH1,cache=TRUE------------------------------------------------------------------------------ theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") ## ----pBH2----------------------------------------------------------------------------------------- head(pBH) ## ----figrejection,fig.width=5.5,fig.height=5.5---------------------------------------------------- rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") ## ----filtered_R1,cache=TRUE----------------------------------------------------------------------- theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") ## ----fignumreject,fig.width=5.5,fig.height=5.5---------------------------------------------------- plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") ## ----differentstats,cache=TRUE-------------------------------------------------------------------- filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) ## ----colours,results='hide'----------------------------------------------------------------------- library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") ## ----figdifferentstats,fig.width=5.5,fig.height=5.5----------------------------------------------- matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) ## ----histindepfilt, fig.width=7, fig.height=5----------------------------------------------------- h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") ## ----fighistindepfilt, dev="pdf"------------------------------------------------------------------ barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) ## ----sortP, cache=TRUE---------------------------------------------------------------------------- resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 ## ----sortedP, fig.width=4.5, fig.height=4.5------------------------------------------------------- plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) ## ----doBH, echo=FALSE, results='hide'------------------------------------------------------------- whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) ## ----SchwSpjot, echo=FALSE, results='hide'-------------------------------------------------------- j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) ## ----SchwederSpjotvoll, fig.width=4.5, fig.height=4.5--------------------------------------------- plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) ## ----sessionInfo, results='asis', echo=FALSE------------------------------------------------------ si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) genefilter/inst/doc/independent_filtering.Rnw0000644000175400017540000004773413175713327022526 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Diagnostics for independent filtering} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex2() @ \usepackage{xstring} \newcommand{\thetitle}{Diagnostics for independent filtering: choosing filter statistic and cutoff} \title{\textsf{\textbf{\thetitle}}} \author{Wolfgang Huber\\[1em]European Molecular Biology Laboratory (EMBL)} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section @ % Make title \maketitle \tableofcontents \vspace{.25in} \begin{abstract} \noindent This vignette illustrates diagnostics that are intended to help with \begin{itemize} \item the choice of filter criterion and \item the choice of filter cutoff \end{itemize} in independent filtering~\cite{Bourgon:2010:PNAS}. The package \Biocpkg{genefilter} provides functions that might be convenient for this purpose. \end{abstract} %----------------------------------------------------------- \section{Introduction} %----------------------------------------------------------- Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance, in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance is differential binding detection from ChIP-Seq data. The idea of \emph{independent filtering} is to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the false discovery rate. A good choice for a filtering criterion is one that \begin{enumerate} \item\label{it:indp} is statistically independent from the test statistic under the null hypothesis, \item\label{it:corr} is correlated with the test statistic under the alternative, and \item\label{it:joint} does not notably change the dependence structure --if there is any-- of the joint test statistics (including those corresponding to true nulls and to true alternatives). \end{enumerate} The benefit from filtering relies on property~\ref{it:corr}, and I will explore that further in Section~\ref{sec:qual}. The statistical validity of filtering relies on properties \ref{it:indp} and \ref{it:joint}. For many practically useful combinations of filter criteria with test statistics, property~\ref{it:indp} is easy to prove (e.\,g., through Basu's theorem). Property~\ref{it:joint} is more complicated, but rarely presents a problem in practice: if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without filtering, the filtering should not change that. Please see~\cite{Bourgon:2010:PNAS} for further discussion on the mathematical and conceptual background. %----------------------------------------------------------- \section{Example data set} %----------------------------------------------------------- For illustration, let us use the \Robject{pasillaGenes} dataset from the Bioconductor package \Rpackage{pasilla}; this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate samples the were measured for each of two biological conditions: normally growing cells and cells treated with dsRNA against the \emph{Pasilla} mRNA, which led to RNAi interference (RNAi) mediated knockdown of the Pasilla gene product. % <>= library("pasilla") data("pasillaGenes") @ % We perform a standard analysis with \Rpackage{DESeq} to look for genes that are differentially expressed between the normal and Pasilla-knockdown conditions, indicated by the factor variable \Robject{condition}. In the generalized linear model (GLM) analysis, we adjust for an additional experimental covariate \Robject{type}, which is however not of interest for the differential expression. For more details, please see the vignette of the \Rpackage{DESeq} package. % <>= library("DESeq") <>= cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) <>= res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) @ % The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in the columns of the dataframe \Robject{res}: \begin{itemize} \item \texttt{filterstat}: the filter statistic, here the average number of counts per gene across all samples, irrespective of sample annoation, \item \texttt{pvalue}: the test $p$-values, \end{itemize} Each row of the dataframe corresponds to one gene: <>= dim(res) head(res) @ %-------------------------------------------------- \section{Qualitative assessment of the filter statistic}\label{sec:qual} %-------------------------------------------------- <>= theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) @ % First, consider Figure~\ref{figscatterindepfilt}, which shows that among the approximately \Sexpr{100*theta}\% of genes with lowest overall counts, \Robject{filterstat}, there are essentially none that achieved an (unadjusted) $p$-value less than \Sexpr{signif(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE), 1)} (this corresponds to about \Sexpr{signif(-log10(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE)), 2)} on the $-\log_{10}$-scale). % <>= with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) @ <>= trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figscatterindepfilt-1} \includegraphics[width=.49\textwidth]{figure/figecdffilt-1} \caption{Left: scatterplot of the rank (scaled to $[0,1]$) of the filter criterion \Robject{filterstat} ($x$-axis) versus the negative logarithm of the test \Robject{pvalue} ($y$-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of \Robject{filterstat} and its quantiles.} \label{figscatterindepfilt} \end{figure} % This means that by dropping the 40\% genes with lowest \Robject{filterstat}, we do not loose anything substantial from our subsequent results. For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal number. The analogous scatterplot to that of Figure~\ref{figscatterindepfilt} is shown in Figure~\ref{figbadfilter}. % <>= badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) @ <>= stopifnot(!any(is.na(badfilter))) @ <>= plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figbadfilter-1} \caption{Scatterplot analogous to Figure~\ref{figscatterindepfilt}, but with \Robject{badfilter}.} \label{figbadfilter} \end{figure} %-------------------------------------------------- \section{How to choose the filter statistic and the cutoff?}\label{sec:indepfilterchoose} %-------------------------------------------------- The \texttt{filtered\_p} function in the \Rpackage{genefilter} package calculates adjusted $p$-values over a range of possible filtering thresholds. Here, we call this function on our results from above and compute adjusted $p$-values using the method of Benjamini and Hochberg (BH) for a range of different filter cutoffs. % \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figrejection-1} \includegraphics[width=0.49\textwidth]{figure/fignumreject-1} \caption{Left panel: the plot shows the number of rejections (i.\,e.\ genes detected as differentially expressed) as a function of the FDR threshold ($x$-axis) and the filtering cutoff $\theta$ (line colours, specified as quantiles of the distribution of the filter statistic). The plot is produced by the \texttt{rejection\_plot} function. Note that the lines for $\theta=0\%$ and $10\%$ are overplotted by the line for $\theta=20\%$, since for the data shown here, these quantiles correspond all to the same set of filtered genes (cf.~Figure~\ref{figscatterindepfilt}). Right panel: the number of rejections at FDR=10\% as a function of $\theta$.} \label{figrej} \end{center} \end{figure} % <>= library("genefilter") <>= theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") <>= head(pBH) @ % The rows of this matrix correspond to the genes (i.\,e., the rows of \Robject{res}) and the columns to the BH-adjusted $p$-values for the different possible choices of cutoff \Robject{theta}. A value of \Robject{NA} indicates that the gene was filtered out at the corresponding filter cutoff. The \Rfunction{rejection\_plot} function takes such a matrix and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. % <>= rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") @ The plot is shown in the left panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering cutoff}\label{choose:cutoff} %------------------------------------------------------------ If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires you to choose a particular $p$-value cutoff, specified through the argument \Robject{alpha}. % <>= theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") @ The plot is shown in the right panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering statistic}\label{choose:filterstat} %------------------------------------------------------------ We can use the analysis of the previous section~\ref{choose:cutoff} also to inform ourselves about different possible choices of filter statistic. We construct a dataframe with a number of different choices. <>= filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) <>= library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") <>= matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) @ % The result is shown in Figure~\ref{figdifferentstats}. It indicates that for the data at hand, \Robject{mean}, \Robject{max} and \Robject{sd} provide similar performance, whereas the other choices are less effective. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figdifferentstats-1} \caption{The number of rejections at FDR=10\% as a function of $\theta$ (analogous to the right panel in Figure~\ref{figrej}) for a number of different choices of the filter statistic.} \label{figdifferentstats} \end{center} \end{figure} %-------------------------------------------------- \section{Some more plots pertinent to multiple testing} %-------------------------------------------------- %-------------------------------------------------- \subsection{Joint distribution of filter statistic and $p$-values}\label{sec:pvalhist} %-------------------------------------------------- The left panel of Figure~\ref{figscatterindepfilt} shows the joint distribution of filter statistic and $p$-values. An alternative, perhaps simpler view is provided by the $p$-value histograms in Figure~\ref{fighistindepfilt}. It shows how the filtering ameliorates the multiple testing problem -- and thus the severity of a multiple testing adjustment -- by removing a background set of hypotheses whose $p$-values are distributed more or less uniformly in $[0,1]$. <>= h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") <>= barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) @ \begin{figure}[ht] \centering \includegraphics[width=.5\textwidth]{figure/fighistindepfilt-1} \caption{Histogram of $p$-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do not pass.} \label{fighistindepfilt} \end{figure} %----------------------------------------------------- \subsection{Illustration of the Benjamini-Hochberg method} %------------------------------------------------------ The Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995} has a simple graphical illustration, which is produced in the following code chunk. Its result is shown in the left panel of Figure \ref{figmulttest}. % <>= resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 <>= plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) @ <>= whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) @ % %----------------------------------------------------- \subsection{Schweder and Spj\o{}tvoll plot} %------------------------------------------------------ Schweder and Spj\o{}tvoll \cite{SchwederSpjotvoll1982} suggested a diagnostic plot of the observed $p$-values which permits estimation of the fraction of true null hypotheses. For a series of hypothesis tests $H_1, \ldots, H_m$ with $p$-values $p_i$, they suggested plotting % \begin{equation} \left( 1-p_i, N(p_i) \right) \mbox{ for } i \in 1, \ldots, m, \end{equation} % where $N(p)$ is the number of $p$-values greater than $p$. An application of this diagnostic plot to \Robject{resFilt\$pvalue} is shown in the right panel of Figure \ref{figmulttest}. When all null hypotheses are true, the $p$-values are each uniformly distributed in $[0,1]$, Consequently, the cumulative distribution function of $(p_1, \ldots, p_m)$ is expected to be close to the line $F(t)=t$. By symmetry, the same applies to $(1 - p_1, \ldots, 1 - p_m)$. When (without loss of generality) the first $m_0$ null hypotheses are true and the other $m-m_0$ are false, the cumulative distribution function of $(1-p_1, \ldots, 1-p_{m_0})$ is again expected to be close to the line $F_0(t)=t$. The cumulative distribution function of $(1-p_{m_0+1}, \ldots, 1-p_{m})$, on the other hand, is expected to be close to a function $F_1(t)$ which stays below $F_0$ but shows a steep increase towards 1 as $t$ approaches $1$. In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative distribution function is expected to be close to % \begin{equation} F(t) = \frac{m_0}{m} F_0(t) + \frac{m-m_0}{m} F_1(t). \end{equation} % Such a situation is shown in the right panel of Figure \ref{figmulttest}. If $F_1(t)/F_0(t)$ is small for small $t$, then the mixture fraction $\frac{m_0}{m}$ can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit is shown by the red line in the right panel of Figure \ref{figmulttest}. % <>= j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) @ <>= plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/sortedP-1} \includegraphics[width=.49\textwidth]{figure/SchwederSpjotvoll-1} \caption{\emph{Left:} illustration of the Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995}. The black line shows the $p$-values ($y$-axis) versus their rank ($x$-axis), starting with the smallest $p$-value from the left, then the second smallest, and so on. Only the first \Sexpr{sum(showInPlot)} $p$-values are shown. The red line is a straight line with slope $\alpha/n$, where $n=\Sexpr{length(resFilt[["pvalue"]])}$ is the number of tests, and $\alpha=\Sexpr{alpha}$ is a target false discovery rate (FDR). FDR is controlled at the value $\alpha$ if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in \Sexpr{length(whichBH)} genes. \emph{Right:} Schweder and Spj\o{}tvoll plot, as described in the text.} \label{figmulttest} \end{figure} %-------------------------------------------------- \section*{Session information} %-------------------------------------------------- <>= si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \bibliography{library} \end{document} genefilter/inst/doc/independent_filtering.pdf0000644000175400017540000230202713175725007022516 0ustar00biocbuildbiocbuild%PDF-1.5 % 67 0 obj << /Length 1718 /Filter /FlateDecode >> stream xZKs6WH͔0${ĩ$t&gz})HBJHAJrN$% ]`GGa$RO%Nh T}ڷ%HJ*I$02ɜ" uQӪnZS4cOgL5֋QH!U3^zi鯣D,.fdt{N(G9N 2[ڜV+U5b lW*dxD8b\R;NQrFaYTuYy헶 F /=X% Ih}M|a4֌RRX|f겞>{uN@78{ka' A <^tL^l $͠ԕ-A֎~X50 ,Yw N/XQ"U4sDx%S9{]W-w " 2?Z7u]'$#"~[z*Zn5vgE+Us[@ҡr* )l/pX%~zuUS)jO5=E CЗm: ux3e6W42?"^G5nlvn0>p栨H`tpPGD;{9h{hS!׍a-qN&28#o,RTp&?(e, RLyzVBo;5*if #Y|i}g w6O;Y>PS[VJ1#p2e6!g5UuuxUj5X>x6D<SYM1H᜺QiL\? I.Q*Xƅٚ@=erYeW@w:q;۲\Y'm ™>L.fwz.zs]}佐L$ |Y,sK Kq|o]".ݡEg[H3(&P=@VSʹm}CEA$JM2hg)}^XxD}2L z00$lGWavvC ޹UOڦϝV"<ش=N=cgY\7ǚ Q?+kG.MYv,@K8OD@_p'V"hk?Bc XK;nsn,hG}oޒd6IwsD➯PVuNI<4V8/F=W Р j׃r/c^*}(b_ƳTmٝrSrOJ. l"z禀EvK-RP Vҕ|:k_> stream xKs_ɥTD+&8dX3=89@ĒD V^ ږD'cab{ oϾme A VEɰ+brkwc[hpLd/rrnWG7^‰Ym;r(6Gmw,=&* (U*yh:޳Fڀ g)Y1ij\3$7ޅo\;[G[5:.Sobdh5Ces\q-.P( ,!DHSGSVt͒u"ׂ(1+b7@u-X1Rf/{^PjxU.[\@RreWdsq^=i4UYp i` KMf QMݸyubtr*C"sD*Uٻ-ML/,$Y4a0Z[W$-UO=޲07 Wq5M4ZP7LH 6)_^Ud7 Y>`Dվo*{cͱ=Z4'CMQWe%#i$\g2HF2HD (\pO_Mg#Z$a?9!qnH AˊpվpZn )ȪXt $F"` } }sr 1VUC *Iu@nw&~A/U(mgd6|gLbtHX [@~5BE̿Z. ,c qEb<dhRCUFI ekJm SdZ2iD/@O.C!PR!"I!}v-rRG)'f&+mK{2hȱM<3W7C݁A++AJK~9\,H|VcK:+/ewwr<ŽC\xZVr/.um ܒHTo{7qU,_rq?rBVp*} =>y`*}u%UiF0:?Q\z`Sa4'Ur{+adDy潢[X*{~ L+(0r,c. v=dbTe~m{wruX XSuj+}|GpD%JOsK,ȒHd p{Fc#KFqhy,!5jt8:lAhi4lΩDjW`! l`_6Jv K>bT+W ̩YʊHCb]A=Hź,U8 @NqՉ@ʭ9rÈhRz+SK WХ^, Y`kQ/^@LfĘH :nCQ7]Wܑ38#R/n8:C@tk%!t*/e-*㿜Dw8ēvb{񶢛2Jw?" Q#zIZ#q[o\Cbw!JMQvc J6ȟ%:} &(Gb Lhifbdy J]\\c,N' #J6Uǘ$;$=^a'ưz0hm0nC(JZu@RNf`$F?%i)DJ%Mëf(𰏬2tȡnxz ~Շ3 cΧ=[b26A)2:4rZ\ Jke~;ĹzA>9ݫmqTqq_cI뛢?a- Ө_㒐KYi,j.axO+M0G}4de 56{D'[$QiH2%9 endstream endobj 102 0 obj << /Length 2637 /Filter /FlateDecode >> stream x]s۸ݿsPS 7trM;}I7'DIl)R!)'@J$s ,pŢ?=B q@Fi㼎7C!r͈Vf*¬sFz/.,)Vc Q j~ayS$81)ZEmV"1E ђ_"iE-ޣi7u*!LNoO,~O,pQg׾ugu /v}a? =q[/oˬFUxŅ506X͆t7E\-}$ ;kv{qZedUƉvvp&/C8~>-o* {*;уB8INlHpRBM n͵6FV9K:[yQ8_ͪ7GF((jS4p  T?z 2NM'2V؇ nD/5ϛ($5(R$˸򰇕G%<DBI$R|}O$n.TQ0xQ]y֨DAq2ՔǷ/0)?e4#L'?حX?y08eIݟkcXs)|#0tim%<ȮbyRKt-Rwwt 7iء T`.hF6L$r^j}Ĝ6%gJ:),SES0ݦEN/76N!oug vήc=;;gpXN.~@9LU'.hpσN0K"0orPkO̬*|HZۺ;8qq6X@}ZIqf]cnW`)]Wx`f\)sN۬xM;ARaOyz0BN㡖UxeW_)M.`#@%Rqc~=&Ia$3跠/tɠPJ$=)]̃q3wg.Oa?E%Ê*Sc3A(w{/-M; H㒁}fC4 z)o5]lr )i@%?-0KN{>U/wsA= AqҁCHVqbƊ0zd,`,-2\p PR0#x&Β\UBC{ST]۸NA.:5^tߏSdr).VEYӋRdtE tx`vq48ysP0}iFa,ͳj-a'ȍpUw<1iwO/w b.9iU8!Ylޢ~3pA2Pōۃ%^f@ǩ O0-\w_otychYyurƏy`WWkLF=xK4DkOtiBF8]5(r*WX ƒuByƐ${CnnS& &v7i e>wT}%_Rw^kS!elѾb3K[@?~)N@*[>_݆ @4q=2w6샇,`'OQ9cp_2cIHt, ?]fJB`Q&7c$@)tWnڇ$)ŅHuHݸ3_;i1D^?Q? 7M?NLͶ רb"u,z,e Tt6w/\ ¡DȝqF@ieQa`S!xjfQ?aX])S *',<+9T,^O\Z?s(}>T<ۮE$M[w[wnjS$x&4!|YrU mwg~?a,+zTo? x p*4p)v;5?ONj{?FqtΟ# $@)tTH2$J!IGR|:ˬK js/y6-ۼr4 djgo'Rݗ@ÅYZbH 񃯝f<> (d=.$ n7(3~X>0&4|ίBhBŸ$Jm@5S(LՏH`t>IN9R9B93CB}r7U?5tW̵OcCʐVgͶh?}Q9aSLXz6qO endstream endobj 96 0 obj << /Type /XObject /Subtype /Image /Width 1808 /Height 952 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 28533 /Filter /FlateDecode >> stream xw$U}fEY~]Ӯš ь"8AҨ"AD(EA`fU:u1魾u<#)9>oI>[$n|!>C|!>C|!>dP 0@B"L>|8?!0Q0@:?!>C|!>CSeDBr*m'|5M!K,0>k&D|aXہIpO/N|;esɗ6ޙy;6awK*Ȁջoz !@cJl}8ޑ3%{J|b=zf%ٳCCd%s/Ad+|]ኵE2ϳ7LJ1ޒ=W.>p޸i+Fdo-2.|t׷}]D^Sd/0vwYW:㞵Ѽ!ǟ(>0O>-ngE|Rj,Ͽ3>\?,)|^"Dh8{9'h W:C_'FC}xtŇk"W> XC|!C|>ć!܇[mb@G|Xc>|h|]Ro)y>TgCjjK|P#!CdѢc!t݇!C|>ć =6,*C!C|C|C|!>i>!>ek%U!tۇ!TCC@C|!|C!>|C!>|C!>| kCP,7`vE!>ćC|@֫E>l\!>H m}C&ĄXC|!>" c!">|>lueavb!t9 >\Ňe~#v!=b!BG]>@l L|}VM߈!>C|!>C|!E_Cڰ Bć >ć!C|BlnCp {!>͂ 0{!>?aH!C|6>ć2wC| m>ćyҢ0C|!Ɛv !xc,YD !":|!>|>ć!C|>ć̀. C!BC!C|3F!>C|Zs)C|B0;>ćC|!>ć 'DC>ćm %*!>hCSi4>ć[D!>!>!>>ӎp@!>5R;C|#D|C|!>ćC!!RF!>|C!>|Z }%!05Ct!BD0vBC|'>D3?jFt!@c$C|PGE>ćD:|%H4tCy !@gH5C|!>W]𧻧!tՇ7]?C(!tLJ+Nm蘷i+!t‡i_~ {ѧۗq_!߇>p.yxOk -ZuEv6bEŇP3ҭ<|~VŇP >y^*@y5߃|J0ޞ">htZSim~x>+!@i$]~,ч~xmto-LJma2ƴKA]!.;s/gC0];Ëהʺ%+ԕGqs󅯳>܋J BXHo)&m*_GꇽI6GYySs3_9o!-;B|OdueJ=jV~,{IgiX=|P zRgn=jY?En?v{{|X3^հoΤuA/Y^.KG:,;Ž7!DTÇEF|"_rFV]DvƇdA"0K,%y7~C|D-h><|6[p{ÊEֿ H&U4EMpŚ".%kg?C!t9ȿJuٗ.Y+H%wLJ#**͇j-]Oټj*g|f|G%=E6YWC@=4pUC? Ngo[O@䆋g>KzͮO!<3vDP-z>њhܹ41vPq'gFUCЇۖMFC_Uw[z{ُ|mDoB",b|XuļE>TxLmK}h^MCU*;VÌ9>߳m6|gC fūazo? mBBlYއfgPͪ:Yv%K<|,-OLJ!#1=X#Yu;0S_LB|%x瀏t.>sf!B˱ҙxX3i/hI`ćLa2OЖ8ɛa>\w]wŇDPSպ?=v Y(=`5q}]nM"LJex S :\zTylt7UDAc<"(%[mb؇mf]~Xſd]@5!M"w,‡auPsr*SEN-Qm* 1Jj`_u a.*IM}5e!>Dlӡp+ԟoCHEgCF k%MCp 5D@rƚw]y?TE`O!>%+*k|FܤK~i/yg¢.YX| a3z^.!>QCVkM‡l@>65[w{|!@އXPEX>ć!4χ[ 6!> }/:ĈṖ+*OLJC(SDŇ "Dy{nɀGf'У!Cpq|CQm/:|ɽZñ8,>|Y;l{fM׷Bµŏ| >K᭫jRSfS+)b7ߜއ̿"j,@'whŇ/"Fdz7@wh|p+rd"}@wpMI=,Ňxѣ-}͹ف%k%f}ؚpӏ-;N?P$6Ym3\r2!?+9p<eLC|&‡xa"g%C|8!LQ'x#+L乽 C_HAF|HLЇq!pߠY>">>:ՠCa֤[>L"ªSJ+Cy/8a>hf̦% Օ3k܇7`̇?񄙣߉:ovUvlo޷/xOVC6:t1or[7>| >\|Bu+݋B:ÌOz*Xg|йI;i>nU\ DbMrY~>[us?y}!@6wZ>׭?;~t*S]R}W7[tC}#>(#P ]4ևeḟpϙ/qć5CHڏ֫>5ǯ>N+ڳV8C}pt##>HO7R>\ecєRx&O~>So2? >r" y˯no8J|!B/}|Ch!}8u2*(D|C {zv|HN!>80_Vcݿ/tG!!ԇ"y";յ >,ZAo|8vlhW.Ç]b xЮ8թklݙ=Odov!@ }:W @Zyz{_F>8?<6."4$ٝd>+JI‡V!CV&> B19Xf!@D=4ij$Wb%jްi~m MhNC{ѿ+E8>ˇcC#<>eX]dWD$. EV2|ФDzm`'\ަ6xqWNavv;FmJW_:us~1_|̡}/>>ln4ˇWvZ@屽r!CMRk6c^{kZr|f: 3k*n}t" ҚQqiV}eKfkk̇gaDpjΕ*I0> YR]C|@oimRg@N|u^~T+!auV-k(*635N>b,=KÇ0[Fd uH'e8{u ! a͂Ȫoo|K+E}sz@=z$ia>^`;O+Z"OP|]*e˜/}D!tƇO,ƇP!RPH۟g x5>Zj}xVv=g'̺tˈTA+ *Ç+weOΌ#,Ňmȯ-v}~l߽fkVrd=|nE;׷^Js_ʓu>(#}hL0P̫`UCnՆ-W4=hI>Kye9>@*ʣM%-a5;&)+(}hcsi}Xm!>h8&JZTJC% ) N*ŇЉl4=GNu)*ĉ>(nj6K>O7-'a>auÇ>\)7r߇[mb4ڇe1p]"1ac>;q.F#4Cj>T}IC~ږFQ;׿l|*l'9NmC<+N`0po|Jw|h,|x>KB wۇ9x#,Zt,>.` ru}PrX'aڇҠ^z0iR|PXG5T&S"VqSx?!@C/aDlM|!>lKr'!灭-|ЊN}W5awNLZ;v ꗙwLÎpa/t/8Շ4C]zr|0&k8EkwG3f<||Pq]뻭b!;ִQ|~l?}xCfDD_w6GKbCu˛W;~D^x_oJ:'Pq\F%{cY1Oa!z&MTΈ_)?S#rd"LJa&ꔉ޼zȻw&|'Cfp_t݇Cs b}]g!/!ٽ}ygD^:KD(Y %XID="?XO6ćDt"zuS;.YwW9v!>Ĝ+-%-E>0M_{p^1m*ȼϭ{:y";ȗ!1T+'Ltʇd[e'|{Y>:ք2MyK>:_wWmjF;dǍ٫o=8n 4Շ܈5!t|4)vh5C&9΂zպ~ ku͗]\#Pa{?>uRmw}w̼r׊:1|"C)&CG^?;IYy6|",Mi.E*/mŗ{!idD0k%2Té:)|5K8ҕ9s>)%LJM||xKG[N|0ͨ]nv9.VпzloXFٴLy50Z2*}8i' AϿ'S6!@whͪW6E:zVΩhIˆ;== 20>J'[d5yi0éG|HԾiB쟌?~/K/y!>9 5xJJ8R}MGMD*9TC}("BCkzCho< :6c}#|h$:>f|`Wnp h'1@=po ڇlCy+C"1pU"V*l\_d|`'E+jzCgORӥdT>Tg[zMsOku=*4:'Hb~s$a|Q=>4],UsUy_ypu.mC|슻@jtXN"[mFnUշF!@>|xA'J)_c6gyՇʒDăx. 4KT-Ì;O;}w]CTSҟ4IeE+‡RBeh|!@E>Hn(K{#ChE~Jʦ']C##]>lyvˇ!aCIEχX]bLzŇ|:LC:TCʼLqo} [ CjHVl.6G^Wi2S|PpZIJIMRoikM|x|PM%4AS/jkW*d2]X(P%0zVd ݭUa+*JHqqyZ>|aySHPZsٻ^d5WJEj}Çub\zKRPUR2QupD5dzȄj/T"ELBAƇ>LY`m{DL]TpCuXbCUMkla{t顧k~L=\Fk8~-)W8>"Tp>v%zI[JO۫@k H+\Ĝиt!ć >lK[9.^Fqٗ6y;6vLy09;Tyn3tv4#vÇ-;h5^?Û9?v|`>:vS׶4#KrJ/p꙽3%{J|.~`F+Mo}xJ?dϾRoО: ֤q.SM ȂK^_VQC"a> tbZX[-Co<{z|PgNp/ه }8 &=o`嫉|]69cOLg5zQڝb/\=ΓEpMD;0qH"/&([^>+{p;9'u(!L\WdnMϓvZo"7 ȉ,-O&qehnQ{=ME.(i|RwaLWX~$㓪|xŲޣ߈lqE݅ A`}H.r]eԵ *t׷}]D^Sd/0v[ZlR9qW,5CU#+w_|,+|աL[qCeu6nc)~MlJć=kyC>ܣ?Q|0}Nj)y3IqWE+o=0O>-ngE|07RM$K*J]^=gu ˯> l >Ї(>YPNSv>C}TjZJ!DA79(r* (nĆ%v+xw)tmthEsz%n |JJ)z>(FcH@VrfCVǤ)ߨYJ4ą ZIu^K֖/NZ(|@~h;yi^aڣV9]k IsIBLY>,'r|떶UE|WećMxD,Ssi9M(t.,߉ig(P%I[L& ]Vy^d']T!>,*x\}2y`#)'dz+j!>ڤTrCmʄ!T/]MUie*ڶx=|8/ч4b-|[ ʷio lPi7BL0>k2Ra+O؇iRȡ1b'\t|> ĔaNćVfKjC5yFT0vB.g>S 6ȇN/^}\C;XC|аTJ|%?2x!J2BtΔL)^!>!vkb ) !IӇYeu.p|uRNl`]s?0+ |PO ŘP$gyZ.~&Lk{4֢Itهk&p}7r _|L5>h~q|]N5= 9M; t@I!@LQe˾!)5-T/DK.{q0*i/MC I2׭}ȗO6O,ayBXrq )RekZF1yLGB CC\d|R&"yUpi{8 k U:|u> (ZUCڇ)SPL>̻i3~Z^C/kCBB6@R) D+F|?!>Fk@8)i̗" JW,.ÊS j~E!@>,mWXe#}D|ym|}!@@b|J5UAt@tLm`T?4>iD6)Z6[.t@N| Cfeƾ>T Uú7EOy>ªfŇ}$؇YMsVPi6v̱\ũ`iS;mQZ~h=[Ch>,{swKsrL-bE5̇a%SpC|-b$ccC‡A=Jt?,qpƜY100h4B!@Rb>,ז(]~(%E:jhˀI黌!>ІYr>j>,gL{+O*/f+6п> )Al؜d%P$\xv$>ޅUUܿ$&k|# اԔxƣB>Rtj\wHuE6I}wȾ ZmSCE[ ('>j̾WiN\ C~>4{Dv!>鰒> Amwc̈́=-a \JyTQ mq~x02Qv|>>=܇P;t>L۶Px2mڇF1C|,ܚ`bA͟VzP9:]]Sr5=ˇJs9Vɥ\^CT.AލFLޥY`r>,ţY޷kkCi'r5?,sЏ@e=`|^P>Sd$K";ڇ̋B =JendZK:ćg:Ht [W8:a%UlCZg_PىE%}zJ;C0t[!NV|]<*t/w[%*Ѩo#5~x!>0L㈄h*֎s%q)mBiÇC>#2!=,݇m3$mRäGϲaY!>|=A$R`)?SPsBϚ{iˇJ։9xp=>8B~ҋZ9V<|bF|Ď?P0Há!UiC,tHe-f:w,|&ؕāc5(Lb!u(L `͠iP#tׇI+oR-!p|ɸMH+,s~ =@rD^JoY+|0 ~<3 N|>scZ1ڞMއe*vR*|P\ЇE;HXK+X؇ ޥPл߭~Ǭ{!61T̅ZB~XOԒX|XyR*:aEY+Chc:M{0j&XŻʖ⦲k)e0s1Ӧ!T#1$f%tY򡫁ZV4U2vh48HkC.Ad<>>RrܽT;`O|\6Ht$KROۇR&:fP&[|P$-6a|M̋>t-E}y;5mǮo9]J>t}hHS/mx~et4:&|XwU]<;hl_p2E+I1}5#\)݀&LJ CJHe֓bD}U>,q˱[pmKwBt)[KA>F%)Xi7J%3g(%Ї/<׫v W}/CCU'ñCC5WiVzOKnQM Pr5-,:z \c^ۮnϳ璮 Ww;|>٭pp>6Kj #QFf9|5Vٗc ڔxu-Om=`!>]ǯCet/>/ݕJ4ŀ>)5?$u߫oz51(]v_ '`k*psX{H|q 19-·m͞FPmOPz)6 vECΧ: v, JVWޗKo5t]_;Avӡ:[m}2_>&0+Ա\ٻu.9\kAȔM Lއ؇'YLJZC舘&ndRqy^KOP.2<"hj/#C|-8ua/7is/g[xŢ$t?+ .pyQr}gp.iMZ!>N0pU S *oYQrѵ׵Y">+j4TۅEhT}"aL_u'XCUc N)[{9y-<|]yCgQxu:2]D^ՔyԽ2%)fICÀE|><3vj[^=|8|Cnj<@e%}&{~ 4VŸ40(fj]>ME1C#=aR/p.lDtYx|>f2 ">4esJ}/u5_?>5lF2M^9%uMpϡ|46YCH C?(z_^{WCbٖq>D e#fI}_uh&oWdmE)e &R%̇~etj6Q^ҬlnC $6]NwU B>,[`X7҇W.3?/(Ndh4># ٵ!g!|U33ѺbW첇$kak\n[0 fI>ݒU\XZ*xpdJX9ox0Q@R>Uw<wx: }hP~-*Đ{"ʄ!IJq>4p0/QKB_X,JCvE[px2#.ORu(}w:0nIKćK9:(p -,>f:j̧~2m8ouR{ڗ{ʇbHxz |E>4= {Ol|‘32?Oǎ9k0g> h|8uNjw~W(!uXd:oxRPTȂLE*<8aPH+ׯ^Æ[8|?B}j2{hk3V#rQf>j.fttH[T?Y|0 ݇7v 2Ude$'qϼ0ʇ|6qqur8Мs K+L‡>S$󫍶*F'*)]K,[-@k-w `")V5ɺ4U`I s@ۇ3fG_+w ZCdY^ |[ϯ`XK ч#:0=XS%ў}Ll_eXN5èBs}?M9ueԈZBE|ly 9҇3v?<Qq11T֋$slH×14^Cø7BuZHĵw_"iEaz=VlLsx43R=ohr8?PTCqEi&hF{tFmg;g6aM6l #æ-k0cMlM|4!M)k^Uxq% c`yŨHGA?Ya,]!el5BKSDe2f uc=(C#u|r@|hh3+*T)|h,Aޖ[x.qّ1J 4u11y,(_ rggj)2a_С=Կgk_1d-u3`Y߼ y~գo 5s;CgLߎ/cӑwi|C(7 \+#r#F-=X]YpH3񡲬$Q%xy%^mJ3Hyz>L#D|OrgMufOV}RW7*l ~ |0uۑ Vd4_ꮴxP?ԝãA|dNpICìun.16 ,4)E=!tOPQ>=~s K]f !I7G!3.W$Wi<שG~2CpVkQ>,kя7-lJ!C=uM5=T^G_NQ t5hq?z?,zi>s {8rA1n G$CćR]Lh͗JW"wƫ٧,Юd vQ dKOw)F\7|&nY/ۇ4>T3k8vY6 #I{>0E>;qhjq*@xݮy 1pf vh"~f[,UlnU5`#|XkJվs*mbm4ΞiP$^OIG=zaОgWv4@41 z祀YxWGZ‡n a(ú {B=ٛH4֔(r_H4 |?k>T>;WyAh[f|fckM3UNܖWڧ՚rsn5פ+?sd$߆mҴChVL("PUўLRzw޽F7zL# E #eE }}LN?7M``x\ 6glξGʸs0Vbޭ@c|0un/B͊gҁ\t:lcԜeCGel lY1[o)`.ؿ6辷OSw Xͭ#"\e7'Dxb,>DyV *^3|9["}IoL3rQ߾ !roiB^Kӵk#!4Se^l45'gﺊ]iajc]$Dd>gg0|iԷkdo|M4)͔WKk ׈ǰ9!t>?,4r#&}h'jg;kd>pks"l◆{@3>/S*hB=df *c.|-a'^ c FY+m'Emy^i>ekZՅ'P7#=kiw/=>4Z+&Ec>0~͙k0ߜi`HHsz[̑rq6_= tɛǘ_ߤF.\ힶ~G>͔S4!ÚׇߴcH}(M|p(ֆDkzQfpjJ<o=R/97,l?Q|34Ɔ!R5"7Tԇ+E6ak?mEq =uG&VC|hLtOLp+>4Mj 񡻖c,+X"Cle/knZׇ||E\դ!W ik3}kz/e!egK 6>>TALR^w}ۇIeq H!^Voiخ}-ȇkmGfe7#|UvHY؇^|0LNZ)5Ϯ7՚?Gb*$Bt(%n*GCBIf>]c葅|a@,M1Q]!:r/ʦ23[QF :2il M,3!L$,Շ#!0=YƙHנZM(IHcp/D%Ů(+6JE* 7_턮J~?Sǎg0Eܥ6q[w}h,ޥ DiFʭ,|YѮAe?!9YyL_TV~CBZc,M/&QU>L͠FncyRWCn.1%ƇHR:MgqJuyc,pm︂k0ćc<"+{w{GT]W_>T՛lt4m|ۇz5Z?mj){!>,5Ϡ [i bcSe75&68:>m[-˜b>m mQZ4mR%w.Fi})**D|%޸o5^ӊ^9TZ UsC,7 %vP{wS. ۇC|& ,CS{KlS/ڔWنWkzBmA=4=2I(BҨ?WNbՀ}nu nke*%!q[U%^oچ o^>*mw\ۍk/3ySo{p[բJ{)4q!ujiϺT' \+Kѯ?MjKo}sOˬceFCNk.B{:SlM 7=<ćPWS^Zg.෯lS8> ESK~VЇauw#}qz[2{ӳC[tí\sJ;oۇNE0 LJyq9hB^Tk#͑ʮS[ |}(g7! ݭ?̇T\OXzR z C]B|{ԌNZC.Mrwp|)LZs斎 J\T*WCޖUwrrM ^wR&t\0. #>&~T>TޗA?u-KKC~%do#H RЇ*^a[S JiX/,YvEChˇ2||}u>FocXA hoU{NDnxڃ:Jpti|x0חE{6SDb7 27rQ:ʮ+Ю1'&rmC`WfKiLTίM$Wćafߔo?59h7@ݟ!=F'؅ppVe>-8; y6a&=I6y`\嚰۬>4hJ #ٯJ7 %IVUL*8Lp鵎_~uFN[ ӡA݅Ip͢_K~h ZMowE>I\]#THZ$h^6PW#lq馧9Tgq}3W;GvpPbŇPۄ00̇3fmX<E)dԡ:ZHs;۔ݭ曇pq{Zg*NAJ%]ȪTC(чʿۇ@^ږOTE0kITv'~TZ=u>>hCSY f+qTCm^GC]nF7POV$.]-WePfR;[,ifӡ~*u8 KR Ы 6\FoY|i-C󒥆v))>)WS ਂ<.cZM"uRgiNVdv-C|`ZsH]_s˿*{sSLg<Ϝ.{96T讥4f>LvCR%nBC}#4\(܁'ͨ*!vv)lTceE+n-h=u—ZdL‡:Cex1 / rnЩ·*_J CUYN܇U C(YxշKㅕRa{SmRLEʡB?koOTi|8ո.C!ՇH \MCKUCmmlT Uƾ^%/[1sZ?MB)|6^.ߖRJ.߹c=~A!Tzxr^D.[LJʕ*+[. 'h&< Q$-V_~b!aZngP=QBS|h ?ITc]>,CЎؠt8Et-U\)Jiu-ueias}L:4 bo(j gvFs;0TNXaMϊjÊQ1\C8?ňߐR?DХ#`G4Zl%LjCQYjੑ!4,e#~>Ggi͂Uӈ[(N$Վv$?NCB\d]J^ED5%T{O M'uC2]M}(> *+'RcC p IOF>ć)jӸKi|5Huڇ)3íyٽRCH v/ȇ;z}X|i!ZaCVwC-;? T_HFT0Gl1nu)>ć >haC}V>L nl9TF|8 TP{)ܵ<ݾ"s.MA>>/Ҏ9OSU-C">ć !mU:!>ćNdZTc 6܇%/@uqZ>T‡BćR^ 5U">ć?|-3|4 ">ltnb# >ćo$?L!>ć!>>|!>CKC|C|C|C|x|]v^xSp>T[~Vé+xV-:sʽp>T~~VÕ'=5W5vTCo{  @Xqv{{}+>o󯟵C_);uoZ|!tÇ9XN"'k!@|ȹw9fp>hͻ|Nk> "ѿŮ>-{܍ӪJB|3#b4Fvrpթk=E6YV#7z>L#4CWi⤪iSSPmŷg~!TVkPKm*[R?S?U\|O!Tm]MChʓECh3m:oօl!4ч}]u3ϽL>0!!>|C!>|C!>|C!>|C>o]k4\E$⚫NʺqKt>HGC}xGRr\3}OwW`}YD%$"F-$6D^g]]&pBv]$/r:pUcs<>ć!>|C|>ć!>|!C|C!>ć!C|C>ć!>|C|>ć!>|!C|C!>ć!C|C>ć!>|C|>ć!>|!C|ep̿ZHK忨$\=_.&y.;șB9An=v*! gBGJHy'R0srY+ +/|*X3虜 V}5-RYEklGKeyu*a[f?0uwS_Er*V?ho*Pߝ}/d"٤hrǦ2cn|@bRcU9{ P[V>';v:s>iןqؙ}}aت0Erj"^r/ؚgBٹ}#ԖdGn;7f0^Tyg"r.Eryv%֏/\SdPge}O}6{)ԒC=OYxo?ЋK\q#~0U9}O|X*3=>J 'Ȟ\H<ݤPrEvt5ٓ+>쵳枽6{j-*gxVBU9Xg劋Djk>鵝~J3h&ԗC'4>Kdu7O|ZiNye/-V^ܳxxڵOGMz1Y="fدCufSG>Pgd?SkqUH+a|35'gOΣCuf<O_'PkB=j-*{|IQ`Un.\yib_e&A*"[ $҇~UWJ7{z㷭%W9QÂUy|w;?+0GOşW>Ld~7gTZc)ԐKvio*̟RkUSD^aѪ8Guo`@'&Ur,ևa5xzT|oر76_dU}VF^wvUàX -<]==G[\2O/UpUb:|tw_ GZ<)bQg> PSqdOrɿ~/[^CEW-!W;ٷ?g {y3nk"}K\=@[^ @Cυzȶa썓7>sYNEO=Lz}onSkq>P_z||l#SgfTXȚ38BUٛb=ZJ-E־~uk+.|Kܒ}Oߞ=9ٳf3?:"/Y\Uf|ӯPm154EE+BZgd*L|kwzwaÂUx*U/jοLOȶodǫUӝE*'VZ,}KQd'\vOO :,^0Yܑì*bjK{IK(2cUګST)V,{Y卑<){󃧟cYx'.OCd{>rI=J|*E>u=GrUw* JdտSkq> PS"Yϖ,}]d/y *aª|vgF;?Qgq5f.&ޝ=y uáR_$Cwd o~VރK7µTZTUÄUkƟ,S:?.>̈S>+{.|8tRwz;|R U%>LYꟋ[<롽ּo+r6=hgϚn#sP|*aʪz|W|M84:'R_|khK1\0UUôUyvX!z?cgjuu 9*U.>S_]*ZA+F!*;/_~tzt꒞'2ڽkE%lשV $'dKb@}8'{y|؄4>zuf[9яW|"K|%fa#p"^-_ oٵ;70"93fa#Tc}Md&%r{?uއHZM?c]dɒ+'(~]ߪz6j 5{wBA_ r[S}؈4>|OmdTFT @ǹ{~}mp衋ޚ}ЗϽ+<o\|'\\~>?.7|G>twO Tއ2x!'j8ܴ*# ?{PY>RK>nMEV=["o 2; ϽuN?{uNb@ȞxO/P_~g\*V{"}۴ϘQ1U3>|!>=䅯6L?~qA u/xп0A%rӘ eR'>&0sjPtڇc~/`/}^s^8gvW:52Ùm"-~yo|?~Edz9}m {$_{?w J=&5~^W>4A^r/!opz>__lM5jMQjj,f~}˽7d|#}^wZW pD׊rvӃdA_ xI㊝ޗ+g/ E2}m;̢' sy;{tYa>TE^NX 3hC>bՃΙ7Vl/#>˿=>~ȇ}hvk_y YU3S|.֊,e뿜/Xg޵\1CKr_3ٻ _>=>9Um.̓'GIf>ʕ3ޓ=9`6tx^'`ȢfD6/-g>p… RE9;Qːr6ϻs WV ~Ds>'7-Yө'p?Ds>S[{_~A"oln+Dޗ+ K=Otjԇ2oν_7 fՈ{c>[ áV@9&,ߖr`͞~Xٷ,8a/E֜IJ>!lxZ~yX7j:Srw16wkysW6xȞ=^e.\#wXp>!/h՛ ><+&T @},wqf}O:fS·A|?nлٶ>N\׻=,,5?+:퉳o>+s1][걠<{1ΖR~?I%Cշއ|؄Gک>zu׆"6>?v b?ן/Xпc6k@?C2#1 UaZs57uwn/@xrXqE3>t}M7>0fKUUdQ Uȿ-{Ӈi2Cȗf D앯nRE`rvAi0oA_U4{|;fuugxȡaA_=(+ƾO~x}J9#1Pj ?*wУ s}|w^_5pqogBOP ~γ(=ov";{'YpzY J/3G묂^߇|8xioeW?ĐM}lh}wGwuqw'dfQzxٍo |fKQ]~zyxKwUg3}}6> گ:כµ"-&7u%CiA-4;Zkk7y2T+ endstream endobj 97 0 obj << /Type /XObject /Subtype /Image /Width 1808 /Height 943 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 17301 /Filter /FlateDecode >> stream xwu\TRY"X6+GOST~,+ȑad$pQ) d`[~N@ȼ9w.=9p|x\)Z{3wm9̍ PF5^.]Ӏ[3c&?’kN`=,uEӞX^:~x\uVL ]ŇTQmxzWnO`1_wكn-K=[e#MMC"IzepIOa09 <= nUrPc8z!24khz8[!pBA!v{GB/!qpb}^]w.!X;CXH?F?:YbIsdg~i9fԍW 9xm5ܒϻߥz+ۺ56c=/sRl?m=xY{ܓΰŗ=vеCr/4MLM\ǧ{g\6qKg7eO8i~yt rMMɲeg=21מ1lȋߵk gЮc-t?=W3sg=/\eMs{="p֜xk>v;ޤW}z}CuɃw6aY!<2'pE\pHߢ֛mע}o}u,4H=CI)^ܹ/s@wY ZiYsw•GsMcΝ)MeyaӶj:~mߖyQevz@63ٶ&|&/]>uM{ ;v͗㉹!ɾoץ`OXҢUN#G|W!Ќ5mMYw߇‚ZnvN#n{ӨPNeuYϢwz4_%\6s]im;l~̵Fz4kѶmc Z~K%d롇@CztU [Vc3=?CAZV`͏x{xN7=69]u¯06@s>>zԧ9;U76Xs%{%Ûkܻr 7>E†an iZ7LFÒh 8h0Ss!VѢ|!Pm^~̵5etvf埑tBoF(Ɓ*KQk@|.,tѺ Î'4ѰUz|0C=8|z۔}gxZ@bmޯz[nKCP!Nw.a#gz'7/az㱝lB-=kE=C%g(eBVRvŸz>e;WkBv)^4D?_kL=CW| 5 P!^5$C=x휯.&!?0 P!^okxIzz}Ć&!hZ=lBZlBs*|$C=x6)x$C=pAz{0[9 C=V7P!b[0P!bkѬ2 P!bg+_2P!b!l @b C=}>[9Az}sXhBZe+z5P!fJz~!lvYT@b}VC=99z1{.6@bSvf's@vD=Cق\@b=pAz[?z@"lC!4=CZ4zIWK =CvozvY [z'E3%@"T7 =CYlpAz{![9`B̆e+ =CfBJ,6P!f=CWZ]=CYh;zE^5 P!be5])zi?gB>+jBn>+5P!jv7P!j_Msx9zQZi!D4 =Cڦi=Cl?!4k =CCa7s@:W=CZ4=CZC/@P!n4-=C[z+N[z?[Ҵ5P!jKs9u?{ChbƦ9<$po۩%BqW}d P՝zMe>3wsn=59~.!t|No!4 ?a)zX[nu)&k!Jxy'ڸ)y:4%=EWKB>M!=as@koY.)z45vzҋJ^SP1?kwzXKmBTzqqz▽BJkXs@렇zgZϲiKQ ;&J9=ya]Z~%צ!4fFa+s@Ӎ٥lve=FE-Xla[:a)$9¾W?>4n%N֩;+׶!toڠ{v&s@O* MًúTzfr%WVitQJia*|cv(=ZܡB6,}T<֟\ϻ=6ݰ4L1CGJkC=ua)z@4כz61i=l83OL!42r6)g2fصZ-EE1OڊÏ\~XÆ5DM}#s@=:wnvs@gaBүÅ!lm@Ě34EPk=%?z];9z;izX[gwvC!4 ӗ=w3Ch#=w ze6 su=h2Wz7ps@) lhV?6=t= Y@ն+.%6l?A Bbiu7LN^64-ۆpUX= gAÍB\-CCVaI?+z8[!lH C[ a26];z8(nOHb|YaX;z81y't ީB-~{X|D?3Rb†/E}u? 3+Tzz"yi а=-_ێ]!v1@C0W]4w4q]anZPKk~D=I[]6U#Zlp]i a.W?Ve-Wͪ!M߳w fV} S~Ii, baC쫃cP/JVٖ֭ PX676 *fC"۾A~̔~њ[FTk=iyCvWLF=#|=~4_ɞ7𙮟C4gO٢a5]o!MDZY [huOi* LPטl&z+;v( af&M~%+=;5;SaQVR2)*UӞX4ckkQVR<:Hivʞ_1 *RC[' wnO`1_wكn-:,}rw_mUH{F4+ǧ(43 J 4 Ï{0ywثOzHriGU&zBbiu7LN7!ٶbwa5 o9(zHsc-4 juar Z=y-t=NazH3RodB4}nŰCFzBY4$ /!MY X5=\[>|B!mvTCOS|D?3RbҤ-*['{~i9fԍW 9xm5F6xFz,_ێ]!ڣ=Y~Vv[&hzȆu[>A+%3ط|aOِ.Q9OO0yJj}WzȆa@as~z1]g5 h=ߛm=B%׶(aǫ o_dmRߥ/7ҟ\ihsi4?}" [WeМ{}z~pZY{wFxo=!y4N>}w?ǯ/i)zH2Ꭿ4.wټO%SrI(='Y ͽC8j(~TޤBa8Ou,8M_5 S?ӯ~r=*^65 M'CJ5,@H}tDqh:2 Qg!9.l0 ᫋?vޡzHXuh~հ`K5{6_u0y[CQ|y~)À{[LhҳU1{;8 9y/[NOz6oP:]3Wv/8=5kf:4l9pŰmb\5KC+ZiLc'o-.[]y~?_4#K_3,1#>;囕Qz}w=Xt&ia]Qo4ӣ+|JZCUQI m 9=I;l09i>ShwC>=;pP6Zzȧ(y|~LgV_!UYYf{ = [i{mƶa=mcv#lK |nvַs۶N~ 66<+&}>6WCnںbco{˽|d fU= \=iF!Mfe-=wMIs%J>엷?G t/W}>#ךzշoaߜl@=x^YH|pQ,x0ᛇ?<}֤-y0ႍƤa;hrzoWa-9c>Wq Å[M4\ՏQ~׊ޗ{mg|{XlǤ?q{xS4\Uc^z;9@/B=dC~ڮLzO@BA _H 79M6Hgp=K CQ#9=z;[ P~Ԣ&6#O_zM94 -+UrNIwaI'f4{Fn}z0޽{wuŘҰYKMhD= i(ҧؖ-7@0F/SzŠ\1A'ԭw=XlmOy雀&ESNީuV]yz6ϟ) ht=|AIY@N%[h=LޣF!襣:?$}mh=:ujxæbU;޴5 ɬ,aò=+ 4=(~IiPֱd1l C=44lVzl2;i{C=Ӝk+̶r惦Fi{'LC=7#aC=AǤ.4=8]?oco1 @0V?W~g3+C=ӌV azQzSϟpO 4O*WRzHJ(sEљ76Yp=ꬸQOoaf\o~lP#uNsc hF=i*=j,;æаv9#fO?.ݻӀņa]x_LaC0tհ]zlizKW ;ltYzXsq&o~љǡkFؿQĻ=@1qPcΑgg5?^iҸn.k*7){g[,-7 @ě_LUwQ4ܪ>teN a])eZ_WM3bݯ\֩vJ`M]7:(={vKvpsgcm{a0yizX_' }a]30 @SMmC(t6BC pYzX^=ys62l}Ź=l7a!;]a8yL٢vj:-A5-6ů}({80wa*V{_>G&Igaׯ߮ۏ;vYz^hnvǟ406pg lp?h=Yvxk$zX3;x[lׯ@SǯFNɦA4eDv~X9|/е& pʼnfȶٺЈzX+z_{nرCv?l#@Ban8$0Vo9筳lzY ['_6 5g<6i/,,Æ\~uz;{X2)*uӞX Ŀ=w{X<:ӷHI'9 q{j0n=O[l zezcn*[+=GWٱI4H{F4+,-hӭ=2q94>oW]>K!XZ PWg@!\U-0VW@a&WI~$UT0=sK [bۇpu=[3Jw<(YгiI޶kz|i=$nI4NLϫ.%kzzne+S ({X|D?3aXQsF{['{~i9fԍW 9xm5p]g6 ܒϻߥz+ۺ5<6A(usW[Pq>Vi]:0r&LZߕVvBLg)!z=Ykd77enzzzUԳ@Lن4Ek=0Z%w8b==146)O_=cʾ8, -K{zK @aɲwT({!zz!zz!zz!zzX?V%O妿\\eټSFCB{xDÕm5`;TZ:4YQ޵n?o^VV= m D&+<! = * ף% @PhO[+t a= nm~Dp]Bx]Bj[;0)ICba|ڽDïp`I pZ= ޔdǕxW= ~Qz҉xBĥz@L=̍\iS?*]tgD ~l۔[vܻCa䑋ٲ;?bVCG]o!ͤz!Mkxl_XXDÒYMQٮr= .CbC=LxzWnO`1_wكn-K=[e#MMo=}ǘdg@=|0 ^|bn=<qOa09Iļf rmC[ !&!L!\D)2Lۇpu=  g<BxY't ީzX|D?3RbIsd{w? 3+Tzz@SanIjvtRhr=m[!M\̫-8}XCb3+<=m/*]!MuHC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CPC=@=CA?IaaeKf]6ET=?\k7tSn= .S/>r]v[e~yVوfcEHz`^Yw.!DBbiu7LNB9OۆpUX= var Z= Naz@4=>!qpP=ݞz@=doW]>KN&#ϟQuHz[';8[Np1nbIk4xmG.&\֭ṵ z˕̼z`߂~߇?=)0r&LZߕd{X=CPC=Yp扉OUoϭV=T|^jT^^)zhrYfe5e{tp=yihjP(wC~;8=RwY:2,̲ƺw ?@\P?@XfeYxq07ilNp迖lkZve% YfeY֘=` y鼋5ׄhԊz!z4?Iaao4̺m*8z@d=,o ]ŇT{w!pA,zcn*[+= H{F4+,-Dʺ'v `= Karyz@=6!qCeh!pJ C!\]-0FBY4^C${ ]B8w4t4= .>r̨rRj!M%=w5K=0Wiǎw481yx:ώuOsӖ|~7׹QG b0#C#E-gr؞L`B5{$W^N!Bmhb73yWvʬfЭ#H{xIWX~3M`Wҏ pN;wWbwM31~VЩbdkŅ!|ڄdFDGgĺ}!B’B8:qsjh{eT\KK),I?-vor7 \=<"ApT:n$NC8I|OxTCPm \aI *B=;QŵMrr/=B8,ƿM!t}#kW"N_[Gdٜ῰zB>!|{NH֖?Ŷ!ܕ/'o}wAXuo{/дYqudr1=׫"FyiB^=uv›_h_hJ-SquLruj.`"뗭8}ut)pZ.<^d-!>~Tۓ0RScw87ֿɚULC2cc -B$sGs9埋LI[٦&>C~+R%WaְWDXW2"7Bsu=H鑜+^\}Actwv5RvڕQ7ĻUY%g'Wa| Jk%QJXN!oFOtkkS)x~+ڇpf/+}<ɕzGgW=2^bm]t "=ͳɋŰl%#h}ɥM.)" bk=ҮGq3.H󿋣u7 {߭MM^ vJ/l2D²"C=Vs+O%#uE{|V<X њIpbB=FU}5gD7\y/(^_9 |xn ɸon~`RI(42~䆰\)zM6cj!O)9#=ZwHc 9wz'ر&WY~P?ܧ ak=lzWY֑f -_z?7wrWx00=?T}C>K*uCPG %=v60J'^M],{ @7 |h.BW a;eя[ݟy%Y ' ne_VyeWM_^uZ)B{P'=\F\ps]]3ORseWI\_m\\& ?w=vWOj~=׭/"]ķs0$S{Wd.=Ε DI-X_?7ɽ=|v%>z/ۦ|ŊXK}lqˆXomYv?74=|SRaOWo}zf3P&phrX. v{R:{@]W\:`Fr_;ot .z?֠ 9o W~?î!qNpM<Ԯ _,pNɕKC 7{trۆ'WӺxҽWJwmryt0.y@] eK,=5Bر83KۮӒ[GV62AmA[>b>Hnzأws .MFC\I.dNHnSqۘ\~Nj˳T~wWM)aZ+]BaŮ^o''=zkY%ZW,Krub.wt=+.\oW|՘+tsϻCp''Jݗ˯~.Pj˫\nXXj}=|>T9et)ckK{8zxzƐ]_zZph+-~-Y|svPЯWZk}=\T5]gP;|CL~ Pr~{p`’aI1~q_T>8ԨC!Xz?>ak a7/<Ԫ+"ܘBhJzzxz7F]*٥U[S_=Ld}+ԠYa\nt%7?Pvb~lzi_P S|'!Rv +eWB٥;ߵUO=ԲG/\񲕻J4Ro$ >^R'@{*t)IsۇPxi OmC:54%YltUOTO=jf=_tocH=Z0.Z_L]ppΟ75]C @m{{jӊ}w}PPC>utua/.8ӻB_=Wr?pP޹k>fnXU+-互Bv]O? \~B='ubͣ%U|_#-UT9/,zM3#և⤫#<~4MCx&oDO6.?P?9묳*lEkϟ !pPOֶ N ሚϲ>O}nywg{7DžЮlӘQ!?~l.rn5,!t\Q;cVzGWeOt<_fmS4~yb]wъ9>~'>@}{'IQ~E7޹} endstream endobj 119 0 obj << /Length 2547 /Filter /FlateDecode >> stream x[mo8_!w|W3|T8 omqPlVז\Kn3$%K؛ &5f8Cr8G4gWg痜E)I5$R$ Di]w|匆g/< y4 Krğ`(8Gb*Hq^.CnⲲٍ{n/f8<<g۪ue'9i 9mYYWu>jĹ J= rE>E##PkxIX:UlmRvF;QX/A$+2DWN,6/y9-וoYҷgY_^Q!4G(Ԙhuǭ?EgXGqfn^f^ǃDo$&'W,zw ()x)\[ш5DKCPhqtaXJQF_~ um}ԑiA9T 5 )\gIݟ6A$1 \J/ʷ&ndUlW ikF{5inny$KD~ݐ$:P//ŋcz⑪Z_laSLǕ` v~aw;{xJ4弍~ʊOG/2H999v<{r}3&8~msC1_P@]`E?8&f#LΈ:ծAn))OiZ_[ a0HP #8`x/i3&%otĿu3WȴKLda"zi=wvq&vĮ[͜s _6nǭ[O blbl̵%*JN&>nnhi"ZQb"܀0#~J@ຯMfDiqR@dTڤYbq= LIP00R J@,e2~S}hV:\fRjiu9僺4-eJip@10My[gp„(>萛GOui%WNmހI( wvjQdD7rGRqIG X`I|;!x VbT%> vK8_ryPKB%kD\mPiFgS륌h6)`J?rsphXzn'_?6d{q 8D񂀐(՜ifΞwpēOJ>0`~vX=yCmx22ˋ7OnZ8kC({ܟr{{-z`4{Ƶ{I9>.3~>7?{0Dk(Tnk)Iݥ"<.elڧI_S 9!Kz ՝NԙhrRem'^f8jLmvJѯj *uva˕h]j 1Es2217iL)hl m ڀe 5LPKԆ{_M6:%A0UTv쓹]v/6n[.zPB}OX+0!z/mڜv5:} 60vo]iJD0~O9!\\HFy^4d9?ر o-TK;ʱ!no֢1u2o!yU"6xWWgOJ5R 0&^>&x?BDnT6p6a 2D N?ʄmߠ>R̖>e($qBL#pܔ-cr$@"5ȭ%m L7(uz$a)&{Q jxOgai'iƜ4v/ΥD76r \ xaJ1sex{2 NŎ`" z萐_(qda~N^y}1 endstream endobj 112 0 obj << /Type /XObject /Subtype /Image /Width 1810 /Height 952 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 32418 /Filter /FlateDecode >> stream x{o՜>]1$IR2D 552ƭ̸db$R B#TʔJ eR(ҍ|SNss<^kkޯ|nk_뾍&+ @2_Q! !'tՈGp %Gt؈7 7tۈ4I#F#`D0"F#`D0"F0"F#bDQf!'b W%(b*W#`D{1"F1ۦ;4z1bBC7A#`D0"F#`D0"F@(4DÈrC(4DÈrCHaDm4cLjFi<߮|{loƈFTY[\,M1"@'HB({_E{V0"ʈ@/P}̎#(H`D0 _;CWbDz#_W`D{|hn cFM/ň0<#Bٟ3<#R0" ܈;a68#R(/0t#%DŽw9rhFS8 tDe3cF\ȗ0" ``F╟an%$ý#Fc{mffވ)FF>v#cr=؛&"F7sO\W~毗voxF˄mDs^2ζYU" nDuF;=v4"cDc~/pW\cDՈ|~̫g>vu`D0"FڍxfgD)#FĈgt}08#޹.;m2cLjP'?#hf$rFUoD1"`w|#F0"@psK܌8Dc1"FO*0B1IU"qT~aDZ&%04#.cùl\#IH&d-nLjaϕHq}ǎ1b/EJ.aS| sϻ䊛f0"FŨKF~ζ,Mv~wa\HB4]I#VdթO7cgh/ZwdeO)cïbD7IuϕesqGMtcD@ #$Ϭzl{?Ns1Fؘ"Lj$ϜU|.~D`R.80"`Dyp5S4-w*r2F;/bbx7NF"畿V`Dt1./#Na9#`~K^<]$1"?~"[άn qaI!ϛq/9L)_[:%Qtp)ΖF1]{^#.iY \>BiY@(9ҡD-C#^ZŁ<,z?cN:c=cbD]ڎ֚1#nݫt'%FĈF;nO;wU44U8) o=zGu+6yGߚnd*}Fr aDR#"q#vm,ܵ 4b#D=.=m a)Op;91"@3FV?za?35GL:АOuS&#cI.SY-gٮ/+#$[cM#fj[wċ1" )6 b̰o)Da] F*FYW'/fv)Dh #B#<[w͈ 2tň|vx'nO[GcTsEVM!1b̏z ^_xD:@cgIr2F\dՅo|u|1D"@Fob9i'5x#K0" ׈M^;X# w#J@j#ξw³9{B`J$!#[*Dۯy`ޕ0|w$Faqټ=v5o7B+>vk/h^:3;Fڌ8M^y#,]#SıcDѪ,ֈksr`D( ?;FS`.El#tшw*6f?{-YޗbġEVuwHB$5בQ>4U#m1܈+nȇ`DR:ogĈq҈'2]D`NA#j-YTz]UF('V_<[䀱yj);k$хT*ψl>LGm;qmY!Y,]1:INxXW[F4g/̯ѿ"k1ca)}݉%bDpy? #^p'+-ǖs[s^FH׈#RnsjFwfp2FP_Fџ#``D;E#R>pM0be#2fX0"F8/ɧ-wy_#kD2*@F\yOWW}xRwc_H81SMGYW_bjD:E]j# B怦x\pވ'>o^[W#Miة31ˊd[OxtˆhbQ)ОYd^B^;u"Xɮ)@.80\ڳE6!}8h,-eR\"yuE^[Dň*IXDKć![$."}mͳE3?FF$!2I}R1!#Ԉ"1bGc&c.&+ o#^}D<'k7WA*mDZ+#.~"3\E$toD,/Sd׼"`nҡt%owC2tȈWۿ}G{ĈMTۃqФ/@ləy#s={F6IdcDtʈƬyA7g|ԩI2`D#v2ҝK\Mi0 _;CW}쭮tcD@x׻u_W`İKˆ#\#E^TCiͅ d̈H;>=ɍxCCJ7/m3K!$  -J֛ƈq`0҈HR̞6EpjX8E<{F8Q#޴TbDCHOŒL2@>)ždh(ݬbĸJ+2J<;#dDCvίGbFH#~n+>ɷ XH@&Ɉy>x5eoF A"۝pcw}QG`DLhmv8i `7Ј]OdvyCqz[>#r.J1݈\W1j8᪙W }[^ݱsDވfgS}ǝ˿qy36]ߚ1bإjXF,MKwqͿ1baB!o#/bxثk+^2dĂk?ʽe?~W{##!ep4<~*cLjPK̦P1"׆Vl0b?'',`D2'3ԝEF#Lu%^#w{%W4W7b7?#bS$TI[#\us]g6ߕW[#6vZFO'N7ֈ\ܬrR+P66b?~oٳt :,#6{uUL@#h L[ Fjپ~aǜtQy~.{C4bfC3GJgv} ͼWn<6f+^]Aq  hD&9"nZF<]~9910#&qF|n/{XÈGkFɄ!:7Ct-"*SENƈF̷d7r`Èq BTgryxG0bp̫4QDq!RGkx~ƈ1na͇Z@#fwɚy#n/<]$k.v<#7~"[άn'raF<j7yJǞ8bV: }2b^J䲀Ո]WV8G־#..E/>ՈG>k;>_>[Oz~~!0ܺWN럘c:ᶀ>OtÈfթ;MrVN#RT- J+wРnd柲>$FJ@S,j!#α.<zLM#vXcD ;B5ƍ!R!ΔkFva#a)r 9H\6/Ѝp΀dG1bFr@B֢q0bFlvn\[IA}Sƈ3TE%ARӳHY#m{ؑ&A7;NWI3 ]}!wFZ%l8L&N#%#R|q#Fq+A7Hғ$89}FT`DF̪J%:Fnt # #ҍ#[Q7:}Csbaq7]_VFĈM5~q#B~78]Cl#gûRuRu Y;G暞{:zhTOň{Fi41硣wrB`ѽM #1bz!0b I.DX9nSϪ#;Wc:MgD"l/,0]mЈ/[vR8ԼKqjB|\ure#Pk5&|EhF3kܦUfD}w+`@ up.\,܈n)}sgf}81"ForJ<) R>Ӵ)#TfFG/joO2b%EE݄wOs7#2mʃ}pc1"ZD|Nqr($TI'O|`wfȟaAfZЇ#:[A3ǍaN|">` Y#B3B#1yy܃yOC#JsC2<0#$'r[ERd2K/ݪJQֈ7%/c￳Hkg|H5"y#ݜi6cČ*38 h5"K>jәO.}E|F $mf4Įks #vΈWݯH_>/X<[Rc5<6b*ѾNƈ CF 5ڳ ֖`=q{"#m6[/m|Fu%j#7*gcj#쎽#fp3YUq#1<{D!涷^{)#J6n7m%g7Kn& Dј<;o厕9{C㈒@؂W'E T1bWHB#DI}##6~31 01,[EBqmR`DF8s9'o_=gy^8?ꢼdoU886#vT0"@F2_6Ti)42ur75Hp 2o}ݞgFxC~QvÈٻ⎤y_L3KlxeHgш3Og}k/;?+*s#tVMܙ]&*A #.=.N9OvZԈ݅_A<0H!2"@F1FHqhdӋ2E^OqhF@_jm#JkJLHfęƊuEXSdİv.l#(1 V>\v#d= "یgbB#^QlwXc;ty4aDӭ`!5-gΒ03a"ϛsEOhDȯFZ_R;5#2H˖X=#ӈ?q#+ r\J#=v95"ViL&՛KNvHnhҔ/,Ncx4Frlw,F )ۣҖqt84 ƍxDz>UdY#Qzؙ{g_/id^If%EDJP$'V\$3'pf;́bXۯ5 #%Y:{n'6b(È.~nן;͝?= ?sž[.1s^|DiW33bz ;֔= L}&?\#߰6k/qAoĈC5!#v;mE'7=K12>mi܈抝7&ל7pވKa;4Qzb,cO7}{mw9/_][-d~SKg ̫;OKY+[#&6Xp:䭇eu7F35FhCD|{Kg3>$R%o#nP4Ǝk,{u壌O4_WcXsW2)4?Zm3M1bwX;YZohlryFzśa&lRF F̥}qF$84PɀtcF'F 5m5f->lA=#bĪXt%B6!JiH!bġ/9ck͈o#J= g$n3`7ƄXHyS'VdP2+HbD8&ڀc_ɐV_T6b*%6SQqkH #U^qWw"4~ FC}98#3~"{?7Hl:8jt!Y1bf^VbįpFĈY66==jDi31](71IY ƍX BlZt>7p1bڈցu%O=#xڈx}B#V4b\~5 #ܚhtbDf?V!F6%y8Ju}@j|jjFϾfm+5Sb  ,a]hJzU z0bE#ŏ4Z10"Fm6^dw„.GQS#bdJ܈5(h{٥ňWg137ٟxܒ}M,ܦCu,#d8jA'^wS{aĚhl"ģqifWT#Qq'nj1I| s)c%gimcL/%G#7%9C|*Uqt1Ԭ/8`P5!3-a{jF5+#Xya<`>izkA1bFj% InT4H1sIM1jՈgǸ5 Z$/#f.}1܅V;Zz  yL?4y^]2nF'%1ėʈMly霙@Z:MFmcF ˵ɍXJF6cÕ_Y$> &!.yɌآus"F̲X-;tkZ}֠Q,"a5IbD}c+tS7|떚Fʪ'SfĴ?5bҲ%߈k;er^l:eDV_t׈&~{4_0bΩ=4>lo|K[QԆ?q?1b=!ed }F%\~ 4F'DTeZ6RD_Ӝ6.GAB~bļ.2s@F|NDLo>"W[}mDmƊc.\~>>w&/\0b'rh |>:Iݠ#y~A$ }}9^W+®ky2b kH8<Ј7$(ݷ+m'\$;M~RqF uhŵb1Ux1W|~Uxp[PM`q7Xql)aWR{m+G #0#j*5 L&h)4o\]4bwV65kD R 1bFdFҒ,H=Fw pK-ꚫq#F >bMG#&5<1_Vy-q$!;Ʒ=Y&W/Q黟B9]^y[RW>̲MݐȈ+1]bɚC1eɌhNfDV]娾䫝E+ԈWF-k-)N#{C.yICs\.FwG(u׈ۍm!? ;i܄k*k4tlWeĪ2OcDz "]eokӻkZ{6]N T[dhZNŶ}FlЈa)b 'Xv[_ۍSl럆%5s 'g!F:HĈ-1|=F#=]^ֻfM܋R| )kqfH4uDFF4 aVͥn%Zts]GQkMUM}"-boS_HZ}]v DBfn2pWF #jDGFԗH4JLW$2eֶ\lZgA\F:bW'!%;َ1nuzDŴNB"X1U#VFaq]n4Z;v8ç8Ѥ2b`D3uN30V&`6geQP]y٣ڼk-1[)L1bfF,^uu Vn/R՟ȮgI9nߖ9Q@#F<*#dDˈsry #7,WYF>4]P4|aX:̐$$jZGL6}_x1Y%Vb&'FƿPǍozLjabq.Y xH^\I5^>uJJ>%rE^ELW?z0I-;XxJ@tz2|VrvNTxΨjI%;‡zezJ#$=&ψ}*ap_$ISg#1K#Q0b3F,tS/#&&WiX{ߙM5+QʔQnNcB#u'#76Z4[k6bSH5}5:T3oVV6bŢvoZaN EfZKF1`[S/\?QYi~>؜'oO4̓L85SZ4$ f}3b 'RR[B3F> <6b;5B# ҳg'֬?Z `|E7ȉmr8oP>6]@`Ĕhi<^fXɈ)ou34<^#6aDo6I6{MgeK~] +%ƙ5)_o&3Z[Q*j!Noو&d Z~Ma#&*压m7,ܾF+˄hXc344gJAy2ީ;-gXǎ5T=ZӔz:85_UF숬6b|9o6Vte6TfQF$%EO#Zy 5f5To}TJKc/huStIM1?gZu8SaD7 l٩(^_=xmQ͘JѿR=hIKl8c&8WpNJ,FL-!Db&`%Kٔb:]5c5_ohrMR+]9]J%;ƈKWzX#Flͣ$U64W8W%&À_$ny<74Zޡٸ}#M Hcp؀V֌dCX6K0JnPMws)ȡ2eb e_wYųvm_\oF4FbM|Z.`Ro~V9TkLjF0b/F4%Mʵ |▍XmȵڶE ߰N! F9eK+lZ]BSU{Xַ~en9rB- ATξ]ea_?\6S>MGl}F(77b/gaW=u#6g{}UՒu IJ,땄(jS4v?BDε?veF4Q#JЍQJebjcRw*}IaWNlki!Ta=NE]RL eZzLj>gb4n{Q;ZTޝ:l];5^C=O=Y(0յRcѯ1OVw-*Wq HvJںSs4bh`SؾԱ#*f8ڈ)ەU7pU%O\]r5럠J'{:78ʔ@CB,mCӲ+\VxYZrJ섕SѕCDoA0Xm?ʘwgjh<Τ"ĸ[{WƖsP~-.WrۍXzhwF?FѾ`KRwq,-tj䫼4{udt׺(-?i{n-yxGqO2#ǧ Q~.0VoRĤ4Aa$Mˈ&k\=HG uH$-ܰ*/•1$Ri=6Z#Tʭ;"p#6 yu"Jtl ztU* vv~-ĸiD*yGOoD$]{ImͿLjSPNQL'Hp|QyR>h։ƈ M}]:#CKXsL[QV䩹nx3TG#uULkD}_{~𰼢jF:ڍހ2^Sܽп/ĩ]҈5u(*K6}k}׍qM_ 7n!TOѹ_[kzl #zZ_7bxʟrS]1T?IWZn1F41rhcĤ.ؾY6y}:hkk|Td{ْpѺ3(bFTvӞ\g72@M-)O]0#IWUjAͣz&q)@`c?x@q%=y=(>z25kih3wY[WBBC!Ftr)S;ҹZb^Q߄߾x@\xb7h}XB#d`8P&#Vs>lGWۢhWo8,$xXZ;Ɠ4]WXc)ɥ8e$%VRG<)-)Fstqz[&6\S:~zdqrƈW"v.Knƈ"~s}ޟ?}=Ou`h)3Hmq,0qx^nSwUf^P7.i NP#ۈEXdL8]>#%zsemRcY⥌MRqacǚZ K6՜oھ}QB=T91cD5F,Ӛ׳\bp3FF}=] ћbƞ_Q}ૂ9҈db[?3MâSF #:kyQ*7h~}Y,i3ooTJkEFnWsQY+78#bۈ w.S*jMqDSz_Q=jbiDqWFtujg;kԾN1O/qbuC&{lKڞiP\Y/¡ӳx•.:J4 lVRTkF%lro(x\aDЊoֱFm=*EcO!a^RVj8"{WgmchfmEsZn}cD$kGŚYqMÐZO 1c9uϴвfֈ7jjGhF(- t]z=OO&nP[Q[zyoO$AkD*j.F\{,WuDdDQKb`4*!z' ѽmXG:-͢ذ6GA䮽pk0z]w|l(VxqbDQn}J#"?5MkZ9VwUK<7*1%fowu- `:8T m߼]-=goM5*&A#W˿x'hM\[(-oC]( 6T9|*+ӽcMݚؒE_>WʪnhpL7Έ&l%HƥѦ Qv\ɈA#l5_u,!9lum>gz}(5'FPuZJbG2PoeױrS Q[W%b1{3"n-䊎rO7~3/|&6*&ˇܗn!qЅc\`ֈ֎vў?=11<[/1"cI|&71,"AR $klЀQjDΰd&Lj}[U4&A:@-zdRWڗѰw؊~|Tqʃsp%ϟ訽[!-o1d)f@cǸVJhvet̹Y%&,V4z͝3&}eaTmS%%s[(_D*1W[C7lu,`v#aaEPu 1rKè>ňKؘc`Ei&x{FTMq9k])7Bi눠71d^:}4=9,h`49~E(,U\ӊı,X 1A_Vmz{~t#.2tѭp=L -ަS6 0bXƴ5]m)CqEG'@15{P(JF0sFW 4`ܛyjQck^{L8"8ˇ蜶PL,U hvBF?3%Sg,MbĨ 6ik"+Y9$?V"=:s[MXMγ[LF3>ZćԓJb-(waa;(.؃~%؈S0֤hsb #1#KX_?ˊ^Pi]1\S j9F+]{DT:q4¦"JXgw:XzD$z#`ʽ@Ffw~z)6? bkN 9/8h^RcBt/π'*:Ĉ TstJT7+kDg3J=2]%EYrAqVwGQ4+2]3{?Cr@9 c_2(qZ%)rWs@i}c\-RUFTVD%Bg~!<*]Zg3jr(mj׽縝Dh]K!gk*I@G{q])],aܽXڃzD֚vZ?KEK1;55*Z.Q.P4%Έb꺍Gm[q;=BbI5kjUbuoj%)g?`VQyl  Ϻdo1FJ6#޻n+:Q3X3=jF{Ȁr5}bW׍͵Bu.{]3> SIpl1ޑOgv]x (9G3bdԭUX͈彚%VS!XdD՘>ĴĿaUIlZ[x*k6-y&՝詌h>q[L6 ]m(AڈFF4;礹1 #ʹQ"o*w Zv頰/WVnm(+N,ߤ҈a2H$%6rFgD]/ 45sGZzx[FqdI"%h%Z#Tbj1oãģkϑDo׫m)YNĸ a:*/4(nim<0h$nD~ޖP kcJ1&]$sEw )mDݡWߥݗk&Љ+6.9 JXǵ{\5 뢴En3ob-%YD@1D.ʒ^?mOܬgt+:cCJQˆFx'111磟[Ii8ٴjR{SXnd߳^uS9FcII֩nԳ(s <!Cվ C[wFTp# f!M*1ךT߫!V5фgxUFφѓI芷i*"YSkL/i=ڸwڈʖ:N\YSR$lGL(6eV֨s'SOU3(@XJXj&jT2ֈ~fio2w(e u㭀o79TDLW&&\ xIؾQwm#^H#2XFh#2\Ɉ ^ SDDU@B9FU_2lMSjO3&%f}h`*jħDps:]5䃤Sb'&]ֽsOcQ+M1MGqtl5fD8Zwv3o>QՉŚG@1v$zHeM$FL?+u`ĆGuڝq+Q҆zbQ,܈Sw Ğ]pghwdw'L cT4^pl[u$uwuZi- `b($;V)?t&}W˒zw 7]{l]a5-@;W'#v92I<0CšT-ѱL~lϻNSXA&rz04¹#6h:{L\]~mWݨ0b1Iǒ4\MVZ?s^v]I̅IET2Iih6b>hhDҔ,Kxf9(KD+X}~5A6{ڟ^;k#֔2i#J6GUu!GÎV^Liqt>Fd_S fx&7}JC6#hT s OJ ڔ/1bόh(MЏk3ǚ+#:ZGK.5ȸjz!4"eD[MZkvÈu(1r"F1e{s 6"F76bV5#bl4qCFĈ=nF1"BhI&"F}k$bDкeFĈaE##bD0"FT1C#w{%W4m̌8svdמ~M&FlLjN}Ao֛1"@KmDW#g-{_ňuA%D0<| vI7ҹ>Z0b#jL1|Ǧ,?yū\wɈلlxVqrs6#"D"##ftW1K-"*"'kK٫_F@IjčD+"ZOFڈkF%e7q[%^U  wgo&Ӽg~ 喲"{ :DE"(yM"(ycH%[H%Oyq_9(CH%$E>J*(ylA"(<1"F1"FĈ0"FĈ#bD1"FĈ0"FĈ#bD#bD#bD1"F1"FĈ0"FĈ#bD#bD#bD1"F1"FĈ0"FĈ#bD#bD1"FĈ#bD#bD#bD1"F1"FĈ0"FĈ#bD#bD#bD1"F1"FV J$$|D",PB*(yD"(mM*H-a򟿂DrVJܵ$ N! 2fw^?fsV~ZϼhM}ȓi7n?Xĺ礿nwxÏI+!|_?."lcb:~W2>7}ZK\Z#i77.y˗XrrWe_&X&[U-ᶭe 5$"UOZij#iBx(!ޘjDdK9/%Hĺp]%/8'n֌'iulcg}t:A-F$O"v}s 0W;3&|'K1?V5s%Z-^\!Xpۙw  EQX|OF^h/n9CZݏOit(LZ"y^œK룯}\ ۪R1Wi'T<*$"*^;gͳW~DZ";n2t#zkQ"{i/.y9ieKOdSCZTLE"dɏJ SdJO|r3EwzkXkiʖVZv“k>cD$d$KH+Wƺq۰< |h7"} $8f1Ӌ>@bg&GZ`׮.i*lR:t>Ea XyfŻ-˞V/.4QX_ޟz.=ʚf>baC W$ O+|0p-˞V{Ȼ F$sWJj#}γnY!ZHx" >a k!cjE";Ě]U'Edie)'=Y=mF$O2{xzEHI:MĮMrD6X1jF&^~e=VijD6#ާ3EMӛ>@bf}ȓfXδڦEl"I,Kb>ŧO?CZՅAbD$3m\Dg>@bqG;"Md'X\ŧSOGZA0ň)bl']Ev5+ WF X!ա}s݀k~#ާx O/>@b>޴ˆ!cEbGZ;rQh3"}o'*kq|3! Viuj'~ûHxDzEֿ+$"/y04 ވy޶䷛Ws -qxFH@ #!rI?'=s9we{7bGRݩD=㿛!qI6R.P-=@T #@!#6U5!@`ʁP
Ӊcߡ+ɐX+~ WD$AiE< iCkwX<$.I 8o.}EtIrABk/+^炩͑Y.VWc(kg2 {;-g-_Tx6>)sa1+}!YRx!"*_Z Tv}GŸا7I dO9I+"6D*|zlӻ育3/E;6RJJE?GZ=}g] u믈>," g;w?>E7;"lůܒAV0q>H,tHam/?ETqx@T?ќo7 Ltѿ5Ze` M3SDR-L v8W>J\AV5MY/Ϊ%tag<9T x bG]1k'>e$S- IFP^7m.k޶Ћ V߰LE`TEBM"leDFwyAUD0E|cL~[qUrABWR ٵ%H o\UuI6\4iSmeNȊhSE^bS.Ldǟ.>c 9ÚfU'S[.&;Gěg-l|?Ea8O5vOH#p*YQǣI H*"ezi/zMFZ=^#)*B䢿J{wFsuIE|ѕ_%fA$VFQ"aezGMyT0oqSrABYJFz"^zߪ&q߷d nּM%]%8+QzY9+\z c%Oaܧއ)[RXJSE_'ܔAPVılQnQ{"Y~gҩx i=0VwhWVѳ,.$EZ ~W ޡ  Ĩ>LLhlq" MA eE̵<,+ "rM O)ޗv;xĮm*eKz:j0*b_Z*b,9.J HH+fE]?RI`%g@e @.R{4NNj@OWZvq5*bȩBuҽQfEtGrABZC#9Su&ǭC[]AԆ%#j8A`""0rI|+J9bT>LսEY+q"$9 !2buyp&ʊXnh3ĵpxIjRPEsџc RM ; k>L0ZrZM "jջv:;mm1T!L6cg$u8 T_M- qY@[~[\eo< ǃ+╶_*شaivפ PDԷ_UWҶ?S_L,&~a|hH{D7^V~'AQp3o2!7~1N&}ٓ|1QIяUN삲h{O옪?^zi5XeףR+"9Qneݏ"6  /;Xh[m[|e'].XãwرUޒ{o6H!wP؇Dه Z$Ai@S_yЉAA8=v V}*322}#J"n`rA3?7])Cbmøm v6/ *x(XPyD{L bp j]= ?Pb_&S<rA&o`Wy[k X3- -9]19 U]yv7b7ëo&yLZw endstream endobj 114 0 obj << /Type /XObject /Subtype /Image /Width 1233 /Height 1113 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 97231 /Filter /FlateDecode >> stream x \WK9DTԶ-V bknk[۵VwW+JOVrpPp$}2 ȥ$Oyy($$>(33m 0IR6'Ο??77gH$v ae˖z4MwpZ/5aT*'L+֯_{>}믿޷oߖ-[<==]\\,,,_IUVVxbNXZZ;w mPuҥٳg,lnݺi:--\.ikkq+Wף[juFFF|||xxD" "%%ETvq~!#hryLLLjjjqq1nnadzz/hffA6lx h:Y$eܹ=X$jǎJm.Z;/^Dchm#׭[k׮8qѣ{ݴiE;&;.]TJm8;ZVbk033S(hXlZ7o^NNNJvvv7774,YıcVTT*\Φ׬,-7yd?JjC p666$$׶cRۑ#Gж$$={ r1e>ږ,YBjE p$$7effm8TD.pB4,Pl26uZ[[o߾=99V_~eSSp4,0J 8_bw}__ӧO۲eE 4)/^KKsΡ1 .]4{입ͭ[#4M>|v3mmm7nxʕz4tZȈH$r\P(./hSNO?g}7cB%qYp8OzYӧ^jkko?6yr8nKlF(cbbRSSZFssse-_tJ ++ɛs]Zԛ9$ӽ_~eGGG3/[6l |$vDu7ib߼9jkk9Y$eܹ=6meecR U #ysܸ>8uprhGtѢE)ŋMMԇ^75哼?UV6BJM^tM6Q뛭ߠ1&m?M~1buvu__'N=zt޽6mpqqhsc9[jf !aJJuOyNJlDlҼ79x{y%.]{r۶m]HVUV5) DN ޿?LAgm̰ya|nGH{|b1͛ӳzR ֭ #H43ٓD2ilL7i$x&j5->Y7cVT\\Φ׬,DNMZ[ Iޜ:5(&47%9ǽ4]zeD%MD2ydyksuu%!r}4.^E&۰!Aۃz$$$l 3$MD~gccCZ^.;vڎ9 !wgQeʔ)>ږ,YBjEfZ (y睄C^d^cJV\^܌{#K"rƍA!!!AVKK$% .f&UU=3\POdeȪD*9q=\qU",\PNo3r(nҴ^wBQcgՖnM?f=e˖z4MwpZ7ixx8"'@Р}Xݤ9hWcϞ-3DCEdZԀُJ 8_bw}__ӧO۲eE + 'NN$iWP8_]}MM DUVVxbNXZZ;wΰNkƍ $y.-m꫚f:HOoD~GQԥKfϞݳuVCLm$ޝvf+OڐD?^mEňz鴴Ç;88p܎bƍ\R__o >>ff|ΦWzVy(PPmOBgj:###>>><<\"rBT*8"'Qj͛SMkk᯿m%)j T+ս 9 E]f7xBWݷצԊloOQ+"I 9fϾ;9!}[X8>&|edXDN@t||[PIQT k `+1ھRQ#W"r;Z}ѱcǶ&hʔ)NhΎ;أ9X\jm-$ysT ^5$o&؇#r9st SII "'uB skB$ݧ rɓ'?pͧz*++ `:u*,¤N&{q$IIZ$)w3ofڵk瘘ǤHv3?DLǏhSc]93Ûvv∈>S]d͛ٵ&edІ )RQt9˨QHϝ<~8(9US?đ9eJP^^/A6d5d 4>B̌|\\\%Z3HI&555!rz/F9wnhiiSkYӛ M<./Y"?)D2dR􁅃PyDN#SWqq #y-FӭË-zOBB3?liB/彽R~դUff&"'1ٳ'͕+c]?P][wr'3B2>hlЇB/H/\Eq#!Z8df6 $`φ77wy%\$MpquzujoesG}ԕykײ rUb.Ґ$2FUSC/ÇgT*}`\f {o]QQ `rrKЕZ Iؔ>!-Xo>}s/[[[O2駟fˏ9o۲e9 VKϘMQa/SVW6M!ISD_rv:^PP"'9~<\쳌mڞ4)Q. `̙]7|h{Lq:"'II)8GDN}@tHH?EM8ںIDEEVVVhTr…Gť!3Bi"Fݨ3sD4t.]:rᅬ=F_~L.sF&&h6l ?Bi"r"@1ryyy?Va ?6-BU҆$M(+]ۨ5DDN]k׮-%nk3f>igZ63EDFN hW9d5N->NU&"' rbp&\ɛ'ԭ Ic*<_hps!r"'ȉ^ 6oN!8/]*&[nݼ9>!918DNx4_373y"ɖ 9s@G]MSS~bb [_"yS:Fڐ` "'</[j7l0J,7%%uiuzֈȉ9 rCE-}ajzڡCE%%꬯Z(ImJ;"' rbpTT4\ߴKq<`P{ָO918DNxH^8QF򦣣<)&< ɛb;qu\ѷ"' rbp0=ͱcswQedi DN@99S`c#"y"J5bvZ +B+T r"' }b۶T6ML^^E3K%AyRX&+hm "'geioPJ6KId["(͂ "'ҙ3\ k7%w@S̖ADN z#$b 7]VK6I˄»yr6"' rbpciiuÆia! fEXFM9r@nDN@9gJKzJM.wT>XQ)r'o &BDN zQ;~82hy3근Y"' rbp]EZKuIdcULh蝼ioȉ "'t˦MH\7xBJb&Y!r"' =See%d!Ě%mw6h4M "'@FFȑL47K$TV<ɛ%5 5h"DN@9ʚi_&y3xZpcn#918DNZ H2+MeMh"DN@9=@-oOo^M HfXmM "'z5@ܙFk2L<\LZӹBΑ#s>Fk"' .MI2dM?ӹvWZ'} 918/x=&'sx7ߜ"9iY$M˜4 rbpn(dӦMrԩS=<b=zt}}=z5A):姼c;/ 3.9Q i6+`ffUM DN ΍FyyS&L(++d坼odd$)y1}kj9R@6l^$Hݑ*Pq:WR^^P6^3"';,Y1c:tHv^xw&''elll,--ZXXDGG}ivss#aIBзP6QƆqxǞhlF<` FGlD"r%^DN@h\|Mͫ[^^` mnn3g58Vh펎̖+I'OaW^kjvbv铸7VVB&o.NOG+u¯hXL&fDDN ΍;;l'ICv2?UQQq?ZmjZyf&ZUPSX3FMss>V)Qu}#.͓ȉbFYbEé#q͚5d+WrEc7Tq1,Y-^ ;g&f}*V޾-W_%ys4}75gOWwya8DN@dddOh޽»vb gggZvرgϞ-̙3삞*{.sȑ^{MʨJdy)#ML)!AΝi$o.[`I(zq579S4sxڞ=F*GgS:/` '''SSS0uɳ))PDN8Xؘ)-՜9Ly$oNT]A]UWccV 58/ygQ\UA#…ǧLpTT.&?N:}\lY锗2yvC@Sǫ$1'7kSj;?$,b 3l1" 3mysJ Od~~ϪBDʠS5oFQMn5+DC__ 3gh4gΜYzYfΜS;wd577Bwu낟 &y3p\`edj92XXц,tiz'@dώDDN \ΦӧOw^ĉlaWAAcٕG-Zhڴi~͛7ѫBkOGK|gMf`Sц*0NڥQQzY'"' rbpn " 3lٍ72ZYY;17|cii\333///ЫR6MG\^ڞ4z?Z-K 7?:(T<㹭asLS*fDN@)o߾}޻w/[855[oH<͛ѫVcncؼ0JJrFC[DR=G VB'7o戜ȉP*l۲eK7m.Ƭz9ήDUAW^Y]]P(򗿰o$ЫWR6KyVjU,ik+rE9ۍ qì`īՏ r"'ơ,xW:*k2 ]~:^$N:fWjj*ٵ|I WLOy|>v.ť7M򴴺nɵBB6sDN@n˖-LTھ@`` [`]ٳg3<3ZmG?-^ssK2ᆾ $ob4ōPXbg'&y՚hM{ge j]dzpp# %;YZZatّ.nK_[`Ν3[|Ą33@LI#F^ ]ŗw򦕰<11Unn$l2/&xil\Źf)oCRRADN ΍Oxx ڧ?WWףRƍttwwonnnDxa`v޴:)׸aCy &>x0SHC(*;+kM|HDL79sqܹ/8S]tu;RRRg}v~`ySP"7ҎUV6ٓ6xMss>=KKq(N;kלBC[W?a/nnLNtIȉ97j0,)"9HP",of'w( \.723eN/z)1䕘iY}A9s@j|IP|J&MmF(U,ZG||i-.ؑWTبC@DN @-q#7onIc|˗NuuD.)Ě "'>,͘chmȨwv#aFtX6@M.wҾYV) r"' D;ʛ+9gNhzz71 2b#r"' пsF%Q ,Ov͛Sj_%q~x8ɛ#D{.ȉ9 r#JE9[jOz)9ɛFI b1ɛN =/"' rbp(i]ɛ)[[[,,tiTQBK^&KmnHJj ."' rbp%\7ß ƫQ$l$[OԠ>A¦HtAɈȉ9z5X$BU˝}A>idTuͫWBv!!3?"' rbp^sEAD,9"rF[$;SкuIZ<&◔x&$ض.B^vb֔Q5"' rbpMˢI ~zsOnLAҲZg"!"WJ5e"r"' ]:[oWϙ^ܰ!VcgkIJ(|#.bQQVk_kDN@9[GnCIޜ>=8*X<4 bcuDDN ѻ HH47ٓVSzqLdN1$_P_qDN@9%u[*ɛ MqFwEsLƜ\^>о순ȉ9 r<&#ĝig'\^sѬGDN A^^^`Lj o9<{ԔEEj?_'yͫWW9187z7o:t~BQL&6mڐ;N!J6{yRReѫ8PWm+"y(7Bpz@8}|xCry'IJ;v  ZM;%8cy󴣼hZNfN]Գ/"' r"rB_aq9)Zd njs!dzalnnΖdiaa}i͍٦&j0PJ+NFqx>y38PMNB9޸1{"' rbpn&D˗/͛WQQٙ-0o^B@Ef Fδ4m:*uVXzz:_'CCC^|w;um.W X2M&&|柑+J7})VJ,VU r"'爜, [8))b l14gϞl133S37Buu59dѢE5͔)S}ùի=ΆM ڵdZK?M0qsEj"znh(\DN@:u{s>0rv]윴LOf;991[\.sQ?#^ MfomߞIrTDWU뽎v ȉy9ٵQVXpn\f xʕ\x}؍*LdjsE]}{es{cj뵒%LMQjj4Oyy 霜ii{U\aEx6E8p:ldv{jjСC; l?< zh&]wҚYW|_%2i@hĚY!! 3ȩWr9\6Wҋ;j9lyLpTT.&?N:}\lYAAW֖;RܺհԩA이+Wdfv|fpW &:_Xh-AϛW6<99{IVM5ּFQzq#D"a㡯ou2gh4gΜYzYfΜS;wd577B=ؤɼ&MxZ,3㫍^;#S< x]rMO'N ͮ>hѢEӦMsuuo޼^ UQ,ryasÇ3UO<[UɻM4VRQTdewV[d$ pXRZ #rv%r* 6E~ם4۳f7nheeh'olsGEQз4ۋ,ZibMO?߸Xd0`AcnѴEiuu'vSh9{GL< C#gJJ y{e vddd0)9r:yfjC4?]M>Pݪ.vF2j%QQCE>>D!)NA/BDN ΡSTn˖-׹i&p+[o1GUVVUAW^Y]]P(򗿰o$Ыߟ.z}{BQ誡1ILdVZ)@Jnذ럄]?ίbj荚ʹiLryMA. +469Ϯga@DNDNyIQ1@ǠiՕ9[d2{W}=t)^ =FQK/)#^^齬M]Z bwVk4o]SۜҌ{h9Z䬫#e2^y啎keCgGDSNٕJv-_zzz!!!c{꫱LU]tK; gyP!FTeD+l"r"'"'<زe {S*/ؾ}{?EQgfygZm{{{fy%W epCBŋE\9eJPuu5tD7/) )4}03]g&DN@DG9iiiI6,,,LwoPPkmmT*|}}Q} ܹ1cFVo31oϓ]6mBIH2ys0qFFUkIl1 il|>"MK99ȉ ,r2Ξ=/~vrss*5ɓC\\\:ZQ|̘1+#G6n8rHաW@798Șij KzSUsEss$o:jj ";)ȉ 8r2>lbb這W_}?e2Y'FqwdBhhh(z5$$6ӋEG8՛"y3jiFc@PծOJbg zڵv"' r"r£-w4Y`AzT*ոq.]™mͭEk2ɛ񽩧&F̈́wfC5vzp0ɛWh r"'"'eEׯ_#%%ogǏeD&M'ƞ_+ ,يHLٜb@K0;+k@@ *:"' r"rW@o_#y$=Y|&M6F(mjzI aӌJObMDN@z''9M{WuGO0HP[h@ -+{B*%ysLQY W@/ %ÇizV^dr3x"PZv ʷ_ :F?,_W8"'(J71ᓼaCRSՃzh-C.;YPTYLF]ݜP6mExK&w$矇As@CTZ$l":7J|!>?\U`0g->/,,)r ay{h@9V<񄔌L JIEژ1lؔZØoFY.9%1Kv^ڛs dzȉ9 ro,ss>f}}CQ6$M$llD^^,)&d$oHD*O[MSgYDN  NMf824Hd֠f &ߜdORm(-@ѴwV9Oj5:Fh>h{' rŗ-918DN0@Փ&~@+̗wƾ[^o@-A>`ɞXtknnE~ٗ }W.619'CDN  ɓVVB2np!l s 35PKbrSjj+~y=6`߮iר+C+918DN0*~}ߛ)h y8Sh%$aS\a\h}.<5.6&'7j0]i1ڟ33UCDN  Azz!d?j$0[$Մ9ZuMLh*o2g2qHEş5PpRq1z#,͘f.:7nqj4u$DN@9@]\lg'&#~7Ȣn̓mԦ{ ,$ɟu3곌 GMkT70SУ׳g_8oAj&"' rbph C{qnޜl!AOsҦITfeE](*ZPF˼ o KJ4& z$_W#5-yՃ "'|sυC.]ե?'w3[k*̐˚?ʛ¢H}W "'frHtvi 2l!쯳i.֎ $IsXkq X\ƶ.z2Ԇ "'<;]_Sq7lZw܌YӘh'VQ.}„ME3|xC|#w###IcǎW AAas(ɑ#=Lߜ$7з N_C%%9Z"LA)Q쓛kܸ r &H{{{3Y̬ x<^CC"'ȍĂ KfcllO?nu,Y–3f̡Cdwfm̼PQEXA@ySӳ$o:Ft!pʳvu.kryg~1KeUCz_DUZZh"NX[[_x.44T fGWBǍ[62V999ζOdܹs{Z>}:6uREwڴiLJE0z~~Evvb2;74=W薴i$oUMc^ޓoP(¯?UXZ$QW8>ra;"g?bҖbĈ֭۵kׁ||||}}O8qѽ{nڴ¢́}"'a׿~;HNJlɄIKKco۶÷nKי_'(:&6MѫOm3\)MM=]UJL y3p\`ݍ:}?}[H$l2Do_{iSӿn&asTmNCT}ВדyOk"r'jJvvv777DN 'Qv^2&&o첝?f;'-ӓNNN.{X***9G=00X1U,,dtiTQQO]6js c$J!6X G$yge:\Qq3F]i̿M ̈e͚5ǎf9++ ښ|֭[yIP(dkXpʕ+x"{U*ոq㘍K,A0V%K ѣY=EUJJ`` J=Zτ3> sBCOkq'! sC,tyIiC/'O&-6WWWR"'SUYsN6rfffjVhװvZvvZ滏]ߑhDGxjGOM_09eJP||7ם[bWMl q IoOp[&?ˣ1C8S{h']6wjXؐ|u.ڱcȑ#C'JKK)Skkfdd9tݝWk.pvv6٨jiiǎ{;Μ9.ꫯ2?~Gl|Ы@s3^'7/rtn]Rܤ)Z sӽ6tnh|ZW Okj=>9\Z3Յz99=r={ rnߓ(_qlZ>~a Ch=#&`?cgJJ "'jh~ˣmlDmb&˛1#d˖n\TTsdelZ 6$&kmެGyaN~98{/قME.Q{lؔMeygi #55-&R(1/ݣŧ\wylmARΟ??77g0dv pBC9}DNxdf̘{qڴinjSLwӧOw^'=x`̱裏-Z|HWW?͛z%_zIRpɏ[ I%  ذ23L?+jLF>AAjk=8|?+ g'ffʇG/E-[Z[[o߾=99kj61LMM918R\znr;wTT + _yL=lvƍ́VVVv2KK6w䚙yyyQX UV6;;͛+Wƨ=)\ќ-U`[،p(">95u:@_9)^o暳Ն9w<~Xf̘&M:u*i~.ZݪO>޲22v 3U*T*ET֭Co^V?oVTF{i=}3fAAܒdTW[DSUw3ݽ8~aNtmLcbbBCCE"Q@@@ddD"[*PN ;d*aժU'`@A-O05kt?-yQQQyBQ τ!C7׮M7exD6}|n|{CyP7Vs-OԉpI/!R{?#('rbp17///.T3>Oy{{sٱ֛+Fݳgi鉨on(y~}lyqjrj'WTVWs}M ēOԛ~/q [N w y{ 2Yx㍦-Y>(ZUUV%&&U ,ht[ ((Q '>52ܺ5I eeWߺJ ^_NTX/ͤ#9gg̥m}n:Эu]1W2B imJL,GVffvwI P*;μe(gɔ.6l0KDK5kp?wQP0k,N077?wٙae޽Mmbhhx!ۉ'ȆbXF=zh􈬄#)QR8t(VL5Jm[2Pv,xB0M&礭Tvh`?=%fWW#0ZBQG֥/.]];Pζ k[ 7dǜ}֭[wqԩرcݺu+V:u*@_PNg}֊yߟpܹm~q̙ DT@Q_߂뚉 @>ݻtFu:lNpV3 *l\U}7ofދ=;;|oS$9?ow8Kz,S }˩!M6H&x7|SKdd$ Z477kqww.$'';"Ht?cǎP6(U;vк'5thѣY55j]PzׅBzoO)Q!߿jmiu aTg PHmqʔ)YYYۏg2sL(' QX=wnfoG򫿼Pq0#hllTߞQ0.RXL@v NZT܇?hYVw[-W'9DC6YtΆlOH37Uw?|Vde"(3dd=iM(' [ysDkLZm̀ai~ї/7>X,>%*!-?|NzA۱(g‚|@@@_۷ʉ9j Z[ Zą y'yܒQ1ˢĭ+.R<gg+ -&!k5͹]?smY9[۷C918Q 8mdc@O ua3xw~~"&|4Z`h!c?ä@2ܬΖ{پ1b{|os!{rbpauL]3;IٙB|ˊE?|!6Τ}ʕ C ,6RC6縛HB@9>+V =߿ ӡtnGPUb={7g{617շۺb߻"%i-Pc&m9f*ڑ .lE@9 ~~~MݼD"Z$W^i/Q O۷e&C=rffsj{ yJEr[Qxjnx8zTB}ހfKz/.B@9jz:7oޜ{L&b`` D5_>`?MKdSVҖϷJ15LJf???|A =9Äʦ7+Ir9(C9% w֨32DD6yϮ_/W*-!Kĵac]+(JE@95g SSS77uPNrd2uxxɡC5i?hIkW8=j,Wdf3i]))A0O]_0*)rv j Ə<ܸqc[6('jxJ0̽ g]<9@/ ̙"y@bq7]0.RʦX윝BEjE6^sH =$%%ݻVOO)ʹ}cffQ +7.jС~wXVllR:U *Ot.b~hC*YU5+,f??߲j5eyt~lp9 .)D@9A*RsP䊷ߎٷsJ՚>T]:WE.TVym)|N$:Ql^AL0ѫM. nib ܫ}355eڹs#G.]T\\LfÆ ow9@T@C K 27پ=Vldh;iskj##lB T?i@Zu烱 4Z:ʃ'?iO1Q lroқ6^z'[PΆkwN666AAAM]KҖPN ;37MLLnq592vXM V̙CwϞ=ZUjyh SSSOcc㈈F903g$2+of .~7GH!Tժ䯒yF gB|D6 gsr-A&+(')\d hُBxI_|ʉy%**~FVRܶmm3qĆ;x"m0eʔzy&OL}'L@VM6-::ZR ˇ l,P($ \\\;x0AZ+b*+U~aҲyjyVTN &i[Sh!]|Tb('Iddէ~]_VudeeA918|' mޤIhG? uCssF?Mfff +gB*G>d1cƐlۧZ&5jGT: %('ТMFiKUsݡwNFIMPKϗ檤$jӦMMaƍYJJ ][o 1WZTyGT;Co&׏ܼVնN0*o.zU l14r*gbb"] -ZOʕ+DhbK'4244ilfTYYd֬Y˕J#<ާTcQ h;H|oQ%%\Dv[4['bADUfU?auyskO6KhQZ4KURFY4_('睐Btmr5WZ]EsҲL)zzzjíUΓ'Oj@&$>Ȧ!Mo٘{+Ma7!6I'9-4-z6E{t袜,{nY5>&3V+Ph- )襦69ZpQ96l]|r˫&Ν#k?c9s +ӯ*?\ܺG) , Lon~+/jc&%96(X@l9C\rݕz8ycwKFGGC918M٧OrYL&#V^}?~!iihhH3zzzҪRݲ$jY8ˁHD5P0OKnjLeĄ' )IQ),.>ٙBЀ< Aru%5Z3))I}XlwIcv\ZZ.N J /^\|9:+H4яm۴y֭1dJOU5g҂/Svٯ^z ,Yt$d2tذ*%99YD/KOANZsUv/7eVU!NZ'H>oPYYr-ɢokk;?`d;NV61ϟj\hQ{9}(ڧ9eemOJꐯyyj&''scڴi|%&&6ؽ{= hcgĮ]rzeS:}lϋun7 ]R}}|}+**^KjƋs33UN_rTKFDD@9>ŋ/f׮],23:{Sw9 ֮][/ːf{f 3*ʳg.[lܸq/}[la522HQ ,Z ! -ܻÿ46g4.ЯIB7-IKHn^~r-PNXjjj駟Ο?Ȑ!Xrn߾566>p@:k('`-?\Ŋ曚@W9sFO:E>111a뭒J;w5k֨QF"m?E4!u53pD MSRFʹQ3^]"Nͅ= .:ڛl 4v$. M69995l~7nhw'τ)SP[GWEFF?f4ۼdk׮e7433{WnjjZ!+2FT6995ݺ IV+QqM=4UwHTi锐:gnx8l/.u΀!C/9,O@pܹv;= 7n wY^z%\"Pdǎqbb4" +NNNO@7F`{wZajЯ0i'CN^ȲXX/쫯T ii}z?4M#.5w n#: q-[FU.M}~~>]a{Xnmy{=v+kkk͟"""c +++\r%=GT D >(R+Gjf~6bx?˞u3ix<=*'(߮hY:ii@93ZtH=.%%,deqpxL.+Vi'..:,d-[p׮]dՔ)SFVV}922zI?B]vH6Hص>:vNxxf>9ryW5l9g2Y: <[ȭC{7QQQtIhN{:u*i9y'z-bӧOee/ iPYFTҪ+fBT soV AZQ(ÿi÷aG2a熇)bv b}%=* e7޴imI>$1LdIqvۀ\focVǏn2zhU gϞZ##%WR%a Q x:AT¨㈡Llw'dÙixo]8&ee.7򼁁F6Z=.UwkEPNKeK.c4N(6'OV7x HSSSҠ[n!!c &kuN݅lB;6##.g1c jݺuj@[ #Z[[)j:zY@#o^|fO_/1V7*+ <:p_FI^xN8g}QPNseg?~<1KݻwVVV;quul9o޼/r֭wQJR /L:*EEE}WVZ*ڵk{E8VDf쮰 ϻ|Ym>U*b^Q y:ܚ11t?nBv /H|&5SzA]WgTtE PUdY, ⛑]'hLף2}5jk>o[W3PN(3aMрrB9AˑJ{:t~8x𠫫++tMkm477kqww|RGkH$?ӱcZ(j@k_>o^ }}^HHqS-aU̩qF+((n㘿dœMPgB"w@(SN}@918Q hM˩Y*LVV'j\TϏ8[}T۔?RtBB-hmMښulCN2*;YC9@T8*'tKKq ##ޚ5F$~(LښtΝD6cbrux9v; d؛ 3ѬD5٢V3..>}D4ܹׯmqō|nݜԴiެz#*ΤT\#/.~ 5-0̨QrH"\nPND5) 厎)=zRٴKJK/}XюwEL M}oM||\OM.01r,)D('rbp(YYK|lx-\h{\5Y,WS%3ΤZZu7kZpsy}q|t(/^LHH`0ʉ9j@˸~C..RɁVUfU?B̤d;g/)1O߿77uaTsIp9_T(-)g^^ޟ%%%+Vh0|p___\,('  :M}9}o|[I] Ie~~xDjCon'Gv>{\sssU*jڴi8s sa{\nWiyڵke7T+cVpHKMLm(ffX9 lă|6nfC@SN\/S+ t钑KD5@;j5?qb0MccCfRU04ϝv % s5fwoovHj*'0C !mmmy<^TTԶmhUVA918Q h ́=Uyyn[#l d z=J^^~t%9.(ZB`舋p5)bߋQ9 E޽-,,sssxjk~7tLD5!5pm>"'rV$UĭlM2QUnIms9!*gRRJ//zk k./((022"qՠC,.2D-=̒o^5PW wVHJpܹБ8kZW9y<9>={6Y_[J(Y% qՠP!:8VU=~*iqHqQ4Ydh{FGs)- #7|mЮpͫJP KPC9vsQ9q℣)+S.YrȦ ǤfeLw~*|c~ClERESSi3* euNa d:ޕs߾}pofUQQQdeۓNNNjPN('h.\ZƍXVbQFY2r+V;co׮]j.\V6xaھj4px M@^R#_Xhg6, T@xBUUo :r^xnҤIV9Lpӧ:' Mnnn=]vwY`ASϟ~zIIw}7n8sss++'eee:~.lll*++"55!x&%KyWq0y?*|SS˲{'gs].(r;S/{vQ('(gBB9q^^]0K/DVO kpՠPND^{:v,**heРAn.wp={h9nXXi/ کP^ MCCS:,RBk!M 1U7=CC) Bt߮o=gXYYC9~!Nfrrrk322pՠPND߿_('4gڲo߾{~^}Ն3lhzmRԔX#%9s&Y\h!)b@5fdԇ/K]>xJ*%g_t:# eP뛃.$C@QN48p`֭t6j(ɖ 7o 0x O@||7nHoYp+zsժUME]ۦj&#o8H%\\AM#^c&v,:]|_p:l}7_#*'KZZ{Gn 2~7i*!;nrB9r5t钐، uvKi?~>w5ή\IF.ʬ$ "=i/ J|y6X rDJߔKz{{oٲzʉ9hHAA `V9im j?aÆх˗/' nr9? kjjOr! TG2DH޻N 77ߎ;Oaw rD.\nR_++E('rB9A8z(ݺu˩&]9e2izj iZOOOZ^[D-%I;pY#?_6qb0ɓC Z`ҝ]Jm:yߧlo! Pz\ztr('4dL3=vLKKOhn۶M!nJgff*ׯkn-gϞ=/^L_zb.YQ ͛UÆb(w>QW87@WNV1\2('+g~l3g1YVrD"=@lڸaYRye˖7^b¶w˖-FFFPNEfOE|J.zϋu:mflPf>>Ո]ܫV s͚5,ru ʉ9h~6l]9ҙ3gԩS1ᓾ՜v?*TsYf5믿NMMETy8x0v5#uљs&]t83Ǯ4.dI#zn^3//O__ѣ PN('h! ü;MQ @obMHdSh-LߓĔxl̋@o4~פ7-973C!(={>t> Z6/#ĉNp+V ----'h{{{|˖-vk.jʔ)j:*7nTa}.'w JZPoJtc6F7?^|:rpf('<[d4i0NJ}h"v>}TjTԯ,T*iTV33f\y=_7V^¨1!7&ٞюBQĵOk}}:r&$$Йc|(')$Y}Xe& 5kt#G4GEEiJ BD59\Z.R&^B!WTT-N4&ݛ=t6WwwܼנPN=}QUQ.~|>mc7,'F$xzz"`$ŗoL+&, !*qLIѯ}~}#KpJ O|sE^93$$L!{wހrB9AQΊ R.7|eɒ%iUUGdӧO[HV-XmH D5<KM~~7P9!wdD6-66`hx}cMʺr{BN,'O$A]S  fdٰaװf͛7xhZ=~xvѣGL cٓ]kdd԰T*dײ:"hc0 ui]#Y&AωD7!_8pԵRp]9ɰƆ=Ñ#GD"Qjjj%rB9SN6 MMMInݺ00ښ577׹*ҥK6زe i0v، =Č3Ȫu!0 >7UJ w`FQdZX}Ջ,d3+**tMe#ɎH$z~رc-MD5mEB^Bf޿i3G]+T]XT<&fh@@=$.|ԐYY D_3M h&d9Ï\>C_('PNtF{R\7Df`e%DU?Uqqz:&၁dfF&%" {?\Έ}O|( D5ЗC_]8̇!ii[nM] QQ?*M o 4Mӄ˱w;Ttr ɭ(`&3_/;ܚ%uhٗ}ddVu5"!>!߿jm١ PVa[nyzz?~7--jʉ9j eʎ7]ǎ +1sv@@dH""BR~a5Mgkπl?{䴽{Ͷerbp6mXJ&9@a_Qo\ݿ%ȈGDbEENޝJon](#H4)+>KO3# wgr7u(,,\lQyb\,(' h 8>H7WL559r$taӍ|bQA"D۱k]Xkb[W9يܺukOTֶ r$w#FR4O_,1c._~􆰠(<޶j ABIϼ@s96^z_-+E(g"F]={<<ܬM=.gg_giGoY긕X,[%&&A918Q ߃DKf`MtppG%)ףhLu(FB(ߣ...pC ~%rd?W ʉ9j6~uo§9uR9ZrLI1Ik-LZͱp l[nPοS9٣ñD.Zlo>\5(' xV]zmM`qhݻ:a$޽#%?}ܬ#4)^o="Ar޽7| /^L6ܳgs< 5y8S`) c[PZٷq~\ZYCj˗5;9$$RRVuiV[gOxVyI65jԩSjPN @TwCrĭݿ]=hߧvȨrJOiD6O޺3iY<#Jz?|fn3o] g4D"q+%*<<W ʉ9jZF;m(ftdN8xAD52%+<}񫠗J>/92ƍ NnOJ4MsX^"uOr^|ݴKxQ-מx-ɖFC@Tβ>}PO%IEoh߹\~jiiI[[A9@ gΜ٠32jX0j(ZFb ???vSzzzzlڵ Q Ӧ@X zN M͟o2uE6TÇ?;o)DzhPΜsM5M o[ן/اg^g,111VVV077ot9۞ ڙ5kGg**vΝ 4󵼇nܸq5q~A_ƦQ S%L"nDF}B޻^37' ,SNXIɊSj<399՝%7ѺV揚75w gb|jh_ɒ8~x #%('B[EEE74hPaaao@$'5ٳg@@A`Xi/ xz0*nnHOIr5bE@7|s#fBa\f^;RR2:qR !s5Měٯ^oUT#@U{yN>=m4-)S:uJ*PN('Ё21ʩV̙CwϞ=ZUj FFFGDD4>f3gmo[[flD`nڴf7nRRօ뭷[Vj*6ETZ>woC|s _k_,/WvԳ~?BCͷ ҽ{{_O+ns;@9@>ST_%jKi$) kjjnUVVF65krR9b2y:U!A'ON^k/xETv 㔞ޅ'i+ r?rhXn]+f񻴴4YYYiiiϟcddDL8Qvghh(]Xl8<<\s#Glyx|A!gY>fquo yL+* -O;w:j* FL46ѸInv1 ٙS/ Q}3lfZNf۴i{[њOw;vDtc h㆙fJٳg-[6nܸ^z ۾[lae8## @Kʪ=;׺դmIjaFdh@-k^ +)lWuo=ڹj&u6e"F3+gr-OTDPqɠFqrrZ\iJR[2d5v,WǙ3gԩS1ᓾ՜FHҝ;wΚ5kԨQvvv_ujj*FQdz7lm)B2}߯@.?%.Ǻ1uT2o]L;SIifkib|.rޫK4uT7)--%[M2 -d…TEFF҅5Vfm^ٵkײi>yvni \}Dڵ +G8 M.AApͩ欰7*:Qq:⼁^řfYדrdZ$d߾}qɠPNB:DdD" ;{رcmd nW_i.wrrҒhjj-ʟٷuU* xaA{<5ø 4B11\Ⲳy/vJe=ʹq7wxuW|rr&$$qɠPNB4sү|pÆ n:ڸޝ{[Y[[h<A,[,,,,22rʕ@|>Q :3oѭPS6Ȩ_$ne)jYYCbjF$Xՙ2 CwM0z}/xB(gCΜ93&|ݘ9sjdPN('h!7oޤsNaBAVXAZZZZ2O2 k=Ye˖z;ܵkW ,@TNVV33*!CY͹eer-)r9sd _NDwH{B;?n;{DZB  ϏHGduuuAAA̓P~|b.-$IrC&O-b1sV]{1>>>`4˭Z>aMMw}Hʦ:7_Y91,山jr벊 N̙ÂX_H·>$'zV__y\reWRNsҥjiiˤ+  4[(͑Φ/[nQ &7 g1#3ƴZWR3n+Ll.@Â[grYT{4Z$'`.|wZްas7{e+|0tyQqvvqu] ;\w}bTQ eO?_3bcY5d< o)bUʐ_fV떛ku&АEEځwmEe^6c"Нo> QNNsfرCti4K2/y0zȠAǣ@ֶ}祣>s-**bn~ͻwƨSִti՚˗^ =F^^&#cgڕ7]UUΤ5񶦥)T5 _ބ?r7$g>$DrBNw;srWfQBr"9;vI{1??󛛼쥜Ris˟~c D]z)s&رQMԂ(\3 嵶'Ύ0:٭4GffVsS7lf18u֎Z5 ~LIIp8LK4hڵuw^YY;;;3.Cr"90Xi1++4AMEh&DcErt$\]&!Ҝ$oJI9QX]W֋S)Tqi~+Q NC+пɩΝ;[[{.$cÆ eHN|8_cGI֬I9j52!24$?y?1Q9UT4M"aM+>zV*M{oF$|k9SgoY0䬫czs׮]|mkHN|8TUٳ#dq`PZ[*M@vPnPr[[d!!Ll ;22{lge7_ پ)M~ᷢJ1􏳱}`TCS+]$ښlKA.p*ZF|+>ݛ;: ֪TOн9/*)jVxO#49CCCO{;vCC`5$'>`TC߈wr 33 ]&-ϯSa5-7RqxG mm3\hl2bNܹS+@r:9;::蟸o߾^>jC{^TpQ  [ecL75ɒ{e▫-G0m΋jn'ѽ19Cj6G`''N?jZf͛ːpQ }K8ROzu7v7㞍3+7i⚚!ݛ{Ri]omUlpcM6<`2YSSìxB;v_Muy_~cimm}52$'>`Tãvh}6 tJtsW6!;(#t~|M#.(73'p9ݛ_ƘSJNJtt vVVVT`._|ܹ]333/$'>`T#Ւ;wfҽg{^8PP@aPtQGmY^>vwANu7,`ytG0{ćsjxڴk&52yՖy6u:߹!!to,p^,y2JDm_w]7uJe#=jr^qA#G&NCl޽|`ɉЏ<Kܹep ̕ԗtTɴ: \MoX(a精 Z1&4VpԩwyW^quu}xO>$88ɉ͘NɪUMM>H%t%ͨQ2U:/J(ԗsDDi{ ٠X1iemp̴0pQ +3yX$[䴍)i[x<&6cVȲ-͉Bf1$ӫWMwMI^]iAz81 HN|8ѐO ,補{^(\7&7$5kQrsdbsPHh~lrnP xYZZSN>|]b!9UDΙAg̙{zC'(&ߒ5Ef(\kogVMp03)-UtOey<.͘ވMFv駟N2۔A6noj)$'>`TR^曩`ӦIjzh/@@^`Z}P&WۤEE]˵$iJ}%Vl9$C`&D"4i]gen:9s07Τ`T}Hj;Ϥ֮M,.n5͚%ηΡg 5rܐ)b1ccL{^ >2vO0SP=iɹs;w.##g``̙3{? ɉp:nMcbst@Ul6jg fj1U̮44,ebsDc`}yH}o-9" <~a"wޭT*ǎ-9):?g!2$'>`TC׫?䪍M0]& z y]~A.)dbS2]Rmɰ&zkm}-9BCA6̄O(䤨T*h+H{rttTBHN|8hj߹!tͩ彛11[.U(;Z, LsrLwJwش]QHNFbb"sի!9+++---&$$`!9zҢ|GL%Kb"#zXuZG3 H8Z((nx͍cӌ{;=]aT{c(5G*O[LH H;y{{? n!9)O=ݟ{ ɉpWJْQLlΝSѫAT] GtI˳QihjjҽnS=X`v)k Kv@rձcf͚{J=r0Fl#b#zׯ74,u&mܳqf|gKJiwddhLwk+TlZcN=% ݓ'Ob!9[ٸqb9׷WWWVmMc V_i/SӽNǦ5A.7Z"O1ƚ{+6ZE CӓqÆ #ooaɩju<ݱאpQ sJ]Θ^TfM5Z,j~s&ŷ_䪶@W(p7vHh n`t7wqH^*..f erD"Q999kHN|8W9*Gǐ Zc QM91Kbx[W e׏ ][յšILG?6/j޼yO={Jlhh9s&S{Ӡ>o۶ I`GrPaeŧ686Q7vg2 O*?R`l~.)7MrM]ANA^$ dY>=$T*}'={ HLTvv6~1ҤdР;@ 72Ӝ5?J_i6+5$yP&7s%%&+EqG1p9]$IGaÆڵ+ `Ĉ-%%%III?+f{.\Pc;#9 AUUլY&`bߥ'KKkrp즅 CcrcK4+++j#z W0J(7X}Y1l\ H·}ʕyiڴi_HNzeĈ+o<<ʺ}J)3/hH~Q~ݨJ!obL漨vۏ.jV7 9Zpzӛ7on0݉鐜x7z^|&~m# yjO8V_a[۲X:6ye2]rn4A1?blQiZ#FxSSS@)/F#w|_5mX\!| X,=w@ HN`Ԩfώ[OvfTɯ%OW^4WWTMLc}sf2sQl&U˽c` 4 Dѹk׍nڊrr&Z^ӚOݢmݫp _DŽq)6x8YsYLlpoIF5 9mXX%U~,~e<όfഷ ی;:'%1-=$n* Z/)MkB B i@r 9 AjjM)V6z5kŏM$Ő$CWO~~>s{SZZ3Y쐜@lZ4 8"e&:<4,# HG_JK9/*Rn|mJI5uc$"9sM˞zct"9 ~X `ڊ۪qf,gK\X_S_\TVFCEݾƈD듒Ϗ7=UPg>VI}^x*Oƞ'ao"9U%kݜUkZZq@{#IvzWkZ=oaLr}SL6,s7ojwOZlڴiI&"fI;]nnvt;336t:AllG6L59=z4Ks=w\FFs#s3g2?~|SS)TmM0[?6l͚5۶m;p#GΞ=}…SN}gw޲ee9s /""j̉`bs_] vfb3|fxa'DGPih,>ƬL1l. ZNÇ3DzcvK7O:ϙ:tdyꥭ^ZH￟ف_yKofw~(lJ~-ZG$tXh,ITU {sillyGQs#pYT{*0nL89U*s4sŊyuݻL%BˢE]v#quuEr <}h`366nn-JAߊOfM05q$rsxyhόGܜmGvPvH)nkۖM3osj1LW(1J/6XGƈY\\Lt^)G[la}部O?SPPxXZ-̌G'͎kh5INn Fr{Rk>M6AMLL35B/6ˆ@rR͛GٳgT?LΆԩSIc:z%%%+&6 $0VPIꫯ24lذ]v1$))~Wl6sυ j4Sz󫪪&MĺK/}?ȑ#Te{{{_tݻuVfRFA$'6~tEɴ[ғoߺx7Z\Y*>M0]__o\CQ4ߜ9ᲞHc{W\ɺӦM6^ߊ; 4Ӹ^8 SSfÆdmT{vO&yCrśv ?UR+($3i)11 46Ħ5cxfN *j777ӛڼysCCN\z{c!94N"fTqZZ:MMiS͙͆9--{Rsh ;22ۍn_D&M{.ky"F)?xڴiw#F۩aG$)Ɏ?f͚ɓ'Q.\sΠV#}HN0_O*Ӆ~}Rcc+ L'\Du!^ITU-eC;'"lIIVkt&gH36^s1JBPb__sι |>(Jr;&&F(J$TZUUeo  qk$ЅcaBC'#gu57;:^MJbJmHN5}#wSЭ &! @r af81,&k * m˩=[RBАC99ƺ#?w&-8|2@r޳,HNѐnnff3ӾZrC׊'UAUJ(b;; m[[W37_KNV*tGTTfnp2M ~+HR! _}sMbff& )..ޢ0D]YYk\QQ1t ~UNNj\\^YMHHIaUтk>1"Q@eqN%;Oϙ[lY] o>>>LrgP!{iŦM\A;v  p.^ Y *?s*yGXaCHe\JcSQQ';22jjF$|wgJzҏ'5551۷ok")666ﯪBr?C͛Sa={*11t5ͨ ozmZA̜c&7=6ܿq=31o^@r>, EEEW(+V`=[[[???$'@RS13QVC2cE2vd:tEmm WE1nx]2ӑZitJ't}3^:`|&LЭ f͚m۶8pȑ#gϞp©S>ݻwoٲҲϜ9F*mӫӧKOJnj)))f͢~oO?ZTTT#yu:իT齜HTx3@U|BBzps~3ĺ;/cGs-%!" dV?EG*t~'|Ih}ER&Nx';B}hѢk׮D"y\]]0UV*-7/yKG=#agfHshFqmZ}d^@j;22Қ m/Hee3w}hkOnd7|~Eƍ{H$c,"9኏TKK><'ɜe+螙f;2*|* zڣTۯӤ&ʊ~^+i>ꎉgkeM#%0&@%gxx?0@$'7nݚfaǚEb',y\~cs#{z!lsNK˟8zsg>U~~fsa59{pgW="i̙;UVS׺ti,]>Xno~E1OǔDP6W)ԏ!))`j~P%5_M: HNe?~N\ZPPCϜ) gطpP%ǰij˳c蠟kjԤ/ur]wߜ}9a1i\D"Ӊ/.)) ")˖-3޻v}x*~Ʊ iZ'UqHaE$}**&ƮO7Nh<hX_z4F:^`v߾}dT*\.nss$'CC"ܻNQMaO<{Wa55kkΎUWLu%U]mRIguMF 9WUUդIK/m߾?k#F 9M@MMʕ+pAyzz Gr@||*:@Y8,,0,ؑa5GmpAE1793'p\67Τ$)tͻ|ڐ{[13\J/}RtжU=ZPT*  5{z'-q 4I$IdǏYfl62s .ܹsgPPPkk^$'I%dH!]AÇq o 7u$yQ.-d+lR E=p7g92yNIbsP*111BP"$$$HҪ*/ 6C,Y}|~sBsRJ@O&/6̍dbsATTxmwq@;"$'@PVVw`KMm\*iü7zg+pVRBΖ uW=csd{QQ <@rL[YYǎ<:nnڈZ4/ dk;:ur@{9l4M#b(8333>>>,,L"$&&fggWVVZ0--. c‚GguYwE`7._CBشߓJkU*}{mͺl7vL)9btw=""o>*$sssO>?iڴivAD[[^L0`i4޹ Mlܘc24MFvPƳM ^A~PTVۤJNN9%kZݎ&ƍVVw} |HTWUU!9(-Y\XHsll=rr8u|+~UAfWW!TV۫RP:92;,8FdrZYYO[RRBXb^ikkY>dΡS>>g㈮1KbҚ}k5͗* {͘6 f1mmuu`9}tiz뭎$]Q5a„n8lذ5kl۶G9{ N:g޽{˖-ԻgiigΜArajiѼv:s&޽ReVm[.ߒOw]cH"R aatlSR]c%:/17dRхj}1w^ӭ^ZH￟فJ%[~= '!! &9qt CÇDUܪatlxi[T?!OV{P&c}85(E-clbӌ`1UQ&666GdE-Zڵk<"~WWW$'~t%.Uo[SzSXLeMMuuSbzo$ Mϡ̑Mke: I gi"97n\]]n#H ZK tq8<7\l+jK'gΣcS4FT[uJrkZM׸"C6,s^vĭt7$u0Tqcǎ}1w믿~g[|9l>>>HNwBbh!]D&K3wf kd4k}S$yp@@Ǧmp"i7}Xbs7yW>fggGm8q Zsg&~;6%Y|96jR6vND3-DIJِ`[&EE]g*u:y3*?Y2L4сmɯ`zc˖-;?~>(22> }),f޼(&*!' bsU|}ll@ΜI2X |,9Jsx QDF 9I"ܹs$I;O^/^\r Bfe˖Gr^KȖEA?Y̔&ImDlmT]݊8f#"$mcȽqm$HNN޶mѣʈ#׿R1w^ӽ ̋ݷo_fff/C[Tr\&(111HN55={ʤ,C/k*Zz @6~mb"u7ϤUƙ/{aep TQa>lܸkqxa4iRK/m߾?S3_βii<<e$Ŧk ;.`щ'bz{3b"~TwI2k֬>{  <7'ʿ 3|@gvkZuC;2o $~ONFH˗T|a uC bl$'}Tj,DddRCCoIN^g>K^22E6/F59Qo 믿.^Zhх z3ːٳgϰaÐHNGM+!Cf,b:w/h~n^~k+V]R_OFF^ͼBѫNwL 2A=gy wbPKr2|SO/-ꠠ77;}gbyt8Mb'c$jy)[̻&VU\_>R1 /Vdya8{rp555-bܹsU#9zg,Y߬:O׈jk:t:eLiRzJJJW"ObӚ{+6XHh4*"$) Cr?:lN*T0xtT?663+1$M+>GFF~kko6o [t7w!4I$IΞ= ϯ0!.(kkჲ]YQHbJmQѓLiR_BCdJeoOM]!vz9 9Mۑp[1lYlKt EHmNȣ#IQMִ4yhxvmi&``؜o~!xs 8}4I^xQ>lX(Q!ߞ(&؝&Z{nkN˓wtuM~ۆ@rn_mW3֮M,yp^ (MjP'%1iVZZDm-ٯoԏMC:ߧ!\7kHR$'/A7NVQ)t^ 5Iml*ӱ9E,Iw&gspsP $' 9T`ZXܘ̌kWV}YGTfMNM(3m)1^wb]7mO|\0rI$| jSto G EoON=#M疛#D덍ǰn>g$',!^@uGT.Yt.r+ʾ^v$un(#°~%ش"XM$' 9ee5ӓZ|.co/>S|-VV:нWlK9Ĭ㾜, $' 9"Ep-$͙}1<(;/%H~=V{c(+6-<5 @KR^^ɉĆϒ_EYҶYɍ.V8+dl839+VLHN$'iҐ-C8JH^‘WWjZz kSS]۲0:ޟk+X¤yc a? p'M&kWόd&E|"N/jHh up kZLf[dɔ:]?e<&poŦw$gSSӈ#蟸}vHN$'@7U*83/io:JGlIlI9к61_ޜ̜-cc _o> $'חfS?ںɉwRmMcl,}sy,]V'i4Лܪi .uu ]emFvdyK.q8Θ1ի HN.(J`H DqWT>5ayl,TxTT}7{l^l>_;5H̚5VVVoO?DDjjjQQQqː&-~ua5ZZ[.ka 9W1;͓,qf{H>]jS\S+:Tl)11o~zN^?< myb 9Rϟ:uZ; `tәՂM1bϯ InU&6k64ڶӗ_YciW{Ő$_HGQO?2eIqFWW~MVcO!9HGYGhl7,nʾNwQ.Ħ5--OfIqh ]^3 1BD"4iRˠ[eΜ9YYYYHNP[:͟Bn斕BPrs_rehHBCkTjB"߾)Ҵ{:G@rd?\yINʐ!CB 0kSRU~'#؝EpnF׌ᩩ66da_RR&Lc2_Nh4&_ ()0akYZZ:n8ѣGvm$'~ "ZD/k亷y뒓3( @M / JwqKw}wNN93))n0ёCFr@U(hAteST$qجcb;9y/n^i'i4{1sE_8pLVV֞={~ׇ~XP9i$݅)HNtf;w,Ô!WF蘕Sw80 `kv}a n (:V449%555ӧOZb̘1'Nx@5\lmLk뛺*Pgh%2|qsn\\a2)0m7yZGi:zrJZlccӜޜ7o^ii)7.HAMeqe/CqMz .^VrlJmP̘1X|a"9v׬Ik zY5f̃1v/IXQU!!rlڨT+kedkl>6onJ)'Ӭ 88~srrRՇfqZ*n9BJ/[A\b8UeJ8Yվ4戈ms;5(,t^WWi. +6mʴ;uqs O.@RGn{}w䈾 [AQ/O9êif;Qog X\eZWͨ;jsjiuuOř k׮Ԫ*E3(\f79@gH5k<&L1be]vWO:uɒ%NNNeeL"9KJ7.TfOhfd]&JݚWcAqj=lfuөzZ?<ee9zyoҤI^~)z :/7 Al{׮@)h{TU,tn^2oņΖzW^iM9<==9X$' F8Ⱥ#O dsػ|;=PFk(oVl>ܟ39FK/tZTvkyᇥx+[vZYYrHNEjj"&F٘JAT Jx.!̲2)K-_:4TާJUpR`C C:mrՄTN;mҏ4pYzў(93Y clhƁviVرmT*s=vtشEYt?~"?3c9spHN92TuQĈ W qvX \#;{vliMz@II3ve&xtK:yr>|܏ .lG }'ƦOrFaV=頑woWeU׻ٳK󲀀8`,(Js xuױRfۭOz*Ϸe49ܶm9 ͡Q#9H(>&D8f7ntԴ4j4 v$COɦL=.=dSvZywwuW>8vX7n䨑`.CƆϔb_Aw̘>ZWg ƇKAYoRh_w2sp[7\qzGM}7͛ע֮YFrf!!EGK16M=MA7WΫtEGcshPЖz%{);& zZ?ݎ38<+$n-ɓ'c)K J3J _d@'sjk_޿ڴmdT׿VsE H;r䈼;f~V8j$'{wUWHa6Hn\6``@qWפTشQolxLڮJnwHV6mǵk6#oCFrjjmGӪfM5Y5ݗIǬA晴sܪyq_3iH@uw.K.}P([YYrHNtf&DHa6J7bST$k,<hMݻͱ9yKߤ).O)0ͱ9jG[e@r(=z;cƌ ߼h4wq(ׯxt:5鶶 z+'. *6;4vxPKNe0i16EaJ4 9y駅&zw EO>d /Li!#9 %'WNSj*U$פͯ{d :_]]庞T,ޙǢ8l>pHNt*FM2uQiJ eqeߝ{nny'(-x&_ۼF HN$'.NAfMuuFR߻|qsn\\Q} 6ؼ[!'3pHNtAA(1bjX|_~'N  w23/ςߟyk)6{*]r@r$':ݩ۠XYn?M0( %W^}樝g p3pךǜۘi+ : 9Qw wdfVv[dA|,6͵F=qaAAh?8y١`F\zrM@r$'E}hnM)#"ϩ5+~~Mr㵵mxJ߇Snq*Mq.pphĿ"݂ vrei=ަQ%%RS'FD(vEGǫnƓT+.p;7M'`wtt%8d$'.%Fɔ-[GZ5/KKպmүVvAsP@}<*[xcQ4pak=ϸ)=|NdsϜL.'N&)$'9{[- >fԨ_yfc:ܬU"ҪِOaAA%$lΪi;U֭w3GyYr^HI\o.M駼RuG_7W&;!xd7j4ѥ LwcZ^wk49pXrJʦN*wر+V?!#9q5v|M;;_7ל,,?{?7C-mA3Ɨ{Ċ Q 86. EB5Zjc[nq24eiGhz̘7 ˩mnT":.2e2#شZ37>ʼnʖ-I]M70i΢}˻2S;L7{+^\ɹo>s<ٽw.((l6ɉ`ܰ!η '_R5I+=h Zuu""m]o>)R " LI\ɹyfsrj4Ɵ$9;#ONP*M)?|m}-ܧ-նtC<&@IίJ|@TB%4{~_\]۬^MLT6}zjk>:K!4_kմedk y[d᪪n$=3> Sl\}<7Йo߾ƍg4优uFQeMA\~GTEgϞfy rlv]nh +?tSוyNKJ39^$d͚5h:^(Aܰ4R`ʽ9yΔAt䎿9.+ 43 gϖoʵNѸ%nkO]Tm`REDmPT+-v$^晴g8R$-Z$wƌ?cDDDJpHN7SL+Ӯw-[322L7 /+k1*\]«c 8R$癆76l*2hOӲ#:C[6Q]}gT=-fq晴wv;Ñ 9Fhɉvu͡Aނnۗ7'On'ҖnkM ݡC2 $9Arv8k·_tQnoqɪ{ Q|y*E[((JGM(<ܟ$gs et$4֭`e[6螛RT-lw㲴bHԛ7շzkuucژ !BײxmLܼѣˡ& 9;2kӸ2*C'p"ל~rl ;q[8s֢yNWa 9c1x t=[:=7H͹qqE-N-~|/nQxa 9ɉ*[- :?gԷњ+c4n'*LipUX|@rm8d$'Zͨ3/IVniǣ/ipa={U*sl b9[a敕ptH΋ĉ'^y'\hNjDsMwW[qyfZU>MT_޿@Ey?oռ8ݮ@M!Ѹdܲe 9cQ!~93&/9ܳ{eͫBB6ffa2 k(~Usfg&yߗo߾9j(Q#9q 1碓B]ٵl^ҴR w 8ش'A@HN3**Fr4Yyn]]7LJlgDžʱ[~}I歐XR@JΏ>H9w 3].f~(]Ot'zڮ]ٵu~ihw_WW@GLN"BW樑GcM߼:BώcF85Uo46i)[R:hrƉ'?͛9j$' *+ܛ +imƠro ,.n+92Mݭ8:nr &5+) *Ǧ >!Kh%JqjJ%qq%Zmw?ZOk96mrt4_~CqHN˨5IWui Vcf3?Q]}kdnYY-zz(/nߡYŖ^~CFrvZuu7Eȱ% b7;_7|\45Z-iUU`Ii~/w<ӪJAy\)W\Qܒo伤z3.ɴq :8h""7R Q\\J9BzZۘ)?z+_ħ9Ē{xSmvmU!ro.DA6,sZ_>tS7>5=4\Fac[fJ+Qi5i`.%~嗀.nYMVMȕATǏcVyMZq]X{nV\" vXu877/قo y';ۨ|˹VUuMXy&mJe7n4ꗻbyMJcK)9srrMֺpHKۯ8&ȮtX9wD 7)νcQmشEõRrJ1`8d$%xrñ. _fƳt+JzT+ Lz 7/VKΗ_~>|f㐑"ፋJsJ".NC;q`mL;Da cK/9򬬬=xT*+ aaEvvR9t'(qqg3:]nz*c(,w Μ'n9h i ,2χCFrv,FqݻpM߿O] V\d8PT5vSzܸ&jṈ9bMUW/wooM(moHN&gppᓶrL~Eusv;t75F;"8xSff^vFk<ZÙVJГ=Zg0㺳ps+̱9tBO@MΨU6[t-k2Vb0{={gC'ۚcRcV[ uco H8 ˒޼%2gJw]E%Q%* 9Μ:h~ǵa"-MkJi ʧ.npF0' HN'gGdZAt/ڨ?}r ̪)][5Ħ t4B/nz |oRIo\Yyښ9̓irn:yrf^."DIoY\| ̋U ~;?ɉ @eff&&&޽;((($$$66yyyƳ,vJr^0;\#k?}۹뮻HNɪ"P͙ti/8ئi0zsLH KGp&f7QXy'9@r[͝x-deen;曤q׿h347jwSR޼{׮R|\#ɴa19_d0~suۿ[nquuuJnkkH-r znΖ{s\hht X͛msr8_?b?k֬_|wYz۶m6n' ,2eiXG"Lβ2~RR A%%ڦFJpUݧؘzqZm '6@r^$ O.Mn\\\:/~%gmNm@7}TBBY]=0 @.*UHQKycV)|}3@r^l ׄ Z˖-homQS_9 [o0yJܦ{3 9/ZF199yڵ3g9rB8[fkҤI/j2ÓlПqłxա55jh+;o;4NnMzf'0@rv uuu޻woddd@@@HHHLLLRRR~~~3"9)7?D;UlliW&%ɽ9+&F0ؘ9ǹ_}}%+@rLR@CFQZU!!ҋ Qt:~\~'q7򲪮.HAIĉ[qݻ/_^ʼ+N݂S! ?W89 H`0s=MTk@uuu*G5o&&&<8l6}[Nc_quue!h4s-N<ѣN```>}u]$OF|B.Cj/)zsܣ6wkJ!%͏ 9;gyF!CiԐsfddgs%BK5z e4\V3jGW8E9]cѣHЛ3cb?0N6sN$%h4&'']v̙#GT(g^zM4i>>>UUUgn~G6^DŽHC>Zs9)o^ϩÇݻ7222 $$$&&&)))?? y8 2?81QR!R^S45ۙR {rO/qP^˓{] FcIi)1 s\$y5x:y>o)|NfW''$@r^Jx s<=͹y̙3HNJ' ]%Έ} U O9&jȑ7ӧ/=3:7b4 F|[$9+W ZXP^nRIx\\]]um)xLHNt>^__iR9Z;Q $iđ8m.{vz7jK?7vv|HNe۶mӦM:tB8or>xwO{W_}Ձ~'glyJBAT(RC|s֢QHNəƅ&  S8Gxs̐$'к9寅zv7% )@rHNA4\Լ)ZCJOl[x$'к<7j &GAԛd0h]rkS j9yV NfG3 .9Xca j_lßvՌ$@rN[#f%{wwkHe QHNS1 .9++KfվiV0 :9,9p8p̰tDO<2 .9 }ng6$lBn^"@3{K<ֆY&fp[7 9V'gQR^!Л &9!@rKS )N悆Ko{JՐP UU!@rKΤ7T iHiV]0 .9 MS }O)SvN-Ϫ* % @rKΪ* 8pغqV|HNuYDNΉhkzoiVyN=Z'T'¼J35*ODEH:F 9V'm,jU0oC@[3 999N1ϪX 9$g)R^;zW(M`hKr+E n#Cxsu6@rmLNO]ė7ͪ 96&MRdЛ?ۈBVv,@ktԙ |ݺ2h =9=HBJrr]@ۓӫԙZɽ}wPVà$'4TZ5QMN'pň$'ԕ|/C2#@ۓ:ZN{绾JAah{rŗ9e?=<HN"YX('絓HN"ə#'ā>W3V X*9S7d)))@rJθrrھ.3V X*9Þ'vAWz`TrgH]c~gTrzO)%&)9-'7HNRyUQ[QX$'`t % 9 &~Rr.{@$'`QIBwq @rJNCA)ܾ('(,9rr>0Da 9K%gERSljbTrGyd @rJ<<99G+5HNRəQ99>)2s:+ 9K%gRoz C)> @rJNbSo~++aTr-RJ_%,WJɹV}($'`t"@JUk ӽZJηlw<($'`X'%,FQPIL_q#@rJz7CCY1J X*9Ҫ{pF 9K%git7O?($'`$'`tvPKɹFv @rLNRr](C[qꦜ琜 X.9u:7cC X09'H%ױv@rLNvIɹU:.g|`rA狌@rL?JɹF!@rLέ}Rr~E  9 &SSվa/>1HNiu*9{?$'`4jM9"n xHNRY_''笱:z=2RN;o9$'`<V$'uue@rJΔrry 9 &gO @rLsk,>OI#}HN:}΂8W,[nQ'HN0*/'o`d`r~wԛx,?^8y#!Rr~{$'`CJ/_bd`rUwEHNB,H}GQ'"E+U@+Ho `A R((P"Z(RHt4!@}._s r6F΂ E_OX@DNY2[y#rjp3rVV߈MM"'`c䬓9463oODN٩P#r>>6{ɛE]06O9g!6spHӳG  r6FᅖJ}q r6FΈ_Jw 9{#\+%r(sAU9_+3re Zq/UXLDNș/[ه 1rVֈO> 9#g Dۏi 9mgDΎa4@l j>cDΗQ94@9GOA"'`{\-ch 9E'_LDNIhZ r#5"'n@9*?"grh #r\m9DG|DZ rG9DΉf=r9{#gݚ==u9{#QxDN 99o ޽{lٲaÆ۷8pDNDNxNC&L YB 9rFj׮ݣGW99Nzzk֬{yׯ_||<Μ9Ӹql˗oٲeDNDN(J.W^yeF6mZTTܹs?C曝;w[n\>'99i7oR[o޽сW^ݾ}{59rl۶ ȉkתXN'N6*TȘOFx獖{ϟ?oeV111*?~ yXcƌ> s[t<%%e[6Vx֭9rj @ڷoȟ?111֯_?cnǏjܹ@/1DXs4hP`" YxG%RJ;v5k̘[TT_W;--m-S7ֶh"ٳK-[TP8jՊր?Hi5&FkOD)5&'M~"~P&)H;w6ZTRԥG_ܸq '$$P ;Cjl4dơ,--ր5&FkOD)5&'M~A7UNWޯ|֭[^c,_ "'DN9?n/_~{޽|<99yժUU#"888.. 9A r }9}3;O<=g`[Pc:yq={dCPfV߸qlJܹseʔ1ٳYy̜Zʘ3Fɩ?u[2-oVP22dQzzz-"2+UYfj,Y2<<|uGUjҤo?`̜qRԘ[n]PPO#""Ξ=;,,L?{֪Uڵkl[wqǀv3yjժe_Q1M."'ef̒3&_~u95ڵk d⬹Pfغuy915&EC9|η5nڴtj &](3l߾]}RJGq 55uj5kQ1[ٳ'W\DN̮2;piۜtjԨaC|N8;sLbŌY}ko2i|7ޠ͡GnӦYBPf DNj̖˗/W^y|J*|WlCb2RUcfPcL!Q˜O͍I-eV\9㳓&MRxŃ9sSV0ݺu3k׮Ɣ9rHMM:eFPc#11|8pQ6ef/s1f͚i1klԩL .H̬YJJJppzݻ۷o~O7QСÚ5kdvph>r:eFƲq̙3W/B.ef̤?vʕ}޽_~?~p ٿ?~;O@̬ѣw&7 TͿ\r %tڶm.}jb`Y(3"'5vCj,>>cǎz ߿RR2uQ3g[ 30xСjdE2#rRce˖nݺ7ofsPf8wq1իu11o<#y=tiY {'Nd̽[^||}17T>}:, d]psz,[lTTwQf<鿰|N Ԙrʩ8ō ۶?O2}lqƱnIAR0U;gE2#rRc'OVTI#k׮(3evų]p!Ӊ Uȩ0Oj֬>ǎSenUjRo2nݺPfDNj,5vҥ_4hp2:ud|xNޢN9u믿t;3]@/Veb έjʕjCGGGl͚5jUVeE2#rRc[J]q?ef{EFFnܸ|VZy:5f#,ٲe եϳunU/_V޵kdO>:y;LAʌIԛBBB8-Rf(ӧO~Z֭MܵkWٍ)CCC4Y.\~mڴڄ[=¦G֯_< oǏPf_%%%˗kFkSf~:5j({̮\K.ePcODN2 S裏\CJJJdWfN:'Ocs.\xӦM_ *dUz\sxPf_޽[UV<&'e6 eoQ͝;_֮][L5Mڵ.Ԙ%2~'CgPPP=dꯩqqq 4qE[l9x[M.zrpPfDN[|ocn8Aez(޽C.]iӦ?Ph'NE1"'`EDD ._|ͫUҨ\r[رcՃ!r1qDwfë56~x"'s(KNNIsGmf[PcDNd29r#gΜa[Vׯ\ 6ܺu=?PfDN{׉ء,##cҥ5jpYTʕ}tUwIIIuԑIB6lطo~I伭r~!r9MhBVsl)[4-[ѣp?͸Q]E\v9s9r&;ds}JNl$rf汱*Tp;SiDN"'699oȹyfcno/ƥK\FA9O<{QFuYE{MR~0 s&eӥK%J3RJjjoժaܯV:)))z+Vʕ+oٲ%111--͇eddnZSbEm!!!.i}g}ʸq㈜mܳgOܹլ$IcʕDN"'v89o)BCCȵk^9GN9L)fҤIzZj[<"2] 9`;z^\Ͳ3g(׋/\b^ژM׿HTkU`"m9xc&*UKn˖->sυ DN"'yGέ[GNnp["}SO>$әtE/_?j[Y F%)X_jժjŖ-[ݡCbqȑ|…FΝ~ 1cy;Dά|!r9Ȩ\^2e| 9Oխqm#={ԧ"Iyԟ!b3yͻDNVyF4i:u2ڣG"'vyGN1bc W^&FNѫW/ӧ9]lpppV֎}5f79wڥVk׮쿷~(^z 29DN"'ǎ3044M9}0"իgW{񩠠 wz(99yÆ 3f裏&N(ftZZ̙͛3z/X`޽4ʕ+ 9-Z NF#GTe:o%[m̘1K.oŰo߾ g1113gl"k5:Yϸ8,f͚ɓ'9R`Ϟ=\z5::O?5j,$47|Sm<ӷ)۱clč7>}ګ)Zxرc+,ZTٲ&$$,[LٳqGƍ'KGZߩO8! (\d~Y\2""O>ꫯ~g-չb~w)$"iY/f |8ryGgDNw$iʞ=["c|x>sν0lnҞwuɜ\/q~.]zwBBB'.UM&-o_"gワjW#&>76)UVI[(QbĈgϞ5q˗r-WI&rt^=>+}TKOORH>N׮]J@J5\.d8^Հ5Oj !],9}7ڵkU$G=z:u*)5ٴiSx%dz+f ΗdwM)nh9Iw|ީonݺoԨݻMrne|;ydݝ#ƣ+}P^|.M)V6m2ymVC5sL֭[T\$>S5jPuu^xqXr/!ys_*U{㏗)SFҥK7oḽdɒjϺNUǡCzՆҗ3p!["t3}355Yf n{]TqF+SʦUTO[8'k"B>x>*v5AXXv1.H_PjI҇>MPP{ァ)N5,&رîã?"Jj4iK.իɓ.Y՟vZ?r0)YW^yeɒ%w?Ο?_hQ#EgΝU6-rZߩes7CП |6Y #ZfﵖTK{u.X֛ȩ~(y9sFM sϩKwg͝;דas[oj9-neDi ,sw9U6qПSzq2^zkE-.=Z-t.޽F? r/ iѢ_u_ߑs̙[li2Cd~|;s4/R$5S!vڹSLQ,^ު}uԭիW7.WԳ;=hoI;Z%&Xq_+((y孀ǏWDGGXQ2:uu?Ur9H~4&MrEN;>7n ꧽM?3م z~.^֛i3f*om۶ǙK.ΝxΝ]N#M~Vnݺi}+5'93uYAazB%Ktyp7x#S ؒ?~u=ߙ>+ٵkWOƕ6r+VlŊQ\i|fJժU1:on 7~yoO&9tPwEz.a˖-zWeK.SL6͇i{xkǎSµR>rZ-M ]AwCǻ{Ag5knSSS˕+25ۻʕ1J>uRqw{Vdo#ŝz7vW z+[0?$y~.X4WSš^YV-k~Nǎ./Cũ5YtFN;n֬Yp;GsΩ>sD·zH+۶m3<]"tL~v+^ùߑe˖#""lGÇ;ϭbŊ'՛1c~/ysIo'4 7o$'#ɓ]~̙3j놩b}7 9P&0%!kM0g5exxS糆a͚5jy,EiqG}1y${"uoo29Y,[Ϋ}@h\p~+RIV9իWo7u|{FbZ,Y"O_;/49~ԪU̿~ЗիW7>>w\O"gHHb[h.]*UJ߾}WoϞ=.ǥ;o2ÚۛϠy3-[zӷyC?F7Pۼys_7_Sbg!"Jcu]ge '|Oo__7yf#ŝZ :-9¼1>g9˖-~MeYH;h"a<O;r"q644ho?uw\޻kKoo>YlMr_l ߭,Xt>3f0]]h߾}_(7bSzș.]vwSwScHdzRJ9}۩ե92}GN^j\_7qH>||kKepzw/IIKKS=Ν4iԨن fȩ`3~+o99/^>n>b/Q3رwICz|KUҹnûue˖Ug1vZO>'N QشiSjjj%:t rZ-<FN9tg85p?F@Rg:dj,P"`꩖L$>r֬YALr&w2e`Ky9=Ys{9e|9k[Cӊ"-;.%%EMm6:ӫY^=5;4}BS޾^Zj.\;wt7M+1s5¤XpZgwMCCJKKf裏k„ _}t322ԮDԩR}4i硊n쯜._(#'T3RMiqVQד^x?ENj}1N:5|<sw%S/)O>?86a}v%<<݃YmZ~To'RÇu>}zVIII*kea9u.>d^z}ࠠ;vdi}x1rf:bիWݠOK%ǺM*rZߩS*Uw]9Gl٢ɹztGLnOw޽հ׍:Xǖݡ،IS3b-@m6ίf[O"uٳgLBWG?՞?:8*r3}ѕzhѢ7꽜Ǐ7r߿_[۶mw߭N3YbuQ?M/U/.7AHDNf2 Un{䴾Z<@9]u;tjEyxѫi}Pso=<19};Z?I`1xttƍ=9Y/[)L?@>\ IMMT9QrZ$rV?: 9}T"1n89cǎH򕣫 *;ɱT O*L̙3jFο; (piw_DE_t#g׮]=yS_y,uV :p90n_rJM?Bԩ M:HJJЙ9PFN!^$7oދ/x?={zObju= *[䴾S?5iJʿ[CGzS/}vws2鼊-[t7drʩ):1GaÆ6m=dTyޟf͚0_BwީQ,[vС~~V6a֭S>rHu$r<Ν;W}u/R-}A8rSC튜W\7MFرckv8|pw]/Uřpђ%KJ(ATd/Yryd|||ƍ:9vX։_+({#"^2(zqCӗ^zIMPC؇iNݴiL>}GNٳgrt7DɹzXo:"rjiѢ^z,駟VoɓS g?Wr%䈈uhѢ.]Ro˕+ҥKW^. W [@Gm>~P&ջrrǏW_אn,ZH6}nTع#U'=7nܨ/]"I߾}UVuH.KUUɧΜ9c)11qΝ-W/ƺ#Q=M\Ҽ3fP_ʸVE"i<={vo=IL5tUu170Ն2d/\zp"-;m`_|~M/{9M҇H6Zwxٳgے6~m4?Y,Mm|%  Y ޒC4ih9mX:uڵkDN/_[լDN/saÆ;vlРޭidJ6kLkזСC儨>+D+s>D;a!ngb@ݾ}m:F#e3&ڵ;T/@|G|Zjq[;C /Kppt9sՕM֭[WK+uE,9m}>@9Gf%{VzF/[3gԗ'OKCIsxhhUXߩfRZ֭[KaLL #S*p&CVϤ'܁|͔o;3].% ߫i|ԼyL˲ϟ2=ˬ#!ݕ L5dQmРĜ_YncGN[٠vB=DNo+WStΞ=l}r7kmNuҁi߾ݻ}o -VСWDڵk;IY5 p>9I."g9F5?t)))'OvHE{ߩ*111<<\ATo)ѿ W޺u눜??åq;wvsӦM"S766F+,Mbmۦ!n9fd7a%;ʿ;7EݺuoHTzy٭^z饣GkLe>*r}}{yAt{|0ewB^Ӗ-[Y=upKի0bĈI&XB|Pr*1cȑ#g͚gTRSSn<*;vݻ7+ʕ+w}{DaƍMgm޼9nEtn*\i֯_ý߷SNEEEEDD^)ʕ+o[>l$,;|&˖-sy3 O%IN駟JX_ aO<n1c8=6o1Dάf֭&5.eސz+z'os~ebŊC$r(-[ܹ3MTrrnާ23ʕKz} 48q+W@q)S > stream xw`S_("C(8AE\{U܂TE ܢEQp"EQAY,Y2=I[@J$MkN?8Br捾橡}j}?Y0|V`ϫ82IG ZƑC6qH=G ǻ}պ~"B1}5g;g}ufY_춉vG+n`6"Xu[Ǻ;^)_.5xB/5usVrfy ?ź~ғԻTGt t~g\~ZsVEP~g//HsYw|Pn|îrJz[rM닸op֡ 7|>(_N_?xkOz[@U?i {[5hkys|>(_VzFהTjHR+߇7PhMRq(kV?2Vl̚QMg:,ZgĽҭPZ_GHʺ3U!PDLL)[wٍS*sy[hfD'HnbuN6rt_"*яldЭrχnyR_H2VyCmRxwIOt[ޕC'gJlOʣ/}8t݊|>t˛?>qf>tO]Y nq>A ^p=3V-Y9{$c/4OeU^[t {M'm 3R:n}'@P-NQiL vOs_}Nnv~,G-OȾ!=dv<5TOyh;,8GBdI':;϶} uR\wR՞x1\Yny?t!^`ݭ CuR~}!㸢ݲߏJ綡*/dܭ{9O#y 7G[/[(k>/2جt[H.ֽ;YNnxFg}Lko^pTV8Jo'Kգ=nYϧ odsTڷl3;S-r1ynqUV7i/ys3b+[n,<ϧªR?Z3ݬ;QAOxt+n99ΫFq(ʤg{RVulZ/^džyPyæ[>LuG1@ew+D<)]Ƕ[ᯭiF!)J}μ?`ѭx[qTe|I5&[t˓6)%-^O:ؙ&N'J:{ ]V[tK {q.TE>[tC6Rm:LfK-El37W+%ݢ[ް_TsH+2OI-$_t][t~v N+s*g-e!UCl:96*ݢ[vrb낕֬e-eo[Li~c-_ΐjR~v̈́"]ײiݲ՗[g.m*ٸtnYimxVc6/ݢ[66NDG}ݲ s۹nJ߱ݲΆV@[WnyݲMV'8GUهn-IgwI/ݲKo/b+-egZK߳ݲȨU#U׳ݲ+y<ݢ[֘[S_˱tnYby#^5w4R;66ݢ[vxV4M ,?޴?Ru#ۛn- ~iQgf8ݢ[xӢޗ^f-egzees69ݢ[mE+F[tl_d~f:ݢ[F oָoa-e=qiQJtn+x s>:-O薱NE-̶[tP^:޴E)Ƨ[tP}ݢ[n8LSC8R<#-hhK'Z))Nbr쏻 >(v~erܙVىAů>(-2VX-U>IQ[t=|iP5on`<"ySzQ[tV&Yu.(N(-|'m{siL>ڣ-`JmljV΃2 tn%{qB/R頺 ݢ[ɳmn(ץьݢ[2Tu DY)ݢ[I"uaˬ8HnѭpxXvH0 tn%^ -EcK(-pKi} ݢ[jC1 tn%Ԫ%_w`珞ERֿEgcwIe bqj2 tn%ML^ݢ[ot DK2 tn%KS -C*piPVFnѭoá4Q[t+^])25u\]nѭ ጹڜ[EbH|BEb1T($T)F݊j0$45Fnѭt[QSE?D suU=KVޖgYgFnѭhZp ݢ[QX+ Mt:@VWB]E2EQHEIV1 Iwa݊tq\݊٪&qR2 tnݜ`c@V]TfKmu=@VYrs1tnٕJd$-b*e:QHYҋݢ[et4QH](-U6++r\Rj2 tnmWB׻tnڪ:QH?ݢ[eq4QHԑA[t 6T[F!nT͌ݢ[7@(${ҧݢ[cbdMmݢ[6D($1:A[t!o@~ t_Jo2 tW:;QÐt9t%@~3BzQp3ՀA[lRz[xRQ[(wȶ'=(Э/Z&vuWWg3tD pe3 t$GmdOwץLҧP -(Q[IK0 t 0ɖ Q[QNRKnFQ[IfH/3 t 0Ɏt1@:\nFyAQ[IK2 t 0 -(=TϚխųM?8݂PjF 99yGF# nrm{n%@>([Xa\-v?in1MUu.n1UJ[(ķ[+?{o?>|>@S=zmZzK>4.|>oP Btm*o8:/~# 1F$McbVֱσ)HCEqx^nz f[kX_77g8(x:/?ԏ7n'5;d9Z$a> ;zJ:5 c%ӂ8Ga> _}Snp^Ua> T/Q[IGn j|b> B,ݚ-eO&7MU/Hnsw9[[+IWo9]|pWsrul \dӥv]uGetj۸йS1]؏npZT1/[ :uG6mZBHfbV`+9~znǃrX}d9݂VjF!n;Vjmσ{n*0 u<*K -Xb2nhᴫt E>:Qpg[z7xP[G(Э#z0\LjYt (W`Jǯ[W/5݂5NP]N[rV 038\;RpNDѭP5n& & =H- j:Q[+RBϗev+{ D` Q(K^7^[@uBYv; q$Ι'Pn r9FnJJ2tkt.w$ [@uTՌB5UR`8_F,([9{Iܙ^ntgJݭ@_)W\>sK([9r9|xCUg$V([Yϧj\l5FzQ(}s[]l{mcJ߭@kGVY.~t zUzQ(Ck?ܯOgN`Ԉ-C-UFn&@-s i nr,tGB۲c=w+)΂"[@=$c`5ԎQ[Q&3 {Vǯw- že$f`w/嗥t H]^jKX (S$J([ $](߭CjPEjD$@bOrlBݪ+5- UX(׭{H{sݣ= n0 u+L:nNVՌLtn S\Gdz^zQ([ӤJVSKdھe֫ґ}4 i P\ӬT~n u\I1 tS†{קK- 6ьB1VEvo)s3.i [%=sqc%n}t wub֚Ng--NWBnMnD9RӤݚYIaR'jFanЗ~-Bnk&I2 u B ,I8V3 t+yubn<݂猕0 tk*tDnȐ-Gf![n^[K8Cn ҭ}]J=i CX̋Qحvt pW(Y)ukG% E~?a(ڭʿnMt \9ivVk頬"ZRj&h>:0n˫֜Ün}t ![sPպ:^<,t yo WdkʵϜnKVul%.>n61tkqWhչb9݂G)}NvƼ.MQW)ty1[t 0_:n-(nr,tg Х[tK'&XU@.Tҭ%5BV))}׻|]1xtnzJ6UjBt٩ʠ[kLn[%9t pUy *a;gNi~t+ߖ{йy~׳]XU@B&7?}g@4º-UgG=[;:ꇺ~KgF[ғt+tjݼ}|>;w-vYt+yub*;}%e%5yy5?P[+2t p&?Ǔk^[n^[;=#n ҭӶ}t`WhKvV; ԣһ^H?[;*u(6Vk׻h_>[Bz@ *ҭ-n9jw}IwvkaP>sx:uu߽xY:ʵ- XSYz['2FU}t pfx[~iEuz>s8PWwGt|=-Ƽ.?,nAbe \_=ܭa-Z0gJ6KÒyL<*}w5nn6֑[iNS~>S"v+0"M--0Uyw@U Zx'ݧV-kWt pc?^"[/ [t 0nhnGeqf-d?Ed7V,&ݢ[IrLݢ[I6Vk7Vn_n-$=*9gO4y[.J_ҭ:;gvT- VURgGJ}V- nfЭY}bkMT~nGn}{y(5 eVo0t|iЗ?nF=ҭ}ЂԮ|$v ǰ㷏|5m:4]nUk>q6ĔkH?+u7utٶҾk#1 Z-`wR 5n9YQf-ZHZ&F- ~*}'{%A49=}?|n(nM|O_WgeZwVW{!5xp7qxң([@}#FJ #~.z7S{Unn 5t S&/ukoAr;;=;ӱNy:nY=ԭrI#ڧ_sǀF Jox[JM o,a> `+W[Igr_g& t5@H($Zn[U\n q@.@:v+bs;׬hrg3nG|>@YYrŽ;d; ^6?qxh߈-`K/߭ PU~MMs>ToC$|^.~ʎ?1=Du[߭j(:+|>֌([@ FI}V`nU9.|>@rtP|zj;<+>|>@r3<-ڏoGʈ|$.}nIZf[VXq #m-#:-RfZJV0C[vw+P:JcLnjҭ^|?ҕn ݊Ɔ^Ȼ<'t (6nփҀ t (S}n.J5=3l*PΗ+K5EQ N` 6槅[#^q#ݲJjkgv:2<dVWB'wvnvʿN ot ({255ZtG)mz;/yuPz[Fk֦h6֑)i->bsF2!iec|\TRy=;*Q2ʟxe,[ijQW(}wkӭME =LVU/|8k w~<~ )$B7[-ZhU gJl6zMD,nc"^42RJ$I%%t Hn޶}on'=_|1PŪeǚuH(8E5HKJ.`.j'=AkJ]vukT֭7`v:Įn-4%[w< ЪnZKeRSK90[bW^tn9YgNh짎vuZ7[GZ݋gr`J7~:󪷞˕r3[@4&Joխ@vٺd{9]C[w5ϏV+f- *نB˯lKo_w3[@Tސ>[f[@T6E&u][7w7nzB5ص[U=V-:KԭׅUX`cQ׆jyמ,t W[t ͝JYaO> +ylyNa-2H[:W8[erkUakwnJҭNV;)ٻt {҇tтj!=Elt]v([mP}Ohސt ѹ]=u=!nQ[=t+phؽwHG- zGP[5ҋ O)S`"KqRuON4صϜnѽ [> OO׹/nnhSnI}t O}n#X(n-39bq1-FHSL6MAM-VO>nVzLgEoqGޫT[ߤp8 ut-Nw(eϼhwU\nJznR͹"b[׽ [yt n=-FxGn} ]L؜JjdΉt Uctdao%KxNnmo+}n6/E-Zmn~rn-|/=cz1/-nTnAݭaN>1- v1fwads9b.3[H-S3q:']MO.}at本D8;ͤDV`4nrݭ3U-S^q- ݭ@Rg(ln5n܈i*M8}:n-(H# /-n*se%tnF4n-$T#.gCJ=MH`=GL5[xԂjn-$[;wvEG9G(c*2ƺYo,ݱõϜnCح]@[@\1g.=YNOTUYЭ潴[_9- &ņn.[7\![J-Ut:i<-ro# [W#}j|FIn^o2[?!Un۰n S9tk[@oVlûik9C!|&u3[@y9\--\LO1.0<ݢ[Ij-dtI]0-k.Ƙӭ'2/:S xhߥ[Cj" l&ѭ)R72t (?Kf#5y5Θq[@9zRÈn=/mΰ-_L z ]kB^[BJ5[:nBznک *W[f@JE)t+0̧[9 u߀n&Ujg',X\n5PrAajܸqMOg}uq$Ϋͥ[t 0ɢTuw}ncON3b}![t 0;=[cOeS`JLN[t 0M.6Qt|K<*n1`mvt|e4n1`Ucb>2Hw[ޭpC9VW&?ϋ* v IzY߭))|>&?<@EzlsynIOWYݭrχnIuR5y- U.- .ozr|\K*4U- n,H;U- VTqVw+- #[!qχnɶ~/ʵ[qD{H['adt˿xt 0ݓKvkM oѼbnɗjgz9*][^[ ;lAnO'?}Ⱦ{;7;DGT˻s}&LoֿY;}ԊnFDn*P/;-h')ҹ^;ӥ`>]gsz]C!t 0ۙJ-nwnl+zObgV[)f#]g~?i  Jn# +ri& ]g[٭yۃ~Z9ɷnVn)e7=5d^r|F?n[٭B=C_z'8WFʷt 0_oieqbC_nB-=Tӑ=Zm'n4[}[t p~h뺕/Ou`~2.Ï[l[{Kǿ.?-Dü QElnoPt @|PR-qt%ݢ[IKo-dU=U_D`>ͦ[t 0IO^El?\)L2n-$/H-"EEoJLeF`[Ls|cLf^nҩxS ./ײ-tEPr [ *E"I`uU}1ݢ[I>.-fݢ[IVN?[KkL|\n(?J/-dn-$F w-Yi"ݢ[I6T-e[t 0gtn&7աtnF/͢[t 0n-(VEr:-~[t 0q>n(wGix\MOL.[t 0J\M)ғtn&7S+E<$ͤ[t 0ɟn-(E-N`u2ݢ[Qnt @B̑[t 0J۸\M$Pi<ݢ[I6VtnFLL4n-(-uݢ[Qf-$+tb?rF|N[i`z:n0J-&En0jt @(}LdSO8\M$җt QZ`(t IV`T-ƓzOzn0IN=u[r| .(Ǫ^`Ils\t I TK(it IVZ(*$SJ+|%[ {n0T7`~E$׭t QNVt In[1\t @_p[rJt/FITeA&(U/$&H(^p-4ӧtQ\-F9]^p]G /[LO=Y\t ^pu[rv^p-I7˧k^p]MkY^p-.0;EW-FR-&9EW-F9W-&+W\t k^p]N|Χ[ {u` Jnp)F"BR(W\t {K]t Q5J؇n[t ݢ[E-n[t ݢ[E-n[t ݢ[E-n-n-tn[t @E-tn[t ZdyBoaL2[#rw0[;^X 323Vj뙕m䭽]i~_aw7jo|Xn̺Nxfeً-N؋ًlq^^g-b[lq8b/f/f{1b-bb8[nt-N؋ًlq^^g-bb8[nt-[lq8b/[lq^^g-bb8[n-8b/f/f{1{qyx@{geY׹>\bbKm;+`VUgZK'F 6/lZ=qx`e[-QgT~^F+6-fkiyet`ʾQRͷuawjʾs/{?dM4`P-{e >EwuRؽ݋&j }΍r 6㞘݂,W2[%twȯG!WvlpԄOzYkC?ʹ^ٿ|~WCl޲~0[%kǡ3*I7ڼ7wdh/?l/[#Kn/v6~M+|qګޕͷ`߭EgG~ٹ=╝߿ .rf׭yjZpkYĝKW:K?ػzJޭL:qkZR7W9k㊾g|޾n=O ?DxgT7ش'J z]< M{b:;0Wk ~.R흿 6᯷weCVוLV+8픂)suk?!i^oie+KW.}l]n)ngH'xW6) }vtMURZNپ _ȿʷ97{W6yӻU6.wӯ+xj S{¢inwlZ]BUZZTV-EX{_1OnW6r5k^xM 6l9ye߭5#Ax+{H͵/[Ί -\,N+7شE-=>x,WN+тn?9_YE z^ja5U8YToie Zù*l 0ŧ U~;~{sj7? 5YÝeV7?wl`ݾ=UN?a嚎ٷOx'˖}rW;d5Y ; 6lrm۬޲ VmE#ڔ)]/▲~M+{T{WE*q];,!veקI _6X׭@K|NRӼ7SLoreUnΖ[%IooY81=b.{; ٗ_S*Ovw Ӟʕ18!]0,޲uu ~rٻ6Yt /DAE (wG+W?-kOJ^{f}db1ܖ"Y10gU++S?TVN;tE? {OJ]t?Ho_)Ðp~!r9{s;C:{s5CuV-_qnmcP?7,,fPRTҗ W)UÝK;Kc6Epɻukf93@+g=-rJUmR[_0(\m]aVR=gg;]^&60(,[?^>!r9{s&}o;fHݑY7of3"nwVV=Ie+=f-+o+< Ug}jOf0R_``%eqB endstream endobj 128 0 obj << /Length 2847 /Filter /FlateDecode >> stream x]o8ؽ;@ѷaw}8 &NYte;qӏMbƒ,IIBscˏj=>z4 Hx6;y}`}y*8X.Bm b7ĪBr'$at4>H2£@pD!O=QTmm-z3 F 妖 G3rS lo霦4 NHcؽ\YOý[XuB̀1Ɋ!BN[5 k XKeXw(vL}@Hl] I@[ Nv ǞG0" k$?Tt?z!;?Vz1/*j^x`F<ٯ@~ua*rmC '# >qjrIB6,ΆkW K ՗4 UX4tדy'bs@0G!bΆT1l 9OlX>o,hyEH f޼ y ~$H@D9HC}F$`9Z-mxz?|oH~} `KusC?'D R\\R0b]z::>}pHݡ"4p 7L[$ykfB'5GoR/;7,J:Ӫ~dgQo{~i=)Gz<}|삏t,*{wLޕZlD]NW0v7璦_{jW SkqYfV#Kj7TwO}ĆQ}#4_#T* UInC#mEԋ"askz\CG[Dp.. "-FS;F*uӊXLṲm%yzt~ⱪTg᫠5.yA~f}l e 15b.j:\Q9nŏfuְۣN+gWW&5 =YUg SRʤa^5ȥ%)6?e2oYpl> stream x]s۸ݿ3L$ȶy\dڇ~s2J,&#);@\,z<6@`.v pa>u]7϶s9ND=̑?`U\>OWNpYBs#A@?QN8!"!ZUF~4$Qq~8oOA1lp [H4w$G $݄|8Oo ]w/վJxR8 ݫ,P]F4ĔuZykSxMƦE_Y<;Y8&BqFcj[^YqS,,eCELq2SMsD`8@eހynQn0[ vR1>OtM>zf봪ӱ('@ => HH`!ߠ/LSE/ٶv sůM\?دL]yC$KfU©7Wv㚶pLz v+p;4ȄJCeW0ǰq6]#ӆ`RfI ЮixHb1酘ZUu礔O۹z8[~x?UujBL"yvʌ0y 8}i[h{qeD?Q/j$엓,q|nЏ)ůEVoJug{!2["yN#"dgpSc~DZ^>_XD"*6N/{(p[PVE[^?DŽ\S?s0=үW.Y?ul-{3]jyozᛲQ]쐹tC0zͺ6 w)WnTĨbI}$N/KP,g:3CH =9zc`z-< Vu@j0*YmZʔմнm-1b4Cck{=P&8P='zfrM-LzyfB^f`* cJEYo$^iViD{YlǬhЦ̕n櫼&fSM:gEH'`Ǯ{^ɡBü9 }w8ܝ~='s.[Tf\AX+LgEVٓ-/H'iUrPMGȜnƎI2f-L$ Vin`6 ow12Aaqv(d#ơ`)~f`a)>IG+i@04ӑq{fX1>I]fNUL ģ|eaps$/6/s0 Rlgh4&p\1m%AMKp; aK˪&esiȟ7z Ef))Ye瑛Xu. A` '-ۜ8꣝=pNRd,8ɕ@.Qf|j.G-`B3iP>Ԕm}/ozȍϋiv&гj/7e3J1`4҈kwSܜybhKh-ei&f6l0!3fDJf>+֛p憿Ӊu'KkösW %"l qAl+#=.6`vNrJX=Ђ ~UT<^V];){ g'x1/>+;)?}X1di2H e#8!<4G`.,̼KT9-%oF0$bywu?V endstream endobj 131 0 obj << /Type /XObject /Subtype /Image /Width 1208 /Height 1063 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 85681 /Filter /FlateDecode >> stream x\Sp<[GZkj+V VhDqTAdA {%d{A,ޜ s?knNnιIs9 \.v~x(.94 E@>O C9ÇE).isbmm-jR\#'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r" 'r"r"r"r"r"r"r"r" 'r" 'r" 'r" 'r" 'r" 't){p`+dh 5 ȉ]B&KJJ p8<iD=&0eO&㵜:9*ƪ[mfJSQ/##ӧO>|Afo̘1K. ȉ%c*s@&Κ 8iHp; 26}C rPѣ=޽{|Dg.oYL)wc79FE涝=īh@N;&Mꦛ>}8;;#'t &"sc&s͆P #a[w&d;%nZDqqСC7`S.^xÆ vttrʱc,--W\ijj:nܸ={O9L԰nT͑xa NĤ\QQKQ)r"'i<ԑ0pc2 ZXY_YPE˩Xz2h[@NFX]Խ &4䄜C<27ޭA꿖)gD|j?APvmB05>8ghnQͭmcg_Vtw3 'vN}m.{i捥9r9D{ܪxx``9 Muщ$9 )g7_86RW&dr} mȉ9'^ƍ>Z.(LJw X;,w >^[v Sȋq.?33$77($"W~R 3˳Bp5l96\-J&9⹔d89S9rdcu:tHҾUS03q+lޡ;Xj3vMf3N/quyS6,\yn KL-9`H8)9055m!C8Mhhh<6ȉ +fIqb7Zn?7־+?3]gcxm[GnCVRAj058Y9 l wǏ/((Юu1>s}yȉЖeH& ;ss^CY+Ǒ6mjacԩ97W{+b`ae}iVŹĞL_ԼcØTDP_7E>}[.))/~ ===OTB=""fkDОIv`8f ?}N{h3R7mAg<Ӌkxu]3睟eOpF#0_ ߾sqfrbg MMd }Y[[;::ڞqkmEs1u&jouTD<_S9:Tgf_<ïjg_淋}5>aIAfRyq$!At+@pVΪ6n.54piV[ߢ\YUGCEO_0Ss,/mkQ&Yu]T-jh&xxLQ NC@NDBg݈o\}Lt/q/4Jҁd\HDr>_z?I 9|bcE%Lmpȫ: :LQN͞©͇O g-Ӿǯ(ST#ƒ𨈐Ovfpޗ~G@N$d2Y^^^RRRTTTPPÉMMMxw ]/aУJB^ʅY#:T;YͲbR~{'O{ OlȌ'N*RW/~*M6TEɅ;9u]{a+pVr3HǏ>} 4ctR///a9:!gfi?nu[x6 l23<Άo63S{LC6J [yrğ8IqzOPMS;4wǗgqyƥ=ͳaZu/H'uꁲ͛Uy?i9ZE^^L+mOD[.b;d+n ȉtҤItӧOgggDc9ASMm5sS<ᨒ/*7]Xfmu/ ;C(چ?鋖S15*2v/ShmlGD$tۢ;|) 'vCoSN]x gmmxʕcǎYZZ\tܸq={$x)D?X1V/ʍX[5dt?*fjEV[wB$&Vh:~R6mnR3hmdSvR9m9)jʔ)>k&&&rXmllTALL^ *se?V3Բ{گ_\2| 5^[m.;wdTuuWE:9ΘⲌ#߮ڴYxʿ{=63+lcaN[@Nl?Moرڕؿr&NBw[5$~l;X5Pχ,7W~ycǷvVaKDŋne6ii.@׾œ6~LLLk:M7p"gnn.r"tvNYSTFbXc2( ܡZ|[l$&"iJD+f7!%u̙wf ڌSɈ#6a„Ҝȣtfff|)qf|Vu';A Z`kWW-t/Rg/CQ-Oc-"*/u=٩aN6)h @Nl}m.{i捥9r]ã[e yP5$Voo~FNWIw+sGԐ+/$N+W*bMlWhhO_$ȉCBBt/mƍ_x6̉\.'@W&29: U{,_T;4-(T䫯 2zŊZ*nJ&O<\\hؕVAlo0c/ '#G6VסCt//l,ѱǁ?o (6'aܗjM$K⢬QվEa4?^za#/)3iȉm(00)܍?@r#'t~l0I+aF[uqTޫ#C.$$Fۄ((,6R'-aGDTߌ'{TbN@NlWE}MQO>֭KJJ[w#X,lJ[ =z􈈈@Nv*IÏSѻ>F*Wedjۖ4-7ըX6se3Rʉ63%nN9 '>?l0b^N6mɒ%vtt=yW^mff6nܸ={OԯjGNЧtXU">t=Ȇu[d$ބMk^p^eQ_m'TEE٬9Q7n45Uo&]MuBw|r8#Brb[)++t ⰰ1 $|ڱXn][):2w"*F}Gy&?Ď$#""8NLLLJJ ϧĊȉ<-Jb9ު)!ʶ;7]0ֆnkt۷7YK9ԓ$7vֿ!!J._lJ\o] dUeE;giȉ>Â7ߗ_~;777,,ԩS.{]E.l^rn|C/ f?Brw˥z6D.)gGŸ~R [)£EzEiM< ]FACjaoyqS v;2ȉȉN5{zz䄄XXX M?~|~>G]XvڦB֭[ )Qf rE˛h،l9tElEpsʸqQE351r3vsb;[3#X=82T;+`Jo-5RS O53 HDV?ӧGi)**ի@m94MO0q;.29j_4CVaح /]}:vgv#:&r9coP*/..fjT=v3?-{{& ND022jO?TuvSK6ĭ[5M.ߴgll,r"mZou.փz1c,O߂T[۶ cFpqx*-VTuiEI\{OL5Of J'޾LM!>ȉ 2ΜQmXXXSu떦ou~|2r"󂢤V{[w=L~'./̶/93*0%h//M,/U">-.rr9p?`}x5őziѢACQ:/%?|!3@N^z RCiiiSN|Ǝ۸~< &ܢUPnU]o' +[]!0\tg I6 %%B>C6QD}wmY(ENWUyԅțOHeGf9.P=73yjER:~KR`TascQrna;!v+ϭ8ׁ82CNd^=r"4gΝͅā)9{lVpvv֣7YX{(%mg&K 3L%S7%Qő5KCZRTY%FVLuFJӟmO/}e'vw&~DhÉ7jԨ?4MڵKCBٳ~kD⚆9=v\B%9a&gG\eaC"Fq1}4f҄Nqry r ''㝒U}Fgy~ߌ_ȉE9{;N>:[oE$Dٳg7%JD!0q%Dzz*ϖe6wF+u#6zևJN,Goآݧ;gޤg?-~rkF>ٛeGhcϐ2@NQqҥ;w?~ͭZO r"[մx4X.~&I%=Rs#mVXqy!8*P8Ѱ$xɋ%_FٻJ2n¿[۵0SJË^=W5*<_'e2vϠCIy49:TE$ȉ]YCs)Gs QgG/kIB Pr}kc5݈f'8Pqi<*F5*}#pV|gFǣOs?00 'r"r"t%g0K=M,wמ>|5 Eyy5ߍX<ԨD.Q"v>,|N+E%J8 ݾI:'dUZ&l=s'.|W6| 'r"r"7)Ia6\^ݻٛmP\Q/\|5r-`Q47#,GC 'r"@fCY]Ql47]\ |vz#E\-7WSX~3fk63?({BTa;eUeeWY5*4߱(l|کXp}-س 2r" '/ d8I^ZCnU~߻W>{cI굢M/Nt~l׶ Wތx~k ;,uJN/&7tV5-?ёcP<^;)-Წ,=CND}ڭ c oV@ND6&mȆ!V)̮в{C04];t`X4hH6m).P~}[7!g%r4Z՜c~uҜ^|9Qgg{YG.oh a 0סh~Z.s`gp+Lu9t52ϯ =e/[9o%;`؆ʟEz//Bvk` o(߄J k STWj@Q?joeIsLƎj7ӭ>Mq$?WljD@NxJ#էgJ R_Mbb(f6klީijT o Jخ:\KSlIg5IS'FEŶ3j;_oc&]ۡ{>I>MSiq/r" 'w:rPd~ύb4.r" ''2w1j+7Jmr+f`^$.b:%6I\5b D YUB͛6duzEZ{6M_@.qꎡKOVhVD@NP)nto&zA ~"`+3>lظ9,Hy zNBhY Qj۷c֗KKJ@i#U{ח*>mT&naFY9ూpΈ4ytK)N42OV*6n}=`6Bvx>z&cKqbJYfQG.%btYjϙG%0SP4h;*8[Q"9疀bqο(}OoX9g21p>ym#%>WFP@ND\19\Ozu^]-k&ӂ 0;P[!bx4;xQmrrkj䥕Z٩}ZXuW~pmȉyP\ن)>ɧR&U"4J5b ;$a`aǑQ2Ly^F[:_.1hT6his[-ѝ9:ZX+]?]tՋ  gTz1b%אYh.RTa;xi5qMȉlwM&Wtܤ*\v/DK4џ}h3zea5kXw{ ;إ]C:2\NqOMȉH-#CewyT 1>k ݔ:Z"cFzE2MWRCSriUI3^ȉτ4;1LTryuaeF5\"Gt yd5g%38.Q]E>B{ 'r"t0y/qa&M@PD#ۢv22I۲RTK'q9"uݧRv(٥rer's&;][^ȉ)O[ﴰc@*-ve_(^5)iIdKFIQ'3nwXf1;'N7ҰSմ'ST9: I$C(Лw#ȁgYyh^gƎ!y~N)R۷YU:-Z*@t)5u%Pʡ<Fr" '@oCDjWl#G&٣91$M4JMъA5<.QsWI'n&ŦXIt)J4sR4AZ]пQ 9=Hnd,`mcFNu蒂Jd-0 )Ҁ%Zw{ 0“OdҴ?͸mS^Yd*4r" '@޶@ql~GC]\eJǗUDGϙ"9&#wt)Pԥ8h4-M|G1SjG 9 SP U0~+}AhmdOZ ]ؽq4kBVkyR9-׾@7vTXBS-_ ~pe T?dUֲg%D@NA%CCס':"lb:]L~1;wZ:{8K1 . ]SR,;[幕FJ[%89= 994r" 'hqt?U0ֿBWuhGD(х5PG4P\N j$rDK$>fG5k5?%`ǫ*N?>PWFP&@ND EI6EDƞ>3Dgb^COcug+;queVf}n8,] aDaMjn͌+g+}-B 'r"Bg Ɩdn|%eĸ2ߝNS-6vΎi婨7zxϭi]]__XiJ:?۾L1E0T 9@KK*ew> JF9ž8\zr[37f̘Kzyy :r"$I,^%JЛvjWn/q^הSnߖ}D +2:[Ҩ2ob㚟I}(+ q-sdWܱW_(ruu=zt׻wosss>_~d!X"$R Ip!.cF]Kp1lDO䢅~߳[s{.V~ӴMюx*ԼɼdbVr)--4iR79QauUJ72|2IM'l5 [W݈O|rq%sحؒ˒.Mr_})_r@rđ*ủ@NT(믛b>}֭[ybgSRѣGDDrbk$W~bu)Z;dΉkkkGGG[[ۓ'On߾}fffƍٳ'DgO9 IN(WWQFi׬Y󬢖^DvcB $vDz3_vTeuiD޽.2wvNt1e{zOɨx FP@NlhNKK;tԩS_{ݻ7 7f̘e˖yxx=}!'*\!FL5lvNTlIeIZEQI_w)ZnVXѥ2[9m2: rbg&#""8NLLLJJ ϧb$'R4b 3JqhGF~XΉҌW/BgKC3k}9a%W9BP2*Mc(,@N='*U'9HF< &cxN$vN&Bx.ѥff_ɨ=%&ȉ:rRGh߂a_VȵSBE6dGEErE"Ή?NAPMFMhDI&%%%EEEq8Tqa="*&rqh'Ct):gԺѧՖVRY~HK1ѵ)x2; Ȩy(_FFjYtP(DNl78 ^U=Ll Ή=g<-˒J} qB4?xQ\}%q6dN$^E# '>Cb=Zu1zmnnuw;R\v1 Zɪ2r-lպ4Yf&7QTUT̰cGXۄfNFŝaюȉDiiIO>ȉDDE|ڹdC>]uiu/O+[)OFsⅹ $ޗ{hGHC%B߀Nx 6۷ʕ+ǎ\rqzI<ԩSȉ:Ɍsg;8W _#Ѳ8.ޔ!(^mώb/bgQߙ 4%rb(jʔ)>k&&&rXmllTALL r+?ŎfgHX-]'k]+~]vN,iKqh3zuqKSȨxu@NMoرZo ߿c9'NDNqtbA8c?f/;'}{4Q҄.DbV<I.8bpM/ aggDUhJ`bbX]Х(9sssu$Q&gs'V+qhRT9{;*.Y"h]`DT\a{IhmdWqZ.sl|hM6bĈ:xM04''v=l===uwڜQ\َvTy,T(Ђo71>NҨc9d~pfGū o֕i\\"92*ޜp# '}6Vѽ4ssҎ9ҮحMvC>療@ 4M[gk .PV4h;*|35율\}(e%/hMĎɉ!!!qƎɉ/Rٟ@1DT (ũ |E6dGMahFu6m&Fkv=6"bȉ^#'ٓњȉgȑu!K/Ksttl#ɓ;yNT(bO;'~sS)µԫӀ[ZF?$$4}G"*&{?he1Vݕbw&"Z96Vא!Ct&44{.JgdžCK>g/tyRvN4W%~Q$aȟ0ۿ,XNfQOv)AC```S?~|ACKNT0GDE.N`-$%}ˎ4_Cm]W [x5dTݛ)B '9릨اOu%%%tbOOϦУG6W)|sΉ_ UѸX^dӾS8!~.k|d紡)y#ȉm6eӦM[dž}mmmO<}իW7gϞ('*pRD/c)9 WZS윸"\}R;*>jv8+%<QsN /#0׾"tȉiFA޸~DId)4< Kr%] p}ZoW;MOF /#eGQ1 9=P:j(5k%juNɌ&8XsimΉsu˿7%bgek5Mm1s7*bJ2rb{i:--СCSN}׺w\6ׯߘ1c-[!]NTHȯMUp<nw1;*) xoΉ#ߖs5M=6Jga9#⬬.1 ^sDNTlx*78Ord 'hMSӼ+zsJkDfgFM7R9pʄ9qPL}UOkmQDߑQ19rb  'OX6N5*.HpFxQѥh}] OTCI4?+,9z? JCRʉ^dxhS6ɉ=zhkG}+U5*<_&yvs(:&)򣆧h9M?L鷱Lrb7|)3#'QK+~/8>:@JKxbG߂S2]ʬ9t}Zu槨Ư9m|WO}~C 'W(ZoϞ=Ab9Q!("*~3~1veO]2oTLV:;8h(IO?LL)r9q 2dH?y rBês8<' '<fM YΉ@Nl(..nʔ)طoŋ] Djtը: g>瓬ѧu*- b 0ͦFqfoHFȣhS6̉GM,o޽9Ӓʨ7U^'?w'pQ rɧvo{fY[YWE˵\22wTB%EAeYdEaf?s~33|/_>r94EJIW.v7uh0Jƛo7JC%%k& }﯐d&ЉDv"?M17n9r$Q=zxqss32N3mh~V ĀNt":K,VOLj1@JR8O)*TZ[_NR+ޗLŅLg|F*`KЉN41D'*9GcdI)骠N\;B,YzHZoS١0Z-{Wh:CsN4 N(Kxh9{Y,8D*6\ښ}5u>D*^Zt3M&w(}hKS*Dqv&g12`N$'>S}}K iJZo2.,u.^T-n*֒qqU:Љ&Bwbp /v[ j5䢊#ߐEV]Lſjq˽Y z,Ֆt"MM3;n$w*0eqe-E#8Q/+e*)i;Z@U:7Z]tmi}>XZR1 . @':D)zccr p!"cJ,BQpS;qDf95YqWTFK*>DžD@'ZvHf :Y qA(a\.:0׹Zpֶ9Qxs{zWpm:Љ&^wTp'#,(x:I/DP|~cTs"ܿx~KS+-LŽOqm:Љ&QiJe0ecr;sf I'FAb6O4*;?еZP׺Ű5RЉN4e|erSq`L L Mŕ%D璄 ({:̫n6SS-~̄.ZR1.@':D &>i.`dd=%>z^OjpF1|,.}GSHZt\L-m {"%c],3.@':0 Jޓ`S0o/w6zkffUNWg/oKqH+he |L-:Ȧ)Tt6ג.BDS ScTOtKXrSu ZtUD*O++;tT~{}wwT%b3=q:Љ^>rr%>uSD"ʂHE,F* }fj1\<Կ7^BDS1i?SE1ưNmQ",*TZ=KӺQVY[JEa2\ ){mF*fy"t"M 5?U#FL\Kx(N)}D*Y)˕I5])n⛾\^X[*"t"M,S ;UBFLӕrYY;~,oثD*6\۳3~V!xikqR?_EiZR1 hhHJr$drSqG/z=˻dF8dNOioDSʹSq*fp:ЉFO,9M bBl|̎\TQtBW!G*dT4L}!NDWV#q4Hūy0A4C Y a?0z^>MD*?봬-@T-ֲL^P#"DSRTѾ n' #&(ER[32 E T,sA e~|\q [$-D@'[I<9z #6s;qero* ˧}Bb%BehDTtm=ei`F'p:ЉFD#rc LNjE qKv-}**.{o45[twu֬ŨsZԲTT ގЉN4n4|tyL hwNn'._,$>a ׉Tnj⭽2(hF Nt1I4?O{䦢[k'WR2xhT4D|붞NP)rr[3])#VH복E,%5D@'GO12`jYs;kyrW_%kyJFEkEI?BK*^bZ@':ј%VkNH,͹x)b眺vn"K"OVd[8hot3ܔaؠmZRVTЉN4b~%-ũCr˅0)Nr;qeSᔢ*G"F,zuQ EnsA7"\6Nt;I屈L ZR5g7O&S3"`D*V̙Ww}f*zn Uɭ{{|lD@'-a8%|œf`B_vחEtˌHŪײVT(ٕ֏|}T<[tWh'T<䝆 oXtk7괳+K|H:+09+1uAk?d*t"UIáD*~+ nN4*.* W};y:kbԹxY$Sq_o6h>HjEX) L-XM_#w {z h!äw}^~겛fMnZϞ1 j-@'v>B^VV0pM$ӟ*Ͷ `",HPwԆ\TQ }Rf*>8Ϟe~o:~2F٫W'0`1cƬ^W$Nfiԃ!0z4C YMYa7Db}fJFEk.X#7 ٫jIE,y:Ѵ|Dw˖-|>_U,EDә/Q(*Mb3N#7RTFE ):WK*X "NTOhhgJJ c? )S<1y&::"#a7w&5W0" lۉhEg|D*V.YR]D*mSH5FXZRTVZ tՉeeeNNNWWW/^AoF``2 BDߋ/8cƌ+Vlݺvvvw^~rpƍ׻wobǓ'O#JŋNEi?Kk0bI-ŀ^*,*}="kL3򻶛 Æ[iIE|b:ډBpժU={T k̴5stt4iO>ܴiSrrr+oJR???KKKzN˨.I8pXB~ΨN\XJI;5Ȓ^{HEN8T(s^Iit:O{zxU*e2ل }Sz駟3 Pc8=8'OF'B1 {52̊L {o/ʩ6MElC!۝qs2<rND:"SWزd\KоNܷo:̈#T?|p??m۶7^| עETojРAUUS"CIitb7V6yEk4m8=į;eړ+e,!3b9"xik]Ye=f=KH\KN/jxo>TտowJ1\M=zG4ih7n@'Nd[L5bd0>%Kx%RvXwp{Z7JQ4{2e p9A:1##C]WշG}@SOiål^; Ѷl٢:-:tMJ$[{1N3gE 1>`|N&v qE\SZ}9mZ7ROg &Sv+ІNSm3tP [M;/)Q#mD˷)Vf*N9TM?Ou+ab_X1g.#S=hrd*'Nψ/} :+Ξ=k5j(;>c\]]щs $R*TPO+qvۉ^_w+ƌ#RjmN{}2rVvjKKKKqqq/=C_U/qa.<6yss c:btI*~$Ldh7,GOEVv騷T?f :M=U<؏x+ ZӉm_R8qر;~Fbpp: ۹@PPz]'G'*ѢSQ1[+=gtՋ޻:Q*,r5;o˜6J-ųC'܉)))mz]VV}a}]՗ذaO4K/}+Wܶm'ٳq%K7NĎ/[N}`ثyfVd*Nx~![NTJ$u;|L7F3TT(&ŧd 6{zCpE[ e?ۺuzًzK}CM?͸yf#Gdk֌ ,֧OzDCV6yEk4mQ 6d57a{T@b83Ze;497ˉލȊ*qQg}Woy'O4qiCG[ ~2B':s;ZnqqK1וaT};y-hnNӧ.Љ-> Yt)wsgQN0LFF͌3ޣGpcƌYfwCC_tq^LvBg,)|^E1](]Sß8Hʥ߲!9! s04{c2B'qNN… UUT6ш#ORu'kÆ tS**(111***(((,,,666--ǓD!i8`G0h -Š}ICb'*Ԇ9mJ#/6}يL\T֠(J>M?|%6^#N42 $R*TPO+!-Wn'._,]dIɼ#Tܷ7]ITsNTߦ/ӓX:h:W~jyc9]e99]ľ%XN}9mR㳚L-Љn "???%%%&&&$$$,,,...== ϝBUR%Zt*J3]Z#:{ۉ ]1SNT^As~ùMsEQS} :ZIYYYYǏWȑ#{<6Wz+t"XFmwIL0>`JŖ^_qS1JwxakI;εeN~ FxeVi:;;M.|Ўu1eC&:ѨуgfE=7b|H<9>n ֻ˖32|skzNɧOfM2}k٠ vZ~n޼Nn%$l`>i T6ǻkSK*.^s&y}ke:}Abi\WD.eokwӈ)bȐ!|g̘bŊ[Z[[ۻ^|nׯ_xqzMxIt"t+e"4Sqͅ ˅g&G4\Z2p0s2B=~msugXC\WDիW3t7ZhO>{OpӦMɭT*󳴴TW^DVjD4Sq]Dn~<"VЊi΀*nv89͕%nŠ&&Ⱦ$6T<6+LwĿSYϜ9#ϊ;vlAAAsϩ3ydt"t7r>蝦Sg3`H^ ;2YЉgΜQmcfff믫ѣ?ڤITGq^_B8{7щ&z0;\%r 'k&kCV Ă$!!#TOB+Nk%N߹s;ҩqA}/7VX;ȑ#m֮]kտPuh[lQV/իOTqq1*ѢSQ|< FxQ9Ku'ѼoXf6*,ٕsտi7bO:N2&މNNNm~Wtj(;~۷wN'&'' :DO45b%I3Kȯ+3HŅ~3*ӻ˓ݏ>L1)#x4# [$%Eeʝfܹ&>\FR MǏjoO4eoW#̬T'BGn- RQ"O2-яۉkXñGe2f˒qQl'*7N D>Nk/^wp\t"5o,Z)(NW^~֢-?5uNLƩL)wbddd^-Xi`uܙ6JPPz]'G'RvYT\s!AP.HEsϙ9)F@oqэ>p6 ӧ~et…=z(4772R6թد_͛70 T*QזғO>NR%:_3g\1XVsf2.]dخHF[2xSc%ˋopSG_jސBʞy\&7(D? )W͒%KN>c1>?l0b^^z/Xrm۬]]]O8gϞ7*kܸq{&vlͰSA4Tz0^v D!S3'_*.HEkK m=Gez|h8{1= ZEEŴi:8eh>}\\\ 덣p~=D*~77AA+YkdTN$Sqث@amN`"Xzǵ1B`l2 ݸóD%7C&ӳYq%t"ar̬Tphr!i C i"Vj *O]N<7ZMq][L{d*Jjq-)r<22ܹs?z˗SSS Tt"_AD*~/(( ŷ8/SQ*\-?m)jys+*2Cϒ`Jp-`'*c(88ƍ...999pX[[|K,9{W˷n:`9mlFCWɡ"ͬr08`ꋾ XFח]ryUӧ "1x4n~s;Fx~<+ǵd:+V+Z'|嗗-[ƈM.߿gQekkkb;w(ǡ9`_}դ$t"F37\o*0> ­[4Xr{崋ʮ|mOwuxqK1ڡU "؃T!RѸ;hȐ!mZ6qVǗ^zݝ[VO>?ÇsrrvsqA3'щWQ[5SZ ? %ީ_s|,H목P?#n'KrCwhoT@A>+Z2NJo6&MtWWטeB&$$(kH;n6zh\n4Õ~kt|'Ś)//ޖݽ{7:M335SqMxVu Vњ_7P /LMRt ]v˳!SDQvk5GF3\k֬Q'|2>^˝cǪ6?QY2LY;EG'B])'H)eW`pSƑC}3"pGP.̗%ʂۉecTgHrO#>ny&RK*U'*^ 4Ho]]:h`ȑ] f47k~U$CIP&eNw'|`"' t+AxTy4y38gɧ;黛4>qKQxOS?n'^Z*n͇GrOYtbrrhZyP^1\S7nh~5vVPŋD0%3i>j{;f0 *jIs7nⶻ?GD C,X:-uZ,E[k՞ٷOkgsI'^rE͈#ZgPСCU;:99pG#u' -?r0ydƇB'(}2J3w&K Z\f[\[*rrJ b=EFOZ8RK[ZRq:R8:Q%6LhgΜ8K0k38q&bݥ8T\pAÒ^v8W|9N5ۉ:<^zy n*KSU{J#?G*A'Z[[l-,,T;9r8/Tyi`Ĉ׉ 68sLS Uό:~xCyD9$G{T?r (eR=[E4L-n ZR647+̯>7ˉA#ڰ -x}Kqh'*^xA٤Id?@Fj_|Pl;wSSNoߠgyFue˖'|R}D0eyU !Rq@0hSʈ>}z_~ŋO=08qE6o|իW~Ybze 7G' "T4 C oq_\k**L''b X,˅9d"oor;J-Ц^g>I\VOBubmmqJ]'--M*ueRr_Ç?1vb j8t"OP>Fsf?aeE04CE]3_R"S4b??▢*'"w-mHT4NTJLL0`!)WeC'ɴibcc -A$r'h垢Њ`$2*5E]r{QA]N/IJp>!xn⺶"T1h>zV{wj0m:th̙f~t0pO?ѣYYYfщoLL-N ʊq(/Z濘HŅ~u಄Xn_-a37}w(!v"hW^533kǎ{Lwc|$Ǐ>|g#xwD H3;S+‡H,%Rq߼̪rwN,]5Os( 絤2q\'UUUݺuj˖-ߩĨ+t"tyK+~}2NP.*_Hy>I<"7d0n*ZW(՞N즬ZHoۉN+Ē {T8QXـP! ^Iloزq_M-qHYx9,]Q{}7x-*W@5RD>>Bs; \OD*Zx}^ԡPݶt pSs;}#o)~05Awč999;Nh\~Lp"?Z oY3 }LT3W<#xwQGpmtNN[ެ cщ9~H{08`$䷨_T4اyj[;HۗMS돾D*f絫liFx/[kDT K\/TPM3r=yDOD)B [:q;a3?SОcSؽY0ЉNhWŚ hA݌HE/k;?qKQJR즰BԞco$>Ņ坸#+>c0D|Tп\OL.I/a|(hCx9b(IJ0"_4Æ"RmB{zv`Nʰ*Vw":9fziDRC%jه2l%& M?N5S2s?gTbN\D@'4O !,G340>` XFYx:d;ʫjjn'^E *tEb܉TsJnϱf4}يL\ݰ3M+\r^gt"])oHe G*:kt(Ǽ!øXk>^se^5Y ;m2LT4tݯUی7GQ5vX3:@y%SqMx.)Q3}ڢfon) λWhoANZۗaȧOSq=A'4ݣG^8$2K0i0X`p8vL}1{dT>mAWVMŪ5k\Or1LjFhV߉)))zqF'Ora'BTr 8&=f*ZզT;hezZaC~$ROoFkd*k45 ?KNhuWB7D\?L:'Nx: /:k)s[x; . ߟۉ^3 Z{Ą6eY{\-ӟF534{~|N<ЗǕ8rHw0:Sx#T`(Z]2n*=mteeoX:-iT^O(ƕеx…={rFlz Nra9D vח . E7n59&ӟ~ۖOoo >ŕUЫW/u/"6+++۱co駟NII8PVD*Ц% Bͭx.žkk+LE% N4Ti4-;hԉz:cbbT۷'HyՎ>>>jt"@7t2={V5 9g:q;qeq7h"G<}lAN2LT4dۉW\QmM0ajǓ'ObщGHjه{T\r^M #~n*^IԞ1L%/Y\>^yVc_ӟ.rCwObNi^0Dn%2K0q_ NFVK18`p.]v2ra%r2u^%Hk+=56D\ ։gϞUm3y6>R<TLL?" Zi\YTtμI##KGE>:pp:  'R@5ooi^䢶GyꩧT;޾}CN  !RXDI\Yn'.@hGYec4?Xuorm~ZY:qli".DDҿf7on呷l٢gi~ @'tOCTi\R!mMEl*f|a:.Y_pe[*w+kYj؃1,ő;֮]^c2YsS=P^Co8Gu8hXd n'.HJusHTrT,SJ?RNTeڪ=O>9XQQ^BiGUpMMŋ_{5zNTjhh:th3Ϯ_axщV2]"ybdP=UAQ #˒J}O]YZgSDŽ"R1^a˻*#/5Jo:QX;;˗O#WߠeӔSCbQb+>(zN,**rwwpႝݾ}ԿOQvt"1`vxn' L.Aۉ~`XF'`mK&R녬.@T-ȕۉVz%#i3}wH$ڵk׫J]`ܹ'OvrrQt"a+O9M'"e #_JCb|Y"r2HźGtrbC|˻Xa:ҫN 6l9NXXX~_Wj*fD'6{ӧgB1,`-w6,7ln ;ۉNe-} ׃:}mj- NTx 2:p }n'N#_A /wTkf>\N1/;Q +|w>|M^^^FRo9x:@N0` qSq @)|#U_Y 2t|A<}w[_Z?(O*$$tۉSmD={gt"As%>ID[iz9T^s0 -ۉf9UbSӧwa'd2})Sp^ډ*7nT}^6DF̒3Ѿ|AF9e~ ]ĽuicN:9TtGS-, :qӬ W:1..N}sѣF7Ӊeee{V}566SP秤Ą).==]9:\%J& J4O / #n)kN6E^^騷9m||:~xӧI1Z{Q*^۷:U /5ӉJΝ3S_VVǕ5r^z55πƌzj___HN0D'Oތ-İ@7G3N=IDcNb6q;asuqm{B>}xWN:ȑ#mf̘ѦNT}Ѵ|Dw˖-|>`XrjNz0. ۉ3  >8ٕNTĶxoP.fѨ6x'٩iӧ< ts}h%O_i3u9͑׭{yщ\tۍd ts7hm^.$wi(8C<}}'^$o)Sxf:1--wUooooo4õh"՛4hPUUUGc\]]щ^ɡn*Z te|pSZc'WT2hn#n)Fnrgx' P777k׮ԦZ-^X5\<6E'("0,Н9s;q߼ygQo{I&@xTp,InO>ȧO3paMwQH33'((H.ĉ 41 xn' L)@U-cMENyMۜ6Ȝ6 U ]xmBDZmԉWNlON~m޼9%%wQR|ɨ(t"AUrnSN\tkD!R SstDogO޻R][7@'6l̗^z/Xrm۬]]]O8gϞ7.Ydܸq{&v4aG'41*x!,VomMEl9_sڼ.aX]Npg Zڗ:qOO #'~ם"6fh!bXofp;qž: t[v Nm񸶓&2:2M-\gn*-=ZS(|N w'tg41zO?dNhF.ATT12=-NyTw[it3xÖw!>U2tPHdУ0LFF͌3ޣGƌfoo}DهO^ǰ@u.,~?i?IWZMil9'iqtۉf_*hif9Z}Q'V?ƵхtIcLTct"@T'.ad~?'R1 JQ6۶f]5ų{l :q GV=!#gΜ^vf}X?fyyy-isL<ѻOݧ|L))ao`d_&> H.Űފ-E\R\F$ Þ62 "bI:Y':&Ԡu܉{ٳ1 T*-,,LOOdXt%nvݑB éTu'͐yI1[t[`Y,YbУ_NN΁9rd=4cjժ`Ýjsf7y`X@oeY*їoVX9}U+z7rK=y bWy N,))?uꔫ2M.Ƹq1{O޽mll8: x@}_aUP(hj'.^XڠN8M'ڽRFoD*>4*;,KEzhk'۷D(7XhԩS$]N6sD@29HE< 譈0Qk2n9m}HEE=ݐ>k%O-yM{t7fXÆ kz̛7Ow}7bL" 2x={͛|}}===]]]wرn:+++33={ D6}%:EaSW#Rc:7&S/iq{ZW,mlԴMO~جwsЉ$''ݻcxi(9s57i9MH$ TG Dcp%]=&QCBUD*Ɣ #GXmR.hݧWlS s5KS7^-;W{q}'[3F{S U> &F/8SNE'+3Sq&zpaj'~[GXjECoxl~Y48:E>ZnH9HtQvvvK*ԠA;r(xDvi+W=S$ &.)nAJ/а!ÈTFʫ5#h։ȫ bXypڴiX؉ ׯW<+͜6FR<}uhSLQC ٳx t"@M #Rq[e| !礽D*zpR'_6hqGUUSs٥j}rʄҦW>|NPNb@oӬo߾gb=TlllGsqqy}.OUiiF#{2:Gr08o$M+VvչwuzgNd>g^{3OӔw!>ىNT؆B! ?x:1::Gۺun:QFa='tD\w"g:E/yT3?B5 YRɯ94{8ppӹsm>-3HdvF5DkӉ{Ul3{6urbO'''.=?ڌ3GcJ >ޟqeuTd#.\ӟb6t{e\mqus/v< MȹOyEt\]][Ss')ݿq rc3/0F'<~IvaA)e+uׁHYgu|ud** iqp,TSח5/Wщ >>>䉅5tL&Sm;ss'<<\.ɓ ZCD*ۆzbp@4JÖ7{b*]cÅ)}kvQCrS<:QXX#}y:Q5c(5kygӦMv+oD em1wN0A]2ZVg[6jLV;2GmۃGxr}Y]/4KErAqӵ\?qرz-XNUoĈp FꫯΙ3gʕ[lqrrrss=C֯_l2333J`bsp%]F@>H}-v+ES<Z"ZFb7%m[+kLfXZv"C "ȑ#+++ YYYγg>|j $ի s꩸HO6t+>/ST\~cY^ǧAUWs}L"gG%qZ^%sȍtZ;!Hlmm{M$~WrH$MMM gX 8ޡNx.'O #RqkLIz+wt"t@RAǻ#TZT}P%hYvuD_D*r-,i~nŹ}24|-M;?^BQ5et"hIG;w[{{GTWJ+Db"RqCxT& dquj*A wH23|HE_*kiFɨoqՐȻOo:`':uj+b&H'͛?~|ĈvuҤI׮]3 D)5sIva{3#3*1 t3OtFE89=r4+Z/P_xBUAwHCu}yYu2s۸Y~r(Zۦ@2fϞ]UUND_> ckդF螌HN9׉TddK>k$&e'k%D???e\t l?- y7x<:ZS/Xm-vs%L3=3/C4{bkr2kˆ #Rj7K0:@bsXɻOhRX__?`f+WD'։4MO>\{E5b) ljNd>\+ꄵԛ<|qR >oFœK|jJZ݁-BTt(TUNϟ?ߣGfѣG?|4h+ٳ$%ɇ~wE'4YˎnG3Nv_}*x\@,x"mSOEp[XZK~MϞz y&Չ7|ٸW^_~' *(((:Q&/Q¨QOEiҜGOܝu6և-oM&S񁏉tr]Cvi;SD|իOy@'SHu^q6)8EiSsK@eVe,T¢C_bq|nJk\]2yܰVD'j~pj);#ZEcr+ L蔰[=^>7M#LX=}_sKÎGUgx5-M*ܬw u6c;q޼yN:Cnݺ)ONNF'np.׳5~c~7Aˏ.YK+Z| XA<7y =T:h 2&ڶI9(Ċσ_X|Y~Cݸqc銇.]*m影4MڵKysG'mim(hIVX_2lz*nV J cǩbx3{U[V~?V{/?TU/[X2cF> T<ħ,ܔ,wxY*щӦM7SN2{HZ_ T^*Ay4$!D*E':^]-2_pImrKsT ,(/SNIpR KfOxRQ$ Tr-f:Љ`kL-NTmR"3*d'͎[@̳S߮VOŪ+Z^&:$S|m{Cn׭Y*,8D@'*iHE\#9|hVX_2lz*F!ÈT\lqsJJQOŻgSQSOD@'@[e3\涡ߝNah][[NhQY$[{f@5FV\rYR4mT=(IT{P:1**(\7oeND'XJEfT`t7wHE_v °prNy岖Ix?+߬wD'4H% fffx щ@({ry=[Pn%S\T!;TYSɆHƣZݚHRO(8J{*m6KŃ#z^z)wqq1:Љ&M'WmMd1 HFIn%Rv:|h>=uIf]S1b-JS#yQF)_- щNvi{.p//~Qq÷D*8Y#NL,E" ܻ7vdb\*#S1];qҥ]Ͽd^F ^D0A%3>~t7.7k.P(i(uvwܥyS19cyrQyyE>wb~~~޽<xdi3c($s|ډxr2X\9_Rqѝ;ʼ6ϋHżآǏe7::ZyDxOwrT\s:Q"0Jp%W׾h蔓n}WiLl:zHŵkR~Lݧ57=qwb0 4LW{< (H)ϷNSHQT~*GfNt"jb skP'"fzvJJ٣Ǩvb;* =T;b\ߩKGߑKbn7-;<ݚNh2GaUP(+XHV /qI'0'*{"Ǯ|MbwԉDxFG>"Rqcd^e#FXUąA;d]M"f,/K}Nqțd*{n'4]RRKct"@~mӉTS(Ë%ůo|pu&TuucU;(iAM>>kb*wЬ݋։[\c| ^D-Id3D*.?qG &.D*g u2p"R.{ϬOMc%E:mDh"-L\dIuu5^Dm $KhBQM?l"Rѱ?Hņ#G4sj'KT ԉ}' 2K[ >ANRY{YD*}?LXBmS?|8ݧCkޫcTc%?&j<ʳE"oڀSLٻwo||<))).]b>|^ucJ$щ,3HEPȯ[@-νY3'& i"Rw=1vܡgT󲼶H;E~Nbbr3frGNRT&gmj'N ɮmOsj:ݎݧu;5BhT;cᅚ?~S3iӉ4M4Ho]SSrܑ#G*v6l&AE'h\lqIqΈ̲: (\VԊ'4hr濚!۷5UUP>[5tV&K2#g')/iy䨨(^x1/$HŹ 9it?4{T7{6M%>}rfhMxY6#F СC;zyyŌNE6)D*~q8A(Omnn R)a7:>'Ok6lԼL"]ډ'W4p]sRqy[:yH m:ܹs;NhHm";(Q &FX"k"/d{<(p1`;qnTS1׈5-G3S֦XZZSw^щmkY$RqW (- OLz4Fǧ!c~?~mN,=Y%W^'OFMLśzՉNRtڦ[===F'D*B;iCOst||_?bүߵ'JډTJo ߨ?&##C#3[* >횭anz=0iTlyd6qI=\xSn߽Y*:&oГNJb)S'نRKe2^Dv L)%.)NO*O$8hssX&iPUDb&R1v;ȻOVI'2nݪ8'ٚDĬYx:Hx8E02 }MjӟQ:([}l`TZX5^56~}I}sYgR3بv8ĺo۷w}xV2;88xڵ_[2{aedt"@GѴ|D*wicpaEoI_難i3qi#wɋ-".)Flb(;Ӊ~uiI>}Z<=^DB,Vz%Rq[Pw7cǁ\T9Mnva sIbI=Ǘ^%5U'2233ǎE;|4%{McpW;/S"O?8s'% iB]53K}U;{@YئN>A͹s5 <==ЉmUV͟E (DGZ%R SUUW&:WT3!HEx@ކNt"31D'2SvF\]+T@I"{pQl]fw&Nt"vd"dBi5`h9}a"--*uvun'SqIzzL[CU;}/D-(HxD0T+n1+z*oIT\dK*YT,}i~~k{Ԗ{,ևP2 D=(]r( ߞ &)D*. ^FGse"oB"9?Ur[%>qD@'H"kԝb ES&%Ru:JņOfX9嶕ї7\SDjJЉNhEoxaq٤:!dd6hu}iYcnN@T[ney^~|/T%՟=щN5@qaѶ wG^M*uEŗ4m^Go*:ZPZXXD*VVN3)ݧtt,:Љ`|Ҋkhsɕ`Duk#W:beF7' w=r4lk+2x\]Nt"&)(ܶT"4<D*AܠFE Fbc-nN眘b;D@'tݼ* -^Xx> &7TQ(Wn/qѻ:Љ(||aT hωTo/bX7'pqI=d0/N֓N |j"SS$x!;eT7'PgkO∑$-j_XTӦ)==HBf###Y,VbbbfffEEm5~a{YY ɪ\H= Mt͏T,]innԢx%TtNN΁9rd=_~Ǐ_jUpp0G't\.,%"Z pS\i..RiүT7^ٷqjӉ PlrJE]reܸq]ڮw666ơI{-⧿̩h;ۖN76VΚMbT]w"ҥK]ve6{ LrM֥cset"@g̨6Jk1>&%8\"/>W8[uڼwzy}G~ɾD2d}={͛|}}===]]]wرn:+++33={;>|YE?yݑj0>&%8?Djn⃱D*V-_!)))o&q^'Njd4/fΜzMpƍiiiZNS#BBB,--G`;!!Љ"3*>q"RqΈ* Iɾ@tչ꒬1oXg}DCm=F U> &8/8SNE't.NpɡX"';p18&Li"|z4F7_]t6{D*6wN{etR34hPuuuGbc(oD'i[M$L`Bh9}!"Z$qusACTl:}FxFѦL8:5$q'Rq]X=6R02<X6x vbRko߾bX?h...D}(Km襄b QҝD*~QMnNnn"Gnb6cNѶn݊N7$TS0RJj{W"Y_/O57X>MIf&:Q3F1\?ڌ3GE'jqS708C$mHEKKuQRi2"+ƍUTbylbbb3_<Љ`B(SO#94m^Go*HE>;3"kϝXRR)WWWenDDD(ܼoW W1ydCyD0)E0" խ\Mꈕ5]0Lډs|_f4]hԩS$1@͚5KiӦt]$)kѽ{8t"ަ⮀꩸78`xu "E} nWVz=։,kذaW7o3EpW_3gʕ+l{C٭_~ٲefff={$v4}щ`t3 +"mnnJ:҂+8S9b޽{?qDe'2^|EcZOO5%_xzD0T<P=&hωTo/br+-*{7q(ʕ+cǎm_!nذS \lz*xHD, ^Hx{%5NtppPfκuD"$:QPvvvc}4<{Çwڵ6ׯW^dHETx>E$apLDVUD*:%h6( M:gK~zCQiԸpphx :rB-ߝN"2eA<"ry36.CՇ4tbEEr&rB'ImÈT\u2I$;ۖfR؆B! ?x%t"_ߜSǗ`pLDTqչD*^|xt:q޽mfϞݦNT}\|` "SsX/rD*ZZ$U$w'2 ʿ[bX[[;fC#F0w)04d"?{lkk͛7;99zzzرcݺuVVVfff `>N0teuL/8k/Ey*Ҵs^"Yҍil +gh^E͜9SƍҴ aHއѣGZ4К,vǢ)#)P 4唰H% q'2`g+W LqqqRRE׮][?^*5BCCOm„ EEE;NDDK/@DCi/T|<;w0JFLJImoJ!`mz ȑ#+++[tRS4hPuuuGbUPPN0 kN%bH&zk3Vח5k'2$T}WpԨQgo߾mʔ)=?d>ѶZ3)` T\M%ߐJKKm6rp˗/OMM5oz߾}Obuh666)( @kHEݴ0r#h}8;;wh3fP >ޟ>UVnVSwF iJ1PƤ +"/o6R ;8MLL6μ}^wYf>M6kLH-FЉ&E 1181Z$E+#p6ӓU|^Oe}'d5kh?%/o|e Fie'2Oo%뭷,,,Ҋݺux}y<; /cXOU 2>kyE"1JQҸ*|ڜ6~z{Zvbppj0Ix30`jK7+W;}aCL-t"3RkfnB*2<q*a+m(]ZѦϟ?,>.333uy$Љ%Ooq*jqNGFNtvvVl3u6|ъ::\lD[r~va1>9m.?dpo>6_}UtϞ=JHOO't"h#Y!QUP>M2'ɰ:[ͧ~ڦO0A) 㕷MxMKŪJU"Ҝ6Mk6_TSS\VDt"O@gz*~̲:8M}.{Lh(Ș6mb3ggg-e.g/t"tEGsSqC464mwg9M.}FNݻ7s=w']`nݢ[aÆmgii7@'6K'هhn$$e 0FID*?l(۷b3fDFF |&44t,ruu5/@'KjV|JP08ۜ6I պ}РAGv{ߡщpOQO%bxMs}[Q.ό|\ҿէ֯_Olܾ Љ&b)e럮8E%Wa| =Vl6O>Q>w}7==].:-hFD0C~iډ#&R~zruue>N;1R 紹靈oMܿV̙3ЉcE%bSqݪF8M 'hX?l_~ҥKDбz$TYzQfu? :nܸk)KpD%稧dil9diN|*\ÇC'&N'R6dtMcx MӶw蜴Wo;ⰰ077ma"M晾 ֭% :t){Y>6Aܠ>Ui}'7bhSǏN] ߟIlJ1>A}NylN-;Ν;ݺu[nڵ{D%D/M=<WQ+қ%ů}pe2رcӧO4::zРAFDBrVz*YV0-itbJJ2s;vXEE?IMM͒%KЉЉS>#RqڮJ Ѳ_㶩vz҉>>>mwo>{# :_51HʼnvaEW/[Dsz҉NNNm̙o)C'y.7AuMQA@U4U8&!j̳RJ3iӉVlO?{ND'"^蛖&Ar!U(a|fҥ1t":@ 2T\_(@:w6C J:`(vROE1Fh߉m۶)6۾}; N0h&ڒtL.(&LlֵkݻwŸ;,:3ugïccp@NdM4Iѣ7o|ܹ8@d{/HEs#9X$e'G]N=Į,9vsss_~.qF'& 9ߞ[LЉ:̬K`щ$2?]=UR[,^z\.Qkgt"3{rSqZ:QݩSAC'RHjGz#T`pЉGGG6ӧOLjщF,1jc$\ :QՑ#Glذ#ND'ZimR*j%t":&E(-+T3Hx@,@}'fw F[/O7mgݼvyЉ.nk=>Nt"cj1'چW71PD@'IeI-]̣)@':LJqUWJk.9{`4xc0D0ǶVW҅̆ ` u1ړQդY{X]X,6bЉNSS ΜhwG29"S_|q֟0D0YE[!aEC'IMM駟8-[d2 I-3B=WL50>؉mRYYfa1DF!q8k/+! `ܝȠizݺu#{zzbщ H7M='څyr)s'2^yȯ:Ea]]t"&~d66^)  ;aee8۷1D⚹8ffY;q튃9sCNPU$^w6I='9_/k'*gqrrPE{r'ڶpPYi7nNPS'fggFcбL(T\vvi5`LOnPS'~ tN-^=`| i.--ݽ{wϞ=GիWUEB'ѣG;lT4 e>/a Zӧ2ohoo}+|ԨQYcO^O%DvY~g#DetRt"@˩hXxz*JJ߉3g,,, Љ&M"/逸va\=zщĉḌN@'@1-x1#̰NiH0DމD@'V *5a|ЉN@'&I8)H:ЉD$CamTd~#@':`brg:F6؉E=zg׮];N@'@ǕTU  fM־2Ld0Riaaazzz|||dd$JLL̬D@'@H֜NTO$6]vbyy_.e_NN΁9rd=Z~?~ժU|>NvH﫧ku"8D :t֌o(rʸqQͽ{p8Dt"M=X8g_tN֭b}?~є\>}\|Nv N->Hi"b+18Ϻ###ub#V^^>d"?{lkk͛7;99zzzرcݺuVVVfff={$v<|0:햘_5CmԉvaEgډǏWlcnnnEQ̙3U nܸ1--MijD"ږ##!!Nv˫lrSTIPU'ݻWw}gL &o/8SNE'#x oNQO-RYtb_~C*bРA9R&gAA:!lRSq[|u;1==]͢EL|Co߾mʔ)ЉAE;dBnv"Lv*S}*buh666ЉT\/hKN:)*t;166VNQ:1::Gۺu+:O]tg"'ه_gذa|W̙r-[899?СCvvvׯ_lYϞ=Ni+W=ga/:M> /G': WpjGz#T`p׉@(ʕ+cǎm_!nذ5:Љ`f8F8 *4<{Ç+ iQ~Əz&}D@'˫l?FT 3ЉOH$MMM gX 6ЉN#k}sz*?aTt"ЉH xձz!Dt" (kYo7UщOT*-,,LOOdXzb|D[rԏwG08ND'S999`jȑ=z<ͪU|>:z":3ugڅ]M*:&u1ƍ׎u1zmccpЉI$g/`@'̲X\Ϧ1*A;\.wڴi]:O>/_F'&%%_~]~ /c@'*vñ꩸/M,0>Nˇ BtGgϞmmmyf'''777___OOOWW;v[̬gϞĎF'ť33zh/EwSۓwkb5E͜9SƍҴF$XZZ*УGt:Z6鷭ߋOC:Z#Q꩸*>ЉТPeM0}ljx饗Ǚ:u*:QC'> zZ/F:4i+W='~q-ЉAUWWwP,KDt"@}dO1!>w̡*++L!Ҟ={^y"}Eq'WD0XSÒ3c;K1梉$KiDӋbE%Q$LԈ"R v79s6.0];YΔ\\m|XJG=;v~\6$$dэ7\| )k \ [t"5 Jg =~+*`~Љ[.ggmرڼ5҉BJ3I|kkk]cLLLbbb>PII{ァpPѺƍ+sLYܧv>94!!N`K~Lř{.\1sLqtR؄H;!$:wb׮]̙#Yxg^hѨQTjذaÇΘ4}t{{ &y(`E233k/\uQ6]ډ)lիWǎ{_DǷ~2+EzTqRQSO|r6'@'6,>sbbĉ---^oNdaaaee5o޼'OK'H' ~j'={:1((HZ_W}eqqqllÇUϧD[\xsSZ~|2.[@'6L111aaaNL&V֋oӉۉ?s>@]&5o޼1ctE;͛t"Q,m+c#o=t7D'tvWڵkUWP(<==---u޽Ue:t"%qGhTא^|{Ow_¤A'҉׉?*V\.>}j :t۶mMMMU*t"P*c9ďԸ|ڏW8 :a*,,LJJ^NىBI V')$c9NJbTۥ^%:@'>>>}#G)~̙^Qp sss:,Q>YdO=n?,(cЉ'MJJ211^x7ߌ?^KпR:QO'F!Վ5v7*//Ok׮yzzJI_ҺlJJJNa;vjJeFpt{'leeuV_ux{޽ ͨ!CH+ٻw/kCD357((HPHfgg/ZHЯ_r͛KG$|*..;wnffӪdY{}S/?)A!N44wv***Tu떙4_̵G'a={5yzz^'6^vb^^^=TSsss[[w}wR ,,,?DnݺC [-mڴ9tt~|҉h8L"Nןg'Tܚ5kJBf' ᱩT މ<9hy%5:u\VLaֳ`۶m}||SNU]z&t"TxG٬~J-x, A׮] ;&'d2$:c޽R3ڴil2]_]GL7oܺuk_}Unn8hɒ%;vlժ?5)[Czx;BIgz<W\zЪ۷ӉYJ2>>S_{ƍ{tRYYY%._?899ٖD @'&MuІR'$DѣG#ׯ_O't"WTvRڇ;͞w1i:#]ѣZ~tP,7:w,ܵkЉT3^t7D"!ARyzXc(;F't"TRi76cȧf̆@'L:H{RRR*ggg333DNglyTnЉ5Ot}NLJ'K[YY˯O'NP(/Yue( p8r%,)GXy@'F+Q9ݍ㱸[4tb5EDD̟?w&&&ډFwDNg%NwNCr<''GP?cƌ˗{zzfggoJ'NP(ÒrTt7+co2iH'ND brWıENDЉt"ݼ'lS7ɎE:Љ GeNwɹ@'t"DhP<(pm`]pJƣb& :t"4(rWx[{DN JN>'*|i:t"4,3~ಮ{jzЉDT_?~潮m۶oɓЉP{?5mV[_Dt"ĺG;QUӦMW\YTTD'@))%XG -P0Q:VEGG[XX4K,լ7(޽{JJ cq.1+@'N=...jM^x5h8x𠓓̙3۴ivܹH'S~8sE]_Z\p0fODЉB o]ԏ٫SFԉgϞճ;v7|SNڦP*\ɘY5mW9{TXDt"ZO*h*t(11^ټy3uYRz[k_;cSWxZ/-t"D:u݉(qssǏӉPgr zo^"m7?G'{TPpENH'v;Q`i}щP"o=+ 85QN>7rGNH'B ѣG߿_ܹs{[lVU]vܼy޽{e23==[nIKЉP/1jG[?}gزbv8uԇ%JA'6NLIIywLMMծG׋_rx… AT 4H<;v\~}nnuM%,,Vm%s?~VVߢϡ:Q 䡸Iaa!ţ²'mW_#|cq1:^vѣG_x]W;ԢډTJڶmsN\b`hh(QRc#W&m :vË:uӧU# 8rH!*ޣG/BW'VTT;VF1a„W_}Uv33`=$E9u˗ϛ7oȐ!+4hRj>ZD///im۶щ`J+f u(<^4*#gAI ЉG'>|_ƍ ]:ߟ9sI]f#T;.11Q5ieqqNlӦ+"WO˖-$''sNfNUVu 0>#4'QS]C*W{.9DЉٱc̙zZTiӉ`\'?w5s,y/WgqJN_`:tQwbIII۶m_o߾Z'[h-k.##CcOٽ{w]hjju ҰsN͕Dv%٬wƓe A'i'9sF?zFJ_ND9nJܹ[nusN|D7Bos kҽE@'N4N-}TK.iĜǏWJ;wޭg zyډ|걻f7 @'N4NK.GfeeiĠ _~^:tZ;Y;FCv+WщPϔU(6f9rЉ*.Æ ?RP4kLFU"4Nyvb((e~:tto!.SwUUL֮]o߾X#ϡV;qŊ҂/^J| Љ ]zNNnrtb<[nIK :ύNc!ĠWx[k4_S%L@'N4N/\zFFGGkě7oJ۷tbD0: ˾<'2?:0;177yo*u|kB֭[kDYۅ JHHX O>ȑ#GUNP(lD0Frrj-;+-3Ez։yZKM;T'|"1 U~MyyvZigvbCvbyyΝ;_|Ei+*:ׅm Lŏ.{Tt"S'ֆ[nI'2511o {=z`^333(1c+7((HPHfgg/ZHЯ_?BVh8xMڴivME'@wAG/j؍@';ӳ:׻ P}-Z=ziFѬY3Ɖ'.]T֐ףGՕikkgUjjj_&:]IXf*ڮPp Nw\.T \\\y*۾}tM-\PWݠASN"##5NsNlڴʕ+kEt"gdXY Oe~:FډUDDСCJ_H<ԩSպݻw[ZZjS6m-[k5Չy5Չ[ӧA8p 7&Hx}~v)6:BqA5zvffft"@' _荜w]CtբљyD5Q/t"@' _i@puZSQ},\DNl233v}ڵ8qg}tR'''wwwooÇZ믿9sufܹs'ЉXj3W2|gtbãP(ƍzLoijJKKO>=ei M4:`,YPgc@'6(ΝoȐ!iiiU[O@@@֭9NDQ*8s%cҖ`h㱸L)ܹÇ*L&%gjj*Q-((ǝ7oE-\[D@m+.%_믵G+LzO{k˖-_ۈ#ĵ=zNTmaaѨv,YNw1]b@'o-[K&Um\\\D5œ45zA'jPTw_U_Lk;'Wmt.M7g^5caiQ_+Nϗ\<uwfTWXDNz-Ns6vXqmtN_~bRMtѱV@RRR$''+x>{.ׅ*Z㜂ӄd@''3gK.X~}:t"w.U\-*`@' bR*/^8..NԇJKK}||щ ̙3w޸qC^9ԩSvrrrr\.'pڵq{dq:P*J1C9 !;;^S;f'M4gΜe˖ .;.\hgggmmݬY3k*~tMM6mVm{>\VVrJsss1 |(i۷%> ,,Vmͦj!ҵ'ٮzsW3"Љ1cT -Z8rqtbtǔ񘚚ommkILLL;M6D5F"Xt/+"ЉNP?~|U+Eef?щĮ]Ι3G4fϞ-l FRB 6|pϝ;w>} < ,lN+W~vINTNlӦ+"fG<^YNԁyPA'7uLLLXXL&ήGgĚD///1c6lؠ9fϞ=??gDɓՎEj>M'l\kh.$X:u1cAxx4W^eeec1UDSSӤ$O@~z:vJƈušȇeDЉ wޭuLNN4fɒ%Z)ͭ hggyvMn:::p#!c~@'y\\\xxx``L&LHHstTj.\:FpUI_QZ'TQ^D:PyC?.h233v}®ĉ?쳥K:99{{{>|uժU_̙3.'عs'H'҉t"B?I3'r)hh ŸqT ~7|XUd2i=58xL'҉t"uLc5Sf]Izq5Љ(Nז-[#Fk;z(H'҉t"Z;lf-~y(Qa:kٲ8]2kROݻ_U[V3/5at"H'εy]k;[C1? 6}5QuىND/*_Ϡ:ė˙"ЉK޽rvvƎ+ۻvU,X~uر:ӳ:qذat"H'B'K]Y MN|.fΜ)NW.]yi=%%(~~\.T \\\D:Nԇ64Sq. .:H666U Ç7_.;DjPV^.k723EB?~mnnx⸸8eNJ\ZZ#Ֆ4,,NDmT O_E9A'֝^{Mn۷4iҜ9s-[cGGDž Y[[7kLmAv:t"%5`{IXXrssnjSShȑ#Ӊ04r#4Uŷb\,N  Z!.Z(33~k:t")~nX,v@'R3,--uHa/Ӊz#gRtb5t:tHȽ{JxQ:0@ ߺ_Љtb%5iD~MH\o_2:0@72$SK eщtbtSi:Q?FW^l̠Д_2mz*\ЉХm۶Rn <8 ੵ(y>裇҉O%lcw~PS?]Zu@'Âw_TKak:xzzϊ_hF^zI_z/btbe:qۤ{'{ϐCЉ|{Z*u;Љeƍ74c^/޻wgϞ>I'҉0L(leTu;sɡ_+߉ӧӉt"DBqCjhL]JeHHʕ+Gս{wsss( D:̙3w޸qC^9ԩSvrrrrYs6G\sΝOnoo?a!UɢP(ĉ1772eʤIﯺ ,,LmP(ڽB⽯JNNNDR(ki/ǠA'i'7oz<ٳ͚5S#$ʕ++**1/_n׮4 ==]+蘟:@z)O;;;deDD]ҲO9TT*7|":Nv'zyyiqppPa1{zEi}r\8k5G Tgiix{fff6mΝ[7r:={]3WrU DЉtb;q̘1Z.իWYY昬,i]ǏJLLLVZzFMQQQ+V<A;t" ޠdT\y4BN*҉*vݻɑ,YD!٤3ޕaf˖-;Q%`~>zӉTGhf*]V`rDЉtb:… ZHc<< #cDЉUtO>by֭[kXꫯrssaEEEK,رcVlllD'NDQwGIԡ~+:hh=,}3v]xщ:FPz[t"DNu`KZ,~bR&DЉ@#,r`5=X!W2Kt"DNI_o2Et"DN<8|pBE:t"@'$gnˁE:t"@'Tȕeɶ~8b],*9H'ND<(bDЉ@CSV埤H,҉:Jڣ.h=^?~^QE'NDr,ZTcq'f<*fDЉ@Cp=(;}҉:\{fԢ3ahGrH'ND܏v_|*J?6.~ҌqwhF:t"@'P^t⇻uQu_/Ka7NXo\R| lЉ@t_Pgn9/ I'҉jAAA:L#4Q#T2vO'Ͻ-,,Վ%KЉh劫yg SqZt"|;ťQի:H ':r^W-^F҉DakͨFϟ_mT+N@H-<um`T3No'Fщ@^:=\3mp;ND:N Pyb8T!0FЉt"&4[ jx҉X#O]/A'҉U ɞzEȡCjNR\l6m?Љt"U?Fk DЉt3III133SͺN2eܸq]vU-sj.|r0ׯ4559j(:NJPOLakO_ɠqqq၁2,222!!!++KlƌR͞=;33SFq è&&&٪^pq;w{߿_U$H'Z9b]f-^BNlKJJڶmP={lҤZXXXYY͝;ԩSEEEtbD\.L3fc+m-?]CZvDP7nd>r^3z{I0 Ǐ=;!ՎщZz]]]0ccceGpD:ԥKgkn҉ MNNE*r_~B'H]l3-qFi 3ѣt"Xyb8T!0FpdffxDЮ]'~gK.urrrww>|U3gZ[[7kLm;w҉ݻwaWm۶vH'҉y:pGh*(qƩobcc+_ZZz)SHkhҤIDDX;q׮]>0`GFF_o߾"C ycD:<ɹ6jX童r:~;w/쓧Um=[.N'NT*3gcǮ]ڵkZW_GΘ1㩏Љt"x^<(`gf*~v);NΝ;?|:dR,h:Μ9ӧO]_YѣǞ={ΆڪU+ŋ?u:N3z½tb$=ӵe˖mĈڎ=J'6NɁk׮_~Ȑ!&&&hcc#ieO裏D:<_ rf* ? cXI˖-d_6:t}Ν[bEUSNoVҕD:<_dUw]CQĪu+Tؐ;QUxx5O^ +t" čǓ]JuW\0ЉϤwt9;;WmcǎM'NY͛ީSN oܺut#ؿ?s»::D= =.00N]]t"$Jo߾t"(( 3gȻ::D= = HmF':``u{Ã]]t"::D= = wuwuЉ{{DGGЉ``]]::@'= = wuwuN{{((:`Qt"أxWxWD= GЉ{`]](:]({h͚5oS%lf,lLTBBB'?0``x7o20^,lTx}y{{Bdgg׷oӧ̙3!f\XQQѾ}ZjڴizիW߼yVyVO,ZW x{{Oxಲ2^[1naaaM6#-{Gx񢷷+΋܌}||Trmllv!QܹVSNy9qℴ)2Çjbee% C͸V1R?YZpژЮ]JcmxzjfD6\^^.iٲڀH333q@-?~Cۣٳ۷Q)d4@a8pi};xgV!f\؅ TZ<,,L:إKd[eqqo.^6o>iC=r1=zGFFJ3t a"4{F7h"iXRR=،k{--gٳW\ՁU֯_? : ;=z5jaIxi`P={eO>kgSxiP;i#zan?MW6ƄqAaGZ:tHz///^[ٳgU5o<..xi_Ucǎ9=w^^ffiT]nݺl|M8Q۷ogWm۶ȿ`3m{җT< C~yWU Љ0mxƍ/nƻvu ٳuO2I*?NϞ= !f\ۘg}S7v,V)6zƍ'NooÙpfzƃe˖ A+--ι1g?Sqd&M*A:x6?O%KHo)))@0̷J777q%mڴwx#߆_uq?P۷osAT! wciP+KJby6ӲeKq{b0-Z?KӉ0mD6ŋ[>|j*K ;۷o`ߊڷo/.+l , }BҦ.-߸qu/&&FH !fl Xqq[o%ÃWIg}5k]t" yV=ǖ-[;tHnݺq)[qBBŸFz_",,LH !flXzzaTgaKKKKӉ0mիRs}c BBBxi`{)))Zҵo^صE/m `3~ۘ\.hݺ=zܿ߾111_{wZe\(snȴXB,JrXa_ DoHPP 0(ڐ2Zq$m64kV[mm\rz<;;|^p]?n>tO>^z˖-/l/><6l؏?huHKq,{Wrssm-^{5BtᲲ)PXcѮ{رWѣG7օ4,㦦>;>c@H:p>nѢEooll2eeQ̝;7=3JJJ֯_?yp yW֖۴iS(^x!yh`e-5p 7$X[\\ gbn)>jmmmDzV 'N.r=tt͛7Q_lH_w^{ b?Ùgf)Çgggǎ3&YFx2p̚5+\u 6<1PWW֞S@7crrrc^MϽ5|Ws/7ommY~iBZ_?~}! .tC<ݏ _E[円BIIION)xǎ5\I[!Wc}"=zGD[۷_tE!p9紴XҪmL2%%C:Bwy뭷ZpW?=_+:~2;y 2No[!Wc}"=KKK]l }uOp۶m"ajxȐ!EEE'N4hPCQ؊нy晬It;s 2~gdXHX,6s߂[Z ҶW\򢘵 |Ǔ&MX'OI2w&Ѝe7X(c52\| |W_}5fTǏϖ,Y?&;͛dɒ^ѣYYY}L:믿69ݻG5yyyeeeguVInnnee)=G o߾='''O6Q'&LiIII/:󚛛M@ƫw;x`ٳg..x8eʔN3ӧO ?n2֭[ãM̙i,dV^m2CnݺN3;w ˤdiӦp͝fB /4i*pƎ?2ǎ3uOC ;w:w߅XdaaaHnܸd;voĈIEEE!vZS>>ҥKM@F}%KL@Fڶm[ӵ1cƄdEEHuuuKL?CSPUr!k.SbX~~~h> stream xnF_A}d3lwݺM(}p@KĆ %cIYpx/CaD <?VOgo.( "I*@`5 HH\NP v~}m q{8w3$(K&PQ0qN" B,AgnrV.9/EeP$05"p&#Hob-jNsa&, |5fI:4^l+8Hq!2#bmܷxʫeЌ0y$9bK ҫS}g "?χс4Z#B {Njl(A\Q?UQ1xE I.,I>oMȡ-$߿ [!MF}~J>DdrъcrqeGQdI>fGroQvIv2wUrNwkbECF) C^Pb<[uTւ˷A"8'P6t+K0o-Q-y!t[Eil|ɧ!TtφSΡyRez#xsRXC@p4g͙Q?޼??L[]OՐG Ю3L LT#EtU$#t( 4 ,qJbo9;ee܁\o.m <at3ZrD%'>S T5׋]II@GEFpD\:r3F`*g$4w@ 2U \ݔI΁p;-IX&UC}=f<"ͧ[`;?i=sQ&ida{ůǽ8 6Č@F\"Y] ڿG,[UqN@]tu)OIW- &q,[P=Zf|U2W,`>O\ÃLyW_ea0p햛ť;2e:_ Ƽg25qr3PT0CrԨp˲sw1',[c`h3ƳU۪tERgK vRlTV}-<s& G"5cd1A'K6yϏE)[7A/Ҭz7(_2aWڢ${F>/vܴ?N%wǢJ;Z˕UÂ(hww6gY|tWQma&gnz!9>0v)tıp6W⮇o&X^oF ỵ+K0D@)t,a: 35e4`Euyr9Ћo9FsC{>8x(?_ 7- ;4{mh<lyUoyΆwٝikH['Oɻ_էs*E ںaB5d/4"j:M*뚾;:Ii(t-qvv2)>%TD?Cu("&mHHyڍGvrT1PSv5 gn<[&%2 :0MП:7P a'ƀ ۊf MQDa&@.#ƜGD{snЯEpc1nĔ@G0Kfޥ.jՄV"jb,#-^v' s<0 sXts<o}21ќH$_"ѫI @K^xZb}hVUPz{1XwֺE!VxlaU%mޑK"맫kLoSBJAd?: f~ ;SmtMt nڣ~۶Jp] M eʊj.>2D۫Z2T( wuCBژ~F=|~,xĻ(Dw L@20y(g8fiĕn{Em7MUcPMۜǬ,j^NIPȚ.wlb]i`;G_ݪ+[#usk K!wq=DZH<ưjǰ_m%%ͺ3I"iI!!3m̶wnKiEŴi9Tf/UaB([|ׯ9uY~ _(EYq̯~8$Tsxl@ܾG0rm>Gw3G$EۚVyyv&iYr0=$;W}?6`t^תzkSߋTšN?jW}J:,9~}QW'ꋩ# DB$n1YHͤ{ȦrW.!pÞg3}U_ =v:^a)6 2BDG)M8 ]XbPljJ{Gdy?'UQ,6r 9'xn.hE>lZot #D#XUn tg6N<),?ʈks0/ʪԈ"};?ƕ6IŽ6kjÚUR&甶=R 5mbďyh} YPD\QOrEAؕM(2>цf2׭([~7}1gD ;:jw ™*mp/A;I^ۊan% *`IT0((y"d&4}:Z:Z! ,šҌ+b MJpŏ^Z;Vk_hEFЪU@u?\ mWն@*Fg2!:mvAUA4=2Em=v5a|*[m DC=N#<L>pǵ o~v#TR:2_Yv}zjZE endstream endobj 142 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpKw4TbC/Rbuild7ae97c185ffa/genefilter/vignettes/figure/fighistindepfilt-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 155 0 R /BBox [0 0 542 251] /Resources << /XObject << /Im1 156 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream x+2T0BC]]3\.}\C|@.ZN endstream endobj 156 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/fighistindepfilt-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 157 0 R /BBox [ 0 0 576 360] /Resources << /ProcSet [/PDF/Text] /Font << /F2 158 0 R >> /ExtGState << >> /ColorSpace << /sRGB 159 0 R >> >> /Length 1275 /Filter /FlateDecode >> stream xXM5ϯָ׍R$Žq@aE6$B{nLᰳCT9юXI?nYzȒ!_e,zV:Uc?Z 䏽@J_㐅IrF,ъ6¾6IO@Bؼ'^iRM@mem<1ZY4iY T-an o^g ө@{ ״[˄%C2]'>.M;6^Ùv٥@^ : gwD,Cp S3Q8Nc)v[ 0YU: flcؘ% gʪI?[)A?,_oCQ͊G͇/Ozzy8>o-^vG8Dx 6Jhވpylơ?X|Ϗ8Dfb/x~:=ޒt mI Pkap$0֤Kps <"alt<KϕL3k a?lҩhRR6k#@>lP^+UU-&zbm1/@Ӧu n@ c?~;.OŠw~u˧?E;ͻÿ' endstream endobj 161 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 803 /Length 2815 /Filter /FlateDecode >> stream xZYs~篘XU`ڔ-mp$%q$$5@ڤNxVI5 kdYsxL I0#S0%qZ1x Y 1홓Hbżxyp1 OH&`^ ̂ ]%cѤ rF`B 9AM"F( Èwd`JIj`RIł2Ʊ)/P[B(!E*v8TDg `t<dED KIV;d [eyz1$Y΍d"X p\wN@[)'.4gHe3.#to/ HqӋRB። xhX-5,+K0Fs KRI܁tmx {- ])x)-;CD$`&ϟeoeؓ6]YW\ロ/ۺ8M9VjvT\:Z|˨g4|e<>Ɏ[$$ۯl D8S[/"Ӵ_֟>I ɫv7*~c%ǓW?|c҆EU??P 10`;؁ $n Az臁do?$;Zv${Y7f8fYwB(:=p߄- 0 í{ƕK 7-ȐYy$a$1kX\TIǵpwJF鸲Th.eV\ƻ%1Nec('@b$rfAΥ G*"8:i&^ 5ȝ /Kab$(n4E, acﳋ}(/)QZiH#kM jgDzTJHQb"`2FqK%ry]= ٻ^*(9s"XPU{8IIY)O(떽x#{[%;yx@O.n,N˺+1yȋOHmv4 {_H_$a Zf'QR`#S Qv5j̯xx*(P{Fہ`FEoV5M@{M@h((P^F]>wW3%īKWa0EA0܎F@)VEPh"ƛA; <״'сw0|N+Z<Xc"* 5Hy;6 7 R hP@!JBܞBb J)29P$kBU3BC[:d;T}qE"Q ў6aDu)UXMG&2 j/z@3(m7Yyl/VƑѷM>*qG*#e3"6sf]U/8y z]0֩?PAr-S,O?OHdq`X}+%7x;$֠au bqu e5C jG9mA)w3n Qj<-TrH^yZ%@t0Q=Ft6©2A MJjEFњKQZ"VmBlf-@-CjCtc?ȎCaܿTNw{l#eV㮓-[qPYϥlw[Zs:HpRTy"Cd[MGE Fjq֡`t4hGR!7ZUvB"jirIth(5F41z :7ȴCWXSuIh7Qo Qvǧt @&h/0ffSQk PRkr@n"]LRh=vE*GAf7oM7Pڻ\OMzaɠz ڬv郌aJ"5bzv?f@w{ЦIyW n"^]bO^ƋG t0/G47Y ;=8ͫd9([AzP9TqB" Lia2~cywѦ]]+J]q䐽6eѲbm"y݆5C5覜d?sz yMԕE>ɾzJk78zw0>٘fٿEՖ_*^yY-[tuf鬣ʦ5o2;o˔ŲKYQ6r~6KMS6ϋ&Eͦ%h6i:˓Ҙ/7/y,|ey]OY?".ejDisj }c3]\P\;76*gK4a"KL@@P-kvAc#cP;>UМ>X}$I鍾KC:-E)ˌM1Έp6 ee endstream endobj 173 0 obj << /Length 3070 /Filter /FlateDecode >> stream xrH_9`̰3jԣo֡-<1ARޙ{~>xy~ptBXR/=QQ/ Iw` / ܮOFly~^b՘Ig֟'QH/c%vQ4x O c( y!Gi0WNBtkiWQ!y;$yNJ08V!c:> AynN?EZe =όt~hʾ:օ6[f'ĈT ΣmG# c2pqV 4O!&6E$dx^yi(AP #|}p{ ÈAҵG`˼m|Ey$-xzOG("&.bNŇ(DƀR}J!1]6EXQpͽUkEQprh62JdUF2* '6/86#11' ~$ %,acs zHo=Cx=0Pq?֘!zB[@+7}rir cs-#rPQc+&,@p.noAQ3pF8. {֘_P ظӺI܎ fDŽkZjxL/W$&z^. 9Jm$0,'<$W N'(HGNe ޭednɀr|,R&E6dyilG]:b A waio-,waAWȐ pE1 \-Fb,3&uƒts4di^5Yr/ԲVI`ٴj-Vg\dE2-<s ;8X>+{R.A&ID%#h#BF4lN'KaN$_cG66­px&bI>l@W}j@Dڬ!c31HFr *6Xb;tW OL.h︗Nn_cINqwVJˏͲ5hq 0v (ص4JUYXmn>&Y.r7o`/';8߄n-#Seڇ3|&&k_vG񮥁w-G@b8w@:~" ]*}e߇2>PSP*KfOS+wH}qJ)as)~Kݏޞڿe*dfx=UGDILbEEZ#M>-y'OV0kU=4>O$3UeT-e}0҅⽝ŇoOƾʏD04y0IGZzg4K]ua#f. )cnV nuTGo֑8G:!F=$ݚ)+и HJde!CkJ)pY2@G'!b{-QDRyWfYSեv\M y:`5S!_R7Yn2F r7 0U^Mspzzx8V $?F\:2Xϲd~T.,cv&2W(vt"r AzՍ7GTvGA+Oaח$Wie{4Џ䴴̀}]UH?nD߰hjy(kȟY,EF>]+J&"B(NWY leYgXnӓ)bVFm(rR?5jE)UmlW*谷ncR,zӶuk B@FnV[˛L7t^` &æ1&8"vQ B`65n|R9M/j03-j^@xqCɫSxS-F,=&;Gޖ@zyO:-ؗ*n#s{QYIhb@Y[Pch+HSD.85g6 ӵ6ޫTs.tF!9ZZ=jkˁ`X`#:;|O]ON9gebnc͈qȊ6m>c!?wYe:f1dc;4xgۊ$41=6jR4_j=IjX [>G2),AnwIsju olBv\9$ pШ.U (aSHfQff҉wy\y313 oܦ; &?}cgM^7:"n;ovp+Ey:h D\,lˤi pWu3틳)5whU,-&GY0$=rtz3"rbr?o_v1?~P>%Yh7 eoR:ӇI 6+19٬yV~;#>5d&:M_S*2c`BD^e endstream endobj 168 0 obj << /Type /XObject /Subtype /Image /Width 980 /Height 836 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 22235 /Filter /FlateDecode >> stream x}xw} $4lJAN" o/nk|l07AFiMAصz)-^b(rd t\Jit @o @74N<4HùKq֓9|=}~[gwկ~uٲek׮o~l2~o Mozر r=;̙3fmkjjWz7GZzҥ_; { ܹs-+U{WWWGm999|~ׯ߿,Di^/>/~ӟ>}iy䭷2Uhel~+V>`ĉ9v'?/^lʬY"_1"_uΟ??lذ+/^4[h___OϞ=ۭ[OZjΝ;Z͍ /R4MуZիW}٫GycF}lGjoG_lVZe?H-S6oDC}ƍf -_>Rݻw߶mx#G>ƥ/GСCf -;-N:~_v=G>͛7;w.N/| VYYY+.}ݺuN&͜@{r=zԩSϟlٲ3gF-?ӧO5jTF̙3'7 Mm '`N8.?xg;m{˧h!H;yΟ?f͚/6!ǏNm~ hN7_yp< =я~tٲeO'w;K/³>[^^^YYk׮̈U  I .ܹs`p׮];zhz> ;pQ߿ʕ>F˼3gnٲٳ@{NPl1ↆ iǍb܍7jo9rdBo߾ӧO_`ҥK׬YSZZv+V,^xEEE#Gٳg\z\- M8k۳gO;Jظu)SDF .7Nm۶EyĈ:}\gر@{ԩS##߿ɓ'T0f|]]޴4dȐH-[ƌچ 7޽{GF Zqqqj˗/ڛkweeeW[h\СC##-))j&L\T{hoZ***tqrǎZuˣcp)̛N_ީ &Mrkjjڿ[g͏>h YYYUUU_G{hhhh4hPׯɓg̘pNu֭Zjɒ%s̙6m5wʧK0P;H_iĉǏ3_{~|/^|'}Oȑ#n@{kBeeeÆ Ν=-S0??[nYfmڴ̙3i|7w'xݻwWUU{644͘ Mio7F{td8ho[{7P[[7@*;ޝVeeeRK{\tq7@[{hoK-hoT&ho ;yF{栯F{;5ho@{kt…;wn߾= ڵk߾}Gmnnڛz+W GבWPP0s-[={V{dRxk BeeeÇܸↆ ƍ '77wƍ@{s=8p`f߾} O`KYtڵ+VXxٳFٳgVzj N. M8k۳gO;Jظu)SD]]]ҝNm۶EyĈ:}\gر QRNSFFڿ'Os`017!CDFlٲ6f̘6lؠ;;2`0Պ#W[|H`{kh" ?Z{'СC##-))j&L\T{hoZ***tqrǎ&rA ִwUTTDyԨQ:18zty:Eo PhҤI-w̟?u6o-ذ* aРAVo3fXpatuVZdɒ9sL6;KN h$9qիko3TPlذaUܹs1_7Й[{gڒnݺ] f͚iӦ3gΤ@gn4w5668p`UUU`z޽ |3HhoF{ho@&wgd7 A{[{:axko77 ho7:ۋ djuko7ho »~n d^xko7@j[{Rޝho [{ruko77 [{ t7HNY{ oho c;>s17ho@xko71᭽A{)h}  oޠԷw? F{6Sho77e{gho &7ho 5OG{᭽Τ'@ o HM{ghosw=/F{]67ho@{ko71՝᭽@' o HM{gshowf?Gho& ho oF{7 OV{3lõ7pE&'?I ^}USڛ2+++k*7+<ѣG;soM x%pC᭽A{i.7 A{1낯xko7Q᭽ ho@{ko7I5F{)o@j[{ko777 7 ho  o hB{᭽ޠ9ho7 F{)kohoҚW7HYukoRF@ [{ko7 7Ș B{ho@xko71᭽7 dFxF{ɮn᭽@j[{ko7 D{dho76 ho @;9p@[{ko7 B{᭽A{@Tho em $A{A{@Ƅho խ7HY{F{[{N/555&yvܙwf{HA{NksΝuLmk>@{ oݭH oo߾-9//{ ?&k>@{[{s^{h>PSSx%&6PfϞ=#馛VXjocy[{g^x8q⫯M#Ν;cEon駟$+z_[ojosޙ. ϯ@[{kﮠ'իWdݻwǛ77/~@[{k.-֭[d999f@ [xkﮩ>^{@:ih.ԩS76 577?K{[{tn@4wt…;wn߾= ڵk߾}Gmnn@(w.\2\G^^^AA̙3lrY hoM;BÇn\NNNqqqCC oǏ7.܍7jo 6 9pV!ݷoӧ/X`ҥk֬)--]v+/^<{좢#Gٳ^Z{[{sP(4qĖ]ϛ7oϞ=|+ecc֭[LBvvvuum۶Eo#F:t(TTT'rcjoխw1uHx. ;uuuh{ eژ1c"W۰aF޽{GF Zqqqj˗/\+++ڢE76ݥ :42Ғ6a„JKK7H {-wG8p?jԨÇv=zt<} 2PhҤI-w̟?u6o-ذdgϞ}g{ )0hРVܾ_~'O1c… ;׭[jժ%K̙3gڴi)/@B+Hexkoe8qbqk^֯_Oo[= FP(TVV6lذت{ܹ阯{F{wڒnݺ] f͚iӦ3gΤ!mڛ5668p`UUU`z޽ |3ZtMR[{MRFަ)hosho ɮnIϴ[{ko27B{7 F{koHM{&Ԃޠ e譽A{F{ [{koڛvpB}}}MMΝ;o wڵo߾G677ko=(7.\2\G^^^AA̙3lrY \[{sMPlS\\Рz[{ӦǏ7.܍7joު[{s=8p`۷oaa,Xt5k֔]vŊ/={vQQȑ#{W^\S(8qb׮͛gϞvq֭SL^!;;Z{@nm۶EGFqСخSQQѧOuƎ@{ieԩɓ\* F7t6M eژ1c"W۰a.U[{zi0jő-_\{F{sj-e(7m:thd%%%_m„ johoZ***tqrǎテjo:᭽7QQQ5jÇcNyyyw =:]NP(4iҤuϟ_SS:7olXVVVUUFiA}zZ~}z=q 1&fPlذaUܹs1_7[{ڒnݺ] f͚iӦ3gΤޝDccv]UUU^^ 7cjo6 R[{Ԅޠ 5m7A{F{@Ƅޠ@{ ho 7栽A{@ [{kohoȤ7o72B{dWަF{@&ަihoQhoF{@fF{@xޠ(hoHA{ )oF{F{@{A{ho7t6^F{@{ ޠ@{ hoޠhoȀho7o72&7 io@{ խhoHY{ o@{ խhoHY{ ɮnF{@j@hoHv{ދ-;7B{F{=> _ ԴQб'?O_ i@7ho7ho7$$7ޯʷӧ5ヌzOOo߿߄7dRxko:#t޽7Q~+s!nnnv ikoH6 R_[M7~?zj|+@x;vhY?OZ=… O>>koHޤGŋm<8 .>6N~ȑ-''G{ !>tP:uj{O:Q/wNw +*FAG?Q<|p;G_;ӧO/Zhf^{Iխ?&|7<7iyo2Miȃ'MtCJ\lkoH6 :KKK#1b )G>?koHtl{>|8ȲGz;7|gϞ?̵7E{a쳭poʂ 7o71inݮs=чF5*2~m<СC}<2!7ڛrwFFG~ߎٰa@u o77$;;;2{G^x`7(޴-iEE{>2f. Ϗtʕy'?srr<-ܨO|=lѣ}|Ș1c.^᭽ܨ'x"ړO?tC>E?D{u4̙3~{'C=TQQ>u|39y봷QٺuZQFM>ܹspl?q_&Mޠi׾nݺ]}7޸އ꫃\ #[{IЇ>{7L{u($Jss;/7m#vO}*''G{mho:sٳl7Ȱho&77wfpB}}}MMΝ;o wڵo߾Gg  3(ަ ޿ʕ+Q:x3gnٲٳ ڛv BeeeÇܸↆ @UF{k;~qݸq 4;9pV!ݷoӧ/X`ҥk֬)--]v+/^<{좢#Gٳ^Z{1mho@Phĉ-_7oޞ={Vƭ[N2%zj M+۶m1bġCbNEEE>}";v@{SFFڿ'Os`0aUWWޠiiȐ!.[,3&r 6ho7hoZݻwd`0G|r 5ۻ2-ZH{ A{sMC$M0!rR @:۷oÝ9wBaÆVsM|^Km;JsssmmmIIIaaa~~~nݮyyyfڴiә3gjo\wxݻwWUU{644͘N[7ԴiF{6 ho7ho7wL F;TVV T7)ko7oIԂ խA{HMxho7no8Q_?:L :__Ϝݭۯ̝k2)p…;wn߾= ڵk߾}GmnntpBs55_kvi$ W\ggg#//`̙[l9{@xC$_c骪K|=}\w'TVV6|)..nhhtx{\7|g?{~|{NǏ7.܍7jo7tMv?~y}hwV u!@[KfsBo߾ӧO_`ҥK׬YSZZv+V,^xEEE#Gٳg\zC[{CXK/|Volvgg8|+=vjÆ7 B'NlyηR666nݺuʔ)+dggWWWkoR\›.w=fMݧ>wہ~Eޮ;p۶m1bġCbNEEE>}";v mt)gO?L׿~oϛ%_]w?6|uϟ柢nԩɓ\* Fio[oWTh}M^ݧ>ub͚wm;9h2dHd˖-jcƌ\mÆ 7]7Knc8|x,=3O>ÇoO ׻wH`W+..\m&4҉5kM͠Aɉ~s拧NhweeeW[h@x ips[қ%o=ޓ?'WޮhnlL'nС &DVZZHju oZp'k97pP2>IpEEE0 Zر# -5=ͯ.Ztv16Ě5S{-wUTTD5(//ѣGަAb͍vM7^=şNP(4iҤuϟ_SS:7olXVVVUU Imtr tӻwvM7aРAC^~&O4@{CBgμ[tIN'N?>^z_>Ht*޾gxosӍΨ_ ʆ [uϝ;7U{hohDny|w577֖wzWPP0k֬M69s&MVKn7M7o^O_{Xccv]UUU^^ )ˈoowM7 @ (Hn7d&Iyvn.Nɦ yɭIt$/7v~iF{HR{1Kn7QF{tDmtxqho Q]|ӍF{\>۷ˇyӍF{6 "m@xBnw޾馾<7kVIhoڻHw1R42[tͥ۽zųPH7MTSCC"7ݠoZ6\>mӍ Й(nvnn|H7dNSg#ctwFo_tsjo7›nvtM77@Z$N1o޾!ޠRڻ3nM~~,nzF{$mnrM77BOǻmn7hoNSڻ3bM6ݠަQct'S{@uuŦlA{HxkԸbM>6ݠ›[ tsM7ho7@ڶQ$M7ho7;y_z86\>}y;N6ݠ"ӧmA{x7Qnhowt $;gͥ) M#*M75we  5[{G6\>m 7@r»M71na7 @M7rx;''rxۦ7[{Hx_tFB{7w?+6|M7ho'tsvl9_WA{3I]cM7&A{ M7w˛%{޶  EЙ3nx745ޠi޾gxot d"7ݼ/:ho7@Gw'lKn7M7ok  »w6t b/~n@{@uwHx79ˇmHNext t (nۦho_ߦޠމtsLM7A{'c=wmżmn@{2ocmޤP(O?A tn496t9}iM}/hoя~@B+ t~N䦛'M7n׮]999 lo{]'noyMill<}cjD7\:ݫWqW.ހF{]Yd͉5kM̀t t)g#~{IƦ ho7e]|뭔mހF{]MlQ݀F{]DK/]>˦=¡~S1|ho SuM7^7Hӧcts6ho }5=M7 T7@Hr7@JছKϝKgKnjM7ޠˊl|x;M7oFx7t5WlvM7wsހF{ͻn vNNv̛n޾ĀF{M7禛N7@Gb7w즛T7H覛Kwgxho ets}Ŧ_On@RE7\:}YwmIYx1"t̻nn5M7MM> ho7@޾gxowȦT7Y"7ݼr&M&p-n@{޾{t9% ho{;M7yy|ӍF{CGY56$EF{tHn.NM7I o֕7ovnwM2[x7$`wgҦdT7ho,nRfhot5tsm MaӍhoHbo75}ˇo-M7og$U7ho2X78_{A{ayvn3V݀MI䦛'3- ڛtwŦ~t;F6@{&ME7\:ݫWnܸ@|rss7nܨT.M75&ڻg[Էoӧ/X`ҥk֬)--]v+/^<{좢#Gٳ^Z{ӱl=[xh &Nyٳolllܺu)SWήޤXK/]>˦=¡~S晑m,ڻm۶-ӈ#*_EEE>}";v&ٮtӷM7f;SFFڿ-ѿ7 :}:zxۦm ;!CDFlٲ6f̘6lؠIGmz[uhNwޑV\\˵71醘dwZweeeW[h& tssFXw7tHKJJڄ "W+--޴-M75weӍ6F"#0`@ܱcGoÃjotsvn.޶FxJEEEoQF>|8딗GѣkbM [n$ê@w B&Mj[g555߭yheeeUUUi.M7rx;''rxۦna o~M_Wlؾb믛'@{sjl1bġCbNEEE>}";vN+oǺ&zxۦ-eԩɓ\* FK mAi;!CDFlٲ6f̘6lؠoM76;zi0jő-_\{G6\:}Yc+mwZweeeW[hnnצb9 :42Ғ6a„JKKt.޾7\>mӍhTTT|;%p. tvW ii TѿGuخS^^GNn:rqnwsfL9l7PhҤI-w̟?u6o-ذdڧN9sqwnv? O7a  j 6UZkfhoH`{?G~oe>ޝPmmgZHNWU576RhN2@{ko I/7hoho @{g .ܹs`p׮];zhss,\_r壏>:xu̜9s˖-gϞڛv BeeeÇܸↆ iǍOnnƍ7z92pV!ݷoӧ/X`ҥk֬)--]v+/^<{좢#Gٳ^:_>PuA8`z饗N%A8wbB'|z޼y{i[)n:eʔӮ(۶mNuĈ:}\gر׭[ md 1uHx. _x/^|ꩧh=z!??2­ 3s= 3 2$`$R8dsBDX˖-jcƌ\mÆ ]y{_PPPy 3_ENH?4ҢÂ`W+..\m妪ޠA{sj- 74t$M0!rRޠA{RQQQ5`8kcǎ{-<77hoZQ>uˣcp]| 7W B&Mwnnkjjڿ[g͏>h YYYUUU[{A{j  j7y3f,\0S~ݺuVZdɜ9sMv͝io7ho޴ĉǏsQ^֯_o 7m BeeeÆ Ν{choޠiڒnݺ]Ϛ5kӦMgΜ1: ڛx4668p`UUU`z޽ |3 7hohoޠA{  7hoޠޠA{ 77hoޠA{F{ 7ho7hoޠA{Cbe˖!\[ꯌ/~1|K5( · L._hd#GYԩSFAf8}wz 3\pᩧz:P(_bڴi>-"̇YnݜvkllL-훂xTvIni?ɡmǎ>I&5441nܸ@>}:Io Էor۞sKImx4hЉ'̊0`@?㿥}S͛7GvJgi$' M0!zs=/׿?#:C;ݺu'vo < pӺI-'9'?I1bɓ'[;cAAAIo߾V[[!o b\YY9rҞP 7۞~CS#7^nnC~L}}}NNN1=PC̍gݻҾ)/o}[3g?V/gtmOoi?ɡ ~7͛7z;wna77fN[713T:M'Іo|ѻ^ÞV\in$;MAC3ܴn{~Fn~_[o욯cK šnZ=mo?z8FXpa^`AG2L4I٨Q*++kvڥn0%%ņ-A;GhZޜsl"---Mxɒ%X0waw}GyϗءCk4Tii{6{s&ٹs7,@&͟?_аBBBdC=zV-A;GhZޜs8 m֬Y3gΔda%''ˆLMMUKsPAGCeop6.\6qD &ϳаԿOLLUKsPAGCeop6zyJi;J?q{V>266V-A;GhZ 9 *-]٣G[n748 ,aKsPAGdopBJyxxg4 JeDD !77w]ӧO}v{͚56li 98BUKs&]Vu̕ȲlCVVlUViGGG+:6li 9{;BUKs&]~S麡C+ Uj6mjr|\"ָOӧm[vގд=lҜ&N(?l޼YL<=&mΜ9&kܹoȲۼ9(` MKV-͙v9qO=ʳ͚5p{ N!S>[UUUXXاOy|WT{KsPZ39`Ѳe˚ 80::zʔ)}U?b [RR\]];vK/˓]O-A{foiZjiE_}K3ܒK8nkKsPAZ39`Qaaa޽;_ܱc$Zn:θ!t钖V]]m栀=4-m[4gr˗/O+##4+Weff&$$$%%-[-A-Zؼys.2<<\EDD\|=QSSӤI'Naz>99Y,cǎeeep&bpVΞ=kEƊlrϞ=p@Æ kro]ǡz}TTm۶mv~)… hW?~|l˞={t:XTWWQfCyzzqO>P*3k,\4-ljl9qℲ:nhdٻ5O{衬IHH/Y...m UTTdee/^dAyyWX233 /^xڿҥKRRRl٢1H^oժϟA믕+W&&&&%%edd}QFUo=FLSN#"[lA~߿27WW׷zܔrAO<={4$**d0O;Nc[YS͚5֭믿`W/(>ã###wAD_4O:%؄5koicƌ>{/\PLiKs̹/gVܹh[DΝ;xxx;6##̙3JʳV׮]3HGaaa\o^tI]CAJKKoErٳg[` ~ayy:69R)bQ_UU$@cǎ>|X|&7 ^СCkjjYpY|m׮]krܹSۈ+b޼y5#ԩSe͐!C-_ 3f̠'!{{xxmlղСCF9s*M.ȑ#&G~,/۷;;;܊;wNZeoQG``'POԳ8¬C9rg믿jp޼ydo+Rk/B#{>}Z׭[1޽{;33Vx+SRRjwb\砠 6mk{-Wߟp{nz~Ϗ n۶ѣG뒽֭[˻%޸qܘZsCyGax2 QĎ~m@@\1p}qʚ49w͚}ĉgvډq>Ȕ)S̍yAk'ɓ-{JqVj=psY+ի_oذAv^?|doɓWyB\]]grrgokn#Mھ>\I&ѓNE V_gbӧO322AAA& k+N}X*Ł} 6m*W,!!p}-ySȡCL 퐽 k $L+.Nj}n۶v!2?ˋD幹Ug.ѓΜKJJdv ߽Ο?o<1cj5zBT;fZwڥާN'9{Ț[?l֬Ydo!..N&AܡCZeoëhRޯ읞._۹sgɳwaa>}ɚcǎ=cM6v޷oU.bƍgΜt: [ahY/˧ޟ}|5qgoS}Ej\y͛w0ٍBAAzCn<,عsg[ll?# V5J6{Zy!8C w֭ՏN6MϏ?h-7N.eƌ[?͠ށ"W+A $'6D2Wܚ]UU%vL֭[4$ի=\|}}EՏYG쓽/_'>pk׮5o\y688駟kl~LL^m޺u{yIBBǏtRVYY'i+((H^Ga-`3fKD.^heܷo /`65[7䢾***vؑhѢ>ZlbފT$11qҥʽ5MŇ)cܹtWXֳW^YtԼkJ]redo"rJvD]^wVV x;иڵK gLLwYYЪ* 4zEEE> stream x XT" ((F4 4$F%`mhjT5jM`fDcBQ$#ƀ8 K\!((0= g9יd~X`%s2э5;v)s2э5?ssda%^@@a%uv-s Q(y9PVVj=hrrr *++M&%@F())駟svvf}544P DW5kZ(y(XCIx-))(y )CCC+**Nzz)ӧOWç(y2si;jŊZ듡OK+899eeeQ/**JJJz;kLL̾}(yJ)J778NGPKUUUaaaVNrwwOII(y˗/7]{yyEFF.\pʕ *JVo۶mk֬YxqTTTHHKnݺRQh4FDD|򼼼.U߿ ٔ<%^uwo OOOq3gR DW5kZ(y(XCI{222sZQQѽuӥO>}R>%yS6h4Ι3d+VhڮOڻwO?-䔕EPm:n¿;wEVZRj;lٲnݺKFGGN4%@+Zuuuxx`WW]v)SԩSv-[ve=jJ&011122R{xxƦ+Rg<%Pz8777+++==]dggt.%TUU?ڄ (yJ}FR =wvGok⿟J|?@d<%PL=z433STVVW)yv%uJ^A}^TTdN\???ggo߾Jm!~ e```7^dėSoߔ"TUUYQwwJG0GqeWdd… W\Rjm6o޼f͚ŋGEE֭[)yJh4FDD|򼼼.U߿ ٔ<r3WH+88{dddxzz̜9PnɋH۸ 'hر555,h_ZZJ(1)yOƍ_mƌjɔ<K^ %o, Fcjqqqj6mK֯O(~q JLL~YfjJ@YO+KTTx||||CJJJ(ye|S6.##C:w['==]ӧ+Sh4Ι3d+VhڮOڻwfNNNYYY<%ަƏ/+oos.ZhժU *JVرc˖-֭[titttHHK*DSxJ^)븺ڵKYlS b4SSSNڽ_lcd<%oL&Saaabbbddz MKKW%oJ^z}qqqnnnVVVzzFt]|K,%`OɃAP&oپ}ko޽}/{?_TTD(oz$%iii~~~}ʔ)gϞٰaC'EsNJ3֭ޅc?wSRR(yg<%}QqVTTxzz8dȐk߿ںus/]DlS~9{?Vrtt̋#44"z~"+VlxJƽ9}뭷}R̛VTTȮc2f̘!J(7)y7o<M6MvlkLLtW^Rґ999<-݊q>>> zeꫯSw/C (yxJ 4H##6m%`%ߍS6NzuMǷn5'UEg<%ow>裲xxW;Yґٔ<-|Wm{'-[nOtssÆj0(y۞N _r8#<#z}\\&)yEعsЩxXIu}'?|[ouK{%J@O+-ewaawyG肔=pJkSGZZ_?usΉL^{wqqٵk5%xJ[=;;w[o>|٨{ݿ'?<3KF1++_~}RRݻkkkX(y@S&)yPJxJ<3%%Sz{).' r%{-ӧG(Dیg͘1;B/I7fKv\٫NR'a~E7fKE轗8t'ދcAZƛZZ.]Ա3q><e|Ӆ>({)LD| %(y+yJRR[(nݺ/9|qc7+PDƛ ݆ ..>ãZ:i=x@og|iJzJR|7GɃoǼ_C'ٳG:r߾}m5a롡ߙw{>kxk2jr)//wtaSAK^~eq+VthO---cnlnƓ v~g--駟}񭵵G>8tȚ{HK^nSVV6j(qYfjll|7τ[yWM;'s)y}Ϟ=+Zid2_pA޽{UwooݙK5i4>xccOڑ#kz~RW9r[SNiӦIK}}@og|CNNA@=gJÎKd2Iome+: /Mx~`z5;4thG>Q䓓śO0nzSllloJmURyzzJ}W\z;M&{)ܬY~w`箛LU_^^vZfbH};(yPH>dȐzLeeepp:?^=m&8887ijjno5[*+KΕ4yrSw)ykGFFv޻ٳ 2eJ'Gxyyq(Uȧ;6|n|џKAÇ{. z5** &jgto)[]+?aJW^-pĉ7M3GMW^vd/**jK.HY]ymЍ}vwp1z)yϒ7 Gok'[wyGz˓nҤIw{.瞺V3nklldeF>Uo__>JWwaZ^^~Kz.w|rಲ27~ӏz/&_5/`opJMG?oCu;vHO/̙#rFK_oE^z[}U|KOȎ|vJ|W 2DҥKrJOtrdnnxddddo׽kjjn}Mge/ϞrzD<+[͜9S՞={d ]]=X+G>Ɍ|ruOsVܴi!}1AAA6ܼ<[s̉Ҟ+[5WT{qKgΞ폋?,}-YJ7.<<|ԩ$&ш#ڽ655Uvuo}7a,|jiFÞJZӟ,^}+{){GGÞJ~ΝҳURg2z!~8qo#%o}d|KwOFJ<_hőOҔ<@k2ZZ.]$3ӳ棏lR]fMK)?ԩ#ix,%J7$%(;4J<W\^~.,L~ShH)%Olߞ7dȧkךZ[)yPn7\r~|Op;%J}}vh#)yP겗OuuF@ɃG}OW*z(yP@o0cSxّOZjl%JY7>]#x% J<7ұ ViC(yPKKf̐#b;J<پ2# P'J?0 eeeZѣ&''d2Q?d|NW3#!7^7Ws%%%Y#(((&&f߾} v@@4㯥xG Kz;"J^)Fcjjj``pt:%;4~/*,,L{JJ %2zfiٌ/n~?l%o;nܸvJ{yyEFF.\pʕ *JVo۶mk֬YxqTTTHHKnݺ(ycđO'eF>QgO.Jƈ՗/_7ϟ?_Z9;;2ԩɓe/ŗ̝ςq}.//::3gΤf1&Aa';Dۇ 'hر555,h'Hii)%l-e{Oƍ_mƌjɔ<xZtr ݆ v)y7x`i4WW۴i%l'ek,y)K<ИϷWJ\;fL;8Tb`Jc0ʴZѣG3335MNNNAAAee%}olldeF>U?H>/**JJJ2'sxٷo_CC%nKM+jJ_xPS6RvOn| [\\N@/e|LksdF>yzRAUUUXXSRR(yTPp桇d/Ϟr{H7n\狗Wdd… W\Rjm6o޼f͚ŋGEE֭[)yЋ/|rsz%){x7%2m/_Q$ @1G;FqΜ9m'CXBv}2޽{6srrʢ-47͜)?)4THɣ#N7~vO.oos.ZhժU *JVرc˖-֭[titttHHK*DSBlߞ7dȧ.]kjme)yXR]].Xu׮]z<}0\R2oȧk8q=qSF155uԩke˖)1)ync~vhّO,1!%3L#(((666--^d|k]őOwu'܀z}qqqnnnVVVzzFtq}j'x3ȑ-|jz arrr݅Coljѱcßkw{<Ν;uv^FpO-\Uѣ CYYV=zhffF)((1j'O<mnjmmؐұ<>_mqу,X cXFΥ<!/v6iĈڴ4GOƍ_mƌjɔ<v_Wrr d/ş9Cu5Fɣ7 c4̙v2Ԋ+Zm'CݻWa3'',J;kʢG>+vGtǏol;wEVZRj;lٲnݺKFGGN4%Mެ.=];vL;8T0mT]].Xu׮]z<g@A4I;rd}%h4N:{ l2%0%@'_]0i+jJ_xw%a2 ###}}},ջGPPPlllZZZ}}B/%l; # 4t(#(y>^_\\hu:]K3ED\vQ%M5 <+'dF>2(yl0G ¹pKgΜa(y(ZKKÇ?k7nܶmӧJJ@Ë"G>c)@mJ>;;[ι8q3’%b4jT'Wm+Ҷƽ|C~|ǧN*..޳gϫ6uuu<ncSM {JJOjww>_Ҳy^ r!{ʕ^:l͚5<΂+NN2#<=kv`@+Ell?F99{KKpp?>jԨ,ennn:utUl ¥+P 2i$݆iGRNÛ ZO^IJ.Wϟ~&IzO` o6ZdRِ}QJ^\]]tȑ={Cƍ7]m̙:%-d| kxF>W:???NNٙ.hV۲e %a¥{m8~%hO=x^x&Noںv#%%v54A\6őO l(y۵kx8W_}U<7u^իWK?=)ynKƻ ,\?=nu%oƎ+!Cmw@MMͨQ}]K|ҧ<#Jy<2~ OZj*{J. h:sO>}+VظqcLL!CL6 Jc)Zt8%(;-|z≖K+Pv,++WΫjR\ Jwd䓛#@*J[Lfw Ÿ-|zs(~d2>}_'U%3f7n,Rl8J܌Jˎ|0ڵV |?tSN9r$==9993k(1 F>w_Cn.Jv(.g F>]XĤ׳QA`Sȧ(yPTÛM4 _jz%P{jxAX,Ԉ{QA`k 4)2_A`c$/ 7r QRKAS[1F>=]%JAxȧ6l`(yqSKx$JxGF>57KJ`S ?O7b@<2>D> 'P%#[n֬oe@<#,|hd@<x K#&Onb|<#@< ,\ϟ0l(yؚPAL6*bbl(yؔRˎ|5v><@lj5/`;<@l8)ȧ?d@<L,\/=<@l8'WWF>(y1%* 7=.(yeMF>KJ`S BKp[JA8'P%PA|=O%P%@vw2򩦆]%P,pLv䓧gGEJ`k& NK#ix-%Pb2DZt%)|J6OF>ꋊ"P%5O a #.]kjme@< MF>{oÉl(yؚiy'#"P}`0dgg替o-Z3<#'O5kւ VX?qǎ,Jo¥wu]a@oݺu޼yChjjQȑ=G>^?177_tppׯQfljZlaө;###2| 6s)y]j<}ȧ'ht-%%ںvίû5?00pڴiSL0aˆ#\]];ݻws)y]1$%}#yCTT7%_YYE?O^{v7n8~G}zGV[t`lR;\ZZ4cȧGE@ߔ|nnȑ# ݴiSyy5kСCVV~gz='(Z# `З%_RR2b/ FcJJʃ>(>盿9JԢӕ<ȧke>+nĉN<{d2{^|{)%Pk))e2’%&owoK~ѢEbZKHIIɓ#G8<@)Z*bbG>/"K>;;a˖-}XV^DG!}|d3,:u /~dذa۶mR[flj/?iĈ={"v#Go#:vصk8<f5:U8ys[֒(y@G&Aa'F><(y ҟ?_c#}T_RQ'gJlTR@c^[P<%5WOyyul\'fv7nve#|}o|[k<(W]zvXK#\v(yPcllѱcgB޽l`%…{o…&M5jԄ ~ofQQ狒زId/şyw߱E|^^ޓO>[Yرc5J`kđOtlC'.Kd2pvv899_|+Ν`(++jGh4999E<(BSaᙇ."o".K~Z}&M|W͛w};fڵTTTdN\??No߾JK~ޱ #;.COsyٳaa'Nl{#Gՙ2­ssst<\\2w j[[[;qҲj*iӦTUU&X=%%F> ޱsa 0 ///"s]dz[}?^wgqƵr//ȅ \2!!ARm۶m޼y͚5/ qqqiwí[Rk^VK ,߹s]Uiit]v 2m/_ulJR[wɟ;wnȐ!ڵIj '11f͚%V)y%\R঳g"7ۿxL׿Uv>ÇgϞ-f yQTT}|||kۉ%%%<@a:6|xSQgwygРARd><88_\b~3g#l݌ݜ 遇vIOO>rJy<%CUHR|=4?D5vsFd(_pZm'CݻWaR=JLgiS&~<%t:=@oos.ZhժU *JVرc˖-֭[titttHH9?2*JlVVzܸ_||GNSuuuxxquuݵk8%ロO%c4SSSNڽ_lccjil_ϝcJgvd2-\0--3Kکپ=oȐ m1vIn2#~XW*++ﺺ{ jGh4999_\R2odAh8q-(yI}}1c&O|2:;;e󢢢$soxٷo_byP`O>юݱ …%KLz=[PٳǼQ9ۏW_5qz;$~ e```7>-..NQЯY_<%W6<`o{LK{ZTTd*,,P)))<GO(֫W"h7/˓'O뷯\{Hz1m/_ݱ JAp!JϮ*kɓHII/ Z[[ OPbb͚5K\MVS\F>hx Ox=ttP}|d3~ %ې!whhhEEEIOO>rJy<'o.j޽R999eeeQ8 997 ' P=:n=wEZ*!!AR;vlٲeݺuK. qqqiwCehJLC#Pͪ~֮])yП?_4ma PYzM:SF155uԩke˖)1)yTRtwgUB?M6#(((666--^oTV бs@)%o2RRRζ!:lذ?*,,ʗTXx&0PR;0/--;wnOj|;nܸvp•+W&$$T*Zm۶͛7YfQQQ!!!...nuVJn3q䓛[dž#@)%ҲaÆvv2i$FOhh{]}yyy]|C^߿۾ ;;ۥ\xa< @Q%um_\H\^^޽u222<==ufΜImȧ-|r&(^g...Ԉ,X nرckjjYJH\ZZJ@_aK/^ KPNɛL;v:rȝ;wB)lܸf̘!L@;p@{睖F>SEEEmWյk8#HSz-qqqj6m.,YrcƧ 4rJ^ׯ[L2o\t^~xJLѣ~~F>yS_|ZXIi08{hjfWSՔ<SKks:6+6^W\ny}EEEc;^:$m~II %)?C^[FS;lذ oҴ46+222} :ҧPN>])0&ӕ܁eG>Dx*vp¥=? 8gΜGZbVd{J=l䔕E@k./?&{)~ EP~~rt:=voos.ZhժU *JVرc˖-֭35':::$$ݛo0_J7l#P|;>\]]wڥN}^X({M:SF155uԩke˖)1)y6OG[4G2L#(((666--^`Z*bbd/"x<:닋sss5Mvvv~~N[b)yοnF>JRt2)SR<J؞ӧ |PRVA@jZ6(yFOGG9z}B؂沲3d/ hx<(yJپ>wXApP)y6pJ3^OIuX!J]lٲ[7|闋<tZJ)oowpd  :T<Xȧwu/%O57'Nh7^QGzyyu3cecSԈa$mtҥٳgK;xVMx+ܒFpK%s\L=F7pq[yf)y`mؐұ<]RG՗(y%KHS SpLjJvAt68(y>lȑ_~.jJzJR|7<)VMGJa>b|2%PlLkeQQ'LxWJs12;Ap%P%/,Yb.vOFMP%M+j(Cix<@14`@dž?$Or)%PlOSA@KH%Pl8Mf䓫kOJ؂把s?.{)CAK(y`{&' &;i 8(yJ<c:쳲S^.)yPlO݁;TJ)yPlȧѣ@Ƀ`{4ɃJ<cjivmSdžR"<(y)?ԩ4<PJRRkA 8@Ƀ`cυ^#+A5۷ ұs!VxA1+Wϟ/{)cAU@Ƀ`{>T;ztdž?.A4<PֺؘKa(yPlO#w'v (yPlb|ȧLAxJ<xt^*w@Ƀ`kF>tlÂ,%4͘!{)A!%l~r ϑOlPؔgd/' $(yPlϵS 2(yPlL'# B <(y6$3󴏏lƯ"A)ȧ>Cja޽EY rM)D-EP!u3;«6=xN:jm'Khw$C0E 3 mpqf~%JdSӯK'{%J<%HZ]mZO^^%QQ,P)y@6'r|cCY"JZes˧-[,ba(y@*U76/[%Pl.ekwsç7kvz%P򀄮Dۺx``O?D@< [>jx|J9U=?vK?]G(yd-ڶ哋 [>%Pj.]z[UGt)KMe(y@6Wkt2,rK<@RTT>m,P%?뼢`„R(yb>h[ ѦMit4K<@^R|UOD@< [>哛H (yRYTs)ؠA׏c(y@6Bj򩪊%JT/׹cD@< !B찳Sy9K<@RqbΥ#>>W%J򨮮.,,ڷoΝ;ߟ}9C|%S?!E(y]JFFF*ۭ[7/,,,!!ܰN< LBw˧Y"qwY,{xxdG|its-ΜaU\\[>P>>>u]v'O3gNDDDTTTllڵkW\piӦֹ5k(y#-ǏD@㮳X,Ϛ5+##oh5۶m7nv4J0(7B챹Sg-԰J@C;v"|РAEEE ;ORRR6m1mXSJ@C'NTԱcƜ*99Y B|өӭf3 <ҽ{wu@K.mن-..v|z䑫))P򬆄<==%''7lVXABla'%oO͛GFixW!ly6ofeֳgOu@˖-kF-66mxţBm\W^HH:N:5v񚟟Orf/ 񃭆*b!$%%ipɆ'11QaÆOjxBUo˧yy,7 T{gٳggeeg[j=h֬Yjj*%HX[>haZ-LΝ;_;v)SΝzŋϘ1#44յ 5hJH÷bΥ>}*fAu\kKjYlYpp^{yyM:u˖-׮]3ߗ+/ DJށ漼䴴GLz%u-x-,%Ȧ_\?1~|uI KARiƖOJP]]]XXo߾;w&''߿?;;ܹsĉu..K繹Jv;^)ynq9!Rm5-MKlJJށB9`| {xxd&NUz[>[(yV\\eo9!%P'رciiicNPPPP@׵xWLP}K)ݻwWtƟm(yvVW,D-Zf'%oTg[b%sr>ӹ<0)@%͛7n9!͍-=gϞꀖ-[5J=[ll,%4F!>ԹcX"% QԩSFu׮];^)yad)v|b<8ydΓ} aÌק!VBs)>gX"%b 3ٳ3֭[V4k,55`;ltKQdܹ%oocN2eܹQQQѫW^x3BCC]]]X!B-:t};KaSIISO=%-&&XqJ2+f;[>5 ,Pb? k3g1)y].BL-ڴ)f2%;'**JVMA!>ҹߜ(y80v@nݚkh2ld ۷sggg;wt_M+|իA@ɣ1>͍T[n...P^^NzP!a>j6PJwHϞ=-[g5jzXJ|z䑲c<u@:uj;^wڥ5??g|!d|ahhի,ǝw@@ɓ'vDS( f>%]\K @ɣiX,;C͞=;++;CmݺUaEfRSS)y8d?*DΥcx(y4-ԹsgKcǎ2eܹs#""bccW^x3fֹMɣ LVgxyDEPJwEIISO=%-&&XqJޖOC (yGeX5̙3Ô<7lteKӒ%l! ՚lٲ`___'''z:u-[]fп/%;VHK9}T>B(yHl6奧&&&&''=zd2-<@!mf߷|d<@C哯oٮ](yȖB|哥PjMOO߰a|W_[,z޶`?P0\Ʒ)}[PJr2+WرcwsݺuշjTO?VJK/+'߿?!!AsOOBׯ_ n~<\ݻC gΜ9< vB_L J^~ ,KNN7gbСa=%f|)>yl%o^z%;iF=R ^)yHΥ]Sx}'"aOB|m3㝜NY]cEYSSӯ_?]V"Jrf| !(v[>up9!7VZJJJ)))ZXGxWLP}k%oP"##s?OCڌW|Jt: JƏhذa6Zǹsڵkd555ӹ7ztթS}Z7j7yWP!-͍-Ƶkڶmn'Nn2iҤRJ2d|!t.4c,#0y䊊 7QҽGD.f-|b;$nr%>}[nB%Xs)>`7|ӿ˿)y݌,|Y]v͟?ȑ]t_}M0ݝGkyc˧2>/o@***222WXkQ ΖO7ޅ (y8*JވUUS8`s˧6mJ?%%\?zs-NfAC.V}:[>)s=5<(y4ʢ| 0DP!Gg˧YkjX"(yPJ[!VmԫWC,<(yVC6CΖO,<(yJ^*5W׹G&'DP)y\ۻwO5/DP%/t|ʼK,<@˦[>Su K%PrX^[ ѪUIT+%P,(ޖOX"(yM駟ys|(y ULmԻwyz:K%P%ķ63V%(yy(!O;}%Pe !КWY%(y[>=/dJ^*vbΥ=W]R*@T ޖO^^l%PzXm4d9?%(yX as˧-[,baJ^*UE\۷"#%(y lӛ5;=o%(yx ޖOewDP%/end)+cJ^*-|j֭,<@KEYBm.JP%/u˧4[>n͖OP%/e|ֹ<0X%(yᝄxNT|(ydu.wY%(y-H哋 [>@ Ju.ҥ,5U(y2>@mfɰ0˵k<@K-#A[>upy6V Je>[>LP]Z*@T LBS6Ѭ<@˖]Xs)>oӧy@T nOnn##Zy@< xP(K ~(yVl-x@SJKُ=V~ (yJT ";[><(y]:\[%/[K-j.^!(yPR5-֯(yPR5mTu @ɃᝄxQ}6|rwg'@Ƀ0#-Ǐ<(y27B챹Sg-0}@Ƀ* Bo˧޽b%/U+ ΖOO Pjx;[>=Ք (yPe|!A']S_ڼ)JT xT-wZ@Ƀ7\ɫ`g!^[ Up%J^Xm4x9/JT oo˧-LKA˖mXs)>OÇ(A˖B|k3㝝 P%lxO;[>u\ks<(y2_t204RV%J^\޲JT%yz ΥW0;@Ƀ?I3|<`W|XR|С'JIH[4-Y¼%HUXS߾L PT%nl]\NϛgdL*VBIo'_߲={JޖONN' Pl%B˧/'$0@|o!u^QS0aB PT%o~Y4[>n͖O$,99\?Xu< W[%QQ{mnƖO$,ʓ'?ԹcJb\\-X@R|ͥKo\ٳVPl%eǎv|ve< U[OM~O:\޾< [_۷o-JKYm@RElnԦMit4 (y@~O"J-ZI-VPT%_YTt|HssY[@Ÿc'@F)WYR@zA-YO@R|͕+Jۼjr2+ (y@G}To˧YF@C6ՅYYY۹sgrrϝ;guX_O͚;#P繹JvE KHH(7K|ő#9-ƌ:sG !?`sww7LRޖO{`'@C#Gi&|eaaᶷ|<|8@CJvOM9`"kM @C%00uYfedd fy۶mƍ⒖f?쳶|ݻ<= !;vh>hР'))M6yFa%mmntjtPĉuر1JNN~((((0Jwu[>#P򔼜whҥ?ճ?yUUF3fc63N9Rc)+)ȑ#<==%''7lVXqG؇COb4i,sɧ4lkn#v/>V~iȐ!dzhٲe?ۨQԳ?vMMͺu4ژ1cZވpʃK.,֭j8eLCyUf< cꗪRMdBBBuԩxݵk[~~!˗/WW^0ZT~>oK0z-Km2JupY <*3UY ;^%w@@ɓ'vDS( f>%OɃ%JAY,8ōfϞUnݪh֬Yjj*%J<(yJ<4Թs:k;v)SΝzŋϘ1#44յ 5hJ%J<(yC+))yꩧf77c)yJ<(yPb? k3g={pkJ%J<(y`Zsrr-[W^^^~~~SNݲe˵k )yPAɃwHf9///===555111999--ѣ&oAɃ%OɃ(yPzvںu͛?C]hgjS|||fΜ :ׯ>=zpwwWEW_}5##w (7**J-FO<+ahϟ3fd2 4_[._y啫W2 Ԧ3gδkNS2#uݝ:uһe@3ݰa_ ?gwTUU#Iv___aWΝKJJd 4GDDzѣٳg!fwhѵYnk׮U~/cǎf"o]߷zq9[nUv<}5jy}ooXdݰi@ӯybbvC{/8p? 3pJ"L(sqk͛7Wϣ|َ?>&&f޽4k҇ Ej Xzf͚݄r'(9#m)yb yf1hР:?i(yh5Zկ3,^X:ٳG;&22HjSff+%oܱVUUiW<==:߿]=ʕ+EnݺigXjU_*a|3CYϔmoKKhأ'PEEE7SXX=8}Bh@ӯݻk_o׻yjjvݾSNLVTQQѻw_PD 4֏>H]LLc>c호8F#LazvrFx}sSXXX>}<+6%4LNN85ka3g͕.k`IIIvya#Lm>}z}zyyQGUo;rHô7)BCC3}n۶MگMi_#7k|Kh˗kLÔkk$.k$zC_O{ٰaӑv7Sh"++Ϯ1X=/s_|qÇ~hdoݶ@'NW< VvzLm۪G>3~ͻt颽!B2ϴ۫Zreb;7lٲ%23=vhoݺu%/yb jر|uM@ӯzɓ'?2!!Anr[ בB'00PJވcÆ ccߦ4w\͛gFs'L4v<0ڻLbW^yE=ť8wW^uI~~>v}IӧOHq]vUo8qڿ^VV[XXȅzʹG5keN-HKXBz՜9s'y2yqqz={?榞aƍگS׵ϊ={+ .J? R'0&I{0̘1ӦM>w9Ah:t7nܨG1 9gZT Hڒ'0JkiߚCCCZViMpk~̙={~+++f| 2`$X\Rk\n?1 9gkcھ}mۦ駟2 iKXB 8P{#Wv+kDB=oO>d^^oЙRC7.3K500y_jc]v-ӑsژcݻwkZ\f˖-ڗyBBa۷oۺulw_~AT?9LowqK.UoqU;G~M#G3n?k֬޼y3ӑ%4LYY߳>w~;~͵O,.--e`Cرc_]k=Cl.L/]޶o߾/*G*7E%O,f̘='%%|Ν;fϞ})s'Rm_}UVaT)yk-l#SYY9a^}]"LǏ<<<]/*gSn\zKCΞ=mr}yݝx.(f2n>kNkFF[AAAvg~R9گsvv]UzO[[L%O,1-[`...v^ Xp4i%}v///oѢEVQ}www]\\OݻN7%/OɷlR^{X;VJgee1MP򒔼jҥ7cZΝ30MP|^_SS3p@0ggӧO3PP|LL#7oެ2PP2|۶mYUUբE ɓ'3PP2Anyp=ԃ_a޼y|m#Gh /p?Ippzh/:u*#%_9l>|>%?{[IM=C<(y:eee)^z]ta"Gq˃> stream xڭWr8+x6nSLFleQ"9$A,Z,W&)ׯ_wC8ZE8zvqu6}GIT2YturNQj]է3lKNhQ"ywVuE1Θ?j#jCwnU|W_FCJ ˟tz/ Z5r85c>*Y|4v#+a+ȋ/NlZ,@Gܾ Qdh;0(%)[k#NȤ~ 0tdSe|Q*%et3UŘjًvۯƷS ٻajτdvTa {dZ3?6KiۉƉʏM RMK.KAw]:зkJ0ݮO6h@<=:i 5s?jnONSS [Lyvi Q f(aCñ1<_4ZwuXjZcF!)R25(Qd %!U{okzRj 0|ոwak/su辭kBq+A?T쥽_i,Z(ĠxIzufM֪-EاE2(xTt{F /csB4<#udB$jGQ2ӁҐ(|e]`'%qR>֖٥/U֟꾵J La7-Q후{aosFN"&7`P&mv&qNhޔ N ~"; YyKfZ)) ~ڧp[ds/~:7\b;J3,Kvg/Q,gg (/7۫ endstream endobj 208 0 obj << /Length1 1568 /Length2 8448 /Length3 0 /Length 9494 /Filter /FlateDecode >> stream xڍT]6tI4!%9  5Đҍ!RtwHKtt Yk{kof-].ikTqE yq`Gz\f; ,nP0#pg# D@/(#M YԹ*pg;., fk@ aDD8n0FA;B]8EWgv(7ɝf+ !:Pw'd Wiܸ=;]  0 pt.P?tOп! l 9B jo'lG`# G`6!n0;;w< ,l- wr:#q'sB}p^/l`6˰pwz@ApB zCx~oFA@?/P? -@kœqTCm?̐ ;;(*jsU?F7/WBȅ?6p`E6="_`p$un B_g(WoF YtN0G<@ @u59PkZ`8H;")+Z0O=p0gA! ‼FܑvG⏃-CCy;CֿW@vs") ^cj ng8  kpIߪ?%^ҿ0GIiG G CDz8+p.HRQ <`wxH >?.@<ܐm-q!APY8D,Ծ:Rڋkca/h96W~b%Q7Go= s /'/kk}ϹmgL'a%lDyg*C'ޭE6GڶWiu$/ B*a흕ުӈ 6N):Y5Jxè 7ѫhp`SLgS8X^lF`>6VR{ֽ%Klv{f ɝBv6}+Zby2thh I0ŲUZ0U[4ePVND}:8Op槕ovmBYæ yMZ$EBz x _坴˰̹V8Ǒ.)xw}\ ɨrZ9^1Sw: XB*. .nb,yFWoA#4|ފ‡!(zK/GGbyx8J4i;I6 h#o^'!^ yl'kJs~g}0L{ d'uliSN TA"[oNlNފЛ[[-,]a2D]Z+k&&0Z7yjM)IaJ5N!hQ[^bdV#ϲ.KO^!}Qϥ-.inCX K;]Ysfڑ`dYd"*UQÎ뗚bnf{՟)jɝok\NX7GCM`0~ ̵]R k!}újA[%Qh6_jM?ٿ[_'I'Zp^5Ot>Rb0g+$& ʹvI}~VwQlC%^ k(NiT%L:>s kT^C"ũQWOHcKt1-Ћ R*2ܨW3 s/چ[m0W䖽Rc4Y,Z8[ "[:?z3"A m:9ƉjަDAs?479g(x]$ٜHf Fՙ2JyL{-}yJH3s'kq<ŲN (s;^ؑKDDc{IAO zv0k e:Il|MuLo4-憮 mLi{*qV>!^NCyڧ RL QpQ`u`6s>QgƊ/@eJ4AV 7u(Du``Gp^3 rr/~H;Μ*?ӯQ^uT{|u=ў EW0 [k ;oyUC-X߇y v Ed#$v*U{{+p1e2fZ1:iX!j v {5(˦02Nj3-m'#?VUm Uj?ԧuE(݆]_IRĹDHom8-"6\G] pXR!pyUW*%5cMՁ Fj*3zJ4Γw>=P[0i0>Q?3z@Y&oSЂF9K U>H.GUBo2SQ{WUT4/6ޮ˹8>^UJJ<5߭R*n|iպmh>ulΏ% U)09a&6U$i_lLl(QIؘ[%~,d0zKIҍF}_G-pRJ͟GbTdB\+ON\6 h<} r5-Ʉ固3Ùs)}c?ؿ?1Βގa:;fhP^nڙSKxkTߜmoT61R06#NsW@>6җ.xc8M;^X[%HҝCLkӰ4˶䣐0@>r9eJ֚H C:TJ- f'xJB_,K~j#, ޢg!^qƛ.Q],s'~o s$0X|S>A9|٭P4VI=5P3-Vq˻P'÷;\?WG}-ݭcvo"HroAM^S%L*Is, @9G&ew&8i3_>M:Ah'(꒑PV#\^ʼn]m59?@P2,Ӌ\Yc(|:̠Ŀ\QMMZ3q4l=gb5= Kߔ7xhnkmF4t!}ӷ_Hքfd_lW/OXut-c5[ЀRgn'kh%OR/~ǥ=" нW]Td8w3ea2=׎j52 P|!W/ gwqǧz(_xJYdXL'!9;1g,<[?]˶WU'%T+).^Ynq峝*Gtwzq&>&{2X I?XGEOT#Ʀv5ؖ\7R89Յͽ1sYl'HxgcN)mDu;AM{5a0Э 98W>r: ,$ZŀS؈- ˺a`Ͻ[%Kυo@ZeGT0&fjg*5b /c]PiR)]3)DAw4k#TWU!.B>:VOzF*W7B2O+Ƹ`? fXKޤ?s"`)˛l{^E'.X j(Gj>E,-N:[3LKA *3Ȍ7>a+/?qUBԈCOkЉs|QS]S M)r<ʑZofg*x$}r1KQ=}uo[MCѧ\cG5HE8āc tugBkzۜTwB_ \}" _^)b*NEt*ik_4&7/ir c_wѪH~j iɓ =>(kQ $)gǷ$~ ͼm !0lJ. %2 >#[d?5%M;3Z]Pzs5,'kҾD)]{'}8KH\q{/heQ!.㴴,aR**qp6~Wǹ`@PExyLʚ6Y9t,c1!CFs{lg=JjRyɃa[X;$]QL-沐:aFF;5䛃'sOmɽM/0{FΘvHھ5< e>)W8mRvs|+Mg5, |%V$J1RFiPIb+cJ21vrUI"SGd(_<6B zEaOT|= }2݌8TUSZ \QvՎq&}sqo:XՈU:w>?p{Ԁn7V'R+i͘+p :@EqFR|֕@51= ER%T vG?xW`^/kY(PuOd];-dxB]9>=e_%'AtACCoᰉ!uLq# bv b-KGJ"sC;'*X^ݶq(_8M>ͻZc m]a5e@k7HJ쉌C^-㼄 <*6YohujۙN'uC>c,CC$sp#uDDZZ~? X_^G2h<%ڒJ)Z'泴@jڣcOEgv?QxUDJPXS2:Dgڟ.it)H[ҌЃjCtېPwXeN" PxVDjΏ[˚FT߻רυV]XsfZ0$gONq37 SFwYS?UG}/e삽ZԏN~5}ɫ\䛏?&\'bSDD.Mb -q>Aɖ"? LHJxG]/d JE]Z5%c/T x"0œtFg5/P}+P_I_#nI{<$%LZFɻ'h(vd(nm1ҙ" H:gD ^YyPŸwt*vz0Xv|U;o:d@̍A6a֚Nhm(k||&lFۥk%w2_0L#L'~,0Crg=L!l$@v endstream endobj 210 0 obj << /Length1 1394 /Length2 6064 /Length3 0 /Length 7012 /Filter /FlateDecode >> stream xڍuT6(SZa0$[c!lN ) QNnD?=9纾cg畷FZA /O@PSS$1пPDH/C,P9AB@$HLR@(( 7*]@M>E"Qp[G w0 ؎=P C1*! `%]]]h>$V zP4\vY4ѿH+bpƦ8#( ;P_UEkO?? p#l6p{(P[Y?`{4vVX@ey] C P 9"`ݝ>C ][6p5 p'g g EńEP' +t`׀zm'bPPoph#TǺ6mn@3,@@Mbw Q Rg !MI uB#HT]u`Jy:Wޥ>;?y- 1JOgO()[ڵh)8Ȝ=\az.IyՖwܯq,#oqr%P8: dDֶ^\.VS jjn,N׸K/xs^Som$rH}?k!:`yXV*t ֵl{?5]` T70A\"T O+ʇw5sswY `q jҦԕ7DH-@<)+KmoshH E8Y`e>?G%eCG(s>PpBn׫2;$ qRlUӭ.jvt_kj/ϺKrN}b T^uq0hbN.[ ++F6swnU{c7FmHo08XڟT0{"DPxol6ex)0{2Dޱ &֫<9F ܿX&dʏgOy.3[z΀<݄b+>=Qtdj,SχGe\KJz4fl t%PEH 7 }"+5o&+^ۡPMj6Kγ<}tSӾ^ T-l {.9I->BA56Hngzo.vEb3,%l\.AA>-ƱN[~t-Bnu-mPVZ |S&^ڰ(إ&ۈhqc+IK㣚Ty"&MTJ+:ԴqS]VwuV&:T) wq ſߤ`ix#Yo;t%,5xL0X@BI X!*x!d& ajgE- 9&c|\EwT~5+^g_Eź8-Y֨J>O($JqhvdWoO'XRjcXs`g*LnKOj:>wUP6x͍wîyL Mۈ5̯L;ivr!'36$sWi}fXVo7o[tQB/5dEm3K]p5CƆb?dhAK(}pUpL۾|܂Qn☲z){~!Y9cbvXW3|8!1FG;FAkrz흭pn=hH9x".QETC^ˈwyz*0-#l')m0%X[xy A6k1Uf&-Ǥ)XKMtre'Hщ+;=%{K{BXD@6Q|[qv-wτY|>xaօ#2^{guUH!⣻ 8f'Ibz~/ Ro?Q(kBy\v*MeNQJ^"K#sEADu}B#^V? tM*Z@3cj"u[x@4_-ePt4873x:T喇2h^@#[` X5|\Kqy{][7܆@Sm$LJI$wvB#P~zJ<Tz P2,C^ u|14Yb?Vx\>^jHE#2NސL¤,.o!v㽾`{'JO1F|$KZ}g_&_e\*A;9őĪdlZN!^^>შX6i䒩ͮ3Tgvyr"f/KЄh {)=jܛW~.ӻ^q 4M>hQ }3A9 P= +y.p3G)&;؞^mDiʣ_>euuO e#)P3: 7n?mLK0] >@= 3ŹEzZyqbgo_/9pզvm}h0+i epd87S^C{ވ7V'MĨ hiWu|' e.R5jE66R] JӉy̍r<m %/w gx[lIQcsKŠdDUfs^؝Nfn)s+O'A>ewH UӓtoLËѪu$Vi_ПbiJ}44 q0>`%.mpfhP{μ@ NwGf> %7(p§Yd)W-dd1 PzUWғ+ *EIm^NCP! >~E-5UߢUSwּO7Epamm3Z@c5u3B;M%ĭ[W2m7B6ƍxGC6X+ i*J]v <=8~#Ք zN|jؼ'}6ET+{ɓ_UD[A8,`G`YFQ0!A>EkN{O&DN;C#$tt*J/B ;L7~PGKfժ*.ߨ=L!ЛYnahrY5m+۲/;')/y˗B2܌:.{Xrk~Yp/a-1 ^jaEoC*01k@ +M>Y;%/_C(_pXM;o^!>]iZ1K ǹbȮ2 ד(hxfW w\Q]$qf&_ڊo.n+┯j-eW"{(ƍ,Ӡ ]q_AD*/%= NrL^2T0FՉnn+(1zӼh4/w0{61$n]{T~ࢎeUq@Ą9lk'485܇gd5[].kN)PQ&dZg`׬iҤy%u!ŝBD˫wL+UA?P5 yEwDڟ^i_힪V{ActE']3eE;\nU!aAU>O`Sjr$}! 4~BjQ)K$v߹\p1m^Wٵ$TKAk&:WNj;\gj_!gqW|b}M3ÃkGK5¬F<=[d:.[m83b~|y\j-!ݿ*VCH\N]xL"F9#s;Z'FkSr$$4zn:UtO(LY> *E[`߇Ț;wڻzdXSd_dre/39jۻ/qfNk?<(NZ$*ifS1RsmIX{.8 O\'͙Ipu\\%npШ.ei?/s<->Mt~R&.U;[d:/h}DЫvT+v{-CEoHcPTt͕K,TW'T4Pw  Vs1'!cC{Σ[$%=_ @ٛi6}T~Iםᚘ)@z824wQ5,mF>,X!7󠀈 Ii'k#^9~&U#9x㞭mH2^s7o&cV;I2 52SRC&JH,7l Du,5bs$%!%fJ&$}\Fy^(, endstream endobj 212 0 obj << /Length1 1400 /Length2 6470 /Length3 0 /Length 7434 /Filter /FlateDecode >> stream xڍtT.)42t ] )9CC4HHww4Ҩ R{׺wZ|{gww?D%m (a.7P $@^&&](׍äqua #>90S$( @ȿpWQj P(a7&Y+<_V+6HDDw:@ j` yB(*n@8xzzrܸ᮶lO( qz@ &aAu6O+t8B 07d; @QRh8C`wq]oBPd l6PG@CAaֿ`G782:-ߝ Z0rYBnnP_#*ey, CO B^7ϟ:0߿ fmkkwg=$tg AB|¼ ee󫼮3wˍ A@8n`߁Z8 jXBl0TG!6l]^c { oHzYa/ǟ{|@.^ / T% yM/X bp$k!(B>@Tc*/wC ìGu @)C D;wT F Af$3uSzA5+?%5G( w !e~!y'vC {lRNCf;^A썃\=xf6G Sș6pW_k<_c]]}fٿxApfVb!!T\熼\f؈~) :* } 3.u_}hOhZޝN'Q4$<-rGѤ~mKm|'3Irhz U2jUmD K֪S܋o1&)oU;/p< ~"R^?` Cʋ RcUſ*yCkXFx-8~=`# ji{XONuzA ?j>) Sk;zx7HH]W[~s ?GKW>7\>B3ZK(iyϐ:ɸytmꩋ۝g2$'eGBG"s[$in}xhWubmfB^|gK3Wxّ-ZY^I}g~o!wD|q~Hݗ-$|% ,D.ouIOyZ=4p$|*ާi ~B*l-P_PVS;_c.rOd“.|CYJW(V}c&F1J9jH h-mfxysHuyIڋe_f7j^.?m:sYFD7Я, |ݮT 3ia5R2nLxP_'^Q-|n #fH 3a?JWw$!ʿUɸ䒩fԳ^$_\fKÇ3G^Kԩ'oI}3!5܍S<}L'q")`G=¡gLyUr/w~EQQlOr5)F|k>yz99^/VtH\f 9/,ڂ_2pD ߕ٧Lio.lxCiÚW$TUzᝈq `[S\DPTu ׏(Wu-#cWEFcCT;BseZ+/28;1ⷯu3\ܜWSfq=S3P뵞`XkxVg֨)\?+tN-@X{ /QϮkR[z%gf"T!^;]3Y!9 h:x{|jv"0uuVyWeSv;͊_TU,`*xHMNC.KBFjeS˜S0rIb63k^|]A+j{.`iyV2K_SS{RBsy%iqS(+0 r۟*B1Jor$m0.xVGN PƤ]E yDHO3>&^Q5o1, qz=~o.^n&İS)Wvk X "c%}(h=cb " DucNZI]* oRN e9#yhi(:p'D߭ *jZnq_Z{1[Y?^'y8}C*gR,#{0Ѝ9H e E~TڵP|f[Yg)VGS*ij$kდf6tG&!Mf)CgFۡ2CW={aTd,]&u@ %8BɾJ 3uN@&Xpi~iH>giz3璻O?Y{/v 7{I%r Ve`] Y>(sr-A#GnI[6k ^(x1&TBwUP`#M7%k4=MOht*D 0{ED {QjWP|+Mf:OrW R:p ~ݬ4m|':a<"sJp0lq=TBp\dTd?馹 jR*31`o6!Cؽ+/,R'(2CE hN:|ѣ6bJJ?49ei %~+?i Ϝ%tNUĞntzQv0X Z s}h_ZfK.C:uO>-~nE|;f}\Ȗ/zc .dվDo& 7 t1(8Gryispi>$=سNCGÀjX\# # 5N_YuN3xWX:b.ftSw[y5;g 2gf!c%B-ҏd85^Sp_k_ϪBkv+c~}%\I^On^fbH`mFv̓9'lsfS14inUHK6rzj`W*pm5~_ʆΔz~N0{ç7[3ZdS޲qn dzW#kt:!#_2sB'k}"Kpd8eD+R*ڨּ i|A{ eXɽ/آT?H ,/:19< v7(g1rE]TQS s -Ow0uyN\$mI?K퇀E,8>kgwnX"t!$^!) I +P{Wޞ6+K0Gާбz3u\к^rJH<6)6#b9֪< .ݻe×G)]^468NVP f`~jC.n~QAyxﴎRwp@z,`Tp.OnjiW[&S,oF:Vg&ljegmB>Uk\awH0lN[翂)Ţ"?B{q<?:{WmYVV|춒P{lDO֨2˽i56}0ll Q%.%ZE0Btm'K="\A:PwAx|fTB~%tܪS;a::{G/z,k~(y |T45F lSg7(L'C>KrxˇRwW3mݑrl AnPY7mpnˌw뼛Ij7Sfmbf[ CadּK8Y !`3zi;mqJYG&y :LT*)ZQ,J~3/I冀FvlÛbbũ-Փӄޜ++3W".4>q@!Cq㷡(rȦ9#7kW.'iK8X0\*?ׂn>Mu *"y!vq, #;rdIHEg ?}GW^^#%c>!ؑc-Ѽ4$߁?侀VWUD8\Gl=+6ew,@Y|z%/MnjD~40腑iyIa߸tϡQx$)I`e垣KMBGG{|rZT->5iIJ@DqhƤԇK(Z4\c裂ٔʳc pX4<{>4yP#Hزؑ/&SȊJdUgR}dbg(#^ .OۜZqw|]4X}tݝBmB0s*DK͉6aOJ{EӾnhEq(%e䍼L[`G,ul čeXV/-BēCE )8\XU!>^oS2ڡz0ſJ1P1$f/XN6 af89<€H&ciI>{NGmk B!VVu:}Dbv G\,D@5àw|SՃ;0G;n cYkիgR rG܋jhe[Z3_Mvz_a4xvݻ-3Df[I1Ss2@Ac&^,JGl[;yyA)_1ŏpVٮGHdo~/vRR'oպ[ 5W(;8 endstream endobj 214 0 obj << /Length1 1522 /Length2 7341 /Length3 0 /Length 8367 /Filter /FlateDecode >> stream xڍT6 RJ 3tw 1Ђt# J *ttJK|{{oZ3Ͼ}aa㑱[C0$(P@ ?. > e1#p!`$ #Q< 8 @b'b@ .{BmU8 eCn>qCm0qA Ѓ@!HJ.Dyyy]pw{InЅ [`_p= g @Exl!z*-W/_ng߉?`+:/ l8* :Q?2:0CظC]^w|ӠNYf+wqC!6ckN0o ݄+ Qp!HP䉀x8N Q]v& P;t l6H5 '; e<d-|4ՌdL>YY7_/@ h'VfEӿJ[o࿓iQQPh?kOg Rpvf.Pg (z QGFVb p_ =J< A^_8jC6i/9Cam8rAEC-A @m>w 0>ѣ,!?HTճ?{(]?(. u_e 7$Jp#APGGR~TR0Q1>udj_[LmCkB.dxֿI`_|+Fv)Z.'dϪ+t-[5e.rNj|x_MޝO;a$V`*K'VޅMCԆ#ekߥBt2'aM-mUed4?Vt{ׅ~R學ćƚEif2I\&zU-}'m R ^?dG+ bUzfY+ʑi0R&:0a2v̎rHݥ l.,q] u3FGJ,(|%?\[skndfzE@^cz)Q>dwI &U|&f8ys-vcEES CiX3=#N/vy^ ]FmCx5g9 ]*ۤ {il_ftB@qtDOsmiWWIL!KI ̜ w_y`L%5rlA"'h?oЫj>}km#~%䧡3c_Kk rM6Z#Mnhiaj~Ab &g&7g[u_'gіVS*=ճלy~RhZ/%8AZ'~˪EwaBc _=yY;b8RRe x1-^ "R66v6 X1QrEXЫ+ rJi~8PgO!ibۛdrsO@vE_-M}Hݙ΂//u:c}cC/E }uvw;;n%eos8fF`H:VQהocoJck=kWi6R_YL!IKi{ŗ;co˚ ?oy҂4?w~|*2or\`;w`uUFiڵ&.n>yt>.{($m9$ N<3Hl !q]0-]:JȠM}=*K0--1L2![jbƲ&5HM+Ns7RR،hj#CuDB A[%/?8m"xL \;UH\А|pG1mL#*h;2lu<VUoUy]LC&RWe|)YXCS2ӱ_0 vgʗ(^ܲ g0ٕ{Qkt `gg vX U@4/4w/-)X&>VTֿHg%6J`x;ycjqz "LU)&GnPYmg{oQKN \W25J3BSlj-AwD4KDwJG4ow EU^n 3^[d2]bed ?'kls3 hqEOo,drooڇ[ Ѯ;C*Yixw.׿Ϗʼդ3EE=H)1#a3RIt^? ح1❆ Ηfm)q۷4&B.CJ4!#S *a_w!HˌEVEZ^"˵Ycm'źҼyeKb CCʺ~QS6o$j~YcU\O.HaQ2NK &_ jhNwoE=L.SEw!mxp[űd zYR7qK,֥ޟ$cʦtYr7hHkܖ;rJUWgq?R = ?:v2{us.#QSA01q^)lvtSv~Inݫ7aCrZ@@?vNqnBzƔ:t?-OGɴ '=r1k@&oj)J6DSsK\AvFݶ6ϗ:32֗:š5)!AIlp0XXcw۫b["g-+)d6tྲKHNAs$I78v7U< I0C# Dv;s\@/[[9HL\zA+__4[RH-bH+_K1){x U‹=hS;,0 rT;,~[W cRtMX}ygO$KVӷtWvQo;`?lߕNL㙘n^7: ~&']gn+1^Fw%޸4N-?YXH-]UKc|q~K16Mi@YmXmy ZWg_GDZe:îd~Yw62RH$ wyrزB+,h-R~84+;F_}dWCJռ1".I2 <ިpMz,LҺ;"kA?]ُ׳~2hqy6)GRehptLX/lEdE΄#AS]7#ԫ3__\E'' V9c1]7ѫ ibn2yT1{GB2 (ʡdW #3tRև=[02' _K;L.9$gd^IX7=iWR)MrÆXZC<8%!rn]۫rl0cCI3k :?5r&S׮YDTPU| ȉ4~Թ T+ϸtf)h -ll4<`B 7xrVzim|0_U0?bg]Oz!Z`שFk#p1DμryI j,;\j_F_3mέs\ҭ?4[?*0Dc\nT*,{zS%rmg;15'2qV$5:|Q',3++Պ<)ʻ諤4Vwa#W"@#9OqYCݝZ=,ZjxV9AL]F*(+G3<^[靎ǣ|ۣ)ձnF 2,&5_ޕ[p,oSj~yzG9$T&rro0\ "L\\>O`R,2 aXp:d+^D`t]|DU^VzYwlQe&o/M)]Ədq0_vђoz(~V'PJ2*8SVWZ LY9~NElol4bhxC<ޏrDeߗ5-գ^*!*g7 ɳVNJ>nI# /JLd!kly{jiVuY%.bv34I`:@>]Hh..m.b9Zs\*#~oKP8<%F+HHSKWB~X\ 5i(t[HVdg$0=F㙝ב|)0fQBŅd j]];-r:]/Ta{?+Lt1!|;.W]ouyaڹ4:Ӯ Es'*=,>xVTt Vtԏ5|+19|FAEk!Dwhl޶1%'wpӛQTC I_J{&}t m(ueSd~[opbܺ1E]r?;q5#;[>RhքWB7ofZa=&1Σҍhi̔ z'f1Wov ky%UrW'a'::IyCi۱SgW.s~_)dg<u:Y ePQʩN"">bL0._;6Za$#Fv;:,KS"\O~ATyuߌ&igLGI}/S -A ;jÞu\s离 9/]o `Myu"&B7I AzG帱{'/@Bw=f_9T1mFrd;a}Փr:-ƥPA̜KDKQG3x1>7+d?:'cĝ$x/]wؽ`=nB33Ņ!qAE&4q[[ƲYy6ߟv1ǥ?Tඉv+F{tmN@WZ 9輟8l*Vi&VQIѸv~On,!͘R?;\]v*<[V|,jؤiZa}CYKwi FnEJMխ=LYQْh^n\p8~+}+`s6į1ђh[o*}1_4oC̎K]J]H,"?luӅSCUBD cS583aaFj HvQ;/˱'+;UNǨrH,Q}F̈́WǝeŔR6" %v+0Gδey>ZQbԕsd0'ѯQ$ZGcn}\b#::gV}^ ]˳SPnŽ47H_÷lgB&9oTMIOW߅'vE\?4R!kC #G{PZ3]>1'OYE[I=ePDgΣZeGNJ)ȓuk}:+rz '~bSȚmug,S&%hAn wHc''ЄٝvyL0GnIn0#248{A\[ro0 w9D 4'n.6 |_^w U$1PסS vxgDmdרi{Mmfqg­xgǓ1D q93ĿiyPe^Ֆ?dRi.vy7I![ S7Pq6:|)> I74 Si-ۿPsix/ԋ9$3{~;3+eߕ|vƲ!ηЃoҖo~<`A\G6jclTu^RWa'y[+A+:٤6(%FFiN./^ɾfd|c:D z5v]u Osٷ&(J:-R_11eE)6.k&~p:xܞK{^3goC| cL2vQ3iq(c3S-<JSx:Zl}ԗ[͸|*I؜L"DM|8"yѣ<6p?Dy {^sYX[&n3bWoÔB鰐wtDs"O ` XVTh5wVkK?Juݟ7k>* n J`8}r)xzzu2W"!#6_xlYÞЖn#OtK ,6s5gFlۛiJ nHtj*byk,^Y".^kpR=z>χ7UQ&HDޣX8,:/J)+i[[(ؑtq?0!OkϪWTŅf7GQjp*atܓ E; c!PLl`rHD endstream endobj 216 0 obj << /Length1 1556 /Length2 8663 /Length3 0 /Length 9696 /Filter /FlateDecode >> stream xڍTk6Lt Hwt7!0 C4HHtw*!tIt7͇y[3v{k Z:0K Ȫpsqrsb100>AE@"09 N8C<|AQ!Qnn/7ȿ apQl P ',Y;lkxH#ي#"";@[u d  ?B0!\\@{'NV F^@p5w =OeX ];\fpAA< 8!9@GY 1Vc7Nw 0/guCm6`ƉpCP߆@CP <'+8.w.Cea ( pCݹL  [Cm~a;:6yقnnn!>r^7P`Plzt3xx`+d b' #? vp?pӫzYà5_.iMe9E?['#sxrs8x,46n k-0[z `N a4{X-7O%R6)V0++ @w!?HO]Eb'xp< ~OTe Z=~6?8߿?B0!<% Kv.ؿE~ rxx7 NRy/Vw_}hڿ! d5= |]tI•c}úA" 4 TE6UyS[ϝG! qڍ^71/Grw:SrJmx:zAG,MxڡVY<>3iU4">Qm}o:oyrFd0nǷq_Y}}7H~^c@6n8V_L@PșYI6L5TP`ֻ/}3Z4QW?|+Bk_kju%ƕXY)oZSu[7ouG.C{c }rt`*'̴ & a\M>^|vgV*]=C9e ӏ&Q33]%@nSZ۳+iRW4Qu/ʝL+0m1B_ xxFCƨb6"9l \0N;9ƋD$=d5- mM?~8&Ҫg=Q ^jgr~g_QDUDRA#1{ aD ~z?>ܲcBEq8WQ¤+@|/Pz{?Gl /iHYH %cg|z,%bB i`R}7\ՙg:YO L\(>s'f0]t<5mhw5I1?WntPUqCԵaNνHUrra])H?az@g8&8GO5RS%Nا 5QLoƢre Se nX.EO޾*#Y2i! _tcO22[Vx%;|Ky;H=c2CYYv=-6X(ّOlB}|6Q(Y~Dia*[;8y61$gF%Hf=ZJYy!j;( qIw9|Qmuya}Pn~+ly+K~_Ds*]ܿef@0T *sXı3"]P'5&; 5MN"{"tpM~ cOZees ӉW;:lN ZY,:2j\Ų9ir- ѡ tHHž/`$k(woU`c (co d~6k>"i04yvҐ~s~j>9i|;oj_z11ME6/e C齩63 &c:[(8xI@\GܨٍZܬƹլ6vOjn2hO}|YTW%  p7CkwUL+:0‚ Iy>6!#WZx xe\CZIPm,9_دLxK__l*i t )A&fIXd:`=86%):+U ,Ę~!ִѲyں ?.^yH>JDV Nfoߧ@q^|/-Mva͸Ysa>Y4=d03ؒ ##J?O:?L'oVydV2v.+N{ =iŸ3kf@kI(+;h}J؄Ls]V(3kΗ}@j Gy,愝9W鮎%zV0`+3P{'z x܆Ƿ>.lc"kOkfG^=!Xr4*8&l.#Zg$[&sՁ(z~^(4F#d<\rXN83TqX>r]irl"kSxW~ևN@bT|ŨAvKͽ Dq y0掕t#||MZ""ƑN"!LeOw3y=Nc4R6ORͨ y] A]"9t} -܋#??7FZ<%e86Q aЭhPd{4kK1:$3ry7}|~>euu5'{|q8W)FX[jWyz vbR"&n3ٶ,n/&C$.9Z16&sVfd *OUC7) mП>{j90gzY7.+js q'2UxgDH's"0}|qdJ7Vbq0g%q!R +(s{\ąŖȍH!aR"<Y'J^3+{rp YK3p2fT/eo;nU晓Fiho,íx[x:7hs:{"~GрҷxmB۰Ci`[mi#_RSPx.tί W͛U:ShBGItb3Yg5>]Qbԟ UeBA_Zh*b$ ߴbKߎI;{CĬTt gn%U܊}b Dڎ(2㉥G;R@֜5Y8G,ǘعԷm~y`wM%wz&9cMe< Nd8J8neHdSgTD5,CWhHjE3d-±; M95ZArUu } P[kQ$[mfPng*ϷiP E7 Z. \Vurٌ >Wȵ0 iI`~6WV] 5œ, 0uߧ^뜰uηn_%CC'rCYqˠ=}9^ qG da=$]==[6(9ZbatcMgcct3kqίL7oPQŒx| 3<.xy;Ȕc)= 1NhkKY:J#.,T*_۫OM,+5|!ix&Y bxL0ڭGJ'4-{RS $؏t [?4-L`5+ErNU颰頏pPA]oٱC5䉆eO*α#_j<FML!,H|SZ#Pҽ™ ckCp&Mi7$nD{ͯQz%~䋰*s{՘yNaxtu^SHA :Z,cKre)?% N8.dy^}Q#n&'SzX,UTEU2/u񑇓WwNڏj°xXm2 j(J?3+ivưF㜌HE@krdq:]DGjveA'&,s%+= b(,"n5-#OVQ%k^lt,Ωϭ#n!20Q EF CV5ܪ4k&^=]>8Wh{W]s}'`S O0uҜ؋|+Vm"Kж@$3:\yECIJ-Knnչװ(fiGyj:3w:+8Ve9>ض%C/-JئXS3OY\ Sh /Ϧt`YJָnes[1AD5La_ rj%ݖH%~,ͷA,Vy÷+ژ鵫3$tH_u[GeE겫@ C?(b|a^e?q7nret.ۥ~̒3%Rd.HZ S;k|]𳓓sѧ~#tX%qniu~/SQ3x+!w( -D7fVF98zX(Udo7KCv?aۉ<5F6ep4QLHhnEZR<:czxJhEq1sXQA@5Y 䍲 J-^os]/iyS-WdTI˒_Pa?o io&o$)!wstH 4!pX[ͨd9H)-T-vdǏX }KLthcE6Qe-ɲDkRUx9Fieh@PI\$S6*7~H9, {,v݁# V??񕳙u*|$+ çON&YXVx7l]99 K`&>צ x*aC5My?Cs:Q.0naTqeg'OsH@ {,ܕN;CIpgYf.K;ԡKZK?td8?>Etb@#@cucAXu[`Wj_kU5]{ 'u꥿u8z-?Wa4[ڮ#2([Z/h¹ }qr ֺJNT3YM&/_psߵuNI*r4͒2c[j8qq~rqQU1df-1n9U(/fI̤QF MX(e&aY;YDE2h`zPGHn(IyTM859 e8lD#'?j/қ$[F뺴TvjE>6mPH`RYErt=q֧_)nJ,roZݧG9siL?@+=|7Dp52}X>Ĺ8Q&'3?iIcpF/¥ތB{te^9f-L/-2vH|ʒr F+vvT@Uy IH'RTSezT} ̭fKrexsI7P;ڣ]Qcj'KI pחb+PD;^Q]wѨJT{ȵwJ8jnCH2d= cͭb챖1N04_O^<@WCSoUL%- {kyIb Qc"ay71Gpp_'Yl.^ Tjc|:-=A+g´UØ-Pr?!CU?S endstream endobj 218 0 obj << /Length1 1358 /Length2 5947 /Length3 0 /Length 6891 /Filter /FlateDecode >> stream xڍVTS]HGT"-.Ez^$A"A iR齈RCxQ{뮕{93g+z;*I@ H4]!@C~ 6e0릃4=]B"!qi! i I(`&A#}0'({ʿn{p :`4= 0D h҂`7t CCqjݘ)` ho0\a8  w س]w>_Ww%n`/ pBh4 wvE!`/0lu]8c;=F `:{*p77"U2 ޺ﱺp?kGW p'DC/o @cep8b[!? @sG*$p٣v'X3;y$`O{e 7Q!%%_a H`̢UX # X-`0xe,7-Ab {C7v?Qtur vcr_U?]M!qy'c5wr%P0 mC?v_s!z?0] !V47L_"[=1D<c]T *G s.wE4%77h&@;XJrHsGI ~#n&0SB/Ի[ͧd~Ԇ q-%1і!vh~V4?|('?ҼK5F$|E٤b09#+f&ôQBOlWR6_V Uy Ͷ }Ns~J*AިhyFqn9*[LH8yHg-<{W9%"n>~O 2Cސw:,Y"n96 >{Ֆ>ףQT=:bH}<88'A`D[(ֿH1;Wk}2;mUwrtYEOKܟq>:6,!IApI^COkKa\n jרF"o&ƢF DsgݬDWQMí$6NH;5&!PQ)vJy p m. pr 6QX3OP6z.T|4`;b6ziA]sq9!L)d, ]q@cqTZ5RvG sro *]9TϬP T.ץ{qfZ&1N*Sxru:pfʈvv c?+utT1D8Qe)\XIN:_N$W=p;T#γt^7:VgD`dR6e ehEgy>4 Qx{3Z餾y0>^RsG&5 &foN%*SFZՄEQjr]-2K2܍wVw)jsL͒ƽee3ցwꭤXB;>|'l˹%q` 0hi&i,Jcx3%Ù0?ab6o'n@ Tsa7Ty<DFXgi$R-]Qgѕnjk n^1 Fʲ}lC6kb/Y2Z 򈌤w;)/Vank"j6? s#bCƥYz{aEG#%v7dyHN&cK[-4R}i_x[ߘ#Z"48afyIet]+s=wb&oP~Eqσ]Jdj 7pqjft-vEj /'E)Vqf\u+)&myw3nԋ|1* C;ӒM()'܌R99˚m3z:5_>B'sS[X1x_rxbiDj/}Yn3|HNa^wJch^u 犥Pn"}P >-_t/F㖼nOaQ}K 'jȵXЁ ["/ƕ5uă2y=b_[r,V)#a EMf2ŧ*p.aJ;]]ET?Sz*OɍG Y~ra| ^4P(DYO~$ 7nJ3)sXW3Z+74H^TpyVAQ#kiX4UQ"6$\v蹣)L=ȑeT4 <<ΔhPøt-FKoviT0µ *7da~BbJפԖU#:g]Ǘ#&o=Ƶ,t۳9ÅnҐ#^.^MD紜3 P-䣐C9=sβb{O7K밐[3x:X+oUG,~IԾH6-ؑ|w&U^ʹ'Q)KW(Fn탙T[j."7&'iܔ l'N}h6j)x[c`ռ =N%N}IK:wUx9qnxSv +tmVN/hG(L)TsjL}=Mk8KSܬ.?IȜo\E oB[p{z_Sۥ͒cNup<]fT~iLMP뺱{辫yhm/8M]X?g>hT.2=!{+evg0rBn20:ciGt$G1Qj'aB\gc{>W %*׏'r8o1TPHqT%wZiV72y+{er-P{ )ǭ֒{lk=gjVPen+޿{n)a$048rSh@63TK1PV\(1^6ImKk&52ٱTµjj%t ppK(7Bq T'H.>eL9;/c$/h[ǶU߭B# m iy}0qhٌ 3Kes4oEQ{+}%Dܯ)76ӪREE"ӓۧꎴ~?ZB5ΊFa ]FOpEWX jrCyay-tT$rsa>geN^Ja5Uu1|{-N/Ho?k!+HtRCN>g/lfMF+M3426k=Jvb0tk? B ''2OV,酀 w Mf D^p:jD5߃tSwX>Αip\G@bRx1D׻K)H_M樞t.x/+1m\D_ 5Ɩ=\縎Z ?JyVLR%0C]@MrW0~]IװYӥ,m[ }hj"?e c>k:C=MJhXآ-Et9O<=>_ǡĻb؝seT%_d>"F>ih U7LeAW3JG_yC2IJ3R,!tiR緒= LV8|^2YNJxOF.:!f9'.n5TZW|"A:O\_qѐnRL_v}*8 lSFpu@cl8kdiݤS22Oإnf~-W~97β>KܞyC8?NQ iXEzgxdk~i]"^%QFRc-#~{|L5 ;S [iaLJ|LVvǵ| /"𾭱yYj%}39%dqw}Njm؜_JPsamesvE;-\^H(VwI}!>=b(adM]n҂n|ejdٷ/}Λ<$Zόm& 7$KkeoRٕ͚ tvi X>ͣm_tsOcF¢̱'ŧ=gt*#pBK{ PS4-k^N未286w_\P50ĕ޺`_6[t纁&ZVe+Y`X󗜡977o2/|}!OhUS?_*jP譫gmVYRr֗U`qEa0PY󓯘;k8q)>$*ߝi%=zIF#=݁-ƉS"''R8{5:2r~ ǔ/Cl& c"!>§۶FZ ܧ) jj! ];3/ d`0r<ܱI"xNw8ÜQAܩ:.DEꄁvH`/;'Q~YX*'saTpP;_Q|t5h~KѠmX(716M/.OY'љ>]aU(A?.62,pItV#}ów{Cre58?=߽٘-MdcZ{{=V6X^W|4{1i`Zy-g]uNt +BXEpϧx8J%.~l|㔺F_M,]/O7:M mW8=-mOO *Ì |Sh*`!BaBq凈[y+Lozl]̋xn/7PH6t|kZRsˋh%%'!|2KuΨuőڷϊj^.fF(.7&<`o =[r(lӭT%{vUgM'9?EM/Ź6_H8tà'!MSeYlc"`~ۋ}"r$%c}r dqt_11/sq%UOCd Po;R B-9$P8~3*eidDžQ!&ik"|7JxLh |xEjVWlNB3LwB/4ȵOQün!EA7m\nZazqCKғN](E1'if" qqmڕq f[}GPu/b͖ kqO_龮 ޓ\ki=)8 $&@ʏĪ}LTLXZs& ]#VJL]yP;Yg endstream endobj 220 0 obj << /Length1 1391 /Length2 6198 /Length3 0 /Length 7148 /Filter /FlateDecode >> stream xڍVPڶI (]"EI{UZ$$R&HJGD.MD@(ER(U'39kkc313\‰A@5SY ,)K8/ ` `haPSnhP Bd!`0P ##T!\@]4 17w-0! DNNVw8P `Ps# ' ^@34 #Mw["h(s±p]! ݘ8@hЮ8($^%\ l>A!+W"w0C#@ 4q8Q E~Pԙp(PS%WwXÊc^:JCd pX8p끠cDQ?kWW . q@i0,+};Wr@oo#L?Z \ q_x@ @ t!P`=aD@<=[.hW 23STWM ^LB(&! B @Y"YrEK ,  o+AGUXHW_v_}q @\ ._ZupPTPn^DVw1F`%0/ n"~=(@16`GKo ]~KBZ`ˆ ;i B <7 qG 1_/^ \oG|1~SP׿Ua 4;/jT8ŖF2S6#:49s} 4yN)[RLZOM-&G.~RM%f|lILܡ+{θV@]Oۨe2z',K ĸ)vGytE! xyA%lܤ{Lo]ū~J~$ XHLʊύVLtS$+'ོ [ ZގDzjϳ..Ć]PPػʳ7ǣ8ͣ˞^}% DcBIg<)\'{Qޕ fV):rIuN&3lPZeex/I^$ӽ| ՎUєGg1˼)(qܔ{<̝Cܤ%T +qiN OSAfLƒJiaSz[ɧok؃zѝ)!͂Cf7Ìi,.M&uz#<;ufwiTZ)[P{l47$o)yuW݅%jR ~*kZnYw7! p*( (46{3.% K_,TgF،"Ga=11{utoxި|^HAdڣzDjo^xk[|*8n\zhHG-ѡ˩3+qWZUyI~Aϋg(21gc^Z +=_5jWh[}md@qX>c}X#uZB.gw>h04MGaK{ }Bcy8nym}3,qr<Տ[tZj6 Ko:.=TiB4ǘ!.ǡbۘgCi+yRj(ae/Kؒ?vg`T`3wWWɃ݅#*)fVD}&Ffy[-\dW>ݲN/=|ol /z:]62.p/ gﮖI}ma/ϻ޽6uica& >ѱuZףW\,u]nbZўs锁F/~q:pںYf#Jzf=i+@x+űQ 4>5E񜼹g<ͽ" Ö25FNIE淁V#j#j?mDH(t*m5at96o3en JE~ vM7CBׯJDYf_*) 0(\<]wi@}*xVnV'4´7 Aiȿ>PƢΑdxA ЋKKҏk&ڛ5bF%(~/8>͍CL!ӅҜv!ԁ; ˉO"̟2> Zq7cY9/saDQaO<(e7K5sJp~0FnoVFt pW8\faKj:|y pI~4S2};{ҧ(4DfuK'?t5 `rT{v᯦E&e8R 4}K;̆PG>QGJ8_nݮg1yl\V/IGN @eLRtMQQȶy%:+;7-đܻNTwpT=z g[i= "fL*uf#)ƕy}fߩ5#r +!*v29VRD0:-WM\Tt[3mW6D:<.'kZ4P(Яtz8|)"D`ok3a6N9`O똞۬jK䎔w+[Lv' l|Bo:U ڼٱR?4 IVm=+oU6d,t)0B/9=!C85~I0})HBEQFS͖@E*Eـsm#VuwIbg˕_gv{- 1['4OJ߱:+,ݿTKȉV06> /]9/MJZKrMd<P2l^M.^z90qt])^ysRv/NG;l2X;e,ѽ ڧE$A%hf >өz;O v c{$D!sEWuM|RjC)!u|YC?b21OW_A^=;ԗDC.# 73Qq*޼PR43VF{!5I]wXJQH8-qj馿Z^Iq0g)IZ5 ɭ YNߌ9rYk۵vnڞ"Q:/ˊ|@l,Đ;=wM =0_raݵޏ6OFDK ^]zҼ~~@lZ)(\)ص 5g[\Y,*gO%y.a5%j!@h27Ktf'ψ{;q`E4-A;Zc< =rIJ<}Ak_|$tA,;&9R3怐_KOlG&yTέ͝v)_AH|'[(o:blv}Mm!یh`A'⿊uvV>c6?+򪭻a8 *Z2J <= s%'"tS*m]%][^i9}hIN{3]NkĉBa3ǫ ='W ^e0K\g@UK%)>L 62Ɖ~эu*+1MFdq/G:\*Vf8lTDXI} EHE۟ɵBU׽#JnEimuҷP_ UBfY=/FMuܿ36z0-\;T 4)TKs4hl),S~VV8]5ؠcJzZ\@F`F7N)r hjѩC,Y)g:Hw=F%0C>{,]b`"uoxAUM<<1UG?d$]hP̥ =Ejp=qVɨR^uFåe[VޟׯњoWI49Rs ̨q Pz z WF;r6Qp҉wzLPWLU-5{a<*nΌyN0;J lZ{Tuw|&[6A9_vQ+"+R`?\F+,5lMȕ;#IK>XGYH~L˙kbftjKЄ<#V3vF+]ϭ#ߵ:u#]7U*BeܒOA̙\K%gE~2~&p<|eK xRC+ȹ/c%:wI#T[)~QKDӻy.m2dⲚ-j+y"ȤK }`Q 2JP$5ּ;#7BLKZAVsb23cg<n9z2^9]cw5 v Y}~.m`k\̀ f'Y;vwj5x% ,<%GS)654O"0[l>jnU|ƆU[7 0_ne*뷹{ -|{IV/lfbߢjx+BۊL镉 i+ƭ3 2@%@_>I1;= dȀëv,>_RK !O^5LƷk(ϻs;G2Ua'9)ix3n ~Vǀ$No5;CD7-f,<#gzfJ=jŽ5"CIk"=S%eĢ*ǔXw"HhƉ{<#nfeg ͊Fq|\~4?Q[jdѴ/Dmhwm%YA$^_>( nqg7v4V7jY.uk8\GyZh+vrhCvLuP8'[CЂ>DM>zVn>99l$KڔֿǡJGo~L}~'L  ŘU} 0g{_'u endstream endobj 222 0 obj << /Length1 1546 /Length2 7587 /Length3 0 /Length 8626 /Filter /FlateDecode >> stream xڍtTk/]J 5 CtIw 000tKw"H7twt Rߨ=;kݻf ~ 9'G 0t vHO @P 2pق5M GY|edcwv!0{ h!<"Gك<@(;p@E^BWvn6 ҍ !/7"+l`ҍW|JUuomu=avݯl]`Ww_(I`WƁsCooo `J|@`߂@- C`xG`?wT/_O(naP7_S)(B^AP@L :ۋ.Wت?=>_ /m8`?7A}4mc//w<*Po)/!9CQ|uGGMUMU l qwoy="BT ^`[]UF un_  /jlPK "0jh2nkED Mj1&~>285dF=;/\oO#@"rvuG5oA7 ,G-Bb~0-chFQj }?b@|f-d^@`؆`nn#X|^-Oɻ9"=ɺiw7*2T>da]D3u.7>Q|ǧ5v3vQ5]H7ܳKիl~(|fSoJTUoQypku453Ћxt-z7^Pي`Ŵb[ 5= 8 {%ˈiU tgS[ÒuTB-&vQs1S2pn<:ɐ[X Uבx7QݴJ$WOzPc콁r  e)d=ZC@Kqx%_j38Wcw^mʟ LJmCR~Bqz'3CRѨ") juT67NG1Rh\dCg֙ܺvRpx"w-pB%n6L <1KXU[gL<:c~M#($9PS}fb'1T4Cpv~|C͗N#|6/J zZ2qP9_{PݲfP'{·cMjsݵIoU_d%yVvN I㟴>htk_Al+\|*!Ve[XlC< e//蒉+ulf#_uC솅9_kE-߶TNFv2-}_ )%D]q&i4Y+]P$Jjml4 ϩEFaJβB#u{x{4JȍIFhU]=u "Ѥ;z6ow.NoPҶ0@^DNqb5J5i+h/W$(Awᄘo ; L異8}=M}rl<"kdI#t8?n'ݐ=]4A׾vgsc|SB~:w2hFOY>f{r>.D+&S@x1ԚԸIP%C69 o*ЁзBJ m`:wx;j̯+NkfB(yIK$yx> uwN˜0|MAg^4qō\A8/iWy5wWǹd5L;͍/75'h3)3qD8Ij΅<<`g.B3QqfZL>{u3X+dde ƽxyygޱ S92IR.ŭ)Nԕ7!T:;23ͫA~֫s2[f}GMLctVI$5/>SQ5|.i2iGfkMiI>Ж7FxBTۃYL-P=?BƾF}j!'9#GO>=y7bAI.#^w1kUKjp%UtJ<`w2-Qq:}DiY{G8Bxϧ n6h; C kO NKE-/o Xjpb%%n)m -LIPN(챺9s_`n-6m\ʻM.LH+d?,oOCLf7 iEAl1v7*T(1}[繥H!'$7Oez_/䖒FZe]WE> $ /vD̗&]s\XÙvh^q `gԅĜ`ٮy=ЄQ62٤A^]L>ʗyvZKv&'-"2on颖<(XȬԼURq.[𼓷h_&/neMT˝hxqӎ øpX[zVg.g;ի?&<&n 8={&_ ;I[Dopr=i⅂]Qh1+t;IVjQo200Vw9 ؂r8|"5CCk(*J26||4X/*`v#^wRdCA%{pϵ0 ^M p6R*$6\sa4z_'Dtv#|}/,|xBluw,Sz_v5TFyp{7~uW&h'}d7sfMf}bWWPϗ]g^léN_6(_߽WqNnQul;!e#vA2i,p ]6`*nPśA`co5x&zbeY҇!#܋랙9VܦG#;mj2iܝD{+%|*-ٟ_@3/ ӫ?tnZu}'&#ۜU}|zI3lmX(*$MIɛuS7:FU!l*FWc[X`m%dqƀiqG4_zո-X-}dJP<ͪ" KYd` ?܍*IU%٘@ (s1dhDOyi3-By 1^cw==C;+k> a(?tv%l)cBi)}Ozj"e#{hMMWb\bۢ .V% K.xb:ݜUO-1g "oZO~̉u0 N.1Fk31O%2z71rϽg܈' UFp*B+:u3X_8n;f; E-M#D>=qE[SM\ ҉fV%*\ o, he$t`#Y?]IsKa}Msh%E="Jb1bq)՞q朧Y\>DMrFMN މ=~/ ̹e68_swē\܎-·Y6J"oIsO \HoG;40Xͣ }mUծ-^ĶCvŤ8d!mL)XcI?r3rZpa67>#ț^3ֈEcŪ䬖*좵~/]QF? Pw{z# ep_OdUGέyD_:ۦ~k"o7]Oց=ÈĹ;hTi64^W "^RZmAp:W?$EkQ8 rY׮`Ԭ;:{~v.w0eDRxU_}ʯq=Ua2/R ^ZsV4A|ȣ[OF!2Qt ] ( i`)5ɼ|~ `_qG*W6& e:PrUآ&G"_47b cSs;kډ25@=XT6L1-2uԆpDfXvmcʷKe/7K  l5 bv,)Aa6 %0&5`֎TAᖏX;/ T!{,?+P^ӺZ@ \j}ȶvx 5C;农j$iLweI͗A=V^jgv~#MJ%]=l `׏-q *Q!k ,ޠa'!OMjH3DŽǹ[A;|}ЩAYFU_O ^sj0is. ^] d传|_]zYCjv*Cg9B:wYiJ;eU~s92WKFֻRyU JUņبHN7De3Q 7|t;K煼sٰ"[dR a@Mxgn;^8:I~&<'V k Z9]-q/7ws%/Dm)VMjLS(,Ջ(pRm,{z?J TugOف%\dhn֧ANU.qcCqfьɝ䱨uVtf΋7Sm"^fa-Rs ~)]̢E8I]8"Tt8k?ۭV%&~R枹ѣ,7]6sw.5CѧF‹ url|ec'f2I"& endstream endobj 224 0 obj << /Length1 1399 /Length2 6033 /Length3 0 /Length 6991 /Filter /FlateDecode >> stream xڍxTT6"t H  2CH ! JJ(H("7sk}ߚ羯ڜlFT@ e"@(&qrpv"N  DB Bclj 4Dt1 "dj /A"("NU- Pz @vz`*Ap) Gy^. _`EA| ф8f0_S3` p@aBS`0"ȿ  ? pC =!ZB@~Ap ' w 1|(Bf*@~1/pH_D+gk 9v1Eā"}*'3Cp' sbQ ( O?WD"" 8A]`gǘ11}ugaM,t/ ((* DDD$1g$@v1w>8G 2@b @0"e_ix<?0Q>C-IW y{W ¨Aa]!ݿ0 1//aDÈ y0b4Ϻ0Klȟs֘8 PJ7B$ pFz:XL^a(KPm mG5V^9-!n/#;.j}?ᯬv&YLjdiNWqTӍ<5Z( b;:'l9]+޿r$X0 dp|NqlLhk˝j9wPGl.Ԧ.PrFΖΈ~׵Țc=l}<6L|,\#mBorHTGQaINiFaq%{Dq-8J.)hOnt1P e`ɻ)>'׳|䰑mM%%U) g l8F ߋKZ?,-;~O B$݅dQ4y*FpgwWri*N*#m6U;B_*XS[-o:{aIVY};go),%unļę<\.MY%ID 13y3M 2CgIʙ_}&"& |4ytCx/nq7<$'#aQB{.WRn$XnՖtؑrOyxo\c}=|f )^o'wڦVӰ {d1)QMuH㴅ЫgԹݍ0OFCUd ֫Cqc,BHJQ&EBXMDpEw4Z(/5=z>P1 q5(le(_]w`w>Z~+~ݕғBB+##ku[խH@"ZiC;AHKKVf,'%3ا߹gY5~ ѣ6qyz"?Nza()^!dqEF;O|1!&U*<6J#u+ شoſy} lf藌Ao%;hR[rֿ~5}(uHV1MS,zdY,O QmaӖSUIN{ȁʮ{ߚҲhL|LTqs\IgiFr:)i;97/+3}J CZ'l Z/q(fjEDR-q'<Y Ih`w5/WOs>I\tby;0zҞBFa`fJ\嫁<3ZJv`:}7tcT3 |0B?Z6T>;6񅭙{pyfO'vRčfT+Wdkᤵ5{,6O} ժUNSĭ+o{,X"eL yBR:aufbDér*;a1!tGLY0`и'bhial`Ay8֡+'[Qu~ՠ&|SŻnPy1J.0Ƨǡd{^:`cfy~uyykz iwbFOYu@HΤ̑I]ՇlMUEv b_1#&F[[e~vLPU (DFK%!8z1~=-+B=RW#'ۋUqzZotߟ4f|%?Ok/ϾAD?(TOf>͙<+G A?YQRDXG<;w7l~ \^Kbnv^t|uَ?N @μ+Ko:?*(5+!|'/qRv煫Ϙiv qYQF >%{$yv"ʴImlZ~Y,K:3ZXwؗ]qw$JPMכVuH i1`Z&25V]Ao@}Ϧ8˖*˜7 -OZ_w]uZXfa~qBF| Ϡ.,_wt,Z"e0Ǔ@a nJ؀MbO7a/uQO>I>\xՖuC:YrpA[rF^)otĬ[[AM ~'ڹ_{jz68baMFiq'ܤu >TpOD4>_2,O]SH"dBzj.l1|ϑmX3xnqo U#u}]><" ٭#ֳ}pՅm8hĎ{cR{ fSÆ竳aT UD" / J "qnB*  ̫cwAۜ3t:/[ {B3wbmS1GQYWYn9p2D*qaܳڵ0ؑ%7=W: &H;N9ťVo'J{ɢ;`dTMĭY'IKz+:jkے#\/ͣ/u2۹o|~5$3> G0Ȩ %%!xS*3r@k JQq աp쯳)5OC5ZGhն8l!v&_(+}7Q3ƜN4An-=юtX1v #i6$7yGvʭ@_2qb*[{e_NZH]4y șͪ9|cd΄PpA'e'42k벒_;`5jQZ\|@nT5xṂ4aq8 Oi U\xr9$';eB%hKwemh^Z &? 3gJXdktW\CAr+EOϻXk),V?V6_Sɋ[{#ǁ5n2~Qc}$sՕObXMz6z_3#dTGDQ#~GO4_GEWvL[wA%Y8{ek΅XnNñNie`̲|rco2)|XgYE܌-J2ZՖUg3+jF᜙mHq:EU\W>Z_&o=I=I'Q٫t_vurB^nDQ*$M} rcfo^zi=>#GW_U+vD hK 6ODهg*wþ#:vlW兢wGB) -F(_]1K՛³^̕o~K%0ˏWrY3#H~TG fƂT|}O+*`n~E!.U$ƦbB8xMTöcB{qay'U w29җKRzHjT[bވvҝoX38^8 JS ү).ڙmB纁cWt}z}aGTnb,}|SQk;SCSPS?Y;|y]Ҹ5{Ui}XBz(s]szpy3|T T"7AQ-^k>v5%u=R\ҝzG{XU~A~V.FؾkVIXS68:t͵e} >փ2+F86evOS\9zv ekgUGvn~H9LXꙒزR-A{#[q[YTN O[h2|o~*a~ѲE=rC=Ua,*I;3}a8;]9JH#߬78K3{js'׆Qv V/UɻtY _G;g(9Xd<؍bO,Susp0gI1Q'NwβofOrBEgşBLy*&[*tl(\&l+}jzIB 80H_IvT0PR齱sg 3{F9p5’w`cގ/f 6&]4%d1'> stream xmy<4r"w"W9M4w\9$HI9JYA!(BF֬H~~k>zԠWmsGtm ҰX0؁ R-#up8DM͒FIT K'n!h2B$z8c$<H ouBHkDZ07 Rџ7BqĞ& e`$Jc)$9@!o%R5A$`Ht| @AF!D 5 H“AbpF<@:ǿ}A?jj|} , C>D$@dt@* GTd#s!n $|0&D0&D0MH/DAP6!o&4`M '~ſ'@[XПۈ+#b,Fb>6~?`aAeLmFpDE]ш m' !}xsrۯvX<0ݎD=C|1IZבިw$T/|VlªMD.ݿ8o?Á{{i̒>ɉM+ ml9M]|7`MŻAfвDG3)uLmw d(wK' e m?,8M t{Yv]ސc@ ]\ ~PNhò.R :+7S21Le@-2ZkG?%4:n$S0'wMu@mju5qG %wf =٪:LwT$}#^jl LwfU;>pdudE/PPOQ`sq7e FZ5/=2]Wޏ,̀Ú.mEh"%8"gI Nw6Ͳ5rU' pVߤxr}7Qo}Y??Qݢ¯?p@ټqU;'wy t/k׍ rcnIzq5zY'29?-Yѕʵ(rEX6_d>?8\&gw[BRi;=Zsҕ3b<ާ3ACe1&:8 ]$9(wrdM]!=cC]%VI40K=zHmF.si1N){nuʖ?կ-z{SJoIQey~QThOqy8Hn N7K',E*cByZVJkdPSJB`lga]%ΡCB,O]HcwʁiuM٪*Z3*KuݧMU=|&?v芮6vw*Uo%dMST{mĊI|`o*3 ,X] {jՍmƦ3#ÄK%YdT6%x5BJyNrZȄ3x(}p!%EɚFI(w΅d^Ol`sjR-vJsOzxV]ۺȹ&_2+*`̂pmxQa/^S- Lu|u`zgmI5"i%-߇֬r-5*йP%=_!TLse/nW諘)ͷgv-sے3Th= '!fVaV&1ͪj< :PtN{7vvvT<ۤWx=VzbSF+u)9 + _`Y/h<7siunWrYnx8@ɯ /-jFZ$w6ΔƓrmgC V1QP6^(qN[b瑊"]OyPwU&e\WE? endstream endobj 228 0 obj << /Length1 2013 /Length2 7315 /Length3 0 /Length 8452 /Filter /FlateDecode >> stream xڍweXk6-H 1t) % 9C4-݊!-H) %l~ֺsu 49``y H]@APW5ơ sA@ 'b`qv0,غ~a//C꩹l1 `eg XmX\T07v+7.%V0( `R,f-lG`JPKN ]V(z.?q G;O@&;Wy;OwqmօZ] vP&O@Y:@]+W8 %Zw~7*1堖0+; _rqya!f@n"!OQ'G8}0?#pI1\wH%s\wH%7K/K!TBO!AB;ԾCws /B^r Z! cc]\wQ  wv?D-A2KQh8:̍\w"rA {,Fl_n  "?Ď@@XZ߱ "q"Bl*CڸsIlJC  ݃{1<{ѭmow~DoÍGpAiş^Jg v4v77 Nwn "R@%z/T/n|:Aƍ8 , b{FTwujy'rGH.Q~DMp[@;p۟r)߃{ܻR{u"}3w~L5AvP?O/}@ 0߰?쯟{O4A\E ;1|__MClmԀ`KIh}jF4g@x//)M뉰eug\X,EZqK%<61>Ƅ±u&[tFl{[O#|8l)wP°n^fЃq]e-nl&2Y&HU& "\`4"l/ Ѩ*3tsCK:\9<D}<}gP6w^ba4 "8*9q8IupXǘӬr3c;b(IgBfNo؇ٚ|:`dL')N|wNSp.(ݧ1NPRGk$Q|ҧ1sgN.6<$~|j&ZL -}h62b)|u0U43׶RM ˛U&q;MƔG{H=hLWCT Y_Sg EicR<:?gYX5Eo^\'tlbl/[  ztja'_/~aʭg^M?~if_ii(IK]я)K 9&c2\$ԓT*`#LbƷ&z˽3QׂGhK$^(~)"HP*w^Գtbݹ"v;بz^LmY ,!/ ^ R.9g둅-hG r4&C@8DeZ/nhǫWs0v㊦3QE;z܃}JbOpyO]6 (ӚFmKnl3#}F\sdԕE2xcR CAY}>NShetUM5{nU). y鞹Aky^, YbMNШ|h܋%\Ƅ7c[{&auQ#]NKb~+2nS%ilwD^uʑ';3(oKIXVI&]vWn6Dk(hz7,cg1. [IMrsp ;Ô΢4I ' z˔:6ErH6ЇZ:Ǣ1a] \{llboWvbNC|tK35|xZbŎw3(]X1Y3~.*a몍` `*a0[w(QzR#&= +/%ϷY~^exrYٰ&O +"= H^SNS.`YOT7W <Qevd:|<~}\Qg9ݼ߱MY @'!Ό%U/яd6ݺH&ghQC|*_ hQaɳ5QʲuJ,mk,O9pp48H:X*7{;fqbyN~zbܝ3=ȂTܯOFWߚj ī$eէU*1&Qaqݛ)H,. „7Wb-qҵ6G bNh渓>f]J f|h{H$KzUV=5F,j!pMόl=yv&Fh+ ڂ^n>~ڟ/- h?jk5,^#N"byXKH  \NId9ELdE㹟V$X9~Y[MQ6w%ȾOۄtNo PfPkW[!^ lT `awW;[0Ь=0 G]mA.)ߨDlvT9+jn 1'=^x$!,$&/.źΐj8y~OB_LTrХM4o\c[\j6/H6[/[,[>ghVQɸ?$pzP]3N.>Xa6R2cFOϳsB> r9U9K2,{S7#;Nd=ik2aݭ~Бi%D. N獀.Xc4h foʼn,_6Gp+'R^uܝɪ#-:"Gk Q N19" < nH.HaزP bkroqps,MAXI{Kz4dq_MatNCau#Cm>b 9*Te-;f}07眈ͫ. $F#'KiIՓEݐlZPģݪI ߼0{x4Kv9;v]6y?(u$?{90eu`blZ˛`ތS4jjd\ZI(G{/}G*߷aN"&^Tk4wҊTD3#> я/<ϖ[Իi &hR,1wq8"{x3K)wF뵲 -d4Чqo4~9xjH'!]H(MI1 RNT֞/F/B7"?4]p \P'8a\n`C  KakJ[~uciV&nZL9x%H\d\ fG#B7z2)(S˭O,vTjo0wt9I},cT R?Rm6}z&F]a*jȻ&4-Ix6ݤ˚ .4C[Nʩդ|vhG`d(vAZt1擳k0N V)_짳Iڕˍ-߸ܢW0PI3UY3EksZHs-,1/08BilrV4hO^R;^bt m}m,vBE Y&9JkʹK~`!P/jz[+qlj^Y,9`vaXzi=] 1x'&~k%*8\O ]kȸE/Hp-&ΟO\aZ8ɦ.Y TC7@Drs nnKȅlC\ Gjt^nhKEC0=ۭU^pf+4賤]Z▷6{Z +~r=y~Jkouk"y,`ÖR _gK|t:bR2Fag{fuW~ȒyerhԅjcP x}4514Z!BGь# Iʋ /803D ހAPz}+LR ]yy{F<89 >H 7N8QJ2dw|%{UGbm:CϜOwr3` 〔ʺY)JKvGlzzo "w<VVZ ǰy^ce͙N  1~4x ĕ6ީƵXgml< ݉;=/vJ2d([׸/;}e3LBBg\Z0~7ДuT5U~HsD, x+Y4&7WwV3:b sg6 4ʪ$Zd_MV.'=)~;C F{*eG-h9*@nETG)W|{\4.㦫䛍V[O Ď㝨|q?6"vi웫(f5UQg9]ԁIRX^ϴ1:+1I0Z _[\m߼l$bkvbl@ʹ3AD=q4Wr"~;åylj4\ɟ*crkKW(YOsN&пrgކMdv DIfr@EQ}"g"C\=`yftcq_gwF[dF8JHTuX#v)zL*지/OA֗21(|crɴmȩ˝7ԀZ܇S;3EVmQF4VV\*κJ]uL)ի] xwv'.y²ќu{M"RVš6O~w5VZDx H|]͓+RkEhªEBpAwBoem|>ۚdc1K2rKFY/VSն?I,G_j/"H:e*9 D -U ctcr'6-gqy*nf 呍>j󫙉H4V R2 /=&3TdDq+x7r26`C hp\3 E)R\iFK?˜xLt16ZU6'.-e#"TWOW˧2GD>L~X!p=Tqb=a>P'e|;le\ .~Ϋc'|k )Ggn *] шT$z61~h,QX&Z5p|Ҫ(c7!1,"~5غ^xB)[g\ĸt!'$XfƮ?{X9)Kxޯ}&Ud*} *sUү}:7V+AmgMH0hDc,ZR}M(j NNM׷ښGl5 q_1@]_b9+.`[@RE%C Ʒ2٪?]uTꕲeݛB^3jM6O,r0OٝqLi~}Lv0a3_.)׆#wEΓHLD0|&׺޶j$JfqxP_|} 6)17O4uReGVz[i,0]/j}ۈSi<u*ßJ5ÓW6VkN ;WTFk?m}3 齱.zC߆x/,Q$TLQیKPD,[ZO˨X{.}ϔ}s>%iZD6hEq;RF{/a+p X({n71HYs=y:gБ<% CY<f\,~*8L?j@yT pa,˃cUBҨmǎ 7FT%AbL8!a%0ooC.WҬ "VX(y+z"Xޞ|T'elyESLV@$]R:O7XE97ʗg5ΌRT~o9 eGo4-ΦY\uKզ W! ѢP X]ל&6n) s䍝w-/Œd\YkTYl޿6~jч(|Yuh˾rF{xizEhIJ/63RNaOr5÷x4ƽ7Y'kgsT%**Ktr/h6ͧ-s=ͪq7,AY@ #Bf Q/X4(08uZ㱵 &9V}jҲl}EeK!2 D6})KA40GX?=O00}Z>^ Ftx"IĮ.a(v'_Ӊu`Nq endstream endobj 230 0 obj << /Length1 2842 /Length2 23223 /Length3 0 /Length 24831 /Filter /FlateDecode >> stream xڴeT\]5 NApwSS{pw`݃CwM o;~b.{> (ɔEM FV&^++ *@I)4Y;:n@ NG P@`PLԽ+:XZ;i)bN^.֖V5W-51up8d`5` 28Zԁ 5 U5-qSSאb(K ) 5?Ձ` Euwpt uue Vk܁.ֿ7*03jT Gh@ '^ff&K7W%?ԭ]. 0n`9AV)yk3+w㿜`)I`;?B~״W86V&++M@@3p  0S  ¿].ioꢎx8z/@7{{fMADQFRBMQqkN G/gm=|_oݜ5݀2 6!YA4bimfm0sY[>&@ +7 taA#_f0oh9Sj`0Z 0+:A9^nvv&@L+"(:؛Uhl 2ˀL/`io?&zz,ˌl7j@+[TӇFvr5׋?)x~@3/f|6-ųo)y>j&BdvJJy S>jSb۽lT\+HLk2ig+| !=/)H hLtDzM_Wv(]dmrFMuzc/B`\3! ׋S*-N\o. mRmU~Wkz-ȚIP-' TH⻙wl]CE+jkڍPMOkM,\7EB ;8dLh7gt 'd>X0cښCT Ahp)$ꑎ5Нq͗b_[jN +rt8nk.:Kkg Ә1uhv̌e-ʉxX+7ؿ]X\W V<݇{-չ}. O6Q{^8 {Jj6_rp2]~؛hYyPllɩBdwKv.z$?$}A62?ͰmR+GDc]9H[y\LQQBv[sDxASe*%NA1o5~+eXMsB?/.BB!ŷ<J'I4Skrb:[W#MM)} VYsc3e+nl~Xx=* ߉w?OvK]4[ZzbHyC SJ T!r(z %͹-c5pdڀv??kfTSb]-D*(&#1ٶ=~շϖY@qLRx{A<.|I Qٚ3 S 2ל+iP<21J]ޑ?<ߛԚIB:]Wժv3 >,wZ,V޻AĈ+f&z˙;:>lwՀQs]+nl٤)<ώҪ!Q`KvŃMScNF՚_©}K)DnvÎ ?{bĚ)Rz 3b]fH1u# ;/14SHsBmha;ʝ] oEm/G[yhdݦ,ʅXNVs5^&)&c!+QKa/#cIe ]q>Xb}Z̨C"D R_ cRZ :Y[:9S2JLӅD#m({*u 6Ł+-&nHTi?b_S>oE_Z% nǨ:w5sg_ ӯn}>%AҜg]nbKoxiP|QHi7bQrc^PdٕKnT|m^ž;A5+Z%Z Rpet>MN$Fl*q@!Rs4_*$i$lpzF4͝ըh=p/g45/җ/OXFqlL_p?Qros2\}]2sb^˾I9Ԃ~Q"+ gZla#,(KE+lۘ4?ŪJClMƀr$GvCmi=hDCKb`DGq,)+R`:7  6D60To%G"Le\nt`gOcmtKC<i;[H!8pzW%xfwhR-zH۴zz,GWDܽ;xyQ5Ct^+ /شZR) !o ~QK`٣0Y1P^vA#LZk_ng7Oyd=HW+g2rE֏{_ qtcM1p5h:6:. )hR?LPۇjn&񌦤3Y&|CQ t{q>Uw0I.{N&MB~[6J6b9Utv{58곸86ݲxT߱I䡦TQXnxGf* <ĘA O{u"!6?葔Ǜ|ItV&A#HtB:7 jbGljֻ7WPzk[8O;2$MuN"1I4hԈR]v~, = #u\]וT^*@n!om?K'vK ]뾡cn;`*'|}O/QbDdE7#qGH.mc>}ؽw DvL9VՒH&.?ݾ[ Me36*+Ѧ+7ˆz Y_JZG β$^)t=1fHDV}G͔rn+϶VVQcIr7̉F+ pZygw =Fq) oP 1YVrX8ncz4"^v9bQ&`&D|z<:6NSyq:&/X&h%ō7vX1yg(kr Ϋ3a]kvf?ђuR~I̫C3CJxMțQ96Y/9L#|7ude.cϷ4ܰ[V2rZ<^:7M @PɼGO *nQ}4 7F0L0N{oPdP5vɿӾ1`c*SU"Gi [ ҁ`1z$xNp-f})=3FS@:Bvq9jo2S)}HbF P1P`k? *=xw'W9'M-:1FËr38K \OD02p"d 2KqLJ'g_4m#SIvJ(2gk&W[ވ+ڜǾ$z]eO}:.[nIҙVcE<1ES~Զi02Hӡ"RJ՝: Jd-[L:Ok*ņmtBWxSy l) h dWcMo I5zC>p#N?FOX-wVNr7&z,baSQ= !ī-snO1IOUZ^G|Ah EtNw.Rd37*5wRJL_O7l*E6#D7s@ilqW,YB ICs 0Y1UPYen? l `ny(¡(ՌN?F":Mo(L  M+lvE+#R2%:m{-])&_>ƣgo>~#PRS?woVE2{+1tf6jR.6Ov "S:8Jv,qR]b lejTF"H FV\cUKFvX~em&1u's86jC&=KrzbMآRSvrRK22+ <ΐ&+DX 6#J]M3!ŲG:=fɮ(eǡH9bP7uŞU"Sj:?CڏŒ"vr18+6 +'7/-%l4<m IźJnˊ^1:,^S )A8}Z>L@<. iB*$L.ΗYmg*)h@sl=%OֱX~ױ*ϊ 0>YyMgH`HV4Msx,C6 ՠP9SU shfћK=C]\'a{7/Y6YqNIpvl|~ϴ oC-=X$0`'g9;1Kky'pvF_W.%65<2ƶzF5wʍkrƫYc gD|-1#ĮT:k7gU P EM֊}eh;jXe'%v'nז8ÿ*G#+( 'ȉ;5KzM bhGM,p|cUO jF^uu|/Ц&#= 9P/l^c+mUaÞ0/ %WՍr=30f%Eh[O%g6X:E>U$f9^I\fFf]^܆ )ԍc6|] Q~ҤoV·Y}ur_0]> VjOe9;5 nSi-3:a$.cΧR9j!J_&md]Hm%ˏg\,+@.aѿ|85 kYj:qzWD3i+c|T:")gƮyWu܍bS~6L"\8* >b)I27TsB @1_a7ey`Z<7ʷ$T:6Dw}&# s3UzTSv(:MϏ/n}6do`uT@@ӄ?yV Y+cAL `?VSi~97sUwEEN24m2 O 7_`-70 /W>X~^?,B"\v$Kb8CDzJ8K?\9r€'$Q=;;.nSx\]P6NaӪ| DdM]-üyck*A!Aaq%rtouƛ933҄ u9N/x&f vtGi6}؂ż~B讼al9\'rgBEeG wc^Rg Y\ݍQćad=X `d7΁kXTLhÖHh\ i0d^M^v ,GdoGw|L좮E!~;"qO<ݕƪNbb_v4fm˿/s}ȥ4W2{Oe>D'dڛ6^+pǹ$&)iSo*zŚRN% ޾)zԹJ9Y72Ӊ1acY wz+Ma^#)2v׻)`t/''pV@E\)HF T1?bet ٝW_(me.^xkz `K/L<ۢ-?ߍv֘C?m 6& ұJ20H$Nbt/)4~M/nĵjְLJ@}ӓ+Y"q/`)7k~$< U8۝CUC]ߠx0(of|,mݨz6s* <*]_̾iࡼ?/u/1 gC*,6gs}` !d-w-~[8JsZ3mK-eh>̢/;HP;Ԗȋo1|_aV_-9MpJe-X\ף`pZa08SLfER?JܔRSKX69}'Y $sBH'Bc6Ļ6)&%a\@ǗBrV3#/sWtA#oMPlnS 3o|1WNӴ1A bg`5H+Hb^ %O;yȏ2Q!ȏ a;ˍFWJv™yLM5c1Y !Ҍ3Rׄb ݪs;NMR\_xz.н$7zKE^kSD;Ȇ>87i x?,AZ3+˵LngK.4U%JĭA8u6Q$&j'xO.".UnKҘ(Y͟W.)}̼ ;қUR1)MȘ/D3剃F!&qr]Dt+k`c94 -^0%lۻ}wlKIiNwPP.{ݻfK{ 0q9jФ#^X>oǕ`:T'G3$+e$B2N켊'o'g+W2%⨿[me 0MT$܋BY7Yع;D`H[c=HUK8{!&ϯ7 2m ɔ&|V^eur(ha+wmx&I%po6(her ܺV<Ǔ·:4σ‘~1NVMe"`*#Bx)'i&5e$)#J"I>, 1bi " B֋Mg+u+Na◺J!XBVkņdck#9 ma"/ )7%epП!9d"~Ύ1M5^]E'}qyQyn*NMG!u<^<.&eCs)1F6/ηYk-X嚭p|Ik5[ݣ>i^Sˎ t*fl h&եOAEq2 3oY H8| xΉu`D &qc%7|%oذ/U)q͘oA~"PeE.gK*Rgi[FO.Jq Ѧ$+sY|ѷ d<";)A̰P7ߌm0hvҙ Hqz/hCmr[vì_ oUؿ7 3 /={]")a=zHs羅7o` Ș{̦>tYUFNL@iQGXЫ\@H!vK^?`ʈ0r|Cv)OTEgD3Ά$j8A^>*DGq M|7ƫqNG'C|3A$Vz[B a}lnQ-ӔӸ$0j 1:`=*W5UACҙ/nna0'F5xc+_L>79n9$,Yl~|"c.301]+sڿ}5[;ɘBV3,U_}<S_֝1o[5d,ݒ~,P2gumqe :9q]Ѯ^kkˈ_ÖīZn޺Au*0YY?jOD_~kבNr=_2ڽCć;,NDK*38jmmTf)Cv9ǢUX  ؚMc1/ .U{9\ђBo@+;]Q*]Ͼ=׻@=1a$G*Cf7x&գϢ;QOh9qE>ވ.Ch=(Wv#b2I^-@:&}siWPqeo;6~&]Q`#6eKާ_ wn$2N1+ݮ|CrE!-XY;M60ؠ{HiDtB2^Ir3ʴĩmccwߑU<0KƄhեW!/6+}53]9Wm)|dAmPwNv0* $coDFz+lmMr1뿴"~.K&jگQ9# 6<*Xck;jR+*:y&եu xѧRUĚŬܸoOR{~Oo-]cn+X"Vz\6,n}*hX'kK!Z?0 eLɬ!@T tcB%/[AgK4+k8%UeDwM׊ƞ}ma>hckbc!jjej*^. R4XBT'wH~X&S/'+$nzس#LgCW@,S)yt~_ĻPz\NhUrrVx96?4Z{B?Z]z}5 ݯQ$ylƩu-W@^r%@|@ŠȁjNY[Eenyi-`ea%wE%x jD9ˆ9IKUOJg;A6"kiT֗WŬ7-Q7pgRܔ>C-)(:'C:T9ڕ=:k<{bڥDz BD/#>{cxj"zhMP6Rpfi8R3pl25ݧ}گib􃙩 AGHbr }3FVc=- \VbnX5&VlMԴjb*`>w+5d^XzʮaøV^WB~"ﳍdD"ˬ9f~]ɃHfJ=@kVJ.[{w"uBȈ}m R,\),9u$OQ +dW`GklS1$֕ ]c٧KYOg7t=LP7Y@ O}!k]Jԭu0lvD; B%ro!"t|i3ׯ#99ȡB=b}+OouvϠ\,)1ĥyȀpjbwzu0WUAo ~M6BIKlmCҏbC7,"|;V$_c3p$ ]jlvSxCQ4dv}eaw l_22ek%,bKsC~_5yHέEc"GT9jN׮<@Gl4|)̪K 0WaΊ=m>\p A), vw:OF@O3hAgdWc:2 Jlq_;Kgh*2r ae*~ .E 15xXI۪5ն .+:•K `ȝG|+Ȭ r-F)LՇHHqo NC ɼ}acu.pP -LOۂoB|VZϛK_9{QA1L3]Y nL $a Yo6I@҈_DC%)lٺlIVZؼVľ,nVa9k?ܥqԡE"WR袝o~%PWh!7R4 GKt{-{Kˤ]q+1'J=3#lFN5<*.G`8<z9!+Q~tϡqT+ bG5+;X)cqC!򈸓 cU Xb/E'܌86uԪaGf\$ y31FtEbPnFbN y\w%!L_Kxj|ږvFfw2~֓m.A 0b2׸z)G#E2My5d,޿k<.b\]S5r;>_IvT2.B`jML2:>>cXk{*`ߍ\ZUJQFBCQa݆bah{-8rpn)љ(HqZh v2=Ns[&}!73x| ]D-ZFH0~n-C4!ogFˇ$W3c#l#lm᪯%gXݽW(7:{x&gߋ}z}ko!X& M+iq$/6_7Kt~YQ =')IWPQ < <‰&2e|ʗEw~򩕴t.\ֺ|OZMi?]JuVqg(!X!?å6 :k+;( ! 2s}k]!,{0̧wcO͗X1/ϭLv q >]X娡C^6 r_z%9;h+Q]h÷5 SᚷGM,UK aQ'TkV 8b:~QMwy6ҪS{^{(Dɯ#hES/|"lvT~lOglnOAT񦦢;GPb[p98{ ]Xd; oWeә!0\Zodܖɱ։T,/_lWhh =p?Y.?P f*Lꨛ'ێL-cJ qL+nx;?09\DU > ]! )~R .\M#MN_=Ai+m>B7C-ttldYƨ'F\q?؟$5J}8f`hM8ՎYw[ʖftu|FP B ਺.!#{]I8Z(*i}>Owp$(bMܤRS ēIr|n?N1k(6aۀ>xIP\B-?ëCR7o߃Xֽ=-& 6a{:G0x=1"E0HţgFowdA|9>V@cZ3-yk'pXI>|{=l=}Lmg_w>^ŧSe??ܾ?hڞ)E&@*$Z֕;.d^P[!,)(RvG;$(E$.\S Xmぇ.J JȺ.\ 0)Mx\z\Bz`abVS:'"wEK:1M!Q0z'i?Xmpxz0{7U/$(?5T_ۯ:EsTc@X5!N ] 4% z8=-? [/[^ə)o^.7 扅3Xk 9\Tb4Я.%/:̽FE4tmn5IϞ|>]댬;yUz%YHwzaNS䞯ue Wu 9Z1?71_q/r@su/$+&skyGTIR% ec=hWe-!5E!,ҘAv.=B^0=3) ,[3Q::$T"pٞ/!*qedq .MUڠS(6 "T7y^+9?p0que)1 O,3`\?($kPOJkp5swUʶp' oV$mu ;kPwW~c7#;WO{> b߬GI 05=vXZJs_4ҠG=7 h#)L}k@'+ulSW WOW0W7"R$ȩb_頸%;$NLGG}̦E\Ao3%a# WwF '%ZclaѤvG40;'V q'":Wbd!6pD3'Q+p/b) xU)8]|vym:24X r#C1ȒѻTEGiUCM`RFs,x x\<܇>7ƃk(fu+fvbrDyqp'*g7 ipHGvPTLŗߏ]zH/O;,b[؄AlS˔KSNY֫ovDG@a1ܫj{K;4T+qtD>_ɒԀ5D*W F Fuv2 ͅw3p\x&s ~2w;h#f~xy1$X:U?UQ_=o1#UX@̽q^G2ʯʏG iZ~¯G7+ERmn^Qu˩f^L7qrbp;0຋o[Py1ld?(,2w,g4&h#mwNNa4}i8ť"e\&lD }>OLFSA80)hgeLG!7@;f]y`Z #e`CrPھdӞ=wet.`\Z6{_]LΝ* a[ۡ\ѻGQj  U(õ#FC8SÏ1'ĕ\v*Bя0MGG ;yfQ}éSx8"##bH)`[T@ %cq*A/c/ Py:8!>*wPȿ! rKg3p<z55kA 9׉Txy8"|g?PND);6c1>^hF?N&,M:| H _˷%X8u9e$U~*A'_\lhFI lF5$G6ޞWþEZ'hn "/:%wgb*ıIZļ-K$IOɢg6?x79Hzj<6ǒha dS|N*/] _j8Fu g)I6 0'^&F1aqv7*vS ͬĮŭ~ܲ@h\5js|>]"Kڷb#;/]il7vϯS6qV²1}< qSuo-M/]ST.}Eyɵ*&i0D|kٯSIpC;>4O x^c4QsRÒ3h# 'Crf1r2jUK!Γ?2FZߎ+;p9Rҿ>mv6]c i<%\3fѢ`;Kp7FU/P|a!\ 򳨁U4NŻ-oH$^<}AVLΚ+nxw@p#@QmkO4>qHq)]n-bX0,> Һ< ?H =BBqt26AVi!oza #AhX4b4X 1\-88ߩWqy{#Qca;=ܨDAZXS4쁮KO19w l1Ǹ3BI,bP\b .8_ o0 ],[ '8!b&!v5D=]n)͌JT[OE,J t!̀wP,Oq.$&GĬ)Uqwf#:2%_ïZY<\KABK<>[/rrO @u%%T^UY5jL U.  G:͔NUX*>WV &220l1{AĖ|Â#PDIG%QwWܤJ0"`/ !3Iʌy"$eWij v6^c^1JNOay}z; 1!3|.RBl)"tؚ&_nĚX)Z!Q,`&+hWIUE!C(,GSB VHیj<5) f<q_j)⊩,69K^|T12F:8]BLJO$ Ϊ!|rtnsyr$Kk̊?~T?4 | &!.n]E==Y[qzHp;7~}aH1(\!Z~"%8jPͶY2 6xz"t~X _H Сi#TUw&|发2Ӛ[P$C,QzJoNGKbSq~{)v'?\Oj=X o˕cد,'* \seV gZL d23]/#sosdu<81o="i࣬P"lj4i7as.rYvŝe33e"(g6hZx[AXx%[|#1o֮*^3Z>9΅}"BU:O=ʊ!\ߡ?I{1-w$D!u+Ӑܑ խ y≍P5FG #6 #+VoT})@{jȀ@ߎD 2B/&,;椖ߏ@{Qi3 IZlmjqvj"a2ϴW"Fvy; ~ sD}4X]=]MfԩKWw~nIa$ cgÄk@lhPkR[{;udL;efM^K"͖&) ֣`^Ŗ=?JaԮ1 J_U{ ӽl~ª"=PxZ4sF:0Rĭ!{W;lJSl"o }w[ϥ%WϠEܚ4madհmu!D|ϊIHox(lU^V^.Ola 6nGe4bE9J2B?K%cC{d6N&*Vx!ORhy#u+qtH@F\HC#Ypbe[j7g v՜q?UhwJupԒ2't'"|^6fԖB&󐤆,u_ݥGO %!<'mN`7 ` R F\3ony|9RV<_t<}Li7;!qE@& a[*>GU\|{`{&() 7 Z3,A"* xec̃^pG]K!¦%(o(lKfy߱$ s:\}9YB yC'OP6Ŗmw@،DSP y*Bd.< Ob0 L5r'eGkDI^.)og:#Pks9یs̆r{UVcq0]"P)v/$y6IվP_m)e@= C;u=9TP̏l7$Rg):{f IBS`#ݺ|AwPEVm x Gh vhGQ$lgem vT>fL`$}g['Yܚc'x҆.F}kkI{sA%Ś̯cf-q*9;KcTQhwQYe˂嵗`$IPL[8s‘x&b/ Fp(wv D8vI NqCݩN{iFm/ |CfI?* \wLC8b(ML- !1i، SHAqSFyN7gKˡB+f,XY.pp=_hu 2FOk`) zYE¸Pwu6H0#'+70AGoYRz:ʥPqȄm!߱\4yjNRٝF_7 #33s'o0>+k @ lWڜs;EXBm^Qo,GSHy)8w.3'23TǍ"xDtcXհ_5p,]N[Ls5Yګohyp@"4a]tV3c9"Q4=bȝ|3/r.1Nkj  A? ԛIݼp45אЂD`Z%asohB)v)CdP @3(@8n!i>[W>"M2126c4y*Ӱ]Ą[5}Tr('J $ZPx rJ"sk˧NTw-(+y?0v_vIq(E_'~^ 1z(N d_~0ח&C?SST;Sy͎Oa|T.mP8rp+mJF$y> stream xڴeTM[pw!H$Xpwww XpwwwKf{łfݵT= Ɉim b6Nt \YeGZ%Lhdnk#b;䍜3#8@û`:[G'ZCw7H"lk`nj3-JRFc,@h L&@UYTI $LI^X+DTD@5*@w49w>eEUU4Dp:8n?>3j`kO=+)?TWamt2=Șml~=bB8ip#_m ɕQPX8m l EvvpC.7u!Xyz8;z/_s+o ھcCOz"2\6#' }HEmmY;O]''[wkKv6@I ~7 =fdF?.mn|t4pޞ;1͍S]/;o(9g` 4uzNs3Rf`mnw3u6X_.d>6V-Ǥ(Yc2|hditt0?|ߕ@/&HO) ``>LOq63&z:[7V8"'^?@/GAALz?@U8߻A5 FA>#[w1maamN/Yodl`W;Q?齣̿ w_> hWĻ/ /Ŀɽ2{_2ɶXދ:Z8|?) o]++Yumf~ot9Plmbw8YotK?pGs[i <v ~L=/I`*~(s29+;9Z͍ߩ"k`~]2߿5 s-$dI2-󻎌 U~~j@7¬wERcPѼRH2NrL> 6=-=IL] ˕Vz``6U}X嗿ؚ x^ڼ>>dcZE/Enf9u2G2~t_yh vxb-<vlд:áq^]Ij`q_>?_n8|EDE5A%K:CqF4 1½:Yh2Gbc]PwtKv BU2bDZC 7?}G۷5 n`c Y`lb~&$_T!Ĉ}< \Rwd o+ eprGBSFAGc\2a dzfkȤ%/C2 ɤb7h \; KL؇|h I\iiAl/}qkOO yegQOg=8blI^} qԖgْ~7=*[k@բҥFsy[Edǝ*(?6nnNf()XFr"ħ^/D$1xr,ڨhxb_'LW齃rC> K|D!Dsm\W'匨 QeĊݾ/Eo`[||2vpgSX{͔~XY 5C+iSlz)YA]/g) ̶*S]Xr#\LjR<&_a@p5Z 4oui+ lci *7Jo6q8XhjcB<)RN.3V7˄'ieuNfȼ?T bIMR S룻rS t^vD{)@Ojl3)Cv.>')i`m1?:JY( rW\yaVmI&sıSr22XWQ3sP5yeZZ*v7dDX6;V8 <ª/^zJ;Z׺}Z }նPtjIID0h~1^)GJ{KjD:9'fqn2!A$m^RHWM9w?82vREw`p +^tQ y@|۲U.BJZxЎ9#!:%yAl ^0y v9w.բMA7I9g^K^*896"FD)f)if|"+SLgt7Qk:b\`+:T1v"xB!}k^#C6qAA&Kd_#Y)nKqr?-H?׈&U5PHS&~G\) 9sԳY8ö멏u.Rh=Ѐ,X P`o,yH-8aK-r%Eht4z8&4ԛNLha,їMcêg6 Y'qTϚ Y 0Jpyҕ.=7k[H8ϗsctIՇ'&A#.FBGؒCuqhovD4L/`ȉ5ܟhx pt_yA%#SBeҺ*H{O{5q{;W,>vZjw%񶭰1B}6%>tBu2W,b{&V8AZ1ycٔOoɇ'xBܟmdyVz DFMM8j'?UrC/0ac]W0Y,k0A> /@]ZL L A+g|2:7 ]+UgN*rs2v K |)N c؇f#ëA&$"mzt Iά"yfdHS܀aTe5{3~C<Շdx pj] Ѿ&3F-PerZ┬z*S!tLmЦ-OKK!,N*tVygh.HBQ5DK{oo7s'*:V9xސx#鲻wWfפo "R /5h4jyeSwUgX;( zL`f y<Hɂbi_jR(}UKY.a]g/oށ9 wz\+EKe;ڗr=!*|:~br׺JaA m%0S/0@Vd_lNO]6&~Msz>qRt}Ť@,9e-ѹMz/-mzr 4/Qww™ze$Ot}/`ֱyO$Ud vȳ[dG͘-ig ^dz=ə027oҺu\ VO}/~G)1TNB<˧1K%GWϯ(d@PCI2yhv=049,Ku,`/&ϠKV, сɝ(oj~7ܒ?\EHBr;#tGߍ d781i Y6 g ww)]<}KǏSGvT30$ʾP5%dM`'oMI[MEri=qF L>QΚϭG~ʜ c_n:1iJqw-":?0=ɧ ָ)%,e' ,3tX~Pȳx1"3g6©/ i"'UrCΙoM**q\ _f&K1u]Os`h 3{}8("Er>k$tc:V!\E)2ŌC%cc5kCajd:/DrGo>j'T}o+CZK'y()Ӎ|0d?}Z>v+mO O bTQ:P,8j=.y*nAc :֍prbAJ0(h}nx54Ybixuc=ܘUWwNJyDC;V|⸙: WM=p}e2nOaKeIuY%D $n]r XWe [w&5![UN\Yk˘f[+lVyi1e0{87H)}I\y?os4/\4Eڂx55ؐQ n@N1!1瞌$gbF|.qƍM-8<J6Ygq4WҊUY1GUԛzhDQ+5:bM@]\4/Ms2{[N r&Q1 IdWa Π8* x"g2i"πWk*`:GN97g18x)%:׵Q4<u~Tw1pUщFin͠?5d݋j "ї<=qߧՆʺ ^+7VAүWMN K.V0[c|nijLh8!x }#Ԃll%3Ej]ꂋP3 4GpVw 0*܆=@o;H^+ Y"q־EgIb^dN3$^=;zR%_&{PJ$ir+Mt_H=L>&Ųs¾*?d:N5\6}8(dwA61U`lV3vdGvT`-bup9pX+H Bl9Gg1.sǶ&C#l ,pxY~v?i2I%-υI :7T64?rS1,[VnvB bų[]v|Y uf]6mpN;x'R{8#N#s}G\#I}¼(ƚeTLt1o_>hWQeݟ*xrM43i*/[=1Lq ;; p]6)"Q̄9S;=)?: (U>Wޖn2uw-҅nIHzaЧyI},DZ1مxjS? re7BR ! Q uO!ɣp.YnW ct J: hn2)vDQS1!hܷwKM(LesC__p4 xɢP:$rc p&5payuaoS4ᖑҳ JUF:*g0ڸxIl Rp>[F 6ZBuL8VƸ_.[G6iZC*r$Yp*.QM9yFX%+aN,3Y.L:JߵG"C&ؔ1VAځ ;9.~%/fcIPd,ǫ/^=߾6Z9,ǒllC}q ,=eXCiIA9/O-KVceڸǚ8:lQN=^qeoVr|c)鲭#g +ҫX0-.C*ɗlr+ A( xL/8$= :5G17~ygwjx>0I8ix.D,T;vkeX2 #EAR"/?!2d*鍻2Y:僉/Tp bHi߰+Il{6h :S_ђo,,di/+1wWViE9tz癆PFI RtI$j]|OYTa$$\hlGm!7wkW8U;?ŋ_<~\Jw}(JIY>{f8_\t.2^ս'Bذg$R%.? c [zP]%կ\/80iLc|"C1I7 -aҥm ^ zYsK7էh?;5 ݱ /R6WBu,P/ZO%|Q<}8  ByG8 `V B8 ٓK >.*[zl壞3*`=9 T &6lP7$u7Ou )3Q`-m>W:Pww>i%8Y$|j諹DD:3zZ4oXn ]KF \oе^f.a"{[okгIݸ>ƕ*k[ \Gm/8 XXQH](I )_V! UZރ5֬16%$'t}o߆[W4\\ ZӂPwC>ܺKCƩ%0bƑe!,"M_[V;$3@Hr" wMdf #m¡dQOc#w6Ix!bnl )"g)Rii+O0"fR3ůn&d_:ၾڌ~V@Iw{%'5o]>>>5MHFURb\o f Ϭ $&dJqUvOA9%(]Դzw*|FB)X)yY2& :jV맒pVY' !d5I)E~k>=ۻk]]'+.+2c'GE ՇN "/m9ǬjYSF~ %뵙Lg!lo3TNDv0dAo3."!Ⱦ`ބd˘x}[7lYg?Wt8!KЉp=ϛUx+/8(@qؑ=~8cq[ Z3Bwi'3E PZ *D *8h:(VO_WEQe 곞ʃE=fİÁB]ՋT'PQP:^QgH$JLB$$TCU;7Ao]29/nppH[rT@e$@;Xp}yɶ]NCoLǠluf`@A)AhǀI奇6ܤDБ+%&9GJ+ؓAMu<_R,8ŁUv9jEѮ9gw = `ʤEjСVӌLAmE;/~N2aIg50=a+sfaTE/=.^>?ʲȯ#ez/UDxO&iRJ>vV([Tط=.q0;͍sY&U!gO=>S4^wH ⸃z͚nM^mVih\l!+FRBfIKNʸ@3-*=}yCo^u$Ti:9#$S55o8 6 ND MnJ?V5> +hΉDHɏS$Ti%zYu?NڊrW5!3:Dw_,sbXЄ0F|?6$RX -FOޛ?,;V^xncH)t1̃T6A} |$ry9LO.\?⣥LGdo"t=}AU,m9 .t4R&i_S76={qx_2VEyxےOMRxx݆8e<*+jcXn8=0"=g|qBlG?cDǾ[665Y1Z'â-.RI=j)CFb߈9jr9:Ԕ=OW]K+venTTz0)GLdW/Fr)Xw ƜxD_fFNz ֽœi=ޥpO[ <[6zu(F#i ;}I1#!5SOi'*f7&/c}k>͝1[:hrլo/;=}­ZWV$ьCDd[, G#K3 xe0eGh}/{T%cwQirՂ-b`fn#Q3% d5GGaYWϦFB<=#y'¢bxdPi'N&Xs"w6po%6'ki.+h?.y`b"m3@S5%QLo+-xא2I uX\3в/kn,Z㹞b|B qxy"}lRŃ*Ȳt'n=d]Ct= Ug[WWhN[L#3%iR_E6(m MtB"s33}Vad]*hN&չQм_QUFv'#SN;[Xqݠġ bճ|s+; F]L- )*/mO۹U%Zx͉k S$bDV \ZoRH݅}r4o'$1Ep.^l .,ulbOc\4=y&:03LRi*TS(cV$nRcpTݕ)A}Kzͬk Zelz^#8[ֿ aڄo_͌ md&}FaG0~8Oo( Z(Tp0t04.#;~0G7R^C$wx&  Jؑ׎VŸ%9, J:C*.vpv0Ęӳ!ijpXS<Z1uF k#ei?f:ar2оpzا}blMQIIo,7n䝁O*k TbY ,}v͆v?H&DpGlY}9`Zo&dqC.oLykB. gh*edg0J= rZ@r217\J|ۉy`ȑSi##~Vť\9%gF| “e'pGqb4Lq ژV -?9>(=.0h?xdTaԇ+{bID-*TǒYB;5ʿm_`:A %9j %C ђ^"iPr8ƭ,?%!_&9 .g|搫o'wY$O+6s&”y6x uҚ[Ǵ<Ý[o6k gK ʣͰmGR)X<K*{V9ډ:Bp)z1`pj._wRʔjNloRXh& С C)8ݎs1mM!`9mGUؖ6\ ZYsͤx6+ᣅ\t@}>BEC'<"@w=B%m% 8To9ބ/=a89dI{GK3q9ESEJhIf l07 Yxe<*@`Z;ōuv^bl9{(GpHsT4ԼK`O||Q ,h`y))a8"?yZXGPSz<RB{-}D)<' NiQz#uc^='(F;dȇ\@ZО.H'Hɘ: c =UA'Y etH3UJ OͥP2c_?,ĸꥍ5f:8D/4BOaQ)$8_W$H(j vi{<~:aQ`ںk/=h "31a CNt5fBy>K=h( *;q*CP]#3^Yw54ӄ=`wl+Gڏ2KxlrN=)Vcb_+W`+KMk*y0Q . *ZNs7dk<$EY_e'#̇l42'56H]YU;ʳW8毢y(2 e4ǔԾ{z嘌8wBԾd]!Z&6.m>}͇7$dU3#4@`= h '0ymJ^3 u)eZ*imҵUYZN5YDb"]vXȋ&L-]Hn6IIcTu #ˤhQ!rήaR+Aʜv gLJ/<痕4MJPXО;~_NtPníZ\Bp_e\[~Kͽ-UfAE9CZjD-S@N+woaXTe4hS% 4l5qʢ'{OFUZ(Es6., nd4Ս%&H"C&׮,99.h'yiFfQ$:Fq86FPy?"hFHIP&_Sh݈JTgՀ&M[Gj/1Ob9,ϳ >e{ew؞H\v42_BB~,&]N`5Y"ʲc+vQ@LZ\YYqPcix:H.oVehC^n|E$.~m ;|.wg# ݊%ν\mvG@}$h{U4)ǷO0gLr1ɻ1;k$Q{ܪݐcT24G \Aa~'"+RD9 E7 6M-m?`kp/oZEմ毨W(8n=j} ˇPsPȹ Ӈ aJLjBo2ja.d2h,c27Ζj=a_|v7&)UdH耝vh ژRǤI,ǼMU<3%:+sِ$5ĤmxPօV8 u/9 2؀`@e}֫!]Vfб8nSʹcoK|&[k8q`퓮qvh Z&46>{ b3Y4\ԫϹ+U6p4f.YWMM٬jXL4>ef ]I (`{9<$gCiTRH3 1-PQ?g,i&m$if|Zʃ,ԃJ3#MdE J:&R>ďv|tʺl7ݤ `?|^OVN]B 465UaA7Vv,,e1SBD =` U9J^ +#X'1 uН{'lݰL$2˞4V~}}` #d}ylKZ޿2<[޶]eBTjk`o_nۊ524s=( vV"6H'{2x]Ÿ:C;m!%viIepD Ntee! 7~h5ODEɕv9d}!߃*.@Z1T?-ek~M`t&hw G@x ZvP"?ݦoonojwBĺm4:ӵRrqsJ >_.1q\T$0 ];u>9^]-2n8!yb=PztuR=kY3@xa]FcN|#ѿn^7 o}p,T_ gz$XKN?+!M?-u 7(Cӆ;^ hc

+qBw[8p\ߨ5"$<{&/]Q}dY ұ#˫14 R:y"f_xeW]_4/ޝ1ANg!ʼnh5P5pҟO ?iy7hRːG8j#>WHHGte[{ph8u/uц ,E;um!Xjf6>;%a90-٦`T~xٝAwC]8gϒootlV |R%^IXlSA.f%tP lBWO,/Kڟ@}an\[(W/汎S#&$"1C1ZySS {'ɎdQ1Zb\~q?߱5 |^ly|> stream xڴeT6Kp݃;4и!w #ϙyY[u{U?)>+0%lXyr*FN, "v֦  Bh 3r8- &Vffn $4{F@?@əC 5i>\D=Ac10[ mdbedٚvnB` 06ؙT5qe G`{{;ETEUM &,*$TTUU?|uWVRga{ + 7FQJp5s'͍ٞəќT-@N7;G+h [:- wa 𯓄ݿ6T~8}ȝ_aD8i/sX9+( 1:mlM> ]>@S8:!*K2]k/#\1#['__35oN dLNX*G2}cxb<.f 7;ImMEll>vBK'g;Gllo 3}/́ft7`+f+`fd?N^NF@ !pLA& 14DjkfVW+P34jjgk0!094?$\likd_a[/9I܁ gQ/Wg)5XX%T;Z=nc*v}- ArLr2j tgc*nkbg 5~9:y 04//71&F[;rA\&? .C,,&8fY? l&0l ~7`r7`r7Q?Sw;gBg*ΎvV@ =L䌜A:!/&߼EDܽ?c`8p}/_my7@w oejShxT47I'Mx\mR`A@eorm&E0֤S%#_9_qluF %.RCtldA{;Wv0_،[|)"7y^mC .4|Xbii$k=UГ ZRjYQapOWbw, mqĂ$EkL[m&moRnԀVVDi]}k4`(DG*7Cʝ,Km]=3~q-L%ԈW7Sp&-]1Fs/gu^sc~ľHxLU?tv~+ Ɇh ٠"O;a^=ڎjt'u3gZeI~ ) 5_ONpIt;T5(et{Md|7Oc)$\-6]*c/g4BeM !rٝWD0,[χE>^=t²VYc-u $z=V4~0W퇈{Zܟ]dp 0IOtmhȍ:F/7f~7U:qr:ZsۻUwxiکJTrsr=ƻW%kΡa6S'3,+ҳ\g5dϷ;|g+F^>E^~4v ,ud3IvxEˎLG!­o f|ğ!Ioyzc1Qv-d~#pgB0 S]m<O >]NAKaVC~&|ޕh*64nOmY,,9 ,{Bl Km]Sw.B]$6P\ENBKamo!k:]-AɓRf/6~gj8dHS_pOU*!Ϝ1 + .3$iΙߓM0[k\(v1!$Hfz1`.i$Z0fzwy Y ADx!gN,7aYSAR/uwAݙLT8=Տ?|meO3w0 +AX0 g/T-JsEoxFN<*vOQ8ok :i/T?{M46tU-ZRIO`IyilK7Q}l dh&48bwʂz;B #{i`eAc/aV3RMsRr"C}+%um}O'$t 7Bܷ?(S=*/*AOfˢ)ꁩUe}ㄩb_̋ 9$k2X1ME2u5ٱ?L[X*1g9&eP.ץGԢqϩvvwõƌtA`X9W?Im>?.)A\MF9R[2Lޮ儋aU!ٮJz$GX\Ss=QfQs5e'[Ců˵ewX#W7/ƻehZgpΚ}n1ł\S&~W.N¦H(ZLIz 1+Šv'*%T .eKuįm Jc{ٞ M{ki(NٜW<)HXS_  P;U{N}UӛjoEkש5n=6\R ٦͓auJq ZM(:+O[q1ILZҬLhƲ309b3p_-}D{fTvrsMOlٻ}`ɊGd#D.1ξEO*k -*8ǎj޵sJc3_Xumf#%PܽsG"::&C44VHo',6 [F癜G0(A㲬eMI& =Wc5 ]Ze|HHLI:"q"5Nn,19VEͳ^렰SK ݘ%Lnd2o;q~x} ES[hGVD/θȉ\ dkbդ{6[$@h+QHiM[% 3A\JK(@v]wH:!.hn?yhW9Sȶ!6: oyzb&YMLӃbͳF+ LDip@'P+MqIfRGlߠ[ ?%zCrDa߷끲iBMu*v5~2oC})'瘢fe4ȤmnI8 Ev P,ңr|sLFmf. (a .D'Bh7uvoնg-:-BlJFWDf1bx*Kv)"۾P)@a9ShوgX s,sWtY -<Ӛ sY|b +K ^ƒy*`müQs=ce)@tkJݐs|N;vnᚩ6.; @-F Rj!hb:]󄚟mUvFBclJx3/ɝVC57)ƾS0@PCR?sovV՟ůI5MEō9I;KWC\1Ŗ jۏBP>op ?p@+}ThuIccVJH5aP{| aOь.>N}lS i7bu'f"K" ^A!%Ls>m}s]ƨЄobi+^AJF1DJơ4 eڟ<Di:w^-g21q؎nL Q|LHBYbᱱs!#mo.ڂcYK՘_F'XwL'~,f'bKR_Xcى YvS L[w@締_'׈V :'`q&0{``QiAowx絠#f^BI B&(j~QcR&7dlҸ/Yk:y*І^DZ§he{er}?&\b(rѐ#e&;λ74fYnIW;fI*']} ]CQj5-2[–20 qM OcfPޫXb}:/.,b=:C3¹;oSpl+f# NgE'ohJ̦:Ed^?!,귈~X}6IRT8c0}y¨TƗRXMmw)٩MDBLqc1V!MۋV"Cpn _m)΄!vpKBQVD~rv:|6S uoA3ԐL970)q [ZkKڂE!=iwãBNR8[lEo B$.4 S#<V$0C``T`xuQ*%G_S>v& K7/ S2K?Q~!wӇ?뇕 Rג%D.3JT%Rp3׶4 n^k%W~rp¿q[2?]Nɳ΀Kp:LxUt OMƳȗ{1,l'4fvQZC5"rzVF$_qXgވ9h"s=WXjt{6w/j)#@"ƙUC"XԶgUi~nOEvDq2*e*Aȝ\7uLλY[W]7b,AL,1cS%Bmd*czvzi8!!dC2&$?}'у ( 4ا(կPȁ[ɸ%,\;#4Z4ʊ awJNJ%}DU)\iD0Mۺ^{"XrnmubHU}oy ʱ8$.qy+fȾՑ[(%[Wg^~ Z Ҽn?k +/:߶b6iUA 'OTXY\0tv1gY ^~ gI+Ԡ`e* T`j K_-=NxثR5ĔM1Ǚ"7>Gdr؍Nv^|(L3&&t\ٓ}¶n55vɑӃ,܂E׾R) ɧ N6#Y񶭡ڟ~dWoiAD!4U_sptd'dJ=qeY#]J; nn"d2YX SRsE"pku^(e+R8w4Z4Y4GlN .-'M1ȭ/a\pOQ]ك!rT25H.ũ[q3XmBy^ NZ| |DN6spQ|؍> ^ 9"bt ̨#0urh#@eav y-)r0:fGKVěO5YonF0u}\|[G#삢MUҬpݻ{&nO-}5p; Q)co65=M>FngA8)_{,ЋM,s^a}cWDwrg{vȯO5.6D!PS*Yycwϙ78p|V [=m(џO޶/W\`'*df}Jl{˜[j4?Xj Ъގ J^~wbtlʾkEicpF|ˆ!^XXL`M H:fLy I6>&i{h1^PNgC-ȧF m](ZPCd_ѡq*:F>)8"sPJcf[N-h1u%]k="!N!g߀dR&h8 Br/}wҬ5UG_ۅv7U;SL ,ȭWY,#g*eG&/?Ym÷I1] R,_xm1S~1ӗ,>_C ż!^NU8i<ѴƿnrVK玗e+qgE22j;yUn >'%`]-9G2rW.xȍ_}SԆ4B?ps('fMvayrV3ŵcZ0=e rE N{ #`+ߴc'j?_Ya? `1Re/_Yyبt| m)"Eoʌ9.zi0zQ 8Xp(Ny|*N>gȃÐp}ELWYy}H?*,,@rS vd$+}Mz.5i0\c"k5c"B_A#:%4u 7T\xSkfzJb'2 RhU 3M!YB?Y5.*+lB4/2@"Z#Vho pst$LV) bH{ t Mr}|+Xwʖ4OQyDzEYt}P" SdSJ&f$>rz7+%_T{_Vѵ6/W'jZ`/@˗ZPh„h"$X49z0n mrvI;*-%8BlA+It)3훨_7jB&j 9VHd礡&hF%8<ɆIe9iCpm˺Mu" Za׍Q|L`cV6/&P`k/ Xӵ?O<3DY]j$QO)]Y>=Ty|/Q]" oOC*+z&%ko0[NX^g_u.MQNTږEs&&zWu9F]i}dU53s ( Jv8S /(vE9UO*M3WF<h[ N650NM{͡}y04%#/2Ga/}#5xc3:g*M`GW0!.Qs=Qpc aJ]yl ND[nq.4^k%xibV℁L[?Ӛ[.{\+Z{Ej(9uYqRPFk’JlhaoxM5%yg-z*=0TK)A%|fYsL3idXͩ&z檷aADL-Z/8yʹ·;c6"*MXGa'];#9<' [Agǧ]A>[5o?'7]S/)L uwUT|P3j3 H(1Hv^b漊,Hd9 ҇R!@:9ZG=ìo9Fq N5&б%AABpoa5tļ 1T&j׋cZM-hx:GSTv+ԩ=i3脜na)te#mvK6_7M9 |+F̔v')ԛƑcX!À1rdBT;G1(m8Qz/ N!Vlsż @j{ɏV,(B_BSv-VDgc?v6Q~gqW^Q/" 9JL~hSڞ`t :'FB:0د0B9,(P<{0i_xuŦY^>srlq9ȕQȽ-#JĕU7$ E-ms&HB(~3O-l'R2$@fLTa7Qa,]v-Y &]ښԖ' vԠa)aDWsv:>E6g{x<aF s= q67|pWpԓ=~W>9jzX6 $$DȄ]ؔ$rҨ iDFƅ;׌XDvRWBbf nK^LAKt]>WLϲŒG]"kԾX!ƟcuST}n (Qz1,&_w -8FoNa%3V7Dm%*F#1GE`q?5.m.]=[BD&eeYKK8 +\<||2ҸNꠀ.$s!5ܗ7o, Cg7A㺵%ȥlV1/;5gWT4 XNqȵ-k6<18fZOt+~]܉f$:-M| rm"ș7V8@%R˗tѪy{s 8ڨ[">[ƹ' p^4}lـI"/#*?4-U,U삜Sܔf2L>xd7Eb㽜O}S/bj9<66iͣgO - 햵.Q kk; kU\~',(7GB2y^q3d5:&iUW>S;t|%[)[jכּ̱[WtdXYS?Ts̫ZMԍFyڎ-6a]}`v9A' /=[@l#r- _lC <ٶ~񩹕O c?y>Zuno`<(뫒}9$l]ZCn=&i_nd5KcsP4 xl`R,"3w2(gV5*f`C,3l]vP>tlm˛N)ys&,uNtђƴ()cz^xܩDZz3xEg vF5 #X9±t+=2b7Җ(hLk4w$44GWK9ȁLYuۈ1]@( <z}eO,V>wG6 t2OL/W GnTuųi.y8SMCl?5~z:_6ɓdLgJ[ܾE2)"_C"H5>^ B ]c 5O(&WuO `s^w.=k>|.Dq(>90)=F#oX١Oukg3&5:fiVF[4̪j6m'&@hQ*l$򽬏;$ ,{cmygRFi~uDzۛ|= f✜8TOM$s̈́I t9ǒdS@,SYߝ>çA }0 1QT|ZKfC8""dEsX_` ՝nlW &Hگ>A\{)Ņ e C?o -HHі&?e_As\ -٢`nS=#d)݇7ˆ,J&†LăB p({?gufe@ehm̌aJ/r[\ e>\q<ٓeUR&1.{NJ[8M%6W&b݌HݭlU&ʩtahuUܐg(UF(ix#˩'G)GGrq:/1Lȶ<$~/BA141U7$>7vOUcI̎䚐!H'kK]x]G;4# g.iIu%q!2ZcUb}P;/@ ;Û(ڕĹORāy+ Mr>QqP)V,P8_ `qnR"Q`9eh(4`$}1 T؅ A`Fjyy['!^ɚ>#͊ S!Қu!)>>& _y=/;Q}@R6&X X̑ -E2U`wC/Df^͓d V|6=e@EO&+/@_­L 9Ю#2]aH 㤋l{^u<&͛_ǁܷag%Jw y'J$k_O=zʣY릎^]6_MZjࣘhPv3a0JȱOpO [S蝿s͉MZJQRB`1( SE c_w-io3Nöf4nU]^P.w 4GBg!:!Ta]փȟT5%^s$'5T0βZpMrrlE&<*!okk<9~d" >~us 7k8aI^3tE9FYAsDpšK|; _],V,:JKloqlȅ*T8슑@ӗQ9Z>f36QH ˞C;ɫFGl?)>gJܶ&K4 sPs޲ M+TG˵2[q]0 &im7ٶm5Nmkm۶]]{]MT5!g7LJ3Gm KB==qA mδ۟m^Y-*Be^/﨓(&S?[;l@ z8ØM SHJ|?Ovί |s/@!$(=0 1 TޟAV 8|\|HhVI<2ttxÌ<)BapE?X0Q@OT&\I$'ՅJ/{htV(0iTV#P"^.*٥1f0ă$fHl/4V\aIXAE$@[RbiaBy 1RNέ&#Qh{PRݕK鐶Y[bHJSHg~D7zZLJYCOЖSRj{q"rs2r$ o_Sx^}uNϹT]ߘYl,Ã"hu!_d|G=#O<$S"# cD/3xL>tOB@<Ԥ;Н0v&.KWs ,rVʺE+":*_Z5y0[d^[]ϦYXwի !X9P AdL/ Pz颱:ܱȌ[E`W_Asp䯰5t :{8U^C(iŒ6Qɟ*sqB+]oĵ8R]%v iHGuJӟ'tF!QS%jDl)iCPWPʄ.`m,uPW3r @iLF-bڮK2rq2咤|a5r({ċMJ ?T@uEVjGܳ/Lz2\A/ _lN0^9hF^QOcD >kY8cn&\Hׄ>*Vm07') }Ftp.aN ۯ[UFuğqy8}^*Qf-ưyz v<ҡc5лzuqpx=Rk$gfp(@ "59,3J>tD;lc-%[R 13ԸI mш9w!Mً,iO~7viш|!=ȜPԊJ#߈ʞ=4ܳkǣw:ڀxm˿qDDF9 XˍpV1xN6]qX<d __9穌x4)B4^J*xOE08qz>$KغiH X Ry|˓;U6K'u Q~!FI:(H> z;u12=Rji-{.,oSQ$%1z@m2" t^׏y~PSX!.DQn|Kg8]`p6Ť DGb<~k}A 1Pſ#v۶.~M7)#oDڣժ3V:_ȎKctlO}Tc1&(&xl\|pRvUёh U_A$9l (h;r0˾x@+YLiriV"yFRo&[ Oavk0TǘQx|<84F8"FG#Qz]wCE|=?{V:#g;~{Gq@|"FI0I2_C \$wHf@B~_c. jY M3 lW]Zh"84G~I:mU48Mh v$.3dǺnt\r' !ӎ[RޝB|D#4WR6)Fj)ɏ9,.㱮;SQ41*0߷OjepK *oGS{/#`.8|h\6Iئ<nER\+OBi=f-|?Q iլP%8frM6T?.;:X$-sԽIГ&$ɌDΆYZ9,Rۺk{k8`㲞ZW(ZZ6_\Sez'59 }Sz*ra=p\: l'%\-PFu֬lXGy?EKot,]C2'>~{HC<4&SMB-gB?uɿ*ߢn"ooePWYO g[~V5S xkmfXEF= +IeaWnY'E뚞Sّ*Kj/yNàvno"De%(]1l)L`=UTx)5֚YN@㔎,.j(.JfNb"msl]osЃ 0 :Yy`E衮옕3 |R0 NaKN&Vnc;2&¼kPY̭11+nCpB0"?p;8 a/ ր|t$LR}x,YDCaK[JެcX5P_vqEL5::{u#l44JįwiޯGh婌~YX71FP Z(w4 62NW"b!q~l1a{}Vk#JġnE3)0H}(D^HJ ^ R+9P *C.!Z/uLj竴,I_snh9'q|˱##.%Ē N1@320.@\7Nʖj/TB NW׎ctڰ[C;U pv Y殤E\<|m1cVlQj*MT^]*qM%9i) s؍MO׎jч{נl9Q.|QɪF [ڂVVaF?}|Mn^8zx2 89ᅉkUT ]Gύz8M _JHdo!o{fżŬ3Lg9a7sa9ʌn$F}!f)Ѐ;NmŤIL6xtV2 >tC"3=հ-BH_|UFH,dRs?J]2(-jIzIEtP" ѐ/۰u90ؘ B̿Pw&T_BH0`5%^Ea`OfIq֒q![2SOJ-6.A x2T҂mlFV=E[EB2Z|>Dx 7pOhs5^3z҉; 5۬ݒMHs#?hﴖVAx rwM@@szhWg2HN.MB?Hln0@TTrí DIbt[}iF̦{zn6 n^c۟o+ W;j]QE_'-I"%i<Fʇ_EC_awث4yCLLW.lI'j&IK(Nl>R/,0>Ak/e٣G!:ոK:O(eLƄ®|G6l\v$N!ϻkn§[ ?ݿkh1 yMm ;*D/OۊGOTLo?m)K)SSCrP=eczkO'w+S6Wjb1A5*ӽӗVDo&]#d&uzgqmo jhB_B]"StxThwCARCzp@J3[(n.|#uXku7Mɯٲ?=sE!v#9nx8\«`Y"qd?PƑN=i#錌%zH8z =X8cַ`C/Љ:RuUY,~1x2yovX0AvԮkR۳M+O~=fI(nˬҞt&1gRdTw-O fN !dA9G^iwZL-bDhm8 dJ(kʷ7(Ƣ̄=CTI[\,"^h1/&E!!% EDξBMM-p|P:QD'$nHQMoj*}23fO@w+rmS,,\ di9wBH}B|R!D'h']١aՉ+Cɠs˛vlwˀ1HԁiE*k$r5k-cPI&Q_`_F!=9%"iO*ֲ_r; LTF eϖlCA Y"9yژqD]5w%8XX"2:/ְuԯ]웕I J;̖l <3 ,7 ߃벺rs13KGTn$jB;V pb뢎\gW~vc6BIHop?&sU4-HVlI0KM:[Ct4MR/F!G\߆_F$('_6iqߋ:ɞt%=v߱ 3֭b%HPѩ<+RdõÖ@ݰ6weO0S̯F*)߫)U093vo.\E 7,; SbU,<ن;SOP-{+ADV*Ysr<<w)_%siHyK#? 4/AB{P$*`MniMA!Na(Vt0m,9&:fZ־ "taԜ<:[E2IPـ(2x;ܵZ8c7EO 7!RɅ& +OmBd?9B ~l}QSztn9G M=l+vHo Qδ0F2F]fg{[Xk\`zU1K#1]6n! zM߾YgvoG4Dvw, {Z^n+%̭*Y{C \I:B{kK<_sDl|Utf-уlkv3P}DLaZ+(KJ&mKbkNgFmԎ"OWs9VǗc|?Ma*Amf)/|+6;%ֻWf.~'ԓ;`Q_ߓ,-+_D_d7#qUu'!VHVMܟKX2R܌/Nx?{ǬRK͛;oC+@-t66lc5(q !h.)*^e1Cˑ:s߬VÈw9%:>9"[ Yt;.YHv-O7C^G.|\uNcG{ƫF-҃^#`pjg 1 w')~C`^d(,S 5cRƾǏbPlw2~o}3 !m Hv尃lx4XO:G\76CДENuy-nz)Bä7}-Qtc>}HB;i@C!-T>IJj$^C`+Դ=dz!V DE5Yǵ^[*/]as=hJ}LY9DruV˻d)3Hn>g_(*_(@b QsY}{!BA*+<;%@W ~KD'dlP" %Idz4>z68tA#(?(OտNRɍTDOh3DbnAi"ۼ-%B餰 j|efx3md4sT26P*#A'X@֋}s|J cK Խ*N u#Չ@g_|;"b-ۊ:ѦE}fGzlKCOԒm!zɱBKI@1d]d&TYK]tofA.su.GK~N`|8b$wiwzZFYHu/ACԝڌieWc+,އ)Pk[sw.g1&5&qjȸ>kտiyxn@q='#32]q_3ep\l<$̛6+0iebe\,uDﮛ5om_Epg B fA֌6)104 !FML:ge. rw`9~ؽƒ0=T5 ?ZC%b@`M?9e9J6Z .\7%5E;t0K;W5Z.z`p f +0P^ 6uj~XΉ7i9zq<=&OÏy6' };rm`g-nRsNFljp(3]PBfL?j Sk~q+< l~rhR5BҬYK:?Hr4L( N-7cOIIYmU.`k3,I kw˜k2~&Js)/%MCr4uh? 0>lAYi=_i1^YY(|3W_:%$Ѯ!g NcN4۾]W1%N737e5G{EįClZ[#Ra@E:?+M iVIJVxь")h| ϱ;:zӑT|O}D~*FeGg#P)mB:i&X`LKmzsbelW/"l OW~ ۤGwWigbU쪈oה@M쵓^sԓ+R'3XFwO 7Zu?R|n6Qe*>HlauhgA\VJfagIxs]6+XpQo;i+]H#s< T瞎6H9э4j)j@}?#Ur 4%cě|axf"?Ɲ endstream endobj 236 0 obj << /Length1 2119 /Length2 23715 /Length3 0 /Length 25014 /Filter /FlateDecode >> stream xڴzeT˶mpw8.ww; n!hpw ==wsi\RVZLYQ lYXx j 'VFQ#"# 7v-Joq6D*t|3L< @gcu{ +/ vrf41vz3AV [OvF?D2dMmnN6Vc@I v{#`hilkԁ 5 U5[b5{{hSSאb(K ) 5?Ձ7 E7u+H(K2 tti~S[[#nnnL.NL`G &{ۿ[Z96wG-¸l W?'2$2ڽ-w_aop_' ?4v+V^YY`glrAo.NЌ_1G?k([(mg^>n}b '?m 9Y99;+#`ne ϙYDe$%Ĩ~/?Dy,V&T;!)[6 Hs+3k\2F!Y,njg~+=`nl2!z9Ύ.@!r̬LZ ]d~So>_W~A39""hܰZKVHo'c;+[p/-G;L_5/l" [yEiCo6p+#G f|}+f6W^Gd 6Y88Ǝ,o b}b3_`fB.>s#S0B\fE<\f[)mkfXYXff? ot.Hbl#Sgoάoj{SC=oosh7?z鷚 lM[3:Y|o8[:Q79n?]),F}jƩ?n+o8r_s #B/|XaB\fvDHM-[}z;Ý'NQhXנ3tC? #X͗c4[EliBq0%塚xrҘ8mj}S:o"Ss5/= z#gU-YjO2`+1۾bhph^6BAX;#-!5Xw1}UU.P{Acn~R]8U˭Bݎ;&)6nv=|Ϟ @<9?: JVAppnC%=(db}ԤF%${]u@+@9Qb.@6\9[J=<ĉ"kמ?,mB'v$Rs.;uKu}O脰`R"0kUkdV/9m3NU&{IRA@R/[ irLn]nVujz5h.(n66!#-Xݜq-ayX8Yrb(ń/ A(*8Aq AGb:C-yYeT{~ ς]fNݒEAZs04}L wbe~bjrd^Fy Ⱥ*YcFcl!X t6-txtӇhIvGϙLyP&zZuP/ lGy!CnkHNZVN,,nv$Nzu3/VyGc'Ѕ4̨5NkcMY/7 іmZM~UHK,UϜ;xlB)˼iY&Zz#.8aڦ4E5~{v>1ů` &̞(^j8d{f/zM&vZgrʜ5,~Ҋ|z~q}e=V"mOu_<ǖQ:< VzLҸ$)qqGzc17Q=DGf2/ȉJD. T6ǚLh **B4)QyubPXڋG\kyP>Փ H% z>.^ݔ/Xz}:Db(5XkA=h>­qʎjH[hd[X3yjDJ !p&FR e)GÍЪ0t?XҙM 050T̐ cj \g)Y  /Fe=7ch3 j]v@dOOyzWdF}/ȃj\BL< M. JeP6^*<{FR Up<ɾZE\; \ Ɏ΢N UG; 9"oopTgTQ/%c/&k}=x3 ʑ@": >y~[I:K?{]y-F&4ɽĉI3$H87j{ bt:v`;;=Ob쀟F'dnDCĨhr8ilw8^ &t}o3xJYZח tD"`ao"ZG9YrBί?`1W*)|7IZ(iiyK r SNN MD.blh:4p322oyTI@d~+g}yku0Ym$YfBFѹZHP'i뻬4Q\t+y"m#?.xjr]벐S X/12$fv=u'SݕGC`ݪ21{-KDEgK8?yQ~F 33ut6sM$C@-f`@7WBscQc공tgw5U)NGPVú,W2nLU+g`d?eg]YC>ap %Y)G=Lêӻ̸WFh ĴkU-cu!%V T)Mdn/QKu ԗgמdr%!W7 Xs2εVual_&_Ф@m_fG"+/դ'rIk-.?.}6Cv w*ʧjmMu"l=kw†dpt32Py#>G;u}#MFLtoK@KT!1_އ TPIw96)[e{ފg_u6׆qF؊tA=Č_f?XG47W~ir1!])V7H$.3ֻtu^(UKx7#1vz=˿RaN6Mpcɹ=brug C6c- 8%>jzua_{YVh¾\Cx_~JuL&js |׾<@B?Jx.ު/`/T$ OJ%:?&cjv="ȕv*I#ZrP^W o=}=8Z[*FvONjxq~$*\E#'e̤:=!|ϛeXS@/ܞ"^ތljٞOP5^J",;~ W}֢wv<ڱMID!(/m!#[ Vb;в`GjpdDmDlxM Kymre枉Y|O8^'M[܁~L 62f;ݕ a[].^'OiN[Lҭ]|Rn=n.0OĿg鋗QfE!G%*qX^ъ T&zG3Lݹ$.")* }%s;V^Dzmd|; 򓛸Lk"9qKNy Jatzw?މ&=ٻ-*mn3Ɖ~|:#TҔ)1 !1"ټV2J{qp$Gm`i IWRLJS3x?#ɦW3p!uc ǗEdft1h 3NS`W1P.(_,_)^['5$pasw8̕9]M\z:]A !dDn0Gœ^VHq|Vyݵ)G 2n0]*ksDjb W~E QG0Λhk6 :vD˂`sJbJ $`Cy8f;z&w=6$~c 8Pr4D VvOrSnwV~`D$TPpZ6/ &۟sX5C$NEHxVkRtWt%w0ӪЉ)5'!1ҙL=NI Nn~=9[o+g0L=C׼vTp+OO [, ߳] ~' E  qcgC!SoO?pGHM 9yb.lsjLd4Qʻb=j.y_χl~ڵ_7W8.+[d8^$w- 'aD-;n{8fqO6FRF TMTGvop& Ssc/R%0q'h"l&=>U78:ʃ$5ŽQM\SJ~P<]t &j.0]=&CL)͞LV8tWBwAU`s ^ ~Fi#^3s Y 6*O7:wM営0(}ޫ:?ߩC6뫗Ӳ5=$!; Yq( 1$[ٗȓ,L#]=9_07|o +!Y[()u!0}6@EYo;Ľq>Ίuj 3r PןGzlO}WLoغU/k m CR9@; j+&C3MKuEݫۆH!0xאF!>ںߩrbw⡐)6'Ooo%h766"aRڼD+u%+14™Jʪi_ZEO~ C0La8\~?ZĢ9Mv9I7W٠axU${Udz+.˜;_B)n>6 EP=|CL 66hyZI9)1?EݛŻP-}?zs]@D 9Jhwgz$ ԍe5Z0#r-z`#.?gk킐#A9 I}ѻ2n`F]7c6j@>=ҵ9X%ҦrIM=(,˩C?G!nvAƜ uI3ÏXVQY-ITXdIL?렎f R[[/W>O5 i/nԆ|QH9_s6Ɍ_>B9~uC/.]7}a.h3B>VMpd&ԝ EtzidV}z'Oh ժ^afMR˪}ڐ=O]@i 0-߽;iHelhaOyW,+\*6cf=PT9q2Φܲ&xOSʔrѱo; HC?CFū1*|%;"f擫 yW\?ʌb<+ܲ)W:T_% c/; <hS ~8sKTDQ,ʣ֧,mPaS':l8Y\F7MR>7m ـ(u +Q16ƀ/@S2clbx>*7X ,mX /ǹMh_3FCK^(S!$t V6d<7Me#*UjDH%O8RBw )2bm<9#Ɋ|ЌOZ3ώKJ]VdWйLP^P(gS-*bc b~ȧF.n8^oWp*DDh.S}[payf)2,1 {+rAlKDvlN? RմB wY kp2t0 vi+V3Th?ӵ~Zw?Mqٺ =z?kuMK͔ VDoќGHE"bϛkc|eALYJ(W0sD=#1A1@J=-w5^c.ܫh {pr$LIQ 3Xby˺%wGJ8MQ]A bi>AJ&q$J(AN=41zŇÚd0k#>7%zH.!qxqN_^͑Rsuy()!PTnMLhJȖ(iIlҽkAyFJ?7Qo4(?lwS fُދf?yd,NTSKi|2RL_9X{;>b'wQWg&z!kZE}CT$0zgˑr f dpS&qߧBܥ⯐}"7ӈY= ڧRaۤ{Xv:brG%=:Om ŗgM(;'atӡơ/#;8:XK k)7ZFnJ/h\ڳ?)^n' IPWa`(Ӭ@§nGm~͊-3ḡ53d\RڱAw&H ?mq+tl=S}ŽDޜ`f@boVE6)a%3R2,j2痾G&=4 cyHT1IG+8_l9US&~]3RhŤSQ{Oz@KHMW%Hg1m̻ɅIZ 0S3 Q5`,xNΣ y]Zz=l*VϟG\@ɽE z?x[LXFP \ O{jIo֠tʼnoVh:eDk=O$K/,-ݒ%qy}t%(`,`Si38Dq_=#XyΠw,i?m3B Z ڰ $'$CP/vfwԃz_[j,M;77oUto]|$~~Š{}Q ̳mK&Ho"ݣ yTe?D\+kZN/fCa>(˜P zP\ƊIEs#,h(&QK{7[vj2)ЭAo=5 +몪 DCOe1laXml&O*1'`?ؤRJhz`ٛе|*+m`C$b'gB 6t"ӷF{eKZ ]QK>PӝՓЊ\'W WI8UrW!5NPkA-{%+CÉ&eKZ lgyUI:-g ]''4Oz/]vD1srQLp}T?E ~#j3P.7p^yf\RyH1NL`4f+T*):~# RX V ?IrDcv۞7)|uڭ@̢zZ Wy_@aԥAί 1 ݵvP!s9wZKLɧwy<"5=X3LROǽvKLXM%Ő LrKo;sfnҫfs*kGZ>H@JSe[6xZ~Ov 'O\W~ /$Nc@Lbj[U#Q>vU9 G<o-ZIe=d;L봆рDƔN-yK)dgJ/}bѳś v4 /qUvB7y6il8F'F8!4!P aX%ΩAQk,"̐ wۜ4-c!7w܊nt :fYԵZ> Yqu}n,ǪxPG(Bh*"D#+kJviO*W1aQHQ}5`?r8ͩ<$#aڐm٪Ye%]Q%C?%J(ޗySQ}PG[A،j[M5˝*L9hZ:=̮{3=u?'WXk%5 M{a#'Y^)ËWy9l͏pZfP} :E!ڣ4Y}@G]TK(I\㩎QS =/ag[B'86 Kc@ԟ(ҰqpX&gXAӇ ℏiNNKdyWzΐbEZus#:DצsMX9F,j}A# V뮳Tv'/?1=hC gY^>ͻi> Н,cYav+j~jϳgںc sJ\Nij* g tT+Lj8"Y,ByMyV`yM#X>qJE{s-i&3L*!6QN~"7OC~ ]'\eHZ V!6?-^=Ty$ˌO dI%_Rsۜ ^sMN(#!+]k5!¾~vP'K-+/ w?hâs ,1)T($ufv;Xӭn#wU &F>ژmphέ0 P.a㻫Eфi}4kM1; sp{>H'HG޺wAWr~~)Ac:<=~\\բֳ⽅IH/ty|߸>[phSI{SU5jXi-қi υUaHk5.z[ln,yLDӾ+8F,-/^Yj, =:^ϫ(ĉʔ?~;m$3DڽJZj)/1gwxl(|=eͻ(H2g䈃LbE2QTN6Aۦۨ tALEB>]}e3ԡյ-mtֳg!!/BO&נ-}I$NSNCQ *\N<1L'G8ѕmZHo Zўio“cJۛRj /&{-dqobkz2 z5aO<*|}mpbUG?SEk~/\pDmDzj1<Ψ]a "VuazY;҆-ᝂs2rm$aYW.h9Ka! -ap5R*L}OYZ·/ 8$^ ;fCL#~Մi09iu_gh?]hnBꀙ2U}dq'x0/2@S\j14׌Q"}9\JOvClT _JVY/eFό2L>lh)IZSp jo@J&o3t%KH2n>o'"J n ,e!7I+탇aoWU|F#96I\Jax/l ڨdBb|Q>E`$@t?G6ĦƉĜF7BxP 5R[_y]no)t]k㚇kkwQk!r들60n[C}DrɀO1wIi+ Oy!;%U!hB:0jO[$tv<,ƫ.r V&E{05$L|I+s7@koX)I0$0We|¨f DlN~ooZ{'EO\5%ECls30GEp9?3\CY>T79,Ed+3)hB4)^C:z'e [-DX``_9jc 4yחU=򅓟5^t3uxG7"76[xlJ 0oeA]f$.^5puUBAþﳴ۝𸺱35 ,Qi}_@BuE"ʱg}*{d%N"B\}Ǡ;'xd"ozA_ 3ŗa+B8alg6|hV=6ͻ{I˭q1Ϛ*a lUU Tխєzb?[PMz-WV )ma}r!\;ׅYXsдMS2 c!`#AT_V !qkT[RñnCb iVj ;wb7_W|GEN bw?觐njeadDCDdsPޯJ}!k.(Wp۪֠`2XuI^:DU|l5֤1moκAbp4867݇,Mi zQ`S)sApi ^#ب5}i.tю8IZtڑ|=FkQaw"/6ƖrWnЃ`&I1:0כxO gwX9a^(w[vzF0jz5Dd?pϚȀfc_~Uao kR$_Q&63е*ΎR]O02 >^5]EP͉5V[ٺwRcc+i0GcS=zIL;FOt WD F }خW?HU$FSA Ca΍ڑܙݵ%ꜣE٨9/qxo%$=~9]5hQ#@ʾZYQ)C͔u=c#[rS&u6튺 %@>.Ȃl`M2`Veʏ¦(a|}TFVgo$܊_ݫjFL6 ;[gq9(1MfǺ1X_Kdyr~> %Q{帛ўo'^q_ H*N,gw4uCL$|ifGdh< evυ S{e*DOlJOѧvٽWgRrE"#&%Tf[_bKӂ,oc.Ff1 L2Votk(>FcaK]ŽŊwsEm#O?ִ?t' ۶_v1{f&W?4r8dxHcet6 w1߀.zT0No6`da.Җ\deVz<"̟2u }IEJo"3C!GVm=MU0<;yrT埗}o-x+Mr' K5.am1_f~y*А梸R~)znֶWVy@5$b_BYY1*'@׈hcU?SbI[]u+6S/Su 3 FN7~ktVb>Ϭ"lM{<[;S;ܚ?eVD!^S] e2F _|VZ V2lWº|@myG6wR+;+9{q\m 擩1k;I&,bh*+ sL,㺥0O´pq.vSΙ7]Dڣ54F[Ȁ?j"X:Ox1Wps,9Xkaf|KN{n;={^TzciX Tr΍\TWH6i@$aʍJl]6;toۉ_w5*w0[q&| @N3V,&‘ 5Pv)E=_QxgJ}|/rRUcom&'.`|F]4ZD^:URHtOn T<l4G'I#v ĬQ1S0Pu.[=ݟ~sO ."N=@iE{WqV;T d(BT~]iN{uђUưH-]>1rT(m̈́c)=fZ cf)C npP#5~a`MEG_K.;uqWg4n?OQ;u[[MJB-ڱۣQs(^`_ʑL79?$LO $YNi4;E:Qk-?5f9傰P Rrq @@)`}TڂTՏWkϽQ&>1`ioeyis=[,zG<%P JPɏC7zܭxs`3r;1<9 6)<ϲk' Ҋ=.hwnz:@5XCٞy2̨k'={;q'`t?ǘ;[EqSyRZ@AN k%&+fr] MNiTWm*6BWGt50 a}:2ƖPRpbjv㥹+m?Ʈ$Il iuRI<162 .򠥨ЉIo^'ZbLz@uNh.v%+F[el4LC~fKpՈ/"^Ղ2U 7?}.cEe&6鈓{;2sԵI\g`ZV~'=T `9Iw%ջFX|-T[$?8(1SA_G=h3I_XKsij(8+ XR>!D͝_Q'ٟ.lAb{7Tu%wȳ\viNU"n`CsiZQj{מ$=.H WB;5Ws닀P8.ljg?(2!`DF{-ANWΜdGljA#QQ_I6Hxjo X\V]0Myc|~=)"`>*L)_ه Uqb=D%¦G kwZ.⩱iׅ ?ĜK4z_Է9pk0p iAm/VHVPL]CĨ1?$SNoLtZ|L2m0etz0{T],О##OҡEiLFyVA?`U*JȯG9' OuT5D?4mZvb t@ThecdQ92Mvy$Iۣ؏8.6`GueOVOI}ڝQ(6 X WILlM#cAe#i׷#ck+{|mH[ gc]cs ?vt `xjT36ndN #Ih\j9Ri=.@㌴&i^} IN MxVcok+%ðlyq謄+ Q+DtSHHm={э-c$ltnKX~HqgM` fHe+J(MVkgz cq(R^@Gx3Ѝݠ~8S)!*=w%x}TctЅM8n_ zcy$E,R ?7Tlrn%*i~!ZIx/Mğ~]}o\̺r49ѯe.B,6MX%`yp'&޵LGl$5*<{yy0ކIhRXVB\&xHXJhx}YI.?[ d[ҧM]M6bΖmq+O׀S4f넩yl>TSfg}*$ T ͉p4K,.I鄈m9>*Hz>J9)BXz/%g(I* .;UvʼnX3 r33;9+ @AƽoZ֒a uƴw>:@(˲q|pArg$;7B^{&xO =`!Oh(ۣyyxEP&c{:Ҕg|zN(iYӣfPQ`{rVe_VV /yhB?q2iDb<HE:,EףaQ.Z77NGB~Y`m"-1$+Ԟn?_6S46ԏ`pi} ]|=W gu^f7#LY*SVK89o6UxI2xqN`20zyDݢ1lQ1Qa\فjEBB dӆVh"Nը}&[̒ _ mp X(+]vzq#ڳz*] f$. Xa/_ZGNЫab(XߴvP址b~>LL٨fOX ? TiDU3Uɡeku7>}3/{()ф-hgDëYz%ѳ :A+-؏oYkr35S_u\Ej/}D3Ɖ&Ⱦځ5nHx[8mΓ?}Y2]7*zET [1댑gÕpؔ L\ h1Y:TnZ1X\_F冰LzלtjڐY~ TEzЇT|ji T* 4(@U GXY=,g-D xH1Gv0s?m\u7"d)3ʳ"IqUM[,3 `4%t-̏D)˟l'0 Xm-HY%kݣL/DzQI*(4&dq0QT#d r

ƈ߫JsEYWDFS[*7Fi{8Fw T]hkxx#E#;OS9=ZJ  JЋ8d~Gr&.y*6}pVZ2pcH/~U=PmL (o7t0ֵ*VҍP ـ)-_,nJՆۑtĵܱHͪ:Vu p.aNK-M$Jƀ$1gxV0)vF l{K?g(V{V9#A)o [a8nv*~*f5@T`#,3&τIhmѴաlۥǟbCg'47" ':C}oyi['ՕF',4hjr6T,9ЬN:3ԇ!?]13c5W)lF&IZO ծN\6 |jf.E?4wMoWR`N 2~cuƩqAmF h+ޝ2@ [ջ)a5]P-GHRshŵ*:`y0 ٴca}uǞW-n# \ %~buTIo7#?޷ GGjHU һdt][&y 75D)ȯ&!RDnt"ؕVoI͆Ƥ1@zUVT#E (B:1\f)uֳk,kw浼Ƣjg{ Z62.i9QUz{!w6v|}wRiV!,U]mh쾨IJ a khГpµ8Z6vT)Pm">o*,=%ז5mdIte Z{4g5ԥ"j$!Tn@`eh#`h*(3D "~A)[9ͧ17欮M'wzi?v2r +l.Rk>M˺1¡V19lJ1 R`^D$K_V܎Fa?`^{lHFb:L)Z]Ix40vXfݻ'?b+=,)ypi~d +34(YP09޷̬'%TGÊӝ ^cOpHvcQcU~_WߖaD |hJTQJ"̨;7jVcΤC T)do㊳۩ endstream endobj 238 0 obj << /Length1 2063 /Length2 21790 /Length3 0 /Length 23070 /Filter /FlateDecode >> stream xڴstdۺ>v*m۶S:FcÎmwluض_z{oԨZ|滞9ר1DYA( WP3qpaafP2223QP9M\M\.W+G3 t:8^@mPvtqe05qp,4)bN^֖Vj10'[ kbfbk 0q02*0=>jG)hPj4$TRJj4ܜ=@\DQ]ԤHiT:|( .,g ;OF 7T gG\]x<<<-\\-nept|\v`1NW+ )yk3 O㿜H \ԴW86V&.++M\&f&n.lo9տbnz(m||M<8xc6l3GkWU,ػgDe$%?1FWO׿p3sXx"p0s`g|srutb?uppv ks?7wsbpc6K+zY1iZY?0sZ[?.p>.&@矎Dp,\sk3l8X8xe`_c;:ýpLgW/I7;;E{ L#"R+::ۛEhljf.j}K; _F?C_Q:]\/C)##)FTW%`l!Vˇ́iprsX8:&?!N߈$70IqdFF&+Io`R70>:01d0?Z Y?r-cAc aCZ?h9~A?]?Xc?'_G_XemGf4G;'3c@ v5iR 4[^p4 Im +(.a<ԖXΘ" dR:K%:kS`ڽnM1W6SGdTX ("9)alo#htt?~e|GJ!/k ң'K3 ^'t'#Fle901Y(n"BS#Hl7cru[ۡ_GYI$AU GO 2gY;5-~?fj׃7Do]g~  # bD=1m_c<"j&dԝ#~1x7Ѹm% lZR팿7zX1z 1"0 87)-0?>oW|)lGly aw15Rl6_+YRLEcb]{hQO 1$ D WjU/O3fD +`Еh| vֲ֞s#HJ6&}j!-H%&/[*vR<=jTkVvo/⮉ggL+01ge=ѭY+K07^ũVݱ"vrsr p{yaN?];@cS0{]\hz_T/w#=XDVx]N,m\ o6M yѿHxHvYFMWܓ /iQ^O#?FoiSgO9̱ No3X@'e¼[2XX{! zKiWe*IӤ@DWL[U c~ϼ߭5wHڂp YuS!Ԍc?q{ѣ?%eVqeE4m<53,;<Е7mT\Fr0o)_fs3IG@H dG[=2zV? İ6W$50,z09Oлζx VUTy^]p6/݄grhjL@:$SQėt:+mE\ ށbpԽN7~ʀɄ:t}T8A@ᘖ Z"s^kGxro3^<۠ t4+'mV,Nx˔",;PZ -n  =ɐ 9[-{5Ԯ: ])IUtE*i KBZg pZQ&u8=2*[PvP߽1yt7N6 +=U{h0v*0дd)SraŌpCpqΰhJIbK,eI+7<:%>5$.-8)0Aԩ,_+שnkR34ÍPF;ð 4:]p=ATZ#vY0.zXO8*pGـFw +S݌xGK[~A}^ۊax5$-os=1ibT~}x)X~ b-+R3Pu#ȃdӽ#?Ibc)D֜|qs9(3\Яج6 TF1ao[ 4ˡ_sAڭl %J-Ȃqvm^XT ;5>;:I$44m*yޯih5-ٜ{>qd1? "8/j~z̅2(ehWΑ9XXO$e=g+9G;?Ue&yޅWxt$Q͍[2ŲmY샛 9ZENoFdȱ|_d Pp{-t+ j S=jE/Zϙo@2dJz8$5z$cv'{UpK}JO Ֆԗ"P/BRw*5k פ,R0תGr+[ǯJ}7?D1$OX)aWLľ~8tn2[ְi=k`Yod}_OD"Uq%όXG@e <92&m (ȊpW ]s6}k XuRwUWC&i l5SscqcTމb5yXl CMO޵8SG>lj 7``͆j&}k1NT I*\%l?o&hXS[- KҌY7Lw½cwDuT>\a>!uU*rZcgQũDK3gE_K\: |W&QE/yxk[KRpAl-A#L4|>(cNȞmhj\<8yd,I_?EqÉΕOA[.{%a"sI~4j^!ոf{=c%㬭9MHClyWW&- KdGR5y?0[%FJݻ33㣕FJ҄-vV~7>m<R ΛWNP4ZvcJV4NKO4Z׭@j#uJb[(\Ueb,₽hL|0*.89kQfby=oMmZAZ;鐁'9@I+z*QCCBuwGlRjc=1l&R8(1{$5梖\| &JoRN[3"[#:NCL$M5ݢ^LKxIa<&%J77߼oh}O@@R?@?&us;MJej89dȼ}:ި톆)Wh/V{ TDc\ O)]I\[z6j:2e<4W$uKGTS#k#=Q:Bcְ 6CŤR9FX?(V$ A hydDQGzAЩ :49EEf|CVhNI3}^30~|zDUB$"LXyLo7 N#NQ=Uۖzj]`gPusW8ȹ76& |r&rT0c wsmR!Y d\@lq~J\w3)ݓj*-z1ss1) `ơL-'%8Du,:i /1z-zx%S;Z05[|B.(tlAgq=Ikw,e AqO2: bP*BSHɡbļ._ TVi]-Ӧ# TŽ;ߘ܋Ms @؎gD*,Q?k+&˳Dl/;'?2A@[`aݟ~&v-|Gm*[,ÁF4VGG1.$!]z")4V g_s7Հ- 9'W+;ym\_W?,UizEs^9I˳czWh"V~ChP dZ`HSho8_VWלZٲTUjɡ&cU!7[vh-)y6wSG3]Ј1Q[y?Jh9_sxN^.}]{'w·vKhޓ yJ% f;sw\$c@HU/+vv7ao >Idf U 5-̂׃+HRՂevAcT)sK̐&'6_~-I5-G {87&ZTqb{"uӗvܿ2Jj\H|2eSkv ׉ )/'6^<7Sc`~]u9(=VWve?ׂj.{S!u8 ^a0b=Y[(\V [%JBҕYs:)8n$00GHݗO$@g>u.x{Y'kQɴsb<(UZsyCJ'ws {W纂(c)=xg97ņ1.̨Q\3%F;X5qۥ'ň 's07 @;wOZcdJ$eWF>HGn{ d _eP̠N67V1G95Is#|^{aә$|S1y0١iNiS9ci<87 ]?GG|+B=caؼqzJ3ʼn.BqI$(/axڪi} 0}r˺W1XX#)F趶ʖ@EgH-ňDz63{:Eoj;Xe#jm㍘"IfʡRF[DH^X@SpkO0r2/1?ZTx""u|ͫp7$ib%!-y 4)U_$PJ8Weq#lc5.Wj@\?oqz{0e(",'%E%j]''+B(f`wi.@_y{7tz|!zlx^l#6sV~Z:Y5Pr6_o2=W AHQ-~jw f*HE(4];OyBRXKƆagF9RoEU۩K@~S4S¤[(w' •G B׌/&]S܄jf-UG9}sXyvb!5PQYqRBRlF>d&kInSEt;Cq;+2-W>|:7rzh[Z ïZuw!{S4_j]{~+/tPֵ`\CFp Li0CJo-dLoCdEG] 6h*jdY^/z]'ùꂭr!ܶ%$q!Bt~'1W"4~jR^^R]|WB+7^ʽ8J?k\m)ѕ;l8QVZMj7ɨrÕdx^뤽 =z+ U16qޗ}xʛ۳a ͷiLDٽLU[k7 "39= uIOktInk*W=~\Ɖ.q0`>w3Fme{ƌ~#1L_wQ), W:Hb_sM!2Gx%s~kA+MLdZS~SfO Ym{$ ,ښy)hҿރB6X6"t5*/nǷ:W$A99_i%wU1m$d#5Rn[9OValCx1n_"YJG8%%UQRjɑ~YO~5QI-"fHri5~r=$ g `zw=;}C=pN]~qEj9` 0qCv]PWij GFV|Q  Dۦgu4@6Ks۳"7-hng4.kbO n"$o9>0v$m 4nƪ=v J^H!iX[e}€D=9*Fv@`5D&:W5( ~4ΏI Ym$4/1 #53ɬ#K2nH:1#kTN, zGjm{ |%kBg[ rNʓ$i'VF!x{$t0c.i~dC>E./!9Ǧ2leD1Dա_ɵ.hEH\ <8[ D4j+pEM[eह;+έ>|_yDЙ$K;P{J_ Z3 ug-pFv@G g!pnzA{$+b߫9--@jR)Bc<g' V:w]?%xoo체8KD^y3YQx E.JZtf@M| |Nsx|E["%F2p8=@>Lq"oÆy pϦigTĄv|woiNx'j'Ҕ;$,9H$%㬊:sr ĴyA:٩;o#Hc7km8ѳAaS$̜`Я*)D’Bxf$0jJ1޻dotW12`xFl/8&(P1xot9 ˙8?&z|LkӬ_~,_U@«q _Ʃ5G<6=O>3D^j%QjNhˬD^q/鯪k[=OKLE\댉P&9r^!fy#TUMde)74tQ㋪ClAC:v4^fR,tVlk*^Z bAF,Q7*設6ٿ3`byʁr#L+z[G=M^=;KfKZ00t$CR!a?k݄S^GLqd bwSחtajQH-ȱ #|ׅ[,oKdAUY0]3Nk(HI%"L8*{OPHDYe z gg&7jm=-9g[S˅ܽ_P?{(6O67_9aɵn/ϓbA=ᅣz8!/rW~M9_p&w!+o;fvy)=82c ;$gQwg2-cb3)wbUm^P9c/]2܈, Q(t%Uӻئh [~QڇB9iйEΎ;Grގٟ6M4Z;90 Z˳x=L&rgYr ec-| =2W, xm3΄¼KUIk_.yρ w%u~V8Qg>R X|MgV<-_ W޹eϜ\mxƈێzڛ^d"^'+f~+# /)yJ(F~CwN9dH3n\ j4Fƈ\+MUS񂰿2@nƨZIFJh?]/ܬUeXGJ-,5 b5ne`BlxB`=2ƻF'Ft]UP$2ƇA1,h zgw#ݯTw)Ttc[H)YA"W tiGi}ă䢿@lx՝k6ӠJVbpof!P(^z}~J8L[ yGKǙ۹}&«&`[Z C& bFHG^ݢf0;>CgXL& ϵV,2 fS(S7.4`Y[fV,-++Ϧ>ֱ`htl7`s(йjXhE \h.NTgIWMYf@VcBrPo]! kFFBȃhxAXp+I 7 9-(FPo}nl-]`B{#u#d~,*PuEAZF@W\jPMxct~P({(]:^ f>g׻mRa%V=7M*ks=&}A6oB}W鼠j .oUV7594¸?wyhR.jm/q҂JP@Hb"dWWFΙTrC}Laq1G[J܇y`fޡ  C\a1W F XlZB2O@wxoQ _$+lU H+< N?7l"V>Nܡ~M3'HVlJO<\>R'zaj˚O?bu4V+!Axsa+ٸsN9kY(?r3v$ϘqG[ڴז~dsXCs$/DpƳFDQD-̱O; e mt2is^ucsBxRw'V4,\-v.M X]WRĨ2sγh]kx2$q!6g^+}^Zm~ j|y^41Q2ʫ>һU.^\ Ҭ}.^/7?(KbSfK TLpyic [l2_?-0Yon4_ZNgVRAޫRg[,+d`\9_q;sY{67PHش^дzo m @h9Jt>*I+.MPz C-&$l y,f^R:ZM>$cN^((3Q#ШSS)BڿdWtQV/0Oo3G9Ro&o0FӛF1U?v27odY(7ӘkYc-`k,!B}JBk+񙶸rx2)R k( 9B߂&17C{?##FϷy/Q)!5d%[T'#GL踶 Z'tsQTPge.Em:LB`-Srw~RF >\=+?]%iʮr6u|[j܂p/ش}):*3VxLI%_jd @bTWxF-E:գ[:+M1˩@nuBכVО;?R]OFՐ]r#IQElqZ^ֵD$? 6S/VWRݞ/Fb݈N0)߽G:?"*n~t Z]USF;JDC j#mmU 83A^'sv=e vvH͜9W]2W͒zjKS-k $}y lX UdioQ7mcEn?)NOщ.c@aTL'}bZڧ i` /Go}>Fl: {r$@& @))yjg6d)g6x)gP·JY0vL1#6"/&Nbf)R 0Me3 BǘsVN)߾[4GwL)zgB`+F{7jK~&G5USNy3Zmw~V:J5r{'Q&&$51_ko^o+X?h{4JmHPqMrǵ?c:a3}NTQ^jw{wӌчvT\LjVc})S@#J As[֋xFOWW);3'D}Fjbۊ(5Z %VN̠hI'F%#F1՛ө)*d8L1O,Y(fgN ˧kx>2 TVٷ[9خ3 1%}Gmt:h&+-=ċD"{R}*e.3/_h2ց7R #=J`˲MX[kX%Z`N`xh88]b3Bg3qǴlsRx;)~#jeXo8K+.}|Ja-/>E26AB:0:-dE0YK7N˙pD绑GގH^z%(uܕF=>0{$KKsAbgoocZ+&Ld̙7>VTc ?fNcZE6W+MFD+DT4MQj8g쿠:ZȁWbqUKY}r"i9mP 'VlPhڡ+ YœN0^p&@#("or$7/Oe~7~FUM;9!Qٸf%@"PwwúEG=ZrD&c[zwBm?ؙNmdxMzPF:h/˦v*Df).F `?Ǘd?\^|sNTIʅg 6 #gC\l\t.r 7J}wmN$'B~).j7aҬ kV9y=sT/3ğ%ǫM,mCx t*Gz3x$ʩ뤭4^ČJ;x-Zw`h#~y\@..S Wj &BQ&So/储=NhtMG6 9g~n3R8*3Vt%SK{iɥF 5ʦ!O%E͍)_:݉8_K;tOWcQn3=l͔Gedau;3XY߶8nіCW}/"w⩭s0)e(>yiZ̷dS;PaQOM8],T0P+Q"ͻUC31} ԫ17e<-x)L=!PAwK cZs*jD 1E!Qz grG8·1աf1w+|:[_.,\7 (Ѷ7^O@hT:fL3Lߓ@dvm B5$6D?ƈ}8k`P24^m$̘俵6ҔsXĨs/f?%2fn5AX*# WP\'s1oI00=~iZ|"t]hvgÍdAADh{$'@N{ ^DkaWz!O($a/nk]~<^G]g+.v4wD=glBI0s+l+sR6hfC`NMC|혏Y=T6[t /ߕY C։b419~Q[IP3fWN(dނ?.f'’(( aC7 \ijoi %Z[4|h'mARVMѰgifmF=C]^za>r9TTŮ@)/s:*_W̮ׄZ#m0d*76R;CR1u(VA7Wg?^lcmkMm( Kw}wk ٷNYHD<4RhffڦJ]8xL𱹎=7r⿇ u&vU W{dk=%vؕ]BNBP+S`xjLŎ#AW J0maʜmx ʼhSV<063yj\N"=0gPWNF deQq\lZ2x6U6&ٞ!~$IiAݥ"*"w:QHx6Z^4 #s9.ƀěZ;صYeMghټkF2UEϫ1Wعy^BS0R, HQӺ~d1 /H\O;yAE`9>~gIts db!yR#Cg iƘEK />$RC3u?L[wضuaE^|!NUؓņrf`$/V) ~|0DIJn 6`Hſ$g㷷)¡Bfp%I% D5E$r)!И+g[ڶQ;#pW co)[%{V~췝;OO cX a=*d3k)') .>{0ԉNUӹOIEbl R7{.j9}Nch* 7slJ[hSD◞I)(!:Š{AJbtKynO#Xu(xrjCZyP(}砷fښiBUY9;G-0Xݢ)ZsvC,|9 z]5 _Nd+M+QCI\7߃RaC@IZ~RkGUvAPIfe<شǭՋ]O)J/&BIK^p(Б#@$!!Vζy,WK4}z c:qH$YU;nb | @QxR0VEbHXu*$}7tiT0˰yr'>b@]zp-HLNr-0L%R#-϶_fa8 8?hDlW} ( nv\fz{I|ʈqxSbo;7*DsMk/7IVՁD (j fxA]aq.#DYj<6'ٵ |_$M4Ũ[ࢉ吃E 2f_^=Ws?R=FykBSdO`}`ǀ&÷DfHr)Պv[(mRg<-(~@L%7c~XiW>n XYs;=8ʱ9ee1ayS&w"]赏/)}qZgVO?rP`XJeׯiw&\^q|3$$)/[f$t'pmP"I1^&yᦾXA>Z<\Pr]q3=F|'sH,`W|D̪@v +aTȮXf"E6Ldя֚9VLȼ#㏁]M/ l$bneU2tBc\!=(ӣ1]P\4T,ɤqPNۃ\ r}kYK^83d3B )6)KPRAD1]u@ 9t-`A,RM,N<'")l=F .?$W!Ѡ3O֥DJt\fdAj%F{W t%Gn͈c4)@ 3.CA;%wШ XMŖNCd/b R4!C/{7?o|od2$$hZ?E\l@M#ʧc Dfٞ TEx\c?"weieL Gv/p÷vOq12ݚ 1 |E>J왰n>< R.%xoWyh1Ob Tvh}Sߦc_(/8gu7f[\=%P␳zq}{/h6")>lgS|,}Fd?K.ft;ֲOW9J(z0 =fK eذ@~4pTtO/VWO[%PҀۦW?L%w7Kevy]ضn޿گ;9z5 0^s겕Xl*y!vg%n-3iHz}iv ,걵)Y<}>(weC3[6̣^Hgbj,蘌bHÒ'~u 8YK8c`.)zbYbe yV5V߽1=2ro&6KІpwA_hh['T(.}W(7+o.&i~os>@T{zYUq?2;.kY 1lϠ۝4IjHh 2831'쮡sPqUvD8"DPhIj5Rv ?YawxQpx#*6`=bm`PR, x^mUf&Kϑ3\!PgCK^|ؒg`0i kV)\i? kyIhͩQ%e@8eO7 L#[峍TdW}ā>+j ZK &B~mOVa@ ,EUʳGJxIx^bc Hf'"?d{},5/4#>zӐF罔Q?a7{K?M"Cx )He8ѮUf57AP>'D]!v"uht(K˛u\y NЫt*_Ӭ/'h|$$lE}TS('bJ-Huհ7IVv&.{ezw2)jaEŗ"2xr~%U:P2T)L7_e޺ip_]V ӑw]\VO6.5R@b)af V[3 0Lm$!Qs*9 "lvZ? v=aG^R0&ģ_LYuzؗt~wſ@:cֿ?A0td@Iqu\7q ny [ԡI-Z{H 1v(k.UM?Ë䨶%p.B6ഢp%gUNK>h5/t^J폕K"I'MQm[+?; endstream endobj 240 0 obj << /Length1 1709 /Length2 17144 /Length3 0 /Length 18261 /Filter /FlateDecode >> stream xڴstdߺ.vlb۶m;;cwNݱݱmwضsӿ}=U^?;ǪQTEQ (bdeb((:0*۸lL,,@S)YA6^xJ4ay S og +A hfa:Z8i?Bĝ]mAs327Z gjnfg0u1)2B-])===@LNVLӰqx:>@{?qwh'`ctt rᣕAzߜr? ** SGd rwx-wwu[CMCsXϿ/ @=/z{fNQTIVJR]QxNqdyOTB`|TBI| stt-m-,ݙYNV⿜?T, en?\fh3 oc z Ww 1}cT.h4)njZ89{,JN:3eQK^HO7S{wm_4JNaqZ؀̭eAuY;L8yl\m_B9\m,/!#DK 0uu5g''@`frt}AK'W`VG0;@o + ;DfY̠KYgmu#\6(\mY>(x7UߢĜ|9xVN+_?؄N://:ڦ7H.e:ґKZΚn'" 5~*pR3 H r,ҡ Ų[oIP6 P @b XIF{(]ckkb+1@sH ;UAYZ>gSj [ˈ kotf<-ͧbҰZi#jnf=4U}9K5քd6C %&{"bi9.-Qަ2J]։Ys,iIΧd[N~8_ճ+ ES~Ok*,~!DZ~KJfsqZ~tHҨXP#*߇?8Ba|Bd`b&{/K8D{iN'8й,xU puԹ *CPY5OZO`ʛySߍgϊCOx۬>vk64pyraL:(oHR؉%WS-u@w)TŢ QW_aBL/x*zNT0ٯ”z8[B9c|9̇eI VydQZL}϶2ٹ}Kכ}\w32$y5e(3M]%Vp6gb'})!Xs%8.%TunPRMeKRmV l["ދIl< n@MB ë#śmk!' I"(CNg:}yi=+9J-.@QXmN',*L^C]aa= aT3ⶥ"4!hB^0$DܺhIw5'wpQk0wDF_ʶBKǴrJy'^"4a\@2# g,^VacdqBoa_vcV±wۈZ6ux_f4An) {՛5Vo xt VFNdqy'tmE F@#Lق`-ψZ4Lu 2ytH-yđGg?ѧd}I0,\hh5Ja:ȨGcrbՈO+'7^GG9)$22dR cuG a[-Q6.IK>ӫ|s.3V_f".2k _g;Jw&,H~ 2vN|bnEXRcl"g{)_e⌬wCCu sP`kc#UiB0QA m.p2GUW$ԵN:R" z;gTӽ ʨɠ$P DfBEі"]}kr?_t +9wX $|P#՚zע5TdS Q$[nhV=gH+q'ƎŞ3%A}Lu+Q\`Vf 8OmDM\rS^Y"y\@H軒g?~2^ {X@~udyXyG[&8[vWdN`/E} '-3iP7Ra?J ۧO̔qHU`5ZcޤPä7;ο%ԯaćX|t֢m裩՝ȑ*$J ?]@`FM/`^cYF/$eMʉi'6 byx&qX.MɼwPߜJ)P)ܝ&]nr]9@]In]n/PP2lVWUWZX3F\3\bH5H{K@.Ϻ 3X#]rDO`-ζ{2ٮWN:)n'+xx2<)՘V^!vx5JF 1i߶H%_`x s%I\l]'"\}$pr/9zHD,r0!,ZƆ: b Ggf$Llp N ew3poL4q6c8UJM#I\~޾`;|Ɵ;®+*nvFGSbGq/v}n P-*X>Ɩxr݉uQ+x#ٰHo<{l]Mk4FQR!;u|R 1d㙁ωn<[\d%ܣr׻Aqk=w򦹫_`2d,H>K !bLH3Z6p+19lprp# &('U'bc=cwN3؀(  `f*iG>AϦ}l GA/ ZCBсιa\C^#wb Qi,t9W-/*DFm\R0XY sMd(OFE0il$DiMU4+Ygmo랞Jgq[`BQ0 RVbax D URǷ4oR]>CδQ&uJ&̘"zNlTd[1'X.6t;v O0*nS(?_  Db00s>QZHM;N 8rN&[}RTG0^AA"ݲK0q\0'F"FbѾ OO$(YZM)ُqAB+Igl^_ "UIvմsftd;hEgp(Fω?֝OzkJ Q9i3/BZ3@?CB\h9ϔx<ڸ58iEny5 3cǺo,vϖƤM/~_ի|QBxsW?XQ<6f:[S%@C~s[l(#x݇vG)T+% {>Ffs ]l`TVQӴH'nJKyMr%02ciZNG41hh1f|r{@Nr;8\(D=W, >C \cܶ"1NmnЁn=RˀCԢ5Y}p&UAPݰ/@zynR\HA 1B/s,D ݙ~K We8.eҌ 1T;i|CHiN b._`x܌mV9lGLشJ5 =IMKY8aW 3?Q+a4bA;DH6\>.BuZ9jG^]wauLȷV0̥[[s8nܸk2Jm օ#mHY;~.˸;yA^N&RVlrIsLhܷUJ׭!uEDfIڌ)[a,t' _nCvms&@(˗q NZiiH_t(];F @: x0Bu:`oP4@iAFU+D.}jvD󴾼KZڒ#U/xk>gkc,h&ZH{TrfȩZ l5Q|)FGP&Cu%]fMX1r8ڹqcy`⌎IЌzR 3z`U9BllU1%kh.L+XڤCt#$+5$ 5I /]R ,fa)uZrzW4?VSGg~M )*\ ǟ-xeZ-Db H&N?XH+^ɷaa|T9nS&w҆`t PqROt /'FPJF,P _CIDY5Xcz }n`n8@ye0,qES X;%n'0,y3J!@~6OwaⲫQcI*c;d? t4r?q:j 5f#r0^FXcP&͎ SO5DP`6`JugVg4cfܩϑ{M^XDbG\3nP؃fbx#mӻarЗs^It| ~}M&혆W-](\FO4ąxȦX~Abx-I:~4mMm=٘PoIk@/7imo^{91 [fH iQ='`++>'QjF{ X$da^>KXF~02;8 w!Mn|FMi8eV}^}8).Lad6˾\٢9gseȥzm!dngg}f/Rcvt}v?&YHmk |as%6eŃJ 2bR@D0p }[۔)]ogbؽ $g8\ܩݔNW5F47/H0]:D<l8;"ffܟtք)syu|+:-hh=G]dA2' FFV9ۗ>/h[u8X9a|5akB$q]x/P{M Xaq&PYp 1&~!έvkg-W/c2C7gJC*\"N$XTjNnɀqkxJ/@s x&݅ɘ)bAԲJ,Bk4zFFݸ$ ͣVYƂ'Z|}oI#&H 3;arIV7>usn%X5D"eb:_gFT&Y1kXF" =(' V:V 2umdbAJL5I~rIc1jK(8B³'fe@HLro|ݺD;ugS/5!yߔtsm TMY.nl9Y11-!N9_˟dH]X5B׮m7oV[!lw]PIC+l *";* af2Mbb7ZE7OOġ$$9Ϟ VPV*f5=:]XXp+GJK#TRQЖ_:! *©P .,Na A(KL,e|#n>!Όd)9Oɉ,M8kDnn7_DPNJ `+a4}i@&z'-G u7%8*\"DEH;;m֜$.LsksbpBb0M& 9#+u34 eONf<.i}7 ( WHz`8V!ikM[)NYR^(:s7KZӔjG7\rP IA<\ͬ ?kܸ33sYԯ`3f`o`/D' i%OJ@G,A/M:P"8lH^x.6~R'7a 9ùn頷`SK y(Gie)2M*&Z4Y&)ޯW]I79ɲ~ ${l(<oJ8E U|{L? {u\fv9Y.XJ = Ka^N>G69I QSߙe{  3:waݤ4لИv$ 9}`C"DTM)w׆k#| ى5l/suEvphm )}s4U-OM3Zw+?6Fw2-ljU݇4]L49]_D^n T}cp EFɛ;F=9m-TA4،g X,TZZBwC|f;MtPiI!KVSg*lQW-"݁zoZk=szT7J*mH-$ ɉC6s7{MpcvzL"nҹ8k '{.3$kcr!޹E,}?'kS"FH`K O6pevczZsT/ ,L`vsa ii{ĮU } 4vm/ KFXr@ >`:{Ũ!`o&T1/{ t@QJ6bEQPU9rLo{O&>jsB^>Xg *!oO)a8zZH0޽\(J?aVUFP?[MȭR +u .bm% K[Qh+ů/%qռ *Na/#>jA7M<f\5K=)*`re&SsyW#Mܯ l1"\3.XZ)(R?i6; w0&$! n-Oic[IƀVme@ IK>jܯ f}?Bϙ幌`8 gyLOъΎ5$(ΉًDmf2_+g@S`걵 82 g D6U%(8ީ C< 꾒BtP8>ǯDf3KF3=\ 4:VC}苸_t-'Ad+!]hzl`>]O5~d~͟K!"["˺mkP[AStӰyRe>fcMݡ&UvD8R: Ɨxmۖ.0-9Y6 Ã>QaeU>c6x,V5/`t7e7"S׈[oN}^Ih5-ϴ~|] %@e8ݢK L mmei#)4 W#1ۊsq2~IvD.l~չDR!ׯЂMhq&b#n𽷜ENDظQW M*`enSnS7xqg  ȨPGi0=0.GPŔq&\6Љ:aJ` j) 7uWMrBXg̈́( ÔfPJ *4k)9R*v=P@E참p kEU 0Ipa2JEBwInaiQv <'ѴowQNґհ=.. Vei[h=7lblo)!k  P*Ӻ7FaAg{VO!grd8DzF7{q 3RRkhDz' Ҋ |5ToZl#^?sKXz)ryؕmi^syE'l9z.Dmh@·J ݸ ^c"*'WWPu'J|gDWlk%HDx0)0_{M.,0mi~{&D=vTYj̶GsO!pT_۬a#Bq{Cw# dNT1VR6/o)O"$ o֤Ԥ)?v_~ Vͧ9#rbȟChI=hh6׾P-Kk*3d$Z\aM`N\LpV(T¤B`WR! Nl^j+37ȹܛɄʷ/l>Ⴑ5C(xxw7.kU\2cvfA# CM퀣a|-'i4/F.+5 dUb 9qEtx^4MmS9jhWσ/[ё3k_c[m>6@P6ϰlY(:$PXN2 ۨYWlt 2q>9gB(Y*54jn/"^9EѯJ-g=Ng EN{M~O犛-4o\*j_9^ -<,Jn:{7jߨjOtZd3xY[ 0|Vɶz% qӎH^7ofIUn0YpR8y?vIܺE񻾾q45f=QUa1x-ej֒'+O0 ovxR?2Dj -Y |wU$@:^u۩_U0zSv[/2j,]:f'X`#hBsD8֟ -6R%<Znv:W7 4o?/nh9 @}e Arp"X/{ ;eymoC>T΅Vl@1MF.堷TțAyRוK$`aYD8FNjMNXq O?곗9 kX` .,)txch5AgȲmOKJțjOPK5ȔP Y-w^ >qrDXҡE]_|&y鴛8^WnnڸbnvO'.B$*ܜ S*2q@W&l'}U2PfeL~- #ҦaYv.AmfģvdD/LH*kÅzL ~H00P w6sfAuFÖ!b(Q/|Xeg]rk7>Q), psQ9f88C UvP̭U3'|Z@KU. )ݚ5j c#%Pt@áC|b<vዳTokai%CNƍ[bD YIM5d+d :@`x~;]!Nة)=`Kڽ7~߰&TaBΰ׉6F 3kH+T3brXwak&8xYd/qhbK1k]faM׵vb}ɕk, iob j9l>;~uf\vnjo3Udw289HDKZOQ3HXZd7x8P 5gI䈆r鴔/dC"*Q7]6=O>3]jPiMjˮFFqX :!Q3Gg5GVv ;fLj;T񧌂qq 3yp^K Z yY;6">&F2J#"Dp{ĕVzEBcBn5 _qq.JFk]+Uҹ?6yϼV)OgH򤇠 3L|is8S"luoJ1w/ىjMӣ7ٵn*=xuw0rf?E 5?~g2_:j6vL!"ऊ1E 0ZE'I|>_Ҫ9] m蛳fF,PZ}k@Ub07i&` 7AN2"26FhSBW>" @W?陎2u9wI:)#\Ons=aw]lHQ1VZ~j-Q:C.&Rh물̆WT>ФgݒQU>E!:9":`Gd z:ܥOhU"f Ȭ3xYf+6_xҧҶ8B1Х|~l=ܮT&Sĺ"1 ߌ3 uqtX+;w=icȉ̍GR/oxۥf? m!$(Bp1<,C2>]C,-?գy(MhޚA? *<-@{K AMQmML|E%Mh(#ӌ'J#k!>.7"Ij!pmE֜?ИRBrw~I׮.5ܙځ *D51E-pӦW$i(+t1yU%%y!ED< e?{O7GWf͝sn nID.mU'tMIoaqAcơ& `'Gn+Iws*X]4A!M=@Ý&Z 8[=R^#lW, PՔ0 ~DQNiRw&iu{X.Z"UAP 4jsj;vwE@n+`v39x<3g7R&e3@2$P:"$4~<酏j,͗=Rnf dQ.Ue_>RFɌkmRBN͂{I;ٽ׆c3>ZhոOD1x zT 98<~$!U(S7^c&vо/ Um;'p[Ŭ7!G!vg, =mE -Xf}NFXƉ~qXiL dvV$顕ƅtǚ&5]=%Bbhݞ5[.-xR}?:;yfD׺ o5ġZf{͈X x'A"vMOa W'`FFy&<9)eW?j:e1.ْ˱$/75ԜI4 A~yZt>1M:fw%k@Dߤ(@`" T!@Rֽx8p׷LdLN;E=Cv śJp':[ą'īQj3,UQ r|qk4my+[hb2=sҵ ?g ӽ3gU|KI҃BlV_ECH=33_;Eo/J9z$MQF#=,tM4b{Q5snNes/Dl1H_؆='-֊2Gp.a- \4+8?z]aX )XE?? 4#`ۂ|`~|Ve"|G 8d\;+ތgF*zQ揻9m"ï=.&S17igPAe7WwNp@nǽc(u.AEsQ :A^[u@YxwIՕ,G&t5* xɆkz 3v 1"EP$}n[|3@ ;>.E,wJ ԋ'%i+HTW4b6Lgl&1:P,|17:Q-jг3ߐC Sf3WA}TZr*MFnGoG)=Ku`6C{d ɤcj^%y_&^3 /}=#d$\_ $cgk|Av"4觌Q4ñ2 6/g˔HBgZRP+ pmwiw׀"9/,C_%)XN |>^*ZurlD"֯΢Aip5jXo#9QzO  g3| ~\he%Sİ˾W>SRR Nv{>\s|)S69\Fkztuҝ5l6(}*5݋)me!+'(&PRك5 &' D}h=lSB+ 'Ơe;>ZŎ2$C}*_#OJzHh7,Kʆ'kۡF`^UnϮ!e7 mB@Gۈֶh۵!+;TzU*7<#8j>[]rHr,dH@Z()ޔ#@ ˼ͬ`'#4ڽf1-!(S*S;YWw͂‰eRV;6]V̈j`~E/GԠJ7E΅9wIk|{hﴼss6b9ךW߽EUڊJ n)s*XzN H`aٱuN#àG%lZ E3o+.8[?s{{^hy%%%]1TG[dȋͳ%^=DO6L]v%fTh"boX_>w#܉xKh-8U%F*".E7'NQVN|ގ{d\WH͢ D@dW)W(1ɻʶbV$?HAo`'C%tԋdNo}Rx lS͛vI DZ)zzvqg] =#S@@L|L?Z=Sx#sي+6,[y JF4;@GR\kvHǤz?^ɝ.\QZx L,i/?(yJ*2`9 [B+5f}xɽdC(UkD{2 cy_GJ!'YTZ 4XZqˉ{F ;K JsǯC{Rems'[cs=>Ydr]@48h,ZQ4Prۑi'X~^} _.?ewvG~3mԗ!9;$nV1죢T~ BiSo,y]k˃zg8W`k@EJ$wdC_ Gyא2 y4ZP!$CS\ց=dL̿ N'è>ߞ7[ ouGXP1ʠ_!2+;& gCϏ=~ɓMhn[`\mwէPy58@E- s&uUc޿Ru j`w4>gD܆Y82W?[*} Ϩ ur@o=D,hD~2ϐ8۝rʥ&kLJ\g (OBI*X8}26_6<鉋B}6(BbnWNOCfsÐzπM_Uy^IZUJmnd)q@Ե'$07(zI+޽5w0;ZBy} J@ObCa_B.@bRÐ}=xΪLՔ; endstream endobj 242 0 obj << /Length1 1608 /Length2 10726 /Length3 0 /Length 11547 /Filter /FlateDecode >> stream xڭueTݒ54]Bpiqw{!4sκSrv]46$$rqnV)G{ ɋFG'2!2P@Ȁ,\\NAAA4:  `cdff?#'];Bj@ `5 jybnp[T +`t% 0:,@ B,'vXC3:K{7_^Vrrq|pxi8B]-]NPkU ژC ~ ^3nw5 5C\P'Z doZ7 7W0_ X. ks=Oӎg'0doņZZ AckQ!VNnN\_;JAVhjגlw"H";q]rߡ^ qzc\sz0@cXJ'U j6+sׅA.`U˿`  g*߼ٵuT߿g,Wա:^NUGaHI9z|X9 #_9 0|m/`d!Dj: [*mmKy,f-Cm2ӡDc2=]aNt +;"'fuN0v.ӷ3o|L?ԋ9`~{}LSˤ|1=? 26MN= ^׃C{7;2ģ 'P%A\, ZBl-7lw`QQ'@ɭ[ +P1*yR]" .A0D[Gf~a/ȳpӢR=ŷ/^=Ԃ@&.G*3!} z!>)ᮬFzMQ/Q`y7'|$aWbnP!7f矕4gT7Xafo 9I oa}9#I;g{H84;˷,"7s1)k"F:y~H}J"h>U>V;@f=Υ@M6f"m{p ^$iR\<{7 βmxi`զkЋs^kH5_Ӳ c($B]1 d)?Dd`iXbQGׯ͕d0wCNdr5럧8mOkNP:+2+#DAf7Tt="@%Bx Ҭ_t\ߔ<,S5V'sҧ.jX(v'M%Wؕ Βwڱ(m|\~D0J) F3E2Ѿ%< #.$<GDs|isZ78r@}Db8=`˕mYO5/z#0vxz=ѥLWJXi!̖<i|T/3U[ Sh!(ȈfxoU(,Ϸ7eWjT}ʁus#̵%'?- {{ج@]\hVAHBْ}צEyGV]ݣ+n3:Q˓ΆmJJ|mG$c:xo AY6G/>;#{!< Ili::/>7SnY6 pfEg%ףqfvϷtue3n6iNwɬQV*szU/!,>!s ކ!$ ^TPF|?5x5sJҊ*:#Ku_K趙ݓC N]ΰj *W.;N8V{Eޗ^Z:PEgYxqnܷݍ?ɛv#C~'ڥci)aDLx.-i ӧvzIZ[Lh8RT =dcQTlCᗐ5= q/UIeoO2:|(WK:Tk[Y s8ʣbF [dug@{I$JRŽ`6rB{"M |~&^K r)Ro._0c,$'Fgx I>"*o;i)ML-|mCLk:pwet_Nj|'˘# a@q9`VL|$Q4E.|Lp|J7FqXи~'вF1-&U<*wW:tƪOf-W cY ɠϟ1e]ɶ9Z!gI%ks+)d+n'\*^]-]X}#zÈ+JEȺ{Ll!-O%uo4ң)D[7q.ah+EنZ{ҦS~PX@B48T.XUFQc+u%񧚡^ \$=덂,"Nj:06Vd>w|-*>޺Ƽ}=̱p0eAgtEZ|E)u0%4棡aOǦŒqsjE WfWu]"d]R;"22}5U8.k9\nKE0RIcVڲȁܒRZYT8x5 ߗ#+jFh["4aDEL07mb~ Gj}.*mhȮ{|V~hйdB-;QBA,&w\I?*ơCKsd*W4t[f˪̴3D¼ W욆?0Ak"PZSj/HY<AI;/JAkT-y=[<YRb.4\Oć#? +V;}*ޅ*ms>9hcLŨ4*AZbh+Sll>|H Kxnq˴G9p+tɌ"@l3ŏŭfU:ѥ7'ge 깼sc6t;UXd& x"N9e{+)4c"m;GO6 12Hښ+?jaSXAJ! )VY$Js7'BؗFe܌pҘIDjqƍfFW@a-ZQn ?epRO4,KUUsZ E˃~)eзG5A,wn7ΝG`#k&:  ;Q}jNO1˜de.ȵsdِ>aKe!-U]hr"l)W{C<|ND1>' 15{BO|Xظt(PKL ݼߎxb4# ȟğ:'8'W!9]9 7 z3E`:9q] b[D@!B6(5 -!% `o)kCQmr} z>U|3h JR|J 첲[S nӘ510yHE(bc$ =MZ2_q]cEՔ'4tO3GKz.P|n;rT: c4HBQq j`#M]l%=`9BLqw۵43upL|6&˞H}Xakf<n\ x'EFUc>0<9o+A\rFÐ)P+rϱlmk% .9 Gu;-W4;r68GFۦuVIVs`fskOz݉>< Q.wbmg3)40{v n,4y\8>nZJʡ֛cfVHi~ș0CY%Zl2\U:>Dl%Yq:OY:7rRqr%HPۅ=LC̆0ֺ.%ch`d+NʳIP* 7-̫%U'I-l.wDFEE5&l;lZHr35C8'k;ҸX_J%@rVGuNM6|15]\(=!ߴK]v:t[4xo$[X3Ʈ"Imw۵k "|Vw^ғК0NZx@`I~:Vf?i@ȷHwc^Ep0}B sN e4*܍6T= D m{fˮaL\-J ң`놷NRa*i"*EdElaw^lݞznkip(fTNg's|{+[t#+/uJRdHP)J OUY+JzRr=%T w$)wTWVV}َue-?. `V-u(WIsq9%+ (z=Y-sؘ[r[ j0#$#V-6<{^K`:a6J 'D(tOkQO0sW N|ro[SmD6Y. B8Y=o,Bi*n ܓhG'@$t$Ay;tDqRI9G֗B] ܐHd䇲ŚBDbcu7OD1vhwLelah 6ҩd^U# [b_jA!=ȖgsTb PH#>MD;窅ÓcT~0Tx1^nN%Pw:gѩ<}?!X_`ad?/^xؒݶҢȋĪsn92C21giMHu-q;#9RP8yRfDQT$Q<4I /OmuMMbCq R jKu`=97p8hnm6~1i{|tl bCm,-9>:u?O^`ZYL4ݦ. r8T/>4.<{㿓E=]k\!͍= L60a$zdt[^pX<Z|͡+5_CƐc!*gY4SqH( \OI/SUWf>{;ݸ[YKJߛ_v^傣R)N\-R+u"$'Ɛ) ϡt*2{N]2:%# f斚lp!J+}v1>8 5a[{0jkh-6q4lc:ۨ-#Rw)G7 2}cܬtcy2K6_7L!pt [, {4lhSIЯke3z$wT߽-_X1 ,oӵ1k0$̺SaV+wL{_oGخFdlD"0XrM=4byXlwr¸|\ȅi`A%jPgg{i'^~#fA7$FnOP~ؤjkW6us;xmQf*A54jwtCt'4[yV.ȢT،ҘVhBD}܂*UL'F{NI󗤷ЊimcS&E Zx%vO\C) ~:i$wH֘fv1M*)kq! {cEPO,~ K+պ})ɶȔ2J񁳇4BScʫ]aLCN ),IBӪvehKĐ2c"_LM7c"| n3 VI}@ȁ8؍>ߣUЭٴѯDOZÂk 1hJj/眥tOB(陖P|`k9OM^%^a4 b%LL]LvEk"eqr|92xY}/?kl`UZV'ַ3ܙ+`*"ïU{%_bp!ZҠ lele(pqDY(J+T/eZ}yyph"2<nL6A'K՝\:H0{)wpxH;j)gԪu^'9`wmTBpo6D= ) ,`e漇CvI13] Lq`E1]/Wc^6{qtm8Nle3e<_9wKH>Q$2ҲXE]Jm_'bų=:(%}~|ުR]I<:˚I<j3h{-wt u."e t>!xVPzo (U5 )V.1FV0'uKM`-B;!L|$9pU1(7YT8ZlD9%[듗`Z;(U7Y{o.TF ځ@;7RyN(1NjZ#vd<75cR0~B=\̻8]C9HġKDZhl/Y;yXj7.YI|)y=oA 2utQDk068z3,NgP-L3Fz:toL8=4/-*: #]56y_خWw<Ϳ+6τFڊ홱ЊD7H: |Y ڭ,H 5*_Bs}'dWMrk;%A$M'FJ2{jEZ~3{hRш.]e'G.aHObz8Fլ˩&E) Yc|=6\D@hB:]tIi 5o#q""@C/z/Z"g4ADҘEѦ[X l(/h2HzQ xm,}cq=^ivU_R춣!ʤiFCj@6d${AwCA6I>v1odKXH;j ETN^mչ@lP5):nEfm5h];m +BV[d)}XXa9 ,i:j .߷ׇT1 \D)ѿ ]`naoT7K}&T~3>1Y1}yTwY-FJtǨgTGGXX /M߮AZ#s+-A$̢_vaBSC"Rw{K/zMGQ9Fn_,VWPVGiaSRG*CnyiiqksŬiDãRȐ]?{~e?hy=Uy:ŠR&.(+Њ2' 0>@Q A1lh>-:=O ~;T#KAb ua^_A˦ƲOu\UqωwI||Mm X?ZB :qj[5β%J8)DO~N/#pyujVRP$^*1Ir1z-90W);%:z46IYӽaa ~xz| bf3 zN, 6.ːYiC :3HA511F>@3n&dwjD3S=@gZ<^AϬ)O&U`T>V'.w<:7)2O zW{  ,dȲsrݟBnmғYȌp6d1:FN8=_FhW+wa%%}\.+%SؚbikFIZ׈6>[1zMp&'z </iŌ&ЗUw,(Wwl d6})!k=2?ƌ/5AnWό|;4fr }Sܠ}H`]xgD,QP.MOǠ[Z%wT$`AZR5:{ԧ(A#4 QwvLX›\Zėy4^L >K: VӘ4z|>1$}(&~F-V:w`y{X%!ޞ—O ACs%=1275kuzUdV`}f"I)s oXBN-d7&cIJH6c,uS> stream xڭTy%ˤ#&=B߼ i;SX[#[a݄-;^]GZZmu{rC5 ?!i'i#T7 f;lBVP<6V8[\|nUzۿ 4)HNk@}' pJL;LM hH*t|84ӖFк9YhYkbCɂ10xh΃?ty#9z^o›˝ټIU ȡW8UD*L%-54hơiKy2m$~D=bx^ֶDrI&laҤ(~d^Ypt]kf"=e!t°j`֌mI0=Xd椽Q QiAi%FM~ɉt]fhmW^9mPR|~Uܚkzs?Q/E~QIu@x =R;p{K*@ݮ)  mtfʛ Rڋ-:%祝!e {mżdZ|DSpS:hݕ=w j֜Ys;^"B &z,wDUȣQnF#XVn]|ݾ@ Ņ=Qim1PWu</d ,µwI'?:ԦKsV )mI҈M|`5CN/c}](Fuef~ Ap,c}b9cql Hb[U<>X])zk[dODk81ɶwZ|ܠ^PVZj"ZA*„̛zMRp7^m-{$Ԛ3yO}7lE *^{VwnW|c8(?ކe7{qerTs=s2 u:j ҩ*c|۔>!ΩuP}ȪsB ibw-;m$6CO'REzL72fw2Fȼ:_+ܖ9̅_s,'W!J~?W8~oDP7;2"$ gc}5z,4͍O+w`8QPGf/sCbM 3lv yQU7dBl2}~Zn2 :Kkw:ShRr RɴLFSV(ixv4K8S'A^UW7-_Tt=]Lil%3T>90y_fWRϒv3eX'YM>:/pD!wc*}>k/^sloGR͸s@/6ZToꄰk9U\`oS 05ROA )s!Қ'(Upŗ[1X+oTfv3ks Kt|V#g=#ٔhi@DIUPaXܥyQ*}cCc6@r(~ߝOY-i;Q(#델w)C) e0=Ϝ\P1*X$Q=sCqy+Čn#|HSrmreg#awg/b:E鑉E(ǃЏBWRԳ )׭"7t :L^?8/Oe"i[5~;(;vlN7L*Gͤ J6 -wr, b/T N;\ظ*)ki4Lb:{tˤZ&n;E&3|mv}PV`XX>x$U)nI4+T|BATNiN?xzEl֜,$Аr})I_-~5ClTPw~5Ti*"ҹDݲ樂'zx̞=(Pcoqh4k%߲m\6Vk[?Y03Ss^݊*/61S\/aurJV{?(`:8O=> W8q9Fu8O?t[u){VǺ\C^J^-0b{<2GIO8B/7zǭ&5A󚐂oяc$ ƣ"K+@Lzx+lF(v ^=˺m*#IN:T&z s*y^%j0T=S#9VEI.|z,XFje e5adž6dFcaw45oЌUTq{)02RVY^Th;OM$SNy~#JTY켅p]&33wmv~JL~jCf]48alLab})5 a=@~IY݃ʎ^c&~X=)B8LgsیZ!-p-Պ_YI:]% Tf}6t_,]2u3yzU&斏($Ph>O> stream xuwe\6݂C:(1C7] 1C "-J(! C HHt(]" 9gg뿮p=㑵EXCp$$ԂX{zY5xt;PȊMt}GȻC0\ y;x5܁ $߭A Dua.? uw( tuuAmuOw8 G@N]#'OFbbb@k1@d[xAdP¡wEcgh C.tsavp(PE<?fs5Ϲ9p`p?[t3< |C@!?H >6|uIඁW4f{{XyAHwOhK l@k5~CkZ!a>@/x2P[p-+(O[USEC?{wN,"sʝ?u`[êp;P&⽠w.riX.*i!0(o@w{OZ9<Ɓw{5l_V.0g?r=&jC8ep_T`6NpǝpT lap{Vm<ݝvW !FH9ք\T{t |(H猹ʋթp*=}3 ]iH'$&ʋONNE[+%Nr@9vK!۫ &-?L b0rƣg*˯ ޚ Vq~LojMN0~ɡfLܰsNQJnu[PT2R""6Ъ 3|CķKH)IIH`! Y_[9HD2iO~JRx|_cHY:Quc7H 17eVO6e=?AEPӺ?h) 6ʈ'{6@BTM ؾ~u~b{Ɏ>JmD֧omj}j tTq' K%@[Bէ 0WYb5Ǖ + ţ$X[:9m-Cc&Em0H5y%Es}O\^>+IĜBIpǛ i.>rè\.N|6#C"= 9AtA(5O;Լo=?z̴McwiҌzs3W2=Y-rzhOgޣ(2c R1h"8=9YUw ?}ci(edJX d1/Kv7ړ-crBJ6@bx*}-…TK>]I[ ڴY ܨ 3}~:rS/@&C/,; dEd׼I}ܢ; c|OD@%Pm=3 ǂ-_]ğA!“n'e_WF$QlmhܳC+ A!T?m?Av>+,ļZHQ.e%rglO[^'&Pl$Ĥ]F^gIP{| 2( nHӬeb]-ӽ~kxc$i  { ;{ڀT`6Gg;6fQ1P=9d-Rp%Zp7oi;^f\o\[Д {{TW|_FS_]b=P;MnȈEkjaٕ/ ǡdCZ2[?YZᗫc Ez>F''O3Tg$Fh:T nSbp$ s2:|:Wd>О6_6s?ݘU)S>dBVO2AK=#ln߆ rF+KJKieytGnchWr~֩j4E:^ewꤵ!%]+uRS2\kxj4ý!.iQ_B-e /Ttz2؎_ban袨/)a7AxqmbT/NHAZvK&o:~ d+?"^k7}ҿDo+PI7c |ţxR &> 7?z~iV$Bj(ȩv鸡x7q6=N } +bf+e"~w3*_B~4e!h?_jɴ`IJ-d{e8QA ʶdf)yu>nڍUyŇRMՑ~F7%o͎|·۵P挍-_hnPi{PÎ!GWq}];Qez_Q1/(Ǵރ*\KVX f' XWRo9F)H}{=eI֛u\ +3dV{sH`R{ەA e^{O5Dl&rBgKҜn[-0ݤFL/69QZ@ \\{ESryjyKKՂfGT7|O"yJ8B~afD`V)+ oz3O ŀ .*!ZU?|i{l4N_VtvA!Ќ=|{M [!&+ce8KCbOe' F, WĠO{9T.Fb%EĪ0th-Hx~Pr:5lύjG ( Q8%˶ "]' Y\ф)Uϰ_ZqTWQa!mf:Bm":8G%McUSBJrŕ NqQDPy\q}Nj#E6!3LJ>_'aɚ^*_^}/4m>;لˏ)a'Kd`wgz|5-\iHc"u}Z׵/Y[Ӎ$zdn>'ŹBeE6Zr4~7Џ-Z ʰ&ylb.:Bte@I4cѧR咠x`G gmi@ڋ$6Ltç)pP }m=aŸώ<WL(-JHq6kBCyQ'@#;^95//jޤ9B-CQQ燋±չVD D~ L]HѧUԈKLTyLxIPbW;tdҲ+H_*D-چjAEBa𼞢EmTgQnF=1EsyNJs"Mu`ULDѲa>N pWC%@xƱ~yulK4ꋊmLBǍb_< V1֥w!c'E8txW>|NpJjGjJxZ/顄*e8=eUݣ`o4l+NXFi Ʉ<(1.9 f@I1s:J̒yalph0&kP_9\:z#59(X> IұfeM:e?3=b7v4>gjE_m%|fŞãa~יy vC=;z]ᄞ!3ᰤȳx3;oSEaRԤ~`i.omks.D;TlN^ut$ң6|&X~S,X7eE)ΕҨɳp.Zidw9>>i{eM6T뾯JE7Z3"/TA"86Ƀg/QFb  fؙb0fZ?|"ge|H[B4V{#I=%nm94^ FzB(/)t 'l OM;l^A/ U-އIԺtRsvRRP{lB ZSZí2:Vp@S84.ZIVqi6\~B< 5Z%-bU]˫x|2|eЎй -b#ʮZWTpIh`M&:m,kd ,zd [4%K60Ks^ 'qI<ݳmP239T*<̻BJO&Y~}!΍^TVaUT4 47],WKoM3/1ɼr_;Qzq[qHFժ35ȵ%`I.8 Hx%w3R^^zr/ES^>^Ί4*X j9~!`\gջ-*uypO<*`'CqiQ+,sYt\ tu!d]!Y5d烪jxbXsNba Od c'O㛴'9F$5[on3mм[A4gW=$ aTZxi_A2=g V֚bcFA5[E!˲J%;@P:Cw\֬1FpjKɩ˸+ Y|OK:Br^$ sǨI[ƻBm GCh)ޘ58v|vpwW ϮN+6daW|&`^nwb6>BSH!~,ekpE95PP/OlD\2NW")y] 3ܪMu7 Q>W噧GRm^a`=[_멽tl36+͉ȃDuSkAm+ uMݼS6'K |LAŬ\9̝%ZwțEʫ1}(^t>3ۧq4O*(I`eK๶qi3i:ZGn؟FC)rbHkE2Orb*~Gveh&B.wӄ$sX!i}Xzb,c,~t(4 l'[h[BnF/e= N8G_dh|~huV*S_WԐ G/C-C[6 g #Uic;0 9݄5n mי#8'\f–N&9Qo[! C|ZzsK [/ s+A'gt4CEZV[P7dTk󗪾D;ySuw<9uS*RaLϐԿ f&5apհ獔,Nƺw"ө#?pZghˌ,sUg,;UGe8+vޑ0ԧk5rd/&瞔.wڲHrJm<|3v')]ꍋxLԧqY#jK/s"jVYɰ/\ ѳt/!DkH. e։9iٹfo͜؋BQ,!ShI&En Щ$omob<"~t+XB,ck+QHZ &'W?^o&(K2EkTw~U&! G.zϔbٜ 2T?^OΥ  ݒ6>Q+~^9cysSŗqPqH'/mu{CkKO[D *@]aVjx>4*xm0RIGwT陿cgyOBN(JJ:f:+}M؉n? q}6ֺ3lRzER+nXЯ?Y1c Ar:C/3Z[Ê7dvs#V?B 6NZ3 n5N > stream x\[sȶ~ϯPSX}p $0$LC`xƱ/_֥%$'}Ԟۭu"iU&2i|fl&ʔogo9]doo Y\Y=Jp6)pD `Bhg#ȔPeJZli`i⅄ ʌ(Κb2,c3VᢅϬSjVl!O9s(!3VT43<,x@0QxZ8Ơ X0B)R0B@q)*@J-CmQeTF#L5W+pfBZ20:66 xs8D xG /gl 8B pq j;D p+0tGe 4u]7ukƁVмգ0(&p8@k-Z @2P 'QD+J切DU43"HA$v k!pR}(Bul#M~ѣq3='S $ xi_OEQ?MqѨơPb]\N`O"-QުKD랐`@Zu 7{pU_u6=;),,[Xd5o.rOrNpo#"q/ԧl&N`p2ٟ@Q-a}6:+icABsN&SX#M&}GȦ;~&{y9#ħy~B@P,aX+7xNA0V<O_FY98^/F=@A oX4 Q?O ~g10B82=|k :-_iؔ4J 5 aavFwX΅yMaan`7^#L@lW:/V?c43!su]q+Lz +T/ >DPl77'uk@, ihl&}wtX\߿\Otvr)|d^XA}ވbe@CtE1ˁTmOGD.(?W"AӀ7MZ)ݨb ō{*b`vWcGH/}P Fi`lw`!_~>Ќq<(2 c$ 9ę.bR>gЕ8+$jd>UښH b`´.]Y\G(BGڛKh@@D0rXH@xfLf66kЎ}~X/ ӥ؎\50g57^O}~9GuPT[fHdPZRH)=YepeR;q-# d*._ɉݡZkRCp=B$!@!uFTr0g1WDĩӲz"vZ2%~QTr-,8ژFSi%K><-1$h}W L+-Yn+TJ)te 8f YX LADLQIˆot.щ`)BelȨG£.EDž=c=X>ץv@A&QE @aqgB+&XBsR9YS-CSTܴ|$+h,:sCU`fX/o0^1ڮ%" मvV=U$R U&%7vIXZjI:~\ەnFQOhg QD^5v*-Fvq7 V4({‷"iĹnUG ѠM-X#RUԆhIϡVE)ohFnj7xXkKTV 3 :wO 7QMt]z*?xQTkyެmM>E5~%<eɦ)ﷄ9X?6i/Qo@k<濆vor(Fx):Ar>;SMY\+Pщw Hj@k0S;Ov(<>rpῊD$$ .O?(NJ(}p;z HTx"68kl=7bҨlg'ELE+$̧}RmЧ)ms҅l꒬O,흮S}X\&=J8- rNJ;JWŨ*bFiǒcbG+ ېJQ©ӒJ>?KQ-O{)i=6Ƈ" "}e4FJ!H),i(wR~<*E.-, $gD!h@ p])_In)"GS iV6|oZ :u3JZ _0ߴo=6l\oFc.Et+R&4(o('[4dqPъ"%0J<ͥEEt;}{g)lGl6^Lg Ϋ^~?::.p=zdVCEza.C`Nru'eClwr1.N)8}eI.3|hi<gӫa>ʯ|<_|qY.Ƨ#YyǷy~o>0ϪgY |`FmyzoSbƯbVek2ave*n/e חè"?? m}};`4QwaXzXy6<\/>~yu98Icԍjz.gӦ]#<˷ }ae]Is;eDLqy\^&y<ӣd8M'Ӈ{yY we Ƨ,τEI4)̿@SsH &[/?lr{<Nֳk*nAnn'=#Ȑ~$^nχ|8?y D ^;96Nb;ϧpM q6^lNl?.?/FƸ!eXdy]L9eJ~ku9]hWY,ɄrrMge-19}}#T)KNO/1RQZR'AI941f2M}L@  # ;׈3SfhGC}5b6iUL}MD:WE $xWX#-"1t5NQ+ :loW쁡ܩ?Ƿ!niR$lHx/Yʘ Sai2U}M{w7kœʰ4cG]"MJtmOOY{\`ĉ46](2]+#IMss`/}kEj@4i83hir'oNO~5Ty7h$w,TɾLU4wӪ;h&X3 : ͷbl:VûgOߵ!By䣁62+-L n{:GlvዔOL&xģ@~ɣlAS1m|B ㋘&r"Q^ŪR3i,BMO&g}R_!2-xi]mFAňJM[BC []qЇO#CIdF)JHCfNʜ]ʿȼl> "MBN#ÿNN =᥶o| K{ėD? (7 (dWXdHu`@xV[ ߼Kn'me Zܴ}:EAio8/鏭;7yCt4/g@Vw^nZ}["m~I{yY^tyQ˷nj]ՕL[wګx>]y~{ޙTG-ڪtFk'v;}vk۫w.EOT*A_HrZc6exT 6ɳiC6]W|PtۤE}ֻnQf:V`B//(p_(:}[ ۴"Zl &n.A\1CҮ5|=qs&no>) >Cӕtk2V|w_޵ZDM}9:|5) Z<5=>(aݷBEm%N*E`!1lQjYD epq>HQ#]eGagMzsV~Z4 @0lmuzv'fJEBA|"&JDakNoUcjB]aI2aHb|LR*JN_'BoRTkZRlX+EAAa&Du'E-OB{<b8[<~:XW d1V[%5f{o_!4Op4__<}{@ģѢECߨOm򼜝\>]|;zy1G(:KH:; L_Rr%TMvg0a˅.nht ./vH~#+|~ҥMd/P7 endstream endobj 260 0 obj << /Author()/Title(1)/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20171030183901-04'00') /ModDate (D:20171030183901-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1) >> endobj 254 0 obj << /Type /ObjStm /N 6 /First 46 /Length 301 /Filter /FlateDecode >> stream x}Ko0{,KQ=U9Ċ@9w 82$i,3-P"pHjPZ@#bh[kD # h!Z KcٰrT[WՌ' "c")_Ljas6nj y '+v&IӑsrG~1@>TfӤUpů-y? cCg;/yTwgXvrILcDHc endstream endobj 261 0 obj << /Type /XRef /Index [0 262] /Size 262 /W [1 3 1] /Root 259 0 R /Info 260 0 R /ID [ ] /Length 682 /Filter /FlateDecode >> stream x9OQ7 \\@*;&@@EAQ$!Dca(,LK4&h,!1j!haruy7gl9ιsev'W0v!P[".a 6@>8Nm6sf-`+8Om+*6PMc`;H;5:duv$#+KWVX"YebȪsԂ=\bT` )p&Ah-nPo.7^:$\5gCA?1WQ/zb#@z^/o: #3 o? U@ 0`rn8L-` e-Xњ^(fʟIbR<3#?'(|~VcNg<'ٞd4(`(T*P ȩVOD"[F`YE5&5[\Abp{6o[Z$kwX˲.n}|Pcy)gyKWdGT^gYƾS`:KY]ldlc{-Y?& endstream endobj startxref 622701 %%EOF genefilter/inst/doc/independent_filtering_plots.R0000644000175400017540000000554413175725015023370 0ustar00biocbuildbiocbuild## ----knitr, echo=FALSE, results="hide"----------------------------------- library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) ## ----style, eval=TRUE, echo=FALSE, results="asis"-------------------------- BiocStyle:::latex2() ## ----setup, echo=FALSE-------------------------------------------------------- options( width = 80 ) ## ----libraries---------------------------------------------------------------- library("genefilter") library("ALL") data("ALL") ## ----sample_data, cache=TRUE-------------------------------------------------- bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] ## ----stats, cache=TRUE-------------------------------------------------------- S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic ## ----filter_volcano, include=FALSE-------------------------------------------- S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) ## ----kappa, include=FALSE----------------------------------------------------- t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") ## ----table-------------------------------------------------------------------- table(ALL_bcrneg$mol.biol) ## ----filtered_p--------------------------------------------------------------- S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") ## ----p_bh--------------------------------------------------------------------- head(p_bh) ## ----rejection_plot----------------------------------------------------------- rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") ## ----filtered_R--------------------------------------------------------------- theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") ## ----R_BH--------------------------------------------------------------------- head(R_BH) ## ----filtered_R_plot---------------------------------------------------------- plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) ## ----sessionInfo, results='asis', echo=FALSE---------------------------------- si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) genefilter/inst/doc/independent_filtering_plots.Rnw0000644000175400017540000001573713175713327023745 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering_plots.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex2() @ \usepackage{xstring} \newcommand{\thetitle}{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} \title{\thetitle} \author{Richard Bourgon} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering_plots.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options( width = 80 ) @ % Make title \maketitle \tableofcontents \vspace{.25in} %%%%%%%% Main text \section{Introduction} This vignette illustrates use of some functions in the \emph{genefilter} package that provide useful diagnostics for independent filtering~\cite{BourgonIndependentFiltering}: \begin{itemize} \item \texttt{kappa\_p} and \texttt{kappa\_t} \item \texttt{filtered\_p} and \texttt{filtered\_R} \item \texttt{filter\_volcano} \item \texttt{rejection\_plot} \end{itemize} \section{Data preparation} Load the ALL data set and the \emph{genefilter} package: <>= library("genefilter") library("ALL") data("ALL") @ Reduce to just two conditions, then take a small subset of arrays from these, with 3 arrays per condition: <>= bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] @ We now use functions from \emph{genefilter} to compute overall standard devation filter statistics as well as standard two-sample $t$ and releated statistics. <>= S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic @ \section{Filtering volcano plot} Filtering on overall standard deviation and then using a standard $t$-statistic induces a lower bound of fold change, albeit one which varies somewhat with the significance of the $t$-statistic. The \texttt{filter\_volcano} function allows you to visualize this effect. <>= S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) @ The output is shown in the left panel of Fig.~\ref{fig:volcano}. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/filter_volcano-1} \includegraphics[width=0.49\textwidth]{figure/kappa-1} \caption{Left panel: plot produced by the \texttt{filter\_volcano} function. Right panel: graph of the \texttt{kappa\_t} function.} \label{fig:volcano} \end{center} \end{figure} The \texttt{kappa\_p} and \texttt{kappa\_t} functions, used to make the volcano plot, compute the fold change bound multiplier as a function of either a $t$-test $p$-value or the $t$-statistic itself. The actual induced bound on the fold change is $\kappa$ times the filter's cutoff on the overall standard deviation. Note that fold change bounds for values of $|T|$ which are close to 0 are not of practical interest because we will not reject the null hypothesis with test statistics in this range. <>= t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") @ The plot is shown in the right panel of Fig.~\ref{fig:volcano}. \section{Rejection count plots} \subsection{Across $p$-value cutoffs} The \texttt{filtered\_p} function permits easy simultaneous calculation of unadjusted or adjusted $p$-values over a range of filtering thresholds ($\theta$). Here, we return to the full ``BCR/ABL'' versus ``NEG'' data set, and compute adjusted $p$-values using the method of Benjamini and Hochberg, for a range of different filter stringencies. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/rejection_plot-1} \includegraphics[width=0.49\textwidth]{figure/filtered_R_plot-1} \caption{Left panel: plot produced by the \texttt{rejection\_plot} function. Right panel: graph of \texttt{theta}.} \label{fig:rej} \end{center} \end{figure} <>= table(ALL_bcrneg$mol.biol) @ <>= S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") @ <>= head(p_bh) @ The \texttt{rejection\_plot} function takes sets of $p$-values corresponding to different filtering choices --- in the columns of a matrix or in a list --- and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. <>= rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") @ The plot is shown in the left panel of Fig.~\ref{fig:rej}. \subsection{Across filtering fractions} If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires a $p$-value cutoff. <>= theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") @ <>= head(R_BH) @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) @ The plot is shown in the right panel of Fig.~\ref{fig:rej}. %%%%%%%% Session info \section*{Session information} <>= si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \begin{thebibliography}{10} \bibitem{BourgonIndependentFiltering} Richard Bourgon, Robert Gentleman and Wolfgang Huber. \newblock Independent filtering increases power for detecting differentially expressed genes. \end{thebibliography} \end{document} genefilter/inst/doc/independent_filtering_plots.pdf0000644000175400017540000153507413175725021023744 0ustar00biocbuildbiocbuild%PDF-1.5 % 42 0 obj << /Length 1631 /Filter /FlateDecode >> stream x[Yo6~  #oN uf:J6V:Ϳ^v+9NS!9g> 92AWߎHbbe`IjEF5@:=t˳篸F`Dgs$ 6!e)e<9&$YU.&S!y\TmF~1*˓e/sS|A[y]W˳7 l &8ɲP|3~$|ֺu<-+s'X^"],;<ɳɔQnj7?AjUaWUFmhCm 0B 1\W#*09s %CSh wӤQҞ [)tЃsLy/Μq.V,?:iPܳҟILh҆u~]lP0G/3j̨NЩ c \-d~m$0[TAˣ)5+˶KoU*L!H[$Ҍđ8DNv~,YMFi~h)ŴILk ME00,&\6GĚ.B=6 N'w'LWYZV01 vDa{Bl;a=@i>G,j:hF#-pX,nP">&Y]5M*H0U3N^;bILaԧ,bG Z|> 8<#qb<;A"|Xw<\dl`aƘч{*1j1Mԃ,@▊AzvϑK#]P}<:$(íAȏH0u%z{Z_z ,ǂ0 G3ٻKH2o<*Uik'&Ryhc왯ʈgaj]S!%"CUFuj>Wy|چ儙,ZA$Y0c4+ҫjbC`IƉn^<C\cS!XgMr^Se}[Xš|,7 ],v`I$V&^Kyo.9АQ,͞BYoZsc 6S;#j}xh_ؿa J%d:~*v>~+w~Ahb rJpww$3jxwyz͛ ȻdHwb&Rv!tq}ѷm3hw/nt?}m-*-: <:??hW}rMs#C㮻!|\؏Axw a endstream endobj 62 0 obj << /Length 2568 /Filter /FlateDecode >> stream xko8{~PdfŷXܗvbM܇wPd9VW\ Iɒ\7vjI$5yq&iDj/?Et?8{ .恌H@ F,xɇ_Ϣ0xMdTHnlIɔ+6~ 鰙8ߕV,o򪬟CaJvwIQ8X\Qzm/7_OhX-YYT"ɛ{& zJ)1R:V)Ni 9N!,%FŎ٣8䣀: %%A?ǕVDj54E#uFSa٫՛g' @S9o8W߶]+t]fW`(}w&/a954D<5*҇#k5C'4IANk^(4ء:ePm7'XbD fVҧ1 U085n(ɪY6{ QIM=uSy| 9pV7a^ezXsp b•?fE}dD }OdN3.yE,WEJzlBa'7n6O2s=NcӘ `$92nKƠ=фj}monjZ"/^sB^ *+/Z9vgvksi<:[ R@[7I9s{3=ˮ>݀sSiueF9qRϛ Z\\t#P;ݪ:G2ݑ~E 5@⠯"Kla4'#+?(;Jn Y` JӋVY D?iq>s)3&[5MV7_Cd"|rѯi>q_IŹ.ΣsEb|QeE4?$8 HƸծUyKTF!@*18 @"|<0/&SzdXi)mXU3}ΝN={C̠Wx8#]EA"!#侂A WqY*mJ F}{A^!sw MgDt ӭ[yʢN@R3zB]#3d&=yUtW1i¤p/dyǗq#5)1WKLoIQj \s7u~UXb K\p]q5}k HAXl=D,]j[^ueG(e$f&w T@56?dwhJ9%\yV$<47" Q!D`|3h\΍uLxdm)›a^5^&)fyx6^] փJ`bvliV[pd57;E6o2+<:jbF 3 ="c NNUP[~=1"t`WHVrq`>ڹO/5 _V0Oa@'b7{sᣣ%jfi.9>UU@ZANC[=398w*;u}q WEnl yxi\{aW1^3튂(bڎZ#I97Uoϴ xAjXaAț:+d2ۯȐW @љfgd5^lVcjxc^bbU孞6òvg;6a⎼G6v**Tm,ymݲvV`v#AggCǻ.Ib H¶9x:Ң[+w\O7 JH썣w!/Rl\.W@4AA0Nޢq'حFl;q>/#ܬlڡ[QcFb a> stream x|E߄*"^";*v,Xa/X/A HDEDDKo'$!''onwgnﲗ\?r23;ԘW*sp{[MYbE|bEO"@#6,W)bC^a(B ҿ1!1Bze zHϓ4ذy#1B:J&ƱzH 4-D&!F4|=F:;"#ĨSv^좋{7 ~ b+c$1zLW^(wD FQ4nm/GrFЕl"BT FQǤ/{ u[ha(#q+]a<~Gb&nAD(i FhFbxy(1% 1MA D(i FhNy( % 1ME>뉒Q@#Hy\Gt% 1MM>_!F{"q QJb.4|W!FQt(% 1MG>+2Q@#4y( % 1M<@>+Q@#Ct(% 1M<b Jbx2|?'CI1Oe_| :SFәAڜ:(% m1>*h<3)E&bO6ZFt% 1b vӃ(&#l% &1ΞJU1F@tZ6Qcgu0JsE*F1nr^ 1'IlѤ}%D(i F;lofbr[+Ɣ;wAc V)X}OP@ $ 1@)oٰYog.wJ]1g J-{IDe(i F"/"[#$P q˖NV̶86!1*<X:1R'xp Q@ͱb4ez_uؠ#b\NV,e@Y:!ېbélW 4DMf/qӉQ@2Nb,?wq )*݉P 1N>ӈP@$Ÿ_f o1t8Ȍbd8ľmmb/^\dqޢnd" JQA͘R<Ř/̽WyȮWަ$"4rԃ->R\Dw57yA%/܊qbhMBQba՚0lI81YޕuX 1Px Qu!F.~INdi6_ΩQm]WA zlB[ FÒK6xJfJw L( @ѧL&j6zߢP@# `!F%BaPAb^bzLZL 1/1y|z!FYDF  1m!1zq(h Fhc.Q"FA1B@U=/P4#1/EA1B@ʍgD4#y|NFA1B@Jǧ4#y|!F%DFt* bXJT`<>N!FeDFt  1d(yMg+m^/=(h Fhc9Qb6"2z(h FGRn+2|4=kDIZ!Ɣ;wAAj4q]bTҴ)Bf~_ѧ@>e-Qx]@b8p.XE_!FkFH /=Ѳ6ž<cK VüE[4h7x/S%=we(h F~/FL)($^s {^?uIk]G0.9!*Ƅ?{Qt9n@#D;HO1$3Q:KO[MјN)&hΛ*et",FĠK|zqR~Z;1"u$3LeW}/.vL/&NH1.Ti1]RĥUwCz v[R&>>" t n_\8@'o7b|L^ܟh0HbwE`bcD:"#<#Qͭc .¶YkTv1~"/>&Ft,bHz[cm%s8]"#Şn\_~=mru7KEŸId]:m_$:--[I:}}mD{~>!1rw=cr&ѡً 8bLuQ S-bB4Tц1Qv~:ҍ! 1r/}٘J; Fn#=c9K<߾e?\h;K|~߈vtpC `bxi{t$ƒvC5""5Q%~;e5Z=??~6WX|BM.u#F.y]{qnV1ZO/&۪~ %cZqD;~*ӭ!@1" ݈K-L9_bqDXH1h8nGAP1r u}N7bgŝ㖩Sg˃5~$]UZs `7oF@ @`q;On[,8/ntV)װ3b|ؤXE6 1+Ki$ @+{@_bb\/|SZ6#NO/dR3wp!Fhx1݃ b,+߿XО_:: cr a/u8-#!F/VBbbz#%{,bb q1jQ Ĩs∾5zP+ 1qE*"k F@y<@A1s_Wb7C>%h؟DA1J&/ FgPNP@b_8Q%WsaD6@z'hx9#gXj86c7v 1tUF  1`b)D_=}4cX2:oz/ͳ 1lFcob4ON)]ӓ^FA1B@Dˌc54#Qf4,u4#QHxb6=]i< b(#Zhҙ#5.SqQ?u 17ص_qrXt] 1mwu:ߤtPkT__ b A1rq7I7/LvK3__OK.oLү 1޸wjqW?%B5J1w"HwX1Hw<pZ4oG cQ;KPyI8Q#J1rO>UhScΝ; ` 9IyiO3- Fet0TMbaPKcF7Oe/u(R8-&FnOΚWBp93cj41%&o%b ^aODQ@mjyS/{iଁpY}ˍtsQя>]ĨCFЕD(g F_R>nܸH5cr 2vW%} XLjFpkeF ?(h F_rQWidj"b b L4&4N}n U\ѹ c3.0nJx/`BI19ֱ=Ns^ b-y\ Mh21DzyXoy6lޚ/> j2a>b FRdUǷuޘ>!1G *L(j F1'T)]&]b&SA~7E5!Ftq3W)M?Ly(i Fhycџi4#42r*DJ/1B@#ұΠeQ=by6xy1bt?#6u5x'I*#u2xG(f Fhe"3xߧ(f Fh%9|:!FD-bbV5՞_ר;bZMTY0Yg0T|C1B|HODrU~G11Bv^=ͪu"w )hTpä1BDd圃zN"!Mjzb- F1hL"]CվNbI'3 013q?busLO8_w bbTm>D~1ۙoq2Wew h}t>@x.'s QjWtI_C~7 >~a:Qb4˰tV1fbd'J 9^su]ǩ-SЌ *eUn$PFz_FW~ab'b 7n [&c=rQo7Ue;gb >YwpJ׉h$#T߳ln?SJKa8]>bb< gbAhsx5݄b21bLbADt ?x 1`O@jzb1B XWc'xN N1`? >Xsp* F-QD?;҃(f=kgƉ!F}gIJ3#ZI!Zkz FMJc/=bb@+9D_;K(f FO9NJbc(z Vʈ:6 D0ʅr$$S=P@p\ZDt(ߴMBeb˺45Mq.L2խك31?Qs4Ta\#M "DFub`<31nWlOuw=#T F7] \:1]-DubX8?JixDKPizUHw}S>Cubj&nWM/8bxDQX,{V։4VSz1yh5#D/0b?zR27z}2:T F⛭^ҤRgУzJSVL'ڈϟ}iYQKkK>'MV/f6bhM @hl(hlՖ~y?}LbF:C_ >~ @#~m.?||:bho.ى F=:C}{X,Q1Y0HLso Qo uObAs Tź{X@#0we9j뉒|Lϡ>bA=tapg KIu5Qo:@}#΀bje8/J^ @#~FәA&jR: ۼP-!FAfT版|2bF`,s?r2#G;U{%B)1W΀Y1J 7 fޢAQ@h}y.9TnQnG!1 9 L#j2r^cPC)b~`6QB!01lYcS@]n- F|s @ĸu5*ԍ GAYLTl=IPD KƲiht? (y,XW3^NIK^!LGsq=t ,#: @ Xy Ao֗\)QWB@Ǭ!J 4'v]B b;N]GWJtt@e- \׷(d!ƻ.1>>ċqVj*DQ()x72c?Oŏ*C܉h=Ds5U?Fba\LJw߉vq#O]M7۳Q97Mkae\$13/?KD{m?V]ɓqU9-F{!%ߠ.{PB?ZY J^ߵrxhK'بy @5Ϊ!nR1?Gm0?Gp312~mw5#Ѡb~8ыѪ}oSi2 1LS>)fjÓTL:V/&<=B b,9֍J^Rvmy b~ `Tz+(d"FN1ۼ\cCo:Fo9 w۰C yF_B Pb15>ܦA2p,DPPb~Yx@!1hsWIJ bE(c FOSRYsP?јeLgMQo&wP1Gٍd(Md1 Ѧ4G?g<#:s:`Q6@Ҥl-֦EL67EO @cHA=E{EM cKyؘm¥< FW܇GOb+ѿm;X4=WS?}? \6>U"c֒q&z!F_^bS.϶^]+)~\`Ms>` XIϲ]]ႁ!Fۀf.] 1km&TS=I?nNPϥti' WGvq@Oڌ?A%Dx9%CmTz?ǵ,c$&ƫp@#0[(OJvG_ÍovL"A99Nq(K>/C띟 q.'ƹD#A4b:M0iKjb*9Ú~(hZ@EsҺH?1~CtWํvobR,&g 7f']Ti*yRa޹gob ++:eAKo=i'QÍl1cEBnMS~x}ϺmJ!jb58[|0gb~a4BS->ٱ6ilC{^sM\۫ZM7wT ĸbL=Kq];1 6ݕ|)ˋcZ؋-!{nHM[%ݣJE NLq:'F.D{<gb~eђ 8! I&v z^bR\;DJ7*5||~u?I(gbܽ{Ig7~5>BYuAΜ#txI, zZY$;`kRXxi35n/[fT\>q2(Fr B^Sb2ʬQ>HQ}} ^3إ>\VP9B 1B@"R1K;[j 23 F,Җ#ZV+cаw[C%*{qPު bGc ΧZX=ͣ bH TN5cW0/#<#@W^ML=~lxݨ bIȽ xa7ьz0z4~Db򎵋$c4Jo]+yy׎&_<1ۖ.;bO(ݤoMDS z:뉦PS^ v$k޽t'!FJ:ȷwԎ~O oarqgPz^y}<5@#G;NGs~syDoi*Z/ӉY_SksĠfuk_21 y&KwԓkZ*k琊,i郅3i^;pEuFmYJ?E|r}ay/ZWA٨HI*= #΢G~tҥ u3 1P9!܀7:\ ǶSg:jۍc7C&-˚S,bbTɪlYZgx?q9HuFg/z@g#Yħp Fa-KX5CLQm(@?*hop*8!܀':}V ''=}] 6C@?b?7.ְV-ӔILej)*٫ 䅉~cy]砣װ>`/ܗ߆ !$4Uc֝7ְf,k)Pש˧,kNgwd7-0WٌfUcQ:b!X:QZ0& Wv*R]/Ὠn4%xk[tًZ*3^bL%rVJ FJݵFjxh}So[zX7y퐺?N/Z /7!҄W#a6:b!^j_WfY[OcFaś##崴^>av@O7v=xl]"U|3.(gӋ#qiޜ2Pl)t[LsMs[EXSd`.M*iO C&bN?˩~+Q#qiMZiLRYI!#Ml'~'i@Ј[,t|EïDaѿ7 #_ԸAbl)f6VںeKaZg3`wws@fsM&*!F`Ds\{TcL(ؘfb BaFdhg}@튑MXfٰu79 F/P?[&Il6JQwc-՚<;L|joblw~| d4œ-2Y@'>!xxF+Dzvs|tz )1R{X_Q JՓ)ۧ6MccS:H4H4ճ#ߢéXJ1Joۄz@n7=UɎ@Њwï ꉱˉyv䥲SR:oe| wF8c81¥˨w%*BvK-:OjOzI1?'%.9HB<8&ƳpYfrpb|Bm1}r)+H'U輙 F߇QkeWYuhZwTN+Du G-(X.e| pb]G"V<}\ScBaŘ|m+K9I1I9i"?{ IJ [U3}:Մ@;b_F݂$ :z!`4(&ZFG3;EaJ3:"p-TܾC'RY||67M{k}mspM} lqŋT'WOȭ7a#PG_V?<7&F*=T*G&<.O$Ө7go7;?hLFޢ¢V h|t>}A5qCo:q /ƅ!phOp򪖉1y*똎%YWh Wl}x\f_J9Z*9ZLk}{$1:/^sMv/-UM\6R|/[)%]nkg;hS]#)wɩ}MEƽV剼V 1\\ɶ:vU9A ^m@ ^*I~Sbx? I0raG`; Leүl\qآ%a8[oWSmo&z!)7.y"vHACC•~p1_I#A`9}/ytug2x$/źĘ|S&S?p Imd+?٢KmlGNbggaz<_Z;1H $pgJQSU_6H1`ј5rRۂ(y(Yn'E,C幧v72~Cg>xOZ&V|/'jaŸ@#1*߳T}նRI4َ GJ'!EkjgoODGinIS腑!km- PvsM}.X|mbٝZK" qnʘ}j,HMRxks6Mt\uA*O)nqܯh63u[)zHU'ޝ:1;}ՙJt-jh,՛'jHj}(l];$ٛQvC|zJ-6o_nM?,B'Z'Dl?q'fdֿNZ%J{A(̕t۷?DhYO|S~*-Yt-ߟ<`"Ӣڅ#N9eޔ[7Ɗ@:侩`>{`~%EwZ7 ?q„l/::{1"?㉾ѴbefblJ~SOWE9@uqA$:w'mHS\Pq?+Ęv3Sz/1 v6FO1rIg2D,0nBD͝sFaMl3J.huDM:8h%)֭7}~a }P!FYc%$>bʉk/&aM\:?iP NZhJ.owFG%%Y^121%QDX?D FG QKTeeA kxpThui1k֡lmlݔ؉qu_'ep,A0/Kv)Ll0x7 >SъvqrvB}@]u}8  FZ,o:.iEo\}Uޘ.j ~SFg^*M,vڼbh8s}íŨ M!D};A V;1S嫽]A+Wg#xu]*n\ۗ uX I]50O~9GؤJC oT)v5 [|[? NbACag,/i:YKw0rc(F4([v?&cbn-M,ы83(p3VKOּͮNhx}7-KbLۀU߻ k9.rlW#bAL{qo8Î $._rt8бf8"#>&9Τ|:(pM<>J^qWb2KD{MφLUYo i..J[JZʫ?֟+DoQgAE%n@h9|e܎N}T1x[-X[SSQ&EjM^W]K#a\9ĨBa}Ŵ4bL6/}%LSQa7?==,4V#3m/7Lb"JƱeFIn@c놧`iEv'[uqGx^q_sNkV 쿋.9JɊ5%)8mMW_10ӓdeY,]q\y}^>RFDrʮ&6p W":L+ΰoZow嗋1#{׊{=NkbZ*eHE$أ4QfYhxJscÔ?>}o$vIoO @}ܟND= cp$ w6TʺU.5]J޼!7VQd{'I(Q&kSĉo"&ËD{M+ YP.K@=j@8nG͆7K i o1}\tn'&QPD݋_C < ZSSP!=QgR-do,cYx6{5dÊ7S 7wac81~ItZ39a3ntn]ŝm\Gwi[`[𱢇dU?j,b^T8<m%MWԦ sѐQ9ޣR0Vϥ\? uc &}/wnM{n1$}oW{!nK> #ֽ~syPFpDiQSv(/V{^$'EXߤֵ.ՋO46z:d[Rq.816$0'coלJy{_1$\(j[<ԃuZ8߉Ts0vzݶ?^J'S~ 6n&ڥt)(N'| ]q\/²q{Gi~:J{׻˿LBQBW[qZߠyg׈ weƤN^'j?JkvfT/AN^dВڋ$UeXȚzkW_c\/nU) a&^ؒPU%`.F<[LѨGxm 7 r u>%4`N ShͳW祧U-: 'ϴ KWa{a q*{DKg^23{PU ?.()br7c{'O FCr~aKtXwO>q31>K8)Sgc+"6l cb ZG#lykjQNW&#x{h)|Mc~oCF$8 Dp'Ow:K4!>Ef)0ApE1ڢ #AΡjFiIk̕Ѹ@5R\',?^m}x1fUw1.-e'y~cIU p^= t`kҶ--4)Xy +V+pEiYc\vVF$FҟG1gDR9tDWZ Fñ9E+ofq&A*Yd|:#ui[`O4Ar0R }{ƵğM&@Dou;Kqj&׆ G1Vb*gR!Otv^ 7^}uP|[ag*MMLuEi. h T:Lm^;k;^wޙh*PB- 1{w58A鹫zDfsYI4t{"Eh EDg4hrr4y |çJfCDHΊp2z #e]ִmm/ڏ5%I)GYbJSޚ7pSEQ9cI9opI|n,`ZӲ(r8^> o:3}kϚ>MՍM KE}4o?w\CD#Ot˶s^]չs#(pJ:KoŶ|Zԫ[~ܹo%urg1Ah>]`TId#UF7DZJwZߌ?sd`'˸}2izӘ2B}|F/سOyR݈3Zީr7/䘓6o3xh0鹚/.Bfb $7,7+7,oY1puStlǒo8KY^Hxx8gW1(#nDt%LX9>$d=ҙfjFz5| o/}mg zuoc'lob;Fr76e^Ow3h,,RՂn?ooaC"l}-fTӔ\5rq?MZzefRCL*85*:4NkpF<#ޥ{\"t(EK:pHcPfɊ;vsm {,]qq~hzrz ےJߴǙ'k8$Ɯkgը<qM{m͕b.:4pMRV97xspslwkym:RqWhʧ[T9[G@pw U9n*#6\?,+nn[;K^a-D [S.IzyMTEf8Or!biH9hʏ©3jY?xsʍх#Ul=KƼGs .FoFZ.4Oŋ/63Rwֲ."l\mq.c+n[O-KrQh).{V"#؅wX}wӽ?;R|tbY {q3"&[<b'nA/]g_/#WTn[6}מLӎc*+?TLrnႵ7eRTamI:ʖR)6_p5Y.N4}i jfgkyc"ַMO~pIu_g"K?l;YpK+dGzԤ:񑚿Utmofj?>ؽj-=RJCo]S*͚s8C9'c1F?+hs5> 䆏Ѹ u#Բ۴?YSm^~{Ӻ.!ft>j0!֯^T|81X!>P}+,1O6ۅR<])ݶ>/ag%iFգ)g~##B˔|]p,cG fH{1&.qx*!5.I>)u?QڲZD*\Ԥ&!JHFn8:ٞ 0lgmNls<=Mf[8nKnkg.n-uy^D-@ch,Tݍyl֮6P 4xA_cg%ys0rBǮe=*Bp-5%EU^’̫45?v}^jbz"a``:H}X\}lϪ5=׏]O#ёZE5Z޸l:YvP(omDYfTO\<av;lOϔ=7 +/=GJ__G(V;('iWD\KV2*y7:̰~.=1+S,-DT>9Vrm7jfmMl 5d)t\5"?bXY+,<óޱ/uCAC^htOys^Z3|soƣV9*]y(±y|˷gQ.jWǧS|+kO*$ȋR\n06rg>x:=qlFvN"%t14_4dQ~vǁW/Gxl-d& >lʴQ~f{Ő_?[y];.hR 1B@tѢ6v6d7(M!&\-EQS8B3H&QpXBVGf5+Pq ڲ5fؽnjY<.pq㩳 ZG%j锈i_(#ieג6\%`΢=/P9Ud޻|R_{ wJҦYHv$n5j/ƄJHwqYYW1:vUH~ߨ< /ű!ϕЍXcciWeHύ`{\iaqK]ҚNٯ 7}JZ<ɋC$5rŇ߹oi6$a4cS bݨT1$ә[RADKHk4`ZNjlsI5q 즷K|-L ajo--Q6Ћg,SXƒ)3UϙKMblO"S=2XsoHQqÏ[|4ו_`3YN+b . VBܿ#%Xy3A9֌P1#֡+~9};V9EG4Tg1xZ,< vl`,143 4Y` agwavA9ZRnIVjIW9sުϩ:nP}V NU}IH@k1rܼ Z| k(3| .P+ܸmXZ񫪞;^!"#Rwj+eM"1]C?%V5pV@TX>FCŮR+箵5G(%<Yj̬Q&xBfv<_vvwiރ[Ϡb-?k!,Jg8_kEbu=)o- fˆPD20.7UEMG,j5OZg=&ם>}~?10 ? ֗&n0,BVr5o2YRwGZ {}^Md9h0BuނKG"׏:Ankc_ƨ='fWY!6 N`y b%⭿7s[k:@n{!R@8t՜1R%6hrrIS?Jz5anj߂Tޜlzzl[ty<%\9Ť4 BX"Ȣfw,,B ",WŬ5bjnCe+Rbjԇ3r? d4\؛Mx{;ט蝏"3` N(Ljbl]%FDYsmww;'CUT0,z :/ *S {%5XxEzR$h^; ^492׷:`6r6`$HGx'i"@ q 1R[TG2α6S `r 2~|ƒv$\C31]kcB`ōm-#F"D,5i:l 52of@79/>r15u lQV{FL db.(ݠA+ Г8یD͐#F"Ј fhk5p\lpݡ{gabzŷDs:cp(2efÇD'7#'Un(C~^= Ά:x$` JgU 40`$^3#ؚX-n|I`^?p U3Hr9 KVn5n}Lt;~ԴMI甔}ІPm4A*,ؖۗ]3JL#w[nNe.\̰E ~G obQnõ:Rj]SNtbog* "bGV,8UrEpᠨ+jnP6"!D0`$ ʰxTs|.% h!q"`zAl^h:P(ø*uoFw"PUK?fc򁯇&lPÖ<$B̮9%SSU0;z OpG(oOjw#mгhnO$DPhрEGqA8'&R¹c{g*Ȕ6;X+VyN> " 0`XȘ e:d6:~s]fC.^v9! >-Pq]=CdebtEPzgm$?y )Qҷ]:˽7~M " 0eqo.sR{K2ALë`mLϴV6O ;)Nnyv"-E%KhbK8\Rߎ?0Bܛð~䬽UJeǮXZzR0Has40& 2- @s24R݌sEP"i!R~.VSKږ5it@q]^'pu3Aj!8Si"s)P xlכ'sa+pWQ.gK6..N: (_% ݬ-?$5,j"*Vufn !ݸOF"oCͤ ?X~ň: ǢN c3Fdh GK] VRYYpڵ:ⁿKp1uӥm9d;}oN6愳U./8hWn ݴ(֧&<6y+}B1RIhT" 01-rvibwnzUb*(o 3z2̎La%J0ܓ 3b-tP]X`g{3%c(0zK_7*iQeB~x~\}9ܠ7m)q!+Z|ܣؐ8pZʼ@O!HiyDyUq]$^ʥq}yLLef9ԁ&' btb|EoHHaޝ[u\hᛘ5y`ܛg">~^Us8ɒ.3,_(JM\j;-dgj:Aa!Bț *GK0?W?__I91Z NA|Ik&+8q/K~C!H㌾%3=e(iߦ\RVèP id#1H`;ozEL ~ZK$WݫֆgBiHC s/iP H`$f--ԯVk=U`3@B_( f$/]sݚz5 _ F.I6K*xP6dQ7P_`k_Ak%ޚBm*yP-s2SD{khȶ.0Gߤw1L]BdziU_@GGJ#7+#^;f_ 4ٸܨ [әkcJ"6/W0)\CsfḶk(cfVԎl|WXNoTӍIiU_CU`3|+/dTvwTۤu_!P">kzt z#H= MEU1nbnel*h)#"{>~U1p!H KJL5UK-%봲ͅOk5R8?SKq'D16eO)R5>Ku*gYYB6,OoTF1GCloߑS4 i@(-}qb&*d0R!Hlf- J7G|VHF"o\b2꧇CPl?.dvP/z1 u%&Z9Wj<#ݗju TWGƁs8 m/pⲸi/u4qs“܅0)p:Ȟnx3#+YV1u8` jѤh9)4IܥEd 5 "H!̌uqk!HE}͖piv˩I~o:_^aBO%磞/1wJ_t!k5}^=٩If&/^ zo{T &KEg=Z\eSpގpqL6 {eZ<`(Fntb8%;p517o| Qɡpɭɼ^\I##.)!g!H["Ay\I^c;gjpJ)#bE#uwUfbdFjN~i>~ t4/ቊ]j 1ݴےkOᐟ-(5IQ`ː;V׻b-O^|OJJǟzXdhJ1(+\bA;t re6(ڟwkV]Tv&pNd r֘2?yVC(3m-8q*kX8k䷔S-d;o=􅰋\3!,Q’>x~TKmUfG7;P>B4`$H7CӂᲮ~KRJU' M>3( b5emAW't!yZG#z21 *IFa=Z^6Pp.AЯ; =ѺBHBUYƛF:Obw m_1`$H$@\ s!5 !T?0!Wm7\i2ը™ȣvI@5rsQyჴVx,4?D"PbfhɎ 9p 0`$ +rY!hvVy޸2X5"Xq:* O5x ȬyʡI`RI?K?P5ǨL ,EpWc "E;ۨחʌssjm5ߢ.ɯB׏.lJ#F"`ٱBCFVe(K&6šX}\/&v̧c|A"'#4<&"RDUCyZH2"Lp3#VuE,Ij?LfZm{&<]s(AQ9B^zٷ1C MPoHE@&b^a.| GoܶMyy+‚$dڤᎩ;Zy#r5| 0 L )z{ 3 U1vcvbq:f=P+@HFGpWMJ[C@B>t/g\HUꝑYh,K[Tq\h pw)Gk4j -NtS|| 0 P5("kDc]RkhެEPMH@rx# é([ߣh4Tf^4X|/dm㱹 C P%cj$~^'?r9!՝D׶Qgl/#F"۔ݐBĽk0-ljR\&~aÒ )QMeUKkij@cj\g(fT!P5~?h(Lyr XX([%ƃA_~[6 /@Ii X";4}©/#)]o?k7m9b1Ж]3/z0õ1St$W$Z07mUVbO ]3u/0%V>*;ӱ+ +tOpf׮gd,vP1g-ę[('];3\l1\ǴR$gDPhb#p(nY3\ =F iW>G%OUkv+F->8acNh 0B-PIRVx=vlkdh>ݥ_0ntqokqff|x`rpϸo1M4'O?Ppp=w#39~+e:BY۔EM'qNBPO Jh4ZCMq~(> 0or.X|:)!bT9i&&egm2ݔU/q?ςU7W%3EQϧut1gR'V$*~Ud6g!*%|x=] T"YæިOfw\O|/%HVWuɔo[\b9oQ%^h4åeeY.q{U1kzAG=V@ T0GB<<!-[) FV,Zh:@5ZSM9 |̳Q/[9vTnArN*:C1Y@ 2)OS- 0OR%JoBIu$Rެ}a sBƒˋ^N q4m!-xu0Jl #+TYIKBm)5G[H0k+Y_÷F m(&_wpw7{uVv;9Ϡx ږ^Ȼ9^6] a?\Dn BX)nǨ0B O77]IŖxipu?*)Eu G}.o`x?xݦKB/RqsK `h9+}5|kʍ6q"dP͕6%%jTȶ;Uݜed,G ;8<$-`V5nQzӦ53$81 4l}^p (::F5& H E}L]1񡑹oz'(.C㷀߬T*C\|SS&#,ٗk8u-c&j̐z'iجю7!y[%^j.^Gm9^?z|x_Bm'`$( bR˧ԘTl5cvueZC̈́^5c|Wɨ:ʵn3/IHHe}!*8풐sm~m߷[7 BB˓S;*ݪ*VԩhOM oYg@$+?92,WGZT,k嵊*̦(]7u&^{,QeoQ6c;ĞAKF"tލ Qp9$K:8Qqk/8ZCYUO9c<Ʋkډ{@iqD?E|Uj@ze1iUsj7T+1mq[ѤbHeGgCϒw,rnXv$Ji0RY0\|LT_ 0X^im*\H"b pOO;_ܧ;n+ L4YoTyϒɍ Rl-tTF)PEq[;Z WBcx# 20Yvʞe^|KW t^#~ْS/=DegQT*:/H*h`Ve :3*mKO~TxnHDCi͆mOۇ],o+KuWi(v&y;Sy[Y.5LFA~\~!)=m>2mةX&XMOOR~⩾]"MRU8wt hΞT`$)POǝT*2w,7ןgT`~qY` wJ9]rNA*] 'mM9Qy:C} 1!3,c 5$RVڍwfPYmߖ([qG\)"`t IwNjZ93_ QyR=A|~96?6Wb7B̮+n}TPd?zɱrm2!HQCbezgU)wgert.a(-L!8w(t$vY/ȥh4_SC QaOnVawZ,ƃֲ5#o>#,_6 SjrDSbڊ\`K?B6 oߦ7깤dL۸\ ~U}C#Ff-紊[Zo+کGs=z.5Fu"$)?3 s(d3n,qp+X5sGT_M0wWX߼!ר: *KN.!(zjDR.,u?GϷU69" 0XK^ \H(7um("_=~<;'Tä>?oP?A s;:>Em:6'Rsص#XjF` > Xٲ BɨHICE{u7r&X/ϙufoֳͼn[5[`$xυ֣K2=1H{NШ[ GGQԯPCzwee׫P *"7Z6q)ؠ"*T D4apzܛ#㻾oxYǮBzb#$\#Dxer@{,b&4:æIo'}2(DB.m&Pi_`e6h}MU@-'(ꟁP'; tR 00"2Z3[T: [qix{]4ݬzŽb`RO*)6E5yv9ҕ_XYj>,r?2Ri{{l3*_)w9Pۈ~C{q&1u=aWLTJU޲܍5 F~XeG #ytD=-uC~e%8$D3{~t79A{CZsa \bm4Q5 0zP~P G')擞VӌtSPKi4k~Qm*oII?rǣ?p7v,rVnEhLN(E(`}G"5g+gVc•se+[ӖKxC@y 0`2I\´fq݉Ԩ#nh\\ ؂/WE:Y5gSƊZd_`dCc| c/}ZZ.$ݮ=8{qS|bacsvvWNz1R (ujʚfЮfSV F٥)fVlEd=1X>uʘ'S'WQaLս Ӣu> 'bέqje`NݭY7>>[nl(Mrub7PMۨW˱o=Gmb?T&/e*qata?0O-o9*+]2SR4f![d:-mc my\^; #F"8YUwy5k=(cDŽ0@ :M}ҷ*/Hb-=l5A_ 'eh,'/|JT6n)xS(rFA3Qw̵2HX;ʒh(/OKd9,x12Xu^GvuW#=\Ҧp` ɕ3Igyn|A㱉{)6(͢.z(LK65ވk|,P*+nj0*$kvuC1OF[Ɠٵmsp4)& ;^Ψkknlr鄹Ojʭ8|KV¯"B/JyCB& =gN_FgH"=ĚM! r߼b߼F.^IwyWe'qj!Hn׳2zQy'@A] A6I}[JsK3s^l8HݺQm堯=] ܌\0~ |$׸X*bNYuG>:qjH{iǾb$|r"qdl׋x6C`,')ȟ.%oOSF"T^E~xlM)>M\ȁE!|&16VZ..t/WX" ƘT,>Lu}hCrK)bq, + _3p@}#zzdh .!p<ʀv8uy2:H sIN-ɗOP`WycVhd~ߛfRݢФ-6y~sF">ɦ35M>EW@rz7˖݌33i;eV\o1s`^ 1r6Ah? Hd'g[2ٔ8ŢvR2Y08!*u9,-Ȑ}t!;-W0 a]ؿq<)k=¼$kAaF*⽷! Eo\j^͸z.sQW,Ew#WXY޷ Hh2\_; {9glHq1 $T+y&t~͡A$a 7 ^AS]HTAZ Vo~ֱn=_>oB4^*lxHoMN^g@ok}t&==J+$u'Be*eX8+R-N'dF?5G8;Cе0IJ4\J@&Xش"%Ci}_(nX"W_ϱit٬],d(]N;dTA$uo<{mЀƿ996?XkƴX?~6)@3O)ݝdlLv#e83)3-NOlL1NKV wE{9K^ڤw=IOU j7*P1n^ Y`(Q&IRa\4 s9p ~12'?[:b9>5dM.uTg1(TIte9+ Fp# J?ϥ4rG%sͺb\e\;XöG| 9R<;k8֩K3wɌ8Q~~#H'yjބQY҇ZE 㟱]F`RhQ.z!xwb ŔAߡ >jыYߗTe]Wqwsj5q-PT`'3n05~3f @U䛑Ϫ*1[)V#"mU0.K޶u$/LJ53c.FwB 7n#eѳ{6IvVNVt"l P1H 9 *T)MJmΪqbߗ^L"x>A",xbyVqS-Q*xQ'XNWi#+~ %MùĿ#H3c#Ҡ+~#H71J:dt?V^3ik%n auܞyRj l !¹#6۵gi,}8F\G!\KIKz`>oT".q?ŵcju~X[RwE.E\I=﵈ɇ:birϠHrK\9]EzHVq'qψ=wATtð)3SA4c ubZGOJ*G#<ЊBN{_vy'7xh/3.}5W5+UEӊYh3|^N.[r¢{8=>__R޶[JI~jL_/?o/֖/dn/,-@;0U ȁh=Sp0o="|U΍*q%A[nNUݨf8]=[Jz|8FG`~K~; G,$Qغý)JkGqOpg6jqL$8aE:<o;uGHf ggm|$7>S`$ W;ʟxg)9V;XYO㣋T΀(Wbi$BQJ%$CZgçc_ʿ}/5d.TnJvS?U;z-dhΜ h~( HO,h>WX_$;]LzJB2eV2P5:sx#轻0 j@qJH2 ޸,)[2QllVP|j z|{f-8QeCAf?PڷEȠ_  ~nb'fi)hlhZvDLFSV4Klj̮ݶp糅4/ś9~Zij؉:#Ⱦ*!6GZg-`| E,g;8 WA>FB5[➲?.t\o< ܃X:<#X?%\KERK3`3 0GrF,E$d *.k` k8OZgss278 ˋq8vCJ2K):1tL9a 48f$+\"ƞNQϭIq/(0 %nj|a^je {FHdN7 Qlkv85lHW߅ŐYZmXxa1;A0)ZK_IaTs%]I+١H7Hɡz,̮.]swHUG(VeNh1꬯EAb{f8GH0^VdҨ>P5MS}#`$A&)?χG1YU^ \=Rh5|eH2)O'mzGe6+ͮgI^&a8| W&3eyrs14"9i* מ-z'T/b5 c2!̕p*YɈ˪Mx֥w0 l"%B1I˼G7/eԉ׉2aBd SConJZN# (DӖ$Õ "%g,%+T+>/f2r&aje qs[xy%nrO*R[ Ƴ)ګhz\EҁT,T=n<֧53_xr8ޓSJ8Ӊ["a$,@[t Rv8x?>sh}yNF"ᏆL>L$2)DM9j+9\ X'0嫴aT6il^soAӱpR.0ő<ܔĪ {Y$_EwIQFQf80}1.'"Mpg88(Ü7 ?t.mOcZύmޓ&HôJLR?/,jJboe*?jL84gAX{h_ .{ԯ6O1]K="ٱ0)ԒuU7(b +y@"ךzUƬP=mGZ$s/vAc>{e.a]3heZA+2H!HGVKh6T. NsjcaSё\fn# jq빦7q0% 7zc?x<>MS_LcnjgIǓ!LaQ'j/ȯ6^Mkp;/rb5IZppF 4aerzw?.zx<__w^GdTm1AGKx Лв&^g>Vk>;TXAND^4(&VKJ ”7DH-tѩto\̚H!U,+qu#aؼ\.@o/a/*]7jަRt5ɹf:^ B*./y2XW7x"wih?tbW&QjǯB'{p, G7DHDLh'/i[ q̕TӌE3F1 %>6A[j&<>)q/J=RÃ^I1*f-k8;j g1Pz"bUõ} k=ދF"}Z75 Z(H"ôqU^"jp$C}D^)3kn/Go$\ޘ:ُiu=Q$B~t#ǠT˚i(lptT.^'Q{'&@[ Чʚ0b΅w#L" Xg/CR$e[:ðbe7X3(.MHSFs5C_GH(Vn݇ +^'VtQZ!X0tne.VEZܘhEcY*͛(,էsNح}P+C)bd2X]jZZu1c=VCX,j`$Kҿ4bHNڹp ᚤUG#m83#ؚP%V>h +ȁrxK #F84cܖьhx q|ٛdzو̱ IU) F8*t  <:L@:\ TC@/O{cch'oltV3m֍M}i-RYb lO$n|*1wJlC'I*;,+"&*#o䢳,qˣdZ5˞ҽ(]9TF to m,Q=,88#l$zm|.1lhi*kү_?% Wc8ӁH?"+طu:QI.1k)&8- rʔqn=mDV\Ks5Zp$ɞXHnI^K E`$b^A{wɑ&\B?Sum麰&C ΝBV1#LY* [%dkE|fدiQ%TИge~kQZ7U%3Hg4~O ,SJrh 9ؠReH kJ=-…PLWf1De_"CঐR̯(p#!~ Z <=PН` GOO*(ܗ:S;Ne1׭%A',nxr VͨDd3ZQha1P_G6?YԠ̔zv3[ˌb;4j! |BP./®T^&3陧 aҊP&㵦mXkZ:>$>Ha`eYbp{8M00iQ2Ɍ |mNY< g12 ;* ~&G+9eF_eFSNh0[6!G͑I)|_/9yؠޓhʚ$RV\ėn S3 7*5_d9y~j!xr%'\^+?^H 5AJueK8"}-Q߁=|EuV߆=f^| >BT$¡E,gewkFkgp1.? Sx3Mъ^i b_ =GMP8HA\`,u,&fݘ sL0T{8Or2U⬖*i{]xՂЂ l@wEDӻIBD%#uq&)B!&=|iDit){.WC{wj,;x?z0ņ ϋcg(nʼn~߫Ze iȧxٱ>3݋"b"0B]Q<Vݗ4(S<2vbj%!Sm ܤȮͨC1Hzf#)T5[aTX|EOjzCRƴ0~rN35l CyR8'FP`9N.i*}&lYZ"빴:+ganՋ]wϜx񅝇"D#l%"ԛSѐ`*RmR~ScW.߯@\Fn ٜ10#8(..VD* c Bb׀ktC邫5TMsXA[=/ȩ@c 0R~&.VNAr1rYmSQjog?O.s8L6Nt^U\"xku˙r|X9w*=wQyd`p1Kwiw*gt[Ah1XM/y%tϙMIs0gPdƻ@De~(K~Ga:ڰXmmȱP+avfϹ̿rYs}Aΐ]locZH}oMZ/?ֆ)ܨWSJ~J&))\M;b糭{"͝Wi?)?5}T1M?տ?ce39F=)kt$, ӲLV )ǔ0K+ۥH+%Vtl|'ۿ #(S;։4+0ׂ|!fur2Ds+GO!^9zemnMs >E/,O6!?jsU kŸ@00K|칑dN]"1.FI.'Jꡢ# #c*&(S"?0`Rvb+nye> (q^08FMq?O)ZrH!VCly:> 6{!J[5Z_EPVUQ)V40@<RUPZr 0z+MYz\os]Mx߲ʛ`e3^+'./ uZFύaI5(3#cט]i?`MpM9cY87@gY-Pp"6Pj3x4Q1ڋ4{plR-*fC>% Tqc:p`U%ºԢPwe^AY 3Mr䮻,Ж`\%Oj,nQ2EhE&Y(k0Ub(Pr)SWN%wcXz hiQ h^>SRf՞TSk" BgxY%B@ޯ&G`Vp1Lj+,؆"k_1aŜVvx/_zį!-SyſZOGQ${ )Gwǂ(D|3i=6/|~ݽ:?$Rs6Y!rWW6z c%B~9^3,.0( 3E/IKsQFA P秿lnLbwP,mSLK@YvT*:<Fc{zGĸ,Sfm|1 ukᢌJڄ/6}Ա.fhia̳?Jfg8|GzjݹwSiأ6Lwh{ARп0j0jKh]]R'%9̀0B^,͌L) tjfT9Ib1jlbm׌Q<[ ֑$^1#fC3h3|39KFDՠwENYY~PT'sGY3n ZBs}BՁ!`%f0:e=v a٪H%r59ݳq{7'=|M܃ Fuqwk#dS%ӆckD32{;Z1sn:pHiÜmv[j" /ZtY'a4 `G=teT5"6F-"\'ԷK +cWt6QL[M cCS aZR ?.JavL93 9BY_yRRz8֣ĵF#G/d@!tZw#0֏x a)tqʌu!㭊~ƭiW˄dE>o-KGv9w=OԥMrw ^qhw83GŖ:S(JR-Nsn^TD$ȊꈍZ`-kFa=\ؕG9XdVcEY2cm9&l\x]T-ޣS:*6OwdA&p W@f䂃0BǍ$° e@ܩt> Sс׳h.V`]i:oʶ>l4"1=1?bUn 7Uf9 {QƑgRwhIAO-mT2)[7= =>gzA!ㄜ?+Bۺ8F?dw_5M]25ֹhU$t%bj"Ƣ w@̣13@a,-0Q~&!ez$e#i)fu9q`R;g,xWve}@!wD./Le fC8.:Ҵu]5gVf%[Gwhr)n(# "׽gyun76!&yV0w]L3.I;R6 Z~CY&I<ġCB-MsuB]7쥦ڻ %y2eY^3ndU(b徦n9Қpox+K>'Y۔5Pa,g@Ni tt٥Eqf.;荆(|A~r9ym RDS(w F0zIvLdEf 1T:3K7`^&QAj4\R YFjذ_GG5_ˡ 8;]!cS\c7!8Ϙ 57Xe˧5ywVX\q|]Lҷ~ 7Klr\OJyyZ_'ؾRl:Wm|$S|%7>V7fσ H4X{Rq 8YZp^ͮ :UFyy3e#oH*lfb-lTka+5~I3U52=l+3av.(Vn*rNʫU;~nA9߰D׈(73a$tNOGriT=|}GA)FC^"6ieS+ 7aEi:a H{/R]Z-Nu6sdk_x^q1W]Z(1,|9_턔SMlgu ?j25=<,eͥ z6d/dFju;O8= TBmL Kt +(NU.fR,6/ W&k2\`}~1ΚϜ#х[X{Fxlq٣c[m(qrގ|)Ϫ1S+DpqZB^esρýF_$'eQI5:4b{tc1cZF5zr_a+xx숪Ϲ5'G< ML+Jcp?Da7gFD蔙uyBު:R**XII}X;J7? D#uy^ҜeЙKV:7шӉH32P=~ dlԋ{-½yg(2}ty1oSf:(ceYqX #1X/ iƺ^iΊTk ~(m:ZIOrؾ,cHȇ/H ʜ":/=SOōmfpp3C>@3<ߜ4ګWf/~90\!^!JoKKk =(}`0 Ph0J-ee]=:yðFe1{wlߦfz(6??1f#̈SۢQ 5VVM=b{3K&>T&y6+.i3lp}×+kEo8 \U➆~@' /a98ş0[V2H]Tco&Vʒunxe !~ʶTwg*Vv㖞mOZ?N7[3oˠVS;b 6cwre{ʼ nNEŨka,00cfRO4.3Ur -gozq@Cq;⨘E|^omP+"I5BB~tpZRlCj7{u+K'{2&RL]=zό|y#18٢'@MU4W:iE^ ls V9D1ơMo߯~ n%;O/i뜕]gɊ >60ru=];r"NhX+,^Dl`#1H&Kņ2[2aoǦZin6K!HOOUN6^ `^8m16 6&ömWZ[4~@!Xuk92vbӘ\i"IC%syS,4lyrk_HIwSu_ԤIY -Q+_$!LVɵa!wxr0Rn&EE_J!Dg3#2l B3uBxX'lcg?ËUuJVc۔a <2.Ux#a.)z6a.]xpʸSj4vD[ֻ6/*|Pʈ8YSgsKABt!e =E=ZNBf(@!+Gi/{iAk@q)~]B2J)SOroDX*Psy骷4z)/#;ZdBγ7Z{;Fa +MrٔfK#:Q٦[Qq߸5lMϨ"kVDhdbWsmssjΖhm ^dS+]+MOa 6)CGO4V껜"9?F'ibEIp*A!W|$3}(̡KHʌvhfxlQ2G#֧_άڼѸ70?"A[U?י"lVZR XiKY೚S;^ϕC^a & a\(:)}Re bbMe+P^k<ܶfAnUv+k^JOކy\@OϪW^q&kǎMuwyBa}:G2sE 1su5oQ!_ Up{9la I> :YI; {7d8|PUR|Jc;wul~(W]m(WS&dA'0#BaLsɯVBЏ >fdo=ax/0# 63-+s]ŠN%5,1734W氩M!_`Pk&nŽ+֪ݜ +HP5pgOlT6(_#1X1.F^4TVl[Q|wb8Ɋ^DTl5OI͈fv{\  4]͍]aFW0Cuvg.&k7gi/ej &qzPQMzP.+B I 3Օ0ovt'4sŃde,x3>2Vڱ[&vϤd"`_4z#<XY䟷~UT"B\e.m70+58%(<_a]:',+6jgsEs3Қ4~rÿ  5Dv]ԍeevR7Z=| &߸*&㻈sAEɌdY3%Q$ )=vG|VuEy|I_co#g ;bF"[6?¡%K4d[yJF7(sj}1l͏K|Iև00u\OV0*ݙ˵ kHvR9l^ȵ#7 GY $_ø;Fn{ϊASMi fV7g S,kW7}~H3j oh:= 002S'N+rqɑ%ol8$zošmkjN#)LjYNsFjR<+W}ܼŸȹʅf2ٯĴ=m(`.kk;߿mYGc #3Phm$C|UvP\ojBfsjU KL]?ވ50v_*o2<7aDƦ,٩*(fz=6Jpk:/f8@91܋e"}sf:M!ٓ}Hߌ9Tg|QUNjbD W \@*GVߊL";C @b;wʧ]l#G3T}#;) u"׬ ciXJ{G2{O"t-y>6Z-dSͧ WZOou 9!CW&?WWyNh0#'֜S{h-QtXPܑw${VIli2JVk+Q F̈+z625=GT>W_j1 _:SҖd\$FQ!^,8x؊;)مg@Cs['Hɲsb_YF2.=~n`nc)x/KW,ZWd$E4Qt0܊S[|~$Sm`b8/N^=r>uVJ7-R ~H7m,ߋ$*X_?Ǣ2?{T}o@%2yԹ1&DkS)]y"!i-|o>@DŽjn\QKdx^ZU'N/r#p~z``lhP3a= KŔS %1v{tTc#um@LΝda|Dk0La|TY+j鸘&*LJ[MiE}Bla"MJ_vIkwnm6ҘS$m.CQ4#zl-Mj_蹤f3iO_z+א;ߵxeb~h\t]0H{㬩+04sQNxLv/y4t7!dpqh(}]eL[%yB@.{3-o`\cڅz?T&K*dOo0 eᄑ*%1Z@ـhEូv,\ˊW2xV7)S7yx$N`B~jOz->Tdʯ9Ќc~j2.3WSV'| ` 7J''+]]dtRDm٪߽eSLmxkI;M g.w*lpN#}6;lCkk3MoDxZcǤS!~^Z)CtR ;!G<@X%rtN1FfҔwYT߅}WO b (Z6HYX&߭Qn&ބqQﺘ6MH*js,^N3ګ2S,ʚzNY0u'veOjV<ݱQ4͊F9vnhKԔG 7n'usk]Q1L}uτr>uEiu,0BywPHb9M.f#SuR~Z<ʺ(b;]apb|LENx`.=GGܞGJI;ha0x`^R{Dpq鲎uL)룄\M^AO6hm̈́ɵJp0mY㻌u 6]ZXEBb}z/ml:?f%5MscS`RH-e aVUQ`>Q]Rs-6KsѦ^*c.>EB-xq$H Wv7"C4"p˓0VLz]`*6 ]!_buq6h1WS/`̎K+*X[{w "c%OOng; st&]elגtoj\{r͒Dã*u+ S}hq2#F$p JFKӄWȣ 5nIA$ >MJwB!fYa?]ٜk(n_X&)9Waͬ=sR|mBApjSnL-*>#7kGqȈz09(c/pV~]zM5 I0)KNX\Zxg;_1م S_aA౼H4n02k^"!^adJWkDC\0 ypЉ8Xt)S,dR}e֦ܗš9Bp}m{/1_<^¦ǸS^c,yJ!g?'ʉ?MBp`On$q/㠠=ˇGd??k,cv)vWoB_}E+_p@ȍ'ܟ[nn6/㫚?Ir,9 g{W_دexЉ-ؓ[ErӔ 9gk5Za V9֥)ø2>S5t!b8r6>cϱ>#s0B8 ]!t!c8so6cPϱr;և*u}Py(N-,em._FȍF`6c׫;ia Yi禸ke(TɽOm>UGv^a?,iqe=`VJzSZy"MaE,&0^+m $&T 0g|rZMkuϾe'Kk~^Bf<z%|G_x-گkcCg皇Da7!7߯.{/AٽV)ϸ0~7ǥ7x9#2N:`?0.d?|S N'!ս{NLv~vJXj?7cg&y55aѧ ('DL#!ⱿKG/rqiwݭzs¨YtfEgUja(! Z\fWA_%q>7¶_"]BhKxj@h c7O VֲKH bJKȹ˔KkX.}m b[i]$q[+xZ_ee6=O|9S F<02Uܨ1%%J!GP crF,Z<.-OQαK2v_n@H #'C{KٯyO^& cC/¨]tGy)0\7 cs]* &Oa>:uBZLm"A±0&ݽJ_K!B~J*aV6rNk kOOOVF3*&*P7 H->.0!%j0ͮNۯ+%JשկYB)-ja[(h{Oa>9ja GMVdC^-#$sZ-FD+[?W y̠0w%yF3*`7=@w7! 9Vq V^=a.Q:c1/jPq<ʈ"g߈@镺F^N*! +} gf!Uz¨]t(R]w]v[GtqBk:a>TNqm'*YBbek tB8AAVR'%J֮S1rrorKG\륅*g +W~?EF.^if&.O/3yLl]MrM0j(k='eZ/D'Eyr}M)\t^QX5"ξ=Lȳ˜~}!S\!btQDS9ZR.)|Ni c57冰ܴQ¨sFNDg,DơqKVGclkL aKA>tR_KX?U])dZnC`pλ뢞0^fN80MLc-֌  k+D5n2aT qadO!t\*w mi'X vm=٢Iטq971w,g_m\r[ |KEVe-Q3 䅑i[o4Dq. t]9ƛ0j(4)!m1}./=@)?[#:g[m@#/oS-/+I0.BߤU -Z%xƽFS?uK43^鏻hk'÷>I_ψNf =rw͏I[ ۓK1K8xVl~/ɈL]8do4x3⛰{&Fg 0݄-> stream xy׌1]d'Yd)kJ,Ӧh(ӮELZH*JB$YØf13fΙ9|3;ܷyb)#)~CTASxhx^v<_z=@C!z=@C!z=@C!`.z9=%ض?M?|6dC@;3>aMNhbm\ݤ1/=ٳCPiڹw|ҿNf!wD7G=ׯ{*du~CzfzM ;i ۦ% \F=|i̤o8A9,jߺ3?|}(鶀W^۬O<#/r".WhWRAw )Si1~9 "Kf~ڀ^/"Uظq*_.=x.*Wܤ!JּC2{c|C@vݴl yI`M f#rz\6;ؿǭu qs@D{x탙K>7vA+7mָC'}]g=\Zƥ_b.M%xͦw>bĴ*_?N58}ri -tU.??vڂu@zH%y~wۺeX^Otv C0رyץ`*ֆ _,pf(!&zo~8.*\R_/rƴC0ÙKy:MR#R.[<zԦSG ѼfT *{]|L@n .:j=ͪH)X;xcJg}wک"XVFMMAzȺ?HHUµ[<_6aFU_toӪΡf 5u 7 k&;9Mzo%R.XUX_/C\.cLuUݺ?m8Ʉ!=]u`ψ)KD1!zHS޳Y ^qC'ޜtyD!ܷOt[pk;<@;e'/5rj-žpz>@;ۤ`$0zHsn \/RύaGCz Н4á4*h2iN@ߵx⋽nqy_4 |~N4h@U_mMٮ/~;p衋⠇M ^-TSW1zH9U/ "[ôKfnC~(nOnMz/yc^Z1'[WU&zG^0()έ;`6>!6y29NZtm ~zKQzxf-'i#~W|).9ae =WcB|c!pvWzޔⳞB7tn/z_uv?=v4Cf!CωพWO:zڋݯO>~"r5CsW^ZiVC>!vIa3n`_@ ~)UgL}ZySl zc 9gkVՂ.B'_2ȅyDŽ[`?z [: gYu׳Wf.ȭK*fDmenC(>y {h?q=#Ndmɻj{7B6z*U!9g:$W_oz[[gҭ+kw; !ciԃ .b&}oX@#ve/=Zk3C5{j_|{LARne&<ټOĢHv36ܭV0؁y#IgjflBx?% ` ?s[oe' L !gr):6@@p C 'yqgqaCvW [ t-e=QvzŃ wzi.fzH\RI% m !=JWV2)yꆍYr zkEWo*f[w\tuO A/Jh8ztqkYArfȶIon>=tq8Lod 3{e`XfYrzóޘ'U{.uyoIk&Ez}$̮4zS.fIA37iTjAl}?z侄uޕtZ\vfR+,^-ߊ+~͘;J$lqq!a.@n0{ -Xcc"0Mn/tޟle 0w&GZv0CzIla'sCz̾U]}ۅ0љ}Jl;zH#-,y׸ [z 8zm=yvL螸#i !=slfʉ^wIzH.} +<0c0No63Cz$ A!`$ۚoI}d0MDw!= 7'nS=3Vp`ۈ݌Z ú<z7w]2&^^XC@k5r0. CHgM47Of=0Ֆ[(zHao[;6 k{YT'GWsCs"!=:(-FCzS%,8ذFW!=&\& .ѽ~s 8z1k>1Hwlɹ'B}[Ad*O J'_m[y!2|RaL@&{XJ8iz8QGAJRNn0굾nUa-*k=%c>?D&,$\NwW_9=Db#Je.~"# y@aY C쳡Rq\o0nxȖoE+Ky; d?gmR#^E˓C\ۭ5`zx |CsDzK_*1|~B!Zp܃d4cl=4ROُz}֮XxՆ)FͶ|o= zh 0lCc)i=]8?mf衱bG擪 xkKk!|ϟ7J!2n.GDsw_9=4SV3^ʩɡFZVq~ Fq4[3V㫷Z8ԏK7s% ;V&uz_C=UH`d fJ8|.=\gqW6Cb29Ru׭A[i=D;, DGK]R=Iz"-Z*:swșzN-z\8lAȡNzZi=DT`$ȱ WVCܲAȹƕZQRTגC䀙ť[_RTFCxRЀ'z9Íi޶j<GzC*ẫPW/H-Zg gzho%ryttrz(4| *o|%^m)6gS=-,Yds޶o.iϾrz;.vA>*}ZWny3=SO*69*]^3b/s@pt Jk;6_']#s;=WNVzHM Czh2{e3^hQHW Cm+9h ^)zHMwu.fCSW*9hJm#zHM1!=4]dlC-+'ݰ9dR9zc_y_R KW] p|RЏlV9.*]uCd煤NǙᚂr顊NMqKrJ~rV}W9gmݫt"[,YmWpОu9zd/sO= [{hJ>5/ UW[SP{C?[*09ΐ*]zhQ"5*foIS4"kfczXC%J}ctͥ!CRO.IK\zfz3KƤRu=eC~o[\>{MzVK=95LI&2C{Tkqg_9=U!=vXH:黯eeG5bXooԟ-??n+(~H=d^CzhmHv1+N4}}̌u!2aB^'0C~/H}K\) {hf%=Dzs> /<_hB?  :nҶԒeMխ>ۡ:EY_c1s@h%ɏ t? LzKȣa6 `zSZ_]G>nE/9 QHˣRzw6PzQ7i z7.5dn[yCty z8F5-u%=D' GKS7JCb&ZKϻ<oKa{J~aR{'d}$5sZYLű[|Swb>κǣvz6Te/8U\*;oj'7|0w-,.=fs˸\֢D{bWNs*hc=\b =' v_{"玥3C=Ra'Kx_|0O*9 zk6b!=4ڦ*RS=F[VBvNuW)}]K~R)D+3B z:X z ʭe_ǟWNsR=@pqמɶ'|mY>洝[O2Ro=O؊7ckOIl|>IsenzϹ=G Hz8Mz;rfVIϧy}yYp\UVRغU<=3YC{c:',Uy3+CTjs`L^o|Bk֝?9Nzs`Nt?I運wvl(5dL}QY `]<$eϒ}dEp&=jJ1&J*%qiMzRz'6Tbz(y|E).;?,a衧zXMHyTp;=s (-n-C6Gxz&(d"c`\eWS+ 衯Rz)gK:[0E{Z_u4R_zhlO%=Vn/4eE>c@,+;WcgFL1i{7u~=zV=~:ZU]l^CωO2 _iԒ9:1.=(g|xRX+2=De %֔vH i&=ES= `*.<$/y!Y?=*1kKcxI 'ƍpzFJz8ʞQi#͠eTr5c=P+-Ur?/V\Tv=c4=!='qlx6ٓ KͳMa؞~K m'J{I;x9Vєg=̝G9.g9\չj:bŒ^tfGR}VSEOyiv{>ӳ-avrC{9Iz"x 맭f]ܽҍG\W{vzlFu|=~e0[=ǘdIyh_Eo[bUg3f9=RPWN(.9zhM'Csxtinz{a@?_9=J5#@Yj~90ۯ^ۤ2O޺y#|y zxεZCL!iWb[ega]sLpb\z0PrZjO 3=#qΉ.9|^>:=,gKgv/,۶Ca 8ks4s']-ꩽe8J S=\)tzHy2MEzNR;r-A=Y GRT7>-YORS.+ͣîRSJ.=̔[\NKz=yxǕ{+aO V+}ye^m˿s{K7`py=//8i]ݢ^Q}Ì%/p9оjT[3[?c.#\a| sT(sn_5;Zv_dC1sOpm^iLTۄ NAT+Ws4ѧ&vcBmV=t=7R8̺W_9=t)TEV3hv"ږr]N}ٯT` c>yz Ѩ >;U -|nRV_=ۗޜ"m|)zhSYAYwb7vOrzx4% ^꡿0'Y@ṦR?.xv傇I=EѬ_d.z苆H ϰ|7GX@ UtC]Jmb{蟯.ɯtÿ+\fp m™Li&e{OK<S7HXr=Oj.=ƪopoTVYFq4[3V㫷Z8ԏ>0'-;V뮾xwemg 椥=UH`d fj^ߖje{\W6C05Hb=,UwUCs>[ǂhK;IC_/c@Np5wJoCJrDn&w.r+$mpyt0םYz 9øRƴJP al 9C{9xہw?뫯ܜ:űV zxJ+̆O]y涡Ró,UȹM:w?WnL?>J}c}[rSz8#XeP g{hb MWnHSSZ0vؐac8ۯ܌]Byb@pͧ}4U 9CI/:V["#opi(Jfc1{UiiHŰD÷'Y@`Uzhvɧ>M%w!==]k=(]sYy`tv_hꍇlps ж%K mw9{x&npCs)\a̭k,;0ܞ`,zh l,;0+;WcgFL1i{7u~=zϺzhvAC{bU=4gJÄ;gYS@ RxC{CTb++ =<ؖC{W c9=4&,'fpYg5=4 !=NZzhvmݤpC{izH4m@U| =`=4Y,@ gRh C{[>]X*@atcV C{ =P9ʾ4@ ʻe6c_QzHK7s^=}i8/ C{\ zhx@ÏCz}iCzHٗ!=`q=4ؗ!=d_~BW4C5Ƴ2'Y@ 1=4k >C{x.eY=4qY@ @7=&pE+R;Y@%ƷƲ"!ROÜkEWoÄ۬u3:yfĄƾܿwP>+Ы:ZRZ_ Y =&Hםe1=VNť> Ub;k街*wb+Y=Azxz[KB=L$Jz'),]⼠Cwr/Iw/ ~ VS,amiGH3r[Faoi~;=3u4e0'z^=i<#=u^frxw=U4Y=|]j*Wu 1aq K:_[֟=\G5N9u>ݞϻKpW)5=O[A Z{U_A3X{^xӨՂA;=+9CmkW,Xj&=|[jþ4eBT( `v\k7I0IOne:íRX>%#/2եo̫JGQdu,OLWwt+L7ϼK|;_d<:;=wz-@!C=?aܮ+-^PoACۖ.5Bw9z0 9`R#[=LY`NVvT>ό0cؗn{`J:ZM]Cz8 _iԒ aOqw,BaMmfC=,,-vz0K?N4#m`F{KO`FZk'gC0x]ǟj`H퇫:OVG0cW%-ONCn]`zֿ%=] 맭᠃=mFu|=~ߝS+,^-Yux'2m#`V YYޜ=g㧌̲{92Ԏ)dN;&SȤ eB7moާֶ6>;Τ+$CȤR4SpIO IvCzHA!=CzH!==CzzH!=CzH!=CzH!!=CCzH!=CzHA!=CzH!==CzzH!=CzH!!=CCzH!=CzHA!=CzH!==CzzH[cL!UIU")dNB Md 0L:L|d։Q !2)q !&ne+fs~Hkz/L`2u !}|Oby5Ydd͐ez3"f+6)k@L$CG:(IL#bK S/,e9~Qا6)JICZleXqU=<26G0FX I'5R% f=US~ydƭea&,S1 ~4/FrIcdÌkJ;7Z7a"-i,z9`ķWnG0KYm6͸$c mF1\ƏBo*hχXnߺ߳aF)bZaZu)[Zt;&f:#ed.dL.ԅaF^⽇{2KۀsIFHS5pF[pO֢J*E5/{ ҃-F)CR_'L2tJ_e+)ua&60cWIM9>!P;j 獋e(,+Ì.C5v:`&E3VH|oC~C3gb/{/H6f4ԦHȌ K!qLfɓ'=mP2aוRƐRvz<ҏZ*zЖm֤&}ƺC,,7 6z[MOk0Cۭ/؊sbdd5wYTgE5O[MabnLf` kJNd*У4sam><@T4=̄JdwԶ8"ϱs3 = ŭUu&(2P#k`1Kp0fɓ .'}ٺCz|}3}=|:z[c3o, LÝzHf :X}z0Z=ܜ=@C!WW$‡>>>>>>>>>>>>>>>>>> l endstream endobj 73 0 obj << /Length 2402 /Filter /FlateDecode >> stream xkoF`C|A:}I(9JTH*3|ZI`.3̬hpə0AD"up1 %HN$74xJGo.~;SH2PFSc?3u ڀ™Hc$JI,b2K"Ebm# Yzrul%@5IS%E2Ey Kb㫛v%CsxnmB0O~L묊I&q6Ygqx>e<}.+`ۏ 3'҆ !zhD'"= Iؓ+UR52+?P͋ٴl(z {Zyկ)&u٭QƆ9XK~@uLI.5yO♟X2O3Td!ʩZeSh#{_'4bdX&1B6S?9u,ܖĖtGI,jnM &˷"]|g_'>={,%SW( }(zണCvs wNIIp˂w=8܄ ]4yufK Մ="bݘMCcq  e Qeɨlonw.<}ny~9)]xsݟC 3r;:`, qڅ j;k:BP?XhCaj@;P~> $5;0 BH؃mAgK'/w[_;mjM?7.'L>G$ʭ_S(ފImirǹ9*){jJf?47u&4' h>VV%(H cΡÍz޽(AOZKA!{!4 j#=0|`f]}RBܡ@ym.|zh)}o'B )5h|aO&<s|v˘ dBTB6Vِc4fꐵo!B@7^7ȢlA[јKjߟvMvbnAA[֚4GA(nn\npnY ՂvMtEuZrGîEkHVQKyBqI?: RFs@ˀ"ZקcdmuFD$:I K6M$kԖ$DR#=0kǻbDxW7Ie p]  +7 ?P)}G -ҟVȗSOvk |bNy:Iʺn4μ^ˆ0] klX~u)edH?۶W0K4x݌rP1/|>]{xAɒ!~ <А*%;usbh6fnغ(~mTgv$d4`3HYG H|ݞKb?]$q/]# Gp g?*m,auK N< yK?& 08~ ;LT 0JC'y6.?^-qK-eXeɓYݡwzc.}vh Ow<@ $>>}wn' +pAm˯R`N}e]O0đKﮅH+<&X[f%:{DhHCR@:DHݗhPDE{ rDJ'f*X7;φ( RO92ȣj^4.+t8B`lnBaZ8"U=ox&r$QvH*Q'w~X,^Nu0֒pQuʯ; endstream endobj 68 0 obj << /Type /XObject /Subtype /Image /Width 1844 /Height 1067 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 145383 /Filter /FlateDecode >> stream x \Tq@$Y$LsOES˽-ҦQn[]U[LKIjm̲ dWQAEEP@f7ќ3ūfle'Otpp0Ϛ5.lV,jfjpMFa4ff7n!mL٬V9rdpBBُlV,jlf]\\\%Zlikkk$rrrɱ!mLC>|Ϟ=[liѢE=ddzfQdD4,P6k}]^d7ܼy3j>ӗ%m :ŋnݺ x~tdzfQ&f " qn6SZZڿǏUO>^|WЛ ޯ_?٬Y," q6+ nFB!{19uԪ4Mfͪ5jwlV,jl&-((nتUnh=prr֭ۈ#.]n/w}z=vX-VxGy}= k^p?~Ӻukaǚ6m*|b=|??ŋFb%7o5?¾9SN$E 'HƳk׮}]tvX. o Yc8& (ߢE RpaO.7N77SٳG[n Yt==Bᘘ Z 5n8tïכzիpۘW_-\) ]fڵk׿в m+_ܱm6 5|N8׬a&-,,n("?pp?heTnܸ!e鸻_|PfϜ9OX@ЇMC {+>}Z5TfnݪY\V^G.]|ʘ{9w?3_ej4ܵg>wﮬ4eO_tR{{{u F1t^vm&M Quઌd:;;S.\0%ĪF<==M_.ooe*{56mHTmVvgfifZɓMٱyU&ۻiӦ&fjzܸq5>5G999;zo[[tSjqqqvZ]wHkfs_ ͕͚}л}gaa#kMHQ٬0ژCյ5̘W¿fXJ6"͈Zlidj짜={V6_1c޽{={L4Iޯn]%#sY6?m۶ر{GeI`4~Cݼys*LFG%<`LTTTe5nfoY[n70{(%lvݺuVxDžwkO4izjY $ffku ?n݄׿:'-))iժdnbcc ɮ(PZZZKd?[p255Uvu_YCl֭ݰ A?nz6+%oo画ͅ F-[X8DB [yxxo{u[|>}>P^-Z75'@=?~|FFF矍LUT6K]~} WYz*zY)]j  ='HǏ7~GqswQ dH:A7Բu wͲ׬Y#-b ifkufddYPYh6KhB]{u-[J7پ}{b4c:_z%SYG}Dz`Mfmll=*tȐ! cxE|geeI '$$Ȯ\lެYdUT:>lhW^yEZmNNl~)cY*zY alfժU۷OMe"## U;j(iߺukѣˌ ims1}6ʑ#Gd#8鎢0Su:j:f׭[g»'Op͚5/Tfeg6z &jgN."2+fkGvraU Blد'Z@$-,_\[eeevIt~AXꫯJرc57QEE[oUlVv祅ǎ+[X62o6kflƍ&>sk׮ׯ_70J!zfS 4YtwYVtP@̃ 2R'|zCdϋ4dҥ]c1ٮnmmmZ0ec݃mOFZUHkθ87''G57kAOdW30RsBBYy.YpWfIJf(Y溼.)'''ߋޯ 2ȑjyYJu~Ŋ-^dlVFn_{PW+f7{63`C)J_tww^lٲ%n:7ͦT5f醗/_]Wt H"]l[nDZeTm첶]~gJk~':٠';aiv)<ݶmЪU3g~w+QȪ}6[o_%]O6 @! e]lyFsըe˖ɮgom%-**2~fNes5'mm2[:ڻp̛͚kЛ7oLbbO9s³YALLLN8]tY~^ YaJ,뻞lB&|m-ZTYts~͔zVl2S{yedu gG8GyDdwޑmXX^мysCϹ3QCe}]+vCa@@? }LQo+b|Odmx5v:?%sNseJp:Jfׯ_7o^-IﯗI Blد'fezW}_T_~~~=ܯr_qFC7vvv z饗mۖ&>lNټ<'ݻWXeeԩSeϠ+=\-Z@Ӥ2 we[6;n8{/2v ;?Yzi7Pf6+RT?3dWP&]v؂Y'f51:tZfذazQ NNN2/Bxx3 YӠYٔ2''G뮁ÇkWY`wM& i$2h![6۵kW{~zV۶mS%so/%5駟Jxyy ٵ̘ͮZȧ2f)0wƍ6lֲf(D-+W>qɒlVڵKZ?Ǔs6g'^pA3gk&W5lذg ͪ͛qqqNëThgtk8\vM4&yyy$4MmNwYkkkivWc=&*$$DQc ;;[6y6riYlޡCeNjdRSSeP3fwKV1&!!a͚564Ro+ f-뻞lB2eͫZf۶mFݯ~…i&zf?)omm-{&$$*lV0}tiH۷ok:!;|g jJ/˭lVaZ(6mZZZK&ݙ]v*%-_l^YYΦ :y4c6+\2Ǐ7wmȭz\$&&^۷+iA٬e}דPd999mڴn;k֬ŒefΜiW^y婿&Q F1J?ƍ-[$lVvc=fdڵkeOOO\enݺUv˗ 8+ڲeKbB#H<환(}t>d}fM4NJ5bB.PtgzU\\,-٪U+seu1ɮp@S"đ#G_%]_f]\\\Ȇ~ȓk٥ Νwlo}w ~ᇲ>dȐk~gΜhf42A}ApllV44J6 Z7f͛ jHZ"YAvvvkp{~}AvZ->j|>0}K,AO$0Cdfي hN?trTT6b56lؠKVY? 7oO?Ym۶w_rE;mڴ[llaaa B={[OW`6+^h&Mց?Sw# 켼 UUoon|EC+aҋIWZe>͛͒Š~zS]; w6cbbLb2)j C,XPuŕ,(j5,(9^~sΙq۶m3曙FjlǸ :ȝ,bUslYgׯW+?~iip^fΜ)}޾?hʴA/&. t9sZUGhv6+ty@;xh%]R{L/uVsef:|B[lYYYق ̛ Ga  L"0 =ALJhP㍿fCםYVY''Ν;ZhѢaÆuرYf;QFYɓ47Ja @z2777pXkr_aEFFIʞ={ e@F}=yǥCouj1c87?ݻ/^,2@Zfth߿^IZ%}ʅ }:;;[>`Z655kƌ={2yС~~~4ԀFٻwaɒ%9994#ƍGG={И`.]SL3gβe֭[coonͫV7oٳngg֭[iR0NL8E͚`.Z655kƌ={5,0OOO??Rj@ݻwVdɒLwqYՎ={hL0EVVV.]VWW)S̙3gٲe֭۱cw}yUV͛7oÇp֭4)h&NXuEN꫼駟`kkk)O6 Sq"74^8/ ?]CN=:j`i4AAAXuذa.]Y=!!!...b=cǎ'eܙ|nG|dWz^D^ō< Lf͚%N:צp]̛nO6 rs~Z4ʮ+EIE ߅'U^zO>}mbm>>>qdZ6qn,,U)*xjk_ے%K6mdO6 ,+anagMߖlVtlDDDk[b,`FCWksYӧxj6lP&L mO6 %+9_#\ fcQ[٬b͞=[<5;w<{XZZE>,ZٓԪ5lVBBBt#222jVOppXϘ1c,fLY{ZNq=dh&Mg/^՚—NA&M,f@^6~V~_u6U*YNNNnݬUVSN;w׭[coo]vmٲe͚5 ,>|ކuf(JO6t*\nnj~'rh5 Oِ!' k_'٬wf޽ Y*pBK7fGFeR-٬j)))6l2e % Q*&$$wҔ,\3XZ_~d,o߾} :'='9S>eJC@Hn+~ȼYE;w.lVuv4ИX[[_|aPG䯒ʐu c4<Њ)eXYٲެyyy6n !SN1N[M'QE]z=Y7oVyp￿^fI@JK'FlHq /oΨQGX{ׯO/JBfz5RZZq6b0{h!UCϭ[;3˳x 37GٖlD6 Ы""mCZX01xC=P'i:"ٖ-VYEeş^i*nT4.ΟloKeܱ#\SfLdpR]QN=.o7=.7$av)!D&TvԨ#9Z,lW5Z67$7x&T6]pʊګÇOE66_QfLdp/Vh OfwС^¥a[O[:u J-,lW,Eei]WbF=uNeȸ{S( VX~$k?޽#Iܲ7oV4lBfz5@ =e~S.5\%TLe֯O*fLdXeeiºUdZ%z&W޸Q陨[`̘#g+fLd4u~F7=.'e:֭zyk4Z',lW\w9ᅄW({xዟ]ȯPήfe?1tib/_.SlÒBfz5h+7o\t3ǂWcΡg=S|FYKhwl2HLe۴ v&2j@}Qqڙ9~$>@/~Ox *o} J'LM}[osY(,@5UUOVCKq֧(jWcvٖdP&Y^ w0ֿO}ʏWR()hذb*kmXTsA6 e"sѨ4׃,M|(Rf ѩR.l3?bM`OÇ-Bfz5{N p_??M//ЪtP嚍/h36׿ΨTKB=YdP&Y^ 0R{3uV^]C=dUܬc9z]*ۻwŧFdP&Y^ 0ZyOVg^֧Xafdyx#uu=啮yRdP&Y^ ҪSV|Z^a%z&h,sU=+Vw~1ZPn4glD6 Ы:)c&>+ń^V]U5㭨ؑѺ1{Ki%2jǩ99^t~%$4SL6 e"po\~)(&O5[݈~F/#fLd5 mWzdbƦ^|{bbOӥm%ulD6 ЫޡUk3 { ϧz,rM>ӧV<[T;,lz^^^j,Z6'+wğ t MJoYRY[[9s33U'2Bi40~5o߾g ުMLL:G}DsჺT6SSYUOe/]*L#sJ.@6 e"%vɓ 4iRNNoܸf͚::::;;<>(((0zi۶mII ,T#t֧UU6CȐIe6t 2幹Yխ[\̓[l)ݤUVF>ѣbɭ[ҫ@rCr ʶʖ6ToZ[MwDfLd,f„ @cǎqׯ{.nԴiS]'''{{{_bbbd?WՎ;VL}oݺE% =<🩬թЫkWHiTV81:!.A6 e"etQa󫾛7tP]pw+**y#FWVVh={^~nPPX`ΝjPܨQT6Eйϩ*{kŊ{c7"Y(,,VՅ.]x񢃃XfȐ!&[WTTTݪBѫSшۯ_Jz5(P٥cӥwlAOeʗ.Mqp3<9&6T/fLd )))9-2Tl…bן}YCI͌}W jPMϮ<[qxjj'֕~&L>r]BlD6 "511P'Nyyy^4hJnUPP n2nܸ>}K(TK% ϋ.||yNy?ꘘ>{_ʎw|!dP&YX)SUVFbR᭖-[%{}Ȑ!+€,*??_6oCCC'tlDܐFԇOdml2WfLd nnn⹛:ugϞg͚%o>&{}W:w,8az5(B3jhpE _o{իS]]RٶmWn93;Y(lj/mߞbE;2KK+E6 e"HNNšk֬1^xժU§O?Vw߭ ?>j((eEJp?#Y+.‹i5s&i:cdP$YX]`͛+7fΜ)lr ݋111b=ѣG bcc_y߿^ S]U{|`H6'rCro|lذb0۱cѣ7ulD6 KjsaٳŒ͛7{ȗq'O7\n]קL"tR ?#aÆѫ4*MOV8?.3^u6m`v̘#C6 e"2dxFaŒCGL6Mت]v%%% UtRqV+~\ff&ioE|d`e#GmH+ϺIiMgbER>գn ‚ٕ %===M?**J>z\\%|I԰naU#6 kQT~x1LzH];^P0Q+__-ںr‚۷Ob5rV.lv֭o4? Ы@.Pg|qd??#[|ξ=9S~"`G"IJ**zر?;௿e  )..n֬x|ICŞy}i :}ɓe \݈]GGǜe ,]T,0`tG=Z|k޼yj;]P%l99ZB^~khql˖A3uRYgb_S;f^xubovcTvZlTVD6 e"`ΡbvlSdfvȘ>=ֿj$zㄯoέ[:L&'bboܸ&dP&Y^ iT)6<+fRjʘ;vdVҐ!F;̛w*""RKok/\:_fVdP&Y^ F%pPLeҽe33U>лw_NJ?nnaK=zCK"[_֧e[1aݘlD6 Ы@R>m~1UrQiE;3/>=aBi+4o8jԑ+&$CSVFR̶ N,,dP&Y^ RKSY[թF ֬I8ޓt:cFܿ}_Ο/h#ni4OHY%7Y(,@=;3`6oDA|c#^ۧX;=_>;3?{wETLKM(!;)5<Ҿ_M~R<_b~MR;V&d.˵ 粺 "r='Gm9Y^>|gfx| g-NTT8pdUq]|׌l ,D(|7> TbWT{x,z ](+~el ,f e9QA&K-8X6f<ݼY߄s"&90=$?Y`$djz( ) Q>Q65Õ s8Dvv\rJDDNg¹fiK[Ϗ ou@V{!fB6 ֐֐H_\{dʲL&B,VF?(RZSYf^lXLGˉszMͲ`(+++,,LOO*.."kJ,@oCCCQیmF.)׎K_Iٵ RiKplԨ8H{7KwZyyP^׻!e d2YhhSO=koooӧEEEZې͂uؼy{dD]V(zi; 8Y~| zU F#/v쐚G../48,"in%#B!9bkklY3LO:usqqy7Yf tԨQ=f]]ы-rnhhؽ{I\]]=<<Ƈ~A87thfC,Ԗ -ۑ`r8Qs~&֎\?UjrdH9:zUNud W[[;o<[z)v8Y9a6[__?z/g; 금w|||7F}:݀ll>WO25k֬h0龾䔎C5GUmҖGa\[nʈJ=>]eoϵqWTA^䯴'&.Z\Ȕ2PAMyy[P(3w\>Y`?<((hܸqOe6KvzPmMf1͑#GSNH1uL&} T5@Qqt_/*h)Sn5X‰SMHio||Չ#. *(jJu@0CdfԌ1 OV rlXSJR֭[jd2=g&&''w\gݺu]UŃj)f"L4!<,KLN4پwii 66QZl0|4[bܧNUV*5mXkfNͧ~zk3gV>Y`[f;0ݸfyyytPzɓ~K4VE͛ cRO"]qxNcK%x_2Zn|~ǮbZk2uj`x jmg#3ٿf,YB&&%g 4jI^#iӦS8yK︔J4qqqj)Lg=|u֡C66QNԑ#q̅`lHd-lHΩ_dEg ]v!e8X^a6;zhҥKoID gv\ԩSW^yhFIN\`zNsE#-#4+^ a"iO/_n5*&|8 ǩjpYLآ#;]Sc$edE}טo߾[_ۂ *KKKYf 0-))Н;wv;vЍʨFqܸq'NrLJNM_|9[y2d9qŊjuթFIIT0[Qh,pnpTz?;Y t3k,B#ټy3U{`6siA߯vmÆ*?>Qң$zIDe堘*T*d,jKJJrssSRRA|||ffD"&wd`z͒-nٲunڴnl_Zz5WCC=1##gʕiiijKxot.݅BLL j(ÕT0:jmhЇ)R#Y''ުU9zOQѨ8*\#Y B&>Sԣn݌֏͂y6{Y&ܮx}zԩ677ިf^#+lɉjOwlŊTgg~YԬŋwl`` )) U v&eV Ynfe5Z}vHof!6X&[F<|DGMKD#Yf7oͭquu=uv,Xg-[׬P( ..nm۶nd7!!ˋÓj~۷oL0A.ɷxGYU bUyⳂd5;fNJ'Ȱґ,ŋ3Nho7:IssHii@jj0| ؛lL&… ͟}ݺuk~~~j\.g`ooɖG6 VলY҉'?Oy'|;v̝;|zϻ~5 <̙3u>Zu߿q!C҂`)C!gUxrrԛ7K 1P/!8XV^ގSZ[я55 z=ԭ@6X111t3cƌPH?n7w\>Y7͒gkkU$y7oD<3xN=99U &ҔS&%GHjѢ&+8/y$;p`LP}Nn"EV\#YDS?x1Ag2@.fk͚5ԩ1bJuKx:i12!+7YRJJJ@@@ǘtΜ9=_F9r$… qii%K,qܹ;EUՊq:Jy^3*v?dW.\::-ˊ#AUpТ|e2Yk+Ro@6X7I~魯mΜ97m; ,s%%%?Ƨ*ϟF"M曏?믿TU pUb:)KKYsSKDhc_*Wuv6Pv Ce:Tȭ#ayk RB6Xnnnԩ߫]]]3LefPY߻\bcr`-DFFfN1|!|Ri VTjGչ^11摬#(# EwA6Xt6pk۵kWdaaa6R'g)W饻<*2v&ih2X^+ᄏ,"_k &{&S\]NtbRϽ8x˳ÕJ 2رcSo߾[_ۂ h^jD[Zŋsȸ 赀i2dZhϺn۶هZ622N8Ivvv)))l}djU/R~x摬hӧj|߅yst.]*nn!b,dLV]]c16ҥK7lذs={>>33S"TWWVq1"@UXc1 *M}$l%tp_ C@exc8&l ,[ө`6mnu R)6L@t8rFG(j3l ,ԆS`6cq]fg7[M>>Z[io)im@8&l{6f?`; 222??̙3jlU `5zL1f>iҘػ/Z)"rt:%_&$+ tyڋ^7FZBï0A_~|@);v*믿?b\0{{+Wd22YT5u7ӯ9+s=[̊ MplȐX:}/P6e}}D>/l0ٳg}}}-B׉'^pnb5GG'NkF8> f'KM&B([*ޞKÆ v*N}G~U"Ts~=ccfj]%Rl7SXfPl&>t=]˺`V6)̻/:59<\;c/R[=׆>n4iBrryrrCƍG7r [,@oHhh(hWO&699ꠠ?rwS pf?u#_b}ppd4f> Y&jmm4htRBBΝ;mmmg̚5b%Zv֭JmƖG6 ,矿<==/d &I$_vZPH&p~O>AUܺv*KrҶÇf?(C_|Qli&(hj 鑿q\;Fb9*Rbǵ.rk4YꫯLsxP(:?1g%2Y`ǏtD^ׯ'ݬf]aѢE,а{I&zxxL:?T=ڊEV!JK--gGUrqBf.^\S,52`mOPז)TWV2˩S@t6^PPؼ;ݬ*77nŊG6 gϞvUG~qNۛM͖Q-:E-[fw14%Ω?d޼4y$KF۽[vgWUjTVnH\.үa~Xaa56alas\d5rH|6HNNno;g#vTG*}91;;ȑ#ait:L&ӂ 6Ç߻w蚐{ct777ggg]ΝK U pSw ""* Z܀ԐҜ54{ͥp2?1!%_cDP ){;Շ)u-Ru֮f2RBg?]2|A\T5@K]ЍWdȶ}e/Y;;w߽2]>'R)w(8VAZk(yn*ڤ5iilfϞcx7nSw}U-333YfE͛G;ێ{b^PPyyy0ydrFI_jZNaرT D'V_H? *G[e†?˨T9:,LQ_/5E{{@j*U| v|wqف1TsPf믿CZMHHtխAϧyzzv$!3f k-/YMLJ4hՒFӦM#p8q)Ji6wuߩ5++<:Mx0NXǐm3*4(F,V|ߪ]vJrrIk++j.z1EwȜ9=Y,cFF˂e&S mi1,]IuB NYӚL%-z^bxY2YI\S2ى'l5~wwwԻwxr\,>|{;Y`#۷ӗdia[Z-=F؆ _멖cDO;A?'j2 щAֲ NR;eJ2͘!b1U |~D4a2dm˲e4f쪐2|U0-J6_~M:uE;lOmmuǎkiII }ܹرn\VVFM41#F8qĕk?>|pj;!Cȉ+V@UDN jB{㨜h6#Z;UYub Lpe?  r,={"h|X,w-ɓ~~~ʕ+E^(NY_*Gy0Mf>*_JJ =+,,U $IǛiѢEf{xx_|EkjPN n]#pe8k}|KDFFXjmu,x`@:y7*4DmPʑZɔrȑ> 44̙3jl*~ ~M3rZFcXX5Z sO< t㸸8+W4iĉɿ->ʡuppTAmP%l(HL%'3pCC嶶\סxǏW p5:*yiiW4k64sST):aDeD2BJC޽o]<{J|hh=מ&$M8Vq@n FB6 V !!a„ 揰_tɢY||<رcݯѣtcrݤ '''r^{bR|͛Gn9s~[U &o:S% ea,Kz}Eh$"*080&1g/5 /RebdFc {K]M\g,0Y`+Wg>B̤ j|,*3>\XPЄgWT  xI_=ƈLIH#g<*gK/m-ޚ՘K[l ,שSlrΜ93--n{W{эojJJJz-!!! &yfT5XU*eV מyˉ'y.V3y_ugPqJ%GG cEĤ$pdft82̷t/'C^4x_/65]jTi1ܩ C6 ̄lبaڵ1c:jne˖bӦMtcg_իɥ'fddp8j+WLKKSՙ/F<U eh1m*)v}QJQ lٝ6_x*]0ɀSZQqqty]^ H_-zz2++>Ql ,Ε+WƎK}U׃O 17ӗQ~~>={̧/Y}v~'Ԭ3fjqђ%W~r0,T {K/\`0 uu:]L686Ne) z=۞z f 73m 3!vijjz`G)))ӦM5kV-gΜI>}MmO>I.5lذVzZz9{;k0S*j`} s=PK Hm9–7 姟%]8br8Q/)memm%h:O$ ۍFVPJl , ]eݺu}jjF"P-zj/|zVVV](ĠE#ÅTC儉я65beR0}9FW75st*;%99\4xP5.]z Y3!Ƞ^xϞ=K!**f<nÕ3grѣG[  :]v޽TT5J\ݯlvC"ug3FtsǍK|O?-jkj8ŽJR- Y]#ò3E]F/忤'Y`&d"??`1xN $%%鈫peX*SS0vckjet cbMۼYwsrZ '"zXLG\ qpXLh%E\ef[h4WWW?ٲe LP( ..nm۶a2M<\䡇2vMupp(..T*ɹNNN=QpG;tÆ }6eVUVֆSnjTOn|88ls[-ymsa`dLf-tѢEo\.7_Yz(&$$xyyQs]]]{'ORKo6ؾ};`„ D#uNjstkMTjQvE;K&k4)J<=8}ZxFy*: I%`GY5F4fdX%f4f"̙3AV YT5X+]N"cqϑgFFO'54/_~Sьb g\no˳rr."eaQ˂}}-"YDrzqs,٪544]|0|066kMtpeֲ,ßz-WYmbU*uTdk}%#M[;GGSemHZ\>zUVc։z<y8}mrqff---򊭭-a泌FYl:s1T@6 ЮhSR-:"YBSh߲Evq١CA-N}0DB1L kYVVI+]cJmX%\x9]<}P cɗn^ڼCe*4V|4tٳgӉE6{a. 0@.­YT5ZK&[t$7*xk*EEkstUUx\'&5],NRpXH.ztdzNH159pe,~>#ϱ֎k7Z4zak_U 5&M:tLfz]wEm[XXؕ+Wt AO?z- fP hn9\{E$8>Q,k.l5N&[[eY(Qk`LLHid‘_~Ӡ |D>v\cc>ɖeke2 ô1.JtzY#'O6^[[@:?u:Sx/Λ dڴ2=TPPC巊o?(]n&>N0EX\]\y{@x9e\.ڞQF0|jom1kԬV+lU LCuZ,YNecDAfxs!4T>|cwVV⫻}~vc{lmm%>U ;8v 5k޽QUJ &o/ÇLjcVQ]*]>$6՞˽G(437ϟOTT$K[Zzқb"L˜ژ?+ݷxܵ <А!]udZe8G~Fsrr991h,vSכn| ?P\\lTHH=W.,[djSpma#"* *OO~X{QOOINvaG- ~P*EZ-m٘9;e݂;>͋ř4qtg\]քz]m-_( Q/ fIׯ 8p`ǎƝKqqmV,ʣ8|O~CTY]"N-R*5(iLeYY]Q@NOL\,EVWWkg]] `GFN<{ [/-!V:&lnQ699+u?b`6T*m{{!kl}j(WJk1c3q5,LbCJ@7L__|0vplmJe~S/ʾ΅wdU -;!=>ޗP|O"l1}͛}sx шmKӧO:ts=W_?D$ݯ[vP(4Z,O>U ϕ\fw |KO/\*Nw.\g^H55J 4kU"XLUc¸sDd`.׎b緷_6olTRRzjYs}}٬͛5 Xd:*j6]6B6 R|}}mzwj%G~q· 금w|||7K ;4M.RY'*(ـ`"a]]`^KtSCZ0Q0 PEGPMbN1<~ ,NNN;v8ys &to?L , >|޽kBBBҳ{챎c&{qtt ;w.nWjW%K-޸֒VkQ )utQ'$[(nn%#Bf 玫TLLH<\1aK˵H6L]l ,HVV;JsNԩS;̙3t3fT*ӧO~ʔ)ԬYfFM龾䔎C5GUSբ׊N#jY&'ƎMRYO h4j^M/\RE"ssRS"Y7>żHYRu֮d2=g&&''w\~2vݺu]UŃj~0y/]f&hXU0ә"#WqpҩstpLOff$uLHx$5ueNΦ.]RiL\vIԔT-.ޚ &fPWPT:QWlʕ+ͳ[P0,mK/MK@@ߩ9b>ӳ ZC^^,44>ydr}#'jjj>`0;Bo'0/RBҤ$] 픑 CG7.*NUiӒ9:G$z8%eyv e/TU64z;tpۅp8d- 8y$HZ9vōz…w++OGMb`6[YY9d c[>2**|֒%KĤAQ-kNp[zǥT*Uw}GMCUAg^M SuVThBC'&G<_ZOGgd4_63  8&!_11-Xo@ruryh}}^xl6(("n5jԃ=f5?ӚL-7Xjᣏ>ok/^45zhjҥK;:'Yxَ:u+5ȑ#ɉ ,@U7m *lHy8Šfwpј""*-˲[[…~PhzCÐX*KZ^lbhY11Z.vŋ?` ,,XQcssA%Ӳ٪*nnn_}UKK jB6 Vlذa)CZ-áfmذ_jiooowDD5GR'Ie$>OO?p5133U FpY*uHjhfk0әD^ww?(;~|{J?OUUDERlT<*5`4S}pvt$K==}Rn43-+r(~ ,'^hmmU*gΜYf+kD"1o\RRBvwA7.++qܸq#F8q5Ǐ>|85}to 䝟:fŊj!!yr28XΪ#)mlԋŪPyPPA@@<4(N6ϧ8T.r@ͳWl{ |y^No&J\P绛?(_ZVf0-ꫯ5k?C6ۻW./%Zת;~6ϟ?i"% tBzzqqgWq2|T7U Ы-DcD5\?g4Ϸ7)x:-v{}8\fHT IN὜Ν{}Ӳڞz eӟ!UZ_Bst;fWmܸb0@@78ydk&Ѝ, Ǐ\rҤI'N$B'er5U5tQge]bעڌՁy/;;1e˲edJ-ά9^hj*u%&*qLY}D>]|`u4ż_Wרoġ;|E27-dZ6[XXHmʕ+Q?Y`5 N+// vss3gydϼy?B rd32JeTilNN?vH_pa xUwA,H$DzСwoteИ17`s7^ V[ۙD&eH4}sIRS/@75%`55>>.y쒬%{%{MTu^6; 4A[nQyd$Onr9($\TPci4JS0G*,`-pc}9ߺV6׆ؿ`,%XX*5Ϗ˓ {E݄ R,)Ψӧa>X bڵk7nyܘu8z!liӦut\P̞=d2~ȷٖ.]?JV i fkR8Ql/tsW1}饲17We8oyY$jS?v-?~x&i Pbu6~+%' UWSYnG-.*KSIfcwl$?8+BvOх 47m6cqqq?\|O?y@ 蹿.1NV 9 bJH)8sntYO ԬY??":6S9$ݗNgK0iڐKvRH;ˏB k4kc: Hlh5B6 <d`8wqaX=޶m^2$$9tmNPbiii[n޼d޼yyvĀn{Q@jj*jO/ҋH"b\Yԃ1эxBJD^KN*//I$^ ;;Z5h1"@|쟺< =]ku&E[X ius23>׺>#Utt@u %*NG;'#P9DvJ^RTKK:%{\``l [l!_~2PvCݻw/dvC&Qwj/p^dv|ؒɓ'ck]֪Tplmpp_?V 0pU8+8DPA H"`VWko^WדD".c$ˍHR4ćaIQ,,'R@J ID0T@ ^^ ݀ |~J?ݛlx&fAAAA'N.Net:}޼yDu9_aM=$$/0a„YYYǏ׆^ۅ zߏXrBp4뮻U{V 0lȜIdp$^bܱjj:-b#L8yl'dL 6 ʜExI|**2Y(ƺʺM&K4  Y0<.c_Ϟ={Yz51X[nv'}spۧ_m6ŋM6l؀2c |w>qs=7e|9s jdV+ިOYsS~\nRaL&K" Ft+T+8" PKvRo?Xqp<}<ʜaՇLfwU[_A,~ɜ"?=^8dDd(2ԯ7lf314kV\yʕsqbLڮ?ӧ{3IP(4iRrU .O"hDb^V!*N'SvFV(f;(NK$u&^mo4uZ06 REEd䀳(jry .,5O,khHZ[Ggxx6+ ~ӧwr-?2νd`ASSS׬Yj~rssa?f͚mr]q˖-]V 0X'hCjC#p#jn ~Έ[4[,2D:2ؒV*gx xIID$=xQi4*|-O\X*5L Ԓf;?VM #JJMM裏>L&;\~ϟy$^HF"I{/`* O3Wf_Oep[-CyL3&K%SI(JR lByQ#{gks$;)cKe/B Drc$득J*MhXLrwgfg=!h,ЪF :+LVY_Yٳ*d̘@?@H"?T$RaiLmHG-IQ`kE*U s;R(AO` Fny`6k6/_KޣG^palsիW[GYUx7" ~aPèD>ćA&+||~ ¨p^b<"EA.w8PG6'N76ֹ2β$yR ]l6BA̜M4ZDo2rz'uŊ|>ɒ%DO?Ωwlhe/lj͍!> kR<0Sf55|sG@ ewI`.vI4ass${+*7XeD:}"2S%V+\RzӲYEgΜu?>͋-7;w.  to/m#g8MIV(6xN,/b`v/˚Sci4jZr#Q!S;^Ph}ilII 677[X,b+_d@2&{pNu-x>lFB8L&3N,NSmalh9PUpMMs$sﮯ_mz(jkD$'\nJv_=+MIIg3g7| @6 j:̡𫦦%^y1,|hYf 'U$/hskD3&Q laՇU*(wC3{>ZmTMyZ6~<?p6|衇 O8 @6 j/`6C6(*u޽[&Lqɭ~G_'=0ި-+k̍2˗EmmPECɆr9 ҄HnOKϚ'KmH5`_7CQV#& Dvw<-=r~<;wӆ<ѣGzfV 0ƒJ2;hII'TU|휀fay; e/6VU=RX2j.?W _CƟ,x0Ү''>^3* jPԦ0KKg09;A3AegΜgŊ}pٲegϞ Z5թ?+F~Oe}.-谳XwޑmۖA6 ]}WsZ zjZ}wssUFAAk&&ݙ{;w:F7YN/)MOtdğϿ3jɍ<-%fHz/+IlzfV 0☛)%Bz כRS]s)۶'$HfPpUs8DLĉW::rEE%.13?4rީVD$m܍Pf5`lfM8?͛7[,?~Z,XI|I&7lh#"MRCDJe))8en;Ο"DJ, 6YIQ4ZDRg2A 1$)xKK[ۍGΑ,,ĨT)6jiPi**bƌyr̘Gx!%$$` 744l۶(A8YU͵T6TUI|꩒㻙+(;p@zZ@Pٜ(MӉ@j-iZr&+oa܂7ytXal jf͌JXEEmhnA<J~XΆ >>%_cӦM#ֱc_JKKH$knc?==^'Jb[aYZ,D-F(^ eö+)yI?,HJhM&T[TIJdR lBar@ hr6jsZjmU(Nً#Y:}bISjuA*r0wj޾3۞scr<b,Ъ<&OݘʲZ'TOߦYxR*5`nzH D,64ءUH6Wጸ^_,?C,&?@Q+>%Yb"g2H5o^/3cƛ%^zLZ n d@(zSHe_SٻbL͊G]>Bd9NNwINV*ߑ^,+{p KDHa!OK 8q/7I$ 5F!Ϗv(f/˓V .<ͺ6Hl\/^Y,7n!]~ٳg{3eY Z50Bh{i{ݹ:~)?1%)푻1{:ujGGjxUJEU_Di2kL5@,fiV~ҰHf1jUvTޝww1Hnd06AJznV]CCXtf,ZV֒S6A`7dǎunԐAL*%Ŧsc6IӐ ;@6 ple޼ycz4w\F cĉ]7RmNg,X"nǎ/pZ{Ҳ!g@2dFteH޺su|CQF*/Y擝}TVထ=Ϧ닊RS+_y[2gLiJ^d6w~ ,L͂s.e(!jXXXMMM2աxkעNk|yddz~ټb |-\p8]l}&PV ߫Jډ|i\M]gMv[LVz+2%#1Qbs{7bp[V&z!]oH@4 ٠[9&XLFdH6#cJqT*3:U 0?\wdwޑ&$>DϹ7fLG֍]/Egzafs"Ɉ;@6 Fx~=gRo_y啛_&9_6? \n׭wYs KeL 3oDٸq4~<0pB{ 2@ 6[[$UE"w;..Ewcğ\Y^kk!7Y_TT{d޼[܂aIwH$;}Ϸ WBØ͂lե|>?33f F+ށlh45AAAtҤI=g]bv+bd2Xzjlyz|[\F,Y0H h臆(k?M%~nn^oӟ,.n0CL@mΜ7jH<Ɏ—n`wi"F wd)` FL60榦fC~XOrV@RCB2&Mb͟rew}Vm"@f8fG Ee2L~-ZQ"""֭[n4Gl\SNɓ'%n߾/0ybRlĉ{XvZlO{wPZm3g噙Ъ!d_@Jݷu~99ژ؄QQ45U'v~ K$S+8NK Ԍ'Yuq8"$A ڊE8W@Rlm~P ֟?/MH=ĭܵkZ=^5d`AQFGG;y|O-"o^t&?#g%LYfa ^hq26 ;gnFR A#Y:}HDjln嵤 'jHMG>=6iBBo{`6φ zIkk+15[p~qdpfq„ uu95>>>xgyK~255_8w\V\'bh4ɓ‚hvv]C̶ 9[[db<QH$L'Ol6B1 )2ƙmpi07)?v07yޑ:<٘1cW] fϞN4iO?9|…gϞ bEs;Ǥ2yA` L(h,p3A*l_cEV(vt͌_w-oSSSRf]/>%#?~vc1dZVbK 1{ʴZU))+<TSgBq;R|@95#::ڹ+RRR){f3 ;w$? ASr/j^ṧX֬YħzyUlqq1>=rHς c>byyyqny~ʔ)׫wǧH$^Ӫ0BFb6Z6G^gk׮:wvMi{;I$ @"ZR`a2ןSg5wmkZΤ̐sf*5^%+WU*jmGa\J 9{6hxS]hfϝ; bBme˖c[͞=kN N'ro?L&s~)/Af}JI 7o^[ 9%=? V(WI$Kv fd_-M#Qk~kƔ <(yzPF''g3)B&SQb_h1s(/mN]&mv7U>>Wћ飼L&U}=\j뚾fdL(d?ilr-f,ͲDĉG:[bmm2lbbzǽ̜9eɾbD)!Tjy,o flɳXȬ,|d__\=g x^p' 333]lo[jw܁Vޥmj,zs#5U< C錄imm'U&wa/њ {G6'I#@^* FKSR5%Kd,7,5[J^ QSCC^PA&;L\-ޔN0n/^cǎ |o7o:2l :n̙{79uܹs=?ٳg؆}=Ժ`lۗ^zeJzwnݺl2o\rZ5#⋤IGe<_#*`B7*HeBV QY.d;aՇI"G汷0nYtyQ<pYA-kKx**V᡿D" JIAafӟ^{?T*5#~j߾}N81"^>d`@QݺuM,s6[PP@ĭNN$27{4]1~x|?6m)/Y0R <Ŭ]xt6l ƶq>CVӦMZG9={̘evҥөT*h v\bj[˹S|_y5͌fc }Jez(^Pk5nmÇde[q(S!DaT^$0l5VGB)ePCSէ(MYQkk>wNXTxmՒxjXќY+d{g'Tlj_|ﮫs}hcnڴL&yߩq8۶m#bW_}lNKK#N_lY0R%%A ޼=xɸ$ǷO C(`WchY5ӹ\aP U&+5Lͯ1cHXѣci.yܹ',쳚v"(. \6Tu/$F `8L1dgQTLMfMgu@ DggHDJOC7qRiFDQ+`hE$O\sWRRPh\Of322-ZD.h4vԩ/^VΝL<|g^{#G$''_pܹsN:t޽{I$҆ 0FC6 Isa.]DUo BKKK峣(yflyYnb ѣxThhfXOUsroJ-~li~},f,"K.\,wÎ%mm46~VS(͝b'#JU\h0vA_I"GQ4u MVN*OB J_XZf6'G4~7/*JU@l̙3ιb,NF{ LHHȈYM05 x;vl?>(6|vjeUyy9v[ΆV B05X!%ɼ\YazD?3$"ŋpi4wdmG^>d:qGvֶlP}͉/A͸2ZdPk4VA V;괴 HĴBfEEEDu27xcDɠ bsop8.^z/H7!Y޽{w.Z 33(ꫯ_=ˏJ%'OUTGЪ/UK[!]LlaGe͆Ɋ1 &&,UӍٜV'HQ<^ r5Bbaebx$Q&KV* s*cw/:ikk%HR*]46{!іss7jP-ٴ\`Ǝrg'Hl41m'|B~׾ PT*?~y,XnVu.]<d&ŚzHH^l„ 999kIju/… VKߏXrBp뮻U{V ψ\G:;[b &FT¤3NUYMͮ,V'=}IV?KJu&WwwٙT6/WTP9*6M^Аzp7cuu_>(-"y o-\9|ڥ#%OfZ-1⋽ ;xbdN7*>2͕Ź fH$ZzVf7M6gOhhhSV4a„Ώ<d2?~emg}Q,bB8B\.Z5ݴZYg9G~LnYlhO7tc'gdZ< :aՇΩ쒬%P9rm¯ % %xj-UUdAL %(%͘2E5CEe)))]O @6 IYLnnnTTTטtR4k,l?,,˝Ǔmٲ Ъ:P%5/QV+lР#;[{7 bPS3J;nYQ4MPtJJN+R~=to ?,`- ;sg lm 9#c18Gq:;kfT__w1}KK ̻nyRRHtF>L;9+ogt\lե|>?33f F` 8<|#REEE5OW_{_|SYh'sXgAe)AId0x76b@A $ RT9db FF4A`og-f/NmHj8^N˓D" A|a¯Cmv!5U(aLb8M~D>mHY;A(*d?h"KOOYUlȜy}$^JKz21AXȑJeuGl0 .9 RcBFچSI|}HkRƤ$y`?Y֞H㻌#+ƟzϪӵde)ݻkP؃^sgg҆e{ѷRTF9.^9BCC)=d@̲D}9kŋc kkG f#M ȧ|$KV* 64a `mR%zt2U̐ˏ?@ntk~adwB/`ǎ9sMb WU~EPӲY4vX^}^no>|Gss֭[ LXX؏?8^8d@[FIB> 2Y)47Wsd ddA z}X^teēxZ6׿EXzEnǎ(Ozihh={K:iҤ۷?8rHrr Ξ={ɷ~{Ϟ=vڰaC``ˆ#k4fV  vTh!o3 iIќm|d Kl'1Q&aTj"bYY~+LF?i 1w#OǃjC5Jerahq]Xcz~RiB}yAv>^ ܵk/{ball{5!Idj4 &3;2Ukk_pBdpppMLp8+%%%l6#sNb#C6 j.]_ʘ )|PyAi <ɊQ׭OD* ;UZ~ nljJ${n:L Y (5,LwϷ̀#믶ePnAAA .ܼyʕ+#""\Otjt:֯_ؙd?3 #fV >4[dw 9Rϊ qiΟߵxxs$lۖ8` D~* ?FF+%&1Om(=JLb(`H6#cP5ꠢ֦ J\C3&O%&ZZZrF"f1|>߹Ol&NxE/;5W7sLV;]l1d@@o8,uZ+Rn$WOX[wd$/wTFA)t f̙_xHq cXV 3N,1A*;ȌvMcÏGG?{9s|,vW.ej6qatǰ ^T/l"]qq mfq*%A/r=8'O޽{ǎ[lyx7|J ^N;v,~jlo>|o'NNVHHlhpf7)Ȋ;#Y8$05C7@/]RGEza}|gdnْ߯pHo6Tk;;% 90@5XЫhH呭y[pZU9AKhn:쪽]",(쨮hC帗6'GvʋR]E+׼<=l6++k{KHHlcJ5j @@OЫ|>ɗR`AХk.rI Xߟ e'NTKDn2Hq/ÒՒub/$k^ zgFcTTW(53@qJCjjobb3g|@ -{E?Ոfkkk3gΜ5vOͬY8Xvv6 U._f\`@ڔ.d3&eHJC+55e&Љ`4Do zU֖$ߝ{_YPARY2V%+ch\0jX4? WS55.C`5_|QswI;fl0g̐*͋yr6k4zȝ(cmٲoZpNO&I7*x`?ϦMFˇlh(mͻ>l8M y*%!!T"-Xcl$Me08o|-Ы(B X \,?o}.͵tvJ$JG ik+QVΤRu\ [8&*!5UytS$iB06x1me-YRT9mkƉAWͲsv;)QG~wp8mF갰W_}hf9--H81~~~#C6 j`j䧦cMeC#HO""9⥥a(iiy"EHv1,RY7|[sYs][.}-3 %h|~^_5۴bk|ĉgFAEE/[ BݎB ЛME#Y̸q ɓ|gy^;rHrr Ν;wԩCݻD"mذ!00eÑ50d@F!]N# B=jTV;ԩlN6&F@OEWUFcR+\0*5'+I5YŋrH6t_}KKET"y9a _YZZdeL܏$e͝+ر[o5Q. ufON$+Wꫯb1(/f㲶y{30!!!ϟY/YUJ[I0Vx= J%!dr+Vp,!(3˗ p0Uvv[ZT*_(+[f䱾.'˗sZD.nvS$Ha0+IV-0@l:38.'gܮ 0jI|<5,h󅱱 W}u}/&U hHUUVa6Cny`6={̿3fdWСCD_ 9/^\zuRٗ_~y$ƛ-7e>e!@8Nlnһxkɓ3k8ZBa VAkne$F X4V&󩒒ڳ'H19G33%%0L S D$gv׮xQ--YP]6XD"!DK^JIAm01pf- ?v֭cv݋8qW vןR۷o7o؈u=s.]Yӧd2j`^Oe(e{L!;Rz3f0̡d񃪪ޗ?2f#ڐrxsiZ|H6+MS^^^[_弼 7k48oSYKJWZkĤNKn}zV6+ΫzfU FÉ3͕Ź fc/\"j+~;,qΝ;7=`X$iٲe,]t׮]L&[5H/o|}h ?4g$BJ !; ޖ\4y4HnJjE?Ʒh\~[;ŊbpZ]e4nhaH*}߭y[[v[;TQ6VR容Yf0 1RiJ.AQTu8ii7:+i<-p~<3fpYC6Yf / #֭[{?ވmMMM<ͶڶmZt:ݡCVZya^wԩSZ5m>Ir~4 @"r~&ġT" aKQSֶuΪ\nP &+Lht@ ;hlE|;.b/:|pMg R_9 D$B r#⧫Oi6ꪛڳXT))YK&r* Of=]Vܹ_{8^Y0̚5klKK˼yzpܹ`0'NɓlvG㏡UndRE']:QèTf#5!:QvbvR\Sc>plFjc5_AΗ%_ AĪUcT=fL"{KK TT͞K'VbCvHuuDٔ)CbbLftvjee$AR~=v#SL&Dr#]X챌 [8 !͈J.Ob9_n"Iabzfko'%Ǐ'$k\l7rlL4%W!oN^OMM%H_|E׵MMM`vر8#d`d)//'wR{矉=_^:miiYnQ+jlܸQ(bWE-u7(N @kf=S-Buc3&g?Q:27򐺝[!n̳nlxw斷(XEVA t--%Od uWąjmUD3ۺ5/%EW|hnAuQ8RPHvx8Ig!cǎa>UCJb>N;$a0JJbH(\V'lhpuwҧMgΦM-l6Z.F]$UީS<#YޱG5Y]vAuO<1ӧO#&u5uTjOk޾aiFlСC js|HqA%aazBu:bQ|Muzh^TDw׮y]T}j4z{g$ U+IboA+ fP>蠟Pt28;'Rٹs*XR 0=~rFm.e˖57TYGyzjAAAEEEgi&jٳgvL]̃lF>CzdR(---ĹV]x1u-t>jov!?uwzj&p }}b]d3g7vWAx(IPЩuf)4 z<~V 6G[69J553pgZi9yy[S3UG*;áMNGDУx&) ,x; f\+>>>88?c]|r8^LOQSpbxfaqc٥w5k8qwd2{k?F>=W P-Zd4O;g=* 0N OUݺ]KY<#YD!Qh%L&gbzɒZ^u:Gnu5T=XZp``'$Rt)7dp'7oVsTzfOP(v@N.%%sSE'RY|fVK/-[Hv̙<@IIOv͸q㨧r555t;s/$³_|ŨxfaQTq۶mVzغuCww6\K/8o޼o#GЕov:vg̘޸gjgMViݱG^c7F#G~ÑeYr%|M~r[nnhxMkIչ3;m130y˲.dgrgb8-{=R'S6Lu*_}i>4<=Ƿ?BFK6?CVQQY ӛ!Vi|G;zoi_ tX,G?B~zFKߕrp%r|ʕg;vhhh8'Nto|iTRgxB|8}ZE'E4i ]LZ[}Tqcg$;v,KZ%k9~Ӻq,ؚL:E+1:pPxr6ѣoZxeXNT ZUxP.?Q`Lg$;~{cuuѦT-ප8ICzsp<{|"O I--CUUoHDlg0cZІ} l6'ΚuZ$$T'&ZJ0`6jz{Щ'FVu޼yTL0ﱃh={6'|r镉͂O[dN> :;xG{=~,]>gQj)v]`C]^NgKLT['d'NdGGKy<NgLF'VQ ?qxW.z cSF̀͵"_>#+kXi x6áOM-ĉ,s̘[n|h6٬g z~&L{;YYYsSSS- ˥=c=:g {ܑ͂O_Mm^{ꫯ;WWW|='$$qŨQjW+t!z_֖gin)?(A' ؑp -嵵ETMp7`+(DiW8+,\ /\B-,,뮻{y?111Atdd{C=tUW7'|r=qd8Ϻzӽ{;zNw}ɓ'wuW^^d*((x_d219;{lw ֏>}Me.)G/:m=BO=hEhixsS;KOC aSS%QQD$gW|fxP*!'̟?z]w&ݞ1Tv۶m(J9͂O*))_1}Æ ƫpWR{nܸq@[ou5{noM&U`38Ε+WRNbTruNS=R٫r2O6'&##Eea dy< 'աL&Ձsr* yؓzD}0s /WǛjf/\ .ZhԿo!ɲz[o,Eܹso?lF 6wҋ/hfw}GNWz;Dۘ1cl6wށ3&&fgB@حt Q ^TPOOSYa3+; {acc99F Y,[ f0 f]8>2We>{K}JՁdm2ޞy ua'j4IhAje<,gdYL1'8N|>u8bXcƌ񵓘ZSS#D" ݧ>hO?qѣG^ 0O{o?$-A1Lz~>B$7o>d=c>O4P;`TW7:꿬/S!3Iٗg E+""=r5k_{MYV։Mp>\z5e.$(I޲oTqP>HkڱԐ"IJ`P' xވ ~eKEnk:z8d٬wܱcǎ?Q,mmm\m۶Q}1c^yWWWWXXumvgjc}C6M_ohjljAV6Y[9 zZ֪,vX$Imسp7_]U5kzjlRZZLrY6 ֭[>dg3[O7$$ǽZv„ {cT[EE g$>#]wYKzȦMM}C` kE￯(z-hJ}򞒒M99l'x1RUAwa̰UpؑMN.(E ӧMΘY=׉O 95ͯʒ%KzSw뮻lraÁ1fa47x[ә{'oCƎK0eʔ{ɓ{Ǎw~򶞞{9j5k֨=݋Q ΢NT"Es*FKz1 $SL,,I&[ ]NJ :o0$i4+wJ$kÞysq>#t v vdjsH6caSiz&L 0f]#T\i*6yÃT*SrH64% ~qymmWÎa2 -+@f67Wvu \t^Rt)ҧQpa¬,p3sLw 2 ժcRo64Y fa4߹sg@@!իT͍<'l޼`V>pYRy߸e˖3bTP~)<1g}yvվNH3UܹxeK^Ѭ2$zv;P|ZWa0Ԛ.B&)FCO֎Fw:;,Ç$ 7(>1q4Oeٗ_N\ر89Jlv߾}t2w^k4nODk/"7 ѫ~8p{ TWWw{Vry|O?a"+k}nb2۱h@O:1J@s6mꪬD۲YNϏݺug^Y ԩS.o@6 Q dS%2gБ,#!.֥H婧dzTvTs)T^I&i43ө HKHf3F8E\ #7hmD KNȘOlD<֊68K]]ޖ- #e$ӿU#mjjW)((@dKL4ZaЩ,g2G+7(;v3:Z\/-w_^ӜkkèylMj$Չhab5+j_'+voq88KILLCKss&}l~ܹs{G6vWP~gVl|өId]v:_BFًϜcT=*#_'ѽ\ H#ET ccxUUUUh`6,XLN$+g--Ew~ ĸ,mdzsw޽wVlF3be>XjA\Ϣv`q- ~MKOOPVj:ux f+] 2L4SY(RO=~+U r5+w,Lʛ3A-e>>xfJ{`Thd1բHQZ*Ae7ؽqDrvJʆ2J%fyW(!*kUm2HҡקmOO F`Q<4Nl͝eeoj}g7ݔue'"Ygш?of;L6< >YN{t@6 Q Tr`v#QL^4ә;G&cc: )Շ FTZoe[ۨ!#1ڐ!kSӯR} dduuU}믥>Xp+͙ 9U7 ĻZz-0@yW,ǣ@dmym|H}˾<*ZM+'OY…n\3~BӹM&4pԨ\ 5m2$\.^*F=Pl?UG\ΎY xEI\ ~v뢢ݞ|o,8.T5Y [KxQop[!쯿JOfr|ڵIIIS߀l =^Q@)R%*/tgЩmb:Dol6Yn7P,r8Sh> PJ:W/F\0^ͺY,m۶]4˖-knnF d0r ߠx^}yvZiU a?Y0zJ ԩD5A u#<ڟgiƎeQvTtu`v /@g˟"K2/r'atvNMe'tu^?F`{2CCEx /\ Y> j\⧐`T&kYXT0w}qtp/T*ط E pi"M; XT.XXgC 뽔_Btv&C@fo Yo&88/_^YYnCf0|8;%P,#W<,.6-]I񲳍q H{ bW*_ j͵hap ۜq>'EKܙ3Mhɷ^+Wt?лO?MKK+))Qյ}Bd0hbSL*G }ٯz |6vMtىlMMh5*1{ +t*qT*`)'议.YԩT0paRf6^.… /8o@6 Q I0CT0+.drFEIT68$5gUb2-`v@Bwjޡyy* 2|F( fg hA BTuYueV0O}Yj()^ dQc/^̧ 2D6rjY,*Kqq˅69ռGe[] 4p I`K`6'gŢA ]_d7Qd.%DiolYjvb>f,h1&IOLT0taϞ6 ge#XJevDu"o,,G nee Hd I"İH=q{K'އx=/f7 "Ռl)ržsg01Q޳/ VUT5#==`@ 4N9d9muu^2aITK ͦKIɽω+ԉN4%v-0sf0,Kտ2/}/fuIefΙã2Ri:Fl.ʶ u dH| fO?y 2$He0h+3 ׫Չv;VJK6dcH <މ `@6 ,F5˩M֊ :,t"AA1vu9}HhB jdv@ Ca83YbA"y+q\lHǛݭD H@c:_yxԄgHd`T@$A}RxG6[e ?i͛ET0v, u t_q15˜5X5i| f''hyq8MHɲXc%(>$\_v|A@% `C6 ,F5<^٥W=#YT,Ff| nڴt*lX&eR}iV5gdM?1` 2hNgB9>g1b66}g--e=RYָqخ @6 ɟهz('޽,p;N..N 82C u): M&}IY`l+l# M#sh\f̙ãٳ F3zJ+cY,:]re%& ֆYL#Ƴ+㭄-3 .Wwet(b0PJe/g,X@G'7!@cf|/'g|YYį!_n^̥"9ln37J+={n楙i). j nWw*a{0Bbd16|G0ЗJKO"4E1CC wҥ*F*7o{gW^y%zǟ!l%Q?wv:~>?L9rMkTJϕ]E AN9ZHSof0"99ۋ8mCIYe׫0blhh({5MqdsmK3x=ZcO H.- g bWwdZ=ͦ]+;l͌UY ʜ+s9h[ӫ}QA?u劸8٧.;׽[De\r {>wkf8Y!T+A *o[}+T(^xbE7V thToYAԫs\+YL@/I"ŰXcT͞Y郫ژthkzFߚpf瞋t6.o@6 >tk5UaϤD펤$MdȣzbZh(s׮”Á4"9(b0 f`Tko/{3C ® _8\.3DGKǎey Xң$6NL#ךn˫|R_4R٬@ g"hdZߪxL=KL(_W\5B̟XUYadʢ@D"Ao+'s&qQ:ۅSn0dh_\+#c~U6[7](X3uj֪Uy[sT گjf:JKmz=f'(srr>7K}=o[`l6+Ǒh@1('=sUY>WTtEFH6(qM7. O폗cQ0~E $F1T6ROվfB -z=͞$vuU"v]JxvϙK( ,x'd,*AŏV`*G#3bOW1b"~BZWWNM@LKDiuC^ ի6t=Mb2dlϹ+xbA|QuLK65ޟMLyy2ekG] -2 pvthV\]x H,I</%%}]zzzuu5K |Y6x%'+^瘓c\B@!!8F4KJ{FS8,eAeV=[TT))++߫y H6.E,9Q63*'hoץH=btHhA^J$z/73gμ}Y"gʩ8;k*1Sp.n؄79Zv8#d*,Ls H"M`g #['c)U{[v&ۆoigu՘kmV[ Je|z  Yc#$3,_NLtp٬`뮻.?F|[[ ]d郥T(0[{ϑl^ -Ǝe%$\.|\$jnKqq9Qʜ.ΩўN\_9 6RKqh~yH`I$Q F0= EŢAͪ~a֭ H6} |; \4/FK7 lDў"*X6#)}1|\HvbEEEW^!1Ibd1p:rvCC÷R\lyy[ kRWNLEF2OdOFGSSI| YͶzjubq}}}qq?ۺu8 d0&:ḻ>SRt3fSŤI$N%k+BHv- S9Rɽs Du?׉tʗ Fg$fO8v2R55T$f,X 5(?^ w}[/>v+Vѧ,,&\'N_zv:mϞ":صPžvH$1.X/&i4N'^2qӧӡ(I#Qfu]'EE{쉞yHvbQn3 u6^YVXAN|yK/0 ޖ͒$9o>HRtDzt;;ǖ,>,FkZٞ$6]I6?dOў쉞) - G:IL6iyW,dcR} G49Ng_,G?"B]]QVͻdDDD{υ R>|h/lON&X( H[䅄0zDsRnL.2t(`RP}c(f43$ӇE /W\UYUoggdT::Q By%dՉ͆Q۲Yàϟx뭷RVl.V$ Mu@5K=%E#3# cn.NHPI$&`~T[5//#u.zFHO5DuvPfhHvF(IT&ڈ:HON̥eeOi>@k1ț7D*kmx[6~޽{@~ԁ@dp5 c]bh>ӌG^Zӗ(?q[RlvToTW~Idh?$~m~{ccPvH9i4I\d/R0EvNuȝ9ST|eϥ^:WZEW_[}YZF0#4neG4DFzSpKr𠦾WXc6'Ց"QHvAFF\c4X5l-ItfՂe˞({"M֍@v&ǛʮF*;8O~==ӧOW%$, ofsssUry?rI%ѭ>,\0Du85Ւ> h,/T1kNЂW]ʼ6˿R yggR^(b>dV[e''.I'jO$8ΣǠ@RM&Ig <^ƍRiӔΎ $ofNԩSyf~C6m˅},\$A*SPQJv/99ƨ(Ipf)jkw>G$&;u6}2~2g2./JT'bN#CM#a/h`h~UWө,g7t >۲Y8z7WyyNcz^x}.̽:JSxx].}Τ$YW_/toB\@6$TU:V Ԛ5d'DI:]Jf2:Xx2E3jV5+С_,׳'MQ,۽EkNTxG}٬d={6?GMMM]]'0wZZc=6azOQ&}YlAVb2@%kUKk*]qXthƌJ~wy/A"2׊D7I-b)X(2UnhT I:8δNYjIOg)իaa=,NP9Ѐ'0u+))8qE7n\B d0L:+Tdbd.f))ŞŲe *;A$kT6ɌJ+0[wh$3߫ywU UP?(+[PpKf%L显3X#_,o?v*MMtvsbvռ4::{͚Ϙ{%M,% 0 "?lD39c~ƲT *EӷrrvQG@@ssY&ST`YHc]z>%=%Z58 H G)kY[Y_c7dd,, V*?Y[Qs3_.$]~xᅂ;ysQ@~}V.%T\!lΓ&hKAscftTezÈ)jk_]]LN(@cOQ $N#+)&=nM9bd1~ktp"{[[^M;EEܙ}İlɝ MXHc.W{AAվ}ke-ΚMo8r] 0Lo͂WB6 CKNE2MwLوdet2~<;6V'Ee5K^FU]@)-|X&krFᇵ>,{xpC3laޜ;_x+*\O0i/DױXc{a'\YRrOe+Zmr[fYXӦ9YV}Ԅ#YNf`p֢EtHSЪz3i8dL{ d)<υz&׉D*:-tW2~OўgKbC!e]גzgڨӥB^+pRĚq'Vk x.;sL7="h.lYgצccO`SQ w6WW5Yt(d ?1Qm,Giiy|mvvbb>wQQRsSSoe㤴CJA|CKwQ))[>)/Mv)Js,MMH\^Wξ쉆o-ziMR$*=aBջMsowkGxd9iߪےalJ,u9w;w1h+sm"_ #坝ܔdĺ7 >6MZ|p4ך]R/m{$ٻ&-PA.Er( DEzUEAZVJD*Ga=*G l4mMMMӦIm;3r~k_l3 38H }k2YfG>~XgΈ_zط^oٲ>0b( m~Y @{h:J,t70%a$o:Vn])Lw:OPY9F cd[*=*vaXW'dwߩ}'䱳X^RKw VNJ+yl<1>n4pt^dѽ<\(Lrȳ3f_X~r&d?A6 &#R'%' 7 GVS''H""OrsUQTVmS*7 }' G{zB|:PG&f0gH"w.7d$ϑȊT& e2)-_^C.{ ͯ’^p  Y a.L {H8IH3:sɣ( 1ܹ,Vk^hF"";HHh:W;gvٓ}"ٱԱ)”eϴXr{5h[_V-Eu4ZEj*1>(cϝ+rtt@@l6@\*>OәL@ iooǂd@(wqxc80EU9~MZsflTFnjzD$ B)]"EcGS()BaRyڵ̑ޱD.-˒g MBM3kY賶1MatR,3>eJHv-Jht d2Yvv#<2sA:tE ,K/d@hBmh۵HoesB?XmoZr,VH663"Nane0zg(׫KFY8-S}gq[q*cD,֬wL&/N3…*''z*,-g :o((z٤A/..nΝ&Y ٬D" )jiݎx=V6f 럟/|91 C\\*%$Ov@ g"("5ee|%LLbdRi^υ&IN}$%)sr\>tl?UUUA̙:qfⶸR$鲅woBqNG~&#C|9o`Oن%=PG5070^&'Hlv\ad{<Z/z=W*`2gdeLZi`]HdCOLfdXrhVyӧOxDuԨQk׮ݲeˮ]ۗsԩСCm۞}%KDGGȑ#tCKxC%ʳ d;Ջ/aZm͢?oplΐJ'h[h]R&bh&nqMNH鮁0wGj+:w }:,,sHV(!5d2.^>F >/PNY ԱTd@B&_#L SYNGtu]TV 07 G{3Z/Ԛ=O~4BjadĜlcZ2Ǎ3zK$K$v&s%~]䓼+Xf_8~ڵy>쮩qt0o4.]TT^PÇ㟳bŊ@9}f{tK3Աޑ,}2C}IcTose /PY[kUD/.n`pzΛզ2(s\+Ԛ4Nv[I"JKIo9sFPg-[8IIQƌaϛ_JysoWv]bIY}nDѿox6>>7߬°K.n&EEErfSd+ *ɒ*R+t4ݍ٩9~QbbvIB1v6Dx'D HLƠhu9;<69w*uAb禦#2bK#\:}2S%v{{7fill?{VYacڴ~'FEf\Y䓒o"I(bN'\Gd~LL:էѣ׭[/޽{߾}999N:~Çݻ}%KDGG1YYʣʒ5%H8Mttmi6}7P?q" XLri&w8*"'nG-֖cI&^߅_[>937LUWdMv[R2Uo4d Q4D'a4fk G[kLSP~X꫼+N@9$;v|I$|ͶO_C>^_JӭZ*G=yd`8dr[ZV]švطvFVxIw7w}?3cٳg,Xpe;1ބl'ƪn9?OL{㩒SVkJe`Bv";wjeuvS*߮(.pHxD!~<]ʮ33'Mj }J8~997|m˷-Ad\Y#*55;d et1,PTtOU_ |]2gVR};)!rۺ܍<|8wɒ[̡Xz@` '#˔& 9A 00g'5;:>ojzQ`.=ɱ} T6E>n\[6:/!!wxWAǔ5%ƒkKΉEQl0k467%~lCQѽ t"1ntz@_j鞞z 󻥩D>DE]Ǹ֢{-۰d{6_ fֿ83 qqqeݼ٬ǰaBv{CCH$***RL&T"h4,(V|l07fY"OØyjfraV|+Jio?ju%%22p(d>TRzuLXʉ9+*sUoּze1h%%Dޗy5~{v(jw: [b4t_N*9(fTU\QO0OXIa^B]΂C:swXky{YY59>sF$Xَ &xC;vL,{_~={wɓ'wuuAfmq7~HK H $ϛ,r?gKur B:~5r MSmm74l+.DUK$f?VVfjGG ;tOYϻ &DP v%o /|яm? MB(=aNd_/kPFU"暚7*UnG[APT_t= ֯7-l>ƭ۶mRĉ}sjݻ׻;} n Ԇ*RٰBN;NG߯jF$1ϼylvrZW&,-rGS( #8'~l/hw4vMT^/vPyߩ,yV4҇''Fr>_|"28 {<ފK:L`LgorBaJu[Zh 2Ex57P6!&"5G&[.߲Y{zEYFy\*>OәL@ ioom6͍-߶ص~W22ޯDVX,XvGWx%Q2ىQD΅2eݻ`:cX!!WP$t eL2?-[[WuW9 ynh[^p+<2==6y>|ƂVdg&Nv;ehiF~[6+`z4@6Zߑ0L&egg?#3gΌx- ,p+*WŸG-i escpl]Oz%c[Fj54ŊBl8$,Z] av_ADf~} Zb-(&2@ƻZ$z]Ů23Ç{}Ev;`&n fO:ĉ}^ Xp!ѣGP={lRRҠsNFpg ,p=`(S3g0He^He]~lhY!С$ںK*]SR2 $=EE[jn a*1LM³=I)MK}YeϨtbCqeWeDEm/^ Fͻ TZOv7eYvKg6l_ݷo_0uPGG?ǟ9s&NY-THTN&wdeɟyF4w.;2N +صKo N'3[xr!C N {jk4(jLrcx'lmЋZ\"i?4A U:s#D:t?祁%K~A;j:11'h5jڵklٲk׮}:u4￿m۶g}"^G slfs|MᝅljGoA\D}D,7w'NsTm6[F)s~HdzgdCƎ_@$%ς˨<͚\U6bb7R2;p%2ryDCC,N0gBD0bkFpe-mjjf,Kd42=ŋ777_xgF[WPl(돹qT!꾑P:_z5?!t$6* ?05Oi4NagGgD.u"~Ѐh*-t =:j;<.+{&$RB[ۏ!nE))Nlc!͝;Ἷlh4Ξ=[ołeæM4i^b2ޘWPC6 \#MHG~--'Z_; #"aȑU;vHE$297鼿]/tWc;e+#Hi\bY&sfwwu6gΜ_ɤaÔ9900/ x6f%ɝw?'n6rJa(O?\C6 \]ZB.]-D"ӑ#M<#<7 GcssUr_'Zx0;!>l]LM7p)vHǃ҇Ncr23ZabO^^;{رc(ʲG>aaa=-Zrkb2A;wvzފ׊JDV4p ?fC[Z|_5G*okUYS2dEWS ZϪI4>QVf YzdK'aE޿Ҍ|]0ϟ1 F让,\_ۄYYg/=kպjժJfΜjk٬O+qck¼YiZH2VU^n"~G ۷K~|Jޜ9-ƍ>x|2S4nk~K$hPu)~:4 õk N\J^v>|,<rMaʜb\~︣K,\Cz8K6ol4Et8pzjN:ufC=,ps,9[Yqh[T_mK}}w*Ux)A75qcLYfXA3=!@1 TIIa0r8 ,EUZ_HD4#u@ b?xi6ST{9sE#ٱc>s"((gOsWXaary@>\"W2<%%~lB͢kBi,弍۶UA,(ДU*ZecSmm!>l:kJ]=4loix**v[CAyy#{c4=7[zl֫`>}رc'N H XPFyեK*+*:|psVX(,p)̵f!1g2/D"m10[h b *. ZUm#dwDz"/a.=.w1DD ƭկvtPBY”&,jVwO9\͆ Ey7|iݞM8="""!R6b<ONe//Q.׺R裞z3fDFF!<< "J2RDh- Yƒ9ܢ>{[ǀMhr?82S2JJf E8x*@8Xv_} n }J* iݒuTNRDYsm";^ލ2jTSO|-$/ /[.-sFK}WB"#y˖ ժlv޸wsyǡOdBͦ%j5?UΚB"5/lH8¼)"_^Φ|i>_ (щa46!Btw@Y+.I7:nw\E"% Div6OCQP(''}"Y"5OgpgAQ s[,M:+tWYㅅ8IdO[ :Բ ?ȎW;W Be'Ngŋokvرmذ^t@9}fڮ%h%%,zaڷk;Y:NtAjjlu |`2 \uO?9<'#ƭ+]:s]ժj gJK1Ud3Țեaϛ׻9II!olcc#~<#F_"!::cuuuptͰa]r[NS+s 0EI␆F1ϫl7dSe. F:u*ؾ1E &ajEj)i|TEnNGJ38cXb0bq\VLBۃlRIz:1>+RS** %f=~8poٽ{7;hYf\5יVz[uRmLB4aj L"Ӎ,{yz,ZmlY_E\n"M:.Wב#sXsz籣).ۖo`{d!D"%)]*ݭTVk3A}qɽ#y̙,^wc a6+J<?G bkΞ=;jԨޱСCG>/C>dnXYJK4uP:\f >T|< +KmWۘLrGG0`uw+U ! Fr*_(6F:Q|%!}z=n9bnwwMI(XRR;B"#\GÂp]3l֣ !!?իWtϓ'd2yŊ(СCA;mmmk֬wQUU5[`-0*:H5H » JwKG}V ImyB<3B IU7 M,<ϏBb/1K7' ¼쭌[Y:.h& sLB*+@" S`HYc_X,~J:Ԛ;ٷ~5y,/ou8& nby瘜z=! ƤRoUʏ\7P'"̔݁gMxfdžUX! c\=7E{tETrkjWS(.W8NgDT8t䡇>*eV;˻@Ȃl6`~sZӽ9bĈӧO Y ]S(ޭ,M|R(Y} 4\ȍ,M4vIw=^x㶈\.NG %B4y"tlg46vP_~Ysgѽ">,cԪ[e Js-00on1mڴ"𢡄ESPxRW?|SxOaXx75ed/WU=VVvOQT#H_wa`RUyow@M8tcZs-E۪+]whBEg2gl$ŕ[3s]9p@60 /ccc ÐNyT_ $ [$LTXrLylpcBlK.~QKli|` swu>6S.{a,֬iD--ryO?ɳ/_D!&|ɂ]tt:j=dv…$vѢE2 YR_?֕ŷ#۷Kƛ6;сDvX)f\'~b\>-M@!͝ʒk47'MjEwx7@X/(G0 ˜O%}$"!깁2'nilo?+em`0WmŚ]Y|K7fsTRuF@5;w)G;!6!{^~ |>lyyyRRҠ+h0|If9%㾹SWg̔M]&./9 SS+*W,^ UjݮpZ}zO힥EK#Po:cU/s+0eJy$ҰX2yDqR_??/ZpZw˟~hyĈ_ӧ{1[fხTv%az@6 c寰if9~Ukt"nHi`SOZ&Xuw5%%Q;N&VTnu}XܖcI2番W-wiH\/^Hӑz~s[,M:+tWYl܋(b2g?hVߞ^@#pHC\'dϝ[*۵Z [6v,XǏdЧYĪ_m7| gK˖rr7~/yI4O7ByQ,&ut8ya%|Ob;3[`!ga4c8P+ԀvNEϪc2o#و8.wXsTO8/b؈ƴi䪗_8~lwu5t-߲ro$;jԨ/YׄǭVЧo_v;?X٘19Sd$rݜޫ﹡ a<}l )m:Zu5hO_(6[:z2ggd~h2R½ERgcIǯ*bqN İ@af ־vl|B >RU[ҧ11ٳK~X}{Z"G&C19fO<ODDDii)tPȂlUrt8ޫxC,BMe~cWFefʒľ`Bi2^F4?_sgɶ*UP8Ld>?K.I!M%><5+=Dz#Gޭ{tCO?e4p8IŰ$RBa]BߥJQa6cXmvuuռw[: Eb"-ݷo~<֭ ebFKX7bb))QǵO{lyytIR'< N@MIfg+\y&Z Zd6[~`!2;;jڮ>~v|֪䩌&nфU>wHq;1nXw,<]"m{O5xv&SM~>}doXIz n_59r?z z'A6 tUvUV Hﹲ\vVr:1>p`㏗Gh 9۶UczN0qiD^ b}]R7D߫T{f2b3'iيlhitclRR(c~Q-5#YFʕUUp@hl_ŏgӦM; YE =-i;[&^ xۄ d~zT~1d REC:6hVKc+srd4eӧ#QQ/3wlCCÈ#]),2}al:ϑl[Sd+l*/ݕ޳K'OFG.<|ev4\NrK$O;({ca]@c\6[$j --64|,lryqIzzdr:UQ7<wbڤIQǎ%K ЧYA k*R+HHdv|O-.6|e֭UK;-vJr2ǏVUu;~!Z$ ?8"1K.wcS;zn T]AUolMY>?;ذ?/F'g::;}fi'r[~} /Խn?E olee7ey|~GGAf t8tBbwE%m(k=41E<)j_/̔k-={M0WMdq8}ݮmoE*}!bͪw}hL˫ݳi&İ︣䡇*ݍ~LfD>pe-믽,L Y@p\Խ[]E‘Qiru[wFygahP^>zT)ր,UVPN&(7YVkVwWt6Y3"uMɚٷ +I"vfsmKוϳX^XcjQ=eeUU,e65}Xn#\M׽^ /-]JAɚ5]Zsp[6dzj*P,%{]>'{^zH$kזzsIhG*-62o3Zm8rEE=661 tG/l s?<)ErG)}cXrK$;Z[O򓃷*_~iK޽կZaCѽ2O'e 9sʟ~ZA" l/~<;v e@p$]šɺpĩ}݉S VsK"#)өɡ[τ SR,MMp;D~͢(~z!0{64A6 ~˦lVYA"u쉲/-w֚SR4pDZN'>ml|rM &՝Vzzf]:,vX"Dy6l1O*ho?%/M~>[]_T^7%٬زe ~`W9N> X[s g+/fk42YP8'BϫYrg=tIz$}Hx')CAH UUhĞ˽,k,u^ܝfS.HLLtEOdp.ФUI%em=!+])kdM3 jdi=5xҞ7"X޽5EE`E&uW@Hmu7@!VVӻh}}r$r8KLL Atr@6 0ZGZFda,w9|{"MyN^}ΑMN=5 f$$ӕIm4\Bd,pJI֑>I_ŜřLI5NLo`LS(<dZ>_gwſjUY/I)8{ Y.G,=ΏKH[i1]&׈WMeU !!khn繖D=VBܬ-*jOo@ïii497Qؔt&sTp&Ɩ+ް!)\J/I ,'d#ipʟ&j"P*{oEh诪\xaΝYY`u2l>PD29jŭLW2g1 ^]=PXw7rDb&`/ VOWHn.M.'IRCy>id1g?)O'ev{[Sӿ .h]8I.i4e9Kx_66 #5km?ÚNfNP== 7 He;uF*k0FG*'^H(N g ir?wcRi0p|~JtdRg)ܵdƼy$3 BJdǎN'> Pf}SYYON67~37fNfW# ,*C*q"G>iӦvH$xlmrh].Tuc?@pS^H6?gmeok.,TQ3HnsF(%7P~5{*^x;U2`la6{v<_껄={`A' d`LljΙ3{$IbY'dpr:vT, )DͥM/7%%uqGYH/խ\Ä=Exvh!= QQa"H&XH #Cc$VLxY WSODh~R4E|jHnk[yznqbbr-:*߾>гٶfGɑz XI,ԙjF4c@ōm$חP"1Q\VԿvﵴ<$^[\`,1\jj _&Ib|/,9Y8>5wg2 -nhZFcV?򵚚 \r;u KG\^VvGm>.$ϱE~ƪP%.:]{S˗3μ'+&WcG϶}bgd?B>S,$l7^w}Ћ9)&ny8꿴tYYU iԩ*l_d4~\C]\nIBpUYRuk].A3gwUPa^޼S$󷈶<%k-#ދ$֞Rxkjk)/^Rr`DBlQ˟`l-uvMbqV?o.LH(ZUWqccYgi.,oʶn__|/L"/&M6v!,$l+f{)חqpt9:9%z,wFjb?7/Fk\`CQ*c0|\5<^zT6G$E{$-Z;9ԑbp}+әzq?(oZfIw7fiiyGLF&KJH(-WPp99LŚS\|mE} w8DZwܚ#Gn8+{|ޕW oWyyNGL@#(*..w!1u@6 *CEJb-"n,rQΑaK32TVXbud}_ՕRZVvyAA~0 .r*/B}gg6cvQFk#S|'dOlo[Uj*}ꩳP"tiIzE7o{min~#?MYOv 7WVۯTd^e57˟z*o~[X5E[H皽{4ZK/5:3㫯tǏ8SyE&\.|Z39٣G^3>emvK$? 'ivSZN:rDsPӮ]thvm_{mF}ELJ7 KC 1T:}UaaXLnK SoZ]{쵖:{5{rcÉSǰS)+ Vl-Xc w璺;gY٧[ "mΒMeewTT쨭R[:]T~`EGD4]Ƴ3Y4/ỊSvؤl&=S:zTz7h>p.9jњ5 !!'7oXѸnSd2}bcUU69g0kHhra[mԘﲸ-l=;MEe1gi>f{u>l*Cca:=?C<7ۿ`LbfkvzH?Hnl٬,\*pqq,}f瞱iӦ]kO>$tr@6 ُu )/r+c2+Lo|] ϶rY̤$IyiįbyqmQicyyywVVT(4AO8kׅa'٬wTxO>)2uwxʪdOdQ'kD"MIaDG9c^=0\-^h4bM'd0Y9βeȍIWeM&s 7\8EI_4ƒ?A5*{:KJJf|l~aea1b/75萘ͦ?<սﵼr% ŐܐռT=b_Yf*v/bqbxh, [t8„), ez<)Ll6!! :i IK (=77>L׿\u/4.Y¹ハ7l뎢"c}}kN(yR._cZtZ,vOlztez8qkΐEbqlmi˱Q_E:=*b |Iy<<g"ƿo6Yd(HSa?1Jr $UQaPsd!W_]裵_|ѮVBH*6Se΀Hv5P4;I>>up;={כ_/)u~<ZYP?L ,_W \r-сM^`0!ɤ_/IQu zgv6%Ehgp;m#>^@srtFT.uKPҕ?KɗYd,\z'm45\.Bq0/o:Jemˬ9s7hƍl8f!8!ICֳ}o5Rkt\F][20]$PnjtbFSV߭H|HzoRqw~? r4&sF P?"IG0M"mZt l&"Ytuo6>Z+MTpYAnO \5-i=u=>RThGǂt6Fc MjzpojÈ06.% p-/XlIcEt33 oVUW!>d@s͕fmPAi1쀃1FZU8~l\%rQgy"D_utX :l|#܇XU 6{(*V3Ke9ʮ^ʢH,I_}?ϗtr@6 dH\_waސl_ω/yni°% ,#=zcǞuDF37/w)YLz,eU?U}qMF:^9x5?Ar4YYX][jǃOlGGǦM.8'X,;ED7*`g\_RyE=ر"0bz7e2K^fK $Ήdl={1goSpWNTK.w2uf&RY٬V /8WX, EjxRF4cݰәJJ5i5WݽCgiWݿAmVOg2}׺>9QP"&U~(׏쒀n_4, {ө33ƶ})5AjYL8Aͦ [.]zÚNf`wkT?OCl]'JctfGGZeCqCrsSމljM+ MLLu8\M{rՙAʒNgwAF+Z67$ğ/]>| oZe!M>?2ZE]m?sR'233f0}ւ 梨tr*X.k0LutSteb/OzM9^!IFsˍ He/۶1OP dIll~~,AXY wIH lŘn6<ߠg,SpjJw+[II mU|DLf85EmxߔO!)C6 #ctUɜ ct"UTn؞22T _ʵl7/OsbxhryA&c '6&jRI\sьh_xu51ڤdIx񫔟YIQ2oɔ„zDĀH`$)I2A0]lW^g޽XY>ͣU%W1g:LS?M*] BBrSR}}L+`r}I䢨 s{m15ǟ-O˟vTrL7b/T uutnk[yznqb"z֜9Xzd[_R[O lw ,3WK$IZ'_:ii/ZizPe^6lgڴiXY8+n[40H˻0OTS{{{ք]{mqM%fCt~窪bY(LW*53`I$Qc8~Ɨ_*3d.h,V2 N2%0ouUUZif6l͚,iJڠXA|$)IHKSgfrrn|&LA{c$F'dp%Fn,]1j )HFJ[L_<xf'Xz(Jb6+AG,"fk1I NñcՇ3Tj#ݓ$I]tͥ7.+l1gl\]"M[<j{Y!XAO㪫wToww(ۍEEM/\߳f"(mm˅`rl? B2ܔ"MAT@x6b4Ǐy e7 J^{Un2}39lc7TI@ }D3(m } #5$U!=b Ʋ D[ۿXd5F;N)4ȟzd!'&6_F>b&f,XXXXXrrfk:9 Vg_elH2]IJQ'*+͇5mT?-Wwc\UpG4TYy]qܼ!}z>"={쟴}~5͚}I%+ W6 7'$I)Ҕ'dOZ1RC(`ʼn!5 X ENc5MKyl57\Ze Fs?lm]" #e\-B55*vvJ{{دI'IFm!{!MNk׽a6K#?gLL+ck,rrY11"YA|*#y,y,'d0$m5 ޸˹FNP99nyY̻df[[twjsXv Ar BaTTfk61&)C<0̎gk]"~&hm`]XJxc?d3fWd81Q,fˇk:9 \&WJV\;MzСe˸,$$늟viO7EO]iiH@}ETl+7*1KR)ьh89Jfd64k $``mH9}zŽv=à @ =[YolqٞA"1HlLZ_NÑT^+A(j=>n]['l(Ogw"і>_Kptx]]4֜9,+&FB$ 'lY=r%| \e __2lFlNBTv"ʃ2k6 u_}|#p>_5lͲTFT/9UɺrlY2 ./%p̶̙OϢTSFϝd#"II0ںݙjEEe|PBv"st9n%BΒ_t[*r'B+n8.1I VC߂@B6 ,yeriJSK9fͥۙ8IR!)IK 4\˩Xd#H:UUb)'שՙX\,NL/-dW(e*35(D@KJWWar_MKJH;uW}7r*A|dRk!Y뇻$u99,="*9RWG YNfmUțzF4lk*Ceo<=vUNJ1154CWB uGY >_ґ;+ Wf2Ưi0p>_""m\|yyVuffIbΘ!KMhp l`ܔ(q˕Hu9:_6}ݦ/l|?Oe BgQ"l` #uy,N/6LgRKSY/JgX+J'I$%FcP-c>V؊ BrCnmڕJQnK&f_4p}QfcQQ'4<\ŎYgn(ٸ1$8B6 ,$6JBvYiTerթL&WFj2n`f/ֺc _JW* A:AUV|epTiERe}~{F~K˻R|z#jp([U(ġժ?d5kCưgbw,(A6 ,9i l?{_LWg?S"1HlL2ץw/ӐN,,5q4E,Պnwo[rcs )<ޚzөx*ۺ ;YKsccE[ͯwAцlY ʦReH?i4,۾woͪUvV(s˃ϗrv=}`Yqyj]caPGϫ`DcYM2mm$9U[,55GDpcc Ҕez6;ma` l`1KUUD]LvhݔDb~mսV,Z1"sgeIXqP뾊(#0gP\i[[TYd49"Eii „teO>&i0;H"E:fsbkiQ]8%ys> 5c l` Nrt/}B qGsuX">9wͣ6:Ԥ9}}i Hv*Uw::h~ꢫ',]_\s|#lz{\&:S dH$Iˡƪnfg rCB~)V}EBpB6 (9z*d?E7Eaa?Np:&$Icq4%9}z[Z@0C6 ,@P!ir?cdRe';,ƆW^{ᚬ,R9>[$%I$tz`*g{'\bR + HSl1;L.#/ZMc9!nXRR3%K'…'!kd!Gf^`'NnIL裵SK6*qMg'8^Qhm+0 EK4kҕ\ưb9ub R6[sg xWFLLt?18aom?⋒^zi`ӟ s YNfOv|QvGY`/"&?o''md{j5ZaaBa54VF1,CRiH[ܖO>T)S)۾~ Gc7jG̙y 0/9zà\.LʒhD\xTn<0!nwKKKMMP(/((uuuEM D6  ,U7//0+PN9]OUUE}HJ #;ʾ'q[+GHK&D#ռtcTJ:ZTWTWX ?GEEkWG>C~W+w]u~0[?*^xlv(JPdddl۶mŊ̙3ڔ\[NA6 05te|ÒH {ii 7U A)R &30p\)v :AQ/Pw\ľ@݁KȾ\He@V\{znw(fݷ5DXؐI,#*~[}f<0 ~$I;v,..}lTl`ymV %#~]xz3(֤$?Z7//#Cf~ݞT^ƎYhte6ysgS)_n?Ft*'WS]Or8K~__lGQUAQ#x| ))ի cYg eo3K$Á&1dANoڴ6m7|3.,Xe _rgrn'&2h?{{r9f;KI 2ܩtzXպƶK?/J:8al-RKn32@D|E,ޖ7oS~SU@sC9ZZ=Vm|E3g##7(t99.<p^A6̴Z%\2 h;w֭[SO:t(33ѣGy뭷dAbc뮻pbbb|'#%Irt%חRQ6'MeC}u3oZp!۟]}uQ^~(y_W4vh!}I d2 rj*v}ߗ~ gɲȩ];CQd,zg.VBQ+}. 2cɪ+dkü^qhݜ%KNƫO=N`fΝ;}Kdzc^J5!.,#&KSПѧҫ p%%Ezuь!ܢE?n_-6a!(dqB6v&!h$$2,K*KOgN?Y95 o~,qR`n=mp x5b6s6!(G PZaaIlG={k\dOL~ InK5np4?..wPύzt8(dA˟l4 ,y,1WAEkڿlo;W(Er^P|]Jev;ZmTzq~ͱq|~B!1GlO}_}$daBDq"MNd,2LU28E˻PHs:Gp o)ڲ9Wڥ3N`! Z+W-k6r-=ztB\>Ysѯ|Uɻu oj%nQO.U|lv<%1ӕ0 D\nT՚Q%CpDx`8~ouL.轻ѩP1.W2<h}ѿ;eJ77_ j%) Zoi.a+**S*evFN,16{rra+Q\k@;^^Akk6e^j|+ZKr[,Ri >?EEhުʝ;_J\zi޽X dAՍ7s;͎緿D|dg,1Reys•4edrhH/ʼ/ M dnר,lm22aW:6n4ʼn!Eu[ u99xv٠EmgM:pNrfNfW+ .+dYYx.?_!!IIݭjx >oo;c<]uuTv5o5>vi4YD͕IrrJ6nvAh81T^ H f:nٲeڼy|駟>tPffѣG;/?aÆ?8,ܽnMF ؀C+l-~j׋lgGJbdFH$I>M9. z\?~ ~-_:6 (c0p|~JtFzmJem#LkkNPfd2NGQlC.K $IWn'_>ZyyQb230j6=22*kڟ2f_r8/ZQRw_G^z?-[ %,'dpp],8QL*fx_~>SK/'Ś=˔Όć3%%G4GHj7l#Y&szU՟ (jEP_*ݴ)p,Z$ݳ x&d¤;},1dYsXUUy6a4h}Lz&6;KPz}GŎHzd`Lx=ILjjk 71XAB-McDΖp/xezY"91)~] W=x&_ى(Bm۶+VXJJJnnm,L>NS XbȳUzzƺW1^P(D3~+=qyz^W 0G&Irt9n}.+4tnP96`0JSZZ7Knˈ\p府[o> V\{bb$w߭>|ڊ`2A6HJΞ˷'㭩_|`84L"Q+gϟ w0g['gQQwAd0! fZK.Ν;w֭{yꩧ:y#G[ܷo߿aÆ?NkG6 &#@"' Éa׈ f6hf@I({q/ڿx&]ưbyX#8óP F<ɜ.4.:kg^~\s֬ưy^Xqc]ՅGl6h$ugp}v&#h>_rvK].J(y;(77/w[\sy$Ya6֖*\Zb Yh¼;_S*==Nry(Oݖw﫸o g3]^pwEk„39"^PEes@3s%/Ч|u\g~D5aLnOջwSv"<{饢[o}7?n~<pjfΝ;}Kd8Sc^J5!.,LfY"eD3~5}RsvmJgi~+yp΃J[[OVpOڞ]$Zf,b0-.~H*}h=]K/7喘%o޾Ŝ 3ǜ9#|7h\31;m E^v:Qoy'wٲs&s XuxPY,kSrAsl6h]~徥yWnwQ`صkW°͛7,r)̒NNZ4p"F^~=|El6'?_]T`b/B6v&!A>w_8](NaŌH{I;>~96x&f;/cbõ>*F̙'kͲ'P~mv1++mmnQl6hM>ݷ4?ہ|g{7Fuؙ(FMi?)gak !c9ǐ|akzKIOwY +rgfMJNܼYxjkNtueTjk]^PA *oWe+J%[r8m_Xck=.b_tToN]Āefm}`+)_љkHtB!;b0رpJ",l+VHO]n 73/dA˟l4mlYN}a5kBPk~W$.ŋ9[*uqZ1hryrv Ar BaTTfkՙfN;fHng(?O[J/k֖Z[[T-UeUZ*l=L!%4!\!! pTPW^_ɓI2>}EST)٭:nfkZMQ,8%篟lg!ڶ}4O?]~y'<7ˋ.ݳ}m6VAe[2?믿~]qh_~XogŁq>02.\_R+޵K/$]w)|g?6k^dfg߬Pi4 b`{8 7U+吜?7b}D*_8Y]VWd\oݕ9u׮]Sl%Zk>1'gP^ܽfhuw0?ͺuq/b:nN||Y`|}ر{uZ%|\TڣT76:;V{Ft~~OujhK^=tb1M{]@Cޡ """^8~bY8F&[x)BM|L#3ӵ55>|}eee<^[qHrDǃ ]3 UʶmD$^NP{WPmF>S&Kr#pBd0d ס=>B.BBZJI1q' mf_Ny}s냣 jrH' "AYL~RTuO?[n*yAmUw(NJ+'Y&t-yCZLnڳCƭW{9%dCC& T=O=u&i:]==(w +.ˍɮ_=<<4moi.,lzm,^`b7͸gm^_sU|.MY_e]N/ buRb;;|Җ\B7##W\!{fCꁁ,!Y(O87V,=;w>`eo#NڿKi`P($]| V[hg' M.C]|~o=늶mFEMWHHɹ?s>h4Mk4_ꫯ޸q#Ù.\sy9yfaZ­AYh[&M3dxh/#C/ bal8%EcY',NR([<]RV\}=s[zyio'N?e|&+k~O=9MM{B.h5R|ʛ߳ٚ%{o,/ıTXD+}V/pvwu@ǡCJKKBaAAAEEZ6L4Mm&;]'O*8ɡW [5pCeL ?.Z߻2+4㽷͕B ś=bڇV W^l[q_2:]mmϚ:RTxAW>zg._>u͛Wt7XS%ښp0ffA{hy&MSr*aPbB JhMW{z\?_dCBs-y=-v`x;V6O=%TuJʠ$/g } A>3? +*:򆺺'ʳt̰cK(F*4tgiCKqP[n`);l}VuZ/E&IRg wvb?^-?ov<4k2%dk$gtf,rɋ[g($Gtq:/M$Z}+ECC?@#uz{4>{+*:,4MWUU}.t^w%G̕ϋ63=t'թ}Q[R+&9|**:*k.a5ـVW-]zSu,pdtWBQ 2Y*"Cޡ?OR$E<޼*oo{]fkRSy/K,ޤgz<j4T^t2QQ~w/@e?[o]6hϯ[uOcwzf&lz"1VXPvI:UaK1fdfW[Yge fE__RNQK[,ٮ]hk|ZIy'&:/ۿZL0&jmͦiϱ4^Ә#KH([y.#e8vh,޾k.brwzY`[1Ѭ!űʽvf32ZuʞqFѱT;`8s>_q3饽"(IJ[bbߑ%YD.O$&K&S 22Dk,"KH0[ ,vi9Sz8:7Tl#>b5"ݶ(;MEw?kkYuouovW~MZ86pee7wѮ E^)<p2y`%\g--i~phlv]wjHHȽr$z ݾ}dtDEL\vR墳[ccuk3*kq>jiI#PѧHQ'~H@LjcW/{n?jK= ϼ ,kiڐY~T* : .Gק~zf%<6:U${6srZO6 n̪lnssLD KtuygO^G1'^8QvK ]FgFClz/ W44PGlllVmFr8=|Ohs1? fv=>>ZYYلz 60}o2t..׮=ƍ>jQm۳ D<(ɞTLNwv֘I[:CDy,gpV%]Alnn~fu5r5/#=6"5~ 0Shg槹뮻8y̙MCZ*b >ݴP5+VYYkͳfRV$JQrM&l7,_qu!T׈ּ} <0j%$+oTS-^'K; cKE" .8fYkOO}{O999O@/. SQ\].]$Mw]t 0+Q >0N8N+?zzfd=G#O畜J/Cr}tw7claᖠ$[TMI;dg.c 6oVug6ZaaaOP(>uYɛ6mrۻm~!cZcљE}5%'+-P*>^7|7MҲA,,>W__5o7łAsõ M۱Xuc,.cpЌoOw_^gOݓOv|d- *h4"{O.,,7x#YY8rPJ:j& $٨(nb<;=wtvkQ,~Acx"(M'㐜$+MUNpx~!h{`$NME:7`:5҂[fYkƍO9otf83KLwo[$δ=}vp!7+[{i:hRX3z̷j5fQܨ,oY"lPWTxlL1i6kN:u}G\==Xmnf槹袋i qI'1/=E m~eŵGu>Y@gp껣%}.XTp$iZc5XWvP ͤv;h{ֈp*K^9ʁ^zczOJK/([XE=ԤNM͟Fql>3c>fYw_|q:yv{ˤfro%•Nsi^n$'5Ba= Df.ğ>Oi͹uRKϟ[rn^cxӃ5~{`W54ԮeDk.L-yU*er2LΝٴǃ`AeKݻE"nobhj~} FW jqvٓߝݚ pl;ct:~w|NI.;\emӨvZ_p>4_iYP$QT +44XjKI<1 \܄s,۷k…{ok-[,-[?z衫 m~ &*EE!"I1xhKXRRTѼm[QFq,^b\,R ]wOex%zCcoyG^7Pz/ W&'&fYW^p88m$Ge9{}ʆڣUVk7lvբTRo6T&u z-.}m|zhm/y_5KVk۾} /T裊$En{u< n0&f///oǎo>}}}z+,-vu փV 99ݻ%Aqu_m6}s{7 U7hǐ%\{3,._^}+Ck mvNigKcccn L4|YA8:4 7jʒR(:Z m6ϽV"C^|[N7uka?Fxj1^QGkDkwzLYY_c3EMDcW'W}yn*:5_GwP[=yvmg۫7x+6*.&MÛHYO1f^hmmELq\\ F۱u۝ׯwJj)^%2vНb*]F%YpRyg[ۧNgTZOgޡ!]?[hNh,{4OkxVيk*z+mggwҲ 9v8ZbA7řzUI*F&ː=l4T)"qSd$86O1}" RRPtTY@vBeuEۋI=qo)TziLU\ Q\ꦧ4Sè0F4iXퟗOQ!AI`sm#& Ng(.#ÿJIqtvaY`+ٟ\ˇ-鲥ZJ&؂SO-`BߴbI9=4^*56-C!TH21wxlMMo{,wmE{UjW6 6rnb$Bi4DSa \&=&$::~G/MLhE%߷睗sN?ſA,fftvk/슃hw2Dg寲ݻp_@Y`'ٟJ_U_P W& NJR01,ldwu-*;{.>_emvrgzv{ZEXgzhT>"⚲K%D x1nrؚMBaL_|aj|͆^Fc,&SP{;n$Y`'[wQh UT*:$I>{HhֈD=tHF?wc7tM`UJ ,ar4ܐ. Z@wgeo/ qqA}djt82I`]'+"9pv5&)©p!TH4>ː5p|a4d e N2\ _kΖ%$cp##剉Ɯ=6 6{}oϟ9 #ƚ{DEqJeC y9Fc\FQfBQRi` XK{%j~D$p-/7l&ڡ66=/eCDY4<< kɼ8}f 7,y٭g<%%;%,C{w/4p- :^~W׽Ջۊӵ tnY߭LKKyl %jӇǟ:y_v盎dr@d=Z[[?u̢TujP Bd ٭6+z<.Zxakee9~QQILN6D׋Y`'飽Yd'|"٣ן?眒uXG?l}K=hE{{B`,(.o::Gc5&+%xi|>0MMmc˯rPu/c>AP+hcnffdӾ ".@:6g.)Murd2 xDw_:FcJ>RTDѤY,%4=Z}iOed$+Usr}}`CvB{qK%ee Sz&qPOdD< l$ngG-][qm$72p~̭nopM{zzϗGQAIV,TS`GǷn)fCVV޽Ez,7_6?=Hffǣt*|^`l7'EM;wJ^~A bv:tiYY(E%{Jt,ܪSRmL1 zw8:u xCPd c?,ɠeh6MZYÁNHhNhtx80y~ al@p={J_]8\w*Qcgɮ͞i ]|v`-]!\@.kF]>KIUo܈9΃]:wtt4h+\;stvG,ڬe2H㥁kPMWÎD͐*>^om?1$>??UM>A i$7ۊr#"IVdIݓOUU -pBCv9YCEfe7oV(O5]Z lO-Dp>pb :K{EfQ3Y`Uݴq첲 xϟMcb)) u2bqdx4ht[.`>_ }G w8L:]F~)+d Fc=aŝh/њ5tgWpY`Iu5ɆPe =[fdzz\KQxl 0hk2dS6Ob4 Sdr$61'g‡Ek߁ )/M׋{6 t·>E2YISG'.WޭLWtMé_@QQßI$e*.~j ?\ &HnU EMMT ORo 2 $az.{CpKAv:Q۬{m2U;%qbƍb\FZ1PRi>_8l.d3qnĄtpE_WѤ)IEE(*,8>!4<{I||/Y`j5iwr#$Yd7h2]󢋤_}etɆsS#[}-wݸ\|T͋S>ϖ$xy3y/A^MnO4Oc0fN6K{hSI KFM:N f31Q_ #CGS k2B)2Ac׊^[q31h_ ;">p϶|d.` ,1den1;m61|U\SwÆu N9%_&bz5A&wżәN(q77w;ǬO#Hv{\~}[ۧαzYB*]]~$hN'@uR[}坔yZckL}x8Ťн{+{{] 5k\.SWW }/ B YNs\:B*+ǚLhא_U:7! miف">Ih^G-!oೝ*glT73S?P&Ӻ|ʆQTZ<<&ffO*f-]B7OMz&ڒ.RR~lhNsͺ,S F(l=YؼjI[VWOB+\, PT7Y+W@i"2Yzpi˥FF2aViY,ƽp|;6Kh2&6MkCBF1HNVz&$hBavk+= [O\Mtsduٷ}MłnJ["l*>,&[[Q '6 4,eWȘJ}A;zz9f{LrvXY֥AAww &̞wruR*2UV X ,al٥::;qw,j2aVqbH}F&^w I$L=j |6]΄55Avkee+Z'2edP!!#p8T:`i;͕6vf%;%Mވ.A[, _(Yyd篫{]cN{Y&̮;_kDQ:]MOfXmiNYK% RR8:um(&2<*+0Rfcǘ0>Ca!Ǜτ٢3US\XJ%޴ 6V`Y`'Y[-oYI(noy޽jo*f/baG0A;h.c,Ej4i^s k3^t4f_BhN,o~w\!>m?0{㗙z/&n)642ј#,e¬XbLqUۭIKc,MOl[; fUyxA[4&Py4Z[3zznH+fXfy'ɍzkkef׬GutBeyyEcwX5kEk0{>F(\ńٲK橯W•+0n]oEn9m؉mmdtSٶ|ps#̆Rb<40f rY2&̦S ftNq1r^DgWm؉Um(8Yf+JNV2/9zCӷUU1aܒ>;h~u˰ b&64y1tSeKpEhNi>d ՁO}a f/]gW0{vq ێoQׅR޷[S\+eIIN*s,Kڬ^(el=|,3bht0}?PSÄNgЀ٭aTA܈cPX Mvk/XTYUn9 m؉ m_U΄Y sힳ*&2$F=Pm-f*.6 L!H"וp 2aI#UK.(] m'oVܢ`¬:9jvᇏ-ǘц4M2hf'Kd¬86֜{Ā6 Yzj&̖]V>L䒣^aiƱaC{WτUU55NgWQv&̪T/_TY*,Lčp@vi۬q5fK-qjh|}90}h(|יHbl8Vgg ]F2a3{+*pK`f~6{0[tF{̚CC޳]f6/9̑0{J~~xmM%0avdgH0[]}/M{ݜ/e,72ᥗh mjLo;gSRTj:>_.3^F&̮ Z0k)鯲˅3tCޑ ]r$Lnw>3Sz|6=ݍgmxnn$Hmvv 祿0JL}Di_/X\Sljbbf]*XMsGvẑLk9WYi|)7w m8C•‘t! 60fgbiTF4c4H ¹ r#Yc1i^%j*<^4SeG/dTh[o hN?vu0F`yy rJL3|jAq~J*\s=^S4艾{yAk~؈_hN?jyR?W?|dp {V6u^nhX!K+gJ1Ѽ4MZmh]MAK"o2o f~6KW^4*glTkHj *GddH#-,"ŽVO.\>2$.ΐkxhN?^=LF^,:by*!fcOuU믲+_Q PZ]7Y-ȺHER?"LmGjZLO׆c|bZޑU H" KӤ9 O &޴I4Bv1lwA77Kd޲z޽L OOB|9 9$qvٕ=FcL0fy ATH,!C{<`f~6;P7 X, 7gy D,I7[x~[yfoh2>_ަBva۬_O$Bu'FF\*<__0ؙJa{J@Q*K}B&䲑K;5;;4_ fml6G2*Cxr9'{D27`kBȈ7ܧPc6 CYCWPDV]?fO&957ƽ{eϥB?>d(,'QQL4@vlLj?p8;뢑5f3t[ G=ql2:D_ Wdlw ,fhdjkE_k F:k4IL;+?]2$(*&YD]t*$y^ď? Y`co&DR$AV>mty$&yrdב HB(\Y_{`3U96 tmONjɏK[y#5$^!oKN_DŽٳHBPrn{^yaǷ .e¬d׮C[mXڬ&\!$ 2 FRkIX*\_„ IBY0ͼpSSi UJ~;ͺͺEg]\8Z9$4yv1͍fThK'W j;G1XȘ~ThNk%Ș0[`aarcPr !Gz{+2_ %k mi6mVޥdlɵb3Gnr31$^2{~xu 8ߟi _>hNh n`l9%;N/ &1$rƜo)))ڶ ˻q6 46_OP$A6_rvh>!?" *.K/w|1c6 46[~e9IT8u9%2243\V*D>kU7oޡW^^|p;ͨv: ^pdHη_&QҁZER0UJIjoW ? Y`YCYD7"&̞M_E}Ex:_L0U '6 46kxL [Ib7!GD[ WYerM ?9Y`iY-\%$ 2;$Hb1I|-AN)Txh Q$% 64@vfզkI2f1$ڭ!UZ_Xmi:marc$A 9IoVU ,6 46OLAD$I{w#Ar8{kBv6kX0$ '9d{ uUU Cv6[r #Il&oD9mi6k $H"$ w{|u0';Mfi/-%! 2 $q KblMM`@vͶ|LA+Hb#O>6 4Y=IAF$O܂6 4Yms3i $ }wFx7s ,ӄmIArOʼmls,ӄmfI_o2zr|W0;oփV2" OInܿM`BvfeWAA}PcW[ mvrMMM5552,??@.utt4}|6]ͬf0AK{nfms\AӴV̼6oFLb…sNJJ I90, 'Vihz븸8bϟwQwC F*X/,TD@ZAV[*]jQv]E[/(7J-XQPjVJp5r TB̫k̼\f|w37߼iӦZ0>bwy»N6{ۼy瞛S3M4ygkGk>zًsfٍ.6zWd 6nݺBڼy~]q#Fzj„ wqO~w޽AV/Y{f^ėf/ț]KJ1֞={o%uK.S_/€ի[oՖf9*93ۇzo 2lK/X[nk׮=̟?YfݻlڴOpg-Z\tE?Gy}=SN}衇aÆ 2{ 4b:ŮlBLY0,e˖;?ָqӧk8d-,!d`^cϞ=X*{7nذ5\!f!,$z06+W3fL~ڴiSNؼ]^}տ?3pp dlb͂y=g%K̛7oo7m\5lBLY0z\pI6 qf!&,׃y=k8$8dlp5bBYI6 `^k81f!,$z05p dlb͂y=CLYC6 1fq \!&,!d`^lBLY0z\pI6 qf!&,׃y=k8$8dlp5bBYI6 `^k81f!,$z05p dlb͂y=CLYC6 1flSNޖyyy^ JT QDWRJٳRXbEx5 Dm%j.^ 0z2RYYٴi/^쥀Ԣ2%*/cǎ'xbݺu^ Hm^^H-j(Q[U@0z0gϞW_}uȐ!vڑ{uaϏ&HABm/S VJ7pQGug XR>'xbm۶j~g=jԨ_[AԼRX?|]v=cJvq'^r%>Ν;*S>}lڴ4$d@{9pVJ%%%͛76|=HŢ%EU"77/߱cJI)dI]|)Guɓ˵nڦMWOR٬Y[7i+(Ţ r}yknÆ *+EO!SN&V߽_>Ùmٲ^G3,7y`_.pŲk׮:uCfWJegQ?NܤXbB6Tʼyg}?NJ9JSȆby۷/,,0tȑaYgeiΝgI&k׮7nVP,YmΟ??.,RU)z YR,:tiXYfdcdžSa5&] !3%ruׅmtJIIܤXg _)WR' {y駵TJ*EO!eϞ=-y]LRU)z P,[l ;>={J6kӦM<^tE1rJw(H۶mz'|r͛7G2R2hРqbj+d|4i$W\zd4w_|Q[ATRXο)))I1dpǩ_~剑+--M.p.uM,;wҥK pdžk~^^%\2g VJ 1&m?VȆJ7_|EꑷrKx *%~)l͚5w\bJ6+,, #GѣG`V[B$>G7|3mHABfKWU]v&MZvm1瞻kׯuY/RR7i+(٬B6WJnݺ={w%FTJJSbg6۾} VӼyIO=8+iE2X"Ç_z饟yu?%s~EB̸I[AfR"eeeѴYfa'|R[)z \,U}onݺW_}u V͂ I:ujO=T] !3%2zR |…amۺ>RR7i+(٬B6WJرc$N[jJ9JSb{~k׮}WFn0`@r%۸qcn|Im%k-_<;3;# ^bEv(j8qbUwùRR7i+(Cj+dL<͛7Owoh+T`OFԩ6mNaRO~oܸ1mHABfK$LرcbjK3nVP,"VȀJٶmN:)???Tk+8Xe<w`VMtK!C.Gydnw(jYjUu]N1RR7i+(Cj+J裏ڷoƍ7;vݻrR)z YR,|ɖm۶F o{O[Z]tI=zٽ{Ȯ]yi8HȌboɒ% mv~nUþ7LAqv (m۶kvycǎc9&-KfKbVȒJ8p`b-ZX RKO!Keƍ!/۷oK,Mׯ 9ϯ}[41VP)ժ=,/ 67n܎;Ҳ^zM6aL׮]coۜ$^x᭷:bĈI~yA wqPP,ǏOVnݓO>[VǎgmpVJM&mX2R~ dmRؕW^YZn}y}k_ 7+H򗿼vZƌtQYz&NXպ15dC{)VnڼyIM %~h+dp7`e *%N)dxTcǎ >ʧsYhQ xq ׯ_:u*oO:ujYYHTJM&mX2RzYmRXyy3:wh۶?k.pcz+I0E2XmoǏoj*'̫,9H?JVP)z Z֯_?cƌ'x|P{)k+DV^=hР7lذUV ,H^k׮QFu֭iӦ-Z9rW .\xG$9sfXcǎN;-yAh@={Nzv{vlvĈfvW'>}]!t2dȚ5kJJJ{챉:tx7⋲2`if_'vѨQ]vUX'wFllEb'|rnf/_ lv*/Mf;#@6y晱cǎ?駟Ƌ_yI&s='N9s|HNٲ7x'=zqMlٲkfj9묳믿gaaassss7񍂂k֭C˩;Οʫ<裉͛7O;wM͝;7 rV9#OhѢVZE[+..J5h o?Z9sF7HRPPpGx'O\aeK.=Rgqג&d<Gwztr~{hѢH zϝ;wnܸqx<77w޼y+$>}z9Ģf͚+*ҧv_oM6ɏnz˖-a7x#-[&4lذ{%;v [x;F%1t͛7k֬~z-[ZO9唰aÆm߾=,ݺuu]zꩥaiM fKJJ:wVٳg,//:t 8Fo&<ǔ92߿v1z}+Ø_~9}z3g #{챘뭷R)7o~37|3 1cF",P-!馛;+L >bnwމU98C|͉EM4|a/&MJ^$%dK'tR7Jǎbf۶mKf/^\fj l޽;3H ҥK_z饉U:8%Kpgy& ~嗓fj lVR,++kܸq&vm!ܾ}{7n7cf3f8lvΜ9a^x!sEYZB6)((H1rʔ)aĉcn_ kM<9O kڴiyyy&?X-r`֭[ÊCM\½s/W8,P-^XհҶmۆ^رiӦN9唲}+//?zNׯ_u7ovQl6ҭ[Ҽ7VD-ZvR,P-l$??[o5 믿>;nܸ}կ~SOu{clҡC0߮0@6 TKl^zwuק~Y&W$77r2_/}Ka #FO7l0. yhР3o&6,XU5\XtG;o^RRX{N:{+VF.\خ]0__*?G,P-!ҥKnnn 6ѣG>}8㌜w]w^{:u$s={6o<<FVXO>]^{wqǏ~#*3fLG;Gyd3ll6Ͽ/zK^V^}饗VNhԩ3`KVbQQM7ԠA +i'LIo^r%-[_ 'еkuU}#FTNq#[8q>oE B6jժ)Scǎo~vڃǝ;w > stream xw`Sއoh˔l!(P.Aܼnp\q*8AP*q!)" Cd-mdMڴi<9I״ip8|*4>7fk+㧞ٵN({{K$~ӓS.Q׻4[=lfkM!kZMf<Pa?y~ wg|^TKDzQ0}9*.zgiJh=xfz7R}X1+y*@X\1K >Iiǜ݋CN&; (GsJmG/aÌ_i;?lY5*{x[=r-E;oS&qZ\x.@8pKH ,t-7әݽ.5wkƻaCMWU ?y%kw|ziʥ72Ww!,a\2n7[/}[ 1u{~IzkEόG7'YWx=U/|32ymY{C.2?v/aUeU}=,[ .rx7c'< zxܳ@{0>{ 7>O+&g,w/?̓ ¨i&4ʶ ýUsFzOu{{?7d0a{f_zx纳xk͞nu4=tܾtXƟ[/6ҋ7< zM ' ,~^p{?ʻWU=۽Kda3>lf]?0νʂpO}c=ýbG < z(]t4VJ+`ʺϺ?ڋׇ2Wt-_ȓ ±|o}Ž =ܖ]Us=.XNw/_̓  w/yԳ]sӡp{6Žb3aC-Wlڽ"sU =]h=~y^[ ¨ d &üw/K=_'˛dpv +lWDv7߻WX^xpa{3g"PbTǽ={66q {~aq^*ڞ>+]eizx̽?Jƫoy x={p-ܻ'ꡣ=ܗkvqFèszfyzmݞy.Ɨ:K2>O0z0C٣%TR9[U>3ZtF!C[< <{8pW׎֗g|Ǭl=t#$zx O$dY^lkV8Cc|{He/!CYyy@T͖'I=t8v}]*xq].yC{/C#}s].{O14{Ӳqg7i<$uڥ,_,ɾit1(j aҧTv >i>J+$JN .?&sW-#UyOp3&εꍀs3R,|-jhcYD8)(~k疓:x_`7H5bm=l(Mi2=DFKI _*=DLf0=DLK#_UDÛ~Y$i =DFk39)=X=?wK! Bz[u$ذ>~}=k !j=tPq Kz\Zq`: #{ֵexIA=X.ɛW-`ٺ,CC=ӄ;=DZ>7vmé纶黉"_6p%ߌ3"C3 Xq}C@6YN*=m{~! BzT(u3.|,x(Z!z37uia8m~wʥC@d 4'Urz֔\Q2>8GϛWz tC9K<=#҈|B_-u Sz8۝csnBҺڒm+s؜&KEP4O3zEiuYl*m 5rXVнbORED]4avemsR_o[<&CK?!=>>.-y͙ĘV3CzHX_+UK ЯebG#=,mlxpKWc _,!=`zwN˱*7 &&_j⺽5b??1z}ä!=65&$oNd\œGy2J1mzHsj`B.nt^\YziFmK"=BJWw U2q̔wI=O~';=BȎG}Xۉe*)sKC{Cz tPٻwNL_W&/Igog_Kz4G98M}ܓHU3zHQyX>D*9=_ڽR*u 0WA?X/֯ ]Jz0ݬ 'ϯ4`WKW)]u)V(ץ uK'>ugU۵ǰ@%0 b{6e_N+?#ݤ7G+ 6(}[8^-Ry=^ΦӍCJKu|~M%> O}|;_W |Ե^i$XzHһǾ9;O딛3_v.s*+YzHa]qҙ?GJgm ~A9g ?Ũy [zH(3I΍:/J6=2@OKO𽥇@5Tdc=&!]y _Vj+E-K!Pz3sym29o/=򰑪{]wEUζ;64/Ck]|!=?J^Djw N~s_}L|ee7C٪{C}o}e8WXkQV-n_tނvz IҫV*xjM\;u}ok}qJ-7 FeZ F]@3T1aCl*]rG>lOkKh4berx;WOt!+yFUUv'ep_'Sr =`~^:)+ ZăgJsr`kZ'b?:lG=sMm\ޠ2Cz5kk:Ou3?Y4[!nׂoMW}1!^T\k?k/Jﴅ{;r[NHc\Kj߿/0BY!_UpJnALiH͂x Rf9=\)`$\g8O˶CEJc v?KCz(-g g{ݯMi-zHB!V0|MA>jj(2=)gP3{]Q_ <z ~coPhnJbL+#UJ+y6@H饸LPm߯L>vT;@(YeLН;+ Fߏ-Gm(}â.q$ڞFK2VIzH6ױPDzǙRtۛ6U#CzUVPb%kJ/e-(t+S(bHrIٶy-RkzHk)ÕT/R['祤BƆ(S(rI{!=P6P ۶wM75@aYQ2GQ^fCkka 3ωR5+!=Pnm-S(IXZI=J!=Px+mD19ZUNd_4!b@8<*Sf=nQޒք !bc\gZ8ULؤ|W%}*=Lvbڮ&v(V?ti9oWWCzL[vf2(vȶ8ۊ'rLYZ[FHؑޛ$%f򹴈C&I:w:,BӾ~&s}QzC8U7b)IUX*u=Lgs!|,=p{GsC&XSCs9vߞ4ﭾfCz xߕ32J2.wS47:^BCz h( nw_AܨCz H!Rə!DYJݯ ߐ~FKn_tނ@XzXOR!d{ujkG#z 7}BCVsd;s]'?lmfzi-]{!A6:fl)_3au?%C bTY$smhFui= _\GgMkUCZ&H!ĭγ: &aһ9_ >'!>.@DC]Yi}7a$[#|w\?ԑ \`{蜳u^^7YeSa`njw#!3aywNPdz-5$חlyR˦a`JI _*=Yw1^o<(b6[4 .zLpK]ߓ0Oy~%À4F4a)y ]->z3Np8KMrT4-?OW*'eaWX=B2h39)=BT!-mFR;5IyYBB./yxy êN>[Q;6~ǯxm?8=aso/kg̝*aҧY =N>dǑ4s@ ^ =cx 6= GsȞumYepC o+.4~ZeWknM-*KQ1Hv;]]7Z2gu{ky&㿟?Q \IApa3㞻ea4.~z"!/G:߽+Ŀ^2wZw g+IU)=дzF{uwNǜKz:A*I&9nP8Rh{anٲ%= ǯ][.<+i vL>/pWdݛ\޿T*S@a84(F:ci>_iׯ&uwrb&YvI{p= p!!uLy)\7wt;3v%U}?Gjqo='힕Ks!=)W3~+Z7/R5w}xoα쩽 ̮1EEzb. O/G~sw؇>~k^3HTk}Yz桬@Ꞻ~'Cw3JNESki &zE(W#yLUWzx6)q =T=7!#0K-I-@mpCz) 4ze8tzm3S@zSz}BڵkC ) D5Si."ҭL!kt=@#Mf ]W(j>baҦS!}) tm-Ιu)fizN fV3ǤIЏsv[g6&yav2 XqN3VB@V3wav^pSo{t^{lCDT-/PNzhAK_3ㅪRc&UoCN&M7C_o:Db齞Iu(oLl顏>R4>ylci;= lb0?:.֒y.N5 (#}L\I@Am,䳒Y1*ŝFOe]Yz_W (ܳV[x9FkHc!PPC̗>^ZJ=7nkH"rH@+8UV顗xFf0X•d-L+='j8UwJU?Ld>z;v-/xmI80s)=Dn ְۦл}g^z,s͡j57|FzQz)" = bl=M^60XXvW=4';XCU,!j}Y[uo*a r.zH4)2|=@!K%1X{ҏz0X0:i4S!mb dkϓYd!=?q)J*ZzHMf3Xʵ:#Cdw*8S|(-tΟŸ9=DdKe_`|^D"" 63X3XS.2 OUb=BH5b{s^_nj[!:IRkpU@C3D_H1X΍*sR=`Tˌ7?J!2nSɓLzT۽Ey6m!}KPa?Sg[K]N%fMƈ[LF,W> ˥\H!*^2XPiz8]T='vj{ CDvj`EˬõR_yҋ5JI!"a+J+mֻ 7.g4)/tCmFz4Vjb7^&Xn_)%ViXzu)dLqҫx6y,PR9?K!"VH,"5TOX1BPY lHvKHۛ|7?szpv;}:VI,Cˠc. +D1FW C .E˯{'2V~*-d4[C}hz ĕn/-q 79Va_x=F޼:W W ^YW3XבX=h!Pīj~Kwe8jdvb01>=!P6WT< at`aL?=K[SnE@CkO2XxIR8=%w"K&7] KWץޡ&л2ka%0.4ղpz8NjkCHy05}REBnziNgH 05Ļ/MuO'!`sZTq3CCꬳL:~bMڻk0r6V)~ CC!nޫ#TaF%z K#+KQ{93C['6>snSSɬpqMYNS/DZ!%rỎ a a.1U3=.D|,M5mUm m⏛tWetϩj^(=t̫o}{z*_mjn)!0o/dK+֮] _ e{\<5;H}[jr!%н&xTNݾv !iMARioM`b{Tל;J^K*zzh4w{-jLkSnkY%^6rG?H/" 6+17ô9J^z0u'~wTtAzՔ;zTQ{<${Xxuڳzu_twFv ff4T_Ho[rB6~҇6qU "M9n1/D{TŒ Ff\Ns,nׂو&>ژea iØ44ÄyQ:pi~Lny`_k?-'uS-T7)N$.p(8o^iT㠿+vmS롚ɟ6=xm\sД/45<;)j'S- Nސ~Z\gٮBzٌ~lL]C)`LU~㘨MMӧY =D:_7>Kw(ak7Yזu>_w*z5N)Z/F:+].{Z^ueJO޼jɜ ~/zJ58a7~l=uWy];s/f4!B֯a_9VKn^T5X9uOicP&=DzP-L+}΋tִ:VW2mU}U/^LnR*+S1i3yn;nбw+濚'yac =Dba,6Kw ݦgs9Ia|6?L1 }~^7=DxLN04+&!<5\]0xCG yxȨemmlwb 鬏Ź^|T}z}l bi>lt/zqIz06LZ45n3p36c4z)J⾋Qzeospz˫wvk\1]Cl?x.hg,HIo?WR]~*'чss1=߰X _s[yjG9"\ݢ}LȇsUzOkkJ};#qDݑ=|йBc9(L+Kd-epuHR_<攑9wU^E19v<G9>XtOzrJc @,wP?~y0ݦO͜M9Nk< BJh`>OGXX3n^d?!ƓqƏٷECvTF+s鵹N-TT꥓L(LIeR ԷvuRG5Q*~C>ø!Iu7 Pcz0j=4.Ufʃ-cWxXjɵzUkc[BIz) ߉B|C3A4ikkڭCҔYTGj@aYEKƧ3 f=t,=KO3e7{(> uIjgְ}|R7zbS¼ƫen%g!Mb @*!)" ~` @z7~=0DPeWCǏy9*5\=XyޮSL>gd;V71 {b.<RPݦXGZ0ro ݟ}z\E2 {8I|mzdz_pRl=# @ t){GI=2,g @pTôDSzd{=.iOk6Ccgne @BjÍvzx V0 z8x9ywfםg,ϜȝLگ2Xi+޾f,JL:NtgNQ䚩V*S"SCbsx!|i8S"Ǯ'xbXUC+p)Cþ_7CѺ)Ck(bIk@!"zHA=d_9Vh0N9GIU7aCy\\r;"CJ,z׽kRCqzg;meJfxQ 3iV=D{Qjs"Ón?CU={m˦'q=c{3 }!L8^e~e =t:t=ž?9EAVV<Cu<{W8'ѹ!ezh(ۇN+C]A!R:K0:f$;kz8T(=DD$]kg=tz}GuWC'!"SRdCua'==t8ʇ65fz_1er7wI!q;c$ç!ކ3cRl=# 3R]:o{n4ϒÌˣzFzͤGoݻALeZ !r`N*}z(}jOk㌊磊(~WI1fpY=kh%CrxP-&)^=d뿇Ivjݶ!ߥ{xT=@#S,Cd1Wmca%*ån_tނRGޓ6i1 +X#7 &k{Cigc?d&2WKi-so^zS+r>[^lgLW :zƊA*=WW?:lG=sM㵽AQPU/^]B=L|-jyyeq|?.'`~kg9-'uȷ #ĺbxc Sxc0œ;F`,Æt=/=$+a3O2Vlk^=oJ"eC\-,qpk(W?߾°f'DLKF *M:{|_y}?˜2E< 7="xLPŽ} \n̹~N9}wJغ\j9x1;p>Zgvzr =h0 }(~'3eo_.a'}{JI27'1E"x]KbKVz;{Zm L{H"g &h0 >/ q=ڲdǫ1 z蒼yՒ9 [坺@1?1CC{Bz)0)@d0iA*@%~e ";g?}v6/9%w F1-]v[g=.A#w6Pl"2 XqN]+o >顥@n `(aaDFDZ:R93^*5lr^X=DHW07 Nu^ښh\,׳>ԀF?˫^ zGj9&uFͼbF%T zXK8(+JHÈtS=,)}ÝYל'FU {#\iT5aImHa%i1YԐ3Tz){.7nܘu | zhQ?ǪI "{@4#x5=NjCk$ c "vIז4+?CkoEi@Y\s{ZёZ*;c=t蝭9%3Cc]Ӝ Zt1e쩨 |CsC1WbցsjM]og!=P{[38CzWolatْ=L+q0"lKәzH#̒F }!=`cB6@a$Jd!=hIV2F;zH#ږFR=mi%È6%A!=mtb8/zH#[ڽRozH#ZR//=R]=m]mQÈ6t,@ad0N!=mMzH#vLU10=!}Czū-,@aZzH#b)ۻ8;ߙ,NA)j.jQAJRGIT KT,M!$HDd<93sr9+^3uqeGfܐ?z-aX` apa@0&C=̺CySP3шLC≠;Eg a]q)ziz1z{MC≠7AfkfȈSMC≠%:zqE\i a/5@eٻ=&~+@a#)zXgֳuTgyzظ^i?0@:Vh)zXG3tK"~c G׽g_{7a&3=\Ozi1^kt=n/5@=LՈvQ2=lTmo3@װܳCp= ]g)5@D'\{V;Ωi}z|-0@׀{{[%+qzM-bp~e}o߃x6qK4 5U[w<)O^aэGtI~(=\wKS:򝱿-M!Fzp$7M٭p6WkAu*?k}za1oG 8=\3~ѻ4sW~d65_ҧM!; 8=\czDQ_uY#mZhaC|hQ"8x7*> zf z*Ӆ۠k?2@!=\uzm 9 @ҝ\)ƍ&L,bŧmkߐor3c={&fQ:=,m)zش\q)zBOWz׿Sr"=lJ^j;,2@÷K#6{p8I&dNyc0QTi=l:Έ=L"_xkD6O>ˍ4z~Kc?x6s7o@*=lBj[/æN;GTr=lݜ1-#U_a637@J=<"bOB>r=l|q)I. 'q)-]$7lgw_ESH.\ڥ׉ +n]^a=?;GJ1{X~QɊ97|س!YkУ) z>8ZHRs%KC.}2h8瀭:Ωv3Gu"?ƅ85ĤJk/?Ul?Z~Aƻ:)@aa׭df>z R{ 7ra6{d-fY``za#7(9=@3"bq0fni"^ =pZ;ism`=pG}&ھzФoa{86] ="Jʹs0=yD[=tqJ0=6Jڴz*ng0=\/,fFl ߊ{ ᫛F~L.ٮz:Z]ea{^{@3Dl #vxNL"zba{G/O0=>⼜m e&@3F=Lp~7e[@3Ïi # c]#NXja{8m ;0=Tknsa{nO؛z՛&f~+bv&fnq@3GDVf_a{xChu] an`D{mJ=t$f.û$@zמyts?ng޽UD {{{a=[G.{a*hQ=|o2Zz=Czi Zf;< j.=,/^D~3mFÏ6+{ϾxȰ[ݻmᦫ31;'c8U[Oo^qzB{8d=ڈYc^zr la" =<&bٵ}aL)an%GodF\ZW;i` @fz)bL_qy&{ՇFltKTYgn?vl@,p?#e^x;M6;eѣiH09;=\K-lR NЫ(Guدߴp{PdɿjagJ>Y .ͷt /2[xf~{a]uU\fŗt]V)t?9y߲m.gr =,/{UkxFC\zvjzX{},<ߠp5֏ju]-[m%=\/Téb2[ @Wsj˱I/oA=<:JIzZ[F >2çJX @Wrwy aٞ} @Wop qDr ".k-ՊxLrf7N:juMl>ï…K:Kfy֊isQɊt̩Þ5i.=ݲQDVW@Gv?m^=|>=caO8瀭:Ωv3Guh6=_iC@`+w_~j3A]"ڞ6v&':y{;6 foMjC fhΠev feC׋(=n}؝#W=p?8.af 0p-an%G'=r_7"vo{a{8V8fK =pG}ް30=|I } p΀"^ĶlͰ)0+=*FyŖpbm=P.Xh?azX>n*F|h7azzzzzzzzzzzzzzzzzzzzzzzzYOk$#h '͹4_5^Ro?ؿ/Bҷ~t1iro!olXSHc7CHߤfO=CP=CP=CP=CP=CP=CP=CP=CP=CPPPC=DPC=DPC=DPC=DPC=DPC=DPC=DPC=DPC=DPC=DPC=DP AQv){q!obIDSHI=CH߬1d83hӆ1FCf f`3(ǎۡso;w(s_p[fmXiνk}i8E~];Jaڷ! +1{QEVޡy+Lqq7'{T\0U>kXiOs2>2^cwC-U2Ki0sg'cO=v&euEMwK,WKac&;vr4t>2{]5jIO{&co%+,9df 4Ǿ4ys"ff#W;P?ngΜj?/ƖGa8#z󧱷xx]}ޤ?,߭(k)b{LioQ)}Qię?d+YZu#JO'OI 큽Le(e5,|VSKgKvr=Ls39.}tˤl'~4L'CR,(ܫ{{LDl:W[z`n03yʩ~6*°dh@Q^eWah}lI/TԊ8k7L6ijlu~ zC6&mU[嘺݁̽yF3Kgnqn;Q㿮'E|_λ9O_&$#jyEP;PW~dq,'4{.ÔǞ[rAe03<5I;Y#_ĺ݁}'~ҚЈ״ƞD+7ϽlUsp1=U_'ˏv2Opa.ܷNL.?Np>uǞfdyW YXK+&suE{b/i}XV?j?V?I䁪rh'Gdg]@Q^vwQ:w=lqNrfG:s˧d琓#.\,n[㧴w2JϽ0al>5S+ռbijWfz`&r@Y;P?3/M>jO/8o*{Z~wr5U˫="~X8<ށugSsF[#Y]#6` s:b';E퉝^9FSƎW݁}QLj_R#w=l<WW|Q=dfi?zLGd|`X䧲WzNպŝ+!kbhiw=l?Pz^$nYsmrxIs}+{sxށUgfw=l[N/X:s0nZqUMϥW[T;Pܹ_1ƞUVJk#]ϻ*/߻U&P(Oz(cxw~\Jo֥`Z;4e{>eؠ6~I;e?7;@#1i *az}r'l0 ͣ#ɟ/w^6ls GGg d=qE}"8yˌ z!".8%9A% 丟A?N\xW# {r' |b,9nPȜy |^,^32rՓ@漒վj9cn32g*=PȜP=@LI e*' 4Ն_@ޏ?r:d=%=|xNrALh_ |Tߕe$dUcEDU8Zaĕ@&-v#o dn;oY5a׷1 ULKn u3 endstream endobj 80 0 obj << /Length 2357 /Filter /FlateDecode >> stream xko6 X4Izq^M]mpj^5RGu%9|̃ÙሡKt.7ۮ8{{@ \ 'y“bHJD4?{a8~֗e%"!aWX(㰭keoJgځk~FnFj]aY7%q\0I*4i_jpdpAYET"'8%Ȝ&anLE,|O)BPCKR4< ?]XuZVC[ 6>y~@P֨`iL<-҄蓪F"2,TU}ʔY|*xj"ӕ 1AҌ JFr$e,[ ̢уUv+;]c:-ꐅvW`FcUamy"0=&q+CTk!Da"J D u+sfSJg.vuA@{Ylv.Jhbh)xP\A2J؃/LX8=e,S@;A, ,$f){bХLnc6$F4X i.gtd$D.ګuϝj?V8IBT"2roJ["KăY1Ը,Ʈ}7hE3CO# &ci7Ip9ˀU`o`Ode86 [;P ti3ZҜu7=zwSE4.?o0bK(KEQ˸ı^ $Jz?V]3"q}3qgfOeT{Ʊឭy[8=[aU')T!{8T.վo3W+UZ_h-+=,,\%V@DgOL1YO: TnǾ"ۏ}o~?e,Z &vK'0a?#̈TIÈq*B0_dYI@E%]I*磿uY򹀘iӉ.}YpܣdL]hLj”Dl}^3W֪mmjT[jGq6ej0* 7Wmɞ*`K6 UYe Qc 3+<`X.DL8؄iXLfLsxO9ߑȉdSbñp(Z.SbY$TMkuV7Ϋۮ@ Wk?=+pѦ5]N8[G SVAji$n 1VR'zۻlh7Nqtrxn/~|`L z pt b >{o~31{?+I!bMs}hS֋Øy"( ZO$9@1# uQ{[q>?ÝKb"@n|,h7Q|@B}zs%6H3O䭂DDmUe=^Gudɍ2%Yu?@ǺW#$rF4D,qӋ=0Ә9~Y ]y2^nCBss/]uo]SSG/+}<+b6x6룘$W;U'}vMd鋿fq˿PŌݑJޥ9kbե:E#ts5@caeJ* jvYi?Q{P)UUrk|$r!'8=Eva9M$\0=6wTյ@f81y\D8#g5eSaSʑq5f %:.լA+5 e'hK߅[5Ȝΰ]VeUi> stream xڅSK0WRRwH={pC݂ZVz|ZD{ ո.Y$ *`X0 :f":|ّĹ{J%*^ކsQ,?D7`G3})&;h:g*?fd%g\sVe~ᇼkKD"Ygs,& Zt&*҃KD:$KI 8Nݺ(m2LEbimZעVŤ!%WD)~RW*̨Ū;5I%$3޸3,o]%C=Iӆ%d{{g8p+TP-1Xuo58&&i 5~snf!( `!4v(7/iq endstream endobj 102 0 obj << /Length1 1473 /Length2 7185 /Length3 0 /Length 8186 /Filter /FlateDecode >> stream xڍT[54RE{(5@@HB:(#{"R)TJ&tz[Y+yffϜ9 'c%T  *zzZB $" praX8? )!PAC!k*{ C"p@H\ZHB@Rhi*h#P 僆99cm+E! u^#aPubQ@ #D;`XgE{B)!nп p0̟1AC8\x hc-] 9!A;w!d= ANG 0Pzco A^Cd92*M?MG$ѫr,USWLgG8JMJق[J<24hz_/t^eʝ)l+{DUNGE;|ɍ`kO:Ƙvg4ΗerՎ_塓e1ͯ(wYPr*jE.g313{6i&l! 1+hN%"B K0ᑟe~{2׌{e ":wv?ٮ}}Fuґn8ܷMGHiK͎8z(/=epJ_ ![qDHu]b`3t0LFpyzoLho| m2[_*y4u>W[|zESOoP'S,@Uԋ;Uyl:[Ї_ 脀vlLF2,|<骜w ߑJ7ߔ0ۓ& pE]#-ˎU+Skå'ǕtEhBӌ+%,[W5/ UևeNUp\1$NPCDOom9I5h@d6?\Wq ;Ns&VpU(=DT-+mQ\!ǐ ڤkM` yo &iUGYXb'jw ? abTZe16WpK֘2RJkUMxh (DCRP 5aU!D~tlܫϭq!_DUxj/.oƣ+(6'8_}nR;L `ȝYalHR3[DJ7k.\[4/apS)RQˇNj"~#(ۤ^y\g^^)l҅o2l+ KQ Gih?Wg_ssGSixvEH{Qm|ե N3qO kKI3 b9Px.偝}^0>X*2Hύ1Z >t5Fŷ):1amI1CjΓ\ C4 )9ˊR1HKE$8KMQyoױLհ$׹Ǝ_muE`Kʳ6}ɭ%(V$ [/k4ˠ3j'e*?|f!^oIic xӤHki.GvR$}߉w԰qa,lD=npwy_gGLӡ%NBzӇ51RtU?pEX[ƞzA+˦V'=`lxJ9popc<5O?܇],Ii}רCC-qPJ0Ԇ+%eȞָ/+ 4yêM_% 5UN.F}s*ҿc0m=vw۹TTpv$wxn {__;IHݥ&RYlh;[vϿg ݭ`'/ϸ J#Ji61 r]{vFR?z8#<Կdi[/gn},oЏL{JՌ{62XyMQ&Β݌d'skS2Ǽw=G~d"H@E>[>aP7HN#Ruh<[z*e*hX8Ws H7M->,1ZE9)fVnl6'm6ܽ[j#Cʐ eV(@  Ky6W,r:sW jk: YY\|QhKab@iH;ׇ&CyqmрJI&}g( )ZܵNaȷ?$cM f]g㓎)8佥t@N8=5iR^wYFTvds#čgx=b3ΥD-w7>?j.&[o *vǧ{3Ww.#*o,n'h@t ]ºx' y@E_TDza皂#q +\Aq6)Ձ%>!m򄧉,O`UQENʛIJcT]I8`u-%LI:QUc{>\,9͈3`P4%;r}$yƗ'O|%)%((Õae1ȷwhjv_3HɰՠH< c)XTɟ;naO\{Pi.Rw HM@P;byȵ` !ang*xGM7D+Ѱ9jsb({@/1lߨ:%`9K|ZjXu1g^&;1JPy>crTtzL73u)KKHfUB1'#^O\Cdbq|J^u I ąj+Lp3t,ހ=+pd鞕L >$.acEKOHu)CTy;QQf_1 ,.{9[ݱ)D5x-I3žx[I ,5mM/ ]Vy I ^qn#kS/4|%^n4/TO|b!g_:Q=I: DWRtDYPT7'0/bDageȎs|.-N' ~s/a kF)7.~^uibsaW.#Hop\!`-_;rF |b+jm`E SXqĝ~x!8=B;cuHgSmǡw`^cn܃gq ?NDx]HkD*2.|gFEF:0iPfRc/ā_!;'|D4KO6]ɭrzb:cc Q`L뗫 γaAj+퍨͇UFZ除%I:s+W:톑!!V^21?V/'(UkF<_Z{[t]9u0' GR?uAzl:K_ r+S/ =^?/9H꽜8NB=ot)fS.+UE  {]|Rg[,r@@O S3"H20{sO"'X÷DXln;Ow nB~wL<(Qhh2*䔸9*O7cZu]qd/EnH 4u9Ѱ6Jހ7a؂ c]o)bLN5>^~a7R370x֖ze{:z24P<&|+O~ ء?abUwO τ<N96$R(3_jhp,*__%w*h+KQVc OSs>4Ϭ6H؋s Ȇ P:GƋX0̭ϕnZʍ>;z=ZrXh5m6%V x]2U°yG^ߎ,6[IK츬7]DSLb6"jJ71E﷞hu}|PQ:@i^MMU+Y}\z$.gqEZA,9 2a;3­cm͏h>VWEL1Kjʧ^W:5iqWFKs#I{N3%,%^S8%nUlO'G䖔VF*&h41bgt"AT-ߌGËkxbr׏8uL endstream endobj 104 0 obj << /Length1 1394 /Length2 6064 /Length3 0 /Length 7012 /Filter /FlateDecode >> stream xڍuT6(SZa0$[c!lN ) QNnD?=9纾cg畷FZA /O@PSS$1пPDH/C,P9AB@$HLR@(( 7*]@M>E"Qp[G w0 ؎=P C1*! `%]]]h>$V zP4\vY4ѿH+bpƦ8#( ;P_UEkO?? p#l6p{(P[Y?`{4vVX@ey] C P 9"`ݝ>C ][6p5 p'g g EńEP' +t`׀zm'bPPoph#TǺ6mn@3,@@Mbw Q Rg !MI uB#HT]u`Jy:Wޥ>;?y- 1JOgO()[ڵh)8Ȝ=\az.IyՖwܯq,#oqr%P8: dDֶ^\.VS jjn,N׸K/xs^Som$rH}?k!:`yXV*t ֵl{?5]` T70A\"T O+ʇw5sswY `q jҦԕ7DH-@<)+KmoshH E8Y`e>?G%eCG(s>PpBn׫2;$ qRlUӭ.jvt_kj/ϺKrN}b T^uq0hbN.[ ++F6swnU{c7FmHo08XڟT0{"DPxol6ex)0{2Dޱ &֫<9F ܿX&dʏgOy.3[z΀<݄b+>=Qtdj,SχGe\KJz4fl t%PEH 7 }"+5o&+^ۡPMj6Kγ<}tSӾ^ T-l {.9I->BA56Hngzo.vEb3,%l\.AA>-ƱN[~t-Bnu-mPVZ |S&^ڰ(إ&ۈhqc+IK㣚Ty"&MTJ+:ԴqS]VwuV&:T) wq ſߤ`ix#Yo;t%,5xL0X@BI X!*x!d& ajgE- 9&c|\EwT~5+^g_Eź8-Y֨J>O($JqhvdWoO'XRjcXs`g*LnKOj:>wUP6x͍wîyL Mۈ5̯L;ivr!'36$sWi}fXVo7o[tQB/5dEm3K]p5CƆb?dhAK(}pUpL۾|܂Qn☲z){~!Y9cbvXW3|8!1FG;FAkrz흭pn=hH9x".QETC^ˈwyz*0-#l')m0%X[xy A6k1Uf&-Ǥ)XKMtre'Hщ+;=%{K{BXD@6Q|[qv-wτY|>xaօ#2^{guUH!⣻ 8f'Ibz~/ Ro?Q(kBy\v*MeNQJ^"K#sEADu}B#^V? tM*Z@3cj"u[x@4_-ePt4873x:T喇2h^@#[` X5|\Kqy{][7܆@Sm$LJI$wvB#P~zJ<Tz P2,C^ u|14Yb?Vx\>^jHE#2NސL¤,.o!v㽾`{'JO1F|$KZ}g_&_e\*A;9őĪdlZN!^^>შX6i䒩ͮ3Tgvyr"f/KЄh {)=jܛW~.ӻ^q 4M>hQ }3A9 P= +y.p3G)&;؞^mDiʣ_>euuO e#)P3: 7n?mLK0] >@= 3ŹEzZyqbgo_/9pզvm}h0+i epd87S^C{ވ7V'MĨ hiWu|' e.R5jE66R] JӉy̍r<m %/w gx[lIQcsKŠdDUfs^؝Nfn)s+O'A>ewH UӓtoLËѪu$Vi_ПbiJ}44 q0>`%.mpfhP{μ@ NwGf> %7(p§Yd)W-dd1 PzUWғ+ *EIm^NCP! >~E-5UߢUSwּO7Epamm3Z@c5u3B;M%ĭ[W2m7B6ƍxGC6X+ i*J]v <=8~#Ք zN|jؼ'}6ET+{ɓ_UD[A8,`G`YFQ0!A>EkN{O&DN;C#$tt*J/B ;L7~PGKfժ*.ߨ=L!ЛYnahrY5m+۲/;')/y˗B2܌:.{Xrk~Yp/a-1 ^jaEoC*01k@ +M>Y;%/_C(_pXM;o^!>]iZ1K ǹbȮ2 ד(hxfW w\Q]$qf&_ڊo.n+┯j-eW"{(ƍ,Ӡ ]q_AD*/%= NrL^2T0FՉnn+(1zӼh4/w0{61$n]{T~ࢎeUq@Ą9lk'485܇gd5[].kN)PQ&dZg`׬iҤy%u!ŝBD˫wL+UA?P5 yEwDڟ^i_힪V{ActE']3eE;\nU!aAU>O`Sjr$}! 4~BjQ)K$v߹\p1m^Wٵ$TKAk&:WNj;\gj_!gqW|b}M3ÃkGK5¬F<=[d:.[m83b~|y\j-!ݿ*VCH\N]xL"F9#s;Z'FkSr$$4zn:UtO(LY> *E[`߇Ț;wڻzdXSd_dre/39jۻ/qfNk?<(NZ$*ifS1RsmIX{.8 O\'͙Ipu\\%npШ.ei?/s<->Mt~R&.U;[d:/h}DЫvT+v{-CEoHcPTt͕K,TW'T4Pw  Vs1'!cC{Σ[$%=_ @ٛi6}T~Iםᚘ)@z824wQ5,mF>,X!7󠀈 Ii'k#^9~&U#9x㞭mH2^s7o&cV;I2 52SRC&JH,7l Du,5bs$%!%fJ&$}\Fy^(, endstream endobj 106 0 obj << /Length1 1379 /Length2 5903 /Length3 0 /Length 6850 /Filter /FlateDecode >> stream xڍxTSۺ5"wkҥޛH !@HRIo)Qt Ҥ+"Ͻ㽑1o~m9#FN(G e ňo;1 G!e c650 G!:^HI1 Po S;E:($M̭;`uA )ew'F;" p()`0>>>"`wY_ǸLh7 kdg4bn =@hl Vj =ȿz6+ݟ_`Fj`|1B0@`o0v~h( ̇x=0h4kF_i۬tREC4PvD {#`p5G{A`&ۜPFRR@}!. y@;3x<0 8 !@4(?\@'8p:ÑΎ5Ca >2 DEt,5T/  ,&@ $@JJ#V CdjO|g.P߿~(`@gWݑ?,s0X裰Z@7tNp/jcX5(#Gk}NFp /e77 5B0( |XAܰw4]PYW A9$ #ƞ5v%aUMf3`(O_ JD 7e^4 /̢ r#:딙}7G VVb%0{UnrVG]Pp+g(y\q:dcVr|TˇR=[>_u̘x=G\a{ T6^fW g*qm߿;XHV&_#$e69WGET"==gAjt@{WjMoP=G,9fDIZRb\sp:g~Gӱ~OϬp}`8wN٦#?Z~+A핲"ę7EVFzWbb7kZ+PZ z)F]/v酥;IzQAVk4wLO{z&.gl_Jkƃ綀Ғ>o *\6ΐwtPd,Gs~ 6h[A^[i84}3[ _M(c-岺|RUxSF=}In@ׯA`Mr^zױ/~53a&ERfMcbyj0Mw[~bOC\Zn;{Uߚӳ'M{ϗ3M+ ҍwQ;[Fv Y> ԥNCZn|3pIlCF ݱQ4COֵޯm [ϳq*eiGRY6My:<#4b^xҰ!0!M6G/dBk*Hǘm6H"L~ƥQᭆ@SdoDh_?>>DMQ;Q>;tr`!-U=[^|6L&Zdnm7CyUJ怔wF(Gpf IdzY ?x16=}f7'nȖRJ4im͎?l/LzZiaa.ӔP.q;4XY(KREreNTX?pV`T88( zr`H`:CK6U<ZZo0PIjPمr0:jPLYm16 ȶ=V"=8r"R3]($F{ؗiI2p{x|)yJnv<e]V: Օ;!{ha[>_SU;,ćc>cT2~hVٟo:oo8Vnv3 6epIZfGO>%S_˓xq8f:6GOm|̯ ~%9׈]9+5,yOr'N+0CNh­X6Y<ИԐְKbr83n'6MUwhlj#A_Wf4l(ˣLM\f, /M ^ޜh)+f!ޥ4;rHqdI>'‚|&P2}˸4:V/+0]%gwM#VRnόzFƨ]c-Lm~tXyp5(*|FZN ~L,=_(F ZX +q[b`;K'9'z?qY6VZ(»bK~eLJ6Y~|x썳0cqmdoE.a%gF^/C <~Tr5?=u-l!D0z.}W;.xY0uq{gºs*='+ P)K1*!#VR gh6뮱o ֠u}{ DfczI,byyNJrp:$W?3~g fxyڟ6LHN Oc}#KYNHȭM""f$ПR*{ KniVLE=m?`_S[16Yn K*Zpi )YL9 e޷ڵ0ؑ-+0 I жnO,*8 Z.Y4/=~̺tfÌYGeoVҒ ;5xM,N޻/4Q98IXD&cw]NƾHle%ml  :{( tT :C9< EȎF93P(c+%qab&3 yݘu8jT_i<,^fLӭfqPF.U"j;/z=Y'y*Y9UT\DU4 FЬizu'e6_y;| hO{9dw\$u更ƻ4F ua 5`F:+ED|bLeBZ:z x`=eXi AGfsBUk ]`\͢ᢵXraqqޫ?Z /j)U-3F>`G>I5ZN+q| Y.Ii|3ʔ)=j㷄?uxtތ5>+@wu*sy&HHB̝?dvZ{Vtwoց{1Ø-Wȃ^m=mT Vx>3lo< Ӈ\]'%q?x%S ~K/SNICu ׫ J&hC4+&@lM^F?~ )\{l"֋mM ykTW6 p|̌muFj* =j~nٮ;)X1eVVe^QYk '!}$0CQyHKٓUk-VGPjZ`@Od6#.Zj GLG~[i5zTNN 5u\4ڴkF/Onlݸ3wz6Z}dr ] ՟^WK?&k(GC͞"՚1eVԉ"Frf/txS'bܼJh|Q𓯍XuTz`GډgV/D6__wr6_0Ģ^h#zi:^iٲ-G&o`z"ɐDi4BĪHa|rC[cKV6D`jn8 sSu)Pe(fyVRTщ;bUk)].9msKz('%8EI-f/^t'ZAuC ,8~ۣ8<(ƛ_(hKYFXg`AyPdqdIi(\e֎j8s^9ō/}J8S3N4H-rS! َbE{lg![bL+aA2Ƣ}% А|WCSuM(]6lcKo\Vݙ<ħǰTٌG30T*O[!Ŕ6{Gcju\=ҷРJtQeUPL5c~VFr5~<4K\08dC;R`ME?r]z;P+PX {PGCr}#jKֻ q܅']L-R%0;/xcFTpJmDOĨc9tc&F86'9!ypADr43#{7 }s&*H hY)זWнRs!z7lwIU:LJYj,\!}0,OO}2K`9 ˩؜5~ /;#dLuϞ湙gjSGWZ>GVU)t _Er|laY#=6@vȕŽo xOղ4]&!4kY.qus&owng> %('陈>nmQ兗 bM^ęs:t#^&"ֲ3֙" \OILތ8!kEuFl]ѩ C-Ħ(Q4¡:AŲSL b- CשƖmO N&0&i9vUY\NߕߓJfj<=}+,^шMU|Jj F4l=7kkL$mV7cb`vij齁/oEHm9/Ǿgۛx j΂" I.K3O>*<^7oiᷓj:$T~IYD ^e~:;tLXqS:6@ \$1\{`a1zz N I]w5B|RIaJq4TC-vt4HpX.Z" V}K!^P0$6B6!;ED mi klE endstream endobj 108 0 obj << /Length1 907 /Length2 2139 /Length3 0 /Length 2735 /Filter /FlateDecode >> stream xmyϣ`ax(d\hX,9C!S4)$<!4a0 )N% 8JD :aX"W`0<"Hn4E(gP8;Kp;j~SȤ O l~@m0ذ lXKO%%8#2D`?J`$mA:d d?snj`t뎑q{Qֵj䙻Wfa?M[uw݋*MG lJvu@TZ<ĥJtǥ/u"ku(ayʴOi+mh i ~1]SXޞE-}W2%,i؊:'W]6h[5X7ImY j70ҶnѲۖC[OؓT@ߎҤ"nM] GCDZULQYj"<޼_FdR5[Q,yn^RYx"Q4_26LǪcAK{",-n|öM-@0yyTXڎkA~i)vuvv/f'V(k1Iw fybųGL=>T!2=R߻< No-O+O\_î ծ(\,;OT*Ȳ }ˇt$zn`,l}`-15E.3uTyĶ|Y!T8)7^O*3ߦE!wQ|u"G$꯼4̥-5eu`F{M޿0.Va}*^f[_߼ղŲn\^.W~׭J8qKVo{C_ o-iV\s?pE-Zxy-OO2Dɫy]|33fZ=>}uȈ.i3/A;xLfStF"aGx<|hNo93nD4fnN_ rj]ݢ"}[@rz/_تbX5ҒWA,{J{`sICH{ !Ul(#;?8C2?mW] D>y-S~s"<>PO x|6Og騠ʙKʬŽ/.V֠U u3H g{EvCUٕ۬=ZPõp'vq eU,wbRΐ^o1-/ln]/q#4c5e7δ2@AG) 7+iVݠ`Xk#s;{!ϖؘԞ% !2tb偲5iYGn0%xbav}nMt˕VQ!X6ݷOW qSMMYnŧ8؞Ky}1DE};yӯD*CGNǫMH*jIYK8?XunyDsiƬ<6U^$uGU:&Aq _iFɌ3,f=r endstream endobj 110 0 obj << /Length1 1867 /Length2 6669 /Length3 0 /Length 7746 /Filter /FlateDecode >> stream xڍuu\>-0#%Cc1))AZiA@R@%P~xgl9>:׹3.v=CvH[* K(!ᮍD  .`@XXDHXXK aH2 9z4~)讴(@DXX H쀍a /R`P mprVou>@$x )/ ahw4@܇Pw(j'U=p 6 DQH 4G8M0wU7N8(;( C@? Ab3rAPww.cߝ Q.`"9VxL+++PAq cH3"q@H4GHPB7/$t@$% b# .(hx@Keas>IaA `W-cu'  0ҎD>lQ`3 ڣ/82@Ad${ ccqq>*%/Ql'vH8eL~VH#X0+9Wk`C@,OKX1Pĕ vbY9]8_X!.I`;~l3ıWs4bqB K؜+@ lӮnl W0 `@kXE7E\ C])UVD7$jg{e4 "<̥pweY,w8J ,K^Ў(ic[E{!𸼳ؚV;vhW VOK(M}bb.Ib>.ե!F]]bm0]y?/ϕߖBTTDz|"W$R"w@a? VazC!cHLSjzUG(ȷC) ZV&&6>x{m9lbEjfY.]^e%O(bzlgsG x\C֚GšYaK_h)A9-Mu^ecdt&JoS^YHdH1v¬%Ӻi PJ>OSF@]&kj4+ʠ0G1o*²Z\s\T{m*Ú᷌3=-% Y_N=F_&4| Wp[k?cM7_а)4`ыRiJf!bɪgN߃@f1 ӊ]B|ۯSn=Ǘ):ɧ+S!to3x0P z=f%p S!KZo7ʪ;4C=ԗ ۤ=~HlAWvzPcTDFwnqnݘ!d*,µ8ܷ Jv͞Vcn>,P}3$$J>:Z@U¯\hU ljҒ7VURx .~m}BD/;䣓4,~o{Nnzф>.<U7/= ;ԕጬmE <.NXzxKr(Bj4*fiq[2,FqNdPh:;rG?u+|}T>PSPiu{(mT:VtSI35ב3 |Fd=l zL~Fߛn_21A ɏN:(X59X&lDRJõ^Z̠ ̏* bĆo_wTӼ5>|X] P&mL#oc ^qvji]3D)ik_?R&$1 Iχ 1ξ5` g[GrXgY& ^mo'bhi;M%_Jy*g|BR0^$#l25m2S^pyh qP4H@%Mkdv $z8}`L oܯlqٚca | z58Pמu^}ÈEp)gt/@-X9qF}!1,'y\j< $ #  9} p$PdK!+Zw~}z&NnNΘ,fP GۚF5/~=mЬV<|8% Bsw@;"ڎ{,al2yel4o*QbbiSI|K/<2}jT,ƠNXR dgi]Iр"z)F$fo6Yv>'?1Y{\8x  i2 Kv4G)&/#zgiGo5AAAh{Ew9E ٻ恼 z1hD4YBݎWz$",։i xXOxs_yA -SRJԆzz(?`i&䵇|rI2MM~23ݥu^J.;ltVCs\Ys y |o5[%^-\ONj:eI~GSd!n܉'Iװ 1⇡;4  /x3eĬ¬W4jB61}ꃾm~xTwHO !*ɵE4]o%jԁlx&i !Bm/ (U"wbiyz~f~bvNhM65!S|H NmgSer1l/[OnyRwyǜAc**3Dm]#DWƨ^kv>aL8eٟucʇYƜĖCs]j7VN2_l=dQ ^i{z^V,lC?x<^r1o-D$A|cfPf߈gʆ@4%<=4'z| !oyKLņ# gϚ>Ok؋!a/nNZ vZ?K&g,J"{<ՖL yeҭ19-x^ެ̲2F `Tweי \$2R;#-5ebvgVg "kj2g^lEQg-i)/;5LbJVǧ}[FGDzsVl3_Sep~KOc'L7~Rji.-M ,nNpǻAOѶϬ/\?_HKe%9^[+':?hN|NS8+[Y]\w y:6VU^_X+-?f?t9_R'={*[s;.H0N&r{8XaNMG5%Mq0=Ve$t~-",}-AadI!O4ڮ>|' R^X?%rvP_t33Piz92l:#]GєwRwQ>n,,]{r6&*6Q#!ר txٵg-j&SDwgvtL*B go5f)߫nl:No4p$D=T[$0d99Ꝑ]8| 5oΑr~ëd_g߱v/hr:k@95? |Cj0=WS,L7 V$QdL\QTv!c]RIdꌨ UsNje]O򤰘_Nsʫbɇ#n x e'7$`Zl`Ke1F *m^TޚioPO{cq:w+'Z}Ns{XU$sA  tԐ9+:ꭿCDĴ^QT/Zշ9Sx0aU-5R; FX'_5mˋXdL/UjjT_ << NiYeھ[\b2>BSo b*nκ0v椸Dj9i}<Z}*> "񭂤, [ܱ nA)ۮ # # qy6א7e洳R%#Y ۉK5Mig`%Z Aט4`p>Xڴ8Un{T*=?"SQ)P;,LP^:~8jJ]>(lcr,", {#̈(xv}ڽ ƯN̸)]h~sW>+O6c+JHf3]- }'I*V6P_ ,{ɠZW:"%.*MH#\HSzrFהTZO/Gx "ǭkV|$ykCGo4n'}P;Yo~II,l7#U\;{F~j:}ri|(*gǤQy7FW_HW3%Y3[k#f|IsxbM D@,jh׃Dp/E}hQ#wi~ySw umqDTA)o endstream endobj 112 0 obj << /Length1 2805 /Length2 22785 /Length3 0 /Length 24381 /Filter /FlateDecode >> stream xڴwuX5ҝ.i6lA@JR@@:I o{νW=<\cwSi2[:e@,l%eM3'wv6f  Z huv2  `cGn`% itf5gw; tu҃S$]|lm@jp23+[`fano 0s((TF[hc`phښY Um5MzpaMg"-WђuښZj[3T_<_ZZj쬿`xm7pg߭Sܜ"ـ@.^^^, g7kӲux9n@_x8Y.kSJ@'w$翝`)I`;w8_JjjJG3['2yL7HzP4m]~f^13'w?-mAWlwgNٔUe5Ĭ Vlj +W=q)% Ri'KIgGGpH䓲rva?smVNVpavuK'lBml+maiefe2spZH~f@`ik: U]]*=Z:;9,VH* @9gppP1s[Ǚ9:#__ҩ899g.c TY-vyxŝMˤ890sI {';4 X5 WV5=e5y33I;Y8[:Y8yfnnf>HlAgפXYA(`k7yL#o `R?U *Xe#o `슿]7+F`v̮?fW]7kF\V̮u#0?g} <@ ?Gv.ZC #lX8;._GM5^ܿ-mHker]pg? C6﵍ n7d 278 |p?Ÿv!Afu:?;X ?܎31wGIv.ߞ\eCtv =n]p/xv0o_q`9@^$kxc@py? Xx́+P_W^š 7g{%%e36dS`;G3x ̜cd%9W?r-~g?0@o꒳`]VsdetL,5?I B jL' hiHkpMQ`F;=p獶WbfʁD:,ڡy+U \sy)#IΞLU_`[0W Vf A/wIf} ő p.=X_!DVJNM`q{OS.#_wTkiC:Eqfg<[i HuӒ\ +/wyzMqO_ 7By#EwqCYЯO, :6ٷ}{ȢFti مBiүHbk `:>^HeWGhB9oW̛9RdGhOLF{=XbJp# l }m;k*Q7Է ׯb LJl hLViӜ0ӑл-5IA wV̮h{o*SI>S-g=mijM52hkEO}$rDg9 kYX#]*voNs#wpZ?FK5=Ve\h _rxm=9{C~`3v],'s*†sENv+gZ\Dh41z'QڸX [nƤ. tٹ uCL}Y KxwGWbޟ?R%FtI}p[|^?phi@ּNO0 sls8tP1iCDgNk|u{bw^#-e #s&P܈)MHIPmOP}]?@8݁#_ռ>oE{*L /[{PK)ٔۯչ-8RSG;h%e٬Hm=x_,Ak| =kFҟ>~xR(0G[V=(lN8 =k~di|K@c9[%->D~^<!gJc";`*VԺHueПÆsf0FPBPx2w0L^RET]}-fI`7>3<}/]"Y/ϯ&42tbk8sl)66?ՒrUw,{[&ۮbfO_aNG.+ϷK]-WQGuaQE'|?MU^q|[ܽ.֯q  (\DaJ0f]5v>Py&4z~=m#fwWyPei;$^'a ?ewu]-@%'ӅʢG뗼opSϪ$<D44LXK,$>p',"K?FЫ슙6Mk2C!5hK`AU`MmKiARy%(u38RD%"L25W\/G%3kÖ>Pda8~i2RK ݂%O"HvsbE-M>״]2,b)syEelqk@E@3L/ſ\C׻̀Gt%m6Dڦߦ{o}8LAѪ7ʊ \@`M'򓯔 [s\Qm+(҄NEmy~!Nͬ{J[|ѓ?:jMl4~B? ~߹"5!)dk=نxXp#Xi>ê͸hx ŖbOT5Sqd$GM0hzzbk.%Slis#,uR :M 2|!+: 3j|euқ-ӷě%rf3]$acWPԧF(~Vm܊(d B+OΎ(ك,[n!jN! 3{$W1?/L83Lid`ΙaoUs-HP1byyS!yͥMQ{fw?:[xX{>JO" _oR;G 7HZpԅ>;;U٤GJIJ !kHeBXKgP 2ٟnKj"=d&j۞uHEYXα]!k2Գ gGe\v IuֿEqf#Jﶢ1;*UB*@S"$%&=`ĔK[T!Nr_+bg^\+; nak/CoU-7rxF/@h)>jnOaѽ!ma?3>EKգDD2~NS>$WG_!q4ɝ7˟#oSDo~P0@8r*⹨zM=Uuԣ#a_A3 02_F< -zqNrL6) N9q&]K eLP(MIGڪ)Khe3Q0-MC\%ӲgM܅q-ar x3ڬ< .Nz(#طbBuꓤsA_"!LB$oUs葎$m/FJɦWɿC>0Y{Ci oWB%^ iGqtzJL$P?a$+>5+FO0/H&\OA2Jr$f 1NLuJ kX2┠yM@M=i"Nj_2wK& E;z@ԥZݛTh H=Ǭ SJo ~Q xcj݁>a?fzT{g1C;FJ5e|`Z漤!F9&)Cc!*ǟ)XYtig"MըHq Z=AYxRkP׋ЌFr0"$,,UfGw@68hM!Al2bͰ\a\*1HRUfD%+MƑ'9у?s3\j:vD#Qߣdyv,enDdK蓻:ӁX8loN}STx,4{gQM:si =zafV!6gmO# P#zbrtoX{[siLL'`|nluѷQz OYsmlD 4Kt8 s8?vZ@d9}UP I0Hwyn al0\x{mku{ByL!|B[d8PlF{ݦy;F3H)#qAxŠSTmOb9H\xAAn-#sQ9+q%mPՇX8uAr m(Į,'uujvIgP9ҕѪ4R9gel\G>V*>z΢FѦE k-xyKY҆ ۬4a a D#^)Z+ ; @j 5 =i5 -Fg @1ahC?4Uru! = ,K8NڎvOJ{9 c/;4'"9q`G8*`>/> H%&YS:yKpj}'twFXB_־qJ^Hoj{enuZ fV־{&0x'zP60lASufIiS(H .KwUPye:}n{CƑ)ϪB$JEYSrz3ʆ$kn]Էvoww(*\̨bR臑R l4:%CkYU=>XJ%z{л(NºSX)KTwiIO+Xe}Tv'u2AM7~io9|._FwWZ˪#K/D7*vOZČHKw̠o= `U}ySm hh&ik Q3# 5^VKm=iMp']vO\X4[oo `u޸dި˝K@#Vy7e֣LGDY bvr&ҽ$(*"2hJ=M_8%SrXY $*`_,W+@<+ԇBmx m}7T?"vFSdjYZЯhG^lg#߸,9F byw#S4 .G+D_fŲ=7X) 3`qsLe;`FŶN&i ]D^?Bl`t*jJEj5  %x[쟌9sx؝u`o$_Fp3I tвc Fk+ ".fgn$o%.Ӌ<&җ@d-}OS"|b%X< wՆhyșd6%[`P$_|L(xAh]8a@ .kġW~'E-%Þh%Quc>bM4:Y~a-Qrtds"==8O׿ʌm)n!X&V0N\WȝVdyMJ kkrQܯ:x*✼"x R;C%Ez0jۈUyYdWaXΘ30IX(1H`[I{S8$N\!}5gjѪʰڵ] bh*NE5ViFF)dY=EI_[xڬbntx+W"5FѬ1MQ].qr?|z@+IqDϧI5[0,۰>)Q3g [QLs"&ČȤTV[o 1E(lHI(9HW&f[MMXxKA8"hauPㅧE # f:骢tTlY1W$~7rҲb9qM*-#^0wdq yj[Z9Tj2Gmx8Ծ:O*^pMAĦaBWpHZ룲Z;(n$n ;f[)۳^CPr,Jd,BkA}ڵX~5n÷720dC{>~Pcp?+R*XB)vcdäsw\&QqThN/H:ૹڍa)aPvRt&l\yEq</Ksh0X]8un<~YSo)s?/PG:aR|(ۨYY' {O3;Uc8k'?I΢m?'Gxƽ)̑5^}"3 C@%d2G /Ɨ%@{wdLX4vX@cKR|) hV)$,{6LG+i8m wIVΈtQ/,5RFѫ"~쩶3\K n-he°>q{JB0/71뗥|"¾I&^vD.MY5؄K*QI!nɢ$^HGMc޿0Vo{_-+B;ɶt> 8&K}{L+qOXWFAƀ\"lme^C鸾ݫCl"Jsd>=:gQU )e IdPXEzW?0 F|`~8u9xk$"<9>"ަC}4, ?Rc*CFG[Qv}6uM tB1N,n9A*Tb fk`V+XyͮoqtS<OC>˨E2U="4y;OSUlh+퀦s {v"?Brr?m0)L9fhEedhQ^h&Z_gRw~._Aƽ\MہހL`Sп +野J!&s|0\hS\+yDɹU40>CwZ,wdd^{7WM[f+z ^'z?4&Έb~CW΄HZ&XMƤtsdHS2b-@^8hss7͂S/K2t 6@&48cUFXEܪFwq1cm4"b{vZN}7DC*%n|>"Jwκ \z] Cq i?P$7jtb3 tf8Y<==tX4ib'bG졵jGt{gil4B˳]m3&}gg9maBx>QJwh|!}x↍+,Q~Z{їSde;ˆx+D.{)P'<"^K凚C '`!aٖTpxj@gH%ܙi{܋겦 ړL1N1uG5&nY^+$(rtiKw>7'T _ǎ_g;P#НjKs)/̿ )(ke]QSQI\>!.Y8aD|_^K WFj>ARi'k۵N3F搨ɒ?TQ+kƲPejd*o끜\N%2bPd,@Yb2/ZȇX^a 5kjfOBPo|)C"M6PZ,j_4 DٞC!̙]D_XR~Aԇoi#0ti>tw"hgDXZ,"IY^Xx"VӋ>N*~y@qlF5׵۷ `~t՚.tڷ/z/aQ\/6ȵ(!rl[ɩA|-Ih"YIjVW y[IM9P6s` X#^1)Vq {oQG?D; TXt/񮄁g:7&O4j[R|iR= |i#`wV7w9 FBJN  5 E sɐ0ޟaeJ4,`d%0siSY7>a&Ip"[wB `BOJMv#᳂Kfo-Gl#A1z8> n[nCY&"ެgd.-̊L](o\` ̇y-;~%+HUcpN7$FxCÁ>߻5kK 0O r֜_ϗXEtS9G1Vbxhpbۈߦ@&d;dSg쥋Fx*b˂ѡBƮ\l9PodS/V~ddw(Tm,v~` ,Q|:v}8έU65wp{Wdvӆl7;.K9R1vAx%eL2XčNzPs H7t# >ڨ9DwTɿ71m=`lnw~&\*FeJ!Jh.I{-K^G?~TU6?Ýlzt]-Ӥ+;gtMNr$4jb}v"Uj\ŞB1B{j셩#04F!=1a/ Yl^rmv?Be<ٳ:hJ4&0HzQ:F.yA3qgז<2)U:o ړ"qLhxJ4*ۑ QӶZ&HЬrc =FI Q}$g5PֵTc}^r?N;<]˛?G4739_ Z3|`Z1puٕ @ 2>ْŽəۂYqXӀosf{? MfL<1#`VSrR]]C#MQa}LRW{v=(pngEw&6N[܊Ibya4&Ck#'wmVӦMS/JȻ܅^SvHYvcDwN lW;P-]B I73 +N'CʆKm69,Z]IX 8'cc00?ĕ 0ƌAw.Ma3*M`T+FЯa =$o9ryz { '[h+y 鷻(:"H~W mCEXKD~.ey>IES MBsS>ؔz)>㴢?[ Ҥp#9q:VCj 7O_}T=LK0o4-G벐;Ǣ2Qt?Gpvj>P{İ#i#&ktGBУ4bďX\ ?܄Ǿmw:TY2G=(!^8ˤZILlYDF)\?"62/ҡVDQmPSRÎ~ ;睓__fHsF/8k|%>ກ;&!l<1zV)Bd_;!v~[هb AĂ2eq ֆ ],ϳb|KFD')4ZpO"e؀%[Mn."r%|ϔdkվ+U~vHq:,bcptVts#D|#H_7N$ҨRL|O~6)?wËl'\ӏcN˙KëZ0Ҥ%TfB6u2X$IU:vnj;g2b"U> 7ao(vtٍ)%Q鷱+F,;S:tW.1+E*u Iii#&۽u؞aYO*Dgin_FӃ8ʄNX~*Ma/*}c99p|NITXFp[O}4Mxg;P:pŃkH%DG_[m]}F'E2Cv&"ZXwxMX&W?Bvص"|9*նutNSbыbBVRp#jhS;Y BVګ?nqp(ļ S.X\p"rv-Y}$&H~;J{jY+.ۓ2Y__pY^wXq/r噥"\6crJXU50ͪ$I)|}\3VG+rqQN$O֔jřM@BW>KbZ lwA3vtũ]gb2yS`=S}o#hC\wqp,%E8&["t;?`&vs4]VȘɫx@R>PO*kZ q/},H0ȷ ]QQW6@Wz 3L' ١mdХw?X`74$hC ut*-&6ge2o}d Jɻc"!Eђ(B}QRo|t䤟9ͨش5 Z&-w! !0w~ mx.~Rٴ'ꗵOCʂBꋆ[Q) B:F%u\8G Hj,!rz_LX C#VL%^Xc ElK ĥ2U' z1IʞZݽR#oBY:` q ]eD6E d.Y-tM;c͑t32 8pt5:`6Ox@!V/gMP.g/Y3>07{>#!>Kth=5`9 XeN)wYIXW'ύ<=We8-?#x1HG I]K%(=fYZt2t?䁨\t˼N9Nbc- f)7ASڒ}m*!.zJP($ ;+vE͒04$^\Ou'j Sn̨ jB5bm,eU_>\p}uY!w1GA7{{|"f(@$ 4jtbz}Àx9ά?P WgN!U5/hw5`~@$ ƿpo=yp\I/4SFB98LD2AmjI>sP-<` ,NUH-QX2ڋ(1^,g\=xy~DWRKKXZP<0].Al^޾(/? !M>M@7]"l ~dPp;)\*cYTIcxASQ6<2nRVh>B͘~Ї(=Ҡu" #"pV4=G2 Pc XOib.7Q`gQ9.`eo>D@=AP:Nό]A2_%1ud+VlB{oLS~#iʍ-SS);__b,Naj+RV 2ҁ_ie.)w4?Bbp:J=;|+^ɒTrN 1ɽQUƖ,W=H%t?۬MOeA8EDV7}:4INtw^{}h6dѻ }f-وel˭yJa&}GUA"C'#?Ԇ`{ FD-׀3z Tz0@@ >uskFM$ƚu'{ƨ[W"S8H7A0E$0[)d9Ըb -3BD:| DJEW8ʲG//Π\;%; J|9 W^s1gx,=`_ښ1gXޓkr7-ꅂB0\ȱHb#UltnKX|yNB81/ >vem,9%72Uͧ`%&`p8~R@,3o#&NjtjR5jُfII&x||f;ۂx@'Žk12hb7g2vGՔ Q.\2cc6uἏX[m3Hӝ4SRaoRae{3~;QSysӸbGYDkF&cAOFްO)m3gi<84_Zjf1ر;B%ӿv":zh0.QK}vf:FU1*֚6+_,CeGr7$;F A4܃׏-ͺc)ňt(Or'.~Xl-~F.v4Nd{uxAS2qF(|9+K&[qk`郀@ƍfϣ]T> R 2vUՒW˖;38gm<}#>pE):H[ q-r3U*<=YlիC5b䝮+E ` :k͔/Lto$-Z)$'P냣ݡ/= ~Ў\D94dFo90#. dF>)FKЫ: by꨺N1U{yvf;̞l-W䠡"ԫ"b 럇gL݃᣸Bт3vS{z)oy8j Jz V5ۚagӘf rƮ4$UI'$O* i{y v;XVIJ #'tclwS:PFC{\nLQm oU.5]}>d'ǒZ7DD4.֊T";boQKqbGj>EаB)R?M`N <>j[zd3ULYL>∛|m9uTrWwe=bvB3 \U]Oc\N~,$QOom 1DNbbMxL쓘c9 b>*E{D'V8uY59 po~ k+RQl>',ߋW#wfֽl"g[v; HW/:"[yj3A`""Rbs&Oz96?oPw8y,@4] (Rgyw3u΄k3M[%2SgJ(yȿ ,Հ, .@6NmU.^.hf5ȧ3EL W;bXV ߹z͇ ˲]k$ՃrhbĶ/s[7p/z ?_Ok9o3V:V S]X=ҭnD+D8[b++6,FtœJw0>EE%!'4NDFmIx~x@,*Pa%BՉQAT)۴>Wg(Y6T7FtVX~ f\'в}wi'35$P-6MV|ߟ}E+RB0i$5DL2m[歕S=6?6 Lmj$QN9ŹM̾ .K.ɺ(% Qo jVCT@ ToFb%D 3 )Rs>p}Zg0۱kX*l4QDS3ubjf unuvNIt + Զ?ƼwM *88l ]T3 i,8'\+pI"k%?kO٭s!dI =<ŌJZ%Jy}PZp&ES94c+׸{'z̤r+Ǟ,RǗ|o{Lz)M#dV3 Rokན_xjTYߢ%go7L 憮_N:M7.:ԖU'M= Pa|.TG?7ʴ-$ycJ祤 U%{#+,A(u6ЈKJewr\-ؒ.Zp[54RHD;N:  q)bzM_,Hv1e . &65~hM@ N@I/{TQ//O<={'RA^fk3Qt"gGi*2QnmWëk{kzOQepn\-ܮsR+RMޕɠSx{* v7էIE ]np=<Ʌ˧;ok7k.^%W{ z7װ]i;mw#X-Q!s6~cs,H$"87XUVje󂇘Y1Yeʫџ萀kv)cڥFa6F #8 9I{C %Ģbf_=mfU4iEP(_{ҀU Խw/LN( r?ˢ-8Mnuq214o<= J7Fi$pK]vnKit["lr ء wC1!9ԓIvą[:Y1]i&oN_K6SW@/(c⻙ ͒aWJw=ɴIN _TwlY(8԰$.? >x+A{F'~osCug6ϊ0PD^4&Z-- Ve~?I[`XD]8*9wU{f ~y3A;חB 繍Cx&F KO!;-YE ܻf^jDSܥd}>,oj:i$j'kO`nUh90h I6Avn>ӰHn\)SP!ƞ V/:i)+",i4[# q #%_o~儎}Hu@GD塡\3ays$>=O7aN#hy[Ko},ބ9v=`-Xn a-0Aq4&Om:Ǟ_үy?5htjn=Tc92U鸳_!Ql3Klx|\5k8+%ѿ@sUEo.E롄mKd-M`ǦZf( %1xƳlhyɻ2c~u#{ Sr9LaS5E"[[ZV*۫!V3y=UGu/C1)4ըLB0BrXd-@Rtu8e(ch$5*μԇ c@^Չ qeNztBMb.t_BdBMQՅ/~(3O5|$x)=E ? ?儧>KpWOtW$u Qx=+ DfO-~!Z,*HݑE@q~5ؕ<)C1)Lq嬐WBdlǹ(?83yU8Q;IVvKm`eg; )`5z2$<pu3}4\I$p3̹1܃ë#uW ۼ;ųD I \̯R wksɑIkW endstream endobj 114 0 obj << /Length1 1874 /Length2 14035 /Length3 0 /Length 15229 /Filter /FlateDecode >> stream xڵuT[>Kqݵ; wPxZw+NRs}3}=kεGvh)4Y$@Y + @YEɕEh28YٹQhi @s7;Pf xgj.B :!J+@f 0n,殯jE uO?ޒEsK Ȫ P{ `'d [zmM M;m5MF`ȿkҖcHKj:9mM?Z@mZ?y^ hIhpYI^+WWk[77gA66OOOVwW7V0ĆW}ZvO0zAqwzlg trqKJӫ {%OLп@5wWYMMhnt2w|5t3wsw%{}U  ɡtIʌ@>~1s'wWq˶;ڹ+"`mϞ9%SPUbQ~m<'+;NnOBZY 6jW?I۽xN>ޭܝٴ\܁ 6~Wft.{K[??b?W|ks+zAq5 @?+p,^uTPd KZTnƔuFN /M L?rɺ@@0O3sG; a S)*hU=J_KfN6 %3Jמ}=w[?-.޿TWQ+ɨjj(*1aq[98yx kp|8^ 6:^]n~k0Vs4B|6"!W.?vo5 of7`|/`-k"k"ܼ[5ooue\i(w } 5 `-o&*ns*}$[Rއu,\us.|-u"58(`KP2GoD?-fMvJoRŊZ?SJhCAk)UV[*$2#y:U˿R1+rOlF9躋>O2*o[Y<ь_"$Yv{K5X|;cVfD w F9]kfr,סHw+Q̗Ӏ Qd&i때@6CwI9AGֆO; K ہ߃JƗ::\,J Kɕ|m#:>iR?V,bI^6tdשB-/y@] qy5ҺҊ &L>ޥ;ȶ p=8?Cd1K>·tv-T%J=^o@1ppl i3wgNQ1,#v¡l_ |Z쬱76J,+\BF|~n!6_2S '+ \* fϖav~IZgN6JOaV;=ړBɘK,>#C)ȈL nwcM10( 2W2~<mAM;g@YSM`Ժ W*jT`$@4Tn8u8MkZ:71ZcVab7:LRdyd]1ېL;N`cl5F+»a%Z8yqR[}M;=/LHuTSn4 lNF4].iOޟ8LO[FTӹ1FA7j.1P'JNIC'آ1BRݳ7P7W%&KeX$GTT;PeRtllv%!ԑ AޯǪJCI{_kW?fsB{FOٽgݪDMK٫0ovsa uA9ӥ,?)T#8&TIBvSgaC̴Q2,WzΗb<j_2c qCDOilPC]TD<. b|Ϥ9_Ot8p~QTs4aC\-2gnDWrԯze@QBܚ y0H>khUtI ז}wDrb18j^]0{H3ō!r Cv|;dORZ{}kc>MZ~ f4y<ҧ}ޓA$ oۿ+rBa>_spXd)Pu}7 ݓt% U@rp%2r`uw 8tO5/}DM}K+ӭŽ+W5p!ĺp+,aU $D (D&ZY$~[;jm k[E&㎙u֥^q97qDnl(ķPd ]]9GqmRf==N>fY:Ⳓ䢉I>)dH[Ag}3\<0!ہFqNB༬\%Ñ4wâ:˯w)1J{GrpO)8JVf׻5?olm0BIXtp?["pG|'(a24v\ "Rv"E8*IzWʦs09|G)f/%tDK-ÓCn]oЬH;`="؈x]QnS:e4m"@(`S.jH0*s0-yA¶|PGj =F௼E?{q5j<|zHvkP\@|sqx,%}cmllIs`&Ej dI⃤ 8 e?CAcg.5- .iNxny*VO?ZGgשlΔNFڇN#aOmǟ&9K@8رd4Vܓ?xN@M,96n1r<Sϋ0S(@yS^tضɃlcuVӀ7ۑsڹ 18~YgRq÷uoFi?m~# nL +c>*RE(G^lM`r-H껝X=W3$|-ނW"H)Z>НU +'H6Nр4祋XcA܆u9TiTJx CYjH3X2G,F$tVi,չRvn:7?o"DX$KRq@]*e~JEs*DP k[tBBk|'td\7 Jq qf >Tliƶ޵{s Wd`t(@gk ڞ&ytVoW^> ~7 |$R[\#˞ԀctgOyH]gg28Zs{^][ߒm!Ӌ^AةKX2EنթJCV< +x-iz wDe?TDK-g<3#qֺ4|k6K-x2|@o[TW m@z(iT'D0[qH0қ=7B-蟥tz?kW4\ωYS[S33BX%f [J F5R ܅mGaZX-} U> #BOtcҹ]t8v0K셭B1Բ Im͜K J3-ǷI<.I]1{;׉@o%.XX$(El>XKE/2Gt ,V$ '~QkzDc.D4<`HZo:zҼDˤTql汚s%?ټ6 t/T]:BfƇb\RMC=:jNAr+ GmDn{ ܧG1՜J{Xn۽dӟڛY]BvcIÅnh!3U6ӏ'HC"Mx*#9o0In1wC;N|H=0w5`B)\@!.jc&] vw[=HsGvfȠj  @0#w{i 䦖J&^*ZIбٳ IʟrѨ_fojsI3:haE#]q#N`͟ BmiIH:z>1 ά6u@v2"e^bp |@ ~*9sXѥ|oortœҝ(%թy~-Nzʓd}D*{Ò+&j9$CkunKCazFW@sLX·MF$L)Mnc!8kw` ǨKwa! jC'f'@@_»w'X|ApD/}jX'L[_8Kp~8t DdO]f@Z$QL؅30<& E7„u;1Yџ5-fծ,߭I]wu CO8s5DK$Wc|5)J=,a +1v˦'NgF)lѴpK*B9N\Ԗ’֎ 'l~|?#TsL[-Z%4FCT AZqLc SGo5Ƣ"2WϏ}ͺ2ViPe񵉚ӂ(_8E [l$KttdFдe| ]ql9W2*W1EsԖD4<8&[xFZ5^]"n\1=.wmF4g:H*t.̽=SCg&b?z%VPJR06|e.Z V4ZV7J˪[UZ9~~e9xK9K=/"O/vXj҃>>1i=yU zr5QgY0]G$}Z.7YXK5ϧhlW/sg,% ''6U;_﷡ElvӗVX^ki32! @-s3ĎĥH-IPy&,C~/?jb@R9S:Y^P\#B2] '@'Nf#ٶ27(gp'I8VID4;=2p9O)xRFpÆG/!<-PYrY$anFg,eAԤQ)K^˚_ sr\Ҟ#FD1͡Th[#*wTdC*k?n޻AvnE2CTP/Xɕ k[i,v'4* @/)14ӥjuiI),|vjG;ʁ{i ӽ=郅>j&iR$Izr̊|PB>U =>b[ }CFBGo^K[[0;|JS꓀oCCi6Ts(%Rj< S]+-Gd70k_̿d#Ml8pL0uCnR^V )j.|%C̉7zծ8ia,V`voO$iJFVmWTqEj}m,{',q<5 ZLd;#v"TTT$.҉kM_^veyHD M!b=K1F |rS*N̎*)廂A!*h_E?p PQUdDe=я+WڃntwBڣgDpd؁O&yʚ{tg9cxj߬;yK>x[qc&y4 W1/D~T*Օѓity&A@igSW kӘZ1M?PLٞ~FBUT? /o5l W%$TP*mY3z<60Iz AQoNo\0X#&U(ǶoL˱h)N2$ၷTǎd?\'qz8<15yY3H@j_x}GUa-L$q̮0y x0x[] lg_xj%Mk܅Qp2kR \9`@"|r&:6V)I#SIR>93ancwz̢t'5ͅQ>p/!xN3eHתl)J1^X)-6-Țeg.Ց9y4vwVgW (&#+K!`rFIJ[ßk38WwmSG/4އٳAUٹr֐^n4aRܽ[uei%1^iFỐ*QzG\(M4PRX<뷟WJgWEӺ6n $D [-`p1,CS[õdhbۯLL0V%FLG̀H3)S-r)ճk tu^!pǹ/2,_;]ʐl4,{L[z(D<*ynĠ 5>Sd[^G;ۘͯXt#%cM'^Vۆ`Bܠ2>RP cQc1CC,^*AYub+&9(S!'| jXXo7|(?lXO(G: 6Xe,L/ak$@]R`x'.bc΄K"m -i  %j)߾.?* ؘt ՘I"P^@֟z;o \rҦH( 葡s־Ilc|S%8_C!A4h?;\é/;qDqBsDc, 0MUn=g)kyR-y6":<胭L.湝T%N3eSk[zJj}q1&#S/+j76ȥktYMR^|<@ &;=ű=FYPsa0Td; ASrTXm م}D%(RehFbֈ&>`U0JuӎAGߔ!wmiD^~^BѸ5l3ou  9ugK/#! RZtUκH27Vi 8 BxһtxMj[^{&QGZ9 XNZ;caz-,~P1r!zQD[&Yʩpu8BI ԐS~7o:6c6vK9Ç*=(>Ai+O[Zb)Vz=lolnǚ rZ,޲!DBX.Mcim#wTDӔSoF< _{_!2:ŽrlǩMD [T]z'4E:/¾3D ls=|u0H[i=l6ߑbsR-.DGU}J,؝8u3`ܭ@󜩘5l_~ -zQ?FAalU g"ز#XٟU鯫N!1{@POlj}_AAׂ]BDa<5jw?,ZĠHui>W^OGG6RLiqgdNʪs Bs*6ͪ* [2wDVM<{8ӥ762>/_W^K_<սii"8Kz,=}ٟ[L8ƇhC9 W>X{DN `m]"!-ɶX%dcmOEr!%ENVI.n)q} x)q$sC ':(w4,9ƍZ42+{C#1vnfHqP/"jQ;K{eAl{r@8gX@wn]@a7IbV|KZwjQPNiv;Ք~`Zqi||L4S"N$I- :\8ԣXG~][Gf5C)3ޱp[~ު a_09 J#co@6TK3-+Ko.E࡬_% qfF|ZN ّ)>(+a 7`aIٛc'vo 0/;>9qtgG!;~]elFg^!H=K$/f 3YSvH.w tKUh5ҞѨio(s].8M'5`G/8#HK#HN u`)#B_OZ<^]jǕ$1 k܁oAHgan7 odlný+ʷ1/%fdʙ%~)]M(+sx`Suǚ {Qra|G0%,M[ҍjS52_e@&`r@\.G~S62rU*.\79VAW-,xC0?ДmS:G>+pЉ5~Rh$]cA$Bwz,UyP䡦W9څ/"!oX4ps "yXñZa gokU'^jڢFSHJOHZz'i`fPnشU[52;L#JaKQzҢ/ OXwSwO?hB|ZenS ,+050r v'3+J6\j€Ѳ&dAT㾈>F;o[L|IEJ3xOH11빧H m# -*wߍK bmg nsI͡ˎ^w<12WjuRBȿzу OqF1z/kzbZ̾+čfKg4VU]c&ut$+JN2CSU[}ߡL/y)}8ƭONr+۵4KXQ$<>8~Q* 9I5sנ\XY-q tgi}'E,Bfb \pV2;Owk^Rpe]'VǚOWt fnLodiVLw7 X01Vap'"Jdۿ䐘Ko5X+[CN\$|TkBnhAV08hͿT7ly4 *\W@2j\n2޾'?F_/H*|Ky ͹=aZ+hGXI8:qD`i;G;e%}e@*8*Jg[2K9rTYi->m: I&@.[/͞="_Yܶ/ORjB'5 # (P>k)O\2ϯ[̒(uRlEYsZȊVxJa7}>ki%ps}P1sXu?@bw9'S+3(OMLa&Eblfr; Aq^vݺgiո菏WP|vI p?^ wv\:! `FvIt21WirSHgN~+^6^af\xv,ln_?hjFJZ2;v côY1}a5\ tHp?YPViX[;{"/7ZʻphP11?Me{Eo,pcX1[qibc'-qT 﨨p"+j7 Bfxv=Ⴀܿ sX-yWnD W;Zu|1-,sJܞgv/)Y]*~|5"f4d(NI~fb;ZϮt2 )3}MzJ`4-.:cU<)Sapw0H4 OO`\} .ܹ>Yuζj;w/sAxeA.]O/PY{T=WNey1S2{7j  ^.ؒWY{tȪFehߦn[Ֆ՗d\ݹ!OX~!+ _X3&|ɧ﷢g{qƅIg& [XQd3UM\zlNvt40th8"U!m@J9O%1']{*,;ېdZֆ*?OgQo0n;_)NfvFyjDFA+tբCFB¼pJE endstream endobj 116 0 obj << /Length1 1878 /Length2 26625 /Length3 0 /Length 27729 /Filter /FlateDecode >> stream xڴ{eP]- ]KN!X v;̼35ougOS49*1PDW5sff1U4ttXEF K{;1# (ݝ,LLpI]i 0AFj@f_@Dolڙ[]D<,-@b[ cdbmlm 0303ޅ*{;1 `oPjUUT*J U]QU5uI:8ATWU{ߜ835@'g?i6.* ȁ͍`d`W}j7{'k1.vt,gcr&@;g' (mߩ|wzU;?1map#_rJJr[#K;drq%{M)Q  '?UNJEWkc;fd7ns&vΖ D,mwgv%Uώ^;;/?x\Lfn6{ۙھW >1w@N80Iǻ2s :&5tx9;̌l>f78/g#W ?3'CWti;3{?S@ROhǨ`zo ?_$\lllT5OX:KXM,A&riۙ,-~?,c*6ҽ NrZbbw2373s<@:`gzw8|fNpv(Gb0 qs&BLLFӿAf#ߐojV owc.Ϳ!{&L|__? Vs5?LfN῰*ii 7y#{3 =wg{畞ݕ?|Mq 5xO4@E{`R_2HrnXZ2W2qrwI3)I&icڼn$UL2U3G`P̔_/$>.flo%nza|CN!-k]σt+gnpAs_F_=bF b@9tG &uhĿ-;aF†%/F簔,OČZ٧cuQ(b~.kkVYD&Q#g;]߲׍srH#GV# Nʜ չx KHܖx_-1=~PDKe!iv>A߯hZnL[L-G-6 ڏ`ThxUaO|V)L|9O!5:}`(W/iDQجBQ %Ѻk*ә^;u<'dg\H ^9mpNsV/GIV]F! 2s}-@ p3p\n @Ѩxq'ዛ=/9]z-sYE]vAuY"=~428)OyD 3m(jD!̔NbJEj(liRTŏ!dz[2r<Epa'ȾEڷGf&3FR5)?!(_b*Xy }ໃb-Ivx@v" TCu"h޻o@u/wѠc|N9!jEd}p.zXvA}Dfdm(E(d;q9ߟ)dnkGl6"Ns0=`uz0t]DÏo4ji_r]h,ƐE} (q;Ɉfu#mwQ D~ȴ&VJ q*5}un$E5Bm,)|xk- vY:Qz禢Ҿlv.!2{/lj>x#4uD@jTNh8K4?3+.)ݤX9ΖdRxJ.XrZ.6O--) TAZjCvƥұS,rb_Ǐ}X:~`Slb]vI dN4WxZuc˰˘[^.q仉GG>k1giYf'(J2#PJldmڬUb%! 'M!DX} 5Y:EI0:`/dz8]TF'޵M&s&ʿ|mAJRcٳ¬s~TU@Yn,dΜNq /z1͚Tx{- *nh}QO+qkU۱S FRA]n ^cKݸ. y5kEJx="ǩBeѯ#[WT,OKgì`aK,i_$7)ƯR]>,UZ5L|r?&w8$tKԒ&9&&4 L;q}SGԧlFՉs7&%PL#zM Vi u椞MNW0/!`pM *|ҫ&uf9r@̘h:lѭ +3䒦yDe% q0*='4~ah#ΨjEݽ~%\YUMnݙoKx4on5֐CDoΜܱaVoPw[9dKN{\dE>ZvJuYt.G!4y6nDZ6e&~tv/:Ʉ A~|6lmwP$I0KcЅF[Rtt!!rMlM =tWMڒcɋX \Y{֟|x&ku-@刽w$`O,FoSqA )'Yz7PԌ7P_ (&Ui})c?2u[iVOYY+?.K} hE\Xzk?橷zÆ_))q򄳣? ӣ Ch㱢{C󳗔!/ 4t=JJʛ7)F/u-NΜ\s*bdH5[Z)VChu8 #;<ޱ3 o%nz@]/v VTW\rS#-$4E F =_$Ia꾪ODC,/7>&ULMo>>ڽfCH"W!힎c&㸳j>o!I,de(G-?4&UuO>1Z?6ME[aDs3*088ŞWM?tNA$ f#}Kv᧻(} L_9 [~v>+e~-jAJARUn,)X1OT415u0XBӓ]E$C!x08sVX? E 8jjplO!nk'Wd+k񈄿ߊ'߿RX„_8DeLN~Gja 1'?zꈠoi~_COڛMclV2]mhx>]†ZJ ǚhɷ%n|eQ2>];es~T+!1ו<RIF3SSc!V ʥ_@+Ų?I,BT>TR[BeFUFRSODecy;TtA[^Ƅz)u%O;&S07:w~EWι 6:zU ky 36O, .N'aDҶRs5 ̝cm.i.u;J.LK+Ȕ^y`>X.ǡhlIy㌔]@F62cSg+o!SE D]όW(O $:M,/"P?tlSA[U<5fL?Ckf9-]g/af3gjts1>/aomrdzpO)R{Cw?sZ/}~o1m^ 4Zt -hZ]7^}$#KD z|Od_4HڒmZا!ޙtpDNFAkKڦOcEQRKK7E+! |"Mh)ܷ@YZR58)܌Qä.ƈȳYjtOxo 92?P_8u'X0u d>of`Q/4m-NLh9C6$ݸqNx<RG2S8W?' 'b tj$ؼb/̤yO^BQWAJ+lY0f?PoqWcy1E=xP6+qaL.i|J Fӭwp* «X(냌yՊ(irlH42*iڋH8`tui!_'quNvkͷZ06 ۊyT{k;a*Op|rzx y-wu+mBvivE|&<4c<>W}pvK+S*TK욫2t@vZ(}Xnۑg?x8:q]]r 8K\xcpRW Uڹ_8Ša"u|,8ZE!6S㎾K.C$'o!K[cUarU./x 0-rGի'S F"U +y6;"FFJer1=WAt5A璝b$֥Ee؋a&(rBX/ QwP=r!+y!9AŠOM8=RYѲ`Cmp 2CYUuNxh3jzWxgDeYǃ19*X+GHD#il0~_I_ح 7I5ڙ/{%bv/Oo54G_0y!!q~*~Dǒf藯K7++=ebۥ?o*4SW >;qpm Q9I0F;:MBLAp_}{ h ؋TG#_+.k˱{Y~}"0DƤvwE&'W0-7ӡkEv#_?DWJvA]zX}s|[Hy {>@UaߔԀxnqv/ZQKG| DtƎ}^Ԡk;_A;Y-E_z?yh*zd U}V%E' f=c'8R^t笺#3jb٤X/Bmg#:b?9 kr}^aDZZ/K }eQ-ФyhO`Hqb>&AuaUÔdPg U&G ]zG:=As G5CD{qvmbSyl(TUՐO ?4* 5xE,b'/p ")xhMY3x?#R-YmқLuVeQGNG@KCk8T0k\EڭLqF \+FAIZdu)I,QC2J" 7XSdk6s:sA*YtVr1u^ЮD Y襰I0t6O,[ɅZ._c@J27XEhԄeGB(ܓAS0,?@A5O܋f Hpu~@%v)EF"0jX^֔*L|}hISpXhZut%υ@G ‰ggIS^20!!dYUZݢqżᦰkeS '˗8`7+K+xtLFh:k+Y==MJc\hYg5HOEuSܔu9+Q[#5bЊXTe|ie x. 9Z^UP n৳h}I 8+CvxjS#M@7vnÍ(7$Xhuj>XcK*Z:YMrS#9̶-:aEKm:CRb\i*-k+AeC$ɵrߊ( VyT{ӬLQ[,Xm<4HB4|_9D Ο\X62Z^:yNY%{Iwzڱ·Ą-pɅ\^HuRϊy˥ƕv=ҵf$| ,E; x+L 8Gw̯Pˆo.17(4i.O# ^KHzjjPT2 a>04mN nZc4 F|Lb`|)2}Mu6*xJ:TVD C[={KyҩZȨޞDs')=W45à_]r֜x<=1O`~]Cnnϙκvϼ%"TG S6Yd ~EJ7@Ef+4/u/J(@ǹ6k^2 :jI>Rp`4ļ&~@p/PGG+F_T.S8ZмA%y-4qx6.=YA[|96P""Vr.qCI Jۋw:\Rf߽aX3"έ]T5V};LG[mɣ'XO$z:yNmƬSj>)yiz+zW=eD4OX?aO9'x x+刺d,4hiн s=+Aƅ͛qsE]ܨjÄ-AGiջ /AJ@olb#DZ0رjڋًgJ׶g"hOJCS\H Mv\NV=V9ql507쓂%" j%^_6 d]6r5ا .W\pn\%F-rU2~ɿ)q_U0w* /%06#:*R=qG_WՒa뇅 ka?d}l$ynw2ͨ\ղDk/U9+څ`~mUKWƥ ;c߿+OFnŸV&gDScx)IJư$~a} q[5V{E!?s_i0Mk#8%/`dNXeu<\4'R~y|/C. +u`P-ď5/{q5WR\a߈rg5!IGڝR;muCl{{NNF5p@$ IC ㏔yM$a' Y}K@߁fCQj6ӽO j9eFߊOH$َ~#M%e#]BDҬUe Z$;>cr=ƊTG{~[; K>5K(I>hc{| c97[T{p#'UKc ݃h-3(uU2dl [)nD],~tS"(mU@d+]$궕+s-,` 1΅!Uq'/z*l0NZoco(.y9D |C-Leշ3VdEpX1wToQߧ;7r'|:gxD$@CD?"{ūz؟fˊ#פp(6@g1yQe]J+P*\p4zOrKNNQK⹯V ;E.QB88 >\*0Wo- cճySC$W=5Cc a,67~1f\-XJĶ=6YTdmp,J 69S\_RU-ºZA25m|D=HM̟] >3~4,=di8+2` +6UZm qiB4 % ^v?">+ʐPC6unO/;o.&OoqG|[j*x^i9#A\Kj"gRw_}G<ϕ2&_Y\2c `I6ӎWE NSL)q4{)e׀uo7CGihĴV}!D1 d B/[Y;fj˽h@e֌5t]H)7Ic|ݯ6ja*ƲCN ޒ gIY!J`5gŝrZ#B5npxz>ɐl=m-ײǭRDjczSF WmD|i|PFC&#Vr`cꗻJ|ZCӹGM(K羒jZg-VKvEE|3x1C{G\xоÆyJձ=gSU!s" -؋q*gpy5UWe ?۴:[ i[n _t}6ua ~2IE ܍_'CT(9fw9PPi&UAsD}uM](.i^6Zbz\0^d \{<;Ly :_ %͉KXM~mS+y= Cf[]ICב٠Iy3z(v߹}R)»/ʑ޷UXn@DuRulƚlE ^?)GƂZ eNm%fn{r {F Yb]p7/~6Ed@`(ř^nXEsOI|Dz8ɱ٢xx#37H~&miV&dkkdu2"莛l_6<^Ρc_ |T.nD G٦_UʀeΖs>s}vG$:;ʴWCvFI9FszcsI;?{uA֣ a;.,+Yy !gst;NAOq?Xx/ۡ]z)zUN-Õ=^9$`.VUY6Vll#!ãԝ[MSE=5?KRWz@vmN.%8ӱ򳢕;g''=WiDf)>NQH9BJ֠ԛ/9Gqުk~C J^ 425#1Z{L6 3‡e Aƫ߸[`}hhdmlK 0JiRZأS1(Q E݂ Si$F=n] HG kb6eɹRuwS8wmP#G aA|7t p%ߟB.ngat"."2;2r?cKci?uwv%6k&e%u8-)рb#59 6[7kPJkBs=rL&}sOH8tY|eZ  g(PuىbéSP )RT*QE6I9~rdd۰qu}ޜUBVH `=\6T|:i(͖dK%)fۥ'?`_PEKb$'͊W7G2ᇚ(Tuk1QD\|=-kas31hw>y[]b6!Sݢu*x.24fKG 4tas'Wi^wVE"6NsjW;mc22-l4:6$q{# K!#Ssq9 .M; U Wle|ӓ_1&}bn"ĢAv!r6T.f}Ĥ6pUa t nTVq7/k)kSȚ$Af`0sYkHST5v P^q/wƅV:^{kRe,9xESE@\Εt1: m" {Ru*c\-Pmz ۧЦ>*8,G6\+Ie>q,%ten"+w/' + SulPB&)0_7,yÀUK)Im˾?+N\ +u?jY,]=nQO,C  Y+: 1#|9L5_|#|֬:?):С0R!6`tb93Q.~Y8&A`[?1< :uW@s7ן%3fv3&r4GU?'aw{ϣ̌1H"ꖪ+mY/S[x@.< ƔO pb&ٹ^8f}IbQN.z@0H9՜ێ;BxFOYcA`E>w4چ0^r yC+*,|5g꯬xi~UOnl Q^ ^0.99`X;U(drP$^@p0%F/Qc:mK1J6lZc[ vā4ȕLmRdD@ygLdd@AXnE <<~7BzaB*;MlgX@[HX]?pHl,01TU bu`aj"H]A5"kY00]QKoX{9 qP=8. Hu|yĿµ_j$(Q+J墅 7 ocqs ;e&-fBj],*Pf!(}.J>g$<üO$)Mq;n6"gP Hx?A9Qۋ|vP1;6VEq :нqsQI7_wjvAo}CQ3:$pu,0~[ $m5aEFqIڲ2kh:K?9n?U0.Kx6>?Xevm۠g>\{IRM2Cœib)Kb(9;m 'wlV%oNadl P-(GYUO ݺ2;H}n̡:GFxķsUp DA"Q~ss_Cք7O?+I P~֏X2ֶo3Hg"5D`Xdl_ -zdϙzs[M>"z,R-,цܳzHŜzmʶСwM2I{nՍq>LMͭLv,>\,fyn`Ƣp?v'AQ5F _@fVG7^㞘$Y7f5ElzGv\ʺ]FOMᗶDsu,QkM8S QݸϮ %Z:sg오ʏL!Aʔ )]0P*h>>mTtVSg3raKI#ħ]m`m䂓=yUwhQrߺyK#|[4(L)V1; wmA%Fbz7g9A_  ꎤY z N~+v ?k/GMBΗ oK؞"%٬&ΫiWrə}3~r(I3pH(\"zݡFN&CԽ"MZWrf Yy+z/Ҹ6-$rN e{%ii0|Ff[>\j5$S=Sߥy>A> N`)CO!rhXn|bC?AcL=$>z!\ ILBp5vW[ZX)1 tQ mIl݃jR Z4Ud,Xn.`܁,)H*ݔLuIUF OpzRUbH/;!MմtnP,aJ؋$L늰eɤ@ vS Zj_LHuS ܂{އyA;sNh&4s<;a Yuo# h9e$gw_A]`2}7\41n^kJtAl.g1$~/s157^䗗Z>3d} 4l0i٨o;?p^rYF,`]!Yؽ >Q|MB85d2wq S0ּgV@t=K1:!^c <EB 2J>xPN̨dSڲ^Xlc=&%('VpUmuhS=8 '5XИ;l)Z45q1D?z[H *59 L#yQ _,("|ܛ S :!.E/iJUA;hL$ΰoV}Inܾd:J s^ghcTU.La/䫪f7然-jFں\Z$f`8_slݏ|U?ѯbgSb|Y?c`/ʠMXg@i(q?xJFGޘ@B&\fa-5^U$/xU=b'2QzcHڎ`aTQ'+1Li#Ql >AX|^ G=cTb,`cχ6fN͈^Wŋ_TsDvÂ?v0}TO*wW G^m+|`DϗXs  Oj&Cfl)e:²͐,ߊ"^<5{K/!ʷCuSF!7$A)Va#&~zx(CfW# _Wo.8+V~9Crp"Blj#,\BWKvB9KS(SG12ۇxtM9@+ J}vFF_G?wZHIQdױ,zldo$\oWm/: nEd䉏TQ_bXR+Y._X ضm۶m۶m۝c7:mۙYf/ԮΩʟL|D`g:mSJ0TU9_yGh?YaY0x,$@j:N"|:Y{čU;xoL\Jm:i7MUo\9eݽw$ .W´Ҩ[0 'P3J!lc\$b馺^Pzbz'^,w1aq&6a1qtC;*|8rP+zGA)ez Yi-mBdA4}:HZz׊V٢DQ ,1l1ϓfb{ح(b6PsQC/ǵ.ʹ3/<6 9cVynsg}|H.r1w6.XYi}5f-†d%g=N=HWIϦ^G$2D/TyE)D##0J 1ە#LͤZrFKqlpIUq욦d\id ba͜ X !6J0 ;Ri>}E.Q](HMzE"J6-S ]05)ے(KԛmucR20_C+0@Il!8[C\o1pR}sߧO@[qpVp ,k ѽgGZmq?KqߒPXag_u[O_PpًY-00!"In5dZ0$ɼWm;'!BmsR_}'l'R/暡'R]UN0XjK<?x%I(#)Iϊf4 [5;âJ]#jwQ"(]T]3Z>J MĜɖS&[I,QegSw gh}>]33(H>VpX4#XQ,iKh1$ft@*fW,2FKVbT0}4[' uڱcp'ς*CZ9ٌ,j7͔ xd -OV8'4-}goX Uj56c{_z2`=xf˛"bsrPkߠ AEfVQX$%ԁ#yF6$I:7k%C.T8x Ͼ- FiO%SMqVզ:TeGrl(Ì|>&'$GkbvD38hJ{>S S–#IE[է:ca4n=D@R2s =SET /T(p(7sk;xG50i¸dz'I/2Obglc Lj`@|CW#҂TǗ%|d]t?$d".cu-භM]9yB*b3KBms [juB!թݺf߅gl`}PT?IsYK/~݃m5f[JA±>1nwX[U~; /HhNX&L6عSdžkuzBd:U,Қe3.?y>I_L> W'ƒB44qrWg,RGjg҈@4JS8m[(-yA .+xpmR;sNyBh{Gqw+RYId2A3*dKٍ#ui2ÀwO\$V?L@!۸<I 0xư>`8nuǻ|{tjta}ׂƭp'}:__*6=VJ:᫰O `x(0W~R ַ<UQk0KgӰ4ޝ(N_O7QIeà)!̔)~hR-Er7re``=XVqCM V$,)8zo_UZ_ie߃39 h'&J ̌}-wUKF<4 VlWz DMr,?^nߟ+,TqU)էauxRbp3r٘# `v2PL CO-fw SҍG 9=naTb(F=)a87ǧ"IK-cs_y.j\Q.Q'FΕ gK1햫8JVe![62S)yJ0f%-#rjaKdS!yz/4'hS|`%~sU'Z+ZYܳ10ly\O g1}WdʙHIo y>%Ru)@f@~Ư0< e?)@?"x1T+#֩D$ؠ?EvJ?ڨQ}<8;xxAۭH1@C ^磒t;/ZN~N-VfSö@& y0䞲ǻ2_f=OŝIžDߟ{%Hw}%5wS͂L~2 qZ}R<`\EIϼX}ԅ[tk 7ks"{A-6wFw+J7̚Sԛ6|>x*(&a(L0b3_^oheӑ-G_-sVaE/{th-[cԯ d `\x`?=FMI>q1uP`O:WO&=@51Io^͢^_ev w]-/bNMHMyՖ?kt:܁'e߅na,iYW, W[Mҕ'͞I`o j-h,58"4„VN:X:Ƽ/3&K+9:rH5!p55 @Ktb- !)U)Jc =JZfJ?iP9UB@~tgCX̸ov㷰uHNYv4|Пa~/*A<ǷtSpNDH<01$ǫ*\YȈy5b&B\u(C>P-UlH6֭rt=V kA\9s9?FX,_B߀h\<? fJk-m6^r# b^h >jҬϗ)>1wG3,~Z~.__2O R Xb)kRmZ\ESQl`ſ,P{s架yyIWr鰃/PeMFZvj6T /M$P#~4oYD[ݿx:?SY"y7h$"GgfD(;+f2n|?"Tu*_J/5ᎪOωWI|+n{oQG~o :bÚZ/Èյ!A7@mcʿyrOhK6ͩD-+.2~ΣxІSNra6$E`[H9m^_JլN\|Wӽ*ztnj<} '%1&Yϡft- 뷇<.}:Oh΅^k/w`2慫~~I)+@MO*)%r@WkRLOL u⿗ċs<ϵՊ=E|`ӡlgϻS%K䒯yq&QXbf)RǦ%6 V:؅k,X.3=0HsBBVY=A =D[#=‚L{x(^D+q@gP40i8|ϾBcІZqwIC'Id}sT}EfݤjW$t eGevFIb`'Eby52 F5W|ܒSuK p- a/* {-C\b 5͈K0'iًܰe&d ah>lb꜄Xcl4Zy~?19q$J{X|ه?4{Xb[T` b]0! l0뼪e}X`%c:IJ{`DتJt^ֵ1| *u~v#< rZIʚJԩ5AT"l5T.70EhykR[~Jꢩ v39I E^3mNTI{س&m߮ܣa墫޽g "CH_6GN5-Uo@ܾv[%Q| ɤ#}%pIk;j- !1 ^=)3y:KvAJ2؍%ӵ?W*EKt*S%+ix 7sr_= ht]wdgq̃rՈ;w-Ӆg`訥wYxyru: {Y%*eD[}Μfю }ޠ;ቧ޴h{DA1jv=4phTF47g][tLZmsl0 ,sbp z寈*[I\!`"L?Rв!bH*W58I U8C Cݼ쫯a \m=nE0.lHx6& ',ÆtnҹYlV{,J7VWOCEJfOOh!9(\ ̃}Ta[ѝ~6܏uߞ72[m/mG.,mc!BȮ<p$isޙnBXu[a|p0Ԇ7E@B1ut8Ծ)9 R Geq**ۇ>J33[~2Pg& 6zm7*0atCT rzӚ#>-qp˞F=g2%ctjP=(螃]M`4N3/ˆ[Xv+ٮ[&(UZrҖؗl.]|7xᎎ僶 H})Lo1stmZ$loO46C^P3c_6ʝ$1Ԥ\!Ɔ ma1rGC7u |&z%F̳nDu˩`uB͎jhmN  M@1^:'q_rI6LN^ru`vBbl"ZP!eu[h]j^, O @ucB0eR ߸cvr3 y cn5+ŇúʹwT͒[ ceo/ DT_Eo ҟ#DD5f2u7SԹk%.X:|9gC_ G㉍LvNd|nexta>!Tt, , vjnw/n2V%q$G hl.>#Vq]RM_ !1LJek} S2R%Օ5Va>FBET:PctNkr.p_염wsgѸVGIxC#ݕ^TK˻'c`s"JQXx> W~Hr{rz"eAٟ|1'heA?)d=Awor }G~7!.{Nu%, &e[\=P`w%Z9Ğ9)AE-ld.A0p^~R%'I@]ۀ7=iO2IQ(A/ /W1/rFBf!Uڪ`r.D?}u]iqUD)jN`hٱ!hf= WMSMMJX=3;4$ifK8yp`r<9#'j2<ƙ9(71C↤UpK#Y|׬#x0RMJ;yVu/3[ tH5{B7JյѿyA{2%Q7#p↝3%ΏƓ0Q'{]I\=荇C%Ԉ*2ֶv&H``jeÃ(1V؁V$q0yzeeIE]dp~t¤8bLZ"AKK8yl`pW|+ЊD )f Ul0s"&8A|( n]LN&5v8gETE䱐m*'ZWI ?2i >dCK41ه=lҸA 9 2*H"`~ P'Kѝf25<, cI`(X-%3@E_Sf~V8; dՌZ󛽫-O$!2(-9e .dY>h8LmW\LqV(^51i.(ҳRn@5SFL;$QeiYxX_eFzُCI2}ǯz8ɎT3"}ebr%2\a/ʮd5ѕX\=kntFYN@h1Ð6clDq_VP򆍺_k&»(=bXcSr)D WA6g\yMQG:-?"ӓ7: 8IjkdrD2(6}XtJ %~v9)r.߲n/.JtB}U-1:~&$3*Piz(:g#viZल16-mTGYJ_=։C0@] UMV=3fxb%QȸC3þM;<pX6N(yN6jbOHB [X,XxjrмώJ@؁z9| (Rd~w2@-]eE( ,dƙ+wLxAUbg}/WR X&Lc%5Hָ0PԚ7J? L~),jf]o۪ K uq+nLIʛPDWtGQ;ihmJ/&WV"tAF8/lazP&uFl~ ICut9Qi1iTX6ZTsy {-Y;y8Ƞm(h3m|]zd`G;`xlơսuN`X'74EroX]G1\`7n >}@X)ZUAH,BoaPk5ؗѬsI+xj2빣7kz k kv) F `RT#q7uϸeG~Y2]W4~(C6mSr2奙,Ump8nE253 d.kŭ=Pg!%#5[ dNƱ^PZ̕S Hb}OA =>(!KTbIN39S:z-}a<+$KۀpMKG-k)_灤$r:N!@\Ada#|ll3ާ ЕrpO`/קgI@,NQ~,O{>PE梅U ZR*fR J=SQk2^.#T{8t4pQJ Eoh.}l$ .U-0j5>1{He'gL 0?n1)8B]gB/'}5Hr8I7dad=[!|dZwb{+%]lD[&2#65Qzu EA4SJ9SiM^bTIw{B5~…(EFy"I Nw*pDlz2ࡖ-y0urE"Ք:n:maXEbƏl̞[ç&)N-ފy?5htJ3lQ3JDl?,E<3 ]Oo"mJf2Fi1yÛ?ǻ!xZת 5 61c1n;6 ,7aߨnu_欮k)Em32@R3(:93wYi);E#9oӘF2\4!n`߼cl8EoMxFC&-NDc%A[Aj/Al\UjF k.ہO{ RǸhlH5&!}g QU93[4A4fN: "f1bgĴ'ոPʬ?⌜_ r֤n뜂Eʗ~KmEӕ/Wxgd\Gd=+0VBr h!?+ ȨY@x}CCAڏ'Bw{"U)BQ4~8S!rtr3k mPtcXzWdI/>:clzn*%$ʳ6B1hԴb#i=be2ܛǛUfS G3N.]]GDS'0d>(ʭpfYѲctx9m+"?M/ ® w^"t|qR,ΜQ 6۾{;fCiFiĽ3 $1;pNa`)ˏ=dyXTwDX\~U 5Ne5 h \iSr]ct6+MAwf"y "YIy?d±Elr <~V-(dhʼnuHJt&_ Kyiߗدf8w:>P7tЮ}rk2i33v<ۊa:t- 1v}45GWV,ET T8/0SĸWl&j+gR8o@ qNOؐќ^F.i OgŨK!"I+]{ĄkL endstream endobj 118 0 obj << /Length1 1865 /Length2 20777 /Length3 0 /Length 21908 /Filter /FlateDecode >> stream xڴ{eT[6nšw-݋wR\}t{9|=ks++!#W410:21pe B6VF&:822a{c}Gs1 gg`b`#?F71#R/A@Cm 45S}غٛ9LK'o!:9@hڸ|J L`cP6V(**T䕨>+9a%eq(X Uߔ (#s0/njbocW-= #)_.6_q}V mnh t0$fN(㟘VL/_iyyi940twtr}<(&h vC_*M/B6gm+trp mG4[aǵa2bJʴ/?E lFNGm?X;)GmԖ@&@#?57rW9Ko0IW򰵱[9{<N^027th1+$7_Y|ʿFc>lVn#c8zYǏV3aKJVژo#}ks+5thxAz!fpWZF}%EE4Ĩ+و ḿ&V6G0<?m?\N^{?%qWbd` 7al" 3ˇ([8e_gE?"8wwom9bhocifnq}G{sW-!`?zdqeac2},#;gf5/>06v56[^1Hi .-*$;.>Վ%Cl_A^h#-,V' lђX9yk -㍋(*8J![ILu,Q2JP=lzbxGN&.o]˃t)clBBu]B]u|B\21*eӅYnf۶rN; y8_DWUk+s ncOt+^*6de0f0Re-N_}d/Uf2?jl^l:"q\ 瀅q =sq|ԨӼ ڋ H;>M{!;Drq(t( 8:'O!3R};qH%E1C!^AΝUmH1/84'j[ڽRh\Z~伪@94GiI?#o@2A>jk.]S0=OfXtyAr?. XGF̤AB?AG͛mM% vdjw]QTchk6iYb}w;2t,tc` ezNFnrRE*hp!Rٖ"q| !AΈuɷDפDOL TMs$6I_e0N:5RS7\xѝGRG{oAVy#ӿ+%)Þ?We2 &t-,0EcPMB0wC0.6K}HxO]s1bM؊3ibǫ=P?FWCy=@}gُB8qȯEcN \\QV# iMu5ii$fK|,؎s,bSCH ;@ųYURi-QWA(җϷ4zpG)Q(Fw9jb1hoAҸ5l_x=!a= X1`M9k?1J;&ŋ\4<$YjѥyKHX=P/:\H/8[ۢ2RuINsGܻ'Ip'&hwM2E }(AJ/osEpƭٙ|]ci6~A+/:'uT%\i,t\WmjnK\ٴQ$S}a7{"HgA2Kubx+@mn wΊQaGe4ZL5 *j>6)lG҈BcsuXC_To Nd<˒r!+³o(|s\iڰHv6Ony60\@r)eY 䰸by+;RuWe3&'N& qVmAZ6ڂNsnun3y2@V}B ܉9&_o FFLSHi `caoS `[Lч~=B=F?U#a PӢɃzaY`߬KL+vON2LX,,MBߖXTآ'NvnIziaG@$¢GDL ɏ"V B[[iKHCxGU߼q-i[0|Ogu#Uea>J+s&$ u0sgߦ:@67v`r`5žKw|C E: nֶ1*_'OSV ASCX?]lun^65}&)/ ĉZov6!/d#Cm *b#y$:\Rfɗ{&UgRm's9VC:9ş̩]-TAju{&sTC&;ӈoibD;R.vȕⷘrDʮL. S#Ui*O?} 򵩺d#dXqjdp2{ %Ey ,g>VfX['+ v._QT (~ObEzE褉ǂKP%BenN>E1-]VAhLΠٻhTOܗ/He m*Ȓ?P%ꋂX ϻ/w'Ƒ NEu҂#D0~Փd} `B>5iX-R|x:*EvQnP.csP8 ҉5j^*L߁I~j!P] aGhE1hL*El1Y!XBE9^I/~Kb/;aOo-D0!cBe0+G_h&:5ծR/¸4Co".R"̈<zg,O CevuuTH7C<@Cjyd2r]pUxg]BtIIp_p-伤0[bM|N&Ee( Hky΋=o..ٲ勫Sңm 2֦& \fFC352ٛe Fĕ 608gCRz?^w*GYu5~dIru>o4ˊV(8xN= (M(,Q%S֯l׼ GIjD$& i8W YvULkj%/[};U[ɐ ! D2[\"]v@4lAJ'S)0UJ0]!ƎD[ҰI vZu>O1gVU-yuTǢ^+g}Ynd[3>ji!$w&0[:tZT3m5 OU/;Oљ%m&E;W6{J2n7^xTp/Ugq`Ðߩ#R#i=\hbv/n`5:aYkęKHo6e 6z㥩^4Y4GlJc<0rYN57YM)<[l"eAI#Wɦ!:{dǃ"ylS{OK'˴BJfg`%! Q9 8~CdUV{Ɛy.9HgL {f@NbXRT2/ohT lAUwߗ5^L? ­WaE=:V:ld0};U%}]X˥9LheFÌAY3{Hn''I$y.v93B&'kP XoM+i&.:C^ΨCL}1Vd7mF)'I"XTA,]Jrx7EDKə ]H(5U.3Lk\M?A1*FC"($eFfU񊞠6`\#Lv0Cn\ݠ^5iN?HF{3HptW> @EirnIed&#n ѿC#}Q(^Dҥ`n[L4}V>xR0W?{{כPi?R>SMjsԾDH[9hUy CX 95WNEeZ{729< *baN0q$x[wLKu4w*\(w&ew㢃z9[@fl[K)1g67-Ku6ū6eD>h'x#88,: tlf*1lЖYy%Lgp"pׅ"}<;)@!>vMlq,\rs Us}jdN_㽹.m ĺ6gȥQ9S;Yg᪍B+< /f)FJX># [w3P1*]cOn@U9ԝh_ ӤgtAj~,Ѝ2>[LBϟ`l!&sVI_P$&~XItfIֽQw t7$^\B2 C}/.Os~pbQ{ ۘaFs/ { Y^Uf&ht&i_5klup}t` /a\q)< DF~g#[j՜h4υmaUU>ttԫ P# xw0.4 }^sQ\j0iٲOʕT^E1Y ] 3/gKU/[Q\2u1nz+Q[fVMKE'bz ȕY<~ά*OOuah+".h[Ew^!ևs[2}|Z!^gr\hL*-D p8Ue3CPwѐhk$35ݧ $+4[ @FKǀ}CM# ~Afk!A-HcW&>sD)[mt}g, 9or 8=v V0J@շw qq<ŰRcx,;x6rxah\Ÿ1m #t&h=¨;l .EKҼMwzЏt9q==.kW/X#~šu;hV\QG ,P ,F0&) oPZ^K 9-24UVH(_ 63C쫕;œ[+{!wb}+p3R'_KQ鼜s]D 9A`Lb} pTf{Ϋ~ySidҙӝJYuH0 DJDw( ˈS779}?2$]) LT<)cCs0 !QVC) H:' K)=,C"tKn̉DVrAgϧ%&e\4Z2|D#sLْ=$ 5@?Dv>hd C ˃փ]A6eo}q/q\ɇp Ec^׍i&/J",kmX+}Y̰h=xrN^nz 7"+1 z=iO0w%e2)^\9;zI%;vF Qp5pjJGmǻ#F:DK={B˻_:'ߋxtd%?B-:BoC俏pO@}ou}#Y%a&wɘ^瑜թP1߰̊P}p%ću4̪cRGmY8~-h^}pft{xɉ>Ɋ>I_gS&.IodBXD 3IX8Tݢz/O%+T:+|m]V*3d!Abm@Dq|\sbO)dȥ!?'.{nq ucg)"~ ,6_^G"f~exR|JZ]9 =ďT ֒ir~ΎkqPy8&b1zCfBٜ~K5AJMf3+ՍTr +GU9Ibu*MYX1(IkwOsɱ!MxO~ ^]^a-gsFxi^+)ԬO^:Ό村Sr[7D爹I.һ@G: JF ;M' zil̊OЦx h%{coR0oIC2(O֗62xY2IXɳe0:7+ hp21+}o{B]W2nO ʦy{חc}=s%<Øܐ)2y^qcg|S.WM Y+0 HUX=6xKT$[9bSexֿY=^E&x_ʛ2V!İ'!ګMOi Á-@vM']ӋHm~lM #[Uܕe|Q˲8*8IZ6 p3{\@~8zl eib`b|˻ o8NHk[$lF JSpi mptxCC} iS>!3 uC9)YM7DZ ,ՃdH+nH7]$y<ԸMO6"ߙ#~b5eaV~%)M&cd3v_3{4s_O Ib ux(y @ ԕoIwr G_ۓ`zƷ9 ItJƞHoOcAj}A{ԛr L QYh\#'R l)'&pMoV#x?# 7vįn{ȓu;H0K8''Ġm1B^IƻTuR+0nhLP_Z Pɕ@!+w5g7rK1ڤW'Tüަך DPԺR|zэ*{82ڕ ~Z@OUT8)뷃G)}`.hmmʷ6DHBF7*. <1={q>eɍPe2,1jId$"Ujݿ3?ʏw=,+ 4ak9^z!0,):F}I @sdʢY5߸W<1$Lý'@V*C|p%81E0\| |fP%TsqOG3! dmrc vICNя"3z4!.s_ybY Khuyw /$בxJ56zltғ|&g}x¦#MzԮTxG5PN\m9{}}Fabd6HLᒛ"K>e"89HY OmՃ4i.VЮkN0 ^FBa;.IgYPEKTWTRݐw<'=2QJްl<TV/Suhf.L(}^MXgJf2_DqGfjcvɹp^MNsJe; Bϸ“n8s5 DSj{4Q)0#MėK!%Uew)fs闭״N Bi֌ LsH_ T *8G}x-41aVB9gY\LrВjɎ q1'l Nw .}A&ctF i/|bgY0'3,_mugGS햫 mIaekK0LbWðl|Pú;P]M繄s tթZpvt6\4jG3Q4>zLcdI8`GhW1پ8yw%ǜhj|Džd((r,IP烺0c!.BQYDݳ5鄳I匛_|EԷ[N:Z3bs>ͮR"a~-Qq7o+^o]֚zGGY_P3F 0~qrPFzto0)&a~9<+ZjME<:!Ek=cx}:fz{EMo܀X11NE |{'%D5󸈼vsk`^?;23IrfE?L ~ 2 t8DvW-a%IM9{H9BHFظ]f鐃IN].mbT&, qTC6*g;k4Pגkҏ2K'ĪHQ?=|ˌXl7n yJ@M3/&[!fR%+Drr.~KHK~F \LȘOR_.ܾkAFz Q#U'ͽɷ} t%ku<Ҿq[]i AiqDN ;NsaO9X ozNgg&MHb 1hr(|O{e/71e-جXV,|R:3૜.VK΢@7Z˅M1:0ĥT~ο# [)mF9o 5Ͻ֥99«lBb](hY+c3ߩvVEb )A<cC  ޥ"oށk6$7lz/Xdw9S͛|H^{W*8z"')\$AFl/^+B,}nvEɺj7 ,`ur9)<>ؼTˢv)'6yNJҚ ~Gy2AO8rER*)[4S /$ D#:g`a@a ˙>6jߔ(FZx z=e*=s#Tf}2V އ z'䫡{x,k!-D -61iM_+TÞu\޾-%'(_KBάj6as,ET?s+7k xDn^S2z(dWQ\0_iG=-+HV;o 2Z'qkҚA7Z|@Wd=$A7_[g+ڃ%ab|Pa՟#XHJnDD.kA;yR}L!#+@fI'KŠeh޿`bڙMRTXj86$4%wZ;s+/YgU7rm8H6nWlgj,x]8OhORUv= 9s\9r{DDiu0h[8W/ .vb̧^gMK6H꫐}wER#:P@(4>\%M&.9Skrv! nG)KC!V0wzJЋf}s!q wg 0˭ -ʰJ lLl}ݑmӞgGgMpzFJ!LW.|()>%*v Čn9${>elE8bŅE_v czNdLY9sC E?R>Bt!^^ w0RA|ȀB@5:ZߍXUKSо; WNTsN'k:]VY6KG@ *65aj"Ľbx'b#Z,*"r35x}q6bdf 5g 䤷>̌G4ݿfMLWCgeз+ҹ9fͦv25jqclpdQTD)Yec\žacX̖e3(e qR`"vB%tp|~zrυƵ\#ȞD)4E|X0Qt4NJ}X^lvߌVI]6Gڧ}yY/P2|vSɌ]8(  ɞ[D㱺p %d-Z`p?E5\:_[Y9FRK JgG‡>yIO G̱f 6:ßl{;$k8sԁsr`" "Ja;*:1{.GȐ#xcӄ12&>3ӟ|nAV=[%W ,)Qp PAOWg1 ZM'EFw%Al )]LCȆ+I1[EgT%Y(h m /_Ju$<|3i-o0\zCtm Մҩņnh@Ei7O'/}>{r*"4JupG׆Wu mo^-R$ڌi \֚B]ئQ{^)r+{2dĭ# :E:n&`izS\Ѩi;ط( 5Je50!MQ9* i,2G{4j_p%@,B>Rڼ2*8c/ֿ+?ۚӮue%I胎jG{!m$N޶2-yd&t \W;B&;*節C/wwWO]i xx IGv&T٘IjA&5-9(8?\=<c~;^+A-/]nQwe*7їw`n0%|kKdѡ|g /e1mV @e&tww4HwHC!s%ݭ0P:{{0ss+EQ*_ xçT-Bb㾩qLQR0Nݻy=˭z1MݍҮ8G„x%9ƟbH8 w8v6ʚY)=(*>Tc^TT߅RWo-un0 ~FM8!ɤ!z]38O#4r>Т b] 4.V~: ¹y|= 3ltKt$O.e}0$} 5@[}T]p1pG=7?my/V.U\.f\ ݥNHm 8۝9Ieb2pF%diII)5x^ZM<*/r뷇-!F5Y9m NC)O#n N}^4Zxǫċa:Y) U?:U)"?Kw: G`(7%m%҇DgNظIHG޲wM< *}g Nk,yfý)ܷg_0+% T)rd޸ נ[Ƹ5!X]c }"R#}DӊmR5heZO:SKE] @1J3 jI̓_5Q(zRD.U,TukՅ90DX+4FHi_3b ɓpeYKWXێNu`GoU,st.manʄF9h"b㓃R.oxPpf}8{cwŻg:4o!g /`g.JxR?xƥlrSYR%40=԰_w4;nLjD?F`>g=6td+&P{xؔz|L#XL[Gc;6(x៣.7wė&& ׉?Lzmi\H]6\WCE:ڌhȎQSӼ|@KiZ~Q^&^o77"˼uڂp8SgG3"S!Y'=jYfqGsQqj^~ny{_u"o!m=6D4K1RvKJ3y}-s^b\Ln-n[Sz-'W>L|7CE$`^Uxm6o(LPR&_\htFՎO?O6t 1@yA !|)̯Iӑ}'tVbَiM* t fvHDgp iM]/k!;z"Mob-7|:'b$3mG_z *E|W7 ȿ5$LOskO ':rNG:fZXh;BzOX(*'{\,&@n\(ժ1bSVjsH Ҳ_bBYW*aֆ)/!.ς| 5 LYu 3grٞ1X!c_e5\w)l2xERASlX{)e lؒ~ޝo ڐE%mČ׷/\ u,ۨ,u&9tIVǑ餶iKk5PF`bU`'Q:lՆZ!y>)bQ,.qP2Iӣҝ?y8T'Iu; Fn!UtcJZ 0~+=n&R^;핗M;mQyp>9bGo1b}H+|sZ Z~l_ !'+-UG13 ݊/J^)訩 wA U\B7;Vq%0w >4xZ +^ݒ ]O -~]|RYCN.o2/? d#ߴZŪxMCo3{Zߙ*r:.tKh#}y+|Ye#ը)B#O֎!.]My;qQJ+EcRaJ9\AҋﯬNs}`;Unͧ<`3ަnu # WhNdeLY2~=iZ{4 _Io4oBq/ eХ/D=DTO(92"dˎYȾ=="Z,Ubvɪз2S|^veKkPRěio?b妀ƷfmVDX 'X%Knql=#AH|G*($e)żWc0B8?H6vcAp !U=DCM9`~c̃Hx;'_76qD{̰}`ypЁFp=@B6k[t:AYđy\h]$]э3%{WM/{2s7'^][E7?u~M懘}^u ! WVqQM+e7@t> stream xڴuX[߶.KqP)KR\Zݵxos9'Ox11\EI $fbM\YYl@6  l a es  r+-f^ET 5GPqt3AV6 wqG'/+kLL#Lm=\mm9"hf kS;K%@TTSH)k999W-Ҍ Q% IH rxߊ𯻢$+5X Wi6.Zk0؉h :XOb x@4⽝`kп9I_JV;S{#c 4֦*(Mm SwC)`Y@@oV4] ||M=sL\Go\m\X؁VwlEd$5މ x |.+/坤U"m{.^m=|oo-ܜ5be!,3in7?l 4sXoH> ?[BbXؘ߉>,HDut ~UE}J- K$f%G;!h%fgdjϖ mZi]MCg*e P[euXj(w澟>6wIinrup7?J~߂* k1t0wqqrL]\LXީ a}gw`w?YYX̠ؿD6^ͿevyvYYC0 G+S;ЖKCYh Ҷx?)Ss?T-&`bg_X99|Ο'-~ 2GZYt4V'Y4]K < #5N/K.lȦ.vT3K tCkْR5BUdOяMRtP3([q9DKn)lvkb+)@sT1m & u֣d shyc+B?gRaLΩ {2DiC\W.+]RMMO $[cۡuӜN|ITHU,7T•~-Kul?B_ב}by -  0Fĸ= hۢO`9%k" ֛#{7|3A%Bظ<ڑxW `Za\~ 50q aCp4dO *ѯ=}soR!aa.JZA3Y]JA82" oÌ9v횟gJHH"syhÃ| s>ivhDhJBF!i:#5rQ7vP7p?A~Lq,[|d/cBDz`"ޓİr9@^FSL`.\4eD;iق `k_C`Rc}5ns,0A"GOǧt(X;/!{i%+uR_ݕ0[TCKLj~YUl?K!Qȡe8>ڵOZqg0pBC7bM1 <>u_R3 *33GfIvx_lpZU^R=K/.qiWG .ʻcZۈ?ߕ3PҪYg?IRd.m4JL;&brI1* 8&njfn)851aPl鼫U.2*9wL.@,A<!i7Jʹ,IHEV8Fv6 ``uϞϦ>h"'BI6O<^z0T9f5VW%ݔ 3 秔gsSQN`z"'/$A;&߭Hj47hnH4.eM삟Maa5n`$X>3|0TxU"w.*.H=)=d$@o-Ym7j}&ʂ9Z(]ߎ{XMULEoV6 ' ve 7~b<+i)7e8zhQ<*BN0;oy|*vsU?> fh n>at[S8sX>•x _3'?N.BO&ynnbfmeUIzJSea!EVVID7K|MoPE7Csu#3` (dbY/$ /ٕdΌ ^uF?>Sa7su !';5+FŏUTPɟ,tonv ɉT; !dcڔ6H¼_VX(Uqn)V;>W!8/)cc)::N`}aLxZ/8U/X}fk}5쌎(#u>"߯O<*"Lt7B{+*^bH:h\MwQJZArM0/1sVOj߭3X5Tuh(َCxm g,Q,aMKNڼU< SnztKZ#2<( %=?+Sxk"ڪLBg2WD=,%|j.dg[`ΥyMuIkJc BR|NtOֻ򧆒'A=OKla`0 >BT&=%,4$}[9fnOj91T,AfvV>t5~_,uJZ6Jj :#a ~3p-WV?3噜t;qxNSw+m*U[PٺV({ạו$uu_݉,)$+(e+ղ:W#+B۵ 2=m_cf1O894y!~ j"qx-B);^Hhv8xIkfJqШ{߭MiĬȬn~*J]ǣ}=v[W,%i0G6 !l[#|x\2iţsY!76}檁rp/KO;R;@㈏34Mqy=o(1e"j9c CW;pMl5eI5@("CocՕ`X/dM`⮟/&x@f[,%Ʒ?=a..81]fgHpeZ-lP}h^V!uI +(#o@y}n~|"rR 5t +zi<-I'`_v 5#Ц7\`+L_kVaIOh9mb[E'X(RO Aɞ%oI=f^aU_<@S!wۀ/qWyqMi/OV5s}%C۹P\{bAX0YbxJ;H {20eAŽ%0YEr۲t̓1AO0Lu}jI "4ft8Xe0.&_kdp2MPV3 w2sbWYT.zRίLe]1t!{EpNPz7H \.oK!$%̪y*U)$PӸڱ;}-F|/As|˯;\r"X蒩φ.HV J{̀(/t,G귎vfJۭ *J궽&39d q;b@oBٝwaMOqd<j|B щ]R~[|xE fHnMٍM\ΖG"bҳ m z #Gi i 6Dg,ei =cbZkeVPӞR=2v \1ظdS+hZ8|*:2\(JlLFG8:Ӯv#n"o?oP\SY)}}"u_u ܐHE'ϩKB} do5rWS1a9 \eܼ%N~R)kj2A@^x29,O݆G2gIDŽo7)c*{IJ[`\AG ܠ1Q|( 9Kj&Tñ"+ڒ8t XRp%$t24}|V09A8ϔX'xHi= raG(E#ٟ#1fDb=ϰcRsDPyNy*ڸsL#+o Ze4%L* g*`Wcs<%* r'<_a=1Q]&5u z^.a2l}v*l3.jfUIPVonkIQ2c5Ddz€@*v;E*?:"nɔs[eӅ[$˷ǣ~;:C-8&QEo=jKuEc\H%SUnBwӏS%CnvMg'/e֚jX XӦƇǖ܈ϔ•G9PrJ,xebTϧƧ xt^@q(d&#M[\˨~d='څgA1aqČ7<P3H2~[nf;D|8/\|A DΖ4y21$2f#9Vl)VoaJm:֫c&N< eqyz]wth6CsldpCW:)r.A05x{q]/ԕdO?dXinwkM 6Ç+&Ē4V%~r*|Gt'p2p$Gq0.So:!~RAb{)st ojHR໬۾Y &T: ~Z cyj = l~;C,iKȇ}PVXY~w  [Jnmq[_>nq.BC."dgn{MdFmeV{̃nYF|Ơ^ `Ivo)[gg dqe ECu[_ԕ~m m^9@<+]VG#o'ZPXRg!mj {H"u{B4Qi=sS!0U?_*RCc$ix|LwmFnOχuK}A$}ubc9,ۦp)عEf3/7M-z rt^(Zn_FhJygq넲$܆I~5WcYj {mpCL/7/C걭0O<5%Ȃ((p+GO$l%C1h6<2 ?h2%PRuAVC2`+!Һ/ /~/'_/>1KY[lW9tHTZ:;܈=ֱ-U8.MӀQb$ꍒ?(SE?Z.97ۍU=^rUi奧];hmw*BU[0DuzB;SDmF#Nɪ'^Ivړ})-/('̓T\&΄l`CKbQkUt3ćsy]Dњ L*I \|Dy "9S(  Ԗ XC}PZf|SEaUloJ3|=[3.l)]Ţ#1<2"1ȷ/d԰/?M O5~ Gr,yz!gnŝaQ<3! r8e>%eG%z.o;H}g^zGW 5/T0y~;<(^0QXI-wij\wB,ZiFNQ~Z*R}fEu>&m$RsVgŒDbmEU7ɗ5ؔb :6o)'Y2 *M#C_JG-*Emee1IqwӲ]ҊOwI-yewUp:O&w:hK^,m*ˎ!}ō)|0>eSG+xΝRrl? zH>ѽ+D',n׋O7}!Vڡ*7䧮Sa û Fʤ?K`y@|#7B276]󽫠d[ܬ-׽ Y 꽋E;zGh0c&~Kg5ssF,o$o8DzuyƋ;d⯛ijEg:s3!AY| 4@bg2ݾ\r1]j~tR4ݤZJ'(9*/YuٖJi eaq;ۃSV{"%Ұwddc804~.`tPUt|(LB*ԷƑ":]Kw8J$" HC' %<9!r]pmec(o)"c7 Z:FlXBgҨ1@=f.hX5$r٨lF,51U ZyLL=tӟIӉ.Qmn$'L('Rk`Fx%E*L2_5dhtÃgϐu|Nw\r[N XZULsH#hOalA+L  Ulާk*}5aY_9>XX5j'Q1r]G7jAZh]L/˷dl};; ǗMG+"z\Ώ~kշ:neJNwe6'w kMPɉq7RVPs0_nؾm{UkV tlgGUnoo6|cۛjCQ:BlX:ҾduhZŷTιJgdE9 \7]C#yT :n~5.u(h4 e:an&Dϡ"ۙЏoqire`)ahY[MwU/ui} rQR:du&4}: )u5ɂrkZ~fpOxlQ?,bY ;h0,Π;:$gHwɠP`X+>3 Lg_TA;#5|QSƦ:Hv2q_dVUk;u b4Z1?CIg}[ɭ]!qBBxr9ZЩU/ Zrcw Aˍ,:#4oj{izd`xCYjկ='+7Nbfّ@fT/듪͆ʍiQie ·M9ZsgDq$YS5ɘ G;}&b 7l <1LL1;a0jRۿOGM5QwKxޯvYkVgg,YO_X11az0Z Ndt ~~-4˥v;%/+ :s͊ō5za\ZC.*k"(|i7o ,O 43$ )ѧ̱a1o&E^=J$jJ^ebh.ݴBj6r8B}8]q+Vӏa-ۻZR{Έ^$j[&t8^/dCXx3n.q;wcb6` >&#J4y:b\Ȗe6Jyrjڐy `r2W .n E^+A)WPa`]N|s1(`"e[x õVv Lю9-RczBaĈ$ҷ1 ?^ u}~[thQvk,֔=\ MPu֧ xXIo5o}7_- lQ'ԟ'Ӻ֯HW2fP OTSƄw.9huO%U?>śf;*[շiU0WL9w^JB*on\(u^z/c03q9Yir2**ѽ\ΝN+aGg~ZYo;S\c%zIK97 bP!qguP-E:nM|MY,PgRa89_:ؗ$e?{9cdC3قi,Fyac)3]f( jvТhC_2Y(;|>/Pwn:1o(*D83zpNbI!9[LAvqa;Ta;軙R`N{xe [XE,&s=ڵt.QxR#a7-/8J^8HZK|GZTtlIWq7Tc*!9gORfH;lG(0$ѡrh7d?/b㭚 <=\ATF%Jך@tʹxFq/Va3ʐO/[i,ik4:dOm;2絽$V] R%Y m '{ykL1NXx_( KqZC6P$ $dXU^I[ä6JPάyҘ\ 2;< @h]b":4#:8r$@d^uMx͋[|`Ϣ/8jԤ=Mj]ڎ9|;.א*DF('Tbyb$T~(;;ơ Km6{?bf6 O|}·4)^ P2nVUQUm UDZ8Ympp/KE2m=* ' ّM  @=ČuZ8᳠ը|y=} UvC#y>PC×U9[˥ QO`;bk\dR|ݛħ[p\4jA SBu*\pfwaqE=kw/Pgkݵ, .hhHo#`%p9jNJO-G.I8r&S朩0 hؚL?i {d>!#Gޗ2r>nCۀLYT*(}zDMݾ}{bO=܅+?Hhai,Kҁ GVgQ4\)%>X5٥w{!uaOѓ ]\]E7Oú~7~=2 mny֫ye܉@Q2 @RL0}gsSr>^ YU:'Pr\D o7ߪ6^ g%8:B-ʁc#_ 𣍮(ōI]}|#NNe[Wٔ$nιneb't5W§LD)/#֗Թl*.We޴m4Ό{6ӛ(a&Ҿ23u%l5A‹]'hNhD\q^zʂWAR%i18\SKa#XZ}^£ ͺ q7e0gEn[TZy!Ϥ :ޣ|VWXbc }{šq9{j粗ZAMʮ]PwDD;'KpvGW)dC6į )ψ(~i?uƏF{zGKmξj2_^9P1b&D1ObX| m90*څ A#MZMEAOkl6r3TI)FT!kv, /v, +0OWsEɊ}<{ j$bs^kTHC2.>:bQ\ArA_:63Sי׭þY]nB@L}ƹR ;_Y}!@sj*vаivCBetj(%LGbѺ9Ahj+@cD/<,1=dWp2#d7h !BÌ+kpUέUc7EiMq Dជ"|㷓됯P 5^|[=@/l͖ S)QEe-?vnv6}B3rˑ".3V`f@AK{3d^Mj|{iփ N%ɄLYL)o Gi.m[t0q:"qT685 j )6 pr:+ g]nLS}U#wy:w!P.1b/c< M{bETDjʼn8 ad0s5HԳúgkPWIS2xp6D΃W (*a3J͎†+ˈZoeSD>ֈoJD=Qh6߼W5eY ٍJGY[B.%rYp>sbI"̢P^7e?zNW6m 9lMǡhHN[M;>mߏv[O$vv# È)Eeڇ/ ݣ ރ1WqKH~ׄ&-5EG :IQz隷&^C=b/T#ךh2%w/׫z饬!hQ8 NBGw[)H/9My53]R,޶}-q==Liܯu,|jE0*/%|KJzq%C-x}O{m8g Jedf_ ohS_Р(IL<Νϊ#ukq# gd9QqAzO#pЩ-l~œ.SxkBxew-K!Pn]È vW^^t@+O,啯)pP І(S( o2Vo %ړjbl 3`)]JV|O i V;+g阿~nqR@z( F OPFs.{ ;|h Geнк`D#L8|ط6*駜t ӵ$xs]eK[!00x\.}hPyy6oO I fV5Dya\/5:TdD@\v v9@PgtfQp:#PEe&B?l*H~<6GP=ELqO)߇i.* =i*48\TUkh@W;p z?oJA$Hx/A]7YV 0L굉D;~E>ڊY J!vi T;Y ) if<{Z71YYل-Q9t+@j¼bo;oux=(b*lY˺Qju2zHyt(fр*ucY";ö$N\ȓRu!xjX=d&Ƀ7V:\jW hGbdw1_)j{'0o%jEWCxBvҶGQb+iUԴWp;䙆#CF]uK[uw"6o:omB5%m,뵄8Xtj3S2*ɀN`RlQU" Z cziYW ff0\wuaD%y76о{_`J]πO ?iI8c DbB'K<2Ċ#Z+TЏs'>~q:@!%Y!\wM#ZTtw1?fs`Hg<}:U>#AT&Elwv1'rYݒ%L5@9H4~[ KOp{wb<buyEx@[pkzv;,"=|;OG ިzlZR/J.Fsş[p,}ba ]ófaGT<{JZLOMW]f P!AOv_)K] yj}AW6'@- B޿:y\^{t!HB\ #3h1QfvdD6~i@C([d=tIdPBv#b^s;py>ّaBa›8`p[ z؝CS[5*G;( fpl<*sJIbC 1[ pSb i&偟sdfI!wi* Z5b@%t !Kux+45YǍJ=ToJoK{_!"rEcVk7H Wj̚6M @͍g-@a7ߝ-M+М=ƢYvi9 4Jv9$ue\EoſwmFhYEr<{Gabt>h,[\:#&^?Ȗs<$bl"^Y=O&Z6sjtH3n/~Y; 4Ë"=1s_7%ØI(d4c]Q"/w-f3|h˟M6Fé u2"E{ؤPrPK >@CDа6T+q &LXNX!UӂLuBx$Ń|MHNhd_(?#6[2nrn-og#RX&faGfg,J[QxNYjH$NeN=F!.ҁ6pVFa"N$}xuw%O4p`"xFgH8$vs~QEWVA_Aԃ" Ťӫй?M\eLNԢk`Yu8p|Fq'Bi0Gvy7:Be8Ъ.,D6yQ\;mv/2T8a15UwR[H=Β{Z>k-}M) pyG09RQlnɼlJ&߂-Q{U)Vma6]JANQ~Sa*ؗi~t܀uX0,V|DɈEl|؆cE|Mϗ$ҹyqf[hCO':j<ݑRtbȲ`u^RaX'-ۢ iC17܀#;e/7Rw+"c]}#΂@9w6 j/{ 3jFW堈]st{6"3]ؔ xwpTEȨ^jWn]"x MKL7)V[)M*?=<5Sɦ @+.TG>6 endstream endobj 122 0 obj << /Length1 1608 /Length2 8564 /Length3 0 /Length 9384 /Filter /FlateDecode >> stream xڭwePі-ABpi4'A AkpHܩUߖ{sRCU (rq@Vnږ`V)'V\2P@hZiWo `gdffO ?#/'@v`ˇ@j=` r5  jy th[9* k ua]6?`I,n@k15O 8^ 7 }[;!uK{pqYC@PKU [Bv./6.Z{yB-A`7S :Yz~spwɀYBlnn/0/>{KWW'￧]f dˆRRFe(`['?6B0q;ylj.Зl> [_5ozZIe^^7 Z:M|$E 68Anr /jmtz_.q/Z#_b: kG 6E %T$5:Tb_ ))/+'?7qpyz8iZB! /K[?-[m%e'l(%֨.R}#2]}!߫ur\-CjƄg\:'٤~Ԍ9Xtf1R|NUV8G4ƚ!(794׮>㵼=8ۻm?C"aVؒ?2m~d-J @b+AAؖ$ ?1M^[%W#4uũ:R34Ԗ"*/bo Lt%EqX} A}CÕMFNנL$I58+L%ū֪&*򹠫efd,ZO6ZãR@'?-Ĕ<`*Ӛ\~%6u٬v|.|mw:Pt!} 18q˜ay9.|;5STIT3"\s..8sK' BGyư|<^-K D.f(WS8?,Fuq&xdӸ?6l0x}AzcIOc`H1 y-5J[RC'Y*tWgc,T8&S-ҩ %ÝoUԾats,Tԛ|_ ͻ ;l,S1p{pYqح`B[ecKR~O.h] !:(1Rc4d4IV;F"xX<5 !Ns^֗OxT_{9\]k]gn7&B>#9[4 M.׉ lChnSd/ :`% J z/ 𬙠4Q癘5l-'x>Ѩmv:7vS䕆=^CmcJXTɅ]SObJOWSZ΋a= IIޏ"ʞ*-!}\sr;$`wH4Yˆ5h? NDwQ0!'x=XTh3oFiY\neB(g9alzw8'ԨYr#R^<٪Z[,^Ё^B"❅I wPK S8P`ԜVmNh~onj&L3o[⯍Zչ')wgwda2o hg pflasf*Hc߼ɴ<+VC,ZHMz(t|sCQ j X(Τn2*Ocjpհsvw]y-?jzJc2N⤮&F[,!/qSN ?|hɲHT &uR`Vs1FQCx 2k9#ck3Yl 7隇s@O~-RsB+Dx AY['L(+!7^ߚU ZTJ#h,]Xj~>o4U} BɜC,aUa?eQԆ-TץI18`H2rGd1ٕEqdJVq5~'Q?+31QW^{#~!%OP X/rf61jv(mt@x#Z!D0ꊓMo8ȊzR|:e` ~loV'EtXD~O1&sܵ]i"`;o?^hIcYvB)FGmELpH80΋^BxVmlDр[MdGԃ KYBWHϙJ29 Nv] ?& ᶡDqQ+'7ग़I'2 Uݗ欸$ av-!`|"]0&oۘϪMd|}1Xxƀ^T07CXJђ=ZmMlw1o*|R~A`ZIn} )Pf| z cyץ׏j^|i=٪,\g;#֯ਉ⩨z%_ϟXVw0ݾZa^Ȑ/Q)אЬ2J.7ěc\  Xb E_#:BVm8"RfkmDn&DnLЁ)W,p4f}[oaZUN %oˉ1\eϨ#.?Ϫ>$Ok }XQS3c`q >b,I W!!5?OJ9Q^w%ή'Z.ud}mOd`A"7礑_ha| ZI5v;UV籭~:fu,Ig~mZ[!Iyn*eNVXX8|Ӵ , ]SJD[Q^ c$t $Ћ퇊|'cpuL Fĭ(&UaOAgLv`D]leȖ<q]kKugWc4Qᡃ2}`Q NsԤ%”-TKC؊ :`/9Kej.IWo 4@3893XT+. ae/7 +ˁ7mKQ$0N ۤMrFg [ˣ>sGϷMu^*OnkA}B"w$䬆ܟ/ &J8{脄%Mwb ԓ7[F|&~WBpA-6(,!,$`EʣzjfA!.^0~siC}ˠI ?>%ؓL}_2H~:zٹHJ6X`VwB_^"'Q271 ߽Pm;ԁg-:vV z게{TRl*L#2#NWR.E\WI%̎m9tzj69ؒ[%x,j{Ұ feǝ1՝_Og) WM:x誓8B[JU6,x-*Hy)`jsɯ3D,Z`n;]+_5ͅ@h:1 JSCKy-;$ :VM0Lٱp%4 fLe؈a@}EG]! ͨ-K +~p֭vIYX8QҴjʺ%ӑTT`ͼ1>eG2PL5ކ.9 }l.fR.mz"!7#1r#V/#6-1o='{:3Fn_Ts匪8@@mLM/F;; Pg'L7}WAi%(*J&{uλ7>;ᗌWC|'#TnR=+1mO &y*ߢziF5_sP5.r8|u*6nbH$m.GvX;Jr߱^Hj.tueN2OVz&/ݶc#ñ>21elge|2M?4ooup0&/ӀP l{*~/7-Jd6|xv<͟nX*KKp*'IJ;3 H~Ҳz־ t:pM OtLA759!Ɠ/qvl=8)bs4/s ş5EAr/8Ơ6r?on+6" *_pָt0t^=N 7]9+m{`΄!' QCSuʎkBzOp;.edüOFӱXtEo#ʪE++LѷP'45XL|$t,DnI/xj c@h3qxڐώ?jߵYʄM!h$|oI SDI12'b^GMU} 6Pkؙm]>8/R٦hMl*Ľ:"!<;q·s@mq  LUTim֦hs!,f5nΌ*Pio(694 R T5G<[JRZIY_Ќ 4ȽCy%SS>A $Bʢ=#J( į0-mEwb̀_S]߈?dL۽S'NW=fA,Y&͂AR%` y,O eGW1yFzt|>큇p/(XR.7.sKh|$4A*;xeH-omJo$n_D< Il_:~ ?)_%jS ɧ|3d-|p_o R݌ϞiIHW& eڷ3oV}d.>8 0)bQljcYͯR!#v,XyE-onӂv`r{<6=. cz޶p"yET:aE,->([ &P q径QmUTd=-!cf("o> "xd9+60CjzbW5?u)\j.0U$O]#(n0io:!>Y{#F~pϊpL%8ݟRJhզb0֚T -UQ[e Z0S mvSvFrɴ>!C 2Mc[G=dC)lHꇲRmWXE)Pi\"1O&%NVnoG8=X<ycsx*bDJByUXvs.d"!Q/@c{%ctA2)YaM!!<"@"I_tfrvFZ63~8ʞ W}i߳VH Yl=sq֢lbT獓 fNIQ .s^&kMԹ}ݏW3}y2,ޢ w _eX##Xڶ=ȥ /rU9Sm^a%b(<eoAZd8(!/<w4ٲM8ۇf<2%9y]~wkqZ6sլn8ܫv O&JjO%j~]=y!Q1\qm4 vTn-+\#nl/k*~x 7ņג]G#V9y:=K/ιhqL~˳}w>u%Id'uwUkY;>HbdUqo I$t;aq7cOܮ29 9t뾹:%尊)N7Ά?Cwy?"1rbƯÅ2?P'dKDA؅w/P+o]#~ n,r =MYdȑ䟏 Q@KljnH^)na +I^ pS-`DMjCPe$Y$@\UFD!]>s:εmkVO#,y3QoCے8#DԬ%hFM#皃Š;-m=a [Ne|Fi}0+dqx 7|]t"\A@} }kSeIa ^Ky߭sk JG4_-mDM/Mk-U)gG=>ڞu;l}*=+ o8nYQG=3z&\񺡽c񞛲d9x2 la'MUv+>6֩Xc$e7k,3j'-!r+x72J4I_'no &"ct>=J4$Do Ր`E3+y}Ѕ7k/3lIr(ct en/)~6n# 9jgpi7s)+¶ ܝӿ\) endstream endobj 124 0 obj << /Length1 1144 /Length2 5695 /Length3 0 /Length 6455 /Filter /FlateDecode >> stream xuSu\ۺAJ fR)`pfI)ADB@:[.AZBw}>?]Y\l`D eP7 -hq@q{r..# {@p5{+бGDP(%#ZE Dd(`PpĸA$ hA*ϬUuv >15 p_-ڻA:zF_Q**+IA@PDJ)WTԷoE߇;!~5W.aX>+"<&qW_-ylp9 ;nP9@Sȟ>t{àpgؿEk@!`}˟7xq}ApF.Pp}?(pG wz\vĠPWギw^xCg&aUa^kâ]GbaB^JRpQ($!gV.XZE&ӛZQL߄te(xG^0Rg+92RPid=t#aS$4iȞ#V5kHD*Ńu~іܴ<٭B%8IQul^$):&rP] ?:g r߽ J Ԍ#n3ds[x(v;^ыE9mR啹Aig똰^ I[ 랪UZ{(O Gm7x.(*'_cG l-J ͺ1boshM,_r7ŴzV*!k^}}9 y mWOa00/RR5z9n/§/qaVtǝm[NF"xn!`0oh1/"sRt[|-m5Uxdip>MvEuh!1A45/W.pe+a"#A?@=zP1W,T2NTF*-:QW:cM;e\ݐ4yXO|t3k5\/wǖO 55IU)d֧r*!n\qK=dKޮ,}`mEUtp{eBJ ]$X\ZEu7]ȺAwܳ;ə UtO 6!9MtJE<%g=DoXe}66b2挰f1JK3ֿ%U1E6>_[*ܯ5A"txY }SQS#'!@Xaw<ӊ,@~j.i~O>Hc lbWOQdžs>vx Rߔy_RBsݩM L$岖z!{-xst!904䭠oo4ҋFsybŒu5U>Vl\b.{)䘐KVsnjTPCD~Z<3J*\IR-98pk×뭙Bs2x-vzG7a@Ay `/g"4Q!#*1&+%}E@4ˢߑk{}Vo_SI6l"kEu>[px}OֺolI}Z,򅱁.ǖM;3D^O>q+H~"/dʪ x?0NGG*Sn!>;h fB)'0 ㄕ,cLM&@ Tµf1)Tq4ƫR̉E9KPV/k]Fr7lt.WsXlj3~=MDl{`:wu4d=RsJT0ET?< k% 8q,M6 8!iT^іx&L@BS ߐ}^Q;X5,KO?-'U{+\5CYr}cx|fy?ciMtDFČ3LƾSvQ4KtaIN~=! %`ۣcE0wf52 sۓ2lvG:ì`!4Q*oUo9aҸܩXdًHQK2,ֆ|F=)x.v:En!mlbj$Q%tJ=!lRz*V_awa 2%b!lݒ;GHkNWld1Mf{~|!Pwg eɗ/z}$OOщ(x~IS)2–"cHO~ɴ5yA¹YS><`&_C oZNhա.sxd&}Aw?iD[qԴBvdɔh\ܽO 4ާoƒ}vw.T '߳Vl/-x[פkj YitҭMo"!cgvTpm$R/Vc9 .ȓ‹Zsy5rn ^/JP*r4-;{2 t46l@W]xiu!AѾ {׫PݶL޼$.֙|SCѵ2}ʰ)u$i/|<>i4e]HrVzdCnayffAI%mR0-d^c *;{]}SɨsP Bg=?4:y=@< :k:('D-Yj10D<&pHP%C'>*XD)FҢJ9 !'鸔%Ѻbm6OӦ{9 q0Dtc /N =ou#–d?>!b[b26Ǩv=Y=zpJ1BIɪd4J ]`ق "?-c粦0{V^Ֆf&$mKYO}Xێ:nbk=Ԇ~ӓ'ƱRnDyXzQK ~7FŽ'@|rwp-dKtra& LaTjBD?G%MRؤX)Ck9 ئ% $7/BW?ajy<쵅);O'mAN+V8?"ya:si pm2in%e~6z`i鯹|qdbV'M7Dt۶O֥j#UgiHUYlGf[a*"uL blF\0ź-E[?Q;+tMͦhZgNfga, {S[lYfkLRKփ_hf_z*JN QǜVQ=Z[VkNZG<>O揶r\|?:|٧o9ͮkq |N^QGb֏6:w6Q0i"S11Rw: ;M^YթO[6?*̡ou"zIqqCrޚFoYuZeL2nd Z4SBcMs~a/aN c*,'lc` @;LJYpp=ahv5 zʍw5 NF(vںHr"S^* Ӝ5+D*=_On8<Y%gO<C|yRQĜyZ!]LS0{CfΑZboEMg_ ?%=H1 pVhv׿~J/ғI}2=gq5+`h +\IBM  pQaJȣ,D 5ŭMP`r|IevCev\c߫Gs<ױM^RJO>lv㇞VwxkO{K(S5Ak̞MWTNƍ1ėu|} t :Ԝ5!‰-̌zRYL2.p[k8 vv6g{0N6kg 噂h}ynQNᘓ]g3ym/]-ASVUp@iC wx,ۦgjAO،t@cXOj@6J-n/%Vj.CG~xwB~el֮HK$3{*ț4QbdV$hD0&ԍjVKF #l7SKnWѻ_ ŀD s뇏 tLhii@zIy HQ@vyq˕{7N6^: ;>7~t# |;NCU~@+1Wp@Ŋq<DN rҔfG"1ZUvN*sٍ2 ̅GJz見XNdvb!Cŭ7%_O>B}ulr}(PM=YjXP3_A:Vrh@7.s~,jE*%dMqpA$]pmk|7qHg}&YU endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 817 /Length 4200 /Filter /FlateDecode >> stream x[is7_q4VŒH^PÛߧr([Nm4h4Bw3#`i3E=fRfI4SRbʸRLycrL12: Y,F~&VLGLML0ZZNa0nN3@{$&2{@ȔRi;DFƠA yTC/ZzqxVX$=,w} kA wbN36D%3.@s2 Aӡ=X7t fAKA֐">T< )ThBHMhhHH$i[8*! (j`^*5j`-%TH1 FTv K-@DFi2.Z1`QWHPQP!3I-4օ(}JRFQS E1 /଀]͒a+5 -kL?1~~i4,3u~d8gFp;N~\wCtq0--2<а򟹉F4 7BƣɄ}f%ͦƫzɿw*`য়:͟%㯻er80pvy9ƽrB"QA>>Y5qw8aOOt !z/^ycR@L*!9e|YĈt촘I:bv5MO;`4.ljlq'cY$V{S xD!BυJIBX[DBDYD}(Ѳ ߮*6kJ>;Q i.\[)1OK5Q[Y]D F֯'d<95!S9UXIP@k` 0 Vt:W賈jW"lt)m!sAXzߣ3pPr&6nbN>m-7_Y6ɠ:wbmAVbP+rv}4QQA}إo*3\UZ] 2V|v穮#}a$ӗ""jDQGkL|.C3QBUX@idP-kf&հ X۹V]+Ij Q$YT й؄ĴU3ATT$\VR1F] OI*Qx0#йԉ7ZtBs)s%rH&i3K^PR@nؚd MUe/p4dlq?Qi#̥8,:W(E>(@T6٥iIb>V ) +@\kR0"zA+)'dI3 %ٕdD,=XL6Fn\.bUJR.bt¨D4ُ 1%ңNe %#*'Hَij1gQ.T;NMOIT9AjM2C(%_b[K0tilX /]!DߚCfHn1]sx_6=hi2)]7=F gDI*EqS{M]VJn< *{{J + -PŭIه$ԷUNeɔ\LYqR㒫ʮMZRt\oaKcs]ʻ/Hq96"A[b&VQTIIU*J疐o9ΥN4EMjW*CLX=䘽=|vA~uo7{[ ltO'8 jO[;ox7-O[;5%Z#e]h#IՎ{NGá&5Oꫯ$ƸDB>$:m9*'q~:ӗ;\叇gg'Rcн0!ҩҞVlOm,t.79r?Ro?M)p$uL~ox;(тiy(%|x~߻]~ϧ|ver@&ܐao4 Qu5 1Yw!@֣٘OӟaLT0K>]-d{δܩg$G3<M8 fAw)yqYF|1]G-uKu~ɏgl)^F Gk^4 X([lдk̪ ?_Jo;ߢ`Pzk1Lޮ빚m[ aү\}Xs-b//}Q9O-k ?lDkۅ+u5d=TeG=KAlh')5?*|ۯo9sݷq=׼n#ϧseMU2ŚX] q/N^xb!>/DmBܸ*Qw5mĤOO@NU3M4@ղ?W |^&ki{ R=ʋzsє)9M25}B!A ʶLe[zmdVH)`Pϓ@{ V[ijb$v۟ux 77%=/'´LEbH}p~(`yz2pE{7oiZhѡbY s;ϞM|]tk'k{rL܊T@)>{]&+L ]'jsDȫa rpWD&(2~m9YZдiL M=iseex ,4ژo.edx+ 7KEJx:7OcFXdK]@zxm~s)|MJ&eb޺~Z8o֣^/liGzdY]^]ʲc>R5'΃**2K֊%^ы-Cʥ㇄&X$D"KWG/p4]L3W[6ڻ#G=S=, nF썟%jeS~F/g}Fߍ:uHlmM P8 endstream endobj 134 0 obj << /Author()/Title(2)/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20171030183912-04'00') /ModDate (D:20171030183912-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1) >> endobj 130 0 obj << /Type /ObjStm /N 4 /First 30 /Length 203 /Filter /FlateDecode >> stream x}I 0sԃƙ I ] /Length 363 /Filter /FlateDecode >> stream xIOSQsh`mLeP2Rj`7 $2/ܸpc\&.aE?_9H,"v $CtxC/BCh.@\NKau[XjkrXbRHkX"%T!hWiNjnKC7mKexi[4z+0=6s됅k -uf9y sp=X@08i/?RW9znu_N}oTݟVKլ&+W&;굚R?VՌOf-|ZHol]Qƒrp5 endstream endobj startxref 440273 %%EOF genefilter/inst/wFun/0000755000175400017540000000000013175713327015631 5ustar00biocbuildbiocbuildgenefilter/inst/wFun/Anova.xml0000644000175400017540000000144513175713327017423 0ustar00biocbuildbiocbuild Anova cov numeric main TypeIn TRUE p 0.05 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/coxfilter.xml0000644000175400017540000000144013175713327020351 0ustar00biocbuildbiocbuild coxfilter surt numeric main TypeIn TRUE cens numeric main TypeIn TRUE p numeric main TypeIn TRUE genefilter/inst/wFun/cv.xml0000644000175400017540000000144113175713327016763 0ustar00biocbuildbiocbuild cv a 1 numeric main TypeIn FALSE b Inf numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/gapFilter.xml0000644000175400017540000000234413175713327020273 0ustar00biocbuildbiocbuild gapFilter Gap numeric main TypeIn TRUE IQR numeric main TypeIn TRUE Prop nemeric main TypeIn TRUE na.rm TRUE logical main Radio FALSE neg.rm TRUE logical main Radio FALSE genefilter/inst/wFun/kOverA.xml0000644000175400017540000000144313175713327017544 0ustar00biocbuildbiocbuild kOverA k numeric main TypeIn TRUE A 100 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/maxA.xml0000644000175400017540000000110713175713327017240 0ustar00biocbuildbiocbuild maxA A 75 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/pOverA.xml0000644000175400017540000000145013175713327017547 0ustar00biocbuildbiocbuild pOverA p 0.05 numeric main TypeIn FALSE A 100 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/ttest.xml0000644000175400017540000000144313175713327017520 0ustar00biocbuildbiocbuild ttest m numeric main TypeIn TRUE p 0.05 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/man/0000755000175400017540000000000013175713327014510 5ustar00biocbuildbiocbuildgenefilter/man/Anova.Rd0000644000175400017540000000263313175713327016047 0ustar00biocbuildbiocbuild\name{Anova} \alias{Anova} \title{A filter function for Analysis of Variance } \description{ \code{Anova} returns a function of one argument with bindings for \code{cov} and \code{p}. The function, when evaluated, performs an ANOVA using \code{cov} as the covariate. It returns \code{TRUE} if the p value for a difference in means is less than \code{p}. } \usage{ Anova(cov, p=0.05, na.rm=TRUE) } \arguments{ \item{cov}{The covariate. It must have length equal to the number of columns of the array that \code{Anova} will be applied to. } \item{p}{ The p-value for the test. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ The function returned by \code{Anova} uses \code{lm} to fit a linear model of the form \code{lm(x ~ cov)}, where \code{x} is the set of gene expressions. The F statistic for an overall effect is computed and if it has a \emph{p}-value less than \code{p} the function returns \code{TRUE}, otherwise it returns \code{FALSE} for that gene. } \value{ \code{Anova} returns a function with bindings for \code{cov} and \code{p} that will perform a one-way ANOVA. The covariate can be continuous, in which case the test is for a linear effect for the covariate. } \author{R. Gentleman } \seealso{\code{\link{kOverA}}, \code{\link{lm}} } \examples{ set.seed(123) af <- Anova(c(rep(1,5),rep(2,5)), .01) af(rnorm(10)) } \keyword{manip} genefilter/man/coxfilter.Rd0000644000175400017540000000206613175713327017002 0ustar00biocbuildbiocbuild\name{coxfilter} \alias{coxfilter} \title{A filter function for univariate Cox regression. } \description{ A function that performs Cox regression with bindings for \code{surt}, \code{cens}, and \code{p} is returned. This function filters genes according to the attained p-value from a Cox regression using \code{surt} as the survival times, and \code{cens} as the censoring indicator. It requires \code{survival}. } \usage{ coxfilter(surt, cens, p) } \arguments{ \item{surt}{Survival times.} \item{cens}{Censoring indicator. } \item{p}{The p-value to use in filtering. } } \value{ Calls to the \code{\link[survival]{coxph}} function in the \code{survival} library are used to fit a Cox model. The filter function returns \code{TRUE} if the p-value in the fit is less than \code{p}. } \author{R. Gentleman } \seealso{\code{\link{Anova}}} \examples{ set.seed(-5) sfun <- coxfilter(rexp(10), ifelse(runif(10) < .7, 1, 0), .05) ffun <- filterfun(sfun) dat <- matrix(rnorm(1000), ncol=10) out <- genefilter(dat, ffun) } \keyword{manip} genefilter/man/cv.Rd0000644000175400017540000000201213175713327015402 0ustar00biocbuildbiocbuild\name{cv} \alias{cv} \title{A filter function for the coefficient of variation.} \description{ \code{cv} returns a function with values for \code{a} and \code{b} bound. This function takes a single argument. It computes the coefficient of variation for the input vector and returns \code{TRUE} if the coefficient of variation is between \code{a} and \code{b}. Otherwise it returns \code{FALSE} } \usage{ cv(a=1, b=Inf, na.rm=TRUE) } \arguments{ \item{a}{The lower bound for the cv. } \item{b}{The upper bound for the cv. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ The coefficient of variation is the standard deviation divided by the absolute value of the mean. } \value{ It returns a function of one argument. The function has an environment with bindings for \code{a} and \code{b}. } \author{R. Gentleman } \seealso{\code{\link{pOverA}}, \code{\link{kOverA}} } \examples{ set.seed(-3) cvfun <- cv(1,10) cvfun(rnorm(10,10)) cvfun(rnorm(10)) } \keyword{manip} genefilter/man/dist2.Rd0000644000175400017540000000321213175713327016022 0ustar00biocbuildbiocbuild\name{dist2} \alias{dist2} \title{ Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix. } \description{ Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix. } \usage{ dist2(x, fun, diagonal=0) } \arguments{ \item{x}{A matrix.} \item{fun}{A symmetric function of two arguments that may be columns of \code{x}.} \item{diagonal}{The value to be used for the diagonal elements of the resulting matrix.} } \details{ With the default value of \code{fun}, this function calculates for each pair of columns of \code{x} the mean of the absolute values of their differences (which is proportional to the L1-norm of their difference). This is a distance metric. The implementation assumes that \code{fun(x[,i], x[,j])} can be evaluated for all pairs of \code{i} and \code{j} (see examples), and that \code{fun} is symmetric, i.e. \code{fun(a, b) = fun(b, a)}. \code{fun(a, a)} is not actually evaluated, instead the value of \code{diagonal} is used to fill the diagonal elements of the returned matrix. Note that \code{\link[stats:dist]{dist}} computes distances between rows of \code{x}, while this function computes relations between columns of \code{x} (see examples). } \value{ A symmetric matrix of size \code{n x n}. } \author{ Wolfgang Huber, James Reid } \examples{ # example matrix z = matrix(1:15693, ncol=3) matL1 = dist2(z) matL2 = dist2(z, fun=function(a,b) sqrt(sum((a-b)^2, na.rm=TRUE))) euc = as.matrix(dist(t(z))) stopifnot(identical(dim(matL2), dim(euc)), all(euc==matL2)) } \keyword{manip} genefilter/man/eSetFilter.Rd0000644000175400017540000000306213175713327017046 0ustar00biocbuildbiocbuild\name{eSetFilter} \alias{eSetFilter} \alias{getFilterNames} \alias{getFuncDesc} \alias{getRdAsText} \alias{parseDesc} \alias{parseArgs} \alias{setESetArgs} \alias{isESet} \alias{showESet} \title{A function to filter an eSet object} \description{ Given a Bioconductor's ExpressionSet object, this function filters genes using a set of selected filters. } \usage{ eSetFilter(eSet) getFilterNames() getFuncDesc(lib = "genefilter", funcs = getFilterNames()) getRdAsText(lib) parseDesc(text) parseArgs(text) showESet(eSet) setESetArgs(filter) isESet(eSet) } \arguments{ \item{eSet}{\code{eSet} an ExpressionSet object} \item{lib}{\code{lib} a character string for the name of an R library where functions of interests reside} \item{funcs}{\code{funcs} a vector of character strings for names of functions of interest} \item{text}{\code{text} a character of string from a filed (e. g. description, argument, ..) filed of an Rd file for a fucntion} \item{filter}{\code{filter} a character string for the name of a filter function} } \details{ A set of filters may be selected to filter genes in through each of the filters in the order the filters have been selected } \value{ A logical vector of length equal to the number of rows of 'expr'. The values in that vector indicate whether the corresponding row of 'expr' passed the set of filter functions. } \author{Jianhua Zhang} \seealso{\code{\link{genefilter}}} \examples{ if( interactive() ) { data(sample.ExpressionSet) res <- eSetFilter(sample.ExpressionSet) } } \keyword{manip} genefilter/man/filter_volcano.Rd0000644000175400017540000000407313175713327020011 0ustar00biocbuildbiocbuild\name{filter_volcano} \Rdversion{1.1} \alias{filter_volcano} \title{Volcano plot for overall variance filtering} \description{ Generate a volcano plot contrasting p-value with fold change (on the log scale), in order to visualize the effect of filtering on overall variance and also assign significance via p-value. } \usage{ filter_volcano( d, p, S, n1, n2, alpha, S_cutoff, cex = 0.5, pch = 19, xlab = expression(paste(log[2], " fold change")), ylab = expression(paste("-", log[10], " p")), cols = c("grey80", "grey50", "black"), ltys = c(1, 3), use_legend = TRUE, ... ) } \arguments{ \item{d}{Fold changes, typically on the log scale, base 2.} \item{p}{The p-values} \item{S}{ The overall standard deviation filter statistics, i.e., the square roots of the overall variance filter statistics. } \item{n1}{Sample size for group 1.} \item{n2}{Sample size for group 2.} \item{alpha}{Significance cutoff used for p-values.} \item{S_cutoff}{ Filter cutoff used for the overall standard deviation in \code{S}. } \item{cex}{Point size for plotting.} \item{pch}{Point character for plotting.} \item{xlab}{Label for x-axis.} \item{ylab}{Label for y-axis.} \item{cols}{ A vector of three colors used for plotting. These correspond to filtered data, data which pass the filter but are insignificant, and data pass the filter and are also statistically significant. } \item{ltys}{ The induced bound on log-scale fold change is plotted, as is the significance cutoff for data passing the filter. The \code{ltys} argument gives line styles for these drawing these two thresholds on the plot. } \item{use_legend}{Should a legend for point color be produced?} \item{\dots}{Other arguments for \code{plot}.} } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/filtered_p.Rd0000644000175400017540000000505713175713327017123 0ustar00biocbuildbiocbuild\name{filtered_p} \Rdversion{1.1} \alias{filtered_p} \alias{filtered_R} \title{ Compute and adjust p-values, with filtering } \description{ Given filter and test statistics in the form of unadjusted p-values, or functions able to compute these statistics from the data, filter and then correct the p-values across a range of filtering stringencies. } \usage{ filtered_p(filter, test, theta, data, method = "none") filtered_R(alpha, filter, test, theta, data, method = "none") } \arguments{ \item{alpha}{ A cutoff to which p-values, possibly adjusted for multiple testing, will be compared. } \item{filter}{ A vector of stage-one filter statistics, or a function which is able to compute this vector from \code{data}, if \code{data} is supplied. } \item{test}{ A vector of unadjusted p-values, or a function which is able to compute this vector from the filtered portion of \code{data}, if \code{data} is supplied. The option to supply a function is useful when the value of the test statistic depends on which hypotheses are filtered out at stage one. (The \pkg{limma} t-statistic is an example.) } \item{theta}{ A vector with one or more filtering fractions to consider. Actual cutoffs are then computed internally by applying \code{\link{quantile}} to the filter statistics contained in (or produced by) the \code{filter} argument. } \item{data}{ If \code{filter} and/or \code{test} are functions rather than vectors of statistics, they will be applied to \code{data}. The functions will be passed the whole \code{data} object, and must work over rows, etc. themselves as appropriate. } \item{method}{ The unadjusted p-values contained in (or produced by) \code{test} will be adjusted for multiple testing after filtering, using the \code{\link{p.adjust}} function in the \pkg{stats} package. See the \code{method} argument there for options. }p } \value{ For \code{filtered_p}, a matrix of p-values, possible adjusted for multiple testing, with one row per null hypothesis and one column per filtering fraction given in \code{theta}. For a given column, entries which have been filtered out are \code{NA}. For \code{filtered_R}, a count of the entries in the \code{filtered_p} result which are less than \code{alpha}. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } \seealso{ See \code{\link{rejection_plot}} for visualization of \code{filtered_p} results. } genefilter/man/filterfun.Rd0000644000175400017540000000223513175713327016777 0ustar00biocbuildbiocbuild\name{filterfun} \alias{filterfun} \title{Creates a first FALSE exiting function from the list of filter functions it is given. } \description{ This function creates a function that takes a single argument. The filtering functions are bound in the environment of the returned function and are applied sequentially to the argument of the returned function. When the first filter function evaluates to \code{FALSE} the function returns \code{FALSE} otherwise it returns \code{TRUE}. } \usage{ filterfun(...) } \arguments{ \item{...}{Filtering functions. } } \value{ \code{filterfun} returns a function that takes a single argument. It binds the filter functions given to it in the environment of the returned function. These functions are applied sequentially (in the order they were given to \code{filterfun}). The function returns \code{FALSE} (and exits) when the first filter function returns \code{FALSE} otherwise it returns \code{TRUE}. } \author{R. Gentleman } \seealso{\code{\link{genefilter}} } \examples{ set.seed(333) x <- matrix(rnorm(100,2,1),nc=10) cvfun <- cv(.5,2.5) ffun <- filterfun(cvfun) which <- genefilter(x, ffun) } \keyword{manip} genefilter/man/findLargest.Rd0000644000175400017540000000261213175713327017242 0ustar00biocbuildbiocbuild\name{findLargest} \alias{findLargest} \title{Find the Entrez Gene ID corresponding to the largest statistic} \description{ Most microarrays have multiple probes per gene (Entrez). This function finds all replicates, and then selects the one with the largest value of the test statistic. } \usage{ findLargest(gN, testStat, data = "hgu133plus2") } \arguments{ \item{gN}{A vector of probe identifiers for the chip.} \item{testStat}{A vector of test statistics, of the same length as \code{gN} with the per probe test statistics.} \item{data}{The character string identifying the chip.} } \details{ All the probe identifiers, \code{gN}, are mapped to Entrez Gene IDs and the duplicates determined. For any set of probes that map to the same Gene ID, the one with the largest test statistic is found. The return vector is the named vector of selected probe identifiers. The names are the Entrez Gene IDs. This could be extended in different ways, such as allowing the user to use a different selection criterion. Also, matching on different identifiers seems like another alternative. } \value{ A named vector of probe IDs. The names are Entrez Gene IDs. } \author{R. Gentleman} \seealso{\code{\link{sapply}}} \examples{ library("hgu95av2.db") set.seed(124) gN <- sample(ls(hgu95av2ENTREZID), 200) stats <- rnorm(200) findLargest(gN, stats, "hgu95av2") } \keyword{manip} genefilter/man/gapFilter.Rd0000644000175400017540000000346713175713327016726 0ustar00biocbuildbiocbuild\name{gapFilter} \alias{gapFilter} \title{ A filter to select genes based on there being a gap. } \description{ The \code{gapFilter} looks for genes that might usefully discriminate between two groups (possibly unknown at the time of filtering). To do this we look for a gap in the ordered expression values. The gap must come in the central portion (we exclude jumps in the initial \code{Prop} values or the final \code{Prop} values). Alternatively, if the IQR for the gene is large that will also pass our test and the gene will be selected. } \usage{ gapFilter(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE) } \arguments{ \item{Gap}{The size of the gap required to pass the test. } \item{IQR}{The size of the IQR required to pass the test. } \item{Prop}{The proportion (or number) of samples to exclude at either end.} \item{na.rm}{If \code{TRUE} then \code{NA}'s will be removed before processing. } \item{neg.rm}{ If \code{TRUE} then negative values in \code{x} will be removed before processing.} } \details{ As stated above we are interested in } \value{ A function that returns either \code{TRUE} or \code{FALSE} depending on whether the vector supplied has a gap larger than \code{Gap} or an IQR (inter quartile range) larger than \code{IQR}. For computing the gap we want to exclude a proportion, \code{Prop} from either end of the sorted values. The reason for this requirement is that genes which differ in expression levels only for a few samples are not likely to be interesting. } \author{R. Gentleman } \seealso{\code{\link{ttest}}, \code{\link{genefilter}} } \examples{ set.seed(256) x <- c(rnorm(10,100,3), rnorm(10, 100, 10)) y <- x + c(rep(0,10), rep(100,10)) tmp <- rbind(x,y) Gfilter <- gapFilter(200, 100, 5) ffun <- filterfun(Gfilter) genefilter(tmp, ffun) } \keyword{manip} genefilter/man/genefilter.Rd0000644000175400017540000000427513175713327017133 0ustar00biocbuildbiocbuild\name{genefilter} \alias{genefilter} \title{A function to filter genes.} \description{ \code{genefilter} filters genes in the array \code{expr} using the filter functions in \code{flist}. It returns an array of logical values (suitable for subscripting) of the same length as there are rows in \code{expr}. For each row of \code{expr} the returned value is \code{TRUE} if the row passed all the filter functions. Otherwise it is set to \code{FALSE}. } \usage{ genefilter(expr, flist) } \arguments{ \item{expr}{A \code{matrix} or \code{ExpressionSet} that the filter functions will be applied to.} \item{flist}{A \code{list} of filter functions to apply to the array.} } \details{ This package uses a very simple but powerful protocol for \emph{filtering} genes. The user simply constructs any number of tests that they want to apply. A test is simply a function (as constructed using one of the many helper functions in this package) that returns \code{TRUE} if the gene of interest passes the test (or filter) and \code{FALSE} if the gene of interest fails. The benefit of this approach is that each test is constructed individually (and can be tested individually). The tests are then applied sequentially to each gene. The function returns a logical vector indicating whether the gene passed all tests functions or failed at least one of them. Users can construct their own filters. These filters should accept a vector of values, corresponding to a row of the \code{expr} object. The user defined function should return a length 1 logical vector, with value \code{TRUE} or \code{FALSE}. User-defined functions can be combined with \code{\link{filterfun}}, just as built-in filters. } \value{ A logical \code{vector} of length equal to the number of rows of \code{expr}. The values in that \code{vector} indicate whether the corresponding row of \code{expr} passed the set of filter functions. } \author{R. Gentleman} \seealso{\code{\link{genefilter}}, \code{\link{kOverA}}} \examples{ set.seed(-1) f1 <- kOverA(5, 10) flist <- filterfun(f1) exprA <- matrix(rnorm(1000, 10), ncol = 10) ans <- genefilter(exprA, flist) } \keyword{manip} genefilter/man/genefinder.Rd0000644000175400017540000000647613175713327017122 0ustar00biocbuildbiocbuild\name{genefinder} \alias{genefinder} \alias{genefinder,ExpressionSet,vector-method} \alias{genefinder,matrix,vector-method} \title{Finds genes that have similar patterns of expression.} \description{ Given an \code{ExpressionSet} or a \code{matrix} of gene expressions, and the indices of the genes of interest, \code{genefinder} returns a \code{list} of the \code{numResults} closest genes. The user can specify one of the standard distance measures listed below. The number of values to return can be specified. The return value is a \code{list} with two components: genes (measured through the desired distance method) to the genes of interest (where X is the number of desired results returned) and their distances. } \usage{ genefinder(X, ilist, numResults=25, scale="none", weights, method="euclidean") } \arguments{ \item{X}{A numeric \code{matrix} where columns represent patients and rows represent genes.} \item{ilist}{A \code{vector} of genes of interest. Contains indices of genes in matrix X.} \item{numResults}{Number of results to display, starting from the least distance to the greatest.} \item{scale}{One of "none", "range", or "zscore". Scaling is carried out separately on each row.} \item{weights}{A vector of weights applied across the columns of \code{X}. If no weights are supplied, no weights are applied.} \item{method}{One of "euclidean", "maximum", "manhattan", "canberra", "correlation", "binary".} } \details{ If the \code{scale} option is "range", then the input matrix is scaled using \code{genescale()}. If it is "zscore", then the input matrix is scaled using the \code{scale} builtin with no arguments. The method option specifies the metric used for gene comparisons. The metric is applied, row by row, for each gene specified in \code{ilist}. The "correlation" option for the distance method will return a value equal to 1-correlation(x). See \code{\link{dist}} for a more detailed description of the distances. } \value{ The returned value is a \code{list} containing an entry for each gene specified in \code{ilist}. Each \code{list} entry contains an array of distances for that gene of interest. } \author{J. Gentry and M. Kajen} \seealso{\code{\link{genescale}}} \examples{ set.seed(12345) #create some fake expression profiles m1 <- matrix (1:12, 4, 3) v1 <- 1 nr <- 2 #find the 2 rows of m1 that are closest to row 1 genefinder (m1, v1, nr, method="euc") v2 <- c(1,3) genefinder (m1, v2, nr) genefinder (m1, v2, nr, scale="range") genefinder (m1, v2, nr, method="manhattan") m2 <- matrix (rnorm(100), 10, 10) v3 <- c(2, 5, 6, 8) nr2 <- 6 genefinder (m2, v3, nr2, scale="zscore") \testonly{ m1 <- matrix(rnorm(1000),100,10) v1 <- c(3,5,8,42) nr2 <- 35 genefinder(m1,v1,nr2,method="euclidean") genefinder(m1,v1,nr2,method="maximum") genefinder(m1,v1,nr2,method="canberra") genefinder(m1,v1,nr2,method="binary") genefinder(m1,v1,nr2,method="correlation") m2 <- matrix(rnorm(10000),1000,10) v1 <- c(1,100,563,872,921,3,52,95,235,333) nr <- 100 genefinder(m2,v1,nr2,scale="zscore",method="euclidean") genefinder(m2,v1,nr2,scale="range",method="maximum") genefinder(m2,v1,nr2,scale="zscore",method="canberra") genefinder(m2,v1,nr2,scale="range",method="binary") genefinder(m2,v1,nr2,scale="zscore",method="correlation") } } \keyword{manip} genefilter/man/genescale.Rd0000644000175400017540000000237413175713327016733 0ustar00biocbuildbiocbuild\name{genescale} \alias{genescale} \title{Scales a matrix or vector.} \description{ \code{genescale} returns a scaled version of the input matrix m by applying the following formula to each column of the matrix: \deqn{y[i] = ( x[i] - min(x) ) / ( max(x) - min(x) )} } \usage{ genescale(m, axis=2, method=c("Z", "R"), na.rm=TRUE) } \arguments{ \item{m}{Input a matrix or a vector with numeric elements. } \item{axis}{An integer indicating which axis of \code{m} to scale.} \item{method}{Either "Z" or "R", indicating whether a Z scaling or a range scaling should be performed.} \item{na.rm}{A boolean indicating whether \code{NA}'s should be removed.} } \details{ Either the rows or columns of \code{m} are scaled. This is done either by subtracting the mean and dividing by the standard deviation ("Z") or by subtracing the minimum and dividing by the range. } \value{ A scaled version of the input. If \code{m} is a \code{matrix} or a \code{dataframe} then the dimensions of the returned value agree with that of \code{m}, in both cases the returned value is a \code{matrix}. } \author{ R. Gentleman } \seealso{ \code{\link{genefinder}},\code{\link{scale}} } \examples{ m <- matrix(1:12, 4, 3) genescale(m) } \keyword{ manip } genefilter/man/half.range.mode.Rd0000755000175400017540000000636013175713327017737 0ustar00biocbuildbiocbuild\name{half.range.mode} \alias{half.range.mode} \title{Mode estimation for continuous data} \description{ For data assumed to be drawn from a unimodal, continuous distribution, the mode is estimated by the \dQuote{half-range} method. Bootstrap resampling for variance reduction may optionally be used. } \usage{ half.range.mode(data, B, B.sample, beta = 0.5, diag = FALSE) } \arguments{ \item{data}{A numeric vector of data from which to estimate the mode.} \item{B}{ Optionally, the number of bootstrap resampling rounds to use. Note that \code{B = 1} resamples 1 time, whereas omitting \code{B} uses \code{data} as is, without resampling. } \item{B.sample}{ If bootstrap resampling is requested, the size of the bootstrap samples drawn from \code{data}. Default is to use a sample which is the same size as \code{data}. For large data sets, this may be slow and unnecessary. } \item{beta}{ The fraction of the remaining range to use at each iteration. } \item{diag}{ Print extensive diagnostics. For internal testing only... best left \code{FALSE}. } } \details{ Briefly, the mode estimator is computed by iteratively identifying densest half ranges. (Other fractions of the current range can be requested by setting \code{beta} to something other than 0.5.) A densest half range is an interval whose width equals half the current range, and which contains the maximal number of observations. The subset of observations falling in the selected densest half range is then used to compute a new range, and the procedure is iterated. See the references for details. If bootstrapping is requested, \code{B} half-range mode estimates are computed for \code{B} bootstrap samples, and their average is returned as the final estimate. } \value{ The mode estimate. } \references{ \itemize{ \item DR Bickel, \dQuote{Robust estimators of the mode and skewness of continuous data.} \emph{Computational Statistics & Data Analysis} 39:153-163 (2002). \item SB Hedges and P Shah, \dQuote{Comparison of mode estimation methods and application in molecular clock analysis.} \emph{BMC Bioinformatics} 4:31-41 (2003). } } \author{Richard Bourgon } \seealso{\code{\link{shorth}}} \keyword{univar} \keyword{robust} \examples{ ## A single normal-mixture data set x <- c( rnorm(10000), rnorm(2000, mean = 3) ) M <- half.range.mode( x ) M.bs <- half.range.mode( x, B = 100 ) if(interactive()){ hist( x, breaks = 40 ) abline( v = c( M, M.bs ), col = "red", lty = 1:2 ) legend( 1.5, par("usr")[4], c( "Half-range mode", "With bootstrapping (B = 100)" ), lwd = 1, lty = 1:2, cex = .8, col = "red" ) } # Sampling distribution, with and without bootstrapping X <- rbind( matrix( rnorm(1000 * 100), ncol = 100 ), matrix( rnorm(200 * 100, mean = 3), ncol = 100 ) ) M.list <- list( Simple = apply( X, 2, half.range.mode ), BS = apply( X, 2, half.range.mode, B = 100 ) ) if(interactive()){ boxplot( M.list, main = "Effect of bootstrapping" ) abline( h = 0, col = "red" ) } } genefilter/man/kOverA.Rd0000644000175400017540000000133013175713327016163 0ustar00biocbuildbiocbuild\name{kOverA} \alias{kOverA} \title{A filter function for k elements larger than A. } \description{ \code{kOverA} returns a filter function with bindings for \code{k} and \code{A}. This function evaluates to \code{TRUE} if at least \code{k} of the arguments elements are larger than \code{A}. } \usage{ kOverA(k, A=100, na.rm=TRUE) } \arguments{ \item{A}{The value you want to exceed. } \item{k}{The number of elements that have to exceed A.} \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \value{ A function with bindings for \code{A} and \code{k}. } \author{R. Gentleman} \seealso{\code{\link{pOverA}}} \examples{ fg <- kOverA(5, 100) fg(90:100) fg(98:110) } \keyword{manip} genefilter/man/kappa_p.Rd0000644000175400017540000000200213175713327016404 0ustar00biocbuildbiocbuild\name{kappa_p} \Rdversion{1.1} \alias{kappa_p} \alias{kappa_t} \title{ Compute proportionality constant for fold change bound. } \description{ Filtering on overall variance induces a lower bound on fold change. This bound depends on the significance of the evidence against the null hypothesis, an is a multiple of the cutoff used for an overall variance filter. It also depends on sample size in both of the groups being compared. These functions compute the multiplier for the supplied p-values or t-statistics. } \usage{ kappa_p(p, n1, n2 = n1) kappa_t(t, n1, n2 = n1) } \arguments{ \item{p}{The p-values at which to compute the multiplier.} \item{t}{The t-statistics at which to compute the multiplier.} \item{n1}{Sample size for class 1.} \item{n2}{Sample size for class 2.} } \value{ A vector of multipliers: one per p-value or t-static in \code{p} or \code{t}. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/maxA.Rd0000644000175400017540000000125313175713327015666 0ustar00biocbuildbiocbuild\name{maxA} \alias{maxA} \title{ A filter function to filter according to the maximum. } \description{ \code{maxA} returns a function with the parameter \code{A} bound. The returned function evaluates to \code{TRUE} if any element of its argument is larger than \code{A}. } \usage{ maxA(A=75, na.rm=TRUE) } \arguments{ \item{A}{The value that at least one element must exceed. } \item{na.rm}{If \code{TRUE} then \code{NA}'s are removed. } } \value{ \code{maxA} returns a function with an environment containing a binding for \code{A}. } \author{R. Gentleman } \seealso{\code{\link{pOverA}} } \examples{ ff <- maxA(30) ff(1:10) ff(28:31) } \keyword{manip} genefilter/man/nsFilter.Rd0000644000175400017540000002137713175713327016577 0ustar00biocbuildbiocbuild\name{nsFilter} \alias{nsFilter} \alias{varFilter} \alias{featureFilter} \alias{nsFilter,ExpressionSet-method} \title{Filtering of Features in an ExpressionSet} \description{The function \code{nsFilter} tries to provide a one-stop shop for different options of filtering (removing) features from an ExpressionSet. Filtering features exhibiting little variation, or a consistently low signal, across samples can be advantageous for the subsequent data analysis (Bourgon et al.). Furthermore, one may decide that there is little value in considering features with insufficient annotation. } \usage{ nsFilter(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) varFilter(eset, var.func=IQR, var.cutoff=0.5, filterByQuantile=TRUE) featureFilter(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, feature.exclude="^AFFX") } \arguments{ \item{eset}{an \code{ExpressionSet} object} \item{var.func}{The function used as the per-feature filtering statistic. This function should return a numeric vector of length one when given a numeric vector as input.} \item{var.filter}{A logical indicating whether to perform filtering based on \code{var.func}.} \item{filterByQuantile}{A logical indicating whether \code{var.cutoff} is to be interprested as a quantile of all \code{var.func} values (the default), or as an absolute value.} \item{var.cutoff}{A numeric value. If \code{var.filter} is TRUE, features whose value of \code{var.func} is less than either: the \code{var.cutoff}-quantile of all \code{var.func} values (if \code{filterByQuantile} is TRUE), or \code{var.cutoff} (if \code{filterByQuantile} is FALSE) will be removed.} \item{require.entrez}{If \code{TRUE}, filter out features without an Entrez Gene ID annotation. If using an annotation package where an identifier system other than Entrez Gene IDs is used as the central ID, then that ID will be required instead.} \item{require.GOBP, require.GOCC, require.GOMF}{If \code{TRUE}, filter out features whose target genes are not annotated to at least one GO term in the BP, CC or MF ontology, respectively.} \item{require.CytoBand}{If \code{TRUE}, filter out features whose target genes have no mapping to cytoband locations.} \item{remove.dupEntrez}{If \code{TRUE} and there are features mapping to the same Entrez Gene ID (or equivalent), then the feature with the largest value of \code{var.func} will be retained and the other(s) removed.} \item{feature.exclude}{A character vector of regular expressions. Feature identifiers (i.e. value of \code{featureNames(eset)}) that match one of the specified patterns will be filtered out. The default value is intended to filter out Affymetrix quality control probe sets.} \item{...}{Unused, but available for specializing methods.} } \details{ In this Section, the effect of filtering on the type I error rate estimation / control of subsequent hypothesis testing is explained. See also the paper by Bourgon et al. \emph{Marginal type I errors}: Filtering on the basis of a statistic which is independent of the test statistic used for detecting differential gene expression can increase the detection rate at the same marginal type I error. This is clearly the case for filter criteria that do not depend on the data, such as the annotation based criteria provided by the \code{nsFilter} and \code{featureFilter} functions. However, marginal type I error can also be controlled for certain types of data-dependent criteria. Call \eqn{U^I}{U^1} the stage 1 filter statistic, which is a function that is applied feature by feature, based on whose value the feature is or is not accepted to pass to stage 2, and which depends only on the data for that feature and not any other feature, and call \eqn{U^{II}}{U^2} the stage 2 test statistic for differential expression. Sufficient conditions for marginal type-I error control are: \itemize{ \item \eqn{U^I}{U^1} the overall (across all samples) variance or mean, \eqn{U^{II}}{U^2} the t-statistic (or any other scale and location invariant statistic), data normal distributed and exchangeable across samples. \item \eqn{U^I}{U^1} the overall mean, \eqn{U^{II}}{U^2} the moderated t-statistic (as in limma's \code{\link[limma:ebayes]{eBayes}} function), data normal distributed and exchangeable. \item \eqn{U^I}{U^1} a sample-class label independent function (e.g. overall mean, median, variance, IQR), \eqn{U^{II}}{U^2} the Wilcoxon rank sum statistic, data exchangeable. } \emph{Experiment-wide type I error}: Marginal type-I error control provided by the conditions above is sufficient for control of the family wise error rate (FWER). Note, however, that common false discovery rate (FDR) methods depend not only on the marginal behaviour of the test statistics under the null hypothesis, but also on their joint distribution. The joint distribution can be affected by filtering, even when this filtering leaves the marginal distributions of true-null test statistics unchanged. Filtering might, for example, change correlation structure. The effect of this is negligible in many cases in practice, but this depends on the dataset and the filter used, and the assessment is in the responsibility of the data analyst. \emph{Annotation Based Filtering} Arguments \code{require.entrez}, \code{require.GOBP}, \code{require.GOCC}, \code{require.GOMF} and \code{require.CytoBand} filter based on available annotation data. The annotation package is determined by calling \code{annotation(eset)}. \emph{Variance Based Filtering} The \code{var.filter}, \code{var.func}, \code{var.cutoff} and \code{varByQuantile} arguments control numerical cutoff-based filtering. Probes for which \code{var.func} returns \code{NA} are removed. The default \code{var.func} is \code{IQR}, which we here define as \code{rowQ(eset, ceiling(0.75 * ncol(eset))) - rowQ(eset, floor(0.25 * ncol(eset)))}; this choice is motivated by the observation that unexpressed genes are detected most reliably through low variability of their features across samples. Additionally, \code{IQR} is robust to outliers (see note below). The default \code{var.cutoff} is \code{0.5} and is motivated by a rule of thumb that in many tissues only 40\% of genes are expressed. Please adapt this value to your data and question. By default the numerical-filter cutoff is interpreted as a quantile, so with the default settings, 50\% of the genes are filtered. Variance filtering is performed last, so that (if \code{varByQuantile=TRUE} and \code{remove.dupEntrez=TRUE}) the final number of genes does indeed exclude precisely the \code{var.cutoff} fraction of unique genes remaining after all other filters were passed. The stand-alone function \code{varFilter} does only \code{var.func}-based filtering (and no annotation based filtering). \code{featureFilter} does only annotation based filtering and duplicate removal; it always performs duplicate removal to retain the highest-IQR probe for each gene. } \value{ For \code{nsFilter} a list consisting of: \item{eset}{the filtered \code{ExpressionSet}} \item{filter.log}{a list giving details of how many probe sets where removed for each filtering step performed.} For both \code{varFilter} and \code{featureFilter} the filtered \code{ExpressionSet}. } \author{Seth Falcon (somewhat revised by Assaf Oron)} \note{\code{IQR} is a reasonable variance-filter choice when the dataset is split into two roughly equal and relatively homogeneous phenotype groups. If your dataset has important groups smaller than 25\% of the overall sample size, or if you are interested in unusual individual-level patterns, then \code{IQR} may not be sensitive enough for your needs. In such cases, you should consider using less robust and more sensitive measures of variance (the simplest of which would be \code{sd}).} \references{ R. Bourgon, R. Gentleman, W. Huber, Independent filtering increases power for detecting differentially expressed genes, Technical Report. } \examples{ library("hgu95av2.db") library("Biobase") data(sample.ExpressionSet) ans <- nsFilter(sample.ExpressionSet) ans$eset ans$filter.log ## skip variance-based filtering ans <- nsFilter(sample.ExpressionSet, var.filter=FALSE) a1 <- varFilter(sample.ExpressionSet) a2 <- featureFilter(sample.ExpressionSet) } \keyword{manip} genefilter/man/pOverA.Rd0000644000175400017540000000211613175713327016173 0ustar00biocbuildbiocbuild\name{pOverA} \alias{pOverA} \title{A filter function to filter according to the proportion of elements larger than A. } \description{ A function that returns a function with values for \code{A}, \code{p} and \code{na.rm} bound to the specified values. The function takes a single vector, \code{x}, as an argument. When the returned function is evaluated it returns \code{TRUE} if the proportion of values in \code{x} that are larger than \code{A} is at least \code{p}. } \usage{ pOverA(p=0.05, A=100, na.rm=TRUE) } \arguments{ \item{A}{The value to be exceeded. } \item{p}{The proportion that need to exceed \code{A} for \code{TRUE} to be returned. } \item{na.rm}{ If \code{TRUE} then \code{NA}'s are removed. } } \value{ \code{pOverA} returns a function with bindings for \code{A}, \code{p} and \code{na.rm}. This function evaluates to \code{TRUE} if the proportion of values in \code{x} that are larger than \code{A} exceeds \code{p}. } \author{R. Gentleman} \seealso{ \code{\link{cv}} } \examples{ ff<- pOverA(p=.1, 10) ff(1:20) ff(1:5) } \keyword{manip} genefilter/man/rejection_plot.Rd0000644000175400017540000000530313175713327020020 0ustar00biocbuildbiocbuild\name{rejection_plot} \Rdversion{1.1} \alias{rejection_plot} \title{ Plot rejections vs. p-value cutoff } \description{ Plot the number, or fraction, of null hypotheses rejected as a function of the p-value cutoff. Multiple sets of p-values are accepted, in a list or in the columns of a matrix, in order to permit comparisons. } \usage{ rejection_plot(p, col, lty = 1, lwd = 1, xlab = "p cutoff", ylab = "number of rejections", xlim = c(0, 1), ylim, legend = names(p), at = c("all", "sample"), n_at = 100, probability = FALSE, ... ) } \arguments{ \item{p}{ The p-values to be used for plotting. These may be in the columns of a matrix, or in the elements of a list. One curve will be generated for each column/element, and all \code{NA} entries will be dropped. If column or element names are supplied, they are used by default for a plot legend. } \item{col}{ Colors to be used for each curve plotted. Recycled if necessary. If \code{col} is omitted, \code{\link{rainbow}} is used to generate a set of colors. } \item{lty}{ Line styles to be used for each curve plotted. Recycled if necessary. } \item{lwd}{ Line widths to be used for each curve plotted. Recycled if necessary. } \item{xlab}{ X-axis text label. } \item{ylab}{ Y-axis text label. } \item{xlim}{ X-axis limits. } \item{ylim}{ Y-axis limits. } \item{legend}{ Text for legend. Matrix column names or list element names (see \code{p} above) are used by default. If \code{NULL}, no legend is plotted. } \item{at}{ Should step functions be plotted with a step at every value in \code{p}, or should linear interpolation be used at a sample of points spanning \code{xlim}? The latter looks when there are many p-values. } \item{n_at}{ When \code{at = "sample"} is given, how many sample points should be used for interpolation and plotting? } \item{probability}{ Should the fraction of null hypotheses rejected be reported instead of the count? See the \code{probability} argument to \code{\link{hist}}. } \item{\dots}{ Other arguments to pass to the \code{\link{plot}} call which sets up the axes. Note that the \code{...} argument will not be passed to the \code{\link{lines}} calls which actually generate the curves. } } \value{ A list of the step functions used for plotting is returned invisibly. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/rowFtests.Rd0000644000175400017540000001472313175713327017006 0ustar00biocbuildbiocbuild\name{rowFtests} \alias{rowFtests} \alias{rowFtests,matrix,factor-method} \alias{rowFtests,ExpressionSet,factor-method} \alias{rowFtests,ExpressionSet,character-method} \alias{colFtests} \alias{colFtests,matrix,factor-method} \alias{colFtests,ExpressionSet,factor-method} \alias{colFtests,ExpressionSet,character-method} \alias{rowttests} \alias{rowttests,matrix,factor-method} \alias{rowttests,matrix,missing-method} \alias{rowttests,ExpressionSet,factor-method} \alias{rowttests,ExpressionSet,character-method} \alias{rowttests,ExpressionSet,missing-method} \alias{colttests} \alias{colttests,matrix,factor-method} \alias{colttests,matrix,missing-method} \alias{colttests,ExpressionSet,factor-method} \alias{colttests,ExpressionSet,character-method} \alias{colttests,ExpressionSet,missing-method} \alias{fastT} \title{t-tests and F-tests for rows or columns of a matrix} \description{t-tests and F-tests for rows or columns of a matrix, intended to be speed efficient.} \usage{ rowttests(x, fac, tstatOnly = FALSE) colttests(x, fac, tstatOnly = FALSE) fastT(x, ig1, ig2, var.equal = TRUE) rowFtests(x, fac, var.equal = TRUE) colFtests(x, fac, var.equal = TRUE) } \arguments{ \item{x}{Numeric matrix. The matrix must not contain \code{NA} values. For \code{rowttests} and \code{colttests}, \code{x} can also be an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}.} \item{fac}{Factor which codes the grouping to be tested. There must be 1 or 2 groups for the t-tests (corresponding to one- and two-sample t-test), and 2 or more for the F-tests. If \code{fac} is missing, this is taken as a one-group test (i.e. is only allowed for the t-tests). The length of the factor needs to correspond to the sample size: for the \code{row*} functions, the length of the factor must be the same as the number of columns of \code{x}, for the \code{col*} functions, it must be the same as the number of rows of \code{x}. If \code{x} is an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}, then \code{fac} may also be a character vector of length 1 with the name of a covariate in \code{x}.} \item{tstatOnly}{A logical variable indicating whether to calculate p-values from the t-distribution with appropriate degrees of freedom. If \code{TRUE}, just the t-statistics are returned. This can be considerably faster.} \item{ig1}{The indices of the columns of \code{x} that correspond to group 1.} \item{ig2}{The indices of the columns of \code{x} that correspond to group 2.} \item{var.equal}{A logical variable indicating whether to treat the variances in the samples as equal. If 'TRUE', a simple F test for the equality of means in a one-way analysis of variance is performed. If 'FALSE', an approximate method of Welch (1951) is used, which generalizes the commonly known 2-sample Welch test to the case of arbitrarily many samples.} } \details{ If \code{fac} is specified, \code{rowttests} performs for each row of \code{x} a two-sided, two-class t-test with equal variances. \code{fac} must be a factor of length \code{ncol(x)} with two levels, corresponding to the two groups. The sign of the resulting t-statistic corresponds to "group 1 minus group 2". If \code{fac} is missing, \code{rowttests} performs for each row of \code{x} a two-sided one-class t-test against the null hypothesis 'mean=0'. \code{rowttests} and \code{colttests} are implemented in C and should be reasonably fast and memory-efficient. \code{fastT} is an alternative implementation, in Fortran, possibly useful for certain legacy code. \code{rowFtests} and \code{colFtests} are currently implemented using matrix algebra in R. Compared to the \code{rowttests} and \code{colttests} functions, they are slower and use more memory. } \value{ A \code{data.frame} with columns \code{statistic}, \code{p.value} (optional in the case of the t-test functions) and \code{dm}, the difference of the group means (only in the case of the t-test functions). The \code{row.names} of the data.frame are taken from the corresponding dimension names of \code{x}. The degrees of freedom are provided in the attribute \code{df}. For the F-tests, if \code{var.equal} is 'FALSE', \code{nrow(x)+1} degree of freedoms are given, the first one is the first degree of freedom (it is the same for each row) and the other ones are the second degree of freedom (one for each row). } \references{B. L. Welch (1951), On the comparison of several mean values: an alternative approach. Biometrika, *38*, 330-336} \author{Wolfgang Huber } \seealso{\code{\link[multtest:mt.teststat]{mt.teststat}}} \examples{ ## ## example data ## x = matrix(runif(40), nrow=4, ncol=10) f2 = factor(floor(runif(ncol(x))*2)) f4 = factor(floor(runif(ncol(x))*4)) ## ## one- and two group row t-test; 4-group F-test ## r1 = rowttests(x) r2 = rowttests(x, f2) r4 = rowFtests(x, f4) ## approximate equality about.equal = function(x,y,tol=1e-10) stopifnot(is.numeric(x), is.numeric(y), length(x)==length(y), all(abs(x-y) < tol)) ## ## compare with the implementation in t.test ## for (j in 1:nrow(x)) { s1 = t.test(x[j,]) about.equal(s1$statistic, r1$statistic[j]) about.equal(s1$p.value, r1$p.value[j]) s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) dm = -diff(tapply(x[j,], f2, mean)) about.equal(dm, r2$dm[j]) s4 = summary(lm(x[j,] ~ f4)) about.equal(s4$fstatistic["value"], r4$statistic[j]) } ## ## colttests ## c2 = colttests(t(x), f2) stopifnot(identical(r2, c2)) ## ## missing values ## f2n = f2 f2n[sample(length(f2n), 3)] = NA r2n = rowttests(x, f2n) for(j in 1:nrow(x)) { s2n = t.test(x[j,] ~ f2n, var.equal=TRUE) about.equal(s2n$statistic, r2n$statistic[j]) about.equal(s2n$p.value, r2n$p.value[j]) } ## ## larger sample size ## x = matrix(runif(1000000), nrow=4, ncol=250000) f2 = factor(floor(runif(ncol(x))*2)) r2 = rowttests(x, f2) for (j in 1:nrow(x)) { s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) } ## single row matrix rowFtests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5)))) rowttests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5)))) } \keyword{math} genefilter/man/rowROC-class.Rd0000644000175400017540000000673013175713327017263 0ustar00biocbuildbiocbuild\name{rowROC-class} \docType{class} \alias{rowROC} \alias{rowROC-class} \alias{pAUC} \alias{AUC} \alias{sens} \alias{spec} \alias{area} \alias{pAUC,rowROC,numeric-method} \alias{plot,rowROC,missing-method} \alias{AUC,rowROC-method} \alias{spec,rowROC-method} \alias{sens,rowROC-method} \alias{area,rowROC-method} \alias{show,rowROC-method} \alias{[,rowROC-method} \title{Class "rowROC"} \description{A class to model ROC curves and corresponding area under the curve as produced by rowpAUCs.} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("rowROC", ...)}. } \section{Slots}{ \describe{ \item{\code{data}:}{Object of class \code{"matrix"} The input data.} \item{\code{ranks}:}{Object of class \code{"matrix"} The ranked input data. } \item{\code{sens}:}{Object of class \code{"matrix"} Matrix of senitivity values for each gene at each cutpoint. } \item{\code{spec}:}{Object of class \code{"matrix"} Matrix of specificity values for each gene at each cutpoint.} \item{\code{pAUC}:}{Object of class \code{"numeric"} The partial area under the curve (integrated from 0 to \code{p}. } \item{\code{AUC}:}{Object of class \code{"numeric"} The total area under the curve. } \item{\code{factor}:}{Object of class \code{"factor"} The factor used for classification.} \item{\code{cutpoints}:}{Object of class \code{"matrix"} The values of the cutpoints at which specificity ans sensitivity was calculated. (Note: the data is ranked prior to computation of ROC curves, the cutpoints map to the ranked data.} \item{\code{caseNames}:}{Object of class \code{"character"} The names of the two classification cases.} \item{\code{p}:}{Object of class \code{"numeric"} The limit to which \code{pAUC} is integrated. } } } \section{Methods}{ \describe{ \item{show \code{signature(object="rowROC")}}{Print nice info about the object.} \item{[ \code{signature(x="rowROC", j="missing")}}{Subset the object according to rows/genes.} \item{plot \code{signature(x="rowROC", y="missing")}}{Plot the ROC curve of the first row of the object along with the \code{pAUC}. To plot the curve for a specific row/gene subsetting should be done first (i.e. \code{plot(rowROC[1])}.} \item{pAUC \code{signature(object="rowROC", p="numeric", flip="logical")}}{Integrate area under the curve from \code{0} to \code{p}. This method returns a new \code{rowROC} object.} \item{AUC \code{signature(object="rowROC")}}{Integrate total area under the curve. This method returns a new \code{rowROC} object.} \item{sens \code{signature(object="rowROC")}}{Accessor method for sensitivity slot.} \item{spec \code{signature(object="rowROC")}}{Accessor method for specificity slot.} \item{area \code{signature(object="rowROC", total="logical")}}{Accessor method for pAUC slot.} } } \references{Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from microarray experiments. \emph{Biometrics. 2003 Mar;59(1):133-42.}} \author{Florian Hahne } \seealso{ \code{\link[genefilter:rowpAUCs]{rowpAUCs}} } \examples{ library(Biobase) require(genefilter) data(sample.ExpressionSet) roc <- rowpAUCs(sample.ExpressionSet, "sex", p=0.5) roc area(roc[1:3]) if(interactive()) { par(ask=TRUE) plot(roc) plot(1-spec(roc[1]), sens(roc[2])) par(ask=FALSE) } pAUC(roc, 0.1) roc } \keyword{classes} genefilter/man/rowSds.Rd0000644000175400017540000000210013175713327016251 0ustar00biocbuildbiocbuild\name{rowSds} \alias{rowSds} \alias{rowVars} \title{Row variance and standard deviation of a numeric array} \description{ Row variance and standard deviation of a numeric array } \usage{ rowVars(x, ...) rowSds(x, ...) } \arguments{ \item{x}{An array of two or more dimensions, containing numeric, complex, integer or logical values, or a numeric data frame.} \item{...}{Further arguments that get passed on to \code{\link{rowMeans}} and \code{\link{rowSums}}.} } \value{ A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The `dimnames' (or `names' for a vector result) are taken from the original array. } \details{These are very simple convenience functions, the main work is done in \code{\link{rowMeans}} and \code{\link{rowSums}}. See the function definition of \code{rowVars}, it is very simple. } \author{Wolfgang Huber \url{http://www.ebi.ac.uk/huber}} \seealso{\code{\link{rowMeans}} and \code{\link{rowSums}}} \examples{ a = matrix(rnorm(1e4), nrow=10) rowSds(a) } \keyword{array} \keyword{manip} genefilter/man/rowpAUCs.Rd0000644000175400017540000001305213175713327016503 0ustar00biocbuildbiocbuild\name{rowpAUCs-methods} \docType{methods} \alias{rowpAUCs-methods} \alias{rowpAUCs} \alias{rowpAUCs,matrix,factor-method} \alias{rowpAUCs,matrix,numeric-method} \alias{rowpAUCs,ExpressionSet,ANY-method} \alias{rowpAUCs,ExpressionSet,character-method} \title{Rowwise ROC and pAUC computation} \description{Methods for fast rowwise computation of ROC curves and (partial) area under the curve (pAUC) using the simple classification rule \code{x > theta}, where \code{theta} is a value in the range of \code{x} } \usage{ rowpAUCs(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")) } \arguments{ \item{x}{\code{ExpressionSet} or numeric \code{matrix}. The \code{matrix} must not contain \code{NA} values.} \item{fac}{A \code{factor} or \code{numeric} or \code{character} that can be coerced to a \code{factor}. If \code{x} is an \code{ExpressionSet}, this may also be a character \code{vector} of length 1 with the name of a covariate variable in \code{x}. \code{fac} must have exactly 2 levels. For better control over the classification, use integer values in 0 and 1, where 1 indicates the "Disease" class in the sense of the Pepe et al paper (see below).} \item{p}{Numeric \code{vector} of length 1. Limit in (0,1) to integrate pAUC to.} \item{flip}{Logical. If \code{TRUE}, both classification rules \code{x > theta} and \code{x < theta} are tested and the (partial) area under the curve of the better one of the two is returned. This is appropriate for the cases in which the classification is not necessarily linked to higher expression values, but instead it is symmetric and one would assume both over- and under-expressed genes for both classes. You can set \code{flip} to \code{FALSE} if you only want to screen for genes which discriminate Disease from Control with the \code{x > theta} rule.} \item{caseNames}{The class names that are used when plotting the data. If \code{fac} is the name of the covariate variable in the \code{ExpressionSet} the function will use its levels as \code{caseNames}.} } \details{ Rowwise calculation of Receiver Operating Characteristic (ROC) curves and the corresponding partial area under the curve (pAUC) for a given data matrix or \code{ExpressionSet}. The function is implemented in C and thus reasonably fast and memory efficient. Cutpoints (\code{theta} are calculated before the first, in between and after the last data value. By default, both classification rules \code{x > theta} and \code{x < theta} are tested and the (partial) area under the curve of the better one of the two is returned. This is only valid for symmetric cases, where the classification is independent of the magnitude of \code{x} (e.g., both over- and under-expression of different genes in the same class). For unsymmetric cases in which you expect x to be consistently higher/lower in of of the two classes (e.g. presence or absence of a single biomarker) set \code{flip=FALSE} or use the functionality provided in the \code{ROC} package. For better control over the classification (i.e., the choice of "Disease" and "Control" class in the sense of the Pepe et al paper), argument \code{fac} can be an integer in \code{[0,1]} where 1 indicates "Disease" and 0 indicates "Control". } \section{Methods}{ \describe{ Methods exist for \code{rowPAUCs}: \item{rowPAUCs}{\code{signature(x="matrix", fac="factor")}} \item{rowPAUCs}{\code{signature(x="matrix", fac="numeric")}} \item{rowPAUCs}{\code{signature(x="ExpressionSet")}} \item{rowPAUCs}{\code{signature(x="ExpressionSet", fac="character")}} } } \value{ An object of class \code{\link[genefilter:rowROC-class]{rowROC}} with the calculated specificities and sensitivities for each row and the corresponding pAUCs and AUCs values. See \code{\link[genefilter:rowROC-class]{rowROC}} for details. } \references{Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from microarray experiments. \emph{Biometrics. 2003 Mar;59(1):133-42.}} \author{Florian Hahne } \seealso{\code{\link[ROC:rocdemo.sca]{rocdemo.sca}, \link[ROC:AUC]{pAUC}, \link[genefilter:rowROC-class]{rowROC}}} \examples{ library(Biobase) data(sample.ExpressionSet) r1 = rowttests(sample.ExpressionSet, "sex") r2 = rowpAUCs(sample.ExpressionSet, "sex", p=0.1) plot(area(r2, total=TRUE), r1$statistic, pch=16) sel <- which(area(r2, total=TRUE) > 0.7) plot(r2[sel]) ## this compares performance and output of rowpAUCs to function pAUC in ## package ROC if(require(ROC)){ ## performance myRule = function(x) pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 , data = x, rule = dxrule.sca), t0 = 0.1) nGenes = 200 cat("computation time for ", nGenes, "genes:\n") cat("function pAUC: ") print(system.time(r3 <- esApply(sample.ExpressionSet[1:nGenes, ], 1, myRule))) cat("function rowpAUCs: ") print(system.time(r2 <- rowpAUCs(sample.ExpressionSet[1:nGenes, ], "sex", p=1))) ## compare output myRule2 = function(x) pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 , data = x, rule = dxrule.sca), t0 = 1) r4 <- esApply(sample.ExpressionSet[1:nGenes, ], 1, myRule2) plot(r4,area(r2), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") plot(r4, area(rowpAUCs(sample.ExpressionSet[1:nGenes, ], "sex", p=1, flip=FALSE)), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") r4[r4<0.5] <- 1-r4[r4<0.5] plot(r4, area(r2), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") } } \keyword{math} genefilter/man/shorth.Rd0000644000175400017540000000541413175713327016312 0ustar00biocbuildbiocbuild\name{shorth} \alias{shorth} \title{A location estimator based on the shorth} \description{A location estimator based on the shorth} \usage{shorth(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05)} \arguments{ \item{x}{Numeric} \item{na.rm}{Logical. If \code{TRUE}, then non-finite (according to \code{\link{is.finite}}) values in \code{x} are ignored. Otherwise, presence of non-finite or \code{NA} values will lead to an error message.} \item{tie.action}{Character scalar. See details.} \item{tie.limit}{Numeric scalar. See details.} } \details{The shorth is the shortest interval that covers half of the values in \code{x}. This function calculates the mean of the \code{x} values that lie in the shorth. This was proposed by Andrews (1972) as a robust estimator of location. Ties: if there are multiple shortest intervals, the action specified in \code{ties.action} is applied. Allowed values are \code{mean} (the default), \code{max} and \code{min}. For \code{mean}, the average value is considered; however, an error is generated if the start indices of the different shortest intervals differ by more than the fraction \code{tie.limit} of \code{length(x)}. For \code{min} and \code{max}, the left-most or right-most, respectively, of the multiple shortest intervals is considered. Rate of convergence: as an estimator of location of a unimodal distribution, under regularity conditions, the quantity computed here has an asymptotic rate of only \eqn{n^{-1/3}} and a complicated limiting distribution. See \code{\link{half.range.mode}} for an iterative version that refines the estimate iteratively and has a builtin bootstrapping option. } \value{The mean of the \code{x} values that lie in the shorth.} \references{ \itemize{ \item G Sawitzki, \dQuote{The Shorth Plot.} Available at http://lshorth.r-forge.r-project.org/TheShorthPlot.pdf \item DF Andrews, \dQuote{Robust Estimates of Location.} Princeton University Press (1972). \item R Grueble, \dQuote{The Length of the Shorth.} Annals of Statistics 16, 2:619-628 (1988). \item DR Bickel and R Fruehwirth, \dQuote{On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications.} Computational Statistics & Data Analysis 50, 3500-3530 (2006). } } \author{Wolfgang Huber \url{http://www.ebi.ac.uk/huber}, Ligia Pedroso Bras} \seealso{\code{\link{half.range.mode}}} \examples{ x = c(rnorm(500), runif(500) * 10) methods = c("mean", "median", "shorth", "half.range.mode") ests = sapply(methods, function(m) get(m)(x)) if(interactive()) { colors = 1:4 hist(x, 40, col="orange") abline(v=ests, col=colors, lwd=3, lty=1:2) legend(5, 100, names(ests), col=colors, lwd=3, lty=1:2) } } \keyword{arith} genefilter/man/tdata.Rd0000644000175400017540000000067413175713327016103 0ustar00biocbuildbiocbuild\name{tdata} \alias{tdata} \non_function{} \title{A small test dataset of Affymetrix Expression data. } \usage{data(tdata)} \description{ The \code{tdata} data frame has 500 rows and 26 columns. The columns correspond to samples while the rows correspond to genes. The row names are Affymetrix accession numbers. } \format{ This data frame contains 26 columns. } \source{ An unknown data set. } \examples{ data(tdata) } \keyword{datasets} genefilter/man/ttest.Rd0000644000175400017540000000314013175713327016140 0ustar00biocbuildbiocbuild\name{ttest} \alias{ttest} \title{A filter function for a t.test } \description{ \code{ttest} returns a function of one argument with bindings for \code{cov} and \code{p}. The function, when evaluated, performs a t-test using \code{cov} as the covariate. It returns \code{TRUE} if the p value for a difference in means is less than \code{p}. } \usage{ ttest(m, p=0.05, na.rm=TRUE) } \arguments{ \item{m}{If \code{m} is of length one then it is assumed that elements one through \code{m} of \code{x} will be one group. Otherwise \code{m} is presumed to be the same length as \code{x} and constitutes the groups.} \item{p}{ The p-value for the test. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ When the data can be split into two groups (diseased and normal for example) then we often want to select genes on their ability to distinguish those two groups. The t-test is well suited to this and can be used as a filter function. This helper function creates a t-test (function) for the specified covariate and considers a gene to have passed the filter if the p-value for the gene is less than the prespecified \code{p}. } \value{ \code{ttest} returns a function with bindings for \code{m} and \code{p} that will perform a t-test. } \author{R. Gentleman } \seealso{\code{\link{kOverA}}, \code{\link{Anova}}, \code{\link{t.test}} } \examples{ dat <- c(rep(1,5),rep(2,5)) set.seed(5) y <- rnorm(10) af <- ttest(dat, .01) af(y) af2 <- ttest(5, .01) af2(y) y[8] <- NA af(y) af2(y) y[1:5] <- y[1:5]+10 af(y) } \keyword{manip} genefilter/src/0000755000175400017540000000000013175725026014523 5ustar00biocbuildbiocbuildgenefilter/src/genefilter.h0000644000175400017540000000043713175725026017024 0ustar00biocbuildbiocbuild/* Copyright Bioconductor Foundation NA, 2007, all rights reserved */ #include #include typedef int RSInt; void gf_distance(double *x, RSInt *nr, RSInt *nc, RSInt *g, double *d, RSInt *iRow, RSInt *nInterest, RSInt *nResults, RSInt *method, double *wval); genefilter/src/half_range_mode.cpp0000644000175400017540000000632713175725026020331 0ustar00biocbuildbiocbuild#include #include #include using namespace std; double half_range_mode( double *start, double *end, double beta, int diag ) { // The end pointer is one step beyond the data... double w, w_prime; double *last, *new_start, *new_end; vector counts, J; vector w_range; int i, s, e; int N, N_prime, N_double_prime; double lo, hi; last = end - 1; N = end - start; // How many elements are in the set? Terminate recursion appropriately... switch ( N ) { case 1: return *start; case 2: return .5 * ( *start + *last ); // Main recursive code begins here default: w = beta * ( *last - *start ); // If all values are identical, return immediately... if ( w == 0 ) return *start; // If we're at the end of the data, counts can only get worse, so there's no point in continuing... e = 0; for( s = 0; s < N && e < N; s++ ) { while ( e < N && start[ e ] <= start[ s ] + w ) { e++; } counts.push_back( e - s ); } // Maximum count, and its multiplicity N_prime = *( max_element( counts.begin(), counts.end() ) ); for ( i = 0; i < (int) counts.size(); i++ ) if ( counts[i] == N_prime ) J.push_back( i ); // Do we have more than one maximal interval? if ( J.size() == 1 ) { // No... the interval's unique. new_start = start + J[0]; new_end = start + J[0] + N_prime; } else { // Yes.. What's the smallest range? for ( i = 0; i < (int) J.size(); i++ ) w_range.push_back( start[ J[i] + N_prime - 1 ] - start[ J[i] ] ); w_prime = *( min_element( w_range.begin(), w_range.end() ) ); // Set new start and end. We skip the more cumbersome V.min and V.max of the Bickel algorithm i = 0; while( w_range[ i ] > w_prime ) i++; new_start = start + J[i]; new_end = start + J[i] + N_prime; // If there are any more maximal-count, minimal-range intervals, adjust // new_end accordingly. for ( i++; i < (int) J.size(); i++ ) if ( w_range[ i ] == w_prime ) new_end = start + J[i] + N_prime; } // Adjustments in rare cases where the interval hasn't shrunk. Trim one end, // the other, or both if lo == hi. Originally, this was inside the else // block above. With discrete data with a small number of levels, it is // possible, however for |J| = 1 AND N_double_prime = N, leading to an // infinite recursion. N_double_prime = new_end - new_start; if (N_double_prime == N ) { lo = new_start[1] - new_start[0]; hi = new_start[ N - 1 ] - new_start[ N - 2 ]; if ( lo <= hi ) { new_end--; } if ( lo >= hi ) { new_start++; } } // Diagnostic output if requested if (diag) Rprintf( "N = %i, N'' = %i, w = %.4f, |J| = %i\n", N, N_double_prime, w, J.size() ); // Clean up and then go in recursively counts.clear(); J.clear(); w_range.clear(); return half_range_mode( new_start, new_end, beta, diag ); } } extern "C" { void half_range_mode( double *data, int *n, double *beta, int *diag, double *M ) { // We assume that that data is already sorted for us... *M = half_range_mode( data, data + *n, *beta, *diag ); } } genefilter/src/init.c0000644000175400017540000000054213175725026015633 0ustar00biocbuildbiocbuild/* Copyright Bioconductor Foundation of NA, 2007, all rights reserved */ #include "R.h" #include "genefilter.h" #include "R_ext/Rdynload.h" static const R_CMethodDef CEntries[] = { {"gf_distance", (DL_FUNC) &gf_distance, 10}, {NULL, NULL, 0} }; void R_init_genefilter(DllInfo *dll) { R_registerRoutines(dll, CEntries, NULL, NULL, NULL); } genefilter/src/nd.c0000644000175400017540000002012113175725026015264 0ustar00biocbuildbiocbuild/* Copyright The Bioconductor Foundation 2007, all rights reserved */ /* this is patterned on the R code in library/stats/src/distance.c as we want to have similar values, but does not handle NA/Inf identically, allows weights and solves the problem of finding distances to a particular value, not necessarily all pairwise distances */ /* Modified in April 2007 for use with S-PLUS ArrayAnalyzer by Insightful Corp. Replaced all int declarations with RSInt declarations. RSInt is defined in S-PLUS's R.h as: typedef long RSInt; Other changes are if-def-ed with if defined(_R_) around the original code. */ /* and further modified since S.h in R defines USING_R - not _R_ !! */ #include "S.h" #if defined(USING_R) /*( R-specific stuff */ #define S_CDECL #ifdef HAVE_CONFIG_H # include #endif /* we need this first to get the right options for math.h */ #include #include "genefilter.h" #include #include "R_ext/Error.h" #include "R_ext/Applic.h" #else /*) Splus-specific stuff */ #define S_COMPATIBILITY 1 #include "rsplus.h" #endif typedef struct { RSInt geneNum; double geneDist; } gene_t; static void detectTies(RSInt geneNum, RSInt nResults, RSInt nRows, gene_t *data) { /* Will scan through the first nResults+1 distances in the */ /* data array, and if it detects any ties, will flag a R */ /* warning */ RSInt i; /* Loop indices */ /* If nResults == nRows, do not exceed nResults - otherwise exceed it */ /* by 1 in order to see if there were trailing ties */ if (nResults == nRows) { nResults = nRows-1; } for (i = 1; i < nResults; i++) { if (data[i].geneDist == data[i+1].geneDist) { PROBLEM "There are distance ties in the data for gene %d\n",geneNum WARN; break; } } } static int S_CDECL distCompare(const void *p1, const void *p2) { const gene_t *i = p1; const gene_t *j = p2; if (!R_FINITE(i->geneDist )) return(1); if (!R_FINITE(j->geneDist)) return(-1); if (i->geneDist > j->geneDist) return (1); if (i->geneDist < j->geneDist) return (-1); return (0); } static double gf_correlation(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { RSInt i; /* Loop index */ RSInt a,b; /* Used as array indices for i1 and i2 */ double xAvg, yAvg; /* Averages of the i1 and i2 rows */ double wA, wB; /* Weighted x[a] and x[b] */ double upTot = 0; /* Upper summation */ double botTotL, botTotR; /* The lower two summations */ double botVal; /* Bottom value for Rho */ double Rho, ans; botTotL = botTotR = 0; xAvg = yAvg = 0; a = i1; b = i2; /* Calculate the averages for the i1 and i2 rows */ for (i = 0; i < nc; i++) { if (R_FINITE(x[a])) { xAvg += (wval[i] * x[a]); } if (R_FINITE(x[b])) { yAvg += (wval[i] * x[b]); } a += nr; b += nr; } xAvg /= (double)nc; yAvg /= (double)nc; /* Reset a & b */ a = i1; b = i2; /* Build up the three summations in the equation */ for (i = 0; i < nc; i++) { if (R_FINITE(x[a]) && R_FINITE(x[b])) { wA = (x[a] - xAvg); wB = (x[b] - yAvg); upTot += wval[i]*wA*wB; botTotL += wval[i]*pow(wA,2); botTotR += wval[i]*pow(wB,2); } a += nr; b += nr; } /* Compute Rho & Distance (1 - R) */ botVal = sqrt((botTotL * botTotR)); Rho = upTot / botVal; ans = 1 - Rho; return(ans); } static double gf_euclidean(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double dev, ans; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { dev = (x[i1] - x[i2]); dev = dev * dev; /* Apply weight and add the total */ ans += (wval[j] * dev); ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return sqrt(ans); } static double gf_maximum(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double dev, ans; RSInt ct, j; ct = 0; ans = -DBL_MAX; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { dev = fabs(x[i1] - x[i2]); /* apply the weight */ dev *= wval[j]; if(dev > ans) ans = dev; ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; return ans; } static double gf_manhattan(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double ans; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { ans += (wval[j] * fabs(x[i1] - x[i2])); ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return ans; } static double gf_canberra(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double ans, sum, diff; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { sum = fabs(x[i1] + x[i2]); diff = fabs(x[i1] - x[i2]); if (sum > DBL_MIN || diff > DBL_MIN) { ans += wval[j]*(diff/sum); ct++; } } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return ans; } static double gf_dist_binary(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { RSInt total, ct, ans; RSInt j; total = 0; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { if(x[i1] || x[i2]){ ct += wval[j]; if( !(x[i1] && x[i2]) ) ans += wval[j]; } total++; } i1 += nr; i2 += nr; } if(total == 0) return NA_REAL; if(ct == 0) return 0; return (double) ans / ct; } enum { EUCLIDEAN=1, MAXIMUM, MANHATTAN, CANBERRA, CORRELATION, BINARY}; /* == 1,2,..., defined by order in the R function dist */ void gf_distance(double *x, RSInt *nr, RSInt *nc, RSInt *g, double *d, RSInt *iRow, RSInt *nInterest, RSInt *nResults, RSInt *method, double *wval) { /* x -> Data Array nr -> Number of rows in X nc -> number of columns in X g -> The nResults closest genes to the genes of interest d -> The distances of the genes from g, 1 to 1 mapping iRow -> rows of X that we are interested in nInterest -> Number of elements in iRow nResults -> The top X results to pass back method -> which distance method to use */ RSInt i,j, k; /* Loop indices */ RSInt baseIndex; /* Used to index data arrays */ gene_t *tmp; /* Temporary array to hold the distance data */ double (*distfun)(double*, double*, RSInt, RSInt, RSInt, RSInt) = NULL; /* Sanity check the nResults vs. number of rows in the data */ if (*nResults > *nr) { warning("Number of results selected is greater than number of rows, using the number of rows instead\n"); *nResults = *nr-1; } /* Size of tmp == *nr, as each gene we're interested in will generate *nr distance points */ tmp = (gene_t *)R_alloc(*nr, sizeof(gene_t)); /* Determine which distance function to use */ switch(*method) { case EUCLIDEAN: distfun = gf_euclidean; break; case MAXIMUM: distfun = gf_maximum; break; case MANHATTAN: distfun = gf_manhattan; break; case CANBERRA: distfun = gf_canberra; break; case CORRELATION: distfun = gf_correlation; break; case BINARY: distfun = gf_dist_binary; break; default: error("invalid distance"); } for (j = 0; j < *nInterest; j++) { /* Get the distances for this gene, store in tmp array */ for(i = 0 ; i < (*nr) ; i++) { tmp[i].geneNum = i; tmp[i].geneDist = distfun(x, wval, *nr, *nc, iRow[j]-1, i); } /* Run a sort on the temp array */ qsort(tmp, *nr, sizeof(gene_t), distCompare); /* Detect any ties */ detectTies(iRow[j], *nResults, *nr, tmp); /* Copy the 1<->nResults data points into the final array */ baseIndex = *nResults * j; for (k = 1; k <= *nResults; k++) { g[baseIndex + (k-1)] = tmp[k].geneNum; d[baseIndex + (k-1)] = tmp[k].geneDist; } } } genefilter/src/pAUC.c0000644000175400017540000001152013175725026015456 0ustar00biocbuildbiocbuild/* * F. Hahne 10/24/2006 */ #include #include #include #include #include #include /*----------------------------------------------------------------- internal c function for calculation of pAUCs -----------------------------------------------------------------*/ void pAUC_c(double *spec, double *sens, double *area, double *auc, double *p, int columns, int rows, int flip) { int i, j, k, d; double *x, *y; double a, ta, tmp, lim, xsum ,ysum; x = (double *) R_alloc(columns+1, sizeof(double)); y = (double *) R_alloc(columns+1, sizeof(double)); /* this computes pAUC for roc curve in row k*/ for(k=0; k ysum){ for(i=k*columns,d=0; i x[d]){ for(i=0, j=d; i<=d/2; i++, j--){ tmp=x[i]; x[i]=x[j]; x[j]=tmp; tmp=y[i]; y[i]=y[j]; y[j]=tmp; } } x[columns]=1; y[columns]=y[columns-1]; /* compute area by trapezoidal rule*/ lim = x[0] < (*p) ? x[0] : *p; /*right border of first segment*/ a = (lim*y[0])/2; /*area of 1. segement (from x1=0 to x2=lim)*/ i=1; while(x[i] < (*p)){ a += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } if(i > 2) /*last segment (from xn to p)*/ a += (((*p)-x[i-1])*(y[i]-y[i-1])/2) + (((*p)-x[i-1])*y[i-1]); ta = a; /*compute full AUC and flip curve if necessary*/ if((*p) < 1){ ta += ((x[i]-(*p))*(y[i]-y[i-1])/2) + ((x[i]-(*p))*y[i-1]); i++; while(i < columns+1 && x[i] < 1){ ta += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } ta += ((1-x[i-1])*(1-y[i-1])/2) + ((1-x[i-1])*y[i-1]); }else{ d=1; } if(flip && (*p)==1 && ta < 0.5){ /*rotate 180° if area < 0.5*/ a = (*p) - a; ta = 1-ta; } if(a>1){ error("Internal error"); } area[k] = a; auc[k] = ta; } } /*----------------------------------------------------------------- interface to R with arguments: spec : matrix of numerics (specificity) sens: matrix of numerics (sensitivity) p: numeric in 01)) error("'p' must be between 0 and 1."); /* done with p */ /* check input argument flip */ if(!isInteger(_flip)) error("'flip' must be an integer."); flip = (int)INTEGER(_flip)[0]; /* done with flip */ /* allocate memory for return values */ PROTECT(area = allocVector(REALSXP, columns)); PROTECT(auc = allocVector(REALSXP, columns)); /* Do it! */ pAUC_c(spec, sens, REAL(area), REAL(auc), p, rows, columns, flip); /* return value: a list with elements spec sens and area */ PROTECT(res = allocVector(VECSXP, 2)); SET_VECTOR_ELT(res, 0, area); SET_VECTOR_ELT(res, 1, auc); PROTECT(namesres = allocVector(STRSXP, 2)); SET_STRING_ELT(namesres, 0, mkChar("pAUC")); SET_STRING_ELT(namesres, 1, mkChar("AUC")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(4); /* done with res, namesres, pAUC, auc */ return(res); } genefilter/src/rowPAUCs.c0000644000175400017540000001475613175725026016347 0ustar00biocbuildbiocbuild/* * F. Hahne 10/26/2005 */ #include #include #include #include #include #include /*----------------------------------------------------------------- internal c function for calculation of ROC curves and pAUCs -----------------------------------------------------------------*/ void ROCpAUC_c(double *data, int nrd, int ncd, double *cutp, int ncc, int *truth, double *spec, double *sens, double *area, double *auc, double *p, int flip) { int i, j, k, pred, d, rsum, csum, rcount, ccount; double *x, *y; double a, ta, tmp, lim, xsum, ysum; x = (double *) R_alloc(ncc+1, sizeof(double)); y = (double *) R_alloc(ncc+1, sizeof(double)); /* this code computes roc for a given n * n matrix at given cut points */ //printf("Computing ROC curves for %d rows at %d cutpoints ...\n", nrd, ncc); for(k=0; k cutp[i]) ? 1 : 0; if(truth[d] == 1){ rsum += pred; rcount++; } else{ csum+=(1-pred); ccount++; } } /* for j (columns)*/ sens[i] = (double)rsum/rcount; spec[i] = (double)csum/ccount; } /* for i (cutpoints)*/ /* this computes pAUC for roc curve in row k*/ xsum = ysum = 0; for(i=k,d=0; i ysum){ for(i=k,d=0; i x[d]){ for(i=0, j=d; i<=(d+1)/2; i++, j--){ tmp=x[i]; x[i]=x[j]; x[j]=tmp; tmp=y[i]; y[i]=y[j]; y[j]=tmp; } } x[ncc] = 1; y[ncc] = y[ncc-1]; /* compute area by trapezoidal rule*/ lim = x[0] < (*p) ? x[0] : *p; /*right border of first segment*/ a = (lim*y[0])/2; /*area of 1. segement (from x1=0 to x2=lim)*/ i=1; while(x[i] < (*p)){ a += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } if(i > 2){ /*last segment (from xn to p)*/ a += (((*p)-x[i-1])*(y[i]-y[i-1])/2) + (((*p)-x[i-1])*y[i-1]); } ta = a; /*compute full AUC and flip curve if necessary*/ if((*p) < 1){ ta += ((x[i]-(*p))*(y[i]-y[i-1])/2) + ((x[i]-(*p))*y[i-1]); i++; while(i < ncc+1 && x[i] < 1){ ta += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } ta += ((1-x[i-1])*(1-y[i-1])/2) + ((1-x[i-1])*y[i-1]); } if(flip && (*p)==1 && ta < 0.5){ /*rotate 180° if area < 0.5*/ a = (*p) - a; ta = 1-ta; } if(a>1) error("Internal error"); area[k] = a; auc[k] = ta; } } /*----------------------------------------------------------------- interface to R with arguments: data : matrix of numerics cutpts: matrix with treshholds for ROC curve calculation truth: int with values 0 and 1, defining the real classification p: numeric in 0=0)&&(truth[i]<=1))) ) error("Elements of 'truth' must be 0 or 1."); /* done with truth */ /* check input argument p */ if(!isReal(_p) || length(_p)!=1) error("'p' must be numeric."); p = REAL(_p); if(((*p)<0)||((*p)>1)) error("'p' must be between 0 and 1."); /* done with p */ /* check input argument flip */ if(!isInteger(_flip)) error("'flip' must be an integer."); flip = (int)INTEGER(_flip)[0]; /* done with flip */ /* allocate memory for return values */ PROTECT(spec = allocVector(REALSXP, nrd*ncc)); PROTECT(sens = allocVector(REALSXP, nrd*ncc)); PROTECT(dim = allocVector(INTSXP, 2)); INTEGER(dim)[0] = nrd; INTEGER(dim)[1] = ncc; SET_DIM(spec, dim); SET_DIM(sens, dim); PROTECT(area = allocVector(REALSXP, nrd)); PROTECT(auc = allocVector(REALSXP, nrd)); /* Do it! */ /* note nrc is the same as nrd */ ROCpAUC_c(data, nrd, ncd, cutp, ncc, truth, REAL(spec), REAL(sens), REAL(area), REAL(auc), p, flip); /* return value: a list with elements spec sens and pAUC */ PROTECT(res = allocVector(VECSXP, 4)); SET_VECTOR_ELT(res, 0, spec); SET_VECTOR_ELT(res, 1, sens); SET_VECTOR_ELT(res, 2, area); SET_VECTOR_ELT(res, 3, auc); PROTECT(namesres = allocVector(STRSXP, 4)); SET_STRING_ELT(namesres, 0, mkChar("spec")); SET_STRING_ELT(namesres, 1, mkChar("sens")); SET_STRING_ELT(namesres, 2, mkChar("pAUC")); SET_STRING_ELT(namesres, 3, mkChar("AUC")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(7); /* done with res, namesres, spec, sens, dim, pAUC */ return(res); } genefilter/src/rowttests.c0000644000175400017540000001421513175725026016750 0ustar00biocbuildbiocbuild/* * Copyright W. Huber 2005 */ #include #include #include #include #include /* #define DEBUG */ char errmsg[256]; /*----------------------------------------------------------------- which=0: t-test by row which=1: t-test by column -----------------------------------------------------------------*/ void rowcolttests_c(double *x, int *fac, int nr, int nc, int no, int nt, int which, int nrgrp, double *statistic, double *dm, double *df) { int i, j, grp; double z, delta, newmean, factor; /* Currently the following provides for one- and two-sample t-tests (nrgrp=1 or 2), but it should be possible to generalize this code to more samples (F-test) without too many changes */ int n[2]; double* s[2]; double* ss[2]; if(nrgrp>2) error("Please do not use 'nrgrp' >2 with 'rowcolttests'"); /* allocate and initialize storage for intermediate quantities (namely first and second moments for each group) */ for(grp=0; grp=0)&&(fac[i]=0 and < 'nrgrp'."); PROTECT(statistic = allocVector(REALSXP, nt)); PROTECT(dm = allocVector(REALSXP, nt)); PROTECT(df = allocVector(REALSXP, 1)); /* Do it */ rowcolttests_c(x, fac, nr, nc, no, nt, which, nrgrp, REAL(statistic), REAL(dm), REAL(df)); /* return value: a list with two elements, statistic and df */ PROTECT(res = allocVector(VECSXP, 3)); SET_VECTOR_ELT(res, 0, statistic); SET_VECTOR_ELT(res, 1, dm); SET_VECTOR_ELT(res, 2, df); PROTECT(namesres = allocVector(STRSXP, 3)); SET_STRING_ELT(namesres, 0, mkChar("statistic")); SET_STRING_ELT(namesres, 1, mkChar("dm")); SET_STRING_ELT(namesres, 2, mkChar("df")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(5); /* done with res, namesres, statistic, dm, df */ return(res); } genefilter/src/ttest.f0000644000175400017540000000330013175725026016031 0ustar00biocbuildbiocbuildc By R Gray, March 19, 2000, DFCI c Copyright (C) 2000 Robert Gray c Distributed under the GNU public license c c t-statistics c first ng1 columns of d assumed to be group 1, other ng-ng1 assumed to be c group2. Note: single precision stats c c Modified by R. Gentleman, 2004, just extracted the ttest stats and c computed a ratio on demand - or fold-change subroutine fastt(d,n,ng,ng1,z,dm,eqv,ratio) real d(n,ng),z(n),dm(n) integer n,ng,ng1,ng2,eqv,ratio c initialize ng2=ng-ng1 do 61 i=1,n call tst2GM(d(i,1),ng1,ng2,n,z(i),dm(i), eqv, ratio) 61 continue return end subroutine tst2GM(d,ng1,ng2,n,tst,dm,eqv, ratio) c columns 1 to ng1 in group 1, ng1+1 to ng1+ng2 in group 2 real d(n,ng1+ng2),tst,dm double precision dm1,dm2,dss1,dss2 integer ng1,ng2,n,i,eqv, ratio dm1=0 dm2=0 dss1=0 dss2=0 do 10 i=1,ng1 dm1=dm1+d(1,i) 10 continue dm1=dm1/ng1 do 11 i=1,ng1 dss1=dss1+(d(1,i)-dm1)**2 11 continue do 12 i=1,ng2 dm2=dm2+d(1,ng1+i) 12 continue dm2=dm2/ng2 do 13 i=1,ng2 dss2=dss2+(d(1,ng1+i)-dm2)**2 13 continue if( ratio.eq.0) then dm=dm1-dm2 endif if( ratio.eq.1) then dm=dm1/dm2 endif if (dss1.eq.0.and.dss2.eq.0) then tst=0 return endif c intermediate calculations in dp, so stats with many ties give same sp result c regardless of order of calculations if( eqv .eq. 1 ) then tst=(dm1-dm2)/sqrt((1.d0/ng1+1.d0/ng2)*(dss1+dss2)/(ng1+ng2-2)) return endif tst=(dm1-dm2)/sqrt(dss1/((ng1-1)*ng1)+dss2/((ng2-1)*ng2)) end genefilter/vignettes/0000755000175400017540000000000013175725026015744 5ustar00biocbuildbiocbuildgenefilter/vignettes/howtogenefilter.Rnw0000644000175400017540000001473113175713327021650 0ustar00biocbuildbiocbuild% % NOTE -- ONLY EDIT howtogenefilter.Rnw!!! % howtogenefilter.tex file will get overwritten. % %\VignetteIndexEntry{Using the genefilter function to filter genes from a microarray dataset} %\VignetteDepends{Biobase, genefilter, class} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{Using the genefilter function to filter genes from a microarray dataset} \maketitle \section*{Introduction} The {\em genefilter} package can be used to filter (select) genes from a microarray dataset according to a variety of different filtering mechanisms. Here, we will consider the example dataset in the \verb+sample.ExpressionSet+ example from the {\em Biobase} package. This experiment has 26 samples, and there are 500 genes and 3 covariates. The covariates are named \verb+sex+, \verb+type+ and \verb+score+. The first two have two levels and the last one is continuous. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) @ %$ One dichotomy that can be of interest for subsequent analyses is whether the filter is \emph{specific} or \emph{non-specific}. Here, specific means that we are filtering with reference to sample metadata, for example, \texttt{type}. For example, if we want to select genes that are differentially expressed in the two groups defined by \texttt{type}, that is a specific filter. If on the other hand we want to select genes that are expressed in more than 5 samples, that is an example of a non--specific filter. First, let us see how to perform a non--specific filter. Suppose we want to select genes that have an expression measure above 200 in at least 5 samples. To do that we use the function \verb+kOverA+. There are three steps that must be performed. \begin{enumerate} \item Create function(s) implementing the filtering criteria. \item Assemble it (them) into a (combined) filtering function. \item Apply the filtering function to the expression matrix. \end{enumerate} <<>>= f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) @ Here \verb+f1+ is a function that implies our ``expression measure above 200 in at least 5 samples'' criterion, the function \verb+ffun+ is the filtering function (which in this case consists of only one criterion), and we apply it using \verb+genefilter+. There were \Sexpr{sum(wh1)} genes that satisfied the criterion and passed the filter. As an example for a specific filter, let us select genes that are differentially expressed in the groups defined by \verb+type+. <<>>= f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) @ %$ Here, \texttt{ttest} is a function from the \texttt{genefilter} package which provides a suitable wrapper around \texttt{t.test} from package \textit{stats}. Now we see that there are \Sexpr{sum(wh2)} genes that satisfy the selection criterion. Suppose that we want to combine the two filters. We want those genes for which at least 5 have an expression measure over 200 \emph{and} which also are differentially expressed between the groups defined by \verb+type+. <<>>= ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) @ Now we see that there are only \Sexpr{sum(wh3)} genes that satisfy both conditions. %%FIXME: need to replace this with something else %Our last example is to select genes that are %differentially expressed in at least one of the three groups defined %by \verb+cov3+. %To do that we use an Anova filter. This filter uses an analysis of %variance appraoch (via the \verb+lm+) function to test the hypothesis %that at least one of the three group means is different from the other %%two. The test is applied, then the $p$--value computed. We select %those genes that have a low $p$--value. % %<<>>= %Afilter <- Anova(eset$cov3) %aff <- filterfun(Afilter) %wh4 <- genefilter(exprs(eset), aff) %sum(wh4) % %@ %%$ %We see that there are 14 genes that pass this filter and that are %candidates for further exploration. \section*{Selecting genes that appear useful for prediction} The function \texttt{knnCV} defined below performs $k$--nearest neighbour classification using leave--one--out cross--validation. At the same time it aggregates the genes that were selected. The function returns the predicted classifications as its returned value. However, there is an additional side effect. The number of times that each gene was used (provided it was at least one) are recorded and stored in the environment of the aggregator \verb+Agg+. These can subsequently be retrieved and used for other purposes. <>= knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } @ %$ <>= gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } @ Next we show how to use this function on the dataset \verb+geneData+. <>= library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) @ <>= sort(sapply(aggenv(Agg), c), decreasing=TRUE) @ %$ The environment \verb+Agg+ contains, for each gene, the number of times it was selected in the cross-validation. \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/vignettes/howtogenefinder.Rnw0000644000175400017540000000742113175713327021630 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{How to find genes whose expression profile is similar to that of specified genes} %\VignetteDepends{Biobase, genefilter} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{How to find genes whose expression profile is similar to that of specified genes} \maketitle \section*{Introduction} In some cases you have certain genes of interest and you would like to find other genes that are {\em close} to the genes of interest. This can be done using the \verb+genefinder+ function. You need to specify either the index position of the genes you want (which row of the expression array the gene is in) or the name (consistent with the \verb+featureNames+ of the ExpressionSet). A vector of names can be specified and matches for all will be computed. The number of matches and the distance measure used can all be specified. The examples will be carried out using the artificial data set, \verb+sample.ExpressionSet+. Two other options for \verb+genefinder+ are \verb+scale+ and \verb+method+. The \verb+scale+ option controls the scaling of the rows (this is often desirable) while the \verb+method+ option controls the distance measure used between genes. The possible values and their meanings are listed at the end of this document. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) @ The Affymetrix identifiers (since these were originally Affymetrix data) are \verb+31539_r_at+, \verb+31572_at+, \verb+31594_at+ and \verb+31658_at+. We can find the nearest genes (by index) for any of these by simply accessing the relevant component of \verb+closeg+. <<>>= closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 @ %$ You could then take these names (from \verb+Nms1+) and the {\em annotate} package and explore them further. See the various HOWTO's in annotate to see how to further explore your data. Examples include finding and searching all PubMed abstracts associated with these data. Finding and downloading associated sequence information. The data can also be visualized using the {\em geneplotter} package (again there are a number of HOWTO documents there). \section*{Parameter Settings} The \verb+scale+ parameter can take the following values: \begin{description} \item[none] No scaling is done. \item[range] Scaling is done by $(x_i - x_{(1)})/(x_{(n)}- x_{(1)})$. \item[zscore] Scaling is done by $(x_i - \bar{x})/ s_x$. Where $s_x$ is the standard deviation. \end{description} The \verb+method+ parameter can take the following values: \begin{description} \item[euclidean] Euclidean distance is used. \item[maximum] Maximum distance between any two elements of x and y (supremum norm). \item[manhattan] Absolute distance between the two vectors (1 norm). \item[canberra] The $\sum (|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing. \item[binary] (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are {\em on} and zero elements are {\em off}. The distance is the proportion of bits in which only one is on amongst those in which at least one is on. \end{description} \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/vignettes/independent_filtering.Rnw0000644000175400017540000004773413175713327023014 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Diagnostics for independent filtering} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex2() @ \usepackage{xstring} \newcommand{\thetitle}{Diagnostics for independent filtering: choosing filter statistic and cutoff} \title{\textsf{\textbf{\thetitle}}} \author{Wolfgang Huber\\[1em]European Molecular Biology Laboratory (EMBL)} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section @ % Make title \maketitle \tableofcontents \vspace{.25in} \begin{abstract} \noindent This vignette illustrates diagnostics that are intended to help with \begin{itemize} \item the choice of filter criterion and \item the choice of filter cutoff \end{itemize} in independent filtering~\cite{Bourgon:2010:PNAS}. The package \Biocpkg{genefilter} provides functions that might be convenient for this purpose. \end{abstract} %----------------------------------------------------------- \section{Introduction} %----------------------------------------------------------- Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance, in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance is differential binding detection from ChIP-Seq data. The idea of \emph{independent filtering} is to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the false discovery rate. A good choice for a filtering criterion is one that \begin{enumerate} \item\label{it:indp} is statistically independent from the test statistic under the null hypothesis, \item\label{it:corr} is correlated with the test statistic under the alternative, and \item\label{it:joint} does not notably change the dependence structure --if there is any-- of the joint test statistics (including those corresponding to true nulls and to true alternatives). \end{enumerate} The benefit from filtering relies on property~\ref{it:corr}, and I will explore that further in Section~\ref{sec:qual}. The statistical validity of filtering relies on properties \ref{it:indp} and \ref{it:joint}. For many practically useful combinations of filter criteria with test statistics, property~\ref{it:indp} is easy to prove (e.\,g., through Basu's theorem). Property~\ref{it:joint} is more complicated, but rarely presents a problem in practice: if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without filtering, the filtering should not change that. Please see~\cite{Bourgon:2010:PNAS} for further discussion on the mathematical and conceptual background. %----------------------------------------------------------- \section{Example data set} %----------------------------------------------------------- For illustration, let us use the \Robject{pasillaGenes} dataset from the Bioconductor package \Rpackage{pasilla}; this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate samples the were measured for each of two biological conditions: normally growing cells and cells treated with dsRNA against the \emph{Pasilla} mRNA, which led to RNAi interference (RNAi) mediated knockdown of the Pasilla gene product. % <>= library("pasilla") data("pasillaGenes") @ % We perform a standard analysis with \Rpackage{DESeq} to look for genes that are differentially expressed between the normal and Pasilla-knockdown conditions, indicated by the factor variable \Robject{condition}. In the generalized linear model (GLM) analysis, we adjust for an additional experimental covariate \Robject{type}, which is however not of interest for the differential expression. For more details, please see the vignette of the \Rpackage{DESeq} package. % <>= library("DESeq") <>= cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) <>= res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) @ % The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in the columns of the dataframe \Robject{res}: \begin{itemize} \item \texttt{filterstat}: the filter statistic, here the average number of counts per gene across all samples, irrespective of sample annoation, \item \texttt{pvalue}: the test $p$-values, \end{itemize} Each row of the dataframe corresponds to one gene: <>= dim(res) head(res) @ %-------------------------------------------------- \section{Qualitative assessment of the filter statistic}\label{sec:qual} %-------------------------------------------------- <>= theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) @ % First, consider Figure~\ref{figscatterindepfilt}, which shows that among the approximately \Sexpr{100*theta}\% of genes with lowest overall counts, \Robject{filterstat}, there are essentially none that achieved an (unadjusted) $p$-value less than \Sexpr{signif(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE), 1)} (this corresponds to about \Sexpr{signif(-log10(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE)), 2)} on the $-\log_{10}$-scale). % <>= with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) @ <>= trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figscatterindepfilt-1} \includegraphics[width=.49\textwidth]{figure/figecdffilt-1} \caption{Left: scatterplot of the rank (scaled to $[0,1]$) of the filter criterion \Robject{filterstat} ($x$-axis) versus the negative logarithm of the test \Robject{pvalue} ($y$-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of \Robject{filterstat} and its quantiles.} \label{figscatterindepfilt} \end{figure} % This means that by dropping the 40\% genes with lowest \Robject{filterstat}, we do not loose anything substantial from our subsequent results. For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal number. The analogous scatterplot to that of Figure~\ref{figscatterindepfilt} is shown in Figure~\ref{figbadfilter}. % <>= badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) @ <>= stopifnot(!any(is.na(badfilter))) @ <>= plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figbadfilter-1} \caption{Scatterplot analogous to Figure~\ref{figscatterindepfilt}, but with \Robject{badfilter}.} \label{figbadfilter} \end{figure} %-------------------------------------------------- \section{How to choose the filter statistic and the cutoff?}\label{sec:indepfilterchoose} %-------------------------------------------------- The \texttt{filtered\_p} function in the \Rpackage{genefilter} package calculates adjusted $p$-values over a range of possible filtering thresholds. Here, we call this function on our results from above and compute adjusted $p$-values using the method of Benjamini and Hochberg (BH) for a range of different filter cutoffs. % \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figrejection-1} \includegraphics[width=0.49\textwidth]{figure/fignumreject-1} \caption{Left panel: the plot shows the number of rejections (i.\,e.\ genes detected as differentially expressed) as a function of the FDR threshold ($x$-axis) and the filtering cutoff $\theta$ (line colours, specified as quantiles of the distribution of the filter statistic). The plot is produced by the \texttt{rejection\_plot} function. Note that the lines for $\theta=0\%$ and $10\%$ are overplotted by the line for $\theta=20\%$, since for the data shown here, these quantiles correspond all to the same set of filtered genes (cf.~Figure~\ref{figscatterindepfilt}). Right panel: the number of rejections at FDR=10\% as a function of $\theta$.} \label{figrej} \end{center} \end{figure} % <>= library("genefilter") <>= theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") <>= head(pBH) @ % The rows of this matrix correspond to the genes (i.\,e., the rows of \Robject{res}) and the columns to the BH-adjusted $p$-values for the different possible choices of cutoff \Robject{theta}. A value of \Robject{NA} indicates that the gene was filtered out at the corresponding filter cutoff. The \Rfunction{rejection\_plot} function takes such a matrix and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. % <>= rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") @ The plot is shown in the left panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering cutoff}\label{choose:cutoff} %------------------------------------------------------------ If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires you to choose a particular $p$-value cutoff, specified through the argument \Robject{alpha}. % <>= theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") @ The plot is shown in the right panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering statistic}\label{choose:filterstat} %------------------------------------------------------------ We can use the analysis of the previous section~\ref{choose:cutoff} also to inform ourselves about different possible choices of filter statistic. We construct a dataframe with a number of different choices. <>= filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) <>= library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") <>= matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) @ % The result is shown in Figure~\ref{figdifferentstats}. It indicates that for the data at hand, \Robject{mean}, \Robject{max} and \Robject{sd} provide similar performance, whereas the other choices are less effective. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figdifferentstats-1} \caption{The number of rejections at FDR=10\% as a function of $\theta$ (analogous to the right panel in Figure~\ref{figrej}) for a number of different choices of the filter statistic.} \label{figdifferentstats} \end{center} \end{figure} %-------------------------------------------------- \section{Some more plots pertinent to multiple testing} %-------------------------------------------------- %-------------------------------------------------- \subsection{Joint distribution of filter statistic and $p$-values}\label{sec:pvalhist} %-------------------------------------------------- The left panel of Figure~\ref{figscatterindepfilt} shows the joint distribution of filter statistic and $p$-values. An alternative, perhaps simpler view is provided by the $p$-value histograms in Figure~\ref{fighistindepfilt}. It shows how the filtering ameliorates the multiple testing problem -- and thus the severity of a multiple testing adjustment -- by removing a background set of hypotheses whose $p$-values are distributed more or less uniformly in $[0,1]$. <>= h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") <>= barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) @ \begin{figure}[ht] \centering \includegraphics[width=.5\textwidth]{figure/fighistindepfilt-1} \caption{Histogram of $p$-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do not pass.} \label{fighistindepfilt} \end{figure} %----------------------------------------------------- \subsection{Illustration of the Benjamini-Hochberg method} %------------------------------------------------------ The Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995} has a simple graphical illustration, which is produced in the following code chunk. Its result is shown in the left panel of Figure \ref{figmulttest}. % <>= resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 <>= plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) @ <>= whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) @ % %----------------------------------------------------- \subsection{Schweder and Spj\o{}tvoll plot} %------------------------------------------------------ Schweder and Spj\o{}tvoll \cite{SchwederSpjotvoll1982} suggested a diagnostic plot of the observed $p$-values which permits estimation of the fraction of true null hypotheses. For a series of hypothesis tests $H_1, \ldots, H_m$ with $p$-values $p_i$, they suggested plotting % \begin{equation} \left( 1-p_i, N(p_i) \right) \mbox{ for } i \in 1, \ldots, m, \end{equation} % where $N(p)$ is the number of $p$-values greater than $p$. An application of this diagnostic plot to \Robject{resFilt\$pvalue} is shown in the right panel of Figure \ref{figmulttest}. When all null hypotheses are true, the $p$-values are each uniformly distributed in $[0,1]$, Consequently, the cumulative distribution function of $(p_1, \ldots, p_m)$ is expected to be close to the line $F(t)=t$. By symmetry, the same applies to $(1 - p_1, \ldots, 1 - p_m)$. When (without loss of generality) the first $m_0$ null hypotheses are true and the other $m-m_0$ are false, the cumulative distribution function of $(1-p_1, \ldots, 1-p_{m_0})$ is again expected to be close to the line $F_0(t)=t$. The cumulative distribution function of $(1-p_{m_0+1}, \ldots, 1-p_{m})$, on the other hand, is expected to be close to a function $F_1(t)$ which stays below $F_0$ but shows a steep increase towards 1 as $t$ approaches $1$. In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative distribution function is expected to be close to % \begin{equation} F(t) = \frac{m_0}{m} F_0(t) + \frac{m-m_0}{m} F_1(t). \end{equation} % Such a situation is shown in the right panel of Figure \ref{figmulttest}. If $F_1(t)/F_0(t)$ is small for small $t$, then the mixture fraction $\frac{m_0}{m}$ can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit is shown by the red line in the right panel of Figure \ref{figmulttest}. % <>= j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) @ <>= plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/sortedP-1} \includegraphics[width=.49\textwidth]{figure/SchwederSpjotvoll-1} \caption{\emph{Left:} illustration of the Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995}. The black line shows the $p$-values ($y$-axis) versus their rank ($x$-axis), starting with the smallest $p$-value from the left, then the second smallest, and so on. Only the first \Sexpr{sum(showInPlot)} $p$-values are shown. The red line is a straight line with slope $\alpha/n$, where $n=\Sexpr{length(resFilt[["pvalue"]])}$ is the number of tests, and $\alpha=\Sexpr{alpha}$ is a target false discovery rate (FDR). FDR is controlled at the value $\alpha$ if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in \Sexpr{length(whichBH)} genes. \emph{Right:} Schweder and Spj\o{}tvoll plot, as described in the text.} \label{figmulttest} \end{figure} %-------------------------------------------------- \section*{Session information} %-------------------------------------------------- <>= si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \bibliography{library} \end{document} genefilter/vignettes/independent_filtering_plots.Rnw0000644000175400017540000001573713175713327024233 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering_plots.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex2() @ \usepackage{xstring} \newcommand{\thetitle}{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} \title{\thetitle} \author{Richard Bourgon} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering_plots.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options( width = 80 ) @ % Make title \maketitle \tableofcontents \vspace{.25in} %%%%%%%% Main text \section{Introduction} This vignette illustrates use of some functions in the \emph{genefilter} package that provide useful diagnostics for independent filtering~\cite{BourgonIndependentFiltering}: \begin{itemize} \item \texttt{kappa\_p} and \texttt{kappa\_t} \item \texttt{filtered\_p} and \texttt{filtered\_R} \item \texttt{filter\_volcano} \item \texttt{rejection\_plot} \end{itemize} \section{Data preparation} Load the ALL data set and the \emph{genefilter} package: <>= library("genefilter") library("ALL") data("ALL") @ Reduce to just two conditions, then take a small subset of arrays from these, with 3 arrays per condition: <>= bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] @ We now use functions from \emph{genefilter} to compute overall standard devation filter statistics as well as standard two-sample $t$ and releated statistics. <>= S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic @ \section{Filtering volcano plot} Filtering on overall standard deviation and then using a standard $t$-statistic induces a lower bound of fold change, albeit one which varies somewhat with the significance of the $t$-statistic. The \texttt{filter\_volcano} function allows you to visualize this effect. <>= S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) @ The output is shown in the left panel of Fig.~\ref{fig:volcano}. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/filter_volcano-1} \includegraphics[width=0.49\textwidth]{figure/kappa-1} \caption{Left panel: plot produced by the \texttt{filter\_volcano} function. Right panel: graph of the \texttt{kappa\_t} function.} \label{fig:volcano} \end{center} \end{figure} The \texttt{kappa\_p} and \texttt{kappa\_t} functions, used to make the volcano plot, compute the fold change bound multiplier as a function of either a $t$-test $p$-value or the $t$-statistic itself. The actual induced bound on the fold change is $\kappa$ times the filter's cutoff on the overall standard deviation. Note that fold change bounds for values of $|T|$ which are close to 0 are not of practical interest because we will not reject the null hypothesis with test statistics in this range. <>= t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") @ The plot is shown in the right panel of Fig.~\ref{fig:volcano}. \section{Rejection count plots} \subsection{Across $p$-value cutoffs} The \texttt{filtered\_p} function permits easy simultaneous calculation of unadjusted or adjusted $p$-values over a range of filtering thresholds ($\theta$). Here, we return to the full ``BCR/ABL'' versus ``NEG'' data set, and compute adjusted $p$-values using the method of Benjamini and Hochberg, for a range of different filter stringencies. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/rejection_plot-1} \includegraphics[width=0.49\textwidth]{figure/filtered_R_plot-1} \caption{Left panel: plot produced by the \texttt{rejection\_plot} function. Right panel: graph of \texttt{theta}.} \label{fig:rej} \end{center} \end{figure} <
>= table(ALL_bcrneg$mol.biol) @ <>= S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") @ <>= head(p_bh) @ The \texttt{rejection\_plot} function takes sets of $p$-values corresponding to different filtering choices --- in the columns of a matrix or in a list --- and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. <>= rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") @ The plot is shown in the left panel of Fig.~\ref{fig:rej}. \subsection{Across filtering fractions} If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires a $p$-value cutoff. <>= theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") @ <>= head(R_BH) @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) @ The plot is shown in the right panel of Fig.~\ref{fig:rej}. %%%%%%%% Session info \section*{Session information} <>= si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \begin{thebibliography}{10} \bibitem{BourgonIndependentFiltering} Richard Bourgon, Robert Gentleman and Wolfgang Huber. \newblock Independent filtering increases power for detecting differentially expressed genes. \end{thebibliography} \end{document} genefilter/vignettes/library.bib0000644000175400017540000001306313175713327020072 0ustar00biocbuildbiocbuild@Article{Anders:2010:GB, url = {http://genomebiology.com/2010/11/10/R106}, author = {Simon Anders and Wolfgang Huber}, Title = {{D}ifferential expression analysis for sequence count data}, Journal = {Genome Biology}, Year = 2010, Volume = 11, Pages = {R106}, } @article{BH:1995, author = {Y. Benjamini and Y. Hochberg}, title = {Controlling the false discovery rate: a practical and powerful approach to multiple testing}, journal = "Journal of the Royal Statistical Society B", year = 1995, volume = 57, pages = "289--300" } @Article{Bourgon:2010:PNAS, ISI = {ISI:000278054700015}, URL = {http://www.pnas.org/content/107/21/9546.long}, PDF = {PNAS-2010-Bourgon-9546-51.pdf}, author = {Richard Bourgon and Robert Gentleman and Wolfgang Huber}, Title = {Independent filtering increases detection power for high-throughput experiments}, journal = {PNAS}, Year = 2010, volume = 107, number = 21, pages = {9546--9551}, } @article{Brooks2010, author = {Brooks, A. N. and Yang, L. and Duff, M. O. and Hansen, K. D. and Park, J. W. and Dudoit, S. and Brenner, S. E. and Graveley, B. R.}, doi = {10.1101/gr.108662.110}, issn = {1088-9051}, journal = {Genome Research}, pages = {193--202}, title = {{Conservation of an RNA regulatory map between Drosophila and mammals}}, url = {http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110}, year = 2011 } @Article{Tibshirani1988, author = {Robert Tibshirani}, title = {Estimating transformations for regression via additivity and variance stabilization}, journal = {Journal of the American Statistical Association}, year = 1988, volume = 83, pages = {394--405} } @misc{htseq, author = {Simon Anders}, title = {{HTSeq: Analysing high-throughput sequencing data with Python}}, year = 2011, howpublished = {\url{http://www-huber.embl.de/users/anders/HTSeq/}} } @article{sagmb2003, title = {Parameter estimation for the calibration and variance stabilization of microarray data}, author = {Wolfgang Huber and Anja von Heydebreck and Holger {S\"ultmann} and Annemarie Poustka and Martin Vingron}, journal = {Statistical Applications in Genetics and Molecular Biology}, year = 2003, volume = 2, number = 1, pages = {Article 3} } @misc{summarizeOverlaps, author = {Valerie Obenchain}, title = {Counting with \texttt{summarizeOverlaps}}, year = 2011, howpublished = {Vignette, distributed as part of the Bioconductor package \emph{GenomicRanges}, as file \emph{summarizeOverlaps.pdf}} } @article{Anders:2012:GR, author = {Simon Anders and Alejandro Reyes and Wolfgang Huber}, title = {Detecting differential usage of exons from {RNA-seq} data }, year = {2012}, journal = {Genome Research}, doi = {10.1101/gr.133744.111}, } @article{CR, author = {Cox, D. R. and Reid, N.}, journal = {Journal of the Royal Statistical Society, Series B}, keywords = {CML,Cox-Reid,ML,dispersion}, mendeley-tags = {CML,Cox-Reid,ML,dispersion}, number = {1}, pages = {1--39}, title = {{Parameter orthogonality and approximate conditional inference}}, url = {http://www.jstor.org/stable/2345476}, volume = {49}, year = {1987} } @article{edgeR_GLM, author = {McCarthy, Davis J and Chen, Yunshun and Smyth, Gordon K}, doi = {10.1093/nar/gks042}, issn = {1362-4962}, journal = {Nucleic Acids Research}, keywords = {edgeR}, mendeley-tags = {edgeR}, month = jan, pmid = {22287627}, title = {{Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation}}, url = {http://www.ncbi.nlm.nih.gov/pubmed/22287627}, year = {2012}, volume={40}, pages={4288-4297} } @article{SchwederSpjotvoll1982, author={Schweder, T. and Spj\/{o}tvoll, E.}, title={Plots of {P-values} to evaluate many tests simultaneously}, journal={Biometrika}, year={1982}, volume=69, pages={493-502}, doi={10.1093/biomet/69.3.493} } @article{Haglund2012Evidence, abstract = {{Context: Primary hyperparathyroidism (PHPT) is most frequently present in postmenopausal women. Although the involvement of estrogen has been suggested, current literature indicates that parathyroid tumors are estrogen receptor (ER) alpha negative.}}, author = {Haglund, Felix and Ma, Ran and Huss, Mikael and Sulaiman, Luqman and Lu, Ming and Nilsson, Inga-Lena and H\"{o}\"{o}g, Anders and Juhlin, Christofer C. and Hartman, Johan and Larsson, Catharina}, day = {28}, doi = {10.1210/jc.2012-2484}, issn = {1945-7197}, journal = {Journal of Clinical Endocrinology \& Metabolism}, month = sep, pmid = {23024189}, posted-at = {2012-11-23 08:40:12}, priority = {2}, publisher = {Endocrine Society}, title = {{Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas}}, url = {http://dx.doi.org/10.1210/jc.2012-2484}, year = {2012} } @article{Wu2012New, author = {Wu, Hao and Wang, Chi and Wu, Zhijin}, day = {22}, doi = {10.1093/biostatistics/kxs033}, issn = {1468-4357}, journal = {Biostatistics}, month = sep, pmid = {23001152}, posted-at = {2013-02-26 17:09:19}, priority = {2}, publisher = {Oxford University Press}, title = {{A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data}}, url = {http://dx.doi.org/10.1093/biostatistics/kxs033}, year = {2012} }