genefilter/.Rinstignore0000644000175400017540000000002713556116164016237 0ustar00biocbuildbiocbuilddoc/whbiocvignette.sty genefilter/DESCRIPTION0000644000175400017540000000215313556146247015450 0ustar00biocbuildbiocbuildPackage: genefilter Title: genefilter: methods for filtering genes from high-throughput experiments Version: 1.68.0 Author: R. Gentleman, V. Carey, W. Huber, F. Hahne Description: Some basic functions for filtering genes. Maintainer: Bioconductor Package Maintainer Suggests: class, hgu95av2.db, tkWidgets, ALL, ROC, DESeq, pasilla, RColorBrewer, BiocStyle, knitr Imports: BiocGenerics (>= 0.31.2), AnnotationDbi, annotate, Biobase, graphics, methods, stats, survival License: Artistic-2.0 LazyLoad: yes LazyData: yes Collate: AllClasses.R AllGenerics.R all.R dist2.R eSetFilter.R fastT.R filter_volcano.R filtered_p.R genefinder.R half.range.mode.R kappa_p.R nsFilter.R rejection_plot.R rowROC-accessors.R rowSds.R rowpAUCs-methods.R rowttests-methods.R shorth.R zzz.R biocViews: Microarray VignetteBuilder: knitr git_url: https://git.bioconductor.org/packages/genefilter git_branch: RELEASE_3_10 git_last_commit: cba90ff git_last_commit_date: 2019-10-29 Date/Publication: 2019-10-29 NeedsCompilation: yes Packaged: 2019-10-29 23:35:03 UTC; biocbuild genefilter/NAMESPACE0000644000175400017540000000475513556116164015166 0ustar00biocbuildbiocbuilduseDynLib(genefilter) importClassesFrom(Biobase, ExpressionSet) importClassesFrom(methods, ANY, character, factor, matrix, missing, numeric, vector) importMethodsFrom(AnnotationDbi, as.list, colnames, get, mget, ncol, nrow, sample) importMethodsFrom(Biobase, annotation, exprs, featureNames, pData, rowQ, varLabels) importMethodsFrom(methods, "body<-", show) importFrom(BiocGenerics, rowSums, colSums, rowMeans, colMeans) importFrom(Biobase, addVigs2WinMenu, subListExtract) importFrom(annotate, getAnnMap) importFrom(graphics, abline, lines, par, plot, points, polygon, rect, strheight, strwidth, text, legend, segments) importFrom(grDevices, rainbow) importFrom(methods, is, new) importFrom(stats, IQR, anova, lm, pchisq, pf, pt, quantile, sd, t.test, na.omit, p.adjust, qt, stepfun) importFrom(survival, coxph) export(Anova, coxfilter, cv, eSetFilter, varFilter, featureFilter, fastT, ttest, shorth, half.range.mode, rowttests, colttests, rowFtests, colFtests, rowSds, rowVars, dist2, filterfun, findLargest, gapFilter, genefilter, genescale, getFilterNames, getFuncDesc, getRdAsText, isESet, kOverA, maxA, pOverA, parseArgs, parseDesc, setESetArgs, showESet, kappa_t, kappa_p, filtered_p, filtered_R, rejection_plot, filter_volcano) exportClasses(rowROC) exportMethods(genefinder, show, plot, "[", sens, spec, area, pAUC, AUC, rowpAUCs, nsFilter) genefilter/NEWS0000644000175400017540000000053013556116164014431 0ustar00biocbuildbiocbuildCHANGES IN VERSION 1.64.0 ------------------------- NEW FEATURES o Add `na.rm =` to row/colttests, requested by https://github.com/Bioconductor/genefilter/issues/1 CHANGES IN VERSION 1.54.0 ------------------------- DEPRECATED AND DEFUNCT o remove deprecated anyNA(); contradicted base::anyNA o remove deprecated allNA() genefilter/R/0000755000175400017540000000000013556116164014135 5ustar00biocbuildbiocbuildgenefilter/R/AllClasses.R0000644000175400017540000000332713556116164016313 0ustar00biocbuildbiocbuild## Classes for package genefilter ## ========================================================================== ## class rowROC: objects model result of call to function rowpAUCs, ## pAUC or AUC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setClass("rowROC", representation(data = "matrix", ranks = "matrix", sens = "matrix", spec = "matrix", pAUC = "numeric", AUC = "numeric", factor = "factor", cutpoints = "matrix", caseNames = "character", p = "numeric"), validity=function(object){ if(any(dim(object@sens) != dim(object@spec))) return("\n'sens' and 'spec' must be matrices with equal dimensions") if(length(object@pAUC) != nrow(object@sens)) return("\n'pAUC' must be numeric of length equal to nrow(sens)") if(length(object@factor)!=ncol(object@data) || length(levels(object@factor))!=2) return("'factor' must be factor object with two levels and length = ncol(data)") if(length(object@pAUC) != length(object@AUC)) return("'pAUC' and 'AUC' must be numeric vectors of equal length") if(nrow(object@cutpoints) != length(object@pAUC)) return("'cutpoints' must be matrix with nrow=length(pAUC)") if(length(object@caseNames)!=2) return("'caseNames' must be character vector of length 2") return(TRUE) } ) ## ========================================================================== genefilter/R/AllGenerics.R0000644000175400017540000000306413556116164016453 0ustar00biocbuildbiocbuild## Generic functions for package genefilter setGeneric("rowFtests", function(x, fac, var.equal=TRUE) standardGeneric("rowFtests")) setGeneric("colFtests", function(x, fac, var.equal=TRUE) standardGeneric("colFtests")) setGeneric("rowttests", function(x, fac, tstatOnly=FALSE, na.rm = FALSE) standardGeneric("rowttests")) setGeneric("colttests", function(x, fac, tstatOnly=FALSE, na.rm = FALSE) standardGeneric("colttests")) setGeneric("genefinder", function(X, ilist, numResults=25, scale="none", weights, method="euclidean" ) standardGeneric("genefinder")) setGeneric("pAUC", function(object, p, flip=TRUE) standardGeneric("pAUC")) setGeneric("AUC", function(object) standardGeneric("AUC")) setGeneric("sens", function(object) standardGeneric("sens")) setGeneric("spec", function(object) standardGeneric("spec")) setGeneric("area", function(object, total=FALSE) standardGeneric("area")) setGeneric("rowpAUCs", function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")) standardGeneric("rowpAUCs")) setGeneric("nsFilter", signature="eset", function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) standardGeneric("nsFilter")) genefilter/R/all.R0000644000175400017540000001031713556116164015032 0ustar00biocbuildbiocbuild#copyright 2001 R. Gentleman #FILTER FUNCTIONS -- some trivial changes kOverA <- function(k, A=100, na.rm = TRUE) { function(x) { if(na.rm) x <- x[!is.na(x)] sum( x > A ) >= k } } maxA <- function(A=75, na.rm=TRUE) { function(x) {max(x, na.rm=na.rm) >= A } } pOverA <- function(p=0.05, A=100, na.rm = TRUE) { function(x) { if(na.rm) x<-x[!is.na(x)] sum( x > A )/length(x) >= p } } cv <- function(a=1, b=Inf, na.rm=TRUE) { function(x) { sdx <- sd(x, na.rm=na.rm) if(is.na(sdx) || sdx == 0 ) return(FALSE) val <- sdx/abs(mean(x, na.rm=na.rm)) if(val < a ) return(FALSE) if(val > b ) return(FALSE) return(TRUE) } } Anova <- function(cov, p=0.05, na.rm=TRUE) { function(x) { if( na.rm ) { drop <- is.na(x) x <- x[!drop] cov <- cov[!drop] } m1 <- lm(x~cov) m2 <- lm(x~1) av <- anova(m2,m1) fstat <- av[["Pr(>F)"]][2] if( fstat < p ) return(TRUE) return(FALSE) } } coxfilter <- function(surt, cens, p) { autoload("coxph", "survival") function(x) { srvd <- try(coxph(Surv(surt,cens)~x)) if( inherits(srvd, "try-error") ) return(FALSE) ltest <- -2*(srvd$loglik[1] - srvd$loglik[2]) pv <- 1 - pchisq(ltest, 1) if( pv < p ) return(TRUE) return(FALSE) } } ttest <- function(m, p=0.05, na.rm=TRUE) { if( length(m) == 1) function(x) { n <- length(x) if( m>n ) stop("m is larger than the number of samples") sub1 <- x[1:m] sub2 <- x[(m+1):n] if(na.rm) { drop <- is.na(x) sub1 <- sub1[!drop[1:m]] sub2 <- sub2[!drop[(m+1):n]] } t.test(sub1, sub2 )$p.value < p } else function(x) { if(na.rm) { drop <- is.na(x) | is.na(m) x<- x[!drop] m<- m[!drop] } t.test(x~m)$p.value < p } } ##a filter based on gaps gapFilter <- function(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE) { function(x) { if(na.rm) x <- x[!is.na(x)] if(neg.rm) x <- x[x>0] lenx <- length(x) if( lenx < 4 || lenx < Prop+1 ) return(FALSE) srtd <- sort(x) lq <- lenx*.25 uq <- lenx*.75 if( (srtd[uq] - srtd[lq]) > IQR ) return(TRUE) if(Prop < 1) bot <- lenx*Prop else bot <- Prop top <- lenx - bot lag1 <- srtd[2:lenx]-srtd[1:(lenx-1)] if( max(lag1[bot:top]) > Gap ) return(TRUE) return(FALSE) } } # Apply type functions genefilter <- function(expr, flist) { if(is(expr, "ExpressionSet")) expr <- exprs(expr) apply(expr, 1, flist) } filterfun <- function(...) { flist <- list(...) #let the user supply a list if( length(flist) == 1 && is.list(flist[[1]]) ) flist <- flist[[1]] f <- function( x ) { for( fun in flist ) { fval <- fun(x) if( is.na(fval) || ! fval ) return(FALSE) } return(TRUE) } class(f) <- "filterfun" return(f) } .findDBMeta <- function(chip, item) { connfunc <- getAnnMap("_dbconn", chip) dbmeta(connfunc(), item) } .isOrgSchema <- function(chip){ schema <- .findDBMeta(chip, "DBSCHEMA") length(grep("CHIP", schema)) == 0 } .findCentralMap<- function(chip){ centID <- .findDBMeta(chip, "CENTRALID") if(!.isOrgSchema(chip) && centID == "TAIR") { "ACCNUM" ## a peculiar exception with historical causes } else { centID ## should cover EVERYTHING else } } findLargest = function(gN, testStat, data="hgu133plus2") { lls = if(.isOrgSchema(data)){ gN ##not a chip package so try the IDs presented. } else { map = .findCentralMap(data) unlist(mget(gN, getAnnMap(map, data)), use.names=FALSE) } if(length(testStat) != length(gN) ) stop("testStat and gN must be the same length") if( is.null(names(testStat)) ) names(testStat) = gN tSsp = split.default(testStat, lls) sapply(tSsp, function(x) names(which.max(x))) } genefilter/R/dist2.R0000644000175400017540000000114413556116164015305 0ustar00biocbuildbiocbuilddist2 = function (x, fun = function(a, b) mean(abs(a - b), na.rm = TRUE), diagonal = 0) { if (!(is.numeric(diagonal) && (length(diagonal) == 1))) stop("'diagonal' must be a numeric scalar.") if (missing(fun)) { res = apply(x, 2, function(w) colMeans(abs(x-w), na.rm=TRUE)) } else { res = matrix(diagonal, ncol = ncol(x), nrow = ncol(x)) if (ncol(x) >= 2) { for (j in 2:ncol(x)) for (i in 1:(j - 1)) res[i, j] = res[j, i] = fun(x[, i], x[, j]) } # if } # else colnames(res) = rownames(res) = colnames(x) return(res) } genefilter/R/eSetFilter.R0000644000175400017540000002723413556116164016336 0ustar00biocbuildbiocbuild# This widget allows users to pick filters in the order they are going # to be used to filer genes and set the parameters for # each filter. # # Copyright 2003, J. Zhang. All rights reserved. # eSetFilter <- function(eSet){ require("tkWidgets", character.only = TRUE) || stop("eSetFilter requires the tkWidgets ", "package. Please have it installed") descList <- getFuncDesc() buildGUI <- function(){ END <<- FALSE selectedNames <- NULL filterWithArgs <- list() setFilter <- function(){ currentFilter <- as.character(tkget(filters, (tkcurselection(filters)))) args <- setESetArgs(currentFilter) if(!is.null(args)){ expression <- paste(currentFilter, "(", paste(names(args), args, sep = "=", collapse = ","), ")", sep = "") filterWithArgs[[currentFilter]] <<- eval(parse(text = expression)) selectedNames <<- unique(c(selectedNames, currentFilter)) writeList(pickedF, selectedNames) tkconfigure(selectBut, state = "disabled") } } cancel <- function(){ tkdestroy(base) } finish <- function(){ END <<- TRUE tkdestroy(base) } viewFilter <- function(){ currentFilter <- as.character(tkget(filters, (tkcurselection(filters)))) tkconfigure(description, state = "normal") writeText(description, descList[[currentFilter]]) tkconfigure(description, state = "disabled") tkconfigure(selectBut, state = "normal") } pickedSel <- function(){ tkconfigure(remBut, state = "normal") } remove <- function(){ filter <- as.character(tkget(pickedF, (tkcurselection(pickedF)))) selectedNames <<- setdiff(selectedNames, filter) writeList(pickedF, selectedNames) tkconfigure(remBut, state = "disabled") } base <- tktoplevel() tktitle(base) <- "BioC Filter Master" # Pack the top frame with a brief description introText <- tktext(base, width = 30, height = 4, wrap = "word") text <- paste("Bioconductor's gene filtering functons are", "listed below. Select one from the list to view the", "description and formal arguments for each filter.", "A filter can be selected to the set of filters", "for filtering genes using the select button.") writeText(introText, text) tkconfigure(introText, state = "disabled") tkpack(introText, expand = FALSE, fill = "both", padx = 5) # Pack a frame with a list box for selected filters and # buttons manipulate the selected filters infoFrame <- tkframe(base) filterFrame <- tkframe(infoFrame) tkpack(tklabel(filterFrame, text = "Filters"), expand = FALSE, fill = "x") listFrame <- tkframe(filterFrame) filters <- makeViewer(listFrame, vHeight = 10, vWidth = 12, vScroll = TRUE, hScroll = TRUE, what = "list") tkbind(filters, "", viewFilter) tkbind(filters, "", setFilter) writeList(filters, getFilterNames()) tkpack(listFrame, expand = TRUE, fill = "both") selectBut <- tkbutton(filterFrame, text = "Select", command = setFilter, state = "disabled") tkpack(selectBut, expand = FALSE, fill = "x") tkpack(filterFrame, side = "left", expand = FALSE, fill = "both") descFrame <- tkframe(infoFrame) tkpack(tklabel(descFrame, text = "Description"), expand = FALSE, fill = "x") dListFrame <- tkframe(descFrame) description <- makeViewer(dListFrame, vHeight = 10, vWidth = 30, vScroll = TRUE, hScroll = TRUE, what = "text") tkconfigure(description, wrap = "word", state = "disabled") tkpack(dListFrame, expand = TRUE, fill = "both") tkpack(descFrame, side = "left", expand = TRUE, fill = "both") selFrame <- tkframe(infoFrame) tkpack(tklabel(selFrame, text = "Selected"), expand = FALSE, fill = "x") selFFrame <- tkframe(selFrame) pickedF <- makeViewer(selFFrame, vHeight = 10, vWidth = 12, vScroll = TRUE, hScroll = TRUE, what = "list") tkbind(pickedF, "", pickedSel) tkbind(pickedF, "", remove) tkpack(selFFrame, expand = TRUE, fill = "both") remBut <- tkbutton(selFrame, text = "Remove", command = remove, state = "disabled") tkpack(remBut, expand = FALSE, fill = "x") tkpack(selFrame, expand = FALSE, fill = "both") tkpack(infoFrame, expand = TRUE, fill = "both", padx = 5) # Pack the bottom frame with cancel and finish buttons endFrame <- tkframe(base) cancelBut <- tkbutton(endFrame, width = 8, text = "Cancel", command = cancel) tkpack(cancelBut, side = "left", expand = TRUE, fill = "x", padx = 10) finishBut <- tkbutton(endFrame, width = 8, text = "finish", command = finish) tkpack(finishBut, side = "left", expand = TRUE, fill = "x", padx = 10) tkpack(endFrame, expand = FALSE, fill = "x", pady = 5) showESet(eSet) tkwait.window(base) if(END){ tempList <- list() for(i in selectedNames){ tempList[[i]] <- filterWithArgs[[i]] } return(tempList) }else{ return(NULL) } } filters <- buildGUI() if(!is.null(filters)){ filters <- filterfun(unlist(filters)) return(genefilter(exprs(eSet), filters)) }else{ return(NULL) } } getFilterNames <- function(){ return(sort(c("Anova", "coxfilter", "cv", "gapFilter", "kOverA", "maxA", "pOverA", "ttest"))) } getFuncDesc <- function(lib = "genefilter", funcs = getFilterNames()){ descList <- list() lines <- getRdAsText(lib) for(i in funcs){ rd <- lines[grep(paste("\\\\name\\{", i, "\\}", sep = ""), lines)] desc <- parseDesc(rd) args <- parseArgs(rd) if(length(args) > 0){ temp <- "\n\nArguments:" for(j in names(args)){ temp <- c(temp, paste(j, "-", args[[j]])) } args <- paste(temp, sep = "", collapse = "\n") } descList[[i]] <- paste(desc, args, sep = "", collapse = "") } return(descList) } getRdAsText <- function(lib){ fileName <- gzfile(file.path(.path.package(lib), "man", paste(lib, ".Rd.gz", sep = "")), open = "r") lines <- readLines(fileName) lines <- paste(lines, sep = "", collapse = " ") lines <- unlist(strsplit(lines, "\\\\eof")) return(lines) } parseDesc <- function(text){ descRExp <- ".*\\\\description\\{(.*)\\}.*\\\\usage\\{.*" text <- gsub(descRExp, "\\1", text) text <- gsub("(\\\\[a-zA-Z]*\\{|\\})", "", text) return(text) } parseArgs <- function(text){ argsList <- list() text <- gsub(".*\\\\arguments\\{(.*)\\}.*\\\\details\\{.*", "\\1", text) text <- gsub(".*\\\\arguments\\{(.*)\\}.*\\\\value\\{.*", "\\1", text) text <- unlist(strsplit(text, "\\\\item\\{")) text <- gsub("(\\\\[a-zA-Z]*\\{|\\})", "", text) for(i in text){ i <- unlist(strsplit(i, "\\{")) if(length(i) > 1){ argsList[[i[1]]] <- i[2] } } return(argsList) } showESet <- function(eSet){ end <- function(){ tkdestroy(base) } if(!is(eSet, "eSet")){ stop() } colNRow <- dim(exprs(eSet)) vl <- varLabels(eSet) text <- c(paste("Genes: ", colNRow[1]), paste("Samples: ", colNRow[2], sep = ""), "Variable labels:", paste(names(vl), ": ", vl[1:length(vl)], sep = "")) base <- tktoplevel() tktitle(base) <- "BioC ExpressionSet viewer" dataDescFrame <- tkframe(base) data <- makeViewer(dataDescFrame, vHeight = 10, vWidth = 25, vScroll = TRUE, hScroll = TRUE, what = "list") writeList(data, text) tkpack(dataDescFrame, expand = TRUE, fill = "both") endBut <- tkbutton(base, text = "Finish", command = end) tkpack(endBut, expand = FALSE, fill = "x", pady = 5) } setESetArgs <- function(filter){ on.exit(tkdestroy(base)) cancel <- function(){ tkdestroy(base) } end <- function(){ END <<- TRUE tkdestroy(base) } END <- FALSE argsVar <- list() desc <- list() entries <- list() ftFun <- list() args <- getRdAsText("genefilter") args <- args[grep(paste("\\\\name\\{", filter, "\\}", sep = ""), args)] args <- parseArgs(args) argValues <- formals(filter) base <- tktoplevel() tktitle(base) <- "BioC Filter Argument input" tkgrid(tklabel(base, text = "Arguments"), tklabel(base, text = "Descriptions"), tklabel(base, text = "Values")) for(i in names(args)){ argsVar[[i]] <- tclVar(as.character(argValues[[i]])) tempFrame <- tkframe(base) desc[[i]] <- makeViewer(tempFrame, vHeight = 3, vWidth = 55, vScroll = FALSE, hScroll = FALSE, what = "text") writeText(desc[[i]], args[[i]]) tkconfigure(desc[[i]], wrap = "word", state = "disabled") entries[[i]] <- tkentry(base, textvariable = argsVar[[i]], width = 10) tkgrid(tklabel(base, text = i), tempFrame, entries[[i]]) if(any(as.character(argValues[[i]]) == c("FALSE", "TRUE"))){ ftFun[[i]] <- function(){} body <- list(as.name("{"), substitute(eval(if(tclvalue(argsVar[[j]]) == "TRUE"){ writeList(entries[[j]], "FALSE")}else{ writeList(entries[[j]], "TRUE")}), list(j = i))) body(ftFun[[i]]) <- as.call(body) tkbind(entries[[i]],"", ftFun[[i]]) } tkgrid.configure(tempFrame, sticky = "eswn") } butFrame <- tkframe(base) canBut <- tkbutton(butFrame, text = "cancel", width = 8, command = cancel) endBut <- tkbutton(butFrame, text = "Finish", width = 8, comman = end) tkpack(canBut, side = "left", expand = FALSE, fill = "x") tkpack(endBut, side = "left", expand = FALSE, fill = "x") tkgrid(butFrame, columnspan = 3) tkwait.window(base) if(END){ for(i in names(argValues)){ argValues[[i]] <- tkWidgets:::formatArg(tclvalue(argsVar[[i]])) } return(argValues) }else{ return(NULL) } } isESet <- function(eSet){ if(missing(eSet) || (!is(eSet, "ExpressionSet"))) { tkmessageBox(title = "Input Error", message = paste("filterMaster has to take", "an object of class ExpressionSet"), icon = "warning", type = "ok") return(FALSE) }else{ return(TRUE) } } genefilter/R/fastT.R0000644000175400017540000000200413556116164015335 0ustar00biocbuildbiocbuild ##FIXME: this could replace the code further below at some point, ## but only when it has the var.equal option ##-------------------------------------------------- ## fastT ##-------------------------------------------------- #fastT = function(x, ig1, ig2, var.equal=TRUE) { # fac = rep(NA, ncol(x)) # fac[ig1] = 0 # fac[ig2] = 1 # .Call("rowcolttests", x, as.integer(fac), as.integer(2), # as.integer(0), PACKAGE="genefilter") #} fastT = function(x, ig1, ig2, var.equal=TRUE) { ng1=length(ig1) ng2 = length(ig2) if( ncol(x) != ng1+ng2) stop("wrong sets of columns") outd = x[,c(ig1, ig2),drop=FALSE] nr = nrow(outd) z = rep(0, nr) dm = rep(0, nr) Z = .Fortran("fastt", d=as.single(outd), as.integer(nr), as.integer(ng1+ng2), as.integer(ng1), z = as.single(z), dm = as.single(dm), var.equal=as.integer(var.equal), ratio = as.integer(as.integer(0)), PACKAGE="genefilter") return(list(z = Z$z, dm=Z$dm, var.equal=Z$var.equal)) } genefilter/R/filter_volcano.R0000644000175400017540000000300713556116164017266 0ustar00biocbuildbiocbuildfilter_volcano <- function( d, p, S, n1, n2, alpha, S_cutoff, cex = .5, pch = 19, xlab = expression( paste( log[2], " fold change" ) ), ylab = expression( paste( "-", log[10], " p" ) ), cols = c( "grey80", "grey50", "black" ), ltys = c( 1, 3 ), use_legend = TRUE, ... ) { f <- S < S_cutoff col <- rep( cols[1], length(d) ) col[ !f & p >= alpha ] <- cols[2] col[ !f & p < alpha ] <- cols[3] plot( d, -log10( p ), cex = cex, pch = pch, xlab = xlab, ylab = ylab, col = col, ... ) k_grid <- seq( 0, max( -log10( p ) ), length = 100 ) p_grid <- 10^( -k_grid ) lines( kappa_p( p_grid, n1, n2 ) * S_cutoff, k_grid, lty = ltys[1] ) lines( -1 * kappa_p( p_grid, n1, n2 ) * S_cutoff, k_grid, lty = ltys[1] ) segments( c( par("usr")[1], kappa_p( alpha, n1, n2 ) * S_cutoff ), -log10( alpha ), c( -kappa_p( alpha, n1, n2 ) * S_cutoff, par("usr")[2] ), -log10( alpha ), lty = ltys[2] ) if ( use_legend ) legend( "topleft", c( "Filtered", "Insig.", "Sig." ), pch = pch, col = cols, inset = .025, bg = "white" ) } genefilter/R/filtered_p.R0000644000175400017540000000141613556116164016377 0ustar00biocbuildbiocbuildfiltered_p <- function( filter, test, theta, data, method = "none" ) { if ( is.function( filter ) ) U1 <- filter( data ) else U1 <- filter cutoffs <- quantile( U1, theta ) result <- matrix( NA_real_, length( U1 ), length( cutoffs ) ) colnames( result ) <- names( cutoffs ) for ( i in 1:length( cutoffs ) ) { use <- U1 >= cutoffs[i] if( any( use ) ) { if( is.function( test ) ) U2 <- test( data[use,] ) else U2 <- test[use] result[use,i] <- p.adjust( U2, method ) } } return( result ) } filtered_R <- function( alpha, filter, test, theta, data, method = "none" ) { p <- filtered_p( filter, test, theta, data, method ) return( apply( p, 2, function(x) sum( x < alpha, na.rm = TRUE ) ) ) } genefilter/R/genefinder.R0000644000175400017540000001016613556116164016372 0ustar00biocbuildbiocbuild# genefinder.R # # genefinder functions. genescale <- function (m, axis=2, method=c("Z", "R"), na.rm=TRUE) { ##scale by the range RscaleVector <- function(v, na.rm) { mm <- range(v, na.rm=na.rm) (v - mm[1]) / (mm[2] - mm[1]) } ##scale using Zscore ZscaleVector <- function(v, na.rm) (v - mean(v, na.rm=na.rm))/sd(v, na.rm=na.rm) # # scales a matrix using the scaleVector function. # which <- match.arg(method) method <- switch(which, Z = ZscaleVector, R = RscaleVector) if( is.matrix(m) || is.data.frame(m) ) { rval <- apply (m, axis, method, na.rm=na.rm) if( axis==1 ) return(t(rval)) return(rval) } else method(m, na.rm=na.rm) } setMethod("genefinder", c("ExpressionSet", "vector", "ANY", "ANY", "ANY", "ANY"), function(X, ilist, numResults, scale, weights, method) { gN <- featureNames(X) if (is.character(ilist)) ilist <- match(ilist,gN) ans <- genefinder(exprs(X), ilist, numResults, scale, weights, method=method) names(ans) <- gN[ilist] ans }) setMethod("genefinder", c("matrix", "vector", "ANY", "ANY", "ANY", "ANY"), function (X, ilist, numResults, scale, weights, method) { X <- as.matrix(X) METHOD <- c("euclidean", "maximum", "manhattan", "canberra", "correlation", "binary") method<-pmatch(method, METHOD) if (is.na(method)) stop ("The distance method is invalid.") SCALE <- c("none", "range", "zscore") scale <- SCALE[pmatch(scale, SCALE)] # perform scaling if requested. # X <- switch(scale, none=X, range=genescale(X), zscore=scale(X), stop("The scaling method is invalid") ) N <- nrow(X) C <- ncol(X) if( !is.vector(ilist) ) stop("the genes to be compared to must be in a vector") ninterest <- length(ilist); if( is.character(ilist) ) { iRows <- match(ilist, row.names(X)) names(iRows) <- ilist } else if ( is.numeric(ilist) ) { iRows <- ilist names(iRows) <- row.names(X)[ilist] } else stop("invalid genes selected") if( any(is.na(iRows)) ) stop("invalid genes selected") if (missing(weights)) weights <- rep(1,C) else if (length(weights) != C) stop("Supplied weights do not match number of columns") ## Do a sanity check on the requested genes in ilist -> if the ## gene exceeds the # of rows in the matrix, can not be processed. if (max(iRows) > N) stop("Requested genes exceed the dimensions of the supplied matrix.") Genes <- array(as.integer(NA), dim=c(ninterest, numResults)) Dists <- array(as.integer(NA), dim=c(ninterest, numResults)) extCall <- .C("gf_distance", X = as.double(X), nr= as.integer(N), nc= ncol(X), g = as.integer(Genes), d = as.double(Dists), iRow = as.integer(iRows), nInterest = as.integer(ninterest), nResults = as.integer(numResults), method= as.integer(method), weights = as.double(weights), NAOK=TRUE, PACKAGE="genefilter") Genes <- extCall$g+1 Dists <- extCall$d Which <- vector() ## Get the number of genes/dists per selection. There should ## always be a number of total genes such that they are a multiple ## of ninterest numPerList <- length(Genes) / ninterest Which <- rep(iRows, rep(numPerList, ninterest)) byGene <- split(Genes, Which) names(byGene) <- rep("indices", length(byGene)) byDists <- split(Dists, Which) names(byDists) <- rep("dists", length(byDists)) ## Need a better way to stuff these together retList <- list() for (i in 1:ninterest) { retList[[i]] <- list(indices=byGene[[i]], dists=byDists[[i]]) } return(retList) }) genefilter/R/half.range.mode.R0000755000175400017540000000217213556116164017215 0ustar00biocbuildbiocbuildhalf.range.mode <- function( data, B, B.sample, beta = .5, diag = FALSE ) { if ( length( data ) == 0 ) return( NA_real_ ) if (missing( B ) ) { # Just one run on the full set... if ( is.unsorted( data ) ) data <- sort( data ) .C( "half_range_mode", data = as.double( data ), n = as.integer( length( data ) ), beta = as.double( beta ), diag = as.integer( diag ), M = double(1), PACKAGE = "genefilter" )$M } else { # Bootstrapped if ( missing( B.sample ) ) B.sample <- length( data ) M <- sapply( 1:B, function (x) { d <- sort( sample( data, B.sample, replace = T ) ) .C( "half_range_mode", data = as.double( d ), n = as.integer( B.sample ), beta = as.double( beta ), diag = as.integer( diag ), M = double(1), PACKAGE = "genefilter" )$M } ) mean( M ) } } genefilter/R/kappa_p.R0000644000175400017540000000034513556116164015675 0ustar00biocbuildbiocbuildkappa_p <- function( p, n1, n2 = n1 ) { n <- n1 + n2 t <- qt( 1 - p/2, df = n - 2 ) kappa_t( t, n1, n2 ) } kappa_t <- function( t, n1, n2 = n1 ) { n <- n1 + n2 sqrt( n * (n-1) * t^2 / ( n1 * n2 * ( n - 2 + t^2 ) ) ) } genefilter/R/nsFilter.R0000644000175400017540000002250213556116164016047 0ustar00biocbuildbiocbuild##RG introduces two new functions, varFilter that does what nsFilter ##was supposed to, but never did, and featureFilter that does the only ##useful stuff that nsFilter does rowIQRs <- function(eSet) { numSamp <- ncol(eSet) lowQ <- rowQ(eSet, floor(0.25 * numSamp)) upQ <- rowQ(eSet, ceiling(0.75 * numSamp)) upQ - lowQ } ##For NOW, we will need to check the schema from within nsFilter and ##featureFilter to decide what the internal ID is that needs to be used. ##LATER, when we haev annotation packages that will make this sort of access ##easier, it will make more sense to just access the central ID for those ##packages. ## It looks like I can take care of both nsFilter and featureFilter in this ## way by just altering what the helper function findLargest() does varFilter <- function(eset, var.func=IQR, var.cutoff=0.5,filterByQuantile=TRUE ) { if (deparse(substitute(var.func)) == "IQR") { vars <- rowIQRs(eset) } else { vars <- apply(exprs(eset), 1, var.func) } if (filterByQuantile) { if ( 0 < var.cutoff && var.cutoff < 1 ) { quant = quantile(vars, probs = var.cutoff) selected = !is.na(vars) & vars > quant } else stop("Cutoff Quantile has to be between 0 and 1.") } else { selected <- !is.na(vars) & vars > var.cutoff } eset <- eset[selected, ] } .getRequiredIDs <- function(eset, map){ annChip <- annotation(eset) if(.isOrgSchema(annChip)){ IDs <- featureNames(eset) names(IDs) <- featureNames(eset) }else{ IDs <- mget(featureNames(eset), envir=getAnnMap(map, annChip), ifnotfound=NA) } IDs } featureFilter <- function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, feature.exclude="^AFFX") { annChip <- annotation(eset) if (nchar(annChip) == 0) stop("'eset' must have a valid annotation slot") nfeat <- function(eset) length(featureNames(eset)) requireID <- function(eset, map) { IDs <- .getRequiredIDs(eset, map) haveID <- names(IDs)[sapply(IDs, function(x) !is.na(x))] eset[haveID, ] } if (require.entrez) { map <- .findCentralMap(annChip) eset <- requireID(eset, map) } filterGO <- function(eset, ontology) { haveGo <- sapply(mget(featureNames(eset), getAnnMap("GO", annChip), ifnotfound=NA), function(x) { if (length(x) == 1 && is.na(x)) FALSE else { onts <- subListExtract(x, "Ontology", simplify=TRUE) ontology %in% onts } }) eset[haveGo, ] } if (require.GOBP) eset <- filterGO(eset, "BP") if (require.GOCC) eset <- filterGO(eset, "CC") if (require.GOMF) eset <- filterGO(eset, "MF") if (length(feature.exclude)) { fnms <- featureNames(eset) badIdx <- integer(0) for (pat in feature.exclude) { if (nchar(pat) == 0) next badIdx <- c(grep(pat, fnms), badIdx) } if (length(badIdx)) { badIdx <- unique(badIdx) eset <- eset[-badIdx, ] } } if (remove.dupEntrez ) { ## Reduce to unique probe <--> gene mapping here by keeping largest IQR ## We will want "unique genes" in the non-specific filtered gene ## set. uniqGenes <- findLargest(featureNames(eset), rowIQRs(eset), annotation(eset)) eset <- eset[uniqGenes, ] } requireCytoBand <- function(eset) { MAPs <- mget(featureNames(eset), envir=getAnnMap("MAP", annChip), ifnotfound=NA) haveMAP <- names(MAPs)[sapply(MAPs, function(x) !is.na(x[1]))] eset[haveMAP, ] } if (require.CytoBand) eset <- requireCytoBand(eset) eset } setMethod("nsFilter", "ExpressionSet", function(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) { if (!is.function(var.func)) stop("'var.func' must be a function") annChip <- annotation(eset) if (nchar(annChip) == 0) stop("'eset' must have a valid annotation slot") nfeat <- function(eset) length(featureNames(eset)) filter.log <- new.env(parent=emptyenv()) requireID <- function(eset, map) { IDs <- .getRequiredIDs(eset, map) haveID <- names(IDs)[sapply(IDs, function(x) !is.na(x))] logvar <- paste("numRemoved", map, sep=".") assign(logvar, nfeat(eset) - length(haveID), envir=filter.log) eset[haveID, ] } if (require.entrez) { map <- .findCentralMap(annChip) eset <- requireID(eset, map) } filterGO <- function(eset, ontology) { haveGo <- sapply(mget(featureNames(eset), getAnnMap("GO", annChip), ifnotfound=NA), function(x) { if (length(x) == 1 && is.na(x)) FALSE else { onts <- subListExtract(x, "Ontology", simplify=TRUE) ontology %in% onts } }) logvar <- paste("numNoGO", ontology, sep=".") assign(logvar, sum(!haveGo), envir=filter.log) eset[haveGo, ] } if (require.GOBP) { eset <- filterGO(eset, "BP") } if (require.GOCC) { eset <- filterGO(eset, "CC") } if (require.GOMF) { eset <- filterGO(eset, "MF") } if (length(feature.exclude)) { fnms <- featureNames(eset) badIdx <- integer(0) for (pat in feature.exclude) { if (nchar(pat) == 0) next badIdx <- c(grep(pat, fnms), badIdx) } if (length(badIdx)) { badIdx <- unique(badIdx) eset <- eset[-badIdx, ] logvar <- "feature.exclude" assign(logvar, length(badIdx), filter.log) } } if (remove.dupEntrez) { ## Reduce to unique probe <--> gene mapping here by keeping largest IQR ## We will want "unique genes" in the non-specific filtered gene ## set. if (deparse(substitute(var.func)) == "IQR") { esetIqr <- rowIQRs(exprs(eset)) } else { esetIqr <- apply(exprs(eset), 1, var.func) } numNsWithDups <- nfeat(eset) uniqGenes <- findLargest(featureNames(eset), esetIqr, annotation(eset)) eset <- eset[uniqGenes, ] logvar <- "numDupsRemoved" assign(logvar, numNsWithDups - nfeat(eset), envir=filter.log) } if (var.filter) { if (deparse(substitute(var.func)) == "IQR") { esetIqr <- rowIQRs(exprs(eset)) } else { esetIqr <- apply(exprs(eset), 1, var.func) } ##note this was not happening in the first ##version - despite the documentation if (filterByQuantile) { if ( 0 < var.cutoff && var.cutoff < 1 ) { var.cutoff = quantile(esetIqr, var.cutoff) } else stop("Cutoff Quantile has to be between 0 and 1.") } selected <- esetIqr > var.cutoff eset <- eset[selected, ] logvar <- "numLowVar" assign(logvar, sum(!selected), filter.log) } requireCytoBand <- function(eset) { MAPs <- mget(featureNames(eset), envir=getAnnMap("MAP", annChip), ifnotfound=NA) haveMAP <- names(MAPs)[sapply(MAPs, function(x) !is.na(x[1]))] logvar <- paste("numRemoved", "MAP", sep=".") assign(logvar, nfeat(eset) - length(haveMAP), envir=filter.log) eset[haveMAP, ] } if (require.CytoBand) eset <- requireCytoBand(eset) numSelected <- length(featureNames(eset)) list(eset=eset, filter.log=as.list(filter.log)) }) genefilter/R/rejection_plot.R0000644000175400017540000000374113556116164017305 0ustar00biocbuildbiocbuildrejection_plot <- function(p, col, lty = 1, lwd = 1, xlab = "p cutoff", ylab = "number of rejections", xlim = c( 0, 1 ), ylim, legend = names(p), at = c( "all", "sample" ), n_at = 100, probability = FALSE, ... ) { if ( is.matrix( p ) ) { legend <- colnames( p ) p <- lapply( 1:ncol(p), function(i) p[,i] ) } if ( missing( col ) ) col <- rainbow( length( p ), v = .7 ) col <- rep( col, length.out = length( p ) ) lty <- rep( lty, length.out = length( p ) ) lwd <- rep( lwd, length.out = length( p ) ) if ( missing( ylim ) ) ylim <- c( 0, ifelse( probability, 1, max( sapply( p, length ) ) ) ) at <- match.arg( at ) steps <- lapply( p, function(x) { x <- na.omit(x) stepfun( sort( x ), ( 0:length(x) ) / ifelse( probability, length(x), 1 ) ) } ) plot( 0, type = "n", xaxs = "i", yaxs = "i", xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, ... ) if ( at == "all" ) { for ( i in 1:length( steps ) ) lines( steps[[i]], xlim = xlim, col = col[i], lty = lty[i], lwd = lwd[i], do.points = FALSE ) } else { x <- seq( xlim[1], xlim[2], length = n_at ) for ( i in 1:length( steps ) ) lines( x, steps[[i]](x), col = col[i], lty = lty[i], lwd = lwd[i] ) } if ( !is.null( legend ) ) legend( "topleft", legend, col = col, lty = lty, lwd = lwd, inset = .05 ) invisible( steps ) } genefilter/R/rowROC-accessors.R0000644000175400017540000001532713556116164017426 0ustar00biocbuildbiocbuild## ========================================================================== ## show method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("show", signature(object="rowROC"), function(object){ cat("matrix of ROC curves for", nrow(object@data), "genes/rows", "with", max(0,ncol(object@cutpoints)), "cutpoints\n") cat(" size of class ", object@caseNames[1] ,": ", sum(object@factor==levels(object@factor)[1]), "\n", sep="") cat(" size of class ", object@caseNames[2] ,": ", sum(object@factor==levels(object@factor)[2]), "\n", sep="") cat("partial areas under curve calculated for p=", object@p, "\n", sep="") }) ## ========================================================================== ## ========================================================================== ## subsetting method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("[", signature="rowROC", definition=function(x, i, j="missing", drop="missing") { x@sens <- x@sens[i,,drop=FALSE] x@spec <- x@spec[i,,drop=FALSE] x@pAUC <- x@pAUC[i] x@AUC <- x@AUC[i] x@data <- x@data[i,,drop=FALSE] x@cutpoints <- x@cutpoints[i,,drop=FALSE] x@ranks <- x@ranks[i,,drop=FALSE] return(x) }, valueClass="rowROC") ## ========================================================================== ## ========================================================================== ## plot method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("plot", signature(x="rowROC", y="missing"), function(x, pch=20, cex=0.7, xlab="1 - specificity", ylab="sensitivity", main=NULL, sub=paste("class ", x@caseNames[1], " (", sum(x@factor==levels(x@factor)[1]), " cases) | class ", x@caseNames[2], " (", sum(x@factor==levels(x@factor)[2]), " cases)", sep=""), ...){ sx <- sort(1-x@spec[1,]) sy <- sort(x@sens[1,]) spx <- c(sx[sx<=x@p & sy>0],x@p) spy <- sy[sx<=x@p & sy>0] if(!length(spy)){ spy <- 0 spx <- c(0,spx) } spy <- c(spy, max(spy)) len <- length(sx) nn <- names(area(x)[1]) if(is.null(main)) main <- paste("ROC-Curve", ifelse(length(nn), paste("(", nn, ")", sep=""), "")) plot(sx, sy, pch=pch, cex=cex, xlab=xlab, ylab=ylab, main=main, sub=sub, ...) if(mean(x@data)==1 || all(sx==sy)) polygon(c(0,1,1), c(0,0,1), col="#ececec", lty=0) else{ rect(spx[-1], 0, spx[-1] - diff(spx),spy[-1], col="#ececec", lty=0) lines(sx, sy, type="s") } points(sx, sy, pch=pch, cex=cex, ...) lines(0:1, 0:1, lty=3, col="darkgray") atext <- paste("AUC: ", signif(x@AUC[1],3)) tw <- strwidth(atext) w <- diff(par("usr")[1:2]) cex <- min(1, (w/2+w/10)/tw) th <- strheight(atext, cex=cex)*1.1 if(x@p<1){ ptext <- paste("pAUC: ", signif(x@pAUC[1],3), " (p=", x@p, ")", sep="") tw <- max(tw, strwidth(ptext)) cex <- min(1, (w/2+w/10)/tw) abline(v=x@p, col="darkblue", lty=2) text(x=1-tw*cex*1.1, y=0.02+th*cex, atext, pos=4, cex=cex) text(x=1-tw*cex*1.1, y=0.02, ptext, pos=4, cex=cex) }else{ text(x=1-tw*cex*1.1, y=0.02, atext, pos=4, cex=cex) } }) ## ========================================================================== ## ========================================================================== ## pAUC method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("pAUC", signature(object="rowROC", p="numeric"), function(object, p, flip=TRUE){ if(length(flip)!=1 || !(is.logical(flip))) stop("'flip' must be logical scalar") flip <- as.integer(flip) res <- .Call("pAUC", object@spec, object@sens, p, flip) names(res$pAUC) <- names(res$AUC) <- names(object@AUC) object@pAUC <- res$pAUC object@AUC <- res$AUC object@p <- p return(object) }) ## ========================================================================== ## ========================================================================== ## AUC method for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("AUC", signature(object="rowROC"), function(object){ object@pAUC <- object@AUC object@p <- 1 return(object) }) ## ========================================================================== ## ========================================================================== ## accessor method to slot 'sens' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("sens", signature(object="rowROC"), function(object) return(object@sens) ) ## ========================================================================== ## ========================================================================== ## accessor method to slot 'spec' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("spec", signature(object="rowROC"), function(object) return(object@spec) ) ## ========================================================================== ## ========================================================================== ## accessor method to slots 'AUC' or 'pAUC' for objects of class rowROC ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("area", signature(object="rowROC"), function(object, total=FALSE){ if(total) return(object@AUC) else return(object@pAUC) }) ## ========================================================================== genefilter/R/rowSds.R0000644000175400017540000000032313556116164015537 0ustar00biocbuildbiocbuildrowVars = function(x, ...) { sqr = function(x) x*x n = rowSums(!is.na(x)) n[n<=1] = NA return(rowSums(sqr(x-rowMeans(x, ...)), ...)/(n-1)) } rowSds = function(x, ...) sqrt(rowVars(x, ...)) genefilter/R/rowpAUCs-methods.R0000644000175400017540000001025613556116164017430 0ustar00biocbuildbiocbuild## ========================================================================== ## core rowpAUCs method for objects of class matrix ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="matrix", fac="factor"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ ##check argument 'p' if(!is.numeric(p) || length(p)>1) stop("'p' must be numeric of length 1") ## check argument 'fac' f <- checkfac(fac) if(f$nrgrp != 2 || length(f$fac) != ncol(x) || length(unique(f$fac)) !=2 ) stop("'fac' must be factor with 2 levels and length 'ncol(x)'") ## check argument 'flip' if(length(flip)!=1 || !(is.logical(flip))) stop("'flip' must be logical scalar") flip <- as.integer(flip) ## compute cutpoints cutpts <- matrix((0:ncol(x))+0.5, ncol=ncol(x)+1, nrow=nrow(x), byrow=TRUE, dimnames=list(rownames(x), NULL)) ## rank data xr <- t(apply(x, 1, rank)) mode(xr) <- "numeric" ## call C function and return object of class 'rowROC' res <- .Call("ROCpAUC", xr, cutpts, as.integer(f$fac), p, PACKAGE="genefilter", flip) sens <- res$sens spec <- res$spec rownames(sens) <- rownames(spec) <- rownames(x) pAUC <- res$pAUC AUC <- res$AUC names(AUC) <- names(pAUC) <- rownames(x) object <- new("rowROC", data=x, sens=sens, spec=spec, pAUC=pAUC, AUC=AUC, factor=factor(f$fac), p=p, ranks=xr, caseNames=as.character(caseNames), cutpoints=cutpts) return(object) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=matrix, fac=numeric ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="matrix", fac="numeric"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ cutpts <- matrix((0:ncol(x))+0.5, ncol=ncol(x)+1, nrow=nrow(x), byrow=TRUE) rowpAUCs(x=x, fac=factor(fac), p=p, flip=flip, caseNames=caseNames) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=ExpressionSet ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="ExpressionSet"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ rowpAUCs(x=exprs(x), fac=fac, p=p, flip=flip, caseNames=caseNames) }) ## ========================================================================== ## ========================================================================== ## rowpAUCs method with signature x=ExpressionSet fac=character ## - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - setMethod("rowpAUCs", signature(x="ExpressionSet", fac="character"), function(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")){ if (length(fac) == 1){ if(!fac %in% colnames(pData(x))) stop("fac must be length 1 character indicating a ", "covariate in the phenoData slot of the expressionSet") cn <- as.character(levels(pData(x)[[fac]])) fac = factor(as.integer(factor(pData(x)[[fac]]))-1) rowpAUCs(x=exprs(x), fac=fac, p=p, flip=flip, caseNames=cn) }else{ rowpAUCs(x=x, fac=as.factor(fac), p=p, flip=flip, caseNames=caseNames) } }) ## ========================================================================== genefilter/R/rowttests-methods.R0000644000175400017540000001566013556116164020007 0ustar00biocbuildbiocbuild##--------------------------------------------------------------------------------------## ## This file contains methods definitions for rowttests, colttest, rowFtests, colFtests ## ##--------------------------------------------------------------------------------------## ##----------------------------------------------------------------------- ## The core function for row- and column-wise t-tests - it uses C code ##------------------------------------------------------------------------ rowcoltt = function(x, fac, tstatOnly, which, na.rm) { if (!missing(tstatOnly) && (!is.logical(tstatOnly) || is.na(tstatOnly))) stop(sQuote("tstatOnly"), " must be TRUE or FALSE.") f = checkfac(fac) if ((f$nrgrp > 2) || (f$nrgrp <= 0)) stop("Number of groups is ", f$nrgrp, ", but must be >0 and <=2 for 'rowttests'.") if (typeof(x) == "integer") x[] <- as.numeric(x) cc = .Call("rowcolttests", x, f$fac, f$nrgrp, which-1L, na.rm, PACKAGE="genefilter") res = data.frame(statistic = cc$statistic, dm = cc$dm, row.names = dimnames(x)[[which]]) if (!tstatOnly) res = cbind(res, p.value = 2*pt(abs(res$statistic), cc$df, lower.tail=FALSE)) attr(res, "df") = cc$df return(res) } ##------------------------------------------------------------ ## The core function for F-tests - it uses R matrix algebra ##------------------------------------------------------------ rowcolFt = function(x, fac, var.equal, which) { if(!(which %in% c(1L, 2L))) stop(sQuote("which"), " must be 1L or 2L.") if(which==2L) x = t(x) if (typeof(x) == "integer") x[] <- as.numeric(x) sqr = function(x) x*x stopifnot(length(fac)==ncol(x), is.factor(fac), is.matrix(x)) x <- x[,!is.na(fac), drop=FALSE] fac <- fac[!is.na(fac)] ## Number of levels (groups) k <- nlevels(fac) ## xm: a nrow(x) x nlevels(fac) matrix with the means of each factor ## level xm <- matrix( sapply(levels(fac), function(fl) rowMeans(x[,which(fac==fl), drop=FALSE])), nrow = nrow(x), ncol = nlevels(fac)) ## x1: a matrix of group means, with as many rows as x, columns correspond to groups x1 <- xm[,fac, drop=FALSE] ## degree of freedom 1 dff <- k - 1 if(var.equal){ ## x0: a matrix of same size as x with overall means x0 <- matrix(rowMeans(x), ncol=ncol(x), nrow=nrow(x)) ## degree of freedom 2 dfr <- ncol(x) - dff - 1 ## mean sum of squares mssf <- rowSums(sqr(x1 - x0)) / dff mssr <- rowSums(sqr( x - x1)) / dfr ## F statistic fstat <- mssf/mssr } else{ ## a nrow(x) x nlevels(fac) matrix with the group size of each factor ## level ni <- t(matrix(tapply(fac,fac,length),ncol=nrow(x),nrow=k)) ## wi: a nrow(x) x nlevels(fac) matrix with the variance * group size of each factor ## level sss <- sqr(x-x1) x5 <- matrix( sapply(levels(fac), function(fl) rowSums(sss[,which(fac==fl), drop=FALSE])), nrow = nrow(sss), ncol = nlevels(fac)) wi <- ni*(ni-1) /x5 ## u : Sum of wi u <- rowSums(wi) ## F statistic MR <- rowSums(sqr((1 - wi/u)) * 1/(ni-1))*1/(sqr(k)-1) fsno <- 1/dff * rowSums(sqr(xm - rowSums(wi*xm)/u) * wi) fsdeno <- 1+ 2* (k-2)*MR fstat <- fsno/fsdeno ## degree of freedom 2: Vector with length nrow(x) dfr <- 1/(3 * MR) } res = data.frame(statistic = fstat, p.value = pf(fstat, dff, dfr, lower.tail=FALSE), row.names = rownames(x)) attr(res, "df") = c(dff=dff, dfr=dfr) return(res) } ## ========================================================================== ## rowttests and colttests methods for 'matrix' ## ========================================================================== setMethod("rowttests", signature(x="matrix", fac="factor"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) rowcoltt(x, fac, tstatOnly, 1L, na.rm)) setMethod("rowttests", signature(x="matrix", fac="missing"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) rowcoltt(x, factor(integer(ncol(x))), tstatOnly, 1L, na.rm)) setMethod("colttests", signature(x="matrix", fac="factor"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) rowcoltt(x, fac, tstatOnly, 2L, na.rm)) setMethod("colttests", signature(x="matrix", fac="missing"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) rowcoltt(x, factor(integer(ncol(x))), tstatOnly, 2L, na.rm)) ## ========================================================================== ## rowFtests and colFtests methods for 'matrix' ## ========================================================================== setMethod("rowFtests", signature(x="matrix", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(x, fac, var.equal, 1L)) setMethod("colFtests", signature(x="matrix", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(x, fac, var.equal, 2L)) ## =========================================================================== ## Methods for 'ExpressionSet': only for rowttests and rowFtests ## -========================================================================== setMethod("rowttests", signature(x="ExpressionSet", fac="factor"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) rowcoltt(exprs(x), fac, tstatOnly=tstatOnly, 1L, na.rm)) setMethod("rowttests", signature(x="ExpressionSet", fac="missing"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) { x = exprs(x) fac = integer(ncol(x)) rowcoltt(x, fac, tstatOnly, 1L, na.rm) }) setMethod("rowttests", signature(x="ExpressionSet", fac="character"), function(x, fac, tstatOnly=FALSE, na.rm = FALSE) { if (length(fac) != 1) stop("fac must be length 1 character or a factor") fac = factor(pData(x)[[fac]]) rowcoltt(exprs(x), fac, tstatOnly, 1L, na.rm) }) setMethod("rowFtests", signature(x="ExpressionSet", fac="factor"), function(x, fac, var.equal=TRUE) rowcolFt(exprs(x), fac, var.equal, 1L)) setMethod("rowFtests", signature(x="ExpressionSet", fac="character"), function(x, fac, var.equal=TRUE) { fac = factor(as.integer(factor(pData(x)[[fac]]))-1L) rowcolFt(exprs(x), fac, var.equal, 1L) }) ## ------------------------------------------------------------ ## convert fac from factor or numeric to integer and then ## make sure it is an integer ## ------------------------------------------------------------ checkfac = function(fac) { if(is.numeric(fac)) { nrgrp = as.integer(max(fac, na.rm=TRUE)+1) fac = as.integer(fac) } ## this must precede the factor test if(is.character(fac)) fac = factor(fac) if (is.factor(fac)) { nrgrp = nlevels(fac) fac = as.integer(as.integer(fac)-1) } if(!is.integer(fac)) stop("'fac' must be factor, character, numeric, or integer.") if(any(fac<0, na.rm=TRUE)) stop("'fac' must not be negative.") return(list(fac=fac, nrgrp=nrgrp)) } genefilter/R/shorth.R0000644000175400017540000000317713556116164015577 0ustar00biocbuildbiocbuildshorth <- function(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05) { stopifnot(is.numeric(x)) if (na.rm) { x <- x[is.finite(x)] } else { if(any(!is.finite(x))) stop("'x' contains NA or NaN, and 'na.rm' is FALSE.") } if(length(x)==0L) { NA_real_ } else { sx <- sort(x) width <- round(0.5*length(x)) diffs <- sx[(width+1):length(x)] - sx[1:(length(x)-width)] ## cannot use which.min since we want all minimising points not just one: q <- which(diffs==min(diffs)) if(length(q)>1) { ## deal with ties: maxq = max(q) minq = min(q) ## take the action specified in "tie.action" q <- switch(tie.action, mean = { if (maxq-minq <= tie.limit * length(x)) { mean(q) } else { stop(paste("Encountered tie(s), and the difference between minimal and maximal value is larger than 'length(x)*tie.limit'.", "This could mean that the distribution does not have a single well-defined mode.", paste("q=", minq, "...", maxq, ", values=", signif(sx[minq],4), "...", signif(sx[minq+width],4), sep=""), sep="\n")) }}, max = maxq, ## largest midpoint (maxq) min = minq, ## smallest midpoint (minq) stop(sprintf("Invalid value '%s' for argument 'tie.action'", tie.action)) ) } ## if mean(sx[q:(q+width-1)]) } ## if } genefilter/R/zzz.R0000644000175400017540000000037313556116164015120 0ustar00biocbuildbiocbuild.onLoad <- function(lib, pkgname) { if(.Platform$OS.type == "windows" && interactive() && .Platform$GUI == "Rgui"){ addVigs2WinMenu("genefilter") } } .onUnload <- function( libpath ) { library.dynam.unload( "genefilter", libpath ) } genefilter/build/0000755000175400017540000000000013556146247015040 5ustar00biocbuildbiocbuildgenefilter/build/vignette.rds0000644000175400017540000000074113556146247017401 0ustar00biocbuildbiocbuildRkA8/B GRbU z7 \v-׼]g4Mk8|w3k$I7I5=/뉬|Gr>'chLL/w.ʂۀϸxsD*Ui9!u'pƗvЃ*'0:ߝ=}|!ɂB4-A2Z\y#WM"VZ,- '9p4Bgkp%f]zvawڽU;nxvEG.f܂:{":xxF[z;drmEz8mׇukG2 Gn/H90jv?>eNZ+#p\E\TlDGaq(ٖj0Cm%^ 4genefilter/data/0000755000175400017540000000000013556116164014645 5ustar00biocbuildbiocbuildgenefilter/data/tdata.R0000644000175400017540000036557213556116164016107 0ustar00biocbuildbiocbuild"tdata" <- structure(list(A = c(192.742, 97.137, 45.8192, 22.5445, 96.7875, 89.073, 265.964, 110.136, 43.0794, 10.9187, 751.227, 76.9437, 105.378, 40.4826, 58.1706, 257.619, 129.056, 61.7251, -40.9349, 284.407, 178.745, 79.7368, 9903.19, 61.2671, 120.544, 50.0962, 42.5285, 36.8936, 234.698, 26.9561, 58.124, 40.616, 125.063, 49.9943, 33.1246, 148.494, 66.6936, 19.1364, 165.75, 179.989, 151.72, 553.87, 72.2579, -30.1595, 65.1004, 1781.95, 3311.18, 4478.99, 3835.31, 4252.98, 5449.81, 79.7636, 3.75133, 44.3623, 197.782, 831.418, 541.391, 117.151, 144.719, 70.46, 55.4337, 224.167, 238.342, 130.794, 54.0728, 107.263, 382.255, 36.9832, 22.9605, 6.29927, 17.1529, 216.932, 190.178, 113.476, 50.7945, 1139.56, -18.287, 17.2761, 17.7039, 15.8655, 123.621, 174.661, 25.4169, 17.0339, 102.591, 67.8606, 754.361, 1.86526, 121.892, 14.5586, 3175.57, 40.8068, 18.1273, 22.5912, 14.4076, 64.5555, 17.8468, 412.283, 8.93417, -28.9985, 28.59, 316.157, 139.423, 8.50093, 60.8199, 37.7096, 35.6071, 192.835, 24.9388, 29.4782, 268.752, 13.0213, 65.5145, 464.122, 65.3482, 185.137, 165.366, 240.969, 51.1941, 6.66395, 48.6114, 36.5343, 412.338, 141.939, 36.4318, 52.9437, 61.3229, 65.3667, 68.6627, 10.9786, 23.8657, 5.01524, 177.065, 45.8588, 50.9341, 407.17, 16.8144, 24.3676, 139.241, 101.986, 126.172, 81.2844, -7.15113, 57.5308, 118.845, 3351.76, 286.108, 183.669, -0.944537, 21.8096, 16.7794, 405.217, 78.5843, 1705.65, 71.6915, 16.6355, 3211.06, 80.4291, 15.9308, 86.4344, 12.4541, 13.0163, 138.419, 16.6741, 20.1171, 323.881, 132.963, 3.27231, 113.622, -4.52738, 145.533, 19.0251, 28.0719, 128.004, 333.392, 17.6846, 92.238, 141.285, 17.7226, 1937.11, 54.0638, 15.8039, 29.8451, 76.3667, 445.892, 143.263, 202.725, 24.9869, 963.851, 79.9563, 56.2773, 321.199, 738.774, 100.949, 188.097, 18.1364, 355.357, 74.2606, 133.454, 98.7327, 694.948, 92.4006, 25.0186, 250.085, 3876.44, 117.049, 122.154, 67.1931, 7.30897, 84.6283, 49.592, 335.108, 66.4654, 86.0123, 72.9268, 44.994, 9.38836, 444.915, 92.0446, 10.0007, 18.8823, 58.7393, 13.3018, 569.842, 37.662, 40.3649, 226.662, 12.82, 391.518, 110.782, 7.59043, 194.394, 27.4265, 7.68662, 65.2073, 119.647, 16.0125, 1281.78, 226.635, 10.8538, 17.5639, 1335.61, 86.3719, 62.4806, 195.822, 244.137, 14.4861, 46.9659, 195.317, 5.81787, 184.517, 22.0721, 199.422, 16.2109, 6.64863, 161.7, 44.5963, 505.617, 110.631, 185.215, 27.4203, 24.4519, 216.36, 255.058, 309.114, 4667.83, 112.576, 91.4096, 633.803, 2329.11, -31.0105, 2809.33, 9.45511, 2.93526, 245.995, 132.075, 25.4559, -78.1238, 9.77901, 66.6104, 78.5702, 60.3145, 40.4373, 50.5534, 93.9559, 152.835, 57.4955, 2847.08, 90.0681, 336.346, 333.8, 117.994, 36.3703, 75.0352, 53.314, 286.113, 291.484, 73.877, 3858.49, 11.1541, 26.7391, -19.123, 8.3213, -175.867, 316.537, 3205.89, 1633.98, 490.371, 69.9426, 24.3604, 148.338, 42.0539, 166.386, 11.0695, 466.869, 918.454, 105.831, 6336.55, 94.5106, 124.549, 78.9894, 57.1918, -10.0784, 3.87075, 109.668, 77.1675, 457.371, 90.2235, 2193.88, 97.9357, 67.4934, 12.5044, 87.9604, 1136.1, 52.8251, 205.778, 47.9478, 37.0896, 29.8769, 163.502, 52.9366, -6.26854, 24.8778, 2172.91, 2117.27, 34.5438, 3.18616, 181.501, 32.5297, 105.013, 292.29, 63.8859, 174.173, 95.0869, 280.535, 109.507, 1354.61, 1961.83, 64.2933, 34.5335, 92.1684, 6.89252, 118.755, 40.8079, 229.027, 100.052, 26.8675, 48.7903, 145.687, 1698.05, 165.572, 3.01315, 14.9219, 115.39, 222.809, 52.0182, 17.2658, 33.2661, 61.0926, 13.8854, 638.578, 622.462, 1695.75, 685.856, 122.788, 13.867, 234.63, 327.099, 45.4667, 34.1512, 10.0776, -57.7591, 33.2443, 43.9199, 345.91, 157.343, 276.585, 551.108, 401.466, 26.783, 344.651, 99.7442, -80.8385, 19.5091, 66.3027, 87.1783, 8.25017, 37.6927, 113.722, 78.6986, 24.9035, 6.32616, -36.7863, 30.8709, 48.0258, 347.951, 6.1035, 20.7713, 59.5264, 119.503, 27.8618, 35.1162, 92.8325, 190.052, 11.9853, -53.8608, -0.760266, 789.487, 349.556, 252.402, 148.234, 158.495, 7.5498, 258.37, 4.04513, 2.94722, 11.3329, 37.8421, 29.3296, 153.122, 328.971, 287.74, 59.2783, 52.3302, 70.1602, 285.172, 110.687, 442.733, 55.6486, 37.2868, 81.0269, 239.965, 582.627, 858.9, 230.119, 58.5767, 13.7181, 1739.95, 72.151, 286.243, 265.477, 652.056, 5.14324, 27.5791, 238.494, 310.136, 35.5071, 23.6182, 2080.61, 376.363, 545.377, 66.1117, 82.6331, 54.9434, 11.3511, 259.183, 153.759, 16.8873, 30.2569, 1505.73, 1937.31, 233.214, 3250.14, -22.2448, 269.912, 84.6064, 233.003, 248.216, 150.127, 4.59592, 129.867, 19.7505, 24.819, 63.576, 190.533, 26.7016, 446.512, 22.4641, 299.434, 253.692), B = c(85.7533, 126.196, 8.83135, 3.60093, 30.438, 25.8461, 181.08, 57.2889, 16.8006, 16.1789, 515.004, 40.907, 97.4932, 7.45801, 15.7926, 113.69, 74.6095, 50.2372, -83.9302, 208.099, 101.3, 55.5632, 8501.62, 37.474, 75.9854, 27.9532, 33.7186, 35.1697, 102.467, -2.37297, -1.69785, 34.713, 98.0369, 19.8722, 4.91484, 70.9219, 5.60854, 20.8099, 300.024, 790.943, 546.343, 1758.42, 159.484, -64.7658, 19.7163, 2370.97, 3270.14, 3937.24, 5529.02, 5758.12, 5870.02, 36.0172, 20.7365, 54.8022, 44.7054, 501.091, 377.234, 128.234, 181.278, 93.6398, 64.7447, 180.978, 190.311, 67.1193, 30.2595, 73.1682, 237.818, 42.2591, 13.4121, 19.1633, 27.1722, 162.563, 120.161, 84.9185, 53.818, 5154.31, 3.74538, 36.0095, 15.2357, 23.9183, 95.3586, 103.08, 42.3577, 23.4741, 92.3486, 24.4368, 777.105, 5.41691, 92.031, 34.3359, 3548.02, 3.2361, 9.65582, 9.13811, -1.38469, 56.5676, 1.12837, 440.35, 4.28296, -30.0532, 16.6452, 278.807, 169.568, 21.1695, -394.553, 16.4941, 38.4721, 78.9517, 3.10118, 30.1089, 167.865, -3.0867, 44.0921, 436.574, 44.5892, 163.138, 194.529, 214.829, 55.8029, 11.3476, 14.958, 25.3529, 384.259, 72.7142, 12.4748, 27.1124, 66.3107, 66.8159, 63.0803, 92.1722, 0.177197, -38.9859, 171.192, 34.0826, 4.07801, 373.017, -0.769524, 6.01475, 89.9168, 84.6254, 107.521, 74.2868, -20.7531, 148.301, 94.944, 4323.17, 232.94, 121.714, 69.4382, 5.72227, 7.3986, 415.275, 28.8216, 1315.01, 36.1148, 67.0027, 2593.65, 24.3428, -17.6152, 50.0729, 9.31312, -23.0799, 86.1644, -8.1025, 19.6846, 235.001, 73.4631, 13.8193, 59.9681, 2.94767, 157.69, 47.6266, 61.1661, 104.139, 379.143, 23.7638, 71.4745, 87.7626, 30.7267, 1499.43, 39.9567, 7.69656, 2.28445, 59.4088, 330.876, 105.898, 176.47, 1.81061, 851.733, 20.8281, 45.8031, 649.608, 1163.7, 55.8623, 151.278, -16.7101, 277.792, 42.7732, 241.785, 131.357, 616.905, 54.4591, 41.0307, 212.55, 4456.75, 212.208, 115.759, 58.1292, -15.082, 90.8461, 20.9174, 277.822, 44.4367, 68.6069, 16.3172, 3.4138, -3.38286, 285.917, 126.127, 0.609841, 59.5828, 4.21187, 8.49004, 870.198, 13.2164, 14.4078, 203.901, 14.9982, 252.349, 74.7691, 10.7374, 170.651, 97.6762, 33.0937, 35.1276, 200.758, 24.2109, 808.399, 176.946, 10.668, 23.3083, 2208.33, 62.0363, 40.6219, 64.4413, 104.971, 22.7284, 600.467, 361.212, -6.01692, 291.5, 21.2316, 473.545, 20.4983, 31.2972, 150.28, 111.154, 182.812, 93.91, 372.524, 72.3758, 15.8334, 147.966, 267.088, 813.374, 2995.08, 66.3044, 46.9761, 1468.57, 2370.87, -59.0063, 3676.6, 148.159, 12.0201, 220.69, 111.018, 55.0777, -66.3389, -13.7223, 76.5278, 53.8695, 194.842, 131.637, 235.74, 240.715, 247.238, 122.939, 3743.96, 573.17, 387.269, 251.052, 107.653, 37.0203, 137.625, 33.853, 238.052, 863.607, 35.8266, 3568.89, 1.50669, 27.7993, -5.28788, 11.2962, -125.024, 408.582, 3515.46, 2218.3, 511.181, 41.3118, 15.083, 116.584, 9.54446, 142.225, -26.1006, 363.157, 728.89, 93.9206, 7294.08, 22.3793, 107.922, 31.4733, 101.262, 57.8828, -28.1437, 59.2715, 66.1019, 377.694, 78.6573, 3324.68, 50.878, 71.3438, 9.54178, 54.2085, 2764.5, 20.1416, 167.67, 10.6369, 22.4401, 48.3359, 70.4437, 19.7066, 52.0355, 25.3512, 3017.39, 2812.14, 11.6979, 77.0231, 212.566, 16.6308, 82.0771, 185.749, 34.072, 101.539, 181.17, 197.009, 75.3342, 2147.25, 1587.88, 151.32, 30.4737, 123.478, 2.23759, 69.8942, 26.9286, 79.6353, 117.308, -34.0231, 42.9693, 217.778, 1353.85, 116.874, 3.5022, 22.7868, 57.4058, 161.722, 29.8741, 9.53801, 33.8521, 24.413, 17.7637, 520.449, 591.734, 2062.22, 996.584, 78.1948, 45.329, 167.125, 401.967, 34.1303, 21.5371, 2.24541, -26.3753, 32.5026, 29.1886, 206.237, 93.309, 200.928, 487.538, 337.674, 30.2136, 278.321, 118.652, -52.243, 17.923, 21.0778, 55.3885, 2.27909, 47.3832, 88.2588, 49.7464, 32.1044, -1.05329, -4.33992, 18.2626, 40.7261, 333.625, -7.93034, 19.45, 57.6465, -755.812, 21.0434, 33.7346, 106.43, 268.848, 8.83568, -46.6535, -1.72494, 623.697, 231.072, 198.967, 469.976, 269.123, 68.4686, 316.445, 7.37585, 33.8574, 8.8682, 21.018, 10.5003, 67.5913, 1110.82, 295.222, 83.4115, 11.1847, 126.866, 373.091, 71.2689, 713.406, 58.4652, 22.5675, 232.293, 236.371, 469.914, 762.529, 103.91, 60.7067, 5.59537, 3355.81, 84.9986, 230.098, 272.078, 563.61, 24.53, 13.1461, 221.654, 274.996, 5.44171, 24.4863, 2227.03, 392.032, 508.608, 93.93, 31.5536, 31.0355, 3.83873, 230.849, 242.947, 13.9151, 3.29854, 1556.68, 1911.55, 146.58, 4013.99, -13.4229, 211.98, 72.7237, 186.692, 165.056, 214.073, 9.80107, 84.4112, 89.002, 26.9743, 11.6784, 169.962, 33.1578, 271.494, 23.4589, 233.138, 183.306), C = c(176.757, 77.9216, 33.0632, 14.6883, 46.1271, 57.2033, 164.926, 67.398, 37.6002, 10.1495, 622.901, 62.0314, 74.0299, 19.4069, 25.1962, 187.796, 82.8271, 61.671, -28.705, 239.039, 118.699, 68.5976, 9453, 44.7525, 126.374, 29.261, 35.842, 36.5703, 97.901, 34.4333, 52.6747, 82.4409, 77.1769, 32.2058, 24.6518, 118.632, 60.3028, 10.7195, 152.424, 150.249, 173.624, 599.857, 42.4559, -28.2104, 39.1968, 1693, 2670.94, 3822.94, 2961.39, 3739.82, 4788.63, 82.2737, -0.597615, 44.8314, 206.137, 620.729, 436.198, 84.4842, 191.682, 64.3478, 79.7282, 237.773, 207.319, 97.155, 38.0971, 74.1949, 388.945, 23.294, 16.9304, 3.03659, -0.338279, 166.482, 169.273, 177.832, 58.2412, 600.494, -3.03599, 0.533814, 10.2753, 22.7978, 94.4468, 177.465, 28.9386, 18.9332, 120.461, 84.3285, 1208.68, 11.7631, 201.403, 16.3046, 1820.51, 18.7009, 8.06063, 17.7927, 4.91404, 64.3351, 9.33222, 495.373, 11.3434, -26.9727, 32.8212, 309.36, 132.574, 4.76155, 85.7358, 41.2689, 63.5624, 96.1371, 13.489, 40.0346, 288.847, 32.9084, 53.8278, 371.229, 68.3952, 128.63, 266.452, 269.956, 47.743, -0.199725, 67.7454, 30.8355, 394.639, 99.8759, 32.5865, 49.5398, 56.054, 78.8531, 85.9725, -3.55993, 26.8936, 0.485286, 277.25, 60.7702, 36.151, 466.838, -4.87448, 9.19057, 137.726, 117.944, 122.385, 91.1349, -9.44844, 90.8404, 78.8022, 2793.21, 217.035, 142.901, 58.8769, -25.6195, 16.2116, 472.011, 76.1839, 975.155, 25.4608, 23.3196, 3219.65, 98.2355, 11.5571, 62.0855, -3.89868, 0.364566, 133.15, 14.9364, 30.4366, 247.264, 230.803, 0.868223, 114.364, -1.38195, 202.254, 24.8141, 56.6022, 142.538, 404.582, 26.6696, 110.596, 159.432, 20.0713, 1981.21, 79.788, 20.2375, 32.2108, 78.4334, 534.38, 194.198, 268.142, 19.7106, 1151.71, 33.9701, 40.1148, 189.034, 458.814, 111.326, 243.659, 11.1631, 410.494, 64.8875, 86.9771, 150.6, 897.232, 70.4278, 41.771, 266.278, 3561.69, 96.4136, 139.54, 65.321, 1.92815, 70.2624, 23.7333, 334.227, 37.4708, 55.9757, 42.6704, 24.337, 56.2867, 462.89, 176.691, 6.97726, 12.3479, 61.623, -40.8948, 496.399, 12.4289, 16.7948, 234.34, 18.1656, 744.438, 52.0471, 26.1707, 277.678, 59.6709, 8.88736, 67.9387, 166.966, 38.5175, 2748.11, 285.982, 11.8812, 17.6829, 1051.91, 156.014, 48.2021, 159.216, 139.037, 18.6021, 45.0407, 180.731, 2.32048, 184.486, 16.5329, 105.691, 41.7953, 0.693056, 116.963, 26.7144, 244.615, 117.343, 108.422, 59.9884, 23.0708, 201.693, 373.406, 331.275, 2239.38, 114.994, 116.796, 628.728, 1887.55, -81.7433, 2448.39, 8.64014, 5.43453, 255.595, 117.117, 76.3595, -37.4766, 6.22211, 136.229, 89.6268, 50.2193, 77.6374, 95.2023, 98.8803, 175.198, 125.214, 2868.78, 173.548, 471.518, 404.532, 181.375, 39.4546, 103.158, 105.342, 387.073, 537.699, 75.7463, 2560.07, -0.373076, 12.8639, -12.5198, 15.1326, -117.8, 395.382, 3143.06, 1271.65, 721.257, 61.8619, 23.3659, 172.881, 28.6697, 171.244, 14.1655, 375.339, 840.046, 93.8486, 6579.89, 40.5256, 138.575, 62.4509, 109.496, 24.4152, 24.7544, 105.943, 71.9599, 331.429, 105.756, 1786.61, 128.158, 84.3728, 20.6126, 157.824, 1300.7, 48.2448, 229.14, 61.0324, 21.6207, 32.5197, 173.512, 33.0107, -3.57515, 38.8318, 2115.7, 2353.56, 37.2077, 26.4637, 204.545, 45.8613, 170.981, 324.006, 46.7089, 243.086, 84.3667, 312.187, 83.842, 7748.04, 1548.52, 131.897, 47.1247, 131.118, 4.11246, 124.225, 34.5025, 197.734, 91.6667, 22.7796, 84.4513, 143.789, 905.632, 179.091, 1.12619, 33.9309, 69.3337, 190.008, 51.8768, 21.6014, 26.3087, 55.8036, 2.06138, 629.873, 494.789, 1648.93, 627.546, 104.333, 9.70183, 196.457, 264.936, 30.9323, 23.3243, 2.87676, -56.3115, 40.8574, 29.4056, 243.143, 155.89, 368.955, 729.211, 331.715, 28.1446, 513.724, 123.675, -68.25, 15.495, 86.2276, 76.1181, 5.3182, 33.6867, 134.632, 48.2266, 24.8465, 0.541914, -19.0799, 12.4705, 64.7863, 362.379, 8.82454, 12.3041, 73.1326, 147.117, 40.8124, 50.4434, 76.3825, 264.597, 12.1591, -75.3722, 4.81662, 650.118, 239.454, 215.675, 206.716, 129.04, 1.6552, 240.097, 10.8357, 9.03269, 15.9011, 26.9514, 10.7637, 106.479, 301.017, 362.135, 72.0019, 55.6966, 174.68, 332.694, 388.184, 337.534, 18.5135, 12.4759, 118.672, 261.799, 207.092, 600.212, 192.576, 47.1807, 4.08804, 2498.19, 63.1878, 312.842, 326.4, 455.249, 1.25862, 24.361, 278.501, 324.997, 10.9836, 10.5946, 1666.93, 553.31, 634.472, 64.7392, 62.0543, 37.4184, 17.2002, 260.407, 185.728, 16.1287, 21.148, 1761.11, 1776.92, 257.1, 3288.88, -8.50769, 338.949, 66.6674, 336.641, 298.4, 195.258, 0.368562, 116.449, 16.639, 39.5593, 55.6773, 156.71, 31.7113, 304.809, 39.417, 355.204, 291.385), D = c(135.575, 93.3713, 28.7072, 12.3397, 70.9319, 69.9766, 161.469, 77.2207, 46.5272, 9.73639, 669.859, 54.4218, 54.5277, 20.6246, 46.5057, 210.58, 101.534, 93.2235, -27.9979, 236.428, 131.834, 55.6881, 8595.65, 43.902, 90.4021, 38.6436, 43.8173, 37.0274, 146.239, 17.5947, 55.7056, 42.4596, 107.861, 37.0137, 30.3256, 118.691, 63.5276, 13.9764, 118.693, 82.6372, 135.163, 426.569, 3.26054, -37.3464, 24.3987, 931.981, 1916, 2995.59, 1712.31, 2266.59, 3491.7, 51.4973, -8.47943, 31.2879, 116.343, 668.082, 560.846, 101.776, 202.534, 63.019, 102.178, 216.3, 217.761, 109.506, 35.9229, 103.339, 336.965, 31.0905, -15.2399, -0.903413, -14.1061, 248.735, 173.702, 117.493, 59.7341, 658.421, -5.98093, 11.4078, 12.9648, 24.8195, 124.794, 174.559, 19.3623, 26.6189, 113.723, 84.2596, 730.314, 8.62522, 134.993, 18.4485, 2612.13, 28.5711, 5.85333, 19.1999, 11.1325, 56.7737, -1.59376, 501.236, 13.8976, -23.0042, 37.1873, 403.88, 109.777, 10.3207, 67.3778, 47.4344, 55.8759, 108.988, 13.9802, 43.1862, 208.604, 2.65486, 48.6217, 465.519, 60.0952, 129.701, 250.405, 265.694, 36.3271, 17.8139, 60.2125, 28.2217, 362.904, 114.494, 16.9474, 45.4437, 52.1385, 40.8464, 81.6387, 0.849691, 21.6048, -2.29043, 190.222, 66.5821, 46.4369, 467.278, -0.835582, 18.1039, 115.949, 98.4812, 128.012, 67.5637, 11.2539, 77.5852, 91.8056, 3072.51, 192.841, 161.071, 40.22, 31.2705, -61.0733, 436.333, 60.0639, 1420.69, 41.971, 16.3495, 2453.11, 104.167, 13.7932, 89.1047, 4.4386, 8.19584, 89.7832, 14.4443, 54.3745, 249.8, 187.791, 6.62558, 127.032, -5.58777, 191.617, 17.9258, 78.5784, 148.488, 364.183, 46.72, 97.8402, 130.051, 11.396, 1414.58, 117.664, 26.8048, 35.6676, 51.7222, 382.114, 196.659, 264.509, 14.1542, 1326.21, 64.8629, 39.6481, 175.793, 529.609, 80.6403, 118.342, 12.7879, 358.9, 58.4443, 123.854, 126.945, 763.094, 63.7269, 27.4686, 229.632, 3045.6, 94.6744, 108.665, 65.6258, -2.53157, 80.7287, 42.6169, 346.969, 37.3218, 57.9184, 48.6221, 32.3597, 17.1126, 475.902, 139.969, 2.52464, 13.3328, 50.5703, 8.63196, 724.818, 13.4701, 25.8875, 175.004, 26.7092, 628.343, 74.8407, 9.15695, 270.383, 43.9764, 10.0378, 66.9586, 159.203, 42.1448, 26.7318, 223.828, 3.47616, 15.4544, 1094.93, 112.442, 34.9869, 136.226, 173.703, 18.477, 40.0883, 153.399, 7.51711, 160.627, 11.9868, 215.151, 54.3479, 3.20111, 134.432, 44.7578, 371.959, 115.912, 58.0414, 89.2656, 25.785, 199.259, 238.99, 303.492, 3536.17, 129.548, 139.689, 2010.77, 2790.52, -77.6557, 3973.05, 7.47499, 1.14975, 254.188, 81.2887, 71.8499, -57.1317, 5.93088, 172.465, 79.6828, 29.3946, 50.5614, 73.798, 78.9586, 147.887, 106.963, 2915.08, 138.89, 385.115, 360.427, 115.041, 41.4827, 76.5293, 60.0774, 341.52, 761.418, 75.7623, 3682.01, 7.51078, 12.0506, -7.89719, 15.0758, 7.52292, 408.186, 4604.16, 2217.51, 505.422, 54.4029, 23.8248, 200.161, 26.5075, 116.292, 8.75973, 523.481, 968.806, 100.517, 4694.22, 64.1784, 119.122, 140.46, 63.7561, -22.7521, 12.7108, 116.718, 79.158, 322.951, 94.8393, 3026.42, 111.845, 74.4425, 44.2425, 97.9837, 2370.01, 29.0707, 180.18, 39.32, 24.889, 38.6347, 225.425, 31.989, 6.76259, 27.4242, 3134.73, 2830.51, 43.1838, 47.3681, 153.038, 19.7044, 224.179, 304.823, 82.7017, 226.486, 59.1124, 248.867, 88.2029, 1392.41, 1592.51, 72.3257, 43.4622, 128.944, 1.62062, 95.1037, 27.9533, 196.074, 86.6898, 20.6985, 86.8609, 104.507, 1146.21, 188.642, 0.59902, 41.9507, 92.7837, 224.49, 40.3968, 14.2285, 34.5061, 57.1294, 5.34327, 506.241, 522.548, 1160.22, 666.347, 97.9268, 17.7801, 218.052, 297.688, 32.3167, 19.5057, 26.6114, -37.5517, 43.6972, 24.0573, 288.353, 185.134, 254.767, 677.218, 346.054, 22.2505, 390.636, 124.853, -65.7515, 21.0519, 80.5353, 73.7944, 7.61247, 29.269, 119.968, 17.3605, 20.3198, 10.4502, -25.2877, 22.1264, 72.1742, 369.995, -5.68748, 11.8066, 50.6633, 173.014, -16.4234, 51.4102, 99.1137, 242.912, 9.02829, -77.6078, 7.24242, 528.138, 304.759, 189.418, 159.408, 179.094, 21.2023, 215.018, 6.69187, 0.00887041, 21.1965, 22.7721, 16.2251, 96.8354, 365.602, 347.427, -0.262678, 59.5886, 79.8423, 278.584, 145.429, 323.227, 54.4142, 10.4668, 76.9657, 284.822, 68.987, 825.444, 189.224, 40.9088, 1.28765, 2874.21, 69.2813, 288.84, 286.696, 481.875, -0.170312, 22.9568, 311.733, 331.046, 7.13579, 18.7409, 2532.58, 528.613, 548.603, 31.1731, 80.8461, 33.7246, 10.1153, 268.561, 155.212, 5.48352, 16.9418, 361.75, 179.567, 217.952, 4233.25, -13.5292, 212.173, 60.0119, 338.307, 315.376, 177.603, 1.57145, 166.478, 29.04, 46.9514, 42.201, 211.624, 36.6217, 340.978, 25.7452, 314.818, 270.719), E = c(64.4939, 24.3986, 5.94492, 36.8663, 56.1744, 49.5822, 236.976, 41.3488, 22.2475, 16.9028, 414.165, 29.0704, 54.9849, 25.0496, 15.3157, 137.39, 83.4986, 38.113, -29.9097, 152.327, 109.355, 56.396, 9198.53, 40.5637, 99.6214, 34.4854, 21.1038, 24.0568, 127.068, 30.9068, 36.449, 50.3563, 72.3561, 38.7689, 23.3383, 82.8794, 33.5234, 10.7876, 95.3272, 163.14, 193.159, 859.045, 11.4879, -45.8195, 38.9076, 2813.41, 3973.08, 4775.69, 3090.42, 4237.75, 4789.47, 76.4602, 5.07097, 27.6003, 41.1004, 571.461, 390.73, 96.9881, 190.287, 55.4916, 59.3796, 167.976, 186.738, 136.675, 30.0487, 43.4217, 218.95, 24.8622, 10.0734, 1.39476, 23.0263, 183.237, 102.385, 88.0268, 75.8551, 3378.38, 3.59555, 65.0242, 12.96, 99.2189, 89.2497, 121.01, 22.2028, 26.8139, 90.0344, 74.5531, 679.41, 13.4006, 117.134, 13.4128, 3201.35, 23.3641, -5.30554, 20.1253, 9.54839, 38.7718, -4.62199, 348.54, 13.8821, -18.3141, 17.2074, 306.792, 104.859, 12.6733, 94.0531, 21.6537, 43.6782, 89.4138, 13.6566, 38.0548, 189.276, 28.5149, 31.4913, 361.772, 62.0669, 152.595, 177.347, 153.814, 91.3033, 15.3481, 24.1763, 8.74242, 240.273, 138.468, 23.0748, 35.8972, 66.074, 44.1937, 52.9221, 25.4535, 11.5091, -23.6341, 138.393, 25.068, 22.5468, 407.637, 4.04739, 20.0476, 77.704, 82.5094, 63.1586, 81.2566, -14.8375, 83.8227, 92.7443, 3811.76, 193.545, 134.644, -17.3857, 19.9229, 7.74658, 340.509, 73.6392, 1432.34, 18.8084, 8.87588, 2627.62, 35.1561, 5.30396, 70.8928, -13.8029, 11.239, 114.716, 5.44362, 21.3368, 204.602, 136.36, -2.31789, 85.5356, -0.247811, 173.264, 12.6704, 90.7857, 104.594, 247.158, 4.83192, 69.3472, 89.6663, 20.5333, 1435.34, 31.4634, 47.8388, 21.6173, 36.6126, 304.094, 90.4853, 176.797, 5.51239, 1034.81, 42.2959, 31.9282, 561.815, 1445.61, 83.6597, 137.314, 20.7974, 284.287, 58.4877, 96.2139, 114.396, 572.889, 50.0257, 21.7261, 215.397, 4848.85, 138.355, 95.7016, 41.1985, -2.8474, 63.9182, 17.0448, 325.229, 66.8436, 43.8797, 22.1161, 26.9722, 17.6747, 416.37, 132.339, 1.41274, 8.88926, 27.3809, 6.57349, 1139.67, 7.90949, 16.9425, 161.962, 13.7585, 621.043, 94.3556, 8.18545, 198.797, 207.15, 13.595, 59.9965, 156.247, 37.4272, 1797.91, 173.597, -7.73911, 9.15676, 1813.15, 55.28, 44.1372, 139.674, 139.307, 5.67999, 12.0538, 199.397, 6.77999, 120.684, 14.8007, 385.285, -3.4299, 2.18153, 91.8316, 48.117, 367.658, 114.124, 65.8494, 65.9354, 7.48233, 143.672, 199.44, 657.109, 4029.17, 59.3436, 49.4573, 1927.59, 2961.98, -33.9927, 3411.82, 60.5111, 0.298467, 181.269, 74.6144, 37.7439, -110.18, 19.0457, 29.6359, 60.9489, 28.0187, 26.8489, 33.3419, 85.0067, 133.816, 137.412, 3241.26, 98.0283, 395.614, 184.099, 94.8942, 42.2762, 101.342, 40.6483, 253.774, 923.643, 25.4809, 3804.5, 17.1477, 16.7315, -17.8845, 7.19612, -99.2543, 328.887, 4042.05, 1991.19, 456.9, 35.7412, 22.631, 114.018, 19.7603, 118.914, 4.47381, 312.442, 141.333, 73.7581, 6317.23, 44.7439, 90.1649, 47.5125, 41.0167, -5.88861, -1.31689, 50.2078, 52.9975, 306.946, 55.2381, 2807.46, 62.2553, 56.1606, 18.2972, 71.7201, 2288.21, 16.0303, 192.889, 24.1359, 11.582, 35.1956, 138.472, 19.3633, 31.5201, 22.3016, 3295.13, 3040.62, 40.9435, 198.743, 166.185, 27.0079, 111.59, 289.5, 51.6072, 128.174, 116.62, 195.124, 94.2059, 1940.92, 1827.06, 58.5186, 45.1064, 124.442, 118.75, 94.8991, 1.10459, 101.25, 72.7004, 8.5148, 48.5702, 238.499, 1447.28, 122.661, 5.3293, 28.0415, 86.0212, 128.135, 76.4239, 12.8664, 30.3877, 19.3263, -8.55452, 403.789, 426.469, 2773.18, 1844.36, 82.3998, 13.0372, 153.673, 352.845, 23.6871, 15.78, 55.5372, -18.7618, 23.9722, 41.5831, 271.406, 120.728, 224.949, 541.299, 233.333, 22.2221, 254.824, 155.811, -35.171, 6.93843, 43.0696, 91.5986, 1.78595, 36.7053, 81.0342, 52.6775, 32.0319, -14.4679, -24.2608, 21.3777, 62.3007, 286.02, 11.041, 8.48455, 68.3051, 128.355, 36.9841, 152.66, 37.0811, 168.305, -7.80055, -37.1137, 9.36955, 753.432, 304.638, 180.115, 366.813, 162.324, 51.4895, 425.48, 11.9353, 37.1344, 11.3044, 15.0707, 2.81377, 87.062, 890.038, 275.697, 82.7545, 48.8611, 134.64, 442.328, 92.7822, 297.06, -4.19166, 23.5474, 210.476, 284.862, 326.488, 643.018, 149.103, 57.9264, -4.35968, 2422.79, 90.8871, 214.643, 214.658, 673.626, -14.3901, 23.2702, 253.467, 314.393, 14.1398, 21.0437, 2730.59, 458.75, 440.822, 101.206, 71.8985, 27.3093, 2.20914, 193.891, 125.925, 20.2388, 16.0322, 1773.4, 1622.36, 167.252, 4208.54, -1.83895, 194.467, 52.4202, 155.889, 170.929, 146.268, -3.25423, 92.3306, 28.2821, 36.1026, 52.9031, 105.939, 26.8284, 356.127, 14.4032, 238.684, 212.025), F = c(76.3569, 85.5088, 28.2925, 11.2568, 42.6756, 26.1262, 156.803, 37.978, 61.6401, 5.33328, 654.078, 19.5271, 58.0877, 12.4804, 16.6833, 104.159, 73.1986, 51.0869, -26.9004, 159.505, 98.1799, 31.3003, 8729.83, 28.5819, 59.8854, 15.9339, 26.0026, 19.8649, 65.0798, 19.4564, 27.137, 34.748, 104.56, 19.4119, 20.5827, 69.0769, 38.0418, 3.04198, 81.5155, 147.757, 163.458, 552.006, 13.402, -30.6321, 22.4197, 2773.8, 3533.69, 4276.28, 4859.32, 5339.43, 6045.84, 61.8061, 13.5139, 64.2732, 66.8357, 534.92, 557.232, 97.7246, 183.791, 74.0598, 72.8653, 158.024, 209.394, 66.7261, 42.101, 45.9945, 234.313, 12.8276, 12.8547, 13.4486, 17.9294, 129.778, 93.4386, 90.2193, 65.7247, 265.693, 2.95618, 1.60701, -0.761071, 25.1805, 113.248, 128.501, 13.2872, 33.0942, 143.403, 62.9061, 472.386, 9.46665, 146.648, 20.1751, 2055.84, 10.4128, 1.51498, 7.61478, 10.1273, 50.1046, 17.1919, 416.904, 16.3986, 316.922, 31.7997, 271.918, 140.767, 3.43293, 93.2234, 30.2287, 60.9735, 81.2301, 13.1852, 15.6828, 244.004, 8.03442, 41.195, 450.588, 101.569, 122.576, 203.771, 165.58, 47.3593, -0.578794, 40.8826, 19.258, 317.049, 95.6767, 35.6291, 37.5118, 9.52143, 26.7085, 57.821, 7.38804, 21.5466, -4.09123, 174.045, 26.0275, 28.2087, 372.743, 7.89114, 9.26315, 77.7341, 92.1451, 40.0276, 59.0001, 11.3105, 109.624, 71.8631, 2826.91, 183.907, 115.486, 30.823, 25.6218, 4.40317, 456.183, 42.8331, 1406.38, 9.25876, 21.9462, 3057.25, 43.3653, 13.7308, 45.042, -5.66411, 1.81244, 92.4059, 3.38841, 27.4057, 195.913, 170.641, 13.7318, 77.4835, 11.8705, 170.034, 27.2993, 48.4951, 112.256, 288.233, 15.8018, 90.4763, 135.063, 17.4997, 1447.35, 20.3943, 9.1535, 11.2232, 52.4492, 263.404, 88.8359, 240.531, 13.914, 952.742, 25.8131, 33.9627, 399.248, 981.156, 99.5194, 113.287, -3.55475, 321.253, 64.8132, 153.21, 108.544, 689.428, 40.1967, 24.1371, 219.8, 6103.53, 183.204, 117.629, 66.3195, 1.21957, 50.7251, 13.9721, 215.827, 33.5278, 29.0743, 26.98, 3.84226, 15.2119, 416.473, 94.0782, 5.65606, 6.8239, 29.7649, 33.117, 922.994, 2.95855, 25.7804, 182.436, 14.506, 558.625, 50.9544, 7.1015, 232.798, 176.539, 13.849, 55.0411, 112.844, 38.1649, 2629.76, 208.982, 8.91111, 3.69219, 2237.49, 87.4336, 29.7085, 92.6406, 108.641, 12.5881, 24.5561, 277.109, 0.0555992, 168.556, 21.9422, 242.008, 13.2175, -5.18207, 67.707, 18.8392, 200.762, 93.2498, 131.197, 38.8349, 11.7789, 150.893, 281.69, 697.327, 2363.54, 98.4533, 49.2495, 1184.74, 1743.97, -146.388, 2625.96, -0.550366, -20.5783, 166.122, 111.555, 47.8556, -13.3038, 10.5148, 96.0369, 50.6197, 17.8413, 29.8171, 29.9881, 68.2329, 338.401, 242.223, 3103.45, 51.3296, 407.96, 247.109, 131.532, 38.6406, 100.263, 14.9409, 363.97, 1696.09, 55.9993, 3141.21, 10.7468, 9.4833, -10.1759, 4.94772, -94.8137, 363.273, 3357.76, 1370.01, 1055.43, 37.2194, 11.6967, 151.487, 45.4293, 122.312, 9.85712, 312.931, 619.899, 86.0735, 6098.96, 35.2556, 118.982, 42.6033, 50.3781, 8.79439, 10.0094, 77.1799, 41.375, 356.719, 79.1635, 2399.43, 93.6127, 87.3683, 8.51886, 80.539, 1489.71, 23.1329, 196.416, 32.6198, 28.1255, 27.9306, 120.298, 36.3136, -6.53911, 11.5249, 1818.98, 2629.42, 20.5239, 25.569, 176.01, 16.4979, 106.83, 255.7, 47.4432, 202.329, 148.584, 166.122, 72.5939, 1147.63, 1571.36, 64.2836, 40.9947, 149.732, 6.98837, 76.7431, 32.6061, 241.995, 193.953, 71.849, 43.091, 231.441, 1173.24, 148.46, 6.25035, 27.2836, 61.9131, 116.848, 61.847, 26.8595, 6.40947, 30.8911, 0.516717, 420.763, 460.661, 1361.44, 591.884, 53.3154, 11.9007, 168.517, 250.081, 17.9015, 16.7667, 7.98321, -32.7506, 44.1567, 33.2017, 203.785, 118.136, 30.1383, 623.624, 321.933, 15.0102, 304.391, 109.031, -35.2096, 7.28756, 68.1562, 76.94, 3.84083, -8.66032, 74.518, 45.4732, 5.2473, 0.674253, -38.8464, 58.6034, 54.2982, 400.585, 1.74185, 11.5801, 59.9533, 165.597, 41.3708, 49.7561, 53.7959, 173.169, 1.11088, -44.2055, 0.345534, 788.229, 233.738, 193.153, 503.509, 170.926, 47.5674, 250.997, 5.58086, 23.2777, 19.559, 32.0773, 10.4892, 84.8054, 591.492, 310.91, 89.6526, 62.3684, 388.848, 401.377, 87.3499, 492.338, 28.0653, 9.77436, 165.732, 180.625, 486.538, 543.039, 110.879, 53.3282, -2.68911, 2656.67, 48.7383, 212.146, 226.983, 507.041, -4.7378, -7.00055, 303.127, 344.683, 12.0315, 20.7854, 2086.7, 136.541, 442.067, 55.9435, 39.8863, 38.2014, 6.7952, 184.694, 172.747, 11.6976, -5.41524, 1350.98, 1425.73, 166.823, 3207.93, -5.10412, 250.141, 35.7243, 188.316, 202.637, 156.022, -13.1372, 78.0865, 51.5613, 33.0572, 43.5617, 171.992, 38.991, 279.015, 27.166, 205.697, 225.357), G = c(160.505, 98.9086, 30.9694, 23.0034, 86.5156, 75.0083, 211.257, 110.551, 33.6623, 25.1182, 704.781, 56.3164, 96.632, 21.9102, 93.1759, 296.287, 110.631, 69.0242, -45.6312, 316.931, 177.533, 84.8437, 10085.3, 49.2893, 129.419, 55.8445, 47.7015, 57.4157, 262.579, 18.5628, 59.6477, 26.4046, 103.898, 42.146, 42.6331, 147.797, 60.9828, 9.54646, 152.298, 169.078, 145.287, 499.943, 20.5481, -56.7485, 67.8308, 1331.06, 3001.52, 3922.8, 4656.49, 5809.61, 5387.85, 84.3291, 0.756365, 54.4841, 73.8793, 622.534, 510.803, 84.813, 146.505, 51.5387, 80.7284, 194.901, 226.182, 56.4972, 40.503, 95.5123, 367.258, 68.4181, 10.4643, 5.74156, 35.7209, 270.832, 183.729, 117.556, 93.8117, 2347.97, -6.84587, -3.51601, 16.7883, -6.77262, 143.695, 173.604, 25.7165, 22.5593, 95.8189, 100.242, 875.514, 5.64484, 159.059, 12.8777, 1445.57, 56.5075, 6.67706, 20.3672, 16.6175, 71.0378, 0.121618, 770.457, 16.0536, -21.241, 35.6843, 289, 130.207, 23.7289, 76.6311, 28.5373, 41.6551, 103.677, 23.7724, 24.5001, 227.616, -17.4642, 88.1088, 390.704, 46.2814, 241.579, 239.095, 246.333, 68.2692, 3.72669, 43.3918, 34.893, 430.311, 139.544, 18.7085, 39.5034, 65.418, 60.8044, 87.8751, 20.2779, 30.6158, -1.06324, 181.367, 59.5764, 46.5235, 526.11, 11.1662, 24.8809, 125.538, 107.588, 102.268, 71.5763, 19.1748, 97.0634, 86.1694, 2280.98, 185.979, 143.129, 59.7806, 20.6691, 4.16593, 458.62, 80.0684, 1405.23, 114.141, 15.0017, 2784.51, 67.3431, 12.9932, 82.6335, 2.46988, 8.19852, 126.301, 58.2465, 21.3715, 342.757, 92.0834, -0.662, 132.709, -6.37538, 173.21, 7.82848, 145.062, 126.06, 389.761, 28.5087, 95.2023, 151.083, 18.2265, 1746.7, 81.1804, 13.7397, 33.0161, 80.331, 500.006, 168.432, 199.011, 22.4592, 1266.08, 96.4681, 52.4657, 165.172, 439.903, 58.831, 232.393, 20.3798, 390.69, 76.8212, 102.604, 115.513, 694.082, 95.4191, 31.7582, 292.824, 4843.85, 243.369, 150.37, 73.6126, 13.5536, 84.8325, 44.2015, 397.304, 52.6378, 56.2434, 58.5563, 48.2016, 22.27, 533.109, 180.547, 10.7022, 15.3744, 66.0203, 2.8568, 380.877, 23.7808, 23.4922, 192.561, 18.2562, 395.242, 160.002, 25.6545, 277.682, 44.8341, 3.6194, 64.0872, 145.975, 51.5657, 143.639, 241.318, 16.6696, 22.2736, 979.66, 101.48, 14.9272, 194.998, 272.543, 30.1638, 38.2265, 156.142, 4.26759, 162.979, 25.2755, 123.551, 23.4759, 2.36219, 141.662, 36.5043, 675.211, 135.162, 74.976, 206.357, 20.2907, 205.251, 318.483, 363.072, 1549.66, 74.9918, 77.6235, 730.908, 2267.07, -15.9843, 2228.87, -1.32209, 16.2259, 287.157, 113.905, 28.5838, -71.7309, 6.32725, 59.1934, 103.09, 124.573, 168.993, 274.755, 452.09, 306.868, 62.5394, 2406.87, 759.884, 520.693, 322.543, 99.4452, 69.2543, 82.2784, 47.2046, 302.587, 425.728, 70.1185, 2643.65, 25.8529, 15.5019, -27.9583, 21.1836, -159.404, 411.162, 1610.64, 847.52, 619.837, 55.6259, 11.2342, 129.321, 29.6711, 128.191, 2.12969, 458.098, 967.869, 139.49, 6744.25, 61.7619, 125.268, 63.4657, 70.7754, -29.0252, -4.19204, 91.809, 69.6631, 308.223, 148.843, 1253.53, 95.4669, 58.6777, 7.81241, 103.607, 1040.22, 28.6589, 235.102, 44.9815, 24.0025, 19.831, 212.84, 31.8595, -26.5714, 32.8036, 1424.39, 1609, 42.2412, 3.4899, 146.294, 31.1852, 70.3539, 367.704, 74.8138, 210.733, 73.2453, 290.952, 154.544, 1375.25, 1880.28, 115.808, 67.2951, 125.921, 2.02108, 142.316, 36.4292, 130.832, 87.7579, 13.7819, 62.8137, 131.189, 1762.44, 234.36, 2.26835, 24.7566, 130.982, 267.213, 50.1711, 11.7085, 45.9508, 47.0628, -5.0788, 642.114, 690.187, 1158.76, 224.69, 129.032, 10.1764, 219.981, 320.364, 48.4923, 22.6838, 4.00794, -51.6805, 40.6299, 62.9865, 405.183, 213.955, 349.216, 787.593, 375.517, 52.7782, 576.754, 133.512, -81.2397, 30.8676, 93.9739, 116.764, 0.861936, 27.6728, 110.052, 89.8018, -26.8523, -29.9146, -33.5474, 49.7079, 33.9368, 323.446, -2.84178, 19.3021, 63.4884, 134.071, 91.5641, 27.7786, 94.1995, 219.683, 4.70264, -76.1152, -7.59186, 770.503, 487.319, 190.619, 146.871, 193.463, 1.49736, 433.626, 8.95326, 8.46145, 32.2166, 30.7369, 82.9398, 163.432, 487.778, 308.937, 30.117, 41.7749, 39.3079, 288.488, 121.753, 478.74, 36.5597, 17.859, 50.2198, 371.859, 670.302, 2002.02, 224.547, 64.1557, 0.410534, 1522.33, 91.8752, 293.092, 308.702, 576.066, 6.09243, 32.27, 284.832, 318.128, -0.548151, 16.6889, 722.22, 571.163, 667.587, 45.1672, 90.5216, 47.5207, 17.3392, 314.547, 112.627, 11.9066, 15.2477, 1232.75, 2182.13, 212.534, 2586.28, -28.1626, 273.352, 88.6858, 235.716, 288.56, 147.061, -52.4786, 182.97, 36.2152, 33.1716, 58.5177, 181.279, 70.0673, 393.73, 35.3598, 400.955, 267.019), H = c(65.9631, 81.6932, 14.7923, 16.2134, 30.7927, 42.3352, 235.994, 47.769, 31.4423, 38.7576, 472.087, 36.2044, 52.731, 23.772, -2.286, 110.536, 116.742, 51.7352, -62.9474, 152.188, 124.795, 33.4283, 5398.15, 7.59488, 52.935, 20.0904, 23.8035, 18.3142, 67.9807, 5.85058, 26.2214, 35.91, 61.4678, 26.795, 20.733, 53.9483, 40.4661, 5.0816, 122.23, 255.646, 144.067, 701.339, -18.0681, -50.5899, 46.573, 3409.56, 3670.05, 4113.84, 4652.41, 5529.77, 4934.23, 72.5007, 21.6755, 49.6503, 123.648, 645.022, 405.539, 174.681, 138.473, 76.3049, 41.9885, 175.705, 186.137, 61.5467, 32.3343, 28.5536, 190.158, 19.6626, 1.0001, 19.8489, -3.43857, 126.72, 113.821, 124.49, 48.9977, 1474.59, 6.59068, 26.293, 15.1744, 31.0988, 164.839, 105.427, 15.3515, 7.64309, 75.7023, 58.9412, 426.069, 22.7863, 93.8675, 36.6998, 3752.44, 15.5375, -37.2626, 40.972, 2.83778, 29.8097, 7.85899, 383.393, 8.59187, -14.6747, 22.0106, 314.445, 91.1368, 3.31941, 55.9907, 13.6873, 85.1964, 75.6375, 24.9673, -19.4126, 154.493, 9.51653, 7.00295, 172.512, 54.844, 206.315, 114.929, 161.489, 18.9867, 17.967, 20.58, 16.5985, 317.839, 68.4194, 0.632673, 24.8422, 42.741, 55.0761, 29.1132, -9.59971, 1.92886, 24.2057, 212.31, 23.1776, 46.685, 327.569, -19.7231, 16.127, 102.909, 89.4731, 88.002, 55.5039, 3.78602, 98.7201, 59.1011, 3677.21, 168.304, 97.5727, 62.7741, 6.98695, 7.7722, 287.765, 31.1771, 1034.85, 41.1973, 14.484, 1973.97, 26.3003, 13.0387, 70.2444, -23.7586, 3.61405, 144.866, 12.9588, 12.1978, 228.561, 69.1006, -12.9076, 33.1189, -12.0223, 107.954, 20.2041, 56.6382, 72.1951, 231.902, 4.51244, 59.7258, 97.1518, 14.8023, 1446.33, 31.1922, 17.7331, 23.9397, 34.4429, 275.279, 89.5355, 150.161, 12.1368, 733.126, 33.8044, 32.9493, 428.544, 908.692, 55.2216, 122.623, 12.5489, 234.033, 12.3606, 79.2471, 132.363, 477.632, 48.276, 18.9685, 170.293, 3218.18, 133.185, 71.059, 42.2979, 17.1591, 62.4136, 20.5905, 328.759, 23.5485, 28.9632, 32.4677, 15.6095, 29.6611, 263.733, 83.1204, 10.8203, 0.0645667, 20.8901, 17.402, 2317.54, -1.71971, 15.5579, 175.414, 17.9223, 132.269, 49.3328, 20.0075, 161.866, 96.6339, -1.22723, 28.5114, 69.8331, 19.9071, 3594.62, 184.264, 36.2862, -0.250289, 2657.7, 66.4338, 45.9629, 158.683, 84.2689, 11.0174, 12.8382, 461.884, 1.2479, 186.49, 40.9668, 410.214, 35.1459, 7.58523, 86.1551, 74.4591, 147.043, 50.2503, 155.398, 38.0677, 17.9086, 81.876, 262.617, 923.903, 3372.24, 65.0195, 56.1913, 1989.38, 3297.89, -48.9684, 3520.01, 21.7884, 29.6134, 186.365, 93.1961, 103.971, -22.6964, 8.73567, 93.5217, 99.9293, 319.164, 444.212, 623.513, 437.966, 126.152, 79.5352, 4437.69, 981.041, 287.177, 166.311, 91.5453, 43.8078, 137.337, 17.6704, 163.841, 1149.64, 21.6281, 4237.01, -4.72068, 6.06603, -8.07375, 31.8066, -59.8348, 267.843, 4094.25, 2536.1, 392.48, 30.4019, 16.2788, 103.038, 23.8032, 63.9377, -3.16035, 280.371, 679.892, 60.1188, 5272.74, 36.681, 77.0613, 9.46983, 82.3953, 23.5921, 7.82025, 53.0366, 38.2291, 162.251, 71.3313, 3289.3, 71.1382, 36.5156, 10.9756, 96.3876, 2250.24, 23.9772, 155.927, 11.0189, 32.6098, 26.072, 63.7697, 10.0424, 54.173, 28.7016, 3204.18, 2521.5, 14.6506, 45.914, 140.744, 55.0265, 55.2523, 173.877, 40.5893, 88.8999, 244.048, 208.946, 84.1878, 1234.61, 1959.86, 100.845, 34.196, 121.971, 6.00279, 65.4532, 25.6252, 205.105, 145.486, 14.5797, 28.9883, 418.138, 1054.41, 192.451, -6.77577, 3.52808, 43.4975, 133.57, 29.8818, 5.54331, 28.0327, 17.1614, 4.50518, 438.525, 568.957, 1341.85, 823.083, 11.0206, 5.28213, 145.935, 238.488, 20.9897, 17.3526, 5.4934, -24.8509, 27.9785, -11.0401, 170.731, 60.0793, 147.971, 354.996, 333.375, 37.7786, 352.022, 115.454, -30.8254, 9.93972, 47.3987, 68.3317, 67.7091, 49.2164, 77.5302, 36.9154, 8.39283, 4.92543, -20.5218, -0.730059, 47.7373, 518.214, 9.22062, -24.8561, 49.1153, 105.805, 29.2637, 15.3461, 45.0949, 179.074, 12.3872, -16.1917, 9.87644, 785.672, 164.981, 181.252, 397.135, 215.004, 56.6237, 304.372, 25.614, 65.028, 8.81296, 18.3069, 9.54185, 25.4821, 1084.56, 225.453, 44.6071, 38.2034, 47.3505, 405.11, 80.4995, 317.942, 19.5663, 18.4398, 160.898, 180.688, 313.737, 1445.36, 99.1103, 48.6681, 12.3674, 2653.13, 83.7136, 229.497, 249.714, 488.489, 54.2498, 23.6874, 174.373, 258.626, 72.8444, 5.42297, 3475.67, 259.205, 396.013, 56.4187, 31.3486, 48.0814, 13.669, 168.408, 159.795, 29.286, 0.992278, 1970.63, 2206.93, 93.7185, 4695.35, -8.87077, 220.34, 81.2755, 132.113, 159.9, 87.984, -9.8868, 88.2923, 38.6535, 7.80274, 8.33834, 164.635, 37.4181, 173.935, 21.2248, 218.935, 213.479), I = c(56.9039, 97.8015, 14.2399, 12.0375, 19.7183, 41.1207, 175.64, 24.7875, 23.1008, 31.4041, 456.496, 34.4118, 35.4588, 24.184, 9.00485, 123.767, 149.329, 48.4943, -31.4359, 182.803, 86.0768, 42.3172, 7851.25, 23.629, 64.1861, 24.7383, 11.3737, 13.9659, 67.9566, 26.2278, 8.82339, 25.1295, 95.496, 20.6417, 25.9931, 55.5277, 39.5032, 6.61344, 91.9547, 135.592, 138.774, 662.183, -71.7969, -43.3654, 53.0483, 2500.59, 3411.11, 3853.04, 4628.45, 5465.07, 5404.54, 62.1373, 48.0582, 49.8266, 46.3265, 539.881, 420.27, 121.429, 101.841, 67.6596, 49.3447, 155.066, 240.654, 30.8823, 25.8423, 35.7027, 208.684, 14.2983, 2.92394, 15.392, 7.00862, 159.539, 77.6879, 71.3888, 44.6516, 966.339, 18.009, 14.3594, 16.2639, 32.865, 135.098, 124.688, 10.4324, -158.624, 77.4182, 52.9351, 541.812, 9.68571, 110.694, 21.3595, 3766.64, 11.7948, -41.5181, 32.1378, 18.3991, 44.214, 25.6868, 332.747, 20.8813, -22.3464, 41.9897, 372.205, 89.3285, 0.688826, 47.3014, 7.46991, 87.8979, 69.1955, 24.0044, -5.65372, 178.113, -27.5173, 16.9593, 308.891, 51.437, 180.81, 116.305, 257.957, 28.8561, 41.9913, 9.78746, 32.055, 337.631, 78.1148, 14.6921, 15.7892, 72.4446, 46.0098, 38.0461, -7.25167, -77.7694, -6.12358, 151.401, 50.853, 31.6659, 375.203, -15.4885, 23.6577, 82.6901, 79.2893, 77.364, 64.7703, -5.01044, 70.8695, 109.516, 3949.6, 143.33, 95.621, 43.3468, 17.4263, 0.0576889, 316.743, 36.0296, 1039.75, 20.8679, -7.13015, 2136.31, 32.4043, 35.4223, 57.7617, -19.3941, 15.0063, 137.011, 15.0828, 10.3074, 209.233, 26.6425, 75.8138, 42.3457, -12.372, 129.54, -0.808758, 115.298, 111.984, 277.088, 48.9072, 60.702, 89.4102, 11.8831, 1280.76, 7.54955, 21.8121, 26.8602, 27.1097, 276.223, 69.8056, 141.762, 9.92208, 471.624, 18.7722, 34.121, 330.872, 803.91, 89.2639, 202.322, 17.1598, 204.002, 19.8715, 69.9369, 139.112, 475.68, 38.5653, 10.3207, 179.287, 5019.1, 131.735, 96.5819, 52.7207, 118.578, 66.3749, 11.2237, 262.136, 37.3264, 37.2226, 44.4505, 9.80769, 28.258, 311.98, 145.188, -13.876, -6.60292, 27.446, 52.3413, 1437.92, 14.9031, 6.43931, 191.186, 62.2038, 533.959, 52.2601, -0.812122, 163.045, 97.5818, 4.27843, 49.925, 117.116, 26.2354, 107.634, 183.655, 44.0061, 10.6966, 1861.3, 68.6117, 55.3026, 120.201, 143.756, 24.2935, 7.63267, 273.163, 6.46505, 130.595, 24.3482, 570.118, 10.9965, 18.2516, 73.701, 42.386, 281.665, 51.0993, 156.168, 71.8904, 15.0406, 96.8189, 267.787, 1033.72, 4213.76, 63.4817, 29.8674, 2468.85, 3093.27, -23.3657, 4172.56, 54.6128, 25.3713, 141.131, 50.7424, 64.7935, 39.3548, 9.35458, 97.9677, 77.4194, 36.3783, 56.15, 80.5102, 160.375, 422.177, 186.838, 4189.58, 261.971, 290.421, 145.819, 110.678, 30.1821, 62.6842, 32.8513, 212.074, 1073.22, 14.7815, 4803.12, -52.8976, 9.0613, -7.8137, 12.2626, -79.6776, 256.768, 4118.03, 2597.5, 487.991, 32.4547, 22.1637, 87.9791, 31.6146, 66.199, 23.917, 219.436, 676.787, 66.6259, 6602.19, 28.4735, 96.0434, 31.4449, 51.5631, 62.1528, 14.7575, 38.9174, 50.5804, 226.292, 1.33535, 3972.17, 79.3392, 82.5123, -8.05703, 57.3154, 2779.82, 50.7459, 362.999, 31.716, 45.9685, 32.3122, 83.0068, 17.4939, 25.959, 15.3953, 3793.5, 2909.96, 28.6528, 32.7872, 125.396, 45.0034, 59.3125, 207.221, 67.8755, 95.7511, 134.838, 221.671, 92.718, 953.289, 1358.65, 115.183, 42.0618, 260.924, -5.67053, 106.906, 15.4698, 86.5805, 138.179, 6.36567, 42.2539, 263.136, 1555.94, 152.362, -0.750177, -10.2169, 39.3872, 10.9171, 38.3977, 24.2579, 37.0798, 22.001, -68.9469, 364.56, 513.066, 1020.6, 725.306, 74.2402, 4.32573, 152.556, 149.95, 30.4155, 9.87658, -2.83936, -14.2585, 37.5048, -4.54525, 231.427, 40.9725, 179.04, 472.655, 298.223, 30.6501, 226.595, 217.446, -11.2347, 7.99247, 44.5376, 34.1872, 56.2715, 65.826, 68.4123, 33.5924, 27.0132, -0.932949, -26.6856, 22.9653, 54.7115, 385.224, 52.8945, 4.19935, 39.7645, 126.784, 10.7498, 25.48, 30.5649, 230.8, -49.7404, -19.0299, 0.534617, 761.77, 199.883, 145.558, 381.822, 330.34, 130.641, 331.091, 19.2022, 61.6367, 3.28127, 21.4743, 21.9916, 58.4991, 676.788, 206.801, 256.74, 53.8124, 250.424, 275.746, 49.6752, 682.774, 5.10634, 24.2536, 265.575, 259.757, 114.583, 789.964, 113.886, -120.217, -17.5734, 3283.41, 77.2334, 190.75, 246.745, 438.071, 17.5467, -6.3988, 190.05, 250.068, 65.1947, 22.333, 2626.26, 342.48, 354.569, 97.9919, 39.7226, -4.73579, 71.337, 140.925, 253.267, 39.1377, -0.0626833, 2094.61, 2349.06, 100.454, 5027.34, -5.0921, 197.648, 33.0178, 154.763, 215.446, 74.4776, -30.5011, 71.1762, 78.434, 9.63535, 38.429, 95.5045, 35.9276, 350.806, 41.0651, 155.007, 147.564), J = c(135.608, 90.4838, 34.4874, 4.54978, 46.352, 91.5307, 229.671, 66.7302, 39.7419, 0.398779, 601.335, 54.0765, 60.2642, 29.7032, 13.1253, 165.21, 113.737, 66.3324, -26.3253, 275.02, 143.596, 124.882, 9906.75, 57.0429, 101.061, 38.8725, 40.5822, 37.3897, 85.4896, -16.7811, 58.4851, 49.3878, 74.32, 31.5766, 36.5884, 127.344, 29.8857, 16.9064, 129.385, 134.197, 161.823, 603.143, 14.8066, -24.1965, 49.6252, 1397.65, 2582.35, 4196.47, 1871.55, 2697.63, 3957.01, 52.7505, -1.9, 33.6619, 105.523, 538.821, 404.586, 82.7721, 231.526, 65.5417, 103.837, 254.894, 167.249, 63.5263, 33.6277, 82.7237, 447.998, 22.9679, 17.0239, 6.46696, 14.6832, 173.033, 173.092, 236.388, 95.0014, 1603.25, -4.79112, 14.3931, 12.9168, 45.525, 123.521, 160.284, 63.7235, 52.2413, 115.725, 76.4369, 647.946, 10.8287, 196.504, 30.8472, 2082.26, 24.9831, 7.45908, 29.2904, 3.96332, 63.3964, 5.05391, 523.434, 3.81431, -26.9582, 25.5166, 272.893, 104.55, -3.29841, 29.0413, 34.7569, 123.341, 136.982, 21.1208, 33.4306, 252.045, 28.2319, 46.8118, 460.704, 36.2471, 140.332, 322.058, 301.488, 28.6611, 17.8804, 69.2656, 30.5353, 428.04, 89.2726, 21.6357, 40.5838, 64.8148, 81.0943, 89.0303, 9.78984, 31.5737, -64.844, 181.883, 69.0185, 36.0617, 396.731, -5.39451, 18.3907, 135.384, 99.2002, 102.87, 97.414, 815.247, 102.809, 87.5921, 3294.23, 293.865, 170.835, 57.4489, 14.6789, 20.4225, 467.575, 65.7655, 1022.23, 36.5604, 17.9342, 2621.21, 69.9044, 5.62125, 61.0467, 7.16121, 8.74683, 159.503, -6.5198, 30.0345, 215.707, 242.766, 9.23312, 122.68, -3.09805, 230.551, 25.0568, 73.4859, 148.278, 309.373, 29.2142, 133.58, 161.551, 25.4871, 1284.19, 110.777, 27.8657, 33.4392, 99.1692, 382.291, 180.04, 290.715, 26.878, 1354.88, 49.6606, 32.0053, 100.544, 275.601, 139.466, 145.483, 18.9868, 350.785, 62.5827, 142.035, 166.257, 824.404, 54.5118, 41.2395, 214.626, 2876.39, 117.19, 145.883, 77.1433, 21.0514, 88.9109, 35.9333, 342.005, 31.9545, 92.5985, 53.7139, 21.4681, 27.0079, 421.99, 191.869, 10.0729, 24.6545, 73.4274, -5.67084, 508.396, 16.2005, 20.4873, 199.64, 20.8818, 602.088, 53.0939, 11.985, 283.946, 33.3808, 7.65265, 79.7055, 179.645, 71.8716, 2280.1, 271.502, 18.3756, 16.292, 899.497, 106.102, 36.3051, 172.514, 84.6076, 14.9555, 42.3853, 76.7314, 9.74661, 177.697, 28.1345, 79.7277, 46.0504, 3.37234, 173.442, 37.7323, 281.782, 192.507, 65.114, 54.3543, 28.8901, 207.512, 302.66, 312.493, 2511.98, 115.631, 84.6329, 767.382, 1931.97, -74.91, 2442.8, 6.76813, 9.87214, 280.934, 164.196, 45.6826, -55.5401, 11.0881, 126.062, 188.277, 17.0563, 95.9991, 148.692, 109.747, 149.315, 464.839, 2018.08, 295.362, 520.54, 361.875, 118.235, 39.8868, 76.292, 52.8225, 393.946, 411.312, 82.4469, 3684.05, 5.70422, 15.3688, -18.2261, 20.1009, -139.096, 322.853, 3536.29, 1415.81, 782.34, 58.8639, 19.9128, 172.436, 37.7876, 145.228, 8.84162, 527.972, 978.775, 115.247, 3620.29, 39.7757, 117.731, 73.8482, 82.0633, -8.08212, 8.88042, 114.975, 74.6192, 412.158, 116.883, 1723.88, 140.51, 55.4878, 29.5934, 126.615, 937.356, 25.1989, 80.04, 8.7691, 21.9003, 76.7322, 310.711, 35.1739, -11.3853, 31.0779, 2667.19, 2861.65, 55.9846, 24.2809, 201.009, 37.3568, 245.946, 321.117, 55.7212, 248.928, 83.1845, 301.538, 65.4351, 1978.58, 1469.72, 128.82, 51.2861, 129.685, -17.8222, 135.186, 16.9915, 148.667, 68.2773, 35.807, 130.481, 63.6107, 1220.17, 162.351, -0.850396, 29.6177, 65.2407, 199.876, 45.451, 17.4884, 1687.26, 65.1685, -0.458492, 640.976, 443.544, 1000.16, 530.158, 92.305, 16.7319, 211.431, 421.328, 42.7661, 23.1612, 19.5893, -41.9418, 67.1385, 24.0513, 278.235, 207.151, 354.466, 796.341, 370.781, 12.3542, 340.021, 101.469, -77.2604, 20.2691, 90.9995, 88.3706, 11.782, 31.0455, 105.789, 87.4514, 20.9132, 2.51492, -21.3631, 18.128, 97.4119, 289.648, -0.886138, 6.81447, 81.1169, 197.282, 25.0956, 42.3875, 108.956, 231.877, 11.0389, -81.2323, 7.01839, 732.505, 264.916, 224.387, 218.727, 161.252, 9.47757, 354.758, 11.3622, 18.4517, 28.7067, 31.1141, 27.7379, 123.108, 383.613, 297.234, 11.0615, 90.0501, 89.7434, 345.844, 129.75, 365.013, 29.9642, 33.6507, 64.2794, 272.773, 265.781, 752.182, 223.423, 50.9474, -4.21796, 1864.68, 43.8291, 270.01, 318.279, 587.201, -5.85108, 23.5828, 287.82, 330.953, -2.55689, 16.6618, 1450.23, 567.114, 589.9, 78.5015, 39.0382, 42.769, 29.0629, 276.211, 135.465, 3.88573, 12.61, 912.208, 663.228, 288.022, 3034.4, 189.179, 286.524, 62.3556, 379.114, 292.434, 197.347, -4.49651, 120.196, 27.3089, 59.2932, 68.8523, 178.683, 37.8029, 285.409, 25.2501, 320.904, 258.658), K = c(63.4432, 70.5733, 20.3521, 8.51782, 39.1326, 39.9136, 222.287, 62.9876, 35.1225, 2.98167, 674.334, 48.572, 90.2266, 19.6438, 7.90277, 172.95, 74.9809, 65.8276, -18.7649, 217.385, 104.273, 41.7587, 9269.15, 46.7404, 59.8996, 17.0458, 41.1433, 19.2095, 113.046, 9.25781, 31.0843, 23.1894, 80.0615, 22.9088, 19.8219, 64.5628, 1.59616, -3.92957, 106.196, 198.033, 242.284, 780.726, 21.2847, -37.9727, 33.1548, 3225.72, 3930.01, 4756.24, 5051.09, 5411.19, 5341.82, 48.9417, 18.8431, 77.9987, 61.1681, 579.578, 398.83, 87.6531, 141.597, 54.4746, 44.0052, 148.141, 201.392, 88.0201, 15.68, 32.9481, 203.989, 10.3677, 11.4256, 19.3874, 37.8795, 170.047, 90.0128, 109.125, 42.046, 389.255, 6.18134, 51.0467, 22.6883, 74.2571, 144.772, 122.08, 3.81317, 26.7613, 64.7226, 72.9707, 642.128, 1.42032, 107.479, 27.3876, 4332.08, 12.988, -17.4797, 27.6168, 25.2248, 35.1496, 2.71006, 412.996, -3.03517, -23.2741, 13.488, 429.321, 119.51, -0.0278592, 63.9798, 32.4618, 46.5545, 89.1795, 57.5241, 14.5249, 209.735, -1.74408, 29.3106, 369.08, 43.4709, 173.913, 138.194, 119.037, -29.4263, 6.58678, 50.6164, 25.5873, 368.14, 110.281, 14.0098, 35.9248, 55.6823, 27.6514, 33.9682, -6.56723, 7.08044, 1.08545, 141.452, 32.0375, -66.6585, 422.12, -1.94732, 14.131, 99.5792, 82.1444, 106.177, 92.9003, -10.7343, 53.8349, 94.3465, 4913.77, 163.125, 121.302, 38.5655, 4.60806, 22.7875, 474.352, 57.8392, 1343.88, 37.8733, 11.6468, 2134.67, 20.7209, -0.262148, 60.1439, 9.54504, 11.0515, 85.3045, 17.2096, -10.0328, 249.915, 80.3918, 12.3823, 79.3767, -24.3948, 154.531, 65.6515, 45.5399, 120.194, 286.588, 20.0277, 84.3456, 114.626, -3.70138, 1408.67, 55.6233, 86.996, 44.146, 56.8192, 330.901, 94.1995, 198.394, 20.956, 1004.99, 34.7985, 43.6125, 458.303, 1105.91, 85.4095, 239.99, 14.5133, 367.98, 70.3372, 159.58, 113.518, 627.214, 48.9686, 18.9257, 215.514, 5072.36, 198.417, 108.445, 43.7502, 15.3726, 60.6967, 28.7406, 372.747, 26.8717, 36.0099, 28.4521, 16.6598, 16.615, 395.562, 89.2151, -3.48287, 0.949098, 24.0036, 17.1753, 2020.4, 9.37298, 22.2364, 194.071, 17.2649, 733.02, 63.9442, 12.6841, 161.425, 97.0986, 8.80042, 58.5091, 110.127, 30.2948, 792.965, 185.47, 25.4438, 15.206, 1653.84, 96.7924, 46.6804, 129.393, 139.963, 3.9302, 23.1836, 349.028, -13.9703, 205.086, 23.3787, 565.436, 11.5014, 25.2942, 115.304, 30.4287, 467.942, 78.5613, 332.408, 68.0818, 26.654, 139.279, 305.494, 968.042, 4295.6, 66.1099, 47.9075, 1671.49, 3009.75, -51.6177, 4419.01, 1.49445, 33.3544, 208.223, 80.8896, 109.391, -47.5517, -1.54634, 112.731, 55.4344, 121.317, 126.149, 186.27, 234.836, 431.412, 199.881, 4633.97, 550.201, 313.787, 260.752, 97.9721, 26.1838, 57.8575, 41.7102, 212.398, 1386.77, 42.3915, 4815.65, 7.77927, 16.2139, -14.3346, 7.23423, -36.5622, 382.237, 5040.27, 2787.18, 663.805, 47.069, 13.1205, 120.841, 25.3661, 123.813, -13.3061, 296.745, 768.182, 62.1101, 7337.71, 51.5785, 93.0793, 59.6659, 55.9502, 6.17613, 15.2514, 61.4079, 64.7212, 282.774, 87.2862, 4089.22, 49.6829, 57.329, 10.3485, 66.0395, 2900.05, 26.7714, 179.807, 16.8715, 21.8325, 41.8975, 93.0038, 17.5775, 4.26559, 9.86239, 4223.25, 2841.06, 20.8292, 31.5969, 124.771, 13.3185, 101.18, 220.587, 24.4661, 114.014, 217.8, 222.152, 97.8749, 1328.36, 1628.74, 119.543, 55.8618, 198.105, 17.7912, 131.838, 12.0612, 89.1887, 160.229, 16.6904, 55.4143, 297.18, 1501.55, 177.512, -3.47425, 7.49265, 73.3793, 130.814, 49.1007, 20.585, 22.3491, 28.9578, -14.2241, 477.958, 695.053, 1797.77, 1188.65, 75.4384, 5.40401, 148.423, 168.659, 21.3487, 23.8646, 13.9465, -31.1664, 10.517, 42.0685, 185.579, 127.054, 255.91, 405.051, 452.185, 17.8215, 418.522, 183.725, 20.8731, 20.8792, 31.9397, 62.6096, 5.9791, 17.6778, 64.7069, 30.6733, 17.734, -0.770045, -12.5623, 5.15007, 40.9506, 408.107, 2.22234, -2.07164, 58.2916, 129.924, 57.7661, 16.038, 58.9447, 213.212, 26.9509, -26.1956, -3.61176, 648.933, 272.632, 131.979, 386.255, 313.417, 87.9249, 374.494, 22.2172, 53.833, 46.8675, 49.705, -13.3931, 60.8839, 829.741, 263.664, 171.084, 32.7409, 171.323, 253.907, 105.42, 553.365, 12.8651, 27.5378, 522.891, 439.887, 489.785, 806.483, 135.509, 57.6252, 4.23123, 3305.96, 62.7559, 223.958, 300.78, 586.625, 60.3832, 16.7481, 203.739, 329.75, 29.9522, 2.0116, 2821.25, 456.575, 442.349, 88.1746, 33.6031, 6.54673, 30.7566, 197.82, 212.203, 24.5808, 22.5957, 2147.63, 2914.48, 175.206, 6133.12, -12.2493, 264.909, 81.9187, 120.393, 197.285, 152.217, -14.6336, 90.9128, 37.7668, 16.6599, 31.4279, 138.896, 22.406, 316.208, 22.2439, 244.162, 216.155), L = c(78.2126, 94.5418, 14.1554, 27.2852, 41.7698, 49.8397, 181.522, 46.2777, 28.1342, 17.7506, 540.255, 42.9071, 72.4584, 20.6693, 24.6885, 124.837, 108.469, 45.7015, -34.298, 162.256, 120.737, 49.9029, 7969.59, 30.7302, 77.3764, 36.5985, 29.1573, 30.6495, 108.717, 24.0504, 28.6438, 29.9055, 94.9414, 27.9779, 16.9136, 82.0327, 52.7458, 10.6833, 104.433, 141.173, 155.572, 489.626, -23.2247, -47.1546, 36.6282, 3832.06, 4173.52, 4636.95, 4251.54, 5318.93, 4684.27, 74.8463, 10.7062, 57.8296, 49.8605, 480.33, 427.257, 86.2199, 130.797, 67.4093, 32.5288, 163.479, 189.271, 59.1629, 33.477, 31.8509, 226.835, 20.3279, 7.70438, 17.391, -17.6818, 178.158, 126.103, 106.483, 65.3268, 192.701, 5.72163, 7.87614, 17.3802, 7.25462, 107.479, 130.882, 19.0447, 22.8006, 95.6079, 64.857, 540.998, 2.98843, 104.51, 13.8843, 3127.05, 15.1634, -20.1506, 31.8186, 9.41495, 62.762, 2.31336, 318.532, 15.8975, -31.2221, 28.2393, 358.525, 113.643, 2.6089, 79.5849, 27.9021, 72.6205, 118.595, 19.8483, 11.0152, 192.243, 44.7104, 40.9957, 309.898, 68.6476, 141.44, 175.615, 212.777, 30.6944, 10.4933, 17.5478, 17.2951, 284.513, 115.904, 7.71463, 22.3834, 63.3352, 51.9875, 41.5452, 5.70349, 17.5473, 3.36623, 196.457, 32.0315, 40.8864, 390.245, -6.20708, 18.8825, 107.995, 89.682, 83.529, 86.4903, -14.662, 80.7351, 77.1165, 4714.97, 174.416, 125.587, 34.9933, 15.3988, 7.72275, 373.108, 58.9034, 1091.26, 22.5644, 10.6076, 2825.84, 31.0684, 3.06087, 66.2265, -12.3439, 18.2999, 156.12, 3.64407, 8.4741, 202.573, 99.9544, -3.61491, 66.551, -4.67678, 143.992, 7.87179, 102.047, 112.608, 232.685, 16.5717, 65.0425, 101.624, 15.5074, 1336.5, 28.023, 19.2818, 21.8167, 54.3966, 319.706, 103.576, 203.31, 3.55299, 1068.35, 28.3274, 26.3981, 252.545, 703.073, 54.1925, 217.043, 6.1789, 257.203, 51.0011, 122.56, 104.892, 669.295, 55.4482, 14.6155, 192.87, 3837.67, 164.49, 98.1155, 44.7301, -3.83686, 65.8807, 15.7527, 224.901, 35.5609, 42.3085, 38.2248, 23.7824, 36.5926, 329.908, 151.346, 2.20718, -6.77795, 32.9619, 9.10169, 1484.18, -1.97644, 9.40026, 184.919, 18.7039, 675.331, 80.7041, 7.85682, 157.12, 292.043, 5.51988, 54.3092, 113.512, 22.944, 0.00333823, 203.611, 18.8989, 15.0135, 1072.25, 84.0077, 45.5236, 166.489, 143.034, 16.4508, 24.3721, 270.51, 0.128169, 231.787, 15.2198, 491.515, 56.7006, 2.14923, 76.0331, 25.3416, 315.647, 60.7932, 93.3669, 61.774, 24.7379, 142.502, 273.436, 559.009, 4565.57, 91.3635, 51.3326, 1216.42, 2264.58, -10.6544, 3693.04, 2.36806, 7.91398, 182.291, 68.3882, 99.9411, -29.8436, 13.0513, 111.624, 60.5107, 56.3676, 43.5945, 57.6264, 92.3869, 222.841, 117.365, 4733.16, 154.346, 378.059, 194.359, 111.34, 23.7334, 109.848, 32.1758, 206.46, 1041.33, 5.56239, 4024.79, 10.4667, 14.2839, -17.2184, 20.4523, -79.7605, 264.947, 3918.19, 2872.76, 628.093, 39.0135, 18.5584, 137.049, 25.2468, 99.8514, 6.99163, 309.396, 812.051, 55.7119, 4544.12, 43.3877, 91.4044, 34.6002, 32.6657, 24.6652, 10.2426, 54.852, 57.2348, 303.057, 87.6017, 3190.4, 67.4407, 62.8154, 6.78031, 73.504, 2679.17, 14.6392, 132.44, 29.5628, 33.7716, 29.6722, 115.932, 23.4293, -5.8544, 14.3031, 3444.45, 2869.71, 28.9977, 4.27229, 186.639, 28.0031, 89.4065, 246.739, 48.2378, 103.241, 161.446, 270.958, 125.482, 1006.52, 1669.62, 164.343, 60.0043, 163.457, 3.32663, 74.8823, 21.1182, 150.393, 153.827, 23.2867, 39.983, 295.462, 1489.4, 198.153, 8.37534, 9.11512, 77.9832, 116.607, 81.8224, 30.7223, 19.276, 26.9488, 2.9106, 411.878, 445.727, 874.957, 500.034, 69.2402, 32.9342, 150.361, 151.8, 31.3103, 16.5552, -3.76102, -45.0008, 54.7287, 41.5445, 218.859, 119.3, 216.473, 601.634, 417.205, 16.8544, 385.101, 92.1054, -34.8347, 7.67655, 20.2027, 62.5156, 19.8893, 36.8451, 84.4214, 43.7161, 20.6758, 14.1665, -17.9138, 3.66986, 51.094, 386.478, 2.78177, -23.3501, 85.6016, 106.723, 24.712, 19.2536, 63.4195, 141.174, 4.08547, -40.6516, 5.0975, 852.823, 297.981, 185.162, 353.931, 197.236, 51.9685, 254.8, 21.2191, 23.4201, 19.4266, 15.4119, 6.83701, 57.5619, 788.663, 192.798, 92.6476, 58.0558, 103.424, 402.939, 78.4368, 482.728, 12.8727, 20.3747, 304.571, 280.536, 868.772, 681.686, 154.107, 56.8466, 4.34006, 3009.56, 78.9415, 224.968, 260.592, 495.764, 27.1459, 25.2768, 271.342, 280.424, 67.1491, 11.4204, 2824.45, 379.401, 432.295, 86.7501, 51.2107, 13.8727, 12.0495, 162.998, 144.218, 29.2461, 10.0415, 1747.69, 2279.5, 194.048, 4077.38, 10.459, 267.847, 63.0694, 173.069, 268.178, 108.644, -11.9445, 71.3147, 72.9171, 42.753, 46.8353, 106.018, 39.0425, 297.051, 19.9168, 239.654, 175.866), M = c(83.0943, 75.3455, 20.6251, 10.1616, 80.2197, 63.4794, 177.979, 61.8372, 20.6908, 13.764, 364.233, 34.743, 46.9686, 51.7133, 30.1908, 133.826, 141.43, 74.9533, -37.9804, 199.741, 101.196, 45.6627, 8569.94, 21.5053, 71.6353, 45.2345, 16.2124, 29.3611, 155.95, 17.4717, 6.67245, 25.5961, 84.4995, 34.4475, 27.0618, 87.2791, 53.0348, 22.1029, 83.485, 145.652, 78.7713, 552.023, -7.45341, -38.1208, 52.3868, 951.709, 2054.2, 3593.47, 2363.09, 3394.98, 5280.83, 73.6465, -3.59805, 11.6322, 39.7948, 474.48, 446.417, 83.9094, 82.0596, 4.65439, 25.0958, 132.912, 160.376, 46.9679, 21.0982, 39.5596, 172.825, 57.0022, 15.1321, 6.89282, 10.249, 231.956, 84.717, 162.506, 105.706, 368.552, 20.8338, 3.34395, 22.629, 16.5794, 112.52, 120.17, 25.3857, 18.5757, 76.1544, 56.769, 710.362, 25.2881, 104.82, 17.9295, 2166.34, 33.6051, -68.8391, 27.5807, 6.22118, 87.7027, 11.1385, 226.395, 15.0665, -8.00193, 38.6553, 297.233, 97.0745, 14.7636, 36.9007, 27.4486, 93.4518, 133.967, 1.93178, -31.4089, 125.988, 27.2904, 34.3379, 306.955, 76.0012, 117.52, 127.058, 162.262, 26.3359, 9.83787, 9.8701, 2.59895, 221.225, 120.925, 13.4816, 16.825, 55.9125, 50.2382, 20.5871, -8.9378, -0.825097, 4.93097, 87.2036, 38.8415, 63.1551, 342.044, 1.55868, 43.3275, 59.2687, 76.2816, 54.1066, 35.1053, -18.1485, 87.1477, 69.0928, 3061.22, 142.504, 61.3115, 19.8458, 16.7309, 26.7999, 291.012, 68.0085, 1341.42, -5.03949, 11.985, 2462.38, 33.7193, 31.9753, 87.5545, -0.64562, 23.9027, 118.133, 4.938, 16.1042, 202.256, 54.5443, -18.7757, 42.8026, -23.1493, 109.216, 20.9903, 168.211, 96.529, 255.983, 24.6469, 57.3531, 60.9461, 16.7617, 1194.77, 65.8861, 41.8083, 35.2495, 39.6414, 315.246, 91.0557, 99.0671, -13.6988, 735.746, 41.1719, 47.3791, 177.377, 614.182, 59.8693, 30.885, 22.5553, 243.968, 35.9511, 63.6658, 99.4039, 522.82, 60.6395, -1.66086, 159.967, 4483.8, 129.281, 39.2241, 32.5089, 10.4541, 33.5574, 26.8906, 213.557, 39.2447, 45.558, 42.9064, 41.2092, 25.2691, 416.211, 131.378, 14.8044, -12.8104, 41.5559, 25.2181, 910.831, 43.8009, 26.3252, 154.752, 12.9101, 687.584, 88.6125, -0.336495, 198.312, 94.2741, 17.5389, 51.9669, 88.3272, 36.4551, 461.577, 165.445, 36.2047, 24.8808, 1081.74, 36.55, 23.7109, 159.069, 233.972, 12.9205, 28.5951, 108.56, -6.12013, 191.418, 12.2177, 231.754, 37.0556, 6.70182, 87.9948, 36.1115, 612.477, 84.2877, 40.2468, 80.9183, 20.9539, 127.597, 149.293, 690.077, 3202.51, 68.2316, 36.8647, 2056.22, 2154.64, -9.95432, 3391.38, 25.0875, 8.04776, 165.387, 38.9222, 34.9766, -69.0935, 15.7108, 63.4733, 94.4522, 24.1385, 45.2206, 61.5433, 70.8851, 185.287, 135.227, 2325.45, 147.141, 439.105, 249.862, 60.6961, 28.8159, 67.1284, 0.982107, 222.603, 862.449, 30.9948, 3355.67, 2.58366, 11.8532, -18.402, 13.2898, -102.745, 346.194, 3064.76, 1603.25, 369.522, 18.631, 32.082, 88.5522, 17.4802, 80.5616, 4.62538, 260.651, 728.888, 81.0913, 4699.84, 99.8263, 83.0734, 37.3094, -12.5336, 61.8152, 15.6515, 60.4089, 63.2578, 340.254, 69.8406, 2758.39, 46.0112, 48.4845, 3.00775, 29.5308, 2099.51, -6.78946, 174.172, 9.25558, 45.1605, 26.3615, 156.608, 31.6536, 24.1051, 6.58549, 2570.12, 2601.37, 27.6198, 9.27717, 127.368, 55.0356, 62.7111, 242.408, 37.2933, 89.3639, 80.0193, 181.817, 116.242, 902.432, 1249.58, 80.8068, 52.1335, 136.944, 9.19369, 71.6054, 18.0322, 88.5453, 98.5185, 20.4774, 55.4713, 149.533, 1363.19, 149.736, -1.52306, 4.68956, 110.182, 101.287, 41.1006, 12.8158, 48.2847, 38.6703, 6.17504, 315.271, 417.669, 917.604, 526.949, 86.7901, 5.49079, 143.844, 167.758, 47.3894, 21.3244, 2.5463, -7.53348, 26.1854, 49.2212, 385.217, 96.6181, 210.713, 551.058, 243.31, 15.2205, 219.578, 72.9952, -46.7619, 7.65478, 47.2021, 53.3323, 134.446, 30.1702, 60.0559, 72.6591, 27.7802, 11.7253, -21.2467, 19.6256, 43.3206, 260.447, 22.5582, -12.5203, 83.1298, 100.778, 73.4488, 19.4349, 60.313, 83.9283, 12.583, -42.8756, 6.82419, 793.746, 326.453, 137.1, 256.042, 131.438, 29.7611, 318.512, 13.3918, 13.7316, 27.2708, 54.9233, 18.3137, 110.58, 875.888, 253.193, 40.8993, 44.3985, 70.4717, 352.11, 80.2816, 311.052, -21.727, 20.0393, 70.7562, 179.195, 217.285, 569.148, 198.792, 62.9297, -7.06251, 2414.78, 116.931, 194.218, 159.881, 385.724, 23.8568, 14.4838, 245.611, 197.367, 99.2812, 2.62564, 1601.98, 300.787, 375.428, 117.816, 70.1534, 25.8099, 25.0521, 242.021, 143.848, 24.7516, 9.49541, 1610.07, 1234.16, 100.479, 4545.04, -15.8535, 132.319, 54.0656, 168.764, 231.665, 73.7824, -13.5897, 134.05, 52.493, 13.629, 32.2955, 71.1854, 58.7573, 389.896, 17.564, 159.716, 143.938), N = c(89.3372, 68.5827, 15.9231, 20.2488, 36.4903, 24.7007, 105.778, 54.7061, 27.6193, 12.9047, 620.004, 28.1586, 49.6642, 16.4545, 27.6512, 125.316, 83.1231, 62.1944, -43.3921, 179.797, 108.527, 61.2552, 8328.77, 27.2929, 61.2444, 24.9717, 23.3693, 24.7045, 80.3862, 13.1025, 14.058, 25.7586, 95.8448, 17.5522, 11.7202, 46.8633, 19.37, -3.87819, 97.6268, 126.247, 151.156, 593.651, 12.4314, -33.8106, 22.1085, 4461.43, 5802.7, 6060.91, 4086.23, 5676.56, 5252.6, 113.113, 122.966, 423.178, 48.5391, 711.508, 541.712, 110.042, 165.886, 76.3206, 39.4698, 183.316, 179.084, 70.8899, 29.984, 36.0984, 212.015, 10.657, 12.9578, 12.4452, 9.72711, 135.855, 112.589, 100.713, 43.1201, 65.7495, -4.33284, -0.353979, 9.78135, 2.40246, 113.384, 108.119, 15.8645, 16.1352, 77.5753, 28.2062, 550.153, 11.4208, 108.602, 12.7647, 4361.74, 18.7189, -6.71526, 13.7928, 2.6998, 42.8679, 3.04152, 577.023, 6.81695, -33.8613, 28.6891, 323.837, 144.178, -0.204522, 54.4277, 12.9936, 46.847, 61.8186, 15.4617, 19.7307, 233.956, 13.7186, 19.5749, 359.412, 52.5534, 197.571, 141.737, 142.417, 17.3591, -1.58291, 20.88, 16.6252, 239.4, 110.505, 13.056, 4.91238, 48.4446, 26.072, 40.4425, -0.057119, 4.31744, 3.55702, 211.343, 35.0582, 32.3002, 432.547, -19.1825, 9.51985, 84.1913, 94.2885, 123.165, 79.0483, -11.4864, 78.9365, 82.8418, 2930.72, 155.284, 107.217, 39.1289, 26.7801, 9.41311, 385.342, 40.9863, 1405.31, 20.5272, 16.6352, 1806.13, 36.4705, 2.26179, 45.9531, -1.86616, 9.38855, 164.578, -0.27847, 13.6962, 218.181, 120.039, 11.5751, 51.5134, -6.85612, 190.775, 8.15471, 62.5651, 82.6708, 298.427, 18.8969, 55.542, 93.0269, 21.6652, 1345.85, 44.3509, 14.3534, 17.6052, 25.6272, 334.12, 100.373, 178.179, 55.6927, 688.725, 42.0559, 18.2529, 223.116, 530.782, 67.9175, 99.6496, 5.35416, 256.393, 35.4812, 111.821, 92.1831, 531.768, 45.3206, 19.816, 142.631, 4859.73, 249.207, 103.439, 47.2751, 9.05566, 52.3237, 10.8053, 261.957, 38.8147, 29.6072, 39.9453, 18.349, 23.3791, 413.473, 113.186, 2.09751, 7.43113, 11.7495, 12.2955, 1782.61, 19.2064, 14.4603, 209.874, 6.45993, 1194.03, 77.9975, 19.6906, 186.337, 60.5553, 5.50611, 32.9364, 92.4704, 15.2531, 7.7857, 188.105, 11.737, 7.2607, 3617.54, 71.8314, 31.2533, 111.588, 121.778, 15.4925, 10.2916, 373.124, -5.67633, 263.947, 28.3399, 511.64, 28.4413, 0.574707, 68.9702, 20.9132, 272.211, 63.9764, 48.3643, 30.8804, 21.9132, 122.642, 233.14, 1010.75, 5954.55, 69.8307, 43.5644, 685.638, 2882.43, -83.7943, 3310.72, -0.662038, 15.7596, 188.547, 61.6832, 52.9313, -30.2268, 8.68393, 73.6295, 83.5782, 122.053, 276.064, 478.966, 220.497, 100.523, 203.143, 4325.4, 1204.45, 317.819, 165.436, 105.013, 17.2486, 89.6286, 19.6521, 165.066, 1597.74, 32.3071, 3807.53, 8.59767, 23.1666, -12.7933, 8.29188, -76.8493, 250.028, 4850.56, 2571.96, 649.683, 35.8371, 13.2905, 109.861, 18.661, 88.348, -7.57178, 285.068, 774.966, 66.5567, 4813.55, 32.302, 83.0898, 20.6217, 46.1896, -8.74484, 19.2316, 50.1061, 53.0092, 336.649, 52.5886, 4113.01, 66.7013, 69.1918, 13.2679, 81.2299, 2784.21, 57.2455, 493.228, 51.2349, 22.1017, 24.0103, 74.66, 7.29694, -6.52568, 14.8964, 3829.49, 2508.11, 27.265, 13.3097, 191.151, 52.0473, 59.4327, 508.603, 18.7608, 138.484, 142.005, 208.164, 87.9654, 956.885, 1678.65, 126.171, 33.5949, 209.168, 3.14731, 86.6463, 12.9521, 188.472, 247.983, 14.3525, 45.611, 325.842, 1110.41, 250.488, 0.118744, 15.712, 57.1836, 148.356, 22.0745, 10.0903, 29.8132, 22.3227, -6.73099, 452.967, 642.795, 3101.61, 1906.24, 83.7163, 6.33219, 144.829, 172.174, 16.5198, 6.6039, 11.7319, -15.1945, -8.16856, 69.3211, 183.732, 118.473, 164.074, 496.539, 546.727, 15.4349, 460.542, 112.704, -24.5723, 14.6984, 58.4225, 65.6001, 3.60186, 25.3583, 71.0586, 36.3139, 10.6933, -5.65051, -18.0382, 0.915797, 15.0201, 694.094, 1.26846, 8.0124, 55.5302, 97.4134, 31.2342, 17.4901, 57.458, 106.358, 9.61853, -12.591, 0.139887, 592.938, 241.521, 190.222, 796.422, 507.855, 172.553, 334.769, 14.3157, 50.7952, 8.26035, 20.5055, 19.4919, 78.6369, 1046.35, 367.375, 15.7459, 42.2202, 392.361, 626.004, 94.4381, 293.149, 13.0971, 18.8269, 187.413, 229.444, 475.299, 808.413, 110.807, 57.2558, 1.20242, 3338.31, 58.0464, 235.895, 268.525, 585.18, 0.460327, 25.8225, 365.538, 328.021, 11.4567, 22.2974, 4049.75, 363.501, 443.315, 88.0459, 37.9932, 28.3565, 22.1575, 191.576, 148.362, 10.7204, 9.84052, 881.215, 756.276, 123.841, 3855.89, -7.62355, 227.628, 44.8431, 134.087, 223.436, 95.7585, 9.15849, 75.5934, 34.1658, 19.5753, 35.3076, 69.8382, 26.808, 216.754, 1469.03, 190.992, 182.317), O = c(91.0615, 87.405, 20.1579, 15.7849, 36.4021, 47.4641, 223.689, 62.0684, 40.6454, 13.3902, 569.133, 48.5457, 65.2693, 17.8828, 17.8083, 132.419, 54.7312, 84.2989, -30.5948, 195.324, 109.446, 52.2385, 8663.51, 42.2334, 88.0712, 24.4171, 35.6076, 39.693, 100.474, 21.742, 30.3021, 43.7021, 116.99, 23.6911, 27.313, 84.3709, 49.9739, 13.2802, 217.396, 367.256, 332.381, 930.928, 5.36648, -52.6525, 23.6439, 1362.9, 1763.15, 2298.72, 3454.28, 3828.45, 3727.14, 62.2097, 13.5778, 56.544, 53.5262, 481.904, 402.718, 99.6078, 162.308, 69.0339, 61.0306, 155.209, 206.509, 59.7551, 33.1553, 52.3652, 278.303, 16.0722, 11.0232, 12.9863, 24.7943, 150.402, 139.517, 94.6878, 45.6489, 1290.84, 3.43024, 12.9193, 7.68004, 33.7241, 119.821, 173.552, 34.6971, 31.6987, 131.983, 85.5727, 621.437, 3.78157, 162.985, 18.0843, 1465.47, 17.9788, -9.77655, 19.0585, 4.2578, 48.7836, 6.20112, 465.464, 11.8042, -17.8159, 36.906, 344.095, 117.624, -60.686, 70.5839, 24.5116, 57.8507, 106.437, 23.974, 29.632, 199.984, 23.5255, 18.0818, 465.204, 47.253, 110.568, 210.712, 189.16, 25.4456, 14.1781, 33.2616, 29.6363, 312.489, 112.39, 19.7958, 31.6101, 23.2446, 67.7264, 63.1741, -1.28236, 15.6809, -22.4669, 164.455, 35.2809, -16.8447, 308.41, 15.6924, 13.6633, 108.893, 89.4569, 97.3631, 80.1768, 353.866, 114.01, 75.672, 1931.77, 216.261, 154.741, 24.8446, 11.0583, 10.2016, 437.672, 44.1626, 1150.15, 33.3331, 25.9648, 2849.15, 56.2084, 21.5655, 61.6313, 0.5633, 6.6802, 142.206, -1.52441, 14.2807, 227.428, 154.188, 2.73304, 135.888, -6.55262, 146.762, 13.6927, 59.0275, 149.335, 322.438, 18.4279, 131.005, 124.646, 12.9452, 1413.51, 63.8342, 15.1334, 24.8349, 53.312, 329.991, 112.056, 260.494, 15.5461, 1383.65, 37.1371, 26.8427, 243.959, 606.582, 98.9069, 61.6406, 16.9089, 340.449, 49.6253, 149.616, 120.192, 667.523, 49.9381, 24.8398, 225.262, 3546.96, 136.091, 121.874, 51.4883, 8.84598, 69.2017, 20.1963, 285.056, 41.1304, 47.4723, 45.6532, 21.6557, 34.7265, 446.774, 84.824, 11.7275, -7.08199, 48.6305, 28.8085, 1075.68, 12.0825, 25.3304, 192.562, 26.608, 392.937, 66.2018, 6.86363, 251.672, 91.9728, 22.2643, 74.2767, 126.254, 37.9815, 209.963, 191.709, 12.6392, 6.46965, 1395.67, 95.0177, 42.7501, 125.366, 101.043, 24.6033, 34.9832, 459.64, -2.3563, 194.104, 32.6242, 208.027, 104.251, -0.780733, 105.502, 37.781, 291.185, 1161.23, 235.632, 46.5727, 27.6308, 159.657, 300.935, 557.992, 2116.27, 1054.46, 73.9035, 1217.01, 1460.15, -88.8, 1992.36, 6.53622, 5.29332, 225.701, 125.598, 116.968, -27.5739, 9.55741, 179.675, 89.3978, 88.787, 315.728, 345.216, 335.878, 168.616, 439.822, 3306.11, 1049.26, 547.481, 286.447, 99.1406, 38.4488, 114.556, 45.9393, 273.941, 1111.15, 39.4502, 2902.01, 6.15638, 23.0667, -14.1021, 9.35298, -116.857, 452.608, 3544.92, 927.414, 756.701, 41.3498, 23.6982, 211.032, 35.4816, 123.105, 23.9056, 353.035, 743.73, 79.2366, 5514.38, 42.0635, 127.181, 44.6466, 43.0307, -0.20449, 19.4447, 66.9031, 55.2938, 399.75, 81.2312, 2672.37, 64.994, 67.4257, 10.9589, 71.4969, 2093.8, 14.6523, 28.02, 34.3509, 21.8848, 29.0589, 128.662, 20.666, -1.34474, 21.2585, 1646.82, 2867.21, 37.065, 42.8606, 207.514, 26.1821, 153.811, 274.655, 45.6786, 170.145, 173.887, 234.359, 60.399, 1349.8, 1600.49, 78.0854, 43.6012, 203.56, 6.03428, 131.07, 26.5348, 97.5548, 161.412, 16.7075, 71.5095, 280.713, 1207.67, 155.317, 6.33112, 30.6113, 62.8205, 164.324, 47.1694, 16.4894, 24.9893, 38.3245, 1.62452, 499.28, 442.922, 1074.38, 605.84, 60.6398, 16.3385, 188.24, 272.834, 30.0742, 22.7793, 6.38199, -41.293, 37.8102, 33.2661, 223.882, 126.257, 295.781, 524.562, 420.12, 16.3514, 287.683, 95.448, -39.3764, 15.5204, 65.131, 69.1624, 7.15867, 23.082, 106.437, 53.8414, 13.3305, -0.569408, -24.9162, 30.1215, 80.6879, 429.743, 7.23502, 6.9824, 55.0579, 178.074, 15.6577, 58.2782, 66.9708, 163.589, 9.62151, -61.7727, 1.91402, 805.173, 262.389, 80.9406, 322.827, 125.727, 18.9264, 204.438, 38.7136, 40.4771, 13.2167, 31.9875, 5.56237, 82.045, 542.137, 304.213, 40.4456, 57.2924, 116.115, 283.383, 88.494, 402.55, 16.2518, 16.7579, 245.128, 287.116, 367.802, 1390.38, 175.099, 55.0086, -3.22419, 2509.98, 49.9448, 240.87, 250.352, 577.222, 17.2906, 10.8333, 290.135, 354.61, 3.13894, 47.0525, 2374.41, 394.607, 452.372, 57.5241, 42.6069, 40.0522, 20.0476, 202.874, 146.704, 18.5251, 8.70428, 747.181, 746.294, 210.542, 2534.57, -4.78982, 265.571, 47.9046, 255.362, 222.945, 202.534, -1.89679, 75.6935, 108.222, 31.3858, 47.6782, 134.868, 18.6868, 315.229, 23.4902, 256.412, 183.381), P = c(95.9377, 84.4581, 27.8139, 14.3276, 35.3054, 47.3578, 183.585, 40.6705, 35.5333, -6.86196, 520.495, 36.3279, 80.8682, 16.4829, 12.1731, 101.991, 83.9226, 48.5502, -37.918, 182.143, 109.243, 72.062, 9703.19, 33.9123, 59.607, 11.2079, 28.1836, 29.3086, 87.4065, 12.4074, 33.7019, 34.2866, 60.5425, 28.0745, 8.17936, 56.7914, 43.755, 1.30735, 380.761, 949.318, 873.601, 2133.17, 8.94132, -49.4911, 13.8909, 3635.18, 4155.44, 5029.35, 5097.63, 5885.63, 5158.47, 76.3571, 40.6937, 129.156, 44.6594, 532.827, 407.366, 150.024, 166.733, 79.4228, 52.9089, 146.577, 212.089, 58.6137, 25.1409, 57.365, 218.192, 22.9141, 9.60791, 16.0146, 16.0711, 193.675, 131.629, 90.5224, 78.5255, 2666.04, 1.83676, 107.723, 8.9607, 166.211, 87.4163, 137.844, 58.0048, 18.4808, 84.3373, 69.2211, 501.736, -0.0219398, 110.627, 27.8748, 3428.02, 18.2661, -0.552943, 9.04877, -7.55392, 34.7136, -22.0775, 438.31, 8.01353, -10.6556, 11.7081, 286.784, 142.977, -1.75306, 92.0008, 17.9923, 43.3699, 69.9862, 7.03824, 15.2385, 266.447, 13.9918, 44.109, 343.971, 106.388, 193.132, 259.72, 146.305, 27.5627, 11.8241, 28.1245, 10.5465, 298.405, 72.1411, 8.54124, 19.1003, 28.5318, 19.2189, 50.9797, -6.94101, 12.6264, -19.0878, 132.13, 32.4503, 34.6964, 356.571, -4.75583, 15.0408, 90.0344, 83.563, 72.9321, 89.6479, -9.24438, 112.635, 89.945, 4708.72, 307.156, 106.495, 35.6991, 21.3087, 11.8785, 403.283, 45.9825, 1190.18, 17.3389, 12.962, 2253.57, 26.0812, -9.33715, 45.8318, 4.25198, -0.235197, 95.423, 12.242, 21.7191, 207.132, 110.167, 18.8907, 62.423, -2.17878, 188.407, 4.73582, 57.3755, 91.7946, 346.722, 5.35646, 88.8214, 112.848, 12.5417, 1366.66, 55.1934, 13.0844, 33.9986, 60.4339, 318.644, 107.152, 207.756, 10.0655, 908.623, 24.9347, 30.1607, 784.132, 1581.78, 61.0361, 208.332, 9.41051, 272.553, 35.7506, 287.011, 130.155, 675.119, 37.0291, 27.0153, 197.177, 4754.66, 130.537, 106.092, 67.2723, 6.46507, 102.061, 32.6796, 343.667, 49.9468, 37.6753, 17.743, 23.795, 28.4899, 391.945, 100.785, -5.28743, 24.6998, 36.4727, 5.44548, 1542.53, 15.6564, 1.72514, 175.246, 16.8081, 592.958, 58.0536, 16.8238, 196.898, 173.092, 19.4727, 32.409, 157.622, 40.8702, 1926.03, 209.951, 19.1415, -1.09743, 1946.8, 90.6256, 54.4008, 133.856, 87.6597, -6.63018, 31.2292, 373.655, 4.77085, 326.268, 36.6104, 415.757, -10.3339, 5.03371, 145.241, 98.7188, 232.926, 65.1305, 305.526, 39.0101, 16.5698, 133.832, 318.781, 1051.04, 3344.31, 57.0384, 52.8896, 2427.39, 3146.21, -33.1885, 3671.85, 53.1269, 0.677284, 226.086, 112, 58.5344, -26.5842, 14.5561, 69.9531, 57.5755, 159.83, 196.863, 377.648, 271.063, 130.595, 473.57, 4174.7, 926.876, 384.274, 269.828, 174.097, 8.58941, 98.2331, 31.5614, 230.974, 1317.19, 34.6345, 4225.96, -7.23611, 32.0804, -8.18457, -19.4876, -79.0781, 318.325, 3938.1, 2173.5, 627.963, 36.4799, 30.1577, 104.443, 20.5033, 100.631, 11.327, 310.695, 737.578, 93.6738, 6463.77, 28.3647, 78.8394, 40.2777, 41.681, -9.14832, -1.23541, 59.2399, 39.7863, 330.049, 51.3537, 2981.12, 48.1936, 44.3643, 2.1581, 71.4727, 2383.25, 25.6787, 195.431, 18.1804, 18.4473, 13.8278, 89.4967, 13.0111, -36.4418, 14.1874, 2983.45, 3025.66, 27.0738, 100.308, 166.18, 19.0582, 73.1515, 268.685, 35.5036, 137.303, 194.318, 233.562, 76.5329, 1958.33, 1834.38, 83.1306, 43.8636, 188.715, 4.5986, 86.2513, 14.9692, 37.6332, 80.6467, 8.96311, 46.4031, 361.995, 1489.12, 152.357, -11.4613, 42.1186, 60.9955, 145.517, 49.2345, 22.0977, 26.0827, 29.9162, -4.43161, 498.882, 516.328, 1400.31, 753.996, 67.8413, 11.8069, 128.401, 314.835, 15.3117, 14.2839, 5.99399, -27.0365, 25.2353, 26.3329, 205.1, 108.31, 208.561, 440.486, 485.368, 24.4458, 332.205, 108.732, -33.8566, 3.19337, 64.9522, 71.5209, 4.01805, 36.4773, 88.9457, 39.8483, 21.7754, 1.84143, -20.8023, 9.08591, 48.9682, 312.86, 2.54359, 10.9099, 39.17, 141.846, 40.0549, 26.9255, 54.3649, 213.655, 14.2068, -21.6539, -3.26063, 610.592, 240.758, 181.643, 705.632, 323.292, 112.908, 669.242, 21.5416, 77.7138, 9.21672, 28.6409, 8.29647, 52.3091, 1202, 299.665, 181.463, 49.5697, 118.863, 366.126, 99.5636, 271.68, 22.9561, 21.5974, 330.821, 275.754, 551.549, 755.334, 142.136, 45.7811, -6.41456, 3184.69, -7.71132, 269.67, 334.009, 579.92, -11.1694, 37.5901, 224.289, 312.906, 23.2579, 14.2944, 2260.91, 453.288, 511.297, 63.2891, 35.8314, 36.5171, 21.961, 165.049, 126.496, 17.4001, -4.83672, 2869.42, 3314.75, 216.978, 4321.76, -3.40488, 302.999, 55.3171, 215.658, 234.406, 229.894, 2.80647, 51.6358, 46.0148, 30.7832, 36.3961, 104.452, 28.7967, 270.453, 10.2954, 299.513, 298.381), Q = c(179.845, 87.6806, 32.7911, 15.9488, 58.6239, 58.1331, 192.221, 53.2711, 57.5078, 21.5091, 401.43, 57.8427, 53.4837, 6.53565, 26.9214, 204.75, 103.289, 74.191, -30.488, 144.421, 107.088, 36.6448, 6945.46, 26.3551, 72.2323, 34.9787, 31.9271, 39.3662, 88.351, 20.2063, 47.751, 39.3882, 93.421, 38.4229, 24.4473, 97.0614, 48.2842, 20.4114, 149.48, 91.9974, 99.0099, 489.616, -47.5854, -50.1208, 40.9994, 2056.61, 3297.7, 5375.36, 1481.99, 2634.74, 5005.51, 58.5187, -2.27154, 49.6001, 104.546, 589.112, 435.819, 197.43, 162.421, 88.937, 59.6806, 220.031, 148.895, 145.55, 38.3616, 130.29, 441.142, 22.7215, 5.45075, 0.541475, -2.7933, 143.731, 151.581, 122.392, 64.1095, 241.961, 9.33198, 2.84321, -0.0813966, 13.0512, 137.274, 152.312, 17.9966, 24.0255, 56.6119, 19.8654, 602.892, 18.9863, 128.256, 5.18994, 3225.78, 20.0576, -22.8684, 24.0201, 23.255, 52.3609, 9.78681, 378.532, 7.86409, -10.9199, 39.3368, 509.703, 98.3465, 4.3278, 30.9841, 15.7241, 72.934, 131.086, 17.678, -8.3158, 206.659, 15.5542, 30.9563, 526.82, 40.1954, 157.392, 186.118, 463.845, 25.6804, 18.7586, 30.2144, 26.5379, 426.224, 72.4541, 27.7973, 43.7178, 38.8451, 29.4314, 65.894, -1.37091, 17.5584, -18.2047, 175.757, 43.0175, 59.291, 360.72, 2.91078, 8.54141, 144.081, 107.063, 115.136, 118.639, 14.3273, 78.5512, 77.0416, 3784.57, 205.474, 129.544, 46.1631, -6.58117, 6.7294, 407.759, 50.2326, 732.503, 31.4596, 22.3868, 1987.59, 135.708, -2.7049, 85.6406, -1.73791, -0.253871, 128.843, -3.70685, 48.5898, 210.508, 211.484, -16.6187, 69.303, -20.0826, 159.374, 28.6098, 45.1189, 138.511, 418.071, 24.5252, 58.6564, 113.994, 9.71542, 1149.7, 62.2579, 28.4784, 50.1206, 53.1632, 382.944, 205.593, 292.019, 4.40127, 972.107, 11.6381, 33.2306, 137.403, 382.1, 107.61, 274.315, 3.02641, 402.868, 51.989, 161.62, 144.589, 700.349, 72.0878, 12.6023, 195.966, 4706.92, 92.8416, 92.2657, 41.3558, 7.73853, 70.9883, 18.9096, 306.337, 35.7701, 77.9582, 44.4995, 22.9144, 39.9449, 370.19, 129.158, 18.4312, -3.72863, 33.1532, 16.5481, 750.471, 15.7297, 17.9517, 227.91, 29.0455, 1137.05, -10.154, 17.0133, 205.213, 27.6867, 9.59297, 64.6394, 171.64, 20.2732, 551.24, 215.793, 22.2288, 13.2424, 2093.72, 118.054, 55.8656, 181.877, 114.434, 25.1648, 37.2732, 199.615, -2.11748, 194.627, 20.2581, 225.932, 125.897, 14.3432, 97.1932, 17.4086, 236.933, 73.5888, 59.5797, 55.2935, 22.0871, 195.733, 225.552, 383.538, 4529.62, 88.9723, 147.116, 818.793, 2845.39, -117.257, 3771.48, 9.29057, 40.9826, 197.999, 138.397, 98.8488, -66.7108, 18.8726, 147.691, 59.8272, 155.593, 127.694, 169.62, 116.026, 124.979, 123.351, 4635.37, 489.761, 411.588, 329.29, 94.3519, 36.1513, 92.763, 33.1402, 247.683, 589.211, 17.2803, 5472.93, -0.0945169, 20.9166, -16.4756, 4.16099, -103.032, 310.225, 5160.17, 2308.51, 711.944, 67.0825, 26.3465, 252.606, 30.0716, 81.0213, 10.7387, 415.856, 831.018, 77.574, 5768.87, 38.7843, 188.789, 57.3272, 19.5062, 4.65378, 21.8456, 59.9341, 55.3942, 286.712, 145.81, 3762.74, 125.689, 65.3176, 63.5216, 114.212, 2204.63, 105.805, 734.733, 21.1044, 31.2069, 24.5646, 141.729, 14.2803, -0.0164678, 7.31915, 3652.55, 3571.21, 18.3819, 23.5022, 126.492, 57.9871, 378.767, 275.041, 86.5916, 194.384, 84.5018, 268.68, 66.6054, 1165.89, 1102.24, 131.127, 39.04, 127.934, 6.77768, 93.8452, 36.2621, 244.989, 113.863, 19.5587, 83.6092, 90.1186, 1144.37, 222.243, -0.112485, 3.04715, 39.3341, 174.551, 9.39525, 8.86476, 34.0683, 38.2249, 21.4314, 534.847, 423.109, 1412.79, 1009.59, 69.7896, 5.09325, 184.737, 197.544, 19.5185, 1.42929, 0.732096, -25.099, 48.13, 22.9186, 194.558, 133.921, 302.006, 589.515, 316.913, 6.54445, 244.15, 140.078, -54.1407, 5.48896, 54.3901, 49.1413, 32.6048, 35.0332, 115.283, 45.2265, 21.2021, 2.61183, -23.157, 23.1803, 60.5066, 644.764, 7.54052, -10.2434, 80.3851, 120.091, 28.2656, 38.8046, 69.4305, 211.22, 16.6813, -51.1497, 15.4236, 773.751, 236.359, 220.25, 444.252, 197.603, 22.1516, 163.368, 4.38515, 32.3105, 21.5567, 34.8164, 7.38586, 83.7836, 690.248, 289.526, 55.7817, 58.9882, 376.087, 409.305, 135.194, 479.253, -7.37725, 0.122464, 93.6764, 187.529, 100.787, 663.026, 156.812, 46.7963, -3.89443, 4278.74, 53.7028, 236.132, 274.988, 476.378, -19.3199, 32.5085, 185.91, 297.545, 21.7566, -28.1106, 3377.88, 361.914, 433.109, 63.4572, 54.1816, 33.141, 18.6417, 195.832, 131.329, 26.9925, 15.6661, 2709.4, 1378.63, 237.151, 4236.67, -12.2979, 277.669, 60.6225, 364.282, 250.075, 168.212, -24.2041, 93.1122, 16.1807, 38.0609, 49.8754, 118.717, 32.9751, 239.852, 20.653, 237.043, 310.96), R = c(152.467, 108.032, 33.5292, 14.6753, 114.062, 104.122, 305.567, 107.237, 41.1337, 3.10536, 757.495, 83.1914, 108.545, 42.4696, 40.3873, 265.771, 140.76, 74.7106, -54.5634, 316.037, 188.792, 94.3601, 9186.23, 70.3766, 131.602, 56.8246, 40.0859, 48.3323, 187.831, 40.0367, 63.2577, 23.5424, 133.267, 40.1676, 26.7121, 157.43, 93.5228, 27.2889, 195.412, 267.395, 209.605, 582.488, 25.0043, -29.4005, 41.4228, 1071.56, 2141.77, 2913.78, 4131.25, 4546.89, 3987.55, 60.5533, 8.11091, 70.4294, 91.2818, 621.923, 558.21, 86.4503, 157.802, 72.6112, 46.4297, 176.787, 196.865, 92.815, 50.2916, 85.7762, 331.161, 48.8162, 20.6512, 10.9181, -0.905975, 233.632, 204.266, 172.993, 103.938, 1614.46, 20.4997, 12.0684, 15.2499, 37.1182, 133.572, 145.011, 29.0069, 20.7526, 72.8516, 102.421, 734.952, 10.8608, 148.424, 14.2887, 1699.09, 40.0938, 4.5551, 22.2042, 20.2862, 66.5785, 8.12938, 438.409, 9.16017, -26.0217, 40.6845, 334.96, 166.697, 11.0599, 85.3465, 65.1488, 70.9823, 226.982, 18.595, 30.777, 213.079, 17.112, 47.8895, 488.479, 80.2266, 206.459, 170.515, 305.913, 59.6001, 12.9898, 66.436, 38.64, 452.142, 147.568, 31.2212, 39.9977, 86.5661, 37.2774, 76.2522, -5.98051, 26.4634, -30.1757, 144.372, 65.8211, 61.777, 448.511, 17.0231, 39.0015, 141.992, 107.897, 105.584, 80.5216, 203.611, 79.6198, 110.707, 2188.94, 418.162, 185.003, 40.7064, 16.2165, 13.4062, 427.505, 93.5351, 1818.93, 62.4827, 16.2637, 2446.46, 70.9351, 19.1831, 99.676, 2.48638, 27.4741, 141.248, 27.3096, 25.9065, 252.931, 113.078, 6.87179, 116.856, -18.8597, 147.415, 36.6545, 109.731, 120.15, 318.348, 22.4257, 107.673, 135.75, 42.688, 1507.05, 64.8156, 12.377, 38.9106, 72.865, 483.677, 150.884, 183.042, 30.0473, 1264.23, 67.7055, 43.9821, 83.8563, 235.309, 83.3796, 153.38, 21.2252, 339.996, 64.6378, 173.331, 98.6056, 743.576, 87.6906, 50.6009, 267.82, 3831.35, 133.764, 103.796, 65.1927, 4.23406, 102.03, 38.5771, 412.567, 80.7445, 84.7391, 66.967, 51.0009, 26.7375, 480.525, 124.697, 10.7221, 27.7304, 59.3173, 69.1332, 415.189, 34.8442, 30.0275, 196.203, 8.14025, 170.304, 111.209, 9.7514, 266.524, 49.1039, 18.0585, 63.3793, 193.721, 30.783, 120.978, 227.752, 11.044, 14.0334, 1425.13, 63.0943, 42.0432, 197.522, 223.889, 22.6631, 51.5177, 250.103, -4.79409, 200.241, 16.6868, 102.159, 22.8715, 4.64345, 209.266, 49.3408, 468.176, 106.673, 172.501, 43.7646, 34.6348, 216.858, 260.969, 302.636, 1863.93, 111.276, 81.7995, 685.466, 1808.08, -10.9104, 2189.63, 17.3143, -0.330623, 290.932, 141.705, 11.9967, -93.7383, 17.2784, 47.8672, 113.007, 68.5187, 60.3833, 107.685, 111.365, 95.6294, 16.0335, 2125.74, 189.074, 403.838, 266.738, 106.865, 34.9085, 106.845, 66.5682, 325.85, 296.042, 63.2891, 2926.16, 14.8828, 25.1732, -18.4655, 14.9405, -182.623, 345.625, 2151.06, 622.274, 515.647, 40.7728, 28.5061, 117.372, 35.1721, 121.707, 12.6398, 452.022, 1037.91, 99.5648, 6397.87, 83.2929, 112.015, 70.6735, 42.6805, 75.0421, 24.7328, 117.228, 67.4218, 359.033, 98.0862, 2005.45, 57.4873, 57.8876, 7.38197, 77.2251, 677.15, 30.288, 81.2351, 32.8085, 35.7945, 29.5189, 151.22, 48.3396, 7.56941, 33.6318, 1287.71, 1373.77, 45.7599, 31.5629, 109.559, 54.1209, 111.934, 339.228, 72.705, 131.702, 71.9102, 263.616, 120.872, 1364.11, 2092.8, 87.4137, 56.3817, 95.6377, -4.18302, 130.424, 45.2359, 187.043, 65.6953, 18.7438, 55.2051, 105.641, 1499.26, 167.485, 2.11053, 21.5399, 117.773, 217.44, 51.3506, 18.8601, 40.4956, 53.5845, 5.83571, 660.491, 664.955, 1574.65, 478.21, 129.376, 15.2661, 260.743, -8466.18, 49.5091, 33.2026, 9.27869, -61.5478, 66.153, 40.8323, 360.081, 178.816, 218.49, 485.663, 352.142, 25.7411, 348.956, 149.195, -85.781, 22.1877, 74.7517, 88.4789, 2.98481, 41.6607, 87.5974, 80.5128, 40.4506, 2.68361, -41.1939, 30.8733, 64.0993, 310.536, 16.2474, 16.2138, 48.1475, 178.396, 26.3308, 32.5856, 77.08, 161.854, 39.5347, -79.1266, 7.97024, 791.045, 366.511, 245.5, 77.9898, 164.441, -4.43778, 290.684, 3.41354, -0.254222, 34.5304, 48.6374, 14.6504, 4470.95, 319.764, 203.609, 28.2099, 53.0766, 55.7597, 257.995, 149.451, 354.238, 69.3679, 29.4672, 93.0593, 319.169, 169.189, 983.872, 237.993, 57.6727, -2.76582, 1531.69, 33.0223, 262.881, 253.669, 772.192, -2.05733, 30.0128, 262.16, 321.552, 6.10686, 18.6129, 889.943, 504.265, 567.512, 93.0405, 88.32, 58.962, 30.366, 271.145, 149.116, 27.7497, 28.916, 1564.67, 1988.77, 229.076, 4052.49, -20.0849, 304.424, 94.6692, 234.158, 280.213, 163.26, -0.523823, 95.161, -5.09898, 35.5848, 51.4191, 218.051, 43.3184, 501.531, 27.493, 287.333, 262.567), S = c(180.834, 134.263, 19.8172, -7.91911, 93.4402, 115.831, 300.689, 119.666, 79.9829, 5.95347, 595.908, 66.6783, 136.044, 41.4669, 17.6882, 317.314, 177.441, 112.964, -49.0879, 269.485, 240.35, 71.4727, 9889.05, 72.777, 136.208, 46.6026, 49.1144, 56.4269, 247.966, 30.2897, 15.9976, 43.3184, 98.5873, 52.8215, 29.895, 104.566, 51.2824, 14.161, 105.061, 121.308, 98.4066, 449.081, 90.946, -3.12303, 52.178, 787.855, 2671.19, 4881.61, 1094.09, 1992.91, 4568.23, 43.1294, -2.45485, 35.8078, 194.779, 1149.07, 472.645, 153.465, 155.811, 78.5674, 67.3687, 196.392, 224.741, 103.921, 37.9265, 121.149, 330.471, 44.5184, -25.7326, -5.03244, 12.0736, 249.667, 152.511, 106.064, 91.2649, 163.929, -15.2783, 22.2097, 32.284, 19.4569, 90.3666, 154.363, -2.0974, 28.5418, 56.7267, 66.856, 807.89, 16.8584, 107.983, 20.4714, 3460.35, 47.6155, -5.06083, 36.6995, 25.7782, 67.9857, -7.1937, 510.066, 8.34297, -22.6467, 17.5439, 409.735, 115.789, -2.30007, 27.6526, 31.344, 46.8879, 149.112, 20.8777, 57.4851, 259.185, 1.47103, 50.97, 345.388, 42.0308, 240.033, 129.362, 257.606, 31.0306, 4.59672, 45.0933, 33.1438, 436.701, 175.625, 33.768, 39.8363, 80.3382, 29.0026, 49.2988, 5.05956, 23.5987, -10.8797, 176.337, 54.4923, 58.8794, 439.405, -3.61493, 38.4084, 128.262, 92.448, 157.364, 96.7016, -26.1654, 90.6717, 132.453, 3486.82, 246.219, 187.849, 15.8017, 16.9958, 3.98389, 506.407, 76.9606, 1854.34, 61.4706, 7.87159, 2154.92, 63.9216, 21.003, 126.628, 15.2875, 14.8456, 155.615, 12.7579, 33.5934, 316.255, 98.0338, -0.155925, 114.746, -1.48718, 154.094, 17.3349, 147.235, 156.007, 418.399, 21.6388, 108.515, 142.459, 24.9952, 1218.14, 11.8222, 7.9083, 37.2163, 85.4512, 491.36, 183.883, 208.501, 50.3986, 1077.88, 124.843, 50.9061, 135.342, 408.804, 99.3985, 192.397, 22.2958, 286.63, 70.1096, 55.9491, 137.51, 721.507, 98.5957, 19.5054, 251.092, 4551.91, 122.042, 152.411, 60.2571, 27.1888, 100.811, 39.2265, 467.092, 64.3961, 76.1911, 83.2083, 46.4905, 18.0486, 489.009, 74.2649, 4.50381, 29.8879, 49.1869, 0.631129, 1000.79, 11.3707, 18.8654, 238.469, 23.2369, 718.064, 89.7505, 9.75831, 170.33, 28.7157, 8.9678, 112.746, 78.4019, 25.9762, 169.867, 206.853, 23.486, 6.17877, 1152.77, 192.186, 58.7668, 225.352, 306.653, 30.2744, 32.5775, 69.0377, 8.76418, 167.482, 12.9271, 212.637, -13.1019, -10.4586, 155.464, 56.8248, 599.134, 92.2997, 51.1154, 33.7343, 23.6795, 203.75, 179.768, 436.384, 4338.32, 118.207, 111.672, 1810.67, 3395.32, -38.9316, 4429.26, -5.22744, 14.8681, 271.399, 145.53, 35.5675, -92.9327, 27.1228, 101.219, 70.1528, 144.957, 104.611, 156.323, 158.986, 185.459, 73.1768, 3557.53, 318.342, 360.28, 392.819, 134.733, 37.7964, 67.7007, 49.1147, 243.646, 643.462, 36.4443, 3379.99, 6.81798, 23.0309, -17.2907, 19.7955, -93.9038, 331.732, 4460.44, 2559.39, 403.001, 19.597, 18.4828, 201.77, 39.4426, 128.766, 9.73723, 568.667, 964.267, 91.0142, 5593.77, 80.4497, 91.9147, 96.3875, 77.823, -10.0185, -0.552131, 104.977, 67.3361, 298.984, 103.676, 3175.74, 76.1713, 42.9305, 23.5164, 80.5255, 2942.06, 46.0359, 211.746, 24.4057, 36.5004, 28.4086, 189.812, 24.9993, 2.04241, 8.26861, 3992.39, 2822.58, 6.13577, -24.8298, 114.667, 45.6519, 113.635, 345.131, 41.3414, 204.028, 46.206, 286.119, 137.48, 874.469, 1530.73, 144.398, 50.0945, 106.27, 18.9696, 185.828, 42.4012, 109.506, 106.629, 0.265347, 114.964, 79.697, 1196.91, 181.206, -5.2015, 34.0159, 105.566, 275.02, 36.3232, -2.9961, 44.4439, 52.9923, 14.0299, 662.469, 689.304, 1951.98, 1049.51, 110.576, 6.38378, 257.273, 272.63, 46.4421, 8.63581, -10.7732, -50.931, 62.8756, 35.9405, 363.809, 210.738, 326.868, 518.104, 360.48, 17.5659, 389.966, 147.554, -85.8457, -4.62999, 67.4847, 72.5869, 17.7463, 72.1119, 106.536, 52.8706, 30.1552, 1.41616, -38.1398, 42.2391, 48.2987, 245.317, -2.8878, -8.54974, 67.0057, 85.5775, 68.6865, 58.0009, -100.96, 153.806, 8.89852, -52.7776, 13.7009, 741.804, 342.906, 213.806, 246.234, 249.977, 6.98249, 313.301, 4.85294, -6.65, 11.7382, 44.1473, 26.9037, 150.331, 373.791, 225.069, -13.2615, 71.2087, 77.8136, 316.181, 121.96, 535.475, 4.9466, 23.6025, 102.613, 253.591, 38.0866, 1595.16, 184.578, 67.1935, -1.492, 2918.08, 45.1199, 272.804, 333.432, 845.986, 4.28768, 32.6207, 233.91, 363.863, 21.951, 11.784, 1891.02, 329.09, 486.907, 64.4783, 66.7354, 46.4086, 33.8196, 233.154, 136.06, 47.6797, 6.52799, 340.142, 141.886, 266.149, 5408.5, -0.330254, 249.207, 91.4136, 217.254, 223.499, 125.535, -26.3701, 124.581, 23.0902, 27.3877, 63.5235, 91.5899, 30.2485, 414.683, 32.0805, 292.537, 337.14), T = c(85.4146, 91.4031, 20.419, 12.8875, 22.5168, 58.1224, 146.081, 24.0654, 23.4953, 5.66012, 381.23, 24.8852, 43.8619, 21.6548, 38.31, 88.0773, 75.8888, 63.2349, -22.5916, 148.114, 94.9754, 24.3627, 8872.19, 16.6944, 25.9624, 14.2291, 26.7874, 18.7009, 67.1026, 22.4741, 9.27033, 47.5063, 63.1381, 15.6287, 16.4874, 48.3661, 29.3514, 5.19944, 80.6699, 130.446, 92.6789, 991.455, -47.5568, -27.8809, 34.8781, 1764.84, 3354.22, 5156.98, 2924.77, 4220.09, 5945.49, 54.869, -14.7753, 17.6952, 106.033, 752.364, 315.533, 201.13, 132.043, 53.3268, 38.1879, 153.224, 164.918, 84.4463, 21.762, 54.4231, 199.737, 8.43104, -21.5154, 24.0447, 16.0306, 175.385, 123.68, 85.9635, 69.9593, 838.797, 42.3079, 9.28645, 7.80179, 41.7727, 147.448, 124.652, 14.7371, 31.7192, 37.8179, 42.2796, 488.885, -46.2152, 132.058, 5.27287, 4440.33, -0.0718337, -57.624, 4.71695, 5.46426, 39.1079, 12.6737, 321.994, 9.97344, -17.4564, 26.4203, 428.175, 105.465, 2.87448, 38.7378, 9.81193, 62.2688, 78.2701, 21.3358, -49.4748, 144.854, 23.4393, 19.4808, 341.139, 32.9906, 129.144, 185.672, 168.829, 6.00401, 33.8803, 9.36118, 14.9659, 247.173, 82.8192, 13.4658, 22.9884, 47.6126, 45.9863, 14.9616, -17.078, 13.3633, -10.6613, 149.949, 16.9201, 32.2351, 303.763, 17.3263, 12.6098, 90.374, 67.1811, 96.5753, 30.4414, 5.25392, 97.9433, 84.0109, 4791.92, 158.83, 70.5196, 25.2591, 10.6006, 4.74133, 328.929, 29.5291, 1108.02, 25.4939, 9.86538, 1881.79, 38.0273, 18.6363, 47.8304, -10.7556, 19.3657, 156.49, -4.6479, 24.3279, 177.577, 99.0255, -20.2743, 18.2502, -21.5958, 204.768, 13.9135, 30.9209, 41.149, 384.304, 4.3501, 56.0264, 84.2963, 5.9091, 1111.55, 18.1803, 35.6877, 36.4223, 28.7847, 336.821, 113.682, 153.298, -12.3375, 703.197, 6.54321, 3.4003, 365.171, 948.665, 57.6749, 140.807, -47.5884, 230.304, 35.2882, 92.0679, 119.55, 594.026, 47.8285, 1.59722, 141.695, 4590.73, 91.6325, 73.205, -7.3732, 4.2271, 54.6507, 13.1526, 354.281, 25.637, 31.0081, 29.8338, 2.26946, 26.7666, 362.02, 115.711, 11.7932, -32.3943, 32.0935, 29.629, 2198.45, 10.5357, 2.06974, 160.126, 17.9661, 557.344, 30.7372, 5.81217, 173.58, 28.031, 113.638, 44.2328, 119.839, 13.3271, 3588.49, 180.036, 12.2911, 6.12067, 2513.45, 130.452, 43.649, 164.033, 86.9239, -4.89138, 2.61077, 318.083, -9.8494, 226.599, 27.9181, 709.636, 58.3088, 8.21628, 53.439, 27.9726, 152.485, 56.2261, 35.4081, 49.3529, 23.6595, 101.075, 201.208, 1349.67, 4097.11, 57.5865, 46.8813, 2496.72, 4302.08, -14.5668, 4226.52, 7.23516, -10.6584, 199.645, 25.6556, 88.8947, -27.3404, 7.1847, 123.708, 54.1917, 95.0836, 53.2071, 87.2175, 65.777, 141.115, 127.916, 4586.4, 188.076, 373.932, 177.252, 58.2959, 22.0144, 78.9151, 8.43176, 264.651, 1104.78, 17.8202, 4534.5, 3.39535, 11.9647, -7.74796, -0.772443, -26.6313, 295.923, 4712.16, 3425.1, 614.955, 22.927, 10.8969, 148.503, 14.3999, 80.8697, 12.8348, 329.268, 673.343, 56.6204, 5771.56, 24.6675, 110.65, 35.7516, 41.8782, 44.7822, 19.8892, 41.73, 19.3424, 298.774, 37.7131, 3728.22, 36.5436, 48.8184, 28.1586, 54.0515, 3337.96, 20.775, 279.927, 18.8433, 32.674, 14.6679, 29.86, 12.9458, 19.2027, -2.83335, 3800.89, 3485.23, 20.018, 6.81922, 171.361, 23.6272, 82.1207, 183.374, 27.095, 260.132, 108.528, 184.085, 61.5014, 1167.08, 1433.71, 135.186, 31.2864, 434.736, 17.5452, 91.0749, 21.8009, 99.108, 210.107, 20.1143, 54.7748, 175.689, 1361.39, 270.05, 1.2547, -11.7241, 29.3876, 138.432, 10.7093, 10.0032, 10.2681, 18.3958, 7.03457, 512.672, 440.222, 1362.39, 910.424, 44.8842, 3.24524, 103.19, 183.772, 15.0041, 5.54029, -8.76264, -22.0844, 38.0021, -25.9207, 264.602, 55.2672, 206.417, 594.362, 448.783, 20.5519, 336.445, 171.817, -39.842, 8.79081, 50.1709, 58.1773, 46.4573, 46.5964, 43.8317, 37.5065, -2.50102, 9.116, -12.1285, -5.29367, 36.3098, 370.765, 6.12811, -26.2998, 59.922, 99.4379, 23.3231, 38.6395, 41.8341, 163.323, 2.35223, -33.2088, -0.318706, 700.347, 149.244, 149.939, 444.315, 197.612, 65.3287, 672.978, 20.2036, 60.3929, 2.13584, 16.3533, 25.6992, 33.6586, 1906.36, 228.049, 17.1178, 48.7949, 146.708, 209.255, 89.5143, 329.467, -84.1617, 9.28273, 73.3277, 150.263, 402.813, 724.912, 93.5619, 26.9338, -3.23502, 4343.81, 84.6119, 176.598, 273.432, 468.032, 20.1705, 20.3546, 250.216, 300.855, 31.8932, -0.101973, 2796.81, 353.51, 464.394, 110.78, 19.739, 21.7774, -1.61634, 189.76, 178.32, 10.1773, 29.4681, 2330.43, 1832.11, 163.47, 4295.36, 1.24901, 169.036, 51.2922, 162.709, 210.078, 101.101, -44.4698, 60.07, 31.3394, 30.0544, 26.2902, 162.19, 23.6549, 193.004, 15.0567, 284.328, 304.22), U = c(157.989, -8.68811, 26.872, 11.9186, 48.6462, 73.4221, 142.913, 98.8425, 51.5609, 52.9338, 501.744, 61.9548, 49.8289, 34.6108, 18.0297, 156.179, 87.3699, 37.4892, -21.2394, 193.205, 104.147, 48.4806, 9682.71, 36.3847, 76.8974, 24.4563, 50.9666, 51.7285, 73.0255, 24.2106, 81.0265, 47.44, 82.9362, 22.7492, 30.1752, 86.5914, 36.8239, 14.7646, 162.673, 253.176, 234.595, 516.142, 3.69034, -48.9365, 65.8244, 1617.96, 2640.46, 3657.65, 3819.17, 4090.65, 4454.83, 74.8586, 30.8665, 115.707, 89.1666, 506.21, 387.529, 136.212, 126.173, 62.8923, 40.0836, 202.828, 177.232, 78.8619, 45.8239, 79.8199, 403.987, 19.3334, -4.33529, 11.4801, 9.01189, 195.923, 148.046, 137.08, 88.7213, 1731.1, 5.7097, 65.7457, 11.6924, 164.186, 62.7575, 170.711, 27.103, 19.0265, 77.2922, 43.5574, 689.458, 17.2022, 158.953, 19.0796, 1570.76, 11.1243, -47.8425, 10.6524, -0.824531, 67.9613, 18.0697, 456.784, 4.19371, -26.2001, 62.0666, 313.22, 106.68, 5.68857, 98.9954, 27.1199, 81.5302, 135.078, 13.4029, 2.27847, 222.449, 27.6569, 36.3149, 319.741, -3.24216, 86.4926, 279.68, 302.545, 0.710896, 9.79766, 35.8284, 20.4802, 428.874, 93.8246, 8.23201, 37.7287, 72.151, 65.6202, 47.0053, 0.315092, 21.1461, -8.71233, 164.907, 41.8224, 39.359, 424.272, 3.92809, 14.0193, 129.938, 118.107, 110.441, 57.8896, 903.554, 84.1557, 90.7458, 2653.41, 355.276, -1816.64, 7.02804, 8.16405, 9.63254, 371.113, 68.6348, 875.156, 22.8315, 12.7834, 2908.65, 73.0268, 19.0389, 97.903, -18.5831, 30.1621, 141.008, 15.9366, 20.1853, 627.3, 247.215, -17.4408, 89.5689, -11.199, 164.223, 25.376, 43.2611, 165.297, 467.893, 13.1353, 98.6927, 140.993, 11.9114, 1813.87, 67.8542, 25.6188, 22.4116, 82.7, 460.699, 124.313, 238.174, 8.88709, 1043.82, 25.7917, 39.0679, 109.691, 209.892, 103.859, 245.403, 10.1044, 311.758, 35.0417, 156.112, 129.443, 773.753, 54.0158, 19.2496, 195.573, 3191.4, 60.8176, 85.4708, 78.6881, 8.26688, 106.968, 22.7105, 343.198, 33.6467, 58.9204, 30.6993, 21.9813, 34.1661, 397.846, 172.861, 18.11, -14.0195, 49.0661, 19.4589, 485.993, -5.94627, 19.3554, 203.228, 15.4995, 182.748, 33.6588, 12.4801, 250.566, 89.4413, 1.24338, 62.8193, 135.39, 26.084, 66.58, 304.39, 15.5656, 0.0976848, 2026.74, 93.9433, 50.5064, 136.347, 107.083, 0.193948, 56.348, 559.336, -1.34568, 131.805, 28.0195, 78.0697, 40.3857, 4.25619, 106.778, 46.9773, 146.015, 120.829, 175.308, 45.3821, 24.7305, 164.084, 298.482, 265.155, 1623.42, 120.842, 74.8246, 873.725, 1696.78, -58.2311, 2161.09, 154.495, 21.3336, 230.491, 137.396, 34.7623, -58.6789, 11.4523, 69.9525, 116.551, 48.5494, 151.926, 187.422, 154.078, 123.855, 95.9424, 2044.5, 491.992, 529.63, 340.004, 120.157, -10.32, 69.8532, 34.5671, 327.885, 636.459, 80.0114, 3073.94, -1.47433, 16.6172, -27.206, 24.0632, -93.0832, 310.202, 2273.54, 1030.79, 692.127, 50.6523, 0.0949905, 163.055, 35.4072, 126.346, -0.203757, 441.602, 770.905, 125.032, 5956.98, 36.5848, 162.222, 51.3298, 20.8305, 15.5991, 25.9609, 58.655, 52.9268, 333.587, 96.7429, 1602.47, 97.4173, 86.7895, 21.8971, 89.7959, 1174.03, 25.7309, 35.7276, 57.156, 44.3944, 28.3338, 128.169, 32.7755, 138.659, 15.3786, 1535.37, 3200.62, 62.304, 183.76, 149.049, 8.71382, 196.735, 309.498, 178.323, 237.073, 96.5753, 272.477, 80.7959, 1641.59, 1393.03, 88.4958, 49.7455, 107.804, 1.72709, 216.482, 37.8761, 263.464, 95.4082, 18.0926, 73.9372, 119.028, 1342.88, 259.724, 1.22813, 23.9773, 57.3953, 183.088, 45.7202, 18.3849, 26.61, 55.6054, -0.706882, 556.393, 421.879, 1167.84, 517.988, 59.9694, 3.20685, 206.993, 312.68, 22.9889, 18.4686, 4.63857, -30.2465, 89.4418, -33.5483, 234.894, 140.073, 299.794, 647.004, 226.003, 15.86, 335.638, 67.1859, -51.8662, 31.7451, 83.9066, 41.8285, 42.0325, 32.7291, 119.85, 39.4677, 30.8266, 5.43731, -28.7512, -1.65284, 78.5071, 261.552, 8.97927, -51.5476, 51.7288, 150.168, 14.6407, 45.8702, 87.2712, 130.708, 6.04671, -55.0078, 3.91318, 826.722, 190.35, 215.967, 315.772, 185.466, 37.9453, 186.14, 14.3975, 23.4929, 25.426, 17.2156, 6.52523, 68.4645, 390.197, 373.666, 48.2707, 70.0616, 151.743, 201.533, 140.316, 349.969, -33.2442, 15.2186, 98.48, 276.547, 25.9707, 517.012, 214.317, 33.5505, -2.96451, 2726.88, 90.5135, 245.165, 318.465, 467.27, 13.3121, 23.4317, 308.334, 305.01, 47.6936, 5.27658, 1097, 378.496, 613.637, 52.5746, 39.5571, 49.8384, -12.1801, 195.255, 178.577, 11.7318, 12.5255, 1648.03, 1427.1, 243.458, 2091.88, -6.21422, 272.611, 59.9022, 424.443, 250.476, 211.563, -42.4763, 97.4135, 21.3433, 34.6708, 59.0011, 191.443, 28.995, 282.507, 21.9004, 223.679, 247.843), V = c(146.8, 85.0212, 31.1488, 12.8324, 90.2215, 64.6066, 187.132, 92.0846, 48.1247, 15.7267, 659.613, 58.0325, 88.3787, 36.9725, 28.012, 249.872, 130.509, 69.9946, -38.734, 294.238, 168.992, 79.3437, 10396.1, 58.1014, 104.428, 59.6125, 27.7013, 60.7026, 189.186, 37.1239, 87.2832, 32.3454, 129.234, 49.4815, 39.3013, 144.819, 89.547, 19.1634, 192.314, 233.304, 232.416, 691.134, 15.2424, -29.8916, 37.2982, 1198.8, 2378.58, 2860.87, 3879.76, 4507.62, 4098.65, 54.4923, 16.7083, 98.5723, 84.3737, 596.467, 434.575, 73.1467, 163.036, 53.4802, 58.4489, 204.88, 196.61, 89.4526, 47.7735, 90.0391, 348.738, 51.0633, 11.8902, 2.31597, 9.60877, 242.327, 149.534, 153.576, 132.633, 3006.34, 2.60968, 109.943, 25.9401, 70.5182, 118.336, 173.694, 17.664, 5.00616, 93.2511, 73.8148, 848.672, 14.9824, 104.303, 18.5045, 2350.16, 52.1706, 4.98633, 24.2924, 15.9269, 63.3791, 4.59506, 336.982, 17.333, -22.031, 35.598, 288.123, 154.099, 6.85971, 196.454, 46.4389, 45.5724, 129.7, 16.933, 31.0391, 193.007, 11.3017, 68.8202, 365.599, 81.2111, 171.59, 180.212, 300.681, 32.2205, 8.08239, 55.0635, 43.0479, 415.1, 140.86, 27.6083, 50.3935, 108.081, 46.7669, 93.0661, 4.387, 32.655, -36.8072, 128.504, 67.4608, 49.1855, 430.627, 7.29553, 30.7981, 115.461, 99.4041, 120.119, 79.4284, -8.70355, 129.377, 111.452, 2636.2, 283.657, 152.508, 10.2713, 21.833, 12.0283, 384.157, 111.401, 1552.5, 70.0416, 9.38613, 3105.92, 69.0755, 14.0697, 72.8632, 1.86091, 12.6286, 165.686, 23.575, 29.6849, 291.643, 136.994, 12.2572, 116.667, -9.89752, 162.058, 14.9847, 135.385, 134.205, 282.957, 31.3019, 79.3672, 129.701, 25.2638, 2063.8, 85.4085, 22.2778, 35.5618, 68.1409, 477.608, 159.587, 177.912, 12.3833, 1504.4, 89.2294, 36.7813, 100.322, 178.409, 74.2343, 145.029, 22.5529, 338.865, 70.4458, 143.998, 137.354, 718.835, 92.2865, 44.6636, 294.612, 3153.36, 107.572, 127.595, 66.1574, 20.5912, 123.183, 38.7749, 538.56, 54.1507, 73.0012, 55.4213, 58.4307, 28.2636, 558.944, 130.972, 9.68121, 34.9358, 75.5451, 10.1148, 242.757, 25.2692, 31.3001, 186.852, 23.7675, 243.991, 124.371, 12.6768, 219.736, 74.2949, 15.8069, 64.9143, 141.896, 46.0688, 18.6799, 228.678, 17.3736, 14.7902, 904.369, 30.203, 39.7144, 200.381, 242.083, 29.385, 39.6679, 217.316, 0.453118, 146.591, 27.3242, 99.2733, -6.54072, 6.56623, 172.795, 67.0636, 498.539, 140.281, 126.26, 77.8774, 31.0841, 234.303, 259.19, 271.516, 3717.97, 94.2988, 71.7809, 694.162, 1565.52, -7.65442, 2008.76, 56.0799, 14.7563, 254.124, 152.548, 3.96758, -112.889, 23.7309, 43.959, 115.697, 21.7522, 84.5736, 143.954, 144.098, 98.6888, 48.2402, 1436.37, 341.351, 401.483, 309.221, 93.2162, 48.3087, 76.9098, 46.6884, 273.507, 266.358, 67.4139, 2866.11, 20.2726, 16.3465, -29.4872, 11.5116, -204.174, 332.45, 1994.19, 1184.78, 392.023, 44.7525, 36.1219, 110.905, 39.2748, 117.471, 22.0005, 513.787, 927.413, 125.58, 6498.24, 84.7558, 104.13, 57.8553, 58.1969, -28.5082, 6.40566, 107.818, 92.3361, 404.992, 83.7837, 1459.51, 76.4665, 66.6122, 7.24202, 113.211, 954.436, 22.4689, 32.1727, 48.0985, 27.3616, 36.9859, 179.13, 47.7911, 188.365, 28.236, 1653.81, 1759.21, 48.8833, 146.243, 159.633, 35.2368, 116.22, 359.115, 77.2792, 145.838, 81.4343, 290.231, 152.031, 1603.45, 1937.63, 75.9467, 61.9098, 80.9726, -7.0814, 134.276, 49.8239, 185.681, 94.0413, 17.4167, 59.2552, 106.439, 1243.49, 162.989, 9.0091, 38.2842, 146.055, 211.768, 48.178, 23.925, 73.9306, 64.0879, 45.589, 662.33, 516.529, 687.539, 140.826, 134.102, 11.9479, 255.559, 640.483, 50.5054, 26.5233, 13.8135, -62.5521, 50.5043, 56.0148, 340.46, 193.713, 234.002, 565.911, 286.525, 28.1796, 349.433, 101.645, -92.2694, 10.4707, 75.8019, 98.9545, 2.58892, 45.9471, 159.292, 98.5365, 29.5933, 5.29836, -33.1193, 22.5066, 63.4782, 291.064, 17.8339, 13.534, 89.7338, 138.021, 53.3355, 47.8456, 114.431, 128.613, 13.7885, -87.8064, 3.74718, 738.26, 314.237, 239.549, 134.137, 186.247, 3.33742, 190.915, 8.25899, -1.16246, 27.3675, 39.4051, 25.0474, 148.14, 212.304, 266.504, 11.992, 54.1384, 35.5603, 284.945, 148.733, 329.237, 36.8865, 18.7155, 77.6382, 324.99, 42.4623, 979.981, 210.802, 68.029, -0.70452, 929.993, 122.7, 286.294, 204.529, 657.229, 4.27519, 29.4157, 249.475, 231.63, 10.1838, 15.7454, 1418.74, 554.93, 590.865, 83.5738, 96.2179, 65.2052, 28.1082, 274.239, 144.532, 18.8459, 15.9159, 568.05, 826.803, 177.082, 2839.7, -25.3921, 214.296, 88.9582, 262.805, 197.053, 159.425, -1.24586, 152.398, 20.8587, 32.8964, 87.765, 159.64, 58.8501, 504.189, 31.6534, 273.78, 202.284), W = c(93.8829, 79.2998, 22.342, 11.139, 42.0053, 40.3068, 170.583, 53.3866, 31.8358, 15.2116, 590.156, 28.7707, 91.5539, 16.9959, 24.8743, 141.803, 91.7096, 42.8123, -44.2136, 197.745, 109.586, 42.6647, 8365.8, 40.3792, 68.447, 22.6792, 30.9739, 43.9691, 104.818, 23.3193, 30.0672, 36.1116, 96.675, 24.9362, 18.2112, 79.414, 73.7415, 11.4693, 125.129, 234.052, 180.548, 780.294, 20.5804, -27.1269, 27.4847, 2573.87, 3477.17, 4471.09, 4331.77, 5276.04, 5664.37, 67.9535, 25.6475, 76.769, 68.6645, 569.912, 448.872, 84.3918, 151.687, 70.5891, 46.049, 163.378, 205.215, 85.3799, 20.69, 52.4086, 217.039, 28.319, 8.98009, 2.49221, 7.2658, 132.225, 113.424, 90.7812, 49.4236, 194.233, -2.22783, 12.3812, 2.20869, 11.5695, 99.7647, 128.898, 19.5615, 35.292, 94.5332, 67.4591, 554.534, 7.66178, 125.216, 14.4581, 2937.07, 16.2097, -13.3297, 8.89613, 0.268704, 53.3312, -3.18541, 400.768, 7.91864, -22.0276, 27.0425, 307.79, 117.905, 1.04752, 62.4551, 47.2319, 47.9187, 95.9799, 22.9395, 20.0366, 186.816, 31.649, 46.0998, 480.031, 60.3285, 164.009, 200.208, 161.315, 56.6931, 9.0717, 23.3418, 29.9439, 311.585, 105.587, 18.0468, 27.286, 52.2595, 41.7338, 41.9092, -6.27292, 15.0346, 2.49389, 158.706, 47.6087, 63.6269, 371.786, 14.0691, 20.6185, 83.1104, 88.1335, 74.1428, 88.3365, -16.7579, 109.776, 78.3542, 3723.43, 181.918, 127.877, 39.8845, 36.89, 6.36301, 370.387, 60.0514, 1250.16, 45.784, 17.0307, 2659.47, 39.4764, 8.75707, 67.4581, 3.32201, 6.27112, 109.75, 0.0379001, 18.788, 219.604, 83.3589, 0.223356, 72.8466, -3.92575, 115.845, 15.8586, 100.997, 110.407, 293.455, 34.1911, 77.0416, 120.623, 13.4395, 1331.91, 31.2241, 8.70833, 25.7259, 59.1483, 305.94, 77.5733, 178.913, 16.5687, 1227.09, 25.6378, 25.5943, 424.363, 1060.22, 66.4364, 214.827, 10.2609, 326.249, 58.4576, 316.629, 103.313, 630.475, 56.2809, 20.6089, 197.695, 4188.16, 130.831, 85.652, 54.0967, -0.698646, 50.5705, 16.5062, 228.745, 39.6945, 45.1939, 13.7713, 24.4483, 23.2166, 421.695, 141.163, 5.23799, 14.9818, 42.4541, 14.3148, 1018.29, 44.1777, 18.0954, 174.692, 1.13532, 177.388, 76.7073, 6.18476, 211.823, 91.4271, 3.23425, 43.7706, 118.826, 27.0587, 2702.13, 235.38, 10.0865, 5.50446, 2175.88, 51.4997, 50.5894, 95.3916, 148.45, 6.40436, 23.5829, 330.852, -0.310719, 207.436, 21.3795, 284.009, 36.3695, -7.45753, 108.835, 28.6744, 351.821, 81.5486, 162.442, 66.8129, 7.60735, 162.102, 287.533, 631.07, 3388.32, 79.7706, 57.3322, 1271.83, 2471.53, -29.1697, 3267.69, 5.95262, 32.91, 194.936, 86.4109, 53.1509, -41.465, 15.2884, 72.1419, 64.2053, 201.034, 164.92, 232.637, 267.261, 104.615, 246.293, 3545.06, 668.983, 390.615, 206.928, 113.631, 17.5142, 107.777, 23.6411, 285.105, 894.496, 30.4761, 3370.49, 9.77489, 18.472, -14.7844, 16.7371, -113.75, 389.444, 3420.63, 1801.31, 572.056, 43.4844, 11.8425, 99.7886, 17.1879, 101.741, 12.4638, 282.006, 757.723, 68.368, 7042.88, 49.1817, 100.521, 41.5229, 48.4048, 1.87017, 1.50182, 73.7493, 47.2105, 326.063, 51.7689, 2653.49, 66.4281, 77.9568, 11.6907, 52.1105, 1675.42, 34.4654, 294.214, 24.6104, 17.815, 28.1464, 124.825, 28.0614, 5.60878, 17.4288, 2473.69, 2296.06, 14.6744, 4.47085, 168.622, 27.3937, 86.2253, 270.465, 40.3882, 117.987, 86.8032, 230.207, 85.7811, 1289.93, 1702.7, 145.237, 63.6695, 125.432, 3.0438, 89.7088, 21.3173, 132.6, 116.694, 15.4594, 45.2788, 184.129, 1587.01, 157.617, -0.493317, 9.90994, 97.5666, 144.692, 34.5865, 7.931, 40.2999, 27.9275, -3.58742, 485.435, 437.813, 1452.56, 574.669, 86.8385, 23.5322, 171.905, 224.899, 32.7434, 13.9438, 13.343, -40.59, 25.1954, 44.9909, 245.033, 127.305, 177.074, 440.508, 290.957, 15.9839, 294.587, 101.032, -35.4977, 6.72849, 46.2628, 58.8674, 0.475095, 34.3861, 130.95, 54.8103, 15.4945, -0.39281, -21.281, 6.00761, 72.1088, 250.751, -0.406172, 7.80526, 59.6821, 132.221, 36.7295, 23.074, 56.5949, 293.273, 6.76556, -46.7689, 3.47536, 748.806, 294.336, 146.912, 271.733, 219.698, 62.569, 345.02, 3.13008, 30.308, 6.17931, 18.9706, 13.9386, 89.2086, 748.361, 358.791, 109.327, 49.8742, 110.424, 319.118, 98.7191, 310.937, 29.6553, 22.2504, 123.248, 201.381, 272.266, 1368.36, 143.957, 51.4594, 4.59039, 2751.79, 72.3933, 219.441, 271.931, 494.064, 10.4994, 15.2219, 236.647, 314.185, 5.56465, 11.6035, 2087.89, 422.794, 390.361, 66.1281, 66.8283, 41.6442, 17.8877, 207.359, 185.938, 15.4422, 0.0721809, 2390.02, 2842.8, 188.211, 3583.67, -13.5936, 213.801, 72.5324, 184.59, 223.815, 144.363, -0.491996, 95.4303, 53.5745, 23.847, 43.1828, 122.662, 50.3786, 318.681, 22.925, 283.962, 180.556), X = c(103.855, 71.6552, 19.0135, 7.55564, 57.5738, 41.8209, 133.279, 52.0164, 29.9264, -5.35282, 461.23, 48.5346, 40.2298, 8.39896, 17.7428, 117.473, 77.9277, 63.8059, -23.6993, 203.531, 106.757, -12.6489, 9345.94, 33.9219, 84.325, 26.541, 20.4447, 12.9576, 129.619, 39.302, 32.4333, 36.6902, 94.5572, 27.0847, 15.2479, 64.4091, 52.7497, -2.53228, 77.664, 85.4302, 81.7355, 981.646, 38.5142, -17.5833, 27.7867, 1552.46, 3626.69, 5900.96, 965.54, 2335.83, 5219.36, 56.3916, 11.4089, 8.23804, 45.1092, 590.292, 404.212, 158.902, 172.453, 70.8063, 75.0311, 132.294, 227.772, 40.4406, 32.6849, 55.5681, 186.463, 15.9432, 7.08868, 9.96418, -12.0555, 204.795, 136.208, 67.8371, 47.1633, 130.277, -3.05798, 15.524, 0.394058, -0.575181, 116.937, 137.411, 15.8249, 27.7821, 56.4698, 72.6469, 793.019, -3.20777, 166.785, 20.0154, 3257.57, 27.9982, -0.0363981, 25.4436, 10.4671, 38.5609, 3.58018, 404.834, -4.70361, -11.9295, 43.1111, 84.1063, 69.6939, 1.9759, 77.2344, 12.9422, 45.3537, 51.7135, 8.80947, 7.73061, 130.009, 9.35285, 34.4833, 433.679, 27.4743, 158.522, 215.065, 179.114, 26.4954, 9.3366, 23.7929, 13.452, 199.349, 105.274, -0.691375, 17.7547, 4.10314, 35.5965, 44.8385, -0.221245, 14.5359, -16.4445, 105.255, 38.4129, 66.9824, 382.957, 15.7831, 14.7568, 67.7456, 74.4817, 85.8083, 79.3688, -11.9028, 95.3734, 88.6175, 3638.23, 179.778, 81.8201, 21.4498, 25.1334, 13.3877, 373.739, 41.2316, 1690.04, 42.6084, 26.4521, 2174.18, 35.9456, 17.0905, 26.4139, 12.1516, 7.7893, 101.429, 3.61813, 25.9043, 165.546, 165.029, 2.21347, 41.351, -15.7535, 196.906, 5.87379, 71.1112, 112.901, 307.683, 13.0548, 71.6915, 87.8448, 13.656, 1324.22, 68.4614, 13.8467, 15.6624, -2.11244, 297.141, 107.993, 217.546, 8.23705, 872.009, 70.5007, 20.4041, 198.528, 839.796, 78.6212, 64.8983, 6.00077, 245.485, 54.9742, 172.73, 102.901, 624.53, 66.6335, 29.4896, 180.67, 5833.66, 116.569, 74.2093, 58.8941, 11.4795, 38.9307, 24.9464, 238.739, 50.3452, 25.8187, 30.6562, 27.1836, 24.7247, 461.369, 149.096, 4.03206, 31.8861, 58.9681, 4.73846, 1079.05, 10.5102, 10.7358, 171.903, 21.6532, 1614.61, 69.1148, -1.06577, 246.209, 60.9519, 8.55947, 53.5345, 107.852, 15.5495, 1089.79, 100.743, -9.84966, 8.50146, 2509.63, 88.4241, 11.468, 93.436, 136.846, 14.834, 12.8876, 87.0857, -4.64621, 227.816, 12.562, 421.94, 16.9143, 2.74598, 63.8839, 17.5857, 413.069, 87.988, 46.8763, 79.4983, 23.5537, 156.533, 142.026, 625.897, 3069.9, 93.4094, 50.3598, 1902.77, 3014.6, -71.304, 3680.73, -1.80914, 19.1538, 190.056, 52.2877, 60.5452, -23.5987, -1.91455, 103.818, 31.699, 134.021, 37.0279, 52.1777, 73.3428, 276.737, 287.212, 3643.06, 113.995, 339.686, 198.545, 79.3342, 98.5352, 82.1863, 22.447, 239.447, 1430.28, 32.5284, 3884.78, 15.1339, 17.3066, -6.03283, 29.8269, -58.3026, 313.006, 4781.54, 2323.54, 536.467, 29.7574, 10.0447, 152.661, 18.8966, 109.161, 2.93635, 301.283, 646.211, 59.3143, 5632.2, 42.6628, 82.368, 50.862, 63.6873, 6.28557, 6.79988, 64.1165, 61.7862, 296.761, 68.4204, 3511.48, 62.6788, 66.0424, 16.0121, 83.9819, 2693.64, 33.3963, 541.391, 24.8203, 25.8722, 20.7669, 405.887, 16.5432, -11.8931, 9.47242, 3512.12, 3913.11, 28.1157, 0.942018, 198.992, 24.5918, 133.321, 320.601, 45.0174, 152.439, 49.5598, 168.985, 72.77, 1044.1, 1593.03, 99.944, 41.6344, 239.253, 8.03384, 87.8811, 27.0239, 50.1334, 137.746, 18.3693, 123.532, 217.189, 1474.25, 160.646, 6.16888, 6.51786, 69.9984, 131.152, 16.941, 3.84455, 34.2437, 24.9068, -3.62168, 379.14, 373.372, 1373.67, 1082.74, 83.0411, 12.5, 133.863, 195.145, 23.0121, 6.82277, -9.81922, -3.47117, 56.0757, 31.1144, 260.057, 144.496, 207.943, 650.587, 296.833, -2.61181, 309.397, 84.0845, -43.7302, 14.4997, 120.602, 62.3774, 2.61724, 20.4225, 101.752, 37.9427, 12.9264, 7.63623, -20.0477, 25.8764, 65.8894, 314.29, 7.61551, 10.3069, 53.5564, 145.203, 68.0812, 86.306, 55.2896, 122.202, -1.52974, -65.4116, -0.873269, 628.029, 288.948, 178.474, 669.091, 180.865, 48.6863, 312.838, 7.52951, 49.6373, 15.7523, 26.4832, 19.6958, 88.0791, 1157.78, 369.865, 2.1029, 56.2654, 225.17, 370.433, 102.009, 376.608, 26.6551, 15.7319, 40.9501, 158.392, 127.145, 1200.37, 146.255, 36.6009, -2.10472, 4898.71, 45.5338, 188.234, 170.369, 404.419, 9.80528, 11.8492, 255.268, 323.192, -8.35253, 12.1275, 3268.36, 445.377, 382.372, 50.5897, 52.3964, 32.0701, 5.56768, 212.712, 106.366, 9.38988, -15.6778, 2116.01, 678.949, 264.591, 3558.35, -10.315, 182.813, 51.2728, 221.997, 214.561, 231.79, -3.55962, 98.0544, 21.0206, 52.5622, 46.7389, 144.45, 30.4269, 304.96, 14.9017, 230.878, 247.59), Y = c(64.434, 64.2369, 12.1686, 19.9849, 44.8216, 46.1087, 187.407, 65.9154, 37.8611, 13.1884, 367.433, 31.1489, 36.2151, 41.0271, 34.7923, 126.114, 129.627, 50.1246, -38.6532, 181.623, 90.1958, 37.4389, 8252.65, 23.7046, 46.6156, 30.6529, 14.6951, 16.9243, 91.4007, 25.4601, 20.7603, 30.3978, 59.0705, 24.7106, 16.143, 72.0106, 30.1115, 1.63297, 197.797, 499.756, 352.708, 1662.26, 6.94581, -38.1436, 53.7229, 2323.13, 3276.53, 3914.43, 3999.14, 4771.61, 4448.73, 81.5114, 13.4753, 55.5644, 39.1224, 489.808, 346.004, 118.373, 107.175, 76.3004, 30.3936, 143.483, 173.181, 52.6598, 27.0883, 48.0123, 209.379, 30.3679, 2.3115, 28.1439, 3.83654, 188.775, 87.3997, 136.297, 100.923, 3595.46, 7.79922, 187.656, 16.3697, 141.183, 79.4596, 112.344, 20.7649, 16.9782, 84.3264, 44.8918, 629.055, 22.3966, 99.9854, 26.0274, 2532.94, 18.3218, -23.3218, 33.7587, 11.0642, 56.9848, 14.2393, 293.748, 15.9607, -14.1471, 29.6764, 382.133, 128.27, 4.71653, -220.107, 12.1819, 79.097, 205.179, 13.0671, 3.55578, 151.32, 16.0169, 30.5214, 198.184, 76.6212, 140.886, 113.38, 178.667, 22.2304, 13.2707, 26.3927, 23.7605, 264.064, 95.6504, 19.7899, 21.6213, 56.3858, 30.2128, 48.8188, 3.19005, 18.608, -20.9676, 151.208, 35.7417, 47.3164, 333.499, 8.86286, 55.5017, 94.081, 86.7739, 54.8253, 68.9776, -18.072, 129.709, 67.4869, 3659.51, 277.895, 84.8364, 28.3289, 33.0593, -11.8278, 360.766, 57.256, 1069.6, 18.9821, 8.01176, 2442.02, 38.3782, 12.7976, 77.7258, -3.5095, 8.89093, 161.079, 9.12265, 8.02902, 220.578, 74.5015, 3.18391, 46.0466, -12.0782, 113.445, 30.5579, 149.118, 115.344, 285.885, 11.0866, 63.4076, 119.496, 21.3215, 1227.09, 51.6233, 45.6924, 35.5513, 34.4882, 299.461, 86.7734, 120.669, 5.09833, 672.499, 38.728, 52.5188, 515.891, 1046.02, 72.8346, 92.867, 12.066, 282.087, 44.848, 274.913, 130.913, 538.964, 60.7766, 25.2943, 217.75, 4273.07, 104.672, 87.2302, 60.3566, 11.6709, 83.4133, 19.6816, 239.786, 73.9264, 36.0309, 33.3687, 26.1832, 28.3214, 337.965, 127.288, -0.606596, 54.0417, 31.1683, 13.4045, 805.616, 10.0587, 20.1677, 187.757, 11.2774, 328.201, 84.7311, 2.97481, 216.429, 119.826, 15.2975, 77.9347, 92.9012, 22.1988, 349.427, 189.126, 38.4599, 40.6279, 1433.23, 48.5369, 28.5485, 160.872, 143.716, 4.11928, 21.8384, 239.402, 10.6622, 278.97, 21.3151, 294.656, -10.3959, 8.45477, 97.329, 60.5502, 278.355, 107.299, 245.074, 44.4103, 7.58657, 134.182, 252.512, 497.34, 2769.34, 86.3409, 34.5141, 1142.92, 1870.69, 2.52721, 2870.88, 79.2371, 37.1837, 169.325, 107.026, 30.3164, -42.5712, 17.7072, 63.9556, 82.9713, 105.271, 210.32, 312.184, 385.856, 132.273, 86.1813, 3268.61, 1024.69, 442.88, 159.222, 90.5501, 30.9035, 129.247, 34.7197, 196.487, 730.505, 44.1833, 2962.86, -1.73042, 34.7037, -17.6214, 16.2378, -134.863, 191.506, 3243.49, 1811.76, 489.651, 50.6778, 23.61, 114.661, 22.8506, 101.677, 10.8915, 231.014, 642.812, 94.4195, 5150.34, 59.8757, 101.893, 32.2673, 17.2878, 45.2713, 13.6043, 80.8419, 55.7107, 366.833, 55.2646, 2756.04, 99.2655, 57.991, 4.07751, 73.0566, 1760.5, 26.4565, 120.745, 29.9676, 44.3971, 30.3502, 111.041, 35.1207, 134.878, 26.4519, 2476.15, 2520.83, 50.1819, 157.964, 128.774, 44.9872, 81.1903, 197.019, 33.9799, 108.207, 116.09, 240.46, 120.025, 1987.3, 1480.16, 64.9968, 136.84, 109.756, 11.1087, 78.8428, 38.8894, 123.502, 93.0791, 27.0456, 40.8247, 180.841, 1124.35, 148.854, 0.0595516, 10.5117, 72.4034, 108.195, 41.2199, 27.2082, 33.6403, 34.726, -11.3763, 361.092, 480.253, 795.996, 373.703, 64.0276, 20.7283, 180.364, 456.108, 27.8536, 28.7937, 1.9343, -21.0062, 40.4928, -92.5084, 277.745, 94.2212, 165.025, 449.793, 202.659, 17.8172, 251.218, 83.4933, -38.6925, 23.1082, 54.3242, 65.7657, 38.7528, 74.0051, 47.5855, 52.602, 7.69903, 1.74712, -29.3427, -2.28681, 42.1297, 294.078, 18.4532, -8.80464, 60.0974, 116.354, 9.94368, 21.8901, 58.8993, 177.867, 10.6735, -52.5324, 14.8375, 978.88, 273.75, 172.095, 286.423, 146.15, 26.1367, 168.8, 23.6742, 45.756, 32.3425, 9.63194, 14.6851, 83.4002, 529.178, 346.757, 49.8069, 35.9698, 116.649, 322.733, 101.629, 397.616, 19.1037, 13.7456, 104.526, 79.0888, 246.038, 1287.93, 177.426, 57.425, -3.21138, 2319.23, 113.941, 204.927, 223.964, 441.536, 85.3879, 13.6376, 227.602, 57.5928, 130.555, 5.87376, 2155.53, 290.081, 376.909, 92.0564, 59.0583, 31.764, 16.2211, 215.908, 142.984, 16.4043, 7.04334, 1406.45, 1583.27, 131.581, 3462.2, 7.78682, 172.987, 45.3099, 220.598, 198.221, 165.068, -19.3646, 100.473, 51.6015, 20.089, 28.9834, 102.521, 35.5309, 318.736, 22.7341, 216.652, 137.959), Z = c(175.615, 78.7068, 17.378, 8.96849, 61.7044, 49.4122, 144.784, 75.0043, 60.4772, 10.0385, 790.943, 72.4567, 73.5309, 21.088, 40.2213, 210.561, 91.7803, 134.588, -40.7251, 234.953, 116.069, 62.0706, 4652.85, 45.1485, 74.5315, 29.4477, 33.8544, 35.2928, 102.621, 28.4838, 89.5884, -53.8352, 71.216, 31.3545, 23.4662, 68.812, 38.833, 16.6207, 188.116, 312.653, 309.973, 976.528, 19.5267, -29.0792, 51.8841, 5396.98, 6268.57, 8007.31, 2593.41, 2792.5, 3654.3, 58.9553, 6.23455, 57.7551, 143.242, 721.32, 547.635, 96.8654, 185.231, 96.0878, 57.448, 214.696, 204.236, 119.729, 30.2444, 85.6485, 334.249, 28.3019, 12.3808, -0.686965, 8.30199, 201.313, 154.514, 120.003, 128.271, 3949.66, -3.90832, 1.37556, 0.115654, 186.293, 120.317, 131.966, 33.6554, 4.97229, 30.5327, 38.4677, 695.874, 12.178, 130.613, 15.9664, 5821.41, 16.7248, 6.4599, 24.2949, 9.85454, 57.8458, 5.81503, 386.676, 1.52247, -33.954, 33.4058, 476.008, 126.252, 1.43033, 197.113, 30.9481, 55.8244, 162.076, 31.361, 12.9281, 225.702, 25.0649, 45.294, 320.477, 64.669, 127.117, 183.385, 217.682, 39.2494, 6.07408, 40.667, 38.1994, 441.567, 89.4277, 46.6241, 41.042, 78.1778, 55.5426, 74.4574, 7.8187, 37.2687, -41.0933, 179.983, 48.8883, 30.8553, 419.733, -3.71759, 17.7796, 124.578, 127.804, 163.667, 96.6763, -13.882, 124.082, 102.447, 4538.63, 324.173, 180.668, 30.695, 24.5073, 16.98, 477.005, 62.9815, 1144.85, 39.2256, 28.1562, 2343.16, 123.996, 11.7146, 83.3672, 3.66428, 8.77839, 116.246, 4.90859, 66.3551, 246.004, 221.677, 24.1278, 93.6095, -4.99042, 163.165, 22.1886, 95.5136, 125.46, 359.16, 29.7101, 86.7899, 163.985, 55.433, 1347.3, 102.779, 12.6033, 21.714, 57.3163, 335.173, 192.821, 263.324, 8.9268, 789.193, 49.4697, 50.0177, 240.026, 484.841, 101.277, 248.77, 7.27135, 318.83, 34.0554, 346.501, 111.967, 689.406, 55.0139, 43.8142, 233.662, 3559.32, 69.8729, 146.993, 67.9381, 9.17022, 110.155, 33.0339, 451.23, 37.8454, 53.2007, 65.4184, 23.8741, 41.1479, 439.898, 137.748, -0.908171, 78.0279, 33.4717, 8.48149, 586.873, 11.0941, 20.149, 279.665, 18.8279, 254.824, 69.7076, 21.5575, 221.416, 91.442, 13.8932, 77.73, 155.463, 26.8256, 29.1519, 245.039, 6.1962, 28.6359, 2230.02, 56.2641, 54.0002, 198.39, 127.556, 19.2836, 23.3047, 311.924, 5.13927, 169.6, 31.9776, 350.559, 59.0126, 2.91583, 141.862, 68.935, 256.027, 112.449, 282.703, 42.7275, 26.8873, 280.86, 337.124, 184.335, 4173.32, 109.806, 108.091, 562.811, 2741.53, -84.3726, 4270.95, 179.225, 18.4595, 243.641, 143.951, 48.7157, -70.68, 21.74, 104.49, 87.1547, 88.9827, 73.4805, 91.6722, 105.905, 187.846, 45.3425, 5038.63, 180.624, 379.443, 287.845, 131.404, 55.7563, 73.7012, 70.7104, 279.954, 373.029, 67.3803, 4449.96, 31.9084, 23.4199, -22.3056, 13.9423, -123.237, 342.9, 5462.8, 2935.58, 702.04, 52.6377, 22.3381, 154.689, 23.6823, 89.1286, 12.0212, 526.41, 956.31, 177.783, 4498.55, 53.5631, 130.637, 54.5388, 61.6913, -43.8786, 3.27369, 157.966, 74.2671, 313.025, 93.83, 4302.85, 141.049, 50.9147, 68.8394, 104.932, 2188.28, 117.768, 274.929, 34.8144, 27.2235, 74.775, 129.955, 28.7763, 90.857, 13.7552, 3576.69, 2815.26, 52.9943, 365.15, 137.886, 30.0445, 274.657, 274.697, 37.5881, 128.01, 44.2284, 305.179, 88.4655, 2241.64, 1805.29, 69.6289, 70.4976, 125.397, -5.50171, 143.371, 45.7598, 297.246, 77.6654, 14.813, 48.7161, 127.716, 896.443, 186.552, 1.34836, 34.5627, 63.0341, 179.091, 50.86, 20.601, 30.4051, 37.0237, 9.2402, 540.935, 490.287, 4264.45, 2419.55, 99.7098, -30.8367, 200.178, 464.518, 37.6414, 16.7089, 1.40506, -2.41517, 38.5733, 50.9868, 214.045, 154.325, 249.752, 595.099, 383.625, 21.3787, 406.865, 64.4162, -43.9011, 14.5308, 72.7384, 75.3724, 12.3926, 45.137, 113.16, 32.784, 20.6045, 6.76257, -11.4918, 16.1775, 60.4131, 441.265, 1.55004, 10.2899, 91.4198, 150.975, 27.8935, 23.1338, 108.075, 139.205, 1.73812, -66.9157, -7.14961, 699.37, 246.651, 229.445, 210.434, 179.067, 31.2431, 122.683, 4.80586, 33.7739, 17.8987, 42.1504, 26.7045, 113.626, 316.855, 322.177, -10.3397, 44.6522, 198.4, 292.841, 147.858, 409.597, 39.3989, 15.6542, 113.361, 211.954, 261.276, 738.004, 184.868, 61.379, 6.79516, 2955.87, 62.8045, 297.49, 304.946, 746.325, 7.84412, 43.0373, 186.879, 319.566, 1.83518, 14.2545, 3321.83, 545.889, 611.534, 133.235, 53.9387, 41.8259, 6.69247, 225.888, 150.876, 19.3394, 17.7364, 497.67, 345.194, 157.833, 3569.07, -15.6659, 259.549, 77.8127, 390.22, 296.982, 277.797, -26.6793, 124.435, 23.6537, 59.3599, 63.8332, 114.49, 39.6802, 291.709, 24.2746, 297.74, 287.749)), .Names = c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"), row.names = c("AFFX-MurIL2_at", "AFFX-MurIL10_at", "AFFX-MurIL4_at", "AFFX-MurFAS_at", "AFFX-BioB-5_at", "AFFX-BioB-M_at", "AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at", "AFFX-BioDn-5_at", "AFFX-BioDn-3_at", "AFFX-CreX-5_at", "AFFX-CreX-3_at", "AFFX-BioB-5_st", "AFFX-BioB-M_st", "AFFX-BioB-3_st", "AFFX-BioC-5_st", "AFFX-BioC-3_st", "AFFX-BioDn-5_st", "AFFX-BioDn-3_st", "AFFX-CreX-5_st", "AFFX-CreX-3_st", "AFFX-hum_alu_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at", "AFFX-DapX-3_at", "AFFX-LysX-5_at", "AFFX-LysX-M_at", "AFFX-LysX-3_at", "AFFX-PheX-5_at", "AFFX-PheX-M_at", "AFFX-PheX-3_at", "AFFX-ThrX-5_at", "AFFX-ThrX-M_at", "AFFX-ThrX-3_at", "AFFX-TrpnX-5_at", "AFFX-TrpnX-M_at", "AFFX-TrpnX-3_at", "AFFX-HUMISGF3A/M97935_5_at", "AFFX-HUMISGF3A/M97935_MA_at", "AFFX-HUMISGF3A/M97935_MB_at", "AFFX-HUMISGF3A/M97935_3_at", "AFFX-HUMRGE/M10098_5_at", "AFFX-HUMRGE/M10098_M_at", "AFFX-HUMRGE/M10098_3_at", "AFFX-HUMGAPDH/M33197_5_at", "AFFX-HUMGAPDH/M33197_M_at", "AFFX-HUMGAPDH/M33197_3_at", "AFFX-HSAC07/X00351_5_at", "AFFX-HSAC07/X00351_M_at", "AFFX-HSAC07/X00351_3_at", "AFFX-HUMTFRR/M11507_5_at", "AFFX-HUMTFRR/M11507_M_at", "AFFX-HUMTFRR/M11507_3_at", "AFFX-M27830_5_at", "AFFX-M27830_M_at", "AFFX-M27830_3_at", "AFFX-HSAC07/X00351_3_st", "AFFX-HUMGAPDH/M33197_5_st", "AFFX-HUMGAPDH/M33197_M_st", "AFFX-HUMGAPDH/M33197_3_st", "AFFX-HSAC07/X00351_5_st", "AFFX-HSAC07/X00351_M_st", "AFFX-YEL002c/WBP1_at", "AFFX-YEL018w/_at", "AFFX-YEL024w/RIP1_at", "AFFX-YEL021w/URA3_at", "31307_at", "31308_at", "31309_r_at", "31310_at", "31311_at", "31312_at", "31313_at", "31314_at", "31315_at", "31316_at", "31317_r_at", "31318_at", "31319_at", "31320_at", "31321_at", "31322_at", "31323_r_at", "31324_at", "31325_at", "31326_at", "31327_at", "31328_at", "31329_at", "31330_at", "31331_at", "31332_at", "31333_at", "31334_at", "31335_at", "31336_at", "31337_at", "31338_at", "31339_at", "31340_at", "31341_at", "31342_at", "31343_at", "31344_at", "31345_at", "31346_at", "31347_at", "31348_at", "31349_at", "31350_at", "31351_at", "31352_at", "31353_f_at", "31354_r_at", "31355_at", "31356_at", "31357_at", "31358_at", "31359_at", "31360_at", "31361_at", "31362_at", "31363_at", "31364_i_at", "31365_f_at", "31366_at", "31367_at", "31368_at", "31369_at", "31370_at", "31371_at", "31372_at", "31373_at", "31374_at", "31375_at", "31376_at", "31377_r_at", "31378_at", "31379_at", "31380_at", "31381_at", "31382_f_at", "31383_at", "31384_at", "31385_at", "31386_at", "31387_at", "31388_at", "31389_at", "31390_at", "31391_at", "31392_r_at", "31393_r_at", "31394_at", "31395_i_at", "31396_r_at", "31397_at", "31398_at", "31399_at", "31400_at", "31401_r_at", "31402_at", "31403_at", "31404_at", "31405_at", "31406_at", "31407_at", "31408_at", "31409_at", "31410_at", "31411_at", "31412_at", "31413_at", "31414_at", "31415_at", "31416_at", "31417_at", "31418_at", "31419_r_at", "31420_at", "31421_at", "31422_at", "31423_at", "31424_at", "31425_g_at", "31426_at", "31427_at", "31428_at", "31429_at", "31430_at", "31431_at", "31432_g_at", "31433_at", "31434_at", "31435_at", "31436_s_at", "31437_r_at", "31438_s_at", "31439_f_at", "31440_at", "31441_at", "31442_at", "31443_at", "31444_s_at", "31445_at", "31446_s_at", "31447_at", "31448_s_at", "31449_at", "31450_s_at", "31451_at", "31452_at", "31453_s_at", "31454_f_at", "31455_r_at", "31456_at", "31457_at", "31458_at", "31459_i_at", "31460_f_at", "31461_at", "31462_f_at", "31463_s_at", "31464_at", "31465_g_at", "31466_at", "31467_at", "31468_f_at", "31469_s_at", "31470_at", "31471_at", "31472_s_at", "31473_s_at", "31474_r_at", "31475_at", "31476_g_at", "31477_at", "31478_at", "31479_f_at", "31480_f_at", "31481_s_at", "31482_at", "31483_g_at", "31484_at", "31485_at", "31486_s_at", "31487_at", "31488_s_at", "31489_at", "31490_at", "31491_s_at", "31492_at", "31493_s_at", "31494_at", "31495_at", "31496_g_at", "31497_at", "31498_f_at", "31499_s_at", "31500_at", "31501_at", "31502_at", "31503_at", "31504_at", "31505_at", "31506_s_at", "31507_at", "31508_at", "31509_at", "31510_s_at", "31511_at", "31512_at", "31513_at", "31514_at", "31515_at", "31516_f_at", "31517_f_at", "31518_i_at", "31519_f_at", "31520_at", "31521_f_at", "31522_f_at", "31523_f_at", "31524_f_at", "31525_s_at", "31526_f_at", "31527_at", "31528_f_at", "31529_at", "31530_at", "31531_g_at", "31532_at", "31533_s_at", "31534_at", "31535_i_at", "31536_at", "31537_at", "31538_at", "31539_r_at", "31540_at", "31541_at", "31542_at", "31543_at", "31544_at", "31545_at", "31546_at", "31547_at", "31548_at", "31549_at", "31550_at", "31551_at", "31552_at", "31553_at", "31554_at", "31555_at", "31556_at", "31557_at", "31558_at", "31559_at", "31560_at", "31561_at", "31562_at", "31563_at", "31564_at", "31565_at", "31566_at", "31567_at", "31568_at", "31569_at", "31570_at", "31571_at", "31572_at", "31573_at", "31574_i_at", "31575_f_at", "31576_at", "31577_at", "31578_at", "31579_at", "31580_at", "31581_at", "31582_at", "31583_at", "31584_at", "31585_at", "31586_f_at", "31587_at", "31588_at", "31589_at", "31590_g_at", "31591_s_at", "31592_at", "31593_at", "31594_at", "31595_at", "31596_f_at", "31597_r_at", "31598_s_at", "31599_f_at", "31600_s_at", "31601_s_at", "31602_at", "31603_at", "31604_at", "31605_at", "31606_at", "31607_at", "31608_g_at", "31609_s_at", "31610_at", "31611_s_at", "31612_at", "31613_at", "31614_at", "31615_i_at", "31616_r_at", "31617_at", "31618_at", "31619_at", "31620_at", "31621_s_at", "31622_f_at", "31623_f_at", "31624_at", "31625_at", "31626_i_at", "31627_f_at", "31628_at", "31629_at", "31630_at", "31631_f_at", "31632_at", "31633_g_at", "31634_at", "31635_g_at", "31636_s_at", "31637_s_at", "31638_at", "31639_f_at", "31640_r_at", "31641_s_at", "31642_at", "31643_at", "31644_at", "31645_at", "31646_at", "31647_at", "31648_at", "31649_at", "31650_g_at", "31651_at", "31652_at", "31653_at", "31654_at", "31655_at", "31656_at", "31657_at", "31658_at", "31659_at", "31660_at", "31661_at", "31662_at", "31663_at", "31664_at", "31665_s_at", "31666_f_at", "31667_r_at", "31668_f_at", "31669_s_at", "31670_s_at", "31671_at", "31672_g_at", "31673_s_at", "31674_s_at", "31675_s_at", "31676_at", "31677_at", "31678_at", "31679_at", "31680_at", "31681_at", "31682_s_at", "31683_at", "31684_at", "31685_at", "31686_at", "31687_f_at", "31688_at", "31689_at", "31690_at", "31691_g_at", "31692_at", "31693_f_at", "31694_at", "31695_g_at", "31696_at", "31697_s_at", "31698_at", "31699_at", "31700_at", "31701_r_at", "31702_at", "31703_at", "31704_at", "31705_at", "31706_at", "31707_at", "31708_at", "31709_at", "31710_at", "31711_at", "31712_at", "31713_s_at", "31714_at", "31715_at", "31716_at", "31717_at", "31718_at", "31719_at", "31720_s_at", "31721_at", "31722_at", "31723_at", "31724_at", "31725_s_at", "31726_at", "31727_at", "31728_at", "31729_at", "31730_at", "31731_at", "31732_at", "31733_at", "31734_at", "31735_at", "31736_at", "31737_at", "31738_at", "31739_at"), class = "data.frame") genefilter/docs/0000755000175400017540000000000013556116164014664 5ustar00biocbuildbiocbuildgenefilter/docs/Cluster.pdf0000644000175400017540000000056213556116164017003 0ustar00biocbuildbiocbuild%PDF-1.2 % 2 0 obj << /Length 6114 /Filter /FlateDecode >> stream HrίA. HYJ[Yt|s#1>, BKJ̠wnZ"Y:,grS._~{tv؎.7wNm@zXBSM4Wm~ ;g]ȭUx~/7H"$rzS]>FV ޼ZXJwy^mF].rC;!/V1 fzo;[Rũ[Cedy/ԉVWuoyݶy]]xcUvzW5q4Xs\XX,Fs' ,1genefilter/docs/gcluster.tex0000644000175400017540000000322313556116164017236 0ustar00biocbuildbiocbuildNotes from Cheng Li, on what he does for clustering: I basically followed the methods in the attached paper (page 2, upper-right corner). it's not the standard avarage linkage, instead, after two genes (or nodes) are merged, the resultant node has expression profile as the avereage the the two merged ones (after standardization). A description for anther project using dchip is as follows: Hierarchical clustering analysis (3) is used to group genes with same expression pattern. A genes is selected for clustering if (1) its expression values in the 20 samples has coefficient of variation (standard deviation / mean) between 0.5 to 10 (2) it is called Present by GeneChip? in more than 5 samples. Then the expression values for a gene across the 20 samples are standardized to have mean 0 and standard deviation 1 by linear transformation, and the distance between two genes is defined as 1 - r where r is the standard correlation coefficient between the 20 standardize values of two genes. Two genes with the closest distance are first merged into a super-gene and connected by branches with length representing their distance, and are deleted for future merging. The expression level of the newly formed super-gene is the average of standardized expression levels of the two genes (average-linkage) for each sample. Then the next pair of genes (super-genes) with the smallest distance are chosen to merge and the process is repeated until all genes are merged into one cluster. The dendrogram in Figure ? illustrates the final clustering tree, where genes close to each other have high similarity in their standardized expression values across the 20 samples. genefilter/docs/gfilter.tex0000644000175400017540000002166013556116164017047 0ustar00biocbuildbiocbuild\documentclass{article} \begin{document} \title{Using Genefilter} \author{Robert Gentleman \thanks{rgentlem@hsph.harvard.edu} } \date{} \maketitle \section{An extended example} Consider an experiment to explore genes that are induced by cellular contact with a ligand (we will call the ligand F). The receptors are known to transduce intracellular signals when the cell is placed in contact with F. We want to determine which genes are involved in the process. The experiment was designed to use two substrates, F and an inert substance that will be referred to as P. A large number of cells were cultured and then separated and one batch was applied to F while the other was applied to P. For both conditions cells were harvested at the times, 0, 1 hour, 3 hours and 8 hours. Those cells were processed and applied to Affymetrix U95Av2 chips. This process yielded expression level estimates for the 12,600 genes or ESTs measured by that chip. The goal of the analysis is to produce a list of genes (possibly in some rank order) that have patterns of expression that are different in the two subsets (those cells applied to F versus those cells applied to P). If there were just a few genes then we might try to select the interesting ones by using a linear model (or some other model that was more appropriate). In the subsequent discussion the form of the model is irrelevant and the linear model will be used purely for pedagogical reasons. Let $y_{ij}$ denote the expression level of a particular gene in contact with substrate $i$, ($i$ will be either F or P) at time $j$, ($j$ is one of 0,1,3,8). Suppose that in consultation with the biologists we determine that a gene is interesting if the coeffecient for time, in a linear model, is different in the two subsets. This can easily be done (for a small handful of genes) using a linear model. Let $a$ denote the substrate and $b$ denote the times. Further we assume that the expression data is presented in a matrix with 12,600 rows and 8 columns. Further assume that the columns contain the data in the order F0, F1, F3, F8, P0, P1, P3, P8. Then we can fit the model using the following R code. \begin{verbatim} a <- as.factor(c(rep("F",4), rep("P",4))) b <- c(0,1,3,8,0,1,3,8) data1 <- data.frame(a,b) f1 <- y~a/b-1 f2 <- y~a+b \end{verbatim} The model \verb+f1+ fits separate regressions on \verb+b+ within levels of \verb+b+. The model \verb+f2+ fits a parallel lines regression model. So comparing these two models via: \begin{verbatim} fit1 <- lm(f1, data1) fit2 <- lm(f2, data1) an1 <- anova(fit1, fit2) an1 \end{verbatim} From \verb+an1+ we can obtain the F--test statistic for comparing the two models. We would reject the hypothesis that the slopes of the two lines were the same if this $p$--value were sufficiently small (and all of our diagnostic tests confirmed that the model was appropriate). In the current setting with 12,600 genes it is not feasible to consider carrying out this process by hand and thus we need some automatic procedure for carrying it out. To do that we rely on some special functionality in R that is being used more and more to provide easy to use programs for complex problems (such as the current one). See the {\em Environments} section to get a better understanding of the use of environments in R. First we provide the code that will create an environment, associate it with both \verb+f1+ and \verb+f2+ and populate it with the variables \verb+a+ and \verb+b+. \begin{verbatim} e1 <- new.env() assign("a", a, env=e1) assign("b", b, env=e1) environment(f1) <- e1 environment(f2) <- e1 \end{verbatim} Now the two formulas share the environment \verb+e1+ and all the variable bindings in it. We have not assigned any value to \verb+y+ for our formulas though. The reason for that is that \verb+a+ and \verb+b+ are the same for each gene we want to test but \verb+y+ will change. We now consider an abstract (or algorithmic) version of what we need to do for each gene. Our ultimate goal is to produce a function that takes a single argument, \verb+x+, the expression levels for a gene and returns either \verb+TRUE+ indicating that the gene is interesting or \verb+FALSE+ indicating that the gene is uninteresting. \begin{itemize} \item For each gene we need to assign the expression levels for that gene to the variable \verb+y+ in the environment \verb+e1+. \item We fit both models \verb+f1+ and \verb+f2+. \item We compute the anova comparing these two models. \item We determine whether according to some criteria the large model is needed (and hence in this case that the slopes for the expression are different in the two substrates). If so we output \verb+TRUE+ otherwise we output \verb+FALSE+. \end{itemize} To operationalize this (and to make it easier to extend the ideas to more complex settings) we construct a closure to carry out this task. \begin{verbatim} make3fun <- function(form1, form2, p) { e1 <- environment(form1) #if( !identical(e1, environment(form2)) ) # stop("form1 and form2 must share the same environment") function(x) { assign("y", x, env=e1) fit1 <- lm(form1) fit2 <- lm(form2) an1 <- anova(fit1, fit2) if( an1$"Pr(>F)"[2] < p ) return(TRUE) else return(FALSE) } } \end{verbatim} %$ The function, \verb+make3fun+ is quite simple. It takes two formulas and a $p$--value as arguments. It checks to see that the formulas share an environment and then creates and returns a function of one argument. That function carries out all the fitting and testing for us. It is worth pointing out that the returned function is called a {\em closure} and that it makes use of some of the special properties of environments that are discussed below. Now we can create the function that we will use to call apply. We do this quite simply with: \begin{verbatim} myappfun <- make3fun(f1, f2, 0.01) myappfun function(x) { assign("y", x, env=e1) fit1 <- lm(form1) fit2 <- lm(form2) an1 <- anova(fit1, fit2) if( an1$"Pr(>F)"[2] < p ) return(TRUE) else return(FALSE) } \end{verbatim} %$ Thus, \verb+myappfun+ is indeed a function of one argument. It carries out the three steps we outlined above and will return \verb+TRUE+ if the $p$--value for comparing the model in \verb+f1+ to that in \verb+f2+ is less than $0.01$. If we assume that the data are stored in a data frame called \verb+gene.exprs+ then we can find the interesting ones using the following line of code. \begin{verbatim} interesting.ones <- apply(gene.exprs, 1, myappfun) \end{verbatim} The real advantage of this approach is that it extends simply (or trivially) to virtually any model comparison that can be represented or carried out in R. \section{Environments} In R an environment can be thought of as a table. The table contains a list of symbols that are linked to a list of values. There are only a couple of operations that you need to carry out on environments. One is to give the name of a symbol and get the associated value. The other is to set the value for a symbol to some supplied value. The following code shows some simple manipulations that you can do. \begin{verbatim} > e1 <- new.env() > ls(env=e1) character(0) > ls() [1] "a" "an1" "b" "data1" "e1" "f1" "f2" "fit1" "fit2" [10] "y" > #this ls() lists the objects in my workspace (which is itself > # an environment; it gets searched by default > assign("a", 4, env=e1) > #this assigns the value 4 to the symbol a in e1 > #it has no effect on a in my workspace > a [1] F F F F P P P P Levels: F P > get("a",env=e1) [1] 4 > #so the a in env1 is separate and protected from the a in my > # workspace \end{verbatim} In R every formula has an associated environment. This environment is used to provide bindings (or values) for the symbols in the formula. When we write \verb=y~a+x= we have in mind some values to associate with \verb+y+, \verb+a+ and \verb+x+. We can use an environment to specify these. \begin{verbatim} substrate <- c(1,1,1,1,2,2,2,2) time <- c(0,1,3,8,0,1,3,8) response <- rnorm(8) assign("a", substrate, env=e1) assign("b", time, env=e1) assign("y", response, env=e1) environment(f1) <- e1 environment(f2) <- e1 \end{verbatim} Now, both of our formulas (from section 1) share the environment \verb+e1+ and both can be used in any modeling context without specifying the data; it will be obtained automatically from the environment. \section{A weighted analysis} The Li and Wong (2000) algorithm for estimating expression levels for gene chip samples also provides an estimate of the standard error of the expression level. These estimated standard errors can potentially be used in the analysis of the data. For example, since we have observations of the form $Y_i, \hat{\sigma}_i$ we could consider taking weighted averages, within groups. The weights would be determined by the estimated standard errors. \end{document} genefilter/inst/0000755000175400017540000000000013556146247014716 5ustar00biocbuildbiocbuildgenefilter/inst/doc/0000755000175400017540000000000013556146247015463 5ustar00biocbuildbiocbuildgenefilter/inst/doc/howtogenefilter.R0000644000175400017540000000604713556146246021021 0ustar00biocbuildbiocbuild### R code from vignette source 'howtogenefilter.Rnw' ################################################### ### code chunk number 1: howtogenefilter.Rnw:41-47 ################################################### library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) ################################################### ### code chunk number 2: howtogenefilter.Rnw:70-74 ################################################### f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) ################################################### ### code chunk number 3: howtogenefilter.Rnw:85-88 ################################################### f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) ################################################### ### code chunk number 4: howtogenefilter.Rnw:100-103 ################################################### ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) ################################################### ### code chunk number 5: aggregate ################################################### knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } ################################################### ### code chunk number 6: aggregate ################################################### gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } ################################################### ### code chunk number 7: aggregate ################################################### library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) ################################################### ### code chunk number 8: aggregate ################################################### sort(sapply(aggenv(Agg), c), decreasing=TRUE) ################################################### ### code chunk number 9: howtogenefilter.Rnw:207-208 ################################################### toLatex(sessionInfo()) genefilter/inst/doc/howtogenefilter.Rnw0000644000175400017540000001473113556116164021361 0ustar00biocbuildbiocbuild% % NOTE -- ONLY EDIT howtogenefilter.Rnw!!! % howtogenefilter.tex file will get overwritten. % %\VignetteIndexEntry{Using the genefilter function to filter genes from a microarray dataset} %\VignetteDepends{Biobase, genefilter, class} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{Using the genefilter function to filter genes from a microarray dataset} \maketitle \section*{Introduction} The {\em genefilter} package can be used to filter (select) genes from a microarray dataset according to a variety of different filtering mechanisms. Here, we will consider the example dataset in the \verb+sample.ExpressionSet+ example from the {\em Biobase} package. This experiment has 26 samples, and there are 500 genes and 3 covariates. The covariates are named \verb+sex+, \verb+type+ and \verb+score+. The first two have two levels and the last one is continuous. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) @ %$ One dichotomy that can be of interest for subsequent analyses is whether the filter is \emph{specific} or \emph{non-specific}. Here, specific means that we are filtering with reference to sample metadata, for example, \texttt{type}. For example, if we want to select genes that are differentially expressed in the two groups defined by \texttt{type}, that is a specific filter. If on the other hand we want to select genes that are expressed in more than 5 samples, that is an example of a non--specific filter. First, let us see how to perform a non--specific filter. Suppose we want to select genes that have an expression measure above 200 in at least 5 samples. To do that we use the function \verb+kOverA+. There are three steps that must be performed. \begin{enumerate} \item Create function(s) implementing the filtering criteria. \item Assemble it (them) into a (combined) filtering function. \item Apply the filtering function to the expression matrix. \end{enumerate} <<>>= f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) @ Here \verb+f1+ is a function that implies our ``expression measure above 200 in at least 5 samples'' criterion, the function \verb+ffun+ is the filtering function (which in this case consists of only one criterion), and we apply it using \verb+genefilter+. There were \Sexpr{sum(wh1)} genes that satisfied the criterion and passed the filter. As an example for a specific filter, let us select genes that are differentially expressed in the groups defined by \verb+type+. <<>>= f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) @ %$ Here, \texttt{ttest} is a function from the \texttt{genefilter} package which provides a suitable wrapper around \texttt{t.test} from package \textit{stats}. Now we see that there are \Sexpr{sum(wh2)} genes that satisfy the selection criterion. Suppose that we want to combine the two filters. We want those genes for which at least 5 have an expression measure over 200 \emph{and} which also are differentially expressed between the groups defined by \verb+type+. <<>>= ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) @ Now we see that there are only \Sexpr{sum(wh3)} genes that satisfy both conditions. %%FIXME: need to replace this with something else %Our last example is to select genes that are %differentially expressed in at least one of the three groups defined %by \verb+cov3+. %To do that we use an Anova filter. This filter uses an analysis of %variance appraoch (via the \verb+lm+) function to test the hypothesis %that at least one of the three group means is different from the other %%two. The test is applied, then the $p$--value computed. We select %those genes that have a low $p$--value. % %<<>>= %Afilter <- Anova(eset$cov3) %aff <- filterfun(Afilter) %wh4 <- genefilter(exprs(eset), aff) %sum(wh4) % %@ %%$ %We see that there are 14 genes that pass this filter and that are %candidates for further exploration. \section*{Selecting genes that appear useful for prediction} The function \texttt{knnCV} defined below performs $k$--nearest neighbour classification using leave--one--out cross--validation. At the same time it aggregates the genes that were selected. The function returns the predicted classifications as its returned value. However, there is an additional side effect. The number of times that each gene was used (provided it was at least one) are recorded and stored in the environment of the aggregator \verb+Agg+. These can subsequently be retrieved and used for other purposes. <>= knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } @ %$ <>= gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } @ Next we show how to use this function on the dataset \verb+geneData+. <>= library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) @ <>= sort(sapply(aggenv(Agg), c), decreasing=TRUE) @ %$ The environment \verb+Agg+ contains, for each gene, the number of times it was selected in the cross-validation. \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/inst/doc/howtogenefilter.pdf0000644000175400017540000034306313556146246021373 0ustar00biocbuildbiocbuild%PDF-1.5 % 5 0 obj << /Length 2036 /Filter /FlateDecode >> stream xɮ60d bDjHM"4Y3b[%?HQܼ zef8gճdset,VE4ы,)Tf)[`weGQø1.Hsd̻[_u(4Z wH@߁v5mT&W?/t2Ѫ"fpL4=B|˅45({ dF,c92^&cLX*_ ~d@8Ʉl^ċ01(JGg$tI&"U,JUf&CBTD"Ҋ'pT E v'9:Qk#2'TZLӄfc O]I,c]N#3v{XLa p݊Xu!U6g4^?72E Ē&8Ɂ'W"P-Ϭ-7ejD%SFb;ev,{%H'Y0hJM߮"]`Aq:n$;Wn\in!_DHbbѭĺEw!-"8I)ZXt09pETȱw'Щ2m_ʔ(n8cY ,jao3Wo͔a@ܮyPy@] p_bD .XPu=ߤNQ8_ayK) 8RZP03h.IU}J)9^{!b-`#3&!1>q:{҉M.z"㵠w\y'}ORtӜ>%?f.ZJi`Ir_Gk &ӌA!rB7D23oFс '-qJ-DdXCP'hnZNQ]s9+X\<Ɓqu&~wC lQP}YSmlTbj/:NkAW\XF9u3%V\U3?_)ҁU!zJUP 0shxlx“K#%"褊#bR׸qAW;&u{E=nRϔhNxۡz S6֨wKЃf!ٚ*U̷j+0v#nEBRRU% m[~-4#ܚouR%=z\7LvR}c^pw.?4R#EEF*vuURVH٫t"az`N-﷌D -JwU wm9tBVgzˤa@WS/*@Ρn6V|:wWm[!pJna'4aJ ӡ@s'/< 0JYWغ`k,_PTg!$kAlh\*ͫW*?VB"H;nnYϨq{HG bK. 6E ֏H>n܊1l;Jc;2^lb~etB% ak^ʉxH$|eFE!xc+s[ɳT]l kQxލi0jTclڇDX>=;URKno~Aba죾),=wW)sz"rC:睽=N Ū]) Qv%՜wJ[N!_gl`Q`vR)i (S31 endstream endobj 22 0 obj << /Length 2302 /Filter /FlateDecode >> stream xZo6EPY[E;wdBXJ-9bz8>\?0)rf83q_}C/JUf:K/2Ry_\.nf^Smfw,ׯuίoЎ^C{\# \hiLFf2X]"X'LYk阍6*<6ᘤQ:)-)k :SRm;Ѫ>Duˣ͉l1|.6'?DC9<\Ž(b BAdd ymE>cZEdCiWdy+g}wIT,;ti20]` f#hsđywQp'h+lu#KwDzY`[ѠLkXs@}QڄΛC0&U8(`&) {k[ezz[&3@e,P,j#g^2'fvQc7j,NKrhp^𺭋1 K_fJa/d<XHɆfʏM'h1Z_>>Wesh)ZE-˭<&\9َOvD,,ZS¸EZF~S^:̜N{H5NxߊJ%]!0# 7N G.w$$gz"D(wW&—yVK/SBR|'E<]79ԒNZ $=O7SM%\M\׌nD@Ja:M3 B 5dyc(QQV~nTPQb~®kcAR AmiCЌqyu8AG*=S W'^MIfNNKqLKpmk'm /^B<[=a(4ciѧuΣ$Yz~8C)Hqw)ftI< 8=a `$:fb0L "&V-Ô]fĸuȼ)J \<<8hgZ2cSw Zq8k\ n.8\YeϱΔ]@6c2e]w϶N C5ΏE@iFڂǐ`#{$4G$tU@2SһD;}4SBnꏨ\%)<ρ)Sa2̋J0O(]Ľ$Sw/G^g&|$lqi{W-lybEO=JN ūQ1P7Ij5ks _*+/b9_[̲ۢسќ(ž bYR$j6kl'q; Ti]*'3QϙL#8 6 P)ģXW{\婃Dʴ,' p]VD[4ʂ򛸴G^fߖLţWp pA5!gw"kZNbҨ.b[%DB>DohZ| L0yJpD7*XП[V}/AQZJ;sw^I%ވ:Q13E6uڵ<=LrLaE5peۡVnHhۧo/%; h4$>sp`yҠ/P9nͳn*igN ?+IψN3~B?h)+ٻ mj|p> stream xڭXYo6~ϯ0>(hĈDI#=[Yh -A۰'A^Cq(ɲ99㣳r &F( <"iNG2$B?'W_F(I/'46zcxls`u춲]^ zcZv Fi%J"9 vzc(),)Y{3JkCwe\>b,vW y8+EJ΁] ~̵NjFmZ&cS,cM}bZ.h\&xK1m_ïZw -;ԏ~N;`"-IbDfۡ†;{ބmdooB/z$N.$cY|#89˖3 ؂Ve@nh}w%kiEϻG# a?,R h m&}Jͬ‹oy5I~Z>j92tZӑj0f̴=+`҅|zSm:D\k-@PB xF(j~JOv@L]hB$ mK5Wg*L-d*aHn ۠b.$! -ΰA-=-p7Ϭfk::B9L5yD"o Vÿ+*%)nqxd]ٓ3lZ#J?4Jh|F%WPNJKDmMՏ5*`K{CVM,{a;s2op_򄾅3>t3*ZX},؋0hqIҚhOfێ5M|ֽ;܂geX ~[U'$StO>YŲ}$StҎn *bC^`Dĉ yWh" ~@х)'Q&|.Uo~Q>x{8=u6V}Rjwiʹ$\N g'ĪRCT}.;@[zE'g0Gk{mOpAKÙz1;)DrߣmCW6kCE\I~cIyQެ|`NaIl!ˣAF 8YfNI,HiQ eAYLԦQo(>VIOsTA lV3ؿAh~52)*3ʺN>5&kJP.$Aayo'AL[ǂ铑O83bs~. K $UT[\[Z.eYN9=XC|XNXԜy ϲU1WQZo+5yYͧc QIGmX^z+"5:bFi%5Rh_2JzL*> (! x-3s-dB`Bٞ,lێ> endstream endobj 34 0 obj << /Length 1485 /Filter /FlateDecode >> stream xWms6_G%K~פMKr):4bK]l~ؑGϾ0ϥ߉8Agr׉D b c֙;vo9zMGzcO,z*y?/].A(Eɵ3%FKQty^l^$WJ.h=>_ y ~6DZˢ(OQɈd@^Gqsc)_$WdjBĈ2{*1WrC^}kgq&w-)3#q ]DƑtQa.KS`;yFpFxGVCUP\Xy[We9Qn^5\9S0ֺ}W |V9wwٶ2BJw%;]iP=%}= oڂROc{N-!v]e⏶ GC]xYՍZ*ɕ}BvE3 iX_HA jF;-g)?t֊t3oJ8a|84EBQ_]Ӈ&Bw `zT#0=tEZ <չ1lKRJ)YlfϬ9:zefhLJx]iYvI-B̪Hk19y8)%*c7U6mXm02<ʈoK@H hߏHGEBjLcLa a@m~- U r%D3$,*o=&2B] "{ZJ4R]-Bpj;x!QX2_7(O̵s+L{4H$Y#4([OBI֪9YF <7*5\4i4^n [ g LpSti&j>z5ʫrb>@ժsu,.pSaGZQ%Z`FGVv#m^\s"(~E~7I3BQZKc9ڬ n6ldj0teyWZ:7~6,yMeӃ# bb`c1[oH^V)pTl>3TG;j WH?0\{3qZhTѨ5=`՝3L,/I8RYLL/[ӨU)@m['u[ڶk:/>o(3>QTh1~a!IwRhap8md=0Lox7>-U- QQjڊeO gH;P2"Ycе7u:m+ȶ>-~,13h##OjngPn2ΓiiSuȑcR.-Y7 Ɵ)I5Y;,n<7\%`lr> endstream endobj 36 0 obj << /Length 149 /Filter /FlateDecode >> stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 48 0 obj << /Length1 1636 /Length2 8946 /Length3 0 /Length 9994 /Filter /FlateDecode >> stream xڍTT6LwI7C7CwHKJw 030tw"HH4twIwHHw9s[{u}?0kr¬J078@^CΈ+ˏ̬pKlC`P?,`ǣLhT=|>aq>q^^?/ؿ apq b  `w,fy/b_6v_Y0b4@`nj6 g.l@7ŝfxC<:`w0 l 2@5,fo.0j tU]п63߿;3 B;3\Iǃ 69A^ 3A%YmsC\=y!ο{8fE< p]y/u¼Bv6l=]P'XEGd`//8'u-~! {l?~A^`bCX(>ҏ#laPgu@u}-uZRNp "BS|Uv0>_%{߱4aCt3^!^3rc(WoEJ6A.g,]!Օ9N P{jA"#1$h@~(:@Pt>u{ >]ϿMgځ u>`9D㧈ˏT[cR[i6k<waksٔnMEKtwM-7I:[-X wekh0nܹ:!7!v2yi]z*~ޮVþ-~,h9:k̓|0gN5++BW~+zL&4g#,rSU?$F}kn Vw,J /ߜJ`ᬛNN[#R4ugYݾsGW1.䱧ڙ6M{y>)O{H"GPlS==i !Fg> 4lJ'iDWHj#k~x=ٻ62KWOqλmyF,ؖ'3U(j7/u?˒&)@ E|*ާR6F۟]hшNL`}0R:;Fl̨pU&`\32qҡC*<_9C#G1N:NFQ6@Θ)`u?TǙ]pu[˔gblPG`@s{:Q ꌬ̱%{WFVE)v{o\'=Vb4Z5=sR%aS cy]Z3qE t3X߸9F o>+& GBoÛ[y3Ib\JZE-#PDBڗiN'mypUC6r%y"*ws[M:uzQML2i\l`ՉCa*f.QQA7?ps)x(q2( s(){0VF3+:%#>.mӅǽ WH(E |f_H>"y|Y{ŒQ1ys*mme3G1u4yJzMI|P̀Y tk==Vr<<1Ct1@{+]ʺ \z :$D_7#)ڔ`]T4m G |bv] G9F1AT&I\U6A-Y7Ϯ au..RtH.hoMs"{]tW?1[BA*u.ɥ`cƐS̆" 9y^Oj _m,[_d'18kV ާI1Vq"*VyXq+.81M8,qNM+W꺙!IY=dyI4nnqe'’ġ* *ō0n' 9P14MTi!ໃ,jW`|Njw9O+C+^%Bm1 |eN]g9'R6 Pصr^!B A dL.$ L,gwx5eT:&e<ky'"#)tT^TnR >r-jE9 8}@;m7B5@vS qwV@ԩ,:Ʌz!#6e™Co}4j=[8~:;U.5Na\"14e'!U[hA]mJР4e)2ݿ]I.wwa 6j/J"D*J(?L2]S(!`Z]Q;^i Y}1|cg&S_P{ΏR9SX] ~h<)k}L*ӳiU07W7Xεg~4بG'^ꩢ{QFn1ռ h 9W;S` XFsq7~ze~%ո.N%EȜW< ƛךtjҺ"W j%"ԓYmH-_(!Rf,%@;-rXs3QBVC.۽5%V) kS5^wcބ魶7WP$UjM3˅/9}7;tDDATsPi7ɡ!g&cfn$U\SzF"3@HhҸP } Q|Ԙ~7Gj]^gZүs1C|[6-/Z> 4`E&<Ÿy Ֆ? ,܉18 A_,r3xNְҡ1iʕ/l b0:t09S8u=bۋ9G2՚ Lu7Y3)&8q?M]U_jG7ii٧&&LeIxQTHؤ6Xz W6,0Qۢv5@ J_ny-{ ׈>;O"ݥ?{Π8L3qx+#O?iKd;?U*O9Ξk fmר%7%8zLٮ~_1y~gͬs.x,]SnYՉ t˝ "FnD}gHBdhO KR&ۀ6ьICN'3h¯ wcXZFApPDs訚"N*kh|R "ߜ-["޲ CIӟC偨"!" ;!N@~zX֊"odk $N%R.wۅbXD\λ&nnO?Zƒ}X 8֧ɔqdkԲ#ZM;Җ7#߱Ԫz`//L$;<9IAwfhxoIk<\&gl,0<*7/c(H%A1t(ë"ʚ4ç4,t}8iCW8:YC'5U|BvZ7Y^ s!k_N} KH[7IǜzI { AJ}#ą;'_g -/nܩ;_6KE{sJ9a]A[:&#@w{`C9%DwhXqDk%ɚDJ[ MfUm4 1LŊNRTGr *)X9AKUvj%'B@¾_K]#{Zz&e K0az=u)v֤h˜,_ā}igy9JKgӵh~> %dI0U^B&JnQYS)"<"ߧ!"F8q?l Y[TeoTLA4!(j5ز &]II@J%U8ݗ ZcK^MwD2Zas7*#=:]k <ȻAc,7Quzoԩ4j8Acm<|T [-VXC6Fm[-Hry'mxmC&:bJ5]|oڥaݞ~jW>Q-8b]Y"A8vB{FٶLH3ڪ$Mk)zgg[CeO|eFjʅ{E&wfI P1TՓEB*u: YeXɇ ok]pۈnCKJ~_[<Hɼ̱4f9-//kuU5~ v B/A1K ŞVo4%$R5x]] AĮ@s~ӗ컙7qBi(Ρ$!#{@HQ z_Ї7 rlouJnE0zc.J sQ([ƙHG~YCADx#)Ecl@Ϥn ,|O﷮S Pc5R3]6/+Eݖ]ޡ' zlJtw /ra,z!^ز+wGvote%xcEᡭ`o~`K+ؽ+bpy>$־(Y)zClEď1C9/uVmrVcfۣ}x!RE:meu)դ>4̘%|e4c-$@gyD2_ Ly~pJo* %|>LX*2B̓g#.K5(q:d akaX972‚na_-'j^~6/NtT@$.xGd_ŏ[INQ,&H$`]=[]iQY ;siƇ4 o[}yEŸNu,k"zH|QdW0九?ރ\^r >i¦ҝ ێ CJfmL+j0GXD(NoyF8W{HL 43G^gf07Xg#:tt;U{pp3J~_)C1L{S-{'I~cw59 ZV6kK 7'7eY/MdsY{}9Pm~(Y){eS2o=S M%6#Tv:ז@$ 9S7a;bg)Y!]*.Nl~jt^JSD㥉psC-Nq.bq!F:Qҳ0@ZÖ%#8L:ios1r<ԍ ?<#F Kp'A<ǰOs[,R]]?#`ʉDmhckxv,ys\zgYp09SPMNįObbdy4Ҳ7Cp1TMҙL2d8Q9y)EvZa_Uz]q׋~Jh ;ȥ. t{x@,.jkhqbУd+S^H6xt _]_RQbˆNEUC9B{@lX[YJ9"7L@Vl|4_C) oDkh Z4?d;Er$=)~~ƨ(*򓅖uJ@Y6phŗu+Nv}[4MyYs \h<} 0Ij+1" 5w1Ez[Ki0vSQ'z;V0'X^|2e>bpϓZ#I"Ra< 22Zٶ9p?Q♵8&bRjuމE^N\96eŊ_'Ṉ &"^(r_u/~%V2N?7:SM9*X})Vee7 ~Z2@4Ɍ@L\be>)P.W $ѲOsqL \~Vl6OM.Xe %hDtލ!z%=)}'ѹCΑWäo®N?L[>"8+׻>FOv|k49Uu<.8r02m~X7HDʿ']•ZRuaWQaZ(iCc}0ȳҼx*~695ĸ`AG O/kՈwOܜ3k$tY sT+xgMrk,YbRlԔE)z|f_wr]X_ ٟgS!OC""jlqCL8#o*a2{g3k yj MÑ-0ls B93sk|#vQQ6wXa_3JNhק(oND;J~O8I؄\&K9>,f\i5tٲǔїǙOG)T>*bK1rPl^5cጘY:Q,5ýp;WiBOs䬑<4>Zn uzg ^%ֲ{-;@9?wYEE8$^qJ}FD}3EkliYAn?#Nf)p<Š ϊ,y-5/8]⛝])6ZD1ڥ'W(͑mAԆ=!.Q.zdbfl0(5]sm]ltULe;_M[6-+GLݨo0׈tc !^}KG0fZ홍FQUkǫma,'/fIss G\oVK9X4^c> stream xڍwT6 *v{ D:ҫޤ"TQtHQPzs>ֽ+k%FDn6Aĕ#OA\֡cn8A%1_ 1 س4,B~#&Ebҿ_+@x"LsMpAҐ,fma»n ' wrfo,ry p8r΍%i"yd|]MbEA`mMWMDRu V,]&6)/ Ͱ>%r?> ZHϸ#vH𨤝b`W(NMMUBT%>0 u)5[N[6 '$hCv:r.`9~2'W>qoޙ|9S519{v7&DU<:Zu~ϷsFSW*u=]l4Fȑx=28Y%FBW28{RG;L{0$"uu >[MHxo~75[g[R E]'" |}>mL-Rt!{Ko i&A0&#<R sG uy0Ҁ뙈MUD ; f&MZnHl:藇xB%ϛNJ/vN6:BqYvKȜXP^YcWxvg'&QH w=T)"v/wAw("2l5J;ɆoWm~b ^ y|eJ7bd fnd퓵͵XA8'6p$t~OtLn5.d]:}w>XFx0_[/W.'HjU qhkej_ca? yг B%-rBxϩˆG5O1U==3, peȄ1rQF0LmU¦l>˞h(alԙ_Hѓ*Pg*Kf*XkEN)*( #0Xa9G5v"݈[҅{PBOW#>PV Zy"z;j|oЙI^m UPyC7QoYj^P/T=rم09Q:? Vڤ/.z7NW$_KxgQ":F;-샐){qOIX2*emsFgA42kz^U ,)9XQА<+&AZ|V,rzL"ܭW&=h0[ f eճ7e 0yJ0*V-B|}oU}eww&/_]Ml5ɕ(Q߭FȦk2F)Z\ -)}Ln+ V dRR~j 9*R?[fr\P!z{\i{`A\³<M8/+T,O]GL&՚I, &R_DTib/C5)ߠ.K7)3gh AmvdߌDP5hl hr͉YsNO h~ רiBwierS"+|AMq{*QDUm27)J۰{WXT4/$ͭ\P뵳[ls&Jra٩Y17ߑ8ĉx%h.,sy@GϪG'!Y:(~2c ܬ{~Ų%9/`vaz@u~ ZNV&m͉KATxU8 T4q_25[;MX. wZh MړuW٫3"eY%d y. vH_wXײ4>uƋlFRIFwxj ƇRҬ3f܉p\Pg4j}{t3d!kT/ߧ \=Bm- uKm'6úVAfXysɆ^}:6F`[pW _ތUTf9SBQxق|:S}[dyOGCE˸7w7|Ar^rl;wԢYN ΀P&؇ϕ:!ȵ_'Z5ԜxV *X풳80֊PTcʿ7 Pyf 4.XpR/:n"Esl %噫qo}-s +[7jsAe 1Zd |כWa~q9O:MV!Ԝ`OS]6f5`% 3@3[}wD*2v7Uo<=soju>#QH=Pbm\,Kh W}zp,y7h{fxyl>/w{D5zZ 56#&]R@^zr`k͵sdJP+jn1vHuR0y6Zgӿ*#)wOmh5)*+S\x4QkPȞ0{TZߤ7#<=^0tzAJ]*Fi\ܰ]c[9Hf=]eP2u kf&O-vDΚK}8Vd٣2 z>R<uydOo7&vxIhUSDoGs"ބV2llEgiͧsjm9LjpzβN9Ո^on{n$ƑuyR N8ޤlQdY#hf.ڴX$vKgT]F,mN߭Tct ;BbM.ZkoAK8j/c0v1zd?::Ҭ3VݣkcEw:rg#(xM%J62RJGM&'yl 3/!|$L viܬ{5o )녌$?x*P9Y{Hw#W4־V~q?O'=%uu<.)׵#չyIXϯR).ø'0эi+zyӨ O{-tc`^ Bp 1h?mӠnK޻" 6]Z:'`/:)',Ժ%(va^SzVA?.&1'- ~7[ gSxmWzi3ݠBabMvJ&/+lӵNo jrShT%_|b}0wvGySֱ !̏a4S3sS #i旴\7")9UKIHByI/0B2<Ozo);o Hxb+ %[ϻ`6FM'WNUX*XhΧ< pg1މIQ-Jp < <\[r_ƭmUxU8}< ) 8[&X>(jPzKȮi{ܺ0k0:Yt;hH_CAwQWTA3y^#ߏԄ_Y^Hm(MdVbxrS.kQ$첖u1SSKēB15NR4}& QY,pz[t˜\# x*z(дqsj缗#zW#:;ċ/RivCS!t@qqWP9Mt{TPs#z9Ϻ;E N]B^cK&ۇ .H\$%w/=Vy .3[.YsոfWޯe_)h~0NBQN5Qn$>,)qb ]mN밉 4╞|ٰh\4y¾^`>ъb`^d$ ~qt(ͳqtTdd endstream endobj 52 0 obj << /Length1 2419 /Length2 21181 /Length3 0 /Length 22578 /Filter /FlateDecode >> stream xڌp_.4Nرmm{Ƕ6I$mO7sdfwݺnȉM쌀bv L<aY%f&+ <95_1<ΖaG3H&b HXY<̜^*33L,F@3 [Ab?4|G w6hLK^&v/4?G'$dgcг3Z2NЇQ07?|%mMd jdP{8K@%abg20?.Wے\VS m,=5-3ځ6Ushe&.6[+l:fi;DmG)*9YuA_:2]N[53눱s  =AC!v3,^b#3*`jD9AF߈(qE~#n'Q7b0F,F߈(إ#ob@r]? Į#obW*]7F v n7~#PfA 5h#acKbc3AGeǀTh piBRZt/@&f@Pҿ@C37aYA`dArzP5vAveo[ fzl{Zj=8A\윁&F⿃23Td;te2:;Dg7?@-s5]yA ?H@1vqu~@w1¬1ooxn;cS;^ m.H0IՙkI][T7D/^GMu0a -OqJ;-} k{ Uv_ ۥs\zk{˖FBgww9&T#ufI `iP?LNz#9b-Zg~\Paq!&AOš*)Zwo+"yOL̰ϒQma]:y;7 LׇPSڀH"Qݢ\j$i*zij=Y~i~T28G|?0^3vOA T(D:Pn50+ByI |="ڧ\4ʜn[ܛQ{y!9Af(U^h痼JE2JLR"M~"6Ip@SJՖXE[r!=;JB*y_~*t8ɧ F@|ۚ3"=Qr%i5ٍLRhAW/{Aw^盿旛mT`+䙻Km jBx*`s[[d^֕:l=^4H8 -5~WUU7E>;!R6V&cRU"ZلlM,GF*'7|!:dk">>s$L)㥇l[T&fM˰ahg\oQGhDmP|IPBS`#ADYDP]Xj Lʹ ۋ:4@m{hfVb/*tIl̍D=1B3w["X „,BfRoش7Ao2> |L>DɅNy؄Ƅ:kg:ͻllwj1v#p/eds4*Fb\8ְgu9$8wY* ؇ԝtXC^ij <¥)CY䙦R8$Ȭ+ֵ;8#s,fF՞awR#8it.v,=؞.ia4-4_v/xn+YS iL=nC,ǹSV'[h#V\9ƌ±E_E,D\2&U[xvGjB5׏'Lyvd'w=n,vek*O\lNŠxꙑ`M`K<8;WbKelٕ/(J鏦Ug{ޗpbPoSJ>=zmˣR!e\gl0,vP 4τVbV,3-B<%%0tgY+ R+ 0a g eYVy w P6k@يAǓFsy)ţt`Qm뫟C I{"Nǵؖ/ϭk3t&g>c JAHeAVvn\WeEҦW4uC9I*y5u!|=5wK8tyggJEm-bQem Y m2&}Pu[^E5(8Dogؘyi@k {T0`ŕXS0tQ3ާULHSZ#KodR6PȊ;:y =j<|]+W,aqwhYؽJSjOhk*kάEʨaC6Efo#rM"@IIt-g\',Le^!,L'n4y#BxQ~YYqNn2IWy3 [k0)1K>i#BhAA!I|{͝:ʅ10 |i+F:¤ Q6n0HDR~(0Araݙ`-9Csmb ΁&a J G4F[}$H)дefd%gzMҷЅnG-%KXM4Q,\*V/&Ύ'Q5DnnybMa W (Getԛ͆e替]`qQzTK 5ȶ~ioBG9xJ~kDf).06' DS֢ER3v7o؁nr/cv~]z")cēyׁc?GD p; =/4/C%rF!K?WHUZ='F c]r'4=V*!iZ!n>ivŲHg]u;g\"Ǐs~<+J͆h.$9 Ucdq~~pd-qoZP9m᫆qq2qx7 Ԓ2'RǢ&a5,>ԙ{})DM-7ry;dߕqU4Q.aWɤ}Ey{|'e&.3KGQ!ZXPnŽX}*/ >P$SҷScq* Hbw:{/wz ipއJ.o/㩔YFDWD#0ͳnbIZTơ(=}@<48gIxn@;$ЧGfN-ߴlƦK,f\'nV֤a>Y*Sgx7OK找 =pW).:i"op˺_Iju˫|<>ޒȵ, )suւGetd֚lB/Q}!DAWScG&l;VvkzR`9 H 0~sx [_~y ϔfå Ǚ[Q/RQ, Y~Ī=cPĪ& e3 LOiww\op`_A?bW{`0GC";XnDŽQU/[ae+~̀/*VE{"9%;yuy2J\⽹}A=*=ie^rِF]eFڍhyGVcBFSLDeiR&Z1:M{E=$Xm7wGF̵1)~}9 T86њ0 hCi2~כ6n1O 8UtEh8xbf[rDDR\a!s~Jp,yKP[Hn\A}$2 *2~ +c/8 Ka%V;I:Ձ"8X WRj2c@B;lյgt@bjҬT=+p; 1̫+U.5ڝ7+N5Tpj%POk6>Sؗ^1: pF{qtM tCm?kӗU,Ά5!5tK fWM4kJ%t~AA9ݜOf׊ -@1^Ȧ\HHj>&%m0dJČLMxFwXA:eb#F;x}֨H8a֭%~֐) +|0BM3MvVB7ͷ Ώ^VJINş &h@r#7ފn߿5p~At?$(_r*K~hGhW}KRܬ $L`9(".wCU| q2PP!/K:+``Ӻ jVwWxXU(NJB++ vnJ]uqfg\C>'4$ &9? pn|ev4Gok{@L@b05x{84R|?bDdW3~cb6IPmΥ{1{fHVێI.`ψ7ڔUGe-I5a&\'ǢRPzFY>tQQ S A5kSxU!,6 8_9!_Vp[0"]x,)>1}2_y|^ q9 }c0㰴Q:AV/5ea+&kjPÿ[y_;}F|39t?@3B2&}$O:XRz^JuEcu6 ,PVAY{UiFKTGw-Try )iZfo{KzP%JGi!)A@>ϓ 0Biཿ]nwJ訄ָGF0HrV 26?teQԲӾw\&ؓYgTyk*9}%a6(fG|؎d{9r{o4eɈo逸~+c9kAmp/"18_Wd*~F+^Q> qa]M:м7U(&f~oPn9eӦQ<#JYhG[1W<Ћ0ƻZ#kO/- oDIشF,bZs♺hNjŢ?L.Z[,\uƕXu$A])!>_й u{uJ%7rNP. XYçZ[,!8yWEADHiAT/;ƍڿBWVe)#phu]['a-_nIG>{5J %JO+&-^O5MӦZp NA;B|DN5{'}px)Ŷ9%(g^E]; }_jLkitI{Z)&M1͜tM1vw:O"|OuQ0]>QA]i\EAT9);O$BD1N=N4VwIAvC(=nچolJ3dH3/s`m6hvV,>4j:Ia[8rߖz\g9^l۔( #c!{Й2QHcpdҽа(EԝT(MYתUuq'\EZ4juQy؋$#3v[lL#tɸ˵>M|)DeيwOѣ2gi}5VScۅ|wQp"d&Y¾(ϼWsZc}SvcYP  aol$.' O6`䞆o2ԥ3wbLޙT{%k'pi@Ĵ`mi7%r芽[L;mp3P3cmi}3MŸCJQ,by5!{coԒ */9`i?ژ6gYxK%AmT^ɿ +U:I 2_Ձ洅A}  G]{`<#kT^;8wOW?/^&e߂Sv#ݥ;|(*{QP-qVc:oiCð'2-V7 ;@z92nRI-'xBqm'o.Dx2ÓP~:3&]FWgn b@z*km]&@gkm)<\RVAO@΀׮89Y )Ĕ܄P̀cZ3xϾu 6hhV}>(0M&|/\0T O4,~QU8XS_(:IvK.}KaYm $ϮB\J9>67a>w;ּOd_v$MYri/~>k.ZIXwDq{SQrdt4 \nޑ0]auSxrX2OM2( p0 Vi…Џ_0/o3r 3w<'PU“`.iIX\v 3ttˇHoR" Thf**:,,ִ\ d`R{s_ A؄پ>Bi$$kXHlD#] (.nHZzP=.Cy {M`Rj~58¯ >߿9[*pt.:`FRWC#+5|Iߋ{OfΙSg @E \J)z |>UuDӏkĤEp "â~'@Hz{mM;]_3"Y15ڦ+gീ&UG:=o5rO!f@b>( kGN<Ý̽tGnbL3 Im6V}&cK;IO3 {;鉊y  NqD"$V-!rv%S"7XRBq\-WJ (/J)2a'IPu{r;D[ w7.}S_tp *K^I'ܝQ%t5Qh:wY'CC ˍ:ԲIem: T_BiaZc]4F^VQs,-^ !مO'/ExjZ-Nb[mPC,~Y߄ -Pwʶ}u psɉc/5D76v:BEy~ə% ˓+c'[oC$$# :[:4|l\M\iSW1g<*뭟"s{*ccNk1 o =Er9yԯ9ql,.Z{Sx_V[Ğ̮v@I&:اV(:K XO.%W˴\qtS?2ތ+#j:c֓΍Z%@?g}Ӳ陋3@ܥE{RXHuXՈRjFPoxdvJOi;)t0 6,7jpjFHtgV-ەl@}zXPjM| W0##pU-xn,YL׬JGA^䕀 <.ԶO v $KhYˡzw=]Vd>٫r8t>;)v^~e;R_gOf \Y9Ukw'n)ps:NodZ%QJ(Lc˜x?EG(H_vn25,b-DG#ypatuS{녽WM˓Zk+MBsoFMT-WXrg3%HAc jéخ taVoj^`jgTbbp3H`I;GϬ сj`KĪ7/mӪb2_+wS9~VK Z8YDIJp t`.l3FZC<ћAAOKEs͈wezxF$ Y%t&WH~NycSwWG8;g^o'$DIrD&~'pVoXDߚ f;e($i-|Nj7bmx So1)͓7KXV.kdf(+qv/‘B~.ݰˁnW}mz_1;ERQ*ߞ NJ-Х~^{/vO:ۡo.28m,I_wg}+:+GY * 边@k/5ARMU-7Ǜ1 P152 y\ Tc[mpj+m';y>R/\Ҟ h ȴrGKDq;Bg3{Nªơ\Nѭ@$7y=A(]6(MG^jr-<.Uea>} qNkgdg`t݌qqooojUAr[ |~6("(x ۝idl4rs3߯YP vs+I{ QP-I&+  骈Q0eF}{D&qeЗW%D PIƢ*\\/U7Q? sxzBh.+Գ+Dk}Q!%н$` ulS% l%3gd_Tb?tW%6Yy3>;H3م7h,,X^ef/73!nV#]W^C$I +i.qi: b}AEZ-=O'Y^tSe'2(Ȋ}Mh [WŌt)5gn跙e&R\ʺ ?ZSQbẂ<ʧK-7vfaGEgvQP0zٱEv:y1*A8-VcqI^Itto0zn|֫je 3:ZCj7CiZ,k:{&2fIG~R)2|Ol`(>6^}H=lu3 [yu&ScA4E2 &™|.W_1 H(`T pzg[Rs&| H}:S3s3.BՈaZn{,uv.mUYe2@h&ZoS_&ƼP䞼ߐu7a96c*_hn_HRڥT MMYpJY6Sb [Kvygv+B[zک҄aKAاrZv8DnLl_7im;r %`u3ѡu Wf O;Y]ڭO2̮\sÕ(O!smb_J&03/L1zftʬd@DW%7}a:u9Q0.Z2OJA'w?]QeuS5c F2S?HB]AcUo|D0(˔|aJƂߪ cwk!!zĦwW䴲!ؼɉ~DocVv ŊT/r9 w,Iޣ ыS)yľbfo_WtK[{<ƈW0<%7evS}i~.P(ÑQTbN(Đ೨9*M Z^=?jؒakIk)DwRaTC /C~~BKOd,^"Ic\Aێےͩt!F=r釜H܋zn2Hl,!u(k-* sc zvK,`ǔ!yVt]1[E?LR[.\)a6MEOEjC%.JGNa=jRLsq M&DHnj*w,ً$}™˝mjk|4+Ev hd-3(<SCXo8@}ҍj%0r4>f2 ~a`JJL-۰}w"7(uʆρ7|MOj^^ݷ-ߪf*u~#SˁZS^pe?(_' p."kQ9p8AS*T)gK8~OJɪlTZsZAd%iL.h=aw=KJ [jY58b#?!ro)rEL #]m6$/CI{уr_}7ī *al"pRPꍊ+"?/<,34 >n244Jg۽8#Uaw3?H@ݍ}糷rD{Ǚ *@ ;FvghD]8oV`NВJ`eo<— SiOgnCDO':.<[Q.ڼ-ڞ#p,r w뤇xBC::MsD7E9" s`(?ݟT>V (eg4%dB_cEE+`'pl24 Z[SJ I4,V9Ը3uQxHג ,}v<"K&\UuRa[ELaYK({즀v#.жgÆBy]/ kڏ :>czy9-$7cMŒИss"h6,sz &ۅ&, ;&x!YyBv^ΧRe>4SSdH- N0;u#ͦenͭ(/u1 J*tÍ^çȃWyIPL#N=`UQ (hRnCRq&<]i*g QKG O6[ף6K۽Wfz| $dCVcb'̬1Q}yE,r [ >.Z ! u.\ n ,{%b~2Gy$r1= ʘA{Y{>?~aba> „5MJڕI[ FpK{hWKi8=+B]n~ҀAq*/ׄjwtʒА%]Bc1Alԗ'Bf^/ @{ b $0Ά*gz*Ifc+|ƒ$BҦ܋5IDõ;p%rFO@5 bwEA"EOsp8va"ՎE6y&dTZ L6f$vF =>}du"_,.:y5ݑCU`sxI\:9Ro}i%ag ]]EiP-|le#N"EV!E(qn]@S@|*m|S26m" tGu+OVۡ¦&Jcu1ollÌF@@S-Z7[;ۣCx1d2ܶ?l lۉ," 7|nED_/cƸa dpy5,$>L"|'lh_T A֗g3e~Rwsf?bo=g}'[ 9+OwyZ1F-"׍Uf3f%jGDm%c$Zb5'J|uF5B6 b'󕪁˟XOH_ vivܲys{:]}~ɭ֐{nr.B-}h*̪ˬXj,qbp<сh ;Btb `65Qt-  ,M?Tz iG;Nɹ05gAQUp!wANs͓sy _~CE%SS9g{p]>.M9W }߂ |ن]oU.2y5Im$Xs^E ώǗ|:DO)7)Ȕ{-@m4p[-lL%A]I?];i}r?&^:Sě]er/s{rݔ~`OћrE*Ljf'+4"d='/,deUzb-K5ֳN&b˻Òs\7Ti0gT%ǿ\L5];,zVl!!/AVX(o)tD3E+/vi[=޻4~ele ɼ֍LA0`DK2z]?2Wj⊈bڰlI`zb}N[qcT@Idȶ\*wR6 ng$qwa˛Υ=q墷N78+{ H6F@R;<0Y69xXr,dh#͈T{S޵*ծ4Y'^zVjO8Kqk(+]9D,µsi9x? 3qX k]6Y{=|c3hQ:ņr}«h5-BD 몚r*' @"~sٲQJ&F$b5V!! pIs]HbOyƨN FJ# <Ɋ7[F+tNA*=,Pk&BWΣn0S.O8u5 ihç>Yy-z~)BřtvM0e;j*Gg[H7D_y*nbBcK}vWP-Ơ`"'4߅ˢVvYZ4VGga,a ( /E7_(70G%j+m}(~{+=b=F,x8/dt 7 ?G yӄw~зi+mvJɼܯSQTQPnRZGS}f/؏j'{<"3<> 68"Ҙ%Sھɲq( 9UR+4;ėOK8 Ч]BwTŒN%!L'lw+\!%WrS_ )ǎ p6C)l/JW&Sf TJ ,Z3G/c$R'JڔW DO$cZ y>D'&{F,:ub|,`&.Q-xD&*­6㏋2ccū u[k_TJ,B"1|*6~apN{:. uh"vV8$9-wIWo hn_ >O=Yro`]Fq:D-9jQMiТ%CsuT~ew#/AorrjbQ/cfګ&Gݸ>uZ7AeKcUS48\PɣP~ Ml0W?UkYuxM8d/п/>elgIRHRRRJ(92X,WwIW4EnEV=p;>em*H9+cݠxc4yL[$QRBzPhcܞ3sN#)rꀕ)bx<,:{:gdq}Kߑ``"ソɌΙiB`flw2WC^mcYV1T!8'zA'V)As45ݑ߀#k/՚V[peV'Թ5x-iSK>]PdXRaO'Ʀ0v#!2<.6O|]Nص;8~ ,9]w2ٿ7 lFcH'@ˆݩHwPr'. 'JtlG_uĐ! hh7zudwk$hGQ+_ Ûi (x{o3?=B,+9 .ƸY4e~hu 8(-B{FP ?Co:ەuguF+HriÀ>\l?]m_'D/o_`]˒@V-*iИ!6BkjdvW0ARb0[_`$9~~T6bn;Zv9F?u3NcaX|JqVed_F!R>lDLL_$kډw } %^RQ/pnZk1 0z=L[{Z9y.Pkb퉇 vIF E8`ngj<7P=Od1.: v)M3W+ڛDY c!`)/sP9P GeXa\Z鞱܀ea( 4TӤE4mTҰS) hr&t`Q`-[Z)u%`(sDGɤuY(qg/qQ#zN=jK/\E ~Qo ګհE=Z+ÙCf%FAhSw[Na\"G3Fe?F3~gZ^ĵڗMTPv*zԠ }6DA!Mu~4G%}}Ԥ:(pkS]Ws G "kZcvlR uu94{Ye,~I<5,*zQ<C]p] pIEu΄k3Ma௛F(gx $YZ8iYE_i endstream endobj 54 0 obj << /Length1 1534 /Length2 7529 /Length3 0 /Length 8549 /Filter /FlateDecode >> stream xڍTl6L#] Hݍt ˲²4H4 HKHK !!H#ȇ>}gݙkgfc7Sw|@)p،H/7.) uKW2BT@Ȼ878@ I K! P?n) jh!ln~p⼿ t@H'݉` `B~qB"ݥ|||AnG9.^0xB{ WȟqNP?~#79`P0y w4z`?f_DPdA( SG"y @. @vw+ j#==_- *^GzO'f]n> (W^&pDS寐;?>G %E$ (p$ yCH$(࿁[{( 8B߹!G@}V; >O6QW5ߘ/ OX'$*AfAO& ػ)`KN?;OXo߂Լ`0o\04논ӿ7 ggu P/E5=P;#S ׇ"Nok`P8DU mSor8>RvaBb IHT xݐw)n_7*. mIJ0ߖȝuo=wzmwE\;:w2؀weߕAqk`/-һ@ 0œX:¹>N·o4۶Y_;6/l q>Kyt;-͠GvϾ(6 0+xviyxIꗐ]6 T,EmԊ=K0b. pЗhlpI+7kpYPJg7}KjSұI -ekY ק]Nm] wv )Njtr'km/SD|5yBo` x=W ؜цN L>hv˜mǡՇCIB[Uΐy>{+#˾Ú3GZS1{0p`θ+ j:[SSn][z ʆ|3V:LV&}G_rkw|p/b>oWT*VIF>@ Ts <<%#l4IMiUՇ2G䴋.rSƇC3FWŻu|qz۳TJFOtNdFyO;j=\y?vU׷OiăĊMK->AP_q.$`0DKu>qMŸq'h/S|W 2W߲+3XW~2IyMq6J$ 9h%^P 6[XI9{t7ZR=;A&%׾CL(+9?.g&9KTO{0I.w!qzgr}Z \*qګsLbdo0EO)ܟ|'cv%qd羬 KDj*r`^vd2D1B61E7Y* {P5)HOi/F}g"-KLZQG܂ZU`\ ϟ/1Ƙ<׬f7Ħr0p֚&32Y{|uq}g %e~I5*«ϱ|ti`r5} έvZ ! fLE v7!Xs&Mxǹ#ɪ@LFﭘ٫1ɒΞwNmCxEY(㚽ޙٲH0 ;2/jYӶ ৙lzu}R{F;`a|ax?DϊaUFxF#~K9ޘyr]tC5_ZY]1Q.uf| 7bnYyyI/2(WVEx>[_@箌nߢ𗁬Ѷk n {ۘE+}(>Z$F5kSY ̑}dRYMa'jO6ɭ#Lf%N rf쾻rnb1DَEOR܋G`e۶٢ * EA<.|ZӲpyU II\o,0 z`Q\d?'g^5}"6H TDߐpUA!=BQ8s:OLuxS4["}rӥ6-nEEq z|{FxZ)a cQPvmɛ6ݚguJg)$chդQ<=/lSC%JuZ[M?ZܩrwZ$)-UX@';3> )xEl,&! ,p3Eos[٘vɮm>7_#H ]"X&vҎ) |R(k@6 ^=>eeڝ~ĮV*LLM8wA9-.^g;pZ{ 3gHvw5bph4P8gBbیG_ nʬWż"!BcI|zO͛tp!E`eX\!YCl\$;v^BhuAcx3@[4րt{_**-,D Zn[Ym-٧Ч5^_/]aQq9…ˇ4Ԉ/ P=b[~ z `KkQAKD-$rqôF 2. `cLݼn yHX ez4Shg6.E{n5P^6L[W+E\/?Zq9%'c2' y.!L3"h#Жrf l1P(1Mt\2"DXT99Kz؂Krmk:6AWQJ^->YYu-n7F @]eA2n|]/Y[+BuzsbI(62߸q2'o#B^E<ٙR)|TqUk WS>T7ʯR\*ziqJN74wӀ:?Ԅp|4A*W_NN@CU Q0C31&zyZM7"&eck7DmKy7fmҢ򴒣Dry-Uky)QQӏ3ro:s7M5u6kJ#z)jmd2 Eǽ|jub.3LKCJ´"h0>GÆli68qF9aP?zW;C]KmOncWre!(IcwK$AEPqJaڕ ܻ )>qZ:/ZF˳~-bȻ7|m^KWI+ja"ՀYE< $ǼX 8o)?,}R)Zyo̳:ш>zTCl:/p|' qk)K2cc҅9P"qB;Y"=䣦)^\_ I6D"?/£7 `]>Kw (X,.zlganޣEkY8pJ6n؎U@a! Wn X30U>i-=sp(q{cRJx_ؙM&exDI :)tx c%%{O) {'"j}DIC}|uNU7MQ_1G{ӧQ#1 3yXҶBZ[+L?je.4%/k} 3ALs7ǪQn/ C􅀱 _G^۲Bq]R\smWvi 'eHb2.W8|ej7lyg]S^qԼ0GE 2gZ2޸R EM G4ꀟݴn f'&'j@&Dr>ظ iU(XO|4ʂ)N5I|zӔ|/O Mub8I+}j m lg iG1gIpm'r b t"_իCEŭ;tA Ͼ5-鑬y6A"|T'%F9Xx~,B;0TFIrfm03c(v! m@Dh,Vt9gS3Rڇ"p_ܐPxU Bţec|jiL&9#mK|H*^;j7n)bAGubngpΦ;{vO$mƹQ-xOl'Zۙ O4k~Yk״+56^@z++}#u2܏Z;p3,᫹Z5HCϠ^sre (T8`IzY"azcqs\D !osA?!O؜odEiP˜DCiU[32sI`4h5ƒ2"JJf˜`@K2X,OrLYEn h!Lb fKa{o7Kv.#G_\39,HjivS\Jq zLPB5M^%?Gk'i//٢cGGRu"r<Y p؈W wNkC1NJ^gXUg[V{ t |p28ǔ>Ȧn=/) f_䂝XfCeaa4G'ykۺ^Qn2 F# 9@Rl z 6bS"K;"H }f$y3 y×gO=Da>RH}Ԭ60E>R}PCAwIQ ey4nChj3jl37+C[,ڄX]úfr=4cc@ W>]f70<˧H6'X5Lf\:{9cn,J[YK*4-4Tiq*!/AGs*me,EX(9f?F2DD(|1ǐT݈r+g"Zc_$k] 8$3]I:+Ċee0,\v4@oC wߣl-qzV^†~<2VOqxqqI :. jKlwC2 ( yq)W-:Yx&FCJCǩ_7Y:a]{}ə\zŮW> stream xڍTk6 ҝ1J )tw4 LЍtHt4Hwwt7Ykv{{=DUMnÜ89J|nv.LMA0p:=$M03 |!'!A i(0#&lepLN>1(ln (:Y'Bps0_!^Y;9 PGv03+d P9\@_M*cdhZk-\M@l9>x8,@r;/cſ Xp{ v657CLa` TٝܜX0_G)bj`;sSs4w99;!J e) 1' v?0Ͽ%fa g; l A  7skvJ_ =vˇ"@`K  So ;@V`? ˿;p^p TVRWWՉl6.^/G(࿳Uf Cl0K@Z0fo?&$ V3ԦP0o:;=_ 055J 3rNs `GiBdnYk2R;m'&as8>0 08>R f5a\/Dxr>7@vP7Fy@_H4 EZ9@ B?>$1?>r>>>Dv>Dv:C(_-6wvpxX272ǜ l,tegIbfuhvEg.p.a]Lts -Z׭qf#IpXe5ם-R=yL{g~\lKNʮM XclQZ&&ɞ:QMf <ލ詿jcX˱\p`S{tϹIiD'ǝzg[Wম~"Գ!04 ˭yfj}g?jܲFӬw{w.Q`H[8 9yݍu}gLE_,Wbž[7uhɆdo0x03f\48yg)\$m!gR!َdiKDlFj qP*+؂0([I{˹fXl2J)n6 +>zA01d8NPE@o,qȳ]̖y 0Co0J fXw˸H'g*1@ A>dF eƳb(9/?Eu fժ:͂G,:{xGcaӵv-1fH`Ggê6R{Z7עСDWN#B|ةx0ҶK p{rW'$Ģɞ m"xt ='ا}/+MPd\~iK ujީ9ﯽ.vndw|P L.ª ?YМ 8HܰD`ge8s9֨?{%ZħDADvt֍_Cξ(ziI/%MF tA[hFu45]/u.iG.%Um_@h5_|l\kQHyTvo֨}?V_=&`)R%ڂt9,y^ޢ2T+$w~V2%L~ogo檂ٲd_7J/TL06#}^Z!辝qGkIC„ri/Q#Rln6%?1q- r7/WWm>ml4'&rhf )%fA AMQj] dJ,0߇9jZ@ -_}!&$*9+<S\;$?0CYj =Pأƌo679rT0z&;z{ W.NI3e }'sA9 YUg r U,S'W=MbIb!j:,w f@*3Uɑf 7 ޭ@I'UOM͖!<~#VJ$OuhsmN0qZs3h'7vst9.j6t%R2Ctן $-f!5hJzqʹWpҥ/A6f ꣍&EO jfqm:5٠iLU1 ȗKLt,y+Fi\[+,äI]HW#h=0VaukSNrX.hʯaQn,ZPL;:J`/u<ʧtu}+(3ĕ{T3sUkKyܧW^@lɂIKŇd/tH|F5 #|P/;`ء<ߨŽ-ۨ{+s{VrjܙwI1jXCE Z0xv {/P$Jq3o>BLrBпW!y`EbL.을, `Z D#Q 1ۡi/d zqhռ`.kE@G}W!5X{iõ hƽx9˼VKBīXm',)s&)PV80gVi2tbB =90-&ESdR!_ަFiR i8sI[mQ*%&wa[3*}cDCMƎ&e!AD㧦>8n+jYKpZ>mΚu/jQeQ@{۪]%k9ypd鳓6l PRS"+o#-_VY~Մŧginaw7Z7qQ(#IɉSgp(ibӐ3MW%];?Y"b) XLKE_,ĺ?"B@WUBNDHayi=FؑC²Hv[^s+҈ 3N[WW:k /H+5xbJ3~]ȷjA>_ofԊ˻n%[+'jx7] ÉVq!2;ɉo֬F|Y!`RKY Npro+} *)60kss.. *"YuT%H]r!NdʈѢDX^k㬙n0*U}S:<5D|ɿ/v+j3sl>||JJi+?M7I*{5W|fB:&(gH#B4OLnrZ,Tp'< Gq~I#c0?!\n :Z _ =Ȝ7\Ya.,ltvm[A6̗zi=&/+BSk/M.Bv=yRX w {la*i_DH_.F2rӥ> _B-?ٽ6kHz7"؇"[AU!*Pە7Jl:^acy<Zң?k~ƹH0DȮMĉV }w˺!m`E)i' gέa0P"VpMHڙ܃DXZ]2MTxOH8:2&]|𼼠EKWK ,M <&T NV!ӈ;)Pk&9룬M|yݚfj7] `Mg/ؿv L£@nvyO>ךK Ƈ(M,ʾtKauKRW^̉$S%M j=GPA;1{tmmt{Xg:Hh"[#vJ(JYD>nݐICiD7$X{wHDd8t31?CPG?gL"?n 5۰ C 7,>[Wpneugj⾋MFW"/|8];R s7gloO7M xOvBğD Gb`ݜդo8ey$7K5˕'HY|rntܝ#t˖ӾĩQ$թ|̋Ze/!ղ$t O#eu}1Eg"Z4.1yB|cTv xPǟ4!LH9_2b] m=M3~F#c2cDXOPG. 3S2A>}{"ӴPNc̗ll2[M$pNK--hCm~u\jbk4ymC[V@w-v(%s<ӹ/S#UnDn3seؑ#gChӏ՝.[Y(yc _\~8ׅX8h9* ID1-#RzۗwURg'%9M.2P[o^{qW_2̔WiP?ܦmհc5&N!aBU <"`<—h.W:]%)~ٔ:r {pɧdWxsAQiGh7Rk&BtR!z@ YJZ ,=$eg0SfA 1 {^#%ܪW)e,6J2ƚ5+7tehO:MH X1=e'?m/8(ȸMO~ HrHzR>23g TEѰ}-o\u6#,X`Mlm HHnu>e"bG`뮐#t48TiaҼb- /)h$ #1]+20@dޤ؄"*[b?q7h5֏a`v6$_0,0*xwKS8*QuѤ!~x,٬k\~=^L=p}ۘ,-U*I sʇ,(,X-0P-m駽>*5-EptoQXc;pqWra b9Y8ߴQj@ίs2uUwޡ]' AJ=z{UԽخ TAl3 *W4.=kȽlO=8jb\_H&ι2>\x;B]͕d^C9JkQ`Ttgݖj>e%xêt#c4R-i-nݔ@z'{i]DzN!XD47x'bU/& Jy"כQ1 mƑ|$8o $"m|^#Qw uKȏ 鉟AqbT{7(ylIžF@@zdKd(Ol=%׫g@[Wfኪ#-WRew֊X@ (O`|gO !WtflJ )^ݔ9Y8HyG|n*R}KكH g IYALg:X\A">eepnD`uW1W KBfKz3Y{J#< GE7(),+U/(+yQmf! qchU_vi3 #(4,ݙ}W]޿ "IMmQLOiwqs3q2'u iLܕmi%)!q^TQ:Cet]F{ȝNvZ熣| ȱT{$#~&J!<#3hDՃ&*2% M g_WORr@K ! f$ؙS0T>DFuԳC@7͛xe:H.~Y}qݢ7:w Ggz#҉h͓BGQԧdIP _`,59}}"Ư~hDm+3LMQs(Q Ea() qƢŊb6[)sgf4,Q&k58 z?Ƨ ,"#d? ޠ_e"Uzfė8u. )12B-G>Zq'e1qD-Ia`PDL\0hGmhgW+lɎT:B~qKC&"omnt!]({E & r{\qVB0o>^v]8UL4&%m}O-p|d@$Z,Qد|Oi̚B9%m!?d`oW4C٘Q *E{t!jrL+/bٲ=*ĭ&{l>u%-rHt1m[?aKZ,SEP!k2bL3ufUVFIߖb-w9e}ψ=UB"1.ggUUDtѯޞȠnY8tɗY9. n-M\rUNz'}jφzF=۬MzE,C5`u-!iJpշ}PﰂD4J/Uv.Õ]'UmXߓm)TN{{,-i0EO?P,9|0$\cv.3Qp_UPZ;(ufZ0?>cR.< k&؏S](]'.ImKIJkQ<ۓ Eo9p:) tnwLBY/#P;/,/{{H˲.XԄhە b?* ied"P z /Z_R\ʔa bĢGTɻYaQ5x$؜1 a_AK: endstream endobj 58 0 obj << /Length1 2416 /Length2 15195 /Length3 0 /Length 16613 /Filter /FlateDecode >> stream xڍeT.;ww-݃]Cpw@!u}3?f>~ނH^N(fcHD QVRbb02322Ò)9Zh`Tf6;DMelRN&;77##뿆6}g3# =@K&lcfofbT&..ڿV@{3C}k)=%@ ?!(?::r30[9؛Q\M_@{gwY}+?ÒLV);K3Cû() Zm,-?03?޿Yohhceoffm06Ĥ]iF -l, *^ &?:ڛ::;YwAZ XY`'bf4|?GlambYnɖA ()w ~@;Дw%7[_J>Zv6o߈ q N`q0(л'| _  `PޫVAA\=A:{ {}C%_b&?L-c8jb{mhc~XY7,XZ cd}//Owko9 3S8LlMx O_?do-?YC[;YlLeS{_FlCھtsRL9o*a;'Gf.ܘK=6L_ ?]o9ͿPz mg/:u|wWw)f1t__ al ykq]&XؕߜYa#-Awze,JpYs83EGM*5eAbpE#9\,:PPQ$BqN>r_BSN]1F`%g H\ݫ (٠88%(˫;\w.'a 97)h '8H!xEo~_\8cz wx/ӎݴa(nh .Kys(`z Eƙ[$#m]&Sa]|O L%Σܳ8JN}g%(/QffH e?aH /MI 4b߿Ycè?' :n"(I i>؃ˉ};󤙢L=-*ԢC7m?㬭qS_T7)3D[~:]yEO7IP{j {.լ 0aOWF[[;_%ar9,  r%M4-#$5dNIF5ܒyez OسbU9 XgP܎<] ; (~x!q! "sL G#Po]`G UgJb |6Q.v%sjWf\µF`G:W>f#>VJj&"v+1h ca)Y: Jtv"2^pRѡm:])|K,gÂl:}aȭAKA[XdFr\zYNL(4e+"E  =COuYr JIOs?ѝw5;:N0ko4)J'>}~făivwzAXbPUZ| P>' !PʫOŲ_ Pg@LD`gYt\~YQۍlGK;^kitaHI=/Cq՘i8ڢDZԛںz%.Z@B\)y} \h,025ZHx{{B&./8YP=̩LgB귻a ˟n$>FFh. *h wV ƓA0:{ZvaHIsGNpA|54#f}\M{=idB!3(|I9&vP@Ks-_M$bއ"o&\.璸ÀSydҎddaLN_+) 3]۩V؀Z#@/*+0_k:KsXhG<;Fv^S;,'omFqs@gad8Z֩ Ab1lmX p2CяTy{pT,]` v]#e_z|>ʟ}MatȟJ 2yUʧmnF-?tI$<h"ܧOib'G|pneۀ`YUrB.y AzXK[4383%MEI~Ty:uTw)Wݖ Rk# B-N]e]kƯ!N֢DA׵nӶ=lt+n=GګQKWe PYBjW[FhIgM*&~ql ⑆zזYu* EeZn_>RPBhPFdrOpG_ћɞ0n:;.P~+}i%)YQ7| "]\ʴKD[re_tVP穆 ^9dxIbr ]>j\3JoZvDʞ2Ss&/BR$>+Eꂜg]x!r1Ө$7jt͠y;y\}FuNO X\Y5)mi`3d.|g~zԆnǮ#QR̪pL:񐳔WT~>$c_%TQ\l.ze5$/'-8iv+ kɁ2\7+} !%=:ƇLL/pTStwV_[wi$tY:kiMpG]E15Mut( Znpcv'YcĉVKvS J0d4gf-ͯi"31`,HkfIAP.8 .3 *K,X A)u,nYkhw=)H2͍^ɷp"تl~mGTt?:4eN,Px?th9ⷄ~^.;>]ŋ2nFްQ4҃jO%Qx$<A,jgI m7S=0VwKZ5'1(V&ACS8Ȱ| L # oCio졿NoqRG@Q}c*E %q=@ 3(ZMit|?}еi9L6׻ RnO!w@ء*;tt95C` J+ AiA˺ïT+nt w8b cMs/@y4'%~ /^q+/SdnX~~.Q (-iҭ3#ܯ?uS{\;$8| }b1o]R!8ڝvkG}KJn|8%ax { *&2gAKlɃRli9W"-X/SrHxa'T ڣu/m!c tWT>61~bvZ1w2T<qd tB%MY|e> h\j/fKGڪ$5So.A>0}ne)^rr`Wqt6l0I*7eEI=Ѩx47yHc\m)Raf Z0nH( N y^^>@HؒBeC(ב- fa_X) ^*?$6BNp"`PnnțlZV&8X7:AXXx;6M5 aך& #o贘f\R6Xa!bW鞱56r.dh7-j+.`y.$vZKnVUo 9'=* Bh|lԟE8I9@rPEc>ˡ9tƝn.xh]M i8gq"^܃9|tJ-݈+#iQ:fqCl;,SIFɪƥZ@A쑬^UQc/Љ,Moʉ*@,M@q5EpBkR8®HzJob8 f  ˀDq u`˚"s4$  &0,wijZ+mȹrm J)xlă!Xky dy0z2EڇC-q#_J}xT 4qwӑ} ooB7iC(VҖߔrrNe9MZOTVȧ˪J=~iݼ#,61$vAg4N~ kf3 ORGQܦUM~]u)F}{Sd*}6+g,~O/ͺTSMj v2,F6]DŽ$oh.%&DCvu6>&#g>Kc5"'8EUSWfjP,[S:כA(ܲ9tw~ #zoC85&6meK'[lKQsI1u̥(Q` 9P$9)~}!zJBZV}6` `8XoÒ# EqVu4SJg Z$>O, \YT$ZVogOhJE07_W8tC|Dz޿]+f\*lTtbBu:q4xrR#cao ҂wUIܮ1XLC$?*t&>C gnӽ/!z6Gcct.y7p  vAR:mbP]pE+00KDg8}!}bx+϶V ʿ.C#cXOVxH@wmj'N:0x3(;հLJ*Iꕒ;yUiK~uh@:yddJXaxG {u%κ'|AaGhja鶡d2jcH4Խ. B'K::eMr]iմSj07/bPkhLq`Q9ω=8WsDd䜻[9YT:Z_vLCj' c IBKo]IףjXwƹhr姙ӐTʓG(c!;X #ΌO`)3a蚿wf}Yu Þ4o{UF 1ATMs[GZƈ%(IðJ:(52F'*>u"s5ȘMɥ_/kW(فli\1t(L>W> ک8}5oG7mAv ǀTcm')1"+eH5651#)FU.cݯY<]{'WflES_b"I~ 9EYKU3+EPo>d$dy֯iri?&љQw:ȫe}YO+jߒ]+1А@gO[]?GC-RD8j %< &ϧ[ν(%:cQdjEizs]5rK/2)*)tzR3-"V.Ge,k+Ӓ6֫wx\eEc&'yQf&Fɂ(#qn3궔H0~bUM!{3SdH9sB ;P=O3P?1M  p㕾V*UDž!dT!ZVv.kI\ "f^ +uJSn*egO[1%zXzhd%3q#a@X֊qB 2hM߰1=Q'"_cO}އC}Y#+ )c9hpMȇ<Dra}6ODZG{i62)I 6<lj8|_5&s0Tii:n=BÜJ⏿O)Z-;lATYvRnɴrwwoS<ۚ4-3ɏPWo1-#Bji< A0(Sa6~jL&YCamxcqn$}3ap_ cACOqD $)\CX7h#0ªEB;pA H򀢳_u` 9rqS˳r~F_=]ֿ^܋Tb&49 =CkLR7[*K9lYy!?*9}"E]}Νbrƥ݃'682UN|%3˗P,|{$E^q(拎pv~9Q& 2Ʒ," ̝h=2]+/z:ѷk#~K([FqU`ѥNFAC/IvCE/=]6c+t$rlUAAn{TIx׾|ry!kK[;'^QwvQNt . G.sT^3lLcH9i(tYћjebC+]u"?~\˰]+tnqdeHG|% kGn~'ݶ@t&7U3w"i6^lǙg1"ko3{2^%JW>f1~n8yu/Hi:L{{dٹpg'X'~VHZSO0L5m<ž6q\#9G gkD S >H8ӤY~xΧ3ʯxNOdlklMDd܎&^s3`ذPTh|h0S OvIS0;o͢G"hbK P"Av}w(b0XJ'*>غO>hՃ3C`J62RbwB=Q7"?H05(p;|l~4} ޱ%rCg?4C :Y M]> suJѿ}"* _\q,VX'&XkG#!4CD#ؔ^>Эw˺lvι\BPDWzAn *Ox+?,Jn6|Qj>})Z35Vq3ܑz+ p}h\/[{fsr!#ߤ&%ONл= [:0rVN~X«Dg8ޜXrkLr|L"&Q\`{Mj[D#4RA 3˩XO]w{1R6GVQ@y"fm=!Ȝ% ӛ|ug.8 .IŔU[fs"Rr 9iiL RN |SDC. T1i*? uƅ؂sobAvXn~ϷMCFD'Syx!"*B02APZo1{Kf5zSkH!ZL(  Suxg=-)˱uwkg/aR +>SۖH(k ågD!#ƾ6YM++ZH`)?cZs7Zh~"\rx)vR*#/2"]#>B&R}t^MmT^7PF9Z}$`iJ~`jeo~Ǚ8^ K>ֺjrmsZ QFr<9Q`  ?׈EHH#{o>#T0*PxpD"@:nM]\1Gʱ-#Zd>u@QtѤ$凰Ҝ2`R&s -FJOjO9|zz~lIާ /Ol5"h.Cbx~nb^L,%kgMy3$1Gf0sg]Ba]t5ɫjlrVĂ0<.`Un:0s+Zw@k9xmg!`%Ro 2o"m1BGgq,fsWdn ;l\gk,[GJlNƫMq-;|Z좽O_wd1jeϘp4^ai*l7Isxv PT`?۽P';  -;aU&^CO"KBjE*7eKwtεsq\jo / 8 I&)&FcsrLYաyej7GđȘ{st}k miۯK=wgď pO)@Re5ᰚJRcx΁:='$BC>w;ĸH41#\rwud,dTC&&N*wp$nηD#r 5 &Uh䴞N Y/Z.oE^_l5+Վ,$ Ƙb em5+IN`*/1y0?*"Jk]7?MpX6<%Wtn$w]{jyPޡI=)RV"ka:3׮~#_3ˑ?LA F`H`_}" +ބ{Ĕ~9@ UJs~Qwt!p0^=8ƊgwZ^TgjYJV^{uoP7V# yҊ>R: ~I;Q%/v.L~m fgWp%~]}*R`P(#H6N%c3mV/mL~M}>wi01~ ʯɻ؞DA嘄SV.@H.ʊ?QDDQԚ쮧1Wɜ|QS$U4\PCsȨT0DsO3%JL2SѪ/r#☼,\)RsN~.N'Pɖ`X?,1eQ .ZU=-Dʤ?S1lIjyfЧI 4d%J1kWn [~G8AWD`|I$#h.˽1_6 |¨0+%? n$oս-8SS {:8ym܉=k<{Y72&dGWʾPӵ$*^ l%Vh7Yt{WMW)po]q}^qLd`A gc6Fq""LHV22=ţIMjQzlꖓ$(aݯoK in$fa g]?kR5@=`j!p>FwL1N. [X4t[5PR`9SIQu5ꧩEb5B#Њ>,Z{H\{Q湤"=^%#}0d*aR,p7snRv#Wgy} ǵƩ˛#lkH.i6nGU>g7T^\=$@/~Dg'?me%}SQGA^Z5>Uj,Klvhֆ74 T@H^LֻVXa0M\XQdS:T$q~j>;-mS WKrQ)Z jzE.9uMSD潟B;%@ҳ̋u.֒z6v-1 +x3U}PVWḡtOs uNYRR'+F]6m|Vt^x40P}tV*'f̨?>°Fɮ\<_ 8]~oDz=6 Ĝ1i4d7rC,>bWJ=>;7M8Z ~n+jd[g1"kEvg.D܌,͝Wdkz; ߻UYsP`Vxf5>kN ::?mpz\žw ]"KFOzS8,P4Wo)h3ټLP>)gA0CfaJR{Gk1DVHD@jpDڍ>/& o6E} x(l늶. =Ի8iYfdAcUXҰ Q?dПhM\k% /7fsL-?prr,+s_np+m4FҐX]3Nn~dAI.I"F6vvU#LT#q薕{Q+e"ENE=M{Jv>0{Qwa($kZma' B@vמN#Zp?qp{m9G -wpcd m^.ASȹt8vC>KiR:K_8RB#h {>PHÐؕ|]s}7|2ik Pm9; @tMMr$̴ :bfjRj(,k[)m`ּ̮iO%XUPZ7 3R12ŊhrYs-[tDQ7ؽA1&K;?X7{%^](ZC_1N|ydPP$ƥA v|y7_,rNJh n@G[,&s깋>?r]*Q.%?D_n_I͈EfKóC53dtCU1߇ 9CP2e1zӍ7k w'\t洨g lI0ԊV5DxWs Duc,"]d'rzf1AS5,܌61 Tv`d 19T`د7fw^hѤ~iSbU*BVn.!v#"\H.uBG>rdEm=Jt:I煼qtv-W^K$`?]Ew?9Cu Df=Y5ȂDž0D{8eAArN}0;& 羃 ߣH"]+唅z OXgJ 5%8oq@/ ~e#2FD 3}a10fq[s.͊b'>.>Os;l}#lY/^9}) tBto/- .[פJ;_*!w(l2?ӹQGk^PjUϷ˜n\mި\b;=&9N3Dr#fڦp?L IYfJF9%Tk3-Ia۶~" (#RCyPP\wdYlR͋B_QfB&69`&AELZdФ#]3*ٔ& 6NME\C6ܥRC[~~ sTd Aʹ)ȵ Gma:yqߖV}7bHi&{RVcS3_-R'g$kh1&yez+^)J4]#. ? jr< e'o HHSfhY"ݘ[ayʆ"z˽ڳ*edV2EH }uݧ|] endstream endobj 60 0 obj << /Length1 1617 /Length2 9977 /Length3 0 /Length 11033 /Filter /FlateDecode >> stream xڍP-3[pdp ABw'\#{꽢jVj{f吱[.NnQ 7AqmGc0{.bȹ-!6yK3QxrsxE&E^ :' vuC `fq-]{sEkK'.W fq{Uۛكn'A:@{d38z ?`[;lpY]O| W\<@ݟ<h|\] od r=+ "لpss n=z?<3]cAh^@o#4 ځ\lx,?|>++ӗPgk8ee>>7 y,AX[0@v_ \g݄[Yw#EO'??~Kg_gzB@ .K5@zU bh~Nn? EF S5~ad֎ϯdz4pw*Xm~/ y+m><g ؂~_ K$" A".߽r @^-_^> lwsi೬E~^$.s5A~sf!:GkOwG? Z-̂jZdȽ9x1OQ 7HCorce:ܬ=58q;ň-|mE`P҂ƎQg\zdk&}WI'Xl 20\XLz[lt ǩAMZvXzyǝnA2U f{ְVt2T6'NO7cUtR|ba&!_'T]Z/;VW5@zh瑒1>^Kj:=.F&3a|%tRڃ@}rGOjG 8~MIM펫i/kt6 W4ˣ,#˷"O]0N.겊aa0_T b~Ҳ3 `p&\Y+*%P`"qc@a?gHz◘OQa_cV$٤ W\iYPޑˁq($qC7*DmrUPl Z!7{|pVřXpuPݠ͋:d]5#% mTZaS]^=]V yxt6AM.cYG/g)P:ТCB4J.{Ol!0af/:@ǥMiE}qq1kDp#vv-!kEhaYOJZ~dD4ap}ighxs@ @Yd쳩͟raDtCpx.``QqL"jޭv=Hbc }\%,^G"lQu49oxv=Π.)dM4G}y6p2= SF_e#:sI["q4K'3f[)M,*\(#TS P R\_O߻Yl>Ы4`<GEBzjx̔( {{fQFs))PGt|G'58NrzkJ2*&¥`j{Ђdd{q801Dh`Wq> t w?mqNb{WۨIR=۰~eld"@0\+jRj8]& R=ckղίbL:^0zNzs'_{aGLqU;jw~)TyLk߭ct= Pv"7q9 dֆZֲcR ![I㥱}5Hc)\36(+lp7oTNB)T.\3d. Y=솈U=;䧗yUEJ[6{qbs=Bzsk?#Sbeټ{8毃ʉLq.^2jqj Q7ʹ1)UcJjNy/y{:gaک'@&mӒG w7eDw+:X ; 2b 4HbgO7`)Er;).X4!J=?G_6; ڄE(A[ŽׇNN ŵ\˟ĘҘyLQ]ќLzCDsSߥ3pLy 7F w Q5|X9)׽9).!^46L${z6^oAkGC,b/Ě>A߮ۛ5Aـacކ1)SoRĿ\QdssO%)f%@T=uըgqCGdai9dG6;^[ 7~)vkAaV%[;he%ܫ&ͮEy @ow,TUWeɯ¦z6LSq"[w*T^(bBykz*](?┄oqbծw:2ъ&Y!'\(`RWPۑo5ZH_?$$p cQ>O'D✕. _ j2C$oCEycq0 DG-"g;ʹ6]rtt\u ҕ'Lյq;}03^ƭI!''9D / ;ԵE[uvy\pyI;4J=HG_xhL6"*.4% Gz <chT/ 98 Ve#{-vh\N"-+:;v̌?'ٲ(?m.z+%鐗+# voijb0HzDAUs^A.pYt0,??}EDYPC3U_UaH9~Hv>q)Zp—dF7hԯ?qDČBg:dkhgV miV%b7DO;P_E)zxQ9 '9jQlpJ b]77ՇʪJۣN;b7(:.\;¡| ѾP vVq6h=v~蟗P|CoJ%'cCߏ,+")/#, ê*Đ񒒊IMZmhJ0pp> '<P3cf&ySw>Pl{vntܵӣ6R}n]rLTV)zPWVp,+3(F%aІ gQE8SqfӫkIHcZ^5~B8X5ҏ?. }|m"}<6qL+Hs3Fsi{@ͮRk4tân[jBG -%lӉ|k_w2 !qB׫zXcu;QT7*8ޯ݋'5SQAz49H2]n/*7]ZsHK7^L _w!1 Z-+y*(eQ5䥻ECx3҄"kn|ߙ%ҿͮVLLWY?kj ҈tY<RI3哙LJ+w!g3NRВ&V"ؕ񤺯sqHߊaGH|"-^RFC{0 20XUYdEED$ 9a'm$Fy8א=QX>r#Pw2~T.l'i/{Եi06?TDh4ײ+m2(xCoYī;~a6ocSe/61}ځoit-#5~_a]A꽐K_0̦0"Pu dlzXQYĮJRJ]2zF){ogVX}!U4v2`piwM?rLchK,5Dm| 1TmI Ev E,nǺNOGF S96=JE!jo4*"hgto}iJ4\/6(b=Hw]PjmJ.ޥ,,fEcyu/$}+(w5N\]}F:l*Vac oCM޼ra lJU)N*;k0D˪ra`(.;WZrra-g,j3 8˓Gdc0`2Uj'd= AhE_'ue=TJVV2f9UXy o}}G[4'3+܉t~Qb3Cu~* {?^<@y% \ѱx(K/v9eٖ~nE#!#]GwM!hZ( X[@$J%簊ʬI+$qb.I%+@!97h,ezJΟ&FxpԱ9PIFNQ7ksb*6Wj?'v uIO1Hy%\SyPie+U1:rr7'IDJ8ToNR>IkyQX` N) MLJe{H`. CChT$M[[Lvlc 1^4>=>-*jk8Td$y\8 r`3sS8)G^.|cApB3M}*ŗ)ߏM77P@ l")*m:փQٌw7 I63!scΒZ$c94hr5n5Y_(N)޷_ o[_Xeubt_A閆}L pKN6n .pF5cWNP[}&$i6K~&~Bp@dj^0-D"h HPPP^mL1<L| |)U|ZaKאځv(fD FuFcH|{H0: UtQ/_/y\܄%$Y7aM-X _5+|Ҫg$uhȀ_flRM]]#lxPc2na)s۹TCFQM5YzK#Jۉoc繴В1hQjT`BB\=%7U= ,7|ѻܣvJ[e;Ȣ> 0h<^G>AJ1u:dLs~1\x c! jPLl\;>-PߺvWNw䞠daٳuNeʖPǖE1e2yq2N4%!;`]JgM1J F`ۄt j?YtxNx:0㍪bVqbUJe8'aǭ/Y鈸M8&*P,!ق2lwZl"uKmtCw#{ NL/[Q; Q:?ͽa14>SPFTkBQz?{PeqF(F!H,NXaz&89EɇL5,Bw9F- ~/֠GU(kϦAi-O\n.ݞ~~V %Lx τ_^27N jSLZ ۠C'Q v|iA&;jN4Mu UVl@e|ft~ bVq٧ͲDdYRz)۞s47qxOF~}wy%H۷yh t☷ik+Gn*^ù0h2~X"3.4|RAe,a$d` #QѾAGc;ШS[M,d%{/4R>4vKHH0QͫxD8g}>ٚCl{:^QL:$Ĭ\|C$ W!-FO]'vOMU/^ NGLUnӧUuF0sթ_A:w/{+ '6v5AS홞L:ާdMYmpk\WGra\􈰵$Mat=[R쫐8etrύH㚮޹<ލU;o8Mbl.F. 3]Bxc0V ,(O-4LAQI9G$s, p N9%{ċ饋#KAmc*w/&?焠IL&e(V~_;%db%zr$`jԌ[ zr3.)98)KVhd'4|mSJ\m?沯萸xRK_u[rf-&y,mok]E8@'J-D>qTU+c>V)_OrV`MB Tǖ'ȄeĮpn/7t[@n WI$Va*DtJm^ҦpAe4\ULkGx˜^C3 >nf3#"$AQAAn3*w(X<Э*X k- S%ulb?y;vYgDrpWY<\!π!QKN=eu1rNILSMf9pC>陠b (z߉d,2@]P7/"z *H:ITxӦ^^W!қ6dBcMOfPm?`7}X6E>OJgx `GFϟni$ ֊>eۺ«3˳_:.SG5Hb2 th7c2s]r/C;xٻRI 撀$n{g(5sm5y?! jXƩ^hL.?"q@,#ݖ-@2\B Kjǯ6Xw7=y'\\|'ca#JPm%,FPꢏ2 by>p0? wLЏ|RZgH0tBBu!,^\6tzYJ|7)%)*31)hƐt4.e-`3k;@f/2iKuKb6V3kkI⚙W@;k=UJsdIį mk e j&N.Wul^V=^EȐe~OAuCvá(^5V~D|S$/PuAˑ&֐kK#ML'q֞UT(>h@F}5*#<&$xdt># ID4(on$lɁpsӮIm Lm_kq endstream endobj 62 0 obj << /Length1 2309 /Length2 16407 /Length3 0 /Length 17770 /Filter /FlateDecode >> stream xڌtk Mj$m۶'mnƶmMi̓_t[뜕\kf+Emmhh9B2 zz&ZzzFes'+0$@Gs[X9 >dN26Ig+HOC[N1@ ikt!sw075sϿr# k @ hhd`P52:Orn3'';N::WWWZkGZ[S^ j@tp* k` wi0$e3s)lM\ `(IH625027ܿ dn󷳁) urseh`hob`ne`awQGɑ fc![kk#_ ;>Nǵu2116 cg;:s{gm>D0d@' ===;#hEn[oO;[;G@osOG O"hjn'h/n-ct>&OL' $Kux0h,LlVVF70w1p+ُ.'aO׃dm? 3,F?.f(c3u[O/->cdl?62@csgp2S6Q h,oddlKמYm,zX.#ˏ1"6F-# +cYX h t{t6N.&0=)+ N/ѿ+Nb A:?@'_Ftb#NbIA|'}A  S>U>U>?O㿈#3? 1q#g_K_Gh#McS|o1R:;Gf=2s38,>d?8EtB||L?apGv8:I0|HQ1GP:~FHDqhGUNp?::V~T2~u`u䇫_s>>Wt,qY?T M̑쩥Qx8t8?!@%STel8 $"툐zC&*={+,Oc N A({{[vI;#G}ps(9_*R:K_4Ogm҉3%ʥJ;d<i4S&cz2c761&- a$gqaR6=-X & 8w[zt֞e w~P0*cX(YwO'R'gSZZ&0kM¯h27^%5}SvsnnJe"0PHl$#5Um =Z#ث*?iߘ5إ=\]qܭ %X Q,4#rGJj8K4i= =+{6FjJUtt{i^[osSn-Z8f`a~^@"(D$inl/|.d "ISVE uh/bTINDҜ|@s;blym8n_NWq͹eQ᪨К!5Ra#LR."ܶ`yGE Z1quhAؑ99J7}Tq5xZ=8;Ozn/Vo\:tUf^SӴE~TK̓[gY鮑aFy7}|~Q> gu!})NTG#CM`MYN!+f=.J|>H=yru<orȦ,5̡g"?v&.z4[_Q Z{>{ gbJ" ]=4IYCWTv~Q$ npÀN5{B_<׶DOPQd{fpʱe6@ 1}(w;i~wKb| rOe -we*]3trO0$AXRBR߻hP]E^XbsWZ_"2oX ShrՇ[в6bPMC52I`7=Gt`Pg>)([]@4Zo[D?)S O/ӎ2;x|d1ol$/,b"U.Pe8BO-YxI35NW\yac} qz~}/- %G]17C@>Uq x@4}B7  ظOPNfKoa~5~UAC*Lñl~rNZL^ї,[ߞ١6p텥:c I{ \ԣa_{b|Z]_8(ޣvSvV8m\k+&QM쪊aEkW&JHU "h[ar8u0_DC%vbSٿ/Z`l 6'!r87ѷ[R0mb'E(u<2r ހ 3'S8p ArA.qБnF?QHp$N!QbcW[x?3(+C܀`iSVc-qBD`w%#>(LJT*[]fZf'%پ(¥K%ɷ*-=p^M0qfl ihU$&:H㚶a$Fson v1n,'&> xS9;~0jl(z`]m#pQ@#vt =Ⱥ9 Ky`^ Y7x$񕯟*Aً50lQ<_jh>g;z˿&9/tKf_SE9CPtCr֫`"+Ip9u+ZaY^ [q)gѕrcuJ eaڱDfA55!-w&T䕆X&{i7C+WIi >Ta>TLâq܋*XnS+x*)+c|?=(q̀5cqKUu}]ߤ׼s$o2f=Ǫ.=96):8O4Xn&8yO(l3WAKsJJvrxxb6Y~Yϫ{(ّ WlT,%.(>=?'IdKzvU:eN]^4/ h.hPES6}iXk/4#'GXul[$볷a&BOSs\zf#X<-./5MǠiqiI6cAj!Ukٜ$P.D2iGKi,f 4ډ=Ur6d#/å_DCȸނ0;!Ydؿ 4VswlDy~ʳ)D 8Iv f u\dS}zXĺaHzq8zƩTVeDz.r?1|3L9 (5 0Kwk˫9Sa6:GS/Cj!%8F9w/v(?N%oi} y4) ?a5{IM ;O2,+ WAj~&}Y^_Q8@ršy)qѸ4'5/lHd#oXS=-c~:/'HEqNWRbouMhpTW^}Auw bm-c`:H1bEYPC)*d7rAdX@XN ziNaۥzSC#"FŎQRun|Y&U}DFUdՅ,w52$R([mˏkR<,IL8Pћ1 SAf 9s" r=KSs7wNiy9փg:$20}NbVP+v( P[1q}wo,Q> 5_S2ٶ` G;b@Ghlo0\`&5KگetmE/Ì R>CM~TЄb-.ED GgrF8%GA 妨ykaCbW)eȌBX]A@%0l9VxhXbxWJVevK5=)'$t=2~!1sRIrw}Yky^E: 2 B9C,IstX5ӘF#6AdP 5Q5)E tCy #>=SKM~u]✺Yp̍3^冓0S0v&>e}0Y:};"ă#FFs'1hr:~/. ֝[ fjv9pp }I=M|y#Tv8B!..i򡋃LîB)TOC[L} fSkhxN{<>2}PE[EU~:ʦÑZz z!?ޒXd]eHD8]`"FJ/J| 04bk&%D_4mF3{5˶υSǦ'2mIN#RFلN&!8.9Q"n_:>P9aO';Ro}oX?sT7h;ݕ16z,ͼTyqsgޯ5o`{,ބr?N\ OXwOeԘ>F~4]z QK]C|K /ФF)42!}}B_w`0 T2|Oy~c'YB2֓a%D "mCsnA.\34;,¯dҽ{(DG j.u2&.- !P!H3bZ&g褉%n(X'.ĽN'4Sw/Δa!ܙI%lzCk .iIXrNTZ_yd)XD\0~%&S4EXx'RTS54bZ+)f˲Ϫp1 5k{ni18׊sCޫұ$u]mm:*h DZ B) 68UnM6?od!Q(e>ݹBP@@1`t==G'T'p Hs$o`aK[A Qr לw{+!aL5{,*l+<ɔmհ7 Qu`#//I~8,[(lɘn8C~uC59­L4=GmB5Zup­` `Z tjMwT7}$#N>-_=b.teCE ٖϋYvh#Di#W}޼u="nwW]X\tZ2ĖnUPgjc8sFOeJ:$\eRڭaDR ܽ*'v2W?bswZ7&[gCA ~)rypثIKP؈nD>KH%XUC$Oz_w%ժT5ɈJtcaF@&ʧ Njy 栌:a1# ؆QAZ)S[BW2.Ҋ8LZZ#ھ1ᯯp_^i]ALdW_/DT<-)mBC!W Ƕ5H)#t8THfy]V ڏ,le7z1gm;4fb~B//#[Flgk}S,(s`I-"kL%9rs*9GM-.7mz^)' @wnGy Kdi.,*K;U$^^[CL#vf*-[6׫/Vr;$F;R4mg |dBE%Ia[CI7΂bU'jfF$@2_~|>F?k V)&aM}ewWyѻn&X=\J/ӟO)_{4a&!Z0jww4X[f垳i؍rDPFSU[AD572}y]m|r m.A)?$U=p"=GgF(KZvTQAC@1|+Z;nxJVJ3_I Bštw}ϊV'pTXH0l:=.S߉D^CZ`JC Z*gThcΠkͅe-B[g?!$# fy+P`:FW~fmad%441dS_$l嚲o5&t)/fqhgܤd5e~fAµMitv}A2&ƎU{h/U3,ꑁVʚ48':UUgGCZl#hƌ̢!E`eD<s`7sxUaA=nIS˴©k\$ 颒C}Y =4߱ f/)lbslӸsW;`H/kQ;&yMj{S}4hy~$W/cL{9L/teYEB!A-$`\6uMr8\َLU¯*FR-KDno#vз%(ܺ&C+_sϡ+i7 ђR&%.0Fvw#Ly`ܻML.U7PR7MxB]Dk].dz9\ݤМ.R Riо'ABoִV:]mTAdI Rl&pԋ5~9-hk'hk0[@m 0.'+ O$*'e nx,$gkixi}>{foO0I^Cߧ# Уc$"'@T%Wͳ@F3.ϫ#Z2#[uQ- s扈Ke.9yxsɦ֠bI}5{̔a(RU* g8B`=! +nl&=z(g~|L3_6 JDq:Ų8Cy=/w)ѮTE}sz-LYQ[px/zk_Lsy4\F"E!}/7YH "r7sqY9+囒`xt؎榢߀nڰ QqQ-ZZE5y+v΅B *鬍=cj؄~ )ؔάa4#bVovlSyo<؃!cG1sIw@ӽtm5FQn<:^Ϫ4PT{JSsr})vx PwI_Sll`J:]*K)QмO>?GXyXV=Am@ )Bbff`DGjC7k.w1w2$Fع,2}kzIm%䜼uHwgq;Rqfw҇g5Ll78 uQmR$քiő\4Ŭo$g"DMmSMܨ!BsqZFNW[Q^1kS@l_O%=Ѥ$6;F3ug'>?7]$h2A Ju;F1-gKSѿCalK<1,1P&}u'4>Y9v9+A;)Q PH2QA0SQvN#[KIbH{(v݃Ī-1N6DoзG\N p<ڪ\Ť~䇇FႝifMcz ݄Ce#M \O_DFG ^@dvHxtAb4ʛ3Dt5t.z ˍ4!)Fi3T%6~;*k{-}v~71f(gutnmcFJx8emӾ'vUg+*z6PNxO,-MsөP|F2Vl{|x[D lRhIL'xDpIEYzk EBSebM#*֘c^WU%9QA!id&0,R.M@6WV08g9NsV86)ob&Sb= ŷsb-{+zaqsĕPҦ hN yϮN_|?pSћ~Q.]1 agc8=ޣ P\nYG$Z y}혉Y/bMЉItK+/jT(D®O^6+SF'ݲ&;3?U`qi^4i16` h &fE 1یu[λn|ҁxn_a&d uT„p].~YX5ܠC}1F3琗oZb|L"(8ڻM>+ "eفeYEXoi@h3ʯ= ]͜~pD7ƳgzAVJQ+yc 3 tr넿^'A.(it A>w`FC R38cBcq6:`y_vy i >k{ǰ9ٿzш=7܍2quĻa Kz7y+h/rfmQ<#-LYqֱPU n텕%EZB#V,>3t>rԊCa®˗l-T ƴuvy`:`x44g[<ĊF^*9/im Ȫ`-2r˚`F+'Y b[cDflOƮgQho>K\7ւ-ﺜxT-摡 T.F 5i] :\j8whp6խИӐ_7"}in9I39)b<"6H mۚf]3|2 a{9%ISW.bcXpCM' {L;NO($SQͫyiغdnI~bR/܅*c_Cs9E+(LA|E:O='C-n ZwCSCU_AEC_Hg/s6,#:7u7XEq$G?]mREH3ibB'N8B2N; rK%Q\j67NuU)U^+S>3ـ(\"ؙ1)es;NŊKo^U|vF"f2(Q2Kpļ En 7ix@ӣYX1*=d3Ч5R3_ReI='`v;K3KU.u*MB-j/(W&qOcxn Ok‘1Yå^[h(5F¶bXjdHk4̄ϗWfJSm 1QN^׵; LZ!oOm}I{p 3oU)UI _ ʀ"UԸpW4떒夤f)9Aޣ|jDsAr'p{(_pD 7'):e\RWW `7{bKR݄C=; 8;Yߎ;FHpRL^y8u䂴O oؚsψgB:xAvFC(~( ]q#1IBS.!﵇|?*~bN`{vj#pK11i=H|+a-RZ"Ax{H&S?|5&;3eZn&!oFvB9(m*J/V4Yp݃8x5M_N -MY6wZ2K󇶤P֣XmN$)uGDIN4}NeѢ&9kt"\ qJ[i6td19巫: 9$lSɈtȌ3y.2sQ:PX eFNb derh)+ 3a^`۔ "J57ݲk1S 7YV1V֩/Rpկ?)iMA\pt:gTO9qlWDͦO[ 3Dt{Fp AC߈E>brVBxf0 V``,ZP\Nc6jף:sZ & IUWu{9_z_+PsG<{ӹ^B  \E2^+u X~Vb"WXkjV;:ҏ.@4!B(+ϥ]brD)0J"AE4uXƱ\<]+-69^+ɜ=~"P1+neTMGJ|a'gd#iPSNrX[+ n!N5r.b^zĈl%I#( ~R|l3oŶБ^EyIJpT^Yr II!1\[~ p>JaOx(4[6RS|_KܨN( ~"p#>E%x 8ryCq M<SIFq8ފS~*gi56>Ą ԺR&`|w:jPf w kLjP 5FTCXϖ ;#7L:w'%@.ZL 3%]i0׳I/"uLaVd-;KHٔM"_ĊE%{AwX= *0ZT@9BƳ3m2{6cs ̬A*N,QLIz ,g3M*ET#">/K1n){ b9#^F {LP+є;_M`+b{P{ȾUHz{^vmW3G'dAݛ97,DygLqq.rLRb9Lqȫ4 H7pٞrhPF,&!zWB62P"h 9?Y^ `)~q- ?/?X v>JBExW.xADiG!f EXYS,yY:+ p4$ct6ь{M^_Jԫ`8-Z!I| U endstream endobj 69 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.18)/Keywords() /CreationDate (D:20191029193501-04'00') /ModDate (D:20191029193501-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 2 0 obj << /Type /ObjStm /N 54 /First 405 /Length 2572 /Filter /FlateDecode >> stream xZYsS~ׯG|oٷT P~V!KF |=3F h,=29L0ʹdI%g &Sǔ3L+ Ӡ 4ނ9`bgE" N2-X)ǢQLk07h(b Y"V;FjXku`VJό12VĎq`eƐĠA5ŬdV `iXl@b \!e^Ry+< `A  e,Sm'X QaHBϯamU,t7Fխӫ 1M}:<]􇗴U$ڴeE@Uh`Ǐ \AC 5ĜUQ<߿cA]8M'MP:JlJkK8 d"xi"(pG4GX`%I Jԥ'#p(eXjKsn!eYYVM{텆V3Ρ7{7AXG8l5/a,{HȔ=85ʮUjL|h{/9ԛ==T"Kc)z(e\M=T>/ᰏ;I-P; 2!u$,fYtH2*RlO"s5Te!h^$gXPfBP Nl%N`ҕҗHGY ^lN)B ^m*$fU^]Z(ԙBGWj4\.bzPZi[̖yZNprD8Գ4-6dC K3.v~ba}ĹF*$ԜZRnۄ.=sN"?}2'F*sOԾP,i󸱤 Stip@5ϔe9;2O.sA+bޤÚ{f։J[M^:T)1s~yfMg-qt7,jm"6FtTr>峭^\Mo}v`pKq7\F4s^Ux~X vN^:(F̡3Psq-'|]g78%k~Ǟ7w!^rwb˛Eor>A f Wn!BS a 2F(o S46Nnqt?ϳѴ0HF4_y^O_7V6ç[k Yʳ?,YMm1[X&X޼<=:JX:Gf4XM|0V+Zb5j=A@.)eAV8y''2QQ&ja+ ^j.*ZkJ0K;E07)R-U?5E7y7< ]r͸f2:Ќ'rf0,2J /|4nڎލp=–U*.uvY0S [wP5bN㗄xmVTFF0~51[)u>t3)Jaw h{8ݚ͢Ml55^/~]NKoy]n'UVKk颒.6:۴[e-[lf_ݩ[m[6_+/?RْoV+R퍬%V.ŷUN~{mw A^<Z8(L|ѿ?gD3(O{tc-e[mџ,z^$oѻ rUu5Ns+nf$'?/)(Z}$մK&s)5BlB9=wMoAHНe';m}@w%i`tIj6`߀_4'I[߾b endstream endobj 70 0 obj << /Type /XRef /Index [0 71] /Size 71 /W [1 3 1] /Root 68 0 R /Info 69 0 R /ID [<8139040A61176E18F4072F20E6431C96> <8139040A61176E18F4072F20E6431C96>] /Length 196 /Filter /FlateDecode >> stream x;NQEDSQ/q;JKƖX {kb|Y7'W~)eZ3\5 Ұ &Yه8Ѕ>= library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) @ The Affymetrix identifiers (since these were originally Affymetrix data) are \verb+31539_r_at+, \verb+31572_at+, \verb+31594_at+ and \verb+31658_at+. We can find the nearest genes (by index) for any of these by simply accessing the relevant component of \verb+closeg+. <<>>= closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 @ %$ You could then take these names (from \verb+Nms1+) and the {\em annotate} package and explore them further. See the various HOWTO's in annotate to see how to further explore your data. Examples include finding and searching all PubMed abstracts associated with these data. Finding and downloading associated sequence information. The data can also be visualized using the {\em geneplotter} package (again there are a number of HOWTO documents there). \section*{Parameter Settings} The \verb+scale+ parameter can take the following values: \begin{description} \item[none] No scaling is done. \item[range] Scaling is done by $(x_i - x_{(1)})/(x_{(n)}- x_{(1)})$. \item[zscore] Scaling is done by $(x_i - \bar{x})/ s_x$. Where $s_x$ is the standard deviation. \end{description} The \verb+method+ parameter can take the following values: \begin{description} \item[euclidean] Euclidean distance is used. \item[maximum] Maximum distance between any two elements of x and y (supremum norm). \item[manhattan] Absolute distance between the two vectors (1 norm). \item[canberra] The $\sum (|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing. \item[binary] (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are {\em on} and zero elements are {\em off}. The distance is the proportion of bits in which only one is on amongst those in which at least one is on. \end{description} \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/inst/doc/howtogenefinder.pdf0000644000175400017540000045315613556146247021363 0ustar00biocbuildbiocbuild%PDF-1.5 % 5 0 obj << /Length 2193 /Filter /FlateDecode >> stream xڵXY6~ϯ0>߹x Ù7wZ]r*UUnRY&Cnjv:+<;_gsm:.|n?x-4N o Ǒ:.[EloL=ni]N?TѪѢf:3% XɶݸJ;L4,/KƪTadVeH \e; 5b;O7xh *b:uJSLf6WlOdڋ:[h'2YIT('U].&tZt0Mv'TN/vL\ݮgi`E"_G<ڢe"ٺldZ3ş74S$Q`G'4z!X*>v֔l;|<0ϟ1:x(xW0<#k Kuά-4zLG-iYdAVm9e(aS^+90CS`c<\tzR SΝY폩+ Mθ"gA][n% f!j:h=p Ә*<J EN ȭ)Q>%?θ1vko)b"@ot~mŚ{r;D Bc+%Ղ}TnMd"-p S8.FZsm{7ŢRu! {/M?PMό۱ɖd\甮>paT^L] ,ȋ:nGnP"< UnGT`䒷k\D]I[lmPQ̸SNemNdkh$-oT!:d> ƥǻ#G:H#u(o~rq[r, Ts!&]Q؏m(ȴM0qUʻЪ \{ 5Ǣyt6ХuZs1aEqYL$](UK$z^ȴ@//F"Wns_[{ɲlL 6n1߷͠F1| Z?/>&X/ 1|wL#瘤+>kf hիh#a?7=t:NI櫸dHTnx'Y\{`XslǗT]z0h?6n0wX= r9 ?J.ך!X_w!nɩk 0RQ5Hi@r=.S.EӎvXleb-6Vc 0nc"W=+pzJiUĵoSg}|m.=״\xE Xlh[K7}d딥PdXr&S^0PʐP<+<:۞p}~Ppi EwV?)P&|,־ fY/RJB}Х2RFs#ΗsJ]vѐY~y{uu%{lm hxD ,G%+@j"I ~TYVH.j!!Ip=#Q^!Z85%7@ WMC%hqh9dTY$9[ 7qq7wr%76O/9.L!5I endstream endobj 19 0 obj << /Length 2804 /Filter /FlateDecode >> stream xZ[sۺ~?Bo Ivⱕ9st(HD%q~}w  ;vih _9~[ JQf:y) +K5~qGnTkfZnPQMφ7L% \^-m*=T<H{RfϽ( {+Cj剿>E,]_5lVmO*R#uBM:>,kK"EVkgicg(Hȳd0RJijF1peQHpK<j1|S7ʍ2)74 ݙ,p, m_lF5os\Yȟ,zVK "Yl7Gf8%%;~?I4HyX(6j7J8@} ӣ;l\M;Eu azz9;heQgFitđ|кݜ\Rݓ+HJ̗ $~2Tx)>DdC :pwhDme+j=3: K1E&˾A`[rebY}AgN| W0uoVQ0R$'zKuU%Qb-2Zq%hS K&XP`3IKswm'}Li C~&뷚-7aRcϣ~IA`-jY}J'tJ*kk{MKepsރ1}ذnz(^mgjFӱ4'uHiT? d"ɵ-"țePw jTsTeY@U+<.ċazU;$[SvjL?N$tILqH,SZAt[}dKj$'2ύ&= Y"̛6T쎦dpZrHnF bOH@"* 4$.DA4{9u6Bf(hFM\}؀tMp &(~\crPeAT w( lpj^O,OLEشQܴN ĭ0{5LLلIK;"8G0bw R>& >̍KνW4J :N{xu2ORŁx@nUf@G랙WT[n!wbݜrm,}1-Q^D-;q9߸1ʒ^CQdU6^AUW|1w;[4QDLo;Rs\9%]1y+W$UE3]^!B~t ?ы.$i)Ǯз#   oцGL57vcC2B.?me#܋ q*t8YYFpÅgs>uI`q[UPK`BfBAv33fw%4f'Qg#xY 5Ak+넩GqE8>3&I[ZFd$@J.B=gl9lY\A)Ɏ%@k.PdŎ; BO ѓվ{!,zX >; '޸t3}[FeF%C(%Z#ZP*κ䌋y}B^;ݖ/sJ߮lZd;|ʣ3NX3U c<W'E{}_ >fd<>MjЏ{{$| (ͿJ@4U>:9 > Yn~$іD|!}bfq oV^sr_<ƾp9}wk;– ~N3CyR9 䣒)SLP86vgVI۵&蟿0DfNv.yV_^љPm>2T7JNdpJvU w> stream xmUMs0Wp@zkf&L{ d7鯯vrHi.^ϼ͋Wˊ8Z켟3gqk.wzż@ֲ̯wA$?uBWw8r[qwT*cTzBW8apׇ "?;\8HO;cEz-r[)P[>{s78*A2ij4I<' LL>du{UGԃ٣>?99H3'*avSC2k`Jjl6% Lh0pEVyxł,u+Ir'AgZ'0(smbZ[kQf9fqFM,oiT53Е?INg 07e/ܬކqF0h̓C7'-P\ 7+! "ji eYK-g-MBˉHUm'yHI+i| U-JOM!!VQ'^?=. l endstream endobj 34 0 obj << /Length 149 /Filter /FlateDecode >> stream x3135R0P0Bc3csCB.c46K$r9yr+p{E=}JJS ]  b<]00 @0?`d=0s@f d'n.WO@.sud endstream endobj 51 0 obj << /Length1 1637 /Length2 11082 /Length3 0 /Length 12135 /Filter /FlateDecode >> stream xڍPZ-wָCpwmqhq  !Hp55+3sgz{OPiHXA`' + @JYRΉLCe qKLru; BʤWCe@dgp *zZY `'2_GC@Ow#PBl@-M-_!m gA66OOOV+Zi h@ K-T[cEhغ[A< d rfh+TAN+e {8V@N:-,@'o['k* 0N@ҁY uÿspu:#a^,d)vt9AܐOd:wo/ /dediGlN. ym^EY vvv>^~a#3O%}6@Vd_7quS`ikmU ޿~?>>2?MZIVGW{|Yxx,<^nmNV`__%{߱TCt#vv/g?_ɺ;8::xm\w(_wMuA$u.H8Y;{n^ K5[_tKǢ9:n<-vѽn?U2N`?@oK~E<_uybxm`vEFl?D!~,9l@.? 7f5+{ٜ__#FvA_s|'[>4.|@ / jjIEzL_Fc-װw![;X~ Fk}(^jj )%6Æ5xۓ&a觕C sn$0z'$Sb3Ϲbg'ܧ wq(3ѬY΁c$bwo݋S L؆3+{WCs%ZrϞJ@kl5nM.;/S n.ϓՃTO.gx@wI9·2 EuBS*A:35.J LSv3 [Ȑ}"o #w, uxadyGv5:#Yf9*{qaWV?N"Z [Q%:P2TX%_c1ޯfM0ks~j+zLKWTEddVg*x@n.h~mH!SL4XBz:VM BkM;.Oi.83VDw3ѧ]eJ c''gb:WCnL%{n 81)cAӅ@K9(27]em<K9, V9d.6:K+bgJǓ\>dH&vMʎ)5d[w\J/[*uwC%̓EPaK$F$f]^k7ī<^[ߡ{V~TbB'rmFi4;jyJo\Ĩ+M~w텑='P8^5-=bğ"jY:-n>]iOhmhrd3EMd>R-akxrG!]F0+ƓzCֳ#쓍\[E7A#51`"n5M WÔHg h¡HmrۀJdp>SK=zy}qrjҲmeż]`i*h4W؇LZh3sxXwA˗F9X<b&@>GE݇ r+zo| c3h{Uܙ<.9?Yԑ3g6}G& Mi[uRnQ '~Rܣus;RHBR;ےs]%a/%ýQ4~ rĹĝ5@g$qt䗈H KAdS9d˔|ryͷ*[ض1 ;(= B&3%Vj]e~_5[DmQ"D6Ղ&arUHjlrͪ %ew1+:j|h?i3Rא;6=:EݱVBD/1quyDoZ.ꓢX'XQАjj*)o[p^,wֆ266NF&B  ġ6RiT9|arS#o:ˁ=3 N-āޞZd0_>Psȸ,]sOlatNI7PvMV `WP4.9,&0@,.)IA[O# :+ E>($Mtݷ1PЩWدmJt9ٜHs-Ep|vԅH J?}OVwMlE8(B;_ءs>#myT{xL_FGa;0_ryh,`Q2`59MzdQLl) ½<SC.J4ڙ(C>+ǡD}$\ 2.^p~ӏ(Q|Ml.r)N]w@ރbMN[8S2?Ln:ɽw @>mHvYHWܑkbܮMei1·#d_oYOHy4Pؖ"}H[ŖU 3{a\<ӦVB4;#b4E@::ìy=qeSi0S\w:,5 'kNG˩"&?\ em%x:X3TmXπs1Q/5aҀl&*Gi$X&Q49ϟ#ˤ]Ȅ:#&[y P00_P F։cMoCKN>K6̨>hR7"_Kt}yz񄷵Rw!%G ^ˁ6y ,@fKdChӨŘy'pVD_ ìYS櫭{!-=1i>IƷ!MSk ]lg ܥ\ϫrPl*=4iBU퐔=4 AXB##Ol<,6(_AY3( ŅcBn^|f~?S/ q&CVYgP0 A>)DXaHP9% %_2[/].QR ED"mVK=vߟq:w~2`%}\I-ΧN%hŵ`:צ\qE[Y5fa1:xu Ɇ=.piXonxsKBc2AT ɄӘ Q N ~ҺUY13Wlj*oL&ӸwWg`(*[SNS<4rjcVǘCo`(K^C}@_᠂V4ɓYj|g7QXx7j50o#[3B_gi 9Eii#]"=DBw-h\#{`Ө%h0}ެ$ڄc ozQ4\iê_OsNGCNԔJaǏi^N#ΓbHq Cr ߁_=9&_b!ƍ gXC BO7CYg_||{uA-я a#"*1dY列ZPӼE Mmۉbn\{1{K+'nqCN!DtW8؉PYJhh$;>OGT9ofRF[%u7lw wKu%ſlވUZCaRiȕc)\/B&)_GC[z< +Kd34(Rp~{۝ X  JKdvAq)c m˝jpL92Rʖ>iPmq R-u=K`|1(]7+Xs(e [Ldmou8ʓ!7cڌ-= J'k/vw35ϷF[]ٚ+ rWI?2%qy4ߡQ)cҢ.|&ܻG- %$cB [5 HwD/y>u:xpeHW3lS(J(U'v6k齺̣X?u`r~,hmTZWM _cAy3Z,jtQf5RXQ1E< 't%!4ă"Ru|JKQ7T?&C_VRTjYf˄Ș=KMtE!.壑F xL %D ROs#hcyF2*<慵)qc{x#;&9dB+dWcuxRG9Fe3=k+c,5rĀ :Z/&U?:ldplNFOH(Xdk8Yүa,|3ӪPJ[|Gr58CTq!s(jkxKlaBX3hP@*)\ðκ47.^A*>ݤ|c}qq)dAfLxDInmw@jwէԼFjsFv3yB.@V,,*T dod4D>s^u~2DjJ.:_ ǖ-B)cyVE\kXh,JާMTиʘ=}D}Ln%4]>Gv7I`gʇoP[>2ĤŒ/b_5aWZڠ "K U637bw(~x/Ep"*˴(pSǪ؀<kgGVUuDg_g暫f) ^JѝƒSɐמ,1liﮐ/B؏6FHf~S{G+LWm+{ p19*[/)CRfӘIT3pA& ^j&bR%;yr$n7Q]2;=nMZ]E1^ N(^CW4fyjAtDZx}OGӽѺZ :tf v? }5o-oTH[FSH{X_jVUW,ҳ,3wZ ްSvc\&єz9Fxx]|EL/ aQj*1cJ3!=8/Ixq[B%Anܗ:h7輰" nT:ZrsfW=oaMU3~x窐oN6|2ݳҌq?"@tÏBjPbcܸGv ?:[fŢhsB[b\Un8*TU=8/w?I:/|+g^bž6SJr1 W1wq`,?3(R;97c"Vb_#% 70$k%$7RXdPpS9JaM;ǿ"l7u&lQDRkH{gVꊕ7UUi5_ԈΙDr.f-  v-+t\+WY߈ P?{W>4:X0C%^ 3药ptk8e.7Kn$vgMny$Qј{RKCí_V# _Y ˪%k {y$ud(M4Җꊍ^D 2UUL: +ՎX{!xd[EO/P_>qc"t#Uسr.V˵klp=(LUƆg"7㎡"}"[PV0IhkDM%dPt$?d%|]-1NeU32> W';ᚄ)b5Oj]>tw%wr\DB-Q^6D^ haI1Wg} ?~R)XeQF]ԃء44̗s;#mJr^WE'\jOBΉm'v[_;$9{ {hdrx+ΘI'M%J~xl*Oqc\džx 3 ܀: {.lHQШһ}OhQ0D Oݫ,QaND6:Kg<e~Cu08j*QO%kͧ}z+f*f IetZ,?jwr嬆4H} ;08y}T"U[!Oq#~-꧆wBb9i(Vqt;Iܞ5f;=>}"4E#|عf?֦GQcbU`|%].uXVn=7FMeoGI#9=)REt]5֫gW'ة:p ks2#adk.M$#ڄc!2VYǽP;7@775AJݹtmQ| q]][51|#Ut9 ΉZL2KH@ck-](6I Zr/^uOD`v~3,ҳ1?1,/H >ݰ";{AS'l_b"L ~k(…AƥvQ@j~$#$Twٽɝ5gSA;`"='̀5~o2܈CXj:0T,]qwbz$6$)ɄLO fc8$}IES|3>)dTΙin4e8Q[ʙ-XKclZ:JA Q|@&@wf9{GDFeVk*Y(8?q?0/c+wTcq*]~C¿wsTH~½@>6_001mpXZBjqWp Mb%;;x12υh"m/ Y|Bw$/ݬ P-FZUǧ[+llg}Uո祮 AMnR!zDXԨjYޓ/8-n9L 8J'G0RWL4q9'S0;or.ÅА3n-J#7vMԏP6}kpGŔ4mb`cr zKD@L[Z5t(`8H ӥ^qAM<iP'%*' ]{2!o C.9,6f\(TnJ7A[Œ7;U.|yƇ`pS@r vR \2Z$C^~zQmXmv$npa=ӰҧoFŷn4T11C5纛苪QmRUތcIC-fͳ0W ve>==ԥшT\GH8c?9YHlilڻ'ɰm5HȺR?UU@U[ J$,7L+*s(cmU☱?" PH !z{#8.‘x? C$lFKtیBg=&0y3팮ZVk~L1.`1-\"BZ$F4Vf ˰ *Se{A@]v;t< 7sOtsw|\] ÂKdĢe0 ߞu6iڇcbz +ʝLFRw!! &y,1ePqQ>C0zWQ X q23GHV%IrC Nל-A8BSc<'ދ"P 1='X%\U&j:e8Vp"7Ҍ[^@q߬ƀd1me endstream endobj 53 0 obj << /Length1 1605 /Length2 8614 /Length3 0 /Length 9651 /Filter /FlateDecode >> stream xڍT\. )C7Cwww 0 JItt# R҂t7_5k̳9{@!m+ܜ\"Yu#n/'  w"A69c: PppDE<\\"9' PAn 08Y‚p5 PۃO9taQ0ٻ^^^ g7NNqpO w 381z?0[w/ x48AP x<tC V3pܜ+7G2@v[Am~` O dG 6_Y!.nn=.?ܿ͏=\m  ?7'`vX P`?!SGq~Qa60?\1PDX[㔑y8y<nn^a ? y@'Wj Y./ 0 ,Ҁ=* `Gf\\֏_r#OYBߊ<3!N>E<*q aPC+s_;qvN#M т[)? k 7p{.Pk-pףx~܏hC 'xl.` cQA^P$j}A‚ $ Zh/ y@G^A~/~d >2@#ۿ/؁Fh?>$q?^-0l0  w~^‹ckT|a0oqR&t~!:Ѓ!|.H}RZ2Igb c~oݾt]/SJ=m{WG.06E1=3>G r䊢81p@({5DavUFξu䢅֓9W-yrSD|G(m,n{Ӕ޷2VÕꈡ5 л&(K-*h6526J^c`:9# c8OT8檧2~6HI*5BaeK48|/h`Us㮞>q7C N"fI#mʼfg8(Ғ'Nxn#.1;}lu}JvY=B؃%Bk?|EMþ,~&t_nt!tEIiS35Jw4&G騯>缕;JE^$a["OfڨqfpLY{z3g⋙ g~ΪCb{ؑυ7|+2WC8`]H,]/l0r2gВcF3I65 ,<61d T9R!2uuGeFvo GENm#`W Gԗ |Ȃ,LAh66s՞پ}ˍM-q+aRq8"9?"e輛J :*hHJ.4bIԸ@c&/!+X1+Gi'I82F}/\" l~(5y}u݂k01eˀEjZmy/u_ί+cl2ߍCnv4_0:^h :S_9+V74c "ЈR?Aqe]{R>5Hz>>&̄J ,e{ ?4ADŽ^>Ov+-4AUW5/D> <e=|Ag_wm! Ke'L;M%oge<( .~t0o}exAWGR$1.C,j]>rC# haTᩉMq}TZ⇸e+. nHo[Ղ4%Ns`ΦJߒw#,9cRS 8:Ӣj`^M~48 xIZT{dj!OIϥUc; zUZzw#U3Hs31 ѵ͠P @`ۑê{pQ45!|w)kMa6åuAUpCM}T*h$rYl"L=,_i坴9SH;m'B>8wy/XpERR/lҧ>l}J\vVmmJ!uQvcu-ZϏ0;93gJگgmK,R6_˩@CyϤ%觕|ڪ~, #r6m0rޢIB*9$+`_yAB+Х GZhh 8$z2!䀅Dm^Vw:d} 1]XQ~<ҩhyD,ʴA` kEx"#֣ۃЩ|{o[k+=TSJQ헒1WqD5P Gj IB%h&o {]f7Ԭ$r%E {O~SF<=g7? 7yҏ?7X Jf@&zVtɫPHÔ뷐x07˔Ǒ݌p饮X#禒1MZ1mHJgOYRd nP'Lآ˓sN%rOaUiގL+xFeJGTjڨdOTYsk)/'~tӞFtP`p-ժ>l5 ^QgsVm obN ,\#z{&XX%>a^Q4RJAw(՛Kd.`8_H :"|8OPpA+Ś a1Zq߳)Uھ Eoq*h]8eв)?ʓ}t©oaB{7]t`qqG*L+i /s0B뱴(K5 KiPڌܐ{5?Ψ`%e˦AԗI|.ɋ߽-SDs+AOp{9:QDgU |UDPҺ4+3{amc.2",&ˆ/Vsm4n(2늄A4TϸK+]3S"pGi_V2=T!zJMB7zLd=<:cp\ 6C_\M3-blxZIN,-Emm(K}wum .t*NڶY(|w"멵V;y܍VaQ0.Dy[>EJdfO#"K V9*MVC!3DwnlA7} n9}HRK} ?'ZOxrV 濖9ۿxe X)z ir4zS]aoZgtyV'mmCj?bTD{6Ə;#זPa3؍?w8NSv;xVtܥ>fĞs(` jg??2p4vة u9;ӸmցiJ]oΤ==KڲE/T }Y&UMnPBQU%?x~\xECd2ߡGҘ i(cxō>ʽd)'P'tDOAC&UiBֻW '>'u[?NMLbU \1ZIam8CWԡXΘ:T5U85B=YW$oUbE(?)%ѐ V!=apIܢZl0XԇD~ md  R/izXnĢfWH$G;aJEl3/էjpR/L&O?Xlۂ6vU +|#O/ 5F\+;O$vYoFvd& |#.90;5PZ GĐ 1` F4-tf T(#y\-/F*LTf D-³eQJcryz~d){n$/GU,f7P",0ߚQnta*BIſ"jYԭ7_NtfH]"iU RBٸ8d'dLy]5omYQ>mi7yƒ|FDzUN.,Ex3ӧN,u-#7]W+^4ٳ >gۚ*;-E~ 4]PKŒKwm&N`2jw[{gL& plK|LѾ2 H*0ei7U0LD.:?b'%WDt_nҲE#^l/! U. [\+j|#qdHi?p4 6rAi pb8hlcxBz 7oSB;&0UŖ3=|@t?Iơiš=U"cM?kwfZAoY^a4UofmH:[PUi9W,\ue-=kZ۠@n4 B4#>UŢt'vxg8xxI|PQ4| oD r3CKPqB/+}0Csj`WEZ;1,9o1إ}No'Mn^s1I O(=:Zt grU'\YzoB"Ew7 -xlT6;Q ? x];miebP0Su=ݷSOz- wA[ G5-G؆.v̝+&UGs (o(&ٮ_-y&};)L:"Q˻MUw[rrޅ~kl 02=.L2S`w!fى-Ztuьcw#>hXO19LL\btfm_bⴡǒ[mm'LzQuйǩiyW *9}N_4,2d;*Zc0+-j2T\Rq4I(0rvYT=ogE]Â":6H!8[HqM},1S  *q\(kl>xq0[Pjv؜eyVh6dw;G<0t3hq{ƻ _{b$Ffu{*kY[XYzUތ kPlahhV+Iýd\A iSU@<2BuTIE=g$H֏SQ4{cO ~(y:T=2 mTt/1ȧ|d>A\gb sY[=ET]n,5r9Wc suWU B%v<"`l"' kOb5X0COa^n_]A#j(|UBPκեa۞gU9-_怤h>7&~Ǣ+1}z؊rӐܛPo#ˊ>J*<"W\rճ7z,=u4V(\p5G[S9_CTOOڞM᳐}w y\1aVDiױhG=l BhRbhքO% (K,B֗~)%MeIu^{H,~XqKX2Ƴ]jVھӡLD$BpH݂Edv,Qw֥pӿsU}+A!uc-IKE>l&`67Y񤫒sc9U)~  qL/V7d4?]wT$ Ty%x'(毨owJ㬔JO=BK;ZvU^I~ȿ(0ъx2AjYv BvWL4y,PY#X"[g.53ba~D+{xv%vdm^aG\I$Ý`bs.ʨ<^\Iܨ]=Q0A; Kk4a7e?`Lku*JWôY#ŭ8?Ҟ]:B\.F3E\WxúC n՞o|H> +L> stream xڍtT6)t(1H "ݭ C0"* H tHK}{y}Yy}]{_fg5SE@Up( PR1@?(HnC9CC0\?JH(ucSnZ8ࡇ3$J$@ (7(=a-~CNȮpAP7upB 1(Z`" 0@@`P?RpJ;P^^^`w~^C9P'kd6g4~Bv/FB7g w BuM+X//@+ ; \\p`stT5Q(^n vvGă=0g w`|3!H+ʝkF_inYnpqQS!}sNp5UW1fEDb qU ep݌Ao>hw'Bz@ ( 'w3#a @_V7 E} }&&<FSQ @ %D0@LLD`؟F#XnHFݳpQ7ԅ8tKr;G_YWwGο?qC]ԍ 7b7v07rP;k#a0o. q1ٍ~i"an/ߍ N77 -7gI8aKh"0 !9曕 Q-7p&p3?$u@ Fro{[P7B85H9V5V*[¾b=lIU2CUK7?`'̶9n⤺y^]j5_?EVj]YdѱB1sSy=:BSBx`٘l{{tGRN ^$ع^Y<28DhtuSO=5W?7*ij1`Gܷ43Dy|4RkT % .)'ԝI#yC;Jq!(󼃓[C uRU\'s.%N|K^pzxz"+8?[jtCţ\fPн0?Zô͸;- I.wMR`pئ3YU04[I^/=KF^Q6610]:!pI[Q+gGX \qnJQx,J\ΐѸJ;( Czx;gEn9kW )x-v#x6 :.M݊rAw6Ƽ?O(B[-FTk%9ڈ NW^r 2,t ڃNep/r1;*ȒZ?W=y^Z=$.q)~*oqt2;wV[nKhgxM|uahJI]?ލ[W ٓcFR뒃2VcL[/oFn<-}-ܶx(1ITERɤ=oj4) J;pv $zogKӮEdrR2KOcFŧ鏤ʖ)r1϶NP]ֹz U?2a̚"c/.0Gx ;6Gis`ZJx}< -v}rph+\ƥ+QBiYߵZ1\|#G%*꜏f,nFZmYn]G!ɔ ߔ{q KʰV.iq+Mg~S8\}+t`י5Mm(Ǫ'69NC /W^dӾsg`q|=zQM1TxְM/fh^^%_i%8|Y ?zPT,nēDIvC2k[e<‰ )mnRb95p9,B)Es+g%{8q\ƟjryA@s+F1%A*9 QB?1^!<}MII8"ý5D_$_ut]Q:JҖh= >xGlꛖKH%t ל}ma[4z fX )q"AKo=T9)1QYgxrxG>@NZCA}YyF'%x<*>0BsOzs,U VIIUnm {84kъOy? T{YKVʓ{J9==VV4եwo$nXX=V6, bGGZUlY}ճb_ϒd[|굧qD2MYqiڥp8-Dە/Vse~YHXmZ@vd"yN pRمUIu 2;( 36 vN5%;׶/W*R/b#uwcWYaX=-2%P-Wʈt0'e %/-۶μ2/c;[ a=RQOQRL;#aw`1ћ>*>\Ւ`z~IPʐc3/VsJF|,wq= ?"}KI }`B.{ (?uJN M_77-۰JEB2U^Q>*սuI ӱuoZY?yce´\򠳾5Rf&ڨޥdWUv9c(#;r!ǩ΄:6fj?競+IVEUIT6O1 H>!kMޖM{8F&鸳BX+FT^6Gu9ZZq)_PkG cY̸$ jL)B[څ3'8$3N689ԺPwR߱6Óu0Ukݍ:i5'K"iۧ)!dPF^$0l882Q,0<CcJRgjT(!80UWJ ^,&)OxLη0́faY<Nf{Gm`jY8nҒ󀺊XEM~0.UDNyY{6m xOD6WiɱN Ǐd, Xcwt&iiv 5&^ojLϣߺ+逬;8 %uGP$lE19lJHXn TV*0f!p8?!G3n[EpR-r6<|&6fa=HDh3!fal]bmryj]qJ#%[+5A t%yY&]Q+vP `_Ӊ8ley*:$G.T,:/rmIܭH<Í(~SHPU[d>=B72Vw)qā5bR*-NSڵ{(IfZjg嫘4)TgRfcJ$"Lҏqʍl2,T<:4 :W^Nh_mhOq/<;{6A`"J~'V/c 红c:*%?;@UvgT" ` fAE0/bR/kO3,ژiٌ_'ۯM~@/S UŨՁ\Da)ܷI@+_ǝ3@?Ȝ k),>?~ZyYYWsAFc>ҾRVJg`]8i[я4kb&x1)?#嘹G`%;u`%뀷N2#|yP!4`m0|@*KOblwP~֭=RmxҸ&wM.Xs;"zMStubM6lrEĹ T.h!瀮EdmlvJ |Oa ۑk;Q.ꊾhf, `,wzrX@ok9h5RR>bط2c:+yԼ º9'|+-$5ɾ91f+ݴz,wZH2ӑ=y}?MM_YϦ8 p@c>i$8&㗼?LJr}^߳"Jw#3 _C\t5^{UhPAQ}εcϗdWL/vu'Al&xC smejnvlDt/2x3[7* Rz'|)Ah|"fYI,} gi'vm7͈]%ʐجn䧚ɗcc;F YbzeB  : ˳ej:6ʐc8yʖeh.Rz,S1bR> stream xڍwTm?R%Ҭ <ݝ , ,tIwK*!(!*R!9wsf7s\y뮑D` )&A ! NNc8 @(a,^⁺H@, Iť@ $7@<]APp*#Q>h3K7PtP :;B!n#$#3!A$I: aY2@S 'm0B:b hpCa >wiQ0oo?3"Qpj:Xo,?p ax'~) ԇ(,FwY#g1"0C3?8şOs]H/ߒ# ( qWQ[DA ueTkE!QG|0# @? (`ÜGǫae|po%O?00$_-*)k)_F%%7W@X $ A"qqB_M#3|wΞHgBx S7ӭ@ (/F_wse w1EP3Յ9U " Oi HQ{±Pߴ79pnp.y@ ꊿF0xn6A0jO桊"~NFC|(K_0~L`޿ "X _?h0Xx q,C#|~z'@$] 07 Ja q i?QdX!N?2-!.&dOk?U VqS8ʝ{\#r n?uqpi2T%6Rt]hnry>#~O+S m)֡g4dm4^c+{\RUd^mmcDj^AZWqaUYTD.W<#s3^Vaӡ|'Noyygwr]c x wJSJGF9| g'jK:Ęd5^U~bu [q_;Mu7ny#gGca_5˪|<9rfC'̈́,%ҝۍJf$CͩzӫL?\.8ʼn?TFg2 N Ќe_΀;ؿ.e=FWTH,`[ʏKlez'{AeA1'MLG i.'}r/˵j+F Zy};ӷ-HR/ﯼM^W/@Շtq1 {y<̓_ J>'̴-{ݲӖi{iIM;fٿ0.7dX#axB8vZbUNh#grKC-^US5.}gkS]sl^PK.K:sq#' tgF\$iPS6-Et}w aj S%&%Gx dd)=s緉On%P*.mВ̜Ʀ'.]2kB!UN#:iԟX[z6ko1HK~o&WDw7ŐyPy9 ȯ^RlYm yd+sz/-Cñ揃nx`COiVǒyj$ 'S|ndc\Rmۨ8ę䴅.M+(#W@7>:ӋED]R)3sK;X,(t5ʓYꂔZYal{WnWjCWm)(~a-emy9|S#dRX#j tOX!yPB}|t5d!E>Ć:> !"۬<}>V;>Pg"ҋIwP7S_id͚bk0Lx"'B5b.u Gv\#ݾy%Ιo|Ұ'\VȺeOwb`hRқJx R9A*r7_?sțe4n𴶎pPUe+eI:%w4% h/m{U.?&ĺE/;n|gX^eƵUq0%5+4 % 4/mV%stjsXg%}AfWHh%=nf16&흣&ﬥ#,. g'UTIOI݊adaA7>0fʍl1x=?qY*c[z C7Vt·^KF0bwaw.wzrT6$֢9v&vro5ED3O$I>p0HhjK~@nF{Xeɐ8EE$ɟZ.V-p" @l ?<8N>rwJqoǍΥgD&4_ȻyO$?; LN=^Ze eMf+:{A` Qu1%GGkSLuE}̴pKi\CMepW-: ۝y柣`+fO?Z`2k*p9o'Sanv3W47XmyreN¨Ta@E^)/*D?DR x먼RLjzp֧WƐ %۱{UH;"nz*#|&'1=c?jvU-U5o_[ . uġHo,s+=!FjQLͽ TgYc(R2ےkEK׿)՝ P?kOu-^;}V=0g[{m4d0rIKXTo3Ig:o/g0%un0*\ L{WwO}U䀝r&sN1fMJI 2C+wc8PD.^=P>xHdnI@Iq7̚E[Kc X Cl@ !r_8wJQLA5s3iКp#УRd|__|rp}^oP}N3sH;orqz:Sΐ \l;*5@gLWe{mʝoVg%'067/Ȯo2eދRFg<*?d;c 1轕{ [}@>:O\u#~;_c+̜vS02a×N aH;6MɪlǷʣ7HkL&w]I*Sq]f|G}`&&r~J7>,{e68Q՘ Fa9аQ*Cs)CaG*5uD]ykMFp(v.%gIA2V:JA' bfmܺtJh.Bɝr[= /mYoqF GdWUےlRyܬr#Շe |o]Ta01z0- tIv aZZDWuDin_眭/@$29vmLi=2&vIn_xvE컜Sʧ +N4 a:5B;ݺt4wn ?n` 2a)I3gyddh>mHܫ~b uNHhfR)'PMf[Os@)QBo6,Oܑ`bC̚gQ#qBCЬ;eX[vtFRu$gwMLӣR׏d%9/dmK?tF_߿L^8n'Xp~RM_%'(S/7zkLz\Ii.OB}v*һc=?e=pz.+X@w߸U!UXwދRۓT  5UeK#nm_5~es88|ϒ&m"OaQu؆gǣ=,oL(JFS"4urN +gCDx;:KDyUa3QHPQ5K{·d'qoH׻5\9б>n?Ulp SOzg4M#6$VRbZ ,:~.u.ͣ[z+CƜ gݒ/GSSĦ\Amw7]V{B^xU9+o7m!Da.=$daRPLKh<9TL2C0WX+ vG bB>êC>4=[^mj|\i1&7*5;F L_,2ٜ{{.q=כ\tLpڹYF !1y+V񕥰b)bAgنs5i7?zvʛ'i讳m^†e N7(rWYOD۪ivgU^wCaE;y{ F'~Z<{V̤t&*2<éEYgE_S}K4fy As1ǚO4APկNS? !I*qJv^%<>6i٫YQIuݬN}4"ϋZnzec:rQV}:x$% %NEcLޔ)|#Mm d`K]ߊ9cNR5;W<| e)e=#hfLU~w7L]2s~r=* V3W.\0_j¥[h\LnRGuCRM^*f!9?e6+ݳTe!Mnb~5P*␽cb꼯Ajj f0Ju{yJ1Q]-d\#A羅/w`^u\<1K /6:5o4ȘyT Ǔ ywz>S?!Eg*T$q=|O_Zt@UP0+viN Cqqf}}1% kۅNLёy c~Ű:WP),0\jԬo8Mǔ1'pNb$.)3ӢFpBYWNZ}5ғ((ˉxdD~gyОst&%vuw '\?ɀ+E?׌2n#aNSe!m`y. Hwy5fٻrI0[w|lkPH4¹}mOSPs;Sy?I30hZqP$I!ަ4x.!|52LTNnՅ#NK6PݎsN~uք/ڽ4:>- JM= 1F 2\?Qԯٺ-vi#<|'CפK(x)9ך|ZϬT *u;QdT B9y/Atnꤝȳp= m Y{so(J{be[ykV L#Nĭ+3V1^'N-t `4كLU)Θv '; :_G\@nT򫜏?Yqqw_N:b}S~wxs-[x8N{nA)֨rwWPi e&He+xpz1K|y4HY&Kq8:NlݕV o %t0PyI@Wb Zv-d%wXAYNGCէ`\LVwoXS|ɼ_`HdEc­cvi4$ϝ6s2s"Wgw=nj:rTʷX]y֖K?toĴR16zfdH ׃c; vȫwzI+6ѩpe} tMF鹗g|#'^8͂03e9{/ε5tF[w\ meGt*EUYW3OR=Bf|(_6@ 'eNdJ2ZU\o7n xxnX(uև^2[cIq^;/_J/#ٺ|thޮ}TS-Έ1ii@&e * RotCПM+ +/YSK8Zt nHMG3,X O C^s UJgq)|Z -ϝT*x(Xwd^Q /}uDoTC lkaQ~Kq{J) "uW}N?8^4YQz:D1ǴDORݺ tyaXhE*xs5-pA~rXruBP̤P23H|P`­ֺ)S{:t%mL +_SF6nG~˘wzezK:{k_zDj+7=]]~jұy:c-Lw./μ {]:A# endstream endobj 59 0 obj << /Length1 1415 /Length2 6602 /Length3 0 /Length 7573 /Filter /FlateDecode >> stream xڍTTk&nb蘡Ka!fi$))FBiP )I);sZYo Z2pk"rg_n 7; [!8u8 Bb`a1 w[yAm<8 Cc `aEE~d\ P+@ qAhc Ѕ@!`p@ \xyy\Yۈ;6w^P{soK`d\qc#,VusU+=nN|θ['ޝN0҉h=|s_~@Hv>śLQX%SM]YޚzHoC5o%g1/U%/qk~Z& U 8dD* `,_z$~L,d=,i#kp#8ve3~ӳP/q:[SxkwOBUNF(Cu&J+uhj+k4t``ӗFjq6޷ -1ؾxR>Seqlɭ-TS EDz!dȤܨM{hu"{$Z9: OmWݬT+P[L}r<'|*&Ȳ鹇76IJ-ʛ%xLϗ6~>Hf}+2`9h-W:h葡3A8׻"5~- #Xȱ\(4*`[0N~=RGi=GUyY?QlOF ?Q^' [euXUmUOW<xm а(8d+ +Df6c69Nb9j!bAݜ𢹸HCIÿR?5&e2\$j ~ϝ)*Ql@<ϺKn9Zy6}9Qy@J{̀~|hg?ʾϘz|G)Ք(p7N pXb" ų&r>( $ :7w!ǥ i4DI$?ovE}GvL] .xB"rM0".λ8ko|)fix񮪁1#Js;|ڻe>=&Nk^QDHA+屉ѝ햰ܓr\C3plu /{. OI,ѳΎ'c)?J/Лdž0t+B, rmN]#;{ ߒEޜ pSes(9%]D`?]o6il,hxn ΉYH FvF~!!#A#u##5h2icj:X|pNhhƩ B}.Zixgv 傠ʘ9 z4R 3a I>1̅e[r/E74Q! WMım0=h/D};.bh]4<ɱK20TAX~p%wI8>m բ=UEM]bz'ym_~zj,6CLbbd=YW??>Z~iv2׵~ԆLVVH)ܭ&o VLJDM-UaF61Iͅ{R{3^nHdZ:56HII~)=~rk2LS˴ڹ wл0bӮ%?!Xʱ*>J9 Nf5b3K@/ }jM@b{% '5Qspys^I,Ŋg7OPuqjzeLbufKn=g<%Iv f4s*>=||SIѱ=M0+Yc@mKLC5X~7d[< wՄ~2~3QփF8ooZQ³J 1R9_VsS纚4I vW5^%+TJ{=\Q54$P4툀"Wy~f4'JPa ioVլF~%ee- HWOr}Ъ̡y'37 z$57/L[ MY;< .$B$?p*(?je" L_Sh~I۵ܳ6I/1aG)tm^ŞRҍ ʇnu:Loٝckay m6]?ɃSVp-ެ8ԣ;Gt.?mkw~b82p꼌N,#g$5|F"cfB[`r4(#pK,= 6=0c}w=Ű43iW/"6kѿ\ƎXɨh=)M1ƙl*$aݓ? Fc6 LǧJ*V:y၎(4%ػ+" :\@BϳZ~6V0M D[d;x Ϊyhaa&݂ "Ty-GDvL]"ނȴaql Y LY|^D?gӳl(/S_+_YzŤ;O7P>V g}yaԿcWUsX"a#"S`U!m}ܢ!{3E7*?E _ӭgj590)H1JT)Θv+/Og-zĈ׳c u078HP՘ΒQn$/zuUӵwbXX7T]3J c_v-'ieuӄ[\ _.0?v>puɽ eq"o#SSMsEn5H|z2K;XΖR<9ׅyJI*d|ȋUM%~2L+iAcHTÚMhb0Zjbܱ l`wA۵Šy3z1K1;XsX,6OϦo/*_romJB:m[QmѹRT|fjۺlowK%H#D$]k RN:7t{iҚV H$f%T$Ekcrh>V LrQSEut" lV]>c|t*"O~|gW9e6 9ɘ{TUK}A?23<Lc-,\O5/qan>|4WVH.̼`56KfȬ@]ˉׁ2{McpٜP+3WJ>:^l}7@͡<7mSuݻGا5˝ԟ5+1\=rtZ:3'Ժu/Bfè aQDz4ę@DYJ0$UpE]y'NvILͨ gj:{PUU%{>!˄m\ZokkbXNwU66 2:[?eIc_: <ԉhaq RR"Y"5䔐ؤqGk^4UķwVJ?SwXmsD5brfܪZ*S!y áq o)#;ptx&B]®,\Y1 ۣ'nn&t# - R)-]EϚ3yi1Bl w,3U* Pgc+8l nwa#^{[K޸ZWVs٫.2֯KcH>kK:ڝ?PD P>7kaQB=[%Ȳ_Y3KG1Hqq$jߤnYP 9x1%VeV/0N"p0kV[s+X< 9m% >b2=~\~,&-;~637>Ж7z$-dF?T*#ꔠ 4=Óʝ!YP6؈BGkg؃lGnm {)8;m=V={nXmO22SPBVw}qO4C Əì* f?0DMW&Ww\aҰ%#qMFU^~q)2@3i/6q'cDʫD g,Qu.7;SՋuCg0ʎ`K]'-cyh4jWf!kK FHiPEӤ.*iFOȓ1`ZhW[ʜ4 :zYXnUҺ>|ISL]u4dOr"}u 9KR-稕|R|}ts3)/IާTkmX\L|jA[[JoTI # /{fڄbЌ WN_Ӈ=&P˃#hHǤ]y5{A:;^S6(qVPBq13R;qL޸,̿ajpdgGỬY ǫkHe_{v 맼Y>ϱץ+aaٸTL:M{E(D5ňjXDbyQ$A%aF@DO!wbسüc1^ ն u c:3LSxL:&'WZ+/F I_} xSr'j,1aףYx&\?i3HM?__˺9o( \6Mk|;M{,B󑛋uk[Q&f?Zo9"h:{Ov)O\H+n\4 {@vT7Z }-nj~uҒg\I>ucFF))z)V4N軙K τ4B5>Is4Eb7v kT n2;']e7SzS `Cc-9[gA@'rySwiXҖ[-~\7KhоZHw)LVY=96+)f@ \&Lb\dRsv_&>e$j'[ /B endstream endobj 61 0 obj << /Length1 2421 /Length2 21392 /Length3 0 /Length 22799 /Filter /FlateDecode >> stream xڌP\۶Hp\!wz}>ޫ7t1ǜ$UVc1w0J:ػ202TYl̬֮(5.0sd& ;{- `efCg^9@ `tAsprrG-_;=@ hhfb Ps0zW~+WWG^&&F;FgKAZz@tv*hb2FJr5 Wg $6ڻ<́Pr<@hp+MM콬-ֶ@<+=/C[)_+7HL@<3gkGWFkۿJd+ bvv@{W'n 4݋w7XXۛ[U#PF& %:fVLWrKT#TBq1q\݀>T7!̭\@Kk{?Ab |gkO3hX}d/s{[?_&my1Y%+NT ```5d\lbeWjAm{h}8hK4@͟!g`6aM_QoC$fk/5Ϳ׿ @C : c`MZʸh"i 4Wv5{Zkul.]+/hـHKN)ao`c8;x!6DY4zkL <_3_;`K7qDIqI? `C,&? `Cl&?.@(eWCJ!nPv?ʮ@U(b0!Pv?ʮ@ٵ(di@dilA[?v$vv& 5= @ZA?/w;9#Z՟傶 h ?T? +(? (=C*ς@K G z-R$; OApusG|?J-{OX@]GOY@-/ sm?@&3>A]wy#+(?A?E:.37gP ]jJz@33Ou5" {{Z) >?ݞP`i37D{v$h~ Æƫ=~1UkCX,8OOȠ.f d x,e7rGձЅ=jN9ė(osd0 Dp1.=Q~bdO!Fn~^Pgu£%16M#z$SR6_HLƀxȚ^mi[>&܍-m`LUfZf$:]oL30cu\><2p04U,/DhQJ/bm7(uK (~=$'J eY|#wʆKŎ9E[ Nw<+6 PtU sAeL،^$qKW2R{U^y5+5b8UHwO#DBxE 4/+=Eos~PrQJ(ߙ7%?Su'kFRx*z/.\V;l$^؋W/w?kO0 F?4E Ƚ7zgwHGw(|l+|R!mcHwn6hEYD4_!MnAdc 8q* ((%_H}!>ӶwIt@~ݯCt)6ą5_8g*d0WEpn&,? !2gtpiqF|LtE~"yҠDQ*1j&Wq(SP>=U43luLJ#X)-LeR(TzrK |sdC/_.یwt~K2۵Jtd=vsE}IB-VOCn'Ry/,L߆DkoHur))*;<~m8n^dFQsE%apxXPJ8V~$Kq9Ԯ=JNfkJxqvi^e^|v0(),fvX E]TCd v}MZ󡕸vk)N`r7,~fT`%Ug/>,߸ϴB!o]҆#K Q]rCSǡ5Һ0y저h0FkWӿ<罉k I.S&IB#1yT]{7I?x ۲rY* Ԓh(&m ԚЪ5}E U fŸmQe?3CM{>@Mhk ܪT#+vyD99Y?5ǻa_3/ [pKo(O{icd-g!X;Q@7h^6P†}ɷ>>QĨiM]@tb-/)L&$'kۡݖֲ;st2jl>i~Tф]f gIxbhsb=;2wP>;e3bDa^YxGUȒ%-x,|R5މxwx_3yT :{`Z+S{AT]yr7<4&kx7x,1>ol6p/kϖuWʲL$GIF=|%VS:3ki"׊P|n,n9~'ζ:Da<aZKT? m92Ӎ %p4%C[F'sK a.6Sw t&bGnLԻFgQX:bb,O}e%`S6asr59|]sO40Ko"6 *z*^6>G&ccAt7HE#IhYmR,tPٷ=GQl^gT7ʅ' xyEW1te`B0ER!z+F7>fz{RQ6ȸVGI u"co* *=֬ձ wF Aj?[帢TSN _t~c8}k #t”n&$5$No޾]uͣJkU@Yt}O+xɱD;ҡ[5iT「vHe7OFIF;JClP$lX4I7cX:nդ@#%}B~cu?=%N%C͵6ߗL}bHH"}ptO/q7MC,]S)'ҩ;0Qm1>|I>|bKj*q"2 erk8i֫ nOʍ7_`kL ' #f*$"At"$)ӝ)B2!i}TbD/Y#HYjokU {`:ue_Ү[Kvc?)vi0@h7rʛEL0_ 1pBu\6Iae$8іj8d! Lۻ$B:rSe-J÷`t4I't\nNgd6OЬP9]@tyLƀ_ @~3ۊn2*oUðE˄#U:?GEhU:"1M+4,.),m+s- aGpej:w&jŶ*`%Ck1+n4$#c&&Mwt Ȕ $Ѭ-c1!j὚eFy h:u—m#)dhpL4 BevD[K审Y!n tE;wHðkmf\5re2Uj1+T`5Wњ+JL4z"~fGZ 40`MƋS:>V>BURm֒տU9IȃNp494D X:Q4l:Oq|xBvZpNZItC5sBn0DuA_ Co+}ӡҷJSeT 8"xsp;c ߺ Iէ8s_#F1WTnnd>j 0|Od(-`1jӬx՝Ўz\mGml+;I؏~j)7#t؇egTWosoQcۗ_kY*Í}a-,y(J / gZ8a <Oڠve.DJ,D7tЭ*{w{N_`8㍎Z1'U-\ċ#0n5)+nڞћ+v{S;呋 FS+5ѦoT ۆ$p Izo!_\&eي"[|Sc'ƣM'k.AdAKu2`A3T) Za}ڀ '9Se.Fr^DLǘDV~~7 1RI0六a=~?O Fh=0)Q|PmtKo"G0"H䧩!/%=Iy.eBm/_?a-l(ZЭw r Z.րo<7V/3ߋ\V1b]Hՠ'D:m& RGWx #1ҳ?kY* / niNnmF.sP:D}HɏKP僎 m%UiB?7$‡DK|  Dv|WJTa2$oNvC6[lU6Ip$W0b6,a]ix\ JfX@-V( F |(x򠭺Čr4D^Rn4X" )CVYe* bi{9$7O~^ 3ߢlޮG"zR O/vAyRllJkl\G0XE"d{H>_ׇL&j@HyIW [ůѭK*dFwGY ض&<,w/QiV?*MG 7CZo;!I+{u CpDe|>9GmQ^#2?1-k)GWIQa=`]VƩ&>fƐP]4HMfpJɯҲepxh/|eǼc:9~\{ԗSF@h ;k:]EQPQU8^ɡUK|`_`1P @jMuml! z_YY3|d3!-Jn:ˌ@EQ{P*bd;VãUX4˜.2|c6u緷QX_ _ 9<KohiB9!; > HwB]ʭ9J]G_^4?UF\ufP4WXƈo En x$ 1vLBFJ2^8$/DSɽk>5h9Yr'DL߮1 p)Cyn{( %$.8:w|>'T{~X]Piu.q\l;IM=җ';–e[ۼnycGdW!`0UbWhI@OQiDQnŇ㶙Mru#>9YKX"!,ZUQy:I'ݺd$M/3(ezb]k1.f V}D(m? vYKČ\+K߶T>eD19j3B?p E~b_BީB[q^C"zy;g (miwF-JɑRv@Gk,Mfb#SNLϜ W=0X|Θ85(᫷4Lpwg`j|9"F,gC6g pVk ߀ w@:uuO)m1_M=]wr/-Td7k?6 g͊ĭ vPm"AذmNR 41^)C,˲{e*/,x:d:z}K;vD 9rB'-yg$ ncTwDZ9Ch}&?Q5 6}?^v%L7P}D$EhxQ ҈W=dqG7>q/~)۷*D'٭uok@ºSt_!5p/'R_tTi`ͧ* I4CiTcdهaOa]Ojt ;ݽ RoE潓@|={@6}jxۦ;չh5zr+_/х1+IawƃZN#<KTaږ4oܺ4*#ۤeJ1Kn]Eosih`y0d6Vq]xx\^%~P]S]#F<3`F;A趉Dl+}aw/êbWGK\{vI6ݘy'+C ses2+Xj b2!/2_P?th_VaNp S(RRX BzD|Rf^>Ώt:BŋidAƘK}?l 6V~Qe{#hH":+JoLZ`Y_&7G~/HH^\.xfe m*O5bz|l xw ӂ<ȭρØ-x=ݳk^ \OB3m 3>;{,Vp% #Ӻ;eǨOWUB!J0>V_5T}=G?6n# .?@R6كX.:0(?v4(Wؓ HLes)uzl My&3V mR!?ȕP_0³Z3ܤI+7r),?t mnϋqчx~=gG-%x ѕZ~~O7b觼~ƺ #xE#V>fЛc\I9ӇqF+y.da$.Wy)/.1ITkmDw2fmEڲ%TX)sSѡs:>:4$Ff-6pg*(֮(\Gw\9~U%n:N,dl)NGi(de?lc7g;FO>=F$&Ho-Ni0O+O>C,M2p(A&/)4Ƚu&,>phGÄKŋy+ #AV|/x)6YBp٘o$ֈ]ޙ5+ >4ŃSη[tρ0>\%f$px7%)YUhRױv'x4뎞C8}S JL2ϼ*KȊ>OΚoj_U+pn m5gmӆ1VanF)̗N)o2WE [%5Y%14~},-pOQ q`̗fl&i#&#]d859dȮP.e"Iaz&JE~0e[ԕ>;Uu&4~ H, ؆p pA|aq,5-&ueK:J U\-쥿wKQOydx}F(JdL+.яv(:I9$4jֵo-=H 餂e&rQGa Bk3V]-;LNqwP. Jj}?E-ulYT$A =U\Y S"Z=8Ӵ.R8up V-_h2 -^+k0JBЌYŃH1VFE H;} UM- -{G:ԁ3+Ո`^0FPãm]=;s' M1 s۴{xwƠDL?1{JB&˞i鱥qhD۞W8aOv'ؔg]ܒq6ŏ90ɯRp%epdgr:9B-0'ߦHfsIF? Q 2$͎[)1B+YR-N0 Ôr2Wm!VdP?2\0L(c`8;Pxgix<`~WnJty졢NW(:'CUuӪ]belf93)^7犗Ia{]e7QK<7d E򗤯w>22(Zpn@Ʒ,}C֠@T/F E=U O>/v|oLѦ\دӻh+O SWd NG{H{+JW( v0rcr&IjJiq|<v QMemˡ|Į*e3t[ PֵuI.)ԝp>OFɀIt1r6d y9BxuZA~M?|/[@Fj =}$@΢AQS䶚?1OX$u m7a8gMpxX ܆ k1'+]O){V>5`nV=B:\Z>dPHH`gJ=Y+Xw" mԝ8'ڽ=Xsb6؏"<dA6F'[{RgM/}Hɛv :>JC[k>OgcM`9{Ձ EQx>/1Y /T7x}҅ x88\[}I+::e+}Rz9'piIy&eNc 2Oq+tb!Rѻz?{ny9iֈW:qS?.Ͼľ u̟,;< jRԦ;~a9ξ$mQA/TZ# Š̒%-0J}A!Tl:-PIBf,&Ue5ӦƁׯ5kGkdƟj^ˈb#5:6E̶dGr& Qu˟9TU]\]Sl7B?B+%Q׮ZSck|y1! J St jc=ˇM/mL'L3~%k Rso9mAF,z@zQ`_ L0/1f{F'x`_^e`Vsr][T5:WRsmTuW8$I+KWc71.؞̻JMC8HHlS BDZA_#K`8f08F!G ‘B焇?-. }4"44B;NTO)*пCKh:)yN iv?]6z|srkyYh5Hyp0dTkD~Qd؃&jw'G(_s鎫#F8h$%g$88LoBqrm~#+(6FF," =IްzjڵLxKJ݉(c_33z*;FDBIEV)v5z])G hXjZ,*U'q0$Val_4pBՅŗ\2i| $`GCfJL<LCcwq!VӪ#nzU.֋ϕ܉>!deKhޮt:aSx@IߪtE+P#h/{D\3_~0y N?'j]ޱ`"ٞf/DB'1vo"u~HL ӝ4֊~Ϻ/YjtM"YXWqTD,q=.",0["ÊXxID"A gl MAߑ!IWiC1v.s6DJQvts;X!Pb8p}vJԡ9vI!IȬ@e@3c pXH4ѳ @"ܰ QȁLgΐYI+ .x.Tғ&è CXCOjRze]ncsIMgQ]\[[,|rj[gJx(w+t՜n֬R fփ9Gx]S6*a1 RA FzVb"wqwAXs:YJ_bvþ_Qi#8|N~,׬Ɏ[V{kjkӕWT#fnIvQ`jh:}.C'!M& iV_ `Zҳ$҂m>G(}Y*c,9Y;^q$fGT6.nD"yy~[="rh}Я}J%ֲr]"|TRu:38>[M҆!=}m!m8^[=9Z!!ɴGΞNu3V~~H: Qc ۴hʯx7r $yZ]xo#S \ּDd/pÒܑU-ȇy8ic̅ үLfe~Þ~{Īe9`)+ c DT#N0[p9JE+63աbdZHB4͞ҽUSslwGU͙t|q`I߯E%+Y`c)u7bs NzBI \f֝}n Q*XDyt~H`%ͭ^V7!@f`YcaW8ID:A~.z&Ru=c!Ċk5r,p,O7\|[D''% "i(]ʱ&ˡn<dz6i[<ЯU,ސkIMF=["~uV&i\,u ޟ-ࣚ[+oi":&IbNl |5![53էwG`eC;E1rJ2gA]t@6?ůPiG^{Og͞;3\.MetR ѡok]3~ofUpyEގڛϔxS4FyF:P=Ėݚ+6CQoٰ:*(kgT8}qB ~ܸħelpf]rA`=v7 2f؀ȵMڵjLnLNlGCOJpC`kܪ vaI=fF9-cB^IIR7X.rdWJ@'b5M>X9uѧ%Q^!+S;'2:}7T"qo>W ,!ZsMbéjW;Iw~}#rN:ټPu~$*sĕ'#B@|;b3 P`կ3|ce R іIJW5X&]R0u XUxYW{x9,K, ]u_:XIr;~J;G7#҈n'},#֞&Y6Rc"lEHqi=s`IU;KclQ'xWEٛȎJvPnLIZ?2E\?hI9(Vf"N?[p|Oe-}X|!ݦ;ҵ-+6_h6A7y+ FlZ"eɌ;(FDj;1 ֦8R߳Gmf^aX}21]dseggruۨY,UjH욊S?095L 5A3|l6xZ7WhHaG -B&(N9^7 yT|~+ػa;LPoOJZ7pgnӕJݕW+앂"ńW*Bxƭ[qUx=p&w1O4 גEH2 攂SE=R躅FUƺTj!P>_Sf^ OVZ&I\\}v eL%]Wan+)Aҋ)DNC[&}4LPys_(tq6U5/Yn@BS5'v1G  2ǃ!+zY\h VjxdŬ6"*l|1!u{лwѴL0ǵmCqWqE3bhL-䐙k2]31Ss<$4KUR"0$@@_O j!43!=@6rHT` r1pjc\9&p,ub) xMCAtq{1Xͽ {U)}]_6p_o?4͍^JѲ9rZo~l Q{^LTu?LLrSZ D Uʾ׼#O*l>!riҪzU\IH0Zl5<:ۧJ#5*M?b7DzN( h݂> /3l%nSIA;VY6Ki,b_, T'Ԕ_yxT2F/a hB C+kLb`:kǗ߫@o@|/=#nv%qZؾ__6B7VyMbZpyPW 4r?Iλ DP;#+NS|C`]"m*[n8VpP}fo58)))zn^9։V6K ].|%7ꇂtD^urxhtjj16Mư ]ڝ,j8ֲ/Y»~k]JgΫ̙v6ׅo<~yj A!HK3Pp O aiJ],:>R%7~ Ɛc\(07>?#ILA*TS5+!-čg UrFkַg=&br髷y&Vy!P:)qIhMe,knCMz&eD9u񫶡x8h7~fO")+Du$, %Q uPuoQ-фD> Z;s嗈u6-w؃ogUޠEepɋοG؏U ݼ(3mUWZV:}ept2,p#']JAbq#"hչ2Xj/Ę}H^7T=*ά 5Q9\)g3߭ObZ^5 ɰ/ucm#nmu_ŰOzM­T0}*d'қ&1-2JZǮ"򶟻pC2.}5yE(\_ Qا\lm|ܥf*|{%dl7t/?OH '{y#Myi%öqBBМ{5,HlVM]X`FO ӦQ\GbAK=8mzO?0ܰ07՜© an+*&n*E^O~$^_okdR{ lF֠Fna2r[_uoʄ`?9qBU'3nl591bZ)ñF.9y řwHa`<03GꮨQnuЉ iSewE&/v0gĤE[z ?K9(>Sdy: nFp`p:vdp`hrFu*f-D^gK,:s\iB"?G쭘߳;:~KOERf}"7#y5XwЁђdgصmAPڥZǪ4E bPsd)CR|7qzGqK~(6f6 / HȌ9%@fHi8viE%HaP_EͲ%F&0C+$'|*N];dwy˩uBYqȝI([l={ޣTS#BHt!eĻ3y:8{&Q`-RyXoLϷkPJeCMc^۝>~e‰z8%q^v!!$ 8Rq&6 6k-3[ʖ dh'؊ Z {Sg@ mbQJd̞*zdl b4iL4$0J[%e1ӷbN ruuo 6=ɧv|Q{4 endstream endobj 63 0 obj << /Length1 1534 /Length2 7529 /Length3 0 /Length 8549 /Filter /FlateDecode >> stream xڍTl6L#] Hݍt ˲²4H4 HKHK !!H#ȇ>}gݙkgfc7Sw|@)p،H/7.) uKW2BT@Ȼ878@ I K! P?n) jh!ln~p⼿ t@H'݉` `B~qB"ݥ|||AnG9.^0xB{ WȟqNP?~#79`P0y w4z`?f_DPdA( SG"y @. @vw+ j#==_- *^GzO'f]n> (W^&pDS寐;?>G %E$ (p$ yCH$(࿁[{( 8B߹!G@}V; >O6QW5ߘ/ OX'$*AfAO& ػ)`KN?;OXo߂Լ`0o\04논ӿ7 ggu P/E5=P;#S ׇ"Nok`P8DU mSor8>RvaBb IHT xݐw)n_7*. mIJ0ߖȝuo=wzmwE\;:w2؀weߕAqk`/-һ@ 0œX:¹>N·o4۶Y_;6/l q>Kyt;-͠GvϾ(6 0+xviyxIꗐ]6 T,EmԊ=K0b. pЗhlpI+7kpYPJg7}KjSұI -ekY ק]Nm] wv )Njtr'km/SD|5yBo` x=W ؜цN L>hv˜mǡՇCIB[Uΐy>{+#˾Ú3GZS1{0p`θ+ j:[SSn][z ʆ|3V:LV&}G_rkw|p/b>oWT*VIF>@ Ts <<%#l4IMiUՇ2G䴋.rSƇC3FWŻu|qz۳TJFOtNdFyO;j=\y?vU׷OiăĊMK->AP_q.$`0DKu>qMŸq'h/S|W 2W߲+3XW~2IyMq6J$ 9h%^P 6[XI9{t7ZR=;A&%׾CL(+9?.g&9KTO{0I.w!qzgr}Z \*qګsLbdo0EO)ܟ|'cv%qd羬 KDj*r`^vd2D1B61E7Y* {P5)HOi/F}g"-KLZQG܂ZU`\ ϟ/1Ƙ<׬f7Ħr0p֚&32Y{|uq}g %e~I5*«ϱ|ti`r5} έvZ ! fLE v7!Xs&Mxǹ#ɪ@LFﭘ٫1ɒΞwNmCxEY(㚽ޙٲH0 ;2/jYӶ ৙lzu}R{F;`a|ax?DϊaUFxF#~K9ޘyr]tC5_ZY]1Q.uf| 7bnYyyI/2(WVEx>[_@箌nߢ𗁬Ѷk n {ۘE+}(>Z$F5kSY ̑}dRYMa'jO6ɭ#Lf%N rf쾻rnb1DَEOR܋G`e۶٢ * EA<.|ZӲpyU II\o,0 z`Q\d?'g^5}"6H TDߐpUA!=BQ8s:OLuxS4["}rӥ6-nEEq z|{FxZ)a cQPvmɛ6ݚguJg)$chդQ<=/lSC%JuZ[M?ZܩrwZ$)-UX@';3> )xEl,&! ,p3Eos[٘vɮm>7_#H ]"X&vҎ) |R(k@6 ^=>eeڝ~ĮV*LLM8wA9-.^g;pZ{ 3gHvw5bph4P8gBbیG_ nʬWż"!BcI|zO͛tp!E`eX\!YCl\$;v^BhuAcx3@[4րt{_**-,D Zn[Ym-٧Ч5^_/]aQq9…ˇ4Ԉ/ P=b[~ z `KkQAKD-$rqôF 2. `cLݼn yHX ez4Shg6.E{n5P^6L[W+E\/?Zq9%'c2' y.!L3"h#Жrf l1P(1Mt\2"DXT99Kz؂Krmk:6AWQJ^->YYu-n7F @]eA2n|]/Y[+BuzsbI(62߸q2'o#B^E<ٙR)|TqUk WS>T7ʯR\*ziqJN74wӀ:?Ԅp|4A*W_NN@CU Q0C31&zyZM7"&eck7DmKy7fmҢ򴒣Dry-Uky)QQӏ3ro:s7M5u6kJ#z)jmd2 Eǽ|jub.3LKCJ´"h0>GÆli68qF9aP?zW;C]KmOncWre!(IcwK$AEPqJaڕ ܻ )>qZ:/ZF˳~-bȻ7|m^KWI+ja"ՀYE< $ǼX 8o)?,}R)Zyo̳:ш>zTCl:/p|' qk)K2cc҅9P"qB;Y"=䣦)^\_ I6D"?/£7 `]>Kw (X,.zlganޣEkY8pJ6n؎U@a! Wn X30U>i-=sp(q{cRJx_ؙM&exDI :)tx c%%{O) {'"j}DIC}|uNU7MQ_1G{ӧQ#1 3yXҶBZ[+L?je.4%/k} 3ALs7ǪQn/ C􅀱 _G^۲Bq]R\smWvi 'eHb2.W8|ej7lyg]S^qԼ0GE 2gZ2޸R EM G4ꀟݴn f'&'j@&Dr>ظ iU(XO|4ʂ)N5I|zӔ|/O Mub8I+}j m lg iG1gIpm'r b t"_իCEŭ;tA Ͼ5-鑬y6A"|T'%F9Xx~,B;0TFIrfm03c(v! m@Dh,Vt9gS3Rڇ"p_ܐPxU Bţec|jiL&9#mK|H*^;j7n)bAGubngpΦ;{vO$mƹQ-xOl'Zۙ O4k~Yk״+56^@z++}#u2܏Z;p3,᫹Z5HCϠ^sre (T8`IzY"azcqs\D !osA?!O؜odEiP˜DCiU[32sI`4h5ƒ2"JJf˜`@K2X,OrLYEn h!Lb fKa{o7Kv.#G_\39,HjivS\Jq zLPB5M^%?Gk'i//٢cGGRu"r<Y p؈W wNkC1NJ^gXUg[V{ t |p28ǔ>Ȧn=/) f_䂝XfCeaa4G'ykۺ^Qn2 F# 9@Rl z 6bS"K;"H }f$y3 y×gO=Da>RH}Ԭ60E>R}PCAwIQ ey4nChj3jl37+C[,ڄX]úfr=4cc@ W>]f70<˧H6'X5Lf\:{9cn,J[YK*4-4Tiq*!/AGs*me,EX(9f?F2DD(|1ǐT݈r+g"Zc_$k] 8$3]I:+Ċee0,\v4@oC wߣl-qzV^†~<2VOqxqqI :. jKlwC2 ( yq)W-:Yx&FCJCǩ_7Y:a]{}ə\zŮW> stream xڍP\[.LpwƂ;';4@cKpww']w %Lf[֮CK"f1IC\Y8XJvv.VvvNdZZM126 q@t}I]_ y7;;;_g$lPbC@.ȴG/gKA`s@ j hh@ W A/d( wa8[00<u d0@h3VdZ5o  7 3%9@CNrXof?pr;?޿rC^`+%PVdute,~\ /@w hbW@?;]]X]v[deR{{ $ {}%wnlZ`'7?&/"Ȭ@vvv^~ 4f^_oG# /t\@*!sp,3?_ ˿;=/^;ul j 2Lwo8`asxE 9XB2 y!-@󰛿<8Gq vKMڃ1xᬛ /[:wV dv_+e=F4d v5,˵~/ qU,{,sۗ兑@/)!7 Bf!'e-@qq}q 8#>Q^No_`_YF?\6? 7`Әf|)? ?K?Kb?K"?K"?%-$ ݜ_v8@ O9\0Ħ.ބ,Ns:B*ǜ >)ke'd>&{_'KȐHY4E}|maZ_u8yxT-|X1cX:G[h;OHBȈcf;B> 8뽷&g*MN""}B2k >Dcr=G"7 m3Ћ y|9 tDbNgp)$eSnD~4 l6޵眎L/W񵤷U@gFq=,= ٷ2Ep+]kٽ"&DرABw1 ҚJ?'ߗ)BoQ.N{tPj~Juϕ&8FO~b S=M{3xszc;L#m$I(Oo67/5Or䬏:#%M̏_tbϙ5)̾ hZ“yx SbXx,Bڣ|oXV?Ja/O:UA\g"3Q Lf*eu|1pz=r coU#gtSJ#>3Ƿ*AԲU+z6!Y/)øwFn۷v@ nꀼS5e2/"J]E5ڼe D(ۑ{ a%a4~\/~-昙FFq H_=?eJ8{ÁRgQE.8,^Ʃjm); 2Rr}zWߙy| _H+Q(L YBlF~*Bwq뚁-4#_HzbN|YW7R1 _P"BW|@*O&K\b@bIۢ8z᫒BI5w(vo w'aq~T}l>q #!r5µr4TaO]^nW_A6YN9EH,~?ܞZQٷ>pJy37a=Ą<Cڋߜ=u : lxj[Drg5T_K]9P~ehI O3mI@:N p,s1Un^!_GGCc>~쓶DU'YXfpG=%`h0X']aT2L3~9DfjrUs>,}wK_=0U,ja%,Xtؽ׷}8 MԈ#^{5*NHmݾ~ؽ`~ݭtu%Y98~8wFӾ+3!V4$&oz8.ǝ.gୟΈvt--Z|x ʡ,3VE>#&ץGO vk9Y/ѱ]gj:x |x)Ͳc9'p[TW8`ynaіJz]'Ks!L1c&6!z6ςk}njXa J9fcZܒ#]47C,jPqq+㣅乵NC.LKskߛఉk2]{9#gAqb],aթ.S֪ \N ebb`dPM_2(k`\Xёd3bdCqrd++4I(Xe$l8Hϫ^*&,} b:+FBtbTJodat(\"CR Q̛4ur uz6a>Kd(*Pg°IdžSt,K"P9W>,`JG8nV6ڼ.b#}WŸx* Z9wnc tӣ¾gʹ%gb70t$ ZT4{17b 51F5ꦝJ^,FMTSɘRjy&.<BĴY3(*2q̀_*W{ÿ#M28"hmpai?`4`'˜ ?!rk&9I·]c>ϖh bBbƜ$.'o(E *Z"ItfwD͢`Pg.Z.KnUU#ݬ< G kzY6ԥTKβlQ~&9mXJq A2 WcFI37{ {,==u=QZv_L*lJs;Zd.m!6iJ^@(_d˞LS"yP/toL` =4ٌF4e)N9DG:~dVk57R~`q%}tlonvl\ʜ3N$_>VjǾLvW:}o MS=uΫo$uUR *|PtqX\47^GWL0C ' p?D0=?f x؎ao`T7_ 5ϧ#g wƇIh+Զ],M"Qⶱ$3T6Wrm 6)BsZUV T9Q_ǜ[ۂloBh]5#tm^n3ҸM$x 8dFZ>W"'RA+p46Zt^v%>ۘzj6!=¾z+ ӏᘽ~ 9LUL%q5_8讟,9lJ;eKi6'&ۆͺc G-[5Jɖ v/ZrN4Me?@z)F i!Aĭo>(n#f:eQ;Q'+Qh-)#sd$ SxZؕ#UG 02p]N)^n)^Y,JV­&y@j!5rA┠Pӡr>bTHGr.7>#$5<,8~ΎԈ9)yH֮Q6P}ÁZE~9̝@H@`¼1+2=+ (ڹM&׸+ßkZuȘ4~hezeRy:aKB暀HrK[FjmD]LM} HIPxg}ⶸ,/W=(`roT0&y`F<Ӑ O<3A,5aL_è}4nt[3Cjdu"UD8n[#wrPli@wM%iOo *$9Ho 2 ߪ7>!tob]&qD-jg}Sڥ\ENܪjaFuT%ה7rK\^ *Kw(2R(zy흡oN|nÅ|CwۀxokaJDIZ LxWDY~x3/{ Njei+-t0S}§䔦 ']ρ*l6 uSygOMBf#%?N{EԠFnF )Lj]<IS0i hESuDAz@LX)HQwNXN~zU^=yaNf&nSf'|_xĹP9Sm%2cЉ_G'J53W' sk5ÏIC G0sŬXTSn|ګ>/Us ]8AdSoVRpzђlMݠ䧝< \PV7ű͎ %56'h21)^kW?4мSƱMĮ(EI*Y'BmE9攥a W,Ҧ{%f;^>&)Ql>+S)a?[0J A}}(-5 e3ʹVb5Y'zF? I$Xj_#O![P|\a[yO_D'ZtV:8Ha<{Fl𾒴!XFv ʏ/i.gQ-sYC=0w61Qm=^;?:dIqMxnƲ}nj)OZP7oҿJJ.#O<38nț?-I^ ԱHr#6 9 c Cה24t{4evuByz wdКq*׸@ixle{[2N KcFLU cbHJ̣D:)=TP*7$Z`ii+]-PDFUW 2Sz+Qf:#lոצo%z%g.d\7 c:ž,~>0Lj9_["ѓ--iҴ=j0&f.pFzG%1EU*-2zGss;U evVL $dO]@SÇcXC MCeyo)>4n+6UI! gU(A`Mx[K5A*׏D4h_C;y>^2D!@>,LowlKФ Ζ*̾ar̃q7UdkɔY^LiA{l IQ12A՞5 Q9IzEdO,GN&zvYv}76BL#C?ڳ'/[ ׂ+w}KWs4`(9Ja YG(>Sۍ_]Cgi:Ds9}H(< 6ز$$4UG`Dr 낃PP]h?-RE \n+D س| 7H^g;eD1ʥd+kTg';zyy1g SE3. ^y $I0sUh,m l]iTEƍ.ަ-#kz9aVxFg"kL*k';݆(|)c|K:J'v1h0?aݻ\g±쪋Ҍbwps[ѕݳZϷ`em5M:1ڢu^GAwSkx&'{_f/a\J +r1}4y2prRXiAn9,rH,,Ds {^{25]709XZW7 ~jHC _bzfJp5tڙ-+ؘN!~9Ai NfQ9eCíAbP]z ;9Y)oF[\$wߤ+1:*h8<Ӆߥ)xNQ:9.c/٤rP83CJ=G[x$y>~>Rq1 +J)tVSrGGvn _IGvmp{+S񓗛3ftݝlGnS5~Nus Z8ܭєe!dt4E@ ɲ"(!TA )yCG'/GV^DML3_tY IK$ MS|&3.pY͋H5vRt-qk) AeXT@b]lt2ҝ.(;/}eJy[ރ.? z5ӌ` ֽҽ2HUcY}<ϓvX|2`BElb)$j\Pd0mjj]&{c62L^ѺСBRGs&R$˴uqvKD8(+ U)[6j^~L!nUzH-C%NUӍ!k`VlLjޗy.L5l^~>FJˎK\O [] jQr U(9Mcܪ!r+F;7MjGY=:}>%~Wu"ʤ(dISh.g]1QXh+o\ϣȑHb3PXJq(`k&m)i tfYo:. 25rUAi"nTIv0e+?3hCFj>Uj{فhƋtZ1s  l]wMWi4{8k7[<nJ,E?D/wt~WʦZ܃[+Uu_>?t k~D{o)/1O?sus>!00#f m[CKLP oӵ!\/FcMRߗCONŠdו*8x.8`.f$\9l+:V ¯كϲ L(UQ z&P# bl|ebSo!im'1;ȋZ2oSE;ԍ)/56 ׊ND;oѨ'ۄփսW51 u>'!TXOI 6G m9]ku|΂ {+:_%ߎ}"pU- Rݔifڋ w|^[t OsUJJ={1Ꮰ(b+ɦ+g7NBJgx|kp .EzmV1e.a-R0z;ۏVZ9 Mn93&֢`OXiT_obg T߮ SPqeՆ2&rY礉?y-wǖ$(Gʋh4D⭍D՝7B!?_yԍJCj'2TIHg=XڪPg&#t)R`?H~A- I$.<̕'*EF7PbJ]_wV'`X.c%P?}fWX~L̺*Vl8 ,~O2DDB]Xu^N tsX'&|N B٩l tr&E 15b*u@ oǎp}~e,/عw[Tny*Zɤ 'R@O$E~Kk%|tust M>9D1n dM\ygփ*iǷK=a&'' {d528.g{ܷue)&M,Fq3+J> stream xڍVTڲI (]"EIқ^@$B Ei4JWD.D)J&Q{Z̜3{Ί#S1g\ƉA@5}Y ,)K̐8 `z#1hƫaPSf4PBd!`0P !+T"@  Px`.8)ZaB@ow E h> GNA= G8<'Eyc.B@?$hc}_ (@3WAp @hoj =?z D] "wB;Ca0 @]h'ljh_Po  Ez@5UPB}U "=qH_~!\Y B8oԑX8pmuGc?kU'keAc.pP ʁp/  , =1@x0'P_8;:#a8c` @ϿWvm9cn.HGSUCDwTU1@,PLB @$$E?AeW$K%W !?c`-X #|A2WCoV?X( OЫ}} aij 3pg?Ym0*h_"[w6B`75`H4 `p oSpH 4 k$eP, !1tV0$.@By@ O)9 ,@'1@{Q_^K qUBH_a ]*U8ĖF- ᧰>GtB/*} 4yN (NLF× =P3S^ : s'm nNg|ץ_]6.rbx兌.I{x8۰1<'l81nJa]Qs$@fd!f^xgfm6lܤ{LFUtX?K g l}b$?iL,R @&]Kzeef+u}?ZT+b:ʩh O^NmwSmoSYWebBup((]KޟQVq%DcLI*B]C潂,mJ3+tP9'ؗd' rV#Z:JfkjhRhƻhed~etPvr}6An"xδTǭxu) LiJ5w`AS-]0-IIo+ڑ]-ȣ}RByI̾oXl/\LlD';~vlˬi(7PnܥvS5@oi03$o,zuYgxN9)r?]#E]1_Ը07bpx,'2~1j=UuT;AQd-x`̲YƹPiE~msF|bLCktݛʳfmtd\Cw/N+LW #ghK8M6β-7%@¬ݓI* _F?O/U IwW9O)z:Z7G"R~\_O9d*M$1"%*VzR d@ ՞$Z,/_ckȿQ|aI녊Gc"`iMhPt5ܰmcN]':2W"BrL8|,Rhf2EY;~N}CGa֊ }Bcyn]]uy08O9m:OvrUkǹ!o[Tv#T|YC bap7Hjv)`rzZJB ^=!_G[G"1DLvv_@fWxv=a3nx/IK{UkO> 2Y]&k JD>LD]4$6< $ Sӹ=65/Paᩭ>Z<\޴dMG2^9G]cBY{[fYU%]#ڔgjGoO VY3<$ e93+ DXɫ9ʌ=ӭV'*9!_|uHQg^Q.f|Ħ1ڼMOc>ZR1\>&ku}mns]˯r9*ĸ}k1+i.97k;UW& =mdtЎFEyZ%. J(8im>:t9˻]S}P$)4[¼탴ָw}Boh5` rوybOW)mfD*,o[ K~ :&Dey [̝eWk?޶I/5| h-xņiqȳwOK8dLQzf=oK\5'k;1Un|"==䁔;evE3~ߏ/Nlfkj0-+:A;/7GQ )h ۽tHC?t[8bmC˗,]\J%-O3xj= CpبDa Yqʈ8Nl3v_HGbE٭ Jk5:vIEwVë0j>mFH(*mn5f81dn bIE| n;#e#>l\Ms!i=Q|CAvp0w~ꭻwXBvӪ4ZS0~"P+:Gn7]765Q/,vho#\T})"KؓI47 .6.OOuQV\v_u[L|dYĊ0_;PU o">FjhZ書\ر$\>סitȶVynk?gjPCe]3!(zp 5! QȺ+g\I|T?.wI;򋽙6ƱxY.{w_6kXd[6uO!6:FaBPn.TEgf%Ϗ] vd%"F>˲,יj\j,H5̞1+yES`iKeX"VV9{]j:zLD}_ާp" ^ifQSM:/ԇ rzĂ5[o]vaT]!wW>tn$ĥXZ4E gYCdq$pIFm# <`B"P1`<Ś|yw0'7ؼ=qj'[^wJ  X=Z,;{^;ޤCHB(BaKfrO,śEY[&\E0.*4E+%>[cY}Gf- ,8),bF\/g@+X#k:nŜIIsxQC +5IE;z|_|#'N++\g63-djUg H%1KIZ }84Hp'~!)bvM[-Syq߶MNތ )-wG_g@ '<Uo{akՠ3.𳢮ڸQܠ{%Tb:_aZDzC$ơts(nJVQo@.jo፩iOfru8Qh)l8bai7%eqw|Gy )WM|\ļ]bظ7Gk^2-[I &]ׅ0{.P|Ck.겂r6Qp Bγu=QL&|ͅ #U-5<*:n xN0;HoXָ59v|&]6AK9;x;稇Qerɱ>{QJs4˩kncr̽WFBV_}gZ}'ߦDڒouڙ*Y!4"/IۿgUu%6oZm: oELâKbij(O<^X(sw[B> ] yt?aOhv4LjHt3.3÷` '8o9YӶ) p#W 7yغDV ; N;eε7YK\H6Q^"ڷͭZVS`8ZD)T7~j]E2U #*Ln ڄX+YPJvKPk ˒&m7'$x8dV]T0!s4ֽ`w{:5v} Yq~%m@\tkM=YȻ*Z4v{Ƌ4/jϼ ^)'.4 U5xHztƚUS'0Wla,鳾w AV#ljlרjp;%*S bX`I 7I]iggӾE9oԒpp{I&ď\heA ]83owM[3,2$7QJ=TӜ1;M>D QMBoaaKΑ"AwУuJp9I(f1%ְݩxqW߯FC7 hg&_1)1MsT)~K>>z%<4v([4PDQG] E|%TaؾɪwNZH>#G4ѝ0gcNTHᴠ92]=!PPVv$wp7܆'843\6K8,N7?t+^ie53 ;e.c`;B®fGG]Cp҄!3jc iֿ;qKkuz qiΌ# eA;}ȾꋏrGx"{.U>;D^?+`ݭg lryo߆Yg[ tVm&gmL\Vn]zp[=zquݻv!clii97 p*/[Ey-ψIWֺ# 6@K/0Հ.('[39zS7VJGwP)O j\\x”}sN+~vVո3xh#[La`3Oy endstream endobj 69 0 obj << /Length1 2138 /Length2 12486 /Length3 0 /Length 13797 /Filter /FlateDecode >> stream xڍweTk.( ť8S w)(Z\twΏf-fJ$w灆BYE$`.PPWW`ss"Ш[ڂhh4A.VH8`$LUpȹ8|Nvv!:8 $VfV=F|Л282فL%|)`jr/o,]]<<@MV,78X9qߎ2:9-V <+3houq݁V@0i12t1urtuau%o7BKٛI8ف]]~'i 2Wދ+wͭbȦao ,B#x r,N../WߎV _bvO#gNK ~ga7L_Glmbbl+xCaZXdff@X[[Eo'L6[{lA.VW fj^'.K*eo`{8yx@gg;8yx>4y6V{W F6?M`S ؀iq3^\ncMA`?/LП<~#'7p[!pESs$G-E!bUWdHCnEn>Ů2_G ZnBOk.Ot{W#IT|*xI酓qζ_J"s (ֈAGŖ2q޹|Fygeffƌv`? ϗXҊ8 km9&yMܑM44j$DyOr@CTӬ<1#:C+I2Mg\Vhzl- ̸VV{7L*Ls0%~>n s2"|iN3Z#+ {cUuSaZG6W8:9Ckx-F6MDbݽ1NGkOduo<1ɮMy}&6ci ϗ.;dt Y$^%*Z+, 6ס/Em~Fb&:;hh#ʂHDSQ^kq9 RQSr DBQ%@ue]Yq?ߐ~F(5 tNj^g+W:bhb3f%!Pc5uNFc9 eU΂msAiM(DhzSV WCXrn0UPWNA@B\vZ1RV6U~B(}1"2V4UYZuj[s[bz.--C7ĂW&$4tT`+{47X|LYdlA{=)a8HT Yq_Xhu/W,b"m6}MT^+!9Ӡ2ԕj_tl}RJ$[$2ƅ*Y-R߼nڢX$U}C:{l3I92,P8mʅF 9F%rȡ%bfS(;3D|\z>QQ=)jL=n?ChYYLY,CD˼ j(N/t(K-!% s&`NCҰP]?DFrE{Pekfj{F'aF65K 7#<T>T@ׇ%wS{e,MIV2wuݳ Y傋uXe rѕ粟kr0N~(Gi*0s[=ɦ^vo DތmzK||d2ף;qSrwkEDo7fj$˨49#hj^0~оas=IǺC J*X2JnVR; _6bxITxS痫Bt`%ƘFyVȾ12j/sm"{B3DER tߴHZ`:O5=:qM aX+(/r 7Ovqk0&'A_U:xadH΂I^N%gf 2ؽ/Ί>FO[=!i5*ݏȺ"?RrKx6Uv5w fӽg Rw*'-RɃTE|?4ߔâ1LVuQCƌcYGZI Wjwg{.fX~# muOnR(^ӎ<,%&+^E&qKW0Lь#BV]jsߘgj,#2YROuD&o |2 ^6>=l?@x."x_/uk^$~%*73ʂf1je g$}3&/ ުh҂_AQE+M*MKJS䃌]9qW")2՜&KRA=Jp$I- %.m>걯?1}d wZ>lF, %+H6_jʎ>Z5,?Q1|%@c6 P$O*膛aj"~ַ xP1Ql%zD ߳~sFmXRR]+%kFhCFOU6ڵc}jf]K [ Yr߮-7rrH&[͒"f+ŷqC|0'iOYW"Q땣c[2sp3f*ؤ axM* z+F8,:}\ҽa͝fo3 y'Eq2`gc8~PDY51{KT!atx$f gMW>ưe~s H"{;TՌ)/`8&Xęm3(P_\>ezv '&"_xdum~ D+-f9A4ҋ+OlT T4Cv>x9;<2稇?$BAEK/ݗw->cǣ*5M ĶT}aݯnȿ#r5u=éQ*3b镐|p15p'fZjI.=lVS[A|y@g9y" XjC+۰,;86B=JIKQ"8}Y2dw-YWhAga S%X52W8,s0đq\X[igē"1'M %lQf6oz-9$J t.k~ m^DZ!;_`]&]Ѷ8ݹYL״qewVF6C$qqH`:*H6,q9y׾H_1a`4ۼYꑾ疸Dj̇빐{Uזx1:B )4˒ǪudXqD}/bJ>'Fۗ a=]*l@}7,[˿vDp>NJ-|=)ى^A b-+uf1E6NQ ))2fjrd~1$Eriz}VݘpL 7o]u7sQ[ubw_>@ gpuMGg4c)o N+;NQ|:ؤZZ]||d[kԽzm^=bjʇ.B B`y 2@Ge,l_i46e0m7_&Cu|J;A2[I?Mϱ0 Bud>:S}x`뗣VT, F}&S]u\\i7c'R$CYzo.3Kz@0$Ti{a9PW&Rk"$XNXے=a' ,i@&0We3E< K1Y!s= 9RYbQu6B]!y=vx\ ss-?4]EK@NVxO/GW(ekHW0v҅\Ji_~2Wv4(,Q|)?J^?$9Y=<"I_|c% aFy3 Cjtʗ B%ǻz#6)TJM>p]2`e;RPeD:c#=$JK"ķq~<$tJd&kq "=_&@B<APk*_:()ӧ8UvwϴF0}>[xUd xLs 0dLbE^FZa*A1G SS{c?cG4~}x>g7`kܴ ؠ4C ĉ]$rqU} ͫz*SxLBոl_䭌Ofl׮ha?n(ZM"oVN9hex A9}MߖoT=6{ '_c4AC ưSuT(Z"K_?I-7*uw*B_j G0HנNcˊqsjnl(.Wc&O~gc*^|3<2VJ RJ 1fNٺmv2ihRxiwa* ];%wB8 .Ph.m薙̀$85$ )~mUuRL5ȝ3󥑞t_44uǹx>r}KNswW粿Σ`յ)kev^ҙUϔ䳽Ұ.8 OK^:_zbo 0\`:#ȪNE!lGйӖcf6%#?HUU]CS{lh?yJCѳp2m H)!A9TO"nN6_|~JgNbu/r``z_+w)(14K^^ ]^GmOA;`K8M@g$Ks"D!1't5+m$(3&$qB : f1$S(%n+W.K 5nWIWxS5 Ntd%pyM QAvl9LOuq xǦV{l:%.cbj\NWծ";h>Մ>0c4r J 1fXp!K![x%kݓyS+ 2S;Rî8V Z 4`";ᾌ]Ï 46QzdFy$ ջۏ;CEc?{[/@dWY ehQz9˽H<%l> B,Qߒ0lOb]U<` #YOoaw:;l;qٱnqvGbEEV}e4kmCjomaWn9C7@rۄM<]нfAFJPgnD.Hyȱ ܸ Bke)h59_t P2 X͈NhNBeH0eC wU]AgU@Rͼ(Uf~hF֠ #3Ů{%WzM>|loxe'–D#fPP[N뗼BzpmFnhR ꁈWq @qTk뢚рGuuŁi$4m2-]D*yi`ʜS8iFZzq{I:&{3b~S <գR&D<8vnQ4,!cZ3PBhO1 >=9]ׄ0[ٷB݅98љPeotB@O "|!ыS$bGaoJL]Q6i=L{w6 @ -^ kѸRg&/AzFm7<ƨs7ūd/p*&)q.[`rb2!JrtϚ`'.S[zb|o^dHn1m>/-ŰZ-XU>李b&ÊIj 31x[#lF?@īgbd2jڽɓ >qRAXmNN$f=4zKA|;C#P޳}nr8yFokŹ`U0,?Vyr-Igu(Lء|LL_vߍte뵎Sآ(;Z5b2Jն9n\_B$.q(tv6XV#{2^!!&E7DX *vhxڷk"GbXmҾ w=sMu_|w-)іn!X;KzP3H[8~ys$V/.b' C1>Y 4߸f0bM}4W4j?oI )2cwJM̜ ,⠪L^]n{3 5b{dK)-te4-QJUÉY>JPI;$bKK1B]n` 7O}CH@&NЋ*ÎQ!ϗ<'t9g`.hܱ8L0^Ds|R֨DυhJ8G8xrpk.7_ѩ{2B}ȑPnVb48Fʶ3&vj@Qx`kPKT6(F;f(]i;E l*(~О=pwf&d"t-sv5yH085hkM[O_9=WUY 7HofSUaA6:zv0p'@%ɏP›a7pe|)}9 eYYYR >}aݾ E时."P c͑}3\2"/a&xxBAĄnr-=vQ1sՍ+M#U~JTZתuҦE'6 bf-ٜz04MuEO; 3{1R.Z뎵Q[eV^;#Wfd_,d8_y\qQ۫{{&^`8l1>uqoA冾X]`}T1%0@[HFJa'Y!D=ȧe/{Ĵ;2`Bۄŀk1@>a^JZ"NiVc+`~5&ri3΄6'Aէ@)J>PWiJ;j`#^ S%ďCH9Mh١A u¾Z bT+s],KMDrݾ̧nϻ4CMsb] _Tw?~¨~m 6v FskPrxێON5Fp1hM ~rcQcc!,S>9^@9_|l2~4S;BR]L JūO*)][;2 Bvc>Y l̴*ƶc3֧[61_ov0G4:臬 9ۂ#H.4 $6BPTOͰ}*t_ Y ,RcMY#88K= ܊teFCnT6\C-uʨ42 BuG2(Nv{8I&Nu>k~OmY&$z!E{AunCYjbI.S$Db!ѴN=}$.&5O4?!"]LtF` a6,gfkz;zOP4%<՟7y*3vka KYCN5~ㆢq~UiswDFx-! H9[xAhTUGsFvw}"f~oZ/Q7)qڎJ޺R`4^weRh$mZ/HFD%f̯;yK}Ŭ ~1W`p]|{c(<|tR띫\fB_SrS'@uiY'7.LW8*FF=9Sqa\+)Csd ۫fgݠdw^B>=~zt #QrrZasDȊ9S;Ge G혌v/3KPL yPg};r(Mex NW:Kh(n ܍r#2 I.We @U$]>ѭ$G2qSQ]b'}z͂fu:DKAe1|QE#qDq;Isv_UڪhNOY0 Ùrި& h_uWR$#F,:wcmTY/rv߭l\D @УMg{{0:zr OlO3P_Wn j+Y*Qkż ߯drFlK{<싊("j(RGSP#8 &jO[qb1K_*ײ/'tB<*G,VP[N#~c^.T͟PD_ P%r#l„ac7',/Xͨ AbƖ0W%]-IV )2^-0O]YmZ,2>< [>VN_O NGHB >`M &~wޙO:[On}XQNtN^#6&*OIg&2qSŖѥc&JʮXj5B37A}#?v큦pߐM4JP)? ވ u= ` [>'#MS@>ʠH%[錜6"9}.E 󧇏#'j Eב-±lcT5H!U¿rfb26nvhuͲe5Ċ\YpzcӭGV '4[Z~5/b(h2,\Ǡ=XaK)>CH\6:1?+,|**c@bdf;2?j&ޓ\ Κj?T!Uv_EjD30J>&O 8Z]@jګKfkxx6H_D*_hfryœ?!m{j"xV3Q#r^ 򵝦%;*e8*vLьUN{ўh9MrWST]8cJh-[o>5N3Kgck}NMP[``hԮ"MxxFl%tw2iP.{EB=إF}@DξUqBKƇBQnԈO÷mCӊUhJ}y_4hTZ-Lu$u!0*sF=dPnPq[0v1ӟ{^^t:nJ\8R}9- ]X,UgE'nPL`sfc\>Mzk[8>5NF?%8f*S%mP~W5\zndeX5V]4Ct{jvwzF["t ^R%gT0U¥UjQ][[n'bA{W D MW(I㵱!5C㣛Gi9hi2C؝L;oBmS eS!mvsuhLXxIZاH,9B[@n"ne&gmG B! TWW endstream endobj 71 0 obj << /Length1 1396 /Length2 5966 /Length3 0 /Length 6925 /Filter /FlateDecode >> stream xڍx4\ڶF{'ä5z.D'A5BѢE 7ɛ_֬g?}ykϬfh"t#hAPgb@Q! PCqCP0$B?*^P0cS1@=$ D qi4"`@OD@QD*HO/+S[Pz `@vz`*Bp G{^._` EA|N_#? qL]a&Hg/ 0„x#^Lu. @gs !п @`? pu]!ZF8($&u%#3P/'%(+ fN*H("՟* 컿uG }a'_c8y{ !`Z0ѿm.P4@ (%..@~W_L=͘=g`3E@h/ohp:"N0u!c:Ɯ`0'$o#757S3H?@@PJ@ 1@?aX-3 W}e?#^?s#1̅xM{@1 s;_YWwGpo?_ 0FcThP _Ճ:=۫cԠp0ZtWx/; :׿X0z`aDq\Z~cOdE幕.v&o_8$概Dl3C(YJJt^(T .qy*WIJdsBչhdφakΕ gUI{/DEKӉ`8ʅ-l0yJ|n+=錢@h>Y;%m3|KI1w!IkX3r.=%~8ɈVsx!`̪x_ϫ ,Ŋ{9锲ˆIOFC|Rg9]*NV="%|H-Pd銥ibvGq6&Z̧iNҨĥiONNwc&(T]?n)g_\(D8s/=yh aLo@0H玠tC'ꮻ93@Z!R2'w9|ql޳>|1>=snWɱ-$<3y+2pښo.f({`aq6˄X&y;$HI8G\YbcN4'a=j꼊VL0$80vjpXh&!S.u<^\o8XM_uʉVsTj{_JYk~c|(\k{0+@.g4鵯7y(b1g3<*KLYuv<;?Emf u@>(R8Ҷv)1@CE3<T˶ݐ5&8ZflEϮ]Ijw˜k6{Z_` 38$,0&#b/%xy=i@R/`jmpzRț~!EXGYQ "*{7 @JskFɳ*Ip)R% .OUDTE}ymƬ>}v"@lX d; Uw6iFP'a<RZҟ Iz|'Mop3f=|Ε&47zPiG`]C<3AQm3X.eBV=F엕xZD3uWw @껣іzr} ч[u#To $ Tlg6l=QZ%m|J?ߪ n׼.2 C0G5=B˝˻|fJV&'9?šj`=q'[A=eN?Ms=>=Z_Ee>$pe{ MX~ԁh $3#AYH:}3*?vc_઺F8a-iqU >T3H4H",OM#/Ȥ@[jy87\&c ۱f +{4.p ?s M0&{4z0K^E7Jyo"&n5ΚvfP,ꎯjة*mʏQZEzپP/\ae&f$T+"+A+λY).Tg@H?1 dƮ0|u\?Op/[{r쥛m%DR^8@aAu?TN"F#91><$1J Z@Iz/IZۅmi(qc ͞@4a 9B4[ wwwۻ{u4G:\,ѓg:V{h>yd~[}JǬEZb-@ٞB0uě ڦ'_h[@eg܏ D)MjJ7={jJo^ l2ʥ' z̡^6KSu؜AQ2\GxРr Yμk&V\P#Sڀi[7eg2n8*洹;W8oⓅWJ/\>AzkK6,Z,*KN;&mA/CMÚEg&̚v3’*YpUKFʹ4 t3ΙƳ4)Ě^ƇzUpؑt-W'7 3aEsIdg2:.wߟL%ȼei`5ztUABvDp:P=P~ L$}dfJn/ jgy?mPPhQhU#-Eًڧ/%P6G LTĮ4\p$='})JvuO/2#=MnP8^ιˢ[5][EFoZs9,y~G|z/)%t=Wѱ QW +KZO"\NojoI+3SM !n"*6ek $-.JG-#0ʚU<(tr[D#%'ι%k mD#ů&pO 8`{V Ck yaǻ$2'VVYg?X}T;9l9j ndRkO^+$,$(%T~S%x5H-k6`A)#MFhh,]7plzn^tN]e F3VL7k2P,K _!A7GDchv\;3Www z o9EǴl/v. bhtz2GT44lC3ZdEI;pY~3@3@x)_Y(C37ZqZ|v򔫉5e2)θm#r|7 j8 ÍH>85`<βh(7? j<2r?F!5P*{a7 }s!Ll]SҹV/&0bw)ӒVZlߛ˙[HGnˏE8 |`}_gj÷= bdzk<2cpK\?BJ{;z[S?7ubO~ȿ v^[x] y<E_[r^ݐ{ o;,vdJ>7 |ZDn\n._ݰ Hjg9+}vR L9ݐLW4l+>M!H`֑D/O*a&S1b=1O!#A4l߁Mt}Ofe |aVo0w)Bn\Dz{5hWe2u亣0]5<,@![;Wq^z/{\/ffF&9y=.^Vi&V]/ԣ**fr5zpzTo,r83c/= O]u~NK 5ӣCRR iC?JO3-Lb߽Ng'1hapu*.Av!H$ƊjU]= 9Mgv#Z+ WosVIl(&}퍀)c- r, ٷ=V,.7{U8-7x\T {+{}0Qf;,X( qdBk1pbQ*sph8ED t'SȾ$0ģ)VuCyZnk PqD xMa+U{Eʗ̼S\x!6Ϲ$ij<&T}|,MpMFި6 *c8M /x%KO > stream xڍT]6Lw%]J 03 ҠH)!Jt"!<}kֺ\{_{Ϲac5@0$ @APMP / cc3"] ،!(&)D-8 >&=$`/@Axl p7_#~N[.(yW hm.-W N)G$M"2\o(A@< v-Zc:B: HopopB`Op;@MI pIWDP`[[ 9.&? ~.}< u( P;? G@]~`v pWW ]"b{.0;my`PwO_{m$@D@@@ $ >Ap 6w߷ C`/ OP`El Pߛ! O Ž0bc'<p?$" DΣ U?b`pޟ%{ο \{BGYw"eO??~+/ƽr=SRM ^5$~aE(C} vP㟪n{\0.G ~l_Ľ4pAg*lv $= O108>pc bE@oӟH_x@@?}0 " u[OwޟGMm%Ýj[ϫz} 㘬+xm*H] ?blTrl@r) ăVL{5ހQ2m'FGk!Ã&xOemH<{縇ѸO6ZLL-M>qd+PnW2EzHdk/*t%q֖럟jX&?)Q_ =n i4eV[=T=\SwxڷޓyW Ǫ$wbɇعTB?!O*ʸݳc;oI54kǒ, 酼䍺G3c<⡼ׂPa;͸X- k ZU٘cYB Cs)dIm].Qos+iO1oj^n`tW|%yQÖ9Ql5<~yn .N -fz%{$.ިf>1̶R/.i;eس2OTWd"Դ!$K  j'?yX9ESvgUSi#Dpgْo% )˳m˽tΉg\>[q8~ 8+2a[JpQx=Xbf[`oR݊,Hl1n4&Bk3 9)l ɞb}lPg[c NJcsmk7%tdIeym82$T@epȞ#7ehUbͳt*sbڧN5J8zvԮtxŢ4߬DfEp&ڀC= 06R{gqfBTE־,U__\@J/l=ycX4w:CF>JG"!$,\x#_=_TD־Xڞxk,mA`DD%48G?<b ِ?z,4vs> fzQVo)E3nAX`+\ᒳq̉E"yn[Wl\i;[_ǭ‡>+Tn~ ㅋ*GAL,UNWypP9%iÁ D'#<Õ"jA2&8G&ԚՂe:bw<0 2 RGWAb͌-[@˴ ;8O~uUS<)CjF /f\"_6%̫Cߚx16k<Qmփ*4#Y-*o4*8wY(Pv9TGVO[f@ۑWgkcdW4.T" \KhMcF-ۦ @|?2R n<5[4,"A⺴LgkL_u4.m+ >\F6.}/6bsN9a](3q 4&;l0ꧼa2oъ֫NOխT,~}FYuaBv@v-RL\ 5IԊȹ4=\h,ZjeP=yql'.gY?{])Y Yu<7{$ǂЖǻbvcZoL6X0<6؇\=[`sP6&,},_8GF|S}W~yƢg MK]iȅg\|ETT*?tI/KL'b 9U1 e{{sN&(DRnK%LqK)i"Ai|!C#k!;nütX^]J_lxdCݳH-C5HKέ_"6tp+CUA_l iLOFU:н&'BeLӄ#L0#-ڍs?8/?Ia]7:ߴ[,v kuWNEVQ$;tI)p 2'H΍D6[Mm<`I~Y*qw^p2Ħ PH*p@: }F:,O!S4ڭj ;'I3s?CcՍů"젃MOLFXo;$tGZ;w;N[G^rN磊4S" ʼc*/ؙJ4'~~coXĶ+'xKw`cC rVnoONBxǩ6!KזfEbWRS]vA4\K0vhvZz.Y:LFޓ+ ;Z תk^=~G;0U 24VE0y\R\%Kkr QMƕ;}KCH=buWSKg{LKϓJf$9;pv!ӿ$;;Э뤱N_ZY04~LbL&0e5.'uڝppGBL.ھT s5>l;|_PF'UO^bN\_qmy11yQu瘘\/: de,L5';#]l䣢~2ob/agSæ:&24n3,L$~V L"h=Q9 Z<϶T>m*k\PJ"[+bOZǃhU!z0Kny>n|]޳O.EHzߞNҼݭ.:Q`d2ud+׷^Pfzu*MzI7|LuN2 ȁ13r1I'mӃM-~ڏW>Y%goZ2Rz# p٠Ph 0y-s?Xhx\e=Mylϣw( `FF9}k\MmBO߸bzXfP!Cɓ5XVڕzhO$hsK1͍;1䬨/VKj|Cޢij޶GXl{C]?(=]-jqIRU{@/FYUX]m (TTGpc-#VPE^+ P4nrpB:Jj_n)kف>U C[/zZ$mڰ)*vziαh55Elf5}h q&U2S(m!e-nDOOSt{|1m%b81i\k*Xms0-GYSЕj/Nz Dpoܶ>g E\յ TRmḌ epSGw~뼰h6{W)OLL;mAS7OuOw+- =8 `ͳ D(55yM7m;tˡϲf2 $# P[ i'aF:OsTd]*4v6f\t]6b͗x}? O?B~lȦ 0X.p=ޜ׳tѨŸ3D2-_#y|-Un,%|U0,\ SwX{!L#P7)4[ Nj 6G۩4K֬;LN)XϾ6~WgԼńlhZEN0zYiFG"zDds-H60cRlWj3&z;G_u z%'ܕm?ڦ|No+}5A Jr͚E@ʛ5(o:}5O5Fǯv7$ - G)iH`* e}^_1]Pk ɟOJVܭ A ..KSioϳ){fO#=z+dtfv~1G P u&Pʍ { `Rj}- i:61e؆籞N种rY:]{eӌ~W LK6Op3J}h~3iO&I03۫\3R=_};H 21]%i$}Mwwyt]V9g+_9~Id){uM#5PGAK{ɘEPwF]FӒJ'˻:PCnz <hF"_ KF/$x. 2ٳU,u_֚;X @?$N,eFlz3Sn>q 3G]XBR" %R@{꽴mXfWcTMH˫i4c3ΘB!R sDݲe}; -p1>"U_߀?`5i-iN0O~TeqkZvW#ؼ%٭!7à.>f !isWl$SA΄ ޶:0:BeOs ub ,wlr;\Dj:BYz 뵡H!wX+F,(l3XƎI;U-)Oj7#$SX_+1/WQf۠x<7Y7B43>9uB:tl4.|G mb8}12btoWˆP砥DcƦk-YV%~QC-xOj\M@{Ǔ'^Ft~ r}Ɣd+)xΗP߀2>ѣ/olbcFK<|0+=鍘bt  efvdk f~P@/|93knOL*p/챻ϻumdk7cϜ\ J7yƔ( $u:V2 X>zN8opRYsLy`"祂\糾|ўr;"RݫO5l4^RaإF&a2Rb5Za5JI{gYH~5*)݀-{e(O\Y{PzwPfNBH*CK~WCD*3Ml(dTP>Wڊ QRƜ nj 95 ^"c>T F"\d!mݫYTi@6է^`󝲍D_,PNVY#w-^26";ގ8rry_ 8NjX) A{A.;>Ɲ^;OE|#;|H=ýGѼ)xޮZlq49iQn_~PV%P!ږP[{Tqyki)3GuIڊWQ1a֍ϟ]׫&=y%oa,zU?:-'g!2Kˈ Hcq@iu/)չ D2F;ɴcx QJ' rM2W3bdî~v<5ƥ0Fw:uB-{TzIi R"J/ݺ<)Pɹ6A]-HHsUWNz+|}Hi{5SbTg bbvx"BQczޢR~ ;Sj~D"uCS Og^de)N$3Wte31st'_ctK9F?ϰQwrtb:͟ej$PֱKҩ\H(#⹤FYt t4'I UE! ׬XQ.Ch3_.=.N-+R NK=SDy晆*o]'ڡ6'£4 %}Off]UFT`+I/'Xo.He > stream xڌpk ǶLlۙv&Zm۶Ķ&6'cb~:VZպZ$*&vF@q;[gzf&*3\_9:Ζ@CgCC9;[5`ab#ೡ @ mg t#p03w#ʘI/w  gl`46[='=#5 t:M 748rӿ*vn@hbkt|Td @ۀY `ja (28; mM24v7t5640Wqa%Gى f1[Q;_}p݃?kekf_djakbW&.j.@LLL\,nl=_J5xL?X?~༜ ]gG?&#-ܟb;Zt>Ə' 3c#fSS,IVع,vVN7(Z'xJٚG&?A Xvs Ps]&v&//3W1X[KOo,>c>6jr@ r6a[3i$n4Qp66l[מY[,YLLG\VHK؝e53kX9pLbF`k`jבrqE .?(7d0AF?( '}A| #>?A`PG}j74>3r44~'LY{V|6u&C֏Y[:78JFK \>`#S KmOF >eaoqY~tELd?bc(?ma&~db 41GTQӟ$B@Taq󑦓?B|P96f._T'c;ޏVz%+cF݁pKvƼ_4ҩV\SSFQĨֈ_ړ:~{|IP=[.>n$%W:~uVo&wpBR,Dtpo1ttX!R9GP@^`C LOCy~-oX:o98X 3kmI Èdb\Ӯ*>..L,ȏg;^|GއJE12m ש&y4SΐhЋSW l}G.Ύՙ o|ǘH]t}ط : ' YhM틼!>O> [=g ,N䯍K7m>ō˵Ӹ۴.bjզaL#28Wۛz1}:;;e6ax,S*nm}N1ERF|o㲊01m1c5^\W +SKSx]"R$oF|E\^\CA-;e*""R;*|N{6&cPɌE_.:nZ]S3srX:ugFR׊o3"[whV LJ "!!Y<(WԱjCgѦPOU蟛QL'o:hZrYaRΆ28㩭ψ|{ocNvk(B-f^T/,Js_ M;ሥ4?GjW+CYf_7QbZ#~,]PKn1/ǬFyRzaّ}<KQIWM{ ~Y\+QQzU-֏#U(>_6LO=,Ǵ'\C.̓?[}L EUOn1q}#XFxa6_}ysc(18 ǀU_ .O׽eJQ:WO;"gdGԧB(hh hskeTט{\@5_V-I!nO( -VnBǽqrB]E{6cN ăvHz< 1Ps g;ЦMٝ& ybxNC@S38K;$,0;o_'p,9;:D<͉<ϭܬݑ ~h VF:gX zd|`D wOƖcInmUbظ!mXb>-:YMh;VcAv/>l-#_:Դ߹*$jw\ظ p'w|OwSTBM{5\FDM%^4xdbZY4yAs˜ЁZxWQt ɍ-G~Zo8T;7> ]Bf*<1yT9T]P.EƉ!L5XIZ9d%ٻXS0HE_xi[Ȱzo$$@:> r3{ ;DL}5[UTNM^~ r~5)3J`&gf -f]NWno@Я :שUc6k+&r=I&XMjxXQAnƤ&y;ѺFڰA{R^SڥIGrDF^HLnn\K"@oչkNAa3lc`9"%H6bNƶ̩Ӟ?#[?+sy F Z7m8@p="@D:?BÍ[k" Ȭrby sE3Ānvg2gO 2ތT,K3\$*˪l4b{[,jOw5/Ic=Ǭ]ږЦjg$ue@nGkH#ios5%@qЇ.& ĩ+KTӸ#w Jk.pE`REgI3s0m!X!C V/Mz\$ Uӂeۊ>3>&}GqS-Ik_xKgm`4q[ukxUu=|ueOZ^!m#oqƩBnQ=-1=oRJKj<񼗹䓴,3 \ :`QلRewq|ccW4TQ{zᶝ5[)1|X:鉿'5_C\I6OWBX~Θ,R|@!א1"}Ζ6@mQeF\ӢqK(im\oP; M* >e:GWAըIu7 kzaO|F|68B_;HHvi}=mTO3BaS& ߋǂ4B qksyɡ]hH&=Nw-t!Ӈc7u"e0l)0G_F*kjIB)y Ba{c~7C#{'҂)#9TR%d7),̤EsM^ʻFRdi>v^` ʗx)}x|/&iU^D_:+* 7J= 42cp(*?{14"xm&C) =N`8]p1߃*ARqB $Sr=śdokO  ;ٖpL+\1N۳فMi[-ޝ~h&pe.Dg=˖QI-n8acގ!J#z=Cu S/`ϾVP-U3t5o>XSyU`Y fy o4K:'3P /!ym?^-O*TQHSYV>0!>^3B sr2XCZ;?8mn!mvG/ٔ!@o;Z.F-5GƂ_ص60 LC}.$^V&P̬Fĸ[V  ʐvOXX,˟auyEK@ 955Z:E"A@## ʏ m-8\s!2\O =T_e$zdIΪ۵-^&-x'(w; |@>Uy^ZRgj6eK˹e(Am[2{q]9<\894k4\i0x|eNa;BA ÷!`eӶ,hU7ߥ~s姖gȺ?aAn0y/g{ C[R?y:۴ _BNɜO}Fg_\[&^| _R]#ѵu\dYD >Rvq{}iUhfc'eXWW[. Q2Ɣ6Zۈe{ 5z}dO*A sv_Vv3qʾv0X=R{jldqg)& HlUw3GH|FF3%2GL=iPM}"Uƃݱb_ x,)/0w>|Ob7+,YU$RW74|xim'C[l{ |9p@ Iq\Wjk(@rC ʀ0<8 sX ?FjlOGB=[Xlss Fo'<"( Ѩ_Zf .[J K><|/L2O>(Ln);@-JVs82ˢ(-ܥ;q.)Z> 侀0Y>QxDT-oJp4T^\ؾÂ+cq -&+1h7a|+mؒ҄XB>DDVF%A&1Ll q TVl`@/K"wzb9`am@KA[R&%/g/k>}E>A`J/2*5V9v@i\7ffaNt6Kjq1ԑNT9ij{{` puZ8&/W!Ex:-+ s(ϗICާ>b&ZB3534Cp<-Re)H?G@uM[WTj$*H,t]db=MuKfOA|Oc69P3Gji܉e|U(L/Ac9$hE~TDC"bJEsJK 9$o,uR,&cۯ Q2:rbS8z(+3?}5Ж lÍ=O_ƶҊ(љct#T7l,e\|_AA}bEݖՠ*ck'MM@ {@Dݣ`"Ĩ ڣGI6.hj>pĺ/(YBJ4;F?G4Wt䖦RPuٕi~N0ub^Vn=׭A 3=K 3f H3e5鋔%' 5\ǭ4J!_ԀꬿQ+=8 8_7c̴=EgDe Hp$z#1v^ 7/Zeq!*_z+ĺ^OQo,:NR {^"Ҫfa#{jA 懛{+Er+}InzZDtiQ^ ϫC7:[Z/B#8a_P#gr&A^vV;]_6B2lsX2ѠGQVך,T"?WX^KdX+*oW0^b,1HP{@tCOH}ئ^] 4%r))I#@;#zv4Tz4W=cI4.K80(UB{0Rfu|:8d#Y 8-y)qQۙϤq6M#쓹Nz' ҂7Ⱥ(hVFFI+3 ^&0lߨ71Q@߽.D9'C<~.26Xl\wjbp+11hե?/GcLeO1sO/1[ڛ2I3Iģth0Ц>Aٛ^ yPDr#  E*yv/@D3Lfs9TL }yP[e!].Z!\ς`]|ԐߘZ_Tk&;#-A.sDYY~>fϘ}_qוbiFF5Cn^0q(I16iN[]?pCT,0 lrL-# w/>x^@rFLSx+ϫr#ۓ8$Vazi $ du{}g2 j.:!Ecqڐr*KhQ.$}Z<딉_ѯ;Q#dS2ZJ+MUs^IE/%U-h?{~\j&9[GAҧWwax Ȅveʉ-`AFCEmBAbOQS$9vE2+sj?z1}GtK2h\{IsT,dnoP0#&;zZmDRh;s ٵ /K?ԑ6N bqhy*I<@/ '?,#' =NrX56nqo5ߢH7`*CgPiXvW ϕq+?c7:f$S%$Z-9&YP?i`!&% yl/4Q*X6C#T2WޔmF]&%{(Lfpq ޔ5ڻX214 wǙC,钿gn$3_2%&N]"oTromͦ$!8*/ǩf{\Q?߽Nq8|0E]\'L3<#?xo=E8JWV0LRwj6{gl?[䀃2Ae\Z;R( ,/ak0K-GC5qkLrXX Ao D?=wXIBu1Q15F^oA9Huj&Xɢl`c˄Y,5,pk=Fy+^#cw]W"L tX άǽ4y\L-R#؉MH2*Lï MJ5Tf5W\1D_od4iקɖbr7 ^42aA!psf%9sV0#!WȩC.fj|j<>( ĵOZJgi("m@oq6]QW/\ oV<&D - )4;+WӴsžzP֭9t3#0Xڏ~n'< Vf*R< fd`d3˜ V8zXH"r)2ahH$(ޔdUo j۹=}%zně(uhӏi0Q~ٛ^6vR`Xʂw>7g/;-xKBo1Ķ#M+NRSXWyT:Gq痦 mXymJ9Wv19 Ogk6YNx(s`{xx%[8+/8ҍ/E /GkY=NKt5nk HKe+ " nZWe4_EƵ((lk=#FAL1LKvڌO"?eJ ` .ŕ6# ёrJt:Z9Em%Ťso%Thjqd\yvf]Zaޮe뽒Ió-R{<(PY+i3>ꙇ0fs[hat#WGL.cCs(Jk^qzL~M85n}mtIp ;Nat!֐Ѫ­UƧo}x%6̒tFdžMW#BX Dr)k6n:)]R0uB̷M[f={Y\YzMпVg*R9h v ]8X:jECܽL$ {Mhzc(18bxG󬛠DG-?rJ0Na#ǿkH?|,lo3`NJu-rb+'ֿǾA0q QEP{ZпUD(kyK\ژֻioc^XjoӀ3fH%l_OU=>_%C9!I{@?l #}8vfWF鉝]S/OFf,Ad[q)BkQTr읞}d]/j' rKi|Q LS5[طMY):T[EY=QMj{ 3&ڋj)~mG 5`Qd"/C?;5 +BZ]wÏ<5NѸ-aI|ړYFªBX]W"LWq5h҅p);VP- $pfߺOר&c[̊ÅԀ8IN!=4編Z'bZ|py=Υmo$Ję\xdMkDxoHgvr@Z ߍrHdWG~G_{':' n۾  /ƙ>iZ*b੄SX0x:Y Œᙏ ,8>YJiTj >lW`p'}HLy'V׳Yy>Iz˿9@(q f/8!-ΩtBT0 ;!t?;8iOiw.ܓB& C)#6cWy|b3CC3Xz˼I:.q:].֙'?"j4*37 |{ASWHQCᵾ4+VYM{/Afte r&~@]N3 Y0`L;x'e,DӋ%~9٢3%/Z%r݅m ;5z%C2N=jq\6JE^ר8+W19G87ql v1{(Zf jW֔S@+0dg|C a@crKnqX" ~n**)H0ˬ [:߼!b6!e$M&F&`z&-8-|~ܪ ?GqFݯf2g_&!RT<[^*l1G&/<úy5(x d`MޝW*&'K$exn!$Ty/+xK@A$kvTC%H ] mXf֩#7hՔ4DžhՠՇJ͓ۉ`P}Gѯ* $JbT#lx{־|0Qh5 LicPJm5a\ GCBm$DS z!&?؞ Ɠq֞g}C։M.`͙ vADF.ff3O7F ߜ-.K\ϋ|=e:ŜR"]8֫JeC,p}^+X)jixFf\q*#V.ڎ[i.Aś:Ul+7ntmG.  9b2ٛhѭ~*YlLǹˣ-|sÙWy'__VK2 sM #zQK6\;b=书a-]5x>|+g= SK(c@TP+;Rxx${j#%p*@ӳGPmkyPL[7#IѬrW7AS͂kd_ PvV,\=Ö5U+ -d#q\F'$.5GR^;ѵ_ F %-Td+-P;<^r3璄^^'`3#W{v =Ea}@34YɡYWrZu8:kQw5<[qexysI;vLvqX[?YAQɣCA!T[+dIBEl;gAYV`t8T:ңDC Цը+:=>O7bt6^> endobj 2 0 obj << /Type /ObjStm /N 63 /First 491 /Length 3316 /Filter /FlateDecode >> stream xZ[S~Wc|NYsURe؎ o֠:I$N~g%.FyKٙ{{B +AhE:(0J 'C6X aKGcс̊V!켰^hxw(0 iQoH?ΐ D3D؍7ptAXc9OÐ[^ R`|h &qpC|0"$ ND<E zI"F1CшD'%v)(l-;0ÖO 9j "' ЂmGЗ<ԃEDwqE V=o'M~YC!M&B%hQ _fKL.|&>M@?FM0Lqd#dc $TB +(bɴy."`TDفŶӀ[\V*snhڷҲ+S*hjPnF"G$,x^jo1%za%C>\TZw6~=ám[TR109Vk2Q}4Ny,mXZO n_mږgY5MeɑS MC:b(Ҥ\q*)׷L抉zP(͙#Ţ^kԘٌ|jh\P9^K9TW.Hs}U9,MWq9+Uf3TY1^MU'C_Ubv'K~c:hM[ڐp5`+GGfvMԖlcK->V MD (;Z^H=-#&EBຩ2\*+ {< *WVa,Sa\VOYO[XLv9+xNj6SV,ʜe _e*K] |pe?tqK5-T)yK3/&KNsr?&"N\miY{no{+mrm)ve7EI1 CBiMn9PP+n./^ӥHherUUPw4q_zu|xV7lvm͓iv+Lދfv<]'͛<~&әp;>2`=˸A3|܌N–$14w_p<:~pq:nΛ3oEI'y,Od#Oɱ<r"r&J~ɿzY\zej󏁫ZO<3@;P&Pleq/M;Vj[.V8qήχ2``y=Yɚ[K0\Ѭ%gܲ*n7U^@ZL#ߗ ; Zg"&R{,/`m#wC'8pO|&8z/+#|#wm9'h|,1g?Nbk![ckz[cU5U3ue잿Quo+hb1m\owt6Q%QB;qӋf9'Otxf`~9pr2S*_ xr:mu\q3ɸ:LgӋ OֽJ@W't<6%OFaw.Z%C?*ׯ/[2e]>A磋Y)n%^m֗~yJ!DD֔׶4\aɦ T1jrt3Du39*Z_|n;LJMNzּQc@/.,K,S_6 endstream endobj 83 0 obj << /Type /XRef /Index [0 84] /Size 84 /W [1 3 1] /Root 81 0 R /Info 82 0 R /ID [<53AC21D9C278D3C30AED796B57D65BD2> <53AC21D9C278D3C30AED796B57D65BD2>] /Length 220 /Filter /FlateDecode >> stream xI2`E{!.AHE s6`X@@sY,M:or'O~teT3Aa2P]8#h1BJr ۰[A>T~U" 0@ Fa PqIi*1Zn.f9+jjE-XQvd7QmԊjGڟ5 8S8sp?UM endstream endobj startxref 152727 %%EOF genefilter/inst/doc/independent_filtering.R0000644000175400017540000001572013556146216022147 0ustar00biocbuildbiocbuild## ----knitr, echo=FALSE, results="hide"----------------------------------- library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) ## ----style, eval=TRUE, echo=FALSE, results="asis"-------------------------- BiocStyle:::latex() ## ----options,results='hide',echo=FALSE------------------------------------------------------------ options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section ## ----libraries,results='hide'--------------------------------------------------------------------- library("pasilla") data("pasillaGenes") ## ----DESeq1,results='hide'------------------------------------------------------------------------ library("DESeq") ## ----DESeq2,cache=TRUE,results='hide'------------------------------------------------------------- cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) ## ----DESeq3,cache=TRUE---------------------------------------------------------------------------- res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) ## ----headres-------------------------------------------------------------------------------------- dim(res) head(res) ## ----pass,echo=FALSE,cache=TRUE------------------------------------------------------------------- theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) ## ----figscatterindepfilt-------------------------------------------------------------------------- with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) ## ----figecdffilt---------------------------------------------------------------------------------- trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") ## ----badfilter1,cache=TRUE------------------------------------------------------------------------ badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) ## ----badfilter2,echo=FALSE------------------------------------------------------------------------ stopifnot(!any(is.na(badfilter))) ## ----figbadfilter--------------------------------------------------------------------------------- plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) ## ----genefilter,results='hide'-------------------------------------------------------------------- library("genefilter") ## ----pBH1,cache=TRUE------------------------------------------------------------------------------ theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") ## ----pBH2----------------------------------------------------------------------------------------- head(pBH) ## ----figrejection,fig.width=5.5,fig.height=5.5---------------------------------------------------- rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") ## ----filtered_R1,cache=TRUE----------------------------------------------------------------------- theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") ## ----fignumreject,fig.width=5.5,fig.height=5.5---------------------------------------------------- plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") ## ----differentstats,cache=TRUE-------------------------------------------------------------------- filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) ## ----colours,results='hide'----------------------------------------------------------------------- library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") ## ----figdifferentstats,fig.width=5.5,fig.height=5.5----------------------------------------------- matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) ## ----histindepfilt, fig.width=7, fig.height=5----------------------------------------------------- h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") ## ----fighistindepfilt, dev="pdf"------------------------------------------------------------------ barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) ## ----sortP, cache=TRUE---------------------------------------------------------------------------- resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 ## ----sortedP, fig.width=4.5, fig.height=4.5------------------------------------------------------- plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) ## ----doBH, echo=FALSE, results='hide'------------------------------------------------------------- whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) ## ----SchwSpjot, echo=FALSE, results='hide'-------------------------------------------------------- j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) ## ----SchwederSpjotvoll, fig.width=4.5, fig.height=4.5--------------------------------------------- plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) ## ----sessionInfo, results='asis', echo=FALSE------------------------------------------------------ si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) genefilter/inst/doc/independent_filtering.Rnw0000644000175400017540000004773313556116164022524 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Diagnostics for independent filtering} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Diagnostics for independent filtering: choosing filter statistic and cutoff} \title{\textsf{\textbf{\thetitle}}} \author{Wolfgang Huber\\[1em]European Molecular Biology Laboratory (EMBL)} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section @ % Make title \maketitle \tableofcontents \vspace{.25in} \begin{abstract} \noindent This vignette illustrates diagnostics that are intended to help with \begin{itemize} \item the choice of filter criterion and \item the choice of filter cutoff \end{itemize} in independent filtering~\cite{Bourgon:2010:PNAS}. The package \Biocpkg{genefilter} provides functions that might be convenient for this purpose. \end{abstract} %----------------------------------------------------------- \section{Introduction} %----------------------------------------------------------- Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance, in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance is differential binding detection from ChIP-Seq data. The idea of \emph{independent filtering} is to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the false discovery rate. A good choice for a filtering criterion is one that \begin{enumerate} \item\label{it:indp} is statistically independent from the test statistic under the null hypothesis, \item\label{it:corr} is correlated with the test statistic under the alternative, and \item\label{it:joint} does not notably change the dependence structure --if there is any-- of the joint test statistics (including those corresponding to true nulls and to true alternatives). \end{enumerate} The benefit from filtering relies on property~\ref{it:corr}, and I will explore that further in Section~\ref{sec:qual}. The statistical validity of filtering relies on properties \ref{it:indp} and \ref{it:joint}. For many practically useful combinations of filter criteria with test statistics, property~\ref{it:indp} is easy to prove (e.\,g., through Basu's theorem). Property~\ref{it:joint} is more complicated, but rarely presents a problem in practice: if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without filtering, the filtering should not change that. Please see~\cite{Bourgon:2010:PNAS} for further discussion on the mathematical and conceptual background. %----------------------------------------------------------- \section{Example data set} %----------------------------------------------------------- For illustration, let us use the \Robject{pasillaGenes} dataset from the Bioconductor package \Rpackage{pasilla}; this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate samples the were measured for each of two biological conditions: normally growing cells and cells treated with dsRNA against the \emph{Pasilla} mRNA, which led to RNAi interference (RNAi) mediated knockdown of the Pasilla gene product. % <>= library("pasilla") data("pasillaGenes") @ % We perform a standard analysis with \Rpackage{DESeq} to look for genes that are differentially expressed between the normal and Pasilla-knockdown conditions, indicated by the factor variable \Robject{condition}. In the generalized linear model (GLM) analysis, we adjust for an additional experimental covariate \Robject{type}, which is however not of interest for the differential expression. For more details, please see the vignette of the \Rpackage{DESeq} package. % <>= library("DESeq") <>= cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) <>= res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) @ % The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in the columns of the dataframe \Robject{res}: \begin{itemize} \item \texttt{filterstat}: the filter statistic, here the average number of counts per gene across all samples, irrespective of sample annoation, \item \texttt{pvalue}: the test $p$-values, \end{itemize} Each row of the dataframe corresponds to one gene: <>= dim(res) head(res) @ %-------------------------------------------------- \section{Qualitative assessment of the filter statistic}\label{sec:qual} %-------------------------------------------------- <>= theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) @ % First, consider Figure~\ref{figscatterindepfilt}, which shows that among the approximately \Sexpr{100*theta}\% of genes with lowest overall counts, \Robject{filterstat}, there are essentially none that achieved an (unadjusted) $p$-value less than \Sexpr{signif(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE), 1)} (this corresponds to about \Sexpr{signif(-log10(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE)), 2)} on the $-\log_{10}$-scale). % <>= with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) @ <>= trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figscatterindepfilt-1} \includegraphics[width=.49\textwidth]{figure/figecdffilt-1} \caption{Left: scatterplot of the rank (scaled to $[0,1]$) of the filter criterion \Robject{filterstat} ($x$-axis) versus the negative logarithm of the test \Robject{pvalue} ($y$-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of \Robject{filterstat} and its quantiles.} \label{figscatterindepfilt} \end{figure} % This means that by dropping the 40\% genes with lowest \Robject{filterstat}, we do not loose anything substantial from our subsequent results. For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal number. The analogous scatterplot to that of Figure~\ref{figscatterindepfilt} is shown in Figure~\ref{figbadfilter}. % <>= badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) @ <>= stopifnot(!any(is.na(badfilter))) @ <>= plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figbadfilter-1} \caption{Scatterplot analogous to Figure~\ref{figscatterindepfilt}, but with \Robject{badfilter}.} \label{figbadfilter} \end{figure} %-------------------------------------------------- \section{How to choose the filter statistic and the cutoff?}\label{sec:indepfilterchoose} %-------------------------------------------------- The \texttt{filtered\_p} function in the \Rpackage{genefilter} package calculates adjusted $p$-values over a range of possible filtering thresholds. Here, we call this function on our results from above and compute adjusted $p$-values using the method of Benjamini and Hochberg (BH) for a range of different filter cutoffs. % \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figrejection-1} \includegraphics[width=0.49\textwidth]{figure/fignumreject-1} \caption{Left panel: the plot shows the number of rejections (i.\,e.\ genes detected as differentially expressed) as a function of the FDR threshold ($x$-axis) and the filtering cutoff $\theta$ (line colours, specified as quantiles of the distribution of the filter statistic). The plot is produced by the \texttt{rejection\_plot} function. Note that the lines for $\theta=0\%$ and $10\%$ are overplotted by the line for $\theta=20\%$, since for the data shown here, these quantiles correspond all to the same set of filtered genes (cf.~Figure~\ref{figscatterindepfilt}). Right panel: the number of rejections at FDR=10\% as a function of $\theta$.} \label{figrej} \end{center} \end{figure} % <>= library("genefilter") <>= theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") <>= head(pBH) @ % The rows of this matrix correspond to the genes (i.\,e., the rows of \Robject{res}) and the columns to the BH-adjusted $p$-values for the different possible choices of cutoff \Robject{theta}. A value of \Robject{NA} indicates that the gene was filtered out at the corresponding filter cutoff. The \Rfunction{rejection\_plot} function takes such a matrix and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. % <>= rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") @ The plot is shown in the left panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering cutoff}\label{choose:cutoff} %------------------------------------------------------------ If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires you to choose a particular $p$-value cutoff, specified through the argument \Robject{alpha}. % <>= theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") @ The plot is shown in the right panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering statistic}\label{choose:filterstat} %------------------------------------------------------------ We can use the analysis of the previous section~\ref{choose:cutoff} also to inform ourselves about different possible choices of filter statistic. We construct a dataframe with a number of different choices. <>= filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) <>= library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") <>= matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) @ % The result is shown in Figure~\ref{figdifferentstats}. It indicates that for the data at hand, \Robject{mean}, \Robject{max} and \Robject{sd} provide similar performance, whereas the other choices are less effective. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figdifferentstats-1} \caption{The number of rejections at FDR=10\% as a function of $\theta$ (analogous to the right panel in Figure~\ref{figrej}) for a number of different choices of the filter statistic.} \label{figdifferentstats} \end{center} \end{figure} %-------------------------------------------------- \section{Some more plots pertinent to multiple testing} %-------------------------------------------------- %-------------------------------------------------- \subsection{Joint distribution of filter statistic and $p$-values}\label{sec:pvalhist} %-------------------------------------------------- The left panel of Figure~\ref{figscatterindepfilt} shows the joint distribution of filter statistic and $p$-values. An alternative, perhaps simpler view is provided by the $p$-value histograms in Figure~\ref{fighistindepfilt}. It shows how the filtering ameliorates the multiple testing problem -- and thus the severity of a multiple testing adjustment -- by removing a background set of hypotheses whose $p$-values are distributed more or less uniformly in $[0,1]$. <>= h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") <>= barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) @ \begin{figure}[ht] \centering \includegraphics[width=.5\textwidth]{figure/fighistindepfilt-1} \caption{Histogram of $p$-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do not pass.} \label{fighistindepfilt} \end{figure} %----------------------------------------------------- \subsection{Illustration of the Benjamini-Hochberg method} %------------------------------------------------------ The Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995} has a simple graphical illustration, which is produced in the following code chunk. Its result is shown in the left panel of Figure \ref{figmulttest}. % <>= resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 <>= plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) @ <>= whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) @ % %----------------------------------------------------- \subsection{Schweder and Spj\o{}tvoll plot} %------------------------------------------------------ Schweder and Spj\o{}tvoll \cite{SchwederSpjotvoll1982} suggested a diagnostic plot of the observed $p$-values which permits estimation of the fraction of true null hypotheses. For a series of hypothesis tests $H_1, \ldots, H_m$ with $p$-values $p_i$, they suggested plotting % \begin{equation} \left( 1-p_i, N(p_i) \right) \mbox{ for } i \in 1, \ldots, m, \end{equation} % where $N(p)$ is the number of $p$-values greater than $p$. An application of this diagnostic plot to \Robject{resFilt\$pvalue} is shown in the right panel of Figure \ref{figmulttest}. When all null hypotheses are true, the $p$-values are each uniformly distributed in $[0,1]$, Consequently, the cumulative distribution function of $(p_1, \ldots, p_m)$ is expected to be close to the line $F(t)=t$. By symmetry, the same applies to $(1 - p_1, \ldots, 1 - p_m)$. When (without loss of generality) the first $m_0$ null hypotheses are true and the other $m-m_0$ are false, the cumulative distribution function of $(1-p_1, \ldots, 1-p_{m_0})$ is again expected to be close to the line $F_0(t)=t$. The cumulative distribution function of $(1-p_{m_0+1}, \ldots, 1-p_{m})$, on the other hand, is expected to be close to a function $F_1(t)$ which stays below $F_0$ but shows a steep increase towards 1 as $t$ approaches $1$. In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative distribution function is expected to be close to % \begin{equation} F(t) = \frac{m_0}{m} F_0(t) + \frac{m-m_0}{m} F_1(t). \end{equation} % Such a situation is shown in the right panel of Figure \ref{figmulttest}. If $F_1(t)/F_0(t)$ is small for small $t$, then the mixture fraction $\frac{m_0}{m}$ can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit is shown by the red line in the right panel of Figure \ref{figmulttest}. % <>= j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) @ <>= plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/sortedP-1} \includegraphics[width=.49\textwidth]{figure/SchwederSpjotvoll-1} \caption{\emph{Left:} illustration of the Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995}. The black line shows the $p$-values ($y$-axis) versus their rank ($x$-axis), starting with the smallest $p$-value from the left, then the second smallest, and so on. Only the first \Sexpr{sum(showInPlot)} $p$-values are shown. The red line is a straight line with slope $\alpha/n$, where $n=\Sexpr{length(resFilt[["pvalue"]])}$ is the number of tests, and $\alpha=\Sexpr{alpha}$ is a target false discovery rate (FDR). FDR is controlled at the value $\alpha$ if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in \Sexpr{length(whichBH)} genes. \emph{Right:} Schweder and Spj\o{}tvoll plot, as described in the text.} \label{figmulttest} \end{figure} %-------------------------------------------------- \section*{Session information} %-------------------------------------------------- <>= si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \bibliography{library} \end{document} genefilter/inst/doc/independent_filtering.pdf0000644000175400017540000227471513556146230022530 0ustar00biocbuildbiocbuild%PDF-1.5 % 67 0 obj << /Length 1718 /Filter /FlateDecode >> stream xZKs6WH͔0${ĩ$t&gz})HBJHAJrN$% ]`GGa$RO%Nh T}ڷ%HJ*I$02ɜ" uQӪnZS4cOgL5֋QH!U3^zi鯣D,.fdt{N(G9N 2[ڜV+U5b lW*dxD8b\R;NQrFaYTuYy헶 F /=X% Ih}M|a4֌RRX|f겞>{uN@78{ka' A <^tL^l $͠ԕ-A2Cد(!j`X{Zm/^<")Dph,J`rfZQ=Dd~0o>NHFDjxUvݾk-V.aih綀F)CP9T~S%RB^n>+ voOKso^/J Rc*jt{<K0*ʵ/t fm>Tie~DEj4s5|=,`L}0\S AQ"ࠎvrm&C@s!Æ[6L~;dqF!X!LNQX@*3z6vkT|G?ŋ1! l~Ww.3ij|00+(cbUGyYσ]eH-ʺmBR6qk>lM*j|ǻmJx ˹ SÙ%rO}Wc89u7Z외#ʓ\T /5?0柳{PJ7dz&ˆ>?t wefN\3]}VsSM]2\溝#0{!9}Hf@=Xq޺,7#("E\C勰 ζ,fQ%L{|u*@+Z/}53'*ݛiV񇊂HSƛd0+TS$ eX.>`aH>-"s, M;1Ex,i{zVRKcn5e~^Wnk׎> ]m Xg9qh+6z!&O*E ~*VS0lrwZY&ф5ތ%xc,d;;Lg!i9i&VսN^R==*1*YfGD{Z]F ײ;$оr`ɗ Gl1?AgуCdଌ.O>J8^r8>)8'&X2jࢊn~w^vVp2: ]xl;V*Vsɐ2DU|l-=_wkM꜒xli;Lq_z6DUA3ΩA]_ U2PĞ#>эgڲ; E|\/>ٜE M쪗Zѡ@_A(+)u%־xC.Hоp[aҾW!N vl[;m‚˴/B`0䅵O(3ߖ7yɣCc^ՕZeS3uh*BAH;?)T endstream endobj 89 0 obj << /Length 3174 /Filter /FlateDecode >> stream xKs_ɥTD+&8dX3=89@ĒD V^ ږD'cab{ oϾme A VEɰ+brkwc[hpLd/rrnWG7^‰Ym;r(6Gmw,=&* (U*yh:޳Fڀ g)Y1ij\3$7ޅo\;[G[5:.Sobdh5Ces\q-.P( ,!DHSGSVt͒u"ׂ(1+b7@u-X1Rf/{^PjxU.[\@RreWdsq^=i4UYp i` KMf QMݸyubtr*C"sD*Uٻ-ML/,$Y4a0Z[W$-UO=޲07 Wq5M4ZP7LH 6)_^Ud7 Y>`Dվo*{cͱ=Z4'CMQWe%#i$\g2HF2HD (\pO_Mg#Z$a?9!qnH AˊpվpZn )ȪXt $F"` } }sr 1VUC *Iu@nw&~A/U(mgd6|gLbtHX [@~5BE̿Z. ,c qEb<dhRCUFI ekJm SdZ2iD/@O.C!PR!"I!}v-rRG)'f&+mK{2hȱM<3W7C݁A++AJK~9\,H|VcK:+/ewwr<ŽC\xZVr/.um ܒHTo{7qU,_rq?rBVp*} =>y`*}u%UiF0:?Q\z`Sa4'Ur{+adDy潢[X*{~ L+(0r,c. v=dbTe~m{wruX XSuj+}|GpD%JOsK,ȒHd p{Fc#KFqhy,!5jt8:lAhi4lΩDjW`! l`_6Jv K>bT+W ̩YʊHCb]A=Hź,U8 @NqՉ@ʭ9rÈhRz+SK WХ^, Y`kQ/^@LfĘH :nCQ7]Wܑ38#R/n8:C@tk%!t*/e-*㿜Dw8ēvb{񶢛2Jw?" Q#zIZ#q[o\Cbw!JMQvc J6ȟ%:} &(Gb Lhifbdy J]\\c,N' #J6Uǘ$;$=^a'ưz0hm0nC(JZu@RNf`$F?%i)DJ%Mëf(𰏬2tȡnxz ~Շ3 cΧ=[b26A)2:4rZ\ Jke~;ĹzA>9ݫmqTqq_cI뛢?a- Ө_㒐KYi,j.axO+M0G}4de 56{D'[$QiH2%9 endstream endobj 102 0 obj << /Length 2636 /Filter /FlateDecode >> stream x]s۸ݿsPstr䦝$7'DIl)R!);]|"e*$:ɜ=#~`XbD"T{x GzիDIetFZHq<ͿI^%7FS.`tGY)*M}qoqR0)d2:BSQ66[o&Sh(]kX Դ7*>},ҦIUIӢɒ|2el_1YYE:Յ¬̷"y ZI,dvLFGCM9pBdt7A77W#1A '%t`fQ_{a# 吃oʋR܏G*lż=0B@>MgCD&\jDjES0uF'`i  dTvU?8JL[&,o_O6a٨4?y;kS%19gs\wFpx(ot_.Ze ۥOɎ2زl3{)ĉ9m2%;),6,/8Mn&yf 1lT8ש=cv_Ow[}H#xjZϒ< P<J2#FjYvqb\$z؛l URw :vשDȯ.z2 p|̭ʠ܏'^ҕJE4 y*1BH=3޺rjsĨ$J.3޺Ž馽O]$@i瀤ݭY0CNs)( >~o| mRO^e.:,eⓩD jmnq_NudB)h~O\F&,Fn6ɀh4RaδyT< Sf p1% ->[gmO U6s_P ϶mϳ;:r5A{/o)d\}ViU mw610N >NiZ~n%LuI>SH `VqVJzvnfΟ$@ɱt,}~s6|Hҁ,2'|M&̭K0jכRpD͡L4)B11GukUd.|yzPvyz O%ȺeFD0 6ήIٸ$J ۀ3j&63V>!w3}G rԥOtPfܨS:*n{WOϗUn?d|&I?mm^۪͞MpC* A5SLPq endstream endobj 96 0 obj << /Type /XObject /Subtype /Image /Width 1807 /Height 952 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 28289 /Filter /FlateDecode >> stream xwUB (l +B XVp7Ć"**>Eł* "4ҥISHrzL?~sϜ>9Eq6P}SV䈶{pSuwCt!:@Ct!:@Ct!:@`$Zt͉vj;?!4(C@:t8?!4,QPAZt!:@Ct!:@4qᐐJ[ ̆MaʾfÆCtTvq=WCt+.]t̓v33|:@i,͊_eIz4]eϡCBma'nɩG>3{Z^?Odc_>ev!L8sDboChwy/y:pñovzUDFΜ#@tȒ7g:|yoXdt=E>8E^7:|#p;?;Q˾6ć1rD3:՝j]V: t؇Ct@!:tC': zWG{[{Ƀ/:TjɆpڧCu8:txD:D CtC@!:tC@!:tC@!:tiC`})tz!:t:lVi!@wtغCt\/@ :D!Ԩ@]>lPy!:@ x@X:@}vn|RþCtةcwt=9W!r_]G@eutDQ&:DAQ@=)oDCt!:@Ct!:@ꗦGy2!uyC@!:tˇMtNv/!:@M!t{!:D Ct@@0:t!Dk@@04O:{ft @Mr!:a!: SĆ!:D!>Ć!Ct:D!@ :@C@ffOÇbCt!:@ Dd!:@CtzBCB!:@Ct!:DC>!: :@XD:Dv (C@K:"Cn:D:D:D#Ptr4ΆC@C@C@C@Cl!b tC@!:tCB/It C!c!CtAwBCt':C3?jFl!@C#CtHGE:D:t%@4uCy @!@O|H5Ct!:@D.ty6 &X{y:pPFy+g9:?^t,}ÿgtӗuҹWWgWt=IV-czI[k?=WdƩ@Z.^w37~%Yi[sCyUOaƭ$@ܯVZǫtV:G|O6LIMG=XLjn<6X7 t%v._L۳tٱE+/<ˮ+`:te#::|dS?D}-p"ߕknU\wClH.bt>3U_:Twh͛L^A?q{m9VwCtQ:KjDP=|gey֣eCܠ:Q1/q/9c9/zc9I:\S1(Z/yȶ売?!:a\uTØ#IVvVX}hREC:Nc: "ǣC&*~rx:S d :XfP-[&<:!@{<>0WVK%a:U_l[8n{<5Jj/8Ipj?Ud4߳dì"=P8̕pO˪=pt&yСt(n0VTyV0};b;Cku~)]Q_JnTmB',[^ta;\.!:4UCN۰oT\FC@2U@wÚPٝ;q =:^ å6!T/D*С:tChϴ:le!CtUc@m9@l+Zt]!>>u-X@oFUǝ;k;geM-8: @paάO|dGm8{Ȝs[pt!ڢrVu52 XE@dzFo9#9}";4̢Cip{'|[S/!+];4 :lt&~f"C_)#sZ2tlΑLt.q%k%f}ښp{_L>LV}x|Î$C_>&mIsvj],,C.kHZXƤ6D.muVnx6'\- :@5;! S:RFP=wpd^Wq_f?~I6:ZrT !޾t~afҵnCM}1Rm aĔD{ߵd.)Olj!tʆRV.t됐_u#|{hPO:GC*>ϺG5~BcdMG[è?lHat(|=A)6B3J+C^?Cvlj_ީP}9tw_t(}𐭧S7t{POM=K/>p]_U?_z.*ѵ@qɝ7CEާC^{b>K!@>:4\'Ru^D ,| :]C$=c4?~ϕ\ 4"MjWYԉ=ᲟifvtPj {CNiCC;M(09>|;Ou=C-IZQQ.=L}ﻬч I"i?ڬ_k+>) :*z60Cu‚GpսN|$[8kaD)^U:So<+ :2" >l'sݹ@ !8tsdE_X6D`OQgtz?o9q^oOZ8U:tp9_:쒽dO_>"ß N Cht:jS=#o^CV& mEMV!4#+C2B"62CC]2gB !:\ScIdMtЛde4>2 Byػy<:@ԡ#tz)נCذ:d!77O!:ldٞa_Nd:a>SMotP~(P2cCBNT:|YƞG'";߉aV(26%BxX石`k :tjޤa@DX9F#L4cCHV.MB @ڰD-4^WzV8?t9kt;g8>u΍+t7:X[<ϜVz,E"+!tЪtG] `'&\l}Q=O6'{7o!è:^+S=Ku2vN:O)&^K6a+v]:Tjŏkf[,8:C{>[Ì+e!7+Q LtX3[|+Jo .8:E~Ad@ⴳ,{y fkkLgMa@pjɕúk,!: w63OTk1>zse=:YtB:o5=bĕaJhH:.i4.ގ;JrFBhOwû_itx)iv. }Z5bZI޼D16z~~wA+[݉Ja.wFdB˟ߺq[ZBtMHtz3Su%Co^?@#a:|ȶK?!4סJғ"j߽Ddt͔|]TUd:tX.eΗ":o5d-tmD}*!4ÇTWWCh(]{ޕ{o;B!RE/(.=~䝿|+!@k|I6q~ԇ'^ٴA%%Dͮ#Cu.)wG$P[ umN۞ՃH:8 =:W0dtma4!@ѲcC*ٙWGU-A:%5,GhCUyT㿩U"u!: رVGμ!@s.]C{؉D{!Q"Htz/^H@޲} 9եk)tPX5w:loo,tИ$-'a:h auC:\)sZC2LP,C|HEԬWG7[whǭ=8{T#SvP%f[@Fd-ޣvg5:M׬=KRyV+E`v%:хXeF0\)liuֻ@3:Tt(eeCHCic-n,UAtg):hXa憩rMF\8)0^_}a"e&>\v$ vV i:Bx+?'B~&tV_ s&4aGux`|:'jZ fX< Qo* Mqwx4K,-a6BexhIPZcm;^enMh-֞|A>cكCvD_tw6GKb/Ĉ[~һ^qDVqv:kl "4l .<8gUC밐 :=IS^q*gHׯ&]:5eӉi?$:;4WD̞"A !@;/ڲ]zfn/rػec!@Kⷳci!2k="7{Lip[Yt%VI";5&l&Ctzu4>A=\d2h!Ts:|cF scE^?x-Gm9teV- sEv?mM9$J}9a*?7g`@m5==R=d#M67:(+TTJ87=/|䌥[m֘x*ukBm!7!iK;7MC4q \Uq4D,UGto7+NxO?y $ 9RSa{P;ww}“czx!@QԥCG^>;IY9t"*!zJxK[Gtln~` :O<+!:cr/-0K_}S^/xɏCb:,g7!:yی|tPGg.w7w+K_n;QGv(sS%Z(#ow _z\IG|JgCFцUK/ltkuRђN!>y9]oȞ?ᆞj!IsWlVԂ\G}Ȟ@ \ ۪ϋ9m3|US"Ȇ[txBU|_YUdo:tN)RHa[~sw8Զ?ڇםOCuXiX kkG~Y6g鹼JE0vE;ӗK9]CAPىtRo=tn[\{,'tsia@Jb:̸CͮjtPCҔ$iHCxEPJ[:HdΏr*R.`G?<2*:.dH\(_ :Dak_: J-:\j͇1Q С20:Y܎R-*o2zǵY6l)t*#I[rr\ L!@2Ri&6I^5 6:6!@CB7Kٿ_=Rr6zZ@v%^I}ZJOګ@5+Zj.r6N?h]U֡;N¡G} tКK/:ÎHoݸ䰓c`+ҥK<9m9wCVk;~^2ԧìk^2tZÎ4}b^fJKw?Z~֑fd]ܾVɜ:|۠"w<-9gfW:ò<=JS._^?Odc_>ev!@q1O-sSUG4_I`{ÏfN}9"!@%QK}"a: ӴUwy/y:hk^/Kad[QDcy\|EZ:Fm΃*Ysm^GuvXs8zUDFΜ#?+&n!E06F2BP"KX"oO1Pn&D@W`~MʓvZ#r?i4;.谌c_`ُ4yA6J{!c22G;&'gYw"D n>V$ .2ZUPdwĩoy=/_sH[^7'N%ӹRuRd:)/ٓnB#K 3Rl>e20Oka)S~ChZ*Pu񷶶R ;Än uBN% y ]{еBD2vRT3.I7mKjkJR2"tnLʉ]!:kڷ_ )PۇaM{ԡ~3YV_h@4A kkIyA ԡg FMABkѫzȢC= ;6.(i!: E!:h}dmLT[o{UjtE5+#J%u7!vj7E:uX$[Q ]2Eeߐ|%;It@4yL$7n?b7ߴց"_^oK\jR 4\Eµ.4lb򲙎^%tL*d}rrMEaI{h}յ* m:LW^t5H ѡJÔru(&TGŌP<&gP=TJBtSkN1:$B|5 4K luI a m5"Ar6ثBChb_F_DCtp|RDnP:]:q$E*l- nȟXl"CsDGtXf앫R*C=9ҥAYiK:DH5+Wi#U`# ШiB\ЗT*tRvQi/PbUX 2#*xsoye+`CSK :L :5ZW/e8זPJ9FidU ڰ:jCa*͌1ivsNfMb%R lWRKtUDۦ[(^ȴ{;+Xv.T.(-;-!tćqKʽ9x;%97vN\VCpd)t8~!:pQ٩EСxuPt ?/?fVy  ڮ+ǀtЃ˕w0JJf aцNmWڤ5Z* lfb*tt *zmcߣkg4?xPzy7*1yrfCtXF- |o*sZX4Ac׷lr5;,sЏ:22zBsW'i>X$nv#)'Ci}kuRh{-:h Ŗ0&eMJ:6 [c׳.fN9:4$MAK54Kj QB6t5^V_ ڔx-Om1`!:&_xp^|*p*=h<.=Ƥt{ gWk`P>˻ҳ 0a`k*psP{Htq09-Nm͞FPlPøy)6vAøC': v,j䤗 JVWKo%s]_;'v:lu2I:0 +Oٻi.\kȔ }Lٻ^X'UGC&n`=}0yE"9邾Mh* a} /׏BM9L){{v"EIi]as(ԡf>uhݪ(a:~(e[C+ uh\԰5;8V\hi C05L׎m(x`t65LCgU04[ СЯΆZ& KͭvqHdo֩;=jCX󝸸a7,Cs@k+~ϙJ@${2EvZZ_{pttAJb|qh] +t٣cf(5Rc&-_ky$n*g&,q͔AX+82sy|UgA)[)C;컇^uXCOHֈ+:4Wr~ӽaj?eB!8:7wDpE /=,u%ҡ_ҭ/<|'/):;tؤEi#Cθz!'jv4cn䂙!߰7x,[b>e^ҡX77<CxO`f`8hn ȏi'}3 y}ڙ0:NӸ3ժD?JtP bCI\  YHGg*0XjZk8 gYH}!@WFpm*Xlc{Ķ^[3ZjV>쀚kFd>c*V#;OԐ{fюV3s칌kd-yWQF0~V&?lREhz=4giSCt3IB:(" axkNb(Mų̮ Sg1*2@hUctbWz&bYb- ]{OP6'd\9Gu0Iv}0Z?:HСtW?rO ԍE>u{9]5X]ΙT7황ǤEU:ڊ!Vݔ]A-%Td.ֿn#u8^>3hscs=eF2Ȇ0|C5:(9>|#$.X\{g?5*Vd/el7Yv4uǭAs\]k2<)Gv8j4w5;quе4k*BNNb*gW4Éd'+,4>DT<*/x;P'a+nO*/xezc߯V@*ÛymI(ؚCq!@:4_ꮳmxP?ԓCAtd+MpuHCTun.505 ,.)U= !ΆPQ:9~Õs J]f I7/!3L-Wd<}aȼ8XMF%]zM:t\ho9jtx,C㛞WFWo'!r_k BG mpK%QC4{7 h)Q㚿W9쉵75Сj1(4CVtE?ur9οwgiAIJ߻P)8=.١^x:4v47ap ik߰Ap.O {Ws-iݲzm!_sGaQFL28|q}P w˺PZ^C8CoGL `ӡסS.*:LPzwաݽF5zL#YE#eD |L١΍?7[`x\6elwv;RƵFf{AqSl?> c!9 4F7FCJۦZ|c=66/]"0QƖ`˖UJuT1q=ky4u7ϊe ֚;"a}XvjL|J&bC`D.m,0\bkmn;÷)N;ךkƔ9s- r'vZ&浴[{6B+}XvBYfJS\a[־֡E` K@3A}!z ×E}{%HK9F͗dJ3W?~伔_yt *B߳RK#70T"^v;}c"O9K1q~&~I3m:=R^/cL֟m^ r<@Fb~hȖ0Zi'j[#Jӡ"^P힮Σ>__QL;ヒ~Q3СQW]I0)!]̤-X;}6^L[C:b,fk _:)]%l@O^lL9;5:Xl^y.=O7 l#-͡뛠D( T< q TCeLinލe!HrCcˣ|B#[աi/WKXݵfY=@J~(efgk-Wu4ޗ>0:46C@н6~m&_-H[[ {()=|T踚pѡ bR Sw:4'-ˎ;F\(GrROz|w_HxvkA:-6?Xm82/QC0%:ۆ!br~@aa}v.ּG9Vq4fǥcC)qSzP&}@à25?&7sscUC|-f;߫[!޵βjW#ڏ=UI Ǻ'6Ik[<й 4M:D'~j2kI64#f8"tE\'!:th=`m-SYMw7kr FyOViX.<ħ9 }X]k3x'^jzg5_C8"mh?Q:4lob5Ll c =rP/ 4F623ZG WN:p}SU;|& +HAG>:4k9za!b::ҿRu8sqsexys DRt=v̜ >n k ]J bӡPfQмTx<;, UաF@+Kta,H];Yb޶ׇII:4W7{)oudyLfL`k{ B?oQu\G|P)W?>gŇe>Noе}3n2hevv_e$U\|%;D谀sW>%l3i E39]֐-ڠ3Pm巄fWR/sFp69kebӜ>lafݦ6ӝ!k?{f{xE+Ƌ{c{Kj*T!: 3ڥCMe&on ab: :9;{Xj$C~ͦ:/OZ@K |(O Αn߅H:F2| 3ۨ+pK\'S!,鐈z,>6+M~vY.Pi;nz_z)w̛rh۫yR}TK-خUKS]Nxt <>l6H`[a?W:a>]=Vb5L ݯ)*3ٔ~JO( ؉cIt 8%;;;RywbugU`j 0,n=^vK^o߁\Qc:uhnkNZapTMzИ֩($C3ΐ_5cwm\0ާje9Pmj+&=|aYR0߇ÿ^*Nj4=aat סY})kȅR^/0EI}VknQ(]>߼ɶVs[rN>ΙUX¤–PECݕa|BPM* С8o JC}Kݮu1dAf-:blA P%С8+,aeJDA9%1NݿHtԡrt qд6Z@rXUgz}[C=];[՞[5`>$滟ųܱ]|1:;ucў̺4Dz/Q|z( BahJ^%Q]؞}RkF {кڣ_OMe)ؔ KAORei:u)Kti|#I]^+ZRw\C KH)ov͆ \+M$|I @f7t;X9c>ؚuhV^n79GX ss!7rU%r;kt_ĶpC,ɪ݈%t۫CkFt {WeotNb );ӥ-ǦJݵTjyUX IW3|lCSMChc&kÀ߄;nĸUEP0Ύ}5?qU8bh属eNU{,rڛ:tJm:TWo}ϹԂ莦*|Tn:TQuXT:T6\UXZTΦ.VJM]H[6j2 i+ o)mJ4QLJa -ql+JC(;kU(zIҏ,X&ؘ:I[27}J_^aJD:CS--$\%]_l+HC># Ucǩ҄RqrcGϻBC53k׊P)s2E|rhqϵCJ퐯*QX52!:+;TU7[EK8Mx |g IYM)A)2aBdϠ;nƆtXĆ1͡Ao&EZ8{Ҩm-hteYiakuL64 ybO(j gnFӅ;0RNXv"H]E†aU !TFPbOH)ߡRćapCrX-E TǨTNHZCc2?zRУ5Գahkimt=lyFKNmu(:D5q f+YW*Qm %O+VC|ܰ!:DDPCw4ʈؐ=&x}|C0aWmWWct1ݷӨ^P50e O!WJt@PnPs7/O;zN+=rȚn]tuВfà9KUܜTD%rNCtXV;g oTHV !:LadcMc@5 \~ 2Zt*wCIC!Hc@f4P:9Ctn6ѰZ^`^Ct4CzauXBRL*ԡI :D*uHc)4Ԉr!:l!.ʇ͙](tvh-E6D谹:T!:DeCti,t!:t!:t!:tC:Mx\puu<6RWV*͟+a:T~@}V1WNF}m,UzwՖ{aVTC͛Lrw|O^[N՝0e $a%:\Ǒo=jQ a\!x{7f!:~"ޯ{c/@@?tȱ7.w]ewtڥõD.T\E8{| JC-|W!k9= V @u״o\%z}EҪԡJBt#^4vrp5WWEntƇ >h|?\*ñ+RӄIȧtQQ;T91l5o1NPa[mA-l3s oIjx♊6nŞͥ^? CmH^?wcFC [Lm|'慝;d|Uimhjht1c/Hdӻ=GG4>K] 8E#\ռ2~Lpig,UhܣG*_[c /7 ݭ s?׺*`ÊpCy/}|jI6q~ԇ'^4z:Pݶwۢu:TO6'mOXAta%ɜina:VpW_|Y][BZ:D!Ct:D!Ct:D!Ct:D!CtPÛw\{OTA":lGٛZCtS@JJ.;^]+4'S IxE%$"//j 8E"j! ϐݩ$Z j! {NTB !:D!CtC@:D!:tCt:D!:t!CtC@!:D!CtC@:D!:tCt:D!:t!CtC@!:D!CtC@:D!:tCtBA~#soRهJH5sj! b*! w"gQ ]G?pAvTB~}zŊ^Z .ZgvTV"P[m\{\Fek5%S EjkgL?4~J31h"aQnٓ#>$ g}7w"?UkE*-&?v?fO"u,lن"@sf VNU?#]aHQ~ѿ~ɗ4m&h05"[}๋~ j-*ܲDAŪ_EE5s_ TJI^}:YQ'2-*&BEr }'}?UIdޯ'TZCc)4 :({jgZ+7s"CX 옽y"s7d_S[Ūr/T[TU&cL[?Ks(Rh6|"b> _V%:LV$٧WXlM~qRkQ:pf? 0`b'JMJtjd:RM ޓ:;RX YJ۲>psD[yu g_r0UUäUyٓ?GS_5y+O`YMu -kO9߷va+EU}[& ɛ>xW9LeE^硭Gt6;g3Edi%sk./4e[Yj +;x𽕲/?T=ɲAmHKV3&,¯mO_ }sr<6[Q5B6,czlB._VVT $EΝ|tȆϕw[yƘ &_UvT "b uE>?,Uon;0WosܷrOkl̷deu1a;}bӂ_O5g?Ҝ e{k==[tlچƖU @Oh"0n|2sLGr:DV+dș3īd(1īK9tZyӟcȗz5"?՘eRsKS9p&txӦ^XmQ5}q\^x#3ZoOpȆOםBz~.kJ= No-ӡ V fw :?k̙x(զ6){>z5WMkf4̾+#:E]xȚ/U>柸xF"޼)_cvڕלA1/w\z?evRcЕzJ<ӕ3JYQʠo_{UYe:7?}z/xEUcn<ܟ=ydn|W}$OD;}u8b{WyMozxW÷^IYq4/gdkWlO5ZS4}\ntط]4pyG=EUc]_goQWda#LzbC:!fRa1ޞ2h1I25nzD [E&2oyGu&uoM'+SAk3pσY?wo,K=o>1Fz3]aKU~r6T :Ӄ`2*uW7+ Av>kX# m,K=>4~0li0v#P5p2HqѡI5{7q/W̬;r!P걘 'rvti0߯Ys#WUgB3S׭./o9=MwxQzj?_tg>]#shJ=Oz#y:(~x̋_aNrH]_ͯt8YOqtaĜߘY!5E M;SilP걘L?`r:tavwYscO_ͯt8 WO=>uB/l5ʃmmMEV'̹b;dmDyxdR~`E͊+6lieSN FtUt8I%Bv'7^u'>XV=Y(^e"xÈ5+p/h#bf߀01+G^4:taV{vtoo3UgT`]i&nLu:Tˇ1R&^=mxǖ$0_WHPJjQKA EK69d4A4N4[9 4--.}QgQvu+Ѕr/E^VC 8 0S9$QoOI=$Jl0,.uĩԃ1dyȇ@C5Z2Gk^FMNtDzVliY\ Dh ,SuϱBv)d "ZLimi)15%y[WyNRȘh隉P]o^ endstream endobj 97 0 obj << /Type /XObject /Subtype /Image /Width 1807 /Height 943 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 17167 /Filter /FlateDecode >> stream x u.ܷȭ xZ WXZyL#"f?N#(5 -K4@QrRo4^g?p@Ai{̺5Rn߱ҝCb{:hrW~=>ykoxSFmYD$E$z* 'OVC"IF.d}G a.‰r@9u5^0#!r@9s5^P2tCa尸m đÁ!XB,đãBr=+đtC߭d}G'U_m9bGv.7M#ˬ^X۫CZK q&ÒIpФ_r1vD1vFMh9L-3)M$49@9CPh69\t|B;-.>O=Z/leۯ?>Gtewysf$֘o(X4|ۅ(mN}ӯo>_lG^oϹs7L9C xtiӦ>?{낂V=,+hײ[ȋνE)r4%Efϛ7{vjѲ] /e¼{s޷yar(@Sz|- ?9_]jmFq?Ylvr(@S6ӎ][%]lɓ'_;{P&o%9o<"eˎY'e&r4E|[W!?C{ 9|w[F%r4C}b՞  zOh[uҺm埜y0C9?غo3P!Bڔ?/kƁ!pϑn CP!Jov*ma7 P!Fzݿ 9CTNN0 P!RKf!T1 P!Jk.=w/L9CS*1 P!R; 0Db5<&!Ds6r(>hȡBvp'@ Y&!Dl lȡB^o=I rz10 P!Z$C9heI rz> &!kH& 9C׃r(S 9C׶ٍ+ 9CGh֘r(_ehȡB^<5lgȡBN<5A r젴 C9xyj8 C9xݕy0 C9<5A r񚞉a@"6<: @"yp9 ryq@"yC95<C97B!DlHPN!lߴ9CSy!D[mCǼG"*&!ghfr(5hȡB̆5C9=y=@5MM9CWL [r( !Įwf!kz#4Gr(֙K 9CS!DS9!Dl#9CXqfr(vC!DOÝ9CXv 9Cۙ+4 P!^'JC9Ok9 r{7B!D !ᴆ9C٨7r(C>aȡBHkC9mC9bA r{%a:@"f!ĬUZÃ9CYwr(ۆ~C9ia ȡB9C]QܰC9MJ?DC9pWs@ɺG{uڟB㛜$s@♫?=ZrBrY9 u2eNrPfF5}:[g_ 9&wMs@֊ft^>9{B "u[kt_> a˻вMChT^ma]LL~˜z09yI!4ϥ59 u2*<'W~!/֥?s@O,=9#z?W!]>7:j´ғ+*?-vr.}#ba]*9|;?Ch$/ 9!L*=lkdG! Hc úF<7T0CW!G7 9W'N7eN=[UBicaXYuqAwBamw$9W*v6!lu#cr^B[;[`aYY 7{dB]xoL!Wݔv3>ݵM&;x:;.!4_#9_O~${zbL ;_'а2)faCZ7\ChHҏ:9td!Ĭ"rkW!Ĭu'c@͢r9&O 5;}A]jT( ,9̵^M7ԷUVws@s.+vjzvV6wO/{ߨ{r؄!Իs26P!fps@bmFr(ui 9lk_ԧuB=7lg a#5 ҙr9lpEXm3C [rޣ Oa:uW~=>ykoxSFe~€%r/6)'ez* 'OVCZ94RH~F.d}¦"|da#-Q!()5,4h /9MgaZ'Bx ZNrNBcFa尸m ɤ w5h /`9Mdrp9@\!lkv4hZnF!l+4b^x~WmnX!Խk И9,I[CO` w43.һIC/nÒEj܅EF9>7b 9,)4Z M*!4h&f+,=GQkC}ajMyleu&9y`!i d s RZ9r1yZUr1kvs9-lABNcbABĞKk9B5@!fHkx9B6Kkx9BZ59BHbo 7!D-s@'c9mgl 6i a I bfϔBO_(mg ^rQk%c9mp+c9-H_)ma ` CݢbhZ!lLZsb~&h } 4Cػi !D6r1sr1'r1;)r1;&obGZ9r1k@!f1CYaR|c9Hj@!_tlb=Hi7s9uLkx9B̶L?R:@!f&5,4C -b61a9B̦59B̦5|@!f=P^紆wȡmsCC9$j;$5lg rHP rHJk9![0j rH1{ @合en9!1+H>d rH~ rHN_(@吘Hk8@合J_(3C9$fO ȡuJȡ̎hfȡG7C9$fw5<@吘_ZÓP؇5| @合=0,7C9$b'1,| @xuHkxA!|&*.8%!k E=Il S2ދ!Dö!ʞz7_^q!CvLZ1pg^7V\p]吨mkx9@9z-*.vC"$DiKsHr!Wb@!: }ۆKW _3' aRzXJk8 3~IN>6\U!ZYm/rXrMsǟm)=ik{rHٗNq>[=[+C3GA@l9,Y󛾟a.!M٩'J[ &xy)l1?_+Ce~54/?ĔfW$4Y+*/Fi19!҂5r(k~Ȇ PW̻GaeO!X)5êf ^?F!M3}$@kÛz88s= @kg7d앹o սs~{4dwI;9&k rHn|4I!z$<9Cui&a_9|fSϿBiNluFrX٬((F"ラΔCgcgQVRtն.9Z1s?$@x{7ݐe U-ytqɣ]{KG2*s0`޹}l U<8tpnŅ҃$43 3=h @0rqU'SfwrX1! Z^B8QiFff9! CGmQ֨CxAQIintw9\aqAif+Gfr>C f0Xig7%jw9܀Br= prHx}&=19ܰtC߭d}Ҵ-ha194EÓG/_eqUۦ#!MvQ~?gYsi᎛&\teVz:irHSWghXV M٣vX` UѤAb8hRQPٴn̶0=ƙ1vD1vFMٔ+~(@kcMyleu&9dSk2-;}Àf>ʊ\M⼶/pXg|sv\BeW(ma mrV˖]߸^}ðO4.Ͷ5n e9!ViМs/>|h3WGͬua.~`@iL2|(YUO\mu\7u !k+F\zƱ]tps)8 OjQ!M-!4Cf}ʟziTCtҏXnCܿrCXoeZNHr$q9A-ھefr(i徥{i?0 N~!Vv30 3>qC~rHXOa6c0xSrH<6 7wIv}iC9! ,@-F&=SsW7.ԇ}U69QNw|&q9vwۃ~2yHi>İÏ3^'sluҭGk@N1yh7S'rHm7 [~r!bKJl}Up {pQpǙ33?urH3y^izr}fnmaM@CJ=>Ki>~ҷ Cp?^ߕCǎ_PCҶ5rxj]iN.{VZ;8ϒÚ,C/_~40g!nv)>}œ䐦dΉn>c.3sC}d_#m;ΧHϞ!#{0@i jlvyUWk^?V!o[1L%&k˟Z_WO]7.T=ʞnPzP _|ɿpv+̬  Ov/ξU>%% 5yn'\)s[L z|Oua1 `ؘrC29k&>{ҽEhssCJ54cVP9Z^$ѻoϴ>] aS Q[uZg?;WCZo?4@|a۪tS6&3@0>ߴ]->4\WwzPoia]5 Asxij["'lik@pL ;IZcv;4x_Ǘ96M7ú@ o)r8*!ʻV0l]jlvMrؼ?}i {\`&aWC#4釕rf#0 `Sd!Ҩ}9,}_[PAiHsٞߙo#9ׯo^! wϾaLȝ! ⍫v)ms P#4(gsȱNR޿+;`kslkr0M6E릞0U&-?әȡFg)7 ȹ+M rؤwx}v=ir2cԃrHÙ}@+}B?x≦,9l*]6${=&}`@S9m6=ko٤"˓ r741g0 @0J"aa-}ðw1 @0F_ث0sB@0J/_1,?gҽL6 @\޷kFouP>qr(Z{eby#3V ut})Ε$;dOa>K_Mz13=$)+<_Q]Ku r$<U|c:Z !6wevIڥqFa[ 0c.t@_@I9]KrI pAlN?=%za=Drxzktʉ 1&õ׏m_9rtRȍs~{];99hU#DŽ0hyM D9l?ϾmxINp]̨qp/IN;\ !yEzg@rX6t޶煅@p`7xazt rxTCVc尞ݝL:%&c9L7j˫I֧aqmR7)@N(=ϯMrXo:N_ϡ]0;npљGlY]auwqIfK q&ÒIpФ_Vy0 abRsu69dmұ,r=s?6鳗䰲dlQ49@038ChM,{3Zh1bh7@@@c쫤C/r'h=[urf8Q0JOΚ 7 a9|4]X Xd^Gr4a9,^{-F>C3@c[-rع@#aɣ.@!r(ȡ rFG,ri= 𭃇JW94ȡ r!rusX#os7HsxCmO0mJmcwS94ȡ r!r(ȡ ىe qpq| Qpyߊbg4rgKV+ZN94ȡ r!r(ȡ r!r(a9SPk~oSa9rwJ92/_6-rgC9@9CPC9@9CPC9@9%* QƼJGȻ=@c+){"ƘUXᖕrcC9@9CPC9@9CPC9@9CPC9@9CP.8?a}MO-O<QU]W\EΩ8.Y(WvRf?w- *{Nbb9 .WE(sxTҽ6?^9 2'kBrZTzIOC!!)D-C~!Caa675r!g*!!_7U:D^7!pTY B9 6+]!QNI|b_CbaՙoNOv8r@D9,av#ί;lr@49,u*9,)P-%9kVVZx.r@d9/ʳsX'r!r(ȡlrwg -VCatIRBh9|Dmh99@9CPh9\g>+8s8k J73rXt6.9 GMԯ'w/}ʨ3+!h|]/[eqA9tc-&D\\myfC>Ip-Q!،s8]s8(j`FCqJ:\ 8r~}9,n:!qp`7x!q\!q0bw->'Y"đâI6x~WmnX,đò9 pM.:2+k49dѰw=lQQhr9,)4Z M*!M/cG+Kacg&9|Mr@aCPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9CPC9@9j3󯮐C(Yy}tYn1|Nw!1=BM'D2qɣ]{KG2jʀ%r@$9,')_ VY\8zIH7rqU'S8rxLtNC! Ca񂢖Gۯ/mC9  /`9 X9 Zn$S8rX4<ϯm8rX>viEg]fw&4,V.-5!M.%EUIEB901c^ye)9b:]$sZ>gcS>{YIh9?r!r(ȡlrħwhxa'f*_;{vN"|;kVf͚5kNM/ 5rWn1\{gy>k֬YkvI٥=͵c5k֬YٵaÓkt\=oeΜZgԊer֬Yf-~C[4ԉ r!r(4}}3Szr@95 ҙr@d9,}jtSޣ= O& zeG։>e֙KHrXORέpBd 9 >toj˫NO֧!q-Q!(đA!\W3B"đ!b?iC <-^#Du$?ӳ$/mӒz7O.JNAFqpj򃿫>nK'N#wjy4I~jFpF2GKO%yO)#DnF@3?I̊o.4g%? N=0̕n!9aO=wղ3s3WalUŹےAZ$(?P2[#Nփȍ OŹB80|Ahs_875%ɏ<\1 _(5;0^"+Q a@82;ro*MJjT\(N5/̋nV~_k,]:f[ CVT} a!i?=3?P 1 ?o) y+rI~+F#aWٖ!l׏sS"nD,Kn3+ΞB^9Eg1ʿB#O+TILb  o8\/gϯtvLto'̩&sۄF'}dx aJgJ1M+T~hwKB{̢NK9+!,_foWnrvATb!'NHngHξXBlҏ}"SěÓChZ̿w%;+ ahGiKV'-!>C:{zUvv㮱! -##OK˥{"cr {̪H8WśpYadN,ʞG2Q! f?>rT`^w!-Di/z`WuוDdQcem[xmÒ{ *GExfTJ"`xٝ!~OKJWoH+͂. *z;lZ;;tp+ #R:v;֙tBxQWCAw'5ln/25"aV\8 @c;CM ܀?DodR%t9\Z82b}9 @PCoz/._GzoG_6H?[ᜎU;TGuθf`rb09}!~#/Z{Sr~ߕÓw[F7u ^vN-3V!t[=vv*]^*sG6Hk6fclt~[8[swa֭ͯ-JYٙTlZ1-ԼѢ}s=>簦o[7~h.9}ײl}_XZKeg$gȞL_C TҿkWg ÒmAn`62SАmk/_˻"~:JFЧV!=/9\6omsXӷQfﴴn`6.n>Ñ#=tKys[0*¨s0 {jIr7~++H.l9(sTeؘ.BMƧ3KO=oee9\iB̩cӿ'r 3Er '/g%ɉߖ~79soz!~tan.o`z,'rX5@J na6&[0p]>Ţ~{E9K}2mYbC&}Ina6"o&er[3w9|,ˮI>SBx9<\j9庆ptŹ76"30- FS+Hus;*. 3oVsPきӿ- F*onq`CS~Û*.K?TԏCJ9|slDTmSݙ. [{*.49|id_klL s٧z;Th 0IE.!}59\VRl|an`6ᚪ\Rk#+䯜Yq)ȜZ^89|/ؘNzɚJJZenÒ!QqL ?CO0 B7! 8M<,{9gJ7|Ϙד^V0JJk6KB+̢J1Ra/n_6*%}Bء{mC8 UvÆs8'f&TznVë7ś%_T/1ɉ:ergzbڽY ﳴx`J7X?/-5n6ݾl\⶙Mܛ%{9?%% {8=Nε^֨9 [uq9,]z;G-k̷Ҭ\[.jU:T{򇏙]R7T|x&xQs80T8|_+] ]e7;WڶJ.8:Y81sVaIɯ;owݖ^ɒ~"z /N-'CwƃSu.ۦö\e׏mn_򃒒Tyɳ&E=}OAuz?*p<{^Wɗ@XO_~`e-InotpOCS~Zk6dzQz5>Çb>!zٍ@}KZURRO[ݚZ_Ӓ!t_(eUue31c(Uc\M@=]v6"ΕG|anOma@#| endstream endobj 119 0 obj << /Length 2565 /Filter /FlateDecode >> stream x[mo8_!w|3|T8 omqPlVז\Kn3$%KM؛ &ER3!9#h˓ ΢r)JGFr4.X>^rB;gt^<Jo1I\j0ţrs^)ʸZ/!7qYYڽl^A3mUܺ4@6Ϋ:5\CI= |D>E#!PjxI0X:QlmRvF;xQX/@$+2Dė-6/y9-וoYԥoWϲPRN|zO+GT2QJ FSc -U~>;ʬ7Py!ZxyK!bՓ\(%bE pNZ,w^|>a;fhi*-N\rEXj"eT{w~um}ԑiA9ڄT 9P!(\eIOMyfYHqnndUlWh/nwU#Uj}d477yl =WY$KD~UHbmJ/ΧūC~z`݌|DŸZ_lacLǕ av8= :{oxJ4嬍^~ʊߏ!GEo-;}B п "ϛròܧ|huk'rዳ+߳/2P?Ү1=力ʩ]ֳAc_PLHm)[EW4P[w*pϓb2_i)f,n#+`/`B: B Xe UrU~[||ڋkp !58́ff}POܚ܉s'}TEćE  d;:,>}{jخ rn7s3\^K9^%~<Ξbo~E?͍>?͏|0Dk1H-M=ɺ*Ӏz !Hei"Ɂm6? [AuA*]:)I!IYa6X;^@zqՠ]te?YhLLќ Lk Os_12†c[Ë6dYSO&SskCg}aNa'ʎ}Qt3hiBhu?֌ÆEPݻe)9"l한+w~;ЦQOmtmj rol`uwX ,l2$ب3\Mc\O|!9Bu9 0`19`hJbK`zKZl}\_DC%/E 3 endstream endobj 112 0 obj << /Type /XObject /Subtype /Image /Width 1809 /Height 952 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 32184 /Filter /FlateDecode >> stream xw-Ey T:|PĒƂcEc""ƖTEbQ"jD@D@P(Qv{Svfޙݝ}?={L_cZHƉCyH[*ģt+ mlg"B@! D"B@! D"B@ d;!_СЋK\"BTE!"LP{E% !\4{r"B@! D"B@$6Q2i>ņ`Q2i6ņ`DC@!yT]Ï6@%%z&e˖-_xr>KfO !zII\&!_Y"DܐI\l*,8II|v!~<┟]c0xw"4OBv55 Dv]wB|)gH0"B q'L!D7wB\]dl"!Db+DA;!>Y7!;B _D9;EGB|̾P6~y#B QdrA/WB\Q/] <5;"N7y횙\7B4fgw^U3D#Bh9m/n\U>Ĉ؋uS y1B@]۸"F˹Y{. BͭW \@ g D"@+H"BD" D!B\d[z#Dq7B|ɺ1wP~?o1Wl6 !@hD}5ј" Dc!s& !@!BD" DU5@C:,?BD]!F"B!BD!"D" ɥ@5"@!"D||"BD!"D!{zƌsG! D"B@! DX1}!"QbDw!F!"D"BD {"D&P<!"ą"O/B1" D" D" D!BD0bD"B!"D@"B("B`W}"BbnBI*4'I~!2% $Bɭ+{%DA@jؤBD!)Du@ Ѻ:!J}JДI؈!"D@"B!"D@! D"B@! D"`D@" D#BĈ"BD"Bć" D@H"BD" D96 D^wH @#р!6B!BtBѮV!Վbt!"DG!"D@!"D"I!"D@"B:IӃ"Æ 6kD!BD"dgF!@&Fl"B@! D4"BL|!BD!B@ƌHBB!|B!kz:*?gUsC!@/x&j(#DYtV"^oBP;f B+G7p^"k݆#DgsY|FM]!B 1!ED_BS !'EH@o!#rYwBP^BPBwߧإ/a j""q";!D"@x3E-D*oDŽ+_;f;D Hq ߸HdwWbW$/oH3\\ƊeБv.A=C%Y&ĕkz!v05Hm,G;{3=O=B: zgm-k7h]! jRqɓG+ʚuV"1DF8="4"oyp+v\Z!;\/-ffҫDbfvD Ta_2xp"x"VHxcE =Mg/[?ȼ!T'D7m8ާ$, D#B4}qGm>,8'ϼd]!{LFF3M߹MtԴw˱ӦMatf\vG/DXڤn3l1GO HsM!B !} A"J~k ARA普2!ѼgOޑ_1h.ύY)7F.|Va}oe:jMHhWb,INF <5w]·3 O$4,D* <̬͗U| LBpWL{+D].ĢWIH,['4|tzhV|Dz{}hU0U aӹ.|!@/xߙ/xΆ{5:Bꄸl8gm~Iև*!l~2CGPlK@.i^kt=8t0Z% q뎶:B!FH*E"@UBlMD@s홏?GDSخxM: Dv qGE سJnIB2Σi!_9d P$m7S6nė#6yCA-WWؕy P(㯾lE/<b=m9!\Lm1x 0 ˰uyۗ!*1E l q &m;TdמI`D@d[%En8B$(MN:Y!#-N8 4TL!NqWLS"'Wl|D!"vU"iEB+:1!d;{-DC1{vt ԕ"' _)gF}gzUX,]1zIN_WUB#~}v˻7^tô-F";{a5׼kN BHT!Rۮs jBvkgl2BP[B~֟#^ D[E!R=pMbY!2^H"B}8/ɧ qwg?B Poȳsܫ?i.k*D dÑIpc2Y+_kn}'k.ˍ"($  frܬ:OxPmD7!6l&w@=B w浣OZG9L(9Ź^Z7>>Md512 5 ȅPOo>:E""6Eci/BO9uDV}73MٔڤGA(FCxyvy“- Gb@$D&O*@-BB$!D2o4YIWn 33xȒ矜qꪲ4Ti!@kh̻D>?ʣEyj:,&dx!-ĕ/7(_|F-ܤC%J2t^9j-ۈy/9!/tQB4gq>>ܾmo.?y#Gzh@r!WJw;) -BhD ![7;'gz|>D,cW=>t^g{"T ˮw<A·!@5BlnD!"DH"?!4CM qEy2({Bn"Ⱥ$L=E^:|b" +V BimB2'{B !B{ʙ v' ˜?Dd]D!BXaf D=%ď9xc8P" G׫r!>O+fJd͡;D^=iI{"'Ŀ9y"Oyp1V4bBX7ds=\%9B"ޓ: O@p6&Ey_<:5bB1P}3)LH)r̃lrOEv@nƋHQy;yKLj"B~ ~1A+n7P!ƆEuKE;7/Hh)LhV;yUUs"g4/DJ!A㋟eɧ=)rhnUҡ>AY\"]h+f<* zZ\v-eCN~> 1*) It$90.=ckGB:c lo[=H '!ÿܙ{ew*ܛB"šBQ w|Nj !ڧ@mIKCyBmKE?\s"Kvo?ʸdu!s!j?t޸d/й"BH/D'w S?O?C>jv2${uTPk*>/ yE@9w}%Ąב>!r!^/客y9B n;\3J&׹"nH_E"#+N![k9!D|39B\OW. xWad >Ԧ+V q]W-!`e0T}-y dڜwLc^t"DQ!sB|?xE!΁m"Ve67 ^? !F얶$ļeW;!~{7dĕq$9/xB@Bߺm_Og}랻+[e=EH:&Dsޅ{}c ^B<!'2]NZ"%Ҝ$a K~5 qEGyne}IHݕ*YT\MBrו{ֹ^qgN!T#D ;B5څRk&Bfa!6 b 9UH\&/vυXs΀dGb>b[CB֢qbBwvu~j\[I]SFMd3E1RӱHT#M{؎A;;q.׫DӃ ]v!kB[%k8=L:N!!R|qҋBB$lP`M'$i3NNGBT Ĭj4]O\Nh:APKE!tȺ_{CM_\CC?vAO5#"D'\hQ"U=E& !6I}[e.S3;F51el$D$bt w؈$Zu3f^;oǞߡ%D5Tzr^c8!s˗}x^qUssW^Av?!*vHDfB@%-P2_A_ b r?f"İfFl]ĕKjϞ_L3˖-[}凾 a'Bl Dʅg>hmHWx7F&npjB44n[3;B\C׻.i_>5Mu\%㺒U+ȞG+~WNBL]iSm]3LS)XB<},gsʏcPXJ*kWY@d ,Ke5"@F1sBwօIY!o׿3h#vOp殰(SY;6M1aV ?78cR q'L!E>B ]tA@.hB;'Wy)$k/(IaL"ٌ!FQ*9YLAJB,=U89T3cB\O䊉%AJ!n;Wӭ>iW ZTYeI`TqM')dsG?;<=]6!n*[KY[-!vS?1!n-͉.E䝣oS 'n%LXi3B$74YgA &ȁi3aCxuE}!BsPRií8 BcBȒ3O\<"W5xJŞ$JMQ4 ĶdjOrLm$W,<_5D6=aQ/]ߓ~g!F-#w>YZ{n'2a(u |bk3]sw>M@47y횙D|uBl"BdۚҝYڣͽ8K6>g8+īfFW!Jw-bV:r#Ӗh>X溟XV^o{ټwmBl2M}nmB1ӪM ÷]6r+[K\D!ݦ3\U'զ~[BS?7د^w.&z[X՚bK!Y>۝T'.9R-۷-#71vm fA=v;-ep !֕2+X,Imui jc#Aa岕;@!f7 S4A] V"21b 8@ Q\  1˴ޙ%Do@}0͇RwҜ)gb $b{;GRMb ! [.bc>,$ټ+]r($"F[DZ/VO.txM 1(입F8BD d+iXcKc q?Zp!IrB>]kk"bdTn eoEkx#^,į|2BDY&==*Dm(6I{Y-څX >ۇ.7obwZԁ%O9!VwaZx=B!bJ\~!vhr"Db3RF3%y8RU}٨' >^4gW3. ˤFتF`J.4 Q&x@ =֒Gj- !6Y :L^aW @b[#f.ĖLHFNҿXW^z)B$|:-+b@%}"g/KFDC&wPݷ$NZ -ƤCTp!<#18\?`~cNZob 5BL7bL.. b|K$J3T\δBo6 BtfV3`zVs [_B@ֶȵ2!jcہS2hڬ9.&(BlH>LE?:Lo8JH|h4"DXs),k\l$BNMkBlj9NU@~N|*=QB cqRWj_ͮކR:BlZE;՗k@-i vA 6JԪkTWr97XW9Dj~a\E Fl~-HŊkeTP<2/Rj8<`ˣ !RȵP5\>ϼT#e6E9|FCi}%- I8,aUgʲ 7]BoB/ZNўjs5CJNhZsC+z$_ljsq@sDNUGboծ"BDTB䒀%xB5Ƣ Ձ1ffu'}VDu Q$ˊ:sgIǡ z@h!V)1hB,C`LQVBM5BT"@YetJD^.!v Q7ǧX* M4Gܿ0ZuJNFlA/UJvm-EFl&cm9ˮx!j6b\GBޢvܱoR=پC35Ah~crMjU-]I< (BaL۳Bn)/W&oܘkaK2!\f^qwa"1UKi{!JmB_Ɋ[*ĢJyLEdKwĕش%b_עIvOaϜ9!rL߄h}8^Qam 2R߅Icujy!R_KXosQbp|f.(3Ց67Blx$>Uzɳ_46Dܝ=G!yHte*b5cjVb\]l EYp-Xv9u,*IBmÕE;;I3ѷG1!%(,;bQB,b(DQ[.{W"İ!%c2&[hKbi!6ӵS*>]fNORy~!#&BXw,#.dY"!W ,b^[Q=5W-?!;9+!vp/BlD~][N7Ls 1B,=w@_b5z!NF$R*gݘVp5*cy[oB~]h;Woy<ڟm<6 Q !O̅XEfu͒Q ud%ˈU6pLX X6 !eBxn)!J檯TlDjtRddBlY!B,MQfPqKϫ(C0 $Kjb!eՍ)mbE 1fBlhDLEP jU2IA".Z+DMR%Ɏ(jsl~r20#-Gs*3Z.rT)wLVViN{z^!?ZjbV IWF 9#{%V^D"-hw6cόuIQwi?~c;.YNu+Tb餎>W<:YCn>D[׶XMόD @tK$ePJ({udwnԕUsTj.Vm&]sbz8_!:Zkb넘*:+?B<%XR'$H0>fJvWejVZ+_BlhFSwz%7>6 {hkwXD z_nzh(ɮQ!cg-hIVlT#LU~!tK4J+GS&!bB,1/Q!<82bX bZ_.!&~1jRBijY|Us<!X .iŋgl-Vb5 erby>HT,,Y W!hրS Qy/+8|W_z+Wh}OTD..+f"ng$DLdѐ]jdBx'T]HRq_͢*DeoQLQ!VnڿXs'͸q6=6T]n6G$7'l!§is)բZLб_˞+B,;QI$!壈aBzJDb[$JoQ~yPOl;7NnʲUTx }وg!6+UwGk.Jnfߏ5qNC%p{ű𢿮vD_ݝ4}'墓\X )@!mZKG.WI=BKcDD{LHEȨ b.!_;5EG 0K?=܀M&bNn"o%T\vl tb['21&,ɻV][cϟbrpCj"iBL4-TKedUy&Z12!NdBh)/ĈC"—g\A܄sTZvouEdŒ5(fFVHybUl}ꌵ$4eI,D x^U [K$B:R" Q7O6j>] R+E]ETi+El"fr.E5'7:FulbY!VM%90e_hGvL^_,Mu>PJ~WcQק]@tC;uD 'niob[JUŔwt)ŊMՕj9p8U(\_omNOPL2hGvQ4k;gn^KF[/#څ8t5!_jY?hbfV?!Pu6BacZy 1U#!khZKZ*_o5bJmPTsTu3B6tUHo\!ߨe_Q DZ51r&^ٱyٖo)~yY'ĘXRfdĭj8%bSneOݖo "J(XB OYmkcXZ!Nb%5%56k>Vi!np on X" ݫwV>+7_^9wIUyŮy!f^fa`+Ai#M o+SA?(!+ĈU߇{[ŬsRg"1B4S&OBlo@`W"#!DjUUbB}RB 拣(Nl:AwЩ."款i>!h=7L8+!mՈ##W+$#&({j70s}kSB/Fx6>-ޭ̅p"MD7ꐒlK7úcebVMؖ9EaBtFXbheivk@0kMԿ[<vpR'DJ5éZfBLWA}VS{:;K6a?8{TYvrU4bt%a!{Dw)BKE]kU ]?͵qwĺWs@ L3m6;1'*_шgP!䊄(y q|Y;O"ıfE PjQvBD5%vzЉEB4N! P ]bd_T*:}Halzk`!TaN?]PL %Jܔz>]^M3{쒒ɝ\UڅkpYf)'DNTrKueӠS}/]k*KC˥J=+UgQ=T)X!6.DKxnȅ 3b V]&Nb0„.SQhv2 13K6$=ۢ`Ź{u KoG3Rc"i.}81rE%u-|ݑXwGAXi ՞!J+fkzB,+Ă\ȧ)KΎxzxT1Mdw/trq}hEe:+DM\ {Zf2/*4EZ)w:5BL)r''jW[-|!ZP wV;(0aTsR*jX`Ggus,0H\hskPƻF7`S.tY(GBL${x&oZhoDO.HU@,،gdngթX.Mog+DoN&=uKN#d7”:=jPic+S>!\4TXAB ZqPw DۤQk0ʩesOvbUvL*fiSI^WFo\c:g;:G 2I[.Baд }]]뤯;a!:Gct@'D{֛k2Di:eOi* ٝ$Oxi&Ɠ%w?Gz B i;ǽe+C־ X92R %TڭDSeiTb2#Z4}'D`Iƹ8ڍN;vcuE%QD<)'ʐD1qF4a|):F;yv-陸nʶCZB,=22X\5bhJ"^$Јo-z\ W ijMmck-(OI Xzk 1J|½xBI4ں+qhwm;gRa܎q-䇽+ZGb9Z? B,}=_;#{ThBWY%㏶[Y:Y5U\WW ѽ*jZj]Bjh+=M Pٮ'ko?b&O{)}^Rf(\%D^.L8S$MLMmO5S|K4nLcT-pN\֝\+G<:ȇE%]XCQ6*i{^{bTzq7"iq$Hecf^W#D)(($8ln(v:)/vD#D .áJe,39&؄]aK+esiA7bƯbz*#BQ=OS= ZpX\O5Q#aFo8YUf^ ĸ&TWC[)DQvMi ͑w|Uon5D>XƸf Qnէٍ+;5ݵNy=m/ 1xxtO[~`f-YY!f[qb+pk_,^xά>[25=|&lI8ŔJh]0#O3 QU\+Ϫ:cm֠żqq V ZGۍ g&cYk:9Ny_5\CzWFR!%u]$19Gwm aC5_aG'WhX|\arzZ)R鷤7TU"\tVFqP@XEܭ6u?k^_KT|c(1 Xv,TZ8Ɣ|}=O8,>W`,.4tʉ8!hbռ ko5?(+jX֏װ5_ 1mB4s4}!Mİh YGkh]2(u`EYշ D{Xt9cs5Nc)@{y]E5Ga(d,#i& =:Үغ^!DCYoG _8tʏVNڄh,UwU3KD4ujQ5!t{ڲ "3E'D}ޤChZGYrɣWWnpj!K76 ϠܮY;^FQEC]gՄ+CgUDSsh@<_R- j: IF5O"$yB6!U|c<Ⰾ3jkq(G (z uDBU#h}ǻb=k C/.Gաl+3tT2wNj!ZW;/LStfn|x=j!'<#4BTg;<BEZ!:&ިuq q,BޏKEuϻo?]Mݔ꺪g8q"\ U%f(TN) 1~ XC@!7(Q B4֨6ܨ}E.O2 e(cݢO)D׽V$`ʧ4^ npzo-%p.FC7X X%QX`}k9r qE'] =|SOY t8u1Sg O+D[[GjpvGEMh՟l-o$ͽAs;N}q5WH Kh@(V"e&IBԏ#*J> \j=bcO zkQ%hֻks=W8Aˎٝ5a09;x4=ԫs0W.jz*".DQ}jNx> Bt-)s2X3O1cܓ*%hwТOFeWZkK Q܃]Cx_0w~YV}/g{ ]KxN]460^;Obаq }a b%p\1Q0V1{<_ :i!f֘5]L!ȴu4Gx2bGq>u>Om0OXȤ"w2Bdi&Xr,,nZ5>c׏\Nf%]oCfNy1,c.ovNHȇX Bv k:Fgʢy`=H'h#M|Q9RӅS/ <5C??zh [KsNY(&gO{QrK@!F@I蟔r]3&bTj L^GVO52uAbOoGXV =!|-{F]E _} T5)%ڜpLW!DO0&oj@``:A5G'SHk+*4&T@ )dKYaDO D_Ȫԏ_/5vGCl ?m Yjssևα𹯞ۆ1`uU4[2ζ tQ8,(e FtueuMBZݽF=,/)D Lwθh0[}5vˀW.i#|`+n]u FuӴbB#&UQuC[ qu]X5OLj>Tk)/(Na$GiP]-Dw8 %tevӗqw;c.o+Xkmj/srNDFvO&P]}֕aɅC WJ]wmuvM4mGG,fmYMICb]PU͕A[ g l7([瘾M8aacY <ƺ@Z7V&DS»me='rc*7hwP]BԴN꺍ևXojG`5[Ֆ.smQx>;錐ڎ 0b|Zp{:hAlfOMTTO8!: ԇK KS8jlz^J/qYݡ2YscVw*H? 7=QEm†+Ϥ='ֲmkqr=a #(Q ۈf}t4w"7"BTT`D9: VTM~![N"6JR_76oO]$ oPX;^)DUguv~yXuÑco,9.ئ њT3\4kb xo;xn1sKG3SQC Ն㈽~˫Ot[vKoDSƈ%ytODZ= u1ZLh:l77F#"eUO?/Bԟ[}jV1zz=!CG!h!ړUQ„ϼϼ4FlD5})h6Y[gYVN./c9u3 =X}[5Y-vZ>4eSB4ʲa@!MSGJu(圝jkvb.֯c[ӌMR%ԯP zL~@I9SQ@Ss 8i`rI L1h 4¢4US /&?0ج B4M>SǽM}Kb/qnt { {k9].},4U{UG3 jԓ=Lx^6B4#5fjS9_>u+G}SX3VK ZQfSy&rq0UOXΆp{v/k*̤BLr(2UFE}Y{鈍WCT-K&XEʛE_G#qE$Q]KY9]r2aj\!,Ż[ldJ]k*pe:kM?h³A,Њr!g$t4}E,?̿m\ǻqm?eK{gt.,&qP)zF\6!&\XM_GCUhKA{Ó)qFS{_IZ _iIT,5S\cS +Dm'4W7 ֻ퓲:V@):uJ;jZB&+TBVM.KUNu$l{(f6 YyI} !J]7.%DB/DބFD *gy"ゲ/Ԧ詋lQ\|zF>.0B-dS"9]}M AɰNY1(v D&BD ο&|LYSj \B[7gO^M zYz=2Α~!:b:h8(ic5(iEbC}Үq8ǒ3t;/T&YnnJ v7mS*BlnVjx:;BZ: ULt0_d|u+:@þeF;t.NCbn^WJ⫓PikXe[8U4]At)Bɡp.ո !^9)8-y]U7ؙjLh$VEdܒs])her7kar)h4bR!^Eh Dli3% ,fwCRa+J)]KM뾿'~g qZD& !YQquӝ$l87!&_$Ʒg_ҐME 1պ\"vQvKC-! tL꙱FDE4FR DLmZ^`Hi+H)^ V]Vo!"DܪbF|:BLٚ\MDBUE!_7 zԐ="@[9klеbǚ!4-r 7C;/}f^VPQ_n_xñ^}B*6p"!fR7S/g#D|b>15[!Pd8H1@|X_ BlH_E" ٷ[B@I*D..\\]6Vi! V q]W-y+s !(Ԡe_k")޼Fd7B^,gVCb!NA,?=_d{,o(;I&cф^$I-jS_/}0 "n&]`39\ǧM4/* фQr >%d7qS%T5.8psU)?r2KU{6[7 *όDvh>?y[6 ?qHIjSTe;m KR.$T122 wE6#3SAn rf҂Qe'̌_O =yX=qУ/Ԗ?Se#;Uߟ<4/3Q(-~YyP&3JAlk_đ2Z&^q\dcKHZ0i7q:lX}׎xGv&ЄnWc4VpBB!.oDB!'2]NZ(ߖKe~G\T"TCs:+,MZ,t D@"B!"D@"B!"D@"B!"D@"B!Fk@ͯIҊ"ZMbm \:H[*'"O>t@"( YDPȮd ADpH{@V"Ad-A"!R <"B"BD"BD!"D@!"D"BD!"D@!"D!"D"B"BD"BD!"D@!"D!"D"B"BD"BD!"D@!"D!"D"B"BD"BD!"D@!"D"BD!"D@!"D!"D"B"Bl) J"A"(9F!,[GN&SDPrr_D"hs H-?=i&+4ʳ^zV~Z|>r%i7%j˛Xx iK?u6k5ËeŴ/̱ܰ q FXE$4"bK^r7_&g] ܴ,1 yu?ܳ Db'rᣅ_ Ɯ V!Y !v;g}zǮȗoNɕGCZy?B'9o]73֑=6POOL [Hx]$3q}O zw<~i73u ћXm-ѹ3/^Wd;I+[Z~gՃ;=CU vֹ" S\ȃWV|s"Kz/Dob}|g MZǃ'q2i7o ћX^;sٗOVk?*Dll3~{ɋφ}7%\Kd_ ћXYk-iAgOw 9&D[";~ZⳓG#~p{!z)"Oą:gP1d $lB$s|CD>SEVieO9 Dbm+ЮXYdz[*> >)c<.$3￐r{D#B'0ny_!3N\NZ2Y?ߴ&WC \8H9xzYH, g-=YE Dbzo3??bןVgv[2w XHxA Ӄ}*d? ߊus3QXI]{q@Z 7O:HxA |eOUKQd,{Z|Ⱦ+&ΛOw^-qf^}źF^"ὠ02SS" ᣇEqX:Zdӹi!zkd/>'o p8t#p-"}aO?0xzIHI*#ˑV&K旚3Iaܒv ̯a>ek >xF-}Ě̙۩|K] :rߑV-ឦgVzѣ~="w;+3)fN~pܗVִ{5p/.C2B HF甧-#iuN%p&}Hx}E)V EA !$%:[AZW.j}B$OA|;ޮ 8]7Zc&ly˵G^OƢg{w"rdW]^%"BDz ݽ<ۼ\0MRmD1˫B|͘7 {ut/&ۙ؎Bh|Ӥx ¯1hU䴉^,oJ+q%_M ᣒ1߼T6an$?_-IH O*#Kec[^#|=grӾEV ͈M͙twCW[Zv&jfeĒL zR,jD7ӝ=pRѩ m\QsF'_r|R_vs`l {:F At9c&4B="'bep W_RҮ}ǐR A9<[f.ةmӡoG,t h3X$.>"gMՊX"?u![AܢOS41MڍtF"͗[QCv/Pho8X#R6$ FrsܝannМWiؑcuL],X9R p{j$Pls-֌]Qr/WC\gD9bE$ffTA!Ls;^COQ/&xKhDwȿ&M3\jK؟48Aa,kfɂ[Ü% b|`9W46ۭxqú;Ĝϟa%w O:i7q [bx0uWuAA Tq,fΒ =l,⁇ݺxh-SB埂6MX`DO>ȧfӃ.wE]}28Aa,_ YtlduRCWn]dC) )\;&\K.G*Em6"!gAL^mۚ)Ql LZ N:bK鈐rx!0v KٙJncM}28A,f^dN( YgA<-=]1 gIݺHEEw!9-01↽JauȻ$΂x&> pD#y׌TRfL1sߜ_ fT JlTM~-u.pt": z4T˵9}_JE17O>$! A-Rsj݂)ځ5Zek!RG .:[_R_m907(WkqI<" t6« cp H9i@o%uCգ~̫*Hynf?5w.ZRAuHXѓ-q@٤Ȼ bp HQGA<$G7 _[.wb0G"Bc]1t4ɇ;x0..~ DgzDq+0@[-綌q d )翡J wU 'Z'ݻ ap HUtN/eܠEM{ f- 1/5.q\L;NFAݎZoD/>s=M.~ D)^~L+?${DVd+vC/$НM/ܻxK^y rBE:w71-%ӛz䟊 ՃX1VAA ;|S.l\|GxD6Wuze߉Nj+E;)? $bՌ"dK } V]H znnsTy\CAMfD%W/x%K *j邝4[)狻a-HχqkGiуC3Fj|7AlCAQ8#'\Vvol D7_ _ں`CzvS/QuQ q}9'ltĺ}Zd7MA:7 ɎIE御 !B;sUA5VO3cVTw[$.k$לk> stream x XT?6AЫV+vMuE˭r~ZV?oXJjw}IF`ؑmXa߷a9&dSys2/ml.t "===..N*FGGfggT*4t\.߽{~|QfϞsNFhaN>=qD^yxx\pm{zz˫ T~~SkZjƍ?ɓ'ՕͣGv*\N?~<[t)ХZVX CyW;QV裏z$ cˋCꫯrrryxIIɾ}ƍg'˲hXwrrȑ#.\f͚-[޽ȑ#gϞ=v옟֭[׭[x'|Q#F(,,DUTT4m4^אH=hL00̯։I"ǒЌL3sL'''>Z>|8)CJh4萺pDB%gdd(J4?jԨٳgܹQ4aӧOO8xxx\pm{zz˫ T~~SkZjƍ?ɓ'ՕͣGv*\N?~<[t)ХZVX CyW;QV裏z$ cˋCꫯrrryxIIɾ}ƍg'˲hXwrrȑ#.\f͚-[޽ȑ#gϞ=v옟֭[׭[x'|Q#F(,,DUTT4m4^אH=hL00̯։I"ǒЌL3sL'''>Z>|8)CJh4萺pDB%gdd(|Wzom߾[d/:"H@ʃ/<0}V<8E矑mIsxw_y^ݻzNP(RitttjjjvvJ7Pe/2urz;FH®ԖKE ...`G5{;w4jgꫯDunɒD4ק54]yg1 s'v⪴Dž 7+bb*nj asĈn(h!oPPQ\\{***謑7zzf˖6-JlJ) ,kcy57ywrrj_{UVmܸ99U1 ceeEGϳӰ9ztTZމJ4ݳsbշmG)ݕ7Y!U 'D oE/xfMRp`XAܳ$yxfOquu-.V%iUǏGV(,y${{4J@@i'jMKwY3ፄvC.]=tV+V oYz=+^\$/[[ڵUU SB`yoq!eeț=p=W^y3Okڏ>G" oA$Q&1^=BZ߹jKKw&փSСCꫜv^RRo߾q.ɲ,&@R.7 ͋?q"iRʕb{125 o|'''9r…k֬ٲe 9rٳǎۺuu/^O6;jĈFݐ7Eavp3--s;W]z!BF/8YйJ7{VQQѴix]Cj Y#ot]rr͈A4lm`gDg6olz7{0['&9Kj0SF袀ҁ=jUJCCw>[~ o&6vbC&̜9ɉ緖1Nʐ)&@W<4mʳveѰ>5\ى7{pDB%gdd(J8;MeD֕Kw& -v6M@0 Jn86$$Twoiw&ۉkRjBM@5yVwUT*W_}5l0IWX'}}}7LO@@"6?8anllwb͞u6VB!ț}ٳVVB4* 3n]WyUVV=l~wț}G=!&&eU=S oKrQ}ѩSbbb~9sFNM>rtݓձg 1&eu) oׯꩧryƆ>|xuu5&@Etp:%,,: -} qsʮ5,7{g}F[ʊd 2ի7L6nؐNcIa̪UIo% 8$^Tyxhoذb7oJOOG0az=4ltFqIzs᭳s2fOyh_xbZShțY(M77inn'/>UYYRwa7:!oKKK\dɓ\z*&驫ӿU6L /-p 7nl:10f#>[[}'Shŵ]e?ϴ? `bJ_A /D:txoES3ySóRVy!o.cǎ=pdd$ϧ9 `J6mӰ9wnZoBm X#77UYp^ț=em< 2ițF-+Kկ瞋lhh$lGEC2T^WSC)׿O?=|MM-?uԺ:M0~< |llU;Qebfp4i5Ԑ7{흖!B+MP orz'o'S^ fjCx ^+7ȁod76C 'N<9f̘vƻˣ|WțƨF6GRZe3AhX HdQ#foSLy'fϞCn޼{ 4y}q:yl00n^E)3FtțFڵk.]I\E"e8 ??0zn i"-RRs\ w<5DMNPP\=΍#aL| M&QM8s[^7DMٳgLT]v ?|z2z'{n|v{jZHkL7yeLz5@o׳'ig'.,lʒlB򘄻6~~q= ț&+^ܵ+ۘq:4#Q^a' ț&< C9vliM&97)Py712M@[>^ܼpn<^Q"o&F怼 JKK 3fD-_erW6UTwț9 o#+$l koEWTY*Mc\ig ț&<<,77Iko/.)fk $i&|ț9 oCRQKl/:HŸ'l Vkڧ ț&< cӰRSL@fC@uBɷ& obdț_DyUU yhۋB# o&F怼 H-]*IBŲ? ̛flUi M@7dd(z*M'+dcɂ{aN\]wZy712Mok+asƌb-XxP`q'l*+T o&F怼 ]aC:Mffm2%KD%~;a, & obdțE|s!CKҀR6ɿ%’>,ț9 o@Wk>'l6%BaJX_7[y712M贰~$lۋ]ˮK}q7y#s@Α˕ie% xfEDVL¦RPt/& obdț ƅytceTn4,M ț&tZ_#A;vܼ6c~䣕7y#s@avx6{/n f˝țț9 o@h|:ݝu6˂#h"M@7vESOVWȖB+! C 4& obdțQ/ HttBޛMb&]!o&F怼 Wec#"aN\67I$/4M ț&t͛uCii)HJzFTFæ IMR y712M訲zO?ꔺ/]a3t|ZF!o&F怼 0Q4lnݚ-Ԇ=Ff_#Dț9 o@Gl26,IMW a3~~^G!o&F怼O?ӰQҲ4l^[wճhE ț&:tHA etM78mS+[w9& obdț`@(,oyy9 ;zWqIR?a'| m͂xjXΚ7127_ Ʌ>|8))I&:tՕ5}tRᑑ\GGǡCroSᇤu^^{]Ƃc Q hXl[cɩn/& obdnN8ٳgISWW8sޚ1c]K.ͥ۳͛G5u떕)y^,TYH.i_0adTӣhMNlCBGMM; 2e2vŅfG,;g-]d EjF0.u7sI3Ja>m Q߷os5Dž, țL]/[+gqr9_[@.Z.>Ov}eЫAI.woR QѹWcmwtq )+GP]|?%Eݷ$& obdn||| yHeffrm [lll{Vӳٮ3fG勵Ыa*' o$\\lc#"as:RasdPP+CMM ȑ#.OВ-iyHrr2;|"n?qDmjeoF>l̬WHشjMVk8  ͞DMM-XŅ۸sNqٲe-  L8lp@iIΟ_D.>G/W8==pD"r7n\hhhJH>MIIA%e \Ɣ<&I\xV9z4Mwwiu ժ\j_vM@쑑yyH?g/>_tK#N~69rHۅ:kWT~ }g|||ja roݐ7/LD>7jj>$"_?!OYY*F; 4_r@^j:4 , ,mQ:{)4l.\0Τ@e2+&M tWțS*\[n]ۅW^MKRulr3gG5-%%ʊ[oő'".^^ ]/ a3jz@Ӟg͊aspJߗ۰azFE37..GS'!o&F&`kxK.\$C" ?n>}:ݾ}f߿4iz5@ڕϿwm'lLM;6ͧ+h_D5Ig$.fZ d|Vy712H]rرٳ_?0$3~i1IwغLJJN:sWtk- E<4l.^gl&TWLJlZ儼H6y7y#s_swɖGQQw;_Qp{XXXirWtEl$$9e}}wWl߶-퓏lUUM7uvZdɂț 0v㊥rF3rHrȋ/lWHH?| -p%jNSVh֦+lϏ5_Tۍ$32,iZ $''VW?7 țe]]]p>LL8iRRR]999iӦSRRЫ:'HL@RC@uBҍu[d'Crelڧ¸4,y7127 wrÆ - [+pvV[YY9h rʕ+[͍yܹfӝNNN= 'z5cy4lUqF$*qpa;ZaٽV9y*4Ti"o&F&sa{9.Q._<##Eqf̘'Cw8z(V9booOw>} N,́⪫:s{`/T:6ݷ&& obdg999 ؐhٹIO[+C+ aiijI|MjN(!rHHB/ț9 oܤa38inެ{4mm?CɷɅ"Ew6.ț9 o2OB\B=s!ɓ33LAt,I.f"Yț9 o B84~R-cZѭ\ ~}VkkaOR=M@7z a"w3W5n\ ÆI’ ’4lN Qț9 oRhL(Ȳ{f[Y[[s֬B7eef5-~JJ=cs7y#s@C 6#de|W M n>3J?]P0=*&́b^6NFMЫ$ՈH<.h^;~7y#s@xxZFExCxeZ?-ׯӰ$1o~7y#sӶrJ5=ztaYV"XbvvvR>?ªÇ:gj0 ^>SwyC+W&] HnRiN7& obdnHP$r֬YV]m[Rm۶I&K)S|||T*?;Hfff`ZI5kRl97b\=y7127aG_v#FD ꠠ Z,J$z5޽Onvxdd9WqС-,,[~!)cmm^ FXm[C?)lƽ6})JJgYFFț马H^{'gVՆ{꼼gΜ1[SS3fkҥt{VVּyv77fuRnݲ"6oތ^ (+K~}.q2RHfT[a-6gY M@d|K,P{򦻻;-rn/H7foiwѢE-w|G#Q1wn3ѕŗiؼ>HurP_UN ț#oR>>>\֗cٳA(VKCg]3f̠o ]bbi\Ҵn2]ճBI PЧPN=P o&F&.\μɭ2rȶK>wsrrZLΟ?pH$O8^ _EEڵݳ?N7\ݷT\W6kuJ & obdG#ۓ7h pwI7.[!ܔA?a''Ofd-=tH1dH wMsFye`'$$qfLi#>IfC#y712G4RĚ5kڮsժU':n5j7eP~~>ݮP(^u.* {>z(^ YBB_ 3fDն,e&K~iniҴ|[7y#s ܲeKunܸ+0x:#<<̌5b)aiiiF!_~zӸhr֖h$wM # όasH``Hy9: & o9{|IWLLLr wI$*qƅӔ&tð$Zr7ZZ HT*uO]J/n]) \S3&8ͧrT*M@=#C4_|WHμe#G]Cqqq*/c<󌏏Z6,SQQ@M(` nRq]@;wn\VV[y.N`) CWbB*( AϒD^n țjdK6_`^q;D""$myIT*Ļڰa9Z'KGvU}g#I^<6~A<ղjn%q[f&l"o&F}['o;v:<[ׯ9vƍv$ڵ+77B}ٞQ|a|h8 @RZ ț#ovM??>!RSS;-[F4hPUU0ك۷oj)p_:ݝMh33atunݚqg[EZVM}+>vmjx@`x/SYx`y712Gl_"֭[ۮp~l+{i-öW@7bŋ c17_OJhU i LVEf̘{O =.Ћ7y#shgT*\[n]u^$QmΜ98j(VmLIIu[qqq's||</W@wٱ&Vu2XİA  ,aI9@$[T'g j5:& o"oBG&1|pZrm\p!-IbcL@@=6>}t}ٿ?5i$jT%(Ў\^ޥrCSYF&Z0-ߔ1'rHHѱ, & o"oB&H]rرٳN!O>I SNܽRF!M[[qjjmW)u%$ fup4?磟 o&&to믹dK[nuǎ'ǏGI$aaam?=.^ ]QS?>M>邮F׭r`myyJFDܬC?AMMi8E[+KOOoh4#G$v>7.]BNc;>m[fkjED$E<h7VtKe{kOKkț 'o,J ci'm|iRRR]999iӦ^ iyIR]lc[If[#rlp0 I$XIy77aM_~]nذeuqΟ?PYY9h rʕ+[͍yܹfӝNNN[s ;aMZ]ݥ^ T3`An:=ɘ4l;sl}j(4DnW3 o&&t{l;π [{ɘO?2$rk7D)/3&MssHTҕ*"EҰ>5\[58SX@Siț 2o^^^Vx{{t+QmjoVOgffaF^ I MܳVWReR6cfjtFuznju׮[Aț 0bxٲevvvovpppIJJO_~)/JI@vttz-Z^ vm* +VȺROMJ+4l&6d7O`) iM`.#jzX4-mz, țW@ܾ~6 zUe;#_OXpJY+4ljs@MЫ’hUG_O]J PQa,-P0Mw^+dZUVZ$& obdț`zv۶L33 ￟R_tV*+فFզͺ!Jp4?c^0#]r M@7(ֿU4ħNuRqi{y;?{sDDJу%yț9 o ptBnnҴ\M%+NW8&ةdd >io֔4flm7y#s@c²{f[Z E6:&_~\@V-S߅Sت*`6Hĥ=*g)MIܟ7CJ? MyKMȾ_?! A_[[S`) S[5`Xvov@@KWi=B~/h9k׈iy#s@c#U;;ӑȑA^$x1 wm:#j\(B<#РřO?K.NJCMyy66":ոʆU.iF%ˆ;. g&&ԠW<OLv,7y#s@0V`۶Le=Vf}%Ѥ)yBRpx t?*"#ztMiALpYONy(E!o&F怼 ^ffG& *5)5F7⚴2(NⰊNkp@"Ge޸ fO9Bdt:& obdț]X@/]X؁qj}LFq!e̪=%_M.fӕ+ed`jGc ~d3N|rt}c"o&F怼 FGc7mɿק-?"B*fo3޾6e=Ü-,k4,y HHY H N <(Xֹz7y#s@)/O3mZ$io/pוN lVO9_fxAwovvy}=#SP4 ]_BMyz!Ő!4l>lR Ml'ٟ2FpY0vdP]P]%ԴyЮԆ ț&:{h1,]j;plZ֌UʼnGTTpatGB7-t]y712M ' ulT_8$M&ŢwoDg]m6ijțyߤT*VVV_|Ef~,+HVX1~x;;;{{{ʕ+FQVNߜ9sЫI¸te]$ʥbIַYr ST(z;1NEk~U3& obdnJ:4h ^+Hj-g͚Z dWm۶M4֖)ST;vw^ Ч\R6yr84 t|B;CƑm"S*_{ ;q7֏;t:B'J4;;=VMØ1cxĈmN 0((h-qvv&mrNIwyJ a={nNTkR@bJXp(N_DzSRh|L"@{0iMrK~C.}|>ԨQg޹s'Ițӆ,ڑ#Gbcc333ϟ?ZYYq{'0 ɕ?~Çd2١C\]]]ӧOgZLbinnΕqtt:t(_Mڛ'oC ͛ @OsMN߹r/G`v'llD%"DXωaslp:G4}g]ϛq1SAaR:GFdz*md/?3I_|nnyTBBݻhѢ|>ߣWZʕIt_V_%&5I4lRf({to~ MnrMDH beDuZ'ț03foܸIRsvvj !y#>kʔ)kO]ԩSw mof233b{{xx-666=JPl90zzj_5n\7/P,++LWȓ!j7{i}tnF|H{/4,}xjxBywņ+,tjgFvZ'D܄Iv/R%cbbocǎq۹5PF𜜜$''ӽ7.'NW*mܻ7JHfvqEZ8{:̟m<1cJ>-͆kz{5 0~rcإ?=oAww\;{6T5qSKao4T6`}̛\ƪݭ .8f;{]yg,]{XUXyXFbw_gzs%N=zoYD%ݠ O)zꪪ7|~ϯʹOԎe˖ ߿޾}{Wѫ]eeó si  ҅V'ͨJ%FZAJ(gL&S6Mx*G5xB6ك ֚_p!*oٲ|Q9Bǎ#c[[nO>dF۲&HD~̟?>dddp7ZOݡF-M{i-öWat曉 ·VnzJ:ݛ {; ^yO) oiӦ@1Fބau~w<111ީ.333111<<\"Jy]VV%M>)_5wliiXqvǎG:,,4EЫzBvXއKT@Q 1)1jb/ɍDoL/Ib7knZ]eEP:,Ho..[o8`gSf9&Gi.ZOx42wd*nwIuJK7 V%'W46"0#9Vy`ڵڙ?B )j;V6ggg&9HÇEf̘,)44Զe˖VٳdET?OVVD6?<])K.YiR>HI_g4I^5ٹA|l)('M̻;rhPeggG*=z4{>6ؐ<Ǐ׼'͒D"3Kjj*Io^#ݒ/g^Ռ[ZNF.ߔ4vPRP0ɼ{\~fM랼G,.g(k׮ŅĤw2L&zz1-Z_c L=7on#^uu9]dժUf` ;|vգ‰Gҥߎ"sr_vҨ$uе0p@ 1M-99s\1ix]ښJ(¼n.jq E :dddWa޼yGmu imm=k֬}i>yfףR^y&uŊw=LIIMI:uuVA[}Ϟ=KӧѣGɣU\~̙~$OOOD5Xf[qn0VE7WWw8/_qqf3t|Ĥ߾+O.\6cƃ!_Ͽ*ݓ?~#|||^Ç;7ܛʊȈVEJ vLRoYcFOOΎŋ#1(?I"޿Uׯk4%rI *!/JH1MHTRFIHcspL.Oy'Kii#cL6 |駝4EEEw"+++V\I233VL&[zuikko޼Y*"1Q]-?z4ooۖqLjk#dJ]gW*ݸ1f ^|A򆀨?tmp9Z 4][I ovm۶߿_~qwwwqqٷoeݺu ,9rdRGo7AR|LLLLMM׬YҮzۗ$XXҥK雀!C-Zs˗.M44gL`}7jk5ETUgQX1E8D\s6(rs ".KJ:UPpQqJ˯9ԯ̧|9 W | vhNcwؑaqԜ2ihogԓ'ٹ3Y|lmC9_*UiRCM| WfѠ=7(yםHR2M %%m-73ÿkֽGYө-|R|FOޮz RO>a ogZ5nM˞*41H^C{j%9]w9E a>,ޢ&쀍vC>,m/yz);7M|RX1c;6aM@TO>I׏~KQ'Ok2tRQee &3]w[FU=qb6,Ӥӥq|fMK=ͬgљeZ4|ìwVD7n|=s!5\@O=%ܲZz |d3.hF_$z\x8sBB*`&8nL>nG{ŷ>ͮ)iVRDD5*D f̸S"o+Jx7[q@)UUwV(s6GLsxp9Lä]8Ä@Әy͌삘toReddDWE;,|=s@st--S# WlƼŗ8a+-LL*J^񧅾߃YKo7zLigv Rرcrh=B%Ye &\^-g]*JNfоzuA?wg27=B7>˖-c^lآLU+WogлA;D zJ Nm p2uka@bf<v' .C3gNee#T">sPDD5rlҤHƅDLI_)OG:_s%鱱cͷ RDB>[1MZY J5m4F w߉D" =z֖'M~ȂoN'5n`fv M:iIuluQ cJ}iZ" :_= 4FLovK8g .㏿k9s.;woٸq%K~f  1}ﯰn]j}1N-0]^SWPeOVR"6^ZP :B~nt^4rָYWfeݚɓ's:]]O7:k&j82*6ѼKutNEKyH#J\4xx]<{krJHd uT]`ܞ6fM 4ۣoF6-T?s̘1`t)Ms Q Eݹ~]Zq^"˝0>J+È]NQ6!!i q)(Pb^E¼&z/=A^ |Gk׮7|JKK-Ǵ9L @sΜyLL3xpۏVAyrwKEyݺ5:41LS >fhL Egee%&&FFF BO|D5hZ*ܹB+fid0eʥ-[yzwhEDV&JGEEOL:8tA1\^T? |S|>1͡BѼ<)LcFlw4j2M.mwy!h&)//9qw}￧?h0x Z4nڔ{" c/̸}M::PbFyG0btΕ+4i8-MN:"׀uѳr'"'4|g#kBT[>hȐ!;v쨬v7@T@3瘚_CVSKJdTeOGd3zrt}v}i["rKKBߒY3r93r9bIM&|A&9::j"c虃 ?P_ ӧOo:I}܊b'' &Т:q]vi{NKKCTzJ%}{Vku&Ew-JAvOt.(.4YEP1ͧB#s% q>rUo7lڴ?~Ӛ>֠aÆ/Ng(++kxpp#Z Ss𕕕9?D5PZ*6-)յq"K|>cM}ٔ<֬W''35%$76"0[cZ_zL-F7͒D"I544<}t[>*WAlykշo?;;;>>~{饗ڲJW0vXۗt);;;&iʔ)FGG0y,,, SWW>>#NQ DFVYX_Xs̘۝ e][3!vϮÉi !*:LV_zD6 mlMV}'3^^^ bf./r7A|k&L(oc 1/uѢE-OrrMÃ\| ,+ bּ; kٜ59?>^0g׹'8 ddSM{!*yqrݺujr)￳v$ꌄ,&ۡC##VKd2"-N:>bĈ3Aupu-42 UWwz[E ܦw.Ͼ,IZ#(jib"97cc*D'l|O6>vB7C}233Sl$1|=^HEEڿLN>Nb@>|1#͛ײH$jY$%%;dЃ3 1M]]9LSR')0@T"/GG F)(7!4|h3g$ITO7y/&?%$k\rssIVVVd 4 ѣG3G6._efʠǏ3U*?<S!O|-utĬhaYչ{ dxg 0rRJBE""VAA"qq>qMBlN}}9 M{Р@48SWיo)R?yUK^,եjx }h݋\Q j-gggرܜ6wrMʦ?==u[~ƍܳL3gΨԩSj~;wtpp066611yv.Yyغf͚Lqt`!c..2YgNJ[^BF0NK-s-{i.!T:DR{@3_96oVY`㍌lV07cmmБ.3/zl'xo7K֭k6P(d2afwww&sXX#͛鲆M@f޼>|gsE8D0D<QTۤZ.x*M>?k@s>t66 o r(./m۶ Жh~~~7:k&'b.\Ohd53gΔo;wN}...L昘H$200_fI%%%xy&9s&qU;fm(lLc R*+7~)(HO@@pE b.y~1󞆖oHhxxӧ>-;vɓ'Je:A&x"dff3x &zOh{˗/ ԰;vظXCCݻwwdD5qST$57N;mqW4{n(z'Ũ(fXhח;_7e>;^-F7㣼to'Err>ʣFb(x|JӶ6h% :t-mɆ  Eݙ3HZNPEUUĽw f9򪮾`e\)= ?AAG F*7~~4S˙apB7ô kA,37nܨu֑9J9oI^V^KMMe,xqqq9>>ͅ .K?lۊ:EKA}{F鱷nQJh4VǣBi/kܬ X4rֻ$MIQXXyHNNN$,Y 2t8)￳O2l߽{w"ǎ#I&L@T }i%|đEoJ~%~n@fllжFyN2c=|>seZ4|&x,[\A=4ѣGLHH`'4vvvk5j9k,RRr}Yo.6sҤI6vQ xwY.V5u2,+sl9y}'B (ʷtzl,3wTHE-4u ނfo]۷3 Y?#&3{%[^fǩ)w^Օ _d^j@᧟D >H N؄+韥WWܡWsrF0'' ۬,^ ;‹.c|9ϿAQJ |&"0>ĉIXǎx3ڵkT*>|8]dƌ͒BCCIm[C={H___D5 ILM}"vf K^,IT_Cɩr)uukSS1\Ѐh/Wfd&~vbq Z |t3Θ1c6![\r%;(;;;4zh|>lm!yƏ#ׯouXP8`G[[BS͛[ְqF2TWWEVZjڑIϟoBzU8N< 7>B)= \UNVAQD" F3ux񡕕ͩ-v]kY-.gQU4|&暘028bĈÇ̘3g,Z޲J+0yVXAs'-Nmݺ.b``jgϒjsQhU.Ӈݯ_?鉨t$&&wGҎ~$QnYƄ5~#N++LJ3900 0tV3=7}f_z,$:?  |t .^рKژҡʊȈVEJ֦VZ]5Vh;]x1P^Dۂ6/<\ݝPY<2#יK˓ѳCCܼ4ڊ?- ;c룽m oyye6 +#Mf/'22"18qB}%EEEӦMky敕i~H+WKUWW&V^rwڛ7oJj@WС\b}&F=9ڥW/u5u$//OL( jLV} <oh7$|  ך5kƌӿ]]]Flٲ_:[R|LLLLMM:CBBu0˃j?,,lҥC YhQTTE('V[PIrd D6̹ttB++DZо'?@swk q:n^B7OիW_7o7@T&u3g^&͋j+gC~CPbkīd`T*9=,^CN` M:iđH$gΜ۷/.\QogЙV$1H?} qUu{)Svgg3Kj?) W_Ү_a¬izo z:ov!233fmmm?e&j@^)oRYEk[MD63ȸMtͿ64")"n%,v{J48+(-.tT*յp!3Wn58Sa?i(=7iJ$o1h"""p5<33khfWJOO9j%(bp4_x!uOjj%yiƼSRϱAt2'n&S`f\p4d^մ ]q73Q x"Tԅ %/͘ȑ!ŭJXUTU[qfI:[_iȐfR  ry̪澜}Y|xb&z 0goۇ1in.\Y˩e;nE>ɘ)nq7^ }.22h5&􊳝3vI~e4 ov#<8uuuM@T7baÂ٦cGfU--o2 c|-פcjF_7h@_ 9?_Iɇn̼@C.j ֢Y|73Q hF'.1hkj"վn,iY=7.^xFDD5c\z{ժd==c=ZT9T"D})۝uluaÂѥRnL"Ő1^.o@nE%%%~~~-O?f֣433od: 9j@IHMS[i::^+U_еo'9)>۝xLfDc o4^9~xR&OiiӦIR\/&z @Qw)S.1[811!3+I+MKoJW1ڶ+cbI 4?cHX\EA@M>Xd3ߤ6[log+811M}}U33pIM\Mm(MS²n\М3;8x o=SldR' 04dx/vh}sҥd_'NTGTCCC|$idM@TR1xMKL.c߉g;?oNݍ{ }XYj3 !q)f~wG9; od_-SmmmIy%{L< 9jE9r$OWV%K$AZUVr{7ŝ;9q!7 -.g+h}}sd_iii͒ZLK!IdM@T iC&bTT_i Qi'Jg{@k&8 eGhQFA@;}}6K?LIIiZPP %og_\܏?) +W;vi~迬ZH'=#lhhpܹj&$&֎Bds:5UB004&M\pEG Is| o>sd_aaa͒/^L Բ;ORmmmqM^2224M:,OLtNNN&L011Euĉvh0a޽{[ATZZاOkj4,mEޑ 4f9eɫz44 O8 MP(_Cds\ހ67}]/>eCiӦ7ᛠ]444<30aÆqBg(kc#F,bccw669?D5@=bbٲ$bsy!+^)002"vOG-BhrnEE YfEdn}}9ܵkٗ)駟22֬TEEȑ#[ M ׯgTTLαcǞ>}:999))ԩSvvvLҔ)SZN䱰4hO]]vgW 5ddÈl ?\I>i/t-=s,?ōNc{ukh3|qw֭...K,awϔ5y<<< pM95Md5kVCFO6Nc~[l͛7cƌiV'!77W__W_!j27ٜ9rEEc< %8ڥ;=t P>Qˠ B фF9h zoa*ϟgrjkkSiJdM& U--=3pJKKO8888fRE͝;Ƿog#'~ghhHC}Ye+:t(9o޼{W")))$waox/#v@]JdsaBGSw \ |b§q.ހ|>]6zo&|<H.?L6>7H hGf6۷l\|y"̔AǏg6TK}rΜ+D6mlBօz;hf{ qd*P MHaxO6-.jA|7ᛠ믓pBfzߔH$L(DXv-ĉi.Zkkkfʠi+ i?L=gϞmk(D5T6qb$^*/TٟoIQ!^DhR>PZ\g&4o&|<NNN"WSSob۶mLfZ'푑Y <3c)J ٳg#͕ʬ{re>** ؖlP)J6x&<\4cd$h }!66~|Oˌ.y"W0<<KI}311Ç ڵ- llmmckY }M|OݾzʜENMMikJ&d4'|9hг}s߾}FFFl =Jҗ--nQ?ZnEE{i7###[͙3gԩSLSg;w:88sqqq9>>ͅ `~1Ls G%S$xt̼| ?-1'~\QӧѣGM&:IciiI6.YD.\,ٮ>e}͊;v$M0Q @O%3SܧO3l6@8- U^F? P>wFl6ߴ%M&RI<٩ݨQHYfi~*}gc2^lh;sҤI6vQ @@L*46}S:J$GF2# a2֐= =`;wMYdff? SSSrq/^le*Qmս{j~P(doP&@ @Tؿ/g9wϦ ] &l|KK"S.]])~Kf?N@hЫ|}= ߄o ǎkggg&۵k4ܻT*>|8]dƌ͒BCCOvgQ @##n[Z2 >@IQNYY٤?SS1'p&9h|SR}-;'''4>| oReggG==[mllHk'͒D"p/jzO|"VAL1ڄL&KLӔb.ov3?|+Ӱ&Bߤgz} ]7i͛[fظq#[9]dժUf3f ͒BBB۝VVV '.K4U0fbQU5T($lD L0_>l.rP @MǥKgϞ/z^M&x|R^y(WXyޣϔE1ISNnJ100rf>}=zgh($$t \/&|D5y<}S:@{qZ\-WOX۫"ryRmhh3$~ϧ4$r 'KxpLz3u?tvnKV |D5Nkh:탄Fo_W/ZJ. %EI.,lUrqJM dJ7~sL.g*7sb LmRmhF|Ƅsxᅨ7zŃ71+;;F.GWy5Ӑ˙oEye67o#-~Ӿ?VhՔKD676yR邦fϜ+W!- -7>4k룽%h&ov "(44… Ν ~l+vf_X?dM ^tΥ'PZXi0Ɵfkf_"W>AJ;3`Vׯܹs}|| 9j^)fv3x"Ϗl%q헣ǚ%$T46"Hox~{ ).r9f'igg(Gƕog.HEPECcaE~ych 'Q/i 9E'1*$DX^aS|+#73\@?q-y  YNsW\,&z BW^aL˘fpփ<~^:ed4(QnƬ}z8q|>}򊉉D K,S::: 9j8EIގ\s 8\=kxڼjCC.Džhbddr]rs, NG*Z[[3 WTT_YY~z&m#73Q B%S{ 'G6w-kz" 7weUUbJ]VVyyJLD~EnuX9[g%'XpuueYy8?q/]eF@f,N͛Jz[UT #uo^BBΨ=M-.%/ a_e|{}M>]MF .] 9jrqQltps?oP(z郼䭸8I&DDDUU!Z Ew:3r-oڒ}v"pqST4ПL6ò>ɫ+C+od[Zسwfv}gY}!*JM Ft&}LzX'Ç'*( I#G73Q @ގ~94M)w4B\{IkI$srdk&1_oTK.}autImI̙3ɾ/oPիWs%ogNS9s 22<$ݼ0r}ܹ37-PnKQQZ {oȑHzmH$U^9Ἦ>1Gq4 M%%oxl]Vu׆GuL% S壽_W dw'NPTjөN200 EUm9j:EK6UĄ$ÈZ|yzOm%,5sDHȦ޼Imm oǠcZ_Z68|jIO?qX3f޽aaa8 ?pqؙp9Pς 8#ڪ(Prʱcǚ׏˪Uc{kҒ>s"xܔ ʅC2 1jZLS"QzxݗMzl*'_bk@qZZog%ofqgN(ol޼վ3t}.| 3~&ӧOo>nbӄ LLLhQ8q]$w^~mm4D5qOc3/Kr~CROɒ%i|IZ'zeRRF3yi5(6$܅kw40q-H04'Od|(t~0| B%:蛥Æ S_PVV11e05_YYI)>@ToJW?4(&3СCIy,.ZIII!{{@@憨sII=dByq/pz߿ϑ("0b<^ \"ݺ@ML-7>^M&hb(\.i#G400|vݪ H hGf6۷l\|y"̔AǏg6T*?[ Q z!r9=M+pLtrRH4*$@|ddcx%{xm`SC{_9M&| {1כz[\H$d+?dڵk%N/Z[[3S11 }]Ob1Sٳg`D5EZgX]FVܸuB;*zZ'<^ZU5rsBXo7Mn58::ҷ>vq[_}1ѰWnf <3c)J ٳg#T*ȑ<= zdNYYfc#BB;^Z3[¼F1#0\ˢlL^͞32G~JKkwiQ%433311ٳo&;{.Naz3ܿ?ڵk$Piw-,4eڿBmk!3߭DOvS}*C+LG}"?yKF^|V044dx<&)22~:u9..YX,޹ss=k׮^UUEFYGv,c18POI;b99hxg@YY/L1 YO3ܳ[<Ɨ_÷&oZߔzlƼjGǰ}1iҤ6g_أjBN}3h7oL=ibfhiqO4W3elT+*>OO ehiS]ۮxU^/ч= s9_G(Z̼͛7UJR=ZAD4g!WYKKld?Ozxnv_Bوn^u>>d#Mggg50KФ/_N477ao?v옱q? wݑRՠب:}.yGium4w[7cc#fJo)Eo9ȗ3t7^7f}diiK߄o܉'Lf7|yyy;-dC-ٰa{ŏ?ZZ11lX0_lPFLŌ+wSSR{ql/HJW⭘֟6fiysrU7|ovoD"C300%o7AGHNNf<#b1qƍkXn3"W"id\kkkLlLMM'u^:..33;pfw47MkB -kgV;5Js~MH|UU4߬ zAGViW |%[@5`ۗ;idM&6Cg---%Ka…vG>e}͊;v$M0Q z' 60bkzHia͂bP$h#yyAAi tʪ5O3 Ef93//C%K l[KJJ{ ]]]I)P%MuQ@2ُ?hwmEsw"[m;23 tHA%4{ug r |]mٗ~z7ᛠ%)))رC}SfogOQ{1MV_R"3fhJj۲eKeC2"AFJy'^OM]]޲eI))uI\HKJ|%2][ 2hrv_#O Mcǒkgnnf)clqgN*  .JyL-5.L-,׵˵ WxcqVUmYaef3u_]f;39ymxAM'N40ݩ̘1盷~iVVVJKK'7oޝ}tbwرQxxĒ,+1-T,O!m[Z=.qq odZ8 g7ћ#믿!裏VUUzhje%ҠAgرgضm}n[CCYC6o|;LX_OބH Hts>|xTQ}}sٸq#ߊk7==>Z˷É'=tuhU?~ɉ)00IVVӓO&^`Aɓrj}? ԫ~呮Ti-y4 F=+zl ,>sVVZ=vH0`ّa_/~;M&\ii)u䝱XٓTUUΎLE߸pƤhX!YZZzxxK/Q fAm[EE#F?ٹ_:^};1 U__b=,-۷Kw~V TGˎ2٢$6O\>N,?s2sTs7ܫ"7{-nnnMï[^^PYM&Drr￿|)S999Iu=[N׋DW^y|#TZtt]mIVVu{rؗ_~jȑk׮Ǩ󐑡;ƥ%5U^#ĝ'вR2?M5i ŞKVFFG329ߗJZy٘w9XnnLNf?%!f&rO=eoR{1_M&F5zRѣ#}}z3E"nvoI sTHS%VAns57>U[>v\Ƃ]AsJ%qFÊ9rmnN#gka7LEkK RZw~Y_a oGOše))fC32~(.oyJק9iw#Øk9|ý::_IǣKOVϧd27sj0~ [ $dٲHHHW\¯ ->R=PR21&L&()鋋y5[לHR~1-Ăy/ɛp,IoKQ*j?C2&`TqS%Yaa1iCbCd4E"N:)Pvdti:D[sr{lgb++|ýr ;P3f><Uo>#ky{{zYЛfQ FE#"#/niɧ‚tirPPFsY7LKSh/nvCnudI?6?dB~8 ++^| U?ϴZ5<go:;;S{WLII8l02&`T1P*df~lHaLQU_4^6Fi eԵ2:x+7L2554JphA'Ya`iiiIVii]=P.ˠc7FC5s髯fM˼r>GGWNbbCO11h6Ҏ* M{!-*M.\(+}8ݵ3p+b =Po5zԻz`'u3`7L}ϯs&dչ`AɓxVzT`-b3}mz{y:z^B3*}" Jm];j#S>eM|30lXĭ9thIJe)ABqgj[2E{Ycc\44i GƝ\CsYFh'`o>굜._G~޽ oj;;!66s_W~ޞbd^U>xl^s[d$,ZIR =tohooO!ś.].Co9F5~+cM6Kﯿ^=W.rQt\IV(D"*6KzgRծ JclsŬ`y'eAAAJڒmfeeE?Bo9F5{^B>MߡnvNvJxqpbA .uy0$7`cѢE3g6lحwxjz0t[oR9dHx'+m O$P1,VTkT`I 'Z dz/8tC;-"PaԛTr~7֌jkkBo9F5VʕT}b<^S 9̈́ d{ϛ%^T&=ՙ;&x3CaכzbV\݄7sjU]FfVCq1 3$<w̮͘Ҵ1Vr/DczЛfQ }@%,qtQM_]B\&-L3⧯KoLk4P ȺKsXLFi)IѰ4K xIn@ll,9r Nz0DR7cjOwp}^+̐Х)dmj<;.ɱǯ\QOe|2-Ytir&KvI3X,AK.RF%JЛfQ JEE+d2MUTv\'%D"Dzv#y NZU+ﱫk/ls(N9vyرÇvNZޤ~d2?F7sj͵h 70{Sь3z96~ZMڭ7)Տ<um]]vz04v]RY(xB\GҌSrDd\ӺT/3JshDޢ"30Ў~v#Jv@oXyn޶7I...XosMMݻ é,a2y7fVlJe2a^Sg$ֆ^5vT:{yy|>vBM )Sɢ4W8*r1IYz5Z+W?Mݻ[-[]7sj= O;7ܹ-xmK3-E `zV?w՛eeeԭ666eM|3nkIg钞ի e'&=,m6wz>vkN|Լ,?Oͥɏۍ?LV~~]fJJ uvz0(i$=*MM**ksfԸ*|z?ҴNC䩛869+czΦLB]ѣG['M]7sj0OdkRX?rNmjdfi?]uFFE{xjc"#SwaM3+ ? ///<==oj* 6`7(|2K ?yRݾ4ɊTD*?OghҴIk-j5ڷ0J,ܛپf fEDDlٲF?`7o,_4?bq,{{abbmi佗'tkL:$ P=IJ /4˵5w9Ie|v F87 x\|yAAz cǎR7j2f a .sB&d ccn'~oZcZf>j&N vdy,wedމ!,zE>F87M~~?k֬ٷo_LL 2H$ɞ={NJߓb B/f20L&s…:s|myMKK>W}9ti&/N 4hL=^hnGbqbCF啍~ÚaL\ >tлoag7Ŗïb9nQ).'tʯԚ!EOB*6gŕ~]ꈳ2Tj1@TUUY9vؘ)&Rl2_|S 2-#\":Ϟi*nm}*1*M >S.L8$p^_0{L :uLCo7JEETWdxScZch/4ֻk:Dԛ}ޜvV~Ve5 {.1٫$Ihh}}}\nZZ.5BoMPO*Be׮'jŵ/󘝥Ptՙ*{wU+SSd^E5}WY~ԑaL& m 117ЛI;{v*۶][ڦ jlԍe4motm:{wACé16**J0qt-g A RcTz Z|2ʕ-2+O^g ^j-n5&oo_F %;,kT?}`60g@oL|2W2xLAg&7+`d@DRydsVT,`8ʤwF&r[ǜ k;Lcf/Ð?8}MXd<eo'wĠ1ɟ ;.4@z67rܙqql>rg}FFiN@6&'18I8r824lV*7dȐ7MW](阽(*cԕU!Uz/Bɐt0ۏkd䪴=.%KoD={c?c0_ 9{2qDLf0Q:.sS&Uv}df/jh7"mn[Tdb-1DEIId!UUvAM[t i&w$oLaq$4&رcؕM"k 80N0xZ ~{"FmϟӡG־7>:[c:q,YG&_TڟϮ?rz0v1ɟg;~uzan~F2@SJ'NxxxPsaW7LLrhmZH4_1xSbӘݼ|m{ʰ7O4^H=,0? .ҴJfҧ!T<*0#r{*MM"MZQ'ɐgǠ0P&eݺu:R]]=\~tMzᇣtt}L臣B_ֵrs,,T&"s2yg0? Ci„ >>>QQQdwtM.waooOy޽fᗗuGWWO?%ѣG9ߒy7W^=~n8qB@o=n ]Ç&~N<]cy&vS>,""֤NF?WV aLx-YF3f rl6{j&Gn3O^?t02d׮]=|8Yjd@Fz/UTJ&3G>\Z۔b:kɐE{&&zpx8O&&V:vTcʳğ}a=/#ݛW^kʕgIڽ{7ue߸q#&OYv˖-MS7mڍhWL-)R-9naA"Q)ᜑyߑ>֞<1,t0zUo&$$P=l>y237uر|LꩦM=7gѥ9iRHTל<}&MMuu#bjgB9Nh<"0nHoғUoQؘ'H|*^oeeE>z7ttNHO?wE ќ9dVdJ淴ACKx䴛<ť\ JsNud^[՛kUoPJOÃM ȧ" ΞG ۸1ڹռjѠsh3^ЩL͢W,JN(<)䮹x4y1g`KQ77LB]ѣG['Md6N8qO%ɨ:u*zbܹs;&-vʮ:o䰻Jo4sh #sFXAV/1blozyyQ~wUVQnذl>y]=ڴizAoO֭9˚hiӨÚ"GQUXIy{vF JLMjj2ub%Ҡ4v2,3XޛΤgF?'oʲemiю>~Xx jk8j)F 抔t,YӥI *zP~~D\f;}bbbߐAZTT$H3uT,K(ه_^^Ƹرcɝr'O|۶m[~I=j̘1&nM0ZqKsh7oRQQlZܸ`_LUՒd&^ ;Z/C,l.IʏJOO:t(n0~,?y1 лFoqjjҮ]N iҦM`ATyxS=Mg&Gjj\}Ccҥiea72֬YØ;vlLL^7y{(MQc\zPFᇣqwH))fb o͹ƹ--ۥRSgD[srߛܾ8zl478͞{o[R666 .bzz^{RY3̢4e|}zA0DЛw>/Bl3ٿ/Bڲ .&%%斔7O$P(:uJNnd2VX1qD6gKÌ7oEo-__ٳ.]RQo'>H2 w 3P*Gr5'Y5O t? |t~cWfR?fK= ޼vvv})z>00pƌghh(z'7fRdo֓R+_،[\kqLҪ,|zS3;Ev77&>t9'z8tr...u&;T]]=|YxqI->ܹSFO DCTy ?r77n{yy}{=z#G[7oիǏQ'NT(MCRi_\4)ưv --әɷgѐh, t?''i? U*#W>hi6t2}8;!F&zWEEEQ@#""R)wdN^`2dȮ] {p|||g # @*(P}eia2y'.ٚC:Ke;eme2]jc;B'r#?y&w٩-> M9)gЛ}rӻ;N5O^$kҥ555$ejjHUZ7\_ۯsL 0L61/x/-GdfRoرcTSM6 GGIٝ4Y t}(1]'^" AeewKU;{Qd%S%9[s**5S^!3sf?㢢L~3iV-2y 3a1aL1&ToA-lJ6,z[zr,KK><6 +>0ޘsKª4 ciilff%$t)8?EKlnw3짳+1 i<<tΘIذa}e[[yM67՟~*:2xk_7exX%߸&i.,t裙ΎV(4jr52i 4 i1\eٲeuuu$|=;Eot:FS RJjx;:opƱiN 8;FSoĄxn.11d2VX1qD6}L&sܸq=ܷ~K֨S0`i?tud֭KtIuloɿFCZ`UM⿿)>g:瞵2xh4mx`f9f9zKⓧ3fM0 s&@TPIEZP}6XPSIp8ԸW:V[ȺdwFeoZ[[iaahЛwP]]= rM0fNN"ݣ*YvIO' &MhjUj[srÚ+RR*{Ǘ_%5-x~u`9aiۇ3nnnO{Q#G|o|իW?ۣ&NP(Л`ZZM@ҎkT!%K}*EHt̘?E[w+4E `y5k5j.oszO?MJC ٵkWaaaN; dġ7ؤ+'MZ%9K]3t;e2zgϟg{$zվ4Y<+Q*U-F}oXXX04sE".]ZSSsO;#AW,P9dIrEŵvknJ|2>6Ħ&csv9^?IgcgX1`MR@@СCћfƍԛmj§xHDPxDOY3 Jsfepo0`{V/H}Tzʊ|*'''&evEg+O`9)K["k1͐HIhWa͋"> 5,2 pM9MqppxPITdâ7_ҠA+89\ mKJcڊvh'"S\3``Mkc-gX, Л~]ZZ>y?q}>L&jԩMcz=q|̘(V-IJy_*$2,ƔFcZ A,)q:N(.(,LOܙ,$F1Lj:Ilm\}$zI$1uƲmF1 3sy1`Y@oNrWZgk899-_<44T՚'/^L_ݻwÇ:th„ xJ7LB޾]fFd>evMV`z>9rd2󯪪7o@> k&)m3'~2q 2S`#XQQK ist [ [sr*RMRaqSٳ)Y'0y\.t(ڮ[~ JJJ*--MOO Y~=y+}O pzoPffE&Yjo'͸q?j5ƳYY|>|>YFS4ǮkR .HЛKqVz _WWuV&LP̯jɒ%nnnw8=;Eowkj2U|yQRˠ4rr.VJ։GaW1G۷~/* ###..N,Kŋ[Z&IP*mɿq,5]n, 5ceeϞ?Lǂ-+(.#hڢOܿ bw戳bzzT,Z]=W_l22&KJJ$ɾ}MfxgDo+9j#b|/ưU*BzUM:4 +,9lݬ`KjP, `lIڱcvL3}l7}&//fv^yxhDe~PSP04"*M6O_Mlh, ھʂ@a7/rq*|+q&_K&d Лp[  ?_ƍ5,Li$ڲRPH/ȹsi}%]4 ubKE>F1& ݻw?Cwq0%^}U2ћw(S/$b1x/0x]QԿwI"KӺYs|Z8r gsYSO/Ơ0ޤ]r%$$}>>>O.++3 2l5kּ|ЛpڅKOSuL4u0Cܜe5,3?1[][rY~~A`B,r}}zQF^I&\xqԨQto*JMޓ0m'+o,jhhE]x*1L29_?dipo ИOZ5FzӜݻ _c:iG!S06J;>/.թtmJ򆄇ӥi-lɹRn 7(i!~w1Лf L ;6';e9]5f)ϖ:PIɣљI )Uut(t0(ͩ-0,zы7TWwlޜESO%f+Su'r(!t}: "YYvβɾry~lAiN8)|9KM+qW>thUP~(~xle)mt^-2{tׅ./ KsB(a5557/.]L[2\}ܬÚ"7QYFgPjVO~ɉ>tA0~Л RVu)ru^9;NUd*Ti>[YYVۿR"%Ǚ>xK<M@o!$,۶̍ښRZǛ+ӗj#5AO7˥밦=+hFzЛp11u662lmƔhh*6#ĵ>ޞv+'*M6]P'٫JeF?WfaͿ?&AJJ(KK>W]roٹgwT #*gZ'(?F1Ҵ1> ՚M@o5SSڰ;$R)Tz*UU9S0)?4) ^:9=@ozu3x<^kD2MҜ%2QvTӯ sJӊVưPO?Mn֬YћMF\mLmLq\%-< _y>Y4]OmŐp~MM?~<ők8,Jc9;>ѥ >z g7漑#)ݜ-U!Uږ^mr[Lf׶<$,?՚G/@ʘlɏۍ0`{{3==>z p+m6o[ŧb>טHFSF J )uWgǽQB,c ,//^/ćDotSͭt':85W_GijHYp>ĺ25_>MW|$! zr!\\\7iP:;6g4L|eA"UVi11tiΉO6,M4_b7ٷo$_qΜ9r 0WT׉7d>6UVy\Mml\H&YA}_ ||&à4OQ3QQQnnn:88xyy?~<""B*Y~G_M3ZԚ4>ytLX{WO>ڧ345FO 4,"Ҿ_$#YK0fЛfzc2zlZ`^H?0kg77$_LOK@Jm΂K fqJ2 0zٷ*MK>+'o:Q8-ƩKNYM&7znnO=MWӧK||kk}1ڶ䰻JL U܆lߍ~+91)>-ͻ~Л=EšA ދ P'o禤4\ik.Zw-IŖ>V+AVκ1? 𬮽@oN+[$rQmcF .mk\RXu&#KSgP4g̙YSgЛM"W.%O{ T}1JK]gϒBZZvSS}.(j:ke㸤dP@o7z_#*KӇ1ۥ}fBzdi#55]W/Ùv2c0wRc7{ubcc9Α#Gm8u}AAMSogM)K4AMmApHHKNoΞmm?xǃX1{{=c e8ҥK;T#GzyyIR&& i/o< vu|뭵tireeGlZ˧ҥi-lʺ's&Ygls[GqiD`g7_CbCΫ5uwZ>eVUWKshDKVZQy~jAVޔ\*!/16Л}~ &eݺu:NBo6]F)Ν evf6}<W k]w{zt z+WzW&}<>5Ӭϟ*GyZg%h<ĺ]`?<á%L͑`@_F3f rl6{j&Gn.Coƍth b`k-!!U*A'n.MUii{.]V(LZ^l.-xa9A\>HJU՛'OV8pۭMR}} mAo B䓉TtGfץ͸qmemj5PLRU%oow} ]; CӛW^kʕgIڽ{7ue˰Л%G,]%,RJ/3Okl|"M>YӄTV k>Ш֛3f̠^Uo&$$P= _SݵqmZTi%Gʬ*6W){n$)?>ʤJӞ>Fڛ?w՛eeeԭ666eM~W,-M d|6fFb3bh"JыJk32d{nWÚٲB>mo:;;SWB]cqۻ.+~zħ[K[{e--S%zq䆆y˥WYѴa$1)S0M///<==oPj* 6`7Leecœ5qч5SW]}dZEua!'ﷶp3Łյ0 $z3""^e˖-=Ͱ0Q 7ѣ#-P >Uʠ#b*6V(rFtִ2:cL7I ,qwM ;fkkKVЛMҽnsgu1yoj81lY[ۊRϕ>9-"= 0bzOPuٻ*DsC@QA<ŵP,.*m˲ܹ@ !!-!'A $|>e&3ߜR7eGЩ{S?gΜVСCÙ)zﯸmJw UWk +/p;m4VҼ*,,}#bm!JSINxLo /҈#43nM6_˗@oj W)5M-c3vflc|IdqpQVɵ:݅\XTSiOzӤ822_~ٸqZ޽{77 )r(l$%%KM lͲWNJpǜ}gqUe)c)K \9 @MЛ_3mmO$? Tro 䙗wq'=rDg0xe-Sdr z&`^UU'#Kۢr.N7;S;-{OoLkY9aԔp ݛz>$$>Po5jԐ!C&Nxm-^xÆ q7ѭ$%U!Nk+@V5?^3dU61;)0PfYYbO_br/.7P^Л WVwo4ћySF3~KD$ <>~vzΝ;[>\^]]t}Tk>XTrIݪ7SSS'LЦo>ܥ3(9Ȟ'[4gk2j.Nl;xawP#.)M {ȑ# :(9ss=7cƌcٝ7֫ͪ!TKfhho3˕&5=:."BRy 4hV:=t޼[Vwp 7ï:EoTY4 ԘY%1gLDFbiicǎcјmv]ݭ\637ݶ7L~ޯ;::XZZ&''3e&p^fj55J%A#PV);{V\qYz܏;IIwTw;}?;soΟ?_*&&ھ}R׿2z8}~|-5 Io}twcf^%%z3faq%K(O9饖>rc@7QF}-\M_\`u]ǔћd$Tl.o$1VٵnKO7s mNO'$7 ʹ#!tko*|4}vy$;xz^z}AAAgM7ĔDŽbl$If̈z31pҶm`߾Bs)Y62_v/}MCiiiL e,w-_]mU+*1_KLi/K,qfHfЛg3zh6}1..N|qȑL 8yPlYJ%[H|ӃN,m/%Cuu/oilπf}d[NH΍ 0Лd__ݦ/~GsaM`׮ѣÕ*(ɟZ6߇6mHN:=W@(M+F fE}}nL h<Лm!5l0e$_eMtg+S--5${Y4ٌ>6ּ28>+k`piûw2;7.sjCx~>;;{ҤI+~ެIDr@uE)Uv$5,:5ӣv2M۷Gcߕ4U[-vqshkny/ Ky4duI UL47[c}Ǘ]vddee5iҤYf-YW0a3GޱcǡCʘ2zMrrՍ7nWjI^o,M&iYw=^_ݦӚO'$Tjf~MM+W2Jwu<,z cݺuL`8יT.<$vrypq]tkμťW{ZV2ޤ7Ao"+*jx8%nߌ3 ̏<)kl|j^i͹ fܾ:򽫷XJJҞL17gƔћBC qwL(ɱ5   7'{Mw2f/m :&@ojO>Bs$n,cؾg3ݻ `͐2^i#K<()&@o̬=%5}  ),ϭ!+-Z؜l<%ǔ󰵕Oe~uL.7 ЛC}[I~MhcPj 7DEؘ~~|QSӾ'i6?Б?6,MyIL.7/ro8p㧶u&DJJկf6N0݄w@mSg0ĕ}~_LLπNe ^oW~~Uy,Eo_k ^gT~|׾K2\ߛVoP̙|ћ}}cN-NkF]sGjjge͍w <1o''o/) C Q'ui6sWgyJ {j7:Dgt`矧ϝ?thi6A7f6=[soyS{ :1G-ܿsNN^o9LWG? LYek߷ܯ-pQVv p)Z>"{ѧu/z?ҜmE|3:\6^Wiխlxq115 fggն1nsoy=U::a)iL(ٛ-On*y悂Di*c 2gO?M(>XWk XӚz;?ƴh1++w2=fNHH6|~|4te:Qoى}kK9RS5N7v7El:Ɣ7,*92A,-uc08ԛ_~Btʔ)+WܲeKh0_&.5uu7HٴswZ/b3b\DY\Qg0<+TV嗌5}% %{`0(;څ7qIٽlH>Op]v5IV%aT4#=<,,,^khJόddo.YD%ѰbEFM7m_7&Š#۴nFl񑑹uu%=(M,=2Lm`doK|ћ$%UpC(Mk{b5<mU۞Y-6p ª<6B2tTKepo>ærӧg}gϞVcMzڵ~N|$;@c|Z'dpHa`a[YP_]Tj]os )AՒ4e^)i@!C}%''3&ٹdy'%yVS[ *,"63gz}O4o Jג%KyzD*+I{f_ޖޤ7;&?Ճj;:dKF-;vn陑RKs븜x իž~aFޤ7/qaΩ$ʶ/=kmi:=]5 U=R:9oҲL fQQ}YXX3&y*˫[E_%ynPk0(ui'bS|}{[O]9vO@o dMFt g槜|gsLk6L;2ݭi zߙ)z4NNNbs駟bbbEoBs]x5tdkzamFՑ{۴\KN--vU]]LЛQjąS_ό/Mh;ۢNk{zYfLЛJu!V>б 6 'N|_昈nS{U) ޤ7Aov.[r 6=4[:4/Yw%JS%/_ӵi i\T#.Y@ @oWR0_&K5_kh=9u ?|ZG}Mt|<8DmMk57{k޽۸1鄄Jm۞i0^wdeZZOC&z7;2j&no-7_P(A!!m‘7zڈҴ\ ND`t_LAE+ڷz#/v0֜_Nͧ5|4ЛٹF K]t9yd9Mg@PЖ6Nhr]nQڻ@oCh0e&Ǡ5l{)Ge|n6aEEwhL9$4ÇK[A޳.CGl0e㠖4Л硬[)7ee^CCEn&D4i uz쉑T~nR^l4 iQɑ|G}1O__ik^LIoDj2j44݄۴O9Q~lNHWq> ?[?6JFz[,puT>4ЛUo^s5w7e)7Js},+[:bN)*rUaa[sG]$Mc+K7.ƒNM>ovwsvv>pEoh}#OTZ[k>YTQѪbVj볲qh- xa~Wmpm˻ Q-uЛG:99)kkk2zgJsJό|7]T-Nh*3B{SUU/jyyM6?k3K|%7mĔћ8SmAúQVܬ|~μ|F{~~SfZh43cclS9#c}4d1mdR)zH{/SFo4Y^v͗jn7DeT c#"Di:v`zMMw6RXZɌw/9|pބRTY'xxWY+k8qb}V;wfյ~ ôz:]oXXX(SFoB(Q&J]_QYmw fʼnҴhV %xiӚʿ.c:I{s۶m2dSFoB_O~;Yc$/z$ZT4($DĦsh莒ﺡ9g کv9y:io)S_bn,,bl(M/I~TʓZaejF#bz/KQ6juIL:ioܹo|M Ӛ_HPKͷf557az6>T7tު ]Ì[mR ={<~8SFovO룮-ɏH{nk[~3 @䨨|,sO e@UU.ޔ:. yЮdgI70*]Vi>(JS%o&'7JU% \'xYZ?jiԛNNN=EovOuuEl.d+I:4sF<=}@Pa)'OkF_>z5V6?4c!K,mt8#%ۛ%%%E17ڬͱOIVIIrr~}VՑyygPCCS5j͗}'?DMlCl Kbs֬>d`PJ9>2rcv췯myYgjk[<%d ݸ@mmVNZΡ9'G:A斳7Aov#U~"c#*a%*IIQKsDXl9K<Ӛzc@oڊUlq8_~:ZwrjgƊcVV9KDӭDiVKsstެݵk׷~-/z'w҈|\OLiZ@RUu &YOk^iϘUzю<ٵط;V{1>XsfllV{gF,=X˘ʕ+4iEovYksmG$-4J?Z}ּG]]7Z&#ƶɓ/zK*(rna<LJuGi͞^[YPP˜K/d*́zxx1fwV\@l|o/3c7DE O< g:ҴQKz.ٛvؗUbb"Oovl(jHZ1h$?g):WBؼ7&ܻ8t8h~:==t޼+ľϟӛݶ7u5L h_ospUϛɺ]?}N<Ɓ.ܛb__~%#Oov4 yyK575ڵZFqZm朜h4\Ԕpkȑ#ž6mӛݭ7nSiF^&|啤}Kg0,IL_͜Ց]f`sEr# ݧ7zV\ӛݤ7+U;+7:5W:Ç?^_ɩm;w,?&+;nKn=9ЭzSQZZ:n8E?~)7↰”nXh "#mm,tr 埏;>n;Twc7q!zww'Jm7i$oooz(/X 6>J;3Zm i?MO?yx+G\k M\Ǐ:u1ӦM++M3**9IWH=3E 7!b󕤤mhze4 9@oG>[C ğeyfrJOKMKK~AA[<,u+cl>ҿ7/r1t֛uu!CUbS ̚˂شh˞s-JF-}f޼͛7;|KWzSW~c6gJkh##Jċ)ic,Dl4Qpl޽}]w5x`JuƼ+(T>IPoNy/JqS)j0̊Vrx3썾khbɡ ЛHuuujj={*~С.tz3)"6?d[+M\\Yw%%ؼ?6Vt/5O[9ۥ_CC*@ouTcMVRҙN|CZ[?$WozwsN ZU?6UXrrr|Z<4\p[ozuVR^ygϞ=|Ӿ5jԨ"z< 'RzZtr=fIceAY.}e6NAy睦`trrZ|yZZZ+ښ5kFaڂqom>XSC>ޖOH'7s#s{El/N! w}wAAA;6RWWxbv"""ͳ2|䦫J!C5ތ(.V5XJLM騖R9bz7ocVWWwdSgZ`y6 9VtOZ'Δ^_pNDL1?S7w^ &\_a ؽi<"<9go,V~)^ǵXI3*@ov.z#o߾nJ(rtt? Uvv|S'7mlNP_Qa(o޸}(+sS%ŕyv>qr57Wwb%8Vf7o|M/Fo8dhYnTx=6xK?5UWWٳ'***88XЛ^'7J2b%ڌFD㷰7AoDmZO~w eWW&l`^z湵<~}xx}'m@Ab%[1)=z{{7|5k~$zNM'7^;ql8钓["O+A1Л]FNwh4SN]~˗//..7[3 ,/~q䈈gSXP2dlکs4fWbƏ?lS#(^^^\<]J;??%6 ОsXI٭z~ԩW_}Eo*R"Nng!'&V*##׬4+na%-@ov\lY˜8qG}ᑐp!YqXZZtެN)F[O$1Q0-MM+i{)>٭z333ZkggO?m#jQ|rܸqf}1JX%jcNށֿ@SuCcc[J=o ֛~]so'$$t7r!\\v$fJ(55+vBC3P_\`8qb(߷on؛+5-?AWWW*+ҲL*%6UC{m{sذaCfS:e]v)+WIuGI۶)iD+S\<νy=Z)??? &tٜ#V>/ɣF76V+SS:Au֍xٝ{sŊw}5R>&>?k֬n՛Jmȕ!J[&SWףi%(USlfpf%K7-4)--ӧ򖓓SNӽUAI={Mݪ7zPܼSo!`81?!A܌*)9t C7[o [.\L,/x}ʔ)J~m#GkL>Y|O%Y%!!E ח_J}V7춽y7x_OKK[|y߾}M; i8JlHpI㎝kwڥĦ_Zul~"6tЛٳ'NأGfOnFFiqvv>ۮԛJR11e>b%k~5]/B6 ҉?[o5gΜ3#LOO?ѣG;ߺ_妦=0>2R;mMG1Л8-B###駷~g=[o?~ݺu:s;؛&ɖ23NeĦ,c 7&k֬ٷo_';қJm@-?iZ2)9",Jڧ\q&uG$?;͵M9GU^8&֋!Ji l!wJFMy*YAMЛWB|B+/dOfzfx♛$yŊ]swE:Ofot4;MЛJ䝂7=spzh%6pJ7Ao7~io[ov )6'{0 z;}舰0%6qPbV$0 zMYNAOJ=͛=+i_qMЛmO)WHCv Pb9Jm(/Z7Ao7u5>Jot.ob͡ޓ,e)`UڛY?5)&IpY|06bHzhGonrNA<|rV=ÚRiY&C Л@[{t7μws' $)/ Л@;z3qijIs$ٳNAb0zhGoju}O)hEybZI⨖f0 7r9/%Bs\ӟ%%q$@o7P7 JMeԛd)9MH&ЎެJ'75-]Uq1 nbzh_o&tNA䝂gD4Ŧ$[y+Л@;zt,5${mz6j)/Л@;z3lvŴo%^7w{7fh-l$y{vj%kٌ!@o͓w R˧NnMSo.꩖ CћI/')m+z4b \0 7 @w SlK,(*@ћթ\=lټva?_Im`zhGo,y$ڛn\L;fA@oMђ<{[$c0z 7s~9Ht?fѼ>*7vfƗ7 4ŴvR1 @oJCY8ۛb,MdzhwonW)LWIzSSW{Z1n t7:yFSmq1r)@oM룔\#[RVvЛ@Gz{DJA|bЛ@{k@o*E<&Db _PK @oM EiEo>zkoF 7B+:a'?#Л@{&FtW*Zjlez`o)9e9 dzxoޜpw|p&u92q@ofԵ7wX&`ތ;YRs) 7f}JlndW@of̀JonPzs[l 7MەZo~K`z0KozWzs$6~a0+қ|Gez0Won2KR 7sFg{ȗ<@&`7:Wy?@&`ެ˭y`z(қI7o+q?ЛYz$D7@&`9b\ 7fGEo^ @ofcOO(қ +#ɪ安) @ofM]~,/ez0Koneқ$2J 7=E($Лz`7WHK@oM7_:QM\e =1^1J 7 :ZQzNχ%қ Jl*? xQM,YV-zα-%қe1e7'(}QM,Y_ zstyc@ofDo^ώ%қq+REo:.v<(&` {~jI|ZF 787ݔ @oM[Yֽ&`t:R͵"՛CBHx=&`tV-1D 7=\Ca7s7OMo&`ViT~ x7fmVc՚E @of͊ ћ7({n!M,y 779(Z%_$ЛzsSқ˭;=e|z0Won;ysڗ=2> 7,N'u@ofMCA<|1> 7׋޼?7fUr&c|z0KoD޼.r7flћ&`ތaћ_M\DћY&`},^M_I[ @oMi;ta38 7&R|O38 7*>֛}Joo-?5M\|A^~M\fy7_t_&`4 Mߜ7XޑM,X(7Ccyқ557M2t @of͂ћ7ݵM\9G9?22 7w}.zs12 7_I9՛^O9곗՛ܡĦ$O9F7sEg<&`rқ_edz0Wo~wқ#Лz7 MlW:i՛^*қgdz0Ko|t7Лz3kOnpcXz0Wo&i7oW7sޜw @o 7oxS7s7'aM\PћSW/cXz0Wo~vV%6J?Ȱ&`h77I2 @oOTڐ՛ݢgֲ&G7s=N^|XЛzkқ8j @oMw\xV7sdnzGy2& 7>rSo>t @o+7}&`+My׃_1& 7oyD0& 7g[ڼ @o'\!zObLz0Wo>?djI~1& 7_7];ө8nL3Nc0nnts[B Q6l-5TReϾE(ŠDBX23>qw-:uu0ۜ9s'~;6ț]ysp7gZ  ovѹIޜu+'h ؕ7'&yst4@l̛ӂVIs o6#7&`[̘!^!r1 7cBV?ț6ț]y`-oc ov2!I4@ʛ"iyW y+o>]%-ov ov:ó y=oN_=țy wHM޼9'n y7o~u57;h ؞7^IkMOi ؞7\DkMٱZ oy=od27f+q@lϛ>7fy7o~au|fZ o6ꕟRsy1ojUGțyypSNJNN Euwޝ3g vڑ)$$Į, m^`G oլY HQQQZϙ3:-lٲ~椤y捳LO3< GL"""h Iddv*kԨjLրȅRjL.4D:کLR0ڶm|rn߾mˢڷoP|{O7nP ٳK <=Z;%%%׼ZIPJE0^PjѿEK|Xݻw~z&@yM f:\^=?jԨ'O… 'O.UZB RRRțyM7&ț8sL"E-VX-u6d)g^|'|2qÇٳu֥KvhѢѻ,ɛ o 7Ayv5kZI}j&ț oM7AD$''/\L2>$MK%<\ &țyM7H{3fL)1cFwp2L)? &țyM7ZnݺuݻwoٲeGy#ț o 7Ay o 7Ay o 7Ay o &yM7&ț oM7&ț oM7&ț oM7Aޤ5@y o &@y o &@yM&ț oM7Aț oM7Aț oM7Aț oIS &@yM &@yM &țM7Aț o 7Aț o"=?\Μ9߿OkO+&e6qD~2m4|򥤤)-)0)3)6Z~"J1hK_L"HJJZ`ݻi ̙s=Ν;~)?R`Rf|= \.IS/n@~ۗ-[6444,,LW^?=,e@!C'xƧ쪱7oN:_,Yd\kժ5bĈG (3[V{WVPBRc9s挈hժԘ̚5+ݺuc/PfVd0ݻG޹s4hO2A_(3o !oRc6֘sn2e իWϮ\bO˓'ς Ԙ:Lޤl)˓7$$$-ZԸ d .U2s6{lmMj̖0`f%N:| K6Sfo۷|I &efRRRwM$''תUKeΜ9s޽{>}zTTO?-U2svќ9s71jlҥcffϞc+V'((H5::Z:o[/ZF_;vl׮]ͫ^7nNҥK}u7)3+ev=zIRRh"U5r ݺu^zje˖U2ӻrʻIޤ,֘\ #""f̘<͡Cʕ+~̼?+Vxi RRR#;iMbǫ%\t6O碣bȗ/ŋ'HHHȓ'6M *@ &iFfDޤlUVrjҤ$rȑC@ܰAyG6or)*+gƌϟ?~,:~xXX**&eff̘VAs{Q7|dCUIo*Fi oRck_W8p`>})wޡ+[6c͚5 &4iZW_}ŮƬ?V--666W\Mz 8PݑKscƌQt w=zTMVʌI*WOdoefRrrr̙U`oFbj̊ɛ-e֢E mΝ;XbSJKiӦim4ׯ_yXcjƆ O}vuO;I/^T3n8)ww[]C/n͞=vy2P{=<+RV 111S>ڔimiӦ y5j?xʅ ,m6efRJJ޽{S;Ǝ?ή|sYu_ԩS$oRfL2իW_reȑ7.QDl .\vzɓG^bb;wM%K利U2#oRci<ӤIm2e,;2wKN>-5s'99N:BZhIY/3Pt颊APPP߾}^Nc!C'V 1*@7sYfZ~v;2KIIz'֯_/?s˗/?̮|#Gj/^\ IXf6m`ZZnܸyT޽[k7W7NM| PfMj,gD3g>r{2Xf2{L{hUV5'Ԙq*K,[nIY/3gWy}xΝigțXg޽G .*>cv ef~gY\9Q%Axbxx6oW&ef fVڙ3gYdIdk֬a<֯_ˍ'^x8>>>yK\4q`„ ̖2s7bccyRRR3KNN&oRfYN=PJq f̘qiӦ0bVʌIVmݺz_S(3{Oe?gu]ZxÆ ܹޡ̯ʟ?s' oRf?3fxEvУG ĉ';vxigțXkƍSieّ#G?#5fr;w̚5ַ_vițY {cƌQXr%;#,n<~*`țXkLiE /0e޽{GDDw1X6on&eȞҥKvM{i}䁓'OzX<'P1'o"x/R7QQQSFDDhS6j(y @3\ˡ6@\fm۶UxxɪG5FD)?܂zjUfgc b۷O8l0֭MY`Avͣ*%%%**JёwuΝ;%KԦ)_Ǒ9?V̸țԘ_k?̓'6O2GݸqC:[L:w[2|՝k߾=~$oRf6Yٲe@wծYFʆʮy-X@~9O7VtețԘjO-[gӧ5Sk.]\~y󪷾۷BY\7)3?V{ 6b˙3ŋ/5jh׮ݑ#Go?*&=+u?pf PfMbZʷA6{v efTv5&Mn:Y˶mfϞ_۷/;#o"YRRR*UrZ>|v*ۼy)Sbbb2f̨&X|9;wy!˂e˦%K^tflWʌT17S%K3%7ܤțHevbŊyA7L߸qcSYTT_͎HW׭[/ СÆ U25Fa//[LXL;~^Pux]33M}Q}3gu̎7 k-֠eyu ۷Vʕܹs)i2oeɒ_~ׯ_+o:TҾ}ؿ.]9sf}}gϞ-T;vy] %TX1%%ۼ-[aÆݿ?ͶjΝJZ¯oo߾=~f͚/^a|kLصkWw["AA*T_xBnݺEtvZJǏ?MNNQFVb~Jd9u1,X]he˖-{Vn;fͪ?q}y,[I$o7ɛ{;vmիW_#7SzK7[㉗/_^hQ5$P}tuw&|=nFJJʂ _4aMgqqq*Ǐ*M6]x ySO `MyS?>::Zү_?[fȐ!jڵk7[*|IϪ9Z$kӒ%K]=Ϳ :TlYaKٳ?CW{~~[>k,BCCe?]t`_F$o9M-ׯ/vMv@47ũS{1mYiӷ)\ʛQFYϛbܹjj:SN_uF$oίe7͛m~.ț^M1vXSvM3gNm3&''Ν;'G"E$VTW^Ϝ})Sd%Jȑ#|ȗ^zigyF'N%o޽[m@7tڵ\rBBB*VآE ly5-[.]:888<<\D>}~w+x֭ILy?5jԻwr.]VV@ٲe+^xLLøLgϞSO˗ODV$1j OcM6Zt={ꫯ 9o&%%-\瞓cP6S,Hy3>>cǎQQQrGxלqչEG9uPBܹCCC7`'OX 6FGG첑ԝ:uڸqcZMR-oIϟz/ԩS ~r2-Xk]vuES62W\Fl[2ooݺ%*UJ@̛W\QH/Ƽ͔P)%޸q]{*T\c:>˧s7`׬YcО}(*)ȷO?Ώɤ+V5νqm{>6ln7|LABBZVCդI'53/Ni7o0Nq8p8޽{1I=M_'(]pĉ5j]>˝ϛ4d-6nݺh8U_}.Cs玄P/B]t>Z&M_|dpXY)IIIÇ׏@.Ww2zyMᅲBd0jo4بxuȑ.VRyӖe/:hZ;@*o:Oׯ_[T]go͓.֌3R+o+kWޔGݻwtկޓ&M2Λҗ?.㽊TR~sM6E\\ܜ9sL|Sɼ1~P ѿDY㦻N~۷m\-'Ntw̾[pP .|QZ0a~.}޼wq?\V!g+yA-~7/ѫ^z޽S%oơ%737|=Bh ""‡[;Ο? y嗍'.]+0y^|ڔ ]wmޔN/%o._̯`y'.'NlذA[+D 6̮e<)o޼ G!6mDݦMi_K._f׮]J,W\jԨtjC5Xb%o&''Ц/^Wp&$$+Z|y\Ƒ|5YceȡCΝ;Wrӏ~,]۷oT׿ hm{衞hSNu7´˷tT7o.F [nSnLݺuG5s~ɼwܹmS㘧D̙V5jdOy J )j#/%&&JA[1[@Urr.lڵk;u$Evp1RS꿂CF;wJHٺu"-K/7-Qg^zEABz ut2o +ȧ۷o… _+T2y-X֛|ެUrӧO-BCCYJ6QcgͳXΛ"m0>19!o;wNQ;w˗/{Y;.Oҕr%LΓW=+W{~6~2*%!Ch7_EY:$7^ug}r-[-~C`T&:qxHTV#ɾխcq9@~h/mp{VzO#=j5͛hH8C[O>DV_^p!Mǯ~h)eV^]M#1~BvdnqZX1-5Kvȑ;vпpY%::a4cw^v7ڋ-*T_>oۭh*Jy6Y,Mg>o ecbbý .66oGHq٤cW;oZz~ {޼9jԨoq`7a0ɼ)$EoݺuРA&9&ݺuS+iԭB̛G6si?i<8ސh0Ue\rɽ{V_JO{.ljwI]`He˖iLb'p'gUڶmzy-Ξ=y  x78Zh˛ׯW6͵k~k9oZ?~v:ܶm }ޔ 6賀GۏS9ɸ|0Mut%KP>M$… /;7ݻ\Tr^9 y_Bdp-X4yT=ў7ի$w2Uzm5oZ?}wHy<;$}Λ kp&JժU}B611Q!cN5TkȼWryOF:`G^zkM$:toQeʗ/evwQw :vcSwI?pyjf|UV.gsUzu= .ifΜC޴q|p#V\>y7ykn;b1k:u<{|hNP~ww]r7-֭Svzځ̛7M67o?ο\,-MUެR4+]5-[=1c'eo~Yk޴~M8Q瞣7ʛ׮]?dKެT&鿖׆.tgϞEhѢEӧՌgQ_˗/yS=a'acn/\d˥[{)S&}{nԺlTo.[]rj0Ofj5Fv0?[8f J 7@x.oJ^+F_y۷`-1|ZS$ oݺZf li:$;)6] w5.G׼i`Sw#|򦁳gpчпa駼b 5c||ũ4Iq3gySdХK FFu m=7wN9l*11B f{%Wgw+R7Sq!!yԈ%ٳgwwsiɛ֏_'(.X|syS?>ǯ55kT=&aI~͛uz@~O}~-yzt0%"n߾[ߐU'oeyӖ]OݼFxxfdͮ]~ޢE|ʕ+ܵkDIVOysҤIjǏoҥK/wTw2=^Ѝ7~Mv:;wX*e6F*i߿U73B78}@YժU=zU?iVc!DOyzp״iSU޽{Y/[|4xw0xs[:?Ʃv_VMwcwA@aD57cr sg7'%%oϒ}˛oڴ; &2*o'wJ*q׮][&ySҐU`?7 RIHHPoPziix1o+Wc0Qn}qn8*oZ?{9-ZOyzd͛M߮G_~|য়~2?tk2Mڋ/{̘1>sԃUl(QBҨh2oV?zꖏҥK{țfrʩYܽRʷ)<HTQf~QkC3sԪU7o kg;7{.ao֭ڶAn]t~5]߆Tk׮5Lq͚5ɛǝ|*U\cZykec8Dd=ǩd5͐!C ֢F6oZ?/0`EHeJA}z2e`KәϛbĈS^ͼZ׀1l٢=z?*d?c`ד7eEj<@zw7YևoAAA޾EP8~}Xz~?orD̘1ݧڵlŊΛDf=oJpŋݭZf li:f|X[fMV䪡ySKΛ'= գnË Jrxyt׵ e֬Yܹ1,X[7 6쩧ҷ[˖-&JN9VZ+W.^HoyI9FΝGҐ|r#&N[z|{xMǯySTX;Ke[lIT9yQ5yӖ>P-Vq}ܹ7|޴x=/Y&syC$)BQ ezy704:Xć~hWo;6l 4ț3zo$oWpasyS2䜶رc]:Ww?4hСC'MyS4iD_111͓(Sٳ'M[_OP6Ma,_HPo,rkE_|Q &۷O,aO*RP;oY?ĮQ6_~7obعs4vn6oZgWD'VO8!9lذ zu-X֛|T)E\\nM6W?Hojլ5~Sh7mXoԁld'ofɒE. _ڒ7A1 wrTɛ֏_OP6Myiذv qz55\cp͚5498}tDDq;HPϛ֯G;vP1)u}Zf 7D+T[PsVHdp^yӖYr6YvMrڌ~M`f>!CWû۷o_S+n 5IXae˖~58?5K|Lt o8p`fƌeO.?t Hd~[M۷~aʗ/߼ys)QKXbށbcc/]OyStbbbnj{qLFN560`apKRৼiecޔ %@;yol q׃X-ZTi+_&OmMZ<5)c8z:ʛ֯G7oV X&\|.Mg>o6LN>͚5s"X ہ~_otXyzزkMgu9z#VZ`YʥS.@rmݿϟ߿ݺu&YI 6;wꀭ^\ުU+ 2\JSHQF9r*UJ:W{'ҢWN> )AYqǏw.<ǎۤIH٪B IhԨQRi}=ztA&Mُ[naaarTʱYRC|ӧhݲe_|nИb%Kh'.-`!Fـ+J7~P"M:v(kvΗ/_j&MQEv7nҥVز%KlݺF+W6}[d^}Ue7ըQm۶3s-^5WyS}RQQQߌ`X{YV$h1Yc(Yfv _:`j8CyBw m)))Ѕ%K$o۷o?O={V{.K,7s!o"Uh̙ƍԩSM-}? ݺuK Q2rH)ҧfZs)X߿?pv}mtS%| ?ԪUK;=ciӦYjM>sțiB ]r?j[Rw:V@ ZJJE1T#Fd˖MN޽{s@LS>>SZ``РArkƍ;⥗^b=AAAO> stream x|e{GRg)ر{6D=AEϊr DDQ@&E@:HU:$w6deg~9wvfwlf Pz!ƆkZ18[xПd "[@-l-d "[@-l-d "[@-l-d "[@-l-ffE?L5Z +yDù H3aUfvTFJ8op6?-oHPߌХfnVsz +>Log1 }RΏ+w#[({: VymN}|#l^:w3.)?cd -jjV)>pA%[CPȗUyu!ni.bXB،IoPH߼u13 \T!ć[+natT[JG23 !$ xǞz4[܃ZF:qsxg :ce{V8︂cO=-fAX$ &V@{*[܃pǞyGg;*=]=-tF+*=X|Wuy`Ƚ3%l17Go|X&%J5s9E:U)U#lqE5@d+3K0:>N)v =dIތs& '{ȖRMue{![ᘹlyܶӥK#K}Od+ 3-o[wڶ(e=CЬ;%JWʳ2lC=s =GKW!CC -^w_s Hʥlc١bC=+J'~A^#;[o꘵UCX)d k;_J^&9[{j:eSL)!-MxeO,He_LU'G\T)8>w4dqzIgg \bkhnd E\L+c7=-Ta!l5eݜdkf&d E4|woc׃l*k$e{|RuNHd l>禖e1}Ѽ~6z#[!@,z򉉯JȖ)5U[l-IWW:I%K߱EgH:o]f+-!{U5y"KTOIM>[^)slIE<g-ԞmIȖ'(Uf CyEaj+w dSc{-eu}βce.T6)"[v;8"E:–R?^d-eiG9o.d7S*"[Vq6,"[:44Ȯ9o6ƫl-Khڶ꥔?ظdlhۀdVSe6/"[ZP6ΉTe-eWٹnI?ٲOzԟMLȖetz>dl%t^ [l-%KkdlmV#\3"[x;F{&64"[:Q}%U%>'[d) r4mMȖ7oX'ٲGKOyaEIdlYLXlL*dlLP'[dt/Hmyee5IlrE 7LzHNȖѾNT%/mluEL8sOq7Uv'[d\x0Ӽޗư2V0'=·<"[:pW3i۞l-3y0"[fCUUPl-#LzWzOȖ&ƨo\Cu*۟l-|Ⅻ"E̲lG)aWWE`' [d$Ց8#pjc? [dsWtUg:Di{"[fHi:o6 dl`Nb{NH CyELd@*V3froSzh:<"[.ߍFveR:c-i@Ȗk-XՉVKjLFl-w:io/b,W"[6sfΙo,^Fl-wY1c!QؙQ [d5~}UdȾv2E (- O13Y/(΁Z(-u Ͱ9|uXwɷQ [d+M J䏩 HI~i @V[+#Y q(U"[d+jv=p|{'f,Jm4Q [d+Jj,xm;Q_k,Fl#ucl8:lhXpTq6,ϤE".mDt<cO(-iNd rZ1dlE!HOHkE"iy?+ ڏhFlzTᅩCjrFl1qj1 dlEȷͤQZN#E"bu D9fي0 f:A [d+FTA{E GλTFlYyiqimZdly*v~ ՑA [d+4SE:KF'tPFlT&(- cwF!@V(\撎nj -kt1H6NV,qCd̗^d*ՃQz(-UnwK3JUÛlVIH#}(-UNIR1}zQ [d|9J1dlnjBܮ]"[屧 D"dlΒ Q [d6Vs Q-@V90 l"dl/`";uFl)r0 dl+rH@u-"[zWzQ"[A:V581Ib Χhh "[*`"z%g 4~F! ޒ3 dl63 Q5F2 dla89.Jʵ yI&qb1 dl(D=Fl2T%*&Fl53,5g*k&Q󤴒Q [dl$"F!jI0 dlF!jkFl2T2Hc*{o(Ż]Ef[%(DZi@V<$Me:3dlt<]nFlJm4Q+}t4s0DoaFHo3 vf6VT!o#@P:H1 Q7C(-Jj 5>0DݡʺQ [(7 BiSݽ <+(-{nc,cVIv<>Tc{+4y *CQvtwF2 d_կj㤙 ɧGNa`Q [A&K1 d 0Ȟ Q [ITkl&Q [A~F3 d 0Hju](-$6W'[I^~f`UӌLr2d 0 ȵf֡Ջ~6k=d %`L".u&],"[?Flݾ57;O=ǩ#`D6Rł;m#[Q0 [fTy}#ׯz-+i"lݹax3s<@1 dO]6{M<5aܟ+ֻztق<#-g\Ҩ"'%[ҋUGTlc FJ).[ID5woV+"X,E5KgrblsNTTF mkق"}(<[i>*ߝm8+ Ԓ-kW.d\{a3[.mqOC`k;l7\'o ;-l4Qp{i[ViC@kD2ЗWF`!lFl^:w3.UD`(![0ڹQ [A>2 fd{z:Qpu|wg{|t?l1sPɪ{Qpq(h l1sPȮJ(7[v62 !?|= 34Ie+}K2-y'T!yܓ"u [0]fʝk2Z}NB$噹g=)}(3[a9i+OR{f'-mlՏQ(_l֑fK)n}\3^swRv1 NNũʼF'dOI(Gf2cFo3_"O=@QөBuVRӤC$>F<٪)ϸNUga(K}?F<٪,ȸ1N[a(AFK68e<4=@FKrd"wH7d)dO=@A+FzLmNUfܳ刬OCzΧ.WVIyiX򶷚:7'-Xljϥ/lGU:|R̪VҜxOuP*r{DXFl[U2 e֜- "+n=Pll2!Ld 0pi*dV}S~qyl5E :YBC.~d ֹcH`ՓQ(kF?d 9Bٲ5)0Nŋ8k՜_Z10gn}d Y2ek_S7N`d Q(K:'{Ɠ- Rdžk[uԥ1(~%Pl5)D"gndʐJRIU9=UaPl%J+ [.UD' GU(-$H_1 V_zNQ[SԙQ8\LD`odcE(%Kx4]d B*ۗ)0 "5v_d\LwAw.>;z&.Ys`\Jw8Sɿ3 5.çnVPT!F@6 ͣ67-UJw8YUv0 5FIfe˿{ [IF!zI=,u#[;U5w3 ^@fJ oK#|JVj)l.vg L8Kl͖--^^af4@^Z--#1 yW/..'[k((璮˗{&-5W4ȬӜJu_Qfn<ق' #[yK5[J:O0n}d I ;zN3`޿Z-xӣdUW}d ޴N"[:\p[f%l#[HVNI?p '[):l1`ۥYdlِL_{uDXV ~W)v)*)[R ald>L-"[[\߼~b|ԕlnOz=[%Z(![ktSzuxq83ق}'KJеd p3l3mab-xiZ>&w.~}-NVd+`Tْ|$[+}$ %[gr̖tQ*(/lB| J3Y.9قǽ%=K6 ē5ئ[F-7W=O8oq+{m{Y-lze?XFW:TGzKLyi׳,(R"i_}IxJl\Dd{Zzj#-Wd p5twl:˟ Vϼϥ+fgC d pUu?ͩT9JUQjK5[J:O,|NKvsjk_8-+p8&g_p[f%~po׳:c's"NWxmt5P W*vw\v`1޻ٺC^ldk Oy6[뒤G`s?+j '[@Y}͖INXKÜ-͖jCµr->jڵkX-NR?=-l$"[A۫^nl) o7eJmF [d 0K:"[A>'[d 0*:lՋ~6k=d  Zh=uC- 6'+ :Kd ۤVl:KtFY^^W~q ӳkQoor_^Gd"Kɒ--HjmK~C<)Tsfν- dVJdb5[>u\}79O#[@\eV -[WJw@/:Fz;ozkNJnWH(uq'%[@\<ŪxxJE>*d y> DooRVz*- *㶶?.5{P[ D#C$DOakנ wu螄{/}l3{U>H=@ts:d (; _l-F{Zdk/=:bbARzYzlc}&i@r ۧL![@uTjV(BJ}"Iz$Z@\la7ɿ־Hed매n-E}cgk׮c@:8C/7A\- $c='[1 ˓vk't ֓5ƌ&R`g#[@=(2[vioyEXu1[뒤G$m{n t6 6fTkk8$%j&H~S2ҧ16nq歭N̘PJ$[@̎EVf?R|u9B$-s IT:"[v5.tQP=n +:97*- ;-lv&h*鍋 OACQ5![er&xO9K2zVsڄ^wn? >I=-.<ߌle-W9-?|z.~},y3-/_4PVuU;P [ރ}d ([gz39;efK(խ/lemUS7dd+LC`:ײll$=)#[~[]Pf}Uq] \/9ZYo_PfIڕ^ROlK`Iޮl99'[3d ym >y,(_}lU٪*R [*d oUHc dIsKㄠ/(l:˟ `ǥ6esIև=`?ͩT9JUQj֫- GUӭO~%'rb>u '[@0(yJ=F {%1Ž-+p`U-l nk}_N\* _"%uN3- (/˖l-$geJ2Z4jM%[K lցrXgEZڶa[DN'[+g*m뻵N̸}>XhMNə Xl%%[u*U=qVb-.iuu-ٺZ>߃JG\{,V o_`-V%~.$[e$%JxtTlzvdSG-6/Ks}LM۬A;5Mjg7Ԕ>"[uS;#*k;HumQiuT5YKn(ޭ/lYڒ:qndTg-d ϭa'[}.etZ[Wlp4:[Fp%~l- oH -Nw-t5#[O߷d 0i/=oXIMUjA/-^ܔlFIJW>l2>[7[Mo6䅓-|F6R5ƼpOZ2>[285Jg ϓI5=[H-3v'FӳԉlMw,OUƑ-3^~4<[ >%fJ|P^}zlGH' zwj^d VGSl/|vl\Ե`fgS-[ٺTէnߝu4:[Ds.F,ct*H7P~+Fg4lrֱd 1&gkt+nua%[@=+gBreC]IŀlU%[Ĩji['[ _KݟO ǫK,ȓAd @hg˿t&Cluڥ>[?/o{"[G y|l5mWDxԎus}lu| 2Vݞ9E![gS. 8_K-ĝ-r!d @SxC)dlّdl&Յ-CNq!d Sw)pX\w)pX;l8<rJ9%[JCNS$(M-%q!d @u)Pqkdlq!d @\u)Pn:l([[lZiC a=Z)I!;[lu{9Tn:OSLw!֦STN`rlkQoor_^Gdb CN#3BUpY;7 o{.CN#Nl.t- CriDuzwQ#[\siDZUd 0[9H*I?@Z-n94"J).[IDS[\2"VttL1]z+ٺ\j"[1qi趵plp!9ܴӧZWss{"Fƽow K[f(- HS=-Ɠ*RT,xUluunM̽O -gҽVg鬼\ ]Kĵ6g^g{-lFӍ6g+A4SZҒ,`1l-Kޕlnwb~7[' ,^٘3?^U޿!El'Ͳ0[RͿqw8ڹn}EferjB`'59H-ٕ\! '[LZm f-Od=Dd `]ԛl0ɵHdfCD\&[L`MG|%o&[ 2Ml0JDn[̔"[Lrfohݺl0I'%#[ t`A"[vv$gvlY$g+q-`ۭ[tU"[;$vl9>L~#[zu`_EvF$=l0\n [LҳoO伲"[mOd Yo'[LrAYn-7?Fב-&ed AZ$l0]CR"[vj$)v `ۭ-&oX>d I.U/d Yo"[LrYn-8V-&b&`l-dl [@l-dl [@l-dl [@l-dl [@EE-l-l5K~,к+NKcl*37VCK%t5̺/m쭽djGww>[<ӤiYYba-bb68ldl{1{1 N؋ًlp^Ld '[lp68b/f/f-bb68ld N؋ًlp^^g-bb68ld '[lp68b/f{1{1 N؋ًizgejguϷN{;+?{'(/:R|ش^YՄ<+?ҍ뾷o\=a$)酯Z(K }M+J/j+eq*y]7m_ 5vVkS#h9/ieUG{em'UڽŏXS5;jO^i[Zٿ};={{'8ye*y]Kv+a`Ə?xWٚW׌ݝlνfֹ[6o VzTmF͟S]lz3ײc:7[Z6R-Y=KGFOEv[6ӊ*l;[ۣX9wuUkVd/<,,.ش:-YYmf:xԯ*y]:oPrV}ιor__.[9k2{aLY(]z]LwKG1=[%},#/X;^X,*%ʏ쿝셩Ke+w\EYڥsK->ޕ X_3c6=[%9ҙg/ƶjal_)Pپ-M;]7>[%kSOƍm;Heޜ'mݛy,.ش}<~$5a~J\=]_A|VKjH oj..[s8Y\T/ie$.ۼcl_uu,hq/G/[g^s_q(شyG9.n/oAJ\oN=%7٫Zg};o:6l6S6oYzwS *q]gf]s_iay/Q)7;j+#y?JV6۷'wIVoY0V,xuu +v\Ξo،V͖gssu <:~r~{]fmZC=t_`f4 ,}-#[%kGzntve8;p-9-5Keҷ.|{6#@N-Php霻G? gqmoH. lZYe-kQJ\m$QI+BN>e[_}[.<~M+qj ز6e "ߑÁk(v;:5Υ~y{Fg (شK-daJ%VXa/wYF_ \ŏmrMg/ /+-RoHqrr~7ZS mZde_3}ߗ,Yp_`nʸe-V뺣BI'[W*kT6ߙy3G2os}+q|ZeVzs̿}87 Wq3]|JI ,|sB/re?*)LE*q] W޺1p6r`'S/[RJfY۹+W_Ve-kOJ^yyNSV캖yw6Z)gk`o. \V[֞lG,_]ⲿ ~;MUJ6Wشڲ^ZI}Tа˰X5OtiXbó z>9^1 &8xg2`@)Gҗ׻Ukw;ܹQe%f:-3ͳ.wTqE틝n}ÐpoRݓ.VʘpۜlMƠp&RܥN^gPRS}rwbTN.ʨp:0rC))a^:{Fz{r26eb{~`XIEdө%/:_[# y#y8bA2.󄓩,UJpS.,WeTr'[7.vfTRܥN1(vɷ.gR)n;W)AΘpY8 ŐpW=Ī[gwvzE<`@ɪV9#,}R\c2Xۘ endstream endobj 128 0 obj << /Length 2847 /Filter /FlateDecode >> stream x]o8ؽ;@ѷaw}8 &NYte;qӏMbƒ,IIBscˏj=>z4 Hx6;y}`}y*8X.Bm b7ĪBr'$at4>H2£@pD!O=QTmm-z3 F 妖 G3rS lo霦4 NHcؽ\YOý[XuB̀1Ɋ!BN[5 k XKeXw(vL}@Hl] I@[ Nv ǞG0" k$?Tt?z!;?Vz1/*j^x`F<ٯ@~ua*rmC '# >qjrIB6,ΆkW K ՗4 UX4tדy'bs@0G!bΆT1l 9OlX>o,hyEH f޼ y ~$H@D9HC}F$`9Z-mxz?|oH~} `KusC?'D R\\R0b]z::>}pHݡ"4p 7L[$ykfB'5GoR/;7,J:Ӫ~dgQo{~i=)Gz<}|삏t,*{wLޕZlD]NW0v7璦_{jW SkqYfV#Kj7TwO}ĆQ}#4_#T* UInC#mEԋ"askz\CG[Dp.. "-FS;F*uӊXLṲm%yzt~ⱪTg᫠5.yA~f}l e 15b.j:\Q9nŏfuְۣN+gWW&5 =YUg SRʤa^5ȥ%)6?e2oYpl> stream x]s8=Bgj_>ln;-%$'?YIkc_&"!P=8[W϶8:r3'"}bx!wɉs"q.]ѧGt+V8bPs80?t?0>'QDM-~Kbwh6H$ (C60IAа4Zj4AZH2D{ (]rG{1#FbJ\LYjZE^6۳׌66rJ;Lڸ >R |")hYqU,eCE^q2SMs@3` >Cuv|g^=a Kn]ad&{{.[by,<ӅqV}]ġ>)Y?z@7׬a>ԕʓu],25di^>!ㅪLRBlrʂN<=gE6^|KU1JVִ2e5/F\fMT<ͽ yFrYsܜ'& lMZ8X%+$iiSu58lXĴLrMs"0UFȌ8We4|fPS-UJ]_^.L=%zcMY/JH;S "7N>zM>}J#VvzI m"FYH/O2؀ r8 ,nUN`K~ xݛ*vA}In6"~' endstream endobj 131 0 obj << /Type /XObject /Subtype /Image /Width 1207 /Height 1063 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 85281 /Filter /FlateDecode >> stream x \Tp)2{k^4dq3s%-@]S\ҒEqE@Mdaؗg93 89sg?ι0 @J3gcg#rhqn`#rh~|Ll@քĻwV@#$Cĺ:@W#$B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B" $B"B"B"B"B"B"@R<ŵVj 0555666,,,***999//O$!$0)Og2|RX`fu6ێgRQU7a„w޽&FFF7nݻyQ *ɽ1W7067mv=d!PPȑ#=QFyxx $<_ʆ<_8g<ܶt-?1cTVV"$t(q%p9?chC"{y͈ 4  Eqq1^}USSӅ _~Ϟ=vvvwfeѢEqڝI<8ۖp O&Gk(c^ÃEQGnJy/eVVV+/))8p`S 'NDHh/Z& i}#chgs}RmNR\ɜLOdm;|7vX@C!dٲeM儅!$%a&RtɃ{wa*fͤ\hXBο2}397^Vm&oz{N ^ُ̀1҃KR*qYvʼniĞo6d~`RqBbg@QԘ1c/lccÇ ]lOеI;LL]~6|.cŧ\- ?^TR˯o~msD u: Aqqq7U&&&&MZt͛ٚmoА}} Fa7?:0PG'@Vs(%u&?ח257<\Љ^bST3/8˹ŞCcN'5L0hӔ/\,)%&J ϜeYMe< M};Fx*+#R×ɞ{2WzVRHr]%]54b!'LM\E"kL9WvǜjX"wTX!%eiv$(Hxֹv*|3~)j2-v.pV"flcg^?AUuJjy9Ml~|SI czw=ϔ&zNBPƆEEE%''WB"tFĆj~"~).QXm\ܢOx>&>dlE }zFYbbT*9[(e{ݛq%J@H|Tت0awq##7nlDH8; KYw{oli9R~00Lc P.o7T32g&V+O/IiCl,(Ha'XRĎDQȑ#uXcԨQ`[CL~~/'1oگ̓a㚆JPtb >l9b|/PKRS9Yʺn ?1cTVPDPL{E=*g>5d^a؄;/3j={O*u `Oξ-Gv>6`oٙ;91;]e|fKma9;@qq1^}USSӅ _~Ϟ=vvvwfeѢEq fI#DR0֌ jC vw0i):u _1o~ժkwwpnƲ֣#o'Xm)foED;3r'UZds"E=)⋖YYY]{0+iɈտYً.KoPdfQ55]b'pbR/ ^q,C%ȉ\JTvE- $|7vX@C!dٲeM儅!$AP9Q6=raՐF]Pߦ%_%rs8O4sa@g$6~fϞX]Æ  eaaXԂ ֊OL8GM/#\F5I}6( NRXc $(b<-\Lv3"iNSs/8@co 0 $66VE%$$45bĈ>혘 z;w.B"I!W=R[[bq5Ԕ~Q+v%TM˯ZXۯv.Z2+DN" j_kXW-4-T>}fsƌU^B)#2b'p1bСCIϢ>|x{vAAA>.))ܫL ڦ`ظ,>|Tixj(rrjv~%~x ܋DN =n ;̙3$mRԜ9s O8!K3)_oCLߗ j*̕Ƣ.Ȋ꽊<gZ^8ՕȉQ'TjlFBb.1~VY%JW^TNPPB"t/~޽`Od&mm;O1&PmBYh\ˁ-`i3sD{ $=.k&umؘdҤIK.ݼy3['OxSlmm/_>}!CGπB"!EjAo=td0nig㛖 xzEA!P哧D>j903i[ dU f$ըs@Hl+|>>sPz4y= 6nWʏ#~uQ&C̣ƈkA2tPToܤy.k90X -Ne$6S1 $`rqq6l==ji\DxMEO1'*AV8r 먷&~S0fl kvFE!v<3<dTۯvVoADNlB)_ZN^!!%$$l߾/466622j.ۗ݇ݓ@)B"@獇imӿ< ɲ5C'Lϸ[⨣4"a( ƖzbzHeKxփ=*/`@HHB0333>>>"""((_322CH脔iѲ-Ӗªĥhv vg=W{'{Ĩ۸%%oƫD».=9Ӎ43iIIl! >A6 c4~2cŧ3N5;3gWf+ -U.ZK%xx31)N=·c@HDDhS=sǮS7>ݮף 0(uGQdHN0iI]S&BbQ*׮]sttܾ}AHȃNVO볓4FS/$ԗ QuN:LKzZ.WDNt[#96BmK3 $/66}l믿"##w8}Ilk.D Vϰ0t?#5CXffA;77)M=٩Il.!Qg>>>C !op+++- a;cDh9xSK<|vMYjeAW{ĬNVQz73#$@=nUUU>uzNΒ:dQ'i|!Q۷oo.iii>g &"!4P*d)ſY4DS`CACB0:zq䥬GX^G3<dTۯvyi8&h՜\ch, Z"襗^jxf ^n]cر(MllܡGڗ\&CjxXoMZ4lfgC+Jܚ6]<(ޖqsg[{M\ +U")iÞS]2-.ʥ)M~ C kN'V\ESYP}b:9ifHnSd\ȫ10>ݳ>=$V2*M?鮯mM6J:I {2rIj&ښ/O>/ K:fRWwy1C#Ϻ<5iqԃqncTU(&9QAu7Nd%MJj[r3>E~EMMoܸ(77LLLf6\l([ׯxO.sOgCv;=bzP6mduަu<3[)l\05iqT۸719-* SYmUw7nB"@ɆQcZo([g,sX!)=xCcQ?,fsK]zj@ڥ:+?pOw.'\u!m[zDG1[ZmE L62&i[oDDx\!d0lv=ߌꧾXd?Tj,@!SƜN R@`WqwUzT 2?*^ժ{&ϿwcQwfj ܫ{C+#~l2ץ;7^u՚;~On\aٵiơ}9O>#Wĸ~]}ϊ*GNOt͝A~N4$!!7T<ٲ5WB:4TL_+i\C %CԹtgS Q6nT)}&K#Vj fGk&?чU1jYPiWo_HY~'kxu] Joi"1|ncfMSω? oϺG1.ҸgEzoI ckq4# D@HDH..㳘yx([ڣݗ_%6nmgqʹK)c0B6n?7X]Gkst)7xiQTwI|xx`'i!! JfO1 m=?(˼knVm ;k)el↣b+#9s}q%x$gdSeEAC99{E%.__E~@BE`rF$n=1g?w{;]1o~s(܋?i2GDq8}&{\{BOP#WI*)/qiM+s'fߋ sMMw(_-!fB-IMUYט+VnM<5xnWW ;EOA\³;"Z]?4Ou H&dr2[/ tSzJ4g͸W?5kM?"_`]]9pBǛG;7,uNI+Oq0H8ܑCO|~Ɉ*+b V3pq٧]n0g!?qЖu 0̚9=.n1jHz|Bٻ/LjL} F޸I-dS<'egf)eJ4ZCWr#ϹtIsncfMUω.O9_C%KOw8͵oB:gpwoM *1w\_{HiK#ْ'EL*d~K]~ח԰P] -XK63wZoBEuED)/Fhϊs"Nyrǜq Wİ٦}K:{i:hS|Tqs]r9C.QZ/U׈*jѱ2zq5DS {bwG+o1dN2eʠӦN҆nLQ4!FfJVϤ,e>#%d֠.Yfw6We0STܷ7'ݧ[q9өayq̶T>G7,x -I!mC1J w&7k׶yUhMD@HQ=y^{<,exvp.ϭD4R6]uQHTKJ.2dysQqsڼ6qJAAܜXwn b/nHtZû')'x4%B" $.RlyBz_{Ws:gH,}0eh:nYT`FZV?z&#iRbЩ@7"ʗ M)!8JzHդU>Ymoo:s']z(09us7E\x*夅ƨ8oڥ >Sb^׸9^㞑A_;mp8!Q*Ak\eRezTPZzq3Yx bD 1J Wq}MusO^]|4VRnHZ*UM!Q.QtZ{FNt矌P@HDDNbs_^獶2yfwbZЯCK ޏֺW e, C ;M~̒ ܟkTW~UL<}F2;3g̓N #k#vSZpq[EE©\y~7iZF,ofd'8 Jui9JAW.I3r{^% J|o #&/mѢ:ڗ5W=-\F$qL"qF$f^qIFe:UK$2@sAHN(:9JKU:L>Wu5aEc#FB" $#DQ +n&]WWT[p7]j]w'7, F>"99"9=뒞V,K?Q*5Y^fg:t]Aqvh2D@HGH} oO(sSE|MӴ׆@}$4J˵Hvu }Wvn̺<](S,67$˻o8" $y;3\6qsLM! !_B&-FrCS38h/,1TXXWjyͽ&rt)=ˬ5[3 yn{NAVo,Mfl|@{ $B"t9Ӎ{@*eJKp.݅F~]: H8m>r} +>Қ˔^_E:E{ $B"t$e?IL;=*݈fgo.]ҫ7h)>ܦ3阞eO q׈:GH9W`F&D $B"tPBKVA.mqps\Al1qxhK]ō!^eN)u̽&SZ8ٙv2rɛ3q%;C,^P}\b˴cN@.Q8K<=^2NqƐ͑P'G~wkesCbD3-;:z5*_Mz0X6!LބHu=ҎT$ʑo:s$0?ҩ\<9!ZI%WDit/{wYgT>2x!'/Mݕ:r*N!hvYhFo:YS)eDN 3gi])S3|P+ri94B" $@{%S/,:hfowS b6N?ϏLƦ{} {8-($:s"gC|SoFR&@HDhsۘ-/:n{i w( GtBJJ8h!~fIQ~ ?,ж?x P]rفdg*4B" $@ے_;G[>A.xqpFGC}4W=ᅕ .掩>$J s /Ft&FnSJgb~4-)%juTldJdmEr؝\>aܻA;3t, qsh^^K.VJ T(|͉Ki?oK0kRE 5wTchM ! PŊȄΘw9DuXN#V'sCG\-TKg_Gt&\ѧ@3*+rr_Weg2U⥿_G:uM'Z*?r“gp' Du1!ܸ1RZ:߮o2Ae2qsb5/prUSً篷T d(٦7C'q,F̏zoXrN:LS ܆vקz{{nH Pj-\1VX|yG $B"Ls,'Q|rb8PNS#1i+f;fM\-z7n~w$)E_cS/D@H]NJ,xAo1{viP m/ 뵞t"";+|-ĎSU>?kޗTr!Oʈ?xdb 4P6n8z ub@'".T\]W_nN~Hُ͝jv89}h2D@HS 6?I.?^Ôs?_i K]_'k+-@ I13]3q`\2i"hoߙb?TNѓG $B"*!(7ItOyre%Z !3cacu9::1bBFQ}oyi}!?s˽I1(b1b=7$.^Nu.rbnH,F~HОpnHt&|~JHy)G $vZ?|cu%%%YEQ=z`ݻ7BF4-?@U*cŽr!Q/tљM 表k"7'չ4Y|<7$Cbǩܜ/+̱7ɜ  ͜9ABX&E͙3!Q;kd"'*Cܐ8wrJʧLDW㘖 E^.4"p w WTTPT*]zuS9AAAKfܐɶ:\:͸9_:&$:%! eNܸ9>eV!h;N1c4廗_~&??Ç ]lPf!XPnNW\IЙC7${/3IJL[<$uΖTqu?;bccnLLL&Mt͛75yɋ/:ujӧO2dqT~I2Đ:N :+8 $je}U<=ΥI^%:7nh?D!S/[Aӌ2'OD $v*|>>z׏<$Ԭc7!C+ U tv.݅M&\ܐX>mFgt&-NRA9T;\\\ CBE9R%0Fၐk3qɉJIvuwܜ冥Υ)xDQZ.pس̉۞bюDiiM?cƌDHVd"'*% d{b鵢0Kwp$VXkG!qaB+ɜy$ꫯ.\p{qpppuu۽{7/-x׈\^^z6?SZ @Rt!qZs(rB87'F|6̉^f*2єѣG7_|2++vM% !QOUZ_Ĺސ+)\:+Et&I8siJ>dܐX2lmqܐhoRS2X2'z);F@@@S;v@ СDlٲrt( tWp.W칹M='.Kҹ4љX>c 2Ynܜ?R2M?G1j4%Bb={vcu 6L(SEcQ ,@Hԓ\A:v?PP+@U~S9qE2L+.#r-ǻ%sCsɝRw<2'(hMfrttԳƢFѮLӴFiC"+ nNt0\$UЁ1\ΥQDWHg͉]/׺te6_dN8E@HlO?|cu%%%YEQ=z`ݻw[6UTT9[)<t'-h^-M\4Sɉ&d/ȉw2Z1k#՜h$@k $3g6=H(ۤ9s{pyܺKt&?K@rJbnHuyzTYC巓y&9/hs+e-\ZĆLyID $ǏСTzr֯DN dS ܜ>} ;1j3Cs. +D-ݴ&s⎞LQ4!Q4/p@pAq[i ޻*웽ܐ`~0lNc7u/N(;ط$4Lo9 si&1YBb+..666&r1114iҥK7oɓ'/^x)[[[++˗O>}Ȑ!QC"+4L)2<йneusgrCWKcbv6Aܜ=QDЃ7Z1Js+2'~!>H9Br ]VHdx${ࡅN)')1j -k&rf ?FZ̉Р큢(aÆ٣c -\H(\#rq"0òͽ&^MW̞CD#stĦÉ2 ؎o_5 oB"+C+DNuFKy}̹9k)Z?z+orCbɰJt&˟\F ;P(̌ b. 1$N\!B"M-W,C9J :ѧ@љX>cg#RfMKذ~"@H3$>J'~Loby2nH;\\OK9Qx괖&t'QH?GD#&m gHdEgL^t- zU^*&D[S U[}nH IlR[F4"7'{M KviԇOw,bitI>J#D7i&INώÊzE3mڴDRV+ |T "h~\nH0G$SfĠ:ۃe6|GĘhSĶ DEE=& ĆkRq9G* W8@kDGvҧ@Z,.sh2@?Il<(W(`~JH4OB $w;w4EېRR^T8`xA9@klDS (3͉}G-8Mv "X!Qhiif͚?xDr>@} ův$T:hQldnN\RSfA5VA{}7'}~TfObSaE:! Bb#>}4c۶m+.YE#QuGĜ{MDzYxtZ屠b蹮IlnA:=V@HlȪٰa3<ӴSO=eaaTvjHlh;|Mz=vĠkzHg9QA l|IlZI%E1GGW;::1N,dwiщ'Ff"DOBd[~ դZX;qGv'58n2+]hAtyŭ|o XIn<3DbNcp:$0=a7o!OdNTA{#:)dĴcD""Q<"'%$V#qٍ =dRY`щs>d$;1pOD';cjab2 :Mt⛻*q%㉛tCiD'~)KQubsnEwZY#щ6VD""Qð҉N|.$6 ᄃD' brdb+D'6k.UZhVtH@$C3;RN|gOhRq=&EӊIrR+S/!:QK;unue hח-?Y@$ (;Dg 4ap4""?'Ca#dA|WPwjwbqN,Z6ˇU DD"A68>Z{w7?|,up_E1^HJj;ttbIBC>t뽜㎅?b@$"!UPkhy8^P- XσWTz^ٰGrQWAۉ?4߽V'"::>^ `)DoL8lS(sЩSގNQ&:Q8}~'n';y{y֤+bh뻚 =*H4obŢN\x"NQ2;bx26CoޛMtb^ST~ڝУV'rw/tjq09*"fK(p6Ko^).wưu =I omw;?ڝ(H[zxm%{HDy*|x(5Nw ;ܫCnYx|evNŸ D'6嵭::1M{ BOwqoH43": ȯhqAcO! (>E'&ڡN&ى<*ZD5pSŃD-"&qƾ0'Q4(n*gį¿ZLwrQ11Do^YR6ӛZ{CxtH4 uo!:;fЉ[%Sܫ=E}D'VL*[ B]\ʩU[7TڇH4QUS킉N<PѪMa8Z  SfroṊkPٴevmub,~D" Ex]d' g߉a #W[YX\FBrڝXNTSJVD%D@$ɶAD'*8:):ᔷN[۟PN(:ىK=؉&6"{]N`%D@$ ;D$rc02`|mH\|}AZgQW2щ{vdV;1[a؀::I\HDpGDd 2 ԚV>NY^ :Q|bG6<':2 [x}N<H47N+8"S3sqȲEzz-:qYpHmyn";1g$Үw:W h҉N|{wHFy#̙D)4p%?X(oO'~&O3NޡY/݉"8]LEf}D@$f_I!:#5r {  q\רSͯ6nb+;zщ D" ́Htj;r%sf;qz? R,]FtbՌtsN(JIto0gJÈ $%VщmA zܯ;Ä5ĥd'=>kH4MbUbdcǏD+˔dCH&3SVT$OpԳT!8c^qD@$[B. ΞPLv ZZ|~' ^-d8Vx-:q0$Tuq6Rb.NLuD@$_rN-GT702` 9\bW7rQQ/(v4Lťmזn)1WW'D" Mð?j-L ~sdCYuY:].;+^|IUP*@ m:̠\bDw++H4yr%щ=1)rQ|k~'~y 2hnZoNkkuT˿ѯT)+i>";qcl@$"4?Қ|TF̖W'ЩGddXm=˻{d)/fs6iퟆ[D_\!HD45i&;sE1Wh7\Tfuu)oXnKPKEmubpD{_u~l.@$"qI=)0O־;q;*/b߉Nl:`STfTq==65M_)e/q"&thܣu"FӅIJ99;=ȿ(pQgfU؆iweeɭ|gĜHDF36$8Uh !X G۠g֢GRh|5NAvٜ\'HDi*cN坊\D`Th'J \zjR ;RP;t>:D" M[etΡp/Fbd Ez~$n x!:((he2|KuMD@$"䥖6;oGeWad bQ zFFYĪ?`bK.R#V{WZQ!f]i\*HDi, n&N'lz[~$ ^UfQYD'֮Xɪ^f^HD9M7NN{ h~&';u]/d`vjR7 oTiY+ذ{.7yv*ƜMxuىܯp"&fndk1)bw#2Jf* F%:Qt@fU_\uUoRh+A__ ~TD" MDZ5kNac%r<{༲a#Zt7 t:qڝZ%g/īXJkH4U ad?% =i}oH4J ?݉y%kFS::»S"&+^{j H`gs.=sƝ?XIB.P8וDGk Æ|ϾJjp"* 8c_X~#ftI~$ȿRTψN3nh09K \\־xhJA[9ZxjXH4UNv݀Nw{ԌDR=Ck/`^(hv'|$[\`xyV DD3wD's0 8YF ߜJtb݆#)~ KskɭٽOh?-ÕD@$$Ld щ12`>Jhήͭ"щM #4C3w/$iwr쁧N$H4IuoxF&E30Wshc]cgщ⋗ }Bکs6!neVG恋H4IEuS킉Nt.Q,((OzH}|ˇ k(Q>0⪫ڝ~,ܴy֔lQ\?Hy*$###>>>"""...55P" A_N_6ncS0AEH~T' h:t\ň#fϞ}.!M's;qƾYU0y4CDlaoNUV̔ ?biT!b/6 &DaDӞ/#7iҤk׮!;|ʴ;lt*$fE0q1Dwz0*U͢%D'V}06JщW\i~H%g=DkV%U=MMM񾾾wU(Ly7P8uGg̙uuuDkR"^f0,]7HU=檙XrKw8D'z}kMtt t?IJJ_y>}h gٹs\.7+//:t(Q|?՚5k{{{{'''GGpvy5k̘1555DX/]v*FW[ KJ"n&BTIi˯{"iƮ[D'C<a_c t+4V~-}L2̤esovƌ78x;vvpw.^xB$BwHڝ8><&lGv~$ \!z"`XEN=pjH·ƷsCvukد_?MC~) 76k֬ 7n'""0ɶd'N|n LU^C%szeBCˇhщCKomz$6I[?pew?Fv⑿)?}H( pTcǪo߾dk5~xXܝC͛7O}> ^9mO-* SiK6+{e8bm"1'Jvq32ϦV*e";lI4%T$:uJӦM |A<| ׆7ݧԇz;qo rQNqwX˪8uoF4LvlI .'x$.YDkF*ׯWxl߾]e˖p 4HRR{_LCO?4"J݉6nW0>`zN&̏5҇11 EծDtc$6F:uFvѡ@G#z˗/kuZZZ_Piʔ)&3\W$2 3`P\x"AߣhȍLN74"SS'[?߉z(J?Ě ï {Vwh(fO#;s.'`$> RSS/|T-??_< ׸qoܹs<O>wO;x\&>Rm&tNbsh3~FvbmG={ 4(--M7o֔NXXWMMͨQU4C}ÇlذaHxyy?aΝ6mZxfHaÆQp!ð 'ے8eW%0 7 o#R_OAǍWfaNHᶖ&?B$%%%}UoSO}w\hJ矧|S]]˗Grʔ)tw8F.,rڞP[UG1ưuH6k}x~+56 ړ؜*Hm}s}vw+b a%E"[PWj|A>}_jQ&޸46~.!D0&ڝF.6q31V0׈gʚN!#Թ˯5M=Щ5(DbHQuʕ+[޿DEE&%%ٳw:tEka8dnnKn{#}D QltDcD0j |BRÜӛnh=O>e)XNLbwN 'OVwP~&LpEb~$f5b8'''11K㐐;;;[$2&CIҵ;qƾ*ĪDfbHq}IO":vb $6M?Ľؚ,\Tv)J(**ڼy3w(.mZ&'l]0щmN.cÏU+$Er1d'Y=Mֻ/ˇKJ H4}K+)2%#[cckyUI_/:ĆwuOb$6N "LRdddGDDťJ dD"tMyd٩N\KlEFjH\H|i>uDW-NMb'ǷD 6.*D"t\ff&7tcƌѬB1bٳ8%$"z#Ygۇ'a|ʬ}?w 5ޣlN9ۙIl-:ПX"QOR;wN>mAAA&9n4M{zzK]XcҤI׮]C$B0ɶd'N|n I8ߺV+y?vjF0Ϯ]k'=B>t:ŴĖ80`. ." NH̜9Θn M^Xz=ڷ(|S#S#߉'&:N\1Lb{k]?$;14+DmShҤI&6bC%?oeef͚ёkw֮];o޼QF{3GnemN\۽z4gb93~%3/\,2Ě C.ֹIlDB[D+D"yG_x믛p4=c P C1gN կ : "wQoзoߴ43˗Gcb;7oP}"zwՄvD'N :Cs`$9݉E~ݤhx@ߛMjLtbsU2I9qiy$Uoj* ׆pvv桒ԇz U*jm„ DsT\?`-)2%cgkItưudaaQ/(|g:UYi2m~͏DGkךVTJg>rEXQ%+s'xB'0\ RFJJJ7Et~C=}/^|Dp%:ɲS1ڝ؊|$FDiщ(j* /O+3oR%:cunw~'l luV;ɇN/ƊGVokDzU.< :x`=F"$#Ygۇ'a|XW[?ĥ2k3zSܽ';7**2O2N3r[ɕuĻdO?7nz4Ν;Ceff5qDxL93\.lKv]W`|Xg/D zE')srrBBBlf@$B*8݉k6H0)VD' ^]!`nEZYIƂz ىCK\Yn7R!3:\KD@$tSxd[߷RTR|,LMjҚK'm4%;Cxƭխ_5ZB$Bkr[~ݻw?~ʕ+ƻ$":" Y]щo Ie!>gͥD'͍>Nk?)Nx}gX[;d47Z2H,** 9<>YYY9g(f͚ӧOk-[< 6SN *n0'9ap(6~Ĺ=NT*֬%:Uff񗒉Nڡ$7D7Yy3%sD?駟]RLxиqؿz׮]QQQ=\ۓ^Z.#$VnkDq_:Eci 05/hc㩢tss';v =_#⪫ }tutG">ƍcƌ1d7KDbrrLjVKD$BԊhw b H)v;1V\v>ݥVV0_Y'S(=4Q@LuJhg'Nm*:ф#ѱEuӧofz#~zՉo %ӋD4]O,XѣW\+**ŋj|GLiRRR4nΝS*[y?f5b6 A$i,N<SW#UDo"* _׏(j$-ww7۟$?ӟDщ&2LS4 65֭l?zhtV޸q}| N>v"L;o &:qи ~\9:щܯσW_)E=?ˏNf:Ew:ifPn҉X:t"… sppazÇ#d79ћY4)O8ݳ\XƔGӌ($M?+3mq31D\̽y\gU"q :u+Ww7n fL]j"Q,n~zzzz#LT4H)r%cJ6v* jXi,UyyG;q"xlN^ ;։7ttDA7ԑsss53|pif.y'ӯ_?oPaaaQ`F͑8݉k60.}?n#]*2(1JU\˚W\wic7I3ݏiuDc7(( `2GԺutno7vZۇ|l;"̊jwQ%H;Dx>eٍm厘*2?dA cXy[80&ZFGwىsXWFv!!!Ge2å a~bcc7Q|q$ɘ1c[~駈D07 :M%;}[)%0F24CڶAA*ZS7 =:mW_vRWX`~WmQyN ݉ӯXJk#ɓ ,,,:3AAAO>mJ#YP}000dddz~}n߾]rͼeu  f#:]08`"3 oJ:,"R(lPH?ʏD5T<7v{D^DӧA4~GDDq[XXy_|FެҮ_ZD0"j;Sٜ `h'N4peH?H+WFn7R:w>DD7|t,,,y͓ʄK'O1yؿ[D0(}NNUQE0ړH/ǯ;xJ GY"EG'^YN4H9sFfbxi<$''}\0ˏ>1c-Z`oF4N5KHU+N\(>W$&Sz~Q4ߝ߉wu(IDDDW\ 9x$?]k }GN` qy -aD'Nz7A}5щs}?(V%59b9!z~bENʼn+#o&~0Aoĭ<[ٳ{0ȈD.6[ :-J RڝZc2bq+;fkCw/$uXQN9kD"t6tzQD'+;AF~щV> ޞ.PYX~_6Mў_^':17KYKoĽ؆"\D@$T+%V{iS!90 rJ3GN)J8}?Ӧ*=/DXQhʏD¬Kmщ@$"XT݉2}Q}wrr7w$4fUWE5++Ӝ0z$mwo*ߗ;dK0*Zeov'Ow#D/ao9UJfxlX9Л4/]7U0ov },v'y vERRaNl>_3|?+y7oUHD"@6NyڝNXSf2\jw]Ȯ(;kK]?&:15+r"wckpUHM$HtvD"@.)~6E?GW608`݉GSRwbΟ k 뉕̽Nks=[ti, e`֬YU>}p;gD"ڑhy8"_،yISt>dѰ7Tƕ8%';CL 9< !C0ΈDCΩ~gO(щJ-mi݉RP][+7߉u7߿NR -"_X}$YXXp;>gD"Ftwj08`sjwmNub-2L`˰aGNNOvDLÊ7AM6R8b3"p D$:- !LVD';{Jt*_{߉l j)umdnwzr6-"Q"CGmgD"A ND8eWp\`";q?kJ꥗V&?QK}[t,ő>qF$ZHɯqD'iXQn1щ5ݟfGiP 9/$';ͻ]Թ":M8+#q?XnݡC"媍.D'N Wp\~$e!D%Wýڂ. *U/D?*\ =ں<) zREouK":p$]׉k.GbŤWp6-E{Sqmg&;-fm-Ztϧ HD'Rڝx*$&aMa]wW$'fc|laNw1W [}֬Y#H0ˆDۉǃ;qF'hgAxюNV@tbý悘bN;>٩0ۢ/JxXmoW?l7x 71ȈD)݅\3JyE0|$9~xw/$暴AJ){o-"_XY.Ŀ ; #`͝wDQ(oX?߉Yn]><:bD!Ú+g&h_щ~ f:h^y3\ =SNgwڥqgD"@/T\?c_щsnI08`\ΦG*iΩd(6lUy7L%Ĵ|y^H{HxAO?tqqq[^^0;e7wщ# D0"5N9jwbH%>jEM8Kc)o`N<`dG"{O>zQF%$${̜qi>qF$ZMÉNs(tz#LT{w\Hl&J6mԯ_?[n #zjgQވcQ)߉~=(E5ة݉x]=Ӝ[F__n`U  |h8pqOꫯ>̞=[D#PT-щЉ`DGOT>B(rr.:tx٭p=xT5~$,v`h֢E'|Б}=tؚ5kR)F`,$snk>YQ(k.wbPQ^, 08|%=fb鳪ClQCGZNN F磏> "T6":qOFH\Pz9"9W=mKm[1D'ƕ=lN<"Ky{"' ܺukV;w?%Klݺ H0j5'86n~-FBacOz{(*)N݉u60r^N!k3^\uU.Gΐ3cD&٬-Ov-UP0 vwlEM1tccڝXmeMȟߍYĽB\D@$2ӣ70,`rDRYy1f̤3[HK&|mщfzHpwwwttvx]3g @$<,6_HG⛶)%0 ;b#qK&O thaD',YRzxFR/=̓nk)e5+Tw\Dnc[[ۗ^zO>jf͚@,/YfMMD"@hNE?G+T4FzԚĄxEyE0|$щMrN1H'ގ*6߉1YzH*oHE"N9s`TBDH0j9MSv;q]+@QNLk0$lŠIlC%Z~E'۷>"^RoЩHQuȐ!&M'NSߦ;7xUn+TJ/D WE7#gQoթHwO? P(:u#3s̺:#z׈Dɶ-n&~}>z9V})?lfObrx4#0 _߉qUt3'L… D'''WǎkJ#V^^>tPy++5k|{ptt͌$6u*c/?]\t`C9*\hdDkkkW.]j2E347x;vvÿ\^988 #pH0"bh$?߷U'R`d7SPU+x2AϨ{׻yXA7oj7I-{xl$D]`M|gD___^&3\Ž몪<̵ƍ5lj@$jfWR0,y^GUİ͓ED&;}ind/Nr!o&WE#;h?i#qvv~'_z 7˗nfmF$r;)İ@o&do,w_ >Bڛ_;ðmv}ي$\]Ĭ?N|lll<"###?qD͖}y) ׆ƅp7>ԋ/H0. hy8Y@oΏ2ϣ0uk}rfbweoщg`i F"s?񏝚ٳ&6\ R>]Ft~hWD"_Ѓ f~t fxIB~'K7'9U*$:NiEڑ; ˑȩ`!><<p2$fiwK o&܂ eC՞fÆ ۷oF;wܴiŋǎK5l0# .D"@k.:aXת3}q9 ^ʏDǹ¬wtE$Ö[y*++5Y/B)7͍̔)SF$5fV;G]9M赎%G܂9IlƎ$6fNŸRkC1o`NeKacȯ^ `mQynN ݣ-:6H\#דsi֣={6`Jč. 9ުB,X|}?[6U&_J&::}nn!:M@$3N01&fЩ2 ZQ/6)yϜ]Il(%ɟvvSc#[D?zs*z>۷/wƧ~SRdddGDDťJ$"C씔(~$V$@u2щ?'ﱳ7>BNb3-kG+n f:mG)qro7"{xٳgϚ5kٲe&0YZZ3F,,,F \Tq154nWQ˭\nYvB@4(ATw\eMDvYeXgX;5w΀0ѣs0]yy|󪝝D$IN&~s: c%UHG7S5D'V̚MnDן|Gsv;BHlQ$2{q83gxxx0;7E?~Xg„ /_F$W]zT_􁿭z$. X\\OLh]Ħݹ)FO1D'z%% J<""QׯAfff"ݻOrJ}Zbꃄ"]zjD"ȯSщSv'q10(}Ǒ3Ni;8J*>(9މ>(nG;ɋNF$2^yvSN(===GGe2RƼyZpD"ٲe8aaaDRV#Zz0I!o`8`P24pIUz۷D'X GrZz3NA7sDJ F$[`„ bXHa]bɌYfn\WQQq2h#;'"Չdykaw^0hYU6?:heJOB|#ىGJC?DxRZsTf(whԉn*?1CCCUEyG"իΜ9cJrĂC ۰aÎ;Iz{{_xɓ?_|lٲQF{ <؈ оDR>x9UA!:G\t#{hCKG"KMmٟ5b}8鲌f yѩ*3D;Cggg7L{yyу}hR0lʔ)ms8FN{!EM'cwx.Kghg9-E>xz^W/3H|UuӵkW;;;WWHW͍ڻwرcU[v9(($FQ1cZ^̾%#Ю隝;^ c>` j%5&>x2EOTΛOtbo*8wN%9F*t()k[Hd$&& -J! cǎ/NNNg϶d^rS4h %RD"ى+5K]tuz'~aNO*1S-#~Btbfs?MLyWiK ?ӱ in444dgg'%%EGG1d=++K C$G"7o>|6޽}||$A$%WAt✽ɅrH~fUvu/W[|LtbzH˥n$/:r4H"RkXEt]ie|v"8qѩ]p"CX2r4щUSu]$Lz$z~p5<2FEɽkVeUD"3A5ݻw75ŋ?qa}kG$^H撧7w^I(Ϋ`V JoN '#Y2D'VMGbg7\$QصQ'N+=1luqm;2{4DAJQD"Օ]孷*..F$jF .4pղ6DD"@nFe~kl+mǰϏ-"CH<)[;4;5u>A5S-dG'/l64VEVO$2""",---{n:ooд42HT}wP666k֬A$@ oeW ^ugCXKq_sE2LڅVK=ىKbKno(f'O!yx@qX4_d'>8k_ ҩ$莓R]qH֑+̒:mf=8|(1Ch!׬Nd7%% r1'*Ot/M*]7D~G&L"[nC:EpyD"V\{V6ߤwo蒊 s1@ۥ> ZyJ.\'CK?ىWfXUXM1 xMT_dϻJc^s^8tP,]ln߫W/D";nJB.E7OEffKB*@[D4;ʅ>B%#FivbSVA,b|\[Z}N?bڑ6fPtt.~:qTW Sq o*W{+6+whvW>,1SKOlNRu[5J"qwO%/H/\G?>WC1/\QY'v lfOI* -h%})U6WϽG |KO[䦤Q/ D'"Zֹaoމo(FR"ui&░c߿te:w졶n݊H}*9MoV_L.à-. @{T!C5S'Tm7C.щ'VvMEQDD֋/8mڴu1 _뭷fl yyy'NT$>>[!q>Nd!*n]wfx75wٹs?l&)Q͆wJũiz  ioGׄ|rwa^M Ϯ,7ܴ$QصQ'8v={|b$ľ6VVVO0zئRqSz VPЊcG5;q]lɭxBܸC4Si! x³4:qG%䦑?mF$129Y@KVC$"L@iIͥ4m"ŖZoyJ'TǤ@PsNF "doىֿ'+wunԉBCDQn`f:Zs8,J@ ׅĐyB4-*2DsZ7TMNs*m'/:]hND$"Z$nﵴY{"OI!RJ$XV+wv"mY:)In)}uBNGQ=ҞKf'WT4Hzj@@?=HD$K*"ʾ<`my J~!WNY0rE&aGtԡۚ}Ο}t}Q$:=,M2HPHwZ2fv?ى)/!+ K ?G+" R؂n=?E'm"_)щ'Ҽ;H㹃;|LZ"if{4;1)R!U(d'&3H^z*x# >s-mַv*a\zT_,p щ!|jw!.:u.Z;1bǪr}8,Ő#LX5!x*d<ţc# ׊O>\+{'{'bnDbFE$"'qSB k,&:(Cyd"'0Fq21?ى%CtLXK㬯.P6YUdNt'u}׍FwnH_!;1x# 22ʕ+'OpBxxxff&E-aJt*sďWD&TUUkGbɈQT6_vNn**?V@GH'' MS۷/_,fF$B6':q"OO0{vKOtב_b?qXq2چ)zE\tzTJLRёY{$FGG=Z{#9֭[x?#tQ'-=CtI T1BoNAVoGй4}ߡxtÿ>i%ى!tuD N-ѹsǏHZ/H d4WXt&PX>eZN o~ng;Wz^ypTNPf^5HgOU=z.\WPPl2QՖS]Tks'/:|K`$:uJU|:U/̈D';sk1`Xt5OӠe95D!WUgiZyֆĈK,a73gN ^MtO hZ7Ũ;C%789l%o_H$2nI ~,%|x"څTNCtbÚb/Iy"-O}ECJS7W(%}$ D~JUJID"ѣ{&>Q޽9lD"ZlɁs?n1.$:>4!;Jg̤fvVN<.D`aС䡕ծ]JJ"qs]#N<FQD':PיGw {HLu,("QѣG~~~?mۘ_toKD"Suzcщ\Dx,0ϟDC?=Z.7Dc 1B==.K0HD"@xP6>ĵncS`%"ʂ`=YfV4D!kͥYҳxn5>zHD"7Hdq ?[(?)ҼN\tuatM=q2j$&]_ .:":s5MϼW 13G+#hs:,^oϡvd'#KMm9C#i^;HD")E˞+Tgpg̽i}D'.I*EωN,?Q5uQċ_R D=(Yz0F)^wpJQ4|wщKTielZ"-&:|TEEeS$O\tzR"MRO)39%It%yyzzAŻsN.U_=l-#sZD" Z$QR|*V-B}wD'Z (ޚDt"Tu{^^1xe{D$"LgSD\I(E%5ll&:qMB=݋P^PP:56nRR?oxDqiu=]"HD"ſh?ObEN)ZIωN<|]Z?O@z^D'g*~~U=/;'H ;M҉>>'i7^Z' q;d(щ#jݸ$F'9Hh;|k(ī`DfD'n*~7Ak;:"m!?>"*+\y}щB'P0q2dPH-B~HN4HwOk'.)*#0+q%6W':X~~wZ ;ĊYZCDƁm F*//:uj5kVUU"CDuԺ̓(sYgS|~wN-% ZXX0[f˵$o֭۾}ٳg=<<_Y~aÈF/|뛬ىD+|J@?ו~EeNt"5J#Q޽ MKKc,SzP5sLUΝ999:䕻UG` Ё"uAtt𻹸rщ>ȩݽĒaåwT$J޽+ifo@Ʉ'"@/O&hvٸB |)}N.ɫoO[!:t+tD=z4;'NPƎH029ǣr1!QHA+}?$:7eeDCb  E"QjՈDD{x8,0BYfׄ|\!N ':zW^̙3̎>>>{-4m[`̛7o]$ɖ-[T 3׎HBQ.TN<N0#Myjq>0*{z$VΛohlloo?~Ν;_:gv_~yݺuiii&35k, 0`CAAWTT8p`Ĉ3F$v4;5 2u<5D'nE^7TXbPK/iɅz$baawd2{p\KKKbC ۰aÎ;Iz{{_xɓ?_|lٲQF{ <؈ fiALNs- `>JJ> ^MtⶨbH9B^>vHhc'ى;/((t"(+\y}щBjz/VH<}z݌1="""$ܺuk^T䛄(__1cƴ"}#KF$9mI29Nt2l6]tٷoT''ѣud''ٳg[ZZZXX4 bad7WHtf'n=I"S`8f"ߎD{(ڤxIUģZ#QUU5`sFCCCvvvRRRtttXXO߳ :D"EN/ErEݵED'HVg .|Hd888n"4\I(lJtg^w$r Lĕ\}cǏg7 lQ$޺uKu%HDrt.?>W+a8fFQD':c&Z&//EXTT>ڽ{w3yrUs8|PH0%ʦ:ᯱ5 R L|]ygد_?vEݻwGk ft ,9rd.]Zcaaaee5w\ggg&!&VvێaD'.=ë`8fL/W|$+NjQ$zzz5E?^u-nL0ˈDcw!p)c8fD7щ..iڑn:Uڈb#Ɔ}tŊ&N(//:uj5kVUU"%WMv7|bqk s@+#hs:,ބ#144T5k׮1^̙36rD 8ښ ۷xzz={ٙ6kȑ<`ҹLjBqk$29x'WۤRM5kϟL$2#ѣåR?EQ3gTM;wqw&ݙ"eԽ碥DR4)0!:qilS^5]vsuudܨ{;VeΝLzuLWTT bxƍp8D"{X^?Gk'>^`>v'щd$2_x}رc&_jƌЖC6u/"%{iBQG5($GGtꠕ\AIF"NB2dHdd}ߙ6d_WjܸqO[W_-i"װ/u}Ʉ: $ e [8N\qˆ^z͛?U{ӧOHL.Q}a_iJJJEQTnpcǎujWySD&!G驑l_Ot76"SD>ueooSN'$$5Zݻ"={2b>碢iӦg3_TݦRqC^AONtV:fD4zhv\'Nh222C;(^;>:yտ6ӝe׋))m((x5щ#Mϊ+T$DrիW#LEievD7:ɗ(_X=.H*O4H(*<ߊH$-[H0r}%;eudRQ&0+p4N\d"Q*0I&;w?~LLI~F5k0傂w8p#oHB$U0%8goDSh~iI1+p*$qƈτr^LH7n\n~z\ZZZjnÆ ;v`&}œ'O_|ŲeFE" eBv k*?-.0v4M;玓!/bK$ҫW/&,X駟Λ7o̘1ݻw'׿%M]VV6eʔ6H9s#zՈDvWQ'vOKM J)@&,l"6:O^73f׮]K"6{ o'Fb>} BBBZtPv_|D"OLd{rAɻB_|El.\4HիAVVVأG3'LK^^"tS9[\K)(H=MbyE~kёGao5iiiD]!aN\y/`>F*N"6e c :tEGvrrbwC$"uD/O&hvŸҹ:M\tbAep lax]HD$@Q}8,[v J)|Mӻ~$yb$2>Cv3fTWW?&L`w>}5ZEK.|XSr.E$ w}ݬ_~۷o-srr6nأGvaÆpvz G5q4O)n=I c>F.-b.M۽{K/.]L0a…6mڵk7n\ΝUی5֭[YYY555DD":'G4;qB^`tJb mHt=zdǏٳYXXӁj>}h>H){TN|F|0:' lDbKꫪW~zH.XM+}b'ۇ8yW(a-bcsΙ7>L~cǎ}",6rS{`D.bs_G"5-r{^7D"Y!aN\y/`>FD"6I剈D㒗opZWA$S'}y2AQRElV^_Elm$ɶmfaa*66DQlN|1,80":|Db~/?Ȟ={(B$>]K,Ft$/N.Mc<ƁiNܟj(SSS/\L˝>}g͚)D"GJQ\#5O):^ylE^s+z\FHd=zh/绩P(;w̾!@*ğ/N׋Q\fՅz[FH\hQo믛7 8}۶mC$>eR4;q[e5"(,"N&RTiﯙ~={+++3xk AJȇ8'["Q4"S|~3͌k׮D(ܩD'~3ykz$n|m+ѣGNݻw'Nh,D"S|' =0|uҺOCר"t!Db |"HVEi^zIQ7+k({w76SX쉑 /?~ D""%k[tdL@"^c7pttĸD#%*&ivU)G?;<ƅHD$/fhvJ:F"۷/ӧ11D""]8ٞ\tވ* tDƙ3g,,,mzu Ƈ`8ӝ‰Nv^ D"ۻsoK"t!#Ф5I!ò'FCF$*-=^H)L$nڴS`ȈD0D 񚝸NK GbPPP`d /U?8/|lllTׯ_}%%%UWW7 CF$!igCNy@$nн{ L H0Iܩ1v xP =6m¸Dǟ7BsSȇ"Qe"`rݢ4/=s-N$|ǸDǫ||4N8ɗ)pw sDv H0"I|8|+>s$xo;wDs@QO3v"ɄJ,``Ȉڵ+ SQQQ"0~fډe %rL #pnd//;wdCF$܂2' ՚s]".(0H}vj .wR1%Nm!#4dUڸl*N*aJDD""̇Xɟ;\k'Nw ?-*0(ӎĴ`b*ĻR'k?OQ"F""4sk?=vOV\) 惢JډCwV "`>DRgiaZSqpQ HQov:OͩĔL##چbΈD0i*.eX#8z(H+ s]":_)HR#OىDDcD'N󇀀橐OSirn`$ 77744ȑ#?ZYYbˆDdtpN.^]$T@@S1铞!# *ىs]#1ӎDFaaaÎ;V$aΈDD|f'Nq))G"}||0gD"JBT-l;T/a>&<=ܹs1gD"JJQN\έ|L5=saÆaΈDu5 ͧ4;qcعۅIFP(ܹ3sݻcΈDEў'kt_XL,o޼y)Ebfff5@b+8-b>&E[gϞ9R$oYYxmN'Fz9`(H&OÜb@r-(S'ه0.W/o3|n(:[Η/_F$ uhZPda>O;7oެo.\f>SvjYfUU݈D@$A HNu%:qSwyݠK.<ĸ\%Q|^n]\\<==Ϟ=mmm F5rHH@$@gk,y:yWۅӋĿ1EQ̙3U׿;w{iiUG` HV˭,rҼ-()S=z8p Vݜ9s**ZsAX,޸q8HVK>>ى$e #qĈ>>>תUi3-evZD""B$Ul;ىk)kŊDv9իDh_j҃1Qt*SP@#q,,,:)K8D"ٲe8aaaDD"9"xND|X%;)Yf^ڀ tܽ7[D" 䔽_f'.?tF ˵$^!C6lذcf/^?{o%O1Db;JNNvrr={e3 4نْH_)"`r+oj^z쟦po DbkhhNJJ c{VV@ 0WHD"^qOP%OH@$T7IW[Y'|H@$ى )sHD$\^TTpRSSB!"䒧3D~pHl ft ,9rd.]Zcaaaee5w\ggg&!D0ND'Nz%D""E(:[q &\|uNm3k֬*DVIII=\o{ZPf'"S y\.Ғ莁Z[[[n...gϞpvvf~eÆ #9r$g4zg$uzjF1 H$ى )E͜9S߹sgNN>\uw#{m܎׸]H_f'.%_" Vݜ9s***ZqXqFq8"H @ DhM+=#jv{.7`>HMVb5f̘֖=ڵkD@$LNu ocX2 @`ڐWjܸqO9x+Vi_|D0y9{#NdD"ӧ;6nݺ1۷S} "|綾^zglmmշ)))qpp1yޣGqr?٥{8q\.eدz޼y{9-ܹs꫘Ƀ/^̼gϞ1csG!UԼ?MAH?1?oW$4 ϧ+**,Y3iii:t(?###_~eyfr={_~ZYhL&kbB2do3OiӺ*obbˬfzywڅHH>9ى_$ %r=z4;'NPƎkIlH"Mqssc]l7JJJ߿ֺ{]]nlk(x(WWWD">Tof'5N"VX H$jC^h&طo_6:whѢ}=ztÆ >*u<̙3n~&N,&2)//Tی?\5mT⋎=###44tӦM;^?.ʢ"z%MZzs+54@RPC44S@PB@eU!vv{ygyxe~oNzfiٲ4`ǎ"wޑ.W_8p@(ٳgKk077DD"!+=ډ'Hl/1qtҥz|||FΝ;_|YyPa>\*$'' % t/ӦMn3gjI&<[˥`aa!$qЧ^{MS$JAW^][oԩ8Dhppʧ<7nHlr۱cG''j.u޽{+_lQx"1 @uƍxxx9t4য়~t'NHA&פ|oQ:ޯ_?M(?5\}v"|R'rY{2Vb KKK {ūVfR?~7o޼f͚E͘1CT uo1aaaҘCLiL|'MLLbbb4=2(|tÇ|vMhnnjb%%%͚5 KTJč~=~zu_\bf  {#F$5hڋ&p$jfnnc|3⪮ZyfqdӦMkR:::V'/^e%ң%Dgaw2+dY@$6.r}A K k0L$I$޸qCBi?iU#1;; ?)**4hPu"Qe%8D"C}*._şW].6F͛cǎrقnݺ cx}DbDς*GqҲ~~~LZZ4ȑ#U>∈//+VtUZV{$r|q.3wa""qccc®^#g! *FH$6OGbbb"Qb72}S>6D4DFG"r|ǎjٲt%푘B$hTxoRŷ6y%L"D"HG߿fٲe.]( ryCBB,>b"j,5x_*,!е2& O֐!C߿߬Y3;88lݺ>}zݺuҷ   >ґb"QS$Bݻ7hB U}1FFF!oQbbtڻ_MMMaڵ#ʏ'z'o]Ȥ Ν;௿җ ۶m+ 011UoooiDՎ]$5E_OV{{{ ePPsΝXbEŕqϟ?ݻQų3I_UC$@-,pkygЩ?oBW?i?y…ZVegg'5kXL&t77?b4mڴL6JKUVʿ366VHD%6s"Ǭu<mgϞtDbVأGj={W^y֭\'N>2]Џ^Qf8xN:ŋD"/ s*,N>PmOt`EV;޽{~ ;C>}z޽[nmffֵkoذÇڗ-**rqq4i`.] TW\Yp/ 3uD"mD8rssHThHLL8ؘHDQQWP?w~/M.bSNt]pA\.})LΝ;'{駉DH*Iw; ʋ/(N7|iLTTTߴJÀDHj*-O]Rml|Ǥ ugٲeti5^OQQQ=U}D"@${r~Db rs]z+)++7oHD\q/={ݺPXy@$֡)S(ĈB񹺺 W'Nӧ3ܫZYu,nV0Q Lpo8yr_TDD"DhDsCӧO3菤G@$H$A$@P>u8cy%L@$H+//Ձ^'H&5_]uFԤ*۷0`Aڵ+33H]+)|Im*|IBDD"D kӦMXbAG2cce˖k%'"4])c[[@$H77&:ӧO^" ۷oPn&/*.R"DbݓJ~PW?]ID*N:s%K<3ʝءC[nP Ź[mSۉOD1Q"Q4[e ~~v `@}mǏ޽4^Ƣ""ib˅;#_&c2 D_$ '-l2"SbV5+$[[.=;K J-˹"@$H$H$%%lR\$##Hzr?{kX(G-Wu9rD9#""/_>hРvڵngk%.]裏 о}VZ=s_\.?iӄ 177xW,YǠH(HW.0von$c$jBt_.S!"`"qȑsrpU#ɓMj]m$&&&>n$ci$TX'ܭԗ/?#$D>l('F9=<!W3gHt*21.=zdffVy&JhpH'oտ?;rϒ  A$m$~siٲWWPO$1.RD"4`7s'oWW2d~"D~Fݻ~2r׮]j#L:L~*+01([j%.bbbI$@[Xh__/9DzqqqRZJH7"Q0zh~w˖-GvEZFb<]D Y|ym^," L;A_'"JeL@$!E,=8xuӾKO$^~eWMooo哂VDݻWeddw!;wM?:_~E:ںHjLގb `"Q?~WޟJbcct%KKKw.ԢEӧOKnnrqQdddFbFƍ}U!̏:*XkJ`В~]Ǯ`~"]$5gﭷޒ@Ν&55Uh5kֈބ9~0BvIeoow䠠 gggaN"q#uD"4B%28{8cD" 5t77<邉j={vʕZNsΦMVYLB"kt˖-ϯHܭΗTSqqY@$#A͝>}޽ׅ1guV+BW^y֭BLuG8uԋ/cHl׮]~32CD"4ѩonDv_o)D"D}w-ZСÐ!Clْ'*AѣPZZz!7n̬k׮Ǐ߰aÇYc"ϽnQN>nV0K"QI9X@$]?[m*mTSD=zHf͚߳@$$Q)y tw0K"Jgzqpp2rժUW_}y#uH72}[Npqձ& A$֏#GSgaavL@@8l׮]Ls%~q/Q/;_n-3Q"QN>-ȑ#%%or޽{_8@(2&HHF^k)?SJe@$ u?ViϞ='UV׮]cD%T\r7D"DrsskٲoLrܭ6ގ'"r xDHԡnٲeƌC ԩI?gΜGj=DwK*ĎrREq}=e|QD"@$H4"Iم ӷ^},HDF%~m4 %"x䇮%]﫶G9[XZDHD5UTT$%%EEEEDD0yEn wV]/ NLD-Lɓmll՞j„ ...BB1iMӧO,HD.;vlMߠAN}:YC'NήJJKK.]*LJH$A$;]Ք_GQi"嶶Ru)!!gffnݺw[T( #Db޴iӐ!C:udfffeeeggw1 /tСE x7:ٌϟ??m4a*-,,^y%K$''D"UGmķrB CJJef~Vf߼y5k-Z4c aϳRݻwOKK3'N$Xddtz)_??.]=,SO=vԩS+. 6Q7;~xkRёH$u+ҵnwV{9ŋ1E #FB  cDbDb@@ m߾}FFFZƸ, }ܰaȻŤ{oj),ə"N.>|o߾5Ca)aYa Gb۶m۷o/iӦSNݸqΝ;ϟoff&m­njgϞe˖ *+))yHzw?|WزeٳkyR&"Jӧs܃J" ͛7ǎkiiOn݄1Ha>S"(ܹ˗DGGWpi˖-<<&99Y^f"Qedd9IDb}FbD"W2Kډ|s'"lKKJgaa1eʔs\R޽{yիR666YYs5"H$5\'V329S"Q1cH۷_zݻwxZZ͛sH "D"H@tAiz… q233k H'D"H@YbV?]S ~qYD%N {Y>H$D"Jdv0|b S"QH{њ.^}7oW5`"H$D:`j*.[XH|Zn-NWxxx-W%MMMUmVZgGݶ|~B$D"~h[j'N|古G'UVu \X:}̻vjR3uH$D+*_ڏ,)1E >}ӵo߾Z*::Z\Uu`k¢"QFD"08rb_poTC`TJS"9sE:YլY we2%%%D"0P9mS|b+"| 'fgg`%K.C$6lu=zx_^8xN:ŋD"z+Q=7T;Q1iL$mmm];:99%$$Ts̭[[b 9}1"})U('Z񐢌C OJJe~Vf߼y5k-Z4c aϳRݻwOKK3'N$H@?,b,A$֣#F)г&A$odrg`C#sHB`@$\~aDEXJXVXa=e"D"^f{;R켁HW7otvv;v0֭0F)7gJ$H@o!E'5_Z#$sHDPXXvU?4gG$H@e9j)~FbV!S"D"@$ b_pGoN|C A$D"|7@]H\~ƍG߿?(((77 >x@+ovHQ!EuɩSNgi֬٬Ybcc\UZHDt$"[RpHDbHLLr !݉DH@sHA!EuBpDDb-ٳʋ!nڴHD9onⲃaT0E kl̙RߵhbҥG >tФI;_%"=QR.s;gNGeLsNӦM{g+ 8{8[nyyyD"@$?n˞ډ3].(e~@$>J.SSS!ՎBr޼yD"@$W K+\DRr%5X.Nײe˴ /DEE y7DԹsgqN:eXiitr;;;" CQ)y\ԉ6,`rD"LLLb^^^R޸qHDPLZWJ vD"ZZn-NWHH bȐ!ѣG~JxX8yNr9*%!*I"ݿ]fdd$ Kyyy TUƷOy:voD#&HvvvvZi꣏>Ƿk.--H6m4э+V%HG]ԉ|s)~6C$Bm۶Iw*[ZZ_|B":ܚL>}ؒA$*#䭭;eKqYL-նm[)7&O}sI_z饤$"J(}ϨmHhSP+u(' &H&;wtdb?E,X nݺܹsMF$V'{甃u3r "WS"XBCƍ4^&ۚ>H$ ЯF(p׍J8&H&^^^zf$1,D"DYqlᾐJ8O7"d_~eŃڵ \$..?l׮#1;;{ӦMC ԩ݅ Ǥ:99 :thѢŀ|_ʕ_~}ɒ%'NiӦM۶m?'|D"TR.@j' JdrDԭ۷o>}z˖-Bc >###ŧӳgOuEg?cB߇z)cN*lBj(##ChC'w?~|VV-\PYf'!D" ǵBّ:Q!"N"1 @%nnn3222E^_<2ZUXIiiSSSn}FN$e/Rm>L"He$m۶}6m:uԍ7ܹsfffR 3fӞ={-[|-ZT˗K:tvZ{EGG{{{/\e˖Ҁ;vTZ<00PUV>_]k׮999D"\X{2B73P A$5DQΝ/_<@J.cʷKkPs%7nu)yTH566 SSJߝ$hP%R]D E"D"XH PqF1c:$ 駟o ηgΜ)ׯ%%% >.,\oD"Z-N?dr:HH$05}/,,L3tP̔ٳG&///FFF>H\\\O*$$X rԩolllDT;+dt""HI$V;Inn4F3UףHYFcbb~ħ7nh9@uxƫvCaer&HH$>n$jBi?iUkEEE 2˟yCO?g!FN$PMwDqHHH$>V$Tu^^^+VڵtZ"Q ,bjjk8#@t"$yj*N/QaSD$H$!ʼ.]:~x+++M[+_q#::1lD"T(g/q2KD"D"IE\.߱ctRU-[{5#1!!Al |5D"56Q}'?LD"D"#QP̘1R Ξ=+4#QXرcWd"r?AZ:Qr HH$O$nڴIZO? *--4#q˖-zիD"Nj㉈Nڎ*%33 ."D"H߹s焄MK-%7o.?⟭NDj)~q\0Wt# s:q:gC%A$D" XIak OʭF"D"@$ez;Qӿ1"H$HD?K}"6kڿeK KigI%A$D" U~q՘̭c>Dbyyy4/_aÆ@Uq,<)30~Ηى7G>#'aaamڴi+V A$ȕ$=:p5~0u;>SD F[ӧ"Hr̂SODLq Дn#DD5Jqu|& 8D"ԉĬ“ɓ7vⲃa%D"#/Pg?H$HՒg`N|kՄD"@$D"hl+kOFv:D"@$D"h'Wvx"D"XK)))֭>} /жmێ;:T;vT/_7o^~ڴiӺu}Ι3ϏH$Ne[ kQZ.#A$5 ֬Ycbb霫]tx񢖺4iez뭜"H]4@N|oGPF^ "H|\fͪfff׮]S]611W^ڗ:t'|B$@w K+SɛRDDbyyyI5תU˗޻w/<"Gয়~ڵvM.+/ҪU++VT%KD"xmU\wN|ۀ%  Іtٳy󦸪!J>>>رT9rdAA4^IH$"+Īv3jϪc1ZDciݺ8]~I/۶mK$6H([nMr/sΕFD"Y|b_We-5'~"(_cĉ5XIiiҥK"1yYO 7m$ǎ4K,RPKYTTe[D"-\r?{ձSQ<0XNoC$>+;v䔐P333nڻwo-* xO$ugϞYYYc222O2?SeeeMx=bbb*-6p@'H$@oeY?UX|ۀm>iA+%%ҲRw{_j0Ǐ߿͛׬YhѢ3f{޽o(O>#))^xA^z [PIIIW\YzuN?[[hl2a{8;;?M/"H$Cq'5L+\ҞO6Db 1"AX=DLnnnBoBUgxWJKK+-gyFH$a)(8<=\vUSDbÇK{,R² )g$6t{+X[[7o޼k׮Ç9s \߿~m۶EJf̘qEܝ;y$M$CT._XzoADa),, zŸcbb #A$ԏ{[TÉD'sNDvmfn^/';%A$D"geGvX***BBB"""㋊DH0Db-EGG S7ydcccg1220aD"@$ \.?vkp A'DD"9rdڱ!"H4h)))bʔ)s]rݻ]\\̛7ήW^""H4Pr|̘1Ro~wޭiii7o Dpwƍ̬JJJJ,X ߟHD"t۷6W@$" ڳgO-WuMqU "H4D[+<<妦ªڶm|]C՚ "HVZU$* sssaUBx1ݻI"A$G}rU\\\Z2d"H3gJ_$NV5k,xB$H L'NήJJKK.]*LJHD"r[[[:v䔐P333nڻwo-* " DbiiY\.=z?U8~7o޼f͚E͘1CT  D>bĈZ#TXzD"D"Ç۷y(,%,+2"HDn޼ƅ!h*{ZjX-Z$Oǎ .a6cacf*`ſ?0``jyxxiF9ߩ)t{{.&&k׮R$1'Hأأh\]]DA$QQ@cbbB$"``HأأhD"oo (( ڸqc3HأأxKxKGG"``--D"[:[:DfQQH$[:[:@$= = ttH{{oo(("QQD"أأxKxKDGG`= G{`-- (P999 - 06`a36f***o GG&ЫW$^[eqq>+=߆wݴiSod2^fT=oO\.9r5Ϟ=nݺy]#4j(a~،u;vL}{ʔ)[ll',Ybjj*گ_?>(zym8 D\?ŋ._\Օz/oCCCCBB8PٳgyQD9rD'LPi϶VO?]XۘL&{g5޽[u2`iڵky]`oH>oeee=zЮ]WVުU+q@˖- x]WBְo>1n4Nj'_~FءC,۷ 4H?l:N>-]O4I0[h!ԩšoo۶M."z o۶Mz7ޙՎƜ:uzK￯i̙3a.g7oޔ@GGGMþ+iow6c]oc/}K,Fo:͛SOmgϞ!-ts@6~AZ… )$uΝ4giXll4Mlƺ,.صkW#=*݋g^[˥/m8<<\ZZFzyy9m4Ы믿MHH4ݻ0QҠIߍѣ¾8rv`36&-8~x#?F~^[sϗ6o\<>N$BϷk׊ s fK W\4Wc^3KKKq󳳳>7G]X؄ ~>һzPP255U>A$BϷ^{M\p̘1L8 t3VZiUyiPs#+**.fWؤIĻhڴinn./p3/{{{D"|8{J7B ފ $]%88XukׄՊc{9^3Tk ʕ+տPx=،g;{w}W;88[YY=zHAl;+V~SPP6d333mڴy7<==e2/ 8&&駟555ba#O+vAKz&m~ਨ( 6onn.YfC?7 M}u囈D6|W\jA~n^[۷,^Hg"x"^*mڵK?w6'~Brjfeaa!.nݺJmXԦ .QNa>QIﺪ:w^<>>>Ҧxq탽s`3~ѣGɈ6n=܌ Y[[[\N$€k׮H?)(( ۥٙ:=u]v3?Ty~wwlOj~СC-,,Μ9Ë܌[q; ۰C{ץaK.ՁQ(T(AWW aݺum۶888Ҡ)zH#"".f\؟)E+wiӦS>WqHHx&atr" + KM#333}-[rEET'L:FűcJ<==yuPbbbo͚5+)>>^l ;ݻwWWy7j9|3~E>SMcD6߾}{zji˗y'qYY ѵk׬,-ѩS'qonC8; E)q3pS!E+Rd)(!2 _L$(peË8i".RgVZ"N7} 7ns.?Wc{v\ٰ{ʕ˗//ݹs'y6kkkx8}.pdχC ;wZ !6oޜ8\^^‡@#F{os JC{,XK}*mlH${޽{a钒gφ.++:$Iر美O=)𜛛8/ۧh 6sĉ DTo%w|6h"Гg͏]v-tiyyym{ŋM?bMҢVҝy/Ir*uf/rdeee8ʞ={I۶m oJ<k[n}Tl˖-!O7Cv-[,˗/9ݲq I_|EϟO\xqԏ][<7Bwwa;vl{ݽ{w̘1L^^^@ssst>_ƭC76-*8)z66$=|파n9rHxDԩS- IuE2hРvxbvvvV{oUVutq޽k׮ %KӧO.K_>)z'񣦦ҐTgcC"÷n>|xlڴСCgϞꫯbv@YtE!Ν;ǏϞ='O/cm&L{uW\v23397nsY/}!Ȝ z:u*lYWzrrrBbܸqvSw^Kp~%Ћm\RRbH$JgcC"gΜ4iңUVVf-H6niiY|yO ҿ+Vւ^;~nnnnvv_z:X!=o(#GΘ1??gR^Z^^XoFEEElJ@+--߿g͚k׮VxvUV۷OWrrrN8JȄ[oI(33Z"oʕa3fLeeecccKKˏ?p/]\VSS'޼y͛CP" >0ܹsÜxEGo͚5555/{7 JJJxܹɰMlZ|K*0z!qr˖-aϕ b~0%?~</^zo߾0UTT$_iiip~~DƍÐ_w9rd<ޮQt0$8qԩSCW@(ym~!_WWQRXXIO %SLy!Z qR@(x֭[wvQq?|qqk#0jkkϞ= 0UUUuϏ Jm۶u8p`<%NVVV!qJ=/--)Ardzz[ z?>\nݣbs=͜9S0Yzҥ.3EEEa ;󛛛 l߾=L>FĘQF}' 7nܨYpaxiȐ!W\Q.hٳ$uaxFիW۷ 177V%gJ]]]iii^^^fffzzafΜk׮Vxv endstream endobj 149 0 obj << /Length 3279 /Filter /FlateDecode >> stream xnF_A}d3lwݺM(}p@KĆ %cIYpx/CaD <?VOgo.( "I*@`5 HH\NP v~}m q{8w3$(K&PQ0qN" B,AgnrV.9/EeP$05"p&#Hob-jNsa&, |5fI:4^l+8Hq!2#bmܷxʫeЌ0y$9bK ҫS}g "?χс4Z#B {Njl(A\Q?UQ1xE I.,I>oMȡ-$߿ [!MF}~J>DdrъcrqeGQdI>fGroQvIv2wUrNwkbECF) C^Pb<[uTւ˷A"8'P6t+K0o-Q-y!t[Eil|ɧ!TtφSΡyRez#xsRXC@p4g͙Q?޼??L[]OՐG Ю3L LT#EtU$#t( 4 ,qJbo9;ee܁\o.m <at3ZrD%'>S T5׋]II@GEFpD\:r3F`*g$4w@ 2U \ݔI΁p;-IX&UC}=f<"ͧ[`;?i=sQ&ida{ůǽ8 6Č@F\"Y] ڿG,[UqN@]tu)OIW- &q,[P=Zf|U2W,`>O\ÃLyW_ea0p햛ť;2e:_ Ƽg25qr3PT0CrԨp˲sw1',[c`h3ƳU۪tERgK vRlTV}-<s& G"5cd1A'K6yϏE)[7A/Ҭz7(_2aWڢ${F>/vܴ?N%wǢJ;Z˕UÂ(hww6gY|tWQma&gnz!9>0v)tıp6W⮇o&X^oF ỵ+K0D@)t,a: 35e4`Euyr9Ћo9FsC{>8x(?_ 7- ;4{mh<lyUoyΆwٝikH['Oɻ_էs*E ںaB5d/4"j:M*뚾;:Ii(t-qvv2)>%TD?Cu("&mHHyڍGvrT1PSv5 gn<[&%2 :0MП:7P a'ƀ ۊf MQDa&@.#ƜGD{snЯEpc1nĔ@G0Kfޥ.jՄV"jb,#-^v' s<0 sXts<o}21ќH$_"ѫI @K^xZb}hVUPz{1XwֺE!VxlaU%mޑK"맫kLoSBJAd?: f~ ;SmtMt nڣ~۶Jp] M eʊj.>2D۫Z2T( wuCBژ~F=|~,xĻ(Dw L@20y(g8fiĕn{Em7MUcPMۜǬ,j^NIPȚ.wlb]i`;G_ݪ+[#usk K!wq=DZH<ưjǰ_m%%ͺ3I"iI!!3m̶wnKiEŴi9Tf/UaB([|ׯ9uY~ _(EYq̯~8$Tsxl@ܾG0rm>Gw3G$EۚVyyv&iYr0=$;W}?6`t^תzkSߋTšN?jW}J:,9~}QW'ꋩ# DB$n1YHͤ{ȦrW.!pÞg3}U_ =v:^a)6 2BDG)M8 ]XbPljJ{Gdy?'UQ,6r 9'xn.hE>lZot #D#XUn tg6N<),?ʈks0/ʪԈ"};?ƕ6IŽ6kjÚUR&甶=R 5mbďyh} YPD\QOrEAؕM(2>цf2׭([~7}1gD ;:jw ™*mp/A;I^ۊan% *`IT0((y"d&4}:Z:Z! ,šҌ+b MJpŏ^Z;Vk_hEFЪU@u?\ mWն@*Fg2!:mvAUA4=2Em=v5a|*[m DC=N#<L>pǵ o~v#TR:2_Yv}zjZE endstream endobj 142 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfyNzt3/Rbuild95b4c8c8441/genefilter/vignettes/figure/fighistindepfilt-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 155 0 R /BBox [0 0 542 251] /Resources << /XObject << /Im1 156 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream x+2T0BC]]3\.}\C|@.ZN endstream endobj 156 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/fighistindepfilt-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 157 0 R /BBox [ 0 0 576 360] /Resources << /ProcSet [/PDF/Text] /Font << /F2 158 0 R >> /ExtGState << >> /ColorSpace << /sRGB 159 0 R >> >> /Length 1275 /Filter /FlateDecode >> stream xXM5ϯָ׍R$Žq@aE6$B{nLᰳCT9юXI?nYzȒ!_e,zV:Uc?Z 䏽@J_㐅IrF,ъ6¾6IO@Bؼ'^iRM@mem<1ZY4iY T-an o^g ө@{ ״[˄%C2]'>.M;6^Ùv٥@^ : gwD,Cp S3Q8Nc)v[ 0YU: flcؘ% gʪI?[)A?,_oCQ͊G͇/Ozzy8>o-^vG8Dx 6Jhވpylơ?X|Ϗ8Dfb/x~:=ޒt mI Pkap$0֤Kps <"alt<KϕL3k a?lҩhRR6k#@>lP^+UU-&zbm1/@Ӧu n@ c?~;.OŠw~u˧?E;ͻÿ' endstream endobj 161 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 803 /Length 2818 /Filter /FlateDecode >> stream xZYs~篘XU`ڔ-mp$%q$$5@ڤNxVI5 kdYsxL I0#S0%qZ1x Y 1홓Hbżxyp1 OH&`^ ̂ ]%cѤ rF`B 9AM"F( Èwd`JIj`RIł2Ʊ)/P[B(!E*v8TDg `t<dED KIV;d [eyz1@&d"X p\wN@[)'Tлuj"a ;x+XzF"(BfpqM4j(  n" >Q,!h C. }NatԂ)(1poIq -  [[ EȎ)" 7G`Nb z9ˎX>Y=iSѕuޭj W|1Klw9kSw+zxE,Y]yX޶mX}ƺYAە аYqQm ˫iXvn`[j\l -e>*Ԝy.=lfGůi H_e=֌`,{]v'Iv"]~&~]u0d l Ivz%e> QL7M\ՄM^IUX,1>Jpᛗ66/i0~@A;؁$n q C? '-}&PV&˺5{I6;?pFѱ@^*&n$d?Vn v7\gȂ IewKF#ŵ It\ w$a$+Ku)he[[IT9r $%#! 7 rvw.MP(PzPqf4aB5&tVT3q"JSh= G%$0s8E%9켮O/nk9nJ(Y =$֬'_u^<ϑ譒e<<']xee]՘u<['6;OU n/j`nV-g(@))G(oM5BohJ#{:oek~otd_5sgMBM̃CгWqHP}q4 I=v/Jju 1 {@ @4n+P@YtPV ݟ ODn5GT%4oƽJZʏƂ-FפEKMf\ӛk䏗9 {>҃tP;ͮY'ޣ -5to?#Tw鱴H0*0N '~"j$3K =^]ڍ^[IJzBoho}1js۷ &Z@i u 9&ߛ<\AYm hW6]AEjؓ8 @}M^DʻĞ}(XDFEzz [,g-5"4*lўASkY/$">6:-=iwmJ@Z;UrwBώn' (noӨزiýС@ )'O)Hަ~do2ueO﫢ҷ ,?dD=>O6Y10~zQǯʳDl^VxeݥY:(i ۶Λ2eyRVM+gӔ󢩫I+yQ bi)ڲ8v2$+4f͋eu7,_vY}^WSVkHK ZS[GcP; >C.h@QK˕?slrL.p;ΖhD$%)[ lIwlЮ9Z|`d jLJ o$)=sXr^}(emi8rq tD4{QViۨ endstream endobj 173 0 obj << /Length 3071 /Filter /FlateDecode >> stream xrH_9`̰3jԣo֡-<1ARޙ{~>xy~ptBXR/=QQ/ Iw` / ܮOFly~^b՘Ig֟'QH/c%vQ4x O c( y!Gi0WNBtkiWQ!y;$yNJ08V!c:> AynN?EZe =όt~hʾ:օ6[f'ĈT ΣmG# c2pqV 4O!&6E$dx^yi(AP #|}p{ ÈAҵG`˼m|Ey$-xzOG("&.bNŇ(DƀR}J!1]6EXQpͽUkEQprh62JdUF2* '6/86#11' ~$ %,acs zHo=Cx=0Pq?֘!zB[@+7}rir cs-#rPQc+&,@p.noAQ3pF8. {֘_P ظӺI܎ fDŽkZjxL/W$&z^. 9Jm$0,'<$W N'(HGNe ޭednɀr|,R&E6dyilG]:b A waio-,waAWȐ pE1 \-Fb,3&uƒts4di^5Yr/ԲVI`ٴj-Vg\dE2-<s ;8X>+{R.A&ID%#h#BF4lN'KaN$_cG66­px&bI>l@W}j@Dڬ!c31HFr *6Xb;tW OL.h︗Nn_cINqwVJˏͲ5hq 0v (ص4JUYXmn>&Y.r7o`/';8߄n-#Seڇ3|&&k_vG񮥁w-G@b8w@:~" ]*}e߇2>PSP*KfOS+wH}qJ)as)~Kݏޞڿe*dfx=UGDILbEEZ#M>-y'OV0kU=4>O$3UeT-e}0҅⽝ŇoOƾʏD04y0IGZzg4K]ua#f. )cnV nuTGo֑8G:!F=$ݚ)+и HJde!CkJ)pY2@G'!b{-QDRyWfYSեv\M y:`5S!_R7Yn2F r7 0U^Mspzzx8V $?F\:2Xϲd~T.,cv&2W(vt"r AzՍ7GTvGA+Oaח$Wie{4Џ䴴̀}]UH?nD߰hjy(kȟY,EF>]+J&"B(NWY leYgXnӓ)bVFm(rR?5jE)UmlW*谷ncR,zӶuk B@FnV[˛L7t^` &æ1&8"vQ B`65n|R9M/j03-j^@xqCɫSxS-F,=&;Gޖ@zyO:-ؗ*n#s{QYIhb@Y[Pch+HSD.85g6 ӵ6ޫTs.tF!9ZZ=jkˁ`X`#:;|O]ON9gebnc͈qȊ6m>c!?wYe:f1dc;4xgۊ$41=6jR4_j=IjX [>G2),AnwIsju oϐDĎk?,[Upr6mK0-`fg!Lx7.y`Up7c.C^.A1&m2jr0 H@7wuc#m'^=%u^#oZGͼ6kMw4mPpF^}q6&|.:|֤h6QS }aZiuu@춬g0*eR:ǢI 6+19٬yVY;'>7d&:Ms*62ehDD^M endstream endobj 168 0 obj << /Type /XObject /Subtype /Image /Width 980 /Height 836 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 21955 /Filter /FlateDecode >> stream x pwҚR[ L/."18YaJQaeu_D;ey7^*+@-!@/I \N|< $9sLa9ry HR477?׾_y晣G蔆}{s7hO|7tSR999ƍlΟ?OOyyy>m۶/Ү|#6SLi]m{׮]a/X'R}co߾7n ܹsÆ `ҥ[lٻwoUU73g|󟷥pݻwܧOu֝={ׯ/x._d۶mEEEkm,1X37= _m_]w]/}K6ڸ{bO}'v5k_jܹ+wXZZWTT\oFxd׮]/|'vAl,Iuu{_矏]y7Xh#| +~;`/$| mc=v x[li]yXh#<_ z=P;455Ǯ?lcӧO0 <+  ]aÆI?aF<\U$fNgKsǾu3g΄<쳱oիŋ[?|߾}%%%|Ly}[ߊЮ sb=ӽ{n7t} Gľ<>a„73f̘ 3Yi r=ْ;/IZ I{'ՙ3guo|xlW׭[RձF7m̘1#<}ԩ,5k, ik N<]Xy…:~Ϟ={2n˗/;ehIII[lYmmm^WWrʡC~𖖖;w#wj\qAM6o޼ŋv͛7_|ҥ ,>}a :7᭽X4ݰaC8jSG VȬtoTUU-_|„ 999WWg3@:w;۷sm۶UTT??ihhȂg᭽@Ooޠljtxc7 A{[{07 e7JEo7@{ko7MᝆoF{ howھ dSxko7@OnF{dYxko7)oF{6ko7᭽ dM{g[@& o&7ho 흹OA{᭽7gho?fˁF{n,x" xko@j[{Rt7 lzR mxko@j;˞F{7 ޠ@TwVF{i7稽@wv?Gho& ho oF{7 OV{L> t{ȓ|{ߋ$ԡC*Б4_}W^\/븽tڛ@[{R=Yko77@{~[{ oN@{[{ljܵ7HqxkoR[{ޠ᭽ho@{koho@xko@;m+7 ho x{R[{Tho em77@{+ F{io[@ [{ko7 7Ț mF{)oho k[{ko7 7Ȏ $F{ o@ [xko7' $;mF{no[7 N7HYxkoR[{Դho@xkoխ7HY{ A{A{@քho խ7HY{  qڛ?F{koȲ[{ko aw%a{w7;nho ]wuNN-^jo@{koh޽{oxcϝ;ԩS(ڛN b zȑo7н|[{gM6|ͱMio@{ko$/<_}U hoM2={dNNNl~_ho>hnmx^|h4=ġC*KJJF$?^wuׯio e᭽wOSYYٿp'?I \>>^{ko{`{Wz^jjj7 7hoȸ Ν;w{رr{9p@SS޶B{4O2W^+)**4iRYYYPڛF6m=ztƌe [{G7n\$>%%%'N@VhСCmBSN3g΢EVXz7Z,s疖<ͣ7 7FǏo}.Yd|xPC WV{[{s[ĉ꺰ӧϟSYYV=̙3c:bĈx*---5{l t!5k\*ԨQ7БڻGϏݻ\*Kho@{koӧOڻ%///X*y \iuŹTuuul#GjoM3fi:u*!K͚5K{WZɓ?ޅE.\SQQi#[lYmmm^WWrʡC~𖖖MMMK.},nEEE7;8S~РAӦM7oŋ _v͛ׯ__^^t O>lذ68p` :v͚5zڻ';rرc,``njskz-m+wF7lQc2); ݽ/_>a„œk+3joڛ+jllܷoΝ;mVQQ! ԇLR[{mF{ HA{ڛD9rȇ[᭽7 QSSVR޶B{7 F{koHM{ M;vӭho R7hoho7dYxko R[{qΝ;x޽{wQYY}={8pI{lo[i_uuuSL)..իWJrrr&MTVV.oh4iӦѣGG:o̘1[l}[{s-G7n\$>%%%'N j:TXX&?u9s,ZhŊW޸qUʂ_;wnii<^{@Ooh4:~#o߾K,ٿTkyy!Cc[{koڱudĉuuu]Xש޴1sخ11JKKcK͞=[{@loi_ܱ]]fMKUUUŖ5jU[{]ݽ{wKE` M}IT{K=\cnݺ8-5rH M3fi:u*!K͚5K{@ o֯18yǏwa TTThohoڈF%%%N~-[V[[խ\rС_$E{@io[+Δ4hдi͛x`׮]yח/]tӧO6lXG 80:V{h;rرc# Vɠg|[{h4aÆpN YOY{@<᭽7񫪪Z|  srr  g@{Gcc}vܹm۶555 Y7A{ޠ 5᭽7hoHM{ RA{F{@քޠ@{ ho joA{@ [{kohoȦ7o7m ɮn᭽7 [{ 7 hoHA{ hoȎho7o777tm )hoF{@ [{hoho hoho7o7hoho7o77ho7ho7 7  oF{@jVho7 o[F{@[{ho7$7 oF{@VЍO?:;B{F{wVxCPY-`hoHM{ ?3#7dP{ҡA{ A{ tW{l۶'|qC [|>\c7dMxkoRϟ M5_WѨޝmzw/m+He{ =x6iݫWǏGn6 :Tiohɓ[>y˯6mZNNNxԩSm oM?i'RڵkC}Y{jkkw< {ܹO}޽{oأ>zHB9@6 =bĈN<{Ǟ'xⱸ7Tڛjo9v#<ҩ?%<D=n{}m7馛b/\S /{`=)m+{bCԟ+ s ڛm~ p)_bۿ[{ #Vн_*/ux—o{ >V/3ػwuu$:}6\{@&MǏoƍΝcǎ-]4.ކkoHޤO{?sƍk}sr-wߴi.\8ɓ'92777 '''%ܖ }V$[{Yx_ho[{ [{ ޠޠЩho7o7ho7ho7t07 )ho[F{F{ ;[{ho7o7ho# )ho[F{F{ k>ޠ7:hoHYxko7777777@{ |TF{@{7     @lo[F{@{F{@[{ho7 @Eo7[{ho 5᭽ho  ;n  @TF{ 5᭽ޠHv{ 7hoR   D_wׯ_}'Ov/sG{c>鈦e˖~믟5k־}+VdkoXM1bD*_j[{'Ou]khoiƌ'- .w??@{F{5﮻{m.` >v5777+^,sjoho//b\O:˽{joho:mo{[lWsYsss-tV޽cz޸qcy旿@{ 7;veKK˃>]zF{YI_{.'''vڵk7=7ڛ.(--m>Ů[['GF{_W!_ׯy믿^XXollho')Sj`77m ><֭sR#GdbxkoI5cƌSԬY77m~ɓ'?~ 477/\0\"ovv 2h4L@~-[V[[խ\rС_$%o޽{GW^q'o;8S~РAӦM7oŋ _v͛ׯ__^^t L>}ذam5p| 9xK" / zru oީtȑcY :y<ϙ-A{^4ݰaC8jSG VȬ{-}ݽ/_>a„œk+3jo\willܷoΝ;mVQQ! խA{HM{ hoR޶7  @v9V7޶wį'hoShoHvx رcnE{>᭽A{HAukohoR67d8Z[H@xC=o|챽#GܣSܹsܻw;*++o߾gϞ455io37tB4zjϞc_3?lO2W^+)**4iRYYYP 玔~ʔݷryokOOtӦMGtޘ1cl٢pE_{ŋnvqESRRr tpWN~/}o{w/L$RСCmBSN3g΢EVXz7Z,s疖<ͣ7o _շo%K߿|Ȑ! AjoR\›?_jՁGM~v$릛w'񏣧N+{}dغukYkĉuuu]Xש=J??bk~ Vi9sN3gvuĈ,UZZ[j ο?'7n\ 7t#ԯZur?Q{'Cܱ]]fMKUUUŖ5j |ś7K>˟+~ȑ{7q;c{8FR&4bU>ۻ׾'OhdӧOڻ%///X*y ԹsMuݗ|%Bo'g[id>|xlW׭[RձFHju o2Z!䠖fԤ6bh2H 3fij2,5k, 9'.޾.w]V9p oN֯18yǏwa TTThov rɤvI7i;DђZ~-[V[[խ\rС_$ZB{ \&ގw&A{+Δ4hдi͛x`׮]yח/]tӧO6lXG 80:V{ho_I7N9{6MN#G;6`` z [xVo_tNl Q;<*xl49c&$rK/ީQUU| &\ \\\T{ohGxx¤x'ݼjf=}z۹sm***444dvNhoR޶d;TfOhoڛ$9{𛇷:LhoܪI7 @[{Kov[FOhov.K;HI7 @V=aҍF{.tscS{7z ᭽Bo=__<}]tsv&Oho޶Oqx[{޴亂뮋޾0馶~jo7Wnc%r͉S{Hxk"nN @ndpͅoyKw: 'vLۤ  MnK&ݼ]&ho+64;mn7hon.tӻI7ho7@V..NS{ 7&tɤMA{zHxkԸd-tF{o'd&ݠ޶"LA{o1'' M᭽d  @VtA!}&ݠA{$C~;椛x'ݜ=f@{HvxgP{޾0&77&݀F{L䤛^NNo_tST亂W_HNNo67@x_/~n@{z@uwKx=|8I7ot ՝67@x'%oͤho՝@ ts&݀F{dGx'|}n@{H^x'jͅǎy7F{dMr&݀ Бbo=__<}]tsI7Yޝ}l'8 ڛ F7o޼*ncƌ@ ?o¤뮋޾0馶ֻ7;N$^~e f{'r͉v7nǎyyy lo_zNx_ ts Minn>zH{=cNpx-ogͅѨM @ ムH"'7@+"g"A\3&$EF{Ws'\8'8{[u7Y&nN n hodK&v[nNho{hodpͅoyKy~fern4qĺ.,rTVVjoI7o}I7@{3gvuĈ,UZZ[jڛ64MV;=5kĹTUUUlQFio#&ЩV;vuq.Fsss 7]f ]o;\>}---yyyRAko:q$nۧͅN޶@{gÇvuݺuq.U]][jȑڛ?ffҍ';̘1#<}*/K͚5K{sؤtsI7iZɓ?ޅE.\SQQdMotsTݒ@{gh4ZRR֯_e˖vuuu+W:th oɐ/Hj$ys]wuv^^I7׺wLAM6m޼y/6|ڵ7o^~}yyҥK,X0}aÆy3cw\2o8'ݴ47Rw;rرc# Vɠgqɤo4$%ٙR Q;<*xl4I{wV8뮋g͙'@{SUU| &\Wg3qɤ%nHnwظo߾;wn۶"1yMMMCCC<;}Eᤛ 7Kc Jnz;ml|sMAAnΞuw!7hй nrs9m m j;w{رr{9p@SSDtK>@Tu媫2eJqqq^whNNNQQѤIʂ2i+dȐp hwtC7i֭_'N"O?~NeeNKowuMxxۤ-h̙]1bDcccj`"nHFcmw>|xlW׭[RձFg~닇o˓n.6F]klwƚ1cFxHT|/.5k֬ tvO ii b_cpǻ . ש}7o9馶֝5,ބhIIIW~-[V[rСC[HxKN{{쑸?s͎HۑȧMDn|@{sř 6mڼy/^lڵk7o޼~K.X`Æ k~vё#G:G_2ۺ?DHc;"\I*@{a„œk+3iؤts tJcc}vܹm۶555 YO$2#㎮Lgĉ?7~hcpoiǎsl#!!ۿ=fξU__g?~rӦb l]7޸|eοNCGp+ރ#D.[s-ޕ;d|v^@{koڛd;vا[7F{ho7 ùs^:P 64_|d.?>}.Yd|ǡ g\{p5;nnĉ꺰ӧϟSYY[&ɤe̙]1bDccc" X I3'Jܱך5k\*ԨQz'؄Evx[zʔ)}(n[Av;`gΜ/???ڽ{wKE`ޠA{sPLH{K=oK77ho>|xnݺ8-5rHޠA{ƌ3CڧNJRf 7m~ɓ'?~ 477/\0\B{ko7ho޴FKJJlׯ߲ejkk;𺺺+W:ho ڛ]qAM6o޼ŋ?Sk׮ݼy˗.]`ӧ'8pÇ{~jo7ho޴ȑ#cǎsQBhoޠi_4ݰaC8jSG V 7WUU| &\ \\\oӴ77hoظo߾;wn۶"1yMMMCChoޠA{ 7hoޠޠA{ 77hoޠA{A{ 7ho7hoޠA{ R/|_l!G>b+?xpK ;Y&F=~k677 ÇWZuI[AvhhhXzumm ;;w]l=SKKKEEŬYF_PPG ~1-CʔF:9y *-z]w۞4}&>|xĉW~+.G3v qԩ>}tuۓ[grhѣGEpA]]"ZZZ-탂8]6vt0Tuۓ[grhG47n\x9r͚5vz駇__1СC-ww'AAw7w(貓'O~_߿xt$Tuۓ[grh=n/8zh߾}c׌3ƎTWo}PY_>7CnnnHM'p5UUUG>]|&ھ<- [nitAN^3Tuۓ[grhûWl߾}e/bHiӦ9st-탂J:ܴn{>Մ/3hР;cWN2ž(HqM'39t-ׯoUVo߾ѽݘ,AAC%nZ=mojZ*//oⲲ={=W [lI-탂J:ܴn{}& ﷥KqongDƦM_jni8Tu]39=MCCCx-XΝPSSݣ{ڵ+{-[[)titW{LN4`-7} 7]omO>(HqM붧[grz56w}wI&7رc޽EUqx"8ANLA!L) #ysr -E$s2SJfeMi M\,4521KHHJ(y<9gwu}=sw<({Ŗ栀94-mji䀺xUV[[+T7~[ٹsԋEqYYY/4L͡ii{VKs&)833ӐC>6[vzqHH\޻-AgoshZҜu~~~r޺ukMkk\3i$4\]]U~_y!qLNNݖ栀94-m^li䀺{OJJZ|rQp1llSLZSPP" }JzPPVe";V Df"ܻp~CEE<777o_`anܸ*^++Iddi&v ,LrrHsǙ8qBX&){O``LZZ;###Cdqutt|v-3rȶ6,DMII)5559::)䰛Џ{99.Zn)**P^^n.""BL駟fwK/$Rn@@1+kkj86x`r_{53yuׯ_ }Km=  Tv=WZ%򭍍?c>/P97;;;zGbo {8{߾}Ay <{2{oܸ`jjjvܙ;tߒ3gN8qC ~xg^y~hܨk4`i?ɓ'vӦM=^/\XXxo 8Lt^'C=$?)%Nʮ\"Ef̘Q__cJvTׯABiW_}թ?VnhϞ=ESL=*l]}֬Y/_#F0a `{֭0ލ ծwEWf簾&CmٲŨ7xKRSS0jz)iKs!AOKVVV$W_}U<>|𔔔e˖ 4HdeeИ1c͛'뛜n߾}…bFb`6$xKI"{O>]Тt]o>Jdݼy*umHv;Bkk\ ޒs*mCC;((HW=/(Ef︸md+V "z66xKu沚cDR}jjjNTVVҢu]Maɓ'74a[[2*{t@[n?{]X>̙3[jՃ>(RћCCC[wk֬Q>ĉFe@ƍW`w̞=[LJ (Efﲲ2oߖ"zbb3ƌiMBŋ&{ #GBo5 V>/0*{GFF- 'ʏ|\ii[ `ٻZRfee :Tme 4~xCfo//K.-_\}ZqFc򶛣F9읛k|ӦM▚h](wFF[oTFEEʢ"wGGǰaiN0{+ot G`_dﶶ'M|wW]\b`:t7-+--+.zyyY ާNR~(Py`ŋ&&&ۚۋ2WWWgoѣGEucL1655%!!!j***<==EΝ;_utwwwhR;$K,9wnmm)CCCŭEիL%/{}H}}(O I1;==ԩSUUUʼnRN:UIIIt&}lll_JIwaa{ϔڵknnnrٳg-?̜9s K.>>Feo'R¯3-9pXi)/^իJ=ށ&M;wnjHݻWl(88Xo֕&>׮][__/eu]{W㕃Жhnn޼ysxxÈ#} 6TVV*ˎ9lٲX<_Eܕ^[~$???::K8;;I= }$ u2+}fo;v3y'5> stream x\UsPDQJ!InVk?bAsty*]N-X󐶞5"SGQR\qwΏ\s./w9=gw^R,ID7Bm^|EݒnMID7B%__@R QP_|H $J<%P<4???333---###77*FQ:_ , tttTN3gN\\<%EŃN6& KNN(y p5Q]]MP&Iwr//+Wnذ!>>~׮]HLLW```UU%@c8k,9=<<6o\TTϟ? p=P<ZJJᑑ}i͚58iii<%d9 ehP+V(y ()-h6e0,CR<8(P<%_%o6]\\(yJjʔ)sw^2BBB(yJjeKR<TǻPΛ7… }y8<%%bDDឞ۶m+));wovѢE64i%@c$&& Y1-?5txJ^JKK333222rssJ@/_Lkhׂ ߎ̙'u>%@jEӦM’)yxVTTTшjJ0LzS{yyEEE\rÆ v:p@bbb\\Hllltt(yJMYfgcEEE=]jy))yf<%)))) MMMk֬IKK4ZIɫߒ%K,(88ޖ-CXbS"޽ơ ePJ@%/?Bɫ8(P<2WW*y" %t@h;>Hɫߔ)S,h޽6e4-CPxJ^s/^,_Zt)%8%~B9o޼ .a㤦RxJ^DQϠmJJJz{eeΝ;'Of1L&^oLLի7m$={>|x߾} [lYvE:㣡*񔼆Ϝ9S44bS"bRRPTH{IJ#h)y@S`0l߾}z^YwoooiiKi{)%(ykPZW___XX**C<)yP<(yJ~رݻwo߾o,=BMSZ)Ź='|utq|ɦ&J@%-)y y뭷4}By-[ts/Jic'ۭh_zO:tSZq|eeecƌk&...55̙3o͛]]]z!J@Oۍ˧śoYTTtȑ{^kMdddeeeAj߲V˜C{ %~iݽ{w~'NNNcƌRh4SOQxJ^-讻R`򩏏fUVY67o%^ZK/`~P(yUe<%o\\\,ɓ444t:6.\f(ifFxJ^F}766sss-IcR)>Nɫ%%%)n-8~x7CՌw𨮮V̙3Ç-n(yxJ޾׏7N>˗/OII)))9v?."^^uܹ]-/m7Z6ʿnSZ$t+44̙39qR_ ۶mG7^zVd<%ueqm+ nSCJrrI: m:~iӦL& 2%xJ>挌gycǺn(߸R6f̘m۶566jx)y@SCJKK|Jȑ#Z<J<(yxJ<3%ŌA B<(ykx}WRPwvm1bٷ#A "J\PwyR}@u|O<:3lz,D&PԗOO_FFzrJPVXca "}KO<2/rKsQw J2Ƭ޿?յkojnolFɃ=*+FE)^ m0:nLɃPC׼2^+[i{JZ/-v-(#|&Lpvv=zI.\744i=s?ƌ# '#2ҥU/ş;vLq/JŋK/u;v.]ZSScm~y@C_y_lYvA ԓx kOosZxɴqO7ߝKo}6ohs׮]ǹ{ѣ?EEE_| /kѣ];ngϞ'NkoN:?o5p3C<^.\'O/nӎfy˖-66hoo4iA,Fchh&2Vopv9GW%&pJC?#N'W(Uqi_}7ϟo9H1?rHf\s4f?>o)..6%fl>{CQ"%/4԰aÎ?!!!?h̙ O˯z!KOf7'NTfsUbO#FTK>Q;Zxϊ(嫱 /_|f̘ay|ĉ?W^yED}?>0AZ+*}x7fgaLJC_~e8zk7XTUU/n_]wA׏ \ے:5nB;8|SKK߆a%_[[;n8˿⋮iOʯsuҜ9s"/K'))I$##P[ƷZ]߿'(yPo-<2oo^xU.^xUᇹz%ĺ:$%.y)}-qvvl\SSS\\r1cX|y߄%K\:FkK>^{moa%|r֭Վ]W馛5M7\\\, 6`oVڪR͵ѣzС}x&͏?|wA~`3%{%J~޼y%-+ruu䩧:ϝ+ W_4{v_a%I˾NNN}{fܹs5k~_wuWSSw?~$[o5 x[|5ڒOu 6%JlիWt:y{ؚA{ یo-/?;OaaN 3a%_[[+瓝lvҤI6{|||:ps/ѵ VXJvYi95|2dRKy&} %,ˎ7neeePRRrōn*sss;~l6WǎO[jK|:]Ub}%+cǎɯ+޳]xbƞWxΝ'O۷_1cFs=یվbccٺuR+,4aBm,e˖Y rEEE?&I~ٳNNNoֺ^/ hy^P;j.lpa(ǏCddku3,[7NpG+WZwuuꫯz{e?|rrR\P򰳒?q Su:%5㯸֭a|3|<(y`Œo?P^iΜVIKɃC.; Ç+.$}I@KɃC*[;|B2%J ޿?Mqɧ[5tԔ<(y`7 MƷUV^%BB4w<(y`r'N6^A;nKVWѣڝJ<׌?~_yAfĦ&ƍK>INA;ӧӧ+/4wn7lPd(~䓳s׆qsJL A{hk)..v%~3glZ(yP2zlWW%4%?Dgffedd7h󶨔<mƷVTR^)4`ɡh4JkN7gΜ8)y醷5zjxwp([lSDk(6m{aaa% o[䵢"<<\MDDDuu5%2#}|3dٲ˗tQ`2z}^^^QQQ+WܰaC||]8'=i*J,࠰5ԾЙ.J^DQ5kWcEEE=]jy))y憷N/ş?u%~)))_> Դfy4J31U+/4z-Dۍ%KXQppp}}-CEGG[Zb%2ܹ[oU^igQ'޽ơ ePJ3lJLT\){ĈDq!%~nnnscP(:;;KCS@=YkyٻVo641\]]f4%Ԑ6xЩq6a0ƍfW)SX޽{mh4Z U |-YLy't&׊ŋonoll엡.]JVszkK>uuL&%!B9o޼ .a㤦RdFkK>^{m[o1戢!ܶm[IIIwܹsɓ;ޔl6S@=_D)gm}IC L&^BYzMӷgϞÇ۷/!!a˖-k׮]hQPPP|||4TŔ<v\Ia'w%oggΜ)FAGCGM`d4~y㍊"#[i(IIIBQ"%+jmJx˒OF%? ۷Ϟ=[t:k-m#m)m#z+f|gWM75}%HYYY驩ү M<nxŌ~'%Y򉒇ݠnwݠdKy&})sHɃjxɥ>Vxt*i䇚̴ↆJ r+fXnT K>MP;L#%?tF|-X 00Q=i:oΜ9qqqRSd|)x¶j DQS!%?DTTT۸2TDDD~h7*^?󓟴1a2z}WTTʕ+7lk׮$&&IFGGw+00%\\|9ri搒"DQ5kbؼysQQQw8!!! @AcJ]3嫯fR_pM!%?/> Դfy4Jؒ]7xPرV|jme)fɒ%s\oۭV-CXm~{.:ZR|ԩ 'O2$޽ơ ePJf\//K>7QJňm۶^YYsɓ'w)Y#/4JU4wߵqO5+A5&Iwz}Ĭ^zӦM۳gÇۗe˖k.Z(((^>>>bJ5d|9nn K>99ߺ4RFyy̙3H#Hh)y3nVYy?U^)4!+9(&%% E4*f|NSٺuf搒Go ۷Ϟ=[t:k-m#m)m#*~%.16;w.% g|y֖|jx a233G%JAxɴqcC׆?Y%/ Y`@317x K>͛U5J4???333---###77*>+Q>h00qs{{E|ٹk]Q/FQ:_ , tttT̙'uFO ߩ[ oMyɧfDQץ3c< ɤ;`}}}cbbV^i&ٳKHHزeڵk-Zi/ U1%^r)55WWxt*|quϜ9S44.֖|ʽڷf(y(IIIBQ"%+j<d|S(x¶>}<`ؾ}ٳzNV6Җ=RJŌ&/䤰䓻;K>QЄ¬TWuv8J/_Θx)(2JU5Nb!Eaɧ#Y(yT("BR7L%knn裏{?;v8tPEE%v`ᔇ%Z[1J*WWW믯\~U*u֍5k_Ӆᇔ<x7A(YDR|~pp_0]<%rO>|AzzgfJd!OL%Oɫ\SSӂ :;|vvݓ])yPnT K>MP(yMx;ָǁ䯶_uww߲eKrrr~~`ؿ%K:v'PsOוN%+P򚐓#]]]jٷo]IOOܪ(yT  SXi̘_d@kȚ5k,ԩS]7?eK.Y-~iJU5$@\?s]&sJ^[Nj9G= vP-.J4N gJ =rdߙL(y͑C=553(~_~ٲ/%^2Qr)G?j.,d@k|S.\ҭq#(yԐ񑂐,JQ&/qvvlPTTPG~Cpu3~ K!! 'O2WﶜUV)npM7Y6HNN~?ϖ-zJpA@1-K>540]vggǏw@:w Ν8 -/_NpU2~ ʥӾe@ۍ&ooo]1oV |}}-$%%YGqwޡ7/~"sJ=zT{JJJKKc,uttܴiSsss #""ovJln|:Ysv=NNN_7jԨYf-[GNٳ~_aaaR_rssQSAxڒOs~ sJ޾;vL~ML8njwf'|%?t/mÏ1GwQ6KvY[?nJ.eggo۶mܹRt:z6lX``^zFIw 'K>99ߺլϬǀjhh8sLNNΧ~n0G:~$V(y3C-`00Qa(y2~ |deɧu~9%U|;vY%JU5AxJƗ,[~2J<jxgAxXPjS\SL(yP-' kK>͛/P&s=*1Y%J-a%fl>{Y%JNb,=bDE|(yX|aR%P%P[G QŌwp~'/Jv,_(y-$Y_Ic@<@U ?O^[(y-C5+w_[UJj|rwg'P%Pa{ +fnkf <@TŲӧ֗|N%P%Pq%Ob@<@m"!M Y <@M[7iR'0EJ6BbtVL(ypAxLN*.4aBo3EJ6 Bw/\vSJbY鄕%_x)%P$/Y'?i-+c@<@U,K>W\iH|%PLD+ nY%Pe|jme@<@U [?uj_0EJ6?Y <@4B~1%&N}]f <@Ԗn|f@<@UAABqɧ1c_z)%P -4gN(y͋3+K>U!m$(y|֖|B<@nAʒOn53EGUUUqqӧ M&Sss3<+A_kK>4de1EOLIIپ}{TTTppȑ#.t:̙3_ٳh4r(yf.tSCSJ~ |}w:99 J?QҥYѣL(~K/͞=A&LB>B߰SŋL(ŋqqq^^^tR;v3H%Nyz$'3Ex wwk|Ĉ'O;/^g0E 3i]sMo0E%J6N/ş?J<@emmK>͒O%JBzO3g6\;`G%?lܸQib6W%&fvm#*E& <˿!N+%Pw߭x)8mZcNSP<%P7k 3mhnia,W᭷ޒ~_VJpյ֖,[䓿]z:Sq<hԥ\ڒOb]SP"666nrp B?vvVf9==Oӽ{M7N0! ornǎQժ?q"K~ "JgeygEnTETƲɩk,,eɗx㍽5͏~2ΝE[[4iii <`p4_xȖf+y);Y/_p3f;6'Oig4`@it~~~s̉: ˒OFum%;.yuϛo]4 111RGEE %M&^XXXrr2%Gϟ?_R L`%GuL?OW@kvv˱cdžΙlQ]]MlO]>S|ccc|zW~~-{=C4L&^)˽V\aÆ]v8p 111..NzDo^ }^SSdO"K>88G766|LJ~زԩS9Eq֬Yr{xxl޼K @RS] Z%:04J~і?z…Q~[#P8G)))rGFFVVVa5k㤥Q^֭f| CGeׯ_߫Ϝ9cQa(%KX788޶kіVXAzQSpa>P:u/٫ ^CoCڽ{C P<'mmn5 ֵsƌ~E%XhooSOYvկ~5ΑxsrrlJEggg 1)?PRdbY'N߶OpZF|P8GUfEJ递t=%\\6| Tݕ K7trrڻwoO2;rs4e!dg4-CPkZh,K7TP|SSS+xhkk~e˖cZ4tSt-^X~s{nPK..:3vl׆78:6n42E%/O:-]:f̘3fĬ_~͚5 BIo=wf… }YOyTJI۷ߞV?ujɓL@˄cOHň<==mVRR+++w9y77k͍< K))^^ }SCSP|L&^}}}cbbV^i&ٳKHHزeڵk-Zi/ U1%e/şGL@w5}ߙ*//9s?H#Hh)yhy'@c@$/+^Ҿ:dJ%"G3 ۷o={^t[FR^GJi?P^iΜoaJ0+++===55UU}AAA]]%lܱ0|x׆vqa'(yP;P^["(yPsܺ6 ٭[L@c0gffedd7ō)yogSK!+)(ԩSCF|-X 00Q:oΜ9qqqRS0dվnĉ] [gnnfJj^jhk{箽ڭ[EӦM](’)yR/];p9-)("pSS&M|EEExx+CEDDTkjJŌ _"NNV&i۶m&LXZNY%Mʕ+7lk׮$&&IFGGw+00;&656nrpGNA`Jr7J%?h4~W6lXF~vEq֬YsE=Q Q`ss7ܠx)AhSqBBB6l{IboG3ͧNڱcw=bOw>+)))FFFVVVa5ki佑<e{{E|ٹkç B JgƎkÆ x_|ѣFooΞ=3Ϭ]n3fL7뮻NMJ6fѣկ"og}m_%/ i(\Pu5?k! 3Pȑ#<ȍ7h2>>> .ܽ{m)SXb޽6e4 S]֖|z[~HWɓ'_~'|׿ҥKcbb~ӟsLo# ܹpK{(yJ^ DQLJJi/i_im2%`H3Gb'0 ۷o={^t[FRhQ (^?(%}YYY驩ү 2ͯz(yCCN׵3aAp" b_?08}u_1K/ſ%ix^>r~<\0\JM6IA?|{Jޞgffedd744\'xfsΥ bcc7K>w=Whׂ 9qttT1G͙3'..N|)x0ԟ8?e;j,d[ǎt5kvpߏQ]]M4_Θx)7;KvժU|/d2z},򊊊Zr wuĸ8hN{I?UUUQp5Y|rqZ['N옠&M:rUՒ"OEdddeeeijjZf ܼ~zyTJ\cap%Kx-^{m„ =v'(FDD3m۶^YYsΎHddV>@А*NKْo䛙[8::mjj,\d¿YzMӷgϞÇ۷/!!a˖-k׮]hQPPP|||4TŔ<xPر,Jwwwؓ3f̰N,CJyy̙3H#Hh)yWRaAJxwǯ_Q %bRRPTH{IJ#h)y*wr'N2ݕ|g`0l߾}z^YoooiiKi{)%@/]*]JRp#߭PfeeJJ/((ތɓY P(g(yj͒OGa]<;xqtKO2%p˿;w[%JJG-ZJJ o]R^AP)ySk׆789=(4<J<%@e*+FE)^?$SJWOo.?ϻ~ռ2^+[Ι@ɣ)y%N;ƥx<(yJ}i^@bƗ,[;jP荿..Nnnn]J@'bSi, kdq<$??믗}666v xk5p緞?O2V>}* ]>gD%~qѣG[Nو#{9J/̜|,G?:wM7$[jjj(y*1Qqɧ#*hx<@kk#<,<_ъw߭x)xo@c Ǐ>GG?O(Rн7N!֭sP&;DDDK@'V|c.1ߘ۷nwtzzz{<t~ᇹz}|P4iii^^^Q<%bc%r-/ CUU~? e w%u0ytrr%chx<ĉ7p_ (yCMsኗfϾ@<,4jO%P%@mZΟSXX (yO]hڸщ@<i)YTR|ޤIyW<Jϥ>Vxw0@<֭]aɧ nP%@}?99umaP%@}1CR_Z%PƲ䓋’O#GvZ@<5h)--5KR ǥx<@PÂH)yPTo(^UBAPK￟奸SU#x<%Jʈ V|81J<쳼@kK>&%@ḙn5 ֵ <|J<i?P \C%Jژ͕;vXt4<PLW_y}s<(y*Q[׆J<iOOWA%@mD%6'åxAPoWW|xAP]]6-%JVTRH@Ƀ>5zj <&d<PL7K>-3hxAP᷒#GN(fe(yPTŲSC׆Pjx)J<MSư0Kbbڪ"AS򀪘*|=*1)J<%Msުx)`g"JP*1Qqɧ#*E& (yTw+^7N֘%P\H%|~Qqj\9gwSG :r)J哗- (yT O={"JP۷x'ӧ[˙"JP/| S<@)-91aB]I S<@J՝Y𠭆OرdZ(yTST{-(`(y@-lO-[&0I@%8*[>_%blܸqРAnٲkіO?,%0,,L4MxxxII %8umnʖO@C>>>eqM6wܸ+W&%%%$$ʯDEE_vbJ05o!2"2b=ŽϟwSЏ LJb-ڴ9pYJضmEEE8HUU̙3㤤PKF[>T2K@C)'O֨M9TTTv~LR |:={JѪUx4P!!!<``g'?K&'6% rww(==X,...P<`]lͭJjCg V}(MbޥKE_ŋ/_޷o߆Jo56{C%%o^gϞ>|hyy֔(y`X֯_ou]e+Splnv|ݻ쫯"%`Җ,Y2rH'''zٳ#G&M)y8 N1EJޱ榦ڵ+99Y_9''!2CTUnԵ녭["%JPM?>~|]q1SAJi͖OJ ՝([b1b^^^˻ƋЏ n-NNΖOJֱm6=#""q3gIII]YiSFn>)Pɓ'kkԿ***J;?LͫoĄ u1EJV#^[UV5PiiiڡBBB(yX[>yzekkCY,y(OOOJhU NEDԞ>([[sjuuu(y&ߣks˧ @#((H[իW7Pڡ)y) #CT0EJ&M_^YY,2e %4ϟ"%D-jk%%~)cƌ9רO3g~dJhw!^08տLbޥKE_ŋ/_޷o߆JoZ)yz s;[>5CbRAA5__3f̛7O._bb͛׬Y`YfM8_~]W^&bJh'SB|ks˧/|)SaٳÇM# cߚ  -JJ"%,lGr!cǒk"%뒖dɒ#G899{Ϟ=9R7oJ& bF0EJMQ^^k׮d眜S;wnMֹsgJ7:I[>-[I3땐 iGK![s:7)Pp`o7'b @ɣ%՝W|-StrƎl(NNN~~~)y ΖO@&X,7n4hP#^geJL!58{i@ɣ šSbC C-KK"%&*((,˽Ǎ7mڴsŭ\2)))!!!66V~%&&&**KSYkk|:ܥy,ˈ#?~^^5^\6p|||@@~ǔGã8!PYΞ=;|p48&)y\KbіOÇW;D(y\eFQE^J^V\2% $DOڵ+c'%-Ydȑ>>>NNNF޳gO9FL37PPVEEŢEvm[2eJnnU/_^ }SǏ+.f1'ms% :rHVe8p`vve>WWW}7 .P0oK іO3]Pjk";vCü!DOsv.xi|7aÆik׿ΰgyFkVV%eK NקOtM[>ΰj]QQQ@;yzz>vE>S}BDD &)Ufffnݺ^O(yhΖO%%L<%oFG8hs˧K֭cAC5U}іOL<(yj-ZlO[r%JJ|\J՗2EP%KUc[>-L<@ɫ&@-FJbLk[ ^ @jjNXiӰaG2EP%wޱS6l%P -,7)$"-)(yՌKߪٳL<@ɫCs! |ݻlNf JUB|fS_,@R\0k ~@R Tbf JZ|`'(yWPO!6icǘ"(yW--kW$@RjϞ]fp*>{РtJU![ ֺuO[kj"(yW|/۵)(yٻO2f Jx˧n.|S%PJ"-~s%(yW76|d'(yW+!ϋ9uY(yIh!<@ɛ'; #CT9,@j!D- Jlxw!^08]>e{0KP%Z-6trtKy9%PJ5|[![[>u~O%(yW-otb„f JjB<"A[>uXv-%Pe|!?zオ`J^׶|ks˧틖-j%P4CS9CVp;g6@ɫW򩶖 <%J^$ [nP<(y^.v|(yPJ5*%J^C-KKIJR l˧1JR /іO?-Pjx'!& Ol(yP fomtyy%J^_6|j…zVPx/!mRʺJR / `˧ӳg[Yt@ɃW;RJ (yPeBle'@Ƀ7OƻOt92A+R_!|3q7<(yӕ!! ,.Aɫ=XeӰaG%Tm¸8|<(y2K NgXy (yPe|_V Plx7;[>]W#Aɫw AOj)+c%J^S׮ne%J^?O?>~|]q1k(yPꔼIZSSܰY2@JBڵ+ba%(U h˧A*f%(UږO;l5|sO[kjX&@JK|/۽uyzK*;{ӧY @jZO۳K7 N2*'%]N%EX,74H\-&Џ t%_ql8[>Tq;k1oMSAɃ%,<~eJ%J<(yGdɒ#G899{Ϟ=9R7oJSAɃ%sssSSSwڕ,/SVV%OɃ%J<(yPAS<%PASA<%J<(yPAɃ%J(yP)yPJ<%J<(yPAɃ%OSAɃ%OɃ(yP<(yPAS<(yPAɃ%J<%JAɃAɃ(yJ<(yPAɃ%J<%,k׮7N:faeg*FBB\Ν;[Vf1ȥ *U..0\S T8 H2db6u֥2$++k555L#U;>|p$rAr"ő^+ G"3I$ ZSL vww:uY-?eee?t;,,e ̸63f`LUUU6loۿ:xxx<,״"!!!**Ui޽ǏrJrAv̙a@~KP*s[ou*Zj%Ο?ZhMmΖ@ɛzYwٳgOW0њ{;w6.]lܸ%77-yb PXXثW/aPTTUɓ)oWAɛqYW\)Yۿx1Ś.ZZ~_xILL湹JXB#X,0jժC[AAA~j^Z~7neܸq1o}q z_S#ӧOo֔uΝmڴю#??ΖǢ~aûѣ׮]{;OXAeь%O,q{=yYn6mڤU缾O>V\y !!!ŋ.U)%oeՎЩS]v]6 ==]{ԡC2E5ZV^}ׯҼJKK_yooo}%4΀[EΝPXX奍 U*suV3&c}ڰ]rAꕎ?驿7㲾Usm_$ }k~}? 4i>Kӽ>\Ռ%O,?o4gՇ6S*s裏̴3G~7kz!ChGر#%oe峳[קMҨ+V/m6a _o4MgM/yb d&q aKvh9seO(^G_2شcǎU*s_pԨQG65kְ:ʮe>S4ڵم7.^X+2k_}Ѱ/Bi/^*yb |]Z~####~b #ׯ_mo>VG5m~> @ɛqYG]pĈLcΝ;y k)wfin|JXB#TTT\[ئMtvvS*w}.Q,kjXK;HttuJތ˪H~ԩ}0]544TL_9`Ϟ=ژoQ%4NW[y^;w>wis'ǟsr0KxKhTꫯR*윧joݺ5bMwܩwކߢMGmx_}|vfd]rWla97l<%4ή]Cbbo>\ 4siqqɋ/xw)y-k_?6"j=gjJݺu;}4b'8a'%%SRRԹ 66l_yYjojr/Jt˺gϞ+oԨQ׿rrrRSSeo򯨨Qwٲeuԉ((yb MxՏLHHh'U@9߻w]woo>E1Śڥtr̙+P[ֆymݺuWp߯3goϥ{Q /5pBF'8 _opll>8##C s~%Yw _٪Ukz-rrM @n4Ho:*?6|qEdds#~ȑw}Q%4NNN~cX` +mg 9׫WkMov"O<Jt0_~% 菷=z(..k׮Ȁ>H'8eeea֬YP*pbȫhs7kf]ּ<*Fi-[T5ݾ}~K.?^ܹR%4ZϞ=ĉԷ$S*pSjbk5~m&ߤkJ;!c/ŋY5ǵy7JZQ%4: #飿*OM%KG <{$a5x[˺l2VG5}eϷ?Q%4ŋ={V4x饗T ;vLC7MYYn5j㬎wUXCCC|wkٴi暮XB,%O,q_7 Z*s>m4nnn=skzUՌ˺vZyyyvFN2E Y k_\+^ji7@lPUU4hЕǜYJ-kmmvYLcU)y\Ϸmozݽ{)ÇgiT~?/Ήcǎ\TWWܒ'p[N~׿ ?߿r3<x衇nU@eԿ5~kU)y\'|R#\a$''.*?wȐ!Gwq>_d]nzKA,˰aɓEazz4[#F_lčWu֭{w={X杖C.kiii=1{WvؑaH?â(m۶3gΦM233SSSׯ_/YpWUU.hԩȝ:uj۶ODDīJtMO:K/EKFAp:uwL`nnn<`.<`<`򊷷7JP/_euYp?xCBB:v8`Gydǎ;(yuqOgϞ*Fرc X}ŋ/ZttK~Ν#GvԩS0|A|XX^SN}3ww1wZ,V"%iӦҥKOsn[۶m[\\lgdZZ%KPU(y瞳3rȔJ"%uӝa}Z<(yEJ^1bŋ/s}̊+oQone/]455رc;w3gNv:tb@+R3g ul߾}O:<([/..7nQgΜ<pK^ۧLҧOWWWww;vؼ8%(Rׅ(y<@S%(y<4d endstream endobj 182 0 obj << /Length 1503 /Filter /FlateDecode >> stream xڭWr8+x6nSN&#ys(HBL2_? $G$h^ugWg7D%*3EW(Ũ(hsҌFW:N'_>agEF8-r3Q,ނ;V(+() %% M?& c,nEu+ֲ?$B]1E{k=N M$5&JPVne]4okadaɇo44$$.фdU]`Oz5q$$G%cKt)p(5b+{`)7oF.axQh`UW 0; h@Y#y X{("3WV<~&Pk0x4(L `>#]W2M8"ԟ0r>8vJ0VƉyLpx*N|Y`9|r^L? _Q$!Ƿɸ'^x$ ;j|1>䱮0ϼJo[U>hQK pjhAމz7„mhkm| xݩ{ڇEZo5B5ڸ+Zp3ftz/[Q2puv(.ޮ+rbjȃ堖]8Z5!<n>,jACĖ?%)A#NmġpՄahTBq&_vFIqH1tz޴;[>x:zd#a/;:CYNa6+`Epn-%CS-S`­|Ԩuvy_-cZ|:Gm#zm%S4QR2QZ;2CX%#U5=)?Wlj|;?!l #/uc:]* fYu/C +}'G_paIcbE!@?U(M6Vugi|QnejCy3 S"zQ|kBTzg+YlnG~ (CWJo'DKr9߫v%c) z<9-J+_C}'e$5;)+O8d!q-mAUU;OP WBp\p@m5%bzeiԻ~^O;k82|"{R RR}GO@%D#5 ~ZK6] N_%;όC=жA@PA Zx}u4߬ endstream endobj 208 0 obj << /Length1 1568 /Length2 8448 /Length3 0 /Length 9494 /Filter /FlateDecode >> stream xڍT]6tI4!%9  5Đҍ!RtwHKtt Yk{kof-].ikTqE yq`Gz\f; ,nP0#pg# D@/(#M YԹ*pg;., fk@ aDD8n0FA;B]8EWgv(7ɝf+ !:Pw'd Wiܸ=;]  0 pt.P?tOп! l 9B jo'lG`# G`6!n0;;w< ,l- wr:#q'sB}p^/l`6˰pwz@ApB zCx~oFA@?/P? -@kœqTCm?̐ ;;(*jsU?F7/WBȅ?6p`E6="_`p$un B_g(WoF YtN0G<@ @u59PkZ`8H;")+Z0O=p0gA! ‼FܑvG⏃-CCy;CֿW@vs") ^cj ng8  kpIߪ?%^ҿ0GIiG G CDz8+p.HRQ <`wxH >?.@<ܐm-q!APY8D,Ծ:Rڋkca/h96W~b%Q7Go= s /'/kk}ϹmgL'a%lDyg*C'ޭE6GڶWiu$/ B*a흕ުӈ 6N):Y5Jxè 7ѫhp`SLgS8X^lF`>6VR{ֽ%Klv{f ɝBv6}+Zby2thh I0ŲUZ0U[4ePVND}:8Op槕ovmBYæ yMZ$EBz x _坴˰̹V8Ǒ.)xw}\ ɨrZ9^1Sw: XB*. .nb,yFWoA#4|ފ‡!(zK/GGbyx8J4i;I6 h#o^'!^ yl'kJs~g}0L{ d'uliSN TA"[oNlNފЛ[[-,]a2D]Z+k&&0Z7yjM)IaJ5N!hQ[^bdV#ϲ.KO^!}Qϥ-.inCX K;]Ysfڑ`dYd"*UQÎ뗚bnf{՟)jɝok\NX7GCM`0~ ̵]R k!}újA[%Qh6_jM?ٿ[_'I'Zp^5Ot>Rb0g+$& ʹvI}~VwQlC%^ k(NiT%L:>s kT^C"ũQWOHcKt1-Ћ R*2ܨW3 s/چ[m0W䖽Rc4Y,Z8[ "[:?z3"A m:9ƉjަDAs?479g(x]$ٜHf Fՙ2JyL{-}yJH3s'kq<ŲN (s;^ؑKDDc{IAO zv0k e:Il|MuLo4-憮 mLi{*qV>!^NCyڧ RL QpQ`u`6s>QgƊ/@eJ4AV 7u(Du``Gp^3 rr/~H;Μ*?ӯQ^uT{|u=ў EW0 [k ;oyUC-X߇y v Ed#$v*U{{+p1e2fZ1:iX!j v {5(˦02Nj3-m'#?VUm Uj?ԧuE(݆]_IRĹDHom8-"6\G] pXR!pyUW*%5cMՁ Fj*3zJ4Γw>=P[0i0>Q?3z@Y&oSЂF9K U>H.GUBo2SQ{WUT4/6ޮ˹8>^UJJ<5߭R*n|iպmh>ulΏ% U)09a&6U$i_lLl(QIؘ[%~,d0zKIҍF}_G-pRJ͟GbTdB\+ON\6 h<} r5-Ʉ固3Ùs)}c?ؿ?1Βގa:;fhP^nڙSKxkTߜmoT61R06#NsW@>6җ.xc8M;^X[%HҝCLkӰ4˶䣐0@>r9eJ֚H C:TJ- f'xJB_,K~j#, ޢg!^qƛ.Q],s'~o s$0X|S>A9|٭P4VI=5P3-Vq˻P'÷;\?WG}-ݭcvo"HroAM^S%L*Is, @9G&ew&8i3_>M:Ah'(꒑PV#\^ʼn]m59?@P2,Ӌ\Yc(|:̠Ŀ\QMMZ3q4l=gb5= Kߔ7xhnkmF4t!}ӷ_Hքfd_lW/OXut-c5[ЀRgn'kh%OR/~ǥ=" нW]Td8w3ea2=׎j52 P|!W/ gwqǧz(_xJYdXL'!9;1g,<[?]˶WU'%T+).^Ynq峝*Gtwzq&>&{2X I?XGEOT#Ʀv5ؖ\7R89Յͽ1sYl'HxgcN)mDu;AM{5a0Э 98W>r: ,$ZŀS؈- ˺a`Ͻ[%Kυo@ZeGT0&fjg*5b /c]PiR)]3)DAw4k#TWU!.B>:VOzF*W7B2O+Ƹ`? fXKޤ?s"`)˛l{^E'.X j(Gj>E,-N:[3LKA *3Ȍ7>a+/?qUBԈCOkЉs|QS]S M)r<ʑZofg*x$}r1KQ=}uo[MCѧ\cG5HE8āc tugBkzۜTwB_ \}" _^)b*NEt*ik_4&7/ir c_wѪH~j iɓ =>(kQ $)gǷ$~ ͼm !0lJ. %2 >#[d?5%M;3Z]Pzs5,'kҾD)]{'}8KH\q{/heQ!.㴴,aR**qp6~Wǹ`@PExyLʚ6Y9t,c1!CFs{lg=JjRyɃa[X;$]QL-沐:aFF;5䛃'sOmɽM/0{FΘvHھ5< e>)W8mRvs|+Mg5, |%V$J1RFiPIb+cJ21vrUI"SGd(_<6B zEaOT|= }2݌8TUSZ \QvՎq&}sqo:XՈU:w>?p{Ԁn7V'R+i͘+p :@EqFR|֕@51= ER%T vG?xW`^/kY(PuOd];-dxB]9>=e_%'AtACCoᰉ!uLq# bv b-KGJ"sC;'*X^ݶq(_8M>ͻZc m]a5e@k7HJ쉌C^-㼄 <*6YohujۙN'uC>c,CC$sp#uDDZZ~? X_^G2h<%ڒJ)Z'泴@jڣcOEgv?QxUDJPXS2:Dgڟ.it)H[ҌЃjCtېPwXeN" PxVDjΏ[˚FT߻רυV]XsfZ0$gONq37 SFwYS?UG}/e삽ZԏN~5}ɫ\䛏?&\'bSDD.Mb -q>Aɖ"? LHJxG]/d JE]Z5%c/T x"0œtFg5/P}+P_I_#nI{<$%LZFɻ'h(vd(nm1ҙ" H:gD ^YyPŸwt*vz0Xv|U;o:d@̍A6a֚Nhm(k||&lFۥk%w2_0L#L'~,0Crg=L!l$@v endstream endobj 210 0 obj << /Length1 1394 /Length2 6064 /Length3 0 /Length 7012 /Filter /FlateDecode >> stream xڍuT6(SZa0$[c!lN ) QNnD?=9纾cg畷FZA /O@PSS$1пPDH/C,P9AB@$HLR@(( 7*]@M>E"Qp[G w0 ؎=P C1*! `%]]]h>$V zP4\vY4ѿH+bpƦ8#( ;P_UEkO?? p#l6p{(P[Y?`{4vVX@ey] C P 9"`ݝ>C ][6p5 p'g g EńEP' +t`׀zm'bPPoph#TǺ6mn@3,@@Mbw Q Rg !MI uB#HT]u`Jy:Wޥ>;?y- 1JOgO()[ڵh)8Ȝ=\az.IyՖwܯq,#oqr%P8: dDֶ^\.VS jjn,N׸K/xs^Som$rH}?k!:`yXV*t ֵl{?5]` T70A\"T O+ʇw5sswY `q jҦԕ7DH-@<)+KmoshH E8Y`e>?G%eCG(s>PpBn׫2;$ qRlUӭ.jvt_kj/ϺKrN}b T^uq0hbN.[ ++F6swnU{c7FmHo08XڟT0{"DPxol6ex)0{2Dޱ &֫<9F ܿX&dʏgOy.3[z΀<݄b+>=Qtdj,SχGe\KJz4fl t%PEH 7 }"+5o&+^ۡPMj6Kγ<}tSӾ^ T-l {.9I->BA56Hngzo.vEb3,%l\.AA>-ƱN[~t-Bnu-mPVZ |S&^ڰ(إ&ۈhqc+IK㣚Ty"&MTJ+:ԴqS]VwuV&:T) wq ſߤ`ix#Yo;t%,5xL0X@BI X!*x!d& ajgE- 9&c|\EwT~5+^g_Eź8-Y֨J>O($JqhvdWoO'XRjcXs`g*LnKOj:>wUP6x͍wîyL Mۈ5̯L;ivr!'36$sWi}fXVo7o[tQB/5dEm3K]p5CƆb?dhAK(}pUpL۾|܂Qn☲z){~!Y9cbvXW3|8!1FG;FAkrz흭pn=hH9x".QETC^ˈwyz*0-#l')m0%X[xy A6k1Uf&-Ǥ)XKMtre'Hщ+;=%{K{BXD@6Q|[qv-wτY|>xaօ#2^{guUH!⣻ 8f'Ibz~/ Ro?Q(kBy\v*MeNQJ^"K#sEADu}B#^V? tM*Z@3cj"u[x@4_-ePt4873x:T喇2h^@#[` X5|\Kqy{][7܆@Sm$LJI$wvB#P~zJ<Tz P2,C^ u|14Yb?Vx\>^jHE#2NސL¤,.o!v㽾`{'JO1F|$KZ}g_&_e\*A;9őĪdlZN!^^>შX6i䒩ͮ3Tgvyr"f/KЄh {)=jܛW~.ӻ^q 4M>hQ }3A9 P= +y.p3G)&;؞^mDiʣ_>euuO e#)P3: 7n?mLK0] >@= 3ŹEzZyqbgo_/9pզvm}h0+i epd87S^C{ވ7V'MĨ hiWu|' e.R5jE66R] JӉy̍r<m %/w gx[lIQcsKŠdDUfs^؝Nfn)s+O'A>ewH UӓtoLËѪu$Vi_ПbiJ}44 q0>`%.mpfhP{μ@ NwGf> %7(p§Yd)W-dd1 PzUWғ+ *EIm^NCP! >~E-5UߢUSwּO7Epamm3Z@c5u3B;M%ĭ[W2m7B6ƍxGC6X+ i*J]v <=8~#Ք zN|jؼ'}6ET+{ɓ_UD[A8,`G`YFQ0!A>EkN{O&DN;C#$tt*J/B ;L7~PGKfժ*.ߨ=L!ЛYnahrY5m+۲/;')/y˗B2܌:.{Xrk~Yp/a-1 ^jaEoC*01k@ +M>Y;%/_C(_pXM;o^!>]iZ1K ǹbȮ2 ד(hxfW w\Q]$qf&_ڊo.n+┯j-eW"{(ƍ,Ӡ ]q_AD*/%= NrL^2T0FՉnn+(1zӼh4/w0{61$n]{T~ࢎeUq@Ą9lk'485܇gd5[].kN)PQ&dZg`׬iҤy%u!ŝBD˫wL+UA?P5 yEwDڟ^i_힪V{ActE']3eE;\nU!aAU>O`Sjr$}! 4~BjQ)K$v߹\p1m^Wٵ$TKAk&:WNj;\gj_!gqW|b}M3ÃkGK5¬F<=[d:.[m83b~|y\j-!ݿ*VCH\N]xL"F9#s;Z'FkSr$$4zn:UtO(LY> *E[`߇Ț;wڻzdXSd_dre/39jۻ/qfNk?<(NZ$*ifS1RsmIX{.8 O\'͙Ipu\\%npШ.ei?/s<->Mt~R&.U;[d:/h}DЫvT+v{-CEoHcPTt͕K,TW'T4Pw  Vs1'!cC{Σ[$%=_ @ٛi6}T~Iםᚘ)@z824wQ5,mF>,X!7󠀈 Ii'k#^9~&U#9x㞭mH2^s7o&cV;I2 52SRC&JH,7l Du,5bs$%!%fJ&$}\Fy^(, endstream endobj 212 0 obj << /Length1 1400 /Length2 6470 /Length3 0 /Length 7434 /Filter /FlateDecode >> stream xڍtT.)42t ] )9CC4HHww4Ҩ R{׺wZ|{gww?D%m (a.7P $@^&&](׍äqua #>90S$( @ȿpWQj P(a7&Y+<_V+6HDDw:@ j` yB(*n@8xzzrܸ᮶lO( qz@ &aAu6O+t8B 07d; @QRh8C`wq]oBPd l6PG@CAaֿ`G782:-ߝ Z0rYBnnP_#*ey, CO B^7ϟ:0߿ fmkkwg=$tg AB|¼ ee󫼮3wˍ A@8n`߁Z8 jXBl0TG!6l]^c { oHzYa/ǟ{|@.^ / T% yM/X bp$k!(B>@Tc*/wC ìGu @)C D;wT F Af$3uSzA5+?%5G( w !e~!y'vC {lRNCf;^A썃\=xf6G Sș6pW_k<_c]]}fٿxApfVb!!T\熼\f؈~) :* } 3.u_}hOhZޝN'Q4$<-rGѤ~mKm|'3Irhz U2jUmD K֪S܋o1&)oU;/p< ~"R^?` Cʋ RcUſ*yCkXFx-8~=`# ji{XONuzA ?j>) Sk;zx7HH]W[~s ?GKW>7\>B3ZK(iyϐ:ɸytmꩋ۝g2$'eGBG"s[$in}xhWubmfB^|gK3Wxّ-ZY^I}g~o!wD|q~Hݗ-$|% ,D.ouIOyZ=4p$|*ާi ~B*l-P_PVS;_c.rOd“.|CYJW(V}c&F1J9jH h-mfxysHuyIڋe_f7j^.?m:sYFD7Я, |ݮT 3ia5R2nLxP_'^Q-|n #fH 3a?JWw$!ʿUɸ䒩fԳ^$_\fKÇ3G^Kԩ'oI}3!5܍S<}L'q")`G=¡gLyUr/w~EQQlOr5)F|k>yz99^/VtH\f 9/,ڂ_2pD ߕ٧Lio.lxCiÚW$TUzᝈq `[S\DPTu ׏(Wu-#cWEFcCT;BseZ+/28;1ⷯu3\ܜWSfq=S3P뵞`XkxVg֨)\?+tN-@X{ /QϮkR[z%gf"T!^;]3Y!9 h:x{|jv"0uuVyWeSv;͊_TU,`*xHMNC.KBFjeS˜S0rIb63k^|]A+j{.`iyV2K_SS{RBsy%iqS(+0 r۟*B1Jor$m0.xVGN PƤ]E yDHO3>&^Q5o1, qz=~o.^n&İS)Wvk X "c%}(h=cb " DucNZI]* oRN e9#yhi(:p'D߭ *jZnq_Z{1[Y?^'y8}C*gR,#{0Ѝ9H e E~TڵP|f[Yg)VGS*ij$kდf6tG&!Mf)CgFۡ2CW={aTd,]&u@ %8BɾJ 3uN@&Xpi~iH>giz3璻O?Y{/v 7{I%r Ve`] Y>(sr-A#GnI[6k ^(x1&TBwUP`#M7%k4=MOht*D 0{ED {QjWP|+Mf:OrW R:p ~ݬ4m|':a<"sJp0lq=TBp\dTd?馹 jR*31`o6!Cؽ+/,R'(2CE hN:|ѣ6bJJ?49ei %~+?i Ϝ%tNUĞntzQv0X Z s}h_ZfK.C:uO>-~nE|;f}\Ȗ/zc .dվDo& 7 t1(8Gryispi>$=سNCGÀjX\# # 5N_YuN3xWX:b.ftSw[y5;g 2gf!c%B-ҏd85^Sp_k_ϪBkv+c~}%\I^On^fbH`mFv̓9'lsfS14inUHK6rzj`W*pm5~_ʆΔz~N0{ç7[3ZdS޲qn dzW#kt:!#_2sB'k}"Kpd8eD+R*ڨּ i|A{ eXɽ/آT?H ,/:19< v7(g1rE]TQS s -Ow0uyN\$mI?K퇀E,8>kgwnX"t!$^!) I +P{Wޞ6+K0Gާбz3u\к^rJH<6)6#b9֪< .ݻe×G)]^468NVP f`~jC.n~QAyxﴎRwp@z,`Tp.OnjiW[&S,oF:Vg&ljegmB>Uk\awH0lN[翂)Ţ"?B{q<?:{WmYVV|춒P{lDO֨2˽i56}0ll Q%.%ZE0Btm'K="\A:PwAx|fTB~%tܪS;a::{G/z,k~(y |T45F lSg7(L'C>KrxˇRwW3mݑrl AnPY7mpnˌw뼛Ij7Sfmbf[ CadּK8Y !`3zi;mqJYG&y :LT*)ZQ,J~3/I冀FvlÛbbũ-Փӄޜ++3W".4>q@!Cq㷡(rȦ9#7kW.'iK8X0\*?ׂn>Mu *"y!vq, #;rdIHEg ?}GW^^#%c>!ؑc-Ѽ4$߁?侀VWUD8\Gl=+6ew,@Y|z%/MnjD~40腑iyIa߸tϡQx$)I`e垣KMBGG{|rZT->5iIJ@DqhƤԇK(Z4\c裂ٔʳc pX4<{>4yP#Hزؑ/&SȊJdUgR}dbg(#^ .OۜZqw|]4X}tݝBmB0s*DK͉6aOJ{EӾnhEq(%e䍼L[`G,ul čeXV/-BēCE )8\XU!>^oS2ڡz0ſJ1P1$f/XN6 af89<€H&ciI>{NGmk B!VVu:}Dbv G\,D@5àw|SՃ;0G;n cYkիgR rG܋jhe[Z3_Mvz_a4xvݻ-3Df[I1Ss2@Ac&^,JGl[;yyA)_1ŏpVٮGHdo~/vRR'oպ[ 5W(;8 endstream endobj 214 0 obj << /Length1 1522 /Length2 7341 /Length3 0 /Length 8367 /Filter /FlateDecode >> stream xڍT6 RJ 3tw 1Ђt# J *ttJK|{{oZ3Ͼ}aa㑱[C0$(P@ ?. > e1#p!`$ #Q< 8 @b'b@ .{BmU8 eCn>qCm0qA Ѓ@!HJ.Dyyy]pw{InЅ [`_p= g @Exl!z*-W/_ng߉?`+:/ l8* :Q?2:0CظC]^w|ӠNYf+wqC!6ckN0o ݄+ Qp!HP䉀x8N Q]v& P;t l6H5 '; e<d-|4ՌdL>YY7_/@ h'VfEӿJ[o࿓iQQPh?kOg Rpvf.Pg (z QGFVb p_ =J< A^_8jC6i/9Cam8rAEC-A @m>w 0>ѣ,!?HTճ?{(]?(. u_e 7$Jp#APGGR~TR0Q1>udj_[LmCkB.dxֿI`_|+Fv)Z.'dϪ+t-[5e.rNj|x_MޝO;a$V`*K'VޅMCԆ#ekߥBt2'aM-mUed4?Vt{ׅ~R學ćƚEif2I\&zU-}'m R ^?dG+ bUzfY+ʑi0R&:0a2v̎rHݥ l.,q] u3FGJ,(|%?\[skndfzE@^cz)Q>dwI &U|&f8ys-vcEES CiX3=#N/vy^ ]FmCx5g9 ]*ۤ {il_ftB@qtDOsmiWWIL!KI ̜ w_y`L%5rlA"'h?oЫj>}km#~%䧡3c_Kk rM6Z#Mnhiaj~Ab &g&7g[u_'gіVS*=ճלy~RhZ/%8AZ'~˪EwaBc _=yY;b8RRe x1-^ "R66v6 X1QrEXЫ+ rJi~8PgO!ibۛdrsO@vE_-M}Hݙ΂//u:c}cC/E }uvw;;n%eos8fF`H:VQהocoJck=kWi6R_YL!IKi{ŗ;co˚ ?oy҂4?w~|*2or\`;w`uUFiڵ&.n>yt>.{($m9$ N<3Hl !q]0-]:JȠM}=*K0--1L2![jbƲ&5HM+Ns7RR،hj#CuDB A[%/?8m"xL \;UH\А|pG1mL#*h;2lu<VUoUy]LC&RWe|)YXCS2ӱ_0 vgʗ(^ܲ g0ٕ{Qkt `gg vX U@4/4w/-)X&>VTֿHg%6J`x;ycjqz "LU)&GnPYmg{oQKN \W25J3BSlj-AwD4KDwJG4ow EU^n 3^[d2]bed ?'kls3 hqEOo,drooڇ[ Ѯ;C*Yixw.׿Ϗʼդ3EE=H)1#a3RIt^? ح1❆ Ηfm)q۷4&B.CJ4!#S *a_w!HˌEVEZ^"˵Ycm'źҼyeKb CCʺ~QS6o$j~YcU\O.HaQ2NK &_ jhNwoE=L.SEw!mxp[űd zYR7qK,֥ޟ$cʦtYr7hHkܖ;rJUWgq?R = ?:v2{us.#QSA01q^)lvtSv~Inݫ7aCrZ@@?vNqnBzƔ:t?-OGɴ '=r1k@&oj)J6DSsK\AvFݶ6ϗ:32֗:š5)!AIlp0XXcw۫b["g-+)d6tྲKHNAs$I78v7U< I0C# Dv;s\@/[[9HL\zA+__4[RH-bH+_K1){x U‹=hS;,0 rT;,~[W cRtMX}ygO$KVӷtWvQo;`?lߕNL㙘n^7: ~&']gn+1^Fw%޸4N-?YXH-]UKc|q~K16Mi@YmXmy ZWg_GDZe:îd~Yw62RH$ wyrزB+,h-R~84+;F_}dWCJռ1".I2 <ިpMz,LҺ;"kA?]ُ׳~2hqy6)GRehptLX/lEdE΄#AS]7#ԫ3__\E'' V9c1]7ѫ ibn2yT1{GB2 (ʡdW #3tRև=[02' _K;L.9$gd^IX7=iWR)MrÆXZC<8%!rn]۫rl0cCI3k :?5r&S׮YDTPU| ȉ4~Թ T+ϸtf)h -ll4<`B 7xrVzim|0_U0?bg]Oz!Z`שFk#p1DμryI j,;\j_F_3mέs\ҭ?4[?*0Dc\nT*,{zS%rmg;15'2qV$5:|Q',3++Պ<)ʻ諤4Vwa#W"@#9OqYCݝZ=,ZjxV9AL]F*(+G3<^[靎ǣ|ۣ)ձnF 2,&5_ޕ[p,oSj~yzG9$T&rro0\ "L\\>O`R,2 aXp:d+^D`t]|DU^VzYwlQe&o/M)]Ədq0_vђoz(~V'PJ2*8SVWZ LY9~NElol4bhxC<ޏrDeߗ5-գ^*!*g7 ɳVNJ>nI# /JLd!kly{jiVuY%.bv34I`:@>]Hh..m.b9Zs\*#~oKP8<%F+HHSKWB~X\ 5i(t[HVdg$0=F㙝ב|)0fQBŅd j]];-r:]/Ta{?+Lt1!|;.W]ouyaڹ4:Ӯ Es'*=,>xVTt Vtԏ5|+19|FAEk!Dwhl޶1%'wpӛQTC I_J{&}t m(ueSd~[opbܺ1E]r?;q5#;[>RhքWB7ofZa=&1Σҍhi̔ z'f1Wov ky%UrW'a'::IyCi۱SgW.s~_)dg<u:Y ePQʩN"">bL0._;6Za$#Fv;:,KS"\O~ATyuߌ&igLGI}/S -A ;jÞu\s离 9/]o `Myu"&B7I AzG帱{'/@Bw=f_9T1mFrd;a}Փr:-ƥPA̜KDKQG3x1>7+d?:'cĝ$x/]wؽ`=nB33Ņ!qAE&4q[[ƲYy6ߟv1ǥ?Tඉv+F{tmN@WZ 9輟8l*Vi&VQIѸv~On,!͘R?;\]v*<[V|,jؤiZa}CYKwi FnEJMխ=LYQْh^n\p8~+}+`s6į1ђh[o*}1_4oC̎K]J]H,"?luӅSCUBD cS583aaFj HvQ;/˱'+;UNǨrH,Q}F̈́WǝeŔR6" %v+0Gδey>ZQbԕsd0'ѯQ$ZGcn}\b#::gV}^ ]˳SPnŽ47H_÷lgB&9oTMIOW߅'vE\?4R!kC #G{PZ3]>1'OYE[I=ePDgΣZeGNJ)ȓuk}:+rz '~bSȚmug,S&%hAn wHc''ЄٝvyL0GnIn0#248{A\[ro0 w9D 4'n.6 |_^w U$1PסS vxgDmdרi{Mmfqg­xgǓ1D q93ĿiyPe^Ֆ?dRi.vy7I![ S7Pq6:|)> I74 Si-ۿPsix/ԋ9$3{~;3+eߕ|vƲ!ηЃoҖo~<`A\G6jclTu^RWa'y[+A+:٤6(%FFiN./^ɾfd|c:D z5v]u Osٷ&(J:-R_11eE)6.k&~p:xܞK{^3goC| cL2vQ3iq(c3S-<JSx:Zl}ԗ[͸|*I؜L"DM|8"yѣ<6p?Dy {^sYX[&n3bWoÔB鰐wtDs"O ` XVTh5wVkK?Juݟ7k>* n J`8}r)xzzu2W"!#6_xlYÞЖn#OtK ,6s5gFlۛiJ nHtj*byk,^Y".^kpR=z>χ7UQ&HDޣX8,:/J)+i[[(ؑtq?0!OkϪWTŅf7GQjp*atܓ E; c!PLl`rHD endstream endobj 216 0 obj << /Length1 1556 /Length2 8663 /Length3 0 /Length 9696 /Filter /FlateDecode >> stream xڍTk6Lt Hwt7!0 C4HHtw*!tIt7͇y[3v{k Z:0K Ȫpsqrsb100>AE@"09 N8C<|AQ!Qnn/7ȿ apQl P ',Y;lkxH#ي#"";@[u d  ?B0!\\@{'NV F^@p5w =OeX ];\fpAA< 8!9@GY 1Vc7Nw 0/guCm6`ƉpCP߆@CP <'+8.w.Cea ( pCݹL  [Cm~a;:6yقnnn!>r^7P`Plzt3xx`+d b' #? vp?pӫzYà5_.iMe9E?['#sxrs8x,46n k-0[z `N a4{X-7O%R6)V0++ @w!?HO]Eb'xp< ~OTe Z=~6?8߿?B0!<% Kv.ؿE~ rxx7 NRy/Vw_}hڿ! d5= |]tI•c}úA" 4 TE6UyS[ϝG! qڍ^71/Grw:SrJmx:zAG,MxڡVY<>3iU4">Qm}o:oyrFd0nǷq_Y}}7H~^c@6n8V_L@PșYI6L5TP`ֻ/}3Z4QW?|+Bk_kju%ƕXY)oZSu[7ouG.C{c }rt`*'̴ & a\M>^|vgV*]=C9e ӏ&Q33]%@nSZ۳+iRW4Qu/ʝL+0m1B_ xxFCƨb6"9l \0N;9ƋD$=d5- mM?~8&Ҫg=Q ^jgr~g_QDUDRA#1{ aD ~z?>ܲcBEq8WQ¤+@|/Pz{?Gl /iHYH %cg|z,%bB i`R}7\ՙg:YO L\(>s'f0]t<5mhw5I1?WntPUqCԵaNνHUrra])H?az@g8&8GO5RS%Nا 5QLoƢre Se nX.EO޾*#Y2i! _tcO22[Vx%;|Ky;H=c2CYYv=-6X(ّOlB}|6Q(Y~Dia*[;8y61$gF%Hf=ZJYy!j;( qIw9|Qmuya}Pn~+ly+K~_Ds*]ܿef@0T *sXı3"]P'5&; 5MN"{"tpM~ cOZees ӉW;:lN ZY,:2j\Ų9ir- ѡ tHHž/`$k(woU`c (co d~6k>"i04yvҐ~s~j>9i|;oj_z11ME6/e C齩63 &c:[(8xI@\GܨٍZܬƹլ6vOjn2hO}|YTW%  p7CkwUL+:0‚ Iy>6!#WZx xe\CZIPm,9_دLxK__l*i t )A&fIXd:`=86%):+U ,Ę~!ִѲyں ?.^yH>JDV Nfoߧ@q^|/-Mva͸Ysa>Y4=d03ؒ ##J?O:?L'oVydV2v.+N{ =iŸ3kf@kI(+;h}J؄Ls]V(3kΗ}@j Gy,愝9W鮎%zV0`+3P{'z x܆Ƿ>.lc"kOkfG^=!Xr4*8&l.#Zg$[&sՁ(z~^(4F#d<\rXN83TqX>r]irl"kSxW~ևN@bT|ŨAvKͽ Dq y0掕t#||MZ""ƑN"!LeOw3y=Nc4R6ORͨ y] A]"9t} -܋#??7FZ<%e86Q aЭhPd{4kK1:$3ry7}|~>euu5'{|q8W)FX[jWyz vbR"&n3ٶ,n/&C$.9Z16&sVfd *OUC7) mП>{j90gzY7.+js q'2UxgDH's"0}|qdJ7Vbq0g%q!R +(s{\ąŖȍH!aR"<Y'J^3+{rp YK3p2fT/eo;nU晓Fiho,íx[x:7hs:{"~GрҷxmB۰Ci`[mi#_RSPx.tί W͛U:ShBGItb3Yg5>]Qbԟ UeBA_Zh*b$ ߴbKߎI;{CĬTt gn%U܊}b Dڎ(2㉥G;R@֜5Y8G,ǘعԷm~y`wM%wz&9cMe< Nd8J8neHdSgTD5,CWhHjE3d-±; M95ZArUu } P[kQ$[mfPng*ϷiP E7 Z. \Vurٌ >Wȵ0 iI`~6WV] 5œ, 0uߧ^뜰uηn_%CC'rCYqˠ=}9^ qG da=$]==[6(9ZbatcMgcct3kqίL7oPQŒx| 3<.xy;Ȕc)= 1NhkKY:J#.,T*_۫OM,+5|!ix&Y bxL0ڭGJ'4-{RS $؏t [?4-L`5+ErNU颰頏pPA]oٱC5䉆eO*α#_j<FML!,H|SZ#Pҽ™ ckCp&Mi7$nD{ͯQz%~䋰*s{՘yNaxtu^SHA :Z,cKre)?% N8.dy^}Q#n&'SzX,UTEU2/u񑇓WwNڏj°xXm2 j(J?3+ivưF㜌HE@krdq:]DGjveA'&,s%+= b(,"n5-#OVQ%k^lt,Ωϭ#n!20Q EF CV5ܪ4k&^=]>8Wh{W]s}'`S O0uҜ؋|+Vm"Kж@$3:\yECIJ-Knnչװ(fiGyj:3w:+8Ve9>ض%C/-JئXS3OY\ Sh /Ϧt`YJָnes[1AD5La_ rj%ݖH%~,ͷA,Vy÷+ژ鵫3$tH_u[GeE겫@ C?(b|a^e?q7nret.ۥ~̒3%Rd.HZ S;k|]𳓓sѧ~#tX%qniu~/SQ3x+!w( -D7fVF98zX(Udo7KCv?aۉ<5F6ep4QLHhnEZR<:czxJhEq1sXQA@5Y 䍲 J-^os]/iyS-WdTI˒_Pa?o io&o$)!wstH 4!pX[ͨd9H)-T-vdǏX }KLthcE6Qe-ɲDkRUx9Fieh@PI\$S6*7~H9, {,v݁# V??񕳙u*|$+ çON&YXVx7l]99 K`&>צ x*aC5My?Cs:Q.0naTqeg'OsH@ {,ܕN;CIpgYf.K;ԡKZK?td8?>Etb@#@cucAXu[`Wj_kU5]{ 'u꥿u8z-?Wa4[ڮ#2([Z/h¹ }qr ֺJNT3YM&/_psߵuNI*r4͒2c[j8qq~rqQU1df-1n9U(/fI̤QF MX(e&aY;YDE2h`zPGHn(IyTM859 e8lD#'?j/қ$[F뺴TvjE>6mPH`RYErt=q֧_)nJ,roZݧG9siL?@+=|7Dp52}X>Ĺ8Q&'3?iIcpF/¥ތB{te^9f-L/-2vH|ʒr F+vvT@Uy IH'RTSezT} ̭fKrexsI7P;ڣ]Qcj'KI pחb+PD;^Q]wѨJT{ȵwJ8jnCH2d= cͭb챖1N04_O^<@WCSoUL%- {kyIb Qc"ay71Gpp_'Yl.^ Tjc|:-=A+g´UØ-Pr?!CU?S endstream endobj 218 0 obj << /Length1 1358 /Length2 5947 /Length3 0 /Length 6891 /Filter /FlateDecode >> stream xڍVTS]HGT"-.Ez^$A"A iR齈RCxQ{뮕{93g+z;*I@ H4]!@C~ 6e0릃4=]B"!qi! i I(`&A#}0'({ʿn{p :`4= 0D h҂`7t CCqjݘ)` ho0\a8  w س]w>_Ww%n`/ pBh4 wvE!`/0lu]8c;=F `:{*p77"U2 ޺ﱺp?kGW p'DC/o @cep8b[!? @sG*$p٣v'X3;y$`O{e 7Q!%%_a H`̢UX # X-`0xe,7-Ab {C7v?Qtur vcr_U?]M!qy'c5wr%P0 mC?v_s!z?0] !V47L_"[=1D<c]T *G s.wE4%77h&@;XJrHsGI ~#n&0SB/Ի[ͧd~Ԇ q-%1і!vh~V4?|('?ҼK5F$|E٤b09#+f&ôQBOlWR6_V Uy Ͷ }Ns~J*AިhyFqn9*[LH8yHg-<{W9%"n>~O 2Cސw:,Y"n96 >{Ֆ>ףQT=:bH}<88'A`D[(ֿH1;Wk}2;mUwrtYEOKܟq>:6,!IApI^COkKa\n jרF"o&ƢF DsgݬDWQMí$6NH;5&!PQ)vJy p m. pr 6QX3OP6z.T|4`;b6ziA]sq9!L)d, ]q@cqTZ5RvG sro *]9TϬP T.ץ{qfZ&1N*Sxru:pfʈvv c?+utT1D8Qe)\XIN:_N$W=p;T#γt^7:VgD`dR6e ehEgy>4 Qx{3Z餾y0>^RsG&5 &foN%*SFZՄEQjr]-2K2܍wVw)jsL͒ƽee3ցwꭤXB;>|'l˹%q` 0hi&i,Jcx3%Ù0?ab6o'n@ Tsa7Ty<DFXgi$R-]Qgѕnjk n^1 Fʲ}lC6kb/Y2Z 򈌤w;)/Vank"j6? s#bCƥYz{aEG#%v7dyHN&cK[-4R}i_x[ߘ#Z"48afyIet]+s=wb&oP~Eqσ]Jdj 7pqjft-vEj /'E)Vqf\u+)&myw3nԋ|1* C;ӒM()'܌R99˚m3z:5_>B'sS[X1x_rxbiDj/}Yn3|HNa^wJch^u 犥Pn"}P >-_t/F㖼nOaQ}K 'jȵXЁ ["/ƕ5uă2y=b_[r,V)#a EMf2ŧ*p.aJ;]]ET?Sz*OɍG Y~ra| ^4P(DYO~$ 7nJ3)sXW3Z+74H^TpyVAQ#kiX4UQ"6$\v蹣)L=ȑeT4 <<ΔhPøt-FKoviT0µ *7da~BbJפԖU#:g]Ǘ#&o=Ƶ,t۳9ÅnҐ#^.^MD紜3 P-䣐C9=sβb{O7K밐[3x:X+oUG,~IԾH6-ؑ|w&U^ʹ'Q)KW(Fn탙T[j."7&'iܔ l'N}h6j)x[c`ռ =N%N}IK:wUx9qnxSv +tmVN/hG(L)TsjL}=Mk8KSܬ.?IȜo\E oB[p{z_Sۥ͒cNup<]fT~iLMP뺱{辫yhm/8M]X?g>hT.2=!{+evg0rBn20:ciGt$G1Qj'aB\gc{>W %*׏'r8o1TPHqT%wZiV72y+{er-P{ )ǭ֒{lk=gjVPen+޿{n)a$048rSh@63TK1PV\(1^6ImKk&52ٱTµjj%t ppK(7Bq T'H.>eL9;/c$/h[ǶU߭B# m iy}0qhٌ 3Kes4oEQ{+}%Dܯ)76ӪREE"ӓۧꎴ~?ZB5ΊFa ]FOpEWX jrCyay-tT$rsa>geN^Ja5Uu1|{-N/Ho?k!+HtRCN>g/lfMF+M3426k=Jvb0tk? B ''2OV,酀 w Mf D^p:jD5߃tSwX>Αip\G@bRx1D׻K)H_M樞t.x/+1m\D_ 5Ɩ=\縎Z ?JyVLR%0C]@MrW0~]IװYӥ,m[ }hj"?e c>k:C=MJhXآ-Et9O<=>_ǡĻb؝seT%_d>"F>ih U7LeAW3JG_yC2IJ3R,!tiR緒= LV8|^2YNJxOF.:!f9'.n5TZW|"A:O\_qѐnRL_v}*8 lSFpu@cl8kdiݤS22Oإnf~-W~97β>KܞyC8?NQ iXEzgxdk~i]"^%QFRc-#~{|L5 ;S [iaLJ|LVvǵ| /"𾭱yYj%}39%dqw}Njm؜_JPsamesvE;-\^H(VwI}!>=b(adM]n҂n|ejdٷ/}Λ<$Zόm& 7$KkeoRٕ͚ tvi X>ͣm_tsOcF¢̱'ŧ=gt*#pBK{ PS4-k^N未286w_\P50ĕ޺`_6[t纁&ZVe+Y`X󗜡977o2/|}!OhUS?_*jP譫gmVYRr֗U`qEa0PY󓯘;k8q)>$*ߝi%=zIF#=݁-ƉS"''R8{5:2r~ ǔ/Cl& c"!>§۶FZ ܧ) jj! ];3/ d`0r<ܱI"xNw8ÜQAܩ:.DEꄁvH`/;'Q~YX*'saTpP;_Q|t5h~KѠmX(716M/.OY'љ>]aU(A?.62,pItV#}ów{Cre58?=߽٘-MdcZ{{=V6X^W|4{1i`Zy-g]uNt +BXEpϧx8J%.~l|㔺F_M,]/O7:M mW8=-mOO *Ì |Sh*`!BaBq凈[y+Lozl]̋xn/7PH6t|kZRsˋh%%'!|2KuΨuőڷϊj^.fF(.7&<`o =[r(lӭT%{vUgM'9?EM/Ź6_H8tà'!MSeYlc"`~ۋ}"r$%c}r dqt_11/sq%UOCd Po;R B-9$P8~3*eidDžQ!&ik"|7JxLh |xEjVWlNB3LwB/4ȵOQün!EA7m\nZazqCKғN](E1'if" qqmڕq f[}GPu/b͖ kqO_龮 ޓ\ki=)8 $&@ʏĪ}LTLXZs& ]#VJL]yP;Yg endstream endobj 220 0 obj << /Length1 1391 /Length2 6198 /Length3 0 /Length 7148 /Filter /FlateDecode >> stream xڍVPڶI (]"EI{UZ$$R&HJGD.MD@(ER(U'39kkc313\‰A@5SY ,)K8/ ` `haPSnhP Bd!`0P ##T!\@]4 17w-0! DNNVw8P `Ps# ' ^@34 #Mw["h(s±p]! ݘ8@hЮ8($^%\ l>A!+W"w0C#@ 4q8Q E~Pԙp(PS%WwXÊc^:JCd pX8p끠cDQ?kWW . q@i0,+};Wr@oo#L?Z \ q_x@ @ t!P`=aD@<=[.hW 23STWM ^LB(&! B @Y"YrEK ,  o+AGUXHW_v_}q @\ ._ZupPTPn^DVw1F`%0/ n"~=(@16`GKo ]~KBZ`ˆ ;i B <7 qG 1_/^ \oG|1~SP׿Ua 4;/jT8ŖF2S6#:49s} 4yN)[RLZOM-&G.~RM%f|lILܡ+{θV@]Oۨe2z',K ĸ)vGytE! xyA%lܤ{Lo]ū~J~$ XHLʊύVLtS$+'ོ [ ZގDzjϳ..Ć]PPػʳ7ǣ8ͣ˞^}% DcBIg<)\'{Qޕ fV):rIuN&3lPZeex/I^$ӽ| ՎUєGg1˼)(qܔ{<̝Cܤ%T +qiN OSAfLƒJiaSz[ɧok؃zѝ)!͂Cf7Ìi,.M&uz#<;ufwiTZ)[P{l47$o)yuW݅%jR ~*kZnYw7! p*( (46{3.% K_,TgF،"Ga=11{utoxި|^HAdڣzDjo^xk[|*8n\zhHG-ѡ˩3+qWZUyI~Aϋg(21gc^Z +=_5jWh[}md@qX>c}X#uZB.gw>h04MGaK{ }Bcy8nym}3,qr<Տ[tZj6 Ko:.=TiB4ǘ!.ǡbۘgCi+yRj(ae/Kؒ?vg`T`3wWWɃ݅#*)fVD}&Ffy[-\dW>ݲN/=|ol /z:]62.p/ gﮖI}ma/ϻ޽6uica& >ѱuZףW\,u]nbZўs锁F/~q:pںYf#Jzf=i+@x+űQ 4>5E񜼹g<ͽ" Ö25FNIE淁V#j#j?mDH(t*m5at96o3en JE~ vM7CBׯJDYf_*) 0(\<]wi@}*xVnV'4´7 Aiȿ>PƢΑdxA ЋKKҏk&ڛ5bF%(~/8>͍CL!ӅҜv!ԁ; ˉO"̟2> Zq7cY9/saDQaO<(e7K5sJp~0FnoVFt pW8\faKj:|y pI~4S2};{ҧ(4DfuK'?t5 `rT{v᯦E&e8R 4}K;̆PG>QGJ8_nݮg1yl\V/IGN @eLRtMQQȶy%:+;7-đܻNTwpT=z g[i= "fL*uf#)ƕy}fߩ5#r +!*v29VRD0:-WM\Tt[3mW6D:<.'kZ4P(Яtz8|)"D`ok3a6N9`O똞۬jK䎔w+[Lv' l|Bo:U ڼٱR?4 IVm=+oU6d,t)0B/9=!C85~I0})HBEQFS͖@E*Eـsm#VuwIbg˕_gv{- 1['4OJ߱:+,ݿTKȉV06> /]9/MJZKrMd<P2l^M.^z90qt])^ysRv/NG;l2X;e,ѽ ڧE$A%hf >өz;O v c{$D!sEWuM|RjC)!u|YC?b21OW_A^=;ԗDC.# 73Qq*޼PR43VF{!5I]wXJQH8-qj馿Z^Iq0g)IZ5 ɭ YNߌ9rYk۵vnڞ"Q:/ˊ|@l,Đ;=wM =0_raݵޏ6OFDK ^]zҼ~~@lZ)(\)ص 5g[\Y,*gO%y.a5%j!@h27Ktf'ψ{;q`E4-A;Zc< =rIJ<}Ak_|$tA,;&9R3怐_KOlG&yTέ͝v)_AH|'[(o:blv}Mm!یh`A'⿊uvV>c6?+򪭻a8 *Z2J <= s%'"tS*m]%][^i9}hIN{3]NkĉBa3ǫ ='W ^e0K\g@UK%)>L 62Ɖ~эu*+1MFdq/G:\*Vf8lTDXI} EHE۟ɵBU׽#JnEimuҷP_ UBfY=/FMuܿ36z0-\;T 4)TKs4hl),S~VV8]5ؠcJzZ\@F`F7N)r hjѩC,Y)g:Hw=F%0C>{,]b`"uoxAUM<<1UG?d$]hP̥ =Ejp=qVɨR^uFåe[VޟׯњoWI49Rs ̨q Pz z WF;r6Qp҉wzLPWLU-5{a<*nΌyN0;J lZ{Tuw|&[6A9_vQ+"+R`?\F+,5lMȕ;#IK>XGYH~L˙kbftjKЄ<#V3vF+]ϭ#ߵ:u#]7U*BeܒOA̙\K%gE~2~&p<|eK xRC+ȹ/c%:wI#T[)~QKDӻy.m2dⲚ-j+y"ȤK }`Q 2JP$5ּ;#7BLKZAVsb23cg<n9z2^9]cw5 v Y}~.m`k\̀ f'Y;vwj5x% ,<%GS)654O"0[l>jnU|ƆU[7 0_ne*뷹{ -|{IV/lfbߢjx+BۊL镉 i+ƭ3 2@%@_>I1;= dȀëv,>_RK !O^5LƷk(ϻs;G2Ua'9)ix3n ~Vǀ$No5;CD7-f,<#gzfJ=jŽ5"CIk"=S%eĢ*ǔXw"HhƉ{<#nfeg ͊Fq|\~4?Q[jdѴ/Dmhwm%YA$^_>( nqg7v4V7jY.uk8\GyZh+vrhCvLuP8'[CЂ>DM>zVn>99l$KڔֿǡJGo~L}~'L  ŘU} 0g{_'u endstream endobj 222 0 obj << /Length1 1546 /Length2 7587 /Length3 0 /Length 8626 /Filter /FlateDecode >> stream xڍtTk/]J 5 CtIw 000tKw"H7twt Rߨ=;kݻf ~ 9'G 0t vHO @P 2pق5M GY|edcwv!0{ h!<"Gك<@(;p@E^BWvn6 ҍ !/7"+l`ҍW|JUuomu=avݯl]`Ww_(I`WƁsCooo `J|@`߂@- C`xG`?wT/_O(naP7_S)(B^AP@L :ۋ.Wت?=>_ /m8`?7A}4mc//w<*Po)/!9CQ|uGGMUMU l qwoy="BT ^`[]UF un_  /jlPK "0jh2nkED Mj1&~>285dF=;/\oO#@"rvuG5oA7 ,G-Bb~0-chFQj }?b@|f-d^@`؆`nn#X|^-Oɻ9"=ɺiw7*2T>da]D3u.7>Q|ǧ5v3vQ5]H7ܳKիl~(|fSoJTUoQypku453Ћxt-z7^Pي`Ŵb[ 5= 8 {%ˈiU tgS[ÒuTB-&vQs1S2pn<:ɐ[X Uבx7QݴJ$WOzPc콁r  e)d=ZC@Kqx%_j38Wcw^mʟ LJmCR~Bqz'3CRѨ") juT67NG1Rh\dCg֙ܺvRpx"w-pB%n6L <1KXU[gL<:c~M#($9PS}fb'1T4Cpv~|C͗N#|6/J zZ2qP9_{PݲfP'{·cMjsݵIoU_d%yVvN I㟴>htk_Al+\|*!Ve[XlC< e//蒉+ulf#_uC솅9_kE-߶TNFv2-}_ )%D]q&i4Y+]P$Jjml4 ϩEFaJβB#u{x{4JȍIFhU]=u "Ѥ;z6ow.NoPҶ0@^DNqb5J5i+h/W$(Awᄘo ; L異8}=M}rl<"kdI#t8?n'ݐ=]4A׾vgsc|SB~:w2hFOY>f{r>.D+&S@x1ԚԸIP%C69 o*ЁзBJ m`:wx;j̯+NkfB(yIK$yx> uwN˜0|MAg^4qō\A8/iWy5wWǹd5L;͍/75'h3)3qD8Ij΅<<`g.B3QqfZL>{u3X+dde ƽxyygޱ S92IR.ŭ)Nԕ7!T:;23ͫA~֫s2[f}GMLctVI$5/>SQ5|.i2iGfkMiI>Ж7FxBTۃYL-P=?BƾF}j!'9#GO>=y7bAI.#^w1kUKjp%UtJ<`w2-Qq:}DiY{G8Bxϧ n6h; C kO NKE-/o Xjpb%%n)m -LIPN(챺9s_`n-6m\ʻM.LH+d?,oOCLf7 iEAl1v7*T(1}[繥H!'$7Oez_/䖒FZe]WE> $ /vD̗&]s\XÙvh^q `gԅĜ`ٮy=ЄQ62٤A^]L>ʗyvZKv&'-"2on颖<(XȬԼURq.[𼓷h_&/neMT˝hxqӎ øpX[zVg.g;ի?&<&n 8={&_ ;I[Dopr=i⅂]Qh1+t;IVjQo200Vw9 ؂r8|"5CCk(*J26||4X/*`v#^wRdCA%{pϵ0 ^M p6R*$6\sa4z_'Dtv#|}/,|xBluw,Sz_v5TFyp{7~uW&h'}d7sfMf}bWWPϗ]g^léN_6(_߽WqNnQul;!e#vA2i,p ]6`*nPśA`co5x&zbeY҇!#܋랙9VܦG#;mj2iܝD{+%|*-ٟ_@3/ ӫ?tnZu}'&#ۜU}|zI3lmX(*$MIɛuS7:FU!l*FWc[X`m%dqƀiqG4_zո-X-}dJP<ͪ" KYd` ?܍*IU%٘@ (s1dhDOyi3-By 1^cw==C;+k> a(?tv%l)cBi)}Ozj"e#{hMMWb\bۢ .V% K.xb:ݜUO-1g "oZO~̉u0 N.1Fk31O%2z71rϽg܈' UFp*B+:u3X_8n;f; E-M#D>=qE[SM\ ҉fV%*\ o, he$t`#Y?]IsKa}Msh%E="Jb1bq)՞q朧Y\>DMrFMN މ=~/ ̹e68_swē\܎-·Y6J"oIsO \HoG;40Xͣ }mUծ-^ĶCvŤ8d!mL)XcI?r3rZpa67>#ț^3ֈEcŪ䬖*좵~/]QF? Pw{z# ep_OdUGέyD_:ۦ~k"o7]Oց=ÈĹ;hTi64^W "^RZmAp:W?$EkQ8 rY׮`Ԭ;:{~v.w0eDRxU_}ʯq=Ua2/R ^ZsV4A|ȣ[OF!2Qt ] ( i`)5ɼ|~ `_qG*W6& e:PrUآ&G"_47b cSs;kډ25@=XT6L1-2uԆpDfXvmcʷKe/7K  l5 bv,)Aa6 %0&5`֎TAᖏX;/ T!{,?+P^ӺZ@ \j}ȶvx 5C;农j$iLweI͗A=V^jgv~#MJ%]=l `׏-q *Q!k ,ޠa'!OMjH3DŽǹ[A;|}ЩAYFU_O ^sj0is. ^] d传|_]zYCjv*Cg9B:wYiJ;eU~s92WKFֻRyU JUņبHN7De3Q 7|t;K煼sٰ"[dR a@Mxgn;^8:I~&<'V k Z9]-q/7ws%/Dm)VMjLS(,Ջ(pRm,{z?J TugOف%\dhn֧ANU.qcCqfьɝ䱨uVtf΋7Sm"^fa-Rs ~)]̢E8I]8"Tt8k?ۭV%&~R枹ѣ,7]6sw.5CѧF‹ url|ec'f2I"& endstream endobj 224 0 obj << /Length1 1399 /Length2 6033 /Length3 0 /Length 6991 /Filter /FlateDecode >> stream xڍxTT6"t H  2CH ! JJ(H("7sk}ߚ羯ڜlFT@ e"@(&qrpv"N  DB Bclj 4Dt1 "dj /A"("NU- Pz @vz`*Ap) Gy^. _`EA| ф8f0_S3` p@aBS`0"ȿ  ? pC =!ZB@~Ap ' w 1|(Bf*@~1/pH_D+gk 9v1Eā"}*'3Cp' sbQ ( O?WD"" 8A]`gǘ11}ugaM,t/ ((* DDD$1g$@v1w>8G 2@b @0"e_ix<?0Q>C-IW y{W ¨Aa]!ݿ0 1//aDÈ y0b4Ϻ0Klȟs֘8 PJ7B$ pFz:XL^a(KPm mG5V^9-!n/#;.j}?ᯬv&YLjdiNWqTӍ<5Z( b;:'l9]+޿r$X0 dp|NqlLhk˝j9wPGl.Ԧ.PrFΖΈ~׵Țc=l}<6L|,\#mBorHTGQaINiFaq%{Dq-8J.)hOnt1P e`ɻ)>'׳|䰑mM%%U) g l8F ߋKZ?,-;~O B$݅dQ4y*FpgwWri*N*#m6U;B_*XS[-o:{aIVY};go),%unļę<\.MY%ID 13y3M 2CgIʙ_}&"& |4ytCx/nq7<$'#aQB{.WRn$XnՖtؑrOyxo\c}=|f )^o'wڦVӰ {d1)QMuH㴅ЫgԹݍ0OFCUd ֫Cqc,BHJQ&EBXMDpEw4Z(/5=z>P1 q5(le(_]w`w>Z~+~ݕғBB+##ku[խH@"ZiC;AHKKVf,'%3ا߹gY5~ ѣ6qyz"?Nza()^!dqEF;O|1!&U*<6J#u+ شoſy} lf藌Ao%;hR[rֿ~5}(uHV1MS,zdY,O QmaӖSUIN{ȁʮ{ߚҲhL|LTqs\IgiFr:)i;97/+3}J CZ'l Z/q(fjEDR-q'<Y Ih`w5/WOs>I\tby;0zҞBFa`fJ\嫁<3ZJv`:}7tcT3 |0B?Z6T>;6񅭙{pyfO'vRčfT+Wdkᤵ5{,6O} ժUNSĭ+o{,X"eL yBR:aufbDér*;a1!tGLY0`и'bhial`Ay8֡+'[Qu~ՠ&|SŻnPy1J.0Ƨǡd{^:`cfy~uyykz iwbFOYu@HΤ̑I]ՇlMUEv b_1#&F[[e~vLPU (DFK%!8z1~=-+B=RW#'ۋUqzZotߟ4f|%?Ok/ϾAD?(TOf>͙<+G A?YQRDXG<;w7l~ \^Kbnv^t|uَ?N @μ+Ko:?*(5+!|'/qRv煫Ϙiv qYQF >%{$yv"ʴImlZ~Y,K:3ZXwؗ]qw$JPMכVuH i1`Z&25V]Ao@}Ϧ8˖*˜7 -OZ_w]uZXfa~qBF| Ϡ.,_wt,Z"e0Ǔ@a nJ؀MbO7a/uQO>I>\xՖuC:YrpA[rF^)otĬ[[AM ~'ڹ_{jz68baMFiq'ܤu >TpOD4>_2,O]SH"dBzj.l1|ϑmX3xnqo U#u}]><" ٭#ֳ}pՅm8hĎ{cR{ fSÆ竳aT UD" / J "qnB*  ̫cwAۜ3t:/[ {B3wbmS1GQYWYn9p2D*qaܳڵ0ؑ%7=W: &H;N9ťVo'J{ɢ;`dTMĭY'IKz+:jkے#\/ͣ/u2۹o|~5$3> G0Ȩ %%!xS*3r@k JQq աp쯳)5OC5ZGhն8l!v&_(+}7Q3ƜN4An-=юtX1v #i6$7yGvʭ@_2qb*[{e_NZH]4y șͪ9|cd΄PpA'e'42k벒_;`5jQZ\|@nT5xṂ4aq8 Oi U\xr9$';eB%hKwemh^Z &? 3gJXdktW\CAr+EOϻXk),V?V6_Sɋ[{#ǁ5n2~Qc}$sՕObXMz6z_3#dTGDQ#~GO4_GEWvL[wA%Y8{ek΅XnNñNie`̲|rco2)|XgYE܌-J2ZՖUg3+jF᜙mHq:EU\W>Z_&o=I=I'Q٫t_vurB^nDQ*$M} rcfo^zi=>#GW_U+vD hK 6ODهg*wþ#:vlW兢wGB) -F(_]1K՛³^̕o~K%0ˏWrY3#H~TG fƂT|}O+*`n~E!.U$ƦbB8xMTöcB{qay'U w29җKRzHjT[bވvҝoX38^8 JS ү).ڙmB纁cWt}z}aGTnb,}|SQk;SCSPS?Y;|y]Ҹ5{Ui}XBz(s]szpy3|T T"7AQ-^k>v5%u=R\ҝzG{XU~A~V.FؾkVIXS68:t͵e} >փ2+F86evOS\9zv ekgUGvn~H9LXꙒزR-A{#[q[YTN O[h2|o~*a~ѲE=rC=Ua,*I;3}a8;]9JH#߬78K3{js'׆Qv V/UɻtY _G;g(9Xd<؍bO,Susp0gI1Q'NwβofOrBEgşBLy*&[*tl(\&l+}jzIB 80H_IvT0PR齱sg 3{F9p5’w`cގ/f 6&]4%d1'> stream xmy<4r"w"W9M4w\9$HI9JYA!(BF֬H~~k>zԠWmsGtm ҰX0؁ R-#up8DM͒FIT K'n!h2B$z8c$<H ouBHkDZ07 Rџ7BqĞ& e`$Jc)$9@!o%R5A$`Ht| @AF!D 5 H“AbpF<@:ǿ}A?jj|} , C>D$@dt@* GTd#s!n $|0&D0&D0MH/DAP6!o&4`M '~ſ'@[XПۈ+#b,Fb>6~?`aAeLmFpDE]ш m' !}xsrۯvX<0ݎD=C|1IZבިw$T/|VlªMD.ݿ8o?Á{{i̒>ɉM+ ml9M]|7`MŻAfвDG3)uLmw d(wK' e m?,8M t{Yv]ސc@ ]\ ~PNhò.R :+7S21Le@-2ZkG?%4:n$S0'wMu@mju5qG %wf =٪:LwT$}#^jl LwfU;>pdudE/PPOQ`sq7e FZ5/=2]Wޏ,̀Ú.mEh"%8"gI Nw6Ͳ5rU' pVߤxr}7Qo}Y??Qݢ¯?p@ټqU;'wy t/k׍ rcnIzq5zY'29?-Yѕʵ(rEX6_d>?8\&gw[BRi;=Zsҕ3b<ާ3ACe1&:8 ]$9(wrdM]!=cC]%VI40K=zHmF.si1N){nuʖ?կ-z{SJoIQey~QThOqy8Hn N7K',E*cByZVJkdPSJB`lga]%ΡCB,O]HcwʁiuM٪*Z3*KuݧMU=|&?v芮6vw*Uo%dMST{mĊI|`o*3 ,X] {jՍmƦ3#ÄK%YdT6%x5BJyNrZȄ3x(}p!%EɚFI(w΅d^Ol`sjR-vJsOzxV]ۺȹ&_2+*`̂pmxQa/^S- Lu|u`zgmI5"i%-߇֬r-5*йP%=_!TLse/nW諘)ͷgv-sے3Th= '!fVaV&1ͪj< :PtN{7vvvT<ۤWx=VzbSF+u)9 + _`Y/h<7siunWrYnx8@ɯ /-jFZ$w6ΔƓrmgC V1QP6^(qN[b瑊"]OyPwU&e\WE? endstream endobj 228 0 obj << /Length1 2013 /Length2 7315 /Length3 0 /Length 8452 /Filter /FlateDecode >> stream xڍweXk6-H 1t) % 9C4-݊!-H) %l~ֺsu 49``y H]@APW5ơ sA@ 'b`qv0,غ~a//C꩹l1 `eg XmX\T07v+7.%V0( `R,f-lG`JPKN ]V(z.?q G;O@&;Wy;OwqmօZ] vP&O@Y:@]+W8 %Zw~7*1堖0+; _rqya!f@n"!OQ'G8}0?#pI1\wH%s\wH%7K/K!TBO!AB;ԾCws /B^r Z! cc]\wQ  wv?D-A2KQh8:̍\w"rA {,Fl_n  "?Ď@@XZ߱ "q"Bl*CڸsIlJC  ݃{1<{ѭmow~DoÍGpAiş^Jg v4v77 Nwn "R@%z/T/n|:Aƍ8 , b{FTwujy'rGH.Q~DMp[@;p۟r)߃{ܻR{u"}3w~L5AvP?O/}@ 0߰?쯟{O4A\E ;1|__MClmԀ`KIh}jF4g@x//)M뉰eug\X,EZqK%<61>Ƅ±u&[tFl{[O#|8l)wP°n^fЃq]e-nl&2Y&HU& "\`4"l/ Ѩ*3tsCK:\9<D}<}gP6w^ba4 "8*9q8IupXǘӬr3c;b(IgBfNo؇ٚ|:`dL')N|wNSp.(ݧ1NPRGk$Q|ҧ1sgN.6<$~|j&ZL -}h62b)|u0U43׶RM ˛U&q;MƔG{H=hLWCT Y_Sg EicR<:?gYX5Eo^\'tlbl/[  ztja'_/~aʭg^M?~if_ii(IK]я)K 9&c2\$ԓT*`#LbƷ&z˽3QׂGhK$^(~)"HP*w^Գtbݹ"v;بz^LmY ,!/ ^ R.9g둅-hG r4&C@8DeZ/nhǫWs0v㊦3QE;z܃}JbOpyO]6 (ӚFmKnl3#}F\sdԕE2xcR CAY}>NShetUM5{nU). y鞹Aky^, YbMNШ|h܋%\Ƅ7c[{&auQ#]NKb~+2nS%ilwD^uʑ';3(oKIXVI&]vWn6Dk(hz7,cg1. [IMrsp ;Ô΢4I ' z˔:6ErH6ЇZ:Ǣ1a] \{llboWvbNC|tK35|xZbŎw3(]X1Y3~.*a몍` `*a0[w(QzR#&= +/%ϷY~^exrYٰ&O +"= H^SNS.`YOT7W <Qevd:|<~}\Qg9ݼ߱MY @'!Ό%U/яd6ݺH&ghQC|*_ hQaɳ5QʲuJ,mk,O9pp48H:X*7{;fqbyN~zbܝ3=ȂTܯOFWߚj ī$eէU*1&Qaqݛ)H,. „7Wb-qҵ6G bNh渓>f]J f|h{H$KzUV=5F,j!pMόl=yv&Fh+ ڂ^n>~ڟ/- h?jk5,^#N"byXKH  \NId9ELdE㹟V$X9~Y[MQ6w%ȾOۄtNo PfPkW[!^ lT `awW;[0Ь=0 G]mA.)ߨDlvT9+jn 1'=^x$!,$&/.źΐj8y~OB_LTrХM4o\c[\j6/H6[/[,[>ghVQɸ?$pzP]3N.>Xa6R2cFOϳsB> r9U9K2,{S7#;Nd=ik2aݭ~Бi%D. N獀.Xc4h foʼn,_6Gp+'R^uܝɪ#-:"Gk Q N19" < nH.HaزP bkroqps,MAXI{Kz4dq_MatNCau#Cm>b 9*Te-;f}07眈ͫ. $F#'KiIՓEݐlZPģݪI ߼0{x4Kv9;v]6y?(u$?{90eu`blZ˛`ތS4jjd\ZI(G{/}G*߷aN"&^Tk4wҊTD3#> я/<ϖ[Իi &hR,1wq8"{x3K)wF뵲 -d4Чqo4~9xjH'!]H(MI1 RNT֞/F/B7"?4]p \P'8a\n`C  KakJ[~uciV&nZL9x%H\d\ fG#B7z2)(S˭O,vTjo0wt9I},cT R?Rm6}z&F]a*jȻ&4-Ix6ݤ˚ .4C[Nʩդ|vhG`d(vAZt1擳k0N V)_짳Iڕˍ-߸ܢW0PI3UY3EksZHs-,1/08BilrV4hO^R;^bt m}m,vBE Y&9JkʹK~`!P/jz[+qlj^Y,9`vaXzi=] 1x'&~k%*8\O ]kȸE/Hp-&ΟO\aZ8ɦ.Y TC7@Drs nnKȅlC\ Gjt^nhKEC0=ۭU^pf+4賤]Z▷6{Z +~r=y~Jkouk"y,`ÖR _gK|t:bR2Fag{fuW~ȒyerhԅjcP x}4514Z!BGь# Iʋ /803D ހAPz}+LR ]yy{F<89 >H 7N8QJ2dw|%{UGbm:CϜOwr3` 〔ʺY)JKvGlzzo "w<VVZ ǰy^ce͙N  1~4x ĕ6ީƵXgml< ݉;=/vJ2d([׸/;}e3LBBg\Z0~7ДuT5U~HsD, x+Y4&7WwV3:b sg6 4ʪ$Zd_MV.'=)~;C F{*eG-h9*@nETG)W|{\4.㦫䛍V[O Ď㝨|q?6"vi웫(f5UQg9]ԁIRX^ϴ1:+1I0Z _[\m߼l$bkvbl@ʹ3AD=q4Wr"~;åylj4\ɟ*crkKW(YOsN&пrgކMdv DIfr@EQ}"g"C\=`yftcq_gwF[dF8JHTuX#v)zL*지/OA֗21(|crɴmȩ˝7ԀZ܇S;3EVmQF4VV\*κJ]uL)ի] xwv'.y²ќu{M"RVš6O~w5VZDx H|]͓+RkEhªEBpAwBoem|>ۚdc1K2rKFY/VSն?I,G_j/"H:e*9 D -U ctcr'6-gqy*nf 呍>j󫙉H4V R2 /=&3TdDq+x7r26`C hp\3 E)R\iFK?˜xLt16ZU6'.-e#"TWOW˧2GD>L~X!p=Tqb=a>P'e|;le\ .~Ϋc'|k )Ggn *] шT$z61~h,QX&Z5p|Ҫ(c7!1,"~5غ^xB)[g\ĸt!'$XfƮ?{X9)Kxޯ}&Ud*} *sUү}:7V+AmgMH0hDc,ZR}M(j NNM׷ښGl5 q_1@]_b9+.`[@RE%C Ʒ2٪?]uTꕲeݛB^3jM6O,r0OٝqLi~}Lv0a3_.)׆#wEΓHLD0|&׺޶j$JfqxP_|} 6)17O4uReGVz[i,0]/j}ۈSi<u*ßJ5ÓW6VkN ;WTFk?m}3 齱.zC߆x/,Q$TLQیKPD,[ZO˨X{.}ϔ}s>%iZD6hEq;RF{/a+p X({n71HYs=y:gБ<% CY<f\,~*8L?j@yT pa,˃cUBҨmǎ 7FT%AbL8!a%0ooC.WҬ "VX(y+z"Xޞ|T'elyESLV@$]R:O7XE97ʗg5ΌRT~o9 eGo4-ΦY\uKզ W! ѢP X]ל&6n) s䍝w-/Œd\YkTYl޿6~jч(|Yuh˾rF{xizEhIJ/63RNaOr5÷x4ƽ7Y'kgsT%**Ktr/h6ͧ-s=ͪq7,AY@ #Bf Q/X4(08uZ㱵 &9V}jҲl}EeK!2 D6})KA40GX?=O00}Z>^ Ftx"IĮ.a(v'_Ӊu`Nq endstream endobj 230 0 obj << /Length1 2842 /Length2 23223 /Length3 0 /Length 24831 /Filter /FlateDecode >> stream xڴeT\]5 NApwSS{pw`݃CwM o;~b.{> (ɔEM FV&^++ *@I)4Y;:n@ NG P@`PLԽ+:XZ;i)bN^.֖V5W-51up8d`5` 28Zԁ 5 U5-qSSאb(K ) 5?Ձ` Euwpt uue Vk܁.ֿ7*03jT Gh@ '^ff&K7W%?ԭ]. 0n`9AV)yk3+w㿜`)I`;?B~״W86V&++M@@3p  0S  ¿].ioꢎx8z/@7{{fMADQFRBMQqkN G/gm=|_oݜ5݀2 6!YA4bimfm0sY[>&@ +7 taA#_f0oh9Sj`0Z 0+:A9^nvv&@L+"(:؛Uhl 2ˀL/`io?&zz,ˌl7j@+[TӇFvr5׋?)x~@3/f|6-ųo)y>j&BdvJJy S>jSb۽lT\+HLk2ig+| !=/)H hLtDzM_Wv(]dmrFMuzc/B`\3! ׋S*-N\o. mRmU~Wkz-ȚIP-' TH⻙wl]CE+jkڍPMOkM,\7EB ;8dLh7gt 'd>X0cښCT Ahp)$ꑎ5Нq͗b_[jN +rt8nk.:Kkg Ә1uhv̌e-ʉxX+7ؿ]X\W V<݇{-չ}. O6Q{^8 {Jj6_rp2]~؛hYyPllɩBdwKv.z$?$}A62?ͰmR+GDc]9H[y\LQQBv[sDxASe*%NA1o5~+eXMsB?/.BB!ŷ<J'I4Skrb:[W#MM)} VYsc3e+nl~Xx=* ߉w?OvK]4[ZzbHyC SJ T!r(z %͹-c5pdڀv??kfTSb]-D*(&#1ٶ=~շϖY@qLRx{A<.|I Qٚ3 S 2ל+iP<21J]ޑ?<ߛԚIB:]Wժv3 >,wZ,V޻AĈ+f&z˙;:>lwՀQs]+nl٤)<ώҪ!Q`KvŃMScNF՚_©}K)DnvÎ ?{bĚ)Rz 3b]fH1u# ;/14SHsBmha;ʝ] oEm/G[yhdݦ,ʅXNVs5^&)&c!+QKa/#cIe ]q>Xb}Z̨C"D R_ cRZ :Y[:9S2JLӅD#m({*u 6Ł+-&nHTi?b_S>oE_Z% nǨ:w5sg_ ӯn}>%AҜg]nbKoxiP|QHi7bQrc^PdٕKnT|m^ž;A5+Z%Z Rpet>MN$Fl*q@!Rs4_*$i$lpzF4͝ըh=p/g45/җ/OXFqlL_p?Qros2\}]2sb^˾I9Ԃ~Q"+ gZla#,(KE+lۘ4?ŪJClMƀr$GvCmi=hDCKb`DGq,)+R`:7  6D60To%G"Le\nt`gOcmtKC<i;[H!8pzW%xfwhR-zH۴zz,GWDܽ;xyQ5Ct^+ /شZR) !o ~QK`٣0Y1P^vA#LZk_ng7Oyd=HW+g2rE֏{_ qtcM1p5h:6:. )hR?LPۇjn&񌦤3Y&|CQ t{q>Uw0I.{N&MB~[6J6b9Utv{58곸86ݲxT߱I䡦TQXnxGf* <ĘA O{u"!6?葔Ǜ|ItV&A#HtB:7 jbGljֻ7WPzk[8O;2$MuN"1I4hԈR]v~, = #u\]וT^*@n!om?K'vK ]뾡cn;`*'|}O/QbDdE7#qGH.mc>}ؽw DvL9VՒH&.?ݾ[ Me36*+Ѧ+7ˆz Y_JZG β$^)t=1fHDV}G͔rn+϶VVQcIr7̉F+ pZygw =Fq) oP 1YVrX8ncz4"^v9bQ&`&D|z<:6NSyq:&/X&h%ō7vX1yg(kr Ϋ3a]kvf?ђuR~I̫C3CJxMțQ96Y/9L#|7ude.cϷ4ܰ[V2rZ<^:7M @PɼGO *nQ}4 7F0L0N{oPdP5vɿӾ1`c*SU"Gi [ ҁ`1z$xNp-f})=3FS@:Bvq9jo2S)}HbF P1P`k? *=xw'W9'M-:1FËr38K \OD02p"d 2KqLJ'g_4m#SIvJ(2gk&W[ވ+ڜǾ$z]eO}:.[nIҙVcE<1ES~Զi02Hӡ"RJ՝: Jd-[L:Ok*ņmtBWxSy l) h dWcMo I5zC>p#N?FOX-wVNr7&z,baSQ= !ī-snO1IOUZ^G|Ah EtNw.Rd37*5wRJL_O7l*E6#D7s@ilqW,YB ICs 0Y1UPYen? l `ny(¡(ՌN?F":Mo(L  M+lvE+#R2%:m{-])&_>ƣgo>~#PRS?woVE2{+1tf6jR.6Ov "S:8Jv,qR]b lejTF"H FV\cUKFvX~em&1u's86jC&=KrzbMآRSvrRK22+ <ΐ&+DX 6#J]M3!ŲG:=fɮ(eǡH9bP7uŞU"Sj:?CڏŒ"vr18+6 +'7/-%l4<m IźJnˊ^1:,^S )A8}Z>L@<. iB*$L.ΗYmg*)h@sl=%OֱX~ױ*ϊ 0>YyMgH`HV4Msx,C6 ՠP9SU shfћK=C]\'a{7/Y6YqNIpvl|~ϴ oC-=X$0`'g9;1Kky'pvF_W.%65<2ƶzF5wʍkrƫYc gD|-1#ĮT:k7gU P EM֊}eh;jXe'%v'nז8ÿ*G#+( 'ȉ;5KzM bhGM,p|cUO jF^uu|/Ц&#= 9P/l^c+mUaÞ0/ %WՍr=30f%Eh[O%g6X:E>U$f9^I\fFf]^܆ )ԍc6|] Q~ҤoV·Y}ur_0]> VjOe9;5 nSi-3:a$.cΧR9j!J_&md]Hm%ˏg\,+@.aѿ|85 kYj:qzWD3i+c|T:")gƮyWu܍bS~6L"\8* >b)I27TsB @1_a7ey`Z<7ʷ$T:6Dw}&# s3UzTSv(:MϏ/n}6do`uT@@ӄ?yV Y+cAL `?VSi~97sUwEEN24m2 O 7_`-70 /W>X~^?,B"\v$Kb8CDzJ8K?\9r€'$Q=;;.nSx\]P6NaӪ| DdM]-üyck*A!Aaq%rtouƛ933҄ u9N/x&f vtGi6}؂ż~B讼al9\'rgBEeG wc^Rg Y\ݍQćad=X `d7΁kXTLhÖHh\ i0d^M^v ,GdoGw|L좮E!~;"qO<ݕƪNbb_v4fm˿/s}ȥ4W2{Oe>D'dڛ6^+pǹ$&)iSo*zŚRN% ޾)zԹJ9Y72Ӊ1acY wz+Ma^#)2v׻)`t/''pV@E\)HF T1?bet ٝW_(me.^xkz `K/L<ۢ-?ߍv֘C?m 6& ұJ20H$Nbt/)4~M/nĵjְLJ@}ӓ+Y"q/`)7k~$< U8۝CUC]ߠx0(of|,mݨz6s* <*]_̾iࡼ?/u/1 gC*,6gs}` !d-w-~[8JsZ3mK-eh>̢/;HP;Ԗȋo1|_aV_-9MpJe-X\ף`pZa08SLfER?JܔRSKX69}'Y $sBH'Bc6Ļ6)&%a\@ǗBrV3#/sWtA#oMPlnS 3o|1WNӴ1A bg`5H+Hb^ %O;yȏ2Q!ȏ a;ˍFWJv™yLM5c1Y !Ҍ3Rׄb ݪs;NMR\_xz.н$7zKE^kSD;Ȇ>87i x?,AZ3+˵LngK.4U%JĭA8u6Q$&j'xO.".UnKҘ(Y͟W.)}̼ ;қUR1)MȘ/D3剃F!&qr]Dt+k`c94 -^0%lۻ}wlKIiNwPP.{ݻfK{ 0q9jФ#^X>oǕ`:T'G3$+e$B2N켊'o'g+W2%⨿[me 0MT$܋BY7Yع;D`H[c=HUK8{!&ϯ7 2m ɔ&|V^eur(ha+wmx&I%po6(her ܺV<Ǔ·:4σ‘~1NVMe"`*#Bx)'i&5e$)#J"I>, 1bi " B֋Mg+u+Na◺J!XBVkņdck#9 ma"/ )7%epП!9d"~Ύ1M5^]E'}qyQyn*NMG!u<^<.&eCs)1F6/ηYk-X嚭p|Ik5[ݣ>i^Sˎ t*fl h&եOAEq2 3oY H8| xΉu`D &qc%7|%oذ/U)q͘oA~"PeE.gK*Rgi[FO.Jq Ѧ$+sY|ѷ d<";)A̰P7ߌm0hvҙ Hqz/hCmr[vì_ oUؿ7 3 /={]")a=zHs羅7o` Ș{̦>tYUFNL@iQGXЫ\@H!vK^?`ʈ0r|Cv)OTEgD3Ά$j8A^>*DGq M|7ƫqNG'C|3A$Vz[B a}lnQ-ӔӸ$0j 1:`=*W5UACҙ/nna0'F5xc+_L>79n9$,Yl~|"c.301]+sڿ}5[;ɘBV3,U_}<S_֝1o[5d,ݒ~,P2gumqe :9q]Ѯ^kkˈ_ÖīZn޺Au*0YY?jOD_~kבNr=_2ڽCć;,NDK*38jmmTf)Cv9ǢUX  ؚMc1/ .U{9\ђBo@+;]Q*]Ͼ=׻@=1a$G*Cf7x&գϢ;QOh9qE>ވ.Ch=(Wv#b2I^-@:&}siWPqeo;6~&]Q`#6eKާ_ wn$2N1+ݮ|CrE!-XY;M60ؠ{HiDtB2^Ir3ʴĩmccwߑU<0KƄhեW!/6+}53]9Wm)|dAmPwNv0* $coDFz+lmMr1뿴"~.K&jگQ9# 6<*Xck;jR+*:y&եu xѧRUĚŬܸoOR{~Oo-]cn+X"Vz\6,n}*hX'kK!Z?0 eLɬ!@T tcB%/[AgK4+k8%UeDwM׊ƞ}ma>hckbc!jjej*^. R4XBT'wH~X&S/'+$nzس#LgCW@,S)yt~_ĻPz\NhUrrVx96?4Z{B?Z]z}5 ݯQ$ylƩu-W@^r%@|@ŠȁjNY[Eenyi-`ea%wE%x jD9ˆ9IKUOJg;A6"kiT֗WŬ7-Q7pgRܔ>C-)(:'C:T9ڕ=:k<{bڥDz BD/#>{cxj"zhMP6Rpfi8R3pl25ݧ}گib􃙩 AGHbr }3FVc=- \VbnX5&VlMԴjb*`>w+5d^XzʮaøV^WB~"ﳍdD"ˬ9f~]ɃHfJ=@kVJ.[{w"uBȈ}m R,\),9u$OQ +dW`GklS1$֕ ]c٧KYOg7t=LP7Y@ O}!k]Jԭu0lvD; B%ro!"t|i3ׯ#99ȡB=b}+OouvϠ\,)1ĥyȀpjbwzu0WUAo ~M6BIKlmCҏbC7,"|;V$_c3p$ ]jlvSxCQ4dv}eaw l_22ek%,bKsC~_5yHέEc"GT9jN׮<@Gl4|)̪K 0WaΊ=m>\p A), vw:OF@O3hAgdWc:2 Jlq_;Kgh*2r ae*~ .E 15xXI۪5ն .+:•K `ȝG|+Ȭ r-F)LՇHHqo NC ɼ}acu.pP -LOۂoB|VZϛK_9{QA1L3]Y nL $a Yo6I@҈_DC%)lٺlIVZؼVľ,nVa9k?ܥqԡE"WR袝o~%PWh!7R4 GKt{-{Kˤ]q+1'J=3#lFN5<*.G`8<z9!+Q~tϡqT+ bG5+;X)cqC!򈸓 cU Xb/E'܌86uԪaGf\$ y31FtEbPnFbN y\w%!L_Kxj|ږvFfw2~֓m.A 0b2׸z)G#E2My5d,޿k<.b\]S5r;>_IvT2.B`jML2:>>cXk{*`ߍ\ZUJQFBCQa݆bah{-8rpn)љ(HqZh v2=Ns[&}!73x| ]D-ZFH0~n-C4!ogFˇ$W3c#l#lm᪯%gXݽW(7:{x&gߋ}z}ko!X& M+iq$/6_7Kt~YQ =')IWPQ < <‰&2e|ʗEw~򩕴t.\ֺ|OZMi?]JuVqg(!X!?å6 :k+;( ! 2s}k]!,{0̧wcO͗X1/ϭLv q >]X娡C^6 r_z%9;h+Q]h÷5 SᚷGM,UK aQ'TkV 8b:~QMwy6ҪS{^{(Dɯ#hES/|"lvT~lOglnOAT񦦢;GPb[p98{ ]Xd; oWeә!0\Zodܖɱ։T,/_lWhh =p?Y.?P f*Lꨛ'ێL-cJ qL+nx;?09\DU > ]! )~R .\M#MN_=Ai+m>B7C-ttldYƨ'F\q?؟$5J}8f`hM8ՎYw[ʖftu|FP B ਺.!#{]I8Z(*i}>Owp$(bMܤRS ēIr|n?N1k(6aۀ>xIP\B-?ëCR7o߃Xֽ=-& 6a{:G0x=1"E0HţgFowdA|9>V@cZ3-yk'pXI>|{=l=}Lmg_w>^ŧSe??ܾ?hڞ)E&@*$Z֕;.d^P[!,)(RvG;$(E$.\S Xmぇ.J JȺ.\ 0)Mx\z\Bz`abVS:'"wEK:1M!Q0z'i?Xmpxz0{7U/$(?5T_ۯ:EsTc@X5!N ] 4% z8=-? [/[^ə)o^.7 扅3Xk 9\Tb4Я.%/:̽FE4tmn5IϞ|>]댬;yUz%YHwzaNS䞯ue Wu 9Z1?71_q/r@su/$+&skyGTIR% ec=hWe-!5E!,ҘAv.=B^0=3) ,[3Q::$T"pٞ/!*qedq .MUڠS(6 "T7y^+9?p0que)1 O,3`\?($kPOJkp5swUʶp' oV$mu ;kPwW~c7#;WO{> b߬GI 05=vXZJs_4ҠG=7 h#)L}k@'+ulSW WOW0W7"R$ȩb_頸%;$NLGG}̦E\Ao3%a# WwF '%ZclaѤvG40;'V q'":Wbd!6pD3'Q+p/b) xU)8]|vym:24X r#C1ȒѻTEGiUCM`RFs,x x\<܇>7ƃk(fu+fvbrDyqp'*g7 ipHGvPTLŗߏ]zH/O;,b[؄AlS˔KSNY֫ovDG@a1ܫj{K;4T+qtD>_ɒԀ5D*W F Fuv2 ͅw3p\x&s ~2w;h#f~xy1$X:U?UQ_=o1#UX@̽q^G2ʯʏG iZ~¯G7+ERmn^Qu˩f^L7qrbp;0຋o[Py1ld?(,2w,g4&h#mwNNa4}i8ť"e\&lD }>OLFSA80)hgeLG!7@;f]y`Z #e`CrPھdӞ=wet.`\Z6{_]LΝ* a[ۡ\ѻGQj  U(õ#FC8SÏ1'ĕ\v*Bя0MGG ;yfQ}éSx8"##bH)`[T@ %cq*A/c/ Py:8!>*wPȿ! rKg3p<z55kA 9׉Txy8"|g?PND);6c1>^hF?N&,M:| H _˷%X8u9e$U~*A'_\lhFI lF5$G6ޞWþEZ'hn "/:%wgb*ıIZļ-K$IOɢg6?x79Hzj<6ǒha dS|N*/] _j8Fu g)I6 0'^&F1aqv7*vS ͬĮŭ~ܲ@h\5js|>]"Kڷb#;/]il7vϯS6qV²1}< qSuo-M/]ST.}Eyɵ*&i0D|kٯSIpC;>4O x^c4QsRÒ3h# 'Crf1r2jUK!Γ?2FZߎ+;p9Rҿ>mv6]c i<%\3fѢ`;Kp7FU/P|a!\ 򳨁U4NŻ-oH$^<}AVLΚ+nxw@p#@QmkO4>qHq)]n-bX0,> Һ< ?H =BBqt26AVi!oza #AhX4b4X 1\-88ߩWqy{#Qca;=ܨDAZXS4쁮KO19w l1Ǹ3BI,bP\b .8_ o0 ],[ '8!b&!v5D=]n)͌JT[OE,J t!̀wP,Oq.$&GĬ)Uqwf#:2%_ïZY<\KABK<>[/rrO @u%%T^UY5jL U.  G:͔NUX*>WV &220l1{AĖ|Â#PDIG%QwWܤJ0"`/ !3Iʌy"$eWij v6^c^1JNOay}z; 1!3|.RBl)"tؚ&_nĚX)Z!Q,`&+hWIUE!C(,GSB VHیj<5) f<q_j)⊩,69K^|T12F:8]BLJO$ Ϊ!|rtnsyr$Kk̊?~T?4 | &!.n]E==Y[qzHp;7~}aH1(\!Z~"%8jPͶY2 6xz"t~X _H Сi#TUw&|发2Ӛ[P$C,QzJoNGKbSq~{)v'?\Oj=X o˕cد,'* \seV gZL d23]/#sosdu<81o="i࣬P"lj4i7as.rYvŝe33e"(g6hZx[AXx%[|#1o֮*^3Z>9΅}"BU:O=ʊ!\ߡ?I{1-w$D!u+Ӑܑ խ y≍P5FG #6 #+VoT})@{jȀ@ߎD 2B/&,;椖ߏ@{Qi3 IZlmjqvj"a2ϴW"Fvy; ~ sD}4X]=]MfԩKWw~nIa$ cgÄk@lhPkR[{;udL;efM^K"͖&) ֣`^Ŗ=?JaԮ1 J_U{ ӽl~ª"=PxZ4sF:0Rĭ!{W;lJSl"o }w[ϥ%WϠEܚ4madհmu!D|ϊIHox(lU^V^.Ola 6nGe4bE9J2B?K%cC{d6N&*Vx!ORhy#u+qtH@F\HC#Ypbe[j7g v՜q?UhwJupԒ2't'"|^6fԖB&󐤆,u_ݥGO %!<'mN`7 ` R F\3ony|9RV<_t<}Li7;!qE@& a[*>GU\|{`{&() 7 Z3,A"* xec̃^pG]K!¦%(o(lKfy߱$ s:\}9YB yC'OP6Ŗmw@،DSP y*Bd.< Ob0 L5r'eGkDI^.)og:#Pks9یs̆r{UVcq0]"P)v/$y6IվP_m)e@= C;u=9TP̏l7$Rg):{f IBS`#ݺ|AwPEVm x Gh vhGQ$lgem vT>fL`$}g['Yܚc'x҆.F}kkI{sA%Ś̯cf-q*9;KcTQhwQYe˂嵗`$IPL[8s‘x&b/ Fp(wv D8vI NqCݩN{iFm/ |CfI?* \wLC8b(ML- !1i، SHAqSFyN7gKˡB+f,XY.pp=_hu 2FOk`) zYE¸Pwu6H0#'+70AGoYRz:ʥPqȄm!߱\4yjNRٝF_7 #33s'o0>+k @ lWڜs;EXBm^Qo,GSHy)8w.3'23TǍ"xDtcXհ_5p,]N[Ls5Yګohyp@"4a]tV3c9"Q4=bȝ|3/r.1Nkj  A? ԛIݼp45אЂD`Z%asohB)v)CdP @3(@8n!i>[W>"M2126c4y*Ӱ]Ą[5}Tr('J $ZPx rJ"sk˧NTw-(+y?0v_vIq(E_'~^ 1z(N d_~0ח&C?SST;Sy͎Oa|T.mP8rp+mJF$y> stream xڴeTM[pw!H$Xpwww XpwwwKf{łfݵT= Ɉim b6Nt \YeGZ%Lhdnk#b;䍜3#8@û`:[G'ZCw7H"lk`nj3-JRFc,@h L&@UYTI $LI^X+DTD@5*@w49w>eEUU4Dp:8n?>3j`kO=+)?TWamt2=Șml~=bB8ip#_m ɕQPX8m l EvvpC.7u!Xyz8;z/_s+o ھcCOz"2\6#' }HEmmY;O]''[wkKv6@I ~7 =fdF?.mn|t4pޞ;1͍S]/;o(9g` 4uzNs3Rf`mnw3u6X_.d>6V-Ǥ(Yc2|hditt0?|ߕ@/&HO) ``>LOq63&z:[7V8"'^?@/GAALz?@U8߻A5 FA>#[w1maamN/Yodl`W;Q?齣̿ w_> hWĻ/ /Ŀɽ2{_2ɶXދ:Z8|?) o]++Yumf~ot9Plmbw8YotK?pGs[i <v ~L=/I`*~(s29+;9Z͍ߩ"k`~]2߿5 s-$dI2-󻎌 U~~j@7¬wERcPѼRH2NrL> 6=-=IL] ˕Vz``6U}X嗿ؚ x^ڼ>>dcZE/Enf9u2G2~t_yh vxb-<vlд:áq^]Ij`q_>?_n8|EDE5A%K:CqF4 1½:Yh2Gbc]PwtKv BU2bDZC 7?}G۷5 n`c Y`lb~&$_T!Ĉ}< \Rwd o+ eprGBSFAGc\2a dzfkȤ%/C2 ɤb7h \; KL؇|h I\iiAl/}qkOO yegQOg=8blI^} qԖgْ~7=*[k@բҥFsy[Edǝ*(?6nnNf()XFr"ħ^/D$1xr,ڨhxb_'LW齃rC> K|D!Dsm\W'匨 QeĊݾ/Eo`[||2vpgSX{͔~XY 5C+iSlz)YA]/g) ̶*S]Xr#\LjR<&_a@p5Z 4oui+ lci *7Jo6q8XhjcB<)RN.3V7˄'ieuNfȼ?T bIMR S룻rS t^vD{)@Ojl3)Cv.>')i`m1?:JY( rW\yaVmI&sıSr22XWQ3sP5yeZZ*v7dDX6;V8 <ª/^zJ;Z׺}Z }նPtjIID0h~1^)GJ{KjD:9'fqn2!A$m^RHWM9w?82vREw`p +^tQ y@|۲U.BJZxЎ9#!:%yAl ^0y v9w.բMA7I9g^K^*896"FD)f)if|"+SLgt7Qk:b\`+:T1v"xB!}k^#C6qAA&Kd_#Y)nKqr?-H?׈&U5PHS&~G\) 9sԳY8ö멏u.Rh=Ѐ,X P`o,yH-8aK-r%Eht4z8&4ԛNLha,їMcêg6 Y'qTϚ Y 0Jpyҕ.=7k[H8ϗsctIՇ'&A#.FBGؒCuqhovD4L/`ȉ5ܟhx pt_yA%#SBeҺ*H{O{5q{;W,>vZjw%񶭰1B}6%>tBu2W,b{&V8AZ1ycٔOoɇ'xBܟmdyVz DFMM8j'?UrC/0ac]W0Y,k0A> /@]ZL L A+g|2:7 ]+UgN*rs2v K |)N c؇f#ëA&$"mzt Iά"yfdHS܀aTe5{3~C<Շdx pj] Ѿ&3F-PerZ┬z*S!tLmЦ-OKK!,N*tVygh.HBQ5DK{oo7s'*:V9xސx#鲻wWfפo "R /5h4jyeSwUgX;( zL`f y<Hɂbi_jR(}UKY.a]g/oށ9 wz\+EKe;ڗr=!*|:~br׺JaA m%0S/0@Vd_lNO]6&~Msz>qRt}Ť@,9e-ѹMz/-mzr 4/Qww™ze$Ot}/`ֱyO$Ud vȳ[dG͘-ig ^dz=ə027oҺu\ VO}/~G)1TNB<˧1K%GWϯ(d@PCI2yhv=049,Ku,`/&ϠKV, сɝ(oj~7ܒ?\EHBr;#tGߍ d781i Y6 g ww)]<}KǏSGvT30$ʾP5%dM`'oMI[MEri=qF L>QΚϭG~ʜ c_n:1iJqw-":?0=ɧ ָ)%,e' ,3tX~Pȳx1"3g6©/ i"'UrCΙoM**q\ _f&K1u]Os`h 3{}8("Er>k$tc:V!\E)2ŌC%cc5kCajd:/DrGo>j'T}o+CZK'y()Ӎ|0d?}Z>v+mO O bTQ:P,8j=.y*nAc :֍prbAJ0(h}nx54Ybixuc=ܘUWwNJyDC;V|⸙: WM=p}e2nOaKeIuY%D $n]r XWe [w&5![UN\Yk˘f[+lVyi1e0{87H)}I\y?os4/\4Eڂx55ؐQ n@N1!1瞌$gbF|.qƍM-8<J6Ygq4WҊUY1GUԛzhDQ+5:bM@]\4/Ms2{[N r&Q1 IdWa Π8* x"g2i"πWk*`:GN97g18x)%:׵Q4<u~Tw1pUщFin͠?5d݋j "ї<=qߧՆʺ ^+7VAүWMN K.V0[c|nijLh8!x }#Ԃll%3Ej]ꂋP3 4GpVw 0*܆=@o;H^+ Y"q־EgIb^dN3$^=;zR%_&{PJ$ir+Mt_H=L>&Ųs¾*?d:N5\6}8(dwA61U`lV3vdGvT`-bup9pX+H Bl9Gg1.sǶ&C#l ,pxY~v?i2I%-υI :7T64?rS1,[VnvB bų[]v|Y uf]6mpN;x'R{8#N#s}G\#I}¼(ƚeTLt1o_>hWQeݟ*xrM43i*/[=1Lq ;; p]6)"Q̄9S;=)?: (U>Wޖn2uw-҅nIHzaЧyI},DZ1مxjS? re7BR ! Q uO!ɣp.YnW ct J: hn2)vDQS1!hܷwKM(LesC__p4 xɢP:$rc p&5payuaoS4ᖑҳ JUF:*g0ڸxIl Rp>[F 6ZBuL8VƸ_.[G6iZC*r$Yp*.QM9yFX%+aN,3Y.L:JߵG"C&ؔ1VAځ ;9.~%/fcIPd,ǫ/^=߾6Z9,ǒllC}q ,=eXCiIA9/O-KVceڸǚ8:lQN=^qeoVr|c)鲭#g +ҫX0-.C*ɗlr+ A( xL/8$= :5G17~ygwjx>0I8ix.D,T;vkeX2 #EAR"/?!2d*鍻2Y:僉/Tp bHi߰+Il{6h :S_ђo,,di/+1wWViE9tz癆PFI RtI$j]|OYTa$$\hlGm!7wkW8U;?ŋ_<~\Jw}(JIY>{f8_\t.2^ս'Bذg$R%.? c [zP]%կ\/80iLc|"C1I7 -aҥm ^ zYsK7էh?;5 ݱ /R6WBu,P/ZO%|Q<}8  ByG8 `V B8 ٓK >.*[zl壞3*`=9 T &6lP7$u7Ou )3Q`-m>W:Pww>i%8Y$|j諹DD:3zZ4oXn ]KF \oе^f.a"{[okгIݸ>ƕ*k[ \Gm/8 XXQH](I )_V! UZރ5֬16%$'t}o߆[W4\\ ZӂPwC>ܺKCƩ%0bƑe!,"M_[V;$3@Hr" wMdf #m¡dQOc#w6Ix!bnl )"g)Rii+O0"fR3ůn&d_:ၾڌ~V@Iw{%'5o]>>>5MHFURb\o f Ϭ $&dJqUvOA9%(]Դzw*|FB)X)yY2& :jV맒pVY' !d5I)E~k>=ۻk]]'+.+2c'GE ՇN "/m9ǬjYSF~ %뵙Lg!lo3TNDv0dAo3."!Ⱦ`ބd˘x}[7lYg?Wt8!KЉp=ϛUx+/8(@qؑ=~8cq[ Z3Bwi'3E PZ *D *8h:(VO_WEQe 곞ʃE=fİÁB]ՋT'PQP:^QgH$JLB$$TCU;7Ao]29/nppH[rT@e$@;Xp}yɶ]NCoLǠluf`@A)AhǀI奇6ܤDБ+%&9GJ+ؓAMu<_R,8ŁUv9jEѮ9gw = `ʤEjСVӌLAmE;/~N2aIg50=a+sfaTE/=.^>?ʲȯ#ez/UDxO&iRJ>vV([Tط=.q0;͍sY&U!gO=>S4^wH ⸃z͚nM^mVih\l!+FRBfIKNʸ@3-*=}yCo^u$Ti:9#$S55o8 6 ND MnJ?V5> +hΉDHɏS$Ti%zYu?NڊrW5!3:Dw_,sbXЄ0F|?6$RX -FOޛ?,;V^xncH)t1̃T6A} |$ry9LO.\?⣥LGdo"t=}AU,m9 .t4R&i_S76={qx_2VEyxےOMRxx݆8e<*+jcXn8=0"=g|qBlG?cDǾ[665Y1Z'â-.RI=j)CFb߈9jr9:Ԕ=OW]K+venTTz0)GLdW/Fr)Xw ƜxD_fFNz ֽœi=ޥpO[ <[6zu(F#i ;}I1#!5SOi'*f7&/c}k>͝1[:hrլo/;=}­ZWV$ьCDd[, G#K3 xe0eGh}/{T%cwQirՂ-b`fn#Q3% d5GGaYWϦFB<=#y'¢bxdPi'N&Xs"w6po%6'ki.+h?.y`b"m3@S5%QLo+-xא2I uX\3в/kn,Z㹞b|B qxy"}lRŃ*Ȳt'n=d]Ct= Ug[WWhN[L#3%iR_E6(m MtB"s33}Vad]*hN&չQм_QUFv'#SN;[Xqݠġ bճ|s+; F]L- )*/mO۹U%Zx͉k S$bDV \ZoRH݅}r4o'$1Ep.^l .,ulbOc\4=y&:03LRi*TS(cV$nRcpTݕ)A}Kzͬk Zelz^#8[ֿ aڄo_͌ md&}FaG0~8Oo( Z(Tp0t04.#;~0G7R^C$wx&  Jؑ׎VŸ%9, J:C*.vpv0Ęӳ!ijpXS<Z1uF k#ei?f:ar2оpzا}blMQIIo,7n䝁O*k TbY ,}v͆v?H&DpGlY}9`Zo&dqC.oLykB. gh*edg0J= rZ@r217\J|ۉy`ȑSi##~Vť\9%gF| “e'pGqb4Lq ژV -?9>(=.0h?xdTaԇ+{bID-*TǒYB;5ʿm_`:A %9j %C ђ^"iPr8ƭ,?%!_&9 .g|搫o'wY$O+6s&”y6x uҚ[Ǵ<Ý[o6k gK ʣͰmGR)X<K*{V9ډ:Bp)z1`pj._wRʔjNloRXh& С C)8ݎs1mM!`9mGUؖ6\ ZYsͤx6+ᣅ\t@}>BEC'<"@w=B%m% 8To9ބ/=a89dI{GK3q9ESEJhIf l07 Yxe<*@`Z;ōuv^bl9{(GpHsT4ԼK`O||Q ,h`y))a8"?yZXGPSz<RB{-}D)<' NiQz#uc^='(F;dȇ\@ZО.H'Hɘ: c =UA'Y etH3UJ OͥP2c_?,ĸꥍ5f:8D/4BOaQ)$8_W$H(j vi{<~:aQ`ںk/=h "31a CNt5fBy>K=h( *;q*CP]#3^Yw54ӄ=`wl+Gڏ2KxlrN=)Vcb_+W`+KMk*y0Q . *ZNs7dk<$EY_e'#̇l42'56H]YU;ʳW8毢y(2 e4ǔԾ{z嘌8wBԾd]!Z&6.m>}͇7$dU3#4@`= h '0ymJ^3 u)eZ*imҵUYZN5YDb"]vXȋ&L-]Hn6IIcTu #ˤhQ!rήaR+Aʜv gLJ/<痕4MJPXО;~_NtPníZ\Bp_e\[~Kͽ-UfAE9CZjD-S@N+woaXTe4hS% 4l5qʢ'{OFUZ(Es6., nd4Ս%&H"C&׮,99.h'yiFfQ$:Fq86FPy?"hFHIP&_Sh݈JTgՀ&M[Gj/1Ob9,ϳ >e{ew؞H\v42_BB~,&]N`5Y"ʲc+vQ@LZ\YYqPcix:H.oVehC^n|E$.~m ;|.wg# ݊%ν\mvG@}$h{U4)ǷO0gLr1ɻ1;k$Q{ܪݐcT24G \Aa~'"+RD9 E7 6M-m?`kp/oZEմ毨W(8n=j} ˇPsPȹ Ӈ aJLjBo2ja.d2h,c27Ζj=a_|v7&)UdH耝vh ژRǤI,ǼMU<3%:+sِ$5ĤmxPօV8 u/9 2؀`@e}֫!]Vfб8nSʹcoK|&[k8q`퓮qvh Z&46>{ b3Y4\ԫϹ+U6p4f.YWMM٬jXL4>ef ]I (`{9<$gCiTRH3 1-PQ?g,i&m$if|Zʃ,ԃJ3#MdE J:&R>ďv|tʺl7ݤ `?|^OVN]B 465UaA7Vv,,e1SBD =` U9J^ +#X'1 uН{'lݰL$2˞4V~}}` #d}ylKZ޿2<[޶]eBTjk`o_nۊ524s=( vV"6H'{2x]Ÿ:C;m!%viIepD Ntee! 7~h5ODEɕv9d}!߃*.@Z1T?-ek~M`t&hw G@x ZvP"?ݦoonojwBĺm4:ӵRrqsJ >_.1q\T$0 ];u>9^]-2n8!yb=PztuR=kY3@xa]FcN|#ѿn^7 o}p,T_ gz$XKN?+!M?-u 7(Cӆ;^ hc

+qBw[8p\ߨ5"$<{&/]Q}dY ұ#˫14 R:y"f_xeW]_4/ޝ1ANg!ʼnh5P5pҟO ?iy7hRːG8j#>WHHGte[{ph8u/uц ,E;um!Xjf6>;%a90-٦`T~xٝAwC]8gϒootlV |R%^IXlSA.f%tP lBWO,/Kڟ@}an\[(W/汎S#&$"1C1ZySS {'ɎdQ1Zb\~q?߱5 |^ly|> stream xڴeT6Kp݃;4и!w #ϙyY[u{U?)>+0%lXyr*FN, "v֦  Bh 3r8- &Vffn $4{F@?@əC 5i>\D=Ac10[ mdbedٚvnB` 06ؙT5qe G`{{;ETEUM &,*$TTUU?|uWVRga{ + 7FQJp5s'͍ٞəќT-@N7;G+h [:- wa 𯓄ݿ6T~8}ȝ_aD8i/sX9+( 1:mlM> ]>@S8:!*K2]k/#\1#['__35oN dLNX*G2}cxb<.f 7;ImMEll>vBK'g;Gllo 3}/́ft7`+f+`fd?N^NF@ !pLA& 14DjkfVW+P34jjgk0!094?$\likd_a[/9I܁ gQ/Wg)5XX%T;Z=nc*v}- ArLr2j tgc*nkbg 5~9:y 04//71&F[;rA\&? .C,,&8fY? l&0l ~7`r7`r7Q?Sw;gBg*ΎvV@ =L䌜A:!/&߼EDܽ?c`8p}/_my7@w oejShxT47I'Mx\mR`A@eorm&E0֤S%#_9_qluF %.RCtldA{;Wv0_،[|)"7y^mC .4|Xbii$k=UГ ZRjYQapOWbw, mqĂ$EkL[m&moRnԀVVDi]}k4`(DG*7Cʝ,Km]=3~q-L%ԈW7Sp&-]1Fs/gu^sc~ľHxLU?tv~+ Ɇh ٠"O;a^=ڎjt'u3gZeI~ ) 5_ONpIt;T5(et{Md|7Oc)$\-6]*c/g4BeM !rٝWD0,[χE>^=t²VYc-u $z=V4~0W퇈{Zܟ]dp 0IOtmhȍ:F/7f~7U:qr:ZsۻUwxiکJTrsr=ƻW%kΡa6S'3,+ҳ\g5dϷ;|g+F^>E^~4v ,ud3IvxEˎLG!­o f|ğ!Ioyzc1Qv-d~#pgB0 S]m<O >]NAKaVC~&|ޕh*64nOmY,,9 ,{Bl Km]Sw.B]$6P\ENBKamo!k:]-AɓRf/6~gj8dHS_pOU*!Ϝ1 + .3$iΙߓM0[k\(v1!$Hfz1`.i$Z0fzwy Y ADx!gN,7aYSAR/uwAݙLT8=Տ?|meO3w0 +AX0 g/T-JsEoxFN<*vOQ8ok :i/T?{M46tU-ZRIO`IyilK7Q}l dh&48bwʂz;B #{i`eAc/aV3RMsRr"C}+%um}O'$t 7Bܷ?(S=*/*AOfˢ)ꁩUe}ㄩb_̋ 9$k2X1ME2u5ٱ?L[X*1g9&eP.ץGԢqϩvvwõƌtA`X9W?Im>?.)A\MF9R[2Lޮ儋aU!ٮJz$GX\Ss=QfQs5e'[Ců˵ewX#W7/ƻehZgpΚ}n1ł\S&~W.N¦H(ZLIz 1+Šv'*%T .eKuįm Jc{ٞ M{ki(NٜW<)HXS_  P;U{N}UӛjoEkש5n=6\R ٦͓auJq ZM(:+O[q1ILZҬLhƲ309b3p_-}D{fTvrsMOlٻ}`ɊGd#D.1ξEO*k -*8ǎj޵sJc3_Xumf#%PܽsG"::&C44VHo',6 [F癜G0(A㲬eMI& =Wc5 ]Ze|HHLI:"q"5Nn,19VEͳ^렰SK ݘ%Lnd2o;q~x} ES[hGVD/θȉ\ dkbդ{6[$@h+QHiM[% 3A\JK(@v]wH:!.hn?yhW9Sȶ!6: oyzb&YMLӃbͳF+ LDip@'P+MqIfRGlߠ[ ?%zCrDa߷끲iBMu*v5~2oC})'瘢fe4ȤmnI8 Ev P,ңr|sLFmf. (a .D'Bh7uvoնg-:-BlJFWDf1bx*Kv)"۾P)@a9ShوgX s,sWtY -<Ӛ sY|b +K ^ƒy*`müQs=ce)@tkJݐs|N;vnᚩ6.; @-F Rj!hb:]󄚟mUvFBclJx3/ɝVC57)ƾS0@PCR?sovV՟ůI5MEō9I;KWC\1Ŗ jۏBP>op ?p@+}ThuIccVJH5aP{| aOь.>N}lS i7bu'f"K" ^A!%Ls>m}s]ƨЄobi+^AJF1DJơ4 eڟ<Di:w^-g21q؎nL Q|LHBYbᱱs!#mo.ڂcYK՘_F'XwL'~,f'bKR_Xcى YvS L[w@締_'׈V :'`q&0{``QiAowx絠#f^BI B&(j~QcR&7dlҸ/Yk:y*І^DZ§he{er}?&\b(rѐ#e&;λ74fYnIW;fI*']} ]CQj5-2[–20 qM OcfPޫXb}:/.,b=:C3¹;oSpl+f# NgE'ohJ̦:Ed^?!,귈~X}6IRT8c0}y¨TƗRXMmw)٩MDBLqc1V!MۋV"Cpn _m)΄!vpKBQVD~rv:|6S uoA3ԐL970)q [ZkKڂE!=iwãBNR8[lEo B$.4 S#<V$0C``T`xuQ*%G_S>v& K7/ S2K?Q~!wӇ?뇕 Rג%D.3JT%Rp3׶4 n^k%W~rp¿q[2?]Nɳ΀Kp:LxUt OMƳȗ{1,l'4fvQZC5"rzVF$_qXgވ9h"s=WXjt{6w/j)#@"ƙUC"XԶgUi~nOEvDq2*e*Aȝ\7uLλY[W]7b,AL,1cS%Bmd*czvzi8!!dC2&$?}'у ( 4ا(կPȁ[ɸ%,\;#4Z4ʊ awJNJ%}DU)\iD0Mۺ^{"XrnmubHU}oy ʱ8$.qy+fȾՑ[(%[Wg^~ Z Ҽn?k +/:߶b6iUA 'OTXY\0tv1gY ^~ gI+Ԡ`e* T`j K_-=NxثR5ĔM1Ǚ"7>Gdr؍Nv^|(L3&&t\ٓ}¶n55vɑӃ,܂E׾R) ɧ N6#Y񶭡ڟ~dWoiAD!4U_sptd'dJ=qeY#]J; nn"d2YX SRsE"pku^(e+R8w4Z4Y4GlN .-'M1ȭ/a\pOQ]ك!rT25H.ũ[q3XmBy^ NZ| |DN6spQ|؍> ^ 9"bt ̨#0urh#@eav y-)r0:fGKVěO5YonF0u}\|[G#삢MUҬpݻ{&nO-}5p; Q)co65=M>FngA8)_{,ЋM,s^a}cWDwrg{vȯO5.6D!PS*Yycwϙ78p|V [=m(џO޶/W\`'*df}Jl{˜[j4?Xj Ъގ J^~wbtlʾkEicpF|ˆ!^XXL`M H:fLy I6>&i{h1^PNgC-ȧF m](ZPCd_ѡq*:F>)8"sPJcf[N-h1u%]k="!N!g߀dR&h8 Br/}wҬ5UG_ۅv7U;SL ,ȭWY,#g*eG&/?Ym÷I1] R,_xm1S~1ӗ,>_C ż!^NU8i<ѴƿnrVK玗e+qgE22j;yUn >'%`]-9G2rW.xȍ_}SԆ4B?ps('fMvayrV3ŵcZ0=e rE N{ #`+ߴc'j?_Ya? `1Re/_Yyبt| m)"Eoʌ9.zi0zQ 8Xp(Ny|*N>gȃÐp}ELWYy}H?*,,@rS vd$+}Mz.5i0\c"k5c"B_A#:%4u 7T\xSkfzJb'2 RhU 3M!YB?Y5.*+lB4/2@"Z#Vho pst$LV) bH{ t Mr}|+Xwʖ4OQyDzEYt}P" SdSJ&f$>rz7+%_T{_Vѵ6/W'jZ`/@˗ZPh„h"$X49z0n mrvI;*-%8BlA+It)3훨_7jB&j 9VHd礡&hF%8<ɆIe9iCpm˺Mu" Za׍Q|L`cV6/&P`k/ Xӵ?O<3DY]j$QO)]Y>=Ty|/Q]" oOC*+z&%ko0[NX^g_u.MQNTږEs&&zWu9F]i}dU53s ( Jv8S /(vE9UO*M3WF<h[ N650NM{͡}y04%#/2Ga/}#5xc3:g*M`GW0!.Qs=Qpc aJ]yl ND[nq.4^k%xibV℁L[?Ӛ[.{\+Z{Ej(9uYqRPFk’JlhaoxM5%yg-z*=0TK)A%|fYsL3idXͩ&z檷aADL-Z/8yʹ·;c6"*MXGa'];#9<' [Agǧ]A>[5o?'7]S/)L uwUT|P3j3 H(1Hv^b漊,Hd9 ҇R!@:9ZG=ìo9Fq N5&б%AABpoa5tļ 1T&j׋cZM-hx:GSTv+ԩ=i3脜na)te#mvK6_7M9 |+F̔v')ԛƑcX!À1rdBT;G1(m8Qz/ N!Vlsż @j{ɏV,(B_BSv-VDgc?v6Q~gqW^Q/" 9JL~hSڞ`t :'FB:0د0B9,(P<{0i_xuŦY^>srlq9ȕQȽ-#JĕU7$ E-ms&HB(~3O-l'R2$@fLTa7Qa,]v-Y &]ښԖ' vԠa)aDWsv:>E6g{x<aF s= q67|pWpԓ=~W>9jzX6 $$DȄ]ؔ$rҨ iDFƅ;׌XDvRWBbf nK^LAKt]>WLϲŒG]"kԾX!ƟcuST}n (Qz1,&_w -8FoNa%3V7Dm%*F#1GE`q?5.m.]=[BD&eeYKK8 +\<||2ҸNꠀ.$s!5ܗ7o, Cg7A㺵%ȥlV1/;5gWT4 XNqȵ-k6<18fZOt+~]܉f$:-M| rm"ș7V8@%R˗tѪy{s 8ڨ[">[ƹ' p^4}lـI"/#*?4-U,U삜Sܔf2L>xd7Eb㽜O}S/bj9<66iͣgO - 햵.Q kk; kU\~',(7GB2y^q3d5:&iUW>S;t|%[)[jכּ̱[WtdXYS?Ts̫ZMԍFyڎ-6a]}`v9A' /=[@l#r- _lC <ٶ~񩹕O c?y>Zuno`<(뫒}9$l]ZCn=&i_nd5KcsP4 xl`R,"3w2(gV5*f`C,3l]vP>tlm˛N)ys&,uNtђƴ()cz^xܩDZz3xEg vF5 #X9±t+=2b7Җ(hLk4w$44GWK9ȁLYuۈ1]@( <z}eO,V>wG6 t2OL/W GnTuųi.y8SMCl?5~z:_6ɓdLgJ[ܾE2)"_C"H5>^ B ]c 5O(&WuO `s^w.=k>|.Dq(>90)=F#oX١Oukg3&5:fiVF[4̪j6m'&@hQ*l$򽬏;$ ,{cmygRFi~uDzۛ|= f✜8TOM$s̈́I t9ǒdS@,SYߝ>çA }0 1QT|ZKfC8""dEsX_` ՝nlW &Hگ>A\{)Ņ e C?o -HHі&?e_As\ -٢`nS=#d)݇7ˆ,J&†LăB p({?gufe@ehm̌aJ/r[\ e>\q<ٓeUR&1.{NJ[8M%6W&b݌HݭlU&ʩtahuUܐg(UF(ix#˩'G)GGrq:/1Lȶ<$~/BA141U7$>7vOUcI̎䚐!H'kK]x]G;4# g.iIu%q!2ZcUb}P;/@ ;Û(ڕĹORāy+ Mr>QqP)V,P8_ `qnR"Q`9eh(4`$}1 T؅ A`Fjyy['!^ɚ>#͊ S!Қu!)>>& _y=/;Q}@R6&X X̑ -E2U`wC/Df^͓d V|6=e@EO&+/@_­L 9Ю#2]aH 㤋l{^u<&͛_ǁܷag%Jw y'J$k_O=zʣY릎^]6_MZjࣘhPv3a0JȱOpO [S蝿s͉MZJQRB`1( SE c_w-io3Nöf4nU]^P.w 4GBg!:!Ta]փȟT5%^s$'5T0βZpMrrlE&<*!okk<9~d" >~us 7k8aI^3tE9FYAsDpšK|; _],V,:JKloqlȅ*T8슑@ӗQ9Z>f36QH ˞C;ɫFGl?)>gJܶ&K4 sPs޲ M+TG˵2[q]0 &im7ٶm5Nmkm۶]]{]MT5!g7LJ3Gm KB==qA mδ۟m^Y-*Be^/﨓(&S?[;l@ z8ØM SHJ|?Ovί |s/@!$(=0 1 TޟAV 8|\|HhVI<2ttxÌ<)BapE?X0Q@OT&\I$'ՅJ/{htV(0iTV#P"^.*٥1f0ă$fHl/4V\aIXAE$@[RbiaBy 1RNέ&#Qh{PRݕK鐶Y[bHJSHg~D7zZLJYCOЖSRj{q"rs2r$ o_Sx^}uNϹT]ߘYl,Ã"hu!_d|G=#O<$S"# cD/3xL>tOB@<Ԥ;Н0v&.KWs ,rVʺE+":*_Z5y0[d^[]ϦYXwի !X9P AdL/ Pz颱:ܱȌ[E`W_Asp䯰5t :{8U^C(iŒ6Qɟ*sqB+]oĵ8R]%v iHGuJӟ'tF!QS%jDl)iCPWPʄ.`m,uPW3r @iLF-bڮK2rq2咤|a5r({ċMJ ?T@uEVjGܳ/Lz2\A/ _lN0^9hF^QOcD >kY8cn&\Hׄ>*Vm07') }Ftp.aN ۯ[UFuğqy8}^*Qf-ưyz v<ҡc5лzuqpx=Rk$gfp(@ "59,3J>tD;lc-%[R 13ԸI mш9w!Mً,iO~7viш|!=ȜPԊJ#߈ʞ=4ܳkǣw:ڀxm˿qDDF9 XˍpV1xN6]qX<d __9穌x4)B4^J*xOE08qz>$KغiH X Ry|˓;U6K'u Q~!FI:(H> z;u12=Rji-{.,oSQ$%1z@m2" t^׏y~PSX!.DQn|Kg8]`p6Ť DGb<~k}A 1Pſ#v۶.~M7)#oDڣժ3V:_ȎKctlO}Tc1&(&xl\|pRvUёh U_A$9l (h;r0˾x@+YLiriV"yFRo&[ Oavk0TǘQx|<84F8"FG#Qz]wCE|=?{V:#g;~{Gq@|"FI0I2_C \$wHf@B~_c. jY M3 lW]Zh"84G~I:mU48Mh v$.3dǺnt\r' !ӎ[RޝB|D#4WR6)Fj)ɏ9,.㱮;SQ41*0߷OjepK *oGS{/#`.8|h\6Iئ<nER\+OBi=f-|?Q iլP%8frM6T?.;:X$-sԽIГ&$ɌDΆYZ9,Rۺk{k8`㲞ZW(ZZ6_\Sez'59 }Sz*ra=p\: l'%\-PFu֬lXGy?EKot,]C2'>~{HC<4&SMB-gB?uɿ*ߢn"ooePWYO g[~V5S xkmfXEF= +IeaWnY'E뚞Sّ*Kj/yNàvno"De%(]1l)L`=UTx)5֚YN@㔎,.j(.JfNb"msl]osЃ 0 :Yy`E衮옕3 |R0 NaKN&Vnc;2&¼kPY̭11+nCpB0"?p;8 a/ ր|t$LR}x,YDCaK[JެcX5P_vqEL5::{u#l44JįwiޯGh婌~YX71FP Z(w4 62NW"b!q~l1a{}Vk#JġnE3)0H}(D^HJ ^ R+9P *C.!Z/uLj竴,I_snh9'q|˱##.%Ē N1@320.@\7Nʖj/TB NW׎ctڰ[C;U pv Y殤E\<|m1cVlQj*MT^]*qM%9i) s؍MO׎jч{נl9Q.|QɪF [ڂVVaF?}|Mn^8zx2 89ᅉkUT ]Gύz8M _JHdo!o{fżŬ3Lg9a7sa9ʌn$F}!f)Ѐ;NmŤIL6xtV2 >tC"3=հ-BH_|UFH,dRs?J]2(-jIzIEtP" ѐ/۰u90ؘ B̿Pw&T_BH0`5%^Ea`OfIq֒q![2SOJ-6.A x2T҂mlFV=E[EB2Z|>Dx 7pOhs5^3z҉; 5۬ݒMHs#?hﴖVAx rwM@@szhWg2HN.MB?Hln0@TTrí DIbt[}iF̦{zn6 n^c۟o+ W;j]QE_'-I"%i<Fʇ_EC_awث4yCLLW.lI'j&IK(Nl>R/,0>Ak/e٣G!:ոK:O(eLƄ®|G6l\v$N!ϻkn§[ ?ݿkh1 yMm ;*D/OۊGOTLo?m)K)SSCrP=eczkO'w+S6Wjb1A5*ӽӗVDo&]#d&uzgqmo jhB_B]"StxThwCARCzp@J3[(n.|#uXku7Mɯٲ?=sE!v#9nx8\«`Y"qd?PƑN=i#錌%zH8z =X8cַ`C/Љ:RuUY,~1x2yovX0AvԮkR۳M+O~=fI(nˬҞt&1gRdTw-O fN !dA9G^iwZL-bDhm8 dJ(kʷ7(Ƣ̄=CTI[\,"^h1/&E!!% EDξBMM-p|P:QD'$nHQMoj*}23fO@w+rmS,,\ di9wBH}B|R!D'h']١aՉ+Cɠs˛vlwˀ1HԁiE*k$r5k-cPI&Q_`_F!=9%"iO*ֲ_r; LTF eϖlCA Y"9yژqD]5w%8XX"2:/ְuԯ]웕I J;̖l <3 ,7 ߃벺rs13KGTn$jB;V pb뢎\gW~vc6BIHop?&sU4-HVlI0KM:[Ct4MR/F!G\߆_F$('_6iqߋ:ɞt%=v߱ 3֭b%HPѩ<+RdõÖ@ݰ6weO0S̯F*)߫)U093vo.\E 7,; SbU,<ن;SOP-{+ADV*Ysr<<w)_%siHyK#? 4/AB{P$*`MniMA!Na(Vt0m,9&:fZ־ "taԜ<:[E2IPـ(2x;ܵZ8c7EO 7!RɅ& +OmBd?9B ~l}QSztn9G M=l+vHo Qδ0F2F]fg{[Xk\`zU1K#1]6n! zM߾YgvoG4Dvw, {Z^n+%̭*Y{C \I:B{kK<_sDl|Utf-уlkv3P}DLaZ+(KJ&mKbkNgFmԎ"OWs9VǗc|?Ma*Amf)/|+6;%ֻWf.~'ԓ;`Q_ߓ,-+_D_d7#qUu'!VHVMܟKX2R܌/Nx?{ǬRK͛;oC+@-t66lc5(q !h.)*^e1Cˑ:s߬VÈw9%:>9"[ Yt;.YHv-O7C^G.|\uNcG{ƫF-҃^#`pjg 1 w')~C`^d(,S 5cRƾǏbPlw2~o}3 !m Hv尃lx4XO:G\76CДENuy-nz)Bä7}-Qtc>}HB;i@C!-T>IJj$^C`+Դ=dz!V DE5Yǵ^[*/]as=hJ}LY9DruV˻d)3Hn>g_(*_(@b QsY}{!BA*+<;%@W ~KD'dlP" %Idz4>z68tA#(?(OտNRɍTDOh3DbnAi"ۼ-%B餰 j|efx3md4sT26P*#A'X@֋}s|J cK Խ*N u#Չ@g_|;"b-ۊ:ѦE}fGzlKCOԒm!zɱBKI@1d]d&TYK]tofA.su.GK~N`|8b$wiwzZFYHu/ACԝڌieWc+,އ)Pk[sw.g1&5&qjȸ>kտiyxn@q='#32]q_3ep\l<$̛6+0iebe\,uDﮛ5om_Epg B fA֌6)104 !FML:ge. rw`9~ؽƒ0=T5 ?ZC%b@`M?9e9J6Z .\7%5E;t0K;W5Z.z`p f +0P^ 6uj~XΉ7i9zq<=&OÏy6' };rm`g-nRsNFljp(3]PBfL?j Sk~q+< l~rhR5BҬYK:?Hr4L( N-7cOIIYmU.`k3,I kw˜k2~&Js)/%MCr4uh? 0>lAYi=_i1^YY(|3W_:%$Ѯ!g NcN4۾]W1%N737e5G{EįClZ[#Ra@E:?+M iVIJVxь")h| ϱ;:zӑT|O}D~*FeGg#P)mB:i&X`LKmzsbelW/"l OW~ ۤGwWigbU쪈oה@M쵓^sԓ+R'3XFwO 7Zu?R|n6Qe*>HlauhgA\VJfagIxs]6+XpQo;i+]H#s< T瞎6H9э4j)j@}?#Ur 4%cě|axf"?Ɲ endstream endobj 236 0 obj << /Length1 2137 /Length2 23879 /Length3 0 /Length 25183 /Filter /FlateDecode >> stream xڴzeT۲mpwָon\Kpww  wwC>ܽjժoME$f6JALl̬E% S +8ʉHE% 4u$M]Wk뛟3 ߔ3/T5 ]\L]@ H"vrvO?ySs; dgVb(=ބ6Z0`6-@]@F]EKU-#Hhhj0$Ŕ5@mF@+FO7?JRbzRl,j܁.677fZ:Jvuuga`rsqe;[1;Ov;5 dNWk99$ ᭕oNor%?1ep#_S+d 23t5uus%{{-hEpsvC*Mo }M=LAn.ћ, rqquWD ˟3%SSdR|<; fWO׿Tr8oC*;8vA>I>Xs@` -m@znȢqrIo :,5'lo v;,M]67DoSw O"D6ۈ]Ŀˁ,ߘ[?O{`hȢ v}?7rI+:imd`cfeCqZڸ[˹ v!a}[86toshnx9R:_t,ELYM\M?g/)9d`:;z! ;m-Mv}s8,ΈN"G(/,o[ `dWka`ŷہtG?`7x3X/zC^2|`7d{c7ýPq[h쁖?RmX6t?Jc{cwoJ"-3zQU77/@?kH/ X=adlio_${[\ `bB6n7kG_  h46Mo+**cY++i_69P05 (/5TKcޖR5yc&cG*%6ͬPMNw$W9՞N;칏eqFnX޾ƣhs}T=v|iI~L?oz:ſ~ƀ9co".W!svŎXU c#pE{FI% $1l҂ue [F<~F= u6%b(% v+<"CfmzBR ]) hjF>QC%Z#yCLzy˨'tQ~}.=Ҟ?g{ufWah7y4IoKr)ʾ96wWmb`ռ8C#{ 6$}dͽ*Ӣf4(yPc@(rklUdn Pb$5ZZATp^R7cp0μ&!#S-e8(mBÝGXM~gќAFc 7j<ȇϧvxkr?{','mGlaXnJlW;b-#F'+rmd@ٌ&i9(I\*Rs].9s49دп`'bbw~fl[s5;~r2|%b~)Ӑ'/JRN0jdKGW swnWY7dzd/BQVoV*S#Wu]3M@t쀇_K`kL11ƋpCm%[unzd^!o;d_3PrEmzPݵq r ]p/1gi]=hRO.þf+zw7ֶ;_vbnS׋c[ yƮ`ӯ2|Wj 4X#nv∼\Y¹x&XqNlbO`Z ǺBkz:^6ͤ o2Y[J7V照z|oHs5x4<`D BmTklAMAB1!p`htnƫazV~'—B/ym މ_7CXޭvSY6V.ョLA< ^7.?_ %(3d␣R`,XeF*taf킞/$n^-bij }K6>DmNv2_>]S>GI3t<%#!$aӀ9+NJ,fh 426=8@3E,z@i浊EH4@T\J؛+5:aHQ@вZfvU5|fպ #X~bydv.S73(KRs"JJUU]š} P?xZrN]_)c@xN`W^wW h y q6sJƽn[ Cj)NAKBjLM+ébޕ.XІrW4/BU,~dM-X]̈́VΜRU.ߓ* ٪Fl~9S u٥e\'E8>P|_÷yDDnzp>PW 14L.,PgxoXl> dN%K1Ojw'n+!G["PpWH$b$+fIB:J~ t2Ӈ:(R/7NW@POwALF1zȷyDeL;8с5E#Y1 p^t5oV#&+O䧱yF\؁Uq]woSD|p-$:usX,CfVFx*g?"43 i<" S@2͟hƋjj Ƶ6vBˊ `Hʊa %aW@y9溌1YL؛$`q>o{0];t҄.k*dŲn#HhGmb_WP:1lsc$Y.)Τ՟9D vPN6'EL%+("R?$=H@/醨h YG o׏1:֥{ }uzJjaR~'__VP~3UT.AUˁ*3Q*H{ȋ3zWJ5v nyFρAf 9+zZ{1cWRl>m1jt6 8ZQ iYCod!dͤ-'c()/:TkR#&ev;l@򁏸yY>(|5\;T+-,ܜ(յH{^UI'鞀]:(AxrΑ4z{q)S?;eʠlyAcBtqh|#,0;!H8,ZpN?д<#| fGC8BLG`<6Vj~f[eɪX6>18,Mx6ς`nd`'_m~~TDZt5ynj>j-8!Җ|ߣB6m0I, εD lE5 wv+m`Ý ;AfAM*z(܏$HC|y:.;[/ %$z jrR~8Jt_ %$M Go9\Q~3 W'4l:{&{==C_\|$W˸p~M ۧ3\g~>6PlֺƆyk8L:YQ(yrwvNpg}Vgr~[1DYC,H;! v.$l(ޫ>w/M~,tp/FM-rW,uӈW љ#q[/F&}rl11Kפ7+ @MUw(6^`fL!+Rҿ;9t2"d ˯jw; ENP߳f A6nR!34S`#KY+SxI۽`Cóǝzdyx: ?C`osTv+Nwaݷ OT=#=ERIͻC1CG'W# ƕ ΒߍA9$3y) 0[?:%E;<$ORRb=q/}]s 흀; "&nTZA^ʷ HCB7'{S߶B0&K:+StˡFZO@3n2д6_^ˆ޽m+CS4? NEz^ ~' YRg>lvb&Vevcc>,oL4"`/]e3\f&bAi?M(zS㼍Di,_d^4x\ī< ևU.ۭDJS n~eyJ ,aB[l%,'{Be^}nj^ѱh#+@Wjy Ώ= P?Bd8ƽe7p{[7< I{p/הH6g 1fd#]UQ2)m)4L$IҲFsj74鷕9 >ɠfv*j 3"ipSMCL0uqiГF ҺQs3NA Qګ!Lq J *_HP TcyGNkMv㡼,ils(Q٘F[*K<|‚ԉ+bYfY_R(+@CgCa5xTȎ*5/b갲rYI|:7n~KٔGRHiXtNߤaQ}xu Fc嗯cDtGc9 CFYPL!C !`ZZ?e}ΧY*{H5QJ01B406 bΕg_r/&bQ}!mIґDa{t|Z0٩vÉ2(yLNhoxWdQPN?TT%)1| WMҐ: Pykbc+&P]<ֵlBjJsx}۠ XF %Ah#i*w϶WRVSC"~z?Iʵ[1ȊLVZfzB5~vԏ(T!XSZ`!cR2,O9m OnUgঘ з&{{`]ɭYҶ IuMˍ-B7w p۸ǜpWh /b:Ty\MՒaJIy?5(~\΃cd,걯לPaqmЩyu1z~F_}΀]Ad /c Q*=#yjNZ[B92;㞄S%|wM렭UQG$)ښ Ԗ550Z1(>9P~N,1Б8å{ty*mqe1-b,F`1ޗqfʩpfcEKaҕl,+tPz2S*SƓB3|*Iyt$^qˊ--!sQCwkyӔioOlf -5uJ*u\NG &icVT)nDO ?Ƌv֩{(y0D4>?B>zfj d5:ΰR'T8`v.'eBl_Y6alC$ ,;1] qZ~!@ɝVP};[+8TeXNlwuTC]YgfDfw2]\n]ݍ] ~;vڥx`VW_B9?h1\I`{ g }RQQ{`S]j'½̭7 Pў#g֐3<<;2IGwJ8Za? B`ϭ,I6벂ٜBM+(.҂gx֛Za>@FGpKkP>Ų\t#= 2ɰŅF <Ƙ߭!cF]~z h(/XI7~V3Tr*7 H^F:X[FbY5(2}IbC7H+W]ru'V-MRB,8|߉>D RpP2im^gq9xN¯nPtCgQ;66P/Ӈ}me ɓ!h.BK|]=D`BֻF+U.M`[5[7_2'霅_lp1`^p_TE v(Å)#݄Y}z5~!V9=ߠl Hr'CbKeb,*ESC'&kro\|,j?-I3+*>q1]v$r+tP s1趰'D!e[]Tihѵq<_(VЪ*גBe*9,]#Z[b81t{ YEd<|9KD2}MMH!4MES\"O"n }4.A>F_WhEY#f+(B~-bľt[T>oYk|gԭtߧy2DXax+fOle[3d_Jti28IBq O3. 'NCc" w ߥ6 &"4+>`ʚ00+mZC(;̘'Q"@Sŧoq/LʸPScg: O) t7SHs>-oAƬ)Z|4>Y\d Օ;1sNfЯB/x_bIшۤϤ3 B_{oZ_=tr!\h~h % FhjL !`qgf]BW pőK'0y(UČUug\L,Rc(ބ_t=/ oCvkĤ+KA50Ka~p҂\`O:œ՚{p3_8iJ?g> hy#q뙲"MaS۫ccmu-qatlk8HL ;`bh*LiJ 남ՊOYQ8$F{&nގD0/;S ]] PdƁcraQ%fU1#2}3mA{Z͇7_ nEH zgME%u]O/QdEz7c6|ScaL*4P!0U'5ϫ~Z#A}_BgyUd# [l dp';^a9_ THOK41K_f,L@4խ]^}z,kçmu„eȗQU鳢m6Ơd2T]vm(rfaw?N~%J*SxsgnKBYՖȏGg@X\R!5g6J,,GBSYtpCFcQ[{!q43VlH9_!b7/_]ke$iv:İ560W {W^w]et e4<@㘍SVHdžY!nf|x^l/6!7H:Ǭ Rh#Pm.NU}fcѩ ;-ruDS}/&H'T7˲oء!*e2w,K}E/G+g'借$[#ֳ/ {hڢY\8zmu/ .Wu# loa2+6_x7.ڕv7i簇?Z#~`AըB-QnfaBZwcFk.֖JmR.2O Hkp`^z_<_^r]'ePa'qSV}2%wA/6&ey׈L>נѤ6?Ѿj=Ov-Dt5ަ+\9zrxv-b$moՁE%}M;hY^rEAސ:Pp 56#]/a=/e - ]O^5DU $e|Ta-<~"D_Uk:?N"^Hň֬*3~]gBeN1HH㎙r"YG%+VF cOxL|eͻÐh2p\jA61 "l9(}e`ɂUSt`^bʾx,咶aV5uCv?qzvA 3!@GkP}`OwQP RJ9xX8w5 .7ԓLiJVJs!-^h8c,:Zc=EgRrx7u> {7c%N+}}SB?|Ŧ^G}cXځejJk#ެ-<(,Kz5I%vXN4kimC.3nw4D'-1R )hIC2`=([A"h*,O<.~Dޤ=/rzN QsҚZm>ϰqaUI T1:%]0@ƏzX2ML~[µS0?&#x^>K̦#%~>Yn$<~CGMBvM?͖gH}#gY7Xd$?:,z"lS}5\D%:ߠQ5FB!M~E}p?LzZ ddx?Z!6o5g آ7$%I=%#SuuKcn€AuaW-Bju8EE]{ "0܌̻zAm~,ދFVt8V=w[ѹ*z1wY5c+q02rȂv؎*+O0ptSe'ZngkU(yCL;Kj0 T#Ik%d/&H<.|(%fsRSO95-Sfˆ\7 a0N@{VHB!k#U")DC/6: ZAu->x;أx噔 {5XMf#r}ku4 0.1rMFa&9K;m/Jd/:?d -|OѾ}\vdwYoc Kϳ]1]Buq(H\@[/wr58K3ZhȎ4ɚqѲz@ FXYnZn} 5!K)H7\Yg8;e6 a|dRmk!zٚA_PM6fdȥdD r;#Gd1% _/jz~FW_rƳ Ki/$-x'c;;RRI}W6#Swv蒸&Rь?h/"Ɛ('^&aXtm::{wLm~soTA"vs:]%MV;m $z23Nׄlz,CخQ+`Ov64=WIurw3]8sz{No#-ҽ9@ӄY׸Vc+w]IJ;l/)u3GԇfDd\IC9Lštme=תɢS&gG\s34G!kTybbLi搯ILGWE^^>>eReW$$]!t8`:0ք S*-QYmkc=.3XN%i,A%^c?`\Wu?lz/#4]]wY&lsTjjGP0hS?-5AY~7ޙs\{5hb2wj2\,F I(yOµwC(W:iLZj{<@"m7C1Y7k / #L\JVSSFsRo1jv!1IIu7'S||3[#kjkf<ƒuF1Wn L2 } p^q┫VSwEQc!i6Pv<, AA %Xo EaK)Ry"ya42ش˳beq1FƆXx ԑ<:l4YYBb|)т-+*܎uA8qʫ&-U=|2:O5'<7kZ̭`pGwzr>{Xb|@F0y Ae}'.=`oPOݒҸF.jdpcOzڟpO %ᇬgɕKɎ3XVW~,Ln~ϦQwnGPH2t ~`lp޺u{E1q PR9 Qzr_)hFn`:%ؙEpfʄ\Ieoy꒧">egA}Y67J#\QQ;i^LjogyvƼEv@;78\TUkhC`0L+g㢓 DKw`g>OL2e6u?dMzD3@Ǽ&XGlg5+18pP HLjѵn9ޛobfD^ %Ϲ pnbhjZ{IJ\C[۽˵\,'KM+,#RHY1p4XptPdU Ϋ îCC< mܷ\VyX'iVULazdOA[c'=DoPhyQq89K`jb[G=[J0PE|ZʇK†?Dd%JWW7l1vXSwOIטfKS<ۆ|q ۵*|9,}B.vߣTNZH Ojd]RWHY[ey70rAo4-كYߖRSGDܩV2'H./;ղBh~i E8t ƛGBt+( I-_ZC pH&xPB?W>`:rq P0Y{ Zvã (g7 AyLc:Hu~5 9c\'7&52 ^oUV--]-+8 њ>6*Ec+5 r>&5."D_ i,M܊vHH\'8̞B fj66\G1"̧my=fc,)b'G(ԟE1z`OPL`k TQ1ƾ5 "# cPG~od OB°MF+<|A40-1^ ]\OY)":)|[Z'R{j#lg _%}+h/*Ry/yZOryvjn 'ұxk,6xRQz;oi*Od"Q dT;AߢN1YSe_VH 1:w~st`7brz7üLTx(9߳4hnidɲ(D_hÉ$C|[ug+<-?H UAB!Q#NJ'Xv{`a!y%_QQ(p[2ۨ*lMp<d/\޻B?!fG{xxncɰޠb,nM5m(jp ҏ3 bd$B|c.JC_O: ЇFp⤗Hi6#_F?a7ddhȾр20\.r{UKEK,7xIY>X<8n7bJz^Cդ"DeIF{mhOJyE(_ ܡ&ka (ҟR-thA9st}5DMd;{ٴBhOǥbP`v@]Rv7I4*NY%VU+VG\v5?_sY3. Q @<7>\YbY n0kRܟ('.Esv6KXEߜ|j"@.Cن @C%k 蟡}9b$_\}V SmO~D+N'Ğ*wQKo㼓y]mJ`g7ukHe:~ٴp8K,M.kYIo걭fL U;훣SeȠjU $SuQs+l=LwhTQ$s1p =J)^*VuKڼ섥^>YAV`d#~h],@|MNP`k#2 nc7b(GvqzpX9>43B~IX5g((2o9)J^= 6 El'%Š8om0DX2\>1s6Z$x{Rkˌ lߒŝo;ԖyZ&d02sk"J Ebs XuvOo|BBlc,^ 4'rA5^p<z'RQ[dԜ`l-5{H%*@"ߛ6Dl5S6|:m:f;F>h|__v1Ћ;PoND5 Vߐ ?YOa1|zddq44,!8   Hکn2Ycާ|.<[mֽ,pZƒV`A\uW>H%܁I虪#a:`O{*/C,h}ȳLew rLJV/F4`_?fX[Ox)>c2X("MO{)blx5"P&B3W`*~hp4A$h~!+p9krF & rJo5&fE{U7KT)n(&?IgL &/qWYG2zp9?9n酇9-IuKi۠h_|PY2XO$5ٻP?XK|d@Pm4*jXRB= ~kok%;>R82q^Η!䄮*t֛({%_@8LNs,g qrUɄ@Z a3<`pfʌ+?k$*e^5JB)n+)6QYnʸR&r~'9 g̽iG'ǻK%Lќ)7Y7wbu w C9B0FQ]9ﯕR|zD%$ [Έ>ֽFK+"JƥhT m #U9᳿IOkG.jK8¨9 o)Ad9Th\^8)>`[[c^Gh瘘x_`ۤ yE6PMLSf>coyW.ˁWωzz\r /K.-pC_ m^/qdY=̳822h~zfKhPZbG&z pBa^!-;!mu}46;~f㸓!ܽ'渽N/T&mA2GI/{խ/5n1X4x$Wڪ}f%k@$=#Mttz*ڒ?WT)ZhiF\Nł5pG,] +юOg?N^1 @v{ f̼Bx.O^@}f|E~Fw tQ#S:B?2zt _M7"5'7#IxeYW1BcK#*D&# ?]sTk@4*YkTNxd^ъEg4pGws7SK3ٕZQLV ;=Qﻏ !T>L=Ư}҇o "J-7f(F,5M:aKF]@с] 76c˶ ;CWGBtz2 3]Lr y|6mb1i }TM=D/6b5CvU͒X&roe,™jٻ4Xdoq='$?̞-a4DaT΁җA*zˇ4@d?I\~C(`͚T(|?=GB\#*WY9D O+/e蛗wLj mTOwE9!de~WN4c /dCozqv<"mz9vМWZ'(PUD*xfV%AA-"f0w5BezkX|@7ye陮8l[S=ʪK=!RɸF/f-F9K8ǘz1]MN xB=ZgFA[ a' <1{0*Vy9<GI촓W1]ӿ Q:m0*X_,nܬɫR,YfXEЧ ur 8Ul[) W*6$A4bAm^viIoki*!G5L+K.!{r-=7'OEI0Q'.UG=N$É=`/<팉HN&кfNg랊wjHp('eUM'pvvO=7q : 3&2hD |(-{[gU,wy[7YdT=ӌf V\>w8S;kJe0쪾;,Se9{z7aڹ{\pzZ2d$N٠teqH`i9j>EGOP3,msCEW Y=SbBBH4qgp-}NReqM?e 9jvQF4@ͱ wjU{#G5x, &!͛:UP"y6Y^ ن#Y;i<7f%sRMY4J|Qef 7QNV\@{t܊aRWZ#Q\|!G o3A'RRLdA|=鷄֏fDЎD0f^/wEQ†J+m4 }~8kv-<~dIIn^̮ߔdEڏ?io`uDÏSڨE=SW^sfnH:&si Zt\HL}M1o̭ZN 29F/e%/N}Y+ATt 4Vy= G:Y,LO$ű#3'M_v؟7^w܉"1[K.$4c bU5$`Eʀ赺Q!SͶ,n0Α$ApSEsm2"aB4"<Jiu!srIװ'qeOTYti{-rO_ǻy#.S傈i󎁳3dr 8I=grIWcҢx? +./`|nVX=ϳ(-tΧY7t'iڀ3[w]&K< kD#Ӳ}ATH= Jʚ>z0!z-Ҋ[g `A2i~pFjgyCgdLPIİms~l .y9jLP#+.!ڬDEU*!}v{h)]AeM-G6(WuqaIqTl0<[.HܗzDmj{ؓ(qHb$O_x٧1r7$Mj kE1 E? Hٳs ѮV703=\8pzjvvlx:R]Ph+sJaΪ'8ۖۺR5z6!:>tibtZ_g;9]Z|e H䦢[d'鍡=+*ޥxnuR쎘׎rW$WNwbyDGi(fר+pellp~1hzY$flnJ4N X qo1f;I?&&I( endstream endobj 238 0 obj << /Length1 2063 /Length2 21790 /Length3 0 /Length 23070 /Filter /FlateDecode >> stream xڴstdۺ>v*m۶S:FcÎmwluض_z{oԨZ|滞9ר1DYA( WP3qpaafP2223QP9M\M\.W+G3 t:8^@mPvtqe05qp,4)bN^֖Vj10'[ kbfbk 0q02*0=>jG)hPj4$TRJj4ܜ=@\DQ]ԤHiT:|( .,g ;OF 7T gG\]x<<<-\\-nept|\v`1NW+ )yk3 O㿜H \ԴW86V&.++M\&f&n.lo9տbnz(m||M<8xc6l3GkWU,ػgDe$%?1FWO׿p3sXx"p0s`g|srutb?uppv ks?7wsbpc6K+zY1iZY?0sZ[?.p>.&@矎Dp,\sk3l8X8xe`_c;:ýpLgW/I7;;E{ L#"R+::ۛEhljf.j}K; _F?C_Q:]\/C)##)FTW%`l!Vˇ́iprsX8:&?!N߈$70IqdFF&+Io`R70>:01d0?Z Y?r-cAc aCZ?h9~A?]?Xc?'_G_XemGf4G;'3c@ v5iR 4[^p4 Im +(.a<ԖXΘ" dR:K%:kS`ڽnM1W6SGdTX ("9)alo#htt?~e|GJ!/k ң'K3 ^'t'#Fle901Y(n"BS#Hl7cru[ۡ_GYI$AU GO 2gY;5-~?fj׃7Do]g~  # bD=1m_c<"j&dԝ#~1x7Ѹm% lZR팿7zX1z 1"0 87)-0?>oW|)lGly aw15Rl6_+YRLEcb]{hQO 1$ D WjU/O3fD +`Еh| vֲ֞s#HJ6&}j!-H%&/[*vR<=jTkVvo/⮉ggL+01ge=ѭY+K07^ũVݱ"vrsr p{yaN?];@cS0{]\hz_T/w#=XDVx]N,m\ o6M yѿHxHvYFMWܓ /iQ^O#?FoiSgO9̱ No3X@'e¼[2XX{! zKiWe*IӤ@DWL[U c~ϼ߭5wHڂp YuS!Ԍc?q{ѣ?%eVqeE4m<53,;<Е7mT\Fr0o)_fs3IG@H dG[=2zV? İ6W$50,z09Oлζx VUTy^]p6/݄grhjL@:$SQėt:+mE\ ށbpԽN7~ʀɄ:t}T8A@ᘖ Z"s^kGxro3^<۠ t4+'mV,Nx˔",;PZ -n  =ɐ 9[-{5Ԯ: ])IUtE*i KBZg pZQ&u8=2*[PvP߽1yt7N6 +=U{h0v*0дd)SraŌpCpqΰhJIbK,eI+7<:%>5$.-8)0Aԩ,_+שnkR34ÍPF;ð 4:]p=ATZ#vY0.zXO8*pGـFw +S݌xGK[~A}^ۊax5$-os=1ibT~}x)X~ b-+R3Pu#ȃdӽ#?Ibc)D֜|qs9(3\Яج6 TF1ao[ 4ˡ_sAڭl %J-Ȃqvm^XT ;5>;:I$44m*yޯih5-ٜ{>qd1? "8/j~z̅2(ehWΑ9XXO$e=g+9G;?Ue&yޅWxt$Q͍[2ŲmY샛 9ZENoFdȱ|_d Pp{-t+ j S=jE/Zϙo@2dJz8$5z$cv'{UpK}JO Ֆԗ"P/BRw*5k פ,R0תGr+[ǯJ}7?D1$OX)aWLľ~8tn2[ְi=k`Yod}_OD"Uq%όXG@e <92&m (ȊpW ]s6}k XuRwUWC&i l5SscqcTމb5yXl CMO޵8SG>lj 7``͆j&}k1NT I*\%l?o&hXS[- KҌY7Lw½cwDuT>\a>!uU*rZcgQũDK3gE_K\: |W&QE/yxk[KRpAl-A#L4|>(cNȞmhj\<8yd,I_?EqÉΕOA[.{%a"sI~4j^!ոf{=c%㬭9MHClyWW&- KdGR5y?0[%FJݻ33㣕FJ҄-vV~7>m<R ΛWNP4ZvcJV4NKO4Z׭@j#uJb[(\Ueb,₽hL|0*.89kQfby=oMmZAZ;鐁'9@I+z*QCCBuwGlRjc=1l&R8(1{$5梖\| &JoRN[3"[#:NCL$M5ݢ^LKxIa<&%J77߼oh}O@@R?@?&us;MJej89dȼ}:ި톆)Wh/V{ TDc\ O)]I\[z6j:2e<4W$uKGTS#k#=Q:Bcְ 6CŤR9FX?(V$ A hydDQGzAЩ :49EEf|CVhNI3}^30~|zDUB$"LXyLo7 N#NQ=Uۖzj]`gPusW8ȹ76& |r&rT0c wsmR!Y d\@lq~J\w3)ݓj*-z1ss1) `ơL-'%8Du,:i /1z-zx%S;Z05[|B.(tlAgq=Ikw,e AqO2: bP*BSHɡbļ._ TVi]-Ӧ# TŽ;ߘ܋Ms @؎gD*,Q?k+&˳Dl/;'?2A@[`aݟ~&v-|Gm*[,ÁF4VGG1.$!]z")4V g_s7Հ- 9'W+;ym\_W?,UizEs^9I˳czWh"V~ChP dZ`HSho8_VWלZٲTUjɡ&cU!7[vh-)y6wSG3]Ј1Q[y?Jh9_sxN^.}]{'w·vKhޓ yJ% f;sw\$c@HU/+vv7ao >Idf U 5-̂׃+HRՂevAcT)sK̐&'6_~-I5-G {87&ZTqb{"uӗvܿ2Jj\H|2eSkv ׉ )/'6^<7Sc`~]u9(=VWve?ׂj.{S!u8 ^a0b=Y[(\V [%JBҕYs:)8n$00GHݗO$@g>u.x{Y'kQɴsb<(UZsyCJ'ws {W纂(c)=xg97ņ1.̨Q\3%F;X5qۥ'ň 's07 @;wOZcdJ$eWF>HGn{ d _eP̠N67V1G95Is#|^{aә$|S1y0١iNiS9ci<87 ]?GG|+B=caؼqzJ3ʼn.BqI$(/axڪi} 0}r˺W1XX#)F趶ʖ@EgH-ňDz63{:Eoj;Xe#jm㍘"IfʡRF[DH^X@SpkO0r2/1?ZTx""u|ͫp7$ib%!-y 4)U_$PJ8Weq#lc5.Wj@\?oqz{0e(",'%E%j]''+B(f`wi.@_y{7tz|!zlx^l#6sV~Z:Y5Pr6_o2=W AHQ-~jw f*HE(4];OyBRXKƆagF9RoEU۩K@~S4S¤[(w' •G B׌/&]S܄jf-UG9}sXyvb!5PQYqRBRlF>d&kInSEt;Cq;+2-W>|:7rzh[Z ïZuw!{S4_j]{~+/tPֵ`\CFp Li0CJo-dLoCdEG] 6h*jdY^/z]'ùꂭr!ܶ%$q!Bt~'1W"4~jR^^R]|WB+7^ʽ8J?k\m)ѕ;l8QVZMj7ɨrÕdx^뤽 =z+ U16qޗ}xʛ۳a ͷiLDٽLU[k7 "39= uIOktInk*W=~\Ɖ.q0`>w3Fme{ƌ~#1L_wQ), W:Hb_sM!2Gx%s~kA+MLdZS~SfO Ym{$ ,ښy)hҿރB6X6"t5*/nǷ:W$A99_i%wU1m$d#5Rn[9OValCx1n_"YJG8%%UQRjɑ~YO~5QI-"fHri5~r=$ g `zw=;}C=pN]~qEj9` 0qCv]PWij GFV|Q  Dۦgu4@6Ks۳"7-hng4.kbO n"$o9>0v$m 4nƪ=v J^H!iX[e}€D=9*Fv@`5D&:W5( ~4ΏI Ym$4/1 #53ɬ#K2nH:1#kTN, zGjm{ |%kBg[ rNʓ$i'VF!x{$t0c.i~dC>E./!9Ǧ2leD1Dա_ɵ.hEH\ <8[ D4j+pEM[eह;+έ>|_yDЙ$K;P{J_ Z3 ug-pFv@G g!pnzA{$+b߫9--@jR)Bc<g' V:w]?%xoo체8KD^y3YQx E.JZtf@M| |Nsx|E["%F2p8=@>Lq"oÆy pϦigTĄv|woiNx'j'Ҕ;$,9H$%㬊:sr ĴyA:٩;o#Hc7km8ѳAaS$̜`Я*)D’Bxf$0jJ1޻dotW12`xFl/8&(P1xot9 ˙8?&z|LkӬ_~,_U@«q _Ʃ5G<6=O>3D^j%QjNhˬD^q/鯪k[=OKLE\댉P&9r^!fy#TUMde)74tQ㋪ClAC:v4^fR,tVlk*^Z bAF,Q7*設6ٿ3`byʁr#L+z[G=M^=;KfKZ00t$CR!a?k݄S^GLqd bwSחtajQH-ȱ #|ׅ[,oKdAUY0]3Nk(HI%"L8*{OPHDYe z gg&7jm=-9g[S˅ܽ_P?{(6O67_9aɵn/ϓbA=ᅣz8!/rW~M9_p&w!+o;fvy)=82c ;$gQwg2-cb3)wbUm^P9c/]2܈, Q(t%Uӻئh [~QڇB9iйEΎ;Grގٟ6M4Z;90 Z˳x=L&rgYr ec-| =2W, xm3΄¼KUIk_.yρ w%u~V8Qg>R X|MgV<-_ W޹eϜ\mxƈێzڛ^d"^'+f~+# /)yJ(F~CwN9dH3n\ j4Fƈ\+MUS񂰿2@nƨZIFJh?]/ܬUeXGJ-,5 b5ne`BlxB`=2ƻF'Ft]UP$2ƇA1,h zgw#ݯTw)Ttc[H)YA"W tiGi}ă䢿@lx՝k6ӠJVbpof!P(^z}~J8L[ yGKǙ۹}&«&`[Z C& bFHG^ݢf0;>CgXL& ϵV,2 fS(S7.4`Y[fV,-++Ϧ>ֱ`htl7`s(йjXhE \h.NTgIWMYf@VcBrPo]! kFFBȃhxAXp+I 7 9-(FPo}nl-]`B{#u#d~,*PuEAZF@W\jPMxct~P({(]:^ f>g׻mRa%V=7M*ks=&}A6oB}W鼠j .oUV7594¸?wyhR.jm/q҂JP@Hb"dWWFΙTrC}Laq1G[J܇y`fޡ  C\a1W F XlZB2O@wxoQ _$+lU H+< N?7l"V>Nܡ~M3'HVlJO<\>R'zaj˚O?bu4V+!Axsa+ٸsN9kY(?r3v$ϘqG[ڴז~dsXCs$/DpƳFDQD-̱O; e mt2is^ucsBxRw'V4,\-v.M X]WRĨ2sγh]kx2$q!6g^+}^Zm~ j|y^41Q2ʫ>һU.^\ Ҭ}.^/7?(KbSfK TLpyic [l2_?-0Yon4_ZNgVRAޫRg[,+d`\9_q;sY{67PHش^дzo m @h9Jt>*I+.MPz C-&$l y,f^R:ZM>$cN^((3Q#ШSS)BڿdWtQV/0Oo3G9Ro&o0FӛF1U?v27odY(7ӘkYc-`k,!B}JBk+񙶸rx2)R k( 9B߂&17C{?##FϷy/Q)!5d%[T'#GL踶 Z'tsQTPge.Em:LB`-Srw~RF >\=+?]%iʮr6u|[j܂p/ش}):*3VxLI%_jd @bTWxF-E:գ[:+M1˩@nuBכVО;?R]OFՐ]r#IQElqZ^ֵD$? 6S/VWRݞ/Fb݈N0)߽G:?"*n~t Z]USF;JDC j#mmU 83A^'sv=e vvH͜9W]2W͒zjKS-k $}y lX UdioQ7mcEn?)NOщ.c@aTL'}bZڧ i` /Go}>Fl: {r$@& @))yjg6d)g6x)gP·JY0vL1#6"/&Nbf)R 0Me3 BǘsVN)߾[4GwL)zgB`+F{7jK~&G5USNy3Zmw~V:J5r{'Q&&$51_ko^o+X?h{4JmHPqMrǵ?c:a3}NTQ^jw{wӌчvT\LjVc})S@#J As[֋xFOWW);3'D}Fjbۊ(5Z %VN̠hI'F%#F1՛ө)*d8L1O,Y(fgN ˧kx>2 TVٷ[9خ3 1%}Gmt:h&+-=ċD"{R}*e.3/_h2ց7R #=J`˲MX[kX%Z`N`xh88]b3Bg3qǴlsRx;)~#jeXo8K+.}|Ja-/>E26AB:0:-dE0YK7N˙pD绑GގH^z%(uܕF=>0{$KKsAbgoocZ+&Ld̙7>VTc ?fNcZE6W+MFD+DT4MQj8g쿠:ZȁWbqUKY}r"i9mP 'VlPhڡ+ YœN0^p&@#("or$7/Oe~7~FUM;9!Qٸf%@"PwwúEG=ZrD&c[zwBm?ؙNmdxMzPF:h/˦v*Df).F `?Ǘd?\^|sNTIʅg 6 #gC\l\t.r 7J}wmN$'B~).j7aҬ kV9y=sT/3ğ%ǫM,mCx t*Gz3x$ʩ뤭4^ČJ;x-Zw`h#~y\@..S Wj &BQ&So/储=NhtMG6 9g~n3R8*3Vt%SK{iɥF 5ʦ!O%E͍)_:݉8_K;tOWcQn3=l͔Gedau;3XY߶8nіCW}/"w⩭s0)e(>yiZ̷dS;PaQOM8],T0P+Q"ͻUC31} ԫ17e<-x)L=!PAwK cZs*jD 1E!Qz grG8·1աf1w+|:[_.,\7 (Ѷ7^O@hT:fL3Lߓ@dvm B5$6D?ƈ}8k`P24^m$̘俵6ҔsXĨs/f?%2fn5AX*# WP\'s1oI00=~iZ|"t]hvgÍdAADh{$'@N{ ^DkaWz!O($a/nk]~<^G]g+.v4wD=glBI0s+l+sR6hfC`NMC|혏Y=T6[t /ߕY C։b419~Q[IP3fWN(dނ?.f'’(( aC7 \ijoi %Z[4|h'mARVMѰgifmF=C]^za>r9TTŮ@)/s:*_W̮ׄZ#m0d*76R;CR1u(VA7Wg?^lcmkMm( Kw}wk ٷNYHD<4RhffڦJ]8xL𱹎=7r⿇ u&vU W{dk=%vؕ]BNBP+S`xjLŎ#AW J0maʜmx ʼhSV<063yj\N"=0gPWNF deQq\lZ2x6U6&ٞ!~$IiAݥ"*"w:QHx6Z^4 #s9.ƀěZ;صYeMghټkF2UEϫ1Wعy^BS0R, HQӺ~d1 /H\O;yAE`9>~gIts db!yR#Cg iƘEK />$RC3u?L[wضuaE^|!NUؓņrf`$/V) ~|0DIJn 6`Hſ$g㷷)¡Bfp%I% D5E$r)!И+g[ڶQ;#pW co)[%{V~췝;OO cX a=*d3k)') .>{0ԉNUӹOIEbl R7{.j9}Nch* 7slJ[hSD◞I)(!:Š{AJbtKynO#Xu(xrjCZyP(}砷fښiBUY9;G-0Xݢ)ZsvC,|9 z]5 _Nd+M+QCI\7߃RaC@IZ~RkGUvAPIfe<شǭՋ]O)J/&BIK^p(Б#@$!!Vζy,WK4}z c:qH$YU;nb | @QxR0VEbHXu*$}7tiT0˰yr'>b@]zp-HLNr-0L%R#-϶_fa8 8?hDlW} ( nv\fz{I|ʈqxSbo;7*DsMk/7IVՁD (j fxA]aq.#DYj<6'ٵ |_$M4Ũ[ࢉ吃E 2f_^=Ws?R=FykBSdO`}`ǀ&÷DfHr)Պv[(mRg<-(~@L%7c~XiW>n XYs;=8ʱ9ee1ayS&w"]赏/)}qZgVO?rP`XJeׯiw&\^q|3$$)/[f$t'pmP"I1^&yᦾXA>Z<\Pr]q3=F|'sH,`W|D̪@v +aTȮXf"E6Ldя֚9VLȼ#㏁]M/ l$bneU2tBc\!=(ӣ1]P\4T,ɤqPNۃ\ r}kYK^83d3B )6)KPRAD1]u@ 9t-`A,RM,N<'")l=F .?$W!Ѡ3O֥DJt\fdAj%F{W t%Gn͈c4)@ 3.CA;%wШ XMŖNCd/b R4!C/{7?o|od2$$hZ?E\l@M#ʧc Dfٞ TEx\c?"weieL Gv/p÷vOq12ݚ 1 |E>J왰n>< R.%xoWyh1Ob Tvh}Sߦc_(/8gu7f[\=%P␳zq}{/h6")>lgS|,}Fd?K.ft;ֲOW9J(z0 =fK eذ@~4pTtO/VWO[%PҀۦW?L%w7Kevy]ضn޿گ;9z5 0^s겕Xl*y!vg%n-3iHz}iv ,걵)Y<}>(weC3[6̣^Hgbj,蘌bHÒ'~u 8YK8c`.)zbYbe yV5V߽1=2ro&6KІpwA_hh['T(.}W(7+o.&i~os>@T{zYUq?2;.kY 1lϠ۝4IjHh 2831'쮡sPqUvD8"DPhIj5Rv ?YawxQpx#*6`=bm`PR, x^mUf&Kϑ3\!PgCK^|ؒg`0i kV)\i? kyIhͩQ%e@8eO7 L#[峍TdW}ā>+j ZK &B~mOVa@ ,EUʳGJxIx^bc Hf'"?d{},5/4#>zӐF罔Q?a7{K?M"Cx )He8ѮUf57AP>'D]!v"uht(K˛u\y NЫt*_Ӭ/'h|$$lE}TS('bJ-Huհ7IVv&.{ezw2)jaEŗ"2xr~%U:P2T)L7_e޺ip_]V ӑw]\VO6.5R@b)af V[3 0Lm$!Qs*9 "lvZ? v=aG^R0&ģ_LYuzؗt~wſ@:cֿ?A0td@Iqu\7q ny [ԡI-Z{H 1v(k.UM?Ë䨶%p.B6ഢp%gUNK>h5/t^J폕K"I'MQm[+?; endstream endobj 240 0 obj << /Length1 1709 /Length2 17144 /Length3 0 /Length 18261 /Filter /FlateDecode >> stream xڴstdߺ.vlb۶m;;cwNݱݱmwضsӿ}=U^?;ǪQTEQ (bdeb((:0*۸lL,,@S)YA6^xJ4ay S og +A hfa:Z8i?Bĝ]mAs327Z gjnfg0u1)2B-])===@LNVLӰqx:>@{?qwh'`ctt rᣕAzߜr? ** SGd rwx-wwu[CMCsXϿ/ @=/z{fNQTIVJR]QxNqdyOTB`|TBI| stt-m-,ݙYNV⿜?T, en?\fh3 oc z Ww 1}cT.h4)njZ89{,JN:3eQK^HO7S{wm_4JNaqZ؀̭eAuY;L8yl\m_B9\m,/!#DK 0uu5g''@`frt}AK'W`VG0;@o + ;DfY̠KYgmu#\6(\mY>(x7UߢĜ|9xVN+_?؄N://:ڦ7H.e:ґKZΚn'" 5~*pR3 H r,ҡ Ų[oIP6 P @b XIF{(]ckkb+1@sH ;UAYZ>gSj [ˈ kotf<-ͧbҰZi#jnf=4U}9K5քd6C %&{"bi9.-Qަ2J]։Ys,iIΧd[N~8_ճ+ ES~Ok*,~!DZ~KJfsqZ~tHҨXP#*߇?8Ba|Bd`b&{/K8D{iN'8й,xU puԹ *CPY5OZO`ʛySߍgϊCOx۬>vk64pyraL:(oHR؉%WS-u@w)TŢ QW_aBL/x*zNT0ٯ”z8[B9c|9̇eI VydQZL}϶2ٹ}Kכ}\w32$y5e(3M]%Vp6gb'})!Xs%8.%TunPRMeKRmV l["ދIl< n@MB ë#śmk!' I"(CNg:}yi=+9J-.@QXmN',*L^C]aa= aT3ⶥ"4!hB^0$DܺhIw5'wpQk0wDF_ʶBKǴrJy'^"4a\@2# g,^VacdqBoa_vcV±wۈZ6ux_f4An) {՛5Vo xt VFNdqy'tmE F@#Lق`-ψZ4Lu 2ytH-yđGg?ѧd}I0,\hh5Ja:ȨGcrbՈO+'7^GG9)$22dR cuG a[-Q6.IK>ӫ|s.3V_f".2k _g;Jw&,H~ 2vN|bnEXRcl"g{)_e⌬wCCu sP`kc#UiB0QA m.p2GUW$ԵN:R" z;gTӽ ʨɠ$P DfBEі"]}kr?_t +9wX $|P#՚zע5TdS Q$[nhV=gH+q'ƎŞ3%A}Lu+Q\`Vf 8OmDM\rS^Y"y\@H軒g?~2^ {X@~udyXyG[&8[vWdN`/E} '-3iP7Ra?J ۧO̔qHU`5ZcޤPä7;ο%ԯaćX|t֢m裩՝ȑ*$J ?]@`FM/`^cYF/$eMʉi'6 byx&qX.MɼwPߜJ)P)ܝ&]nr]9@]In]n/PP2lVWUWZX3F\3\bH5H{K@.Ϻ 3X#]rDO`-ζ{2ٮWN:)n'+xx2<)՘V^!vx5JF 1i߶H%_`x s%I\l]'"\}$pr/9zHD,r0!,ZƆ: b Ggf$Llp N ew3poL4q6c8UJM#I\~޾`;|Ɵ;®+*nvFGSbGq/v}n P-*X>Ɩxr݉uQ+x#ٰHo<{l]Mk4FQR!;u|R 1d㙁ωn<[\d%ܣr׻Aqk=w򦹫_`2d,H>K !bLH3Z6p+19lprp# &('U'bc=cwN3؀(  `f*iG>AϦ}l GA/ ZCBсιa\C^#wb Qi,t9W-/*DFm\R0XY sMd(OFE0il$DiMU4+Ygmo랞Jgq[`BQ0 RVbax D URǷ4oR]>CδQ&uJ&̘"zNlTd[1'X.6t;v O0*nS(?_  Db00s>QZHM;N 8rN&[}RTG0^AA"ݲK0q\0'F"FbѾ OO$(YZM)ُqAB+Igl^_ "UIvմsftd;hEgp(Fω?֝OzkJ Q9i3/BZ3@?CB\h9ϔx<ڸ58iEny5 3cǺo,vϖƤM/~_ի|QBxsW?XQ<6f:[S%@C~s[l(#x݇vG)T+% {>Ffs ]l`TVQӴH'nJKyMr%02ciZNG41hh1f|r{@Nr;8\(D=W, >C \cܶ"1NmnЁn=RˀCԢ5Y}p&UAPݰ/@zynR\HA 1B/s,D ݙ~K We8.eҌ 1T;i|CHiN b._`x܌mV9lGLشJ5 =IMKY8aW 3?Q+a4bA;DH6\>.BuZ9jG^]wauLȷV0̥[[s8nܸk2Jm օ#mHY;~.˸;yA^N&RVlrIsLhܷUJ׭!uEDfIڌ)[a,t' _nCvms&@(˗q NZiiH_t(];F @: x0Bu:`oP4@iAFU+D.}jvD󴾼KZڒ#U/xk>gkc,h&ZH{TrfȩZ l5Q|)FGP&Cu%]fMX1r8ڹqcy`⌎IЌzR 3z`U9BllU1%kh.L+XڤCt#$+5$ 5I /]R ,fa)uZrzW4?VSGg~M )*\ ǟ-xeZ-Db H&N?XH+^ɷaa|T9nS&w҆`t PqROt /'FPJF,P _CIDY5Xcz }n`n8@ye0,qES X;%n'0,y3J!@~6OwaⲫQcI*c;d? t4r?q:j 5f#r0^FXcP&͎ SO5DP`6`JugVg4cfܩϑ{M^XDbG\3nP؃fbx#mӻarЗs^It| ~}M&혆W-](\FO4ąxȦX~Abx-I:~4mMm=٘PoIk@/7imo^{91 [fH iQ='`++>'QjF{ X$da^>KXF~02;8 w!Mn|FMi8eV}^}8).Lad6˾\٢9gseȥzm!dngg}f/Rcvt}v?&YHmk |as%6eŃJ 2bR@D0p }[۔)]ogbؽ $g8\ܩݔNW5F47/H0]:D<l8;"ffܟtք)syu|+:-hh=G]dA2' FFV9ۗ>/h[u8X9a|5akB$q]x/P{M Xaq&PYp 1&~!έvkg-W/c2C7gJC*\"N$XTjNnɀqkxJ/@s x&݅ɘ)bAԲJ,Bk4zFFݸ$ ͣVYƂ'Z|}oI#&H 3;arIV7>usn%X5D"eb:_gFT&Y1kXF" =(' V:V 2umdbAJL5I~rIc1jK(8B³'fe@HLro|ݺD;ugS/5!yߔtsm TMY.nl9Y11-!N9_˟dH]X5B׮m7oV[!lw]PIC+l *";* af2Mbb7ZE7OOġ$$9Ϟ VPV*f5=:]XXp+GJK#TRQЖ_:! *©P .,Na A(KL,e|#n>!Όd)9Oɉ,M8kDnn7_DPNJ `+a4}i@&z'-G u7%8*\"DEH;;m֜$.LsksbpBb0M& 9#+u34 eONf<.i}7 ( WHz`8V!ikM[)NYR^(:s7KZӔjG7\rP IA<\ͬ ?kܸ33sYԯ`3f`o`/D' i%OJ@G,A/M:P"8lH^x.6~R'7a 9ùn頷`SK y(Gie)2M*&Z4Y&)ޯW]I79ɲ~ ${l(<oJ8E U|{L? {u\fv9Y.XJ = Ka^N>G69I QSߙe{  3:waݤ4لИv$ 9}`C"DTM)w׆k#| ى5l/suEvphm )}s4U-OM3Zw+?6Fw2-ljU݇4]L49]_D^n T}cp EFɛ;F=9m-TA4،g X,TZZBwC|f;MtPiI!KVSg*lQW-"݁zoZk=szT7J*mH-$ ɉC6s7{MpcvzL"nҹ8k '{.3$kcr!޹E,}?'kS"FH`K O6pevczZsT/ ,L`vsa ii{ĮU } 4vm/ KFXr@ >`:{Ũ!`o&T1/{ t@QJ6bEQPU9rLo{O&>jsB^>Xg *!oO)a8zZH0޽\(J?aVUFP?[MȭR +u .bm% K[Qh+ů/%qռ *Na/#>jA7M<f\5K=)*`re&SsyW#Mܯ l1"\3.XZ)(R?i6; w0&$! n-Oic[IƀVme@ IK>jܯ f}?Bϙ幌`8 gyLOъΎ5$(ΉًDmf2_+g@S`걵 82 g D6U%(8ީ C< 꾒BtP8>ǯDf3KF3=\ 4:VC}苸_t-'Ad+!]hzl`>]O5~d~͟K!"["˺mkP[AStӰyRe>fcMݡ&UvD8R: Ɨxmۖ.0-9Y6 Ã>QaeU>c6x,V5/`t7e7"S׈[oN}^Ih5-ϴ~|] %@e8ݢK L mmei#)4 W#1ۊsq2~IvD.l~չDR!ׯЂMhq&b#n𽷜ENDظQW M*`enSnS7xqg  ȨPGi0=0.GPŔq&\6Љ:aJ` j) 7uWMrBXg̈́( ÔfPJ *4k)9R*v=P@E참p kEU 0Ipa2JEBwInaiQv <'ѴowQNґհ=.. Vei[h=7lblo)!k  P*Ӻ7FaAg{VO!grd8DzF7{q 3RRkhDz' Ҋ |5ToZl#^?sKXz)ryؕmi^syE'l9z.Dmh@·J ݸ ^c"*'WWPu'J|gDWlk%HDx0)0_{M.,0mi~{&D=vTYj̶GsO!pT_۬a#Bq{Cw# dNT1VR6/o)O"$ o֤Ԥ)?v_~ Vͧ9#rbȟChI=hh6׾P-Kk*3d$Z\aM`N\LpV(T¤B`WR! Nl^j+37ȹܛɄʷ/l>Ⴑ5C(xxw7.kU\2cvfA# CM퀣a|-'i4/F.+5 dUb 9qEtx^4MmS9jhWσ/[ё3k_c[m>6@P6ϰlY(:$PXN2 ۨYWlt 2q>9gB(Y*54jn/"^9EѯJ-g=Ng EN{M~O犛-4o\*j_9^ -<,Jn:{7jߨjOtZd3xY[ 0|Vɶz% qӎH^7ofIUn0YpR8y?vIܺE񻾾q45f=QUa1x-ej֒'+O0 ovxR?2Dj -Y |wU$@:^u۩_U0zSv[/2j,]:f'X`#hBsD8֟ -6R%<Znv:W7 4o?/nh9 @}e Arp"X/{ ;eymoC>T΅Vl@1MF.堷TțAyRוK$`aYD8FNjMNXq O?곗9 kX` .,)txch5AgȲmOKJțjOPK5ȔP Y-w^ >qrDXҡE]_|&y鴛8^WnnڸbnvO'.B$*ܜ S*2q@W&l'}U2PfeL~- #ҦaYv.AmfģvdD/LH*kÅzL ~H00P w6sfAuFÖ!b(Q/|Xeg]rk7>Q), psQ9f88C UvP̭U3'|Z@KU. )ݚ5j c#%Pt@áC|b<vዳTokai%CNƍ[bD YIM5d+d :@`x~;]!Nة)=`Kڽ7~߰&TaBΰ׉6F 3kH+T3brXwak&8xYd/qhbK1k]faM׵vb}ɕk, iob j9l>;~uf\vnjo3Udw289HDKZOQ3HXZd7x8P 5gI䈆r鴔/dC"*Q7]6=O>3]jPiMjˮFFqX :!Q3Gg5GVv ;fLj;T񧌂qq 3yp^K Z yY;6">&F2J#"Dp{ĕVzEBcBn5 _qq.JFk]+Uҹ?6yϼV)OgH򤇠 3L|is8S"luoJ1w/ىjMӣ7ٵn*=xuw0rf?E 5?~g2_:j6vL!"ऊ1E 0ZE'I|>_Ҫ9] m蛳fF,PZ}k@Ub07i&` 7AN2"26FhSBW>" @W?陎2u9wI:)#\Ons=aw]lHQ1VZ~j-Q:C.&Rh물̆WT>ФgݒQU>E!:9":`Gd z:ܥOhU"f Ȭ3xYf+6_xҧҶ8B1Х|~l=ܮT&Sĺ"1 ߌ3 uqtX+;w=icȉ̍GR/oxۥf? m!$(Bp1<,C2>]C,-?գy(MhޚA? *<-@{K AMQmML|E%Mh(#ӌ'J#k!>.7"Ij!pmE֜?ИRBrw~I׮.5ܙځ *D51E-pӦW$i(+t1yU%%y!ED< e?{O7GWf͝sn nID.mU'tMIoaqAcơ& `'Gn+Iws*X]4A!M=@Ý&Z 8[=R^#lW, PՔ0 ~DQNiRw&iu{X.Z"UAP 4jsj;vwE@n+`v39x<3g7R&e3@2$P:"$4~<酏j,͗=Rnf dQ.Ue_>RFɌkmRBN͂{I;ٽ׆c3>ZhոOD1x zT 98<~$!U(S7^c&vо/ Um;'p[Ŭ7!G!vg, =mE -Xf}NFXƉ~qXiL dvV$顕ƅtǚ&5]=%Bbhݞ5[.-xR}?:;yfD׺ o5ġZf{͈X x'A"vMOa W'`FFy&<9)eW?j:e1.ْ˱$/75ԜI4 A~yZt>1M:fw%k@Dߤ(@`" T!@Rֽx8p׷LdLN;E=Cv śJp':[ą'īQj3,UQ r|qk4my+[hb2=sҵ ?g ӽ3gU|KI҃BlV_ECH=33_;Eo/J9z$MQF#=,tM4b{Q5snNes/Dl1H_؆='-֊2Gp.a- \4+8?z]aX )XE?? 4#`ۂ|`~|Ve"|G 8d\;+ތgF*zQ揻9m"ï=.&S17igPAe7WwNp@nǽc(u.AEsQ :A^[u@YxwIՕ,G&t5* xɆkz 3v 1"EP$}n[|3@ ;>.E,wJ ԋ'%i+HTW4b6Lgl&1:P,|17:Q-jг3ߐC Sf3WA}TZr*MFnGoG)=Ku`6C{d ɤcj^%y_&^3 /}=#d$\_ $cgk|Av"4觌Q4ñ2 6/g˔HBgZRP+ pmwiw׀"9/,C_%)XN |>^*ZurlD"֯΢Aip5jXo#9QzO  g3| ~\he%Sİ˾W>SRR Nv{>\s|)S69\Fkztuҝ5l6(}*5݋)me!+'(&PRك5 &' D}h=lSB+ 'Ơe;>ZŎ2$C}*_#OJzHh7,Kʆ'kۡF`^UnϮ!e7 mB@Gۈֶh۵!+;TzU*7<#8j>[]rHr,dH@Z()ޔ#@ ˼ͬ`'#4ڽf1-!(S*S;YWw͂‰eRV;6]V̈j`~E/GԠJ7E΅9wIk|{hﴼss6b9ךW߽EUڊJ n)s*XzN H`aٱuN#àG%lZ E3o+.8[?s{{^hy%%%]1TG[dȋͳ%^=DO6L]v%fTh"boX_>w#܉xKh-8U%F*".E7'NQVN|ގ{d\WH͢ D@dW)W(1ɻʶbV$?HAo`'C%tԋdNo}Rx lS͛vI DZ)zzvqg] =#S@@L|L?Z=Sx#sي+6,[y JF4;@GR\kvHǤz?^ɝ.\QZx L,i/?(yJ*2`9 [B+5f}xɽdC(UkD{2 cy_GJ!'YTZ 4XZqˉ{F ;K JsǯC{Rems'[cs=>Ydr]@48h,ZQ4Prۑi'X~^} _.?ewvG~3mԗ!9;$nV1죢T~ BiSo,y]k˃zg8W`k@EJ$wdC_ Gyא2 y4ZP!$CS\ց=dL̿ N'è>ߞ7[ ouGXP1ʠ_!2+;& gCϏ=~ɓMhn[`\mwէPy58@E- s&uUc޿Ru j`w4>gD܆Y82W?[*} Ϩ ur@o=D,hD~2ϐ8۝rʥ&kLJ\g (OBI*X8}26_6<鉋B}6(BbnWNOCfsÐzπM_Uy^IZUJmnd)q@Ե'$07(zI+޽5w0;ZBy} J@ObCa_B.@bRÐ}=xΪLՔ; endstream endobj 242 0 obj << /Length1 1608 /Length2 10726 /Length3 0 /Length 11547 /Filter /FlateDecode >> stream xڭueTݒ54]Bpiqw{!4sκSrv]46$$rqnV)G{ ɋFG'2!2P@Ȁ,\\NAAA4:  `cdff?#'];Bj@ `5 jybnp[T +`t% 0:,@ B,'vXC3:K{7_^Vrrq|pxi8B]-]NPkU ژC ~ ^3nw5 5C\P'Z doZ7 7W0_ X. ks=Oӎg'0doņZZ AckQ!VNnN\_;JAVhjגlw"H";q]rߡ^ qzc\sz0@cXJ'U j6+sׅA.`U˿`  g*߼ٵuT߿g,Wա:^NUGaHI9z|X9 #_9 0|m/`d!Dj: [*mmKy,f-Cm2ӡDc2=]aNt +;"'fuN0v.ӷ3o|L?ԋ9`~{}LSˤ|1=? 26MN= ^׃C{7;2ģ 'P%A\, ZBl-7lw`QQ'@ɭ[ +P1*yR]" .A0D[Gf~a/ȳpӢR=ŷ/^=Ԃ@&.G*3!} z!>)ᮬFzMQ/Q`y7'|$aWbnP!7f矕4gT7Xafo 9I oa}9#I;g{H84;˷,"7s1)k"F:y~H}J"h>U>V;@f=Υ@M6f"m{p ^$iR\<{7 βmxi`զkЋs^kH5_Ӳ c($B]1 d)?Dd`iXbQGׯ͕d0wCNdr5럧8mOkNP:+2+#DAf7Tt="@%Bx Ҭ_t\ߔ<,S5V'sҧ.jX(v'M%Wؕ Βwڱ(m|\~D0J) F3E2Ѿ%< #.$<GDs|isZ78r@}Db8=`˕mYO5/z#0vxz=ѥLWJXi!̖<i|T/3U[ Sh!(ȈfxoU(,Ϸ7eWjT}ʁus#̵%'?- {{ج@]\hVAHBْ}צEyGV]ݣ+n3:Q˓ΆmJJ|mG$c:xo AY6G/>;#{!< Ili::/>7SnY6 pfEg%ףqfvϷtue3n6iNwɬQV*szU/!,>!s ކ!$ ^TPF|?5x5sJҊ*:#Ku_K趙ݓC N]ΰj *W.;N8V{Eޗ^Z:PEgYxqnܷݍ?ɛv#C~'ڥci)aDLx.-i ӧvzIZ[Lh8RT =dcQTlCᗐ5= q/UIeoO2:|(WK:Tk[Y s8ʣbF [dug@{I$JRŽ`6rB{"M |~&^K r)Ro._0c,$'Fgx I>"*o;i)ML-|mCLk:pwet_Nj|'˘# a@q9`VL|$Q4E.|Lp|J7FqXи~'вF1-&U<*wW:tƪOf-W cY ɠϟ1e]ɶ9Z!gI%ks+)d+n'\*^]-]X}#zÈ+JEȺ{Ll!-O%uo4ң)D[7q.ah+EنZ{ҦS~PX@B48T.XUFQc+u%񧚡^ \$=덂,"Nj:06Vd>w|-*>޺Ƽ}=̱p0eAgtEZ|E)u0%4棡aOǦŒqsjE WfWu]"d]R;"22}5U8.k9\nKE0RIcVڲȁܒRZYT8x5 ߗ#+jFh["4aDEL07mb~ Gj}.*mhȮ{|V~hйdB-;QBA,&w\I?*ơCKsd*W4t[f˪̴3D¼ W욆?0Ak"PZSj/HY<AI;/JAkT-y=[<YRb.4\Oć#? +V;}*ޅ*ms>9hcLŨ4*AZbh+Sll>|H Kxnq˴G9p+tɌ"@l3ŏŭfU:ѥ7'ge 깼sc6t;UXd& x"N9e{+)4c"m;GO6 12Hښ+?jaSXAJ! )VY$Js7'BؗFe܌pҘIDjqƍfFW@a-ZQn ?epRO4,KUUsZ E˃~)eзG5A,wn7ΝG`#k&:  ;Q}jNO1˜de.ȵsdِ>aKe!-U]hr"l)W{C<|ND1>' 15{BO|Xظt(PKL ݼߎxb4# ȟğ:'8'W!9]9 7 z3E`:9q] b[D@!B6(5 -!% `o)kCQmr} z>U|3h JR|J 첲[S nӘ510yHE(bc$ =MZ2_q]cEՔ'4tO3GKz.P|n;rT: c4HBQq j`#M]l%=`9BLqw۵43upL|6&˞H}Xakf<n\ x'EFUc>0<9o+A\rFÐ)P+rϱlmk% .9 Gu;-W4;r68GFۦuVIVs`fskOz݉>< Q.wbmg3)40{v n,4y\8>nZJʡ֛cfVHi~ș0CY%Zl2\U:>Dl%Yq:OY:7rRqr%HPۅ=LC̆0ֺ.%ch`d+NʳIP* 7-̫%U'I-l.wDFEE5&l;lZHr35C8'k;ҸX_J%@rVGuNM6|15]\(=!ߴK]v:t[4xo$[X3Ʈ"Imw۵k "|Vw^ғК0NZx@`I~:Vf?i@ȷHwc^Ep0}B sN e4*܍6T= D m{fˮaL\-J ң`놷NRa*i"*EdElaw^lݞznkip(fTNg's|{+[t#+/uJRdHP)J OUY+JzRr=%T w$)wTWVV}َue-?. `V-u(WIsq9%+ (z=Y-sؘ[r[ j0#$#V-6<{^K`:a6J 'D(tOkQO0sW N|ro[SmD6Y. B8Y=o,Bi*n ܓhG'@$t$Ay;tDqRI9G֗B] ܐHd䇲ŚBDbcu7OD1vhwLelah 6ҩd^U# [b_jA!=ȖgsTb PH#>MD;窅ÓcT~0Tx1^nN%Pw:gѩ<}?!X_`ad?/^xؒݶҢȋĪsn92C21giMHu-q;#9RP8yRfDQT$Q<4I /OmuMMbCq R jKu`=97p8hnm6~1i{|tl bCm,-9>:u?O^`ZYL4ݦ. r8T/>4.<{㿓E=]k\!͍= L60a$zdt[^pX<Z|͡+5_CƐc!*gY4SqH( \OI/SUWf>{;ݸ[YKJߛ_v^傣R)N\-R+u"$'Ɛ) ϡt*2{N]2:%# f斚lp!J+}v1>8 5a[{0jkh-6q4lc:ۨ-#Rw)G7 2}cܬtcy2K6_7L!pt [, {4lhSIЯke3z$wT߽-_X1 ,oӵ1k0$̺SaV+wL{_oGخFdlD"0XrM=4byXlwr¸|\ȅi`A%jPgg{i'^~#fA7$FnOP~ؤjkW6us;xmQf*A54jwtCt'4[yV.ȢT،ҘVhBD}܂*UL'F{NI󗤷ЊimcS&E Zx%vO\C) ~:i$wH֘fv1M*)kq! {cEPO,~ K+պ})ɶȔ2J񁳇4BScʫ]aLCN ),IBӪvehKĐ2c"_LM7c"| n3 VI}@ȁ8؍>ߣUЭٴѯDOZÂk 1hJj/眥tOB(陖P|`k9OM^%^a4 b%LL]LvEk"eqr|92xY}/?kl`UZV'ַ3ܙ+`*"ïU{%_bp!ZҠ lele(pqDY(J+T/eZ}yyph"2<nL6A'K՝\:H0{)wpxH;j)gԪu^'9`wmTBpo6D= ) ,`e漇CvI13] Lq`E1]/Wc^6{qtm8Nle3e<_9wKH>Q$2ҲXE]Jm_'bų=:(%}~|ުR]I<:˚I<j3h{-wt u."e t>!xVPzo (U5 )V.1FV0'uKM`-B;!L|$9pU1(7YT8ZlD9%[듗`Z;(U7Y{o.TF ځ@;7RyN(1NjZ#vd<75cR0~B=\̻8]C9HġKDZhl/Y;yXj7.YI|)y=oA 2utQDk068z3,NgP-L3Fz:toL8=4/-*: #]56y_خWw<Ϳ+6τFڊ홱ЊD7H: |Y ڭ,H 5*_Bs}'dWMrk;%A$M'FJ2{jEZ~3{hRш.]e'G.aHObz8Fլ˩&E) Yc|=6\D@hB:]tIi 5o#q""@C/z/Z"g4ADҘEѦ[X l(/h2HzQ xm,}cq=^ivU_R춣!ʤiFCj@6d${AwCA6I>v1odKXH;j ETN^mչ@lP5):nEfm5h];m +BV[d)}XXa9 ,i:j .߷ׇT1 \D)ѿ ]`naoT7K}&T~3>1Y1}yTwY-FJtǨgTGGXX /M߮AZ#s+-A$̢_vaBSC"Rw{K/zMGQ9Fn_,VWPVGiaSRG*CnyiiqksŬiDãRȐ]?{~e?hy=Uy:ŠR&.(+Њ2' 0>@Q A1lh>-:=O ~;T#KAb ua^_A˦ƲOu\UqωwI||Mm X?ZB :qj[5β%J8)DO~N/#pyujVRP$^*1Ir1z-90W);%:z46IYӽaa ~xz| bf3 zN, 6.ːYiC :3HA511F>@3n&dwjD3S=@gZ<^AϬ)O&U`T>V'.w<:7)2O zW{  ,dȲsrݟBnmғYȌp6d1:FN8=_FhW+wa%%}\.+%SؚbikFIZ׈6>[1zMp&'z </iŌ&ЗUw,(Wwl d6})!k=2?ƌ/5AnWό|;4fr }Sܠ}H`]xgD,QP.MOǠ[Z%wT$`AZR5:{ԧ(A#4 QwvLX›\Zėy4^L >K: VӘ4z|>1$}(&~F-V:w`y{X%!ޞ—O ACs%=1275kuzUdV`}f"I)s oXBN-d7&cIJH6c,uS> stream xڭTy%ˤ#&=B߼ i;SX[#[a݄-;^]GZZmu{rC5 ?!i'i#T7 f;lBVP<6V8[\|nUzۿ 4)HNk@}' pJL;LM hH*t|84ӖFк9YhYkbCɂ10xh΃?ty#9z^o›˝ټIU ȡW8UD*L%-54hơiKy2m$~D=bx^ֶDrI&laҤ(~d^Ypt]kf"=e!t°j`֌mI0=Xd椽Q QiAi%FM~ɉt]fhmW^9mPR|~Uܚkzs?Q/E~QIu@x =R;p{K*@ݮ)  mtfʛ Rڋ-:%祝!e {mżdZ|DSpS:hݕ=w j֜Ys;^"B &z,wDUȣQnF#XVn]|ݾ@ Ņ=Qim1PWu</d ,µwI'?:ԦKsV )mI҈M|`5CN/c}](Fuef~ Ap,c}b9cql Hb[U<>X])zk[dODk81ɶwZ|ܠ^PVZj"ZA*„̛zMRp7^m-{$Ԛ3yO}7lE *^{VwnW|c8(?ކe7{qerTs=s2 u:j ҩ*c|۔>!ΩuP}ȪsB ibw-;m$6CO'REzL72fw2Fȼ:_+ܖ9̅_s,'W!J~?W8~oDP7;2"$ gc}5z,4͍O+w`8QPGf/sCbM 3lv yQU7dBl2}~Zn2 :Kkw:ShRr RɴLFSV(ixv4K8S'A^UW7-_Tt=]Lil%3T>90y_fWRϒv3eX'YM>:/pD!wc*}>k/^sloGR͸s@/6ZToꄰk9U\`oS 05ROA )s!Қ'(Upŗ[1X+oTfv3ks Kt|V#g=#ٔhi@DIUPaXܥyQ*}cCc6@r(~ߝOY-i;Q(#델w)C) e0=Ϝ\P1*X$Q=sCqy+Čn#|HSrmreg#awg/b:E鑉E(ǃЏBWRԳ )׭"7t :L^?8/Oe"i[5~;(;vlN7L*Gͤ J6 -wr, b/T N;\ظ*)ki4Lb:{tˤZ&n;E&3|mv}PV`XX>x$U)nI4+T|BATNiN?xzEl֜,$Аr})I_-~5ClTPw~5Ti*"ҹDݲ樂'zx̞=(Pcoqh4k%߲m\6Vk[?Y03Ss^݊*/61S\/aurJV{?(`:8O=> W8q9Fu8O?t[u){VǺ\C^J^-0b{<2GIO8B/7zǭ&5A󚐂oяc$ ƣ"K+@Lzx+lF(v ^=˺m*#IN:T&z s*y^%j0T=S#9VEI.|z,XFje e5adž6dFcaw45oЌUTq{)02RVY^Th;OM$SNy~#JTY켅p]&33wmv~JL~jCf]48alLab})5 a=@~IY݃ʎ^c&~X=)B8LgsیZ!-p-Պ_YI:]% Tf}6t_,]2u3yzU&斏($Ph>O> stream xuwe\6݂C:(1C7] 1C "-J(! C HHt(]" 9gg뿮p=㑵EXCp$$ԂX{zY5xt;PȊMt}GȻC0\ y;x5܁ $߭A Dua.? uw( tuuAmuOw8 G@N]#'OFbbb@k1@d[xAdP¡wEcgh C.tsavp(PE<?fs5Ϲ9p`p?[t3< |C@!?H >6|uIඁW4f{{XyAHwOhK l@k5~CkZ!a>@/x2P[p-+(O[USEC?{wN,"sʝ?u`[êp;P&⽠w.riX.*i!0(o@w{OZ9<Ɓw{5l_V.0g?r=&jC8ep_T`6NpǝpT lap{Vm<ݝvW !FH9ք\T{t |(H猹ʋթp*=}3 ]iH'$&ʋONNE[+%Nr@9vK!۫ &-?L b0rƣg*˯ ޚ Vq~LojMN0~ɡfLܰsNQJnu[PT2R""6Ъ 3|CķKH)IIH`! Y_[9HD2iO~JRx|_cHY:Quc7H 17eVO6e=?AEPӺ?h) 6ʈ'{6@BTM ؾ~u~b{Ɏ>JmD֧omj}j tTq' K%@[Bէ 0WYb5Ǖ + ţ$X[:9m-Cc&Em0H5y%Es}O\^>+IĜBIpǛ i.>rè\.N|6#C"= 9AtA(5O;Լo=?z̴McwiҌzs3W2=Y-rzhOgޣ(2c R1h"8=9YUw ?}ci(edJX d1/Kv7ړ-crBJ6@bx*}-…TK>]I[ ڴY ܨ 3}~:rS/@&C/,; dEd׼I}ܢ; c|OD@%Pm=3 ǂ-_]ğA!“n'e_WF$QlmhܳC+ A!T?m?Av>+,ļZHQ.e%rglO[^'&Pl$Ĥ]F^gIP{| 2( nHӬeb]-ӽ~kxc$i  { ;{ڀT`6Gg;6fQ1P=9d-Rp%Zp7oi;^f\o\[Д {{TW|_FS_]b=P;MnȈEkjaٕ/ ǡdCZ2[?YZᗫc Ez>F''O3Tg$Fh:T nSbp$ s2:|:Wd>О6_6s?ݘU)S>dBVO2AK=#ln߆ rF+KJKieytGnchWr~֩j4E:^ewꤵ!%]+uRS2\kxj4ý!.iQ_B-e /Ttz2؎_ban袨/)a7AxqmbT/NHAZvK&o:~ d+?"^k7}ҿDo+PI7c |ţxR &> 7?z~iV$Bj(ȩv鸡x7q6=N } +bf+e"~w3*_B~4e!h?_jɴ`IJ-d{e8QA ʶdf)yu>nڍUyŇRMՑ~F7%o͎|·۵P挍-_hnPi{PÎ!GWq}];Qez_Q1/(Ǵރ*\KVX f' XWRo9F)H}{=eI֛u\ +3dV{sH`R{ەA e^{O5Dl&rBgKҜn[-0ݤFL/69QZ@ \\{ESryjyKKՂfGT7|O"yJ8B~afD`V)+ oz3O ŀ .*!ZU?|i{l4N_VtvA!Ќ=|{M [!&+ce8KCbOe' F, WĠO{9T.Fb%EĪ0th-Hx~Pr:5lύjG ( Q8%˶ "]' Y\ф)Uϰ_ZqTWQa!mf:Bm":8G%McUSBJrŕ NqQDPy\q}Nj#E6!3LJ>_'aɚ^*_^}/4m>;لˏ)a'Kd`wgz|5-\iHc"u}Z׵/Y[Ӎ$zdn>'ŹBeE6Zr4~7Џ-Z ʰ&ylb.:Bte@I4cѧR咠x`G gmi@ڋ$6Ltç)pP }m=aŸώ<WL(-JHq6kBCyQ'@#;^95//jޤ9B-CQQ燋±չVD D~ L]HѧUԈKLTyLxIPbW;tdҲ+H_*D-چjAEBa𼞢EmTgQnF=1EsyNJs"Mu`ULDѲa>N pWC%@xƱ~yulK4ꋊmLBǍb_< V1֥w!c'E8txW>|NpJjGjJxZ/顄*e8=eUݣ`o4l+NXFi Ʉ<(1.9 f@I1s:J̒yalph0&kP_9\:z#59(X> IұfeM:e?3=b7v4>gjE_m%|fŞãa~יy vC=;z]ᄞ!3ᰤȳx3;oSEaRԤ~`i.omks.D;TlN^ut$ң6|&X~S,X7eE)ΕҨɳp.Zidw9>>i{eM6T뾯JE7Z3"/TA"86Ƀg/QFb  fؙb0fZ?|"ge|H[B4V{#I=%nm94^ FzB(/)t 'l OM;l^A/ U-އIԺtRsvRRP{lB ZSZí2:Vp@S84.ZIVqi6\~B< 5Z%-bU]˫x|2|eЎй -b#ʮZWTpIh`M&:m,kd ,zd [4%K60Ks^ 'qI<ݳmP239T*<̻BJO&Y~}!΍^TVaUT4 47],WKoM3/1ɼr_;Qzq[qHFժ35ȵ%`I.8 Hx%w3R^^zr/ES^>^Ί4*X j9~!`\gջ-*uypO<*`'CqiQ+,sYt\ tu!d]!Y5d烪jxbXsNba Od c'O㛴'9F$5[on3mм[A4gW=$ aTZxi_A2=g V֚bcFA5[E!˲J%;@P:Cw\֬1FpjKɩ˸+ Y|OK:Br^$ sǨI[ƻBm GCh)ޘ58v|vpwW ϮN+6daW|&`^nwb6>BSH!~,ekpE95PP/OlD\2NW")y] 3ܪMu7 Q>W噧GRm^a`=[_멽tl36+͉ȃDuSkAm+ uMݼS6'K |LAŬ\9̝%ZwțEʫ1}(^t>3ۧq4O*(I`eK๶qi3i:ZGn؟FC)rbHkE2Orb*~Gveh&B.wӄ$sX!i}Xzb,c,~t(4 l'[h[BnF/e= N8G_dh|~huV*S_WԐ G/C-C[6 g #Uic;0 9݄5n mי#8'\f–N&9Qo[! C|ZzsK [/ s+A'gt4CEZV[P7dTk󗪾D;ySuw<9uS*RaLϐԿ f&5apհ獔,Nƺw"ө#?pZghˌ,sUg,;UGe8+vޑ0ԧk5rd/&瞔.wڲHrJm<|3v')]ꍋxLԧqY#jK/s"jVYɰ/\ ѳt/!DkH. e։9iٹfo͜؋BQ,!ShI&En Щ$omob<"~t+XB,ck+QHZ &'W?^o&(K2EkTw~U&! G.zϔbٜ 2T?^OΥ  ݒ6>Q+~^9cysSŗqPqH'/mu{CkKO[D *@]aVjx>4*xm0RIGwT陿cgyOBN(JJ:f:+}M؉n? q}6ֺ3lRzER+nXЯ?Y1c Ar:C/3Z[Ê7dvs#V?B 6NZ3 n5N > stream x\sȶB[SԭJHX&`xƱ`_Ғ[e␹^)p;[I2I3c3U<|;}愆vyd!mB+{Jp6)p Ba&(4E*ࣄ2/Sbϔ)ڢP * !.- QzP 6PD@D+ Ӏ*9 0 dۑR EZ,$by.@b%AIW> UQ%J tWA" @mǮW0S:jR;&q{?rn e,;u~<,1hF=6uX77EVsn /ʝ|8.'9j(ɏt9;+䙨< ߳(hB}ɟ̦k"֘ 'ᬜeVه;˯=.4d2?D@;ʿE6Ot}8MgAa3yA}P^'=VnAߜ` ۭy2}3³_>.rp6^+ z`C@(jFhc!>И&.05{Ў}~X/؎\50g57O}~)GuPT[ ҒBXL!`,X-MepeR;q-# d*.ɉD=R z, & ICB|ة>,`.Rb>SAe%D ,dJ", ĩd)w[X,q*15Z&9NK|*yZZ)Ѡ0T,". iWZVRpt+n \:S<yjt t ]1\\j=4iCqFF$I"9,́COؒ=A& ]VU=}$h kQ+Րw} ,hV2 3erӊ:u ԦPP\G%5  kEyID%xxZ`lFzpeSnF'l oAzQ)2=`qN-PL4'}*dkJwdD- E͌= W2B[U{@QuSƆzȻZ yta.<;Rt\3ZN5y]*a# dRaP@aqi8\b iIuwӏJgM'M.:RmrΪ:~f@m46KV =aųzh&3&YV#H|GL+VV| &b}kު%鼺f s+=}Ve2q5Fkh嚷v*-FX<0Ċ8e/PrU$8 cxA!t%k * ڵ:᠝=dA'.̓ |Xl ؃%%biwkxI.WR1l괭5fJڮG5#e쇇gv@+m3 VV 8Hlw tg?KQ-O{)i=6Ƈ" "}e4FJ!H),i(wR~<*E.-, $gD!h@ p])In)"GS iV6,}R ]jZ tşccl4RD"cB[ ߍQxAEӨ/I*/b[#\j>YTthMmL_Y8ѷ?/E-K&r~6]/3 ΋H7ËyfbV}Eza\8?߀A:Fם{%̊V?ϯ<{Y,+GGw³<_7bf޽{yX_ +A5Q0LXό27Rܕ2^naTIGQ _M6 ~ye98IӯDոx9]ΦMyLs(s%-!n$/./[TeZ  9|~1P*}nrDk?O3fZZN{6]#<7 }~e]Is;eDLqy\^&y<ӣ_d8M'{yYgNP!aELX=+Ksr)?318Y>`mry&ӫd=[/ܪ"4{~0a~+ȑN7 |89χh1P]@ 굓3m$F|:g Ԁgkt_̆pq_u} 44|)$&˫O@bRō-3WS_/<4&WFgeI&̗sXl:+7XVͻBHqXpz4xSio5+hxDKc6+/A!^*qTzˮOQ;"{8.OyAaȴ$!h-L-'Ѷ.r8C'!f$E2Xgc%$mM"~3kyeήIeqN&Y!S_'~t'eo`R7%CB"oۆLyN2+,2]:0 <= EdZoMۉ|[Cn)y6BPKΣ? [BBvtӛM˷zt ߿xm\[蛿 zm&5Á ~"RJh:͏A5+koZZf-e>CϚr-펿U| ~ܰ[zb*Ms_6֐a(,"2ø8(쮲#f&_04FF{/j44FF#IY|zP%SC԰51}5!ְͮjʰv$LR*JN_'BoRTkZRlX+EAAa&Du'E-OB{<b8[~9XWy/d1^+Vɵk=It9N~G#~{b^/"]-F}lMN.t<ة> endobj 254 0 obj << /Type /ObjStm /N 6 /First 46 /Length 301 /Filter /FlateDecode >> stream x}Ko0{,KQ=U9Ċ@9w 82$i,3-P"pHjPZ@#bh[kD # h!Z KcٰrT[WՌ' "c")_Ljas6nj y '+v&IӑsrG~1@>TfӤUpů-y? cCg;/yTwgXvrILcDHc endstream endobj 261 0 obj << /Type /XRef /Index [0 262] /Size 262 /W [1 3 1] /Root 259 0 R /Info 260 0 R /ID [<381FE713113A5297B6B24264E0611F82> <381FE713113A5297B6B24264E0611F82>] /Length 681 /Filter /FlateDecode >> stream x9OTQwΝDe}A -,L4TƄ P+PLLN+ {m(4_Pm W>< ᙴgڟj|YͳB$,<,ҩ-< LS0IlP'-&$;0c`́)DRs=Ƅ0Pfq Bd%gҼj@ڃ58SQ8 (K/Z-.!k0 [<tvvX^i9Yev ݖXfײӍ>˾~'{Zjd~$&L@EY>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} \title{\thetitle} \author{Richard Bourgon} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering_plots.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options( width = 80 ) @ % Make title \maketitle \tableofcontents \vspace{.25in} %%%%%%%% Main text \section{Introduction} This vignette illustrates use of some functions in the \emph{genefilter} package that provide useful diagnostics for independent filtering~\cite{BourgonIndependentFiltering}: \begin{itemize} \item \texttt{kappa\_p} and \texttt{kappa\_t} \item \texttt{filtered\_p} and \texttt{filtered\_R} \item \texttt{filter\_volcano} \item \texttt{rejection\_plot} \end{itemize} \section{Data preparation} Load the ALL data set and the \emph{genefilter} package: <>= library("genefilter") library("ALL") data("ALL") @ Reduce to just two conditions, then take a small subset of arrays from these, with 3 arrays per condition: <>= bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] @ We now use functions from \emph{genefilter} to compute overall standard devation filter statistics as well as standard two-sample $t$ and releated statistics. <>= S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic @ \section{Filtering volcano plot} Filtering on overall standard deviation and then using a standard $t$-statistic induces a lower bound of fold change, albeit one which varies somewhat with the significance of the $t$-statistic. The \texttt{filter\_volcano} function allows you to visualize this effect. <>= S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) @ The output is shown in the left panel of Fig.~\ref{fig:volcano}. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/filter_volcano-1} \includegraphics[width=0.49\textwidth]{figure/kappa-1} \caption{Left panel: plot produced by the \texttt{filter\_volcano} function. Right panel: graph of the \texttt{kappa\_t} function.} \label{fig:volcano} \end{center} \end{figure} The \texttt{kappa\_p} and \texttt{kappa\_t} functions, used to make the volcano plot, compute the fold change bound multiplier as a function of either a $t$-test $p$-value or the $t$-statistic itself. The actual induced bound on the fold change is $\kappa$ times the filter's cutoff on the overall standard deviation. Note that fold change bounds for values of $|T|$ which are close to 0 are not of practical interest because we will not reject the null hypothesis with test statistics in this range. <>= t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") @ The plot is shown in the right panel of Fig.~\ref{fig:volcano}. \section{Rejection count plots} \subsection{Across $p$-value cutoffs} The \texttt{filtered\_p} function permits easy simultaneous calculation of unadjusted or adjusted $p$-values over a range of filtering thresholds ($\theta$). Here, we return to the full ``BCR/ABL'' versus ``NEG'' data set, and compute adjusted $p$-values using the method of Benjamini and Hochberg, for a range of different filter stringencies. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/rejection_plot-1} \includegraphics[width=0.49\textwidth]{figure/filtered_R_plot-1} \caption{Left panel: plot produced by the \texttt{rejection\_plot} function. Right panel: graph of \texttt{theta}.} \label{fig:rej} \end{center} \end{figure} <>= table(ALL_bcrneg$mol.biol) @ <>= S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") @ <>= head(p_bh) @ The \texttt{rejection\_plot} function takes sets of $p$-values corresponding to different filtering choices --- in the columns of a matrix or in a list --- and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. <>= rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") @ The plot is shown in the left panel of Fig.~\ref{fig:rej}. \subsection{Across filtering fractions} If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires a $p$-value cutoff. <>= theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") @ <>= head(R_BH) @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) @ The plot is shown in the right panel of Fig.~\ref{fig:rej}. %%%%%%%% Session info \section*{Session information} <>= si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \begin{thebibliography}{10} \bibitem{BourgonIndependentFiltering} Richard Bourgon, Robert Gentleman and Wolfgang Huber. \newblock Independent filtering increases power for detecting differentially expressed genes. \end{thebibliography} \end{document} genefilter/inst/doc/independent_filtering_plots.pdf0000644000175400017540000151210113556146241023732 0ustar00biocbuildbiocbuild%PDF-1.5 % 42 0 obj << /Length 1631 /Filter /FlateDecode >> stream x[Yo6~  #oN uf:J6V:Ϳ^v+9NS!9g> 92AWߎHbbe`IjEF5@:=t˳篸F`Dgs$ 6!e)e<9&$YU.&S!y\TmF~1*˓e/sS|A[y]W˳7 l &8ɲP|3~$|ֺu<-+s'X^"],;<ɳɔQnj7?AjUaWUFmhCm 0B 1\W#*09s %CSh wӤQҞ [)tЃsLy/Μq.V,?:iP &YyO@$m&4iÀ:.6o(vD5fT 'ZLDyv{a6p-e[Wjm7*eqWiFH"B';?Ŭi{&4?~Ib$B\{"F#IbMl q{@WOVw;H,-Dp}g;H0=! q 4#YrW n4#pđxo8,DS7(ÊqxXsxA񬮚&\$m*]d/È$&n0`St#j>z|zD8Bnd ܝ >RqeH| 2ha0c̏āZ=KlA}YRqKe=;ȥѮti>_ ֠O~G$Ժ=s-R|cAb]እJ$Um~ŪiTœU)mrLRWEINV b-|v ,rUY5m1b+tC줫>!j,{N /W-BBL ,((B@0I[v d P[?vҾSj01 {e~9^͝o?H< !0$zq7 I!].S1FGgw 3W])YWZ2 9fF>.np`;0\MLi#?piQ `ٰ!( k*{ N) x}-b]=X7+!eC2p.2. ^ݠ}vU 90m3f4wX'+Œ) ӲSz`$+7dPh(fO7yEJԝ>]4/DY|02yw;sz񕏻zp41FyA9~tRY8ɻ p|rWu5y<?b&Mg̹oqs>.  ;VYVa endstream endobj 62 0 obj << /Length 2571 /Filter /FlateDecode >> stream xko8{~Pd fŷXܗݶEC;(l+K^KN.odKqIQ E FIc5Y@WW\Tp9 dDZ0".'>\r+ JA&4RaSu`I͈ *'yWe} Z<+8Jܣ^$E`:k\s5mG}nt5agufQ&o5:o1H[8|3a[;ng3 ꀔĆ P ,XeϞQ|ۿ o$l1bÉR *@1~-XA:L *[g_kG2 ֡;86dz|vl:O!&=۾|{ I8*>?ǕVDj7؋~#݌*x7N )r*q>ql :W6Wf`?؟ P$>L^B]gis k7hԨHIԀ/MR$uM:^\))}h#a-8zM#3>df̠q0AV5βW^H2N[d,n xűy^: "&\}\ΏKFL1|WbYdRE >ry5ap8Lc&4̑{{,TD*u.S{ڧj>pZG\>-:>j_.Σ2ht^ "M ˢj¹3҉`wO} p7v䢋~bܳ}k`9-m6U܅mDFyÀWno"3=d!>,Ӓr"z?`Q{ >/uCYTi@jXW+{EZcW9 ߒΓrN&L B7~|of׎_-0'kpWq(p|Vb K\p]q˿⚾5n=~\7;D,B,^گ~޽+cP vyA`1mG-w$ƃqќ7gZYp 5,W0' pMS2]dH+Ǹ=y`YO+[,8 cQ.΃ I#&vPEaYi/-amOv^op pgV-.xj}gnH'l&5QSpP#cO<#/;Ab߹|1O!ByJ.r&E,٫d_KV7)63\!0G:bo)3rX8='ed x??Ld#Y0Xr endstream endobj 57 0 obj << /Type /XObject /Subtype /Image /Width 1816 /Height 943 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 63399 /Filter /FlateDecode >> stream xw`ƟA+"^{bk tDAt6$PRI$!ҳml,sBExqt/! 3!Ћx ,̄B/(Vi"!Ћ"H!"hg]~a^BH/ҋ8_]r !^6=B!Ћ齸Ni캘W !^w/>+%22 EB/ҋ}o?֓1QP0^ Ň/2 g)Ћ(̀Q?ЋŋoJ*zхn"~AWV,.y="zQ^LbL0 ]4@El?~?/ K ^(yq03 buYҋup i֯JЋ.t ؠ߰p/4;!7>6]N/΋7ݷ&e2 Z`peX3~&/jh^3(u@FAt< z~/}L_^uڋLAx[{3z^'Vzѭҋ^l'}8H/V_g(Ћn!@/z^Hk| (t Ez&@{T A ([ MlG/'m..\ЋQEۤ;Esr,wB/F?_Qzy"`8hl/֖/*ERAC|LEylwNbvu^KIIɧ64q͐h0/eZd  H1 v[!Xâfo^|O5qo"x^c}v%h$ؑ9 JA@^&窼X5>5&3+k8^Dr%M| h:2#XEK\eQ3Z)/j-"duS&^h͋LNExn->}NӧO ?6©,rT&^;eB=\jik EnzH^`lfgc7ջȗ:&9ˮKz t+ ڋЋb-޼8`o^LMSZ4VZW /R{*"YH/A a|o^te7/4O֯:PZm8Us%%gh/kx<^90DqqmE:U}a8/2 bS3BECxSBh8Sz_kHIi toҋTW/gh/ { L&#@b-6224FЋlG/޸A(z^̍A (z^MALgh4/Vܺ.!^$!ffdv2 ^420ΰGż|zD܊4`@E#yX[ŰB/>AIf1 ^4+UO/9ǜrӛ9ʤ!_־U/@һu8bsedB/Nj鱮lՋP|;/-YsqNZ*HK"&~!yH/q ah/nubb?Xz>d;2-׹yNy^ z1jW32I{xI<[U6U#N[m6ŋsҋ]  B/Ƌ=yZ߽x-)0mDqZ3Y:%{6Օ^V z/FЋ0ËqAzQ΢+U/ T;z1Zy32Ţ!.}4bc'Eքw *Ũ6=+B/NjŽ./KxNc>K>QЋQˣ ȬV2 ^4*--bŲM6ζՒlsq X(zH^$Gmy*AiZ!%wX^'g32kB/ʋt#;}[^%TcK+\G-HKK˧'q& Bїz^/^O*>8J8ԧK>h8"1YQzJ/FϠ (zѴ^6*],%j`(<ؤЋufoU/Y8“z1*y12B/FSS7k5{3gtA E"Nad;+B/֋>U=#M Q "Y\N$)ӋQ8AY1 ^(k} ҋ:tfd~B/ҋ\"t\^N^C'Af~H^B/Fk %pN < Q ".-ې$uț8A0 ^adwcuh 3 ^`#Wмά E.edf;B/ҋCS@mz~v2 ^E3ad~v1 ^E3=Ez| 4 Q "H/OЌA d1 ^E322lFЋ"hfb Lmxß xEz^$?`e$&ySoɓG/ҋ" ZFAb^}`DS9EZы@ 18hQE_-?uko>1^$ 2 bC5EcX>:":_ҋĕ/RFAbPb~B'<}iXxˆ-o(49H$F#Ṋы&;[8/-tVsmOy)))hN/!FAbPfN<{9X*LBBL9]~E2ho0X{\(r=zє^l2}CNjVʂ (H|z$g^48߾. gm3f+Kы&d:3 n36z?ҲV f*š^LQRu-eZыc&GQlq.v?^_z^LC;U&xTDWz|R_[hdp6b꫃l|7yxqR[ILL,W^ыc49`jC6?7^ 'uH{5¶@II׫xRfE2ߟzeಣF9Aװҋ E'4cg<']P73HMB x1$/D B/ɋcTZR{q=Ex`PzHzQvX/ NqxMh NQnA"NEF{ --- Ћ:d wY ` ѼOמR/_WOp8y~|7I/F'CQ0,C {?,^d%^q*c9?ʋC{x?s\(` w1^ESsQw3^ESSc$.}FJ=z^I((0 AC:˃yEz^$As(HG 睙~3H/ҋ" RKFA%Ћ"17oLɋf,`;KEbnGgmqb1AEzRszeAޢjsbAEzДA d3 ^X'ˋ_'7fЋbę"BdS'6Ћ"19yDFɕA "HL[F%A "HLN15< z^$&QpreH/S etÓ Ebrә]Ћ"!M$eH/'5Ћ"1;I; z^$f^g‡ EbvNK TG{SBEB"ixApy<œBEBnxApCbQI<-^$91JusY,=Ћ42=T 0F{rεvS| ʣ,UieH/9x3CWp oOIQf|\@/+Av[Ĩ^tarNon鷽 Ӫ=ۣ~ ZLAu<Ћ۵8D!Tۄա ^crՋsEu<>촤UnfЋv92s{KoHn{}q:?m♁&Ԡ~yg36V}s>R`H/ w{:p^H`wgyJfgKun^$y dC?pؼ?^l<6o*C}qbcEzWщA1H4[oZ_r`@/G@P֗kf=zwіA+f#_t{cO#zVb?#zf۹5C|SYb_"/?9 |&&=JZlr`D/[uwo|-ڽ Hb7l7 bD/g10 "!2(ke4$z^$y^\x6|?~M9 AxIЋyybAhLE_6*#qp!@Ez!o}e[C;p% EBtrvPI!Gp#n̊2diZղdӋ"!ޒ,NCRJ1Ͽnʐl9{N#XEz@(k3-;C q_A}P(Fz^$$ʌ֝/{/rO3dzϱ ֦pӋ"!PJE#/MO$x>Bt{'=~Q%gEBT`N]u^l(&YT{<BlY5 7H/g cpE8o --ˀ:~ZHMTu~my[YEz@(bف1GU^l8 @A享/?&,@Ƭ`٦EB*v@fZF +T^޽YV: x~ /|c_~˞BmE?:#_ :Gu xo3H`3 kWF/NR̥I0Qz:50<1;tʺYx+Z"񻒣$|$_9=Q0k[;&?E;a߫q"Hwm|u~p]B/ 2_SptYLqBۋ-yhI/A ,TK !@%`khb r{ы$jbiuvr2ŀfAod:FRhH!p|RI԰Gv `ڗz[v&ʀvAnaŶp˧zqD^ >,H*Zы$z9&_`?6x0i <S?d6/ nvugR6GG`B/r I9Nt{Eʥ?۲'pvPo`ߕ˨N$"m:>yle[\n`Ht-သ˝\oz2⢠$0HchX:SE!}sG&byBwr/`n5 ?Mf3ڷᚠ?YxFS>y]k8SCteHr3ʈ]ۂZ!)|T'EcLA|+0Bd Z2-r#눋po0ORϘ4Lh,QnK;/>׹v j}e| M_mϣiţ ވ[k -3Qj ubPU?qw{mWdbz^%/*w[Xz#Hn/#i)v妏V[W)c?,yZ{z^!7-XzʙjFkTk|=P>;0ҋ9IF[b3NvŒ)@ÃX%4ηS},oOE}x~«k.gqz:V ߍ-obmj/6NXhx ]}Gv>aDfb0-U"0swDb6sݤ^ u'3N.ً(|ɘ f%b3"Aк^u4@/X~ڇJN(&˂@}큓^(S9I,96~Ѡϸ쩕,RoC>j/Υ Z*|>,YHc27[Zb"c?HRuPȒ@/֋^$zfoNݟUEy8ԧ|R,Pư^$DoL2|YΑ&am;oϒCw&=ױ J/gEB\ۜkңWv:F[?2&.g)4*^E/8iÞ|xPou KJ2^MuF-8_8( w«O}vݾx`3sGɡI(Йnw4,;4a{~l/Ugndբ#u&Cz`'X/BfMqXE > ȷ!-tpu=?F6~?t~^xF\/:˶<{$V7@K`Rhzƅ^$!`O3 gò;,qnל<{GRg+WBuC-Z$T=zɠb~;7ժxzD34Ov墡oLHҜu=NW5x‘arFCJVmz^1`r]~{-j1;ͺզnL tƨ܀" )ו~TNJhp W郊ޮ4<1! ZBAv"3圜2x໊6L<VЋ$y6/n! "5 [zn;1u%'j|sy胏srj7bf+JtHU ?W!:Jc]ŸG' l`]'Ћ$e5Wn-4㮃]I4&V-\_ F' 7ʋm~P}x.ZЋ$}#rl1-N]11KZ;)iwИ\J8P F'X?v27[UygLJ3p"HmUjEc5xq3t-a\cH=n ɽ72'ʨӳ0-KXA/sEfOً Ni;I[3jǯ6ʑTm/gG9*/m+)8xqzMJZ_ch4 Wlp $ks;_/HcevTsyq[tռ.9]2G/3i[f~jl$}d2Vȇ/ P7)ޑ0nP)K^Eq,t_iVp D3gVX@I^,?g1~ˣ}z8S^qH?|#,FTPw.f.b)${Qz8ڳؽ~^$f&0WTZRQ|$ m>&P6f!j/ ,vL[z=ޢYHtx#U* gqFr+/)|ޞo,QEA(]uSt}"5%uE{sKo܏ #𭹪_'#R΋/d^4"5PLu#&ZG[{؎LJtdUTǯEBt>~SwxõFwŋon@Y7khS-/fw%8"5psGl:r$_,kt`c)jΕwk_+_XTzՋ=^Y5F8z84@]ڢn⭬M|L5Pq[{[^Z'dҋj/M:zpk!|dg{=ߛt'\6NWvQ8sjЋ*/Nq&EB{(S=,LYgղBR [XBҼ׬ڋ[?8rL˼Q;4]J/WΨ<.kB%T6/ߛx҆8;oMG'FUȏRU5 {_ YEgЋDF+%X,ޒ9?o)OUǾho{~4A.>XSKy~KV&FMTyL8Q.3ۦL Gpnjqg ի+;;㼏r;gݪ;N⢏[U(frvٷ@kɑioָf-~4UNGTy![GEB$n#8^uT)Y|΅4s8\\r;m{:>Xoy~'7sk%Tx#7Yw#2k4UUeA=v^Ȣy,9_>HgpT^<X6/?;ҋ$z9z|#9ß,sdcyʂSU_GIʭ=.Od ,SLkɹ|]W/6g@>F~/<6)H [?o~TeA1vy6o3OtZ\^~g*:k<؅epF~/b\\|K/cm[~;KTZ2 |_ho>_6oK$E,dJmnDŽ \vo+on,wG9pSKq+m]{W/ (3Ћ~jU9j7.ss}K]BV)AvńV)"Z(2(b/LcyFμѱƎḵ"J㏉!mPH<\E:S2Qŧex}FB;A9c>ٷsU_p /LyhЋNQF"WD}mS()b;e(ywg P{ƓJk ;-B^XJ) H/F%XEi{[|"\huj42`\7!.s}Y_N"wBIzD_y]ҋ";hrubZS9֬Dt`9e'KP#5YYWa&:'. ʆ >V=\SF.}{oЉCPIt;.▛EI/ҋ4z#IOL{&{ PS}s[pԨ3K/|㻝luWH/ X1QizZO2CM/Zy ݵgR.Xtr&(43[[уM*a /.mzHf{LL PY NQӱ+VYs= h}!4izTܚ܋>z4{LܦhO;/Z.QV͍8GцW ֞QqyڑbӋ"! f@ :}^or68ߞgSly*U''O/ҋ4 q4J~KJu ;kx6xy XoO, Ӌ^}LHOVket8 {n=LmAƎ=yi~b#R|Cyˀa;k>{XE*H~n[NRV[Q.gVKwL9@_6؞coؓc[#r[fL`Naݦ=H/R?W*^oF9>_V'*JLٳ_#-"#ikD`EB,ŋ/nqIy,6h0i4`Sq :z9z^$ĕ_jyX+EQ ٤h#OO,mD{S* 8l3}r_M(~H/Bf+fy߯-rCL-ji$vq5ha,j/ K^ qq ^52"{P{ɚ^kÔ $Ы0{wAmHi:Ѫ+/@/ҋz[=)IsFk=͓'*hXR(/ nCvǥ:ϳdxi-z^$ĝ],7q_⽝dҴȍ/UzTi;Ce͒ ?^5P˿ٽ3%@G@/}S!/+ 2dR-UbaBJ/T>-%ّמu!&*ZBnϟ ,fb4 .[^$QJEJ[Ͷ7L*l*)/D:JEmI^r 0а'rVZ|F%^ s7ET>,/D^\oGu;B5&n0հ9l_c,bpwU^$R~Q3˝.'sZ]VžX|zz1(o"61y 7xCLft{kh 1<{Zg挈塩n-hыv SOЋ$xM_~(O4\;/$j< Ԧ/bm|YW]=gƒHkj ~ (|!~^DyD/h}ĉ@9YįUc<y-{Q^15Eb/.(GCE;0@R]*ݮGz3xЋ'Wvxr䇚 :?Sd?UI2TH+ n t|釡46]~s;|cѐiet+{mG ô̧bs@mqLmًSC%"i&^L2d5quYNMH8=r+T~u Floؽxܰ0Lc %}p?)Qx$@ozfMlm:i ~žʴ 23T9yx| BŮC9^9C>{GVN$6v3?{1wqȿW鯳mfl=&u{&lO:Ш^ s\MEUT>-jQsxeCS%<0(8IڽO#XenB.lif+[+e71ml:ItuC Jpӵ뚽lRحd̾čc<,d:&TIe Zg!(׋U> UF/h6\m} fHkN+KDyr6,[?oʂ-J^W쑱lA'+gPP0qa]8GymЋGoR]l!^$QSԔV`ꋪ%-ł XgZP']>~ѕ?,C3&;PT#MDiB$qFA/ o^N}4e۟ǾHɿ+^A`=gUu;ly~\b -;ǽrxzYyX$.HOr[m= Muv/VhS_%gdl9^6˗CR=z}G~1eԌE}n3,a{2h.G `ЏdŋU7${F&4S ;ј7Tb |/;nR8yXӖ<{,eeŎX-mtļ(E:9HtCϿjlUqfLQĞZ۸R@*:^~ݧ1SQ81_*3;Y5e-.53Yk(.xO5aE g};|O;T^+-bb[o{1.l1Tg6+ܝu1{=*%bnda=ՃXIoL^Ժ ~^$&c/պd&&߿ܽh c,*]X+Lg"WU7sb#BK Qǹm`2k ˷6:QXw̟ݜ;=[Z[n礪\-EV,1/M4%ËIJ{Ըm>8X=}8\X%;φ9yy l*e!.¦)3o~4gXx(,Yft3HGttruKۉc?Azx@lv$$xz1v4A]UaLU|X=^QNd3eTyT l) P\Ǘ|ˀml "1r5jQK}IR6I6vTUMhU~U|`ʭ祡Dִ!Ǭu#~],@({) n2lQ:ЋLqx0Q;Wp,-ذu8Ol鿗kk1UT}+&ȯ4%Lu=G_"kqOf]?v]{[vߪC({^2?{򢼚zzOeFьtחWJ0aUQ{Vn`-ص-qg~^rzV}6V]l-!v.LZb76];45K#V~FG=LJEzD9J=rMRԑzTO<fX"fCFِ\/E9ctgg/;(6Yڋlco]RMڒ"U>𧔪5\įؒm5yyXjx=,F(U&pivRc_ygrT^zXe3zj|ewUm02ag~ha_0,y 3;ˈɺVDs& 8)9_5-dO>rm9@~o3K/󰱾'NŪūkۛ d=s2սQ/_R7/5٬T$[29o :8u)ZGo Ƅ෾.a!Ԣ+Գ@yV[ijesg,|-uMV+y_t5)mO;W"kS4pahËbel[ߦlw^q֑Ez-!1f}wk;b}]C=Uc!)sٿ9k#\BX[ܤljVlgHk+sF~Ll( ruJyƽU1I3nӋT\ͯ&+Zi ;tj~Oܣyxpn9Hd$>.Tyhڡ\1?C;O͔[T!3dߍ} '+ Eehԉ*P UrtMqc*U9fG #Hn~QYhk5Ɛ)o Z<_y ŪiR3Kk5 (l?nFqbP|_XI+ rˑx+7N!yHD]"!^qˏZu_:רT|鹣>]e2nJ%L_^c~j8]lv:޽QR1b1kAdqӂl2\IC~PHp5OFzWynCtZ13uÛ6/3+IS7PeSk] 7mt =bڨI&M/7 ?>f\CYdd3,A.A. z;1VCƇ^$oV:^9kZ 9jcz3PVeܖYs ޸..i i1q/{"dB]K|(N.#hT-b&XOV]]Tv[Z[f 9U}\= Lcg]\uJڬկx)jxeӋDٶl_)zB|TYo?yDcy<$M~[G_7VYLAEP=lʽ>UyJ6cCdY%׭ ^'7MU/hRdm.cM~RJ9mɎp1=EgKmnה,{ȉ u1WH8l$eVVVKӓ-I{2ՓnœxͷynzW=m,UEOթ~qlg72!0Ò!!@`H 0l_`,a=!C^ڬ}dٲd˖%k]lk־SUu?k=uweXb:|{3&VS+XX ) [{) fb es0«KoH`x%7Sqn8bRsƐk4P~m',>e'FDlF޷%)lVprr6o)WcO_Om:Օ1.b14Il0zQi#Tu:x{E$P%EVM2iؑ uC͒ʛq H7d= 7E l 9#B)2ܔgO˷&T]ivcՃqK \ZnuD֕sy`6͚.6{ؗ ,Ms L.W'{qтΩ]b\/5YܰyxJt}SV&ߚc\qKUˬEUbce:]ck"lUJFN$?D<(9Ç3?ƕ u(DMDnxd+9|M&D#l Ty0.b U9<½it@r`\]> |Q,O,<˩CmV7ԠXspT(=bh64hvl}2V"⋊1&-S)+DX/2Jt8v/xy0.b c2KxeFcl9T0 jpiqA6 ly 6X'XH>NOdnS-m֝APn^'|P+XC\]r*&eO)۷;K)]ҧ!q,(B)vE*hWՀoq  /PQ& Id7mĴxH [&lj}yAFl뛇#u%8+gc%1.b pHs&XZxv8ҋ$\Αe_ $tbmQ /:s2~6Pq ?PgTLnIpk."&r%훃/\;"|qyꘂHj=yZ2o{vw "E,FʹP]#.ѣ 5w͑-7*2鈏TE"';I.HrKIWR%\?\fANTZ{4/P5 âP;[Q7Ձ$fJ-S[%6YHBtkDVK.Jd&\L8j"E,,ۗAx}:9c8@ȦM})Pvyy1T{IjWUxk$R4_HgǼϋop1O* 0kڎ6&&̜ڤm9d]K[d^܌"[1:NS~וRZXn2?wQ"ս9ۡfHн" eevhǔf7rCR[b` 1>s@9 Qzz*Pu"ct09f̻¶ۊP%>|p!4rtkZ"E,IVBJ9 #P,葙j=15bϴ$G\rɱHt-ˤn:{𲨜B7|6vˆV1[E2l8WR/"E,I*G}/'.9r$-j*ꞛmW:杜IPQwc!žSIb:XQ&;Z_ "ogp b:QRQhB9&RE8fu捈gw,빃q"g_hӠ`](j1`\j9̘Z1",LeEWz͐"圪E5}QL^v8OF>U#2nB(rVr. Qy.߂ %:aŚ`ߤʽq"[Ki3;sXd'Ö)+qqfo~|3Z"rj,XB/}u#(w;6{N>XB,S՘7OL^ݝm?5* \CZQZ|%By~FQSRT].S+|@/P "zt u]G(.C|mV!^[qkX\&R.́)"-DZ"U%KqqMJu9 1!ݵWİ9q8rٲҮb.D" 2'Rg\,VZ&]34% ">nzs_f\&/i! /9Q++ďog<(=Xn1FՕr }{mjh|A|T] SơNM9̬N_Zᆸ:v}4&NX2nL\; ™X0.b\rb+8.Q)tSҔ|ɬA{k۳ M24CywBՈ&iVMz/^@gaGH`C}@j:ՇdU6aGb =;"dOH ,hzfS]y}"ofR*8l3fmUF0.bT,耛@.0**YLo )")U _L8 ԎH踫Aō2:f`d45|e!uɹ4Q},wAnfM n"^="y9b2, i'ƞ"K&#ɑO>~;`Vec ^<}YM4,zL12Wc%/jB)jHʎK)rg}G@A T$^p˚Os; Iu)l^xQJp&EȞ`0E,WMJhSزlVPX}b@*,wk UR[Q9+yX܃ Zv(` 9o5p?DpsCm;:(ҊqmfW0-}g|4w:_Q9tޓ$_ӭ Ra,qH%[d-dž"' c*W>ϗW%ll7ق5lɰ,pev#s'=#g0ݍ) BUD$('v|u-<e:a/x*X2dLh " v  ] =LU/,AXO[Ǹq"=6/ 3V"$CgFJ :#CvDhz? V1MFUr(CKt'J5RIBq q 6:{5֨vřFZ_Uz"gB#bX^9[@HwƱ+?=ή`"  _jc V ٯXK3JIS’(c hy4!|4'쑡W ȁhP Z(d-ՄJ26 "W 3=33J[V#S\փgCѠ!]2*;RNe/=}pΧ\t4Hn!OutrsY}pˍp#* ˬ9)yH8 n.s:O+Գ1ry2pzD& a\rrZA,*|틹NY(6[jx7=N^~9y" /m؋ԎHjlBMZhkDv5Y`p067oM1'Cۆ8R~RAE&/CC.gI9W@>-ALܰv3g1.b`qGkA ڟ_IAęgGy0fL%ԙX@CL$nGÍ}7!OO6HiS tT8x<@Y;6)#2 kPk眻ɖ.>캌?) 's+a}$Ŋ?7\CImwZYlz*n+P(IwKOG.ƒFcIҫ+;kmF/X=*x⺦=K%F5"p<) n%8Yw5QEKY膴J@E mËw/GiwSTkmvjZ!~$3MKtݐ`Ni0GSE|%C{'(VlLO Wӻ8h4R2L.0c1uE Ѫa%P vZӎgk1ub!|Py-gHjjG[k:E,̇JV4(_wVÍMuo 42G42~ 8R,[}*OVB9ve4# $߸U#(5BpO'T3vFț`\ {)^JNv0Wq>hHlܪXk{>%hfA Z xB6m`.3i% 4 J/xqw*P0*ZAL@ }R\|rs+m+;TZsG k0d3N˄MyJD8aAw(#),\4=z]Dk{?`KUnJ&xIEDdn`B: 8,Q>JJ63=O䒔.ѯՋ &z]k.Dys@Dvw2:Af@` ЁW$擡XжjY'¯c*u S@fC<2W츶S8 |9$%q3~Mro},jZ1^ .;d12M3VPC]:A/|{V_A_]}?ߠ:bF)M|nn觰 G3.9r20]琷 RT.~{h\L">Cjk֫ Sf?uȋMI.apãs?g] |U]"e3M߉'hy}wXސD[POS!C8&Թ[D^&Ls|FyvW7%Y씋HI|}{Dޢ߭jq/S>uUJC\]K%$b≡lN4ȏ vla\ĸ@o籂LEBOP)j*Q7WS|%y63953 :#&xrP"îW2˚}.S6 Ah`]S_RaOmyё9Mjh=bcf+;QJ˼yj}7"js WAD-V@M 6|i" χ92ܝH0T u܃B}yOq#BPN͸=htu-T0oګrt$0&NX6K͒% >G{{1T 6N1.b\OD9<_*IHrIS~Us~%'SE=݂E4񚟧\XyCy>Ktcʌ羛G˹mc\ĸ(SS>)L2CHXG-C>.NɯO/k#3\uƶKwӽ&~ cyk̬(;+(37U5Ya bj-@5B>rPHNR M(7o+5S"+,)7ZL6VwʆٴJE4O;I'޼K$Sx@BWmh{s|hˎs͜"@N&TmB!G[cuӔ6iVnKA_(WXo ҕnQkͨ1?McPy4䆽?yg9nVe]dexF p{#$f^6ygcx\bEc}`cYgAQgb1rw?uz}_.MuW{ .lTIN<)9PL\XouA)/ޥWx Ǻ.FY8#G."͔pȎ\떨.ֹڗm%l̾b ˪mx,'aq^2!zoȲ^<\\H[#k,jx_`"^@COTs$ Ȯ274j ̑k~4ϊĸq"74PZ92Eګk|S#znK"5y:d}㍲ #}V[n HUdJM%T[Ycsê0@ZD~M#"at n /%S~,aNi񠘶,R<ⰲqj=c 6{GC(nWs?˺G˷頶>eg:| >dkk}k㝉X}4wuALz\ijv'S5AVܱΡ`>=X`=ى JN1qFca &yqmEWCZB1*Apu=׮3pP,^w$8 e9O]RxF]}zx[$!Y(B^73Kw҂,(=uĢnѣ<- λQi=/-B6'_bwK_'_wye쉯JB>7]v# +lV֚rOO\OUZn~-Y.j+8wa,[^aK;uѸ z$"BQaP}޺PjeUXW`\ĸxUhoe2y鳒M>"hV vCP֎2{i'rHTE~~ix|F@#j.N1$@׎0vߨR0>ǕoVdR.4B(KV2TءMd[e׌q"#dQTq8.{$,)8͢a!IEg!K-{G%gnR=,&O$3\xw rh9n-JM,GvYkfa9*Seۏ/_+rdެmsW B1D[nS˼ߠ%'mvYLف?g!*݅Jꦃ>=90UvE'h@:"[*nu j]*Ixa`o}wEz=~?P:?w٪XT'+*aP!qO$,ܰ18UIsLjW >FǨ}w"E,>YJ&y*٭AҸny $-`|$#3Ha 'Ҳޓ9fho2^d#9.\28fasXc? cmg EnqOQ!ۻp#"{ϹWj;N@8^z"l3EX ӧyG iZE\˩H8醶kf(24l?{s0r银DmiytNyX>5b,So)I)֚GNff8b ޾sy6fJ'hVt7B+rxMEQcX0fP1.b1FNvd >̉j&ES~9ȥV8!)!? >j>ǖYApX/,7I9wV7fG{tSgyrO9sγ{I0_)j S$rq9m QCC~+bU=e]皐U_uS~GcƸqKh9,<25jU#T恋t!s|lXğ.OSKwFwSRK읳խ^4+d=3 #}R#Ḙ9)I=gU>#rӺ/ %kpW dʊ2MDo'skn{Ԣ;4 :"E,JAa2FNJ3ORbC cRm s?Պ>bP*Il2n)%KgtU1.Ȼ? YY^&9*]rGOwT?J# +0vd;C#ܠE 'CM k;8&?^E9]Ó)yZƹMއK9l=<1Hawx"Ƴ^0" '=C[GC˴mba}"%&%Ϯd9/|ɭ9+JoB{!#qiGeIIoѰ5C![7>`\8@ՎsdRyd} bsJ3o̕B3Ein ˡg@oSҙypPb1 t3;*z79VeD8-OZGZ^ hL AM MZVx06&/P\ЊG+Dpr66G$c~ತYoqmxFr29ǡ.XzՊ̨rKB ٗk~;r|GqȻ *`Q%r\R.tﶁ({;x "˨V_oiE< )#Mw:Hש 6} cNziIDb̒fzH_ AG޿ۻ:Y[1.޸(Yl7DzVCiXCvS͚azIȂٌ+vh1ݍQmj^I@0eF.Fߩ3?)6Om[&+^BE`rllڃ۽69Wb KIrh,t -+rE2üB9.QVOgcfȍlc>vgquE^3 Wꋊ6$%>/3>"$s߅Jܾf^Sɨej,نM lDN"Aɦc%d ro*F9KR6(BI='{yj 2ŜwldzZV#Տ:=+,, GquiW#b5wNGlFֺlq56抌L.V?T&ir0jf=m"eJ] Ӧe|XKnF:S$ FKYX0.^*\$^|rhէm^cHfZ8=Q-)f .ʸ 8\ Թ`q]t C[b)# `xI![jې[nXL$l+b Κh0 [ڋC2T"=-!Ni1QHQ%>U-K xH' [l}*^nWp*  Ϗ@kނ | Mf.: W8KL:k߳ &OFUPT-!@_ϬVo5T Q7댋 H,;v:0*׮$Migf4;ՋCyff&&ȡP1;WWetxO ͔Ԍ*$,}4%E tۇR蝟waWdon$W @ ޗIOq>Nn΃v}]n71.^6\gxB* q.©)ժ!i/u&1w\1(:Vڎ.ƫ=et:hyVj6KGxzI..x;"<͔nDz$t˶MzzS -,UxgAX*v$/߯f*~y닋]f ߹X[NijTv*xVXO_izZib?m)M*a|̘o} g \yu9SO8.6r/-a\ĸ% Pq m1< XEQn~rueߪeX>O_ ܈?:.(uCУEI>]XCRKkλ);sIFs#uQMJȄP %eL=m197c z`3[ 2kJA~^''[ϵ抌!ǸqKd{mp3Ӧti msRN*V$UL*x XjΗ`3l[_ ȵ:WP݁2v'Di\E:,t -}Kcuh\%ŅйB`n{pP2ReIK{KH2_+Uq˕k2541 7hyy(UÔ6(A=Yq[7.& Ǹǎ4B͆`t|bz {x4\l&GCMfT԰֢V:\"-y:ѻˀ#ڀrǟne 2j - ,J;!fKyA΀jIIhjRxa[K2dYuQ#SjGJ#zE5SixȑpZ3&؋*G'4em;ђKCUs]KΓ e5C) ,.JV[꣄v@\%͢E|?0c"EXB('KG1dIGZ͑ȻSYwB+TE¸%`a騺]%`/ A+(9IΑ3痧^͵gK,VD!SŸݵ24 GVO^NQw 26 }"`0>ObW[29;|(x"E`2E4Q^ëMEm`\ĸ%Tb>&ͳ6YJ|MӞ4f~KP1Eo26J}/k~to EN?Kҹmq+% 2!h懳>{eE0<*/`nrGz%=]pӬl"٬>"OO )f詜 '.{]awk0.b 'Q$Zɛd6ZE ۙ?5i%|.]3>͑:hH}#~n ,29ֶ넦 *114hi|:2='ESj+ַS6\d[Wd"ˈ|t:ko6De.Lm$>6X4+eʻaÎ%i9r ac:'-<ź"E 33H&pw_u'wYEMD*4('otAqtc~jqG٠΅] 63}cB|&x$=?›ZQ}˛;H=Pi zdNPȸ][R;`&fi?Ia#srF^wUfVX.E`/®&FY7->2AQ[)*||&4YO|YuV_w $.h,f;sJV̷28ąF5qҹ3ι<$+˓8eSfM{qJILrө[X`\r_b.1 " vne2EWdOp 5c}+ HT=f-S5wGNPK2*Ky2a]VMy|6 ژsJhL`6&R%|B%dr0CU**FPՉЌYM<\)o!ެ!${%md`\6TXU(sE7 (sC ײ<-Czە4]f vYQO>błq?/.mYǓ LdTBYǦ_nU|}?{@KJmǟ?!r.A3p3+Q`\ `n3G~17ZH8QC|_Ļֵy ?eT(bF_y 40ُvÑY_"48X`\GNZOiɓ^:j0{]sЅ)9J;oOe AK/$5:Yg,,>T19II&U$QȾ2-%C TYu8:Sf/7W KF%gI{*i/1 b臐7aN',a |9Nއ>tU2β58qQ%Ѯ{P\ 1AXHd=8!ժz|(jdݲ0>zg_%[ @HMEwy;HY`@]R71şА!fσ!YV!u)&i}8/Z3WU^WKQD,S=sʗW |BdX%C*rJ}e~ ŵ k% Y*ᏋqLЀܡb*<D;K^=G(AgS$%y1KM"3-ؑ? ~!.:{ DσrP<$˨Hk䎜~ ^Q]!ݹ}jQ=MϘ.pi>|I0wc8Gp6XӵUeE8}4їwr qw=c\H6$9)^KGӁߡf5ͺ,$V]"@Gj \Cv=O Ms\>Dk_5^[[}T(? gq#9tw pנ`BIg7 abӫ5^ 1Gn%PYQ\?ShIDQ/xxUm}T|^а8-KqqLUQ^C䃓bçY}kbJ|.*%3nϋf>aaPyzq}ھQoa=WܐUE*&P\T@nTfH޽q7;ŘC?@4*壬<+CSgj ꏃ'IR 5z"UuVlB]/Ǩ2y". ye}H(Gz嶘cٕ_0k+o.rL}F6ŞH~ån5Ϝ_myb,n^][ 'rIuh |hB MO3!26x3HA%HV.)|1J}E5T*3WNAtR.V(W H9ٌTKd6@1޻MTއvVf4Vտ q,9 ؏OzG}wIEy-y5t8 /LB&HK1/m7@O\W)@Fy_07 ,+Wc.:"E_N<& o.]y.2d~9Bѓ!:lCtrWe5j_A׃EwC(=sĵm""/x),5ʌ(5#Fa8ǂ"w}ګ\?Rz|8~rzƸq8Y}Ct&/Nc$s=1^YR+6OQ/b_`)+vRK槑/ڪF&=ruy&XR|6PbN˽(8YV}75pyٽ۳$&_է͐|@4N8dwW3qbB?Z[y!UԒ_;);bkp_p"\OLFii=@|wFç;BR<ȵ=C;=i "={!l.hy z #R_2$H ]ohU[ZRoeO% %qbesiEyqx3.zUW7FeW ۹t}=yJ40E2 5:0qntg&LeXּxWݝݲJQ'Ǎ&־%- ,ȐQ+; )kGj qfpD@ i;N"GA-frG5NCR?5 ׵;,1.^Ao!"*u_e EBYxg\C{=AnTۘShftϝ*cNH(:NC>隸- T\l衮`\qF z:4W豆20>R(i*'+廣nx` %l9z^"r5lgh`{3k(0АdpB{'``B&g0SJW8 ל2E9gܜG#$jgo:KX險&7 ٿO~2K=/&(,AVѡ]쳘x1gP qzBJnPʮ\S;vԨ=>Xo2k4i闟_T>9#qo2b2ɻS#pFgk@ua~KhTA[[6OO sh2°XyC>͸dbx/;Cs ڃKYiADZãEtx!J+K:BW7uT:puf(\|^q&ChՄФg51 e"1IJn6˱ PhPe)>ޝeM;:!3f#/H!kY0qwYP*;wL«kc:pm"JrUuw$oxO0+dvAfPzO>Gyk ,oLGŀR)5>Y:қT_cŝh~1B(2Fq!~>q\YaBjJ.0a\8Vvfq(/$PY S\Q]VݡeUv2!6Ym-z%̆ C e?K/Ft>Is[~! dHFe;U* 1po+k\R WQפӓ}m a\,,K! iAu=\ARԉLADFI3![7ث5=Αj 1PzԐ]3 Lӥ>/]$V2Ut8HnУs7Y: (,/. 8.c!"0ԥ#__WHL& IWH>墊5aAj}-_Pj 0>C P?tx,dm.0 ?9u]NKR#Z/ .GA{qgf,ġˠ'RX0.^\<2E>=Oxg e&&iϴLuwW'x̵AAXxVP5όE}d.='P^{ZҢ;z9/J`j1T@C\[9d-oWܜyrt㛏0a\ %ҵXk!yg:LLo {Жd&y]`k$g4-O𿙴xD_7 ^&m\7rs\a/^|YSާn?N623ѽ>}$AZKAO5/_Ƹ"3*DA3y9Ul|+}?f9}mCBDћkc0:]{C8xwy \&щ. hgyW}CC3TS8 ĤjyBBOZ9 T넋/P4!r+pY.gOH*Qo ٿAm7owx8;?~"Eڗ7LbW,w/.23u#NsgBܥQWJ(Oz[KR֟9 iBOd-迴{Ap]S!VJ J9 -hE9:|#`qimvrq3LE{/7R,4=:8n=T|&tܩZne&ҞwOW!r3_Bp,_ŠPn/E&MjD+DNIJX/QB̄-;Fn 7}}v{Op·''6@1tUEd; :Ym|Uc`Lb`R|m*ԴQX0.ƌʶave+iK8#7ݾ^X)܎ [uâGڶaԨ (Hф4p 2#oYխVwڐu# &$"i{x`\ Ge,Fs 0b\lHyZ\WNNAFށ4@~sB/u&YJZFE{*/~(P{H5<^{y&ke~t-}RSi?ޗЎL!W[ႸdޯN1[3Nԣ{A5x`\f^ֲǎ|= #Vf[KoaJaFUFH3nm` Osd8X?&x׷ u>'T;hKlO pX`\ĸrVE/@Z㉠̻zGru .͍LM[ϦSAqg۷md !(L8( KTrBb8fI4Y\AN0q'q1_xIRB:F 珽+Imn=߅Q0W@HU"~ /;ߓ^9aZ"ђ@Q* XoAœAWyJ?; l\d=fAV!1Zؒςrt>:`'HZ ~-S>my#qMɐȉoRE׽/xeb }(C\lpRw=A³ CF֓j6q1El{Gv_oC|P-KOVjRNV<}b2w䎾@qH]ˢ%b@ރuI{ڝf.fPNOxsf.tS\/!Q."kʫs5 S%÷5qEWB"|j ߭|fA $8*Sv5XM+k+| 趁n&GxϊH@\Oŝo˘X*GGHW#j-`}Ƃ37O}ڌb^ 1.b\ \<s-d˹M厨K]\ۄ=_VܩbDBtlAT`_)?~ Tp!x?" ѧ(ȡ4 L"ƛ eMC0(;xm-p!SͱQS01RWI1"@夒F)}f!OGI3c{ ~nV@\HLJMpF޼`ǻ2?_t%9we#/ ♚!ۻ0RBGFz cϲ/'_8E"Erx] 5EcIC?eS!, Q':&v="$W,Z8n4xW`dpzN7} ]ȟ/QxF(w dy{J4lWԍ0(zXiG7yӒ-z25Ÿq1P) &LLvƻH"<#f$J'RKrQЗCjmS@Q尨{6ŞZj^Ϻ\l)( H13@&"4'#BwogHuLJadžy|oXg}L6"@bA}wDA9"d]$.B?[w|:jiHm&{wnukq/}=JSza.F]+mL1}mi(cOao&)J?j=Ccy!"R @UOT%(D^B?rUlMBh-j:J/.:_i "h qH adqZb5QҰǟ <;Uq]0C25 qbH&WiG2eF̜2[ oVUU)[bCB?Z條3 ~#Vae$ȏ:KuDk|dV:-"%krYQ"P4ڶ'J~蕧2)l)E6;wkQ4;Db\\ƗM 4;+!CH硎OPKQG=]Du=nU_pj: NUR*8E}21.m$2*PTM"EA{לŇy*S?_aK1\4DhaoiZ2 $yr*%W5>1%?ȗtT9Wuqŋ.\i%/O>lT_tf wDjlf6~߰ [;>~;Rqv"#=jbJ:Zk9"CQ'|Q:W_AΫ#9I K%!P"/{X2;akreQ΃˿o'\`q_ɨAf1wGj&*6Vɼ3EO5QMnwMU׶4aɦN.[p:< %M a1nf\͗*+HEJpqrtn7A1iR{)o)xȞ/WO$(d$fGFFKFI'&3\mwU?_.A@;+ &tSxpʹ4DE1?}˲fFu`zŸxds\{ݍd:j2U`ɭK9`Qmtj(VAh"~U8r-pȿ8"{KgQ]|Pt%[٘گ:oGkX܈5gGFs6@fgpW+ qB-b%[Ln` btޝijkےyP• N]$| 6=C1䦀F jہUMs%J܊}3Bi16śZ60tp>!T*0.b\|E5B{O-#sHt"tjL;Z5_nG;*E _pZu99Z{g|}s/EE Rab{IBK2JsRYޅc{z~54举qՒ e}ugdc*7jŽ#0+/;~3PZaPsY|q1-AV$BR4P[Nڇ~6'whE[\Parks8T|۾F[z(*1.b1Nn1"y^QdP؆hǑf ,V5?̽ʳ -r{zM~?;: h]d}OŋeJ^wWNhW·Ĵܻ@)"Z(^E=m<[˽ήVNo$|-c U]@޸lhDe_? AC3꼊3'i fc13$QF4v$vL4OcubúE3cI*EWKZ:c㼪L|TIց״Up:՟B{*U 2~/Q.9,B84.~U=l Ț<x!ԹB!jP'S-BjZw q]#E54N"E,} qĜK2h!n)X0.b\|z.Cǝ^啸H:T񀙈= VJ|( %w}A}Ǩ8)yp3f&S.^mOz4O}aZ "6zhsiιrJ0.b\ 5։ 4ܐ;K۹7-i+Es~:01H?`0qlnS c/P>3GPɤY[#U>+Rh}.z9%h_.."q+,ƫtW&S/*J[RGzXl˪=G0n40XNA"' tLS(f} ͘M>Ř35E&Ukjr|~,!Jbeqb+$OM!*ubR9ו99p~opJPi7]?z` }r'xT+p[j4jnYEq${\0$u_C2E `参 l Qf'[rCY騬xp@{w`6$$† P(}imiR:BKi /6@[(ӒG {A콇3{a'c~wNwNIa{>z{DOpq7}ܒx/¥7_V?hjB**nB83be#kmSJ-gGr 3m:y-8gMk%Aaܽ4EAz/@oZRP`D:µE~>- :<$&Ǵ\:x&д1NR~>s+px߻UAz#^3 Խ/E,/&gp&aZ9R_YhrF.fi#z7^hQ}\i=4u7#fvabm[tnO`ĩP#OUe2"we;B kqLMs{<)uG:6uW昗)澤!bk 83]5GCC2O$tٙBmkmվ x/œ%why܎ߪ}]iI'&|@zXNCth"UiRpQ3O7'UnwF9.s@#]?"^OU9kWSzrYhuc~|TQ0mȲr /K4 _D~v״Z[Jw\an;s͸ 譕C>i`<cOc=2]sݙf. 2Җ/EX[6X=F+.}Lnij#i:/gr\6 swbZTM%uc;E!۟*M-[vxƒC')\mPnJx[UWnO`1l _cX7s?ŦI}/JU`y./'+ۥо&;GUsF>cq#z@SfzFm)eq ܞx/%x;czz9?9ѩi8M4m,ӧnk|e{? :& --1d+f4tR>aSXjl|зf~::tZ)OE)j8hE8r<ȭ^Ӣد8&~#UM{Kn3.'}MЉ>HVIX-]ʞiCNޢr(3{_xжEjxn7o8o]͉"$+ӈMj Q+Z6⭕oLCݣ.VoT=|W+QpExcL^SKK7ʾ=e|]KTK5h|yc25ie ǵP/x/B"ղߦ$̮ʞ=Tg:5JFOTsŴ4{]iwFqĄ5OKq̭aFemVS鑏kͫCЮjq9rK!tqNwm!c9WR嶈Y:/mnex`Ć~xY'[Jf+VϋEWa$z:aQ+JL6UwT4酡ёm1ܙx/¥˜#1Tgw; JGZBfyxV{5;N${ߋյ3M)ʦ i8G?"zL [fֽF#)*h}. 5C={r6.WNڼ,WVZZb8A3dMdQVFxYvy;A%UKu,-s4%G&"ծylIArVqm'qܑ@%ZG[ ѮA=|~2f{gl,{C!u&` 9wh TFX7dˬcLSLŷӚ.S/Uk*((`å%61'kF:>xb+t~qi!lo|@GXP j9Zd9vcB-%9HZi0F/|M/֫;lTot^[MZv*1'1UpSNym\RFoI5/]kL=o5dXxwxjI]9X 0K{VD6T)+:ioƌb'0YL V:'W@'<=PMsؼF;>l )Qz(\TCҮzXih7R}bpל=ލkr${JcUmM/XSqF;t6/xH9Nѫ(Y401l^Xqâ+$gK#[<{PE?et%.\-{ԗ9=@ G"/,+XЯOdV?&KaqA6jU=! sE1߄|g3-#t9?u8TךROIKb?aγ?ԫ"s{]/;3җh mbz#*jYkc$d^ċp'=!S5ں$m]OSƄKKXi8R룥fj@#ȍ4DE=Y]4yYAߵ;o3CmcE3Ëx.g l5fŪ-np2`Z"^cCHQy^ LF6_IMeOQuwt߇7z%*lQ"mޢ(}-]{úXhZUQVJE)19fs^ċPqO 6 LsuGqEia\#ԂOͻD}kMGڲXRjU3w|~SN<Rc7Eb|XA_^M_کξu}z+i@ Dwz0 ;Aot{v.p+"^t`^{ߓQĨMq8Îp⬚J׋]"KݫxU''$/;~URe.,ڡ՚74;fdzo][N˙\"\4 nz]%)Lv#oxa\11x\_XWX=rPDPhX&颉OEZ̮!FTeR'v "TL&(gs~>0 YaH?k"R{Z|7Ee-(4Q/oJ8R…OR1(ugⰛD~8_kwmc:qZ7Mjd~69Xx/B%1;p2#\niaZl_[K N79D)Xx};Enӊ*/ڤ+ "^H9>3\Fa⬧Ej/Lf~0"EZZ&L?BiqTC>8`h9k#n9֣6./E:݄.̣Tc&㬕8O6o.W)s3˧Ŏވ+x9.cagM$TςK":Y XIx"f*xEHAbB̃d-v[:kEx&Mnnn=e/Iyci V"_h@7nն5s}]xZn g/&W)w</Bգ ڵtrM?#YҮȓ3/myS]{;kʐ/Wڒg?WNt?e#P/BØjz#6kvA+"vYF߂w\GwV"|hUdܑ5'ŊgEb̐\imo5aN6-(-zsWyz;P㍪>e"/& o}Ԫ;kP8RUQ*_,_T1{SpʬwWe?.rUGsIz,w}ŤQ#U?~8?nu"T9{~+GwLi"m~Z?l6`v\9?[E͜RAJXw|D&fiM]? /Xfy.=6Ж)"wu,rVG1L}S7%Z7 "M-'JOx %W;)lΟ1CՋME,7y ǶY ^*u2OUQ:K:GT#6QXgQ{d"{* e5ί!P)=a_IaQ\" mA}L)\0&os|ۋu"yS[8vdD-Q,B萓=^fQ;{wMÄE߾]>wD)eE=J8"T^/*eCYrě‹P" Rt':^EMN|r /@b"Ex/^ċ"Ex/^ċ"Ex/^ċ"Ex/^^}"s{` $J%g<*LUn/lu+ ^p"ȷեg`)OY㤁D>#O;?Od;SOd2'r_"."^ċx/E"^ċx/E"^ċx/E"^ċx/E"^ċx/E"^ċx/E"^ċx/Ex/E"E"^ċ"^ċx/^ċx/Ex/E"E"^ċ"^ċx/^ċx/Ex/E"E"^ċ"^ċx/^ċx/Ex/E"\|D*v~"!'r-q|"JN'Hu&c*#z:?Gzr~"mq~"KTr\02oTH% TmћkԻ73}55n}2mӳuiДyvݫ}gߋ}O:ًUnt~p.|ij4]" )&u \LrYq"߷qT/B=ŋuz<^(. "8ҋDnI "8ҋY"‹"8ˋǺZ2(H\еuD~Ơ7}6}sfD/ jλ+X:g2ws^&|o[)K/pYEϝ; շM^y6c#{o1K/zr{iËҭy;sGmο;F6P?C./C-ۿ!az?-ytź5TNy~ӞpIgLZGMƞ)0{jFxFXS9~ҝ ]Sˋ˚5[f͚-t^V{wyiŖX}W^l Sf}_}}3fm]?W/^UƟ hz5Mg6~붎VbpeTq/PTcoeiji}+W^ ?Nh<_>c ۪/nzvP/nV]yv7:ܼɻc5ګkDn=;jП^T+{͹F%E/􉳝*ћpiTm/f/k.uqVqzަZsj^|G]u/i/V*S{Qڑ뮑SV}~6ꂋKj{N&#WJ_]}eYhyNR+p+^,+t`f?]פ̿_Ԛa}lk]!*r)R}="riTi/Q4VUoS`p/PW,5o%댓fp}^"uK)rEROsmTe/Q2VSw(D4Vˋg 3"9̋jON]sݨR /=db>/Z]UczGmLEyQh\^>c c = E~hŽ^,3\uً{Ch^(ifڹe"-Ym2j}17%0/D;6We5F E9QhZ@fA ^Uo7Vkf)ʳ"MONוC7ԑE3ްiŧ¼ /j!jk6S4^҆6VkR[(ozXp%]RNDo üv;X*-,, ܴC_6S,@.Z2E헙^~t Pɋg [%u}JGZe6'Qh5Z% U׋jҰ4ϨN[w״Hk|ɋSՕ_+y1B8x[\Uۋ{\9շRrw|m:C̕vh䟻pY=y`R`7Bih.4N9*Ev(Lq>yV?DvVlȭgWv@}Qt p )8c9E)ۚVS^QntBX}Z63_[UZ2{*EviwU@"nGo~o/%E endstream endobj 58 0 obj << /Type /XObject /Subtype /Image /Width 1807 /Height 951 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 19765 /Filter /FlateDecode >> stream xy3c0cWwZm % H)iK $I iQ!DHewb3g{̘b朙sv9s>9gwq8P´x̴c~QmUR{>_-x_|F쾵|5gjYU{~[?CL~hoN\Eս_=_A+fg?l=-65l'+// .ݗҪ0Ȗ}>ϝ +$o8oM^У}Ѭݏ yg[OKkʖeN~:6@xSh;8! _ +uSRu u|plp&7(͑U/mWޛfYycKpzo' س]J!XU^8J$k7վi̿ -Qy{ ^sD϶/e:&bv=1wC0בu?һC "y]'Ge)fD @XZpZ|QD@:񧩯E ج#L_C nq+};4.0쥻2"r柧ױi m|s']{ Cr p%Qnkva ^<:bZԦ&D!voUpIG^3 Cfp#ظd$gԟx/H!vfӂ/z ּs7 Cr Z{5`;=gKڙ9$ߍ}f(Qj~Z'@;~tDmArH?O|Gt K;QrHC|6Oi(Z],p!96M^_)do"!@;φn]HS\y׳!9,\f~8ؠ1l!96.`/Ne%v˱CGO_Ku%\ã\́0g |2p9ZX[xo?|:HsZ6i~Pj69XF\ Q(9{c[z;:x΍ȄI3rp.&f7so!9sW}ݗJ`K>;:H=!R؄XkA93x瑶R;RSɐCڤ~|Hxҿ?~ũNت7Lz#-nM(T}M7%/9ljAOÊ^]9P8ή=}FqmrX9 ;%! Zv a1rXP9!mLaT(8'Mxs!摱? :i7|/5" ‘E<ֶrw~f %/Iϧԑ;SwzD`WNqXiݓp r[]6~ ;hsW;B͡TUQ<֋Cwfܘz8}fmds.Ozp e;79!6]>#jg.vnRT@#/ K)aՎ/(@!`c?qeBG &ﳐC+k%,}Vq!&X7:wNmݪEgo=hw:KC m`[R t;o A" n7C --Gq3i P"@8ȶɿ o9x1&rVxV9L,r_<ERX L0dK !@ߏ^{ȡ[ݥF1YlI;+&T97a֜Zt$ñCoW9L%ozm&r__ C{u#&C/%}K^?0OVKFM5e%}P5I#@apLײ))"nO"9#@ᰯ|䳮ߠb9Þ'$@K\mɿ q 0/V kSŖm׳Cm |`*9̗M+/Xr|?9 ޙ}'_8r3JJav9$N{ W v~g-)9$q .%n@@!`&BZ92o kyyC8g=wY҇1Crh“. ^8foHa!!9LbXWC9=RXݨ!9c߰6zrH[ٕm` 0OW'-l@Dէ+b9 a6g@$u c~/@7逊 z<8rhۘ!5|rȾ왆)gr(fN_~xC@GvH:+L 6u}g9LƮ2i0}Őzr(n~х^[4r(fNҮ [i0щish ]CHǦt(Fŝ4r褛B-,g@#Nja^s؍ vt-!`qvbCD'la~3 &V~UHsz';HrHa_r]ɗ}grHa(}ʹm!9V?]u;a9$0Ҏ፜- ICr#j:׎?0rHa3sNpVCr#[uပ  fˉgrHac.u0쎯b@!;JAM:0rHa*8VYL{4uT  F:jap0 C#o /}YLGǹ~IZ fCr3ssOҐ3 CiӐj7GKRC*ff[#ؓ Z@BS@!t_Vzf3!9S̹Lo@!tb7uf9$0ԊŭveCu}@! G¢wCC}׮8,rHa58]{o rHaTCCj*V CC*qa`+le9$0Ա7:wjz,!96 (a0*FCrCٿn|c fCrCUӹ̭?r\@!L[Ғ}72 Cʾ úc/@![5 9 QJ (rHaŷ9=$!9?jy Ӽy|2`E e} r߲}pikYWQT+z8(rHa(s f_&;nCckY9޿@s~/%rv 2. Ĥu#C΃JaݏHE V%S@sg]cFtٕWY #ray0 KJaC ](rx޶^n}89;5˾xQ0/>eF׎RZ:(rWߗ_CCϕog@aϵַ!ӁcNM`9̟!AR~h0ȡDUlOC-}]1d97'իh.c@ yvK& !+:ؤn\fwm}*Ul$hEcr! 0a`@:xѕw>ޣUU/[9jEI&0+n); {Њ'| '02Ku6ٶt;91`TJnKqo9,9[u91'=aP^{ʜ,!簞$ߥEQVvp^ΰ?1aX⅜Ck6b [2{C΃;+ ctlC֗ϰuGpro<6?L08HamPLGaÃ%oȹIsPRմ'^[z$” #WoI^{ w/³Gq^p*tV]\rԖ޻L~ō)!rÌu~HI2͡cGY5!;nsu|ci ~{Ra=9v+9tTMr=TVO)ͩ* e_m풮Y x-+6,~LTf\".?>˭EڕSd/J"Ӵzi.4 }b9՜МaòNVk^At? >|8rhr؅sWȡٶd>.\@ɡ^) x5j̅|Crh#JbÄ9Kޫ_ƓC?O  x1;΢r#]"==ҋ- @!бohs1^ajh`%sP89֐bo0M= ^9 d+I}Crh6# @!оphVmrÓwC?9bFVMݯ4_! ZVsQ,dKQrR6í\,ѨÃ7EnxM ju<%~sSPG)? @{~eNmn)#ꋘBR6ZDz@$u? vJ3l}@ lo!~# '(3KK61>Rn~`'{Jq /䰞qRro[^G`.s9Wz7aRrJ*&_aTdKߐCxՁOKXmJ)r .'ErS7HJbRͽÀpy-^ /pdW/ܴ#/?|s v%CxƦROȡ!9L-!]9 `g86< J#9Wlh"UN '~2,d Crh0/J/^'C?E03OuZ}V(/JßZ؜ lሻ! ' ~`ᰔVXx0Qɡi^e5s}%Td`fK[ko^$5v=s>#69Y天s]&(aT F9d_CrhHM30G;-Z0RA/s9|:熿_1z: N9za@"`;s9hM2=q/aL p-hy[%hk>̝ɇ(tAd5Tq=][z9q#\H0l/]9:>*X󿫏X7];T{g˞ C!Vʾ9݃F;DRR@3Ydy#4+?-|ޮ3[GC7lC0Nqc Uu8;/CvsɡG 9>%=a;nE" n7CvT/ prPZar EuA>^$BZv=Tȡ_X[ju9K;2lݣ F*4/U+%ng@a)iEJ]7|H}i 륆ЏMe'ҫ9y&4闦y]jņo%Ng,OH҃KwEZt$ñC{b~a-I ٶb+WK"U=݃߮<1i#RM@1y~'SvzYl ~wJR|;$mպ{nԤYSFؿ[=#U4rX֐Zf01XZ]mwݾñynOb@̡#P\<'3:b9#'B%jBlC͡G\]%AxV kSŖܕ [g#ȵK psp-_vÃ$?޴r+73s.@@_BrvC.;Crhe@@0f{#ӛObR s8x!n#HcLB9K)77%8'q>9 sHȴ.#HM9>f™r)WrX^-5zN ڶH@簢t|䰀B3@簘69{ "v֑C5)DE2F䰳9+XdwR=99,8}rKCrhABѩvRSr8@w"CKWbɡ]R&cO*rhrXFu[C":CC ts_plj'2ЯCcSrHMT7:G'LB]7s@-뤑H7J w1it94ѫ+3f0H@;K9 Csxb7.&T4 c~{~+- Jd "+źxTԨ7JENf R?HᮏQrhTdc`nIn<%uVzfzBg1簡uڨ&rhwTb>c`rKJ\7:w\i94H4'f`v#3tyC{OJÆ/Ih\ҭpU"Hx@9094DbbIg8ΓJp>ԑx 9twf݈++]{Y_!F8pts s@ =t{ɡ vԕȡ˿ONaBהSx/z҆*=9Lvv'&^Yf| '<@Gpv;| '{i8c@9e !94ڢpCrhTd*c@0~6B` aYRÀi~ mH,Ӌis#u}*Af .Z1l,OproTzc9ڪa|0FJe3ȐËEzIosXT6?9̟'daU/毆Jշ0ȜÛHG9N$f԰x?sw9oRa9̻nf6mUt ;9 wKa!{R,"ErT0jzox9@*;0,5@wt1*99 "<] 'y5Vȡb;JWbp>9yA@.rxt]nE5mk!IUs()ir05l#acO^<"Mˣa԰Ԟ@.r'IuCu^rNY?|9@9\eկ46\&֐mհc,s\䰿T<ѣ+KOCw:SsbiHKȡߋi#72lC*Wٔ{ɒ%:H!2! [wK!yC/pS4)akQj>Vg?G^fGd2#-Rha̟,5īQoÂmRKER;mSZWnuϖ}|ߒpԂkXypO lT_ /!HjuR䰠jxPffRbwiOR?[iC =;r`҇{|9v*sw#~tQCGkENoչ;5$>$]|9PĹuЋHi7zɡk0s<8{oƻD;1 r"3[4%%6i9r 3!v>ia2ȡW=aՐS9keobV.&^Tw/cRV:M}{;ɡ׼&rеjvb@Qg.{jn^|1!k?fW4d >zmYuZq~0RDR il,NAuR;s't~ lGx}sCg.]9GrXOZaR]\uˣ49~'x& [{֏P78 [#wvrx`aSQRϼ&il3ސoI9Ax,3l(5hGa~M6R؆t7yUTqկ-tzar?_Qu<ÅVMmmU(zʾ9݃F׶DPE,g :[y }*%Z OҚg=Qۃ>p>rK~+bQ<]5\ܪ=[Uvݮ}4zH6t ygi|"б \k(EJѾJjDlӅ 5 Ρ#ibXk΂!vR0vV0x>G-^Ax Y0"a/dWrn7qXi0 (ݥF1YlItK!.pC7e>f@0/vqCdcWat|pļ1;KcY*;y䓴UQfMbn\TsSXg9to[3פYw9tgDfzN.x8㹗Z5M[J +*_fp V,]t 7\`ʍFo\z9Bp-)3-x?j̅|'poM--x9 sn+K'>%V-x9;rSbh9gpd`DrC:KX X7g.ݾbnŬ{En`Dns׉#INT éVF_G.EfsUjakk.rTe' :Ҭ [gJɡOJfs!m̰uT [ra5Rqr^YV(V2zTYP 9l'ݝa=MНJz w%w6ηIvFg"k &GHc6?**9J Y}Rx*P9OS9* rht_g94:.'CsKQ /N Fp_urhzO^*dm94:go4Ç,M FehV&Cs8æX@ϡ*u ×N6ԺuZ@)%,K(f=Uȡ94E m+=ŚB!&ΚBʡ_~VgX@d!V$CsmbA94:p!CsxlØ\ȡ9wd194;X@8q"Cs}*d)94:+UV"Cs|BrhtO^,:rht϶d94;KX@pY4ȡ9̦X@0^rht_X@&@ F04>"u fpb-JY~@ڒ  b\!rht흥Yz@v,= Fp8+ȡ9%T巰 eu+,; F0zVCsKȪrht_e94:T0kȡ9\UBkXr`lkdÜ"߲*0J{abw qzRIgܕ)9|I&FX >pM:FUv sB~d9t8Ø˥Yk@-wD@C˗>#g9TqVCs[Qn@!Q3 Fd#CsA*rhvnRS,2 %sܩt k a6z>խJÝS)C𣬯۷Gs49um-CT 0W=c(Jz sR fpUq\rhtWUY]@;,. Y߹nyҿgm9tguUo?"rKX[@3$aM -XZ@39yeZ /YY@3SUJ4rF ӹ둺.Gj+L[+t]zSu$ af=3[GX&fCv@`3,+ nDJnX%5 *XU@݉V`U@ EЭrX\S) ՗&ݰ^j89"=ÒrR,6 >'O`I9̂@dz8v!r-{k{nO8G1z>?Kfì%Z~ύ4kwzjk9<d n?c9<{40{b9Þ'zlհ6Ul))fت|=oy, aDoZxO|*CUq arn6 TcCsx4>Ϲٜ ȡ9Job94:|Csx:zL_@$SKOåEu.CsB~a 94:gƱGX@@he ȡ91X~C%|C%?a94:wJX<@+ \ȡ9&H5vÍ@Y FArhvK]Y8@g659źrht*2lã4U&(rhvf94;Kf94:W٭, FHM̊rht㯓ư`G fpt)94;+], F@,b94:gc94;IVRX Cs.RrhtUVbV Cs\NX'@PvrhzWVȯ Fl+vrh| Cstgrhv9 Cr94>gƱ@>C fC..c7 hCvrH}{Y@vrh|ٍ!9_IKX@ΡN0G{X@4JvrhvWӅY@ YĪrht㯓Ʋ(ǥ fcӬ FpuqƒrhtRϬ F0 ȡ9|J \9$br]{WރFt܈A}:t=ROK"ȡWٯW7h'_W65f-9yV𙇭ǣ ?kUf Kȡ"ݾ,=P9<^WAsY @-Rv*QaAz/!vP*(n4@rX\oTȡsX_vzapS)Ec9,vd!WLO5 VÂ:#h=0sxP0᷶Wat|pļ%zj]=7jҬ)_߭둪yN'rg [=wy~Fp{9a O3"30r=O\*@/jX*Vn3lU-9L& f 8NћV.^xS~|u #Ý?~9wef?jjHt5|ӮtNg& }Es#J`$X{׷͙L$ߨ$rZ֘'^Ⱥ 3 k<NqEvKFaa @*8恲RS&j[Hs5S/&]/5_oۭ$'[KYs"9o}wg rʝ;IʧQkJk{ܺCBCŹ;oYLrprOirAR+{ì|RlLȡ4*̚g ={[{ QMg(9xJjx椋ԛ)^[Z꽊RfO8u!9R{ˬS{[ZV2Mam"[+I9a. {nfdg5Yw?F1rAp~A2 gkB/5 3u9|*b YXzAs~)kBSNs5nr^I畀e YL3ej(cNe[.RufB=!Ld9ڽq4w9M?CfmjI 9'1u*5Lۡ-[~-'+Pʝּ3r[BVC.8v C=L% צ^0ZISiGrZN9RƐ_Zfm&Rɹ4[m-R^/]PX_tLm #!p,WZ˭Rٔ{ӭa= 9Rs.u8yf!=tRAlnnHޣ{A9)h53!𡵰.ٟt'kZ%9 ?WH\}uD&B={<,a*Yn[6.KzBej q_lK>NߵV}yCOx.>9$Zu4lOyu84ȡG> stream xkoF`(>:icܗ$(hH7ˇH)Hr;C 7_]0d$,iM)TWUOW '4H`\JLf%%[8[H*x5&2~O$Fct8WYeWe(ruFRK$9&Wop0ft\ D ` {[㒮U xcVg] ç"/J.X G}T ҬQF*Ͷ٬o {ǂԪhQAëkԥULd0O ! )bI bn7 ;̚^,:ssYdvjԁd1ʼfIZ%ڱݗIط'MP .ԟn#e0^_޶s42VY.8ܘ0. aa\,Vieq&Q:YQx>,]GToiE=&4"{ӓ@ l=7%C'WDM\5f<&ٍE\tZ6 QzkL8λ5Xa>+~V5SE\#o= Wio>x2U&`ݟC St u+ Ֆw܏%0:u !~n1Lwȡ= %;0 Bq#tO^r՚JoT:,N\> ;H6;lLz'&!A&y?-欪Ԫ"~I6;M)˜PxjMFcƽ;")k{$LnO%.3v;1ϗ}z|dӞY?NOA؍K?c=0ZQ@;aCP=8n~l̓[ZhL'Yݡwzc,>;';G*{zO[I1 cPa[DIP̉l_u\;z 7o+]U)J! 1Lp+@7%s4g.Xsj )͓Iq m@#7Hv¦͏ 7P$V$"ue"Y/O &y"5 8iF]&Ga>]MliG'WwQ4 )5*i^B C#im=%bkHHL&+2lb5džC-#% NJ(IM_1} @D]AT U`2n|->{`d|/rĘA6eE]&7WXxc XrngD]nl`!.6Hڇ{% SKR"7mWq]?_bfXc5[I^@# endstream endobj 68 0 obj << /Type /XObject /Subtype /Image /Width 1843 /Height 1067 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 144635 /Filter /FlateDecode >> stream x XTUqEEpM3-pO}\K̵Z7ʿfReZۛ-.-j&+  " 2?oi0wyxzp3{Lǝs~ 3fܺuرc^TTT^c8UL\ڕ=>f̘kFFFrQ_=Ԅ`6((h޼y=zhڴS- o_xRG݆ ,o.vv;?JpႼ.\ _m,X@~6ܐ!CMV`6**4Շyʪ#5@0r T3f\W_-.. B0[ٽ{֩Snܵk8:Y(̊aP~8b?аgyFzV`NNNJ*'5@0r %?aT3V f///[o̖t֭L}844GG0k`@0K~Hf:;;߸qæS&''KʦW޽{oݺo 40xvV?:Y( j6Ұ1S+WJdjuZZڱcƍp*W^1:t(((kP`СV Y( jP fWfddmVᣏ>JB!Fm?gϞ_`^zY}7f ̢fiXLY ۵kg놇\Gرk/~So.>Lllloj{իkb6LNN޸qԩSvڼy:عs'|rŊk}_~Ez6''?6lX֭Ew_~,Yr%yUGy{!v@x- lٲDr#F0蟏?A*.ݴf͚{K.tԮ][tnݺ=zΝ+wٳgGɺu늷p.Ԗi>qƇ~8`QԋD3f322>Sq"%vX/:sLLLYcyb2dHӦMʼn3S2!!A"nn?[chhZIu=({b8qĠ'1bĈTSՖi䧞zѱwe'LhmSR``6Z(Uȑ#M@ڵy睒eeq 0k,jN:QoP@ew%=.g_>~;Na.]6I?TG?װ`677W &}0A¬Zkbz]jnnnڳÇKG!?O]vv0_1cZm\\~cʴi*#xWR0~nt1??_'Mdlpp/RK]j-11K.VXN-[OZhLZmy0gZg-~e])lJJ{ﵫWZ=⠧#ZI&V}v[ f_޵kW[aÆb2d޽ni&E}(| fꫦʯX®.]jڰaƍga̓H0ix c ??? x@~F-Z|FmݺպUYSYw[۷2eU̪TCڕJlkj._ܲe˲ֹcOx[Xc785k&n]/^4h0+ƢnݺYzZnYzsΙZGR`۝;w.k+S[Il(`@f988 7E\FYxfɷk/j/kv%l%i׮|*Z+/]R;<ҤIJ*ٹs疻oZׯ_9*-k.v>}KOO$-1m .OO=ؒ`<,w0kAO(,,رcϚ҂y@ワfDl:Ύ޼y/_n*mӦ߿aÆuֵjxQK. ֭?lf'/5u)gܹ>xW RմCΝoɭe8p3jFDDX1JW^0+Zj9;;?~eF 2AoYffop۞dRK/޾paÆ~% uڵk~|k^̊wĨQz)3ߕiӦmSN&MzkZ`ꃞh"S)ɓ'z8J fo޼i43ٳڵkw߉_L +W` >JYO0 &r={W1:!C .U#SV6l`:*3}="a֬Y*l}g=,j.[|&&d޼yʿ;\޽T=z^R/KJJs.X˳/q=nմOIIgHR&/pBo fjڵkիg5J\r%Rϵkה ^x3;7?2SL/":\]] :Ԓ`uuDǶ8SlMѸowe^y3#0P9F*_0[^Ϟ=gS՚VQɓ՚w}Ν¢W$?%YO0 @ 5?k%~.8qB^^db=Sʫ={lY/j7n}Ѡ ym}5Z~衇>|eViJ fz]j}w 6| <ٍ f<]l۷7(⢛m@nҤI[jU"##M)U fͬU~}\ec#EFܭZl5joj>cFΝ;رC>HV͖߈^`>Jl볞`XqYqiF/ipP~ȑ#KXٳ#]xUY 6ĉ)S'/<}tU f̞:uԕLep^y啊IyyywM.]Jݷ:;wH޼ySғ&M2S'ޗ1X]~Eҽ|nU [_'Ē|:*J>n^lhz2//ꫯ<;;lÊ fլ^|\UQb[лwo}q,܏N~iH}J f~qi/{e4C(S0/[~5m*Ө`*n` 40:r׮]&xҶ鯖^FٵkזXfĉFo~?~|6rHCJϞ9s9,WmI&f]MIߦM[}UAAAҳ{?_Vpة`"""[-^.nj駟_2(``Zх^>}ƒ~_̨_oa*`ֶ> f(AEYa֭m Va|O ֶoi>X@9YF#F, /`Ν;W]vُ>׭[g]vɟݶm[ʂٗ^zDEEX!cʫ5dV f8wJ f|ܸq֭l(zYJP`6!!A˔+*X2NNN};w];lUW<~oaI3XBS+ O:%=k4+ U>cd-[~ZV+VV0kAoҥJ86J._<ƍz)j؆Y' f5|U-ZѣA]V|V0{ΝO^Feˎ;|aa!wVq0+Nsrr%jСCGNNNiiiUXרQܱf1 n/* ftb~O>SV6mR%=zTg6?o`1E b__^x„v5P0k[k6kL>h7onLN2w܊˪ ͕uڒTSNiu~'* U:;;T*35k&Se]?l0[*2o}(**W^b2;wHc<523\6g=,%`0_˷ѣ~q-/̋R/ꍮ'bEk>s^@5fqqhѣG=Sl(zYJP`6!!3O_l޽2SZs̑0hH`RYQ[RRbjO>矷ʻjY *;[}eqy>hZV~ n޽+x+T|֭6vINxbSLb`26mX~խ[7+23;w,1WX&bP6lhPh~8j(uݏ/S@%)k0+.SSSO԰PIL֦M>G}$ߟbq //u֪X+_7:٣7R@!16lĉyOh8|UM0+[^3(m68<%D#K1 :t?TtW0vݺubl>z;6 rN%]TҐؼy9VƠgt<<<ӳ+W +j4 D%%%;w4_F5jaU ?#Į֮]۠SBB҂Y/SEqej'oN:uŐkjΝ 65믿nݺ^{mРA`Ǐj|WWѣG}Ko>33&}:=z,ZH8]t1UW^]F 7l^}~ɒ%#G4ZF{;YIf͞|ɩS׎י8q.gyԞ)#FV9`&4 .{:us̖qFgc΍7Vf1Fo[-r?S_Zޘ*Rљ{'L`f+Qb+ejXPx0[NAZ6xy۶m3Z fiӦY=|}4 f?eo}y>h"f Rȑ#oӮeqϞ=Fk`ԠFծ]_~Qإo׮]g{U$0:?QFfYF#tY~w1Z1c1mP0k+ejXPl0+.&O,J}"QL7vS`6==cǎرc w.cbbf+5233-IŮJɤof;w԰`~-[ٳ /e_4EՊR]^=q ntyn%5k_%yy;/jO0[/С;&MZ=v֭[ voРAƍV~0+]G9zÅ;|53TY0+bXvς{E%]rFԍ?;wY+gpܼ*>q6o,j^`uY!))ifNvB oϰaL-O͛׿14ծ][4˽+ZU:(25,T'~~~*Bu׼ysYf}wyyywktQС>h˖-fƎcǎ\]W.Q4[oCVwnnn^z3gxyy1ݽiӦjպ{<<}ӦM!C|G+Si ݺu-Yvmѫ+F 4oƍ/mjNf˗/9sf޽EoѢ~|PzP e...@OE=j`̙CY2;zJs*V3|:1(JJJJ uvv_ԗo'{L>4\T{O^~@QxSFׄY(ʕ+Sݺuu ^ѠSbb"c8=z>4WWWcԐ!C֮]k׮>W_` Ylc8ٳg>={ە˨Q\Ի^|?fxܹl墾{Oq(Gjjܹs.qeG f uݻw;K.,)??|W Һu :::jx?k׮12j:111&&&,,,88ĉ 4XKll ƌөSZjcoo߶mۑ#GzyyhPѣ]s߾}!X.--mv3lذLJflrfZhњ5k~˖-^^^ٳgO0}[u)##&34СCuj&M}K.YyJJƍ;t蠫aܸq*T===QJ;w`L>}zxxW &HU4,!_}U֭ Jijdddh4NNN Ұ`YV,ruuawww)ݶm[ڵ+ L:U71laaU1c iԨQn*G%EEE ,@)fذaLYf+Vv횅o޼cǎ<==Z- f$'']6m&N//YdÆ [nݳg7nܸlٲyM2s[n:%%&R0bD ,hvQHVl%5ЌPV>|0UV()h`-!!!<ZNLL >qDtttBBBAAaÆ1ctԩVZFWo۶ȑ#bbbh4(F?îzo>,6p@6lXff& JNNvss3HY[l9~Yf-Zh͚5_~e///ٳ'Lо}{:uꔑAfСdI&K,<%%eƍ:t0n8ZeDR͝;WWOpp0 L>]JS=<<+RՄ ^|ELԯUEDDHUu֍S\]]4522Ui4'''QUÆ iX0ZVuvvUҰ`n۶UJUuڕSN*U͘1S|}}4jԨ[n  aF3l0]ڬY+V\v7oܱcG] Z3M6'N|嗗,YaÆ[ٳg7n\lټyLҹsgZnB@RSS `W1Q h4v(G$+ۊhF(UV >T۪U+QFi4𐐐_{\\\^^]ܫofM^<oJJJH;QA~ܹ\ޠAM6l@hCjubbbLLLXXXpp' ߮\ꖱj'))`VƊ4f̘N:ժUhnoo߶mۑ#Gzyy葎7N:;\Yh4?c=q#tϞ=gsL0 -77]v f)--mbذa6t~TU?tx`v;u$Ud777e˖Ǐ5k֢E֬Y_~[l̞={„ ۷7تSNrubmNdcތ99Sv ~fH :T6iw߽t钅lܸCƍg+N0 SUqusϝ;уNI63f4k@04L3==Ts c'mƓ؃NCD)VſM>]:5j„ RU/M;,lȥ7?y2val\mV byxxH櫯`URUݺuc'MЪQcNQPY!bJ&22Ui4'''QUÆ m f|%%ǜR٠Ay,ߖ`V\\\jZgggQM;,((oʆ>ZVT f]:5۶m`URU]vc'_?ʞz:W]fkԩa RՌ3l fXO_Je#_Ԫ娄`V|}}4jԨ[n  c'2MT@rC0XfذaLYf+Vv횅o޼cǎ<==ZM;,(aS&LHUJfwmڴ8q/dqֶnݺgϞ۷oܸqٲe͛2eJΝ jݺ Pm |]}oݬ` :`5zl f"MR*{塜s9`λFk.rDb+` QY||q)=HaRU%!V>|0UV()@ K'jkL0kCBBqqqyyyfpe h =-ZrY(,Fu:+xg)[ʯB0 "@SP%mM &ܿNJZމ_%VBfP4*Mơ؅GzхMP YT[N> o/&V>Bf`]uޔ9Qm XZR֩,mj` D0 +П9V l5;*eoJqVq,`r׼kyKaQ6%]̻{E0 "@iIښQioP YT:G}zi) / tv`VU[9vYTD.R*{B!bU[9vY[fH=,uvْ$b=...X.qKwߗ?8V*s? f`֭ 4W'NLyʁ%űҍLޙ%UOfggWC&@(|/7n>쒝ٵ&U5kF)/A:palGӑ`V233k׮M0[i?|1POJRR_/mڔ0jigg'׬rlVv'/,`W h}Ɔy;xKlHUnϝ;;wׁ3'j4Jcf[Y(,@@_qfW:Iy1=n-^J˖tyl&~K]niJL0 "HfG͉q屾⑜3gzz"-#2C0 "NSIٝHV95Woߕ]r` "ݏlْXT)GmP Y^ TɪuywذCi.gϜy[x|4m` D0 Ы5V8qvYoGo]$" vqlabګ̱cty+^3,`Wjm6'21oN',_o_իڪΖ` D0 Ы$ygc|ĬY]ٷܹ$/'׎*F0 ">5'oz$~y|ᯅw}||۴ "z|֬RRUNBfz5@  !H?k5'*34S {xv9Q) >f$jҨw\?y_y:ƆNջ,{wJfR$۰M VI0 "ȿ-)|Jo }(ڿg+gWSR&N'=O^Ys%lfbb̙d6ߴ)AmwBfz5@Nff. rpDO末23/S֫#6g` D0 Ы:yy 'zeŸ Oښ6[\ݲ%Y3)?0yk i%jyiQs2^ߟ֡V Ϯ` D0 Ыfv4WOju~}NU ji/ q9=t愼j|QQ9O>yF{o l` D0 ЫЪ׷_?ef*i>tnKrs5Bfz5Z6ewJ{_ LؔPX!..oڴ]$[K/E]9g` D0 [{R~MP Y"]===LOyyy˗/իKÆ jժR_?;88DGGӫɆ ERRXR=1H$W5` D0 ֺuk;DtkNIͼ[6l(J jPC!Ћd=-lRR9(EƎ ;w.&wY(,lF8p.MڵW_}uܹ/]ԠADa͏;+Ӳef͚YV3gΘz_][d2B6_Ω\-^[<M ¶|wuȑ6LW`o^zjԩIIIW\y'=<< \zIxXE~.έlFƝŋcяdϜɢKHf@-]tN=ܓ!/֤ILϞ=Zv.5JՎ=Zz?W3ψDjP_ L8d}.ɦ-\W$N&Y(,lHDDnTK1b`BB|gJN4Ix?Wh4?G$4vq?ٳtsɊO?~.!G0 " Yj.q5+GٳxVEEER:p@*o׮ݝ;w(:FٳU>u*k3޺HGO=I0` D0 )6mژ/y}I%nj#ڵkM"##g|I}||ǿ;z5(sH6=8PF?̱cty'wɖ` D0 & &Xر;u{KzpڴiMt}駺5M=ă}jjPm6aS_Ƈ\\ݽ;ENNg<G,`@j@x5kTVZj3gggmVWrrxbbSO= rP۶mx`` V# llXaRa5>Mڴ E_~]Eg,`B%K/h"]D!!!Zn W]3gtU*( p.p͛w/o_{oxv Xf@Kc/??T'.<<\:YFW8&&F}:vxy%QQQjj _pvE:mڔRi C0 "T>Cߏ@HH.Dݺu_|pXXyyy^Ϟ=ׯһwUV/5?sjnAsڷފqt]|pMh V.]k*{G4wTى e$/ x mݺugBW@U=L.=ȭ÷=ȉ?/I7N_"V1}vl٢+|ĉֵkԩ#]hSb '(vڤ$z5Xѝw6' EW_WFOݪ!)7\zBfa+ݸq^^^e}iӦ 7n'|R~}i֭zjVKѤ6>̻.=` pUz-NNTvƌuBfa+tYe^hpBBB^(<<^lG?ʽ+j( cl(,RPH3kV֪fC1Y(,lE^^.7o³gϖJC|bömrrr|gĐ~ ?3,JؔpQ<ַ﹙2eVVJJ*/TJe[:tmzE%!†jJ:wSL1_rĉRɶmۖ% wܩAW^m'|"=իW/z5JҤN ]) OzzI~MpTv㩩EC0 " e͗#G,h4z[=sƊw4A.]JJ A?Qijo܊|!W#ݏ\Y(Œs͚+R*;gNTqR]PYؐ+W&(yb>C߱cU@@G5?nJ[???z5ȿ^|P <6y/dGd״U?Y)Wg= :v$r†O>T7XXJjӦdĈO>|X74| _ QgH<>؃ut64mG4..k#R*۱\I͝x_`JB0 jݥשS'ŹtT*U2=zuI;wk׮I0(**^ _i2,`o o ~' }vƍ&3g4ZCs޽OI3кLKP/lju 995eJJ/k4L*[Y DE9:x{O>{62=ſ4-uqqq~3mddItO :ԩS_5Z`۶mRۼytnqq֭[6l(=?ҫ@ŷ>e^{ϦOӪkzyaNJ76iN$ΉH6>?7i/Y( ,lNjjgg:u?ҡC[nY:n… Mj'N_vmwww}jo?W$kģ'%s5y KK>=B7}zS _PAHb^,`(99yذav&3&= 1cتQFo6SgoRjUco=𥕗 17W7zl>R+̘QPPBϱűudv.'Gv^f8Qwڴi...]ty炂TϹsb׭[gIgye˖NNN-Z4iRhh(@r~M<֯_Ԝc 23mK7.n݃y)m;cc>yl f@,TU1-Bwl䋑5|ʂ[q}0'屍M|V<]b_jj}HvӦ"Y ,`W%23[JA3}5)_Wmْ8vlXZylӦ3gۿ? lMJrsN:ivfB ,`Wy&vq|yJuCUZ ?ԩ-[΍?B籭ZzJJʶU#>>/1C0 "`FntўGH'aSBMNuw^~pw`+opaıUe͕+ҍ[p_ݘ`C0 Ы(mʚ+J챇_ʯGZ\ٱo ~iSy +x|ҸlzHU*j--rrʴ9,`W\CKw-j=;G i&pܸwߍ۳'|c;R*>(r~@@0 "`.R*%8lu;4!W;;İNN yMuv1/)y))v Uy7&j)J/ &ED͉*)(Nx\ԩj5gl߾! ܙ[\ rxcR|(4֝;嫇` D0 Ы@p_ʊ_?хffo߿?XEE=RѧOoP Y^ wn977QUMůhO{P]=vlؙ3Yw%K((x%FDk+t33,`Wnx#75UTٱ㺻{._g t!)}ySLBfz5KuCu3eƅUQoڔв!]$۬n+ߩR\k: f@@M~MQ_jpX \pqE:}ٯ%sp0=lzZBfz5 Iݍg'sӶo%U?{wUaAQ}]Ҳ7-,Lrm+YeiQQMTʬlUa}FFa`daf^ݦayqgý;33g*.pp3̙*Ds G>|W巰fBfЫ R HV4RTK/~"K.LCss祥vΑ?Wn`X,z5-Z&](ˋIM&^Kq68X>~|e;thmyyhk!H2nuv61=Dw~>fЫF889Ne&qr@is)<\-gThki4o^EZfWmkHmH@'_|~s+V"2)I$0@`9DvԄZCFgs,z5r--\2)]Xy)Ipo|%t*[Th5/&?WU}ZZhTHF]=v|**31Y6Y}э7ر#44/CmٴiǍguԤI8!Y:\>pAX fԩǎ9z/kTaÓ-% Cfffg__ʸT*jUHYce+noxSEHe@OڣJr gfLb;|MMH-.o% e- x&Z|w.]+++80aGy+׎`?bOf/ZHYmmm ` 9sross35k֔ۋ-[Fo2eU'''o^ PZ;&Iv3$gga*~~œ&mDd:H*?XfdhzB¢텅lYl,k B˹%;rz /',pξ}V^=c :ԝ`Ϗ.Afj1)Ô3-2 Ѭ5sRS U}-&ӉSS,uRǙKC0VSLرc7YL6׎`8fِp*M.3l1cյã ['KN nZ+%2ƌF۸c%Z7$ǔnBaa [x̲;4yyy7ۓ x',pNsss߭Xl`` ]r̘1]9r$]rɒ%/--览^ ׅ4g*S﷝:tRw"/G"&X.gǎd7fYV$IRUŝ oN0M\|y7I&1Co\vmC>Sf#AӧO6Ξ=챙vЫl^<+raKD֐iKWZ^/z}M LJKIJL5>BoEpam]lMWL{\FZHvDrPokF0Zk֬a&tŝ f0k9s[ou;v` +JfD"cv=Kqttd zB^jl4ΚHoy}m?wLNRkk_v% \J +#8qf{YVvD&iYҦ f'2 -wQO73nĉWbgg'JmW-*o~͊^ΑYjjB/nR&]lPT7d_|ED@@ 6pq:thĉL $G@0ۣ#,ik/^_6f0+H]yQpFF^FΘ1cnnnwygHHx{Z=h ~ږz5*>W^mum}mmĢEt*n]A=DŎ|>SRJھv̲YEE瑙uWXyzjǏ'Oa4"A2fD,Z\L}#ey9T T=j`n`ɓ'3,,)zTZZLcǎo5we˖Sݻwoyy9z5@aj6e.d"!Ѳe6W\&Nez]J@@$$57ٻ` oķ~;eʔdcuf={0{kR=A6K3QQt*;6..Q=A0Qr<;;["D"Կ4 \Y fgIAlu6mKx>yW̶m=Ag6|:}J$ Y2LJ0##C,+t3;!`>`&(XUU3ݻ&Q"r{bbb2SFEEW UJ_@9kr̭f؆cX?2uq\*ܹjDtS/^KG3!LF5Ӓ%K&MJ=<gѢE{),,"`6;;y>Y0źt1cP,\jW||<]۫}]ٳ60 )šŶzf3SjUSe$;g$,L܌ No%If55R(_)) wCf9I?]3f/d`̒$K4iOv &ewƾ}?Z*--+7o^OT*E:Jd:,]WgK c'L{=Bxi1kkiinBUK\~^ZJmD0nnN@@ZU#`r)ݾ}{[la <SlذSL駟v3z{{7m=ԉj":2KO_VTCCNMc=<7JԈortEK.JLsXheVցFn@0w oooGݸq;BCC.,,lϞ=ԖM6-_|ܸqVGM43 C0 6ຂY ^]n]QQ?\t?&}רC:,p :tk4?AЫ88;L$%8|TŃ]ә7%?%}Km S*bbY"`OOwyҥK<g)<W,؀ fb\]]-POt}}}7O>?O?+}}}-O<^ ]&)kUEDe; 0ee5mVe9DO,/+ӡonjzVIl_)).~MMшu3̲P(dD׿ L=b׎`lW$ٜ$K,SG 4bᩧjoNW''ߛ,#++N56}(/ׅOo'7H2Y~pl\U;["ҥԆ6Uֺ̲u覙2eJkkT|r{׎`7A k׮usssww{⮫\z}uX,^zӈ#V\^ Պ>~ҍjnlln6xX'ȥK3ΜlkCTxS$Vo+(c}&$ 3fYYرc7YUNN]մi8qfЫNbb28kUuJ$:gc+׬_`9DvܤO?-oCL;B$ c| E^ԣ̲;4yyy7YANNNTU=zՏ=؜Ƭ:`ojkaYhAif2=%[.EcxLAIjMNΠ(<)2rQzQ w/A0Znnn*%IՕݽG9,,-RHs#jFNYs$ \M}*ʟx"j=/5`` Htc غ2D'+p\Ra%އ`|}}9qMV%誦Nڣ\WWnݺ6tP@k6BqP5(vUY2^^O)3Gb9y,?>.(Hz\5U }[[.9~@`5ygTԓ?\1pnffbXNwKZ~='sW-3q,mAZsnM^kI6,LjU*2$N-/סSܘV9n[Aظ80֞ϟ#ɨFÏo?% O?7P`xWzD"',z5@ѐ֐ _SĕglaMo:8K45}xҿRR|JSL$B~U_ X~̲YEEzXcƌYb͛z-Վ??9ydF͡,z5m#Md᫅|G>WѮ""JR+nnMY0aB܁%ry+-61y촄W kkuf3n!ey9T T=j64sgz s$Μ20Y-SL#ٻ$[̲A~)Sn j%#@_ DL:̖4 _IIK3xf-O9wMZQQt*xVCd9,䄄,XۛuƎ5*CsJW$@d|={D"˗#""y777K/ĕ G0 ^ i:.~baW^yIlBCC*((.saܸqJGTicǎmȄ bqg^__A|gѫn&Tv'KSYݴ{Out[kޓ_GkJʗ NJr0y~3 !A?^SS[6 ,k3nSNuX ''^.ÉkG0 ?Xf>ϟ?/_~r%>]gL:رcc~Q___fVSL//aÆ1SGqqqQT7E4RT̙ʠ Q1Va?%48+SՆTARԄ^$zې{PjjB;p4˃vs!wCM,[MaV2]}.6`N\;Y<~x&/ۗdӦMc|VN>]hUr8sqѻ֬YS^^No/..^l}ʔ)&/))C7xfjDZbBfe5̑Y?>.(HzL%QW̜/y~mkýrQsx%Y߿Nf0Oĵ#9{,vxL&cÇ[zw :===23f̰ܵw^&:$IGi_ի]TMMM7FW\ 8`ɉEEmreѣʲ2ڮkkEG[C-.NR> 6෪<#۔:J ;܅o+*pOl[|{vw;=Pvp_~G!e#G0!ɓ':::2<==ju\|ٙ.ʉkG0 2rH|KuPvsL;,Y{{1~ij뢿ݐDb_q]LKd"t*F{ߪ}:qd-^ 4 d`9ƖiB5癅4h^f mARڮ$uҌ?\9jwF0f1NMve777OHH(--z޼y3W.,$f.;;zVeVƍ&ӵUS|||*R|Ǚ WG'Ncccѫ^\0 2fY~Veal ͝TSc@R$xgL$qܼyLkǷ[41zB0r^g!C 2L<2a9`{|><[n9s[ou%;v` +JfD"cv=Kd zzmF~ZQ-ΰe̘X:$Z,S5zO$V{b{ڈpUԄL$!wC*D0~㭂֙3grB`M>SL#QUHّ6gX,vuu޾wlQáLB]"7kiĉ +J6ӫz(v]@4(Ή6nL$7dyԿ$ִZ*zx3@m* 7\!7LMM=|K*fѣ, 4tܺ^=->y/Wgџ! Ûoioonl)/\꙼gnh , Y(@`5c=fJ"]ǎLaBq]疝Mn/W P'ww"&e̺պ2V/R_6o^2%MRD**f&&2kpgoo^^zh#쏩IiHm-іj4&:1Bfsزeey}5 sUCׅ7mDxZpԁ>>>(J:zꩌ Bff&(+z5pIcoU47I$-T6r9IT600ل&f!'6D%%̤y˅-AQbVY`!-$I^I2W_uQF>]\b]0**>o>|z~huÇ]3gD^ c ^)E iXVScj-2$NeL{\][[\>$:dDԖn.hG3SQ1vf09scY)]?~<]rѢEݯ 3gRG͚5rX< fQTɻƦM@hI#xҴE WNl&e2w]ٹSC#G,"_&iZWd'T(t~{voO񧟛 Uz O,YbGGGϟ\{|3AAmmmgŪwݯ?<<>J$YnOLLz"YfJۨ(js1b4M8P8 V.mn6%%?t&w'/l"oV{T^s\>dgK$*e(іLL?7i&.`X,pƍsss+++Ý;pS,1cP,\jW||<]۫}]ٳ *C,f.,]ɋ$9RbEq<^1HX.g߾bƀ&QIjҌ źp))窫qg%1}h8=dfWFOOO6nx?t%&M\'L@>}z+߷o=777jWii)]y~R)z5yUMjQaJ֞lMaѢIAQwm_}Ud0h^@{<֑_E@nZ~vvWY=,Y Q+W 6o>:uS-[0~n^CCC6la)SuOVhz5B sZVڳg1BbETef W&3P\CCv|;r;)fW={ INN {wٻnݺ [r%~LkQ8;;w6‰'j!zh<~~@" R XM4RTKkl&|:}& HtEXDE/]j0qs8Vp e݄n58mBf+>[^cm/ooo2Ζ[&LP__s+++w.\bS}'Ыƅ{jiޜڰp <@ $Je崄&Yi\e krЩHlμ!A0 \u[R***:;dɒ%555?SG 4_SO=m߾]ףW Fy<)N'ǫl>ᘘ#M_'oA#ޞ-0bٌ;] ƆRS٩ Ste:yBf"B(]駟zrssbםbx^^^NNN#FXreRRz5JVIt4ajBZwv:k&]`Æ\1mSWw^Cdd9T['SyufW&Eݐ;&Yۋy%Hlhd%(yH]xt%03**X.o6av_n+ӕ}dhʮYc BfЫo26k"k.u1AA0V.L LbHkתTvl˭h^V?twpLֈ彸RлEHz$\BfЫ0iLW~|~?valwLåM9M@lV@gF<^oj 744,HKc:l"Yκr={3g0a,7xq^Y`!`FתeG3/lPmNu孳f%ұ̙JuonjZnɾqb}[ ˃Yd %8:P`9##~KOOoesWjmS~L(=)2 ߕF՚:?Vzxh$B5:݆\;>SdZF\CDVSV}:}V<. ͛ׯ#z=6 @۠S))VFXRԽr۵w!jDaJ\K32.b54T&Nx٫N3jd,ߟzV+ln- NNNLjR'ٯs*m@0 ^ e䱱> jѤ-8:8ӫ0PMOH`IIj5n KIs4.Hّe\1#qˑ(}Qڶ> VÇZ-Y|w]]]?nF+W9Vs]LlL'cl+P'ʇKfx%J)UWd75=t1*Fi"k")mužb_H3X{qi7\/U뉾qxV}NHHh4XfUUULqfЫHllᥔR|<6az9s힩bRz-zڵkѦ6,z5ʠ:Y=,*/J/_*y>ڈp #7lȕ1i/i5rf/G>?H*mCTz1'Z×mf+vv)bbtec fΝK~ĉK,%]C6lj9a=Y8iLdcb:xP1jT = sstf]tmNKY;$zܤks*uRu2Y\e­ηQ":t([|~~ծ1ӻЦ6,z5G06jpT֪,1\g^]mDQc1ш;nI ~'"8p [|IIծSN1l^^^RrffЫ%*;5y,ߞdy!4jKͦ-[.89E2ԬY~[a2a3/j4+W)=$Q11N5>.Le%Ә4I|b}گ5G2glgL]4^BZ"%e>ݻYyobjO_~i65Bw9o`V?8[믿n͍Ϸ?pހ4 @0 ^ _./\rmmڵ9lf&>}}$MEda]|WL̬?ŋ 2h-.ITV}q Y miâu6a%.=,o6g]\زWHH[/[ne1:nܸqgyMlW<K>srذh:)I|lFq}AټSddgإo}Rjk/T Ƿl?/73qَغXz\m0&Ƌ~ D;#ZZZ_*J|k=L*e65öZǎ8}4Z @ۨ싲Cؐj -UV/d⪥K3T*=AqriFC'SPۧ&$ UWWg]ōN;KXD-)iLܢۮ!->~Jeml^n] ,KfeeYuuuH$hkۀ`8*;;^;w#8~UV=zTvBR$_~ԩ?w?j#c?tQFQo}\qTV4\ԜghҘVeյtRk;EE>a"+F:*,ff=a]&<ϷܲۂYӧx<Ĝk2]wݕfs/_ŀOOSNu] ;hgΜ1gΜ»w귳Gk -6|&ybzy[:@Lp*0-g:GF.8SYaKѶ6g-ʎj=aBd6DF$Ѯ k}rRYK[nN;;;mA0 0y~vVIuuѣ>*PSSᱱn3&L 8z>^ ЗSt-!j)TV*m$:"--&t+Imu,ΑH*mZ|;5ONe'OzeH2L pycs0 }Y{ BDFF^t)33믿{,~!ԩS;sQ___fV'''[8l03_~eJBՂW -vLlV[P -vrSىz–22@܌sU+f&ΤS{k=a<--~t|m2 !Ve̙M$wŔo_ӧ-t{[[[gΜz t76NJ$)St$" n"+z}vSSdM͉._~`uv}))~b(~2o1J7LY;YN矇^( ۀ`8dԩt͛7b| ZY0{jxb2پpBzBh3wʕwk,R^ f2kMmmĹsիVe9:HAph?[%w'u }))gemp@IRqs#ߑ|OK? 5ܜR,,ܞ *ʳI(tOIpźnV`vϞ=c=bwޟ frM6uQ2&&yo,w0: Wir)~f3-fG :}m?<@m;vl[ۏ^ fYC jmg-_kҤ>!2H质@06.eZUРj,ZʋQ}9+?3K##:Kbcc}22-*UYV[0׉mlpppe^.uuu[Phhh%Ϟ=˔ cƌˍ9.dɒ?$//?] zӧѫ\Fd.ϤlI[-3g&Z rcb [['fLGe&$ {gg: 54olFF:K$U(׋ƛZ fJejoo?a„)s]w$I6qwfJJJ,wy{{ۗ/_GcҤI={׮]fO?.AL>8{l~BE`'C!t:iH7N'Μ\4) i>74aXt4$=gĢ]\1i_Lq4E'=GS^a|d06*jp~ZZ.dU0uV&;Μ91 `cT*ըQ&~-wiZz͛gƍtIӟnjja+ r5f?q=66 dgQ!S WSٶ6".g݅CdOO+2&@@5//""X.GJCllkM[c= fϷgXii*U٬ѯΪ`c2"ߗ!K B$mܸqРAt:̱oVر)T*Ύ5zhf.133)zhHm)ae2sj4ic1)I}"(HizzFQ۩}*v|>ռN9`Py1t_L`P rlBPwNU,3}O?җ!7WlsUmoB˘qwol| e S_rH$bZ8qbBBBJ3J6ӫ F`[ߎOqjlzg6/jo\|^^11,rv|s窍>}wdt& kk9D.\8Uqu  [.l1XVhุS* jjaU0ۿd:~җ!Q:[P/^DD}@:m4BѾD"a?~뚏=hEΘ1cnnnwygHHN,Vỽ/IpUheA}/C0ۣ ?VSYzM6Y&T7),oܶoNb9 jh))$匥}Z5;WaCTޞ?~|ҥrde-kIm4+%n$$(>0XBcҜ>eƍo3g>uFܺ~Q\.QƆ{ f/_N̻ヒӗ!@dIIɯ /8880>hٓ'Ov]gXXS855zOٙ:vǎV˖-wrj261w bc*ϰw˗,9iNyx/e ǎ)33 Q7iiM& ~%Jf7eﹼ":Lb=<n?:ۜF<Va,o'̑mmex f|>}2'O6C0 6ϏT?3f躞={04֮]K8xƿ $^ %.vmHȂmY䫪ei|y&履* p]E":oz*7rhmg*IFŌjĎ\4XL)h) cV[PLK tceeR*+l;mVA,\>`t> ,؞\'''Ǐl/**b]vu]Ɏ;XۅlG~ao{/"z5W4e7%3I#i.jpb庰0ҥVy!6;WֆP \SpW7 ^QAtF?KԢ4%/_R_FvL_Oم t pcc` cԩ~+yygϞGшN!^V̚לbrr,06"/%KFަX6P49)R}Vd)mm.T0kii!ǕܹSVC7 nzܸk׮ϰcл<~Y+rD"2.~|>KA_z5L N q»WH$^ 0Z~,( e~\k{xDu`0 ͥrr:'.}R]Je,SS8l,?*g5UU9@=ܜa[ ̂g!ׄCW_)b2&M"P(2=yݻww>î]z>42a. DDD駟vlbPO3@?̊UE2PB`NV-;CQ+V́W Fz!H(gk, jIWĹd}> }T`ۍMM vs8ŨTg,At}N,,,<~c=8/$(yd͛7_s0mYYVXW^'ӎ;?&ZV]O^ 0lz.QXgpCR&N¥dA>Y #oՓy7n܈^P[š{guu5qz2mذT궲2^3\$Ittā?0`#,IPdǏJ`᡺:SFFK/oŰؐU&%INpfIO{ǂߪT7q8dG&D;:r X`R?bm vQ XO/Z.O5PKO>Azx~gЦnYW &$IBK#󌢘"_lU!=] t9,v\v|0-M)cfKgQ8:=Q,5rEd?}>V98vylcK*UͦZT1c&F0Nh^3'l{TQIy"ךL(T24HMM(aiX7qn"h Z*1e0&=Vg( \zܛovuYݻtcN^z%h_,Ы\&KуdsZا*BBY;H0G*B/!3h/=|{yehӕDi42D皚WX,MNDF:9sJw3ÕYܗ_~4g?3 nYWSx॒'KW"ٻX,͢EWf|._ch,ji]NS*IΟ__\%X _2,אk4}_;wnΐ1Nûʇ(6[Rr`*15,y 7\zz婩}Y o!wΝ-aܲeKdddPPPpp0?Ih4N>իWCj,u{x.IE]U `6F&=6/]zȌ]Om5X. F*gkS{'JX]L:=q ހhoPUٳT?^F?& vQ)صE11TZ`fېH$= fsY]ݿ"z}rrҥKo0\OP(Ыf:.uU"N$'ˣ J(tR#ѤAeW?5yyD/ͰDqiE3 Qܨ8A\$)]. t6T]?Y-"s993njyy QT  屁ݜ6v,?6Vnڇ1}ACCf{0-"YZ=cƌ1 46v=YNNN%us۶m^ 7ٰvq2M)v9Gp"9*]e99{?X+|KΜB=l-EBޅ?1E1 |WF}@'`aB4tswj49׀jt~l,<<'`1:ŝ7,p 7nYEɒǎ _}Uxx8F;͑UPPI6mZHHO//k^z /RWmO$<]AIM&Cpv;vt]T|?q"㣏 w0R :h-E&A:3ˈx,~Yf53fu}}P`LthEE12YN'.ȑ/pvժyOO<6{Ҥmq,pOvAu̞>>x={@K1ՙ7sƲJ,,ו0ХyFϫ@JZZЬ=Lz 0QS4&zMZZ5 9Nw73gJ$P&;N+)ȸt ￟qi9Sܩa0@~,pÂq`v…Dɓ'k4jĉ2K,qu!2[z5/|ڍ73t:pvr"Iʷ*k5VliX[disڴꮞ kh0''K{9sةr ڋ?;],ZPaʼnBtegJZnlht 11E/Kom-0x!5u%%5|#~gpB\7e;}j2T c0 f) .r\ޓ]`D{Wȩbuk*A*>Cr%K-]e65::i׊+g϶X,Ы"Qn4Y\^/Fȷ˖IOWl0jЛ"vVz3t F̜DK"KcۍjuPO9TT͍PKmllb2enYCJ;6{$ܹg,)\Bc,%ۄ,̎ o5k̟?˫<<SfER Ϗh111D3gvS%@ ECʈ֭+~IpT9Bc/Z|ml,q>h^f;n9KR8Ns3Ԍ+h$l=)TK?Yb^4Z+ycUtm4f%S$IIgz9uj7Y+[D۷W#KIQ=#FkptAǥKZkK+?_W f+D.^C(vO^xq&]d/22`BR/_ ;;qD>hs\E~|2B6m* ۠{hPedjaUmאQBt`zp<oa6Jeٳ1e0 Q^K-EE6ƎS]JTwT FnZ0K\LLLLl ?[nqnV&ʕ+Zẑvܰa``0du0ۉ^^^tf"klR| Wד9q=''z5`)k:EVkj|6RRi4blrT& BR דqؚskT&TK֖vV__!J$IBa<F1Sⴘ1/Vg_wN1,YtfML='vp`>ONS[[K#M6mڵ۷oSRRSN~aXZѨs}0[RRBH{NII! ;M"d2q͛_[W+ܦW`2 rĢ(fs3Ǐr qŜ/6 TxAȈjٙ3* &.V*TݩϿx3fOq§V-T?ĔJϞ}ik=h<cwʯ[[b0Qz<55gLуĉV> q1&MzqƑܦit:4i̶d?I'//oD>Ը8X>q@a4VC ;f ?U|TS3sfv~S2FcWɤ;u\9zΞ\PpV$JJP|V[`0vk45I'^9-V*̎hO>4͛'ѯ9֯_OgAV.sT -!ðիW9O>e2 SNsݻw9΄#Nï 4pH$]#DQ <=̩SII#Z*2; $ |>/èޑOc'0&t~/xGqʼnftJePDv9͞%/_iz id˝7OLZ)8qw{Gy;v*--%NuM7,A'v!!!]؞oYiiid^Bŏ}ם54OG{С$x!4+\R煽Gt4/#jwT&KyV  #DM&q8G]wG*y5^XYxuco`ްx[RhOrέuNbT?=ju&v6PxyJO`rfwBo7>R*AAADmT( Y0R|ooo<<#Gq$ jz) &^=JѣNu{X?].KDA7҆ym kvZk8u^"Csng)N~G*X`bm)n-ΨX[om+۶ܚ(ntto_1X9s'jNH;&m6]Cϳٳ;L 몪Ru(ZkkP3$X-T0a?~!#ҥK}2dw믿N彺Ԓb?qc /]6s_+5&lil4[+\j煽z4Zo2y[YYo-p>U( 0"O oU߾]M61W3Qf̸{*d3G#hk+<(+{D莬m~8l%>>e۶ .+<<'NT8Uddx̂"44oSqz=q׮];v%=<< "<@h6ɍ"N{|>KA_z5zf܊u\h7)>U\}?oa՗4$sǨ)[ 骄Qd$9ÂFi4dalcN`0D|-|GP U94ek6oXzfi-ູ55fͫϭ~7*H=iHV+L>C$J`2:4آ,E֥fUzzdo+]Z0?edd@lڴi]>j˖-#C0 Fӧp 6%g͚իd0ā}ロ{9rQbҥKWK6wuY~gsوՂ9W7Rh:f6Cdk'Olyy!ݖ~ojo+fKWb<ևJ3뭐nLYӻ`=1E1ϗ?Xv_Dm"YAح<3gt q8.\x)EMPQȢH'O&/sʔKZanZ0s>w3t:p~>5b~0!#ŀXV\xxx?nܹDUVnILl29c1… 흾b[6mjavTT)m, Y)^W| _T71 U6iJez㍊h/sLs_k6+|a,&^( :Iɚ`k07Lv>T5$*R8ֳaÆ{;::,Y$\qBBBۧP(zxxccp@/2==ˏfΜ9D䔶 z5pz^,ef;e nW'$IiJ KG;tHHw cgfo\( {lz=Wͨ?P]YlYY,?tlP덊 =, _/CqUTQ *F(k(7xrQIF0+`hy|*=ɥ{~u`l6[cǎ%.,44s2P(۷ot#Bmmmx3gܰaΝ;|MՎ??~Gٻw]| 85cƌrB0 I]sY.zk.xtɄ4C|A]ݯ\~whfXG[W n.m7YDY0 cӧjk]cXY[o WW'K,/9lثGv~h[JKY SF4^xl4/:S 3 E"yJ%)'n4C m~>?66an^t:3j\-ů{qLnV|5PCC]w53AYNbF.7|ŹH&),,(xÇcqB.BA"%D"(1 K#P}ZŕʭZV_oMvm6FO*]u8: S̥gά+.>QSnAeJ6?KƒfU*ӘAP53Xo'XBƶC7ovLL2v|\OuVl#Eᇈ>DQ#n>^f;n0ɗݻ;d?e„ !] o,?.6M@ڷYPW#}]$atLrf;.x KMd_lT$hχJVGe2qAX,)Zm`}{#[8N!/%P9E͝G傂;lZ.aad$K Q/\W fKKKTIPQQA.Ooٿ<J&]>}:^/YNz̢(zw͛7WVV^s0mYYc=FZbEcW^y?׷'N N;v؏?kZ?L:}4j`0כedHclG\K}ErXR >Wy{[JKgٝ3XgʎtZ @wSg$# zP8QeRA V>w/ٵssg\y!A9Nͼᆋ[Zs`/zz>}z3%᭾C*p\&J[L,p'= f/9oӜqKXXXssO'J&WUð 6wO<j`T!NSLYP^4Ow.Ns̟` *.^|ܹ(Ry%j}X[ޮ|{"c"`McM;,;fk(N+|1e5C {GG# ^LPQQ՟n7aƥ٥Kܫ?s(hS7,p'= f/ʕ+5~͚5=[lzKKK7fO?Q(ݻwL&{hk!ܓ]wƍӦM2ec=pcWyCdqֳ.r9] G-+eՏ WO 7cJDotK2ca02ƺ_~E1&fgO"(-}h'S]]ɓ­[S:T+d))mBed0T0M\BՁ*/ٔJ |~^^^aaayy\.7 n z5 jAU*MW&RB}ΊJ.'I$72yl(o}{[!ì 2TVgd)Ba< X0],Ȑ&'ccS8=w(!/cƆKSN%.b@ nXo5k̟?˫/;{xx̚5kժUp}ΦS93r,5.N{+ɹ h^XF@z9U._:ci8Pa4*YD5){R,&.5to&㑗+TWY[Z䩩e۶q/tNb=(xݺ?7TUA = f6;Cxw= =}ŋޒ%K~!z5,M2&0Ȑ9oZ]j[X 1uTZZ-;vX~=^{NG͟?_14f^ ~e vX d׈4^vX~61Q<}:)K$'oFԩ:#|CV5uVXz~e3#{wZxP-e4V+iI,9ه$SzPc32xD( qqAL*T+s`àY½ޛ4h,,,ܵkYW_uAQtŊ䳛8qo}^__ȑ0 ƾܲL&?Oa0o *2ϏR k2BEMʚ6fO,MN47CD^3}}}}{>ۍFw~ijׯ'Nώ,ЫUgq1FqiJ[$H￯ݷO/뮂odvϏ骖Q`HH q%6̨B_4"^[fkL+)+bMs cT/]:ӕ^v)TFn_mh&'Ӄɾɞ=[jqF2 f R &P(#ehoEDDOرc ew_sωtt]IlՓb/V!,eDWr FcA,{LX$+Wl uY{X ##Y*Շ_P|f0Ƞr6?~ʋVgf^`ۼ\:*0?UPPР^S (ըY=",Mᗆ"\Y9\PE zx…yN?ξ?dh4$#YX>_ߎjﶔnyCɷ߾tIWZx!Poe0E$nC-C;Z&'o쳈WƍR7 'ĉfO$֕uhNNN )S7&ͪ-E&[QX(Y9DPLӃZ@LQL֜Y;ٓ'!E(k+'Lv>~qy9S__ݻwSRRܯ1?zUq+?M(67 ^&zD͢E2Hn.CP S_)/??/7) ȭoWVk6[Q/8\QܨTyj/W]H;دϝ{3(DZ@ s O?]s$)Vʴړ'~Mbb҂PK.Z3fuaBu f jzҥĮcm"VWM?CDDD"Y(X #)C0 j`#+o#+PE "s .<9IIQ$X1bGSe8_밀cLY٩:ûW/$I08Yʼne0i?Lu K.O 9HtկxyP]6Hx{={ͪt33oL?#]8VK ? cOKG3`ӕ_d}_b?99yҥQQQ7`P(ЫAx:Y(Fxaǥ!@ ylP"¶\cP5r$$Mdi4U 젱a6V[JA(CdqjPTWsV#c KqQ"s Qͦ,Uzz^Dir q`\ɫnYRI6ûn ̪jrk 466vy 999g|HXXX^^^7ܶmj`T&1e% jڹG!%k611ECd,MIXG[W.\{%gΰ4f!v( /\_~}Ӻ/ƒZ@$J`0;n".]:X;֖KϼF?fHJFT0;~xb***:&=w788x6lf_|ŻロVGs`,d /w=v (FGG's٢:S?TLҐ+ {yz"|K3:rJlp:'/g@׷j9,m,)͞]T\oKraiXҺ!\_̥lD@; .̥P*O):!!q4eZ*vc}}FQQLÇ@oQv{pno?ccro)@K۷o'.fɒ%&_ ֭#C 8@~Kwq*rui۶m,6 # ɓvc) sZ=qDСC׺bzjb_~7nwgtЫXSvSRUy,]|b+CzZsdaal 32G^N99Dh)2&6̖g?9>T+Rd)6!#9vPUZF p˽Y.O5zttRR'M"gm5P3`T0Mf>kyɓ'ݩuL&Ӛ5k#V`V(pfK<`dyypxii^z-D"!?F\(ٻRJ ^j[M٪Uv2:8ûtZUhɅ@p @ sNiSh)PhCQD!ߍ?%]x*IfsZgH]λRf ׮gfojb}`cӦMLuVJ58(СC'OfָqWGy;\1c?^u3FGG|MMMMeeeFF<@.7xcp0ܹ={᯿:>=cJyfu<["## nڼyge]6NgNj?n6]+{籬4^j2P {Z { ɡ*Mj-rDsL4҈V:o}AyŊMQ~HCΟ?H+Eklmmә!44tΝ{ˣlڴIV ·zk͚5̞l6۟yuQQQyǪO>׿jDK,:u/AfabYvH/^x=/Rf755 q&پ}v s/4DܔoKYa,HVAI8:/zaY~S^t׶V yXܖ,CV,a*gwV-]@+vH9Vr2#8;'# z.#dZ0{յ3gμd$^^񒓕ZpNp}0_+[+C/žNfOVsW4VL⛘S;CJA$;ө,_ΌVҥtDC4|/hkkc. >ŋ_0/9QQQ~aznmBv02Ę3ž~E, SrO?Y!qҤI.f331]s=L<LoŨ8[W% %Be7|o#1y,d73ggRtveFr2'y+V^vHBO`.O._)GDDM7駟v&wxCtL&>a^(#" ??66~w_|qŬ2j"OϢgf5a˙m6g-[`T\]=r"N;܈Z֋6Ê$^k4W^Hk+**+o(*i'oK˨7m߬c$\'{uuK$q^lԩH -3|=UUY]=th'r0 |Ç322l_n&u?ע I'kG0;ޟ<_=Jm}wС SV]]]EE|뭷zp>]<2;xyVX9O|)uT Mgk'lK.#ީ<:x sYYـ{[nʔ)QQQ\s믿nVhd2|AC6[k_*əsOqjAmwir1NM]WN̾J3P'>hnfs_ܛo74dfsS |#73gf*cIO\*?5Om+\.O2>KI$R M7̌d3wbi*nk?*+ǎ=Z^:H6,YUwm*,T$%c`ц s^f}S6,,L,eCX,+W?!^;YKW]uAAA+yϘO~tf@SSSxx?>mmSo~Xϟ{mii ͮ+ \5?Ti4n*6P,Y0g;](׳?h[۬::\!=ފLEHna`'*Y܍FȎ^KGWW?)Ƌſ_Lz V]֊6i|ERoؐql&-v8Z &>祭Yc`Xl6ۂ YYYv[x1g}vyx/C0 ~_gތDw~mfcǎvyӻOO2eou_0bqd%;8Iw/Kz=-Ms5"k׮uM4kԩL#>d2|W}}}|g`&Y,t%KxG.3޽ByyLo|ץNUsOd|+mmߴysw빭Y#ܻWza0)NJQB_l__kuٯa8=i3RGGyfы,&=^ ׮c9QQݧ+w?I }$ s饗d ̂_RTgZ-{~;w{.YdD?7k\}'#Yn dn,2Е_jᆢO>Y]^5<׈DtMfSjeσ5[7|A^ycű#ّz%'8nCqS7`FiDhz^XmzM~"{Dt}ǫV_>p߿ɒ%#d#""{ W,LObSSX qG)=s-[6sIׯ<ꫯy V^=Ήgύ7lF5\~HvW$"CLh,iiXqPiAŹII >rzyiM8Ewuu^FκUrWDsCXa{ڂmU(N.+x#ptYF,*rfVRR,&0\`P([z"Lꫯnٲeɒ%t2XHHʕ+9rd?Y(Ǽw|k(8ژ[?Ȍ Q<{{AAЅd\.|ǥޫΙDvVo|MIQm -]*HJR0l\\Lw$HV*hw؟`gZ#\xp8Ӵt(t:ujjʕ#OL4 EuVY,"'*++=[&nA]Y(c|Mz|le\]`pbW*^|`@(n]+{}2\.݇" m2 .ʼXDK㟬~?j(ې]]XdjCZJ H"Ŋ)#o?/l вj;z<}Msk.`&5k}7}!.'U_z?PLݕ+WQf-_gڵ?\'~'rj]l[+ypг"/f&rQ_w߯H@ǎINTs<ʕN %BAwcэj2"bEթEYFĮחqD^IKsA?tA~iz/! >`׫ W ziӦ#9r$}! g+믿|t dQ bռo!w3;G#Fmm^_ /~!~]MsG3E&':uu*+/,=9"ھڍ`ESIăjH4$BrfΤϘs=׋o |6XJJڵk ;ϛ7oϞ=ޥ? v3dyDEE;vOB 7x~ԯn͛7?&}g= onn>1'O~ɺN]_~%F5\Hf&M#Oy,Af2P΋<=C*5'&#"XL$lQ*w*Vј>T-/(1|mEh)MžBWzdhfn/A+I$ DG̒;Q f:4gΜ3l2/qu?`&&Ђ$mmm .?222<<{;;kss3{)jΝ󇆆ZŨ h9c$W0.'+  K^{(=]kJpl,} ![%D695m;K龜^PvP"N3@.3 &#% /gj=rm`{{ǍD,L8[lܵjժs>-rg;G~;ϣbbbn޽13^㊻n(*:cbZZdu{ AZϜ3Kr;hf21e=7a2"ͦLN&Sgɯ~ekmEx`ֻТNJ+ۗng2e sjj*:? J"a=c0{SiپYj?6:U(c`B'g)ZQQ&1sJτҵ99tegKzH[29G▒-m,hrs1,3MHG\|M 4ILaI `vǎl۶mg f=^}U;}`T?1KͲJ0,7HRX4>;֛ %:|j , 3!+c #1IC]Ja:U`gٍ}f&7&> -3MSڵk!bCEEE ,@\.mVDDndccYYTC,Xު̀|~)w:5FƟ2,F"̜͞Vj4i$iC㌂|ΡAADw?|*eVjll|V@0e Z؋=]*;ITV nVVZr'VkLƬ53''Uv$Zf\i,_IIĤUrYƜ\)%DɊűC։Xj4(xsgR\.`|)vCS?`&"KENJ~"+X.PFAfdVg"pVBLV _\.#E55 آ(U\|3sz"]]h{|~;5>+KH(6ڵ'X *~[Ʉ> fW^MLFF{f?C/}`Tb0׽TEw"(VnHJK,Xg"hNRB=F3˥0 d-3wEɠDyō Iھvsә3.3XwUw)ZDhOu^~Ĵ9' fC̺ulu]foN{OYjuԉ.sJRw\]PzO-a0SRT11\&HX$7-MߏKOq3ݸlF\GێʙEŹ:&c Y2Y3 LU(l6y{oŋ~'&>5T0sɏz-G}S?`|ERB"I_ U)>_;~ /Ԇ\a#GZ].ԓAMo|' Yq$+^ortvto^scH??t6/HG)k-Ϊ޳Q{ǿTPW[¯lƔO6mbR֭[T*,EQ榨d^$2礜)"*U2:c ";rgd CI|GŽJҥ h ׂYT:sKF"((M`.7t(0*W\]tZVe-8M>=ju""~]0c7-MCOct8$oq8߶M.E5t$;=9UJR$e4g*Q]8A{xK3s) mlB+mmm;wf*x<H+f0oT==x,w:W/=^￐,e H68HH(w6P|@@ł6o *M S CZTts]RSTD!!gw86Ne ى6|3y?˗/?cqM7}v;M7f0p|2Y:@K "](ĘkV[n-ej\{H"B/Mf鮾ߍ|s؜DLJV&;)N!7>Ud #gok+X>cJnՇ2/^'NP7>|8###++|10~z=oԋ7IĀmXZhQU( cأR$J@\/ 6kYjs~5"&,ONcϨr睧.(.F3vvΏlha'-R fR)z'`!ⶺO/Sl'b^gS]ݻf‚={F#jY/ҝb}҂69OO)Nb#XEo/2.3hLQju*A/"\hQks"43r>B f[[[###y; ,F5>epNesf紳'+:xP;y26ltϦou~>.d==hlͳt{y執~^[BN8n\e9zWhG{/+ԩ,oNTG_ f=9g:}`Tp*wUґ,BRT0+*+Vѩ…zlBmm+_#)$店Tvq&Kd\a#T. D jU$%ѩ,osE`0둛pBQEEEٳ999 Bӵ `T+y+Tofz6.C'EBL*jbgn7 |ABυBVJH$6|L{a 7FjUc;(dow/lW}F3?۽/\X64ShNtyw9|8&6],cRiEQXnoڲjAP[ێ\`|Yjx]*E%X&c3DYj3saݺZFJ}UB!=vwMʗǿ !BT 2j.WRƜ"X"E܅)GGGc&ё,{ERR_m-Z d}v3$yvEy~hLL̀škY/.yj]/uxoetV6m 23Kv}AAV7$Ef21$q^Zf(4JJD0Sr4p6vdYц 46\`6<"+V޽{#fPNJ"B:ސIlU*}/Pp!+~ȾRM=F|vALf,つ,C E7xˠN` ,L$LlF `**j;z ֯c9QQCYb;wG^zU?L2QAH;Z_N8ؓM7MDLOƊ*&fm+;P ƇkWdn?lG dE̢^Fr}H]RbU|҂tY/b̙fa00tt͍^UQBћ;@,ZX_`?\#2C ^*E`RT)1f<^&,Mh۫0suOJJn^+7wQ}v{[7[j+w 57TkթO>ig{ E f=l;ƏY|f`!m>S_D0y,LH$ =_I}AUW ci8=TUP`$PoO]*?UACC") u2t.ʅq}}&S_h4սTU;E |.V൰W\[7T7`L&av5KK--$~ca/8`&L&y3rթj{?|s틍3ylHqm%GZ,n oݏWWOaQ0y Ɓ,M%!L$+2d^FL[bE)w=ÉV(|\>3S='6o uj51`|!`|UkU,'M~IF}DN).LnmlV40;J=&ԍ)eȊ2Y0lKB첲mb?_$tkUkkѤ?Na_$(quj*V슋3de/V`{Jyy9&!d6c+%[j2AYFUUƍ":&}}H'*) &f,&gD]ֆY*r:8CCS_})SW3l+O?456+/ow+oyj=:;Sa4>4dys(-MMh|-8`|RMDOUd~^tirkȔUh(AgW^)H ٜ(Opg%OQVЬnÿr`̜ٓGt^j?6.B.Odx##WO6=]xރKagoa&D0Ԕ~'|>• ,UB8ќkj5"*BCdN=VkZ\ csry!ڢ~#JbӹW׸ Hv>S""wZtW'gfbEDxdh|6uYYY۷o9s%guouU,D͟k,7g4Kq%%)({5 3zretqIWbm++$Rs )2ې}GD0./-ȱGɯտO?ӵ韷~m۷|#첑i|fkURrrf{ .+f4Qo'BC#U4ii.3rpf0+VZu\]OTD$wIn^#վxq.XLNMU)~_EE=Egnj29x_S;MT{k86SЀ8PȗJ b3yyJeժE ͦ5~7!!yl={lzzzPP%#G7Y,QN"m:LL3/)Vc<|ս)xyB>}}xG ,M'F#8l*gg˱chsr8dxt2!Y5iiX"84L؏j>̮X>jD̤j*@0 EwYwά:2Q$)&u$II7lPb@`;[;ZmDLL"B[KK8~܆CwēO^wC`"xhKu/բ꭯˝ƲXa-jޞ T{$y_]BVFh|*:u*}0uuu#z`}}=h@0 ^g^'g*dpޫp'&c#"XqqTTjZmMM7x属Z_z9Cj4i$qytmqq4ٸjujN,f孨~`܅2de_όA…'#Y m~و`GfS?`.XKB{P;'9Yy/H~zu3p8V;pRcS(O)f3Fِ]wǛ7 c"ezG%ь]M.*V;Ɋ9sԩdT0xb`8Έ.]}KYa,Y ?56V< >{=?ԶX-4&V,.MR( M&B,vVvҞM\`e'6dc0CM{EW"#/ڰ9fSSV+ZOv}0vwM?;@ph4٧<vGXGbܹ<&> !~]U\vVMQ6DV_*y,u;jx{4δE&rd2c0?NAQn4H)9SA_`v1Gq\8>fHJQrftu㥓&ל9deS%NR\ Ǯ+(xU>'ݐJ0e4i;20jdGa4v>H;cFÛovSlgg MFރoE6plQ  >R0qK\qoV~~~cc8qC½{^y;c@0  8Y,:MZ}nRٗ2$LpW+3yl0AB,~WѢIYBD`,C")ʉLrYꎜjFx啬dNߜ]]h@z<3IPPPLL S`z 78i L>p8wbre^jd A:ݕB!ɆX 2Ym_0Q',CV8PDm. ghNg,3T+MYD8$͆[E}qOa|ڍϟ>I\JW_5|Ϟ͛s- :eED쮻j:\ZMPGY^ꫯ^veCDK,yW?~3f`l M(J(#lhc,&̘;Ku--x~ݞRMrlҍtàhm+;weұ/սno(d4?P*R^`=e IbMUUhhxM0WV|駋7o͙3tK]{4>:ԙoN`Yl0hii9zロzܷo_j} ,٥HR?L-yQ·./LqEp_j%If3qUBaVk'I 36YzH{'77Eserk $ko'4,-ݚw96tK!R$ر?lkm sF>_%$[7t9ٳnwSJ%8::f!!1j]K-lurĭBӶmeLgQ)0;lNB b,30 99{{wURx$bSwKT3`W||#ɭKb_QZzBTSvH E}ǿJ︃`D6T=Po33YAf<7}H2\w]!{d ;D\.qW57'׈DLXL;%XR*>ky]`-y}MLEN$*nlWyvo,UP^*[|^M7Vk3ELl.-5/~<[˛;۔?g'B=Xq8`|Y8L}:p1n'32t+W1GT')I dVkz}=R銼`ɱ-#5"lm`E-ϟG/Ծ/jjݔ;@4 ٵfO>S;g^2v!ϊ[ޜ3&b$5߯޻˵ , 0:LBȘ̙9L2gϳdk$Yi6B{%i/⿫Tz=-VW*eGgaCеµ?*i3$h xmSSMB"q'6[|9ڵǔgcOh?ܳ' @0 >,]۱Gqr蜆7'>H45Yl&YLZp~vteֶoeo*(ϭFmz4>3uflkmA9Q$ej(%~ lPSVw;JCB& m#IK"46VRb a=7Doj*0́Z~H,ub^{}k\}Ǐ!s8QJ$q*UJGG{~X_-ŋ)ֿZwi)Eh+`|Y8TW@%oo@Ȋ`Vb/QԉBˣ9L4ukPOar:<~|$6 ~)?T~ڪuQTW'v Z D0vUZ]CK(+ŊPln=3ꡇ8Ӧ cs,'&e6|YAf:99VmĀ-xi| 7f@;=%NIk4ptcXaˍJ=w\}h--Լ+{dI\gY*ELf!零_q8Xn WzT{PkZ/AZL}\$(觀$$l?{T\54/%fXy)/Ie% TdiX>%vų1` `l]`sN-:elx~9~j=.o/5HTVv7/WjW?Ual0W9Z|eX kR壁WSB8 Uy˷mS >Y d2b F (q8ڴ4at4oʒV?+T)|~ɱ3tXdF1[OcSǧSr9J+|$J/*b})mRMS ÜK<QTCUG{YYN"Q(!kkkʘLfqqquuL&3L~:f@-fvg6 T~ _k uuL錾 7PEr "X o;BIsrڪΔdƒcB(Mʒf |<]3f/X̋^[N0H:XI6oK4I]UY"]ôq9s愆HPPдiÇhK!jA^CB"Jdi pbuu'Z{j";;͖eOOu_ 1tQ¢0Tc2džpI2Y]}|ΊOIїC@ſ=O\\\WWW  DrgjbX>C0 =e:9Q$Y CE0aϝS~;oCZ7$4htkۊ-ܹ۹/nvcɱdmһw9Hvׄ?^v}[nMB>ǚ}pi2j޼yxN |?O'dFee;,v!\.Fh\TX8 VÕٗ*rg2f9'+N++{"QժbGH7+|{yH#G^lP'N,\tu4GUPS[kh0\ H$Lw]2VuPTh;}3Ծy,=IzտAa?),Y]8 ";-8P S.Ԧ3s#кn.V{2Yv]UU*-PXO$%`uOzmaQ㏳-@ߍZf`瞓"7L LGp!ύ(fwo677_jѣgv!99||ne cIHhl7 _bpAALĉA_\9}#/[H3?57H^ (+YAcmBH:~QYe cƌA1^] 5|K[f}j}~`֋M2ţԩSm۶gϞW^y5j'N8{W_}uȑ^{z衇ΝW||^b./YW#8 AJח4_j'OʴitO#Ra0)(bJ [QkD_?.?V[O<UUs DpZ>6? Ӥח955$)f a4d6{YiF8bi󡆣6M_^:w/ٷ{C% uh֓' Tp]x0:C&/''uNr+W^h#C`BNSMT1F}Ui$-s/ض\ĉm77'X_Z)5-~3!bh5s?ni,2JD!W2y=\n"K$ryJo0-v]f ;I$EnwE v,.Vb"eܸ\0{6CTf\papppߌ199Cooĉw-{P=}tBB%D\VY>UHߗyGCH=+2TY{)sBv,;lfvu_/aGH!{RL\0:UU+Wn0m o4`$11(c`dzgi|dI 0|wahTm/B7XK"EV]3g*1X,}}k]F=bEO|u4_|1~ƾ,_|C֮];eW c'Oz띮hK!/[M t AؒLo2nLBS(!cXco/_VbE1-6|¢@;Iܤ Őb.Z隧jxx*D_jnٰ(j1[tbꗖ$7jjo)*Z`$.D@O-+T_olooyݬj"aaW$w%FE1f*Z|˖Fg~EW\lniAa; ?p)Y۝Ng fST\__o_C0 \{3 Ҭ_'"GØ yJz.p`V'@ zz~i_M%%P*h)(隚kn68|c+;fU>_ZڱCgp(VpV<"xu뮽:ʪ֡nיL^_::~noV.ijXQ]|~ &1 $Ҩ /\ldi4 ]#d_.(=%w-ʺ1k9ކ x[07[gϞ}:T*=Ysύ1欬,P,p-9MΦ )TvYMR7gky*.Đp 346>.Q\Dջvw |]+#avhU^/jPƱX x5NrOw@*?z-۴I_Z \ͫYOhh{grG0ST7tRdddWW`6P *˖Q'dα^bvav/~EK3 X"Q&JN`3BZ;/lk`dnpng~R-6PM˜?=ڄ+SS{%x*ꫯ_?#W f]Zm\\w.av8\^[[[VVd2e2dA0 \m mo3m2ZOZ^Wn22oBVLXtjj\\mԕEE|S"9Vkl90G$se%%33Sǐb.0h%.۾c~BV[DMG^\~\S]]L`(&Ϙ?U==la'ȰGz`^nݺ?M6u`7_]~X,v ƍ̙:` ޠiӦs=іB0 \=S*֏17F--[o-c#I}=nÍUT$0!T Ft 0K*^񑒰j;/! AB UI“[o-jnê{znk{Q,^WR7x]h鶢'?kitF`+їLMo}DH0EK^ϒfsN)N}늫LM^q(jG2Yv`>ULU=FwG>e\K^̺Wjjj\._RTIII.Ϛ5kZY=g$KJHJ&wfeIw$&BCˠs/(_:Օ-=VUN N6RWT6?|c=WI#@ : Y,ǟF_|AqG5k:Wp*=z4~2uuu_"---_5j?N[[۔)Sx`VVǿۜÇ~Olݺuƌ{͙3GJ!*_UxS៑l<]-Cu<)zNn;xP|%&PJ4"Q}mΪbW2%>? $ E׫zjKƊZw w#fI6ꫳD&jN7w߾]_^p*?>~2_"=~8ܹsfhP뮻jll쫯p+#G̚5}W,pɲݑ"uͻvU-[Ǝ nPugδWЧb_k,{6W@Eq |4StJ$44_0($;:qz2t^޽]bx:D0e;vА\:jqu޽{a2>vfˤ+.s,uUiv^svP(.YM0 C-*LM&MخYQt@0Z]s RZCcu&P'JiObr8z˷ ]vdo`~J yU0KP]<^,{ٹs'ި[t֭w`ǚ0)(kɶOn{際n* A'5kxNl 6,.Vמ?u:cٲP$4a f41T`NOOMv+3IFsr.W.Wv6lH$}KfͲdBB.W/P?Ԃ 9(?\EA0 \YZGᄆC ]ñc;v`dVZ07W!zRrysZ=/Gvv|"'ZOW{D<--h0CڵV0+1˂ٺ1cƸٰm۶OV^-JY,;3~gpp0HVUUuBQ4<<, ܤ2͜nnƉ93%A\ q4HGMM#"T^b2r9onGBB W7gyf֬YwqǩSV_͎;܅af9ԣ>mſ vo+#YR44عS?w&͛\};gjz/ΩJK z-uɲR 3~tٺ֕Çz$i?xl]UU=FMXVYh#ƌZ6X,֏?xĉrƖD"S׻:bZ>JC0 \c9Hs zjz.a<4vꔂd&*:0jOe.jm ~0V[T_s x Ƭ}@[W?%_U?<fk֬qgqqqofNV=zt#$''c>RH YoNAcMevE|ڵ?PZgm3z12}jjG:.sZ;\>?LQ<^Te0[GKׯwWNFxWެmʔ)kn۶mϞ=kN8qٯȑ#SO=C͝;cx 9!90qϹnCU\h()AQ?\Ki.eG.De`^Qֵ͑TX,0u K^bh`Pu ? LKOQʤ|6F[j`EQow}˗/3gN||… W^wޓ'O* +W<#C`Mc9I#gdL|}:!!"Y^}]G&C0 7ЧlpqtQclYx8a6o.j~Q\n,gpBb9 mS&I8=aO <]Pz1.ZQo#%FF򒓥YY>|@)uD"Y`gAAAO<5&:v)SZ=XL<;]іB0 'ϑ x$)p^\mÆR<>- RA V\DW MC[ZNVpVpVXr8˵€bh^`-\ƺ6kR]o+px[04i$qĈ ,ظq?~{v@P+H***l6JuFXYWyԤ^YZ|!=5y2 dOgϲe`quU8p-r}wii\,&JK7#Y:=^ )ƺ:Yvvee؊j=q[+;ƭwy'D)/vm}|P,49zyf_ 7K!ySDDquuL ;% Alz/hXj ܚ&L F.%Ͳ&!H~Ðc,v^'迌MJjx-}i)U,@p H5jKHHX,1vnǫ٘ddEHPǍ ,%0-ֿVϹ{(`bTHkdזmML i?\ǁa2?jDErgg>1># EBoCrgYJz[㾣 _fWW{;33gΌ9ocDDħ~ ,p0'&k(r^ͱsOtBBL_y6;jk3alйs 3bԶ -'watI7fR(rkkR(cZ+^ZWrW~DX,裒{%FFzq*~X~2/Zx Y_Դ|rwKxC0 \,GlS#QQl]m0gNM@R}jɔ#$G7BqbKKiU#MG<SSVs-۵ He? Uaf0WV}cv ѨѧMce 9. fΏn8p ((iӦq\@0 \ĜäE|n"2ɼo:՞io?*Z_S ByDxa}o0s6ig-(~qkEFGx|e= C50j44䍲Mtz`1,f/zL&b:s8LMMTj˧8Pr%2O~Ɏ~p|:.;o[ -0n8w޷~r8 -n,ut{7=sX(, y=7(L&NSG3%=՛o+*`DK~f2{]TC'3!j$[L3J7-N蜂96}bQWS AB@ %K_hkkVNu죏j~{ ACbTT G/jkk;5k&.}aD" \'G&FT{^=Ü ;i^9j5biLRi?HO<[>u*<\T:Z +Yt:333ዋ#!./b>t]Kbc>+ۼDDžq`x*F+{T xS Ge\L$?W\"+q.p~.a[P Z-G**+D&hW(L$JW*l6}T6򜜚}II3XKo{%]OK\U4&9i$|8,0K}QoK^rbf3/OiSYHN\NN*L&9+󧎎Gdr.@䓖Z-0-XчM]rw$1#="x \WeUؕ0h V t囥t:.Sku:-#ήLMe%&/ cư-㧤3299, f-Kuuu^^JX@lذaX?yR_(q8ڴ4at4oʒT'3;*Ujee 7 66?]F1_&LJ !2-Wf~::~H2˷03+2d&TU=zhvV_V8u^r2eܸAFGv[=-}`.xo fvÇ###]m۶ b0f!h.u^7ffJf`x,HKVT\Ho)#tW$,WbhcoYW^$#ћɘzO?u;}EE/ˏ{C!*l{mrqF?%liȡk"TiV*?ߪVó>īqkTT 3m4P,+c5OWt5>zvU%$0gKIIܜ_KkioUU5F(B!˳ ,m5wxps^9JKK3 Æz]}j5"ytCA\!|ٰHpVi--t\oQLqm`CB3f𒓫쑾~Ǐ?`v;<໼*;]vڴiOVogS-O_㥾Vսt8J)4fk74^0ND X6xk !bnk9y( I+VzsUm0BqJ(L$x ֵÙ̄^no?c4ֻK^1JÙ 7}DbDWYc^Ο??QF,f\&[zX;b/e[7vw;h4Mf$9IFG|5a*)|2#׋"y,#"PWBP>n8]t(0 Y͎CBCM$0( UlDD~2?< M `%35j#@9)?.GmW>io)E˖ 7PSR2Gk_i(fZ_$J`2=K; XҪ=Yd2/y:c` [8!| {ɿ죂]׭ͦ wǒɣ9#):jU}ϧǻĊ@`vر|04 Y2 EΒU*+ݎx?lں|5 .e?Lwߵ+?O z{IǚD3 .S;S j4;͙Bp𙌙ɼ4aZ,5ϭS)J EtXz%u]_L^.^?z &A0 h9ڲMe#&qUWfNgG+ԭ^FAL iݺ7ސhqiC&bq b+w AeMhTih ̄<Y}E#F :!6.{_UW^!j ow%:1]pSM-Ǘ.TSIU(N55}P[@(bۜؠFOU*ٺ4tzӇV71uN<}e6UUP`h^nٲ=ޫt ?@0 æno}s,b$|KymvZQSNF4Me|USW:AeVV[Gqq}q`vK oHވ"F54UoժY,~6!|uDf21PW"QսJƍ)S^g-\Xru#GھG$i44^'!at0ǯ _, HCxBtz47T7.9jj>\^V7}\d/[,ݰb3||d0$lm[Te{aPԪIO"H(sHV6n/9y\+.O?F;}[\ɘ9Â0ϯxaiVV'd`ׄWqqq2fo8{jZ.bcz]H0^Ʈ{Յ RUBC<@1!6}{a65EHxg@mtUO<5`1_!b*}E_v0u?uT-j65--A,>&*D0t}Cá."pzDưԉV M `|$ϑm*#D<.JwjijvʒIä`$5|KYҲzeQ;JQ z;; Í*+@#Խ-Bmav^_mCN0Xuc@哞jkbF炂G8ւ5k;w>drPhPQ٬,dlC 91qsY!P|W4K]}_+9'vPoY,+*12`8{I&O&LL"Iܤ,i{c- UrZ[O׿*pɱCυ l2(]OLJYKj16[s~YF3a,f'8zFd] )?*SPT*_tf;\E &>P]WŐH+VWzˊt^^^yyt`լX[SZ~ ֵQ7pWU?eN/nnP~ ~JGȫ9F sτ X, P``Eai6Ͻ[>i15]\UWgLIợɓi99rdjvFs_UUKpap*~_Y٫g^]vC0viԶm9s_VR(܍ !`񒫫J[Cl|ƬY!Yc`օdg__P,x̉z a0ddTVsw^·۽v%_ʔHRD+h6 A\VVfI>PWcӤCP< Fe3h y;$R(Au^+A}/j;eΛ˃`voF5f:rAI\b Cخ7(6%_55=~t%

= <^rOOݏf25սeXYv6p x[0;fZ2ͪ|Uáv~$0Q7Kߗ:vk3gw2汒Meb:Ё A&ÍDbG14O71ɼdaЇ ^oصZqFap _t /,\= 5 '[EEwcɃDIέyF0_zdtbź_zkQHΜػP cǰ=}JrkuN?$ j(Sܗ)6E.0?ݤ@`Vty`@p5X֚gjX FrIǎ_TּC/1,!mv+Ӕ) $ˏww {)m*lx8q%o H2d~n")`<|:='2~t*#))ٳȲZp@0 A,p2իb}~(ޫٖ$ % % etLEJ}A}:6.GG2m!g?[]1Z:|y<@OH6/R9OCU֬ c鑑D=}$؂ټs:VJuC0 pv~dD벇ZmKNM@ dFMR˵V_l8.I$IG_EvuTUؑ]R_á'&X"4pR?8cY3xT*l?*\UOQƞ,z%$*+{FtV_Vޚ~k WR}i4gq`dNH r (j;OYrr֭n(X٧2-ͮ <`YG:Hu5HS$;ߊt##)>^P^n]36Z}5XR)3rgSD#wMM@sq_]mHfQ+l2ⶣGo]gO 6lX{E뉶3O?m>c#+s: 8%Cut׽\'m}("YH6*wH4?6Z}ֳD !9!o.kn"OO|ՓN'a =P@2:N[Hb7]]܎VVo2E,Y"yB,N,-f/6?2c䮁9s8ױwܚ?/%ze͚]BaC٣|m͑#jNG `w_|1`qU6Ąp:#5U1u*ӟ{-XX$k{{tjTz{ieiGùU&u8\zF'`genmZVlmɃP"tAނOHxSꩲyNimnl|7/3XOrW+*Q*h2;;==0seml?| 811 7n'&V>hΝ_o|]uFF_ӳƲ2Lfok\.|Z3Y$׭[; 6f|6ʼn_{TPr)QYCu|fm*Əի >^ZJeD^ XJ''h Dgeb6Mj;޹Q1N<G[۟>J':Zy6ádN;eJާx%%7Q^U*]_zK':]Xfu G'&aa-y3GbSq`p\{9g,5rR n~Y荒)l=W}{ƍ•+gBBN _/`2;躜NekkTVYS`.,W,N]]jamfuR ȕܕ6?WGy_< ,#PQ]&!,ԗ"htihth/Tw%QQ 򮹦DO>Yo~h/.6(Vuýr饺fKJvTUpMl2Gz备TTl:PC]CrBs?Rk}U5 3D P̗4phSXpʴ4Ww7ny?#1,I]]yl_VpyAOeɟh=rD?W_q74FGxoi+,4L98>IB_O.l"ORd(JS%3X6,KfE:]vQYWVn7kzvuw׽r^..7;`?g諯%Ir,A0 c  "+ݽ$$IU';waaĪUvIU Ud0$d>yr.7U wοmmB0vk4S]Xy<:#?"I2Yݮ ӣxԩdϛ}ֆ_0V!Įo7z$NgV6)I2o{8~J<;[g0Lϯy %8>?MS|Y&F҂;v|i]o2(rsgŚTݦ`ݽ o>_s6+ YBf`duf|w9,5w:IG"_0$o;o;1Q*+3Y]= c-BGc)y@-7r E*1?ՇIWjU_ViSns`YH;i14JwI / %~~c[)!At}xMƼ>j*XVmkD6F$}~yڦ^/X0",E2" p3lq5STPWd"NuFk\ʽ D,!=nSIm y\RrSIy F}Y"_XGl n¯n8;Y,{EE<oćXTtk(,R Ed/dfR03l>H;L&'tl@0 `|ZNcK${FE~d{-h2)*N]$g()a0U0V#""ְŋ/==k׮ ٵYZY#BeD4@:OQZ;yslB 58$''I"=Y(rߔOfLPg`(ʥdr8HHt:))W焄#ټ ԇQA `T `vHvYYYv<`yzSR|v$# WJwI[lmOxFz$/ٚ=5 >\TN|Gprݔ;M6 -ViU`Hҩ|Dg$ko:xPic>~HWP7po0Rg缅`$;h$3v_HԽ\:)֛o.[⮮QkULkx<DLf=uDq8ߔ#ƥ*R=fP tzz˻DJ'IGP͘bѳ}X"4 X% 0l*;wo0>(N , "}{Ŷ F`KO&TeF}n*=]EE\ rrs;NlO\FX劌q6)(|(z/U\U\=lX4L .wυ~dfL&'e͞-NLdf |P׃) é9!sztٺ핌Ic#h:CY8 -Bb11+lFņK |Wx8"w8 񪞞7 o`DBFkc:#Q81O8#wqO[l-$4*ZZ>ɞ3'?)_^&Srk={֭#ƍ;aas W.vc U0Ko0]v9o!36%KS܋r%OH:k0ǞΝ!!d`W_]T]mt:lm}r'[OҔJ<ylo>!yⒼKD_XJR\FHJH8-b$ ¸啕 Y6C b-R]]Q][;`NOcN$KcyD $IҳgV4e=A:kHEl(!''$4}PH鲭ah)G'})ܹ*K+yD}Y&;`bdŸ-X $$3:6 3(/oHzez3+K$?'- 'iiJ478cYetUlo+ݽgܧӹ…Z?r]q֪nV$$ O\ἩTVOI(z?jĘ}\=RCX&s ibq^f矋6mED汌￿Qwo/ndͿ@NV'{>ۗfttgؔ$ɓGRNÑT^ش+^ j.]]G&i(O{B^yy pt xTy,sTqb&3y,YBfcSD(J(uhr^{mq3_p{&qd0I<(KC^?3FjHyyoEQ#P(KNGFN^}.;Fl0 ` ņ}c23*`IIϘcǏ%&lu3UUdcy"5KGjHK}4*%I]v6oZ$K?rvsM na8;f!!8-o-ϝz7zRUl;~JJm0dNe>󌬮n jWylv`c;JKid5r,mu.]Z4]>rH-%6b)#c32,Oc$Yr]] ,!c Ey ~81ID#)wezVY lzuCje|+Y&kZD(yܙʼnl=:>2áS*6,rȐz"55w ƚ52;1I^z{)='͝[{րEc>j-Auv*o^jj2]]֯GF#ق/W1pvA%Y>f A ./ cpǯXj<*{),|? 4ZX\l0)x,9O/_X $'d`w߹k=*E֯VkN5?5Je6Caa˧ֽR֭kӦ.u+￧H3 .n[de.$IӺ3ڕJOW-\ YYZ{wl.^ }c4R4TeO7 OM5aI%51xMMK$xkIle݂!CU:$_6o\I0 PX{YBfF5ΡHU01[ނ^LKfey F YBfFT#i?֝LMァy}4O{衊.(zGtz`ȸ賖{Te)99}  Ӕi^AF.Oa&,tc6[͉I^8%3fHw2N,q]N/W(!Ju O7ٹobĉ_1tS :cIۛP, c2YUOψOywW P"t-oKu/ ir >?.0"D.b>M% FAXMf&@pB0 A,@\&S]r핽'zFc]W^YFce{_RW˕Vyl(gt"k'GێYzg8nldvY־l8Fx*U5!I$II$ʴ4NYBf,Ofc2C,O޻.Ć+Vp|:3STLV'Iftbx-02j=.6e3sgN*RUV0A&XؼZ, 9!nP\\5w5KI`t,Ah|։n|m>azܵK:noc##7߻ :]#xDF.t:^B]4vM2ة̩+l0६^rW d1w|8qܬ;vY8^wGFV<`NyIylhajMuH~oUm+%-[Vܤ0!Er4yK, ` !!! ,[_SS3J,k4ep9)I zIIue FFLI$#0m\*6ۈ :N{?S՟+msXsy\=pt ?/nS-6p/,*ZW]dsG|w.3M7Hw]u6` K]+y7xn '%fIG]rgnժU;dchxANoSMSA$&̙*gjm4r19Nc2$"ac'E4e&Ѧ3q(Þ=rTo\O(eKKשּׂvbQP<_IRwXi8Yri&t8pc`6t #B5ɦɞ1&2:U_gdd߿O{}}i\8p`=lڴi;YUUz{i`-ZuڕUU5L:Vg[J嶊+~^⼼C: Xd(JW'Iq}v0"l9w9&kYcX *$$讂9׍YXQpsfs9V' EE}}$Ow٠`0j|||Y}nܹӿQqfERl]ſU %D "cxoi{o/;V*a{(Ju[[\~P8źR'3++zrJ([;' "'&\ŻjGՎtUzⱜX, .[>P*>]Vv)~*(dhYv{9`h;zjvtsv_wى[?Ak۶mStRr.ڲeoW;vǎ``БNR)XVhh+- ˉA |Д$y؟|2CjEEtȹ,mBa\u[3yt̲LMf,971DA44O>Yl;ȳ) 2} BX\JhB^x,xȔ++Z ;QJ\)G?|_|p2XӁ`6h-]wj>sUEEoW+Vǎ``nU=rgS~`mǎ^{{ŋsBBÉ+=TMgjxh  " .w[E[J%1lml=;]rrP"D b81 TEj.x.oJQN]ThN '%H$I EZ}Pd6RԠεC˜:2&Nm԰&3NHZ-8Gf֤I|wE㽻2eʨ8v¡s(R̩LYQ͚5b6͑#7PC0.rߩqWrܷ˗cG0 pvmv[J n`) 3Phz?Sx=DPdJS*pp8IIVkrttݓOၽby;vz5CGB`L:HJxC}yXwӣ~W-vܸol?M`/H@0|AaX6(zGű#8#VmB"/$6~KmJקOg)! \Lf0vFu&걾^W8dRMfDDMO@aM&5SYYCDxo /޹f3 `6h1 ~uwu[dz>ǎ`4&Y,wFn`Y@6 uyD͗ύOKNyA  RZnWk*ARd6k!gh ^#w7DIt+[KtٸwF٠EE]ꫯ655;::{K/Կxj2s`l-6e2<9)I 22Գf+$$'1Q8Tmrj\N0OW>o o?]]N ݽMfQ:I"L~k$u\[ɂPQB @@0Z[[/K.{w^YO?/]nzey__a :|-[0<(ʣ׳++QKdyX*Zʦ>mDdyW]7ǃ[ !,B(//x,OC0 !ѥ9)Otq6}ꝌD/,\ߨ0jp.m4\BB$ ٯN\b cCz^ݱcҧ,^c}pF=[ `@0 A,?\&S#J~FѽzuF×Wݾ?Hc] uF?.$'PF?|NR\jUP cvuSԐ(Syy?YrMc}{.l8:|yy!C`?haI[ e/d־"o͚yu+XT3t:zfG\=Mwy%K`[ou555H;o*91/oA^_j K?$=r ܪUQwfa,1+EVB1!}Zj,3×R8>LKk#klTQamlttnW; AkҤISSUUu"Ir]M2eHǜqh4 XV_{#[ʸl}V63SGiiʗ_{$ɃV}wY|꫋VpMcN@NX^oHWvK^?F; .w[EśJ%8cl|ҧWߊ˻a͹W|T=yU(@7idU>=3bok/ߺ`R",lK]N3,AkĉRդIt:nͱlʔ)X1 Ae^Y_&&^?:>{O%ܿ/Hkxz}\ㅜ4G1N@$)YZdzG%%^\T/wj>sܕ\.jQcR88wZV0!8y:y2cVL 窫xqqGܹ淕x b5Յ)r!׫m6:c*^QlK '&$'#7o[߈=~<XVJ`L>QdN+)/}Zqܫ+=^]W]u^];ݻWeQ(( lzam6۠ǎ`A^&^\s粞zJ++{^Wu[UUcdCC;r줽XvX}xt 0(K͚l;t8I{(PX[Nj%cXϿT,u.fSрݽcǤO=dɉbXbܸ+|ٻ6>jo(V[o\U\곻]]euW]٪L!@B N9C!Pz82L^=\32;fYVoi bZ}Y8BpF|wY8;fh3י{].uIwH[ys4fMF\J$2?0OiEOOⱇc('nűJepLud,CK"@79$gx݊V~OO溆CǖXoNNJelCG]]yӘ*v{k|3AA'[皾e a\.M7i'yx{{{wxFizF|wY8][?/kRpP@@NtֱQg+_/S䘦Awu=EE|?ךS=W9WRټ;sv*c?0הxLsؗq3R:)|`C .9_nH,2װVf٬yժUhk֬ٻw_|}8pȑ/wyW~{ /9j3(r")2כUGQ c_!rLx%Myy4N൷R]}c~8$]*KUUVg}\Ҕ"2<  #"TqT}*\%d\n".Q(i_Q(4 paaXCjw2fYꫯ&N{83[# hjߨK}*hȽQ)!/X|jmVA}Ϋ(y rٱT;oY LL,/4;o4 衒>S6v5(5I߬}3JHhl ̽k6am.YS |N nj[644iؙUݻsNS`ɖ30~.뫯ڼy4(:9,L1U6QS?Ī8)4&[9&tRO |w螓U}}z}Lizxpb}{N u/W^ ]^lS99Kcgg^着ht;?܇33/xr:Хi}ϯ瞓qdnH8wY+\z0;sk7|U8bʕ+t?C),L/U&A9˧)JH;I+=ڈ{qGXY\["L<?hOC'fs!pUT=Z?d~% ƛKbEormZ ;eavfh4RT(C[;UfɊpic}aw}2{S^l~D7 w+vwۧBv*Z.\}~gU~k`Mۛfg_:q nxhzRآWpɒ,o,uW_GuI/_pCB-Z[ ˅>}rέWyejGܙ99&c:3V=Y^,Ҕ&h'Nkk$g $KJ,Ѿvػ'HW^q*'j&j32h֖sRT`iiL__ũ_,%\,iN;Y6=Mu֬Y>Çe2ٗ_~y{Y$O6,JCBĔE2a;>qv:%),Lɝ7g8SN&@cc\z?"{Af?N =XellO 出Ouf]8sv|,SJV_#GT>s'೰W_(Y֪c_V}v(j+W9}NShs:SS \։ԒlqCCL5P Mi5r겦R#"ݔ)QePfN};7*Y ¥55ۧ8ԉ1RR-[H;ba/ a^z%UUUOff'>0 l%ܘE|>Y?N:;Z׋hRmX(ܧǞSZfsu=ӟG"zh g_USTgE̍ \SN o]`OAAW][uLw*YֺꪫKsM /YrӢ&ACSL_,4Z&A O+1Vh<*7MRkpw)ه0ZK.e.?nVճ@؞={0 ?0}R&1rCD-=eVI=H٢E@EF>La2\O.&F0Ojkz5I;9WSfa/=̘ɧJ$[c=v*hϿƱ16sFg}Cӭp ̲V`` si4{:tȓ^ |E=Of(Dҫу,gZZ[LL|OED%%ڬ|MظN,Νee\]]2`_on  ||+쫜c2eTqGXNN/ā)G_f_v礨+|ᄈ`Y e.\.xOw|u0 gEo$cZ#O.D#=vQ=6$%OIiqLӝ4tAf'w_QO8-"(^. &SŹw&U^>Y"c)O* hc\VkSJJƍϝ46V`-YLP_ιo!YfH5 (^/6IM'bq~u]\9oK`6;.N56eeyꌌ$:u(yT7'.N_v<<{{Kx^=6@&lhjmOm35 9;%-.܇,0Z{`رx f zLY8kzK{ w'ʝUJM=`"#d$5PZ[^s. $N[ÿ-JJH^o)rYͽ٬M:{6[js}*.7{aa$ł`F@e>T?ݿwժU;v`#hoIev}nuuW_l 睗Ba1DFv=OOOj-I=mW_ٙ{/A'sM[Dh2Yd[[ڱH3j=/T_xcIcw}7, z2VIO~"Z1P;srL9sxsIbz*c2]I1aw]K* wot'3b1t]yyG6|&!'33V,XW^`Be?'tFGG'1S5,Y,I6`t՜HjuBfݺQSX!Sg^Iv@𷚚 lmۑȱx-.y䡃L|ha2e,-/W9!k^{gy^i?4tٍϝzY˱`FCeC_~avh8 DhQũ\$_!5հcԻ&Κ{O]4j0KvWn?!fo5˟볌 70xѧ0׫٬khh?o^uz:de?`p֭o.y![oM&܄t=zt߾}˗/[~w .DnUǫ!#I(yOɉh6;}9>qmsR6gey/Njt:x`h2^OU=63scEž6P΁mbgI/*0PkmoǭCJ?=^kgͩ .dҥB?4d9^14"//mkv$GŔƴZ[Nxw\7h)%E|gYddJ <ffB>GɃ%L(u!d}p0鎑V?EimmWzzEE?v+Ր6cgHYdy_TOfh5sҪL4=巌"QztǎN@Bdndp#}`{z ; O_rMsV)+˓dgxOUTԙ| cٗ{VVn;w'`4Tq<Ot$2N++ w:d}c! !$RxF/,\޽~IkduM,N硖 )ʓd TWwl뤝.my)M).zjWYZCQ$+nkjJiǔMUV=ǜ`[oa/,YuS<2}AIc顤$]` л*OEqr>ェEYYI:]E'&h"ess=I6ڿ[tɔ#G䉹l"Ҧ4j5j{+yf4! !̞Mnqk2LaB>stSDvcfw] *9&Ӹ xu|D^D7cMrsEQI5DYd$7$da/Y`!ٳ%A\&UYd7lVV">^xafii$8CLޒ~{g',-JX=9$gdǿh8G\v{\W-oh(3YxsT8GBuu6o&91Vn]C5|QUn(=]7||ucc;|[v~Wub-0YVǧ/>Yt=,|ti5 u޼[nopS0 ,0{.Z)&X*~wfs}UsDDwܾ]VOT#;m]Bgx;:'qj!9keh?Td4z?WkuYҢсTgx?/"/"Yw|j0dޏff^&]iJIEFkpQQTn=0 ,0{z=X%o8-}>?.NY Ĕ;Ԡ˕j0D ~{MY]R_(X즬M׼OvMBz^QFhhhh(~DVKJutCB6נ))lgNI6>YRgㆫ~DvӦ$]w8O\.~Gǣee|GdH$j={:h(} z؅O?ߕXz k4 -cw<*.NlwX/鯪 3,4 ՂEOBqъʯ}Wwy~~'f)c8߷Ɣ.{g**={Z]VQ,2)gZWʺ{+?o.W^}mYd$7$Ļ)1D˅fY`!ɣ]QdG= {_"3_/r^~^KՍq-- džp{om%--4f>OȋH%YrC|zP⩾>ΖÇ~[ъAPon}}`BB sY_㳰Wֵy=-\6#.NcyDnO5bJKx޵t%45B43=6=v7$JҔ9C`HU*c32XJx)G/t(DYd$caaXCjWf:Y`! 8i̿>Y<̽vاdž6[JSS\zAB~˳W@]cC+|4ʫ~%' b'[[:'v44蓓ϟcswCVKY`!ٱh!(y7;^*=v6ר>mo(cS*y6Z=Xe,,bJcR v6Q,^cy2Yo2D(gl٢wZq0 ,0뭿_{_Y* ʙy啹ogɭKKCF?B$zBl4:p|˽SR'ʟvcVr3rJJrH۪^rl>[[[k^{Mjw.]ZCZq0 ,0fyySPAܔ M??*""/)I48v˕j0Dy5q*htu hU=@SK< 8i>9;2czr3I X…?SR239 aXfi'mKcJyFMY@^|?W_մ ;lEg .lgOEQ($qQErhQ4.~DV}>990~f~a_ݯScEk3{KޓKSRq1uѴhV(g].ƫՍDm::Y ""R 1vpv"3Y`U!|) C>g6LCCqۓtbcyy},cǟޢS;ڦ&fdEV&4Rqx {V$$::p  L¬`׈VNL!GGꆫrݴ)+1QewEOOR94P>߽oT¥:s]>gamm?3;} iŢ?=A$K#>{q_E+Wz>+ֶ4½ @:l4 N<";_Hi£EfHsOD9 WR#fg~Ȼ?}kǟc<ߕ?<m׿R=+Gee]ĥQdA %Xo4Y`s5:d}ޱS.uo,6_/D͕+Ek Ɇ*^bn{C)'IS. L [ZPDK$[(*z'x|= {(Y`s/hjB'vrhQd.(Dk[Al#N 8}]KKNI\{c{տ(&h$#_$G 6"Wv( ,9fi'ݖ&y/%Z)$hlF{%L\Lkk[%1#SdwA[bWV*bՋT̀(,i-R{_jl<`'Xhd" ɸY`s#6,Z1ja ۹kt[72}ڵ2YUGdzY6o6"&Re_pW16jNڮ.Tc_uwFfdutV8Cf΁0kGJ?/]'ytA-l3A r\(Z07}?埬OlhT8cXFݍvs$+\pQB3=UI5ht morKdCBII Jkk[$SʟśTٔqiWSSJzicy4kpSȹ⊑e9elw 0 ,4ìdϼ s8rȖ->˅Lݼ9 +کn3}o=87J2Ydh] fxX{@aӲdLy-NHL_S:0w )MMP!5 t ].gH$vd[$KY`f_TYůCMM\$ٹs6ls:ZPimic]p>d)*Ps8ǎX?Se/[.-p! 0{OTYv|iشKg֭oˍ>s0o}?`6o(9$7* nw7T*^Iܐڿq}B31v;$Hr`2[c/0ǟ kP虻.`$(?sxs2;33wʓ]KJ*w5ո~*B3.W Huv3;vH$`oO]||FߗQGc>~~WQmm?K$WWt90PevpffVw3/P dYTٝ;st)=4p(A}oi:6@гS*登ց@mm2U6cB`?9Y`fi-Y$Rͫr*~㮢".2;;M&2Uz w  ?̚Ip =-b&1x]أ,E*1Uvx]νb$YW].'׼9s*+߽Ӄ fXfVp+_5{~=Sew*;K}iC%1UvS֦a T`Se&tu|XLb[ZC&X˭ڶM7mmW↧H81EE{m6ħON1U4&i`?Y`!vY )\&4蟟|Tn5K}5X.̼wi-̼I|/&>{WW0IS93, lUy$ArC].>fjٕ+EF㉩e4P0UvqzdR_n~**>\pOZ(\T-e˘*zuwa!naXma\o GS|ٳ}`yESSb94}Oq1SeH$ufπEE3U6N?PTVIi'c5e%utYfXf 2ekߨ~+&N~;srz3;3C8$'QhuL'cHMM?<& .''nff=6)SeUϪFxc92=T2Ul3֣!qO-FxY \___zUDG[qPB, N3<ʖlka/oe. Vf'˙*{Yvv3`JSJ@D7(Ր:8$o`ZǓr铓s2IV|y`FCbCu\0UVqvȲK Deo?UQTKcl.CrÛޑneemfles'R^yȃNiLd0! avҊ_+*+CNiw2&fdWMYYVцxu<3B|]"TYn&&r*+ 3fd87  a*mSeow AK[Z/TU1Uvcff6-ZT0q֬=Ve/9^e:>gK qKcf~0[BSe%Klt]~ԲWٵ HY$SeI[n4eeҴӍ0&rk^{q?{f~0{WTY`y76VLbU̖*&#lguy8zUL--O5ȣHW]WY;\0 ,ن*+Z)2o;bbJ*{yj4L];^e`$~Eɣ,Nѓдٟv: s].0Y`fl( UyUVֻiSMW55 "VTU"XuѮC-6gm$Np\TY4=}A` Tٽ{;̯, =3d#99N['3`V(:c5I"}b_j5oBg0C%0bn&ɆpϚf@IA܃ (}ڭ#kL9 E4EH_orXp}rlf\ziy幬.ظ|a$$٥o_ 2/tJ#8z}DuԬsrѦ\\D, 뙌9aKHL_ Αl*H" W[]q:BFoؠML|fDqIL_[ݿwodgS#Տn+ŔG{<!U&k %(??Yd!5v:q`fN{,ɛ3u=p)Se0d񞪨8[ygo/jjߘ`a/lp`fNok2H>|H]OE+5XfuoeIW~d A.~?+RR\R0=B1:Μ9L^g/WוߗTV;tRO?ʝO,k~dQ(p! 0K;;ª|\{*{>9@~`<((dѹ^ż %%i0 ,tl3Lg-9cu𼲉ڔEEmOVwe˘*uE}.p  0[:&J.|wߟsH=2JW$5IPT@QQD;욄Ϗy4&90,Щ6HHQeѕǧ4 ^% pYuK@^$Y~hhW_ri0 ,taGÛ# ʗ4͙A$y\zAj^J--\.s`ѣE*+ݾ}Y`S zp$HʟO-X $W'=I4&Ƭ,$ì!\.$ 2ŏ &HbI|} ${-0d55a%f&f5 qe͡$}~I?) ,d¬ArweGOIӯVBLU>d `E?zp+/0 ,a_OP$ALb8!_K︣? ,Џق[ H $$~x$*~?BYLb$A$^JfZ0 ,4A]t$T\Hįɠ_j3,a@#=I,%# 0 ,t083VgA$"D?~1YfNfkV<.{3A78}otaXh0kmB$A?#9_>"ш fY`ql㲗$ǔCrV0! U?E_ O[dC 0 ,46n+ \D|T~_ f.pJ\_^^f9|lgV'3I;tPrroٳg>Gmܸh4Δ/ Ye9/hwfYrx㍞hѢ_~f wygÆ ㎙ݙ0;IA|I8YYY33a62n"Q2n 8g ̲փ>\͛7 P{azGgw;=1g?|KfYk̥}C0CmݺLn:ezuWGdA^u뺺:Dmm-~M8-w[aBCCKSVVvC\Y[?\\\=K.>s$H,S5kՀԩd1㥀ڶm++^ H ((AK g({G/r.M˖-wyHvuUh92v[nN7 tWr'z) 9sJW J)AqRu=Xק3fg>7o\ <8̙3M`t1 QhBD`])/??s {jպ;֬YqW_}u7n8CN L`t1 QhBD`] 777''݀իףGr-U?~)S&L0zC8.}Twǯ_&pHC,D1 `]&6lЮ]n~L`1 QhBD`]#??駟 Fc=iKcИ4f… ֱcǜ⚱u b &p@cИ4fۗ/_`y͜93oe˶mf8OcИ4f1 QhB,X׃u=&p0! YBc"Ҙz&p8D1 QhBD`]n(4f! YHc8M,D1 îu=Xc И(4f!"YzL`7C,D1 `] L&pBcИ4f1 QhB,X׃u=&p0! YBc"Ҙz&p8D1 QhBD`]n(4f! YHc8M,D1 îu=Xc И(4f!"YzRĉdVVݻP A4 %H$0x S:,/$駟fՀx)I={yꩧ,XीĂ4 %H/$uֱcǮ]K%(+`]P̜9󪫮jѢE*UVpWC$$'Kݏ,//fJ!΃w 'p$$dQVHLٶm?|%4jԨZjʕSNo˗++Ȕ5J xm۶]v)YYY 6ٳرcwءo:u*n> 6?!pr'C:dJ!;w\5f$Kxe4ɔ`\z[er0&ɲe˖ SOYq?>|W?!pRPPPR%vHL)j=G5)+H(ɢ&%;Ak׮UV)%54I-[xQwu ۷/k-{챏?x…cǎmڴi鬳 C$$!5%777ڟ={L)jYYY{M %b(+CL4)~{?>eԩ *W\y;wTV)%54I.(I;|WWX1'|3ΈOٳg[gy&;w.4yn߾s &O" ' ,s 6o쪑o˖-{o:u}F5)+HɢgϞ {7n\јKl2 2GO=u (((:thӾ}{4׼yإYMlܸ1;;;s)$HIBj$K)܃KFfJ`Ĉz 7#zIYADLeϔ_~9L]tҊ+~zL)j ,_},o>c7ap Ņ 2$ f$" ' ,n)W̔#JqZoIYADo*+|.^8AA>@YAP)Ih"6]v J6lXxW^]\ðQF%I8IHd #O>))1kRV, ))Z <G>sQdeB:$K~~~2eb 7 1qDթSEW^`Ev-ɇHIBj$KOm9rFJfJ/^dޘUVHL wy#p `ȧ~:\D{ 22EM!%x?$>|x)VZIO;vȈ]$ӧO,lٲwN!p ~UVmZ\'.pdfJ{M %zcVY!3]ee=S$Kuխ[wBWVJ(nmk׮M!p;wQo~֭..+SkRV, )L>=W^ S(S?LԬYsɒ%V+ik=^0O?M!px?dgg|Ge˖':vгgOҕ) D5)+HYetΔxs L2A (+Ȕ5tN`xfffhӦŋVټy+8~cǎ ?ä" ' ,m۶-:瞫PB6}tחR) D5)+HYetΔo<# 2@3EM!eɒ%E-[\zJ9sfxL8g ̙C$$!5%^[S!ƍ-!חR) D5)+HYetΔi1bL)A)s11l߾} QYYI+} &$~G!pr@N:M6ĔLIߘUV,)+XgqFN:򊲂L)Y)VPPjժ_|+[l;o׮]Jzsѣ}aEv$$FaÆ{x\bJK$P{*+HCR&Sn:`/b|߾}[eRLQS,޲e˚7oRVSNСC}0" ' ,dҤIpgJ{M p4fR#S^{?>]tQ? Sd`|ʕaÆJzڶm[x8o߾oر#iHIBj$ˁVpwqKLiɔ"$h*+Lh:#CVZ_3LQSHdcjժ?|GJz;ï=Seqa6l-ÇO!p2z+V$>֨Q%KL)NƬd, i)+WC$$!O> [Cc=ťteJq7f$KdQVHLӧOl`ʕ?ҕPZ2EM!M^N:5qpVb5jWVSAAAӦMcױI&yyyEcvըQX'\4믿^?6l88$' ,-ZහONC qq)]r&e=YR>S~>}' ))j ,[n-W\llf͂)L&Nկ*e%=Scрφ7p,=-Zt%x*TWޜ9s~w[jUrZj 2+p0&MTLK/v[{ERU>}b.]ClٲFaӵL2UV}W€ݻwe* ^{-lWX1s7ntQԖQb8n]jUض}w] %1{]wqI'ݺdɒ1l2WHynkٲeʕUּyϞ=|#G/~S\O?n3ޘoƌ5hРbŊYYYM4K'N`,ik;v߿Q֭[nnnTPP0rʕ+kf֭F=#kN۷{08Q+ }ᇳoР y׏*޽{{@z sرc^bÆ o߾U}م^ffqGi%6f۷o ԩsW4GUTo'n:??@2|pYYYCzYf?WX1z뭷<ɓ;<ئ5jt>{ꫯ\>4iR|:##Ο??F9NE?pg1b1sG5jϞ=a; }:CX|_zu+W֪U+Pb-[1J| 6deeʕ+/mf_+Ԙ?~>cq1`p~Ϙ>0aBxwygswMV1 W|cuŅi&7o^ر#g vڱwIh6h iӦE ڴiS bݻw/Uc.1&>(<ɓ7iх?Zn:{Rf^ʕ+K֘=zt8pՉO&/4fl-\zX\q;wLgϞ>1o1χΝwq.]Ic.l̖/_~ӦM ".\v q'OG "G PB~~~1{&;f̘5f׮]1bD~7+++<Y 1D^|a9s"QLyN91[LƶiӦd@zžjAAAqo*Uڵk@tna|IFFF,aÆ Eu-6\r+Vg̲e˂n)|gnMvTm̆+0nܸEðSڪ1 Dߘ t/g1>bئM~嗅o~533sǶk׮ ^'pB/ˢ[r. 3g,soܸݻ hх 999FZ`ʕ+Ν;x *}ŶmpիW6lX?] 2~`ppg;ڵ{-0f̘5jׯ_SO-1ۯ_ްyݻE-jסwoڵkW`ԩ:u fffE,]ؘN9唣jܸ_|Qر#lmڴ " ?Y(,33jժVReѢEahcvĈcW7AZPPp 7Q=>,]ؘ[7mtז~(//oe˖-nW_}9{=c9EK, b4f }UV5hW_-i7fcW]uUÆ +UTJMwهp˗/ڴis} EVI1 dI1 dI1 dq endstream endobj 69 0 obj << /Type /XObject /Subtype /Image /Width 1807 /Height 1057 /BitsPerComponent 8 /ColorSpace /DeviceGray /Length 28137 /Filter /FlateDecode >> stream xw`O(Sp< <*G~D"'"@AQYY"ȒQZ M󻌶I6Cswi~nܝ +JYsK[^OM]OһmR<`=J\+T,W(ˡ[o<-<7}G~r-kZqaC;U9<ɞzwy0*o)wTV̫< ,shTn.Ogr&1wF+< ^ѷ;rJ9ܚrzߒ'+zV=gzdzεnާ3:+j֔Y\VbK9-{x]b^I9*&~:>Yʡu/K#x,@x{U`rxt'6peRUbVaI2X0ajg{œYk9޸y1-ǎ2 \U 34<ֳcŘnܯw&y[V\8B L^9<üC9ҧ$&93|>b{;sNސ3E#ܟ y0@xp{}pKPS/պKS-˙ß+v_^ *r%*nc 9'v|gW|ν8&Ybo$ˡ5@Ux._@gg.@̅9%×+>\^ B? tC^yGi_ΐCGw`kiR{EkEV@P 4 ]ʦf.V9<믬.k}ZZShrؑ½< rf~V,}%9<>RKvG">s8Ƚb{ 9/`0̡=gҽ+}09Žtׇ_&ؒˡ篸kV9+ sEƾO57p{CR9^~~Zsy+Ӆ:8 r׿M#7iabn_Era@I{ݽp{;&yֽK33w{ʃ ,}ΆsC?,ǽf.oℇ9G{p9\2nV+ݫpp{y:&zY5nqo6>Y9<ZjM/i/d~+_6?Nȹ[> kNWᐥv9~ $'yy7/zng{1+9|Q}5}sz/߽4޽%Q/59eKorXp̡Qx~\ ìs<6>}7Z3޵;#c}rH-u_9t̩Swx @LwL*ϡ69ȑCǎ{/)+] lٲ>Kx?6559̿uؚ|y*-|n­\qVR  ,]Dcj#7[l`$crj;3L7 Ӽ^ 5It9-N&R5]uO0,i ثkMXq3-^jM~Yg\ccA{̵:u~A9rb~O-HqB,麴8ָXgFϒC@d䰗syä +! 2rXOzsq%Yޓ郿W?rRfa0i t0k ># >ִ` 09LZ>j`IKḿTW6|(;Wi>V479Ze~3ojr&63 rkF'.-u!-fJ$JMuY+}ΎHWwbwCa w iÜfRjd9c@o+F) 9=Y89>v#}o9ef#WvY5l;$,gMWrFce"0/=Bu]102%#r{S*fB+Oͩ`n7brhPa#,%cTfU)Cr +XCi!;vn;9.]$w]ZsہfՔ9]R_qʹJ5@X\WεC!w9} eYD "9`?TkZi$!>Fezǝ^%BO=gyjhg<v-]휋!PwbC%;u f=]Kj-ZZ=l1=!5Jo9[9<^޸ٳ?C!~6f>̀asCϟ'kC/Vr :BZ͌aXia#oG$ŐC|k#JC9TM(){Rer ]ģl'9h/77ZC!lMo{ D=JvYԟae۔Ԋ)C^ku@k9`U32wD=q$#Q:9ehD=5uH֚U]+bz@Kofgjaf͑MY"9Pf3/H1)re9rwo(y3]`)Τȡ7?'ǃ1rĭ3_eV䰨C%nZ_Ho0+rH U#"@#}[="mdZOBͦ9$&YO1/rH≂]s)"@8Z%WM.k9$m)*XCuCTzCr <%-.[9&@9UGJK9$TiR!/V9$T50׿Ve35rHY;C*ΌCaeOCɶCr ~("EuxrCr LkTfJS AK9,bEcV3CrHU3-s OM?!9ʖH#۹)i$<̵M*/jҮ$ͦOǙkno޲+V/mdvLCV]\)luEi9Hbby[X[&_OVS'k!H!1DWᶉ=K$ic5TN!V~_,t:Rb*sʼL!9`WqO:v^i3`'O!k(^3/д~՛2~Soj,cQyD9cTS(qJ_Խ&Cr[=zJ4nWrGyU#$?U)~6{撘;Cr^&חz/OzY}ם}w}CuȂq~%i&5ޜ]-lV]Crp&HWn/d{ۥʋE@3W /ik:s 7rH* X/]*l*5xSyϱo \-oQ{ƒCr0^t8_ N-)kL%@!6TISj<ӵtlgmg k?4(%e'"+;y~+}0[rHTz3=z_kHN—u|E}wC4Iz5k|Ou9jto/9$ 䰹j{Lwy ƼN;! O-et7_rHTENs_/u2C+_*ۗ|!9PfT TjZ;&\zP~+MOܰlҵۃCIUf-V>gh}qE7il/0UF[Uu$6zuq~T# M9F9Ih6¾"'݈y5T~'N!r'yr4> h~8[svwq=k]3`X&6WCך!|*em]41O q2PΡRX_}VX{59`ғvt4m}a61-{RCLz*ܿ%jwouE ):_aE>$[9l:H#xx85;PaUrsW!9Al90Jr猣<,û4͸typܰj-ΝKhwgmXull60 Kpm*)Iū=ǝ_T_J<@lW[o#㣫hp'es8X[C|{ @֕㧿[-i#f[Jy.0PNhn9i9d6g+foD lY~ޗדjIHz3gUU^3r y4E𱓕]| sgmROr,١#N5{7R3|*yg@;Ws_ۙrSYP:_ovbɯ!?׫ 'DXߗ`haEN^ +sL3SK_P-Ւ!X:G׮NC8713Lb9Ք9]R_i|7M~k!:}Tqs(},])H,sO?C$@d9Cj1V =,Qq׮}!\|$YxJuruۢ#^s1-C +]w9隺)X&]¼YOגZKVVOl<[L!d^yiH:sCma VkF pLVfxrDbeɦGUrxn(=YzIC!uj*9l MzB}Dٷ@~N"U^%SHJ+<9ܞ{9KM~e;^V}Er+e{aFֆMR 9- 0`ܦL9&\GI*Cy'9;`a c@^>IؙCZ,`D=?9Q)X"%(괁I_1``:q4u>nnl0wj` ᡦZkEL;C M^a H,Cǡkspk9qVH0\5yJcCc9rwoan"S0me ɡ~ {]}$SRC [OͲVz"|rhUoJ3ӜA쿹(^%(g KבCr̐a 9jR?I9`'Tc0-?q #9$ݧLLxyyC|U)|'+w+]J!S0דρ}'!K&@1<94ٮh #oRYRM9`t2;QF8!rH!`i҇|gDž:Cj(S0]Z]]i'@q2S_4BrHBX)*G%}|nYV!9P.U?BQ8G 3 AiT}rHBxQZP؏]J}DrZ.SLH* ?ׅ5k(.K1"r9iMa>"s5Cr\?BYQyn iA+*klCm}LȤ/UĘNI+ I<ߔVl!+驸ߘB>DW ~LWnw! Ye`PR o*bncc;9$ua8KG(ic`N%@1Xms Ԓyik^}|rH>SwֵzCEoC` if^m@!w73bWU5%&{aEy(!2b?)HCrݢMLإUC{9!@0dkK}tS3rH)D5c(Rbt#S(ї҅~ |bY.E!"ulkB&}k骺2*{e%@X>oQ JsWz9$_o:jfQRޒF\w\&\g@u\:Y4J}A!m3s'GQ9V$I#I2^hJa/me[iu~LrBΧ.HߑCri9[`g'ex*9H!3>G۟jHf-UJ^A%@ԑz0 oJ^k4CA4,hEnȼM5^D)Cz#F/3kUZ辴?FC%jM!dfq?'|YZǕFIaNܰlҵۃw59BɾRԽI:TR]rcj>6d ,.Z`֕@Վݦy]'n#AF9It_>2կU-r}OC?VnLeYqvjU^6@_k Kzc1jZ9"ǥ!VEZiF}K0@KUzW{56^M0>J11Szߛ;$ct[C26/ @KG*?9}tVKUnS00H-m%'@K69g/d%ww)A MV)C dm's 'K]cMO$Jnǩ<9ى70m\yQO Fk]LS6f$(akKWĻD~i: +Kq0 ͥwn("@X:9oh3W 㻏8BIƙNh%9 H_uJn%@s ]-oQvՃ0 -<s!^Whgs0݈w:r{_FՑ;|{|sw@C@n__,;Tӏ0p5B?a@<iGƾѤq{E'j׿2׼xSѦ.xam4foG7[$}uusk3|ase~sNr bb=$dL!u$M<懇_'[5k[f kw*[#@_hK;?`Z듺$>h$'Wgy)):%o^h?@9Vyw`?*XߴCႶSea\86ŜCC oOuM=>ƍ6#EF ]д~U꡼)9FF({޼%3sɏ3GR֛?2~):C䰰.m(:Gm>8탭\?>KO֑lfmi;"3v=]U*_Q,[O"pxHTq.c b M7rb&YvIcm{r= pֵVpJR}{Lʜ~6jmgνs;y%;k:}X\uszc;i=A#=~xf syKK0纸v,lIa?'{_]s ?}!6nsH AK\F`G^=0JF<88ZxRN.dY~^s>XUCro(~7àAsg&]UAg/rg ^D%r.}vtJZn?[3(YyfY?)> 8U"U]&q{'F&Lɱzu}4żQku%9G 硃7;.xl9vN2Y?{N2n` rI+|ȯ"ˇ|ߝcxubZRmcCa~<_a^xuij\y?] +'n=F! @u60G/U-5T!)ͱgPTs"GAn &b=*U0AZ9+rhRǙ4 ^L`ηk!@KӊxssF]5 GDIU$@T"|l9 SF@^UWrxF jIC XձHoy2/铐z$@0~F1X*jr 2ƒC XV2Xԫ3~:N: rwjd0XTz[%ڏ:o!"[ZY`YEo4)UԲK(G׮ܡ.!"PEb m1_|9Ք9]R_i|/M~IZ"+&}HL` Gegh3Dr]`T0Qq) C H,M)rv-]휋!T,`m*J`zZjvJeb 9 -5A,{n%^3jec7{m,L"@͑>f d[L}6z(=Yz)!"a .t],9l MzB8+k[RsrZS]`}e'.e[nT%H\OCr9x.6rMR 9 EiS@(ړT`Is<QR/(+T! ̗'^Kͼa׉J!PH)uS@(8U^ȡR]~֟)@!"ҧL!{K%%(괁({w) $.y m8q`R׺}77V6J'@!5V7MOC/X1KIr`n"R%:/`q+HCDYgL!*'JsJg oIK!9W_36=N!`xrړCrYi3S@yT}fTBi9$dt?S@(I!9L6S) ܤ!95PO0IPeF e fl$Ux$9d2S@isC-H;/;OȤ.1lVɓñjj~ &OӫK /Lj!"X=j'rË: qiF #e|$}rnQSÛvvץx!eOTEL*S@yOZJ9 }DuaԑVQKW3J9"u][ñUEX%M` ASPa9i[Zv])œC*-OJ;C(J \nf.-C*:C@(Z&B9#=]UK]!`coPd^!QR:KƵ@Cni4PO=iO+;crxQZ'e~9:2a,q[ 9DıWuLp a? 祄EV!"ri"S@!C lk#3Y'8#C@FI;B)Gtϥ]aO"?c9W^ B*ÐAN]&)؍+FkAʨi# Cz\oeS{H\95@@(o&化7ݒOC9@^KsC()?+r(5缰mbR$64g6]Gb54tr8&A9Yv7'rp$^6d.$:bbWMY.f;#eATQ;$uqkf:acL?!J*wn[{rͤwr۪+A([#l njI>=5DKN^$=w}+EH˨3FI;K1BfatSs@X)fޅFIkJ\!cE< D)1F(rXZzf{;RL ah7&Ja]rTs~lah[vjeܪXp^02JW*(~ CCzVռ皥4O"R0݊~5hl03xnki?WI#!` 8>T!oIP n&Os8ޗ6?-C$SSR򿮽ԟ!ݥ&rߩ::r8vTw;9EO 6mC~?4FI74Q"sؠA}[C @;ƗbKbdsɥtI75H9?^}ϡ1wwnX`?]&'5Y DKǧ!uSCsn^S=ݗPPƱW5ܪc6C5{}u^^u?o+?21_L7ܗ~6O5"}%fvq3?*QzޔzHQ{=/RdsXuԳ!ruJ|0R\ŜJ7`e ͔iN?^_k Kzc1jZ9D:[so3/D{T 7Az.z:+drh^1߃X{59DzY+ sSni)Io?4}/&sms?sNl_@UC;S|&L{^8\FךU|fW:{~rk[#=.Wod.jzFSBzURkrtv2 oeiz[/Ĝz˔/?QZw=N!J)* Fy]T!7xpvQ}tNJTXʌ/l^9HP"9D8@dMW`y86Ǜ?^53ݝAr3*\zR+rp]R(&m{#5 k^9log5SMJSp+9D!Lvinp[ry)ez:Z@fxW̵ |*V6R)+Ar:ZN=La[KMFVUuĹ;b7CXXFcF:o̒r6D)sz~dM75sp!,l2SKkݳJړ}sTЯOx0^vߤSހonUaO0˽r%1-99Εij"W [L @u$݁pubBiR_}^vc?+MWZ'k?]G !Lh]U?d4W˒s_ص[敋.Z)CX)*| kK~Qܬ(Ž]W륤,:LrZ'` @>WPS>^[nV^`[#mgZ;_0!,kl[K}i ֚C_Bk|2}VZ$sfCXUZUue @Lb`o>'zDii9tϲv#9o1^+5fSt_ æylꩄ`^q=#dŰEDrv*0 +&<džҚ<6}۳ shF{ĸfpϑC?u7SdC.s㨨oDj{W<^g?#cceL8:>hJ^N3np,M LOEE{Lciylj~7sVR?;g!Uw9N{/g<,%d1qF?]I33Dr8ñ3gZb.hkna @A[tס;7EyȧbygiW *!Cä_PPXj{nOC;{kh}29D9]B(=WI"n>156c=ѽN|NrpNe݇'d}vEzAJrfkwrb!˵*{)ئۜ$?**5V{CG6ntM5oֳ/6^Tul?9?WU<[C~"pM̹i }rKn2PCejϰE]9E|IMOkWr[H^Z%C aT{u^_1u^xNP9/ԺY/CXdY6C5ԴER;Y~ga  9Ŭ*e@ach>׹m/JÊ>\Z| zֲ%CH22ƌ>N/%9^/Ңrtvrpa\Uę"lS{(r)s.w*qs1AEd}y.>s8vyL` Ge/LF <V{?\w2΂8WŖC_>)YwzS/9DK~4^*;:IE-\Zq;{{Ƿެ{ۢ#^sq9D(xdؓaE{>9ܾ+Cu=S5H {ml*֔5uH֚U]+bz%wL:J^Qi4n]#\ˉErsb @0sꥲ/9妝Oc9rwGCi[L:2.%L=@>`ntTqw%f0 %f(S;ljo+n~#k׆S.{C9DI3^73CD'99X>95u?qr6‡`nu70wOZ'(nZLϡ™oO<ڟ89D1-ZI9 5L D%ua 9$oc9WN>a4@A^cw^xFrI.c7zh:HP*t"B,KPB=_d:TJMFSrgʽQ$J8pr(I ^q]6g)cѠ'D}p8Va;ͥ!"n҃YKɟ*bb362 sxF륖tg͚1"vg89tdĨ<9D{Z[J}x[ҋ@˻"M72 rxlǾ|JhOtUncȡsqD.p$"lo@ oVV̡d{9D8LI 2tPcRC+R C{6WӇ:TeٳC*V CT])Y\9t8-TJd 94L2 ɡPULoK3:z:|r)]IƩ .mspT"m@Hrpoݝ޹aقk Md{1sK$UqUMc<;r_>f9%\ a 9aKir!53~u Ŷ3!Jԟ10+@:)ws w H=PSL Y9Z$gScf:պf7M3l`5MCc쬣 ^{v6~0؜Ì7KKL-Wz{56^MQ,R/ VuVRԗfQPsF.u~9Dʕ]k2db.oƀ{E6^7NnZ$+0CL\NI+бO }kΝaԚ9r~y@spk~7ޯLRαvi(\ |{iIټrDr1n0H\zR+r\fg,þϥ<6JaCCJәrՌ;qhqe|X?l'Vb`ɡ*&3^Ց;|Vb&<>nu @sx**;s e_O8~?ʔf^G=~M\k4r~:@T]Q'c+Je{hX|$ʌ8$Uyibt?-rŰ G[^& fuթ\MvWyļZ5k[ :jUPFr!_ C癝bpttބ/Vlf]敋.ZxзDZ@9{(eOFfX'}eGsxtvf2j>~&ۄ zogaU)%NܰlҵOCԂZ^6i*kYg?W]m{UӘ)ֿ|r ޯU#@94~|Xa\;ZICjER(()9.`p_'w9DRrPɡ m0,i ثkMӀL#Vƪ;Fح@~orϸګ! A߭q:O\SCĺZxְ-R GCDʼޖ67 $sh{URkr3>񆲮64;q&Jnǩ~vhW9i+.+9,W3x}Cyŷ/~iaݻfq8REûgY0q'/ݰQju=A~aK_9\q(͌;+Ncí&UwgÌ@xйŕs>~.9DN듺nnb>9w1n>+|sw@6IƉLg@3_ǔ{^G=~Mo8i0(oag?8(^ǽ"9 e{i-rk15ׅaxN|8VZǖ]G aHˡS敋.Z)0j̡ya{Xz) 0-ֹi@dۿ*1jʜK4r}r^` ".;T}ÑvYK m,`;v=K#:*9D\'göh)j\@#ҍd r\/̛t-}2)g)0']D\_3j녢c7{m,L"gw%UD\{ ='ro 8o$ʸB16x=!-998/IaYiV#۳6|/U"fSc "0F30J10œ2jE{ 290OJØa{鿙7_aԚFjDdJvYԟFԳ1.t\gÈ2DDh8q`}X(F6uLg "5Xz$k͎1KIrS_͡е9rɵ8+[$4):Αø;~{0}"u` ":>`nUTorh*rb~3A CrN-x~9$i}ʻZXkӌ9$Ǿ"S3/M4!9@zZX{rH#ъ=i 02.c|yZJX;gCr2FHef3F7K5W0FCIc!9d[K]b!9d?TnKc!9d3J6 0R '@aDKWJCrɒ{Jf!9d{Imw1FGrH# Ҁo㬪Ǐg`@E@MD\~*M͒IZY-RRKq LR[I+. sgYϹ1~5ws]C9̴q`1r(6 6h ad1r(h1r(MC9̶7pR@0㎍LC9̶LC9̶Q1r(66ȡf|m[/1@0~r4aƽ>& @0㎌'LC9̶" rmvN3r(wEįLC9̶vˌC9̶3"6@0fȡfSP히MC9̶}ȡfߚ rmu+Yڬ@rĆE9٣m6:Yr؂=& Ur.Y!-ր(c ;G]@[?G|9=Cu-c/=۔پԗæKc~JJj|풳GaKˈMz/ހw8txr!9ly(vZi ӷ".asr$S䰾F\_ 3#vgFa 6@SSuP.:aKlh1rXoז$-Fg eyoK;1bOrIrآkj6@qzW(a8s!JNWj|_ʽT[1mH[cN;􍷏gЧ N ~u^{0uK>9\%þPrG9rf^|Hnu3am1#s1,;cʤ)3,Z$难IķW ͌ `1r(609ld&_5Öa k.zj^N%KX4(lsS&?zwG^ n:{kp4c{D 9lTp7Dlvyc2w%就q)rWVpV_Vš}a31 Rb ۖo<4rظ>:6z9̷Wc.a6a:!aϯ|`| 9lT"f zERc09|0beGl6v'rӈvW3Ir|q)rF~mfas10]e #Z,1XzEJ"j<ޒD19lNaǫW{G(]_-5tr;b\崂xo1U-,݈oa;&VSH+W%ٻ{.æv}7M ~9ޠO5Y8Zh4p5e+++O O+iX9ǻF 7sUU>"a~;ebշlS+KGa=7jܐ 78>WuF81a-gؖept;nI4aųw_~Kh[/?Iw׋V>z_'M,[-v=L@3ᕯ'fKkxl0#0xR@^ǽjav8 "j av-8Mc@c:G ?v]n G&1s Etl {F{ pVgڶr>%?'Lp|(aas8 Oe09\9,v,f9 y@G Y="/]093KV9romW09,n[@eߌ ;@ YK;D} YcE6, #~Vjas80nG09\uzDI(f9Oڡrg.۠rՏO9rq @` ᘂh?,pw#=lkasm309{>ژr>#b@78Ķ,hsM Ya鈈wۓr98b'lI9p^1+v$@rY?4,wl/!Z}g}(WKga&3{sXr.Y!9 LK:fsQ?ÒFs8GYBKyYÓe8KFlQQbd4iyi現qٺIkA9\6S70)@s꼄~o7+ޝ{O%þ-%sH;Nr3/>GAe :ZF?<]DQm49aS&M1gzÒEy6@װΡ+?ze)6JGjaM.)pʦoβV$=]rXAo=w6.Z . ݲݒ]5sroBEx*^?Kx#ޔ^om9|(kc'ϗ*~wDUϜ)p`VC9Î?8q} Fr8)bm uX)ɿ.O=?xN7)o[a#f-Hr"6Xǟ.֦9V>UW'q{"N\k cAǗ||Ȉa{EQ}D켎?[z:ITrX?E{ptUl~1{ @tn.1qok9{ @⟅I/[K=89V;#βp-ʽAC= HrN#XN+8>u\rߍV+a^kUInGĞ[G6//tos'xpqtm _5e+++O Oۢry.ErŜS^UUƤt\;@[ե#ZT/t@˪'W÷Fl9֛xh9\1fvg~bas^.y{K f7s&1{ EtFdC޳M09|h׈8i@7$1z- DXjafsX:WDq> @3_9n&+asbL爢3?509Go̶109;(ar~.rÓC9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C9D9C949CPPPC9C9C9D9C9DIn)jUP0747-hL>njMͱB>3h}hI'ԹߐI y]v[󹆕+qi8~ov:JsKUܡ}jXW5 * xaw /sk OмR{r'oUq^f^OTaی띭6e?yR{Ow9LsVU&G|EU2~?9e7k.9O2ҙ{a!i}rQD},ߕǗ=7S2jNWmxNEf~݈6=#N);|cDEfKKyr'1b+Wwصw s;ٛGT.for/u(~U819ҘɨO\,f&rd1w /s?#9ld/SKaVqj9Lo콓g1U1Ҙɹ*^y]Ldށ̽Dխ=n5^azc*9-^;CKc?OνRx!Y\y Y1w /sONZgL-kAlj9LoE{wEs"y`yr@:1zuTya\Yl首sܤaASs<_ȽkjǵF]Y; -g10ͱRvbJsQhᴶez^sk~sz݁̽{ۿej)}DD0ͱY7{訛 ?>gv?z%O(b9׌d@݁̽#1t>0>ZUyq6;] 2>%ky{ ~&/Nqors/,ꋅO5fuod|^!^%Y>T;Wwnҙ{acVx|,qm##03Sw!]3M/ y2Jۦ[cd)}tĦWƞ{܎67/>:2Ymj<^MuߛL+˪&gw2r~>)?^oƞ{܎TM;xb3CMYלd?^["_eeV,kқn?X-i=ݭ:$-s_jZ)νG?-c]a]L_{i\R;Xg<>_ﰯ\\VU y2_5^Ҥ7?F}juR(YaWkv7gΜ?w+&r$c}L-xQw/vOh9凹W2oᏓoܟMU~&9w_hڥ,_5ݣUo.}5iw s{͗tL346vOn=-wY*s_srΘpZEf|`o}U\Cw s\ja}fkg פIi|ڄUͭPܿ'MI̞wpQy5ECp<;t6e{ƾ!;vmcht:/c {:jagҡq+Z( 5U42$ۍcѿNL:l dд$?(;MrU N52瑤T.淉8LȜ%9|j50@U,M@M7zXjBS$ToUg6u9npvHt"CL4#)'#t]-pjqM P:f vX3zUUZܴH.LuFFF]ճ 5Ґ"p pVEIw"`eŕUPs `, vv!Jhbh)xP, L$F{h&,]2)̉ epxJDR&A1 1】,Mp?[4K:2ۑU:aNkD$cAIy0#2". z1`#jomD~L0-n4 UW7ahEG\9We$'D,V-wȃ9z>ql=)tzh\*(+f|A@lm9w#n zw1В)Y,DA+]6?f`ƖP%d٢"/aw;Xz^hn+<{*X~Ћ#+;s`A? =QN;وT`g?}{ҎuNRBCp]C#n@w V.kaɁ[LK=,TKNDgOM0YO: T"}o~?U,Z#` 榨v 40f@q~q8!5op߈}C~_1άe$ m$l]s89,\@LjyYpڣdJ4ИnkyûÉyQ l UnR nmlxU c,UY{3Մ*`+6_窲 oV[X5 /\!+r&bl+b$ bg&Rèx^MK/szP@T 6*p2ho 쭟JGJ|3E0R7y*Hܭ0֤omפx Okŀ> stream xuTn0+xKkѣa7YU"4eP)N]Pufu( T*9QFIYrTHN$/ЦED+1p1GXfpVp)/b!Dˆ$nkz م$'LmcE;vey1jqAk?pI%S ,'6_;XF}<) Fj"鴵}VI"y:|8ƫC:9Lv6N@N}ZUK5l=D8A06t ^ o~Ra8C f*D endstream endobj 102 0 obj << /Length1 1473 /Length2 7185 /Length3 0 /Length 8186 /Filter /FlateDecode >> stream xڍT[54RE{(5@@HB:(#{"R)TJ&tz[Y+yffϜ9 'c%T  *zzZB $" praX8? )!PAC!k*{ C"p@H\ZHB@Rhi*h#P 僆99cm+E! u^#aPubQ@ #D;`XgE{B)!nп p0̟1AC8\x hc-] 9!A;w!d= ANG 0Pzco A^Cd92*M?MG$ѫr,USWLgG8JMJق[J<24hz_/t^eʝ)l+{DUNGE;|ɍ`kO:Ƙvg4ΗerՎ_塓e1ͯ(wYPr*jE.g313{6i&l! 1+hN%"B K0ᑟe~{2׌{e ":wv?ٮ}}Fuґn8ܷMGHiK͎8z(/=epJ_ ![qDHu]b`3t0LFpyzoLho| m2[_*y4u>W[|zESOoP'S,@Uԋ;Uyl:[Ї_ 脀vlLF2,|<骜w ߑJ7ߔ0ۓ& pE]#-ˎU+Skå'ǕtEhBӌ+%,[W5/ UևeNUp\1$NPCDOom9I5h@d6?\Wq ;Ns&VpU(=DT-+mQ\!ǐ ڤkM` yo &iUGYXb'jw ? abTZe16WpK֘2RJkUMxh (DCRP 5aU!D~tlܫϭq!_DUxj/.oƣ+(6'8_}nR;L `ȝYalHR3[DJ7k.\[4/apS)RQˇNj"~#(ۤ^y\g^^)l҅o2l+ KQ Gih?Wg_ssGSixvEH{Qm|ե N3qO kKI3 b9Px.偝}^0>X*2Hύ1Z >t5Fŷ):1amI1CjΓ\ C4 )9ˊR1HKE$8KMQyoױLհ$׹Ǝ_muE`Kʳ6}ɭ%(V$ [/k4ˠ3j'e*?|f!^oIic xӤHki.GvR$}߉w԰qa,lD=npwy_gGLӡ%NBzӇ51RtU?pEX[ƞzA+˦V'=`lxJ9popc<5O?܇],Ii}רCC-qPJ0Ԇ+%eȞָ/+ 4yêM_% 5UN.F}s*ҿc0m=vw۹TTpv$wxn {__;IHݥ&RYlh;[vϿg ݭ`'/ϸ J#Ji61 r]{vFR?z8#<Կdi[/gn},oЏL{JՌ{62XyMQ&Β݌d'skS2Ǽw=G~d"H@E>[>aP7HN#Ruh<[z*e*hX8Ws H7M->,1ZE9)fVnl6'm6ܽ[j#Cʐ eV(@  Ky6W,r:sW jk: YY\|QhKab@iH;ׇ&CyqmрJI&}g( )ZܵNaȷ?$cM f]g㓎)8佥t@N8=5iR^wYFTvds#čgx=b3ΥD-w7>?j.&[o *vǧ{3Ww.#*o,n'h@t ]ºx' y@E_TDza皂#q +\Aq6)Ձ%>!m򄧉,O`UQENʛIJcT]I8`u-%LI:QUc{>\,9͈3`P4%;r}$yƗ'O|%)%((Õae1ȷwhjv_3HɰՠH< c)XTɟ;naO\{Pi.Rw HM@P;byȵ` !ang*xGM7D+Ѱ9jsb({@/1lߨ:%`9K|ZjXu1g^&;1JPy>crTtzL73u)KKHfUB1'#^O\Cdbq|J^u I ąj+Lp3t,ހ=+pd鞕L >$.acEKOHu)CTy;QQf_1 ,.{9[ݱ)D5x-I3žx[I ,5mM/ ]Vy I ^qn#kS/4|%^n4/TO|b!g_:Q=I: DWRtDYPT7'0/bDageȎs|.-N' ~s/a kF)7.~^uibsaW.#Hop\!`-_;rF |b+jm`E SXqĝ~x!8=B;cuHgSmǡw`^cn܃gq ?NDx]HkD*2.|gFEF:0iPfRc/ā_!;'|D4KO6]ɭrzb:cc Q`L뗫 γaAj+퍨͇UFZ除%I:s+W:톑!!V^21?V/'(UkF<_Z{[t]9u0' GR?uAzl:K_ r+S/ =^?/9H꽜8NB=ot)fS.+UE  {]|Rg[,r@@O S3"H20{sO"'X÷DXln;Ow nB~wL<(Qhh2*䔸9*O7cZu]qd/EnH 4u9Ѱ6Jހ7a؂ c]o)bLN5>^~a7R370x֖ze{:z24P<&|+O~ ء?abUwO τ<N96$R(3_jhp,*__%w*h+KQVc OSs>4Ϭ6H؋s Ȇ P:GƋX0̭ϕnZʍ>;z=ZrXh5m6%V x]2U°yG^ߎ,6[IK츬7]DSLb6"jJ71E﷞hu}|PQ:@i^MMU+Y}\z$.gqEZA,9 2a;3­cm͏h>VWEL1Kjʧ^W:5iqWFKs#I{N3%,%^S8%nUlO'G䖔VF*&h41bgt"AT-ߌGËkxbr׏8uL endstream endobj 104 0 obj << /Length1 1394 /Length2 6064 /Length3 0 /Length 7012 /Filter /FlateDecode >> stream xڍuT6(SZa0$[c!lN ) QNnD?=9纾cg畷FZA /O@PSS$1пPDH/C,P9AB@$HLR@(( 7*]@M>E"Qp[G w0 ؎=P C1*! `%]]]h>$V zP4\vY4ѿH+bpƦ8#( ;P_UEkO?? p#l6p{(P[Y?`{4vVX@ey] C P 9"`ݝ>C ][6p5 p'g g EńEP' +t`׀zm'bPPoph#TǺ6mn@3,@@Mbw Q Rg !MI uB#HT]u`Jy:Wޥ>;?y- 1JOgO()[ڵh)8Ȝ=\az.IyՖwܯq,#oqr%P8: dDֶ^\.VS jjn,N׸K/xs^Som$rH}?k!:`yXV*t ֵl{?5]` T70A\"T O+ʇw5sswY `q jҦԕ7DH-@<)+KmoshH E8Y`e>?G%eCG(s>PpBn׫2;$ qRlUӭ.jvt_kj/ϺKrN}b T^uq0hbN.[ ++F6swnU{c7FmHo08XڟT0{"DPxol6ex)0{2Dޱ &֫<9F ܿX&dʏgOy.3[z΀<݄b+>=Qtdj,SχGe\KJz4fl t%PEH 7 }"+5o&+^ۡPMj6Kγ<}tSӾ^ T-l {.9I->BA56Hngzo.vEb3,%l\.AA>-ƱN[~t-Bnu-mPVZ |S&^ڰ(إ&ۈhqc+IK㣚Ty"&MTJ+:ԴqS]VwuV&:T) wq ſߤ`ix#Yo;t%,5xL0X@BI X!*x!d& ajgE- 9&c|\EwT~5+^g_Eź8-Y֨J>O($JqhvdWoO'XRjcXs`g*LnKOj:>wUP6x͍wîyL Mۈ5̯L;ivr!'36$sWi}fXVo7o[tQB/5dEm3K]p5CƆb?dhAK(}pUpL۾|܂Qn☲z){~!Y9cbvXW3|8!1FG;FAkrz흭pn=hH9x".QETC^ˈwyz*0-#l')m0%X[xy A6k1Uf&-Ǥ)XKMtre'Hщ+;=%{K{BXD@6Q|[qv-wτY|>xaօ#2^{guUH!⣻ 8f'Ibz~/ Ro?Q(kBy\v*MeNQJ^"K#sEADu}B#^V? tM*Z@3cj"u[x@4_-ePt4873x:T喇2h^@#[` X5|\Kqy{][7܆@Sm$LJI$wvB#P~zJ<Tz P2,C^ u|14Yb?Vx\>^jHE#2NސL¤,.o!v㽾`{'JO1F|$KZ}g_&_e\*A;9őĪdlZN!^^>შX6i䒩ͮ3Tgvyr"f/KЄh {)=jܛW~.ӻ^q 4M>hQ }3A9 P= +y.p3G)&;؞^mDiʣ_>euuO e#)P3: 7n?mLK0] >@= 3ŹEzZyqbgo_/9pզvm}h0+i epd87S^C{ވ7V'MĨ hiWu|' e.R5jE66R] JӉy̍r<m %/w gx[lIQcsKŠdDUfs^؝Nfn)s+O'A>ewH UӓtoLËѪu$Vi_ПbiJ}44 q0>`%.mpfhP{μ@ NwGf> %7(p§Yd)W-dd1 PzUWғ+ *EIm^NCP! >~E-5UߢUSwּO7Epamm3Z@c5u3B;M%ĭ[W2m7B6ƍxGC6X+ i*J]v <=8~#Ք zN|jؼ'}6ET+{ɓ_UD[A8,`G`YFQ0!A>EkN{O&DN;C#$tt*J/B ;L7~PGKfժ*.ߨ=L!ЛYnahrY5m+۲/;')/y˗B2܌:.{Xrk~Yp/a-1 ^jaEoC*01k@ +M>Y;%/_C(_pXM;o^!>]iZ1K ǹbȮ2 ד(hxfW w\Q]$qf&_ڊo.n+┯j-eW"{(ƍ,Ӡ ]q_AD*/%= NrL^2T0FՉnn+(1zӼh4/w0{61$n]{T~ࢎeUq@Ą9lk'485܇gd5[].kN)PQ&dZg`׬iҤy%u!ŝBD˫wL+UA?P5 yEwDڟ^i_힪V{ActE']3eE;\nU!aAU>O`Sjr$}! 4~BjQ)K$v߹\p1m^Wٵ$TKAk&:WNj;\gj_!gqW|b}M3ÃkGK5¬F<=[d:.[m83b~|y\j-!ݿ*VCH\N]xL"F9#s;Z'FkSr$$4zn:UtO(LY> *E[`߇Ț;wڻzdXSd_dre/39jۻ/qfNk?<(NZ$*ifS1RsmIX{.8 O\'͙Ipu\\%npШ.ei?/s<->Mt~R&.U;[d:/h}DЫvT+v{-CEoHcPTt͕K,TW'T4Pw  Vs1'!cC{Σ[$%=_ @ٛi6}T~Iםᚘ)@z824wQ5,mF>,X!7󠀈 Ii'k#^9~&U#9x㞭mH2^s7o&cV;I2 52SRC&JH,7l Du,5bs$%!%fJ&$}\Fy^(, endstream endobj 106 0 obj << /Length1 1379 /Length2 5903 /Length3 0 /Length 6850 /Filter /FlateDecode >> stream xڍxTSۺ5"wkҥޛH !@HRIo)Qt Ҥ+"Ͻ㽑1o~m9#FN(G e ňo;1 G!e c650 G!:^HI1 Po S;E:($M̭;`uA )ew'F;" p()`0>>>"`wY_ǸLh7 kdg4bn =@hl Vj =ȿz6+ݟ_`Fj`|1B0@`o0v~h( ̇x=0h4kF_i۬tREC4PvD {#`p5G{A`&ۜPFRR@}!. y@;3x<0 8 !@4(?\@'8p:ÑΎ5Ca >2 DEt,5T/  ,&@ $@JJ#V CdjO|g.P߿~(`@gWݑ?,s0X裰Z@7tNp/jcX5(#Gk}NFp /e77 5B0( |XAܰw4]PYW A9$ #ƞ5v%aUMf3`(O_ JD 7e^4 /̢ r#:딙}7G VVb%0{UnrVG]Pp+g(y\q:dcVr|TˇR=[>_u̘x=G\a{ T6^fW g*qm߿;XHV&_#$e69WGET"==gAjt@{WjMoP=G,9fDIZRb\sp:g~Gӱ~OϬp}`8wN٦#?Z~+A핲"ę7EVFzWbb7kZ+PZ z)F]/v酥;IzQAVk4wLO{z&.gl_Jkƃ綀Ғ>o *\6ΐwtPd,Gs~ 6h[A^[i84}3[ _M(c-岺|RUxSF=}In@ׯA`Mr^zױ/~53a&ERfMcbyj0Mw[~bOC\Zn;{Uߚӳ'M{ϗ3M+ ҍwQ;[Fv Y> ԥNCZn|3pIlCF ݱQ4COֵޯm [ϳq*eiGRY6My:<#4b^xҰ!0!M6G/dBk*Hǘm6H"L~ƥQᭆ@SdoDh_?>>DMQ;Q>;tr`!-U=[^|6L&Zdnm7CyUJ怔wF(Gpf IdzY ?x16=}f7'nȖRJ4im͎?l/LzZiaa.ӔP.q;4XY(KREreNTX?pV`T88( zr`H`:CK6U<ZZo0PIjPمr0:jPLYm16 ȶ=V"=8r"R3]($F{ؗiI2p{x|)yJnv<e]V: Օ;!{ha[>_SU;,ćc>cT2~hVٟo:oo8Vnv3 6epIZfGO>%S_˓xq8f:6GOm|̯ ~%9׈]9+5,yOr'N+0CNh­X6Y<ИԐְKbr83n'6MUwhlj#A_Wf4l(ˣLM\f, /M ^ޜh)+f!ޥ4;rHqdI>'‚|&P2}˸4:V/+0]%gwM#VRnόzFƨ]c-Lm~tXyp5(*|FZN ~L,=_(F ZX +q[b`;K'9'z?qY6VZ(»bK~eLJ6Y~|x썳0cqmdoE.a%gF^/C <~Tr5?=u-l!D0z.}W;.xY0uq{gºs*='+ P)K1*!#VR gh6뮱o ֠u}{ DfczI,byyNJrp:$W?3~g fxyڟ6LHN Oc}#KYNHȭM""f$ПR*{ KniVLE=m?`_S[16Yn K*Zpi )YL9 e޷ڵ0ؑ-+0 I жnO,*8 Z.Y4/=~̺tfÌYGeoVҒ ;5xM,N޻/4Q98IXD&cw]NƾHle%ml  :{( tT :C9< EȎF93P(c+%qab&3 yݘu8jT_i<,^fLӭfqPF.U"j;/z=Y'y*Y9UT\DU4 FЬizu'e6_y;| hO{9dw\$u更ƻ4F ua 5`F:+ED|bLeBZ:z x`=eXi AGfsBUk ]`\͢ᢵXraqqޫ?Z /j)U-3F>`G>I5ZN+q| Y.Ii|3ʔ)=j㷄?uxtތ5>+@wu*sy&HHB̝?dvZ{Vtwoց{1Ø-Wȃ^m=mT Vx>3lo< Ӈ\]'%q?x%S ~K/SNICu ׫ J&hC4+&@lM^F?~ )\{l"֋mM ykTW6 p|̌muFj* =j~nٮ;)X1eVVe^QYk '!}$0CQyHKٓUk-VGPjZ`@Od6#.Zj GLG~[i5zTNN 5u\4ڴkF/Onlݸ3wz6Z}dr ] ՟^WK?&k(GC͞"՚1eVԉ"Frf/txS'bܼJh|Q𓯍XuTz`GډgV/D6__wr6_0Ģ^h#zi:^iٲ-G&o`z"ɐDi4BĪHa|rC[cKV6D`jn8 sSu)Pe(fyVRTщ;bUk)].9msKz('%8EI-f/^t'ZAuC ,8~ۣ8<(ƛ_(hKYFXg`AyPdqdIi(\e֎j8s^9ō/}J8S3N4H-rS! َbE{lg![bL+aA2Ƣ}% А|WCSuM(]6lcKo\Vݙ<ħǰTٌG30T*O[!Ŕ6{Gcju\=ҷРJtQeUPL5c~VFr5~<4K\08dC;R`ME?r]z;P+PX {PGCr}#jKֻ q܅']L-R%0;/xcFTpJmDOĨc9tc&F86'9!ypADr43#{7 }s&*H hY)זWнRs!z7lwIU:LJYj,\!}0,OO}2K`9 ˩؜5~ /;#dLuϞ湙gjSGWZ>GVU)t _Er|laY#=6@vȕŽo xOղ4]&!4kY.qus&owng> %('陈>nmQ兗 bM^ęs:t#^&"ֲ3֙" \OILތ8!kEuFl]ѩ C-Ħ(Q4¡:AŲSL b- CשƖmO N&0&i9vUY\NߕߓJfj<=}+,^шMU|Jj F4l=7kkL$mV7cb`vij齁/oEHm9/Ǿgۛx j΂" I.K3O>*<^7oiᷓj:$T~IYD ^e~:;tLXqS:6@ \$1\{`a1zz N I]w5B|RIaJq4TC-vt4HpX.Z" V}K!^P0$6B6!;ED mi klE endstream endobj 108 0 obj << /Length1 907 /Length2 2139 /Length3 0 /Length 2735 /Filter /FlateDecode >> stream xmyϣ`ax(d\hX,9C!S4)$<!4a0 )N% 8JD :aX"W`0<"Hn4E(gP8;Kp;j~SȤ O l~@m0ذ lXKO%%8#2D`?J`$mA:d d?snj`t뎑q{Qֵj䙻Wfa?M[uw݋*MG lJvu@TZ<ĥJtǥ/u"ku(ayʴOi+mh i ~1]SXޞE-}W2%,i؊:'W]6h[5X7ImY j70ҶnѲۖC[OؓT@ߎҤ"nM] GCDZULQYj"<޼_FdR5[Q,yn^RYx"Q4_26LǪcAK{",-n|öM-@0yyTXڎkA~i)vuvv/f'V(k1Iw fybųGL=>T!2=R߻< No-O+O\_î ծ(\,;OT*Ȳ }ˇt$zn`,l}`-15E.3uTyĶ|Y!T8)7^O*3ߦE!wQ|u"G$꯼4̥-5eu`F{M޿0.Va}*^f[_߼ղŲn\^.W~׭J8qKVo{C_ o-iV\s?pE-Zxy-OO2Dɫy]|33fZ=>}uȈ.i3/A;xLfStF"aGx<|hNo93nD4fnN_ rj]ݢ"}[@rz/_تbX5ҒWA,{J{`sICH{ !Ul(#;?8C2?mW] D>y-S~s"<>PO x|6Og騠ʙKʬŽ/.V֠U u3H g{EvCUٕ۬=ZPõp'vq eU,wbRΐ^o1-/ln]/q#4c5e7δ2@AG) 7+iVݠ`Xk#s;{!ϖؘԞ% !2tb偲5iYGn0%xbav}nMt˕VQ!X6ݷOW qSMMYnŧ8؞Ky}1DE};yӯD*CGNǫMH*jIYK8?XunyDsiƬ<6U^$uGU:&Aq _iFɌ3,f=r endstream endobj 110 0 obj << /Length1 1867 /Length2 6669 /Length3 0 /Length 7746 /Filter /FlateDecode >> stream xڍuu\>-0#%Cc1))AZiA@R@%P~xgl9>:׹3.v=CvH[* K(!ᮍD  .`@XXDHXXK aH2 9z4~)讴(@DXX H쀍a /R`P mprVou>@$x )/ ahw4@܇Pw(j'U=p 6 DQH 4G8M0wU7N8(;( C@? Ab3rAPww.cߝ Q.`"9VxL+++PAq cH3"q@H4GHPB7/$t@$% b# .(hx@Keas>IaA `W-cu'  0ҎD>lQ`3 ڣ/82@Ad${ ccqq>*%/Ql'vH8eL~VH#X0+9Wk`C@,OKX1Pĕ vbY9]8_X!.I`;~l3ıWs4bqB K؜+@ lӮnl W0 `@kXE7E\ C])UVD7$jg{e4 "<̥pweY,w8J ,K^Ў(ic[E{!𸼳ؚV;vhW VOK(M}bb.Ib>.ե!F]]bm0]y?/ϕߖBTTDz|"W$R"w@a? VazC!cHLSjzUG(ȷC) ZV&&6>x{m9lbEjfY.]^e%O(bzlgsG x\C֚GšYaK_h)A9-Mu^ecdt&JoS^YHdH1v¬%Ӻi PJ>OSF@]&kj4+ʠ0G1o*²Z\s\T{m*Ú᷌3=-% Y_N=F_&4| Wp[k?cM7_а)4`ыRiJf!bɪgN߃@f1 ӊ]B|ۯSn=Ǘ):ɧ+S!to3x0P z=f%p S!KZo7ʪ;4C=ԗ ۤ=~HlAWvzPcTDFwnqnݘ!d*,µ8ܷ Jv͞Vcn>,P}3$$J>:Z@U¯\hU ljҒ7VURx .~m}BD/;䣓4,~o{Nnzф>.<U7/= ;ԕጬmE <.NXzxKr(Bj4*fiq[2,FqNdPh:;rG?u+|}T>PSPiu{(mT:VtSI35ב3 |Fd=l zL~Fߛn_21A ɏN:(X59X&lDRJõ^Z̠ ̏* bĆo_wTӼ5>|X] P&mL#oc ^qvji]3D)ik_?R&$1 Iχ 1ξ5` g[GrXgY& ^mo'bhi;M%_Jy*g|BR0^$#l25m2S^pyh qP4H@%Mkdv $z8}`L oܯlqٚca | z58Pמu^}ÈEp)gt/@-X9qF}!1,'y\j< $ #  9} p$PdK!+Zw~}z&NnNΘ,fP GۚF5/~=mЬV<|8% Bsw@;"ڎ{,al2yel4o*QbbiSI|K/<2}jT,ƠNXR dgi]Iр"z)F$fo6Yv>'?1Y{\8x  i2 Kv4G)&/#zgiGo5AAAh{Ew9E ٻ恼 z1hD4YBݎWz$",։i xXOxs_yA -SRJԆzz(?`i&䵇|rI2MM~23ݥu^J.;ltVCs\Ys y |o5[%^-\ONj:eI~GSd!n܉'Iװ 1⇡;4  /x3eĬ¬W4jB61}ꃾm~xTwHO !*ɵE4]o%jԁlx&i !Bm/ (U"wbiyz~f~bvNhM65!S|H NmgSer1l/[OnyRwyǜAc**3Dm]#DWƨ^kv>aL8eٟucʇYƜĖCs]j7VN2_l=dQ ^i{z^V,lC?x<^r1o-D$A|cfPf߈gʆ@4%<=4'z| !oyKLņ# gϚ>Ok؋!a/nNZ vZ?K&g,J"{<ՖL yeҭ19-x^ެ̲2F `Tweי \$2R;#-5ebvgVg "kj2g^lEQg-i)/;5LbJVǧ}[FGDzsVl3_Sep~KOc'L7~Rji.-M ,nNpǻAOѶϬ/\?_HKe%9^[+':?hN|NS8+[Y]\w y:6VU^_X+-?f?t9_R'={*[s;.H0N&r{8XaNMG5%Mq0=Ve$t~-",}-AadI!O4ڮ>|' R^X?%rvP_t33Piz92l:#]GєwRwQ>n,,]{r6&*6Q#!ר txٵg-j&SDwgvtL*B go5f)߫nl:No4p$D=T[$0d99Ꝑ]8| 5oΑr~ëd_g߱v/hr:k@95? |Cj0=WS,L7 V$QdL\QTv!c]RIdꌨ UsNje]O򤰘_Nsʫbɇ#n x e'7$`Zl`Ke1F *m^TޚioPO{cq:w+'Z}Ns{XU$sA  tԐ9+:ꭿCDĴ^QT/Zշ9Sx0aU-5R; FX'_5mˋXdL/UjjT_ << NiYeھ[\b2>BSo b*nκ0v椸Dj9i}<Z}*> "񭂤, [ܱ nA)ۮ # # qy6א7e洳R%#Y ۉK5Mig`%Z Aט4`p>Xڴ8Un{T*=?"SQ)P;,LP^:~8jJ]>(lcr,", {#̈(xv}ڽ ƯN̸)]h~sW>+O6c+JHf3]- }'I*V6P_ ,{ɠZW:"%.*MH#\HSzrFהTZO/Gx "ǭkV|$ykCGo4n'}P;Yo~II,l7#U\;{F~j:}ri|(*gǤQy7FW_HW3%Y3[k#f|IsxbM D@,jh׃Dp/E}hQ#wi~ySw umqDTA)o endstream endobj 112 0 obj << /Length1 2805 /Length2 22785 /Length3 0 /Length 24381 /Filter /FlateDecode >> stream xڴwuX5ҝ.i6lA@JR@@:I o{νW=<\cwSi2[:e@,l%eM3'wv6f  Z huv2  `cGn`% itf5gw; tu҃S$]|lm@jp23+[`fano 0s((TF[hc`phښY Um5MzpaMg"-WђuښZj[3T_<_ZZj쬿`xm7pg߭Sܜ"ـ@.^^^, g7kӲux9n@_x8Y.kSJ@'w$翝`)I`;w8_JjjJG3['2yL7HzP4m]~f^13'w?-mAWlwgNٔUe5Ĭ Vlj +W=q)% Ri'KIgGGpH䓲rva?smVNVpavuK'lBml+maiefe2spZH~f@`ik: U]]*=Z:;9,VH* @9gppP1s[Ǚ9:#__ҩ899g.c TY-vyxŝMˤ890sI {';4 X5 WV5=e5y33I;Y8[:Y8yfnnf>HlAgפXYA(`k7yL#o `R?U *Xe#o `슿]7+F`v̮?fW]7kF\V̮u#0?g} <@ ?Gv.ZC #lX8;._GM5^ܿ-mHker]pg? C6﵍ n7d 278 |p?Ÿv!Afu:?;X ?܎31wGIv.ߞ\eCtv =n]p/xv0o_q`9@^$kxc@py? Xx́+P_W^š 7g{%%e36dS`;G3x ̜cd%9W?r-~g?0@o꒳`]VsdetL,5?I B jL' hiHkpMQ`F;=p獶WbfʁD:,ڡy+U \sy)#IΞLU_`[0W Vf A/wIf} ő p.=X_!DVJNM`q{OS.#_wTkiC:Eqfg<[i HuӒ\ +/wyzMqO_ 7By#EwqCYЯO, :6ٷ}{ȢFti مBiүHbk `:>^HeWGhB9oW̛9RdGhOLF{=XbJp# l }m;k*Q7Է ׯb LJl hLViӜ0ӑл-5IA wV̮h{o*SI>S-g=mijM52hkEO}$rDg9 kYX#]*voNs#wpZ?FK5=Ve\h _rxm=9{C~`3v],'s*†sENv+gZ\Dh41z'QڸX [nƤ. tٹ uCL}Y KxwGWbޟ?R%FtI}p[|^?phi@ּNO0 sls8tP1iCDgNk|u{bw^#-e #s&P܈)MHIPmOP}]?@8݁#_ռ>oE{*L /[{PK)ٔۯչ-8RSG;h%e٬Hm=x_,Ak| =kFҟ>~xR(0G[V=(lN8 =k~di|K@c9[%->D~^<!gJc";`*VԺHueПÆsf0FPBPx2w0L^RET]}-fI`7>3<}/]"Y/ϯ&42tbk8sl)66?ՒrUw,{[&ۮbfO_aNG.+ϷK]-WQGuaQE'|?MU^q|[ܽ.֯q  (\DaJ0f]5v>Py&4z~=m#fwWyPei;$^'a ?ewu]-@%'ӅʢG뗼opSϪ$<D44LXK,$>p',"K?FЫ슙6Mk2C!5hK`AU`MmKiARy%(u38RD%"L25W\/G%3kÖ>Pda8~i2RK ݂%O"HvsbE-M>״]2,b)syEelqk@E@3L/ſ\C׻̀Gt%m6Dڦߦ{o}8LAѪ7ʊ \@`M'򓯔 [s\Qm+(҄NEmy~!Nͬ{J[|ѓ?:jMl4~B? ~߹"5!)dk=نxXp#Xi>ê͸hx ŖbOT5Sqd$GM0hzzbk.%Slis#,uR :M 2|!+: 3j|euқ-ӷě%rf3]$acWPԧF(~Vm܊(d B+OΎ(ك,[n!jN! 3{$W1?/L83Lid`ΙaoUs-HP1byyS!yͥMQ{fw?:[xX{>JO" _oR;G 7HZpԅ>;;U٤GJIJ !kHeBXKgP 2ٟnKj"=d&j۞uHEYXα]!k2Գ gGe\v IuֿEqf#Jﶢ1;*UB*@S"$%&=`ĔK[T!Nr_+bg^\+; nak/CoU-7rxF/@h)>jnOaѽ!ma?3>EKգDD2~NS>$WG_!q4ɝ7˟#oSDo~P0@8r*⹨zM=Uuԣ#a_A3 02_F< -zqNrL6) N9q&]K eLP(MIGڪ)Khe3Q0-MC\%ӲgM܅q-ar x3ڬ< .Nz(#طbBuꓤsA_"!LB$oUs葎$m/FJɦWɿC>0Y{Ci oWB%^ iGqtzJL$P?a$+>5+FO0/H&\OA2Jr$f 1NLuJ kX2┠yM@M=i"Nj_2wK& E;z@ԥZݛTh H=Ǭ SJo ~Q xcj݁>a?fzT{g1C;FJ5e|`Z漤!F9&)Cc!*ǟ)XYtig"MըHq Z=AYxRkP׋ЌFr0"$,,UfGw@68hM!Al2bͰ\a\*1HRUfD%+MƑ'9у?s3\j:vD#Qߣdyv,enDdK蓻:ӁX8loN}STx,4{gQM:si =zafV!6gmO# P#zbrtoX{[siLL'`|nluѷQz OYsmlD 4Kt8 s8?vZ@d9}UP I0Hwyn al0\x{mku{ByL!|B[d8PlF{ݦy;F3H)#qAxŠSTmOb9H\xAAn-#sQ9+q%mPՇX8uAr m(Į,'uujvIgP9ҕѪ4R9gel\G>V*>z΢FѦE k-xyKY҆ ۬4a a D#^)Z+ ; @j 5 =i5 -Fg @1ahC?4Uru! = ,K8NڎvOJ{9 c/;4'"9q`G8*`>/> H%&YS:yKpj}'twFXB_־qJ^Hoj{enuZ fV־{&0x'zP60lASufIiS(H .KwUPye:}n{CƑ)ϪB$JEYSrz3ʆ$kn]Էvoww(*\̨bR臑R l4:%CkYU=>XJ%z{л(NºSX)KTwiIO+Xe}Tv'u2AM7~io9|._FwWZ˪#K/D7*vOZČHKw̠o= `U}ySm hh&ik Q3# 5^VKm=iMp']vO\X4[oo `u޸dި˝K@#Vy7e֣LGDY bvr&ҽ$(*"2hJ=M_8%SrXY $*`_,W+@<+ԇBmx m}7T?"vFSdjYZЯhG^lg#߸,9F byw#S4 .G+D_fŲ=7X) 3`qsLe;`FŶN&i ]D^?Bl`t*jJEj5  %x[쟌9sx؝u`o$_Fp3I tвc Fk+ ".fgn$o%.Ӌ<&җ@d-}OS"|b%X< wՆhyșd6%[`P$_|L(xAh]8a@ .kġW~'E-%Þh%Quc>bM4:Y~a-Qrtds"==8O׿ʌm)n!X&V0N\WȝVdyMJ kkrQܯ:x*✼"x R;C%Ez0jۈUyYdWaXΘ30IX(1H`[I{S8$N\!}5gjѪʰڵ] bh*NE5ViFF)dY=EI_[xڬbntx+W"5FѬ1MQ].qr?|z@+IqDϧI5[0,۰>)Q3g [QLs"&ČȤTV[o 1E(lHI(9HW&f[MMXxKA8"hauPㅧE # f:骢tTlY1W$~7rҲb9qM*-#^0wdq yj[Z9Tj2Gmx8Ծ:O*^pMAĦaBWpHZ룲Z;(n$n ;f[)۳^CPr,Jd,BkA}ڵX~5n÷720dC{>~Pcp?+R*XB)vcdäsw\&QqThN/H:ૹڍa)aPvRt&l\yEq</Ksh0X]8un<~YSo)s?/PG:aR|(ۨYY' {O3;Uc8k'?I΢m?'Gxƽ)̑5^}"3 C@%d2G /Ɨ%@{wdLX4vX@cKR|) hV)$,{6LG+i8m wIVΈtQ/,5RFѫ"~쩶3\K n-he°>q{JB0/71뗥|"¾I&^vD.MY5؄K*QI!nɢ$^HGMc޿0Vo{_-+B;ɶt> 8&K}{L+qOXWFAƀ\"lme^C鸾ݫCl"Jsd>=:gQU )e IdPXEzW?0 F|`~8u9xk$"<9>"ަC}4, ?Rc*CFG[Qv}6uM tB1N,n9A*Tb fk`V+XyͮoqtS<OC>˨E2U="4y;OSUlh+퀦s {v"?Brr?m0)L9fhEedhQ^h&Z_gRw~._Aƽ\MہހL`Sп +野J!&s|0\hS\+yDɹU40>CwZ,wdd^{7WM[f+z ^'z?4&Έb~CW΄HZ&XMƤtsdHS2b-@^8hss7͂S/K2t 6@&48cUFXEܪFwq1cm4"b{vZN}7DC*%n|>"Jwκ \z] Cq i?P$7jtb3 tf8Y<==tX4ib'bG졵jGt{gil4B˳]m3&}gg9maBx>QJwh|!}x↍+,Q~Z{їSde;ˆx+D.{)P'<"^K凚C '`!aٖTpxj@gH%ܙi{܋겦 ړL1N1uG5&nY^+$(rtiKw>7'T _ǎ_g;P#НjKs)/̿ )(ke]QSQI\>!.Y8aD|_^K WFj>ARi'k۵N3F搨ɒ?TQ+kƲPejd*o끜\N%2bPd,@Yb2/ZȇX^a 5kjfOBPo|)C"M6PZ,j_4 DٞC!̙]D_XR~Aԇoi#0ti>tw"hgDXZ,"IY^Xx"VӋ>N*~y@qlF5׵۷ `~t՚.tڷ/z/aQ\/6ȵ(!rl[ɩA|-Ih"YIjVW y[IM9P6s` X#^1)Vq {oQG?D; TXt/񮄁g:7&O4j[R|iR= |i#`wV7w9 FBJN  5 E sɐ0ޟaeJ4,`d%0siSY7>a&Ip"[wB `BOJMv#᳂Kfo-Gl#A1z8> n[nCY&"ެgd.-̊L](o\` ̇y-;~%+HUcpN7$FxCÁ>߻5kK 0O r֜_ϗXEtS9G1Vbxhpbۈߦ@&d;dSg쥋Fx*b˂ѡBƮ\l9PodS/V~ddw(Tm,v~` ,Q|:v}8έU65wp{Wdvӆl7;.K9R1vAx%eL2XčNzPs H7t# >ڨ9DwTɿ71m=`lnw~&\*FeJ!Jh.I{-K^G?~TU6?Ýlzt]-Ӥ+;gtMNr$4jb}v"Uj\ŞB1B{j셩#04F!=1a/ Yl^rmv?Be<ٳ:hJ4&0HzQ:F.yA3qgז<2)U:o ړ"qLhxJ4*ۑ QӶZ&HЬrc =FI Q}$g5PֵTc}^r?N;<]˛?G4739_ Z3|`Z1puٕ @ 2>ْŽəۂYqXӀosf{? MfL<1#`VSrR]]C#MQa}LRW{v=(pngEw&6N[܊Ibya4&Ck#'wmVӦMS/JȻ܅^SvHYvcDwN lW;P-]B I73 +N'CʆKm69,Z]IX 8'cc00?ĕ 0ƌAw.Ma3*M`T+FЯa =$o9ryz { '[h+y 鷻(:"H~W mCEXKD~.ey>IES MBsS>ؔz)>㴢?[ Ҥp#9q:VCj 7O_}T=LK0o4-G벐;Ǣ2Qt?Gpvj>P{İ#i#&ktGBУ4bďX\ ?܄Ǿmw:TY2G=(!^8ˤZILlYDF)\?"62/ҡVDQmPSRÎ~ ;睓__fHsF/8k|%>ກ;&!l<1zV)Bd_;!v~[هb AĂ2eq ֆ ],ϳb|KFD')4ZpO"e؀%[Mn."r%|ϔdkվ+U~vHq:,bcptVts#D|#H_7N$ҨRL|O~6)?wËl'\ӏcN˙KëZ0Ҥ%TfB6u2X$IU:vnj;g2b"U> 7ao(vtٍ)%Q鷱+F,;S:tW.1+E*u Iii#&۽u؞aYO*Dgin_FӃ8ʄNX~*Ma/*}c99p|NITXFp[O}4Mxg;P:pŃkH%DG_[m]}F'E2Cv&"ZXwxMX&W?Bvص"|9*նutNSbыbBVRp#jhS;Y BVګ?nqp(ļ S.X\p"rv-Y}$&H~;J{jY+.ۓ2Y__pY^wXq/r噥"\6crJXU50ͪ$I)|}\3VG+rqQN$O֔jřM@BW>KbZ lwA3vtũ]gb2yS`=S}o#hC\wqp,%E8&["t;?`&vs4]VȘɫx@R>PO*kZ q/},H0ȷ ]QQW6@Wz 3L' ١mdХw?X`74$hC ut*-&6ge2o}d Jɻc"!Eђ(B}QRo|t䤟9ͨش5 Z&-w! !0w~ mx.~Rٴ'ꗵOCʂBꋆ[Q) B:F%u\8G Hj,!rz_LX C#VL%^Xc ElK ĥ2U' z1IʞZݽR#oBY:` q ]eD6E d.Y-tM;c͑t32 8pt5:`6Ox@!V/gMP.g/Y3>07{>#!>Kth=5`9 XeN)wYIXW'ύ<=We8-?#x1HG I]K%(=fYZt2t?䁨\t˼N9Nbc- f)7ASڒ}m*!.zJP($ ;+vE͒04$^\Ou'j Sn̨ jB5bm,eU_>\p}uY!w1GA7{{|"f(@$ 4jtbz}Àx9ά?P WgN!U5/hw5`~@$ ƿpo=yp\I/4SFB98LD2AmjI>sP-<` ,NUH-QX2ڋ(1^,g\=xy~DWRKKXZP<0].Al^޾(/? !M>M@7]"l ~dPp;)\*cYTIcxASQ6<2nRVh>B͘~Ї(=Ҡu" #"pV4=G2 Pc XOib.7Q`gQ9.`eo>D@=AP:Nό]A2_%1ud+VlB{oLS~#iʍ-SS);__b,Naj+RV 2ҁ_ie.)w4?Bbp:J=;|+^ɒTrN 1ɽQUƖ,W=H%t?۬MOeA8EDV7}:4INtw^{}h6dѻ }f-وel˭yJa&}GUA"C'#?Ԇ`{ FD-׀3z Tz0@@ >uskFM$ƚu'{ƨ[W"S8H7A0E$0[)d9Ըb -3BD:| DJEW8ʲG//Π\;%; J|9 W^s1gx,=`_ښ1gXޓkr7-ꅂB0\ȱHb#UltnKX|yNB81/ >vem,9%72Uͧ`%&`p8~R@,3o#&NjtjR5jُfII&x||f;ۂx@'Žk12hb7g2vGՔ Q.\2cc6uἏX[m3Hӝ4SRaoRae{3~;QSysӸbGYDkF&cAOFްO)m3gi<84_Zjf1ر;B%ӿv":zh0.QK}vf:FU1*֚6+_,CeGr7$;F A4܃׏-ͺc)ňt(Or'.~Xl-~F.v4Nd{uxAS2qF(|9+K&[qk`郀@ƍfϣ]T> R 2vUՒW˖;38gm<}#>pE):H[ q-r3U*<=YlիC5b䝮+E ` :k͔/Lto$-Z)$'P냣ݡ/= ~Ў\D94dFo90#. dF>)FKЫ: by꨺N1U{yvf;̞l-W䠡"ԫ"b 럇gL݃᣸Bт3vS{z)oy8j Jz V5ۚagӘf rƮ4$UI'$O* i{y v;XVIJ #'tclwS:PFC{\nLQm oU.5]}>d'ǒZ7DD4.֊T";boQKqbGj>EаB)R?M`N <>j[zd3ULYL>∛|m9uTrWwe=bvB3 \U]Oc\N~,$QOom 1DNbbMxL쓘c9 b>*E{D'V8uY59 po~ k+RQl>',ߋW#wfֽl"g[v; HW/:"[yj3A`""Rbs&Oz96?oPw8y,@4] (Rgyw3u΄k3M[%2SgJ(yȿ ,Հ, .@6NmU.^.hf5ȧ3EL W;bXV ߹z͇ ˲]k$ՃrhbĶ/s[7p/z ?_Ok9o3V:V S]X=ҭnD+D8[b++6,FtœJw0>EE%!'4NDFmIx~x@,*Pa%BՉQAT)۴>Wg(Y6T7FtVX~ f\'в}wi'35$P-6MV|ߟ}E+RB0i$5DL2m[歕S=6?6 Lmj$QN9ŹM̾ .K.ɺ(% Qo jVCT@ ToFb%D 3 )Rs>p}Zg0۱kX*l4QDS3ubjf unuvNIt + Զ?ƼwM *88l ]T3 i,8'\+pI"k%?kO٭s!dI =<ŌJZ%Jy}PZp&ES94c+׸{'z̤r+Ǟ,RǗ|o{Lz)M#dV3 Rokན_xjTYߢ%go7L 憮_N:M7.:ԖU'M= Pa|.TG?7ʴ-$ycJ祤 U%{#+,A(u6ЈKJewr\-ؒ.Zp[54RHD;N:  q)bzM_,Hv1e . &65~hM@ N@I/{TQ//O<={'RA^fk3Qt"gGi*2QnmWëk{kzOQepn\-ܮsR+RMޕɠSx{* v7էIE ]np=<Ʌ˧;ok7k.^%W{ z7װ]i;mw#X-Q!s6~cs,H$"87XUVje󂇘Y1Yeʫџ萀kv)cڥFa6F #8 9I{C %Ģbf_=mfU4iEP(_{ҀU Խw/LN( r?ˢ-8Mnuq214o<= J7Fi$pK]vnKit["lr ء wC1!9ԓIvą[:Y1]i&oN_K6SW@/(c⻙ ͒aWJw=ɴIN _TwlY(8԰$.? >x+A{F'~osCug6ϊ0PD^4&Z-- Ve~?I[`XD]8*9wU{f ~y3A;חB 繍Cx&F KO!;-YE ܻf^jDSܥd}>,oj:i$j'kO`nUh90h I6Avn>ӰHn\)SP!ƞ V/:i)+",i4[# q #%_o~儎}Hu@GD塡\3ays$>=O7aN#hy[Ko},ބ9v=`-Xn a-0Aq4&Om:Ǟ_үy?5htjn=Tc92U鸳_!Ql3Klx|\5k8+%ѿ@sUEo.E롄mKd-M`ǦZf( %1xƳlhyɻ2c~u#{ Sr9LaS5E"[[ZV*۫!V3y=UGu/C1)4ըLB0BrXd-@Rtu8e(ch$5*μԇ c@^Չ qeNztBMb.t_BdBMQՅ/~(3O5|$x)=E ? ?儧>KpWOtW$u Qx=+ DfO-~!Z,*HݑE@q~5ؕ<)C1)Lq嬐WBdlǹ(?83yU8Q;IVvKm`eg; )`5z2$<pu3}4\I$p3̹1܃ë#uW ۼ;ųD I \̯R wksɑIkW endstream endobj 114 0 obj << /Length1 1874 /Length2 14035 /Length3 0 /Length 15229 /Filter /FlateDecode >> stream xڵuT[>Kqݵ; wPxZw+NRs}3}=kεGvh)4Y$@Y + @YEɕEh28YٹQhi @s7;Pf xgj.B :!J+@f 0n,殯jE uO?ޒEsK Ȫ P{ `'d [zmM M;m5MF`ȿkҖcHKj:9mM?Z@mZ?y^ hIhpYI^+WWk[77gA66OOOVwW7V0ĆW}ZvO0zAqwzlg trqKJӫ {%OLп@5wWYMMhnt2w|5t3wsw%{}U  ɡtIʌ@>~1s'wWq˶;ڹ+"`mϞ9%SPUbQ~m<'+;NnOBZY 6jW?I۽xN>ޭܝٴ\܁ 6~Wft.{K[??b?W|ks+zAq5 @?+p,^uTPd KZTnƔuFN /M L?rɺ@@0O3sG; a S)*hU=J_KfN6 %3Jמ}=w[?-.޿TWQ+ɨjj(*1aq[98yx kp|8^ 6:^]n~k0Vs4B|6"!W.?vo5 of7`|/`-k"k"ܼ[5ooue\i(w } 5 `-o&*ns*}$[Rއu,\us.|-u"58(`KP2GoD?-fMvJoRŊZ?SJhCAk)UV[*$2#y:U˿R1+rOlF9躋>O2*o[Y<ь_"$Yv{K5X|;cVfD w F9]kfr,סHw+Q̗Ӏ Qd&i때@6CwI9AGֆO; K ہ߃JƗ::\,J Kɕ|m#:>iR?V,bI^6tdשB-/y@] qy5ҺҊ &L>ޥ;ȶ p=8?Cd1K>·tv-T%J=^o@1ppl i3wgNQ1,#v¡l_ |Z쬱76J,+\BF|~n!6_2S '+ \* fϖav~IZgN6JOaV;=ړBɘK,>#C)ȈL nwcM10( 2W2~<mAM;g@YSM`Ժ W*jT`$@4Tn8u8MkZ:71ZcVab7:LRdyd]1ېL;N`cl5F+»a%Z8yqR[}M;=/LHuTSn4 lNF4].iOޟ8LO[FTӹ1FA7j.1P'JNIC'آ1BRݳ7P7W%&KeX$GTT;PeRtllv%!ԑ AޯǪJCI{_kW?fsB{FOٽgݪDMK٫0ovsa uA9ӥ,?)T#8&TIBvSgaC̴Q2,WzΗb<j_2c qCDOilPC]TD<. b|Ϥ9_Ot8p~QTs4aC\-2gnDWrԯze@QBܚ y0H>khUtI ז}wDrb18j^]0{H3ō!r Cv|;dORZ{}kc>MZ~ f4y<ҧ}ޓA$ oۿ+rBa>_spXd)Pu}7 ݓt% U@rp%2r`uw 8tO5/}DM}K+ӭŽ+W5p!ĺp+,aU $D (D&ZY$~[;jm k[E&㎙u֥^q97qDnl(ķPd ]]9GqmRf==N>fY:Ⳓ䢉I>)dH[Ag}3\<0!ہFqNB༬\%Ñ4wâ:˯w)1J{GrpO)8JVf׻5?olm0BIXtp?["pG|'(a24v\ "Rv"E8*IzWʦs09|G)f/%tDK-ÓCn]oЬH;`="؈x]QnS:e4m"@(`S.jH0*s0-yA¶|PGj =F௼E?{q5j<|zHvkP\@|sqx,%}cmllIs`&Ej dI⃤ 8 e?CAcg.5- .iNxny*VO?ZGgשlΔNFڇN#aOmǟ&9K@8رd4Vܓ?xN@M,96n1r<Sϋ0S(@yS^tضɃlcuVӀ7ۑsڹ 18~YgRq÷uoFi?m~# nL +c>*RE(G^lM`r-H껝X=W3$|-ނW"H)Z>НU +'H6Nр4祋XcA܆u9TiTJx CYjH3X2G,F$tVi,չRvn:7?o"DX$KRq@]*e~JEs*DP k[tBBk|'td\7 Jq qf >Tliƶ޵{s Wd`t(@gk ڞ&ytVoW^> ~7 |$R[\#˞ԀctgOyH]gg28Zs{^][ߒm!Ӌ^AةKX2EنթJCV< +x-iz wDe?TDK-g<3#qֺ4|k6K-x2|@o[TW m@z(iT'D0[qH0қ=7B-蟥tz?kW4\ωYS[S33BX%f [J F5R ܅mGaZX-} U> #BOtcҹ]t8v0K셭B1Բ Im͜K J3-ǷI<.I]1{;׉@o%.XX$(El>XKE/2Gt ,V$ '~QkzDc.D4<`HZo:zҼDˤTql汚s%?ټ6 t/T]:BfƇb\RMC=:jNAr+ GmDn{ ܧG1՜J{Xn۽dӟڛY]BvcIÅnh!3U6ӏ'HC"Mx*#9o0In1wC;N|H=0w5`B)\@!.jc&] vw[=HsGvfȠj  @0#w{i 䦖J&^*ZIбٳ IʟrѨ_fojsI3:haE#]q#N`͟ BmiIH:z>1 ά6u@v2"e^bp |@ ~*9sXѥ|oortœҝ(%թy~-Nzʓd}D*{Ò+&j9$CkunKCazFW@sLX·MF$L)Mnc!8kw` ǨKwa! jC'f'@@_»w'X|ApD/}jX'L[_8Kp~8t DdO]f@Z$QL؅30<& E7„u;1Yџ5-fծ,߭I]wu CO8s5DK$Wc|5)J=,a +1v˦'NgF)lѴpK*B9N\Ԗ’֎ 'l~|?#TsL[-Z%4FCT AZqLc SGo5Ƣ"2WϏ}ͺ2ViPe񵉚ӂ(_8E [l$KttdFдe| ]ql9W2*W1EsԖD4<8&[xFZ5^]"n\1=.wmF4g:H*t.̽=SCg&b?z%VPJR06|e.Z V4ZV7J˪[UZ9~~e9xK9K=/"O/vXj҃>>1i=yU zr5QgY0]G$}Z.7YXK5ϧhlW/sg,% ''6U;_﷡ElvӗVX^ki32! @-s3ĎĥH-IPy&,C~/?jb@R9S:Y^P\#B2] '@'Nf#ٶ27(gp'I8VID4;=2p9O)xRFpÆG/!<-PYrY$anFg,eAԤQ)K^˚_ sr\Ҟ#FD1͡Th[#*wTdC*k?n޻AvnE2CTP/Xɕ k[i,v'4* @/)14ӥjuiI),|vjG;ʁ{i ӽ=郅>j&iR$Izr̊|PB>U =>b[ }CFBGo^K[[0;|JS꓀oCCi6Ts(%Rj< S]+-Gd70k_̿d#Ml8pL0uCnR^V )j.|%C̉7zծ8ia,V`voO$iJFVmWTqEj}m,{',q<5 ZLd;#v"TTT$.҉kM_^veyHD M!b=K1F |rS*N̎*)廂A!*h_E?p PQUdDe=я+WڃntwBڣgDpd؁O&yʚ{tg9cxj߬;yK>x[qc&y4 W1/D~T*Օѓity&A@igSW kӘZ1M?PLٞ~FBUT? /o5l W%$TP*mY3z<60Iz AQoNo\0X#&U(ǶoL˱h)N2$ၷTǎd?\'qz8<15yY3H@j_x}GUa-L$q̮0y x0x[] lg_xj%Mk܅Qp2kR \9`@"|r&:6V)I#SIR>93ancwz̢t'5ͅQ>p/!xN3eHתl)J1^X)-6-Țeg.Ց9y4vwVgW (&#+K!`rFIJ[ßk38WwmSG/4އٳAUٹr֐^n4aRܽ[uei%1^iFỐ*QzG\(M4PRX<뷟WJgWEӺ6n $D [-`p1,CS[õdhbۯLL0V%FLG̀H3)S-r)ճk tu^!pǹ/2,_;]ʐl4,{L[z(D<*ynĠ 5>Sd[^G;ۘͯXt#%cM'^Vۆ`Bܠ2>RP cQc1CC,^*AYub+&9(S!'| jXXo7|(?lXO(G: 6Xe,L/ak$@]R`x'.bc΄K"m -i  %j)߾.?* ؘt ՘I"P^@֟z;o \rҦH( 葡s־Ilc|S%8_C!A4h?;\é/;qDqBsDc, 0MUn=g)kyR-y6":<胭L.湝T%N3eSk[zJj}q1&#S/+j76ȥktYMR^|<@ &;=ű=FYPsa0Td; ASrTXm م}D%(RehFbֈ&>`U0JuӎAGߔ!wmiD^~^BѸ5l3ou  9ugK/#! RZtUκH27Vi 8 BxһtxMj[^{&QGZ9 XNZ;caz-,~P1r!zQD[&Yʩpu8BI ԐS~7o:6c6vK9Ç*=(>Ai+O[Zb)Vz=lolnǚ rZ,޲!DBX.Mcim#wTDӔSoF< _{_!2:ŽrlǩMD [T]z'4E:/¾3D ls=|u0H[i=l6ߑbsR-.DGU}J,؝8u3`ܭ@󜩘5l_~ -zQ?FAalU g"ز#XٟU鯫N!1{@POlj}_AAׂ]BDa<5jw?,ZĠHui>W^OGG6RLiqgdNʪs Bs*6ͪ* [2wDVM<{8ӥ762>/_W^K_<սii"8Kz,=}ٟ[L8ƇhC9 W>X{DN `m]"!-ɶX%dcmOEr!%ENVI.n)q} x)q$sC ':(w4,9ƍZ42+{C#1vnfHqP/"jQ;K{eAl{r@8gX@wn]@a7IbV|KZwjQPNiv;Ք~`Zqi||L4S"N$I- :\8ԣXG~][Gf5C)3ޱp[~ު a_09 J#co@6TK3-+Ko.E࡬_% qfF|ZN ّ)>(+a 7`aIٛc'vo 0/;>9qtgG!;~]elFg^!H=K$/f 3YSvH.w tKUh5ҞѨio(s].8M'5`G/8#HK#HN u`)#B_OZ<^]jǕ$1 k܁oAHgan7 odlný+ʷ1/%fdʙ%~)]M(+sx`Suǚ {Qra|G0%,M[ҍjS52_e@&`r@\.G~S62rU*.\79VAW-,xC0?ДmS:G>+pЉ5~Rh$]cA$Bwz,UyP䡦W9څ/"!oX4ps "yXñZa gokU'^jڢFSHJOHZz'i`fPnشU[52;L#JaKQzҢ/ OXwSwO?hB|ZenS ,+050r v'3+J6\j€Ѳ&dAT㾈>F;o[L|IEJ3xOH11빧H m# -*wߍK bmg nsI͡ˎ^w<12WjuRBȿzу OqF1z/kzbZ̾+čfKg4VU]c&ut$+JN2CSU[}ߡL/y)}8ƭONr+۵4KXQ$<>8~Q* 9I5sנ\XY-q tgi}'E,Bfb \pV2;Owk^Rpe]'VǚOWt fnLodiVLw7 X01Vap'"Jdۿ䐘Ko5X+[CN\$|TkBnhAV08hͿT7ly4 *\W@2j\n2޾'?F_/H*|Ky ͹=aZ+hGXI8:qD`i;G;e%}e@*8*Jg[2K9rTYi->m: I&@.[/͞="_Yܶ/ORjB'5 # (P>k)O\2ϯ[̒(uRlEYsZȊVxJa7}>ki%ps}P1sXu?@bw9'S+3(OMLa&Eblfr; Aq^vݺgiո菏WP|vI p?^ wv\:! `FvIt21WirSHgN~+^6^af\xv,ln_?hjFJZ2;v côY1}a5\ tHp?YPViX[;{"/7ZʻphP11?Me{Eo,pcX1[qibc'-qT 﨨p"+j7 Bfxv=Ⴀܿ sX-yWnD W;Zu|1-,sJܞgv/)Y]*~|5"f4d(NI~fb;ZϮt2 )3}MzJ`4-.:cU<)Sapw0H4 OO`\} .ܹ>Yuζj;w/sAxeA.]O/PY{T=WNey1S2{7j  ^.ؒWY{tȪFehߦn[Ֆ՗d\ݹ!OX~!+ _X3&|ɧ﷢g{qƅIg& [XQd3UM\zlNvt40th8"U!m@J9O%1']{*,;ېdZֆ*?OgQo0n;_)NfvFyjDFA+tբCFB¼pJE endstream endobj 116 0 obj << /Length1 1878 /Length2 26625 /Length3 0 /Length 27729 /Filter /FlateDecode >> stream xڴ{eP]- ]KN!X v;̼35ougOS49*1PDW5sff1U4ttXEF K{;1# (ݝ,LLpI]i 0AFj@f_@Dolڙ[]D<,-@b[ cdbmlm 0303ޅ*{;1 `oPjUUT*J U]QU5uI:8ATWU{ߜ835@'g?i6.* ȁ͍`d`W}j7{'k1.vt,gcr&@;g' (mߩ|wzU;?1map#_rJJr[#K;drq%{M)Q  '?UNJEWkc;fd7ns&vΖ D,mwgv%Uώ^;;/?x\Lfn6{ۙھW >1w@N80Iǻ2s :&5tx9;̌l>f78/g#W ?3'CWti;3{?S@ROhǨ`zo ?_$\lllT5OX:KXM,A&riۙ,-~?,c*6ҽ NrZbbw2373s<@:`gzw8|fNpv(Gb0 qs&BLLFӿAf#ߐojV owc.Ϳ!{&L|__? Vs5?LfN῰*ii 7y#{3 =wg{畞ݕ?|Mq 5xO4@E{`R_2HrnXZ2W2qrwI3)I&icڼn$UL2U3G`P̔_/$>.flo%nza|CN!-k]σt+gnpAs_F_=bF b@9tG &uhĿ-;aF†%/F簔,OČZ٧cuQ(b~.kkVYD&Q#g;]߲׍srH#GV# Nʜ չx KHܖx_-1=~PDKe!iv>A߯hZnL[L-G-6 ڏ`ThxUaO|V)L|9O!5:}`(W/iDQجBQ %Ѻk*ә^;u<'dg\H ^9mpNsV/GIV]F! 2s}-@ p3p\n @Ѩxq'ዛ=/9]z-sYE]vAuY"=~428)OyD 3m(jD!̔NbJEj(liRTŏ!dz[2r<Epa'ȾEڷGf&3FR5)?!(_b*Xy }ໃb-Ivx@v" TCu"h޻o@u/wѠc|N9!jEd}p.zXvA}Dfdm(E(d;q9ߟ)dnkGl6"Ns0=`uz0t]DÏo4ji_r]h,ƐE} (q;Ɉfu#mwQ D~ȴ&VJ q*5}un$E5Bm,)|xk- vY:Qz禢Ҿlv.!2{/lj>x#4uD@jTNh8K4?3+.)ݤX9ΖdRxJ.XrZ.6O--) TAZjCvƥұS,rb_Ǐ}X:~`Slb]vI dN4WxZuc˰˘[^.q仉GG>k1giYf'(J2#PJldmڬUb%! 'M!DX} 5Y:EI0:`/dz8]TF'޵M&s&ʿ|mAJRcٳ¬s~TU@Yn,dΜNq /z1͚Tx{- *nh}QO+qkU۱S FRA]n ^cKݸ. y5kEJx="ǩBeѯ#[WT,OKgì`aK,i_$7)ƯR]>,UZ5L|r?&w8$tKԒ&9&&4 L;q}SGԧlFՉs7&%PL#zM Vi u椞MNW0/!`pM *|ҫ&uf9r@̘h:lѭ +3䒦yDe% q0*='4~ah#ΨjEݽ~%\YUMnݙoKx4on5֐CDoΜܱaVoPw[9dKN{\dE>ZvJuYt.G!4y6nDZ6e&~tv/:Ʉ A~|6lmwP$I0KcЅF[Rtt!!rMlM =tWMڒcɋX \Y{֟|x&ku-@刽w$`O,FoSqA )'Yz7PԌ7P_ (&Ui})c?2u[iVOYY+?.K} hE\Xzk?橷zÆ_))q򄳣? ӣ Ch㱢{C󳗔!/ 4t=JJʛ7)F/u-NΜ\s*bdH5[Z)VChu8 #;<ޱ3 o%nz@]/v VTW\rS#-$4E F =_$Ia꾪ODC,/7>&ULMo>>ڽfCH"W!힎c&㸳j>o!I,de(G-?4&UuO>1Z?6ME[aDs3*088ŞWM?tNA$ f#}Kv᧻(} L_9 [~v>+e~-jAJARUn,)X1OT415u0XBӓ]E$C!x08sVX? E 8jjplO!nk'Wd+k񈄿ߊ'߿RX„_8DeLN~Gja 1'?zꈠoi~_COڛMclV2]mhx>]†ZJ ǚhɷ%n|eQ2>];es~T+!1ו<RIF3SSc!V ʥ_@+Ų?I,BT>TR[BeFUFRSODecy;TtA[^Ƅz)u%O;&S07:w~EWι 6:zU ky 36O, .N'aDҶRs5 ̝cm.i.u;J.LK+Ȕ^y`>X.ǡhlIy㌔]@F62cSg+o!SE D]όW(O $:M,/"P?tlSA[U<5fL?Ckf9-]g/af3gjts1>/aomrdzpO)R{Cw?sZ/}~o1m^ 4Zt -hZ]7^}$#KD z|Od_4HڒmZا!ޙtpDNFAkKڦOcEQRKK7E+! |"Mh)ܷ@YZR58)܌Qä.ƈȳYjtOxo 92?P_8u'X0u d>of`Q/4m-NLh9C6$ݸqNx<RG2S8W?' 'b tj$ؼb/̤yO^BQWAJ+lY0f?PoqWcy1E=xP6+qaL.i|J Fӭwp* «X(냌yՊ(irlH42*iڋH8`tui!_'quNvkͷZ06 ۊyT{k;a*Op|rzx y-wu+mBvivE|&<4c<>W}pvK+S*TK욫2t@vZ(}Xnۑg?x8:q]]r 8K\xcpRW Uڹ_8Ša"u|,8ZE!6S㎾K.C$'o!K[cUarU./x 0-rGի'S F"U +y6;"FFJer1=WAt5A璝b$֥Ee؋a&(rBX/ QwP=r!+y!9AŠOM8=RYѲ`Cmp 2CYUuNxh3jzWxgDeYǃ19*X+GHD#il0~_I_ح 7I5ڙ/{%bv/Oo54G_0y!!q~*~Dǒf藯K7++=ebۥ?o*4SW >;qpm Q9I0F;:MBLAp_}{ h ؋TG#_+.k˱{Y~}"0DƤvwE&'W0-7ӡkEv#_?DWJvA]zX}s|[Hy {>@UaߔԀxnqv/ZQKG| DtƎ}^Ԡk;_A;Y-E_z?yh*zd U}V%E' f=c'8R^t笺#3jb٤X/Bmg#:b?9 kr}^aDZZ/K }eQ-ФyhO`Hqb>&AuaUÔdPg U&G ]zG:=As G5CD{qvmbSyl(TUՐO ?4* 5xE,b'/p ")xhMY3x?#R-YmқLuVeQGNG@KCk8T0k\EڭLqF \+FAIZdu)I,QC2J" 7XSdk6s:sA*YtVr1u^ЮD Y襰I0t6O,[ɅZ._c@J27XEhԄeGB(ܓAS0,?@A5O܋f Hpu~@%v)EF"0jX^֔*L|}hISpXhZut%υ@G ‰ggIS^20!!dYUZݢqżᦰkeS '˗8`7+K+xtLFh:k+Y==MJc\hYg5HOEuSܔu9+Q[#5bЊXTe|ie x. 9Z^UP n৳h}I 8+CvxjS#M@7vnÍ(7$Xhuj>XcK*Z:YMrS#9̶-:aEKm:CRb\i*-k+AeC$ɵrߊ( VyT{ӬLQ[,Xm<4HB4|_9D Ο\X62Z^:yNY%{Iwzڱ·Ą-pɅ\^HuRϊy˥ƕv=ҵf$| ,E; x+L 8Gw̯Pˆo.17(4i.O# ^KHzjjPT2 a>04mN nZc4 F|Lb`|)2}Mu6*xJ:TVD C[={KyҩZȨޞDs')=W45à_]r֜x<=1O`~]Cnnϙκvϼ%"TG S6Yd ~EJ7@Ef+4/u/J(@ǹ6k^2 :jI>Rp`4ļ&~@p/PGG+F_T.S8ZмA%y-4qx6.=YA[|96P""Vr.qCI Jۋw:\Rf߽aX3"έ]T5V};LG[mɣ'XO$z:yNmƬSj>)yiz+zW=eD4OX?aO9'x x+刺d,4hiн s=+Aƅ͛qsE]ܨjÄ-AGiջ /AJ@olb#DZ0رjڋًgJ׶g"hOJCS\H Mv\NV=V9ql507쓂%" j%^_6 d]6r5ا .W\pn\%F-rU2~ɿ)q_U0w* /%06#:*R=qG_WՒa뇅 ka?d}l$ynw2ͨ\ղDk/U9+څ`~mUKWƥ ;c߿+OFnŸV&gDScx)IJư$~a} q[5V{E!?s_i0Mk#8%/`dNXeu<\4'R~y|/C. +u`P-ď5/{q5WR\a߈rg5!IGڝR;muCl{{NNF5p@$ IC ㏔yM$a' Y}K@߁fCQj6ӽO j9eFߊOH$َ~#M%e#]BDҬUe Z$;>cr=ƊTG{~[; K>5K(I>hc{| c97[T{p#'UKc ݃h-3(uU2dl [)nD],~tS"(mU@d+]$궕+s-,` 1΅!Uq'/z*l0NZoco(.y9D |C-Leշ3VdEpX1wToQߧ;7r'|:gxD$@CD?"{ūz؟fˊ#פp(6@g1yQe]J+P*\p4zOrKNNQK⹯V ;E.QB88 >\*0Wo- cճySC$W=5Cc a,67~1f\-XJĶ=6YTdmp,J 69S\_RU-ºZA25m|D=HM̟] >3~4,=di8+2` +6UZm qiB4 % ^v?">+ʐPC6unO/;o.&OoqG|[j*x^i9#A\Kj"gRw_}G<ϕ2&_Y\2c `I6ӎWE NSL)q4{)e׀uo7CGihĴV}!D1 d B/[Y;fj˽h@e֌5t]H)7Ic|ݯ6ja*ƲCN ޒ gIY!J`5gŝrZ#B5npxz>ɐl=m-ײǭRDjczSF WmD|i|PFC&#Vr`cꗻJ|ZCӹGM(K羒jZg-VKvEE|3x1C{G\xоÆyJձ=gSU!s" -؋q*gpy5UWe ?۴:[ i[n _t}6ua ~2IE ܍_'CT(9fw9PPi&UAsD}uM](.i^6Zbz\0^d \{<;Ly :_ %͉KXM~mS+y= Cf[]ICב٠Iy3z(v߹}R)»/ʑ޷UXn@DuRulƚlE ^?)GƂZ eNm%fn{r {F Yb]p7/~6Ed@`(ř^nXEsOI|Dz8ɱ٢xx#37H~&miV&dkkdu2"莛l_6<^Ρc_ |T.nD G٦_UʀeΖs>s}vG$:;ʴWCvFI9FszcsI;?{uA֣ a;.,+Yy !gst;NAOq?Xx/ۡ]z)zUN-Õ=^9$`.VUY6Vll#!ãԝ[MSE=5?KRWz@vmN.%8ӱ򳢕;g''=WiDf)>NQH9BJ֠ԛ/9Gqުk~C J^ 425#1Z{L6 3‡e Aƫ߸[`}hhdmlK 0JiRZأS1(Q E݂ Si$F=n] HG kb6eɹRuwS8wmP#G aA|7t p%ߟB.ngat"."2;2r?cKci?uwv%6k&e%u8-)рb#59 6[7kPJkBs=rL&}sOH8tY|eZ  g(PuىbéSP )RT*QE6I9~rdd۰qu}ޜUBVH `=\6T|:i(͖dK%)fۥ'?`_PEKb$'͊W7G2ᇚ(Tuk1QD\|=-kas31hw>y[]b6!Sݢu*x.24fKG 4tas'Wi^wVE"6NsjW;mc22-l4:6$q{# K!#Ssq9 .M; U Wle|ӓ_1&}bn"ĢAv!r6T.f}Ĥ6pUa t nTVq7/k)kSȚ$Af`0sYkHST5v P^q/wƅV:^{kRe,9xESE@\Εt1: m" {Ru*c\-Pmz ۧЦ>*8,G6\+Ie>q,%ten"+w/' + SulPB&)0_7,yÀUK)Im˾?+N\ +u?jY,]=nQO,C  Y+: 1#|9L5_|#|֬:?):С0R!6`tb93Q.~Y8&A`[?1< :uW@s7ן%3fv3&r4GU?'aw{ϣ̌1H"ꖪ+mY/S[x@.< ƔO pb&ٹ^8f}IbQN.z@0H9՜ێ;BxFOYcA`E>w4چ0^r yC+*,|5g꯬xi~UOnl Q^ ^0.99`X;U(drP$^@p0%F/Qc:mK1J6lZc[ vā4ȕLmRdD@ygLdd@AXnE <<~7BzaB*;MlgX@[HX]?pHl,01TU bu`aj"H]A5"kY00]QKoX{9 qP=8. Hu|yĿµ_j$(Q+J墅 7 ocqs ;e&-fBj],*Pf!(}.J>g$<üO$)Mq;n6"gP Hx?A9Qۋ|vP1;6VEq :нqsQI7_wjvAo}CQ3:$pu,0~[ $m5aEFqIڲ2kh:K?9n?U0.Kx6>?Xevm۠g>\{IRM2Cœib)Kb(9;m 'wlV%oNadl P-(GYUO ݺ2;H}n̡:GFxķsUp DA"Q~ss_Cք7O?+I P~֏X2ֶo3Hg"5D`Xdl_ -zdϙzs[M>"z,R-,цܳzHŜzmʶСwM2I{nՍq>LMͭLv,>\,fyn`Ƣp?v'AQ5F _@fVG7^㞘$Y7f5ElzGv\ʺ]FOMᗶDsu,QkM8S QݸϮ %Z:sg오ʏL!Aʔ )]0P*h>>mTtVSg3raKI#ħ]m`m䂓=yUwhQrߺyK#|[4(L)V1; wmA%Fbz7g9A_  ꎤY z N~+v ?k/GMBΗ oK؞"%٬&ΫiWrə}3~r(I3pH(\"zݡFN&CԽ"MZWrf Yy+z/Ҹ6-$rN e{%ii0|Ff[>\j5$S=Sߥy>A> N`)CO!rhXn|bC?AcL=$>z!\ ILBp5vW[ZX)1 tQ mIl݃jR Z4Ud,Xn.`܁,)H*ݔLuIUF OpzRUbH/;!MմtnP,aJ؋$L늰eɤ@ vS Zj_LHuS ܂{އyA;sNh&4s<;a Yuo# h9e$gw_A]`2}7\41n^kJtAl.g1$~/s157^䗗Z>3d} 4l0i٨o;?p^rYF,`]!Yؽ >Q|MB85d2wq S0ּgV@t=K1:!^c <EB 2J>xPN̨dSڲ^Xlc=&%('VpUmuhS=8 '5XИ;l)Z45q1D?z[H *59 L#yQ _,("|ܛ S :!.E/iJUA;hL$ΰoV}Inܾd:J s^ghcTU.La/䫪f7然-jFں\Z$f`8_slݏ|U?ѯbgSb|Y?c`/ʠMXg@i(q?xJFGޘ@B&\fa-5^U$/xU=b'2QzcHڎ`aTQ'+1Li#Ql >AX|^ G=cTb,`cχ6fN͈^Wŋ_TsDvÂ?v0}TO*wW G^m+|`DϗXs  Oj&Cfl)e:²͐,ߊ"^<5{K/!ʷCuSF!7$A)Va#&~zx(CfW# _Wo.8+V~9Crp"Blj#,\BWKvB9KS(SG12ۇxtM9@+ J}vFF_G?wZHIQdױ,zldo$\oWm/: nEd䉏TQ_bXR+Y._X ضm۶m۶m۝c7:mۙYf/ԮΩʟL|D`g:mSJ0TU9_yGh?YaY0x,$@j:N"|:Y{čU;xoL\Jm:i7MUo\9eݽw$ .W´Ҩ[0 'P3J!lc\$b馺^Pzbz'^,w1aq&6a1qtC;*|8rP+zGA)ez Yi-mBdA4}:HZz׊V٢DQ ,1l1ϓfb{ح(b6PsQC/ǵ.ʹ3/<6 9cVynsg}|H.r1w6.XYi}5f-†d%g=N=HWIϦ^G$2D/TyE)D##0J 1ە#LͤZrFKqlpIUq욦d\id ba͜ X !6J0 ;Ri>}E.Q](HMzE"J6-S ]05)ے(KԛmucR20_C+0@Il!8[C\o1pR}sߧO@[qpVp ,k ѽgGZmq?KqߒPXag_u[O_PpًY-00!"In5dZ0$ɼWm;'!BmsR_}'l'R/暡'R]UN0XjK<?x%I(#)Iϊf4 [5;âJ]#jwQ"(]T]3Z>J MĜɖS&[I,QegSw gh}>]33(H>VpX4#XQ,iKh1$ft@*fW,2FKVbT0}4[' uڱcp'ς*CZ9ٌ,j7͔ xd -OV8'4-}goX Uj56c{_z2`=xf˛"bsrPkߠ AEfVQX$%ԁ#yF6$I:7k%C.T8x Ͼ- FiO%SMqVզ:TeGrl(Ì|>&'$GkbvD38hJ{>S S–#IE[է:ca4n=D@R2s =SET /T(p(7sk;xG50i¸dz'I/2Obglc Lj`@|CW#҂TǗ%|d]t?$d".cu-භM]9yB*b3KBms [juB!թݺf߅gl`}PT?IsYK/~݃m5f[JA±>1nwX[U~; /HhNX&L6عSdžkuzBd:U,Қe3.?y>I_L> W'ƒB44qrWg,RGjg҈@4JS8m[(-yA .+xpmR;sNyBh{Gqw+RYId2A3*dKٍ#ui2ÀwO\$V?L@!۸<I 0xư>`8nuǻ|{tjta}ׂƭp'}:__*6=VJ:᫰O `x(0W~R ַ<UQk0KgӰ4ޝ(N_O7QIeà)!̔)~hR-Er7re``=XVqCM V$,)8zo_UZ_ie߃39 h'&J ̌}-wUKF<4 VlWz DMr,?^nߟ+,TqU)էauxRbp3r٘# `v2PL CO-fw SҍG 9=naTb(F=)a87ǧ"IK-cs_y.j\Q.Q'FΕ gK1햫8JVe![62S)yJ0f%-#rjaKdS!yz/4'hS|`%~sU'Z+ZYܳ10ly\O g1}WdʙHIo y>%Ru)@f@~Ư0< e?)@?"x1T+#֩D$ؠ?EvJ?ڨQ}<8;xxAۭH1@C ^磒t;/ZN~N-VfSö@& y0䞲ǻ2_f=OŝIžDߟ{%Hw}%5wS͂L~2 qZ}R<`\EIϼX}ԅ[tk 7ks"{A-6wFw+J7̚Sԛ6|>x*(&a(L0b3_^oheӑ-G_-sVaE/{th-[cԯ d `\x`?=FMI>q1uP`O:WO&=@51Io^͢^_ev w]-/bNMHMyՖ?kt:܁'e߅na,iYW, W[Mҕ'͞I`o j-h,58"4„VN:X:Ƽ/3&K+9:rH5!p55 @Ktb- !)U)Jc =JZfJ?iP9UB@~tgCX̸ov㷰uHNYv4|Пa~/*A<ǷtSpNDH<01$ǫ*\YȈy5b&B\u(C>P-UlH6֭rt=V kA\9s9?FX,_B߀h\<? fJk-m6^r# b^h >jҬϗ)>1wG3,~Z~.__2O R Xb)kRmZ\ESQl`ſ,P{s架yyIWr鰃/PeMFZvj6T /M$P#~4oYD[ݿx:?SY"y7h$"GgfD(;+f2n|?"Tu*_J/5ᎪOωWI|+n{oQG~o :bÚZ/Èյ!A7@mcʿyrOhK6ͩD-+.2~ΣxІSNra6$E`[H9m^_JլN\|Wӽ*ztnj<} '%1&Yϡft- 뷇<.}:Oh΅^k/w`2慫~~I)+@MO*)%r@WkRLOL u⿗ċs<ϵՊ=E|`ӡlgϻS%K䒯yq&QXbf)RǦ%6 V:؅k,X.3=0HsBBVY=A =D[#=‚L{x(^D+q@gP40i8|ϾBcІZqwIC'Id}sT}EfݤjW$t eGevFIb`'Eby52 F5W|ܒSuK p- a/* {-C\b 5͈K0'iًܰe&d ah>lb꜄Xcl4Zy~?19q$J{X|ه?4{Xb[T` b]0! l0뼪e}X`%c:IJ{`DتJt^ֵ1| *u~v#< rZIʚJԩ5AT"l5T.70EhykR[~Jꢩ v39I E^3mNTI{س&m߮ܣa墫޽g "CH_6GN5-Uo@ܾv[%Q| ɤ#}%pIk;j- !1 ^=)3y:KvAJ2؍%ӵ?W*EKt*S%+ix 7sr_= ht]wdgq̃rՈ;w-Ӆg`訥wYxyru: {Y%*eD[}Μfю }ޠ;ቧ޴h{DA1jv=4phTF47g][tLZmsl0 ,sbp z寈*[I\!`"L?Rв!bH*W58I U8C Cݼ쫯a \m=nE0.lHx6& ',ÆtnҹYlV{,J7VWOCEJfOOh!9(\ ̃}Ta[ѝ~6܏uߞ72[m/mG.,mc!BȮ<p$isޙnBXu[a|p0Ԇ7E@B1ut8Ծ)9 R Geq**ۇ>J33[~2Pg& 6zm7*0atCT rzӚ#>-qp˞F=g2%ctjP=(螃]M`4N3/ˆ[Xv+ٮ[&(UZrҖؗl.]|7xᎎ僶 H})Lo1stmZ$loO46C^P3c_6ʝ$1Ԥ\!Ɔ ma1rGC7u |&z%F̳nDu˩`uB͎jhmN  M@1^:'q_rI6LN^ru`vBbl"ZP!eu[h]j^, O @ucB0eR ߸cvr3 y cn5+ŇúʹwT͒[ ceo/ DT_Eo ҟ#DD5f2u7SԹk%.X:|9gC_ G㉍LvNd|nexta>!Tt, , vjnw/n2V%q$G hl.>#Vq]RM_ !1LJek} S2R%Օ5Va>FBET:PctNkr.p_염wsgѸVGIxC#ݕ^TK˻'c`s"JQXx> W~Hr{rz"eAٟ|1'heA?)d=Awor }G~7!.{Nu%, &e[\=P`w%Z9Ğ9)AE-ld.A0p^~R%'I@]ۀ7=iO2IQ(A/ /W1/rFBf!Uڪ`r.D?}u]iqUD)jN`hٱ!hf= WMSMMJX=3;4$ifK8yp`r<9#'j2<ƙ9(71C↤UpK#Y|׬#x0RMJ;yVu/3[ tH5{B7JյѿyA{2%Q7#p↝3%ΏƓ0Q'{]I\=荇C%Ԉ*2ֶv&H``jeÃ(1V؁V$q0yzeeIE]dp~t¤8bLZ"AKK8yl`pW|+ЊD )f Ul0s"&8A|( n]LN&5v8gETE䱐m*'ZWI ?2i >dCK41ه=lҸA 9 2*H"`~ P'Kѝf25<, cI`(X-%3@E_Sf~V8; dՌZ󛽫-O$!2(-9e .dY>h8LmW\LqV(^51i.(ҳRn@5SFL;$QeiYxX_eFzُCI2}ǯz8ɎT3"}ebr%2\a/ʮd5ѕX\=kntFYN@h1Ð6clDq_VP򆍺_k&»(=bXcSr)D WA6g\yMQG:-?"ӓ7: 8IjkdrD2(6}XtJ %~v9)r.߲n/.JtB}U-1:~&$3*Piz(:g#viZल16-mTGYJ_=։C0@] UMV=3fxb%QȸC3þM;<pX6N(yN6jbOHB [X,XxjrмώJ@؁z9| (Rd~w2@-]eE( ,dƙ+wLxAUbg}/WR X&Lc%5Hָ0PԚ7J? L~),jf]o۪ K uq+nLIʛPDWtGQ;ihmJ/&WV"tAF8/lazP&uFl~ ICut9Qi1iTX6ZTsy {-Y;y8Ƞm(h3m|]zd`G;`xlơսuN`X'74EroX]G1\`7n >}@X)ZUAH,BoaPk5ؗѬsI+xj2빣7kz k kv) F `RT#q7uϸeG~Y2]W4~(C6mSr2奙,Ump8nE253 d.kŭ=Pg!%#5[ dNƱ^PZ̕S Hb}OA =>(!KTbIN39S:z-}a<+$KۀpMKG-k)_灤$r:N!@\Ada#|ll3ާ ЕrpO`/קgI@,NQ~,O{>PE梅U ZR*fR J=SQk2^.#T{8t4pQJ Eoh.}l$ .U-0j5>1{He'gL 0?n1)8B]gB/'}5Hr8I7dad=[!|dZwb{+%]lD[&2#65Qzu EA4SJ9SiM^bTIw{B5~…(EFy"I Nw*pDlz2ࡖ-y0urE"Ք:n:maXEbƏl̞[ç&)N-ފy?5htJ3lQ3JDl?,E<3 ]Oo"mJf2Fi1yÛ?ǻ!xZת 5 61c1n;6 ,7aߨnu_欮k)Em32@R3(:93wYi);E#9oӘF2\4!n`߼cl8EoMxFC&-NDc%A[Aj/Al\UjF k.ہO{ RǸhlH5&!}g QU93[4A4fN: "f1bgĴ'ոPʬ?⌜_ r֤n뜂Eʗ~KmEӕ/Wxgd\Gd=+0VBr h!?+ ȨY@x}CCAڏ'Bw{"U)BQ4~8S!rtr3k mPtcXzWdI/>:clzn*%$ʳ6B1hԴb#i=be2ܛǛUfS G3N.]]GDS'0d>(ʭpfYѲctx9m+"?M/ ® w^"t|qR,ΜQ 6۾{;fCiFiĽ3 $1;pNa`)ˏ=dyXTwDX\~U 5Ne5 h \iSr]ct6+MAwf"y "YIy?d±Elr <~V-(dhʼnuHJt&_ Kyiߗدf8w:>P7tЮ}rk2i33v<ۊa:t- 1v}45GWV,ET T8/0SĸWl&j+gR8o@ qNOؐќ^F.i OgŨK!"I+]{ĄkL endstream endobj 118 0 obj << /Length1 1883 /Length2 20941 /Length3 0 /Length 22126 /Filter /FlateDecode >> stream xڴzeT\k-n!kn]k)܃[[p 9oqQ,{>jDIA(a rb`adɫYDlM@C' [dP4vzs23 P$ û`:YԆ JN Ff ysw03wO?"Cc+[WG+ ! (Pu}WZmA#) +$ՔTh8:QU5Iz8NTSQ 7(yw./*$,şCMlm*6wrebruue4svtbu0c # ~uZ"dN9:0$l6ڼSw_`D8i;GsCǿb唔6 ' dd0K4  L[_ElL;frvnyƶ G G'ǿ3?N^XAZB\EA}@ ܜOXL `a08D#,yrupgP[l]A4َI da w¿uf@'3h3)לQQigk05vzY/.@3? X&N#&exV#O׊Ҽ柳-`4E`Ruz?_$ m m,_?@X G 7ߜv2|xa58+ ; ttpe3_pi$,%%&IYGdlkb2rp  >&@&uz9;yLmt$G`2__=?_" 3 {<ߝ ߗh,uGw&;}7:Z= g0;t?{kݔ9Ul&EM}-Xud`d073?b>Zdn@c[c@˔2orh oX4e⠖ӧqrI~;rRzI~bM@L׍ʩB;Hc9jK坤4G29Z%3qDcQ(7ԫdRֵ < 9(Gj)ÿo)o:!r_ s ‚|!O\&_l>4j7DpEf=ou Eyĸ:[DQ;R*`H K5NAy}^)Vnqq9*i*nWz4̈AD}L_d 5UӄC)3 ʇ8yʿr/O9FeB?(’XD͛N !6rn?lӱ 8b;1G@SMP< ͋b6ʨ ޝ7ӓIxHH'y^u@)aQAaڛ-vCԟ_9Kߞh]`ߚcFȶiN(G'\!3`'prO%T`:/WkRWaLUlu;] =XRƱ+yYp6Y=*i"y٤Զn !+:ICFHhprZ-B t4͐V,3ܟPT_] QEsHq=/[@Od,^21]I߯X(ChغŽ_5=d% aгm'J_..̥Պ`l,F^u{7sKZx6 0Q7:F? '!vĞ5!f|_$2R+)idy1qRaoĀ{&+lEyEponbn ]7JMl0v~\:H_V+4 7` ] G!+!i9iM<)Sa$ys{}Ҹ |OmߍcjwϝԵ=lP𜧹U-JI$#U$wqȣ{c)d} k_>r޲ l6z:-z!_|) SlŇ]q(*zQ])zi]dFyN:dNoG݋. ųO]skTۢ>Xc 0g_hwd\-"W Q›w4.|EE!q[3zD8edmZ(E%A7t {Q,mX,;'ny.(\Hz)eY 져je+/ZeGm'6'N> qAcAF!ڒNxkWo$;mW;OQ/BYuL 1&Δsq.WdN#5@cA<臡Ͽ|!bVNb1}!)O :VU: ApО]muSӦ ,!!=pS# KӽL7%6x)v+a r?5 $KLq4IXlQTx/ -9/(D^F?1IN$KM9F#O߾Pw2%GՊRV"4:gԺn7H=7# mHbqnu"KW7ztχӬe_ewN b _ծp\p"X9Z喔(udLHGDKH}#J hzm(JI*gmb?+sə.Š^zM0餰跑i*13 f#$ÈoP֖A+&!ʑ:.oׯKFppA,t|Ĺ\blL[Ise.SD>atfn_[[.?ceys2ު/_ ȹ;,kmL WI{nbE-vK̿K5w}ˤ"!:v诃 'EK1456 V!1;gL+(}.(`>@Gj|k]u!n*o5BЂR ,Vd*GQ=dR!ǀqF^gc?kN-JIs~XSsB8ԧ# a'xB/q|m.8W@Z<H~IQ^BKU'BV6ɟ?2v.R_҉T )K 1G!zuhrD[#}5(ccE ~N>y)ݧHt/Py_Wy,! -{jl*+PS'O(tϨi{slV-s$<"<Q*"|\:fɋ械RYNBAn`bpd_TPy}/2H߱2Y;`n*V}qӖ ^k_4XWVnbNχ´[íV륢 X'Blt6y 1d <#fWK51tD]g!^|]Oˤ!zpRSAY9"룛<8rW;*PCw:{!b!7??' ثd! \3 UdHQ)(w E]tv7 .'%a#$Zd/[6*)z@`O$ d{Mh}p+OSm_tt;?,)/ߞ=e8%5)'ԙ0~3զ& =eG4);gFĕ!340dCSZ z>l]u*3EYu5`~Its;l4ϊ\z&pnViBaF-L bZ&DˏB_ u_b4.+pLOck? .N C/s%2&Dt=M`4ԩ@2$T %S~Ҹqv1YIΉvÅ[/; ۾L/?־S8MKf)ev'Xf^_ .U]{,a/Z)Q$E;AzvQ\C! ha%a7:7Bͪcu+ij'2=#{݅K>\!A84yT0!` 8! YVo !w Wyjk(iHk[ZI;Rz$`z 22jIDk%MeƟ'{vU[c%H4|$;6 {n)O\pt :EX arʾ [5ŕ^1O [ЉdK_n; s4[F$M]auPҸyqu,:r֗}Z5coc5G@7|M ,5ȶ=ylג)6W`t lт"q3)vTF>BY'lTӥ~3 NN;rߖ9sX=Xr1q񛖿0gflEd OV,1E%+`^/6bY.W@d]-;+ BkE<d=O[k-|~I~i7Gd-dK^x$Osz$$bECi{I->v 6C2s+xHOj4*PcZujh[is1r )u##.ճqIs7pNr-1SVJiG#ꚯ{YDݽBCt17r#?:Iu\KL]DQiU]S4* yvb[|NFic3s#"axT("f? Z\BsA:g--,,POVػYG] N~UيVm<]Y3\ޤ5bCu3 qcg`9][-KzDr<1%u;ڗc$ 2@v=v5 +|cB.:03dєJXv!9fp&)I =-V{1]ZuwLc |-Y99H|YP3P9SkCcl?X L]膟a&s -D=ͥL71M1hka}h@ faݼq )$&HF~#- Usj5DDՓո>g:: bEz鐄FX1lA"kjK :6-{HnhxJԐތ\TH1ryr4Z j(%SwY[~ȒTffդjOYSu~Tpsǂ!ۆ^m3KwWx\̷x #B_qEo*0 9CRW,Pshg8DsQ2lVi%g"΅ Hpp_ǣ vs׏̀XI>sXcHSQ( Lbt7+Vߤ48:`t Z?c~CoAG|27;Jz+MVX\8 rG-M*I?,I·R} (mIZJGGD.7% P #L2&aHjX`2Ipu_\zOJ'6eW+un]Ƞ0[Obm3sYhV>:ԈA`?-@xpxDN +JwZ'5+U?ǍѣS#G%0-ݙ[IjעiUb|-*ngi& FOmf-(D4j3(\V+XapKPg]I|dA"=O/"DR޼ kscӭE"UU-$g(L$ |q-Q1yȸNěMbutݣ’t.;>Xz#o 92,եHNl(*pm12%tlK4$_R/ULKO5~(,a0Ӳf^&do(C}(*:y?/NÎNgjlx0.ALN}S:GA9;b/9r'2Jr[|)ux^|9>o[ srn=DĸD .~#0˖>1z9 PR@]ͷQA"{E8 ŎK4e.{Ὦ:+_. =U٣J{ e`A܈LkxelgN'0 3kLbL"Qw) Z>aXNEri}, \-YSg29{ݞb?Bl딕3h}rc P2=+CӸ6(2Iz*gg/OO ѮSqJC~I B.R mpHau]>=.qQcXkU9:Zb߰@Cha,`ACRHleJ>s'1vL>[+;6HLs8̡gZpgU8~'lQ}$fcB'Gs(cޠψLR ֕&n"R#i,E4^>/6+L6'|OSskn.`?!̿|L=J"*u&rV?22d{B_wd@*8.xQ\W{%P3W `+Lر羢3G) F&,fDBlU%{okfHnOŰ ρ/+ŕUu7$mr@'Wv6 CoKScmMb ;':G^҅} PnJã%2 cIRYk;\T7.Ҵ|=m1 &6pXY(GL6&ǀ3It{S겿T(&wӇG)T4"%*J-ܫap)|tr55$H#< Qq1c( n@ iոC]tC{;i">@1yyik[.'|m|6GiHR.7x\YT7ՙԂoHp\{uD AE> dՁ]zQPAk{F__zNf4dǺȐ3X`K/ʊ5۱@DICd_g8Oh3S$)a(w9 -^z%VŶoI]txyhGPx$>vٺo׸[Q%(p:U ɑ /YZM|$G:uȀaǺ> [L"H\ Pr4^ěs+*")lQIsl8sO\=tknωd\xq@w1B"%KLDNݫLʃR<^xcmzoBCH~^JQ\#p-ԑG<+cGy 8enwqC!Sh~`6RG7AMi{}SoMKcU gՎh9>bV*Ey?9,IAb#*ӧML#\\ԅmvk 1 Pk6E|$L*_I5\| aq ;B9j8eiΑR_ 3եwt@ [v"M}bj1+5ɐ-3NA!c7Ƞ_w:^_~p`4"0VHv$}HĶA(3m^mڤ=e0@S/:znNGt%!Su9wgۦ8VS?S=.Eq+\(vG(u^'~利ڸ=i%Hz,Vh >xOAʛ2sqͯrC9:ށ;fՑzÆٚk&"q3gKoɭ.~='e1UI4fI"K\Tf*]ⷸy=1e2Iǻ5"4mĝ% 7SpƍsH ԦҺe8){ rf2}~;CJd s۲)YM$: FՃT<+]dytgMZJ(tb6ZܑO <"XGq!2H+eĸ'Fe)DL}&^OT5AUc &uisJ/CKGDȾnU Sk{8 4'p7#-:cZiس^msb<;FSD٘6$n7ZD?)Ԇ (")d-2^t-=툢θ~)u!d*FA݌ h{0C<ӑήNtKr"Qu$1h|#a\dXQ8gy_ˑYi OItΪZTYU0h Ȫ6 V*V$?[qXc>51[q#G"Az!(,).FsI@hʮY5߸W<5$Jݣ'A&C|xY-˰M9lwmv NpS{~ S04!wq &! $)y0B0MvKe>h3|#Cq65Hʽ %Svd3&gW޲XGZ;GpbK|N6ILRGC /''>~' ^eMCH!U5  oS ~ӗQfnLOV=0D%0XXX>V#tϱ_ Il.0Bpv[~;^vo|9/#Umy?Dg N78@`)$5l2s!ApT< cW~\]+e>\&?BrSďO-׷-$lDOGL'ַM!PM*Z kb+Iykp^9lrVnE}B h?Lcwњ\@~A΅ ȁ߮F;jk`M􈥯3[5`-IS3BWU^p>bINiA\YXO[}_P j\nj9zės@;j0 TcP^n-?u{õ2$pXTܤ xwY^ެJjXްa^pv4-Ln'9 i<{dHy,? 3[tn~|n}r'| {1zx4/->a.DӷUlKrdϋDRFI,"]VR2SHY7yȳ8ecYW'6 O%u3G$\67Ԋ SVZ-y!`xMRn=N'B#Fe0,gNHv yeR}q,zVJp3"q:n'wB7ls1O| q~,;.R_.g O:3IiBGyW/lhdzU;{m 1MŰJMS8ǩtV=3 pXq4{5LC"4Z{4IǸ 0 mЛӴHVKZG_'qkFTZwV*9dٶ5GJlo1~"ml8PMKm)T!֯ZNvd<Ii 'U܅/TX4I,+KWF`w<ĻB[R88ے*ϱ8s0/&pL-TW3~];f։_T/pvx>\4f'~2_QN%9>kf|~Ǻ]:Ƭuf,Tr=@>H\; Yxou_BJ<\uª9r崧YVϟY?,([` Ѷ-3OSIJiI}l>RR\Z(J' kT@:FeaHtjRFT$lil9iTHh<7)Ɉ]D]z&`xJuhf]|E1m4rfd:ͳ3wH@E6kib6muUl>1Ŏ>_3bV DD`{/ݶg-,$k.F]&`ncM>A ,'շc*qyaJg62~!I$ezmu{Sl)܋~ؖAZTnqśɊWBYQ%i(m9;HE ,q;l?B+*?uCyv $K%)k&̼GOD$On6e|EGsğt_ uaKA-Xؗy+nKj&nZH/EDrx89 ;!7^o;R@U]1G]`9Đ_4\;;+48GLp##}ߺM1 }bӎ`_u٬mM gtz\\Tcq~Q_]BYe /%*n0Xg׺몕6^]lhW1A+DFR`jǨI-5hpoi+iLC˴.3 ijZ(KMu"ڰjgҥcR)e&]EvK7N%f"EIakBdH/iɯz؁ 7XXB OgjW:~c̆\pfj d7HşL,ݸw,Cv,~oZ58ver?:OX oQ|zLBǶ7a.[*V5rpIXnjn?_/F*Y8XtfW5]B{%# 3ݕ|++%$Rt`kG.9J*jr<k{3Oչ1:5"jJf[(hU/} ;߹nVMj 9Q<kCg A g$_)_ȭ-mt9 zq(nrl1-)ȩd-߭ Z`Y1/dmQUEZf󚰞Tut "|s%ыLa*e.zj`gcձhײ`Bn2xT"W:3^Pt5H'PeQ>Q`F#!^3G-[CP *!"C*0Ket4˒>|5}tpWYvU:1"0~o~D%Mު:6!gRbk$B7|‘#!(I}GC5u!d(;GߓQbBE)M1B)vrx:))М z'Tv}gN%jҚ ~GŸ1JepfՄur$ Xug~{:9מ[ncWtDj>&n/ q8v##CCti[ȗGn+?Gǯ*4Wmdž -#P/>`Mf[YϠ6^WYQ6a{idK &{Փ{'K Ɣ_e'@A"N7jGCj$K0 f-{=/4}bGl[Fx9SV .Z("ӽvl hjNYD>dX2 5MkWsM>Q'!]](}d0v,+83AZ9,WF| ]‘우-QGR"#n^:KuO+&&V1Yk-2H4H|0^Z_v|ꂭO)HC#Qu`4#:) [c#Pry ѵW?7pWTFM{A_22;=)se\h4ǻbˬZR^]i^$~d5 )^be]Um`[:u+% FE9i!ZiJA)+ML&FK!G_o~+eݥc 35>#_`XOm89.5hYž_r _Q,tD:[~^"CBʊ\&['?^vnuPUL}]ۆeaRmXPj1 /5x̾->y&vC̗EyVhpU= V߱:vLVVcp"-.ԢB{t=RY*knƤNgiWub1bq}k,[ƒ5ݏ]-lAOR0Rs+zqӁǨRW>}+@ӎwNʅ?'j.f >EIs zW0S'e8 ;4V<;<HXLdq{ƏA$<Y}sEAgR억jV#6md^FHa~@6 -!3֕a%~1-9b1OD,5P?A(]̌hp-X(?ݹx3sH y6~$ vo`zJ4RTbX>b5U1o/<($=mS_tukѫR牄~/%,x<г[K RAl *i ծqNa Ļemsh_*+sd-a7 E|^@`Qٝa~4\!jގ¨%<=pGBJSUEɤш//bxwɴ&C!{ ~Ʈ!CK:pQV Ɗh=ZM5s1:nsn[ pas?X4Fi͂ 'QqdQo#= IVj䰎Pgy ZmWSj J鳴#`d/9 sza^{7}vJ2ҸOX.U:cC)BAtJwÕTWOē7e}?Ҁ7 lx <|>99ua$o3t›8dCHf>^߈9{-pAdO8,mWf^ߑ}}sgVs["7_[ ?U'}LAsEKJ#mLt26pcnb;$n" Q!dlt}F cMK?KeTj|ӕ\yL"s8Hkܭ??hߍqw"o5N[rd8RiR_e@.(|3D#q:nBhIM rKig!]'SGVI6Wsॠ ai8j1doAG@gYI{Z``eoa |-I5,& C&ظ:"9 Qן:hj{Yȝ#9bZ?~\q7q-wtiֱ$d/#(ŪT$Ef(v1\9\;zy)/8._:R^F}tJm~ɛm'kʁu{Q~k9/Z —v'c),0.ВSެ0?L:8Ή.j{jJjh'9P <az_gun__ϙezzb|?bmo:vuG$mUd1#[$$b͓oec,2YB e?2լos[X`wh*GDl ʢj#硟gPhAʾGH0X] b2~.0vBAW@3Ǐ6q(|R^:gRf ])L<0]T)$[O4&.9ͽGʊt61%-Nh-m?jOc'y5 5Z]XW;@E6Χ!2X#oL.DBg031<J IC#osL6CيjXǥ^&vJهޤSh'Pɫ RhnB.J{ .J&/|=jz3]nZ!`a3NIF)^ʥKVd Y_A9;؟eXb-gP]Cb'G!zK=4&#`7:rZUtaOE/)&=Ǜo¯C2RBrKP_:->ק^@Xx*cxg7rg%m)_#7u2yβd}Ouz򼿛|=9.(ÒXw4 D #*@K %B Nbs7<8C\ F#[>9c֌ :v˸*\YD H emQՁ fMijk_RIL /CydC{aL *E%yTE (5~O`XUn0 ,BԝaX qzA#&`LYa Y M}Nt|&Mrrp\6ٜ[zI^XHU^Am6T.*rtGZ-EͶi3)yliq!-%;D ϱ]5(W sԘtn8\Exq]uf/D?wh0Ͼ wh$J.1 ʞQRLNbw̫Q8pץ{M u6'j\`$OBnYL^1'Ԋl96=)?:9XQ6mmY+{fa}Ff1*i뤐ĔU.ߝ5zf4Wkހ|ňn924y Ѽ vXmT7Yq ׿ݲqezc)hxn5Д1OuVzf}y2j#`.XW;\R8c~@A\;fOo1ZJ`g҇I*%YZ>M5!i$bi>ܜZOddFվEH#,+_NR&Ed>谵|3WJDȱ)1Vphc"ĺAvQUP7M n:~E 81no_JBXOO_ϩ072?naGpŐ-{lY|mFuPB acCkݭ \Lď/9 HΘ DYbb?diHeM"OrDbp:Y=(\ZBp̬ 7wD$Iz hTG8cӳvғH{m GS|J?Dz O$wA#ιHFƹDJ JBgʠ-ѬC70`=it X`JFS@_m6qOB$y+Ի;&*M,!ɥ6 )0գ͚ Mґ/='[yknw 4H|q?NO`29g\ӺfOfs wjA)ի}S72MۮS9i/QGѾxͼ9Fb2QQ[ m3i-Jו#._'ec V=(2G,9-#ѣjW7(]f0*ص7D<@aIoX`©)86ômfCmąS M#?n2Laf/L=,"D8с9 v>ssxjgӵqq"vh.34=s+;MuxI?,Ic|o `͵yrjoG ɬIۭ pEn2L}05T!wS SʀnaPϸXQ6% VXh5FayFpZ|77(Cz*AE)dyہi*DbZ(KhSYSI,/OiM{T&vM%N٬XZ4Wfk!..6DD~+Q*u2gz}ϷaY9*Mۧ=Jܦ3{) yR1:`~m\.H;qEJ+0Z@ԔP("#㭘?36'›P[^̄ ;W;PdT_>]{kL "hOgv߮Ӗ'p¯vO0  3 Lc([J1I ǽDlN5Ho[p0pѹo_!~)Cis=e-3 ]xP&mIϺW:wMS}2֨ǘaz ޻܉8C9y$*2.amlR:4t軋(jK,2-.9~{ӷa[jW˛<}KA!oˆks cCu˷| iCY,EB 3{5ՑԆӶLxP>;[yg&"I[x(j? fEr?[K"[q} nZ,e[rκwf* Ϻ;')v)37& ?+#K?Evh&VHp5e$zSCQ ]FZt!ތCZf{O_xt=RWL+ p*ɪʶJxig.0>oe3{RuGn;ڠ)sۖb"9eԊ|>G>U>̇IhX4b4`j<61j/+qC3 йK=xeN ȧ=Ǣ llԠ=he`KXxMhJM3KD}#Fe'B$ 黺dO`,6ف% tPYGd7|dr -ZEW:!mJhoPwA[U y@R`]Ngn{([냨J!1>]M:>g*<2̑Q"!PH"zX|9JHl>2;-O5c{󰔖5-0je;0W.=͹^| T%&RϚ:VOJxqJ#=~iB sM{^> stream xڴuX[߶.KqP)KR\Zݵxos9'Ox11\EI $fbM\YYl@6  l a es  r+-f^ET 5GPqt3AV6 wqG'/+kLL#Lm=\mm9"hf kS;K%@TTSH)k999W-Ҍ Q% IH rxߊ𯻢$+5X Wi6.Zk0؉h :XOb x@4⽝`kп9I_JV;S{#c 4֦*(Mm SwC)`Y@@oV4] ||M=sL\Go\m\X؁VwlEd$5މ x |.+/坤U"m{.^m=|oo-ܜ5be!,3in7?l 4sXoH> ?[BbXؘ߉>,HDut ~UE}J- K$f%G;!h%fgdjϖ mZi]MCg*e P[euXj(w澟>6wIinrup7?J~߂* k1t0wqqrL]\LXީ a}gw`w?YYX̠ؿD6^ͿevyvYYC0 G+S;ЖKCYh Ҷx?)Ss?T-&`bg_X99|Ο'-~ 2GZYt4V'Y4]K < #5N/K.lȦ.vT3K tCkْR5BUdOяMRtP3([q9DKn)lvkb+)@sT1m & u֣d shyc+B?gRaLΩ {2DiC\W.+]RMMO $[cۡuӜN|ITHU,7T•~-Kul?B_ב}by -  0Fĸ= hۢO`9%k" ֛#{7|3A%Bظ<ڑxW `Za\~ 50q aCp4dO *ѯ=}soR!aa.JZA3Y]JA82" oÌ9v횟gJHH"syhÃ| s>ivhDhJBF!i:#5rQ7vP7p?A~Lq,[|d/cBDz`"ޓİr9@^FSL`.\4eD;iق `k_C`Rc}5ns,0A"GOǧt(X;/!{i%+uR_ݕ0[TCKLj~YUl?K!Qȡe8>ڵOZqg0pBC7bM1 <>u_R3 *33GfIvx_lpZU^R=K/.qiWG .ʻcZۈ?ߕ3PҪYg?IRd.m4JL;&brI1* 8&njfn)851aPl鼫U.2*9wL.@,A<!i7Jʹ,IHEV8Fv6 ``uϞϦ>h"'BI6O<^z0T9f5VW%ݔ 3 秔gsSQN`z"'/$A;&߭Hj47hnH4.eM삟Maa5n`$X>3|0TxU"w.*.H=)=d$@o-Ym7j}&ʂ9Z(]ߎ{XMULEoV6 ' ve 7~b<+i)7e8zhQ<*BN0;oy|*vsU?> fh n>at[S8sX>•x _3'?N.BO&ynnbfmeUIzJSea!EVVID7K|MoPE7Csu#3` (dbY/$ /ٕdΌ ^uF?>Sa7su !';5+FŏUTPɟ,tonv ɉT; !dcڔ6H¼_VX(Uqn)V;>W!8/)cc)::N`}aLxZ/8U/X}fk}5쌎(#u>"߯O<*"Lt7B{+*^bH:h\MwQJZArM0/1sVOj߭3X5Tuh(َCxm g,Q,aMKNڼU< SnztKZ#2<( %=?+Sxk"ڪLBg2WD=,%|j.dg[`ΥyMuIkJc BR|NtOֻ򧆒'A=OKla`0 >BT&=%,4$}[9fnOj91T,AfvV>t5~_,uJZ6Jj :#a ~3p-WV?3噜t;qxNSw+m*U[PٺV({ạו$uu_݉,)$+(e+ղ:W#+B۵ 2=m_cf1O894y!~ j"qx-B);^Hhv8xIkfJqШ{߭MiĬȬn~*J]ǣ}=v[W,%i0G6 !l[#|x\2iţsY!76}檁rp/KO;R;@㈏34Mqy=o(1e"j9c CW;pMl5eI5@("CocՕ`X/dM`⮟/&x@f[,%Ʒ?=a..81]fgHpeZ-lP}h^V!uI +(#o@y}n~|"rR 5t +zi<-I'`_v 5#Ц7\`+L_kVaIOh9mb[E'X(RO Aɞ%oI=f^aU_<@S!wۀ/qWyqMi/OV5s}%C۹P\{bAX0YbxJ;H {20eAŽ%0YEr۲t̓1AO0Lu}jI "4ft8Xe0.&_kdp2MPV3 w2sbWYT.zRίLe]1t!{EpNPz7H \.oK!$%̪y*U)$PӸڱ;}-F|/As|˯;\r"X蒩φ.HV J{̀(/t,G귎vfJۭ *J궽&39d q;b@oBٝwaMOqd<j|B щ]R~[|xE fHnMٍM\ΖG"bҳ m z #Gi i 6Dg,ei =cbZkeVPӞR=2v \1ظdS+hZ8|*:2\(JlLFG8:Ӯv#n"o?oP\SY)}}"u_u ܐHE'ϩKB} do5rWS1a9 \eܼ%N~R)kj2A@^x29,O݆G2gIDŽo7)c*{IJ[`\AG ܠ1Q|( 9Kj&Tñ"+ڒ8t XRp%$t24}|V09A8ϔX'xHi= raG(E#ٟ#1fDb=ϰcRsDPyNy*ڸsL#+o Ze4%L* g*`Wcs<%* r'<_a=1Q]&5u z^.a2l}v*l3.jfUIPVonkIQ2c5Ddz€@*v;E*?:"nɔs[eӅ[$˷ǣ~;:C-8&QEo=jKuEc\H%SUnBwӏS%CnvMg'/e֚jX XӦƇǖ܈ϔ•G9PrJ,xebTϧƧ xt^@q(d&#M[\˨~d='څgA1aqČ7<P3H2~[nf;D|8/\|A DΖ4y21$2f#9Vl)VoaJm:֫c&N< eqyz]wth6CsldpCW:)r.A05x{q]/ԕdO?dXinwkM 6Ç+&Ē4V%~r*|Gt'p2p$Gq0.So:!~RAb{)st ojHR໬۾Y &T: ~Z cyj = l~;C,iKȇ}PVXY~w  [Jnmq[_>nq.BC."dgn{MdFmeV{̃nYF|Ơ^ `Ivo)[gg dqe ECu[_ԕ~m m^9@<+]VG#o'ZPXRg!mj {H"u{B4Qi=sS!0U?_*RCc$ix|LwmFnOχuK}A$}ubc9,ۦp)عEf3/7M-z rt^(Zn_FhJygq넲$܆I~5WcYj {mpCL/7/C걭0O<5%Ȃ((p+GO$l%C1h6<2 ?h2%PRuAVC2`+!Һ/ /~/'_/>1KY[lW9tHTZ:;܈=ֱ-U8.MӀQb$ꍒ?(SE?Z.97ۍU=^rUi奧];hmw*BU[0DuzB;SDmF#Nɪ'^Ivړ})-/('̓T\&΄l`CKbQkUt3ćsy]Dњ L*I \|Dy "9S(  Ԗ XC}PZf|SEaUloJ3|=[3.l)]Ţ#1<2"1ȷ/d԰/?M O5~ Gr,yz!gnŝaQ<3! r8e>%eG%z.o;H}g^zGW 5/T0y~;<(^0QXI-wij\wB,ZiFNQ~Z*R}fEu>&m$RsVgŒDbmEU7ɗ5ؔb :6o)'Y2 *M#C_JG-*Emee1IqwӲ]ҊOwI-yewUp:O&w:hK^,m*ˎ!}ō)|0>eSG+xΝRrl? zH>ѽ+D',n׋O7}!Vڡ*7䧮Sa û Fʤ?K`y@|#7B276]󽫠d[ܬ-׽ Y 꽋E;zGh0c&~Kg5ssF,o$o8DzuyƋ;d⯛ijEg:s3!AY| 4@bg2ݾ\r1]j~tR4ݤZJ'(9*/YuٖJi eaq;ۃSV{"%Ұwddc804~.`tPUt|(LB*ԷƑ":]Kw8J$" HC' %<9!r]pmec(o)"c7 Z:FlXBgҨ1@=f.hX5$r٨lF,51U ZyLL=tӟIӉ.Qmn$'L('Rk`Fx%E*L2_5dhtÃgϐu|Nw\r[N XZULsH#hOalA+L  Ulާk*}5aY_9>XX5j'Q1r]G7jAZh]L/˷dl};; ǗMG+"z\Ώ~kշ:neJNwe6'w kMPɉq7RVPs0_nؾm{UkV tlgGUnoo6|cۛjCQ:BlX:ҾduhZŷTιJgdE9 \7]C#yT :n~5.u(h4 e:an&Dϡ"ۙЏoqire`)ahY[MwU/ui} rQR:du&4}: )u5ɂrkZ~fpOxlQ?,bY ;h0,Π;:$gHwɠP`X+>3 Lg_TA;#5|QSƦ:Hv2q_dVUk;u b4Z1?CIg}[ɭ]!qBBxr9ZЩU/ Zrcw Aˍ,:#4oj{izd`xCYjկ='+7Nbfّ@fT/듪͆ʍiQie ·M9ZsgDq$YS5ɘ G;}&b 7l <1LL1;a0jRۿOGM5QwKxޯvYkVgg,YO_X11az0Z Ndt ~~-4˥v;%/+ :s͊ō5za\ZC.*k"(|i7o ,O 43$ )ѧ̱a1o&E^=J$jJ^ebh.ݴBj6r8B}8]q+Vӏa-ۻZR{Έ^$j[&t8^/dCXx3n.q;wcb6` >&#J4y:b\Ȗe6Jyrjڐy `r2W .n E^+A)WPa`]N|s1(`"e[x õVv Lю9-RczBaĈ$ҷ1 ?^ u}~[thQvk,֔=\ MPu֧ xXIo5o}7_- lQ'ԟ'Ӻ֯HW2fP OTSƄw.9huO%U?>śf;*[շiU0WL9w^JB*on\(u^z/c03q9Yir2**ѽ\ΝN+aGg~ZYo;S\c%zIK97 bP!qguP-E:nM|MY,PgRa89_:ؗ$e?{9cdC3قi,Fyac)3]f( jvТhC_2Y(;|>/Pwn:1o(*D83zpNbI!9[LAvqa;Ta;軙R`N{xe [XE,&s=ڵt.QxR#a7-/8J^8HZK|GZTtlIWq7Tc*!9gORfH;lG(0$ѡrh7d?/b㭚 <=\ATF%Jך@tʹxFq/Va3ʐO/[i,ik4:dOm;2絽$V] R%Y m '{ykL1NXx_( KqZC6P$ $dXU^I[ä6JPάyҘ\ 2;< @h]b":4#:8r$@d^uMx͋[|`Ϣ/8jԤ=Mj]ڎ9|;.א*DF('Tbyb$T~(;;ơ Km6{?bf6 O|}·4)^ P2nVUQUm UDZ8Ympp/KE2m=* ' ّM  @=ČuZ8᳠ը|y=} UvC#y>PC×U9[˥ QO`;bk\dR|ݛħ[p\4jA SBu*\pfwaqE=kw/Pgkݵ, .hhHo#`%p9jNJO-G.I8r&S朩0 hؚL?i {d>!#Gޗ2r>nCۀLYT*(}zDMݾ}{bO=܅+?Hhai,Kҁ GVgQ4\)%>X5٥w{!uaOѓ ]\]E7Oú~7~=2 mny֫ye܉@Q2 @RL0}gsSr>^ YU:'Pr\D o7ߪ6^ g%8:B-ʁc#_ 𣍮(ōI]}|#NNe[Wٔ$nιneb't5W§LD)/#֗Թl*.We޴m4Ό{6ӛ(a&Ҿ23u%l5A‹]'hNhD\q^zʂWAR%i18\SKa#XZ}^£ ͺ q7e0gEn[TZy!Ϥ :ޣ|VWXbc }{šq9{j粗ZAMʮ]PwDD;'KpvGW)dC6į )ψ(~i?uƏF{zGKmξj2_^9P1b&D1ObX| m90*څ A#MZMEAOkl6r3TI)FT!kv, /v, +0OWsEɊ}<{ j$bs^kTHC2.>:bQ\ArA_:63Sי׭þY]nB@L}ƹR ;_Y}!@sj*vаivCBetj(%LGbѺ9Ahj+@cD/<,1=dWp2#d7h !BÌ+kpUέUc7EiMq Dជ"|㷓됯P 5^|[=@/l͖ S)QEe-?vnv6}B3rˑ".3V`f@AK{3d^Mj|{iփ N%ɄLYL)o Gi.m[t0q:"qT685 j )6 pr:+ g]nLS}U#wy:w!P.1b/c< M{bETDjʼn8 ad0s5HԳúgkPWIS2xp6D΃W (*a3J͎†+ˈZoeSD>ֈoJD=Qh6߼W5eY ٍJGY[B.%rYp>sbI"̢P^7e?zNW6m 9lMǡhHN[M;>mߏv[O$vv# È)Eeڇ/ ݣ ރ1WqKH~ׄ&-5EG :IQz隷&^C=b/T#ךh2%w/׫z饬!hQ8 NBGw[)H/9My53]R,޶}-q==Liܯu,|jE0*/%|KJzq%C-x}O{m8g Jedf_ ohS_Р(IL<Νϊ#ukq# gd9QqAzO#pЩ-l~œ.SxkBxew-K!Pn]È vW^^t@+O,啯)pP І(S( o2Vo %ړjbl 3`)]JV|O i V;+g阿~nqR@z( F OPFs.{ ;|h Geнк`D#L8|ط6*駜t ӵ$xs]eK[!00x\.}hPyy6oO I fV5Dya\/5:TdD@\v v9@PgtfQp:#PEe&B?l*H~<6GP=ELqO)߇i.* =i*48\TUkh@W;p z?oJA$Hx/A]7YV 0L굉D;~E>ڊY J!vi T;Y ) if<{Z71YYل-Q9t+@j¼bo;oux=(b*lY˺Qju2zHyt(fр*ucY";ö$N\ȓRu!xjX=d&Ƀ7V:\jW hGbdw1_)j{'0o%jEWCxBvҶGQb+iUԴWp;䙆#CF]uK[uw"6o:omB5%m,뵄8Xtj3S2*ɀN`RlQU" Z cziYW ff0\wuaD%y76о{_`J]πO ?iI8c DbB'K<2Ċ#Z+TЏs'>~q:@!%Y!\wM#ZTtw1?fs`Hg<}:U>#AT&Elwv1'rYݒ%L5@9H4~[ KOp{wb<buyEx@[pkzv;,"=|;OG ިzlZR/J.Fsş[p,}ba ]ófaGT<{JZLOMW]f P!AOv_)K] yj}AW6'@- B޿:y\^{t!HB\ #3h1QfvdD6~i@C([d=tIdPBv#b^s;py>ّaBa›8`p[ z؝CS[5*G;( fpl<*sJIbC 1[ pSb i&偟sdfI!wi* Z5b@%t !Kux+45YǍJ=ToJoK{_!"rEcVk7H Wj̚6M @͍g-@a7ߝ-M+М=ƢYvi9 4Jv9$ue\EoſwmFhYEr<{Gabt>h,[\:#&^?Ȗs<$bl"^Y=O&Z6sjtH3n/~Y; 4Ë"=1s_7%ØI(d4c]Q"/w-f3|h˟M6Fé u2"E{ؤPrPK >@CDа6T+q &LXNX!UӂLuBx$Ń|MHNhd_(?#6[2nrn-og#RX&faGfg,J[QxNYjH$NeN=F!.ҁ6pVFa"N$}xuw%O4p`"xFgH8$vs~QEWVA_Aԃ" Ťӫй?M\eLNԢk`Yu8p|Fq'Bi0Gvy7:Be8Ъ.,D6yQ\;mv/2T8a15UwR[H=Β{Z>k-}M) pyG09RQlnɼlJ&߂-Q{U)Vma6]JANQ~Sa*ؗi~t܀uX0,V|DɈEl|؆cE|Mϗ$ҹyqf[hCO':j<ݑRtbȲ`u^RaX'-ۢ iC17܀#;e/7Rw+"c]}#΂@9w6 j/{ 3jFW堈]st{6"3]ؔ xwpTEȨ^jWn]"x MKL7)V[)M*?=<5Sɦ @+.TG>6 endstream endobj 122 0 obj << /Length1 1608 /Length2 8564 /Length3 0 /Length 9384 /Filter /FlateDecode >> stream xڭwePі-ABpi4'A AkpHܩUߖ{sRCU (rq@Vnږ`V)'V\2P@hZiWo `gdffO ?#/'@v`ˇ@j=` r5  jy th[9* k ua]6?`I,n@k15O 8^ 7 }[;!uK{pqYC@PKU [Bv./6.Z{yB-A`7S :Yz~spwɀYBlnn/0/>{KWW'￧]f dˆRRFe(`['?6B0q;ylj.Зl> [_5ozZIe^^7 Z:M|$E 68Anr /jmtz_.q/Z#_b: kG 6E %T$5:Tb_ ))/+'?7qpyz8iZB! /K[?-[m%e'l(%֨.R}#2]}!߫ur\-CjƄg\:'٤~Ԍ9Xtf1R|NUV8G4ƚ!(794׮>㵼=8ۻm?C"aVؒ?2m~d-J @b+AAؖ$ ?1M^[%W#4uũ:R34Ԗ"*/bo Lt%EqX} A}CÕMFNנL$I58+L%ū֪&*򹠫efd,ZO6ZãR@'?-Ĕ<`*Ӛ\~%6u٬v|.|mw:Pt!} 18q˜ay9.|;5STIT3"\s..8sK' BGyư|<^-K D.f(WS8?,Fuq&xdӸ?6l0x}AzcIOc`H1 y-5J[RC'Y*tWgc,T8&S-ҩ %ÝoUԾats,Tԛ|_ ͻ ;l,S1p{pYqح`B[ecKR~O.h] !:(1Rc4d4IV;F"xX<5 !Ns^֗OxT_{9\]k]gn7&B>#9[4 M.׉ lChnSd/ :`% J z/ 𬙠4Q癘5l-'x>Ѩmv:7vS䕆=^CmcJXTɅ]SObJOWSZ΋a= IIޏ"ʞ*-!}\sr;$`wH4Yˆ5h? NDwQ0!'x=XTh3oFiY\neB(g9alzw8'ԨYr#R^<٪Z[,^Ё^B"❅I wPK S8P`ԜVmNh~onj&L3o[⯍Zչ')wgwda2o hg pflasf*Hc߼ɴ<+VC,ZHMz(t|sCQ j X(Τn2*Ocjpհsvw]y-?jzJc2N⤮&F[,!/qSN ?|hɲHT &uR`Vs1FQCx 2k9#ck3Yl 7隇s@O~-RsB+Dx AY['L(+!7^ߚU ZTJ#h,]Xj~>o4U} BɜC,aUa?eQԆ-TץI18`H2rGd1ٕEqdJVq5~'Q?+31QW^{#~!%OP X/rf61jv(mt@x#Z!D0ꊓMo8ȊzR|:e` ~loV'EtXD~O1&sܵ]i"`;o?^hIcYvB)FGmELpH80΋^BxVmlDр[MdGԃ KYBWHϙJ29 Nv] ?& ᶡDqQ+'7ग़I'2 Uݗ欸$ av-!`|"]0&oۘϪMd|}1Xxƀ^T07CXJђ=ZmMlw1o*|R~A`ZIn} )Pf| z cyץ׏j^|i=٪,\g;#֯ਉ⩨z%_ϟXVw0ݾZa^Ȑ/Q)אЬ2J.7ěc\  Xb E_#:BVm8"RfkmDn&DnLЁ)W,p4f}[oaZUN %oˉ1\eϨ#.?Ϫ>$Ok }XQS3c`q >b,I W!!5?OJ9Q^w%ή'Z.ud}mOd`A"7礑_ha| ZI5v;UV籭~:fu,Ig~mZ[!Iyn*eNVXX8|Ӵ , ]SJD[Q^ c$t $Ћ퇊|'cpuL Fĭ(&UaOAgLv`D]leȖ<q]kKugWc4Qᡃ2}`Q NsԤ%”-TKC؊ :`/9Kej.IWo 4@3893XT+. ae/7 +ˁ7mKQ$0N ۤMrFg [ˣ>sGϷMu^*OnkA}B"w$䬆ܟ/ &J8{脄%Mwb ԓ7[F|&~WBpA-6(,!,$`EʣzjfA!.^0~siC}ˠI ?>%ؓL}_2H~:zٹHJ6X`VwB_^"'Q271 ߽Pm;ԁg-:vV z게{TRl*L#2#NWR.E\WI%̎m9tzj69ؒ[%x,j{Ұ feǝ1՝_Og) WM:x誓8B[JU6,x-*Hy)`jsɯ3D,Z`n;]+_5ͅ@h:1 JSCKy-;$ :VM0Lٱp%4 fLe؈a@}EG]! ͨ-K +~p֭vIYX8QҴjʺ%ӑTT`ͼ1>eG2PL5ކ.9 }l.fR.mz"!7#1r#V/#6-1o='{:3Fn_Ts匪8@@mLM/F;; Pg'L7}WAi%(*J&{uλ7>;ᗌWC|'#TnR=+1mO &y*ߢziF5_sP5.r8|u*6nbH$m.GvX;Jr߱^Hj.tueN2OVz&/ݶc#ñ>21elge|2M?4ooup0&/ӀP l{*~/7-Jd6|xv<͟nX*KKp*'IJ;3 H~Ҳz־ t:pM OtLA759!Ɠ/qvl=8)bs4/s ş5EAr/8Ơ6r?on+6" *_pָt0t^=N 7]9+m{`΄!' QCSuʎkBzOp;.edüOFӱXtEo#ʪE++LѷP'45XL|$t,DnI/xj c@h3qxڐώ?jߵYʄM!h$|oI SDI12'b^GMU} 6Pkؙm]>8/R٦hMl*Ľ:"!<;q·s@mq  LUTim֦hs!,f5nΌ*Pio(694 R T5G<[JRZIY_Ќ 4ȽCy%SS>A $Bʢ=#J( į0-mEwb̀_S]߈?dL۽S'NW=fA,Y&͂AR%` y,O eGW1yFzt|>큇p/(XR.7.sKh|$4A*;xeH-omJo$n_D< Il_:~ ?)_%jS ɧ|3d-|p_o R݌ϞiIHW& eڷ3oV}d.>8 0)bQljcYͯR!#v,XyE-onӂv`r{<6=. cz޶p"yET:aE,->([ &P q径QmUTd=-!cf("o> "xd9+60CjzbW5?u)\j.0U$O]#(n0io:!>Y{#F~pϊpL%8ݟRJhզb0֚T -UQ[e Z0S mvSvFrɴ>!C 2Mc[G=dC)lHꇲRmWXE)Pi\"1O&%NVnoG8=X<ycsx*bDJByUXvs.d"!Q/@c{%ctA2)YaM!!<"@"I_tfrvFZ63~8ʞ W}i߳VH Yl=sq֢lbT獓 fNIQ .s^&kMԹ}ݏW3}y2,ޢ w _eX##Xڶ=ȥ /rU9Sm^a%b(<eoAZd8(!/<w4ٲM8ۇf<2%9y]~wkqZ6sլn8ܫv O&JjO%j~]=y!Q1\qm4 vTn-+\#nl/k*~x 7ņג]G#V9y:=K/ιhqL~˳}w>u%Id'uwUkY;>HbdUqo I$t;aq7cOܮ29 9t뾹:%尊)N7Ά?Cwy?"1rbƯÅ2?P'dKDA؅w/P+o]#~ n,r =MYdȑ䟏 Q@KljnH^)na +I^ pS-`DMjCPe$Y$@\UFD!]>s:εmkVO#,y3QoCے8#DԬ%hFM#皃Š;-m=a [Ne|Fi}0+dqx 7|]t"\A@} }kSeIa ^Ky߭sk JG4_-mDM/Mk-U)gG=>ڞu;l}*=+ o8nYQG=3z&\񺡽c񞛲d9x2 la'MUv+>6֩Xc$e7k,3j'-!r+x72J4I_'no &"ct>=J4$Do Ր`E3+y}Ѕ7k/3lIr(ct en/)~6n# 9jgpi7s)+¶ ܝӿ\) endstream endobj 124 0 obj << /Length1 1144 /Length2 5695 /Length3 0 /Length 6455 /Filter /FlateDecode >> stream xuSu\ۺAJ fR)`pfI)ADB@:[.AZBw}>?]Y\l`D eP7 -hq@q{r..# {@p5{+бGDP(%#ZE Dd(`PpĸA$ hA*ϬUuv >15 p_-ڻA:zF_Q**+IA@PDJ)WTԷoE߇;!~5W.aX>+"<&qW_-ylp9 ;nP9@Sȟ>t{àpgؿEk@!`}˟7xq}ApF.Pp}?(pG wz\vĠPWギw^xCg&aUa^kâ]GbaB^JRpQ($!gV.XZE&ӛZQL߄te(xG^0Rg+92RPid=t#aS$4iȞ#V5kHD*Ńu~іܴ<٭B%8IQul^$):&rP] ?:g r߽ J Ԍ#n3ds[x(v;^ыE9mR啹Aig똰^ I[ 랪UZ{(O Gm7x.(*'_cG l-J ͺ1boshM,_r7ŴzV*!k^}}9 y mWOa00/RR5z9n/§/qaVtǝm[NF"xn!`0oh1/"sRt[|-m5Uxdip>MvEuh!1A45/W.pe+a"#A?@=zP1W,T2NTF*-:QW:cM;e\ݐ4yXO|t3k5\/wǖO 55IU)d֧r*!n\qK=dKޮ,}`mEUtp{eBJ ]$X\ZEu7]ȺAwܳ;ə UtO 6!9MtJE<%g=DoXe}66b2挰f1JK3ֿ%U1E6>_[*ܯ5A"txY }SQS#'!@Xaw<ӊ,@~j.i~O>Hc lbWOQdžs>vx Rߔy_RBsݩM L$岖z!{-xst!904䭠oo4ҋFsybŒu5U>Vl\b.{)䘐KVsnjTPCD~Z<3J*\IR-98pk×뭙Bs2x-vzG7a@Ay `/g"4Q!#*1&+%}E@4ˢߑk{}Vo_SI6l"kEu>[px}OֺolI}Z,򅱁.ǖM;3D^O>q+H~"/dʪ x?0NGG*Sn!>;h fB)'0 ㄕ,cLM&@ Tµf1)Tq4ƫR̉E9KPV/k]Fr7lt.WsXlj3~=MDl{`:wu4d=RsJT0ET?< k% 8q,M6 8!iT^іx&L@BS ߐ}^Q;X5,KO?-'U{+\5CYr}cx|fy?ciMtDFČ3LƾSvQ4KtaIN~=! %`ۣcE0wf52 sۓ2lvG:ì`!4Q*oUo9aҸܩXdًHQK2,ֆ|F=)x.v:En!mlbj$Q%tJ=!lRz*V_awa 2%b!lݒ;GHkNWld1Mf{~|!Pwg eɗ/z}$OOщ(x~IS)2–"cHO~ɴ5yA¹YS><`&_C oZNhա.sxd&}Aw?iD[qԴBvdɔh\ܽO 4ާoƒ}vw.T '߳Vl/-x[פkj YitҭMo"!cgvTpm$R/Vc9 .ȓ‹Zsy5rn ^/JP*r4-;{2 t46l@W]xiu!AѾ {׫PݶL޼$.֙|SCѵ2}ʰ)u$i/|<>i4e]HrVzdCnayffAI%mR0-d^c *;{]}SɨsP Bg=?4:y=@< :k:('D-Yj10D<&pHP%C'>*XD)FҢJ9 !'鸔%Ѻbm6OӦ{9 q0Dtc /N =ou#–d?>!b[b26Ǩv=Y=zpJ1BIɪd4J ]`ق "?-c粦0{V^Ֆf&$mKYO}Xێ:nbk=Ԇ~ӓ'ƱRnDyXzQK ~7FŽ'@|rwp-dKtra& LaTjBD?G%MRؤX)Ck9 ئ% $7/BW?ajy<쵅);O'mAN+V8?"ya:si pm2in%e~6z`i鯹|qdbV'M7Dt۶O֥j#UgiHUYlGf[a*"uL blF\0ź-E[?Q;+tMͦhZgNfga, {S[lYfkLRKփ_hf_z*JN QǜVQ=Z[VkNZG<>O揶r\|?:|٧o9ͮkq |N^QGb֏6:w6Q0i"S11Rw: ;M^YթO[6?*̡ou"zIqqCrޚFoYuZeL2nd Z4SBcMs~a/aN c*,'lc` @;LJYpp=ahv5 zʍw5 NF(vںHr"S^* Ӝ5+D*=_On8<Y%gO<C|yRQĜyZ!]LS0{CfΑZboEMg_ ?%=H1 pVhv׿~J/ғI}2=gq5+`h +\IBM  pQaJȣ,D 5ŭMP`r|IevCev\c߫Gs<ױM^RJO>lv㇞VwxkO{K(S5Ak̞MWTNƍ1ėu|} t :Ԝ5!‰-̌zRYL2.p[k8 vv6g{0N6kg 噂h}ynQNᘓ]g3ym/]-ASVUp@iC wx,ۦgjAO،t@cXOj@6J-n/%Vj.CG~xwB~el֮HK$3{*ț4QbdV$hD0&ԍjVKF #l7SKnWѻ_ ŀD s뇏 tLhii@zIy HQ@vyq˕{7N6^: ;>7~t# |;NCU~@+1Wp@Ŋq<DN rҔfG"1ZUvN*sٍ2 ̅GJz見XNdvb!Cŭ7%_O>B}ulr}(PM=YjXP3_A:Vrh@7.s~,jE*%dMqpA$]pmk|7qHg}&YU endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 817 /Length 4197 /Filter /FlateDecode >> stream x[[o9~ׯ77`O$kgsYv#K.ٙ+[r fbXU%2-cƳȼgRL* 2[`JJ\LQ)oxQi45Ff@5 hϤԊ)i0FK3) ih/@DpSRR1@*m}w 4=uA1o V?8p?q"[\?(nONE)DQ@E)Q?- JBѳ\VJDx܉]x\ŸXSx87E$E`$LazBVSMa2St09Ok0  CSSDגOv4<^%t6߉,ء#K*ʪ@j `SbeԾoJ >ƃ%4A0E'w] -lƄi ".ݴׅ]mi-7:]N?7Wu$:ta2,r?<Z߫]ڂր:أG(r7.jdn:>݇,"XBF2ew=8C 'n 5,GDvw^7qu1D zMQs0&_玂U-JjEnb. ea.; C$.EW2( 산fYJ;Ou/\ Cg[<Q+%* <d_c vy_2*rN&DjlY33-dMHE dεZԕHR;mod2ps@*&t.56!1m OFjŏCs^A{+A %A7׉=CT@qVCrLnt{uF2d kS8f)\}qUeYvEro K)PK :Te[.En -1{+(\Of^yT*u$Ԫhr|%sK7CR'"AЯMjW*CLX=䘽,soԽݠ{m]6_=m$=m4"{1޴E| \6尜hO_^ws~z럟KAvL8HJ{Z=V йܤGDe;yeٿ<Ԯiۓy<D Χ{?V@;㝟w=r}9 Kl!|Sؓ5{={nd͌y 3p̜ڤ+^t*"c fٷ1cFf6;1;r='h`4^ϙgJc`Ĩ3Xzl0ی-%/p/ lq k 7k_|zxfltnb*6Gv _b4V1>+(*W?P%_rUs%]eRv]n:MCIOZ^GŚ__sx@A=`)Լvqk;>K-k ?lDk+s5d=TeG=KAlh')5?.^XݮN`|?~ezӋo,"WТC-vB?=2]+1-( O@y8)P!]&+L ]'jsDȫa)ĵjy,M"[Qd3riZrAz6\jYӵ1\nd}-Wo(z2ztB'W%MR~3L*X55Ūv5#`YqMG_F-j<5:eg|jNZ UU$d*Kj [ЇK M-HLZE2\$ li_ p;vgI9)~ol~wͧ,n}zF{X"AxF썟%jeS~F/g>sNn!-@izT" endstream endobj 134 0 obj << /Author()/Title(2)/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.18)/Keywords() /CreationDate (D:20191029193456-04'00') /ModDate (D:20191029193456-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 130 0 obj << /Type /ObjStm /N 4 /First 30 /Length 203 /Filter /FlateDecode >> stream x}I 0sԃƙ I ] /Length 349 /Filter /FlateDecode >> stream xҷN\Qs/,` &%d0s,PCľ  `Q+Pkѽ҈HGH$$_^  P7808(C*8H8CҠ 2ڷdUn *+U,*r@E_!6aVa a `6`ZH%V s{ʡPkX2XeDh]PܵY%,@5wU%JBhff:'A'tA7/>WԵ[ o5,b5jDըG1{8PmjR')Oa$ ?&ٺ$[ }ܼ'K4 endstream endobj startxref 430564 %%EOF genefilter/inst/wFun/0000755000175400017540000000000013556116164015630 5ustar00biocbuildbiocbuildgenefilter/inst/wFun/Anova.xml0000644000175400017540000000144513556116164017422 0ustar00biocbuildbiocbuild Anova cov numeric main TypeIn TRUE p 0.05 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/coxfilter.xml0000644000175400017540000000144013556116164020350 0ustar00biocbuildbiocbuild coxfilter surt numeric main TypeIn TRUE cens numeric main TypeIn TRUE p numeric main TypeIn TRUE genefilter/inst/wFun/cv.xml0000644000175400017540000000144113556116164016762 0ustar00biocbuildbiocbuild cv a 1 numeric main TypeIn FALSE b Inf numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/gapFilter.xml0000644000175400017540000000234413556116164020272 0ustar00biocbuildbiocbuild gapFilter Gap numeric main TypeIn TRUE IQR numeric main TypeIn TRUE Prop nemeric main TypeIn TRUE na.rm TRUE logical main Radio FALSE neg.rm TRUE logical main Radio FALSE genefilter/inst/wFun/kOverA.xml0000644000175400017540000000144313556116164017543 0ustar00biocbuildbiocbuild kOverA k numeric main TypeIn TRUE A 100 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/maxA.xml0000644000175400017540000000110713556116164017237 0ustar00biocbuildbiocbuild maxA A 75 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/pOverA.xml0000644000175400017540000000145013556116164017546 0ustar00biocbuildbiocbuild pOverA p 0.05 numeric main TypeIn FALSE A 100 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/inst/wFun/ttest.xml0000644000175400017540000000144313556116164017517 0ustar00biocbuildbiocbuild ttest m numeric main TypeIn TRUE p 0.05 numeric main TypeIn FALSE na.rm TRUE logical main Radio FALSE genefilter/man/0000755000175400017540000000000013556116164014507 5ustar00biocbuildbiocbuildgenefilter/man/Anova.Rd0000644000175400017540000000263313556116164016046 0ustar00biocbuildbiocbuild\name{Anova} \alias{Anova} \title{A filter function for Analysis of Variance } \description{ \code{Anova} returns a function of one argument with bindings for \code{cov} and \code{p}. The function, when evaluated, performs an ANOVA using \code{cov} as the covariate. It returns \code{TRUE} if the p value for a difference in means is less than \code{p}. } \usage{ Anova(cov, p=0.05, na.rm=TRUE) } \arguments{ \item{cov}{The covariate. It must have length equal to the number of columns of the array that \code{Anova} will be applied to. } \item{p}{ The p-value for the test. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ The function returned by \code{Anova} uses \code{lm} to fit a linear model of the form \code{lm(x ~ cov)}, where \code{x} is the set of gene expressions. The F statistic for an overall effect is computed and if it has a \emph{p}-value less than \code{p} the function returns \code{TRUE}, otherwise it returns \code{FALSE} for that gene. } \value{ \code{Anova} returns a function with bindings for \code{cov} and \code{p} that will perform a one-way ANOVA. The covariate can be continuous, in which case the test is for a linear effect for the covariate. } \author{R. Gentleman } \seealso{\code{\link{kOverA}}, \code{\link{lm}} } \examples{ set.seed(123) af <- Anova(c(rep(1,5),rep(2,5)), .01) af(rnorm(10)) } \keyword{manip} genefilter/man/coxfilter.Rd0000644000175400017540000000206613556116164017001 0ustar00biocbuildbiocbuild\name{coxfilter} \alias{coxfilter} \title{A filter function for univariate Cox regression. } \description{ A function that performs Cox regression with bindings for \code{surt}, \code{cens}, and \code{p} is returned. This function filters genes according to the attained p-value from a Cox regression using \code{surt} as the survival times, and \code{cens} as the censoring indicator. It requires \code{survival}. } \usage{ coxfilter(surt, cens, p) } \arguments{ \item{surt}{Survival times.} \item{cens}{Censoring indicator. } \item{p}{The p-value to use in filtering. } } \value{ Calls to the \code{\link[survival]{coxph}} function in the \code{survival} library are used to fit a Cox model. The filter function returns \code{TRUE} if the p-value in the fit is less than \code{p}. } \author{R. Gentleman } \seealso{\code{\link{Anova}}} \examples{ set.seed(-5) sfun <- coxfilter(rexp(10), ifelse(runif(10) < .7, 1, 0), .05) ffun <- filterfun(sfun) dat <- matrix(rnorm(1000), ncol=10) out <- genefilter(dat, ffun) } \keyword{manip} genefilter/man/cv.Rd0000644000175400017540000000201213556116164015401 0ustar00biocbuildbiocbuild\name{cv} \alias{cv} \title{A filter function for the coefficient of variation.} \description{ \code{cv} returns a function with values for \code{a} and \code{b} bound. This function takes a single argument. It computes the coefficient of variation for the input vector and returns \code{TRUE} if the coefficient of variation is between \code{a} and \code{b}. Otherwise it returns \code{FALSE} } \usage{ cv(a=1, b=Inf, na.rm=TRUE) } \arguments{ \item{a}{The lower bound for the cv. } \item{b}{The upper bound for the cv. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ The coefficient of variation is the standard deviation divided by the absolute value of the mean. } \value{ It returns a function of one argument. The function has an environment with bindings for \code{a} and \code{b}. } \author{R. Gentleman } \seealso{\code{\link{pOverA}}, \code{\link{kOverA}} } \examples{ set.seed(-3) cvfun <- cv(1,10) cvfun(rnorm(10,10)) cvfun(rnorm(10)) } \keyword{manip} genefilter/man/dist2.Rd0000644000175400017540000000321213556116164016021 0ustar00biocbuildbiocbuild\name{dist2} \alias{dist2} \title{ Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix. } \description{ Calculate an n-by-n matrix by applying a function to all pairs of columns of an m-by-n matrix. } \usage{ dist2(x, fun, diagonal=0) } \arguments{ \item{x}{A matrix.} \item{fun}{A symmetric function of two arguments that may be columns of \code{x}.} \item{diagonal}{The value to be used for the diagonal elements of the resulting matrix.} } \details{ With the default value of \code{fun}, this function calculates for each pair of columns of \code{x} the mean of the absolute values of their differences (which is proportional to the L1-norm of their difference). This is a distance metric. The implementation assumes that \code{fun(x[,i], x[,j])} can be evaluated for all pairs of \code{i} and \code{j} (see examples), and that \code{fun} is symmetric, i.e. \code{fun(a, b) = fun(b, a)}. \code{fun(a, a)} is not actually evaluated, instead the value of \code{diagonal} is used to fill the diagonal elements of the returned matrix. Note that \code{\link[stats:dist]{dist}} computes distances between rows of \code{x}, while this function computes relations between columns of \code{x} (see examples). } \value{ A symmetric matrix of size \code{n x n}. } \author{ Wolfgang Huber, James Reid } \examples{ # example matrix z = matrix(1:15693, ncol=3) matL1 = dist2(z) matL2 = dist2(z, fun=function(a,b) sqrt(sum((a-b)^2, na.rm=TRUE))) euc = as.matrix(dist(t(z))) stopifnot(identical(dim(matL2), dim(euc)), all(euc==matL2)) } \keyword{manip} genefilter/man/eSetFilter.Rd0000644000175400017540000000306213556116164017045 0ustar00biocbuildbiocbuild\name{eSetFilter} \alias{eSetFilter} \alias{getFilterNames} \alias{getFuncDesc} \alias{getRdAsText} \alias{parseDesc} \alias{parseArgs} \alias{setESetArgs} \alias{isESet} \alias{showESet} \title{A function to filter an eSet object} \description{ Given a Bioconductor's ExpressionSet object, this function filters genes using a set of selected filters. } \usage{ eSetFilter(eSet) getFilterNames() getFuncDesc(lib = "genefilter", funcs = getFilterNames()) getRdAsText(lib) parseDesc(text) parseArgs(text) showESet(eSet) setESetArgs(filter) isESet(eSet) } \arguments{ \item{eSet}{\code{eSet} an ExpressionSet object} \item{lib}{\code{lib} a character string for the name of an R library where functions of interests reside} \item{funcs}{\code{funcs} a vector of character strings for names of functions of interest} \item{text}{\code{text} a character of string from a filed (e. g. description, argument, ..) filed of an Rd file for a fucntion} \item{filter}{\code{filter} a character string for the name of a filter function} } \details{ A set of filters may be selected to filter genes in through each of the filters in the order the filters have been selected } \value{ A logical vector of length equal to the number of rows of 'expr'. The values in that vector indicate whether the corresponding row of 'expr' passed the set of filter functions. } \author{Jianhua Zhang} \seealso{\code{\link{genefilter}}} \examples{ if( interactive() ) { data(sample.ExpressionSet) res <- eSetFilter(sample.ExpressionSet) } } \keyword{manip} genefilter/man/filter_volcano.Rd0000644000175400017540000000407313556116164020010 0ustar00biocbuildbiocbuild\name{filter_volcano} \Rdversion{1.1} \alias{filter_volcano} \title{Volcano plot for overall variance filtering} \description{ Generate a volcano plot contrasting p-value with fold change (on the log scale), in order to visualize the effect of filtering on overall variance and also assign significance via p-value. } \usage{ filter_volcano( d, p, S, n1, n2, alpha, S_cutoff, cex = 0.5, pch = 19, xlab = expression(paste(log[2], " fold change")), ylab = expression(paste("-", log[10], " p")), cols = c("grey80", "grey50", "black"), ltys = c(1, 3), use_legend = TRUE, ... ) } \arguments{ \item{d}{Fold changes, typically on the log scale, base 2.} \item{p}{The p-values} \item{S}{ The overall standard deviation filter statistics, i.e., the square roots of the overall variance filter statistics. } \item{n1}{Sample size for group 1.} \item{n2}{Sample size for group 2.} \item{alpha}{Significance cutoff used for p-values.} \item{S_cutoff}{ Filter cutoff used for the overall standard deviation in \code{S}. } \item{cex}{Point size for plotting.} \item{pch}{Point character for plotting.} \item{xlab}{Label for x-axis.} \item{ylab}{Label for y-axis.} \item{cols}{ A vector of three colors used for plotting. These correspond to filtered data, data which pass the filter but are insignificant, and data pass the filter and are also statistically significant. } \item{ltys}{ The induced bound on log-scale fold change is plotted, as is the significance cutoff for data passing the filter. The \code{ltys} argument gives line styles for these drawing these two thresholds on the plot. } \item{use_legend}{Should a legend for point color be produced?} \item{\dots}{Other arguments for \code{plot}.} } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/filtered_p.Rd0000644000175400017540000000505713556116164017122 0ustar00biocbuildbiocbuild\name{filtered_p} \Rdversion{1.1} \alias{filtered_p} \alias{filtered_R} \title{ Compute and adjust p-values, with filtering } \description{ Given filter and test statistics in the form of unadjusted p-values, or functions able to compute these statistics from the data, filter and then correct the p-values across a range of filtering stringencies. } \usage{ filtered_p(filter, test, theta, data, method = "none") filtered_R(alpha, filter, test, theta, data, method = "none") } \arguments{ \item{alpha}{ A cutoff to which p-values, possibly adjusted for multiple testing, will be compared. } \item{filter}{ A vector of stage-one filter statistics, or a function which is able to compute this vector from \code{data}, if \code{data} is supplied. } \item{test}{ A vector of unadjusted p-values, or a function which is able to compute this vector from the filtered portion of \code{data}, if \code{data} is supplied. The option to supply a function is useful when the value of the test statistic depends on which hypotheses are filtered out at stage one. (The \pkg{limma} t-statistic is an example.) } \item{theta}{ A vector with one or more filtering fractions to consider. Actual cutoffs are then computed internally by applying \code{\link{quantile}} to the filter statistics contained in (or produced by) the \code{filter} argument. } \item{data}{ If \code{filter} and/or \code{test} are functions rather than vectors of statistics, they will be applied to \code{data}. The functions will be passed the whole \code{data} object, and must work over rows, etc. themselves as appropriate. } \item{method}{ The unadjusted p-values contained in (or produced by) \code{test} will be adjusted for multiple testing after filtering, using the \code{\link{p.adjust}} function in the \pkg{stats} package. See the \code{method} argument there for options. }p } \value{ For \code{filtered_p}, a matrix of p-values, possible adjusted for multiple testing, with one row per null hypothesis and one column per filtering fraction given in \code{theta}. For a given column, entries which have been filtered out are \code{NA}. For \code{filtered_R}, a count of the entries in the \code{filtered_p} result which are less than \code{alpha}. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } \seealso{ See \code{\link{rejection_plot}} for visualization of \code{filtered_p} results. } genefilter/man/filterfun.Rd0000644000175400017540000000223513556116164016776 0ustar00biocbuildbiocbuild\name{filterfun} \alias{filterfun} \title{Creates a first FALSE exiting function from the list of filter functions it is given. } \description{ This function creates a function that takes a single argument. The filtering functions are bound in the environment of the returned function and are applied sequentially to the argument of the returned function. When the first filter function evaluates to \code{FALSE} the function returns \code{FALSE} otherwise it returns \code{TRUE}. } \usage{ filterfun(...) } \arguments{ \item{...}{Filtering functions. } } \value{ \code{filterfun} returns a function that takes a single argument. It binds the filter functions given to it in the environment of the returned function. These functions are applied sequentially (in the order they were given to \code{filterfun}). The function returns \code{FALSE} (and exits) when the first filter function returns \code{FALSE} otherwise it returns \code{TRUE}. } \author{R. Gentleman } \seealso{\code{\link{genefilter}} } \examples{ set.seed(333) x <- matrix(rnorm(100,2,1),nc=10) cvfun <- cv(.5,2.5) ffun <- filterfun(cvfun) which <- genefilter(x, ffun) } \keyword{manip} genefilter/man/findLargest.Rd0000644000175400017540000000261213556116164017241 0ustar00biocbuildbiocbuild\name{findLargest} \alias{findLargest} \title{Find the Entrez Gene ID corresponding to the largest statistic} \description{ Most microarrays have multiple probes per gene (Entrez). This function finds all replicates, and then selects the one with the largest value of the test statistic. } \usage{ findLargest(gN, testStat, data = "hgu133plus2") } \arguments{ \item{gN}{A vector of probe identifiers for the chip.} \item{testStat}{A vector of test statistics, of the same length as \code{gN} with the per probe test statistics.} \item{data}{The character string identifying the chip.} } \details{ All the probe identifiers, \code{gN}, are mapped to Entrez Gene IDs and the duplicates determined. For any set of probes that map to the same Gene ID, the one with the largest test statistic is found. The return vector is the named vector of selected probe identifiers. The names are the Entrez Gene IDs. This could be extended in different ways, such as allowing the user to use a different selection criterion. Also, matching on different identifiers seems like another alternative. } \value{ A named vector of probe IDs. The names are Entrez Gene IDs. } \author{R. Gentleman} \seealso{\code{\link{sapply}}} \examples{ library("hgu95av2.db") set.seed(124) gN <- sample(ls(hgu95av2ENTREZID), 200) stats <- rnorm(200) findLargest(gN, stats, "hgu95av2") } \keyword{manip} genefilter/man/gapFilter.Rd0000644000175400017540000000346713556116164016725 0ustar00biocbuildbiocbuild\name{gapFilter} \alias{gapFilter} \title{ A filter to select genes based on there being a gap. } \description{ The \code{gapFilter} looks for genes that might usefully discriminate between two groups (possibly unknown at the time of filtering). To do this we look for a gap in the ordered expression values. The gap must come in the central portion (we exclude jumps in the initial \code{Prop} values or the final \code{Prop} values). Alternatively, if the IQR for the gene is large that will also pass our test and the gene will be selected. } \usage{ gapFilter(Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE) } \arguments{ \item{Gap}{The size of the gap required to pass the test. } \item{IQR}{The size of the IQR required to pass the test. } \item{Prop}{The proportion (or number) of samples to exclude at either end.} \item{na.rm}{If \code{TRUE} then \code{NA}'s will be removed before processing. } \item{neg.rm}{ If \code{TRUE} then negative values in \code{x} will be removed before processing.} } \details{ As stated above we are interested in } \value{ A function that returns either \code{TRUE} or \code{FALSE} depending on whether the vector supplied has a gap larger than \code{Gap} or an IQR (inter quartile range) larger than \code{IQR}. For computing the gap we want to exclude a proportion, \code{Prop} from either end of the sorted values. The reason for this requirement is that genes which differ in expression levels only for a few samples are not likely to be interesting. } \author{R. Gentleman } \seealso{\code{\link{ttest}}, \code{\link{genefilter}} } \examples{ set.seed(256) x <- c(rnorm(10,100,3), rnorm(10, 100, 10)) y <- x + c(rep(0,10), rep(100,10)) tmp <- rbind(x,y) Gfilter <- gapFilter(200, 100, 5) ffun <- filterfun(Gfilter) genefilter(tmp, ffun) } \keyword{manip} genefilter/man/genefilter.Rd0000644000175400017540000000427513556116164017132 0ustar00biocbuildbiocbuild\name{genefilter} \alias{genefilter} \title{A function to filter genes.} \description{ \code{genefilter} filters genes in the array \code{expr} using the filter functions in \code{flist}. It returns an array of logical values (suitable for subscripting) of the same length as there are rows in \code{expr}. For each row of \code{expr} the returned value is \code{TRUE} if the row passed all the filter functions. Otherwise it is set to \code{FALSE}. } \usage{ genefilter(expr, flist) } \arguments{ \item{expr}{A \code{matrix} or \code{ExpressionSet} that the filter functions will be applied to.} \item{flist}{A \code{list} of filter functions to apply to the array.} } \details{ This package uses a very simple but powerful protocol for \emph{filtering} genes. The user simply constructs any number of tests that they want to apply. A test is simply a function (as constructed using one of the many helper functions in this package) that returns \code{TRUE} if the gene of interest passes the test (or filter) and \code{FALSE} if the gene of interest fails. The benefit of this approach is that each test is constructed individually (and can be tested individually). The tests are then applied sequentially to each gene. The function returns a logical vector indicating whether the gene passed all tests functions or failed at least one of them. Users can construct their own filters. These filters should accept a vector of values, corresponding to a row of the \code{expr} object. The user defined function should return a length 1 logical vector, with value \code{TRUE} or \code{FALSE}. User-defined functions can be combined with \code{\link{filterfun}}, just as built-in filters. } \value{ A logical \code{vector} of length equal to the number of rows of \code{expr}. The values in that \code{vector} indicate whether the corresponding row of \code{expr} passed the set of filter functions. } \author{R. Gentleman} \seealso{\code{\link{genefilter}}, \code{\link{kOverA}}} \examples{ set.seed(-1) f1 <- kOverA(5, 10) flist <- filterfun(f1) exprA <- matrix(rnorm(1000, 10), ncol = 10) ans <- genefilter(exprA, flist) } \keyword{manip} genefilter/man/genefinder.Rd0000644000175400017540000000647613556116164017121 0ustar00biocbuildbiocbuild\name{genefinder} \alias{genefinder} \alias{genefinder,ExpressionSet,vector-method} \alias{genefinder,matrix,vector-method} \title{Finds genes that have similar patterns of expression.} \description{ Given an \code{ExpressionSet} or a \code{matrix} of gene expressions, and the indices of the genes of interest, \code{genefinder} returns a \code{list} of the \code{numResults} closest genes. The user can specify one of the standard distance measures listed below. The number of values to return can be specified. The return value is a \code{list} with two components: genes (measured through the desired distance method) to the genes of interest (where X is the number of desired results returned) and their distances. } \usage{ genefinder(X, ilist, numResults=25, scale="none", weights, method="euclidean") } \arguments{ \item{X}{A numeric \code{matrix} where columns represent patients and rows represent genes.} \item{ilist}{A \code{vector} of genes of interest. Contains indices of genes in matrix X.} \item{numResults}{Number of results to display, starting from the least distance to the greatest.} \item{scale}{One of "none", "range", or "zscore". Scaling is carried out separately on each row.} \item{weights}{A vector of weights applied across the columns of \code{X}. If no weights are supplied, no weights are applied.} \item{method}{One of "euclidean", "maximum", "manhattan", "canberra", "correlation", "binary".} } \details{ If the \code{scale} option is "range", then the input matrix is scaled using \code{genescale()}. If it is "zscore", then the input matrix is scaled using the \code{scale} builtin with no arguments. The method option specifies the metric used for gene comparisons. The metric is applied, row by row, for each gene specified in \code{ilist}. The "correlation" option for the distance method will return a value equal to 1-correlation(x). See \code{\link{dist}} for a more detailed description of the distances. } \value{ The returned value is a \code{list} containing an entry for each gene specified in \code{ilist}. Each \code{list} entry contains an array of distances for that gene of interest. } \author{J. Gentry and M. Kajen} \seealso{\code{\link{genescale}}} \examples{ set.seed(12345) #create some fake expression profiles m1 <- matrix (1:12, 4, 3) v1 <- 1 nr <- 2 #find the 2 rows of m1 that are closest to row 1 genefinder (m1, v1, nr, method="euc") v2 <- c(1,3) genefinder (m1, v2, nr) genefinder (m1, v2, nr, scale="range") genefinder (m1, v2, nr, method="manhattan") m2 <- matrix (rnorm(100), 10, 10) v3 <- c(2, 5, 6, 8) nr2 <- 6 genefinder (m2, v3, nr2, scale="zscore") \testonly{ m1 <- matrix(rnorm(1000),100,10) v1 <- c(3,5,8,42) nr2 <- 35 genefinder(m1,v1,nr2,method="euclidean") genefinder(m1,v1,nr2,method="maximum") genefinder(m1,v1,nr2,method="canberra") genefinder(m1,v1,nr2,method="binary") genefinder(m1,v1,nr2,method="correlation") m2 <- matrix(rnorm(10000),1000,10) v1 <- c(1,100,563,872,921,3,52,95,235,333) nr <- 100 genefinder(m2,v1,nr2,scale="zscore",method="euclidean") genefinder(m2,v1,nr2,scale="range",method="maximum") genefinder(m2,v1,nr2,scale="zscore",method="canberra") genefinder(m2,v1,nr2,scale="range",method="binary") genefinder(m2,v1,nr2,scale="zscore",method="correlation") } } \keyword{manip} genefilter/man/genescale.Rd0000644000175400017540000000237413556116164016732 0ustar00biocbuildbiocbuild\name{genescale} \alias{genescale} \title{Scales a matrix or vector.} \description{ \code{genescale} returns a scaled version of the input matrix m by applying the following formula to each column of the matrix: \deqn{y[i] = ( x[i] - min(x) ) / ( max(x) - min(x) )} } \usage{ genescale(m, axis=2, method=c("Z", "R"), na.rm=TRUE) } \arguments{ \item{m}{Input a matrix or a vector with numeric elements. } \item{axis}{An integer indicating which axis of \code{m} to scale.} \item{method}{Either "Z" or "R", indicating whether a Z scaling or a range scaling should be performed.} \item{na.rm}{A boolean indicating whether \code{NA}'s should be removed.} } \details{ Either the rows or columns of \code{m} are scaled. This is done either by subtracting the mean and dividing by the standard deviation ("Z") or by subtracing the minimum and dividing by the range. } \value{ A scaled version of the input. If \code{m} is a \code{matrix} or a \code{dataframe} then the dimensions of the returned value agree with that of \code{m}, in both cases the returned value is a \code{matrix}. } \author{ R. Gentleman } \seealso{ \code{\link{genefinder}},\code{\link{scale}} } \examples{ m <- matrix(1:12, 4, 3) genescale(m) } \keyword{ manip } genefilter/man/half.range.mode.Rd0000755000175400017540000000636013556116164017736 0ustar00biocbuildbiocbuild\name{half.range.mode} \alias{half.range.mode} \title{Mode estimation for continuous data} \description{ For data assumed to be drawn from a unimodal, continuous distribution, the mode is estimated by the \dQuote{half-range} method. Bootstrap resampling for variance reduction may optionally be used. } \usage{ half.range.mode(data, B, B.sample, beta = 0.5, diag = FALSE) } \arguments{ \item{data}{A numeric vector of data from which to estimate the mode.} \item{B}{ Optionally, the number of bootstrap resampling rounds to use. Note that \code{B = 1} resamples 1 time, whereas omitting \code{B} uses \code{data} as is, without resampling. } \item{B.sample}{ If bootstrap resampling is requested, the size of the bootstrap samples drawn from \code{data}. Default is to use a sample which is the same size as \code{data}. For large data sets, this may be slow and unnecessary. } \item{beta}{ The fraction of the remaining range to use at each iteration. } \item{diag}{ Print extensive diagnostics. For internal testing only... best left \code{FALSE}. } } \details{ Briefly, the mode estimator is computed by iteratively identifying densest half ranges. (Other fractions of the current range can be requested by setting \code{beta} to something other than 0.5.) A densest half range is an interval whose width equals half the current range, and which contains the maximal number of observations. The subset of observations falling in the selected densest half range is then used to compute a new range, and the procedure is iterated. See the references for details. If bootstrapping is requested, \code{B} half-range mode estimates are computed for \code{B} bootstrap samples, and their average is returned as the final estimate. } \value{ The mode estimate. } \references{ \itemize{ \item DR Bickel, \dQuote{Robust estimators of the mode and skewness of continuous data.} \emph{Computational Statistics & Data Analysis} 39:153-163 (2002). \item SB Hedges and P Shah, \dQuote{Comparison of mode estimation methods and application in molecular clock analysis.} \emph{BMC Bioinformatics} 4:31-41 (2003). } } \author{Richard Bourgon } \seealso{\code{\link{shorth}}} \keyword{univar} \keyword{robust} \examples{ ## A single normal-mixture data set x <- c( rnorm(10000), rnorm(2000, mean = 3) ) M <- half.range.mode( x ) M.bs <- half.range.mode( x, B = 100 ) if(interactive()){ hist( x, breaks = 40 ) abline( v = c( M, M.bs ), col = "red", lty = 1:2 ) legend( 1.5, par("usr")[4], c( "Half-range mode", "With bootstrapping (B = 100)" ), lwd = 1, lty = 1:2, cex = .8, col = "red" ) } # Sampling distribution, with and without bootstrapping X <- rbind( matrix( rnorm(1000 * 100), ncol = 100 ), matrix( rnorm(200 * 100, mean = 3), ncol = 100 ) ) M.list <- list( Simple = apply( X, 2, half.range.mode ), BS = apply( X, 2, half.range.mode, B = 100 ) ) if(interactive()){ boxplot( M.list, main = "Effect of bootstrapping" ) abline( h = 0, col = "red" ) } } genefilter/man/kOverA.Rd0000644000175400017540000000133013556116164016162 0ustar00biocbuildbiocbuild\name{kOverA} \alias{kOverA} \title{A filter function for k elements larger than A. } \description{ \code{kOverA} returns a filter function with bindings for \code{k} and \code{A}. This function evaluates to \code{TRUE} if at least \code{k} of the arguments elements are larger than \code{A}. } \usage{ kOverA(k, A=100, na.rm=TRUE) } \arguments{ \item{A}{The value you want to exceed. } \item{k}{The number of elements that have to exceed A.} \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \value{ A function with bindings for \code{A} and \code{k}. } \author{R. Gentleman} \seealso{\code{\link{pOverA}}} \examples{ fg <- kOverA(5, 100) fg(90:100) fg(98:110) } \keyword{manip} genefilter/man/kappa_p.Rd0000644000175400017540000000200213556116164016403 0ustar00biocbuildbiocbuild\name{kappa_p} \Rdversion{1.1} \alias{kappa_p} \alias{kappa_t} \title{ Compute proportionality constant for fold change bound. } \description{ Filtering on overall variance induces a lower bound on fold change. This bound depends on the significance of the evidence against the null hypothesis, an is a multiple of the cutoff used for an overall variance filter. It also depends on sample size in both of the groups being compared. These functions compute the multiplier for the supplied p-values or t-statistics. } \usage{ kappa_p(p, n1, n2 = n1) kappa_t(t, n1, n2 = n1) } \arguments{ \item{p}{The p-values at which to compute the multiplier.} \item{t}{The t-statistics at which to compute the multiplier.} \item{n1}{Sample size for class 1.} \item{n2}{Sample size for class 2.} } \value{ A vector of multipliers: one per p-value or t-static in \code{p} or \code{t}. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/maxA.Rd0000644000175400017540000000125313556116164015665 0ustar00biocbuildbiocbuild\name{maxA} \alias{maxA} \title{ A filter function to filter according to the maximum. } \description{ \code{maxA} returns a function with the parameter \code{A} bound. The returned function evaluates to \code{TRUE} if any element of its argument is larger than \code{A}. } \usage{ maxA(A=75, na.rm=TRUE) } \arguments{ \item{A}{The value that at least one element must exceed. } \item{na.rm}{If \code{TRUE} then \code{NA}'s are removed. } } \value{ \code{maxA} returns a function with an environment containing a binding for \code{A}. } \author{R. Gentleman } \seealso{\code{\link{pOverA}} } \examples{ ff <- maxA(30) ff(1:10) ff(28:31) } \keyword{manip} genefilter/man/nsFilter.Rd0000644000175400017540000002137713556116164016576 0ustar00biocbuildbiocbuild\name{nsFilter} \alias{nsFilter} \alias{varFilter} \alias{featureFilter} \alias{nsFilter,ExpressionSet-method} \title{Filtering of Features in an ExpressionSet} \description{The function \code{nsFilter} tries to provide a one-stop shop for different options of filtering (removing) features from an ExpressionSet. Filtering features exhibiting little variation, or a consistently low signal, across samples can be advantageous for the subsequent data analysis (Bourgon et al.). Furthermore, one may decide that there is little value in considering features with insufficient annotation. } \usage{ nsFilter(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, var.func=IQR, var.cutoff=0.5, var.filter=TRUE, filterByQuantile=TRUE, feature.exclude="^AFFX", ...) varFilter(eset, var.func=IQR, var.cutoff=0.5, filterByQuantile=TRUE) featureFilter(eset, require.entrez=TRUE, require.GOBP=FALSE, require.GOCC=FALSE, require.GOMF=FALSE, require.CytoBand=FALSE, remove.dupEntrez=TRUE, feature.exclude="^AFFX") } \arguments{ \item{eset}{an \code{ExpressionSet} object} \item{var.func}{The function used as the per-feature filtering statistic. This function should return a numeric vector of length one when given a numeric vector as input.} \item{var.filter}{A logical indicating whether to perform filtering based on \code{var.func}.} \item{filterByQuantile}{A logical indicating whether \code{var.cutoff} is to be interprested as a quantile of all \code{var.func} values (the default), or as an absolute value.} \item{var.cutoff}{A numeric value. If \code{var.filter} is TRUE, features whose value of \code{var.func} is less than either: the \code{var.cutoff}-quantile of all \code{var.func} values (if \code{filterByQuantile} is TRUE), or \code{var.cutoff} (if \code{filterByQuantile} is FALSE) will be removed.} \item{require.entrez}{If \code{TRUE}, filter out features without an Entrez Gene ID annotation. If using an annotation package where an identifier system other than Entrez Gene IDs is used as the central ID, then that ID will be required instead.} \item{require.GOBP, require.GOCC, require.GOMF}{If \code{TRUE}, filter out features whose target genes are not annotated to at least one GO term in the BP, CC or MF ontology, respectively.} \item{require.CytoBand}{If \code{TRUE}, filter out features whose target genes have no mapping to cytoband locations.} \item{remove.dupEntrez}{If \code{TRUE} and there are features mapping to the same Entrez Gene ID (or equivalent), then the feature with the largest value of \code{var.func} will be retained and the other(s) removed.} \item{feature.exclude}{A character vector of regular expressions. Feature identifiers (i.e. value of \code{featureNames(eset)}) that match one of the specified patterns will be filtered out. The default value is intended to filter out Affymetrix quality control probe sets.} \item{...}{Unused, but available for specializing methods.} } \details{ In this Section, the effect of filtering on the type I error rate estimation / control of subsequent hypothesis testing is explained. See also the paper by Bourgon et al. \emph{Marginal type I errors}: Filtering on the basis of a statistic which is independent of the test statistic used for detecting differential gene expression can increase the detection rate at the same marginal type I error. This is clearly the case for filter criteria that do not depend on the data, such as the annotation based criteria provided by the \code{nsFilter} and \code{featureFilter} functions. However, marginal type I error can also be controlled for certain types of data-dependent criteria. Call \eqn{U^I}{U^1} the stage 1 filter statistic, which is a function that is applied feature by feature, based on whose value the feature is or is not accepted to pass to stage 2, and which depends only on the data for that feature and not any other feature, and call \eqn{U^{II}}{U^2} the stage 2 test statistic for differential expression. Sufficient conditions for marginal type-I error control are: \itemize{ \item \eqn{U^I}{U^1} the overall (across all samples) variance or mean, \eqn{U^{II}}{U^2} the t-statistic (or any other scale and location invariant statistic), data normal distributed and exchangeable across samples. \item \eqn{U^I}{U^1} the overall mean, \eqn{U^{II}}{U^2} the moderated t-statistic (as in limma's \code{\link[limma:ebayes]{eBayes}} function), data normal distributed and exchangeable. \item \eqn{U^I}{U^1} a sample-class label independent function (e.g. overall mean, median, variance, IQR), \eqn{U^{II}}{U^2} the Wilcoxon rank sum statistic, data exchangeable. } \emph{Experiment-wide type I error}: Marginal type-I error control provided by the conditions above is sufficient for control of the family wise error rate (FWER). Note, however, that common false discovery rate (FDR) methods depend not only on the marginal behaviour of the test statistics under the null hypothesis, but also on their joint distribution. The joint distribution can be affected by filtering, even when this filtering leaves the marginal distributions of true-null test statistics unchanged. Filtering might, for example, change correlation structure. The effect of this is negligible in many cases in practice, but this depends on the dataset and the filter used, and the assessment is in the responsibility of the data analyst. \emph{Annotation Based Filtering} Arguments \code{require.entrez}, \code{require.GOBP}, \code{require.GOCC}, \code{require.GOMF} and \code{require.CytoBand} filter based on available annotation data. The annotation package is determined by calling \code{annotation(eset)}. \emph{Variance Based Filtering} The \code{var.filter}, \code{var.func}, \code{var.cutoff} and \code{varByQuantile} arguments control numerical cutoff-based filtering. Probes for which \code{var.func} returns \code{NA} are removed. The default \code{var.func} is \code{IQR}, which we here define as \code{rowQ(eset, ceiling(0.75 * ncol(eset))) - rowQ(eset, floor(0.25 * ncol(eset)))}; this choice is motivated by the observation that unexpressed genes are detected most reliably through low variability of their features across samples. Additionally, \code{IQR} is robust to outliers (see note below). The default \code{var.cutoff} is \code{0.5} and is motivated by a rule of thumb that in many tissues only 40\% of genes are expressed. Please adapt this value to your data and question. By default the numerical-filter cutoff is interpreted as a quantile, so with the default settings, 50\% of the genes are filtered. Variance filtering is performed last, so that (if \code{varByQuantile=TRUE} and \code{remove.dupEntrez=TRUE}) the final number of genes does indeed exclude precisely the \code{var.cutoff} fraction of unique genes remaining after all other filters were passed. The stand-alone function \code{varFilter} does only \code{var.func}-based filtering (and no annotation based filtering). \code{featureFilter} does only annotation based filtering and duplicate removal; it always performs duplicate removal to retain the highest-IQR probe for each gene. } \value{ For \code{nsFilter} a list consisting of: \item{eset}{the filtered \code{ExpressionSet}} \item{filter.log}{a list giving details of how many probe sets where removed for each filtering step performed.} For both \code{varFilter} and \code{featureFilter} the filtered \code{ExpressionSet}. } \author{Seth Falcon (somewhat revised by Assaf Oron)} \note{\code{IQR} is a reasonable variance-filter choice when the dataset is split into two roughly equal and relatively homogeneous phenotype groups. If your dataset has important groups smaller than 25\% of the overall sample size, or if you are interested in unusual individual-level patterns, then \code{IQR} may not be sensitive enough for your needs. In such cases, you should consider using less robust and more sensitive measures of variance (the simplest of which would be \code{sd}).} \references{ R. Bourgon, R. Gentleman, W. Huber, Independent filtering increases power for detecting differentially expressed genes, Technical Report. } \examples{ library("hgu95av2.db") library("Biobase") data(sample.ExpressionSet) ans <- nsFilter(sample.ExpressionSet) ans$eset ans$filter.log ## skip variance-based filtering ans <- nsFilter(sample.ExpressionSet, var.filter=FALSE) a1 <- varFilter(sample.ExpressionSet) a2 <- featureFilter(sample.ExpressionSet) } \keyword{manip} genefilter/man/pOverA.Rd0000644000175400017540000000211613556116164016172 0ustar00biocbuildbiocbuild\name{pOverA} \alias{pOverA} \title{A filter function to filter according to the proportion of elements larger than A. } \description{ A function that returns a function with values for \code{A}, \code{p} and \code{na.rm} bound to the specified values. The function takes a single vector, \code{x}, as an argument. When the returned function is evaluated it returns \code{TRUE} if the proportion of values in \code{x} that are larger than \code{A} is at least \code{p}. } \usage{ pOverA(p=0.05, A=100, na.rm=TRUE) } \arguments{ \item{A}{The value to be exceeded. } \item{p}{The proportion that need to exceed \code{A} for \code{TRUE} to be returned. } \item{na.rm}{ If \code{TRUE} then \code{NA}'s are removed. } } \value{ \code{pOverA} returns a function with bindings for \code{A}, \code{p} and \code{na.rm}. This function evaluates to \code{TRUE} if the proportion of values in \code{x} that are larger than \code{A} exceeds \code{p}. } \author{R. Gentleman} \seealso{ \code{\link{cv}} } \examples{ ff<- pOverA(p=.1, 10) ff(1:20) ff(1:5) } \keyword{manip} genefilter/man/rejection_plot.Rd0000644000175400017540000000530313556116164020017 0ustar00biocbuildbiocbuild\name{rejection_plot} \Rdversion{1.1} \alias{rejection_plot} \title{ Plot rejections vs. p-value cutoff } \description{ Plot the number, or fraction, of null hypotheses rejected as a function of the p-value cutoff. Multiple sets of p-values are accepted, in a list or in the columns of a matrix, in order to permit comparisons. } \usage{ rejection_plot(p, col, lty = 1, lwd = 1, xlab = "p cutoff", ylab = "number of rejections", xlim = c(0, 1), ylim, legend = names(p), at = c("all", "sample"), n_at = 100, probability = FALSE, ... ) } \arguments{ \item{p}{ The p-values to be used for plotting. These may be in the columns of a matrix, or in the elements of a list. One curve will be generated for each column/element, and all \code{NA} entries will be dropped. If column or element names are supplied, they are used by default for a plot legend. } \item{col}{ Colors to be used for each curve plotted. Recycled if necessary. If \code{col} is omitted, \code{\link{rainbow}} is used to generate a set of colors. } \item{lty}{ Line styles to be used for each curve plotted. Recycled if necessary. } \item{lwd}{ Line widths to be used for each curve plotted. Recycled if necessary. } \item{xlab}{ X-axis text label. } \item{ylab}{ Y-axis text label. } \item{xlim}{ X-axis limits. } \item{ylim}{ Y-axis limits. } \item{legend}{ Text for legend. Matrix column names or list element names (see \code{p} above) are used by default. If \code{NULL}, no legend is plotted. } \item{at}{ Should step functions be plotted with a step at every value in \code{p}, or should linear interpolation be used at a sample of points spanning \code{xlim}? The latter looks when there are many p-values. } \item{n_at}{ When \code{at = "sample"} is given, how many sample points should be used for interpolation and plotting? } \item{probability}{ Should the fraction of null hypotheses rejected be reported instead of the count? See the \code{probability} argument to \code{\link{hist}}. } \item{\dots}{ Other arguments to pass to the \code{\link{plot}} call which sets up the axes. Note that the \code{...} argument will not be passed to the \code{\link{lines}} calls which actually generate the curves. } } \value{ A list of the step functions used for plotting is returned invisibly. } \author{Richard Bourgon } \examples{ # See the vignette: Diagnostic plots for independent filtering } genefilter/man/rowFtests.Rd0000644000175400017540000001514513556116164017004 0ustar00biocbuildbiocbuild\name{rowFtests} \alias{rowFtests} \alias{rowFtests,matrix,factor-method} \alias{rowFtests,ExpressionSet,factor-method} \alias{rowFtests,ExpressionSet,character-method} \alias{colFtests} \alias{colFtests,matrix,factor-method} \alias{colFtests,ExpressionSet,factor-method} \alias{colFtests,ExpressionSet,character-method} \alias{rowttests} \alias{rowttests,matrix,factor-method} \alias{rowttests,matrix,missing-method} \alias{rowttests,ExpressionSet,factor-method} \alias{rowttests,ExpressionSet,character-method} \alias{rowttests,ExpressionSet,missing-method} \alias{colttests} \alias{colttests,matrix,factor-method} \alias{colttests,matrix,missing-method} \alias{colttests,ExpressionSet,factor-method} \alias{colttests,ExpressionSet,character-method} \alias{colttests,ExpressionSet,missing-method} \alias{fastT} \title{t-tests and F-tests for rows or columns of a matrix} \description{t-tests and F-tests for rows or columns of a matrix, intended to be speed efficient.} \usage{ rowttests(x, fac, tstatOnly = FALSE, na.rm = FALSE) colttests(x, fac, tstatOnly = FALSE, na.rm = FALSE) fastT(x, ig1, ig2, var.equal = TRUE) rowFtests(x, fac, var.equal = TRUE) colFtests(x, fac, var.equal = TRUE) } \arguments{ \item{x}{Numeric matrix. The matrix must not contain \code{NA} values. For \code{rowttests} and \code{colttests}, \code{x} can also be an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}.} \item{fac}{Factor which codes the grouping to be tested. There must be 1 or 2 groups for the t-tests (corresponding to one- and two-sample t-test), and 2 or more for the F-tests. If \code{fac} is missing, this is taken as a one-group test (i.e. is only allowed for the t-tests). The length of the factor needs to correspond to the sample size: for the \code{row*} functions, the length of the factor must be the same as the number of columns of \code{x}, for the \code{col*} functions, it must be the same as the number of rows of \code{x}. If \code{x} is an \code{\link[Biobase:class.ExpressionSet]{ExpressionSet}}, then \code{fac} may also be a character vector of length 1 with the name of a covariate in \code{x}.} \item{tstatOnly}{A logical variable indicating whether to calculate p-values from the t-distribution with appropriate degrees of freedom. If \code{TRUE}, just the t-statistics are returned. This can be considerably faster.} \item{na.rm}{A logical variable indicating whether to remove NA values prior to calculation test statistics.} \item{ig1}{The indices of the columns of \code{x} that correspond to group 1.} \item{ig2}{The indices of the columns of \code{x} that correspond to group 2.} \item{var.equal}{A logical variable indicating whether to treat the variances in the samples as equal. If 'TRUE', a simple F test for the equality of means in a one-way analysis of variance is performed. If 'FALSE', an approximate method of Welch (1951) is used, which generalizes the commonly known 2-sample Welch test to the case of arbitrarily many samples.} } \details{ If \code{fac} is specified, \code{rowttests} performs for each row of \code{x} a two-sided, two-class t-test with equal variances. \code{fac} must be a factor of length \code{ncol(x)} with two levels, corresponding to the two groups. The sign of the resulting t-statistic corresponds to "group 1 minus group 2". If \code{fac} is missing, \code{rowttests} performs for each row of \code{x} a two-sided one-class t-test against the null hypothesis 'mean=0'. \code{rowttests} and \code{colttests} are implemented in C and should be reasonably fast and memory-efficient. \code{fastT} is an alternative implementation, in Fortran, possibly useful for certain legacy code. \code{rowFtests} and \code{colFtests} are currently implemented using matrix algebra in R. Compared to the \code{rowttests} and \code{colttests} functions, they are slower and use more memory. } \value{ A \code{data.frame} with columns \code{statistic}, \code{p.value} (optional in the case of the t-test functions) and \code{dm}, the difference of the group means (only in the case of the t-test functions). The \code{row.names} of the data.frame are taken from the corresponding dimension names of \code{x}. The degrees of freedom are provided in the attribute \code{df}. For the F-tests, if \code{var.equal} is 'FALSE', \code{nrow(x)+1} degree of freedoms are given, the first one is the first degree of freedom (it is the same for each row) and the other ones are the second degree of freedom (one for each row). } \references{B. L. Welch (1951), On the comparison of several mean values: an alternative approach. Biometrika, *38*, 330-336} \author{Wolfgang Huber } \seealso{\code{\link[multtest:mt.teststat]{mt.teststat}}} \examples{ ## ## example data ## x = matrix(runif(40), nrow=4, ncol=10) f2 = factor(floor(runif(ncol(x))*2)) f4 = factor(floor(runif(ncol(x))*4)) ## ## one- and two group row t-test; 4-group F-test ## r1 = rowttests(x) r2 = rowttests(x, f2) r4 = rowFtests(x, f4) ## approximate equality about.equal = function(x,y,tol=1e-10) stopifnot(is.numeric(x), is.numeric(y), length(x)==length(y), all(abs(x-y) < tol)) ## ## compare with the implementation in t.test ## for (j in 1:nrow(x)) { s1 = t.test(x[j,]) about.equal(s1$statistic, r1$statistic[j]) about.equal(s1$p.value, r1$p.value[j]) s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) dm = -diff(tapply(x[j,], f2, mean)) about.equal(dm, r2$dm[j]) s4 = summary(lm(x[j,] ~ f4)) about.equal(s4$fstatistic["value"], r4$statistic[j]) } ## ## colttests ## c2 = colttests(t(x), f2) stopifnot(identical(r2, c2)) ## ## missing values ## f2n = f2 f2n[sample(length(f2n), 3)] = NA r2n = rowttests(x, f2n) for(j in 1:nrow(x)) { s2n = t.test(x[j,] ~ f2n, var.equal=TRUE) about.equal(s2n$statistic, r2n$statistic[j]) about.equal(s2n$p.value, r2n$p.value[j]) } ## ## larger sample size ## x = matrix(runif(1000000), nrow=4, ncol=250000) f2 = factor(floor(runif(ncol(x))*2)) r2 = rowttests(x, f2) for (j in 1:nrow(x)) { s2 = t.test(x[j,] ~ f2, var.equal=TRUE) about.equal(s2$statistic, r2$statistic[j]) about.equal(s2$p.value, r2$p.value[j]) } ## single row matrix rowFtests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5)))) rowttests(matrix(runif(10),1,10),as.factor(c(rep(1,5),rep(2,5)))) } \keyword{math} genefilter/man/rowROC-class.Rd0000644000175400017540000000674413556116164017267 0ustar00biocbuildbiocbuild\name{rowROC-class} \docType{class} \alias{rowROC} \alias{rowROC-class} \alias{pAUC} \alias{AUC} \alias{sens} \alias{spec} \alias{area} \alias{pAUC,rowROC,numeric-method} \alias{plot,rowROC,missing-method} \alias{AUC,rowROC-method} \alias{spec,rowROC-method} \alias{sens,rowROC-method} \alias{area,rowROC-method} \alias{show,rowROC-method} \alias{[,rowROC,ANY,ANY,ANY-method} \title{Class "rowROC"} \description{A class to model ROC curves and corresponding area under the curve as produced by rowpAUCs.} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("rowROC", ...)}. } \section{Slots}{ \describe{ \item{\code{data}:}{Object of class \code{"matrix"} The input data.} \item{\code{ranks}:}{Object of class \code{"matrix"} The ranked input data. } \item{\code{sens}:}{Object of class \code{"matrix"} Matrix of senitivity values for each gene at each cutpoint. } \item{\code{spec}:}{Object of class \code{"matrix"} Matrix of specificity values for each gene at each cutpoint.} \item{\code{pAUC}:}{Object of class \code{"numeric"} The partial area under the curve (integrated from 0 to \code{p}. } \item{\code{AUC}:}{Object of class \code{"numeric"} The total area under the curve. } \item{\code{factor}:}{Object of class \code{"factor"} The factor used for classification.} \item{\code{cutpoints}:}{Object of class \code{"matrix"} The values of the cutpoints at which specificity ans sensitivity was calculated. (Note: the data is ranked prior to computation of ROC curves, the cutpoints map to the ranked data.} \item{\code{caseNames}:}{Object of class \code{"character"} The names of the two classification cases.} \item{\code{p}:}{Object of class \code{"numeric"} The limit to which \code{pAUC} is integrated. } } } \section{Methods}{ \describe{ \item{show \code{signature(object="rowROC")}}{Print nice info about the object.} \item{[ \code{signature(x="rowROC", j="missing")}}{Subset the object according to rows/genes.} \item{plot \code{signature(x="rowROC", y="missing")}}{Plot the ROC curve of the first row of the object along with the \code{pAUC}. To plot the curve for a specific row/gene subsetting should be done first (i.e. \code{plot(rowROC[1])}.} \item{pAUC \code{signature(object="rowROC", p="numeric", flip="logical")}}{Integrate area under the curve from \code{0} to \code{p}. This method returns a new \code{rowROC} object.} \item{AUC \code{signature(object="rowROC")}}{Integrate total area under the curve. This method returns a new \code{rowROC} object.} \item{sens \code{signature(object="rowROC")}}{Accessor method for sensitivity slot.} \item{spec \code{signature(object="rowROC")}}{Accessor method for specificity slot.} \item{area \code{signature(object="rowROC", total="logical")}}{Accessor method for pAUC slot.} } } \references{Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from microarray experiments. \emph{Biometrics. 2003 Mar;59(1):133-42.}} \author{Florian Hahne } \seealso{ \code{\link[genefilter:rowpAUCs]{rowpAUCs}} } \examples{ library(Biobase) require(genefilter) data(sample.ExpressionSet) roc <- rowpAUCs(sample.ExpressionSet, "sex", p=0.5) roc area(roc[1:3]) if(interactive()) { par(ask=TRUE) plot(roc) plot(1-spec(roc[1]), sens(roc[2])) par(ask=FALSE) } pAUC(roc, 0.1) roc } \keyword{classes} genefilter/man/rowSds.Rd0000644000175400017540000000210013556116164016250 0ustar00biocbuildbiocbuild\name{rowSds} \alias{rowSds} \alias{rowVars} \title{Row variance and standard deviation of a numeric array} \description{ Row variance and standard deviation of a numeric array } \usage{ rowVars(x, ...) rowSds(x, ...) } \arguments{ \item{x}{An array of two or more dimensions, containing numeric, complex, integer or logical values, or a numeric data frame.} \item{...}{Further arguments that get passed on to \code{\link{rowMeans}} and \code{\link{rowSums}}.} } \value{ A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The `dimnames' (or `names' for a vector result) are taken from the original array. } \details{These are very simple convenience functions, the main work is done in \code{\link{rowMeans}} and \code{\link{rowSums}}. See the function definition of \code{rowVars}, it is very simple. } \author{Wolfgang Huber \url{http://www.ebi.ac.uk/huber}} \seealso{\code{\link{rowMeans}} and \code{\link{rowSums}}} \examples{ a = matrix(rnorm(1e4), nrow=10) rowSds(a) } \keyword{array} \keyword{manip} genefilter/man/rowpAUCs.Rd0000644000175400017540000001305213556116164016502 0ustar00biocbuildbiocbuild\name{rowpAUCs-methods} \docType{methods} \alias{rowpAUCs-methods} \alias{rowpAUCs} \alias{rowpAUCs,matrix,factor-method} \alias{rowpAUCs,matrix,numeric-method} \alias{rowpAUCs,ExpressionSet,ANY-method} \alias{rowpAUCs,ExpressionSet,character-method} \title{Rowwise ROC and pAUC computation} \description{Methods for fast rowwise computation of ROC curves and (partial) area under the curve (pAUC) using the simple classification rule \code{x > theta}, where \code{theta} is a value in the range of \code{x} } \usage{ rowpAUCs(x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2")) } \arguments{ \item{x}{\code{ExpressionSet} or numeric \code{matrix}. The \code{matrix} must not contain \code{NA} values.} \item{fac}{A \code{factor} or \code{numeric} or \code{character} that can be coerced to a \code{factor}. If \code{x} is an \code{ExpressionSet}, this may also be a character \code{vector} of length 1 with the name of a covariate variable in \code{x}. \code{fac} must have exactly 2 levels. For better control over the classification, use integer values in 0 and 1, where 1 indicates the "Disease" class in the sense of the Pepe et al paper (see below).} \item{p}{Numeric \code{vector} of length 1. Limit in (0,1) to integrate pAUC to.} \item{flip}{Logical. If \code{TRUE}, both classification rules \code{x > theta} and \code{x < theta} are tested and the (partial) area under the curve of the better one of the two is returned. This is appropriate for the cases in which the classification is not necessarily linked to higher expression values, but instead it is symmetric and one would assume both over- and under-expressed genes for both classes. You can set \code{flip} to \code{FALSE} if you only want to screen for genes which discriminate Disease from Control with the \code{x > theta} rule.} \item{caseNames}{The class names that are used when plotting the data. If \code{fac} is the name of the covariate variable in the \code{ExpressionSet} the function will use its levels as \code{caseNames}.} } \details{ Rowwise calculation of Receiver Operating Characteristic (ROC) curves and the corresponding partial area under the curve (pAUC) for a given data matrix or \code{ExpressionSet}. The function is implemented in C and thus reasonably fast and memory efficient. Cutpoints (\code{theta} are calculated before the first, in between and after the last data value. By default, both classification rules \code{x > theta} and \code{x < theta} are tested and the (partial) area under the curve of the better one of the two is returned. This is only valid for symmetric cases, where the classification is independent of the magnitude of \code{x} (e.g., both over- and under-expression of different genes in the same class). For unsymmetric cases in which you expect x to be consistently higher/lower in of of the two classes (e.g. presence or absence of a single biomarker) set \code{flip=FALSE} or use the functionality provided in the \code{ROC} package. For better control over the classification (i.e., the choice of "Disease" and "Control" class in the sense of the Pepe et al paper), argument \code{fac} can be an integer in \code{[0,1]} where 1 indicates "Disease" and 0 indicates "Control". } \section{Methods}{ \describe{ Methods exist for \code{rowPAUCs}: \item{rowPAUCs}{\code{signature(x="matrix", fac="factor")}} \item{rowPAUCs}{\code{signature(x="matrix", fac="numeric")}} \item{rowPAUCs}{\code{signature(x="ExpressionSet")}} \item{rowPAUCs}{\code{signature(x="ExpressionSet", fac="character")}} } } \value{ An object of class \code{\link[genefilter:rowROC-class]{rowROC}} with the calculated specificities and sensitivities for each row and the corresponding pAUCs and AUCs values. See \code{\link[genefilter:rowROC-class]{rowROC}} for details. } \references{Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from microarray experiments. \emph{Biometrics. 2003 Mar;59(1):133-42.}} \author{Florian Hahne } \seealso{\code{\link[ROC:rocdemo.sca]{rocdemo.sca}, \link[ROC:AUC]{pAUC}, \link[genefilter:rowROC-class]{rowROC}}} \examples{ library(Biobase) data(sample.ExpressionSet) r1 = rowttests(sample.ExpressionSet, "sex") r2 = rowpAUCs(sample.ExpressionSet, "sex", p=0.1) plot(area(r2, total=TRUE), r1$statistic, pch=16) sel <- which(area(r2, total=TRUE) > 0.7) plot(r2[sel]) ## this compares performance and output of rowpAUCs to function pAUC in ## package ROC if(require(ROC)){ ## performance myRule = function(x) pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 , data = x, rule = dxrule.sca), t0 = 0.1) nGenes = 200 cat("computation time for ", nGenes, "genes:\n") cat("function pAUC: ") print(system.time(r3 <- esApply(sample.ExpressionSet[1:nGenes, ], 1, myRule))) cat("function rowpAUCs: ") print(system.time(r2 <- rowpAUCs(sample.ExpressionSet[1:nGenes, ], "sex", p=1))) ## compare output myRule2 = function(x) pAUC(rocdemo.sca(truth = as.integer(sample.ExpressionSet$sex)-1 , data = x, rule = dxrule.sca), t0 = 1) r4 <- esApply(sample.ExpressionSet[1:nGenes, ], 1, myRule2) plot(r4,area(r2), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") plot(r4, area(rowpAUCs(sample.ExpressionSet[1:nGenes, ], "sex", p=1, flip=FALSE)), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") r4[r4<0.5] <- 1-r4[r4<0.5] plot(r4, area(r2), xlab="function pAUC", ylab="function rowpAUCs", main="pAUCs") } } \keyword{math} genefilter/man/shorth.Rd0000644000175400017540000000541413556116164016311 0ustar00biocbuildbiocbuild\name{shorth} \alias{shorth} \title{A location estimator based on the shorth} \description{A location estimator based on the shorth} \usage{shorth(x, na.rm=FALSE, tie.action="mean", tie.limit=0.05)} \arguments{ \item{x}{Numeric} \item{na.rm}{Logical. If \code{TRUE}, then non-finite (according to \code{\link{is.finite}}) values in \code{x} are ignored. Otherwise, presence of non-finite or \code{NA} values will lead to an error message.} \item{tie.action}{Character scalar. See details.} \item{tie.limit}{Numeric scalar. See details.} } \details{The shorth is the shortest interval that covers half of the values in \code{x}. This function calculates the mean of the \code{x} values that lie in the shorth. This was proposed by Andrews (1972) as a robust estimator of location. Ties: if there are multiple shortest intervals, the action specified in \code{ties.action} is applied. Allowed values are \code{mean} (the default), \code{max} and \code{min}. For \code{mean}, the average value is considered; however, an error is generated if the start indices of the different shortest intervals differ by more than the fraction \code{tie.limit} of \code{length(x)}. For \code{min} and \code{max}, the left-most or right-most, respectively, of the multiple shortest intervals is considered. Rate of convergence: as an estimator of location of a unimodal distribution, under regularity conditions, the quantity computed here has an asymptotic rate of only \eqn{n^{-1/3}} and a complicated limiting distribution. See \code{\link{half.range.mode}} for an iterative version that refines the estimate iteratively and has a builtin bootstrapping option. } \value{The mean of the \code{x} values that lie in the shorth.} \references{ \itemize{ \item G Sawitzki, \dQuote{The Shorth Plot.} Available at http://lshorth.r-forge.r-project.org/TheShorthPlot.pdf \item DF Andrews, \dQuote{Robust Estimates of Location.} Princeton University Press (1972). \item R Grueble, \dQuote{The Length of the Shorth.} Annals of Statistics 16, 2:619-628 (1988). \item DR Bickel and R Fruehwirth, \dQuote{On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications.} Computational Statistics & Data Analysis 50, 3500-3530 (2006). } } \author{Wolfgang Huber \url{http://www.ebi.ac.uk/huber}, Ligia Pedroso Bras} \seealso{\code{\link{half.range.mode}}} \examples{ x = c(rnorm(500), runif(500) * 10) methods = c("mean", "median", "shorth", "half.range.mode") ests = sapply(methods, function(m) get(m)(x)) if(interactive()) { colors = 1:4 hist(x, 40, col="orange") abline(v=ests, col=colors, lwd=3, lty=1:2) legend(5, 100, names(ests), col=colors, lwd=3, lty=1:2) } } \keyword{arith} genefilter/man/tdata.Rd0000644000175400017540000000067413556116164016102 0ustar00biocbuildbiocbuild\name{tdata} \alias{tdata} \non_function{} \title{A small test dataset of Affymetrix Expression data. } \usage{data(tdata)} \description{ The \code{tdata} data frame has 500 rows and 26 columns. The columns correspond to samples while the rows correspond to genes. The row names are Affymetrix accession numbers. } \format{ This data frame contains 26 columns. } \source{ An unknown data set. } \examples{ data(tdata) } \keyword{datasets} genefilter/man/ttest.Rd0000644000175400017540000000314013556116164016137 0ustar00biocbuildbiocbuild\name{ttest} \alias{ttest} \title{A filter function for a t.test } \description{ \code{ttest} returns a function of one argument with bindings for \code{cov} and \code{p}. The function, when evaluated, performs a t-test using \code{cov} as the covariate. It returns \code{TRUE} if the p value for a difference in means is less than \code{p}. } \usage{ ttest(m, p=0.05, na.rm=TRUE) } \arguments{ \item{m}{If \code{m} is of length one then it is assumed that elements one through \code{m} of \code{x} will be one group. Otherwise \code{m} is presumed to be the same length as \code{x} and constitutes the groups.} \item{p}{ The p-value for the test. } \item{na.rm}{If set to \code{TRUE} any \code{NA}'s will be removed. } } \details{ When the data can be split into two groups (diseased and normal for example) then we often want to select genes on their ability to distinguish those two groups. The t-test is well suited to this and can be used as a filter function. This helper function creates a t-test (function) for the specified covariate and considers a gene to have passed the filter if the p-value for the gene is less than the prespecified \code{p}. } \value{ \code{ttest} returns a function with bindings for \code{m} and \code{p} that will perform a t-test. } \author{R. Gentleman } \seealso{\code{\link{kOverA}}, \code{\link{Anova}}, \code{\link{t.test}} } \examples{ dat <- c(rep(1,5),rep(2,5)) set.seed(5) y <- rnorm(10) af <- ttest(dat, .01) af(y) af2 <- ttest(5, .01) af2(y) y[8] <- NA af(y) af2(y) y[1:5] <- y[1:5]+10 af(y) } \keyword{manip} genefilter/src/0000755000175400017540000000000013556146247014530 5ustar00biocbuildbiocbuildgenefilter/src/genefilter.h0000644000175400017540000000043713556116164017024 0ustar00biocbuildbiocbuild/* Copyright Bioconductor Foundation NA, 2007, all rights reserved */ #include #include typedef int RSInt; void gf_distance(double *x, RSInt *nr, RSInt *nc, RSInt *g, double *d, RSInt *iRow, RSInt *nInterest, RSInt *nResults, RSInt *method, double *wval); genefilter/src/half_range_mode.cpp0000644000175400017540000000632713556116164020331 0ustar00biocbuildbiocbuild#include #include #include using namespace std; double half_range_mode( double *start, double *end, double beta, int diag ) { // The end pointer is one step beyond the data... double w, w_prime; double *last, *new_start, *new_end; vector counts, J; vector w_range; int i, s, e; int N, N_prime, N_double_prime; double lo, hi; last = end - 1; N = end - start; // How many elements are in the set? Terminate recursion appropriately... switch ( N ) { case 1: return *start; case 2: return .5 * ( *start + *last ); // Main recursive code begins here default: w = beta * ( *last - *start ); // If all values are identical, return immediately... if ( w == 0 ) return *start; // If we're at the end of the data, counts can only get worse, so there's no point in continuing... e = 0; for( s = 0; s < N && e < N; s++ ) { while ( e < N && start[ e ] <= start[ s ] + w ) { e++; } counts.push_back( e - s ); } // Maximum count, and its multiplicity N_prime = *( max_element( counts.begin(), counts.end() ) ); for ( i = 0; i < (int) counts.size(); i++ ) if ( counts[i] == N_prime ) J.push_back( i ); // Do we have more than one maximal interval? if ( J.size() == 1 ) { // No... the interval's unique. new_start = start + J[0]; new_end = start + J[0] + N_prime; } else { // Yes.. What's the smallest range? for ( i = 0; i < (int) J.size(); i++ ) w_range.push_back( start[ J[i] + N_prime - 1 ] - start[ J[i] ] ); w_prime = *( min_element( w_range.begin(), w_range.end() ) ); // Set new start and end. We skip the more cumbersome V.min and V.max of the Bickel algorithm i = 0; while( w_range[ i ] > w_prime ) i++; new_start = start + J[i]; new_end = start + J[i] + N_prime; // If there are any more maximal-count, minimal-range intervals, adjust // new_end accordingly. for ( i++; i < (int) J.size(); i++ ) if ( w_range[ i ] == w_prime ) new_end = start + J[i] + N_prime; } // Adjustments in rare cases where the interval hasn't shrunk. Trim one end, // the other, or both if lo == hi. Originally, this was inside the else // block above. With discrete data with a small number of levels, it is // possible, however for |J| = 1 AND N_double_prime = N, leading to an // infinite recursion. N_double_prime = new_end - new_start; if (N_double_prime == N ) { lo = new_start[1] - new_start[0]; hi = new_start[ N - 1 ] - new_start[ N - 2 ]; if ( lo <= hi ) { new_end--; } if ( lo >= hi ) { new_start++; } } // Diagnostic output if requested if (diag) Rprintf( "N = %i, N'' = %i, w = %.4f, |J| = %i\n", N, N_double_prime, w, J.size() ); // Clean up and then go in recursively counts.clear(); J.clear(); w_range.clear(); return half_range_mode( new_start, new_end, beta, diag ); } } extern "C" { void half_range_mode( double *data, int *n, double *beta, int *diag, double *M ) { // We assume that that data is already sorted for us... *M = half_range_mode( data, data + *n, *beta, *diag ); } } genefilter/src/init.c0000644000175400017540000000054213556116164015633 0ustar00biocbuildbiocbuild/* Copyright Bioconductor Foundation of NA, 2007, all rights reserved */ #include "R.h" #include "genefilter.h" #include "R_ext/Rdynload.h" static const R_CMethodDef CEntries[] = { {"gf_distance", (DL_FUNC) &gf_distance, 10}, {NULL, NULL, 0} }; void R_init_genefilter(DllInfo *dll) { R_registerRoutines(dll, CEntries, NULL, NULL, NULL); } genefilter/src/nd.c0000644000175400017540000002012113556116164015264 0ustar00biocbuildbiocbuild/* Copyright The Bioconductor Foundation 2007, all rights reserved */ /* this is patterned on the R code in library/stats/src/distance.c as we want to have similar values, but does not handle NA/Inf identically, allows weights and solves the problem of finding distances to a particular value, not necessarily all pairwise distances */ /* Modified in April 2007 for use with S-PLUS ArrayAnalyzer by Insightful Corp. Replaced all int declarations with RSInt declarations. RSInt is defined in S-PLUS's R.h as: typedef long RSInt; Other changes are if-def-ed with if defined(_R_) around the original code. */ /* and further modified since S.h in R defines USING_R - not _R_ !! */ #include "S.h" #if defined(USING_R) /*( R-specific stuff */ #define S_CDECL #ifdef HAVE_CONFIG_H # include #endif /* we need this first to get the right options for math.h */ #include #include "genefilter.h" #include #include "R_ext/Error.h" #include "R_ext/Applic.h" #else /*) Splus-specific stuff */ #define S_COMPATIBILITY 1 #include "rsplus.h" #endif typedef struct { RSInt geneNum; double geneDist; } gene_t; static void detectTies(RSInt geneNum, RSInt nResults, RSInt nRows, gene_t *data) { /* Will scan through the first nResults+1 distances in the */ /* data array, and if it detects any ties, will flag a R */ /* warning */ RSInt i; /* Loop indices */ /* If nResults == nRows, do not exceed nResults - otherwise exceed it */ /* by 1 in order to see if there were trailing ties */ if (nResults == nRows) { nResults = nRows-1; } for (i = 1; i < nResults; i++) { if (data[i].geneDist == data[i+1].geneDist) { PROBLEM "There are distance ties in the data for gene %d\n",geneNum WARN; break; } } } static int S_CDECL distCompare(const void *p1, const void *p2) { const gene_t *i = p1; const gene_t *j = p2; if (!R_FINITE(i->geneDist )) return(1); if (!R_FINITE(j->geneDist)) return(-1); if (i->geneDist > j->geneDist) return (1); if (i->geneDist < j->geneDist) return (-1); return (0); } static double gf_correlation(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { RSInt i; /* Loop index */ RSInt a,b; /* Used as array indices for i1 and i2 */ double xAvg, yAvg; /* Averages of the i1 and i2 rows */ double wA, wB; /* Weighted x[a] and x[b] */ double upTot = 0; /* Upper summation */ double botTotL, botTotR; /* The lower two summations */ double botVal; /* Bottom value for Rho */ double Rho, ans; botTotL = botTotR = 0; xAvg = yAvg = 0; a = i1; b = i2; /* Calculate the averages for the i1 and i2 rows */ for (i = 0; i < nc; i++) { if (R_FINITE(x[a])) { xAvg += (wval[i] * x[a]); } if (R_FINITE(x[b])) { yAvg += (wval[i] * x[b]); } a += nr; b += nr; } xAvg /= (double)nc; yAvg /= (double)nc; /* Reset a & b */ a = i1; b = i2; /* Build up the three summations in the equation */ for (i = 0; i < nc; i++) { if (R_FINITE(x[a]) && R_FINITE(x[b])) { wA = (x[a] - xAvg); wB = (x[b] - yAvg); upTot += wval[i]*wA*wB; botTotL += wval[i]*pow(wA,2); botTotR += wval[i]*pow(wB,2); } a += nr; b += nr; } /* Compute Rho & Distance (1 - R) */ botVal = sqrt((botTotL * botTotR)); Rho = upTot / botVal; ans = 1 - Rho; return(ans); } static double gf_euclidean(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double dev, ans; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { dev = (x[i1] - x[i2]); dev = dev * dev; /* Apply weight and add the total */ ans += (wval[j] * dev); ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return sqrt(ans); } static double gf_maximum(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double dev, ans; RSInt ct, j; ct = 0; ans = -DBL_MAX; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { dev = fabs(x[i1] - x[i2]); /* apply the weight */ dev *= wval[j]; if(dev > ans) ans = dev; ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; return ans; } static double gf_manhattan(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double ans; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { ans += (wval[j] * fabs(x[i1] - x[i2])); ct++; } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return ans; } static double gf_canberra(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { double ans, sum, diff; RSInt ct, j; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { sum = fabs(x[i1] + x[i2]); diff = fabs(x[i1] - x[i2]); if (sum > DBL_MIN || diff > DBL_MIN) { ans += wval[j]*(diff/sum); ct++; } } i1 += nr; i2 += nr; } if(ct == 0) return NA_REAL; if(ct != nc) ans /= ((double)ct/nc); return ans; } static double gf_dist_binary(double *x, double *wval, RSInt nr, RSInt nc, RSInt i1, RSInt i2) { RSInt total, ct, ans; RSInt j; total = 0; ct = 0; ans = 0; for(j = 0 ; j < nc ; j++) { if(R_FINITE(x[i1]) && R_FINITE(x[i2])) { if(x[i1] || x[i2]){ ct += wval[j]; if( !(x[i1] && x[i2]) ) ans += wval[j]; } total++; } i1 += nr; i2 += nr; } if(total == 0) return NA_REAL; if(ct == 0) return 0; return (double) ans / ct; } enum { EUCLIDEAN=1, MAXIMUM, MANHATTAN, CANBERRA, CORRELATION, BINARY}; /* == 1,2,..., defined by order in the R function dist */ void gf_distance(double *x, RSInt *nr, RSInt *nc, RSInt *g, double *d, RSInt *iRow, RSInt *nInterest, RSInt *nResults, RSInt *method, double *wval) { /* x -> Data Array nr -> Number of rows in X nc -> number of columns in X g -> The nResults closest genes to the genes of interest d -> The distances of the genes from g, 1 to 1 mapping iRow -> rows of X that we are interested in nInterest -> Number of elements in iRow nResults -> The top X results to pass back method -> which distance method to use */ RSInt i,j, k; /* Loop indices */ RSInt baseIndex; /* Used to index data arrays */ gene_t *tmp; /* Temporary array to hold the distance data */ double (*distfun)(double*, double*, RSInt, RSInt, RSInt, RSInt) = NULL; /* Sanity check the nResults vs. number of rows in the data */ if (*nResults > *nr) { warning("Number of results selected is greater than number of rows, using the number of rows instead\n"); *nResults = *nr-1; } /* Size of tmp == *nr, as each gene we're interested in will generate *nr distance points */ tmp = (gene_t *)R_alloc(*nr, sizeof(gene_t)); /* Determine which distance function to use */ switch(*method) { case EUCLIDEAN: distfun = gf_euclidean; break; case MAXIMUM: distfun = gf_maximum; break; case MANHATTAN: distfun = gf_manhattan; break; case CANBERRA: distfun = gf_canberra; break; case CORRELATION: distfun = gf_correlation; break; case BINARY: distfun = gf_dist_binary; break; default: error("invalid distance"); } for (j = 0; j < *nInterest; j++) { /* Get the distances for this gene, store in tmp array */ for(i = 0 ; i < (*nr) ; i++) { tmp[i].geneNum = i; tmp[i].geneDist = distfun(x, wval, *nr, *nc, iRow[j]-1, i); } /* Run a sort on the temp array */ qsort(tmp, *nr, sizeof(gene_t), distCompare); /* Detect any ties */ detectTies(iRow[j], *nResults, *nr, tmp); /* Copy the 1<->nResults data points into the final array */ baseIndex = *nResults * j; for (k = 1; k <= *nResults; k++) { g[baseIndex + (k-1)] = tmp[k].geneNum; d[baseIndex + (k-1)] = tmp[k].geneDist; } } } genefilter/src/pAUC.c0000644000175400017540000001152013556116164015456 0ustar00biocbuildbiocbuild/* * F. Hahne 10/24/2006 */ #include #include #include #include #include #include /*----------------------------------------------------------------- internal c function for calculation of pAUCs -----------------------------------------------------------------*/ void pAUC_c(double *spec, double *sens, double *area, double *auc, double *p, int columns, int rows, int flip) { int i, j, k, d; double *x, *y; double a, ta, tmp, lim, xsum ,ysum; x = (double *) R_alloc(columns+1, sizeof(double)); y = (double *) R_alloc(columns+1, sizeof(double)); /* this computes pAUC for roc curve in row k*/ for(k=0; k ysum){ for(i=k*columns,d=0; i x[d]){ for(i=0, j=d; i<=d/2; i++, j--){ tmp=x[i]; x[i]=x[j]; x[j]=tmp; tmp=y[i]; y[i]=y[j]; y[j]=tmp; } } x[columns]=1; y[columns]=y[columns-1]; /* compute area by trapezoidal rule*/ lim = x[0] < (*p) ? x[0] : *p; /*right border of first segment*/ a = (lim*y[0])/2; /*area of 1. segement (from x1=0 to x2=lim)*/ i=1; while(x[i] < (*p)){ a += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } if(i > 2) /*last segment (from xn to p)*/ a += (((*p)-x[i-1])*(y[i]-y[i-1])/2) + (((*p)-x[i-1])*y[i-1]); ta = a; /*compute full AUC and flip curve if necessary*/ if((*p) < 1){ ta += ((x[i]-(*p))*(y[i]-y[i-1])/2) + ((x[i]-(*p))*y[i-1]); i++; while(i < columns+1 && x[i] < 1){ ta += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } ta += ((1-x[i-1])*(1-y[i-1])/2) + ((1-x[i-1])*y[i-1]); }else{ d=1; } if(flip && (*p)==1 && ta < 0.5){ /*rotate 180° if area < 0.5*/ a = (*p) - a; ta = 1-ta; } if(a>1){ error("Internal error"); } area[k] = a; auc[k] = ta; } } /*----------------------------------------------------------------- interface to R with arguments: spec : matrix of numerics (specificity) sens: matrix of numerics (sensitivity) p: numeric in 01)) error("'p' must be between 0 and 1."); /* done with p */ /* check input argument flip */ if(!isInteger(_flip)) error("'flip' must be an integer."); flip = (int)INTEGER(_flip)[0]; /* done with flip */ /* allocate memory for return values */ PROTECT(area = allocVector(REALSXP, columns)); PROTECT(auc = allocVector(REALSXP, columns)); /* Do it! */ pAUC_c(spec, sens, REAL(area), REAL(auc), p, rows, columns, flip); /* return value: a list with elements spec sens and area */ PROTECT(res = allocVector(VECSXP, 2)); SET_VECTOR_ELT(res, 0, area); SET_VECTOR_ELT(res, 1, auc); PROTECT(namesres = allocVector(STRSXP, 2)); SET_STRING_ELT(namesres, 0, mkChar("pAUC")); SET_STRING_ELT(namesres, 1, mkChar("AUC")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(4); /* done with res, namesres, pAUC, auc */ return(res); } genefilter/src/rowPAUCs.c0000644000175400017540000001475613556116164016347 0ustar00biocbuildbiocbuild/* * F. Hahne 10/26/2005 */ #include #include #include #include #include #include /*----------------------------------------------------------------- internal c function for calculation of ROC curves and pAUCs -----------------------------------------------------------------*/ void ROCpAUC_c(double *data, int nrd, int ncd, double *cutp, int ncc, int *truth, double *spec, double *sens, double *area, double *auc, double *p, int flip) { int i, j, k, pred, d, rsum, csum, rcount, ccount; double *x, *y; double a, ta, tmp, lim, xsum, ysum; x = (double *) R_alloc(ncc+1, sizeof(double)); y = (double *) R_alloc(ncc+1, sizeof(double)); /* this code computes roc for a given n * n matrix at given cut points */ //printf("Computing ROC curves for %d rows at %d cutpoints ...\n", nrd, ncc); for(k=0; k cutp[i]) ? 1 : 0; if(truth[d] == 1){ rsum += pred; rcount++; } else{ csum+=(1-pred); ccount++; } } /* for j (columns)*/ sens[i] = (double)rsum/rcount; spec[i] = (double)csum/ccount; } /* for i (cutpoints)*/ /* this computes pAUC for roc curve in row k*/ xsum = ysum = 0; for(i=k,d=0; i ysum){ for(i=k,d=0; i x[d]){ for(i=0, j=d; i<=(d+1)/2; i++, j--){ tmp=x[i]; x[i]=x[j]; x[j]=tmp; tmp=y[i]; y[i]=y[j]; y[j]=tmp; } } x[ncc] = 1; y[ncc] = y[ncc-1]; /* compute area by trapezoidal rule*/ lim = x[0] < (*p) ? x[0] : *p; /*right border of first segment*/ a = (lim*y[0])/2; /*area of 1. segement (from x1=0 to x2=lim)*/ i=1; while(x[i] < (*p)){ a += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } if(i > 2){ /*last segment (from xn to p)*/ a += (((*p)-x[i-1])*(y[i]-y[i-1])/2) + (((*p)-x[i-1])*y[i-1]); } ta = a; /*compute full AUC and flip curve if necessary*/ if((*p) < 1){ ta += ((x[i]-(*p))*(y[i]-y[i-1])/2) + ((x[i]-(*p))*y[i-1]); i++; while(i < ncc+1 && x[i] < 1){ ta += ((x[i]-x[i-1])*(y[i]-y[i-1])/2) + ((x[i]-x[i-1])*y[i-1]); i++; } ta += ((1-x[i-1])*(1-y[i-1])/2) + ((1-x[i-1])*y[i-1]); } if(flip && (*p)==1 && ta < 0.5){ /*rotate 180° if area < 0.5*/ a = (*p) - a; ta = 1-ta; } if(a>1) error("Internal error"); area[k] = a; auc[k] = ta; } } /*----------------------------------------------------------------- interface to R with arguments: data : matrix of numerics cutpts: matrix with treshholds for ROC curve calculation truth: int with values 0 and 1, defining the real classification p: numeric in 0=0)&&(truth[i]<=1))) ) error("Elements of 'truth' must be 0 or 1."); /* done with truth */ /* check input argument p */ if(!isReal(_p) || length(_p)!=1) error("'p' must be numeric."); p = REAL(_p); if(((*p)<0)||((*p)>1)) error("'p' must be between 0 and 1."); /* done with p */ /* check input argument flip */ if(!isInteger(_flip)) error("'flip' must be an integer."); flip = (int)INTEGER(_flip)[0]; /* done with flip */ /* allocate memory for return values */ PROTECT(spec = allocVector(REALSXP, nrd*ncc)); PROTECT(sens = allocVector(REALSXP, nrd*ncc)); PROTECT(dim = allocVector(INTSXP, 2)); INTEGER(dim)[0] = nrd; INTEGER(dim)[1] = ncc; SET_DIM(spec, dim); SET_DIM(sens, dim); PROTECT(area = allocVector(REALSXP, nrd)); PROTECT(auc = allocVector(REALSXP, nrd)); /* Do it! */ /* note nrc is the same as nrd */ ROCpAUC_c(data, nrd, ncd, cutp, ncc, truth, REAL(spec), REAL(sens), REAL(area), REAL(auc), p, flip); /* return value: a list with elements spec sens and pAUC */ PROTECT(res = allocVector(VECSXP, 4)); SET_VECTOR_ELT(res, 0, spec); SET_VECTOR_ELT(res, 1, sens); SET_VECTOR_ELT(res, 2, area); SET_VECTOR_ELT(res, 3, auc); PROTECT(namesres = allocVector(STRSXP, 4)); SET_STRING_ELT(namesres, 0, mkChar("spec")); SET_STRING_ELT(namesres, 1, mkChar("sens")); SET_STRING_ELT(namesres, 2, mkChar("pAUC")); SET_STRING_ELT(namesres, 3, mkChar("AUC")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(7); /* done with res, namesres, spec, sens, dim, pAUC */ return(res); } genefilter/src/rowttests.c0000644000175400017540000001501513556116164016747 0ustar00biocbuildbiocbuild/* * Copyright W. Huber 2005 */ #include #include #include #include #include /* #define DEBUG */ char errmsg[256]; /*----------------------------------------------------------------- which=0: t-test by row which=1: t-test by column -----------------------------------------------------------------*/ void rowcolttests_c(double *x, int *fac, int nr, int nc, int no, int nt, int which, int nrgrp, int na_rm, double *statistic, double *dm, double *df) { int i, j, grp; double z, delta, newmean, factor; /* Currently the following provides for one- and two-sample t-tests (nrgrp=1 or 2), but it should be possible to generalize this code to more samples (F-test) without too many changes */ int *n[2]; double* s[2]; double* ss[2]; if(nrgrp>2) error("Please do not use 'nrgrp' >2 with 'rowcolttests'"); /* allocate and initialize storage for intermediate quantities (namely first and second moments for each group) */ for(grp=0; grp=0)&&(fac[i]=0 and < 'nrgrp'."); /* check input argument na_rm */ if (!isLogical(_na_rm) || length(_na_rm) != 1 || LOGICAL(_na_rm)[0] == R_NaInt) error("'na.rm' must be TRUE or FALSE"); na_rm = LOGICAL(_na_rm)[0]; PROTECT(statistic = allocVector(REALSXP, nt)); PROTECT(dm = allocVector(REALSXP, nt)); PROTECT(df = allocVector(REALSXP, nt)); /* Do it */ rowcolttests_c( x, fac, nr, nc, no, nt, which, nrgrp, na_rm, REAL(statistic), REAL(dm), REAL(df)); /* return value: a list with two elements, statistic and df */ PROTECT(res = allocVector(VECSXP, 3)); SET_VECTOR_ELT(res, 0, statistic); SET_VECTOR_ELT(res, 1, dm); SET_VECTOR_ELT(res, 2, df); PROTECT(namesres = allocVector(STRSXP, 3)); SET_STRING_ELT(namesres, 0, mkChar("statistic")); SET_STRING_ELT(namesres, 1, mkChar("dm")); SET_STRING_ELT(namesres, 2, mkChar("df")); setAttrib(res, R_NamesSymbol, namesres); UNPROTECT(5); /* done with res, namesres, statistic, dm, df */ return(res); } genefilter/src/ttest.f0000644000175400017540000000330013556116164016031 0ustar00biocbuildbiocbuildc By R Gray, March 19, 2000, DFCI c Copyright (C) 2000 Robert Gray c Distributed under the GNU public license c c t-statistics c first ng1 columns of d assumed to be group 1, other ng-ng1 assumed to be c group2. Note: single precision stats c c Modified by R. Gentleman, 2004, just extracted the ttest stats and c computed a ratio on demand - or fold-change subroutine fastt(d,n,ng,ng1,z,dm,eqv,ratio) real d(n,ng),z(n),dm(n) integer n,ng,ng1,ng2,eqv,ratio c initialize ng2=ng-ng1 do 61 i=1,n call tst2GM(d(i,1),ng1,ng2,n,z(i),dm(i), eqv, ratio) 61 continue return end subroutine tst2GM(d,ng1,ng2,n,tst,dm,eqv, ratio) c columns 1 to ng1 in group 1, ng1+1 to ng1+ng2 in group 2 real d(n,ng1+ng2),tst,dm double precision dm1,dm2,dss1,dss2 integer ng1,ng2,n,i,eqv, ratio dm1=0 dm2=0 dss1=0 dss2=0 do 10 i=1,ng1 dm1=dm1+d(1,i) 10 continue dm1=dm1/ng1 do 11 i=1,ng1 dss1=dss1+(d(1,i)-dm1)**2 11 continue do 12 i=1,ng2 dm2=dm2+d(1,ng1+i) 12 continue dm2=dm2/ng2 do 13 i=1,ng2 dss2=dss2+(d(1,ng1+i)-dm2)**2 13 continue if( ratio.eq.0) then dm=dm1-dm2 endif if( ratio.eq.1) then dm=dm1/dm2 endif if (dss1.eq.0.and.dss2.eq.0) then tst=0 return endif c intermediate calculations in dp, so stats with many ties give same sp result c regardless of order of calculations if( eqv .eq. 1 ) then tst=(dm1-dm2)/sqrt((1.d0/ng1+1.d0/ng2)*(dss1+dss2)/(ng1+ng2-2)) return endif tst=(dm1-dm2)/sqrt(dss1/((ng1-1)*ng1)+dss2/((ng2-1)*ng2)) end genefilter/vignettes/0000755000175400017540000000000013556146247015751 5ustar00biocbuildbiocbuildgenefilter/vignettes/howtogenefilter.Rnw0000644000175400017540000001473113556116164021647 0ustar00biocbuildbiocbuild% % NOTE -- ONLY EDIT howtogenefilter.Rnw!!! % howtogenefilter.tex file will get overwritten. % %\VignetteIndexEntry{Using the genefilter function to filter genes from a microarray dataset} %\VignetteDepends{Biobase, genefilter, class} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{Using the genefilter function to filter genes from a microarray dataset} \maketitle \section*{Introduction} The {\em genefilter} package can be used to filter (select) genes from a microarray dataset according to a variety of different filtering mechanisms. Here, we will consider the example dataset in the \verb+sample.ExpressionSet+ example from the {\em Biobase} package. This experiment has 26 samples, and there are 500 genes and 3 covariates. The covariates are named \verb+sex+, \verb+type+ and \verb+score+. The first two have two levels and the last one is continuous. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) varLabels(sample.ExpressionSet) table(sample.ExpressionSet$sex) table(sample.ExpressionSet$type) @ %$ One dichotomy that can be of interest for subsequent analyses is whether the filter is \emph{specific} or \emph{non-specific}. Here, specific means that we are filtering with reference to sample metadata, for example, \texttt{type}. For example, if we want to select genes that are differentially expressed in the two groups defined by \texttt{type}, that is a specific filter. If on the other hand we want to select genes that are expressed in more than 5 samples, that is an example of a non--specific filter. First, let us see how to perform a non--specific filter. Suppose we want to select genes that have an expression measure above 200 in at least 5 samples. To do that we use the function \verb+kOverA+. There are three steps that must be performed. \begin{enumerate} \item Create function(s) implementing the filtering criteria. \item Assemble it (them) into a (combined) filtering function. \item Apply the filtering function to the expression matrix. \end{enumerate} <<>>= f1 <- kOverA(5, 200) ffun <- filterfun(f1) wh1 <- genefilter(exprs(sample.ExpressionSet), ffun) sum(wh1) @ Here \verb+f1+ is a function that implies our ``expression measure above 200 in at least 5 samples'' criterion, the function \verb+ffun+ is the filtering function (which in this case consists of only one criterion), and we apply it using \verb+genefilter+. There were \Sexpr{sum(wh1)} genes that satisfied the criterion and passed the filter. As an example for a specific filter, let us select genes that are differentially expressed in the groups defined by \verb+type+. <<>>= f2 <- ttest(sample.ExpressionSet$type, p=0.1) wh2 <- genefilter(exprs(sample.ExpressionSet), filterfun(f2)) sum(wh2) @ %$ Here, \texttt{ttest} is a function from the \texttt{genefilter} package which provides a suitable wrapper around \texttt{t.test} from package \textit{stats}. Now we see that there are \Sexpr{sum(wh2)} genes that satisfy the selection criterion. Suppose that we want to combine the two filters. We want those genes for which at least 5 have an expression measure over 200 \emph{and} which also are differentially expressed between the groups defined by \verb+type+. <<>>= ffun_combined <- filterfun(f1, f2) wh3 <- genefilter(exprs(sample.ExpressionSet), ffun_combined) sum(wh3) @ Now we see that there are only \Sexpr{sum(wh3)} genes that satisfy both conditions. %%FIXME: need to replace this with something else %Our last example is to select genes that are %differentially expressed in at least one of the three groups defined %by \verb+cov3+. %To do that we use an Anova filter. This filter uses an analysis of %variance appraoch (via the \verb+lm+) function to test the hypothesis %that at least one of the three group means is different from the other %%two. The test is applied, then the $p$--value computed. We select %those genes that have a low $p$--value. % %<<>>= %Afilter <- Anova(eset$cov3) %aff <- filterfun(Afilter) %wh4 <- genefilter(exprs(eset), aff) %sum(wh4) % %@ %%$ %We see that there are 14 genes that pass this filter and that are %candidates for further exploration. \section*{Selecting genes that appear useful for prediction} The function \texttt{knnCV} defined below performs $k$--nearest neighbour classification using leave--one--out cross--validation. At the same time it aggregates the genes that were selected. The function returns the predicted classifications as its returned value. However, there is an additional side effect. The number of times that each gene was used (provided it was at least one) are recorded and stored in the environment of the aggregator \verb+Agg+. These can subsequently be retrieved and used for other purposes. <>= knnCV <- function(EXPR, selectfun, cov, Agg, pselect = 0.01, Scale=FALSE) { nc <- ncol(EXPR) outvals <- rep(NA, nc) for(i in 1:nc) { v1 <- EXPR[,i] expr <- EXPR[,-i] glist <- selectfun(expr, cov[-i], p=pselect) expr <- expr[glist,] if( Scale ) { expr <- scale(expr) v1 <- as.vector(scale(v1[glist])) } else v1 <- v1[glist] out <- paste("iter ",i, " num genes= ", sum(glist), sep="") print(out) Aggregate(row.names(expr), Agg) if( length(v1) == 1) outvals[i] <- knn(expr, v1, cov[-i], k=5) else outvals[i] <- knn(t(expr), v1, cov[-i], k=5) } return(outvals) } @ %$ <>= gfun <- function(expr, cov, p=0.05) { f2 <- ttest(cov, p=p) ffun <- filterfun(f2) which <- genefilter(expr, ffun) } @ Next we show how to use this function on the dataset \verb+geneData+. <>= library("class") ##scale the genes ##genescale is a slightly more flexible "scale" ##work on a subset -- for speed only geneData <- genescale(exprs(sample.ExpressionSet)[1:75,], 1) Agg <- new("aggregator") testcase <- knnCV(geneData, gfun, sample.ExpressionSet$type, Agg, pselect=0.05) @ <>= sort(sapply(aggenv(Agg), c), decreasing=TRUE) @ %$ The environment \verb+Agg+ contains, for each gene, the number of times it was selected in the cross-validation. \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/vignettes/howtogenefinder.Rnw0000644000175400017540000000742113556116164021627 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{How to find genes whose expression profile is similar to that of specified genes} %\VignetteDepends{Biobase, genefilter} %\VignetteKeywords{Expression Analysis} %\VignettePackage{genefilter} \documentclass{article} \usepackage{hyperref} \textwidth=6.2in \textheight=8.5in \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\classdef}[1]{% {\em #1} } \begin{document} \title{How to find genes whose expression profile is similar to that of specified genes} \maketitle \section*{Introduction} In some cases you have certain genes of interest and you would like to find other genes that are {\em close} to the genes of interest. This can be done using the \verb+genefinder+ function. You need to specify either the index position of the genes you want (which row of the expression array the gene is in) or the name (consistent with the \verb+featureNames+ of the ExpressionSet). A vector of names can be specified and matches for all will be computed. The number of matches and the distance measure used can all be specified. The examples will be carried out using the artificial data set, \verb+sample.ExpressionSet+. Two other options for \verb+genefinder+ are \verb+scale+ and \verb+method+. The \verb+scale+ option controls the scaling of the rows (this is often desirable) while the \verb+method+ option controls the distance measure used between genes. The possible values and their meanings are listed at the end of this document. <<>>= library("Biobase") library("genefilter") data(sample.ExpressionSet) igenes<- c(300,333,355,419) ##the interesting genes closeg <- genefinder(sample.ExpressionSet, igenes, 10, method="euc", scale="none") names(closeg) @ The Affymetrix identifiers (since these were originally Affymetrix data) are \verb+31539_r_at+, \verb+31572_at+, \verb+31594_at+ and \verb+31658_at+. We can find the nearest genes (by index) for any of these by simply accessing the relevant component of \verb+closeg+. <<>>= closeg$"31539_r_at" Nms1 <- featureNames(sample.ExpressionSet)[closeg$"31539_r_at"$indices] Nms1 @ %$ You could then take these names (from \verb+Nms1+) and the {\em annotate} package and explore them further. See the various HOWTO's in annotate to see how to further explore your data. Examples include finding and searching all PubMed abstracts associated with these data. Finding and downloading associated sequence information. The data can also be visualized using the {\em geneplotter} package (again there are a number of HOWTO documents there). \section*{Parameter Settings} The \verb+scale+ parameter can take the following values: \begin{description} \item[none] No scaling is done. \item[range] Scaling is done by $(x_i - x_{(1)})/(x_{(n)}- x_{(1)})$. \item[zscore] Scaling is done by $(x_i - \bar{x})/ s_x$. Where $s_x$ is the standard deviation. \end{description} The \verb+method+ parameter can take the following values: \begin{description} \item[euclidean] Euclidean distance is used. \item[maximum] Maximum distance between any two elements of x and y (supremum norm). \item[manhattan] Absolute distance between the two vectors (1 norm). \item[canberra] The $\sum (|x_i - y_i| / |x_i + y_i|)$. Terms with zero numerator and denominator are omitted from the sum and treated as if the values were missing. \item[binary] (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are {\em on} and zero elements are {\em off}. The distance is the proportion of bits in which only one is on amongst those in which at least one is on. \end{description} \section*{Session Information} The version number of R and packages loaded for generating the vignette were: <>= toLatex(sessionInfo()) @ \end{document} genefilter/vignettes/independent_filtering.Rnw0000644000175400017540000004773313556116164023012 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Diagnostics for independent filtering} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Diagnostics for independent filtering: choosing filter statistic and cutoff} \title{\textsf{\textbf{\thetitle}}} \author{Wolfgang Huber\\[1em]European Molecular Biology Laboratory (EMBL)} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options(digits=3, width=100) library("pasilla") # make sure this is installed, since we need it in the next section @ % Make title \maketitle \tableofcontents \vspace{.25in} \begin{abstract} \noindent This vignette illustrates diagnostics that are intended to help with \begin{itemize} \item the choice of filter criterion and \item the choice of filter cutoff \end{itemize} in independent filtering~\cite{Bourgon:2010:PNAS}. The package \Biocpkg{genefilter} provides functions that might be convenient for this purpose. \end{abstract} %----------------------------------------------------------- \section{Introduction} %----------------------------------------------------------- Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance, in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance is differential binding detection from ChIP-Seq data. The idea of \emph{independent filtering} is to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the false discovery rate. A good choice for a filtering criterion is one that \begin{enumerate} \item\label{it:indp} is statistically independent from the test statistic under the null hypothesis, \item\label{it:corr} is correlated with the test statistic under the alternative, and \item\label{it:joint} does not notably change the dependence structure --if there is any-- of the joint test statistics (including those corresponding to true nulls and to true alternatives). \end{enumerate} The benefit from filtering relies on property~\ref{it:corr}, and I will explore that further in Section~\ref{sec:qual}. The statistical validity of filtering relies on properties \ref{it:indp} and \ref{it:joint}. For many practically useful combinations of filter criteria with test statistics, property~\ref{it:indp} is easy to prove (e.\,g., through Basu's theorem). Property~\ref{it:joint} is more complicated, but rarely presents a problem in practice: if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without filtering, the filtering should not change that. Please see~\cite{Bourgon:2010:PNAS} for further discussion on the mathematical and conceptual background. %----------------------------------------------------------- \section{Example data set} %----------------------------------------------------------- For illustration, let us use the \Robject{pasillaGenes} dataset from the Bioconductor package \Rpackage{pasilla}; this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate samples the were measured for each of two biological conditions: normally growing cells and cells treated with dsRNA against the \emph{Pasilla} mRNA, which led to RNAi interference (RNAi) mediated knockdown of the Pasilla gene product. % <>= library("pasilla") data("pasillaGenes") @ % We perform a standard analysis with \Rpackage{DESeq} to look for genes that are differentially expressed between the normal and Pasilla-knockdown conditions, indicated by the factor variable \Robject{condition}. In the generalized linear model (GLM) analysis, we adjust for an additional experimental covariate \Robject{type}, which is however not of interest for the differential expression. For more details, please see the vignette of the \Rpackage{DESeq} package. % <>= library("DESeq") <>= cds = estimateSizeFactors( pasillaGenes ) cds = estimateDispersions( cds ) fit1 = fitNbinomGLMs( cds, count ~ type + condition ) fit0 = fitNbinomGLMs( cds, count ~ type ) <>= res = data.frame( filterstat = rowMeans(counts(cds)), pvalue = nbinomGLMTest( fit1, fit0 ), row.names = featureNames(cds) ) @ % The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in the columns of the dataframe \Robject{res}: \begin{itemize} \item \texttt{filterstat}: the filter statistic, here the average number of counts per gene across all samples, irrespective of sample annoation, \item \texttt{pvalue}: the test $p$-values, \end{itemize} Each row of the dataframe corresponds to one gene: <>= dim(res) head(res) @ %-------------------------------------------------- \section{Qualitative assessment of the filter statistic}\label{sec:qual} %-------------------------------------------------- <>= theta = 0.4 pass = with(res, filterstat > quantile(filterstat, theta)) @ % First, consider Figure~\ref{figscatterindepfilt}, which shows that among the approximately \Sexpr{100*theta}\% of genes with lowest overall counts, \Robject{filterstat}, there are essentially none that achieved an (unadjusted) $p$-value less than \Sexpr{signif(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE), 1)} (this corresponds to about \Sexpr{signif(-log10(quantile(res$pvalue[!pass], 0.0001, na.rm=TRUE)), 2)} on the $-\log_{10}$-scale). % <>= with(res, plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45)) @ <>= trsf = function(n) log10(n+1) plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="") @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figscatterindepfilt-1} \includegraphics[width=.49\textwidth]{figure/figecdffilt-1} \caption{Left: scatterplot of the rank (scaled to $[0,1]$) of the filter criterion \Robject{filterstat} ($x$-axis) versus the negative logarithm of the test \Robject{pvalue} ($y$-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of \Robject{filterstat} and its quantiles.} \label{figscatterindepfilt} \end{figure} % This means that by dropping the 40\% genes with lowest \Robject{filterstat}, we do not loose anything substantial from our subsequent results. For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal number. The analogous scatterplot to that of Figure~\ref{figscatterindepfilt} is shown in Figure~\ref{figbadfilter}. % <>= badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res))) @ <>= stopifnot(!any(is.na(badfilter))) @ <>= plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/figbadfilter-1} \caption{Scatterplot analogous to Figure~\ref{figscatterindepfilt}, but with \Robject{badfilter}.} \label{figbadfilter} \end{figure} %-------------------------------------------------- \section{How to choose the filter statistic and the cutoff?}\label{sec:indepfilterchoose} %-------------------------------------------------- The \texttt{filtered\_p} function in the \Rpackage{genefilter} package calculates adjusted $p$-values over a range of possible filtering thresholds. Here, we call this function on our results from above and compute adjusted $p$-values using the method of Benjamini and Hochberg (BH) for a range of different filter cutoffs. % \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figrejection-1} \includegraphics[width=0.49\textwidth]{figure/fignumreject-1} \caption{Left panel: the plot shows the number of rejections (i.\,e.\ genes detected as differentially expressed) as a function of the FDR threshold ($x$-axis) and the filtering cutoff $\theta$ (line colours, specified as quantiles of the distribution of the filter statistic). The plot is produced by the \texttt{rejection\_plot} function. Note that the lines for $\theta=0\%$ and $10\%$ are overplotted by the line for $\theta=20\%$, since for the data shown here, these quantiles correspond all to the same set of filtered genes (cf.~Figure~\ref{figscatterindepfilt}). Right panel: the number of rejections at FDR=10\% as a function of $\theta$.} \label{figrej} \end{center} \end{figure} % <>= library("genefilter") <>= theta = seq(from=0, to=0.5, by=0.1) pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") <>= head(pBH) @ % The rows of this matrix correspond to the genes (i.\,e., the rows of \Robject{res}) and the columns to the BH-adjusted $p$-values for the different possible choices of cutoff \Robject{theta}. A value of \Robject{NA} indicates that the gene was filtered out at the corresponding filter cutoff. The \Rfunction{rejection\_plot} function takes such a matrix and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. % <>= rejection_plot(pBH, at="sample", xlim=c(0, 0.5), ylim=c(0, 2000), xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="") @ The plot is shown in the left panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering cutoff}\label{choose:cutoff} %------------------------------------------------------------ If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires you to choose a particular $p$-value cutoff, specified through the argument \Robject{alpha}. % <>= theta = seq(from=0, to=0.8, by=0.02) rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH") @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, rejBH, type="l", xlab=expression(theta), ylab="number of rejections") @ The plot is shown in the right panel of Figure~\ref{figrej}. %------------------------------------------------------------ \subsection{Choice of filtering statistic}\label{choose:filterstat} %------------------------------------------------------------ We can use the analysis of the previous section~\ref{choose:cutoff} also to inform ourselves about different possible choices of filter statistic. We construct a dataframe with a number of different choices. <>= filterChoices = data.frame( `mean` = res$filterstat, `geneID` = badfilter, `min` = rowMin(counts(cds)), `max` = rowMax(counts(cds)), `sd` = rowSds(counts(cds)) ) rejChoices = sapply(filterChoices, function(f) filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH")) <>= library("RColorBrewer") myColours = brewer.pal(ncol(filterChoices), "Set1") <>= matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2, xlab=expression(theta), ylab="number of rejections") legend("bottomleft", legend=colnames(filterChoices), fill=myColours) @ % The result is shown in Figure~\ref{figdifferentstats}. It indicates that for the data at hand, \Robject{mean}, \Robject{max} and \Robject{sd} provide similar performance, whereas the other choices are less effective. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/figdifferentstats-1} \caption{The number of rejections at FDR=10\% as a function of $\theta$ (analogous to the right panel in Figure~\ref{figrej}) for a number of different choices of the filter statistic.} \label{figdifferentstats} \end{center} \end{figure} %-------------------------------------------------- \section{Some more plots pertinent to multiple testing} %-------------------------------------------------- %-------------------------------------------------- \subsection{Joint distribution of filter statistic and $p$-values}\label{sec:pvalhist} %-------------------------------------------------- The left panel of Figure~\ref{figscatterindepfilt} shows the joint distribution of filter statistic and $p$-values. An alternative, perhaps simpler view is provided by the $p$-value histograms in Figure~\ref{fighistindepfilt}. It shows how the filtering ameliorates the multiple testing problem -- and thus the severity of a multiple testing adjustment -- by removing a background set of hypotheses whose $p$-values are distributed more or less uniformly in $[0,1]$. <>= h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE) h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE) colori <- c(`do not pass`="khaki", `pass`="powderblue") <>= barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori, space = 0, main = "", ylab="frequency") text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA) legend("topright", fill=rev(colori), legend=rev(names(colori))) @ \begin{figure}[ht] \centering \includegraphics[width=.5\textwidth]{figure/fighistindepfilt-1} \caption{Histogram of $p$-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do not pass.} \label{fighistindepfilt} \end{figure} %----------------------------------------------------- \subsection{Illustration of the Benjamini-Hochberg method} %------------------------------------------------------ The Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995} has a simple graphical illustration, which is produced in the following code chunk. Its result is shown in the left panel of Figure \ref{figmulttest}. % <>= resFilt = res[pass,] orderInPlot = order(resFilt$pvalue) showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06) alpha = 0.1 <>= plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot], pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i])) abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2) @ <>= whichBH = which(resFilt$pvalue[orderInPlot] <= alpha*seq(along=resFilt$pvalue)/length(resFilt$pvalue)) ## Test some assertions: ## - whichBH is a contiguous set of integers from 1 to length(whichBH) ## - the genes selected by this graphical method coincide with those ## from p.adjust (i.e. padjFilt) stopifnot(length(whichBH)>0, identical(whichBH, seq(along=whichBH)), resFilt$FDR[orderInPlot][ whichBH] <= alpha, resFilt$FDR[orderInPlot][-whichBH] > alpha) @ % %----------------------------------------------------- \subsection{Schweder and Spj\o{}tvoll plot} %------------------------------------------------------ Schweder and Spj\o{}tvoll \cite{SchwederSpjotvoll1982} suggested a diagnostic plot of the observed $p$-values which permits estimation of the fraction of true null hypotheses. For a series of hypothesis tests $H_1, \ldots, H_m$ with $p$-values $p_i$, they suggested plotting % \begin{equation} \left( 1-p_i, N(p_i) \right) \mbox{ for } i \in 1, \ldots, m, \end{equation} % where $N(p)$ is the number of $p$-values greater than $p$. An application of this diagnostic plot to \Robject{resFilt\$pvalue} is shown in the right panel of Figure \ref{figmulttest}. When all null hypotheses are true, the $p$-values are each uniformly distributed in $[0,1]$, Consequently, the cumulative distribution function of $(p_1, \ldots, p_m)$ is expected to be close to the line $F(t)=t$. By symmetry, the same applies to $(1 - p_1, \ldots, 1 - p_m)$. When (without loss of generality) the first $m_0$ null hypotheses are true and the other $m-m_0$ are false, the cumulative distribution function of $(1-p_1, \ldots, 1-p_{m_0})$ is again expected to be close to the line $F_0(t)=t$. The cumulative distribution function of $(1-p_{m_0+1}, \ldots, 1-p_{m})$, on the other hand, is expected to be close to a function $F_1(t)$ which stays below $F_0$ but shows a steep increase towards 1 as $t$ approaches $1$. In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative distribution function is expected to be close to % \begin{equation} F(t) = \frac{m_0}{m} F_0(t) + \frac{m-m_0}{m} F_1(t). \end{equation} % Such a situation is shown in the right panel of Figure \ref{figmulttest}. If $F_1(t)/F_0(t)$ is small for small $t$, then the mixture fraction $\frac{m_0}{m}$ can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit is shown by the red line in the right panel of Figure \ref{figmulttest}. % <>= j = round(length(resFilt$pvalue)*c(1, .66)) px = (1-resFilt$pvalue[orderInPlot[j]]) py = ((length(resFilt$pvalue)-1):0)[j] slope = diff(py)/diff(px) @ <>= plot(1-resFilt$pvalue[orderInPlot], (length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i", xlab=expression(1-p[i]), ylab=expression(N(p[i]))) abline(a=0, slope, col="red3", lwd=2) abline(h=slope) text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3)) @ \begin{figure}[ht] \centering \includegraphics[width=.49\textwidth]{figure/sortedP-1} \includegraphics[width=.49\textwidth]{figure/SchwederSpjotvoll-1} \caption{\emph{Left:} illustration of the Benjamini-Hochberg multiple testing adjustment procedure \cite{BH:1995}. The black line shows the $p$-values ($y$-axis) versus their rank ($x$-axis), starting with the smallest $p$-value from the left, then the second smallest, and so on. Only the first \Sexpr{sum(showInPlot)} $p$-values are shown. The red line is a straight line with slope $\alpha/n$, where $n=\Sexpr{length(resFilt[["pvalue"]])}$ is the number of tests, and $\alpha=\Sexpr{alpha}$ is a target false discovery rate (FDR). FDR is controlled at the value $\alpha$ if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in \Sexpr{length(whichBH)} genes. \emph{Right:} Schweder and Spj\o{}tvoll plot, as described in the text.} \label{figmulttest} \end{figure} %-------------------------------------------------- \section*{Session information} %-------------------------------------------------- <>= si = as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \bibliography{library} \end{document} genefilter/vignettes/independent_filtering_plots.Rnw0000644000175400017540000001573613556116164024231 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} %\VignettePackage{genefilter} %\VignetteEngine{knitr::knitr} % To compile this document % library('knitr'); rm(list=ls()); knit('independent_filtering_plots.Rnw') \documentclass[10pt]{article} <>= library("knitr") opts_chunk$set(tidy=FALSE,dev="png",fig.show="hide", fig.width=4,fig.height=4.5,dpi=240, message=FALSE,error=FALSE,warning=FALSE) @ <>= BiocStyle:::latex() @ \usepackage{xstring} \newcommand{\thetitle}{Additional plots for: Independent filtering increases power for detecting differentially expressed genes, Bourgon et al., PNAS (2010)} \title{\thetitle} \author{Richard Bourgon} % The following command makes use of SVN's 'Date' keyword substitution % To activate this, I used: svn propset svn:keywords Date independent_filtering_plots.Rnw \date{\Rpackage{genefilter} version \Sexpr{packageDescription("genefilter")$Version} (Last revision \StrMid{$Date$}{8}{18})} \begin{document} <>= options( width = 80 ) @ % Make title \maketitle \tableofcontents \vspace{.25in} %%%%%%%% Main text \section{Introduction} This vignette illustrates use of some functions in the \emph{genefilter} package that provide useful diagnostics for independent filtering~\cite{BourgonIndependentFiltering}: \begin{itemize} \item \texttt{kappa\_p} and \texttt{kappa\_t} \item \texttt{filtered\_p} and \texttt{filtered\_R} \item \texttt{filter\_volcano} \item \texttt{rejection\_plot} \end{itemize} \section{Data preparation} Load the ALL data set and the \emph{genefilter} package: <>= library("genefilter") library("ALL") data("ALL") @ Reduce to just two conditions, then take a small subset of arrays from these, with 3 arrays per condition: <>= bcell <- grep("^B", as.character(ALL$BT)) moltyp <- which(as.character(ALL$mol.biol) %in% c("NEG", "BCR/ABL")) ALL_bcrneg <- ALL[, intersect(bcell, moltyp)] ALL_bcrneg$mol.biol <- factor(ALL_bcrneg$mol.biol) n1 <- n2 <- 3 set.seed(1969) use <- unlist(tapply(1:ncol(ALL_bcrneg), ALL_bcrneg$mol.biol, sample, n1)) subsample <- ALL_bcrneg[,use] @ We now use functions from \emph{genefilter} to compute overall standard devation filter statistics as well as standard two-sample $t$ and releated statistics. <>= S <- rowSds( exprs( subsample ) ) temp <- rowttests( subsample, subsample$mol.biol ) d <- temp$dm p <- temp$p.value t <- temp$statistic @ \section{Filtering volcano plot} Filtering on overall standard deviation and then using a standard $t$-statistic induces a lower bound of fold change, albeit one which varies somewhat with the significance of the $t$-statistic. The \texttt{filter\_volcano} function allows you to visualize this effect. <>= S_cutoff <- quantile(S, .50) filter_volcano(d, p, S, n1, n2, alpha=.01, S_cutoff) @ The output is shown in the left panel of Fig.~\ref{fig:volcano}. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/filter_volcano-1} \includegraphics[width=0.49\textwidth]{figure/kappa-1} \caption{Left panel: plot produced by the \texttt{filter\_volcano} function. Right panel: graph of the \texttt{kappa\_t} function.} \label{fig:volcano} \end{center} \end{figure} The \texttt{kappa\_p} and \texttt{kappa\_t} functions, used to make the volcano plot, compute the fold change bound multiplier as a function of either a $t$-test $p$-value or the $t$-statistic itself. The actual induced bound on the fold change is $\kappa$ times the filter's cutoff on the overall standard deviation. Note that fold change bounds for values of $|T|$ which are close to 0 are not of practical interest because we will not reject the null hypothesis with test statistics in this range. <>= t <- seq(0, 5, length=100) plot(t, kappa_t(t, n1, n2) * S_cutoff, xlab="|T|", ylab="Fold change bound", type="l") @ The plot is shown in the right panel of Fig.~\ref{fig:volcano}. \section{Rejection count plots} \subsection{Across $p$-value cutoffs} The \texttt{filtered\_p} function permits easy simultaneous calculation of unadjusted or adjusted $p$-values over a range of filtering thresholds ($\theta$). Here, we return to the full ``BCR/ABL'' versus ``NEG'' data set, and compute adjusted $p$-values using the method of Benjamini and Hochberg, for a range of different filter stringencies. \begin{figure}[tb] \begin{center} \includegraphics[width=0.49\textwidth]{figure/rejection_plot-1} \includegraphics[width=0.49\textwidth]{figure/filtered_R_plot-1} \caption{Left panel: plot produced by the \texttt{rejection\_plot} function. Right panel: graph of \texttt{theta}.} \label{fig:rej} \end{center} \end{figure} <

>= table(ALL_bcrneg$mol.biol) @ <>= S2 <- rowVars(exprs(ALL_bcrneg)) p2 <- rowttests(ALL_bcrneg, "mol.biol")$p.value theta <- seq(0, .5, .1) p_bh <- filtered_p(S2, p2, theta, method="BH") @ <>= head(p_bh) @ The \texttt{rejection\_plot} function takes sets of $p$-values corresponding to different filtering choices --- in the columns of a matrix or in a list --- and shows how rejection count ($R$) relates to the choice of cutoff for the $p$-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to increased rejections. <>= rejection_plot(p_bh, at="sample", xlim=c(0,.3), ylim=c(0,1000), main="Benjamini & Hochberg adjustment") @ The plot is shown in the left panel of Fig.~\ref{fig:rej}. \subsection{Across filtering fractions} If we select a fixed cutoff for the adjusted $p$-values, we can also look more closely at the relationship between the fraction of null hypotheses filtered and the total number of discoveries. The \texttt{filtered\_R} function wraps \texttt{filtered\_p} and just returns rejection counts. It requires a $p$-value cutoff. <>= theta <- seq(0, .80, .01) R_BH <- filtered_R(alpha=.10, S2, p2, theta, method="BH") @ <>= head(R_BH) @ Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true null hypotheses, very large values of $\theta$ reduce power in this example: <>= plot(theta, R_BH, type="l", xlab=expression(theta), ylab="Rejections", main="BH cutoff = .10" ) @ The plot is shown in the right panel of Fig.~\ref{fig:rej}. %%%%%%%% Session info \section*{Session information} <>= si <- as.character( toLatex( sessionInfo() ) ) cat( si[ -grep( "Locale", si ) ], sep = "\n" ) @ \begin{thebibliography}{10} \bibitem{BourgonIndependentFiltering} Richard Bourgon, Robert Gentleman and Wolfgang Huber. \newblock Independent filtering increases power for detecting differentially expressed genes. \end{thebibliography} \end{document} genefilter/vignettes/library.bib0000644000175400017540000001305713556116164020074 0ustar00biocbuildbiocbuild@Article{Anders:2010:GB, url = {http://genomebiology.com/2010/11/10/R106}, author = {Simon Anders and Wolfgang Huber}, Title = {{D}ifferential expression analysis for sequence count data}, Journal = {Genome Biology}, Year = 2010, Volume = 11, Pages = {R106}, } @article{BH:1995, author = {Y. Benjamini and Y. Hochberg}, title = {Controlling the false discovery rate: a practical and powerful approach to multiple testing}, journal = "Journal of the Royal Statistical Society B", year = 1995, volume = 57, pages = "289--300" } @Article{Bourgon:2010:PNAS, ISI = {ISI:000278054700015}, URL = {http://www.pnas.org/content/107/21/9546.long}, PDF = {PNAS-2010-Bourgon-9546-51.pdf}, author = {Richard Bourgon and Robert Gentleman and Wolfgang Huber}, Title = {Independent filtering increases detection power for high-throughput experiments}, journal = {PNAS}, Year = 2010, volume = 107, number = 21, pages = {9546--9551}, } @article{Brooks2010, author = {Brooks, A. N. and Yang, L. and Duff, M. O. and Hansen, K. D. and Park, J. W. and Dudoit, S. and Brenner, S. E. and Graveley, B. R.}, doi = {10.1101/gr.108662.110}, issn = {1088-9051}, journal = {Genome Research}, pages = {193--202}, title = {{Conservation of an RNA regulatory map between Drosophila and mammals}}, url = {http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110}, year = 2011 } @Article{Tibshirani1988, author = {Robert Tibshirani}, title = {Estimating transformations for regression via additivity and variance stabilization}, journal = {Journal of the American Statistical Association}, year = 1988, volume = 83, pages = {394--405} } @misc{htseq, author = {Simon Anders}, title = {{HTSeq: Analysing high-throughput sequencing data with Python}}, year = 2011, howpublished = {\url{http://www-huber.embl.de/users/anders/HTSeq/}} } @article{sagmb2003, title = {Parameter estimation for the calibration and variance stabilization of microarray data}, author = {Wolfgang Huber and Anja von Heydebreck and Holger {S\"ultmann} and Annemarie Poustka and Martin Vingron}, journal = {Statistical Applications in Genetics and Molecular Biology}, year = 2003, volume = 2, number = 1, pages = {Article 3} } @misc{summarizeOverlaps, author = {Valerie Obenchain}, title = {Counting with \texttt{summarizeOverlaps}}, year = 2011, howpublished = {Vignette, distributed as part of the Bioconductor package \emph{GenomicRanges}, as file \emph{summarizeOverlaps.pdf}} } @article{Anders:2012:GR, author = {Simon Anders and Alejandro Reyes and Wolfgang Huber}, title = {Detecting differential usage of exons from {RNA-seq} data }, year = {2012}, journal = {Genome Research}, doi = {10.1101/gr.133744.111}, } @article{CR, author = {Cox, D. R. and Reid, N.}, journal = {Journal of the Royal Statistical Society, Series B}, keywords = {CML,Cox-Reid,ML,dispersion}, mendeley-tags = {CML,Cox-Reid,ML,dispersion}, number = {1}, pages = {1--39}, title = {{Parameter orthogonality and approximate conditional inference}}, url = {http://www.jstor.org/stable/2345476}, volume = {49}, year = {1987} } @article{edgeR_GLM, author = {McCarthy, Davis J and Chen, Yunshun and Smyth, Gordon K}, doi = {10.1093/nar/gks042}, issn = {1362-4962}, journal = {Nucleic Acids Research}, keywords = {edgeR}, mendeley-tags = {edgeR}, month = jan, pmid = {22287627}, title = {{Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation}}, url = {http://www.ncbi.nlm.nih.gov/pubmed/22287627}, year = {2012}, volume={40}, pages={4288-4297} } @article{SchwederSpjotvoll1982, author={Schweder, T. and Spj\/{o}tvoll, E.}, title={Plots of {P-values} to evaluate many tests simultaneously}, journal={Biometrika}, year={1982}, volume=69, pages={493-502}, doi={10.1093/biomet/69.3.493} } @article{Haglund2012Evidence, abstract = {{Context: Primary hyperparathyroidism (PHPT) is most frequently present in postmenopausal women. Although the involvement of estrogen has been suggested, current literature indicates that parathyroid tumors are estrogen receptor (ER) alpha negative.}}, author = {Haglund, Felix and Ma, Ran and Huss, Mikael and Sulaiman, Luqman and Lu, Ming and Nilsson, Inga-Lena and H\"{o}\"{o}g, Anders and Juhlin, Christofer C. and Hartman, Johan and Larsson, Catharina}, day = {28}, doi = {10.1210/jc.2012-2484}, issn = {1945-7197}, journal = {Journal of Clinical Endocrinology \& Metabolism}, month = sep, pmid = {23024189}, posted-at = {2012-11-23 08:40:12}, priority = {2}, publisher = {Endocrine Society}, title = {{Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas}}, url = {https://doi.org/10.1210/jc.2012-2484}, year = {2012} } @article{Wu2012New, author = {Wu, Hao and Wang, Chi and Wu, Zhijin}, day = {22}, doi = {10.1093/biostatistics/kxs033}, issn = {1468-4357}, journal = {Biostatistics}, month = sep, pmid = {23001152}, posted-at = {2013-02-26 17:09:19}, priority = {2}, publisher = {Oxford University Press}, title = {{A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data}}, url = {https://doi.org/10.1093/biostatistics/kxs033}, year = {2012} }