metagenomeSeq/DESCRIPTION0000644000175400017540000000250713175734155016117 0ustar00biocbuildbiocbuildPackage: metagenomeSeq Title: Statistical analysis for sparse high-throughput sequencing Version: 1.20.0 Date: 2016-07-21 Author: Joseph Nathaniel Paulson, Hisham Talukder, Mihai Pop, Hector Corrada Bravo Maintainer: Joseph N. Paulson Description: metagenomeSeq is designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations. License: Artistic-2.0 Depends: R(>= 3.0), Biobase, limma, glmnet, methods, RColorBrewer Suggests: annotate, BiocGenerics, biomformat, knitr, gss, testthat (>= 0.8), vegan, interactiveDisplay Imports: parallel, matrixStats, foreach, Matrix, gplots VignetteBuilder: knitr URL: https://github.com/nosson/metagenomeSeq/ BugReports: https://github.com/nosson/metagenomeSeq/issues biocViews: Classification, Clustering, GeneticVariability, DifferentialExpression, Microbiome, Metagenomics, Normalization, Visualization, MultipleComparison, Sequencing, Software RoxygenNote: 6.0.1 NeedsCompilation: no Packaged: 2017-10-30 23:40:29 UTC; biocbuild metagenomeSeq/NAMESPACE0000644000175400017540000000370113175714310015614 0ustar00biocbuildbiocbuildimport(Biobase) import(RColorBrewer) import(limma) import(glmnet) import(methods) importFrom(parallel,makeCluster) importFrom(parallel,stopCluster) importFrom(parallel,parRapply) importFrom(parallel,mclapply) importFrom(matrixStats,colQuantiles) importFrom(matrixStats,rowSds) importFrom(gplots,heatmap.2) importFrom(foreach,'%dopar%') importFrom(foreach,foreach) importFrom(Matrix,bdiag) importFrom("graphics", "abline", "axis", "lines", "plot", "points", "polygon") importFrom("grDevices", "col2rgb", "rgb") importFrom("stats", "approx", "approxfun", "binomial", "cmdscale", "coefficients", "cor", "cor.test", "density", "dist", "dnorm", "fisher.test", "glm.fit", "hclust", "lm.fit", "median", "model.matrix", "p.adjust", "plogis", "pnorm", "prcomp", "predict", "qlogis", "quantile", "residuals", "sd", "var") importFrom("utils", "packageVersion", "read.delim", "read.table", "tail") exportClasses( "MRexperiment" ) exportMethods( "[", "colSums", "rowSums", "colMeans", "rowMeans", "normFactors", "normFactors<-", "libSize", "libSize<-" ) export( aggregateByTaxonomy, aggTax, aggregateBySample, aggSamp, biom2MRexperiment, calculateEffectiveSamples, calcNormFactors, correlationTest, correctIndices, cumNorm, cumNormMat, cumNormStat, cumNormStatFast, expSummary, exportMat, exportStats, fitDO, fitMeta, fitFeatureModel, fitLogNormal, fitPA, fitMultipleTimeSeries, fitSSTimeSeries, fitTimeSeries, fitZig, filterData, load_biom, load_meta, load_metaQ, load_phenoData, loadBiom, loadMeta, loadMetaQ, loadPhenoData, makeLabels, mergeMRexperiments, MRcoefs, MRcounts, MRfulltable, MRtable, MRexperiment2biom, plotBubble, plotCorr, plotGenus, plotMRheatmap, plotOTU, plotOrd, plotRare, plotFeature, plotTimeSeries, plotClassTimeSeries, uniqueFeatures, returnAppropriateObj, ssFit, ssIntervalCandidate, ssPerm, ssPermAnalysis, ts2MRexperiment, trapz, zigControl, newMRexperiment, posteriorProbs ) metagenomeSeq/NEWS0000644000175400017540000001026413175714310015076 0ustar00biocbuildbiocbuildversion 1.15.xx (2016) + Added 'mergeMRexperiment' function + Added 'normFactors' and 'libSize' generics + Added 'fitMultipleTimeSeries' function + Replaced RUnit with testthat library for unit testing + Adding multiple upgrades and changes throughout + Deprecated the load_* functions and created load* function. version 1.13.xx (2015) + Upgrade support for biom-format vs. 2.0 + Fixed issue - "MRtable, etc will report NA rows when user requests more features than available" + Fixed s2 miscalculation in calcZeroComponent version 1.11.xx (2015) + Adding fitFeatureModel - a feature based zero-inflated log-normal model. + Added MRcoefs,MRtable,MRfulltable support for fitFeatureModel output. + Added mention in vignette. + Added support for normalizing matrices instead of just MRexperiment objects. + Fixed cumNormStat's non-default qFlag option version 1.9.xx (2015) + Added flexibility in formula choice for fitTimeSeries + Added readability in ssPermAnalysis + Fixed default in plotClassTimeSeries (include = c("1",...)) + Added fitTimeSeries vignette + Removed interactiveDisplay to namespace - moved to suggests + Fixed ordering of MRtable,MRfulltable first four columns + modified df estimated through responsibilities + renamed fitMeta to fitLogNormal - a more appropriate name version 1.7.xx (2014-05-07) + Added function plotBubble + Added parallel (multi-core) options to fitPA, fitDO + Fixed bug for fitMeta when useCSSoffset=FALSE and model matrix ncol==2 + (1.7.10) Updated default quantile estimate (.5) for low estimates + (1.7.10) Added short description on how to do multiple group comparisons + (1.7.15) Output of fitZig (eb) is now a result of limma::eBayes instead of limma::ebayes + (1.7.16) plotMRheatmap allows for sorting by any stat (not just sd) + (1.7.18) fitTimeSeries Including times series method for differentially abundant time intervals + (1.7.20) Fixed minor bug for OTU level time series analyses and added plotClassTimeSeries + (1.7.26) Added warning / fix if any samples are empty in cumNormStat + (1.7.27) Added a few unit tests + (1.7.29) Added interactiveDisplay to namespace (display function allows interactive exploration / plots through browser) version 1.5.xx (2014-04-17) + Incorporating biom-format support with the biom2MRexperiment, MRexperiment2biom and load_biome function. + Added uniqueFeatures, filterData, aggregateByTaxonomy / aggTax, plotFeature and calculateEffectiveSamples functions. + Renamed MRfisher to fitPA (presence-absence fisher test). + Added warnings for normalization + Added fitDO (Discovery odds ratio test) and fitMeta (original metastats). + Added match.call() info to fitZig output + Fixed missing E-Step bounds version 1.2.xx (2013-08-20) + Our paper got accepted and is available! + Added methods for MRexperiment objects (colSums,colMeans,rowSums,rowMeans, usage is for example colSums(obj) or colSums(obj,norm=TRUE)) (09-25) + Added two new functions, plotOrd and plotRare - a function to plot PCA/MDS coordinates and rarefaction effect (09-04,09-18) + Updated MRfisher to include thresholding for presence-absence testing (08-19) + Updated comments (roxygen2) style for all the functions using the Rd2roxygen package (07-13) + Updated plotCorr and plotMRheatmap to allow various colors/not require trials(07-13) + Rewrote vignette (and switched to knitr) version 1.1.xx (last update 2013-06-25) + Rewrote load_meta and load_metaQ to be faster/use less memory + Modified cumNormStat to remove NA samples from calculations (example would be samples without any counts) + Re-added plotGenus' jitter + Fixed uniqueNames call in the MR tables + Changed thanks to Kasper Daniel Hansen's suggestions the following: plotOTU and plotGenus both have much better auto-generated axis MRtable, MRfulltable, MRcoefs have a sort by p-value option now MRtable, MRfulltable, MRcoefs now have an extra option to include unique numbers for OTU features (default would automatically add them previously) cumNorm.R - now returns the object as well - not just replacing the environment 0 Still need to turn the fitZig output to S3, consider subsetting function address low p-values version 1.0.0: (2013-03-29) + Release! metagenomeSeq/R/0000755000175400017540000000000013175714310014575 5ustar00biocbuildbiocbuildmetagenomeSeq/R/MRcoefs.R0000644000175400017540000001030313175714310016253 0ustar00biocbuildbiocbuild#' Table of top-ranked features from fitZig or fitFeatureModel #' #' Extract a table of the top-ranked features from a linear model fit. This #' function will be updated soon to provide better flexibility similar to #' limma's topTable. #' #' #' @param obj Output of fitFeatureModel or fitZig. #' @param by Column number or column name specifying which coefficient or #' contrast of the linear model is of interest. #' @param coef Column number(s) or column name(s) specifying which coefficient #' or contrast of the linear model to display. #' @param number The number of bacterial features to pick out. #' @param taxa Taxa list. #' @param uniqueNames Number the various taxa. #' @param adjustMethod Method to adjust p-values by. Default is "FDR". Options #' include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", #' "none". See \code{\link{p.adjust}} for more details. #' @param group One of five choices, 0,1,2,3,4. 0: the sort is ordered by a #' decreasing absolute value coefficient fit. 1: the sort is ordered by the raw #' coefficient fit in decreasing order. 2: the sort is ordered by the raw #' coefficient fit in increasing order. 3: the sort is ordered by the p-value #' of the coefficient fit in increasing order. 4: no sorting. #' @param eff Filter features to have at least a "eff" quantile or number of effective samples. #' @param numberEff Boolean, whether eff should represent quantile (default/FALSE) or number. #' @param counts Filter features to have at least 'counts' counts. #' @param file Name of output file, including location, to save the table. #' @return Table of the top-ranked features determined by the linear fit's #' coefficient. #' @seealso \code{\link{fitZig}} \code{\link{fitFeatureModel}} \code{\link{MRtable}} \code{\link{MRfulltable}} #' @examples #' #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' lungTrim=filterData(lungTrim,present=30) #' lungTrim=cumNorm(lungTrim,p=0.5) #' smokingStatus = pData(lungTrim)$SmokingStatus #' mod = model.matrix(~smokingStatus) #' fit = fitZig(obj = lungTrim,mod=mod) #' head(MRcoefs(fit)) #' #### #' fit = fitFeatureModel(obj = lungTrim,mod=mod) #' head(MRcoefs(fit)) #' MRcoefs<-function(obj,by=2,coef=NULL,number=10,taxa=obj$taxa, uniqueNames=FALSE,adjustMethod="fdr",group=0,eff=0,numberEff=FALSE,counts=0,file=NULL){ if(length(grep("fitFeatureModel",obj$call))){ groups = factor(obj$design[,by]) by = "logFC"; coef = 1:2; tb = data.frame(logFC=obj$fitZeroLogNormal$logFC,se=obj$fitZeroLogNormal$se) p = obj$pvalues } else { tb = obj$fit$coefficients if(is.null(coef)){ coef = 1:ncol(tb) } p=obj$eb$p.value[,by] groups = factor(obj$fit$design[,by]) if(eff>0){ effectiveSamples = calculateEffectiveSamples(obj) if(numberEff == FALSE){ valid = which(effectiveSamples>=quantile(effectiveSamples,p=eff,na.rm=TRUE)) } else { valid = which(effectiveSamples>=eff) } } } tx = as.character(taxa) if(uniqueNames==TRUE){ for (nm in unique(tx)) { ii=which(tx==nm) tx[ii]=paste(tx[ii],seq_along(ii),sep=":") } } padj = p.adjust(p,method=adjustMethod) if(group==0){ srt = order(abs(tb[,by]),decreasing=TRUE) } else if(group==1){ srt = order((tb[,by]),decreasing=TRUE) } else if(group==2){ srt = order((tb[,by]),decreasing=FALSE) } else if(group==3){ srt = order(p,decreasing=FALSE) } else { srt = 1:length(padj); } valid = 1:length(padj); if(counts>0){ np=rowSums(obj$counts); valid = intersect(valid,which(np>=counts)); } srt = srt[which(srt%in%valid)][1:min(number,nrow(tb))]; mat = cbind(tb[,coef],p) mat = cbind(mat,padj) rownames(mat) = tx; mat = mat[srt,] nm = c(colnames(tb)[coef],"pvalues","adjPvalues") colnames(mat) = nm if(!is.null(file)){ nm = c("Taxa",nm) mat2 = cbind(rownames(mat),mat) mat2 = rbind(nm,mat2) write(t(mat2),ncolumns=ncol(mat2),file=file,sep="\t") } return(as.data.frame(mat)) } metagenomeSeq/R/MRexperiment2biom.R0000644000175400017540000000603113175714310020270 0ustar00biocbuildbiocbuild#' MRexperiment to biom objects #' #' Wrapper to convert MRexperiment objects to biom objects. #' #' @param obj The MRexperiment object. #' @param id Optional id for the biom matrix. #' @param norm normalize count table #' @param log log2 transform count table #' @param sl scaling factor for normalized counts. #' @param qiimeVersion Format fData according to QIIME specifications (assumes only taxonomy in fData). #' @return A biom object. #' @seealso \code{\link{loadMeta}} \code{\link{loadPhenoData}} \code{\link{newMRexperiment}} \code{\link{loadBiom}} \code{\link{biom2MRexperiment}} MRexperiment2biom <- function(obj,id=NULL,norm=FALSE,log=FALSE,sl=1000,qiimeVersion=TRUE){ requireNamespace("biomformat") id = id format = "Biological Observation Matrix 1.0.0-dev" format_url = "http://biom-format.org/documentation/format_versions/biom-1.0.html" type = "OTU table" generated_by = sprintf("metagenomeSeq %s",packageVersion("metagenomeSeq")) date = as.character(Sys.time()) matrix_type = "dense" matrix_element_type = "int" if( (norm==TRUE) | (log == TRUE) ) { matrix_element_type = "float" } data = MRcounts(obj,norm=norm,log=log,sl=sl) shape = dim(data) rows = metadata(fData(obj),qiimeVersion=qiimeVersion) columns= metadata(pData(obj)) data = as.list(as.data.frame(t(data))) names(data) <- NULL biomlist = list(id=id,format=format,format_url=format_url,type=type,generated_by=generated_by, date=date,matrix_type=matrix_type,matrix_element_type=matrix_element_type,shape=shape, rows=rows,columns=columns,data=data) biomformat::biom(biomlist) } metadata <- function(df,qiimeVersion=FALSE){ if(ncol(df)>0){ for(i in 1:ncol(df)){ df[,i] = as.character(df[,i]) } } if(qiimeVersion==TRUE){ if(ncol(df)==0){ meta = lapply(1:nrow(df),function(i){ ll = list(id=rownames(df)[i],metadata=NULL) ll }) } else { meta = lapply(1:nrow(df),function(i){ ll = list(id=rownames(df)[i], metadata=list("taxonomy" = paste(df[i,]))) NAvalues = grep("NA$",ll$metadata$taxonomy) if(length(NAvalues)>0){ k = NAvalues[1] ll$metadata$taxonomy = paste(df[i,1:(k-1)]) } ll }) } return(meta) } else { if(ncol(df)==0){ meta = lapply(1:nrow(df),function(i){ ll = list(id=rownames(df)[i],metadata=NULL) ll }) } else { meta = lapply(1:nrow(df),function(i){ ll = list(id=rownames(df)[i], metadata=lapply(1:ncol(df), function(j){as.character(df[i,j])})) names(ll$metadata) = colnames(df) ll }) } return(meta) } } metagenomeSeq/R/MRfulltable.R0000644000175400017540000001177713175714310017146 0ustar00biocbuildbiocbuild#' Table of top microbial marker gene from linear model fit including sequence #' information #' #' Extract a table of the top-ranked features from a linear model fit. This #' function will be updated soon to provide better flexibility similar to #' limma's topTable. This function differs from \code{link{MRcoefs}} in that it #' provides other information about the presence or absence of features to help #' ensure significant features called are moderately present. #' #' #' @param obj A list containing the linear model fit produced by lmFit through #' fitZig. #' @param by Column number or column name specifying which coefficient or #' contrast of the linear model is of interest. #' @param coef Column number(s) or column name(s) specifying which coefficient #' or contrast of the linear model to display. #' @param number The number of bacterial features to pick out. #' @param taxa Taxa list. #' @param uniqueNames Number the various taxa. #' @param adjustMethod Method to adjust p-values by. Default is "FDR". Options #' include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", #' "none". See \code{\link{p.adjust}} for more details. #' @param group One of five choices: 0,1,2,3,4. 0: the sort is ordered by a #' decreasing absolute value coefficient fit. 1: the sort is ordered by the raw #' coefficient fit in decreasing order. 2: the sort is ordered by the raw #' coefficient fit in increasing order. 3: the sort is ordered by the p-value #' of the coefficient fit in increasing order. 4: no sorting. #' @param eff Filter features to have at least a "eff" quantile or number of effective samples. #' @param numberEff Boolean, whether eff should represent quantile (default/FALSE) or number. #' @param ncounts Filter features to those with at least 'counts' counts. #' @param file Name of output file, including location, to save the table. #' @return Table of the top-ranked features determined by the linear fit's #' coefficient. #' @seealso \code{\link{fitZig}} \code{\link{fitFeatureModel}} \code{\link{MRcoefs}} \code{\link{MRtable}} #' \code{\link{fitPA}} #' @examples #' #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' lungTrim=filterData(lungTrim,present=30) #' lungTrim=cumNorm(lungTrim,p=0.5) #' smokingStatus = pData(lungTrim)$SmokingStatus #' mod = model.matrix(~smokingStatus) #' fit = fitZig(obj = lungTrim,mod=mod) #' # head(MRfulltable(fit)) #' #### #' fit = fitFeatureModel(obj = lungTrim,mod=mod) #' # head(MRfulltable(fit)) #' MRfulltable<-function(obj,by=2,coef=NULL,number=10,taxa=obj$taxa, uniqueNames=FALSE,adjustMethod="fdr",group=0,eff=0,numberEff=FALSE,ncounts=0,file=NULL){ if(length(grep("fitFeatureModel",obj$call))){ groups = factor(obj$design[,by]) by = "logFC"; coef = 1:2; tb = data.frame(logFC=obj$fitZeroLogNormal$logFC,se=obj$fitZeroLogNormal$se) p = obj$pvalues } else { tb = obj$fit$coefficients if(is.null(coef)){ coef = 1:ncol(tb) } p=obj$eb$p.value[,by] groups = factor(obj$fit$design[,by]) if(eff>0){ effectiveSamples = calculateEffectiveSamples(obj) if(numberEff == FALSE){ valid = which(effectiveSamples>=quantile(effectiveSamples,p=eff,na.rm=TRUE)) } else { valid = which(effectiveSamples>=eff) } } } tx = as.character(taxa) if(uniqueNames==TRUE){ for (nm in unique(tx)) { ii=which(tx==nm) tx[ii]=paste(tx[ii],seq_along(ii),sep=":") } } padj = p.adjust(p,method=adjustMethod) cnts = obj$counts yy = cnts>0 pa = matrix(unlist(fitPA(obj$counts,groups)),ncol=5) np0 = rowSums(yy[,groups==0]) np1 = rowSums(yy[,groups==1]) nc0 = rowSums(cnts[,groups==0]) nc1 = rowSums(cnts[,groups==1]) if(group==0){ srt = order(abs(tb[,by]),decreasing=TRUE) } else if(group==1){ srt = order((tb[,by]),decreasing=TRUE) } else if(group==2){ srt = order((tb[,by]),decreasing=FALSE) } else if(group==3){ srt = order(p,decreasing=FALSE) } else { srt = 1:length(padj) } valid = 1:length(padj) if(ncounts>0){ np=rowSums(cbind(np0,np1)) valid = intersect(valid,which(np>=ncounts)) } srt = srt[which(srt%in%valid)][1:min(number,nrow(tb))] mat = cbind(np0,np1) mat = cbind(mat,nc0) mat = cbind(mat,nc1) mat = cbind(mat,pa) mat = cbind(mat,tb[,coef]) mat = cbind(mat,p) mat = cbind(mat,padj) rownames(mat) = tx mat = mat[srt,] nm = c("+samples in group 0","+samples in group 1","counts in group 0", "counts in group 1",c("oddsRatio","lower","upper","fisherP","fisherAdjP"), colnames(tb)[coef],"pvalues","adjPvalues") colnames(mat) = nm if(!is.null(file)){ nm = c("Taxa",nm) mat2 = cbind(rownames(mat),mat) mat2 = rbind(nm,mat2) write(t(mat2),ncolumns=ncol(mat2),file=file,sep="\t") } return(as.data.frame(mat)) } metagenomeSeq/R/MRtable.R0000644000175400017540000001147213175714310016253 0ustar00biocbuildbiocbuild#' Table of top microbial marker gene from linear model fit including sequence #' information #' #' Extract a table of the top-ranked features from a linear model fit. This #' function will be updated soon to provide better flexibility similar to #' limma's topTable. This function differs from \code{link{MRcoefs}} in that it #' provides other information about the presence or absence of features to help #' ensure significant features called are moderately present. #' #' #' @param obj Output of fitFeatureModel or fitZig. #' @param by Column number or column name specifying which coefficient or #' contrast of the linear model is of interest. #' @param coef Column number(s) or column name(s) specifying which coefficient #' or contrast of the linear model to display. #' @param number The number of bacterial features to pick out. #' @param taxa Taxa list. #' @param uniqueNames Number the various taxa. #' @param adjustMethod Method to adjust p-values by. Default is "FDR". Options #' include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", #' "none". See \code{\link{p.adjust}} for more details. #' @param group One of five choices, 0,1,2,3,4. 0: the sort is ordered by a #' decreasing absolute value coefficient fit. 1: the sort is ordered by the raw #' coefficient fit in decreasing order. 2: the sort is ordered by the raw #' coefficient fit in increasing order. 3: the sort is ordered by the p-value #' of the coefficient fit in increasing order. 4: no sorting. #' @param eff Filter features to have at least a "eff" quantile or number of effective samples. #' @param numberEff Boolean, whether eff should represent quantile (default/FALSE) or number. #' @param ncounts Filter features to have at least 'counts' of counts. #' @param file Name of file, including location, to save the table. #' @return Table of the top-ranked features determined by the linear fit's #' coefficient. #' @seealso \code{\link{fitZig}} \code{\link{fitFeatureModel}} \code{\link{MRcoefs}} \code{\link{MRfulltable}} #' @examples #' #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' lungTrim=filterData(lungTrim,present=30) #' lungTrim=cumNorm(lungTrim,p=0.5) #' smokingStatus = pData(lungTrim)$SmokingStatus #' mod = model.matrix(~smokingStatus) #' fit = fitZig(obj = lungTrim,mod=mod) #' head(MRtable(fit)) #' #### #' fit = fitFeatureModel(obj = lungTrim,mod=mod) #' head(MRtable(fit)) #' MRtable<-function(obj,by=2,coef=NULL,number=10,taxa=obj$taxa, uniqueNames=FALSE,adjustMethod="fdr",group=0,eff=0,numberEff=FALSE,ncounts=0,file=NULL){ if(length(grep("fitFeatureModel",obj$call))){ groups = factor(obj$design[,by]) by = "logFC"; coef = 1:2; tb = data.frame(logFC=obj$fitZeroLogNormal$logFC,se=obj$fitZeroLogNormal$se) p = obj$pvalues } else { tb = obj$fit$coefficients if(is.null(coef)){ coef = 1:ncol(tb) } p=obj$eb$p.value[,by] groups = factor(obj$fit$design[,by]) if(eff>0){ effectiveSamples = calculateEffectiveSamples(obj) if(numberEff == FALSE){ valid = which(effectiveSamples>=quantile(effectiveSamples,p=eff,na.rm=TRUE)) } else { valid = which(effectiveSamples>=eff) } } } tx = as.character(taxa) if(uniqueNames==TRUE){ for (nm in unique(tx)) { ii=which(tx==nm) tx[ii]=paste(tx[ii],seq_along(ii),sep=":") } } padj = p.adjust(p,method=adjustMethod) cnts = obj$counts posIndices = cnts>0 np0 = rowSums(posIndices[,groups==0]) np1 = rowSums(posIndices[,groups==1]) nc0 = rowSums(cnts[,groups==0]) nc1 = rowSums(cnts[,groups==1]) if(group==0){ srt = order(abs(tb[,by]),decreasing=TRUE) } else if(group==1){ srt = order((tb[,by]),decreasing=TRUE) } else if(group==2){ srt = order((tb[,by]),decreasing=FALSE) } else if(group==3){ srt = order(p,decreasing=FALSE) } else { srt = 1:length(padj) } valid = 1:length(padj) if(ncounts>0){ np=rowSums(cbind(np0,np1)) valid = intersect(valid,which(np>=ncounts)) } srt = srt[which(srt%in%valid)][1:min(number,nrow(tb))] mat = cbind(np0,np1) mat = cbind(mat,nc0) mat = cbind(mat,nc1) mat = cbind(mat,tb[,coef]) mat = cbind(mat,p) mat = cbind(mat,padj) rownames(mat) = tx mat = mat[srt,] nm = c("+samples in group 0","+samples in group 1","counts in group 0", "counts in group 1",colnames(tb)[coef],"pvalues","adjPvalues") colnames(mat) = nm if(!is.null(file)){ nm = c("Taxa",nm) mat2 = cbind(rownames(mat),mat) mat2 = rbind(nm,mat2) write(t(mat2),ncolumns=ncol(mat2),file=file,sep="\t") } return(as.data.frame(mat)) } metagenomeSeq/R/aggregateBySample.R0000644000175400017540000000446213175714310020311 0ustar00biocbuildbiocbuild#' Aggregates a MRexperiment object or counts matrix to by a factor. #' #' Using the phenoData information in the MRexperiment, calling aggregateBySample on a #' MRexperiment and a particular phenoData column (i.e. 'diet') will aggregate counts #' using the aggfun function (default rowMeans). Possible aggfun alternatives #' include rowMeans and rowMedians. #' #' @param obj A MRexperiment object or count matrix. #' @param fct phenoData column name from the MRexperiment object or if count matrix object a vector of labels. #' @param aggfun Aggregation function. #' @param out Either 'MRexperiment' or 'matrix' #' @return An aggregated count matrix or MRexperiment object where the new pData is a vector of `fct` levels. #' @aliases aggSamp #' @rdname aggregateBySample #' @export #' @examples #' #' data(mouseData) #' aggregateBySample(mouseData[1:100,],fct="diet",aggfun=rowSums) #' # not run #' # aggregateBySample(mouseData,fct="diet",aggfun=matrixStats::rowMedians) #' # aggSamp(mouseData,fct='diet',aggfun=rowMaxs) #' aggregateBySample<-function(obj,fct,aggfun=rowMeans,out="MRexperiment"){ if(class(obj)=="MRexperiment"){ mat = MRcounts(obj) if(length(fct)==1) factors = as.character(pData(obj)[,fct]) else factors = as.character(fct) } else { mat = obj factors = as.character(fct) if(length(factors)!=ncol(mat)) stop("If input is a count matrix, fct must be a vector of length = ncol(count matrix)") } if(!(out%in%c("MRexperiment","matrix"))){ stop("The variable out must either be 'MRexperiment' or 'matrix'") } grps = split(seq_along(factors),factors) newMat = array(NA,dim=c(nrow(obj),length(grps))) for(i in seq_along(grps)){ newMat[,i] = aggfun(mat[,grps[[i]],drop=FALSE]) } colnames(newMat) = names(grps) rownames(newMat) = rownames(obj) if(out=='matrix') return(newMat) if(out=='MRexperiment'){ pd = data.frame(names(grps)) colnames(pd) = "phenoData" rownames(pd) = names(grps) pd = as(pd,"AnnotatedDataFrame") if(class(obj)=="MRexperiment"){ fd = as(fData(obj),"AnnotatedDataFrame") newObj = newMRexperiment(newMat,featureData=fd,phenoData=pd) } else { newObj = newMRexperiment(newMat,phenoData=pd) } return(newObj) } } #' @rdname aggregateBySample #' @export aggSamp<-function(obj,fct,aggfun=rowMeans,out='MRexperiment'){ aggregateBySample(obj,fct,aggfun=aggfun,out=out) } metagenomeSeq/R/aggregateByTaxonomy.R0000644000175400017540000000716513175714310020711 0ustar00biocbuildbiocbuild#' Aggregates a MRexperiment object or counts matrix to a particular level. #' #' Using the featureData information in the MRexperiment, calling aggregateByTaxonomy on a #' MRexperiment and a particular featureData column (i.e. 'genus') will aggregate counts #' to the desired level using the aggfun function (default colSums). Possible aggfun alternatives #' include colMeans and colMedians. #' #' @param obj A MRexperiment object or count matrix. #' @param lvl featureData column name from the MRexperiment object or if count matrix object a vector of labels. #' @param alternate Use the rowname for undefined OTUs instead of aggregating to "no_match". #' @param norm Whether to aggregate normalized counts or not. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param aggfun Aggregation function. #' @param sl scaling value, default is 1000. #' @param out Either 'MRexperiment' or 'matrix' #' @param featureOrder Hierarchy of levels in taxonomy as fData colnames #' @param returnFullHierarchy Boolean value to indicate return single column of fData or all columns of hierarchy #' @return An aggregated count matrix. #' @aliases aggTax #' @rdname aggregateByTaxonomy #' @export #' @examples #' #' data(mouseData) #' aggregateByTaxonomy(mouseData[1:100,],lvl="class",norm=TRUE,aggfun=colSums) #' # not run #' # aggregateByTaxonomy(mouseData,lvl="class",norm=TRUE,aggfun=colMedians) #' # aggTax(mouseData,lvl='phylum',norm=FALSE,aggfun=colSums) #' aggregateByTaxonomy<-function(obj,lvl,alternate=FALSE,norm=FALSE,log=FALSE,aggfun = colSums,sl=1000,featureOrder=NULL,returnFullHierarchy=TRUE,out="MRexperiment"){ if(class(obj)=="MRexperiment"){ mat = MRcounts(obj,norm=norm,log=log,sl=sl) if(length(lvl)==1) levels = as.character(fData(obj)[,lvl]) else levels = as.character(lvl) } else { mat = obj levels = as.character(lvl) if(length(levels)!=nrow(mat)) stop("If input is a count matrix, lvl must be a vector of length = nrow(count matrix)") } if(!(out%in%c("MRexperiment","matrix"))){ stop("The variable out must either be 'MRexperiment' or 'matrix'") } nafeatures = is.na(levels) if(length(nafeatures)>0){ if(alternate==FALSE){ levels[nafeatures] = "no_match" } else { levels[nafeatures] = paste("OTU_",rownames(obj)[nafeatures],sep="") } } grps = split(seq_along(levels),levels) newMat = array(NA,dim=c(length(grps),ncol(obj))) for(i in seq_along(grps)){ newMat[i,] = aggfun(mat[grps[[i]],,drop=FALSE]) } rownames(newMat) = names(grps) colnames(newMat) = colnames(obj) if(out=='matrix') return(newMat) if(out=='MRexperiment'){ if(returnFullHierarchy){ if(is.null(featureOrder)){ featureOrder <- colnames(fData(obj)) } taxa = featureData(obj)[match(names(grps), fData(obj)[,lvl]),featureOrder[1:which(featureOrder == lvl)]] featureNames(taxa) = names(grps) } else{ taxa = data.frame(names(grps)) colnames(taxa) = "Taxa" rownames(taxa) = names(grps) taxa = as(taxa,"AnnotatedDataFrame") } if(class(obj)=="MRexperiment"){ pd = phenoData(obj) newObj = newMRexperiment(newMat,featureData=taxa,phenoData=pd) } else { newObj = newMRexperiment(newMat,featureData=taxa) } return(newObj) } } #' @rdname aggregateByTaxonomy #' @export aggTax<-function(obj,lvl,alternate=FALSE,norm=FALSE,log=FALSE,aggfun = colSums,sl=1000,featureOrder=NULL,returnFullHierarchy=TRUE,out='MRexperiment'){ aggregateByTaxonomy(obj,lvl,alternate=alternate,norm=norm,log=log,aggfun = aggfun,sl=sl,featureOrder=featureOrder,returnFullHierarchy=returnFullHierarchy,out=out) } metagenomeSeq/R/allClasses.R0000644000175400017540000002406713175714310017017 0ustar00biocbuildbiocbuildsetClass("MRexperiment", contains=c("eSet"), representation=representation(expSummary = "environment"),prototype = prototype( new( "VersionedBiobase",versions = c(classVersion("eSet"),MRexperiment = "1.0.0" )))) setMethod("[", "MRexperiment", function (x, i, j, ..., drop = FALSE) { obj= callNextMethod() if(!missing(j)){ obj@expSummary = new("environment",expSummary=as(expSummary(x)[j,1:2,...,drop=drop],"AnnotatedDataFrame"),cumNormStat=x@expSummary$cumNormStat) if(length(pData(obj))>0){ for(i in 1:length(pData(obj))){ if(is.factor(pData(obj)[,i])){ pData(obj)[,i] = factor(pData(obj)[,i]) } else { pData(obj)[,i] = pData(obj)[,i] } } } } obj }) setMethod("colSums", signature ="MRexperiment", function (x, ...) { callNextMethod(MRcounts(x),...) }) setMethod("rowSums", signature="MRexperiment", function (x, ...) { callNextMethod(MRcounts(x),...) }) setMethod("rowMeans", signature="MRexperiment", function (x, ...) { callNextMethod(MRcounts(x),...) }) setMethod("colMeans", signature="MRexperiment", function (x, ...) { callNextMethod(MRcounts(x),...) }) #' Access the normalization factors in a MRexperiment object #' #' Function to access the scaling factors, aka the normalization factors, of #' samples in a MRexperiment object. #' #' @name normFactors #' @docType methods #' @param object a \code{MRexperiment} object #' @return Normalization scaling factors #' @author Joseph N. Paulson #' @examples #' #' data(lungData) #' head(normFactors(lungData)) #' setGeneric("normFactors",function(object){standardGeneric("normFactors")}) setGeneric("normFactors<-",function(object,value){standardGeneric("normFactors<-")}) setMethod("normFactors", signature="MRexperiment",function(object) { nf <- expSummary(object)$normFactors nf <- unlist(nf) names(nf) <- sampleNames(object) nf }) #' Replace the normalization factors in a MRexperiment object #' #' Function to replace the scaling factors, aka the normalization factors, of #' samples in a MRexperiment object. #' #' @name normFactors<- #' @docType methods #' @aliases normFactors<-,MRexperiment,numeric-method normFactors<- #' @param object a \code{MRexperiment} object #' @param value vector of normalization scaling factors #' @return Normalization scaling factors #' @author Joseph N. Paulson #' @examples #' #' data(lungData) #' head(normFactors(lungData)<- rnorm(1)) #' setReplaceMethod("normFactors", signature=c(object="MRexperiment", value="numeric"), function( object, value ) { pData(object@expSummary$expSummary)$normFactors <- value validObject( object ) object }) #' Access sample depth of coverage from MRexperiment object #' #' Access the libSize vector represents the column (sample specific) sums of features, #' i.e. the total number of reads for a sample or depth of coverage. It is used by #' \code{\link{fitZig}}. #' #' @name libSize #' @docType methods #' @param object a \code{MRexperiment} object #' @return Library sizes #' @author Joseph N. Paulson #' @examples #' #' data(lungData) #' head(libSize(lungData)) #' setGeneric("libSize",function(object){standardGeneric("libSize")}) setGeneric("libSize<-",function(object,value){standardGeneric("libSize<-")}) setMethod("libSize", signature="MRexperiment",function(object) { ls <- expSummary(object)$libSize ls <- unlist(ls) names(ls) <- sampleNames(object) ls }) #' Replace the library sizes in a MRexperiment object #' #' Function to replace the scaling factors, aka the library sizes, of #' samples in a MRexperiment object. #' #' @name libSize<- #' @docType methods #' @aliases libSize<-,MRexperiment,numeric-method libSize<- #' @param object a \code{MRexperiment} object #' @param value vector of library sizes #' @return vector library sizes #' @author Joseph N. Paulson #' @examples #' #' data(lungData) #' head(libSize(lungData)<- rnorm(1)) #' setReplaceMethod("libSize", signature=c(object="MRexperiment", value="numeric"), function( object, value ) { pData(object@expSummary$expSummary)$libSize <- value validObject( object ) object }) #' Create a MRexperiment object #' #' This function creates a MRexperiment object from a matrix or data frame of #' count data. #' #' See \code{\link{MRexperiment-class}} and \code{eSet} (from the Biobase #' package) for the meaning of the various slots. #' #' @param counts A matrix or data frame of count data. The count data is #' representative of the number of reads annotated for a feature (be it gene, #' OTU, species, etc). Rows should correspond to features and columns to #' samples. #' @param phenoData An AnnotatedDataFrame with pertinent sample information. #' @param featureData An AnnotatedDataFrame with pertinent feature information. #' @param libSize libSize, library size, is the total number of reads for a #' particular sample. #' @param normFactors normFactors, the normalization factors used in either the #' model or as scaling factors of sample counts for each particular sample. #' @return an object of class MRexperiment #' @author Joseph N Paulson #' @examples #' #' cnts = matrix(abs(rnorm(1000)),nc=10) #' obj <- newMRexperiment(cnts) #' newMRexperiment <- function(counts, phenoData=NULL, featureData=NULL,libSize=NULL, normFactors=NULL) { counts= as.matrix(counts) if( is.null( featureData ) ){ featureData <- annotatedDataFrameFrom(counts, byrow=TRUE) } if( is.null( phenoData ) ){ phenoData <- annotatedDataFrameFrom(counts, byrow=FALSE) } if( is.null( libSize ) ){ libSize <- as.matrix(colSums(counts)) rownames(libSize) = colnames(counts) } if( is.null( normFactors ) ){ normFactors <- as.matrix(rep( NA_real_, length(libSize) )) rownames(normFactors) = rownames(libSize) } obj <-new("MRexperiment", assayData = assayDataNew("environment",counts=counts),phenoData = phenoData,featureData = featureData ,expSummary = new("environment",expSummary=annotatedDataFrameFrom(counts,byrow=FALSE),cumNormStat=NULL)) obj@expSummary$expSummary$libSize = libSize; obj@expSummary$expSummary$normFactors=normFactors; validObject(obj) obj } setValidity( "MRexperiment", function( object ) { if( is.null(assayData(object)$counts)) return( "There are no counts!" ) # if( ncol(MRcounts(object)) != length(normFactors(object))) # return( "Experiment summary got hacked!" ) # if( ncol(MRcounts(object)) != length(libSize(object))) # return( "Experiment summary got hacked!" ) TRUE } ) #' Accessor for the counts slot of a MRexperiment object #' #' The counts slot holds the raw count data representing (along the rows) the #' number of reads annotated for a particular feature and (along the columns) #' the sample. #' #' #' @name MRcounts #' @aliases MRcounts,MRexperiment-method MRcounts #' @docType methods #' @param obj a \code{MRexperiment} object. #' @param norm logical indicating whether or not to return normalized counts. #' @param log TRUE/FALSE whether or not to log2 transform scale. #' @param sl The value to scale by (default=1000). #' @return Normalized or raw counts #' @author Joseph N. Paulson, jpaulson@@umiacs.umd.edu #' @examples #' #' data(lungData) #' head(MRcounts(lungData)) #' MRcounts <- function(obj,norm=FALSE,log=FALSE,sl=1000) { stopifnot( is( obj, "MRexperiment" ) ) if(!norm){ x=assayData(obj)[["counts"]] } else{ if(any(is.na(normFactors(obj)))){ x=cumNormMat(obj,sl=sl) } else{ x=sweep(assayData(obj)[["counts"]],2,as.vector(unlist(normFactors(obj)))/sl,"/") } } if(!log){ return(x) } else{ return(log2(x+1)) } } #' Access the posterior probabilities that results from analysis #' #' Accessing the posterior probabilities following a run through #' \code{\link{fitZig}} #' #' #' @name posteriorProbs #' @aliases posteriorProbs,MRexperiment-method posteriorProbs #' @docType methods #' @param obj a \code{MRexperiment} object. #' @return Matrix of posterior probabilities #' @author Joseph N. Paulson #' @examples #' #' # This is a simple demonstration #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' k = which(rowSums(MRcounts(lungTrim)>0)<30) #' lungTrim = cumNorm(lungTrim) #' lungTrim = lungTrim[-k,] #' smokingStatus = pData(lungTrim)$SmokingStatus #' mod = model.matrix(~smokingStatus) #' # The maxit is not meant to be 1 - this is for demonstration/speed #' settings = zigControl(maxit=1,verbose=FALSE) #' fit = fitZig(obj = lungTrim,mod=mod,control=settings) #' head(posteriorProbs(lungTrim)) #' posteriorProbs <- function( obj ) { stopifnot( is( obj, "MRexperiment" ) ) assayData(obj)[["z"]] } #' Access MRexperiment object experiment data #' #' The expSummary vectors represent the column (sample specific) sums of #' features, i.e. the total number of reads for a sample, libSize and also the #' normalization factors, normFactor. #' #' #' @name expSummary #' @aliases expSummary,MRexperiment-method expSummary #' @docType methods #' @param obj a \code{MRexperiment} object. #' @return Experiment summary table #' @author Joseph N. Paulson, jpaulson@@umiacs.umd.edu #' @examples #' #' data(mouseData) #' expSummary(mouseData) #' expSummary<-function(obj){ stopifnot( is( obj, "MRexperiment" ) ) pData(obj@expSummary$expSummary) } #' Check if MRexperiment or matrix and return matrix #' #' Function to check if object is a MRexperiment #' class or matrix #' #' @name returnAppropriateObj #' @param obj a \code{MRexperiment} or \code{matrix} object #' @param norm return a normalized \code{MRexperiment} matrix #' @param log return a log transformed \code{MRexperiment} matrix #' @param sl scaling value #' @return Matrix #' @examples #' #' data(lungData) #' head(returnAppropriateObj(lungData,norm=FALSE,log=FALSE)) #' returnAppropriateObj <- function(obj,norm,log,sl=1000) { if(class(obj)=="MRexperiment"){ mat = MRcounts(obj,norm=norm,log=log,sl=sl) } else if(class(obj) == "matrix") { mat = obj } else { stop("Object needs to be either a MRexperiment object or matrix") } mat } metagenomeSeq/R/biom2MRexperiment.R0000644000175400017540000000241213175714310020267 0ustar00biocbuildbiocbuild#' Biom to MRexperiment objects #' #' Wrapper to convert biom files to MRexperiment objects. #' #' @param obj The biom object file. #' @return A MRexperiment object. #' @seealso \code{\link{loadMeta}} \code{\link{loadPhenoData}} \code{\link{newMRexperiment}} \code{\link{loadBiom}} #' @examples #' #' library(biomformat) #' rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat") #' x = biomformat::read_biom(rich_dense_file) #' biom2MRexperiment(x) #' biom2MRexperiment <- function(obj){ requireNamespace("biomformat") mat = as(biomformat::biom_data(obj),"matrix") if(! is.null(biomformat::observation_metadata(obj))){ len = max(sapply(biomformat::observation_metadata(obj),length)) taxa = as.matrix(sapply(biomformat::observation_metadata(obj),function(i){ i[1:len]})) if(dim(taxa)[1]!=dim(mat)[1]){ taxa = t(taxa) } rownames(taxa) = rownames(mat) colnames(taxa) = colnames(biomformat::observation_metadata(obj)) taxa = as(data.frame(taxa),"AnnotatedDataFrame") } else{ taxa = NULL } if(! is.null(biomformat::sample_metadata(obj))) { pd = as(biomformat::sample_metadata(obj),"AnnotatedDataFrame") } else{ pd = NULL } mrobj = newMRexperiment(counts = mat, phenoData = pd, featureData = taxa) return(mrobj) } metagenomeSeq/R/calculateEffectiveSamples.R0000644000175400017540000000117113175714310022023 0ustar00biocbuildbiocbuild#' Estimated effective samples per feature #' #' Calculates the number of estimated effective samples per feature from the output #' of a fitZig run. The estimated effective samples per feature is calculated as the #' sum_1^n (n = number of samples) 1-z_i where z_i is the posterior probability a feature #' belongs to the technical distribution. #' #' @param obj The output of fitZig run on a MRexperiment object. #' @return A list of the estimated effective samples per feature. #' @seealso \code{\link{fitZig}} \code{\link{MRcoefs}} \code{\link{MRfulltable}} #' calculateEffectiveSamples<-function(obj){ rowSums(1-obj$z) } metagenomeSeq/R/correlationTest.R0000644000175400017540000001026013175714310020100 0ustar00biocbuildbiocbuild#' Correlation of each row of a matrix or MRexperiment object #' #' Calculates the (pairwise) correlation statistics and associated p-values of a matrix #' or the correlation of each row with a vector. #' #' @param obj A MRexperiment object or count matrix. #' @param y Vector of length ncol(obj) to compare to. #' @param method One of 'pearson','spearman', or 'kendall'. #' @param alternative Indicates the alternative hypothesis and must be one of 'two.sided', 'greater' (positive) or 'less'(negative). You can specify just the initial letter. #' @param norm Whether to aggregate normalized counts or not - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param cores Number of cores to use. #' @param override If the number of rows to test is over a thousand the test will not commence (unless override==TRUE). #' @param ... Extra parameters for mclapply. #' @return A matrix of size choose(number of rows, 2) by 2. The first column corresponds to the correlation value. The second column the p-value. #' @seealso \code{\link{correctIndices}} #' @aliases corTest #' @export #' @examples #' #' # Pairwise correlation of raw counts #' data(mouseData) #' cors = correlationTest(mouseData[1:10,],norm=FALSE,log=FALSE) #' head(cors) #' #' mat = MRcounts(mouseData)[1:10,] #' cormat = as.matrix(dist(mat)) # Creating a matrix #' cormat[cormat>0] = 0 # Creating an empty matrix #' ind = correctIndices(nrow(mat)) #' cormat[upper.tri(cormat)][ind] = cors[,1] #' table(cormat[1,-1] - cors[1:9,1]) #' #' # Correlation of raw counts with a vector (library size in this case) #' data(mouseData) #' cors = correlationTest(mouseData[1:10,],libSize(mouseData),norm=FALSE,log=FALSE) #' head(cors) #' correlationTest <- function(obj,y=NULL,method="pearson",alternative="two.sided",norm=TRUE,log=TRUE,cores=1,override=FALSE,...){ mat = returnAppropriateObj(obj,norm,log) nr = nrow(mat) if(nr > 1000){ if(override){ show("Good luck! This might take some time.") } else { stop("Many features being considered - to proceed set override to TRUE") } } if(is.null(rownames(mat))){ nm = as.character(1:nr) } else { nm = rownames(mat) } if(is.null(y)){ corrAndP = mclapply(1:(nr-1),function(i){ vals =(i+1):nr cp = array(NA,dim=c(length(vals),2)) rownames(cp) = paste(nm[i],nm[(i+1):nr],sep="-") colnames(cp) = c("correlation","pvalue") for(j in (i+1):nr){ x = as.numeric(mat[i,]) y = as.numeric(mat[j,]) res = cor.test(x,y,method=method, alternative=alternative) cp[j-i,1] = res$estimate cp[j-i,2] = res$p.value } cp },mc.cores=cores,...) } else { corrAndP = mclapply(1:nr,function(i){ res = cor.test(mat[i,],y,method=method, alternative=alternative) cbind(res$estimate,res$p.value) },mc.cores=cores,...) } correlation = unlist(sapply(corrAndP,function(i){i[,1]})) p = unlist(sapply(corrAndP,function(i){i[,2]})) results = cbind(correlation,p) if(is.null(y)) rownames(results)[nrow(results)] = rownames(corrAndP[[nr-1]]) if(!is.null(y)) rownames(results) = rownames(obj) return(results) } #' Calculate the correct indices for the output of correlationTest #' #' Consider the upper triangular portion of a matrix of size nxn. Results from the \code{correlationTest} are output #' as the combination of two vectors, correlation statistic and p-values. The order of the output is 1vs2, 1vs3, 1vs4, etc. #' The correctIndices returns the correct indices to fill a correlation matrix or correlation-pvalue matrix. #' #' @param n The number of features compared by correlationTest (nrow(mat)). #' @return A vector of the indices for an upper triangular matrix. #' @seealso \code{\link{correlationTest}} #' @export #' @examples #' #' data(mouseData) #' mat = MRcounts(mouseData)[55:60,] #' cors = correlationTest(mat) #' ind = correctIndices(nrow(mat)) #' #' cormat = as.matrix(dist(mat)) #' cormat[cormat>0] = 0 #' cormat[upper.tri(cormat)][ind] = cors[,1] #' table(cormat[1,-1] - cors[1:5,1]) #' correctIndices <- function(n){ if(n==1){ return(1) } if(n==2){ return(c(1,2)) } seq1 <- cumsum(1:(n-1)) - c(0,1:(n-2)) seq2 <- sapply(1:(n-2),function(i) { seq1[-c(1:i)]+1*i }) seq <- c(seq1,unlist(seq2)) return(seq) }metagenomeSeq/R/cumNorm.R0000644000175400017540000000312313175714310016337 0ustar00biocbuildbiocbuild#' Cumulative sum scaling normalization #' #' Calculates each column's quantile and calculates the sum up to and including #' that quantile. #' #' @param obj An MRexperiment object. #' @param p The pth quantile. #' @return Object with the normalization factors stored as #' a vector of the sum up to and including a sample's pth quantile. #' @seealso \code{\link{fitZig}} \code{\link{cumNormStat}} #' @examples #' #' data(mouseData) #' cumNorm(mouseData) #' head(normFactors(mouseData)) #' cumNorm <- function(obj,p=cumNormStatFast(obj)){ if(class(obj)=="MRexperiment"){ x = MRcounts(obj,norm=FALSE,log=FALSE) } else { stop("Object needs to be a MRexperiment object") } normFactors = calcNormFactors(obj=x,p=p) pData(obj@expSummary$expSummary)$normFactors = normFactors validObject(obj) return(obj) } #' Cumulative sum scaling (css) normalization factors #' #' Return a vector of the the sum up to and including a quantile. #' #' @param obj An MRexperiment object or matrix. #' @param p The pth quantile. #' @return Vector of the sum up to and including a sample's pth quantile. #' @seealso \code{\link{fitZig}} \code{\link{cumNormStatFast}} \code{\link{cumNorm}} #' @examples #' #' data(mouseData) #' head(calcNormFactors(mouseData)) #' calcNormFactors <- function(obj,p=cumNormStatFast(obj)){ x = returnAppropriateObj(obj,norm=FALSE,log=FALSE) xx = x xx[x == 0] <- NA qs = colQuantiles(xx, probs = p, na.rm = TRUE) normFactors <- sapply(1:ncol(xx), function(i) { xx = (x[, i] - .Machine$double.eps) sum(xx[xx <= qs[i]]) }) names(normFactors)<-colnames(x) as.data.frame(normFactors) } metagenomeSeq/R/cumNormMat.R0000644000175400017540000000213013175714310016776 0ustar00biocbuildbiocbuild#' Cumulative sum scaling factors. #' #' Calculates each column's quantile and calculates the sum up to and including #' that quantile. #' #' #' @param obj A matrix or MRexperiment object. #' @param p The pth quantile. #' @param sl The value to scale by (default=1000). #' @return Returns a matrix normalized by scaling counts up to and including #' the pth quantile. #' @seealso \code{\link{fitZig}} \code{\link{cumNorm}} #' @examples #' #' data(mouseData) #' head(cumNormMat(mouseData)) #' cumNormMat <- function(obj,p= cumNormStatFast(obj),sl = 1000){ #################################################################################### # Calculates each column's quantile # and calculated the sum up to and # including that quantile. #################################################################################### x = returnAppropriateObj(obj,FALSE,FALSE) xx=x xx[x==0] <- NA qs=colQuantiles(xx,probs=p,na.rm=TRUE) newMat<-sapply(1:ncol(xx), function(i) { xx=(x[,i]-.Machine$double.eps) sum(xx[xx<=qs[i]]) }) nmat<-sweep(x,2,newMat/sl,"/") return(nmat) } metagenomeSeq/R/cumNormStat.R0000644000175400017540000000414413175714310017177 0ustar00biocbuildbiocbuild#' Cumulative sum scaling percentile selection #' #' Calculates the percentile for which to sum counts up to and scale by. #' cumNormStat might be deprecated one day. Deviates from methods in Nature Methods paper #' by making use row means for generating reference. #' #' @param obj A matrix or MRexperiment object. #' @param qFlag Flag to either calculate the proper percentile using #' R's step-wise quantile function or approximate function. #' @param pFlag Plot the relative difference of the median deviance from the reference. #' @param rel Cutoff for the relative difference from one median difference #' from the reference to the next #' @param ... Applicable if pFlag == TRUE. Additional plotting parameters. #' @return Percentile for which to scale data #' @seealso \code{\link{fitZig}} \code{\link{cumNorm}} \code{\link{cumNormStatFast}} #' @examples #' #' data(mouseData) #' p = round(cumNormStat(mouseData,pFlag=FALSE),digits=2) #' cumNormStat <- function(obj,qFlag = TRUE,pFlag = FALSE,rel=.1,...){ mat = returnAppropriateObj(obj,FALSE,FALSE) if(any(colSums(mat)==0)) stop("Warning empty sample") smat = sapply(1:ncol(mat),function(i){sort(mat[,i],decreasing=FALSE)}) ref = rowMeans(smat); yy = mat; yy[yy==0]=NA; ncols = ncol(mat); refS = sort(ref); k = which(refS>0)[1] lo = (length(refS)-k+1) if(qFlag == TRUE){ diffr = sapply(1:ncols,function(i){ refS[k:length(refS)] - quantile(yy[,i],p=seq(0,1,length.out=lo),na.rm=TRUE) }) } if(qFlag == FALSE){ diffr = sapply(1:ncols,function(i){ refS[k:length(refS)] - approx(sort(yy[,i],decreasing=FALSE),n=lo)$y }) } diffr2 = matrixStats::rowMedians(abs(diffr),na.rm=TRUE) if(pFlag ==TRUE){ plot(abs(diff(diffr2[diffr2>0]))/diffr2[diffr2>0][-1],type="h",ylab="Relative difference for reference",xaxt="n",...) abline(h=rel) axis(1,at=seq(0,length(diffr2),length.out=5),labels = seq(0,1,length.out=5)) } x = which(abs(diff(diffr2))/diffr2[-1]>rel)[1] / length(diffr2) if(x<=0.50){ message("Default value being used.") x = 0.50 } if(class(obj)=="MRexperiment"){ obj@expSummary$cumNormStat = x; } return(x) } metagenomeSeq/R/cumNormStatFast.R0000644000175400017540000000357213175714310020021 0ustar00biocbuildbiocbuild#' Cumulative sum scaling percentile selection #' #' Calculates the percentile for which to sum counts up to and scale by. Faster #' version than available in cumNormStat. Deviates from methods described in Nature Methods by #' making use of ro means for reference. #' #' @param obj A matrix or MRexperiment object. #' @param pFlag Plot the median difference quantiles. #' @param rel Cutoff for the relative difference from one median difference #' from the reference to the next. #' @param ... Applicable if pFlag == TRUE. Additional plotting parameters. #' @return Percentile for which to scale data #' @seealso \code{\link{fitZig}} \code{\link{cumNorm}} \code{\link{cumNormStat}} #' @examples #' #' data(mouseData) #' p = round(cumNormStatFast(mouseData,pFlag=FALSE),digits=2) #' cumNormStatFast <-function(obj,pFlag = FALSE,rel=.1,...){ mat = returnAppropriateObj(obj,FALSE,FALSE) smat = lapply(1:ncol(mat), function(i) { sort(mat[which(mat[, i]>0),i], decreasing = TRUE) }) leng = max(sapply(smat,length)) if(any(sapply(smat,length)==1)) stop("Warning sample with one or zero features") smat2 = array(NA,dim=c(leng,ncol(mat))) for(i in 1:ncol(mat)){ smat2[leng:(leng-length(smat[[i]])+1),i] = smat[[i]] } rmat2 = sapply(1:ncol(smat2),function(i){ quantile(smat2[,i],p=seq(0,1,length.out=nrow(smat2)),na.rm=TRUE) }) smat2[is.na(smat2)] = 0 ref1 = rowMeans(smat2) ncols = ncol(rmat2) diffr = sapply(1:ncols, function(i) { ref1 - rmat2[,i] }) diffr1=matrixStats::rowMedians(abs(diffr)) if(pFlag==TRUE){ plot(abs(diff(diffr1))/diffr1[-1],type="h",...) abline(h=rel) axis(1,at=seq(0,length(diffr1),length.out=5),labels = seq(0,1,length.out=5)) } x= which(abs(diff(diffr1))/diffr1[-1] > rel)[1]/length(diffr1) if(x<=0.50){ message("Default value being used.") x = 0.50 } if(class(obj)=="MRexperiment"){ obj@expSummary$cumNormStat = x; } return(x) } metagenomeSeq/R/deprecated_metagenomeSeq_function.R0000644000175400017540000000251013175714310023575 0ustar00biocbuildbiocbuild#' Depcrecated functions in the metagenomeSeq package. #' #' These functions may be removed completely in the next release. #' #' @usage deprecated_metagenomeSeq_function(x, value, ...) #' @rdname metagenomeSeq-deprecated #' @name metagenomeSeq-deprecated #' @param x For assignment operators, the object that will undergo a replacement #' (object inside parenthesis). #' @param value For assignment operators, the value to replace with #' (the right side of the assignment). #' @param ... For functions other than assignment operators, #' parameters to be passed to the modern version of the function (see table). #' @docType package #' @export fitMeta #' @aliases deprecated_metagenomeSeq_function fitMeta load_phenoData load_meta load_biom load_metaQ #' deprecated_metagenomeSeq_function <- function(x, value, ...){return(NULL)} fitMeta <- function(...){.Deprecated("fitMeta",package="metagenomeSeq");return(fitLogNormal(...))} load_phenoData <- function(...){.Deprecated("load_phenoData",package="metagenomeSeq");return(loadPhenoData(...))} load_biom <- function(...){.Deprecated("load_biom",package="metagenomeSeq");return(loadBiom(...))} load_meta <- function(...){.Deprecated("load_meta",package="metagenomeSeq");return(loadMeta(...))} load_metaQ <- function(...){.Deprecated("load_metaQ",package="metagenomeSeq");return(loadMetaQ(...))} metagenomeSeq/R/doCountMStep.R0000644000175400017540000000520513175714310017306 0ustar00biocbuildbiocbuild#' Compute the Maximization step calculation for features still active. #' #' Maximization step is solved by weighted least squares. The function also #' computes counts residuals. #' #' Maximum-likelihood estimates are approximated using the EM algorithm where #' we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the #' zero point mass as latent indicator variables. The density is defined as #' $f_zig(y_ij = pi_j(S_j)*f_0(y_ij) +(1-pi_j (S_j)) * #' f_count(y_ij;mu_i,sigma_i^2)$. The log-likelihood in this extended model is #' $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log #' pi_j(s_j)+(1-delta_ij)log (1-pi_j (s_j))$. The responsibilities are defined #' as $z_ij = pr(delta_ij=1 | data)$. #' #' @param z Matrix (m x n) of estimate responsibilities (probabilities that a #' count comes from a spike distribution at 0). #' @param y Matrix (m x n) of count observations. #' @param mmCount Model matrix for the count distribution. #' @param stillActive Boolean vector of size M, indicating whether a feature #' converged or not. #' @param fit2 Previous fit of the count model. #' @param dfMethod Either 'default' or 'modified' (by responsibilities) #' @return Update matrix (m x n) of estimate responsibilities (probabilities #' that a count comes from a spike distribution at 0). #' @seealso \code{\link{fitZig}} doCountMStep <- function(z, y, mmCount, stillActive,fit2=NULL,dfMethod="modified"){ if (is.null(fit2)){ fit=limma::lmFit(y[stillActive,],mmCount,weights = (1-z[stillActive,])) if(dfMethod=="modified"){ df = rowSums(1-z[stillActive,,drop=FALSE]) - ncol(mmCount) fit$df[stillActive] = df fit$df.residual[stillActive] = df } countCoef = fit$coefficients countMu=tcrossprod(countCoef, mmCount) residuals=sweep((y[stillActive,,drop=FALSE]-countMu),1,fit$sigma,"/") dat = list(fit = fit, residuals = residuals) return(dat) } else { residuals = fit2$residuals fit2 = fit2$fit fit=limma::lmFit(y[stillActive,,drop=FALSE],mmCount,weights = (1-z[stillActive,,drop=FALSE])) fit2$coefficients[stillActive,] = fit$coefficients fit2$stdev.unscaled[stillActive,]=fit$stdev.unscaled fit2$sigma[stillActive] = fit$sigma fit2$Amean[stillActive] = fit$Amean if(dfMethod=="modified"){ df = rowSums(1-z[stillActive,,drop=FALSE]) - ncol(mmCount) fit$df = df fit$df.residual = df } fit2$df[stillActive] = fit$df fit2$df.residual[stillActive] = fit$df.residual countCoef = fit$coefficients countMu=tcrossprod(countCoef, mmCount) r=sweep((y[stillActive,,drop=FALSE]-countMu),1,fit$sigma,"/") residuals[stillActive,]=r dat = list(fit = fit2, residuals=residuals) return(dat) } } metagenomeSeq/R/doEStep.R0000644000175400017540000000251613175714310016267 0ustar00biocbuildbiocbuild#' Compute the Expectation step. #' #' Estimates the responsibilities $z_ij = fracpi_j cdot I_0(y_ijpi_j cdot #' I_0(y_ij + (1-pi_j) cdot f_count(y_ij #' #' Maximum-likelihood estimates are approximated using the EM algorithm where #' we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the #' zero point mass as latent indicator variables. The density is defined as #' $f_zig(y_ij = pi_j(S_j) cdot f_0(y_ij) +(1-pi_j (S_j))cdot #' f_count(y_ij;mu_i,sigma_i^2)$. The log-likelihood in this extended model is #' $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log #' pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined #' as $z_ij = pr(delta_ij=1 | data)$. #' #' @param countResiduals Residuals from the count model. #' @param zeroResiduals Residuals from the zero model. #' @param zeroIndices Index (matrix m x n) of counts that are zero/non-zero. #' @return Updated matrix (m x n) of estimate responsibilities (probabilities #' that a count comes from a spike distribution at 0). #' @seealso \code{\link{fitZig}} doEStep <- function(countResiduals, zeroResiduals, zeroIndices) { pi_prop=getPi(zeroResiduals) w1=sweep(zeroIndices, 2, pi_prop, FUN="*") countDensity=getCountDensity(countResiduals) w2=sweep(countDensity, 2, 1-pi_prop, FUN="*") z=w1/(w1+w2) z[z>1-1e-6]=1-1e-6 z[!zeroIndices]=0 z } metagenomeSeq/R/doZeroMStep.R0000644000175400017540000000335513175714310017141 0ustar00biocbuildbiocbuild#' Compute the zero Maximization step. #' #' Performs Maximization step calculation for the mixture components. Uses #' least squares to fit the parameters of the mean of the logistic #' distribution. $$ pi_j = sum_i^M frac1Mz_ij $$ Maximum-likelihood estimates #' are approximated using the EM algorithm where we treat mixture membership #' $delta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent #' indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j) cdot #' f_0(y_ij) +(1-pi_j (S_j))cdot f_count(y_ij;mu_i,sigma_i^2)$. The #' log-likelihood in this extended model is $(1-delta_ij) log #' f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j #' (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. #' #' #' @param z Matrix (m x n) of estimate responsibilities (probabilities that a #' count comes from a spike distribution at 0). #' @param zeroIndices Index (matrix m x n) of counts that are zero/non-zero. #' @param mmZero The zero model, the model matrix to account for the change in #' the number of OTUs observed as a linear effect of the depth of coverage. #' @return List of the zero fit (zero mean model) coefficients, variance - #' scale parameter (scalar), and normalized residuals of length #' sum(zeroIndices). #' @seealso \code{\link{fitZig}} doZeroMStep <- function(z, zeroIndices, mmZero) { pi=sapply(1:ncol(zeroIndices), function(j) { if (sum(zeroIndices[,j])==0){ return(1e-8) } tmp=mean(z[zeroIndices[,j],j],na.rm=TRUE) ifelse(tmp<=1e-8, 1e-8, ifelse(tmp>=1-(1e-8),1-(1e-8),tmp)) }) zeroLM=lm.fit(mmZero, qlogis(pi)) zeroCoef=zeroLM$coef r=zeroLM$residuals sigma=sd(r)+(1e-3) list(zeroLM=zeroLM, zeroCoef=zeroCoef, sigma=sigma, residuals=r/sigma) } metagenomeSeq/R/exportMat.R0000644000175400017540000000233213175714310016703 0ustar00biocbuildbiocbuild#' Export the normalized MRexperiment dataset as a matrix. #' #' This function allows the user to take a dataset of counts and output the #' dataset to the user's workspace as a tab-delimited file, etc. #' #' #' @aliases exportMatrix exportMat #' @param obj A MRexperiment object or count matrix. #' @param log Whether or not to log transform the counts - if MRexperiment object. #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param sep Separator for writing out the count matrix. #' @param file Output file name. #' @return NA #' @seealso \code{\link{cumNorm}} #' @examples #' #' data(lungData) #' dataDirectory <- system.file("extdata", package="metagenomeSeq") #' exportMat(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) #' head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t")) #' exportMat <-function(obj,log=TRUE,norm=TRUE,sep="\t",file="~/Desktop/matrix.tsv"){ mat = returnAppropriateObj(obj,norm,log) oMat = array(NA,dim=c((nrow(mat)+1),(ncol(mat)+1))); oMat[1,2:ncol(oMat)] = colnames(mat); oMat[2:nrow(oMat),2:ncol(oMat)] = mat; oMat[2:nrow(oMat),1] = rownames(mat); oMat[1,1] = "Taxa and Samples"; write(t(oMat),file=file,sep=sep,ncolumns=ncol(oMat)); } metagenomeSeq/R/exportStats.R0000644000175400017540000000261713175714310017266 0ustar00biocbuildbiocbuild#' Various statistics of the count data. #' #' A matrix of values for each sample. The matrix consists of sample ids, the #' sample scaling factor, quantile value, the number identified features, and library size (depth of coverage). #' #' #' @param obj A MRexperiment object with count data. #' @param p Quantile value to calculate the scaling factor and quantiles for #' the various samples. #' @param file Output file name. #' @return None. #' @seealso \code{\link{cumNorm}} \code{\link{quantile}} #' @examples #' #' data(lungData) #' dataDirectory <- system.file("extdata", package="metagenomeSeq") #' exportStats(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) #' head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t")) #' exportStats <-function(obj,p= cumNormStat(obj),file="~/Desktop/res.stats.tsv"){ xx=MRcounts(obj) xx[xx==0]=NA qs=colQuantiles(xx,probs=p,na.rm=TRUE) xx[xx>0] = 1; xx[is.na(xx)]=0 newMat <- array(NA,dim=c(5,ncol(xx)+1)); newMat[1,1] = "Subject" newMat[2,1] = "Scaling factor" newMat[3,1] = "Quantile value" newMat[4,1] = "Number of identified features" newMat[5,1] = "Library size" newMat[1,2:ncol(newMat)]<-sampleNames(obj); newMat[2,2:ncol(newMat)]<-unlist(normFactors(obj)); newMat[3,2:ncol(newMat)]<-qs; newMat[4,2:ncol(newMat)]<-colSums(xx); newMat[5,2:ncol(newMat)]<-unlist(libSize(obj)); write((newMat),file = file,sep = "\t",ncolumns = 5); } metagenomeSeq/R/filterData.R0000644000175400017540000000143413175714310017001 0ustar00biocbuildbiocbuild#' Filter datasets according to no. features present in features with at least a certain depth. #' #' Filter the data based on the number of present features after filtering samples by depth of coverage. #' There are many ways to filter the object, this is just one way. #' #' @param obj A MRexperiment object or count matrix. #' @param present Features with at least 'present' postive samples. #' @param depth Sampls with at least this much depth of coverage #' @return A MRexperiment object. #' @export #' @examples #' #' data(mouseData) #' filterData(mouseData) #' filterData <- function(obj,present=1,depth=1000){ mat = returnAppropriateObj(obj,norm=FALSE,log=FALSE)>0 cols = which(colSums(MRcounts(obj))>=depth) rows = which(rowSums(mat[,cols])>=present) return(obj[rows,cols]) } metagenomeSeq/R/fitDO.R0000644000175400017540000000545413175714310015735 0ustar00biocbuildbiocbuild#' Wrapper to calculate Discovery Odds Ratios on feature values. #' #' This function returns a data frame of p-values, odds ratios, lower and upper #' confidence limits for every row of a matrix. The discovery odds ratio is calculated #' as using Fisher's exact test on actual counts. The test's hypothesis is whether #' or not the discovery of counts for a feature (of all counts) is found in greater proportion #' in a particular group. #' #' #' @param obj A MRexperiment object with a count matrix, or a simple count #' matrix. #' @param cl Group comparison #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param adjust.method Method to adjust p-values by. Default is "FDR". Options #' include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", #' "none". See \code{\link{p.adjust}} for more details. #' @param cores Number of cores to use. #' @param ... Extra options for makeCluster #' @return Matrix of odds ratios, p-values, lower and upper confidence intervals #' @seealso \code{\link{cumNorm}} \code{\link{fitZig}} \code{\link{fitPA}} \code{\link{fitMeta}} #' @examples #' #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),] #' res = fitDO(lungTrim,pData(lungTrim)$SmokingStatus); #' head(res) #' fitDO<-function(obj,cl,norm=TRUE,log=TRUE,adjust.method='fdr',cores=1,...){ x = returnAppropriateObj(obj,norm,log) nrows= nrow(x); if(is.null(rownames(x))){rownames(x)=1:nrows} sumClass1 = round(sum(x[,cl==levels(cl)[1]])) sumClass2 = round(sum(x[,cl==levels(cl)[2]])) cores <- makeCluster(getOption("cl.cores", cores),...) res = parRapply(cl=cores,x,function(i){ tbl = table(1-i,cl) if(sum(dim(tbl))!=4){ tbl = array(0,dim=c(2,2)); tbl[1,1] = round(sum(i[cl==levels(cl)[1]])) tbl[1,2] = round(sum(i[cl==levels(cl)[2]])) tbl[2,1] = sumClass1-tbl[1,1] tbl[2,2] = sumClass2-tbl[1,2] } ft <- fisher.test(tbl,workspace=8e6,alternative="two.sided",conf.int=TRUE) cbind(p=ft$p.value,o=ft$estimate,cl=ft$conf.int[1],cu=ft$conf.int[2]) }) stopCluster(cores) nres = nrows*4 seqs = seq(1,nres,by=4) p = res[seqs] adjp = p.adjust(p,method=adjust.method) o = res[seqs+1] cl = res[seqs+2] cu = res[seqs+3] res = data.frame(cbind(o,cl,cu,p,adjp)) colnames(res) = c("oddsRatio","lower","upper","pvalues","adjPvalues") rownames(res) = rownames(x) return(res) } metagenomeSeq/R/fitFeatureModel.R0000644000175400017540000000552413175714310020005 0ustar00biocbuildbiocbuild#' Computes differential abundance analysis using a zero-inflated log-normal model #' #' Wrapper to actually run zero-inflated log-normal model given a MRexperiment object #' and model matrix. User can decide to shrink parameter estimates. #' #' @param obj A MRexperiment object with count data. #' @param mod The model for the count distribution. #' @param coef Coefficient of interest to grab log fold-changes. #' @param B Number of bootstraps to perform if >1. If >1 performs permutation test. #' @param szero TRUE/FALSE, shrink zero component parameters. #' @param spos TRUE/FALSE, shrink positive component parameters. #' @return A list of objects including: #' \itemize{ #' \item{call - the call made to fitFeatureModel} #' \item{fitZeroLogNormal - list of parameter estimates for the zero-inflated log normal model} #' \item{design - model matrix} #' \item{taxa - taxa names} #' \item{counts - count matrix} #' \item{pvalues - calculated p-values} #' \item{permuttedfits - permutted z-score estimates under the null} #' } #' @seealso \code{\link{cumNorm}} #' @examples #' #' data(lungData) #' lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))] #' lungData=filterData(lungData,present=30,depth=1) #' lungData <- cumNorm(lungData, p=.5) #' s <- normFactors(lungData) #' pd <- pData(lungData) #' mod <- model.matrix(~1+SmokingStatus, data=pd) #' lungres1 = fitFeatureModel(lungData,mod) #' fitFeatureModel<-function(obj,mod,coef=2,B=1,szero=FALSE,spos=TRUE){ stopifnot(is(obj, "MRexperiment")) if (any(is.na(normFactors(obj)))) stop("At least one NA normalization factors") if (any(is.na(libSize(obj)))) stop("Calculate the library size first!") if (any(is.na(normFactors(obj)))) { stop("Calculate the normalization factors first!") } nf = normFactors(obj) mmCount = cbind(mod, log(nf/median(nf))) colnames(mmCount)[ncol(mmCount)] = "scalingFactor" if(ncol(mmCount)>3){ stop("Can't analyze currently.") } i = permuttedFits = NULL # These pieces get to be a part of the new zero-ln model! fitzeroln = fitZeroLogNormal(obj,mmCount,coef=coef,szero=szero,spos=spos) zscore = fitzeroln$logFC/fitzeroln$se if(B>1){ permutations = replicate(B,sample(mmCount[,coef])) mmCountPerm = mmCount permuttedFits = foreach(i = seq(B),.errorhandling="remove", .packages=c("metagenomeSeq","glmnet")) %dopar% { mmCountPerm[,coef] = permutations[,i] permFit = fitZeroLogNormal(obj,mmCountPerm,coef=coef,szero=szero,spos=spos) permFit$logFC/permFit$se } zperm = abs(sapply(permuttedFits,function(i)i)) pvals = rowMeans(zperm>=abs(zscore),na.rm=TRUE) } else { pvals = 2*(1-pnorm(abs(zscore))) } res = list(call=match.call(),fitZeroLogNormal=fitzeroln,design=mmCount, taxa=rownames(obj),counts=MRcounts(obj),pvalues=pvals,permuttedFits=permuttedFits) res }metagenomeSeq/R/fitLogNormal.R0000644000175400017540000000466413175714310017327 0ustar00biocbuildbiocbuild#' Computes a log-normal linear model and permutation based p-values. #' #' Wrapper to perform the permutation test on the t-statistic. This is the original #' method employed by metastats (for non-sparse large samples). We include CSS normalization #' though (optional) and log2 transform the data. In this method the null distribution is not assumed to be a t-dist. #' #' #' @param obj A MRexperiment object with count data. #' @param mod The model for the count distribution. #' @param useCSSoffset Boolean, whether to include the default scaling #' parameters in the model or not. #' @param B Number of permutations. #' @param coef The coefficient of interest. #' @param sl The value to scale by (default=1000). #' #' @return Call made, fit object from lmFit, t-statistics and p-values for each feature. #' @export #' @examples #' #' # This is a simple demonstration #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' k = which(rowSums(MRcounts(lungTrim)>0)<30) #' lungTrim = cumNorm(lungTrim) #' lungTrim = lungTrim[-k,] #' smokingStatus = pData(lungTrim)$SmokingStatus #' mod = model.matrix(~smokingStatus) #' fit = fitLogNormal(obj = lungTrim,mod=mod,B=1) #' fitLogNormal <- function(obj,mod,useCSSoffset=TRUE,B=1000,coef=2,sl=1000){ if(class(obj)=="MRexperiment"){ mat = MRcounts(obj,norm=FALSE,log=FALSE) mat = log2(mat + 1) } else if(class(obj) == "matrix") { mat = obj } else { stop("Object needs to be either a MRexperiment object or matrix") } if(useCSSoffset==TRUE){ if(any(is.na(normFactors(obj)))){ stop("Calculate the normalization factors first!") } mmCount=cbind(mod,log2(normFactors(obj)/sl +1))} else{ mmCount=mod } # fit of the data fitRes = limma::lmFit(mat,mmCount) # The t-statistic tt <- fitRes$coef[,coef] / fitRes$stdev.unscaled[,coef] / fitRes$sigma perms = replicate(B,sample(mmCount[,coef])) mmCount1=mmCount[,-coef] nc = ncol(mmCount) tobs<- sapply(1:B,function(i){ # This code forces the covariate of interest to be a factor (might not apply) mmCountPerm = cbind(mmCount1,factor(perms[,i])) fit = limma::lmFit(mat,mmCountPerm) ttObs <- fit$coef[,nc] / fit$stdev.unscaled[,nc] / fit$sigma ttObs }) p = rowMeans(abs(tobs)>=abs(tt)) dat = list(call=match.call(),fit=fitRes,t = tt,p = p,type="perm") return(dat) } metagenomeSeq/R/fitPA.R0000644000175400017540000000445713175714310015735 0ustar00biocbuildbiocbuild#' Wrapper to run fisher's test on presence/absence of a feature. #' #' This function returns a data frame of p-values, odds ratios, lower and upper #' confidence limits for every row of a matrix. #' #' #' @param obj A MRexperiment object with a count matrix, or a simple count #' matrix. #' @param cl Group comparison #' @param thres Threshold for defining presence/absence. #' @param adjust.method Method to adjust p-values by. Default is "FDR". Options #' include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", #' "none". See \code{\link{p.adjust}} for more details. #' @param cores Number of cores to use. #' @param ... Extra parameters for makeCluster #' @return Matrix of odds ratios, p-values, lower and upper confidence intervals #' @seealso \code{\link{cumNorm}} \code{\link{fitZig}} \code{\link{fitDO}} \code{\link{fitMeta}} #' @examples #' #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),] #' res = fitPA(lungTrim,pData(lungTrim)$SmokingStatus); #' head(res) #' fitPA<-function(obj,cl,thres=0,adjust.method='fdr',cores=1,...){ x = returnAppropriateObj(obj,norm=FALSE,log=FALSE)>thres nrows= nrow(x); if(is.null(rownames(x))){rownames(x)=1:nrows} nClass1 = sum(cl==levels(cl)[1]) nClass2 = sum(cl==levels(cl)[2]) cores <- makeCluster(getOption("cl.cores", cores),...) res = parRapply(cl=cores,x,function(i){ tbl = table(1-i,cl) if(sum(dim(tbl))!=4){ tbl = array(0,dim=c(2,2)); tbl[1,1] = sum(i[cl==levels(cl)[1]]) tbl[1,2] = sum(i[cl==levels(cl)[2]]) tbl[2,1] = nClass1-tbl[1,1] tbl[2,2] = nClass2-tbl[1,2] } ft <- fisher.test(tbl,workspace=8e6,alternative="two.sided",conf.int=TRUE) cbind(o=ft$estimate,cl=ft$conf.int[1],cu=ft$conf.int[2],p=ft$p.value) }) stopCluster(cores) nres = nrows*4 seqs = seq(1,nres,by=4) p = res[seqs+3] adjp = p.adjust(p,method=adjust.method) o = res[seqs] cl = res[seqs+1] cu = res[seqs+2] res = data.frame(cbind(o,cl,cu,p,adjp)) colnames(res) = c("oddsRatio","lower","upper","pvalues","adjPvalues") rownames(res) = rownames(x) return(res) } metagenomeSeq/R/fitTimeSeries.R0000644000175400017540000006365213175714310017510 0ustar00biocbuildbiocbuild#' Trapezoidal Integration #' #' Compute the area of a function with values 'y' at the points 'x'. #' Function comes from the pracma package. #' #' @param x x-coordinates of points on the x-axis #' @param y y-coordinates of function values #' @return Approximated integral of the function from 'min(x)' to 'max(x)'. #' Or a matrix of the same size as 'y'. #' @rdname trapz #' @export #' @examples #' #' # Calculate the area under the sine curve from 0 to pi: #' n <- 101 #' x <- seq(0, pi, len = n) #' y <- sin(x) #' trapz(x, y) #=> 1.999835504 #' #' # Use a correction term at the boundary: -h^2/12*(f'(b)-f'(a)) #' h <- x[2] - x[1] #' ca <- (y[2]-y[1]) / h #' cb <- (y[n]-y[n-1]) / h #' trapz(x, y) - h^2/12 * (cb - ca) #=> 1.999999969 #' trapz <- function(x,y){ if (missing(y)) { if (length(x) == 0) return(0) y <- x x <- 1:length(x) } if (length(x) == 0) return(0) if (!(is.numeric(x) || is.complex(x)) || !(is.numeric(y) || is.complex(y))) stop("Arguments 'x' and 'y' must be real or complex.") m <- length(x) xp <- c(x, x[m:1]) yp <- c(numeric(m), y[m:1]) n <- 2 * m p1 <- sum(xp[1:(n - 1)] * yp[2:n]) + xp[n] * yp[1] p2 <- sum(xp[2:n] * yp[1:(n - 1)]) + xp[1] * yp[n] return(0.5 * (p1 - p2)) } #' smoothing-splines anova fit #' #' Sets up a data-frame with the feature abundance, #' class information, time points, sample ids and returns #' the fitted values for the fitted model. #' #' @param formula Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value. #' @param abundance Numeric vector of abundances. #' @param class Class membership (factor of group membership). #' @param time Time point vector of relative times (same length as abundance). #' @param id Sample / patient id. #' @param include Parameters to include in prediction. #' @param pd Extra variable. #' @param ... Extra parameters for ssanova function (see ?ssanova). #' @return \itemize{A list containing: #' \item data : Inputed data #' \item fit : The interpolated / fitted values for timePoints #' \item se : The standard error for CI intervals #' \item timePoints : The time points interpolated over #' } #' @seealso \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssPermAnalysis}} \code{\link{ssPerm}} \code{\link{ssIntervalCandidate}} #' @rdname ssFit #' @export #' @examples #' #' # Not run #' ssFit <- function(formula,abundance,class,time,id,include=c("class", "time:class"),pd,...) { df = data.frame(abundance = abundance, class = factor(class), time=time,id = factor(id),pd) # The smoothing splines anova model if(missing(formula)){ mod = gss::ssanova(abundance ~ time * class, data=df,...) } else{ mod = gss::ssanova(formula,data=df,...) } fullTime = seq(min(df$time), max(df$time), by=1) values = data.frame(time=fullTime, class=factor(levels(df[,"class"]))[2]) fit = predict(mod, values, include=include, se=TRUE) res = list(data=df, fit=fit$fit, se=fit$se, timePoints=fullTime) return(res) } #' class permutations for smoothing-spline time series analysis #' #' Creates a list of permuted class memberships for the time series permuation tests. #' #' @param df Data frame containing class membership and sample/patient id label. #' @param B Number of permutations. #' @return A list of permutted class memberships #' @seealso \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssFit}} \code{\link{ssPermAnalysis}} \code{\link{ssIntervalCandidate}} #' @rdname ssPerm #' @examples #' #' # Not run #' ssPerm <- function(df,B) { dat = data.frame(class=df$class, id=df$id) # id = table(dat$id) id = table(interaction(dat$class,dat$id)) id = id[id>0] classes = unique(dat)[,"class"] permList = lapply(1:B,function(i){ rep(sample(classes, replace=FALSE),id) }) return(permList) } #' smoothing-splines anova fits for each permutation #' #' Calculates the fit for each permutation and estimates #' the area under the null (permutted) model for interesting time #' intervals of differential abundance. #' #' @param data Data used in estimation. #' @param formula Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value. #' @param permList A list of permutted class memberships #' @param intTimes Interesting time intervals. #' @param timePoints Time points to interpolate over. #' @param include Parameters to include in prediction. #' @param ... Options for ssanova #' @return A matrix of permutted area estimates for time intervals of interest. #' @seealso \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssFit}} \code{\link{ssPerm}} \code{\link{ssIntervalCandidate}} #' @rdname ssPermAnalysis #' @export #' @examples #' #' # Not run #' ssPermAnalysis <- function(data,formula,permList,intTimes,timePoints,include=c("class", "time:class"),...){ resPerm=matrix(NA, length(permList), nrow(intTimes)) permData=data case = data.frame(time=timePoints, class=factor(levels(data$class)[2])) for (j in 1:length(permList)){ permData$class = permList[[j]] # The smoothing splines anova model if(!missing(formula)){ permModel = gss::ssanova(formula, data=permData,...) } else{ permModel = gss::ssanova(abundance ~ time * class,data=permData,...) } permFit = cbind(timePoints, (2*predict(permModel,case,include=include, se=TRUE)$fit)) for (i in 1:nrow(intTimes)){ permArea=permFit[which(permFit[,1]==intTimes[i,1]) : which(permFit[,1]==intTimes[i, 2]), ] resPerm[j, i]=metagenomeSeq::trapz(x=permArea[,1], y=permArea[,2]) } if(j%%100==0) show(j) } return(resPerm) } #' calculate interesting time intervals #' #' Calculates time intervals of interest using SS-Anova fitted confidence intervals. #' #' @param fit SS-Anova fits. #' @param standardError SS-Anova se estimates. #' @param timePoints Time points interpolated over. #' @param positive Positive region or negative region (difference in abundance is positive/negative). #' @param C Value for which difference function has to be larger or smaller than (default 0). #' @return Matrix of time point intervals of interest #' @seealso \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssFit}} \code{\link{ssPerm}} \code{\link{ssPermAnalysis}} #' @rdname ssIntervalCandidate #' @export #' @examples #' #' # Not run #' ssIntervalCandidate <- function(fit, standardError, timePoints, positive=TRUE,C=0){ lowerCI = (2*fit - (1.96*2*standardError)) upperCI = (2*fit + (1.96*2*standardError)) if (positive){ abundanceDifference = which( lowerCI>=0 & abs(lowerCI)>=C ) }else{ abundanceDifference = which( upperCI<=0 & abs(upperCI)>=C ) } if (length(abundanceDifference)>0){ intIndex=which(diff(abundanceDifference)!=1) intTime=matrix(NA, (length(intIndex)+1), 4) if (length(intIndex)==0){ intTime[1,1]=timePoints[abundanceDifference[1]] intTime[1,2]=timePoints[tail(abundanceDifference, n=1)] }else{ i=1 while(length(intTime)!=0 & length(intIndex)!=0){ intTime[i,1]=timePoints[abundanceDifference[1]] intTime[i,2]=timePoints[abundanceDifference[intIndex[1]]] abundanceDifference=abundanceDifference[-c(1:intIndex[1])] intIndex=intIndex[-1] i=i+1 } intTime[i,1] = timePoints[abundanceDifference[1]] intTime[i,2] = timePoints[tail(abundanceDifference, n=1)] } }else{ intTime=NULL } return(intTime) } #' Discover differentially abundant time intervals using SS-Anova #' #' Calculate time intervals of interest using SS-Anova fitted models. #' Fitting is performed uses Smoothing Spline ANOVA (SS-Anova) to find interesting intervals of time. #' Given observations at different time points for two groups, fitSSTimeSeries #' calculates a function that models the difference in abundance between two #' groups across all time. Using permutations we estimate a null distribution #' of areas for the time intervals of interest and report significant intervals of time. #' Use of the function for analyses should cite: #' "Finding regions of interest in high throughput genomics data using smoothing splines" #' Talukder H, Paulson JN, Bravo HC. (In preparation) #' #' @param obj metagenomeSeq MRexperiment-class object. #' @param formula Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value. #' @param feature Name or row of feature of interest. #' @param class Name of column in phenoData of MRexperiment-class object for class memberhip. #' @param time Name of column in phenoData of MRexperiment-class object for relative time. #' @param id Name of column in phenoData of MRexperiment-class object for sample id. #' @param lvl Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level). #' @param include Parameters to include in prediction. #' @param C Value for which difference function has to be larger or smaller than (default 0). #' @param B Number of permutations to perform #' @param norm When aggregating counts to normalize or not. #' @param log Log2 transform. #' @param sl Scaling value. #' @param featureOrder Hierarchy of levels in taxonomy as fData colnames #' @param ... Options for ssanova #' @return List of matrix of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations, and call. #' @return A list of objects including: #' \itemize{ #' \item{timeIntervals - Matrix of time point intervals of interest, area of differential abundance, and pvalue.} #' \item{data - Data frame of abundance, class indicator, time, and id input.} #' \item{fit - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.} #' \item{perm - Differential abundance area estimates for each permutation.} #' \item{call - Function call.} #' } #' @rdname fitSSTimeSeries #' @seealso \code{\link{cumNorm}} \code{\link{ssFit}} \code{\link{ssIntervalCandidate}} \code{\link{ssPerm}} \code{\link{ssPermAnalysis}} \code{\link{plotTimeSeries}} #' @export #' @examples #' #' data(mouseData) #' res = fitSSTimeSeries(obj=mouseData,feature="Actinobacteria", #' class="status",id="mouseID",time="relativeTime",lvl='class',B=2) #' fitSSTimeSeries <- function(obj,formula,feature,class,time,id,lvl=NULL,include=c("class", "time:class"),C=0,B=1000,norm=TRUE,log=TRUE,sl=1000,featureOrder=NULL,...) { if(!is.null(lvl)){ aggData = aggregateByTaxonomy(obj,lvl,norm=norm,sl=sl, featureOrder=featureOrder) abundance = MRcounts(aggData,norm=FALSE,log=log,sl=1)[feature,] } else { abundance = MRcounts(obj,norm=norm,log=log,sl=sl)[feature,] } class = pData(obj)[,class] time = pData(obj)[,time] id = pData(obj)[,id] if(any(sapply(list(id,time,class),length)==0)){ stop("provide class, time, and id names") } if(!missing(formula)){ prep=ssFit(formula=formula,abundance=abundance,class=class, time=time,id=id,include=include,pd=pData(obj),...) } else { prep=ssFit(abundance=abundance,class=class,time=time,id=id, include=include,pd=pData(obj),...) } indexPos = ssIntervalCandidate(fit=prep$fit, standardError=prep$se, timePoints=prep$timePoints, positive=TRUE,C=C) indexNeg = ssIntervalCandidate(fit=prep$fit, standardError=prep$se, timePoints=prep$timePoints, positive=FALSE,C=C) indexAll = rbind(indexPos, indexNeg) if(sum(indexAll[,1]==indexAll[,2])>0){ indexAll=indexAll[-which(indexAll[,1]==indexAll[,2]),] } fit = 2*prep$fit se = 2*prep$se timePoints = prep$timePoints fits = data.frame(fit = fit, se = se, timePoints = timePoints) if(!is.null(indexAll)){ if(length(indexAll)>0){ indexAll=matrix(indexAll,ncol=4) colnames(indexAll)=c("Interval start", "Interval end", "Area", "p.value") predArea = cbind(prep$timePoints, (2*prep$fit)) permList = ssPerm(prep$data,B=B) if(!missing(formula)){ permResult = ssPermAnalysis(data=prep$data,formula=formula,permList=permList, intTimes=indexAll,timePoints=prep$timePoints,include=include,...) } else { permResult = ssPermAnalysis(data=prep$data,permList=permList, intTimes=indexAll,timePoints=prep$timePoints,include=include,...) } for (i in 1:nrow(indexAll)){ origArea=predArea[which(predArea[,1]==indexAll[i,1]):which(predArea[,1]==indexAll[i, 2]), ] actArea=trapz(x=origArea[,1], y=origArea[,2]) indexAll[i,3] = actArea if(actArea>0){ indexAll[i,4] = 1 - (length(which(actArea>permResult[,i]))+1)/(B+1) }else{ indexAll[i,4] = (length(which(actArea>permResult[,i]))+1)/(B+1) } if(indexAll[i,4]==0){ indexAll[i,4] = 1/(B+1) } } res = list(timeIntervals=indexAll,data=prep$data,fit=fits,perm=permResult) return(res) } }else{ indexAll = "No statistically significant time intervals detected" res = list(timeIntervals=indexAll,data=prep$data,fit=fits,perm=NULL) return(res) } } #' Discover differentially abundant time intervals #' #' Calculate time intervals of significant differential abundance. #' Currently only one method is implemented (ssanova). fitSSTimeSeries is called with method="ssanova". #' #' @param obj metagenomeSeq MRexperiment-class object. #' @param formula Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value. #' @param feature Name or row of feature of interest. #' @param class Name of column in phenoData of MRexperiment-class object for class memberhip. #' @param time Name of column in phenoData of MRexperiment-class object for relative time. #' @param id Name of column in phenoData of MRexperiment-class object for sample id. #' @param method Method to estimate time intervals of differentially abundant bacteria (only ssanova method implemented currently). #' @param lvl Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level). #' @param include Parameters to include in prediction. #' @param C Value for which difference function has to be larger or smaller than (default 0). #' @param B Number of permutations to perform. #' @param norm When aggregating counts to normalize or not. #' @param log Log2 transform. #' @param sl Scaling value. #' @param featureOrder Hierarchy of levels in taxonomy as fData colnames #' @param ... Options for ssanova #' @return List of matrix of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations, and call. #' @return A list of objects including: #' \itemize{ #' \item{timeIntervals - Matrix of time point intervals of interest, area of differential abundance, and pvalue.} #' \item{data - Data frame of abundance, class indicator, time, and id input.} #' \item{fit - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.} #' \item{perm - Differential abundance area estimates for each permutation.} #' \item{call - Function call.} #' } #' @rdname fitTimeSeries #' @seealso \code{\link{cumNorm}} \code{\link{fitSSTimeSeries}} \code{\link{plotTimeSeries}} #' @export #' @examples #' #' data(mouseData) #' res = fitTimeSeries(obj=mouseData,feature="Actinobacteria", #' class="status",id="mouseID",time="relativeTime",lvl='class',B=2) #' fitTimeSeries <- function(obj,formula,feature,class,time,id,method=c("ssanova"), lvl=NULL,include=c("class", "time:class"),C=0,B=1000, norm=TRUE,log=TRUE,sl=1000,featureOrder=NULL,...) { if(method=="ssanova"){ if(requireNamespace("gss")){ if(missing(formula)){ res = fitSSTimeSeries(obj=obj,feature=feature,class=class,time=time,id=id, lvl=lvl,C=C,B=B,norm=norm,log=log,sl=sl,include=include,featureOrder=featureOrder,...) } else { res = fitSSTimeSeries(obj=obj,formula=formula,feature=feature,class=class, time=time,id=id,lvl=lvl,C=C,B=B,norm=norm,log=log,sl=sl, include=include,featureOrder=featureOrder,...) } } } res = c(res,call=match.call()) return(res) } #' Plot difference function for particular bacteria #' #' Plot the difference in abundance for significant features. #' #' @param res Output of fitTimeSeries function #' @param C Value for which difference function has to be larger or smaller than (default 0). #' @param xlab X-label. #' @param ylab Y-label. #' @param main Main label. #' @param ... Extra plotting arguments. #' @return Plot of difference in abundance for significant features. #' @rdname plotTimeSeries #' @seealso \code{\link{fitTimeSeries}} #' @export #' @examples #' #' data(mouseData) #' res = fitTimeSeries(obj=mouseData,feature="Actinobacteria", #' class="status",id="mouseID",time="relativeTime",lvl='class',B=10) #' plotTimeSeries(res) #' plotTimeSeries<-function(res,C=0,xlab="Time",ylab="Difference in abundance",main="SS difference function prediction",...){ fit = res$fit$fit se = res$fit$se timePoints = res$fit$timePoints confInt95 = 1.96 sigDiff = res$timeIntervals minValue=min(fit-(confInt95*se))-.5 maxValue=max(fit+(confInt95*se))+.5 plot(x=timePoints, y=fit, ylim=c(minValue, maxValue), xlab=xlab, ylab=ylab, main=main, ...) for (i in 1:nrow(sigDiff)){ begin=sigDiff[i,1] end=sigDiff[i,2] indBegin=which(timePoints==begin) indEnd=which(timePoints==end) x=timePoints[indBegin:indEnd] y=fit[indBegin:indEnd] xx=c(x, rev(x)) yy=c(y, rep(0, length(y))) polygon(x=xx, yy, col="grey") } lines(x=timePoints, y=fit, pch="") lines(x=timePoints, y=fit+(confInt95*se), pch="", lty=2) lines(x=timePoints, y=fit-(confInt95*se), pch="", lty=2) abline(h=C) } #' Plot abundances by class #' #' Plot the abundance of values for each class using #' a spline approach on the estimated full model. #' #' @param res Output of fitTimeSeries function #' @param formula Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value. #' @param xlab X-label. #' @param ylab Y-label. #' @param color0 Color of samples from first group. #' @param color1 Color of samples from second group. #' @param include Parameters to include in prediction. #' @param ... Extra plotting arguments. #' @return Plot for abundances of each class using a spline approach on estimated null model. #' @rdname plotClassTimeSeries #' @seealso \code{\link{fitTimeSeries}} #' @export #' @examples #' #' data(mouseData) #' res = fitTimeSeries(obj=mouseData,feature="Actinobacteria", #' class="status",id="mouseID",time="relativeTime",lvl='class',B=10) #' plotClassTimeSeries(res,pch=21,bg=res$data$class,ylim=c(0,8)) #' plotClassTimeSeries<-function(res,formula,xlab="Time",ylab="Abundance",color0="black", color1="red",include=c("1","class", "time:class"),...){ dat = res$data if(missing(formula)){ mod = gss::ssanova(abundance ~ time * class, data=dat) } else{ mod = gss::ssanova(formula,data=dat) } timePoints = seq(min(dat$time),max(dat$time),by=1) group0 = data.frame(time=timePoints,class=levels(dat$class)[1]) group1 = data.frame(time=timePoints,class=levels(dat$class)[2]) pred0 = predict(mod, newdata=group0,include=include, se=TRUE) pred1 = predict(mod, newdata=group1,include=include, se=TRUE) plot(x=dat$time,y=dat$abundance,xlab=xlab,ylab=ylab,...) lines(x=group0$time,y=pred0$fit,col=color0) lines(x=group0$time,y=pred0$fit+(1.96*pred0$se),lty=2,col=color0) lines(x=group0$time,y=pred0$fit-(1.96*pred0$se),lty=2,col=color0) lines(x=group1$time,y=pred1$fit,col=color1) lines(x=group1$time,y=pred1$fit+(1.96*pred1$se),lty=2,col=color1) lines(x=group1$time,y=pred1$fit-(1.96*pred1$se),lty=2,col=color1) } #' Discover differentially abundant time intervals for all bacteria #' #' Calculate time intervals of significant differential abundance over all #' bacteria of a particularly specified level (lvl). If not lvl is specified, #' all OTUs are analyzed. Warning, function can take a while #' #' @param obj metagenomeSeq MRexperiment-class object. #' @param lvl Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level). #' @param B Number of permutations to perform. #' @param featureOrder Hierarchy of levels in taxonomy as fData colnames #' @param ... Options for \code{\link{fitTimeSeries}}, except feature. #' @return List of lists of matrices of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations. #' @return A list of lists for which each includes: #' \itemize{ #' \item{timeIntervals - Matrix of time point intervals of interest, area of differential abundance, and pvalue.} #' \item{data - Data frame of abundance, class indicator, time, and id input.} #' \item{fit - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.} #' \item{perm - Differential abundance area estimates for each permutation.} #' \item{call - Function call.} #' } #' @rdname fitMultipleTimeSeries #' @seealso \code{\link{cumNorm}} \code{\link{fitSSTimeSeries}} \code{\link{fitTimeSeries}} #' @export #' @examples #' #' data(mouseData) #' res = fitMultipleTimeSeries(obj=mouseData,lvl='phylum',class="status", #' id="mouseID",time="relativeTime",B=1) #' fitMultipleTimeSeries <- function(obj,lvl=NULL,B=1,featureOrder=NULL,...) { if(is.null(lvl)){ bacteria = seq(nrow(obj)) } else { if(is.factor(fData(obj)[,lvl])){ fData(obj)[,lvl] = as.character(fData(obj)[,lvl]) } bacteria = unique(fData(obj)[,lvl]) } fits = lapply(bacteria,function(bact){ try(fitTimeSeries(obj,lvl=lvl,feature=bact,B=B,featureOrder=featureOrder,...)) }) names(fits) = bacteria fits = c(fits,call=match.call()) return(fits) } #' With a list of fitTimeSeries results, generate #' an MRexperiment that can be plotted with metavizr #' #' @param obj Output of fitMultipleTimeSeries #' @param sampleNames Sample names for plot #' @param sampleDescription Description of samples for plot axis label #' @param taxonomyLevels Feature names for plot #' @param taxonomyHierarchyRoot Root of feature hierarchy for MRexperiment #' @param taxonomyDescription Description of features for plot axis label #' @param featuresOfInterest The features to select from the fitMultipleTimeSeries output #' @param featureDataOfInterest featureData for the resulting MRexperiment #' @return MRexperiment that contains fitTimeSeries data, featureData, and phenoData #' @rdname ts2MRexperiment #' @seealso \code{\link{fitTimeSeries}} \code{\link{fitMultipleTimeSeries}} #' @export #' @examples #' #' data(mouseData) #' res = fitMultipleTimeSeries(obj=mouseData,lvl='phylum',class="status", #' id="mouseID",time="relativeTime",B=1) #' obj = ts2MRexperiment(res) #' obj #' ts2MRexperiment<-function(obj,sampleNames=NULL, sampleDescription="timepoints", taxonomyLevels=NULL, taxonomyHierarchyRoot="bacteria", taxonomyDescription="taxonomy", featuresOfInterest = NULL, featureDataOfInterest=NULL){ if(is.null(obj)){ stop("Matrix cannot be null") } if(is.null(sampleNames)){ numSamples <- dim(obj[[1]]$fit)[1] sampleNames <- paste("Timepoint", 1:numSamples, sep="_") } if(is.null(featuresOfInterest)){ hasFit <- lapply(1:(length(obj)-1), function(i) which(!is.null(obj[[i]]$fit))) featuresOfInterest <- which(hasFit == 1) hasFit <- (hasFit == 1) hasFit <- !is.na(hasFit) temp <- 1:length(hasFit) temp[!hasFit] <- 0 hasFit <- temp } if(is.null(taxonomyLevels)){ numLevels <- 1:length(hasFit) taxonomyLevels <- names(obj)[1:length(hasFit)] } numSamples <- length(sampleNames) numLevels <- length(taxonomyLevels) numFeaturesOfInterest <- length(featuresOfInterest) rangeSamples <- 1:numSamples rangeFeaturesOfInterest <- 1:numFeaturesOfInterest # print(hasFit) results <- do.call(rbind, lapply(hasFit,function(i){ if (i != 0) t(obj[[i]]$fit)[1,] else rep(NA, numSamples) })) dfSamples <- data.frame(x=rangeSamples,row.names=sampleNames) metaDataSamples <-data.frame(labelDescription=sampleDescription) annotatedDFSamples <- AnnotatedDataFrame() pData(annotatedDFSamples) <- dfSamples varMetadata(annotatedDFSamples) <- metaDataSamples validObject(annotatedDFSamples) if(is.null(featureDataOfInterest)){ dfFeatures <- data.frame(taxonomy1=rep(taxonomyHierarchyRoot, numLevels),taxonomy2=taxonomyLevels) metaDataFeatures <-data.frame(labelDescription=paste(taxonomyDescription, 1:2, sep="")) annotatedDFFeatures <- AnnotatedDataFrame() pData(annotatedDFFeatures) <- dfFeatures varMetadata(annotatedDFFeatures) <- metaDataFeatures validObject(annotatedDFFeatures) } else{ annotatedDFFeatures <- featureDataOfInterest } fitTimeSeriesMRexp <- newMRexperiment(counts=results, phenoData=annotatedDFSamples, featureData=annotatedDFFeatures) return(fitTimeSeriesMRexp) } # load("~/Dropbox/Projects/metastats/package/git/metagenomeSeq/data/mouseData.rda") # classMatrix = aggregateByTaxonomy(mouseData,lvl='class',norm=TRUE,out='MRexperiment') # data(mouseData) # fitTimeSeries(obj=mouseData,feature="Actinobacteria",class="status",id="mouseID",time="relativeTime",lvl='class',B=10) metagenomeSeq/R/fitZeroLogNormal.R0000644000175400017540000002523113175714310020160 0ustar00biocbuildbiocbuild#' Compute the log fold-change estimates for the zero-inflated log-normal model #' #' Run the zero-inflated log-normal model given a MRexperiment object #' and model matrix. Not for the average user, assumes structure of the model matrix. #' #' @param obj A MRexperiment object with count data. #' @param mod The model for the count distribution. #' @param coef Coefficient of interest to grab log fold-changes. #' @param szero TRUE/FALSE, shrink zero component parameters. #' @param spos TRUE/FALSE, shrink positive component parameters. #' @return A list of objects including: #' \itemize{ #' \item{logFC - the log fold-change estimates} #' \item{adjFactor - the adjustment factor based on the zero component} #' \item{se - standard error estimates} #' \item{fitln - parameters from the log-normal fit} #' \item{fitzero - parameters from the logistic fit} #' \item{zeroRidge - output from the ridge regression} #' \item{posRidge - output from the ridge regression} #' \item{tauPos - estimated tau^2 for positive component} #' \item{tauZero - estimated tau^2 for zero component} #' \item{exclude - features to exclude for various reasons, e.g. all zeros} #' \item{zeroExclude - features to exclude for various reasons, e.g. all zeros} #' } #' @seealso \code{\link{cumNorm}} \code{\link{fitFeatureModel}} fitZeroLogNormal<-function(obj,mod,coef=2,szero=TRUE,spos=TRUE){ positiveMod = mod[,-ncol(mod)] zeroMod = mod nf <- normFactors(obj) mat <- MRcounts(obj, norm=TRUE, log=FALSE,sl=median(nf)) posIndices = mat>0 nr = nrow(mat) nc = ncol(mat) exclude = zeroExclude = tauZero = tauPos = posRidge = zeroRidge = NULL results = array(NA,dim=c(nr,3)) rownames(results) = rownames(mat) colnames(results) = c("logFC","adjFactor","se") # calc log-normal component fitln = calcPosComponent(mat,positiveMod,posIndices) # Don't calculate shrinkage with special cases zeros2 = which(fitln[,"s2"]==0) rs = rowsum(t(1-(1-posIndices)),positiveMod[,coef]) exclude = union(which(rs[1,]<=1),which(rs[2,]<=1)) zeroExclude = which(colSums(rs)>=(nc-3)) exclude = union(zeros2,exclude); if(length(exclude)==0) exclude=NULL if(length(zeroExclude)==0) zeroExclude=NULL sdensity = density(fitln[,"s2"],na.rm=TRUE) smode = sdensity$x[which.max(sdensity$y)] if(length(zeros2)>0) fitln[zeros2,"s2"] = smode # shrink positive if(spos==TRUE){ shrinkPos<-calcShrinkParameters(fitln,coef,smode,exclude) tauPos = shrinkPos$tau vpost = shrinkPos$v.post fitln[,"s2"] = vpost posRidge = sapply(seq(nr),function(i){ k = which(posIndices[i,]) y = log(mat[i,k]) x = positiveMod[k,] l = vpost[i]/(nrow(x)*tauPos) if(i %in% exclude) return(matrix(rep(NA,ncol(positiveMod)))) ridge = glmnet(y=y,x=x,lambda=l,alpha=0) as.matrix(coefficients(ridge)[colnames(positiveMod),]) }) posFittedCoefficients = t(posRidge) rownames(posFittedCoefficients) = rownames(mat) fitln[rownames(posFittedCoefficients),1:ncol(positiveMod)] = posFittedCoefficients } # calc zero component fitzero=calcZeroComponent(mat,zeroMod,posIndices) sdensity = density(fitzero[,"s2"],na.rm=TRUE) smode = sdensity$x[which.max(sdensity$y)] if(length(exclude)>0) fitzero[exclude,"s2"] = smode # shrink zero if(szero==TRUE){ shrinkZero<-calcShrinkParameters(fitzero,coef,smode,exclude) tauZero = shrinkZero$tau vpostZero = shrinkZero$v.post fitzero[,"s2"] = vpostZero zeroRidge = sapply(1:nr,function(i){ y = posIndices[i,] l = 1/(nc*tauZero) if(i %in% c(zeroExclude,exclude)) return(matrix(rep(NA,ncol(zeroMod)))) ridge = glmnet(y=y,x=zeroMod,lambda=l,family="binomial",alpha=0, penalty.factor = c(rep(1,(ncol(zeroMod)-1)),0)) as.matrix(coefficients(ridge))[colnames(zeroMod),] }) zeroFittedCoefficients = t(zeroRidge) rownames(zeroFittedCoefficients) = rownames(mat) fitzero[rownames(zeroFittedCoefficients),1:ncol(zeroMod)] = zeroFittedCoefficients } # calc se se = calcStandardError(zeroMod,fitln,fitzero,coef=coef,exclude=union(exclude,zeroExclude)) se[zeroExclude] = sqrt(fitln[zeroExclude,"s2"]) # calc adjFactor adjFactor = calcZeroAdjustment(fitln,fitzero,zeroMod,coef,exclude=exclude) adjFactor[zeroExclude] = 0 # calc logFC logFC <- fitln[,coef] + adjFactor list(logFC=logFC,adjFactor=adjFactor,se=se, fitln=fitln,fitzero=fitzero,zeroRidge=zeroRidge,posRidge=posRidge, tauPos=tauPos,tauZero=tauZero,exclude=exclude,zeroExclude=zeroExclude) } #' Positive component #' #' Fit the positive (log-normal) component #' #' @param mat A matrix of normalized counts #' @param mod A model matrix #' @param weights Weight matrix for samples and counts #' @seealso \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} calcPosComponent<-function(mat,mod,weights){ fitln <- lmFit(log(mat),mod,weights=weights) b = coefficients(fitln) df = fitln$df res = residuals(fitln,log(mat)) s2 = sapply(seq(nrow(res)),function(i){ sum(res[i,which(weights[i,])]^2,na.rm=TRUE)/df[i] }) fitln<-data.frame(b=b,s2=s2,df=df) rownames(fitln) = rownames(mat) fitln } #' Zero component #' #' Fit the zero (logisitic) component #' #' @param mat A matrix of normalized counts #' @param mod A model matrix #' @param weights Weight matrix for samples and counts #' @seealso \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} calcZeroComponent<-function(mat,mod,weights){ fitzero <- sapply(seq(nrow(mat)), function(i) { fit <- glm.fit(mod, weights[i,], family=binomial()) cf = coefficients(fit) df = fit$df.residual mc = exp(mod %*% cf) s2 = sum((weights[i, ] - t(mc/(1 + mc)))^2)/df # s2 = sum(residuals(fit)^2)/df c(beta= cf, s2 = s2, df = df) }) fitzero <- data.frame(t(fitzero)) rownames(fitzero) = rownames(mat) fitzero } #' Calculate shrinkage parameters #' #' Calculate the shrunken variances and variance of parameters of interest across features. #' #' @param fit A matrix of fits as outputted by calcZeroComponent or calcPosComponent #' @param coef Coefficient of interest #' @param mins2 minimum variance estimate #' @param exclude Vector of features to exclude when shrinking #' @seealso \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} calcShrinkParameters<-function(fit,coef,mins2,exclude=NULL){ if(is.null(exclude)){ shrunkVar <- limma::squeezeVar(fit[,"s2"], fit[,"df"]) v.post = shrunkVar$var.post tau <-var(fit[,coef],na.rm=TRUE) } else { v.post = rep(mins2,nrow(fit)) shrunkVar <- limma::squeezeVar(fit[-exclude,"s2"], fit[-exclude,"df"]) v.post[-exclude] <- shrunkVar$var.post tau <- var(fit[-exclude,coef],na.rm=TRUE) } list(tau=tau,v.post=v.post) } #' Calculate the zero-inflated component's adjustment factor #' #' Calculate the log ratio of average marginal probabilities for each sample #' having a positive count. This becomes the adjustment factor for the log #' fold change. #' #' @param fitln A matrix with parameters from the log-normal fit #' @param fitzero A matrix with parameters from the logistic fit #' @param mod The zero component model matrix #' @param coef Coefficient of interest #' @param exclude List of features to exclude #' @seealso \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} calcZeroAdjustment<-function(fitln,fitzero,mod,coef,exclude=NULL){ b = fitln[,1:(ncol(mod)-1)] beta = fitzero[,1:ncol(mod)] # calculate for zero adjust factor mod1 <- mod mod1[,coef] <- 1 theta1 <- mod1 %*% t(beta) p1 <- exp(theta1) / (1+exp(theta1)) p1 <- t(p1) if(ncol(b)>2) p1 = p1*exp(t(mod[,3:(ncol(mod)-1)]%*%t(b[,3:ncol(b)]))) mean_p1 <- rowMeans(p1) mod0 <- mod mod0[,coef] <- 0 theta0 <- mod0 %*% t(beta) p0 <- exp(theta0) / (1+exp(theta0)) p0 <- t(p0) if(ncol(b)>2) p0 = p0*exp(t(mod[,3:(ncol(mod)-1)]%*%t(b[,3:ncol(b)]))) mean_p0 <- rowMeans(p0) adjFactor <- log(mean_p1/mean_p0) if(!is.null(exclude)) adjFactor[exclude] = NA adjFactor } #' Calculate the zero-inflated log-normal statistic's standard error #' #' Calculat the se for the model. Code modified from #' "Adjusting for covariates in zero-inflated gamma and #' zero-inflated log-normal models for semicontinuous data", ED Mills #' #' @param mod The zero component model matrix #' @param fitln A matrix with parameters from the log-normal fit #' @param fitzero A matrix with parameters from the logistic fit #' @param coef Coefficient of interest #' @param exclude List of features to exclude #' @seealso \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} calcStandardError<-function(mod,fitln,fitzero,coef=2,exclude=NULL){ mod0 = mod1 = mod mod1[,coef] <- 1 mod0[,coef] <- 0 ve = rep(NA,nrow(fitln)) features = seq(nrow(fitln)) if(length(exclude)>0) features = features[-exclude] # a) need to speed up # b) need to include more covariates fullvar = sapply(features,function(i){ beta = fitzero[i,1:ncol(mod)] b = fitln[i,1:(ncol(mod)-1)] s = as.numeric(fitln[i,"s2"]) mu0 = as.vector(exp(mod0[,-ncol(mod)]%*%t(b) + .5*s)) mu1 = as.vector(exp(mod1[,-ncol(mod)]%*%t(b) + .5*s)) # calculate for zero adjust factor theta <- mod %*% t(beta) theta1 <- mod1 %*% t(beta) theta0 <- mod0 %*% t(beta) p <- t(exp(theta) / (1+exp(theta))) p1 <- t(exp(theta1) / (1+exp(theta1))) p0 <- t(exp(theta0) / (1+exp(theta0))) checkInverse <- function(m){ class(try(qr.solve(m),silent=T))=="matrix" } Dp2 <- diag(length(p))*as.vector(p*(1-p)) infz = t(mod)%*%Dp2%*%mod Dp <- diag(length(p))*as.vector(p) infln = t(mod[,-ncol(mod)])%*%Dp%*%mod[,-ncol(mod)] if(checkInverse(infz)) { invinf_z <-qr.solve(infz) } else { return(NA) } if(checkInverse(infln)) { invinf_ln<-as.numeric(s)*qr.solve(infln) } else { return(NA) } invInfFull = as.matrix( bdiag(invinf_z,invinf_ln, (2*s^2/sum(p))) ) logRatioBeta0<- (mean(p1*(1-p1)*mu0)/mean(p1*mu0)) - (mean(p0*(1-p0)*mu0)/mean(p0*mu0)) logRatioBeta1<-mean(p1*(1-p1)*mu0)/mean(p1*mu0) logRatioBeta2<- (mean(mod[,3]*p1*(1-p1)*mu0)/mean(p1*mu0)) - (mean(mod[,3]*p0*(1-p0)*mu0)/mean(p0*mu0)) # logRatioB2<- (mean(mod[,3]*t(p1)*exp(mod0%*%t(b)))/mean(t(p1)*exp(mod0%*%t(b))))- # (mean(mod[,3]*t(p0)*exp(mod0%*%t(b)))/mean(t(p0)*exp(mod0%*%t(b)))) # logRatioFull = t(c(logRatioBeta0,logRatioBeta1,logRatioBeta2,0,1,logRatioB2,0)) logRatioFull = t(c(logRatioBeta0,logRatioBeta1,logRatioBeta2,0,1,0)) logRatioVar = logRatioFull%*%invInfFull%*%t(logRatioFull) logRatioVar }) if(!is.null(exclude)){ if(length(features)>0){ ve[features] = fullvar } } else { ve = fullvar } sqrt(ve) } metagenomeSeq/R/fitZig.R0000644000175400017540000002164113175714310016160 0ustar00biocbuildbiocbuild#' Computes the weighted fold-change estimates and t-statistics. #' #' Wrapper to actually run the Expectation-maximization algorithm and estimate #' $f_count$ fits. Maximum-likelihood estimates are approximated using the EM #' algorithm where we treat mixture membership $delta_ij = 1$ if $y_ij$ is #' generated from the zero point mass as latent indicator variables. The #' density is defined as $f_zig(y_ij = pi_j(S_j)*f_0(y_ij) +(1-pi_j (S_j)) * #' f_count(y_ij; mu_i, sigma_i^2)$. The log-likelihood in this extended model #' is: $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log #' pi_j(s_j)+(1-delta_ij) log (1-pi_j (s_j))$. The responsibilities are defined #' as $z_ij = pr(delta_ij=1 | data)$. #' #' #' @param obj A MRexperiment object with count data. #' @param mod The model for the count distribution. #' @param zeroMod The zero model, the model to account for the change in the #' number of OTUs observed as a linear effect of the depth of coverage. #' @param useCSSoffset Boolean, whether to include the default scaling #' parameters in the model or not. #' @param control The settings for fitZig. #' @param useMixedModel Estimate the correlation between duplicate #' features or replicates using duplicateCorrelation. #' @param ... Additional parameters for duplicateCorrelation. #' @return A list of objects including: #' \itemize{ #' \item{call - the call made to fitZig} #' \item{fit - 'MLArrayLM' Limma object of the weighted fit} #' \item{countResiduals - standardized residuals of the fit} #' \item{z - matrix of the posterior probabilities} #' \item{eb - output of eBayes, moderated t-statistics, moderated F-statistics, etc} #' \item{taxa - vector of the taxa names} #' \item{counts - the original count matrix input} #' \item{zeroMod - the zero model matrix} #' \item{zeroCoef - the zero model fitted results} #' \item{stillActive - convergence} #' \item{stillActiveNLL - nll at convergence} #' \item{dupcor - correlation of duplicates} #' } #' @export #' @seealso \code{\link{cumNorm}} \code{\link{zigControl}} #' @examples #' #' # This is a simple demonstration #' data(lungData) #' k = grep("Extraction.Control",pData(lungData)$SampleType) #' lungTrim = lungData[,-k] #' k = which(rowSums(MRcounts(lungTrim)>0)<30) #' lungTrim = cumNorm(lungTrim) #' lungTrim = lungTrim[-k,] #' smokingStatus = pData(lungTrim)$SmokingStatus #' mod = model.matrix(~smokingStatus) #' # The maxit is not meant to be 1 - this is for demonstration/speed #' settings = zigControl(maxit=1,verbose=FALSE) #' fit = fitZig(obj = lungTrim,mod=mod,control=settings) #' fitZig <- function(obj, mod, zeroMod=NULL, useCSSoffset=TRUE, control=zigControl(), useMixedModel=FALSE, ...) { stopifnot( is( obj, "MRexperiment" ) ) if(any(is.na(normFactors(obj)))) stop("At least one NA normalization factors") if(any(is.na(libSize(obj)))) stop("Calculate the library size first!") y <- MRcounts(obj, norm=FALSE, log=FALSE) nc <- ncol(y) #nsamples nr <- nrow(y) #nfeatures # Normalization step Nmatrix <- log2(y + 1) # Initializing the model matrix if (useCSSoffset == TRUE){ if (any(is.na(normFactors(obj)))) { stop("Calculate the normalization factors first!") } mmCount <- cbind(mod, log2(normFactors(obj)/1000 + 1)) colnames(mmCount)[ncol(mmCount)] <- "scalingFactor" } else { mmCount <- mod } if (is.null(zeroMod)) { if (any(is.na(libSize(obj)))) { stop("Calculate the library size first!") } mmZero <- model.matrix(~1+log(libSize(obj))) } else { mmZero <- zeroMod } dat <- .do_fitZig(Nmatrix, mmCount, mmZero, control=control, useMixedModel=useMixedModel, ...) assayData(obj)[["z"]] <- dat$z assayData(obj)[["zUsed"]] <- dat$zUsed dat$zUsed <- NULL dat <- c(dat, list(call=match.call(),taxa=rownames(obj),counts=y)) dat } .do_fitZig <- function(y, count_model_matrix, zero_model_matrix, control=zigControl(), useMixedModel=FALSE, ...) { # Initialization tol <- control$tol maxit <- control$maxit verbose <- control$verbose dfMethod <- control$dfMethod pvalMethod <- control$pvalMethod nr <- nrow(y) nc <- ncol(y) zeroIndices <- (y == 0) z <- matrix(0, nrow=nr, ncol=nc) z[zeroIndices] <- 0.5 zUsed <- z curIt <- 0 nllOld <- rep(Inf, nr) nll <- rep(Inf, nr) nllUSED <- nll stillActive <- rep(TRUE, nr) stillActiveNLL <- rep(1, nr) dupcor <- NULL modRank <- ncol(count_model_matrix) # E-M Algorithm while (any(stillActive) && (curIt < maxit)) { # M-step for count density (each feature independently) if(curIt == 0){ fit <- doCountMStep(z, y, count_model_matrix, stillActive, dfMethod=dfMethod) } else { fit <- doCountMStep(z, y, count_model_matrix, stillActive, fit2=fit, dfMethod=dfMethod) } # M-step for zero density (all features together) zeroCoef <- doZeroMStep(z, zeroIndices, zero_model_matrix) # E-step z <- doEStep(fit$residuals, zeroCoef$residuals, zeroIndices) zzdata <- getZ(z, zUsed, stillActive, nll, nllUSED); zUsed <- zzdata$zUsed; # NLL nll <- getNegativeLogLikelihoods(z, fit$residuals, zeroCoef$residuals) eps <- getEpsilon(nll, nllOld) active <- isItStillActive(eps, tol,stillActive,stillActiveNLL,nll) stillActive <- active$stillActive; stillActiveNLL <- active$stillActiveNLL; if (verbose == TRUE){ cat(sprintf("it=%2d, nll=%0.2f, log10(eps+1)=%0.2f, stillActive=%d\n", curIt, mean(nll,na.rm=TRUE), log10(max(eps,na.rm=TRUE)+1), sum(stillActive))) } nllOld <- nll curIt <- curIt + 1 if (sum(rowSums((1-z) > 0) <= modRank, na.rm=TRUE) > 0) { k <- which(rowSums((1-z) > 0) <= modRank) stillActive[k] <- FALSE; stillActiveNLL[k] <- nll[k] } } if (useMixedModel == TRUE) { dupcor <- duplicateCorrelation(y, count_model_matrix, weights=(1-z), ...) fit$fit <- limma::lmFit(y, count_model_matrix, weights=(1-z), correlation=dupcor$consensus, ...) countCoef <- fit$fit$coefficients countMu <- tcrossprod(countCoef, count_model_matrix) fit$residuals <- sweep((y-countMu), 1, fit$fit$sigma, "/") } eb <- limma::eBayes(fit$fit) dat <- list(fit=fit$fit, countResiduals=fit$residuals, z=z, zUsed=zUsed, eb=eb, zeroMod=zero_model_matrix, stillActive=stillActive, stillActiveNLL=stillActiveNLL, zeroCoef=zeroCoef, dupcor=dupcor) dat } # #' Function to perform fitZig bootstrap # #' # #' Calculates bootstrap stats # #' # #' @param y Log-transformed matrix # #' @param y string for the y-axis # #' @param norm is the data normalized? # #' @param log is the data logged? # #' @return vector of x,y labels # #' # performBoostrap<-function(fit){ # zeroIndices=(y==0) # z=matrix(0,nrow=nr, ncol=nc) # z[zeroIndices]=0.5 # zUsed = z # curIt=0 # nllOld=rep(Inf, nr) # nll=rep(Inf, nr) # nllUSED=nll # stillActive=rep(TRUE, nr) # stillActiveNLL=rep(1, nr) # tt <- fit$fit$coef[,coef] / fit$fit$stdev.unscaled[,coef] / fit$fit$sigma # perms = replicate(B,sample(mmCount[,coef])) # mmCount1=mmCount[,-coef] # # Normalization step # Nmatrix = log2(y+1) # # Initializing the model matrix # if(useCSSoffset==TRUE){ # if(any(is.na(normFactors(obj)))){stop("Calculate the normalization factors first!")} # mmCount=cbind(mod,log2(normFactors(obj)/1000 +1)) # colnames(mmCount)[ncol(mmCount)] = "scalingFactor" # } # else{ # mmCount=mod # } # if(is.null(zeroMod)){ # if(any(is.na(libSize(obj)))){ stop("Calculate the library size first!") } # mmZero=model.matrix(~1+log(libSize(obj))) # } else{ # mmZero=zeroMod # } # modRank=ncol(mmCount) # # E-M Algorithm # while(any(stillActive) && curIt0)<=modRank,na.rm=TRUE)>0){ # k = which(rowSums((1-z)>0)<=modRank) # stillActive[k] = FALSE; # stillActiveNLL[k] = nll[k] # } # } # } metagenomeSeq/R/getCountDensity.R0000644000175400017540000000204013175714310020044 0ustar00biocbuildbiocbuild#' Compute the value of the count density function from the count model #' residuals. #' #' Calculate density values from a normal: $f(x) = 1/(sqrt (2 pi ) sigma ) #' e^-((x - mu )^2/(2 sigma^2))$. Maximum-likelihood estimates are #' approximated using the EM algorithm where we treat mixture membership #' $deta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent #' indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j) cdot #' f_0(y_ij) +(1-pi_j (S_j))cdot f_count(y_ij;mu_i,sigma_i^2)$. The #' log-likelihood in this extended model is $(1-delta_ij) log #' f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j #' (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. #' #' #' @param residuals Residuals from the count model. #' @param log Whether or not we are calculating from a log-normal distribution. #' @return Density values from the count model residuals. #' @seealso \code{\link{fitZig}} getCountDensity <- function(residuals, log=FALSE){ dnorm(residuals,log=log) } metagenomeSeq/R/getEpsilon.R0000644000175400017540000000165413175714310017037 0ustar00biocbuildbiocbuild#' Calculate the relative difference between iterations of the negative #' log-likelihoods. #' #' Maximum-likelihood estimates are approximated using the EM algorithm where #' we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the #' zero point mass as latent indicator variables. The log-likelihood in this #' extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log #' pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined #' as $z_ij = pr(delta_ij=1 | data)$. #' #' #' @param nll Vector of size M with the current negative log-likelihoods. #' @param nllOld Vector of size M with the previous iterations negative #' log-likelihoods. #' @return Vector of size M of the relative differences between the previous #' and current iteration nll. #' @seealso \code{\link{fitZig}} getEpsilon <- function(nll, nllOld){ eps=(nllOld-nll)/nllOld ifelse(!is.finite(nllOld), Inf, eps) } metagenomeSeq/R/getNegativeLogLikelihoods.R0000644000175400017540000000224313175714310022014 0ustar00biocbuildbiocbuild#' Calculate the negative log-likelihoods for the various features given the #' residuals. #' #' Maximum-likelihood estimates are approximated using the EM algorithm where #' we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the #' zero point mass as latent indicator variables. The log-likelihood in this #' extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log #' pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined #' as $z_ij = pr(delta_ij=1 | data and current values)$. #' #' #' @param z Matrix (m x n) of estimate responsibilities (probabilities that a #' count comes from a spike distribution at 0). #' @param countResiduals Residuals from the count model. #' @param zeroResiduals Residuals from the zero model. #' @return Vector of size M of the negative log-likelihoods for the various #' features. #' @seealso \code{\link{fitZig}} getNegativeLogLikelihoods <- function(z, countResiduals, zeroResiduals){ pi=getPi(zeroResiduals) countDensity=getCountDensity(countResiduals, log=TRUE) res=(1-z) * countDensity res=res+sweep(z, 2, log(pi), FUN="*") res=res+sweep(1-z,2,log(1-pi), FUN="*") -rowSums(res) } metagenomeSeq/R/getPi.R0000644000175400017540000000115113175714310015766 0ustar00biocbuildbiocbuild#' Calculate the mixture proportions from the zero model / spike mass model #' residuals. #' #' F(x) = 1 / (1 + exp(-(x-m)/s)) (the CDF of the logistic distribution). #' Provides the probability that a real-valued random variable X with a given #' probability distribution will be found at a value less than or equal to x. #' The output are the mixture proportions for the samples given the residuals #' from the zero model. #' #' #' @param residuals Residuals from the zero model. #' @return Mixture proportions for each sample. #' @seealso \code{\link{fitZig}} getPi <- function(residuals){ plogis(residuals) } metagenomeSeq/R/getZ.R0000644000175400017540000000210013175714310015622 0ustar00biocbuildbiocbuild#' Calculate the current Z estimate responsibilities (posterior probabilities) #' #' Calculate the current Z estimate responsibilities (posterior probabilities) #' #' #' @param z Matrix (m x n) of estimate responsibilities (probabilities that a #' count comes from a spike distribution at 0). #' @param zUsed Matrix (m x n) of estimate responsibilities (probabilities that #' a count comes from a spike distribution at 0) that are actually used #' (following convergence). #' @param stillActive A vector of size M booleans saying if a feature is still #' active or not. #' @param nll Vector of size M with the current negative log-likelihoods. #' @param nllUSED Vector of size M with the converged negative log-likelihoods. #' @return A list of updated zUsed and nllUSED. #' @seealso \code{\link{fitZig}} getZ <- function(z,zUsed,stillActive,nll,nllUSED){ nllUSED[stillActive] = nll[stillActive] k =which(nll< (nllUSED)) if(length(k)>0){ zUsed[k,]=z[k,] nllUSED[k] = nll[k] } zUsed[stillActive,] = z[stillActive,] dat = list(zUsed = zUsed,nllUSED = nllUSED) return(dat); } metagenomeSeq/R/isItStillActive.R0000644000175400017540000000223513175714310017776 0ustar00biocbuildbiocbuild#' Function to determine if a feature is still active. #' #' In the Expectation Maximization routine features posterior probabilities routinely converge based on a tolerance threshold. This function checks #' whether or not the feature's negative log-likelihood (measure of the fit) has changed or not. #' #' @param eps Vector of size M (features) representing the relative difference between the new nll and old nll. #' @param tol The threshold tolerance for the difference #' @param stillActive A vector of size M booleans saying if a feature is still active or not. #' @param stillActiveNLL A vector of size M recording the negative log-likelihoods of the various features, updated for those still active. #' @param nll Vector of size M with the current negative log-likelihoods. #' @return None. #' #' @name isItStillActive #' @seealso \code{\link{fitZig}} #' isItStillActive <- function(eps, tol,stillActive,stillActiveNLL,nll){ stillActive[stillActive]=!is.finite(eps[stillActive]) | eps[stillActive]>tol stillActive[which(is.na(eps))]=FALSE stillActiveNLL[stillActive]=nll[stillActive] dat = list(stillActive=stillActive,stillActiveNLL = stillActiveNLL) return(dat) } metagenomeSeq/R/loadBiom.R0000644000175400017540000000115013175714310016443 0ustar00biocbuildbiocbuild#' Load objects organized in the Biom format. #' #' Wrapper to load Biom formatted object. #' #' @param file The biom object filepath. #' @return A MRexperiment object. #' @seealso \code{\link{loadMeta}} \code{\link{loadPhenoData}} \code{\link{newMRexperiment}} \code{\link{biom2MRexperiment}} #' @examples #' #' #library(biomformat) #' rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat") #' x = loadBiom(rich_dense_file) #' x loadBiom <- function(file){ requireNamespace("biomformat") x = biomformat::read_biom(file); mrobj = biom2MRexperiment(x); return(mrobj); } metagenomeSeq/R/loadMeta.R0000644000175400017540000000163613175714310016454 0ustar00biocbuildbiocbuild#' Load a count dataset associated with a study. #' #' Load a matrix of OTUs in a tab delimited format #' #' #' @aliases loadMeta metagenomicLoader #' @param file Path and filename of the actual data file. #' @param sep File delimiter. #' @return A list with objects 'counts' and 'taxa'. #' @seealso \code{\link{loadPhenoData}} #' @examples #' #' dataDirectory <- system.file("extdata", package="metagenomeSeq") #' lung = loadMeta(file.path(dataDirectory,"CHK_NAME.otus.count.csv")) #' loadMeta <- function(file,sep="\t") { dat2 <- read.table(file,header=FALSE,sep=sep,nrows=1,stringsAsFactors=FALSE); subjects <- as.character(dat2[1,-1]); classes <-c("character",rep("numeric",length(subjects))); dat3 <- read.table(file,header=FALSE,skip=1,sep=sep,colClasses=classes,row.names=1); colnames(dat3) = subjects taxa<- rownames(dat3); obj <- list(counts=as.data.frame(dat3), taxa=as.data.frame(taxa)) return(obj); } metagenomeSeq/R/loadMetaQ.R0000644000175400017540000000173613175714310016576 0ustar00biocbuildbiocbuild#' Load a count dataset associated with a study set up in a Qiime format. #' #' Load a matrix of OTUs in Qiime's format #' #' #' @aliases loadMetaQ qiimeLoader #' @param file Path and filename of the actual data file. #' @return An list with 'counts' containing the count data, 'taxa' containing the otu annotation, and 'otus'. #' @seealso \code{\link{loadMeta}} \code{\link{loadPhenoData}} #' @examples #' #' # see vignette #' loadMetaQ <- function(file) { dat2 <- read.delim(file,header=FALSE,stringsAsFactors=FALSE,nrows=1,skip=1); len = ncol(dat2) subjects = as.character(dat2[1,-c(1,len)]); classes <-c("character",rep("numeric",(len-2)),"character"); dat3 <- read.delim(file,header=TRUE,colClasses=classes,skip=1); taxa<- dat3[,len]; taxa<-as.matrix(taxa); matrix <- dat3[,-c(1,len)] colnames(matrix) = subjects; otus = dat3[,1]; rownames(matrix) = otus; obj <- list(counts=as.data.frame(matrix), taxa=as.data.frame(taxa),otus = as.data.frame(otus)) return(obj); } metagenomeSeq/R/loadPhenoData.R0000644000175400017540000000263713175714310017433 0ustar00biocbuildbiocbuild#' Load a clinical/phenotypic dataset associated with a study. #' #' Load a matrix of metadata associated with a study. #' #' #' @aliases loadPhenoData phenoData #' @param file Path and filename of the actual clinical file. #' @param tran Boolean. If the covariates are along the columns and samples #' along the rows, then tran should equal TRUE. #' @param sep The separator for the file. #' @return The metadata as a dataframe. #' @seealso \code{\link{loadMeta}} #' @examples #' #' dataDirectory <- system.file("extdata", package="metagenomeSeq") #' clin = loadPhenoData(file.path(dataDirectory,"CHK_clinical.csv"),tran=TRUE) #' loadPhenoData <-function(file,tran=TRUE,sep="\t") { dat2 <- read.table(file,header=FALSE,sep=sep); # no. of subjects subjects <- array(0,dim=c(ncol(dat2)-1)); for(i in 1:length(subjects)) { subjects[i] <- as.character(dat2[1,i+1]); } # no. of rows rows <- nrow(dat2); # load remaining counts matrix <- array(NA, dim=c(length(subjects),rows-1)); covar = array(NA,dim=c(rows-1,1)); for(i in 1:(rows)-1){ for(j in 1:(length(subjects))){ matrix[j,i] <- as.character(dat2[i+1,j+1]); } covar[i] = as.character(dat2[i+1,1]); } phenoData<-as.data.frame(matrix); colnames(phenoData) = covar; if(length(unique(subjects))==(length(subjects))){ rownames(phenoData) = subjects; } if(tran==TRUE){ phenoData = as.data.frame(t(phenoData)) } return(phenoData); } metagenomeSeq/R/mergeMRexperiments.R0000644000175400017540000000610313175714310020542 0ustar00biocbuildbiocbuild#' Extract the essentials of an MRexperiment. #' #' @param obj MRexperiment-class object. #' #' @return \itemize{A list containing: #' \item counts : Count data #' \item librarySize : The column sums / library size / sequencing depth #' \item normFactors : The normalization scaling factors #' \item pheno : phenotype table #' \item feat : feature table #' } #' #' @examples #' #' data(mouseData) #' head(metagenomeSeq:::extractMR(mouseData)) #' extractMR<-function(obj){ mat = MRcounts(obj) ls = as.vector(libSize(obj)) norm= as.vector(normFactors(obj)) pd = pData(obj) fd = fData(obj) dat = list(counts=mat,librarySize=ls,normFactors=norm,pheno=pd,feat=fd) return(dat) } #' Merge two tables #' #' @param x Table 1. #' @param y Table 2. #' #' @return Merged table #' mergeTable<-function(x,y){ rows = union(rownames(x),rownames(y)) cols = union(colnames(x),colnames(y)) fullmat = array(NA,dim=c(length(rows),length(cols))) rownames(fullmat) = rows colnames(fullmat) = cols fullmat[rownames(x),colnames(x)] = as.matrix(x) fullmat[rownames(y),colnames(y)] = as.matrix(y) fullmat } #' Merge two MRexperiment objects together #' #' This function will take two MRexperiment objects and merge them together finding common #' OTUs. If there are OTUs not found in one of the two MRexperiments then a message will #' announce this and values will be coerced to zero for the second table. #' #' @param x MRexperiment-class object 1. #' @param y MRexperiment-class object 2. #' #' @return Merged MRexperiment-class object. #' @export #' #' @examples #' data(mouseData) #' newobj = mergeMRexperiments(mouseData,mouseData) #' newobj #' #' # let me know if people are interested in an option to merge by keys instead of row names. #' data(lungData) #' newobj = mergeMRexperiments(mouseData,lungData) #' newobj mergeMRexperiments<-function(x,y){ xdat = extractMR(x) ydat = extractMR(y) xmat = xdat$counts; ymat = ydat$counts cnames = union(colnames(xmat),colnames(ymat)) if(length(cnames)!=(ncol(x)+ncol(y))){ message("MRexperiment 1 and 2 share sample ids; adding labels to sample ids.") newXnames = paste(colnames(xmat),"x",sep=".") newYnames = paste(colnames(ymat),"y",sep=".") cnames = union(newXnames,newYnames) colnames(xdat$counts) = rownames(xdat$pheno) = names(xdat$normFactors) = names(xdat$librarySize) = newXnames colnames(ydat$counts) = rownames(ydat$pheno) = names(ydat$normFactors) = names(ydat$librarySize) = newYnames } counts = mergeTable(xdat$counts,ydat$counts) pheno = as.data.frame(mergeTable(xdat$pheno,ydat$pheno)) feat = as.data.frame(mergeTable(xdat$feat,ydat$feat)) librarySize = c(xdat$librarySize,ydat$librarySize) normFactors = c(xdat$normFactors,ydat$normFactors) if(any(is.na(counts))){ message("There were OTUs not shared between objects. Coercing values to 0.") counts[is.na(counts)] = 0 } obj = newMRexperiment(counts=counts, normFactors=normFactors, libSize=librarySize, phenoData = AnnotatedDataFrame(pheno), featureData=AnnotatedDataFrame(feat)) return(obj) } metagenomeSeq/R/misc.R0000644000175400017540000000421513175714310015655 0ustar00biocbuildbiocbuild#' Table of features unique to a group #' #' Creates a table of features, their index, number of positive samples in a group, #' and the number of reads in a group. Can threshold features by a minimum no. of reads #' or no. of samples. #' #' @param obj Either a MRexperiment object or matrix. #' @param cl A vector representing assigning samples to a group. #' @param nsamples The minimum number of positive samples. #' @param nreads The minimum number of raw reads. #' @return Table of features unique to a group #' @examples #' data(mouseData) #' head(uniqueFeatures(mouseData[1:100,],cl=pData(mouseData)[,3])) #' uniqueFeatures<-function(obj,cl,nsamples=0,nreads=0){ if (class(obj) == "MRexperiment") { mat = MRcounts(obj, norm = FALSE, log = FALSE) } else if (class(obj) == "matrix") { mat = obj } else { stop("Object needs to be either a MRexperiment object or matrix") } res = by(t(mat),cl,colSums) res = do.call("rbind",res) kreads = (colSums(res==0)>0) mat = mat>0 resPos = by(t(mat),cl,colSums) resPos = do.call("rbind",resPos) ksamples = (colSums(resPos==0)>0) featureIndices = intersect(which(ksamples),which(kreads)) numberReads = t(res[,featureIndices]) colnames(numberReads) = paste("Reads in",colnames(numberReads)) numberPosSamples = t(resPos[,featureIndices]) colnames(numberPosSamples) = paste("Samp. in",colnames(numberPosSamples)) featureIndices = featureIndices featureNames = rownames(mat[featureIndices,]) df = cbind(featureIndices,numberPosSamples,numberReads) interesting = which(rowSums(numberReads)>=nreads & rowSums(numberPosSamples)>=nsamples) df[interesting,] } #' Function to make labels simpler #' #' Beginning to transition to better axes for plots #' #' @param x string for the x-axis #' @param y string for the y-axis #' @param norm is the data normalized? #' @param log is the data logged? #' @return vector of x,y labels #' @examples #' metagenomeSeq::makeLabels(norm=TRUE,log=TRUE) makeLabels<-function(x="samples",y="abundance",norm,log){ yl = xl = "" if(log == TRUE){ yl = paste(yl,"Log2") } if(norm == TRUE){ yl = paste(yl,"normalized") } yl = paste(yl,y) xl = paste(xl,x) return(c(xl,yl)) } metagenomeSeq/R/plotBubble.R0000644000175400017540000000771013175714310017017 0ustar00biocbuildbiocbuild#' Basic plot of binned vectors. #' #' This function plots takes two vectors, calculates the contingency table and #' plots circles sized by the contingency table value. Optional significance vectors #' of the values significant will shade the circles by proportion of significance. #' #' #' @param yvector A vector of values represented along y-axis. #' @param xvector A vector of values represented along x-axis. #' @param sigvector A vector of the names of significant features (names should match x/yvector). #' @param nbreaks Number of bins to break yvector and xvector into. #' @param ybreak The values to break the yvector at. #' @param xbreak The values to break the xvector at. #' @param scale Scaling of circle bin sizes. #' @param local Boolean to shade by signficant bin numbers (TRUE) or overall proportion (FALSE). #' @param ... Additional plot arguments. #' @return A matrix of features along rows, and the group membership along columns. #' @seealso \code{\link{plotMRheatmap}} #' @examples #' #' data(mouseData) #' mouseData = mouseData[which(rowSums(mouseData)>139),] #' sparsity = rowMeans(MRcounts(mouseData)==0) #' lor = log(fitPA(mouseData,cl=pData(mouseData)[,3])$oddsRatio) #' plotBubble(lor,sparsity,main="lor ~ sparsity") #' # Example 2 #' x = runif(100000) #' y = runif(100000) #' plotBubble(y,x) #' plotBubble<-function(yvector,xvector,sigvector=NULL,nbreaks=10, ybreak=quantile(yvector,p=seq(0,1,length.out=nbreaks)), xbreak=quantile(xvector,p=seq(0,1,length.out=nbreaks)),scale=1,local=FALSE,...){ ybreaks = cut(yvector,breaks=ybreak,include.lowest=TRUE) xbreaks = cut(xvector,breaks=xbreak,include.lowest=TRUE) contTable = lapply(levels(xbreaks),function(i){ k = which(xbreaks==i) sapply(levels(ybreaks),function(j){ length(which(ybreaks[k]==j)) }) }) names(contTable) = levels(xbreaks) yvec = 1:length(levels(ybreaks)) nc = length(yvec) if(!is.null(sigvector)){ # I am calculating contTable twice if sigvector==TRUE # This can be changed to if else statement to return two rows contSig = lapply(levels(xbreaks),function(i){ k = which(xbreaks==i) sapply(levels(ybreaks),function(j){ x = sum(names(yvector[k])[which(ybreaks[k]==j)]%in%sigvector)/length(which(ybreaks[k]==j)) if(is.na(x)) x = 0 x }) }) if(local==TRUE){ contSigTable = sapply(contSig,function(i){i}) linMap <- function(x, a, b) approxfun(range(x), c(a, b))(x) if(length(levels(ybreak))!=length(levels(xbreak))) { warning("Not square matrix - this is not implemented currently") } contSigTable = matrix(linMap(contSigTable,a=0,b=1),nrow=length(levels(ybreaks))) for(i in 1:length(levels(ybreaks))){ contSig[[i]] = contSigTable[,i] } } } else { contSig = lapply(levels(xbreaks),function(i){ k = which(xbreaks==i) sapply(levels(ybreaks),function(j){ 1 }) }) } medianSizes = median(unlist(contTable)) plot(y=yvec,x=rep(1,nc),cex=scale*contTable[[1]]/medianSizes, xlim=c(-0.25,nc+.25),ylim=c(-0.25,nc+.25),bty="n",xaxt="n",yaxt="n", xlab="",ylab="",pch=21,...,bg=rgb(blue=1,red=0,green=0,alpha=contSig[[1]])) for(i in 2:length(contTable)){ points(y=yvec,x=rep(i,nc),cex =scale*contTable[[i]]/medianSizes,pch=21,bg=rgb(blue=1,red=0,green=0,alpha=contSig[[i]])) } axis(1,at = 1:nc,labels=levels(xbreaks),las=2,cex.axis=.5) axis(2,at = 1:nc,labels=levels(ybreaks),las=2,cex.axis=.5) res = cbind(as.character(ybreaks),as.character(xbreaks)) colnames(res) = c("yvector","xvector") rownames(res) = names(yvector) if(is.null(sigvector)){ sig = rep(0,nrow(res)) sig[which(rownames(res)%in%sigvector)] = 1 res = cbind(res,sig) } invisible(res) } metagenomeSeq/R/plotCorr.R0000644000175400017540000000250413175714310016525 0ustar00biocbuildbiocbuild#' Basic correlation plot function for normalized or unnormalized counts. #' #' This function plots a heatmap of the "n" features with greatest variance #' across rows. #' #' #' @param obj A MRexperiment object with count data. #' @param n The number of features to plot. This chooses the "n" features with greatest variance. #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param fun Function to calculate pair-wise relationships. Default is pearson #' correlation #' @param ... Additional plot arguments. #' @return plotted correlation matrix #' @seealso \code{\link{cumNormMat}} #' @examples #' #' data(mouseData) #' plotCorr(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none",dendrogram="none", #' col = colorRampPalette(brewer.pal(9, "RdBu"))(50)) #' plotCorr <- function(obj,n,norm=TRUE,log=TRUE,fun=cor,...) { mat = returnAppropriateObj(obj,norm,log) otusToKeep <- which(rowSums(mat) > 0) otuVars = rowSds(mat[otusToKeep, ]) otuIndices = otusToKeep[order(otuVars, decreasing = TRUE)[1:n]] mat2 = mat[otuIndices, ] cc = as.matrix(fun(t(mat2))) hc = hclust(dist(mat2)) otuOrder = hc$order cc = cc[otuOrder, otuOrder] heatmap.2(t(cc),...) invisible(t(cc)) } metagenomeSeq/R/plotFeature.R0000644000175400017540000000463713175714310017224 0ustar00biocbuildbiocbuild#' Basic plot function of the raw or normalized data. #' #' This function plots the abundance of a particular OTU by class. The function #' is the typical manhattan plot of the abundances. #' #' #' @param obj A MRexperiment object with count data. #' @param otuIndex The row to plot #' @param classIndex A list of the samples in their respective groups. #' @param col A vector to color samples by. #' @param sort Boolean, sort or not. #' @param sortby Default is sort by library size, alternative vector for sorting #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param sl Scaling factor - if MRexperiment and norm=TRUE. #' @param ... Additional plot arguments. #' @return counts and classindex #' @seealso \code{\link{cumNorm}} #' @examples #' #' data(mouseData) #' classIndex=list(Western=which(pData(mouseData)$diet=="Western")) #' classIndex$BK=which(pData(mouseData)$diet=="BK") #' otuIndex = 8770 #' #' par(mfrow=c(2,1)) #' dates = pData(mouseData)$date #' plotFeature(mouseData,norm=FALSE,log=FALSE,otuIndex,classIndex, #' col=dates,sortby=dates,ylab="Raw reads") #' plotFeature<-function(obj,otuIndex,classIndex,col="black",sort=TRUE,sortby=NULL,norm=TRUE,log=TRUE,sl=1000,...){ mat = returnAppropriateObj(obj,norm,log,sl) fmat = mat[otuIndex,] ylmin = min(fmat) ylmax = max(fmat) nplots = length(classIndex) nms = names(classIndex) counts = lapply(classIndex,function(i){ fmat[i] }) if(sort==TRUE){ if(is.null(sortby)){ ord = lapply(classIndex,function(i){ order(colSums(mat[,i])) }) } else{ ord = lapply(classIndex,function(i){ order(sortby[i]) }) } } else { ord = lapply(classIndex,function(i){ 1:length(i) }) } if(length(col)>1){ col = as.integer(factor(col)) col4groups = lapply(1:length(classIndex),function(i){ cindex = classIndex[[i]] oindex = ord[[i]] col[cindex[oindex]] }) } for(i in 1:nplots){ vals = counts[[i]][ord[[i]]] if(exists("col4groups")) colors = col4groups[[i]] else colors = col plot(vals,xlab=nms[i],type="h",col=colors,ylim=c(ylmin,ylmax),...) } invisible(cbind(counts,ord)) } metagenomeSeq/R/plotGenus.R0000644000175400017540000000477513175714310016715 0ustar00biocbuildbiocbuild#' Basic plot function of the raw or normalized data. #' #' This function plots the abundance of a particular OTU by class. The function #' uses the estimated posterior probabilities to make technical zeros #' transparent. #' #' #' @aliases genusPlot plotGenus #' @param obj An MRexperiment object with count data. #' @param otuIndex A list of the otus with the same annotation. #' @param classIndex A list of the samples in their respective groups. #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param no Which of the otuIndex to plot. #' @param jitter.factor Factor value for jitter #' @param pch Standard pch value for the plot command. #' @param labs Whether to include group labels or not. (TRUE/FALSE) #' @param xlab xlabel for the plot. #' @param ylab ylabel for the plot. #' @param jitter Boolean to jitter the count data or not. #' @param ... Additional plot arguments. #' @return plotted data #' @seealso \code{\link{cumNorm}} #' @examples #' #' data(mouseData) #' classIndex=list(controls=which(pData(mouseData)$diet=="BK")) #' classIndex$cases=which(pData(mouseData)$diet=="Western") #' otuIndex = grep("Strep",fData(mouseData)$family) #' otuIndex=otuIndex[order(rowSums(MRcounts(mouseData)[otuIndex,]),decreasing=TRUE)] #' plotGenus(mouseData,otuIndex,classIndex,no=1:2,xaxt="n",norm=FALSE,ylab="Strep normalized log(cpt)") #' plotGenus <- function(obj,otuIndex,classIndex,norm=TRUE,log=TRUE,no=1:length(otuIndex),labs=TRUE,xlab=NULL,ylab=NULL,jitter=TRUE,jitter.factor=1,pch=21,...){ mat = returnAppropriateObj(obj,norm,log) l=lapply(otuIndex[no], function(i) lapply(classIndex, function(j) { mat[i,j] })) l=unlist(l,recursive=FALSE) if(!is.list(l)) stop("l must be a list\n") y=unlist(l) x=rep(seq(along=l),sapply(l,length)) z = posteriorProbs(obj) #if(!is.null(z)){ # z = 1-z; # lz=lapply(classIndex,function(j){(z[otuIndex[no],j])}) # z = unlist(lz) # blackCol=t(col2rgb("black")) # col=rgb(blackCol,alpha=z) #} else { blackCol=t(col2rgb("black")) col=rgb(blackCol) #} if(jitter) x=jitter(x,jitter.factor) if(is.null(ylab)){ylab="Normalized log(cpt)"} if(is.null(xlab)){xlab="Groups of comparison"} plot(x,y,col=col,pch=pch,xlab=xlab,ylab=ylab,xaxt="n",...) if(labs==TRUE){ gp = rep(names(classIndex),length(no)) axis(1,at=seq(1:length(gp)),gp) } invisible(list(x=x,y=y)) } metagenomeSeq/R/plotMRheatmap.R0000644000175400017540000000300513175714310017473 0ustar00biocbuildbiocbuild#' Basic heatmap plot function for normalized counts. #' #' This function plots a heatmap of the 'n' features with greatest variance #' across rows (or other statistic). #' #' #' @param obj A MRexperiment object with count data. #' @param n The number of features to plot. This chooses the 'n' features of greatest positive statistic. #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param fun Function to select top 'n' features. #' @param ... Additional plot arguments. #' @return plotted matrix #' @seealso \code{\link{cumNormMat}} #' @examples #' #' data(mouseData) #' trials = pData(mouseData)$diet #' heatmapColColors=brewer.pal(12,"Set3")[as.integer(factor(trials))]; #' heatmapCols = colorRampPalette(brewer.pal(9, "RdBu"))(50) #' #### version using sd #' plotMRheatmap(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none", #' col = heatmapCols,ColSideColors = heatmapColColors) #' #### version using MAD #' plotMRheatmap(obj=mouseData,n=50,fun=mad,cexRow = 0.4,cexCol = 0.4,trace="none", #' col = heatmapCols,ColSideColors = heatmapColColors) #' plotMRheatmap <- function(obj,n,norm=TRUE,log=TRUE,fun=sd,...) { mat = returnAppropriateObj(obj,norm,log) otusToKeep = which(rowSums(mat)>0); otuStats = apply(mat[otusToKeep,],1,fun); otuIndices = otusToKeep[order(otuStats,decreasing=TRUE)[1:n]]; mat2=mat[otuIndices,]; heatmap.2(mat2,...); invisible(mat2) } metagenomeSeq/R/plotOTU.R0000644000175400017540000000425613175714310016275 0ustar00biocbuildbiocbuild#' Basic plot function of the raw or normalized data. #' #' This function plots the abundance of a particular OTU by class. The function #' uses the estimated posterior probabilities to make technical zeros #' transparent. #' #' #' @param obj A MRexperiment object with count data. #' @param otu The row number/OTU to plot. #' @param classIndex A list of the samples in their respective groups. #' @param log Whether or not to log2 transform the counts - if MRexperiment object. #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param jitter.factor Factor value for jitter. #' @param pch Standard pch value for the plot command. #' @param labs Whether to include group labels or not. (TRUE/FALSE) #' @param xlab xlabel for the plot. #' @param ylab ylabel for the plot. #' @param jitter Boolean to jitter the count data or not. #' @param ... Additional plot arguments. #' @return Plotted values #' @seealso \code{\link{cumNorm}} #' @examples #' #' data(mouseData) #' classIndex=list(controls=which(pData(mouseData)$diet=="BK")) #' classIndex$cases=which(pData(mouseData)$diet=="Western") #' # you can specify whether or not to normalize, and to what level #' plotOTU(mouseData,otu=9083,classIndex,norm=FALSE,main="9083 feature abundances") #' plotOTU <- function(obj,otu,classIndex,log=TRUE,norm=TRUE,jitter.factor=1,pch=21,labs=TRUE,xlab=NULL,ylab=NULL,jitter=TRUE,...){ mat = returnAppropriateObj(obj,norm,log) l=lapply(classIndex, function(j){ mat[otu,j] }) z = posteriorProbs(obj) y=unlist(l) x=rep(seq(along=l),sapply(l,length)) if(!is.null(z)){ z = 1-z; lz=lapply(classIndex,function(j){(z[otu,j])}) z = unlist(lz) blackCol=t(col2rgb("black")) col=rgb(blackCol,alpha=z) } else { blackCol=t(col2rgb("black")) col=rgb(blackCol) } if(jitter) x=jitter(x,jitter.factor) if(is.null(ylab)){ylab="Normalized log(cpt)"} if(is.null(xlab)){xlab="Groups of comparison"} plot(x,y,col=col,pch=pch,bg=col,xlab=xlab,ylab=ylab,xaxt="n",...) if(labs==TRUE){ gp = names(classIndex) axis(1,at=seq(1:length(gp)),gp) } invisible(list(x=x,y=y)) } metagenomeSeq/R/plotOrd.R0000644000175400017540000000452613175714310016352 0ustar00biocbuildbiocbuild#' Plot of either PCA or MDS coordinates for the distances of normalized or unnormalized counts. #' #' This function plots the PCA / MDS coordinates for the "n" features of interest. Potentially uncovering batch #' effects or feature relationships. #' #' #' @param obj A MRexperiment object or count matrix. #' @param tran Transpose the matrix. #' @param comp Which components to display #' @param usePCA TRUE/FALSE whether to use PCA or MDS coordinates (TRUE is PCA). #' @param useDist TRUE/FALSE whether to calculate distances. #' @param distfun Distance function, default is stats::dist #' @param dist.method If useDist==TRUE, what method to calculate distances. #' @param norm Whether or not to normalize the counts - if MRexperiment object. #' @param log Whether or not to log2 the counts - if MRexperiment object. #' @param n Number of features to make use of in calculating your distances. #' @param ... Additional plot arguments. #' @return coordinates #' @seealso \code{\link{cumNormMat}} #' @examples #' #' data(mouseData) #' cl = pData(mouseData)[,3] #' plotOrd(mouseData,tran=TRUE,useDist=TRUE,pch=21,bg=factor(cl),usePCA=FALSE) #' plotOrd<-function(obj,tran=TRUE,comp=1:2,norm=TRUE,log=TRUE,usePCA=TRUE,useDist=FALSE,distfun=stats::dist,dist.method="euclidian",n=NULL,...){ mat = returnAppropriateObj(obj,norm,log) if(useDist==FALSE & usePCA==FALSE) stop("Classical MDS requires distances") if(is.null(n)) n = min(nrow(mat),1000) if(length(comp)>2) stop("Can't display more than two components") otusToKeep <- which(rowSums(mat)>0) otuVars<-rowSds(mat[otusToKeep,]) otuIndices<-otusToKeep[order(otuVars,decreasing=TRUE)[seq_len(n)]] mat <- mat[otuIndices,] if(tran==TRUE){ mat = t(mat) } if(useDist==TRUE){ d <- distfun(mat,method=dist.method) } else{ d = mat } if(usePCA==FALSE){ ord = cmdscale(d,k = max(comp)) xl = paste("MDS component:",comp[1]) yl = paste("MDS component:",comp[2]) } else{ pcaRes <- prcomp(d) ord <- pcaRes$x vars <- pcaRes$sdev^2 vars <- round(vars/sum(vars),5)*100 xl <- sprintf("PCA %s: %.2f%% variance",colnames(ord)[comp[1]], vars[comp[1]]) yl <- sprintf("PCA %s: %.2f%% variance",colnames(ord)[comp[2]], vars[comp[2]]) } plot(ord[,comp],ylab=yl,xlab=xl,...) invisible(ord[,comp]) } metagenomeSeq/R/plotRare.R0000644000175400017540000000305613175714310016514 0ustar00biocbuildbiocbuild#' Plot of rarefaction effect #' #' This function plots the number of observed features vs. the depth of coverage. #' #' @param obj A MRexperiment object with count data or matrix. #' @param cl Vector of classes for various samples. #' @param ... Additional plot arguments. #' @return Library size and number of detected features #' @seealso \code{\link{plotOrd}}, \code{\link{plotMRheatmap}}, \code{\link{plotCorr}}, \code{\link{plotOTU}}, \code{\link{plotGenus}} #' @examples #' #' data(mouseData) #' cl = factor(pData(mouseData)[,3]) #' res = plotRare(mouseData,cl=cl,pch=21,bg=cl) #' tmp=lapply(levels(cl), function(lv) lm(res[,"ident"]~res[,"libSize"]-1, subset=cl==lv)) #' for(i in 1:length(levels(cl))){ #' abline(tmp[[i]], col=i) #' } #' legend("topleft", c("Diet 1","Diet 2"), text.col=c(1,2),box.col=NA) #' plotRare<-function(obj,cl=NULL,...){ if(class(obj)=="MRexperiment"){ mat = MRcounts(obj,norm=FALSE,log=FALSE) totalCounts = libSize(obj) } else if(class(obj) == "matrix") { mat = obj totalCounts=colSums(mat) } else { stop("Object needs to be either a MRexperiment object or matrix") } numFeatures=colSums(mat!=0) if(is.null(cl)){ plot(totalCounts, numFeatures, xlab = "Depth of coverage", ylab = "Number of detected features",...) } else{ plot(totalCounts, numFeatures, xlab = "Depth of coverage", ylab = "Number of detected features",col=factor(cl),...) } dat = cbind(totalCounts,numFeatures); colnames(dat) = c("libSize","ident") invisible(dat) } metagenomeSeq/R/zigControl.R0000644000175400017540000000240113175714310017047 0ustar00biocbuildbiocbuild#' Settings for the fitZig function #' #' @param tol The tolerance for the difference in negative log likelihood estimates for a feature to remain active. #' @param maxit The maximum number of iterations for the expectation-maximization algorithm. #' @param verbose Whether to display iterative step summary statistics or not. #' @param dfMethod Either 'default' or 'modified' (by responsibilities). #' @param pvalMethod Either 'default' or 'bootstrap'. #' @return The value for the tolerance, maximum no. of iterations, and the verbose warning. #' @note \code{\link{fitZig}} makes use of zigControl. #' #' @name zigControl #' @aliases settings2 #' @seealso \code{\link{fitZig}} \code{\link{cumNorm}} \code{\link{plotOTU}} #' @examples #' control = zigControl(tol=1e-10,maxit=10,verbose=FALSE) #' zigControl <-function(tol=1e-4,maxit=10,verbose=TRUE,dfMethod="modified",pvalMethod="default"){ # to do: add stop if not DFMETHODS <- c("default", "modified") PMETHODS <- c("default", "bootstrap") dfMethod <- DFMETHODS[pmatch(dfMethod, DFMETHODS)] pvalMethod<- PMETHODS[pmatch(pvalMethod,PMETHODS)] stopifnot(dfMethod%in%DFMETHODS) stopifnot(pvalMethod%in%PMETHODS) set <-list(tol=tol,maxit=maxit,verbose=verbose,dfMethod=dfMethod,pvalMethod=pvalMethod); return(set) } metagenomeSeq/README.md0000644000175400017540000000460013175714310015653 0ustar00biocbuildbiocbuildmetagenomeSeq ============= Statistical analysis for sparse high-throughput sequencing [![Travis-CI Build Status](https://travis-ci.org/HCBravoLab/metagenomeSeq.svg?branch=master)](https://travis-ci.org/HCBravoLab/metagenomeSeq) metagenomeSeq is designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and undersampling of microbial communities on disease association detection and the testing of feature correlations. To install the latest release version of metagenomeSeq: ```S source("http://bioconductor.org/biocLite.R") biocLite("metagenomeSeq") ``` To install the latest development version of metagenomeSeq: ```S install.packages("devtools") library("devtools") install_github("Bioconductor-mirror/metagenomeSeq") ``` Author: [Joseph Nathaniel Paulson](http://bcb.dfci.harvard.edu/~jpaulson), Hisham Talukder, [Mihai Pop](http://www.cbcb.umd.edu/~mpop), [Hector Corrada Bravo](http://www.cbcb.umd.edu/~hcorrada) Maintainer: Joseph N. Paulson : jpaulson at jimmy.harvard.edu Website: www.cbcb.umd.edu/software/metagenomeSeq metagenomeSeq/build/0000755000175400017540000000000013175734155015504 5ustar00biocbuildbiocbuildmetagenomeSeq/build/vignette.rds0000644000175400017540000000045013175734155020042 0ustar00biocbuildbiocbuild}PN0 2$h?4 ؁iRtIj7|%- pclmXD,]o\Xs; [N=P M"@h@8SD9 %82! ɐԪ-Jn++%%ߖXc)܂p:Ӏ6K*{ٴ<(36}Á*of8h3 ]HxrdOEta27zSVZuihv=LBDY&LuRUODžX]metagenomeSeq/data/0000755000175400017540000000000013175714310015305 5ustar00biocbuildbiocbuildmetagenomeSeq/data/lungData.rda0000644000175400017540000107014613175714310017545 0ustar00biocbuildbiocbuildBZh91AY&SYZ4x~$P5@h)QIP@ !4 4 P@4@ @(44@ZiUkװ=ukd:`@NhlLb4 ,XRU> o@"  z60(P6Y5R( IPJ(*Q$%TUDHHJ J"!@RD*@(P($P$P7p !D@TE D(jPZCdچF(AE%DB $WёZj$5N(kV` :) :<FeOC hL@!dM42 2hcUG*@& 2 42`2hCAM2dLddShLO ziiM L&i04&FI #QM7=5<0F44G42z'B CHѨh~!OҞQ(di (&M&4 FSފm)mOFO =5=1O#TIzѦgSSODA4O 4z S 4=My*H$h4ѦAL)ƨm54ɚS0Q&CM=F3 =C'4Gh@2}aP&~w_+=0j?`?7MFrj_Y;tr $%O< ˬ@x/O+>'?2mKgM# M''2>z}p;BZ$jՑQ9$`rMW%)~'N0L2__}|b'N {w؛$?r>r_[ /ja@8#~Y|/n1;G7x7=-Z2\i>/H A@}s/~΀Y盺]an:}tB物2Gq2Q`,g'O)5~<'O(FHy %X''ɐPx* 8Ȼcs/ˌd^4z(X50K.zvsn.7ew3~9w=vd>$7+CPy! ω\WjME)Ğ{G;JRSwl.gG$?IzNŗIɑĆAd0zZLX5 Ćn/5 ))unG<7R0;^f/0&JYS,vC^xRN!%dܦ3PY''rd4?îfp+7%ԁ:BݩMMDd+r>Na!>~Pu9_ Gw>xR~`?8mǔ'<(?;Oh k}p!74]de5q/H={|Z/@z{b4Qryk5X9Scs/Rgl3qG''r:F(+)|qǜj˝̨"XaJ}S\B$HmmoϿ:h|~s;W2C[t ȭu*@q JciԖ˼g=:kpex0F8s'ğ cAOIfq95&AET-6TQ(*k1 .˷EE's-uz$7zKM?e1xˍk|t1d-5@eAq79l[LEE``-XJ+9̡2A@H(3 &q rdt![a{B~LM'ڙf06K2rq،02DY@|V(J^3("+}(i&anFNEIܗ9@"D hi /P4 9@ DMe@ʒmcT# ID3٭לc:P._ A&"nGde c%V|ΙOk?;On0@2N-u(qjҖl+F1a*nAILY9 "0UXS&6WA--TC6*& mWIhA%hJ(Pʺ)¾2ؼs{$4oygpX?“|rin)k $u|p2?ǀ;]#nOS{]axC:Bj;]SmASQ AJn{:Y9;|`nMC鉐P4};n=(5=c]S8suYݨ8$>6M.HvO0dy9Py'hvVHW Sdv? N&;jsN09}{f[R>p}n1yIs o@j<,r|ԣ9w5ū:|E^} 9qF[;w ֥=5?N1;3X|b|zbk 4!tjzG8#-F3wyg<9 NtS1GHwf2u>Rd<^\ 1p30 Ƥ4vd''y_-a?I}boV{KyfOyN59 MA2üY;hɹ{/MY0Q&/AFFI ?ʷOG3!n~87.'ݝݒT[ [gߜud {/iXfk#$Ϟq/ﹸրJo '34)9`KYKP&a9"?t>q;Yq߂-E!+YQfpf A'\" abT"xV(UEg](*zrDZUVZ kXkxuHL)"tީ"ŒAkq6ΥOU [;~_~1ow`+=aiIe(J" H*"J "j"*Y(f&j bJ *$H**&! * ")"$Jh*(!(" !"Xbf&*(bdh&f(( "b*(&DQzȢ N'[q }jE_X5'wt31N.&'?~Me5 7:`R'A^"5KMAT~!B JnFrZ 85t;9].gU OoY$u!V2N?:>r<\IMpuq?L~rOd=%|;I9A?2A&`#M2qv'{$?ᯖ&\}M[?.NbRhƪp RFd>p :]zbS{ɨ ICz_t/SVf9ΰ5bj paHq0fN nS7M^dsG$=NAOx֭Inߦl#xw'tCA%'dpঀԥbӐY)@{jw <ɐOLgr5+I̐[,6O5EeX\:j^x0IԟnuН`Hd}cns1NXMn&:F*<5 I|?Y&o8ҼOH5#PzIN[l]co8&~X>HW?yuaU@"4 Hy9αeGo?~}8A55d)eܤϡm=U.Ȅ^l871 TDSEDI@MQDC DQ4%QU0QTDMSKL 5ETPMSUADEA53Q34HTSTTDEAQ1PA0M5D0RPRS%MAEQU15DQ1QCMLU0QS3!HUQMPSQ'Xa0$fe{]|97L~1}D;G2T=uǍ=.'9棉x?eNnQ{a _l#=$2Ej#ԾW17#Q+{2ݧI qwq-%#"2y(" I͐w~SzN{PD4sr}!5j?OF'#IKG61=5 KHK񏍨0N\ߖdst f,dWW|o |qa<%"x[ u{S̜sd|`uԣ̺r^g*  b<X$>dM65A#}/ hKĤ4Y);GK̿@{A);|Tқ 5yAu~ٳ(3$ -2QA~V]ja AL sjهLu{\f&APjx) bSq9MIÞ8siu7`Uu299޹a`q#^Bg7&es7O\s}yŭy0|(['33R\O:}s׶9og_8x[ |>:2OWMMISE5CLCTP0DQSSC0LQMTTQ503LLELU5DDDQQETDTQLDAT4D5PRTDSMTUDE5E4U,QTPMP-T2S)RPUQT1QIIDTTB[8g>~ػ1C @ct4y3.=6Tq:Ϥ`7=y q棥ߞ44W6AHDw::])>ʔx5u!ܔk#?Bu|BDjI.A9!;xh~t{`jiznWBw&C#~Bj3Y3XᣍSwNjSO5 (nZDܿ AO89.Cį1Fy8p?քz$)du+Ҭ=`9>RJ$jBL=025Ps!9l5 ;G|Os3r ⮐nnt38s'z{`'sGXugK747yJ2#8<=5<\L!ӮssKC`xGO;g_L>dy@e̵ c ]8@mA^=>P)e"bI"*ijfJ"$ *hj)!)(*(jb*((ji *$)*!E{HPzx??\*XpH|ecQC|% lf8u:W>`O+sߌ_X}xzR9~/[È55|1uvBsW#esj|s\8 G[\OHg,u>QQARLDJT11SUUSAE!LE$DTMADTATTDTD%TTEDMEDUSE1151HDMPДQTTTT DLTDML12LKT3pqwk#'<=A170ը(~rk)/oGH~#RsOh5jZԔk:Jna8r##ݒ]Ojg:['J_/X5xs@dTHN`5CRhiG3J/!<$NCN~R>VK這'Ƕ M"q}c.O;>QKqXCrq¸F/$ 2Ŗ"8皇è]™/1N5Z7CCPayځ'Pd`F o23)Aeʐ: uĐ8‹YB?aTWq@ 0Msg;S$$TQLLSMLEELAU2UEDI$EQLQTTQSTLUE%M$TTPUD4 M-1 504AUMDE$C4D5CLSALL$$f񅮝z~xays'ӌ DL=!9˜8\^dxYs}d1}%ez[+'w{8jMjzGi{x w`Q'`GjCd d㟦K,Fw2C!X) M9dJZɫsP4xϭ Wpt B#O~tԉբ)Ng!\o//.v]`<9;3'2z‡!؀MI \zFcPW8%ܚ,́5VR$"ʶ&0/pWIRIxїd`5G:#} tщKJ5 pk#BB (J* j"*H$ihhJH ()*& f&YJY**"EV7ש֏բ*'JL?+7}ĺ!rx??W?vO0nWĚ | @nr75suK.g%@s8v&雍Ns&C̡Нy `n2hda!Bu d2 |#t/Jodkpo5.`:OH)HQKII^|,skp !|Hҽyߌ][wd :V{h)s=:ֳ IH[0"}a]jL޻mg9ƹ`*xK-"&+DU uoUyJg\^n-CH**))(J(")(( *h)J `(! J i(Jf* "")j"b&>،4 ')k^yG|d/~S^пO=sɬ8 5YMHn)5t2PCƬ\ T ܆5w<:h8=S˜MsH\GxC\!`|MGK̯`>u :FuH79O/Y"Ǯ|dϦ@qvP4(yr4OHQIyۻ@~~QEE S AUTQLLAE3TS$IQTADULM LAQUU11$CCB4PIMRA1QIT5MEED-DDDTAT!'O4uÈp@ohCPʑoĩq8'n4':JOX{f]<]mڃs!4CGMcvk^R2;Og_αJ` $"Y&d*&bbbJ&(H) Xi)B"*($ " hJibhe쿤 (/[S?8Zu50?)7 #~d!σW2tr~w}@q NJSB@:={bscP N7n8$>'@#ˈSP]b'\Z/i9'Z:b@MJdnNeO K8&]d5xu -`=NzFI:ds{탉K2$F0X Lp!#J@R?S2Cztv.3X(8 PR#u;疱ߖg 5~<3d (}П|[+0}>'Z$rkW$;@eGpsy=jNwuyȣ! eO{K+ū<νq:qC ^0DMDQQDU1SCTETQTSETE1 DEQ%-PTQ5CTUPБ% SET4P0A3QRBؙ>byɯqj]G@@|M9? 5&eN% 's ȟ @n:~YIF}%8)k;A"yǔn(OX!O Omi@R<]zGzoCi킔E)]\X⟳Y7Ii |GI|kωsH,{Z!sGj= 5"H h "("&BJbH (*h(* S\|0yJ~sOy9=m޸/ ɑVcCIdZ\AJv(GP̎I_)xYd]iu>H\M7o[R'ĞWHnYkP4Af9=!|ăAsԇj2N yy=< wk Ml7!PYns0{f!IǞ!XSSp}$5Hn:d/xGN$q8:pG0|s4@P5}W>4F>Z5 Gq^jwS_룏lZU3CEUEKIM3UIM%%TQU1)DT1DPDAEEAPSKMTT@R(l2yM뎪=%}i>6dcPzCfr?i? zvSǞ&٘O(Tnu'NN'-|f(qRnBt׮H;^sK 'X:IrħU%o8'.%zWW=IUs's) La7Qb!,L5'fכ=􈢢 *i**"Jh%)R"YE~U|`ٰv$'6L{28Gv2ϴݹ(9hwir>O9Dw}nokN`B{KpZ!8CC%bѓ=!QFIh8rWX:k䦭Olce1DESAS5%E@ĵTQ)IKM !Q ID5T44SBTEH"99Zvq(5/IO}d1/æ/;ld oGIԏtHJC's>|:ɒGBgtO`N(:\G\}q:KQQH$$qNBOMŎ ȁ3r\Om3q$.vkQwPI@J *j$iZD(&̈́|~7I c x+w; %8>xì!dh:AhZ|IoGw@a8 x:OhI73hW!C _(O&Ey۾&8|ħ{OI='%3A4U  QTE- PSEDTEE #W{=yʿ&J_h`u/lJGRe~\{|R;FOhM}<^o9Ne:[/hOI7~ļ:^%'/h*f)j *$)j%*"hhZ) G͑Ns.ԧ0/!渌4eL;O[7(4W|f;Z9P:bdnL|Jb@h***@A @9 PPn~փ!OGrwY ÿU4Srhs3=HϿLC{%%PKM*SIESCQAMPW!ԞQ yήu<e1 xhX9Lq? CPJpESIM$SSBQE ACT #KU CA8 JuRJus7 1 IC};HtnuNryК]/I3䦨*X)&V(T2i>ݐ?HzMx%>H ^%#k_w]#k\u)Ao7놡~9EREP PJ,,J|CQqКN&Jw> Hv)Y\̷x.?.sP~e}!: ϶ O|%zGszN/C&|,u'<|~='~ݺ+XwF ~pTKSAD4%4AQ M"#I]?n;KMLBPS@}~A8b~7:cZ?x)hiB(@e现jrT.OnW''@|&{uuǘ !*!7+ }#Hr22=`)hh V@ـvЏX"Z fO0x T4QBQRiC U)8(c0bCR %"Bw`U>$ihb@Nxw!G3JzJÜt)(C߮!Kߗ$YQS)hH@x;Aab6INu,> hBP}'pVԽ$? z v[O:GҔ-RP4(8.u'RzۇR܇x(ٚ@1D4PQT8-bs!5[> >z_ (("(ݐwZy`W2'ǦǦBSEPKJf2>R;BciUIVeRyZp;TPP 1J24LP44д*&'XG;pIGf@sW|h) )QOyAߔ;@zëj;q!j\)aS^?=h)#QKESBPĨzphl 2)e˅U@%;&$zNl:CT J7%Q`=/Mby*x JjGH}'>NAnjvLT(4^/vFg!-h$NеH< <_8Ydqx;Cc7oƒsuTQ 㣺BۨNfmD$KG;t7IJT"(CqBq!S`aVIkJP5G:x3a}v7X(U^f=gs )M D:CtMȃS ._5tZ̲ly'8"\bYٮP4 ?5X*> (*G`cn 2Dhi>qI]/_PP% ӟ&x+p@4Bk:h2b1@BPk;VY3IBQJ)!15 M&Ts7EP'B h Akl9AMzKyFA8Ss JQ* ]!r;CԕT!DѐV⌳sPLhx=-AP4*~GWI19鬴>ì"(t2:~9tzaqOf-R R`r--!B!jr74cnwѰ!@LzGs<^IţE$@O-aIE~0eACTP =!EG\2;Њk9_ǜiTJ.(8)+E{E$)*$Pm~׀xPkC>f<ΒSE UrrhQE&7-4 u! 3cHgh}lkƃ(44QŊX5:C]cfQӦ%5CB' l #‰ XW7+o2Pmၑ(*$W:Iv@W@y]o捰u`h*:v[#!{s[a:CCJ.Q[9HuAĠPPW9ͮ/ijR+2{afyi:dP kC끽ͤ9hQ8}5o[yNuH@"(E {TYjhjAs::CQ}okh@]n4{iZ4 @Ԡi)9̢ 0zZzf2SFCPzo8iDƳPLZ3f!Ŝb``NͲ2d"~@"a:$OӸTx"R.zYICRQh@l"ԨtɨD0E5 C(E|8h[)f 1P t%kߎ4JS>3 J3(5B$릍ʻ:aI@X}b|)O, *ar3E`-0 8D09y(3@փ"E R#xffIj6Q,!(D Bq k "T<=oBtup J!y- xƫt U19e"D(R(˘"^g|@2ؠj3tu3(V`@ҥ r\<)F\ PL IC%!!:dP/2JZ܍ B&b@ԇ@Մ%B%ru L@DB4P!dhU2BhRJJJ -CJ D !&5 # b )JRc ҔR%@/ON &=eiMJ$5* @jDrTЃH4-R#HNSRaM@Zhr)-aICHC$QBrvPzH MHҀP:rPH]JiT܎H)GD>p"U(AH4#ʑ )EDEH2O)@= @R %C$(CpB+Ht2 PAALE@COd@Hw"+B4*P HCB /@!튈jܴ"КX{<@ϑt@D HdyP;)RX@s:Z#5R:%>y+\cOk 2hPSDA Aza,hiJW@WXx7yQZQESE4PKOzJI t*(jq"( JZ@))i&L!YBUHlҾ,g)Н-I-p='z:|a4! #z\~}c~sLmqǙim]k+~"|оnh: feE==L1݇M~OO]&vgpMZ|tc# xF8 y.~px* A$\`_~nM~7m>WՓyT l_޻C|coX(V +,cV#^ V3R2q#!hh 3'4 d S4>Y^IgG-g}jv1 =I~μޡbyRtQ9;/ :d1ldn 'P A]GFE Iߏa!)!%?U>l:]$8׍^CƄ $ B(~qˤHK09q(vZ̏ݭ]m2ne15f2,)skU<ߏ?Nt-K u^*٪3v(,D*4I1LDR"n|wd_$:I) 50aZMؠQVTx^XyQ ^yNWO:UN%`D׸[L6G?eurw $d 0Vy[$hIʄb R֖6!˛W6kO{dH> 8=gmA"(zi0ړI&JB yC#y'67IźWx{%@q s@&'mkmi#c恔 v9IuMW}Wu<^E۪֚;M绮71(V%=,%r6,3/.+:<~/F^ˇ:'ZlOw@*`|_&VyhnNgIi>x93~/d@:gՍ5c_oC 0s@$0;εWw`sE_~azZKkbtzng;?}G~f@`YN| ZyҊ~6#P{ J(q:Պp{`7YG߹}"k:vg\\N$]HMl߮k=}/DIM7$ꝎRj˦o_ͻyu7$I~__jm,<z]9ol~oDGWWkҳxLVEJjhzsE9}G v?܆NO7^i3IF:&y ηG_I" 0[$) _goMQ}u8O"ItYc=8 rv6/G!<7E!oߟz|no|jz-&CwƁw!,"#4 ߠD ހoH=>ח;y&p<řK5rJc@k,o(0֟lNJk&_~W^+$a ,x6Bn/uA>^i.OjIG:}u2 H=ׇcϞj_<ߑ6o/}7'@;؉qk=#Hnx{ʸB}﩮`0e.?A76C_5ˆgof]="8Hǭ{#GpK#8~!>lq/>klG!ma_/0v4ѬjyiόN;=$/y(=~;W<㤇O='^V=gegGڹ?c@@ ?eĉ7oy~E{C:Cb##>w *G#<ع 7YuB םwD}eܭߝGv ?Ʀ >_GCLBf h|Qvc!)< .s;o8y^*8{~im$ jx́+gxAYjq8qJMĒjegDJ! GՙgG!EE+B_I?2"]xv+D znûҽo??愒N{Ͱ 'k__ԭuE:"F?4pTPT(}O>}J[Ƴ Bߐ{F@/3o]""F[1"$VIkqh3 \<ޕI$+̒_ -!g^ &ql"miQkk\$-͢Xˑcm_&0=\$ugf$|5-tB/%c+u}N[R1gW$lnst+M"$ 4o{:D-E~W$ nZWi$*\$9omMs¢/ oڀi^jcMouI$׼E_NclDFzX@Kc߄Lc1 1r/Ĉntĉ-{C8Hg-[MMTyw7ЩI"g^58H]"^9^6(/ߴQnϗ^$1F1/~,a!qgI8]Z1kn-Zh76@gWD`=oUg&*=  Бs%7Ar;xdZU J \TP*G?F _ ;S|Ow~G#W4U}?a0 az hWƆGF ~ J>D]#Bh?$;,Qm PD 7űRpHB Ģ1PA! $2HB̤ 2BC!!TPQE1$SMET*E>>!tnn Qήr\biB"t?K{r>xo\>rXzNw6SdIyD@/ԎGnOKgQHDnoU<8't_e@}kd2@wB ЄS{s v:_kɼU}HP}>>'@D/p7A{h DayWn@oX7lhU#ԑL_Q^Աzqo²IZ" ~L+3֗@~ ;yGTPP?KLTAzMk4d.t*)@`L 0 8%CD hQ *0B1" p (D L(c(, J "0 ,(L L 4P$DP0" !PD*b"fb "(B#u" !!*$ 0D (D"(f`D ĈR*D#@A )2DH*aR PH%*( Ҩ5 !;U(A{E(СJ @**PJf AR)H*4*PB! P ( %*JЀ$"(- Ќ ((RR d,HkO7sX밈 U@DSGP|'ħQ'㩊z0'%vΒ4Y(|M7꽖(i.I<22rC%L1Y/#{ -&9 I)IC ң! !@!J*(?Țj*&"(* Zh" & &Pz!ł3@@5 %rBRY*JX""&RJH * J)f*DOzAM+DASZE6 1T$PLU75( @(q0M$Q Ё E5\zWdRPP,2!Hk;VPCD!O0SeI0J1AЪ(2@R25" {H=`u "(EBPP W'FDR(/{EIR;$A)@$THA@@0 3L 3*&!=0Q;L`T@pc@EH"(JP@aw!@t)(R!82@(!TFL fB+ B(a&@(.PL@ hI2EAA͢GEt~"v^Qxb H)IT]Gܩ/OJV^Hpt;yNGhzSqc^Ǡ4ZMje'DjͭˬѭoaԳŔ(^ Kj]/̬ҫ+j6M2FZVagͦ5oaZlk6hjԑ^v($Hn†O` E8CjhBk;꽉y`{)+s4*2B*1CBESS7ހ皠?/:5Di"{ȂfF(]B{M*h86AtēsjQ$7'Iy~MTõͻ=> WD>$zZ'bL>IHdOxסy$@dHCB^EE#ݏz880ÃM#RQ Dm|c5%$hPMHq.pi Ͼ D,H-&~Q%kB$D-iIr"OnDId CHŠ$IK*O"0 0M5"OEEF*D!Kj4$Y! TzO)y!y QpokT HWp瑅던 1L+#u<^J&129Q84\i~n=l>Toz 5?/؃I} N_'iUCGH5.]^~wZ<i;ƭ- \S+;4nd ' 1M` %Ѐj闷J$v<{KdP}:W ?g6Vcn[R~M@eig"푶h$g)ʋ|(4Q@>H9*{.s uI$lHe]VB$ɝX.gă&Ng~Iv<P{tx7d醑ɏ6iˍtDƠt/P`CJ5j}ĝNj+ȟ/Gc}(9DΧ=3KsZ~[61|Zyf.Uvv^οBяWL(~]mP^](fT_( H>(xc]>-qO~`kئpXEQ5dlݳ#,ȗTL&@h*PTo]!(J1TV$O %-|EEt{77W5*N@H !J TGUPI{LM2F{NbQ!)M"{O=aDNE,Ο H'3r5륻[9y1'ERWE@}D׈qYa1 Q^Z,{i u {lHBXMh9טIag-SzpBDSmABZP'̈́6aݯ<419A)FEy5ΰziCBKlgdU OK?]e,2w ;7OӖ9LfF}pxgM6q-9Lw@Xv3쎱̷OC~pcQ`ʮꟽW} ^#7ܼMi.3θ'io|(83ĭpHyPy'_\Av*[鍐3JuZP0.`zWTwܐ%i. O낻|jDWӿ@nA:f%d~](7[{X~c_և֘0X4ܞpF0M ŚB$Lv8N rCveþrkKl幽Nź5 YIJܨ\ W(}挄"Iճ嫴A/̷<LYKwvOm/6j!de=!c? 7bJ:g |( ۖG@V< |Ƨ]ŻQ^t~+W[ǒ%]v|*n\~lbסYRgE,CuO݅ix\vZ> Dž|Bcv 1B:.ŽTp2K%O= F4Njfڰ[1X`5daҼgk}\~~0a7XW i|_TjDA̋DƳ* ,ԃϩ(&B[ &:`O@Tq8b7L [k InBY!f`[8V]R|şS;G:\mrh4` $2-.qe4bډs٪ t4,؆5& {N'% FʽՌSUsm1i#oWhw=88h 1,RlFӯB``S8>{..]I~MPNry{(wW zJT+s "]bN~FgMR66%RS:g5%TY+l-P2`cheG|)TUo[tBʛژX]VDJa/Bv1>mfؖch dEBc_{rTV ]cn@bȜ-A-GVQ@lp[QtލHR(FAÝ# ;K` f,5뤚+5| O4@T8Lc6UXmuݥwTT6@1-yzjr;*@ǰ*HI b" zM+>n*(r78~~ g~\Ř-Tt܉(5-%$rDI`=WKGWE;0d9IT` -I'QcKBByw|&0Ć_og5T NA{P/MK~Px({F?0^}VV$3WwXs@,w9wߋu3|cps8lk'zuem?=>'D@x`]X6ᨢvP*Mf'Y7A$ABXWQJ,q%ybz~?2E^y OÒ^9o`,,m)|[0; w+>~Eڏ2hfh\+/>R{% +Mp툀}=lE/^QGq̅f|-t!!v`Z+}(:?(^ :nUp{ކ"*~Q bj>d5MFU0:33J͂#l5u k gHHri`.!#=uѯFD>Y<$pn:?Po$Fa ?bL_YR֋jC5=Yʁ(?șA\6VpU$,'?<(J*F?H?QHk Qvk}lAS'n %:)t3@Wkḅ?(P+We`S@eU#+6QPQᲠĚ^B-IdsY`i`}ǞYP dީ(Ƣ-qw [;6<$&riD,> -RbA%:|02J)߹@:#Gr f)“$'⬪ส"[vDw * 0Pn1XBQcWYW7|:!]|H0s?y6G8@<'"Qj&i=^Q[|B>Ϙ6سc2jRd  uJ ܐMs;m`!PPWSޏ5UHqC*gXJ:[?%J*w d4]ϵR/_ 2Jߪ\ON4kI:l+d$fjn`1c~J}~\|r8m&'pzQAXŠjnj>]5U:&k.q}wnw{6o9=3ՂhYˡOR ) 6\Yximp ݫL;]obnfʪZꇟFC +IGNdisec;-)oy;~iyWqQ:˯(qUӓcf]W=QvX ]'iY]diFYY̵83nN'.WG(/IPTᓓu|\u`:uzg)z;נy_yGONޟƮ9\3u} US-SP6D=V7ܘ_~I|{y|j4 Z]":G0%#ه_|-F5 "F3m-i`mʳS01A<V)>GU UrJwX<%ƈ|wN a-_cSx I MJiWC iZ\BubBMp6pQlIs!) 1縐hLPԌ(H @,=Mx^t@:&d҉>9Fʰ`egB!Ywb| DXl;Q-qL5x4ŠIgWxܲD?P`PF MrF B4tG7o͚+$YϬ+hPGh`m-jnDnﮞ-.7,.34`+ƚf]=%[dS `$ݞdrژ0P5_f*aЍL\U Jw>L[IYu a4uu2M2Btlf8Q30-5{M( gH3*o|ADNy;CȟqZ~WJsXX "Q@lIEl;]r*8Lq<<zH 5'nJ2 y61Pd(cXA=%A)Pht'(]ZLm+SUzϻܺi=WhZL-F!jae X ;iyZ 4 kP@gBʶy,P_3f p#{H Mg̶M{>` `yyB6"0.4,~! 쁠8vuxca aǐe }Ћ'rɖ$P"|c"?Йt63-1?Kq c C3-~U(xʝq(}tgm 榈{[ޗ!k1mt'6IUt#ŲUօqկ A\ٹͣr`#0N)7ݷԁx4kP_ywrԟGqTN~*, 쀼7P v* ~kfckH{HY 2?,dԮ,ك/0=Ct2WPUlJ[N8 F Vz_0FQn)Vg9kdLMMPF3:IU~-B!Xnv%VVrQ+ f\ YՂ-8 iIu0t$+ %L-;3ۙa اp֡se-0lvNS2w- ͙<,1vQ\ oc=΂v7S}eoϯg]=cҫMEOCݜ6׽8:Ӡ^nh l)o9BTPuRLm[^%W)q!r-vKcDaW)EXl6Ü54dĚqz}L;S>̥-S^O{#Xi7"tB A *ǵg"+Ա%!WW}է`m/|Ijm1C?ذackH<{N0ڋl.R:վ_o@l. p[q8ҒUdgI##(?sT'^4 &:#cew,Z:CacGCR|@-A~>QVb_ wqD1fjOr&8VFٹWS?^Jd<ҙy;TYe*kR+kMB݇"4k\bI{6ݰ\,_`!߁#YĹ29"s:bGV.} _P=pi%Ԏ[8d Bz5(3MEV]?{cciXoҞ;(NA /Vddbt,¶O$KP!e K-"m#c|z6ᖟF3L}'aj"BX @6k:Ķ ڼ2[_)f J`}lD$1gkY _3&1i3|,&B;KAѢAON` VV<^Pg] 4G}@;|[ *9%^.*n`0zD>@do> Pj}KM34Բb8SiCYz ;Jwp4|KbAiĊ#G)%L-)/t|MbծHA_L< t eqT[]ٲТ&GПP+D8$o߭<3 .S j.ԘEf.i=sHg2\+Pٽ%4ƋжYΓfH^/'7_MkQ'5pw&fq7T7l˿UwM3G?z4PpWD֤).(Նs5殖U`qBzߍ0p_ا_qOq NlB_;eYc; ݲqؕESq\X`<spaW&'E3U9rp Ae-VbuxL_K 3']NZJ2g87uZo!C:¶ _8_)&b7TE欿VYJWd3Q܎R9ب \ax P)U;S6CIJoөVܿreVQ?L >iƶ&~h$)AKғ^ fܔ&0t 8+W.UשlHMz@3QN] ?J_n0ع?bV}-G~~oݛAc&Q@o2{a=X/n2zDIGGJ۲5##c2>%pxUNo9*.0uY<khL Ҫ9`=c^I?'lgxn{/.xQ84"yYw{ևb幒9a`vZ$7lCR12B4xwo=nlU5:DpN|`8}_VMvzY<^E1b6L}Ʊ(8(= kcZ S=gj3q8'_$T#lH3)`ZS̷_;dUgm( %-"q8˹} o=&$.Y]PU7uXgzWw0/vvesF5dЄAʴAթe0+m&j)&6`$HBiV?<ʇF&2l6[`j;~6- .s `Z*1&"2$hPFbV PgQ9-8!n+0 F )$ִ1sv9.:'l5Q`)E|jz68ɕ-V؛@8jHN 3XR_|6I R\N SFR`w])wɭ=ж_ Iv(5u@k2"*%H咥ۯ8(zy:_J,5V3—t wЦVf+T5b"r\|4Erz8hbPJ=8 W0Bt@͉,7@-9ŚRGVl.x@kZ)ތ@Lܥg-efk 8VĴJ*|^M0FT(m.4O+m``G_Aenk5uf෡'IwPᨘB^ ea¿\N=Mܖǚk)}ZpIYMQn9ɣBZ \]AE2t\P|[HEcd6`Hff[C]' kPj#Or\"-}xBt:oǟhGǐ^{jJ{-['+8 ѭXݧa2$n=T>`eTގتjcPM3bg?^cXQ3[/ nJjv͚|2ߺaQ,Nx5ľ-9S`M$zjAJ9]ґUV4otףdJ142jW Jr2ʹ"ˌ7ȭK{F.H{Zpj [e *e+wp ]\;q:'%DnˣgEviL4by/d "e" SIz+sԨzOl`|D۫ϕ%іFS͔j Nͦ̈́ef+ƅX MCC==k۬5J"h(dhGU9*3yz-7]κ nsŢ,8^7J)6ZM^j@{ (8'C_o{CCig2B&MJ'9Ae wڨ}9ML YeU?L a9ъi9[V[g l`O|@4L8񴌤jsLl)َhPN63Q _"йm5euݩgL~>2C#oVFieqFǓgu|qoOFWmN싀8 ya+QQ3iS"X C >!y)Jo'=hV‘j[9CzY [(0= yVi7NGtʒ` e&3Z Qu= -r&U!ŨGG@OչYέ?g57jF_%̓ƚP=4Z NB\"$CKU{b'! YGjQfqj]b"je0 fp|}O n=<֤X<+OEf@.*CrTވ R'\,A5'`dzաt%id&be8 ;iFeؿ7O`{(`(qUj+zͰrz$J=j^I: @S2 4ī9T":4+vڍM٠5ּm#I grLE}I1)ַ%QX<^PaSkb2oF S!a4y\eJJ4k !\Y-CtduC:4HJIfNj?Y5T哌Ok䩠fU |h`  X쌆% 38tOV= y,f珻rnH>B7-.8CroS@̔3bg[6LoW8'd Ba8yYX>d]2 9?K:I=X->yZ,u ?i(Յ[9`qVRQܨA"`bapkY-{UJTzsRٕPk?&zR6Ef&y`Ir4/T 5FHTթ#uYad+@5WQz_ ^A$e\M<l>Be%6d-3k>pX0'pOtԫ⸳O,u' ^АIM # 5~.>M_7Ciz/blqS@B;ZY=߉iORsO_$5k )X4"F;A>\O5Q)"{F)pU LJ_O;vrq&ͻrŋΏ_ `og4VDr5zaƬ1/Q({G0˞-D 5`&ZlXV@%dߪxѴڿ{w2N fX*d]4K>a!.VdKtS33eHra+fd3ʂH.(iDQ8wxוZqs,8n?LV׵5S Z\P{yd _e3^H)ml#$c8⠓J]K =0ثX^IHƲ'q$ g%ml}=s䲀JLҺc)4'^=|r $(,U3O #hJ 0iŔͰ4YA)kcCP M񨏪 2}u\g=Se=#KɢښBɅ "h.e\N!δV >3*l g5E晦;Ey3+KKmdnvĊ,WޒѴw &-GX.dqϝT%5yqV(BL ]9uܚ{j&(.ru"XQECm XeVp}f 0J:ܰ V#*HghTic =P2mLס0Ӵy뫅[ک0,n k-8WQV㥋M"MW"q9 mFӡ<ܿiQc-\!aX#mP|XY|i|M/3I-y/!pE pe[n1[5gku蹉uGX3{= ib.bsh ' 3{wΩpiW;@,¦1tGlI*Y^veˉ-f_3!Pwrss%bOOsb@:T{33InhQrb/@vpr^RR=SO;בlbDzj b)Mz'Pmߢj'oGw5Hݣ]LV^]y,4̏^4y2 W72H1UUB, ByE{DzOƒϻO2]a>DU}lO|d1Rt*Rgp:!Z9L?‡V;=12񂚚ue&h0#S=S]OVA$qۑqL¥#3(rt\J VY~!c Q v[ ˨§=c @yH9rV9r؆A 212b^i ċA/$Zur2UeV9pFO}{*u+z̲a͐vt/K9[4vMX{m8C%5Wi/BEǦ DۂGYϘFE)ح_c9^ɫ1ٛj`tH׷nx "i8 ͝&9֋F/a &_;K&y<2U[y`lՁ;lȼ` sm[[egߎT|@cT@C9-$65U_|/W%S6)jo-x­;m_jLpiCu61u4NSWV /f*$ɛN]fUooRV;թ:L|t = u7QZ?"@}@Ei|r4i~H Q2.6)q,Lw7u槧^yfJT3$ƏS mija=aQ-"Bjj01kj^U@\e,^|XS$AJIv4-'9::cWO'Gp:cqp 4RQEוQ|4{}#t5W?X527JISBClv8*4ORRqA]{hrqa뢑Nj9"e]UtΣ^췜]LQ) Z͈D=&W#S2f@sxȲJphT5XtʂzɔK1Lv٧c"C/? e, CgtOd5%aA^AD:[ީi FW~iwV+VR+\#YfC}>"cū\faԺkW'(Rjp@YII=ĚƔlRHW8ۃK[32ehm攅VK@:ǩ j-fW\*.pO3^1W9IH 3c`"vm5S?Z?.F=}"s徜7CVz䫎]NXM~k0o@bw_0- ] !76 RpM$/h(y)Hemv1̗\'aִ&'5Pl孕A|-Ƭː5bf񑓗A*DkQE =Kyl(*R Q"RZH+ ƯLI6>E:jg{$@ŷQq^^ 8.ݫLN~5e^ϔ3^1.yf'lh3;g@,rGaK{&ƏE/oQVW& }{7Flz5a!ë]6!cUTκ˩`+ ĭJ+g'qJsp<9ҳBҒ.*B発ԊeX ןSrvfܡJ $66FoXZ9-UE? t oY">7Xg?i!`+6tU3_Z=U*GuTڑR̠SXUڏ8aźmA*fި+psy5qּsG@ZHOZb^ =l.y7ˌDZ]4%o;7 ^:Qr{B=::N/xTdq>r:̇u e *JE?U2ZM*xڳޙ_oPe󉫃 XXQP _CA˘ǣ7SIQl׾ӘfǏMEW$%ZI?4~< ڇ_X3VPk7F vMg;'Aʂ`U"RJsu ՝,>T Y^ PI鮝-3Kdݢ oC=GXRπqmQ E c=Y$Y=8yUT]a't(I ˘t~U3yfAfS,6)a\]+S)3q„(Φ~:g}3v\SW. *v&` 0AfM ̡Y1 rc*'G,26_$ILj/f<9UmvlsmrWn%ޘ",? XN9j EܦjY:jpJRdo(~R CD5 elpn[UUr'VVӻuw5g'm^i,yȾ^ .x{hq'+$஘OjOnF'<9zEK9mBaA 4m[LрjSCbLifB_GPw$ޛwZޞ13*4z6}w% ^o%Sm'B̛Geg%Woܤ1,yaIա-PS ]꜎Sb!EB>3eL!GKǑS 39ziI+U}wWb*p8^"M&(N @F<>YVXշ %m2#>aŬ@Y;/iO)H|/fȝIr5Jpjz8ݺ@gkV~Id7s+Jh0-QBdJdm9oK*:?Y1z ZtR5=i35ի{TA0ɡB{LBz^$yḣeYkawo:vUfNf4ɨ9f,?s㰼൙VqNqG" K)2LwZn9G"1w>ՉaAZ[Mػ^F15}ǁ 5r UH$/eA%=8'lUKJa.xP#) D[LW/qa%p18ڕ wl,ʌ٫¾t)#fky2dv.ȷlk jp_>rxέ2 MN*L0@%z<|b&U EÚrgfAA }AHZaI^FTe:~R>K *gM k)(>!aLY#L3rs`1DsЫ>AϚ v? \;N#,|I v049lK~MTւ`I o~ X  :FMpE‹kKX^щ4> ;[&MM=PF Bv˵-VM}W-傈|;uMއ {19?Rd&- 6cЭ&rn %6}~gfH[ Rnz_^ػۙ>lc^a;=lhm|ГL_dږf~5oI߱3|BdIy×q\MuXs'ųGoZcR]R-551[R0ۆ .~QH|'c'a/b"Ppyw"(j:x=wPx")M /?9\~vR*8sg70xH&#eS_Y dlD1RQÊ13Amq)ԴbjP!d5ƟF4ȫC0Z=(;#f k+P(_jd9p"6f8ƺX2 xc vcvI]s]sY:5uU;qYi@e߯Hx {#Mũ4exǮj{vMv0ӧN+BpHw+6"PTv *pL{aVe ^@1B2 Gx.6 KXNkSe(fh졆V7US6,"\#bT~+ GOm[:} =x%)wn):)&quܿɵB%ܤN?N50ԫ3&bindQ2oW} )顈Qa 㧢/ ,꓿LAaSKwP|pT.{3VezN ot#j0湋Kro#9vE+YsgzST F?VH*rROwbC))PhEv~:yK/t<$_Gj H 9+>gא.NlJxiD5l#6=tNf4sjj٩Bd.gMH,^к+ G]1TIGXCX޻<-S=~5Fu2Hu*P Ͷn8DIsh'Iϥ)JS@kZz}/pvњI'mڥ+ޫdkA4zh~S,~lTRPXey;֚~e񭙤6#gFRb;ODDqP}8ǰ򆷺غ97UŲ pk*P #?;rK j T6uvʩv|֏KVnf.FuS82'Ur͍ȇBnGk?>~T^=C1|yc.OXj7GG?ebW.ICͱ{˂+2l9لXE#z6i\\ػOvv !Jfh&Z^9ϧQ7S[ܳ?V`Iߊqs$H wQ2j>|ӊ;"K15\hbԄ XJgOˈ #(;\DLc=ޥ}3nBIFB :@lRSiZ=q2P}L_p 樷ow@<-s\UƤCLBHz,kߔ^xǾs$}rMpZ8MnَZX'7oF-w 2tOmf; T!9w W:5:DGT7I;#׆ҥoAVE ,RLEORpPܮr D+)iap⻤mO<~"ED"3TGU7n9~ޑ*5L'Q6ⷣr_V [0-p=h.Y_2[T9o\t%q8<ҙ?ƱLS[ ,a UEDq4 z[1]Иز۟w2yk1s>nr%ռxQ/+38āC$LY7LE*U@ ༳<5jVY$4*H@GĶs1}mv4ǛJB0ďjʉy<q;n ks~j݀B/dI"-֘ D/)-f\A^{v|zA3R-Vb;5ٹ# RF{>-qXgVr!/ŭzdzSZjz D qm&Yk =5,A Xך7Рs Y,bguKwҋwQXQNN̓;>K\`SΘ9$'Kӈfe7y,} uxK8 %G!C*.y,Ͼz~XfٻtWSDQ%@/L_K{ H rz$Fى5xO3.haTr&ν\_:46iw)ۨG_9|mo*OܧWdA|Kzm  Llze$،Oq.ebת MvS[YԚ*ٷxbX DGF`9aKU>\'r v5S9)<#0r ZP:|9O%eʾSH1Upl>̬R! Rt^s%qX燢Sg;Rll[$UVZ#u;['V|> !h)[,V5`,M\JY9Rzزc&ؠ2;ѺkGvbҠ\+Lf@'?:PR?9.L,% CE URHceS'¹XEtD`,"[M޾_-pC N٨&EJΙjq8W("ݝb+9NGhvH΍Gnts΅ȱ=̽^q!lJoۮnۺsI! p4Ǡ:nzЗfewuyǁR'4b]n7OY@`k99*zOthmK׫B?K:QƗL:˖暵[TYu0Lܪ](E"Kxg;,B Xc`yRLw86LS@Ma=Ɩ&k6׎7&h\Vu8߃gqynN*Ҝ?6T[s;K+ҰewcZ1V,= S{Pp) ҶXq\f2-h-yA67NΫ}ArAEt+A۴dΙa\8KRZ鉂 u,+{~s-3rЛr& 7c]袺F%ޞ|{6UӂFoK;_23e?3[g*M0x˂V7I8\z`q$x3zV/ԤYl>;ϫYT ftEoC1JLxW_iӾ3 (у&|K4t='ʅ}CjQV&p8 ^%V3gӢ$Ϥ<E;5^oG*Q_{Hb-w+cmʉYV<5jeI; J !+_ Rbh%NW,].* Das8Vy5A^c І7I { d_;SLPGAJˆ20}UXSɫSƪ5Enf;m?ٶ8;4He:d4kPڞ0-6 * G1r$~o9q>8"0PecV;аDǑ mGs\u&  'S\Tޛǒ +F`ڔ@y ?fVZRjV@QpHbB_}ѵBW#KrGS[%S7jKQLcbx+ϘF\-5j-.3f]t,%b(植r6*2`a2L +P>n[nZ >_;_$:]5mgz,[Y_ƿap aWWpsdys`Gf'`K9b6/C\JmRrS | zՃK.攞3WA9e"&(hCg3'JfecTnNZִܼ*AwhS .I8Y8^ ֆuDhQ{Ξ#Powo !tUϳ|_Q08xqX6NeѧӋ&lE8kdm|-Mqd]BC2{IYB)J"ؑdu 5JQgۈKI a@϶I͂ WT{|땙3/uD(;'_LH$oT±ϸ0GȘbaRᓂ~/hT 1K)T3U ME, gZ'J(vr'e XE*DE!-[=! !鼦l1aT[<~2F9pq4Մ9nfB #;"81[h|D7-5i;;T]i Nam5dל-.pȃ1X[ނ:cb==yXv0\K l P&x%jV:MBy( O-~Z=Ns2 5 o?m,4~UnjaMG4m[^mهJOOŠ!`NJHT-R8s,kfC&gd4hWڽZs~Q2ϩ0>c3ݾŐn)=)]“ҋGΑ9_wpY%OK$Lp%r֕ѓ6@Կ_[+"0#MXjk)7fcZ'*?4HTPyZӪp@HQu52K$v=De$WNRҘKK'\(|Lt"hsV}R~m`bt%EKAD}XLg6K;kߒ/ eL"|>qa)"SjJT 3 x.k96膂"oϬU~QZ֥XbڈGӔo`ٲ:^+Uko;GEM&ރFJI"SliBEk4!cTQ ?χpʨ|DϼUo<*j;/Kbdr4( V0|=L[2R~ml|rRX!m'|nP ߍwb+0^Z!SN Dt+LN.Bqa$Zt{jE#NIݥѯ8rׇ|dbR%MS~i~ imTPk W?y[GHpMVff\d[ޣ%XenrXnMcwI)JevcJ= ANȡ5 zC(EEy՜vN*eGft8a,o#5LG=c 9"oJmz: ]*<7yV'qpm#^zYKK}X9\n?4Dg%9JSq`UdI,- V) h\K{orsZqh=4yڗ dadRv@m13{NdzR7U܄2HQA"Rd7n.b | y(֊e zTp51XH7QW@8yN(|\w=#SEK"uC{pT|: N ³ܧ|\L*V K13z:ft} 7u(X %fQD$@7RU+c3OaPS~QC XluZ_b)s[Xy͎jfc vo*NH0qIB!ytXV PQ7f5QLޅέ;-+jNxɗ|2im0\ab ƆL/K_ YX(MWZ{#| dF~aKƘ>zתnu=HmcSFϳV#h|f;KVEtQ8kZ'T8K{K%zɮ)Ț]M֟͑tiUHtڸ!!ҳJ@^jy3(?(ri3έ; Zp㺵@6,L O*/1F!وo{ɁDG}fsWaHRb0-fDUKGшG߁QR?^qܳFWrg9͓/,Hny2ZN0¤nZѦ[(w:Ş٦%s5|e&xބU H6aH穿4U(h/+=@U%B2`L`z}Sܓr*4jäbUr՝2VH}:]cs׽~^MV{)'(hJ"m;E6g v)XHxd([Oy5 c+ x]k@Jc{+P-/,6(qωln.nO;AT@`_wW(xbbZGj ]oQux|,UӫXwr;T8$3*WJfp 9iU`KS/#Cfcti69\j 'm@6z»ر~NRtH_D~|5.tSk>=s 3FjYD qN;6!4ÇVQ\n[*q>pC%7(STwm܀깲]&մiZqȽ TBAF ļKTqR HhT8$c(Ϭ6ti@x"g!'͒G cΜ}/#R Rkc w|f7|U쨭ѠJUuQ iLeY~z"E=Я#u6n뒔MxT= I(mHcP Pni Q$(4 H-MV%6{|TYTp3 tX$Ba9˭fE܌He9I?k89χYC3^>4Vi kM1^_?+v]ƆK5Cڌ hbĨyq-R-zr4 \ {hSmEɖ3Vr%WH{q>k^m"ݙ[,*g{{C 𵑢0!kοVh58m/تN΄B@X=Ov<*?PM=Rϩ~! qjZQ+VSX蔺.XuqT ȻJ<Wu^5𗹩uE:[#٘?Pmt 1酅Qa/BȝcLXRIYc zwyóJ/ 0Ě?{uMnx7?8Y2oO'K-xLX]Ϛ"xs%H!rlϹm"> G X$0O!|gVQUr.<6Z}|#a I[;K (N"J SeP9tV^ES-wuS3SݵFARiN֭³xTR6?OCNrZmC08[J`yi6M"aNM9`}FB[ͧN)\K6~"i\}U)6l,K6iaУVaV򖡲aϥ*0 >EE,ٰoo%L[bV䄶zk_9LeJ;lOfn㗨Rr[% u/X8 ȕ7BtN?! ۖ>[ #'ߟg-9ɦj?q&kCĭm 8 `{ O+IMD}Ϟ*]5 4Ot]9D+!Nd~l+(8, Wm'bΓu /"8>WeDWVVP)*Yg@d.)T/7cx ƻ^U JKUşNP2t+L LO_nG$:V֬IF $BdN{v˙.i[@%d9l K;(  5ې>GBP Je큁^:=#5ZwZcCD tKt +ͣu,#2jւ G9r;ka65 t;gf ]!+a.x<EX<1$ DmZ)޽‹HoUrHFnE i?y7[0޽DfF=i4>wM1U\}n缳jIh W ( -!Fl I`Q2EYgcVޏ ~]֭mS%~n\gԆlvfc!9J R-#D2UTJ|YQFR+~J JP6̖puQ:.4/g 31ITt}8Vi;STd7#cb]\h0b+Ԇ5?Y!VA-º>9QaHɮ;Tr~"BqGNeͣ΅g700_;.LUҋҷx[ 1ͯ.w|W$77i۰~)%M6Ao%ljҷ/wc_ͥN* HСJԫRdsJڌ0§4AXYIytՔ =-&ˬū[n]\kO5ԽJ<&ҾJ|,*#dvrߟb Α8}=2vz`Kg"o .^3 8v}>QH33+ٹ-VY+LP/X /BP(Z" ,j(G6ɿ2YǦppw@^Co-l e5ʁ 2b0M~D36fuA78$0}%R:\P鰖;Bݷi) sa(T5)73|].aWfWPz{au"e@z$>{ YS1Ӝ:eOn)D +NwG,6 ؚSmmի׷ ZO)?(̲҂'na^jrd&: Og)U#kV2m>u-٦}h48,~]p{~gjA!cTt8/P onlIuӗN=:˳pK@)6E1wiN4u N7d.}#JKm Y2!oN^ʛu `26-~6H=T 4|ZAw,Zo+)nt6Al,-ț'G obn@9A =Ewn抏#0tP.hΊRxF`Oҽ V5jQ|0TQ"PEBBsR*ۊɖ.2]0nu:5l{S!.2T0ڀJEԒk֑ U@ڨMDAe~M7O9{꘥\7H5< Wk.xɃ觘}ݬ\Y^E{XwYUPPbQAnFl拃Jچ0#pѼcmhG{WJ|E+ƳMA8S|ĭiC{Zuch-h \Of"^SsM:UJM B/k{Ȼ*2Yp( >Gz YN;IqzLSrdDTTHG/&pF7H_0;>sl^c+x):F!G-EJ^KsqAQ~%j1I AVVsTg c0+H lJֈ]#E5#'G`P*#c (8P[ T{ iݔwxjŁqUidHI~4ugh[2.qu*94Rr:r֫*[{- %WWt$ndMo(6prUt=wx+v?7g6-aZ}+5|3INDphP5YHul͔2c2{m-Q|L'XޗaM0 s*4ź #~"Vp ]*Ƣ 1uv}kbS7XB?6vc W?WW']O;>cjmՔBZAQY3>zn6E,O'ANB ♈c0i0YJ%<.K"d8x6m!)m*+˩K:dJdeB  Y 5aߝ%^ L<0XH ҅5)=`-&`4FTkծMePn΄^skµ3pv SXR7fFuux˛Hv36OĠ:%B.mm }DKR OC̿] tp M)>&dMSlFBZݷL:]aZΒl&iHk㓗|M e~6ot/ά]<w@.UDfe*zUӷؠ!K6lX]\1]EJt!\]zqA< e&?=jNH/da?:y~LQ_{|%gU:q2˖ 7"cPiyse;AQN@6X 6rIa!5rRH#7h^ނ"R_7:܃Tmd$M(nH %BnˬՒ_U⥎gլ1A7_D 7\– ExU`E/JeShU8xiBQ;Zqw~JR~{ikMa}&.9B3[&֏Si !qE>"xm$?%ATUL9nB4x6UB$J< jC+ !}z_e#πJ^s`|:UpʕzT0VV'O\T@|8e">kK޿P !CkGPã.Sxl3ڢ:KFuV/!jroX.c7ԥa%JC=H x`b(2wΔzk74}_q8E07nwAy>{M3lݔ%sk+RϡIs,2PG|X6kV:%mS/\ >7܃l;$0T-La@\VWHV-ҽl>e;4wf؇rs: Š>:؇n(2C,DNDvD}ެ=F"W^ʯݖ=;$ `<_S[^vjd~"0_1a:FUrlIB/fi6YgJvݍ PLb6[L&ԄL9쒊]66#ARŽ497ՀXWo!lR= %YQmcD0u}$offan19Kc6%l,w L wXuRQJBI G4pȢ8'Wh"+nıܽZc;6Vh'~Jp<RjZ=<1 #0Vq}mkFnA][v 5/v͝6acz[Z[3T.80oX.Y}ouHϙi o׽vs{dn>F ̮¢UOF[ɜWd~ݼ.v(錄Y.r7oxl@#mlIYEh-n3#8,HS‰Ɯ_jX⬣jfݺtPH?=U. zk2ԦaDolGpXgxC0=H`KprQ9AoM6f-YiUgaF-lٓvߖCJLw1˄q+pUJ'pӶXx(ƢPW>'']r9jD8*q54'ʈ=A:%R5Ug`:õN4$ Y Glv-T$>O$1k9hSg_.ۏ[Iס> m+r9(&y=^;}d%EAοU#F{"r}pi8 M~P6z3W~hA҂^wa61QŁ#ǟܡ? Y6+ΛaʭA'iC\=ܭL'l#4韡k~/s[sqHsNﻒUw`Vz8Gg+q/էܨTZ=w-OFc;y} Vpx'iQO{}⫯סW8.`>S,^gâREBdz9kT I1co!nk7Ƨe3;}` 7ԟ3d٨. wMWScQKx:ϏPwPx19j7~?]o{^wH/gOYh>yyŞO$Ӊ|nx_ޣ[Yՙ~ά/AgbFj<gK_l9pjDjv)M_oK-⯱h E|5mmLbCsM^V_%wJu=?w28ܤ-wme\_CcqR^eg~~;q3ڟoNKHp{iXy־Vn gHFң=zi|5-Q}>oz5+vz*q#_K7'3 n+\며j@iՋ8|o;rz:|pl .#ە񽐊E@ʾ[${əT~ 6ޫۢ6d]\yPy$]h.uflK/\2nol+y EIeguP? p1O)Z58S{HR؇ŇK+wG0ݼh\+tK7{L=/2U Uw.Y~Ǵhg  AהnBaakdnLcx;6UIhP;uI9G$7D"w %ZI9ːo֬|E`bS0l?WXv A\m""s4c[+ZZ2ˌrC FŠ!p*xKh\NlJ(,Z-̮@f)>AFWE,lMdά h!& #xpQ%t$}LQpՈi.Wfj6VC*4@4$֠6(Y `Ke\ vT _=7ÅoǢ5'HxK=PI] L@5;nnN @tB5f:Y%n=Hiڦu ;wG|**mMd5v#?KKT{y?w3xf5h yLʾ%g*N#`j_﷘8#? \um_*# US|VvݷꜺN:z'2c{P74BY]俺e5.%({J4S+A;LF Q_\U&̡`T|Q .CYNkBP &b&(]TGh;;Bϝ;N5iq1ha)ml2o6]m&:EC Tzl;)sC E9U@fq` Ewsr 6 Z9틝 R\GZRlHIP`4nDXx#爔*=m0E\q˳lU:kͷߛ`D RhgUvАӏpF.enB2z}&SvSRXq.NۅRD_eGEsxJ4-ǟﮏɅFCGBMp3Nk!FՎXY Ls?zB} mm,' j6bL V?69]a|JWe`Or.-RNg=jT=}QgQ:"qꚁTh 2ԠHN + Xc`Nu:"ԓ%"ɚB9pw0'"S6D? ՞ QON|*eokpX{|eofBD8 aMoYM_LOTv1T-Ŗ^˖P m*'\AB|dM2/ޙu]}gEMAJ)N 3msb{BtYHn \]5@j$Y_՛CXmf,l~ENΰ$|A( "\3!C4:%^{fb1lm9AT[_-i_ݗ+Q8"}FQ<i^hJ fQc!2 1cvڣ<:4-$A"-qXOjzI}A \dC† C`Te 5ak5,Fg Oh99plj@>^Wv,wvlK7OObd"V[6#?xeO~^iY#ƒ(n[.ge]]vQUшg!pGzf^y8n2I 3r@n3TĥGeWV ;#31gu~ ku5 7~:3W)7ŢU(Vg_s)OFytq=-DUBcm\Ey H͏ޙۨ,LhyRQ/-7S.q'.3s#>wYRf?0bZL1i\Ǿ4ؠC]ƺX _Gi g= N/sؗ ,Tl|{Gd9+kYhkrK頣 5:ښ:8k <.]d‰b*Mn)36}3WjJi !ĎzN¼jK)TDPwMFFr:3|נfsG(5i;KғCgĝ]$> bsϵnxM'I9Q㏗Qm?V:xu(p1ͅ#$myYcM}CY֯%yk|J5Tt -PUzW "DB^ƎwCӦ kkia 8_)i?]FXh#@iP_6c`8_|*fQq^d1o׃*.C!j͂6IFмz٩k$> X\T(6Jg&ous10k`&Z AR(tXAqNzL"*We8DK׈W{o ?KghUj햐/ʧBp3]AqAK|M/׻ӮBAwv ~bmkD@EcXABeHYr z>žW2tcK_h+`N]'f}W턛OmC; uGb2&v[Z-x-РűVi"e ۑH\0| )|+Y.h)_faETƚt&[Aګ(C-X|~̶x FٸGϔ+в1q;C6F 6`'fVD=Ŷ~!N4:=Zg`f,w4:uļlp]:̉=>&k9hfqB>[`|o kzsGfqmxH;eXRqhm^w4=^] s/H=gC8+BZTtW3YFœGcA9]DGJ51S^Mڐ۬ U?|5#)5N鲿-hrJwSlN0Y&ph4d=@n *USPTf[@1 l q6^zY&SpI*k6al1!x9Wgi}1Y}W,}<Y:~d5b !5Ir8۱MaH]-gxBȢLR6P`CT{3HQ|eHQlA/}8Yl-sBQ ozL~(JJ R-CqK3Y mTc{VP Vӫ.U&T#Wm$:}o`n/Vd@3/4 fk6>UCւܿf;cd|֬kPiP(yӪ7'"?z>xl:^sgeGAbZ@#5] qBXc̡,g5q:ŹcPTgVH'9=w"(xٝ'Uwޒ;Ac`Ewn+*RbBUdeh.,l{6~p !n^*  AkHa-tWhyU4ー@p A#am~cULFv́kGGOamBALpn$ږj)eiГ5VIS*lH6UjJ@$ΖѥUg? i/0ݥOp?PUtߚrҊh}[dfD>d:SW7!J^ia:"\¬;L"F|\<ź(g7ijâThf{MYٲJT.ZU+@Qd![aMfu|zo!ay(jn#h( u}Ke,5 Um0V_\Y-W2]6?kuLsnǻNHS՞5}o,jE~Bv(RLuNP%ԕ* ZX}8i-beЈ6e<fS?C:綴c #jThEN-$)uKv$ mR&&^YԩȽ2679 ꋃ5!ʿ6_m(.ܮ1R_jn (P lB- 錨ОsQF={D4n7U &?AP ij=鮾-f ξ=HJ+ᨁ3g$L?ST-fkI| xqxipEPv^_=ϔX.nƇ T[4[SWDS sD!x+3`34M3CIFhib7AZ&8Vc<@8,G&^̔fּ)c\ yM<@y6!FA}+aXul(wt]PN=/3tJqFϊ9?y#=X?Ɏ/e=J^{V-ۻw- :{J+}weB*f+`}"X i nOv߾0yMMR YU'6)1mSLW!U}X Foea(zlsy V07]-GOZछ}Br5 jW^NO< WQM[$ER:oJHV=e7~ڊԼP=W=?+6[@ x7?%m6=NnnL*yr2{>|^W,ߕ_zx8yl됩nKUFTd^满;{OI֦ަk/NY}Ŀc/-^0Y:M7/IdӴQ8[e >tZ_/ae: mm/"wlTMAd'Y _u9Ò}f-AcX,!0$ZK2 r \khԤ(lCsܤK82wwbl(eHbsZNP?Ai=A#R]v5\˶ަ. /]8 ޒhAYo4B`ٴa%1lEdp/TH?=XF#!]T'Q:}YPN r&I0/t0PH SbeE:6iQo1@CYlnk22vcDʧ?'C8 )W0hQNzbP?̍z tjO;Bs!gMn۹h- a`dHp!8K@`fbb 6RL_Qd"5 'BR @LS~\z2| d(^[3҅ ߽G>e/k]M !Bb\𚢠1M@YEߊFCm`p[1qa @C0-/%b'{aÞIj^0y]] !L6ԣG!㯪YMg Ni=[t s@mEp 8_Iޓ{<Ӿ٩t6 K,KF`axUD8M\ͳFtu?fMC2qbIl}ϱ*x{7re1-Ljhf|c@s4ME[V;pgqC6anco iM` A7O`Wl0TKG$J!eVi_3jI:()@L*/$YAǛIOb,_+5K$Λja\\1#Kyw,$a)vp} aʚpQ +^r=j]ȇ3xf78s5^ƺYIa# gRḡMAʚl(!V<_Tb!C9^ffZf./Bzj b:oˬ>> x6ïF ЮS͹YE,ͽc ܄&\u*:M(]p?hIeVmwI}m/2m7IL$oF߅qqH9􃢪qT M¼I$s_ ֛oNQq#@ܢ)y ʒĦ5-ҕ$%T#ʌS߭⤨ak#9']o[yu@9c|JKA?+E~/Pvf\'c&ENbo* 8'uYWG>}gL_C>j\> mHR+ҹRs)4XI`m<>j& ab;YDqkq"GЇ/X~Mr-&=V?NULMc^︐QEgVgOCT8HyZR82YR,hwԦ&e/ 6L#0/xCn3 kh݋sJ,)]5LqA#VgOEȦEa:W0~ޮ/YSFsWR t q\LGj5z9;Ve+w9A\ 5qK~ள3aE埯J8Sba>JҒԾ5hCIbΓc'GbW:,oܘ!SnٱfDb$/) DǴe N'-,e-K/r$טWӁ\Y; TunƱ6 -UC79mþB\TB0w; = ]1%cDT_).XhhpIh4G%q iP`%/{y5y[N~/PfL{G~YIj5EWzK٩ :mF S1= .-Z$cPYPZQg~:§-&\f @6U Mkp?? U @bsDWt*Um 7ސm;[bf7PrDUP'J_u_f̻OG W/׺V2f6Gצ,=vo3_vJ}Tꑄ9'j =9LraCTR.H #>6Z c17Yh; jfZg,[tn5s^45%DV/2v{[;jJtSdl7WSYŜ,|Wh0E6P=F+:&@N=.yo,r"M+/W6 K+|^tH8c#~ÿ3Br\kʾQ+SHCfeI+&~.syOSx#OežM&P{E qJoVQMj!J\KrZ',=Yz2_h l`Н?~Zi`3*46/x7/oG*h/}Q ZeoC~a>.*46˯y(gxݛCŜƝ7P֘DLH%F4k\WS5#kW칄ق䄋 xBvyӥ[npit8|!?j"=E9XcR\~#=-|j0.p'6HyT !혊#P̋ ]f£,{5.Vė +U^eA@i@ҾD0y0VuWAl=EFYmdH(P)4fVd;9bx}JCZ'K-gGd qy@M!#3εPhQ!՛g%^HN;CQ-u3y,Ko͋̚E&$ ĺ7aR$u`Q5&BϣK -˼??71CGl1|~ƯMOilWF.^dPZn*0z1MqL6ޝgrՈy!@JoI+$["wgU y\4p@^QN\KhesFOQƧS^5 3Kzr Wo侦WZZ uo{!葤n5oc(B;~\|@7i/u\cWU2!,N4mAIp@)j9;0CM{eRލ33GȩF\].NĐ^I3PΖ(R(j¢AI,~ܛl@~cl A{R^4\kIG"OIT&NH`%mg\OSV29)7S ̅$fuD&{$:}jl>/u1k{410*!r(nAp442}߲֗㢫 c+,;F>,^2>< `+OrI*$Rn' ?KT0`2V_=T ,'sl`sSP Nc-UB&k/onYg2ҕ;:!24jAon\^9^}֦;C6di?{3{"@0?jc^D\/f,IS$Lz郃kH<>556!>DMRumU_"D.cK0T[%yrf'#U]~C^J-q3~@yuS{Ld26gɈǩyӆ?*'N1LqlS7-f|]w~^4fth8X^( u!XG3^ aO%Q$ݘei~,K lP }5^6p819+no,>3ob;Cv`Wڙ];f2T\[R(*U;yD@9'`%]5կ#cB?8HYtSIZ&;`H}9 Ta ~}C0~F)c6.tDO-0Wa9olq ϞR"bcF+o8z%r2? nt4VoY nh{&j&;A^h rX;,]x aɰ^=KwIl^|T1Rf K0WEȂ.n)mh61Y210:>AZL I#bf? 4 0>plQ ƒH.|fmPLg }0mk;IV阻H\)t$4Qo@W>=vӅEÃ܄@'L`%N/e-gGuC!؈t>ACTz =!s-,X٥UBЋwڳԜS -Δvy0rej `I UXdб"8*pn:yş*pR) Zie qZ>)"_pw4?*|y8:Wc G>&`W5y"Lm2R^` p &i]PSҨw`Z =E!ߔ+.DFw}:ۢ8*Ɗx\)xrR|mSJYVtD7 #Pc 0z &[zt+vDRf~~6;/KYGdm\Ԓ=75Wq?ƿô:6x б%Ϩ';oO-gP|~ƥW|_ZC‹qLm ^LQsl;| >0 N}c MB>M ӗP)o2Q=վH {iec%Nˌ H>Ƞ㡲l!8cICb0%Oa`!.eXRxXu>]ip@m Ա;IOklжI6g2E"t赃!h08]h>< RJXH9 'by]y,e.CFJr#}5疴{}[ťZScZ«'795gBos@mN}s&`8IzʲW/N|G :?΋z,ao/鿿@v}Iݮ)Bjq>>;W,`B'DM3f-`'FGt&U;_fv`pw-(_ApC BQ_2["B3H@, /]%L&S͸Dͤ]p?:إvVGRd`ΫR?0'rC6n.¶/pͨ0=xS !(B aN@Gup/as ~)r/tTb7BiJ`WZ|s*RoonkǞtpCOa7I=n6$ nyodR0+O#UZzuB'XfaE eQ`[U|?{6s<0DR:M߅X |px1yhp1 seƪ)pV*P 헫YC N-ES8 K$P;}SBq|"L] )D{M45#uPQL m=14"T 6 µYa%Pڼ WXvh@, '"`)C<'o{<[]O7h@iUs@R*;zckvWa?IYu\3<_>7$(]~"}_Ɵ =@;ZU_ܤC.w9[#ք΃]"iBj`6] Pʨ8y*Vk'YJ8Z|/Z ^ղʖ$[Qt;WfhE[4VO? fE:XJ{ކM&<XC?EȀ D3HV8ܠ& k`2!9g* _P'9=e~Cwx.>qey@QH`xkJ9xnPB9H~4ĉܙ$OTm$7D$DHБ7Bapas}7x7$!c=z2&S(e S$e dL2L)2S)e2P}bh&Sdݏ9O޲u>sb3~/W=da=rӖ[ݛRd0(ż- $kMQo D88&#$B<"D4FHy)H )b/A`]%:<]Ȅ0P=Z yI{Kժ5k"=CC +_;ߞsDN(lg$% @Ix_UCZSH̀VLɜZ )K0ۏI?,'K&R<ĺ}P!.JM">%<="%yA1?#tL%dK& a2L&)tdKS Є"#:GCCx; 000!0M)%xI̞2zxIt)e60rh'AC=Gcp{ =C 800;8&2Z`JOW?9x?}<pi~-#0rWSܥ'й$57qr냲z )9(g|*bRy#s^3i[3=:GRw-V-%pICNdrNEJIH8sst^ RB晏Iۡ"&R+гmjv&0f2s8x >'tv'N<\UzIu!J}\;xu^v) P9]CcW)?<.?Jx4a619R)v8h ~ۺT€@JGTjIq Bb-rVP=گ. L 1:pws:0ᖦ m$Q[j5qkn_y7n)e)ZFBK©w7)>Ҹ׎F=h)ыt ߛzdLTuRbŝ GN󦺩 UGEۜ:t}tw-_VTzwc<kk]ԴDgz͜q&6,6KTF`YeHMY.%VQ~'>$p?oߋԏSqx;݇c}p|n(k,{GF;b7 ʒTgΊ/Kr7x~7'uguo0x8{רԊ B2k?mH_0Ug[ aaM/1(RJ<^En/Ȱӻ;cu*ݾ$UU٣G/q]lvfvXXƮN&"V㍬!UA8_ gICLd0 ЉO}㩷Ԝ)9l]t8ic=U Q#8V璤)PVe%YF9yxʓ[w;]z[BM7Nbv|hMxNƗ7ȕF"WUW8ѷle)(*E6\e"բx -_rS8LۗtL" K;/D6;#8mw9.=?tt݆tcEFyTdʸd8bVaLcnx&竏O$UT2u?/CNADB!{IʎXT`hgfZ"HGI"u5oak^-KQU 6phQ# )%ejaaͪiJgMH]6tIOk޻F7pC\8x:\:v&)8U|ygoZpv],QfNBřa} 0ū7;ƒuCsXx"$6 6=_Tps'ZZ^˩e&߉1ͪr$t۹ԷOTUe6܉I$N Ό8\.δwG9{z •d8ojl7@Z pD5tQl9؜ G=+&WIf5jOXa[8[͡UՖx&5D;({E4D\慬+Ѱ#Pp@ @ 802 DURDaG# PJP!M( u㬊!&]4 00 ab3q5+Fd4bB*%R_2 f1֌iTBђ2dՓIPS#v/iypxgAaT\E CEUhtDA:_:w*zݩAB䠹!xØ2U_go% /BPbb?'5"kr5"摤>( "% J҇66Fmݦ@]$\v/2cv1/Zh~ʺoBy6#9B!xlRJ& A^eހOGw ʈi⊓1?w.'H{ѹhN_'1Qt-)>R 6䢌ӃX RY< @,aAh/taQ41іaj X,l d-SfWw_QG57tPPo9 @`BN %tmB5`A%{'oDS44FEr|RLf{ݎ+ pW(cLj\=g$r}T- /Ox*Z~VPU@>CD;;`}huUh&sohMTEf|9vCmÄbPμީI&|g4h{jtGyT)DA/<;Vbn+s8eŸB&ӟdƯB#$c}hwg<Е&G("bXSj 8Z_ƫSߌ\^nkY'bp^'Wk#{mωT-pkL 29ڊtUeVŬ"9#iRR_[e:7yc1~Aυ}t~.t uTdr3cP;AA íy@ N4rۥW,F?|z&鎈8z"q;=duyh29q`CӃ{8{ wu|Y|[N'k9_?d> 2Gf` (R)% JR)JAJJPR( ( RP(RJ@JP P XR)%)@RR(R( )B)JJ@R)J RJRJXR ( ( RP( RJ)%(R)H)@RJJP)%JJ@ JX RJ)%JP  U*@UUUQ@UUUU@ UUTUP* PUUUB UUBUU@*UT*UUPBUUUU*UUUU@ UUUP*TUUPUUUP*PUUJUU*UUP<@@%B HJIJ!E@ (( ` %kBHU BS M Mzbi0z3j0?C*{!4*12h&442h&hi0FM0D!656Dd3@&)izW%K8u??۩XII˫ugs@4K竲Ȑ>?羉 ò_9'N;/G? ]}6[MoSd6X]$z[oRrIv} IƵ4N޹ԜBM,?y9, Je.,׸e |cε$Ӫ;ֈ^>׾5K-Ѣeޥn8vl'q }Csj/|:.=NI|5'DkyN%[$頸s5]4Oa&ϥ`YBBBJH H@m IB$@BB H@%@  B@,BP$(@, [@ Rjd?sMkA?l:տ'#oS䜖~3́$dX _縒l5'T{>8[֬к%OK''rJpHBĶz=I&D㩳]KE I`TԜZlɮ5vY^ Iƥ}!ù$ y/:٭H~ko^]tK}~nn~e.9-&߰Ou'_l}EI6x~3K|>M->kO/Oy}IOǝj{t^a=Mdϰ>Y׻Sw[MoVOyfY:RDߩf8%ZJ!, w9ަBlsGzp[%N t]IR?vhhԺ,'F~ÿo^!qj\֤/;6MY @~"heԁӯdRowL?y뛭ĽB=sμޡ zBO9[=ړ|/Uֻ? [H) @a RHX(BBJ(B@hB $$ @ PI d~h! 7RχZ߭YtI>}[ '; ;&I֬$ pC,]BYni8ՖlB^ 횿2h}s鴡g[IvK4}|I/Ĉ-$ZzfԖz:N BY#ܲqOl֯_-[.ؒO[}g%$>Oy$Ͽq%/{Oy'=,;՜l|٣"Нdܚ,E > %u7EZ=8.4I ~|~PY4``{zjI\kGKzΥrO>=?k__B],l:?I'_|{@Ij~/ IBP@ B%(@! B(BP!HK  % @ @%(!@ RRB''d&hCKHE}%w>߻RIԺ-5`K! ݝoVN )HDkVI,&y-D,4@K/I9$'в: $$ֵ/:Ԛ,Kg$p[x-I86TM&otN,_:&w{зT/DgMg$콓Zԉ4{fDlkjPAՓ//g?ڍ[x&l׸%5{+澣`@.~{$~CHJH@@! B(@B R@B BRBhJ!@,B  Ye&dh-i.>EY'HK/[^<,.BMN"^ա'^ǸNK I>jtY0l `I>R^;,L,gDeB,"^ xaθ|j٢$I '.a/'hY5zm,z<8z%N$}K9.ym] ZBpY6OBhԿy&UoIjkӍY?Ro_]!!B)!@)H X!@ %BJ!H[mtЛwݻ:;,^,$ o[4K&Kp? $Mi$5'E,%nysޒtt[84K4C%al/%سDe6Y6IrN=R P @)HH))P R B@)!aB XRH@BYi7FWYضkD@%}I6Mks|I Cݫ8&yR%dOBB4SI.%,n@$ф,,&/G$$K~u;. }K)ӹ;,$Y?u= 'd%ؚւ]4Y'd;,5~RCezo%|<'$R_ aaJRP$! @  )@ (~ M@ Yeͱ{FIu`Ig,i8ND.>bW/@gK.çrN$I.${$ɲY>}YOS%%ޯK6DJOc~M$I'-KBvY'$${,qԳjO՘OBϟ)"!BB!h(R X@ dR@)@! ,IĤBY'DYu Ƶ$]{%eOz٣I'ee}.}ױ% dvM::rljhؓOa//${IH$l'lO>D"L՟q0IoZg=noϷ IP(@P -!$ !BB Pm!g_I=I, O q x,d>$ۋxVBOBؒL$l$su%( hݻ4Y='I.oF%V}rߩ= Vk_}8r[>DNI4OL/ @)BR  )(P!)~7g0Gw .g-H [ NfOy :-/%{x$?>/̳ ',I|/N{$I's5$j pMh5dgU   @%(B!`$ ZY,QpPl,ahhzY޽ēM$ݓ^ d N$I.-%o$pR~dΉ&'o"@'Z$,Ǯf8%L%]N kW B,P )BB) R@i J  J I%~y8֤tMCd,,gК-N8ܺ-m, '$G$I~"Y;Zؖ{ڲ~jJ,*^ByOOtXh $ JJ @I} t^0$ĩHY T}N=lKgŜu5lԗeM,]ЗkDQ}$՚,5'=I?hSsoݘ|xw>_sơBP X(PBIJ@In>fzY'DؒOd}շާ>$Kg? O5KM \6[=Yph'' 'ȗߗl}3r,M{0ƬHBP @JBP$(P@۫=I֤%`zTeP@$ޭ /%}Dn0٩ޯ~ڳЗN:: IvIH٫?pGFa9*IԞR-)d)hHB ! BR[,K&4N$7d :*-Yn'~j, g_fi,`p}Igekԗ5nM-!I H@,  B@ $RN }Bω_I?jlԳؖh@,ßɫt_K::-%eIv_| @ ZR! `@ P 6{'̻/R_BKye_ '$ZDh뮾|3Y.NuCGE8?1&)! B$!hP)  J/,L-|%=~:- 4e $=/fݲhڼ[>G˄yw $ @hBH Km>%zԓO B}x$ֵx&lDgN۲Od~-el,!P!h hZ[@ėgIk_=[I}IH{n$e$IdYgE@e!΂6X}'ƺ(X J BB),K"[pIvHxY$=IgEԽq , Kz&Pek_Cزuǝ{BB@) B$ (BBв[;$ 9{"Tؒߡ:N}K'M?6Ʀoޯ#=59@`P%ݞYI|$5'dVL,%~З_%ezOVZ<'[5ƺ>޵%!,)l`PI-Ԓ|`Ky'%_,-v[5lDQ6|= vDP@ B, BXBl䛁/u;'Љd%gDo$,5/-`B˩/%$$hObT,x KX_䜜 B@d Y}Iv]x[=x$R'+~ezkIP@ @@KӅ/$ut_yR|>{ )驲NKs5:,/IoOu(H!H@-@xZ ljQվ$NKf}'= HB B- ,ρd?/<_Bx_Oϩ.I6MHq'>D8$Fsߩzl*ZOBIJa"hO5 HwkA1$nO,(@ $ %v_yvMMԒhj跃Â[%d(H(Ilԩ, %$"OrK8Ѩ'ZB@, $[-,M[K= %JPyվ (R(Y$= >/EpN5!u~}} {' >@6e%DrO0ަ߁ZIo[y~edОSӍ[[x'v$[ z H,M[[fOvJ$ؗE'z, P, B5%&}5' I޴h 7 B)@dBY,w,= f&"5޸I,7 OBYBhE. :% BP%,MKfzj^:,ө|/Г9՗ؖq<(XR%mjZh| ߶,z^ɭjP׼_{xKIJM<'$r[H?o (@Y8kݩMjl jYpM=Ё- B&m~Obɿyoa( @!@5ndd'Yuo@$jٲvI'E&賒O x[/ȷu} @,~=y/Oy%VvlFf}=~\bhP%HpԿ-똀 %SZN/8'ZԐ'tG!BP- f{dzԓ7`i 䳢[,܉%-ϯ鯴2h,=]7HdI_nI~?pORBK$ |ݽS>Mͼ(!HYɾI|6[:'Fx& ݟi~R`Z@ $1%d+'K<$=ߣ`@% YmBNK7޴Yg)9,Hu@'DN:6BH@Iˢ}ݷ[d dd'D֋bZg-ZԚtv!IB@[l Iq=jsHX-MKNI ˭ꐴ$s}%y(X Bd׆]M$W,!@%Y:%I!h :% YeԜt~JNI5h^(PK;/I3L,dܓ X&' jK9,MXh$$kW,!mdD.]lDֵ0 % Y Id P -$:=ƙ9-d$ \]CZަHe I.h& Bn_f'pqgI 4PijK9lR| M78$[PhoZ&7fl EȖ@]ωnR[eh5$-v'^ K$K7Ƶg$'Խ7$h D, ,/BР7ZfIާ0ed Y$ܳ_q &D2rtYeCe,s^}ܻ, lݚ#! I8$,98v,SI4@S]^[,&wM]p%hhH[5fC5xI,nv%'к,ud H>$mZ\%䲅MWZ| >;$;^=7,!,sIgD]P٭k5$"MBu% ,dsg'%Iu'EdDdSh]X5a= p_EN d4hjغ,j@`K߻v>9,on^٢RBlS6^ ly=7'IL6z#O8!d;ވ Y['׺֍]TK4ME5Z '%mS uM]PJ-Owlzś7lrx_M dhm^kSV1>'WKlܓnyNY`YnP;"PIt~{xǜ՞NI;.I`KnYl`[$孔 ,j]D&d:):m%RRIc,s56]$ѫdIM"M]@t e%,Hod-<7&,Rus@R$ - M-ARId @ul,|4HI$',BK5op&ٺ,ZP%w5N u^jD eԡ $P7j[.! HIK.ny֊p[f)fYp!dBYtޮ$U4\5"K$ԁ7-՗z]RnD$(PJ@g|mK,^B5@ f~R]I`I mU&- fze{$I۪{}ehRhpK.um잛'$,$ 4:I 98ݖVm2R,D!tKf_ $rn%æK5@-yua@Hjɭhe|{["֋dwơy%@Ii@mRj@[x, 6BZa5 HoAKJIJSP5/jXPeov́t[#dXJBq5-Y&dHI/:7-alɷVHBN lY 9֍$f%HYݹ5%6ItNlH`K& d!&$?O8]K$ߦWjK5ɩl HSjzSehMjۢY ]NY=͓E'$jX@֬NwfK7pIuD gJX'%%B:Ւh,lw9,Rhж`I'gpI$6K5 (Y I`[ K5 )][BMҖJԖ٨[! `Ia:ܲ[HY K!В]C%$%,h/l,{i$&ed$%ۢY FzClE9%Դ,-4YaΥ,8$$$BHϨMBBJۢJkR[eIgD߬RMSՓoQ%Dmz_,K) IK@RB_=K.fjBߒHfzV%"YɢIBK/de%зRւIB_mdRI6[؁`Zzjɲnldd'd7.dE-l d /{wƷ,$-7 (Z@4I XMf4H@PJNbK&m (K9-e% - 8,IvKK! а--E,-hK]MjIeIJ]&4KfI^}yldDE%hkRŒu楒Yd d d,l`J%)Ԗh,hА %!m d P-DpYftK'л,-pIYtYB@O.l ejYZl-E.4KB[Io,ė$h(KB@e5$$.-e]_R4Jl;--KH[['$e:ԖhԶrIv[BIhXi&`IlϼMH@в@I(P %-hKoeK,hP@e-,- -dY/,,BNvtI&d%$Kdd H YB,@$Y[`[Pke$٩!eJj]ˢ%Ej'V;%V[.:ܟodBH$!B $Y?-YlݲY$%i$lZYe%I,V[e-[&$l$$m-e}߯w;od% !KdI$H[-o{z=@@z=s9s=z=z=@@9s=9s@@z=z9szw9=@@9s羀@s36mmUeI%,o{ݮ-ɷ{[fnVIY*Y,[R R@)Yd,q ^aldPlg,!%dR-9mI$ $m- eY ,/_$I O"_E^mI!-K, mRI,,Y $I-,BY)$b- =wys9p=9s9s=9syys9p9ss99syx9s9s9s9s浭UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵk@UUUUUUUUUUkZֵk@ֵUUUUUUUUUUhZ֪kZUUUUUUUUUV kZִkUUUUUUUUUUZր5jZUUUUUUUUUUkZֵ~߿~kZ}s9ps9s9|s9@s9pzw^yタ9s#<}@mm}. . ~ym]t@]t@]u|@]t@]t^ y~t@]t@]x6mmmm{@]t@]tO~<߀ . .o{mmmmm}. . yyym@]t@]t_}s99s9ss99s<}9smmo} . .yyys9s9s;z^VXYb,UeU*VYqs8>~@]t@]t^ Ͷmmmt@]t@]t׃m{mmmm]t@]t@]߾<}9s ]t@]t@]u{s8>~@]t@]t׃m{mmmm]t@]t@]u{mmm{@]t@]t@_߾<}9s}޺ . .o{s9yymm_}߫. . /y@]t@]t^ >~@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]t?~<}o}z . .  . .mmmm}޺ . .mmmm}޺ . .yy@]t@]t_|9syタmm}~ . .<߾<}o}z . . . . .o{m߼<t@]t@]x6mmmm{@]t@]t^yyym@]t@]t^<}{t@]t@]t׃m{mo{߿yy . .mmmm}޺ . .mmmm}޺ . .x>9s<<}mmm]t@]t@]u{mmmmm]t@]t@]uy]t@]t@]u{y狠. . mmmmo}z . . mmmmo}z . . yt@]t@]t׃m|߼t@]t@]u{mmmmm]t@]t@]u{mmmmm]t@]t@]߿<9symmm} . .mmmm}޺ . .<<o}z . . Ͼo{߿t@]t@]u{myyx. . mmmmo}z . .<<m} . .o{ߺ . .{ . .mm߼<@]t@]t^ mmmm@]t@]t^ mmmm@]t@]t_yo@]t@]t^ o{߿yx . .mmmmmm} . .mmm9syタ< . .mmmm}޺ . .mmmm}޺ . .|}޺ . .{< . . mmmmo}z . . mmmmo}z . .<|m}. . .>}~@]t@]t׃m{mo{߿yyy . .Amm9syタ@]t@]t׃m{m}~y矿y]t@]t^ mmmm@]t@]t<߾<} }޺ . .{ . . `߼<. . mmmmo}z . .yyymt@]t@]tמyt@]t@]t׃m{l}~y矺 . .mms9yy?W@]t@]t@]x6o{߿yy@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]t߾<}>@]t@]t^ }~x]t@]t@]x6mmmm{@]t@]t@]x6mmmm{@]t@]t@~y{@]t@]t@]x6}~t@]t@]u߶WϾ{9s9s9s9s@9sz<}s9_yタ mmo} . .yyy{@]t@]t@]xx>}]t@]t@]u{ly~@]t@]u{mmmmm]t@]t@] . .mm߼<@]t@]t^ mmmm@]t@]t^ mmmm@]t@]t_y9s<}6mmm]t@]t@]u{mmmmm]t@]t@]w|t@]t@]t׃mxo{߿y@]t@]t^ mmmm@]t@]t^ mmmm@]t@]t}x>@]t@]t^ o{߿y]t@]t@]x6mmmm{@]t@]t@]x6mmmm{@]t@]tA矿_9s9s8s9p9ss9~s9@]t@]t@]x69s>~<߀ . .o{moͶmo}z . .]t@]t@]u{`yy . .mmmmmm} . .mmmmmm} . .y޺ . .{<. . .o{mmmmm}. . .o{mmmmm}. . .ys9p?<=}mmmt@]t@]t׃m{mmmmmt@]t@]t<}޺ . .y . .mmmmmm} . .mmmmmm} . .ym]t@]t@]u}{]t@]t@]x6mmmm{@]t@]t@]x6mmmm{@]t@]tC<<}9sy{{߼<<]t@]t^ mmmm@]t@]tyym]t@]t@]u}>t@]t@]t׃m{my~. . mmmmo}z . .}~@]t@]t׃m{mo{߿yyy . .o{mmmmm}. . <|}޺ . .>}~ . . l{<<]t@]t_{mms9<<}@]t@]t@]x6}~y矿t@]t@]x6mmmm{@]t@]t~<߾<}6m}. . .|. . .o{`{<<@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]tyt@]t@]t׃m{y. . .Ams9y>W@]t@]t@]x6yt@]t@]u{mmmmm]t@]t@]u{mmmmm]t@]t@]y ]t@]t@]u{@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]tyy6@]t@]t^ }>~ . .kݾs9s9s9ps9s9z~<}9s_yタmmmo}n . .mmmmmm} . .?~<}}޺ . .]t@]t@]x6my~ . .mmmm}޺ . .~<߼@]t@]u{mmmmm]t@]t@]yyys9<}~y矿t@]t@]x6mmmm{@]t@]t~<߾<}6m}. . .|. . .o{`{<<@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]tyt@]t@]t׃m{y. . .o{mmmmm}. . .Ammm9sy7< . .mmmmmm} . .mmmmmm} . .<} . .m{ . .mmmm}޺ . .mmmm}޺ . .<<o}z . . Ͼo{߿t@]t@]u{myyx. . +'mmm`s9p9ss99s9s~yタs9]t@]t@]u{l9s>~<߼@]t@]u{mmm????????6{@]t@]tO~@]t@]t^ mmmm@]t@]t^ mmmm@]t@]t?~<} } . .c . . m{@]t@]t@]x6o{߿yy@]t@]t6m`9s?<=}t@]t@]t׃m{y. . .o{mmmmm}. . .o{mmmmm}. . /y@]t@]t^ >~@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]t?~<}o}z . .  . .o{ms9y{m_}߫. . .>}~@]t@]t׃m{mo{߿yyy . .o{mmmmm}. . <|}޺ . .>}~ . . l{<<]t@]t^ mmmm@]t@]tמy~ymt@]t@]t׏<}>]t@]t@]u 9s<<}m߯@]t@]t^y@]t@]t^ y~ . .mmmm}޺ . .mmmm}޺ . .<޺ . .{<@]t@]t^ mmmm@]t@]t^ mmmm@]t@]t|}z . . ݫ~{?9s9s=z9s8s99s8~_y{9s<}{y]t@]t@]x6mmmm{@]t@]t@]x6mmmm{@]t@]t@]<]t@]t@]u{y@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]ty7t@]t@]t׃mx@]t@]t^ mmmm@]t@]t_{mmm9s<<}x . . mmmmo}z . . mmmmo}z . .y矿}x>{@]t@]t@]x1{@]t@]t׃m{m}~y矿y]t@]t^ mmmm@]t@]t<߾<} }޺ . .{ . . `߼<. . mmm`s9yy?{]t@]t@]u{`yy . .mmmmmm} . .mmmmmm} . .y޺ . .{<. . .o{mmmmm}. . .o{mmmmm}. . .y} . .m{< . .o{mls9yy?_}߫. . .o{}~ . . mmmmo}z . . mmmmo}z . .~y@]t@]t^ |߼@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]t<߾<}m}. . . . .5~69s9s8s9p9ss9?gタm???_~]t@]t@]u|9~ . .9}k߿~<߼@]t@]u{mmmmߟ~简 . .y~߾}s9s9s9sz^VXYb,UeU*VY9>ֵ߿yy@]t@]t׃m{mmmm~~~{~ . .mmmm??=?g]t@]t@]u<9}k=t@]t@]t׃m{l9ϵ{yy . .mm9sy{{߫. . .o{`{<<@]t@]t׃m{mmmmmt@]t@]t׃m{mmmmmt@]t@]tyt@]t@]t׃m{y. . .o{mmmmm}. . .o{mmmmm}. . /y@]t@]t^ >~@]t@]t6ms9p<}@~W@]t@]t@]x6}~t@]t@]u{mmmmm]t@]t@]u{mmmmm]t@]t@]~y t@]t@]t׃g|߀ . .mm{<<<@]t@]t׃m{mmmmmt@]t@]ty~y6{@]t@]t@]x|t@]t@]u s9p<}@m߯@]t@]t^o{@]t@]t@]x6}~y矿t@]t@]x6mmmm{@]t@]t~<߾<}6m}. . .|. ;y癙f`33333333<뮺UUUUUUUfszfffffffy]ts@3333333κUUUUUUU\fg9fffffy]tffsz9syy>UUUUUUUU_{<33;y}fff`UUUUUUU_{<3333*~yfffffUUUUUU_{<333333;y}fffffff`fg9fffffffffffffffffffffgs39ww3333333333333333333333;s33333333<뮺UUUUUUUs3333333>9s9><}}y}fff**~y`ffff*}ff;yߞyߞy{fffffffb}fffff{ffffffffb*~yfffff`}癙;ys@{UUUUU}~ɖ|:뮸s9=s9p9s=9s9s<}yy]*s@]uҪs@fffy]tffgs39wffy]tfw33{]uҪ9u]*9]tg9UUUUUUUUUU_s@{UUUUUUUUUU_{;ހ}}y뮺UUUUUUUs3333333;s :뮕UUUUUUUfg9 :뮕UUUUUUU\fsz33333<뮺UUUUUUUUW33333;ހ3333κUUUUUUUUW3333;ހUUUUUUUUU\fszUUUUUUUUUUfg93κUUUUUUUUUUs;s<뮺UUUUUUUUUUU{s;UUUUUUUUUUUs3{y{3333333333333333333333;s;ys@{fsz :뮕UUUUUU\fsz3333333κUUUUUUUs333333;s333333κUUUUUUUW333333;ހ :뮕UUUUUUUUfg9UUUUUUUUUfg9333<뮺UUUUUUUUUW333;ހ33<뮺UUUUUUUUUUs3>9yタ{UUUUUU_{<33333{fffffffff*ߞyUUUUUUW33333330{ffffffffffffffffffffffw33{w{3333333333333333333333;ހ9u]*9ffffffguJffffffw33{fffffguJfffffgs39wu]*fg9<}o{fffff*ߞyUUUUUUUUW3330{fffffff*ߞy{UUUUUU_{<33333{fffffffff*ߞyUUUUUUW33333330{ffffffffffffffffffffffw33{w{3333333333333333333333;ހ9u]*y{9ss99s9ss9<}o{fff*ߞy{UUUUUUUU_{<3{fffff*ߞyUUUUUUUUW3330{fffffff*Vyq~y}}s9s9s9wZֳ333333331UUUUUUx8Zffffffffff*^y癙Zffffffffffffffffffffffw33{{ffffffffffffffffffffffgs37fffffffy<򪪪<{ހ}fffb^y;kY^y癙ֵUUUUUUUUW3330ֵUUUUUUW^<;kY*מyfffffffffffffffff*]yffffffffuk3333333333333333333333;9UUUUUUUs33333333{ހ<ʪszs9s9=zs9p9s?33}@?33}@5k33331UUUUUUUU_z<30ֵ*מyfffֵ^y癙uk333333333UUUUUW^<ֵUUUUU|U<ffffffffffffffffffffffgs37<ʪffffffffw33{{3333333}Zֳ333333333UUUUU_z<3333330Zffffffffffffffffffffffw33{{ffffffffffffffffffffffgs37 9UUUUUUU\fo}z333333}}k3333UUUUUUUU|U<wZֳ33333UUUUUUU_z<330Zfffffff*uyֵuykZUUUUU_z<3333333kZfo}zֵff9UUUUUUUW3333333;fffffg*fffffgs37<ʪ$e]u׷ffffffff9s9s=9s9s=}}MkZUUUUUUUUUUU|U;kY*ם@ֵuxֵUUUUUUUUUW30kZUUUUUUUU|U<;kY*מyffffZffffffffb*מyfffff`uk3333333333UUUUU|U<uk3333333333333333333333;wZֳ3333333333333333333333@>}Zֳ31UUUUUUUUUW^:ֵUUUUUUUUW^<;kY*מyfffffffff*]yffffuk33333333UUUUUU|U<wZֳ333333333UUUUU_z<3333330Zffffffffffffffffffffffw33{{ffffffffffffffffffffffgs37 9UUUUUUU\fo}z333333ֵUUUUUW^<ֵ;kY@33333333yUUUUUUW33333333{ހ9UUUUUUUUs333333{ހs<@s}ZUUUUUUUUWjkUUUUUUUUU]{{ހuUUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUU]{{ހuUUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUU^fs{9s9ss99s33}@kUUUUUUUUU]{{ހuUUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUU]{{ހuUUUUUUUUUv}zֵUUUUUUUUUsys9s9s9s9kUUUUUUUUU^ս@֪VZ}zfgタ֪VZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ}zfgタ֪VZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ?~O߻kZ9s8s9s9@s9pfgタfgタkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;jٙs@s99s9ss9}}UUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUU]{{ހuUUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUUO߻;9s9s9s9s֪{߽@֪{{ހ}ս@֪VZ[;jo{{ս@֪VZ[;jo{{ս@֪}s9p9s9s@9sfgタfgタkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j귽ٙkZ[;jo{{ս@֪VZ[;jo{{ս@֪VZ[;j};@9s8s9p9ss9}}UUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUU]{{ހuUUUUUUUUUv}zֵUUUUUUUUUڷwZUUUUUUUUWjkUUUUUUUUU]{{ހuUUUUUUUUUsg99s9s9s9sBKm-ZK -,Y??fmxNNqzX@@s1y5N,#,t r)N0v\NQ./!Sy١QO0Xt/ 0~a?ei‘( A|_rRpwT%DCQ'u%H//CcF%!H h)Ba)fx @d@y9!@݂e1:%Xd*83&@@tSrb@aNbzl(tq"D0DDϹi7;OQu㌯Bu @&jԆĸZZU.a\aXi JbȨQ:ZC!aψ_\,՜:Tx u;!( b+ Q;쐶!euAIIv4I H` -0B:Ql%@u#3CDkb@A1Ea1,/"}GqN0 E WSO*U t0u eŽ<&X|m3϶}t`pIL'p4i”EPTL`2 r[xE"eXq{gC l;ݒմh&^Eΐ/<$Yt/S{. u')T$ZClDb f8Nۥot;+e³q6]iS=qKzV͸BP-X${78L(`!Z!?V@G+`S*U*/iY9fїv%ݡHt!$c1 ړI\ٸ3\S,N%y] *r|@0AԭT_ttYA -%YD#(Ƣo K3 vT?$b]Ȗ<ݸ$ <@"l`:@%b%zyxAQgy˯9D +Ou^|eC >k;̗. %#6c0D0cuD0=bzd!Dl q#p~hS=.!>I>c"š,%Ն!4R  i )eK  q ?]E1|,e qʍ !33# \?%%|YBÂ_\|ܐ2Ψn:QTvd @JE&_]ph%-#NR 23YÓ38H[3LkE%)+:%IT~J`ҎrkX0Ǣf|^)OA#Fx93n"])s{ .D9˧$Z߀lR.L.`ʴ4<|e#EȔ2AN,Rk;8);{ ^8('2n-9AwK|i;dG#s,n[D޻QWT4(r B{y{J腄A%1a0U $`~LG^}8V_I`E|X㋧;1JwL_/6D,_聸KV߾.PՇW4@Z^jNz.5=IJ.Zjq5[(A*KTuM$a%gOYԀ 9l0{IO#:{n.Y:I2b'脕Haz뵁$p_W,fF:͈Lv5PU$ 8i]DM Y%)I7,19/Vn,0yEs3`}_eO9^>)= @ `V\j/RxtN-ZK!3g՞!Ukguzs_^ Gs*}y苺"K( z⋥,_$wh+˵)[,F ̝q5CBRc1#hZ:+k)a#[ke{&Mcv:j_6LIhf0ƸLz?uSUɞ`3 !- <:2|);s4ZYwEhQNmET&׼+a9rn;%5Nz9[A8{dK_T$1~v{-[vn&d H,LRvyú|fScw01qzp-u.j?SMp6:=*!0Tǯʵ5#aɼgxoX."Vf욤) h `:MpcRb,4T lWVqqdVuфV}ӄɊ)ȉSd])6YaQ +l>nV Gi3%ҟ0Z/ZlJ*T_LV2d"Nɨ*j  LIZ/1m@]@F0h]UMHhį9jjWHi0\sHS>ObTG=Dd1"T@C&d8'@>f,$hO 2Bes]Vda+BI&Rqw!-Xfd!Z4UPMj}6.ŢpH@-OMo 2e,\ώ̭0a =}:*.@+4a:vtWTEְ{Lnx+uL걢GnQ/(3aСZt5>.0Lu㯙FeF;R,gaw=PvĨ9S:xC߰VꥊCů`fԄKp nb."u[_ R/$hPBz#2 ɐMK[]2dZ Hv䤉-xZ԰ #g9-'SIyITa ba##a1?x9WZA9|J'zdw=D,Zy2Mw3HB·/أ"ʫhNup6fPвAg *#:g_!l@C+06ܓxBê6έ咍.BE_*.E:)B {v(Pa'˺n$ 0|L1/{<0BqN3E x_6Ϛd`7Ҩ,*DOBYg"$*q r^&;,J3Sh_W 3<3S6x 5,aWҩNɬ4~VQuZF txn ؊sYF@ˌ #R6Y۹g7⨔|uZP'OVr|"0qspNlPIc SD5i$ׯD2h,qW;{c)k\ORa/Rl7f$uPJG,\!¨sQ@ZYu.J^p+אa->AAk5/%svCd>=p{1S3^APٰ9?Щxp0cBse3j,2 %W#}%.qs'y^_YqkZ6Ag,nvLMSoZh0pBqu硧ġ%cvA{dTVDX4″I*^/] kYU%?ũBr# ;6wNEP6*^̣Q,ә_`2uo*0>9=](h #k3.;"Kky1A,w3p!bbf|?\y+ZvPް)9#f1"̟E!. yI͘K~Shc{!J>9o"`>!E5 ] HBK bcj[xpxp:~q}oZRڳ3L47^`B*y$-ERQQ n8i>-(=!3j˙ya2L =Ҧ*4 R *f ֊8xzY1 <㴮9Z8'kT%7,⾐ЀsP7e!G{-k Q}OӪګAXeQSL.#:U 'y[~jb,h*@" `) a3wFhm2Gkڧ׬^q>F)>H@`erI﷿ yk<=f2vJ 2qKGt>5P^ ,nڢ¤)№&:l|ָTKnL_<$ٵQ2΂' FqBT06jkrb%?PV)K?2j2i"pߎWeSׅ~1KA 櫒 xrFĊW`GR=27%>/oMNuĠ2&ۉ$xeK=HɘkW+j궡Jrۉd|*t͖zaY%BhOe98 *c"]p(0_QSL@w&vl^U6=޺92.C 1.yhUHCDE :W YZb9dʅah(<0U= \uBYj7 pT~^Vhixgb#̤)8\;FtcÃK/L)vhysP|6;:m[uY]E!dMXTygfjo?Ns% -`=8m]ya\ce(5t~­Gr(Chi0Zv ^gcĖ漒i4A˅ŔK=pM). QVQnΜ/{7'+]:/#c-}xf`o0 6YF~>o oZPI(v-^/[ߜ%T UT`)xnCrW~'ì3YR!Yjq%B,Rb=(X-ɝ8ZW Y/Kv'n-E۱BL=K<`*j]_CxL^w$#i2:i/2 gF32IՇ9J諊(oT5nr3 P f\mDOz>DᲝF;KU۟Uu̫c.U `( )c̜Ykh0Rʯێ|u3^*FsbYCRi e,4/H[U+;kќEkEL8@W}AeIS2JQUr65б[!֨7~SU?PE`K<0geB7m'Skk.! C/RMecX2:4(,P(XOc.u]ߛwo oڨAAo\ւA`=G#p":揈ܲ+*I, &3DAZՋNkb7Sfݬl"XW%G@|@Y! k5W JPW8v"++'Ŝ#i+<$n@y`>7'&,.{sīNtJ5X/ ~4d=;E6Y3fcU#_B)Z2zAYnɶ#cMAg LNJѧdcO7j$kvBqy꧱(yw1hW&]wu:Ul Px t0mNE.{+E0a͐!~TX@u|Cܠ*咗XQCd#)oۈxjVRteùLHbclYs=04W(+$R ZlCW[#H2Z }GU|aLj#-?{4>JHC;3%6(^@ں!r|MFq'vE^gHL*@uj'; Zh jN}o$Go9+|ޛ}IXs"`ꝥ8`jFɴس XE#z _(\xkȏ wU S.9sĖ74CcN~6(-@y=hoxhܓ4s.4}ْNiP|جQG`< AvWiux-}5{Iዥ0{~C5e1gp,4됯z) ,VH-D t]1l >Hsv{I(zUfѢ)H:nE:J8I=HI!)7=N5*HVf[ %:a[( ^0z[jv3Tj>j}ab=FsÊ.`=!cCpݻty5ԌQ6|EOd5c%|V4m砶 `MώB!:59O;g^B3{>Tj.5Yl_B^;؄|f_/BW!C<Q FTH9L侂K(D&A(ipPE̷[&&14,2rT,5C(+ e)-kBNv#ц4~YvCP"%6\K_En&]`z Nàw[kxJ!BCuKfr_|6x" S4r\}Jxfq#mdʩr\ZsP;z6}S~he9"ZF)ügLM}N!ݔ1-{wh\8 t R Xq'\=~Q,KJ9lIQ iQɎ'Ub?ѹ 1;ñHxӮn<_ⵅ.a+U?`jWHUGGs٧?)2k";A'vjEW 8JV4dbTv>XF-6eZo @~{MA=qVjGy =D*T%E^ߔ֕$9rNv 4b!bfR I)uM7Ƚ1"NS_,SoVPhji2=f~fV'ӭ(SgZ~bEc"[{XCmkuU?ב0 0ߢr%1 @@Y1t]RO*?/i{rܪ8)CH2$2_}>H#~֛v:jĕᾧ@e MY<{]թ#f7[TK@A^(u9Bo5WaT#+ge.Sh޼Sج R/7L j#sڥ4.+㍦(M\ҥ>Kb} ?B 6$vJv҃+:nj `A)=%I%_ E j/]kI_ӱZq d7%ǰ(dp9;+ ǀ M;:V俾!TmXDu;pS p=}j\FL_c@&䏼&̣?f-Hen /}31feN /UUUO~A'M(Qa1/^΍\4P`lL.)^=42FM.hU{m7P@+~ z*e-L%􏪭jEv]z ՓyGNq hT#{ڍ5Q0{JՈGv鷆Dܱ"<-, Z! cJT ,7F<ryjb͒9|MT tkgǽJRh# Hkm>p"~0&hCܘD"h(g!^^vv)W0B w=p{I@i_h"#tj%7c>[RrN\vJqλf"5DY3R|)"eQ:/~IwcR*A aDFs\0 "ͤQvڢDh9a\F#/yl@kԁU+OzУOV$M;JI';tgPh'Is%?i0ɓzER /ʔ启RF\C,Z[ *).5C1 LMD k904ClF;ˇ3 z2+egA-sЩ?~-K)߱W!N 5)WԈ&ifفׂР"]/':[,5tM1S{13a orʿ""k͟&-hWſ|{A퀂}WRq`C? :l@t7dvW -oF(dִ#H\N+\ c 7 aŨM| >kڗ\S zNgPW#AI]ZȒgǤ\˖QIA?bWЈLI՝^iFh|"4@.j^5˄4z[^2"ֻ6'@h`Lׄ2n"mru =)|p-aOr2ǃօ-?l4;̕>ӠITq.&C-%ČkW;b,(Mf|D0f4Q^ Mr1a}\vlPO9O!b]gܬ(p5Wt=l9xLrGO&fy3I7^Ƣ %w$D67= n˃\MX'q2Ie3Tq0IȠ%5`6aʓ:yOЎ5 U$dp&AW~P/JOgꮧW ג,nBx9AQ8FX>qԫbs+Kq!~YU6x} m/\L_o `8u\/+`36T/LfmhHڨ=b*|Fj8z] [/ ZDUkh̏_}#HwnyL3}_xJQb3_S}N8ZJbAr؋5Ra{cV*'YSM8-B¿%z*G/F ,o߻+sbYt[Ti,+zOq5Jnc9pA;Ǭׁ/,(.`]QG̍J}:o4{;05A)^lK:^U俫rRpEE..|* HaC6Ľl]K hЫGR \5Injfk3[=H"َ#^53PTN4v"Uu:EP7ghÈdh^2@iTb!T-  r]⧙s5{/zDhVC'x=;8K .@7,$'A1f̚ƁlM|%)س4F^{v䅶!(q=?a~OD˜Oك=M ."ƗayAkEܻw`ߐ!Y`3d$Ҝ>_>߭w 9C1ivQguVl0W/ZސZTM O_!8;,ҵ ۄzvEܞnSY{$Aa{s7o7&rI]Ok y'UڪeMkN ެhNqoi~Z>۵9c_֖Xy::3ʧVkE;|G[1w8:W 2vq_q9F޾r*rB_v8ほp~O7WAU1a}N8ۄ$ddn_#3[%Yi "썇wUXU&X z[ I>XO2mwEB݅P5ڸ;zDػ{"+vfq³VHԢ;f"Xg >QvplϦ>Tn棯K0*_/Lgӹ.$?#Ud[|X JwWY%TEV(:W/NG3Ss+`MqhP g[ 3+2y o.Ѱ*)klc] .TV EyxuZ7" Fx{nYj3-Cqh)y ݊{Sf)t,dԶMѰ贀[?"g5_ I*]'=3Q&T ;G $7 +`ږ+ߔj _Mdj>6HQbG/*l)ޛ3m/E=ј5\؃d&z.%ձ+XUi%c|}q^;ac8uӥҕ@cG6պ')2j$B=sk1vOtSAH-hW>nлYV_yqZ9.2&b$jF*"KNbCz jΫ$k&c-K7 fLDNE$0_qD.´ZׇQrbZKqjUL/kZtc]v3loDsm`d}~@?i6)Jj;,m /8;®oqV W{8"=&ѬҠSM4&箭J˾8C8&@B@r` E@2ijRJL^\.­P.Pwp>߭Ϡdb>.$ֳH3Kͻ@s]F>:N9ʛi@E·Ƴ 2;/h&rNZj=)09E*%g@2wF]D{z|<:kU RDj,0dvFkS ~L7[3[^;܇y~!CLb~\eS/rxD10ȗ:zN*ύ%h(}JyOX ?wZHPo9eGO+*9MT c\O~) h@@@]_'I,T\ W'e]V'aZP[kfY8;d{Cn0B3x;Tۮ-գ*r;L:7e,{CZ񶵷[J^ެ*m59<vƛ,Jhse${ĕAԏ @aYjplt-6NKI"Y) }Z&^Y>ŊZSsYj!yB<[e~qJ(#!y( Bs^%8<ֺ{`ET&:|"6ǡ05]V~,w8@ }vc{ m^%YFJwW}FjL5Z|& Fa>175Ń)o%p-$I8ɔP`zCC B Qn2*#iy bwE+ղH`~a-^Q$!( yj$lqXP4H%A~D `I5СcMa*d`('^=x˸X)2ژf]Q JW;8Ddr]$RBSdGl̛Vv1飀`Sb|A[ wL2q(x=T,k{;cMm@gl]@K>36E>-׾YU}6D IFToSA4V9vk*; W V_F4.~=εŁ: [F+Ԧ|iA^Bp!Ę&S)7rݸTG¯!\K <ԆPS'0gEN>t{\{^8/Ʃ:XLb&VI9طӕ_i! ZLDv(AA[F5?}-G&1:{\vJX} $@~8uV\Ԙmn)Ř߲-:Ox$p2_ᶋ%F$Vdw5=ɽI~#Oyom#>^Rwnx EoPoV&W:4NsJ5 oAN*('ܪ'NIĬ6nxOu˸tk:TP]G%R1Up!Ew!9pKNTBN](["Wp|EZ@,mE.6J9oȧΝ@`$; OOw҅tYm_ժ0V.gZ'1/a[D}93VaГ|@ p/q+p8-̝B8-i*1C:)"#wB&NUKfGUϖdkSe>l1HRrl7P6Zٷd9xH]Su\x孷B.{rSe\d(hfYoضX \$!u>ٗwW̐m pWYZ(S3Bتj:WIGhzEA$H`H7>X7^3HgTKt`JĻj0&s 3?qeLjk1 #~nͅhR5e4P໡abI]>.a= |劥]7 d+Bv;[4euӡooMzwS;e!Q 2ihM^Ie /Fܜ!(Q&9#|дԩ񭎴OrAb&_OύQv#aqGe[} 6 vdF#VC w="m2F 0q3I/_*1͢PDV볞̤<T:_CH Ci%!,Aa-Żmƅ~~o|xD<]z96{R@06F8֞c"KĆ-:?j7vڷ6dD\!ŬDρSS_M1H`qAITjS'0(o?d-w(;j:.Aj!;dw\U   w`lI/ 6cDTj2Vu7U@\B E=RKwB,9c=A.[%X IZKbfs~;PU #2B+"*4&LRѝZ\zgKF3bh;˔FNxm2d}mw1-B `1Pl V= ^UrVUf N3< :J$|`3xБz ȳ,ӿ-\#E7>UB92uWW=wYc" 'f30iRQ^ <0 $H$ Tceʃ6?fJgչ\#}eљˋc(0- a cb(J %FVx 2ZQw9vֆЮC:/$r uMHrr28qg\<):Cz\~.~J?KpDW>{0*ߊ_djT1DA(zT`17Xeh'n10y[䘟 [DKAYg״$i>kLS˟#ԃܻ8X-=]2OYV j7-e V50\.ǣ9ܪ Kj/F5ɪaJ5{ru&S43m[P.l("Ս^=J&:0O0&OMn_F0Ql!H; Y;[ԝ`n';+ Sp (xB<)+G\?|WgݏBw~ݧ b*' +;SأOe 3 98o`ef ĊG!ip;-E L9TTVB|LG-;7 bvWS[Kf0K븩|68^ֹg;))mRSdmEf7 ĞT>^^(yFd|6-J]a&IIpEhд]8^DKdrgSF x_0_V{g**t^Eu@p~5=o^^t̵9>D$Ȓ:eK2Ane˜ 5B@LT*z&ؙ2}gs<]y!BFXHN4' -L*EIj]jp(Ha0LH C(D@%ucR0 ,_ u:kV~Bb{cj_%͓ v%O|T)}!ᅣ.>9a1^T]S;dU5Q >{TW~KμIKaHX ։%,b2m/PRt Q,L+!/ *nKsI*5yfh#PbVh|>n{ҹeu.j7ז9{xkP؄BTH/x`>m9tvg~buZƐA\)&S١ow$j$F<4[Bca.=kZENuTZ%fQ][%8ǹ_wj|ghbT_?G_s߻o8olv +Tdl DMm#&IMuwS$K% -,Km5'2lIdG?^{I/[myԒYd+$d.K%lܶ$W_PVIT\3o޶`)@44$_XX`  ᆵ3b3v(Ha$@b  mBA B @ @B: 3`1<Ҡ P@ P))B UTTRb}H l5ljuUTT lُ݃6 V 0|^ ;"}Dw8O{{r)Gv8"N9J.Ȣw;]t s`mwa0m Lx ;N `lfm6+6ft>2fff 06ϔ;s@zYl3Sfbee6`ه#P$9PS2kMhmSf̒(*T(H !KB$hRJJTQ@9RS @9r2:r-k& :2(DDA$ BM42hhe%r:#Ahƀ1(tth 4 4(u2M: ` Aѭ 4R (F"PE+ZUT!@@RR@ & 00C@&&&L&F0i@#L@L&& !SJI"$dރ) Sd!h h*RHz hS 4К D`Liɲ  !Cb4AsO|ƉaDj 28!M9홳,݆:Y"KK~B -d^xP9W3~y|tm(B5M@ `ˮ1L[ݭ˯KSPC_Y}k BfFwgιEan4gŏNyQ:lAǁ59rPh~Q ~i՝ilc ͇ݕbgj)Zɜ"x!d{ "{a֠Zp/4d{`qJ&*E:fr5yܣ0P.(@I8lvZp_ǘ5l"C1ï4k/H2f@}W(o埿:Z \tnc_ @ j ه4qmRy7Fbi)Nu\O32h۝3aٖ@6b,Lf7`8`>SK\[%vq3kZ2FߟB` թ((aDzDhĄvQF\HKUh&%$V6ĹeS9$O?,_wş|z f,HM0nPpe!y@ _ pYAi$nۑ5:1K/uN~lQۀhznw?cO>U[86ZQ և{s jhd-bfou/l]2Ibjݧrʴ˦D!~' 10 銇S_,1O̊a??` Ҹ!∇GWLQE_P AS ~T? 9`OKԁC(Ӂ$I@X p|TD+P/c*\v9o9cT?[&kL5];wߵv'g 3?q̾ӻϽŞ'g_їh~ԅ3bnN>{rU箔Pb2 #f CE!6[?IbE nVn_mbws ~OrӐCA$&ӈl!o `X!BҀvLi.tWfu>%-MeOi RevI}'SKlY9zoct'!گꩶB_22$(pW]!BM"v΍;} B;K!TG kic*Nkc&WVȄ.O"BֽٗRK˜cOp<9z!$C-' @T7 @RxOψ5fE@2 1T_~fҁsKui5Kp׭؊/\زvsa͟7&%Os)՗[?-TSˡR$d[|:,KeYr Do>HCv>K@?fZ%0bC$+b$'́ ,MX$G?!\] {,0ͱ,>f`y"S 4}:Mg);v@oG~j;l<)Qv>œ]Yn%)j.:\M% Rs ݝNl;=MO2!ەnm伢˫)'q2r{At{=mSg>b4xZ+Lq g0z!iʘ'^XÅX vQ7- 9>$3ȊS4r_a&z +3Wm/l;ynFziR<|6U9krzMt,oP1)zR2k}JL>L)S{/ 5Cw|Ch-^.798nj%~]6l?;z?oFb߱f6y_gKef+0+8e 8_N1`q6H+ QϽSrfq.Wq3qBTr_G~__{_}ݪڣ7Va?CPB%D$-фledBI'OI2Pv9gb~7[?ߜT~a7&R[DC?ʳ;\ް Bl*,o^552ir,3q'Z ?5t+1CQٔCt<%p~d% t%% y1)OKwb|@<`R7i&˂E]X{Wˎ=c)bXÙ [Gm_8w}s=2ϲo/ٖD OC~bH+S-]6ą}w'-`sY|ߢ<CvbJqˉZ=hdI?>տսLd?:?8L~Ht@ ܶbTOQ $i{ ]yь=&eo$" sm&!w~W-f,:nzvh7> Vݜ/`$1I4P( Sk;>.7crS1XSw͵ݴ2W2gk׷z*LNb{,0'"P<$u+34EC/Xw2gdV-IŪVaxlKEf#Au4{%ӜGTN%[{dQHK~3ߙ2x6 JijҲ2Kd0XQ3ǘ0EEi"}=lwS68(XI=@?wA:<a z6(=`G/ZpH L`@?(Î ~q4Ȝ-ʱy+*٬2 Qӓaږu{ G`{6ûޢasd<%Q[qc\ۿswl} M2ҳFsFb+&b3-9+TCwӋ=dza݃f=!s3>#td4n>|[!۪[\os< m>7q(9_?^A{G6 h6EHc00-ܱN7>{!/.`k`,f^؉Xf#:@U<[)33|mzf+/`UQaWNQYy;(A8Gѥ6dYW> L),IbS݋+Kjr)k݂nN/B_3^gêc4dJ| N~\%՝P;-5duZvl[͓*1vfl=2Q,yt QDk>6`_9iJ1Bb,ZKƹD(̖P=7+e"5br:*5]"毗6Յ ABωwԴLjDZeLا'`^ "<\u M7* @1vRbV3"ίa LRܲ nq#w)lY1! I%VR\h$D$۝~C M"a>O=f.geU#sD180r $_>h?d®2Oj}UqZ ǔ!y PSc$4 Cac7'z33ʭ|ALz'z#dXXVumv=Tbq͌)-zx#Vr-H ;f19H.2;(+%W܌RT Ԣ}=5xf||.VFL51 POHv`ZE萐0Z/}Z NN,6uS /5:m*?J~lVai9NrgGO"q %P^>kTзxhtsOaϠgj@>D7h@Eqv-AQQV;!5rQC̕;A@kAQ ZguJS3 1[/(YDa&,Y"yfˆ\~ÏH_>?c,w~_jq˷m{5q6,ڤ! jŠ#yi"H̪Si^_$Ͽh/Y;IxQbUTFyx=?_U AAf$r[:Ҝy{B01No];A ߺI$ -i=8`,1m Im)H APeߘ1 74k4[&veL(-Z*Z1آ-ZDfݖG,uCh7K]_j[+Ea e}-$RX0>ĵcoc'j k h^,*pJ r%ytJ003$w)t¸%25?9=€t?q}vvn`Uzwر-4[Y[ٱesY=^d|iHٿ ^4\EXqtȧD3P^E,8%.fS$cPb!$G zyI$b8N$aBb1YZfao^uɣ+@іSӽvE&8<[yBٗc0=49LjPTj OA+>:*!aYu%:GPv H ٨]! t\ iҠ<9ݵtݶ'HXӜB~X>Y_Qk?e4,P q;257 \_{x?1z<{yz td}$8'D@!֦ Hoߡ%lI`@_c  (0:6S/a,[mX1{9+2sQ;(DׁؖÎFT0tbk{E"f V. "[qO'%2h {*Wı`a;ԲZiP$щ_ł?GrܱWRܟ8 c_/y#e_-N?KFezը>]ß;XӚ R5w1a6͔/]bH8Wy#.y%:᠜-|wkfKLbዲ6>Qbn[̷uq˚{%Osr| 35\B싓 mծ-[(VZowM, L~*G(:bお1Y#[#,$IJM:Ջ1/:pl $\kESP6@4!}AcG ++?G3w`fEWX3bc`2E%|OhE8!΋8 !/cdX; Z/^J!@FG;['^/]-%S a~ uZ麾]yNH[a^u. t.bz=#7Q9_bS Alm-t^r10,=y m%];+zY6 Lȹ}Dr'Z^zE:nx:F,{oΚrF\{ 56V Y 1@].VzTlfZC.Tc?o-W8O\["q6>Sf<DߡCHCE:S^C-+UL0E &>Wn[=UvhB3FRc}kn<;7+VG[sٺtWQ VN27-%^93d|EY٥1aH1 2x6 G3` $Е?Ջ]3@jxCę(yQ-=ѴL[vSht(PR,@Tbe, }d{=Ԩ]J'P E1J#Ig>ڕņ_00E+KZ$33ia 0XIC_HK7Ԏ?3nzm DE$:dtRV65ӫ ƑK۝'5 ֮QČY^b ⪲9Ǽ} kKlRDIvڣh킓 \-k396 -Xf ?VX(4t P)n6emy:(c9vᔈ19Kb+ U(.2U4m1X.`흠遛..Xfnfư|gM)bW0D2@"x;{-q`,- YVfīPb1laQs("(<-.l|pdm>|J-k2+=[."8y"EUӢFV'T{!?Mo⾿TWM$lq8rqZrKHd?xyg\gVd:|Dz d> U -V4g°Q{sҮV͓4p uTYaXm:_fw9/c(v5WΊ菂WOgiotscI!U1<Yx&YvG,Xvܭ3FV ߟ{Vxb7 e,.]tq5<ռ ˵`*+P,4RBYEf]g| uϲKvmBV1gͿd}nfs hK?*38NI-PE|^Yy .nฝ Q28-[IZʃ:s]G6ߒWߥW2|uo8t%s`(a ZVUh/| 0K),{,X8 hXKwA$g{Lg^ 9[3* "$ XHѧۇI{tq7TOv@^?4xE؁>.QI9P`UO.uA/b}?ƋH9u'}Xh㟺T?C1ݰ% ,6;p@C  lY][$tPS 88=| Js]ET4 ҘŔ!5 l,e L6-Һz` >5;0ޗFzi ň8)6s~UaTӳ;<;X  ~]v;Ǔ$cv.+30Hيqy:3f7R]1C$x R-԰\pPtk--~Ts sfg.6 uB?>&ek1tp1و`"h.9yE裀V ?:}8 74 )+ $])C 隨t9GIlDle(b g ,?Sd$桩OtaԭH7۟v U%UwӠʐ)6ֺ}ՋFz&¸fS˙??s#-GHtz cYHDm(N0C-Eao %򫾋7f_Ct˥Q?ϓl8c(Hamb +C[*d^;{RCHv Z5ly҈P9$VEKYBܱ;wffz]X|٦qG![Ja<ݮu]{9 ~0!O6@N=!YrhCXWeѣѬ_ f$omvkov9?K̢?AN7*C0eHp?b(}"@ & h٩ )6B5{Ñ|%,G6wd~oEnfOpogv{pmG/olWeg Ғ$2{;}22d֬EiROc̝_~Εykfz( Ɗy v;UN< CquϾNSa YIo/7kk~tmzl=Ub,$mT7S}ffvgK͟ ?0$P7ߡS5~mXX|q[=ȝ{weyQa "S^؄ 0$,*e,ەhWZ2WL50 i(G/B_ qֽa~]Iu??OԈ'ACԊ lVDOxʥ-P~̝0z"_Ov&?6!" ?!PG%+,֖DRd7|>lJhis|zor'3oq?0}{ MX![:,\׺?I׬ynL-û8>WۦfQa~Y0 %BጛV.ZS і84Z?lW:)w%-ϼ t VI7ZP8ct[͚p~l_ "?H eҁooV hzhǽ[Xb}3"Tb/"էw ^]B4P8bhg*t2/ 2ʿކV}-l yŢY~:nyTߚoXKֵǵm4*i_/9^kC%?KQc I$rM-ކx2 jXudr zM(.C :BoUg2-;uW >(_O.!ѡ = !W~,QͻKCbtJ:\b?m]w;喑dLflGe0yD _k?իmn2gӆڠskgXM)n@ 8 ř@:pʱc 2D$ ٨LD|cVHB uFD=։i6 Hį(veGBwˤ1}͞44nr}kD#ն& DwmHh[ltqȀa0Ų7+e}=2uyS/gP8P^!OGv ctl7k\l1o^/iHx0gl~ An+eaRsϩ!%yvPnx擽X-1 ڑD/ ;!Uv`RR$ܦ'#݁KCϤΌ2ȋ.,oÇ_\ZZ2 gl[jr9퓯9Ac+gI˞S kedm 訣oUd7)yW_ "J.؞6zBmNDT?VܪCyTP>J!P:`T{ h/ EKA1MȏxfD4?/$O:&x7x =ʩJi1Gn$xGzL }xxF|͈]Hc6%vصrTڂm<;Ľ>$*)ZM\y:PE ٕAb@,K:$3(DTJs\@$_Ɉ߽ F~ݜ]|K]!r̬D@ĉ,7q #2Z('C+'a,${C,: yb73Ysf`Z &~ 52pd[ذJȸzHȻU8O;Is(ɋ͐ayF4:[s uo]?_C9#Ŏ21%"[ZSoVgY&>FQ"Z h2̉ p $ ȔQ h!$ ܴm.Ĩ+ٞU5 ~*'ϵ1~_`ל9Z{6~ѮGgqvFN޹xScҹagΞ1Z ~dc@i2^03p0 mYJ",ģCrMC8YHe@7R/>ZM]k_7]َ}9gO7e6]i6 ׎n|/˕խy)JA S PȈhaˍ9 CLk|ljtC-Ua.yI Z#|1NNHG[Y: Qa[pE+1}yؙns8鳮q0 &-0c5T+[o݄OHƮ 0EK"_T vvirWKo5LJ#e0KSdˊgk5YynpP}u9g `G1нF5QNSLPov~eh/}|N 5xcY̽#/rڠ2]XXl6c.<2OM|_6N_$NEZ?=E»EWnp#?X/v_RtÎQ3冤7P7|5zY|RFߧz;v{{'l| Fs=q5Z.^rK 3q;Bc( @YꞴ̑}}ה]chp:1WF͛9v84I܁ E@DٞgH3Bi7S_.h4Z̳~wav3}/mR23??ӱ? P?{jןnꆘ H~ !TDEI'KQ4Dي?pDA0hj! j 0N~|qix)!REGbU& '?JuЗݔޛ~j81rXY67}(ƫ&-e`!J$V;}e2p 7 Ss,:{r}nP֙ܩLצqME%'1fƕd13uuy H{"ITF$VGyPJφ Q  ؁tb=E8ɋ 6k߿GdxFs[jW\b6׆?gLf/kBuNVRrPY3B^& -1 C(zm0J)ol"b%D`Ah4ta5JN;-Y=h;ZOŤNʁOgF}.>-mA*!BfPuhZ7TxƄFFU_z3>-lPr#LwuuOkT4z65Щ= a^ LֲmUCF.,YPٗV|˰`0ڜv#.2"_3W,B Ċg]k=蝭eDga7+K|x ݓ྅ Z'+s;<,Уy:B`ʃxe ݬY~x4-rYyWwޛX墰Ҏ[?#YNHtm2C!Fkbff }:>&&±J&p}cj嬫@Q/l;>B!;\Xֈx~ :3-_Jqz mtw_ZZ%ޢ^ ?#4v>ov?k6d B%=4XlmM_j&-1-'KMoO<nThvQJSx[}b <\mB̥̏]?(/ d]l^ղ]*NV2B-oXM!5i*umuh48nqoi8wBDBKQj^`c %Oawxm4fO o$j3Q ^%{qk+ xw?.㓨{lO0O߼&Sʊ></̂~WLZ݈_O{?~?B?ъ  TpX<-̶~>y )4LJTjhIɅPxq~,o}t5S$Pѱ)`(o`>*iZ':i NzĀG D|_]b]tdw,XZ:Y".Ķ^mi)8a[pT|;TT4clM̯*b5Z<?wqӯˏ D#!gn#F(~yx S+6۹i1^c)N 0 ?Ir+!; F]a7O(m̐طAM'Sj8>1 Პ7GU}ݬc5 3.)j}ηb\s<5(ȇ{<`[˴ `Rf[(t&)5aInSn:ow"@Z1Nb^R3VԡS|V/mtuZ?m;',kk;UY㻌kle>5 L1(!1Dp:-o+$|4qr UbmN( %y@ ȡZ]1ϔ(K湖 3jy}?4l І譆z.*ln)N9lJp qBHV.);e @DYu׶{UhK:/iwrwOݟKنm1"$Z1@ y"@Zbh-ԇNfdYW\v#kcĎ[s5V-m7n]zN87U2b7'PcЛ9mv*VsN"Z݃"AN}]6~K+hgD8Ep.2&Knǫ{:uβA(hP L+mܻ~=q } N ԋ{08:Z 0P,B$jOqf2c5~~>mZE\(C~UvʸQܰFoEڧC(paŰ{tm+Oc44)f#B0H ,K∐kPm~\8RCn8A޲70{y̩;%>[\[hFv:/#D^'ۗB ҪqÚiV be?再Uݵ:з;ک?}Vį|نZ ؁"A][k&3.[Q/-܉-d |?@KCԏļd@6 ~;0TJEho@fH$hKـDdRC\:, a-uenN-$,a}R›Z"j!>;gוI3K Okv0?-Lzo]̡?}@L|P4uŹ!zbM 32v=m_7(h Y /cDy-#j8 E.EtbB(@&m?qgll 6L6/THA"1(|5j] ܐ.`Ukpm9ap|R% 7%qح#_xb*G nuxoe-]t. v&0E}y!$Em&m朏`,"GJ)RFxl֐qJAVCm.FZ76 ͥ݁񭰺Heb~&]a}ڃV,{xQxҝ8%B\pn`[~T68Si7%4 ">bR?!z+ 'D&߲RR^/EC?ڊcz$L!xE fu'`b~z:-͕ ~{}/fvGKE%ʣWIjWv͆Ċ 6XDžiFm,2N X7WmJ(1@/Gf);6Z9˜ 8h# Juy00D ".fy%ƢPˏ؏_OBՂ;~OyԘ"D* 賣w];,<,"Y#v={F/KomH*4BYA)|Ƨ.f k%#HyBR@,ffʶO j^[}\\:Dms!z`$W@K<}H‚-a(ۗ0`f<E6\^LI&u[h)[^9QZtXƿܛ2IݜNSfL(ܕ2k KcG"XՂBc%t7K^Y1i2E%yRXrSqYC3Y,kP{-D}9`2ChdL K'K)khv`L5z mz7kQqBsڛCc⓱,0i>{K+߶ă\BXwFdy#ØXcT+70/DulI5sx|ˑ[/pV"auYh7ecpy{*Ř9ȵpRoG,XqYd,-!o-Esh`k䲎QXj1V{Sd]cn0Vgrk]A_Tr({,Vy%W_[`]3Y@8[q"ζanwlda2g;(EQAvf2 Q9d$bQg0XvU,2ѣ ţuZqOhܠaϯ\6;PLGx6mRX .|&D|lpF;?axٗު V r9;+Ƙ>8B2S $!A1@eD s8o9Վ?~MdRCY~s(xz\ϲ+Qu:Ν55 d*ֻjۃK$N5݁[ I3W2!hy|j+q7","~<(Va|> N2ݤR8q-nk4؆qnTxFѹes8,`ye[h~f<2 2 O6 (;9{#~sh/8֠{&qR`dV#/v_VGHu"Nh2, wPþtU,K@`< %\ :Yz&0lTa@<6l:‚e,0kˍD+;D dD6_'XF\Rxr'ԊPm(chĠ+9WB4R (Ҙ1 Aм9Z `6,d4u11Aƚbu-*ۊL| NL7(BkL%Sp.% -,\Q^[\8r=kr3.蛙_,!G!8<0 c[/B@gEh-(E@ǘƦ10QDL1BP|3UQX|j1P6w^)PvWj~I~F ᤖAkԄPwH/zT T4E'uV4EB?ףqqr -:hU3Ff,r$E$K1D-i`ue00xQLD'P(B3׭_qn!dN??gCjU`i8,LP+i.vd<]ڡ05?G,]%LB8 ώ([^b7س]G7/ϩIRqgutO H2^,>"@Ѷ-}Z査hB0l'Z7)dڝrX^uђ+%_ztC)ʰ PiKcmB/G y~ʌ*~-G]DvN~bd>x~c\T2.ފ,s` 'ONe՜7i7ODtv<i=8Rf=n{ݛlD}vsҋ1)Cj.;'EO0#dK٭,pH,ggY 4,hdl=1m?=uԺ9%!@a-m#=lF/h(\ثiʗ~fm1[K!!cWMZ -1nK[{Z@hsx6'Ҕ ZN|kTz%Nm"u @ܕ-O 7{2'*Q3g ňKmad/=K"p»@ZHUGg]_]Op55=aH q^6XCXՇ/)ۥh|ttSZ2!XQ8y$d="EDh)l3tI;;]uձ<~2$?V1A]_k_tS[ܗ{g>gundm~ЇO= F1ԝj GZx{=[}}NUi2]0SP2}=xl&yR7_rox&ۙ^Z&~w,w)ttۯﰍ}VO7vmO}O{kwVXx^OnRg~{\Y>~wUq+%q%h[Zc:g}ewwY w]վjw~Ͼ+?[p?Bo]|>XpĀ! 3gryl| [8\Fe^: N"׿+v:]dw?nx6N7{ԙ #7T96=7xn.7qonV[͖{@~mXr9K~>.[$'5>e}>Š87_r9I޹D9'/r>?+r}dX 8t@<{T{x}w?mšc^DԞG?/rjnW+]]]]Ʈ뫫|wc]WHsqw7,(m?muuwt:o>Nu6]NS:O?_{uݏO_>ΗUgӹvzg{ im:^ OC&ϩt\/Ӥy^ t?r8lG?Z,s7]_/r빞W3rTÃK0 k=Tt?t63WC՞u˛{fg23_/9w97os5ޣsƻs滛]}uuuuuuuwϮՕ܎?>AϮy'C@?G%N:_Qt>>_ϳy@={7ECgnz^^wSM<ޞV[-.Wy:}>O?gV0^K۶t.sasu-\'HGGr5/jtxnj?g:}nO<.[N}cv;4?v;c\_N֮mz^Wz̺[gSuavDG @[Z>f?ɚw%};Cy|9﫡u:H]O79un[uڎ[]n[UCcw}?_c[~G _kveGGiu~?빹}}gm;z]LKӾޟët_MGt:ߕgy>sOGt9}ANF,9\tz=7Kt>Wzrd_dc=C&v:|7#Ou oT_snؾKwau_s' M:Gt:CCt:?K^:4t7K՚vi;Cq=<W]tW/~tCq:nFں_;i^V~gsђts=xs}g9Ƴr|/r|_/iyo7Upo7\m{B$!9oˌ#C}YL6isWqv]}?6gyޏڭ;Ji=![]]+C;Wry<7eg}_.ywr(ypm fL8Xmm{Oqew{F}VVOiEl]i޳_Smh(n_uXg~M %l7{s}aAxCc?Cj7gFlΎ\c۾#t>)?iqlgeL;evC]ϫ ::yG_y^?CŰf?ů\q#Wx}~[W=7!#wYޢ;]ߏ˱;czkS=6F\ _wg9#E`n?ogGH N=U\,906BZFCdh34W\9 7Mnw&W3;[Vp~_'5rw$ˣ*itM/#*?Kg>7Oǧaw/2m/k m-MہUY:_Ž鵷 .v9[_\%M̷N13S[W}v,EdGCl+ˆ3~MWM{ǡw3#W۽VS=پƾC{%*؍9V6˨תyV]K5w:j~0 "Xۤ,3dK١o {g/rP΍E{A4i?ϩyXԏ7YHٺVۦt{V lN2=Z_CX>@wX8? ж)5 { G)j9{դ%.nSm%6>GnY=MT$:y.L뛳Iz 4>3I >K[˻Wv`3 uwzMu2~ V덿I{5]ns N>5} V6ɡ i<(\T{$gWK>d;~ 9ۍ[36i3{ٌˮ8j|#ףJ]v[ qO?C{<@ٕexx<{>Zzf'J+k]џi;*5ikIk.$u͵8ך<<kz ãҶ_XBG+[jbiq2t3.}A ?w/&JI1ESh6]}&w ]|q:X+y]ӝ<ˢ`_@'/uQ}1G{,Ѳzz~<~Y\]ngYW[Y`u.W[kpNҲ47i'LW|e}>kuMlWS+CgJ>\4mJi=b0?|7ͭW^]J8?챠Nw?omΫvl]Y͆ƯsNm[-ų.M/۳|[VZ_ikgP$={W>'orІWrc}4e~Æqsfʛ0m|)q/6tv׋~ol.7c7a׽6y[5{4"zz_[5]gB;S: }#תONFu ?ĽOyO]4V߫f)_53od/6z?GKj{i-ս71?v+Ah~ݼzv >\_RkC8FxUH-drַG6Ǘ7؆g>b/L6>yKFix׾a Qz^=gz}\2m㻏pZ?4'3rwxgv_Ց7O |ܿ?LS`YkA{v/t[]m fNc +xhg᭻f|us2ǻ2ǒcWcf7fUNx_5ֻ;vs~M"yV=n2њ[l)VJwf6z TY 8)f[;Mb2qk~1g IIX? EzS69zKɁuw!y8p+?]rw9i,_b'w`}2z gwns} ёdŵxF3Ѓ6~: ?5;Gf>''{1I.Si$GMMxy#dy_*&m{k<2<<=Qe5R@Ob"O}>ذs{ ^vvCi?#G4߲;,Q2Y櫳s%z b~SIa:zm᱿+Co^lңcGoK7s);޼Æ'#t-3W*}ikϓz7~/ܩk?~vڽ-+ҵ.wՉz׿n`B* '6G%St^j|悻ǣbJ?Vst?nFCO2 ܽuݚԺ_4}{܍Yv1 (=^~|ɹ}Ż{rfi?WiحÌN/*"o-8=k<=e8z>[X}}fer!Gx=WF.]3WͪWqlyDzx7oOOC^(ݭ# Нur?mFkh 9߿uao%JnU#c|`u >sūծe ǻ˙K?՚ k5nQr$?mwɝ=G|qL[.<<o/xYsR|M9o.Rht!*{?~պS=Y5Eah$AA?1mP#>|ݍ Dc?s1v !3%mj5G] 9֗k\3lUߎ,M۬L!S'*|K>G $Ľ/ǔEK:C G[\qƗ#Ii;OOӅn~׋Tqn$>^+)MZK=7]f4kGc~83 ̳Y,뷊nճ:mGc4nصGӓ}9?'O޾/?9Q @ x|Owȳ;_}_z{dn5hUf _?J6λ W{I`w,f}OuNڇ=ݻ} )2=wnlVTq1[M%{n79fkwX{dۼZwf7{w{wo7N;;{|;gPo<>ތZ>p6Z֕t[1wϷߛ^w\6yN]_W}w};я]~-p?>yN"/ˮ.̬7]o/3ƣa:Rq-w>%u~+zⳀ?~淧1=zwqosKSn7OqnPK@m{78ٟl]g/&-˭3z&:gHgl{oj'^mu {}>ӽk?ߋmuM[?wh>/hoZW;rw;}Yuz|v]jM ;wX-w跛׾yx?gxٱ~qZKz8N'z8G6SO==GRܟ?:].t?{5nv_x=]gWu]oI7k[ݾmk}߳}t^z}X߫ lٞ/~w{\}O? xMw;ڍo}[ڳv]kv_oE{}w}u'?ra}wYk-j_7`ʾ^lWغ::FNSYӆ=:c޴tt:7CE7yޝv5}]ˣrm^\ݱz7[Y>ϼ>߼o/W~mnʲ{se?YGy5pxfno"5{w5VF#}.U.#Wen=n>^ou;;۷˷^e<>]+otL>szXs| es/O`_q48>q8N?|밻'yhbpֆݹV,9Y8_ߥ?X.b~AFќUt`P 쵌qK݂zߞ=ʈ]/׃56mgImb [YM]n8qKweS:|<E_y̳[*kwߧEY{Qؐj wLr& ^ ޞbQ!:QkXaBVrOdnX8o+7=7Rt^wYǫ`ﻖy?{3Q1R;Zw+B!T:ɰ7edeҎn"s3Z E-)omdG* $<> ׿gfr_nL_o;kěY}VCQGgc[H)N {[t,V⧑~,qXYZ77`(6 24ftW57t73ܦXnqs[ֻ7!yw#_!<~nD[d!%t$ >~Nt{C]w]j28gpRR{Q 8HiEFh,,I-1aY:|9D.1-?D /M hod*\8s{9 L2]Xqm+grrx|EygLy@+ig]ڝ_9Jvmqw:ۗ9d_z? ,ۓ]i^A?vmbmx ~هȥbzUnf)A&\sB{?_)ebًm[V, ȡgzڋϱsd2U2 QPRضU#=]!I_DgeвN|}F+ u m:zVa7FY6? nμ1,!:}VHe5|W hfF/{׺H-?WG! Ukm|k}w\Kd 9zҴP[lxHo Fx$'Ôs#,i/O8rƸL<##P2,>ϞyA 2&3Pf/"Я]\44}{ iξgt,_ @4oG*AhC 7eB%Wk]sεoo\b+VnTB[-4 %਑N iX@Pٖr8)#yWukrR+_7'NҘ S4?ҘO25N9NGߟĵ+?HBmigd>,OjsfƆ#8ͭtG\iUHm8Z;}mGb=;]vKÚLN vBة\4_xi'=30Ξ_2|u-GUb^z%_6cڅj5?ukwk ccg6L4~ew{ߖFjS5ʲ~2B6Qgn?-~6j%aqtȯ2kTe5[$pqB/(x]e?Y#Y^9725`[SxkoL4\,Bk'@8" ;VT #sYZZ;BCٹ6ctЯ'?:lJ$vv(0s/JKǿ.tu /kɎaA#LP'2" S's#e6<iR k?èޟS-Mg5ۓG-'X}bzI$1@#:UEt1Ij̹&iR,B~!#߳,z:R^F$[hXxŸ~[Uk ,p'kGY8< ızJo.{K~Jo?VuZ&{qH/;1wgD؆_FX6_kJ ό.s-/rY*n6 *'0Er.&Ÿiw\ntܷE͔Ɯ@։N.dzȉG P,8]hZ 8dn9ܥV`?;1W*bo5ƾ1f KMmy #Ꙝf[ܜbNʑhhn{U+P8$NO<kWGʬn;!gp=jyfǗϙ7'oCCU(qfy(a!k^CcQ0j|߯Wf&[g Ec"deq<|=S"Z){ZK}4\N8 NTNP?'5OUN 0L;YcG١W1{c]n5xOD#\)?I(P~SzŢS}^+YLM6wPVi f, YHMٽ-sqx:_zBZi-' ۢߋusvNnoxܑ/9oZ07+zdGJ 8 p1. 3o9bq[Myot9<SAg9j f<L/\}BpZ:;} kV?(Bc߹qknB1+ baRXcݐ lBk{w~=km~g0T$PU#OE ">^>s__~o/< PUfffj|lvv-^7-.tZYw96FR.<+ TeRt5w!I nT嘮C6&daR-9vluAf;{;>31yN>ӷ0B|N#/F1#M,tb-cQ֙c=H v\j00Y#O[eKE n3Y J"}zwf{Ngqݶ}I__oo)}|=K~VݲW`t +nb$7'01Wީuoϴ{FSGI;$zXDz=9bI*$uHnjX*Q2 $.w!Ua3> TZT }+^&1u^ 1=ζ*&gq89݊zciK0M }1Hr/\^\p]iC?<=1{XFS~uMWTlbgH s tl[zPmg㻛N'LC[@O)'sh~f<> $[g[{??7,l\Yar5GK/n]5pähg;v%3.IVnVNhtƈe+Tشy;¶rm[By3JbX9Fi"fn<܅,=ycXɾdxEUp{욽,fK{|a=by3}$m[69(چUJkgvp^;|':i_w ׿gUjVT Μ5gn ׯ%שsnw6B֨ǀ,[ӘGD>.yWwaqHy:yݗ>'lv-wfH~yh>z o3Mo!ow{dCDw7WحŽ.9nVʓt:1ʭ{Q'<]׷[݊gooԯ6CyJI{Eb[m$|}is5v׺X˜(axLot7lj?V5P˽;VE=DL4h0t(Q2wwvz灿/&+m$y$6K3)d֫IyVUȩW6ݝLIn-aUl\\&{EjG`w:5ջRZIȧIR[tDHs,E[`1WvME?ond$B:U c.;}ڛ $I;_<o-@ c&JmRE#$E&Nz3m![Sv {[mI$s$zGdj|a} oX:s(8fitC$$II$sI$#mV6cFǚlHj]ȌbI$'I$H$&#,d[8,y>AI$0nU.;HdܻQOPmI$KmgI$)6I$2Ni'+uN\.йw@hY'I$T)'T#l$II$sI$m6u[r)v:at.m<˞ֵܑ ׋ rbAv[ my׽)3cޜ>ew>8O6UݻR ˅t8zzs gjx&ܘ*wb&ovR 벨;H<޷wK؀#{;FΝk}x>.wuzK=!p]jwS}Hk ,ҙǗ=dŚɹ5h4 v58 Wbb E6锱3%}0yryHۻF- ָ;@ɰk{;6mﴡpm>'Fv.K2/)xʒΉe{Y STD\oGv>ՎoL3-"f- f>su=ٿg=k׾ә< \Լ̽eܼJ͕apA:m3Х_L}%,agOԳޘ6)Qf.]znKޝLa}:Vz]P΢h|y2v=HX5Nt6`OAO˳ᣈ/H0.NV9#,y&0zn[|5z-K~&_ٗ9 /C:SL+Ӟ"р.) w86&j{=;ob}~\(Y7*.<%R9swVpVU^X:&ӳ8zݏKZSk5.2)xV_'y_˹j]2y4'`"fEwd3"kv'£oD%3$Cfm˙+ K]pu%Wޓ5I6>W$wZIs24pTEIZ$d2NSUuEmi4y\D%l)9(Rؑ7T<c;:wv %x22;$sCqb^Iv?v{@vLVfi kZ晝γϖـT>We2Z^ JDѱ*zm#ԡvVՍ!nqM/=ub"J۬]ĶIY}~$PJ '*VH>.l_1i-3Q[rѻ#brNT܍ /v.jj᪆R^%YQ"t蓬2I/r2 q2 J}$d[mOw[kmVă2Mҁ&H"V#z$qw:w`1vm>nBOt9fϥ֬.x~|q\]Px} [t/,:΁p Q9DyeW1jzvD|Zr<|R"9}k輹㿙yA'tïS']toLjhݟ\qĸbR{S}%b>{zٽDu74ldz'{ipisމqnv|ҽ^=KrMsm"_8j>`znfηn'緣;pzЪu໑ۿI:tn! I/nyq{ڈ9Xq;{gY֬t8S-4L}q+-mzH]o,[|m{yutV|(3umkxnkwF"Ztl;tr[H\{vn k:&7ϿcTp}psԼx߿@q:x}k[XgwRܜ<1z紮ё~nu3yI\sl(G@"xÉNMDte*盚x\?u˵8]/'=û=+O{vWte$ퟣF[u t"qYB;gtc@sOmv^pt]+`\!vәSq}z0C^ZGG]9y?~oCwsMߓHJۘZחbaNpԟOx}ɼq4J:o[_w5׎8GV#[WNiz;<z-WYs-^zmghWwGOMnݡr $Q|=GO*t$#$@AQA^t'nƋn.W|i@UUUUUa3@@ q&|%# ߿~5USUEQE$(@Sٿ%vrI9x|:/ WoD$:~#H&dA2i  щ`(SH.n|,"849yzn Nnn{t((Ȣ(A!D$^%J.6(0с 0`I%N(pB !pzGHI"H "|OӁ(P{ UUXP> #ثz_dxAuW1r X0`QHRJ0UIUaiw@:cQ-Ïj2]ww;zTJI%X(p!#9&Dbd3\>| `(() *(B Q b1m"ļY1ӣ0AǏ|O4`ID!1"*hB@ B,(hhuBs$R-L"y'RN *UY] (P- >>~NN}9(G`I$@RB%Msu '7~PI&@)#"P(*&B+2T٪飂ۛ77=gwp|Q;L' $h` >|gU5"jxiBV#2qB ~uJCL<_)I8Ha' CJ $20U,#tnâtخvaz!'0D<0$J&xbp{(JU_*EUD :`sk._ɛۮķ6% ETF) XM"BĄLHEVFx"=_|IiꪪtΘ! I؀tܜ^հUoBXZ<oD0 .~ BPĄ)!DDN\:zj2P<1P;: ɳsc=6 *C6ҁ c !Bb=ITMS:+'LqUs) '1vCG @l0Y!SP~ p`=&i(j 1Uѳs:q*mC[TxclnK$"P$z@0 HRɔe` EHA8tߦ T2USD@P@JJZNUH1j6]((Q$I%V&$Q4ӄ+ "pf. @jg^<~gק=L_QRI% Is\讞7P;óAxҵ~-I.I$9QFi q[~S` Xrɣ i% e Eq"i E!+ F(D*1-]ÞA^ ~;PPKI%R"M4MG„B=yP,%v?c7ѯQ_-hnoh^=v 9dOK/OT+3t,$s_8H6O>pXfa/'O_ ࣕq'gJH1"F#P}4M.P&.L"Ȑ"TltCzI0HEBD_ڒV,r<&,4Bl*-,x~ΞwV,DaIx7`I օ 0I `4 $L*h-FdܚD߀it1->nnR!ʾ?Z h]kffF2B)@ָcA3[QjE1PnhE)Ե%.[o4tN>i8٤(i/,rM‚r\D$5@A}wBxh?Mc6 ҅">߳Y=ZhV歱Mhs||뾳q?dXA[EE2Ƞ\q]TkmWHǰ8 F=2Ct[/KD4HڧMR=2r9s"ڝ `$A dA#0gYP0 -+n(`B#:\NnRTZFpP‹;jxE6҇9`ZBALyε] =!,0fAؑ1dqS ;;I>̾"=O3+Ii{|WOuy"vuuθ'g7 gsCF|*F>1l/}{N_NK*bw|N "iѢmrظ%^,ñ$:>Lͥ:L@0dBIK%I1fvGmԕxh(:l~sOnFx;$z݆L⛧u qtX  Zs36sNsi g9sgӓks^'9وI\X'Niu㔷-^$9Y &MMy8ӛ&sq9'99r^6]-˅ark.W'ɸm 0kƐRN85Ci3HsN'bw:ӫy7Kɥ'N8VޓrN^r#Mg&sMN5i:따#2ͮq7"qL74FɦEt6η\kMզk&ӜƧ4.M4rNkVsh,eM9f6@˫Ñ4//4FNz\ ]8܁\k %eqnNNrF8j՛3^l92Nd6**t2}bu-X:t-']|_ k= vm!ÄZrtŁ#[g/!I Q$+_kgX@Kɜ8Dz5^| _E~xYQwxA-$N81aij*7$ޕ?aAQ ܅BH$>ӹh{ c!ڭ)=@@*UOS}j>>>(@j<+̡v52tQ, V K !(JH0 w.tPf`ux5r7@ DBpK`  zBI#st0@ˤz6v/kqG< @mI$(V(-H=7c8(|h |߿X@R> 'TU4@HHHBzE^'j…W` ԟ5a* hH! H'ZDFAepxdJ%,IcP)(y,)#f6hXRAļXe *iR $KtOk$ ()!:n7'򠧍>/UGGG4LO&yWoy~]yeyQ<9#<|7E>_[ҒP$P=Я z 7|ϏԿ{Jf F5,ԡdNY++*iYYUҲ,?>I3^{߲;U~7{7z?5 _eg޽5z]Ek&+s{|87Ͻ:nr: >huP/9l NSXl\?cIqy{N ̪ӹKvura8gd<ӕPhSxBO؁ (w` {ПSѱeJb}*}͎gE-IkOط!#'5F v5}@.w[msS].V vL` 4Q/P@Cѱ]j"$EVAr|_B_%Ȗ/_Ҫ[,ׯkmi0$Ђ&:d=o*); 1o%U  @X!W*LNMUB33Us,TTTTTTTTԅ~WW3*35HiB}$@ .BYNODŽ빹zjY<{1##311=2ffffz~znJvrR~ffzvvvz~yY EVZjիVZjՠ m6,rYZv%N Oԇb3ý:!Lh*a<C<w{L) %=FUvIm+H@:Qem-cmm%l\ݞ{;nybNbEX [&2X=W-t-לkV&fI$mvV[T%&ەFtXW/\u%햕^HfY 8$HW"Rbo[ " yy ?@pI--K1_f 9 syaO?ֹ$A s`(W1%m:hUU u @(2 S4+R{~E:(֬V<mmqCuq} $"nО<|Đ})oppxǫkV@uׯ6 DɗMU0Χv ;yaoR=>t:hyCAχfwAC $Rl>zЃ߉c,w; :v:أ:tc5}ƨ;CY #D3.#!?zH$"k PYj|yVTWySZ&3Z99r]l cgH9˸٨cǺ>ZxnkǷ6u|?1tZDwoDJQ~Olq s2=&fEؘ.` $H$V]k]D}ӯQ$A$zon9aZ}nq G{u;uт4n0Kt 'jI ǻ8Kvy:˻LdTԦJ˨kzyV'ly{{wq=tsy#%}z5c˘vP s];}-D|Dkd"+uQSmzJ%Hͪ-傩h9t HNdeF!~N5dtzts+ݷ${]g9:$H+::~8kDDE/ƸۋSAʑũFfێZݭS*s+^_C.}oOR9M<XACojy,WN]=ύ " ?%so幨fwYun&mY#$'y2eIm"R9/$R{{3q>D\A(uUlq]v@(b"""=Itt:7im=(3Ql64+ddn&_%y?0w߶tM{ctL$ S3IvSw8M $$RJ.UCzA$@Iyu[P+غSƢ2n]GZI8nСXW&UQo}ݚ NJsL@sQ#1iA v7+-MB-9I"S'r$A:feCVFg&)#VEHI.A;Wwve1kWvt40AZFJL^>.=AlR׶VUTY$ ēN񍡽}2Yw"ኌ}d9}w)tq<Ý9'սS7.Nt:fd< IGUUNj=@9Df+bٗ@#NM4P՗$]&WwyU IJE$K$K؀Ue[#E[|t>E>7'z2}h{v7_?S0=E2(m6Mim6[@0ZҶMm[mXۄ3R_~3333 bftuWC9f`>A\ƟnEd8LtwMܝmC _ xQ`;s?^Ť92&^~vIˬ&9\e؅!-le:$qoؔHc0|ӶtI${ەNzz[cWu*[&6}܎S Pa%'|a\~s!s<8({p /m܏ۅ}Ɛ=R:E:NA_f "&KKbQi@ըn/Ey<®#ƵG -o,:Yt&s+JW5Իxhw,Km\';e=tID. >]!`DJl_{ffgff@ 7-|ձo^;}{.~XΙK|};}5ӡsxs[@?Zۗ^N.޶vOvՇv_sxWw</vn6{~׋yFhzH(#4>%`9d^b o~v{wڹ=i,ge#v~zXkCOB; vVBΝYpP"ŨF/(CqGp1B0\x-ģm42J1PpcDCcC|ffF{E8eU Žg%2ˬ.}pnu֜}}[<:Ocm(B{^xvBkI'PD%D==/RY-}"IH"kt׾]d`ii(L.*~zD49f\ SϞs~?(ҙ,FdXh\!{C ۾U#)Y He@rcaE$IzOosZ۴w׭z5Ǡ333>>ߏg3uІ %@I+ieYy>=|8\"te\4 cbZ!H|ҥA y y!+1rqiihX}T?}|~/t$\n]S?zd $$d"A,8Fg IR -h"H'Z@ڦdE<2gO6!EK=篎zB}'}u׏]x&] ǟ=xLj \ߟtdA'Ha@@'*՚ hz/^kk/ԙE'6KHZ|m HXHdK>?|}õzۛ峋Co uQՒ4I$ڦE$譓؟uofsasN۝"B #@U_'nC@tI$@.$t @@|c@xF%" @L@ I8'e2 $tN$ $̆ItMK|ZDb $A$\"8ׯ?|x<{~md `YX$N$I{:o<陙ڑ9F+Zc+;0)gxU{Gr rҺNlYϨO^[^ǫVJ@$$e I#DLѥZk!k vg>u뮼 ,lJI}z߳߯_/>󼔕I2@:]  @ <ۯ>ݽN"BI HHɘUi tJvY"4Rb̴3iDt=}u=7ӟ/ 5yBx(/a. n+=06ʧw{U߭^'H{S|~~T HA>Hх KK@r"*m ERbĒI$][W H5|^=xmm}" D c3];}Ͳ ;wς ؊X I93#'x1^Y$H$N$oXDC%$I#Smo $|DLDD/~M~|w؁&->2^&I 2 $=zf d"@ !Ϗǭ  =`BMh#;g^:owaH;yׯ CwiM\ej^_"~=!JuFǪ$u7PP$d H%W9DCn:߮n;n3jBtI MS׃0z^6tI: YieΘK 1AP{Ksoc1L8".‡fw440h`w`{0Dz0^)^ߦP-#x^+Bh^^3+(ܪ.6p].GܮGܣnWewu-ZKex< 544ʴtӋVZ>Fk:"eGVg|xP${KA<_R8^O3|9MK (&UCdٝ%)DgSMGXOlAP3۝. .xFo;L9DYefbg`΢.=z$KO+beonf}Dx]m;"amu"-W l]yLd- ]Ϫa'Ԟe`=vMzw2wojV殶3c7ō^Vo[ ѴpOw{4T{[h++=bzoIFvvC3vqJ)cqN乽ٻnziVmMU:N5Ӗ X_.#FwR4[wKMR6ŷdjA'VvI$KdKրָ>-Pq+}_[n!g$g xWM{oߖ•-ne}#?_R/.?{J*ώ O>o{{~x7ooAkqkZ^<3om[hש~`#23y5^ڬrKjMG9n&5@`M.2'%|}_!>Ew]"o:15T'DIz;HgDGZ$#$jk&{~dD qU_@Ȫ3|NZUEU8;:t׷j9y_1DIx/q$jρ yz'Ȼz,#)K_oyzsfg{D#Vf ՝3#ƙi$t$j<^D@̙GauwY_& !E 9rq@$.]S &nQL - ћm >Ի]jگǷ{}'.=n,I4vˀNeS3+ϟc=Z.}v6@3o?n`wO<^]P.ș݇օdBL6YA'FrSġW0Ä\vNl翞_>;<Đwq*Z)IӍk|q;7*|~C @Q T*{ ]Ei]O{׎u!T<]NҗmS :$N5 }RJIr32.U$peeUBQkc)⩙phMN^U^٨"^ֹG-[G E\)3nNxW޻=-x.IRk7᠕:7vfo}*I'ZDG2 \̴ $F2fz; NU=N >Q83ܷNZJu,vܝK,8zu(JI$Y*'DJO3PgVjfs{cln &QJUTxwm$W1j A#{n8F#=;p 7ۓ{YL  a X**~߷_ջC]Ή]*Y^;WoF\0wowVNr%b˜h q2ӛ GYYD^ &KD LMf1|t3f1j¦ZĚogbT}VG}gWMȌU>>Cg`;'AHjaٖs 8~fýG:u|F"״[7ƅm7P|>H{G,`wd{w{N18珟,q~X'eyD[KW^Ok߻C"\I ԼùQ* V sz. ( EO[[e\ f5 uyFseJTSuv}p{43ECk!hI)M۹jH=wa#ir0ސm}[|OIqfd#\I D@ bg'nDAh%K~NGZnmV*new`~c@Y\7{鷧aĨ:DnoYu~μWc}ztݻ('{@OjiBuR\=ĵ,0GrcF9ͼ4:OE;fy7~ۛLO ${]O-<^`ȻRYU33sc;2]Z<$Ʊdfe=jC[*牙\N&A h3&"J(I%]CT\I$I T5<$DY tbSE @ Zsq7\HL$EtBBT*dK a6mp@$\ Zw/7 "x_uhQ{;*w[mTN3}L̵Pc `ٍtbUu>>x( υeKr#@:RfT(h",Fu90TU/|;{rĔQՂ[L3T]IX")BDwȂ'@D Poj 4AI$U;xND8="íut8337VqTb~Vv/7 =wGufvfj0-&~ӸtqЋMZswsDv>&eLFSwz1:pӌ2N Jí""fhJ:Ъ4STXThng6y{xVkSMPYXε5Qݣz7|8++LT1l=Yvn\UL۷=ջ {qwtڃ4%*6U jjLHTU Bj{= K-;ߎ:ኆEA:$Qn(UTLQCQݯNnEE|z@js\Qֹk⯾[r=wl@ jsi |U(fvH3&dk6$J/ZJ-1/4 S؆0]e ZcH$I=7ܵ Դh KȊL(F9w(-USS-B@%(cL[1Zi/ ֮@H14 }9{o5̯ *U{N7Ymf.2Dó:NC(0{ )hR Y ~bBuמv묜1 Ă.ީS2VL"iiAYFM^=f+D$/:J@t3bRZ$D,̉Fmm1#wfj AVd ۛȰ]ත}CGF^$%_D,v)fYd-6{Ei[mvml[-j1o!;׻,j/Hns=ox\ϺUs(i<Ӽ;;nezG}aԴl]Nz;Ժ!8{6?~GDΒ$cJg Ui͹k)7bM ru449drbl*gu{3ۊ:!=5[KeLUWrɮGDK[$W%cֹ '¶9p"/`zi9{9t'ٌw_{٣bg9äqK;Ǹ/1mdWo|d qowL_'Aiւ 7Qe2Hfmuw,v aE=B15[4gD(fս"=\ۜ'9δ>KF٪^1V3oMIЏ 3xgvf~ǎO*4_c>Ϸ-˯P/iO>'-*K?;oG=O>ޘ|]{/?9-ڿf_`vw/.{S-$ewyuT ,'tّTAD)xۧ8 $Nf&`ߞ3$=v t;ܽy.7tԭdw|o[KAW>K=؀$ ᷶D {cEkGw|wO^[m=-Y+`C%]z{oT@U+Y:.]u8fd $">w5>;?FVA$n{wEVdI Um/vmq$I:YH.Of6K&4JEѹǹ7 -Qb+2 dEMPG;=$ 5T@I"[/ (Ƌ@A:r.\C5lA!7($AqVxS5SCNʚҗbtp,]v|ozS <mqᣮ&2[\-i^fMϗ>ǧsjr Ή UL[MW],EHˬeLm&aAtC=4AN*Pw6v6A:!'m+r陈 ЊTe5jSzSb ҉{wkӐUWQQ ܱҳQ%Q/339W7t%q5)d^/PW$o f- >nk4[ӒauI_yMXh1陒r׽=jH$eVA4j%c ̭ܲ93#DHYp4,ݽ'{ KADG)vFd=~>/ѭ^3n޿vQ5`Q&r-/'U=Y\D38~-B 320W #&ւFиkmj: +Vkm 'DHHuSt I;%i׷ŷƂL%#rfUE 1A V@:D Z$ʋ8o#:+s8mm>`|BgH|L)өpLƶ{"v\V#s^kb\9ɇ`I hqrX pcedji/;ebƉ'@DZUEM"l" 鎁k(%33HfH6wqkE .x78ͫ[7⦶Wv]}odzmL)wM.Zj(oso "<6:>ݺ_t I$+ -˸Fƍd-ϞN=y=$q-MQ޻s~{9^zQ R% n^AEL eȉI3,@!׮_-ύtw]n(m)-bC&I2L!$~W۷x'ׂ^5an\#ip Bϟ='>9<8 6(Y2$Y=>z{', e,KܲBh"47WR"0hA2DN#Z#Bs'޴yd(`J_̳%Y@O^y뷭_KBd$- ;ipw4u0Y2$;]$eL@'Lnrׯ~{=\t&eLI@ HP;uH@Ǎv>^R@Bl) $}$ {׿mv|Y!BB; H6a :*[`"-D`# Ɋmfʌ)蚨y Y,UzUUYY_l=5bY,:d :9O}z~aLf[9럋o<ScܑEoBs|I4to6.4D,N7H}}s7n_z:z{6߫&/vޯXﷵȃH=v; :%s3'o߯ |'޷/^8e  @mH@moznzH y BDR\zׯ]{흽Ӏd6 G99vv9']n(:(; !مϟ>}]K8LrmdSe G4'~}߿^zw_5ꬌzBc<r#ݦqVWɷY V.4%/-w̓ߤVB_b\H紼 mB[`RA$t!J39Krq/9ۮ[]r l\)s$5 HKӈP擂=m 7qI\$ \K%'!K ɀ;yyǮ!FPmIk2\`@0 ׾yP3!s@8 8ɔ P @#i![`OQ׮|s666m^wrvw@s`@\ wyx@ s @ $ m0(F Bn]s^6(   6~nj_wØ[u\m߻|~,s#MnHLgsbwuB9W9Eœ=jhv˒];&ÍFz"2`Lq$y-Y[ș)-"B+xvd]៞9g?YIzЬq$`qfa,qIӝ4&-mR4lt MT%i!k#r79R7U:oLS-s-2En>l/9 "Icvm@Fx5_L ~.ީ+=ҭ~ʔ9ٓw#'xgo+ǐQ]M2VϷV?/y Ε̭=wg(>֏x |IL7RӅ C C7 ~?,NL\-b^IjtgLXtcG7/3WWbX,X*V YcXV+;$  鵫VZjիVZjՠ#XCEd]SqSit&l$[- $oxI.HL\$[;+]p"]^w^%˽nTY^"-x_9cńm÷θjov?|{Wz[<ޙ>^`x3N;nPo_Myq5˦;'  dO\_Iw~gJ;|x!]7xbW c1ߝs[kGzgg䮥zS%je=1(F.ڷgcbb $T5Tӈ>f@;s^|(ѕ3c01uSeˣTJff*n2HP:;m1?Ro~db>sɰ7Y!q>]س}@m&l=q,cm{x_65x<1? wy;n4" oط nj ^;VgIwc׹eK{ڬ<3T8FL٦:${{0j4Ȏ7s)i]៿}עٷn&7{^U5UǀYjܷ-9~_nU|EvJ s0oQ7R͡.|>}eQsqfK#$sn8x4)=*Y90i-\' +̸qej.jX{ef(wjqrF3+ֈi{lkn|7Z#;i5RIuwC»qH|kɁ%҈̌)B!DDR"7w/tӁrugE)c\Io6_/kxfg7Z~CZ|y 5AIb{lICyq&Ns5ߦ^{]?so{/xUannol=Q!f(EᾹ$Q}Az"0G EQn6uw13\8{K_`WR8Лa:OD4jGm+m0[ȟ繂~HJoU}@ܐA;CoY㙤~gO :ؙѻ<|^}0P]N=p<olO+ Cn`7> kdAq uqHs~ƏOza#)n\lvagmzhs%♋eo')8d6H=nmm^5VL5Wfm;bY;\(,4a6w;Púsбd>ۓH!.m$MFI"^b )vvo_sQQMmjo+ծrxaKS\.g4’owō,<]Bf^iQ9yGۻd?=T#k{,7a蓙62ѧ#m=៞m_:8af.k4G RjV*)T &--)WN----M52EEW`@Waٴ&&gggVZj&fffdZD{h1xfN_{dHsHϵ>m-%GG7PL@Cp^׻5.YfM}.~ '7=L;u4dO@<,чQEcUT^@b}>I۟ kE[-tIvOlg(MeemJl/t,ma0^q L\j\ $!|)nmTnurշ,kzZ`1Y13nyX9ݒsqvuymóz%SK}|qCӓy`gdeϱg//CHZߨ:Þ} )51'd6{9Gnj#Q{ݰ>cb R|aOWvo2H}Yb_gb{ݽɍaspϏK htȑQ(ǜn4t2.m^MbGO?$b}PbDH>sЏ7m}KrEf33b32o*.bGM=R3DDbrݧZ]u/#rB;ʺ.w1 S aUT߯OBI$L-.wy{2/b:>վwo/c/ z^s༼=w糤!9rK{"J>9gȧZڲ4y.fu(=Lk)&f 6xㇺOŰcIss5;_*[+=s4m/O Cg\̈́f[I[o{ut9NqsŀIfdk/lH#{M`ͭcַ m率1xzХ{iŻ\|1nԷ>7s|Dh /_8dVO x);і4=ӑUf5/:$ {7OnԀ""Aat V!CWw6d I$Đ}߳\g燾UkENu:x}G4#mPr< `CKkxvh{OG~>=1l!,MMXVUճX `,"ҲYX}`k|_@goj-׺?`L-۹s سX3s=s'Xdz㹄v5w^a:H;KSn@7 Lv'Sf1~y>a[釷*":>#E7k:V}1N7wcKQ],\()Af}Jtyc-/G}r8.ePVYu(RyӋ uS\o{ll'BNd̉j.ZPTY>qUU8|lXI#C3*soNFou3YzmV5j[:7T&UNjHt="StE~rUx>:v5t9njw >ҞC<:q=zM5Q6I I$"'2c Ώ'fDa{M,4|}~W!%3R}drB qo>>]2tv$ 72j-8N"flLۗw"-nsp[mmGxSf.4Z%*;."ߠ|ug< %f;D= d>I$)@ "( $Msf&j΄]̺Qv!%㷏}ylO^ovGVO&jczxnSS;STz?qj"N~O3+|a$ouXUK-kg ,tU}a(H$#r7S2O Nl}'Ǜff R!ٙN7qfh@q @&MUL X- Ub@ s{Lʦ-i[1UTS'VjLi!Mĭa $v`!{䝜X}ߑmxiI$5wUE< ] $2OrAd $)1)d\9[fc=1BdD*.m][ݰ)Uy/ 4F{ȭ&1=9w"gzۋDEkJw}J-f;*l_x7|٭Zp!V|%lZ9f͓8͊ƪ ˝*=Mi32sLO Iha& e]ն&ahfL֊qI˩Xu'A2r3iJ:DI"*SME$iW111$: X2j.j#eRDA n)'k'|` V+]& c<.:?s&|ejg{FnD@'{7":*Qk͊Qy-}2HWlt%\ b0L~{?=MקA??=iO]Z-hL-\tLgy{q7؞:)*Ry;5?c\m<̈˼u2'2/wwZ%NA$ $I:7'Zy,ygh$:eb1` :qs7tlu:\݊P-m\T&fffdkU_p-+9\)S6(hflX{ddJtRn{jA)!s4"""n̆ֆ"/6hyF2gN1wn. @8].pu'R@Gqd+g 4;'t^-;R/sY^lcT)I70iuwehט Z]N. u! {>IOߍFIӟ  hҥ̚tc⺥3D df NuPz $ђ_2н9$%$I 4:`YwYy:osfhυF?}Zu !s'`,͉UId sQPZuv+ WX{~^}߯=L-S8aw|>,yH$?^ٮ4K,ݛ8d@{wQM0.7,YFйtnz;|<߲b<|tlBٷP]n9 -yߝ|^7gW)ToƷGY6FpmBV{"19 q)}مR_Ձqx\d>fW y 3*UI֌;ݳe;we$9n Y7{ݽn:$w39CDܽٴg:DEha3nZY\P6;i{ e 7ϋ\W3Tv l4ߏ^#I1(s.(ȱ \\\=~zH690O{۞$Ri3ݟ!2FNI֝݁:@QӚ7ar̼ h'L@ElZ2᜚O|}DUC2(SHL}@\ދ]7/|Ԗ$";&pI$\%ӥeSusWUC{Ljê:ԝTF,m!GouI p @ɜ& :0MnxMlcUnkTKoDL[6o1@?}_ϺqkoiYRQgs-'9n"6^o6.zI!)%1F}I A$ ճ1 pI$R@LDb&o[ }[<1Y"teJzӐ sY"Ni)6I'C[;P["Y̫'srT}}}Y{WtwaB<$Bǎ 7;x42"2lىZk<Ѽ0j$$dFDn VejL$u9L"N$mōGTo* );LLLɹW5cMP%z2kw'@AnՐ#I%U3{V'gt6 ;E>8cb L^+<]$|kˢ˄nv;t-ZǙiZζB:Um{UÍii7y[Z |Oqk\H3ҵ$D`z/nC#=y?:/HwތCf2(/(1zo`: ;h97ySz rZ6 35 #C{o*-{krZ $q ^ZQmź꣯smFp'bB]'l}sGuzH4ORқF@RKH TI\È IR@{{Ifز.[ZmMgȬEn$˨pb"x HK%b@ H ZUURD!% eH,*m"B%HD3,4 D@, n*AA[6Fd,RR\4Q Piub`YH"tE-,BH hQL!%ƀ`P 1Y*@& Ka5h"ۇ)$DQ BF ArD,(J-uEB]*9E BJ BKVDɦu$!rl-$*1E$c)PEH,"6ITT&7KUy`T4NDCRK Y@K"XBQ L 7F+%C%m%"1fuucMQFi *گ92ȲK$U:/$ؒC,ŕeKˁ% $P`$9, jq uՖ[e"P U+HФ$ 44HF*$dp!D(! !iLl H 0(SH41G=$a1-EvaD @+"7 "ulDN%g&`CX (D #J  R%R( $dVE`+VKmTNÛi9yLb$͡-m9*d @l9Ua{B!% (,DZ X11a i3J )LA@ (PIIIILJK'--550$173%33/754IrXNMQ\~( @N UNiRR$Ml6r"B9Hzׯ`P`I(KV#*R0ro!IAHHH?>ER~p,$D5$^(Fi BvՂ !lJP y 0` 2d$UIDUUTU%JH-2hAj/Eׯ^zQUI4) ֠ [uН`+ OWq)dBl:m 7O?U?C}pxf8QӦ>{g3~x}R@z;a?'&|Kw܃CF6b ;ݜ. m`M`;vHZvPS9!!ՓԜ&dc}:4x|Q"@u9oU_ e&vNğÙVmƭi*"hLnI"*?: A~`,O(#"ǔ+p>?w>?7>cpxxq Oo/y{?w~QCұB~cp_n2׽{7A-o\O$iP8bDz=oRRX?t{;;7tP>~W|Π><@@tb1!40b?A 1Tߝ޾}wt Kwg=4LV+pAY-Iu)?~gWwv;[FH |b"$EAX@}hC? ~H1%P߯ p1X,>+#@/kJ n3lf3c}C7)8c9 ~G 2X,S(x;z]Ām_=jl~z  Q̍l!+Dcz:@o?y0`g<ͽb~"&]_;}UWc6ʅCŕ?gx W`: 0h`hh>EVj?'~ߦ}uo ?} Kޱ8M? AΜ1 C# q~h-Eտ;ьCA?k:i]Zv}ァUq_?H=|D폽q>/H--WCS(? "j^, }6%?߉xߴ68& wؼ6 BD}Gbq>]-R.V_TƏyq1R@R6Kw4k8o(<Ț&1 /ZKIŤծr0N$ `~pC 0p0ppCpC  0hB"kvȉiՏSÁe.eA|;YX ` 0T'0AESO|>ewlT3^5Rʊ6@Q_1F3#ama-"'-btX|D(YFF/=!4w䑃Woq2 C~!b҈|Rq4F@wY〖@Չwz<s>۔}1@! HJ/gWQ. )*u`-v[569^-vUkX-l.܀:cg28Bщz9};]OɮQ|7sMѸ!IBԞ@E3Dtj/-M 99b>ߎ`DDgj7:3{zCзoЭBED Q :th)) F4ttf JZSiJQ ER O7XcT.4zdzw?֭0>i׆'NO(V6['W> jQAp #=33K-,_[?^G^[|wq})-s^~y_pob'>I~%aPZ)9L8IDsAc;l`Co÷GHܼKyx6k=x>ּѣW_U^+.Goy`S@-羲/+B2E;y˼.wqé|3ΐ2AcȎI!@sl ؠ&xHPFF.yF:.@/,/HF,a=y9]x UD^^;6𬫿*u w-`g7>"pX.RŸoK@Z::S%,y3EH@|0竜odHHk'd0{I꛻ A|.b'sϲVi|{Gپ#$FzN[Z 'FzNw)a{}w=xff}r KޯOפt$={SRBu|dDP_Bt FNR0]AH{^hʺ=MCvHP@d .o(]P:<-|ZwL}`{ |'ն2KE\oUa$ORG]}hyUtD-~&8Tu *(QUSSSW^Zάi)鏚OvF`K۹G?GuzNIFtz 7N= I H$$ ) )I UQ"2j,[2YHBvĤ@]!a,9a)!6а$$$H*6EFڐXK a$BEiU,,%B9JZHXHHK avm&XPAʹHJHHHRMm(B#iR"6RBXK a,,k!HHP9IHHI a$D66X а%,%HR I a+&EB5DXK !,-BH^s$,XK [MT!Є 6U)BLeK a&@AQi!vXK dBH"b 9P%$Y a,%!f"JHJXmai@k !Q6$.AaJ!$EXK2KrBb!'9HIRRɩ2``$$$Y a,%md .ؐERBRmP9,LХD$Q$$)HmtER$)PmXHX04d aavЂBl"LĈ!"BRMa )mC2%J)nII[K3(MBܓDHSm%"_uW%HZT$AHdAEkRd֢U$/9*Ȃ.d@. -B#,6)f98\fYԔ.RHm4ˁKdmTMIHT̴+i2G9 ! fLciRvHNs)mfXA&ڢ $.RenT\3Kdk6Z\%]DnKia2$DG9$+1Si[ &TYԒ噱vכKkd4,BhE[4ˊsNXIɒh&D 3B$A DI9IRXdRH$ Yr6ȅ)@eA)Ubu* 1QHˢ(B2"%m M$x"C,Ą(ɊK B,@KH7$AiBRD "2əqLʤ"i"L(sR3i,&[df&L@qDDYȈY6%HD\$0ZMvi2ْea6ԥfȌŅ$E96.]f刷&B!& DM,ɕ䮱.Iݴ`jDL/96$m2e2YL^mg .KIaivd$ܶmB$$&Lh#5% 9liaLL$Q#lfi+ktKig $m$ R\$iaf䗛K8TRRR@A&Be&Y&Ky&K 2!M&Y &Y̶̔IfI$YĻb jBٖK&RI e-$&Y 2K'6HIɓ%\̶RK׸DRU"b2I2܁`IfI,ڨDB@Jj",A@ j -DB6 b)JM"Dk"I sLK "@BM"&B$fK B*6 \ kv MBLhv։L*3X,4%3@E'9BIt(ҢB)i bDdʁ $W9)ePU$!Ia, DmrBB2$"$C$@Jc@!=eYȁPOOVfCE9ٝ  >+PXBI$! *-}1A??/0ֿ7>oȟO5h$tcj1ߕ?b|'o>o`8c|b퟽&))~ b<ټbՔp{:*ţ+O#?{ ۿ5R ۗAHC9}"e|^[^cn=.!#}&ߜ3q&ayx};v ç"lddZ7/>}Y\R?o%(q_|-V##/@!C-_vZ3P>'Ә$9~hCq2!DrR.D9r,K%̰e0~Xlra[3 sE!8=.o VlcW/+YA#C Y4TM4QEUUUq++ 6`IV9gd ́Ȝa,pll;.%`Ȗi?=;i?Ph `ۆl_[lg=K~^AnEKy[='2{6%eь^9寳k(O׆ ":!OORmQJa @ᩫ T|>3!FQB )i_xiF|y4{7|gةׯl)?x!>"ncLl+wuIiBC 3niC B;p A%JAO@C6oDTO# '՗h#1' -\C"oigvAzdA} 'yt'S҂ =ߧ``?v<[3Kk &ah$_?`Q!l&BUDC!a[_lA".$JefPӵ!&&Q;;_K/>ZfqÚjjjjjzT꺺>>ߞB߃߸>!s|W3OH~Ԋ{c{ѯ;/'p<ld!j(7Ar :}a1DE#~;2>wz>?????AAD((h(&(('hղ ZPY#X+ c?բCۏL>` ,}Q@AAOCv$!ru4'L@| EE i ely5j~cO"S &X)F1DŽK ïu'&NV^VZa vrdL3$"-55-ڒ~^PR ܌ E>M^` O+8_U W3tk(RRQέkGm=5P $ǧ8e5WOu]-## "I4Zk[ST$%GdvG;ØuCqp6qpn8p!ll2ܥoe]x7c`n8an8N0B ! 0råLD0 ;c ahpl Xl#qa47!449 @sFqn0sa7;mK<^KU0,QZP{IPAx콥4zy`:ԣzayz_׿{FR'v'zKOr)@={0cR@ dAN>iϿo'rv d 4M5TYTUUVJ ~??mG䯽a,m0$&N{#8d2V)PK*hqn3_۳5d:p| 2/:Zꈯ3ӷ5vd]']m.b)]"'{sJɤsadIrB6fBύR$;T`NIƂ:I8z0 p8A0AW)$&b4)FbfdJRCDNVLɝiW$''"v])"#bXp!tKC]*\nhYn9IHCu9׾ӡǮcjLaDKf*LTt_ogo MQA"*VE l bC eDۈTQcPa. .j``)EXF VζCj*e%9x)zB,A#HlRXFfffd"#C>nk"6T!XA@I Y@i5!" 9mb̪zJ HDR7FrB VEbXKKH@FԠZd![m"VP/eG, ՒP 5)on ( \(٧Ș!K95 *%-4%&(@qn`ie,rgSS7[R-I,-X// ]TKRA lAZn ,6p&F.(L݌Lp̢{`_y*1J2!|2Z\Il]?( W XD0E`"U%ʕD$(BQ,$DhTZHDZB"DDHDF 13Zia|oغ]""." ABAFE=Uqc>2b;"EΤ AGIa c%Q#'aSL? _3Ijͫac-wxaEovˊQM ( `"@RAAQĊ|7H>@MBmS%,־c]Z`op0v]4SB;uorYXMAzѣ;+Jj̶iԎaFC`(6+#`l4*6`R˺9C"qɋH\ e"b@*7Db!WiH"XD"Y`L.!j qPX"Ke܊{Pў6CGg)sv-5hg$AXG2zH9#%g:^YdI767ؼ{@`uel;bݷWR ѺCm̪Ƕs~iԚw 3n[V!S2m5P3 E V8n.-C6ޢPLDџvB{{LWWk zI r1\ ޑ= n0B)etLDةxkP12D39ٙu\©RA (4#Z,6Ŷd!cV#F}fnPx +QqnQnc˳xQIzѨ:p&Aźl\(C ϯgVgku.J.@D@ D6i~gG>s`3Ȱv =Aǰa;!a22P\+Y]z0cjZ6rՓg꺳 Dphֲy\JaN4 g y%dK[j sf\joqd3C Bsjn0r7qlUӟt}@>\I^~S [ZBrDh6M٠J[.k }nuo\7ѣ @@0GjjD̄ HJ3b{qAU3EH H"TZEhd ddDaZY$$!bD e%iDQ"(C0$KDV@R! E"K&r8L~Gfann/I"iIqNFnYY3!:\ult^/:搷[K`X.N5g'5Ȝtk-C HH" ca(KAeb\bB#^s&Ai(EASAPC%55A R٬QT0%ٶYMFإmd fݮ3x.$%L9NyhfGFPb *)KKKKKQONvA(TPj)*%BpoTS$P%\{`XV%G0(&x)RDb ^YFhٰvkܯcz=E3 6 y zzzzzzz zjjjj3yP lD԰@*z䉘` XbC=D n@Vy!ILjqKLse+W*) @ `2S4PD\E/3xٶ6׆RXLbcPa -Zb8B(wDϏ0Y#$J3}= 4@D\ ,"!3_cnbPigA OVpz*홱QSW-ɼT_OHy~Ǒov5=0QGwNRѝ "T xҡNjj:zzzV i|$+V[!gD'2E=Z axDVE-u}N.Deoa\s6&E65me_c ɾ(QT\3b/+PQ "AF"X,H@ 0 AB b H2(,Q , b H(Z:kT+MNqiB'@w]Yd?KQVPr ho['cLtDnV㲚wK0^9ەmb\{z{t "> "}yovѱ3'tGp4o'яF ٖ"]C;!,4pE>ZEȈ%\jomaD9J&.FNr"BA%0PB lAS; quƮ9Dfq h*HŦI:sաk]Q,]V\;s m2:QixK'YM3[w7x4[frzMvlv)L]q7 ؄Wx[Fg7fm@ bu+~Jٱ*iИ ^筡@$x' 9- ;䙕 ]yN7͏N8n9d" 'o03\D:u4Y!E B\ ݲ2:[monh FۖЪƻو "TU6w̃HwvZk Z(cPZ/I) `)uuvN5 w-,í(-Y}w}BuILj:zx6ּ v #֙L6YM,yFDȱDPU E*(HB` @ITK DF R\e!d* nT*BQ4aDC>\"SԒ6&dJrDzEGA$h! U%)2 څ;"u;u?`{A=BdVnõM*фJ-$6cRI5 K/֫7ϹL^ƚm+nZ/f/ًhV>RSW׶%@ nZ-}odo+2`%L:|xxBq*<=Bk8ǩBH\h eQNL ,Z ?&4"D$Ft\3 FZQٹβ/[OS=^爵2?:?JGuȇ |^X C |#иHz\#T2Z-RPQ%'@l5h@K\fв5f޼3j#U!1{^ʁk1 D4dP_R )-lBwެBH&Ng (sԚ@+!Bl\O(GNK:3 C(J:Ҽ }n2/U9elJ\B*YrOGЁfkӛpEmB|O[(aYpOmmMaT`嵘zBTāq,W7d 2eIrċ%R4,ivՃBDEtj*&.XfpQA"M݌t*Sٲ`(DG(%MjMBҁT%,ىT B*X& "Q3+PZ 7l-1Ymu^'QK!ht5@E6 XH 8 **%"D,A(V)JA/SX94K4B֤3$MGY>; GZ<&vb\Ct>$,`'5n(4ITijτdfg4=9c|@і'Va\j5YT@n}j;G: ; k $Iވ2o?TX D5@$kD@[0ha7υl+<‰T@u"4gT‰Ôg"h4aΠ&@bڊahlF4\JjT-WQp6ñˆffʝ@: tNGaņc#ѡ8F!L k4 p?9qƣ8: 2HOfB5_N Qopu鎥]aKE4U dt]}:uqun!1#i H*B(@DaH1\4P"D@QMF*:t2uIeaB\oX^ޫ\0^?},Z(g| j}dHM~ C4肹=oEVp AR(O UBK@XFPa\X!3'`*D؛:C8ŭsm#NƚM{::2mG( ) RJAAI(64bcA*uv61l7_wUٵwU)51c "KcKX (l&o"#!w4 1j\oi8 f!+Ym .bGVX gd-h h]xx}thhhT.Jt ":^m22 "K32Ð}#qY/bT6lqOmL];3Kzkd^Ll5.Z%UVL,foNZ4ͮiZmdMvˇ^VkjQ8; ooIxI[g^޽]h[9ԛ]-3ïh3nv3gYN4=8JR1Hʠ{xos.Aw>NzNT@qT;!Ȫ74huѥDqtU f/cK%:s fiڂ O$E!"^>FF$(T՘qVVVYt)Z)j< d+{O~_|KdQuUE_W>\0WTǧGpla=OZ]ýC. IiYYYYyh-&fy5)555554Єng.ؾpat臮Ce Hs k syYZZ :TZTh|%yakNKi:0ɪ9D\X@&\efw2.fZ58ev??Y= f; HXTRW劫Q܇od~1CI1aJ7=m,ْْʈhh -HPY_7>s{b"&AJTQ! 42 dp>x) %K=CA ɫd4PC넁 Icf,sX ! [sAgޱ[$14J9m m30+DBZǫlvTfK ;A$YRB-` ˀ"4X%Z6L| z@#PDSw9%nl՞IhHgԖͬ)1QUdEIejJ##@$AHDXD*B",A "֨t:"b[hȆ* c eTc VR$hA T)(5ؾB eB@>-NF2kk2[LUl%64TKi j3FmӚU= p KAR额jc+^?/Onc'> |Dg BQF$BOc?@>OdgTW*z 䡝^\ӘEOxnӐ N kY_RH e899ߔ͈a,3A r5o G됳_a fncЃeTZ,\`AY3Qr ӕBꂖ"BYg<4LÈ#, ʩeK!IgY!%KI ZYil-kI d Z Z!DFETf!mf)c٘#\/p1UT f݃\լ+-EZ ;싋}Z =_Y[סNj ROA}X iF&2fmaj0U*KϋG)C׆06=H>+Ԟjӳo^ǯ=lzDZg bq וorD*z6εQS -Vj!j EZZV//(^ gC՛ֆPP vhV`%2͆UZ% xKUx {/+@/ H"x0lDD2i"8xJ~*zvO/cT$r2BI$&k;8/K#T U" U`KEKZ}:)I5V1&5xdČa)AdQ kZA G@"PAsj Aӡ24)i@ALӓhݧݡ,؏[n}Nk5* jF*B8SAP SdBE ^섵D X*VYj 'w\2xn>~wjex;KȈ)JQbRDh"%An .gR^,LD%#ɢ&fϴsh0 Dʩ@]ڍ!_W)L\!Q1zZIs/ZZWԴ)F:*xJzS"4qTP rˈ臧|uAf.{giM LQR2/rUkZ!$-]^7hԍlK,@m-iPL$@ӧtfV5 VXӕ"%(Mdɕxݐ'L HU5#$ %KM&YRa/t%Ibsz̋{f,.vfSjܔD ʌs0T@*1DQؾU +e,--b$\-t7T#D:5^%|aN`ĀQ."\UP E;o66E&uN@!ؓjAK嘄l^9)(}ȝaF T`X37a oZa1uYZӥІt\CB&tB .&gr(6Th5p%¦S!"&%,%jq%6j*1 k{nYHA 10`)\(ղf Ft nE7ܗuf.Z)HX4 V+r@,2*V@ H]jU*iܽ붻vI1GSxt$fЈ:$K\LÁ뛚Iu^sqxYXQ\'6[st4i[9$u {Rw5\ձ` W9D+ 4:8{ͭ7iSNb?dlmkF*;y- CZcN`N|1&P i2@)T 5g1!kҎGIbٯ|3 e3tj1_D m~P&Xl w %?WXB!)7- 3SH\HQ\E(;z AOU P5@X!tG .8(oI/k6ؠ.im Ծ6zsnk˙m:;냶,it#^w'yB"1{+/x&4+qrbԄD.iS T$B@ʈDKbAeE1,D [MuC^¢_:W( IE$[LK0R v6) -@P0[Foh i]LMUmXVl6L573^@-rP ]5Jc5%TEuMW 65k Ox7b$0כ!R+^ŲHe@T% 26axY.7ga0O}$q4pz0CjqT/Q= ! w^.x82IP 'YqtnN5Ç =L;Tj;m,;;Uiٖ2p A3@Q\3Zωbl򟀭v!64eŌpM=,_UVB34ZR$.cFR PPƭ)B$jCjaI ڠUlԮÑCEljaHHD$ʥv/hϐ Ip2A v luǩs, ˆG_vioohojѣ|O6P"m>+DE*!dYmkE%[Mb:m{k@DU֡ BZmaP|ޗJ>WΕTBY{=PB}P{%e&>ɠ>AyQ2Р_PA~rΒhYQPY#xcd`"6%m%*\lC [C3@ -3ʟ@lKžZَ$BDQA$bcEBW ʫb&Cj9jԙ|61YӃ`}x!''0 Q$@@ l*IzԼi}yލNk-O[֦|l "b)M{U})Gx<=IObWmEJaWUUUUa l6;DXćXc1+*>Oڻ4>Y/FrKBJ*RJ+&If hFsjsiƱ8 DmꑴfӜ,"i͹rj2f 9DM3rB'6͓+l2ehD2*.Ԛ)8)Cd2\g9KkIzuoTӭ'1{2+h64tlmyxEK52diKIpb4Ra3/}.;bz|ixo:]]o;qIqD޺Τ#:$Y98lo-Frƴ!π=:!Ń!5 3.s+a@aH1+o D$EɈlh=&W}%Mb򹷬-huQ| a 㲘`2P A+H_ "јH*2DP7~#A#^mA^]Sb$bJD[*!,fj X$E}\{J.N,]@mN]dLL)$M$Hu"HHHAۈUmGYq.h,`ALu+ ؅1bQe,&8VS`T )rѴ;՛4mabE]rM3K'ZΪA Oz\O"º"HH>DT=XeqJt'=9 އ CT5R5Wk z`S@DU0,{>o}7LoDSYԇ3$]/kp )d z- 6bPV w+W3qOÜ:ؠ&pFl7L+!r 4FG<doI-eDRy 4Pp1$Xn Ŵd$A!{ī b(F ]U ii@LAX+^k He}l@ `/p ssf,D%:{TnЄ1\B4Y3AAN ,LqL6blk4%PA. PȱDф=bt~ՆW9E4$^ĭrhѰ_lsօֈ"7SE֘J BW,X2&Ɯ3Dp}ِC::" ,ȪE$44KB EA^g`N8L22PW5@&pѤ1"J@8ϰk[XST0ɥS ^k+0f1 F -ZH@BJBB,h[RRЀФ+ L sѥK80> l 1ߧ/О>e8$L`!WC4s"`T:{j,<>! z~~d:iΣkMOQtԑ+)2Z@! }ޝQiTq!!!3XՐɟO]]pq6 3"zgƀco03w%(n;5P 6ܫx9fk0F9?|Z9BVtަv^S-$![MYer!6L\xKŒ̒Xe$%RYfId,%K d%Pm`@@lF#QIBnPv'޽͟4=l2.]l÷} ;9k4U'_5i}w4$X@Y-`գ (ľо4Tj85ָ-4!d;0pC#.bT: 0,'*=<@{kLel4i'R RBU vDET)" {}dH_;EJ#^j̥d$EQIAJIPC !.e")`B!f [HI!$m=x u}bl#@C4ZGD(3PheI8lT EpaBH8q PZ% ,;ĮQC^*v͆U?oC ׵ tG?N_yaVy{}L>kg|5ȅf5hZXhiZbI@#xטOK[ֽ\-^ŭr\V]_H!FR1-pPO@3 6F0"XTVYI$;U"ė T p.!]]nx뇇5 d)b4$qiiSSRS/ ;g4|}+hy4n>kH@#)h|utrHT4& A<ś8"B^=gkAu{DQw$AB?|[>6^7gɈy~Tk چ Q3/'//-13/,jjVVVVZZf C;[9˵]m02ڢi+ *swv6 ^<+ :rY L"RB|\p% (MAHB Xq!@I#C3Mn@~ hrBBLlZӾ ؑ!  ( 4(/#d"b\@(I$>ßc:Nʾ% 'xա^G& 8AR4@xcPΊvRt@~*/ǚ#Q:hyxsǎ??=zo8:TB\.:k=^<[y"E$4L MNj*pzӫ-0G9b_t5Ym|:a9yyyng맞Eꡅg| BXQ Z`(>k+g>T RA~{RAp)- hܢ۽x1x8|77$[1u]8yyv5)ta Ea%" T`Ũ qj"ȥQEUUUVBU^:h:zD+Q9n\pݮ;k*n$!FBBBARreJd^v99:5æv`G7rNmؠa ѨDGЂ ޽z߭$'㠤0TI$D+nۇOOqFPqܸXPDNm[Q#t %BE\"F8B@z(W2 TJ(H(BU4a1FQR FZWG^Մ<!gXK:5s|N -2pYE!6UXP./ w!zqRn*^jkT ( azխ݋Hq>|4N eD R B4#"@ R"C H1F*^#AI UY(EB1B(BD3˜!IkN.@逭D\צ*%3! 6aUDUi!L=SE6zn,識  Prߤ/D-XAD'oORn'v/nr"z ^ppWxC'DG!Ö'<h"=$Q6KVT%rnn^:j>IȿtLG0X&0UHB )^]v+ZuyL"2eMғZrU+x9A-UT56*wZGqN)ŗ(qa]RG-BITW<燋GD99<$; 96P6sV{>,5ØMp x~>>>^NL]|z9gF?}N*I$ 2וڅq¸@>S^R%JUP22A<)cGM^Ih:DQ4Vϝ7ל%GH@9I_םQN `,0`@d)$ Qh>Q)X~󧤭"=~7ҙpuev8mM@Q+΅HDǧν{;ӨKW'{{;W]sf߸^;/5Q箉ѻΤ#BN?$U *(zbriK߭m|寓~lF &d!! ʸ4&g@:aVD9{v9|\sEuN>>>>>>>td@ (' RT !.IP$$F Cër K@ U0N ts>ÏMt:.s]m]=I$aOB!*Ս#^@UE\ EJnF ;3K9{QRupÆ'%w"͸9r[.Krv:.GvZxoֽgn_W^Î''~:Gg=|a-QHP3Wp C1$p^zׯ^FA2`@M4ҍ" dy8Q9Gw{-֣fjj0ۻnY' JVik@ F3ό &>Ɇ;6=;HO?'N~o{>|߿QIEIM4EN s ?!,SI>zׯY$f$R ^~nn~~GGF5Qrfr<^;2) 8aPC7RB)^"װ>|( n t~H i9:5sn{y(Z OĒ׍:_t5>z`}HBnP8Aj5xo^~  @*b#RITl} Cs[ʫOSz4᝙Fdx6ϟ$(,Đ`*OW@UUOTHWEssq<3fu ܉ր#\!\{jPфrp3ǃʠ UQU4LUU>cUziHBa'0:|( gϓ~U iAU^nnsf9)[=n}(X؜DD xo>|dRI5QUUL :6 <9{x'/'sf5|G^ N -j:I%UQX"@1 qED7cm$^ {[@N صTN>:5p?<ӗ?<$tBu0nub|P^&TM 'nN;Yߢ$T$gYz+($R G(Tl E*(Ā&@^ 3d %~ +L∦ cD8'GG???E %"rLJ=B)ߚlTyF߇Iݥv^^w#qnN^n{p$ֈ)z'Vu;\/^h"! HCމI qqqrr ¬L4QH]*(Q02bYjHgOfDDF䀘C'*D@ꐝJhWg Fj<ܓ9#n<̜\ 9,D峣a8nsuJ: =Q3)A81dU(0Twd3I3ttfGNYyt-tN-ؠގx/)ٞ'tqsrss=8/˕nGDSl=m*pK>u'=XCVW "Hȓ;ӿ ֈ!"&=\WD8>><y5sKx)tC 8G?GGFDAbn,cGf(-{x^%U\(S ij0 m@lǏ>zNJ=~@i"DQQz9][RDDnGAthłG' mאM4M4U=23q`M4###~4" (bm S 0&D $iiEUUUUj*UPEUbB0|3|b5_|J d0T9H& * OxQP>jG߿~4M4L"ūv FA8!2]!BBBBBBBA80~ Z% (IA|j9Qq11c 6~ߩX1` @UTz9z9'GGb Tds\`=v"Pqw89`k,!Uǿn\8@*ND=E (S $(eUTT#h.s`ՃGbzׯRIE#G UX " AV4thܣ Ǐ4ԎV9#Ԃ$kU3EAj{.ء Ry E>(?ϟ>Q5 jMS2i(j7fV)B&$a֔&!29q0` 0`(6N=4QbJx-u"&/~YPSQT @9^\(\7x<|7߿j)#T_BJ!i|A0#"H2x^{CH$NI*J& s\.}->Y$ڒ0˴mDNsL}'uXsB:UUVĴkx-49JDiaKdË#qn|99,FB]F093rrs<"B  jD*-bCĊQ!R = Mɢ߿~䣒I(*5+pR9E?9DaCBR);6  ʿ~ F M?2IMN"d胻79RnsqҒwZ9@H|a xǏ<\ >0G ~W`(I( ` w)J9yx^.]>1kٷF\\O߿~ H F$SR$J&)⠶rkcc׿|ŃcJ$@@z_>|F AMTDUU`*FdDsD$V W{1i[}@~ԀRHZBi*(V LiD[Ȥ/"c$N @Q&)7J M5UUh9!9rOfoz7a|ʵLHAR 0`QTh*eBOR.21)  0TQ8 ߿~W(IzI%n^`|ɿNt` i*pQEpc @ )3 ċw? ǵowa3l@xxxxxxxs^Z}_sGhF=4&5Nl(sV "1T|P ő\sDNYJ:!\.|i6yulVbx888<\ppr7&EQltl{sttrtslwspU8䚧ionZ*8UxYx1nZ|o߿~ IQ$MHU"A'm׹|pL ! @URU'pTD UT#p܄M%!yx 1IDHcc_ @N Q ?QEQ5UI``'S;1Q,nl`Ò̂VUYUe*#By)))))))''-))+--Fw$S  metagenomeSeq/data/mouseData.rda0000644000175400017540000060065013175714310017726 0ustar00biocbuildbiocbuild7zXZi"6!Xt])TW"nRʟѫ3^9{/r8AAYBtYBLfpI @(+ֻ< ϥح1R`Ќ蠿 OwZ0VsZw}̥ZKLY.^!HKliIq:_ d#6H} ># ~/,hXC<ky mk`L*kᣘ%|$ g@5?];0]L62Q1x=| NuDkhH*vۺ+MSEX(!iw@3o#J6-T[Šzv9|cz~nפ}*D'<|šHGk޼"dZbG&(e .٨.PpKd[^mnukt;t"6%~sICc ԥ.T W!> Ο}h r.u.Fs\Dؚ߷ۓ7/oK!"GIC XךU{% c\Rו2驹XɱI]g;[+mwidn=wmoוW޷)+r:ƨ XZryWeƽ|enbBu-npB]bJ"oR?G:ST!`A6jP‭2Eţ(m-Bh=5Fq-Yd&0F/V%y`?㫡oc mXgH/$.)c?8EԚvBݭ"LoL qO[bBn] -'QIT7X$GJͫ/>{d H#k1wuAI_q٪Tݷ[nK te̢ɾ%ײaK^3 P#͇ȐG5Y5ߎ~L?083qG/0uzvRW*kz/y(=4s-caU AOrdǬ1Uf;ꈻf/BͲ!,3E ϨZvUJvwaMuWQ4VJk'[TH%ͫ酷Ƙg<KTzt(!m|VL*.d9 u0d*h$ i"D_I;8h^ٗ-X=:D ?L~B յT;+"զ; 'i)Z ~)onUiL(/[n0ʋetˊГa'?.+M\ Hl,lǎ^شM-j`#h ,77qq'pS^<*|e$$:ʣ^eN|q7wh7 p л?7a}P7 ïJnB /G%sp| _q\.`=#7{o7 ySAH}W'2CϏF BmSx”PfX i,Ȯc+E!>lx/0Y!\{STQ (O?6w~v c oB+B|4@u BbJsUWҐ5c>DXV)K1:%uy|ERYl!P8ӆG:Яij`)$;uV!Md2by&.Ĩk8 s;h:cW4|LJ Ramξh[N=.̡3D"R`ٓx  ft2RaF!'IQ׍vCHu:jMO(a Ccp:{;ii Slsg-Һ}D[R/sdTM}BZ::'-p\A97a*t2.qSo_NkT5٬I&B.R:;!\vc&"ut+Cn0bmd¼@2혹Njx+SswYaoΊ"0 ( C/g'8F= |DYeL`O(o0ѓDmxZ21-xjhcn/M + fṟ`mFj6,\~kyRÁMzΠ3ѫ|jWK+8m=m"5tYޑ(K7Aޓ9Z\|rIhuQF܉ *P> agN(S9lrv0Ei.]M<"lcn Nu5<(K/oS :Ӕ\>"l2m3 ӰaA,ٖIbyҨQʕYJ'MEлyo .dl>+p׵61ӹ M$$! L8ۻv/y 1%=L-n3Ƌ.>058 ?4tDW\Snn gkWWsyLTI LumF x@ =>"1_LBlu/eV~FM% ~.?~i Fv.߮ȅ) f5kĎ8Q@:ܡnLkDׯ1|Ը=~B/G~5;l2~\IFMH鷎NBv|W9swi8QsĿQ LDX~,[ĬlT835aBE\k7]侸& oqFU.'/͑D[wo'Nyei<͜'Ymľ>OA pͬFhfz`\m8Djy/H*,or^'OJI[ ,:;EWVRpZfbyNhqxKԳ0;Dsl+hKeN=a:_ ++KC(9KFOB9`G05t^2O? `7I'feO >yunnb G!_B fqsC$d{.KitRDQxv:'b]҇U*7Zڊ(o:QrYB w+'>24[>/'> Q yXw_ɾq MP/b8o]c_Iqͱ|A u(cMWڟo:Gϵ”3\.'̇A96Eں(uu=5ANYR8YE!lu&WT &*zI]vQ.[ M'rJ*ۭ+HX) ֥0A-:V{'+fٻ `vUw^E}h%QIڢzdkGÂ.5d6-w9hlxݙ_뎌T{42nݝRD /q.~ nPѱJqAоj7^V5E~ֽc 2n^TӆvjO>&᷁G3X:uT EC~RU,]7R.RA ް3>!͎EJA]I/DbueKWaD7㏠AO*-D>͋*b+y#NEh/@,Íc J|JPw]E&BA/zf ApO6=5%ٻH\Y(o\3pƷuPCH/ ׻.mdٟD]j˧Hؕm_.cz ?C>xJn&R8mjrQPw06ȑD&bgvKq! ->"t_>"|,vT9#BgQ d nl@`R%h qk6LJtS4vnEǵa/5ɚI 'V.$$W -^|Vދ-vw;BL`0qB!˂D54ݏ]܆U=`Ke"Xu@9^oȤINT11̤ӪpI,'oBjtAXOhbSmhS2zj$y+d4=+x$c|*On1fXUMco-yd-m]g,Dd'Ia/Z |YGgzÕ3>? ρK=p̾ZuÈ')IiZZ)}3ckGN)AlO+C[26q.,j6k>8LIm[MOِ^R>C<+"2wm!DATv뒇!$0BPPh^SZ$?a ZH>D?qIª`M'1n%#ӯu(ڏtNa՟Dž"$Vv,LԲJLSPihŝHFW;D.' OB"h>g(;Qiw5Bk`B5jjYcG\u9G~]MUdo/ko񼰴C?GxYD鹷rlN:/ڟx9Lq[!5N4p(yqA6C7tk_7(X5\_0@Lt[[gC>Њ_(1+$SE(vce{lM2 'lfwf%U B)]FN:"oysӿ?FdՅ/]HF cW|+ MsoKpL0ͼPF'NI q&ݕ""P-ݝ@IP'y~^3([2fC HEC_whs,}8_PJsM56;yTP̙h%4ޒ'z`MC?N2N/lg x鹚h@';tey{f+}Ǡ6N/H\پw_^GG"":)B{0 p:zoD75bo>O$Mas1 ZKNr^jOJ_}{o,AFܧ?ƴo Bpz͐) 5xw9?bm8G dҐj׽TNTdNO^-Aqy Le_\|e&MVr L@ 1(ngV ?l=A' >&˟V JT"_=SZQ{` LzBMRP KP[+ŝ{WBh(/8-Og`߈"6 ^ߜGi^#Q=RaTyfj7fA6@ѝv9]ewy"D)9h7ˆ"aP<rnQSV#m]y35F{I!wgйȵ3A0&y fDZ|P?3F|+Z'+> ȧ>sCpe3 rQك_O1psu1DGEy!ⰄqWW\.zi-z5u@ucªZide݁QE`܋(CmX<*Ho%XE6toby٦I9CRN;bDBK!{] U9^iBME, 8M%E?nWbu=qaM=f;2+>}}Ѯs['dFkDbCO[3y`+=v ܝvo%iIqV`[W VŰ5\[;{"! +6 NIަJ9O# jP>redWBeѹ{41.C} ; lb"aZvC(]E ^6\`o/ʟ|殣B+m䰢rx#ݢ$C8Hcg)sz2Ҽ+Y"F#,W,S'QP5ו掜+RF6FO yG4JHdx`65BdEF@ֹ@:l"T]&iLa6`SYzCƫ>Dw0V>/AZsgmL'DwjWA;k|X1<}MIӧ9v`ܣt* QQNa҈ԫb,KOf 1gDl ȏ\MZX56O39o淤lk=̉WvZ^qWlLF} \ӶN8 `IկNW=ݤv*艶\bY͂lltr?B-+â M =%J4f/qAuS5T%PO4*ɩpS{L h] 7#@ASMjrh߁7x{ nwPD;QAh>^L.mW1nMVP^+NxsUMV| FUUpux$;0 ۽ ț ww~ZusqajU-bμyg0w)j!cdgGE1(vkWFb KV&I .Yb=hyQp-q)hf9uW+Kk,#G&ckp3ez/] 8uyȆȉJ{2FD+dP$3!i6V&T;NbsЦy~X ޭup%!f\$OT[(B!9v;QCJ OpSu]Q -.$YK ǒ;},G?PqGn[RE8RfUPd*eN)þ'r\/_0 S>an96ga8489Ӂ^F^^ iM)/)7cZ͍tWn@~ Ln6}v(6Lt.SS|v'б*2O]:` ny5mE6 71/6qZJ[0>t$p Sw1ڰƗ~09vVfMн$4P#6; Xᄐ\1J8?'e񚓄Ȩ4Թa< zUߢW$.$Arox`LpufvC}څHUsX3f̎1{D>GLnJ6}߬]aX)z|<ĭ݃J噘I4p9:*CxekY<(og{#ƒcqֳA^ս QR"Z~(Ux,QNⅨݏ+dUV P5r  f0w>;jWV\c>1>K-*&U=by"Ӭ-HTᨥv kqy :{#FY{7FL&^|or%4ܶRTm@<x@2&<@V{ g@kՐLN6⹏:]W3u?8jO@WC0-QO^SO-/\5TolFqǩKA k iI+Y.rz|`qo,1b}G'R}9-*ⴜݤI 8b*q@1c;US*Yio4ȻR#Y)wWr|w #@?ذz^Xcw{ %®\&Nh6wLmׁ7;XwL#ZofgKR&. Ŵ4SL@G+7 J`/#苝kapDQ+P3K;#"}Ay"j$vjߜr DZJ#yU]fUDyPr)QVY,~ YhL m8NSMK< {wonQGxzz}i-/ n lV>tuM1uDPȂK^7P >/٬"@;;)ɝ4C WI2'Gކ+vX)[w LQ6$湘RkyqñBO^ylѻdO ۇ0#=*42<ifv>KDƳ$fAin/5 i/Uk 4χdҳ-actWۛFk/Oz.c؉D7RVd8^yQda ދt;׸v'ELyd$p̘B wkw Κ7f<:~^n񖃆>JƞQa^w Sye@T:N`?T@J焀1(qeq B616^?&H` xPua.rX}5¢DNcXo%}ry5?= Wh[r^x8&iYqԭId2o^$Zp}V9vxLX It)G wyRؗ\7 {E PWdI(tx+=6)K1 +XQ |IΦTѶtNXBR}1v\Bf1y8W #mlv\+\oE>!<|Gj0kl< FfoWm wںZP6Ӂ"On),8S{e?kF$,>tD?Oa/Z f& dV!~&ߺBB* eGb<7Q&gJxRJS1PhyIJP|)ncxQ[Օ@܋Ҹ XϦ+t #3zEZߢKas.6NPĀMً:4^B$];v)EloR؅#^DJDU)ClW [a Kj3yǹsf+:-3clс( HsG~|+8E y+q%˅nQdgF \ Le c3̈wae /K-^sl @vٽ1@ gۗ=B=A{]8|+,c<ڿ;:-yqQRdJ`^6vdkQK8s;dD.\)x ~R"gswH<(#~uo倏+^18;ޓȶ#)Y#zZҍ4Ltq }SU"+x{hެs\6NdG0neh"ǏY2(YІ8R{c Obc1dzΐs7Axn÷'ڟ)BЎ~ (i]aWR5wҐ\cl2T?L$=a9d{6\f]{f4$=ebt"%ʅjn^4 ez&E`K-Hed '62<Wbj OVj^#p wvGM+fs{vIG%*/p'%s)Kp` ]0v\7jIxA&+j+{*uhjw$xZۭbkcbg֍Iʲya52cj38@C8}Z%n9.3FM|SX.}hH}8\N/VY_|WM6vO2!TɃٴIBK"xT!]+F^Q})s fĺ-FQM_`Yh]_CtY-sQzTHDEA<曷Yo +eډ" $ s˱ B$ȒtCxV)O93y+1|mZ]bpJX} :i8,/{>cE#?S>4bG?tI|U7H)8o4\qfV',^)/%V$;R}hV6pP8 QETاnoȼ#/Si@01o9 Hb;*FaEv3jh\l1a^D"r"t"@&A71[RAA4뢭Dn vPOE]/g,N$ + MY$VeIF|܊?Y? OZf(|>=:/Y-tuf!+#]{?R \(ZBfř0uuHqϤ^@cz2ݐ-wFq|hנ"Ð;8Ώ_xzȲbFm5S#œZϭ:S]8 AFPOi0>0v?p'wcUM$ɿ>|kkճLsj9t<02h&+)DB&b6~kcK}NvI(L"2L<R+"m7X 5=rWb+>AA * NlR^\c4쵳%2ϸ]l3h SZcHrӝl-1"'qQJؿg҄ũ|.AF^6,fSǒɆ>>KӢd}әǕ?NgDkVw0RHR4{(&ßd$I`v:O[Cg=Uww&q~C56@y;~سPl$ȅrV:Yz~i5($`_ymM/XOvcF[eK^%0:^p_UyޔX+ KU_(XQw2(]s(/Kc1ges{Vb.2 Ɲ]&CXlןss@tr.ԼoI1*&Ka!Eg&+2H lxE@SLq:Z!Ā0as%2۝/n0oMq0147W'RG& +\s`i*TWt[VQ}!J"BBhN/ u 5q:7B 3ni*4$+}:l$7l28-| >Yr:SXU!u엚TrlNm7/ 9b6vCɅAE B@ur4[3 <ґ<47{sZ@T͕=6  8,4X~wCn`$*bT`iM$F 6 4jw"tG_όj%e r?"ϛ$R$?|:!'Y|WiiA aIťnB7(O; mnii^wTrR"@K 61+z w]eTNg_xnM@VIėaIz A0}mܗ`{<7bU<-Zfx)\_PVkR W{}hY KWl'gc3\| 5V4+wmj" QNfipYH]}q6qV7\;bųNw1[syelҧ'`C(1gÐŷxU,^g0SݵAXΈlWBf)NF ;cM)d8!TS7+u ' !J?ȃ"zM6ORA=7;]mmmypR;sL@/bR6ruHL:"){V o(vJe:VJ4>HD7$is|lǦt "ZFn6S ~{~K(kWONwJTEkn@Rآu`jASr1rm_vzg8+d3dq#gkm ߯ʍ3JظT/krdH }.ކ7fiw^Kve[F2MG+;t4+.Ǎ/zd1*F&3 ~ ifvt[v}x o! 7C-VIbwn![뽯ZUXԎ4|NPXY?lf$6 .q-(9lkW3 i/ m4זm# Чy vEA0h*[R.HxUp(T'\g/)-HMۼ!ե Of 6D ( 6xl G"Κ] }*c3XJO WNU7-Enp ZT=;zK=҃gYCXL x=QaV-eT dߥ1Kp:}4X#Yfâ7q=ne~2bF#i{{geKԺg-V,E[Y?4J:Xj&\slom!S5Pu*P{/|R=E  پZ`x,(Ch%>N>%zܢ,;f%'X+AsFl[\?[{_ aD8<|_ LB V5 WUfbZR ]\RW XC*옔y4Wwv}8QqN!OlX\<${ygI?kZ W%>>Qa>sA)%ڄY{?9_7]h!)wC)H,5"{?>c2($d*̒]gз\0hMBKӌ1 d֧t]'4MX)q^yFg%Rm$1o9 $۫K [޴ocOFsv82zݡbtAn&)"|*ᩪ&`MR/)팬3Y4>3m9-.^ y=_1v:vXKViBp鉨CEŮSF}FL[|iC$3u i520h.ϓRHGM>$#VBI*$U:}OetH"^>W-9hy &_zzD2Az A9{H\#/x e&ZPf}x#mY3Z</\'Z[8^Gu < U֍}gl"{6VEͅزC_jS.)TxD:Ê/:Xyvӟr`avuL_Kp/%IE }_lͼMwTC## AJUXk;zS)W70PCg( [H6Mex(vr6ŀܓXp1Y>K|~"_ @=[^@N"iƩFf7;k 4%f8 ÚW XŽMWaX}Ӯ!]&ȼPQ Nw"Kpެ JR&X8.V#sKSQ!SOuw8yp0h1nBhm5<7; x!N@A9fA{o2으T#`P֭{tՆ\}"dA\r~U}?d;"5|sy&r oQxW)T{QhvhHp If˨˺χ/*R;RNUr^'KTZ[sK4; [ylkpUZi("twŶ־XE W-ذ\ݻrרuw2T-pA9zr`em'A HdΡȈB u(^0-\cb@OI8ȏ^d䍽e4?@HmU{ugfji-U[p֙+LZ)5H>_v5ѦB V@QyIt.y ;Z֧#hJOIgYrk~snXj+e`mH].8.o38`}ι!;v뷕8ŀTR$Ip<\VOe )jM VW8.cXvhb=4*!hiF}{2~(maKӘZ*ڌ%m+3p8GOH>קɨ"gNF$*BjQ1D{RtUϨ֢̒*lvIւt۩]cK=ׂ傝K=nz3eKh\;#0F[]$V!>v= Du310/4ڨf3̜-ztv%LX?(I%ODV~0W@z2ל{a,޴ T ]5sT58:eGH<T yKjXov\A5#,[ZxQ0O~brip?=_]JA= jk{[Y^g[2 kN]c;Q -cXol2O\B{o]oMK$t]o!up6hK"6=&jFlFPFL[N1kA[\L{3lՉI~Ѷɚ;1;G1 ] kzy_0l4AFHhv өֱ|V~p]؛D}K}U;bS ̛.SۯmiN̡Sf!cnPw \L†5)ɂUq4Iq sK|zY 0JF m=jJ7UjYmT_oP6$W5'n:’P,ELuigt[42)rVr''/S.h̏RifgF< lQV1c/^6eW^1̴"bEBGhkaz0Wa[~ܢ9-o2ol;N\ZoNw,N%N?-TT5qIy% I~aN#`QS,)+UN)Ƞ0=K >[4Ms? k=5%bulbA/=ܦbwFJ/niy`]5ޟn4b vX]iUIhuqm_ /mnmɷW$rf=bF<~}!_jBrQN G1ž>d>N{ox 19tR-m2cL:y#ގz:jufP)[ H%P!rz~QDiܞhw$(C șS5^k^_Bppf!_5}Cjm\҂\"_r#[W8$,l@Qq=TS#d,R3p#M.B " 2tQjIEO0:{`be%j㪄ni9'M~o]g}L=ϐ+`TR"UtEpwh")/c3JiJxw+J ZIBMfiivDtL˲v}"%UZKEgH #̍ww,1gf6[S5aSz-Ӯ/ #ٚc7KX ,XmSI! Rd,Ch\,9CxmBJwS8n pyS@3ٿΊ藌`BrDv8}:{Ӵ gF"N5+bZP~A։hDoJ+R{èqe(W3򰯻 rnNa! 9e(l'87~`K<$H/ʒ'q#)ϲc > j/7E/ o4%܇`%2&zcle~a6DZ'E2]e;+;ИQZ.) HGqNpe^i&OcCzțOc~{ҙsnz{. Eӆul| -ԸV4B80g5Ԏ,/,JVBm{ҙԀҤӨ-9&y ӓlGWƱY.nv?噙t1Rn:#hηMMשe1ylş=HL R Ư[1n)nf2waxkIӣ P'&p\ !QC\p<^9^+$x?Ĥ 片N>qz 3JHi}iOA/~H}j7jE s׍K3H=.ҫOM>L¬v]ѯSYo'!K*xGqNBU=6,6xfW^.5&^f0Dx`EζnL7p{2O?wOn}$F ᥅f3ɝ9;bMbny4~(2P8:mX .Mp-v9g32BT8%l2#2NSҕ\{m1r;^):xGfCr_J0$Pt %% -DVWj:h0,49 @'=G5RQc\Y;T$W^G9uTk;X{j?F*PT; Cd73z7AN9g#K3] I֋||aHSQRQiW#Qn(< iasrq&l4Iez3 G# $2-_n ܭ2[W0yi?a,Mxk3pձc KfBgDEb-@e[I !Ao7/ؽQCBI0Q!H_ c#rSWX>1bП8k:b]GbwP e5ڧjn݁WuaԌ:3TR@ ؏"޲o'l0^ N+=|j&_d8V]{C;QV6_pFbXٱ@7xP\Ee qp7*I|!:A#3xuhrX\YmXaE33=:ha9ꐉ0Kŵ]G)>6-I.(~V:Eh/.8<( &gBVJ^ΊtFG^|Fo n=O…%|_ ;2N)G+:h$ (w,)8"H:hP/KXbg&@DʢACOpG >|r ~To.P[fZ~]KFLy -o5dme ~+3S|rOH݌hЄq+8Z/RDԧ? 7aJk=SOS>H\rp*Eh*i >J=~KʸkT4؏&㹠ꖬN@hqeU+U?&٥ 樤1'G!_eUDƙg1 Q ja3ޒ1ƯA9 ^ /'R<>\LeƦ(ย褈gI!~'KK޽6H M=|r&ThM %ϪFTh_W\Shp#32Du X ºEX-Y4sZo/_a鋶 UXS`BG|&RdT#8];oC¸SG۪5.qK[U 7wXbbÝ$7Z>s.RTE7yjF6"t0pFf$a+@P_Kmm+|id/덮Mlg *.a yZT%}1rij@]_cܐ 9P,=[͖wh:x2}D2$ :5l G!QmKGe9PiVtD [S7JQoD^LI0 ߊyڔ^LI<"˿kǼo2GDK|Ѯ?ۊWa+`sµlPiyxE0PD"['hTJ%ߍUmH~O2›KSnqo, u<S &k|>:} j|v:g"~X,ՅMQVJ;vG6+w]5˘wYmmpsO要ߘu%KٲM'm]@J/l"3Uh|G|5w$-cR*0 fHRO2~-(T:a[N'd#& CHAm EkM250Z"]cQLyWL`v 3d&@3w'sц_P$X?6@ʓ:?(yA18[̾5#ךp_{Iyt҆i+Ч񯻎{am7q%N:p&cuK}{{Ā wg[؟Lao ~och~R/*0]!?QhzJД22V.żHt(<|iJJL ; _dPAh~q >ޖ]{Zu+P qFg,WzU.1cM,z[o:ƶRJՅou7>9w=iڞTn] (+iն~4苌ַ@Y~_2p!c{ixW1҈t#^0 #BGTa&1a( tCZY } z`Dk.w7T R]1Tv+%*,abe E+)Z)"UP/0ݥ"ui)m~l{Eؠ;ux(T4B$F&pE5|+d3mHpwG(;4"a!l, dZW ȯ1=t)CyLُPEW}[i~WF,ɓ6XFihf(l䣅T o;db 1\'U.%M'6G/KG@e0#rx~k1vJOC/A+ Ɔ&5dLeUEUfJQҼI ^(0#FtŴSĨQU)9o3aD!.fej`^ML扐TmoLqk/[HHDlS-Q&a g`v'}\ZI)R@ǩgG$9vEp(M]_#7sߗxK[t(9g:YSn='jyoh.8 3@a:M)9iNI^..\$ACV-BpKodb?@*T@wr\99+TX4 SvueruJW7U4"4?G½I v-qQ! k }h% 08EsT]K6 TGn8;q%1!Fc&[i|gHh)Irms>R7>?] haQI3 m1Fsbm( 5. 8mbIuF(R/\alO2e/U`E;;]k87yml R=$׃̲e=+BAur=g)9˶:IP#$mM{5. F(nA}6R 1`ⲱؠ5nHnjGx?VVaɚ @m xU+fVMx*<.mlSjVypX\K4%Q^տ KU<&W0DYQ@%LB܄V?#T#DRy-sl mҩuq@*jL  us8@WRi<GE{U*>UN<Đ#ϱߟw]A̕ӷ0f?t 6K%RҴ VLƨk7a2J ~nhEV3'ov P,HVA>M˂늰Vn aO~pqԏ_Z 3NDD%.W(9mi Oc*uC1WLA/ ۳/rUC^]aqVo 4z̞@{_2:|~o9\au Y+ٹ(yw [ jk3!:"& DaO:<%:H e1&udRI=-e?M}H-vo eC.!ĵcs1'xF#`r|*!mju@:Œch5J{(N^Oi_݋v:[D.xG.qx1_ vtuiO 3KD[>Bod )-a`=СXVE=]qf!աa|]'*#+`)E3Ci^sUŘ^HА]䊄NpچpF"FA7\! [D4x e !CYX"!,zGMzUWAcC|h$aKqo؃p˝<~``DWҹDM gZ#5/ n 9iuj>x%l N{7r'89?a/Gz+N`Tkeje:}=de<(?X 괍vt{Uܒ&>+jMv>B(ŇSxզESq>F)Jˀ?D{1Hi5HZUij@[!N>)5U4vD gP0v oվb>UgT㻖!J|cL?-)SWtZ{J~ma]lYIxN->S);ACE9·ȁWw#kMSSĵWx'D~(̹ꗻ^L4(OI 0oEoQSEe1lz> bZ"z?7?KVWIߡ'1 AJOA,mQ2vIzE`tR")/4+ X;T9x@E &\LmhyY3-蚴fΌKazDvQr|੊" "`I"~q5~R%Sy=h\ 2.F+k'.f|vp{:F"FwǍT=1lUSpy~R|m^ΗA8T[ݵF a! Y(΁%uy;kQvDL2h +^6AqԢV|o1Q;7ǖpJGb|[Gq#uG|TE /Rq%n@{$99i dA-mup2 bϓP.(gT;VDs~NYo0tۨjPNHA K; JFu6U&9PV deH~” y`JX2Bp5Sы#GhX"!^Wa˲:G"Tt/]V$$˷+z6Ι?vϖJ: S-l|B[M4q7p_f`U"xfvttzʶFbْuQL8M[dCN,cҧ]Rq8\x=>KD`dɬ1&@}YYM?Jϳt3 KSreWBzI;#@Ϟ6\Hd5N roFJLX:ޛh}!e z<=7cbnq5U35cf^oT?)Km{8S5 @hY ytkeDܛIz#t,:z|Y*:+3υ@f;_*;pӃ?U:o{j{bwWgeMdFP= X\[^}OƔ7 lBCSIj?,,Y90g5C'jd2Ձ`jigMg@-rZ_^cMD 2Ke\ jID_tl$Bڧ#M|.dYco䜃jhR@_}&!Nb4C-xh@w&3\d*$^L.HΙ\`>+~Nyg'^n0Ԉ÷2SM2ˉBBLlTvr=;6fo[@Bc2x~2tK˪o5)mEjv+&j9myh o=oeWZْr?,p4|0k8{и*?̭Nw1AB]rX~;bc l0N1kKI$jGn/tS'HP{bg= \vy7|F8K]BtG1R4W5~!ݬ| ߩYBHsns9nYgl;:e/p$x\R*E˔TCXc"h:}UM] rfc 6 ;?%ǠP`M]7;i~^DIg"֤D9y|N퓔TJ3X QhbkW$OܛLJ 2_Ms@ \^# ޔ1>@+gqT$nB̆"Kn7[5ìۍcy5f; J$h_`jߣ/FG3$Kjr XLeG(h3&sx>P]#FAc~"uP 2*V>ZiV 1z/&tgJ֕P1؀=Bdڍ  cܨ%M|x"idy*Rp5] Hm{^kgUB*@ HKTN|47ScknjA;ڷ$E'#lHAgOԔQEP=qA|S 1m,U ` ;j/".kU.Cr|aL]ҠnRa3ΨXUޞ#SsВ ԗ\utmHzH1< _U-Ų `.K:MOtۋl:#:FΜi?v=$OvPFY&#h8(iE &z|T|hv G>ByfD@o a^/{v L; IP6U61ͿM_J~wyhKPw4}bn@#/"@]cQVrٌ࣯qxʰY6oh2:@Q.pq%!J)! qqH 7`4d[*É>: m05[]1ч<%{ĴoƂ"~jn*|e!vl Fg\O ES`WOZXvqI0sGAz#7nw"Fje@Dž*)G7t%Z7UMjS-+'ʳ`йSߦs3zivb֨erMD\CIVGxd!vmoɤXstoblyԫK(5Gk?<` B>8uL?!mDTaMp\BvWNa!rG*CU\^<.wAŨп̝{V(q}zŵPH/b!,e |(u F\G7'N :0}5xZ]-.NL2Ԝ }w0OH;Zinwz&Sd]%|!Yacsaxdע-k0CɴYաfd)ȧSnPSdsf}C@U =WiKҘ7sƟ%A:_@AiJ'mߒT"_xnJEpdި#"I3WyPi*!u3߄n4q3Ԇ';b04If#`ka[|5Eƀ\op1;mPI ]yH? A5÷2XۻsTi!CA6NjVp#Td5 #oLo0v׈ລS>VNA|そY35;)JVl tL:UM2jr K (|1R>&FÈRů2Xؾ(ߐz6YڸXKYөNAWW<1¯k/ FE5WNG 1^⨶xN*d}N _C?0 ?meJRAf?&Tv6|q.4ep\Wg.ВF`M8V!p/ϫEImVMBCc먱I=xDة[Lp$# s6o#4Z=E@FRg҃8,9nPDOWHַ%wxcB!]EF% yɰs_]+a. iq=e[p}uV=KYZ4]L񕴟o^p2"Vc }%}Jf | "m1d^wv0vW]  p;=X-}04}K̦Ac>eр\ di<*̇ۗ w27*j^6Wؙ#ʀC` vU4kA^At*mpB̕*ҭ>uS8=Gxȓ2OAVm]`U2fU{.#GW5!M+in@ Ch^ACXUwM8N >U_R].͊ʖ10;vjqQQ;%RLfGy{_םb<>&nR-(?F}TήE**7mo&~;B.h/ΩH2D띁>`}K퇪@ #kx4f=^k $SZ*!8@3NH\HFpO PCE-]pѴrn 2{$jOzL!`g,1zMᑪ1F晔g@K<(wHĥz!IO賶H[*6.[eDm~nQnQ{^ =(hiEq@iuY6aMp_N?X3KRO 2h$M̓N\|k?餴Z"ԘuW9(՘ݬ)G25e548Bܑp+ҺNktZò!8 >ӟ+9,:lz"An4yZڑkTہk*8cM:-"͚/n>DvۿlŸkdWl”ĭx.#( ۞V:XD+wMzbvv{vfFԷgG=K.Uű~{5t&iFn(gm)AWTh4DVCfWJZ^oC&W!0e䬶ZE)DƳ}^mH?_8' &W W:En4^[. ȿ ޕvhٰb5Lyd6fn;c'Ŀbr),hm Ǚ Wx};Fgz8g|;xKEߊU0pɤ{ nImGH8c~$qv!bc5L_]!cN>c쬹*BXCvXDaH PEHfGR'P1䔋$Z}F>Xܓe'a錐5gD1ѨtNwD$W=$.$ );S/ v_K?I, @]G(L$d¬RndHIGme^IPkCwJlp{$S!pxbU,/Oω\(sR7:TIu3|*I7  C?#ڏt) |1m^+ r=59cT@:Zda/6pƎS|r-7vF{[Jy3 -t~B>]aUIof!Mس. ZLIfk&Dk|w#cv{@nUf'n`93 "CtɐZ[rͦ!/[GH_W̏+];^vmToWT)P \K.˛aȍ]Xlo4W(/Ϧ9.P뤷#I яH7!-B tܩMǭZaJc 7~X/>ި?r7Rt +Cd±ւ}1U0PZF<2#ωVjZ~Ș2Ϡ,sGe$Gwޱ== rH/pVm`v!0 $A!-n\MmF"dYU<aP.Dҧ@kF$1 ~/! I3 CS1mQ:0ۧY!CseDtK|PqEA70Pj/pT\ض]` 1N]H_H`Co2?{|ͳ7O;owq8^N8w/\ߤnN9_h51- QHHK5>wCADbtCI+DޔRKxf+Q:y@r+X8͔N#F?L#ֲzEZM(}S5 Bjũo$Wfat-(}Rslu&^8}`7sg=Epsel&n!DͦJl;5 O^ k}-}֢ȊKyi(ݣ*60PfbD/9a!'g!(L\M`V*q$ADz>H[UBbP_Aj{kVApp>dn+nF{}$Z+v چ̂v̲뚸?vdU-teu,y%Bے(8TYU5b !Ga/y2zNIB-FJGbB4%ceA*HSQn.~˙[vZ$uޙ {?ҠO|#(RR3}ь 8yЅب\TH4]4_~E/(oėqMǞ>I}[bǟ5mRŸ ]`w@ VOn%jq4N  QY}>%w-|GrI8+vz6it%7UKB E_dFdӎT9>RDJ8Et82Siʘp~%T]tw7ΒK}ÙSe&HX9Kkpϝb1iǥX'^".@?Q9o |CLMxR禊ډ<ޡR 4r*>"/ttjrh0[xͮi8k5۽Cv0OPW9-oõT f;R):iv G5ѫyWzrSD,pZzcy*IM@G4+͵8ѹaֽJJN y|m=:o݀,>㯥w5D[Ê$.j2&ܞP4-ݕ}l8MHno]:u;q1Â)9kxS!M tA)'CX:/3^,W3_Һ^w(YVk ⊓)p2 j1YpX;<. YY1&Bdh.8i.|.~V@z ]I.0J) -ߤXv iQ[J"M~Rp@ % PX v,jSt)>5{nD:4L(̶} +kQ YD 57⸗䊳zxJDI-cؠC yoEO%yo4ɂU6}&6(*1&4!c#y[q,N+UXF#Rc-F;<_58 l|iD M1-Yi쉿)n7đň9'v?pVJ-l\ND!:OPuzubrc[ѡI^aP$2>ϓ71Ej9=]#nG΂,[,WI?lTNlkmlr S DZ%d'r2f\KD;BxNWS:@&`:K&IT-1\dtmA7W37^8 GE| >˜LPU$ʓ6ZXFtD6`PIjoPnLK7نvBRp$g(_:.}jRhQua.C-d]0 C-AK BD) dTzǖaXQBks%juCܜK"+rQV>P( Z-ʁuAaJM6xA/v$ rmV9ҸmxcS1d[Ji?T=,ENДd5K2M "ÆNPS*H a6%סrԿWu/ބ;cD &0hHuv3q׿|WYp3S:xU=aE괋9;We*[62߆_v9`O0X#&4:S mnp Nd eWuK]ZZߦ3ҫPw\IY1b';$fKnK݄@LN֊-&ʕ5 m45h;?)N7)4csmGl-ȓ8N Fʗr ]`_fZ" yƒkM1z 1թq"gQ?4#9cQ]pWYq wSki|DeaQ'Wފ.]`^am>L?M[ۜb3{m#V*lq8e8;P\\-}t{byYlBbrW5Etom8(Ei{)3þds[ セB#9P+~.Gj&Y1ʫ NE$vWB'az5}UHxGgK2`2K PE$:br?w'ŋ @n&#} 0Dfh¨xd=(?ن'69#ڴ[pd 20O3>nJ[{ vm)T Ǧ)~Ej^TJgo^t$#8B& oWz֐^~;Y#CGծQQ}&֎d\N XO"(6X?$\K!(#``9Vl,ʍ,S# PH#ko]FdCx& loƟy7]m goTP0nޯ\'is`d~Qѱ#rcgFvDiA ]s4mᨡƵ\{Id4`:DeJ!Ǝ2N5\L=mv{i>&ScV.Yc:§z>M+2yVʉߒ e8\0!:#+-sc@>;l }*' 8zL"B.uPue y*>H&qKڲn& "WزGso}ߏ"k'e0)ޞKGOq@7hzPtn] }˰{>RpP{gd8.[v%hZL,xLvo6Bh}^5?xe_& K,B@!XhXg;ඎVXuR&zA)ODVh@w(De[9Z7fZ|YY?bD5'bWP3-l=.N;/CղWNjx`#%} J*Δn,ze8rD߰&S&<6Dxٌ%|)p%yBR bt8ԃݦZYmi,Y.jNdvfϗ76ƦE q5'fLd~E=Ad[r*~k@ BS yٞ[wq+RqX>I<m[XpV$Fkz+xnoppi!*Zt*AL  s=f$6սw qcnMU]r#蕊eU~D$׳9̂SVI-`Jx%mTH G/JAk鞢C `_̐(ܖWحஷr:8D@1gKYg$ 8]fk&3ګ9Z= WP+:Q`InOpI.Nj5II-4]PK}j S(-_B^z/| !#H4gks5 G6\˸q˯- +(|JbJL`gڠ}ΌitMt]7@tGǀ`s/ MmLIZIVUSz Mbl9h᭮ӈ $\6qCu+8\s骺x4aS1l [c8r B(E} E nh.n̔0(L};0/mSQGZ0P!J0"3&~^{r,WƱ!k,z:r5vm*0Ah 7Q !Jwz3x>'&_ ko9,5N z-<Ҋ6f6{ ur@ሞY'^P}{+qyR9gT`ǂXc:fӰs `aJ/ {r%{,X#ՓjN0-^27b&Ea.ۅ1sP{2 n$\rn2etAozU5FT=Eۣ4Zֳj쇃㌖dB;7w4rlYAgwo +âs ^Tdho:wHP޸/V;wڄ/Nӈ.a&5PnHWXGQLYss3"_CcX DF*c'>=&$1/6IQ<۴xd􌀲W+Sfx9lr׀ny6-?a'(k P4z($q}b6-( iVE YwCYp5J-cnCτ"g @^?u -PV#ƒ`)3om+ (deyY)DiWU:xPb&?bKzdնj8x[hj.!@F;nz*NaXS Kb.T&V(630Wa~lϪe*wIgn&h6i%f, kɔĻHgi}FV߲3D}ejbԩ53lw#mdC%@n_Z,s-ڹpQ8z\l->u !nl2ȦZ! .A\I`zbysFBW(O&:4:?{WURs틩yv}~~pW}Y|L~"Q{_ds GPVh5T_eX?&]S40Y:ehH*%Hw >Vե<hKk Ih+ .ʺnE)wkkD?prՄNȞit s2e>6^D󐁗Sk߉'Nw .S%Tak59&_\Kކ0fߓ\{ӸɛFYeC>zT5$7!dm0|BF2 9%L=pjeNg73 /?b)nq;PIwb%ln<Γv0A@C,%me@W(* :L5XtaA"DQGq/@W6XɏbF*Lڒ }Gº& |TR<.%H20i7h N0Nw,iŔ/x%-{РUjUoOЏZxy)p ZE64>=EqDuw̻K\~ӛ% {S lamp?DuЂ̠>^Ojrap>YBڣ4N٣'GJ:p6Җb{u,#xM>ծxRCp[{=ĝj!dbzi2Y8 _ަ2n;ZQz+v9cM?^[IuyMTɖ-5VA3txGMl4.zOgs _0V{,x;1?}ĵz6rV ٛi٪,k] ҼX*e멞j顔޸#|QnF~gjet\|iL8< 0gyN +i:i;ޔ<(*8=z(q.wxv?EoнKX3핊;3b4ڔ$,ȯt$@nl{>U8~1CDpE  > a~DoLξcL9 H/h+J ~$~KȏsfCQ  Sۍ a-;[@ܱRE [caݛG*k P)&03kf'3.Xc;sB!GbMrw|)#Qʭ3DXfKe-E0EU>ϲ!Tĝmu $Bn||ҏU>Nȉ)<nʃ5x듢8&ӥ `0.I'l\FB;\$;yXcsM/f:$YH֒K p\Ѻ]ϮD?QȞ T r\d(fֺ~oq0|&p @s).o@A0ɴo{pR>qtҤX0oJ,x XjH-"I6=_v'=0_aV 4bs዇,>/V~)$`^r5ˣV!: =go ۑ($'րbX_ ^ITaa;NqV@PyH SQaR-E$xf-;a '*3ΊꞕȆ R֞,%`,h5̨y{w25ݴ1o72ׅBг(5A3 (/55NZ/_Kx +x% llDeFf >. Y÷PPy;y?' 7Z=Ɲqk/ר+)Xlγ~5Qs,]S!A7:c@l@QFp?;e= Y- SV!& #1;Hf_:4'.J=AYx*a 1L7[/V ! ^܊q32˘ ;![ryم4w-]cc'Y$-|XN͝v}WUL~te鯗@uHJeEU0- 86$U` 0[ZL{0Qw'ٯA˹#hhuZ',L to)_c*/f6 03/ e)N̓{]tZYX9ϣGU:9f~uJ[$ ؙyArWXuC 8愗>"VnEW LX i%b߫͆\zs6m5,`*3R/֣ ɔDUm\l9A<5NjgFhuB?8db,v;eӘd$Em+i(APp$W%EAH=*ځ7f>(<>bHH@`Syr Z:޹S [ Q0e 4#[}zlcyϴ^&ͼ^(N'MHWV|aIP|^/q~ejD1fkF֓jY99;_vJYkln[ <򡀹+a!ocЎ≠wކqmP.߸rzh2ofVـV,]eܯ7[P0 Pӻlt\G 8`x5U,y0hl2%O|{"` Ӌ_KES3&j(yk8}962eI:(>g PS:US<~3( Dw? EK'NNL*x>o8l6(Kޯ{jB 838@'2:IM7ٽNeXo$cQd ھSćEmG^~_qUR~_|`@\:QdIIgxy ݘQE.x4G,,JtR.B,qU#Tҩدðgsw}[`GJrȌH~˸gMc2w'm:XYBKOOU!Q>q3Y(8'4!? Ii:9 XPܮ 2=1P7ۋ ҔFɿT9PGB A{\2T.\Y>4ЎNR*y}xW;ſ('( Vg髱C1;RkXZe8C?)v㗷`In\ZGhpFΙ&.bBXkF;C6^dG``$է'A>wl$;z?Yu\}\0 @PWh#V`8H9S}b/ZA~%"؝ MC1:\ <94#ӭ=?yՕ3}a,O]V Խ!q5w'2"hUbcE˱s"9cRr7V!kƻ+KEQg%Y6ܟ;ڭ0'ΪӉF.=;.#RV^k7iKG w"/~+֋ Aq &͙-- )&2.~d)JcM|p1@&Zd6DIlE{1@D n<`D fHoXH*!ɱ$J%j i@enH+d~eofF7?/a@' C~({9H 0Ii(xy,G Sv)}"T }Dׇ4FXSc4@_ kleЉb5ӷ^=mLϺ'uG|K"ed&vB,Kh#/xZ3a֙!1HN66j1 $CqEۭdQbʏ !Tj3ЕIUe/_B14')%wldp.͐ C=mP9<&lwuüOL̽$nh;\7ăDtl GX\8 Jkư >^$>/[8Ni}Ϙ1q5l{$㠯GU7@>P*Wα&wN]t#{էA|u|UЅ܊2ԄLPKykt.Hv8킮De*>ڃ4WR B`sis2䛑\ߙ11Ӂ A  pFtѢʥí8vIA೓Ң,Zվ-W z` uƓ<>w\v! [3+STGe!-vuBBɴwnU?YրUE:?_fi)b~ Ȓz$?_# 6GǏfQ ew^GP f= m:(rY?ŗpn{Od\06;) R`zDX$w/JhXWsH-Rࠉ_lJ Y[ex nPQ%p69Wc5ǃ;|bĪ~o 𰙘ߒH f2)S֬J֨ 3l]Y+*H^4D;m[?P6]1dE)^߬imZkm f5P0 ;%En*9ks#7$tAh0Z٧DTSn;Xhwh p; Wtpex)H&-HtQG/smO燾V}Un++ +z߷Fy{z:o}Ybڎ@&Q5ܖK`֟S@W.ePG18mUa\|6qCf oVDp:N2|E˓^EjHnk|H$AzG@8Gs} $y 5NNG`r2aE0]zKVs@֓Iٱ̍hKI^4vstw*^+8Fu#Q-X} mÞx'gVJoY"CO|J߹FJc6϶:@Bʆ Tizi9aSZK)"xL`Q&ʹYfS߄xPgw)*Mo6@f4Ȳ $w P#҅iz{KsX|l ~V{+Cgt}F+^QBFBhP$TYNJSv?mBԩFx32%uw- 嗪-DwD(~2[v(D"t[@Q*ʊ:Rj p>2C -ԥ,-=^֎fA{2~Lؖ(sX.HZ&W_Bc[sPLJ@YT[榜Qs-|ڐt1ų.m#"'<:a H D' - ֓;!RD( 4곔Z٣7WxU~HQb(ާM\0e"[&z&:kN`CpIddC5 x3/sl;TȎ)>}_AvJBj[cuGJ5_lo}gqIK {AhE^c!% 2㯏X:C"ni2&@`<@廎^Ӗ }ن]ap[HZؾ$<$аHԨy *rnŒ;.^[>+0Y-MDQu:VMkԨ!#Pb:㻀W'O&׫8;40C*: |$)9v@.k+yJ9\N61ХW9ytPy[fCތ%k]"Ǻ"I8a~u(CmzSB%ifţW}< G-9THd<*8`<Sf_X3V!~Q4Մ8h]b)2DU ruQv^ζ es c]n=jVߵ|sHg[ᄰm*emn,wLSiO|\y$`,*BȒdQf![CX4k F7kw|f[pio c]@LK7F%}H֎aȨ: KmzAԝJ? |,Mi!8 HK&yB>Z=7{r ytXVpDӱ?|SL(Y4SԘv~Zf*qQڈYKCs6GvԘm5FqsPᆲaʩτ[DM;8#4¤r|b7U2j(vFغjY2m Yj.Jy<71e A|.L1kitry"□hUJ]ÎٱusD[pJAj i-bP4Ҁp86EVKOW`  hX&y͈ЉeYO3 nps[d̿GygG_Glt7ϮML=e`b^y {uX,SOd/8"=۩=j=Њi-\9sַ* "g+Ͼ=#8|q 5AC8|J2 [d9[֚኿BL(qF=OA=m9&fHS5~lAktXP\m3|SxF o@M'ЯIwSB6W*34vHhcxg\(: sJu0c]޸%dZ'c|"pMװJvZ{G 7/6TWF)@VUfQ-}LV7_ΏSMlhIc1;CcHީM,jۘy\) *E@ 5˹Et:R:n8" .-QP–=4"?-<"*JN Nl Lx&(&Bpݐ\Q Gnt| d?q=<0Bf޺X޼+ϳg·\'k|elR~tb_Kت %eQxĸf>>C'dhխB4)c 1SzB;w2>;i}W“)-.|,\pDR[$+uI{RFy(6.֟7_$PXn5Հ}lYgD||El3V^{CB.!Hɷ(:^~U5-xQ{%AD[ЯSfRryeY>$SVDq@2]{兠>\8=2I]eIl5P/ya%Wǧӈy8PLL (ɟpa BRz@%7pה _myԽ$ߵ,9fqz ڴywV*xw."+/7 ZM|A#=wǽP42?GWȏMDw0*BAevkĄ+ʥ~ܥV8/QUMf-,!e=)駛nИ4<,Vnx wDq=¥;Qx\ϩ= tM .\n1K(eX%) )֞WxOҕl yjF4!afCoi{]nKyff(1'/xL TA{>*~ھڴE(3 dul_szr,*# ?rȩ;&cpȍ}i6Orm|hxzJhn7NGS6<ɎcFq* U p6blrCv%J';y+٤3> 'u|09;BߕOk J̸B2md|߲pˢ@Ho`ɽ>ſnTKcoTS|?)sg|zJ<l0`؄hwWGfVrÂc/ 5.JDI]brH4Ԏ`_c%LH? [.#Cjt;fۙ?DpbMȐLsqv:E&LzC>? yNjFx^*X,ze?I r(\ݶ٦T1knd_ 4*K1ܻ~h4ԲCp7E:oɬs |D2WrkӸ Eߡ*HL]Ħ9085L:^Js!UΒ;p8䞜w PN#,:?@wKouAs:O_;vWˀ%v ȆJHBvn;Jܹo6=tPByEOe5B2%?0|e[W>s ]>7tyT2b-"8òWN֦͔)Kʀcx9w6מY- c5>a"$Sw|E6g3R<36nnPb^_Ȅ9n_MOK3WFE*bA@u.esahI{Y#Ž&QFz;EޏK@"Vi|ul~yAӣѼ-U\̈7uתŀe+mGHv +|1Hi-b\9CZoe9Ǥ1O6,{Wv9~YCitf˵(PN8s+KHɮ.An[?uz!݉3RBʏBme"rLډfJGCFbg-)=!(>J)n(N. -D./zrEtth^-]tY {#a,DP ϛiHjD2RyI n|tf}^ T1jEɬ_MeusYc7O7 M[/L}`[l&]J4o58C LPj5U6]y 7,Z~h{ٰ%Х: +.0jvv[Uav&)+en30򑼴 <2Ʒꄜ$"$HBi7fׄ.uh?(} 7#XbhyJ1MT4 9F+u6ɝEuBq'q!x,'rQ(ff6t#;}0 S¸6 G-ٳLY{] <_#ػ̋ؕtG [!FqLʼn(7Ogm@/=cnEUD| K\Uj[_=jቆdї+_z74?-ɷ/ibgd[XM:,|:jT s2bkg-|*( q^05Hpi(SUn5;p_8g&VZ/7-dҠGRw5G6P/^3I,Zk8%;i\O TGҨ܃6 6i#Ys?^E6ZɦD5yԸ=|rvL13"Vm> [ QI"i~Н3՗\{2/<eq ,s.-RmGhaj\|(q6E#?yGH5(QӦJA>NJZyz{P|o)aO>.8i* 0TEEΓ*WMbv? d0`Ny)>,۵ jJ&Wod,a+ ^}2nQH˪5v{qzJJ>x{ VPON渃!z/6ȒY6css|Ĕ? ՞o\pqInXLq#>[dfqv)pC !8F9ۛzV(4>eaSlA,'.@)ń31ɯՎAye4ȹ6ShQϠ\xD`[L8w _jzàBU2#Ep`^| S Ju= bP9FdQS_|j l&XsBa- E8?FnUB/CZUKƏ8KY𕠼TX0H0C5f_Sw6; U9FH%y8x+ -xx,-Ĥ5]jQ V3s8 #] <@XX$44}M/\p>!8,|S=%T).@K`EC9#h'Z5xd_z kǼHH-5U7'j%ώxAa,KOT]OU&#HQQ= 0{9t+xFrVS66$FCjZԭ_읮RTk jZ[~Vjvr*BIUvi3㦛‘Y]y .ohW[nSdP7v][Tf>'؎SV7rb$%MdSb#Z5HWubϾYVzLbIPiHgKؽ!"aHkXI$KL݋O;[/|GϤ$ Y%tdWx.(xZ b]sӯړ"؆{B74];ġĤ$6KG g;P"SֺلU*T畂l( L,ηL}!WedLg @ñ'1UλAF jsL8URj\|Z^h#^.X;W'&qQ4Ka14ޣąݩDnᰧkV[`F*6;svgd3_'Dg1s1i`9E 1Zš}A'&R3! pUĈ%0]kFֹ3Qv1i)Ҩ*n6a(oMq sP.H]Q͹HdPQ؉/YR0?6v,;$`ާlkVM$J-"nQ)_}0'"'ݵR8K4i3W[:E K0#ՙtv Pr]aq:aHseQ ̗,I`kkwSvz_ #D?rUR"RΞƷ tꊀ iգ{ fIl |r*+nSczMeF '=tliU> V["&";}q H1WoiBsU#8Ar#nK+_l`-ǫB'Kml{|m9Ʌryx[=wfv?!vl8։<L.ǟ ;6i &SAAYPw%Z{bBkc*}Pn3m*wAP> Sg2X Wf^]d~̇w/ *cD h#܌?wTkm(Cf\B+ a WY]@Qy|MтOE#ڧpȱEȯr\1O{^W8I3d.*"-Ȅ 1ܩ&pu!s&[2ޞoIWE-^^$Q93@'qWH'Wc뮄F+H9 hrzʯ 8o/,%vf?bHqVjx8Zl]bJ`Vu%8 lSlm= Bb'VА|B'hd*;DC>~Ng+61'nә#6yp*0hyū&S (uؘZV>o:P`UX}eO /&TITXIk/6 CE+oq(30rU, n\+$Άao{j55+4ZA'xQg$ _\DG7;}o&o7aS qR <\_˷[l]0+W$0gBdlB&īW[=\X" pƛ79 Ln'x T9 !DɃzd%}C]YtIGN8/KWګІ'QԜx,Nr)ԌۗIjC"t<~?ZuӞ7ZCIQ(,X'ZQ3wP%g 2G3&%?5tEѮ72 5z6Y'7A[(ӿρ A%fbDiQ?MpCNsuMҵtD*f֋M3=PCfᔷ "cI?6 (^/(N`]ix ֝~c 9[u)^zoBEwJ|бX/ b7ZܼgoK<^GIU ۓRlofBc\dK\\CaGumB6ǎݼSiWU6J)(==e4;m3FۄQKpSEm?#w>+T-%]ڼh< X*쫟?ўwְ 2?D18wlbs/B{lgb3yjczJdLO 4I'];/>+*I7I'}$-b̻H؏:ax|Uz' ^rWr tI3w<pIzFΦ%QՇFɩ{-5wCAB_r}VAŅbIB"D2V:'ڛ4[R5+Y^ʷC(d9::,GSH=YlrF"\D+v (.%<@=e Ƽ`XV1֨p iO[n)DdE]@i7MzܺiЬ$:?~D]6Jo[†T<ڊ@Lw%mm;ȗsDly/~X8iXTM.iL[9jHKT9Wz^,p)G"0;X+yzDB@v"7z&;F+Y UܮѸz`Iu{&v DL]tK؜!{Ic8TNƤ۴{ 4ҁ-aûk3`L_o=<2iġ'CBDJN%%rFE$S"Ӣ+X!,#x|7RTnhX6r`rGca[F횀Ff}ǪTA 9b`5&|nfW8, fXbr:c{Gixa@ғ&^d&<*XYd@ٙC(Oewz˅T4ǩe58MW5ͼn"j)Bڝ=Idry^`%ߺ|Ҵe'#Y^~6=bԗlS]ue?|[.*2\i4&y2Ndh?j =no_WL~9" |##ߕ3ni~C-:>rYM&͢L%CEc`]Ny$zxGf?F=n6\h(E>pDޤ}!E;bO tъGJ[T&1t|$GЯENoj.9} ~q_(ܮ/0w2gc}F͢ ~Vn ꓛ7NKpjpca'`M9JM>+6fesK#QmSm7[ b7IZO)/e1dxJjJv- !XDFvW`F4ښ!I:oV<86zqjGvzeV[iiEa>PugI(D6(F'idwP\u1'Ԙnv{$HAw?}=v)E~]gZ#ehnw-G6jb2$ N@Qm8aM.⎶e!P80q =>uj+@Tw8(SQGt@ش3'4uBB^@fy.*|ԟ{d˻Œ̃(53sZ)& .a&}3f8bǡڴS.MrpACS.՘?r|hRw9 լppYRQp6`s:T;y5BX@ߴ>8} $41<"L?4n䳔!Y 4MBB.:-Pz i,zWkgA_/P $= 1| O;@,bwX7)>kVmuْ)?ѡc|gŘo[6/e/yvƉ=i,eP[$Frqh9"iejY҃&+t9ċW-J7BsZNޗ1Sᇙ^}%uRfԞ^yR?s[lWGf>XR]ʳAۙzmeG7aZ"g"V*vɟR8>ŊLOnx󶚅A:1t3.5pvGBMzjݲQ[$V]%g"̗xݒ`w _`Uy^P(|(>GppN, [j:>ρpAӉ5E,~l)RH9 5Ʉ7ADMams!^AMYy ;KFu7VNgst(ԇtPzR/%N 3ԌLRЙBCE>=o7ׂp5cF+!>+9ħƀ }(YLJ0Cл]$h7 N,]ЦcZUM4>D[!Ĺ|pR hfYjѐ ͓0 <$$Y#W^wi:c4X/#!IDq(7$[y,yE C2!s "` y2;.jz*8&ɔi.+3аPg=0XsB)O*6Ro!z0 Ͽ'8+9j}@` 2;Y+0W6#rpǼ6uI \".frr όN&cV6[7 `-# Waq,w:{%:Ӵ$cszw@I=m5P-}:WҤ!JYo$ *_lqZ$jD0,u*-!4UUюD0϶"eJvZȠT0MwmqjįPd930?Dmo#Gm!AE~_=J("vl@a)r#7s89JSw4~hٲ30!hoZ]Za}Zݣ\iI 6ߏpy=nX}dzJ 'k L\a-*&>(GA{*aPyuoZFXmgwY96F XclH=}ML)̱L_|6[*xYݐrƜ͌Did*Gq7BY(:)Om^@3 Z}>kE!/V:O:U]JXoHb;`ƥgꈵgz, MA"qN*#lz㶡nu_m ڞ\]y[j{l2*@mӔuj.x$ʳ;0,G6+>Y$~2}+ujaRO-%I7مP}Mf`"Mn$"VWBKdaBwHA7uL>Ul0V@x2ESĂ!儏`m>փrwI/1'SY:ThߴRzl:_WQV@bpgLܐsQЯ fL.!Oڮ4gFj?tбAs TFĿK迋sPS^p;,(tX+! MPHpma :=kݮ2EȊlINzaL%~tR \ (v[pP6+<}(Ks Yz1upH€\wB ŭ+z)B6PXb Ǣ{LC-N^HCAM}ItiN_pKix cX ,=jJ04@b摰u;6t3X10L>Z#g 9US&gHoU׍Eg#ZvgiզPUSwZ40O@7泮"on+ >'}xiMCtFcw4+y+lPw.D+ǴOm~H4!x;loN#HaDE0RѦU^p ը7_ue{ OEUo09M mXX E-Շ{\ 8%m Kh: ʾr|u LY+bz-;?J )݀T%j`֌3NriM >`JKK2J킲eMoqtg6q]'غ x|ew$sBxl.̒` G ,)J8+v-Clv6WeLd<4/~`z`e>pgo݃ U r4FۜeBpNL8irBBh.]#e:&DWd5U96m;f.a~}?ʷ[9}l0sh%HG\ Y5Ram"'*1ި`Tj@@ٰouF4}tP֮\™b LWEtkN,- l%p >D{!o eIwYYa[I:Gr [@Ue-GR`XT\ SV*ƞ"?o@i6QH,R>ZZ}*HvbGo!Gr_]'B~J3r_m^>̲i1Z(OMaz1>j`&b I6SO8M$a< ɚy1G)\=VsW>_j\Pa3czH1Pм[Y-P: +lN7]2gE4wf<>6<ο99+z,ГerEsEYFz-E4(0cWY=n2gqбA?^&S)!5 )2\02տO`^h[gC*0Mj(AMËv,ÅC(|sZ}4H2,'ˇub&A'd#Ŵn5q@wwlZTNw`uqSIH5W\ݢWQjY?tp@ϡEKK-_%Om,Dv c=X.xJof%\Դz]ϴ7].>0QcPob2Mw}ߊ#2!R#sVkxac:r7͹;iRʟkNg[k*,)W]ƅn!|8둒F>W2}3zP{Шj3kpj6zƤ\+s y>՝smH@Ҁrw@%zHV(nr }䰿9.i|<:!m6S0G|Nݹ $w3 = M3%l0,m,2?V' H`6.%?E) A?pYϭSlt >wNN$&;ًx,eN;] Ńu]CCReYW*nwmH;pvCF0D2(ԦF"M|mQ3N*&͐yt[KD,g|\ꏚI/jbӥƼjLx(еQ@;dg+4/ ~(D!zk&sBSX"o ![4v(j\-;~Gs*t1IYYz!9١%dK^B 's?)wOe[m웬 @jag`BtJqZ OUTYV2mf9gIV$P|J[k t^̀QYGXK9cBQUI3/K5(6+l1ϯ Q|4mJ밾%pͪH&b5\3LB9M\za;wЯR^pMiD`ĸD89:+Yqw_OcK<谘C }4LyROU1㿩bpj;s1>3$ܼh9eS◕0r,8DnR茔bsġa7[4XA! 15Eetq|=yx#N>/b`8476pP~I5}.cjIU!j ֢Fo^dԿZhؐjḶ%RL/h3lcm^qْ9S zwx%k.qąg$7JF'BLd-B:&j$c7C+ u;)L{nTx1b |oF{u0%+黻2B-c<)zlA'`8^=bm|9U[V!qzVi-+GHU~Ӧa)!Q{x.'*VFZZ4J ؎{ʳ\*{쏦Ik_ ز̍.%2шa\>IGzƴf~PU!{pv;Qj.K1 |aK]Wh@Yk*{~ŷskF͆Oe'ڤFt֥㶈K H?_0qvUw8ӉK*@ Ru F'8>v|Eљz:%G ٌ{ָ^ TG9r2$z=?1R2^rQj^"c]S?u/hP1'!!W|J ԨipƾR/t?bXCg0(`5+>O5Wrk,ݦf%1 DG㕈6l>!9}iY;}Xfყ]LOt(J+9dUAAϥ|S͏mُҜ(u+wU S>AaIj?&, &R *R`!O0[#!OQm`J9=\SoArA[Q%.IYs 0k);w,TkH%潬-x ΄y`.*{Gz藦C3Qz}~ LIr3}TpUכ#H$r,Xk$S s8aIM*~=qܹ \_L>?ezkl&IژXdg0.e gCP)/+o_"%dy DINR@[si66pEKPPT {g&[ݓUclH!v|9dPMjIshnވNLPe^Z7A 3F0o9%kXf R ^=D&E0;*NN@S2Rs{ı4XuF9lF?~eLY2Oۜ'y]]͢3d 3y~ݓöjh9$?2FHƁф=a{}xJ}'L?ܗ--elhuA[\)w1n 7I%GAһ E29^ f0eG)Nҹ'.s0>bH6?rյ@IeRUg'S R]^i|-]+&[? ;QK ^Ԣ%B@t4}xTC{Sa_&y!)[uSgv=v^L/kZscHEY٘,lہqoP]WW-Φ92|kC&~T;3H%pW %lꐁ,{%C!TJx xH f}[\QG{V>8Q 0!åkVh:ҪJ-WCtY d,ÔVy0oO=<MϾ{Is *2fJ]N j ͕+z´H H FO'Pa2 ={$[L%M>lhiT=8b)54?Yoǽȸ-Vq}2۝zU-@Hur/AV2CafDZƫ)*h-{8U#Y8qբv*QweC*;]C˛wG@z1518zBπ~t.Jޯϥ YFnԼːD)@-^gI?^tn*zvAWց];)[R6c58ii9g j!d`9pbj6Uu@bF&WZXtvі2d'[Ts9Fy2ڊ*6g L^\1X]\hȍi=Ŕ<,k ?q Ix&D{SIO(;G1FN ָcO)'@57d tS(h28:Ӻ:,rEͯm A_C壯Y'Պ&,shEc3Z` Z@F 0zNP\p\7 k8 oUTYlZgˮ̢> w>7 >a(9k9A b<83r:ih*"]l{9_1K5(`bVVAj'Suj\c1o:0ҽ3ǏpVSK~)ʖD~~[~R xbZh}z,[VwLբNW4 iGmvT-a}kŇ PUDS.ac6H9Y'LiI]yVѤ/FB^!DFyvHiPc 'FY:tN+'WQjWA-ƻN{tzb4B2OШƽg{blCĻSHVO|LKEV'3t1NfEg6!$ySXz $/H]A:)P(JQƝdEbD5ۼ^[ez! "[QN<#,ʖq.eT=;TOL1%tBDn"5 $;WalMzk{X3=|bu__艊'9g#/Sp2U_#XTH۾Sn~qar`{ uFV=~#ﻏwY}l9'' j W(7'N1iSiȅY ?t 3`ϓ4號Ȉ*i-_̋.y'-(= ?;dΈ/woޓ gL}P $ ֲgQs9 0'RLˈYAXąO ̣ud9s7(7 `NTK =^pijMq!5C9PsN[Z|V+;T>kwD)&E3!ѤY[8WhN&\(.226+j"0hNç;_NgCv9Yݡ%䔝Ii4j!}߼2 [x+g@ X h~5rGo]w#9G1('#ݫag M4sꧠ oЙ |e#:(Gqe:hOrK lTȿ͒ιT̫L{UGvN5)v_ο4.xy8͢n&OuSD 7'gj]M #rMYފ29RGƏ)~#="o~X;u#ڦH DgLWihMոw1<w3S>[5 MIp0أx09u},b?BǞl1ئďFYvY*&/aww˹'H{޷d2w3hՄ@o꘣/%xe k6xY8Oe& gO)g:JgpaڛB&jr24N]ESb~c,RLt98/;[Ned*}ѐC:w .0u\+Ou3-ˑn$g0s~<<1rHHTH58 3f6)!%,I(ߵ! =8 WuvA<%t1Mx#2*mxs%~I@e1H?cW\d#`{_QU[DG^u=]8MȮ Jwڵcqf QÉ|_8]CPGˆ$x6_2&j]<&⣜7H:bI#8b#Qk]3XWEQf\ R/cA8r1`v~c956*)pO{s GzER 3@F4٢a,YtoL 7rJ"ԦBq|7û<+u*aGyȈu#yH|պ4 X3O;- Ҩ!.܊C37v}AdAǻMtkMEYƓ7f2ZEi֯4kIJ]ulW:U ,K[{*N Rq7O8j ѳ0o\o-ɼȆ102_ʸLݞQT{E|w7` e4S5|iJ>Ǥ8#- (&D&$  ea~AǏR ϷRN-7# ͟X&lƓY"sёbգ_@,4iYKsd >COIɳ9J0G]UmJ榠܆-M(vy%*Tg|a,ӫyq pZJ84:HS?䣶x J & ًoi+_+SCXv^W ?$XH' J }SQ)p0? V eb] &l/L0{n󬆛m%1&=1)wAh09~-JU!N0153i 2&u_OZn >5?s]^lO<˃S`nj@ zN̦* wwXBcpkTo{$|>eYȋx_q*=S|}-LxQXD,ӓyJP9+Ã,oWe6~< J_eJRjR8g{鲶u304xH*Y#J6W].([nO؞h9 >xs"d ySPCi(e2ÌbSq^ Vd>?&Kb"^#PMMo. \ _Gi͍}q7'e05B)U̔zza[JQLjfy=&sȹ69sTߜ#MZïv_"aM u^KN;n@-m[1 $Y'?BWP1\xaϠwtC;X^NF~AX4 *}_AQ;;n\_rt(&+9'#0ތb'WrFGLX?vΖ{-@3߰%$KYOB];qܙMZeCQ1}D.86 mwpVc#[Gxl J0[uA0Dei XCy!V0cɹ 7Պ ;.K´U ES(DJglf(13~hA>R[C<JL23'{qA'w]u?B[cfZG$rέ.]htv3Gfa69D̘o*z޼l3pE:2L# n nl$׺1&lϋ8HS&Y $?UDRӋ1 ީ)E3:O4ߵ },˞Qʮ6qx7"F)Q\6р쬉d8^50O%h>G@bS(>ܒzQv(aDɢ$Y&̘{=-5E뗞=

!41qc<歟JoY3aFSAxMXt aa tjk)ܤn|9<$۸DZlWgc |LfS !ǢCƱ&\` OFWx0ת0]_+ĚuUyTK/MJU!m lŘgڸץ?#ƭ +m$PD]w_lxWf5 N_3.\;iYaM>ǧR1^ạC! M)s87Bj7 [\ڴb;U;;s|o , 7ZXjR@WKܥPaa[*IBȴgPev#hQJ]i˲ "ZQN55?qEW>Pf Q#EkYۆ&PƱ'$J kNԷ"]M1뼯<BC{ZU2VQ#4Cy>^ RئgoJZF[(Rf׷˥+⢄j+g'fKAqK3y$mp5Y g KIcCOv⠌TV ~@|r^%'']16r.EvĆ5Iaրmdm[nI}mr< 3I ڏhO~ظ'ކJ_## 'oЍݑ/Q'nL_Ӊx v 2'5۞2wi ~dV9A);Ǹ Bt6]$Z>7Ͻ`e HHx/E:3U2 @рG\BORatRTDtnn9eq*:w|;[R-XSabz_KiXa@_~BzujYW IDXtM굈ϖ߸'HVRD]0;i %ʀnݭs^tjh[!^=6OG$d0P|:m`f^"0 Mݽ2x !Jզ;M9,B'Xwq$*|37qC%VdpTd}5!2\/sat觴ōJ'3:ZNT"Œ u{!T/7*='>fK"%KyJ>փ'g3'&_"{ʢb*LfV0 utXT\J~aR}шe#}D~,!XH]RE)ڏ):5c&ӺK{){8gK :Wu@R7mB*L75;g^poJ։ãHZO΁l n9 5ɢ O/ G5R07DFn}Y!%O Em2FTu?3LbV>e)y3^@7OXi\WN7Ff%I>eq7{/6u>'MoCH`.zJ~_fsKBYj\s[CV)*ufLY3Z6j"3));mvbfp;ݼ=8y 3E =SʜC)6;E@ߝީd&a3_ yw[-CNL zftKm?W{݂oٻݫcR; ݦs!EG_Z{5{)3pU(J M[ RІ2~  -gn4dC9}S@T˿2yn<Dp7간Xk=4ҩaEc#R3} EJOЭbti'kbfyO7`''*S ۣ`B批L|_OSEm62X̤R >7g`܅!>-~bl F@Wctp+{*|Q'j{߲<5^ z7a~Y׷;o&:[$xMDW&#r4נ̈́?L-[v^zY0uR)"+3"K`=pd'#.ś95{Gj}ĨwXXCp}T|hqdFV< opIM\=Ӷ3ZR]PVG7J5Yu=p>dEdsH5f%MX%]cn#5ʒaЕƫB9t3G~AhdMi9YYYG*c)2/B|D  SVCK$fO2tE $te;vډP`jNg{6/?E uK0䠸h10iaESPi '*qSj| irz Z;A" Gtf/O\l&ُ,tYՙ+p ҄ 2!zPKu`zs /t=Uh2B["[y#@ -s˓U yL 귍+lߦ|V.*TǶ_e%&hEFc25S/Jl 5]`-'^5MzDv;O^+=Z̬޾ܼ-J&6P.T8"4E%5kGk^bɎ$.v{0/@_C%E:>[5މ܊e{8嵡4oGsi.m CGp,\5е%6P8b/tԶ罣XE²SQ@h) xeG|y{/Z:jLKRȺ^RT E"Qdi#jq0CGߵs)DMQ%DBkipbwt{s|#n<^`$JIToT7٢">2#+V 8Tnf|$_ y diZv҄XsG#Nm{Gq\U8bB/HPH9X iD+w0JKOGLχNc>~ȶɸ{ӷFh2ά#*voRoh''A%r|nۤĴʞh2.7=7(#I3/N>:ͯ e F0q5"ӕeii7I%K{yAOo=pٚ uPHObal4s隼%(Ζl%ۿuFjXrs}(((f"Oɵ b@ʟȟ'K \IME$4uٍɊK ={v31ua|'6aϻ,L0={ *ץ-_Mү pNzjk}h"x/"9gE׻xU,s  L뫫hL|Q=6T/aڅ؂5%o d2 90fWD)@˭|9ң;[^u6e-C;ydBL' \!Ugx(,R:g cҲ75 [OXE*NQH:mҡ?9(*{5-^TJz_8 .4-#aV.LӒ"±(TbxqGAܟ1ّD,?-wb ʛrg3J~+F&LdT2$=ezz :Wu`NgQ;~<9^4x$?V`'+E2pn%7ώ7cmCziʒ? V =KGdFxKry:K%Q9`09銧BzuriMIZn0(;C=pndo.+O_}+ O 3 ب䳜OZ|"3~0p.ZZɤI@P7@͵LﮡI 2ٴ>ʗƋ ~ _ p&u:p[2 lKCΙ.Ef+ungv0cҚE}DlT ~r{1!? `7tzz6!ׯ] zP[牕nmC.'E׋+꽬`),B͈J* Щu!^I͔l 2WQmـ ZR1[#έ\@`St)/;X9"hZ)sxCW;YWZPa3%!n鏙 љsyQè;puuμ=;Sq5FDX }i7D8!.s/ Fڦ{mBe!-K$tWߥO5.ָa5cAZmrc^IχuQ0|8|iTcOXH,O ـ Pũ^=~ ÑಛtLBc&3!$Iрy{r.C\5b⮈ٹ([dA z$g*5Źc!ZM.x Gw򞳉ųUW@.[1z/}y?N0FN!ˮ`bڍI$ w06jN`,)~ Co)U]PYuv+G ƅ7ZKbJ` z7 5RpfaMk0zJy d@1DKvD@;F!ՍLaG[4S~L%ë=Oﵧ\G}Sw9, L p>O(Z尒jP :y 0)4VFu#uLpˉ0bC?\nL_ZJic0SgohnkVgvdt=pjd)IiGLQG!y+8hv۝'NOlC@AD٥ rGi0XD6xXV`QLØtgoZu7HVh~GVdjTM Ů_FjL A@B)U2*'& aB(ަUf j_y\npDKAEV S$ɥzElP ]sjA9*dデtяς,prTwZfST A`XcDwa;V~Ɍ5JӛRM iX^݇oV3qE@8.qd.x'g/z<(i- F[ ^f~_ ZǚMOL _*!ք7^#V|Zyu_}K3nޝ?0( ,a%Q͛{z tt``r ?v s=U|4^T Jށ%dUy6#vX|p0U"?-!6𻝫^0׶Y/+t5i rGߏO~}.!KD)*\AQAEgZpXb(E2 XH /ut6 lN#K gn`\YRX@aJ rHצ C2zÿrw"qIߑhM,qV5#a0Oj-F8Ƶ܃3oSFy9PCuӖ>bi][o 68Dl |hQHo9^5_ E,̷HKWɕٚJ豭8m@9/:[L}7dvCFThbIN&]Bj}6Zϐc;l1{7t=fץV9Ė7N?e_1خe/,{Ӱ6ŃrJF X0xTe D YvJ¨![ҥb1,}˗|,ZPHOmXR$V֮lj$x{ D[K;;On?X[}\ CFh`s ];q$n:dbEu@0tUN98HjMѕ`@FGϚoY0+ }XPor~<%TM?>ğ\qGRX{(VO^viYN}zYM3G&E:62M`s7935damiU\Xne .Lo,zmLe/_J ci/4 2eTt"8I. q罉ڼ^폰2ݡv7ܕf{?vkXI߃oknh|#֓C~zϪ}m­ ݸ]Tm-0"wp}N%!B=27`y/{ϟ| #b.ٿl &VOu\9.P?)z.d*#'v3Xyf2ߎj1}M %F#\ \[iE能NJ6,0G+?Y#JF>Xz*p:gs&gM%ctTK\|YSZPilw`0[o>pS4"x"{Gg%Npn+]S@T`m.'3{$Erq+Pi{;C<<,(+F, DﳋF`".@5ecj Id]zF,νW폡T~ B9<ʦ$n!hQy Cu'j`4ˌ[]g܌!nЧt򺷜b)_m@lhJHL@τvl5QP\)0vUa^"5| k C/XR{&P9 EY ys|kr*5־YK[x/],ۂ8hY#ޏx$Ic =12_4W%jY?k}mNYd! Oi+ Ls(Ӿ80 ,ɫ"b`3uK(ePq niJLLmhֿ9^ʒr@&,:2~qNudcVL'Ÿ β=DXX:OHAY? hմ2މ!8EF䣆._ kpݶ4Cԁ=E8WM)b' ȵM,Ok wׂoѓrƐ^dxPvqЕhpR`:խMVZk%yyf%ČpX\cpt?V{A`t.'ùsĴ<2;v~,b3H C%wZ:l>WNlvᯭ;soۜ=P'keD%0 o3KgAV!P .:TY+䀘%vˈ{(M\=!5ܑ6tPkMm) G7:̲_P/m-q 6*"D@gHs؝g%Ih ve[RV;jCub'vkb|z7AVAĢ3}Ќ\ w xĦ8g*/͢ w=;qhtyȄa&閾(#) ]zk!&QY9tDc/4/%e+2:nMAu9oՍ#9sYrž(҃,z_5lL"d(O5VhT񓼨``t&Bk? j~R/>78 YZ;ij`|jfL{-N@(  ( w>v^zC/.e+:1`ezO6W̛3ǜ!Y9H'"xb$;rx;.qrYd"Gv]K;f?<  .pI)i9Xԯ:J*b/ $D vMrFKr# uoI{cqų#<룤 aTۯؤheJjUKal>'ZrZ~F=gr IYz\,5=5RE'xR0,IXiX|l˗4{22tVsK(wygDg[K,t'`sVO^g@9:UT_%U6;NijP= ۻZ)z`mpL>|}ifr fߡ t#.O|C8o龒0n rqNKXa#"Y4URKn><.jw] u&^5 A")e;Nݎŧ3՚O309Cvz`ܶKKC|/~P)Lٶ9xb $Q :ޯ}9d6ßM>$ ;G+sx'ooEyKNUZaIifzDDX'zf-FzgV ,7땼Ηj1* Ǟ[k=y5j 0xkּӄmkX 6i9;;צ 5KfH(XZ(%UgU/ɛW7\{+X~̈́μ/Zm ˥NBN~i jKןiTYS$nf~ӝ cA wYښ K~} zT=~pkb7M~ْ6$N Xqp3O6kR:몔B'wDQ5Z1R}/Y{--h` L/ T@:Vc>I-|LVft3K[FDPv]A!LZڧ. Á(If2`kw%nS&ۼi@` c\n2n^gI1e>3n吲)Uk̕H(YX>j?IsG!Tz0tmthc4W<`Y*bkXpu$eb]j3uhh8m1D=*15B>PZ@" u}xJ,Tyǻx\CgBN1PtDK ฦ98jU]/P7OLW[ &Fե 6S:-s9fjʩ/>z𱢻]NIpFGIh/u)Ƌ܀3,7#Hljܽ}bʮd1/ L@VϋFᏝjQ,i.N$>iUmTqž:5sৗ>"/]&Ps#]<}M)1roQ2il:!eO׳wM 1ψUniuBgf W 68 E))J]#I<89Ų8b0_tJV%nbeT^Sa.HrפgO78y~l* ͏5=1t!@7qj\1 Px7+1)Vb*%1Mj:䑄!42_Iy` ]A~J6m3 U) d34 5?:b31;KUU,@`/>8}r; NߟUgp]y"6FO|Z|,$u2) YY/2pINעFC-eܪ,Pӥ Ro&R kQsV'S=T0&fvV:}|"&6t߼(nVm(]HCs_T}Ùsg*F~P s[]Ob;Bn'ۃ4S"/Bj%'P"!ܠc3):_`{,ҥ=+{e]ExWl_#Yއ"E-kqRz"YBɝOvHCπC{6Z8<i$; @-]m|GI؁Ok,T=>T_lrr{cgje[^LG 6yH[*)%{C+A͓aý.0}{'i +|XV4_9P_$aE'gRpL/-Ely+u. 3SĪ$Ýo gbז%g;R81t9iQ #!b2Y/3exPD!*@5Aْ$EtT*Γt9!Paڅ_ۖaz|78aQ9QVz!QCXEW jrPݷyQt=4Q,tJ_Lbɩ^0h p9aΛ d mS9^&k[[zIaWLd2n1Ye@5Щ"V#}H| 0Wl730F}d[\LjK#;mYm$tW[~s*ɨ/!5Q2_B=/ى+AlGEtx_GmY2(R0n(4*KӼ­9_? I)4$]w~'*l&thA&K[P\2'i(?Ͳ~q:gC|rPHgK3ta$ci=04#ar?-W:6`}Ҵ2UЬ 0wYzPh< 1mv&ntz͙NHynPU<œNE~dbHxՆm6Ϙr 6|XvL4|QYBY7 ֕͞j&Ӿ>2lBOse}y\L+Yʸ0G}rRt ʡ,D]r;ְMUFf.FA=?9Gʼn lRc!rkcafWE?#zWKW,!X DWp&"5$F AWYRJe z'sʢYIu0)?Y "Zq2b}P{ ;CJ}%Yw%@֛7Eۗl!'my>:p]ڄ@&>[5Folw26m!,=}P~I[Xݶh?ʋ+(=aPo/L< u1,J{Gk& Eml8&$4GJcJ6g])}gS搫/1@`hZ0v`ZꝉrID+$o 07 w+R` (Ex8Az؟q>K/ p1GR;G(#\\ 9DNT|?.[s`5MdIFzy1v<ߞ 6D yUm@+Q6CyktXJݺR C4;C ]Q0+QFa}dVY)!d7mpH4Y8HXٱ%8gk=f~q-i TLa3OA8/Q`#(qOEIg9pBA%dZNB߯Wt:t[k0XKK/J2 Vae]/ÞEL^Li9\k>K +^a -9bĚmB1y|vtfIs2Yt5j܍q_GLJbSPt#QN ?D}_c 3J&r"DV$kͬfz򿥮ڄ|-ҪmN{N|_zM2@槷!uf~b8Rz;.uI~4/ׅKd/ >P"x$Q+Ծ$u-*4=ln!BIpwG@go~Q+%mɮYp?r྿y'tB`n_mͩp]1 (@B6Z_HWlF{P}p}/5f:j tO/? EnN |_iW52(C_@z/%k"M/\)-YJRW7!_Ae@|-4?/͎f r5KGqg=4ԅ>p7Hc{G`>PvL) ݌(Ar ܇>_*ɇCuptOUQXc@<[U*apgn4HKeyLm`ᴱHU' qXuN(Ը}Xn9=kfTJµfw=x`q)#1lK6SF\ Ĩ׷~$d!=os !CIPuy@p>Pk oFB(ȰPoJn2m+9(G*>/fB+WD4tM"YL~6̧n!R+i|]8odKTC\ GߐU#-\&)?ܚJELJ7 >% 1)3I&0eԞD"EZy9.)$#ߛ!UI U[qk1ɐT=0Ew+mfRi2U0g߈<"Ţݳ!zPΖdз'c1TUf.ַٖrz\S l4`zSFnG4ѣPA=ŵWp Iewh-Lu$.ї89^9nltԕ $fWQ}0bws'ҤtBVqv+܈%dCg Kbk?ڣcu TJf$Ts*n>Kk}1N 3TԔLuAs L/fA6nmO}CNw&L +yq% ~v̰c72:3BЎ{rkWs&a*fYS1 p àWV.6B YWl++㴦V:Aax>fģc_@-~16 S3E=bWwygT!7hQOn?P|vs)bSVs Ѩ [(AL嫫ųs"}>׏!ҿ{R)W1%/u4ogF7[Vvvɷ,l {Qު-Ϸu*vI bXJ>'3vVZrscdžbDƒF5+fĨ Z^5{KϽ\j~9f/ wv1Uk'8"k* _`)*3-A͜3̟ 80wH9u&rj qzrqLn~.a7@#BM Y=Z+;9AO:?ީ׵jK{Lb1:9`߸ebJ'tq4>`/LDꗛ੷k1E?ADCw{!~@qj4]H!s)d~`ͯ)us&@JaFZz 4}nq5|3NJSŷ=c N;hr?٢ DrI"k?y'Iޜj)`wDӱ4e8l#R!St(ӌɌ+g vsF ypIlפ gaX3x=S#2#0wpZB#tܟ#Rړ}"(;*'5VoEbbyv-]>AmȞ@.UI^4hC)tHTb k)OHS|wH[e;:?@TƓFJ^#4_&xߞs69n2 rQ+ }\)dW.!8$Vpg4b$U xPĝ\О)Fv!xk~OW&x{*;x)Fjfxcs ԋ+3Ϳ'tB$;Wk}Gײ+Ow -xtyJ723T 5˃3ҕVcA8;b+攱?@86jL|36t$$h.QINQSe`ErbջؼvM?8Qb\S(J)TSN_c'd"%a\v WB#:pn2YcU%GKSKgeI<~r ܫ?/Z+H~DfoK`@V7OwDY՜ {=l:Lt/]AB&~VL.o*.CT~G!6€]Ӫ&'?]' @B} =)ӛT\?pSuVc%qII*VCaOC赯O]I|۝ mZ])qRD4dHpMύ[!S$QX6k.) eHv<` @ȩ2 UǛoh?qIԦ3 17q$.nG MX %$= 70/o-=ʬWt׽V Yxψ]׭5a|01m& lKo@ն=&o|T,^O)0ū- }2e9BA.eD˧]4ʮF_p c/s?tU@,k;1~orN؏ K&:0"-p'r[!qgW|EA -.3$\q9i`i+=- i!@(1yv\mF9JCh!/}?Z< HH1H0cY~B(֬t G!%Ddr#wiIvOܚ bRtd_1^ۃd=$ulPw<*w57By\#dDWX$H m̈=.W-.̨/}DuS1x?z^gF$E87n J;91u|0KSzjLMņp qU/>%{PpݯC*|k/yAx͵gϏ6z A$xviT J =}4Uo~nʼL)ȶso|oxo*{6 NFi8go}RA}b=OO{.=Oa駟f N%T,ʞ(lY;$e iTνY4qHy-7%,΁Iiڶ0$]QRH3fIrdPc5gJf}mpk'RYZAaM /W"Z ֩=OenR$$gK0!̨{I {$솴 4) < R`#d ):SV&PYM.m6>4Ӈ">xc幬i?oc禶r7So*Qca[8Y2)RPuQuI :B3Bm^#?F*ŘZKGmB ycQ끺"rm^7;S2.E> &$?owc{JCD13OeVόb ?CX@vOX`0hXx$-:b]A=2馨iҺV.h6[W~ZWP Ãzr!h)A=,m\Dҹ?8O0.@-oU,'׀2Z KϠ &iUiھi=łnI-]wxb~ʿN z:TVOp064g̻'Š"ˁ?$)bt>s,sapz N(-2srOTzJKK*͕W@Ϻn]a=]5`e/T'%qv-fڢmhke/[YX1C.Rmh FʗeOVrIc3?aS,@vwNbU6ӫ~ڔM6o~Pv[ VzNF][\+G4)5c"r/Q"YX41ǖ9= a*`m]&D -]X3=zS8B%!IQW7.=8\,lС䠙NI*^泚~ٱV̒Z|'E˶/\7;G}ެchH 󉙄$_RKp!@A_pOTTyr-'pXd8&I{C5O'D-.ɕ(SE>vΪSVLX OJ 8b [(odT6UC2i. Y Dzttm}gO1A [h̢v䫭J168& X&+BCAͲ a1TA*<%G[ۜ ߧa/]xqcebDQ'lE#ִ~8PQ=R[߻6#[?>Z5x-62{~Ko&FQTiʑ^c AIϞkVBk,|nܴs!Q{U '; O7; ,įmҺ>o\h~{l0h# ]sfRw}?\j̺^BbFI"׉ýsvh2$݇Aepx;Xi[R3{56`iENH.9ypTb sVx,r8hcd/В&X76~3_ѥD]M[R7AʆXd)7b`NLsCYޓ#KIiR>>DI/ѷȞfr$mvkSa C;B 0CzOه3~LQˇ#fx@SZ$;]0{PyO"ʡ 01yYkZ;/O`Mnp/E;FS̨I6,^?Fdo',Ir7*>.DÙ*r d _R qU]{Em蝥KzIG.6hޢvUgs9:j0 wzJj5)Q7r#e@aPCKeKi֍%Af +0vo9pmw1C:3j3k޾VLZpCs:!H\+_YCVg~tS+d_``9zr=$Ķfg]_⻓&ܡ2!=#O͐+f1If)6Ng3B<@~Wl/8,Db^aG-0ܶ4υj-ըf $]$ ğ~ȝFrkV01+^ p,a=(FWEd{=b[WY%/d {ZFyꞤ85IGOrѭm&(g-Mmr,B nz1居~#'.LJ'- g41E-١W'f"=HW0WCC)q9&{oPh}mr*ƥM$/eh/;`D)ͅE! όQVHoe;x4_$|9^_f! kFWYX-16!,l٢(޺ )JY{%슲Z|v^K[jw\6ҮqѼQ g~\AMsKd՚s9Ҥ҃〈w)CM::X^e/{^HL 6;Ztuz?ϗ{`G6y70-^ 8d3w =dJ)ϋxC?*Qiu4IbogRV0L~4𶧴$ |Hh+V*L@Ur\h=#3tP wX lX$#WngDVe`'rd9B"V̨,i҈a~*ҕ![ ;O1t>i/ۤE&A_٩h$,H2ThvziGլ@#E?JOVu-iS55썗d+W`[qTARg@fiqyYDڗOhdisX8'@NVN$* $F %\.nT'"m@/h+w?Sà=p6Β%*pwjcVj@x8Nڛo[bjZc56h])syvVڀRt*;{]O_~Nwh!)8 =pPlG@CN\k_U8.ʯWEߴT`*:rA;޽'t;6"8+2D36η8J)@L7eQ+5.1FR*+YЀ5gJaXp/v,4kxAO4/ 3ݯPH +LeQ>SF5e/āD沚_w šc_uqY3^B>nv9ҳTqfYـzk:w`EƲNa5cW/ %Ʈ$T!3{ޥM(B_hT Ng& sR-,dE6kud$a!\)1c7$Lӌrk#@Uoj/je(΂Kh]{a/$ȨYp1n).s0\\9ǃ;&} }+]'wmF(`(CV嬔'KI#`7ԟ.B7'cVn zrOٚHT3ޜGMYՃYcvnl#lWg+.Om5hJxDw9h9x똾eAїk%A+_Į;w^TW8LFt(twmfllV҄'F~5C~S}+6Bв-kbb4z ^nY*\uXMBh %~~}H(~{ aiu4=]hHz XU%a^u"߲F$[aEbnD4QS fzL.ϰvE(!z_sa~8a#a!o8PZvk]}3|`ĔyV4_ Lzk a ޢy)w@B)`eSW̫MH-8L쭭u/?~ԮPщ 3FPm%%ħB?F2veuĝCˁRKjv#fOR:1H4eE&ՌhV.]7hc`+s$+aQP L;ռNj v^r٪%N'Yt[j*~K6\˙yzDWU )%x8B #fت CZz p#Ἀ>2f 7E,)]b~4&_#%)>RM06?`MՅ~ΑT̆H~a U0Yy9\T:30b𥗹3Zcb}T˘U 5[.לIO4E!RP;%~#Dao]Q\0nC.ѰX'w[ѓ_Rˋ匝a4}#'#TGE$'~t$l¸d|\"Z"7I2YxI5ǬU=gY;P3C3)tc>=hQh+Gv)X-=GI-S0ႉ8t[mёk0SebfۅTec0cs0 8o|a 14mb'RiXrKO@ء(_}a~)qz*D4O pm)r˅AD&?v21}9m3=@}Sdw<v!ffLi\UtTAd _! ö>yvQC)>7prB;;:l9Xf飼puj1ɡZ:_m`ڪڟjAnWöcO_~4lrq|B n鬨w9gp7sCM rj{um (U [SltT$7m]-%yʊ`P8~3|FͥMKJ[!<GӢbW0]<d֩D_G8CEW$"_.h"+!WC֭HG4W 4[namM+pޖ=v氚&!T][luۨe~Ұ7,.|+>&8Ly&֟S+w:o ΜmnP4l;l 9.ʬQI h_!IIݧ꿠_!Owд>éyl[aV|)<IoWna{\v >ڛYK)0Ct '%JNu3E/>(gĀݧm$HJ=Vv3q9K}7YU~%{W8fNh6VbIbJ˨qPϹ寕/h;a2N`2 U L|S*%eW\î[y%=(֋/Y/%fB)0FdǞepO3S?DZ}/Y|V+L-RiW'wȐtuU4s&q\ FKǂ+(l6_()gЏN!nEwL܂7s3ŽCô44X jn\m\v? Fo>USY ;ȀVőZCu=աbcS lNbOAzga e7CBm1;Xܸ7N/)>8*>4sI%dK]՛2bCZid=@C.PZaVƽ;`a`!$FFx B{A1VJEŖc xI$WEV5rv1O*V%m74=fe'!51krgt9 ٕ"gc ±͋n`Y5';1+(Fc|кawL,jџ WGX73$k#vGeƵmʅڽcDc2mm{Ǩ De$\ kTarQG0쵿ߝ;d/dpa۬b06 Js7c6zɘlj~KY+ImX,a@Ta뢱B&+3FWI#ʃxu5k [L)UpFBzĔSnqO8jK;#kXA`SB`ETda=euXM3.PUApbaFز*Hm]."rPꭞhڋZN4>WX4-˕ŊvFdFIW4F;qeY7@ XBh_'ԧ!.r'#8y@ءxxu[# }H _ai3h/}t#[øiohܟ˜ۇt#`󌕔n_2A٭&?7(vP˧jsl"=O9iҡx -pqO?@1W&kD(M]_NeQ{+ r0nWn.)E9 }a/@ +JXo]Lܱ}pœF}3$%6,P+KF !<5mdhw:-Q?F0,"?쿱_/X Z :=q1,C*/I#O+c#(z?&C5߄xETHg}Śo_|@~oQ]?NS[` RqN.O SG2StM:.7z,%ߔVcv%G#lI6U!m\mFh!d#/8ljA[Ȉb‹;2!'7d`b?lC\ 0L"`{pRkT6;.NRysx 9r4p.se’m5P"bF J|%>g!ٔ"fO)E|e~mJyvP^|mT6FIʵ/b| &[Cl2L%dm W:ZRIU'M~`B\$Lt Sz l%*"&A0f^ݨ2X0 VGlBof{eԱ68L•9)=Q|7:,P xMc#UOΕc@Z`JҳB;ǰ4BGfߒnnْTBkuެ{gc?Bw`.y䝕-:'YMhBP4%lkհqRY3!$V1҉O} ʕc8\Ɲ\pU^χĒ<^R< BӃ̲ΑZHHMPБf4D:@1oURsﵿZjIE8}!rF5BF\8'*Yw 8?"3 ʰۮ@{R!@@EA/oG*w8`6u6U"PhQ,ݮw 69Z۰i5 8hgA>TWǁ͊8dGC˹j=IH$,bLen84M\bFQ%b'_%jg/Xoid#]d t>` @"`IC|ZcͬN8N>GIezW۷<[ق6yW?-65v̪O$ gUPFQn`/ĮMSNa9;!x=(׎Z#5cfLES4dIIX&#~4o{e( fk#MX)_-v(] ^L֔&o46=CTTG宯 ogj=,G0˨g$p]ݺ&ijҺ7 3EX(vҸ>eD/V&_}xeI8;4 e51`jPʹJXq11-j*xˎ={qXFDȳ,EF9 Nd}i-lt-sy11A7m%kF߸6O|H,c|yddq{1ن]sq0~!{)@8#"|%js2}=hB(]Y3Sг2߹||s:o8OYo?&yjfWc]&Dw{|S*]TQ!Ip83-/jh.@X եSloأ֝ϋ&4L󼍁X6ףב+#W6n[lB^<ѨǕbd^]^@t=/QPJEށΒIm1Y8/2LK G]1DNC}LLXFd*#_Oqy1͛ # ?"y&eL%nv?MNeh)G N<!CsKpIZl4(ʼY]"URI fh $WJJ7gPS>f Y GyGP#"xm5 Ȟ td Qn5)*Ş/]mPJ bO|F6y$."ŋy$0L$&cR!x _(!7mwßjאi-B-jY,Eo)Fx4v.<:z4g.L=g3bWp|zpiNT7 +igȮE/DQ?Z`)+5_^ uCƀmaCbA͝Eٻԉ4@5Ӊܩ75^vz\[_D$wpa78`IzN*qVSzSܸXΝ 4/LP9=s [>TX#ěOq-CNV̼ȹBrooZM$+c3v: JkG, VCU^,o{\Bg2KLCi^`#10. iLn4VS{ڍ 11s>d+6(+~*~KL'JOCx Jb*5lu&RS//)*>Fؔe_$(I qŪZo4$ G~癋Fzr/ day95euU Y) ,CQ/tOX2B]1}OTZ]rYՑ$ঐ"WV{*i`pzKP3OK0:TЧ=IXj@D-OY/7a5Geڷ{~;<$ة( !a8w5Շ˅vKLnT`BCC siI:8>ҏ5{#ʿ$w9^޶r%\è?1ws6uFU7WѠlfk{JSQC _F/Nq^wJ3\86HJͣ׭+%l RN3Tگv1ow։F=ndQ&c&83W$_8gũ;WҜoV_a#UIGmX(N>]5Qee*5V2œjYa5R#rG\&u'mPؠzΏܻT+q( o*'Y"[!G[9ԥ&{dSmLF\EXHK8}o:'w9X9y]`w@k2ndoF%LL מTF#ƐNgЌ5լ\g`Z&-1aq^kF#uЛd.]80s;ƮH77ocYIſ:[\u–h.t9L>q~Q:LF%I2Jյv9^Q\yt<ϵᣁQdՊ*iPUt ߹udEˑ_L@MU4s%cxdwLж~k`rOTnes~E%-90AQ\w>oUﮤU;~Zto4e? ' c.Lbl<~\]=!QQY8ir #Pףda5LEhP̀1|VRBӲ>6 "*]F=شQGq9\ko@ETw[l}m`T+RQ[!S]$rv(xGoom2BRþ7%;):ݽ$=N&1P~ݽxx[}{R| ~@~vyM?DD]>tKd"-1cLW KLI|S:JFp*kf,E“2V`ǀ:d!:v$U wR+ $`w%}E͕\Lu[kfPr"%PÊCA%@`+ā6L+nnLwp^ݣ3d&#{ATzN] 诘c#mj]6mF"[kMBh1ŬlIeoϵQO 4WS^ ,k+♺j;DŽ`LjV܏t%>glxt՟BLNvSگBOy AN#]NW{kn(#߰s ]kb==J<3kHЉ`EKU6,!5o>/ל|ΣgǕ\T\l3+c1FƓ.O!sHe!%)L&8"9S/=!ổ d]MkF$և=*\5&"i>Z }NY{fq׮ϡ Rtc[dyΧnY“IRGכpe8#>C)TT'_r0L"FE:0E=YYJУaUЊd[i/*_2BiQZ} { OU˸o<ʊZBh_t%@/lA"{h;f[ՠoV4xARX z~)S#a Afu=(1lݪ;/!ǻݳ46[} y1_E=}z$' %6bar1&}6=Pi%UlH^oSLF?9ew,-A仡?b|@#teZ|{r49+Rpn%Jk^@\;#91A xdkRmhdȑaٻjS!aPxT</$؅%k?hye< E O@?lsfò>Yuk@vsKx$_paͬ>n1ߊV/e9`*W7OzkG|+nnw/^-LɿN'cMDٺ|(6&^6s0l~VB+8#݌0ޛDxα2IjkHϯ+\q}aӒ1_D&S&obw:q2} P` ȼR;):вY+4dͥ-$G 2|HCBnۦdSqoº>EN NEI>!ĺ&\~3)Jh7G%{44f"_H[VDnFGm1,p4!3<r4l%TDo gY>v`1)bBY@gel\IwjrB&׿؎B`qA|$qVg͓~JDItߑo~9$q밗^D 3|:/e_bKd"Q ʗIW=v_^kHQ/,4)xNC{AJBFB;,D"gs A'R[oR6E,Uк`_W? O3RO4Z!Ƶ$i N7JHa6@J4^*Ƌ>mLN<|Ҍ89 khaQVhQ/|F$#Sr@w3;qS6zvʑQڗpwxVJ)Z0U_{q"E<˯q"-#ib/U8Y3AOB_koTPO?NrK:#â.X3`đ@5A+JVHKG`8@R@| Dn'qņJ[g!VFTyb먮a]Ωͬ@^$aS ޝjw#WMЬGyhԛ.+uvP[o Ob ,j//ER=F 0 X thOlRs ^ljsVwug}-s{PIUˉնt* ⍃@}h~\BrfHնuȺCLiCւL|I*OPǸ;5nW4 б%Ǩ=!1%;t@ৃɡZ2Ŀ򚏆y*\]. D3"C}? M@q\Qg%ڦmwI4*[Kd.ڔ};^!P $GPrwyRQX /RXd6ފWÂB39 &Wڅ(BR\|J\HS>`~xfm^?8]yUÂ3TFUoVATwrsG8ݞ.Ë^s.Fa%e] v2k'ܨwZᔉ)Y=o`K ye)|ae*dԩyv#ί2=J|ѐwq&(H._쏓 |g'댶}=t|*FWCTRv`DW^;/SIoiHQ4S]1U[ ݢNqF)#J[T(OkN h*9]thuͻxsjY-m)tAк=84+}s|<1R7k _v*\7{qKM4̥XKY8Z<߆o?)!^ !5ѴN=B`5#t/Rr;:s$٩Ji,n;33xх6XmE=l N'3TQ O5buR|R`_UXT*lï8rׇÏ(3 `m1N$lcY5\ qTR _mSW~kچڋE!6:ǶfW<,XPgnGsrGv:kZT섴=̀m|Soiٙ랆_ԣ ,>*7K d<O2xR9|YVz INDՆR[zJsW;vL , %f^vq-Ҟ'OA? !5eyR]%[כ%UY—Ƌ||c>Dz[}vJ3<+.C0pφD@0jóצvq:9b2r;qozM+PYYlpɃ¶f+xc^ c8lC ҄~x:l/`RYa @hm4Ɗw oUveXv3`NasBw|w_4 隺bT*sqFBH;TWD_f=gQMqپ1eѳF=4ΒdU>kl$"Xm? '‡b4AdH0eJ\ƥ3;óA\z4H2y*b\m[9zo30ٍ%Mml];"0?Ϲ1"w O2d}T0}{m|^JSE:yn<:sl01ϟKCvw*OSW#`1NL "^>-'yl|:ScG FVG۬ fҧdUٴ0>:Je àZ;=ߐ`eI AAĵlq6%7P7˻mO̜_-Ȭ΄OqĜB4m֮Ft4GD!-.U5`.Aڭl6'مXl2|cłb)Ĥ$ga/+y/+yY 3$?`5DzY棶 Ã0H w:2{oӹT>9|zDI9y܀wEbq?[4H2'; I 7P|n!"'_XlKݲ >B~ ԫVG^J3ʃ_dk^Ÿh蚁-ڜ Ȥ]W(~Ք6jyK%DEPՀd0 TDUOP1Lb|Ӧh=(|k? .uxh8e8wHˁB^벰!(L08S~O*DmGp2  x;jB:੶m;7iHaɒ P{O(¬?fA`‘ ,vM4vWv>5 ,b p`4G̴ E3 3+od |;;+υKB_[ce*1a_1ܥ|FWJmaQپKXem!xIݯmݛ,1P'ό}l6,Eø9(ѯߜKU{<.!?*qJ[ފkv oK$vu"2vLqdTԶTSz^`A2M;S2>H{f M5!M=49 w44HmZY2+cp b y:nտ_ှBg,"YekR@D#H\qJzÖve{iN6<y(b]vӬ# i \"♔zlrO`>w-)SVѾ-umi_[6=*'W>젦ͅA#q)TK!0GBj7vHU6$h bu3 e䔵\̶|%DZg)x$:}4}T-o=G̰?%&o߀펮a0s&Z .]0\1 2f((l'{T@v?m5!}' cquK9vW! V|vb$cEmO43#raD :yB2sd60TH&8Xbp_\(Sݴ?J pלd=EJe "#\q_$:JAuI_O!=⠤,B偹\\G@ v|N i9 q $q,~*0=ݰё1]z |Hx3$&Q9i;-X̢:+q[PǰW"]k/|mϏqjӊִ{ah4Kr?Šu499g 7:U+ZX+}hpљhl|h.WV7;"[u/cslmzK2 ,LM3y&RH7*# mSPƦ$ΫՠlZ!4@ot]x"Ⲁ31X;ʀܑ^{(O/aq3}!6;)"ɰXg:;&d -f) H/Ō3-jvq=ɠR'CE;gQ HIc?9ps!T9#l &_A-Fj ueOeNo:SRIh0<)/l{Kx|:Ls A>mrXmӀh7 G)([`ЛJ0کWVy,sXُ f%A1s@O [Ž 6L/?{_15}pU3FCVh#f3zƳLљV#V&=lf.PMKآgGƃC*2E PV"qT~-Kk.2bPv*̌]ju*bЊE< ͇봮)? a7Q] {B!Ņw=qK~ZkLf9*XS[+ cS`sq@{E]jw^ }T) MB0|*X'2$?*g^2z w/en)HXT݅:O:L ۛJ|M%FS,q(7FhgYc+K1ۓxw6 lQ'(v39jղcBVPa6IY2K''-\":n@ݨT_9 ь.#|r$LT>$>M`"֬mzҹ ]UƼ&|L+!rRDObB: XJpp5 -"?*$UtyC'ӊc^½ ]&a;u*Mŏ8, "+'QY*GP*S i0?ttW(R r(#u ^T#Rb ٭bIݞ:uw|ML'w4/.Gr4QA<ƾoBMM`^dZ c_Kv-'W7K-:!Ԫ o#)F \EleQFk(tBQ+ {2nB+ua)B]*`/zKZW^5*0 Hut^p9}6p ]5OIgV.K:oQ8eSr6 =ET/ B쭞 `deF@ a,yc`WIQuN)4c(iZ@/MGjNDrKO_QK$hC. ݩp]Ot$@$7Px{\%ra71M?( *_Ɉ"*\G!yEq(VhO+N wTSPQ^Ռ"јZWm9ZWDsLT=AY&#\Od{\k)K8jۡu -祻;3EઇC9s+ćl7D"SfE)KF92GUe.FV`jLm6V /?-૔^܏/ {>ऊA~AڐY,榱?\%+G'9vtb{sCxmJa8,@+Kůԫ5W# ޅ|jPfiRakOcGޛ(K.Ni.y}PVJh3y5L !8gFi$]8HօK}|\W^5ۈLg/S `*H W4K&7jnV|+~#/h0~|@ a)D^?8e&gMGY#v#IX6Z4/O{ҍqڰ'91#Ͳ6( |`Ev-$do4$BU\GHu[C0?==B55MByWŐt'B5мJQ3ZGd ՟ɅAtHQIŀ>#1WtCyE߇ܺ?\pЛ@* e[K$1GKX }l:V| cp'9w(OIt:Q(&ŘUPD$"x-|Crr+*? U#:Wd7l>3g_QuRpRDXQ.jg:5]`(2p}Iu*J?ۘo :iy ZwPNA$7PExT*r YF'Z VUGx%\~I!w-T\ގ Eb48,{I3mK>$u*&Rj=81>/wl*q LCo^K`Mb嘥3h 췃h|xf*Xh?"UfuV 7&, n#|dp"= N%t4}?nu'x(<Œ?ozw~ lDH_c-bۨ[@/KvHӣB?p}_+aBQir= D9#V)nȉKC呛vn^Ƹl\Hk4fqmίJ\Tn@¿ 0hk2gs| Zt!VaNJX*<ߔc#+Ͼ EYC@Dzr?8f8HҿT QߘY`qd 5*e\4Ff#\O|(ͪ#**dv hZ5F̒sϷx-\9cx7UTu$@Hud̯+,F~l>_cB"AwF57QqOM,lDEժِFsz/ xvD[ Ū(i)j% FƁ]h0E 4K'x cܾz@609]s6N Rگ!_{BE d Fq*?:g1n܃kJbV LeG}m r>2KҢ: *pf]䌠w]&ށZhӐ S`PՒTg*8mH<ڍN· ;ei}ZPDI>9g5t=pJ% FcZjdޅK+ hPb߇\:Ng.h(wqc`;-K5E` V +j*<.]Q|:!i4VEe@>NIңZbҗm@Uζ h;u-M'$$t-ѽABSDDnZ˝a_KY.@#5ش #ִvIӔ^ .I W`~=iƉ~ .kZIhb#5Jo#'c-z/:܌ًc(ÍGpG @яǦRAJ3S:ĒfM:b ri%ϙԑ%eck xKLD4 tnodí{)B'2۞P(j{O@^*l ],C_]gkx4`rᷘA‹%*u)e1mvaq&dN{ ?Id?*6Iӟ,e(퓓9MwZQnSVp^VTy.CrV9XD?w Ћ#&Y1f_~һrLi:xHno=ea;̖݃5n_䊬x9euZX7|Y\;Ipj8Ms>1 W37[ 8hW xdF/c\{4kЊ֞(]L]P`.8)4OY A6+w#mDxZxs<@nuA!lɗFYI"CTWZV^G@Ґw rT}ergD;Vulo2gYC?KFhpaf61twgrdbocA0XЬ[A+*zssA~*[S| W{4)yfIG CVnvFjJt+sۭW&8GLHke5q wu:c \0cCQ6q_k [Jnӹxg`+ 5 9[={t9$,ٛe\DJ_HR+7/x3f3-ַCMnrWԗ6?7s|?o52sE,qPvT=>Zԙ/grOLCAGPgC(N*YEV&0infI BQ6L$Ap<~JQp!s/WD˹ū9ja/~ Ew`: 5jDa9ֳaM>n/73{4*eZH kz|P޷%%9L {XQq{JjQQ>h9٘,W&q'q'"8Z2 CMpw#"NN_;9erd(BaSYK{Ý$g^z/3}F#ӏZO31,6s^l/l~ $to.}Ψ.*\>?9 HLbi4uܰ6۲U1w[^dL$/jF1G8$YX;bAJ8cgrwbɒ]>W^,I@+gYQ:g}؏yJݵZkެa" 7tiBe^&ިM/ ;+j)wĄ!?I9XXC(&)dğifG5L TدcvQbZQT94^'F LcvEm 0EGJF*9bBA2* ȣabɼo9άӱ#ZdK=snГ Sf:HY!OMfYP^PGq째נȧ%RP_:ΤI =jWn 9"(Y"i6`,5p/c:7KY$6[%G@*RCVW%U;rC^TKOuVV0coqH}+ /FYK.Lʌx0ˈ?R[Cs,6Rn]A̸3ͦOKk+#¢ 6甝f~#|W;jbuj"A8HeXlQ ĆN־W' i.EtC~3]Jb+Gz,i${^#0hoTtA.`eg ԟ.A.KMʢ+A+tbGY/?熞py5 Z-uaPbt}֔<E.dz9P@m=R웟ۗm."4arrqR&/5H3yM}ܘӚV\XPm QUc/׭'<#eU~K}sFwF{5E ~./G(8{%<xڸn F/HZa-DhU( e*(+^t( LYptyGbɇ8ֹ r_hb~j6l1j]tƨ]L _pQG6_yPn0\P q)D UovD̅@G/$I$D/guΠ!8?qrAYh+m VȦ|tub^,,_:Lg/j6Z%F(P6v~ኖxb1+hQ]zhct-)Cg; |܌'ke1SxZvtCTpS gNŝ"Afأ'#Fσ^7tM ٙv(E2m"FZz.,~V}gQip2zqd"SedCdϘaݬQ6f#J*}x˅o&oaz֋O*@.ibC߮q\*9.di6ƌv%pKdt1} ihcaMNJwqQcmJҡ{[_2H,!c26NN6dˤ88y ?|>/Hyn|waH>@?uka-{X}_}in?c#^P{'pɸHU]@[!=yH+5qYyXQ"Ҩw#(tQgݳ?@L quǩ:%i>]-B϶ /`vV6Kmay c( + Sc';Nس’| bb:gH)]Ϡ]b[T`_ٳr7X\UF<_{ eAA_y3YZ0\t І@.I *y,R)lx@r@fhʫ$&-0"*4m%˓ZePpeB2=ʄ)DJږŦh˜gUruM>2:{]ϭg;7$Ha^ǽ\e J}c2 rr& ;@pTR\5yc-};B %A{ J08_h RڕeƝ5#$kSswO݀yFJ_ klbhŚu?^Vj}`=(2]UN=S_*MUg#Ur1,%iO Pc)fa} MaBiYqL(k oT8jljP2ut'8 ]&#t@K hAͯ FyϣnL "{M5o沩~3uI$,^76`0YiDKa SdE:U[uА3Z(T?;ĵ!w#2ȟ6ߏxa+>Ujnt ٬3$jdu'`9 lR"BQЛ%Z0-"\φ gղ"5<[\tr~Ez$3:VD*C9aH4I^u6 aƧJ2ĉFb ͵bl^Q/ʹ3Sgm\o2ླྀf\i[>hq`!`sLPT V^KE;ٲ7ȯs $to^F́:м>Td*bd~72$fY0|k/@4̯s#L3FH^ XSfT0嫆{x$o6/I>`- B01N{-Z~?\~b]l?C aK(2#~Dk{k`FIp1QpsEN\(4mfdaT&Ł}k0b>F=)jW<=->20%X"m4SKș+3Йڂ'FT`7O|~cS}43iK'dY2mqry eþi{("_pz>n`u]s"^׌^p#_Xaߪi~f6 IKܻ u:1J ;)b@ KwÙ uO#"e<2eJD-}FɗOD&{|_%\hZ+Oo)e"]~LC?.)ncۺ06,2=}PsP`GUaosVJvYФB e(;/oGAZD[]*4ߜAIl3J@€I5oұ^D 4iQ`I;L878j }ޡ(cq#0xv!$3CLi!?MBfF^KLr<=SSxN*0{v'оZw?C4&,T|tlaf%똵LRbTBb7O~<'`!0 sM|)蒂DEz|TVͤxB'䶠kNF]u(W;Evun4P.(8zW #ֱݺUF22z;L7KB]k<)X 5v:ElYE '!B1}' 6MLZ99.;_`8i_j]1H9]w(dj7mm-1ŝS4%)[6sq!cen/k= $fhqv=tcg"TŠI;; 3;B&%B3x`5㊊tK'i-fjuIx `q"©oW=>Hl:g-i0Hsߥ;׊T2_ W)LIE^$,N[Y .zOJ гUSWc:h83nt6 afN$~!7ڂ­SrhMSxdOͰ%@ (XK6YeG!nT'RF3;/D9w1|o'W^`^&T#WF |"o#F'qMNgǬ&1KcѪ NW'O@eu‰Ƙ&H;)+8\PN/D)&6Fe+H׮e(o@*Kg[̦FxMk- gpG~D.K\hf2㨢KfmEr$uyub'/g˰]Sm/oZ R+ʾ*jHobb7XaCrU^ts扁?-)+ 'Ӭ)Z3| x<}eM9$N!< N#WHxTN-XNjS\yޗܝ4=_)ip*_XyO 4q{[6a`7Ř,;˘J2%k9}&E1]PI^># ϕ.ۧwmy1UԔ:0z>+-lVК6IܔIWtb&8jwº`,vS鑖*\Y VyMr rv_Voa`ti:lXټ!Fc @'NĄf?Tœ@2Wk5S+6]и~[cP(G8JK~qR|W Kx`YζS 0$-I.%n1?dl i 3u ] LbIWL`zCW CE7h1쐋IEI.!LlP mkDþewh6N[ R)GG&9q_85t.`s!hݔ)逃2^YKbb,OݲACWf7Q=,Q å0u0oXXbo!f?|0!R`}TBԺR\T?#"-fmO! `n%yD"*kfTrMyHYJocWoϢ6r9*8e%+ow-8xtT/PkƩ)b"'kM^w( =ߟK9iKUgz="tPK}!=P4,fFBYFVP nd= z '-4L BO -*ƌd(2Idȍ^FQՎ#`\"]s6NHO^+T_`< f+r4"ہ<@.0 UOp/pprp{@(tld +7-b* fT:*n+듳 FU+ ` sاMZUasvcD= 3ܗfáS!~I@'|< Gl=]/Av=ӧ/<[}-{)\0IϺ;[F=g֫ص\}bs[#+3ԕ9kL#wL ٻ/]@W1E⳯jRBX9q [4U\DQh)Ց()Fcncܯ&hd3FPt\duxpg?u)ڠޝ–кf̣1>J)<چgju6wt܏ 4@M=[ Xdʥo[fDyj[ H=f;kݟLT3mjYmp#2[w^;QUROqQ8fC2\eQ0**rޘ;*_X]D.+C닙 D1{070pTtg2(yf+"Zqʰh_"kbxv:ip]ya/wR4,/Y'1hG_6]W] :UE1<ɉ>r WYѓ5ț@_ KM{%5"uE0I5>@s;-k}6΄Vb)aDn@Bb*xj&vwf#0[}*n +{f7J8Ezc}Vp\:,)Es =(B -`h m#уi;n_i;[de/;Q_YY:զ͓isn{ȉ8.Nv(j2q7:.~vu,ܐEtJg&rhS#T )K*]7qsaoc Xk- 4rsw1aɽDQ~Szk&Sn8o[k'!HJCZL* ?~Q!msj{8ETNc9Xf`ĵ2K6j)0Δ!'al,9K|#! Mr%ºŸǝ^WÛJ$aA^,cn)aNy/uC2mTQ,<< G=muueԆc/LaX/-2f}xKTJIU_(Dr\ְ}~KKN*pط/'.H[fqz.Yfnl_Rs@FhA)<\o~% ۂuH ޭ("d<V ͗(5ϡ"#~%}㣋fҖ?G^L [QП5 |(tĒ/dx?£G]PtۮZ& NtDo_-ew(l`Iuæl;cl 6̇> 'Cz! K~W+u$k0/ZG@;g~g#sUfk}%ybA[JudtR_>_@\4m*HYN ]9]9JۉS_(@5'0G}5\ _"\{tvK'T[͘w5wr>!yq&^o 8>ُO$-Wtrvح9~lH2ݶއ/sLNћT: %HN3hmn騧:1 mlu\I to ~e\1g˶K~@eIح V djm7b605 nJ'7_3d:w&hʑ8ḿ=}ի:ʤ'c md6e~g)V#19|{"M>{u δЛG} a4Psc ?g ~g**Jm j4* f~hŰ˅> @>GH^\}(zlshM*J\;R7,4EѣZe7_aSN3٦k/ ,~c@n)VGD³ tЅNb vIGظ~O@Z -*%'45﹎ҎA?ZC;8oUүfOҺC+~C'tFxcŋ^$T7 #F3;CVgF^sJn_EYJYa(claN/B<\ҘTOE- ~de5pM6Ϛti UW|݀]Mȭ'cXS6 {Hō6f %i?wճ% Gb_Ni:/ʞpeBd%ջE@XteoKE4OmaY)c#)$jJPӫBH}rH{TNT<˓H U u}ڷAY?()٨38PO QW=q=jЂޅi}<ҭ|+%`!|)V QulL9OO6EO*L"ѲQ2t͢߉\e@k Hx͖-Kf [ܮ{(.T%r]Ɔ丟~O&a1KJ3Zwf#bLÆozڳoC,0fQeu b"uKjq O,/;RU} P .[|q组.2~Ռ~ M LI!L n)eHF+j "QdS˂,< T' _:-PdPt7a- `YziU(9En mpe-)(ϴl:FсN=U)d;EQjxxn9ҕûD rG}7mʷ">4k;Sb~~{>zZ9+{3)q1#ސǧnaMV?3?PoV,㫛yR'qEЪ.2tXAg\~:34! n,cϝctxr\<(}K;QpjpmYgeg',l1֒RF;N* ۛlnbcޞN:`uYqF%Uk՜ѝL2퓠=tY*ϖFK'TLG"넣OO'q&ѣz3 taH@ -l6t |\bݗڣ>qC[W)0u]\1f⇅W?]2   QŰ b Y' 1UW`MUMGG׵MO.yVVgIEKxɖZ4@&E4aCn| ‚m9 =Lެb%f7*/6 KO'ګ!o *Z"P&ȠDUXXa UĈi%SЙU{cR61E'<95IJK\TDW*3FOݓ!,OT0ÃvK0'pe7_LMoRХO6С'AxD;/Ju^MP#ueB_4FC>Š0%8]dq2idAcObCJɒeG4 )E]#aoP0"dhj8b:F[R>az}L]M.S]IA 6aZrZyvbE}d%¦ͻ7{rY!z^*sds;MAIIwcMuU&/oBDz4a=jxCƒFQ+Հ*^遮spSe s2+r:ڜ(p.3;!G 8Hy',(ك(*(q$vA}NÇaA[\&^. rYōð}wQ9=3دNUE;ԣ |^_WH^۹6p']/+/Ƕb-rg|M:RB:O `~Iy0۝>4+X-(ݔ0bXZc>yq] Z$G).vJiU9x>,h#;)ØҪ:ve셽[Q߉2|g< ]滅&Pv::x^rO:ax S0 LæNڛm {;L( U:>h;mu]*ED\ jtm4-ۑM|ɬJo}(tW`swL*f7IjYPd*/i QQuR.q̧^[{p`3Zx#TۻRQN瓔B/|^T2٨NLFXZ~>~D=,|/Q.ݭI8sv:nAk@uE # x;GfQ6\/l^ hp3]Ro5“qO;O,w˸gTr/jt|u?AZ~_LsmP쒰|0dST'rD'崒IwR׻bNQ pE9^ \ky>f wyʤ/ 4nVOa8xvS ,%>aB TE<8;pckyŏ4j2~qFq#leېe042|!b}1' Wd-l1! aa^9~ fiZhBj=`"u)%^TrN޳[>>SyDlBKgj̗j77.T@jm9$1DgWycC8}3Ekce!NN6&]mF |pp?.cܩc. 1Aġ ̶ɰkI_o$]#zfWa+Qꋴ LP 5P8wb 0tq'EJ|'?>{Q~0YbRh.c$`A,GMòMv1#!4Pdnr;iHGq=Ыy=x0~ǭ]'^~M]Xyfؕ 7w+5M|h=监#jF†i=+"|v `YPŔ+MŮ:5s,( g¯373^ jGfZ!N (+F_A\5G "XR=Lёݞ};x"ƒXzl93\.LAH 9&t\fEi|_[r({-M6C: 0|9IH TaNf-WMꚪ/'/zfhrpG\"y la\w>!jWRNf|Wǡ~gQsM}q7vB,( W?ύ:K%̤ M05ikԩD"oOp3nS/lD=Ae$#0r|sIe:$έFcOuXq(Zb45:Wnþ,LGÁOٶʂSrr.&~nadR1,7m5y[|R ?0]qa)- *3'reAocյd{\uk}%x$F3[ٕ3ܻLBlc.NTz˼q+K-61 Ǐj:Q.!i(2ge;Ct ayxja@&=ΠEu%RWN\&沾(SjӾx>Gvr1ޓ%.Щo7.gYf H^r_<ƟD+PT+Q;u .ColI U 5;9x 3s V& q4-@KA$ ؊ ׬c><i;Fbv=DdN!u2Z^*@jt)b1q4QWnA-s `ϨB_7K@+q"\/! _٥v'$Oz{wd"+5Tè)\z0ilV'J>a Jn"!vP6a7-Uh?pivurQ쿷ax k )m1xaEA W0Gt#1AҞ{{H.27gK~doXTj~!(,4'Z>ָk]wd Vb7rRUCy@lxzXd朋`UAİhm^iZ^P(X3'RkOY]~!/O~n#Ai :ߺ7Z;tUoo݀F5H𷸿Cw\.DZ5>!B:f2;Y`hMՈ`R]i~~}\G ё`α'\YfA'rTG [EwX%7sE>i3a'-3vE~X"z; >DQK$Ԗ3glH!1Ozw5 q :5,Ykv䌦bbP1 ͔#!Hɪx ҃4>:^eiJ"eR|Op#4DK STQaNl q/]U 0JSfVvV)U|5LLs}G: 5acE=N3໐ɤJQ0$geHA뱷zK!+a&"iO5 YdI4MBVݣxʐZ[}zhRcLi-!D|ɸH+&2QVjϠ22%S]U]B] P^{{(D׺_c;Y@y.M߮s{rqt1|98d̟7`ʴ"}|.42v;8H^)QD.'7 SŻKQ۾K -4HXMsEm8p{ :o)04S(9ĤT? 9+Xp~?;&X"b}-8J姿;UET(P~q R+GCUm)]B PE&I[w`>Ŀ'r .9.Gv*Ļūb+X뿹 .\s٠h$4C?G4@<ac .ڿsgX\|.MN(?hu5޼{u&ޑq\eԪ'(<"w^TקH8.Adgb9@(ok0UI-dNV@e?x Vb[Lm\ds5Rt&-rGҸ_Ü(5ڀ!L:H~޺W)&2GPrDOrM.76E Nn,xG}&@}iJ!2js A:7?/m{|2IҴ$'SK!5wB.xp] qE ppO<Liմ4_'$XڧSQ+3Krb5i 6!Y"qC \Ik'Zr' 8"9IVB1] {.#Q-fqK-)`I`ǏDL$$,4Mndn7+kRo#1"﷈{OXQF&{Wj R.OjlK}}s(#$zFV<5 ^+"\'] 2dL߅ZiBu l+DPT.4~ -CT=9`ZnEކ1Ϝlb,3(Yب 'G_%R Qz8;ء;'8v0*㔸9=(20W[E_Zcl[ EՍ' 3#.ϽQHb!L{2rƦpQ'<ݬw'<aP Z0Ē09 j<ɉg ES+OcJ_1g?=#ۚ} $pAh4 &2Mam+#Օ=&]>J, ٘Ǭ ]`4'D<}u\ :/RN!6OpfYso7$鸘y&sp_f@w|2(2gS[Av "zLV5;D}, .+sOȪ:HW_*2/+,Z6.߯Xq-:ˌ- W Z q3&X&U#%^jRWb@yDj2_62XoA jˡmLaq{zhb{qǶWN={V؞X./k5hAdIH&MD*U>}AW_c `TO&!0r{»N5r/:qZ<+| Ȓ/AwYK1UI.^VjO,g[L7Hq xX _s3q/*%#qۮs\#ּgU=6jOE3TM q DrvP(#y" bُsEcY[rkm[-'k2^/9Â$Y˻J&H Vǘsi\ifLY{|f*5D2 v4mIŞ5:N` Kt W3eΗ4mPN5=(K$AaI)9U[ n #`.uh9I?3LGk .78dѦz LEdlP\n!گқͪXD>;J`?'G H="Şx! #ܤu"Be@[6w7q='* ss8z(ATE ;MJ2> i]d<:@rɻQ0`*bU!7bƨÌNhj=7Y_\PJje1L Kä,P3 \RRsH;=Rh Q3{\s)? r ,w'4@tt|[',-~7_[b>1DpAaE=jǾ `'AYYŕ㒻噩ˀU8C -FR[\>1iur!](ZҾ1 _QJtYD3 vѶ`8#_p[ 0qP4`r'Yk{9Yni1 -~F ` D\A\kћ<07gnq4`S |x 2D~2 F^oڅ3,KY !%f8v^G ?U>"C͚NbfѬzm8 #{vOk9L._$Зnk]p\:+GL$ J.~%=IU{!-苁6PUF-\3[!4 GH O"*}BH-kez.?1иx{o<{L8_8ΧJh% \y9k2 E#`<"y)$.m%UaM{;x"8Z\Ku(Zi?}VOjpE5Zڣ͏`ico=4O%,đ\wABRY"a8b,N.C<-& #-n5f,Ei}X@Ú ]n$oB%u)BBh9#q$?J.$X(auQLTJf| =ti?U9HszB )J _Wİ= #cë<ٽ)\wR B ^Sx i\6F!! AUkTQE0MQC} )O` Q`NgwlȨVMS / 4e76Y-ӭA^BQG[{ "a*9%K2 |e[ AVubxô.X`.G_ʹnY0YneێnF1hg*#ٿEBO=GE[·`rMɃ`| + gu| ?}w!nz>SbvYVm[E.).C|349*tL|qRG,!ء|DNPDW6!o,9GXaE'![hT2޿9ŵ)8;Boc \m3^~Lff8;~2]iH vl`]0*$$R3|L tw')$^qZ?j*R 4* JS3F.A&Nͪ71F z~ztB ЪOGtl} qOFh2#.!]x´[A=BpAN.2Zp4'Z5юzr~T| ]i h sIIyF(*ї}Yn+=n쵤(4\xؾƾO&9_5̫cTOvG|nKjH뗫!7dS0h y\VVu` dzܦv yKl+f}vS%է2Uw|rS+y7?&ܬ ca#u\o`/^(h=u"ƽs˩q-*Kܯ-XZ ~^a{{1_-c=ZP毚zBws+q^vKX"hq Tv=\jA/RWkCB UG ¦ OO"Jvۓ/BV |% Օ"R!\@nlD˛W@84:ocr')9y#TR œ׳KyՅoL;E^KN_=,C9JaiHRP\a|7WY{sQ _2@d_4CZ~F7A/]^.uvkB=G~ΰGZ7hUu\`ixYL B^q/Vfj 5I^=ή_l0!|ZNc$!Vy*d6T0'CIyk^[yҺl5\9h ΀ Bۖ^ uD5:PS!2Ԑ>ud(D`5J\C+M`urjV*۰aȂ=n?ky4㖍煸|&LP +X[0w O][ݔ,y ֻˢQ#KGC9 \8 7YP*%{74QV8Fۤ&J3Aػ=Ꝛbu-. !To"#e e])Ž`mkPr];W EvܚЦ &CR8]xwlA A•?9%"d(p0EzpD3#Hh];4byIoI /hdz2T{'mПbҁ 7`]xsWyvݸ֛ @e\ fT W':D%DGQʝN"X<ɺxV=BxO$Po09#sn\R pOa,n u/ jc3QkP Qߙ MzjVvW_`*BtrϣEg:?bɴRdIv59_Ň n`iy[~;Û enVrk餢2DǻV//Jtl*,QXBon$8q3u' 7v:O;L< Pox$!;ldqV=2;fWC$צI$+X,dLulKh8CSԡ M.x^R\j]8qJ+Q4ZTÈ>C%?gqnKp&\OHw25L .\*3_ a" iJ ~ uʯ.+VcJBr-Hl˳se&+r\ӑƺQ"JRcz 9, ׽DO-Ux_,>WmM"˜)ZNCe==HC([Z_AmA[t $܏<9_('2Yb7S4`6WwGfgٷ`Pnm9'pT( 9 2jUhrsƩoDASebaZ1cx】ߋm(7Qv%h)CX~Vh/Zs<P " @%6~2Wf(:'WI ɘ𓮠KejNv.c`ƸH2$_,Tq[M(7ϒ P67|9]3ޑP;-_ ^2jz$i?W"̼cR!MLDEo/t376C2 PFbN߄ˆo }GEՙ$,\}Ɓl^r=/| ,H=m**y?"/+&w &2[z6PWq5w퉃|40/gpE8;;N < saUC-ݣ:JDnl]UN$/jEYVcX φ% K`*>HԮyǛ**5,a JJ f\;YurJ'Jz}?5Մc'@֬nz>SbvY^~(Wi*w9ց?&76ﻓB %;}i:7P9kJ(48UuEftYp\1b5a<8fA(\@>muiSTD5sh^bݚ?3 l.KU5k3 &n~U45՟ I ݋ d*휩.0O-_тG r<9˭]J|f֎8PJkz;\eyYh6 VJ\L?ϛSF|`U-;îDExڝJf-^֜Y&¯hXkVOuz59mv篭vWלn>813r )jarb2' o謓B]{M+7tB#tݔ˂}F\-۳@e= [n(.DװWwFlN-퍖h2n Fՙh82(I8vf }Xs KCij6j[Qo,svwf[ ^e%a1:hm a}pO,I㰰9*ufzf_\s@L~I)hT޼-'ن_{הQ;~uzUqқQ }>0QZE ."vԏ s1ki/uqa-\j la\/Ӌx6TU<) 2[d :0죷jp`'=) lM 49T]ڽT|IԀ J>Ͻ[Q!|F/z`έ{r[b{Tevbc[ patŘ;ܔӄt68(Yh 6;Eߺ.y{܈$/raaJ~| X|Ӌdnf’}ᘹvrA8F/l-aaCB LT f߯Fy<<[vP$a~zJ2Ɯ܌;H;jX/>\>L1WLu ઘ@IvcBY TH>*=?Q7xkZdƝʺW xB@`q? d *ʤm2Ym>(<3L¾D8Y!CŰDLN(ty47_g4$VT涏gfZ&q@6&Vq8i>ˋhelxqOeF>LQ؆L彚qiZ2J:J&myE Za%#NrQNb۲V]J~`BVBIW4'y3n"}rN(D/zS[},BBQ+t[sX7cu{12پiEl,$X ͗LQ$co:nYf[vVLʠ䬁gwIB8*U(QN4 g<9?m6)M H=W@ŗGOVĴ=DaնfUvzeLߵ`t_Ϣbm65&'H#?񻴂!7!]HByOޛԇ&cӺ)J\O9nv,diGĈc]*Dkz <Ѫ Gui3ZExlo8*9`7dCrJX>Χ9KCXfUG=I,=z* |p!QK MӣnX̉_1ډO񳃉?=g9{!Th@߷GX=N-@ pW=Jguc֑z3E+iV{hĖvͿBtfCBvDiĻǟ9 vP}ߒ_d3R@W]1h^rSvbdL|:)zwo_|R^REXX4 L>YcsMrr%.d%88N,?21wlqp5 (QǙdymLűC =ibAG 8@B(R[j\Fi"r *>3mb5 /Q`&B $GF'!s='GxV{c\I  GĠꐓQY&dP%[tRZ<(isD @b@9YBu@eHK5"J\[ nኯvmȉhΈ_RRl t{"ޓz +=jyj;?;ũ>w,Rx~үr[w%&=*X;oUP9olhEKut*u{/p]VvPm?X=c>6*c>ӱg5WTTbO>&;#WY2GTsb{*6jc3gsc:@ Hi04MDQ}'c4TW/)]!*c: J&29,`.@uKPq^ Rp6[94]u=2EQ4y$ϸf{sW]i$Z j5JW ѳxDBڽFYO `65-8`.1MDDT y)Z 'YFxöIh!Vg@_%je3`8` i6̘<خG+OJ3VOj\y-g)JⷛD֎,r1Dn%{Ҍ%4]DN ZCQt!Hoj`w8eawx$e%P`8h"jOq+cL <vҀw"bI1TI_ij_BBFNIj{T)`BVGZN'=%؅Sdk9VlQ#p?7m ݩ ̄+i=g Bz"wbDJ(O="(U !'z:P -CtC+Q,*ƻVYyZ)2<؝yj.:Ƕq#mW4O|11np#_(.)0 ªݴDu&f_^ו˷8ϏO֥p/D.`~mbD@" DԒz+p(ձPZрw|0BX3|&sP`9,PsRNnfW]-xesWHY ,ʲ dɣL|˸H>ӊX̓⯩9 ^R-:eʇn3h Qsgu۫-K ?dӃw0k6Bs$-= Hj䢇1_Ud6J<40@{zeRRW3s 1udž/!͌ jfM&P# j.pfaP:+*Zrjބ"6|7nCSϮQ8~=O{潻+=Ae4F갠1:A)F7C{ğ;579MP~LqG0+=',Y[J17߷Wy$?k<4+xD0> uo=/O/+ TQP{g]X+ }G;?O'O{"⼦?9}H<zݽ6[)[%فnRۆ;;LJ;q任"nwx[Ξ7iB3l4pX525S&oC2 @3Fu#<^Bݿ X,TT#]AxﯾA2;}D|)n\F/Ζ5?a'CU'tJ`BCt"OEWčz&EGTn68.l'`+|=hz H:>YC]GtF&LåM+ =jNY'U`>,Ea!$aM8X@\^(w) ։P]z@8&PݔC9j9scS.,X@QfR>II3QcHLWH=.a@U5+|9N,b -YciW ?㓞L%8q!exy0l{^@8g7*)~hԳxj- !piY{F%ߡi;PpeX<{z)L$d>Eţ'Sy.  #֞%QbՈIjxY5TH4L* ›{̳f!,kK^fy^/CWSf,\y9&9U]۹.u = 9t_Z3%[+r6v|k\tTe:[3>s7v݅maPŽZO:ـkKZ:1bз6iPhsWFDLˎՠǨ,] ~k"r\3&Ci̧txbE0i̭RD1*@6Gx{4QP? G:ȿMou|5 ~0j䂗$MDWœ-j ^8u|'UlN@J)ȁu*ᄴJqP?<96i4ݒcB鉽lK ΏbD 5IHV "DkZPпž\}ݫ*8r@R֕ ѵhU] ۙ#l\X)lo~A61XڡpPyLE e"KxESқd@sLf 1[>!t+F/xtжm0Q+A0uavo$pͪ,: U&Kҥ'x ̯k:z_.+v(ef#n;fiq QGKX IXC|*fVd].Hf}˳De^ϘPNjF@E:du`ktx4p6ƒef`H%{G. )֢ذ-o>'' bvb{X^] ࿃z#XyV_P9`IWlZx5 UNTIWwȱmI#-g폡.oigJBt.M-\A8sY2q]oFPkB Q9V-4 g"b5G,N%t'ʲßhTD wtn=Yi{ 6ɡxaX52ɢ 4L}y8p*M\^ovb _>KYS;r£8i!رzߍp--0<%{yRp\jEm~w9Pq_dْ-Ző ;#h<(zɿ'[:ܩBFh:iŅ7 .@gj*<\9m$O^毝T[2J*25 C˄}PF+u;l.v8x:y#V$[.^0Ym | ssn Grzn$N'+vɚTCO$rgVwA񖢪xE"_)AoYvIɭFOD HWOmbx'@m.wh;?F@Tuc1~P gf&T8~׾*7P|Anv\@J5U|p/&UM:/xO\O|fpeՅvJ o!GX Ѵ|65أ>,$HjUM Υޒoe!m 87SQ# 㩖P*G= ]g*n0kTC.{gm(-feU8QW6P, oCM25,ie]q7܀mL٫+'R_w)K4jVamvZkF+S}bN H~6#6@:sXr+,_*: Le\}5ܣȰӄ,괾:G1u@$@%2Ua% PSiۺ*CU+p.& 80~ `)2˻kc.]`]UȘ#Ngg{ |Dg3/78Y.)8.].7ճͿhJm![R2᷌"e D/ɳsq;;296,RLfC8 `*gGƌo<~]8f3鍑tX¨9=yVڢBWNqK:'`-le'l|$@",_; Vx\Mг/{2a, R#63g=ص*D>w-0׏7&ⷩl ۮǻT1NUBvֹB\)%똢`{1iEv7Ugn- i6=$WҹgS Td4 !Q/y; F/FFF:cr9DCr Z"MdSۂ/v7ٗ7^!x2EHS]3Ǧ moОˎ\h{>#y%ڌY: T5R}C9?>EK\(@+wyjy ATEU8hOVa ewaz|bYҔjkſ.0YQtC?aJnJB+o lz+C,"4qTroT? ~/#}3zz>uz7sNR$$N묌V:`2goG&[.SoF0,nӼF%0_^*k^qEC3J۶D)XdhzDwSua/[hR"0=6`9ე 5iг,<ʉ,;Eh}5~Js+bh:ABw-KXkjL4db"v 3S.X'*Ta%dqӪLkIekEAIax3-ڷ}zC.fqEkA#[ىV$.#;b4`_IAT>eI/ &kmWP$NSO3hQͅE?չ{#)}9 } IHh#x~Gũ&LQM%gDXYDck !llv[+^՝/]ZcIΩ,eyz3(yGYi!ɆӹYLk`MnFGDk",uJ;KB{uB8}]vJi5^?a#QWrB=l?6?Ja$Z%rKF&T@gL]$W0IՉ1[$Wocv2n Ù O#'6$#L揢$azڣI?W{(-nP {Eq; Hd'ؗ?\Ƶ^GU;|Cf磗>'HP+1l|a(g\-sm{*ג8ޟ_M]4ɻ$AŬҏ8n)L)lKDW8Qj Ru%c?nNw>}45֤) KqDGZ" }yצ2ly;rYw kXü]5NRV˸q"y18:yWDS1m1ȹž(`jPK&|K Mvi 'Kz@0,4SBu̚!kxA2lI%e:-|m<5.3ު"{Ϝy>ACdƹr"Y+y9LF!֡ufik3X_|/L_PZ9Eu/O9/s^8{+`%Qh ߔld9w_A5`87 QQWsC^R5I mo^,T1^& 6n}( N1gpYvkUY6zjiC&cD(Cg5yS{%-rη 5N,OQkyőcǤ|)qUϏ ǔ6ُ:-VZ8F PwG:Q3(sQ"C ÏtѪuSBs5Izu8e{8:gBuIJj?\k?uM .oYM' IƩ W1.$(YǡFjMژ#+)CMD2,̐- Twg`33yKn-@7z'| p+l1T0L*bgwEB?vj=A=TfVP:lCZ)%4 j- Dvv)ՠ\%G=S~r+#;%^>_6kp 3҂<m4%X[8̕`XVcU@ &~Qgcd\Kv>ؤmKl3'nQ!R}?DGȗ7@?I `MA$7ҥx%\ZFFKpGtwBO2C_h+qGxq@ aE|rXs$f>5e-LxǍ"/@ƤBRN,Ʊvƻjx1|8S20q003Ge dm *[+ s-/S}=@O({~KN26Q'.{53g+47o?oxxa'_[ á`ѽŇ%.3)pR* %{9~;m96L[d)yK:*bL'ptտy]7,h'>jwx:ݜvr83Ӟ!bW]]Apkw&r2gKl'^ cGK˭ni$" s2^Dʓ"!l7K_7H &T0\ m<8fһ F`r0ce"fi/?W>6d/Vgzh:hQQ Nw[y8;ԾIȃmnx{GxXSA?]I% ?ZHDX`(1CwiZ/~ݍ3凣%Dl.;csaǿ"֕7Tl1ĀX>(JB$`Y(?# c%1zBdmis `]س$Z}7??3}^@L[\~!Zu:b#tXΰ܎ϟ6Fd٘ 7y@hHx|&[/Y"WkȂPdemAHZ/j 8-;=`!b3Z`%0 ~]?d^-l[Z'yh.c#7az Tfhc~0w7޴_Q c S,y`h(KZL&ۢV89Zbuvr=13ʵPhe,1! zOI!nT;1Id*<{s §Et[1꼹ze4{6!pu1/M<o  U[SڅQo{ W&̷Ai|MjJ~N13&cvL.:iRlU}J. |@IbS Og5caȣ׸[wlv7g©99,fv6wf ϊm8/&Hr> 1·Fl;6NFdX+Smc*EaH>ǜ*hϥCk_^k?5ױ`SW sAPRDjf OR%RB1YC2 GNh QOoc/D[~E@n<h ,d#Nݙ"R(I0uࣲ9:CP!jwpZ8,Po,RtTBrkj kt &pNk~%rLN48) U9^{J'fo(1Q7@pJ̟O 6` i6;DT K7:X:/s1K2H'|\eQQ[Fm\y,{FVn,)\5e2X_Y9CDNj@Վ`Q$x@vcn &N{rFQ33,5,sZItDYX~حN<7vqZ"F(xzWUW=Fn^ӚCq?3ul^?e#pz7OD#cJ%``VWF{(! _E]JziOYWڑ@gMzǗI.bY 1= 31 wE$b.C@iɜwzW!RlյZ|GvecxREL&;wtl\:=)0+Fbd4 1'X-꼸Di2,|ßܙ>;S^ d8ϩpy2H1=3oB#7, ٸx -LphN@"ӛD5).%FPvKG]DŽJ~ތk"O{~޴­ 09PVZ&ȍT4;&Zs`nfL R7tO ~ddK~p,ͷڄֱc+z! 8,0?Ctyj2Hl Hc{?)̣9v rd#%1ʠ\Rc)칩9O-ek<Gϴ-E1 waW|=mF1Ws*vB7C ,`Xyz;co{1#-gVD7nsbpO-M(ȓE=oTO<:J(5g%d73Y !Wj8#Q,ƒƑЇ s>A2\snw͝*3B^l68DH{HҞR/)vVik`0xiɎu SHDρ *ͩ;Fk`rқfѬVi!0k)-LQyn fũrڤ5b}kR'jX.윷ZLdיјlI@leLip^_rk#g̥tO-7pn:`IMVvH'_ֆu2m!x^_6AcQ8e_ k8!T+Eq⤤z&k˂XXoe呡o)hJ-͵t$Ii ݬvgtָ9 |a jL$J"Y}U]nzjBC+zFXCs6Y2_v5p-">Gek%j%"aHXlnff0ʃ<.^b#AOKHawv#Iz&8 0Worpc<E5<2 }.%ۣ rӛ 8$L+iWݠ,MZp?6{y#]cbQƙ6L{Tl /HJ/|,lRj1a: 4o偭kkl,'IsK?dؽ! :dVHptl#ZI~UJut'`&HHy# KQoS;^M>d3jK  <qKې*nkfǥ-, 5ի=Ui葼775چh3e o>XuP8( AB|c) xAE4"oFiXқ]v>QF/̧%`HŪl۞q'˷PA5kqf6U@Tё[Z̉A%pη90aЁOQ^b4 _ kv~pN5f|@etRcVTseHHHH(;x L;DfWLw0[I-qkhXz*>MUDm1E-?GQD>C'2sC*<0vtJ(>1jiP D㘋sK'pՌ Z*pI/ORU$w_TO07g稘i?rn~R7܇5ՃeM?46B2tߚ9Uh^yva P35ffzFafAy깻`L%l`W lSSVJq*ucbU߮?ܐ3:AJ؊jNK^bv iV>#Ѯ@ѱ2yXLo6 3C](" )Sh|Orz(Z {.پx/xZ~"|4þJv,.I#GNNw }cG).TpzR4ZξJH[e3ZvVeZ!r[ˋp|< ^76]m"}k 4Md~aV# oՕעof,VuXskSe."5f@b#h|' LgAmyځ AGD}bj.Kt!bRSi(B1_i{}%>sU9{2C~tvuVX=W(v9?Vt;ڷ;i"/].  Ԝ3vw7 bnmL[D&#]\/5ɨz1m>8+$rE\w=sƶKtK=0Rءtr7"2i aՙϾIf""Z&p>˃rzRq"X,%h$%*م#o2VUiK98 A _RxvWGC^bM6OL:Xslη{c iDQLPsc".M-k'bnE-c)hs `RMLh,̉X\8.l;?xa r+}zڬ^ru'H*y$#@<<^lub.b"3+6\{CcŚ?'Ҙ@庫74dc%ɲc.uinfy:{X7g]TA/\_YE?WѸC%mPO @';p\5%e~S3Ed rx;-QYtј ?>CM~xqDR5z?dߟ=v~޴mmMx©ڡy k6V4Zrz/7 lJn'Rd-4iI(a4&e\TI *Iqs -_LBqe1>k ` :#+@Irϼ:#~Ees oFd2Cer ٓIVZXU϶iKq_woT{pL( `͛q!=~Ok\:./‚X|ّU; (avϸ? ~O>-ƴ.vd:;Kt-}U HT!Q!`]+HsS\ș?4ųTWpQ0zCSUMV:nEjԘɊoL>JҶ)S0\]7"` է3dKŠvHe2UNkЃw)],< G$RlV71XfД2?Kdp hi;*9-JJp/ܮ۾lKE-W.@6)I@,!@3S8Y:L5ߑ9y^ YAG.cQ Ɠ Hw>%W8B6A XOJYu;W/7gȪ{Rh_x.U+0Qэ2wGjD`B^J7nd5ooк!; h"b6eEw^G()46(Wfttai+wYjg ?STcwD CPЈ %[n41raF˦pNTP] "Ka 5[~#~E,X5UH"PJeS/G|XE.N$:7/BZ Z22ʼn/J};@)y,m\߮= ~{DYr *[J{ZQ;˖I_emkt Օ"w.'JۓgبLqc펤44JeI TG.8\9< :ڂ!S'zu7s[URi uQDV툣^vn4b:ptJ$nIzYܠ^98 +}s+ 1Y/l~* ؋֓a'M<:R>y0#. ِqAM{g[͜V{2Y!2cvz3#[8!q궣az^OH00LtNu~>.Q>NRFZu7KQ;Ͼ Ğd*x: f"@jry&"V]|`v_?JB|b33` *5*xpn m3wِ4Wp8ӂA"Al8^I0-քlЇQW|\E.}\!;y`*ه%$\k\ 1IaEɪ+݂ϲG#U+6 ]@Æ47-uMMJ>ƵMw>ha/0ͩN͢7+ȰaP<>(AА r#;rksܙz[5\ )h\ Q3>h}T)J>c~6a}e Kxr^TQhAy 8q2uC9j78j)y0@C坿H59*+CH_ f!)<)HH|7:t)~z(4h_ajRǂ &<뎷@ թٷ`WUX\&Plcy;]tUzvz|pWJ~nXp?‹")z%Eĸ|VX)>yF!žD irng`ΧB)pRJeA_ Oʯ&7"ts~{^RWAj2egCM%17eg/D7J^d_1A-2/ F, a&/ZUU[P})!3AHˮ£f~-}Q`a>?(9sRn'=F׃yCڍ苢ptYOfDbK~ڞ-ʎnBEh60KXҌfibN/1a_i6:By0ɵ33On+o'&dCdS7"vA榋`pkRg61 XGV> _{7K 繅Ͳi BG7+Y@aHFq@XԒدe/&L3[qYz-VMRTvCP5-jTX dJf&nd9ex.f~z]3c_I-r{UdQy?u|=\rsd&R&|Lzsm`V>};$pWz%LI9Zֈ%##tH v? @hΔOAZ?5F@A]{(m X$sKĿOGEXlIZ>;5Q?9æ{\׭t>Vr_WZ>$zX ^3NA{a%b%\KPJS*Eb$XGw3ů̓cSi1r<-q jĭ37j\{0]I6{V-W ҴXX. :D^i~TmdQGLx߰V>-qVl^˶{j X5&" M j3}6~6ڑj?Ƶ')+aW?Naqb3Q_hGSF𤋮-;oEA?t%d6#w/*]HiK].JMFdI|RPNVŨr\<:ݨ}+t/0`*g=@ z(R^$%G f@[}QD/h`u2m Di>7F NkꪧՃ'nf..7ЕX)E`l+E8`O`"Qj snwls;4/xևِ >EMnWR5kb{PM_QZC*qdh2>OAmMU^Sgƪ-q0ilgdf0Ρp"` zOn\VƔrBz}tő[]0W 3F~S1utS ޞOz΢tJA$~>nXd֒c`b+S@! ֣Kvf44ezXHdNQ!D _ sr?qbKt} }鑢WG.2SHF+_y)'+4 yj#  6g+Ð۷c^Ӽ; F2 VQnn Uy7x`i ;Юu'1n]q^dJX;1yꞐ6.(AZ]D ZDB}=6 MNX*9S+_j&W5O%ZGeým|4G'sH/rL\"sy`h6FHi`BKOݡ@ΫNH"N!cU؆8>.֢oʊNs2}kJU:moDTsaZfrZk{s#C%evcMT pd鉋8z1a2mPa.'{˹:T>FSAC50 0(*bBKYθCŹ<^kcX:MsזŨAHqhAp,QhH=!᜙K`.qYnebO>O~iY>t] ,ܓB3R~5WOqg=?LWn0TqTm@6>]R h?o ?Ao+ekz$ciW r Ő ,teӲx@Q~nT"d"9pux_x.;_јYFώ }ybTDeƃNS~]mIT+gZDVS5m(~2Rx= ?*ՙyy0c%Ko%Ow.1bqԆ.$)1VLNu1Y߾5J͏t"Wͼ"Z'1J<$n6jeE-Z& `wA$ķ-C:+ ˛+Op͍M l-b[FV%"˩q9%b7]{ u v̰wPݰt QTY7C2Qcqz6\ݶ%jnv ztN%j8Ǘ̉ |Hn]o-55yg4a,;ho,PÿG~(Gwhr>'*p}++yҕY1HZɋ4㴪j [7*Q|(9| /ZЭ$&{'P)ryBZ=<Jق@*ɳ%n^߃%XIʨԝm+&}*z̜,+0֖g45cTMVFh,EBڞ~FNf*T$!-:Kfߖ#*\'VfBg?;2XpgeͶL,\G0ię- 6!z.pf_#jC A["sIIQA_,Vg⻀G/6˝fR+إKI& c3-$s 栙&g%(9\ (]ʘzʬqN#*.9Ñ_Eǿ;6<3ܻ7 mtXn[/._m|fQ2gpW+\eȣ̀|_ͣڱ+y:BZy~3B $nG;Fn.[郗b/f˳]mϱۄ0 {&  C艵(4gH?weB]D{*o[ݥ:[]TO:YmVqCA7)zae_k?]Cz5T#;6l1sTd-O2☾J CAt,=۵pPjXG*HmB*J6#AKm$7s5Mh5IVeP_)d$ Y2yLt!N(8Hjζ } [:i~T_!Ͳ6MAmU;gc+O e)|#EuE rB.`݌H\u> y"ylH"DwAygI"R@se_H-h&4, "LHש9F2ue4'm"SSi_;#-u5RI~0sq+jZ5S^z#?G@'8[5 ;_SzV d#z 筓<2S_u\h{,>*1~*BR> ;eˏGp@^T2,= Jh`ˆJ@uk]u M$4 ~JFxD-9,j^ [cE>L*7(m档I-.E~i ѱCM kt's7%EaIͰa>xH Lm詚Z4ѽl^zVV? \DuFl, $̭38ٺD<-L'}u4F|ER???ںyZ/NJgFHTā!#ȲaP3 CIrN7zsUjEJr9X=i[Or'g͞c0E:O>i~s؊$w0qodʺF<\#v??ZBgE]F/tvXI'L;i#K414ELxΩAhUu=xr( 'm&X;Aj>#$ƞ$KzEE6;@ux}rg`94.2-5-VL GŮh]OzB#p?93 mSw_=u.{ pwp^saGA 6 F\݁)N9ъ6*s?9ȅRd+3q+9j?EWW<&i >+hmvax4 yGm:PJW=K/:mX0],WpC_"BMubwuXO̸^fo l:_IԈX/եCˍ^3BwZjP)^3Dv,+!M[۹$ڋ6 |6ړ˺4׬VwL-+]-ɰ Q;%$ TǴ}Hͫe{qąbT`hU|$1ZGmG9Nušv>c",c{{[]|DF~}~QN+nf|V}کDqru@[ߪr?Y1̘ 6y3a~QS-jJXy,).58 ]1+lj&.(Q[>u vQ@YZmetagenomeSeq/inst/0000755000175400017540000000000013175734155015362 5ustar00biocbuildbiocbuildmetagenomeSeq/inst/CITATION0000644000175400017540000000455413175714310016516 0ustar00biocbuildbiocbuildcitHeader("Please cite the top for the original statistical method and normalization method implemented in metagenomeSeq and the bottom for the software/vignette guide. Time series analysis/function is described in the third citation.") citEntry(entry="article", title = "Differential abundance analysis for microbial marker-gene surveys", author = personList( as.person("Joseph N. Paulson"), as.person("Oscar Colin Stine"), as.person("Hector Corrada Bravo"), as.person("Mihai Pop")), year = 2013, journal = "Nat Meth", volume = "advance online publication", pages = "", doi = "10.1038/nmeth.2658", url = "http://www.nature.com/nmeth/journal/vaop/ncurrent/abs/nmeth.2658.html", textVersion = paste("JN Paulson, OC Stine, HC Bravo, M Pop. ", "Differential abundance analysis for microbial marker-gene surveys.", "Nat Meth", "Accepted" ) ) citEntry(entry="manual", title = "metagenomeSeq: Statistical analysis for sparse high-throughput sequncing.", author = personList( as.person("Joseph N. Paulson"), as.person("Mihai Pop"), as.person("Hector Corrada Bravo")), year = 2013, note = "Bioconductor package", url = "http://www.cbcb.umd.edu/software/metagenomeSeq", textVersion = paste("JN Paulson, H Talukder, M Pop, HC Bravo. ", "metagenomeSeq: Statistical analysis for sparse high-throughput sequencing. ", "Bioconductor package: ", packageVersion("metagenomeSeq"), ". http://cbcb.umd.edu/software/metagenomeSeq",sep="") ) citEntry(entry="article", title = "Longitudinal differential abundance analysis of marker-gene surveys", author = personList( as.person("Hisham Talukder*"), as.person("Joseph N. Paulson*"), as.person("Hector Corrada Bravo")), year = "2014", journal = "XX", volume = "", pages = "", doi = "", url = "", textVersion = paste("H Talukder*, JN Paulson*, HC Bravo.", "Longitudinal differential abundance analysis of marker-gene surveys.", "Submitted") ) metagenomeSeq/inst/doc/0000755000175400017540000000000013175734155016127 5ustar00biocbuildbiocbuildmetagenomeSeq/inst/doc/fitTimeSeries.R0000644000175400017540000000724713175734125021035 0ustar00biocbuildbiocbuild## ----include=FALSE------------------------------------------------------- require(knitr) opts_chunk$set(concordance=TRUE,tidy=TRUE) ## ----config,echo=FALSE----------------------------------------- options(width = 65) options(continue=" ") options(warn=-1) set.seed(42) ## ----requireMetagenomeSeq,warning=FALSE,message=FALSE---------- library(metagenomeSeq) library(gss) ## ----dataset2,tidy=FALSE--------------------------------------- data(mouseData) mouseData ## ----createMRexperiment1--------------------------------------- # Creating mock sample replicates sampleID = rep(paste("sample",1:10,sep=":"),times=20) # Creating mock class membership class = rep(c(rep(0,5),rep(1,5)),times=20) # Creating mock time time = rep(1:20,each=10) phenotypeData = AnnotatedDataFrame(data.frame(sampleID,class,time)) # Creating mock abundances set.seed(1) # No difference measurement1 = rnorm(200,mean=100,sd=1) # Some difference measurement2 = rnorm(200,mean=100,sd=1) measurement2[1:5]=measurement2[1:5] + 100 measurement2[11:15]=measurement2[11:15] + 100 measurement2[21:25]=measurement2[21:25] + 50 mat = rbind(measurement1,measurement2) colnames(mat) = 1:200 mat[1:2,1:10] ## ----createMRexperiment2--------------------------------------- # This is an example of potential lvl's to aggregate by. data(mouseData) colnames(fData(mouseData)) ## ----createMRexperiment3,tidy=FALSE---------------------------- obj = newMRexperiment(counts=mat,phenoData=phenotypeData) obj res1 = fitTimeSeries(obj,feature=1, class='class',time='time',id='sampleID', B=10,norm=FALSE,log=FALSE) res2 = fitTimeSeries(obj,feature=2, class='class',time='time',id='sampleID', B=10,norm=FALSE,log=FALSE) classInfo = factor(res1$data$class) par(mfrow=c(3,1)) plotClassTimeSeries(res1,pch=21,bg=classInfo) plotTimeSeries(res2) plotClassTimeSeries(res2,pch=21,bg=classInfo) ## ----timeSeries------------------------------------------------ res = fitTimeSeries(obj=mouseData,lvl="class",feature="Actinobacteria",class="status",id="mouseID",time="relativeTime",B=10) # We observe a time period of differential abundance for "Actinobacteria" res$timeIntervals str(res) ## ----timeSeriesAllClasses, tidy=FALSE-------------------------- classes = unique(fData(mouseData)[,"class"]) timeSeriesFits = lapply(classes,function(i){ fitTimeSeries(obj=mouseData, feature=i, class="status", id="mouseID", time="relativeTime", lvl='class', C=.3,# a cutoff for 'interesting' B=1) # B is the number of permutations and should clearly not be 1 }) names(timeSeriesFits) = classes # Removing classes of bacteria without a potentially # interesting time interval difference. timeSeriesFits = sapply(timeSeriesFits,function(i){i[[1]]})[-grep("No",timeSeriesFits)] # Naming the various interesting time intervals. for(i in 1:length(timeSeriesFits)){ rownames(timeSeriesFits[[i]]) = paste( paste(names(timeSeriesFits)[i]," interval",sep=""), 1:nrow(timeSeriesFits[[i]]),sep=":" ) } # Merging into a table. timeSeriesFits = do.call(rbind,timeSeriesFits) # Correcting for multiple testing. pvalues = timeSeriesFits[,"p.value"] adjPvalues = p.adjust(pvalues,"bonferroni") timeSeriesFits = cbind(timeSeriesFits,adjPvalues) head(timeSeriesFits) ## ----timeSeriesPlotting---------------------------------------- par(mfrow=c(2,1)) plotClassTimeSeries(res,pch=21, bg=res$data$class,ylim=c(0,8)) plotTimeSeries(res) ## ----cite------------------------------------------------------ citation("metagenomeSeq") ## ----sessionInfo----------------------------------------------- sessionInfo() metagenomeSeq/inst/doc/fitTimeSeries.Rnw0000644000175400017540000003404113175714310021364 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{fitTimeSeries: differential abundance analysis through time or location} %\VignetteEngine{knitr::knitr} \documentclass[a4paper,11pt]{article} \usepackage{url} \usepackage{afterpage} \usepackage{hyperref} \usepackage{geometry} \usepackage{cite} \geometry{hmargin=2.5cm, vmargin=2.5cm} \usepackage{graphicx} \usepackage{courier} \bibliographystyle{unsrt} \begin{document} <>= require(knitr) opts_chunk$set(concordance=TRUE,tidy=TRUE) @ \title{{\textbf{\texttt{fitTimeSeries}: Longitudinal differential abundance analysis for marker-gene surveys}}} \author{Hisham Talukder, Joseph N. Paulson, Hector Corrada Bravo\\[1em]\\ Applied Mathematics $\&$ Statistics, and Scientific Computation\\ Center for Bioinformatics and Computational Biology\\ University of Maryland, College Park\\[1em]\\ \texttt{jpaulson@umiacs.umd.edu}} \date{Modified: February 18, 2015. Compiled: \today} \maketitle \tableofcontents \newpage <>= options(width = 65) options(continue=" ") options(warn=-1) set.seed(42) @ \section{Introduction} \textbf{This is a vignette specifically for the fitTimeSeries function. For a full list of functions available in the package: help(package=metagenomeSeq). For more information about a particular function call: ?function.} Smoothing spline regression models~\cite{Wahba:1990} are commonly used to model longitudinal data and form the basis for methods used in a large number of applications ~\cite{networkped1,LongCrisp}. Specifically, an extension of the methodology called Smoothing-Spline ANOVA~\cite{Gu} is capable of directly estimating a smooth function of interest while incorporating other covariates in the model. A common approach to detect regions/times of interest in a genome or for differential abundance is to model differences between two groups with respect to the quantitative measurements as smooth functions and perform statistical inference on these models. In particular, widely used methods for region finding using DNA methylation data use local regression methods to estimate these smooth functions. An important aspect of these tools is their ability to incorporate sample characteristics as covariates in these models, e.g., sex and age in population studies, or technical factors like processing batches. Incorporating these sources of variability, both biological and technical is essential in high-throughput studies. Therefore, these methods require that the models used are capable of estimating both smooth functions and sample-specfic characteristics. We present fitTimeSeries - a method for estimating and detecting regions/times of interest due to differential abundance of a quantitative measurement (for example, normalized abundance). \subsection{Problem Formulation} We model data in the following form: $$ Y_{itk}= f_i(t,x_{k})+e_{tk} $$ where i represents group factor (diet, health status, etc.), $t$ represents series factor (for example, time or location), $k$ represents replicate observations, $x_{k}$ are covariates for sample $k$ (including an indicator for group membership $I\{k \in i\}$) and $e_{tk}$ are independent $N(0,\sigma^2)$ errors. We assume $f_i$ to be a smooth function, defined in an interval $[a,b]$, that can be parametric, non-parametric or a mixture of both. Our goal is to identify intervals where the absolute difference between two groups $\eta_d(t)=f_1(t, \cdot)-f_2(t, \cdot)$ is large, that is, regions, $R_{t_1,t_2}$, where: $R_{t_1,t_2}= \{t_1,t_2 \in x \textit{ such that } | \eta_{d}(x) | \ge C \}$ and $C$ is a predefined constant threshold. To identify these areas we use hypothesis testing using the area $A_{t_1,t_2}=\int_{R_{t_1,t_2}}\eta_d(t) dt$ under the estimated function of $\eta_d(t)$ as a statistic with null and alternative hypotheses $$ H_0: A_{t_1,t_2} \le K $$ $$ H_1: A_{t_1,t_2} > K $$ with $K$ some fixed threshold. We employ a permutation-based method to calculate a null distribution of the area statistics $A_(t1,t2)$'s. To do this, the group-membership indicator variables (0-1 binary variable) are randomly permuted $B$ times, e.g., $B=1000$ and the method above is used to estimate the difference function $\eta_d^b$ (in this case simulating the null hypothesis) and an area statistics $A_(t1,t2)^b$ for each random permutation. Estimates $A_(t1,t2)^b$ are then used to construct an empirical estimate of $A_(t1,t2)$ under the null hypothesis. The observed area, $A_(t1,t2)^*$, is compared to the empirical null distribution to calculate a p-value. Figure 1 illustrates the relationship between $R_(t1,t2)$ and $A_(t1,t2)$. The key is to estimate regions $R_(t1,t2)$ where point-wise confidence intervals would be appropriate. \section{Data preparation} Data should be preprocessed and prepared in tab-delimited files. Measurements are stored in a matrix with samples along the columns and features along the rows. For example, given $m$ features and $n$ samples, the entries in a marker-gene or metagenomic count matrix \textbf{C} ($m, n$), $c_{ij}$, are the number of reads annotated for a particular feature $i$ (whether it be OTU, species, genus, etc.) in sample $j$. Alternatively, the measurements could be some quantitative measurement such as methylation percentages or CD4 levels.\\ \begin{center} $\bordermatrix{ &sample_1&sample_2&\ldots &sample_n\cr feature_1&c_{11} & c_{12} & \ldots & c_{1n}\cr feature_2& c_{21} & c_{22} & \ldots & c_{2n}\cr \vdots & \vdots & \vdots & \ddots & \vdots\cr feature_m & c_{m1} & c_{m2} &\ldots & c_{mn}}$ \end{center} Data should be stored in a file (tab-delimited by default) with sample names along the first row, feature names in the first column and should be loaded into R and formatted into a MRexperiment object. To prepare the data please read the section on data preparation in the full metagenomeSeq vignette - \texttt{vignette("metagenomeSeq")}. \subsection{Example datasets} There is a time-series dataset included as an examples in the \texttt{metagenomeSeq} package. Data needs to be in a \texttt{MRexperiment} object format to normalize, run the statistical tests, and visualize. As an example, throughout the vignette we'll use the following datasets. To understand a \texttt{fitTimeSeries}'s usage or included data simply enter ?\texttt{fitTimeSeries}. <>= library(metagenomeSeq) library(gss) @ \begin{enumerate} \setcounter{enumi}{1} \item Humanized gnotobiotic mouse gut \cite{ts_mouse}: Twelve germ-free adult male C57BL/6J mice were fed a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult human fecal material. Following the fecal transplant, mice remained on the low-fat, plant polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of experimental protocols and further details of the data can be found in Turnbaugh et. al. Sequences and further information can be found at: \url{http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html} \end{enumerate} <>= data(mouseData) mouseData @ \subsection{Creating a \texttt{MRexperiment} object with other measurements} For a fitTimeSeries analysis a minimal MRexperiment-object is required and can be created using the function \texttt{newMRexperiment} which takes a count matrix described above and phenoData (annotated data frame). \texttt{Biobase} provides functions to create annotated data frames. <>= # Creating mock sample replicates sampleID = rep(paste("sample",1:10,sep=":"),times=20) # Creating mock class membership class = rep(c(rep(0,5),rep(1,5)),times=20) # Creating mock time time = rep(1:20,each=10) phenotypeData = AnnotatedDataFrame(data.frame(sampleID,class,time)) # Creating mock abundances set.seed(1) # No difference measurement1 = rnorm(200,mean=100,sd=1) # Some difference measurement2 = rnorm(200,mean=100,sd=1) measurement2[1:5]=measurement2[1:5] + 100 measurement2[11:15]=measurement2[11:15] + 100 measurement2[21:25]=measurement2[21:25] + 50 mat = rbind(measurement1,measurement2) colnames(mat) = 1:200 mat[1:2,1:10] @ If phylogenetic information exists for the features and there is a desire to aggregate measurements based on similar annotations choosing the featureData column name in lvl will aggregate measurements using the default parameters in the \texttt{aggregateByTaxonomy} function. <>= # This is an example of potential lvl's to aggregate by. data(mouseData) colnames(fData(mouseData)) @ Here we create the actual MRexperiment to run through fitTimeSeries. <>= obj = newMRexperiment(counts=mat,phenoData=phenotypeData) obj res1 = fitTimeSeries(obj,feature=1, class='class',time='time',id='sampleID', B=10,norm=FALSE,log=FALSE) res2 = fitTimeSeries(obj,feature=2, class='class',time='time',id='sampleID', B=10,norm=FALSE,log=FALSE) classInfo = factor(res1$data$class) par(mfrow=c(3,1)) plotClassTimeSeries(res1,pch=21,bg=classInfo) plotTimeSeries(res2) plotClassTimeSeries(res2,pch=21,bg=classInfo) @ \section{Time series analysis} Implemented in the \texttt{fitTimeSeries} function is a method for calculating time intervals for which bacteria are differentially abundant. Fitting is performed using Smoothing Splines ANOVA (SS-ANOVA), as implemented in the \texttt{gss} package. Given observations at multiple time points for two groups the method calculates a function modeling the difference in abundance across all time. Using group membership permutations we estimate a null distribution of areas under the difference curve for the time intervals of interest and report significant intervals of time. Here we provide a real example from the microbiome of two groups of mice on different diets. The gnotobiotic mice come from a longitudinal study ideal for this type of analysis. We choose to perform our analysis at the class level and look for differentially abundant time intervals for "Actinobacteria". For demonstrations sake we perform only 10 permutations. If you find the method useful, please cite: "Longitudinal differential abundance analysis for marker-gene surveys" Talukder H*, Paulson JN*, Bravo HC. (Submitted) <>= res = fitTimeSeries(obj=mouseData,lvl="class",feature="Actinobacteria",class="status",id="mouseID",time="relativeTime",B=10) # We observe a time period of differential abundance for "Actinobacteria" res$timeIntervals str(res) @ For example, to test every class in the mouse dataset: <>= classes = unique(fData(mouseData)[,"class"]) timeSeriesFits = lapply(classes,function(i){ fitTimeSeries(obj=mouseData, feature=i, class="status", id="mouseID", time="relativeTime", lvl='class', C=.3,# a cutoff for 'interesting' B=1) # B is the number of permutations and should clearly not be 1 }) names(timeSeriesFits) = classes # Removing classes of bacteria without a potentially # interesting time interval difference. timeSeriesFits = sapply(timeSeriesFits,function(i){i[[1]]})[-grep("No",timeSeriesFits)] # Naming the various interesting time intervals. for(i in 1:length(timeSeriesFits)){ rownames(timeSeriesFits[[i]]) = paste( paste(names(timeSeriesFits)[i]," interval",sep=""), 1:nrow(timeSeriesFits[[i]]),sep=":" ) } # Merging into a table. timeSeriesFits = do.call(rbind,timeSeriesFits) # Correcting for multiple testing. pvalues = timeSeriesFits[,"p.value"] adjPvalues = p.adjust(pvalues,"bonferroni") timeSeriesFits = cbind(timeSeriesFits,adjPvalues) head(timeSeriesFits) @ Please see the help page for \texttt{fitTimeSeries} for parameters. Note, only two groups can be compared to each other and the time parameter must be an actual value (currently no support for posix, etc.). \subsection{Paramaters} There are a number of parameters for the \texttt{fitTimeSeries} function. We list and provide a brief discussion below. For parameters influencing \texttt{ssanova}, \texttt{aggregateByTaxonomy}, \texttt{MRcounts} type ?function for more details. \begin{itemize} \item obj - the metagenomeSeq MRexperiment-class object. \item feature - Name or row of feature of interest. \item class - Name of column in phenoData of MRexperiment-class object for class memberhip. \item time - Name of column in phenoData of MRexperiment-class object for relative time. \item id - Name of column in phenoData of MRexperiment-class object for sample id. \item method - Method to estimate time intervals of differentially abundant bacteria (only ssanova method implemented currently). \item lvl - Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level). \item C - Value for which difference function has to be larger or smaller than (default 0). \item B - Number of permutations to perform (default 1000) \item norm - When aggregating counts to normalize or not. (see MRcounts) \item log - Log2 transform. (see MRcounts) \item sl - Scaling value. (see MRcounts) \item ... - Options for ssanova \end{itemize} \section{Visualization of features} To help with visualization and analysis of datasets \texttt{metagenomeSeq} has several plotting functions to gain insight of the model fits and the differentially abundant time intervals using \texttt{plotClassTimeSeries} and \texttt{plotTimeSeries} on the result. More plots will be updated. <>= par(mfrow=c(2,1)) plotClassTimeSeries(res,pch=21, bg=res$data$class,ylim=c(0,8)) plotTimeSeries(res) @ \section{Summary} \texttt{metagenomeSeq}'s \texttt{fitTimeSeries} is a novel methodology for differential abundance testing of longitudinal data. If you make use of the statistical method please cite our paper. If you made use of the manual/software, please cite the manual/software! \subsection{Citing fitTimeSeries} <>= citation("metagenomeSeq") @ \subsection{Session Info} <>= sessionInfo() @ \bibliography{fitTimeSeries} \end{document} metagenomeSeq/inst/doc/fitTimeSeries.pdf0000644000175400017540000073135513175734127021413 0ustar00biocbuildbiocbuild%PDF-1.5 % 60 0 obj << /Length 1025 /Filter /FlateDecode >> stream xV[4~_'FYZ6OK!ƒ6Vj}viIvMt0/|sHMH- UQ)&Q '昳2YUk6fi5}[N(l_$ص[;muf\IT ƙ6 vt6x edѤqsqh֛2.ۚDa?wA- d> b%O2N04xa݀ UZPmeuz{런+*ecwu0!s.Sb9a1owښ*4z> >z/B\[ hhv18| p\ Ťg7!nlg[:ơN,*#0DG*:z;>un_C]9 ΁[ =SV |]盱z㱩ƋI ]f4$0d0n`cfJwytl}P2>X +QI ܋< O8!bLE4%8 %$%$Bȉ]f%`hpq}H %ԡ< *)(0^68qY dc8%Q &32zr"P|#PwDvP%-Dl0v {jyAo zY|:'ɗ㏥T6piU}SGVTI~_Lƴ% 8Z}9zCt⪃;yh - LRkp *DCSICӼ XJ ?r2zMaP; S O"R\f5("~Եkn@a@SD^s6d48uYe@ Vr~! X~jI3o |GL?hqrFqpK8p@+ T:ׇGoF#B"XQ5_N7?_]  endstream endobj 77 0 obj << /Length 3983 /Filter /FlateDecode >> stream x[Yo~P>Ipu'; }P#z9Ǯ_:z$!X{}VW}Uu+7毟E.ϿFPi+778 k7Ța:W[! Bz]QWWo7JlDQ*hХhICq8Vy=C*J{1(DBﳲ7u8n] ]UhbJm-qo\YoqQ B㄀]^`ﯬveNyTA24ȭ1R5r uOרfȠ٠)& bW˶rȪ=t )I"UuOWW[?f t#薣B>sK`(nyM~N3eZܠֵ8f8,8<(%+AY5SxfH&QO .cP*s0g8n98I |Ԡr5ׇ4A:m:PL%A+Rt Sw":AN^%h ^pOB3xe.g7p%E#/0 P΋ ?M sB"LcZN<.v&ի-^0.'0fXHn$0r<PQw&Xu@PǘD`P..aVi<&HQ;99|B*oѹxq; m:*7RnuE.vf9ԄoVml4ϑ_/O^*ΩUX‰&Hi6L٬$a(-#CP00NȽ%B#,a(^@(>W$b̸ےW{;< ;_Aw?v{נT` ]_u]ˑz&Q駼ܻ"(ug359x߻.σE)VD]En*.V<Ul'«؜wV; Z~ΖtjDtA|CVe_wI2#N=j(^%ps% bI5CJECmţ&Q$Zi 4:E/tgїAf/4'.X 1x^ t\lxد|D.y,lŃk^ـ;|]>ZOEYd ÌUf̩x3jOQx)`Yy9R駐qO|+0=L?ʸZ'@Ӈ!Or5I2.hDP{3eUec(żC8K1Pъ33fS4>sih{8Aͼx. 3)D,׳W"D"?%Xigked!*dYMea#`dZ b A Z@0Jͯ!dOus.Xi*:=x [SocNKYܟ}Zɳ||A2N.<?G|U5KEh~1 cLw^^9S"N] -_5=)~Vgac*=jww 9:}&Yۏ$k+Z>z,ywh=vtŅr|LZ'yU 9Z~B[B P& @TViA%WF;dxA׾vRC~0@FϺIb׻rTP;$NjXǮ 7(?=Q3>İ=m8yWtݢmQ( ͞߈ #dTu u؂^w~]@}\2>{frdlzz O8S1Nw=>|$݂l\ݘo?f } &Yo]L0wqv>7=G> stream x]sܶ]&y5/e;L'pwyί.'ȱU;.~awy|]'?\?Bht"WEY$4'jxӥ2Μ.UG71銺: /g9ዥ~]F5O2, vm[qL>̛f=;s\۲03-;]&<^X(w]ۮ҄ B؟ܳ7]Smѝh ɖuCHX[:0| "rgLEuCt9;D^JNb9ӑ!-$wxMfD0zrgj";C]t`5ŰmKi޸36˭ܢIM+4QCP!*əG]N!$ỹfRQ4,2OY HHa5[RX*~ m2 @1gPs;9hN64QoE5@8MQ =b՗g$ S\Mus'^tDȟWFyVeE[}e$3̈́N2݊?CL$ͧ(fB?.;Tl!$;I?ɶ8\#.Gx[ҷ!g)q0Q' #KW ґJ)˺Y 2⩦Aiᾶp[Al8GshaZ0zbX _[P,zU5ݨr!#/EU OTQ5 c0Y{4au!p.wBMNYR~~ W8 u'l(cd~g꣖Z yGmq`%H2BBXKdAA?`= p 1n'>/EF(lrK?:9G2&Uj,Xq<n—8v<*Aq̏T"ivcDPa&Jqe(}`!.+4WxE>R_ `QXdJtNJ[SeL dZKY]t1 Powad3-~qiie1'Q LW GWYU:% Ԯ`M]usUkq&'M(16}Y3ճ}Kb[Y !,&NCMoJDb+޹ ı#X&9_Z $z-PD#ZZUZGڟ]^;u47Uٓjb*z-v%(.8e%\'ddc~c\E4NX*(2-+h3xL{ fL1p>A%cn2HwFS!T Vo8V2j0T~baBoJۑ֯"燉wE/F=y[,~Γu%3=1Hؼ-fGxo]y}mvŃ- A!b>"M]! 44mk>RE*i8ϨvU!=0>k`|;ʜqtK^~z!Ax˸HF0Ӕ}*epMwD#5 <R^dE endstream endobj 103 0 obj << /Length 2172 /Filter /FlateDecode >> stream x\Is6Wp 5PBzn:[ pQIʉ}x,yXx@o#@} u})nu{y-="z{o6+ yvG!#̝Iz }ϜB:vfiq_{0^ s8eMw7 8 32ngjnRCkS'߽1(|F5k>bS< ,m?qCCG{R3h~A}äDz2ܗqSkd@*q(s?hQTzB 9)DdܕU,4Bw&Ad+dtt=(4'J!U4B];ɗ ?w+SMEUğM`c/L5W#hs嫐7 ʻҫ)&܊30UP9hj0ZWq>0D@Ea8W PUnM*Y *>Kd',?6yaR1}:>!XۛqDU$C,dzcm%۠FDtVܺ;OҪxfz@]kl^82<)=nh/>T>uTk0Ig=AWj{&(VJ*ӱ,y8ec(h^¼'GrVw=I'zXG>{\mAQ8U$8"d~1o ~4!Pu:ʑُ#[uX}jpI1{C}d} 0oӞ H4; 㧗}Ͳ_'Qw]vxME63ת/wJYRQu7㻜U6=ų,$)T|SK[097"}g;%mWfm^rLuL_tE_tE_tæSg][szt8zyFEڈ^Ģ@zx|F ,c[A}t;?>ct=YG7z&KY "]8wۇ/!a}54B$yθbx9?]E~1AS ) Z}GZpA6$ 7 )k`^Cx>cXE(Qp&f$M0kkGga`TDxuèѐQ[@58&єzU^#{5L#3 9ij<[(a ûGaܐ3֌-  (l` |L E( aׂ2SA+$iY^^J(0JssQ $VfT IgLe׷j7Z`X @I!xU@< )ǣZ]8QBa1ՠYSh Vs% m$5@,S;zT)H$)Nslӿ?[ ߤ~ + H2L5XQ% )m/ t W#9~+SwTc=!QmNjz!h۟W5fZCXipD֕5ƞ֪:G¹}ۙ3iji3ye=Og7v-m-NX( XtP}#كy1 endstream endobj 109 0 obj << /Length 1162 /Filter /FlateDecode >> stream xs6U$]fSeF p d&$&&ljf,s}edȀaxr^Џ{"Ð˘,(3H.C`fH}9Ømlr 6f uQ\s67nƯ^Miow58K71OZE˹X!șM443WD27[^ 9-/*|"ZhCyG]k|siY8AŌ)a`'|2,k|?!lAL|` Zē)qN8s7]F*DgَbY]Oa:}~~徭>qWs7xܑMU_#~8@D@4 D?ĵt;O~1 JCJ endstream endobj 113 0 obj << /Length 1242 /Filter /FlateDecode >> stream xڝVK6 WhDu"mvɤuC-6gpEiS! 2͂/a9/W<Ư%`DPqe EEU\VUϒ[7yۇVᛣM"8Zx~^E R"O.(x\y24&H$ck0EƬ$N5'klxW Jw=F zFi284EUŕDΌ#IJ @4O]=ޟ1QЇ# jQ>6G,gq.3 "Yr05:aI6FL25hRog.|zjmc8Ό  BCӣãn~?>Fo)45[ܭa$GE H븷W8S)3U$yiw^u$%)Lh>>Kz Zp]L{>L/z+6Hq42. hzg endstream endobj 106 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/createMRexperiment3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 115 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 116 0 R/F2 117 0 R/F3 118 0 R>> /ExtGState << >>/ColorSpace << /sRGB 119 0 R >>>> /Length 4808 /Filter /FlateDecode >> stream x]Mqݿ_˙ŴM.c;0@8ᅭ&F~XdU}ū =b&yX,Yb_^ kؗjҒ忖O/?˻__jYƟ?T/b^}Ӌۗɖ޼qqKXs(OXi#o~vyS}_ߞD@hVatWۚmqzv[cB{\m%aۡ0l<>up>L 6Tj϶ G+=v3)2x<0A\2ڹu}ʗzn8jH.e$b$^x@@^{yLBYVI |_&/Htެa6Zd^l0"#yv>;SL0 ,A/ 8 pJ$^ -hSjpd1HI)dC;YBaHnHݩrJ(^NȦ$p$8v>񛒼 `) "As֬WwA\x\!4AWqZH1cw"d8mR8C;]*7 ynqLs Kx!1|^rL[$T^ S^G?Ly r-hɆeC>wZ \yyRދ6>!'ܟ8џ Do5"~Ԣ)⑘9 ԅC9މ [4`ˑn@?rmM}#h^Nsqo'9ošWַP:48 4+XB|FXh7TIVLkcQ~S#koW,$uŋb#Id퇏O3~Y7|/v)7>{_߳":} j";!V,'/{B-\,FXKѺz} ҪQ,lZQ9՛T./Z9]cWԞ5\˖ʹB9gjVw=Vd\rhwj>JZި=V쪰 K!".BN=Bk@MOtZ7[Zk@fIiJvC4 ѨF J+Oi |ukbndKnunk#;yVNϦWlz:}trmNؠ0G﶑>C, ,RO'Q{~ }>rY>t}t}::})4W<~DBY]BC݊TB}$40"V |>6DZp1P\-@{ > -TJh $44P MQHS ۊx;ՙiM?Dh[7ֽ+uo4({S J~CVy^hohݙ6ug &6*(&֗BkS@knRfDž_ʸs3tm4g@m [鳭y6U }{2BW}Jԍ>A3dOؔ>C99or^-+eB}$}dN-ٵy5:G1.WgR~3hj5Bc{Uhoi]3xI?z Fց+ao '_#2B'pXR;vd?rHG}@u~K+bpyZ7> }BOh}}@#>{rn\6$&C}Yعx8ԇLoš0 oša?qE﬙E9D`mZb^X-$IyBEyzpcvyV1(glyfÏ?~[Xyw~O|~ÇO=\Ce}Q4ciCfep/`^统9hKA"Jݻ!xl-Q[ꛏ"l7kR N*WӈmZ?"T"?"T"B\}~EhˮBsuFjʾ5 Ri-zՑ0huL@iuL@++o7LimV׆GUil26-dG%3g +:NvބV+fMRb-WFR̖Q*SuuRjR$%vU }?vp0Գ෩,dk788Xȵߦ^{n]#5%=V h(;{OtGJȷl[(-PoiIhǶO6PG#˔\= _H|gʠvQ EjAWHПB_[(kzr6~ZT;;g.cIm$dSX{o{J{ǃH|%a $Wm@o K\Nar>l ڵz;/\=@аy K\GG$u^}s-=3Ni􆬉sd&7鯤1w:696R2>3;[HF\Phkoy)9:Pn6F([~oK ا۞6L.-p'.:hm#ӂ;q Ir{ %Rt]?wbAc6QX$_IT;w!ԞOe9 i> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 124 0 obj << /Length 1850 /Filter /FlateDecode >> stream xn6=_!}pI]Y[7t]=ym: K,{PD+{w`v"iG 6Y(K,L [}ozr8q]Exy)i&cjWv@q.IP]sB܆\3G6UiX4ktts:FTȈ4TOPBqmcEޫhАx0R A:Zkym'qoeajCwQ735=sn:7Ԡ5%Q/EVHXTDC9'Ta<`/h!IM,j-! ?߾ _~5*| )zBG]0y1gQ*ĕZLL9 J>))+J6X+3,$;8(_}6:M!8L(W=8~xlf #kvDtQE|(caDZO5r<^QJݯ jb 6>y@vHrU^rɨmQ`lӱ,W]mrp`CЧ(*350 -;m4 !Wu\hc@Qu4a ZxaR|@VgUw[m4{-,N僘0HM#2v\&0ܲ=YBș><&CRT;4(I$QznEJ93 WLƅC}M3q?B1FסƣfAa+5:9BP(KjDW#!`ZiRoq·hqz*2:BH_`(OjQ&g(\ f)VATwWwQjCW`\X?+kH`h kzNWj]ףo@nyTRiMq̤zQ˸8:x.dK| W9 nPȴRvW< B[1N{e1c!R/_t?hm,6hK<6N$Lt^U1M!,=uLc*'jni#6w4 אIu^eXhQ5]|)̪Jby1.E޶=YЎ_]||Ep+g]`:Se^7&"7kD- \:qyb1[%3]\ <ɰd"Mіx1ܪ{p8qz,NQ.PYSf.=v; Q9%_m 9|/q:CUޝ\a؇P-3z,ڭYU`lTn =\v}+AbD1wP1N{ endstream endobj 129 0 obj << /Length 1993 /Filter /FlateDecode >> stream xZ_o6 ϧ0kdObXu؀]`iGwg{/mHIv']khM(GdqK>˛O|^9p=W$ |޹h䃹=P'HEK(椛"!Q'YuJ7{eDĆu6ŝ2mYY̊`|hf{ûGQfg8p'$;- qdͿ!)'\O4ҩCBOv‚N^y3:=MU5b!1E$H#K/ɫu:̗M(֙1L=4v!uX?1dܷkene<* 3BsP[?`Nڿ {z6 lR!1L{͐͞$P=20^J6, Fn#eʐ*4X =|ڳ>2qL@nώA^-+k),,S~XR,.X!r[5FTx bv{rSZ]| 7T8L*ů `j$—*m@۱nPFUv"tMbGVit$VhUu;_>jS՘X'ۀJ X(7~1O!;?9 ?7 wY(Ypj\<`v hLp$x|4F0]I>=,bZ @-(,r!ڗr -mro4tU֤ۦC>TR6 /@,plbVت"-@`IrEy-ǠK=阰Q\j8x~s&?EKY^}y&-E;./)jC0u6nwdj( 䦬-L{C,C@ m[˨=a;u%x;3g.6}pz, !|>Xj`4|'UxVc8ʄ3@KrL'{K\৆!G:DС ug@%-00j >Urk]#k daioUӻ+Uc>q0^2c'v8D=xd QFͮ C<Ph4og'.+ endstream endobj 135 0 obj << /Length 1341 /Filter /FlateDecode >> stream xXK6WЃ D )zzI( qCZez8zv;álI[ILj8pYaf 8spkBnE!sY(zgy-_xM04{Y:,-i]eEyENUwS֛[~xTfmi^:B#¶nhk+}aN7̀Վ d>\MvBWmVq^LZ_kYkX$z?;ˏӦ]ܲꠃ17HD)p{P,8b]:A@o QΉ&&Tgc#y^(b|:ޔ^iMXSu]0SY(F\?=-G[#ۼV$H%dȜ i'i+,TPd=nG)EYmhMVxl0nV3p/@fܔzqrvʓpDk~# "싺30:]/DC3gynh dab4u_=<w2IcOӞ7Qrߚ9w쬆?^b-^& {_TqYj"C4fCwv*!nԖ8 Dtc{",k24{7  C߯h3O \ =+lMpQwNȘY|j<1NGW b 0/zFbs"лpg@_ l֕ĐYa)uzi[0c }|͉yN :NDМu#|siQV*xy,8r2/eps#x#Nju^#SǞWjog;͏Sr#9C{x_ & endstream endobj 139 0 obj << /Length 810 /Filter /FlateDecode >> stream xڵVKs WPi @k餧XXajDd_E [vNg`Y]vaf\ DSS B0eE g!FSSq<χ4lF^1b̾obDq4~1_QQ$1ZPJp$(404M_Uy .̯X(9ɩ5#(djSTLV"}'B[wV3̓l6DI a"yP0΂';(H&X;5yoYiWqƅ%Fְқɻ.dT֩uiB8pUq ]_4еuf$$Mk{Ǚ-*ˇmW}@IrVr4_nt7~[> hG\b<, { C`V1fJA/֬:Qb ̚_ PBc-8W/~?"^Uԑ vhŤh4EiI۶j.r,b QheȠK蔥v)a8,d8^'=;X",#AN:1,yp搻*@8k.zAx ,w~yU6J z#+ d3 ÿΖitxۮv*-u 'ԦZv:d]#VԨ؂&#LיPfVNOU7^JBa'[ aS_ZW}ܦh\vOpb@ǹr<#8cc>COv`?'g endstream endobj 132 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/timeSeriesPlotting-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 141 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 142 0 R/F2 143 0 R/F3 144 0 R>> /ExtGState << >>/ColorSpace << /sRGB 145 0 R >>>> /Length 6292 /Filter /FlateDecode >> stream xK%qSp&8Pf//liOb9F~_MKg.MҨ&?ֳo_폷??}}#[N(Vb9Z8n?~ۿ<#p˷v..߶zo~w +Oӯ?7nt{'Gl];R틏_.-w)#Яp[)M4;?^1xk?u2ƯXhJZo8 OK G3_*o/wgnqF()mCu#`bƆ*F/\Q5&lxmho-\ >>SI)ҹ6!;qi'+f`{#lmoαu΍0qmSb>6h<*Yy)x:!l߆*ov%!)6Ic.T{2n:akF Mn;ǙnG}8Ӎ@N#  e:э@V~݀mRq{JwLLs0&~n_U>#=~f M`1T(;ۘ1)mc1c(M剳P.m 7=$Ti;.#qMiiG)4|׍D#nhW:]b8 pJEps;#oL;nYr94~\6VXR6B ;n~io;؊Mws3'#_cug yUBlP {ͩL)G䥊;gSQ6OU$]z@G;Ν_Ud}2$B?Ҏ6U˖baG>ȐJFm˪@/3C 74rG!A3@"2Gsm/l/Gf?";dJR ;3H;UiwҰ3'߶Rgoeij}cu,%X͟nU^i?޽t'obY0y}"5O>Wk&NosL^L;,430s~vl$ Nя.7|B7pmV\RX1/GdUt:m02AuB7_Ew]nh^_=/LEtZ:r~~p-fBCER^=s/\6o``r)l|L~UzPEzT3*<ӇWe7_|OӷWJ.;|ǭ''22J6'2s DcqHB£4 |UH<$Fi<CX+ҳR" ߙ/0_"Y6 A򀿂Lz _ "?RQy 9HF$R*˅O?]\wE˙?<]/ 6.*|>A{OseyzOe|bˏ?Xe !G?䎉%<c }^NfH<ӅYMg|Tc4gaXĿ!u;G??R?4zbzYrC_ϛlo"w,_Q(iXr4M,wxZL#1Q.WVl.~^:'^;3˃_"2],"XNޜ}RW|ՓMrBHI2]b?j(ː,wo{,g@BHZ4ZK* Ϗ2_+4&$-!}*j27ǼkyGyɼ~bjȦ1NhibqĨ1\hjụ91y$8H'Yy$Z=ḥ?iYy~^4eɵ8g1df1df1oDycވrƼۘGrQӘGH3$9gmv+HWpl;u)Έ%_l#Y/eDwm(l#ĔVUWm`lƶzb.Uc[Rm$ydlzHOنafmFܯF26žQ,{YFr\56) mU)cƟm~6OslmUSc[սmlE*cɬ6o?cr]F%d>m޹8, (mٳ`l3}4=bl#(5Y٤l;LFr+m6Ty!|ImgSSF{6Zl;觱dޯƶs(+mc۔mڃ6|_tl#Y=em$g6z>a7m=w~{wx\Oe(8*mN#a˶ccl;={m6pVjX--#+?xUkг7NO?vf+*?HޟE}LqCdvC{joX/?^}p?޶z?mՖ5.N.?moڮ&gӟӟbOL6~L6-#9]w_禰?z @Ɠ]yxߟ@g\0v(D͕yTTA0uDW΁2rw6}ze^dꘇYs, vyFA=Bcx=ysZ̃\b] YgPҘ7_<=g1e<<0R<<A .ASaa<V=OC汾<#χ2;$71om#Wó3՘Gr#?H1gFVV7/2 y#:$ƌ?k&&LV<٬4>O~LVeӟ՘g՟_l,V'ķ=kYl䆷,:z/3VQ;V,O9Nboy>8v۴fs]sxg{ؐs]w0y \?K3ضdgƿ9XlXc,{LZl|\sfߘ=OO`xMXl,s=klJ9buIME9f.<5g~B#3?_'MGO;DU{U(jY~Bw',?žAO$%Z~BEeQSgKن|g؆֢OD؞'س3?3?agu޹n;]_+ܭҺ}yc֐ѝdbJ]F˘8x]>q^ghm9ޯп~PǻEhrƗ'9(ʾ"X[SNWiicI .sݚ l q@Wk#Ljik_{5\r}!OXBrAp+n3pNDVI(ovH.k4ڮkծ?ywͶn4lkF+sհ5E5G&ҺBi]e&4Yy]Dw,|".~ϼ..3g0AǼ}lF:8o2j:ğmlM#}5Zزjnys2ZBox-~?9[>ccJ\ɡK/w;Vx̓l1xRhޥTGKպPM_ xor0بl1"ZW$FLűZdňW (#Zuf IB&joC.[cd!sef!yeY+[ K75[V'WCN}eq-G6l1gl1毻n6:;JsU`j[bgp0Wej?C_Xbd2EP:;ON#r_|ߔ,cyϻd)|-Ys:Kגe=dч),YiʪoK}뒋;/Yɶ_,iʺߖ,qʺ_,yʺߗ,t+W;F|Iv+Zo+M+͕yŪ!yEy%m#d0=dRݨږaCyY՘A1Ƽe~yY`+&c^51}16g^9( IaUrzv5Xmh%mt\ QKƅK˸F~p*kjW١օ\Kok)={\KrJN+ʵ;ʵ]ƵlTejV*n$~Oוz2zຒ!-\^d-8ʵvRUʵbr7kYb\/l5z^}Z֪dZ.k552ޖKYW2'\u]yxkd{tסNt*P⺒<u%G@2]ʵpjr:pkAЌkA d\ ZEm\ j+4>mXֳ,TNPCc8EiqxFR!q麑IB7P(F1{Y& m o$qx xO + endstream endobj 147 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 150 0 obj << /Length 1377 /Filter /FlateDecode >> stream xW[O8~WDXM/hYMQ$nk:aljm"hZwn>kȴlEևb9Cxq)); 5彩 "uۂӕdy -G+!ѕ(iuO޹(:|]f!q׶DÇ#U48UVc34SFڥ\;-}.FpBgHA8;}+lb㊥% g?KZ6Y^4Ky,).H ʪ'?KtEO$!a/"Uw))%"ʗdBwpiic.Ji/T(jXU$+RS'9K+܁LG4 |u%qj"V2 _vbkZb3z[Y[NhMz@gr6J)Bӽڤ+HA.U7Z@%"io_P"EqD}K̥*8CFU3UAڟ ?g19y8uAO}qm? ᯱWe)PZa/Mm뮢mCwҐe62źaNHYGڇC6˥D+,V[}k]Sn/>q2ny[H^¦tޑj(r[O`pI67WW(x ~\Q?gXr7Ldc}ACU!'Y פ `| ol/FAr:ڔJ`gx>N:.' h]lzÏoe$(m ZФ[Ӥ*N2.^i);Z}Z'&x +HW#ۯi^x[<ˋӂ UC7ϖpr4Nu59PRgh͜OM1j[I1kB<.Y/"L5dh5}OBi{+%7a3IrvQ%"29@A)ziiTT\~WALUp-ӹ@L' endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 799 /Length 2198 /Filter /FlateDecode >> stream xZ[oF~ׯaɹ_@b'f[[hils#Z^g}CJmY) $)JC3SN1!Y} ~8"v (eШ~t,Q0}tzFD ළY4!}6}ΪEĘhY\wc_`o6T6> -Km=h=lԄ]o]o]oӻT\AZa:Q^nkxHML~n."KT^#y#P\Vq"|ER1=槲>zG,X [P>scy>Tgԡϼ^|< qvkZzkϙk2jﲟe_&?0%}A$FLۄtH;()GPSm zwAD 胊J%>tW]IO_?ϋLkX246=k2koN|#47c` s{0XrΩBb:-w(D>"}H!#Hu=,D& uIL_d1}D{~%>m{ F-^_? ̿WFπiQpGa##G~;=C@!/feq58~)p3.@i9Y,ox򁽫M>m3oδI;=U &Y%:o#6htSҿg3zY;n?q^\_fM r8368oq9ax*գ*N{і vk۟:8p$yi-8W }WN'%|Syz]e4MLy5ngWx6tY6P/lcH:qDi3Wi1k:n޴uVi6iy]S:H_=^(3b ̳ ]Rs9)^IE)BڇF]JͰJRFo6|J~.DJT46.P {JȞ۳7]~P b {3IG%69ϙ>s_\Uϩg1skdP5a[.9lV'PۊߡI󺲙1vó endstream endobj 154 0 obj << /Length 1340 /Filter /FlateDecode >> stream xڵVKo6Wȅ"=}s؍Sw ji-Q#m?W>Ï3.2N]u: `)ih8?'{ xf4ϲ % 㤠A.h@:x䈞ŋk c4O KC,u@= #.#0JccMN)ղm3<<$k4" #.i稙G:QŶmgAx͠;5'p|lI( ު3-5K"\t}l;XG;lWfhw6(eDF `_U=AH?OjPyS$djLS zW_6k<s*Pse .{;ݔw6%BM v=O'C@~7KS{K6JQ'ϡ&aE[jhؚ3r׆ 'k]nn7nL?wpq #>Byȫwu+6vWmyF3/\=WOn bmzzǔEޣ*!B[$YyLƮa @Y*Z^ vssyX.yvOjU^oGemWannb2'ˍvV G7,Mh;,~oqR5’wߚkWKw*ݴ[ۙ$wu҅cݍWM; kpxz5KVQ 4Ϩj,iQȳRYRix|g]ϔC8s0\x^^ m#/ endstream endobj 158 0 obj << /Length 155 /Filter /FlateDecode >> stream x313R0P0U0S01CB.cI$r9yr\`W4K)YKE!P E ?0? J!DH" @ l%r38 H.WO@.E endstream endobj 179 0 obj << /Length1 2084 /Length2 15430 /Length3 0 /Length 16696 /Filter /FlateDecode >> stream xڍpek Ƕ$;FǶm۶tlF'۶m}]Ϝ&!U77vJ i`HH-#!Q6w0LHP d gгpгrchcs63H$l`HmlLL?@n@gggoedofg s45hg P103rt\...4zV46&<T3GS!/=+S!(9K`cgoXY;|8Y>ĥme,/*o{og=+[=k73k່#@/C=KO=g=3K=OK>_i fakCA++#kG272?/NJfvNFB9XYFv#WSڿ(K`I AhdO"zz#@OOۛ4>Ǐ@OZfhcm#TToU ظddl>'@g5 >]M_Q_V$di_?z=+3K[|NH|5U1 X_.[Xf"fFfɕZ4K3k#Y5=}n9>S [e 'goyȟAFO1I `lc׉h hX"#V)ALZ?@_A̠h ?u6䯎hTs? Z?/d'>_O6N41e_lMY?'VIR??]?O~6:z?`)Z?Oslϗݟ?6G?;!t?FhgɎ.6pl?gq?aind`!N>?Ҽgy]`c ? 8 ɞJ ǒ/gD {ġa;e7ȐxWX6I~\Ԋ|ov~-$9vNly.}e+{r,eQJ~ų$sXԸP(w3(`N =7*ձpAPFH=$0` u#ӛ \oJT <hhY;BCTCFG.M9yg:G+la[agFc z$N{Τ#;c|U 8Yy&۠DW%IgCSS3oge+r(LgFbQZ34>:c_y3vγ8l88ūkXj5ά3%C5Z2 a9Jqy⫤UH鱛Buۙn`t;WMQ]h9MV"z1:mN|zWIzȫ{Iٜ>)U3e>Ӱ ,H *UR.K9N>^;:鱈P3(r[EOᯞyfY2p%iٞ /JY;yy˳31O\8)B-a;aEDTvA (Oq ftq"8TcZ-ʿ@ ϻp)=jM~[=Uݱ^`(f$RLa~zOѐ}V@o ?hY#zT/8ɤR0 OO~B~gHhy+ZqgہRTh~0B )szh6.fN#s8+ʎ&RAmj8^2Wb3F%pGc/a {jȧm0Ge7"VX(( V>*)ߡٜ =FW:(?r_h=Ϥ"I{΀Jv2yz ăJV#:ӭTDAy$PL;\v*%Zxuw8XC.nnbhJ\zW)p@+ -:S}/s<"}qr!C_@➫2YI |A ~{7&|5 ![RO0 :;hb5P%4xC ^yoSἙ|[c (3yW8GF! it9Zs~$Ƥa:q]1{ jִbG/TzrV6 Q-%ۖ8w Z'W饁lRND%M/Ø&8p][+BX_Jq_iNqTtiWx@Vm#[A"ԙ{ȉs;TKdU"ݑ=w(Cl #I=>SE \upޓC6-tfR)F?BTid*IaD~AS{^>Y"JU1+G+v (Z{4Cp~x!4ʹ0Sa@#v8Q /zDꨉu#K!-_8᷍gg\>rt+˱F 9nfEU\:vE˦p☬lýR":)G'a_G4cP]?n+NYZU`QؠH\-Ipao+νL7E64[v}fjK,E(X_u `kmxI~yD<9zi@=`s=Js?eLb: MZ7~Dj*sa`ZGZ2?֠~4a*e<|[% !AL]lw߇NIJ=<;F{rNCG.ͧ/M1'P߉(؇wwx#\INt)YLC-1${Qfor`s!>\ܭg/FNk֦ox2{8.W3D_yJǜдA1W*,CIxF1@A?z@eYF~iULE*,mBExA#_Mj2'E6%۱ni5bǠ)쳙ٺ 4yZ@ʧH ,z(Z6EZ7/N)̉4t!2+4מE+{cLAv>Q-,3iU zj`Bet:v=}*2zTkΪRtL^?10\?U@YglScWXN:w =o5 r$1h JQS8u40˼3ԾMpρzL Xoѷl|nnr 'N YVGK afQNqKX7>*nk+1S't'S m k-Q?}|˾%6Zrĩy>h%(ؾV>LVnj 8]69[G|ϒi&=`2v`L@ulH}? Ǡ PJRZ&$8N,oV8V J ?llo> #ЎwS*']T[oսf$3 G x9E?R'ϝđEe1ۅ-ryq]ԊْX8 H]f]S+:xqw)&dQPY}X;6vȸiʆ,dG?A( w8O:QS< Q=AKH։n 2n@U}P6RRP."(!`hBE<^oqx|By5bio|sk2yo1# V$]ݼ[ذl<[y/j?5(d 2'7ʥg&R;NP izY*.ΦunlOi`31J&'yϿǐ\uW`"+f}),GJ6& |߉S0CˁVKزJ0wYGǓTݮ_GNe7qHV0"3k=pa?uHLL۾ uCBL!'zz3+$;/St.8=ԃ`epƶI>\H gy_( {,y6h}k֓5er6"J~gMAJPcB!S]ȕ+]PgVQʵd(#-q yWk]zMxGQ Ne{T ŔЕY0KʳJn[쯔H饟{H3M [)yd9`,qٟ +"G^sӼSaͲ>$d@|.v$itu*-3 _ IN.#94#:ίvBsp^rξn*&̹+)+ߋ^ᤂqS+Ԓb%-5]\aK,Hux9PC77\'q`+pxG0F~: @a`0Vg%6 LTv- .ez|hoA)yGB8ҟrUlȝZ9Mow\%%{M&¡ $TwK˜nUEͨ2uoдa,&ޜSH(^$OLufTȭ) 3`Pt[!&tD̘ir0?Ke kX[ULlxRH|"f#R$qT=vvl&Q d?g$STY"8A6R:9Ư.w\ĞҌ1z,th!luҋ ++GIPUbPa$SSQlW-ɦF@nmB2DM!Z{]Ern4jF~Aף^T8St)~I%EޫXn,`!'{}K߇'CNx)I`̫\RqNa6#kΣόPVNUiw4jCK6+tj[utϣ y02OzxmHZ6;6S4(F_6Do'﹆^:vt*1 ;;(NEir 8k/9|Aȵ }+T@yv -ؖEkNieAEx C-Cm.Ʃ^S O¼IKYnV(\k7WxH#PN1|`rlijwg9}3wǿ=3ve(<~ |;u] 'u;P5/0oʜEw\6\*Swe1Cx@t h~W+<-_ Jg{Tf y^B2o'M`bg_9yϗEQ4n8h2owS_ J!PdT21CFf75CiUPIAܪ%殀.OL/%8˧ȥ hAҝUG҄{؎{@}ᙣ/ֶlSargPx8m8,8[Ծ\Z\,ƸQ˰Cbew#6j IDj]+CRe[ @rUU}P9 /9%lGSA=OA^u:ȽY"l*J+ʓʆDyeRS:Jr4d;=z}-qq@6|嵽ԵY[E!]B|qcy 1=Lj;vUKH>dH;{y<Sv>xz1;>5{,>%NjÆgxsl@LF;`A$"7f$ TH~ݑfB;f=e 7!zSt,1<f{G(r%81);ܧBzz F]$βjYIPÿBQ-}܃goa-ބb{3]VUCan%wdK T"I!<ѵ%/_=~i߻76DݔHڍk6])5A>3!jM&) 8L+?ERn >N1v4 t' > o>v5VE 'p} ŲI]cbY]GC/ 2ǡK@Dݛߍq_=Vj+:ZmcYԓWXA_] '[w ?!\yX5oʖAUF$+Kko%=L 7*D5ucw~ei"1/:5գQq&SVk``d?6Km^*7^y^psН0aVqs},]p8_3 XNz &h: &w65y[SzKAէ0A9TKlb!F9{_?h4V5Ȗs_Ǚ6 8ţ]M-/(aw=T)h/s4fRo ~٧ԀnqmiEu%iچ5~ 2|5dr~k-kAq8ܢ2f;;F)HV桃@7o KRڶ Mb+;C|V 3¢*?oh; |BL%I_veFU.m?y?ݠ74Ns;%`k}T-+Q󄙇3 [կXmU=5ZA H-o|j댯qh.Q?/ub!l0TyϬg5[Ojˤ<m4?#KH*$Ldc}f,fd$_}hyf.Ogb;3A!!Ly[ '@,%:|`fj&Kj,s2}NߑJOa "6+#_ Ӥ XjcrrݮP"8KC8ݑ-ʕEJ~%qU*$"jo`֬R&sAtܽ:Rа6`ӏ(T>K^И{88; E\/FaFbOM . ,LF~‘>PT2{L3ޚY)vf1JMlŁV#y ~Wٺ(X辈 XNK9cc') :s /M~=WKmdrE'aoOJ0Bb)ߋX,uz,niC/6|#qp\Vv8+j)͵ '4AdƆjkhy[[d76,.)b{T3pm@| T %IeX|c.ϐFaD2$6>]^mm'EY֑N!_ 9rp05;Km2v ]ck{/NV j)IEp)(W0ïʿ.U4镶j^8\6rFV? ]zUz%9YQHLlܱUЈ؉ ]hX7'kwM1w &i4h^nN"ҕ{0pj4ds4Vh=5^]'xC=ru@4fY\a9qW)(s!3E$F4HzU$aapu#wКضVǚWT@i`n~ᔅ`U #.. wأSDFR] rY2on(Kؘ$a&@@R)-uRNAa@+EaSz*߃/KrxlX,2etGVб3( ڪa&wF}%9}3tgT&|u((-G`|x4Q1Ҵh2m?'z }t(!`':UZorG~uxo _9eVahѢ`z\VF$YT!4xr4QӃz_;z`!5{'xR|n>ZX}Z~Zדt1xΞ.I|&"|\HP/:͙`: yGyJQipzIw,8MT<osA͹DZjZ3^1T*v}>7HHt"%񅕌aHG.lk0"0J 9*)dϢUO8ӌ ՚P鰀I~8a{ÈvcVcc aO*\ eQpUnЌ1w:a@6(*05:y@-4'ŰCRWC3U> |pG<<+%#~%iM+rWH3|.Rq5gv/|:{eF1wm77Toe|%mH2 hy{R7ߣd:NUδyUlͳ.lkR8| XxWF#CuOiyTIaa xtꭱo("&Cݤ{,s]Sˈ %Nrs@IO G2Bxn2V.W186oa^L~e7:zg5݁]nVY^4YIc #G~n|zeW%XIWo^௉t$"^. rz bPGAd6di9+LgTmlc e[imVaBgOZIqZ؎Ĭ 0]O.HG{@l*ڶUWkksmۉ'κ6l@Өؔ"V:u/)XVs3ㅿXgu=74ć :]Hn"N<0h9`06 FjYa;^?Rcv BhΦ+*(t$u=)YW_xXgԓ{^&NԄbwYyMVzB_ߌYV큃(r̰$-XKI^K` endstream endobj 181 0 obj << /Length1 2051 /Length2 13788 /Length3 0 /Length 15024 /Filter /FlateDecode >> stream xڍP\ #AK]7Є],H]k8*Ǵ5s: H֙ (`e`feeG;[cG9:lpl@@E;[5 `geO#?@ 6(2lANTvOo'֔w:@6 Mu;S0J Z8;󳰸1m? 15dK2@ h4f*_u;sg7#flR\l@ e{wsll- mNm=`k@YZݙ5+hdt&oST7dwvbv[2om5:;!O2}˿9/f.,`cL>\<|njl4xd|样//'+ `6u>mf =G;@m}ml= Hi+ʫ2[v/&.; :*@y+kknݷ>g BZJvo 3\o?)*IX[Whw8m.PmпVWdo fm;IAf*`gS˿-5b`bce?2z{}8.Rvfm;7@`}%v..:b [ M'`/ ` +E`qXx"UA[?z_ zcfzcf_3~k,u`(ߜs]oGO7Q\o'7&&oB~}}pqv )7Hc{c|po9[8g7?޴ߴl?[y?wϿ,5+m;s@ w)œ@eup]4նv ׂc \]ŷUnM)kEgæZՖG'/j-8yb5}4Dw ;䨲\xQTr0zekJFBUw*J5 gM2fa1Qgo12_I0 Es{鮱z.`wħ#KUT+Y`Nl8 ܆ t"X,_7 (Aݜ 5UݠڷVlȪ)zf3EpRm},$o|oM|M+۾{?w6O#U{OʖL|0tZcD!)yʖC;!3ydCW `yp#-~Rd t]ˮ:MZʸ um%f|Z)SFt1 k#4bPsu5c>bJ%9:!Aɱ.HBFR-1OM%]ߛnA۪PCp-(s̉ئ%8x_Kh1u#Ӹfj پ$>W6lN K)}/03/h&jyQaDKtrתֺ{W>n]p9<]J9i?6ŞK|xTd2r,W۪|X+k]{1hh-̜HX^:Lf~'3>n3 w so$( p/:Ɗ/;>dL&,`0دwq6i 6Ǫ⣫>a'#+"1*6{q6 Iɴ̈́_ \,:th=BRh wq͸sVt8K`Z0bϐt$a+Hnb~7dc5'Ԗ?-X7Ό$c&IjTh~> [3`}}]bʖ7Dƈ5ж:pǡhOR;)@  p`Xq<%W'v~֒qbv[. ggg_W^.EĊ[J#fI߇{Op`j͑m%TfH> ",N]EB W!9cNՅH3d{Ql9g JTS^E9HT^U*\[ XnXYYEXr\udlqqΊftAFre]aVQA'Ģ )#7n+|̘9>rX%$T^`ςK TPh'}UB"~>I#s~26uM_h?#tPu32{Q)6ry[gz{HpwҦ:USWPavU@!lgEAuLog@YA|D $Ocdyvrӈ'-[y=^qyYt$̒DD ;IIX{S[~iSz2$q[֦^5GL~} xWEW0:h~%ShDq{G~K=ߐ׶)L@瑑:oFw36Fx_G/^!e)g݂(Ddp`Q7~!BUWx5.!FQ U^4A) 5y 8U7WfG]UՌ`9eF] hҰnYp<7ȔHwR€e]kvYYls!S:F%tMߌ\>=Q04a)A̅IC1e-#o8\{Ô$:r(>%Bv<q\vBU_X!2 BSHa&C7F/\׀ߥI[̎4ʚbJo|,}W!$2J\1Mcኽ\ KT_;xТE%/K̝0K}2+PfP?ъ4GyhhO['/LTdǭ2[g@ZISYf"xWi(2773/pV<$t 1QG&ɉ@rw[tbIUfj!yPQ_Ytܾ^*Zve"QICj.~tm1V_;٫m-Vvk} T! 9&5;:ۧR$У(&.[khtEzi[@fuWѩ\~ųY+Ti(Ut}h}ݴm"9Odsy+$k{S&s;h5uCpwo]yJ+¼J5{0DRи$I@VGtnʅ-GAJ}O-; VSB,J-ĸH$L+W'*,-`){ 0y;iV38 AH9HU9DU{!́ -?3%:Gg~h#Sj8Z?Lx\$Fh~`'m4jju>yGjk {=-i)5~~Fy61b ;ާKn| exC+kSe*R *zYo,Xhe~CX3mŋ`ٜʂLatz>ǒd+Rp&$3nzČvx4ėEDŽVO& *&(9,=J f0xwo-xNys8{oԬ[8^\P g_lݶ +4f"z-IBTe2?T8a~׍c>Y4gsduKJ]ñ4! c ˒Kdn˱\'ShlV%_t/1}) JH~O%u9D{ H4&|'uŰTXabaTp|i}6{W\6 _`tv ,JhTl0sl˟\Ev9kx>|9${SzP$.jZh7 -}qS}}N}u馪Ǡ!Јд.xic˸jh+e.dX&C\#JowڝRnQk#^zyF\2!뾯5R}2Cm3ܓמqzyS)#4Q0:߅-[7 a`Ϛł eBlWm;%׭hO)PPLI%y8+\.H Xo)@if3ftT^ )>a 8Mrl$ 6g (%IQ w0TC5ߜo.[oNSVm"8"q= q byu| #ͷ|>LF C\]Jcp<,FnE Mj=bƑ+h뤽NY* F]+OOWf~v=;sɓc=i趭# {.l 'D+J/3V羲R16W3ie&zi%hCDRp:iH9x$b}uvR(dĴz "$W̐kϱo,y^lVTp8y\PQYOu9 b@Sb3wܼrڌ{"]$L55üH|A 8.xӠI\uLDշ㐐6F^j1&3,خ(8 ^Z&c&IΊ*tj(+!j>yxQUw~Bbz|1={eS@xX9BPektlPu蔼[]Z7Gۂnnz9c)jg?J 4saK2de]tq|^T7/̬&ym?^Z$$ܾ6 wXѣ̵)"q YO;ED],./_|FʥUW#գpT,pv]4s5?Ok odGzZK\PCV/6O}RC4'B(* 1ڀ,B[hk^:N:X4oڶMQ! .lx(UMqy'l) ˚_B5vUS_Vk&F6SlHora=(ct@TMVME"b1m־ DW[駙 wy,8Nyj]Y&G4/cbr I̾vn&8AdO,6I?; J9`I pD*Ξ1rΏZ|k'U]Sh, |`dDŽ+`yQm+j36y_y[] Z!G-21;bUTp+tp'Hwt &iz؍!=-w>,;K:pCn֛,>0;I}Zb6%{mS&&&A8dm>O=6 Yϥƹ<4a2~lgj(];ޓ.XpebJSqTW ZPˑ٤:YTɊ,ixe5j1~!D.8x~Oc}4RaFVIJ9Lqt׊wQu{Euvbf_=N +טM~xXfhf16pJ=o/7R[o_tBސ/^0! 2mĐTh&m-TxK.~Drf} QzC=~Ԯ(l1@0n,+J'(|#2-zwȀ9C۝`>󤠀K=dr. NF]F1>$am3m7C}rG#juc&0Sh)DQ8~.$=j@(q9?NKw _;\"H8 y`#(zAf,[M|&9q/7p#:C}i9H_ѤAe5^|YKIEA6)#d'WtY,7 l׎=_\ #i5}lu+MQRu )`IuDچIE' t36Il $~)>~, ix$YI_f^ø'8#7lQᩓvf ^嗿=kAVn79C v,_IO%@9vw5P&'¤54=UR)ޯ'<^~ UȠs!f>G, H Za1wcqemvhU]=a]>RY NVr~~s4B1),0\ |!]$01G!,ҦK]3Q6^?PCǺy@?b&"22Yո3nh)e iec'4e;ȗ_HuݿoY@r} G TDK)NWcIbV[s~I^ǟ/3֓,jOB⒅w"3|N1wT"osAr-ѯlvpƌf?~4 - 6z pCUFNkRSO˜Gח4)TƝ.,ԈqQ2ӀzIٛԯ}4@;=6( \3Gh!M~dD7EWK͢t%w=SNx"(qQ=)ev"ĬGQX*x!3kPqIFg~pÑT UXgh7lxoVqQQA1/8l;Pw T~jǶmZqa >Ϫwyx/ Dx91LTiJ<*%iX 4$IM⬩2]˴o'ݟ* 1{uHfm-h[/vā3˳كhbz E^Nȼ-ToR~cTu|mѧ4YoKm&P1`n1)m/C$`vȼW&]]6# a-Y(0jM1VG]|Koyg܋$3/N4~NO_ oCHTBGƐN=ؤbqJ>Ҙ :wӍipڜPoַO~0 : p~d{R˄ DQg_fn5;YJT8ƪ y #1`44!(d2ջpZ4TR$𜐜Ngq*FyR*z_$='KF{:;}wKyT*bri3y^hIޕ8rSg}Dr|o!:)pQV#w4b׬׏$ v<1^` @&k+E] ph&a} /ĕ tORbPmՌT~j v׃VuW"5\R1 Ig0ZMi(.hsė"E$6Ȕ.O6 ?)|u#T^w#AǮtU07Y>aQL19L RK? 1ܳ%zXjFA~hrwPw\yj.jtl6 o_O'1`)PoWwHTBUԄZ)ΔOԣQWI.b'Vw#sD#SxhU&cn}_3n4ڏӝaO>(te[R]U)w} E->!dwE=_bLe5T4h|۳(kOe}=pEnTk_۴x.nn#KZ"(~{&`JSݑUL-l~H293'\*ÐUxcD16IFp^Ba}9o/-`lwaEi~r.BNSR;Q5ݩV(/rQa  :ۮs6>5sݻv}(~m[|l605Q SL[hȺS3c[&_;%( 57\Lݖ-Ex<ǰJWj?pWzNU70 Ձ8YIhlŅD Ld>mm?|ZkU?>i vL=s'8RDO?T2CC I_"|V7sxly\ͅ\yA3T &P .ڔF(LKSYThk& iC riqlB9kQ;tÜ'#ݕb_1n?aRA#y/_[Uڷi{y/P2m^=GBXaX؎!,= l.s6̣mpGL{Rq;-wˉu=瓔 n  RK]5gkGk"~vy}>DgPހɇ/tN'؍5vXbYr0rmuIK)أb ?n 2bc?DsґgV(~^%Dse=mהzzi?c$ᶔ3Sg$, aIX -%CM}MYWׄMS5.ƗƲuAW4߯ͿXlڹ;ج sKfr8hP{:b:?O=H"[3$U<0€(CJ ҦhC\;:ÃUg)npӻbZ"4̼\J Aܣ#}T \D_qN_V<L 3)+0 !,3V 6c%Rㆬ#8:ɶaҒAϟ}[0j:|yض+5Rt~|_mm%/];c 5]V䫹tᦽ'FUʂXt| ePWT*^!.bՎ*ϗa<߮ Rf/0xhqhWup2|QzG<`UW$=WhOr\"bRK5~aD{5VE7)yRMƬ2?c`Pty};]z & {QFa,f(TȀŗ؛ej}bXa.a&;*&n+NmR9{[2:{,w-aQ`th*k<, =u噪ĮY,.Q/$(xf6P턴P8`Ke`O6:uxV@%Xa`M)*|աh5Aevr>H䩭 "$4?i$giQJGH˗3PevOڊoc 6OO>C )KjTrS*CeM)[| #bf6OuY\ SS)utC)vJb<:vr]2j-Q7fI\Rr6q p \b o0ʚ|Dit萟Tmc%~}x۰ ψ?5%,򷳺dfL0 2[NiBa.Ԅ]#H+:K(Ǻ^/l&WHV9xVns}c`SobOm2ORRqڊeFG^9:+q}Q n6us"[rC$ژTnX< |?.AW?8xZn M?H:#Tem$PzdtJп^/.OBhgėnV93ӊ]Wc)n'z.B9Zm]^=}9nw@% ]Tt-o9’ڹ(C,Bup}pbX R7C_C?؏Dt=|4GR'L`\b4|*be(L ʺNZ).p,/u]Whkw 99iSZ yyN\ 1yp[?ћ1TS k$ i{g#|=upDvVwv Ea0B]7z}crl'% 3Gjg7134ˑ(;ެyo:J nw8`7 ʱPwi#l뭸"U9+)UB0tLVYoh7JY C_luޞ[ ZHp25|R{w#S콷CՆC>O SF5qYGa.: ąDx#rϲmpj9 $܁R77ל#F2BMa\zt\ ~М"=q-"}a {^tֲ>)n=hǝdT.Urx caWߜaҧ*ML)1h`7OҤr} \:QmCWᦹ/p7O7fZL^%({MUQNBĹՌzSTwS3R\C64v9pnNٔ6'WDE"Ķv5]]4Z«B򓜴W挡b,&![z5|0*@ 3D!hwH̼;/+rkȝϹIzFǤ"y NX>gFJ>I!8l,P!d/ ,Uxe4?ni?[{͎TE}fm(4 }.-,­a>l'G *NV#prz[ ~ZYyPF)i0x-|$/aU,;~p"0W AXXB谆1?]B]BAn^a^ /W\p.eՖ$ VH/t #sӬ3X.UqYiQ9DtD~k,֜v9`[W(rfTKZi2r+AET1LG T+Dib\ESKAjG{',C.[$>Q\v endstream endobj 183 0 obj << /Length1 1530 /Length2 6714 /Length3 0 /Length 7718 /Filter /FlateDecode >> stream xڍTZ6Lw7Rt ]!1  1ÐCwHt)ҭ !- H ҂Ykf<{y`3WtC0$?P@Hj  ppAnq IC y+Ԇ@P\(!-$[GHT@P!$P{!N} sRR| AHg`B~J%DzH ='9n> 0xB: wȟ8FPϿC#n7( 9@Z]/_>I'W"(w0 {`~Pi }| yn [A5E}?yP'W*A!= ~էE@'r]ap# /AcDC"/AĄ%G/YF~$|C pmu07#?㢒Ջ[៉$I3??4 qK#D^~j _`f ph=Qd_c)7?juN]q>E6u0rnnny"[QۊLF WLB]1;r?$+g τCK:qt" Ǽ;"%(%ᤳI #aww-0(>C)md<*-Y,`MrQ<6 Ezes?-wBiLx2E?|*4q1Yؽ+8b-A_ xD,{K"K$H)VZ!',!MDMWՂ[kg<%f^>{^D:ݛ0ܣU4U,]2Qϼ˴?+Sa!W(^BǽI#/PMZ ] r<(-9}NS>,< >-+vsm 44"fw]&7{ŀ*1t}Cp2>a˲Wfd4!8s4>`3_qjPwP^("WLup2֒9.鸵ibؿݡ΄MP2XNP?7Nu, BY(=:݀.8f6ZswDz%o0־9(Gb3u8 U»lZ_aI,2ܣep;mR':c?/Txjh5=bZ:gYɋ$-ަ}7IgcpׯUWB^Z&+d|:&$]S5y`(F'^A^uXNə}H_ el~T%,zLbCow^P4W_W4H6Ԏ!1XL3D,oP%`G?DQmkohx :{UVR>ݑzU?[ڠ;X\C:%?[[?> $3ˏ<.)WಙOն$o{mXjپ0俰ʟ'D)O WuU-.`8s\=U9)98DRVFh.8}zoL?14G|N?xr8m(04Uț*>6Xvuܪ)w\jm& Qs:qd|bpWc+x54y^^|C^iDkk._:1ㆅ,JPSkm83V.bG4+$~NN4"y_Sk)1hD~ @ 3T"cZkg6K=n AJ|Y@! k&Iea*}OjqIy>U0?mIGZ$ ."}5ş]>ֿڧt[1`hw;4吝nQ;&WmM.-:GAU!|-^ ?)KH*~y&2J}GWe&\*мy_Q~"x>KL,-n 1٪fMnTGǶwJ;ҖkwqQ B&lKyzSeb;$a2pn4%IM39GK*kewx08NB"F) r+@O{9QDY%8)GeT>t6׊ZuGwasV7#! g'>vv5QlU>om.A4׿@;/9hK1VΘgE$|SBFt4pu><:y:!yOC7 46~|J&E~q:^0FҍONSoiW甶Z,:0#ŜrMQE6>e]q3B#a":6-k;ZW:\I=ft͑CܡRR?" Ń'xWrK~S nQuw.G!u|jO&Hܑr!6 ;&Xw#mpR3V'?R+Z#K 1$C.KW@}(VdA0!pK;*+\֑K \8N&F AXN|ݨ7aSVtd\cl&GOqsdKPif 2汝EQ΃NϜcMbPˋd.tpQĦ?t\*B%|;]x}vZ`'6(:؏һFa+oJˈqoLG֡ wZGnOQ-s*?aXoG`@v/4IF)7%Y9'L)?< 0tګNj0*OBIphk60=}ũ B;tWQzv Trqe ^XyQiw.x1NKX1̏ZעHZwzB8),eJ\F20EЖ8iT%^ʨ?X5rմ R}#%*k5_|I%y5(kDEV :|Y˾M@&8z1k]9Vhm /*xbVz2qRM? 8=Q^gשڸ=dSD@ѣAמ:!=,#rS[i\>"O2gl[O*9W~ yǯ_j:Z?&.`$3X٬4M :Y2ȶV- r'VO\Cc|Ӈ$cg>9wCزk84lbR'LbЊx ]z+=}?LSygB&` eAEDeCV蠲3 cX lo^m;D#}0HΗ4eGX.+/6tm5e2}}/z**(wt{4'0:Ƨh4E]Lp?< 0V[|b<Y~ט+ ^ z-zw?'_J+/2*Mp*HM?R.۾KSr(m !/ :q"D3w])HğKڱ|qsVj7=D^P`%t=F \)jJ:iظO=+REdt6zE VkK@9PFdf<MqGK%; =@ً] %;)LUy/z%Edrb]{jm7;^Te{+M;+4W r]}ֳJ<ݳڔ̖)鯇Sҵ_qf?Fq]8*b`qtU3WkszP'CnVwQd ō+@wNw ~{WԽz7#qLmx]7(89+VN~`"lOij"rJwlgCD;ѩpI#^ E="zE{vi0voi[wjZ,؀@1f}'6ޗ6,$X2ћAWTut endstream endobj 185 0 obj << /Length1 1863 /Length2 12582 /Length3 0 /Length 13756 /Filter /FlateDecode >> stream xڍP cIpkp. .CpNp s͹W}_M̳W{g(H?) m L99)f&+ " l B hCh~_r6iGK3+#7?D{n : RغڃL@eD `HW8@ h22̀V+Xm@@5m lM @ w~ 7"@ Cl`,AF@kGkc=uu,@h7Yo0307?ѿ 6025vYL@@,L06M4ty7p2Y* .0xA`yf1kc++5w} {뾻2s6A& kcm;2ZRp^Ml@0#+';h1^@Ow[@O  ;=_ 0@S5fA.-W1~0ckK?QJLSZUqӳYؙLl:+embw?B d6(] 'Y_+wO7o`t*]Gټ]91z dm*izf6& q ldl8K5|Sfdz8joȁ::T[ca"+b31/um!מ=&6(70 A"EY,2'Q5N0jq`AL"&{F7 ?"Wv| ׌Z grzy }U`W)̯8.2w̯Ł_ .W%uo.@#Y#jJ!gQ7I,y^Ibfq]vyaی ZWkz=SèٗkXBw ܅BQ;M{)y|LY$Q:U(MKhC d8~!s*o3L;8Q>L1ƹup` 3Gw<&3@(W10PCиd:ZlP*㣙~Ip}VNbF tC?썃Zw2HklB:(@ua{bQ&QJkϟN.tȳ{I T-1Z4O>rkiu-$V%.fo 4VV'PR[ƺ~|kw7看6aPp0%SfFUa"nV.:V6enVksha6o! de=_K!J/}GlZ!X|ݞR򈶵no?aMr"AӽoNTfb~RbmponBB[9nm)3X@Tۏ kZl ">Fn-gvxjJDMFLP-ow\j>=k|泸B4\ũ1ys|Kٔ$bztf*f~Eoaۙ ۚҤ < ;5N(Ϊ5 >ޚ"b$)7PD}<0CIk計]w( |a}@>$.[rni,V_fK,ד{俛gۼw|o$I4C6VbSZu73foA D}=0i=3y"h^л"AMڤƱ0_KR>i1!n}6p8=XvkGF:`I*VJ%甩un T`)"9Bpa'.q[O ΂F_3Gs;ɽgDue 'ҔF+:oC-yn_3*Erjzs;t8cVi7+mQRlE]w3l68]gт3A`{-2GI@y =AV&cxQf/нk{[ XdQBjtvEϬܸ ̷/FjRxTzrdcoob@#5 )ш}rb.M|O`g:|\V:'vO|L2Z@(ho,2~L'zjأ-apÌ_-c=[;ǬhnHjW8'O%K5$sUT27kI@ڒǻf+eK\Yz1I7 R,F*TDQ%5SkQ"<EC'6]M(Cme91-D[0ƔSV_!,SE*M#Ckq_lڢڻTC66?Z5:u dy"I8`=T{ytYJ `%!T$o5,˗SĮ2 20rAOHAőyd3p["BpEvd_4xԬrq7/?ItɭVZGm#М+]G|KK2@`a4lT卞8g"Ee%:EM[9j]qy՛vmϤax݈ԄQuD׹^*G7|9 'QÖ$]?#/R,w=:AY7vuy+͜{tνP) gX=/Dci)nVJv{7Z1_LfQJ8j6ps8Z*ӽ`G]uݔld@F!tX N`?D`rE-5A+/$vܷ}k KLԅ89E/f=9yO*^MiU]{b3c g.lW6ϺС2+uGyU)OYNM8aC_YV>+?"W\gٳb !u=AG9bZ*Vj~4".kˎ"+:.R+_@4 =N3saJΪ^M[-M| s@o ۸g_&F]ptvϯ{v}wkHP!Q܍Wٕ9Jo QfG&}ĘxX*lB3'z4֖ˇre<;s:ȕVӢZe_ς`5b8v`yȶNٮ^'b5HϬYpvLos3"A@|~yV- yQ/;x)ڼ̻o߹@ *ZIOg4e3 Uc|Enba>xnϾCF+LC!߅Π #=l4,!f6M'X+'ЏO %M5PIQ#skOyH/6kӢbξU%HŎ;,u?jcB}+S0ߎX`Es)}M>w&$)por4OlO+}_urBnQaOzP_)Ĉu$ZiKB^s4S課bTإN_n^!+yqjm2FHʼ_"jag(rn'd)^-`^[m )x@fɈmd ?g:9y)Al;㰯ATS!;iqLF3S|Ƃ`iB-Q<^/0D|"g9ѵ>w{snpMg}w[8rw-b !\5^OM?`#(,#^tw||\ -IUäjvTtQMm`KVR>G DxCQ^ʞy;LZ@y>9{t͏3""Y{|Q iveT,:@t8#I[愛_HIo1?}Q~!Y~ۑ!HMε&gA ך ctem8T.{SGev#TkEcLx"miQh(hH{1̣f:X?_Iܲ'SFM} 'zXFw`z:Rlfwi7~ptُ8 j%ӕ( ͢xLPFu_:7O}`\ekyx5_2t{4"La\0ڷ?T >lYRX]2|q؍$"&]|# M<A{i$KImXLOI'UQ^jSԧҍ}~7 )*{Rr뮡)lrD 39@`rZ r`y 2 73qH,zyq~T &܄+H 5ڕ~tiXA ✨bJ16uЦ@Lj7*FHPȄso}@o%6bRk;Ps7[iU^XgꛖȎl sMNm7-фZqpVzc C ^<Ѥޕu < 3Hؒ R ~?ޘe HaO# _\c|?ӻUevrPnSYaO4pO3Pm4OwIQb ӳR(ybJmvT6%aS4(cջvJfqO1_٫rṚ"yqwBX27eib[DAlϷrz:*_|Hr zPtE4_ [DJ4EUAoLml9n>#x즿=΂!|^(}aCS0=6t)e>s-L^}P֖xTMMbY x݆SHfqp? :$&@1 uaَ uZ=^k 0P-_:9X"1w^Ԛύ)D eEq1׋\u8LۺjPN<%(m7 apxG/ȁ\H8{erw9EaHUQɼ,5S* |9V,.[8JkޏSkxpv>K*⢪iKkv0`jUI)Se@')Vp=))m/-kL Ogl%-Ͼ^廔JA@F|>!4 U w`"8TJwzst]WpRw'MΜljj2CX˘Q7O1N%qVŴJI_Zæ(>4P޷,C:+믾3pfPāsGveۋ>{kk4> H eI̼ViXCH}v%!ID K ^Pg$Tg"PrIy U`H Z"<2S,`{e;wyu5'=2-+&R (,Ŏh AkrNLDOp{@$pQmHT^ x77O]uogt3i"wTӶRs W{]6 )+'dP&e!s^+F+YVR%4:;@󝻣 >HM*58U}OL Pׅq`ڣOƙ>:T񧊲epDFخ]lRЖ!gy韏a QFGRjSFf.;M1W :e5 ¸™~S9C$M^I![nkϊ%3g#Y*+:do]l#]YO ,o ȴތŒ|v;#g'Bx#MGwC7g /%Κ39r܈8^Si-|H =MKDe'Qϰ_9G@Q/X<ߝ Wxj'J&L׏!Qug- FLD>]FHBsy;_o{s bNؑ@\qUY]Sya~*b$۫corK7uTA9uߗgebR;FJLq,/! \]j{bW+W`%@R[MQ?>WW!k%eC!$/2A7P!eff.NWLAH=n6Z~]3qaXh DTO@ ^hJoMac:9JllЌτzf zN&CpQz٪aQ.?J%T]t@ wu ƎԵMzjF 8⢁e0eThwmD;Dd|V-ku$.D39%_/]IFAYwO^N҅HmqVF!1%|z\i1F&}Bola 1}ľ!h42*2)V0 ag N& 9GsrpR#I[ >cgQ9ȾΏ|-=)[ \fAsH_QLW4zEİ`LrML2K`%˛̛v@Tݻ$O_fL։/-t P9'$;^}S"/ekr 7*^G2,JuOϻ^C+\؟/=63[sU T׈>7 KݖܗԔ]_@*k9w[a#vDZ{:F}g%Ct}07|"T0~D Բ|?Y$,\][s-uD̮ӻ MM5k)٪|Ef&##4i^(Τ[2uC"5Y{T|͈zM]1wa+cbG/+LlH3)K[g].lյB9Q)Ew[Q@Ta@¤&'M~=w>{39,HEqdnYAKzBROGX#{h\gn!ClcY&.Y6OMAM̮hIkp f`=wۖ\>h[W=HN= bQgǢӀ]j3+64Zhwe(az Ըc~g_p2m]%MJ2UUn)5m:7d}'{] 0Ep6Xա2="O.O)|(%G\5<~AO@~ޤ_Pxr(_{Vů*Oa:H6DyZ 070 i[׸b.%GF2|l~wfVAkTIqѸ5yA{Pgt ;fs=?%EA!U`g i~p=y"UB勅Cւa<*yhNd5ꤕqwhxasTu;(!gi= kJxQ.;N19.Z y2K҈\l&G~&? |hb'ʦGqlga)n"DwYdq F=Εr kvY ɡjs_,-4';jk`dZ)δ^Jսs !Xc7n?5~ܮ?K;5[N3¯<ժ,v鑾HosO`sY^ޥpXd;Є'b#x|1tv'A82'B8tf`nd@jy+[ᢎNKpiO{l0&D*`ij:£T#ב"|/ .~/eA>AϜsVҘYFJ Sg{F5ŋ5aͅ7U]=#h >'Zo6,-#UQ\w -U#IG5~lϲ<jп;=q ?ϺϫJͅ25Q$1 *%x Yu8J^OX &Nf`cx2Ӧީ7ѱ6ҝڋDqȆ\3M 0‚MG؁݈f>O7oY{ҽcuڀ݂wH!?16"@Us) (2Z1<=wg?/񿃘hS ! Nb͖n, yC&:>RoXO)qígR9@6F.I~VK*Q<ݸo.$Iycun?#±nq1ԮyHs!,Sp-gG0` ޏ]n02p^#5G'&*|$e]/onPG ձ*1w_ aM!-zRUlfgn*GX{ h^ չVt46KɓzGG >.=DՃp-)n.jS8:o/kܭz<845t L,f?K+S`@4-V`fyBX>mi[>%pVPr[\-)r_m?+@':{빭ɿI@ַnq5w]sCi9;0+R7_ 8V<)EW,@J%qf̾xK^]Ukٌ^Z$rSQ96 ;-*479 taB$1f Ďe/)6\PaM=DHVMaW- ŧ;>&y ,ը\D/a $RA/`4.V˖^%}o.'> qR7]5qH|aocɚ?M-HoU`ljq%į&a[Qhx i=X' o'sND))˹x/ۿ>O.@ɉSt`\&~'.0Ƅ(J}bcHCV!U|Gjh&ؼD1E8j壺MdsO3R{}T J)@Š%^#jGU'4Q>`g4#Uػ ,ZmrUonA<7 w k?JCLAb "Ya xޡ:quliYt|^,-[Q!}~˙^٪ؔAwmYHs{x#j˚&Ԥc*B0knSh4aRH;o%^ _ \سf5جZpJC}!m7T <\vL CS[V]lQEp'7=pk%u E3J뢔21Δs{ѢzZ(5˦z nZMS}*۬!z]> stream xڍtX_6)0PnFJERA`lFl0FJ)Hw# %%H >f>$Dn^0'{T KaDL9t=a :MpWf˝`yc{,mM 0~At2)CjY:u9P'N/(ԑ&G n:p'넚ﯦz,®T>R>)vO.X>Fk[D-ٯ1BGw>Jr$@hBKpoghJPYCpmX]ŏgß7#<- &1 'M%75PI6E<%c٪3,#CԇtJCDDCvۓ`Xx T֚Ot};j$YQbd*;#W;ޢnmBDCW~E]eRrIZca")"*"pdH?grS9[bH6B0!>Qz ?o9uvr4Yϰ!AK`V>|ejm8n+E$Zb>cȲĪEɬ+&d㫗䴰bSoފ=U7Qnza|ӣ1Wo[z43*\!nI/f|# ?멛g;_ro$ʖed&0ϠnIo]z`^+vcOVc<'^B|?':`H]&zX!,c'2 Փsٶ]}kqf׊6"rGgL/Zpf+?eA m2u\U޳kȯ^|ǮH!n8@m ^5{2wfUy.ƝKs&U[޺ڲ/*՘1/ak~dsiOeZ[=gn;1HSՕo U l;VƋxD`J`^l?ztk,  :89?),D _@>̝ƶQ &N7as5h+$"Wl O?&|>&&I`H:`Í=?T΍},)! t&۞;9Iz4iM|j;eoWĜC.I(wy:YշްiQәkkfe-N[g#9uOv Jk90Kg5w&PmǞ_Ymk2"MyU撢 )ի>ċh-2l̦Cޖ^{] ӸI}+9WS Uԣ_cSڔ`ڧc"6ٚ_.0y8P,EW?L7R$#1o \߾Ic>j|a'K|l +̤T{s\<62{TV&|OT&=oYWsK\1zK8Ըpr?Yvbs;Ԙ㏸3/ 46Wm *]&tG^m{e2GYmY4x¬^Unat*1떣xX{;IWCU۴$1k-rbN(˨VT+ 6XQN-<˜ґY2Sh1\܋ u}1tfQG81qW|MvxR W @CbV1paХwjzGۋ^><1Hkq9zܴS3wgv}~i,N-kR\??YUѷGgr0ؐk6͑86T1;˓"43M%qJ!Lx$j1%Wq^~@>7B E(L4hRdm{ץt}D0Dק̈  ]#qCb}PF4UJއzQjYzk6T}*^7{}˙:V(3 ^\ ae0}pD^Yi}g'6ƻ:%^LRzBy7 A|ΰckG\%hޟ@qnWvbz5e;'?=u4Z*¸!X!#YϞ>TH}`(}@W&o5\9 2bMǰeX&o3µř۰ wTL/9`+~kbGhB'JSlI@IyPdًbN&媷ty9)B>KWZfT5YJ>a^X)纄 (!0G^3ܣF<=dj.)gh_vAQ4* pn8ۍ3`{`* vc@2Hdw RIBDubY">Ӻe=~eJ2gyW@ZrZ<eA雧WcG1+OohmDę,Y_tye֑)'$]zʗᵏI~lMEUcXE%{{!)ӛ$|ge6І\vi8׍4:>~\~z@z0@fׅ\X[;?P*ɇ{7x:Ub&ar*xԵ\.wka1e|hJ߸Y|DýI"^y%䨗 U}$*ͯ =4rH}#zj I#;ᖹNwK $Y~|mĿah_*jpDg2>kfE85MpatWHXj &<\7q hutpYUyN~]\ CɐqoG7ܭNiȐ2F>K&4UZ:Mor9/'x;?iatG5,)):ҡtRnthF%|ė*\x*ߧC6?qTP1Ϊ XD/^1eԺuA櫴/3dj֏YSK:,/X+3Ō< Jm*"%V0i9RqʞݧNzl{&WJptc$-Scoh L߽/rd)1FU-1P,\|.J;R]o/O'FUnTi nvSG}a$#mC֮ΎpSC$uܦJl[vEF37F9lۜ{4wY"뚟o1%Uy*jR ~ d5dU*t/Iq>cvŨ` /Ib(ZOh絥_Fu3m|,R7ₔjEcky%TjJDyŕN Q.?=tjyVehm\׏;>7JƟ C8}pi9]yNؐH/g'`RC\> stream xڍT6RJ 3twJ  1"* JKׇ9=5k=}}]%!@@ytH{fl&}3 #@F8u8 b@"g"@ W Y vZԹ*p$ wpZ j ?v8C-0:iqlЁ[@!H**fD:𸹹qpgk 6NiІ ήK`_qc3tm:p+7C- 0}  t V+@ܠ;w!(O2y@a+=ƍtGr0߁`{> ڃt(Hk=Dp#G]ap ݟbq<ݬ XAaVtqуA\ rܛc @g|B|na󻼮#|?#`u?jB]! 럎F jC0T7C us{erO/K8?G_VM^ɐ㯉퓑x\@/|s06UYڽ?7XV࿋ii @?)]mH;@=g ^{7/ժC,.UF g3PC,C6q/oCapr^`v➘{!\o ![ {$+ny`w}Bߦ?HXco$ WߖX xgrd"~? 2 n9tCO?7-~앟0]IɞWTRxeۮ!t4{^OEeMk?sw`*댊~=JT2^QXֽ:L,usInOhuԖgP \F~0EƒmI*vVCi3*@5p1I(/O%ǏQPwW#\,z6vla}2k $dKli|]ABiySa֑^b mf'HϾ/t5f3xۼ.?։Mca"2󤠇sA&[|"g8׺TK;0q*ElI(2 -|^NoEE&bf\Y~eF,LhܫF#2I5SaZR%03d9I36yΙP*1g `F7:nF!$ucAz{v|~oǟ^WNj@SK6c[j  W:)w\TR3^OoiqxIix}Zu1`ҝ|8>4=7Uߌ|,eqr<{lLլ؞fr-!"G2 qn)rf@w [«Ӎ2i[rQ昷'Lq9cEc'ٶ׮p ~B~-,IL5ʠSKOWd5\K:0/X}nбAɞRd1,Q_!R67w1y1]tI@_M߭qci:_+߲Bٸgu܇kaP "a`ٝg}O훛U~^ƠSܔt1hޓ]c hNC} /uۆ`on$eoRűNd"JؗRUZOGwlTzl x{JMyj_zJO4'MHN_#gmm@7?5CMMl(%p?r$j?@Ap$"KOrfb&K^bK\VקUN5DĎ6c 6K30l vjDLӂS Bė&Wg(FÃBQlX KUw[H.>H$:@p8898(9,N9 yyOY[L)Y/Q7蔱= *19\ˮa$ďU"b6U0qX?>jg{C.-n\.~2Ye Ǘ7ņX :/JV7 =`k'2@K̅!Z< kwXS2&ɦ( #ˇ#c7ɢ̄Ɨ X<tX\T)ҳ]7߂ RsԈH?ƭc[:o58yrSڙ$zmŰ|k/:,Wʫ1&k_(4"Ȧg:펀jYJz@wB/2 Q8P9~J?%%fzN/ Xo^Uz泫34;E^اf3W\1X;=j0)'{ӈE:^FHO¨*?1Jg'5ۅ݇IbFxDmN{9,e!7KPEP/C<yb1i.FxNMc6eY@ZohzɎbmR2y>h%тAE彷M&יyAWs81RC2y?eMI]d>H4Q|ƽʤkK)=L02c0g9*%ՑDjir;QCǙ,G'G%ghlsWxgc.b+`Q`g*4G/ 0Oދ\@flc"474^Iaoj hm>e]I|cp^N9XvGj_#b8OJ@U8*8zh!p0)@LKQ~GT1nSOχSSjLFC7ܒ܆ÏwB>D?j{N>RD&4WEW8+4< gF⣵3*J_) |a( G KO 񱇯JqJzw/LeӜ"'4?&jobomGt[l}C`1Ir)l؁ ~1SPgl;L¢J"_Beu]@O1zp^֞1Љx xc'd%?́_/sF>|[-ՍhU]vȓoWb:: Jn>a}l0p[bq! #?8ʴ] S5d47/fQqsCT.b yG}y2lV?wsFsXfQՅicz讼v,/cqQTݣ>RzTj=ujUް{%^ups};6UQۯsLL(OLUʞW>o_e2 c!I͏O4Jd}I6ݾ:iӡXuzR%vY< :h΄-2K\Q9f޶oՆ;\jϿLV;Jh(&Lɇs7nr_T^iD3b2:sϵ r,Tݕ,C'?a˳HlD>> ,Gsͦ+h= `3wϛ(fRΛյmZlcS/OS|n?q8) OM UYG/l'0ԩ i<,Y\Me1r 6(g>6oa"j9îkj S;eU .H|r&(=:ι1+UP>z@8Q׷ P/㬺(JXօWÿUkޓjt!OC|"ZrCXepҨ1-mI|}2bI}l-;H)1Gf(W׷5Յ4˜eՒ5UT ^#*t;b6㕑.|uzaj@Ž2PNJm]jYja0XUj{ARP߷( ^TO\ʘJrmH7UM(HajYAIȼ:MMg1^Rn(|TSLrjg `>8ƀ_ dn\f͌:D\ؔCB.8/fӋM3O*~+b`w1s<}?)6A7][-xhQb: (5瑣eZΧuލovp6OOt;9_tC)rDck=J@WhMCiQmQb*/>FaM[\̵C?u ]_D? .F Ƕ*A$<=HN]N2ќAdl[D8ŲT#sK7kt^Py9W&+E-GjB" ="'hʓI2d4-w I,{:'eN)m]7;bIj&ƢZq TvJ{3 dtx\.*+q. 'N{y1jp qb! Q .A 94t^s; BDpH엯nǟv 1ɝ0lqnwc%f47xϯ2t,pOm,A\:yjS˰ W15#i^i5uNC\ RnӮ(+c8A`U@D.m 鑛Zb)_hyjؿ#Y(ƳWt ?;DH>ŷiSZTI>zFTNKCLնarA/XkUwW\דL,.zpkN8Eo_a^6L|l3 W6Ѳr9QyG:(NXyP7~5X,5TDp:XLjS"*[\1Ztb[Jo+?n'VV;m In]LawS`oOS)7h U@4~J?7!9$?ei nGʭ, V%(ƑH!FّU8cQ9#3j^%Yb :ܖۥl3Vꊟ (LB +9ݺM9-*R4b}Nk$L"N~Y?h.%rP ϧDQy}J J?fD/WN® ,x$/F+FKL\$ 4YG67NF3 Z}\~LhGbW4I:*t O4ֈ|زO'cԯ=Z$g$1]P蓷^$+/ZѢ!x{rH:Sb߿8]z-5gkt lЀ12J<`m8U ʽyw5I(_lłm0TPNa`ϓ}ש>* Of/6Kr=hiGj0agf1tpEŧ|Q[iG.JK"lV];}KI'ן'BLs;PmO5]9R}iS%rA膘y$y.ϔ$@}P ~( -Z5R|BRvH¶XU c؁^KoC~ YHX Uv"/?}́1p*捉gEDƝid5)J.w@`E#m_-TZSp4zhC/ǖlþEy 5K]͗4h.o(ʯ?Yіޅx듖vY0C7¾ R橘]I{ )T Z Yݴ#d0CF4i,Na͛je{p>WRO.uv񍾭ੂŏ'ҧ~Fap>68]ܟ3kDokZ.8i6 %9 \Mtb j@/[8\B 1MIS ri0 w}bj—LUv Vt 4G%I#u4%S.C[>R2Q)RJKW4-g"<=d?ߠ-'RN͑ |ʚ~m؆`:;֑)TdOΊᩳ Ú*ꜫ֢'duhp#_ȵˆpR ]5/{BN9[ SfArUf +QL!m1 OGbzxy"-ǧn9\S<=01DqOSnr闃Is ($R)JW7loϋ VD*)jGlF:Ң_HؖϣiTa:kWН~3 $aJRD ; TE3-ތ6WKZw:u@|49ޕгM6uG.uG)fsGʹcy#$B lCh5t3_yvY> stream xڌT  %14HwJww7 %HH ҭtwHttIJ7g{[kX y*2e5FsS= `aagbaaCR#Qi]0s2qN j `errXXxg7q6(0d.HTb֖V p}КXyyrL & +8-@OZ+ȑݝ΅Rn ]n@s&v+cB[Y-Ws8`jotdJ@6`+/g33;G{Ok{K-$)1Lغ8MLmML17HLS#ȅW̿€,ao.`g 'n 4ݓɾwpXXۛ[*ՑY(# X[f 8YXXy@'̊WxuOG_J_bpގ p@_k rvz/Bbe[@Kk{b<|gk xX,~d^/s{[͗YNCUR[Չ:x9Xl,_K 0&W7[p8Z p^\m(oK IK6 (8j>ZʀL boio]$= 3oƯ+*;Xz?:i?:\+ 7s0ubl\ggO$ Es_K `fw]|H& `%qE#no`x"no `ҿ;Y70F`.ro(F`.J"0E7sQ\~#0E7s\E`d/bs11/пpNFY.74u61{,@>,f"Np03[ ^b6S^f2s8o_Ff&vDk},ֿn`? 9CtaY{wn̿#s]7\o2`g8V9_8?ΛA'n\.=Z/hnj h+fe{~Vp7nl~q$?\73.rwL{{=x&t;fzo1@ iq?Ħ&J;iOtދh*3֜E>uclI^ />y6$><ūN"-L#1 <9hn쐥qrASþu+Y Q٭C~,bш2Ck9Ob$Fxu>su==B*O{^譻nkLͥ@ kd[t?Yo޻pY4!ei-Z5ʾmd+vG@~F#grWFQؠjw@mך]6)DKS/TÀ.:աo7a)-C߶| Yҋ\YK'N-Bujep0><š x'd,`a!:L 漭;AK0iGYqFmnD4*5r\&bORM΅2R=;CA6wL'q*dGQץ4#D>ls颔*%fkєX]ԍ̮1]KhGwq*E>pEaWl5J(2v)ڇ5>VSͣZ號"ܢ-N& HX{Kl]]n:}v48#J΂#8v$ ((._H2e)|OE;Ε@h[NH5q\TkCmVMAѷ՗d, ]:^ww7TC7o8*d]sEN$Y=n:%QB9ݩ*nxIئyjyRV}bw3{k]z\]plX9~A݊)'7i𽹉kW=Tl|$"tj̻%'%bY"k7Ýȴ- ڰp Q BxU0zhΠLE|S0מQ=_Js oL@YJ̙?I=I(R'tV^Zƣ%lKJɻe+0 ZD{tq0+j ߿b6J @+g2Lx|7֌TɩDUW~r ιC~cHp|^" vJoJtmLoMpT3b'^S6q"}eT=ӯ[Jd{ 2V~1 {d1\w_S!m4b BI)kݚt$',2uar{9[\ӇO_5?ZVte.NǬ5&o<ݙpUJy74 \ 繘HGB/+#"0yVYW(5JARF:Qd-'d,bRΡhonaߧlouvh &v;XҘ\MŐxzD g!c'o[Ja͂N%Ҙ$Dsٴ\p,t4MM :*%9Sc՘}&J5̲IwzOmgTf{#вH5{9iHrkgMw=67@X6)ȅl~r<_[iHdDl'r^w Mjo.Wg8sdbbQxfLZ G$,x릎.ʟ)'+fҩ;`mQ|xz-<܂I7jD*g] ʹ!Ahц4'!-CJ^Ƿt_$GBޑDT3 Z~g :wPHFr)vR,fdq c69%톴>t-kX-o lE 3Id%e+4^&hK_S *%uĽgu=AЁMVQ|!mǡGQμN&_ —JݓeHxm Bs|'Sk lϩh7SI}C!2-^U꜌atyd؍Uq $(j"k(t'/ ??ƘjHN4k2 I0i߶C1>43!9^Űo#[m#ǣ6XEX˫e'Iiϲ0^/llX{)HNNSBQ^bjDʬ=~$!(5QdRdo!miNS"Tv9!>t= M"u+9\c4|;zz.p4d:~@ܑ@ MgQJT6<]1xznBS *a Ss~4((HNO@F s$M"f "g7Kۄalr~䱒-41WY;.bɶ:B`o)Gg1-n8(%c!&M,ۖpt̔ "Ҭ.a0)!l9MeFqd:<~—}-9pTq2f$ Ɠu}cNo}!r<(%Fw Q5cMnh5+H%4bVB!jOĭU]?3LqRE"l hc!P,Ox,BW\jÑMef!ޚ^ ~zפt~F0`DŽE3-:hHϝs5'V[gwPoP)i$[=3y񾚵>A\~עĒ׊@TxpYJ}f[TB$hMڵ,{u}h KX/6fɜ^z(D9d,cl1))j՛+@٫.WlMn9ؠ i 8F6SKLYI'e&xw{N }S.^xA_ky"0L髹~%'Y&gXQ#*"1HdwvFڵ>7 V7${ c4oJ[!b߰xI'OuETy'C.%B-ní${RQhjJ{H9b 6 &\$s&Sz=WJ&ߴA Z^pitqIϟvM8j2>i_&$Lp \JeApx 0.\v><ѾL/Θ|z^-q%cYDe5n%J}SeTbE}Y݈V%WɊ;\n5j:)+S^8ƾ C\KkJ1Ẽ*z.X7dn*vC/%) / ҳm"_^6ǚⲳ>)--输_Ĝ#E->'$)FO]OSū4I>$BB#"vPJp=M|Ta4h@~A6WbcyLgrA=àMn4 6+^$?"u uq~J̹i:߱)ޞ 2v*K@]պ\`;ExU2B:$#Irbī 1dUX`W{۔>RYg8O(ݣ+&Z#'F;~ ܲڪe }0a)yaL%Li `P6U#(=f4Ƞ7S4( S?W/-*ċV[&\Z DOF3Vij]I-v)v}D᭩M=GǴSu_LPۗʇu|?OX`6kJ PzM@ctErUMaT_cBd8N2A嫘13/6XMFg0pfK%)h+:քEˏծjV݄VC;=Enk_7ӻ;sEqw~f+->a"y)܅ЄPay >Ŷ}V9 %~/nƩ21dņFr(՜H]PxEI)#AP9|-rц%NBqExt WLg)Kf[`TۀBn-%_zq4\y% Sk05>&im?dxKR;Ӝvi['xd]:b'AmpmGb4l {L®ԅNƶ3 m˃PeA.NWfNlqKa(\^/Kc^Hk6o}ϱUxvm_WZps>>ɳ{qjK엤hH-Y[NQtTFf)M53Ȉecơz3h});s\aŮH<lN~S[]&i^$r f(oJficfva/*cClkHSqw)iyUW̼;W޿1yE )jily`c&ghvVCsn?vEgc9z\Es, {}˖GíޜA-aX(ȫR_/J@y+@4A z`{=f2*|~bЗ쮆do Y]&/[qZ і$ZaHZZ>6A{x SrzP=F셇a?oJEȐA^~P*zy[;n &\m6H)|P"psPFff9."}%K鈽 N{xjVsM%a a7OrO-|_PĔõ]KYND#Őj(,Wq)zpNN%y#T2"گX˃&"*N‘Z4g}vo#M"Oye W!8>?_|os`o&ֺ=y* Fu̲ORR *9l :,rV HH\d)yloe~~؋s" 7R reͱ]64CL7bM-c#OFW鼍8>m %.°1ߩ{L(F\݌ G8mt]߻iWGm!+O(̅D~<-?7(,uQTLJT6ypLH_3S]ΰF]ro n,>-A e9j56ҍX i]LР@1<ل|Nb_kWo'eKVCyjAܩhx8#P;úۑz;^ j !gfڍ'AhJe+sHGOQh=jA*`4qsѫJךD( #^.N |\NF;vSѣ : UG!1l̝ I#Z8R0()e΁@2-e9bs NWu(HY[F#"hwZ$Ø4:Lg Anhߔ\UZڋÆ ֈcY>}|7l6~zݩ$ 0nL۬JcX^#khj5N/ef)tһfHŒ$~Eڭz6:M"1L_s\rC XB.ў^&6Yў [I*_:DeEJ yƤW!m-6OHup)O侲$lŃQ#GF'{cKIҨD󰄝N-x]hbwl>iokh s4AgS8 르V&W:q_C4^Õ dygu9++hjQ)H1ʼ-}J8 "1gpa>DI. ʅ*-kx",4wHk֦ eolVMPS. X|ϧz1S':ߒV6HtAO.d+̋Zaz\//l ]e@Gar.L b۟{Iyf&9$"LPgy))I,V.p@7mcP9κ.Z:('"&bwĩ 嗖.;-ݸ]^9*-)4B)^m=~ȸ$cVݜ}+G@⭒b X&ZznhRf~ĞD5| |LQ{)a E;ͬ-[e0Fad%9Cۥ\DMH͛Ȫ '+Bfi-dD۶ٷi&n߾Cdi󂟆B~"Dz#e5G/9}vI|1)x2usWAV[B},e<1{ ۳-7A=F۳UCu5WsV?%-V-NleS1$o>=kEbQ/6ڶ(Z>oU|;qvKLg?\آ9ۇضϬ'x'SגTKY \LԺY|BNZwcZ_RuYsǂ<99au@nӐ-Ě4 Zǚwoά{U{~ %¥ޚ啴-?HuW풿'өNVIq9}J_eqKeʭ/3ؾJ[+{Nh3gsln3D,AJ틋]E0x GKҸ2}V}yR}~,2['jd_FQs}W킜iO;neRۏYqA)+7Փԧ% j`֏`4?roÙIZ=13<"+{;uwJ>#ԼvҀOonmV i"WTL`f}٪jذN` HwY6n栚 6} WDVZsNZ&ϧxW+Ȝkg@쥪] Ki~@oWwʝPCufzLU䃲 $ |iԿݬx^Zط`$47uVt(p|]/=BycK*}}X.lrʸ2O 3jG.JwFÂЦdZ@J#fjt'޻?T]Vc\&1TIB*R!9- c['3ݠ_,*4AV)28mTѷ;[J݂eDF7Ϩy@*U9܆S3ÚoG+"0QT)qdj}ii;gW'*Xˍ:ߖ4(!wH$vާ--qe U:cEx8!? Ǩ}m^ pk;h}s,͞E^X%>Mf=""n&- 垎,f~I!.ދ`6$7`=ܹL~:noQf?/h"C. M̼PMW ֒,G;(u.ĖvE|>+'T4.~(2u'3Ua_uLyj;5,zPjxen}F7Vf+{F' p~[ht|;21/,a(uUVBNֶ4Wmvjڡ^0xP:B4?^Mi z.\Xa.N,!D۷jkH :oz}S܄gb56!~;-9,"6H?c8\_"Jn&UalGZBULZe lMR2ߟMB,V)۪:e.&zeiPy@4Ȣ#F`?{ƍڳ;+) N7YQ-&E*dZZ {C#AKOi]-;ϱim*sBJgan,K^džv8uPDzHZdžȷ1]&bz>&ԑyV{I0 ._6qΪ1wgCl] f[9͏Qu\ɖb~_NDе|eLڷ8R}ō+c7: K_wAKBtt3&E7_Ըԝ٪+NSH{>D}6|F"fopiwR:{ /+ڠ<NJj@eX`^tfd@?(ԣU2 dˤAfW'ޮ,:>D.>jw:FwMLܪJdSbGKE '{zkDOw1NR*в yƇ{P>-N\dØmCflжy\8l-2꫷fcIX݃ ƤX^~$sLKdSӇ"خ%Jx7iDA~YBǬ =hji`v𣨝j":Y;ɷfbp޴;P-^b Ac4,,!Oy0+%qRLf}㨐s);8WSFPb2)0U̪(ClߠFݴ1V~].j4eC .5gA9mI< yÊBGEILxFsycu7HIaA)C% kϾvUWN+[O_j ܡNAK"G5@Wa8f3Wu|=]:vR፰F^_i!Ⱗu*\z>K[e}X-=TTЯ$+"DXyQ4kSpPUMt*# ;ģ?y3fFz?̖i7WuĮѝ)er'-*Vŏtu툲` qyJ/$p_/C8 Jʕu9'A gb/~~O(CGE4mOs8~hǚzfap|l_8 Cd;X1hc"mEcŊp`{9gJ/ЅooyT~6 񱴒!̹7Ip{NzԽ1U_ yj9s:#,F8D4G=~wy;px!PE=cI4*`,+y&gG}HdzgiD(Ac KwYG*ۍoY 𢠝qDF)aKz/w=02g߃N&Gtx ,;. j*BmzXVkAraԬ tr_ J#,V P{No4s M)]t@(?Dzrg[>GUGnKXDVeEú0|s1#?gɟ s3[4bvfxS?{C># 9~!NvHޠԦ8aOlMS:2#we3o[~@GsRȗGMTZRXIU` XO]sI" E|[6,2aC|4tת7dtװx!|NR6%ʧW5HHGleQ,l{]d<Bx#i3Zm}fiVxi<0.|_nYE,8]M-ND\W(C#3s6kEPRe9YB_A t3#u%%d)@EiSlJXbt?JȞ 9a^v`܍EI׏6#|Bc$йQqX<7N-[Dd:#/WS:;Cw؁AtukK`̅Al[Z-"&vS ZZQdRoƹ"nba=|jl Qpq)?> N;^2\ {Qjb~eI(8J ށO9/Y$n@W10Pf5E%6x1Hoq21KѶ\h9p>Ns?F!s/Dhᨠ{^y S5v"s׼9l P92uYVkRT51}D+dAo.7LB̓Q=W?9r mV>DgIwkɉH2l# Yz*Z9<%/kљN(Zai4sIG$}ey@tVV'o}Y3/Q^hӶb^rεx'ڠbޯT(@P8t]PܥQjxjƜxP8@5t| a4Q$c=bFpФhT9 ݜ$&xuZ%S=gg3{8r\~felb2%@ |p"0a =WmOPcFnͅ%;šJ ɶLLjpgv$oWV#k.~_-TY0y Ӆj!xV].ڻ=:0t]ʔI`2!.z gl VցX ;1%d ~H N!M}Ul :hl ns /_3ؔD_2Vmr ڑP3mayߔ"J kN,ʄlwn"s@t̤%obn8, ,ƸiAs2`e,+ba%D Z~bpջ2ia8Rmzl:m0_/4z~Ti^f֮Ʋ@]id-eѮ`)*xc!βG^*I-sQ:\Uv&GE"ǒX6jL?o2:+kHRp UnD9N;ʽԿfrU3Ԧ\P~;-Nl 鴛oڥ-=8^uk?6B.d ~Hq/_W5~>14_iݸi Tv3Ijk}cN?km[d&ޠydryæ&S ]T]u7)ł'Q4ʍNZ GwN"8>tޓr>=O\ ֔FxϟkXAfv֠uyWs&ޙ'S4SyPQ{^z|>F/v3 =XO/ut@"0j~/&دxnCj M0"Ł fT߿a2F%YX3b[&Xt}[pO;B5E!UӋ:#UOݍ&s1Žt\dz pD=s4t*`m]!* &CjCgێO:f3bGW;wP01|O݆)ӝ 4[T;K/Q]䣓<,.d@f;XbM1]7Kta t6I -(co+R-.vKt qB5O:H󿰩Ȳ?o&{f6֖Kso\GWKcԸ^P!VzcL^}qojwkTu=n&h2rF0&At_dUoIb!uLؐz7b5xnau`GQN]f"})Y<6G-f|nI>+ax}J^ܱOvFt`jhzuLdDaZ5(`ߐZ{/y@htJn QpS i:ՎW19AqĭC(c H'!r/!Zv-R Π(v#+ISHޚqdHH6ŜpIe@RwtmRzvAᅫT tzEvY%W^mئF}:B#iT}." hQko?X0fݢ'}'1zc-Dہm\:K<ߠ) cmwcWBF׫Fb!35r%3acF\i2/ M).3s8c,MqH,:/΃N{ M0-Uŷfl(O2M*)8}Vbe`AZ< hQwؔі0΋ڗEm l 5jݑye>! eOts9:C ՊF/ۢs\ꗒ jSn[e&+{ȯ{Le z @SvMC^,m GfgTἈ=xٳ`.}bR\kא<% UZdΧƼ6AinђM4Cq)Ue5mLQ&sIͨf^а@ |2߼; zfTA:ry,/#ZHشV mC_LgudlI{pĖ>t9Dί1ޑ\A&N &uHfO6]K6={rNؠW?oP6+^W%vD5zJ)A[M*8nĔ#C_FH5﷝jbNw˧Jil7"60DR|g"UM%8@Xòq vϲ㋆$.~@ED-Ht-|hwukR5׉Ac] Jzʇyrm:$C*j=lybhMOk˷u[ehx$ۖ;m&uUQ#A#CЋWS~ nhJݓ udDK>BQ$B]>p1,ZȀj,q3A"9]>`3w7 %J/?xnC-p9_R%h\͸q\5Wh[/j߆C~Ӹ/ǺUp}ų85no<ڣpmkQT Iocּyn]t!p_Zc%PoAFyhzPNU' 6m :;_Mb(0yJgz=h4!~ cPP)ria_F+fGY;f?.8X|%zb܅My}7U)wLퟙVu;T`Tt$4Eڷm=:c&혼 `NʠD*ڙ@ T5e(05}mgH A է{>c_^%ރO=tM/pߌvRbIfJ}#1aȈʱj/)Gh^RerP2g7p'GMɴgz > ڔ|-/HAna%Rڨp6>r'1=ekRURut&u@8u3^B ,,sZCBc+ g~ h,俹r݃+R/mG#xU c i)٣InoJPǃ2|Fo)'g"G#%OP~XrJIQJ- CY!(8l]wQs"Muݠ)j6 ` @&"pfQeupH >$T"E lUI܃4)_~ذ SV"LJ HVv gzuTC6 L5$rpJB|kHʲʼ50.V֭5_rfa< uO}~=8Fm~uoQp0sD$+*Y41//ZXpg9Ѽ<`MLdFQ K4uܑǹ7,sl)6?jArKjP"Уs/jn󅟍>䠚oIu,$m]3M++`KyyI0BCLZXz&zg<yaB6"TZa; zvUɓV C\x>25룆Ro;h>m|ňn%+4Y+C!D?S#Zy|Y͉-`LھߺO({mUX[q NjеM (X &)fڑ` \_[p endstream endobj 193 0 obj << /Length1 2054 /Length2 14180 /Length3 0 /Length 15430 /Filter /FlateDecode >> stream xڍP\kw$[4ww[wwsޫj)Pf`ad)Y)(ԭv)4N 9Mo2q𛝂 b`app23Xy njmP`:ΈbN֖V4 6p:Y &`+[F3;5BP[LLnnn&ΌN47k@ tr" P4Ìne\f ̀ 79 &#Pr1ǀXY?lbf`hY,%IyF;`2M"*7ldvft"_a޺,2sΈ'n4{k?'k rpyXX-"aȤɛp033s@w3+«{8V%~cx#!z9`'׿!̭S5O71vN=c0x;<}oQTu/6v+  QMSWbߺ?4Kmh?3l`<-Ho5 f6 o[ZvVhnb2`=YΒ@sek?\%U ,GYfo7D-N)2s0kX98&NN&oby[Es3 `b9\o|N('I/?$qL+Ib0Ao~ 7Iy"Izթ_俈-PuMj5/xә9ؽ5$ID4YL?:(1xkctMb/Vտ_7¶o Y  _Bxu_YJs|+o1mVN>ÿع sW#x)M tmO݁fKf|6uw5"Dn {3{Z4 ^KN.)4YN7")Ww$INZڒTT'q& 3 {? n쒥\u'^_2:_)T6P 5a,ނWIцhnؖ}2!瞢х!%/5>4LTFt}1Y"{U w VSgzDW%;zU$zCxj:m0U+zRP/G dn=%jxS ޺vc IkeV[њ:칬t+L1gs{C@Ú\q$:(lV"X˜)YylHFu{'H4Շnw;ee"ՕyY_b¶\p&x1ödc_C .*_}ePXf&h/k&?ȐXL10ի7_6/AA Oӆ0$NJQHD505f Wvq=Kf O 2Ksf/??~{9V8!ЁC x}'~^MᣄwCBɿDuEAFŒpi(Z(נpu%s&1[-*Iኔ&t9Yy#?G%=/}C.5;?qM7mVpwIQriܩv(Y9-"n'ca-I'+.Q ifLOgj̈!|F;JZ.Nէ7K0^ skQ {J< j6sHK=Q*4`eG/uSepq<G)tAdaݫy{ W'~LXVO4p< œh-H7n $zaۑ1@ˑJ7;9"49az}p$ϰb9qjܶ\`Q2w`R2lfqcLe^EiG ɷV-IU T{4!~jl }QXbR:\aQJhrHj.{iemSz-Wa؝L{#Ewflp/fcU%v~[IVzKIu7]52:)h4[P-g`b Pv T^:%~["R ,kIM㲑% JgM#|7x*@~MbG~9fN$`<L[Q9VLйi EbHͳa65R;.:mK]Hr?$)gƻTtZ+#NKTIUc[Zu&R^4NEjSY26g^X Hj(2KِsT}d9#ʽ r,A0VAVOP:jWxXI'- Ot76vyNDqBlE%J"dn7HidTA/a=&V a(ɦ TcsR摟f>#y`tD]0 A\RcqzgK9t~0īWEKf؏Mdvl5+ɴJ wNڀr% YŘ<3DT2*^sŏ gMTzB:U 33ivyԪͱl{ Mk4C >Vuip>J"zfxN" zLPEc&#J94کduyho tT{. /06 s`Ko0rZ;dX\8rZ")Pa~ܕ7+lvҟ>6_cFL˛scn^P lvT I4X1`gI9<,ID;L50ǚU@GPz Xsi'2%%w8!AnQEXV~ԌJTrm3gWqsTPS%f Vc%$ccL>aDWS0b_"#_Mh>/hh9,;z"H+gr9@_E9^h7A¤=Pʯmy@rlSR N ]~*7ޭױ-pc6.J7 cܩΫ9q>iZ€n)3RlͳsĬzQ%wMLO9|DDZO8P;Y"/ZS>QvwKy #3b\;D#AKW^Iaʕž K Ь j:Z&G*?wb3r ,?.p垳hC kϳWׁ&' bHD*;)eyރ[&QG,wh;,C p)PBMfwb+ia+\7IqC(Ǒ8,?'0v@KiF!;kePă(=hPe ;*Տu{m7$xLՠڜE=33X-C},A\37sJ'mXI"dA.=gilg%ȑ(1*n Yr2tuh{]Α{_ӳ CQ̽ NNL*("" Z`$ߝ$:dj͏ .I?{CH,J-/My*W2;FZf({,I DLmpm;WKŭ贆>c[~NJ|'J9 ȈOSp3{C>oC ُną jfsD`dҋ$K WRu= IM yB3J Rhp)TmєQة( ?jvPlȟ1VE~Y:Lh PV"$ D+׮v+$<"~Do !cw>OYpH iYʕƿg=^2ݑ#~e$"?/$(f,nH9g rՌn}a/+Y*Lkfy-kokZ"ƽ62£+g4:]g\ڔ"_^Uű\FՠJhY>Q{a3=۾gEf;mEQi4S߱xZe8dڜ K&?;쌟+><,?;wn]`#j P<]BPnt+DPvgÈtL^p9UcɊ2_`\gڿrV"*o`IU?)SYP)Zv,:Dl1sCI}Í&v^aK/)Jh`?ޏ/dD?dz[}.teLl v4h`Fw0K4rX@z?60@r{iߦXJ_q W4o)vR]بqwe'-v<$b /覒@K@nt(&Jޟv"a׷َgzȷ.T6K8s{-}/ou.ezvKp$Nݒ[z̗ĵ]H rZߛ*@+Q"h w֪+ܭ"i 5}U|<4-ПL$`/inKG~N^&haZνvA8R.tguT+ċ43PkPjSgܧThda0`e*)GIdXvH9%`qJsgi#Df*l_Sd8K?C֛:g$KPK_UˤV5J@aGDoEmAN1ö+$'u/F]E@q"V8хޤ99pfC=Kpac'EtH[:*H0S"ȊKU581lbnݪm1?)o.PIC~97 q =+sjtoTMɅVq,2flOO5_&0 /.2 2):# M6 ׋pLzϘ-:@31 bN5${*0 ۣZDи^4U/D;zUe6 :*Cb83<ݽpjVkN&T9~觝3BӯxHDSQxSnNJ wN7.fͿ~4XA|:aəoB |햸|1+,1>$dW i'LȐUl6oEZzY;$$SgaE2nt-"-0\𾉃M+KOz(BtC!<1dV$(o sqV]0WˑNjW==Otk.Kjx8@!O?kEO$mb^HO#B* B4RE!KJ5#e ᄗd4>;>ŕNLе Ӂo1RTt˿\ԑJ|: Fǭ23Y`%^W@??_)[9ݘ ,r̛32\8k;樣MFFinH3udTAbj)' L,chPZ~pXumA:'|ro*U-O$Brx!y}TTڹB*ꨀjx܈ppC\`LJ#Fmi-SSL*pUjn\ї֝Y,x .R9wt^`ة|C#mt4i*zM TڄWJN-䋆$_яu^7RoV&rxDFs1g/_yН'=lȴwt*ԣN &_P2ymvԫۜ#~Cʐaό1*/I?I{g5Vͣ˺0?߀W`E~rK׵AkW{EI" [7jFc]nt HSuc 6=A>OsR <N@\]̭ }tp zD?kyA}Mh!;woLtRBZitsE,27gA~+c0pݲu vOaCO;N,Ko ţYa:θEs]ZnDh#ea=y7-21wFD:^/П+О&.\F ,3>V}#N -V{!S囚z"<dND1a`ЅP4C@]8n(f=;\ͥ!whΧ'awE$lu=| ٌ(GYDH6N-'?L}ޛ._LW!3"ۗ_DخF_Z|\ʞ@;t+Ta7H9RW|b},jML|ovbgߕDG1e'P^V(0D ~,]=PNe̟ıuca\tW;|vO(M 3|:%ŧ'p@"7>@x,,ێ3z*Dk< +v"GU.v&^2YL<=t0=H L s Fso u|\X7j,OP Hwj貼0o1Rx@9*ϧQKuPš_5]Q^_g¢toΧ r~PiEi_y7[# QH?QoM LJi<^Y"Ւpc!S}5/,,ZA|i}tϞ+ҫK^ZBn* X|5\y2=]Jjy!!l涸5?aՎ#t@L-??ԭ8V~gi?Vhp\+*OuoH$8G=K؞ T@z_4ubUYy@ᴌk`9,Nȷ KE5 XtS{RQ݅8mnU]v|&< X/%2쒼 ΍MI|;9 ?&tX>*eAvrG%PaTr(Q0*Bʰ߱XcP^Ғh?OE{*z9+^*Jw魂5YgteqW;ElaI̔sg^Tp"u8c[NxJ^vW3&W6ѝSN)WUTq%g5O/&=7Z#QsC?=\-و5xD%GsrmYZt +8P$^f4Hc=Hf"'&axc59ٮK99EV>i]=PPk_3;aPC@;51zq2YS2D_OAMM ('4^RHA!G00 e%a7.9 +-MDҊ=7`-cfGX;!ξ+VȒSIp7XV'"b6ڞf2 ɬ+u33rd§-ふ.n0g9%{T|P)0D۫U\633h(ԕĮ#'tɴJ1IQ9j.:Rt`ްv+tBܳv%-,[Zxr{q;Y@ܾRͻ>nj_Ü_#x]`MU1?IId3Q;;5G֌Kq-0>/|^IQًમ[yU>b^ٱ1ɂ+*^FN srG3Q]m67"z㉨CbwY0ڶ`fI Fq%s9aŮ2Z:Cw֮q tB*FR pEgZVl_ BB&b0,8xA^_v˷=謻[#IUr[:_%$] HHypzi QHdBl'lfٍBqKڪ Ei)k"@6c/qY}܈l/_TFWL$_]3rRέ|MfmQ0R%??T}5r؄W[m?m'FQM7!kRU!N+ZU{H܍ep=1Hñ<3fnŚ,@8:hcӓ2q,=D!g-/2zR̨m6&rU#&^ȮXV]͵V^Qͮ*Ӫ_` Rma-K Rf=6~౉qh("Ž)B0X)j4 Tq&@P&"Yv1cX451q\x&,jd5bڎzGF\-ϨݩW2gwgi L](VJ7 D29˗ ~ThJ_ Bu)؝vg h>0y+"L$)Y 5)Xp]}''6'aUN1P刳8ynTKl(uHMW=T8,5Vq0Ƥ vRs){2/U)g!_H$ٓ誤mP74}d鹬Z@kujh}K넊qX v8ֺ!h )'qUh.?s,#'yy4JŨ0(]%e?s(= ϏsNnQhBKX~=%$*Y43)aj]37)`gtuMk135ek(鰙m6g ^klnq|1bgܗF0"Su6gr^jV%P5hXFAaJgrF)5=4bA \gljjOsqq=geWO|SV'ar]Z=xx(QrwRMa,&G1|#PUC: dA>dc6gN_ka|e (Lb}mӹw:EރK<;&sJv1U&Q[g,@#fcEeD?*$K+ .ٺф~.p`Xa缤=~ĭn{6 ]4Tw<ӞrbdjJ`DQxX1;ݠX\ ŷN,]Q &jt0=5uZb _6;/叔k ?'R3aɣ\8P9~g(\6U` F!q\&|(e7`z6&|mKߘF |{9gBK@emb^Yq!_}[B^Ps] itѝ}Yߖm>Ef˶ESm?9.FAVi''>Q|M}{}sܞfWQ%_6\"Q%Mg|Z; qe;sK7=bӒ[F5so#yK>i̅8M:٣=Hmz8Z$V["6.f5KgӶ˵΁9\U߽$aƛ VA4n.~l3dwjq^y EKt7d1[>}\c8ЦР Ola44|W49K{4s73,><"{/5%&|$Ȓ'rm&@konR1*6"C=Z'*FD "z}DQi,%At2p7ndD[-Ql߾ɶWDّ\QsXAbW!:t9Ʉ&SB+ݺaԋC;٧4gt@#m,RHi3BVݎjJ(&ѶB_Ӈ (3X_ėˠHJd𼒨? [ e@Z2wEtoyyeKiތ^ؔ;xYG@ޡ36rWH 7HѦ^||n2>H¼R{:F#>mi.s'RYUt43д%RcJ-.bCVœm.| weeslK_aw9s7fp y3pgLԻ ~M/`yTliJu$)GŹN7`O:H5"v*#=6 G}BaGc+wGl"&73kWpy wY \Q .yp Azd,Gs;9RM)5ܲ1VZ,ؗ8 ০X| =,(k♂W^2YR!X(Pi K9žj;I/hj 8+x=b9kLzcC#V9qˆhk_q"}-oMܕQ VmG|=[ xs4Sz2Of R?@5)fML2uqɒbѡssռ2G6(@Ft&2C_VE[4ODv%0j {r\~$e-_@u] ʏ{lY_% &sSE/Pwgnq_R ?.Lev|N h  |,knY)\#' ԍ+RrEy;ݑ>} EE~$W DZjø&khH "Ø1'~iUW;GfN9*D/>қ]]>Vyτv`|^5fсRO,>>BC81?G)U)r1 uMm'GQtb)}xc4BSzܩl#}BzE t>$lEn''@}㦟to1ˏQ9*Դ8 cJg,r뗌^]?0UmNy묽%;2;O2m%>*IQB[5BŹ1 v6WkDǫ~~1BtF@A[@0? =8`'lb8i]eE+hBõxhޕa›3q7X-㏨s+b5;f~ڠ ETȟ \#s!e߄=_ E"LrѠ"nnWc[r$g*z)$ƔtV}# @]CCYQk걙-&HUDr`ce3 IQ% iU KwBGuV#Ϥ_ilc9kTn+[wF8RsY$[i9~"j(؉G4^='Ƃ/qjTEK/7mg`̇n3`/{Aw+YTһb endstream endobj 195 0 obj << /Length1 1373 /Length2 6096 /Length3 0 /Length 7038 /Filter /FlateDecode >> stream xڍwTl7ҍ #FnPBc6F74 !tJJ7H! !Ny~;;gw3 #E@5}I$&f0/- !ˮQ:qG:n1,d@>0G@z~H S_G "##%'E `8@rc*BnSE# !+,+vB y0 E@ݡ"\`^MN(_0 (`(  w"Sm=_Ww'!;`nP Ꮏn^L< s;`4h y`n'd  GyOB0[sp/<௳ {Goas8FE3@R2'Nnc8aF/BzCA08cPd#ah5<'[ p7\f:VIU @ sg#0.@Ն;!25ҿy&/ B< H|O ݿ?hz6V;o;( ]0ojD& u4 .A/oP#ˆahxaŐ%5ovJHH$؏sI #a!8 ` 8!$S\ y~+Ș:(_ H$f_NCh(dn|TvVrWpmDafW0`0:'|S%=W y֫ǭo^%%-VK|GLy=3"C-MnTHsQ ]]0=f^-KzY6!`oV X;NKG}ts:oU'$h'A8jU4|LԫɊ. 8WFLPi"n+64M,lgA-tejq uY<J |~ΌXz^Pij<@E{H6̒z*֪r6YwW͔%IOǘ=OC SAQ|`jo0(97!7q3TX ~(r'QDREE9/$6Z#Q QiqJ :uܮq=.gmnXN|\2~eZ/ SߴJ*K[ "`AOt>>{{\S*gȷ ^5Z踓݋|lQ_tzO`Qcvԥ{c5.qv]_$[7(4$ZyP,l#l}"kU[/-uinDdH>pG+fܚz`{AEWrkl>^yӏ&IqTt>V48˳mXmǿ`Uޒ|9]\Ti=&Fu^V—LkvCÍD9)'jgVߦYwqHARK=O՜4r$.4me] 91 ts]4)Vyv!9_"~ d|* GM5jH3l=xZʼnĨ; i8=GH=y[B~u:od-t$х>gv-VsOzmvJ/11r QqΎ!enIdRPY)/;<Ig^\]RKlu#5dFTڭ`B"#ֳ{ 9T#t,E/yi-i;Ǘ dZiiɒiRה"& NJA3(oSK˞01/|bCFCE@7{3ZlR}Qj5ʊA,Qx[4GG\8Yg3X^b%MƵ^8ٱڰ,X斞Ѽh,[gp0ߺj)yq_DnPOgYҷXaBs+n;'h=uo ﱵUtxZɷ,#&I0SZR=. Ӌ)Qw([r}FsVoȴ}0jg-@B!˓Tn]/Շ5)ۜZ,$Ģ'V6֪vt}v pgJztCXL Aw'*dw~in0>jBL[=lz+A`FR~>,%fC3f&n)K"ֺEyFM *VQg)&X*pǀ #Ȩa8@Gg_(*1lF V_Г 1ՎdT[E+bE蒋:y`=.Tfvt{ }LTzJg2U2f> <}՗'CoB19BųWFsXKUw'w)v zkjsȃZQBM;,/o#v6>,l "" XV?Ɉϑ7AEY ?0Lj3U5{ȜGͧW #M0z^#{1zD(źMU>)PY [5οДEG>>PۏOj:-%OԾ\И~\8 sXƭrH/} L^e}NO.( į{? qp3;|+q,Y|(G^Cq/&?gIU~Hgn›k-W 2K%#[j^%M#҅HDrin󓙿\K5r} я;9Y4TjP1c2>ܒ_hL[_^:cKMWf}pjgݚ7sD0T=[X鷴9I UK[yV$MyS8gIYܸ=̈́6*w) ]I t)Rut6Wp8W' /FUT\p+s?zm'JUDǮ9WvMhNw/zY -dp ќ{ONU)vf63V{dHDBt~A0u1WcΉ~f,Dǜ4/kn_vM (mF簪ŔK> 7k^?~\& !i"뭆l*Dە@NȚYRGEѮBȻ .Ⲩ+CTZm0W(dI?r>aV1|R43or/}Be$yى9ْ?N >#~H1*3j07}iON!zN$WX?;Av5njsϿS2PpMJ'OS_>k:qt3 NOߏo8|\n%T64*xƓ䫂g@S[28$7]oN1X.6=ߛ/$9 ţjcb!+Gfd$7t/y5:)vTp<^!cq! \8AM4 Xy'Fgؾpkט(=9O\rB['B3N#y &u{YfrHT'By^$."ו3O.`l8aIE@\z1~W<<iq9<ɧ>}X{ǹg'cԀL|}3usnB\"އ_ QI0,p@v珆ϵHkgiάphVoӉYJ9abV:Brc٪=]Ivo-b D'񎰇l,bɧ"صa{^6W*8{m;J&i>e -`G ? {+y^PZpvy*s%gSE| 3IG$^"汞JQ~e!72}{D5>Ju.Cϐ+%Ҭ<MHE_dq uh;߀TF J4U*7-"yXz(!B>u|.;֧H4]!:H;AJOqNJwOWXyRjYiiκriJ#nPQiYA5Vb w7cfwSY~8UQS!6s8:&*,p>G5K:"{ '2x+Ԏ1%_VthE1myZYDbAogogܾ3,楶`U._C@襼֣x VQrw7?φҤTo HW"I]:Xh@wɌ#83E*4<;;A x3Q=a×@ ~Q8 54~lFk+m{lv(V?mxnnNl:"Vtٽ /TnkΖM峣q)mF[6Ē)CFw?YIXȪl](72)-ORT,^| [nZ5Dlqq|M> stream xڍtT[6!̀9H#ݨ 000tttHK!- tG~Z߷fߜ<{>l,:|rpK J5 H(JfF@0# $ S!Qfp@ >E%b!AAP.lp'O:?K(!! F@@0&ivDhV0_!8!N G~8/]75W-#wal;Xnt!Xa.(W5@ Wh;a5w~;N 'f @m% ~Y2A](Y ~'(@ qB@*uɊ0ky#t!Bݺ:0?kW ֮N0+XU/ Df FD$3ae'+7FwؠJBl?oD}7X!`[(lg<0D {eҖ5wsi.oc(OHD?08@O[Onu;X0 Z>ovW;%W(7?X#ҫ+}M8j`mg\5WfU l_"E ց HnkXšhG*¬ֿKHDB @v"o j  (<_ AԳ 8lE.tc%#rF *>"[I~rV%Gη1,=${zAUb q"˚"ZЦDK+xfϣ=#j d7}}0r]ʼnu(ܻ=jKC7t7+E J L'^[fMѰ 8x%`uЊc鵡wi6"IK#IԤX̒#uEmCX vV*VMluh;V"*Q'% +IQAM-A3Oef8? .1Q}RYE@T%9=ut/n5E럩rX.7c:%SkYiS5*>>~ʨg.h\ ޚg2.H5Gwe>Rle dӊn~ʚM-@|.3SU~aj#>P4Shf.~.@|M!>%#R KYo[PÒF@;vxwJ^Tl/J^}ôS&,*iC>_&76tO6?Ҭq +Djx _mk0W&G !&.T_ -[j(6zpUxx;bQZ(&dT "5gD0ɟF1=Y$|C_k2F`x3ߴAP)nE:1-o*I׆ԳJJ}(P<OXrfb^7e Cgu@/F'qgbY3;bo^S+ 7Co = .> g.bX\% |$~fD_1];tB܏sI*1%p=] M,PuQ-[LpL_$_gW^"Lݏ_$[T+6aJ篣oQ&Ofȇش׷=jY&A v=l G^,{o'*rR}+w$iGdێmHvm1ZV9hiP fwi%k$˘s<4"\̂-SJN3G {Uӛ}yƫA^֭:H(}׷ܫ7ovyEzD;&S>=Q2H:WP Wr,ziE5hhx]P/c+5WN`| ̜R/ԨtLk,ͪ6+ˣ54,F-McDۤ1/بh<KFcaIrιnq:⡣?&D8?suE7.SaB)pM̫|5+Ge޲25,Gw]Nя}D>6P KnLR͈d[v)&x{ͨ?wGvsBJ?m(R+90e{`PkV.%PQ 9L<#Avcg:qjIJz:缎e5]MU Z#f\T5ήR-ʹ7W(ukc{D%M}&h8O̪v&:4$g،1Bd}i@B/xjz@xj-:m;l{EWYQ6QUU"ya<ܿ(~#EX3ot͠3܆WZ29}w9>Yc9ʛ90UYLӪi +v ){U蚞$u_'ەCX~Jطʃ Fx1wD%%O\ɥLѴǎ*FFM h:$.BsmlToZ:eXOLO(xV|D-lU4M@OF!}񵊲nȃR}_j%|c)[]?0ս}EAt=;ĵ0Y %tUv*kdԃfiߤU™s ;NLp6eQy@S:yL:aLlO_;.4EK\UVWQO%azʗ7?Xir>zŌfngY*2mW-NIj y.&GpTX^zNx⻕?%k,-R p& fL`I j 2ʰ@Vy(fiAgRM.k92Y4ǖsa uQ X5l 8بy3fr$TajbC@/[{O7>6f 7Xy}4a4j`ANNw":XvE1<ѻuG#R]R;>{3~g$@q 4}݅{4K\?`ύ0N2]/A=(Kø2•F`ϡ!a`= >h~&;h;BxrXn NwsD'Lxq%Mԛ8Q& 6q{ӻ.dM\OԚdk:m{y_`G'SRߟMl˃SL71-Z+T\Y4m'q gE|_+JY%ILӄ{3$X_O1X~5M.t\?=J?p\GUHH$uJ]Uf5v( uӋS3{3~:'NsG)@n%U8J_d$9XgCoyГ "zQH]mwL/?yd6GD.WnBDU"9b;ޫm`as}S<-oXzl*͑CcbS˸IZK8~CT|ȦsFOYw9+'AԾ=2)Itf6oln`U7ćM- M0w!:m=tDbsUnA"Z <tNP)cpU+ZY xr {AaKR^ursԂtKE - ,P]w~'~I8ʐ pWqɪub.6y.'8>+]\;54 x5N.4~ɏSy KBߕ,gVh*r?v|ŝ0oʎ7=f% dv=4{1). 1C|b396f.$7Tɡt~RpX⎨> ޠFt+YFjDrQG[Qbb+P3lE:x,54l UW-v@uw}pHMxydLSUfK us7;_VYbc_ wE> _1~Gڋ춬Κ 1UcM)VQe<AK<2aq85Q7+}巏`5ó/GW :dz"/erod9jy>8z2I:eSul97>"Z{}G.;T ʽ9"<;hS3ٍ s?7͆vJ<^Khs2󲋽ܔuhOoBoswqrl\X96t[OrYt?l;=xnmL_y3%;6(^pܹQrLH3?h=. eTI~행@$a46CN{Сs7wl]Tj5tffSU6="^#XQ4a0š{fnE`!Sa263i]D{˶%MP|j9WM ׯ~vb {7ӯB Ҫ-?mwoXP$w}/Hv!>lcr8V12rZ]A&8r_T'@^3hqeo o+$ds+E;0Y5:j@`韞 ey3ZDoj&z}hW9-G)_J E]!k ®;aMYߣ jvk(DF*WKxە qN wuOZSdX( 2 #D4 βϞ-󝯥cL'(i"Jl쏓Ț{f%8A#kUaGBE?^Pb(CO|*3Ox- tۛ/ix{ ?SZyg_&nly_A.Ry?y qFW>L?zVH_?FNSAIZ{`tOӬ8=$Hܪ]W#~i@_bPthëXֵf~>:<+Cqn|H7:8f+Gz9ZtA/r)dY{Z X]L_Fi0g/l3V U'Av{(*SanUA˜qy>1Wd;0a]\B?:1N}*9BVA'71Cc1I[]U"4L(t!חZ*1dWw[K*YDʻ $?^T7$;nH4cQ)Y.nEnJ}rN"*Ms8u Jj$:*hX$cZ ?"a @ ƒ44ς?7Q endstream endobj 199 0 obj << /Length1 1536 /Length2 6971 /Length3 0 /Length 8002 /Filter /FlateDecode >> stream xڍxXm>"-{ )!  )niD@BC@:$i>>>w8}^U}^vYϐO (> $@I ("`c3`q6;KCbBcmQh6$PLRP $((7. xh 8Ipq:8y~p@ 1;d hۢ!. [BP>)BJ xyyۺ \/(`AB=!`:.?ȿ {;`PDxw:;P] E 9 ?_x v.p(`A*Z(o/E!h[O[(M]-@EA`OH;GBazpG! ~G:^pWP8W`Wc8 s""@ 9 J` m {sEm@@{@CA( 'wt4 k>w7B-? @_OhpϿ鿏X\܀O2**"~|B> QAGU#ާK?g,Z翅XPD~_QWwE*0o;_naBO6= >50忭([4(Њ>|E@!`=( j !_7 KPl!9o$ZM 326!Q+=`o11`p'u@AQ/ mAsG%faB@ïq@ h2 ?Q4{ N/_1-h6'zO^p o`~ wzzY@ŷ9`%bQ 7KuM\yw8]o,bb֟㮜4<rߺ_ී.A0&NvHbcehXυ7-s= 9L!}3*j1iE Sh܅bk,7u̡w9}=U̹IT9o"Je ,E.˷mĖ [=tBoEv/3Xod} ۘ[ΪV88`Q3pjjO!JJ/̴0bqÄ>߽yL|z(crp- cS1|e^2t]Pw #dHi[^n[ui2neQTD5W|nTA^.^K8K0I#- |3' S__/}B&Q&UőaM\uDŦ>O?W%,d~/r܊S5ـH!{jS-AL5p:170Ϸ485$~.!.|vƜ&smcDKַ챛'ǖd&.5+,f`[W_kWC YS=0 D3Ee <ዙFx5c,O&.(,pF&x2dAoݔlG]჋uSfʉtB1ِwrMVu C76_,luؖeYnbۡa?u.2fIg4`["0ǫzwB}qsi]T_hu? ԏ!(1_dkM7k~<=i8u2Ii)˾E@a>ƆOW熞4gf eX:XH[1¢ 3 {{ެ@eNz[16mǹvwsafJhTSf%#vdz_V2<9r=C<zPI{*PsOn_A"vы{cx9/DeTrCY 21vGlwɂ:e= 7qJVAi6$p9떄/v˦Qr@/*9/#}.>64Te|yN̏ϋ3rc}G=PPpEqz!=nֶ \扅r+OG~-DĥY*˲<ь13ͧsr0R4R8wXz 埍z>ڽWCex %vȒr&[(C݆ky_..2 Sć4,6k 0@ͼ犊1NKAxpA_r׌ܢٖ=a iδ[#k~tEBưC\]T+Jj3<up1BaUg[Y#Z#Ϩz$mxZ#z5wCL51M8|O+0.pÿݩ1jM!LX]!;<ޱz-(>DJ?(r86F}o"&{1nz!ד2?cпgEtzpY_K66 y\yyd*DȔCŲfӪHwTJ P91, ^BG:bY/:ꚵG A%kT;L&G N2O-ID/T8Lu>xPZAfhJăz„/zw_剞b3p/,H\DZ_s#Bg}x@~)oKi>dkCeVv3ܺ=VΏ#m )??4˗&ߣîR֔K*(OI%43>9:D)Em}((FguH.KÂ?tpp2gK9A$kwK_3MTܝ/IW7Hp#3wB$\1K[68uUW3d1JG:,'¦ret.j1>s3e~>8\#|X>V[&tiYLF@~᧜D5T+dv5duˑsj` dߘE Qɕt{03VK\On՟`0JvkWDz1@ߣПY+%=ӑrn{?F]+7i-1J~&XOLȅ+wx uu>z ۂ_9=i s>S ;rŻ~KՌCC Ă&3YP} # qZ ӥ0`qk1eJ)_f`V)nTH;@OU5iͮ\X\8?repp6}.LP_NP5t)Ѡe2KF6U_>{^Yo4FREs4"uҬ"F!'XzgiI98Jts%l^}0&YŪ0~Em+ll"Jtc:9c\&Je6~H|U9=@:F,!ݨ`%##jI{-|驴[6Y ֛%V|P܅ǥdk:B' 1AuǞAr>?+>&V^ l5)p{I%zRryFQ;oύ-7^%Ls$R^ShEԆWpɇq4\^z|z17Ƞ.B`{Ji:2=ݿ:#/0uI|cN<7}( GssӉU :Vzm9j٧'stQ./* ,i3:N?mVRwJ#9zX;9hSr_#w$b<fC$VYvaw |lѫ 9 [fw#rN؃oz%ofKZ<Ab,&V#G|!vz~',b1]Dϱ ՐQgMGieo㗽 ¨ȆN=,%uO$ ZPMi8aƙSr!DĜV~$g UKz{Y>(R˕V$[߈9p,d.:~ !#sxۣw9V_ ɔn||^k +fYVa\fڜCB^SʕEǐ=*`Fix/d=_=!פ ƕRuQ4^](q+>NֿbP:-8Il^Dq9(%|C9Yv$¿ABh0ânLl''=#O0|cfI.idzեa9!u.jF&..mW}6}IpnP^,P+5l*[7 /Q?Ͼe34ÊZtI(p=Ky$q!=jGs&xRQI(ډٽ㛏"SXm1G0?d]px|b]{Fju]L>Mպ߅H JHm݋;RtO\k1ifP˶;:jPykx7սY<|7pjg(ex񹗍1k[`ryPA2$I䒧wYb~AGYTri.J Q!<ϩ@KIAOX2?&|zZywb"4I&M |*3hF}xBҡEDn]߫f~P(ŒzE̞y̺wG "!T1DH:J3-(7jOTE vx醴r^n(aR N9ԩ|!gKζ]`ؽNII/WИEZ%, U$m~1-,az nt@,w(4=9?];B^{vB/%C+$Zɺ]: )ʾ[je`N拮znߨ(JmBܙf~S"F\JD2xS`CZ Z|\t.1HU t;}`u)JJrݶBAnKx <=먍ݎ] c9pl1y_tjݑ N E A!ϠC51oL f/%bg?,C8)4-;R J.&{YKo-GM_ԼU|LFkw8)?e #l|xnT>I`=qNk匩-s{e2.)̭k}ǧ;ӦvrLt1w KXdeSaY0Yym-5"H+r5AS5QhO J5d2Z';cI͝>e5]p,9[ԭ 7YX"x9 v95vi_"ZK] at$ Vwqz9Ħ@^Œ  0/$uv7[qP3Oz,lB{6|RRhSSXqXM֨uP>vߕE֐:eԮRjEHGLU^B}­-艹j3AgtL⟰#\J׾}+Ve,ifK=[`$kq ~ y%1Jy>2 1$NJ5ݓw@ $W9릸Sx7fa)w>U(J3( N9uH+&^zdZdaixVHyP\dhiYfڡ6GF\VSI)ʸ ©MhioQL,j| gnb~ņ9yqY{ܒI~"vзsumy{z%b_C_haHKyw3l~)BB]5{4_ڗ'HhZj|ND]Pđ@ID ~kw?fݲַ Ħ3ܵ@v `>k+dW 2lY59{U endstream endobj 201 0 obj << /Length1 1378 /Length2 6060 /Length3 0 /Length 7008 /Filter /FlateDecode >> stream xڍuT6-N etNam ) J(!) "%-HHt<9{vu羮 Ma(; UM,e"" 1)kp )h8A8> pEDDDb""r@5'uPH8rA#2zB҂Áʮp4 A!XG+"4AAp?R;bnr^^^ +B;( XG1G{a_B\& AÁ8  GbpH h ?`?A߻DoD`ru }H=4a@ qpObP6BpE#ܰkD_ip\]H,?5]:#Q^H{fkV 9@IY)) Y : JoeMrㆀ  b * !X'; s-EpG/  kR3}**(oPHVR(**# 3! j#Q@?_{%_q. Z8?$D;_Y_$4<\\~y7#'}NZVCxW A#HD@xa,e~I0_\p:/8:ҙFC|"8:'$ @aŅq3Qh!3n z8οU {áqvӫ*ef/oI澶D'YvEIb'9]qWy+їn8Y1<̿y4mݖ<޵-{C19 JG/Rm=2ILyl1~..R\xނY]_P1cs[ b-8b?XZS&PfC8cEpB懙9];R4:l}=trt1x*%I]#g !]S`نwkXcΕG{lDJ!Xv׫ԢMQy䓙-5:oJ^ „y {sG =yL?7x797+;8K^IȎfU8'U47̧fnH/jug$s{ twϻ%Uy+>+nnDþq+>͊@d 0 nO.qQsc =(*kK^m~cw ?a}}t eOH0|Pwߡkawо[ G(>\(Y\3{DQЮL]ɫBsOQAa0w!,_#$+$.yMaroUg9\cV `+@4, R%L/%S=;C:9nɚ?\cs!lwR֡1;>r\ѺuvV>LMdln Und7lԆ yh!y"? mn7:x_$V]$} ( %侦0PHFHHCTƢΦOݿQ$|u |"#Y={бK/?WĈ@(G˒@A@:U&R7-ENК}#àNqV3:7G-9,ˬ+T;YUD@Nڒ4(i!;]Dzʢ޻C|`![C}C&ZaZ.1pf7t\s:$_3UJOl~,ƍN0N@c҇yeSO؊W^闒H}SFt͔% y#c<"c)5/1g=}'{l>6*yODj"tjxĚ #.*-LZyU+(K?- Yl@IW^2}ˢW`B-Mڇ@N@r=Ƭk{ܻuq+VCdKnuwNKUԀTgjMh^mΈs5c5 F]蟡w+m+)U({;_>!:#\\O\Fp+SG:CSͻ16 V&g͌3r- R? EG(:I6; x ^zVOY0+nZ5F!T:%gҐf0)ro()ؾ n9q](5~v#ƙ6 |k`rŖ|#_7?fҥt3wA4},G#͕5Rg;wIBuyY;y:I)] ()me2PˎE޽Jjr?J)T|{9J4b_OWM77\\Ӹ^4^aиcCavM<ڗ.7E<9Y ;EKsZ#CL־ D}h2o}iȓ1HS4m s◧yԦ땶>r(3)_\hCGO3%iX3p N=-Un޻=Sg3\t_!K9#QB+:Q=uYa_+5׺7(tyiz xuA̭I(ܵ@ƵՅ)do,pkpR+j>69d6-/ICQ/ Ela0IkQ2xI~JIekVwtRZ :iͩ䥄eA! k[E5C'RG).^~%4:ߜP'p}nrh2JA mƘS\tQ1{Y\AȭޝV"$lzC "5-|,/9y2_VFmǎ$w pbg}ӷ"JG"CQL/ZĄXc,$lC>M\OTDtTUfzHK|>`}WX -˺A(jo}R2B[Dq.F$ RQ} -׷)^P>7cP\Myo>ԇ~GUAH!ӵLJF{$(-]rəoZwd:sܣڕtUчL$ʖIAyn ] !mW( zB ހ{M֙Υ;gx-r?I6T]dpg-K, z)>ׅt $W#"Z7t@60T9~LأG3ɱ[$߰m{>sJ|h,k7p=>ev؇8wFw 5Vb<t9!][0;Xh3Y\^^s.㉖$K"ZjH>(|9H0NClG゚8N=Bv}*G ܻZ;&v0,bp1~B E]|l֏d,8Ha9&aT\M^zd\#.l;MI0=¯uOй;\CvK\B_gI9 Nj~Ě[S/[Y{ڔu EeAkQd/H~!מʗP_t} Nl۾sABd8vNi/Rfv_uw&N3y=@;˓^ܐ%ԑ~r[<ּ90(wuW0>Emv3TC*|,ɺ9a<0#U/_?0kX͏=k =ь"҄w)qJ[ {qꛜ:U-O7z;{ #}QyH7'i=yso${9' [\‹GXaGPrٌ|Hz{G LiΙL= 5J:#ͼ;Au<_ i k[+3QxN"m-}+"-פ( !H<Vn>]rk"ggW2}3cyz(el玔~7t}<*r܊bUpqK#l+srwE.(o&1a%TXTh4+'ؽ洈/iD9,*RvL\iH,5dyH:hг%)>)q+i1Rw0mٞkd^jӪmnň[Dz* k&S}iBF|]}ȖjNc<1enADGr6Wk eIpSjy'(LM:JgO~hRYߙ  Q*<&XNJn>6'}A5~~ұjwʲR5ˡM> stream xڍP .]ww ` ݝ<{꽚^zjTԙDMRv.Ll̬|qE Y6V++3++;;G3ގ_N@cw{@`c `geO@ dPd<@.g 5~`3 j t],;MA@)A+`llld!DpXԀ@'7Jƶ[cFhXrۛ;)= x.PvW#1lljjo`l le)fF6n c?DUݟřdG,y?fI;3q{[[3$@N@sdrAvfairtJnBftp%hx:ta~`d|Av6v\\v/B`cL]&@ ?@;<X`ߕl< YDt4nN11{7 :*Ơy+Wse5@rjYSU_I+ol ;].Sh> v7T *@+b> vfbdfryT@./f;xa޳XY}L_wi+igjoǰsq=qާ ,v.)}N\,7EӟE_`Q/}x,& ^׻X89G,f<w&,)ސ%_6п;ww6mR3b/_;3wwVz '5:9?T|@)Ҽ)UMH}(;qvNk8I|= q+EѮݨM#FkmVk (>6hsmFI #gW]N]#;3 &"3t2*-`i c`xx8 BE3+ĪEgf;d)/EOGع~ ,03pMfvz$hBiMGՅ)dw&/e.wbd,d7!S!77E{2(j\J())-G[:a.P=4`᜜5V8٠~6e ? bk'W k`c4R֋*HEyDrD1ȇ{tT:F#1~jOk$Ps+S mpZx^ǠsԷPbQHR߉SPdϵ#=~g‘r5%}n7IנZrʋhtTㅏ.K8K\Fƍ|1j\j~otS,5g6YMߊ,M2xT|3K.OG$ `,TK߱rB'IϪKK9~0F@sdWoOPoLA{p V1kOfSc 5ƪ0Y8x+aNI8Eݱ(pvs~)Uڞ7GT 7N\S,b=3Z(xzlrq]]kV8K@I5Üvwk(cbHיa#B5UwT8<9)Q#8iͫi3RoW}A#zOTvZX\8fyZUm.7&ߠ?@O(W#S'Xnj;KnSOY ~’";0 Vcb"2 JA"kEM#wWר2%>%0MRrIޣ< k?O}y֬x~ECqN9 K#> BU=cX͔%m<=rE`hޞqY,SlԖ<nn.Xa4' 0PxX+a7荣ž׏H(<~;[1X{pr=~+f~mWf,t pSf ,l>] >c=NYQ2=c Mߛ9wxp$I>x& T<:9KTpp>;Xw}OeeDUMre򉄨5܎4m(C  x W,EƂ kO*Nt;Yr'zΩ4kθ«b+g}ܲj{ *uZu}`c^Rhز9^+ >UbWn|_ۯg:o]2"{+tOLTᚍta8 H^  uLF/y(q= GBbdg!?Cź2;Njdgɪ8;6 ;nDRIy9EqM"^,HPwLLgeWW^2-}(G ;t*A#cJTQp>I>mNS,0wjvKC8?8m ٘Mνad.S^zpG!dd!H [aFX#) ̐u "@Jv-RBp=)D9 8~ΓhwdE ϔmJcM|jsRكcノT\RzOFˮ/ew7S={`'ɗI4=D DXNE)(%JcJ#m)p+BOf@vh``=Kd{"\fnqMQA-b$TSv|:j #v0b]]k^gė:^aZL\ݹ'j)lF _:_>{EMv@VR% f7TՆi;N<l՜؊60Ei ] X â]0μ:Q-j6~ܝIߓmnD%. @n=_$v+Fqv#ON.UA f9ǫG3#nN:$MD8cX<ŋn5vQ WFUъiikۭS,xj-/ hXn⢖\9B]T+DME$ yS])s1a l&oRۍ~P\upBie itXx*떀Cx,]5G+ᐓ#7ãR[PZΊF,Fp({)],Ӫm3?6q&swpk ^7;2FsF)}菨Q2K,4.pZoZ/S{D\&xJ cg+})V?< <֋hg̎htZPQ hV1/m.ݿ*cgC L]\X h{RxmXUseZ8m- #[LdXYmtsƒ*sN%3goD>+99;sWž=UU>a.^Vr' P;ezE8]9Mѻ%zmgb#Hxb*e@u=53~R {d0ݎrCP;vwmy9'%>{;ozeqf>LhvC4X,sȕ9S0{^h'{[N/[u{`}9({'㣪%5ו ~ C|ZuE = RozCk*eK gBN) -\بV781zq9Pʨ=6fxDtuqmx^}Ǭ-_":y(nwo.cb)ͲFANG2s\<PE6rO)~$n5فWؚ_Ӻ;1)'MH뎜1oךVsH҄D4#FJVU?* _^cޚ,[ُKhBDgk'`WBc"P]-5sDRm#cPO*QDX+e׶ ꤗCYI)= S,6l֨30"h]'=0r˸aִk~%ތV^h>X_:bϠ@5&RuFZ6[\UĨJRXC8~I'IǤ&B-tջ|0U& Rs ,N@99ih[v3ĊEa\j"Q 8$;`%82I$>J)[-'0/gvv$GПK,Ÿj 6?ԊI@uP; W)9J/,55MoO0S7aHDJ_]8Q ƒ1.A/N5ն3f.sΧQʕMÇaV~ ֔ i VO* =scDof+#}QL޶9;rYW|v3,ZGea/h'S*7ZpNpڰtkA2LȚxX#I| dǘãOR)͈&6q^)@wqp("rިNy%6@%,RQ<œ2Z8=I|^: Sϩ.ҨRaZs)#')d&7pD0KVT'MS:'=gZ/ l1){9,:."̼\0D&SuH״ _v$JWM/E}Tt2We|g2i e=o(Oг}xS`;хPdf:L$!@ΉS! x5!&*u1xDu- Sl%fng㲸Rw"Tmfg eue$ =I9I5H,fyxMf 8|#;75 pn']Umtcdˁ j*2CkK IU2$eHۨ^6l跉`1SAig8 ,Ŵ$+a_.MɲlS?pP *Ƅ(p 6 m$ܸY N2J(`V7Yz*BI >? 'qAz ?Mۅx"͠]d#D`夙V* \-Fr]`5V@N'F* Ad/TgP N8ur7a/8t2Bl6楲B:^7:/{?8:?&2+'`:(oZ_0Bi-;0FnNtcK|ƭʈSQ3i_GS]1:*Hu]wKD9BBo Ǟ9Ck _#Ά2QB?rOGφ/kW ~̈#MV%5 G=nj$:1 ZWNDt[Tvz#{dZ)S&A2'wR~%Y`D aް_6ڕb# 3KXTrDT2.xQ@\HZ=:&ZtW;e:SK}&Gd[sq. #Й9UC*'qTX 2m#}^E^yinoĨ{ ՝HZ;ILJq* jz:hiX$mè\ YSM::;,4aڄN1Tw)Q7-36%ϖ 1(n~mPe;/ign!i)m^HY4//G=q ¾ 5H"ijDb)d|TEfrޠXjդkB E2|ެAglz|=&^s3s NTf&>qGH>>Zvmy޹A5EO;1DV)ऽS_1x1fiQ,qN1l0dz|PwaxllPX [~PoW^62 gPR"ST;cq+x4{gQ5i^:E"D9Z߯٥ʍz+{Pڑah0l Puq 4+\ 2yGG ?QZIˑًʏ>dz;e{* \1e0)+yx떹KצJ@|&@|#fbf}6 W }}RPEɘ6*}zcMBh89r{!7>C[o1q_9(,X/<ۖp[pboN< |=8M-:0˹叨㾽UŁ2Eg}b i`x~дed1p\AB/^9Z|?oJc!6#w3 U]smT8$U҃Z̔2jS0@&Tx|dYPA1 pQ[oc hf Y\WduUdDר;ڵfZZ=[4+xG7P<(Rz=xdA_$9 C ,n!,~J]0wHC~mÖ:YȶǍЛg?&-GR6F+U 6 {2 4̑&uP,,M1 ^QR)|!>MMYoYzدOB)FLֱ|k>C.N7mnhU^, 1? Fg 2gs4٪jz wj&\<9L3G׭w8Q$xO Ybf:pܞH34y<@^OEA(ra*sjc"&5(|f!k8|W.£ru؍-i>&tNMs(pѶh/ ]Bx|-oٛc<%F,gBh*D~YigSNRM)o{9J8_b_^jk,qGlr sEQLez&X%fM ?,ZSi,E5DH;Sd[RuIdtG'ͪ-m ޵I-k4ÚջCEb!Vn_&؟#g>7c?w"H@MulXMQ$ Z!~qV) IGhF+kΦjn2AV^ %/ @yz1}yGqdKߊշgMӰ&{ EE..C4GAP9HbZVC-IDT\E yo1>rt4BE%Il&B+~NY"B@=EbaL-[ֳܳ,5i`EjRL^05N捃4}͢d[Cg6ʼn0]OK.ˌtl`q<)LJ':~)Ix|aFwւhc%WAP^ze,*`g8 q5[wB&c`r\ۯN~"yuC)ϥXdָKu"a|Yt Yhn1٭Y!s߂΅ QѫB$Hpxs^]\zm 8et纫hro[협8IHS)4;y~O&`Y6~@ApduAggl) :QN-G8/\Xhh 7zu%1Nkcbݘʄthڈrӧ T=xۆJA2`zim/f?݄N&>,[r+z n AWXL5`4Vਲ਼OL3$jفjpΤw*< .97*eD]i*PNܙB&}jQ)sM׷!+?[ SC'Dw1(arZVrfuvv]\q%RNMJ;&kBcĀ-ؙpYd6pKR okQo!Bx" ~{C!oTC`(<2~C+L/jZmb&1*[K(冂UK(4Rd|l xokZw,smNBk,}RU~n ݡg2!0U=A|v99cq@Ѱ~!_ۻg2qRR2I%>..]]B8L$Ȓhܫy \)I)f$"36EצƹE6;qү)H!z<ϱ$Y0=^pI)NpA%1IO:q.Tg+IiSjND&F HlV>3f 3k=?>$}U54VCē$3 :1,_$qIUW~ &|:,Tj }'G#h-tsbFqVj9*B^/,nmV}#oD$i˂AXD5 9zTO(7=8EH0~ƽu)[e҉4Ѝ.[iA\$' 7-<5|Z-Ցء|N> #14W^ޯ`MLzR!{锒+2ne< _񜊕 xSIbo>bG5 =`|fvk XKZ_;9a7تv'#?bJH$BzE7(;.8,RF_3'Goa.nEg8Fֶvz.-.CCt^bCf^].*lqX>=d 6w8ޟPʆ |DU|ʕdYgZg~4t#4a|ZR%ӯ)K\9fxENJs$کm J-nLo󛘇 }Vo]KpjT |.@ f!< O]r"e1힝oY3' %KݨEN#f~[nZ#,bHd ;KĈ5DA"I5fw:WێC+ y۝6"0⬩ct,sb|o9!vqƇ^r,Z4*cK|&,8"~Ѩ2$_r@.2Wzy}tdY^lj$2tui1+Ŏm Hn>QLg^ T$*5" $ZKPCalgp᫽CG(г-ź%i!K 6~b/N[ I?7͈ۣ:։DO%QS@8bgVz4m? TO_'u_a -:{ˋacj*o"~PJ:Ū1}L} W}alrmWtg{G!^csLEɔTe6%ǥ fɛ Pkw¹e);;0|/k]tQ(4 J|8&5ܦ;x Bk> 85 gbtE݃*y`/˘3,Z!E+[- DjLgX8w}E9 Qxֲ"hm-z=׸a*scqk^6^Y601(F3Wょ PW98UxR Z;SM|f2`aLHD/]aOh9 JT۽Lp‰JH/7 }Rf:At@h!φTmPq&nWQ)Mj/oP*w:~jZl{IU"W0D789^Y;ƤE=Ks({½Yۊ3G;H}nAmlPϜG# *G32̚ܧ|Z)'ۻKdd"R,|X}S„TӣKT%<GGex=P(.Mj%}ml8Ler6ƻy4C endstream endobj 205 0 obj << /Length1 1606 /Length2 10718 /Length3 0 /Length 11546 /Filter /FlateDecode >> stream xڭweX\ݒ5,8$\]wwww }y7f~jZUާ)IUL@F@q# #3/@Ad+ 69()E@CG #4$J lafVS֠zw:X ;;z p4L-EM)y @h Z-@[ Xc0ٚXU;`4xt56  _ فA6w0E1UQT< `L#M@Nhhap:0p6t{f?@3C5Nݠڔ={n3 [$E`a?}@ kfhIl&@S$&y{JNe-[>+0 ,35v5P{lޥ`fdAhhhl05~v5[ m003Os5W͛I^XB]E_OӿUwTu{'uȁLk0``prXlðs-gphwJ_`lA&M`/{{ā@W1"Ș/25#ͱ7{p\Tz0ȮN ϷSf\X?pd#M;܍c+xKENӓJEϤWvq6/ɬ9W G<F8%wŦC6N؎^YtLppwdhpg.+;4|]g 儶M 2_FB}>lAbboeLF8-#y5-VI_eI_:ǰ VZ9[%3\چQ !#6|6?z [%/6ϼn`t\J+1f6{X!U|}$9{nvlw6~,ߧ)܄C6˼muV碰weԃx®IDtK"B#ÏO+.hV>ԇǯhA m|*ޯT%bӠ-ӳGܢ&6bn% kjJAc8V`HL.-iDpd :ߜ%EwCs@ٝ?:l[8 5XvL5ci|,-b 6ɛOS0^oIg+ Qg(I^)R;n,n La Zg7vr!o!+q˹O kEnMer4|o%=?:аefj5f)YB&RCO5!zbЪ0d].1W9LlP0L)󹑀9zS3Z[&9SI0M8kŶ1qiK\:Op-'۷̀-B̮׎K'']/*ǣ 4;JE  n#e~],SʏSAD;* x,~{=v7 o;p'3./6JXҙ-(GC~5nziW*6 p2!A W]a5"ʎuqd``#T#Xz{!גj-ڴ0g@\oKT*"^ǡY_? ӶCr2 46ӮCdYn Aw7Jݛ4H_[F_ 0voXE 0"-whBV+(!Yj_˿ 4UI_Wb>X~SO@֎c:|ң!B߫[)IqO:&s8&8[L7Vzfʠzi Ҝń?/19+. 0`h8ήoU-IQřݔ ڱ䩓XC;IvQ~pҞ8G]IT vKd2rP\фR_3# ;SW- T͗&2tIb Aɵɑ濿,/߭W!qTLNZZ*swr:h#An >~5Y+jy={h ~r5` /"{ب;䙡m/io_Wu#Z3,"$倗= */=?/Z/+KN4V& g k_U [3߶˽zU`gI ..j;rduXML S1X[~!1PB^C(ko͛$~owLVp'nan'I:_c)W#IWo'i:'AP!:hQ<< eAk5v(j2|@B\ ]^0oX)}śU0JS$ !7t5da,a `|83ZaOӒJEby\RM%LͷV̞_}+b |5傎toYˑnG%̓磞ϻ0GF떺7elP6K)1  mw}fYMϙ#ۮ?݅|}C,I%MaqGn#Ta}R;_2FEh_evOYېy"uÃeq o feP1Y?)7bJix]_j00:5 ؊0p[jήO'[`LyʗA~rQ wg^h8 6oQ[ܤ.m\k66dHKɜBZ!Ja6<~~@aJ A^( 5Lex"5hf>HdF-N1O-s;JE`9{؞kIbSĕIckdZڞcm S[KoӒ"+}6jԝpsz͖5CWXt/"ZO1AcBԾ4^2h3Z>D2*zǩR8CbUz&DcVm[7˅>hoLBI|5QBָKr=wYiq,񸪖 }0~RoXʰ|7` =L$H<;vE ✟AaAЗO<(v*G-_|ޘppŃI֔r^P.0ӧ.3Kz34H)Ca좱%s|B_򐂨LŏV ltT3K{Rܩ2'@btƎ;79, 1. >$KMh]i%m_X*Zf:EQ`(:SRh ԁVR>J\l$|`Ehں.1Uv;F MOyd[:4p/~Su{yLCIp3& B zsh*α.,}%FJ8呂jJyl?#vZVfhhK|OG꾅` +O?1+s 9EI8Ҽ^NzorJhϛ,@!~bL5ZNXkt؟&yG.:(|ə<11DaZ1zvE.+IwayẒP_+ <0!:͛o3~u,]6ndNwc>wX ӟa&_oMr j7{0œl?e2Wc|8g W<x7n+/ilٝ؀{D2xBI .~9QwYP[6Ԕx ,D徵(Ns4s,- /`g)K(kE766)) hքMI$Ga/\#YUbCSqi Ꚏ]kAKeik ʹʇJo*J;3~GtnF0^ITs zeW5֕DmE0w ڑ)^kk٣0>ops. א/HؒzDq~=.d8>@biIoRj|Rp t.dHlP~49Aߧux |2BV *Q%}uP4 Zu* YF:a&9f?D<q '[hqz|zuBq3S־|wCR7,aB,җ@>rq5yQ[(#0$~~~*UUg:11]د$dr(t\ # 3ͪ h@8:"9|B ]N+@ wGן-+7x>$XҘh/)h,BspO`XC*6 JRl 6 "Z,|cQ!K??}Jc;+SdA FwPY0nrqn?P X7zlq FnJ`X}kc=өu\ؑ] Isl1)tŐ Po=ğs󸹲.7a+J<n]&SENXq9ѣ$(*ھF'$!Izp`9Az0nߔ4 vPOMW; 2y'z kU`ޞ+u (țVRf(u=e=3hNDJK۴8IBeˮ܊WuƖIGp"SOs':_ԓ0DvV|֍~e%XgC$}Rl]$Ko? G_)˕~55?S!?ݪmhJŮa6EQI|ZtxmN~X@K+l!CaP#U|7T) ӅS!MNF5Dr] cp? ARVVcbo QdR KzPrj[s5L%-$yZЁTv@Ba ص4iB+'N֣dJ9&+΋Ų.ҶT#9ogcF|KTe'cN{"^}k*;z&#ٳ.̔&ѡZׁlT BOcŋZIH)]LwJH_Tj<`}#Ӫ|GFb5A:">|yD$QP© RUe9q$bONxRDAS#d6A_/3`:E?T-œ3E>)vGtA!ދqezY+P%m*uĉ~6Ťk5^`bRAAV_)3җX fňb^0T$Y#:p2"o$е'Dp A! xYw):Cʕq!Y "6"j,AȵgO5nT3Tw;F=(7)4{k GUKv 'ie;3"0;!22)”QfpڶF(L@hzh,S90.L*f\8Dunk~lpjfbDer,e 4y1 LرP,9b V̍VTKjY b{Ȭ{|7%IpK6S[XCW.yBȠ]d5wkUGg#-Q\kװ^9P< nP&#ݹ}eQLh~R{k. P\|QF(Deܖ"=[ّݟҀW𡇍 Nx uJi !̢4u+Aϝ\ &ij%?hi? ܜnjn{bNƪ!3,Ea膃 Hin H!$'[Y.,'uoٴ  (fQ~&P%bM'n5:d~lrKg93jG_EPF,= H$qAdAcM?XIvV$g&ԚsjiE[ )T&x&Gׄp?D LPrrh\fs'Cz u_ߺl.ʙPg# ͋VU5WHjI1@Efe뚪1ǍyokKZtX1AU~?N#\E ׅ7ުƐzzXߺ~[uPPoLe**`r5 -yz4Zf!Tb4|%buuK/CB'ЗU_4.|CB !^kX g1kL7ˬkv6Xo8 nm1~4.-KTF[p'JǛR"QO Y-_+bX>vkUjP`{Y3B]Ct[: h aF9G C]#}!{7<]\duvŝ_j":kJ4{ħ2&OiUZ>78Hr셾AߌEKbꝶzfoI7` d\~ LRX޲Bx"J/ JDN"]w8m *7.-\\n="cG%:AVG ؊/先k2xqEe )DaAJ'Ix9$'.Ȅ\,R/m`dݗa" f}ql;K#|%QQH^N6׵X:!2MIpr67Ctзv7;4"̛ɩ< DKw xӲ's1يp0.Цb9:cN Yߡ1i_u>]N$)sfn<81磵HN 7_:T-&8J%MDjOuҼxMX:\Ttr/.&QDDg:1߂]H@uӳ}q*"{sCka"Lkm:B sYCHdzZ=:U"{3!Ed6Y1f)9{gLI2sgvYFbs.bYҵS־u}&iV?ŞzF'4Y ۸JFT'nF%#zҸ# !6|IEC o+HX.uo[ZI{ OAYZrBdž9.>0#ɍSIiTA!3I@3'jyMF7,`7lb+g5 mbrl)_6;L,hշ)Vn?`3>/ DmR˫UȈelz@>WDMbfB[d 혘(dq" Il jvY@ȢaH`ݣ"= 4Ѹ Ϫev8 dõg! z2 pIs_L{ uAmG%ԝƆV\S)i X/ MEN":䋹{wRgl@tT}b/Y؎ *S8PhQ Cw . 뿡7kJ<6Sa|6XcP(zDf=̐+bH>:U3a_t 쿕/!Dnڨ'`Zk20 ʔ q$? endstream endobj 207 0 obj << /Length1 1612 /Length2 17340 /Length3 0 /Length 18167 /Filter /FlateDecode >> stream xڬeT]ݖ-; %F7!Cp]Kpw[Uջ}c>9P*2ٛ% , V&.vr *@ B h 34f1)ÃDwpwU4iK ?4VvʏW hvT`K **iK+H%@;1b2Y휁4s{' ?93~` ;@S7)=dkqrX8ہ?zXٙ\ICnn?,l?t`J`gS'+0#Ŀ[l؛XٛSҿt0Z3 t0rvspW.Vv= had:;|`ӝUor3+3dΈA30[n:WӿD|$alfor͑!w,3ϑ?@##smCK@ ƶq1 c 5NGl a;B-rr)YM-ƠNKngtY?W3 ,MfiejcO9ڙ?HWL:r*ڢtL`5wW)fCD XٸYX_kyc@dfZ7q;S{fEllg1^)GmvGנn@Sy{S 4p5nno7 `CqZA_}oj&OKU0cķc]ڽnUW2<+MOe^A1jډfŬ'֘A D=W)1h' wTÿ.a{v b)xq}IFN7uoO\߷xʡO#$ 0ƒ\yxiʾYRl\?yzq-b="fS ,}B?^[ɮ[]h|8vB}{dRN]Z@YːUM$~!\ _]9@vXJ$k6bif*dcVnC^^~\zf >'ԚhZjMj{{[oOX,YN?Yʣx"t۸9_NO_hԩ 9 ſk}s,`_Pu(L$ǃfVD.GY %N zwRXsN1v+Xe Nq>ִf=.eT/L(,%0hsc>ȄԖ u_2} }6MG% nz+|C~J+YFn:i'" @%T;t# *gT޿R7ҁQ弰Y ,*~ !W6+hDݍu %^/_Q"\t3uexaQ:eK)S6w|~JAi%uʔR*ju۶lԀcZ󍥎rlP%eO~˗rPw\7Ӳ2pILth5~+G)6L\XK*Ѕ$i, -kw,DF h)m\ R0gJG 'Wv퓇ie7jyQn "lN2`XY, B,cJHغ1Gmx_+Tز,3_ap-#K)ܝp(#3֜Z' j>v/Wx`%uƛ4[ً]m0GV]XY{ڶs O-ۣKA l_;D%O_-u% >yv JA"W|&?&Lŭ̳ F EԀ S9cpW {uSQ%3˶{#f%跺fw'%k*:7`[x7ݨ%[l{i"Hk/an57be5+ucVR:BB DF?*Y %!(&.-()fΩz>fo'QFϊFqI<77ǟdEs1Hur )D8"4m&i/~ -oSS\+|"{l{n6+S1oJ"g)E>"S,jٔח/UX`tĐJt "cT= %4BXp"8#D|`X_ηdaoFɾi]z|ls G)7I"'`#2Gwμ+ a e7%?qVCjJ}̶(.&$w?CQ.$B$x ̂ʑ#qۊ?۲x ӹNKTY@(HpR]Cf,DgTMe7>tO~ ^"(F1bl\?(u@7Haˠ>"n*es)pb{y'XD9Y]F}WiB!:@b=XʍyX:˔;XȳƛLk IPPx?1`(5J ?ZP᎟x`=Sҁ9~#?xoXVËĥ$sBO~@!BjQFۺ=X$%#IU4£ QTrʗ6@2Cs1ipP&Z_(,_1|?H }!j1+9fkR~79n,☱ kCT50cV>_ CrOqV띛wuP7{3.ժ020 ֎wiah imc/"~=͚҃e-Ff@ Kk!p#q;vnO7ɨgLntc=vjr?/3ElU͊XPCVOߩ Śc I:CwleC09|Lz/{ gE&ᙡKDHLAq$Eذx!8Q _>/B_Z}d'sWkպ9ז0B*岔iĞX:/Z낳,ɺ$!X {spkx?x._Wcgt8&أ>ߏ5FˣzmNiM; Ȓ@EG` A 28:9su9p|fstFx. UUa1iCL?,-J`u!ceֲ"._D:Dn 'u8 Bg1P2RAhjM6nrYl՘XaBġWHL p#<|IKFR'lJ rUĽɳͯE@b}`y?nO/O.q3(g b|$<e"4zdKk&©b+3^R>-5ҮkFR rNJW{\4miyuծi.M*?M;!DmC?}+Uډ-WƓ_u'I߿(HuM$ b8(2iN2. O Zf^hc/7o׉KʞYi R 9HS'YdyPp3a֡5tzF졳d3y. i`~I^w)1uk4l*qY !"K]uܻ2~峣(d-EÒ L YdExGMHϗk.C#>oA%qOi>|ԭݢ9Y^H<7q4MSohLW\h~:QZ>ɉK )aCP6;(,^ȬDQgs_G Wߎ$ZjCwH>2H_aR%C%OO*8ARj9sKQTc;ks/He T郧il$ К䰭)W q״N9`;țu@蕞I$XQ2럻bNjbՆ"qS⤜܏V$q9̟`,$@GL*GBc6Ɓ6rϿP}D,Q4"x!o T`WʥM64c%!8`1 q0[e]k\<_s-j҆h?h@Uس8~K7C_U3wSTJ BfC5Aɠ C/uT= SsqGoV`xj,mKWN)捁 6+EnŪvchac2dW ] lFBet=!te}uXjҨ͍i甥ÑZx Pӵ*\GInY#-x5vP[m=s>uk!YMzg/OCz0w? -L,*4))8=wo@"GEX-0I];+uqq{bU}>;:s@tגIu*!4q-Eeq7J+:<;E/ܽl-TU#[6l!Պ%+XEʺYg~# Vl-v}Bvj9?I"e{7C12Otc(3Y^If㹄F 150[uvy5´r-Y. ,jSXghEQhpuN7.Zg-<BPXޛ/ hpl ?oh?02x4u=xn Nivf =BҥJ`/ ~* < D=UQFj 00<ЋQPs0,YRq_{fK}^bv p< ەC/@f!}О mݓ6h; 5Rnb%KY>V%WQen^Sq(RGYN+_.1UJ7sz֟XAA1Y=RK:#ed"S\|BƂ÷rNr@]cVrD?K?Yb5vn]c܆VӐ{g&I$iС:ڐ`ζޓGx6,C@h6TFI֣(c׷FȲ"Fm!D7HNSl~|'-[w!YsiWn\n;-]v2Mw=|т>OJfJFkQ]Sߏ)eCK>iu= kq^Bdš\QIs!c7msmuw gQ>P%fl.?Aϲ<*yxE2:e)LT1c"}LYhV]'״Ӟ,ck!=3" QP-_þ$X~&?f(]CZ?Zwt_w_)Zor>OU6H5Va,nggh0ٷ !ۧ9ޅ y6x9ZUn'Hn6W8sD~•Jd6Y &籆#u|AwN1=_H]uýnP40߉\x)fiFYS#Jqp:[nAqE]n 6&' #{;`}mDWzWQq1i>tO8伛fI4HCc##O `:A%VA5{HPW햩Ra>|aںOYj2z(쌎<卵F\Gh_. eWQ-<:$hԋe-%e#+޷nbR@bAGr O;OLԠ۲Ÿ#|DqŢ&ObXum_9ȇz/Hdzd}Xh1Q``KzQl _$~ltL) jz,H$[)FT_Ȍ _&ƴaAh=$z=K5m;0l2/c%e%EBn\<<~!Sޭߧ 1^1ץ#W;/5 lFcw:_+ұF1(F*Pc)7>d JSoguiZTg 7IpG&$, AIȖ$)VGNأߨG64k Ӥ[l+WI@%ú؍iX\_pC]㽖>w(' UiP솒>esF> dD4U8xM]X3V5*Og4K6 <^ﲟyynMlxC39b,f ML_ŋ-Ǡגǿ!5cs;Lf4H$vHk52^Z,6؅e>z:LS3` +8>`^LzL;AS)H=9!E( 2+}edn΃9Ӱq ;oɣ6VٖpF[8QB8=i&_=eU4|Ffw (vֺ`wa<8^۳j=N4^` '&ˉǪ=#ڠp#wjָ/m" hCG0K2~QAYP"J"jMRJyV z+Fqe ksR^F4 x_xH1##`$vθOԓ9 m5.V+KZMݓ˜_934@L-vm]Hn5wLĢl ըg%K";] 41b ҌDV~{~|WLJp_Ħh1k'<)rHɷTp17gb X(iΧ} cyE-ϲ*ʻ}"g+hPO_..]~LXA~3)~~nck [F JgLvF~eIgτ+EI/QD,٬T±eŞVh{g .bP=ju 9XыoD&+ t :X>'nYWAcuXvV+d9j7*-їHjӇc< #kh>[Ø.J7wp\E'*jy߬2 ?퉚 <˪-MxXl+afe ~Z>KUӾf0lɵVM],nٮɠ\5 *{ЁAlR3,xYqR6^O/2T;L %Vsl7ZtH]QCFVar/W"4VsYbⰸeˎܐ:sB(ethvSʦ nN1|ѐb\ɾߜTQ̉ˏ:ݦ(tHop4j |k_oDAAֹH{JY2_bNT[3 *w?=kz5BG|%^aA4 N l+=ݟ1"\!1, p k=G fL>igɀ)c4j+ގ?/`2ȯD"s."yx%(]Uzbi r^2[>ui[ \6.]Њ{HN/έ2u9lBI 60 `A]_:*'RPܱX)'hB ۼOpA GnMyn&R8 'ZU[&hjX3}Q\6A919g^x^DUt dL G(u\LAwdoγx'_#ýӤgLsQyYf/STm2&&wgb 9a|΁@d% \t,K(S0;+,C"/c2`g&US-.>wS'SR:+uGb-%jJvR AjiCET׀#e2\Z8߶jRfzB_ Tǟ 2~/-( *MU)3OS{W18;1v@˽sKE1`n`:@$zMig-wAV'x&+n^\-4aYYWIXɖ/iz6&i7O0s= Tn3mw(zA76usHQ= OՙVWr4+֕r.s/ԳƑhfp 2?6vA9jʲ@eJ$.v)\KQμ{r8z$37>KxŬ?Y8J|7(IolEzW7>jR _|z1@^eL$P1 be:* PfSqY qyOLD^ M)AO}4Jҟ,!LBa ޹}^X^K&qX0^VW7Cj't̻5z0eY/B< ǰiOP6mI^uqǔD|֐ON8M[rJ,8 wsMvثq!=g׮ ѽjc=5i=:q=/~Oѷ$*k312 <[zFII ZHĂ3cQ? O?28\H Ǒ#hb5h !lȡJ..dfQ%I)Mv`Z] $@+C݋S s*WK`e|+LnV̞=v=I.c{$lۮpH0u*6}@iVI\1D.,Rھ `)LL0L5%}ag_b6hG*J T8~Lcxz1oO^0>p = V'`J nyƸ)INhJV.JN +ZB)`W^ud|hĦֲi!?R\ϑ4(Wa:WRf%]~wA;zl hJx?Tu]09B֊y\ip© ;M5(} iڎnp[42:#]B%՘D g'ct}-PbbJ*_) QF(A_DTɳYv؉.kvtjXb_KXA(BϮ MG'򥞌LYQkL:q|JE_SeO0O N/o;I:]RJB㿡('<3H1]f_ D5´~ f |aVoK 5ЊF0X.=}n;w?=b84Ȇ4͕v9f2I$1Fh[1\|ePn`c, Ro!)oF{?Y>҈/ LyM{j]|9.#5[픖)̘zS2N^E*wczpE6zl7 wcMzcpд%mࠣ"{pV.k9#l}ڇ,U,kv-jEa`iR(;I"heL|Ma1a;`*}Fe`&Ռ1+R(J$ :ZsbdRd<'Jt4*g4+kY]O _>[j{KzACzIuFS?sCIWw?‡YG!g8~"uo/M_tP%an^_tUV\BOz[&T`:#\ݗk`oX~~UqdִhIΤ/:EȦC1" k_tW-! 2 "b~Q2^w؋4yeϵ͖GuT$.v0Ji A)p?DX$͸dP)xX<<hyGې4B1Q02>9M[]]ߔjaDEcҥz]Nm0ݒ+,]CQ+qW,$H&o W)\P 'RL+LGk\hgo$V =:N9Y(KTm|t6x릘xh\.b8\oI4HDjy&pע*hM-\,mc̭/-؉2kc۠AA 'eV G.]CMezԩ6iPʚ]8CI~$]Îeq+6p7FZM:'@gPG@|(X+:?GxAo]ui "šS.לsjwO-ɣ#+1 lW)+)nXmNLHࡀJ3J]VjJvɘSؙ69q34XQam1hme"Wm sA-(ly["aB;Bd/秦 "m9"Nѣ]7I?_t&vI E{E7ӄ}ppH{l_'XSvd!12bY5P#%;'rrF5]aۺ {s:#{g^nPկOx!C.2Z 415$;Teՠ)pC}VL*I2jaĢuMJ e[BR!2v ֮/Hj6?m=ɆmA06+d[_s3 tlR/>KƗr8hsw8p \y|Ζ!r> %ZZ5@Z#~x f6qv̲3]BBise$1@H 6J=J|CMM -T"lusOaȬ jD 4|c*+Y ㈃Vxzw̯ i6Ep!] ՞ xO|v,!H>R2ml:5M;)ZҚ(48FRVaB[Ŝnw&^FN\7y dcuvia{,Tx_y`RFQo$plf'C*hT,h)gz7&[ZRXIPC?ӘqJ;%kTiq~lY3V@tidVONgC ߭i?NEa1阰Dg&sA<hgv5H+Hى{zIpR$}$Hxi5je*/k L5L]-E6Q )܀|v 74/=F;1(*&] ,xluA~+^( JK$ˢ$D6jN6 h G|] [(\92> 1y4yRWuD5 Ӱt/ٮ}N>me{:lKVxWmQk Tk;1[bU*9qΎï\=g>M&sXiN^c1]0CikZ,}~*͘u4qyWt6wR KZ BV#DxX˺*M2tΉ>506~׉ \^ j2lh;/@MZ]_nѺbuE |DoN7"kV}S϶)db@ZU}a n_ɜj6X$׺o::=dr:@ZX/.ܦtvJؓXUbsu]LE7=sШ~0/uˬ(J5=䌼u P{CW yE3 k)]zz7 *_Q,ߓG+fkIh\**9p2|`؟Wkl.\HE*Č4h:S(dPAր|(UNA^-7E6n˷>|QV [GCLhR%S &e7؀woRIE`$<-5&1=`ıi| nҤnƙ!M@2(jXgLxvtOLճ pUk&ӓh8BI}܇/Yi(YezK5$yQL8Ae}äckP!g N)#dZܷ, k^Q(wP#Uu!ad n's&[;֎WH I2N+vkŢ<-(L!$=WaX+t  A?"2S^Y섚K%Ġ7l8gZk{2ECzEq@2*[':,l ?t*F@ vwɜ } z\7+b,KmR#Y#P= :* qXA@8,Ȝ˲ 1vӮH8Zyi}ϫ7.H̡ͧ֘mV?8AZ/" Y ` ݏJ5> bK!y}=n&T!>  Փ0q ZK7RetE+) 1Z6^ 6!+l琍r b[ 3Ix2=Q;`t,ˁryK@p^՟e{0I.> :mFM+8~m()~$g{q[q9NpJXMapI11(>/6 3E,aM{QnbZ D{Fp>#|W1ܖ)B#zQ)l f6URbpCf?Q [K|S7!4).t#!IrjLf&zG5)iUalr1oNřu'!q+fvbrD0A)'p 5( Ncs[pΝ~2?2Vp[dih Veğ %: QaGI߭,<7vz'r{2^T_ܯ[aHQ%1*?(6_ E4 A7ϼ$m؅W`EуoY~vF Fya{ ,ZǡkC;H =i02 "*OѺBb0);ڻL endstream endobj 209 0 obj << /Length1 1630 /Length2 9692 /Length3 0 /Length 10522 /Filter /FlateDecode >> stream xڭweX\ۖmp` @pwwwI +pwwwNB Kp9o_k9Ե*D&@)'V&>SpV6NdjjqGl'ah@S wwYX:4մ%K`Oм=m@;7:pA6@4NZI :TR1(Lv =` 3K0@쁦73)/`tA o`hlV'0dgjlWors;4l߰720 bwyUGNN`M lWJco4o1p90Am|;WG yy:_7qrm̙Y|:!35,v`+?f\ lg0#3+\g]fkAO]sGeoSK9(۾ ?)(:gl5d6߿òNoExk'V6&A)Ldj 07yrM;3 ۿfo%&pڙ{o;xfI=%[Sm4큀p6_  +)Qw23{:;:?=4E^ZYe;UIt ۗiU;}yˍ'^Zퟷ> uv|%MͰlP~y:Ţ1fPO2xzKGCuccZۆY}uM m@9\6CN,51O!yU ܃ j w(!'S~OXсFӪ9}NexlE_'zY)z,h2bJȤ!SK"rP`D'czGiw6 ʽM1 W{X^b9jz6.I.g47]T]X--((ZQzt1$A"sl_mNԎ̜ݰ;;04Nzx6@olSWpRH2dXN=KdF[7. Fc*œZӥ f1)(0BS + +X=9ꎖ@E7_sl>WvɄ 'өħ[&v5t>"2/Y(?f"Rr xނaV cY1ܔР`OtGY߂Iv'ς&nF;C c ORZk ;J">bvvv"i^ y4^.nooVfU1 XpTz1)<O>ea+O/UIO9?ӕox?֙Mf=ÊQz_ B~2#.kNRbv!4<>9zGua}k~ǤO4XN2XN3z u/*HHٔ1krKY~|i/cNf-ۇhgP=j7 *< j( y'h&έQ⨿ {][eI"}+8T|jO.. ʾ*xLrfACAI3L)h@T܊M;ac`B<埻WpkZ6&wRXL MRz*!#Gui'ró:6'";$*oJQ)}ψ$ZHA)'U[-]iުDHIe2n% ұh^_1ܾM?3}V\atb@ZBqtV9G}%.140 o'kүַk whՋp.1%fgc0 QGʷ, M֙6* hCRUD *R@v0q0^8PSG^I^GruC2>(CpEV/߻YEeؑ}iyٹ*e\|3L>GxBQM+ 2Kixx§ڡ s_}ƃkrT8ZܶJȐ5Þ& PQ;3L0N w&ʊ\\q?3|p/ ZM{Ɉ7 >FgXv׌?&Q5`0c3"IG ҸbD o! KK *kvX4m *PrR/ZUzrNc5X_hĕuψK9w/D/k$ɱվV\`8^ y si"=wQbV¶UF1ahLj8>,BA> A8r.յW^Kn>@x}yƽ2W6>dy,SJ0l'RRئO"9H+aN_x?Bަ^G<4Rf^H,(BZGu7 = 22 IQ O9dYl[]fXs5]9f1=(kݥ됶X D,4}6`*Ͱ U\hč %?ʺUe1wLиJ,|`~KE)(t(Pu~k5CsEӚ R,8gWuMg"e“IKӺ)Kdm7^D^cQ#D2BpU }Z)=ZD."oH"s!=W,T#á/mM˨&U2gLIG :JiV]Hqz_ټ(H$0 `lwSbcI5 na>sV^O9v+ԿktSh/Ț۵]ݠZ.qa0 OA%Zi~ښH dpZ,Y<~ϰ[cBք."54[7{6N =P#6G >N8'suR }-Hn.ŠMR3 (IUĎy[@@cX<0nj`E@KRy$·Ei>{&ɅWڌ.3՘hMyPUJ!5t=ga%dmLPW6o/a _e]qn6*7LG:I xPp3'z~*d!M]Po=o`eOF\(/m9'!nN(k1Dlœ,pN1vTtN ~kYW}"_5?7ٚLlh93t]ܙ"kmIlj}үVH1_]-u(yH@ 5p?bg0Զ[mebВb}ԁ--`g6@;RjZ@>mY'Qc_J1 V#q PPØ u:B}fӯ/ܚRߊU1U%gj;"}Y[TDFZaDO2[c$vIG= U^Wr_up#c.7]S&yr{DR\u ?x"A0W v<PPC"1r.&ega=)/Jt}dǑE%2mp~sD5:9q G_nv-%4%d]Pҝ@\2j_QtQy8ۋ-A/ڊ8u^DV{9Ĉ}%Nw]Yn$F#S_-Y# 5ꏇ$pmSӘ }e̥ڱ:^zmLb"it+JyŲe\̟B[ma572A4p2ʰD]/ κGHYoUe#J(:F>yfM4ei*ca~YӍm5>H]gW׏.zEB'm&k,L~FE2RqֆRφIJ1 },<̈́ſ1|4 ܊k?>ӟ ߌ ɔ; '|J6? I -K$Dqĩ4fjGvW\b \רez MD0{=~]ɞ‡8M)ѡ~R@XܟVZSHON$(4Iskw[d~U@f;rӮȨ }d䄑0"(g_oOݱ@oWpnD]PX >Y]ƑduMj.]5nYa 8%KY+=EbfӟQwl>NI{*uENw3/U<{}lMNi\ tQ`Oг`rϮך,8k' (<ʏ-ޑ80{'P$ ]GӉO,gITUexnșCרcufϏ_Xm2 .4g >N%NɅS]KLݎk>W#68 /( GGxErP ,gz< i.9LAO:?O\Ise*uB`Zg+jw8jci(ކ@G2FZբZ0"&vK,}>)[/$$ Ak4o͏%f$瓞5A{u+j*sA,}&gu!Nbfb? 8o9K'}vVT&`ȿ"FjI ^U>1|PQLMv&NNs8v[_s#QTZ1in9YFc77FO;Wqsh[ȟ7o(%F Qw.dsVZ#6r+NB9B9t"φP7a|nl 6}0w! q6x%oaXq~k-Eb$HΨI܉`fzJThLDUcPU}NEv,Q&|RIRXsw,2)g(5n9{!6x⃍N? M%N}tAup|ۏ]~:zTD :)B_t`įLIȼ&7~B ~UJb ՔM'SN1îeyVWDFbʰklXp~+s"ݑ.č T:v# 㮓XƓhh@EQCWy&ƺUF-zKrg=#3ËmP˺ ~5_#*qA2LE[>*vn$~C=!7njrAe@ġy2,= {*B>#EM4y\9 xwcG({]\NK9ko&_ML 3b>_V3Q;SGtmwEB6\u';OU8!-a:o=nF Ԟ1X~ۜ+.G x yIM8 LAoyHUr+E+pXGͬh뾥%:J,%9eVc )W~D3$FBKqo[i}T>͌ۓY6d{>=ga9ѤoxD6ȫk&iЙdwܧvgCD9ӷ/^BU>A_M$|EzIn YRD]VNz*Z :d /X-!rR|w<' 'ݛԱ星QO;E3~{!' uf`(#;bYdgwK/OBg "Հcdmhe||5@."t|윖\Rb2Lye{S)r9UbÜ-;tKY qgoA,g#bTtw5s](x$⢯F^`{Ș$-,36aO* C XnF|ְCҋ{ȘZ ޏo~4PNM܍.8`~Nu-X= 1O6zF왖ԯIs b2U͔xb'ػc&&mM94\[Y UXsSfeKWj5 C_ATC>If| OBrin󱥺Qȩ&CHv =s,lQ}pO&!s/ @oWcK0R(%!+r53_ rY͍}V5=g𕄑-$@uOLb h `v MjW%ADlCpn SN}FueʺTJU@"ܟذ;Lf8C$z}K\6|햚^,& rqg]7ńb71nShUa$W cS#?K2nagECwW"svS_fy;a$1uDb@XbE=['+&jhdTKzJ&}/zK5 4"Rugr4 wm_r?P(:jj==x{? "1%)_^t# Jژ%-D}"㐍)M)w{|ӫ[3G?;(Y0ؗXʋ=WqW)%&Pvq%\F^ڱ>WBs( ~ډ!OY /"D/'{Skq3Mp.Ow7-d!TT)Y#B~XuJۡ4oh͂4g5yc$77Gx Ngg/ȹ6a$r9oE3?.kwZ Ns~0iߚ QVi룰"!\A8g#OB(dy:)]r|c\G3 : _ϗCl<8K|b8UuE+ 07v:s[+%1-|Q)li }D(/* }xQ֌GL`п}A=x-ԹRf墲Ar-FeT-V{Z&f~G2e'Ù1i *u6ٮ=zY4OpwJ zr(ʟO7Md;ZC:IͼzyN TqP!7eKk`f)>잵&6u ;\-;M;S+?Q6ڀ7G v̠@̌0֚sfEQu6<:ާSmD:Ve*tcnD|r|#:kTJ_7񍲂=;_NY~'4JedQAS1Sȝ&wݙkw a4GGZ-u3tvxވ$*^EC0 endstream endobj 222 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20171030194007-04'00') /ModDate (D:20171030194007-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1) >> endobj 157 0 obj << /Type /ObjStm /N 86 /First 771 /Length 4749 /Filter /FlateDecode >> stream x\Ys8~ׯc[ؚڪ؉3IΝTjK[;Hlf~RLj*@ "d6>|Ȥz,LIE,t2DC2']&l9Vd |3!,pDa XҨSL n!Zr K4‰Lz4I!Ȕ tuAB͌ q /k t| B:s&(t,4}. dm o'Y'm/de+7 p;*5tn|iFj3 w[`w#]_C#,??Y'V}vW^3,0ߔߗY97KA5ȟQr>&S x$} T _R!CH>B CNߗgPm5 I?tYz(!%lE#9\Fi!Ip(CJD )[#' ㈛"%XYAJ6ؙH} 0"I7 PS2Et Z"Icaw4G͌ k$]Qx ҷ{phA")ZC4A *6X!^cih8g--l{=A~x72[$?F/c$a$yH (=x=`ARd؏x&}qiZ+0@vΐq-\Q()f(-,&`!Ό%* [r%UHhMQIGP_{cl/W h M)PlkI'm 1x0,x 4ցڊ[ (hIdkd4c?]iutƾAb%pz Yl,&DcE#1`!&zwN,]An-'\ikC[v%8Vt萩sVghY8A3hm 1kQLKRM^ޏ:WbĊm"ysptVp9Y'6R'܊'BX#]h@*k$z<ڱlyT0]H+_4Hr7. c*$O&1fq q?1*~,I-Kg֮Zp,gxi&e)NMFJ[H#qu^x.y]8qQ\3$%PP| 99ҲEp"D"(_`!bA1^QsBFT}ЬGS$ڢPG [n6݈UT%_4y6y1W#t؆)=LC V4{7PF3HZk)Bڊw{/mݥJo+FmUڠxg4'ŧ |ULD癒c>1<řo7Q)zPp.kM4GKHi2$C3x6/oEuc[ڸJLʘ5Pg4JSlSKEiу)3驊ju~$Vx͛\xQIԱRY' ]ûD3^ArVgEVuZɮgXO" =:E)?ŋt܌hWx>Yt1Y4vck}k+D3>}IKʼn kh}m`RPWm,K ễl>^F|rٛ?8 ܘ.N|76/Υ׼p 3zf(F׿K\z;I ݻ/h2>{0ؿ^WhO$-AI:Gi~&i~yf4ɿ_{2|_|:,ίݤ9 ίxv˿ݔ"_|y9/|Y~7o9EXX {L^^ELτU90a+̏e~n 7h7@GL >ɿ Ç/:60؂_X&[ubX$bl@P@%Rey1Me_I׉睦nXS '>>}?N.6O8BF_c𱏍]]v^cr,b| K.>f|^=g|ZxБZ$tوNDa]eAlܢYWtB֭lmIpgX&EE3+l sٯ³cx DWU}H>:Yh/~8oQՏrz>Z\VY~6]bdkXs,Lf,O'bc;P\LH ~5e<`oȘJnj97V;v<ɞ}K&#S%dΝÇ7O?{Kp JgIdEce?|№!j-\SۋLjBǓO>^X>W:8ӮN%҆&xUW`\'&b{W)"KnR]\vJ'ϟϸl2;8W^:p. X6We,Y>8:H{ԻS꟔ʭ#̽ڐuk8dx|G>:YϦGg U=3q"FcdON"&tU Pni50>=9xsR^ܬFPpytq)0tY Jq!^յ>4UhKat>LyОOJADA7WnRbg1&tPL!l6/G)E=z˾8׻S1V9Gff4EKT{-/!D5S5iGt3>8/{E*ͣRvRvW-F:6-,i- "aYPM8hڀ)W|W9GԱ;si~uZN5bxxO_VoDK?'K+w{a}_ t|iޚݥҝ]zyF_mnjwu_eωD]t:$>gW\Aeer]òT(R+v;0xJ'f 5}٫QNo C_U׳ޯL"يci Ͷ֔=Dqv nVE;ނ~wCUiC;)b͟Qi,,>4O?_x)]}V:$6A#Ӹw 漸YNP-*0jgS;0fhcrwUKgORLQT~:Wg*ԝRDJCKB\RŵZ}R'z* 5i|,J6@JEh}vV(}Z k]컲֬I4 v&+&[4m4@T+YzX9yt>Ɩpvvr4_e1d:{Yٽ>⫉jh68z/a5~ty:|aZ7< xSdK_mX.u5Y{|tB[^C; C#hG0SYeOnM+@ɀH4R={2}jq5z}͍)ޢ ] /Length 566 /Filter /FlateDecode >> stream x;OTQ>T|<APPuTT40Z116mS=_@:랻gkf̒=a*AxgQQ`8wGNj2PkZpoN0wlFPA7m`;vFA ȁVmuB@q l8WݠnK]n5{^p:` P HlI Hn e]+[J_,EK}r{!O :gd٨XMnOZR`mzDs޼W@mnFK6t+& )0 n_k]0Q} ɳWޛ(kPѠ_v :t2hbĠA Z.h]кuvJjvS'/IˋRjϖ?4K{jЁEJAAT'R]-I=}.iTg= R-R'!PFW /*dB*Ťg/g?|S endstream endobj startxref 241591 %%EOF metagenomeSeq/inst/doc/metagenomeSeq.R0000644000175400017540000002524413175734151021047 0ustar00biocbuildbiocbuild## ----include=FALSE------------------------------------------------------- require(knitr) opts_chunk$set(concordance=TRUE,tidy=TRUE) ## ----config,echo=FALSE------------------------------------ options(width = 60) options(continue=" ") options(warn=-1) set.seed(42) ## ----requireMetagenomeSeq,warning=FALSE,message=FALSE----- library(metagenomeSeq) ## ----loadBiom--------------------------------------------- # reading in a biom file library(biomformat) biom_file <- system.file("extdata", "min_sparse_otu_table.biom", package = "biomformat") b <- read_biom(biom_file) biom2MRexperiment(b) ## ----writeBiom,eval=FALSE--------------------------------- # data(mouseData) # # options include to normalize or not # b <- MRexperiment2biom(mouseData) # write_biom(b,biom_file="~/Desktop/otu_table.biom") ## ----loadData--------------------------------------------- dataDirectory <- system.file("extdata", package="metagenomeSeq") lung = loadMeta(file.path(dataDirectory,"CHK_NAME.otus.count.csv")) dim(lung$counts) ## ----loadTaxa--------------------------------------------- taxa = read.delim(file.path(dataDirectory,"CHK_otus.taxonomy.csv"),stringsAsFactors=FALSE) ## ----loadClin--------------------------------------------- clin = loadPhenoData(file.path(dataDirectory,"CHK_clinical.csv"),tran=TRUE) ord = match(colnames(lung$counts),rownames(clin)) clin = clin[ord,] head(clin[1:2,]) ## ----createMRexperiment1---------------------------------- phenotypeData = AnnotatedDataFrame(clin) phenotypeData ## ----createMRexperiment2---------------------------------- OTUdata = AnnotatedDataFrame(taxa) OTUdata ## ----createMRexperiment3,tidy=FALSE----------------------- obj = newMRexperiment(lung$counts,phenoData=phenotypeData,featureData=OTUdata) # Links to a paper providing further details can be included optionally. # experimentData(obj) = annotate::pmid2MIAME("21680950") obj ## ----dataset1,tidy=FALSE---------------------------------- data(lungData) lungData ## ----dataset2,tidy=FALSE---------------------------------- data(mouseData) mouseData ## ----pdata------------------------------------------------ phenoData(obj) head(pData(obj),3) ## ----fdata------------------------------------------------ featureData(obj) head(fData(obj)[,-c(2,10)],3) ## ----MRcounts--------------------------------------------- head(MRcounts(obj[,1:2])) ## --------------------------------------------------------- featuresToKeep = which(rowSums(obj)>=100) samplesToKeep = which(pData(obj)$SmokingStatus=="Smoker") obj_smokers = obj[featuresToKeep,samplesToKeep] obj_smokers head(pData(obj_smokers),3) ## ----normFactors------------------------------------------ head(normFactors(obj)) normFactors(obj) <- rnorm(ncol(obj)) head(normFactors(obj)) ## ----libSize---------------------------------------------- head(libSize(obj)) libSize(obj) <- rnorm(ncol(obj)) head(libSize(obj)) ## ----filterData------------------------------------------- data(mouseData) filterData(mouseData,present=10,depth=1000) ## ----mergeMRexperiment------------------------------------ data(mouseData) newobj = mergeMRexperiments(mouseData,mouseData) newobj ## ----calculateNormFactors--------------------------------- data(lungData) p=cumNormStatFast(lungData) ## ----normalizeData---------------------------------------- lungData = cumNorm(lungData,p=p) ## ----saveData--------------------------------------------- mat = MRcounts(lungData,norm=TRUE,log=TRUE)[1:5,1:5] exportMat(mat,file=file.path(dataDirectory,"tmp.tsv")) ## ----exportStats------------------------------------------ exportStats(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t")) ## ----removeData, echo=FALSE------------------------------- system(paste("rm",file.path(dataDirectory,"tmp.tsv"))) ## ----fitFeatureModel-------------------------------------- data(lungData) lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))] lungData=filterData(lungData,present=30,depth=1) lungData <- cumNorm(lungData, p=.5) pd <- pData(lungData) mod <- model.matrix(~1+SmokingStatus, data=pd) lungres1 = fitFeatureModel(lungData,mod) head(MRcoefs(lungres1)) ## ----preprocess,dev='pdf',out.width='.55\\linewidth',out.height='.55\\linewidth',fig.cap='Relative difference for the median difference in counts from the reference.',fig.align='center',warning=FALSE---- data(lungData) controls = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-controls] rareFeatures = which(rowSums(MRcounts(lungTrim)>0)<10) lungTrim = lungTrim[-rareFeatures,] lungp = cumNormStat(lungTrim,pFlag=TRUE,main="Trimmed lung data") lungTrim = cumNorm(lungTrim,p=lungp) ## ----zigTesting------------------------------------------- smokingStatus = pData(lungTrim)$SmokingStatus bodySite = pData(lungTrim)$SampleType normFactor = normFactors(lungTrim) normFactor = log2(normFactor/median(normFactor) + 1) mod = model.matrix(~smokingStatus+bodySite + normFactor) settings = zigControl(maxit=10,verbose=TRUE) fit = fitZig(obj = lungTrim,mod=mod,useCSSoffset = FALSE, control=settings) # The default, useCSSoffset = TRUE, automatically includes the CSS scaling normalization factor. ## ----contrasts-------------------------------------------- # maxit=1 is for demonstration purposes settings = zigControl(maxit=1,verbose=FALSE) mod = model.matrix(~bodySite) colnames(mod) = levels(bodySite) # fitting the ZIG model res = fitZig(obj = lungTrim,mod=mod,control=settings) # The output of fitZig contains a list of various useful items. hint: names(res). # # Probably the most useful is the limma 'MLArrayLM' object called fit. zigFit = res$fit finalMod = res$fit$design contrast.matrix = makeContrasts(BAL.A-BAL.B,OW-PSB,levels=finalMod) fit2 = contrasts.fit(zigFit, contrast.matrix) fit2 = eBayes(fit2) topTable(fit2) # See help pages on decideTests, topTable, topTableF, vennDiagram, etc. ## ----fittedResult,tidy=TRUE------------------------------- taxa = sapply(strsplit(as.character(fData(lungTrim)$taxa),split=";"), function(i){i[length(i)]}) head(MRcoefs(fit,taxa=taxa,coef=2)) ## ----timeSeries------------------------------------------- # vignette("fitTimeSeries") ## ----perm------------------------------------------------- coeffOfInterest = 2 res = fitLogNormal(obj = lungTrim, mod = mod, useCSSoffset = FALSE, B = 10, coef = coeffOfInterest) # extract p.values and adjust for multiple testing # res$p are the p-values calculated through permutation adjustedPvalues = p.adjust(res$p,method="fdr") # extract the absolute fold-change estimates foldChange = abs(res$fit$coef[,coeffOfInterest]) # determine features still significant and order by the sigList = which(adjustedPvalues <= .05) sigList = sigList[order(foldChange[sigList])] # view the top taxa associated with the coefficient of interest. head(taxa[sigList]) ## ----presenceAbsence-------------------------------------- classes = pData(mouseData)$diet res = fitPA(mouseData[1:5,],cl=classes) # Warning - the p-value is calculating 1 despite a high odd's ratio. head(res) ## ----discOdds--------------------------------------------- classes = pData(mouseData)$diet res = fitDO(mouseData[1:100,],cl=classes,norm=FALSE,log=FALSE) head(res) ## ----corTest---------------------------------------------- cors = correlationTest(mouseData[55:60,],norm=FALSE,log=FALSE) head(cors) ## ----uniqueFeatures--------------------------------------- cl = pData(mouseData)[["diet"]] uniqueFeatures(mouseData,cl,nsamples = 10,nreads = 100) ## ----aggTax----------------------------------------------- obj = aggTax(mouseData,lvl='phylum',out='matrix') head(obj[1:5,1:5]) ## ----aggSamp---------------------------------------------- obj = aggSamp(mouseData,fct='mouseID',out='matrix') head(obj[1:5,1:5]) ## ----interactiveDisplay----------------------------------- # Calling display on the MRexperiment object will start a browser session with interactive plots. # require(interactiveDisplay) # display(mouseData) ## ----heatmapData,fig.cap='Left) Abundance heatmap (plotMRheatmap). Right) Correlation heatmap (plotCorr).',dev='pdf',fig.show='hold',out.width='.5\\linewidth', out.height='.5\\linewidth'---- trials = pData(mouseData)$diet heatmapColColors=brewer.pal(12,"Set3")[as.integer(factor(trials))]; heatmapCols = colorRampPalette(brewer.pal(9, "RdBu"))(50) # plotMRheatmap plotMRheatmap(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none", col = heatmapCols,ColSideColors = heatmapColColors) # plotCorr plotCorr(obj=mouseData,n=200,cexRow = 0.25,cexCol = 0.25, trace="none",dendrogram="none",col=heatmapCols) ## ----MDSandRareplots,fig.cap='Left) CMDS of features (plotOrd). Right) Rarefaction effect (plotRare).',dev='pdf',fig.show='hold',out.width='.5\\linewidth', out.height='.5\\linewidth'---- cl = factor(pData(mouseData)$diet) # plotOrd - can load vegan and set distfun = vegdist and use dist.method="bray" plotOrd(mouseData,tran=TRUE,usePCA=FALSE,useDist=TRUE,bg=cl,pch=21) # plotRare res = plotRare(mouseData,cl=cl,pch=21,bg=cl) # Linear fits for plotRare / legend tmp=lapply(levels(cl), function(lv) lm(res[,"ident"]~res[,"libSize"]-1, subset=cl==lv)) for(i in 1:length(levels(cl))){ abline(tmp[[i]], col=i) } legend("topleft", c("Diet 1","Diet 2"), text.col=c(1,2),box.col=NA) ## ----plotOTUData,fig.cap='Left) Abundance plot (plotOTU). Right) Multiple OTU abundances (plotGenus).',dev='pdf',fig.show='hold',out.width='.5\\linewidth', out.height='.5\\linewidth',tidy=TRUE---- head(MRtable(fit,coef=2,taxa=1:length(fData(lungTrim)$taxa))) patients=sapply(strsplit(rownames(pData(lungTrim)),split="_"), function(i){ i[3] }) pData(lungTrim)$patients=patients classIndex=list(smoker=which(pData(lungTrim)$SmokingStatus=="Smoker")) classIndex$nonsmoker=which(pData(lungTrim)$SmokingStatus=="NonSmoker") otu = 779 # plotOTU plotOTU(lungTrim,otu=otu,classIndex,main="Neisseria meningitidis") # Now multiple OTUs annotated similarly x = fData(lungTrim)$taxa[otu] otulist = grep(x,fData(lungTrim)$taxa) # plotGenus plotGenus(lungTrim,otulist,classIndex,labs=FALSE, main="Neisseria meningitidis") lablist<- c("S","NS") axis(1, at=seq(1,6,by=1), labels = rep(lablist,times=3)) ## ----plotFeatureData,fig.cap='Plot of raw abundances',dev='pdf',fig.show='hold',out.width='.5\\linewidth', out.height='.5\\linewidth',tidy=TRUE---- classIndex=list(Western=which(pData(mouseData)$diet=="Western")) classIndex$BK=which(pData(mouseData)$diet=="BK") otuIndex = 8770 # par(mfrow=c(1,2)) dates = pData(mouseData)$date plotFeature(mouseData,norm=FALSE,log=FALSE,otuIndex,classIndex, col=dates,sortby=dates,ylab="Raw reads") ## ----cite------------------------------------------------- citation("metagenomeSeq") ## ----sessionInfo------------------------------------------ sessionInfo() metagenomeSeq/inst/doc/metagenomeSeq.Rnw0000644000175400017540000012074613175714310021412 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{metagenomeSeq: statistical analysis for sparse high-throughput sequencing} %\VignetteEngine{knitr::knitr} \documentclass[a4paper,11pt]{article} \usepackage{url} \usepackage{afterpage} \usepackage{hyperref} \usepackage{geometry} \usepackage{cite} \geometry{hmargin=2.5cm, vmargin=2.5cm} \usepackage{graphicx} \usepackage{courier} \bibliographystyle{unsrt} \begin{document} <>= require(knitr) opts_chunk$set(concordance=TRUE,tidy=TRUE) @ \title{{\textbf{\texttt{metagenomeSeq}: Statistical analysis for sparse high-throughput sequencing}}} \author{Joseph Nathaniel Paulson\\[1em]\\ Applied Mathematics $\&$ Statistics, and Scientific Computation\\ Center for Bioinformatics and Computational Biology\\ University of Maryland, College Park\\[1em]\\ \texttt{jpaulson@umiacs.umd.edu}} \date{Modified: October 4, 2016. Compiled: \today} \maketitle \tableofcontents \newpage <>= options(width = 60) options(continue=" ") options(warn=-1) set.seed(42) @ \section{Introduction} \textbf{This is a vignette for pieces of an association study pipeline. For a full list of functions available in the package: help(package=metagenomeSeq). For more information about a particular function call: ?function.} See \textit{fitFeatureModel} for our latest development. To load the metagenomeSeq library: <>= library(metagenomeSeq) @ Metagenomics is the study of genetic material targeted directly from an environmental community. Originally focused on exploratory and validation projects, these studies now focus on understanding the differences in microbial communities caused by phenotypic differences. Analyzing high-throughput sequencing data has been a challenge to researchers due to the unique biological and technological biases that are present in marker-gene survey data. We present a R package, \texttt{metagenomeSeq}, that implements methods developed to account for previously unaddressed biases specific to high-throughput sequencing microbial marker-gene survey data. Our method implements a novel normalization technique and method to account for sparsity due to undersampling. Other methods include White \textit{et al.}'s Metastats and Segata \textit{et al.}'s LEfSe. The first is a non-parametric permutation test on $t$-statistics and the second is a non-parametric Kruskal-Wallis test followed by subsequent wilcox rank-sum tests on subgroups to guard against positive discoveries of differential abundance driven by potential confounders - neither address normalization nor sparsity. This vignette describes the basic protocol when using \texttt{metagenomeSeq}. A normalization method able to control for biases in measurements across taxanomic features and a mixture model that implements a zero-inflated Gaussian distribution to account for varying depths of coverage are implemented. Using a linear model methodology, it is easy to include confounding sources of variability and interpret results. Additionally, visualization functions are provided to examine discoveries. The software was designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. The software was also designed to address the effects of both normalization and undersampling of microbial communities on disease association detection and testing of feature correlations. \begin{figure} \centerline{\includegraphics[width=.55\textwidth]{overview.pdf}} \caption{General overview. metagenomeSeq requires the user to convert their data into MRexperiment objects. Using those MRexperiment objects, one can normalize their data, run statistical tests (abundance or presence-absence), and visualize or save results.} \end{figure} \newpage \section{Data preparation} Microbial marker-gene sequence data is preprocessed and counts are algorithmically defined from project-specific sequence data by clustering reads according to read similarity. Given $m$ features and $n$ samples, the elements in a count matrix \textbf{C} ($m, n$), $c_{ij}$, are the number of reads annotated for a particular feature $i$ (whether it be OTU, species, genus, etc.) in sample $j$. \\ \begin{center} $\bordermatrix{ &sample_1&sample_2&\ldots &sample_n\cr feature_1&c_{11} & c_{12} & \ldots & c_{1n}\cr feature_2& c_{21} & c_{22} & \ldots & c_{2n}\cr \vdots & \vdots & \vdots & \ddots & \vdots\cr feature_m & c_{m1} & c_{m2} &\ldots & c_{mn}}$ \end{center} Count data should be stored in a delimited (tab by default) file with sample names along the first row and feature names along the first column. Data is prepared and formatted as a \texttt{MRexperiment} object. For an overview of the internal structure please see Appendix A. \subsection{Biom-Format} You can load in BIOM file format data, the output of many commonly used, using the \texttt{loadBiom} function. The \texttt{biom2MRexperiment} and \texttt{MRexperiment2biom} functions serve as a gateway between the \texttt{biom-class} object defined in the \textbf{biom} package and a \texttt{MRexperiment-class} object. BIOM format files IO is available thanks to the \texttt{biomformat} package. As an example, we show how one can read in a BIOM file and convert it to a \texttt{MRexperiment} object. <>= # reading in a biom file library(biomformat) biom_file <- system.file("extdata", "min_sparse_otu_table.biom", package = "biomformat") b <- read_biom(biom_file) biom2MRexperiment(b) @ As an example, we show how one can write a \texttt{MRexperiment} object out as a BIOM file. Here is an example writing out the mouseData \texttt{MRexperiment} object to a BIOM file. <>= data(mouseData) # options include to normalize or not b <- MRexperiment2biom(mouseData) write_biom(b,biom_file="~/Desktop/otu_table.biom") @ \subsection{Loading count data} Following preprocessing and annotation of sequencing data \texttt{metagenomeSeq} requires a count matrix with features along rows and samples along the columns. \texttt{metagenomeSeq} includes functions for loading delimited files of counts \texttt{loadMeta} and phenodata \texttt{loadPhenoData}. As an example, a portion of the lung microbiome \cite{charlson} OTU matrix is provided in \texttt{metagenomeSeq}'s library "extdata" folder. The OTU matrix is stored as a tab delimited file. \texttt{loadMeta} loads the taxa and counts into a list. <>= dataDirectory <- system.file("extdata", package="metagenomeSeq") lung = loadMeta(file.path(dataDirectory,"CHK_NAME.otus.count.csv")) dim(lung$counts) @ \subsection{Loading taxonomy} Next we want to load the annotated taxonomy. Check to make sure that your taxa annotations and OTUs are in the same order as your matrix rows. <>= taxa = read.delim(file.path(dataDirectory,"CHK_otus.taxonomy.csv"),stringsAsFactors=FALSE) @ As our OTUs appear to be in order with the count matrix we loaded earlier, the next step is to load phenodata. \textbf{Warning}: features need to have the same names as the rows of the count matrix when we create the MRexperiment object for provenance purposes. \subsection{Loading metadata} Phenotype data can be optionally loaded into \texttt{R} with \texttt{loadPhenoData}. This function loads the data as a list. <>= clin = loadPhenoData(file.path(dataDirectory,"CHK_clinical.csv"),tran=TRUE) ord = match(colnames(lung$counts),rownames(clin)) clin = clin[ord,] head(clin[1:2,]) @ \textbf{Warning}: phenotypes must have the same names as the columns on the count matrix when we create the MRexperiment object for provenance purposes. \subsection{Creating a \texttt{MRexperiment} object} Function \texttt{newMRexperiment} takes a count matrix, phenoData (annotated data frame), and featureData (annotated data frame) as input. \texttt{Biobase} provides functions to create annotated data frames. Library sizes (depths of coverage) and normalization factors are also optional inputs. <>= phenotypeData = AnnotatedDataFrame(clin) phenotypeData @ A feature annotated data frame. In this example it is simply the OTU numbers, but it can as easily be the annotated taxonomy at multiple levels. <>= OTUdata = AnnotatedDataFrame(taxa) OTUdata @ <>= obj = newMRexperiment(lung$counts,phenoData=phenotypeData,featureData=OTUdata) # Links to a paper providing further details can be included optionally. # experimentData(obj) = annotate::pmid2MIAME("21680950") obj @ \subsection{Example datasets} There are two datasets included as examples in the \texttt{metagenomeSeq} package. Data needs to be in a \texttt{MRexperiment} object format to normalize, run statistical tests, and visualize. As an example, throughout the vignette we'll use the following datasets. To understand a function's usage or included data simply enter ?functionName. \begin{enumerate} \item Human lung microbiome \cite{charlson}: The lung microbiome consists of respiratory flora sampled from six healthy individuals. Three healthy nonsmokers and three healthy smokers. The upper lung tracts were sampled by oral wash and oro-/nasopharyngeal swabs. Samples were taken using two bronchoscopes, serial bronchoalveolar lavage and lower airway protected brushes. \end{enumerate} <>= data(lungData) lungData @ \begin{enumerate} \setcounter{enumi}{1} \item Humanized gnotobiotic mouse gut \cite{ts_mouse}: Twelve germ-free adult male C57BL/6J mice were fed a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult human fecal material. Following the fecal transplant, mice remained on the low-fat, plant polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of experimental protocols and further details of the data can be found in Turnbaugh et. al. Sequences and further information can be found at: \url{http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html} \end{enumerate} <>= data(mouseData) mouseData @ \newpage \subsection{Useful commands} Phenotype information can be accessed with the \verb+phenoData+ and \verb+pData+ methods: <>= phenoData(obj) head(pData(obj),3) @ Feature information can be accessed with the \verb+featureData+ and \verb+fData+ methods: <>= featureData(obj) head(fData(obj)[,-c(2,10)],3) @ \newpage The raw or normalized counts matrix can be accessed with the \verb+MRcounts+ function: <>= head(MRcounts(obj[,1:2])) @ A \texttt{MRexperiment-class} object can be easily subsetted, for example: <<>>= featuresToKeep = which(rowSums(obj)>=100) samplesToKeep = which(pData(obj)$SmokingStatus=="Smoker") obj_smokers = obj[featuresToKeep,samplesToKeep] obj_smokers head(pData(obj_smokers),3) @ Alternative normalization scaling factors can be accessed or replaced with the \verb+normFactors+ method: <>= head(normFactors(obj)) normFactors(obj) <- rnorm(ncol(obj)) head(normFactors(obj)) @ Library sizes (sequencing depths) can be accessed or replaced with the \verb+libSize+ method: <>= head(libSize(obj)) libSize(obj) <- rnorm(ncol(obj)) head(libSize(obj)) @ \newpage Additionally, data can be filtered to maintain a threshold of minimum depth or OTU presence: <>= data(mouseData) filterData(mouseData,present=10,depth=1000) @ Two \texttt{MRexperiment-class} objects can be merged with the \texttt{mergeMRexperiments} function, e.g.: <>= data(mouseData) newobj = mergeMRexperiments(mouseData,mouseData) newobj @ \newpage \section{Normalization} Normalization is required due to varying depths of coverage across samples. \texttt{cumNorm} is a normalization method that calculates scaling factors equal to the sum of counts up to a particular quantile. Denote the $l$th quantile of sample $j$ as $q_j^l$, that is, in sample $j$ there are $l$ taxonomic features with counts smaller than $q_j^l$. For $l= \lfloor .95m \rfloor$ then $q_j^l$ corresponds to the 95th percentile of the count distribution for sample $j$. Denote $s_j^l= \sum_{(i|c_{ij}\leq q_j^l)}c_{ij}$ as the sum of counts for sample $j$ up to the $l$th quantile. Our normalization chooses a value $\hat{l}\leq m$ to define a normalization scaling factor for each sample to produce normalized counts $\tilde{c_{ij}}$ = $\frac{c_{ij}}{s_j^{\hat{l}}}N$ where $N$ is an appropriately chosen normalization constant. See Appendix C for more information on how our method calculates the proper percentile. These normalization factors are stored in the experiment summary slot. Functions to determine the proper percentile \texttt{cumNormStat}, save normalized counts \texttt{exportMat}, or save various sample statistics \texttt{exportStats} are also provided. Normalized counts can be called easily by \texttt{cumNormMat(MRexperimentObject)} or \texttt{MRcounts(MRexperimentObject,norm=TRUE,log=FALSE)}. \subsection{Calculating normalization factors} After defining a \texttt{MRexperiment} object, the first step is to calculate the proper percentile by which to normalize counts. There are several options in calculating and visualizing the relative differences in the reference. Figure 3 is an example from the lung dataset. <>= data(lungData) p=cumNormStatFast(lungData) @ \noindent To calculate the scaling factors we simply run \texttt{cumNorm} <>= lungData = cumNorm(lungData,p=p) @ The user can alternatively choose different percentiles for the normalization scheme by specifying $p$. There are other functions, including \texttt{normFactors}, \texttt{cumNormMat}, that return the normalization factors or a normalized matrix for a specified percentile. To see a full list of functions please refer to the manual and help pages. \subsection{Exporting data} To export normalized count matrices: <>= mat = MRcounts(lungData,norm=TRUE,log=TRUE)[1:5,1:5] exportMat(mat,file=file.path(dataDirectory,"tmp.tsv")) @ \noindent To save sample statistics (sample scaling factor, quantile value, number of identified features and library size): <>= exportStats(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t")) @ <>= system(paste("rm",file.path(dataDirectory,"tmp.tsv"))) @ \newpage \section{Statistical testing} Now that we have taken care of normalization we can address the effects of under sampling on detecting differentially abundant features (OTUs, genes, etc). This is our latest development and we recommend \textit{fitFeatureModel} over \textit{fitZig}. \textit{MRcoefs}, \textit{MRtable} and \textit{MRfulltable} are useful summary tables of the model outputs. \subsection{Zero-inflated Log-Normal mixture model for each feature} By reparametrizing our zero-inflation model, we're able to fit a zero-inflated model for each specific OTU separately. We currently recommend using the zero-inflated log-normal model as implemented in \textit{fitFeatureModel}. \subsubsection{Example using fitFeatureModel for differential abundance testing} Here is an example comparing smoker's and non-smokers lung microbiome. <>= data(lungData) lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))] lungData=filterData(lungData,present=30,depth=1) lungData <- cumNorm(lungData, p=.5) pd <- pData(lungData) mod <- model.matrix(~1+SmokingStatus, data=pd) lungres1 = fitFeatureModel(lungData,mod) head(MRcoefs(lungres1)) @ \subsection{Zero-inflated Gaussian mixture model} The depth of coverage in a sample is directly related to how many features are detected in a sample motivating our zero-inflated Gaussian (ZIG) mixture model. Figure 2 is representative of the linear relationship between depth of coverage and OTU identification ubiquitous in marker-gene survey datasets currently available. For a quick overview of the mathematical model see Appendix B. \begin{figure} \centerline{\includegraphics[width=.55\textwidth]{metagenomeSeq_figure1.png}} \caption{\footnotesize{The number of unique features is plotted against depth of coverage for samples from the Human Microbiome Project \cite{hmp}. Including the depth of coverage and the interaction of body site and sequencing site we are able to acheive an adjusted $\mathrm{R}^2$ of .94. The zero-inflated Gaussian mixture was developed to account for missing features.}}\label{fig1} \end{figure} Function \texttt{fitZig} performs a complex mathematical optimization routine to estimate probabilities that a zero for a particular feature in a sample is a technical zero or not. The function relies heavily on the \texttt{limma} package \cite{limma}. Design matrices can be created in R by using the \texttt{model.matrix} function and are inputs for \texttt{fitZig}. For large survey studies it is often pertinent to include phenotype information or confounders into a design matrix when testing the association between the abundance of taxonomic features and a phenotype phenotype of interest (disease, for instance). Our linear model methodology can easily incorporate these confounding covariates in a straightforward manner. \texttt{fitZig} output includes weighted fits for each of the $m$ features. Results can be filtered and saved using \texttt{MRcoefs} or \texttt{MRtable}. \subsubsection{Example using fitZig for differential abundance testing} \textbf{Warning}: The user should restrict significant features to those with a minimum number of positive samples. What this means is that one should not claim features are significant unless the effective number of samples is above a particular percentage. For example, fold-change estimates might be unreliable if an entire group does not have a positive count for the feature in question. We recommend the user remove features based on the number of estimated effective samples, please see \texttt{calculateEffectiveSamples}. We recommend removing features with less than the average number of effective samples in all features. In essence, setting eff = .5 when using \texttt{MRcoefs}, \texttt{MRfulltable}, or \texttt{MRtable}. To find features absent from a group the function \texttt{uniqueFeatures} provides a table of the feature ids, the number of positive features and reads for each group. In our analysis of the lung microbiome data, we can remove features that are not present in many samples, controls, and calculate the normalization factors. The user needs to decide which metadata should be included in the linear model. <>= data(lungData) controls = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-controls] rareFeatures = which(rowSums(MRcounts(lungTrim)>0)<10) lungTrim = lungTrim[-rareFeatures,] lungp = cumNormStat(lungTrim,pFlag=TRUE,main="Trimmed lung data") lungTrim = cumNorm(lungTrim,p=lungp) @ After the user defines an appropriate model matrix for hypothesis testing there are optional inputs to \texttt{fitZig}, including settings determined by \texttt{zigControl}. We ask the user to review the help files for both \texttt{fitZig} and \texttt{zigControl}. For this example we include body site as covariates and want to test for the bacteria differentially abundant between smokers and non-smokers. <>= smokingStatus = pData(lungTrim)$SmokingStatus bodySite = pData(lungTrim)$SampleType normFactor = normFactors(lungTrim) normFactor = log2(normFactor/median(normFactor) + 1) mod = model.matrix(~smokingStatus+bodySite + normFactor) settings = zigControl(maxit=10,verbose=TRUE) fit = fitZig(obj = lungTrim,mod=mod,useCSSoffset = FALSE, control=settings) # The default, useCSSoffset = TRUE, automatically includes the CSS scaling normalization factor. @ The result, \texttt{fit}, is a list providing detailed estimates of the fits including a \texttt{limma} fit in \texttt{fit\$fit} and an \texttt{ebayes} statistical fit in \texttt{fit\$eb}. This data can be analyzed like any \texttt{limma} fit and in this example, the column of the fitted coefficientsrepresents the fold-change for our "smoker" vs. "nonsmoker" analysis. Looking at the particular analysis just performed, there appears to be OTUs representing two \textit{Prevotella}, two \textit{Neisseria}, a \textit{Porphyromonas} and a \textit{Leptotrichia} that are differentially abundant. One should check that similarly annotated OTUs are not equally differentially abundant in controls. Alternatively, the user can input a model with their own normalization factors including them directly in the model matrix and specifying the option \texttt{useCSSoffset = FALSE} in fitZig. \subsubsection{Multiple groups} Assuming there are multiple groups it is possible to make use of Limma's topTable functions for F-tests and contrast functions to compare multiple groups and covariates of interest. The output of fitZig includes a 'MLArrayLM' Limma object that can be called on by other functions. When running fitZig by default there is an additional covariate added to the design matrix. The fit and the ultimate design matrix are crucial for contrasts. <>= # maxit=1 is for demonstration purposes settings = zigControl(maxit=1,verbose=FALSE) mod = model.matrix(~bodySite) colnames(mod) = levels(bodySite) # fitting the ZIG model res = fitZig(obj = lungTrim,mod=mod,control=settings) # The output of fitZig contains a list of various useful items. hint: names(res). # # Probably the most useful is the limma 'MLArrayLM' object called fit. zigFit = res$fit finalMod = res$fit$design contrast.matrix = makeContrasts(BAL.A-BAL.B,OW-PSB,levels=finalMod) fit2 = contrasts.fit(zigFit, contrast.matrix) fit2 = eBayes(fit2) topTable(fit2) # See help pages on decideTests, topTable, topTableF, vennDiagram, etc. @ Further specific details can be found in section 9.3 and beyond of the Limma user guide. The take home message is that to make use of any Limma functions one needs to extract the final model matrix used: \textit{res\$fit\$design} and the MLArrayLM Limma fit object: \textit{res\$fit}. \subsubsection{Exporting fits} Currently functions are being developed to wrap and output results more neatly, but \texttt{MRcoefs}, \texttt{MRtable}, \texttt{MRfulltable} can be used to view coefficient fits and related statistics and export the data with optional output values - see help files to learn how they differ. An important note is that the \texttt{by} variable controls which coefficients are of interest whereas \texttt{coef} determines the display.\\ To only consider features that are found in a large percentage of effectively positive (positive samples + the weight of zero counts included in the Gaussian mixture) use the \textbf{eff} option in the \texttt{MRtables}. <>= taxa = sapply(strsplit(as.character(fData(lungTrim)$taxa),split=";"), function(i){i[length(i)]}) head(MRcoefs(fit,taxa=taxa,coef=2)) @ \subsection{Time series analysis} Implemented in the \texttt{fitTimeSeries} function is a method for calculating time intervals for which bacteria are differentially abundant. Fitting is performed using Smoothing Splines ANOVA (SS-ANOVA), as implemented in the \texttt{gss} package. Given observations at multiple time points for two groups the method calculates a function modeling the difference in abundance across all time. Using group membership permutations weestimate a null distribution of areas under the difference curve for the time intervals of interest and report significant intervals of time. Use of the function for analyses should cite: "Finding regions of interest in high throughput genomics data using smoothing splines" Talukder H, Paulson JN, Bravo HC. (Submitted) For a description of how to perform a time-series / genome based analysis call the \texttt{fitTimeSeries} vignette. <>= # vignette("fitTimeSeries") @ \subsection{Log Normal permutation test} Included is a standard log normal linear model with permutation based p-values permutation. We show the fit for the same model as above using 10 permutations providing p-value resolution to the tenth. The \texttt{coef} parameter refers to the coefficient of interest to test. We first generate the list of significant features. <>= coeffOfInterest = 2 res = fitLogNormal(obj = lungTrim, mod = mod, useCSSoffset = FALSE, B = 10, coef = coeffOfInterest) # extract p.values and adjust for multiple testing # res$p are the p-values calculated through permutation adjustedPvalues = p.adjust(res$p,method="fdr") # extract the absolute fold-change estimates foldChange = abs(res$fit$coef[,coeffOfInterest]) # determine features still significant and order by the sigList = which(adjustedPvalues <= .05) sigList = sigList[order(foldChange[sigList])] # view the top taxa associated with the coefficient of interest. head(taxa[sigList]) @ \subsection{Presence-absence testing} The hypothesis for the implemented presence-absence test is that the proportion/odds of a given feature present is higher/lower among one group of individuals compared to another, and we want to test whether any difference in the proportions observed is significant. We use Fisher's exact test to create a 2x2 contingency table and calculate p-values, odd's ratios, and confidence intervals. \texttt{fitPA} calculates the presence-absence for each organism and returns a table of p-values, odd's ratios, and confidence intervals. The function will accept either a \texttt{MRexperiment} object or matrix. \texttt{MRfulltable} when sent a result of fitZig will also include the results of \texttt{fitPA}. <>= classes = pData(mouseData)$diet res = fitPA(mouseData[1:5,],cl=classes) # Warning - the p-value is calculating 1 despite a high odd's ratio. head(res) @ \subsection{Discovery odds ratio testing} The hypothesis for the implemented discovery test is that the proportion of observed counts for a feature of all counts are comparable between groups. We use Fisher's exact test to create a 2x2 contingency table and calculate p-values, odd's ratios, and confidence intervals. \texttt{fitDO} calculates the proportion of counts for each organism and returns a table of p-values, odd's ratios, and confidence intervals. The function will accept either a \texttt{MRexperiment} object or matrix. <>= classes = pData(mouseData)$diet res = fitDO(mouseData[1:100,],cl=classes,norm=FALSE,log=FALSE) head(res) @ \subsection{Feature correlations} To test the correlations of abundance features, or samples, in a pairwise fashion we have implemented \texttt{correlationTest} and \texttt{correctIndices}. The \texttt{correlationTest} function will calculate basic pearson, spearman, kendall correlation statistics for the rows of the input and report the associated p-values. If a vector of length ncol(obj) it will also calculate the correlation of each row with the associated vector. <>= cors = correlationTest(mouseData[55:60,],norm=FALSE,log=FALSE) head(cors) @ \textbf{Caution:} http://www.ncbi.nlm.nih.gov/pubmed/23028285 \subsection{Unique OTUs or features} To find features absent from any number of classes the function \texttt{uniqueFeatures} provides a table of the feature ids, the number of positive features and reads for each group. Thresholding for the number of positive samples or reads required are options. <>= cl = pData(mouseData)[["diet"]] uniqueFeatures(mouseData,cl,nsamples = 10,nreads = 100) @ \newpage \section{Aggregating counts} Normalization is recommended at the OTU level. However, functions are in place to aggregate the count matrix (normalized or not), based on a particular user defined level. Using the featureData information in the MRexperiment object, calling \texttt{aggregateByTaxonomy} or \texttt{aggTax} on a MRexperiment object and declaring particular featureData column name (i.e. 'genus') will aggregate counts to the desired level with the aggfun function (default colSums). Possible aggfun alternatives include colMeans and colMedians. <>= obj = aggTax(mouseData,lvl='phylum',out='matrix') head(obj[1:5,1:5]) @ Additionally, aggregating samples can be done using the phenoData information in the MRexperiment object. Calling \texttt{aggregateBySample} or \texttt{aggsamp} on a MRexperiment object and declaring a particular phenoData column name (i.e. 'diet') will aggregate counts with the aggfun function (default rowMeans). Possible aggfun alternatives include rowSums and rowMedians. <>= obj = aggSamp(mouseData,fct='mouseID',out='matrix') head(obj[1:5,1:5]) @ The \texttt{aggregateByTaxonomy},\texttt{aggregateBySample}, \texttt{aggTax} \texttt{aggSamp} functions are flexible enough to put in either 1) a matrix with a vector of labels or 2) a MRexperiment object with a vector of labels or featureData column name. The function can also output either a matrix or MRexperiment object. \newpage \section{Visualization of features} To help with visualization and analysis of datasets \texttt{metagenomeSeq} has several plotting functions to gain insight of the dataset's overall structure and particular individual features. An initial interactive exploration of the data can be displayed with the \texttt{display} function. For an overall look at the dataset we provide a number of plots including heatmaps of feature counts: \texttt{plotMRheatmap}, basic feature correlation structures: \texttt{plotCorr}, PCA/MDS coordinates of samples or features: \texttt{plotOrd}, rarefaction effects: \texttt{plotRare} and contingency table style plots: \texttt{plotBubble}. Other plotting functions look at particular features such as the abundance for a single feature: \texttt{plotOTU} and \texttt{plotFeature}, or of multiple features at once: \texttt{plotGenus}. Plotting multiple OTUs with similar annotations allows for additional control of false discoveries. \subsection{Interactive Display} Due to recent advances in the \texttt{interactiveDisplay} package, calling the \texttt{display} function on \texttt{MRexperiment} objects will bring up a browser to explore your data through several interactive visualizations. For more detailed interactive visualizations one might be interested in the shiny-phyloseq package. <>= # Calling display on the MRexperiment object will start a browser session with interactive plots. # require(interactiveDisplay) # display(mouseData) @ \subsection{Structural overview} Many studies begin by comparing the abundance composition across sample or feature phenotypes. Often a first step of data analysis is a heatmap, correlation or co-occurence plot or some other data exploratory method. The following functions have been implemented to provide a first step overview of the data: \begin{enumerate} \item \texttt{plotMRheatmap} - heatmap of abundance estimates (Fig. 4 left) \item \texttt{plotCorr} - heatmap of pairwise correlations (Fig. 4 right) \item \texttt{plotOrd} - PCA/CMDS components (Fig. 5 left) \item \texttt{plotRare} - rarefaction effect (Fig. 5 right) \item \texttt{plotBubble} - contingency table style plot (see help) \end{enumerate} \noindent Each of the above can include phenotypic information in helping to explore the data. Below we show an example of how to create a heatmap and hierarchical clustering of $\log_2$ transformed counts for the 200 OTUs with the largest overall variance. Red values indicate counts close to zero. Row color labels indicate OTU taxonomic class; column color labels indicate diet (green = high fat, yellow = low fat). Notice the samples cluster by diet in these cases and there are obvious clusters. We then plot a correlation matrix for the same features. <>= trials = pData(mouseData)$diet heatmapColColors=brewer.pal(12,"Set3")[as.integer(factor(trials))]; heatmapCols = colorRampPalette(brewer.pal(9, "RdBu"))(50) # plotMRheatmap plotMRheatmap(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none", col = heatmapCols,ColSideColors = heatmapColColors) # plotCorr plotCorr(obj=mouseData,n=200,cexRow = 0.25,cexCol = 0.25, trace="none",dendrogram="none",col=heatmapCols) @ Below is an example of plotting CMDS plots of the data and the rarefaction effect at the OTU level. None of the data is removed (we recommend removing outliers typically). <>= cl = factor(pData(mouseData)$diet) # plotOrd - can load vegan and set distfun = vegdist and use dist.method="bray" plotOrd(mouseData,tran=TRUE,usePCA=FALSE,useDist=TRUE,bg=cl,pch=21) # plotRare res = plotRare(mouseData,cl=cl,pch=21,bg=cl) # Linear fits for plotRare / legend tmp=lapply(levels(cl), function(lv) lm(res[,"ident"]~res[,"libSize"]-1, subset=cl==lv)) for(i in 1:length(levels(cl))){ abline(tmp[[i]], col=i) } legend("topleft", c("Diet 1","Diet 2"), text.col=c(1,2),box.col=NA) @ \subsection{Feature specific} Reads clustered with high similarity represent functional or taxonomic units. However, it is possible that reads from the same organism get clustered into multiple OTUs. Following differential abundance analysis. It is important to confirm differential abundance. One way to limit false positives is ensure that the feature is actually abundant (enough positive samples). Another way is to plot the abundances of features similarly annotated. \begin{enumerate} \item \texttt{plotOTU} - abundances of a particular feature by group (Fig. 6 left) \item \texttt{plotGenus} - abundances for several features similarly annotated by group (Fig. 6 right) \item \texttt{plotFeature} - abundances of a particular feature by group (similar to plotOTU, Fig. 7) \end{enumerate} Below we use \texttt{plotOTU} to plot the normalized log(cpt) of a specific OTU annotated as \textit{Neisseria meningitidis}, in particular the 779th row of lungTrim's count matrix. Using \texttt{plotGenus} we plot the normalized log(cpt) of all OTUs annotated as \textit{Neisseria meningitidis}. It would appear that \textit{Neisseria meningitidis} is differentially more abundant in nonsmokers. <>= head(MRtable(fit,coef=2,taxa=1:length(fData(lungTrim)$taxa))) patients=sapply(strsplit(rownames(pData(lungTrim)),split="_"), function(i){ i[3] }) pData(lungTrim)$patients=patients classIndex=list(smoker=which(pData(lungTrim)$SmokingStatus=="Smoker")) classIndex$nonsmoker=which(pData(lungTrim)$SmokingStatus=="NonSmoker") otu = 779 # plotOTU plotOTU(lungTrim,otu=otu,classIndex,main="Neisseria meningitidis") # Now multiple OTUs annotated similarly x = fData(lungTrim)$taxa[otu] otulist = grep(x,fData(lungTrim)$taxa) # plotGenus plotGenus(lungTrim,otulist,classIndex,labs=FALSE, main="Neisseria meningitidis") lablist<- c("S","NS") axis(1, at=seq(1,6,by=1), labels = rep(lablist,times=3)) @ <>= classIndex=list(Western=which(pData(mouseData)$diet=="Western")) classIndex$BK=which(pData(mouseData)$diet=="BK") otuIndex = 8770 # par(mfrow=c(1,2)) dates = pData(mouseData)$date plotFeature(mouseData,norm=FALSE,log=FALSE,otuIndex,classIndex, col=dates,sortby=dates,ylab="Raw reads") @ \newpage \section{Summary} \texttt{metagenomeSeq} is specifically designed for sparse high-throughput sequencing experiments that addresses the analysis of differential abundance for marker-gene survey data. The package, while designed for marker-gene survey datasets, may be appropriate for other sparse data sets for which the zero-inflated Gaussian mixture model may apply. If you make use of the statistical method please cite our paper. If you made use of the manual/software, please cite the manual/software! \subsection{Citing metagenomeSeq} <>= citation("metagenomeSeq") @ \subsection{Session Info} <>= sessionInfo() @ \newpage \section{Appendix} \subsection{Appendix A: MRexperiment internals} The S4 class system in R allows for object oriented definitions. \texttt{metagenomeSeq} makes use of the \texttt{Biobase} package in Bioconductor and their virtual-class, \texttt{eSet}. Building off of \texttt{eSet}, the main S4 class in \texttt{metagenomeSeq} is termed \texttt{MRexperiment}. \texttt{MRexperiment} is a simple extension of \texttt{eSet}, adding a single slot, \texttt{expSummary}. The experiment summary slot is a data frame that includes the depth of coverage and the normalization factors for each sample. Future datasets can be formated as MRexperiment objects and analyzed with relative ease. A \texttt{MRexperiment} object is created by calling \texttt{newMRexperiment}, passing the counts, phenotype and feature data as parameters. We do not include normalization factors or library size in the currently available slot specified for the sample specific phenotype data. All matrices are organized in the \texttt{assayData} slot. All phenotype data (disease status, age, etc.) is stored in \texttt{phenoData} and feature data (OTUs, taxanomic assignment to varying levels, etc.) in \texttt{featureData}. Additional slots are available for reproducibility and annotation. \subsection{Appendix B: Mathematical model} Defining the class comparison of interest as $k(j)=I\{j \in \mathrm{ group } A\}$. The zero-inflated model is defined for the continuity-corrected $\log_2$ of the count data $y_{ij} = \log_2(c_{ij}+1)$ as a mixture of a point mass at zero $I_{\{0\}}(y_{ij})$ and a count distribution $f_{count}(y_{ij};\mu_i, \sigma_i^2) \sim N(\mu_i, \sigma_i^2)$. Given mixture parameters $\pi_{j}$, we have that the density of the zero-inflated Gaussian distribution for feature $i$, in sample $j$ with $S_{j}$ total counts is: \begin{equation} f_{zig}(y_{ij}; \theta ) = \pi_{j}(S_{j}) \cdot I_{\{0\}}(y_{ij}) + (1-\pi_{j}(S_{j})) \cdot f_{count}(y_{ij};\theta) \end{equation} Maximum-likelihood estimates are approximated using an EM algorithm, where we treat mixture membership $\Delta_{ij}=1$ if $y_{ij}$ is generated from the zero point mass as latent indicator variables\cite{EM}. We make use of an EM algorithm to account for the linear relationship between sparsity and depth of coverage. The user can specify within the \texttt{fitZig} function a non-default zero model that accounts for more than simply the depth of coverage (e.g. country, age, any metadata associated with sparsity, etc.). See Figure 8 for the graphical model. \begin{figure} \centerline{\includegraphics[width=.7\textwidth]{metagenomeSeq_figure2.png}} \caption{\footnotesize{Graphical model. Green nodes represent observed variables: $S_j$ is the total number of reads in sample $j$; $k_j$ the case-control status of sample $j$; and $y_{ij}$ the logged normalized counts for feature $i$ in sample $j$. Yellow nodes represent counts obtained from each mixture component: counts come from either a spike-mass at zero, $y_{ij}^0$, or the ``count'' distribution, $y_{ij}^1$. Grey nodes $b_{0i}$, $b_{1i}$ and $\sigma_{i}^2$ represent the estimated overall mean, fold-change and variance of the count distribution component for feature $i$. $\pi_j$, is the mixture proportion for sample $j$ which depends on sequencing depth via a linear model defined by parameters $\beta_0$ and $\beta_1$. The expected value of latent indicator variables $\Delta_{ij}$ give the posterior probability of a count being generated from a spike-mass at zero, i.e. $y_{ij}^0$. We assume $M$ features and $N$ samples.}} \end{figure} More information will be included later. For now, please see the online methods in: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2658.html \subsection{Appendix C: Calculating the proper percentile} To be included: an overview of the two methods implemented for the data driven percentile calculation and more description below. The choice of the appropriate quantile given is crucial for ensuring that the normalization approach does not introduce normalization-related artifacts in the data. At a high level, the count distribution of samples should all be roughly equivalent and independent of each other up to this quantile under the assumption that, at this range, counts are derived from a common distribution. More information will be included later. For now, please see the online methods in: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2658.html \newpage \bibliography{metagenomeSeq} \end{document} metagenomeSeq/inst/doc/metagenomeSeq.pdf0000644000175400017540000363732713175734155021441 0ustar00biocbuildbiocbuild%PDF-1.5 % 180 0 obj << /Length 1423 /Filter /FlateDecode >> stream xYrF+pJUٰ[\qY+.vr#p,Oh)I<=ӯɜy"s1o~ }gphy&ʪvsmIR3{V6Ly>H\^uSYJx ̖^.[ N,3A Vbا!v<!]Ոq~풗R4ñ˻J6H6V\Qp Dy4ܜ缴 ^iyzZ`ؕ1lN\db!8e0pf Я+/]!y]ŢO/D>S_T3]h<XG s?mu0xE.ڼ'5aZjS1#b1<G2Ƃd6ʬK0s uVu]:R8jphtK6𖃚Z<>81]j bRg>Y}>+ Tj<0I'D@r~Piң-+P1#iՙn~.~&8N&.@Bw-"9TEadBLa '`dZ@qQ/~w+QB8 y-X~%TOUlFӋ` )"}vNjU.ш6J眃qw#U#n:U> (kT?qefFLAR4AQh8Diorwá̭} '[GPlT1TkLN ;@`1mѦL#j,BE$?d SHzU]6B?M 7:7TK$j-4vx03Dfn Vp;5mN_|A7DjQ]ejWH)86[5Erq${)hYf#oz;Ɇæi'/"Rl-VfuխzŎ5B'葁'戮 G!z34#4̷Fwb\2$p8[iU@nK?%m{SMI!Ohm_8[G9iwMMZ)r]Xc(+Gq~H_'pbS>*F|"IH2d܏[JyY ?ίsͶ' QBwx&U""¢8A?0inH1h (s@ڧM4M endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 808 /Length 1795 /Filter /FlateDecode >> stream xڵYnG}Wca/@׉{װ}dfC0sq=5l*cqHhrSJdI rd,E򖤠hHj*'$b$%Ii3S')OF1d ~8C: /J5Cgnz;Dr0eM h yz򀰁|t$fNQ;9ޓ^GD $xȞ(cH 2PASpiӶ6ѶY RVaCYU=eZPaveH'OuUY?bzxL+b6î;RMȓm>aQ:*rsUSS|M9%0QCOfvx m4zQގqu-ϩfh'"9 mfd?zբ/!9TzݦuIvU7U)ձbXRR}Nv~PFkh]Vs0ԏUviQ0\ qZVaYY',G*1ayp(aC·ySneuw:Hz׭Ǥ&pW8S%,c>R0W?З+аh@gwn>M0˗](>_6 M5iY;>6Ba?,B${~Q "λ}krksrsrx.㹌2x.㹌2x>3x>x7G ~Wm?~Wտ毚vQ)y3yv~yÉvӵE (Fpذ/:sXoxT1M8AC@yÅwE v:m:@e|B*gd(Lίp|f+&r'D!'D!qQi*T+,z#*|\D+bOb]XpǘSA|;*| ,DTk`W gW8mgHX!"K>4R")=3T|N+P*ܡQN ED.)5o8u'˚9ghDz'Tx TcyɷλgUF0޿Fie3(#"U9hR OF=G$hх":3(ě%5i#VO$tmna ͜ T)bz\ \T_m$FwZSLS9vA*,яUF da %8qXT t endstream endobj 204 0 obj << /Length 550 /Filter /FlateDecode >> stream xM0>:dp-ąV\VK(IZvLꤥK*V{2IwF~[Lnf"JC ER$R"%IBdKteO(ZjխmkIf2x3鯹L('n_G־paD0KF]cu~}(Pw(~uea \TإkcM?Bϣ6:݂gva`PsFs4^f":3D)7O\ endstream endobj 209 0 obj << /Length 2391 /Filter /FlateDecode >> stream xڽXIܸ_[ԀѾ ` ϘC&fz(Ͽ>I-kE$%XWEFы"i۸,L"^UQxeQ{O?q_]vjݿ4(:E"/H`<Ofyܦ99`|19zsqoivtS syݙ^.|^}0u:3e38 a.?L=ӮLf휄pQ r~"ΣqEtw5ʣ? bʫ#kiZY4摯ar2&A:L3u2y>$u pVg晐 kC'uq 2w\qFe>3ř{+K_WnlZۨ,$%S(cISNQAZa l]RW D^\se~U rݠZi47.>K>DMm{C0uQxKwsy|!E^eXWu5gyIPnK #HL9PMKH.L#ʅ2K7X+]3@` ;Hq+2֨yMԗ gr,RISj;:GLb :VӤTS`A;8l36JT {/'pPc?_lhYdͲݫNZexP`T'iPC稙 Z0 - W$h$$v H4n1;mo@#rrI=gn0qVB`X8P[Α1:;Jz1NHq.ED~~ԯT؀_@rJN]P!C#.fe|#`E+Um2LU#F$ag/ /EbT Bëp a1\#n :'Avhn{_};m7Fv`r>7ʙb  h+e1Ff+$|]jRТ%a|v-nju\NF(pNLا5XO@7VkB[PNǚoet&ɒ aTv2T>"0n6Ϣ6kxe`ʄ^9taWF\m 6GWXz$`iFv4HRQE(:|"e@oŤ K37bz]Y2ы"u@/o$x]x#9!Gv֊2 9lS/ 󋳜R]^䲚ésEw $h&#$N+ 0iƷϜq}qקYu~M)xuLmZ8JAυ-bbMB+6#`g^Μ̙QD݊C=_ Dctf# Hb2K b(u 1%f g=J^[][- |Yl/lz>t!|@#G#_oZ1v 40_ FZz 4$LXULwk!cϿֻǏWQJO횐^-,J>T;JgA^h?9Uq|{+i`<\Uy/ID%_[;g. g FwA2^9Gx8PV͈#$y}MZiIZh%O> stream xڭYsܸ _G-(]_5t&iҶ.p' nɌA~ ' O^񳯀<0B%Z,ګOWL+c5S˺@]+_ejܯЉHoYB&vnLO2}:7؆Ngϵ{`uu]ߺO9Os=~MwA# M+ZPd s{@#s 2B^r#HS3#Cg~|#Rd RnJ=TոBhn_+f' GZn5&Fc֍5HdR|598Bɵ+2p Zymژd)gCDD5 <Td(0JVhpoFe)šghKnC(C441A{hB,6E?.EY=no.R\# c;~90 Ggo~3PJhjjK g`zzیF<뉸|ыXKA_H{e2V-๝l>m#(I*hȾC_ A endstream endobj 206 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/overview.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 221 0 R /BBox [0 0 466 437] /Resources << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /ColorSpace << /Cs2 222 0 R /Cs1 223 0 R >>/Font << /TT1.0 224 0 R/TT2.0 225 0 R>> /XObject << /Im4 226 0 R /Im1 227 0 R /Im5 228 0 R /Im2 229 0 R /Im3 230 0 R >>>> /Length 1985 /Filter /FlateDecode >> stream xXKo7W({wCHb==\;Dv"ߐjpQo9k6tޭ~zm<:o5(?7togջnvw‚;I2\绐ԍcRqkY#'mtRɕ^ϚZO scC1Vc9ya}~xY_?nwaEjZf>YޭvnC67|T t_ſ{7i5Y7p) E=|7#?!F\>B%} (FM䰽-zԅں*|F/˥zyӋw4Ӌ|QL_aYB0cOAr)1=mC:K% >h;_>p!yj+Iz;@vhuHdfZ-Znp*(THP`,(҂鶚R J;F cQԏiԡ$ Vbg6~1~(AMq,<\rA Ac?O`VLfA!N# U9N_0iV0Q7L|s`$TУA4 {4aoGl^n+tH-W5ȠFI)<ѣw&d/5Y|>uB5s3/w Rq/z mS =’3'c|S5B4j~`0!B e^sB%L!&NyO='Wh"k[c5+b ʼnl>%,YM̒#+lfrb@{Aw;<  TݰHTVLbdw`.QP+H/> stream x1 Om@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` o endstream endobj 227 0 obj << /Length 243 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /Interpolate true /ColorSpace 241 0 R /SMask 244 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om ?@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` |~ endstream endobj 228 0 obj << /Length 245 0 R /Type /XObject /Subtype /Image /Width 129 /Height 103 /Interpolate true /ColorSpace 241 0 R /SMask 246 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om @a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0`<0 endstream endobj 229 0 obj << /Length 247 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /Interpolate true /ColorSpace 241 0 R /SMask 248 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om ?@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` |~ endstream endobj 230 0 obj << /Length 249 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /Interpolate true /ColorSpace 241 0 R /SMask 250 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om ?@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` |~ endstream endobj 236 0 obj << /Length 251 0 R /N 1 /Alternate /DeviceGray /Filter /FlateDecode >> stream xUMlUgŠU+'ZEi *:i"Rm֛ew6QOT! zZ~^TTH 8YCz̛fK}D|XU$~uB}NRI/<Ƈ7ޅצר܎{%U:,vsks$Gȭ!|];DbUxfϵt$Y:卵HNIVz-#Cz [Eydʈx0q+G#؅бGU ZT扞ȗsgWs;<ć̫|xHK}/wѴ%Q)o))_)ϕ$+ʊrY||ݧ(u[=vfq1ܱAk3o,mEp gK~nߥvjjyaqmBim ր6vq5y=klfUg=.SfE#fsH޵]:QV݇I!H&ɒf3Ì}sDf7N=ΈY1:yɄsd{}^_{4md(EsߚbPןY"s>aض@ Y'~Gjju72J&"j endstream endobj 237 0 obj << /Length 252 0 R /N 3 /Alternate /DeviceRGB /Filter /FlateDecode >> stream xUoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqx endstream endobj 242 0 obj << /Length 256 0 R /Type /XObject /Subtype /Image /Width 147 /Height 103 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream x[RY9xTPL#CIMBM&̴(GʼS91yEh)Zf*6KGig ćۋϽh? DEaEGPht***p%0H"H$bl"C48\,H&'$&Q4-%NQ2O& 8 `HD Fg132ٜl.jYYvfF:3AQ)d V8q 3;"QaO"P ?;3dJBŠX'@NHJ/TTRV^qF\U}F"Ԝ(/+)IXH6;=@"ʭ9BccrqDZW47_xN* r,TA* C Oj/oܼw ׯ6~ =+>URX;H*|@NLfsrEeڋ[࣡OFT*zllLVF<z4Pjom] s9Dꛡ1BcfEUeΞ{GG'_ϿB ^fg^NOM>~&՟*/r24J<۠,N.DYѧ^h^iuvޚLNJ3ke'<@տ]Yܲ9@DcF\öV}z{w켸B}E#QS9ŠsM̖-ӭ0~rڶ,%n~J PM* yT*83EKr NV7;kʆǏ cieX19,ZsFsl4HUHe7n+GЪjsspR6eA*oߐI+DyD3< "ScEU {Ó:ڲ27 onvr^8à C}b4@ƦeK%Mm P2C;OOp}[Nnk>"brW:C7fToB>((yfrHqEzJeR?64b+50Bk\ }B =PSU@W abQGсDKSjwBfƔ=D!?xxDq=|:_̿w킛GLJ * NV7m֮P`sa~*$".m!$9S}kP4w[3u|#p(eJ[z'^VG%rP1HK3iq섌+\RQ0QqeIQB P((+lּDɭk Jo;,Lc/oSWU "+/Ӫ~fDV_~M#;<*+ohJi?07uSC}-?1eRNğێGAʹc,9l R"QXGOֶ5m﹜I]L{ّ̆'(d@$aknj"7?`.YdMM'Զ*Tm r; n;ۆQR֖~ONQ8 4r*.7bstLt8qg䜐G0 }>vƹ~D#XBWV~e3<"LMo/㱒~CS )] uM6HA/SQvmfPL\N&xVs kn.drXL\M!g&,>!5m`\du|sp}uI;>V[366 VxBp@]lL Kdhc@o9j8AKf\1ۑBr@ɾntI!E' @o9@rlg] D HAU9!|nKa1΍ipH458ÎtUB*E"q)G'L=/a" _)P0;v#pNy3'_> ~td\\spEڌ.f2=yo Z`ph"lS|(ʵHYCJk`ׄxiV447Ah=n,qY%5V- Vf>3'4@]eNCH1@Ûc&݂AL/7]XcЕ5u//q)/4e zp% *@bpқ\wb%+yJ*;(Wr3AUAELн'2/!ft5ѝ~;&$s/ ɬr%U*wa(PvC]I*wpc{`;p6|{\P./aP8}(CqSXPwf[ a{> stream x횱k`5W_bk54mthV, -H)CաPpP,A ]N}w~M}/Ys8 ߆FOdp0N矕rAAûgvٮ°޽ IP y1& }HT>RbtH'wXB 'TNRɓ{BxQ)5]gs42j*D"mV +IUnKe:)T>6qPRg\̪ Y]V~7Oi{Vo4jk}QKû<^+Eռn6;^FzNqE84Sx51oC!szV8<1h2t2ta ,)WFw8/hd1vO EtVzsI#תٴ !Kv<[,r1r. hE"@Zlb yFIa#@$@ް B o! 7l6DH "$yFIa#@$@ްoF6M~ɳ[0`m-QYHeSaT+ڣ NKvX q/+!n-8Q&&M&F*F#^&b- N E'7O9 endstream endobj 246 0 obj << /Length 258 0 R /Type /XObject /Subtype /Image /Width 129 /Height 103 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xZSGC%(h}bO)1IM(GHXQ%5okEEA1_P$KN,|swB} ``0ؓ@'>c/,A$8 " ŅCQd J4*B""8lpH1H83Jfs8))));J`2H`B pZ;5-#y9ܬT6+Z, D vJ/,pLT~Ee7rSѩdR:@xI/Eʪꚟ x ,ܬ4eCch# *V劶.ewJVvuv) eB>7ȠE_ 0|$]6FyeA_{zPk4/ _<aiue"~wItJPpO3 M;Cꗯ&f:n~~LMzUvz9>37mlvl{;+ˡJEc-bP#˧3SB{@zJ_^3-6tkcpaZ̦enz ,2dB8};?De$e 5 Gƴ UΞ >Da2c#w+j~FBjD0SrnUʁwf @?r{c:2c`1/PeUeܔ'xqVo4mN@{}Y@J8-Q}{, xi tȱ|a[i{怅wcxz8c8l&ۙ={ V,py<|bt\rVļa{ y曇Lak0?1X-*J&^gŷ%-Q~l?w 6yUj.їh`甈rՋ1{e~YyhP8Y6 7C*T\s)Nqj]\NWhn&OZ\xr,[r^ѫ֯my-" ϻ)Ӛ^E.;^ EO.)4 ˾D^?ط/hu,=*ss:YX!L O -f1-iҊR7G|D߱/@X(p8@ %4&|7 OXݢ%xOiqzXR-qdyF{]/&d?}fOj'hg"! 0 IJ5 C2X[lU3)x?DGƲy7k}:>?2`ϽLQ7'cF K&dT6*ӆ]ϝ/0cw0V6-L%@GťEҶV;>~tڭoۤ"~J\YU*͜qv?/+ >ٶsUsUi иXل޴p cǮI?]zω%̌M*nr .784hw$aBbKp$|$^OXrX <\z]8h S>6@GD33K~{K9t{_J3^6bX9BI۳ɥhsiYDÊ!`Nc+u !dY,qvKVǡpa(FZMfu@{ϕH}uߚ~,LcD<t8YR%δ, mgz_^U$nh<%1A.m1Ԛl`\TܿH9 x*i9劉kRbsˤjl~đ c; ԝҲ'1Dwà^cӈ8l~L92b%eenD)+ ɯ.KB+ BB^!y`;D݋|BLqϋ0Bf y!|7y; 1 pP!ϐ sDȽ "sD@8KV,'OTJ\'DdJ]R _M\%R6W zl90N zAv*,\3nnf' *OW\<+UNQ=Y ڱ*15կzx깋A$rRW\A.頰ԫwPezH`Ci lE8I5zII5L'4V{ܽdsA%)f>nM@OXY][ ].訬騬 NG  OЧTRD(ja 0b6'%555z_ PvV8!B[>qPW?%FG 3 endstream endobj 248 0 obj << /Length 259 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream x횱k`5W_bk54mthV, -H)CաPpP,A ]N}w~M}/Ys8 ߆FOdp0N矕rAAûgvٮ°޽ IP y1& }HT>RbtH'wXB 'TNRɓ{BxQ)5]gs42j*D"mV +IUnKe:)T>6qPRg\̪ Y]V~7Oi{Vo4jk}QKû<^+Eռn6;^FzNqE84Sx51oC!szV8<1h2t2ta ,)WFw8/hd1vO EtVzsI#תٴ !Kv<[,r1r. hE"@Zlb yFIa#@$@ް B o! 7l6DH "$yFIa#@$@ްoF6M~ɳ[0`m-QYHeSaT+ڣ NKvX q/+!n-8Q&&M&F*F#^&b- N E'7O9 endstream endobj 250 0 obj << /Length 260 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream x횱k`5W_bk54mthV, -H)CաPpP,A ]N}w~M}/Ys8 ߆FOdp0N矕rAAûgvٮ°޽ IP y1& }HT>RbtH'wXB 'TNRɓ{BxQ)5]gs42j*D"mV +IUnKe:)T>6qPRg\̪ Y]V~7Oi{Vo4jk}QKû<^+Eռn6;^FzNqE84Sx51oC!szV8<1h2t2ta ,)WFw8/hd1vO EtVzsI#תٴ !Kv<[,r1r. hE"@Zlb yFIa#@$@ް B o! 7l6DH "$yFIa#@$@ްoF6M~ɳ[0`m-QYHeSaT+ڣ NKvX q/+!n-8Q&&M&F*F#^&b- N E'7O9 endstream endobj 253 0 obj << /Length 261 0 R /Length1 12880 /Filter /FlateDecode >> stream x{y\T9箳0 3¬ 3ð ;22A6Q0bEqKA6ѨDmmLZצHtԚצڷKLlڅ3=Rku.ys^VjG 1hEH"} VvI%vAw#^b/\"^FHn]|i/u.w@C !OXѵ:^B~} Fu"+Wy>z{[WPZ}ts!_ع}d[noCR /,f1A6!/i^0 lP &Z˺xa8n?d]nn m0{gpq N<092`@^\Y/saC=:͞{0;[f8=(pO",d_0ֱke?yVl%}Vtߘg56ff`,%3+tT- M11hm X qg;ҹdfsػi+w+b)M=IDYڃB9G}x)yhmEa4 bE0 vH @z݊ݱPB =P z Au+t:.rM$v h̹z^M#-Bh:G/a7s1ցڇ~c؅FdA3ZL?X{?Ţ@tOmA0?\gAVe o;H| 8C4tj}hP$BŸ#fWbEh*uõӘǹx;A"A|35n +_NDdEwaXa`7.x>\=x9d:>/# _'Q=$]d;9B^&e0;g/؉qnh[tsDZ/AĊy@ztjvBmX pî W/lAKZlz|'^\/I\%DF4@,d&i#+Hy0)L3uy\g96ճ5d]k?{`_Dp-5-a~+? 4>a /g|t/Z+q ^அxЫǚ pnmf}wm0e:V + v;(h 2|^;͕tȷMFC^ը LxeFYUGb=lZwBC- -pDŽVmdF.32Վ2Tr9Bt9xF(?QjrrT~R*'@UƎJG8BU-Yd!΢#tԺ,DGT̮ʪecU Cg4VU8MM %!=\Zx8Zhu^cim :&3dpU k?5zTqWV-qiZ@mLLK645$(KSn\'[:B2Wwi 54fIS$UN.uOfߑ}KƇ~Ƈ~ԆQ`Jd3X =ȖФ.(: 2>Bxq8P̛htTƑkYZ9 3%%T[za`uk/nvҍnY 0:vK{ uSPC:P!G4555db)c¨zlTНEYmI%<*YАᄒ?Q OuN^vt3n)ަFO 6ۛ<9t6 KGf\jʉ,PgzPOeJ(X{vzc,pnS0^8s>Yv)z{3]ޔ^z0Fc# aDPqt23E h5QK(5G;KM| F.6 Υsx5xwA& O&F6 WU59 FSF$S$ O7QPQQLotNJ9 7F³F$lgIooBoDQLo\RQ SBV93F`w R⴨q~! 7hb߃r?䃐B@78ᥐLz|.vpzh@th32@ʊ(4nƏ՜| pG+d#h5x4"GұIRDsiC tQ2xAFd/gE6( xB^ Gʬf+4CVX\(d}r;󊃊/ +9^?x[y<&B0Q !x̼֡F,>:w 4;AWqj\fC<Ip# 3^L,йbW"U핟qzWk]?T33haa46Øro2n?sz7¯E}:& uTa\TdCơ7#T^~7yIEK3ݞgIM\p lQ*/f92뽶x#3ĹeLY^4q(')XL쉉I$a_LU:-$ߗ&>b/IMqQ<2b,)RV>r\h Ay-IxZU:tlbt,!(Zi\-㊋ =T\Pvk:O<48)~v†NxL*~5/nn+YhfT7|'E3۾eWښiys0O WD鵸w`fea9{&<&L ނ֡Zhq[  Y amMALpP;&$?q{^IϹe>p.1I\U]iD`S(S2Gb`gSBPF60 5eݨ.+rqs3j 8f~4c#r&OdsAfI8j` JIWJ<eL261oc. ["E972o7)嬜M"vEOP"/I!sH7 1P( /, =Q%&Z'!ӘYdR^?t6_:< à 0:nh#rQ2#RX\MKk\c6Jt.w溇xm ƒ}>=A\Eԍ%;Q$%26?+1K(AJ(h(jZ]CV MV˱*BI.^de:]kNNIƊcGdE.S"ej8a8I|./z sC{h9gu.ܙ8Ξo2+B[-Ջjɸknn5'& `KtxZkWͮ-YzinRx,)í%)fq{t[nvݕ7UV/'.za'2°Bi]3Ƌx8ِlл8{NSE+^]6{'0 \*ss˛YYj3lODz&-7٫ܧ(W|_56ZՃieQep&Up*#WOMK3.''2^ǰ3eD5i\m,vf2ru.`t!\2z6AHA0KkH$vnB(/e\IL7fbgHUdb, i-Й H*33L*J)G@P:SuH.*L+g.JT^3$K{ױ.3cPZ缁Ӟ;[Ӊyw_ [z;fl~ѿÐ:|q]6gW仳E/xmy#7'tЕ׷d1mbS:qg ÃFXQ0{9&a+:U(2PXg< IPʘF)P#A(rw?X\$w m"\,W,x jKdKB@*eLJ&L(%nZD7` ޠ` ^_AE2̢|S|)ӄ?Ż X}Dq2b"CQq*E?LAҋS6qqm)N93#NdXY9Mb X%A=1c x R/,9גEfU`8Uj{(s:hU#jjPp$ڧњ dotuK`[߾fE&G6 $Dc>`g8Itz6Q *:gSǙs̹wweoq]6\v)iiϜ0:dsLPV={fm#Mߺ?9"W#~u3pLNx:ޫN$:4 Y0'3[3!S Jm+UT>};-K+G4=5oJIv >o"3me +_y.:A+ܓ>qCa6:xU0 &x)2dN chIwFϾ$R |Q$@*j (q PgHdP In҄*4PQ=@ MWߐ;ԏv|>bX '9G.1# μ^](WW0x@EEz!WY-TirD+ZQq+ię=¸dHIAAZ,jKQ)g!)# У E~q]}tҨ8xGOt^Ӑ[:w;zzgn^#&G>9dA 32qL ˪D5Q42Wl$L d&qãb–uC!Rn4Qw@<#.Vuz68*'%sQ{9N}gt} >=-vV;kjx-QIXvuu =7+O؞9%tIއ>77HUI2}|百[֝Y3%tۂ "N%G|eF0rRa6cE* /N](C.# F5I6us?t&?ٜHNȘLf򎙞O0bsA~uf1@_*v ;Ǟӈ u` B N> x9eHTWӨONaj?yS<ߏDRekx9uƚꇐ,X LxnI/56Jt*6Fq5PVCI5@VoSffI)%` xϢWKx ݈pM Bc7 .VkԈKx1 '>Jag2\& f%3nF䁀Fc)"ⶸyv9^[B 31neоn`E(g;|~`4^7uK`EDUZq |Xl*B"QC/ԁZ]jcNմ]KJ#nH/Lz20`H(hX  @<; %6F~<4Z1SSSScLnL~L}zØ1cʷmL}1u?n1Kԗo$o}w;W?05jL{L6_ endstream endobj 254 0 obj << /Length 262 0 R /Length1 9680 /Filter /FlateDecode >> stream xZ tSUyѤi4ͣ4IGҦ-(Rhk+ LNP:"3`tU zeq]Q| >V&?Ieq='{{{}n: oO'.Ko1{Q޻vz[gMa)ٞVnȯh. ]\Ԗu1sQ]}"^AJ։ M#g-B^0gmDz҄jRX @7"* (~IT7`~Ag3WlۥNJ/D`Qj @N0]1BpКzj((iCY bx)12 3>8zH/ic-թeRR #KH-OdŌjFXQ ^Z`1,5^)Kg~%R7,_0ݩ*26Pb32dtAb ÆCea|lk(Ѵz' {K(paճ5TꑐZ5⧞+Sr-g$f@)aAYpSPp$B& 948: Ѳops,?>&*b !xpL 1\[P6؋.`L$tO;mxwPL/FMIci)pJ~2%QJa7UMnOZ4 kC]!w$93*t]nxLޮ a'Gy\ "v8 L(}h\ag0+|z31Vx4U8aY>0' Z뛰n}2~zG{}GCӚ>Əu{*&GY+>޳I}5 &,GDpp+˄ճ䓚]+<95 xCnA}Ӱׇ<QrQ(t1=?uuM$/D<aLX rX GG! "}x5lr3GP>:orO[ u{E؁^i6 ~س/x'BDV7 D ?9|{+V\t.zC]~ 7?H뚆';N8 FNr7V8t!JRAeJS)1؜54!-qΎ",'C(`f,aD CA(^JkZwxw3x]8fLD&0g!fggKmM?<8(d|Yyz?!a^Tf..D9gVi?p$n̙hB D ^îbhspɿS NF<- 1\1\~= Ϻ.ݓH0\Õ:0\ Ϟč !k~"^õIS ^0ga7\hB 7D /_MH0܌[&|pfv'77L)ol᷅(_QʽEIS(oGKʗ?Rq Q.؉£䳋u1J&w(GGC)`3u4 r9[xe&[̋ݾo]KMKE39̵~xR1y~k-+uƽFo^mY>{xn wX{21~$ OD2}&w;"'}쐥*S5)d[pTuyo~RJ3ZkB2NNǗeLY4S;S/ٝb2C~ޙ'#E R;:65bdtT) vO,'iCblə$ٖ 8::? jhb3A!5Gw &̖ޖyJ'^ |8B- ȾA7;ŖhΝ?ѥwZ= )^|% cR g %hQ\P󋩼 d;aN$s."SKtɤC*-J% ZY86'$:_))#nPFze/W=/LYm*L8O3N58MT1ƊY 9խ ω7ݰ*^-cE↦D-1Zr*1~CmŚ\`yjvӻ B<ʙHNhᕃř)Y#-~RʛMv]2F6]mȎYض)CI;#id騫[ M5K" cg\46.SI,!-sS@=?enWhlFO4U%ɗetMJl߿=~{jV-3Hէ߸XM++evH -3V WCkn14Vh!F"qT5Fĸsu݊9\KkFSqDC/~bijkO>E,] ,ߘE4y [jg V2- #3S.͝=ϟha p`poű-,+) M.D+ER NeQARآ:]X;~BXknFK]UF8M/?>p 3C'Ǔ=2n*F <b)ZH۔6RI]XfQt: 5$*'#&"r+} 4֮>!k -EN@Cw70Ge|$ y8v?I!|6\9sDxBPCiʱNl0WP .fhT*BlN͜ꎕ떷{W.R]Ã҃ҏ aqS(|DM(NŃI7?՟5͟=͟30uM}7M_>/5WM_=3Ϳf4Nה;-~_Y2 endstream endobj 255 0 obj << /Length 263 0 R /N 3 /Alternate /DeviceRGB /Filter /FlateDecode >> stream xwTSϽ7" %z ;HQIP&vDF)VdTG"cE b PQDE݌k 5ޚYg}׺PtX4X\XffGD=HƳ.d,P&s"7C$ E6<~&S2)212 "įl+ɘ&Y4Pޚ%ᣌ\%g|eTI(L0_&l2E9r9hxgIbטifSb1+MxL 0oE%YmhYh~S=zU&ϞAYl/$ZUm@O ޜl^ ' lsk.+7oʿ9V;?#I3eE妧KD d9i,UQ h A1vjpԁzN6p\W p G@ K0ށiABZyCAP8C@&*CP=#t] 4}a ٰ;GDxJ>,_“@FXDBX$!k"EHqaYbVabJ0՘cVL6f3bձX'?v 6-V``[a;p~\2n5׌ &x*sb|! ߏƿ' Zk! $l$T4QOt"y\b)AI&NI$R$)TIj"]&=&!:dGrY@^O$ _%?P(&OJEBN9J@y@yCR nXZOD}J}/G3ɭk{%Oחw_.'_!JQ@SVF=IEbbbb5Q%O@%!BӥyҸM:e0G7ӓ e%e[(R0`3R46i^)*n*|"fLUo՝mO0j&jajj.ϧwϝ_4갺zj=U45nɚ4ǴhZ ZZ^0Tf%9->ݫ=cXgN].[7A\SwBOK/X/_Q>QG[ `Aaac#*Z;8cq>[&IIMST`ϴ kh&45ǢYYF֠9<|y+ =X_,,S-,Y)YXmĚk]c}džjcΦ浭-v};]N"&1=xtv(}'{'IߝY) Σ -rqr.d._xpUەZM׍vm=+KGǔ ^WWbj>:>>>v}/avO8 FV> 2 u/_$\BCv< 5 ]s.,4&yUx~xw-bEDCĻHGKwFGEGME{EEKX,YFZ ={$vrK .3\rϮ_Yq*©L_wד+]eD]cIIIOAu_䩔)3ѩiB%a+]3='/40CiU@ёL(sYfLH$%Y jgGeQn~5f5wugv5k֮\۹Nw]m mHFˍenQQ`hBBQ-[lllfjۗ"^bO%ܒY}WwvwXbY^Ю]WVa[q`id2JjGէ{׿m>PkAma꺿g_DHGGu;776ƱqoC{P38!9 ҝˁ^r۽Ug9];}}_~imp㭎}]/}.{^=}^?z8hc' O*?f`ϳgC/Oϩ+FFGGόzˌㅿ)ѫ~wgbk?Jި9mdwi獵ޫ?cǑOO?w| x&mf endstream endobj 267 0 obj << /Length 2283 /Filter /FlateDecode >> stream xZ[s۶~tLK}piND*$ן]\(V22Rb7bX| JTQDE߿?W$3|f_0F,&IbIDFKY)#Qe˃ݦK8IQ4vFXʈ,hƢ($(Q Yt6xS: Ԯ˅]s3;33=lchQ2sJW[Kw,]$tϩ(˲ZN&~x+xϷ^ +1hÁ=r`˺ [tOxweQGfhJt6jhRW9/y/憠~s0NBdªF-~av<7+ovvkڃ1a)/Ń3'P}n}Jڍ18Ѵ:o+I/;O~7oh*7 2+#Þl Nn I93])^UY Ydoߣk}=fU+֋b,šf]=OUѼ[XVeSNy,{?2Eyz?|1ZޝoV IףL9*M^"1mV 4˼HHX ]y7c{S_cB=`-u#Go1gprAƭ!)vGR#<(q#W2 .D v뙩g!F9v"TD+sNRq%( *y'DPqyڝxLIB=[!) >M G+Ƅo `|:)6b[Ę zJp'R${o_b^U&GqU{ڐdždrс2mʲ!%v;{ n/ԝ 9NLb$W=hױ |DgЛnP_ v}Hk]c?]SPB;l\r|OIJq9qt.l)ox,5t~+ HpG+ONA! uUPGdAayn*:uOCcPtp n{ITv#lն.k9Cʄx x.N;3X`Lz9ByQ$eTmgxUuݣ]b+&t.;r9(˲(p6f U|,0Cc'e&\,knK>t3/t1/W/& FPe9S=t$ endstream endobj 273 0 obj << /Length 1870 /Filter /FlateDecode >> stream x]o6=B GR)CnRoy膀X,y#)Grqj/x:y_9tREh7VBV9 /DJb,"HvEۤ(n,Dۡț #J"{`m38~`#1O*(TLaA&Dq8*J=ϚFYN")P,nASJ{ž=q\-˶=rzpibm[]]C'On!SˆO/PwnfAm,ӓK=ng*<ݷ|Q39~o* k$o|Qd"3 [F< kk)x0vqrӗ//~f?sxRWxɛ:;4_;2L\k ̊>rW͸Zdt2+v^ũ~hpn6^Wo[.!G2ػM\B$I!͢+σT.s[lvƄ"Tv)ŭ`CJ9vMkg3(Yi d ntX+tP h` 7(}u HI]Oqֵ}ϲN:gį.0mӪu崅e.ǎb0&kA)aJu}mOQuֵ.1=ެMğujdb8mTGr7J[?d" j~$5Et_rh3z\æ.oʷV8ǩ=qH"&43iLoΌ{̟`tH6kui8l$p:#6i#h~m?/˖loyc鸾եnu/3|5;7m+zm(Zl/WXEC}>I Xl_ֺ^7M9iwc6-t_q\āZ_R7(eUu]kll9RCT zk&1\seg`ҋbA(w&(vA?߀9u}xЛcߩ}ܴyk}@9.X]ڒ> stream xYo6BTUD=CҤ˶mӱYtE)MG5;ב^q;O[KeqP/O?|9qIDiYf[8s4NdG8u7Mv([^@ ?c`$Ʊp`9s/ #oio蜳kHdG(AMfyA`)?빬,$yRA+{ES^#q\7ƲTSzlBPoAh{f>:ش> f.HQ7&1>bltNR4B=6{&£h1wXx8ૉMڿKMZQ+ GۭU>!-pT]Z=b$J %y9*H\(nZ;`5ްHڗ~Y>;>D~.D]ϭ{l% Zf-kU yrz+U"YkܾBkq[6*) 0Ib6/L"BފXtBŽ+dFFXTO)zAGQy(8[6_m1g{~v|oa;zw S{]ʢh;Է㼖4gt.N!3} G$oR GUn>;XEXYh/@JvZӷ\"kUM+  FV0Y rd;}dص}C={1/Č%x͹ x&s Rʱ* tN^uǿ8u)I3W˘ˣbX6'i h,9DU3QS,pĹ"S>E[5V*|$ PrLTWnv4IXP@dP]#XQ ;Ts1U (e]H'EACi!r7QEL4 DxȄP7XV#FfҔ#̺'+q{ CWUv"3फ़A(Z-+ejCpĚ :Gs%֠aНJ slZ9cv18_8PiUMBcWJx3`l0BY/'aXpg4JQS  jo8bx 5+cCy>B4ܙ8N9KJ Rq"̘kUϬ1#[g)\Ql1dCP_6@)@<+tjݩn ivC;NB[_ d" µ4RZlMʑ; T鑲0` HNK( ;U WD-mn["WW[+ "tgj5ܬmFO^ݵO寃 $ҧA?<> @0 MXUƃX o$n+nҌ=M/=pob7?W=\+oE;- ;VOA@7+<`5gx endstream endobj 286 0 obj << /Length 1394 /Filter /FlateDecode >> stream xWKs6Wp&j&-48Mm$HPbC q}w$ۭq'X,~ #8d6OS[eqIv"Nxi8qz9ysf l!'=C}˘D w5T(dSkh`]fLX`]>!9iÚe&6n0ݱf[,G̤ cŔFvō/.`OA>?Es [a_ܤ#/?35okkS} ΂qg;h 5r~xk. ^h[)0r BR[2Zi1lI Lbg-skMh啝_X1$^+;%;ٿz:Qj! 4.쌸KQgt/"((0lVj{X,D aT_hAe/[/>BK@HmTS۟Rc\YA{I|XezQej'aCBCX[='^x#A;N**4+8}rT,fG/zD5Ů *cJ:%$*඼U%EjwTͤ[rzɻv&LgWo0C]^‡~-wɆb㝘 0SRHyw 3 B"2r QcK33cwPL]w74Hc[+x]3~;oZm+9a{d,4];J^]+h .> stream xY[o6~9^DJv,غ$K!- FcmURߏi[VdG1`w"uxxn9'C֯=hr,G)&3ˁerQkXw} !L 1{Cо1ObeB-=@k!p5IZ_dlAH?Lfi2LMyձlv( hr\hՕcB@> stream xY[o6~=(@"R pt4]5Y`02%WsٯK,ɗnD?ƭZ0w5t 3 3Lw wڄ3;Y#{F#1NvhtgH"!@?XN[Ad'OedS xԌK*܈6s%E3>Onb$/|P܆ckR`ԦiΨ Cm,X$~r^rfIFM6[%2H&I07*!p_hGRă|ai.:pFt y*= DZӷ,=H ŝ<:vy=Z'm endstream endobj 301 0 obj << /Length 977 /Filter /FlateDecode >> stream xYo6_!/60<~a/N4؂K!+ EVboJJQC6N!x:s8J{6bl.޶Gr~sG<u :> mSwڌi|!2 NuZޜrUe)d?Όv~|тG=YD>]=2@H)da{w$F_;¶cr4 ǣo$NH$v-~F4IN*̧(NxPIğa4;ʆ<+1&Q16:)εK tjll8-Zzqo5%R.#WPRWK ]+^SqP*fەGV"/yuò[|`?pxm*bEjd~O?-*n\ peHvMrFfg`4W~&uf9x+X# RaIR*?V3mls^,E^㼘G ~f%odb-9@ڛ@]_A& S9hgϙ![\6sC mׂLRXXwY|i܊+Vn;E3oGJ?=2LFI%v:ū˹4rOk; <vtu9zvsmiY xt}Ic*`Bq1lC+&f=p5EuKAacsmɯuz-\5> stream xڵ1O1 ùvآHT2eb?'zp LOI{b%>u纕eEP&MuG`GŅA 'I( [|mu?iuM5]z.yJ lǤ`!BhR@4ϙ!ox&Ou٣tPԌEJtw 32O6͖<;Љ%!LoC ϟJʫ^NȎbRكeN,gZGֆMZ endstream endobj 309 0 obj << /Length 1201 /Filter /FlateDecode >> stream xWo6~_A/6Ps$%RR=tK7lh,=0mDOQlY1ǁ(`H~#he@\dϔ#JpD"&S8$ Dp4I$IT2F?|={~8Ld-McYh¡YJqm˴ZmF▩祪:sz"̈́enZsS_%ƣ'18h=E0u6rvob8wF{[h !"#8#ELD M>N|NCo$n_xnqCC!PZ6WN~A@.&0 x$J]ГkALs]NSymvi@V? h כPr -6a=N!gwI|h{8ķ1ը1ՍPek$&Zrtn#U]Z¨gtFKʪ&uJK+/2U[@ -eQoxuBsU6 dar}E/!!$Ko%}zY٪ֵv'wVe-&zi5/Ӿc%D?i1Kt޽l`5ur%xsO:9tR 65 <}QM0ZMQ ?c]S8lcZoroh6 H8XUJ93|vNo (y`5IbqD טc:? WP1ӿO 2\GS*p].Q1EXѽZ]IzPX%>ge`1+ȋB  fBC;*}ѓ==qt'gs:4C:USnhn7x8 XplL][$K>ֳ&nB;y9 x鞆ן&>5Ȓ #^OG[lER?mV֎YYXr6 M.՝ JA{Lp-Ky+Z:M`.IZotˠChc{D(ix,.7JϹf endstream endobj 314 0 obj << /Length 3196 /Filter /FlateDecode >> stream x[YoF~ׯ f?dc;b'' P3g8#[<Ւ-%RaCd7U_I(=Ig'{Ld,.2IlNDlY5c\}VdmQN<"i2|9RޛӯaUе:RktVt}{*? OKn:HYuv6ux&˼W +c xt{d7*"Q'W!iBL0_7fnӮˬǛte =iílVuC W^nO=(!TeavFcV_5%j`B(s'Ɉ8fN,?T-!"UXD-b9hѦS.O$ƫ74K`Tɚ("fHLs6"NU:YUNbha/xbyġ- , oԢq]qqS3?}͠ 4#J+& }uņFYyC"T-XSpZ`AbT56R!'.btTzqjŪCLqpwLm}$ R }[ď/B2aT ~XZ!QI[t0 LhB8/ba\Rc4M5<̻Dꇄ|@grCL`H |9L )~ :g0șHk2+c]C,5[\Fg0jJ|7.Vu`my Ո< ɂd{@GJk00b - Ɖ2Q up~>JBcˎIrC@L~=!+Cobˆa4֥ob{0d{$ip0GC$:|2uUz 9ZIZPб"XW&~vhkX[kqpP&tOpeaN|I"ACeٟ1 9=F*eߔ5ASaiOi;&lƙ5 ).f;c VN,|Bt,i5yL5}oC|\bKH`iǺ -'9,j *dv@a탊CzpdXx!xth[k['Ѕ唃BD|RvȀsˬήx2ZMpF2@u}byv79@ !7ƴ)=a}X['RTP·m8@g(+}dV46ozgo!J:gr ZT.^31LJDͷ8gd-',SazgU/Ó+;,<[p#h>i4)[GX5&*#朢4c1̐MEwG(bo1n"<:F<ZF5"BkY3/B{|?F/_ ~Sipo\)vC + 6቞=={O鋯u Mf,u:$nZj4m~/a@Yx0yeAV71\'6ܱ`)5ueMUڒ:c(|Z?lmt8 7u/x ma7t1#zQFzͿ= A箮t7pVv,x͚uf~.E~-PG}kY0!PF–` bQ03vݖ-> 8|p5.;_s1t."tIbThr ;\OqCxI/"̉u¥}8㛵h靦TM/<$z5{ܶ@q !O\՜qǦ9^(N}0r՜s_=cM, c bb'E(^4ףe X‚\u U%ؕP1=51fv=u҈Q>/†54SϩGOMz} *ӁcLtyPfc O`Yn̪SruD~Svۑyl;~NȋQio:ӱMǤ?x$?xW NZ]{I@'yɷY'lLb5zY[cQҽGhSR> 7fOΰWw:cweIwe2hqY_ $> stream xڽYS9>]RWآGHȆ mn)*5 x({_֌16sciVH`{&ud2Hiz-|dF`Nhf{`^a>*CY&0)€e2a2=b`iC*h@^BďeJBǫ LiЇ&8@x A.a`*ARULԱLk2%.b֞k:GG" 0&y`X",1:l4:eXtQ멃U&Rx,Cv1YH tl0;쥕Ȕ!vu@*6*Ix@'h{B+h=C<$kg;$Ȭ 2LlR7 2Ta)%@qP!@66EHeNҚbN cΒ\`HC#$ZVA.xA5pz!"K3yIG`CSQ_ +ڛ ԃ_L= (iģai2lg'{_|߯,?]c,߫BG^|BE\fi٩EpR 4\WT܄]3+WkU^9).r;ND- &NSp.%,?]x-G"X/{`0\Gx~=H[ZuMJVBʶ/- " #1y~2:g%DCkv9+}P!Yڒd ) ׻lymFQMEU Iя4U+tS_'5NsV.>f`+>&!3H8R_RwFgշ ;HuA:SAY L Lzf]G{Űho&̓<|0*iރIIo?}VN(vPߩG;ŀiE*޽o S [G EAx9`&@^ꏡho:B'|KӼ?!&q~ûFU'W+呀ebʼnOz. TtL=:EVy_Un'_٫հebV} Aj%aA?0w Zpآ,?HED&G] aADޘ@I^*uo@@v(Hᄎ]6/o~qbRz`]V|nGq=0fnK=ȆK ƌQ6ɘO0y13f =Om)νNMKD1>C%2LhkH6OT!yJz3s],> feP"'K,¿(Ot>Ər;]6ʇDx(*S;eϟMztGנnL\wv{(܏TeGqȆv:Ou;ݺDUέnbӰcшff%PRTƘt{ƶ&洮ӿ^.i%7uO9N+ֳL<#-5 սD*N6J)-73}\6N t#`Z V{¢B"XW< uW-%q[6n 7\l]5 o!-'A8 2 cE4He{ڡ&1 t퐟8=m]7ذ+hXxy=GU1={E/"g_wkQa:h. B1etrU\ou'ޮN!t[:M>Q4S,d6Y)-,Me^z9#YBγ7cQ^r-\4-,m6Wq]j9U6Si]~V-Ն.]a endstream endobj 323 0 obj << /Length 671 /Filter /FlateDecode >> stream xVMO@WB$x=Z%Dpe\:];4%x͛7k3ʅ$է\MO-Fp༜ʺѯK3bhMVCw-gRc) I[gK\Dkݣn$U0 ͨQh)Pj6+e]gHLBՓbg|oL¿Wy .2ziȐr%Y]J3"c(Yk*P|h'|>f{iz+qdP<ϻ+O5%iz|{ikuh<;uθ[x d徂47rv=g=h5!A(dc{qOk{(iN+ Mo_KQwN(G\@D*QF;( -7H'k Qg8ڟN#, OůclgpS<$%:CJai i$O%8__%|@61 iֶl(>|UT(+[w0rWN}97:k~W!&}L>2ʩo endstream endobj 331 0 obj << /Length 2943 /Filter /FlateDecode >> stream x[Yܸ~_X5֭$qloĻw>4jδbԫׯOR{48FƆ[<*AW ?vU,˅eqb3ūH-W e]vE˕:Ԫ֮s\az3LS0}Y̺ _@j9<r%vܬ2UAfLdZa/J77RtB 錗= X8-/ 0g:װ1 ~U)% !E zC]}]ߵa18Z !Pj]6Lp87ս8Ljw~1 `Dװs ?LK}3d,LWRMW6A;W 6iKAY7(?x^Q+.8?)ɊkI Ƀ5~7H<9 VUAvwQoonѩ#5!L~+ ܁f ~%:վ;=PM}Q[WB/j1N%qjROzS?=?2_'.D I2ߞa)b k[\2 G0}x(CNZX$q.U0i@ B]< = g{X\3Q2~2E_ɠΫGwc ;z쨘O7E9JDD2uғom\e~SCɩu6AU{/o}7_9{W?.vYkNFJ9O}t79$jkD{Ը_]ZWufX@FwqDɓev߷MNpJ:}?]Rin6^~>'MJ~`b!QgLwgFG/4teͺpR;op赸Z"?"ȝyߩch\]f=>U&'KirM#2<;[K]޸loy>pUugqb:,}xuBp>?slGhHgKe4 xDT4nR9q?06r KE`!ƌ,Z%T;(-[qM-Aia"zt#5iuokh H(|k)8z:9a8Hq@oFFͻ½DL q0 ssiE"=y,S8GP{*kJMyO$h.fMCx@#uv,jj4ZD uT5zřQ]e>GVA|T"ϾgQ, 5_5#Ѿ UA0MtlrC}(\ng3s9bfє66lrzRDGO\[\ ;< ޙȼq{<](^ v:+8ί]\+}\)JqnFUpQt% TSt+! %k X) sw FVv/?~6\"@AheWkDQ`ΤX!cG$ 67.N mKżl7J~0{ dbx"{OBݰjн u\>Da ϰ<qu߹#UsUs'P %l] =5|Vٙ2e8' )Y7Sm(@V q)?DOKe-fM4pV\p36. ymk\Λ'p \!5DB Ģ endstream endobj 337 0 obj << /Length 2238 /Filter /FlateDecode >> stream xZo8_!tAbV%QZ]=ԇ#Ѷiiˎh-,r8|p7CNj7e2.8,N_p( e26!O=:޴lk{<`Yqod$ `ȼU}2 ~Hz)˒$—bx)LAa_mWd~3a.;Zh2@JO>wU; ڨz7l[ NmƭګzW9뮭i48ukՠu#2hS2mwmֆ]2o:7*EGXJ&Ƣl6f-f|lo!e 0./z NoreAk=;b)d nA|e'Ck9nuiJcoc_"(^2) cyędr…,}HCwl~ xL )S.?#Y&\PI?TW"Z,qF 'ؕu R"vA\!KB _,9ʿl6L#{kῥG;,DAݎM\t[`g1 .F$Y8~LDp (߶caabrC()4kXcFyn +)_ѣ.`XlPF)1eNlZrq2 2%C(o@a8ZiسǺMkWJfxH$6'#QHyl@~3Q&,5J: <@ >:(hyJٽv.7'bf&ZU,sߪf(!獟"vltU[JXn4+;˿qGKbKZSha6x" $0M, % c=0xeS o0L05փP$锧H\GLD[#4VqO2;2sz F$X:*}%ךI$G4r pWp5(K{`"%442$y+bPH7iFH&3 +bON :B2:$9M UENe4B7cw2Caa Cu#? ,V[Tf$^K˹R{7뱪3Iβ,;lȟTO Cfa籊ftd00Sv`VU ɑil#Qzɡ; "P}D؀o_v$?vv)&]fRТNgCw hNɴH*-G&^jX}cBvhU}MG򚞔0F 0'7jP]cI\Y {ph0BLϐ;0{`yT0P5L@t .][9q0jjU(v qR1h]8Z!#?3n[R'جЫtIL8]Ln0.We^te{s&ƛ#u*'}`~ DTJ\]Q1Crxeu>5֬9&, bqAB|0pyiӫŷTkt ؑnd|:Xg\a?~C&@!>a2n41]cw8% O핿+ź!mA޿|}:go ra8ow.}km1*c j8km\]x N47I0&ݻJmΑq?W7zK}0^a$.ޫCx毁xk6& x,ØŁ?FX 4*S8եs߫f_- .LFd*Pju? endstream endobj 325 0 obj << /Type /XObject /Subtype /Image /Width 450 /Height 450 /BitsPerComponent 8 /Length 26433 /ColorSpace /DeviceRGB /Filter /DCTDecode >> stream JFIF@ICC_PROFILE0ADBEmntrRGB XYZ  3;acspAPPLnone-ADBE cprt2desc0kwtptbkptrTRCgTRCbTRCrXYZgXYZbXYZtextCopyright 2000 Adobe Systems IncorporateddescAdobe RGB (1998)XYZ QXYZ curv3curv3curv3XYZ OXYZ 4,XYZ &1/ExifMM*JR(iZ:d:d C  $" &0P40,,0bFJ:Ptfzxrfpnnpڢ|C"$$0*0^44^Ƅp" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?((((^j6L;0,203@y Ŕdq@袊(((((((% [((8p3> 2J0Ƞ (M* ڀǥEg{ lUNF(Q@Q@Q@Q@Q@Q@Q@Quh:fEPE9&Ev襀&%(((((s?59C/&b#N?+e4mqXf] SiRUAKΚز H#>RFU,8F&:lwp(wP.-5"8EI>X뗶/-@ ڝvLY_L'[h@ŗ[-FHֆ;h% zW?m?ʢ醴Z K ӚY5}N$6#~gZ۪0g{f63dT%XԄBm <A?linY' zx#_L[)B_'{k)f2tA2ۙ"M Hu*Tp?%|U= [m2#Jj~^9D2 "[\W^B]lOB}e'_?2)˭]\]CFI_Dcl~t sN]۞37Թj]\kKT̏C>pA޴-gԌpۃ6O/瞵CêrǨΎYew0`@_«ZDo+Q/vaQ"HAL瞴y:]hypj}y. '4ٕ0n6GӚo-ER(~wA *5#C<*nyD`=OZŨ8yY?opObWlin5g?]5cz e㡨;qYGN"4򛝲=0h`Nuּx`SL^YmեC{]C?R?_-YKWq #= X5wֱ&8y{c֩?F+@`%$.&ykr*w{syn`2l~FHؑs( _V##d*=MUZa+,9C)ZgJ8ʄ7[UdG2=}G_j ݰS6qp}> uwuB[pڨ\)_[gďֶrܑGq"on4E8=Oku[Hx sEAD6eY d^w[Fma~ah`.poZ/m,"3P#[OTX1rm=(;=b^[30{R:ı]0H>U9m#|k>N@Yn YAIL.]'OJmGz d +?SdibUH!;HdM1 [MgG=0 GKdk );sSR9QEQEQEQEU+2Ai l JE P;cAc+IHY?¯TOqmIVf vtX#薐\7dҮ}~!l@I%\`1E$ (0S~!l@_j 3:9ңm7, Cj<ެ~!l@1RҖ'; ҧH{XmIvNFZeC}>m?b[H+ yc"KnilG-P6  ^Vֆg(eC}NOW A=. )hB0Cm?b[?ؠ,,yi 8F:ҫh642ܐj-Qooa,vJ,lHBd븏m?b[?ؠ ,~/U9h I+$eC}>m?b#`}@L `b-^U/[?أ(8"kXTpCsޒO2ήrwJ(eC}͗ö@@|D nܓR~!l@[i]r!y3cJ? n<zcҧeC}>m?b ົKi0psEo(*`:qS~!l@-tD^R:+VeC}>m?b0|@kuaUA#W?7ons#Wd}>W#;I/-PWtvnHB`cUbXaHFzLeC}>m?b(\dR*k-2N"ng,ܐ=-RR7̷^$iay+VGm'vNZϒң5/-PK_4nBEcI1Vm?b[?ؠ :5h-#S{IK*겺F  6kn!%Sn5PEPQϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ? am(9M}Z-ΩyqY[/dZ\)GKcxGTV}cxSQ@C3Wj _QEQEVnu!K;ktR70eTVeGuo|/cMG tkXTfY8!0\"-FĴҺ(G :(  .#S@}%5é_ƙfۏ\q@/uLKY琾梶Ԯ#H݂ +21$.*֭B*f$v/Kȭ,t4QEQ!E2I$/#(XS >L +L9>ƢYرLժ((( _KHl?/((+iut(f xuPq{R]D ,x&sʀ ?w~Lq-Ŝ^l@pYFvҜ9#j3CQ[uoUl ֢k:%7NHؠY_Q _@袊(+2)u!mZtPv ͦw  2ztRQ RQ@_<)iFN~lsiO9(I'ں(I#BkeĶЇݧbڹz4Pm7TaO2TuEei5Ρ-4KdhÜzZn/.td8U~EsLg1C2]6sWΏo$)bЮS{Ѣ0j% gN=p =)h(( CRn m ̎R02nMwQ;&69HATLrvIPR F>Da??[CL@u1=Aj&繁N].i ܝ@?P*qH5 p)R('P榑${OBsA8 J$P?*պTIYyWS2^I&u pn|)=,]fzgf Ͻe *&2=jܒ[ߢOs2RjzĈ«<6JioS^Aȥ ( _KHl?/((*ܗirVC}qW%R:+fkD0Ɂ#1zPpf ~55PrW;rd[2 jGL f+i{rrYFPjn *7w) #J-/O6[?6cfNWrgSZՇ$6fvIF#VBBjPlEPEPEPEPEPEPEPEPEPEPERIZ+S 3T($|ի}eDEnTlc;ǨbZWfsMfgV<kZPmxoˁR"t#T$\"ז'[ʉFA`ջۙ[x]BH{}*c4>VEsP9$t ]-8I] QqvaEUQESZ#\'ҲE[gF<|m].)R[CkjbEXJaG~0Os]EwJ"O.$Lj}UQER? B5vi @Q@Q@c\knx@x9ԯ#hi?2.>{P9KE7pH@鸜wDŢF#50OX;HBGzҎWkct7$ w=>c<۠}a{[ܩm"uf2p3U") CGw. t&t rGsmҴ}XcO멢#n&F??PA_Yw:g!}G4~(((((((((f6BҨ?{p֧դhz1mMN\Ems>ldA5%fA -GKFE9ܭ&ў@mnm<>G涄2rA9P*Ze'L?WtAaMU]Se\Xyj@:qw0]J楉#+6Ԯv4M,9c㚖]x˕AK"Bp:p*77 i2)r";kqglhskZ[[,#H@gD p)s;4@{梜9wQʣqDZYbI\C\c奴ǍθQ߷Ao "Ϯ+i[$QEHQ@Q@Q@Q@Ѝ]ZGaFEPEPY7%/|c+jY[9IN qֲm`j81!o/n;1zhnΚl-v$ fHˉ9ڠf|g׭A @;ֳ<%"Eu(cp$O>gVxh_zލjvEwn`bp9籠y~ͩ[Eq-6N_RIub ߠY_Q _@袊((((((((}4jKjJ]~KGsGvI#KRzQD#c Nz־mJRImb#giG)sG,,R%X'EjfVBY坺E^Zi4b IGUk\v֫JE;qKsKc168'ֳ/5y&&Unq+5w!Ͻ9ggHꧨpir;RI])gp˵\R-oc*;}98:9Ά-P y a4v3@14_`E (9qޣ0]:e"COpj2ܘI]W dW!\NG SvזK)m3v um&!RWaۻ3Xyrv\*.ZuN˒65J%P÷֔#VdM"K6fƥNF٤vҀ>{1#5 2)\@fj sK- (%\H#]ќR*auMrqҚWm!\x\`:0:+XL8Tգl ˜V1i][/3iEEvZsè((((( ZGaF-#A#Wh((NԉVFp= i=q\ kcBpTwyq[؏/* $,)!st04(hvʂc( "J=gOtȜ/boEj k4#XX=4qZdn8>YVWpwv>vZ*gg!}G4~(((g[I/駊7"G{m,m$s* OsqHgIDp\ԗϦH$04~e!)VMޢmH.D1%rOlS%xry5%@ gb{8kX$ظVrr})β\68 &R W V>%Ȕ8=id)0<,Ð=zH)>L:'p鿞٦^7E݅S vg{ Z=J5m֝YFtBM {WhfHdrYqs֧Ӂ b1:{qY)KЦj($(BUSŶ}hVeyEe8enjVvfN_SY#U9({m^d=ZdgU64Zt\IJDz}jZTXmpax ]5Le̮LQEQ!EP-#A#Wj _QEQEuTdAXe+0$}:VU AXFeg QFzր*u"llx'Nf墳m0WRCAGUxt/AP Z2UNy!6[:{ګߛI,aeyƗoxa*9n ,O 3YΛAyT^(9xՈE? a"KjT߳A(Eő[6Yi$ ϥtQ5A@Z^[L ǵmF A K{+Hmqw-zHe+֬/u#2jmq]@F-L4`X..nf DHYھz}[_ŷ9 *gg!}G4~(*m^]QO,W1^Cm;xZ$Fٻ!T(5N!mLT' Z%n{ %A$dr \7{2I"`ڣB&8;>41b[NT ]Gw <<Ali/GφK}̾R6-U-/6o>YTU$D6N3Ib95ZII}Q*nKw+ؑfOH[^/:W8\ъa.7sUʧ+ qg3L\~(©GVyOҺ^"c'zeZcv=UQEsK`vd @9 *գq+)y)P=T3K0@?*֐+?պ+G5 K{;.cnj3ǍsؓVj9K^)U Y&/5N)ˣc֪gޏ\DSwҴ-<{58_4%JHh- &7Vaw$6x;;N0sZJK̳a, P FNZu[5s"$,qmPaESR@ A3ΑmG<Ýyc@UFQ`)i TЍ]((%n&vчYK;v@W דPh>H>ߦsր*Ic^;ˈ[uP 0*Z?T0zlQ$1P:ڟEQEBBjPlEPTuXJYفXr8W1@JpOznYa1Frsғi\"e! ;$ T(L;[Ijɉf'QHϛXG~{b kdZeO,;Vx+嫙Yd?OoOIqL7C#=k~~wd 4wKp'Նa$gwq'$vV#B+*OPRq(Es6U ʥ6T$䷿ҩ(@T'vx,b<}q4ť $.1kqF R؝HhG ҕ+J#lջ̮Y%%E6J_%A*+C=}-ľIU1PpΧb,)l*hgem}E:8HUwom1S)Y\G;\gHNzӓb$z ^1QZ ͔snWxq%)D۽Tq[HFHQy$M5LrGDsbA#ČLی4/E A!js7|$>n|͋>朕(>JI2+B5vafy;u>­QJqQE1Q@Q@Q@Q@Q@Q@Ѝ]ZGaFEPEP%&"F bZv7 F]p'99[u2YkHگ?h /n[?tcMN&LUkBƭ~EQEAqm>|c ꅟgӿ:l~V~rO4袊ה-]G$;֖u i'Yq#,hm0 (消59"FIhʏ73RZ\E* T`qK LjMԒYBc!WkY[jB# ]I8HBpY$֢BP)+j0Hlɸ?\qv5F+_<)]2y?(*˟OH05%%fMsQw-rȁ8e!G8iZ:<{SYˉXP=sM&vUD@pNZ7ܞiJɖ'dXH(-a&*Z0r:zS7Aq`KJKF5[IAڤ~#U teO }60Ld32;F R<p;OV-IcN`RFps1b2[OAsU%-,wB<0YAπ =)%gFvrejuڲ<8Ѻ}(U-bՋzk ƸX¯5<ɤHQLnzp1V1rG3ȋ1?Ҧq絙:=C{ FlSQ4TE 0NI +'YKnP2rY:F,Ha4QEQEQEQEeE,*Oj5BOG(Btc`qԿ泙%َOlR% ijt3?LUeQ@Q@Ѝ]ZGaFEPEPMxD)"dSiut(f xuPq{V蠍TSV_ Z`f((Y_Q _@袪7?eP60{P;tP\92 aᱟ- Y >-Ǘf+.kJƎ77HbL:񓻹=9^v4|gI4z0ɴg"5C!,嚖peTiRd|0?ƪ25`K_5! Xw2ǥCo#GmMp2vXw\ށ-k]"6]ZCj`Y^nKssqQ,=Vn-;]MXINicDgҪE U7goֶ:QJ  BʤdS~^QPXzL#|͞Wr#k{J(ZORȀ2@8ſguD.@'i3T!OMJ]QV^lw(T uj3*)f`I'UhI ~)I`GRlOP0bXt$sNEBf '-Ayڭ$8.0U7ugvux #snT{I>UʟǥkikkLy= $(aEPEPEP-#A#Wj _QEQEV=?niaHkNqF%ẋV=֝m jStd.aln@%235iSz$$%ZheP297ʆ\Fbv bCNyd9Sm)\xXK$I-0eAu=iW1Z0`qҦ{,lFFX` gi"ym$'̌1֭iVs}3!UHEn=IU2&,b<89☺mhh`?ܖד%kBb6:E6Ɋ7ȑq-InnBŽO9T_9ʆs; qrz:'=Ȯԕ[Pmnc>b#RO@3Z"W9KyqUb*ͥ չs$d'}yJi2C'%j=+?Ww_o"3TSΉWp>5VE %>88TT淺\m}EU[iv#:|<ߍNM; #3Bi,hQ!ݵ;=*\\rZ]lb7(5^pKn} kkm9h;&HְD)+MU(qZM;Z}[jZݛvL6Fp{V@U`1ӤJ ԇ@ݕَKjQ4NI8:qV%;n7JN:V]_!^$rΆ9TSЃiՕ=үZ;(`QEQEQER? B5vi @Q@Q@a moŀݴXZpEh3I ߃0TcjG+TT #+3Oz,&X-IȍZSI9Pqp+3~YܽhG<,>Vsw[Ց4Y(lZ29jנY_Q _@PZ¹@+,3 9kx63CsVyw*˹~)ۯ@d󢐮[<իQn0]ZİD ϱYpAuRN'm=[=M͘аaק:Ew"&_fКnGάS6]'59P5*WnÖ$@n9=p IW%+"F=c>ƦspPsqIۀ9П9&;x|'X+D+uȢ+,ːsg (ĊkЯrrI)'Drj#)-$_-CIag2P;V7S'9lاn# 9Una.dެ1ɭDYl'g7ǻ#_נ bQ1^K2Q]2rqYtH5uQk@ EPծf8!e=#27,ުEcZuKpn }?qtE3gqOT,/?u~ZӤu+pzs$oOp@̣_psN uX@㧸5RFHbǮz Q#;+ ,rb$zf &TO.amK9y w}z^O56<Hty&YGr;[f(1m>m̍!(~|Vs9 r,Ydj*\SwcQYM |1$yq!KE(((((((((((6jR? B5v ( ( ( (*K}BNq&}j<@ذVknΑʪ0ZtQ@f mu;=oٷ'ʡgtq4dJ"tSdR*/T_Wh?kOq—kOq¯@?(oP֟?/֟?;V}?!Wh֟?Z~8G֟?_3(o'TZw*kOq?~? EPokOq¯@?)?+Bi.7kOq?~? EPokOq¯@?)?+BE!y3@ okOq¯@?(oP?~? O?~? ЪW_@ okOq¯@?(oP?~? ?*RտOPe= ?l8Wh _ڶ_oV{v2EQEQEQEQEQEQEQE!8=(nnJ}+V$LIm8i3Ҵm#I9V(( o-XԳoCtQ@Uu8VhhZ;<98UIjݣۙ~hB`Z%HGb8*cRӥPE84X"gH dsǵ^%՘$vp"zՋmB 6&w긠 tVG~yǙ/j,k" (R7\oRvzEQYzu[{v BRS<N%> k 'l8@R8jsHT1(o% D`sU10U[)Rَ@U+F;D_hL̗_f{yʂr +:T1kkvFX?/UFH uR7k7U%P镫tPEZ;<l*+)uwH唖!¹lǎ*IMd b=M[(((#wk,{Vg[M.e,i#u:wq?xĽ\p u6g-5<rګI4+qn- c@o}0)/>O[2Z&߃NԾgHd8?_R\Ϩ5b<.p(ꁦnI5pJE^>W`Lian߭Ioi0#OQ@4h|Ki0dMS?ڭe8f1Z֐ kXSj(PeȒn9'UY{|f}E1"xV F9,OiM!#jjZtom 2Lo gP uk}E&tڱ&HFy-uG nE,y¼Qd:w5+-oYӜpn3E݄ImqbPn_#PPr$:h1 %D Ro4饵O q]*jm2u{i9(@hET3Epc2n^H?Vq y6Sѿ(-4kuh]GBD$!`O] GR[][K/bA!T񓌏5Z}I0\H~Lsږ Eo.KO֣Htۙn. (@nI}\'3kF0SϾG5ZNk;}*ՆKl@سo2r=:5Jʲ'Ҝip>OQpOn-p;@`F*} QEQEQEQEQEQEQEQEQEQEQEQX:ŴWf>P{񥸓P,8pT(j"3ȫ'2zt?Y˨XIp9oγ)zր,QXsIV(cSj֋ork ߜw#@TRЊXKEV$A25/~ѭSnmERmZen;@h/2i=|##@h+ \"P0S9UXu+9Fst>k{w4ȍc(z*jn#Nrkk+t? Uim 4RCsa &޻Nq@UTI|@ǥZ9QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEc{j}zEM*PǗ (9MLAzдϧIo.(rFG@(ެfnb = }WS\[,qWڴ Cќzd\5ٟ9E gր!ӭVYsEQůCdv=j+{iԯ0:ɏkFO#I,9[f<7p@b'"%ɇy$sg5,Sk=ڋE !AOyF:w7//v=PfIU.#[rGSМʴm 5pݰc8j#)L3\ h ia4`$(SZEȿ*tTi}no.L BYwoϚێa=.vLn88mm0duhKMG ʸql̓8B&m:`y ]V4Q0V)8JY-m!X`3ǡ :OɞD@hZK|CvqYenAt)l3z?ΦrW*Mds=ܡLmMqps/byNq9EiC1mgE.l{6c "=Jѧ4b*(LN5@ ;TswI%ີ%۵]=*dҏYzJ2-"y6J-\n"Mɵk/#~oFs2+X:jĺRȎ.eP[޴d-9#0QUƓtx[s% zfm㵷HbjM%((((((((((((((((((8DyU'RQEQEQEQEQEQEQEQEQEPVxcf=IPI(UEQEQEQEQEQEQEQE endstream endobj 344 0 obj << /Length 1597 /Filter /FlateDecode >> stream xZ[o6~ϯ=h*JеaÀ{m*K$M/%b9P0`RG8?%B2y_F`kkI 76_򢟁uv\ӃiS }!n]>w46l ^2 XuwL0, &B/(J?lʚ4WUH>ھEi\k̽]Red;-^@n|]%y`F"XcΌ$[o W滗QԉH?k{En320,Gķj/Uu.\WIV1uZ R)Y̳]qk^4 "G!3{"ȉV;iRnԆA$uu$# k{ U=Huh L@4R|q65ؖ> QYg֩V~Q黾jj32IF:r IYf$t2Ebc'tt$`<Ո^b& Cg*H$lz̖izkG#Rf6Z(Yr7t[mXf6@u:eD[xL . UWԊ%9Tp~WMzoear]qݑ"$y0@iEA:no4&l1-5'kutX3xKP ];At@#Ae|I 3  [>ջB=A]?.}D7ryaW.q+{'U(* T)rFEc;']{RDyK}xO;3}xiI5K!c onT1Ku2a]?竩N}2C`>k[3 bզT/J?_]|XP} yRuzЮpnxȶI3uѓ'Vrg< :͗kLT)n4}1uN0v,'4$E|^mC ȃ$Ѷ$eIbQ7%bmA![EAArDGst#ɑ|.ŽHD9#TaA"nQh1Λ@~ѝZěrFv&$o|W~#b\ixy@ʮjK@q|jUXfI s(%G™N_L'S endstream endobj 334 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/preprocess-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 347 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 348 0 R/F3 349 0 R>> /ExtGState << >>/ColorSpace << /sRGB 350 0 R >>>> /Length 4234 /Filter /FlateDecode >> stream xKWp)-°_>[I `[@uذXv??]}! FM5gEY,r϶d?^VS{JO{ۇoş>>؏/?|O_}ۧ}6)a^zlmL?n_>VL$9T=SnuT1R:oT^T{U"[T=[%Zjޏ{}LeoLK{חim?n'LN;/R^n':t;dNwTOr{dZj.T9YvR2K%Z/!rt99 (eF+gvC=\Pƙ='gw]RnG GKC@)T=qdzcQ2sdQ2S;eTP9/PdP9!d ?)T=ts(_F 'S;\*'7UC~2JWy(T}p`7MaE8\:Z2utAQ3Ê\ q¯]PyPVSq^y=Rzz@!?xA$UPP:vC@3^8tZ:d d0ú\A*!?xz@;!a=뒂Z^1'th_EY'3[_HWL1N3jrQ:RXbF)TsZPuQUO!+59duEq6Mf QFF@+(jNF@3qQ3uF{| SVPBXgt:cP:9DuyYhEC@KHꌪqi+X9ꊸv AQP9T}/A]Q/UC~2:QdשrȏCF@*ƿ eU=4Uo!3AQ3u-}@@2>BPgt"bWbP/n A=9TpPzn(ٛq@A=ꍃ!Oۂv\ JK.})߾ 2X7l)l0]Rm@n(Y B`$Y5!t3(?%Ub`LF@&3NYNéw@8'$ ujcPP/ÌgrIĶm "v 媣 ~zA@*ΩtC@*zuU ?p_E,/NQ=ꉣT^[_(k*u!t[? 䯢zP!N|n8߿Kn>tCAO ~VģTi\ozn(NꙣJX7J61 UP0NJs% o((cE91 tYN90 ;! ] 9Ҟ+PA=n0@@*3SPz 58NSGDb>I` G4 䰢YwNZHOKG@+",c %* SX7A@*uCi< 0͊re^ocaYJ5s7#TE@&+bC0^#  qyAgX3Q@ϊd|'GyC:9b>`p7DwH4oC 5ש!iE<\P( lmB!CUă.V\=eI0z0T9mуC!f |o?p`:>)ީW{]6UnNL?c\x(g~pݐ6+޺v1#q4ۛ63oRY{^)ͻ|懧?YoOf$lLxyk4.^_x_[o/^|([xT_舩Եzݤ距sC8E\oի7y=~oo_oo>{Vc8 3W~6/^?L %t}7|3WNo7|>< 0f7O[#ۍܻz_3GY<}jp\6u> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 355 0 obj << /Length 2701 /Filter /FlateDecode >> stream xko D{ 'H-&=( EHwfgI=sjRҴ.gg=+3шo>q| 5˛&a 8S;!"U "TLs|gVNA5˶j|z=̹Y>ԃm LmD\3p`mUqs] J,<mEN0- 2a$N{~[8d!K=SF3fiE(uUkgE%$S MW>%Tq*/ z3kZt&C=(!("W%i[Q(͚C c 2lڢTXJɆRwak'2`7 LmvD |v}lySM*2Nj7$}$+7[IEa;%' LB_B/CIb`ԫZ-qΚf %i,Њk08o3)VM_vdj@oPs,n3WM %*[Ύ_L ιhj#RB`1 .$86&S n q>Ba m kHQZ3r\--bf)HpY]9m 0"&b,pKmShp}\h=Bh݄+UQlH3^% S;)z-47sRMwQ/4NgyǽMLI䂕VM&*% k5NQ FY#J..xz5Әȩ1o/i'42{c?8|$F{֎d홖b$bTg=$vЎ0 NI#yJ%OzHb п\Y}W@zY5t>K{sD7<EȔԸ=x_bQg G{N۽YUb_uT=q+~cό L;A,1KMā%?9=7Y} !Xoi[R ,ٷo@`(u\hqi\:|EW/훼v}BƄۮӪ(ő-2[ io|#n⸚Yg߿ܰNwtpB?a3_`W/<3CǂG>}ӲH^˯S_)2h~{J.{%>iF윝\3hvrG>:_yz^7ۭtWap*DH%Do.S6çs5O琍~ws/xj>Uvt-'B/{Y 9hYH4=|ߴ:z 4_P``xv=O':yOi%N'^FqM͝(wB2+zӡ>LpU:h'ƊywyeQ N6V4ܬkRw9V<, ~"OBue@rpF˻'|# 祗'o9׽QuPaYmF:VnRޛ^7;I$ϙ+q kJv}btG^ a! !?A^]#Rg^+$6,ܻ.J `)pžYSPwVWw~qNnG e6\*+[fA ۃLل et,-5K"+IIPHFE*9nDғPށ/PJ?wj/vѕv4Q QY=J̱7 endstream endobj 360 0 obj << /Length 2415 /Filter /FlateDecode >> stream x]۸}4f/Qjis{Nr%n_rش;YIfAy-}g,@@P`ʤңQhv|*Ŋ#`?>+#> ˍeJLl}JL >3YndNӫ2qx?-hY62:c\|>$KDrdMRE=)K"Uf_ τKU1$!3MY ):+#a $ s !" LϑC )h s* U4?Ed+> ;394u?3=J &4ө#` At-uEϹkQOWoC`uhWU/]6vq݌ӹo_s.<08 nHq.mӭa׉:F |\y*gf/+BTQuB~iXkW@b1`rZ']S!POx'cHg04 =x>qMh \:WڎHlvXSq}Ő |,lgxaW7hPfĖ[愺[Qހ#(0U ZlSj#LE&]`_yQ_o@6k ;f~Цڇ?[uܺ &l$L2.W~]}5-aF= ;𻮧 c_e| ѷFgHMsuŁWn$!D$ݔPvSf(TN Y@CDmhu"Pc(mt4X36.D"/?ZPO>}:izS+dɟKMjg/!\S4A{;fvN9EYݶs IOőIBJ5uT3' 9:e!@?hd>5쌙_ó?W+Dqxp6 O .exi=X`KK/SogMaqN|MywaKt}hY0a} g{]Tð*lx2J0ةP%&-/}ƯÆx+!xB')Gdoepfưp:;!g l~oS3ML D(x·S|x˗[g/1eS:ߥċy<&{/&0G~i{7E?Y}y O;'=O}ECmy.xWw;hySUo[x+uy>vNK%VBkWs>%HV> stream xk8 :@Zmzn'a$uο_RjkL[ 0(J|")pNjO.Eσ\8ӹ~$N~δtA\]y_: 3} @pHYpJ׈`fԓ7_]d?N#`]taJ_VRkǮZhEihn&ajK/tYқzf Uo֕f̊[!Q,?ϣcZFM S[o E 7ú. o+/K*J1-8٦ uteު[ׁut T.FJUeE H&uT*4K;XEH,JA"+Byg!v0 uKJ:)2 3}jڒzV@9Zj n/ 4nҁr$|hTK(G}hih- #.E#.ilJmO,j&*.2t& o J&?xwȪ`KRm-pwz"՘Luv,q IA7 I!'Qt$HdGn%A`< q9 N!d A5k6l0( za\H#m^D;T:2/Qo)8+<0;I%V{7O܍DQĊ m=ZUθS bښeH5tU3w?xg__=;4˅ȃ7E"S3ytηO%^0i \U ]ߪڿk쫠m[uuhan<!_VTìپەht]hQn6A$ e%3Xx92^#}6sj<}D Y{ qGS{y&٧rCF90A[eԻr~.fI^} ̾ѓWW,U`WwzJL}c/}lׁ8Enү]G37%OÔD%J|]ztI=p#m2æYbsv6?}һHb?7oBoXU2V>yiUϳefLw/ |f~\5mft*͙Ic)gC@)]f{ fٰiB8>^ mwRǏE;{gsw4;\]#B?44MJuZtY':mSa*Rg/Zuk>>3g>nE28Hݔpd\XY4E1l:T){-dby )=wqY%GaXS[+ncId,I.պҶ8b]##Xษt g:/U?i6BMԏҶd/uYM9Z4Yċ# > stream xX_o6%) [aCukHB;:yslːNG=Ǹsy@ HD $E˦=7IeY_j otNF_֝.4ө~uu?WSIx%I73_&U UUT8(΃wYus#V}FC?u OHKiqpQJJ%;8Hn3ilYs(iLabȦ7g{&FB{Lkͭ@%|G-NLǬG35wXz#1fX3"0ƭjbnCM7"¯/Zq6g  |[0:VFji Koù-ù2m 3/+kc̬WKVI-cb8+ڹn:-:50bW#K57htHH4PsFl3zpivIlA;@;r 3 &h'>!1WD֌@Pgn֌ bF 6 #– %6QIf$whW!Y5ht.;QEFfШa_}F u ZNh.F㐰@1Q9u5^ [؁0*\lE&M|l|5Lzz32|Kܫs˭y=' endstream endobj 373 0 obj << /Length 1811 /Filter /FlateDecode >> stream xYYoF~  {s@4.h(E[l)Ra]6,Z#@.gggc>6яg8_/I4D)FJ(a)49JG !Tė#t}8&/MWU;DD0X+G H i3j;ӈ3cmckgLQLS*@`VfݻjZdh$HhXc.9"1FU9rբ,)R;/3eփxei6I%44kںXr,Ҕ͍#W#O 憯E|] pJS[Y%jwQ-7CT63ɽu|Tr?6L֮++M x܍M-"e0YgU˼f]eu').^ҩVhf= _:N\7c! B5_9`I[ĻeNv"^mv3+/ǽMޛoHH䰰5Q6?t.4DҨɣj?ͽ\>?c} ("H{PT3%}jY7h]%HY=&8ε} ﱭhNV(:hbwyݷ3Wy]aCnc!-&~^űUQPyx갉6)]And{U7#qq\~a)oQ'*rʍ;!|:;6;=!t&T WKQתWDgMY]SL !{ͪ]r_0C+n{S/zb2xFRL{I ͑@<&3, ւ<RFaۈŶ뷽\TbvTYžnB:O0B3bBr]$ cА}COh*&1daW:b5(( >Z(ob!(r 2-.QM TsT3t ջE?sܨJkxX"5°A#ST2=T!c|+[sD 5y̤ S`jyq=ٵ}N<|WwVBIt.Q]YZ h#wtxcp)ԫ3ҁuA_"dJ#~H,KSg|_ eۢ+hѭ2.0Iׄ@\H,ۦa:@ʬ.EukQz1  ^1-cZS318^8\aqP q%ʞ oat/,q;_DY0h( ls|bZ݋cbק-$ BopI"< 3H Y`;?POT9&A{o;y#Ge~cUfFXHm 554i A"DP>R:^ͼV{yH~mˡ `AӋL0s8LO#TDxm)!^䌧aܘN3C~HuJ~VF+`}JgC 4l=$=oワ.}j1+&)DX.@)R=4}Pc}BcR FJ3Di(;`&- endstream endobj 377 0 obj << /Length 378 /Filter /FlateDecode >> stream xڵTN0+Vz~="HH(uR|?Uiidgg<^Y @z=\wxH0ƱY # ։90dUkQ;!Rud4% |98)2k#26ypu5L|[oEUcJ Sߔ05H3|o:)0vڔc̘Hsc?I#y$yJ mX.MY+fx%w&3N@[$C1nuO4* E$>rEZmdmpP9A;9q#-. iGS4D)R3!m+H<WT endstream endobj 381 0 obj << /Length 1901 /Filter /FlateDecode >> stream xZKs6WpC@3C}LrJrIf"]Jb!d'Vk7ML `^`I/Ύʓ(Zyh$EL`VoB5r.T䤵'Y_'i0o$aM~Q*,JYQ +AR7"?a|Sx²9օ-T*^S&" mMRf"Lrp>QSìJoY7i+tǑp"2j-z# ꦇn$c5ϲ/eqζPطz5n+< _wnzj\,F8PmtLɵYʍ|("PItUu 恵9L ۼG/8̳BpF2V`3aSS7}+$r5BG2ar %t-vJ 3aё\;v9ߵY]P9̥ls SZ$M\T20ZR"eU͢%5u]׾+O=CaEw[QcٟA|YS}γeկTWMvkV/p7]WWQamEc pȠޏc 8rQBG*,[E{#3JuAwW~2;㈃,N"$i$*GHe`(3ᬪ'FKdxeBD=FlMmq+l zNmz-^4]= 6v0u]=`;{"硝$Ir1|{ q> ƕ#XlA^\b#3 :;X;Rn1a逻j*% a3u10pZj F mv#%b7f olbXyiZp!5kր_m6|[F8(yO˼$D{zudq蘝ڽ;x$z|o8b1"+UA:B rM Xk#7_a-~KH>hںY`֮5=ٲ{LػA=0䌊k$ {fNeRu;/Oyӿ!aa 515 YSXA)؉P vKlp j/>} endstream endobj 386 0 obj << /Length 2889 /Filter /FlateDecode >> stream xrܶ]_vܙ,B$HX3kWV7e%$׶=K($ 87:\lЍ.Ͼz!ӅEk^ȴ^:N@/WR$gLUj(MkkCkO# E +$O\fQg* Coy^Muӕrצ7_XhtfcfgwsfZzqWuۚP+ÅݒPKlAq) 'pS 1vL֐xUq$Ú6`GsJ p̒Rp-4:9s-tSB~S5  ŞP7%dh79]"9Ga?˳wgX Щ)bw8Wr@N]\4=ߧ)2d /\ǓEnk^@a{ rɃW׽k 3<@z} =)قх8?6`GJW-<@ǢYqPB] + #Qx`%M{À|1*.IuOJ\nHp$8Xu1}@`4 `8 J<:f^OD͏=;` %bt[V$ !Z1!m[Y]_\Xd^48bƩut8 VJARV3{SJ_nS촾 9ÓΑ>H9Ցzfα9C:3_WMHh0,;9ڪVM (䁴 M926ŦT*MpF׊{2ctvzS9&DԱ{1_񭕱5pg =Pt wc@}7P6WcE5T4c|kef ;G?]>K8r\'vl;P"3!#ҏ Iz endstream endobj 399 0 obj << /Length 1620 /Filter /FlateDecode >> stream xn8_:@[fgM&Y)dVYLLJ0ǫ7h1 ZΓ耖AA\!b)K=- EVm&8tTM: 'ֹÀ$ISN8 5պj @ٶ* Ukh,ӃvzN 5zzKJ<=ALRozr-t."R$ !p@G%00s:2{B2P0M }7yq 3KeT!քb-4g6\ǯoʲ-Y$_-,\+5\mޔi~KalC>,OSKy"bE,R&zEO?KXRV=*0vԄEچ~ !V\m7=66^kuM d 9+Tg:8rW[MosBVτvtSyӷhdm,SmG-wӷ4C&v"%^ѲdUe.Df2 y6^ͧօխY6 S'i9{i>6qsWIE>OEJtRn-5/g{ B?)H͙jEȌ& -m?Rrf}[qq[RT])`r!~mF%zMT"y98<5ޞN +MCvMgf7EO~S>[hޱSRj3m(b@NEZ;FxːLEE˽ՖyMbڏ.r|Pv8k=}F|ͷ2U` l{ pt~.*~HDDToSK7ƊJr Tx߲=[%-(&_7~PDr|ǓW{й=2;};Jˀ7}Qύ77]![bM&*Z&]voY7q"6nS4:n]"\={]nб ω:1>*)!hwGciZջƴz@S%U%Mb;b:iɏ~b)s 棃%Qix?{ endstream endobj 393 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/heatmapData-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 402 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 403 0 R/F3 404 0 R>> /ExtGState << >>/ColorSpace << /sRGB 405 0 R >>>> /Length 150962 /Filter /FlateDecode >> stream xMJ%7U$rB B8hf_ЕTOM?pk??^^?׏|>?ח?_y~?ϟ_x?ϝ~tvۏB?~|}q+B~(:}y?nN;|K?>~tuKN_o?||~g珗B̹|Yۏ:sn??~CgB_̹x+ǧΜ珟/:sn~.M{?t^^?~zBwB_e?^ }^}v~qyЏ_>޿(yz|>4Ksx;Wom_?nN?yUOBoYh}W}w}w|~;_; m??Yh|}v~;_oBoYh|}v~;__￝sӷzYh|?G~8}o'[vޟ#_ m|hv~~;_ϑ~;_ϑs},vݟ# mowW^h|?G~%NoWZh|%_ɷs{WJ_ɷ+~%گ{|{o>dzFz?YsG>~T{~wq3ǹs|'w?ߏI~[wH< _Ϗǿ x}%^y3Vcuۏߏ~_ߏ%#vH<&5a[f_̇sM?'1{/dzu`Εm~œ~g}~x}<%ʕ>nkx{~AU}ߏ')A_/g?Ǐ\kOsrǻќ+xW86<>@hvuuٻy:*w۟4rT_6r{IAίŗo_K9%|5xysܟO?qYy?zyӹ/xZ^^7'/ ہ}>a7s/G7|{|8_+{/}5_'Y|~{݁}ʅ{lYQoYIupn-f7z([x(;` ~?v &J6u֭kgw^_1 P>g=唇gk6G{G8>ݟ܄9^_۞|=VFVo.vOz?}_:onJw>Nt?:+_ cJp3 \#*y Ⱦ:6u}ׇkH|%̓Hž>}9 IXY]6Gr~޿kz9Ge!ki|j}}|+l7¶SyWr?o ~/?g?ЗyO&|/m6}j;zY[y×v/ ~YS_ao}}W> _lQ~> +{'~fe+Y5_T{Kpyx+~z}㫱/|5~Htj_/`EQ?f{x{v~/~-CfCąԶW~ .G![Ce߯[_ Ŷן@:w!|2i/krRv×67 ~ȗ\va ^nav7|C/c2~S6O%">τIDs"_^~ُDt"|˯+/{nDt$.tBeƊS-O>m$s BNB |< Q=$X*{n >(@>Qx$X zΏquT$ )@zL9 &w P")@|+S'b OVSr6\]d s j=}EiG炬Zρ\@xI :hɉlAo?ld S~]´+'z6DBZIo(RN K9,3 hsARj.L 3$Mf1$\ԗ ȒKy(Rɥ~Mr)E"?5EDr)oKI.Yԗ J)E?b٩/rA\D催Ro&v%΢*o:K9/:K:?N,@utDXg:K7U\ڴDɥ/u_D})Rԗ@iK/ɥ$\`LD$ Pɥ\"c\H.RI.m`"I. RE$v^Pr ,ؘR4\J.EgiGt2YYʼA#ɥ_i}dS_VX}iw@Q_eS_ʭ/lEriC0ɥ $יR,RrV_.HIg$@\gKy3ɥn%vTQrVX} $$ D$ԋtvtDXgisk$:ˁ%:KQY\%-sI.e`"$sBI,*圄I. \p18 \kE,HK.mT,Õ7I." ŏ/e|K~*Dm@}Y9Pd@}Y d'e@nuΠ(@<TQa( sV zk= ӞLȪDH๠wUS&:eSSuIC'@xY9P@x.ȪN;`\КOS6*Y6jk>_xVͧ&bzVXʩ[!)炬hxL)7X2oOr.ȵvډ)Sbmؘ_P~T9 <a&m3"O;/(\T vI6>3Pr6&B[(&QY4ȢIDH 6OYiWy&Ϡ>3>Ph2e:&CpMF ɔ˪&DDi[aMv\#f|&SdaM&5v8I.Hd<&sAbʨE)w]bIߢLin%$BL*ĔlDX3bV_&ĔӶ"BL9/&ĴSe%$bmh_>?>+!$D&LQßN 1`1i$TF9 bLrN„97Jv|OB?WZGϕ1eYתDce 7NB4}UcgNB?VZGϹU){goڎJ@m$ѦD R3 &sAfh2\p#ĜTi'_4KVUM&sAbrU6HLTթC`&@Vj&@VjY d&mb[k /(K 4 M} şU}OW_}SPvMۊ1$B HdS&]w:bʝɔkv_@gY9P@~(5mD Xz5RS·չ~sSJIRj.hu5Vj4QjPFIdѾj"RoԴRNJI\%WNd%$K[+V6ND*r@g`QX)*Ȋʁr%6x(MD.m \JDĕ2WD1qmE껴H}iU":KAK-60\uZG%K /K /ˁK /(Ky6Y/H3'4!k$bBHU-Sb!˽$"BIR+AUID*OՍIK /ucnL9 \})Er{ҮnL"%k\vuc1$3j攈Tۢ6sbVD)gM2L)[1!iKԍ)ZƴI`L9 ɔ4DD)z$ucSQij2&(L9pVMM)r8WL"RcL51ӎxOejH:0QuʍPUZxJDԔg]xueOψ :M먉0ˁѦEEU`UhӇ M 7~́bXg +5Rؔ?ќ(5w;  <=Rj.FIDjˎ6m`}'aUjr? RFOb#<&`ϠT9lf*Rs=pU$D۫н|U$D){.ͧ$+Uj|#<)5lDX[ +5TIO dMh2֒JhIE7N9OaI|fO PMIHݍ2P i P_`c ʈFh@0 P3#` H5/X:P&!5/ jU [tR *aB0V>Z͋}RIØ}T:eP0$\ԁ $Ȓ@.:@."@\%?@\K?@\Kq .@\Kq .* :* Zf` Q:@Pn+`"70u D`  D` Q:@Y:@0uvDD?BJDtsi\Ku60O'":?ܩv_!7Q>0Mt ¿?)?\N/ۖ-iZ.ąX` V>y~ .b~ybDx1'[o_.r|pO'"Kp#bD@Y/۷(nS`"lb{reQn1?n@Zt hw [t/, r56M5`5ȣ $u+,.J[^/WT3hbm+^"-E6AҴ.!}ۗedYh t|پlel?\lO Jst)ޟl)m/9Zt /@Z^ h,O@\^:@3iQ-huYu:0Z4G[toC:l|7I\&-0pτ,ŗ[ --$l^EN~0^2\Fhy}f!$6 ' O& Ba~e/,5g$dy!'a뾏hBq~+pEEh,Fe?v } /} /.B$ur"KK, / /K:.[ }F$Ȓ" $ڞI3g"nY PBA]h#c .fp ,PBA ,(BA ,PBA PBA ,PЉlD6BX} $/0PF(H^gFT(7H/`E5*0E}H} DVA"fP @¢DU}!lRCI \" -p"/kBL_(@7]"/#f5`A u+:^+PŖP~Z'R e_6M&BYu mZaYnEdr=,Qw++mPJH@PP*>uB~ ~BQ.CS(I 7D"$K\6CDh3 ц DBPw] 9RpB/P0PT>;!VYu8*j0"7ZD"E"ND*YnE*}T(+Pb-@kPwӌa"Ҍ"+-InA"(V\6x[0pQ`"P['*Eh:|XM( Q(<+$L !$D(Z4MHBj*# +IXE+$X8LԌ2⍚qf<qqøa[ ۈD+pZ5oZ@4-S݂Ou2D(ݢmC#ך¯M- r{0+Q Yd"&mM4-n-!ݢVkPjF f(jF fjF HjF?"l RC I}|(l񇭈QJHzU>7HrG(\C"kHǁq\ kqG kG kqY#rG ѧ*}|(a+a+,ԭ4RcWM)iuDX>H#4&p=DX)SiķFcHK#Ȧ6E"R¯F.HzHԦ\"kS(rG צd$µ)D崠qA8Ӑj~kK E(WIQ͸'H0qP% \uK$ wM$"F}0ILD$ *m`*U(4 O$6Eh$F Iݢv-ڨQ "V+Y~~-bE;w+"M!D!D@!dMQM6(U(4 40ꨥ Ws)<D6F",lq e|R/UKQk&Quq\vlPظ %n)QǁqC8J\ #Ռ@QJ86YhOj^QK͋M͋DE;hb K|V&NM<Ds,a1ta\0Md&Nb#K~<9`NbP+O& aP aP aP& _-P0gJ8 XQFE 0%\~EhYeaEq~x2 Yd"kH'D+K5աDk5$D ,*p ,*ȢB ,*(B א6,| āR"+@r@79$:@,DZ  ,;Q9)@ K, $pH, $ȵYd@ȵC ze{-_yDóz[yf%"U_Ff/G'" [ODq)ٵHDUVd5DdmŪ:s/\oH7R| /R| /(KRg)'" ~[@PNYy]Wl]+V,: eW: xò: [\%~: e`%DZK ي-}%rlY"ϖ%rVu% by>[J}SI=6%pپRb~;~OL"* Xhdeb~Yoy¬**TTج**$WI m`_~||hb~"ݧ%:gRoeU!^//Ku?PZU5@ȵy@\t @^H@YH/^鵖ekK B C rMD-x>tOB*6dy0Y^ǝL:ZzOZewM@^OEp"@A^e|} /lllʲ} /} /} /llH2Sev-e@^e@^e~0d1@\-ll,} /} /llҢL)k{nf1Dl1t>b~"e|\NKdӢ!^{y-'kDh1Ҍ-ۗ78]9ke@^e@^ee>>єo̖U#lHz|-'"m++Ͳ}"lG̖lپJ]"l =IĖYx`jQߥ{{,۷RV6вv[)-}%_'"VBc( a` //(KwlF~l1mEq;|\K="hFgV/ boś&i~vb? b&+~?ȫDB~Dx1@Y|ajO/!Ze~", (@ K, $Ȓ@FHd# }FHDھL&kPvmՁE ǥ`# $maAHb 讛~6:@\?'a++~?Ob! $a, $@Ja( $f=+2Cj#߾$!_Wܝ4BIM#$o˨D>(䃲 f ?I|{&d[A%a 7M(gE .DXIJ@0 D` jQ3d` jQ3@ fȚ@ f05 D` j D` jQ3H@/.L( D` @ x#I` JQ@$Ȓ@$0%( DI PJ(|c` I( B?Qh}8:0:0)&?4L NdU"ԭ,LD*0E, OD e &@ f04? >xV0 bu#J3iB_+44͠nE飚 5?]3u1b"#&A;b:~P2͠]"A VX3[a͠>km+`"/5f0/0 `"(~P0,oLD4rJ@m+"E3(4r͋f3 (5Q@$\PԁrLy݊ *?Vʹ[YYh?Ks_ * c TJ/&m䃉|0僺 `"(Z[2M[0E(* $QႬ$=Ӻ~ݙPTUTy꾈Piжb۴|>XT>8 TD?)JB+' INX0Q$DuseYIPJu8 VLTXu8UXu8UHu{%@<6I7œ`! $Do '!_+$D_/5#R}s"$X(3ѴJ'EԓQ..#bE}-Yd"u@-"u@-Yd"uEd"u@-Yd"uEd"u@-Y ooȺE [nȺŁ[Pd"u@- %~D8PԌ@V3Yd5#Ռ@V3 ~@-Y Xa",aw080XH% 00ڏHe% nQ.- .資pnQNNHd[$ºEMnȺE Ku|X"Pt@- &F K,$F(EQ|^Ao0*aK#E[f !"VQ[ۅr~Cm+RlEĊvPpI% ETjh[J v"PBQ.vQ(BXk2+S(k; }GE ]t6M(-VL(Fu 診Ey8 ~7&7iܐz(bjFUZe e4DD}QÏj~U wƑsE5]Uȍ5?qԅida B |5CvjF"fbCb nюJHt>PVHV%&,W,16D%o*KL+KQ."Q3xG?Wf  3! ('ѪP6D $I?Hz*'Ɠ3Nbє" 0ʹz4!Ob#aKO&a,aFF1fcFS86X(fa"l|"l4a8LԌrE( ?I,c$jFMŊgՌ bco's~TaE9[T?$ºE}iNH,aƁ"aF K,aqH,aF K,aqH,aF(XԌ6F K,aF K$a{ΦDn(lF ,a(F K,aF KF K,a^v.0pq>0Z͋+翷yD~KdS"0X\xFvF""a됈Լ}ռH%rIOW; #0YZc XHbEbE;&p_םVgq"(a\Pt Hk \H%vҬE0y֚ylZc"flj?^v5ʼnhk 1aïMk,ZkL6.HjI¸ l*V$ºEۊu~D¨~'0 Dh3 \p(a\u:-H~u[2 T𻮊#bElL(/bE;i(VDDPQNHD MPBᷔU`"K3 5/T)'" E(zBv?Ŋ@+Y8pU"l1Pr0V E"\"Pdr W5/NDd@n8%D(%VEۊ(m++ ,-x#'-;X=M('! ~: Q(Il`Vu,NbPԱǁObP+O& aPu,:q6IH ?CVgieEIX z(: cA'X6D({u,kI,1LcXŊ2ZV_gB+VbӝB)d(&"+B׃+:Yw+,K~,ȲD ,ȲD ,K,Ȳā"K,ȲD ,K,Ȳā"K,ȲD Y",q""K,HD96"? Ċ~Dh[J7fbE ,VXbŁ"VXbE ,VXq,VXbEFHŊnbŁ"VWDX(/ZT.+X:IŊDZ?/[QvbE"$V\P QS(ʭ nJHe@%YdY"eEYŸ-wD"\"pE$BZ7ĉX+r}t-^c![-F8MOV"P_3( dաVÉжRi)xTDXurkQYuzeRUh[!-,@CdD :0 ʱMOiQv JrlVD"" M_U{YUHD# V X Q T@Lx V6@Ÿv@΋[ kdLh ªCZD"\-"p#nQGMDJHMKA{nD6%aYneUD6&ԛHD607;DA-PqggEs"B(H)E+$DI,$P8L (tIbP$!@HHbP$ aPB E*aPB1Ld \-"lQ-" "ĢGUQ_N´?Eʑ*0Yl$LcŲDW,2Ynd Z#EE\KZvWb& &@ 1(@1$@9ZD?`,K DY"e>>T(Xb@+Xn@01%&a@S,$DX@0ʏ KdmԌ`͋x$u7B8u[ Db Qdb Q@-nȺ@-n1u[bDDojf"G%ra*aq0.(3tQŸW>XL% 4q&0&@X?+ c"(a D c JQF KE+ c"(a  _6EzP5\ D?WUŊHې60R3&Ԧ(7f\PPπU&5$a D,VabE9(V\PE' EhŊ b",V!XGu nqA+X{2j+ڨE(ĊrD;_[7ݢY{6E{Q$2^O(bU(AV5ïq"^BE ZR3&h1EmT5MiM1M1pQb" 5c"f1 @L(U`fQFjE(s*V;uXbT($2j0mFHu+,aY% QS$"aV^ऎ_'! B|fP$A~: Q3ğT5?&F8 V3 2qf훚JԌ R3d"aa,aa,aa"a1m$D u, Q3|j#Q&0|MJ kGe# 06b]0ʰbE W[5^+VsE2 ,lF F V+Ɓ\b VbE ,VXJ8+Yd"Ŋ@+.H @%Y6@l1U@V!C :ȪC ȪC :ȪÁ:ȪC !iA}&ª'b<~>n2{ׯE#H#*0kAkH#33<@jB",@ԭU(ھlDX$b d!@Yjd@[|I hRCH R?D&&"R_&5cSob"RoŸvC"Xob K k%HkrFDye_Dh۴֘כhd60%VDh35Ds YZdr8MʼneXBQ9D9GJU(D9@%ڨM(dfDYˎ%4Y~1,Q΋u_63e 2\i%Yo ;Y"%,Ѷ<|WD",K,QvTdrɮy$ Eߊe_65/&5/B( EߢE"RݢܸL[˦DX ĊPBqA%ʉ@Y€EQn0EB>u'Z0-G%Zi+yEzqEml`-PF0QT`0VLTXu8UXu8UXu8lќ$Du'aU(nQ."-}q׆#iQe¨nYsԭԌrĴEيe7jƉ[$"jF}S3yԌv]9UuDE5)F?bV;꾰m+(w\P4q8VHhFyak6.i4 J>GH,aߋG5Ke`*aV T]mDH¸ W(WK-,0$*u$l\s(F%,QfܪeG"񇭰Qiq"q(GT+#8$w\4}2 aq$G ku_H UYBA3z4HԌ07CNbц# 7?0IH ȖBHՌDBHՌ R3-$$P8%00PC # %00Dm#a$jSnH>{E(g$ 7(M+V蕾iΑDk΁ǪV1: Q3H@H*V~QVjQHITDLGՉ,ĊX1Ŋ(V (VX1Ŋ(V Db Qdb Qb@+r]v mB$@01$ .,0re[ Yh'Ŋ$V[`1F_1% c" c"(a1%(a D c JQd c JQ@0ʵ(Y4Hd#aLdQb"fPnf/f>Uӏ Tf&jFwHu@n1u[ Db Qdbѧz-tv6DX(*+"mSB3W B&bDXhRtv^6DD(r[LDt &f"~7E"['-.hmC|&Vf5/ᴶ!e+\b +mvnLB1V(ڽI/P\e"KI@w@k^-o3Q(lm+"VH͋E͋nQ߬[) Bڕ5/&-&R[М@pήtX+n1n1-.tDXx&V[{!"V D"P[v A ZvLk^ ĚIBH .pL NFW- ̪[=ݴ1l1PX+XEY-WZIdE|=sEpE7aIl MŊ$6ZIH +Ild`YD8eX8eX8eDGgd |: %I,*V$!+|,NkOe2CEY%|M(ZԱHBd Lh Y,h1cGĊ@XQv Ŋ nDXd"@V(Y8P@V(Yd"@V("@V(Yd"kS EHZD"K%'"D ,KbEb,@#D?&EZD kWcE$ZāEZD kEqhEZD idt~?~VNdc""E#ᯈaV<& aFHd#@$ā"@HD?/D ,HI Зj1V%<|_$h1V\Tu+!V}F+KNuHDTC},;" Xhg20,EԭlD%&"iZle6$MePY&,;_U%DY₢E-]iE,PLdQ""ھ|c ğ@Lh-"tިᗍj8Z^6E\p#@$D J2vZD"RomEρ5iC/ fJHe@7Q )n6$kR-a"t bXCb 퐋,d2Lh~3WCL(saSob"+NŊ'z薜'P'hԛ׬ԛ8 -9 -ʑGb6%NB G+$Xx2Q(c0V(c0V(c0S(}&Lg*) R(,ׂL,1Lz=ҞGEkH6D骽D=&²D݊m_X\HDd,,K,BXq7yA+Yd"ŊEd"Ŋ@+Yd"ŊEd"MBqA%\{l{L@V(7&!c"Pt2n u@-Y$$V\Ed"@V(Yd@Q(Yd"@,/&V?ǟ""V׉Xg~=&" ; ,{LD )BQvWC"E{H{t;(Bq4(wN+D u$Va[(E [n-¯0-xWY",Q.nd͢U 1ܰL(3MZvLD 5$ @!YĊvMh[1,'b U=R(.%Y¿,Q%aY"e6QhĚQfj>D!"Kcc5$ھ`sE\ ȪC;:\@"5/zЛyfRvRC",5pH ĚPfI u+ZPNDVRC",5r@H@QڞDXI u,*nj=$hȦDD__+i1MDD_kYJܗN􅺍U`K $Xje0~NBiNb#5<'!q'!q,@<q Q-a,Kf-?*KГIHsu"Kz{P'·! aPQQn'a ^1چ~OB m22ThB EFޣ싵ɲ-a" u@Mȵ)Y8P@V(Yd"@V("@V(Yd"@V("@V(Yooz'"&YdY"Mr@nQ'vm8NDpZ ,@Jgz,q,K,ȲD ,K(D ,K,Ȳ,QޤTYHdS"V(x>R(.H7%]kD?초DHԐ7 J @!RC 7,*(B .dw2/]Ր8ԐH ,2m`ljHd  J rFWB"l} Qn.~"B9b/ e+V\6&5u!;mMulCٗ Fc"V>Q[-lE"TZ rUjk cVCmEjH#5$[pk6DØnѶ"%y 7h°qA-5% $DXd @,S$6>0.!܈'" 7>tDXd"u@ κՅ|'a$FH,"75NdZ#-.Hb7  ~UB T'AS(x|?>bB1k=<٪INbS$6Na&'AD8Nb:ϥ|嬠0l#5K O&Ra,5Up m:<&*IlD`Q QOb$DTw '!B5x>4}lrM_Q*@$"BʦD"/?1'"u!7B",*ȢB ,*(B ,*B ȢB ,*ȢB ȢB ,*.p""*ȢB ,*Pv{%* 7YTdQ!PcNTHEETdQ!E@YTdQ@YTdQ!E@+E",*gp"(*\Tu(יUu7YUuxFT_|ʕ~L:GKGl'5$RÁ"5(1|RԐ D mQޏvD"DC/J HgUuùR٨0PMDRGRա;SVDu(T20m[1աm*5Nm`:7աle#S~C I ܴH[ZCKR!EvgJ $J@.M)I(e:P)k' (ԁh-&@[G Sh?*A5HUu a Q(7:@3QI(_|/K&)kQf~RLh:@ߗUDHHԁ@QʨU;Tjh;*BA (j2$BAD"/~>KMrK&!5@IBMSIHM:6 I3&AAB>n~: ~+ %! a$ : : }a |H ~ň@_'!R^&!3$Dj`I0MrtR$Dj( a7HB/O : ~cQ_QHE+n**\ $Q$*\D ~÷ˁ(*\D pA.HITIT $Q$*\DB5(5\ LJ'Mg!@LD]}A-[!Y$K\]Bn b"P\_.H Iz"P\R(BqAR(.H I )$b *$₤P\ Bq{Nu)TኈBV끪_:Z \+;b?k]V+"2[Ŋ+Q $₤P\ ,1e ,qAe ζieζօCBovQB^"E D-₢EOF"E] 6XWӭ ,|E9ȵU(/ZD;/E DVǧ*n|Eo:\".hO* o(ЅqEH kX ,EVOeG{M<*VXQEM+"bE9&VXqEDh zUæ1J WD 0⊐XqA+ZrL3j2.qAi֛ Yo"/RYBI idafpEH͸ Idݢ˨$FiX20kQm$+"UʨHo X$ ^,< 0^瞼gbQb,aI1Lj=IOy'0N%'fv&0N$a[['œnqn1ĊaPF 0%8-*@L*@\0YN+@LB*@GY·İoU1oU1oU1 kUېV>L߲CUEzWmĊPD)B E +PBq *}JXw[t@-Yd@-_A[nѧ*JqA0nHE?"a.MmAH'Y(K[a$a3 jF $ c7-Yd"t XqAV("@V(Yd"Ed"@V(Yx}>6ߧU7Bq"PoϭvWD J)B:H"P*> Ih~FM(71".HDч D ,Kr:xR(E$>tDXݢ̢E+m8&U([m`,aԁqjF"lԭQn+a#6ھXˎ206p]DL(R&lan }ŊXŊ2ƑkmGMhU("rǻ~ AoH,w\ 5ֆN;1lE65m8FHpX"U}a1T>.(rG9i*wr73Ek xG k!a84j>XW͸"q!l4A/f5DuRwLzQF-rGd#kiqA8.(F9~"lY$5Zo_&a}% Jx.qN% 0$ ޹OBp~Ԍب'Q3NՌ'35E`5`50Q37jIdfjaJ'qqaoτi9$65/NbqD8pq爓hĢ$DhꞄz1ïDT0)La$@LY0 d@LY0 d$@LY09>UGF0I:|-[\@FY di$Py+y rH#lDJ !d$EE "H ,H"HhPA@FY di$E di$@FY4i?Hd#H#x%F.(z?A>4?IV' C)FId$zH !zH |q(2F"|dUHĔ}8W*ʇqMݍDVrljQvnԺ/"wR<<0S>|Ίnu|}1壜T>.-Qк~n"H m+$A.(G9VKS>qDrT_vG"#|FU>F"|6|ˆҦ e$""HʪJ"*RfJIDS8zˮJ"U}5UId$Ca=@ "Hrw"H",(u7_F m+#;YF)Q.UDX(&8Q,lQoڧmGG>S>hjF5M($ OmEZK J vRCyTk,TPФmE D-b h&uPB1 ,v&MJQIE/ZD;-b"E*acJm,1ڑзȉ,E,ZD;6Eԭ,DF2DhC-(@ d8yh-FCêDDh[#eqE3Np3LQEuh[!aH KچǙ0nQan􅉈P u+/\PDr:x!EIsۆ+ !>VDH>[y%/8XQEېH'mCڨEMXLDXR&GpzPܴȢD@ .0RnH2QDuhTv$PR&b_Ttz+r:[I,ڑ$!~: Q$6I`;6Hب'Cۆd%QNU'0V[4)IHZD IX *LY¯ m]M$Dy=DBkI,Z$!_]"Ky%U(ڨuaVoV(R֦܉,jS$M1XFHŊ@+Yd@+Yd"Ŋ@+Y8PĊ@+Y6'XXbŁ"VXbE Ro\+DDz"ۑF KxC #%@0Yd #%Ed #%@0Yd @0Yd #%@0ޟLN$ 00@"&asI؟K% nщnQ^>M(6݂W͙D6E"",1ŊsbE[bXb +BU(oժ D anGZu-Ao<"[nξԦhWĦD6F"dM/a; #l<2p[Zsy׀6 Y5H?E;"kΡ~ec$9Qk^5_Z`DF8%_|)d@%6E3n1PZEc E VM([AY€E`ZDi~zL(7"ھXŊ/"KI|1%8gb%K>NrY$Lmld`YV)Nb#KHF0VLTXu8UXu8U6I<:'ߓش8&@u"@2"O=V+$ZD9+-$D@"~XxEjO":ȦZD"jQf" j~v E"PB E +P( E +PB E +BH E(V3(E [nq[nUbt"u@-Yd"u@qTB E +PB ŁPB E +PBq(PB E +S#V(x3MA,K"І D}X!MÍgd'K$"~%YpwD""K.D"\"Bu!Yu8PTȦ.D":ꪃPί(HBuu!|_Lu*UECe`+!R.h |"5 ௃/jF_HDrFD tNT6m+Q!MD G( DXr˳jؘ/\/W"ԐI mVBJ_HsT(^UHw/$b^;}!MD6B"/ŹB_HE_7M<4Q!P:5oBq֜?Y_d}!k=ȢR.ȍ1YI ,mA&]FVJB"$\Pr[XdHDj2c#AQkA'q|=$XI $TI$]'!J-&!2W$_$P@%ᰍBIH0Ԁ^XTjH,n$GWj_l& 1s _abpM>B a1 U0R"5$і{"5$!RCنH T0&&!RC9"53/RNL1ϹI {7 PΠ~m+::,~oPE_ Q_XBB/,D}!/I_ Q_XBY_XB>n ovZX_Xȋ]sRB^좎T? 'O.*BѶ²%,e$K  Ŋ@+XŊ(V,Db!,V,Db! QXxXZc#,VSoD7EEA؈aEء7DTSonѶ"_07e8Ab! QXB-YX(9uȡFD('tr2%״3;KnAfFDRFD(rYc#[,ůl7r-6"=$(FAH$ ]W 8Gjq!Xrmr\hdžX("?T)dF7Eۊ!]([<|7=IH ߆!eIx'!zHE!3=M⢇LB{$.$XyH#X=/°E X"HoPYf},8 S>ʞ>e|ceG+e|ë-VX>u$6>S>PߔDXd#@V>Y(G +|G +E~OG"|G +Ed#@R>^rGDh'厾+b!XH EfjF X},n1Pt@-Yd"u@-nȺE [n)x?5݂fo"R !"Vo8+&,DXlE }, j""V`5+XQ,V(K@"Yd-"EQΎih'r"-}D mv-B?~ᷳk~M(7im` v-E$ n,Qξ-?oMB IXX,@Uա//BB}`}i&5Bځ~u|,5P  vX+0:$ªCyReCOG"օQT>^rGnL(Ǻ]cs7EHM}Z d#Ul](4D>_PcE .&{Sڲ!~LMH;V~Îfrov>P胿,<XQ.oXQΝuhc#@M,RQ>壝QT>^xBt(7e~|G[LBPఞ)hL3 S>NB8 BA'? S>$DceʇAS>ʨ.$Xx(X\yߟۏ_IrG۾t߆;&і9+2*;|U;;^1?UNB䎲̉$Xx!/d#P4?kq`D.D[9ipw@n-E Ed"u@-Ydb\[$BjFPVX$>Q>YRʇ;Q>Z׌rN"H",~î|Q6чG ,"H E d$E@AI~4HH?uJwI#LJ?O3`??+_ G ~MDlI9/[D.˧$rNh')~2Pd@QDQ , (}|EUx(*h$rQTE(*#=$QTʾUIEQiW)*hJۊ)*m+=}Wړĕ60Wʧ]j,tԁξ,u`,4qFbJ4WIQU˧^Xx^%mLg)礳$:K, +I+~ڢ*:-ȥWI",i#&:K ,/,*ifnEtYgy++~FJ9*IW|Y`/Β,?p_;"!NIrIDzÉBL * /9/BUȽJ/K$B:k2kR"K\VIkxk2[j /+&I^ғ@e,_&a}Q1MOd&O$Dgo e+eqe,< ŕzPg"m\$I2L$}`+I.v"1 \6DrI.~Pr Ce-֢OW3q?-NBWʵ*J9^%\z$’KH.~-b-Y1<+I;"ȒK K.Er d%%@\Yr deH.S${rO@)2J (IP;( /H2 e (u+$`JV.Jaqҫd"ҫ${ȊJ +*2P@VTYQ dE%{rr@LWI $߾^Rs|CTU,?M0~`NJ""۝ &X8OvD0)?T0NL|_X0y!$C@CI;$u;) /5ID6vκv;."HA>~w#g.R6& kB d(AUH$)a&wlz>AM8(I1{a08 Ռ0R35 '0nAX` %!="`Sğf$D͠I$lzOsQ3!=E%? #cGʭ†?XxFB0%(a%(a,D c!J Qd c!J QXB0%@^e!vX]>BPy; r+6Bb B%.,C?$@,Db!  QXB YXB (@(@,Db! ˟~q 6" c}{]ʾ:llS&;l >0A>F66r"66cUd@%XX BT(BB\%EZ Ix~oP4SOpA_Uu(u b#"@7BQ, Ijx! E}&*CQᅢ$#UJ I>xA3H5PB,Q"lDGЄrL((b](L3(h툩fimeQ5 L{SA؈[T 僶bc}YTe#fP"](VnSPPBA)1҅b#QԁԻф:>YT VP(x!.OY:B /Oo.~RE [DDhC@IIJ/[ʨ/Dc<$~~}};&qI7j" 7IXzpO.(NB>:0 V&@9WeNu?+NBL2:0 V&0V:0Ձa  P@2$NB$CiD(R3H_D i`,h|n&s̄L( mo\B/DX3(ke+̉^}?NDB蟰|,|A E>d @Y>d`,|A ,r$,GYTdQ!E:xʍz9tw[aFD }+"@~D ,@@ Yd"@ Y(D ,@('b"$v&@ / &@ ߟ# ~._ R~Zbd#"XHC| a"6-";K,1Pd@%n4Y"-b#P ػE! E;PwIHDdQ(ڭ`=$5zHԭzHl$J)nFu(;j Ix![nNtuhC$@0q0a 0ʅbF9*aێK~Ĵ׃?CLhbVP0ξIeMhc L$610Yd IH$nQ]d]+a# #[ L$  $D>C9f?:LͨC 5cIHLd #%@0'C9&fQf;f${ԭQ"]VC/{lD(Y䎺;ھr /Ǐ5e$lAo<`5 ]>1KWI\ԌI0T3[Lt r&q-&Dƺ0-n1uaܩaإSÓIXQaeeb[b=[$di ,< -ukKkIn$D/s5n᧐u^ĊDXAT7d/ E"PB E +P "@V(Yd"PBѯ$V3(E [r!@V(Y(BwIH{=r@"^]Iux!o(B /B / }!@Y_d}!/B /|^8%//7PAPp!Q%!V~y5sUAR%MIH$$=]EnB",*r@R.DDXT(B bn^^\z=$¢B;^^Ϣ MIП$g) $$]m I>HDh[a%nEBg( m+-¿9ܺE$ XKC/C#vR,ھh20 V.D"&@X  A>uHD60 31^"PTvlPuxaYP@R I_x! 퐣' XԭBYueQ ?KE)6B ETMTH"*$B IIX ?A" I3x!zh;i|i@ 5@ ;-ЎH|PnQ/DE3Hd\ԁDXh[u z=LIP$^?OB$L(I\IPSI\~M> |`,M5rfPXWVD>"&ԁ|OMIH@VYId%!$JB + $0P@]Y3d 5@ fȚA kf9 pOv3fX>YHga""*~w@YTdQ!E@ȢB ,*Ȣ@YTdQ!E@n46MHD"gꉘPxu^:*$rYR">{mԮ/\_[GD.B"}!YR/ [RbITHE@wB /)@E>&;z'pDXI[%h%) v m`"*X{'cDORz'ԭ(EeQDXI3%A.+ m_BE`h1fжšA;pEۊhm_D3@ei"g ^xY"PeYDB9GiDX3hF4@P^E>hZ䃺[/SGDxY/"*P.T}Ъ/} ڱ9uTHÿtZ@PH R HB$PjXud!PTrpOC"!R^HR Y_e-8-k1ѩKB",5bĊPGMRB[֢ A!}- VpXP.$Du2IKՁ~'!M:$0D_oK/$0P_c}\}! P_> B4 P7LPF%}042aZ?g~&Dςs NFFHuxH Ɨ ;*DTj\԰(5,Da!J ,5,Da!J QjXRBYjX}ڥu鳰 (@(@,Db!  E`\`GD{0q:,dա/԰-Da!J QjXRBYjXRB԰(5԰(5,Da!K _f?zxlZdk##,V'Cy,V:IZl"S%@؍࿐Uu7աX!--"-πs/%݂.UAj'a%$.$X$>3G[7I\tIn0,$D9fZ;I\ԌI0Q31fLfLՌaf훰Iؘ~w2aCR&l$Zo= 6ʕoMJB 9 6Yo h~m u LQrM[CT8Ax&ƑkqG kEd#5@8Ydchqkq$G kq?6,w}*|G /Q`HDDvF;~ c!wh;zF}FaidH#0@FY di$"4H K#,42P@FY di$"$"҈uݤ4o7i$>W.16"҈ӟJ#҈Ũ4ꏱFھ4R#P@CY !\DX(zH!7Kr~k?CT覇$zH;=5ïBim5c#5 vu4$u++F.*I"$FD%)G줒$*IaяȢ}T/Gي$o.Q8Anv.86"I,/=:6rѱ&3I0I"$"; lS/b"BQͥsF.I"*WML`}`BVI{$ vi9#k'عc! &E0 IWvYH*I?&ܣcSztlD#icn/vD9 &\DlD~KQ%Y&3OB'qF&!ˑෆIHKI\I40F$ˑ$A2[xDI!=d!HYF"2V>q7a"w|9NOB=11 ;6 $a8IX7߆|qLaMv&w?W.wr Y(fTh4=q"l$F ,l@6Yda#@6Y(F .&YF KK#{i "Ŋ@+YG%bEQxEH@V(XC ,K Y"e@%YdY"e@%,ȲD ,K,Ȳ@%YdY"e@%hъ,AlD eC7CJe'd%b"(hhC0h]LOu(gಘFDI(MI(mQF}TRE?tH' ?//|֦/c Q[DpHhgH""5~v(kF"5#@1/$B;/QkF"/r׌"5!PRC;6HI p//Kҗ؃?-]2K/'KоO´4 "/$X/ҘEkS-`-y[瓰eN|TYb,KXBQ|"pF6BHnP%[ad! & Q0YHI?Da(e(,De!( QF de!( QFY2BQWO㿏(;`# \dlD; YIy6b-| IAQ+*婨 ,DEe!**,Eů}VT^(2J*/ l-gS$STʾ=Gm2]=F{IdwF{H(* r/@60QTʩESƊB{FJ"U\e"ԭ!=d#,ɺ$:JYVLg)[dYXgitiR%ߗ%,؈vuBSTD xZG?pMSqůWyW6BWQ\yM[2ƒEFQJG6TTBTT/lkaRvXe#&CŕP:w](K&-( M;)WwN?Aќi'a&: LMBqgI`:&! E0 &,xAL`):)*EꢨLI`0vX% Ƃ0ԖZ;J]ѵY'qN&I9+>!IH< Qc2J(~evi'/$1pDH?l hGUȡ#F#BL#BVIډE^@LY0 d$@L`/N1yN4C8,w%Y]I^D.I"Oh'm`'$NY; $${YF"H id!vYr@;Yd#@;Y(rG ,wrǷgVŏu/iB:_Q^Mh[{{44⯉a6Ǐ|?ii/d($r;9و? 7#;Yd#@;(rG9T>^(rGd/ lvܡOG6r???]Пh#Xr]lD/$1ϋ)hW(툙Qw^FnEDrQy!) Eh㳥aL(;E rGL'*wݯJxOrG""wB8^FnDhڄrDب[a8JRwߺ}8&r8$u+K9Ȧ|ݿ,"0Qï1U>9*و*ݿ)ȋK:Kd#,4NII D=_3!5YzH / 'HI#Ī47II"$B IQkF* r/m,!4O F4҆`盂H#ة%K'Q{L%$`IMBT2J2 QI~>i}u?L%6I\TIIº@o$.*$X%y/0F1a c=dѻI1 C$+^馇ILO"$Ȱ1KIXGQ>.#ib"HG^W=w`FDCzoӣ]Iy9u%I@Fqid ,"H , N#|r@6OH (F K"a$a$"FDh[A ㅬ[n(KÔC$]>G wh[#!!G +| #@V>Yd#|G +|Y+!2y$rX\f#T(M_|Ϫ|oY\f!('|$rQ>!$w,D,lQq=#厁"worG",w22s2K玉DL}Q #;G9"wKr?M#Ucs1[\48DhS4v8G~ ̔ԔrĺFp!,w)rG;&wQ:w$;a!DsG .nD}[~[FE[ey4m+&{G""KDD|+c~Q;IxEH5q~៥eDhn#YmR"GJWU>~]RG-Gy`Ѷ"CcDr8{vE= ;p;&rDƋ֔1'd, cd _>M߿=˵i"_'dIX(> AIG| $N"$#1&qYf=d[G4 C^Q=/SCa"!xYy v"'$KDOH +|@Q>Yd#@V>Y(G +|G(7GDD d=$BS>m;1ў(a+"0mL9E`~E ~#@;Ydc,wrG ,w #@;YF$rkH?~؜#;?/d˯~h#$"rNDD#v[%o&Kۊ(h$rQ>a#|=:Y(r;n1P@S>MH@V>!2+2T|W>Ӗ+2S>;Hv^PxeDDw':wKԹ#1S>+~͚Qv:w,;YhB[IHD`)wh7j OK$r6a]je`&lf†baㅢf?ȦfvZj%Q305NS3,nv"a<X<{72f 45kS3:d5SڍƑkE"?@(4Dx@jF;֍쒨m+fP$rQ0pߍ@0sA$K9=&aH%/"awԌrI;g_сWFGǯ'Q{rң)~_$l,]IՌrTDjҍ>MB2*6$e[sE7Kaa# u0bEa,V|<_~#LBĊr,PXF 2%°?Fh~~E(dZߑEme:,eNB\d!) /$,$`! /$u( ,DI`!J QX@ K QXB$%@$%( ,DI`!X}!  B*/ B,/2r qX^*/B,/zEЖR| @߇e*%' }Q軏@R Rۈhm_D;bfB D(Cm Yx!vXtL(7?LnE?d,ng6"%h~Fp`#fЏm(4z|P@ I3XB Ix!I/$T!r1!_HeRga!_HXH!_HJ\o\_ev1r|!RT~!_]b:/ B\a!. TB* ˿ B*J/B,Ӿ /B*PdY!3R9R8[ u|\8-G  SR$T|!8ڛ,td}~39_;Qg^q$J!~N |MB 8oEIX!/O 4`IH!?/LBfѕeX^\ø>ø>ä{*OV6P\^ٿBz"RH?'BDȅ@*krYx)O 7VHO THGV+'3j!oDV^[z;V^/WlnG۟/zND.Dzݏ©rVyي@mfs"2mRO۟fnlO)mD~A[پN+۷Y^V9OoO˷_#f94[߈̂YЁ< zUUo㓲} yt 7Eo=aIDj`evTe~v y~@EgTtOr׭p)>2{"2;\t{ zy\z @.ry}@.ry=ܴ]Vt/oi7P\2x4.-nkhߊ4n[5q^?6OUIx> +$o:LR^}?$g}T>z8B:mBzNS%a\2%a\2%aR2Ǘ'q*OIpɼmK.%I\f? )kJ洷mp!}^mqq|f@.rq<\-u @.xr; @.xr; ށ\(@.xrQ6s+ |r5iieO I6<nx)A'r)A'b!˓v^ Ӊpa: Ӂ6Wi0C"V\t"P Ӂ\t 0ȅRt 0ȅ@.L^ 6<;۔ vI : 'b@.L @.Ar ֻrȪI;؁\"v J;#lvdw;`Rw  މ\ މp; uw"\@)xr; ށ<;}rS;CzV6IOBÏ$s"65"HPNBepV4NBt9Iqߏ$ fv2G~%!s}?.sēwð0,x7K; #w7qo2_f_I0,xa; aXÂ0)x/ĂB*xh-qB,rq|!bq|!bq|!bq< 8 8 8X_ r @.x/ĂB,x/e /U2x"X?.׭pɼnKu+lnWJ}2]TV^Sy}#8;}zu-K˩FB]Ne֮H T ȡ,/Bz.Y!V B dޮKH!}!C!}#BFFp.wd)S-#6zyʡd.V2񜮹~{ JZ2Ǔv)ogm/Yہ6kZF8P[Bzaw"F^>jyS֮[yKy}#X^vmRtoCby}!Jcr.7X_sX^_@./B,/B,/z by}!by}!by}!bSw˼lXRDJuR_xXG|#`в_!,MS @ @_|bv \ B,/} D/ĢB\|!D ȅXH_2s`@)!Hy!篏$;IHyK̿s@mR^Dz$k'akIpy_'!-쓸eB2)IHɼMJwI'%a\2%a\2%aVfLBJfV22G< YNBJ~Z܏թd> .0.0.t-sNko/ d%>yٳz @.z @.ry}(Ţ R^zO^vg/?>n,)#s >߹dBY%NDog/O!jo&./:ϏH*}#7+/ ȅY q,pqTOD2/85oDm`x"¹oF+o0O}#\HBzsTHO \H9]o\t(E@.r=\t@)r=y} q@g/z=.7"E~p*?+ܘ<*oEDV{?@.z/H7rX|#\^@[Ἄ2}#\R| ȥRR| /D.D{ K\VC$ 6'!- )ŗhhRǿb$ϗ$>j6I&}K~P> ˸?Kø?Kø?LJ~X)'Ny6{>MBJ~MutleK>l2+>.r~l(e{x-+ӭ?S1?.r1?P(rYK"F Jp?K6+^߆o%D?FoDJm+YpJ B+.I>Z}w*'e@.}yYK\f'eڬerNߟO^ w߱<<_@Xv p+psJn@_"֩Fl_. ̕O2W>.ri|""\ pPfcVOD(&vϟ\ l_S>+[>.r>PVO\<=PH/Fz"R} le@.} y| ϕR| e׹\rX1mJپ<$Ne'be@.@l[PJоR@)~wJ+r)>KT H>Pfwϊ}߇p*'r)'%@Yӽ TX(:@ P.h3ˍ&:ק_^[lPǪ'ac$Xi}Te&qX= O?`&!:0 aR~[}ۏ_T&%a\%a\%a\&%~?N'qm? +%ebb0.øl?g0A0k:MyV| 5ƅz>P\^z @.z @.ry}M|NDk!`ѽK؊}"Ro[fP55/;5O6_XپWz_ J"@.JySy=.^'"KXHd/CY~Zypy=PJ&r)'@.Y~-Y|TOD^vX}#2+/۬DxV|̊oC UD"\^D^v/[g3pj!]_1t{9p{@)ȥdyv /%Dd%@.Jɼ_(rl{cOD8v2=n?WY_(epr+'e@.*끼B.mri;KہЊ@)W4<)bQ_OĊ؁\>>+mriJ/"@)b~@+br;؁<|'OH%r9V@.Wͩyx yx JQ8\p9p"\(u)7eukĥ$J$d6SkK_I\fOR5f/ĥ$NIpwYkCQxҮݷqj> . 0. 0. 9IvxWڵO .+0.+0.+ìe@.+rYcHz1{©1{"\t %Rt %@.At sz y@) M zrew"R@|\  y.w pގֿSV*[pJ9r9y"\VnTVNObs5_(ւ=K ͉\͉Ze_Dn%D%聺?K9^< >~"6k;PfmYYہ.YmGly@j?W?ƤlNB= kNj@2kGu)'e{Q}*/_]QMNveV> .$e$p.00,Ňa)> KaXR|XmۻHRtAIXcv{ROBJd<;? iܸ4qOaݯ)/(Sv9rfP.ff fx/'`#F^LrL<ӽErlLT[Q7{96(*6jSʨQIx!tC@%!Pv.s7s|B P3X E(h{B QXBT:g/$T!_HrپAkﴧFlB.З$\;etb~Q}X5k_xh׾CD   \_U7rXe}#( ,DI`!UJrrk׮D ZA s4+~#\[},P/5T:Ձ@V~2og{9~`#,D Og ڵz9) X_o@Fڎr/]}X+z5q̷'qiEK m֊&%!RO$>3'N# YG |:$.$C??鹂z]I\;{DJP?  ݢ]0!$D(Q36Dk |Lf'!]6D(O86j7aß"l }Y(kr B6^hj~LCoF"$lrG $wlj)m|b!)Qҷ"H I#}am+"" YC(YHOM)C^%IsﴘFX٧1^bd*a;e$DNΓ^%M4 z?'!a1$X)G^{ЇII|+K~LB)<^%^%HY&_Ǣߔq~W7~SFe (Yj$D)۸tF7a&7ME2bmXĥ3$30BO$JMtFCp댒EI%$JM; '&VjY ~)yr@=PYr)f\Geᑍ\$¢B @ԭO}VWHTDjʥWI"$@UUu3jC/R;Ю0+&rJt%?֕]"5iRCIjHK,Q쯈 Qa"&*!X m`EU6r&b]IL_xf{zZg?~&qJ$+ >9&!NFw%&!]IPH r"5cRO.%?00 XI00Lz10{`/2kyIIĥ#$.A&JB96&L;mb-DIb?1= R]I|0L$L>(cA eGhH..) \D.JB"$J@QYIesGmy ҍ#Д}nmKeDFhgL",5PBʱE`Euݠ:~"LL(G ~Px! ,@7L Q-"@"ҩsDsӂ1\D. $rY0&˂1cs`g"E$ZD kmr"N $r%Y LztcB{tus[F&ѡχB(GPLDD-KP$ E +PB1P@V(Yd"P$ E;9X r@%Yx%p/84"? Ŋ@+gMHŊ@+Y\ĊXbE Ǣq>b>uY(jF fjF Ed5#Ռ@V3Yd5#PԌrzEhnT3^("L(CHh"[D )/Y&K$"".m+*VMHŊ@+/bE"b""V~!e(V }-쒈("^r/eږ{)"n/R*v0  $D.K$"Kô}a m$rD}]X/m0~sW~+~Ige"aRKT$nai$0$D ?AI$IWV,aߟ3u? %FۆH2?$a c # %00HI&=$T0aϿ+߄ *_IA$$t YGKg$ܑa$wcr[gr.M"wQ_䎍B8^B6B6ZA  Qdac! lW;K I؈,MQz| }H8a|M8nw#184ݢ1 w$br=Ac! QXrG  QXrB;.΋ܱ;VD(9Xcc!* eQKJ!/Smv^DD Dآ*⴨FxQ:0VIVX%i[EUˢ*nEUھp=h'A$,Dd!j' Q;YI k' Q;YBNvI /GU TI^H{@IrJPztk=:ʽsѱvѱ{tJL%)E]8YNh'v.GRFm2ߍ~9,RvxRT6]>by,d SIQi[1ğId#{QI1\'AQI;C?I\#IBT|OBym"%EJ dH#(ikb.ztOȓ8I#0iDC=&вXI\I42:Q$JRRUTD{HRK,$pvl.}B6I k' $@NUtNa$P9)C,sQTو(*B6E(*m_HWVL\)eQoKDノ+ePq\c"W9,֒,~WI9'%YEgiC`%t+ _T֕\!(P)*~]b-답VtߗE\I"$]IbW@Ql]IʭzRT!E兇#a>WY\ dq%ŕ@JRJ[إ W /J"]IbW@Jv[d@Q27%Q/2DLF)Nd6jUvI1L;);jIيh'؈vv_z}a YHI(}ȊJ +* E%@RTCq0YYg .*2.*ml'7M>k2eO l,>, Ewba!&*`BL)v;,d2Q_&|b/KlЇe#"$"+J.؈Ψai"}XVK k2ɔ!&ӆ`LʡF.L"ԁɲ7jt\وh2~~C&MeI&󝤃'a 'q2 d[$D)qd&WXޙ3I:L*2ò7IRSR3 VjJM=W(I|eqԯkopUzo&qo7HYJML$HYFLh2(tMI&L?o'!f, .*;-Q_̱B\ g,m|MrIDiH.ȒK K.Er d%[%\Y%P$2\Un 紭H'%\Vl >,epBW^X{ RT^h2>UF)gITFi.*ܙRpN9i'%Q=zQa%Y( 2evRNKi'/%Q^(I9D E0iCeoHI"$Q.Q&b2JnIFIeȥ3a兢ډ>}ٛvk'Ňډ^!7$NY; (e$J*I$~z$" ܔJxQIa$U@VIY%(LY $i䅸!"ij YG ,VXbE Ed"{r@%YG աFjGz_6ա%7!ҶD#H""B4hI;-DCDX({H"Ek6rQ(&" EKD,A 7"\&eΒL9%g6Dۥ-9ׂ m`,@#&D ʓ'$ xI\< [r IyFgr4%g ?  Xx'b$@,>!þs870 fR_y&596I ~TLj(qYfI0Lha{o/`a 퓰>!~VN$Owi.$X&A|onAa-"/?YwaYi%pdDxq@^\&@ Igg"K^dD.A!Y_[PBoBQ-S(ʾR6e`P,1/ZG#[ƏBӢ5nQΨ.Z/lEt -Z/d]&VmŊ^DX~u|"ˢ5mGMh[[mAY d$E@Q.B4˒3BA^ӂ1\:w$rܑEI䲌L"ed~e+~vI k'v2P@NY; d$@NY;(I k'va`.o&$rY&B4vRF F wh҈TBJ#&$rYr&42F4(H9 &]RiD?ݤDXh6$eGO6a$"$½4E%)ۖ)C@"!4Ҟfe,.34H#χo:ٗϿTg&D. FHK#le&D)(z|/.AǠKh$,kȯ-6&H 3i J#Da:l–^IEe"< {d 1߄!~22窇ςed6ko陋M4;Ey#$PiC i䅬4U=F^oTJBQIh#䍐JүLG9"ԁ`LP0y!$mԪcJqPi%g6bIj'/dA߈&uX\f#(y#K$pZ玶ֹ/C玍XrsG9䍐v¿Nk'oĴP;y&e `҆@BSIc*I%?pGH!䅤,4iOaiZϣ K#:Tiį2oĺ|Sץ4FX),,.|F^H Iy!I# Qy!I#/$i$FHY" s!=$wFxi:^n[!=[iܰipOWI$/"u$,4 Ymy#$T(BC^Hz IYz Iy!!/$=䅤3H?,D䅤P:[:+E0y#$~Gޘ4RK#/$~.]II#/$idI#<7{#iDEy#XK9wid#( P%yH#7qF/vTr+J¿FI#/dit%T,i 4¿)FdQ6C6rXT午D}l1>>_M]!'OB2<) )B$Xi`izKm"L{$!H9"3h=2 QI;J2 VI&*IHپ &e,m`_l'A=6& < N}э_'qQ&2J(~LFA}gIr=ve,cidtvFX$u+X$ &FP0y!$\JU`$J*I $ Qy!!/$䅤|ƱPv#H;Ԩq}7 R3B-EB)oy_>e#&F;w&a (80D(%[trlNE"[nB+^( E9~ҹ6\ *VUѶr-~ D%0 %^tD.E"[n1Pu ?'"nx#[P {Xxx#w *tM(P$b˧[a|=a[a"t~lP¨X }GEd#5@8!:t؈$w5@8sGy:n?(Ur/DHx!=;r ENDXhgT4ƑiܝDHx!kܝ4DOH5 i[#@V>Yd#|G +|_rD$h?=EH]oc)R.UA{K7C!/ixy6F^`_H" Ix!/$c! BQ 8jL[a own҆pFxq60Ҷ""H}B U1?)vA~><'a}B'e#$X)!"e Xe ߞg?~R DI}[&!"#`5IR &< C2 42De|,3cD_rGw;茉I|'D;6KI<5~|}%rG9i:[v3 4OSI42̖gK#$"҈%K#/=į0CڨE/OH""4I# $^%m`ҫmEzԭȊJ +*iUWHtiCN#uiğ馳D.F&"K K."gK9 "ԭEk/K.7ɥ $rFMrw4v$rOvQ2ɦ=Jr{H= y#$R:Kw(J+m"BVTxə:>WťDD\) W^(AQЎ @5q8(8W]ĕrY\y(*mMQ=)*BIh'嬋v/A#H $22eL0)'$LD@LY0 d$JP֤2i4K#$P2>QH#mL)? U3Ky#M& `.Ls%g &,`2@QYF $^@JLĕ@WP\闬,t}t0I;<ĕ@W+e|&R>3tHrFJ @[( K:0gtNKL"Lŕa&>-ȊJ /(2b8QEOMFIdvBJ*Io*DI w0 d=$@C@A^G +sS>!ㅗed^%e6>;Ix!kmqQIH5608;U"C%%rKVJRcb"nj!cy) aȩ$לJ2Ɓ68SJ0qY81֊`m:GD8jxE8x-)SIK*I,Jh'pG럤V\G +Z|⥰K,|wYrNn#0Q@){AGZxHDC" R;edF$"  HDA"JH삇n"!esXxHDC, ) !C^KÌ+R%K"H,DXlFD6"r"HDNƈaDd#"'D$ܢO ˆ!◣D0/`E,V"!Ȱ#,R>, eoD,K cKI"HDN(DҩL,"0c9a|;`X҈ 'Ԏ,EhXDaXO`m w[H,Fba,XD$VxE"F4,l2 h8@q  7 _q 焔YDq"a>"p CrB;8(mpNPѸ`L`8.8X8 zo8.a!`V1 V+84h[ƸEYǚp n1-8(m(S!oT6"2QƁ ݕl@kE#䄔v ь(GD8"21qDdcD8"rər)fS Dd#"aƈlFݒ&dt=_ pG>(X$̍q4N w2:xy!e.XxE.OV@R̵)[@2qV oAʟ4\@XH HQS*xHmEAX. 0RV@?ܠ1)p|CIb &+PX*JB'P $}n 0)대Ɋ'$.eS~WcV;(INRI"0JDQ"2a8!*cr(+ט"*zR;FJ_XW" T0pW_˥N,`Z%M,UR@+򊌳p*p3)pqDd%",gQpDd%g傳B80ZѤ,i#2c103EܜJ<g"<FX.L,x&g(q&b2ȅs"rᜈ1A.A.0 ֱ $V 8%'$  1m)i@̊%#\ڐN$V}ЗA_=OI҅ߟ}ٌCz`їhAPC_8}B1q0~8$ }/e}YP '\ RQ %\aNH4 &pl^A8K4W;y \YM *!X+p;R& g8+q`NH[Nψ+0 )pCZQyEQ6õByka\%R6k FyEN"Z!K! ""*+"""*QYFV$;Y4LKiX4̊"c'kImP&+N2EZ.a"0Jka1S$"YMl+ JRVPv?JR(Ɋ. JjIyOL(I,a(:JRZ1ķ%Y $+bHDFd ƬHx+ wArA HmEC|,1ka HmA"YKì + Q})  Y?VX W$1#"#+"B""+"BX e]hzA("yJX |ĊKJa2 VX |(^ʦr/ PV0'dCarBB`+2Bцt Y +"X"+"X"XX˲H+bNJE)+bNJ5" +2. 04BP+J _&|%QbA|?TXATXAThB ^QFP$bH\HB" Xz"% zHX))+ i^W#+JᑲjbA.]8 P3IqON$?sCH|# ?ʯw<AIտl$$<0FFc$a4FF#$a5)RB NqÐoò4x4ZT(7 T W*+ t@ !㸀 ֆ zʜŠj(@_bB)Q˥PZRւRVĄ_BDFԌ15cEF"2$(HBDF"JoNOBDLXS3" XdEʖ7|0ʉ4Y@1MV&mWZ?, bIbIΆ/u$aW$PaE)hv4Y-V4O%b-2'P'$!B^QOk0| >(jeoIbE Ih] y̐ߤRdC Z$_O)k9P>y$Dd$! QnHXIHBDF"2Pd-r$ka|aD"2񅈌/D|+OǓ&@ɽ)Y%@XNB,/Dd|! ~Y+~?@X8KC," HBDoXVd "ș +2:Ё~(S-AD F "c3ȘAD "2f13ȘADNhE#+b%%aEIIvJIX`>Eb+&fкpIIXˇgAD"2|>xoF{ 3ъ0,]ne >h;$W$1 "Ȑ@D-h+m\cEAb :кp)E r =A>rt:C8)Q`tqH!H:) 82tq\qPсс nD㄂G3ϕ}J('v(|G~mPc CO '~NY|Xc+~jQ>zؼ0(2@\>#>"h{c~D?Gc~D?|̏#r@DHQԁtԁ'?"h}\P?E?{+OX>Sc,/P~/>[BA}/w}oHnA> #m, V,͠E j+V((F|c1_ (h÷rԌ 31hAYSA,qK`Y5̠< ^fSgA Z+4X(QR? "f ]JUEJUV*HBDNIAߡ(E,$Dd$!"# IHH+ |PΛ~+|2Z.A, Dd D,Pd'!]OWEP HBDNI[DmjPCDJOPC, 5DdaD"2 5Dd!"C jъGm (g\v_Y&C%,Q` E` / gLD,:VZ|PXuȨCĖOSEPXZOuhީ D,?+QT"FjǸLDkE @D DD"20@ jPCD"2 5hPCY^o(BٔX8!"7Gc~DNNhk ЦqW<|WDe'gqS.Nq.q|'!Nq.㒝GOkn4?b8.?9Z 8$!h\o :PjPt`Pfŀ) csh@:DTGOuMBւxe嗠XсXс%ա:(#c`E VD`E VD "c+"f"b+bÊPARTs`-x "A9gafY~՞ >(Ycȩm-աL g e*g:r+J~C ,"'5}U԰A gC (B VD|!" (E kA|aC0P6y(a԰dX +"|0+H!VZ_mk4_X_X񅈈/ 갢d.2ւXĊqWԡlq@?hAr V<kA""E.p|"&HÊqPFfx=Pԁ0qmq8CP҆8d!pG8q08j_?CDl;"bDD8"2:/GP;ʑrC w&|wDd#"hSG! ei`$" ט"#% +vQ7X@A*Yr\NxH, Hk4V,Ҩ],:fIi儝|>>=N8;Ac^1v8.8.8.0J$lzv 8.8;y>3Mゝ6q(ǡdGqph؉6t3b_7c * \bETX$w#"(m:FWqDd%%# 2QdDV\JDW"22+\JD.&Lp6aDd h]<@Z.J, gj,Q %W.1WJ+ 3prB b#a,ϣ,+~miJydY]p6|(cт& 0YWY^QkJDWF%e!tɊp%W"Z_F%c1ȥ`\i4ȥbF\j+Rȥ _A"J"?An8K,Dŷ,~h"Hk\@ryEY"rNH>K1@LDb" Sf1e4SD ĔĀN@L, D$41eV3m:ic9Lmᙶ.DC9m],ɥi\PX.N,I6T m:ʟ{2T?zCPYqH8c4`T_+!p'qH1NYMqXBbq08im0wT+I[{ ?#< x|'k%rKF X'C|c=e#ֳT<x^P-7P2ׂ-`i2`fzZǸΈc3 {> Y@اwLE$UھB?s+ BmOYQ)×L -ca͘EZEQ_-0)0Y &x(DIV<ֿ `L^QFIj %RH)-G/JP1CI\P J"$ %)$"ѬxȊ_BM%J ;!k!<i]RZ NJ|NJ|DdcED>VDcED>Vԗ$M5!YY-EowiW$6 (HY 4FV<@#04@#h Hx+rJ/xZY6傇^3$Ԏ!4>qH(+"4"xHDCV$W'De^5D۸āIa">Q_(}^]`a&xӏCrM|4ž0DY\h\\rMD+ W1>W|nJ,GX \?b+\X\i\Q"7 QE2P g?ߒ"#*myNJ,ԁ6D^CT" R&K&((5'NQ)WL(hv0o]+!@)(\d`WLtZI(mwRM` +RHi-\H"J+_QB8+HkD G vAT RB+EQNJ,D\6ED<䚌}\spEwLһ"&Z2 8KD.z]`%"/# їDd%<*s(+22"B.}6}KDF_"R_-M }ї"A.8KD)ATέ j#$KD@)KhKA_Z+Rl WIJB+򊂳 (+~ qDd%",# Qp2a'%Y"2qRv%Z֊1&7K2Z)cQL9奬0 c2e)oL,DdLfDd"~b,l`ʊ D$ O`27ĴŗRA"1`Ӻ @L[0S[֊1eSaޙ[MrXv }i_o ~/ <D_V#eK8.+`_p,ǡx8N+{e8 ~*oq\W,>K\5Ge5)S7qβuJQǡ OBP8\YѤ|Ka272`'o3 4N8;IkE.N^Q`2L|Nw(cwp;c줭 Z>/Z!;]< Eo@QXFxQb̍(m VFxIFŒQz-0JQʢՂ<<QJN(XA2ATZQ)"(#Qb`tᔌ 'D줜N\vRZ줵rNba$iVz^ >W1H靲R^9Ny)p^JDQF4, Fax;yEL0-I0Q"J"B#xHDN;i'Lj|Dd#"#(i'~AYI[tA:!0񐈌Dd2^FZ%%"YA Dd$" )srAb17 A ԁb1X8$)#Z͊`2pGD;"2lVR6+~G`#"}y+(Y%#JVID*(hFx  AJTX(s͸#_Ќf' ͈Y%# K)9$" xEB(VXm%:py xE Z,DgDױc 'DB4+ 5eV̯{ z/D}ڍC2:p3C2p[2:<q\2:Pq\q0qx5Oo`DKx*#3A|_YrG+ |@4qq{ג;JR\Ϡ|HG+D(V2+qB{҆ >/ U_6b䎲 VJΌҊ+9l`QV覼EұXe]Nhb!/yXQe:hB4c[1nfLq1-֐4cDX. 0іR :K"X4ğ$Z7 ˆ!6cX<䄴 "nѦqW3/c͔ȰDD%Zh'D6XSqXc䎈EDd,bD"^6@YFG?%"ZFL,X0BQWdX""# ,a KDdX""Q`K_LK`E_:Kh\¹#JqPDd""#9a#⥌X$a\[X`ED+"Xx XV`E Ѻ  ["95#"#95#"Q` KDdX""",aȰDD%"2,-"rED F"" xEI(w[X+^XxEIh#jd_Y TxE.҆B # ~Q"ȤJuP}:¹p[.Ds!7"Z8bD rX$¹%"^JJoyV|U׷ +_s!x[pq0n`܂˕Cp D.0܂| qnA8q(qnI<+|uO`8`f!Qz%`Ee 8%K+MoV!` ?;VȭP[<}(+Jp+-|q ɭPJ,[ԱXn`-~TёX$ŸJ[u9Oq2r˱[ʧx,[miEUiQa,_ctL--c a\ X¨l0ڌQoF.,K Cm (ïI|,%a┄@)RZ9c)#8Z+Q΋h]@9 -} (+JFy:hYgӲ,~ YF%a\0ba#"##ZF r) }+W!1C|K!cXȈDdh$"C#HDFFh$"C#\6F8A#\ʲ"c:&LhA.$wD䎈 D$O.b'}d;yEI[ "] (9/V&E`"KDF_"2їDdeDA_"2їDd%"/}QЗD@Liʲ&לnL,RƢ9!~ʲeY"2<33?)e/(RSH͈DHMD.:/9!9'$"`iÖ,hS6K,ڔV)OeYb70~S;vob,rʆ(ů|{ \Eà*r8XK4o(!I;oqX tq0~ q0~~:.M pCJ3(aP'|C_s.Mco|Vj_߽8vCrM(+Ca8 8KCqhSf@z! =0 fR 5V~4ǩZ)sHE0kr) Aj$kn>/ ÷ 3/#5eR3fHMKRR0&KRSR6|CjZ+RF 1BjV1+ &S$Lb2/Y%k!LfEM%їQb|.@Z)݀q EY"/mҦLV0\Jba@/@Z0dEA_0ĬXsM @.Z;/ZrY!k,e]p0R[arH;,D(",x5Y 暬ʊ"8ˊ8ˊ8KDYV;3 YW$D`?kNcւi'+"v"i'+rI}GdENV\1dEDIV1^rMB+`U"A#(xHY CVĬ1dE*YJVd 1>l;VDcE;VDcE;"2ܱ7;VDcE;VDcE;VD#"+"ܱji'~/^"po/wEm,c-"0k9A?YQ@2qeA, g1^*H뵤cxJgY ,yEC^ˬxVYˡZZw e\`ə̊qӬƷg}~)9``??IQa4aq?1LjC0OZ4)ZSF.)*x0GiR&8V3`pqKqkec!FiCӔ6qǡ Ou>AH>Fagc|Xˆ(F9aRF̂)|֊@ZF6ohF,RFLrM mhF1C3 \e].edbedc'4#.#S3D3^ WܢK(pZ+\\fE;"2ᎈ wDdcD;"ˬwpGD;"2pGD;"2K;㖻1C>J+'#F>"J:Y !9͂$w1Dd$"&%ϣL)#Q"rGDȀIDL"2`2&0ȀIDL"2`0HI΂FCT|wD  *y}^] <K6,7qW]FDw!*9CET|C0dH,Ѳ?tM0)5 X 0+˲}LʞfdEAIڊR>bakLJa %YW rFr* A#xIW<Y dEC>ʦ4Ih7 PJKXXQyI؈ 9a#"'lD&#"n\$"# xE%:HEۍP1t1+j+Pb(BᏲB fX.`E,Rd,ԌX+0! a(FD0^pWd""`ňRФ_-:! a1'FkaB0Q[a4BhpLj<"2nq[D<%#"#EDF("BWP ""ȸED-"BbD-"rGD.PDd" '#} (5E?ZxD+^ Mw9+X V(`EV"!H+21.V$ ^R$ANԡQCZǤIKG,!訽&/icA/Mb܍2 5Vjȹ#JA *?N|~EPa5A8I8HB$-$l?CJ^Iڹqp>aK|uT8$a~9C6JT)|v/M84㐰 8M84@ xI!P=E a5K؀ 84/K%~JTfEJ}PPP, }u-VDSApF +jjnr|jk1W^b>GQ1EcZDoh,Xv0tZ(ˣK|C_J¥KV$u({(PCwB"%xYFY;C$8k"%IexŏZ]r$C>Zh1J+b-PŊPŊcQ9 qH!b-X"&VDkaV+j+[F" X X >NZXPrA( |>!kAbED(VD""#+"B"'V`E6+"n"9bE̱XXHĊE"y+bȊ!"gHSwɐX!Cb-5PÊ5PCDVDaEVDaEV\1"" +"" + 5DdaEVDaEVDaEV% ,VaWD,bE""~rC[BKu~[~(#EO)R8("%ߌCRJ#0A(|P Bsf!ϕ!j!!z qBI 8!   B(Vìh,q78 qaqz`.XT %JR b5%|-{찄va zE` ?Q: +J? xE+&B?"X_Eb"8R,"VX`.!b-,"Vbπ`m,Vbor͐(낰D1M4uLֱCD,,Q:f-X,Yb_rami X #fFYJ0X.F,VW߲)#ѺFmXLx-ba""HqRbOЌ2EVbtlFD6Z xEǨ|օKᑵH>FyLQ.XQ6P.QV@1|:+}0Q_ ᎈ wDdcD;"21Vd/)c-0Q %˥ZIE8j0cE+\#񊖏;27wQjp(Z! XQCNF,lfH+lM`86$ko cc#8^S3ZNG,qÎppFDN؈EJ"Qm"+G[;8"^0X8wcD6ZNQ)w#8Z+VD/[G,2'k`:v8b!NeX npG, wDd#"# ׽y V HDAFTD7$A"2A\>):/!9=$"  HDAʰO H,v.!_B0JPLz;+ Y%/I,Dd$"c'# vDd$"c';QDd$"c';IDN]{)N줶"$N;)3줜f-c,c"gDd$"&#J*Imi(HFj+hd,VyE)R)$F^G"22$a'`A! &W"0.43CTTQ$.^!*8~>?V8qHJK0qXz`8 &qAY qH߫`Kٛ88פ̮ z )#?䚌ËdE@5d2A|O Z)b(~),xH[JCd!e]yE@YQ2Pʊ eHY!e,Zeo"xHY4Ctj2w7c7Xٛd-"A#(xHHZH,VʦL&X0YPf- H)r MKZ͊vfA . ⡔M,`(QVR6 C;hIb'ȀI&e0YB4k(Ϫ$c"B#+JrFB+ ȊDddEAi6Hx]!Sd-xȊIH$+bȊ)"!L ц!+qNJqDdcE8VDcE8VDcE8"2Ʊ"b+"Ʊ"b+"Ʊ"b+Ʊ)?hH"E )d,Z; >|;31;h|At" ('|G(÷b8ޱ^ g+DZxE@Z3kpG[KٛX,%A R[LrM-?A|,Ԝ?7<&Cں $A Rv  ְLLr:~2 )tF^〇r(L%YCj$rFbah$"$+2D4䣜c-[R g-$   9!x(CZyE.{S #ܧ7k9䏬W$<"ka<$!'<$C"2񐈌DdF#"#GDF>"21 GDF>"2ю%c-0kKrZ. cQ;vJX e,RfCZ0cE;F#7?+#S&|GDF>FD!Wd#`G݈hGY`oG/qHG똥qiam"0k4hS^ Np8.iϴϙ}8{Spcw 1;Ya$aqƱ޾x!8XfCq\Ќq0z%hn+3)dq;H;~'`cqHrGi;Zq`Z8q</ᢋX =chM{y,XXˊơL8P8b4ʊŀ B:QZb-_6Z+l"+*Z riE 2 a}cFdtHFGK  fԎ E,fehFxE0s 2 aVxE-DܢϵAe @4̊"-80nq[Dd""# nіqWXP"95cDK(Wk)%1,6P%\'[9#"Cˆx(@m ay)ViI50 ¨H/q{fhFDF3FD4.lZVBF_K|C#"'w.|G#!zoG,z})A^|ĂVVR+z)Q.;V4)#8YFGN0:v))m]C>8tqB>q)2.2`mpc-`k w<8.㐌<䣴!qdt, H6);2:J3%J@2A| h ~A mRw 4rA|v6.y+ApDA_AJB%by( @db)+pE QxATbaD%"!*+ ;"2vDddDN"2vDd$"c' ;{I2: DdD%"n(V"2vDd$"a'ȅR"XPJDL"`E;ԌOI,\T]֒rLba$"q(iHDF"24iixH_F"24A#-#VEZh_xnH,.04RVԠ2c !>PC}pCba<$"!#JrGp,KYA^fJ6S'#o'@詄K,|1CZ)1 )HNHm6V̘$zSrBb1L^QDX%if$e,J~W$fR34ǩ48.a!ac80dq) 3L~>?!alz)BC1 v2N`'eqXi:K8.a!#~O8;i $)id*`BO 0&x48%42L|= 0=g&+L7ncbw&Un#c1?rNb_a`X,=vNrNbV ; cI1-#v`'zI)22ٷ1ATںXQA3KqXQi#DeEQ|:FEC ;(0 D"ǡpNR8)㐼, ,tqq(,e䂳IP~B,x gvK㐗ǡpNR"8,Y|;R:&8Y"8_p Z ,Y$w)Ee-"+WZ\)WdDuႨW( -0JiE`k^ >F Fi3vKY)PvQKRhJkّKw產>Ee-o)*cVriG !/8Z0/eEWZ\YSTVUG *m/Z8[B`.+(*NpvPg,V\y*W/WְRA1;ƙ-+bfˊ8ˊDdeEY.Bȥ /+З0_`Z0ъ"B.+""B.+bKDYVԗ\YS_VDDeEL}Yake&D˂i`%Z+Z$ĬPh-"'ԁbB̊\'/+""/+bn̊",gYq97M%7f-ˊg/ew_ؐ)WύrcƢ@O}i2cɼ"^0 &dV߁qYP1mʭoRbZǸЊRVuڅb^scZyEF_IBL1[,1Y0 XV(/e}yEN}i}񇃥!󊌾|!q!5Nr)=?{}/s<A_x/x! Z5 2F_ Z'}1` Ĕ+@LYsbVg8 }2ώ/x;їqgb<㸠/ e5\$Ǩ ~,ٲ\3f,%\r}䐋^ 9UŷfȅQXr)g3[|?A.HfpC_ʋ/HˊD$ \yC`Q)ӨoK^Z$/K^ZQ)ÿ䥬Er"jI Q)w!*爊SXQ)ET =!*|0RRvXj QErXA>+067 (8KDN\i] @.eR[@.\ X8-dg%bX$ɥ1$"@?n@L,䲢/~ЗX}KDF_"2ї}xA_ba}F_4X)kőJ+S)!f- Ddx&"3 1 Rӧo"2~񛈌DdfDoL ~ӆ}IY 7Y0+2RgEJ87f <!7f-Kka&"Dx&"3LDg"2<33 S 1+^XLDgʁxr(g3 3WzR"'x`O<x0l x|kS;3#PXdR(<38Rퟠ:M%N똡:cl)Ԇ-KD\"22"B.8KNi20qG+rL<,ȩ/ъ DdeDQ"2a Dd%"(# \"2v ȀIDL" `R&H(+ E/shɒRN $(ЈTJK\%QU"~]yAbl*Ҷ$Ԏ?AAFl|"Z3)G[B-+XJiqG qVxE6F`O N{{Oeq)+8`dlx`㓾Rlh lzv3C9+6DbCxqI\%qeVlVa]`À 1I\]bD8|`f=K !pcV`q\JJqHϮ[D>VC>;|p XᎲ^VH-q%;:uCl;" Q`*8|yV Qį\A|{/ 3|E 8!e: h0V|™- xE8V`uހ (`v 6`((hFy%Cl"+enN+|Wb`̘m"f[RЌxE0ʬZ2^D3hlFeQ[lFD6^ь6$E3 54̵ hRAmai oKsO >x0ba#XNF, aDd#"CˆƈaDd#"CˆFD0"J*I٪JID aDd#"C#JH;ԧX8i$"'D$/ _􏁍%u1WHօKXXRIJ$$"c9u^ wDdcD;"2ᎈ wDd#"# QF JDd$" ?,iu^FàrFb@#\bHKH,X.I#\XȈD<~%)=$J8WxH! <4:HR""mDkNZ;;醝"IiE5;i+ ImWd$"&# `:o eH&`?ǡOPA$)CLB/׹&t8&q`R`7oD80q`BE }%I9Q>q`Ih$㸠$qJa%}$(Jߏꂒをa!s C+LJ"qXy-m(vBB+ `Һ >k9drNb%}!Y`'e%^`򊌒#"eH)R[""e`R1."YE2$ ;UsB\KNH%'d-d-U9!ev& R؉軪$( ~k̍&en 0)`I)gJVOi,FY ( XgENV=~xOUL,\cdv;Y!d-RuI)ezt7I"ȊDH"4` "(eEO0ZFYaFYaF0ʊ0ʊ0ʊ\8 *m8=dEQVDeEQVDeEQ"Zٛ2'e-R[9pe-r:k!1idELYa)"b'+r16'é "!*}Y\Y\Y\Y\YSIVTN[DTT#E+9P.s8K,m, gO8Xw ڊ@.\j+ ?Y /}YG_K/ˊ8ˊ߮p0R[a"8b8KkR"g-\"NQYwY"8K(,+Zٛ2חHٛ!/e-\ B.cRZ9/~NY ~![e'eeb8q?7C*/xTa*08}5+CHЗrYMpO, nCp!8GKsey)n<\A.WrY퐌,~썟Y!8RY1C^Jmc8KiCpdS,x(YZg)8o YZ+RN)Ee-R:ƐK혤9%Ee-RN/S9X9c'%A_ ?eEUJwX,[gL12|d;a2c1Lt" X9%e-fLYaqgbx<_Nd RZaM2"5LـĂ,+2&S^s iwgș-mH.`99`2#&Sn|d^Lb2++2З r)!KV, r吸%(pJprA_b!I7 f,' &b"2 Dd fDb"2 Dd &ČE D9|?g" ^ԊɴVRVh-|& Ĵ5  1 C&傾qH ~ 02)+T`/ F_?W_>pǟ2~xyZV` e5+ c|A~ Ĕ })Ē\/ǂ^9/CЗ }@|+b|`@ Uu1a@bVc Mr})" ~{~⋥@!bZ+V@>"@o bV$]2C_ʾPZЗ /(4\|Ҋ@.mVB+βdDDt"JkEI Q)G6CTXQyEQOXF&(Pa'4줬`'mvB?"؉xߒ\VC;i)Id Rvl)̖1lxQbBלaF`?Q^Pg- Dd%"(#Wb!;))ϲU0W]_uN^QY)*O  D$hJE0Q Dd$"&0V$dEF"24ST"rJDA"rʈ|"LϊXgE6"2LF4]XhEЌrQ[a4cD)ƀ.ӳLZLϊfDd4cDA3"2ьfDd4#"# ь\dE#"c XLJhG`h]4SVc;+[>^Mn #"nQvC/[H,?G"2XBRI"~zߕJҦqWr:mH[)r:e;nQ:tVd ʥ`ŧ~DT"r:en.tB+rHWq";-iC-sCF܂:!PN8%ǥ8༉q\쌣_Cp 3I";Wa4KqJ%7q\CRI&%df4fЌ8.Ev!! B]Gh4qX҈ةp8 6/Unr:]ntb1)SZZN ?䏴V$įCC3ʩT4f|* 䏔=&#m,?RZz덅Wd0WLd hC2`LdM+7)'d,lYМ儔";~KDX_/hl"mJ"HD0^qSXH+rGDNgbD+YMhC:q7cAȸE<x)Zy葿y`ED+Zw'w[¸EKFXNE,[K!/Z<qȸED-"2nq[DdbD-"2nq[Dd""n'ܞJFD6"2 l+\F&"ed"BїN2/"2BIP]2/ba""# X VDd""Q VD̋ya KD!+rE#mr/-Bs,@ (`)XѺp+babV  nmmO0ZtΧ10Q;hFDF3ڢ!̋hXE8)!kK>!<0\J"hF F5g^4bE`3Tff08(m!hq㸠"0C8fC %f\knh>q)8(kc|' QfCЌ2A38$5{ec/`w~]qHjJR3)6Kj8 diCOp22 U7b>22Ɓq"bR\0X.G,#+#;V12|8f xE) S6A- O1SiXͨ0ьQ F9l(hF뵕{)]4#%K#6Z,aOvnFY K69u*`22łq3`^RZQn,uQ:vAba$" 9a I6"{* 4RHm/#|22:&\ ~7DC+o|5[oXo|^Jٌ㔭r|잭[KZʡ'Z ߼6z;hCЦ"MkmVd{4|??>4O7>ߴ~SbMi i÷7E޴V)*k_}KQ)lN),xj+-qr''KW"Oy:\W"OkEUa)bOkv]S#fsic'2qr@ubT-:(PN@9mEyEojYoQ`fEo M-AT:MkW<ܬsmj+ڼ"#5!R bD8ņqIόC`xчqvwւ%&#0XD(0J ,YE>ɘ!ܤEa2"SGT0X&dxQiᘌ;a$&cJeVI2G&-6iml/qsmmO6z`AwhF+m\/1PĹq~UHmܨ9hQĮ1PĮqSyenCR*Ů okաbPL!"p!RppQ o<8~cJ7|7P~Ho%q =GWJ(hCTsF"ڄCD1Ph硠z r1P r\CF;Q@9yTJaJQ (Gr̨*mVrJiҢLɋr+` 1{EB9(GH$cVBp(\JiBLSqn&P EߘV~Xo܊IFo5^*MXJ ,q)R,Jmܨhc֦*-.%m"ڈTfhc/A}?0 `%BJp&D4 A@9yJ* (ɨEӋsOJDUn.779F-7D`=t<]>[WE1k]J>| ± IQC# 4 b !nqk#}(!p<"O"A(sJ,"Y"@ >JHxWKxB>m ! AB,ErGrȑȑQ 9#9#yw⎃#9#yt Z"X8‘SApYRj#Xxt11ElpTVqk"0SA)BhDf@hDf@hDf( pIუ€ GQ l"| 7%lgEŭu X-нp"֢£؉rbVV3Wza H9a.2#EE>+Í]dGyR B!! R*)E*1I*d70wX% wta A*qC&|@J5-՚えe+8`8 X= ߴ!@i:;L|RO;B!Ӈ;ktpìLs,m 8>JC9O;RcGj M:DL}>*`CFr6! reKHcA^! vNHױ=$*\f= }y># >ݢ yfs`K'1C=ih -.N_Nf/" sU}{h^dGH`[EltQftiFEatA]dEXa"w"wAq.2SPU%FGZBaVAWV+\4d2}5+ݢp }\ 1:,E.a[0̆ 0 hFp4Ý/pW LfT<Ӌ6cI!G`Jl- "6RT y)`G0"! У֩w䱫pGpG0JG8^#"|轫bt &z@>u#.]B4t1r|tQD'D><%GkӋB>R#f`0+VH -pC5|@dȇu @E 65 ߝ*5F *(Q}$IBI9%"w#  0J] % BIQ(Lbttѱ{YBI*( ,*݋>.%[M$P* "P70^Jbz)$|na(I4EtQ f2r^U^E|twQ ÍOnD C>1:`p.HCOTfd-R;`pDw!"wt C>Q99+p, Hb]p`"6 d-ff[899QD0kR-AA ]D|t]Dq@G111#lt'?|@D|@OKп4"UbitCsCl/ч"׋C+6#lt F>@I\J( ,J GIl/*P;O)J&](YJ CID`zIE7X%o$J%1S?,&pb0&v0qVLA{.^ GG%"ꠀIj$~Ӽ( Rp0#%{?%hqB8c;!℘>`BcC kUH#(ZC&CB8*1E!2LQ5ާ>(`GIUCO( d$:T*013/ Lv7pyՐ1Ey1E *c-=㮱3}豓c,ߟ[v/Q> #KD_vb`C)w()vI/FW<+ $,"* D!A1RAT`QN}J"*r-˘kI!L(VY`Qe2@q.VXWܨbn(aQ9e)EN}#SΘ~ʙnD; @TiSBT`Nl/"ډЈh'T\`@.h'n.*ډK19bJ@ , HO}wvD^ bk" }TXx bRqM V?> | d rL&D@ DQxL 5REE*2mȑ(}ImFqK$R不BOPOq.n.nf(⻘sA`D(   ` & "< D E$DAqcB,B(\H?h2^&&z;(\n p!K c@Aa)A{.2 "zcBuEĂ5t:n#PXD,6="ey}U>x"t xl/(sF7j tQ:^g{GJC:`x|pB)}𸙫X0zT(<EL!=c^J!Fг: I:UQ cecU CĂwp?Q>ࡘA8QxVW:)(GA2E}\ʑC9t&%K%,X0aQP>u=0S( 颈$@0S .2L<:K}XA_`iz lN!0ȥgqL,f++yQqcJ> 4=IC#*QC"*w $b/sJU`9wnQE+:-;0tQ *fQqCP yA+%䁅Vc@`'a)a'RIK;±; °.rLt:n1vı.2 %L"G5E"FBD"C̏x_ (c@U r"A (*!(*99'#(@1P (y < DP@ nB n r,"" r,"" &!7 )pg9! "G r"G (y  y*< D$@HDl) *軅Z\XE$tQ*8X%0"*>559PQGAEqSRIk‰H#$@HB%$j1Q! ($ LGTs1E(E=)nQ 3HQf|(p@Ozᘁ[tQ1CPAvyy{LȲ~C`]~8f@?kQ mf ̟335¡0}+f  fP8D"=J"8 h(pp^á#(ѐK>LDC`4'ĬX((8DvOC @qBU\" `I$A]# rӤE! .! ($"=}$m/)@`V$" )R$!Brx -Eqr&-(i9G9aF3j @t#-EIR( J,P$EK K#-0I&)R"LRI0I&)R$E @I0I&)R$E Hi $- %?e 7eP(c^ǵR̋(\e &ab2^1"'-\1, \HQ$1J<7\qSIK\IW\7A%NZF0kSXB,d8f}qPr1Mp.HK!, }1Зs ga#}៫!C/gx88bf^B_V}j7x} K88ap(􅽦 @_Зp􅾭Y}ga8Bq7.Qq7q7Cu8bJݠ!vG!}3sU苙9G_VMȡppRW^yЕ\y! "Z5]Ӌ@_L/B_د%XwK }Eqs)r̡T0 & d d8fm*pB|H|@Q>RdKb\(ElQ5f`% K}E/nP BX1\1f.*S gms&Y tc2+LX*?"0 d•0XhD#I ƌ1]苙R }4DS_A.fJrqSKbvY^AR \z j ,\q!p7xt&I#*! D"""N )rĭH VS`'9vc'9vc'E3mi ӽ^Ds{I U"U*Ia'~(_BT`a}֩aBFF1ǎ,~.rbg, }}} Q/9/9/bvw a2]@Ju$|E/'b(}YP9j ,t/iE/f9)s΢D_A'1[ -f*id" G_D+idRْ "30؁1 }"\9  r"[\`)DrI "YRI`R *+` 4 a Qضâ`zQn+V8*0ꨤ{a Fѫ+`Vt/pҽC(lp!`=s#X} G%P0^Rp$0rFAC(Bp$08bvi F Q(`އQطա`X0i0F"N̆Q؉N̨K ,;؉Nl/ ;颊~zE&n0G@`' v b{0JF(RKBTܔ$^xQqCJy1줋0qCP)("sv+lRX`B1X8`b&-;1 عTb`TRATRBTq[1&Els2ژ-|`\q[C+n`p@J \1&E@䈊ێ QSWL/\V++ ,p@J\E,n|g"W rp"WB D@ D@ D&E%D }L+9+n%p 'E/"&I&E sbbc@1P r"GI)JE"C 9)r"k5 Q999; r"; r"; &y\%!}~;YJ,0R\բ04qN0 = M"G3ܨeTyj,b̀!R4K€Cn|"-܁-EG Q AnH#T"" zLB%Lcz)4LJlX48.7Tnc׽d'"}=:JFƱ9E1pƠpQ`sM܈N'@8pTC`zuqաГ'Ot鄣qS$"}$Z>qQbæaGN'cu#4q& =Rp`! }AQK%q, 袈ҧȡ6n6l/pGl@AD+sR6( ]t) 6 !E3>",GehF*b.pℸ^D7 RXTyw`7}' 0E O2NEa撧 S8`KE`qmI1.VR€.!n|0S$,>=9a&^  G3 t:pt:򗌎4O), r"G>BD|@D|@D|(ȑ <b%GX4B44"֠X*?VJcZ-, TXD27}R蝬 N"SO"!f`\qSC\/"q9.!!n*CRKrE1s)A.ͅA.]d8K"z KQ=="Oㆠ QY 1ڥY!*0@T(:r?<xN'x WR ro䱮=5a+t}Mk`¡bQ=DLX :BQQ!`}"f%*{#(`3sSDs>TL9sC(ܴUzQ`LN(P}(*p8#DCZxp"A r"AB D@ D@ DR"h"F rh"F rh"FRxHyb(}*%%rWG r \8P r3$C/%euH=JC/ 6/T @_L}/%}1PRX"8wbnR1$C1zx)px)r8 {P{bL1J1P@ }uB88桀}:E%4[2, }颊"'!r` } t,X=zpXhך+)XTyZqDFC`0Ji 0qGRHӓ^`zဉ>$] 4FE'-*>4VE%-:!^1}(3[JBEl}T)l` L 2$EɣȡwxiWVћ^ӑ2!<)!p<"CBIMC#e:} h"=} -;54"/㰸sh"F(Iib7F|)Jɔ8`L 2ďO`'v#ȱ4D%E%E@D@Hȡ4:K4N4N  )R䣋"9c1#,X8`["q|2j %-4yDw@pDw@pDw@pG*a+;wVwM׋;.wIC;XvBꝴpÜ*]wH.!Dlt]QIRT^F[5EEsX4HT6i`B! ,"+ $f|4iDa@h R at[R-`Fl/<=녢],$i0D4pp=^*zo ja0Z%H8xLTL24k, ه+)+ODCp0"5PXDYgK8BH.1%RX}QEc̳:JqB¡݇"(B8G}P"5:Hf+ԁ~ B؏pCK/XD!"@4,0.E0&-p`(8` XDF?,% BK%, "G( r"DF&EK}` s`K8`Tqa, .јD(Z ­u% ,*X E%+V 0HBO_ SpC4v*F> X8XVqFF0T h8hP0̵a! B|% p7zUsz(RK%r,JXx2; CϥqtGȣ|@F€ȣ|@D"+ 9怖|JX89! `"6 r`b%,1xap K%r,* , Q 9 9 9A r"A r"A rAUp& H9aT ~X+L|"yCL "G>BT nn-,$C *z?pTRلC+zֺkX;-<T6l̨*;QПEC,HEEC/\QQ>\Ty}YdF{-!.(bN+n|\"CTaJQ>`)g*3n "Y(E'p\id©42f(\vo rq+ЗQJR\`qeKr aO 3} #ј^  \r " G_܊)RA_RB_`QG䓾?bS }G@1f7Xƀ.#n } }1G/z`}wYC_`9h*MrqCQI r"Y r"YB8 D@8 D@8 DTY"b@1E rD"GT 2Dό+~fgP^8*!<= D$DL[,ng"JG%aE;1ӦI+F`aIy0I&) Ĭv"v"vQ$q[VA#f*9%1S1P!(I94vFD+QRFRFҢ30ӋF"(vbI F ]3O#cL#'Z43} tQ! G>NH E>RN h'za;ܔ8ܑ";0z42zJ:^mDnƑF&E l@ cRhFH)R4#Ef@hFH)R4#Ef+6^ r4#EfHь)""GIFI")R"EPT[@T!fԕ!iQCx 6 r`#E'D'$- "6RF4D#E aH!)"0RDaH!ii)X"+RTQ>`EBa:Ts mJbp4KЫ.2!-u(ctȣ^ёEH)")P"Ҳp,_ cv`pXDȱ)""X@i+BFE{GK#-p+$I "l/< %Gc\ZJ 8,A?>Kۯits8*D8,A}8*D8T!hC8,!0K0D KO޻ k|pRa d=KP #(G¡ȝ` }Q^+KЯ[C\ P>BZC+̨X#- B(BAdEDp(B^tz݋+(EH -܊4r(L@JzӤn96/5iQIkذ l!P`054ftQ ac .! }cFnaNka"ct^*hҢ }G=%atnXƑ[!0ܢ"YUw~y0 'SICd)gn/Ap"0BT9O'SU)gl/"K`CQ l^4!6 yjh,̀ьE, s )%I 8 r"8 r#Dq@Dq5p_#Ewtc! "8 r"8 r"8BDq@BpA5#BX@.Ҩ)Ҩ)Ҩ)r#DM]@'kp`"6BDl@Dl@Dl( ؀ȁ <>;HIܡRE!5#- bwìM)>FZ&.򉶔%-4K Q!p@(!%qǮ%-.i(E$׈LbHRIm a{aJ&&ZIt(]؉[qĭB%KZ ^Np섾]({C`',;!P0" EVNCX8*I8v uw]_ chzduH1[ᰀ13~{N&f 0ap"LC&z?dpid0}TqP0$0᷊pD 02 &bt}-M`&f8`EFh)ID/L#l %qkS FЈY@A#n%hB42(`F}ဉLiSL`Qe+IXTӋN V"±v @؉N+)"b唱?r1Z'`bu*"Q\/4aLÝ2a޳"aBTZDXDDsDDQ1k#SG CT"KJ F(9b)",""9F"Nyv;J""Gͱ.VX8`&~|;q sqOT(9(! "Q 2<D@ DŜY;K-`FaFa(9RQ`Fl/Qq#j(⏸qgqELC`'zT* C`'yTա}Uj Ba' ~LF*5 DFFZ\X* c"`X8b{(pQ0H#(ȘU[U^`b/C ;q 'wxvb& N(7PsDm~+boJ)g`؉KQ^*)g`؉Nn*a'D4Fυb']䀉>"L܆VeUY8I9Jb P6*E&׆LHD_d ӋN%±; Qb' E`'fap(8n5EohEnZXDd= W9 q307y QG+,! "Y r"Y r"OD@.nMz'0^I/0? !"Gj 4=E})遅 QCPiz̒0XDK%M, 񽈸17"m@iz /9b r "b ,u 1! "b r "fV g x<<x=;XDR 6@(xF? x " gl/"n7Ԙ[Gj|/2ƌ|>6TbAH DԄXJAR9&C~Hōq%~bq"oV7f9U7j@I̾QIxwDzYNH4Tɴ/x(x$ K8*ddL IM+prCō!BܘptE B88CA388cf.Q1x^Oj1C%1}<7G0h-աxա(8Cc`Nj('IM7!VPrKB9X0r:L(T]:tA9)VpƭL+dz)@9iQbVb=V(-1ӗI"aT}͐x\ 58QƂF^*E) >)R'-1W|7F'-I<m>% tE: T-@P>J$&bj I bI "ML"5]LIwIwI19"bR@LI1) Fo O6""""W침p7Mg| &c{@Ĥ1)E(E(E%E%Eb%QZ("QR]RsD%EHQI"*)RD%Eլ *i DH)"ْ"ْ"NHE?(E?"`sQ\BE`'zԥ-i؉륀+JlHQ..2<I )R"?pȇ[j|t(-ppۆ*iI\*W‘;BĕR C)@KI Al/ b!,b!:{Cm3f8 pGh.QG!)X;!w1!0%":^ywP"<:Yy|DEg1 ȇC>8,wzJ!P$0gâGEAAB%#W:a&"*%J@>tBtR"S^C)QΒExHbF-@7j (@KE n1(RI t!]IGyw ,OE^9Ewp[ wtQazaVq"0s8,6,0PgCl#JOzaGEfURF\ICv -ygc" -񕸅>K,qna4=i(p@!.(fUa" G3 r4#DĭH'01Q`9c9c9Z`n[W9iTi%`  J"J"0XHޓ[(⏸ "0 r"f&4=)'-4=iizl/g&73|t! "; r?b#iGRT{s)yOZ򡟱K{Ң'eZb'- "G>Ew@pGxpDl<|@dȇ_("Ɉ Px!B|BA.rWE0ȇ!]pa 0\9;(yQxnKpGXD<׋@>W3_듸B>p~b_%#4=p4=z*MAn{88pC w8* H88AG GY(Q>BcGjxpG 0T:70LdRIv/aa0 8(A5J䎰;|D>̊)d|+C_.dad}"@X8A)&p<~gfmd=4HcJRAI"聩(/r;_ ;c'9vNɮK?`?̾)Eѽ rdD%UI a" HJ*pLt2 ;! l&|߇&# kBUɍHpc JpB؉N*EZXT2tQ"N &y%W țp %EDQ1{A$n*RX*QTRLŦEJX`zio rMT$n*^m~ ĝ 0ѷ`K%^ , 0@IܨJb%$,*2X)2 ,@(;mJNJRXx(s 4B#)*< A!E!f <bG0#(Js`QȇI |^jL`qLŲN|}Ñ.r"Ob)q,X%p"; r";BpDw@pDw@dp_MNǭABL 99-E&@?>@dx'1P ȏU]vK% ,%P.2h$E{V !]$΁ 8C r<"C r<"C r<$D@xD"-@I rBIR-,"PK N Vb±3QDOi- ,<XQ#*! D<*DōZ *nQc˿WB,+,PvK\E+f p^J , \b%!,[EL,)*pE?/Jp BJ0 \ћ+)Vh'nJ\IQ+fJ*M9vh'h'JPYq2M>*KZ 1PB }1YvQ R@_Ң}{V/f`}'OCoh'i@LH#H!)"\R DH!)"\RLR8D"M;h'iK }dIF;I/~ &-IFFI/)rKg@1KIKI dR,D\IK! ,<)P yGEEF*LZ BcHI3)Rx&EiSO69h"mR,6i)6iMIQ6Ol?E̖ HMZDR @ۋF6M6f`1XIKI m *ƌ &-4PIQ 5".*9&- ѣH 1s`RԸX0v`&-r#؉r( ǍI߬!RϧC7S}Ƿ_{yzO~WJc_Vs4f.\d͜OB3qN/ Ṭ`N_hLNs{( \jچAv{{<[y~W{WƲ-oK6c]j~ )lWI}]WYKaFFdGr xeFx'o2g{sŒۃ?R[)eKy/WLi4ڔ5SyiOʕj}A~2߿WvlhTY3orۻ3T.UR9 _ 3z{?Ӡ0DjOˣ8ᣩ )m'vZ'᮵ro4֫u}OOޖɃ>nVv>aӃ]9nMo5=Ts?#!2s{5h<9y6>mZ+<{ÞjLV_hc+rm_Y; ug6s[yYݣ 磁Y:V*Us{HZ)]^/\^r_}V 7g\vr'RۋeiILWJ3͔^*_<ʫ}R[~+_|euχrxq y S/:wLľ`\2LaU[9uRJiuR1WM֥rlxN7Jy]gnJv^^\gMRXV.k2#}6hRx<uV΍^ʆy],_ؽ}`to'"`V l} yoYA>._kiVZ7ly 5ڃ-oËKp=&sz:;)^\rxoz:XV9J^[V]k/|пO/|xmJ+FUZ9}˩8l "=*k TfKE^\|3u"m2{/|^?H7”n_. 6T&ut4t7 }\:/돿~Voޯ?oow6m6OӿÏ?T}s섿_~oSq-΋?v. ۹_vlYͷ~O?گu?^w1^^\{z)h^˹:W;/Uw?$mm6/{/\=*}k^oGnݭ|ڿq߼v?S|?cܾiM}?u8b<.^/˫赽2^97`mw??~y=>KK_>~/x5K"q?a=~xTl\]뫼sZE^ۧxӟ߫mezy*^mhnMkPBZWuR˩<_uvaKCIKj.ey {{Kql^_qj^x_v/C_ [$vO K|ʶ7/4zm?{[N8~,'@~^kG -'g'rnFѢŧ;~8_T)O>ڇdC>/Pݢ]웅+>_۱V/K azsٳ(k#k_-pɮ /%ZQ]^=Ѯ;Z*OIGyHs/tk`{Vohuo~Ժiu|jhG׽8GFy[#ѣ~鼝CwoncSLk۶?vk\Y 御 =Ft+?/O f@5t|8mh˿ooKN{W?kzWm?[-cG*}^Wpe:5ދc\p}\M1PH?n0cy3SC.|/gx_zcSlo ȏ!_L }٥`^ݩMV?۟/5 -(pYIgyrI֛l;W|NS$oA}l d*:辰|m:Nߖ-ݿ}_4ËZ_TVWm\~m!7x9W_*kN;W?}|B| ح?/|bΏzS~_Ϗ4_8_m_GkYŠ8GtyUu^,Wf/@5K[ş@u-ƽ\iZ\3wM] 9OWNN/Nv8y/S 7_?/=u|ly'׳Sƹ8K~_3ݥFn ooi?OO}?wwnOϿ~2u9_B;{t(]JAڇVQl~~:?.Uln^oW wǽLs+ Ny9K©ہ)yzUssOh|7#xW?oKJ:l>49??c[^'mVK"q>}r_in6g_Y'P3ZЭ-C.-}t=wQbSt_gC9-EK ?_>BC܃ ?I~Kr?bh!Ao=oXZT#rĖZ'G[&pO/4W_ӥ?Ki^w-.W|o_#ڡzݏG%^rWky9?I{ V~,L~-YrO +'P?x;sSgOvӳ+%z]4uB,-vR[C ᖟJmE'_?y/-,|vcz-Eo-8d(÷:Oyoӷ?֞ rf"i$-/NW˷ղu[c_o֜p?_ h~~865}=Gyl,nPkP__\y75 ֠h~]m FuG[e]YMʖ\ۄwnXƠ uw ~?Lߛy% rm7A]l~M5?ֿ|7y*w-ZGP 1kA_`w}:{-&ǿ?ZmWw憔\vaj 7}l/[?KMϡ5h^˲63^d6}l7~i(uǷ}554eTzߓ v0״(y6_[c3Nmmਯ}F}-]Gwi57^6A]}]ug󣽙ߨn<l=Zu~wg{`w}{}'7??~lq{]ԩ'T |ǶgQ_ ]/8?ֿ)~\l~/cuֶvׂm}翶GQ_ 6wkOl?娯q?&}(G#Q_ οΨk`dڨ[}?OO= ӧLvZ: ǿ'' {uϺsGTF}l/[!75V#^ݍl`>?M}9ԡ㿷˳v׎AK:˳>u y]o.;.ۏQA]'SkcN?Q_ 6ןOjި;~\  Їm㻶Ȕl6kA'~kQ_ Gĩ`w} 3^럈mr;A>|\A`A_.cӘ!G}-U5w cdn?%85,Tc-XC]STt8 Wk^cn^L5֒^cz8ϊ~K >ә;5 m:QK*xϓy*cs.Xc={5ƒ-Ka6kȱ$2՘Jc_cy`56Tc-5%_HNq: s-yԣ 6ZũSdq㾯/cqdHwe%;8>mN5֒xncC/STwKjڸ$nz-Xclu?aM5mU\SPڶTc-qoޟ駒ƸBۊykDI/a՗~6L%9=[zygZ2Xcƫ,J6Ȇk56Tc-5gzk>_~;;㔯xҚS[fׂa s~q kը]7w(XX}} _r 8T5eǂ8mu,8V5pT|hҶ sP}hKkFkxg˹c1:ޅkɰ6ۋñe1 5.y%85mܦ^21WhX5Tc-8ط_m%xyk%Cg 0XKqkڸQ՘^bIR= >wk}~b\G}nqἽKeMtoֿN%i5[zY\2,ƾK{2XK6Ȇ^K6XK65m\򱾄hYST#mac{9 mӆϒ1QTalwp  #엵 1\ƒƲK86O$h?cC/|8lAj8Wdhcl鵿7J1}{!5mtl.OTcju岽%Kk۸\21G6\2qo㵽K>X2xdDZƱs,x/Isx8k$V=76nX+kL,J6.J6Ȇ^T2qoD\\>K N%8XZo,5&>5quI8h*hTC=Ɋ-SG) i ȗ,Syaȱ`X}Kq_)[dq/4mƾy,5VꚯIc?sCO5֒a6n|> mrmZČp+&z{TqX2LXck{u8X2xnAǒa^}t@ziZT v  С\2ԸlXkBk۸ySI}1:r0T2,Ʊƾk>4aX2qo㑴\2kL~wy?,?\nDySgO O|* +xɿ0 7 ʱS/ҹw} nk*X_>sC|:l@j8SdhטȌZ04pkpTcPa.jO Sdıƾm,6KV k|7xzL5V^odXc}ώYN%CCqdHsKTr*88#cPcAmƱ^ck噿0=BDoKT>>6S ^5{+hH9STr߷nRan] ǂx&.n$JU8طؐϱdhc1l߉N%q!^?K>V`YcC/X2Xcƥ\1G62K>oX}av,XTclue?ۙKk۸lX2՘F6acƱƾp,XQc1 5: 8طT2kLײ~ik.+&~8KcY8=&}lpkԢZ[ﵰ .SXǟXanrڸѱdXC0v*k#FzTT2qo!Xo3\c,j\Gjs+qqe:es*7`}Kθ>[pIvSAǓTO SsߏS>8Ȱsɰ6^9i1 5T2XcF*sjDVcZmb,8T5p+ sP2V2 XK•SF1m.X?#t@}*ϷTalwp{ɱ 8IX &._: xoZO\c,j lV2՘xm\X21WhXs~'K06۽a,6֝/[C/x+Bj۸l|XOc1 5۷dDZƾo%CCqm/qǒc}49etSd᷒a6^ձ#9שX2xW 8ص8m-ƒxMq1V_u k\g>[zY|Kk۸n/;ǒxܧSP㒯ua^Y{*jL+$f{>Um1De1:r^S%\5mh?cc1 5_JqkxF.|+XDjL%[ww*qAzIs*jLGj8rJbo/K9՘Zz9w|t*ro㺽K6Ȇ޶PcƱƾ!XbCPc*jl!⦒a6^$xw5ƒƳƘJqkx6r,jLuE1|_l}OG}lpkTXNLMsԧΝ*ױ\2ϻc0Vcn㺽K6ziiwtc,8T%q*XoQ RoFb>w?hd4av ČC[qHf,&v ?X sCNN%}ƾ09 m 5Ƒ #lcƱƾo,k%C 882F%CtyaIѱ Nz `7wSzrn*Pan`1{撩龯1R2%Cƴ4JhS®m*XWjY&},kS0C20[zG}<'},̽6dHǣo6U ?Ը* >ֿ=X5Q׭2Voǒ(s (K6ȶ.|,88v^%1}1 5NϱdoX2kL[e9c®m*[Xa.j ƒa6ۋ$^\Xc,j7j,qo㹱cF1ȶZ0ĵ+"w>6k<_X]=T^KOa>p~m0X2,at,jLyIt*8T5pǂ2VK K>}6ۻ$~ﯹuBǒa15mܷdh>>o#Fؾ]%C6^9 m߯sf;d6uJ+x !Vm&.psc6 Rcy{#8:[T|#gs K6 +vn%E6c n-Cd%\5#2ǒ8a/ǒc]e:n_FKrjD0CC/ KnX2XԱdqe ^cȷsy,iMӪ/c]#~Z?Sku]"6z*jDF2V}Ջ//ٻ]X=K3rh^5B6k#lJyΨGM5bhFץ~gm^f5O6k#~9rɮg#׌K.85kFF۲ ӌ3bc/6k#ՌFfg1[,=cܯ3oklAcF=RX"ͪ 4Ҍ\3slm#Ռ:skFgng#׌epF=rh֨_)Wfh^f;+7M͌fQ\c-FgG[;t}3kFsOYfTk?A7?Q={|ƹ^gL4>8ag_^c+mk4#vY󴺌ͳ4#׌FbF=roS3r23kFcm?5{p_ 7#gь\36|wJF3rh֨R{27_fQ?VYgyYYkFs,k fzQ4{iڌ3۹m<H55?QW,595rq4Gugq,{۴fp5r5{F>qX^ϨGM55kF{ ,wx^qۑ{okvYggnf#+6͌f|}1#׌z;Yn.bA=#טXTь3뎬vg|ؚgiF늸Zgd8G2c)B3f4=>(e6k#׌RBy+kFƚH5NnV}}zetF=rh֨e뚹jZ\3y%ZQ3ݎ>3kFcu{ь\35>͞mq%gʏ5+ThG߮,7ճ4#׌X3zzw#r1f4=>X;5jƵѰ9YՌf1g}kY{Ƹ\W8ͪ&G,5hX+Ѻi=R͘IlG-fF3rͨ{|׻#׌fzX3rnzF=6{ z\㼚רGQ֭͌sl zXc;^ь\35(rN+~4#v~8 =@.vgojgTXq窛6#XvgQ3Wճ4#Ռ\X=cAkV}~R\3okTk#׌suU}ݴgfkοYg<.gtZέgiF~q5Gܿ=ˍ9i3r8._Z_c+k#q @TέgGͱ|ڙPQ\35fWn_ۦ5k䎹_9^k#ڋȳ;5]tr4R\35(r6׿aڑkФ^g1/K;gY;Ռf1oP4uͳ#e߮,w s,5y=>85{Ƹw#oijg#׌]{fQѼBrװ5X3R͸I8.[Zf\Ӯ,}=gGͱ|1g֨GGZƶi=ry5[ь3k_;,w;}z1\}Yg ׍ϲvgiF#׌fYfE# q^fk4grcޜ9#l\~yc5jcr66Ҍ3G}[c޿k4#QFr3R˨fԯi=rvK3y^y=f4=>x֨G+,C#,/1M|F3rtwa,5y=>85jV,#rҸ3kFcghFץ~嶛mm^f5^WH5cgfX5zzQFpԿa{F3yլьT3gҌ\3k,I{f1ݎG;͌f1^Vok,kG,H5㺍]5r^UWҌ3r WgוhF=r_VUf}z|]>(?5YnvSd5k-F=rͨhRʝWWgk=cٮz~'{5kFnv~'S۴gXmu9k4#Ռ}qjUP=K3rڶk̫5jkɌY͌zXc}]k4#׌+߯X3r8.͵F=R߲v;9#׌X>x5Zf4k2U4GZc>f|mGWlޛ5Vkg '#gmog#׌uwF=rͨh2uMt4# 1 _^gg#9CY_kH5c|FޞΕYjp]Y4Yzv1o}S^[Ӵg<淴]5yu_=K3R߻俭vWM{Fn2;۹Czf|~1#׌{n wf5!5kFFʌUuG[|1Efk#zf^gy}.c?w7Ҏ\3ף]c*i=rh^Yfݯ5kЬQT3;eWA=f4=>xEPQ\35(M7߿aڑ{F5_^q9Uk4#ՌC^UvfPH5}܎G[vW3kFs^Q3~gْ53kFs}F=R͸>>yS5f4=>8wk#׌z;&$NA=1־1=wTF3rx\6vgA@Rg'|[q^5M{F<2fK3575jމЎg(W;f4=>xPQT3'h#+/{5ݎjz|_|宫WfLaxx֨GvgUR\3c\u_Q\3~l˖inf4UzѼugy+i3r_5kFFM sn9y x{ߤM<vʫ?ge.yPǣoYs~}⯜]J8*|( 7}CmjPۇNj;Nj;j;.j.jڮjnjnjj{tt~ro;7kuBvPAmvP[l&l&l&l&l&l&l&l&l&l˦n`kN/&l:lj MN^Mbt^0tC^wBl9T>rdr>W}@I֒~co",`7췝E|p7%`?T[n.~n"| ڂp' ,ͧ-7p{!7pyD7T[p7p7p7p7p7p7p7p7p7p7p7jmflflflllllllllllllllll,9vrppppppppppppppppppppj ­-[ڂp>N ܩYj ½vuCsq7T[\n`znj ;ڂeEڂek-XV>ڂek,[}PmĖn`v0a&mbݰv^n`VPm ,;δ|Po9DMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMDMD]E]E]E]E]E]E]WkXeXeXeXeXeXeXeXeXeXeXeXeXeXeXeXeXeXeXeXcqeȸypk ."ܮ-;3Mm6aU Pm@j'iE}%TȄj'- նOj'%T>m ap նOjΟPmK}%Tvj''T>mp նOjgYB,Y6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6eX6ewlx>Ʊog " " " " " " " " " " " " " "("("("("("("("("("("("("("("("(Pm-X6bIJ6;&}elvL`-X&HB=88yG,,HB'HB "C^d^$ڂpҋ$T[Nzj I/PmA8E',HBI " ^d~pҋҋNzYz!I/2K/PmA8EJ/2K/VzYzj I/PmA8E-X&HBˤI`" ,^$ڂeҋ$T[Lzy&Lzj I/2Ob$I/Pm2E-X&HBˤ'lˤI=9Ӟ^l Yzy&Nz:Nz'H~Y^$ڂpҋ$T[NzYzj I/PmA[ ngNzYzj I/PmA8E-'HBI ",I/2K/PmA8E-'HBˤI`",I/2K/2/b"" ,^$ڂeҋ$T[Lzj I/2/b"" ,^$ڂeҋ$T[LzׇwCLzjgq39i?EE^d^$^$ڂpҋ$T[Nzj I/PmA8E-'HBnVnVnVNzYzyI " ^$ڂpҋ$T[Nzj I/PmA8E-'HB՚" ,^$ڂeҋ$T[Lzj I/Pm2EfE-X&?2EfEU,^d^d2EfEJ/2K/r`"" ,^2DrH~WyO{_3mE@8E^d^$ڂpҋ̛',ȼpҋҋ!',HB9BNzYzj I/r "" ^A8EfE-'pҋҋ$T[NzyIo+,ȼpҋҋ$T[Nz#I`"GI/2K/Pm2E,^d^$ڂeҋ!X&,HBˤ9BLzYzj I/r`"" ,^2EfE-X&HaSyge; pҋ$1pҋ,_ %Mm6 PmK}-ҋap նOj'" PmK}-ҋap նOj'""HBn^$ H/Pm[I}-ҋ$T>Emp" նOEzj'"HBl^$ڂeҋ$췕^d^$a"" ,^$ڂeҋ$T[Lzj I/Pm2EA,^d^$ڂeҋ$T[Lzj I$472t"g':Nz:Nzj I/PmA8E-'HBI " ^$ڂpҋ$췕^d^$a"" ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$}eҋ$}eҋ$T[LzEzj I$i/@2#':Nz:Nzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " mYIo+"HBI " ^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HBY˚ӹ{d^d^$^$a^d^$a"" ^$ڂpҋ$T[Nzj I/PmAYEYEYE8E-'HBI " ^$ڂpҋ$T[Nzj I/PmA8EE-'HBˤI`" mYIo+"HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI#1{HL[zEz:NzzA8E-'HBI " ^$ڂpҋ$T[nVnVnVNzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2Enb" m7Lzj I/Pm2E-w?=iK/PI/PI/PmA8E-'HBYI " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " mYIo+"HBI " ^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HB,gy7{-]^ƾH/PI/{ ~p mv&M}­ҋ$T>VEmp" նOUzj'*HBn^$ J/Pm[I}­ҋ$T>VEmp" նOUzj'*HBn^$ J/Pm[I}­ҋ$T>VEb" mLzj I/Pm2EVE,^d^$ڂeҋ!X&*HBˤ9BLzUzj I/r`"" նϲJo{d;"WE^d^$^A8EVE-'pҋҋ$T[Nz#YI "(I/J/VzUz#YI "GI/J/PmA8E^d^$ڂpҋ!'*HB9BNzUzj5E,^d^$ڂeҋ!X&*HBˤ9BLzUzj I/r`"" ,^d}eҋҋ$췕^d^2EVE-X&eL"i{#2DI/r C^$ڂpҋ!I "G=D8E-'pNzj I/r C^$ڂpҋҋ$T[Nzj I/PmA8E-'H~[EVEJ/J/PmA8E-'HB՚" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2D3%'HB'H~[EVEJ/J/PmA8E-'HBI ,",","" ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂpҋ$T[Lzj I/vˤIoeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^d^$ڂeҋ$T[L"iط-':Nz:Nzj I/PmA8E-'HBI " ^$a*•vVm\E8EVE-'HBI " ^$ڂpҋ$T[Nzj I/PmA8E-'HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&H~[EVEJ/J/Pm2E-X&HBˤI#٧ù]e?ϴYIcIW^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj I/PmA8E"" mwNzj I/J/PmA8E-'HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lz=R#XδUʙ"" u }m_䟰{ mv&MM նOMzj'&HBn^$ I/PmۤI}mҋ$T>6Emp" նOMzj'&HBn^$ I/PmۤI}mҋ$T>6Emp" նϲMzj I/VzMzҋlҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj#ŧvηsI/PI/PI/PmA8E-'&HBI " ^$a"" m٤I " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$a"" m٤I`" ,^$ڂeҋ$T>rپ{^癶" u " u " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj I/vIo;pҋ$T[Nzj I/PmA8E-֤I`" ,^$ڂeҋ$T[LzMz#ˤ٤I`"GI/I/Pm2E,^d^$ڂeҋ!X&&HBˤ9BL":=Mz:Nzm٤Io+&pҋlҋ$T[Nz#٤I "G"܌ A8E6E-'pҋlҋ$T[Nz#٤I "GI/I/PmA8E^d^$ڂpҋ!'&HBˤLzMzҋlҋ!X&&HBˤ9BLzMzj I/r`"" ,^2E6E-X&eX&HB$Ɏη˙"-"" u "G-"" ^AE^$ڂpҋ!pҋ$T[NzmVnVnVNzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj I/Pmq&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&H~[E6EJ/I/Pm2E-X&HB$ɍ&ȒeI9D8E6E@8E-'HBI " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂpҋ$췕^d^$a"" ^$ڂpҋ$T[Nzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E6E-X&HBˤI`D";֑}TwNzzۿ@cHm6amBn^$ K/PmۥI}ҋ$T>vEmp" նO]zj'.HBn^$ K/PmۥI}ҋ$T>vEmp" նO]zj'.HBn^$YK/Vz]zҋҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Gί|~>wEvE@8EI " ^$ڂpҋ$T[Nzj I/vIo;pҋ$T[Nzj I/PmA8E-'HBI " ^d^$ڂpҋ$T[Nzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Vz]zҋҋ$T[Lzj I/Pm2Eb(B~ws..HB'HB " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj I/Vz]zҋҋ$T[Nzj I/PmA8E-X&HBˤI`" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T[*ƾO|GvE@8EaIo;pҋҋ$T[Nzj I/PmA8E-7c dB(BI " ^$ڂpҋ$T[Nzj I/PmA8E-'HBI " ^$ڂeҋ$췕^d^$a"" ,^$ڂeҋ$T[Lzj I/Pm2E-X&HBˤI`" ,^$ڂeҋ$T>˲0ioK'ҋ$1pҋ$1pҋ$T[Nzj I/PmA8E-'HBIoppppҋ$T[Nzj I/PmA8E-'HBI " ^$ڂpҋ$T[Nzj5E-X&HBˤI`""GI/K/Pm2E,^d^$ڂeҋX&.H~[EvE,^d^$ڂeҋ!X&.HB8>?}*g Rδ9BNz]z:Nz#٥I "GI/K/PmA8E^d^$ڂpҋ!'.HB9BNz]zj I/r "" ^dE8EvEJ/K/r "" ^A8EvE-֤9BLz]zj I/r`"" ,^2EvE-X&eҋҋ$T[Lz#ˤ٥I`"Gb" ,^],H$7ڗ3iE]^dJ=v%V.);AWRv܇]Iٹsx%e>J}蕔+);WRv܇_IJ}%,);XRvC'YRvGaIٹ[aIٹĒsdIٹŒs%eɒs%e>Kre')):%IwAIJJ<%%egqP8([IIY,YRRv-));2AKJL%\>r~s*_ Dt¤<Q(IIYtˤ,:JgRRve4));EGyMJ2GQrH:oRRv8I*:,'%egQH:uRRv;I*:H:JyRRve=));EGOJ'%egqP8( JIY,JRRveC));A9QJrPZvwdAQJ(%egqP8(q6:׭ܹn(KJIy$D)%/:ʕRRvK));2EGISJ΢)%egQꔒ({JIYt@,:ʡRRvQ));2EGTJ΢|*%EtR~3&Tϳy^J#{Iڿ|EG9_J΢/%egQ旒(KIYt,:J:J:J:JSRv));EGaJ΢0%egQ^(5LIYt,:JSRv));ĔAbJd1%egqP8(eLIY5,JSRv));ǔ7rPFJ"SRv));RɔAdJi3Ds/W7^gʔG":)SR(LIcl#e))vm2%egQ~(LIYte,:J4SRv));͔EGgJ΢3%egQޙ(LIy'e)):藍4%egQ( MIYt쬫DhJ|4%egqPJ8(+MIY,MSRv));2ԔAIjJ<5%egqP8([MIY,N#G"i߆u6/iMIG2|×蘴$I~~ :$egq&);5IthIΠ@kMRvZk38ZAǁ֚ :$egq&);5IthIΠ@kMRvZk38ZAǁ֚ :$eg\%$E&): 55G*Z3ZAZkTf&);8Hk@kMRvi9Rq֚֚,Zs 55IYHAirw}9ZkHDGZkTtf&);Hk@kMRvi9Rё֚֚,:Z3#55Iљ֚֚#ihI΢#5G*:Z3ZEGZkTtf&);Hk@kMRvi9Rё֚֚,:Zs#55IYHAZkZk8Hk͑ $egq֚#ihI 5Ãf&):?AZkT|$egq֚# 5IY&fͺt&)DtHEHkMRvi9RA:ZEGZkTt|$egё֚##55IYt&);$egё֚,:ZEGZk355Iљ֚֚,:ZEGZkHkMRvU"5IY&);$egq֚,ZAZk8HkMRviI 5IY&);$egq֚,ZAi"k1ۜgHk@kMR 55Iљ֚֚,:ZEGZkHkMRvgq&gq&gq&iI΢#5IYt&);$egё֚,:ZEGZkHkMRviI΢#5IYt&);$egq֚輐$E&);$egq֚,ZAZk8Hk@kMRviI 5IY&);$egqP~yrB:Z3ZG":ZEGZkHkMRviI΢#5IYt&):cJy%Wq $egё֚,:ZEGZkHkMRviI΢#5IYt&);$egё֚,:ZAZk8HkMRviI 5IY&);$egq֚Lk@kMRtf&);$egq֚,ZAYkJ6㐝6Pv<^֚֚<ё֚|EGZkHkMRviI΢#5IYt&);$egё֚,:ZEGZkHkMRviI΢#5Iy'ihIδ $egё֚,:ZEGZkHkMRviI 5IY&);$egq֚,ZAZk8HkMRviI 5IY&);$egqP֚bͰ?(Y5H?#I?W?);ItiIΠHkMRvGZk38ZAǑ֚ :$egq&);#5ItiIΠHkMRvGZk38ZAǑ֚ :$egq&);#5ItiI 5Iљ֚֚<$egq֚,ZAZk8HkMRviI 5IY&);$egq֚,Zf(;O2T$呈֌$/:ZEGZkHkMRviI΢#5Iљ֚֚LkHkMRviI΢#5IYt&);$egё֚,:ZEGZkHkMRviI΢#5IYt&);$egq֚,ZAZk8HkMRviI 5Iљ֚֚LkHkMRviI 5IY&);$e>)wNce{9mFZkHDGZkHDGZkHkMRviI΢#5IYt&);$egё֚,:ZEGZkHkMRviI΢#5Iy"iIHkMRviI΢#5IYt&);$eg]%ZAZkFZkTf&);8HkHkMRvi9Rq֚֚,Zs 5#5IYHAZkFZk8Hk͑֌$e>Hl]>EuHk1,:Z3ZGBkHk1,:Z3ZEGZkaё֚֚,:Zavgqavgq&iiI΢#5ǰHkHkMRvi9EGZkFZkHk1,:Z3ZEGZkaё֚֚,:Zs ֌$eg]%Z3. 5#5Iљ֚֚#iiI 5G*Z3ZAZkTf&);8$egq֚#r֚,ZsBOϟŏ8*'S~~~kGy5o?'fϵΗ;?<^kr?^^y}||߽^Ŀ/>;~~s~7k[{ׯ7+ _ӟ/sg/?_{wß|k?_wUͷV\sA?(kgt/p>cToz7fχSaaypx3χ_ܣp\_xX:Ci>n;x2n.o\j}}෇˖OQ&O讀N淇sYj;O=!xXL5?>q"+_m:ajl/~}<\rr<γohl{ƾ=< ~iK}<|{c{dyq)a8^扏[qA/u}Ky|}D̷ǏN>.lץ|suX_o#ߜFg{kN~ovne/u==+?VT>#χU>_ʗiUW~>u ֯|X]}|3LӃ$QeWKt*Z|Fãg u hsѽSPNi~O?ïԿWKAǿ?gutWg|IiΗ2?~;K#@ȫy\^# endstream endobj 407 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 394 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/heatmapData-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 408 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 409 0 R/F3 410 0 R>> /ExtGState << >>/ColorSpace << /sRGB 411 0 R >>>> /Length 199802 /Filter /FlateDecode >> stream xMn$Ke9VV'NrZj==(?PNӫZɈ{NL)qCELĕ???????o/_??ׯ}?$/_/ׯ_~<>/~*^_>T|?^Cb/?߱ˣwK_~폖*xGo>dk}GJxZW+ߢf#d%YWZgY}ݞ_⹺n/ZVR<~ף`JlY}~]ܪzNkr s-ּ~SSZV3p4^_{lx4ۯ#Cv{ޮCv{lln:˯:6ѯsԻEō}kMkسG{t1M/G'cu{~;|%|>³V/o-gQ6l幨xwwf)<\cW}V/?;_!k)<%6[ yGc빨Zbs{<_߯^![mU}F|5{>_-3^$WefoyW%l?E-_r{+o/chj66zf|5iW>WFmVnO^Q ~1;/^[_{a£뺑Zarh6֏_}YPdoXc^ɶ~<Ϗ_'D\;rG ^Gy~ w_ :: w/Ϗz&Gߕ 1{*a;zS*_}8p~~;a֗rc^|R{{~,]NP4ƿ=?⫍1&V7c^|Y+_~w.|-W\>zgv狯~!}Y=ߞ?RЭ|u|=loϗ?/|^=>_ŗLk:rk^N߸Z~/x|7^/^[y~W?aOQ ~k+ Vy>_뵕tZn\Og} *K߭» |fyOǭ߭J lVnEי 8R.HZ RLpHKQqIxXKqLWoE8R[#+˥8Ҋui&8RTߐp{#'RTK1b#-H`)GjOK1‘p$9HH[ ‘sh)c IÑNzkIN!F{ Ͽo-<#hN#D𡂈vBd8 1mX$2"i8_Z VH;`ÑNpE G|x G5G2IG R#x GG<A&o:xg Hć&H8/#8#yb)%HπCJmgtH/Y Kt`t 7K *TK>64$t.$MIaN'9^s~SoOKG$$J&$Sp$v )4$;?ɢG#?Ux)T1RQtEu61ӎuYQT)4Ws_QԾ蘓dSyaN;@S{&iM2*4t)hjQ (hjQmT(_+a#iKt9t1$Y0-̩};EB2d9m `Nsڒ%_)Җīs⯴%iKh4"@ TnDAZ&'%~0-I1}WtO'8pR0'9IO!œdҺ66HOW+CDKOXNaN;X&_ވ9(Ld9m aN<iK}$)L-Zi Vh %_iKt9aNU2rRڒ%9q_FNJ[20'~9C̉(bNœ/9qNJ9œ0rIiKs ЄM:':'-ủ?ssVNJ[BR$~AF%%$jK*D5'~@NcNr;K\(#$Y$G_9ɓ0'yEIu0'I0'I;) M2P&W@S$4ɣ&Yj$EI9Yb9Vsx⯴%9s 1'~C%KWZҖЄ)-M[2d4m M4:}`N[B$?#-iV]"IM[@, 4`C|"h[&=FӖ 0-!7' OʻO/?jO[RvaN~H&Ӗ4/4$ ~u~P<6V*(u$jKu~A׉ Sſ?ui):qOZSRt$_ @V JՏޥHԊu$w-8?Z8to_K1p~@O@)Ɋ@v_ pjGRL@Bt,RҏA!(~ (!P*J Qߠܖ4$j+t9I~`6'R$p[2ph&4Ib44"f/S9)%9O ms0zCsZĜxToTH:]Z.Rd)EB^L<.%ѥ ]1B"^L;8"!&thG.94I+4q_hf4E2"M4CSp[2mڒ I- RJCJ+8"@JT/x1m @JB^L2K/%AHwBJAJ}bAFH!% BJ<R: GdPmKGVG1đ‘duI %ҖL %AHwAJ@ă^LRV^L[RH(TS8_ZHIVF$RJpP.mOQi-6miKttiI*tro[j#H)d'޶AJ;Xq%s8 x$xwWi GS$u[nNodIGu'EdPnK7;`G%%vcN ;lIbJ{1ȋ)Bx]GKJCN\dT]ZAWJpINH R8)*'>B"K|m KGt}fR$.q_]d}i H: uȐBJ0LZR:A*/3)gR$#Sm#ErHPi83),1,1L/s/ HN8vf$ RA*#3'HGV&8R$_I.R&e䶤K蒜.3r_)W_I0'K\e?E^L Q'$J^ܖ Jm y1K R@PKЋ%A)~s`phV%;4"Ԋ祣V;^L<U%PU StgԒLm SVȋ)kوC2rhO`NAuR;B3db3U'+A+?81D^\n?~~t]yF$J$:ݿӀD]1BjɷHOHT Q-EGn@|HT.ZDxKV;Douҏ $R $7KѐOK1)Z?շK1bRn)~jΥK1)Z?x)&ӥ`ّ}O$}Kz$$_HD2A" QLJEH%H%6Z@EQ$DH{FxGHT$Z.~@$$w"Qx2#Q<D՟0"!$H!Q"Q|V$; O%J0'^s:4%؁;Д`V;Д MHC;M CLaNs+ IÜN&K vtiuIzF@$KJǜ$̉g1'^s:A8bJxTG"i@ (.sK'Y!dYO H__]gͬ\$)f4E2q]Zɤ\$)IiHs sZ- WBƜn9E2$ăL1:/9q_* i@$ ~:AV\@ HhH &k&%M3)-&KM:bh+lYddSI@Ф$$SYtR2r#7H]WS$.]%K< CJ59?%8q~q$>fOL E2)$)q K@AEBd^F~P'6*.}4E@2"s M/9޷ sJpR\.?% GM<4I+ h:IiH]KV]J%B5bV.BBQH]V:ԑ눂2rh1@Rtt;--KDZ @*tRRtttӞi)]hKR}[.OK1*..ߖb4w9-MskRLܜv/i)&@RL }ۮW 4]d.E2A"6E}V|#"$xevH'"84-ɨ<]$tLpH<'H $XRi)񉂐R!H{^{Ry6ER$oS$TʎG Х'MKR. R]JK{hJM+@S hn0HsU SiIFS$9 9IG+tTrݜ$Dy+#P*x8(L\>unOE"$UAU vJh.]pVnIFPU$U` W;DIbU =+e AU*~;AZ! :5 *~fe V&QL"xGEK٭ħ\pFsFT$J{N2oD2qCUXJCUrMP%FP #T%AUr E.Q2#%DE2qd @UR|J&S'dG"SLH&OJEB"!|煜x^fOL"VjşNZ~Vj+yZERJ::*ZTɤ^$#PUUYPu*neUE]T%*A*ǣQ5y@U(TShP >QP SͯS'e$>dOEBeq5r~dIçNRQ TJXRtP3TR;֑Q] @Rt$J%2K<A)^.37H&nN>{)>ͩ^F)ħx>%#F>S2)S$JɖE7'iܜo4(% @),pd*(uJ!Q;S?I~JO!$RHTZA@O 6'nN4Gj?- O<?I+)9%HaN%Ŝj]4].I~.I .Q;9G~Pdd}̩F]p4 q/29I_ssV*t]t)BdjI]&t_%]V]yx^*tINp$H|JpHI:J2xCJ v7;$TNCRV #ğ)Y+dtHI$V!l8 Nܜ"9E2"Fa$#( 6Y 1:%0*!Fʤ\$"F'8bx+L$mn`"4]`"~b q q 63б@W;BP( $B|x d3 %Ftu)d A&@HOgr]\^L2bY+Ɉb F!FQmC"$(k(NDxfUuVN/I9HH>u ABd͉(,@$Z$J"Q;t%}x(( RdF"PJT$fIǧ؍SrGeËY+O%"VR~~>%Mxs;(SrT|EE RnFT$JIbī@$PJ@)Qߦ^=X>)@R! ({w#T EѡE*UՓ>UU +$cO֏`ɜUϵ|R% 9X(, `Z xjgJ`I`3= .A(jnE=p ,K ,ExqCٻ'nN[j%TVV`KVIP+IlR oKx{1V|.0j}bx/-!'>Kj?o X-/`Ib`VcK:%фe:aYJòmKj9lX vKV7ytG쨕PvS;H;w%߽vRIS'ؽ4?$l젔=+(DY;ʺ(RX)N§xu|;(%)(%JtP;%3JHu{G`d ?:VwRt+(uDG (i@)iA)d]H 6$~#IO'0'sEvcN6pk[XpI[u';X ~V~ARvI)-G),%$ʖ% QXCvl5e)P:K`$J>S;>S!Q!QH_4 L(!Q`);neDm Q|1HTDC)8Bdz<vY+DY_S_oZ-PJE+((%`:KNܧx5e S4V!Pmv@)Yh\GQ;l ֒s;Х'Bd~=ѥ. AJ<-)}~}ݯw񷟏)`ő$IU‘dVɻ4^'#HR @JK!-E:RPRS޻#Hi):ԑRǚCJRuRG.D".AJ;6AH޾/@Jx)R6CJ},@Jc) Rr)R6R®3"Dm%jKRV:%IR %ɺBJ'8(.% G:AdW.G~J&`us$o$ɻD 9Y+i+v&y %&M6Y+#ɛ H9ibi;`Ǒldd p$K p$k8}llRVRHƦBJ'q$%Ɏd$krsAHR#d}R RA‘K$!%^)7BJwt@Hb!$ H 2Kr ]Z^noR HRHI:JnNJG蒼Fd|d$%7'k0'j  4q 4W MXNK6=.ɞ"tIN5Dx8GR$ ]:A,kv|Z%Y7.;Kv|,@/KB,. @J2)Y)_#yAJ<6#H)  AJ԰D$_,ҁ$t S@t%k%k%tqM׋Ϸ(/L HRAJ'F̀뉍ХH&R$.Y+.و5ti RH)A* 9Y ]:) @J C-rhC1;daNaNO$)^]ﭯ;4٩[Kr7R6/:A@, uu)_Kё6:?#Q2VDI?*c~K~y~R@<G*WOtoLK *>ԗ'GxubxuIvaN&`)s'̉ bN`N܏9+|ۨHhD$M2XN#̩~F2"̉7̋)L$T# QKRl N"%8dఔ(Os~#>"!)ES}dPnK_I"QŇ)S$񄯖3H:>eO?t~lOE$V Sf bx6UIb:RRJ6;SJŧNPAĠOQ§|T.>)§S/O*y8T[Jҋ`çNpJEbO>cOE$BO2=:A+{Y>e)>%3P NHO!QҥS$D/ !Q Rv;84EBVȡ)KBMBO'RŜNM'Х$HIl8 xO}x<"x&- VGJܸDgRQVŏK}†d^uI%aC`Cw"l#/& u)dҬ6T0NRl( `/ dEB(~8$Vx&E(" $P Y[!H@} dLPH&JK2WB  $) ${!iX V⾠/ † 6IÆNpRnI_ID'HaCBÆN{X!܍\M&lHZ`CKBP9? %ؐd PJx L$AG2Dxģnx G|,"x$#IG>b#Ɉ;>@J vww{ 1#HoE2A"HZ t GBVI m`Qd>K8RX p1Ũ^-EÑvGfe)3n<#RtK]dTR~@JkZ (VAKR/oRZRtHIBJTKA8ʨRLJ-H)#Cu)G⑟HQ{p$đS$#4㑴8ixKd)EB;aKR&p<۷%IlhC@hd⎴$4q+4ɼO4 $ɲ6_&>|g>HXN#IZ阓KŜNMn*thu@f݁&˺M'؋ɫjBǜ-0'Nœ/9Y+9YGS$)^0.4`Cv %Iwe5|Չ(RQ(.>3@x`q9>AF w6%P U S|T_OXW|'T$ :A@d*ݜx͉;JnN9I+Z"PԪ/]BBxÑB 2X %K= j%%'/EEXV=DXV}rK1).qKѱXd<.aYu,`YTRt,{g-ZIqXVcYeIj3KQJ;~-Z IZ;ְk֎jȵn)&OՁPz GBU{gP+4F/Z#jP+9}P+~t'PՒT%cC.Q2i#H&PU$* T$UI_w@T%DE,Ԫ~', zG j%Ox VQJ9p}Ҭ'.Q,~ZIH&e"e`YG^DzNp X2p`2s~ kNvp VPHy&JV;VB/Z<jeu6)I%Vt?5KPPw~Pw, B$1BT$GHQJ VҗZdzPBQ+TOɌ>%)T|%JVRDE@.Q2=%:S DR Rg$ŋ]9Rr"s}5(e@9 SSS8/:AjS'@!QLHQG'S$?q #H:O}~Jp?EBt'eBdѻwToR'ؐ,я/RVt9YGQWbN:tt)@K[%9 ]ᜠK[2@D tI.U6tK]*/[ѥk$%g@l$d Х-i T>"qHū %9h]}?CHIf`)Evp$9JSے.Rڒ)`w~Tܒ# H<#ERqG[ݜ,k‘6 pHh<*<J2A%I)H]d}.Q;X!Rv2 -(~w>G/h,eRv| Х-t_KBRJdAdR`hC;JxGm xGɤQ:Yh:.<ݖ*dIć:K KJENAC%MK&eﶄ%>]›Qٻ-tICtIZtI:B%!ݟM[2(%bx[2(%%bxbN,;洃s1'œdV@Ӗ -Q.򃒱!o$I$6s%?-`NK1$?(L/@SȘ)qꭐK. FD/D KTC@)NlJm 䓾 >SIEmBU}Ĩ _AH"R;H S ޖT^/AL6|+(PjK(u ?91Ho?J?0xA9=%FTK1ܜR>Ue)>E|)kc)6T%='g*^%UY6:T% ~RǓd{):T/CURL Eѡ*Ɋ*+R \hPՎO }ǧN@zwI4p~>)k)ÈOY+OY_:>%§V*Tu : ( xvlS!XZ逐Lے_$6+aC'l( v'A⥅( 9@ @2~#H: $'=kuMD6p&G 29 6dD Dd*LtL$LDLIv;6d]yE0)dQ_5!FyI1!HYb(A$k0Q5 LINpDL`%!o#ن#oHHv.GFQ$PMZɺO8$%G41!Ĉo1Vǚ#=C"HZ!wzEɤ[$$SII1&Q$ L A1#FJG|@HZ!HB1f O$ 9A*G";|X"1+GIyN#; c]dG4Bv"dGK!;BCvNa#WHΑX8*&fMH+H%Ƹ/`Gv{MBv,?@vd# ;2HcYwّFN$PZZz1(h?/=fKQPLЏB?;6{=:Wz G I#-E~:&_w^?y-)@z>/8Ճn)6&(z/B` /<,]b˜ 94H752|Z0.#ed G#7dBk(Õ A4<6P˶ 55NVV&Ɯ !0x"#A^6𨈖2#O22 ђ H:D`hvp9-A2}|~_ٹY ri}_1GrÑ>60&R40f:_|o R`8Iɮ%]JEvNpDŹ,IqHّ=P_Mc}!Gd{' ޳$#H=LH&xO$#} v'A{dzI yޣn=' `.KaR+tgGŹ"GƆZ3'IqH&xO$9g C~:؊td8 I%dlF~:KB(2*teO'I!%y!I[I8R)#%q$IIǑdLQɮ'8R$#qGG>$3H4i+xt1J#XBD bĉ{G<c{$ 2AJ\]]d+rǺ?q$9qs'bNGlV+IyH~AyE{%dA(Iѯ%!I0'^Ad)$cB (90+ 8IGAZ!§ (%)(%3B<JY+@_!N@)IR'8d+ɤ@X$aKBl U5P a)6KS];KEV 0:K1+6œJX K1'sPz)~9-~6:$AI)KSǥO_.E?ۯ.Ow)&zH~9$W~#ʆY+yD$" p$D "QJJO6#)?%8)1 9et_!9dWHƆ@)I@)k@)~=c Y+cK<.؃C"^cPxL%pU- AUH:Tel N@H(uDIW`IPp&J0'sZlGS$H&S$s3dbsZ9`4I1Ht.I .% ٙ @M7 'S$ s:Aq~E-Ar~$%If0'KAh$QH~jρ+O[j)*cT]QBi$c (m>ՖDO;* (.<xGEcO-;*AQ(~LTSǼ|Eǧ*pbOE)+lݒTJܒOI >ūqOmI- R'R2-Pt)HOIbPM[@U[P AUDbm}jK:Te[*KCU @U xR.'JAU-@U[ҠutI%OI+|jKԖtO*[MIe"p;Xro*Tu;J^z\-dP-dmM-xGm @U*TuO›SKtt% :O%?(KCU V[2( %Vp1)$(ZoZm 8JAԊ'mT0.$Z8JmI/g)?F֖tK3ecY;X%<;J#(l˲u3,~DzvcY6epeÉXVU,8X/9fX[AXKZZ[VOe !X|݄v QEԊ!V<3 :AѺ-8JmIçvp%Jɬ(ů JZxGm S H">%L ZJCU+8rx5q1<)*ܜ^"Q-Kq_DV'8pڒU`çvR'H8D8yBdN IbJ(uDx9e -$J(ލDI+A-Bx8'O[Ґ$'I(I1-!'^ЄDYbJpDmɠDޖ -{J-D/Ev(n(lڹDURUEvl~?q%mL৥g ~J 0~߹ sڱ4uj):ԯږMj)~PQLKсO K2 IGV=xCt^D]:A-HRw;ti;xo#-dg!x$cMܜӖ41s}dTh&ےd#K#F:1oK2){%w[ediLmiKz;KxAw̻Ltɖ9K6i.ٛK6i.=Zwh$&pe 2yG~rry aN sVg| ?D}/~ҾtI~'/?"{2/:? T;dc=)%rz[$i~&O'8pڒ9ɋWT$T"O<$ ? OLJm aN\a̩:$O-I6pLIs.! Lɑ7)%?Y_gr~eOI+-!|JZ|J>egAU2:A$k§d>eOԖ4|jGT$J}v!Q'8p(k#Q'8pxF%';.'}ȋe}0B$)Vd8 =J>%wOَUYbU$JBU'8(%OɂvR 6Puw['y6`Bd T$;YdYwi~B}$k>84 T ݴT"m$AHCHHC#:KHT^ BgRHԊOK1ZE\7R4$j~Oǘ Z!$KёHT^Duj)I2x<-EGH^T$H B1<@)^JOs&O RщӒd$)/ :A('K)۹ON*'3P|J||);<*>uJɊ%o DLH:e M+8"M6%MH'd?- 6I+?ɱCn?s'9<~AlS$$SI%L%OrǓ ?s Y 9 ̉W sd `N|˜9iIh&,1dhĠ,^N/A*LJ0aNaN|0Hs@= ޓN,sBH NH~~s{Iw~[Dk~:Zd/ 4]'&k0'"œے s0'9sO. 1'JĜx0HssyDEE2򎊤cN N\"Ivsd D#IF\d5 QrK.QQx(%' RXd5!(%}PJ[PJ@)>xG%d5(%)TPH wOuNcN{sJ0'YsAl@AYZH|͐H bx;1'r~QI>a ~Q5!QJH Qk/mHTbDW $.%j)%jHԎTb?a?n[ s[ @xv R%mKyv(GB}@dA1~,Rk)&𖢃RZJ]=\7 ;#yw@q Q5xGgS$Jq1ƓF2) 9J&Ë|pjS`|Sk})|J S Խ},}* >IçN ?gT$3OH>UɈ'gZY_J2dI<`i'V$I%e'UJp>,ie`Eu` je)je)4j+Tug1S LSyGweUE2dɤD^$Uq_͎PZ"Te5%wBU|D\"(keCUU AU*Tu :Ax"(_YJF(I\dF%"PJ.R (e)tPJ+%9r@)hE(kEzw?wކD^M KD^$T"V Lq+`J j%gKAU'8"iTrx WA$$DnDEd-(e(ů:D O]~&dz)A('xF%!?s'*T$e4.z$S$4YbhՎO2τ9Ip^$3:r~0'p~9t~$#)?%,8K$JI+JY+*A@d[JEHDgDY+#H>u%@)˺D !QD"H ^QW)1ĜkR#>0ʴsZ1*{^.i)]1ZRT?–0깵T{NS*b9-`NQ1A-R_2zgISGOZ  ?%8"SD`NL0%!Z~Js9󃊤cN=%G$9I_:$[]$1l5tǵwqKT$sJ0's0rIw$'Kl5%Ɏ3 I4IAH~g/OJ0"OLܧ"i N0H |"@S"{L0H&S$saNdL|")Y?Yb~L-ɨ^$P* ( R2:I9%Ӌ#QVD)~!Qt$JOHSL|"Mrz>G^$OS);elH&BU')T$g* (dJ-R9'FlNA) ߒ(%@@;(ज^$rzK2* SBĬ^_!*BP,81I PU%}P+{je7V2i3eLܧ"LOq+eIgS;,}* k Lɤ%Y%X!%c3r`-k`->gV$z\y1lV/ $k+p`l֒Q˒EXV˲ GXy#,+$ `Y2e%X,ǑU$ZQHJR *k~ކ#K1rZ @ꑻpa?*µcP/!\ȩj) {g)&NUK<:Uqpw)6[a)&bTpq+µckqڱ'R4,k:ϖQzB.E:u)L_/cYkEx)xRE2Z ZoIma,7 bY2fXV$ :`DE2"2}Ql*3@X2²"`Yt'S,ۆ` }JVX3?XڗԒ/ #XĠ1²$)I˒˲:eՑԒeH˒ XN²lĺ' %cCd]~%=* XJNJj%O~jc%xJEPP>É Vr!jKݧxu"jKݧZ~w,}l$k vfT/*Z`N)˯S'L,Fe"St)meUE2"%VJ%8) R NEb~KBH*fT$xn(g3S}*ǭH&TLHV&PU$ O}*T$>%P%*Awdl ,*d8GNUA)N BP,RXN(~xi2) V 2R KpDE2)IG('3PO6?%K_eYo D%ؐlȩJ=!Q|S(@DI_П%A)mRڗ~&)r>%/O~#O7ߥԎQI2Q((sGa%~^W)(P^EA%p yRQ4PjcT}KAUm!Gt~OhHTb~JO𤪗bQ4$jS)?Ui)~Ԗt=ڕt5oINBL0-O*>GT[x O;8" 0-RI0'>:洃4ٺے 4`lhG@l  Mh6&Kl,hlsVp<]R[ Yb4 TBt>%9I_&Ӗ$Hœd"{;8d4mI$I vG)[7{[20'VsVϔ3O2Xz?~mCx*~AXD||Ύ-Om CH2pڒ>}jK}JO'}@)8aK 9)ӷ%-)kS6bOTTcSڒOi_s)95ԓBT Vrj%g yRY+kK̓#%#Ft,>Xr% ]+8 ` VˆWA ZY+_%|n `Y3˒L-XjeikEBB~O`-i 6,R;POmINp3%UIP:BU;Tu :Ax!#(%JJ R2JA)YJ:(9y&|JfS>UYbjKj')9tVhNp>%ZɚVT>S[Pd]|ʺ,]§$O R2p Jge})g,Z Z1(jԊ>H>Su)yħp gR |)JQKAUݍK1AP+AByZI?:juŠ(dLS<*Tޑ-EVXl)cPKAU"U")j LY+`ի%!7Sg`E :%lI%otXD%a-[IտyS[2ڒԖtXf>%VֲVu>%3Pc%,'TO/ IJ,K|%,K&,K,ZԖt,˶!aYˊ,~Mm˺$3,+NIJ,>KfXV$,kI&NU[ұ,9 VE ,K?9UٲZeŏ`tNU;8dT%k `Y2 e,K.V˲m3qdj%ju]|{ϟe߿7zzpVV[ҰoGEqTpKk`- k䀵%`QXҗ֖ FXugdIJ²²²x ˒Av,&Xw,ye%,K eɃye-CkK˪#FX}`kKCO@_$_,Sp:!\/2ڒ{스];F`W$-`Z ?sܧ*4ɠxߖTuQHj{$ ohG@Se:"!G)8tOQI-i@ vt3蒌 K܊zGI'R$H)+[)-1Q8INp$YjTo!xx$#y@HZ!?(>FQ$PZ!( CJBJJNp$ 3c3"H!RRVx3ERtIR vHI>}BdFRVRESJ)~%BHIf %Y)%HR aNʤ _$9D̉cN'8xaN'@BN%^Tds7" h6Y_s=E2*ɭ9%8qsM@2"MKBnNaNaNd9E2qs0 q$Tdr ~JO'SbNXh#̉oas|, ķ)꼌|}j+?%IFx!]B̉ڨD^$sJ0'y掊EKBLZNp9EBJaNG sV&%ẢK\xFssrz89I+9 $0H&S$)+WGmCOM2#Q<ȄD~H$)$) O2֣"{ĭ OOos RhHt.IFR$dtiG"!&I&&^4 h1@},e)]jh蒷aj4+ǥNRL|Mj)gXQ9|#i)cyK1_ $Cӥ94-EvaN;vMK@Sx[4_Rt'NJt'%PNcNcN6 9շHsAlĜx3Ծ7"i (MhM@I)  M%%~0Hs'+Yb9IbdS9Wd?EdiI~ȓ Γ3@;(eI%dJE2)ImV:j= "騕uP+[$V'8) @UpL@Uب^$ݷ)AdFSt|4Sبp^$|* >dR8/IK2ç"΋d%*O`di/ §l8JpOE'T$PN)z A@-ۡS;86S'8){ R2JiPNvR}䭧R'8A"O+HgT$V;#!$ /G‡ dD- !QrJ%G"Qx/H%6dICvpISӍ/]xꭸSU?%ts O|w4+9$$(I"Q'8xD9aNP!:^Ts'kOi(1Bd, J x} T߬[ (h݊u7 {:b?-ŤhRtߛ,i)~ⱪӎu7'G?Yi)&OzP.EGV!Q;SX\ $J[O v'M#QB1DujIFOŻ F${V&O(A)>ef%"PJ2"PJViI\D<ŧ6"Q Q|nϐH&HԒ%kv H&%"srV$'S$) IÜ跣H~g[AJp4EtIKR5%ɤ]$Bt@!:#)I!%!IZ)T$4Y h:A@dP!:SP.AdG"HI^KRAJREHCHk v7'YѺ%!HIZ!HZRv ]J٤Фį%3)4Ybwg*Ԓ$ 0'>tIRt0v$iI~*ta)LE7bIjU"ËdR / dD-(y"~|( D #Q+8B"HTJ(UDx鎐%AEҐl_R(yAE2ZB$ A&PR(Ń̠v\$'mDE2) t$'~P ~x8+?"9?EBwt?E2"'~GVqGGO(%R'He$D O2~:9`wsJp)洂#7H]gM蒌 K K]%1Dx}JRKARRLY߸,8?I?:o.ŨRtg$kU~it)[k/ QFHRL- Q?>~՟KA+VRh)(+)Y`yI:>%sIL&S SSgQzħxO>/#B:/OH:>e>%Oc3H&Ԓ EPҡ*JGP-Q9Hs *;aBUrZT%+yTd/U%o#i vG)y`j)tG;T)tG)K-W$QJef,KX'lk*'뚼d[W;T)KtBU';>e>Ҡ|R'XJ[?pz?ETʼnT%{*~!Tex 2Bdj%$V֗Z @U5D;Fv)ъOp^$ :Ax%_:DyCH Q㖐(yg!$ʶ QޑO6:`ǜ:I/{'\?3OF%Vl 6]J/$.uv.. tI>;tc.vGJ|8sz/{yI[阓0'k0;)'iŜN&y}vɎS$h B@ҁ&۹4 @M4IV'aNҗ9`hy@PMK]9YGhhd}Rvhw]Mz̜"鎟A9aN $c d3 OnI[OJl(|+}{ٻ;e%[(YTPn~UNaN'>~ܸ]{7[^.1M;VZX rhjb)[(c)#ge#m#(G⹢tmF1phH;#p v,kPU$UYGPUjK:T%%vNdFʆ*(@UJF*{LHl5je}!Jfd*'R[2"9JI_e &,[c`X|6,^3XrDzN$²$y&Xˆskm Z֊Z'ر,NbYIJE,KX,e`/ȧ)t, ]a`Y[XN4eL-,KұUWq f`XVe܁'T6#vRdo)ZZN/1pRtk>SQ=׎5Xkz]khVXkǠDg X%* 1A~PG²8/xTp,aYj~KXXcYHDzNp% :ZG]$Z$ԪExjH~P[V}@luVy8?m @U'OTe-e2BЉO"8DxNH=Wc%B KVn÷.mHHBQ?~.?/_w{UM}.ߧc_ZJc(QUڐ,J҆$zG~ sY 9= *%#ʧ. $P $ O @H"B@(]KP>MGbH @J 0|J+P: 3ؐD ^W B6z`C4 B4 Bx y~WH=K03./6 #FӁKODRk|zD@T,Zx$ԁGjcG,G \T,H*Ǽ"|hp$Y (X)VI/&rBX$DHh {Jh#QJ]$*!T-\U6YuN)좪,,9)09Rdi0h 47hoho0_DR<.BX _I"@JaR %Ha?\p7WU8hqXi]{ =Ѥ9 GwqW)HmGwqij8RjHo'q$c#8uh#ДZ%Rh=@o~4Х! C҉RRZ )BG GOՕHAq$>GpHsJ@8Bt)9ДM'ztIb$ Kᰤ40q.Ӝ}#9o1 h.n)-MI"Ma))km% $GQB')Ru h +J M%)l5R+UB,M9Y2rx)>`NqPF;exxD9.@?\{᧰? Z)dSx]O֥dM@DHTl {"Q+ZD90?ҊZD>) &h:RLKiHhJtCRKU\N9SZQb+ `NitxI"O 7U-OO0\OW~rKB)^§Ii)`OITZ}mJ P#P⡪؊iN,ZV Va] Uږ:pTJs 4 AUY )@UikPpax: VU,:*,UT OcZSVa,ZXD@eSDŢV'TY*/X J@JTN²-uòN9u,5Xc:P J9juVg!S`dAԊϨ3VVgqՉZS'R9=qUPU/AAԊ!Va)~,`I<(~D+XX^1Lː- JsX։ZP<Ȏ:NyvYu"DʦpYju"@Ua!쨳@vTjšV+R1_:Y<>_OZKQ,OQg9>u;ϳBeŒY 4; Si('`S ,(:F?6%Ҷ$+ H:NyY~^ ,?ϙ: `Y(X֊`.ș:@TRJ+@V',˾y7aY ,˾gϋETϋ,,UQdoe VX8ӳ,8< a_G`,2(gOqP9=s_;~T`YOXVòyD@x.)>󤪳<,TJ|:dP*dP*l"j-E&Y^$R> t,?O: !(#P*t̂R'B9E&Y Ȥ: SԉTnTu§BJ>m">?=>uNtHԉ?B`O!Q#R<: Q4H,?O:ӧR!Q4H,?Ϥ: dRu(Y~I @di(Y '$*X~T =(%@?HJT؝O|J"SaV J]|*\TnUPRUX 'Uu?:^zo-To +PVjo /(wZ.P~UjP+~P+Y\,o6;JAdDԊ􅷋Xxњ@Ա[K`X8P+ujjQ⃫d*Bex*YL>!uP,Uk5Jc*XQo-T%$:DO!> Vk*YJ†&*XU@Uc)R⡪ @UaU BUAU8TS8>A)1B YPP*тR9$j50[G?=(ze<q4T2}O᧷xZ22d},I eR(O|*lo§$>TG&JUPUcUT9,Y *u *("KUT% @Ua,T/ V<&*X_X}ºP1(f ,s$UJUdğ;K`X8k P+k@$jDU;BUh(wšV'Tࠪ!}*O>,Jxn,ju"@U I] *l]LP+Y( P2jX09*Y*YJc!X T+jSxO=pq׊% Z<7U~,:eh_%ҧAѥ07]:d҈$ @J U,PdD)YD@Ts:Bs)Q !Qʎ [dP*3R|| $&JmATj)~L9Sa,ZE+J@ž~_Q_AU4P, T%ϙJsUOZwf]?YB4d0`;O=F†!+LNlP+Y? OS [RbT ZXKx7yXĦ,MX*,K˒,u%d;-ub35ʙ VX@TjXK 0 `ؔ铥əLV pT,M>YJ8k ^[D?(%^〔({,;ըP+#V~یP+ vZ-AUKbAUqV,jx+j>%j4Oi >5OIC8Pj (5BJ,jdP$RZO'Y 7 x б, >%KO$?T>5*JOT5RJ^;PjE('2UH,D!Y$DR$0'MB,Є&<sYẺĜxtM@n? 5O~Jn썅5&Y'#DְHԉ~JC?5bSj PSj!Q'O?^:FSjPNO"`N$<ԅX~ SOc?B?#0c?'?w3~7S=MXD9@S!$N(~+RXXBB);*Rؤ.AvT!4BB+Zq@Ӊn:]:CJaw%dRlCJK%K%K)! K\K49S@0g*L It),K|,Kq(֙ XD.Rء^_S O(g'  KȎ ;-tOd0$¾RdH)\p)HeJRAb{ID4@,3Xۻqw=Ɣ(;oMٻqPJ0;q@vThcNFU>9bs RxsSJ?CѤDOW?oSUJ'YDNbx^œB+~:00ׄ9.;Üdi0'Y<SZ4HJcӉsJ)cN  Ӊ>)5 'aN׀9鴘ӊ4pv{D(Ogdei%Y9>߁rB+yF,M, b$CN%@ 1 ]#Ys4%~CȽV{mxdрG㠢u<Gz#8R^;4Gg8(IH98řRv.C);z %s)^yH)/qxH)xRG8q8Hi5#I#(t#{8S4{D.4X%YtěÑd7đR+MX(u:H)PŔVbօ S @Jkbg1Il %YRJ]RZb iѥ!u)H]J'*Ka.V(u E1u8u)0 gT.g% %4HH(5%4m^𩰛 3{y߾MĿH)Cd,&l*J(edԱT/ZkdX+kR&dIorp$,bYy9x: ,M²£bYce[,D$xţV#jŗuZҠV@߽]X4,/ mw8,D$)e'KSn,ZIlQ4$d$>q ;:@pf(ƂR':$DARfAR!Qx$JCNlRd) Oay*I?YLȥ4HX())g1T: {b%R_эފe@7}gA A)To<92P&]/l9({E̻b9>Ro]Oq4(;PGҜxM);9rEJpjhA #P* sR ɽ_ Sa,O §R9SO?7|13Z-,OiN"R|(b(% 9VlZ|SOgõx|<|js$u!|*%BO*>@Uc:l< @" Q ZӅY$DBtk)Q+,9^[D]J΅<ĜR+90J9&J@SMZѣK٠KХ1BR]JV$H %RZ %!)C8AJƉReGo̎w1)AH)N@}_.<NhœRs `NkSǜR6 OIZ OV,b?ORva:SkHԊDrRLL@p P*s/L9|j&Qj-P.ΦhZmUZ>ue TR9@ЊN$QBtz$ĢhZ⋇R(Q*tO'Z i-P.0pLTSa~ Oc OiCyXTaJçRva,DV|&UږM);Y]1*eRa'{PjE>{k[NVTZZ,D-%:O'd_,$-'?}Óo?ဦ]r/%l%@xFf6"I@E?@58'9]RKMa4aNijVl&YhG) A,4Д:&j\4>˟o4=ӽϟ_,h?B@S>M*j- $ÜV@Ӊ]jd蒧dtrHxtד\&Х׷Og,(K|ua Ki4RA;+IȃJœOD9聦 h I"Mad4UI"M MnZ|nSsJ0aN)]9ű8iEŠ$MДf00ׄ9VaN:S19YL $ `N  )L'O ~ w8OcA #ৰ;I~O,?C$Oi,$!GSONSSĚ{k)2᧴^ZB9FHT0D"Q'BT(ދ] $ "EB~HTh0B•HThHԈ% QaD㌐1@©AHT36NR+溂d9S|HԊ("Q'6,?`s SDSx)M`N3J Ri[bKIz|Ry`r{W(zXXVaYw@, GNXVh#%J6(QOA*Qjeك` 5e=UO=dGՠ=4Z6Q!;QZؤD*&G YJH=@PU옇˩dU@UTfd*gGj%P+CHd񨕧dL$KZU85*J@hJţV*-%fGcՉU}p4Twa$zJFRdyᘰՉUJb5 ŧDIOYkOAʃ({H %*<5RٻJ5:Sٻ.:S{) S)8§Šr;ܝO1;o[çb sC)QJP*K8XDRJϤ4|<۟}:sH8(s8(,!Q8+UR㨐qD$[8|Rh?=Ook!*(d3@=qX$j5OqT8GDAGI5&jD8(* 2x g8Lǁ3R+O{|DȤod|* )! SLOˮˤ2,"KI%KSdo,OuEG|%OTBSdo,U=Y/AdϐSik>+Y<>i ?XoBTʫ"{IU4,OWV>RJ'ºTP,MA>YT/1*ӗZqVn²d,+%`V `- 5 k賮la}@USkkV kGVT%Kk Xa]*Xk,:)' &J&Jk`-Y *did!X _qtYW4didWx׉:cYsX'8̯ ²d,+ ˒cY,> ',+XVX ˒qBUa[•Z~aj&pZDea +JX9'NJe} ,ubT%Ҧ"+PoDȤ3$>:_S4, >5J 7x,M~, T%ϯ)$KOJOVa:+JU{⇕dPU8ٕŗxt,TçNIU#BRUxPD@!ˤJSO*ȇۘTvENL0 ~dL0PV#)' $K?TaѪL@A>>dqӉsKHF쨰 |aCHԳ ޟ_EV( X> Q6isߞ}?H( (^*%jTҏ{SF$H}8(%P h@q@>{`@І8q@v=R=ϕVHI8, 3%Jž@ ]R?meH.GYK(/ Qa7UR4R4R(V@1 Y<(:Y(uG<$GQJ"M&)tIt)uͿ wC@$6X)Yh WOSԵӉP/4*}Jꮀ&YIH +@@SMh VMh diM4SP+ M4܇WZWOh2ї2 ʤ 74x,? Sdi s œdiҧd)M9SǜnL* Ħ ,M,>> X(}*œcN'K}[e!o4QTXySaN. sr@9S@$6H,:)' O`'Y~ 7*QJ?1' $ `N `Na00q%􅵫&Y<4\w@,4@8PA>>*u&=tCM h蓟±SXʃ sm!)B$K90))L Ӊ $ ߣ4CNR(J@STh:Х] PSjM'6My s0IsJ/d߾XI9iNQ]4Jsr?iN)`.٭80 {iNDOs %#9ߊt]wW]/rOwtC.áKR)͉g@J〲wF6.M|vxHDHh%4xg KC8҈# q${[p$>G gHiGo ܍*p' HaG  M?Gax$ ܅ ItQRUN<eB+<:#@19$ KĈw;g&yD(pǿ & #IP86.8 POGJ+ZaCxl\  H:їQ4אxF$BQ, tbSN*DDBB+X5GX< *D'P>wy IP Ba)]ņNI,l(m †Y PZXlDn6$cCiJs P  /X象4q <`CHPdžNtЉP0xRQ8 P'CPDPd MeŒLZIJaƪ$%YGCdQxLD.@R2>@/G%GP9BtrK6$GQnU!8D4h˭!%8_\Yd!t B‰RX@ ]J8tDB̤ZR I!t)\.kХ@q9>]J33V} [L 0K@,(# hŒ5@,h:@ХR )X[$ϧ#Xv[ H@ )lGL @JkҊ)&H)̍VH) ЅRZN)l*# H)щP-kv$(\wX0C0(Rp[ H8c#`[iGH<0J< . Rxbt _PQdBF)⁦.4VhJL@SXhZ rX~ { croi,:(Bm-"Qint$Y|~ ,O?9OkSZ4V)tG)OhґSOap+Z ) OL [Lpj2bm:Ҋse&kSzB"_,UZpkqHԉ~]pSD3EIa!(LZLZL"Q'ɘfSh嗃N,0vHsZ `Na$%Ǘ[їK@SJRJx)m** Zpay(_)R[K?ৰ.S .IK+BR-#$6@Z i-6_iŢ`ܯϷ0T0%錃&WMhd1^eɕ#aNrXFє(#'ÜV#ɡC)Oeܯǁ@ *#gOq,&V;sZ Bh8<&n&q@BӊP0WдHhԊR+ެQ" O0)'% 6InBH})CNSZgtRn??0¡SHT Q, 5Js $STx$ʿ2ܟ/Ad$*\6?RPJ-C1$R|qo 3e<T;PU@Ua T[ Vc:CUJUHTMSSBS\n-ZOirX|ӊ܊Z!5,Zq+ij@UXšV'TBUaUMԊN|:|JŠZ|jE ۇDYPSX"i-Eix$*v 1@$WH,6jE(憐079%ʽHԉE,/,9 CipkI}eh\ؤ9.P5aN"i-sZIsZ-"M˽Ma.Y%t)scP-z!) )=cC)NS84\#BŒYDE%?.@ӊPmTyP|PTl'^Q$BSk' Z)L'O~˚৴<?V< e PSEN4?P#Qį2␨=/"`NaVs]iN+z) 4XХtXtDHh R$4@ӈT0.qh:bZ M֮G4hMOMM &^_\N$47@8h1~_<38 ɞކ@34%G*.=ɟ@? M3[\NKSO@SR<Ntͽ? K,]JsSK8tR ԅ,R rl˭ţKq,۔ZiХv 3FRGb]J4iN'0Ki[9$Yu;ߟE|b)ħP9@S8oT8F|*SoO> lⳣ@z}~?W.@UcPUj4ҺT[PU>@UiZjE$z|JǧY|DJxPJ7R׳NHTX_Js @TxK@TثJVJ T~$ RA)yMԈ:#QW !QD D$*mDp )]?ItӉsJ`NisJC&hJJ@OD0҉>) Х.V] d!t)] ]:AJ+8RHi_C)4 )ű4@JREhJ @SlM4@SRhx) I/Z&RsJŜNB ?_-d?=܇qP0i 4hzm_&bhZͣK8ti.Yq@Ɠ7xwU@8i4qsOE8du)mz3$D=La}Rx&(kW谡= p P8}0I)5BsB'zhDL ?^< t"@a2 $K4B,#ˋ/RBx@(m]$ttTX Fߘ象4P3Y6D/et${,L$K0 D3,M:,q+/DKB+!K0r- #,c`"Y_)5AJH]HxI"H Oܷ_8 }x+I|>HiM܃#GZHR4LrA rI g(_ATrJνo9G I$о)I)Պ̤q bSI+h-o=kh-EfZqk!>LC3Q f&} #ǜLZKRG4Ik̤MfZRJRj2"d&9x-zmѥtǑ,8# HZ~\5)F6J)ŧt)Sb+hJ @SjpД:fsV,rbѥ$ =R} Ҋ>bkl#=t"@JaH).)FkRZJ1_W])ģJ9HO#Z I)B{uIJkqӉdd7h-9OHk)BI<|œ U2ž%}D_Ü翿E)pe4Z I&ui-EZl)_,bN1'|[+`Nk|%~W+@Vq+i-h:ѣKѥHi-6IiEHR{8@J+ZR ] H)N,pIk)loL2xH<:!F'ڲl+:lD@hZK B DJ1 ]Љ qHP_M"B'l_?ٛl @~F#@=茣Bhh7Phqx@hGL$G=_TMZQTM@CU8D(z;@x- ~FO~NlY$}+KxOO +Џ{lHZ A?x\wЏ, # A?~x,#K@?4Џ, #Ko~`FO-N& cI "^g YBik) VX*@HBe@( BȐ BDη|]4$z@HbB4XB4P$6`Cxl `CiUؐ, †dl(A0_(mE.x@H"B;,F q:H|Z|4bsVl`@RENl`"Y& sma=6~!6@P!YlHp64ⱡ1†VO[K `C4X*lHcClHŖZ[B+ d?P d#ADP k, $ @bCdiP Y tbRJ~diYģ4Џ,#'tpqZĢZG"h- # A?J@?FkiY<#~KRdAdiP Y|Q8:@HXBx@HbRlH"H&h-`C6bCaSQ((R!FxHbQm-EZ<$BB,tb#pxt" Fh 1#FHc ZGF$(3Az]G4/*qXh5(f?3ÖD FhqPI48$# k<7Xp8j x42gk!;FQ>Ga <#`PX#BiC<Ʉ#V*I$Z)ʧ/+cp$YtHoH(GKW$˯w:GH48, 4#幮 %Y|D#IEVtщ b4a4lҪ[D -QaCci|Z!Y|W 1,,1"ALq:H1AdiRd/<ŃGHEHbҀGc#Y_9[KQl- $OQ ӆ$c!CYtYCVY  $ $Vd"YekЈtيP,5aCaH:B'zhD@z4bˑHЏSB?Ҫ\q48<3ZA?5 B6=E8|h @75mXpqT 8gM8 8gX+ր<'@ՠ;+4 hJ94p,>m(R!;P67y$6 ,M11Y<3"<< 9!;'[94pX,sb`84,>GnNlКTh,9 K yIlpY_ R2Yh,x" @4 A4+V=8\Y^O 5akZEkVL .#K#h$zFOkК@zOj7'ZVM!/Y EUK,MN,>GbSK#rzǂ whdi Y|//x\&\ˤ^S)0^IC4DseVYDYsb 04X E`N&OG`-cXˉ "X$zE",,ON4X*EHžpZ[Hl2rReⰖ`_dD(e?[`-4XX*E "K,cYV4X,ؕ,Vk X{#KSJv`1Hd@Ů$6,>&\i"Kp#OЅ `>X `,4XX8gg`-֒:7|w,vcF"ބ.{?p sm}D{#^XFܛ0"ZNZarZ8%bv ]ܛt?UܛfA`q 㞄}'4(e_#05`T9&q@i" 0Z[8@8㠄ncWq4_pk4ƌ` #cs].Y0FV /?pҔᒥcdip ofe,! #& pB+ܒ)%KSpk,HlJkҠ54h,M,M,t:V%pNj 'd'XdDs,"s<"KSpK,Pp<4 ّAvdiY dGّ#;##AvdNEv,@q.-T#@0PyR2\x']SP+pWy:cppIlYY\49Gs⡟s< /%K#K@?ÿO'<1 !#' !zJ+ZBc2rdy9cUF,8W*H8,1JcsҀG8(JvVYY|!B^8>SҤ !K)!%ע4;4,P+ 0,MyPy/#$zIb4Mf#Adiydtt%diJvŢK'6, $K)$!G %Y<$ %$ @J|{҉MX*HI_KÑND F(tނG'M-Y"ZLħc0Q(U-Y|rĦ, L$$-6tb!&! 9l(wp$6Pђ`"ZLZ<ЊEN"ZVQD>T0 #r1m481CR!Fx(], b$G>@$6?4?8DؐsdlȒFc!Y|a,:Ad0ĦXؠ@@zO@,>G~$6=c!'􏠟0 ر~bLYG)%K<I?A?d{diY<[i cCrY4@H ?:H A(PcU,Y{.%ItωMa,Y YG{diYG TЏ, #KDc, $KBdyEG~R}. #K!{$zGb=4xX*GHtxω #KSZKAd X Ҁ<4 ,KydiJk== "YG >  GbSDKIlP Yh,U,AZiJkBDxvD4ؐ,MX "Y "Y|cC=64"`ClH IB= $B'!YHBB+M,M,MXZ4d$ dʽ~Pq\!iY{(9,#{ Q=rBr)x{q%Gx=rxEA>Q=rDex}.iI Oj(5yxY\k "8{~R2di2Rd ZKAZK2x, w kloѐA"e@suBk)~!! ZЊEZ sCPX 0_ lZK6$GV(EmiCY K@)ԊÆNE$ 衵@sQ>Z!`% h_R`CkPh _ ,v#F&Wh-@؊LR&rZ& kʆ1BRlٰ=LdaL>&ЊEVZ@"+h-Eٰ B4Zbt"d.L8L`"}$6ZlVЊl؊ "h- $KS6l-/?GR@k(Њ>']47 ˑX#[KQl-E92YrdkV,ؤm 1di 2}U{N$'ڂ<+R)< hAqzAz-#'t̃<+BNO\g-޳{B+1ǽ߄oPЊAt-g=|nV<\{R xϊ6gEē{B+Y?+ Z g-EZ g-YIYMYHYK!;hV^MA?yE= EV(Њ(OF[~H8gE{~Vp8(~%p 4C8@q4?r(䰅Ǥ5(8< q4(ȿU@#8 8 GN(PhA@y(cH֠@hPǁ(/K 6@c6G"A?G,yA?4Џ,Eᱵ4Џ,X@a,5BYA+h&`"|UZK#V F4,1: dX[Nl!YlHK Ⱑ1 Jج&D+Vؐ,`C6j `Cxlh cCmϊ:Ѧh{$ZDy„=##;^k ψ#KA #KA]k9=9=+%[yGSK3!;Idq8qX8g&g 3`8hy`8p76ᵲjhTZr"hqx3;yf4֬VG#K#K#-bQ.k->9'iUDk- D#KQDk-֊ .#KLhp;v, .# 2i, .#K3ex,Mi9|B)UDÓZZKQpk-EZօRvWX*FndiYY<#gX72\+ZciY;F_p+ a860LX7</eƾŧHl T);4,E4;фGMq(@4Fh-Y [)%K@4@NO~Ҡ5D}EeRZKQk-ETe Z#Gk$:DhZ|!D;\FHlpY {'t 0 H.{Ghd)hZGk$B"?`"ONJI@"Ohyxn {DhHtx?@?8'ҔZ @I, yš@'zgĦ8Z\kЏ&ǥ~!9=#86bNϷqPN@:@ W8< IqB^8 l~`C y)58B^h yIyb4@KqbLtP+qњLǁ8O}#pYYG T8,M!/YG3}GHo)RAJf !%~# @J)H8#.J8RXg‘q4XG,My/Y|Dtx.'ұxd?#K/W$:DoGxHF0щ象4 yH'(M9D`"W_Η#Fɲx(QT1#W.x( YD#D{,>' F8kxMy(B8RE8Rx&)*ߔK) x{tD)҉G ?8 Gp?R*I#}8RT#W8,/G:уG=xNyHQ/{D.XDs`"iTxhD{xY|zOB# F,1GN{q/KQ V< 5(~ŁG[_ L"Gۛ,&& <  ΃G'bė!Fאӓz QN$xħ8G Z(O'HaGq$G dHI>}D&3$6` EHP/Ba}- t"@<$YЉQ- t"@?`G"@? J3BA(B5GAA(׏Kv8*hMV8(}3@Ǻqxa|\U(8 m4(8B^{E(}>|(8(z3Fh }C;Z 1Ŏy(\gue(;^d"9K =|F'x~9@&mh,^Wx, #K=4x,Mɮ7-{_=#='\=aTYAZȎWHȎgadȎD_+uRRxodqxω,YTky½@Sy7KY<[~ۗyB (/Õ:V=2\=?AOR)A(\:@?@Px 'Q J4D})0 6$ `Cc,P ,B0}Y/K0!Ka"k&D'6:gl(`C4X*lHW$Bd"Y ; B|) $+@H e$ƆUfL$K ҔcC^֠ " 2$6,>(vBn Q^GH&KS$6ؐ, aC6ė!˰d0DJ1ÈSxx$ GcbZ  )F!(L'AJa@G8RUđxHWZea,[Ib4&4ٓ#.sO9do8|A$ !%m 4&hhM28<֎)h8,ZSlM8t#wd8W[!(Ա,M3YGu&)H'xg G <:!F'60X,Ltb $/Rnl]V,1 Fcщ&_\e0DIt0щ~F"nF~'(Y< !dh' Bk,x@ 4I?8@h gHtωP ,l*~Rg,#=i_W>4x,P64ediB$z'<:#c?Ҁ<4 ,MzX*GyX eAM,>gDyNjyNNxY<##;R d'tp. ّ#;~di@ҏDH < di@Ys" ;6e,U,DsܧYαoepĦX*8G,o0Pҏ K ;4X*dGHȎ&G&G&g,U,PL,ł<'6Ȏ, # 㭛ˆ/:T6LsN$ g*&KS L# d2}dLz4@vB*dGّI'H83s@)' ;$d^ψNO>< ّ)<& !;a,YsdiJBp 9 8'u\S1 ;(!;*GZ@Y<#y~ @ǁ {< y yyF "-G{\x}6A~lM8 GND-8h 4GP ] ]P%Ad_a  gd="UH!ȿ V b@?7,1f_Ҡ@PQKA4  ţ@0JKHO(e Zq(Љ6wLJ]@( !JMX(mH/2 ei!Y<6$aC$aKшAD!>QXĘ,m(Bdi҆di҆dip$YI† Ա*H&HRCJ!BJ':I" 3Hܿ.WH#+ÑdWH'6,<]hdqQ8RjH#VB4Bz]AJ@+ti,.V]J It҉G G(HFom], 7!WH"HϬ~~>W3ZH)\!1TH,]:AJϞd)%~)šK'6,)O4@Jiv'@J=$ %I)p-xtbdBdtYAx/61+_lv%didH) Ԋ!%<(+Hb$ 13KKULL@R+ b$ 5@xZRd@HBT T YT`*^xBQjŁG'6BQB $ Ga<苔I^W*R+DaV/G < ˃YA<B+˂Gyw6>;̅'q䞡 I9G2gGZJrPI4aqՊ\!9grxpjr@{O7+$ `"ޕL渁䀂f8|4 !Z9\p4Br8H%`0/ee|LrR1#F'L[a0P@&JLvDa: &Dc+sBNJ\!Y0W<@pbP0mIQVъ1:)[r&J;`"MFѵx~<_VD+ - _I@~ZO&Jl(!s-#ҪLd?ޭD?Z$L&b+EA,1:象< yl~]džoY|ъJkP!^CQX&h->(Yb-& #3c& ?&I&*@QAQZ@$bf41Z/hZix(3!Fab Fi:t@:RX#p4ɀ#8RHc>3)!%p-63iE#HHZl:Ҋ1:rܧb>8!F+bg$h#(!Fc1_9Ha;bd?ʯ!FcIi)^#_ŠيPЌw RI]ZѡK'2p҉#68Z<{ 8RőNъBlFk)#Yrdk#>Gc<:6Z6 Fk(t"F':(OeBQjulllPMSl-1ZI1Z Da& Ld_0=< ؐ}#sb)Flq`;QD(a"mt>@CVk`AyE<+b4+ m8h5x)BM29z\q4 G˄#HUHO'b^QDi0QY3.&E`֊Q!Kkl66"9"GX x@E, x G?6pQm%+k!cRkWdڀcV, 4GXh*I֊Mmk T, 4}f'7 he(v- 4c̤T:&S[}X~j2O"Im,˂DŲ QU&Y(&b$#nS,?5t-?t2tEÜ=0'bY0XsM %ܮM,@ӱ,ݮ $9-S, t,9 6aNer)heEgh*[X8_銂.X8_eJŜD?Ɯ"Z8?łEȘsң_`Nt%IW2' O, t,DIf0]˂.2{۵,ұLR,Cӵ YLbYL~ ,Eeb2M YL2d1]P0Z,I&7cqI[1)O~1mS,R028!Q E@JŲR(uEKh*smJ'|*ZzRz"p"p2BhJ*A޼ D=q(v- !QBH')W*SO,S, ?qb$%?Ų$)J@j9mIG:Üe8,3X৏cc(?O 8&'c(OxxR O6BIѤ0'r s:,2+bJesQ̩uL0'ƺaN,KT?aN,S, t,9$OKXq/I".J2!Q0ծ?CHTd$l@C:U QcKnS,T)||,>˂OŲS,T, > S ""Ti!V*`,bYReJ6cU!@UaPU[)%*kT_cYX]@Ue ؠX*w -jf)Dw-KT,3U6L1gjA,ZmV,U,Z LXB֊X` aYOĢujS" T?L j !PUU0ŲT:dG¨U jU2eGŲV,QpvTmeb쨈u X*QZqJeAba*Z¨UEP&*AB޵0jU[YPXjԪLZŲVpJTġݵ,)QTg UTZ )T[vT,) Sw"?+j e(U"P*G > SGD (JŲR0(qbaP Jz"#Q$*,DwELৈ  $?.0tDiN hzK2Vt'JÕ0tlbbiNfɔqX>1th:m:K>q(DDZKDZKDZ;.wq!R ]:]:m:@J*V۷& h:%8hN_c)wKXr>Ɯ$4 M ]z"CJeR#ŲH,8R,#Y"8RHD~Ǒp2)Zᄦ#*pJhEprLb Gee‘bYpX) 8Rke)#w,#=Q#$ bae".Q,\\.";.Ed@l*#˒˒ B}X&@(%u)(c0 P,M( )s-O eIRs,˒@?G@?z臁XyESǻ`x3p{bYX/"xO>=Od4\s,M O,KfR,  ODyh HO=Ds"SϣC\,DdKaXٹBp y7)+F߁brnFֲlM5n".M,KQ, y|q)hlbD bPĥtY, 6˂ aC~2 &w".;,0ѱLb"9=e#bV, p BJO xe-ebYpcb1H"RkS".8R,#E\pcT E2g#=qIeI:đHe,?_?'㰤|9<:<:<:N:RPH8ǒ tK*qp*8Ta 6[_` Lqp&EʎFNkCP :%8"ee4ӧ"E23l)E1ņؐIGbC_ B0 *CX$ǯ-'.<QMM5%IJDLZY~b!KϱL>HOY &e)1)_ZY2}JWX1HpODF"2bca!VTXTX~hE\cA=! cCmVzje@c~bYXX,P,]PkDO],O,KɮX)/[O,V mOD~&؊sA?en&'~"vs,S{Z+Re{bLuLc2}b(8W"ЏMlO,\҅)'%'%'~],u,VXhI?&Z8's,SɮX eb!@6T̈́  bCOB^Ų`C,P,KP, 6t,SP, =o&l(Æ˱!&lX&l(%m(†ȹBXQ r@,B B@(JKKҊBV@ _^sq#N(P,  @Ooc ǠC$舖ATD>PESQ,qѯ#S E"2b觵OD.uD{";oOr j %XdXdX ,wߤ@XC!o0@^@@(B ":G!<!<3 -Ɔk qAG[q `az%bv㐼"oc+Cp).yEq R)^I16)LǮe6~FcCQ, t-RBJ`HR̷)]$G>PEJ+.E3tb9H!)A"KOdHAJxTVʑV ]ҷ0F(RصZH"Gi=N<"H>AÑy<t$}-\Tґ(Z]B!%3Z]bN2d&] Km%3M2MWdt銒DE&x- 4T~{Lˮ1֊`NHF] cNmEszM9Zhz"K4DzemFeEZ"e˜S{F)4]4]4] MWd\֚b7-Jʑ]ѥ+r^Qb@S[HR*5ODׂ%Ʈ8Rކ#.,8ҵ|#銂#*8RGj{EJ-D2d] AJOĴ+iC2 ]G%Z<3Ne++j R,_eH1@!2|N1bt-˒bt- )a kH2@J"R2 R*l#d-ۨl 6@J!Z R ֊@JRe銒WT6CJWHɧH!%BJR;CJatCѵtEÑR2gW+2xϏO>oJ&q' xTp  O&# P]ŻiCWĨt'bA+ BpA+ͮ`'b* z"@~`@eH`֊Dʵ ] DW[Æ 'B)]M!ty68t};Æ0laoP,tYR􊰡 MP >8Y t6$mً`? D])xOY{+qs5y|a0(ىeىeAveBvbʑ]ː+t-+Z.R s,ː6t-V ),N, s,AT2Z+  =Ou@_y:[Qie E1{"xOD{ˮ8.PZAXy"a8O$ Z 5}*BkK9ʄB y5]3!AZ+* s7pVP[AkڦZvMM, ܴ-BBαH0eݙ'ZDhʥMѩh_SXiHVPYn~1pZ+!6+:8'I*!obglXDs&a V6\k' ӺYA' 'Ée  j YABX%ZX 'pˆѷXjٰA19EVw0'J*~]eH9 É]'Z h 3?0ZÏК2 ֔&[ʆ]˂bh ,?D9p÷ae, tEn"p77nFMkE߇ tEFk".hM,CXa"?~3Dn" p 9n"pDCkx^WW>\ D2}E2}Z,ӧ>/7g\1Sƫ=> ىE&d',uEs`8,N,qpb t{Z+Kzϟ_/V _}> ٹ9W[0Xrz0z_:8*]8 p1>=9%8~E[rzcsC)8ι:eHP ,@X Ns hZ7TZ_Bp{Ţ0nN,Uo).E"NN,ᔁ.E0'p?nl9^2I7OB^W\p  )CZ y]@4e-e9)cJ$|??=éfba8#}ba8os".9pFN킀?N*вa- 0X8OmKѱLDtҶas*bNekLDǂ)\[PO\c2 Q$&A"2q: eeeAb$!QX<0c ?=qba̩i)v,9MS,KXXapQ1".yE0(ߡca4lX,OVj|ىXlXR6,"RV TRJ=q) #QSٰX$ۨC"QB"FJ6$*A1$*RLXz"g!MHT, dE"QeHQD6jl#U$,!QeUZA$~j?FAʆb$2!Q,HT,DL9H,baP*" q*G #Q Q,F(uEEg+&RL,AZ+DE\"H~X:)(N1(~eb!鉂9+bœb̩,aN86*,eb1I?7mӱgo:mS,?$+䓌SDǜtsz4ŲMT79=q6EbqbYcb`"nbYX@XDf`X(X,\L,"B"PDbE":SgЏ2b%|{O%b(PDF((PĥlX,\6,R6_rS21@DZ@!(G-&ӽ8XR>B;q,Ď!vbTzŀPkCRtc|u 6t 1q6tq0 ѤіcM8$gP88hKJE#_{|{S{MxXX'y(yEH" o @D$nxO,Vbb,xϱOR{ix?QģXXۖVb4I  @m [@euc˄Ų#"HB#06T;&H3 aCW@ ҅%€E!D0bYʜBj@o~]}?g1g?^3 Զڔ ?;"(P$)17 Bc 1S Bm$X06Ԯgj+ 6 cC IJ$)},V-"B.dPY  {V(X$IL4M, LTvDu=+JfRۇ 3l,aCc 呒hG$? ̤vVo kJvOIJ,б6Tfl†blu6|87&†Kd,Z1X1(EK_,wXDꊆO.(>峠IJ%I)4\, UJÕVSS, ,zqHi-qjE?aV؆Vx84IۘP`ԊĎc)wK;}=A|Zy&882rG#>SqXC|TƱ;Nhj&vO/#\OdXϧcaX2!\,bY YLb+9wDyV\,k-V,kBt z"X徢V+EԪ8C!jĥ\,U3"PUU@U=?WjTZԥO!S Oç'.ebaPZ厈HT JgXz+ "2ԦȊ˕. DZ~]XS~b^X ~* 'he) R.J+TZrbả?˜C;0I,R0t !,d&Üj+KfR,9=Ԇ$S럔H@"p,R,Kc-씃 MF@?hz"KdRx Kc.=˽E qX)G: Gpޱ ReIGeb2rzAJ,ebY"~^ %~)"R0 ')E$ xŲG"Qk# G(D~C0(D&z$g+ q* Ebm5@("BOt^PKX(AH.@HfRiE!Ų`eb$]Q2"DNG(ʰBiSf2J+SfR,Av8)ḍ ;e8$3gwy> 9W|80Rj8^i5_-){CC,obǯZ,KBS,Ise~bYX$7@>D$4"Ob M>P~"J=Q2 vȄŲ@bKqJ]eI]ebYc@?IJ."4,K,K,Kp DO\Rbal( BRk"IJ@(NR/6D"2 2$Lj'.H,P, VjױB"EZ+"0QmeIGE`*0Qĭ|Z, KbC>IJ`C6wڱHQKQXX$, }UE!0QZ3Rk,Q,Kc1Yʕ 1z"#G#cuKG:))1ӑX$#ŲHp#xpR1eA'.0ѱ(L'5~Bb#=z#ZDI@alX &*XRNHQkŊ]6V­̘%ao[,#%8Rip$*')%)%)Ƒ"2q8 c=DLDޮE`2N1"aCOe++go t-C^ѵ D+e@VM%Ѵ ]`Й`k`kavL V1jp$lZaCmH -I"u'ZiB% #{:)b:&QkŊI GWLO+]웥ڵD,'0ѵLD޲̤r̤ʒt-R("Q˒y4|8,IXʧa8t8,u^ScH]:98 s¯!KxBv9!q9q,qmC&}4y'8$u ?`Nކ`NeKR? j9]mHRc>|5Ieb'rfRMz2E&_f|kfRkeL s焗O+T1'DF蒏ґBPQ,  J@J t,) XH)&t$$bt ? KO ]P(Zkrѥ.q)v-.=8q$ H#VGjQp#Uݒt-# Ԧs)v-CQkam Ñ$O8ұXQ2%3ZRb)Reb2E%">)IZl@S4mi@SSR,9CCҵHRYgIRlWLMזTd&V)œH@'t)o `k kTv"ġ[,4.H"HcnF9XsXX sSXs`N eٮe(v-TZoS,??ŲOTvӒ˒t-Cҵ`+ TvӒt-CXs02Ljn̤kH^g3D!; #Q Q+E3vE`HT MEeAbYcX8u5,u _ڱE)o>:&TSe#>!Z,krʄOŲSXqP\Zj3|;&TD,DwEA'.HT,/^[|*""RP*W Qe2 *]0$2%ϯDcBÐ(osV᧟sf}9Kq X0XҜ0-@q0&8h  =MW[ХXХѥ1Tf %)8 wM>(O KroLYLO F(2 ݮE %SSaX4Ir)t"DI]*ӹv)VZ1RZ)h MeTv'MOtKeLұXa7 MO\ХX$u ɇXt)۵0tD.vEI]X$uR Z,9Xs"MOJ] K]jt].=Q2JRz#B8X[ߒ GW4ĨQ1j]@ 1DIJD,0Ǣ0 L/[:R,=Q! j]ґbl"0QDcqIGe`27T:`&aCX1z7.L,M5DL%)&:))%)&ebJ]ŲDDz`".0Q,=ґO,CX̤Xj6:kްXjcYXl"IeMI6D" T"Pڵ EPCtXz⒃t,-Zj%){H - Jj"Ge*SZ ETdGoɎxy"9OBiW$抂Dd"70d֊a8>˂J+l #;)d'"D89`I+.DF`>p[q>'8Jkqd" 9Fv8CX-qp5>8)mL֎A,w=>}-x)W= xOy{J` S;Om B?[^Q,KX*$@O,A?eyyAe5z~bt '.xO,V1j#xtEAj]͍ VGjӉ89uApچ)"HmGb)Ƒf‘>Ñ5B89ŨlƑQjQx&N <KprLa8Rkq'xDFa!FmHRI1:)uA EdĨv(Qk@cV$c!X8jR*BJOl #67H")(%X_ҊMX%M1E ŲMЄc 4]R%S`N?X,ŨuL0 1CJ+D=Q৲ͧro,S,?V$ŨYDH%Oৈ ?EJDdE$אBO2PC,HT,RuLʌMbl1ʝϠ*<5΋PU4q>oC ymA>E8$_(>Y=F8X[c8ӝC@JRWc$l#Q|NvxWT8ڒxtDlHT1!QWW ;bOB/:&H"QȋE(|!E(\5EґZ+J}A)R[ϯ(UkhHςp;bM</A ѐ(}(պ@H ~aNKXX)h: hebYXhjD.(8R#e"2xT^>-?"8R#"8RkqڊHe HErZ R*H"Rk!6cVХ1AZ&t).V[!鉌.1 KL;"T|ѶlpRT+ՎIY2c˒ cNƜdJhʻ+V$_͍O3jiJ9_?mbԥo *+0!QZYcA$ ?E\X)H, OybvRZ+  Qg1"QR !QO\RbO? OO̩lhÜZs?EZ+?wcQI~*3 skJ1'79'9˄9b߸,[%)%)ZVsaNZ1I79bS`Ne9-`Üb1glœb̩̘aNs ʲy,[Dɮ@S8 h*[2J+T1)wT-:VA)Rފ%JOT, >$JV*w J+ST,UTUҠ2|9}>˂ObS׋fRm2C҆@U8$ 5dR^ 7ď,8{ `OzC2 8⓱,oC,`h`-g~ʤ8 1JRUaY *,gW89p,\."cY RǩXV`Yb[yX {bYe,e,Eb,wcY>|+ZoYUES޺eAbT+1J+vMJٵ cW1ڵ/WĖuŻ )*%*A:+Wa}0 ˂Bh {W!/WI~UiE E\аX hX[%A[n,\R.^ ^m{ Bp ^-X&+½`W[K*sc`Wkeɤ:(WTj+"!\OdXMZw},k1E Z D°Vk6X̘ZeS1%}*%}*IS>U[YҧbΒ>ӧ"2ՆdSeJT[Q,U:XjkgVXmNT0I.k)W[XZc5^k!8aYpٻ` J˒Iu,Z [T܊dR+˒I aYW)ne"rٻKٻXj[rEQ+TR.%JoRDPUOPձTU6T /ˎM_'Z/Dz%JB-;J-;*(/ϖu,>˂O"TYç~c" (UjT邕kXJ Ġ֊Ds#>UvDE(R JnTًhE D.XҊ QeSU. :Dh|RN/`N gSiEJE̩l.~{p9y9U9g8s%̩rq thC*!@'K$@SY+ ǐ(MцD8h_ O8h1gt OR㐜)w(S/tZ]z"λ"H~z\ˀ#]P8ZpőT #q$Gn_pkpk؂#]ˀ#]Hb]ψ#=+ xTvG1L]ːIu-K&1x1!}Zrz2ӻ޵`RUD8GׂLkLΤjH&U[; !CJOzHƑt ZA鉜3j8RHeEDX^‚#]H)Zᜩ:|Aʢ ұӵ0Tbt-Ck!t )Dh.^[^att- )Ձ Tz$J]$JMmhzP8Z$Qߨ'tZaT[4K*s#@SmEr T;@SM @SmeeE&*q-4kҧbQ ^ bNW"{WD)Mz@"{ې' Ժ@R|X8;CvԵ t!%ZtZ ]K]Z";|,Kki%d,97ÜD1'?S̩\ss+ Ժ`@v@%=;JƄ9]ˀ9]ːu-CvԵ&H hz"KO'潔 ѥ'뱔R)uғcC)Xz ]z9-iNBGHD鉖_k17GQw2ݵ YLBG*]Xpk ' /)߾~>đ6-q,q 쎣<] iq0xom!}Gxt !Q+qr6G#t5|.IJq0xT&)$҆$)8G*k8Jq$ҲwcR_c|ֱ],ZNMeKҵHRk&>E&LJ(Ф{'DZ R*3Hɗg)w-)Hc̤6!3Z]E+X8/⒙t-.祢KRt,Km, t,ԶMG2IWyWӑV]jS/ZaHvMe,Kk] .1H cNx"SPdZԥXs`N0T0ӻN]j+.b~zP8Zs]`̩]9Վ1T9aNLF"8ӻ޵0TޒtEœ8Ȼb*+*SEMe02 sE {6Sk.N+W:fiNeTEr4Ǭ^OڌZ{m,5͉~z`N~f ̉~\ZৈC9k1IO4X&)Ksғ4)wš޵z QҜX8RNCʾQPRc Jy+ JX*P^d["{P#]A)_˃jE)cuEF&4D]KVSJ+OErzzG5*UbtkTiP2ЎZjE02A]˂Z2ًEQ+?Θ՟X *( y֊H,+ʦB,늜tEBOW|2 *[̠0t̒?_$?/ _C8¯XV`Yqh;z#:Ʋ$8`,C,Wuey,wue5,S\!Ͱ,˺X~J!#XןX>+j 5],K)kYbԪ˄Z"Qe)zAU)%*%%*+ZWZ`[JT,`]P+JAJ-lC@ԪeGU: z@UBt>UkgP*ePϽSjȨUDFj8Uy3ߵWڊDkז CU.DV@μ_6cU=h67OEd|]SJT,O=A??]8JkT@6PI0>6SERV3|2>DzA)fbY@XODHJTe2Mݠڊ@Um,Ck(B'>?6|*){Wm){eGbYba|]LOʒu,Ou2cSvT,bQthdGOǂ">U`T邕k,R,RTo ǢPTtJO9 BUe jt̠ҊAUG*bYҧbPn5-@ecPUiV"{bPoK+TEdǢPbPUDZ+C*q1TD§h_VN?{(>Za|*"λRe$}* QD'D.02$ÜJ sjġ޵ b)P Z^" TnBKٻkrYTiE3kgTəHH ~*ʬZ)kT㰲wކOv?}'8~~!Te?84^܎'U ?iq,q,TS?}?q,q,T!THٕҫ)8D%UjRK&P8gR1*(˫ϽRxLdR (Z!PST,KT,KT,D նOr+w,J=Q"QIEOBͤcT<JuPDΤj7|t'rἈD@$?]0' cN5yˎ19='.ұ% KmISR."Km=]z"CJR(Eʮ3lKs*3Ht!'2S,  HWte<*Ge_kSkXu0xԆ/iNm#u8R Hu,#Lb8 VO6'06tDM]ٱ6T`PkEJņp/DCl^ ?\ bYŰr X:De,36%4b| &*F|LTƢ Me, L DOlmYL6$ @h]%u)"zy:. o4揟,~ERZ+TZtұ6NƆ@- +Z߾Z#-pw|M]j q$&ʎEq$HcR."G8)Ge%]C| ]*m,G!GxRy qL@q,G@S%46hb8hjs%9H>W4'J86*K@S&C.+Gco- 4XhÐX,H Mh{MhjCZ0'/+T6bNO$Rح-;^Rbt̵{hJ Rzv"8ҟ_0n_3cd"T 'Edq$.%HƑZ+SXR0!.F[kErھ0Xsp8pkcu'Oc?X~cvl)w,?Mba$HTmjNP6P,%41S>mc\U1u,TZF VOd 1m*?e2rjUbe7Vu,Z7WC$M* چqzq~kւqcZVmz@UeU{,VN>¿> y&+"Z~+忔 Ҝx5ZYʽ"VT`"r0ϏyTӽ2|H *T-F"Za7 /VZnzVRJ"U>S X8#z6TV-"SO$PꉄD=KEd鈆9F1'_ sKE\Xh*X$3"RXfN[4@S鵥#:&Skeba鈆9M0e&˜SDNG#"@SMe! h*bm ]z@JeH)ElyCʪObt, -9HM˲WH _ Aj xqx>C#<]98<³XrC#os>UÓXґc)v~gAc)qXQ5<<A|v1Dxx%wD|q(LjLxDF2#| #Z6(A'.0ѱL0Q,RT yX1zOKkL:Dm*LJ2r[fF )Fi.SFR".pǢ)F78's(sX8'smybRk54ɯEvTVߐQdtlBvb!d׊ \6qA!5'r ZQr_i>ER>-bK<ⅭG~BhR؂"(PKARk BOd("@Od5ňGVK$("A?#m}\@z:.v$q,DG-qރym8)mރcI&:{qރw`= {&DzL)2D;9y|? SV%QAoDA_[^Q, q+:{S[YbjyE%OcǷ{VX8ň"ObM1*b@c=Qh<,D=pQ5C? 2A?SZrb!牌D\Xy  "Dy+ O[%yZ'9yZ$ul{b"xOY+V2 X*PY~c :OD~J,_V"(e0 \O,1= @\6X*JC".@ ԷT-I*6aC|lA@_6 O0LZʧZǦ\X\X\X<#Y+v)W(H0!"F =qE DO\X_6 \OбHPD"Zw~b#NxO,KX,WW}&'{ھ6<$m=''I*3(/ZY҆bj.wL3ch[j5&{+:DDX2ύ&^ b:fyEފQie+E#?"1Z$Ũ8-HLWT@Jp t,#E$鉖6;NJE\X1z EiX+Tc+VfAYX<*{A3J+AD=c? q?;%ocI&:%8h6&8 /㰼"%S^qЄ/DZM4Z;Rj8$@Sk1aNDZ`Ns44$~ÆM:~?:*m6e^`Cކ`CyRjat$8|v &`"&LhQiC҆ F>y#=Q#2bD|3LtEÆ|gl̪aCsYz4y2PH( y@?~P cFea#glI)w%YwCRJQy_a@艄=KKk@EJl Bm Dг tEDH( y#{{(De )]@牄 D{}P~]WTQ'>,ggdkdic1?$(г ߇~bQǻDGEP PLT:6#{os(P[4Ae(!NYP3ʊZQkAtZ2AT:f(P% -PBm, ձ> t- ԆoDe,Վ 'B f"FP Q eJ _e'> ,Lsk-E| * DCxdA|е )Fг#Be@Yz"@ o+zAt T6@+*iyE>c_*VY~?Y~ٳ TZkQ@[Q@2= aCO$l!$ڳd"8HzI|2ϯ ;q ұA+0ϵDs[1 _˧V1z"!FOghB 1"xAQ{#\C66*cA艖bV#V#z8 1Oa jWToyEo Biew,iC"|( Zi2aCHPaC~3lvӆ &zOĆȀPD *SP!AY&*0$ڳ6Dub X@X *cXYA~hPه M0aC6DH(}E6DNjSdeJ$W T ,\zE֊ kq'.Q,6T{-8RJ,3HOBi׆#tq'~г0xz=D{E=m[`X&z4{)hֺ bDQ4V&zb Y0l,4bC1ÆhҊ,Q, be5F>|c=Qh btZ(gaBb!K^џ_)` jL=d 6Wq,yEaC> :+cga">8&ؐϊ%q6t5 * 6!P1cCqHQiC2T8$J#)8~u0'uH21\#VG51lőJ G*SI)#-q'r^QD+Q++@ V~ٳZH,AJ"2*Fb!t).DbRk2g蒿]1%XRjo"2Q DbvK1:#FU:f MeGCU BUOd|*Ⓔ˂OŲSǂP*@ҊR~LT,J{JBHH|X~:O~z"cNsh.aC2p?g&M2J?(DqLI!:OxrrR OxtKq'<9L—`$1T' ~:)hSOWgE0RkcNOgybaӀ&>3&>3< hE&_ hTm* cNm s*s#S`NeD_bY0cne~zR-n5~z`N&e1"SYbd1@SDK& k01' cNsCbR-"+qɢXsJmr~jszMZJ"IJ&4M0&+NR,.^ vK튘 R똠Kc.V]z"AJO̤ G*+ GEJ{HO$%! =Q#MlQ, b #F[D(ؐ :ÆMP, F,HH:-tX6Dt *P! T+N(P,=6 !7UEA?tT,V)X2D{K@,I=5x y"Nه\j9($U8W+"ĥ$Z,–A7e#p:7"M' ZSfa*~Rc2bYbDztF[X{?Vyb-sFZ)9"ּ"b8p?0l)FSƲdK6uBi1-VZ1dbȎ>~Q( ;&NDBvhpֿ%(ΉeI1: pǦi0q)džq,)FDZ=ܠXiZj(bTZ1ǗE)S2UQ >Q >kEJ *×ll,F,O, +àҊ$ucam I<ȉG KYc4j&(PDFj,[Bm DF dhb!@艌Edsw,[ V&l(†~ Dm&z"cCGt&j "26ԦH6E =,6T ^6:&PY 6tE)Q>sXϷ΂! Qr۞XbcRk1GؐV-h"26V@ kT bFQ7Z+scDFJ??ߟI:-H2QdK&*ʆM2GO ]^OQ,AB˂#b8 ?h#Q# HOϟ=mH5mB8koBxDIsZ,#ObǑ|jo RErn\4b@&hBe&)s0'.@S, MEվYcNO)A(Y1'ŜŜZ+KXj]S_\\j-"'x,KP, UtRDB!% R '.@T6Hv82H;D".b|Zj% X RSHt %}oұ(#E\pX G鈚+S!%""DYR4O;G7)v4Az Dq bt%+8&s8&׽`υa">8&3Q`28ېG8<‡qx12t(Q’+˂"QiEr bT"Fe$W(DxF DO2qSP,KP, L DJ!]~,V&*::_?Z++Tnb!Fֵ B|ZMۣ!FbDeѦj,Dx_ba("G 4LG%x Ehmy <*gxTn 1 2|"#fe*76(nQ,=S&Ĩ1*+jQX2CZ+KQ,=`"5#=Mf=ъ-0ѱLGʚb0baĨ=A 1j[bYbYc"e&*J.0LV`JGa#NEbYŲ)2|SX1j0b#?z$򶬥J3¥"2bTF#!FbKReAb$%M^L[ұLR,)=q)h 4h޹%)BJz0Ě]HuA m?v_wne,I2.ebaH)"AJO4I[ұL8R,'.9H,9HbTd-Ȼ QDC|#ܫX("xDk[Tʜ#9;Z+s9?R8jʔtDZ9;qH3q 4[:J&>;\MH@SՒqHf]⃹XKeSItjL8 ]CX$3B@]]`tvA%r,;F?eAѥ Ғh vVEr".R,.%˂.Kc.V]j+ Rmѥ]j ѥ+ZRY$Z,.^[2.Et$r,V> "IUtuѥ.KQX8I?$)!%3)(Z~j=%)HT{ʲ T{baPERJ+J=QncY@XjscTi@ͭ,[k˲Eԥ?OO\ },9=PTd h$%>4KʲaN0"JeT ?=QJmb+ cNׂ9Vs0TϘS`NLF Z~jWOO$O˒ Om?gX|XT-J4_HTDAZnǢJ y.OmO]*3$J?-lKURJ+ Jn2PuLRʌ(caPꈚ]KAHA֊Re(U^C5"YLbYJŲR(UXZ!|*"RO$$?Dw5WX1'BŜ R0."M hKu+ `N~O愭LYLXSi'1qz1Dœ8.Ų-u o[R,9y+9V4uFSJ*[wBb$ʟ2[ұXR @_)1ŧJ V\D JE}+$hZ0ޜ$^@$* QP.B)i8~6~CҜe?q2N4J!.Is8)InSimc-8~jrCs|NӵHeBE֊ Qe,DMp*w-JmPA)zI2R2R(UZaPJ.Ե O"T9TRc JI@:iN)ZaPoR ~v]'㮅'ɒFȵ E1΃"A^ E@9ꊂD#HTDVjeG ΐ-;e@ba$ꊄD=ȘS>9 Z̩]9c銜T{=$?] OW$)9?.nSzq2o/>I.?(-7]k ӵ eeb4+JĜMWpW䄦v]AJRfRiRy' k!HRZ!ӵ0Tv3b*)AJ6;kRd R5 &Y e~Ժ"DԵ ҵӑu:\BJZ Rҳ ġܵ 8ҵT.HmT HO4z)v-?<ǢMHq$eEp$?ROGj 8R,#wÑJGzGw!+ 绐6@R)]@J~hB?&tZ ]|SBӵH9_9S%Z\D MWĂqWq>#=R9Ke%CJO$ ). YL"RAJc)E`RAJm,) ҵTZ1H ֊@Jf2Hu ' TV9*[CJWH __>RF.mÇq`qhCnSۄK8C%\16@ǂ.K:.ztjBХIB?@J;8RhV\7Hɯ1>oYM,no ]YLpQ"Q!FD0(B&*g0?+Wzm0QkE` DOEZ&*+LZ!RwvƆȀ&9"rfu! cC,wE,wEFZ9HW$  k~; e( w- 0kP0Zy"=m: )pגԖ Vz+s#(P[7 ˂¥t :BpikIRj&\ V(!IZ&*WߒX,IhRk>;%)]@JHRkХ't)Wj0֘+3b4/@S hb*j+ 4"@? hjwMm,4=QtNR,H,\rߟsK}'Mc4qɹ+ 'О:4IMzl0K]_c̩"DTVaNe dT,9E̩&Ĝ(@SY4BtʺYebErs.J"@|%4_I=_"oV2|KBs;cN<79~̩"?s*ӹ9]9I4Ҋ9XS똕𩈆OF#iN XJEܦ+b!+ TFfSRZ,;hYLD,œ na@St-4@ h*@4]Q y*sR6jgR8,hc?Ü Kh}8~*m6*D!OxXu?6uq Ecm:8ܦ $j tRb?m6Cܦ҆Rxr{JKn_ 8,t)>E)$Oyr,T;6AUPrJwA8§Hԥc%-[Rc7˒t,> SOdP RN`Ke|pO >DJ$u T >)s,R?.P݉E1,DwEƧ"JRU@U9_gV o/ZEdԊX*Q+NPU, U.LPU, UVHP RV0\XLd& TJeb!PꉌD^si+ᮅ0\ ˖O$2I+7NʯKRH93).ŲK0.R.CJǬ4\YG.-Хv]]"BJO8R|XGb)Gp'2xn)I)<=#"bqX8S:R,=X  B[e~ BOLxt,V(B5,GHC,б D6k(P‚B( y"=W4OdXBiB #-cQd[Qd ;%(ىeAv]f)E8牆,(N2"rQD db%a(%ѮhD~ P~Bih2QO+#8 s,Z(ͷ É @{4n94,u̐oeBvbYXy"9Od '"c8GfW4/dE$k.l8XC |xR82ga =>h2DZd9ACp<9e|a Z2|Yq, BDZ@4Mi!Iϼ2|(y .s .s˔67b "eZǖXYd (.C?;bYpX,,M,A䛭fV cʜ"M7OdzAkb!D C4)7@4ekf\, <)e)R 2Od0&` SDY(|M#]ഡ s,d~?2eR@4,yEp^QִZ45O ʑX(Dp j+ 9pں '$J2Q9DŽ.(? )O8p  Ée)h4+c 6TnCCv;!;mny+t,/;sN[ Tf0B$A$Z,'Dp܉Sƿ 9O $VЬZ|>p_e|~_aj(A")h0H,D\Xํ4͖ =i`J9K)=i6L܄IJ=b?ؔR,%'XA3=SlE4X~+aCc'h5%"0LLx+b!F>1(QSϱLI?HOkŒ~J+KO,  CJHXXH)N(8Re\Oұ Geb! xB'(BXpHӺQD8"8RJX^VC%zKR8]8, t)ZObǂ.ǂ.$Xʜ95gI?ƔsKXХ`tХq&>|v{)]M{|#]m)hv]h[N,g0L'LDZ3c1lȷ3ņε=QP 9 DcXXD)C2Ƿ>~|'<1) T:&(PD)p  @ FP֊@m:t20 qӉQ @ba("'.ba])e'%e'{Z0,R{".xO,.HNٙXcVx,g㖽Rx,EY6'. Fi,xO,KXyRbX&'X,_0Sb%nBxO Ed' R6,.v ىv )w$EvMN,;& 'r1vS.(p~8)1_bad?/NDN"p1* =ׄ\Q@INى6^ jB@֊PKA(~|g1tL~hI?~yX Q̍%xǴ@_g)@<КWP27sD~"2VP"W<>oRⰬ mB4CJ[f !8!0!0Qicଠ#F"!A8 181ö8bbq0bڐc F*ĨJ0Z1ƒk! ^sPIh0?&Zkk c &*DjVP阕.+3fQtٵ x҅%+ZZ$+ȷfőZ+t-%d$/ҵD)hVs)h@JIZRºׂ L"HOD(GXjZ<.яSoKb)]v-#aUe*-ˮq$(x-#=s(BZ$WO #FWf1btELP,P[E .06T[kkre᥹BP aCOd@Z  BO䬠Nе е Ǯe Ű!4AtʌYP)+K1jbԖ FmY"bDIJ&lYAʣ#dgQyӂfTZ<"G <"`2.+]RCkϮ1/5b?z?Z+CAk \Gefׂ <ւfZfb|n GoS#,ͮeH,oJJ+)Ѓ9OI -DzK q*hv-.@'tZ]z6t-CAkХX ]*5tŒ|QbJ+R7MƜz+?I^ʜ]?]?]?]ːmKcmw"Q~,HԵ4$JZg;s?L<"&]qe0'9=|sT11I<*,Ϯe(~v-Jc >kc§)ZDZS!>E[@cC@)|R58ڂD Q: Q?X`$.cAC2rI]6 !K>uD)q0U!Q Bħ̱0'p2"H2"HO.OT,J~gTD|7RPoJZ+ (u, Eծeb,+D|oiD,֊ Qk*:HT1Aj* zBb$ʟDcr9 u,˂DHTTǠjP*"&4]qAbYXZDa,CQka=-"YL۵ YLLT,\"TYMV _rXX$T`Vbmׂڮ(UX*O8.]ːt-O7tK]*6Xz"S|*Ƨ\ >&N Sm CM][a*v-OCBȠTJ.([J TDf)KWd$ݍD=ZbR,S,?! Jc^*F8!Q|E~R_,D! Q~=.] .]'V̉s`Ne&)œԥ+s3aN,ӱTn.vhE&ba= h~䧞M~)Ф4YLWʧO"KOHɷd"b GHǢIJފ&)BqI Geb|=G K"T}bߪ(x{.]A|C5AZ#.VX ى(Ȏ?4'[Q,xrWᜈ d)l2ESQ,峔Dsq6EΉ9i`pN` )۬JkkvBvbad'.HQy@'2ÔO,|ZA"Fvh2Sw^K1NCvTl)F,)F,)F,)F,xO,1=,xO,#qI1's)(Fv" SR(Zd'%(Cvm*v-ǐ2Ev g}D .x4gޮӐKQ, s,Kkʧ]@??0#j_;{h B>^Mm Bt{Pt  =G\J]=> =Az{b2~(O uI|Q >;Fq0 I?Gc觌_ҾA??qq08=%8 Sz<=x=eqM@A2FyJ8i j M>sJ )l=BvpN9e{S8}so, 9~kneba8bpNiʴY1+sV sXBǂp) h-M3} ʜy,ӧ _07 S;Nmձ0G"pppNDsK,|4Յ ?y(? DduVi'ridV!/p񳈌Ddd'" :/={M.xO=&aZ @>ic -^ʧXʳʧi, L0Lgױ0Lar3YkA"2bԆ$Q<V10bZĨNA=&BiM&FZ+)Q1z"De#4lV(읆Ĩ]A%+E6c1 Gum}L_~7PV, #Fbsݏq$cacXG*_% G0T$f,#(8R[M#}\C m,#I1$KQd *X hjH cN~1ԴԚT>)T:6%"S bNOZkI&^+ 4m@ܱp5ca̩69]1'2TnCvyh:MmHWfU0k_| cN;V~b~4jSm'J^]SlF?=1 s*̩͵OkOu,\>-5AXz"O ?.0F#JkA$*Dڸ&$$h uD ǂD#QGc$/!HT!Q18$8 oH$8/"Qtx uDq,Hq,Hq0O:c ?骘0I/~h ?X~cX ~X8vlAE@b$ʷ FhSO7(7?"o ?V)%(X$]JDhT'ݠ6)h02 aNO$ ˂.K(A P,.XhzKy(AZ]:K .Et ѠX]j[b6̩̈́9D9 T0\O'"~,?V$(9Ų`NTVbNW.XХ6 bBJ o)F+DőMuÑb XGV"Z)$OR, Ke ]jct2KD" g_8!xTE6*HesSɷP6(Q'(<" bTf#"bXX1z"g1 F "RIX1*gӊ )0Q9Wzba &:Z+=QjW`†bYcXl(ƆK}, 6aCzBؐQlsņtX(.hq>  6`C E\X$ =Q6ERЌX@(6bCE!Y j'2 fbYX@(IG]ґ" C  qbYX@("0@,] *@2j7lKEd@  Be6翯]H!:bC6!0jcK6ԥC#^(!Y FI8ԥRkxv kYLqxDZGѲpv'88÷<ƧuYrErʚܦU.X9ߢ47BZ+UˀAUcUhPUdʦ.Pj5Pk'VE2J+Z!u-ju-Z!7u-Zka kPX Z]qH~ܵ յ յ0j _XSYZ jU;6A]Ap-`E\k䧲4q2X2X2eI~I~G]u-`,bE,X1uQ,WaYe3,XV_\ؒ(u-k]q(.w-(U3Et $J]PZDkkD6 0`oSԵ0r8 \"|d u-pFk]qȎ!;Z$; iɎẖܵ %e(9w-vVzPrZ__<Ɏ;0 8^U`q0ŗ8qL`qE_uò8 s(:</QDZqr;E;^aQtzu4tVҫk`U {lX."\.CJ* lCb): yǖw"p=Q`-y;_KMV, k2O]Z ue^UbYL9S"XV j7,ǢXϘbY>|ŲJˊ(XV`Y-Xˊ(X~KsX0'2juDD)QWuH\2dG] AUO\c1|z§bYXh~S,Ա,E)؄OŲS,T,OxbYX*WJ˯*M_ϓ 'IU2$U]˂Z2Ë,*P'T: K]s8L] QemYTrDPCk!$ ? K|~6t >|DO`sBXhb*!;Zk!鉌.c1t]5M5K EbY]KݵTRZ]:Cv ]Х'2TR'j7H釞(T:6AJ,R,R7<G.l8R, Hka)XkYpcYqCk+x!%*%%ZuˆQ܆yCb?3btEJLDƆ" 6T:/PC: Ų`C O"b2eBbĨtReJ #F5Ĩ$J]ː(u-(̔(kcD6G1cI:I?JKDZcI:h]Kqxm,9S!1LLN9SDZGDZGGuѰh]&:KEp^bXk.VĈNc1H/#؄Ų FHJ0RbYX<* 2cCKT,Ck<2*xGeihTiE6 .=qbY XRjpGzG\ X LDbxD0LqmemE`"#,6Km‰`X("ք&\!QH- 1(YLOG~y$SS,8ɟwx G k2LDƆ".P,KQ,KQ,]Q`-LTv-(%(&ebXX]mp'J^Qq' xT$Q뵁G ]GexTVGm!xDB(yEe]DZ-lWQ!ҏ{T`CގCaCW[c)9wK2!??C!|::&(~>A8s@:)8 cXPȯ6z2oDZ;&:N&:aC:La†>-(ÆJ+ dXZ2NcCWX}2" %m(~ִ!)m(%m(~" ST.~LO,|_҆bҊ@?m5; A?e, ѠLA?c1?|Ų@?pQD{" ރ_b )"p RM@1"(P Ez~b觬8~"2"%X )# /:Fx)H҆Z,mbOY6:&iCcYJE6 "PkeIeba@ AJ Zn[,K2ѱ6T֬v77/즯L˒b˒bt,b˷[,{ xGMF,Q,6HG,#!m HHXU-Ƒj+#=#fbYX$OƷtX S>UZqHiNKQԪ| ٓ^KΔ/hŧ|rb)]M^z'YKiΔ&|z"SO\"SOVG*_ U\WǂP*wSeOkQtTZU9, U(uDI* * U^ TU[!R8SL\‰Rq9#CUO\Xjryj>nj+O=Ar`T96"{^낤DE%T *ܩ _,OLba ߠԦ|pA6c`X,; EdX"QU.چe"XVaY:UoXVu,eC, `*GE$ꊒ.,BUOd|*OT-jC JlJ%)JŲd<"Oe!(UjTJŲ΋e)SeO>U:fTkE)z".| _`|ʲhqpv^8+V*p(K8$%!_%%*B)T/q yPq PUUN@U~_!TmI~)]+OZA|j(Ja^G[+Ó >K)_bO9y)T;T8Zk ]dGI2$T[AUX*3&PU[0 Tu-UXTdCZ+Z=Ѡ*_jY*~-U.Pյ0TUǂh|E)Ts-VNXEE*v-U=SHT8çʐ /ׂRW4Pʧ@%Qڠ1c UD+V|`TSɮ9S^OScO=QrJ'VP{MDkeBt*(J]JspPZVA)Rr$*F(RrhNHԵUf2PCX* *K@6|˙,Ե(DBHs\)wE".@ӵTD] Ȼ"A^MZhBZh*7ђu-Cka ?1_`Nc9чka̩u 1'JTY9=?K~*]+Jٻr! hj]܆4չyPWt_.tRC+rvT& ]R.]ˀ.] Kc.sѥ'Q2!;ZR#] D[RERt T")QeIJTaNƜȥԺ@s*]XRE৲n~j`ɎAcҊ!Qe,D= ]8A] MWtw..pѺ+ N-]a  =C`-GJ*kkC|4QGRRv,9SUfJ!\HT똔`/ eebYJ"`Wkeb`o/[RU,vUf '2Vk,@J+S&U,I3"ryKԱHTDeE !v˂e"XVkE 'Uqb!\.AU~aX+7eba*UŲ@UHɹ2 EPұ eAb1Ԫ"U{ *KQ'2T" >U^Q *OiIJ鯣Ja_E뺃R| OErMR,)V\"rqKqX1:""FO2reG2r&Uk-Lė0/qH9D DJS\M)QDZ;KcXR LayP:F/J8$h 镯0g;!0_]K~ j 9Vl/bC "Vlȯ!n+NP,_,b@ȟ* bR@E!ip!k,PX$㩴b(P4\4xjc@3" T.AZ+TF3 hSiaZ?>|mG~HbE˷O+:x0ѿX߿&z"cC Q?"rBӿ?]`va&z"cCGl͟aC'܏~}\6>(P`C !^w, V j06cÆZjK+ z-YL R=T;$4"Qy&o'4"+Q#_!; !FOt`"d%b!艂 .4l/aC]S 1b0/ݞ×y%_ XpCCJ+V1zDhSv.0*P3x6T z"@?"`A?=w}:?~ ,PDƆ"26M/16| _XbX$LTN &*1 DOdlIXjJt7Dg<zβ!F0bO,&b, %)A*sc05LnNA4(G~jPDZHņ[Q, EdlrtkG>oCb@܍^ Tn`K1(P(@Od'"C?m "r^Q`OJԁry1As~Cba‰GʛBe@("B  26j)P[M + PaCemZlKQ=#JQ<-EK!ƔbqL莃 m)DwW2!Jybq,qbad6<4GGW[JRr81DtyWrx1S? FA8$AՖd'L2b1D0LtD+X&=Ta"1X&z"cCeWlcl_@cY ŲE`6Z&*C 6`Ce'0l`CHP+O|#fKiX *^J"~>+ ]bl/Dc! D&j]`ICYE("#FG4Ĩ # !FO$Q5BH0z"@O$牂 3\IjwfO@?~X,WX,WXcQ[!ˆ"(PkE҆Z+ݽB!iCzPX+&㴡]QQ }IqH qAbixB?*P jHPkQ(A( *`YAe@aX8+(@`Jc'.z=aC,P, XBiX 򃆭PZ, 6 cCi& O30LdP, 1t,1 DmO0Q, X&K[2Q, L D&ebY"0Qj,Q,RTfmQ, x˒WlyEHQ5H~3YQy,0DƑj$o&+ 'e1p H}Rj0AJp2QmEХ2 ]e+ѥKb)FΕl%whjRz#`+AJNR, )R[7/ұflbHE CJ RХXt)F" D0?53X 1d&!It!It2lGCtj)78jү'q RVjHɯAJ>ZC:RC8$M441Mqt5KGk2J h6U4酙ґŀ Mhka<=&ZZhM b@S+Vf)v-4=q@E%߀]KeH t-Xt-mtEÑ|Ypkl 9#]ːbt-#" DG\ ]u-0btEA(Z1C1~~_o}6*+"x2qkl#Ik#˒bt-.]Q-yE"@SܜWq+!Z$"RkDD]CtBJñ( Dµ0T EJ+. RZ,WӒm˒mt-h߄^>"SdĜʧt.F 1s*;xt-x䛦Orba ?.p1芒xYqkcCѵ0Z Ik̩tle0'2Є>bYrE&?6 n\4] MAZh*ـ&b1ktωߟKϿ. ڝ!@&\ MT\ M=Z+9aN~7`sʍlp*v-9Vs*_ʲ] cNe,9y$_Cҵ7MWuA|Ҋ` ӵ ӵ0T))~jlWd̩|0k&i1̩ul͎,h4b@SMeVhj{E&ԥ Mm.K"@Shh.V[̩bSiE0vs{?cYn|t?yqq !iNx|V0{9aiRW[rr8$8 y\ ű QDZ QG/#GWpBcx@c2r:K@X*(E3R,T, ( RG\EIà$*F"Oײ Qb,[#QOd)?ŲO"S!Z)!Z$*F"Z75"QO\XnSakYX$X~0Q(${ba$*"!QO$ȣX$*: eAbYXO|WRG@X"p"T6Ji8UłOj]"p UX*DdUVAZ+Z=Q*dZb XcQ[٠X*(Z4%OŲS EP0Z*: e(w-TbU1CJ,QZiCbYPXj[Pc*Z9S`EJ]`"Vi, !gZ+e(Ow-e!t,eTZ,+ˊebueYѺ B*E2˙*u-CԵ SXV9J¥H*GZ]P2׆ZCCJ,Q\= rOMb Tֱ ]]?MPU, UENeﮅ+Zr7Zr7 >񩈌OE|7,)Owš<ݵ(DFŚX$㩵BH-ͩ\ ?[J]+5SkҊe< K৶ai:?+Z:EuvR_ĎC֕6u!OG3Χ)q0t]4cc(Oǒta@}>8:D@jt]5 fiN>~Nsh)%Ҝb!H ˂#8- ɱ,M,M ".R, t,) %8RDƑ"2Ԧ\pd_%(8?AGj]̍HX,,(T:&RkE 6R:},.V\kE!˂9Ų`N,ӱLS,9='.R,  KGХXXR¯pSDn,#qJsӜ" xTGm <* eexex'2bq(9w-KnS, blQ,˷"Ft=X$"MnÆ L*mLt5Ɔq6􃾆ǂ }c)#w LtRFO28F]81+(v F~17Ĩaή!F~bJ3WSfqTƱHpߏ[cIR8$X$XR(_)I Rs#6?catlΊ.R h7XhK +W,KɹXs2,)(?B sj],n~z"H@ ]NL/9~baͪMe4Q&Zt,4XhbpSDbȅ"D(ڰ%IMH14Ƒj+#VRjk %y|1.Dj]jft鈈.=Q2׊K.=!6ERr#! Ԇ$9HmKɹ ]kE6awL%o%}UtɯK>cQґ:{:O'BJO ٝXG?s9H~ER:"BJO$ xKU cʅ5,oQk|$lԊ# QpkZGC+ )'XR*v)cH"RnRuʐ`\DȈQ 1j*Q"DH09WqL֖D` D0Q91\!6},{`1j~ E0Q9/ʽD4_ybY`X&hPYM6 aCO\] !qPխ[,=Q6.0 T[YJ @O\X)=-wA?T҆j+6tĩX[,KP, ˂vk D.n~" S (D  X%Ww* @P q t5~ 8XcAcA>CSq,(q,ҎsV vbu+ʠ q㨅pNqmsBzSAt5Gj6ѶXX$bDzo;Sbx+[2Q,LotH2xOyX2Q%(I& 67k},1uLJVԚo[Q,  'H< . TS67Gc "Gp,x BOl#։ Edl舂 d 5@?"~EBj]#"b1@`Xj%@bGed0Q`+w:ƈ 1*2V8)Ų Ų }, =&KVT-ÆJ+x @, Lt,V,\Dh0l#N6(J4H 1H&jhֳ-G#؄B &z`C&2lbC} &*C 6`Cx aCO\c@ca@Zr.b)F V$ŨZX(BǢX8]gαxĀK,='J2QD03D D\<.8*@iba LT)E".P, B冓ʆ B9Wvsj&*sc0Q q†bal("cCecj:BbJ+ V*w P9߰X8A"0Q[V&jcʂˆQ!FiBm xT;&ƅ8͎&8~>%8GB8GOcDŽ#R8G£d":O8$8gatu)DD %:8;J tK2q,>H8;|V GdD~Y[Q,.Uto|Z,K2Q,\>)S7(8/ő|ep'2xć 2G,Q,! GX$m\)m(.s" LT$0QDʅ`ҊD֚҆baMDm`c1X&JE ! D$ZFhQ$Y5#˒LG -GH"QDGʧ"0QY!Y5\;Z&:Den&z"cCLZ,\LxQ5RT-Z,b7X1bT&Y b !FOd"QdDGd Ed"DO\XlX&l(o )Wlȗ`Ce".бHPDA|3("(~%Q t, ˂Ų@ ? *?iA?~.EUeOD~?nEʎhxo񞈜 0c XANX )cX'~B? C D$牂OvkIG4k)w=Ab@䩽^RbT֊ C/{" Sz* A?O$SѯXX)w,%@?W sLd"yLqX2A(4A?C?O4GW=zaxDz;)(I&=UQ <&EP :h1+Xc1ltL1Æ|ʑ"P.WTf|_Ҽ2+ⓦX(Bd,=Qi B &z"cC~"Eʐ8)(HY, 7X$0QDq, q*s E$lV>bD2+] D OD.<Qb dXPiP2VHY,\,)+7B?}0~+T. +`Z,m_) */5m_-m(6˒6@ V+ YQJEx,E\PXtY E!iC E䴡KP,\,BSX1 [Bֲej2 &);MmLK.+sQie ljcA艂ᗋX(1eIE҆Ų Qd" xT"eJ+SP,#E䴡 u(C0x߶E#fba𨶲.e)] GOdĨ(bTnHY,\7AbRY)=Q҆cH鉜+rfBR̷jpP6.^#tEAJ]蒯%Z]I%icK/7M>hh!IZh␤%)cNOd J\MhebYʧ]4]ːt-4]QʧierRDA:dt銈.]q(v-.a4ѵt%ZRBZ$ t ]*D+%?2tZ.Yل.] KW$#Z~D8K"蒏WKcRK%3u3Rv ]*ۢK\(hh l@S h*_-vL0's*cBi6SbNW7jŜJZszPZsjaNe#DRl) t-4b@SkE24E@ ]*DHRMtWqcIJtr4yR> _ c(ǐMޫ|ZCR9qtV(cBiqX< 8yA@]3 t)AJ*,; NCJs8_GEt> ]:q0ĿoХ-q,q?|?ˎ*goR혠KA~qLR,.D2XhjcD.(RDBȐRU+{WT.){W:fR R*["JvTɎ] XHX R*Ŀ%bY XR*Y R7h8>W5%uARX,. T67K*)+GZ$Q TDѐ`2$ ɐ2$EJ+-QJZi"Re>U)ŧcp_1ç:bŧxO.(>UZ|b3>W=Q %JbA'U HvC"ZJOR> ZNC(HTX'Z~%?E̩t0r! sP9=^ Ժ@h*@ڀrh*?xhzKל$J+4Ed]n"rnS܆90km*+D0rj8)`Ne:sf鈂9.Ժ Ssz"MOtɏ6t)AMR,.X]b)%)B8!67)Cq, )ձpѺh8RYTʐG] R2r X-C,4B@]SX]*]0tɷBEZ+K1X]X]jHSY4yM/IhMt+$4KiŲObu Mmz"O OOyeA o04+W`N!D^,?Fৈ?e1ElSBS, s^?8p^Oc?=Q027V8Z E)Qފ"Q~^Dg?bSi'NQĥp^,s¥6D"J+SvT,?VjvebE3Rcߐ(ڲb1$J/Vd/ZǖcP*RN/ JњUPR X8Q- ħhQO)[f|KXA˔˷!*%*΃(TYST,OcTZ"OZڔt t9]. 8 hЄMxx4]% t.y]C2r:Mhҫk M~2rDZK]ò}q,@qM IhŸDZ8\DB(Oշ.bA!B(/AI CJ" CJuKұT.@JeԆoR AJO\  HOd1YL ¥"r仡HrT.HmN8R,#YL>eIheIh%}vtI_ټ\;BJk)9ѲK1mRiE!%_7)=qIhE QHIߟRjRvGeeq-vIU"݃1.͜?2#23HbKA%%?<()HeTG){LYLA]e1(#".}G#z%un}WZL1 rVvxxT~x%4'q6x"G(ģv T<G(Q9} $(FmIKBAL1*”DU|;sA$ݢ$4( MLPm*{m2Q9(ݢ%41%4ᄦ02~| "MmbҞLڴŚ֕MM낰bT'ƊQ'A;(FU)FmbԎum-tkZW(FmbH+LTkD%?QL1*L1*ͦY k6Dx"D(2iC2LTGa;I2R\26TYS;$-T2ZD1WESgKeԥ~i9wWEQD]*T].K$[$I%3lf&Qp)$(Fe"5}VnʬU<)"CED~?-^'RcuH]5nt$= H>ƒš7鋞|IJx36{!QC:$%KR\G#UG/ADGuJ]H).B:-Z "M]D#|D#DE<*3ȯRdI< Q;hTFvoeEI)KJ7."Hg:+xT{+gW{+GTu$/J|%v%ERjS.B+bfR&qf-ZfOg&ၭI2"OLMQIRj .B:+Zc2kkSP&)A$%NmWu,{Éi۽(&?-@۽Q|H|Q|bŤODDϻ)"MJo*Q~] yb(QmbD)QP"+Q嗺f14(QeoDJqQUfi wo wm)QmkYe#)(Uu&J][rL*Sl3 bT2PzEʩiN7&JY(UV5\NʣRkT7(U¢T;E:EKs*Ss iNaQ(JDĔrXnS6K#mjܦrވ(U'6 "TED)v(eJ>_>,JaA,͉] ?+({QZ]DD2$J]DƕqLRUI~*˗6 V(RaY*TjS}ѧ)O ,UՉTUNnQ2ʍ2e(UZժMZ,)jNT^QҜپ9]:kxJQ6kӧIeOeO^>EO7O!Du>ukִȢ?R:?% _BZa!$ ߆|&`C s*`ѫC,!H5VNU+I:V~x:5|oP]ѧ Ft(p bS{,TIs*{394'?gUF*?3Tj4'4TU6Y%ͩ,W\ C{ ܞYjBD:E iNdѧ,A,ͩL̤|kZFE617KUI64k,UR^Y:E|"U(RUY҈"$US_)S_)Isj#} >DrHSrMJ/Q&%*ȢD<(< Ĕ(dU*Q>-%*)Qz(Yz% =&?Y "?6OA=]yR%lJTdnOw$?叧DJ+ &?ƙfMnRte~4'仠)hNmI* 7ERvLh*{B+TT]g8U%K ^եrԥ ӵ<%?Œ7 a)Eh: Me֖TY^ե:kVMRE]:Ȥ.au?1aum .jեI]Jq-ʁ$ ")r $~ERb"Ȓ3RdNAt$4":REt`{"HmWEGjgHmDG*7ӑ(##:RHEG3*:RuvcM#"G*:R;o$"){HJub,)ՉqS;5,ԥK~jDO_KCDXa꒮Òa&4bM bipw!DhcRCL B?7bipw!W(?ӭ-QXhN(JC,Q³J+QhSOe K+AVvAVvAVvAD~ŸLAH~zE֜ڬ')kN)U4rLA,%lܔdI ")1DȚ"MB%%*E.ЄA KJT>ޔ &4}.p߿'"BβI]zERdI)EiDNAL]*+u)ESD]򟤚f-BS Md B=R&fBSeXJ4thBSY$4yP753OMNqp+E]*GuI)IJe 5F$ K+ ")IIJAܦ ._-U. bP?)Y]zENhJqIh:ȔdiZD.[nS% +T]*;sTԥ 4'jNF_4'ܱ4'_iN˚+Jn?:XnSyJնw0,69ScRbmĦ4 D-)(QmbKۻ tTOmoD~OIAH~zE֜R ?uD45Wd)/|τ&aB+.AD]j[$ ? NAiZBӧhBYs)zPLhJq,,BSEh BB-NRE] ",_-Ԅ&?u7 &4Q[!AXs*meWΦ]]$SL~jԎO4}ip.1Kh*%4nDյ,JTiWRmZDj'Re-&JQE^9tDYRMsׇ0% _B(|Z>DU~{?)Q+% 9? DEaJ(Q0%^vbxDuQ,O&Mmʇ'R>c| !DkTCD)M RA KvTѧZ)Z=E)eEr(/( AXJQDrMM(d/Se&}*S弑Y_A$%,D)}SW`ҧ^QD2kɃjܤOY򠂰>S;<ȢOW\D ,Jd<Y!_FOx USҒ /%?QD;KUeZD*3ʯM HUAD_Ԛ忀5Vy@Q7+"`YRUvl_/&`OQAD*E2 XzULlvz|\&+Ȓ3DrvzA$gN2iYA-+hY^pӲ,ZA, egXmϰeXm"`$"` Xe >U X$oV$`-e-q^y91YIj) WQ@Y+Zl^aY 8~n WR(U|}n5M&vlbWUN Kjݫ0{"]m֓.6h,bA&+]m_@-*EiM W;EjyRF! ,ksU*VdWd-IJ["VHUA*KUꞤ ,UHUm (UOY~D}*I:"JD)zvE:R+(!(C,!C( RXDCXv.R&m!w%^BR|WL1&Q(unwjD7;5i/!5'mSӜeaҜ^qiDޘ愿CŃFY򠂰Ŀp3<diwgꅡ-Xj7%E2)Q*R RLD (EQ &JlTI RAQ*Rki˙ bWS)>忇-}*E "Te >3RQMaɤ R$Q'%*8/RhJA%-;Z.(GIE)?D (D)?S;LT^(IS7]Y>>ҧ׷O RAE^uUr%J+QOAX~*?)U~򟔛t}z*?TvLv\&)IsJ bSEr(')d S 2E~ 4 S)Tn?94rɢ"43QlBSiZΔ?њT 9d/4+S0ͩliNnSyA`M07 &?+k"IU)52F5זTU6Β[u^qќR֜، 9D4{<Ϊ9eWY4  UA jJFIpWƖj61^(B߅,79_,4)t.3ԥr^3զRiT9P]z%Q*")aI)%;*gGQ&{ 1ͩB+...YZab-߿L->1&K!Ls1j<ci!嗈D-MTUbMLɎ3A&{ADyA "UT"R "RUY4KQPѧD>Fr>$J"+Q1A{D $JDY DuI~ B+攢hNm~? ^u&4<(_iNeIAg 9iN}kdɃ Aa)E8< 9gʃ R5'ܸ)*hNeSRM&{ADh*WdO[ KTӜiN)N/H՜'<&?CߖD/}Zdj'}RSS%)ȒtI~ r¨-)z/H䧃T6yjdK 9(Mpk4WܦrTn\SnSEs:iNdiNAa0ͩeidi6d/d/Ȓ'~[Ț4 "g<%MOAD~*'$?{}OAX~jME~( $?9ALsb3*Ȣ96}.oKs B+Tv 1ݎ ,4J&t1ۄa:AX]ju)EiW0 MA) M)TT[L MAHszERԥu)ȒtI]jMZa)EI]*w I]JSNQRR\RHR..$)-I]J$W]+ڒbB J!(Ј.ĐtE< ! 14 Aѭ QKR]Zbi9bW 1(F!((Fe Q=!|:Ft!D1bGA?(FI1Ȑt!"bt!"؈.EEH&zEb:hCS"CEm(Ȣ ]D6 jC8.]dH]ȐĴEȐtN]!1_m(hCmFtE&+o QS>|%q.Bѿb:Vԥ[DQ@u-[T^vv. .*Př A ր,_Tvو .NQک!*P+ԮI:Bϥ B )`-?_=WdO50 "<:?{D}_~ēim "]61T^Qr`-m= QL* ?UB,@mbQD UPI8@e-H^Q2PzEQd*PY@eZ^QYB)J^Q9oLD(ڐ?N .Pݲ6Te[4mO*׆PiC6 #&6TΪ &6&fD~Κ6&&DeՆ6") TqUW$E)3=!=)s"7 (?-azV zU zOyV\~cV**Lj;&*P;W +Ԗ/PE!Wi2\ڧ]Dڧ Ԏ_,ȹBm-t҆6T4ц;ӆڕ&BF2Q_ *F2Q; D&*G҆qfY&b( : +FdRd8 ]er4]ePD1Jr6Ũ\#+LZddY&JeY&j[2-rK[\ CK`- T-%ZUiF vŨ]dQH<꣠> >]>^K mF2ŇI~߿qWE!yEmW>Q8ĒWtQ.C B,҇@uֆh!DR%[[tC?%ZI C BGwi~vMR "KJ8$d"`D8IJAXR*&)I^qёtSQёƙF,Q KCTvtrޘFgmDRgIݸDRjkIMRM]jK W`K[du)ER^Q3R S4,{ґH`IQ"LQ9G(Q59E& D1eW6g@6"iCH- TBnRv, #@*b*PC@7 W@~zoB1Aȏ+D6"Y $@M| QL* TTre t]Y[VP9oL?$*QL*XV/_%z҆6TFamF!mȾaM&OAX&jS0?JYd LdbMd:Ф", ,Q(D "' $" LdI D҆LO JdWڑ]dhGv҆nWd]; % Ԏ B> B>e۷iC7mM Ħ am+ ToFAԦRdY2"D)r6ц5moҤ9]  " B}I HP_DuILnFL&&Q^3BQ+m~RHw#>D1ȇXr!~?Ģ}U|M1 bvU[RT`5 郈b'+F(Gb &휚g)bTjQ(F~sؚY OGAX1Ũ(F^7 r1b6Yc(eL:(-$)K%9I)EIRjcI̤ (-En6$%4HJ娣􊋎dA aI)EHREԑ^ţ(44+vaXQT"RK^Q+Jtns#}msS6g(!*)p^)Nm΂,yEAHGzE< R#z Deӑ=ĿH81Ց(#Ge $ s&!M-gՉt#[HF(Fu%_yIDROTl#IJe܀DGoRc!DG7 ߲bI1:ĒbtӑXZo˶CH5G>&C,!D6oQ(KfATGQ̤ dIR IJ)rS2$TH)"H).:ATGɣ$")F(2~F1++F8O B+LTL&*0,"iC(Pyޚam(EֆR\2, ͂6ԎiCi+kCmb6Dڜh҆,yE 6ۜ(PK&*W Be;bA]SS^Q%( BHQZ1Sl#?նhA$ KQN<*w-(+Fl%dR,҂,Q&OGA SQ(KQE< Q;--Mţc&f:REtёR$ZxT'Q6JWi)6"I^Q[jCȂP[H2QMPֆ(S^Q~~| W Y&_RyEL/vBT/6BLk伢ԆC6tk",! aDZ5DkLtjK2QiF_dCX2!D!j2C!ci’ ^BH2!PY d"xxO&ҥ C󳋈 fmDeA DȐWt!" tR^qhv!(Y sAH?dv\M)'",#=H?m-"Y ED)k1釞/B+ރzJ6^!QEynO={nKCsCCC/"D[4L-D"-b[emCPyʖS&f"OED6 <89 9ȐAt{n3ugO9M!"$8=҆."zI﹈=QL)sX3}0aMѧ)A"qlsvs ijFe'ETv^ݢf/JksV.}Vvn[D9%N@R.2<a&em%A" F E$AIY B(*PNVn ѷ *P%A" Du/*~к""K?y)"\dhRvIEXj@N@\SQPzE~ɩ@(@Eʟ<4Id]dh&v :EkH0S jچ]dhD2(K۰D԰d"8M]Jեr4u\.YTGau)EVRV`8 "iC),SBģS 9m(EfL 6TP[{Dm("Dn6D_^BM>D="}Q!"1D&*cLgR!D1gCp8G(F0HqR>ĔbtQ|CbtjˤCb仢xjvm!D<¯`\WW_}mR/SR\bt&sj^qiDd"?LDd"|ie7(" ȂP !~>hC)6ȫu^qidiD!iLj$!AE*{c*~.?@O$7D҆A("aAM< д2kцR\ " Բ+ B͹R\).@A]A dQ, BA8A(E *)ZVPYB)J*P),@A8(EQa'"1G_YyE)S D75 "ҏ?d,1f{,-,YAA TrR^roєW$ &5? YԚ SGa<<[O5H?eִ֢T 6R,jMVkADIkFn^qI 5A$՚WZ$EAQ$K4q~kdI9Ȥa]֓ZDԚ|Tk^[vaE2\5YpO[ 7eWWn "MEREi,MEr&p]Ԧ@-NjMiW~JP7MrA$AMLYi)N;ۭmXvN"YAmi& Wm)Úvs^Q4r'5 _;pP Gǘ2}aU!LCSf%>IC!>'אsE9DK!mاf +:Ēsn=!m]S۰CXҏέ-!DE9 7&j >BP>gԚ-GO%SkR\Ԛ ޣGZ~dI "ᴉFYZ! %MA{Ŷ NؒdQv"("$Y~,zOE zOW\~S.CIAXsAK%=)rO"7KQ4cs&9eDI"/N ,<)ȓ"9=)Z#/ElrN?sINOAW(-󊋆4}8}:9=!e9'9<~9[")SfmrN9e}t9GDL9I Br+rs&"!MKU՚2Sk(Sn* nR\2r+.i8AXIYOAXI[4?YԚ ִQDA, ,p"ME6"Y puiF4 {@,7AXΩ_䜃HMԜ++;)Ӧae촅Sւ+.m2pMQv(ڲ ae\i QD+M6*X.dQv,-,9AXa'+;m+Es^5rkRLi{-rNW8QyEs^nR䄛Yi!jM ɽIqiԚWd-ihpNܢޤȹ7m3PyENiwocRd1Ei$kU懺+C/@Ę/ sc|V(ܚ(0ܚd'a!̙CX 8Ģҽ^B|u%CLͮ!b]S!Dc[`:,Fge4>I9ĢBt- ?$zU!T/j OԚzn,ALW_A8&E jM93XyEɲe&A1VԚPSkDiZFvY(MD+Ȣ5AX)9'7圝 " o󂈆b-AHñA NKNVvNq R$9oƔ9O< Kí Kí (;m,򤸈<RvN"9d䜲2Svʽtʅ1]m;A pK\-'%Q kY L=~h+zr^oͮa0sVAHyEpL)';5AXas _փ9~SCSn[rNiUUF9'EsRd9'% '+;$eWpGD:ʒd{6Y9 -TUᔍm@)r[v 􊜑Ҫ*7 H[UwRd2r|V"1X:)Շp!2?B-!Lw40AH9t nm9@(Rڒs~\5ǯI9H?_b9"B2ƒs~SrN~ڤ M^UIW@A(@(y:~  ,O-O͎ *E{PyE ")ZN9"򴣎"+.NQvPs "i8m% dQv,3Ě]ßbr,ADADijSX QLA <)Sfm"5'E1La{pN$8'EiGz-N"OyRXG_OsI OeiD6%'H?4|k= Y OAȓ"'$1Z߅.(pd -R$I7 QkNQԚ ֔Z/rnkqn_1 bN5<?N[A$ӧ9 "=m $"k8u ܢ 7( 7* 7m'"Yy&fN9(NFQyE)I :j8( 3A KNpR\4i8A 'i8H+rrN 715쪌b9(y,9AXigRvHrNY(;lfW5dy7yʕf"_EIqivE9e'%e'ȒsSvym;mIW _pR䔝SSme~*En'& 7)r)Z"͘ n837!P5K/`.S~KH2+i?B D4xWp^Q4 Ҫ]ds|?e!o`+;!ess^Q4qS4$<9~rEPyEp^CHyEnkypsZRk^jCD񟶬??D0.27p)G %O-4}a M)'.c=D42?p^W\DCCW=y:a>W]dh<_.D&9= &QQ^,}LğEKL+y0ȯ!"9?4De Pq:D6S6m(E "ڐKNCLsLsePNԆ^͹"9=~6Tզ f=eoP&zEֆXs6kޠLt D2}BM*'hC6ƒ~Y&jkcᛵ bc$HŠQ"DAX1OAX1KL61^Y1jK2Ũ, W$QzEg9 B*P"I?&Z1駬̤rD61I)W$-{ϲw#PkDG5ATy"VAtMJQ!?*PA Bmg<!}0qA">/N6‡%!<4ܺD~LoE B+~?!&L*G21 jHVP[s=dW\6T PEsQXωAߜ!,,ӟDu jkňU b##vI1 ŠQ"gsSƉb(FmTZD(ݢdxԎG#QGub,"GȊQbMGQňT|+:nv t(ݚiC}ц||ц!LC6tjAG75.2!CLDLtE&:DK2чa[!X&`ʵ2ѭqQd"[QD1oAX1*;bVndP *~=DPSQY"Q)(xT' )Fm-#/ #uW6kD<*ģ2+LFAD&&Jh|c"+SAD*'SmIORz'`QEKWɷhiRQtT%=3 CV^2ka}2OA̤ "?#`S[Om%I &?O_MR*k1%lrUdIRj4Q7D5Iׂ+U.&U|DW*Ox,J"*QS!o#OlOAD~*k1O4OuW,?ݢhN/OkS)Eʋ ^qќ+TNڒ,I("BS9IEhJq,BSBQhzEV^"D+[&?MhA) Mu-$4ݢ+; M;Qhj{3 MADhjkajԎiNe9QXsb3*Ȣ9! D"4ԥ9uZ&ZRs`K)rRI]j y#)JR9" Mݩ&) M(IJaͩM5W4Y~0 ?e&C!Dso؇uLIlrʇCX[6zyiˆoaJ%=e;5}!H~J4'ȇl~TTsXbivќ|4ɯ!DsNJC,!Xs?o$Suiw-MRUɯwx*?t"?[SԀ-O&?w )W*mOԥiڡ,2O,r\, _YUGa%}i얢O~ $?hN&KZ(BQ "4YДMm"4)H6d1HB+VuA8u)EǮKJk[QI)KJ).RNsJQtr LG*`:Ri"pKQr"bTiN))Hm%)HrAtӑ臐|S[ģCx_J&QY(FCbtkK!D&—saJ-_WS|%z!Y8G~t|C| !L<ݝģѭ-m!9Җ2`ŨJ#GUrfm)Z6=*Y2+J[6?cU&*`2U&eW\ 3ĴPӆvJ[t D!|"H~Q W B K " trDjg' B9HuKRE:eӟR6H+.mق ݢzO(z~ "D{ե?&QT)㧘H?).OI&jd"eR T%QR\Zn)r SZY &QD)7)(@,*T[ I?WU NW_T U(K DT 5p B*-W4G]Q3x֓6`Kє?J"9)JP9T{*;rN}n>-95"a9"rNyH\!4e'E B+.YA TvaspVPE(_DrvJZ ""O$$E^ K K 씽e4J 4J; a9SPJqiAXéִ!?<D?4mO O;$ SvZ Ѻy(&SGY2pQezO=ldv\Di'H?m-S $(*P+j6ʤ am(E+S Yj{PY[مI1 "QSe+r)NPiVvAd:"}4I&mh;Ēmt%3w[G,ň^[)Ff2S:DV"{2;4kßهWn2}c>"d"=WfmXCbTѭq[S[sZ[66Adц6 Ĵ!?D P B!D~LTvlb2Q9ΖATvrBbFߎ!'( A3&f2QNKjb6(d+ AF  btSqR^q "Dm Adgd)XQYHJ)JS6E] D).ATR)􊋎u)gH-NQR^QڜSrYQ9SAY"NiCA(G~xmxA%ZKPX<_>x@QZţW4ň 66ŨzQ,iCA,mXڐRTG*iCx\j4eI "Reഡr('u)HMM)*4 hPsQd dI& "~"DeeHS5xS%)FiK1:$J#E"h,TZnvSS D]E da}-_v>U 6JE)DBIzEQ.(QY^Q9DjWp>Reb[[ ,J?ᇈR8q1Q&J(QAfmAXj;&F)fאmtT^qH)kN؉fADsj3ͩ)(g(BSFEhj ģE]*g4`SZZR8ڍZvOϯg ,4 dL d&afmAXsjSfm)Z6x= M~;d&ѣt&4"4utk{!yiˆ;CDBH1$)hIJbHR:"?$%?o/\CX1O!CO:[[R$%z aJ]MRfmhyfmfm~>gSeѧ EL/-."x]n~(}*SebtҬ~^DD6A4kWAfm}rc}-|֧$>i1}oO"Ru Єha}bh A}"D/ Mh-ʬQEѧO2 S(T5vOݢS/cx*6M#U2$?Q&pAL*h8?8 -'Vk˃*UvWvo~/E䧋9%?]iY{jwɃ6.kY(ZV9'?e#Τe]D,&p)Q~Tҿ6kY8DQ˧`?U X~PQ -UЛvUN5 X+jSL\U(Z'PmƓjT%"ZC)U1SX*ol,0FYB"ZYjUgͪUy3`~ bU9hZXRUeH X(T堉N i#WͨUS,v}i#W/ZV;e嫖hs9."U~eC EHEQEa- .R-RE*KUHR+Jv_ݢO"SmOs_v">EXjSyPmoDjS(<6%",UՉqJTVmbZՉIvT"KUmK#Ts*}^vϯV*UuR\HvT]eQ>ϤZ}nDIUx|E:DhU(P"UbHU H*Jn(Eos!>BD/1 aCD)ՒBD)_DN!X:51"J}EE)hMR.RAD*Q,D)?/Tj[D ִwləRmKӺHTY"O"Ju (J(QD%E~׵A)6EќA&)D ,? "?QD~G "?ԃh{::n5)ktRtRdQK~U])?]]*<[$I1O~,QIjA)`#UД(!D;5! KCpS^|ӽ!`ϩ-b!ۋC؅v]Ů[c(\XZbQ$J})QpuE:gGڢeš&{AX*TY˷қ앵7M:$kYYd "kM6Y"VEM*3YI ZAD KA{A K KT^sR\D,~də "Ve,VkG+rT(S)eR)r)JTDrz'%*(Q:Ȓ>u)}*"JYa}*EѧڬyAE2IUAHzEn"O4 S8OYҧUf=eRYD &JSЖIAE|^qQ,JT%}*Ȓ>ui{LD)}ѣJb%E~Gɤ½w~xT~*,TAL~*w>1U| di{di{@RQQ"V)UJI BJĆ $`DDEM "m50RA?(KUE "JTٛI "J?n X,T%+"J!Q% dQ,JT%*+Q;ȢDYUN]] # X). >.ȢOY _Czѧ8oTE:Ȕdѧ,Tn"JQLa,T^A RA\ (u^qQ~SVآ (QA% D"?Г:%++Qm)+d/Ȓd Jԏy1(:$JYZaQcS뽏>3RE){p!!}>uE{5eh}t !HkXx|1zE:7;5R\,=އX[[C>єuKYTUfR:'`ce>;T++KJQei$v̚W}﹪OT} }Oӧ9+(DݢOe&?]y).TAHsIh B BS&~f BS3Noќ STEs L!q^ M! (B,RAX~JqɎ B+"kN8%?Y hNhB) K; "4QHhQ)D;$4YRX2%%*)QeɎ*kD "JQ,;ʯI RA}ADmRAD K O>$Jݢ(Q)rTA'eyPJV%\҇6V^'NڬE~S(&?QD~*9OAM_ M~QɏĒ|&)kNʕ ү\֦9Q~ADs*(Ӝ5eyP@yPOAX~*O[T^5PҜnq,BS%) MR.X$Qڹ REԥq.ԥ[aIE ,) ,) TGau?O~xJ$WdlH6}~D6}A 感胰&6HA8͉?kaI7")FI\6$WR,FEIz#:}(ԥԥLKAo(F).,|%eW ch9dW B+Ld&rN,QE1 B+LT5+HfRLDd2k^Ѵ!+3;F.F.kCqT|LjkM&:Ei"kClYr6.Ȓt)) a9Hmi CE& "2QdA*˟ZY bɦ7 wOTFt:ʢ#t$?LG*ՑYGjkt փT'H)J:RٛKLHAt ,#Ϧ#YaIKLRjlIu)EVRduQM]b .|:{oQ.]Ƃ"KpK \ZrS 㐂pSԥ ."IJH)dJ&]G1dC,DXtCtj!DO:!K!D_a|P^ Bt/zpё#uDHbjw%tEG:Ēbt蜟*Mh,QE< bbo Yģ KQ5\6JQ)H7SR^Q6Q8Ȓdiv))(Fe;M1*)Fm-2)FA SfRE1 B+L?Hf>O1HlQE1 BQhQKø "+FhIJe((FebofVnqJR ŠQK ,3 ;%)Ik-3g-RK:RE]:Ȥ.Yԥ եM]*^r,ԥ dQM%dm#W&6 MA)+Ŵ+Y4 9H-vD6rA\Is b>UtSfRCø 䳶̤rO ゘0 ]~_*?&"?Y "?O)D2y+J8X4 K:R5\ќ\Y4 DZÕQ,I7%*ȢDpD:ʒtQzER^qi^vTަnSWYIsJQ&T v,BS[[[|LBS^qQHR"4!M]*ڔdQM] IJ)=HJ1Il$)-I*-͍եWI ^SER HJAXRJQ$rۑ|v)TNRkVfb 4k MA8)EiˆA&) M)JRUs˟uD5'x>iNB4'z QS(4']9kN a=49QCRAs Aӭ-/ntkB%z9bPBX6=WlXԥbPB任$) uI^<CLIJX[6=$S[T&6MALhW7!u"tLj`f-RE]KR>Y-'RcRY")]dAHJm-")Hc7zw$I"()xtBnALR_,)"&ݢp##"#O=ёnu9%L^u$ܥEģHQIJeEH]zAR ݢHe~Du$&)LR*GtivSZH]ťELRY֬7n.B+m:oԖ"C[􊖙Ge *qȷģ6ʐt!FCH).J|%NWA<GhIJ~ PJ MG*{3HA)H?{Ȑbdґ`-xn.GAnAL<*,.2d]##NqJ<+F)rQ&Yģ ,óG4.FȊQNQ(+FmT^ [Ԧa(!(Ҁ"CbNI<cN# "Q,xĮRڝ`AȐt ]' M^r."9Hmb"ţS4,ţ>knvx-T<۽{[DrH7uL:!tCo5!:9H!&?IMCtk"C,I _~)3#&Kf!DGW`Q3t ?)e&ŰIJA̤ t)3)"%:1lwX ADRj)RIJmb%%u Kk,RVĆp!u9_.tQbR.|&p!IEGP#ڽo;m&.YR/k!2)QAXJqQ?7%*ȢDdR`[,%ƕ$?"jN(BS"KR֜RͩESRќ1iNAԥ KR֜R\R>"dќ攢iNzlA&)kN)"9Ц97)+۽RX7F=GQQwD/C(瘊Re-cTFYLiNA4 jݢ63IU).RA&*HUiNmIs7nTdhd .HUAD*˟ ,UgaNW} >dѧ>,J̃( @mjB:ʢOa}4ӧZHEPzEVvoe&%*+QD]d(UFE)?uM_DLTNhb$Y*;fTYS=?Kqb "ʬ'}*Sfӧ>UBTuaE*񟛦 M)bk[\4C)&4+(QlQa%] DO;OAD~*FYsj{-S;CDs:Eќ.TN*ќR\4_!TsXR߯bќQ5'+Ӝ|9}у!tќ|wQs&4`BBK3~$CФ㔯!Th}4WnBS+!Dh*|%LhB C䃨以BSETQ"B "K+"4Y Faͩ܉Lsb 9QDsjI+ԦBS;5ԥHR0\Sø .u)E] RKȒR;I-_!.⒤dIR:K(β$9I)ENRJqQ,A&(+F).M,QQ _Q+AP1zEW* 򕂘xTFQKAԥ $)⒯Dt6kiVZ%%$)YpMG*^t #BERQXRzEґ^Q#xT.MH_"Mň7+,RR^$W\tCE<.)xTj⑏"MR14 d1Ŕ"g1H-%?I]JqQ "@<@׶ Bm("w ,ՉI꒿0A< Oi,@h*PQhQvZrE:EWOAHzEQYVkNR$21("rDEj)_) B|r6F|v-eWn8K 2 hJ)6WkCȂPXzE:@lbaFYT KRR^Qڲ) @e֢@]= DZep B*+g-IJԐ$: kCmԆ (2Qe: D4 حE"Q[5v+(ů!I)+F-)NQVI J b=~C|aJ:+ !vo D1¯bR!~ :+Fk>wbivVNmL:DS8Zf:d&O-⑟*ue⑯#_Ge !H<5VaݚD|T&At K:R-GґL Y[6Tj t6#6o 6􊒃Ԧ P¢ amnb9Heb&dr'(pk7QZX1ՃH:R;xDģrZZf>̤̤Xf~w":~"ID2$3 "4q8KAH]S@aUunHt$^qc~pøa\,)HJ1I")H+.HADG* #M:RL*kAIIGzE.X:.Iӑ|<I/i伎4+XpȑLDXɴ@" =Uuy \ԅDzD~xDH1bJJcіQ\I7JJےt$+ H^G 1XGҒ-uB̊GHl|lއl#nR1ro1WB4"UμdH!:M)DC&'讎g:Rq"xtL;Dzǒ+ѣ2=#w:>JVGE y7YH^Rʿty)>-F (: Ku1u$86O1SGO WG#(FDR)Frt]H1בBPb$#hxE/;VR#RRMsTJJ1p˽WK}T]1W]oC[]iWn1/)1%%xWD@#DbKR1%:bbK(Yu"pyI)5H^RwZ#R%8Nx^mo˗{#YI.倦,#R 3՝V(1DZ]ti] WG.De>aJJKMzp%ORzOT8H}•Y-'\uɾVro9/UDe>aKy0ե^ҋo8VEKV.͔K>aH >aKa,'L?Wy+1%T֪K1%¯U.'r\ ň)4ѾB Xƃ4ubRJQ*FTK(EK4ɋRt=J#TK)JlRd1` 6>קZMqGL}^c>EOeZw')FrSKS0)z*KMק>קB+,.SLO1Q(U'*0j<&ԥR1RUY\OTR1QX\.&r8VS1Q ?DJ~ [t}’a)YPZFSX(J]#(*EkPFLQʿKk$+Jݢa<x.c452.T{VI+QҫB), whNH4%MH^~JϗcĕuhO [,Ԝ|8Q`\M{ ]bak$]0 k$]F ]#\ %_F]u ,KHZ]‚q1bKBtեKt g MJ)/4Ps2rHJhĔtYu K]#STF %k$-)]baikTȵ.ѣB4%KHtXL׈c1cSZ0.Flu~R`\v9K(5.e.%q%f%lr%F ]#RXƓ\uig\]2Ʋ-K,0SG#axDS<i Nm_1:\:Jt&z5BeMvQR%4\u,%:C~}1%4V.]#yu)EH]#iu)DW] n:x9<ϥR+7Km.Z]' ShZ[}RhBSH Tc[]n8JuORzOTK}T<({BSh__^ C~J> WhnZhJuMRڸ#Lu)'=FN~ ShϮ-4q&w[h"c?-BbظBBRYɩK5(d1k1bRt+ԥqE)xgR1船e/{wL-(|]Q*;FLQ%6]b^B Y%KOh/tД~#ДH#YMu Ru)F;n1.U>2E,Zw%z˫K"HKn5b]2|%ڥtHVRżD榎DԑS:NWGס[S I u),Dw:Rv ;֑6Q# _O WG:R*$6֑.r}"+]Zb'*>Qb4[11W1Jϲט縲\L [.-]ZL' [&cHޗ--g2_Z\.F\(쏑!#/QFLňŐHJTBTbT髯WW1b#b-h#Q=++b$+hG.*,ɊGXYq%Qţ+ԥq#{X+_.zZ]GI MWȂ.jcْKIJ$6aKUx0եORz'ORz#OեRzoMyi?tTv:^=S+Dώ99#jN>לV")"p}RsY* Sh Mi OBBS~'rR~5'"p >>Q!)=(bĐp!Ӓ5bԜؘp1R!)ň9=JVsEShAZhżib$.{. GB>JVhDS]ovň#p2&xH1ӑIst$z`\zGJ H#y)\zq#y) S~J},#YF.]7F*Q1B4$%: \% Dh*QdR|qrDW՗Dt\ΕhG-ejNԜB̗ BRSh"G59ݢ)4,#YFv)-4ݢ.KB#doW?֮5fR8fR)F3 1쫽VhJ)FL)Ĉ+47 Me&US%XV~EZ\.jN bl ^STJ1՜n\BS p)}J1nBR䜿K]t%P.H#yu _AJե>bXLdThbώńR)?ň)? [5_Oshp1SW'A5STJU13c$ZѳVn1_t1WVt8MՊ^jbV4U+z )Z~^"cbeyKU0*:6T/Z/#yՊgZżTEK<KUy+FR}RО^}J=ZKUyUBJU6aVٕ{p>H,Z'*j5WʾojޜU0UݕniQ)UD('*U>UUZ*`JOTn);*)ղD3&J Ǚ]ǙG-pރajY~m-^ˤJ["1ReHI#&UTT}ĕV֊Sւ/b]e+>RZ.FB,p#E }* #9}*G -VZ1ROH#VLM-+}GJkY,Z#ZVօX)`GJ{D1bjY(y- RˊC"cELY ,b^ RˊJ-+F *-Ĉ+kٓoD7fZޘ)kHUR֊GG1.xpS D^T]1nTBi11.x;RKu,#fhk6R+H_#X~*k%+%/ݢ{Z"/սbRuq.z,vew7< u/uU#C#WT^1R{H^ սKֽ3PZN/F*uq*8] ip酘׽h 0-vkM^寐]\pᣘ =ppWBc WT*\},GRZH#bW.ܗؕ7+Hu#f=Sb]HV *F*>b*\(b^  *ĜjD[ϝZ.ըV1R)kH^ւZyO FXeH#y-M#ZVTjY}ԲBYW!Vًuy WV1bكG1U#jV3b$ZKT[ZH^סZ3,z^\ 1S} X(uE1W˂#fjY//KWJ\1/ESٱؔ X1R)`+Du'*> X]>Qa]QeR-OTjY}ԲZJCZVԲD'*6Qe _z'L-kn}R]jY}RZV0WXWK>  [OzmԲbRˊW˂G0H#ZVTjY1ReZeňY*rGJKH^ є(bR֊SJJo*H#V RኑbGJTbB֊J+F W•pߛH`VTZ13B0b#bZ!VZ1R)kH #eϾkkY!f[tKCTZ*0F* >R*`H^ RJ+FV],UbЊS` єuT#Teڢ1RV Y+F*q*i+ JUXOH>#Y}+ Ų9jԧbRJ}*F>>J#C^'TTS1ROH^ B#Td[bRJQ*FTyQ%.VTX1ROňY_ոX1bX/TOOT#RUTJU1R)UHT#TbJUpFˊJ*F*b$/U_-+F*bRTb#RUq*xK1*86RU䥪RUkbBJ*F*bB#UUbRJ*Fb(fAzVV+bR#VT X1R)`ňa]ѣ,JUUTV1RZHj#{^"cU)UbR +FL*eSHj#yժUTXW1RZňZWޭPUWmTu}'*>Qa] S0Uk6V->WoZ]Dj'* =ZWYliTUp ֧cj&ԥeEK3 EDן}Tһ"}b/, 'L%j"`ӛ51b*Q(2VYV0FJ%<_Lj)?kW~cS*?ň)?ѣ'}S~w[lTQJ-e&1R!US~oH^~7+?dbĔ]l4SVn1/?юO1n1_@0 CIUpFeL11bOڐҒCTHU1R!US#Vؘ+JJQ*FT~U)b`E+ ƈWJ}*F?Ji S!KX)JňY^%~U*o̕Q*KU!RYJUXaR>u(ߪ((uDQ(qb+JXYV0FLQ*-uH^ RQ*F-mZ%*F\% v4D]b#C^~wWl vT~W~GOoS`է}[OTS1bSi$F%S1ROH(#YQJ-V #DdOtR(YSS5'%Ws]25'zkE֜n_5&S^|I+1+ M(BSB֜n1/4ѱ6&nѰज़V.єBJJבhL_ZGżxDoJX0#zދJ(F*ɋGjG]tE1#`G*FK}zLQvW7& 0#xB(&\(A݅눉)& ţ(МbՑ<1Q# )& 404'jw%|RZ S]nđGT]F 4kќV^Zd14'N,t;jKʰ%/U)F\uɿ\u^MF ͉@sFB%*եk$.btSRJo^#yI%KJJՑn1.k+.])e_H^aO{0\0',eS'*'4VX.& D'L)'L)-9y[_uE뮑¢uHaѺkԜVsh]Z¢uH#STO1R)?ty E뮑J)F )Y#9UF*1&xK*QX)?ň)?;m6ցkmGɹM1֥7bМ[1R)US є245Bb$]{ZBXp*8 DJUTb$ZWhVbFR%XLHVEWBT#T;JU(YE.1/Ju+JkWFLQ-e_!n);xy`XLRFAt,K,bǺbFJ-VO1OV~W~%BSp)*Q!敨++Q],Ubd(TbYL!*UbYLT*Q1RDR%*F.R~J)F*IKל֜ne@#䯂j)bBRF* MtB\Y=J#yͩiBS^T M1R)4H#BS)b$/43 M1&z^LX# Mn9x?WXLHaɹk$/4b$/4h M1R)4HVhŬt~+GLI)_KJc#㮑D-HJH^Rc#f9zSRJ!1R))SRKJבBHWFRRiwH!VH1R#HJ]Ĭxtyň+.UvF}ZQ5n1%)HJ1nԆҦQdxwݯǿ7?x&~7g~|/_?9%W|/oW痯_ ҸS.఼||vj:{,vﯿ߿;z^}ѷ9\[@oo<]lt灎GTěcᙗƾ̕rڛOW9Gz*t#oJro?g!q+򜭭l7MXh[?|9Ouhs<_w_RX[#ΏfG߹(/1Tv`ku7xN5T}2딳?t7 Ub]UgxAoSZ7 /Q~$gϾ XSJ}S?,9n]oUO^ͳҧZ&qUDS=Ο|t ú>äފn`> W}=Z1[i['}>*[})~<,eרf3w{Y[YQWᅨyAYևN7-pk ޞ /u㣐7:TQͤit?W_i_ /nCϟ4n;Z/7oDyWXxΏ]Gz`q{8𙻶[fk}ZB7@p.>.9TԽ]E5F:'Cإ@mili՗orJ/wl$~+i~` caPh^Oq?y<+_fOu{.(_/2>볦Ӹ_wo^ о[ȕ#^owgUv~(s㡟".r~T1WC'>Uh?+z)=*ǬÅKأ݇*[j?RrIqgwnKTϽ?~_{u嶢ZӒo>WJɫ;iX\3@}F.za_U3I>p"BkBeO>TM^FU~w=H:ߍ{Ʊy%Zԟޞ1? m0?nXQ]{ݮ??7:jeovv/_|?^8Q|hYMc}f~6O8tSI~ f}( R~R>f|_' #'>b*Q%'6Z@X;8/A  nb~e+o~'w^V\>i}}GOߞ%:v*/u?|Vra]ϳ?Ve)ϼXz:wެOhj>qS(Ԙ%_ik?ֵ{Z8ox}o>NŹݻnqdtnov[ g{;w_T^3O!kM74VN 7~D5Sh?v«[+m?\o j?~iS p*]hvkg`|pOZΏQ hyb~Luͦ}Ygfsw.YF{iVn̏~T2à*?$lu~w1O'<ܟ9cf<[>{܍H5;={U3|t3ڇJxEZ o,fgV>.F+x$r5q͜ژOmjXg@ x*\'5Ah|gۖ˯MJӮC:n;3mL]bZ*ŬyO֏kæ>l J3{:Ummmv_Emt֫? 6檇6/C&``Z[gw>WOh3/toޕEj|*T? a=aڟC3Sцj!|O maGQqfum>P॥ࡍnjktj|9Y>VGq>)ch_TVȪӕchvs62G=>8lzTEnu/Adz⚺z_@:4Lz $!nlPQEz:nu?4?qJH0~"_~ϧyOpKˇߛ9tS'{kn]z@iO![mOoҬ[ot[j?~՘ٞ| .A=Vnh?ҊW[ݮDD=ff!f97!976_/_=z nh Φ')r'W@[]%}čQ+ps|,7g'ZrpEoz eQZ"|ӡ@qQ̉ow9nuV蓏!z-5`̧[Q- en=b޳ب+p["3PHm[vꁶU6w/ qd 76T{\?ZPՆ1Cz nj&U#3|ت!=A=Fjc|zŠpS:LhРp"-q_D aE'Us`kD='ܠpK"zmnfGvz-Qhy @[ʳ[[&2ESMne>a[ݢ,7k,m-oyUQ$pU~\=i ~7Qߨ*?Zݨr|#z'Ϣhc>U2:qzZ='QPqOjpjB=N7P-"z-w3Pe-/_op3ctFA=h=z -PE=V(=zMwϣzj#g? ϭp8zP.P-*ϠpCt<m\Om3^Nx<[~!7DsQ5zn >~7|nPcoϠpK)psV}sݷP- OpKG۞B=L*[4]gP%enu3~=@=6POI^VƇE=V<7xD3mh|\'P1gϠpCS5QnlQC=V\z>m*6: qUF=VWQ9ZhenuywaQ^zW[mi~\'Qrnl3r5Ӟ@=ֻVC=FO$[_Hn}I$>$[__pN" ':DrN" 'Hn}-2gDr Y6P ee@Y6P ee@Y6P ee@Y6P ee@Y6P ee@Y6P ee@Y6P ee@Y6P ee@Y6`{dNηFh Jn(Jn(Jn(Jn(Jn(Jn(Jn)FJn)FJn)FJn)FJn)FJn)FJn)FJn)FJQDr Y6BQ",(BPvHn!F(;.#eHY6BQ",k)-dee,)F(;J$e%zeeGDY6AQ",(BHD"GIv:8uC"r!Bxe#Bxt!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/LpY/"B^D"#Dr Gx"[‹,YfJ8‹,Hn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/̔e3eE$[2‹H$eHn!/"B^D",#DrK푽9lwBx<=p3%L GxB Gxe[(/"B^D"#Bx"-$E$[H8‹H$pHn!/"B^dY(/^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^DwKx"JYFx"-dE$[2‹H$eHn!/"B^D",#Dr YFx"-dE$[eZ;i/=!DH8‹H}#Dr Gx"-$E" E$[H8‹H$p^d!D" E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pFx"FYQ^D",#Dr YFx" E$[2‹"dE‹H$eYv2‹,^d!)B^d!Dr YFxS,#~."hi^d)/^!/^D"#)B^d!Dr GxS#Bx" Gx"-$EN" E$[H8‹"$E‹H$p"t"-$E" E$zY/pY/"B^!/^D",#)B^d!Dr YFxS,#Bx"YFx"-dEN" E$[2‹hHr YFx"YFx"-dDk#p%E$>@^d}@­H8֭DVu+Hn}I$>V‹O8'Drn%)Hn}I$>V‹harn%Drn%) DrN-6I$>V‹H$>V‹H$>V‹H$>V‹H$>V‹H$>V‹H$>V‹H$>V‹H$e^d%D"+E$[2‹H$eHn!/"B^D",#Dr YFx"-dE$[2F3)tH8‹H}#Dr Gx"-$@ 7P p%@ 7P^D"#Dr Gx-EV‹Hn /^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#Dr YFx"-dE$[2‹H$eHn!/"B^D",#Dr YFxDYFxDYFx"+E$[2]gk#$E$>@^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹Hn /^DwKx"-$E$[H8‹H$pHn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/"B^D",#Dr YFx"=juu?GV‹H Gx^d%D"+E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"+E$[H8‹H$eHn!/"ѻ%Jx-EV‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹H$eH푶v {d/"7‹"$E6‹H}#)B^d#Dr GxS((o%@ 7@!/^D"#6R^d#D"EN"E$[H8‹"$E6‹H$p9EH8‹lHn!/rp/"B^!/^D"5‹"dE6‹H$e9E2‹lHn!/re/"B^!/^D",#6Q^d#D"EN"E$[2‹"dDYF i{[d$ENn#Dr GxS(/"B^!&J8‹H$p9EH"-$ENn#Dr Gx"-$E$[H8‹H$pHn!/"ѻ%Fx-E6‹H$pHn!/"E$[2‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/"B^D",#}}>qZH8‹H}#D"E$z/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D",#Dv,#Dv,#Dr YFx"-dE$[2‹H$eHn!/"B^d#Dr YFx@":j$E$>@^D"#Dr Gx"-$E$[H8‹H$p^d#D"E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D",#Dr YFx"-dE$[2‹H$e^d#D"E$[2‹H$eHn!/"#iU~Mx"i /"8$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^Dw{P^Dw{P^D"#Fx"-$E$[2‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/"B^D",#Dj413s+L"E$>PhAu+ѺhJ$/ /" /" /" /" /" /" /";EpɭO ' /" /" /" /" /" /" /", /"B^DwKx"[‹Hn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/"b{δw‹H}#DH8‹H$pHn!J*-$H"-$E$z /"ѻ%Nx"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[2‹H$eHn!/"B^D",#Dr YFx"-dE$z /"ѻ%Nx"-dE$[2‹H$>t~{?~MxpH Gx"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pΔpΔpHn!/"B^D"#Dr WkHn!/"B^D",#Dr YFx"YFx"-dEN";E$[2‹"dEv‹H$e9E2‹Hn!/reg:n׾rNxpJ8‹^d')B^d'Dr GxS#Nx" Gx"-$EN";E$[H8‹"$Ev‹H$p9EH8‹Hn!/rp /"B^!/^D"#)B^d'Dr YFx},#Nx-Ev‹"dEv‹H$e9E2‹Hn!/re /"B^!/^D",#)BeHn!$H=qδWJ"i /rp+%E$[H8‹"$J Gx" R^D"#ȾQmpnp /"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"5‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹Hn /^DwKx"-dE$[2‹H$eM/"?>@^D"$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#D";E$z /"B^D"#Dr Gx"-dE$[2‹H$eHn!/"B^D",#Dr YFx"-dEv‹H$eHn!/"BHDuz%EvċpN֭DVu+;/";/";/";/";/";/";/";/"Hn}I$/;/";/";/";/";/";/";/",;/"ѻ%Ax-E‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/"#bhcLsi9/""C^D"#Dr 7P p%@ 7P pHn!/"ѻ)/"ѻ)/"B^D"#Dr Gx"-$E$[H8‹H$p9/"B^D"#Dr Gx"-dE$[2‹H$eHn!/"B^D",#Dr YFx-E‹Hn /r^D",#Dr YFx"=Ovg{="E$>@^D"qH8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#D"E$z9/"B^D"#Dr Gx"-dE$[2‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/"b{Vc?JSoH Gx~J8‹HnJ8‹Hn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[H8‹H$pHn!/"ѻ%Ax-E‹H$eHn!/"B^D",#Dr YFx"-dE$[2‹H$eHn!/",SP"2V9/""i /"B^D"#Dr Gx"-$E$z9/"ѻ%Ax"-$E$[H8‹H$pHn!/"B^D"#Dr Gx"-$E$[Z#Dr YFx"-dE‹"dE‹H$e9E2‹Hn!/re9/"ѻ%AxS,#Ax"YFx"ɭϲL>33m‹"$E‹H}#)B^ Dr GxS#Ax" Gx"-$EN"E$[H8‹"$E‹H$p9EH8‹Hn!/rp9/"ѻ%AxS#Ax" Gx"-\^!/r^D",#)B^ Dr YFxS,#Ax"YFx"-dEN"E$[2‹"dAYFx"YvPHD?ogc;~=#x@5ESn4:nT샮G]SѳgwME>𚊞}5=k*zT샯G_SѳSSѳ?!T#ه`SѳI6= l*zQTےME>} 6=dSѳŦgMEϾ9T죱`S3I NT<`DE@S3 AJ)STL9HgA4=Sr%MEϔ-i*z$rIS3 K)T"cupʷJGB4ґ(&MEϔ2i*zt0Lqt0LG"4=S:Ԥґ&MD6i*x1 n"qt$IS3#!NR:D9i*zt$ЉTJӑX'MEϔ;J8b:0>T|`:ґ4MEϔi*zt$MS3]%rx4MEϔi*z$*MS3 i)MTL9HxgA"4=Sr85MEϔi*z$ZMS3 k)N#"i߇1 ZT'ÃqxP:J{"}޳T 8 F*ztZ#=C:H!HEϐRkgH5R3q@jT (=C:JGqxP:H!HEϐRkgH5R3q@jT 8 F*z5R9yDj̀ԚSDj̀r5J9Ԛ5R3 RkNr5RkgA֜* RkHEϔH9UA H)Zsħ9Ivl~@jTJG֜*#RkHEϔH9UJqa 80N5RkgJG ##RkHHZsHZ#=S:"T)Z3 F*ztDjͩR:"f@jTLԚStDj̀5JԚ5R3#RkN5RkgA֜* RkHEϔH9UA H)ZsHZ#=S"f0Z3 F*x0Zs RkgA֜*9r4Wfۮ qtDjTJG֜*5J8a:"F*ztDjͩR:NH)Zs#RkHEϔH)Z#=S:"F*ztDjTL5Rkg H)Z#=S:"F*ztDjTLWH)Z#=S"F*zDjTL9r5R3 RkgAHEϔH)Z#=S"F*zDjTL9r4T&6l~tDj̀'HZ#<#f@jTL5R3#RkgJGHEϔH)Z#=S:"F*ztDjTL5R3#RkgJGHEϔH)Z#=S:"F*ztDjTLr5R9yDjTL9r5R3 RkgAHEϔHZ#=S"F*zDjTL9r5R3 iԟֿ]f*y5RkP:"F*ztDjTL5R3#RkgJGHHZ#<#f@jTL5R3#RkgJGHEϔH)Z#=S:"F*ztDjTL5R3#RkgAHEϔH)Z#=S"F*zDjTL9r5R3RkHHZ#=S"F*zDjTL9r5M8i i3o~@j̀'HG5R3#RkgJGHEϔH)Z#=S:"F*ztDjTL5R3#RkgJGHEϔH LG H Z3 F*ztDjTL5R3#RkgAHEϔH)Z#=S"F*zDjTL9r5R3 RkgAHEϔH)Z#=S"F*z$jMSi3:?ZRk ÐD~O/=C:JEϐ#RkgH5R3qDjT 8"F*ztZ#=C:H!35ztԿFϐ#RkgH5R3qDjT 8"F*ztZ#=C:H!GHEϔH Z3"F*x0Z#=S"F*zDjTL9r5R3 RkgAHEϔH)Z#=S"F*zDjTLM5;u~{rDjTJG֌HG5R3@MSqTL5R3RkFHHZ#=S:"F*ztDjTL5R3#RkgJGHEϔH)Z#=S:"F*ztDjTLr5R3 RkgAHEϔH)Z#=S"F*zDjTԚ5R3RkFHEϔH)Z#=S"F*zDjTs<+yl=6#RkP:"F* #RkgJGHEϔH)Z#=S:"F*ztDjTL5R3#RkgJGHEϔH)Z#<ϘH gLGHEϔH)Z#=S:"F*ztDjTLWH)Z3"T)Z3"F*zDjͩR"fDjTL9ԚSDj͈r5J9Ԛ5R3 RkNr5#RkgA֜* RkFHE>.R;?Nį`G֌ #RkFH=Aj͈ԚStDj͈5JԚ5R3#RkN5#RkgJG֜*#RkFHEϔH9UJG֌H)ZsHZ#=S:"T)Z3"F*ztDjͩR:"fDjTLԚStDj͈虮Z3HZ#<#fDjͩR"fDjTL9ԚSDj͈r5J9Ԛ5R3 RkNrpDjTL9ԚS\1Z#=S"T)WA}SG;kwߟo|iv/ğC;~ eKAn%t_~_2|//m紷OG+~Ǘ/~5|տږit_}<;y<;{ݟ0ק}.<~ﵕe'~o_~/?/wW?w~\wygu߿[[ɟ?Wo\?義Wwg|s ?\=@w'>t!C~w'ipүA ~8o뿧T?{?Z}?u7m_$&[Q.93q>5٭??җtϏI=='b'س =L|kZ10gOA_>G[X z;˙o_|'mps0[L;xOG{W>Wxcԟ[~ß㷴G?mm8~T endstream endobj 413 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 416 0 obj << /Length 1791 /Filter /FlateDecode >> stream x]o6=B@LjV{Xץ밮X>{Pm&K>f~wR߿zfGni8uO;y jmfOC}W&6LF6b*Ifyr.$[ f%-0Υ iTry7| =A\Uw8EH֌R&`gꉴK 8fk,/k1ڎf*0p`2\~=ۏ*`ޫ#UTzRi0P "KRF3D5bO\zs{v^nK.F>V(j0 qV1z %ų o COڗIezD* ~lذ}ZQ IPĽ %=펜-Wd^l S%}ф0ڙ9ZR'>+TAz(0Jh#`aQNLU N˽[87+w+,u5VʵHtu `Y1#8dZșSX1(Xa,G=/&(8E Ƽ5FxbbfH3ͤf2JRB -z$=<(3F1͌<ʹWW.$ZlW6>K2 ._@,`28[c=a1,Ke!y5uPg_Mdv'6`ZM@tO>1LcL]:;'w{qMwKp :ث6WC/Kx2Ƃ@AvBÜpO[jhUWQ=hXF h</YALc~K\}GH-rCoSo>OaXzB'{|{22} +~E ?=Z(YPGiDÍx|^}e?ӟ#E R seJ|o\O\5P~V 'ǃ=GAUW7,Nvtx/ysc+ȉ'oۥRH@7h4tDGfU)F?$a ,qA 6} o endstream endobj 395 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/MDSandRareplots-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 422 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 423 0 R/F2 424 0 R>> /ExtGState << >>/ColorSpace << /sRGB 425 0 R >>>> /Length 1746 /Filter /FlateDecode >> stream xZM7ϯ19q_9BB$$"])('BhD{f)6^[‹ m{>2b4-mK߄»ݓO4K1N~z~v1|o+Ixoww'+p1hL% w߇QAUcEU/7ؤh%Jz$֒k#u{szu+qԠ]x :2 &/AK%jx8j&%-f=NJèő838 )Yf6j ֗V*B 9RmK?bL4D#FM&ii} \"Q80m%ǜ0{zCqJ!8 Ƒ`<>NK$ FbV+ZRˠ`  vWOr25B2ú]9J$o # إL>D'2 ǚ pV;h|r"b2DZO -f)Ţ΁7.հw ZAS22#MTfjC#`Қc'đFf(S2huAfm ESꩀ!"u[)HbxL_H(kf]?O@Y6C4%@=VaQB`Ai"μK!RC ~Ks%Pҷ|~RQ:Hԙ K4--^GQ$eAvRa!ֵ͊w]yO;:anc,GFQmfΔDYY)y,*$suC;/rn ] #TdT+͘Htl y_!A!ueْ]C)zIP)T ϶|6Vl#*"^4\)2IuX,,wɤ6s5}+ě^enfHYr6JknKzB<#fHPDD-s5K~mrVl[\@~wjMT&):_nY^zbry8(0<3%6_Lxy|_[aqǞu`<979gwXl}X >Z_b; m/Xu4dόxW}gZY}6,̘8*|~x}<3oq<^~|}<̪h?>/8ng?~SϝċC$ؿsc~?kgݨÜɹH?k/B9 Կ獉=r&ZS C<`pY#>oF#VPd%^x^7!Ebw-7+?% endstream endobj 427 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 396 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/MDSandRareplots-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 428 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 429 0 R/F2 430 0 R>> /ExtGState << >>/ColorSpace << /sRGB 431 0 R >>>> /Length 1789 /Filter /FlateDecode >> stream xZrT7WhQԭ*T\ł!&;/n_gaeM+=u޻O݇j)$Wu.|\!Woӏ^Lx zv%)~ޯ_p?"X;U?]Uw~|8s1y~d-8ɷ|{qUAjܹ` K T=a؃E\iR/ b^aGCgXE^CыptKϾ4R`e6_I5ߚ}+);\̈g$qҢkuOsZR)z9YpW)g\.b"6[:@{oz|Jcɐy(Q2R0Md#Js9d2X)zGcYr~FU,.' R!T`@*#TWQ-PR">Iu}1G y<SPTl{-E{OpDJ\9%H9.[hoDﹰ0WUVCh4$Sr)RX'aţ2~~{eK:Dj,,Ҳ&=!oic#Qf"" Xh>0KDq'dRX;P0oƄ65$Oy`5>upK&vNLj(EA]*> ɢ$-[Tz y]ddkYaUV>[[L]Lhgv!n.<gDK:<ݜ9+-(c2YMFeb^Nh $p?ev~3<^߿p{{`i\'7klo Îfx[zP&F]BRq/O_j򋑝 lH]>so>!܃Ϝc}ap^>{ΟPF/x%v}~s~ޝAxϗoqۘ1@;9$G }$ D M/l6kt<|cexc0v endstream endobj 433 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 320 0 obj << /Type /ObjStm /N 100 /First 867 /Length 1773 /Filter /FlateDecode >> stream xYnF}Wcн_ @bI Mch$3lSdS Iٹ9C$Yl`124SF3q#< )̶90KA3oC8KH{T2x`F9O",P`"ʕcPv"9%\?bp ^$rh40˒e✤H s&,|rA'fEdp9Q+RIKch@0{_7pzO@`}q-0 J:~A˘Yq  -fOB D`)!,JM%\ct 'O2qN2(Ll Aq W,{>YjoyBլӆ=yı2׳iyC F,oP.iĸAjՍ|0E㷼`jyZbnPe ǖ*zn7xW6씉7GL_vW%26s,L-bVvjZy.9. TkZaSqGWZu;wר~ixų鴆vq'܎gi2񼞍YkA8 TOsUHǣzOūC2Zo߫鼺>..Jdv#TŜ%/ZM9./:Q \J\ϥȋESŸ"j<*$/fTJ`J^HU01患G兘(@8}q1g8_4'Qo~JiY3f p(w :ܱ*\٪\`pາ7Ʀ@mFq]QZjc dѤ`W]PW|nh{V!bzw$9}}뷠_C_8A9nT_JhN}Pþ-@3B?tخƸUܢg{}ҿ36Mb 5.E0V{0Y48\%=LV%. Q> stream x\[o6~ϯ=$@~ևkC536Yr%yiHIND;M#%bSD|CC@( /ݛ=[P\Wzu?!3" €pl=e 0*.~<.侚8"<@}P0@0d<{vra 6Edٛ! .φr[J-[|i F-`f{ڒT0US |W eϴiK3ux0/J0mHsMOnlNTB5RTPՄ.0 b woZj!I3 4*"P djW~ BSC\ <v X`j `EG&(Ɂ6Y?~i`5%uZh$\1b?]]VW>V+͓=PZQXDygRW(?d9 ^i5e^̓:: ȳ4⛝Q mEz9)#x~S]A )Q*&@OU7a: ^ZlI[w b$r"=/,/sAc5mT&cZ^ 6,x|\Bf CV+ EMmYjem j ̀&3s4 J/Dν wXe.OFc˓2*# :;!Ƹ\?݋NVjo`i>GɖWbG;Hq.#o}r1TzkW7BV:ڴ^wRY +maI¸zkd寓?C(ېK/w=K72gQ#y8өQqObH)F:jP^gW,2'2[ԥ(M3H,YDM]hek`g2t|aCI;skL߀9 ]zfOM̭K 'ܦF4{ _Kbv$:+kdvt ~kgnF'߇[4=Nw~L{?L$t'Õy6BE)nwBPhQ9ײ+GTvĎF"<}ՎݙI1>CwXB:7*S[^7}ƧAm&OF̺|x2 Ú'Icx<?uQ< |ίsTf٢vOj7g5FGXug2z;fHKa~b=A쫷c>C\Š.qVrWR0Ћ'82E!\G'y j_!7@Ħa3wfn6>ɯ endstream endobj 445 0 obj << /Length 314 /Filter /FlateDecode >> stream xڭRN0+&~@ pMKhuR)%z=;^a{@J0Ka .1r褻) .){ګ86i;~EfZQQI:e`HACMA\G g$I: #!$.3Jz5WY+YmU{8ezQ7=2w!1M<+S%:Y2ՙ2zFiY0-&k@d5ݸv7f=q;?:j;o9*gHzܟlɴ endstream endobj 435 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/plotOTUData-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 449 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 450 0 R/F2 451 0 R/F3 452 0 R>> /ExtGState << /GS1 453 0 R /GS2 454 0 R /GS3 455 0 R /GS4 456 0 R /GS5 457 0 R /GS6 458 0 R /GS7 459 0 R /GS8 460 0 R /GS9 461 0 R /GS10 462 0 R /GS11 463 0 R /GS12 464 0 R /GS13 465 0 R /GS14 466 0 R /GS15 467 0 R /GS16 468 0 R /GS17 469 0 R /GS18 470 0 R /GS19 471 0 R /GS20 472 0 R /GS21 473 0 R /GS22 474 0 R /GS257 475 0 R /GS258 476 0 R /GS259 477 0 R /GS260 478 0 R /GS261 479 0 R /GS262 480 0 R /GS263 481 0 R /GS264 482 0 R /GS265 483 0 R /GS266 484 0 R /GS267 485 0 R /GS268 486 0 R /GS269 487 0 R /GS270 488 0 R /GS271 489 0 R /GS272 490 0 R /GS273 491 0 R /GS274 492 0 R /GS275 493 0 R /GS276 494 0 R /GS277 495 0 R /GS278 496 0 R >>/ColorSpace << /sRGB 497 0 R >>>> /Length 2878 /Filter /FlateDecode >> stream x[Ko91>Fo19N&p6{ _J$:sI%>^+>oꛊE!`NlutꝋY}tW/hc]|w{weԇU;[P)e}yQKΨ+XtZ(b FE}4X]9mV~Qg;䂎sFG&B^^ꅣ>rGkRA20VڶH==4'"i<0yuVaA>XA:ǚO*t{wwykh$4@HO,+tLa5h aXX {=r_X] Xeb0]ltc4@7 rU*XemBaG A;/oF m9Ґe4;0|Fxu`߰ȅvsѹb?G2[[FѤÔcB63,1em 't}Pr;Tĭl4>v0i<l<*p 'O&ЅgSŎdG`ݑd]_I3B.3J)&_vbU5"`t;s.L:y,;H*,W9"j **nb%C4 6rQuD46S*@F;nOq1:P D8ʔ4qDG"@+ȍүPkb=e] Kv}i .03|I1B5`+̣c̤63ݬ0k',@lem}j"S@0 @[3*tbl\g rmkcemXNzˮqtCg澍<ĨoWڍ_pUM@:mgT֓1/>Kj"晁{YEem 't= Zs~#1}ṚK(<-W#ٻ(y#y0؃cbVy^▓}(ó+:%Bh1iqHO1Mԣ:e! q(jUhOa7_UV UvR?8^l=/x Y^6 CEL|'̗Ps҇S JyJioշaޓOӱP~E37=tcw+4l 83Ƨv/E / 78T\o?^xMة"[ߺ݃+SÃk[zp҅p dK'k^~BaYkl@miC*o>^}|>^_^!?ۅK.. }?_3r[T/.n~W'yNo=Oh_.w?/7~{qvkƱkF)8ȚiJ`G;aMC8vwu3r!yOQNt}s}pB endstream endobj 499 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 436 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/plotOTUData-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 500 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 501 0 R/F2 502 0 R/F3 503 0 R>> /ExtGState << >>/ColorSpace << /sRGB 504 0 R >>>> /Length 1672 /Filter /FlateDecode >> stream x[n[7+e j ., X) ;W@3 ˢ̙޸辸o+q-{'Q|K.KrWowzK||=~=u]}YE|z^#rOxwKoM?2^kpwr}_tr}}+bTxtl$bixW~G7}Wnfn#m%cB@Z`CXoGyh8l&bnѴ)Td0)VitKlT&ocg|U zVVU}$[%VMkQk]'xu *\w$$u\Ao*A^M>rUC}w9Wd*yYSU+'9>!'ŧ8">(N%68: Ţ^5CTE)8ee] 2[d|J+$F*Nf`MKt3xjރ س=U*cSm2Nh(У!e(ݐǢԨ5 cW"E I \O*8M6 I-M9MS'q/,)wC )B}gDbZJYAhX )`d^ !#/sw⥖Ac}ks)gN\9PLoB;35akWT*ڂHfT bF,AÄ `$n*zE#"A~<(X]||2kqap ¬_,d=#"V/hJC+Yrk a *`0ք86 ֛%Ss㳑CV!etAYϼC(7 Zc (l) ~]&k7ajZ4$)o0" 8ӚCh8˥p&Pi{0YA͗7QrߖʜNrφ"`_NkG^yCwrM3ܪ,m fgw5C!{a̋!Z gL| wTߺo>KW,j- D1QT`bPӥ8Y8\+QkRJ648EkU$^kR5WrFTVR9[ĝJSD|fOH#/OD N7!UpʷnDy0R/ +3Np}+sJIcqqddK"v~ԹU,+o0ϫGہtoIf'<7-:]󟧗stFO I0Änh~ag?›>6-ۍ -'136!Z\ݑIG4pr41qxVnV&.lT/_iiQOޙ[؞8^P.]m۫ͅ~||l?D Ɇmzw'uw׋SVq'~L[; ix,s9-AgG^%E-4ʷH.ZX1O-v?)ɓ endstream endobj 506 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 437 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/plotFeatureData-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 507 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 508 0 R>> /ExtGState << >>/ColorSpace << /sRGB 509 0 R >>>> /Length 1099 /Filter /FlateDecode >> stream xKoU9 Wd.Ďڂ`J3J, EHБc>iEϽ_mďعm{2br$   ouË-ŔR'?ۻ!O+@[H)*~ Jqzk9JR,I=I[M}G@X ^RrC෠fWPm*-M zX"+( cn++, a[y((BP(G Ǝh6BS%Pl&ؗ*BTsCA]0RKj̷bYFŷC !6Nc()L7]a"&ΛbwW9vO!$;< RЭ&>oLDLX<-i/Pҗ4{HK$P0*YbY§T4yےE=e=D)/ΩFBqh3p& (vE +e%o9sqyZ 8{A˺K/4D 1*vbG3C9Uvd'Pe{y\o|ZZ&i ʽıEqQyKZD) P0Q&#ox 8_5}xPڥ.~F(L>{TvU=8<-KGx lɦk6y^'ebg! ]nw.r\V{Ow#_^qJ [S>k2&ӗp.v{y+TF&31bƹ$;nLg!bsr%u/d%BnAPrQ"{Cr̳rEކC9!7\< ]n5K8-Q&S[/-')cw7GV u&C |,$`-ǖ'H"}{KNK[ W?f]Vex7篼]q-mݱa w endstream endobj 511 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 438 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpG6S6hk/Rbuild59637e36ae2b/metagenomeSeq/vignettes/figure/plotFeatureData-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 512 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 513 0 R>> /ExtGState << >>/ColorSpace << /sRGB 514 0 R >>>> /Length 1253 /Filter /FlateDecode >> stream xK7+Em{ J"%p, d W#PI ~ĊȦM@g'N$YӚϩM8 py $Y lH`xe;!O$>pDjAO`@۾d 6$3 ~ 6$(h\ o] `@ ,^zA4̏`@*fv6 >oZɮx8E?cJl(eJf};)݊ \K*3R 6d;7oS`@\gr~e8ZFYiZI雵a`5t{mr65\|Nmw)Ly"z+_EKWP=ٝqfg~Tj]c; 4xC{1_ҧ|~2== & = endstream endobj 516 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 519 0 obj << /Length 1625 /Filter /FlateDecode >> stream xXo6Bk(CDIv]a$&*DIݑc2l>:$~k-zyhK,/$Atf%.IJbqdMK7;9v<Ϗ˾i{{E[K27pk9>(|fY#jvɮmg>J`ݱF-?Y?^XЪ/JyJvmǐ/h=[ŲFU|dDGj7ج5km9Q Hd!tgӲlYױN/!۴m [Ĩ֢ԖVFK7%m *:u m׷׊ykRI tad>CdPc3ėP<6+mp< ,a.)r nŲT)k()ꪭmh - F+Jb@z W 7]iW5}kkb*V/ 8i`Cޣ$_4eD?ӫ3<$svE%yG$5pBԌeŨ:@\Jx1@jIMjcB0>*4{+Q!Ceii5L"h oc]+uen jƴ JɢKF\?1 x%=7sLet"zsk" %}}ӣ#p-ϊ&'̬>B~e$=+RB n5;`1 ewk1L`k<)1bSt8TpUD"\|]iS}y/afZrR~pxi1wDn&\'v]H΃`KM)J|lҭXw=T/.5MC4iſzGаY٣ͦ莅Fmh{. 5|9jMOaCۧn9YpE|#Qa-WeS# /oޛc@͉^\?/a>0{ex-lKrOElM6mbT'JiGY*mgjrΊ-4]zeOs;ٕB?S|:Tc}= #{ճD`2wE!/gpt )I9뒰.q`1FiWYJԇ 8E `L٦(*$%*h\琗f${)%6SKq5_m18V::5&i}~r~4wCly.ͳqz=n%\K4١UՆIMoeY6& <"4;@G7н??XAx7u0!cw揢NW}(OML[}׬V+ !^}#wq3OA**|ġ,73oRxs9V8n>}Ө_=60ӌ0 Q I`B1#8v`}ߞ]f$*'y9L.&sW#ؓʷgΞt֊"k `( cu}#q'<Au| endstream endobj 524 0 obj << /Length 903 /Filter /FlateDecode >> stream xڵVr8+Xu _JUL;J,+чT֥)bB 8; AےהtD |/ma~1ۅF|կ^s@v( C1Fn?.'I&(&n4t=چng|:8%AK.{K]s}y9N}X3*NxԳx_ċh/t }3ohvH@gwe| -5hR"xdz*fe3Lϧq2z85Ob~Z6<3Qz׭V(Da5eFyf eL<橨ۍt^oڜV\7B|EK\ث}WsY>HUr$(@^K$άd)'QlLd>TJ ĥUuJV@:o@SP@;+f\/C%yY%[8t-qK$`"*L/D%#ڃ?\7Vg|%16PRԐ}bʮޮfE)ލv|N#J b$t\:d`%f7_] endstream endobj 530 0 obj << /Length 3474 /Filter /FlateDecode >> stream xɒܶ#W|URʚTba!silF_MȾiq4=?o"x]?ݤiԓL lyfk~T2:[Uiּ1h*0ϸNn0ϒa op`ʯlPƇBR gcU# ?+uYOXvA VS=!kmg̽t >7Ʀd0 XԶ9K$MV,EoZb/_DF4ZڐQ!Y# TnZY~:T֌n_8x= >krn@΀vLRLN̂ڪS ]m;/ x i: ,6i䷺xJft[MeJ~|Z g\T/*SO̖-rGiw@PK L c^Y ,x ThXL5z <a5g:kW Čtt?BHlxdc.qs+T[[/T(X"N`,UJbnv}`ڋo2K|YoD2Nԧaj[VdFQz9(qR)$:5OzY\P$˦Ab[!A@a_u .9S|II 9ŨFI\(DkX $ZGP&*/ yEx1J*yb@P H@LufENVh@(= GNW8sewΖ-(ɉq`urR (jT4}pn o)L4WC& Vp'r:,9kFxpїԪC;)}l-L?DfcszRHVm传λ|kNƐJ_w^zKӱ53mO[p:'}Lb, \þgGNHi8d%hKO)Y*?{5-JePT|G R&* z\;"((,U7! PD"?桎f_ZȽAq$ f7H9d+n9jjɃEU\jWKhƙg/aq{p7Ghz!#R(YE@L`m*nP^`D[8# yxNY80+OZ} r~שR0^@}ʐf==Jz!QrIȟ@[2Pb|gQd]h{ʵX,U9~C~p9\50 ꮏT<- 35e ez6Ȼ`)m~aeKPm +$1=(Cq5.B#$*{i괸@kg&]vERIyv̠t}KPj!9GC$yW{oPjbQPO,gu7)~[Ⳅ&w]}]: gZ[;fy<, 3|ڃr1u73_ǩH>N,w *cǡ=pIas4W! |]yZ\&PGv;F(KBL@t6 :erWxEOn)v5A\0Uv|CefL sP$8%G/>'$麊_E(xQ<"`OQ quUBBiUᬀK%-i^W-꫒1&+T׍NH^J:b_WmKyi,{s9 s<0d2+xb!?Fga{kyo1cLw\ gp7'l?\?Ұִ́aigBVbUe>ˋC$L`]nDu73>솾F\Sykpʝ+|i`A om]MsFw +* ~H9- κ h@fHDNq(!Jss%* ۙJ&wUgD;EV%`CqH÷Zp?4d9r$Bղ}{L7h_oĠٝZs%vlcuUHhu:[\\f`5euVݎ:r9qE6:^ JLio=$p͑k6#Y3}F'xS"Q ^ @⚎/ΰۻDr{۟;x-wS0 "ץ8{5z+|U5 = rW8ҚLCmҚm3:9D!՜/NXHk0w<΀`-9PpwAHz./4=8qW'jYC01ᙛl[3փ=a!r95-/wr E#0E7X S%qR#37'`~dn< "ŁssAf_ - H%H|4`ц ]Tz]7)/|Aa>ؽ`5+.1Gqyq4M3(t7#Oly\M̦C|1,{ƸHr#: %B}lD@C GeM)R  R!Zr Y:TX B\Aj,r-OpBK[mw\`ۂ͹(zws/9ax endstream endobj 536 0 obj << /Length 1314 /Filter /FlateDecode >> stream xڭWYo6~$SoEE @QEG]^I~Im:1"@cH77c"_г/4b\GB0EmK̆~+Ot*+ƣ7ޛ'X-%9Yz2JtF-,Zmbwh2:?_di*)3 x?S‰\UN[[e"%}kkܫ^{Kw}k;ug`TYl¬KۍF\ frT2Ri:E S7,%JL쟝ArM?":%]{̶pb$ 4NFBs B "t64趶)qMܘ{#5@˄"F-oLĦ#/A `= \@:puV,ΟvXH"@=%No6'dbYRؖeEd39ʟ室y!773=M#k63Ϊ⳷u2,ךzh k/.e- ~}Ie4j.`Nz  )vR`oA4dh JQJw<Ìdr`;p7$J F8~dBN[Kmm>ES0I*y]ob\1 cB%: O> stream xg̬eq1b4DBH  JE HPB)AzG@@EG+]AP:H.*"(nŲ[/grgY wOUug5psO՝UwD?vSϛOS$I$I<\Ǟ2$I$IFG$fn/Th&{dz5?lai|YUY?UwRn$I$Iqg.y$I$I4x3Ok&51#&#U#&mC2^ⶸ1yqaqQ̟7N<LIlͬ٩j%UkmB+b*~?㞸5 vy 5?y70s7I$I$I<<\`n$I$IhNkf୒[z<+HɷW85Nj8-_ w̹i93|ڬR&$I$IҰ{<<\$I$IftU`>HcX&>͚U{>qP;vb\,>jld_ -.\KV^{%{s%Zh&M)tq[ұT+Al;qX7ƆnlV,IG$I$Icn27$I$IhМIEx)+8&cܸ4LLQa /y:Rhx5';3 >Ց}f $w|@pR0sklwVjgs%V>t 1UrJz|=h:oAu|+X+l^2+OxVɹ';mP$I$IR;<<\$I$IjV& 5 d4!{A3i93~db^Z\~d<$Q]ďAgBI/x3sMΚ9ggþx5ȟIY-CUTWzٹO~`t'\.\'M\!d|fqI$I$yy%I$I4,uV&YS3(o7m [cA3 3~/ O2%&O#ac=^G g^'Whys).PIs]9<,65b89 N H$ӠUP=igL,PHI™BnZ7Hqg7(>!6 {9/Kٵ#I$I$<yxy$I$If2:&>r c`$(sD2{EFG_-zT ig1<]j1-cX3yn+^s|`b&WwEQl_>j5msJ$I$<|v 1o^K$I$Zṳ#S"_" 'g"'!CБr~L5'~@*NYeL<|8љTɅk45f$ޡ烝uFp[pe{Qf~Th".1 *w$I$I4{<\yx7%I$IԽV8I]p ݭct׬ 7ҠaaΙW= fzZmP>"K[o8) ڇ.c-w`&ws?DA%I$I&y {<\$I$I"ߋ:1l`zֱEC{DQr ·M+^QGG3 Cu"-8S i95hܧsOwi%ΘM|W˷$I$Id3H$I$Ijj&@:82`4;٤sߧj_|9HPkw ώI//p2poOvڇ6˃s(u̸K;y/Kt@Wl;E$I$i&_a.I$I$H!!Me& ̞{:nb84^߅wW89Hw '#_4k7HWNKS?{>36ss%MI$Iqd>.Ǘy(0$I$If3w8Ԏp!|5~tx:$uq~ϋlƕڝR3=W&ppZ$G:HkXDwL*G|1_D*^SG5J$I$2qd><|4y$I$II /dG83鮍\hώV/kWc;gZӼڝ)I$ɣ[zwAtQ<txj5ɚK$I$>qv㵿Gy$I$Idkv$v8@ut|>hr9T< =OƖqYL^f*ΫtZ:RH_yvֵZ/s' Zzof ?ϵ;ņςTٝ“;H$I$itOdn.$I$IQf=qzlU|7^ p=7ƚW0LgI⹠O G5OD)㴠Wnp&BY'u M'=G8>!fX9I/ʃNVEЎBN*XjQ{<}'фlMI$IA2772<<\$I$ijAÁ GӀTtt+"?H!VG u vyuәCy9┊Iƨ0g;)xjĥAүMAI$I$yyy`vy%I$I&ud2?=̔$af^\L" CA~I=~?ZU rs{A$V7Vx;X fjURf>oi\qr -ΜvнȽ,bQ/ O4k'Ju$I$Ip<<$I$ISp2:Z= !ǀĘL~rܑ,,(5k'Qg܇yܓќ wO|rBGH[Mŝ^QwYI\p2gq$y8_u-WA8U{u65n\ub9[a6쏃' ;ښR׏o%I$I=p&/K$I$_;H2IFNnoӤA.4Qh0`VWƃNMU'ҵB:Xj⓷BHki ?,7B"IDkS ).[=oz9n vi*M5<KmYFqx'L·:[5S3=tNMRhagg_.c 䎠HB 5O<5;$I$IP:H/I2I r`c2?ݯbԑWӝl߅ꈠ3cA¸t8)!qvpItgZgkNlfg%uqv@ g 4I27úcX%h7'9wy8S5ϛ#1^sƇ'˩"ORmMapնH$I$uppI$I3HM)>sA ׿^0rBM|4Xl^gB ӗRė $ӣ50wu8y^s^-g7܁ڔ©=3|>Uz_*xR!h\'fw$ϵSqPA?8lKdB0Ujap;}$I$I+cdފyyx+$I$IAFGrEBE>o^n=;nqF<ý"y2}oX%z;qĉI߈3U')N#o,<2ښ2yy8kܒ+S'e%2af w؛ܥ_̥ejJq}+{ݷx,](K{9=$L0OsF?FmeJ$I$u<|v[1y͘6$I$IVͦ7v8¤{fXBt,gDo{x5@v1MϊłY|tbpBS5 HX[SxsLVJe:1Kw$1AͼK>ږhY:8!ZhF~Dzm|GMމ O'b\w'J58|<\$I$<|v[1ogf.I$Io:hE w$ֵ=$ic%Q񡨙c 9EKvGlM)8Oa*+L_֔I|Dcp +]]" ycNf|f~%+hA!^}2y |L Ŝ]ONN漒UTpjJ$I$b)𙙇7<\$I$Zu8&~p ÁI=cBO$ijBĵBf5y)ކAi} $12=N4x^.*Z${E+\̫=!a] >3d95st}0m|{^ q$T9|_MaZI{|!~lb>y2$I$Ic)]fn>pI$I~d,d[yrýT2742 q.OߒL_ݑe5i})e2HGC }޸Ol\iI84c̫=#n>S>']U4On'ḽ#?%W hY)yrgsH C1$I$I<2pK$I$V$T $Mp X;V/A:uA>.ݺ]&{'BB*TM% SL]V[`Ų9`&NO'M[ťֵT_ǖηMiϗi`&{탱ip&oxs~> VLSXQ.jJ$I$UfpNK$I$VMLHɠ u~[~yWp&̻!e IxsfbAHƶqzNZAK2/<32=zl޸4Iepy"edtú& N^<{&D<{w3](7Ok liIk=BGg'Pu>^:an/Fy--ҜHauҸ VH$I$iy8û27$I$I^-I H&IZjM■GeX'_63g2|zTI:+ȋ8#.[S; 'WHM|6 6tp3q8:WDSkI>iy)plg$gú[UBW7Hx;$I$Iݫ4[u8ÁDLl`Z%̰d-@:DZ^tLۋ;2IJ.r.w5VAƗ ӣĘL'ȫMFΊ%y IyҠֵ0q#B|0ٶ;,wU[|ױXo/) >zZ#V{`0yKRw%I$I`no>ώyy$I$IRZ##7I,~,Hih Sֵ<̵$#9i8uos֤iHZ}Oo䷜/|,h"2=f25#WTp^RMOro<8g! d >?}J$-5ыҪ/5grkA(LeӂAs8<%Ê,; N$I$It277pK$I$uT@NB2IFGbI4721f#Ӳ2+9N W~?X%Ḫ=.9c 3:9ttpE,G$1wfzװV7gpE\y8'Lm+7xb+ݣ`sjl+t f:y8Xos֙A~t ,{я"S">M sW#iy8?.[{8(7&rFAǙ !t2ÑTN8V'<y8ώn"R8{p*88u2 \9c@ȸLvrBv09kጉgwT\/YH4pU5jy8=T ?}?vpy$I$IN3oyy옇K$I$udA>O_ *ߗBçSbx9Ȃ/ƭifzb$ 9U;HDQ^ӁY]o$5g^yxiyVTM4ka+> ';[3͢ ؉ݿL[|붓XiK$Iif=Nכyyxk<<\$I$ftdˤ.$0$s rK^gB*xc/nJFy7t]bntxRL;<-_a#A{HVOL&LWL3 v2pVAYg(~f0W=3&rg81''QÙhE3gﳊ%I$I*w<<<}y$I$IRi6RgcrAypྑ`L*!nyz?Ί nNy8~Ttːx3Et8*kDCÏ]D私g-WݣWk'2?:z{y<㎘9]7y$I$IN0yyx;Û%I$I}~kl_{1h >yҞw>2m@ގoi!?<-]:ȵHJg F'' klj1y8:idD8:VߟDO]K 1)qx/עqlзZ~u,<} Vy8U*gK$Iic N<pI$I*gVqv|_HH\% 9!M )nTF35<28%-gq-<)NXH2y5缉5ê5jُg->7+Ouѐ3pI$I^ig_3'u'sL1HΌ~$O^-U4y_$|!Ny<\dACNM%kܓ3L<7X18_L EF᪯ ΏZ&:yN(v >+OϳZSK$Iic No𙙇K$I$V;y8AA.̳ߟ{1䊬WHH&Sq@\^g:pOԑORpH'i$9a2;~v܏.y:؉d3?r9_㳱wbtaAIg vl$M\_xL]-[SV'|obuqRppI$I4m;e ppNy$I$IR<+Ȭ M<\ܕ?kƇw\$vfwզ3}аV.2a*od|pV2w=a-y6x3<<}$I$IPp:($T< )hQoߏOδ8^HI4q7HȢfG اip>K!ٻ-h~<]p:rc38:&UMc`0ɱ+eueQ{Rù'<},ߨGO]) + XE$I$IMͻa[07oy$I$IR]@ dݣA}b:sa)1)Mo?3(f Z,_F5I~$\K3O AE;)մ]e&#b۸!x&iH !'5${ɽ~&>ym("zYWpO8NЕ1Xv7g#^"8z1&[qXy8OUdwO>NI' E5z =wwL#eU1:-#XVl3'ҏхrF c_9c┄jỚ)~1$I$I<!b|e uy8t9SGxj[Z%I$I&noٓ*͒U>d3߈ȠcOIMV$#KH qu^p:՝nύW$.>UL ssfAܿdsHZkWs;:7c>kCm0bp @c 9*CJ/ )tktpW_N?!(<v1) [ldUpZS"&~+HIG 0L,PH $Îc-SeH/cT͝YBv:>dLd=`%w̠9cw`Aϳf1vlO٩'+/dS$I$IÇ<<<|;I$I$r~~~Ma:6io8?-^dfvFZENO 3ԑz>G.IJhI=k?}$xdyLd^w$y8C8!'eoG*^p".qn0UGk wO,HΌr ?"ٹsϹ|_}=N8AX2n`(ڟ[#:c'Ky*ja%I$IZ1ppAspN$I$"%!io5N$Ϥ܆Y~g ēA>'y'GEzqڟdz;(3y%j>':d!qN\4rpp09Lt5{W77زtpjOѝ9.}8 GNgoqpW$+wL]`懂ܪH<ߥpu_XE8?$I$I-a177 ppI$I$WiC@>I:`AIɴD&E2>?h s2ȻmI$I$<,TMU֩䙴21# [-H~:g#^>VmJȬ fX#8}{񏂧@G $9<uI47-4?ɀ 2LW1Iy8;+%0W{3LQO/RM#ѭ>,N͌K~\`FNϼ`R/<} vS;?$I$I277$I$IՌ?29^TML9BΑp|AKg;:6 zH'{hpu|Bμe kI8*c'տ5x}:H™ ȜG&iu2  <:duH7I\ 'y&'fsgbpHwSMZtX'^;IϻLSGID{R89!xYR 'uxv.$I$IRypO*pI$IQCŤ˚6:U !&6ho1tsACNݙѹ<p1;# X䚱[pѿLϳ~h{LdlX2U2Ir90_ MLW$ 4 Re [}*%fz@8 OgAJ4'f!98"?#bX7Nu>;$L>=5qZD|T-9T9so]) I8oKI$Ivkfw<\$I$i5g1ђVrK2~2^ҘAFzar+A{S5$ώ)_|IL)ڔR!kI+&*r! l8bb#qpd?C'qόę ? ;|H_ O)|[N!:s73$Ud.I$I>p5~ߙ>pI$IqWs95~Lv##y*Huhf\j R݃,g1 xLoIY|) fhA˜GrZNLd@ H['2y8;͐IJ`b#QtkdꮠÙ3?/뜬;ir\<&LG}<)VVy$I$I옇2־3e.I$I4RU$lMy;jH5iɠI\t9$rr~g1\&1^'Ǡw56Kwdܷ:Ӗ{Kg#AJ ET'|}btg,_Oێ)p 4ާw)L̈'Y!:Oo<̝Bu,$\$I$<|<|ԘK$I$MCz-Hf~dD?ׂ\`"mqU3@*N\|440'NEБS h ɀ$j<\$I$iˑ1ߍTTT'5Z5QxVoAOWBiS`JGs-<M Gyߙy$I$I4#i!##;%!a"T8zwoКr}\ކ/YܪA{vdyor-h0) c2 Ͻ)Od#伀T#/%;%Ge#gRO+Ѫ;,=HKKte:&xe59k>(>9W9W.xL;Ԡ#`n)wMקyI|fw$I$IRoO5}g?$I$Ij" d?9'A.G@t^R#Qx"'9'Ä/ GIwGMi_:C=ghw5ms@gw`<IBNs$LT|2v V!Ɯu,!N^tQ:ZtɹMi; ~jsGG Em̲G 9=3#zf@[iv{FqW}o*O'd)x;Əvps6 H+YEt\$u:$!2NgD:^WN%`%dOU,M;ptlYx:Rgґݦ3G~<ߥ|fN=x⳻?$I$Iqg>۹?$I$Ivfk;rLi$=!Hkw ɚ .H Z>Hɑ|^y\::16} p5!QgV#ϔO Ͻ?BjCMA:}=Re*'mURqh68Ed+sN؏$m*3(JNY]Ɯ~|rlz7v:m<+^+sI(4>pBD~Ip7 0N|5)<<\$I$IV{HHlGC394 =4 1ՎYYAwY.a en Kx:<?-$4]9jdvtcC daơAS ')亶tjw;Ll.bi ^.ȐɄ f  ~Ne暱BpBLf~hk]L f,qƄPol|?|B>5WG; s3I hnsy <NHiufTghK$I$ y3gn^$I$I$Hi]AVY{$r48K@EZKBupb.~BLz~0}Lvֹ:Rxt)ϴ|<)Y'5 7t3\:o\Mu-EGM&4HzI}! f?9h*:&!>(HkZN:MZN:x|$EZ`U+^WW rę?\;MA\3\M\5wf|_ rOKA9g$BuH$I$2d> <<\$I$IWs:[vҧAFL#$4Ãm$6 mF[qddδ^|=Cp & Yd5uK$~5=$#e%wCNI9;Rq0*{ sX-AZFȍi""%xu-ku[zHșYrQ#&=v fwvU0]2 W \xwzr~ɹ g8㛧iׅ).;myO'IeM%I$IFyO3ppI$I$ ^sfm tx3"&HfKF~U[ ՂAf@Zŧ%Q(|0;L|Rρb s62Ϗ 2Or? HHo$~<;>)Y' |BpNI Mޮښݮ)1o@U37R2rQY#V &K+B GwyAR $t5Z^pGȉ 9Eɿ]>$gf֬@йA3% '$:qv4X8ŠdϠcϬ[Nx89X-V)2=*9کrr̜Oxt1?y|Qoޅw$'pC 8Nn<%+^'5#9$$陞I$I$~0W<<\$I$IDCISSq8R@3III :n Ȭ. 27-GF'M L#I9dt$Twiv BHB̈́ Mï R2T;PgBo3~~f` KZHBxj%#L'c"陵#k$*sc y/"eujaf%9d~IVI8TVNfI8s@vGMkGJ=-rH$I$>pp>ppI$I$ F;̇r!R:ad89t@6^7&R2#Y{n0}I'b 9Μ k3܂:[b)TmR{Q6mTA&TU?$tr P>7jz&h:gIM_'Aͮ]^c=bW,ĉ1)%fP^$yNriV ;fg߲Hk 7=K|f}KpwW)d w};7pN9's"I$Ienn> %I$I4H;;Ts=BTS8RYCHkI~U[H.122jzGnLޱsldt0r͂<| fN%ܵ,z'+4ÐAM}pj@N^= HvJ $$~u> ϔLGJM{ 4.V>&oˈXϪיpzEBNLNΞS-jK.n,xeޅ3+V(\Wל0;VO~c_pNT<gJ$I$;pp>ppI$I$ F;,Nؤ=N$M"_)h*shi ##1K+Qq2dYfțτƕUgHkI*NֽS/7'5?#kޜuN ^٦$ yՎiH!3. ,mE.89390HJg81luJ&I)}# 2GO$ďgW>;RFkKt"&e?8m9pJdjM![~$IeMT΂ j4,-A ܞOXdr\WW3}.֠7OlG$I$ITQ`n.I$Ih՝R'lҝBDDJ`&9mIEFF2FKK[3H)yn*t5!*G7Կ?+0ٳ~Ӆg 82ϋ$Nh`(9! !dtsgh I#GMMF$eL'˳T5 *J`ߒIu9E_ɚ$-]7[^w}'OH#8Wqu 1iN'LN*뾐$I$IlppI$I$ {EN!M)KdMu&,- U9mr3z !!'1&'gdmS)ʹ\tK 4Yߨ1Yu`3sY7w% !uo֎:}ri9 &+W] ޗܛC O qj@S ܙ推(&$I$I<<\gn}IQa¢8)KBK-B(N-%(xE˄"(pD aIPrA>y.3,_tL~R;hj4VCؼZ~@#:*j}W8*c]kR F qH‘UN={rPs#&>5I~W^_Գ0z^"pm5 &<B-ӵ8C#qÓ^|=B{S ʰ׸F5Jj\On[UxNö<ahzkZ$5K8"J8Fp\mu3=f_>>FNA a7[8oTtMu\jԭ%Ut5}j;.Tt J$'+rjuD蛔c5Sײ±PVczo_#芄Ra~k;[#BEњu֧S}` /um^S57Æ\ߛh?UCU=4¤4} |h zkD=b&GчӇoX ɛ7uV lխc2 ju=uK$ލch*F,I`X4EkE0Ž«djy銄:ax@5 =ըk۝TMW!Wk⪑R&zlzl轡9O_y3&+QC,Lߡ[ ֭Ņ7lnMMW؛c,}pu8*ZqY#[فYI͎471 Jf8.p&\KT6ѷPSWET78=Zg:C:aCK^]Էhl+J&jq}:p4u%>6yZOs؇?އoŤҐЇӇӇ>>pʶN3] L`~ [5a&14H|úΦAYq]r^@GS } )MAsV%:wz 滀oxA}S^aP[/~UAcuUnYx>(7:ZQ&P;pQ_ᡰBY7>w{f;QDYhů^S/l膣%VȅW*jëmV;Y@ͰF28 )MY6 E؇9WvЖ [x{5]麟c-RzesMOʖ^\| m $~.4saǾ1&U o}6-։Zqq}8ppppppH$l\GZ.yc^Wc7=>|q@y)n14}{Q4GVM~؇pіnʘk[)K-O劜Ȅ;pW{rk[ʛpЇc;jQtIꘫL]s< ]?ܥ.9n)\T@n h3M505s֊}xhu;4Wrz$ze7xp:ejѷjëpҍЇӇӇӇӇ>PxL:tGYFGݱz;UuǸV-^e"}QO~sjTllnWE:vįYzmg8:@ѕ:gNx[ڡ3.~ET$暺܉륲sO;[Zq5j3c^cB Q؄6N }  {h.ϵqӪ טZ8kؒбc1NgusC!wP˭Sy"lñS!p@}8ЇJ/>R.6#&kU|Nw=tUNcts ׽ӜU jrv>4};}NK5:Z >j9x@H}xp@}ΗwtLSt u<3np:еowU^73އk+c&ou%SQ h;Wv ܛSG-rZ }vR)/B(p]iBמH)a-s9p6:"JzZr:U.vU\[^ Da~~vj-ֻ.ښ/BHO8Fj$tuF&z-q;6}8d]k]C3Q+ v:UӕOvGq8GNWTkNj5j>5!ك>G }x8RJx M:/~t ݻGCG~NphTPƽlDtQDW&7v?qZ ^[Sϱ>eч@><ч p v9tՉ N#蘢Rto:6}8dAOZTNv:Ca{&owN!w G;]CA&>RU5ZhԔN%gN&~PM}8dp@iЇp}8 =t1eB[}9pf.uv՝xs{k ,[2Ngg Npm]m( >h_8˜~sCW9}lC(=̡GMn_RΠwF#ͧ}8@G Nvj\lDGꩮ;\t"[}F{7Z|}k>s45!&vM(+8RӇ9VH)Ƅ##6}8@})ԍk4jtu*ѷuMk|MuS9zLX]{[O?7pmǙʳЧGK.ܿfO\һW }Fe;GᗸcoGӧ8eQS Ї}x٢ǑHЇC(} ԇ\߷sNV->/".d9}8 H8ЇJsu4 p/$w:C}8 F]q4R5E/:Z?nsuŁKF5v-ݽ]@r7;=rW?-ENbZCNk5TkS2AkFQgy:~CY>؍uO=rXկg-^tvW_s ,-niamݷ?moki4oܢ+hZԲ`fk u>pj-}}8>P>ppY3p@i: }:^aa{o`OpGU]ԀGAk.]Y.5I+N`7u8~{=qo$AtwDjrs3ZKQ_xҳ(zvz0ک9}7c71>S/]Wn8i^/Z|A]wiiҴƦ7Zhfiպ去<G{ҹ[g3=cy՗+},ݞfySG}Ҷ][KXniyYf75f]weL7KXMfX+߸p,#}UaO4Zo&Їyġ>pp])i'v]SLWA&^CSNr.uNOPZ%=JKtju59͇>}8PǡB8чJsV|\}x\ uAHG9hV7!K^vj';:QF5(5rQ;[4S]:Y=j,sX&Mlxǖ~eٸmeϯ~ٲ-3ߙi$K,}^{ٮOu<#‘UN=/Ny%އUwj6]0}8d3pBNAN>އ^ GZf9r;uqk)z:jP>Z[}vMnjb9-Moify 9α_:Yv˲=ego]A>Qr߻'nߩeo-_-2~8K[7o9s,ӕ7W;/8}no#U5\JvD(O(xC(R&¿97}8 @.꺫\gQP~p:68f=ҷοL8m%5juNQM3]ZRC>dyK|eauY,;a%~{*2_jٴceֵY>c3=[{}ԙYso9Nmooz;}8dp@ypd}8}8dp@zc1Eg(d WtMI]NǦl>z>@[~7iJmU])Nk֖Z7oi5t2*eͯk,[n{gDOT$>Z%ZVٰc5,rXx ŗ\lګ-wyEW'^=Qm)i{чRnӸg8]OWF~--i+urn5xeg9/םnn~s],?Z`ټwe_ۣlb^Lvx4vώm7H<}(%zDk,lm5?X̚bإ5-hUx&kNl҇Cч2>Qrm9 p]l o\י}8 ǽ&vNWfD8%4^ًN[봵!{KݔS,v}m-u 32ٖ7/߻Ѳ_,kK&XݛcSO5Lu)[bYge3-{wtrϽX^r3/8$g\>|SBv>E([euG}8}8d3p@zpu^%M4G}b2::kKpCN㫨Eg[:Mowy7|S`aMml{ˁu <὚~_l*:MQV2>Ϣpz&_b{k^R)-?}rQ, 64k̢F >|N}N}>҇@6-̡ЇӇT:Ƶq'n / m=mIӮMUݎtkV2i${_gY'˚=k,xPِ4OԆR|0nع/,s7һoKZXnܮъ?ޟP}xyN}8 =yė9\W32ʊNrKZQl#s;ru-߲`ˊ]+,k\gY ,k=Eo/>k=5{VY~eo?Ym[?˕?E&yŮ5,nR8govmu~vΩOce13XlwX*5y@>Pz><{ЇӇpx۝nq}jQ;V8mS7\,W[ԯkyW9-K6.ܻڲϵ5Y?k)uw|2zh}F˥]?/o+-oonyq~ka2zp=?n[n{,xEZqeMY`QeTuU{dƧ3- \Z˭[Zf8i>p@Iч>PRKz288T׺~Dj_;Ici?ռ3OX,۵sAYdߍ6ꕅ o?Uho7.eյT>b+m9ʝviW5ЬQ,~Z-`xl%'V<1ːC-?\nߢ\K9-.*_o =D+4l{~|ye˓=;ZN?t]|3d}8 =?ч>np%ucZ{w.ҫ -v8g0?n}LxZV@XYƕQtK"F޻twA,{fjիY~_uՖm[Y:l5eo 休cyaH/˳}<ѣ εT9nú&6tr}FgѲN=T˼[ȳ.yvk'-喂 ,[~˃_L> # }>>:p@zq voŎtx:+(pYth[(uSNe޴,e+,?E?/=H{g%|?~,-g93-5zI[2Iv/`)?^nv"˭uٖRpF3,zl$Ooo,L*jvְۖw8d}8 =TЇ>Fޘnq]17g;um:[dWmUl5;Ҧm}Oo5--ˢ=C ~,۟o/tr},䘊XKwyeі~Ư-RdMb(Kwo=˸-꺏>hK ו4/r ,Eu?u(f}tcl%{|k7GXvrk[-_ -p@zчgЇCHNw_s 53V:NgCFMyݭrjVi:ֱnwܗ-k=?>{ޅ;[>Y--UWﺙIdX,%R[Ãur)x~%Xnn2%&Ve%g~a/Zkʶy(+Їw?/pp@IчCHD{{ܽNNJ gElmt]n_>ɎOZnvK;[XMb۷EZβ(K={D{s8߿ߟ)Y:rƹgZF,3erזE{Xeg(<]K,o-m-=1,w+EDs.\K9xk2%^b FM[,mlcx@Y>}8}82>>PЇtDP;=4)ͨljQwz 2G军n<'X]rp~_z 7za[*(Ybə5'`Q#}qfX>ZeJ>ŬyE[ V}b4}RJ-]|㖡3s, v|k|kdbK[[zii\{7\o7ڲ4чӇd}8}8}8}8 =Z\]?,pѫWd7h ^}}6`}Ӥ+^T"K,,|c۽cYOs/߳2/,|.Q,O`ѣ/1&Z=Q~\rCݝNzǨeKg][:hyaT/~nzf4k>:&vb5ˀ,>lܚ|'عknQ_ʱZ>ESfz˔U9,a{,7޲Ѻ@iЇCчӇӇg}8}8}8p@zAgWKn+L>|+pM^}DZwA-5ίayu떼1/v|mfSo$&,88Sߧ-5'ze—-s~zϒpn n$Z(M]lK-U}gz|K[$SL<}ah˝Oe9<բO% ;҇k?sNNNeuT~ЇL!q3>\~w;ÜٍqچYޱ6,_&YRx}FM9}OY i5N}xSN;ֲ-E|=õogt˸yujZN;4ox`ù%ZJlDF5ղyeG}8}8}xЇӇӇ@٢> 1iuq:F9S#N~'G;JO#ijH[˭|U&“ʔdǟ\2 2m KYau3o kXι7]idK^-zo-loymw#PRЇ>>>w)}Շ/t:{{Gsga!l2wQvK5>gEe (Yk93,UU}xY^%oKzkXz`=cS0rlc-uث-3i? X[2^iϰ zw\uU}J>pЇӇӇg}8}8}8-p@z \oW-p:S(Ï>\uW^:]Vf̜i93,z2} KoX>5?٭/Ji̍%g4yy9RjeK؇S w4>>2>pfj8pO뜎eNRS(C2(GyάnQRVE-s5۳w׷_kZnhק|wFxg[ S8e0}y4gX*Wb9*2s[9߷Rc'w~qB?+zIKXzYlzR8m6~sX v}cˇavz{w >,́($|G[ΩuU-JU*Y4Ƀ}<3%UoZ>Q`)n ڷgu}KI߲} ׿ؒ3%SOM-wTÑ}8}8}8d}8 =͖k]Gv2X@㣔Z9ʏQg?͍(Mr5g;ҴuSSC kΏ>ӳ#ʇ;=wNcp`W{Aw7c,׷RQ)֫-;kOs,b -3̲EͶ:sB_Y>Ʒao"Y}fliqKnt^>}xЇ#)pppp@z ;Nͧ l1%/K(FŒӧ?DYUupX:C;s؃R|ժ}~)+fXA o,|, .(onm06҇U!J+Xt-S-5.aV;Xayk;aerْe溷,ÿȵ}q K[[؏ 9p@i Ї6Op?_чӇӇ@ЇJsFf{p{\-}QB5eB(=OF,``yjá>lp}6yίZujY.o~eٖ[Xߒe'w&H0ͬ-s,cvb劖JG[tM -inyqKϳye,)=DzMn֖w,yZέsiMF5p@z ;чӇ'G^iЇ@xa=NJ;(ۆ(y~FwzDIQ+>cS# X.ѻ)ݔS, nhir͖;XfdV,M4}z|*iK.OتZ5oeo[1h-9;A-qO-7|kS>ck#H>p6ᩣO}8}8}8d}8 =mps\/,>_(eOQF$)ϟ{,4 }x$wnӻ)I=-57w}Pf?{*ɗ2|کM-kϭ~q+&XLYtK>2m˛3(oFOs?cWMtGZ[4*#H>p6ᩣO}8}8}8d}8 =ms>ve}xGQ(%m/(gՙQϖ{((އr8:؛U֖G 2;cI)[[c-Ob9rEѕU(ebE#-~ic֌Zt=0moYnas-Kid*렟'lW[KwZC~чCن>>VwkFmEnR3w򨙝Q&QvnR(z؇or]%~qHz<_}ujwߴL^OxN97ɛa؃-/wܺɖ-9KFZ}1F[4kpLKi GWvK]-L0,ےL |-8aθLˈ,ْ.[;dS/oiڼeV}8 =mSG>>>2>p6ǽweTK}Nzݣț]ӢȘۣn}gã6R}zi59z~FZ#k/ԥf,{-Sό[7<<Rx{pK) =yN:2vDK/ZgoiRrZ.zXN4K,TGipekiEYb[pڒXzw[\KYmp>E뷏_?uZwK\y͕'Z8Z@rЇ@O}xz l0:/(%K GjEIQ[~"9n}'V}S(؇rztz]<5 a \sU@_*G^v_-/c6W-Sa}gAѽSn)zLS̔'of ĭS,7O!ʘ-WX6һe#[Ԋ6lJZ/];ޢgo[r̚|}Ym{>|ld5e,G>iq9QV}8 =mSGppp4p@z hl-nA/,s}xQd/QRyTQBE9peQ pOzѻ(-kNwDQpnwemr~ ,=eteoӢl2q[\wbXQon(o9ga὚ïS-Li/Y {Ҵssq'UT<%Q)^ -W߷Y{F5)iw^~Ilx/eіْL_8!SO8V}8 =mË!}xRL>>ܡ->|ި((\gzqz$]G+]ous]r]@+\G7H}ٖ^l92a%eL~нOY8ؔs1-y[ /"?x -ϵԼBbIއ\g קp0oNmUrY-mzi69KQSߒ:2lK7XzeV}8 =mË!}xRL>z)nvwW DCl"d*)JЇ'wNt>E|4ʣNWk]NvǺX<-[Ny/^X32f[~_l; cbI~oGok!r/ [1’k~^qO8MI0wc{Zp%+~5Xa:ޒ|[%oe%guX-h)2x %eV7F8h$GH}8d"kHL>SMN[d&p]_2QRyg9QQÓ;UwN؇󃮕]@1NW<*zNWԧuGF74rީy2|(KޯdtO\ˀeC,WnK-~ju%גk _k4%y>xeeֱ[dY=6>QDYkyzv71T҇3pppp8ЇCFßԇgpaW|E~%.}7J(.=py靣w_n{Uq>:Ң漲rg!fu˫YrYFmwPF2*r=c?!˩f9鼓,/h)nY<} XOs/-c,]tԇ{Ke*&omɢxvU\ל9zn]ujS)%Osu#DY}[FlγeA˸2*an {WOY,7ujj~ =⁖} m1J}=ckW,n)Ŏra,WK,2aN[ncb%,ky?XRْEݛ]Q}FleyzN7K+X Ҝ҇@/2?-ЇӇӇӇ>P3\pfXP +>QBSʿ7JwovmmeEy(׈(z ){>EuݝOբ~mMM w:=R NKa+FXSϏ [rR-NfQbxh%L5XPReKΪ\K, k5,زrVZ~-?r庇YΖQF^:іLc۪[2wXːr,?mtl%A- 9p@z Ї}xRL>>ܡv2^XYݏQB/%Qʧ|tE3̧pFDYMٵ5E9D} 7>N׵Ի(>ZNt ݑއV˙iQ/e9"-(ExK^+nʼ06Rj%.;`K+L>ֳ-Lqe˓SW]hiک%g(Kq+ZہR.`^K--Wrɍ-u^j,JQ⹖ns$EoX^ؒ502'vTZ2x` G+H>p6E@}xz lnQVV}ٹ%Jǂ(n»T(Guv;2!9as><9}۲i4ZST'Jis]HZRs,a)lz=zSi-47\giV:'W\p兖[y>`k,?{n"UQP\pECL<>ƾڵvNx/}x Q=QQJ:+de(}΍hOF :!@]*wQIsL5[ZOYt>{ӇyRgytmp6槚‡;=vX'Z-d)nIS5 }xЇ'Eppp4p@z [xah%.YmͷQF&<(o/7J>\zY{Y-7G-gp6䧚cG ]=ӗ-=p%l}~ZFc@i'MJ+Y%we/YNLq'VhM*Vh9,|e)я[*PRjk^o4V}h9-ᖹƖ׾kfmtKƞ׈-u: Z揳pT>?ЇJ> }x1sO><=iЇ@'v!7}xa÷ȡkwF8F'EDz~L(~QQ v9ly[Ľwޖw޽-cz%M0u'f{^mkZUc5ߗ,,s>E0~{>ϣW!Xt%\o<2rhKnsɍ-c+Z.iT2a1ҫeKSU+:^6Y_c,^bXnɃ,wici8Z@rЇ@/f=O}8}8}8d}8 =mN ggk&JӇ%n(s QQʶo~$Qʪ!ztz7%22wCf4}k&d4Ö \uՖS/8*VkVҪ{key+ZƮ4K_<×-:ir%\f0gIiy[F8re[`s?n<0a˨X)xxޓ*'V[ǛZf[5.[&s(tɒ_>p6̓><ЇӇӇ@чCy^tm,W +M(q]IS0J"/%qwF GD9D}wZqs.boJdrKo2ve\TPٗm9걖8y [rYƭ`),o=a,~R%jc-ϩc0EU'tyRJpn2jX{jgIpvM,-b22zK?҇J>܁>1LK()pշw;AJӇϟ%(o7-y^CՄ+V|%f_y靣w{S"Km۰Xƭp 'Hx{|JN":wC,UNb9*)ujůYh!2vՄ5fid K&u-wE( oҢ㭖W?gcXOd ,-#ϳ<n-f}C]֪p;T>>2>PV>_n{ӝ2> (MiQ D(TRՋ|1.tᛗG }jCԇ;D`;G"D9J׾corBUDf'~'?bXeE4wqUT=Eh3/>r}7XJcP~횦,5RjQk9S,=ĈbW-&Yoxhp_c˙e6QXrX[bl=ݛ|=c|eYΩ}M,ͱ@rЇ@O}xiЇӇӇ@чC)l;Ovj;?ó'=N7(އߘR9OL}v 6\ڨ啂a FXƭdR_13頄s8oE}x+[N?tKq]-?dyqV}/yc+Z;ک[?ijNQ ~횦 Y*]R8G[znszZr援.ͳ~=l^tm-Ka }. ˓,oˇ9V5 Wi=-\|ַYؿ uЇ@vO>!}8}8}8d}8 =ݕSIQB(.eڇ՟r%.ϱפn,W7Ƣ^,㋫RJs|  T=Kϳ\w#8vK7#-Nayg9ٖ:Rjck\ډ,ToR8VU,˹γԾK3Y-h'<"=H1S3 1[.%oiٱE[#<,QK1ks|>LJ=iwe=C?daчCٌ>><>ЇӇӇ@ЇCl{=s]͍><ʞEI}eڇs݇&u]>-rm,Z|P46Ë7|x4Яr,5^hyേ--Z^y5KY>RzZW׶lPs.BU]miT+K_ j%L|0ܒ|3¢?Ϻ,K^ <a*7]ci|WˣO 3jˣ[~Œʣ򖌵|1kKg?gybpG:X@|Fv<7yy9ыZ&?fy~ڋ3/:=2蓡yL'Y0r7Y.kt%gd@lFNG^V sluvӝt{Ky(qR}Wձפ/pW?rg׻-~%ɖ ?NI9L)a&'H)5 ׳ϛXyrY'[>X[:$2jK -.eѵk8H}8 =Ce>>>2>pZ|w4J ÓgR(E̻RQ>տq-ji[,heEeҩ٨jDvM4hq 9x L_TnyG-^rE*W4hR>[r)czX?rKG?fa$"H}8 =ppp([ЇDWsӹC]wq!3ÓQBsR}^Y}з!zrK{G\[WNTGa`o[&}75j\'fM_4ѣ|w4Z}o1K)%O)yqv0` $7|^w^CG[rwY2%Մ]0r3Zteі>@IчCpp̡EH}8 }i-7iwARMgYZ?,-뮬+uZjZR8Pjg`gˌgB  *q%0`@D=x3{O^|vvgzfg{g{|:aG35W3[?5{VMK4Y<_%};?K6{DŽ6sxN:8LXg0} s%5<fna^ p@u=N/=NΣCU\%>"Q ófĞLukhzmd*Ok׮%] seaθ3ؗZÌ{Y37/$r2|[~5ɸL6*?~EdtK_'wY|ۿG߽=1Od#yL:EUEofwr-Ü507wS1/ 2%ZÌ}q-y1eMퟕx⏌?><'|ޒ9Ɍ{%̘Dž0w?}Oώ 3vNK2/z愋O .ۄ{)0zK0$לf?mF5j;) p@u4z8=gAqpz8t=Pz8 IoAnz>|#-ؓÒ}P:O&ɢd9db?%SCȯ 1]ҵKO=&?*]3 0KEϧ%֥L[4?~v1Kܔdn|?O 30th} sCۍayrTZÌqOo$zfW ٽa=zge%i 3>_>q|gmFf'\[˒1~0ϱOaakbZa0;8?^an/8)# 3z֘0jKN?3.f.[ql0.g<`٢CTNGqp@Gա*/H7%~Ok~xk^KdZ&՟#?Y˗Ħ<8%̹} [9߉a$'Fi}v|'h~h~|o1YO>ٶ&=\=0fm7 5ara.kG]fcۄGz_|< ̰)wԸ0jKzW siםŒ7qxET=CtW#Jd =<[vOfɴk'S~WJZ7=3Q]oϯQFk=a= 3z0L3dM3 Ѵf{/|?ki{8Qanx[츇ƪavk0Ǟ3L~'YmcV^e0mgsCTr>a|?y]]5#t(=ЙW^p@G z8==p@%μ*9A S|i2 q+1?wGr}5']}0=uVkڒyzB'Fwh'y%}?k-1_[ξ:-ixn&+bUVUZ= ̎{[.ss-a:2̸'LJɺK~y[u0CO)6].]$o k@E8pz8p@uVTO_G5E-yk J+rEٯ~ao0ݏfaF<|w'LJ0m3!h'y%}?k-1_矻=L-y}a`0묿f߮f s`<0w?zOkif5a~&#8ώG2=QDo#=GT l*į>\hVX^eJVWe=v6ʯV s G;ô>ΚS΄h?˷[}oTh 3z0LytO3rژ0̚0~i㝜oSG;w~af0;S>g PQAFEա:׌Qc"QyM&cagaz#u#<0g0sI̊h*ʿb%Y}K}Vmank漫9a>0Ȱ;&R{+#՟$[{͜d?m s5Ì|`Tqi:>L{OOf+μ7kdCŒtW lae{Pšw=phfp@u2_ *v?H3o7oo -㭴xyK$6f{|-/Klf7aο_0MJa&MO-;-Lz,cF%n]~a|?a o  6[qxa&7p@gJ=PQQpT89)p@l_U *ʭ5_皛NFV.}[ү >?~7Q/{氣^a.0o1-w}ߘ0?fɩ7$QmΝ%*wT~_=ܻ'faa<0L+/ stcCϾ sʩp0%>O1=P|pt=͆=PK~̔޻l*qkE-ୱx+yy,~~yhҵK am:̉sݭ׆0fa&MըOߞ;=SR>R[?>,vfCœ?0;GMI6(̎;<(W=PK4z8-z8==Pz8`y+WMȹr.vuB?RW=w{ ooq}Gx *~SC sLcœtIa7Lia=$L딶0f򣓣75z339=GoxɌ2!̸[ >87{߿}Z0}X2G&.{d,9Pp@uNGqphlp@uz{]I(沅M.,Wq_үhցqG~tvWW{{8F.ۋ;ҨoG?J_Whaa-. s;Ì8&L}a?mʄ0LLzhR4y0Y<>d?f⃓4Otm鋆i5wr0]7LN _le0ʞr<*p@GNGphFz8zW%\q[iZɉrx5|Z% yK|=GIv#?yJ|^b,WGﹿ;k4o (—=fK.ϙ}m0{Wlf}aN>0g=;%]^Aׇmmafd0c' 3i05L 3ml{Cta0]yy>az;~f1>{9CÜuYa(|Ng4WCz8=š1ա_\}I7gd+]\U2XF_~y _y~:k}M _}=<\|]5;~X^|ǹ~U}+a0=SO>aw^+"̍7 smsĝ?s˭\0nSN s1G9aR[2H?=Pz8ÁeDT(ˍ˯eʃ2BΒ^r-+Xד?&Y|>߲Wn9C+ïŲ'd]燏:N|]νĿ3kc+G?~ la,I|n}\(Mc:0<y p@\p`٢ʂ|Uȯ\\戯x\#~GDzītC۟kb[_ݯ|xmxkV^,爟=T`7ojB[0';,iMag4'z8:p@Á<AT(5 @}CeAT=d'z8:pPp@uX}d'z8:pPp@u=,0z8@Yա`pCeATʂ==Pz8F( z8:pPp@u=,0z8@Yա`pCeATʂ==Pz8F( z8:pPp@u=,0z8@Yա`pCeATʂ==Pz8F( z8:pPp@u=,0z8@Yա`pCeATʂ==Pz8F( z8:pPp@u=,0z8@Yա`pCeATʂ==Pz8F( z8:pPp@u=,0z8@Yա`pCeATʂ==P =eATʂN~C^RZA7ʎP2C {|pPa<.^/e z8eA/tY} 4"׿"/)}3?w uT&==~zxx;xxy -e8cd!׈{_(!V݄m(CůvË((0m^=e34+?--U|Mxz8=@g=p=H|%͗e<,$kJ?b 5=l{ sg8 W+JBp@#᠇@W>_Is̐)2A'%Me?AFym땚ϱ@q^'f:=hn@4qz8=4z/tqor-e_Un3z^)%^#[cq_H/zZ؆@F!)o{+8B_^@{⿥I|&-ce\*k =@7P4zxy#+xoO77oa_ůÁZ};_;rjJco%z8t5\Gʲo`>SZ ^){T&hU|ez8n56_Ck,x:}X/-z8P}6WuljH}UMz8t5\Gʲog_[{-3⣉,#A7Pgp\F%{]g%|-pƸ{һH{+^5pk@kkHߛyW=x[|->< d\'|p\F{oyo)nnWi#pFFfg)WM@7p\ʈ^pFzx>-?+>/cFz8n56v25i g=1ᏋqUq׀z@ z8P}#=<pս4wWҼ]!gB ^nG.cJb_ܑ+x,pF/Sō7^5-p]{pz8n5kqHߧaxS2|p\j^&>^Eɫ+Ʌm<'I' =1ʓUS?3g֧[t8^pFzxGx;$Ve [d& =@7P4zxm=<.H޷x:}m^a pF'?UM4R@7p\ʈ^pFzxt~W@O`> WFp\j^&^)%CqI'LOÁZ}x\q[|j'o@7p\ʈ^pFzx{w-oJ!7ʅ+#t8A{[},.i޶^w׵]9Ez =1mxa%V+pz8n5`=(㾑OZ/[qyTP(t8A o_Y/K;tO&pƸS]{US = ׀zF z8P}#=<^`>!r/'ȪB ^b'W,=rsud< ^;{$Wbz8=@7P?AʸoLj1e\#J/p\j^bx{,.lmQBjo{HW\zgً}ѷCp\=6@}Z~pyHFmr#=q zx~$^){4pog4^z8P}c]z~nKl5>ËFʻogOu{Ur+pk@mËvýs =2A7{'ҨFz8t5E7óTý[JM׀ڠ⿫'G=1=*OIo\(NBp\=hpFzx=np\/zx@y,pk@ËFʻogLt8G/Zu=ܵkp=tPE7ó{VQ=5"wIVt8E-ڟ޻gŵ~+ =1?,pz8t5\E7ó{w-q~q ykxx+}&.fJz8PtoFpw`H/Fڳ8B/=(ムg@7p\ʅ^4z8P}#=<Fn =hpFzxq (zx@y==P.Á{6z8t5\E7lpk@ËFʻo ׀rwH߳8B/=(ムg@7p\ʅ^4z8P}#=<Fn =hpFzxq (zx@y==P.Á{6z8t5\E7lpk@ËFʻo ׀rwH߳8B/=(ムg@7p\ʅ^4z8P}#=<Fn =hpFzxq (zx@y==P.Á{6z8t5\E7lpk@ËFʻo ׀rwH߳8B/=(ムg" _- ȁz@|V'z8=hpFzxhp@󠇣ËFʻo1O\ז"kڑUğ5L^*>E7lp@=^4z8P}#=<F4Wd`EYb>.>`=^4z8P}#=<F4z8yE7lp@X(7UP*k( Op46zx@y==<AGcwH߳g+).,%F/=(ムg = hlÁ{6z8|,GNUMwS9B [Phl[T\5E^gd^[kaۖkH߳͆hp46zxeD===l|('KU5}:?[Phl'2F[o~ޕe<,n,PSsǟ"__׏ Q#z8̀F/=>"pTo?<!+KV{}g - gp46zxmΙ8z&~T$9H>@Ck?#$?6KeOG𘡇<=^sfzx=vtH߳=^4zxuz7lpb럻4~W =^4zx徔L9Dvw34UD&bd2Ü?B^a\'n{Oog{6z8F4z8=ho9'x5\hlz˸+Nn"G\UD\Wo̯ثW3d<[^~4-{C2!}#=<FFBGcN}#=<FܽPEGct2S(u'5Rkd[.G+WSٽ>_ o{Ǥo'n=̵ .S呈>CeYهt9P|ͳūJ-H߳0z8E磇yH߳p>,|=[||}[TAG3ËCOswǛQU>+H̍dJ?y-^SⷿQ{}\RΒT9YN(?~ĝ!#82N#2_lM{6z8fCG3ËCO˲o|\1+|)>},>ҽ2N_1A7F-i1W[e_*>u6hlڜoͫs/axFuo:x|xKxz͓+wlA$-|ݹ.]?e7ud}-+Da6ΌOx"̰B4\._]m_`ֱr/W{7}E˾ğ[!__j-߅_ Pz8=6gp@%u7pwow3wz-f~o]B~Ml,o7C((Ņ|eq_W,(HWq7imď4o+Jlp@YYp*GGc NqH߳J|-YhVv9/y,Wķ+^y;~]-Pz8=hp/dVW [_Yk/e]yuQ=<l/촸L>z)H. ֫V$R|;~}S\@LdFz8=E7lp@=Z(.WuWr.Ɇ.k"7%z7>ښ|ӈygd|;>}$=,]y xk|Ghl]üǚǘWxAuQ^bEW["/YWL7xWY}H[~{~FWg>L1&+į~/H\2^^x{u,|+z@-z8=hpz8=Fzx3%O߾]-g6O&y>[H滈]os课H||os;~ Vw3^ ͇^y{p{!^ur${utq%=<E"z۠_`:dw{ kkn{rxI7xE\,bj/7sH߳? ͇^y;=N/㾑gjkbU)חߊPCϬo:믓#oߦ_wUb5|G|# fh>4gw:K/5Cm_x听uQW*VDIk[T߇KſXQܮW?WiJ'Hښk>[WOd?SͶoZAG34zxqpzxy==P|!>Ϲ2F!}U N*"}Fсq;9;>Cvy%׍bIzk7Ucip4C]{߷ᲹsFR~_LIvծyYo{FɵgE|߼R_$+kn_Ѥ{[ר~K-OH{6z88pz8`y=jD˸o"/> 8;I|Z=JYľ*Ϳ|">sV:S6md7[:g< ͇^Y}3p?&e;qwGQ)q Z%}{xV iguwy7gߞ,ߚ;@9Nvt3{/:!%"ͳo"/pz8`=zz8=^}#=<FtyFJOH?w s(Qs!ǟ~O3ũvyoo%|[r)^ Oį\x@=j=Ww^'/HK;[ XNf5֢0q3yq;-1߇{k`'7tsǦ=&gދo*.#*W,ۊ ^Jc{6z8p@kSpzx==:_S̔륻*q{')?'*T՗5k|MonG٦ϋx@󠇣kS=({ˡYbY= =<}̸'kd]{g5^F32gg磷Y_ĿH㏜*K-dߓ7lp@gDGcצ2{6z8:>!gt>+yޗi~Iom_/GgD[?5 hlTĝoFJVN˿b)qZ%]UW}NoE\s~߯?>zG}+ҿ۸%^Ӆ==Pz8=PhlT#z8=^}#=<FTAjyW8AW-9v|aWnެW"6?+}gq06{om{ϻſ8I|SZķ,phH&~ՐA~KVϺ)q9+o6(K ~%C&Y$oJrkSpzx==z2^yR|FsrRwבvW" hWP_2l=^E]}V3]VJWHxxxut _U2_-+o6.^is5Y1-5xzՔⒹx7s^ɞ?R2kZNqH߳i_||y$^`vl.Aƻ 4'z8=6ըzWrx~2T|gZg]=3^%}_{x\?*LLWq_xkW_$JR| ׾"޶q۸x) .wm*\ iH߳ipz8(;z8=6ՈNqH߳飃/sl)6g#Y|AO?5!⟬}yUʎF.\ΔMdďpWxuT_ktfE ~oWSx|=M?*F+,~v-Fwt_ 6%_2Yn1{zx%{6z8 }tPvp46zxm^2{6z8Fޅ&wm>Y/,oeX>>ͺ͎{XEoIIuT|7ҿfCGcצ5FEMƋ!%ܫ|%9akk,^s~+oHhlT#z8=^}#=<F|n߬X ?Y񷑵y@xv@ᵩFWt߁L5Rrl_ ګ{74kK.YWLߟMN~ o%?ܽW_=s+~zx+y[2.MD=ܿ1W˶/cH߳FᵩFpz8=FzxǸi+X7p-:W~xkS}}?'dp7լ*zkYboY…K𥬗UG~ч]3ݽ?'yrnW|7|7]!k+r~z+ y7?qU1skQ|~̔}H߳AFEGcצ2{6z84'||R$RLY_oȏoZ<R>2v:qɼep_#}V-"6w?B|HBhlTpWV?ԬtkDk%<} )FJz=*(EJtOED߫wskn*nRg_[WqgvUSOFzx͉N@ckSpzx==rxﳅ DcOg>S,~+~Qij =pNK/e_VZ`*JJzcq #^y OEUҷn20#~n>#2&2~u;ϻ n Y|mHýZ rxǥFzxځz846z8᜖^t5e7 :Wx)j bk&vs0WR>4Ưb9D[ᙵ&Qa:bNY!/\;6 Hsѯ|~ a8-oU[-5~^3£Ybضx۳ߚaSU|g0,*L'^ >=Ln@_]1RbRHa>0=qm~b/D*o_Y<G76Y^[$E[>kGga{ 鿱{xHRJ=e;fVK|kĒY_WS^+LV'Qv9:6;沊&'kyq?;"kO_ jwM =pz8=Ngapz8={k$Еɼ|2($} k2Dy1">"^㹈RI˺'d9*'^饣3+ofdu[ vom?r(!~tƵ5 0 0˷{[_O2M 繳cRJ^J~oR7,|sa7#q˶Ͻ])].nŻ5ns$O7CUNZ]W5+#2~s}kA׃mz:jVͤ1P5!pz8=pz8=aaNpzxE3W2'Wsy2_§gG%Q:(޷wu䘯JdN,|">#-^O<){Lo=gY~ڬ_exU0 0 \{6UMr`jd)=.dq1{:%lR{:R>2ukQ|>VC.vd~_o-Wfn=,nKVr*E~t'paa_ Jf<}W2f'|^2o<̬vՓgpѺ_Ȟ"WwM_O5e5^#cWLpŷUM\-}=J $+Gk+Uב<_\0q'WAUʪNH&͔xǿKxj?y1~a0Sūt%wˇBpz8pz8=0 0 =NgLܕ?d^ 6pܷ#kh{Hfw&C֭Ueqyϵu_asxՔ{q?_Ȍ[-~%u%xB?Gpaaؓdsyir2sOwId HUGvoO{x|=zpsimůhHk ^r}dog_m*mOd|UM#=}*Jw閲~E["CV*=<ǃAlz8=NApaapz8=NW>Yw$#pCG U,埬c^}+9s}$jbGt֤3 0 53٣rd>_'Wi_|՛'CW,0q;ɿf|%xʽ+E_Ѹ]-^-lBnJVW;Iߚ?q \Ukb^s5aƊ;3W/g4|,E/O}6,{5H-i-npz8=N=z8=aaz8=NwL=>32v^}\*=ty3#O`f~l/:񑫸{ؙ۩喬v:Y^Ə~]Gϖ 0 0ug26d:z ~m>^k&=| o/:.:G5E*~oYɟ@*}Wq$^$Ήga֓<70jG\A_O#H+T{_,.pz8=NN 0 pz8=N/}5;6%qb2iHz8 sY)mnˊW؈ooqY6դ\3~}?yKVUu3^z80 0M=#LƦ J36d^Am_V_dRWՌ{x|=M{ZOI(n^~!qtst3?VW۽⇋_u0^/壔twuo^~9{K-?Sz8=NApaapz8=Nr2LQ3)$d8ۡ~{;!wv*6UoW{Y|#>WT|leu+o̿xѽҐ0 02d9+&Sݭ[=5ZÓiU.=i?𥬗@&+`Fܴ}vJn_'ݙ+n?D=<旑^~>wKxz>=8'AWYC6"zxz)ϕ_OzGpz8=N 0 pz8=N/}d:ac!r+C%[JYc~J>&8I/|wxwJVw3GN{nߒm%c_ |~4gG)=aa'eHd)&+4qZ%7*ޙi:Wq{xx./^oU9]W(^%k`G{+ifppם "%<_O?k{sχ0\ pz8=Apaapz8=N{]FCo8_j#S,%߾؃)OɐYP_+>,WZ)J7/H}-YWYV[2YtGc?w Gi9dfݑgL`(Ӷ팎1cb4FchԨqK\%.Qqw\2~FGtTpAp YdDA7Q@D@y.F{^O;鮪z몪vEDQ'lIqҦ<2KXJf-Zlai>'s)ч>`s^R%13.pL]X5%ɇ~{'C3F`1iI4|8k#ɇKz)3# 3zL!*^mF>\>\J>\ኢ(ኢȇˇˇˇˇˇ?,ĴŢ1|pS90|-gBۜפeR9Zqps󾓥fvNL;NX2k~;16d9u$,>ef(LJ&<q£=Ug#...ȇ pppppEQEo>֖+,ȇ̌pxegD+s$=4L ttq|8~N% +9SΚ:XN@Rȇ+e_[֭<ɢ5(ZђcXʙcY֮Xlisy%pSƢ':9IR>Ͽ5"8ZpO\l0xŅK }xX5f::d\A륬όMxO3 m<6^ef=CyXqtv ?bHmؓWÅ|||||(ኢȇˇˇˇˇˇˇ7KlK̜XEM/6 ;B#:92]'ɇKK\qUJc]0M<𢅋 YxI!}835}⣡ݜ;؇5RBβo:T oéWJ?pʧ ...ȇ pp!.(|(҇sA_F&ao~s꼜.W<|!0b + #s:TMӌ3ɼ3>Q>?BwJb89fe:y1,o5ֲ~'Y?*J9ie Ѣ5(JeZb~jYjJb ~^N)n&b?p<2Nc&I-p}_p&N8ǝvܩ#?|rD$uoXc!g[;ԥR0Z|x|>"͇[>tB!X}y>]>\>\>\>\ኢȇ+"......,}W-1hHC>\GR5_ʁaEO0r:NI‹Op%іmLxFYTrً3΢u(JRfzglY03޴԰bHExp$)3|86'Mx\ȇˇˇˇˇ+"(|||||||x^X>`8SO;^lhš,9ZfLR_<%@+T>ɖuk-{f-, zcy__yxm,K*JyՖwS2AKK7w^a]-5C+xCwgѸRJ>>Bgg'>r&(@1GU눘~;>Sʈ>Nx d}>|ZD'`>:Tyi)|||||||ȇ+"......^>kS^hL". γΐ*%,3]f0[:ܽff'fg{'ɇouHx lyXؒȇWi[|:>.؄t3 RJshQpV=WE>\Qppppppw@K#!Yb8,ɢ| ܧƯ1CǜϦs]¿Fc1،I38x vwդN?'iX )cMf_(q/O%d+eOFee}箷|%ylhў]Q 5aL gfETjY2.Kg DKMp<ޭʍ؇RB7psVR|#|oË8' ɫ X@(&|yC1ac,>>(͇s}gI8N<=CoPeEpQc0޸͹ʡGdWgP<[Nzg +௿\>c|: @-IO799$[Rrk2^s% 3^]'-![)2r؄q|xy.}KL٫,IT+2r֌(;Y}mWYgi{FKpW }8PwWMpƷ{9 aC_2^ l/::V?Ǐ1~&J)D kaiCЌ}89t Mxc+>1sz?)?p!....(|(؇3NX갧>6ZW}G >l>L_ec=I:lOJ:5t3˓) ~3 :8cK̽YbV`g@˚-rp_ ? 7Jtc }8оU!RbPy2#KLϓ-6h>]|G8t;jfc FqO'tD_GP%CG-jR]9Nzoͭ -cdYd%,MfkVaKXC> 3]Kkelg 5(Jie< |1ڒm.'g yIKpzK>PQ}\H{kG=sf\Wg͛?uBZj]H<zAZ,_^!H/XXX%\>\>\>\>\>\ȇˇˇˇˇ+"(|||||||x3+sצ)X;%{9pvČ3E>AQȝ4#UFZ?ewljc{Zj~,n͖& ~GE+.Q1&N5Xjwnr8>nv> {Mi9O 9 ؊kֱ>I,9E>tX kngׁ Q 9륄5RbgC#(X>\>\>\>\>\>\ȇˇˇˇˇ+"(|||||||xT爡[GSO8㷖/Y\daВn/Ֆ-T8K>¾,4<'Ɉ׆i1/]l0f>NҒ%~] 9Iܤ^NKZ B}23IûsNRdU/1L "(y-!՚Q>}<z&Jb&Bq:* 16G{z{h&Bv08~8"..........(|(u^j:Rk-8܅a:[9<¸4,-\4k#zx!#:amsò<OJ)I=4y\ޡiwJ>\>\>\>\>\>\ȇˇˇˇˇ+"(|||||||x3jyaK5moY^,UXsն22,\3e Kwʇܭ~|gcP̤HG{p罝0iI8wtzS!㪿&+a??ȣISc~0 K [(|xzWܪͮ[^ZfE)фntіpTJ XҒ|2%3߱[ws-2YB'͐oX'asӣ&ҡ 7*w/2>c8X\+L9sX1aT2c¸Sweɖ? : 1d+^D^'Yd%IXB&h(Rl ;Z*56x*K5ZBƬ)d~!xcST S&51"HNtރ%6q$NI^õ:8; 䘎{N&>Hc衹$d|+Ĩs hxu5^8Sq^DD4CL{h3/u؊X{EWE>\>\>\>\>\>\>}%vTsI}og[{kΖW>B^uK --{- :X{]ҽf7 w`tդ&}U^ YN86 }]@ޣ{/*b8ySptAe4{SlCƷEd@KX%@`5(JPe@S1e{:.e |{, sޠepB:m+ 3ouT[fj*L?q~Sb+ŧS98sp:9&]r݅t\`šX4,!MP9x/_G>ˀ:JM8T?B^q‡'8+iI@>\>\>\>\>\>\>\>\>\>\>\QpEQԇ;2>$y̫V_Y1ɒe wXd ˯sY~G>Y/3 R22vIk$_C=d RY¤?ClF9Ɏ:=k Zey>JIL5}LHW;ؒ9ZËȼ[[d%$֏(~I'ox,y_'w#,eL(Ը`++}{^8\3ءFXg# kwP;2MOWpL#A1=0 8V*:ZeI +R̍HxM&uLɧ\QppppppfeeZBRtBWPpWt :ܱX]@-sqn!!I,-]u Se9LJ ga^ nqXJ-ص-ع-rR sF/O,a,3;Y?ܢu$FJ~,Rx'RƔ;o[H?zV9?g8~'ZЇ'UM m-7va5N?|S&>(3gU:[;A3aggԄI7ẚ؇VۥKB|tpÖgEWpppppp:oyN[Ba)g_*QrF$C-:r&ʮ_5Y|8ȓ1_2} dz?|XlIn{ [d'%{>b Y8R%%a[~ivAečla,:ݿeP♖oYkaX+Kwnb\#|e^, ?n%iXZΟb%}zf|S`P_iB[a;Ck68 6|8{AbzgϚkbW H2!njp˻x#Apfw='"Ê4}8Mjg9rp-ȇˇˇˇˇˇˇˇˇˇˇˇ+|||||||||||x-1\ii>| --g Z+,"oe *@G?Rx2HTJǟPF%l<#Y3~pñ݅K\>\>\>\>\>\ȇˇˇˇˇ+"..........ޢ|s,1kiy>;W}o t)Of p2rq_/_J% /F^?BEz0GA8md_,KUOOIXX„dy9m_$g^86I뿜- uؒ9Sȇ7}>.FNC/+Jb^R)X[3m Io>HA8O;ʟ˝[֭4w3޳Nѯ%p%=,MsO&BT|D Iq#bƊTB *Oμy޺Q[9ԙ&GR;9pb)aUЄМ~P8;XЖdwE>\>\>\>\>\>\>\>\>\>\>\>;bidSXm|8w\t9RΔ|zkR>\8y:!9y ]uQvlIIs:L3j”>2';OZ58kp_yRl1RżEGR8SΏmP]`YX*k˒OLt6~icfc\mYRǧ1WG߈%,a$x8Zբ_KB gYj҇~ F%b'SzkS}o2"WPI7!_%wɇRw8)$cf| Ip7Op{gbMwu6wW4}xSA}LaN Z"LӜ>Gn`v_λfs?# oe9ݹie? -%ѵ|x,gϹ+Je3jK#X;-KW-ex&Kb6NK:S_TcT{K2%fpK}~ђW[\gLҵa/ےTk4t<ҭu `1fqoЊn< 8,>|X+K,-ՇG}Nȇyg*%6TJn`1pp~Cpa>wOfdΑ s7ttS{o@WMgk1N&ˇ)%t96$q+Jucƒ|[odY*IdoK %Y^|RZmh'--ֶ3uGW+pO}܍ ,n)v%}TЯ_iw;K gjއ2 9T`)W@uT;oSctֵ[![9Spqƕ+gSHZ3IQB|PŅS 0|^?9cE;3o4sd;K~>|[^ϥyR=_lF#xikMeS¹i[E H&U\nqrN19Tf 3IGUpXbK7,#QwqqceWT3b>ْ.G=NĬ΢cpE#|KLף-M`Rӟ%)JKzD=}nK7ЫM0? /KEF'|xMGu kQd*%`PFk۩»`O}òLbazSe|촨/j~><t (yz Dw{\r ,_236Ki$li-,k\ei伧o BKL3,偝-1+XWNZ4<?6 {wv9]Zx.ӫdșyٖ(qG\傗f=n1HXKЇ*LC|Xߋ>|||||||||||(uEp+}gz& LxR7үuSϹ%> ˒|xA4RC=w$P4T &&gG'4M5 F-xcLrõ5d<9T#i8GjƟi'4/sLmo/}7g.xY#[^絭SIZl#|8[2w2ʇgʧYb[QȜ-4UDҟFxҖd F%|ǒL7K̔W,#DxZ>Ϣ3>M|.MCop4t(g}͉~ 7ɍ<v myhgδ4R_%"ݍ~F'Ǥ\'6/P}IJN3i&Yxsn\iҩgo ..........(|||||||||||xpzT=KjzDKx%lKΖJ-?~Zfi0:{x_ӶJ%?v jW yKuNM²a±6 r8;&1:E!s'O| 5<ás &0,9<|npgeH~Y;%3֕/~B̳WYtOZmht%y͛d Y:ǒhaXb&$\A_Klo\YO'X*5'Xb^nm$K#`w|%:0-55i~ii><s;99# I|Dž|6BTBһmbb>3"݇WVIzf1ԊosEEӁGB{g B"?Gy6ȇˇˇˇˇˇˇˇˇˇˇ+||||||||||||x!Yb܃Gaa/,1Oy}8yLϫ,!ܡy:`CӜpk*E$=ZӸHsa"9 x&tx& ֚Où0f_ܚIЭ,7cE1,Ubl]{Ö^>r,鰿EGJ=},WX_Y!o-1T˙ ,1O]lіF~+p/_yҟ4=1H~uK457f7m0jP9d}grDÓx!Y9û%ɡ&RvvpFhi 3p'Hd_EƑ1WpppppppppppIQR#X>{;K1-yYb*U'L-}AÖ>["`\;gnu }b+ z tsg_RЗ3gDl3晑909w'6~Jbwؒr 42[c)4Lf 9ƒ~e f-}٣GiS~p7Kgp佖[*ieYR1-:';[[Zfeip_F'tw0cvpqp"WPiPG/ =yae/2>_}Hjr_p='.d?t{9i9r"...........^>|xKrƖu'A!K-1ZYcp*$ooAp'}w]ܜ3Tؠ;`[W<9f8Gae)SGN ńsgb+e[bG>2_FU3u:Ahud疐S-N>y3?<~sX}1#Jͅ1S_ziK Wv1Y(猒KY>҂|xh8F{ S̓kT8aꁄSž"g 4a5ЇXgCݺ Äa.c8ɔWpppppppppppp_֬|9Β~=-Co{͟by%e%Նr.^mc?{ DTci(N>n3Fb$sscMMf\U}8[L_7]`6q)}gx~fsw01 vh6֒W{Ö|={ z[bz`o|CR grsFL{?@e_`iJ,C5<'؈H *-' Y2|xIR ׄ1BƓxbi yw8ZVG. |CPa#3 ..........(B>\>\>GČlgi-kW[kԃw3wZb:`hY6[X|xe/3{Ǯs3`SH3gs0˚XhM;]iWO6&{_'8;9PŅ.{Jbpؒȇ_,f^icip0#! `Ӯ w<,gU0i@{Wjۻc#/<kOIR_rl% E989T9Soʁ`$.TbCJ8 ayG3=U%yG@>\>\>\>\>\>\>\>\>\>\>\>\ kz\iypwK%mqRs%-LylOKȺ-y?p|9ӔopٶН^Qӟ#^ҹ*ʀG2bK}9YI*^:taT T&}<~Vҡf4q^˖=l=Çc*J-g[7- {k-M6n4R5XhclIP?7[^q:_rB=ׁmFuIݝӜ{j|8B&MT) 9~<ԋ3|diߦnz)a5'pxrzzRY^?#..Å|||||ȇˇˇˇˇˇˇˇˇˇˇˇ'<ҭv$=-!޵ξrK}!+5;7w RΔ'|R(K##%HoA08aM^ʵ?'~~IL~fN%ދ]K9:99*_q˥9u4s;inP/%'4GFll*)fI⎿XtܭCOX;bӒXxC,Ro^|6FwTj.L-泗,hy%9rf'F=coo9 }xH*\0 7q [RS#S؄VX8pxefG=[n0M͔|||||||||#Ng=;_` xv?li`߳Tv.?jo)HSK6b)ˇ7sŦ16jWD\?UI2fY2U{9ѡ[eqkvxΑcr$|. KȼIFvȇg bc߻7tB'LŇ G -)GБϔ;Yb&4!K/oI4a-,˰k ݨqͱ)jGͰST |Rxe,KÀ5*$/hgKSY%K\8º 7*~>#IdW<߻GĬYi)|Sb87W?N$R1sŤ[ Ceik;?le;7%?.''ٍ-SS:c9aDMlm?P=GKlg?bB?;2<'P%|ay8kKÅ|%px>K:$YBRk{~3͒ǼL48Rt {,!ov4#"~[ѯp LĂhKgOkL[b8Q캢 Ok`weY2eKү,!9G-STzS~?$'I<Bw[~[l8GSAF>M?l)?z[G ,J}*2"]~s LRop󶃩n`ŹOU.{B}BwBw8i99J~Uf;rϿё||B>\>\4'wli%|&lj,rp䙖s̈́-wnlIzU;%.* QP"Qҡ y_C%e\Ý,c؇3~}xi5강ʇݻ9Jus˒wZB#W,d_2@x=@#f^WH絉%:#o_y1wXpDȜq,;%_Ob5z}K?rNe'i9SNf\?KeM81s?ʪ喘U[*uNcY^K"fQe?3-Ü 8q, w.~Y<`շʙftpwӝ'k8ڌ\ ᑽay-&=ա*G||B>\>\>\>\>\>\>\>\>\>\>\>\>\ȇˇ}8~=G,_؞R}ޗ2nς<>[HfW \4s!U1t=|m匧Y$Jvr6H`#gG*?&wD2/=p.l/:b7fauܫ`4͒e x&~dK}KWϹs%~]5c\ve҄؉9ZZmh>GuR^C#Wad,!/4M;X%$\kiuAtүrFZOIP$i ]oH)P1kgeSx%+-2ؕ Ǫ!\{&Rb,W1& 'V0_UAB>\>\T=}-q.F;jT>AgY8c ?`q%U,J P{nHNǓ\dy/@8|T,-G_C'JzTjM0"º~+I[[ [g[|xYۖ>wsy~}Œϐ,uIօzS٠AȷsfgKW7r\Z3(;%wWj1t{-6ew:y$*㞶1YI旗[[)MgGؒ4X褙T>!t֭T&gut4.maZVY (|xn>P.Å||||||||||||"..kȇi偝-qY >>׏|x;fqW1Y8;̤*Υ%,m9_{f]P1g&׆NX)es'/}ȄWև= Ųw×K7W%^>I]_icI+[B~%-Ew~nB#r3:Kb Ѕ3$iE4'!ovT|{~%Uli[:8#FPEgLKLJ#K3 Ku}αČj)3޴[y;cc>z߫5pޡ =t9Rrҍk5ը/-![jy`(50n |13˼wOj?bc!7\IRmP.}c*c<ߵ,m9 ur l`se z%~>gZ4y̐ZW2NK2p!{Å|||||||||||||B>\>\>\WG>&{:3b)OpqzΜ"^沄T59999a_OONwrpn!̅Rg[9s|x^~O}ގhKL2U- G.v:Bә?B<-J͋!t{ë`z[TQZB:V3O gfBx ,vyKLNKX&@{voo{3k x̲;[ܒ4Мw\?5 6wmj)1!Zٺڶq3D؞?dy ([=ÅQȇ ppppppppppppp!|||xK wɇ'ȇ"ۧ;7:P%RU㔚ԀSjY“tPO:E _D= P- -Lx|8]nZ`;Ye\SUƽq7b=i4f ʮ[Z-jQYUT=w3Jam'[MX__⩋-PJʘ9Zo.-:isd7l3?~<լԴ>A/Lmzs휳 T ޵YlV,PG>\pp!...Åù#k?t2xP>E^sCoMz&-^cWkyja ;8;٦W128QJ)}b3/.[`~IN&fc:{e~gy!K*NtR~҇Tv=s"FRRws %Z8oY\>\>9.>gXy\ti0&U";{9t`ďMf4 =_=U-a'g 5Iś͜o}3w6rgǞ}M|"\:[W a/^>cג~閘7Tg޿_U8lP=c48R42ܮ BҦV`=ʯT@^ 2UKsmCRy>՟Zb8U? mk,Jz>y2:|B>\>\>\ȇˇˇˇˇˇˇˇˇˇˇ+BȇˇzIǃHF6Lj kE9o8<ȡzƑNhDECݝ͝?&+WIp6gV'^󂩖og[k/Gt%-e޶ة4J NgDK]rbK+KD[2B?`g^Y3n[K~W,pda"1;baWZ8I>jm 3Kiߦ<*5WvVEm\>\ȇˇˇ p!........ȇˇ !.. j~Ya3N.oRL/ -!SGZ*;ί s+@PyyB#M 2E?)tdS5]{hprb/X ྪsT3RKenKO­[k t9B}[[/,!%>uTmkS Ohv%~~C-8'}^Вe>{ɲKeGMt~R> -TI?߶4U)#w[9ӄXl\Ki5zKHe".||||||WÅ-OZ`q)'X{L7c1E-1]=/wqqx3K=`9}w`,IG.4Y\!#Y*5g7O^Rر;R4NR=NvR{LKL]DןYpBOtƷӧ:P-Y>eq:cU*[[ctWK|[IcƜ+ Ձ9wdZRتZɶ'߫WZ>>q|B>\>\>\>\>\>\>\>\>\>\>\Bȇˇˇܿ({k'܁> ޛ5ɒ[(˝YγοTQ?'oҗ$&N:Ca$0iIXb~!KMjGTs,KȌ,Ԓ2i)*wT=2UKț,Y^0 gb*a E;.'MXJ{q_wzXy5+-?d2}!$=>8yg hO$JM gk$bbW,9R?\m~i7XBzjc^Bȇˇˇˇˇˇ pppppppppppE>\!..(u g;{97;#E:;tá0Q[>6/pnq/Ɋ7cY ><R}V*.N%4}EF|R{iXum͏Y*pF+dd{o=.";[V-37'Ћ0~欱iJ)I} q`ˊE+ t!җ?IRl[;Ck~u:lnݕvor*u軹%9ʇ !..(B>\ȇˇˇˇˇˇˇˇˇ+BpppE~r8O:2_q>}=`8W:9 k7<’D\_iZj9x&K#٠,޳/,{3KhqLkbp?PXsj &̝5(ʲr0[BkA::KK'^*m _e{ĵ'={d S]ϝ1~`gKS}_8AeX 73GMv,ʲp7.]?YMJKJXkKی|".Å|||||||||".Wa/3}q.w:>i:S*[::8Ulef{gšĄS-aBg1Ϲad袮}kYb& }$ز~ TN\d_a6rt˪-gVFX_Zff%?LnfniЏ+-~j-)%e*餙zIR*-7,t-mO]b {:g>{R ߔNc-L3뷄-_{'o6PU`,2u`z8"WPKg{|".p!||xK{?{(ye+LlvurLw؋e2{7~? (WF80HbZ3]pgΚNg@8§u3YPg١C+cKNݹq|C{X2KC,Q',-hI%_ߠ <_ .e{sKϓ-trBK,MubA[tKL`x]&f--zmYzol?z,>9;Ce;gZ:7;X&&=γx S-,Ma1Nl`?Y8/ ߫_[0Ro|"............ȇ !Å}m':XGdzuttw襸o~??ؿF_Kki,v9+&C ɿOgk+~haH|x.Р$}*qeEw+Jsϴ,0mP[knw, c.w=R;~x7nncid~8j[ϰ(X֏X޵T+.||Bȇˇˇˇˇ+"...ȇ !Å1F ١c\>\!Å||(|ȇ !Å2Re H;\* FΖT轸h&m,q*,wptؤ[5c-pEQZlZmh&9ݢ5(Jmu?[fPG>\pp!ኢȇ+ȇ !ÅY1ywss3ЙP_{ <˿CE''ŧᓥ+g@*q>r9:x;|(I.G],ZfҭZ-.||Bȇˇ ppEQEQÅBѬ~{+tp; ;tf+}I4) ?#><}u9ኢ((|B!..EQEQÅBQ˿trYS{ n|ssC>IJfn_vg_i/Ce ӗMS:WђOmC=jn?lՌtsɣ~|((|B!....((".|||B'Zutt.sa/beI`ۀ&53- k,sϾ<__e! <9N{Oi{V2wvڭ\x{wɇ+(ȇ !ÅB>\>\>\>\>\QEQE>\!..gïk?3ILg|/5705Z;mjǦuT[alaϖv'2a$S#.Fm2WEQEBȇˇ !|||||((|B7QH]UN/ؕN[c>ο鶹y"p]Ʊ߬maHd$Ӝ1}uT.wt(y{ Y1}!Z'9flBV`!>ߦ{]SȔ}gf ycN(vi Byu!ˆ[/tfBE!=تW2S.d3 { aIա5oeu%| 8:':]WNy糫᪀7~cYp<#(} 5bͰw0f\wlGz\[4Ѻ"F_6p!(BpbBJ!^|x|xH>\(&.łc׹9͹yyaȫm6?s^v'seoli8g-ta,lm !DqCQNcj>Vk#596ʇɇ !DȇgG>\>o|B|xȇךɇ Å" ˾nu '2סm9~NyV x#I ssb'Mgҧ8R` 60%Kr|ǚm4owrup,1eB:^ ` s ;Bwqx&ȵ|ȇ)߅|R\-wl/"ץ|;N8}SjQ><]>\!7G>\>XÅ4+u,^G>6鿍lB:[x#{#\Fѥ>sg޹999ˡЙ9T:&ݴ'MSesg[gOw(w; k1M#jb IU;w;\ qʵn ʇmÛjs|41@#S rj_0>ҟ~酜S HW|,ӼסG0[3a9C'[Fo|BȇWp,ȇ !Dvó ʇmÛjˇr~ӿeBؘwQ/!StS#9:;;2 F$}Vh7UaOpq%a$3S.Ft9ág>O;ήѷpvqCю~|F?:9loN8ml9}\!bksd(.BÅ"$[ɇWG>\(&.@U {^Da[o= zQGVƻ}8Ft~A.r_3F$(tU82M,saX{;U|pH,ȵNkc4Ba{Gkttɾզɇ}-΍UOp^;F'zy[#ElBdƱρM]5\>S ht8?=:;W)3HY~i?w|R_,vtϦ71;I9v4:Oop=Esq>!/r*L;\C?5Q+y8*Ht2yʯ1%br0_L>Gx3*1\o5:XF_6p!o|x}~B|?{\U_;::C+|E"#]@D~`W+M]J( P@Vg}Ygzs.9Rɇˇt(eW%_y(5,mdϙ&sVDy |ydw$Gt 3یp,OMQ9~)fGipmk9Μ;ȇ\oVl#ùG8t6V9"M85- o(Q}maHqsV÷,\ [o;~S/m|xM>\QpEQF>\>M>\>(E#,\Gw {ź*J^ V<*쇳 MEQR3{V9z˫"ӑj"$󖲰*l}\Cų΂z}/ 3r7xߖ`g마/]]Ym÷lኢȇ+J|(3y;9F>\><[6pEQjn=y3'Դ4LSXQve=D#R)rR~ q4zXJ2gAy8 Y:js:ᑇ[ [:aΎe${{${8gh AtkKw W@\QMW%D>\><#ys[(eW%Sc{tWrϢSg K=Ko G|+rNiqF埱p9ڲ"㝟#ӑ\QpEQG>\Qp%oG><#ys[(eW%o9_r%ɖ} ض% |>p-6Zq\3"(ʝXZX8ImK}Kc Wg\捣uj^ȇu!َc=_akedF]wd-Z &N{YY޵[Πro÷lኢȇ+ȇ+#ȇtÃ".F-|;L!I ^' t3osyrr=,\ei}6՘(~q1{+8aI#7Ľk>yB@^7r'vp^#vxeign/_ЊOp^%ȇW>I [3Z,lYw>s0[0 3I,({s,A> M%h_NXWfyw5>p^˺ZQ><|&3S>\ɪ˒W%;m|xȇ+JV##_p?ṿm߲ɇ+!؊δ2ҠA}Pf U[JYJX[Kޕ^*] -WTRT^ 4npm2G#R5KE :g{~Q(J$a3z =s|oQ\ 8GC#,]vhԨ!`/w2eI_)ZRPīdFPҰaФIcQO3,-\Qp%?8F||6ʇoÕ>x՜c;z 69ϱnݻ6mZ>h}ouA:A5A5B ԪUԮcԭ5 44m >hС=ӧ7<0ewp⎱oó߁ߞg]?simI ׿ W%aKD M;K? G|kͬi֘uf Mk ۯ/ޣ;`w}4 @@:@Z j2jܳn:߹hM *|Q#[+{qwGӢO\] ΂^,,?[xʭt>9=>?:ڀiZ~wOu~LׄuˇGbw{gP ?&Nt ;V 'W ᑴlJNc=EȇtD>\G><_wb(eWr.yOx,3{/> (\%1i&]?F _̜5_Xf{Ze&kO4ƀ67+V-q*3 0pǠ]ʃbŋ h&aoo YbW}+(jyhi/o߷~`xPӌ$!ӆqYnYM}Yqi!ҵ3630)`_UKM`hp(6wNs6i\̘9 w`aw]6<3p6-[Ϋ^4r>}{ mH͹ y-pCzo~ſd`kIQOJɎP~cߏ;~+T\G>pm;+]`EdSmا= EqDoثx'LОoХK'Э[gЧ_OЁ1#o'_0d>Xn9 ڳ Nqg'ARY|8ğC{v# [,Y_8L߀1F#z.:];ݻ{G<[tRr.7قq,L {}xwp:<=9ٮys>9=o>}?T7ȶ5tgGݵ2T#ݷ۷?&ȐGM ; }xTTM7Zɖw,t-g(eWɇˇDE=c"F>\>\ W|||6ʇoÕyMcѳxw~٧AuAOLk-Gg+k8dng8)W@ryspXO0J/|Y-ոf(,r4 ݓ)fiam5[{՛(f|6v8(W,_~ں?y\\N}%bxHq/ۣ7 g5*U~<xbjߛ9J *77po𰅽֑p#zeʭw>f|83sqNϟM6什b?SM:уaxI΀Nϝ_kkPt/m߲ɇ+ٹ'ʇˇDEɝ||;##~kwV(eW"?[[[FXY4i F5[8,_l^nwAB1|x tUҶuhbIr'qg}7 QK~?tֶpz`oX볶ʖN;( ǀs 7,[w,tyf+c]5?ƌ,o\ 1XxHr 9%K'Nb`c2h,0`iwAݺuWno9;VhU G޻ ŹPvr ]"Ǖs;LJӚҾ̼Goiy3V֟#vBs9f8m_-|nU2};}rK͊'w 5ş;w%$^9IFr6HrڞGolGH| \H9 _g}7ߎ?j ʔ)JxTR̰4%*yQju_ZXbm:T~;{-,E-E֯ Z: 8N/ł )!s8hdhqvHμ A *eHQr_:N'Ā#q;s5hv]Pl) ۵榒U~yZ)ɫs= =iqGr||x^8[FHCG9]}^ xyU ֶo#wᛔ3!6<CNqC꯰+aW gMbnWEQppE>\>\>\>\>\>\>\><6[U޿:vj.^ C0Q`ehptȔG;%3د65j ԩ Xض mᝈw.A$Ple2ְpD'w(k0՚hbnai)qG^\.pUh}fݵkP*^O._;V3 Ő~sУӼzdk&'^hŃ zx,0`Pмecf7Gu\ǐ#n:I-r9J$`crV&,,NWgoޕ_&͖9R39'q ;[xyϋr(saHd× I4kJ$>?/zgc |||(|||".ȇˇˇˇˇˇˇˇ+n~#< 4 ~Y NW_Å+W o_+$+3U2?Nf`Ñj tsy߁q `^}8G䆑/[W+Y8 WYNlo=X*#ht(J^ꋲEP-;G=wd`(V]`rxZ"Xd޳$WbM`ٚn@үy9M57XXhi`^pIZՁ"..N7U0R w -[޻>uK'j;GJ &ANgS};wJz$hߊ>5 ?gMja ..ȇˇˇ+ȇˇˇ+"{g͖mu@[)6k!Op*i78$\9 n c@ljKK3 v+]䥰}c~%r)kimqroY hv=0z'`ɪ`sؙ] r Hr-Ɇo8'9ƵG8GM'Y$=Ĺm`ˎ`͆ C@]@Jo=QFL9oFihm+ W ll[ho:n\(||x~wl9+XzYlrw篡YhȗZ^,\v;JfΘ x4H־> oVߊj[ۜ0^ce%z|WE>\>\>\>\WpppppppvɀY`>xTB`Ž J%Sg/ʖ+}iu=F v}2g2_pU >(g1 Q6Њsm>Wڽ{ׯ/W.xsV7%?g+GУA[oO2'JU.rrߒYyBGZ%t\ĝ`C/<j| 0E۩}b&aoa euottP4aE>\>\>'>ou%h M߇yҭ~c9_?K\|Yʖߝ%0XfV Zӵ?k]+ Zqxÿng=sʇˇ+ኢ(O"......d'l9rdZkV`ā`Xf ΦRv9;]W9o3Φ#p)!R}{|>cr4v]tzt2{ŴqiLV y j~yĭ Fb,0{PΛb򠎅e_.Zr۱W-ϸqZWd^[]EQO'l# Ko Ǖ/O,%_/ ԫZk D1haCJX=/Wvz+BdR-A1A{/f9]fRNoګ_N%lփM;惞}ہFJhJ׭[ ꯀ^#Ii8m 5p5^P>GXE>\wLzXخ6k]K^o1vH{;^N8 G-g) *j6zn|~_awd/|||(|||".ȇˇˇˇˇˇˇˇpv+^zjUW~_<Ig#rWrXyZΛT½WM{}Z7o%0蓁X#m)Dſsc-l[;_tm*¾V~9KИ W|R2Ynl~TG;K=ZCqk@܅M >e{^6RlwI8|Šf(OP#之;7oSLp OwsOsyV&W-mjk[~7"{b|||}"[WUB_⮡Δ 7DRv%uiݙR\|q/'&;>Š6]7~ȋf}8M;wo)&%K'.ȇˇˇ+ȇˇˇȇˇ+!lUrťWf-l ǯ'6ӗHٚ)g.o3AdLvL½b>lK'S_p.rFZRKQ zf,йz͊Wj%x%{5&[؞SQ%\[Pp9N\>\> -.So$pwvw Mׇ4\UHqUd\)/qوkȃVތd֔}?SJښ鞟,l=VX_ɇˇ+ኢ(||||||||x^ WȚ9k&HPfua`n j|?nK ND[ {CGУv#]ǯ)< 0S  ,\_ N^"+O5%SQ;u[WVJ7rse1@>\Q*,cO m3eHJW4n׮-h֢ Х)g`XZp>e53-. zVc=k8[`:C;Mn0p2a䑿37-{yK&6r[b8mPx` MxcpqΠq=7ppp^VLӵ4S [3r`lnw,nnKE?GVH?>}C oTQqx׊>ܵiB<&_Oӵ)|&pBd8%oኢ(||||||||x R!,%J˅bb_7n8yo!h{s=%_>h/2wy5p}#~!شwp(~ 8qi&WFL^+]) ص{8{ {w{HfM)h]>zO(y;eFWN}b h {A9[~GзooR@ ?ݱ ٔ W9p#h{ڣ?{Gstr*yKZ N$W#WC^[+e[qK_ :<|nXеO b?~n~Ǜ H^y W/g|)\Gd7|||8+]t^X?S d6n}(cj- ?%\(gnRϲ6iyϝš$ *As3sbioZƪኢ(||||||||x޻Ob}QP«߂-G׀օHY 'uH0t'>0Ө2}0w9'1@s<5yk$29f.:h]PNm¶{s愿jeX",|kVQsľ0*N\㲹> [TCe:P~ ɓ'ʕ+J/b./gRց)-.ظ.S%m_l1,Z5u?g@nM@:A SOzA{[ K~m rFVW9[~~N 4z6hذHLL*o,OpdRRYPxsl>]ۇp|||82oIKO[X~ׇӦ>ܝ#ş/ŵ<ǖZ+w; 넮8ȄdޤG? A%yTWutà YSDm5N>Њwz; .....(".....ȇˇˇˇˇˇˇˇ䝨m֠T?>6 $/'Sֆq27p)`KбG>ǀ`okM?~ )<ΐ]Dyo}MNZf, \Efʀ<ϓ_M%4j :J%lOxoҕ(f K; b+&=99[lYc\=hR!Vl;IYk qKkBH'uY1GSqseN&KN?L >nP}8(ԣڀq_J^j,gk2qtPAz S\>\><|.XXNiοy|}8#,n1 54HVόć ȍpw wgMNqx߇3gϔùn\ˋZqsF>\>\>\>\>\>\>\QE>\>\>\>\>\QoWV{3[Af5ݿ}gVc}RVy`cx9q<c'AeA%{ĥqRI3ǂwUis} ^zii p$y~MY9VcqEgc,-U&n ΅BކP,yTEɹB,C-ۊ$ uC~4 ?ǙM{c K@\rp %eE{tʫ\8ג1ܕ[N$- W#u e( k<r|b*G23*7&.'fE'J*U*>t8g7.O5zš84fAWpHr¹~o ><7R4]dXC ϱ%!sgJ}xxmnόdݹS|7Η:Ç#?_fxNqgMq?_;ݮippppppppEQpppppE]G:4G;O$/.QXuᏙW`b0xPċZ:+<Sޡ z,Z7 8;ȝ5s<[0uƧ#>}{ƍ7V {,OZndja߆+к^]( mgZ#{ܵmۤ.v% `߉ 2c/79ؖ ,w!O$/fu߮7wm 2m xG;X7CZy l!2+ID^5i\\ bNwx 4j\4k>Xn-9)8爛#h!hb&R8#pY~c-k+pxzeuH 5}g1Y4żG>;uwN0𳬸sVhc@Awkw[V_Zd!Xd83`ğ{/xO`ڢa`A?,Q}/>|?05iP[kB>5 r,([8(d!矋#<&YWee_JQE }o!MG烓9,'.Ӷ,JE9iO\'Uе{FW*ËCZ}q@WO/gfxsk2kd&%/{O =ջ'r!y8 ,Xj-fc΅ߣ|".}8K9[>L>ܟ#ŝ)%wCξ'KXx$ 0X!U>3yN2xp/4ƃVL]gIΝ⯭鮪ow vEH⮭Ϛ>k{- |||||||(|||||ȇˇˇˇˇˇˇˇϋ+L4|859kx,{i5J{pn z4ȑq2);`Ҵ>CFwT`ƒ{fCƵzu]!,E_{.&S1Iq3 Aouk^q5&x݇w(ru](+nT^ TT,<NKN\d[].|w|>DxWQoKe(_(x"ʼ27=7n:nIM~Mu\ L']2(_XaVMsO'crlα0fy_F׳pQhȗY8fyxYpE>\>bʙK٪oaMޔ(vvb8}+Nc[qwmPߊ: ?k;#'p~O6wez\^>\>\>\>\>\>\>\QE>\>\>\>\>\QoM,^zWK v &輫J{Hnhx:dkKT{_0d\;иU5@kYFgĎO<ÏjTDThkr^5ӂ`Ďb/ AZSES+/ZeP` Oy!.No1#>+3MY8זK[X:3wжYxu1E %;>wN9Ɏwo"xg@?Oe1@>\>\>\>\>\>\QEWpppppppۄKRJ> $St.  ?8{=[<}]g~o7{ w x9F-?/|إ.x쉇{*_(I$YɰHPi/d'AA ; fEQr}/ ^+Y |`O3@l,p4y1aU]lٞ>X򜫸 *^ %4WWI߾TP+'~<^_ˠ='弳j+Sf3Os_eʕ-Z42nq7G---uЙZX3T9oI39+ sėW睋|Bse2_JXNJcXW_ (vY@ _ .....(ȇˇˇˇˇ+||||||||xNǼ+VvLmJtDp=/ag<+Q xw{ |q rz%d2]SU`L<+??߻tْ`c[)䥰fjЧoOP Yµ# 3Yq$F=ݣ?B1KH"8~P9=/ ~>#*g^eǀ 2SkP ,YW8fΪH˯pBW%koeq޳p#1#|"..)L)|_o`Y9rd$Is&O`!Xɗ@V](-7i.xZYj`ˡP/p4p$7c[X; n8?+:0 >t@O]'Wϛ5{;[жKm{@o ȓ黖g,\;'R/Gp6J,;Z df~_>\ϟ>RK)',9Xܶuؾm;݊f՝/qM,-4Vk-O[6[VYxC'C>\=k+BNKfH|8~mM=Nܵ5: jp\}Ekp# 7dn ~ l`ԨV#ܹ,͸حcЊfc0#|"..;_K5 s g|Zq߇<9R>pF߄>ƙU9f/yI‰owx'|)}q'|)|)ry`]އos[jZ:Y&ZXNppppppEQE>\>\>\>\>\QoV8m׾-hԸ6ٰ X+7{B$Iٳa 8f*v4w 8?8ΣQq@J {xA`9xL_Ͽ{)]ET7wlM%n`в[੧.NlEQ^ eGGx;`שIPT-8 S2ۃS #uKGV\BJ@P 7U, 2@ @ 5Q3&q M}f7x'@GF~rߏw9p?s\eK4 |"..!N6ȇyrF p Wo./[ S>uġt'xчӍV\>\>\QEWppppppp ‹σꁙ'=S!Ȕth,Q>ޫMN'Sex:^qsxPKూ|x0ܒؖߖ=6/U5ua 5I D^At8L&/n5:| >>kSQv8Fhڴ1ߨ*tLc &a28d$"Hv22nq`97v{N9Y/Uysp=X{j2"ɬ !FLx|ЮS'Ė-Q _򵅿UB[Ns1)}G\ɇ+~xԷsCx#zǎT~=o?jŽqg%Y;X{ ùtŵn{H/{6ypߊ>&tb|-~:-e,\ut|pww=zYWEQE>\>\>\>\>\>\>\><;;7S75x|yk;l$e]G6v=#)K7}2wLӖ>y? 0D^d%B}g^࣏끺7k REQnM_R``͞a@ܒdؖ'n|gxqWdߕI>]U˳2<3O3h-m,\ȇˇˇˇˇˇ+(".......ޣ+xeC^?:&Hv81Lv7+-УKy}@ދ/{OaWzD';'\T;Ľp|4e\UPb=;q EQ;= ,cǎ*~>3 $N%$qc=:2yn*yW *a$^=K.f(([XA\l;5'5/+X0|BSP![-oƳΝW (wzN߇V_Os=͡1$3,#~9pK$i&򉥧Y^G\ {p̮{ZOW֞[ș3g~'އs-N߇sNpΚ™[EQpppppE:pxF o fv$M>d!8>x3˹1n (UR}}q0}M/˲}s :sSM^w۹q`A2tb`[EQ7&Muny"=.I*DbF>?)DУAuɞޣA{n!r پ.f(S2>|@59eVrCVφ`3vw[ßpZpE,Ϊ%|l:<*v'Y-lu X{*wf|G/酾=K .hyRc>5BRE,tDfxע9W>\>\>\>\>\>\QEWppppppp xbPR"`Cu 5H M-۽I=T WtKYƸT|4m ˯> fʙI8366x釀^Y-~ 0䢚 td/MAnAZUA~VEQ[94^zI0qZK0C?qLCB'nI {uezO@ׇ?πk-dž[Se5zm@ʅk%_Ac*M=c w c4"Wpã-şaỜ>qo{YX{<}pzc%>KaK KW =pmK4 C5k>1p^,aV}8v".....UQE>\>\>\>\>\QóQ6'I>?!#AdxV@ AׇnVuY(SΟ~ |/ դY`ƚn`/-k%-x?Օ(a/t~r.}_{;D$|(>6f (S9X߇G &G Eu+Xb9؁gK_@'p hpE=>qek+sEq,\ei2hyYpUyyG}s ZMXWٴqȪ$rNWƻMo>o>k:4U5on#z\mἂ.xY>UG~jaiDiyօ/3{EZOS>\>\>\>\>\>\QE>\>\>\>\>\QóAF~lOe|~t>wG3'FR =3+gV}|aB$% W$$ɒhdg%gfM&|rc[β΂o9iZ>rnIs9O[jX~+X^j6%Շ[B9K$>I v'|\ْݶQw{f 6\<(| ɪw(XH|?_;k òpwSׇӄwӤW͝h?EQpppppppp/{L[, 6_"t%h's#y4uK 3rڿןz~QmVu?sw) [ΰwLMP釁{G}T5Q9+b{*۽ ڶkpEQnnh5(ZewDM͜&`k\?'q؝00(%umdxM=ǹNyܒ'3k Ϫ}AiHok L_IuA_mڴrኒ;}8*c44lӋz?G3EG,Z 7 WfeޏpTppCBzv}s~s"aB;M`|e*\uBMy0hGgZj[ÃK OXX<'Ϝ>-]ho+U59sh|8^wpX۝pKRyFp^M6EQE>\>\>\>\>\>\>\><䯙4 7* llJ >vo|!Gk's=fFZ=cfRrs~`O @e0>p74)Xd뗧i7ha Kk2WYZ;zid=] NG܇s O<ȇsM:s#^5|Ve]xpׇs9Rk*4phڤ)hPຮ,U-~gkK|)" \>\>\>\>\>\>\QE>\>\>\>\>\ gֈ6]3ƌ@AЫip-]1 \gWd vx~Q>@ ]r 5k3qF x=vKBu6ݵM}n` 2ĹEQpppppppۛq>S=0k`ٮ`w*=!R!mFڣ=2Tpڳ]`VTK0m}30#5Xwk-y*(d aϠ(RgAZ*^z`F`Nt+g}|dg0wLJρO8U(n[,i֝"rrxs܊tϟrM-A/z'SES_ӸhMJ` :kx݈vOg{B:>8n;9,Y>cS3`[ u3؎\uPB qr XL[8Ċ&``Ȥj]RG wlU޻@FT#l fnbMwuj>d&#y;X0*ǕAƠ@W|Ihؗypw<*=]c-pZZY8ol#\-/4՜̀$ַp=G:&XyK[ꜙ3p.ڿΑwJ_]qOX:Xa:9럶0I#Z>LXh)X,)~2~GXи>ܝ;%\>\>\>\>\>\QE>\>\>\>\>\>\>\>\>\>\>\>\>\>\>vm_mvkw^e t3}|Zl)3K-0zf0qa#@p{|fV28 ,<b`ɑ #G`֖eG ܅{?=WUW4*sw90!{p[$\Mf,'ljMJ^ϺYZF]Zl!u]+d''Nb}R!R:Dt ۍ;DGN`ݑv``%o?g 7+bZ:!2FVlki Ķ}6 R muд]QP3]wˠe)oV#1Tl6jM6lO J, ntEˇ48X+ǹ. ދy8Aso%ig[hi8`k#t\+BrfB𾅖֚3Tpn7,5 .,/X^p W',ߒǩnq8? *\eޛkGrI'YGX'Ɲ I%݁]3υ)?k 2/p^<3ib) /ŷe܇ûҹ>v}8kuпbl86w8osW5O-pmt}84 8W.[w$c0`$0$HK2I_."aZZQ-["AKwҞ9~g~~{[YNj?<~zDzo>1%pR5}x!f>mxwNwpŇ.H$Ň.>\|pŇ.>\|^?x󭙠kOw"z>ɄɊIϑ=7sA`Djomڴsm[p:tm.o&:ZOA>c`[ݫ5HZ_ʫe"xX! XNqsn\@nkQGѾ+pA֬`)`ϭ\p< ϵ?׍J2Ĥ ##H$|c/[.`_hpxptL~/YR Kۄ':`AҘ>s]G_ j):tq#` p8`qK,J!A@^-^`5i P8x-  :hڸ5 \Z8gW :6n.Oh6-@MAk7goNjtz>h4%m˜pw[ҬLk9ګ?ʪ3mQe}m7{.zߖ>ctby]::pGf12Vp7zfxh9;nQ3s|zlzfFy9 8n9[#GьNPG{`jsxEohx}6c!.>5<|:Ù[Y5ϧiD^q;YwT87(k3DOOìo2Ugr4gk<֢?+43|VȻGgS/wDϖ^ׄw]>+< }C)szn;| Ň.>\|pD".>\|pŇ.>\|pŇn߾Mt$ÿOxCÿOxzm6uָc 3?kp70 z<ݱ``VOcf` 9}tu@ɵ,pH j}|ڀ}[>μ ہ{BA,Шv6p.[>%l%{5_҂ ,nywK$IDڵ# N6},W%FXN,4 |ڃ-AvXV_l %gӀ{|>'ǃa <2=wsUA#;Yghh{ H 8 i%ێ$cKuvhے˴_zK;shв Ww#싱_߭ӥȸm/ڇϨ1+gO 3 ,>3]Yʑ~Ta#Sa} })Gՠxr6[e M8]t gBQJ(iY>$ցNN/Vᬑg4oGF&|{ H\~1R8:k>| |ŽUx)zؒ\˻U]}Th.gcC?wןjEܦ(P㓰8&g>5>བྷw{j ?u68qc)>\|pŇH$Ň.>\|pŇ.>\|ak2if:ߝL~J[-Z6&mmy0~ w+`,о n tkӚk+傽w98UwWX_~\[cTH :uxwD"4,yzyKr)j kᒕ mb``u-O,t}pdֿ? Vj߲3uogZn |^kq\4݋qlLKn> r6G4)±_L߉WN|}n;wHߘ7꣎9sV23s*HΡFW̱AU8~H_*t#T56*BhJ|}Lii@±GhH|±Gh׫p66Ӱqd_'p~PaMhb }ъӬꮕ&̇sWY'7oܬ-pIr&&a*x ?2Dґ4ݷ*f>W-H {.g?G8K&]ñS8BLJk2S傖ZU&g䩓',X}R9*ǹZW.>\|p%D|pŇ.>\|pŇxxG`X1?Z*yY$&knt-KPKfi 0 7'ƁwF]2@֠{rEY4xþ{擉 eJh9J$/XY T<7G˩`Ӊ'l>ia[U2q)x 2;gUXQkݽ4%^&>:1"qD"oLM_@/p, 3p,Z~WWnB{3ǣ~ۯ-l>JK]M/eS0k PGC zǨFfxhp-];^Q+jZ/q-i}vkf@Z^c9?ђֽhh&Z oI.p,pB/>Gx`8W}s?SC1GW{lZ&^vx`5/F>/}2}gdx v!;>\-sTE[BsΒ96gY*!M518rfCGcЌbtwlIzTp ?]7M m 7 g]|2}8&^*Txƹ5Uⴸ|ƻ.?O yǠy #8}I1RxW|c6YXqч5~ѢZ&\EAe-`XKߡ/ۄPiJ3GO%)}xȑgv΀XgŇ.>\|D".>\|pŇ.>\|p9gh BEA$p,P[ym4ж3h p[s:q-Z9~_4/<ԓutg e6sLz0p̆FcZet|/An?I'qD"71wO@x'h]8(pqĺtP^bck`ܛϻ>Hk#6n.) fFm .͜4{u° k'8r/~Oc׋kI+ֵf_krݒfXSum#APdws{ 뎅ߐ{MRe1>2}ZG 10fN-:zzW>Gǣ!a- *|^U83#jlbVeJ?n*40c-Nk%_ph:2Yclt״C_p6;4f40l77i">\|pG3NYk9I?8>&M#)ށ'jd9,M>^ۼ4G&6[qúчj1Λíj#Cғ0}467*-up+^t|䱼.>\|pD">\|pŇKć.>\|p_p>-j88)m&4un;;)@/f"G5qkh<7%ro m kՒ4iL۶d6+D"ohKgM@Tp)>";Mp wqu3ykxn3Oɕ7fo0`ǵ薬kaiY9fkߒAzx\q-؇үybςlw=8b!t-B r3#l,RX3vHƪD>X6˦эnUTt̾ @Mzr,zf:sG4G^0G\ n4Z4t\tw8}n{' |ʠO1C">\|x;ɥ3D+DY5>\Χ;O'i\tT'ܒ5tn%wcw`c~u ,/&8{nܾB*4(?1ӳP.݇3n> >SxOƽQ|pŇH$Ň.>\">\|pŇR}{`X|}0 ]O5Tuo!Ϡy'н_ Pr+[ /.fT5f-0X -; S.́^r}`鑠mb[X?y`H@O9"D"y>]Sǁ Pc)O}=1`A "#h5ߔ- I v5sC`g  GMz x\ˋnɚ-^[Zzjذz{_Ʒdh=ț6pD:~7ߜ'W>!nEwϴ_9phh-8#=3{ĺh#T TQž{-גk ]z G88ΰFÑRy5qUa4W#%?KćK|8ϙǩNO >l{,}޻>ǧrݓ3cת#>,<˯OόI]_ϡi?l֭upZ>Ϛ9 떛YgnOg>/5>Ň.>\|pD".>\|p%Ň.>\|p/?7`[`ON({ # er Bm˱z;;/}/{,,Z9^Ա+`б `Mн_ vM|-f=.Cu nI}8^ϲGcZm-Z2gv ~)]B=J$wiMqE@pq4rq]RZ(8rgy{@Uٵ(4 -o;Ьs@K mayPPs qOJ0i_tK[,qx˳[͎z6%K.>E,`g (}jZE1Μ g{X%p&>d }8m3NDN^[zf~1u=,}4?ui61XɽW">\|?gXs1FwbA݇3ƹ5u[q}Yyd1sJscwKwݽ̊?|)a֩}8G7#r] ',TTmPs7-z367p̧T8g4?y%Ň.>\|D".>\|pJć.>\|p_fxg٫y l:JE}b/1=-+'~`׃o9þ *+hҤtM|#% ~*v? 7kνAHa ahľYjXw=#DHiz8 <>5ԗ~^ ]=\g붙e |k80£hc GuM^\Kh]b!z2kI%|^s>j?, /baT2^rX¾CS-bOpkQ/iclW\p|9&gCak[d}|i_ٸ;bm+.>هL1E$:GM_=)ՆUǴC܆~zKVV܊}CS呲}|8렛pn7ORH+Oyp,9*|nΒ.>\|p%D|pŇK$Ň.>\|pᎇUnAb0(<|A 7__ -ۃ VÁ#>u0Ιգ_sfhaЈ|yi3z>ǔoDR_ ;gIs 6G~ {#V&X!,DZ*-p=+t7s%T>z9k}@vM_ Ձu׳N(un lоsS5b8R}~/%mcffm|[:$b5U8d+v4)z#z.>ܑiЗV~&uxM>?tnq:j̇:d3Ζ]3ulL/ہvQ#T8j߿|QX+Ʊ4O<NΤŗRU8o5_(>\|pŇK$pŇ6.>\|pŇ\~td o`0 b]b7Ӗ<0j8|`v0(y vJŸVeF|y=-{^- c n#㨵ѷϫ%ͷtu-e6ڒy<@`μ7R"H^tݴ=,X6#ƯbSz}u8|?EٷAš~` ՂY,+m9.AD@-fd}K_uV_6y-0zO6DE`,T*Uh7E..>\|#'v .Zxt|UVVכэnp}nBw3*\) ׏+Dc{ٶpMΣO:n'949NGJBW\|D|pŇ.>v@μv(%zjאZKжG˱B`ݥkhs`r Mi٦~0 8>f`;ș 64;j޵%C`ކϿ%mԖaVݖLiDKH~{A|D"LJ$ƁШ`O`p8`,ЃPR=| B@tkpx W Zmld ϡ~ d]uxxo,aוo=AL7 }`vogdO-K} S=_BO3"b.> 1o:rvf^3ִu+0ϭia,65}և#,VѿT-`<"|zœ3nخٮG>Ik&BgP[?k޸:p1>QQ|pŇH$Ň.m".>\|pŇ|;=@ P >T|lqm'pK}@'gߋڴwѹ|oxM ~wC"7͜-} ,) 񫅚G% ;փ‹nI{N Y_?yY ӒfOzI=pD"iOJ ^ໟ|_;I%`}7wx; -Dv3?nGJitѣ܁s&Q\̎->7,ݲ[R_{wpʇ%:ҒFJ.mnt컱žTm/ΪCELpp:%*CUTxZ}g4sFKl6æѓgĿB#*\|D".>\|pipŇ.>\|ˌ>fμ`ǭ Eny:nq kK%kOɯum;6}cOg0qQ/~x yáok%B@ٮr5?/vzŅ|ݒۯe@U/\׷%(Pü{ =̧)H$ ᖤŃAoG}CnPAta <-,>/5-Y l 6q$%(fq+ڊ`YQ$/XU68h(<``1eQ'3h˟Q%_ո:qiAdTho[yPᯛTT؛ђpp뛳*4*|a#zj}8K0;E6b6v79 N]Y*cUڨ6;iL| S2GpJ^݄㫰=GA^86g^i W匙ƑRh2UbUhy.ć.>\|pD">\|p%ҶŇ.>\|td l aA:a(~i 0^C[o;nl u.MqA`Y5k-_ѹ@WGXzy3/%ן>) zxxCA0xKci:ճ[x>]='xoDRALp0>``p= rUCAWgв0~vˡ圅ӥy:nVPv; =l@!@ߋpPv#,Vb:7~e@=εװkXta8U_u*p%JMPS@:ljSഖ37lM#b6& m;lM m*zlE*<)SfiML39F :чOQ™79?ϽQ|pŇH$Ň.m".>\|pŇsgУg70zvody+ <&Y{§諙~-sANpE?[r1t ݉5V~5Ƿ-6o;pS?/%+˽qfRa^8hG[5bNΜ "'X9ۣD"8~7>$Yxo}!uPC[~AF=0Ԃj9::MwIݏ~f00F`p!S'o;en|`欧I;liaC}AwOg`T {ܒj}7=APL[P .s%6:XZ˘X}[(877H iiࡊŇK$Ň>kkDH|#c\b4"ݸ4Z穼*WT)t*l 15߳-|61C@=ι;s9 Ǻs*<Ň.>\|pD".>\|ppŇ.>\| wޞ=A,OF8(}0)Jb\[ .ԡ•_ 0zX:uj l~S;cr(Ё4{5S?/%'%C@{ݝxY o oG#@CϵY=>%in9 $X|{H$LFGi U{|A:9DRy?~FԬUzޏ8cj cp%>`{Nݝ4mjap@KVϷ%!`{=OP+HafۜkMX,{4^!6-ֈi;=@Fn83!tp᯾׏qEFpG׏*̪ifmxSTW_϶̛7)_浫מQ[!z'< <_䂮2@%R5\Ň.>\|pD".>\|ppŇ.>\|=!~Aa`[u()=ƞ_d{=q58^W[Y/#Kፑ`:_0]/ $N [΍/U]kn` oQ_!N~Ɵ=`5RU.H$s)9`̌`Ypn* 4fkͶ7 B]Ckg)(]@0PYWpp lOkB:EGޫ*ƶx"Qy `0c'Lz {9T%wjI{lb%rfySY3ǏŇK$ŇY|8W«k u7M/!AE9oxB1M᳆34@+,9^U8/'8}/{pŇ.H$Ň.>\D">\|pŇ2s=2^|1܍{݊GƑRBS F^1h3=caQr3,) _ ۫@E#֋Q`\O7xg/ro x7 |e8">\"H-Yh!z57Xm8t7 yfV܎gځQ{ҋᠲչsa{֡H |mp丈Y+ n3yZy˽~E(Rx@33xwh(( oI{lb%n= FMsC;]|D">\|ˇ9PQ*STxf3l})oᎌH&\fpK?*+l~ Prz{pŇ.H$Ň.>\D">\|pŇ2/4  #APz.)rkͶԗ݌G9k|p2\60%wN 8{. R 0=&-pzUBz-iS[;X(ff<0x\khVg\-a xD"4ط*~!}&䎅glyUwj D9R^Rpj.[Sѿ9|P<kh[ll1܎eעޫʯoZx-iCm G۱t6i|Kl"Eu ޟ TwpD|?u8PSPIS-mt7N{YPul>l͚6v㗫/_lߙ򜢗4#3fџ2YMTT.>\|pD">\|pۚD|pŇ.>凟yyAP oyu"ADPJ~%:\:قFXSx{0i>jFuDdۖ|3BpŇ.H$Ň.>\|D|pŇ.>凭XeܴD9'X}x(HpBu j}^EÑ`WC@]>7xkPp5V-\R|3 켒 kd}@Pr3ɂ1JuP [44a[:PFdэ$btܾ} Ȼ["H~*,*to~<`ⶅJr˂Z3nk8xS$X]8n`ڂ`ׅiSCEM āۆoUxP0mҒV54p\ϷsPнf_1M%9}m0 Nٯ8GэW3MBhtS݇6fLK*Uh#U8vM gŇ.>\|D".>\|pŇ.>\|?CYN૲HPz3`\_U|#l: l|`R_Px%W!]A˶M Jn(]sRt5l)^6LY<?m4\I/%%e~`»/6&k94Y vqKn;>=`޽@DҰ'~]v{/ǃ7Aͤ- U1``/%:ț/:zߠvo͜|8\|_ɇVO~?_9HQPSuXr)b߇{v0sn6Yɺ?o71tL6G=ΙLy^=+>\|pŇK$pŇ..>\|pŇ?*Tf͞zmJoE5k-1D`C:Y`:Q`ǥdС[ `CiѪ`0aG*,3dcz<3u`t<( ߒ5&<Є;ƿ3Fdӽ5 B1ivn g^eҬlykAD@?-H$npUs`~*_M7S斆a|\|p%D|p%%Ň.>\|pB/[8EsiJ&(^K,/1m[^ͬ¬k C\EI4ڻ5h0,;|&U` (;qferkSzkCM M-츐6K^k:;\@Vcp;Y ߒ[ϦO#ADOBGWоK 0`Xеw+мh۱l<lvtMѠsm͙ג6e1H]s0$ Oo:7"y_K$Ic±ѓ|k@DpZb*[k%5[?K˭\4:tv5#Yh۾jG8q,_MeW,JYS=o@;z L?치jn< An.SwW04#87oڴkƀ}RAZrx`ur+0s-)hn}gg(Oooܲ:yvKס>60ϻ78~f A"w&wq>ŇQex9 *oVCK|YPu FndG9]qLGbY-71O >J-oΘJ#y.>\|pD">\|pŇ.F_͖π[k0ouX{$VgYb3*llҚ,[k9j^rLљ}@ń`s`Ƨ~``Ѷpx9+Aoﶠ}̇2gG[XZ ~8GkK >! -4oݫ_[7hXK\.âmAAn a9_} Tg'uq6kI+Ɯ+XqGjʲx̞3,]9=DDҘU/?U)b^2u7neR YQV }8"nō3fja;lWYJJXR)>\|pŇK$pŇKćKć.>\|D|W9xI  ;gkc,\ͱub֬l_5f{ρ@Byr浸l z= 7FGR3T t?wp$,+3? ]9y 7/e'W&d=aۘ/][~®tU~$?pvqֱS\,p\5|pvsm\ٷA`ݞXPv9دattKp3K %g@Ό~@#}A}[rxP:n`Pr6:gacy,п0,['L`v.9_5x B,Lc`?TbUWPN}*kpVaMR9"ŇKm6a pM^T8c*l3ԍ!q#8M08p=qQNj4UQo4|syo.>\|pD">\|pŇK.>\|D|?Kتcs@Ƥ0~`ѠjnQߵm^$dҦqcm8)fW,oԲJQ[ZK+OԢsR?{> 1R'x̩AۃAtoqQs;AO`u(j\ )ܽh|%|0 VeͼmKhPߖ:0OZj< %`cy\|pD">\|pŇK$Ň..>^u|Ǧ/h(k8غpxmqu.(daPQ\ OfUe`$j_2Q`Ѡb.hK40ۃ-GZ=feW6^) Lρ;-]ephvpy }"4fuAJ^?uv`Q`T`v7[bئ$$k=GD*6g[mۖ``߅lJ8puL-'^V\SZµ-zi\^V ^{[.fn.dVߖ'{㟰P2(:XdL rU$z,6|V ڸ]Z@T|&C*HlP7 'GZsmXZ[wWgׅ1%۲$Pv1 K]?׎Yc5q+}*^H]{_^DG=O]JF%pMZw1W%|ćs_hJ G**ߪS#9Knkt܄룠><:^J p*|F|oŇ.>\"Hć.>\|pD|p%ŇP}u_Mgƀ,\r#m6_Kyodqz(8Wpsc^;N/]zQeɼdlŇ.>\"Hć.>\|pD|p%Ň5_OvoOdy.OźDKxZǃwWG Tܛ Ώr=ڔoaq8{0_|7=.U 3^>@7րYfI@ߗK '>ex{YoKn= ?|4 j^ka\0i)OcAg֤v[Rk=nlGo&~:wD"lذ yo 39`rEC-R> =Ab6({n _kd\XƢдYd <@ ^.傯c@N.`A`Dnؓ bR{>vמ-i :bGGn`7$l? 3㌢mpN0i^܊:ƫE|.xm$?^{m 0נ!2@ ݈>J GM٩R6۰WlK|D|pf8VF2IeJ?so*69& PrX G2Y\m8 _[s_U6,QQ_UgU7*WpŇ.H$Ň..>\|D|vbC7G &)ߗmvVf.ZP_\VM'ӽ(6]s|6&cQe]Xm'ǂ',_Wf)AǶ\XPMS@'l0z]Z[@>m^"ډ0i\?b‹/u2An`Dd௺"\D"yac@14]rOQ~l^j&&+Ngrp%'ǂ}h5 6H{ύe(z\r~(:>.LX_t@lPTmŽ'ǀ Xh{ "t' ,/Nf-i=^C ˫-V|>w`MZͶ1UhQ"Tا™73UϹy|pp\L1NJUxU$GjE*4uaz m 6-De*~ G8a, w ?yi׫%jerŇ.>\"H$Ň.>\".>\Y|D||l)0i H @E %&e6ێ+JA취o{X7T^Q ? ,L698xPyLҰ,Y/z^܀ԣ%X'/cK>w#瀾A΀i u׳jؘ3pX zb_;W"H^D86P+ v.=\Ҥ(WpڲA\9e 0V ەJO=r/%'ǁoÂ-3ڽ+tC ()*S;Rr^?WG}m&"Lz{()w%ׇ[BZ֡yfSV`$`֒,Ǭf4#kVM;瀄 ƍCx {oQ1^n*U*G$]suũdLS8-#{dThh3*>\".>\|lm^9F ?Bk93T v>)ܗ|Bt|m A{s|B1R8+*YW_T|pŇ.H$Ň.>\".>\|pŇoX͂_oΓS@a4Praz#Y/[hzo/kª׀3S{8WTh'Ț9 l=6 4('Sss'ѭ]s0`hgxhuc}ty>`yԧ1<=y|3_nH$ ?UbA^kYTŴ:);?):5 |7 $f ߕݧ'ݶ| w[ɾ`sY6pfk%{NKg <"lUM5E5%m4p6mԾ`L`֒Oxv Ӓua\D3;0ܹ{4|-{# MJOrX{pgT֨S*u9 |,fx~?.$_q2^UhhǪis>/Qrq*|G*Th_R9Ň.>\|D"Hć.>\|D">\|p%fG\bb@h/q$X^ JPPKΓprmX`U`8.m`ǩif/o<8|1 3H|֖Eg:i<r]5ll$L_a+2t$?>81 *lM&a-pOWE1EkkbS3>f8Ғ&{,z |C }ˀ[%efK i67HJOMߕ܁@&>@A﫚r V}An-rSSA㏂ czOw`3|C}j [(8>[6ɮSS\@ob<¯b#j͇@¨ g\:3wx^ksɶO}pΌI+Cۘxn {74`>9 _j|dE9{ߩ̻*%ŇQg &m~:ggU7s*̽;R~jŇ.>\|D"Hć.>\|D">\|p%w/ Aԡ ju m9->X>KF$Jk⪙``EQHеWPy_\lc^ϙج}+Jr]S/GS֣SSGջsAa-Y-lKe3CY`1}4{ՎxЯ\|pD">\|p%ŇK$ŇckX ЩțϾ JxC;O[W778>Ug5{&oekg7C`)zګ9?>Lt⵩LP\X}h { "AZeY& N͚8$k|ճ~57+3a {}}|1bft~Ok/=s<Xpk 4lOLm _|J54l&dz`$̼4Bz,W\^y^-ӣ`D <|!?Iw;ӳi Bݞc`$Xw?8[ Iw=YےЕ a`*os L9 k̮gDk9KΞf= &眏Qh5cj3Q*Õ+BypÕ+W.Õ+W<\Õ <\yXFx58+U~n<:fH9y i2쭰'>M *_>\98CWb{OvWzgezTu OK<k8h\8ci'Xt ?~hA` ߽ 6\p̴dx{Y~ݞ~pƐݞ!a;Lx?Ig"9$xX8{Egwh n굫oFh{?\ep4)cq8o08%9BypB(W<\ypÅBypÕ <\yp!+W;|Gi87 L l'ca^Н#g3{Ivpnpkh̸ 3M?m[X̒S`Wn/~ccѫp^pЄfK8? r?dOf\IT TgO+LzsɌkc`1MkoT|BG ǎm̜ߪ2<̻?O޼k{-|tL9V59ג`S17>_k3-`O\֮:t*~z >I]{һ?kލ$q Xkp~0&e9]* 73 ijy Qըh44s6UFiJ~AyP<\yÕ+W<\yp!P<\ypB(W<\Õ<O4 W獇g4?f8z)|$=w<:5?9=16!dsh#iGM}&/ CœOf-vwǜ@]Hd2_8cWJp.p˱pkV؎k-ބo]Nf^n-䑋ɰZOs=ߩ*pdf'evOS^žzK/AV;:"jύC5߆G+>sL΄'͂"΀' Y`D8u~g8d|sodcwX#c`}{HCgX#8xLS8pNp!0BAü⍽ਤɧx,  y{rwa OAwKޮQN_z_̧c'gޣߞWk>tu,Lك J6[v`Oj |<ɘn,4L{_%xÅpÅP<\ypÕ !pÕ+BypB(W<<ෳڨTu8y{p0,x]? cɽyy-8;~; L gcWfal׹wnֻ~ytqZ~g=9keۇkz+< ˿:!\eNdz`+W{ rVDXd>'o!=y k7  ׭_ cB/:{4}5g`dzxҼTG 'ao/gÞGSSS@$x <]yOº/n!7POUgwõ;?Im3N']k*xqXٛ0t)^ F'OipЭ ʕ{ vQ.ݞݓ70t8xl صOءS[Ȼ0:J1qH5͍ hgL0;k9DZJ?ץ C߂HGyxS#Bcۨ<yi`ֵaN0tcs>2s| yf^ ^q):awnCܒ%=`c? |ra+*_5;eML[x^T#w |“XYzSHd}`UK!t !D~h~ 8%i|kpÌq0;t,|Fؓρ|čyRaհ9fSaw}KOɩ!0lxnIm~[{m6f]]I{N΀NSނ90xp<>t9|j ^ .'W S;uny:ׄ"^ݻ`Ua#33ax;~.H^{F.y':7fM'ý9a3ǸYWki0-[lmVOܓ7}mΥpOجMufW³ʅb hǞ<΄^#G1X μ^GyxS#Bcۨ<e.\wɷI/#£Ki0닊KnayRL><8uQ/8x|[ض]K!gqbJB ̬8B-a&}a4mAœyxu ~kw]{w]s.΅sȧ[xj`΅P~ dw% zP28%Q5V/,(O\KsO=-9R0.X7n6lY/}'YpV1xH18J7c1Xll4Bi`Hch0ÅǶQyxp˦<bv݆P?9uf^^w%[FIszi04}utpTr'OA7|d~`O}|<\tp2Ө | ě)!_X]&OMU~NL C+ k^5yv{uqxmp" v=>{y!ܟ3n?<Np :;^^\s |`r?UsOwj 3΅'›Q{}b0 c[{[r-,}Hg;lKaF\ش;jW`ןm:Ղuτ9m'ݡ[<Ӱ'39ߓ\x΅p_ حOرkSعKGQwllJ$<#,c̸li68G``WfLp3N mMyx~wÕ+BA+W.(e!QAy6*nٔ/l կ [S}}`K3 _ C6 ]ZrGϳzr.-)Zldlgq%/.G/2"sbM[׀G{=+j>caWx.0~= |./8H O _zl֬)aRx,)Bx/37~,ln XkpƑTsa ̻ _%}ͧlRd׺kggO͆+< ݪj{ߦpdy: .0?T98o i%IťpaUauQ#WΠy,ײ̿9lpF{MQn4sd}L&?@d>ã)"F-EypB!\+W.\(vj<\xll ^ kխ;vo $kR؜{uup."t:U4j/o>\k tg"T5'uO?3\Mv0*#{[(̺ n=4 _;T9Xnubr߽kc0&Bp3f΀T{kT 8<f,yט^ZO\\}ǼK& }6<2~Ϟ掑}[Hn'.| wͶSKGf? ݪ^׃I}a~7',o'ރZ9i00܋`O,{3gfk|[g:{d/@nqNsd=ež#Ye1U:L͍Tc *Ry<<کp!mTܲ)w+W.M+W.pQ2N mMyxb|<ڗ׆5˷L3k`ڻ^|=9la$l5pˁV*;JU+5) 1=`jwjk7G')cVߓ=p֒pazu`g1 cas=:˄"a=O>e˦UFpւp᱂e0tv%̻Q{ĕ.c䚅6מ)][*vYҳ٧=&-j+W[ lVoW֬޷91o <,{Ր(L8ؤy]XØ6޳ r 6}o(_JG{E2,lg8*] 7c,4[?f~`#{(vڠ<\xll{T<\yBe+W.(e!QAy6*nٔ'^_vYCt`u0ta7/zBF `{GϬ[µMʭIpնkO> qW L?2]3NάjOn;8\8V|pqu4 Y[CgB25*4a} 埃V ,yZua/Xd/|u^LSdIw=65pTuw \yR-an7'ÍNw}e0tz=6CړYV]G¡c:* GWZٻaYMeOAZã}F+"F-ĻZnL7*Uz NLwg/G V ay|% C}9o/Ֆ,|U$nzsࡼp_2+s1ܓ}Yad/rÌ0 ]w={pM48~Zfp~3}i;ZQ@c`m2!-0&# VhL5xoѣGwخCk{pp0j{a=;6|䵑y6^0w>=f.}f]g-/\>up.ܵD{2uoѺ= ࠑa>`^=kנ[ ,匆G`6j_>JM|MJ?d7< ֨p<5[9NX񐨙h' ÅǶQyxp˦<ΞM֢ik7`pdIȩ3Q3N mMyxb<\yx(BByp"B<<کp!mTܲ)Olx~p1b0شU}yµG[͎[d쳛a96DyGﻻ/;=˜ [moq{Ckcб=`kXNI~ffee}di[-7.+7^\hM޻<~U+[ 6kX 33`GÏg*2ſm(/ \g-}\'n9[26lZ .51 6xO%OW4Gk0eRh< &o2ZUݍF7crm9Z wV:r+QCy6*nٔ'6Õo<\!brS<\yB<<ڵp!mTܲ)/;*^zVp0%mܛ-No3٭ ;g,}fl)E>bq[Wg"[]o zng=y`׬] 6Yatl|φ|-=Eųb>(.-ܓ[w/sOMZԅU~ Ο9wz+e<鼖[Xd;l1lވS; Z-}6i.=9F^aw&KL1y365(tF>e!q[N4ػ(qn 3jM >|4X|G;5R.D<Ã[6e}P.Õ<\yxY|G;5R.D<Ã[6ek{[N1.X Ywe?Y0v:ۏs1>nzzφk[6}/w=wnggYvfAMp1}>9<2]ضmXVM½g^{d2g3,BThlKgr7Ki0%u4=?l֬ 1r813򗿀H`g`y^x\ҧ,Wge3 <t8&KzQ\X~P3ѮI mMyxDyQ._)W<\.5QDy6*nٔ 8zhXJ% . I̍؉t*;Bwd5vާWoOVppIc׼Y XՊU7+Xh̰xDlcyEgB<Jf21V#;LO?mppu0a v:ao;em[w,k5 {YXnr1^{L^48fy+UU~T(0acV42*~9=9;'疍_GyxS#Bcۨ<q<n߷X?N5 v4Θ9nظ~bN/ 㜑jL0+ ֟SBÜ5~4WWS%~jpD,'0l`اOSE`fAem[,MO O78p`_6? 2 ;g߇$ΠI*`=[C=Z$I`4S_l08"a2H2R kue6QVj7<=aO-瑢.nµy>[p]{,YNlgp,w<ܱ=d:2/lҼ!\S6\o]z:öX- &YBWd>C9d<٘ճVhL>bvN]imKྌM0#vœaO]=?X6# [zF~;avx4'>nN_ .vk7 7.Z=;9FKc% pttNȊ{ШalVL9 Cf\'vE{_|%]Ϗx7Dk]3en ΄Ohkխ+Wv ̝t=yVK%$p8Κsm mHR,Q<,X'b=ÚjMwL6[8n߽9 ?fdGC`(w/*{1aG絑[.dzs̜ݐVf}:|\8mعk{شYcXvMزUK8m4 c2ל7=n0ΨmmajyJ᱃;S-GY{  >ΑU y7Kl+׎عGyxS#z7˄?6*nٔHP<< !D$(W<\c|G;5RH(/ (eS.aB=xq%䯽*|[ބ:͆vGBa0;yC->rE_u2/L=?#nپ&MG6o9z /<ի;um yNuJV=BX)2xlT2Z̿4tN !KjK+[~ϝ;֭[VRVP6nvN1.Y>=fduv8)i/JV-7[;m{n2h9 S}PnxNs3ܴm-\~\b\d>k `p֭UۙX@!J~1xedȖ1x6Y3'+m^ 9Ɯ9qcCa~=p^pȁpđ0ed8{tt<.7;6]{aƱX~:C( U{d%3탇3]{wn@V]HsR$8Qp![o@Oاo8l8jH: \2b1x{Oq,qSn.=>G{48ƒ~mo+ʾ[Ks¼Xl9GgGs_nk0+fm6IFUkG3`^We`} &'EvQ5[S`f=,OliǙYs-VՋQ^:GX9裼kkLTYsa3c#ry72\?csQyxp˦<\D:Fyl<(Wdf˔cw^31k 'hܮ nA~:-e3e_Y yYPqIesF<^_8Z#['fsV#F'v~d`~œ$R/Ӓ+6yGۼJ03==G;qGbqN8b} ٻ',/V8|-[?e3=B,G Eҕ4F-p= o<\QP𲖢((/ (W\yxQ.6*nٔG`u|l9$m,{Or #T524XqH ._]nyg5sD9m>d_x56ؿ68"^k/ ^Z?(?ȻRpR8[hkpڀ5gWu $Jfڀ2Vւa} [_yah=, \5x&.3أg?-!3̱31ilܿ`Rdt*/Gyx4*F1n{i6eqXVaY2h^9^1࿧ {a\^U9 Xnh< uK9GAak笵+{# 1C?-C~p79ϸ`p5R ,]c(eS.5 !b<\<<(Ѿ*Ol?y<\yEyx$-p!Dl¹Xqzk ^aYj!Da3ٯ ֐M `sWo'Ǥ<\22aH78t?QɨnpNUzc;׍d@}f0+h1x-sԸwtG5!_D w'LŽGe`6^!h&gjHPI˦<\(BÅãp (_Gp᱃HZ6B؇ȣjkƊWG!D4%;Lai_ps'1!Jn3]3c FySL]x|2+cV |LW3 3 g %֔U"d/%9q{~_>/=g㑏mG="+屧3ᑴlÅp!ģ Q:((v=Uߚp?+MGҲ)B 78;⯨1`=&(y~,ݏ}4Ir9!Ǿ]QS#\LxW~p_܆cq2uj_0zua᎝Yu0(LL敇ýp>)Ė< .G>.J;#iٔ !Ƭ[[AFd&UcjI{eoH{Lҁ}ƚk JqcDyHT|x* gacY࿹dږ` Q]7xO`n %ݜ98.<.%8gfgvh*Wg(TI˦<\(BDB& "QQ^:(wQ<<^PI˦<\}df+c ʖղ+!Dp]ĴmY70e,Dl¾3J aԴp0yx`a0b㢣*Ly5V ?e:RYWv =7o #9 !BU)"Q9EbJ|䯨8n5X"Bz{`2Xj-!bΩdz2d_3 jGSprtq΁2_S ˙b`d_yNa6mNcʳ2emTܲ)B$Åp! ᑣ<\$6ãpmTܲ)B$Gm>ga<`Ux*/FBbU=&Dl~: ,l:qO+LV &L λXk4oEWE NC;*lT]xSqw5-wVvRqᑴlÅp!p!ý(Ҭ+W_mMyyem81-)أg7BD(Mb.|w["<6- b8_gfN\ߘQe!Aq$=s23W ~ypZoLF+q97&N{j_<,(mp6}7AIY<ܛy{45zAwmT*BB$Å~(W.Kp6*ni !aLdmɜDuKxOXճc1:(˰7|cQ)K Kϫ<\$6G҂qk*3c9"{1 &|g\LO8$s0fD?G#䵀IixH$gTE]pp|;"i{}|o/x97Kܚ<5pN3xߡཧDm<\!\ (BD~("1P76ָedz;Ō?7Ep坑t5cc;ZFyx$-p!Å ! B;Õ?Õ+W<\!m;h16lyH_U _NcM3 #Eᅩ l0a==A"Qlj3u6?8ޘc5 aF7g/3sTXY=n7sː-tpx) 7 BXM3f/;:{__&`yx0~#;vߨ){7w8i<as50ÃQ.~("Q.( Åw<<Õ+W.8X=te}%DaUYnكga1RqQgT.ģBytGÅG<\yhÅ~Ֆ5!`78juU"'DHD kn~9ιz96Qb^"Qm7gAUQN2_2^49?e0ip4\ߍp?)N[K).I;ƃn~ yHHq3pwHrĉsUG2kB&̼;1 V*7̌shrn'gΡ94pcP7!`wL$;3fpHpr3? mo-t57;&R[oe~cG=~xolÅa<ܿaKý"ƽw/QSyxp*3tSqwdwԔ]_9O;È噲#olÅ<<(Ol !BZ<<کpmTܲ)B0#5XhM+3 WB[&={ZU׌ jmm;w { GǎM;f8lP8`@Wuy lߡ=YӾ ^`e^wn9?YOO}1~Vb>; ,0 oLQTk ͍SL}O"Q^:5yaԚm/L5y*nmMyBD%B)oPy,<\X|G&W<\yx<Ã[6B=8S &Ab%6ĘljZl+^gY#7#b0>qTF/#>1`Pۦ<\$6K'5<ʐ)+4[Z{lL9&n/y8+n l^5M >˿SqPU[u^exlsd7<܅߾w<#tp)n5_9_R;_4xW6ǺQyxpK<\!Q<\y"Q.ģ|G;5R<\yx<Ã[BQ:Zck.+v^#cy;ѽj˪8?N]`Mԃj֨Yv9 ;aVN&׿??z/ <ニYdz]YsR ?Eu ??aC!kl%VSc-~A# cO!Ⓖ ; f'Bͱ>Av"Q^:{mc i,#3irIn<^ +.`byuha0geU VdWc~JuZ !Dv5gvZQ.ӦcNXUrƑGYpO>2/e즩)$yf@rw7s nDF/B)\ }od;o[o*Ϋ[1wԔo<;;oKy8}8[Ga#Xr?oۨ<cp U2,olnI ^qy*׭޲}p6wo'~=|_xp_v7PB pppp!DC=\l>]#qߨPBcFy1ȿfiQ0xca~Ǐ=[`bR"屢oxv{/({/ ^ēp灝ke5+WN1cH;kqѬBx1X6~12lpq/|3H/{qu#7V7n)Un}޸)ӰDzű {ĝO>#prV,S{{wU5YŃ{8aVq4ѬZyF=zBdÅ":p!2GzᑸoT޳ !Dv{cUr ^k=⯘F!#Xjd<?r9r K>{5`.1K;7Sy'Os}KIkiӞpɚ%p]G>\-C #wǣf {_7V99 %;Siw{ᓥ({8he=|-lۺ ml㥰в-3z8tp6[;gQ|WU{89/%!(?RFM3Mw6an+[/9{6p!k? N=\dgv5RWW}zxM=\!۞ F5|s+-f͵5<GtU {yXLipنe0Ix3̿gٴAsa|2r_By2J2\~0l XڮN5v-1 9s̖F8=}/96nT27wk.r6Ys=#]L38f#{x'snpNhc` 5=w6oߨ)p¥uK _p)$Uܯav7oT޳ !Dv3 !DC=\h>}F=zBdOx ^-%4>j|d?ٱ7F k¯w+7 N/9_z&$oLȔ[(qm-.n^Ohh;Ɲ.{6p!Ȟ !DC=\{,H=\=\=<{6p!ȞxՑX#Ny՘a/;c;e ?:v8ܛttz<;sېop!{3tk;z(}HagEWʭj*n/,<{y u*ྗga2GP>=T9Fù pZXef&)ODZt~]'壸 p1R~8 k<<3\|XPO;xܢ{$/ |wNz8GjGQ=>KrZ<|{r/;}ܫ ߵZkCL0[Z~~c4Bܛ56xxv9zxTH|^:Gr|$iۻcpcaO:!z/n £z;4 ZaxKvizKa`D4y 8WŽX+|iv`[,{6p!Ȟ !Ľzw|3GQ=c0\w=Mwggu3^rpKjx{8~mښ|#qߨgSBzzzBp!o>]#qߨgSBXqiC7x<^{\ī/#êoU4? nmã׎c77^״SMv)X<}TSIzQ5q\}5X7M4oT|N> =63(jʿj_̂ Ǻ<8< !D,{[yjFs~+x^gv5>w/{Kpipq+-?k,ɣ  uet#Cr*c062|X29b =O4Å"kPWWBU>p!gv5RWW}zxM=\!'<EX(s$xL^y?O5~Bdhe;Xt خ[;8sLnxQxڑ^{Giyi]yr޽~KxUsݿϗx/e(%G Mr Jo yk2vzZibՊN_C~?r 7xTn瑸oT޳ !DÅA=\oQ3ppH7Å"Y<*xiX;ժWO=4nܐrx{7nj{{Ϙu7ks`SRرSG4% qTe pSQϚj=L6 ^n葬p< U*ٚuq7ܒN[ r [Bq)E=\TóEbR/ pwo'I8=pV_G|,G}&M%#pk/jE9Z&? p"pw#3N9p=pͳH?r\~]/{W k1PGGQ=;4S30|4KRg5-acf6~3-[BXUx t:1Zc"QϚj=KΦWx) \O3x);v];wpzk^W^OӯⲰyɽz+mDuqLwy|~ e <= o9 _qj^mQzdr)l|c}qm&n[n͓KpBq.9pq5H=\=\=<p!pD .S3k2|<\ rV4l0ȭKBy+jY7 ^EBkLD.YS".syUc 6Uvc%֯np<ֶRX_9K }~_y noHY)ݟ|\cnC c#ΟsbN{=8a#F=zBlÅA=\;gM5RWW}zxM=\!r6s^(^80ew9__ HnO疔SNwϕ;ocg[BG.y:Kx{k2kvw)Ώ_9r+uu4B+/1{/zxT,*'Kz*݁5*5p)\o L=k,^ҭ|F~7^ k?p?;2Uszn!l%a]%#lyX;y5j~o2܈}zxM=\!r6Bqo.r6YS#qߨgSB xӨӸN!l\ ěC^6Sn1+CħzG6v>Gy=cL%7?}}T:K跜-,ɚ ue\sb-7i^&ѫ'k_P8!>,Ϩklŀ}CMDVQj=K n',x)npv3{{x#ΟyMNF5{os9㖜u;=WL} .m54 "yPpVz#,*>38J r9Y]p{xxol;}:aGQ= [Jvh0<~8lu{-[>B_p^ͽ݀gy;Uc@-g9,X$óEzޏW+]v9zVqnu|V2V\^͓k K ǵ?=ZǍ$ҧثlk W+]vC>#ݯs<~Gp1wK5 F9Fgc;M3msicuF=zB$ÅBpQϚjF=zB$x\FNu_I˛-oKf:wwz?` /y̞krp?a-aQ[ F}*"|c3>xUn)gQj=Bȑ:XDilsp;R+J\p+1FQ- 6hI>$;pf<^ /S${?an3Jn?Tr sl\54TΝ,6XGsƾQ=n,_&7\R7naʽ{{cQyFYB<)Rg_{p1%Lmɔ{sָc'`V-a2O&*YO=܅-Q`QְG=f/mH5]sa\qz5\|t).H\ ϭxw;םƽ\c|2^rYfrfɚߩN!yTV!Jn_0x^v"8TWjx͘app⎚<g|\nwNÏ!oI:qڝnaipr6\ w ~K8#̰.[.rM,r4`lopnN7 !zzzzB !DrdJ*ppp5Y텐KO.KN˜3 ph8zX8?q!MZ W_ 9{έ }񱐱I *N', OOV&ȣn !D.l,Ey}H9+ <Y*k^`w U/}>S`'g^|+_b3C^;o*o%w n'#{skkkz6p}؄:rQx1xτ^pkG;("~.';*1c-Ľ&Cι05:?|ׂ{ c}{ ('}ÅB=\=\=\=\!Å"gs>~OC%IC^xqM)7 wzם^rr9lѣ%X"`BGR,/8Z*wh\ >#uM?.|JYX'`@.Ւ`ZΚLg_B)Ά&}`) U?JiBk75gmp)=Kŵm; GJO\K/UH)\旌V8.B=\=\=\!zzzzzzzzzzB/p0z(8<{n\za%\F/3BeA^ztCV -*OJ?; Җg)^ O.>`~Xⵒpޱ}i@ݛk{;S֏3M8k2e594FϾV-T !Ddp,uV' ^]:+x&X(uׅm;Qãe ᮄ]ȩ#0|<ۜսs# Rj0_.T0x6)*\ 1 d*- FNjB.B=\=\=\=\=\=\=\=\=\=\!r<އ^+' WrMi[nO%Š#*U/m8l8#a|*̝'7t,~0r,> 'Oߌɛs.VT2wbt_1Z^|s wyқ2ƦwѩX8yǟB [)XS,sgGf;-ϻ3} >(.\v_} j| N>^4ݼI .&AVkoggl7M'h}gp$Vڣ~>UU5yH6C%;%4XFPVq.).?+|&/ aoƣ;B~ܫg%r-+\ ot6ukhcȨe`ޜoTWBpppp!PWWWWWWWWWWBH6<*Z0&aMpYxeH cgf=ʵ@w6+\pfLfn^'i<\gù'y&izwSMc%}T8k6%Io>7?ל`ɽ +'L)BٺyFGp^3:3tE_} ߮6lۡopUp0\"%S6y<}[TOgNe4Os&]MM{1|ڨ&M2qpy *op$*y ܺe+T¿6BAŋߘ*,?s^N Jdkfajtn|D: |I5$ S,9guW("{Wlm۵|,zy##B@m6Í{6µ;qm! <%N“ 01fgyz>sa9+i},:;'Cӡ;19}S%n~ t2.0g"|0oНs|yszgy gӏ̀#6GkU>,XQFipys!yXEXw ?bޔ% g>)Ώ9>+P>ȿߥS!rR'AG,Q쉐O,R|_F.IXN?TOםg\+]==7'l˷MZ6*W5vy>zz݅xF^Uܽ&;{M]vv-={^^u6!! l|EkYaܺ6~[<܏.o4 eb~W)dk7NkzzzB !zzzzzzzzzzzBd7xvciӦ‚?-g[Ų*$͆a}Wÿӎ̀ -?8tuBÚ gGXʝ s[ /yA_8lW:fӼ2@w/^? <5ޚ g9k{=[6,T~7 }"'pVG^sy2n$+V'LA ؼm 8f8>x1p>,"G = >VYC`ؿI!9ߐ͔[qGwSnܜ9sُ^D^caVMV6fφ~Gkqopr^5ה^ UpwGMqpNaᏦrSoӇaw}n*-ŲqW6弫 !zzzzBpppppppppp!IS\8x8ܼgwo8s4G'$L3΅~o~aȫg<[98xȶ>r٣6 i.y.Xeҟ:| 97Y50=i&5;ŵڠg#ڷ%+u:oYd {J>BS{ ʟ1^0ܿz㉢O_G 6)mG`tL4lݡ5lԦۤ.@y GLnWéO2]?A ~ QhH {k^>??ӷ/RU|j4xu`vm[mq{mM6=a//ke/-K#_\'&]M!eI>gop'W=\=\!ÅB=\=\=\=\=\=\=\=\=\=\=\!" خ5Э#ss: O̩Ypb8T8윐BNO p ca86rh{~XP"2o  oUL_5Ta;ׁ\1g[8UtXb ^\997]ιwa[G-߃;l{ >Bq/p_/{.F+Q&mعMk01+pיpY 8id8n88ap0 ϟ &tx󓦳 {o8yJ5<٫a Z7rsD6p= _(wƀ 4^qS%WѫpW}nk|op~OH\.B.5i66=87\sۙO̙YpI.u`:SJW+3:_ kc|ԾmW=,8.q lһ)|{afIן {6}U Sw<<ލl9J lظ!ܵ{ԧ[!ֱ`_zg`נa_3{aµDxAxS_,"|+ck |(g9в跜-קAS34qIp) #>YKW pNxM|Fmc`]~\'lnAݫm \3z{%#o\p[ซ/ ^=>B.BY0*Vz vs`~v֭=2-1\Ghr;~TGX =͝77|[Eл9{ZNw`|{S^u;y`WJUD=\=\= U3O? :.ii_m!mBqpY/Z3 (YN 7%m{9޾>n<Z =QGZdN;ϐːz/q_ aϕT{E~:eH;T?Ebpq)|IS&;܇óKx63 pzx*>=Ks3u839FMI%z}rÅB=\=\=\=\!zzzzzzzzzzBD.T2o '$MSNL!orvZHNK5L{{oG{RG 5 >Y|{6ZH>phr:CK{}P}(/^V:pIpɩo9{gM:Vky]]i3Φ}=SfpMUx<2$8tHX'[Cn!z8ϯy]%/;.;ueRnquu O੃Ï> # U+.vKy^3 ZNy-͇aڹ};Lo9%yyKN63~G/k>keQ5XaouWt񎚲# ~ޮow\"mRYpp!PWWWB. hwQGgƓŊžC{s-+}aݞzo!?=NhԾ k1xf3M7dח|{\ܼ2&>?n1|G!zzz~whlT66&-.n[\p'kw<3rnsp4o6|KzzB !PWWWWWWBo5F瞂>~=3&9kb?[{T1'}a?y3埅W K.砝QeAwx^% uC=/g?_~Lg#OO}Uo>1ɚ} |g!_ݫ* ~XrCZI{~T&瞆13fCt!y=0 ۴߭ gnW n ngƛ-34gLgnɼ>7ǞoL6q p؞0w=-^YXK-8tv9o^.^s_ڪ4;L9>5<>,WUX WEK= g)Pm8$a$];YCS;| 燏ggٸ5oe׌!|ךOn7mٖïWTı2b Fύ  ^[OzzB !PWWWWWWBSy/J 1gѧS;ynIXzљg:y:*yc0fIOW ~o $ zao|=9?Q(l?k[\跜C,>s0#yaݟ/'wkt|ϒa_o}פ59hw,f Xo6%apО(۶NzJ!,\ae]Q05黵xwJM6rK7a>Bz8[lP°ypip pMpå7-Ly)U޲:Jr;``A]Kߗ63},w>_oa{7up} [XIJVe˕=Y=\=\=<!cepr[18ZO%F8Ls-Nϵ,o{7. }>^ƻ x1J6Xppp!B!ÅzzB Λ RVi&uz>5q\ǛB-kGq>|XwigAWn&l4)J;#Z+y}~oLg ~;7/b5?aF=ըaE40x $? >Y/-$[up8>9r-}|a0/Q&mN{(lM_)G yԡOBseuµ7@h.e~5r8{Xݝ?`wJÇ>S|rOC.)9i ~ 6r8uvIByIO`a-`apur!/ g)q1ç_z+lu#x(LyKo; k#ᬽ-S0~^fpoG|}YMP=\=\=a f!okc1 5ރ_ M|_8kW@N:26VjZ>#t2M{h>)QTz'Ôg3x-Nb|k0x_ ιM78}ghj47Z_1U5YzÅB.B=\=\!Ncy2a1pM 9&g,){#P螓UXG8`o4 h'QaEK> xy <_,t`LY32?1 vY d[n:%챲7z$^Vi^y >ףO? r˶9?Ui/jm߁~~{2kv3&yw35黅gM!A^Gt!6qDJeWVWg = UYp1ppŅ+gWyG1×|͗ɛޟ~7nc8rnR.I62aM.?;ZV8`EQWW .*af{x*Q(mT048*K%5pz>1c5^08Nx/\NkB!ÅB=\=\=\=\=\=\=\ !ܲ3/> _dihx;|<Ow׸S6s?|BoaaJ> 퍂Uū{̴| лr= n GC_P~x_Bϔr]#ND~Cw>#F?EA~}4,9 p3x oK6Ɛ[S<']!"G -ݺ6l[;{~9\za\f.< Ϳm`ܹhT20lRa~B{ϰu6`. {NvT>RfD ~@w {t՘kһúm:KbczzzxV%|Gmk7xuˁFY8=Gy2^OzzzB !zzzzzzzPWBq'f_+3/< +~L pG'{yK]᫵+Bn[~|ͨ7ll X,Q$,\ɹjU 6M~VL)'!ѰÌ.s~ΐk !8fޚy| =n ;2i-a}!Gz ~Y)d[jKc-yzt_B]~o)lܹ1:+,K/=g%f=Cg c-3'3`_> 9:S%e|b2{MkLBb [3#s~~~ڰ=gTWWj||8 ?d:>n7[sYgSBzzzB~H=w{?aU8~|^ã`Ya^`<-}6G3oMK_  x#`1!{ޞm,-V㘡OB]׫_XECppؐS]t!Յ)M=/88:~ڽ'PC\{p~p(}dl .#_˼[a?;!{#+nɡG]kÊV2G yޯۑ[)؏{)E H .D\ *0U Ⱦ#,|fg@AEEP\D]zn|ކnXU];HXٰq#y<n-;J[Ɔ.tj+cO%8\?9r2@^!N2c,4l/.',~L MF//)Gʍ/o^Ue\F֪SֵOTsQz2a C8Wݳ7<{s=+2a 7H]{|]=<+=CFW#z8@dAFsӃ Gl'~/SM?fJ%+{Z'WT.] ܛc1k//[77]s{;e2i?A%=.M0`/&fjKwy߰\qigƖޝʙI][5_&.Qe-{<{VZ^w:gHpc3gQҞ}nrzmb (=^f^ȑ!zW\$6E?+sVGW/O.%.,S?˔(o.k FK(/L"K.Y85ɽigr0гT93i 6Bv 4 /*+" zx8W6z8@@ |pz8=ՈYù":]uq_$2e%kXvmۖ6$N99f~s\wd|kL.LKL䑉_7"/-:kz|o=w4gl$}鑻+{~>Jn-3;ey1en9vx@y$m$@@c;ʍon3w]ȯ? 笰g찹#=w PTN%|5rrBc׹xHyp%nZ/9off}#O$m*5)WN Sde۞GgeYK4/yC~rmF㡷 Qq&H{=B3Ï><*3dMdyr/[ڴ/c: ~=v-r{oYVMiPg9r(st1p ٗ亗7]ɌK92p%Y>W-5kgKA"TSrrN<],wY6vIy޻_q`'پoyO{d.-e}7bdY}2'?s)˫deyekn;6L?˼dx$*9]Fgh+2== seD pz8=‡N_=<+= RtrIrr]2U[m/d+AmSɔ#ލ_xlLvL"EOiԶ;O:}?8o;$Sɐ׻z̸Y=u{QFKrmrAbi߳ރYCS;dyfҺ]rͫԕ~3L[e?V8{y=ޗӻ=c/|сG7@EP9=<7?W?}/N1\Y}7d%^C~k\yp1[^`AC|Mrj+K _2R&!ʠcn$e~uur(WG2y:3dGr)U..\.G--{=ee6zxEW#z8@dAFpz8=N" zx8W6z8@?o9$&'&ul2l׎߸:-q{%i_eɔ r¨e-&Odꗙwtg?)d̉r)[5kH{#N( 璥-e܇r˛e֍}g]myOɦ/'L\Hv6nn&#q|rrYΚ@ QKw\3Yo}2ӽhgcݡҞ ,LxtTÓRdI冷7ԟd﹎y2Kܖ*^d\XTO0{Qh_~ri7S>'.`#t/6²,^_oܻ2G.97{l޹lئ2|>{L%Kf+g8˩rrĢÿv?9TfWt5DplpHN@pzx= seDCȕūbLet ׎t-2Juu|y=2#=SJ=;c%yϻqrg:t[hv92KE1S|l@GٰeCi%r%N GJI)IZ:@6BU.9n7RFvYoL~_fH{3v5Ҟ@Urzxl|wI/2wct}K}[Zn|9~DYV ~R]dd:5oKske㶍ers+F/tVeL 5أx~H{>}&smdxG6T~í?CjD,\=NpW#z8@dAF,3ѩwN|@Ί^n>#mN}͌Cz[9F-%Fnp}&NmÏ(I6wlԦS{hק5I r{q2zz1Sn|m\o\].g.UrKeҧi{~yf2p:HWߟw'͗#埍֞[m,g=%%sNyg;Ked鹒!S2Y_].-voydكdd' [%͜#Z!-&ȶoҾU.(Z,c/%<`~e}2Θ{ϕtGnzo|bL>E?-aǔ_e׉2j(ٰQCi[Je6zxEW#z8@dAF,pz8=N" zx8W6z8@$C֭M岜2| _x[bkmʊΞƀ'$mʵ/o1o;Oۏ(, }|JI!>%'Zz>K# g2f Ȗ..dtv!S?idT4gF7έ/=_dVZKtl{A1ܯ_ͤ퇚I{6,X-YڪM+I<*;j:,9L&"=M7z(eܷIadvMe`6}xL%U~ WyA{~A]KsM 5忻m)Wd2ꅑzxuù"z8=W#z8@dAFDrXh:)@^̼5^ ҵn!oo[]pۖN5kה5&Q-Se Y8}{C̤kIƅli/2˥ VV)1d'Ϭ[-<]Q{}fXIraF,gQM]u#/X w\+~I)MWҌRڵmoliyo{_2G$*]cC]=+5RO8#Oq8V9bg-C&9lyl/%=:AD\=Npzx= seD"?s4z2='3Ȗz֯Wjw ;M#c]vwzXxl־lac'c.eeseDE o!+nޯ~3Wn?[*\+ǯ/OJ$gw͒6Pߕ׽|p6E8=3i N9g=ck M={zd̹]2Tiu1eʕ]k˓_n2TBYF w>dɫ+-~"c>%[j-?5b|]n|wyL9MLOy%@{[goq%nÖ5H\͇^ՈYù"z8=W#z8@dAFDѷ}>2 y.[2*ѵo1mm7I~;Vn;C~;NƞJegY2p<0`~kf,눡f8]>0.~22scXS^O |?^a}t#C0odzeȘw-H{3־Q PTNOHJM7ϔm{痌2Mqy%kI[nu֓ʚw֔/ȫ`*IvEu]~pL1U^eÖFR_{)Q 89Yn?[F8AĤ^r(9=YiSљ%3oëeQVfWt5DplpHN@hpz8=ՈYù"4cL٩kg9cӳrej~.[f}S%~ҵ$֗=^m[ZVfɴ3tIL?%3>Ơ## 2Bs][➷!gҎ0lد|Yn}nV3 ٦kk!gYruj~+3B8+i&sL3О]&YZ^GT}*gǺ<&'L S Ɵ%ڵt |әmrVνuyɣMdwb{K)C EedxG 6%{=9Qw_~|]=<+= r z8=N/5DplpHgÀc]seGY2h5 bԵ< 31c(8a0l|OG@l!.7_֩[G㶙(Mf}Xfu\{ڳqҞseczK6iok׺[޳5pn~XbZsC@GqLڙt`a v]ɖsd֧?u&76{8-S?̐=Gq%RWwI{vYVʤrzWiL#珒˸e귙|qMBg1}z4٨uc g ']ȫuvn+kovSV?٬IrV.$˵G6^O?)︳v鹜!+3;{^9-v01YV Ą^rw/|&/@]z\ g&9S_4BF'̝#sCjD,\=N@pz8=ՈYùz>6z7p\Nf1US3/eujUMt&2fr]z9ai@{6㏒G(@S9=-ЉOSs2,z9vIڷfimG-}Q2R?[s2\OOmqn9MOᆲU\VRz.e{8/u+kYKoP_.-Z!.zU8^y~-WV(N3 t1۰r)r]Ҿ"CjD,\z8=npz8=ՈYùU=1)Q.ZHv]2[.>Αsy.B7}[Uo}g2\g׬e';ED?#~Qc;쑾2uL~cL _%QKG~wʱԯ3e8G4Yv]ֽ{uW-HG#Lsb|3_6\Rv]xtץMƘG.Y*k֩%[vk%G/#%y.YܷZ>1>zr12| g&Xdtwz#KˣP͇^/=<+=:]pz8Xpz8=/=<+=:q|Y39zXp8%s> |lYҽOqoxl7rgKL}/?̑={d9WYTNM4[ވɟydWƯ.ӃUV:k=aˆriҽ}GqI:C mz}֪]K.].>Js= QҮ<7G=/#累drA"YA=i~\Ȑqy7V>il߷tȽg L`#%?KVʻ#׭[+tCjD,\ z8=z8=N/5Dplp:|rʴr(tC{eGye1cms?v cK[흣/(a9pMvM6xcA2deL a4xٲ2!1^V~IWN5Dplp=N =NqM,\Տ^nc'FνȍeLA?2~l[`G%VvQK9bܪqoaSMf9sYXi.{YV3G"KepeuS墴e2KC//턵e+j(gxNn>#˺a}f\̖{މ-; 7WDgIMd }⌥F^=m-ڷW~U.ټCsG?Y>ٱs帥O<.j>FpȂΕP@FpȂΕP]_;v[5LKI{^AusA5Wِ~ռ-p,0?rK^b7+` o?Ψrϓ疌е8deIs[ 4F;YTN_=Cڳ˞i]>@pV>Q}cd慜/:d],m kڵqgC[冗6Mls2lYj'e'~Ќ$W&}W# [_!wW|&>˔{vE},cFh ܏Y* ΃ӇH;Ϥ{Te<`q%!CFUCjD,\z8=p;CFpȂΕP]YC"GN)'/~Z鑙u`KUg裸l-]qd7wqVי:̙x5}g=Ӫ+%H{}УrW?˒~Mؖ7pU\gmʇ2dsB;ΫVԨLΗ nd79|`.>)Q=ܾaÄ)d Ҕ2|^9u 66پ#),cFKwyg-V|#ɊI&LzLG4= secpz8=NM,\ϫY{U߳w|C{2`L{#C)0:-|Gsn䗱A5:{?# g=זeue3s&dJ{5^6kL&&-=Vy ɶn%3>Jyv]%KuY6z>x=’}>7rƦgCת]KxuL Sڙ:#k䡲KrŪP=A" zx8W6z8jN>pzxA" zx8W6z8}.]N*E ,n''dYpPY$]3geuoSĽϲn[z [^{1+`# >PdiτҞ! Ӟ&Y_<&VhsQFr!rgL?!sJ˜syI5`\oz=;J8# iO8$ .[{X^Gd&w[.MZ&;$&9NR== se>pz8=N/5Dplpqo^dٱKG9i$%#Ff-ɗy Y-↷ֽM V61/08Lʗoe-1rҞ!SMqҞE<2n7?rӷ6ai9ޏs9G<5?@벬-\kYo?b8"tiw,QzwՖyHƽ ͤ?6^// $'N(m-CUxMKG1= C_#=NpzxpH|O}eܞ5.uѲw޲c28Nf˖ e;Eӎ۠)1oG{+=!SxjWio̙:{b]:1cȂiAU?[8gNi!'3f˜dG֮mSel16-CŽ2ֺzmQ^w}tfMedq;Jyfc{riaӆrC4zxT#z8@dAF=z8=N/5Dplp{?¡wrrҙ24{rIK}ɣ R =ܾ,f6٥{W9mt`"u&[~g0,-?M>ȗi'3[aˎQ|eyɡ*|R+" zx8W6z8 =Npzx= se^'M$5o&[=ZnMWReމBWwo↿I_uw%r[p8]=D o7w[?' 4 VvY6}2mߞɣ  =K/$ǎ{vO %$ɬ^~cwdyWX Jk9b1*w# qx~rӿuSLsJYtȱy~%sZ3GzxTijK}À~ UG O[[ s21t7_^m>#,#5=|s2|fe)c>OvlU:ߞ+" zx8W6z8z8=N/5Dplp>ghyˉ3'[Wy}Ʒo^pss*O {?G \4S6lHF@uzp;S5{v=a8z[' 9xڥoaQgݫsuk-]t5DL8$\!oZ _KYoH2e'=!^.u+^8EnwD;F=9km:{Trg6zxEW#z8@dAF@p=N" zx8W6z8>uXЫwo9j(9uTM&'Xe7]d1[ox!gFFի}]g>@*pGsfˡ#ʮʥ;˝{x@_K|бxإs+_v \LJзcNy#lY$'GM-_L"˼d(kU[^v-ٮK;9w<7 O,3w=}lP#9q6ϪI)CjD,\ z8="z8=N/5Dplp>5=BȐ971Gw.ck>XXc~|;V2sc]֩s'CU+$p=܍-l۶|@lѷ+N7se;.dѩk%XR2`?~ˋJg"V\wt_j>ON_2BӳSپF#H ~DJy甌ݻW.{>D9o|Gf͖E'eI'E֢:[P3Z>K\[,3ʝ+_ٯ-cc˟)wUVr@P(3gJ8R3*t']>N[N>MnweFJSzxEW#z8@$s gUz8="z8=N/5D;wzx+=nl}FȡW^r2 Ef̖-;LpwYz#^g?ɂ PL)ًg˨(i#V:Zdkh9"~>[V-e^庸 2 ^˗o%\|WΏjZ{:qWVL˶.=n~g>'*}rG Y~=9z9o|8r=uk*dLvxRv嘱ceaQ#r== W6z8(pz8T}pz8=ՈFzx+=%e(}xW|r X|t51?g%[V'v̏;ZGw p=ܾ.dȅkJk9b}. <opK ]ee:x׬USֹd-s-2`+9δ]ryc8C7zxEW#z8@$^ᡯlp(;Vz8=$pz8=^jDk#=<crࠁcd/$S d~}9Ogj7~vf&`#mڽIYRۍ[k_rơrꜩ2'=R\@Ye}!-4Kr向Cd[w]ݹN&c2ENJe\WzSmk䤙e*{8$8uN͇^ՈFzx+==U z8=N/5DⵑF[FjyCzc'ΗP@i_wlIط:2e[,?[[2_N~i6~um%r n[sR׬]#[i%[n)wj/[4KH! JbߪwDBm_罚/_g^{Ț+s_ɓJ3z8@$^ᡯlp8KieԘ(9qD9}tb yfI eKץ fHm-tžWˢE2/wvf̚!'M$FGQcFYN;Tnn}e||IϘ..LcȘm2P,>R,~9}ci_iƾ-ݻ ws^$dͱ咵KY1#}55aCbb_kWt5DⵑFN? z8=N/5DⵑF+O;two}`e>)u8G*_= f}.w5?i)}%2Ƿs/˜iy zv;s3N=<lkC7fw|*)̬gdZq,xH?r"thU5{ۺ׆ccȄ9ydٽWwyɶ짣w}== W6z8T&pz8Tpz|]xm2ϧ9~v2z8٫OoٹkgٵG79jh9u49o\i&7a?P ^}6J. 4^rxCeҎʎpr̩rQgK.6ÆJ;v6 ;K9>k-[#ܓ&L '*{z\9LNzflܲgKů}=P#/}lejRɵ[ g1!#.ݻw .uvNmzxT#z8@$^ᡯlpLpۡ+"H}e@UG[}s}0p|'O {JF+-'WY%drZLNit!Z99%م[es3te%HMvTvCe>e;{=`gΆ}M7ϛ-q]G堡IezdZnLK20X%~3OovQmhokcH[Wo\-g͝%GG}+Gvqv`߳^9ՈFzx+=pz8Zۡ+"H}e@|nPl'C2=;4iD6uh٪Xr0QGc&SSNSkFGK~]:V[I{XQgo9{g}agwdPnnV>׶TU/']umڶ-Z۴t={=!{}R:D1L7Fo69~x9fh9tSrA~[*;u$[nit^}ٯ9uT!N::Չ4zxE2DⵑNs@U{n =~;4zxE2DⵑNs@Uƾ\sSCƟr4x5V*#GEI'=f3v7N8'L4ڟZ8==R=}j;f-Gv2Zn;^~<9.,kv%'Wv$Fς~s`m18P`+s9Oxs7ĺ99 = rW6z8T'zA = rW6z8TWW#o_pO:.kݾ{ϡ{x'UzxyJ}N쳿}%`_EW 9s{lj.lgSPW+jz8@$^ᡯlpp;C/OIGo^ѯxmp+z8@^ᡯlp=7Fzx+=A =DF~ázCh{mp+z8@^ᡯlp=7Fzx+=A =DF~ázCh{mo o_]U׏ppz8=Hpz8=WYpz8pz8=NGDDDpz8=N#"""pz8=Npz8=@@pz8=pz8=pz8""""pz8pDDDDpለH=NpDDDDz8=Npz8"b;qFfG+=pz8=N)lHpz8=NGDD6&11% btMcc'pz8pDD#pz8=pz8"첻ish#Ve=d|;KƤ1pz8pDD#pz8=pz8bqƍ-:55ڵ}A猯3.kd~ion<`Rz8@pz8=pDpz8=N#V+s5?ltYwx<ѸCg8Żx6IUH~:nώ8o̚lppDz8"=@N#V}7?bpz8pĪ;2& 6f?|&h?W/oCe6ۏ{{+s67!㺇pz8=pz8=pz8"=@z8=pz8=1 nh~&%M~Vm/7ߌ_.+z> o2Kq;.e:V9!vTJr|_63V1;VpzrImcl~#=4z8=pz8"=N#=N=N;8H, oߎ3~Xo}1eq#Fu19g\r|LeF{ o:cX<߸ǶncSƷ_7^:mאc{'mv}s~wOmr`4<Ɗۍߡlc3EsNç/SZߪOAIj׷m}i"[@o#%k/77Fʹ~q9$Nh?盳Ɵ>7"wwsnoF>MN9./h3=pz8=pz8=pz8=pz8@pzxprmʟe\ȸe~7X?[lor`6_/-}k{X!x`̿_1~~Ԙ>h:ƅ5xojcE~㕯3Xzh?xhאOM% F {FYa<{blYmOF;v9+ߧ> ˥Fpz ͹>%cp#=pzޝ=B)JMMI)J(jP17;>cl2cwIHD Ė$I*ȞHNwӧ>IIN=N3z8=z8=pz8=/餂(*rYQogMӗy)MuGҚë8:EͶ1l/^mɧ'>ufKmnOKTש&?V>ԧ]1{ѧSS6UWD dӋa'gHÈ|jnU>}tSz/>UKvpzx|'Vt=Npz8=N3z8=z8=pz8=:`b?Zjdegz47J_C:'Gh]nON~ϧs?U|/ʢ͓Ѳ 鹙[7j|S]쟫S2jOz_mǾ'tE'l^=il>6r}Ki]} ]M1uB ~ɧ7?=Go ^[ҚИO'4﫪CقSS<G_SU=kg,{YT.f|}K|zҨ,ЯU })ݡ{x7_t"͜>ٸ7f_ޟW'f53pxɗIOR_5No)F=쟷K=z8=pz8pz8z8@z8=I|^L?#?}_j滾.cmW--yvNwwzhSG~:ko{ gWWSLQ376AՌ'~OO=p#lYJj@[_d/stLC?St7} }֧zg󥯌K[_ZtjOK龌v/F_O+̻UW =1No;Vqm~?7S}ߌz8pz8z8=Npz8=NN=Npzxp=O?WWI|o"TnYxN3©4DR\4:5w*etA4⟾uHg)>U./癈Ҟ1'2{a<8=6=1Isw/{QO*|Wv/_#}~o7>jK}=7_ӶY iӟii=—]uTZ}:zCW~!KÛc)Ro\KApz8pz8=N=z8=z2D]'|۫||cwY4їRgL`Ol|TEn9t㖺·fK|ǗyAS1/:'} }Ne^:˧{S|u*?SAmgo@/(N󴢸s7F>9>|̧k.΢G]vHY4%uO>&uԳm|N3:9U_MOoyY;J'}}Z t_Ibj:-G)=C5lNU'=t=pz8pz8@pFpz8=pz8= :@ͤV _ he]gB_q1?-W&9״veJYI7nwOgn g}]ˬ+f^b>"}Vyۗ>Ws{N4n/5|rrKt9o$U=ROU_O먎g~{_΢ SA:7Rye޼ʧ&ܼal/_fw}GSYujס1Y}:G릚x7\'ӕ+-=NpFpz8=Az8=T=<9Wޢg駀uUҪk_cG`[߳^<ӧB]? b)ro|>F=g-Zg|I)g69umĽ>݁JWrw6 ۗ3:jaf^[t I _w+tJmwȗ碻 D |6=)%=O5F^:wE%POLR^:ۧslr_T?t}MߒrowG?=pz8pz8=N᠇Fz8=y{+/n_]߬jz寴$tWVlSOOPխk̯h;;,trE}jſRcn]Kվ,ܺtU/mez7|C'W8=Fw"5ykD7IO'bfS_㟾R:!cstU]K}O6 :,_Z6W[p᠇=N3Fpz8=pz8=M:'ak>5T?_4їRopggc/5]_|L= 'Zt? g5/,=#| xާ tNe]j'~*}/~>/ 6'6פ^s=A8f>z==9FwmẺ]K-磊N=Npz8=1z8=Ngpz8@pz8@ÛɷnO_y.gji;|<5p_>':5EOѷn/U{*Q=n>=i1b3uMϽm1դ9N>Nٟ_gfvN3uϴ_3/ȼ{ a7Rz.0=NNNN=Npzxaz:']|۫|B_CRXPN';wU8܊\uNWga6jx'm'^ď¿ۼW[Wt{|[R35*_q/ǻFSwg֞ vO6Nry/I>/V.ɞ{NWœkr͉'%W8J'qz8pz8z8=Npz8=NN=Npzxaz{&RzT v>7-_JO˾s|#|?5+jbGT{h+20>R~5~:gflo_jd_?2.=$_6TUYyR WWI/@/^:_z[4ݍ==RO|dw_޹?KJ=NkCs/3ܘ_:+;E{U>;r~5Qe|OzN/螾I&>z8@=N@pz8=Np᠇=N/LWIr뾆6:%}ǧ~Ywhe>3=J'NUԯ=Og$vi_C[\! Dt;ڧ\ZSCݙŸ;5zKΎ^ۺNO?{E_ê)=Ų񟵞W3&{i7.W_浥MЏADe~^s&#\WѾ8M|o(ҺL:Z/}o{OضŧVU0A/t-7uOfާ~G}E=Noy'zȇ}pz8=Npz8=N᠇Az8=^_ܺڂgG4e:RMOdA'|'>=wGO6\OZ:ZД>Qщ <)-KK .|o>1gg#I}1w[3Zɘͯ;DVDrvz|)b~zlZ.z/;PQIVm~9)3v2z::I#{>|':;%N+ =}ƧD_9 G7oǦ$;>z8@=N@Npz8=pz8pz8@ zZJO{ (3:!af=Zw#|:/%m}{Uu0h:!}^>B=nyӳ&DM;|} }k.9mSDCLϊc]ރzh6uJF7R:}hĽ|fGw9)Ju/ٴQy۫}'lnfS;xo>OL_o}_kR_c}O}d>7Y^M>Epzxpݣݪ+=NpFpz8=z8=pz8=*޵φ3"db?j[6>SX̗5ܧ1v_o_zzz~'Rqg^׼eIѐсe~zʧާ? BWZKԟWATD=S?ٟX٧FfD~ӓIRzk4uј>==SMuƈ׌*OoHJn>:+f&麪XWzqfU k8ޝ>} 넖|޽ɗͩ\17/n/󫴐i?gsz8=pz8=pz8pz8=z8=u1L>t#YwOҿ^eF?/3:?Eφ7>#5/wf[5vS$ʤ\6~ќiyOY'OfsF}z:dvߒ>^xAu:dW$s?={/j:N86A>":'$_%MwRnޥNiXtU }螾_'c=a=|uU4FVG|[UOݵק6)TuVt?( ݻͫ;qW+΁gWcN.w|ktV>U:4q NcWFWO^;TjZj۴7|uK Ygȼp/ڛvo}♆Er{pO 9ͧ')l%ËzJNlt7|>]Uպ):GZ\O}5|;uIMqoMVU2Uڄ݁,_-ppNNpz8=pNpz8= zqzj&9-2.5e/ݘk]Wշ7/uZ5F߃׾9UG7ng|m:5EOmS/Me|lΣPizva>ȱxOJE*y%u9>}FO׍WOԯF):Cj:cվfнtO%\(ݭήѹ=J *iE 6_uV?*tl9מtǤ4Րk}RUgzNvj=\W0}eJOJO_ԙsqQ)Mw=ܗ>V jNpz8=Ngpz8=N᠇pz8=MݨN33޸7vPR tO*;_c}s>>||?܉szzŸ5L.Tt*Gܴ|,|}.HTeW\WҘ&߀gƉƧz?O5^!vUo*z>kR%\g}5l?Pw}*:DK]qΥiW:IN8QoW~_}};瞿ZODPѩ\:BNwnC|ץ__TγRYF:%;-FW =pz8=pz8pz8=N==No~ ^83駕]d\_>XۋgєNPm| =L}}: +X?N=*΄%]![Y:;HO7֕_w*2g#uU_\z^a<; 6 ]bmٶ)Sf-Xa[b-TnZ4׶pL۴m+7Vonkǹն}F}cfbu۶;766g Vٲ=Npz8==N3z8=Nppzx p=pb?߆}:dTG_mAy>V1?پœ|'p/+_i ezMd{||X6vOOZNOj| NzvwnVߌ6LtY :d"_k:*=GѓӿRg`YuS:z_:1FƟjˆyPۙmkf'=e*[ؾZh]|>f|5?Wη]2vl󖮳6ڎ9WZe+*N=Npz8==Npz8==Nϱս+7R?esΉ~ާ=O&{77e暑|9zTr *f^~R`[_}:K=}jk‚|k̽*ݙR ו#}:隠;_kִO&lro˾oߧklu8([6;v=oson¶fFmf|l~Ϯ6ޝfh%c;9ac毪e.?|6mGvb;UU6z8@z8=N3z8=N3z8=Npz8@P}I鯩6Ub*2Wvߡ$5m[|=K{OИUvy>O?w>o0NSk' } o]ԚFǦҮ{p*c}k2+d6WRE8v?7{OO;,^kƿ1|s|}ks^ʶ'ak#;h;llsmi٫vɶw6vYaضVTت**+++lV?o_^zh6}mն-jlߵ}ECOl;UlpNpz8=Ngpz8=Ngpz8=pNo=Ѿ9R_M;ڥ>psT~^:Xw1z'}xmuˬ|juE}jUxL~ͧZ߷iM+}t]}Y᧯m{:MK>vπq~7ol[1mD[l;a+v]m=>j+bmwٞvls??9!l{ko}/Z;öbm{s{dPSpNppz8==j{e~\]HO|UBˑK~:#e >E|zbݨN'5k2Ot}|ZR̤©JG=7M߶rzZvр+}sʆ7)\3dP-k} ?-/ ;F]ԽZC|Y3 kR'DWSim;>ߏTl-flmwݶӎ;u7sNk{ Gv?]f[UYOGѶlX[m瞎=mK>O]mWۡgJj==Npz8@z8=IKyguUe=|z~.xgŗ:+o5?MUu/`()xy*c$tpnغ&X^E}%uc=e SvOט{olO_xR|YNYȧ;Dqm=ΰ=|_my)]mlǚuYWnގ:g[1umŴ'flٶYumخo۶ng[dγu|ᄚrYpnz~pNppz8==ު{:[|K&ɒz|:`#TE ?~ZJVvOgԩNz۾M>1u'}z _-§ƻyO|lNjwh}|u9_al:k+֪XdcMzշ{y&=y{xklm{l={v!ٞ5̶|bJSl}햿bPۿq}{lۛ3<=eᜣl_O_v5gn\Ij9xmцJ[u|۪%cmgn6=ןg;m>Ƕƶ`p۸ޗ;pNppz8==*zxz"޹7eJBSJԇ}@O·uG}9큱⟪{^<ӧ뀞TtMP"1ZRmu=7W8#~*~dY}MU fƧ[3>ko2ȱov잻6qumsm?.apG3':w-C^kSy^gv!{$=$ۭLoO?֭@ےen?tm۴I#l^SNpz8@ppz8cpz8=pNoU=}J kmQwt@\(ٿtAWC_?ͧkg:>IO-]fzգ'g={Wv}?=tab{ŶiGvEmͳA9=+7.mX8g]e[mvȩ]mpNpz8=NgN3F=NV[ކ\ӓk>5NVϹۼʧs 81*'}zn8|K&W,]_-:GOnV:ħgw {w͗ߋ^ ۮ\hdYl8Ƚnzemԛmc^vοnms>d;s}m>=|{ʵl'm륶S/fvkm}u2zxnm6ʷo[lxgۡ{v=u?usa۪*==Ncpz8cpz8=pN>|̷mOOsu~*_?ioR{| hKN`y ̙}|_ 鄺N^ѧsfW+t\Û_bem㖭_mlvSoSlveL[M|ۀNm;[Ϗfeqg)wvhfζ;l[o˪ja|SCvog=l{fO[|MlpNpz8=Ngpz8@zxiC6=|@osOO뼔C}+l3rOO{:OgU-\[o :}c-{fviwmUo,}y7Swۃ:tN?vmLXdk>ɿiglYmkmG^\[9vzm/6Wlή7zUUg)]pT;ζ6mvQ)z8=pz8=1pz8@zx]Ơ1+=|Pn~ _e>x7:_ϓ|陌1VcїO\ Y>'3=^xm 5mv;vlƶޘ6}&[M,[Y{li_l&kG_F~߃0ۿ|՚j[kOvG=Npz8=cppz8==e=U? KhڞacŶ{czF:J^F祇m[f2.U[>xqۥGe;mzmն[6ul}FM 8ql\}m]`{ɶ񋾷--got+{[3lkϲdm[VۖMyNlm=Npz8=cppz8=={fiO\ c1+mGϷʵ .G]mhmYE6m;lg\۵m[jm5sl}vɑG^|mฯl i;WllԬ-S]zͶolK]x̅\cZq_2ۘl;ۉ$|{~^Vpޒzi:>1 wx<+k=<(oCb>ヮB}MbC7z8Mo*=\״AƗa\P/ }Ó@A7z8pvp1ϪB]pмFG1ÛVf?v|z/;==<(i ^g }zpR=\dNʼnopz8=io 7A_uz}_ BpW-@b$k zxZizW=\MxURx[h="zxQ ]uulR 3@A7z8Az񫷭]`8}۳7؆cPQelUWntmۯ|1gՕ6=\itԹ= =<(ܮÿ'|2z=@bP^]aۼ]S\aiN׫Ek7۶l_V~;9p~'=g:F=BO+估4WHz8=zxQ ]uQוMڐ^L 28h =ŠP=|mA'McpŶd[+V/m}m֦_FXkZ]=sz]8je|E@)=ŀ۵^} :5%CB @bP^n[?w;/6lmo{e髪l b[1]۩{e;xlXc+)/T.C ]wާ@=ŀ۵^?ue s١S驚:S =Š{7n=_۫lߏk<^mwï vpaKlx- :5!/[=zxQ ]K{AɸJx* FG1h~u6m|Qs;e{OU3SWm}_a]d;slGvu|}mЌ w Zad2@A7z8= ۥox66,i;cl?X)cm,.etm~Ox" C9.jppP FG1vmׯ*+ڐ|=0FG1himk,бl3̳={m6oG=a;mѶǯms[[QwGC0(Ɔ:cл<b@H_]=mЫUЫ+zx@A7z8As;mmvjo6qmOKmCM3[Ͼ=m_v}l'um冹_eS۶e:7_#<uANɞ- IopzxnFzx3+ۂ05Qahx>@ab =[mmv<6ٶo6ou 'r+1k[E|ۜ)l'lỄAV{vbs^ =?zxQ ]֕MOT>  po|4G͎9k-mfmo?m~rmΤ7l' φwu#4^pP|STZ )pO!{oڞz[ۆk[?,dmOluhg;g8.~ضVS96w`۟ڶ=3hm5[ o!:Kb@7z8=FWz8rCڨBk=<zaX;}'bz% 'ӡPՉF_aaZ=\z]ZҕJ =0᠇pмᅑpzԎVEaAP;+?&+gt#pw3+節߈7õ { s5su Cpz85BJ|lȬi3#>B}\up~k']'iaT=z_랗B+=zxaAy C^=S>U+<+|cF^ 3AU\g;< jz*wr;mA=DuGzNuJf ji*i!?!q|"c%W%\HY4ˠVϱ=gC08YN =\}Xm%] z8=N͋^ۃ^v*, zmUqurs6 jwCZ{(.po"= G\栖SVTwԴ_T!N>OA竜ɴ}5UOԙ*jWq63C3UTuJDEF }/jBj>u{MAݥRaSeIT{-lu<=ySI'N<"+# x:{Z]IW9Uu*TQ-*OS&$qqQǦVNDѹ1z>k5Pk*z_ zݙ;WbaUbz8=zxaAy I Ry>USI՞tJt> 7Ð00ɛ~(b/&2b zvjЩ8y8mp'\|I%Z~e⊢~sQSG(z龃^w 6~tJMUڨu˾6@i=pzxK@iNMjkPGҩ)z抠*0 :;ejП˸BIP!3UTN(bo&tR>A5lɪj:k%}WI`?T1#q{"*hY=sQ΂ ^s_tBјwR̓R׻^WtMB/$z8tMB/<>Bl͟^᧠Φڸmr> EQ }^۴z_䨙ٝ:}E5X=KPEW=XtIں]9BWOwjB-WgC[U^֙Hz.pPZG=2@i^fO6%=a3=;EU|A) 3ӂƿj*QN뎆Yux| S;Պ{ܕEO>fEO#U6WfXPY *Ӄ}.w:)EŘNŀ^xp-=zxsѫ֤o CzvJ֤sTo\Ujzi(b:G=6e 9齏\ZMyU`!!}bSOW=VΟIWR^=wޏjzϪ 뺪5==A:z8(-R)!/eV,ԝTTTδFKn24կi'O;Z'I i9ǬxgfYukWIV^mGu^ӻO@7UӓRnCz8(-B=^ËA]Oԟ^[šm;te!=YeJwT3z>tC==!G7UʺW$>0Ȥm3du@^ G4zz֟Yw_zӻ5}-B/p᥈J =e>aS'UlMDZWd}Hww=ӊ<=9'i9O9%U&}TY3g>aV^5pnz% {JTZ+H^ ᠇K=zxHV&>g3B1.Cf9()߱2C]go  uʒ⤏VE٥^&zsQ'f>TzӻB/p᥅J =8emd'oeJω Tk3-=-}e%ey"s]^VzJ^tecnm=%\Ë=pzxB/NuHKTzJ]3lA ~Grg,UZYR\t^P6pz뽖ڮTpPZʼnz8=@iF<^uh%%uI+wݚw&z8(-RG=\KFFVY&RQW*ݻ~pPZ᥎z8=@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@irC =z8 7pPZ@ipU z8 =z8 7pPZ2{ax4fB =^*IazXT9К@irC% /ô , phҒ#KaX0LSA։J =z8y;)@Ɔ}zA=|d&a]P @A4/z8 Wox#'yaaH{ρ=м᠇ h^i59{aD<|aEPz͋z80p=-u|ն-[lmmmUZ̖pH8< zŘ1'2{ GhE7=z8ymmѴO;vn9튍ھ.smmE:"{kBzx;|ƇYAO\:͋No(z8 7p@ju=rm!Kv)λkmʂl[kZq懶q/^g;]m'^߶z6[k«aXƆA=|iX6z8p@ =мZg7aکm=Q66b϶̾b1]b;ζco[U^ek=9 ÇAO՜jº_Mm#lp@ =мZg;aَm[Ge;wm[m?zg]d;ζmåcP( #§᫠SSA =мrC4/zGζ< w+mjjoK0<|&͋No(z8 7p@j=|wmg[ﰽѫ+NCN=4Km[?TIaZP! ph=E7=z8y\`کmꢯl]u㎳]蛶OUٷ55˦kŶCOlCV u=Pp@nZKyvlzod=7{팋Xc9im W;~@7<^ oaBWz2l#lp@ =мZw?LU>v:,ۀ?>hm W;~wT*>zxV31Ӭְb0isB("VVR!`!FͨVTP)ZB9 9Szsxg::?Ƿ,CXhpK'0;z8ӥS;mt͆ }a|h>a6cm85FOռ:n[=|y0LOJ`vpKW_}0+X6̏;h1̢-vfMr w0[|0˖f!}tg@LOJ`vpKwgh7_09z>dauYguyzYv],a7qr_mWō*pK'0;z8ӥ+ok/f?>KwT{q~0qK7=I̎tkqm7 Sf7l9̃]o]z'8#΋=i0LOJ`v>/~L̎zìZ~0=v0n0^t0z88{yg0LOJ`vpkn.]+g; Wb=ovgV2g6=2MkƸ?*p&3=1'W{_}LΤpfg澔e18. =OgRQg8+]ߥquz8B0]z8Ocï+=8>ß?=~b3aڷ7}8:NoDEzΤpSC⿊%qN|C>[7/?3őqLߊvk=p= =?=17G{xO ߏs*vĶ&Wyfl<9i3<5<9OM'!nnWXGG\3 ]{wTŇq\ڎM>=|E(EzPS5/nMiYg$c)sҮxs)v~+xMz7Tύ0[3_LG6YE13Qw.j9=;wڞ_m'7{ѓ4uhX=@=|yWB[Uڸ2zEqn|K1zE\F c95sduۢͼўS"Z_Em7m}[˦aF^}ѫm}c]=֞8*ZRZ-1׀!+C)pppk==ϋ?nMSΉyݝrXE}w7f~Bޭ-oVG+chatJwex #k:񓹣h}3w%}oԻqH|*3RZ-!;mD)ppp߭VS5=Wψ<.Ϛ^mT=Б1xfU| 'sSyyK;;UcMo,řUZP{"6#[3J:v/Jwx~f)} nJ/Ƿ|ݔonnJ[tSJۈRޭ)}:,>/>Aze5ǻS0}ruJrvGhZfN>.m*ݬιkݦ6ޝ*/BޚN}lH6^^黒H)}wwM)za+~VnJ׀z8/TT endstream endobj 542 0 obj << /Length 1214 /Filter /FlateDecode >> stream xڅVKs8 WHlT>D=zKҦmt;ggvDD_8^ ><[g<{'y|BT(rU2[g̪ٲnٵVvZ|]^>xtى -V|=0nO4M,KvC|cno,,)\nX1j v:Ak~!+fa!٠4p'MH@ZѠϷS23QM딊?޴f!kI[fQ@iӛ!%-.av-Y%qI8["BT5l7ne:X?`(kƴ''; xu8]h. yLp~H5]ก߻Dn>mh>pj'PSH]$8]@= fNC>٥ߍC*,]@^E<+@<]H+vn"^Ou+7XՂyQ=ČT_\'B@̵(S?ȣiJPFK k_0H[o@.&C.H\F.c{`FTAqZq=YIXvuI[0Iy_P"ߓxkhjWV [g睁$Аߛzb!,;P%ޭF|o_A\9`v}Sn?Xw>J?-|=ph^"j}½@T&QPyӨ5/G*G#ɛTB&t̻H2{Ja2CE-mY)Ƈ5 6GsY?4'vl,e1-*<6%1e׼LI382<-*n8&(6I}t}oZ6Jk ڿjm7њ C?{ҵ&c9\P95G^UNNWَ ۔f,pL2i$0LM)3So>~"qE⣁kgqsqoӴ }vncHGܰLݙ{nYDmt}Ε h.mqa<))jD7jDy>5U$Op(U,_ G- endstream endobj 434 0 obj << /Type /ObjStm /N 100 /First 883 /Length 1638 /Filter /FlateDecode >> stream xYnF}WcPmV;N4Mh4E;ldѕ||*1Zh^Y̙JтH&#$%5Zm6~p o8%Ƽ"D?"gDwV$K"%;'2?Y=F B%6:EB$@p<{=IHSrC.9k  {r@@ȁ0B\I !R8E hdh d G NDHr@NdR@N@,;@OuxD2#V /,a RTPL BdÛ9!Y]vM;+Z<(,25Hj;~t& ^ʋM5Ţc/zƳl]jzH,N~HZʋӽfzvRvo0׺kr$_Nv ~[aeH O/8{uЁTP#TaV " < !\aR2<ऑA`L& s&9s<H9'7Q*Wh( @-2yeB̘)|p*za :gº>C܆*z)doHm}Pt/w=^Lwvz9=."yI} C[|?Fʯ,EW˪UI})f2yYک<+eUC. L̛,m7O eCdR<\t=kDx󋲪|o'++5QcWuj[5#<>j=_{WW_]P9l+Ł"nxDfM!aXdHcrv:ݽcs; nMmU&gtÁt"hF5tsC8[O'5uޭqVݏ*~OTrg; "٥;f{V;׳ނ> '#c /k4wpP9U{ jxvYYe;m^᫺ H|Mt".;iĈe6Z:eshnPuB-^< +LKO\nm^Z"sa OMS3(!{*Y?EdhIH'\սYOHiͿ~y, endstream endobj 547 0 obj << /Length 311 /Filter /FlateDecode >> stream xMбN0Ћ> stream xڌTm WTʶm۶m{mk5adɶzwǹy)R8Qqtt4tt JNVC;8pe!`!w0H8[,tt:::p]̍4 [cGhbA[;wsS3<Yq[;̌?2[m ͍'-+#)9 `hbl2@F߭@P5qrw0| m?\mRY;cKˀ or4 o߁mq74ӷq71[dEhܜ6F m?]ͭ > )] /9:998[wmmm'd`l;?wFv6BA;XYc7C3 Qigk0h1o"hzzOɿ;4>Ə@_fdkc#UwU غ>tG?N"f/H5cQÿ};La`47t+o_>LL2}|lX?Z>*B.Oۏ/Gvv/-uޘ>Xpۿx0i09;3l>^E]#*>nZ'3h/uEg?[i?B/rZ?cRs益S{.:p~H"pǟ4ԃ-Lv˷yҚ 0kKD1}6ߞ׫N \{g6x|^Q]jIi(H-Y<9tp'jHnw3s&$(O<56~"8H@[,ν3?'A#XJ͝'ՉLԕj`b8! !ū ".5I"*6}|%QW6эurIA?n{ǍՑN[?%*dF$#ezL1[Xa1S=='oNZk0nlhrr  积EfC5(ۓN o MT hYlts(֎ OFj'S}3YegON"Ģ`gi|u'ǰy3wβ9l91 44thgV|R n:Iq੦UJ鳛~7۔KeR5EtXk@:Y=Dk|օӜ !+'v u/,_Ή1E#s\2Sc)%A;i1Ӱ"X2MB>K%^>]BwHD]P2|;0GyFygL-$-bk"0~k Æ΀=ZvHKS_Y8{t D˦TV-&߃#i7$o )+`dI7~zuBou Idc,St~>oj#ޕ7B>#w!/AK,8#xϻMnxnwO@Lz iu4$ф((lV*4+yԩ O dE{R-wtxmuyP[06V V6=hv_&r$֭ѡjO>)4pm9`o{ro0r\[M=a#y+ .EPv^/+ֻ)xg\BE_HyjekQ'gRMx>N0}ҫ[6y5.Pyw&O]BUD,kmS63@A@);qd1]ٙ@<Ø6l8BYG\cd dR"Z^ ї= aFnѕTj<۫tc#tB4;Rq^"e.;]O_Zxx:s&IܧOKs o% Ut뫡XZA.V0cjE+ATH߬aB,rhuC42s߶TQb yP2WJEY=&U5rT>~ICK3xR/S/uChf2"C\IQ+m9XŦ|~=p Pصv%3|)Дm727&]Z!v祰>;0= 1\FT:3,E&YTr]v%^U l7<0M,|lYz՚"!kTRijؙ ~D5x6n۞k|נTeN l ypppӶ<Ӕu۵8|beLvҶ,ABN}gm@~1`a#,dho`-gKl#vjOUNy])Jpà*=lTmb$2|"hVߒa5@~11Ig~jx sJ( [v{פgPqr ]=j%6{;؋`AM9l $BZ{c0-uz?(K Wn\lN '9:&.1'Pu/y~)(í2AruwC< Ve9&} t渼kAwy|Gd<7%%^>d! $*8aOc,LJ'c鰸REE ^39Q{k,UbcEQϖB^;֫A`e<3ZXx@ȋpB5B.ATp=Os Qߌ#2CPAߖT;< Gʲaj)qe6dG7%IދZ⻘xYOhXY]{B蘥Àx+Ln(5X=%zUl1[K"Hzν Uƻm(p*Zr~ږ;s,Eh S#I;:UC Zq8wٕG2+taR)F=,:vYÈ 4+Tf;f.:NռUp:5g4SS\qǍs ~'4Ӑ6W`7zXuKb:k0ep‭=.gg\Rt+ˑf nf%ث<:v_lMD9F$txSNΚ 3c}#ZxkȮՋ', Q0lPp\nV$X7g>f["  Z-T;3|d%V"}/QK ajy{D<:yiB1zb~̜fEsi:4UeDkp&I^aTx*JDk'CYnwp{*D U4QW@GcPmQ}j|q+<еlm;vPdMT{~(ksXs *>z%|e#ؐhqͽoMcDGs3hRg$J=Gy%8=8Q'Z+E eqŊ2:4T1=iǫSfl4!(C qL`}C7yFywǸ5~} yӈ-< ReP_$y- VEԃL&1RI7{|86%&b~b0-tdldAo K eZ}_'m-OniFCS3̒L(8ԿS:Ă3Hn#mIЫc[>MŽv ?PNUmɛ8i͂B /SI7_,Ӯ }}ظcS ,ZvB'ʌ_ytXKfw;>/O) ͳgU0)1GOA"*x`Aj:onxo!ͶO3P7 gNz!Szvc嵹fm{GM&#|M234HWk,wI a Mvr嫡ĢdM1}  *$D8@PyGIi,EXRhM1F,ċ>uNWS6цJؔL^ǯ7+i{-`ߍΓBP>}F^\` z0@R=Sƍi !sSIVW KnjQu$S)Li{KX+\(.EP˕njj A0]w+Hs0%[Cmd;uPAGm-Ls57T&mhmsy7Z)D;djl- d& Bލal.'WQ "Ϻ~ECJl6>wwyca 5lEF0sIJGxEntZ5kQ_U#ef ˕c63Uɖ(`~~ OeaIV 6/j<9=HvosuqUkşxK'+c& 6xK-IC>'It^P8P&:6D1>Cϫ% -cǖL(+ދ\GÍ\G)Ee[Ćwf>K{#`my \Jy* S]H]\#jaJQx<xmaѸu}hbk9FiH:چ%)r$ÈEJe ^^}*Jo:˕ͦ>zu ^`;) 6Fdk˙iWwBczJe1+b! +738r/u Gan|mo v\1Qt% JG71A }Q(Sh`Ae:5닃P/o''^U͈*`2C+bBbէD,DLNR퍈g24iHT<~VI& 0$ }A{oAH8upݫ2~9i |3o Y4,9d.`HkgO*6: m7%Ni7L;*Rnc􎺥dZ ;43+Т[XGƘY MMlpv/lHBT $Ұ7Neߕ`9⟛9QjVA ` _4=ކ($-s 'Px-[j`ȥ.OEpkTY/UVfkӶ(Vexo" $}Z0Zyk0މ4_e'7˥g&p ;>#:cTF;C;#k@eh;1J*'yǿːN!l%bjyY<;\ln&g<۞)褡IY~^le/ G۔6Q U7kW1$Hj\3x1NCr izsEwE} a&2h$g .9lFWf"8Ѷ2/e/1ϧ\zP;A`M}(G%bgv`Qzc YY_RΌH =-5):qD.kdG2G|~!v_wrCLy{xhgCo4oW;G8PZA򔏿@:ӎ$ -VD'!x+jm1"AӻEiHf"qڔk^2t9&K- P]"rd82 L"ǽ[8Vڗ?]±*%Q{K۬ZӰkr5ElV)+{5Wh]S0=i4`YJTb7Gⵃ#*IW!PdgXDrbR3ƌN(Xw]LM̧,DAY"J͊Z=D{OϠmdiυ*?ﻡq0='R֎E[E&^͎8lݧ)A Qߑ*?eeHEnf.Z=-*r*G/K2 r&JljʥIH=V{QJaՃ@m;NS1TΆ"[zv{ifG ۉe9f$G6o4ڤۦD$ ݲ)9\? F7 󮻊' NqP8ŝ On7Sk'ß~~p~[nDP* 5|gB00.t8EyN%((Jn{FZU-`ƤV:#Z.R#-Wn'[)mRwꕛf+ƣP2ޔy!4, ܤSUuȖe;* ֙_F{펿%+h$*$FG)hWG dwRf"aNg UpbHCcǃΫv7pb0ő @E4Bce +639+$NqGD?.r ?NWџ_? &1i\'^#AN]nzMuIdc{s^-4qA$=V׿,IO`q=y+,g6kYd'"kU^YqrDNbE)2l.UWW ?c\1M8N][wý!&(8^+Py52րɅX;?dZma H!VJw[9M AXLoy*?0{LV{.Lyb W}Lu~3R?hĆ<ؘE ۽1FeXܶCPQ4@D0{"|X3Ŭ[XaY4U^ۗv N,p2|ӽL*Q3Jx׸'YɃI|,:_@N,ER }! #(3x 62HlbS M2X,n>obؽ;bTPPhyC=, ״/jqWS6| 5S@C}f?q`g3ǙQl gDoE?gi4r9ݽ06.F\m(څ_is93fSH:$_[ #A5] 4K_S'NWv ILl+|etkDh., x&Qy`:!̡XzpE}^n~ Ba%=+^5rXDT]by*IRs$saZXgn$ܽ{8,t˛tZ8omb~T%gi6/],勋Xj {[F8̼́U¼++8Sݨƀ$8{ٸg )X3ԻNtGH:{YB*G6c Y6p|5P:RDY7C$tb1?YfaMQj'*_={VB$Skͨ$P*++çX.7Xt lBX,xmQ`x#Stp=z򎩗w 2XV}=2%ohgOv;;  xG:& YP983kiB1ڄj= eaƛRޒ Eݕag\@-d]{vf⼢q[1M{ #)fH&HWGZstWCS!5&\UϒFʯTbi^ 3MA}\JY{zܑaʷ^AAı}5PRJ4gn^.+WD@)p6E$.`.Ԫ,Ց~U%A&Aj/ 3{!Z{(K.?7wu/9sG08*2?$TXppk*K|F44a=?^A)EÒ8 =gDr*p!KM2NLXsL*po 3%.Ar`)Yi7DJJ f̮XJ)m`v2"V@5Jb,O ȑ^f/ݬ@(l{jpUDIo&D. =ŋ,ɶLnt]I"` Puٳ{NàRhgԐMzByӶj@2}'Nުmm}0(MWw=:hKܭLA(C Ogr%!U@Yn#OĔQ =7%d8to?+eUNƧG솼{saʬ6YV20 'Soi"D퉼bN( #RE7I*~YZ:4ɠc07D\QlU[T۷jwuk-5'.Fމ-06Z.P-\ū Ikj(oih:hc!|9{,2\m) t=yw<;㣚ϋs&l&ӄ;H8հ# q2f%p>yܑРnȓtR˻n([1oZſf 뒶0n#mvm{ }ȅqe>!D5jYr;X0<w0x#6yZ`4#4ByѺm@#v>PkYuŘY % 0LLQ=dI9 _yo#|}]3`s8gXڔ\^N:1啁?eAcAIR0KF3'D,[ 9$d u7ܛE} ̑U0$Z) OIkQK;tt FX)K TC&jT}GT0I|ZTaMA\v̴)IlfѪ$|Hh(NJ۝' J/`׈rR[ΣikGr(%X=kxɤvj{nfّ⃶\2s2QG-Tͬou#v 쥢 @ie篺מP"Nڕ%^)J\@`i d}U?M.s[3PwFBm1Ѹ扯 ݟ枲b'K͓McP~e7y]ƹ֢a[ '?c%t!R `F$0Bj o#\,l\O+FQ=`7ǫaM JFr3Mz:pVd  Ct[1),f! {6+mdqȡ->%Jq }cS=do5o:5bt~Ocxė䔗AV w$PjbHpe:**Z1.V场EQ'a3uW__ܢCi KWd"ܳ4E$RTӣ9ذ0[W.̖2Ժ1 ɀHKS:d]#'f>@yŭfY a˞g1.+HHIo¼(ߴ1{f:OFb-pa^ o^jrGViJ9"RKvX#ՁJr*JJ|&FuJU--˷%BDI ziwIBT(~F+];`ZsFȚҰu/,d6 +;%,P_#;=;!ڠ3߄SU&3nkwf<䞔wE3BT F"͂ j~x}ō» 7&Rm BjJVa{8q} lǬHFsB|09aszSH22KMdb=4#)i9VP@t,PYK5 ux;n"X\f y^3EQa'5avY2hpm/5Z3&JR{Tx/g,V֝sʽ5Q;", euSt@G)DlҰzW=؀J$ QnG]7 ҦJle:r 7L[K"qZ& :v̯&Ա'G9!/-<j2>挃xo *]5/e iFPAvKTYYYb'Wh!zir" $9J%I-!%Ld.bL+/W/ mW[PT'N,}@/*H$FεRb'7>_4P#dYRܫrN,q)8 XA0wAog Xi ֣8sӾ77L[ܫ:ޛ韐SnWѪ:y2t?K Ѽ,Ԓ]8"@ٷj+,$8A>>;D$]gSұJZK˸g( fB #fYbIn}K2oADEYcvwe+T3w6,IGg}31[Vvp+RGD%Ug$p*;oL DLiS sjζRE9YC[S|~:Y+..ʨ_ ~mؒky裳Iilp},Kou:4+isF{E4i11ȜXܟ+[Fk#VNA;X"`n+I"E5[IO4-pR1(P.@aY`2KȷdaZ6MT_qsQϳ_C)0)=gO|Zgio#mȋفhL^Jqink76tyd?Ųզa‰ŗ{|>\iUk?@rr'ƌx/EjXS^Z[DawT1OkVYXtR |`(?q=\zTmĔ?լ:{Hui!d]GBWd4ݤ9vF+*}_bvwsfa%VO|X5>Fybj顊P쮚2$I}h.r[{*hi/ 15lo@/ԛ5(n/7YyNO5e*J@t!j g։u:` TۘT8h6Hu<$}cD"V{z9RwǠ?S%bKx9~;)lu_A;x Pach'Y(i |nɲI" a 7Rۭ*V ljZDwɟ7#Uz9; wt;xR!9u5/teЉ)HbU $!7 `m%ĝQh]'PuSx}i I$~kۉ+7&JucvH~(Kp'9&R}m_2e CE:ԩ"%-Vėp$9%MS7Z;f-C! -ԱOmM9sEg_rl.$B 'JbI!'OƏOA:!>cxK縎,r{}ݗ}-m[fๅc,o(\^[܆|UB-Z(b/ ,X[kdЮ.?ُ$6VU)1!.36Ew|Y?RFl@}6$F e ;C+.p`=ua-F=VhbnR<Ǭڶ(i/ZS۠v9.VJOD9^PBx> Sfy] YM4v2xqU$XzNǤ9&J1}oD݃Sq*-=ӰgtF`ϴ,O b5CvBίZ/&;"r.?Nid }ø pPYd3y28UDCE`b3> P8e^oE~ɪ׏YaܒML?b ^C:!";rf@uFA=g AT0+"f2 ޫAMLv;b:xXƫ㙉uae3i@/4u rL>zl>~}aQ,q9Ee4(̕8wuk/*b,;߰Z6S4j=^cGpa &:,V"-α . iňx-F ct+Қ(-$? &tmֻl8y:VO}ZJ DQn,_}]G`AYK\0Jk`wA7&bba6U |JvIÓyTABڽZMq?wxF(H3\Nsڗ4j)ݷwx$r&-lUXW/x]iD}6 4K S4G;Q)?^vZf$gh#7ʐE7!u9$W[$p%_vт!TXjA܈k0O"g%u)W<b0M*Q" mftif5V8 (qpyӟr;DsW,RqXBE$X-}~.O/[#7xK7Ploګݔ.TKorjzfz.CRTʚsx~)[4I9yƘ@ʶ=5@" A_Pv 5#hw)(ed^#Б /4mSYw;Jږ6o+w/(M[ HJ4bHW1$z`ҟ;\4ȹ 㔊)R u/39 *4Yf57,졩w5-Fqͦc*OzPϕ_}r$nGd˩ݱ{YxԈrb }40}3~ WH{!Ӿ:5_2+4–8(/@E\]9?K`/aR{N_L̢+eSWIY8!`Y;=|{͟XU'4K*VkЕѽEE2sCWXFs)]c[ ܖ[ǧ yDxHHRr΃{⭛5N;nB?VO|̪tcf8׆ν;WKUU(I[szEG\_PqD-'i45e?u/ uB-n|t%R 5qq(cCdb;_A.O lbiV;#Sa=5۔4(|f7kNݾRRGHKU Mia'"(D£WMW," g?bɻeQ9M_B75QX$K ,uZY{mBա~,LXT~H#LWtMn endstream endobj 571 0 obj << /Length1 2215 /Length2 15666 /Length3 0 /Length 16978 /Filter /FlateDecode >> stream xڌP\ N%k 5;w'<ιsz1}5lJRe5sS+ #3/@LAT̊@IrG@ tv9Bh.7q}7TpȺX,,\Vff:8MAF=Rdi??f4."v@g=@ h`zOj~+WWG^&&F;FgKAz t:Q(MnrBx؂̀..n@g{v<@h/c #@ MM@ -$)J07dkbnw&I;s1s90lW6K؛9]]O 4{ӿ?don s7G& {PF6"?2K+t=ͬJ[#d|Bq1q\݀>T/B`a\@K=Ÿbſ;<z`_f`o#fQҥ7*EE<> lV qM@_?%{ 4>@Ag`6{yv7E[zM@^x\7-Ppxk:ؚ_.[ I'\jfq\E\@]-f{.3}&VߗSJ؛9egg/Qb9)01;,:QN_!N`LI⿈$ 6AzϠgP3(qgPXL{?޳kk1k1k1/xי9ؾ$?{߳khB?lA?Xep-/do@Z|gosGOw?:Q'r|z4/vN{.n~WqxO73^??;!Ի?|'7%5ssv~T}oE h4`b]P+B7!rO+gɹ 6&3hN$y2ɫq[#lx{Jx)" ߉ԅ?:} lurFQ|l^26_)R>E?d24k ƕu'Fl<I4[&kZ:K/>.1-GYXٰb b.T':Ҟ%ɭQ_Fb;af*۔ÿlr0rJf^Y \T^qf3~ظ*'~> ?LY\o1_8~4UwrR.[F]TP} hdŊ44[kG5ƛ 8aY4X݆l7[bYв!0悓[Ȣyp:&ݚWjT9U-V/{)XxCH=WMIaJD>AkMɽ21Dtg_5 eʧB =>+VWLY*ش z#Ǧ{dq8gSOȚC+S3[tR5~{Լ] 4ROmoi)2Qk+v}keCG5Bs+SSn/GP*ݚ1D7q#vq=Wާ<eXJ;P:A;nG7{Obne~k1i̳k9uz.$b:lzO:td|b/ >ku;,@;h$>wQAnV'FЧ0"pq&{MA-wȳ=y%zi9S 34Wg]1jk݆¡ͪqf Tt/haᵧ|hxYm#!jb$rKnon\k}0Oc)e |Xc "tF硨L]iUm珥HH +.gdEaﭙ3uhk->8RbUu)r=RH.ٕE0ЋL{0ѱ7P δ Wh :%"j\dM' uc/ʬSb=Owb] ڤs~:D<-"[廐ӷC !f3oC0Zqz Wf*mF~rYzb!4*$Qy:mqv>Qv94j' kXt~U{GIirznQՇy0+:ߑr +uN¿s\A##y4(,wqeuD@_2ҟ%۱S-":rsYlI|0eB#Jt\ōT>Gx2Β;^d# ܮZ!Q}[Z3=.%#2ia.zM ]W, jw v8u3 @! @Ta7Owd=r($ڣަ(9af3o4rJkՁۛjFF[Η+7$Պ6/68Tҧ?yh{zlowٛ~zɻ'W_Á*e@} h3>oVX<9H>qS/(6ByGozncެ{`Ks O($!p5Cޖ?KmnU5>odT}]׹׳\u3s s{k>⩇ 7%1gCH|in%g,IكPvB#d?36t 䫂3DMI֜ ! ])HDF'W%'9aϛ u!Wa"(V Ur~ŝ@7͸PS1=O W5c.Gh DŽ Os#':~qSM@J.KgXtM皴yu dLWyķ04J }HcOe޽+BiUܽl8zyO]Lg4#-:nd;Vdbn q`|(>|Br@Zhq:@{&y-qWvWTlRK(]h+ vrAAKţ)}0Y$i A XκXMA8*\Zulˢ)AYv]˘ D&jY&^ 1mWl/hE9EQ|WJrms7.Am"FgFif6Q$O s4+i Ȝ>^*%o5N{l(=,gNC90gW mlϽPW)~LQ7kIf*1a)yUc]:u-dC)sF3h=˿<ܐr]u3R4f "5/+='TvX~!\Q2@jճUeb$5 lj ӀLouέ>yD}û3ְe6C&Y0!4c辣xTu ѫ"<1fuZUXEҷ|nhoqǹi ${ktm ӀtT(gFL+Z>VLGc j3Oeý]"w#qK3}DTg(hxd׼ ~}QӅ~Rf U_޷mF Mq@(`8dX_F=òj.t(}sLI:[ ktm-5OjaϵnlBS+]ۖ0= bqTUJ P҂,9H^BBQ︊BؑT "w6>C߾ Q0P6mwB\`aqG*g4#|<*~,qtB6\Dȋg{QUZVLbٟxX@2I.Y'3+bڭOPt: c) U.|c߸ 9_ΡlűFw]~ԈbVX ` x?l~92)녦c͝ÂgEV2pE&y>_q+j/%w|Ox#9;CI5_ }HR cwFb,((/#/&(d=zGÕ\\i6L26TU%cwt{l{%}2x0m tkq"ĢjQ8?]i<5EmV^/mDNh\F9RFf_4Eqhs\01 {{Z/=X;Fx?Nur-K?8_ɄI^WEԘK, B nIt&mz"a5.Ӧ3OV%p5_7Gn$gئ tۀ^1ŭ J%-WiƷ"h53nQisVkp![R̝x}2R{#[|f4#:@x:M2d}ׄuӦ- Vy0:̱U)|9&H7ͦB^VYW1[ (Q7F2HESQ2BrF\Ƴ{g @gwjZP߲!]w쒲[WYe7ۊf )BOv5m%pDo#w&LykIG tuCtiba7n09=L/.m\$(p_ZT"RL~b1۾;P r "-w}XcՒ*yQj_p[`q&^5 @ x獜I2cn}Wd缌~ipÖ yL&L:z G~9[NowP"zny(_rO?R}jק`~pzҝ{ݢ1vɃwm|B;_m g˶·g)[yNzr뎛;}8>kIqV{V`jCIՓqM18㠡ų#O^/a$o`1NJ́:Oxz^w|bK6f'9[!UnF5Mybܠ'V +8L|][7uޱqv3:r锈YKo-g`=G DqBț+b'tC 2h{<0FTB#R'5'_}7+?4٣>7ic`0P š?oCq7Zx V4pd\`åA%.whr4'2HO$%n$NX!U"%3qǔ7KoQEAy$ڹ) QaLx U 1Dn82xV!:籾٤,4r ʌ XvөΞPxu}!>'nFahsPzhM~l,&UGi 6{d~׮|$d4'~1ضtgfc Ʊ:n}#ŹƳZAVKw( 7ɚy{"ci[0) #OQtUM~j;7lIsV\#[ :N+%SJ94 ak'}} E9%RBGᄯa tc#L*|,c?{]7x$Z) Իk-/km^@c:'XF>iM&SEeΦ&m~ ~JJ[lS aʋ򱙬u=r/$'T tbUMj T 1?;^V- k]rrjŒ˷#oDI6L?aS~ߥ-TBo=cw jDaG1DE4B&^Ӝ&/h SYyػc>26wi&̠ 'an`( ~n#(|Y&PtPaU \Iѳ-}n$-|Lo,PU1wr rp8+pq#.]kH_hQ랣RT!0xkbl*G*K@+zkq{g4>X$u9? Q죸'2 oq/H B"K a%_RL&4,<~횢-D)h;> ux2p5iVJWD;cq Vm&+֕UؒIWzXu(VVupI9RRHRekêyce-2,7 [\gҴAP/>@g2-h*\[/G,jCXglHR )$-Utq7F+\UCMyߜ<|_) 8T=bI^: l ND~l&}F``:.؈KHEԐȧ*ǻ.;W *zE/hӎwm61 "ʑWq6Բ&iqτfIfx$cʷ5*foPH uGR/"[pZ7~keTBqM0C899j{']{J(#~%Kp8uZkM~zE?o7] !:vGm!5i]f#uMwOli!9XB6̏%H*Kݔag u:UH8Q LA[ \?+6sr>sl/\ U 46{8!~Z#@NLCHэ:W;Ϝ 0!*2⾀,1XwPΜĨL@I$KǽT^FV(Q6զ ؟@;2%Tsj۰2$''5v!##&C??Ikn>0Btȧpi2EK9t;@b!#8iz7.A 81~v{W8hͯ[H5hATnDg#'3ժ?8l C[u7.gˑ)WdzHs-9_)6"]9Yϼ75 <) !Gi; 7#̼<8Z ͗]YܚJc[&v.l\cQ\X'GA&a P؞AJ1`RGg[I ={ڞŸa}-. $ ?@S()o4kD}ΘQ;§\3Ӡ;j3y]']s!UѶ,D\GߟjvG=pt҆ W*Yo(vu85]O%)m=R!xZ[n=nVюtȫHB x2ՃkHbT uLCR>ް~J8 $Z, @/T"D|LHxhe]hFN xq y<5r!9oWf/2 |UێYÃ>go-M:)Ի {p^қYH"7}T!QLjfJIjXfNDC/Ze_*r uи&~{Xo/z} %@P7W e23N@{;8MTê fVWרeD}F`ro_p3<xPȒY͆sixI HMpV2,wu%7Bq^pE7U`%WidUJp]=kW1K~c_jJ< n%듒&ëqH] Up2O:c sR/DhEs0UL<[]TMh4̇>29mcƏ?L >cz(*!`زE\6TBZ?"aQZazpIK-)[JoC@NIdY6[o=gWٳ,Bv=M~』ʺѢiwA_&:\+΋^j#kH+M/zIJ_H40yJܶf:fMn~FYXAq<͆'.~)r̦R~8JY6'{/kWǶ~ '󼏂R^> )Xm u*E%x~5~JY^,2oj+%)GġN #A-DzGvnŸل_ D945FgVÀd12ǝGަ{5Tci&xP=ϰÃA6xn'"sQF3AY W.'<~Z>8w~n03s"N)-&Dp8d_úRu>V8R )/yYgNU{=҅A_y:_ M0y`ѼlUz !">97s3FB _02J ysܗKC7t٭?OvD6^o9S`R؇}#H/ڥ @N2pEg򵊪* h׮GHFۘ]f S,>":-H*q}k\0:L/~3%"1PQk(46݇t9۫WyJy_еFmOos 4+wnlK:4{9B%+ZaӲcv lg ! lV"船oqFܹ~J`u"$ وԭ'y@3xAh[8/$JqYXԹ0k0*DnN0Džn-8C[xO^CF>(.m6/ʃmx%H֙J,4>h jhN25 S笑_nxSN?]Ba庑~0)A0=xw429.\v[gUV#D\k,Ke=b <_Ȇ;n..tjdh+Bm6a#HN Zė&eBHdQ ?8 0l9C wwߘA*GLke NL}2v8˂9bpf>wVOlZ2޵Gf#{ga~lkW$TʻAlC{_!ļrES3Rᇋq0rhJ]> Ͼ5TqNF((r="GXM} -{ߕ7ą{aFN(y&ʿ +GXa֜h[*E~f"l(Tٳy%˜ 5 `ux!%)mU{ditg*ۦBM,Fs%JB~ZYY~-^Es-ζX+y)+~bB# K}H]*d2Ih im2:P[ l~d@rX~\25S#U`aL13r]ǭc"?аLg 8; $*^op'-9NTSmҐQQӴČfuQ% 0&IqtǍ0zɐZR݌XSTũ2X5R)&ʋzH*tqͼjpܯn_Opsz@ +*de58y6D5tXYJδ#Bkoxfa枵!ٺ{bm=$=`R{]гw;3wfi1ONTt3q'Ė('i-6vh, l' B#Zz-)??[퇠(+-&zLc> ]ʤ1> Yd={+r"tC U f{/P G.!8k6SQ k<`@g|E>PuB2]`=+sZ1A8ӂXD\ "*`3.J\I_Mt ʽm Xsw{\r !ՇdS(iq!^eֈ%8+PL| J_  ^lVC(VeG{kr[#'Uw?53kXEZ6+XFPtɻm87Xe/֦ <7ˡa6 &U6M ]FLmnvQ|#*J)ʀn=a 9 jx :*wKR:  r3!F>,A tNc 6ŊOlIzLwQ G/Fr`lm+^.l"7 $pӛXlاwa`BkZrp U v8  #VܫLv, fAVdϜc,Ԭh+׈Qd~?2ٙZ*fGCW7k͢^I5o1eBՍfaHpڊ 쩞T!1Y,[7a15*VbM7"|KxŬ.bF9F9n;& 6ki>pHL FMJ0o'Z Ll0&ѣӸO9+>kC;`L&fpbqJ#;MfHq 6w:ە%3ͧ[-U4ԍ1[`J=@%ci;GU}@_ir#uMOۿs2`~URSs dU{ b^~z;ǽj:v)5Z})@D7~BGx LP+H"͏wجvؖvVo6.g+nn~LG!($u?z8,:('<%Sɵֈv:f@poަ9QA;t"U;)mZKC/Y3K4BVn䈱tV>PT%|CN {-]f ?S;\ݤhpgE3[P8 !Z*:Rȥet삯V:5x%x@[rO5\{6.T4k&6mߪW| t]yVf&Ң)/򌉇G"~4qELWmq"KĨhU {r^d' 7^ 훕V)iq,\3T `m(*l ,|0݋ZVA_iLF2ix"A@D2e΍"#*]m (YiQf5"BنmPsT3?k޴t}™,FC x*8W7\Ó7Z>RrtD3v33R(fuɩͺUP^njlŝ*r4"poW3[# #D.&]&zXvLoaHC Ĝv>Jl|֤֩/+6gj?EKJã4Df); \[ϛ0i UqWBah: 8&Ϙ`v>褳bBߡT4&ijel~Ϫtf>JFG(Iz)(v_>acX&UuYΞ_dc+wok&WtΏya~ QmR ~lQ^ZG+:ec2"b ғa%ce¯At!66. AS^ q/y{8X^z3꽣[z60r$PR EFAh{_cC꿷F\P}mKaFP}!<.guaP d\sݜ_J'Siq2^ .4jbTޭƞkpq)j+v|y8ud΢|PJBߣ 9S{0zm" oi a,PK$5@ᅁČmNJM\znCx5r<=F8;%ej|\|"r6pW;%3kf r(Y"_<+)("5me(w$ ?>)Ԡ6QZIW*'--^D>AGh+̃=|l`[1ufIFQ0M[-c] !Pkf DGGQ86s%;*ə u<}Uc_C#&Jv,oUٍ/GM'{\yr;bH]XAzy=K~]qn_{\';!Co zj̉AmfGAL|t쓳ЉlR&T3^:0xd&d]oiļrƵM'ߊo*M2Ԉ˒zsU/]Fj텒D3*$^>L yBnWA_U b0gG:DUUܽ^kΆIMK|.ۓoPmy7/SDŜ<~'/owQTc4_T!~ng\Fo'pN9{V=U|mJ톸)&0E[U3i+DĹZCmt<>gWOۜ ,G 4rZruLɧI'f=%Qׁ3|{bB{ CG\W!n#W J2 bWʲ 7tmd7V>Oi'XANI7t7Hs/WT}eÐMDMA-Lgi|PnMvYf5'9!E~L 8gW~n J/h3+&cb N0." "'ъP;]jvmXMhٖj0B }O)Μ6h/~8x`'D+vdSc/!hQb 0I] ]tm@x{(V‘ 6(үd+?3ׂe=lQjd?H h[D/Z֡)g簇95t}o0ed䎆QL뛰e ~Y6Ba,1{`,-c ѠaoMP|gA^?xŒܑR)T"E֙5߯'ɽl,DN=~3AmDn+bKiM`9m~/Px <靵 pO>'l+᧩Lqܠ#,ř/'G-3x+$o7)oUe- ""0/rn[)qOBM=guf,&fA0O=϶ޅ}hG^iXrJJ?l3+*@ieT, M4)a9XO&' =j{hU endstream endobj 573 0 obj << /Length1 1531 /Length2 6685 /Length3 0 /Length 7688 /Filter /FlateDecode >> stream xڍTZ6LJ#Rt ])030 9tH)]t#HH ҂ z{k}ߚf! g3 ~ AƇ0tz0; }@p!0/=` q"kE9?ٿ 0Aa+ɇE@0_D'6 n KT F@ݑ|P_==fe" CzO oݏ>0+(W^F0D]/AD$DEkC?w |C pmu;#_[P__u=_+7W47 p_WP+(!* Adu WwLgB8҆Z-D_gN/"/Wq8 qk]/hoT_zoT yB`nk\0.u'v;``֖C00נ @oW"v"! )p;߾0W+.Vo\X8|??TgR~O/7om_Z셸MDv@ 0$,\vZ#Oû:3۪I&'/juNYq,6M2q$7tjij}"Q[} xrkW!.-蝏=ĉu O}zU}f?DNUj\}M0 y9V`3ArˀE{w3YGOJP拂goiӚ0`}{RXODUZP4Μ~*kqltf![U) *m+R>qTB~mU(jkcF>43DzW (}- +x./ԗC%KJax[4#4ub~lsNE.!O˟qzy<%9y`2r[Dox=nT"Tx&1@'jj#-3waif)>Ͻ+ G]S{sJR*&D/[7.[s$mrc:GWJ9 ,O%Wc;d~!} ^Eic8m6#Xj+% nu Uk64V0crvgqJzg;a 䑹suRC6o[H.j1gӇX6?:؇e-ULW?QxUw?>nyX\(hvwI&_Z]loޙEEJ\ o52t({?ʟ#@(N Vu)`U0Vb9^QyU:*8N[;PTDti;~zO=iD$I;%xtQ 2{?Yȝ&.&XzUܪI7ݒA¬j&Nfw_*gٷ Iv .6a43Ɩq7j߾7V.O$Ԉ"ҘO~ls|a3ݫ 7ǴC0/U@O|t^"s3Q!%)wlːD]v%p}Z'pX~@3D̓/Bic ;g{K]N A }4 V>RDb^'ǥo'qR4zEU[6W.S#AQIeLZ>.9WqV/c}"Qh?Jv r k>UGX*@5Q6M: W@OzfcvJ X_"F]MSb_I=ȭUKЦnF-a:g̱B~?ƽ *݀͊zw>R̓OO >}<1Fj e|.LIW3"t5]J('bJR-^TGAA-VzLYJI g(%;_2CZrCTU{kb%K$]yLǏ1wi1 77  d^fHR݈R8A`,ykwo}~ZT rTx|DUr"#Y !Kjܨ]aq>xΐ8q,MתfFp6|:‘qg'6g玩!RyPn?E]'s%4B=V=7^E9䓴聺W3V(d\n iz'2Skܳ_F==DlN /8&r7o)l(۞|z*+ٗϵ]MdZqe'N"&zs}GeǎZo?qѭ4t'bd/} /Phź !!<;8cFPFYd+}3r$ϟվ&m5Qo|P򂒯%x@i"XQzr ʬfe'%cySh).rQ~85yOYw,4 P(s$HH"۷oekSK@#ˈn1r蓙B&&OJ}en JzvGb@VgU*][Ba'0X,τgM4 {Y_ ?3\G "T5p8J"鼻 FPV.Qk}oDÆ,v'i` _]Ak9L^'aiBj]K9_ Des!.9 K $K-bs7jںw$ŒqF+A1fʛ-Ww/9{f82m?O:IR:ʉ!D٫Q7Gن-;?l"x-`0?J"IqYԲBR*R d~,Qf#џAw!(yj Kbk#kDIZ+:tIӮOm&8r6kU%F p}ӔG4k>#9$: ş=?(ċ]a>'--aI-QEL'FeK|qxԔ⚈}76'36_c='' vMg>gSa}Љ'i=zHl:Oh`Jzamz CePDh;)ĆFsjUZ$Մ-t$yS("s8Yt 'Dvr=Me%d4d4˥,LT/XsYQURh_:Z.YL JDWݴ9yK#p(JJܸ̎ĭne4o|T |WX٤mTIL3D_ |>V| wk$587B]gr'N@ 8Qx:6!\:9˹g%M*#ѥpb p;ҹ/bj滨Ԑa{LU~#VO r J-Hʵ]Ypd-Kvfş۷NÊ݆2l}irO>0r^}4Ѣi(!MQښh쌭`V ݇ѰSӵ3c<XCq峂Ĺ> a8gc2ϚdyEY*Os[%Lu/;%Z&ʋƞvhX9'\m ԕJg#ʪ U꜌!#-&= uuN+-5*$b?KD)x[0F, M쾬57yt~iow Ԇصݣ=8 ~,:hL6yG h,_~ vx<`,ŧ hgncV8j6Y^N6nde(HgÓU XST۱ O St `dǎ}L;wOD465M3OUn,h>NyA.д Cr߽>+X}3g,gEVZ~.h[1 4i쓕WWO]˫E BI輫eDLSCQ bmZ?2i\2\!J"HL?=|iFAJ)OV]\(M^1azlX'grqC׳k,T+\c4 ѵ 5E,[hAi#msꖗEaھϏ ~~2zdɋ/t?}TݵѽiObu|s<"zTEr.^g5ʚ>.gSMCI+d4W'nk 0`M:Ƚg֖b 2d{p-z]ve$x]; sA9%Vxū5},#iͺℷ1(Ok'M></һ̒|SL)/h.O>mq/9|Ig܀БXոQNG+Qp1HzX\ĦU$}.gw[KM>|<wq T,5x:hJ*sP31U:/^FwL0y-ˈT1l:v*?I:kQ5-q6( J FUr2 ,mkAJ&([ݪ.4&zK:Q!G 8׏ 8IǬ䍪 LM@;>MۭU\n2=+Ҕ|-LU4]# vl(^j\@leM! tc̍EdfXW,th5/4TAzw͆ʎq_VY-gë-6d-VCӊgMx&- f4A }1ٲ(+VYxa& P*]@o!i {ܬHS2ON_sw~caηR)ϙy{wOcbhpw/>!(V#ݍK'g AZ"rҊRI=K^SNK/O VzG@\C5̮.*O._^QlġU"3芎#qɐKͩ(@ڇVX?k !wm,n@u퇨W0@`j7~+4W ʭe*R=kp9g(N"z.,_ x%.֒u+^'A DҧTt"Vq_go#2Ys0L} IAXHf8m- ㅫ 7 2@g_=9 n!kVh_ܧSzzkcTXT-^L!& F'9Z~+&N\H#`~`L endstream endobj 575 0 obj << /Length1 1791 /Length2 11111 /Length3 0 /Length 12248 /Filter /FlateDecode >> stream xڍT.;ER(bŃS  8!K)Vxhå3sf_ޕپw~NI,ekcbef+*ʲXXؙYX0!0+Ԛ`ֆ_P0$ mmrVVv++7 ?P> bPdڀ0m\3sS<h܌DP12j0B `v|@33ځj&Dp`0 l2@ d 5f j9O)VcÓ  xPU(ہm4VӀXY@?Aƶv Wb(K)0\`oC? =Q: %=uWṔbG0O,ic"nkm 9`O?+Z:۸BlLLah԰;e%ya#3,<<=bl@Ow;[;S`O)`O+aL 0 bO'1O4(D?VOzO 3r%eŔdTjo `ep?=xww _uW;z?5;Eڿ6l t]N/gGQLߊiу!VYqh/ΧHvO̴5t9@?Ou:@6S'S'mrٞ_C6vBXv>1? vc,X]U;3m \gc/GKNǩef,ʗJ-J[t*_e̟o֒׹r\0K협=^Ļ_P4j%Cޑv QxLD[.M$CW*hH}mwhd4 yk8Jܵ%>p_9'_TA0&y8 |7N/(&^wö*P^uqmF4 ^ 67lX68M`ze R~t>/lrBfݍGLQ攻*Lӄtua .ZY*$|qN=OUu>`tp=eg@N0l{} ω=,`Ƴ {2*IMu}+| :6Deu\.h̖5wH`NYGqk-q2\oL~pᇡ;Kܸ,P=GJ'dr}`#l$Жtgz4֔%B5*R\M||K! G#1hjJs}njݳڡ_+39qz2ʦ=ky r}dgiYE0mX5rb)2`S9nwȪ$'>RLTF/ֻYJkZ4eZbn*]pOp\.=ZҧMVנR 3HІc^\ FBSZ *QLѴV ld8^,_FZ*h*9ϱ>O\~EfZUPjt>KgqԂ@HrƲƧ.X䪋 bՍ ɐԃkzXc`!Pi)#6|CPM컬TA:AzVU>ȋ?8) 7!@U(h5obCQY'#fh_y]jgK~Z{ k=+,?"k!bKP`ҨiJ~,) ">4u xҊeZN]o"Ȳz1dH*1*F @qNKKA<nλJby< w±ï+/f!G؋B&.C-(z3%xv©N=N4J5=]T70QIjhIJH`j2_N0t1WW7^$j¬hs3V~ r#;]DE nc_|lF(R6cZLٵ&|A!@u+NMHZh"gW'j*Oqj{Ln$XlXj V-/vymt?̲;<@55J/Ɩ h۫H>ݒ{FG4A̤ Au5}~~ 5t[o>0RqY .h%|H4vAOqhRorbWA}7N_"7K0v_PCdQiIkĆ"oRluEAz0ʷ/5$'_o۶}_ܬlkgKt b[VLZcRk:%Tp[2V%M Z[ȗMK*#TY|7\;_yup>7Z+c^q]t3&+bסIAC!9kC*3G9NSs]iC# OAZ#ɐJSqdONMxp)7K#Ӎۜ%|z2l5Vu5/7^cF} %/[WQv'lsD nHSڍ}hT!U:}#W͐9?:9gϔV?sץd8:\fCa *L+vSB9%xgW9݌%6{Y_ n.՛9p{fpP:,L\e%C .O얟~lD؅H{:UqƎk1OHC?vx7O2gի=N3ƅH}iYaJ ..n@*>J%ºZ>y (M[ٴvn\  r ]WUAGS݄d4} Zƛ٭k6y ufAcJjal3w-P| Y(}qИIäVlz˝J`LZ);֤cLȔg/^R{$_~ޖ'NOe8 ͇RSG];kk##@/E15xmcH% /,DlTNGUc#lB\'* tIEJ !zfB#B>{$!sW)~/w^'Wg𞟩EG}F{muVeVng,i /ĕ8uO%)Um.)-)Drn<0dtQ^x2&L9iK$LlW}eW ^w<2\c:Վźk8\Pԣ2[А2r, 80$oE:1#c#0_;I.Ԏ&*|sLd(%ғp 6̨;Y*&L!g%y8cbzCnT" =I9!_Х9|kvc<=Cr2V(a.溫>AD' \.e` @[ȭp$:Qg ZEqF$g:DA DJ^D&_c`&3s7L\:9(4~L6yp$Uobeǽe:%0H)xƔt'=³JqYZsnL!-iC,#t\XI*)wƞZFMB-^ntTɀ.R>@R/ɵIj @xR6x6ũVXb-KVzw7fS.RY:^O7!<Ur0b޶s!m.rΏc`.%G<'ab~J JR4NizC1U)^Q=.UVC}| &{:^D!\o0cn$_6 6q]1ʪwSG>/I4o?jgZ|[͕]kU.إ C{#WHMD?4Ha|#LcO0[`^JN;g0ym%闆&O7E}dpSNKO+n-G> ]TxziHEk19Iݞx#Ue@?6*nc, 68՞mX\Hοd/"_a}W: jX;ĵ.SȲP΋?˄-&qkky{rܒ6lr֕Ʋ'[X=@]Gz~kYqLxѢЋ^Hrs5KUŻt< nCE ܸ}M6CȋDWZVOyLI٧TK5Ҩ%J*E96*r=C FY 6&tԊ)c%ƞ,Ԥn猔bΌ+ %ݨXKE! hMz%{i"|Rz}hީh>ұtTv{4j-{276T0mGQB5Q_P=Q'F9s<{tr{ N<1s)Ĥ֥8ܖO|򜽍,;kaN7F@fqnꕻ+t"DԦ7p`9Ar13^SGSОBajWCPx2/1?a|H.3:<8Mqӳ=X~YR04^@E+_$ꕆX8*K~NHՕ;eցQGgׁ^R0e2jJ@W qCƏ-tT8P74ذw"oRy6XM`b7ZrEMFz e[;չ. O|K|ao {9.cRGGVԉe|{xkkoFt)J{ L|ۮL/x-RgF6U *JgxXjeʖ-[1NΥŨrYM$qYGq9Jp̥zK;?@ۑK3vhܝ)f2 +,]j:t1WgckcR=w$V|xpJ?kʃoz>~f`棥< *2_U~ "ɰ"mIx]魼_X0_ٴvUѿ>m<=N+^AޕGrTi*=(K ]·N '\xЀ(8T_7TLW:<6X5M"\$t@bۃS^+`A4;a͎.d$2r?4^yp6SWTT!qA6Ԣ+hZd?"Hٛ^ KQ t0="h_=oo43++/&z‡sn|GVbH^ܑfC4W9+Ԛ5S^Q9O=#x(Ie^R6!\;Ѿ&[Qzb]7eXm($Md/F*Kn2/*wsؚ- +xBCȾh QT+q~i[za7ƻXBwv Vm,F+ָgU@^1PH4 ?ͳ;TjoLz|2ϞuSGt0՛%n{ lt`[p~*f+Dj5RumfpsoP1*h/Ȉ{וFJg2 ?6va\R ON`]lU"a#0Ӱ]2-Yk%)yVcme'&1"LM9BӊԽĎ`*M楥lP~xydYKe!:'ڄYY-@L[|\}drQb)]bzN(_/Fwc/=~FR2C,!:2,o "EwG,툠)Mn\anqe8MS𢈴 |im4?;tH\T:hҘ)a{a}lSѾ[Li9?t,14Y/~,>M;韌Qַ*moZW?c?whiIB./IzXc\siBz b0L.LLxC@i6K|G Dnzc,BM.ad ~}frz+sf݃ E B!Hn> Bð!E}SaSAǀ>ᭋ)uMFEjmPϻjʊ^^~yYF񥄦SigL˸A#Rbϸc;}@INtZwwY5d8r<> :HF ni{+߹⟏+#*ӾO^X :ф7~Pn.u CWbR9Ⱦ O48~qP7xaݗ)QroN4 c0],U'Y굈_uj)@1TrykD1:O=}%/ )1+hZhѯHyjh'.-D>÷ gs44qˬei3,˺>!1j< YVl1Q/MIEUĀ1o;FNZm2lûP[_S|[&j=W /[;IM?K(IoZ ujESߗgHoB1d;C sBN(tx__ ܝJ"I!涩2iS 0M]1y`g_Z~ 1 95z27!1eH9AFM ^PKЂ"%Gi)jVp.mw5\F)lrcզ&@A;5h'cJ endstream endobj 577 0 obj << /Length1 1415 /Length2 6474 /Length3 0 /Length 7438 /Filter /FlateDecode >> stream xڍtT.t 54 4C04H+))4! H(%Ҡ]5kݽfh E@HZHT( Pє@7! &6HrPEhN -g8@TJVTZ2rDdj`O8# B"`DܪHW)#Pv0F;\0!`g}Ov #Q /8sgBlm{6ۄgoΙ9ȚʖD&Tp'{PIkv}M,cn2ܐ<[wcq_(ɫ|updh;:X3d+4~RRLJ?[ *UZDCZ-8M#v: 2Ai=wr\9G.fqĊD'WUrd},JrD69eO jC?,n6ΎD{%.CAƁ]UJDYZ$Y=VHLPsQ-VPexN9m*> '';< ZDUxRWV. X!R7\bG`@L8`da)cQ{M :(d;{l[C%|^pTY/l;$2ZuS,Bt9nnj_nN eZڻ[(+En,7FnT#r_&'3lb\>al]rQj-SqwIU3^뻩Fi|d\n܈͒~.Ƅ*4lݥt5nC@Kiүdb?Ȼip:@Ds-{qG$³:S.x9n.zJh效^}ctJj G*DhfM̸f6_TQ suuwҖJ/ 4 4{''|:s ˲N@^pBޛLvrfUxBť!5$bC,d^ (w6jOKm*˷ 1pgimey2UN5y{XlJItݸ?x^04u=-A=̑Nb`v5/tdĞ)><`́x"KeMwg vl!8BY]z{1^Ni2Ϫj NZ7݆ zKȺ9Q%(8Ym73-}l])kڃ\uĽ|7l˔d#^ν-Uk }R;\ָݜ4_T0?H8qg`G IuZ۞w<7C.4# NiKGR[5?RKzYE_IݏR+7o Z7լ~7agT0]S㧵bR{Lu{6?r ͓Oe&kfme*L)thNteD"ijVsd!R FU.ѐ*ć%Ũy53;{ WC#]6h2_P?he~nvzܭ̩R>MYn$<"b1ǨYЬܡ \ɛĭGyZWWc,tl>˃Q[ut3ob Q̅ ]I4z qmijސO84zb`;]%p$@)bTgl}&/VJhӡ޽=5R21hr=$Qq|4RI)Os j.Pc }2[YA{D[ޛ/Qy`ryS {O#Xs]-r2&0i/Q)E'-o4'" 0z~y=$E*wjD"Ժ'*;|sIv5 ?΢ބDʮ]tfLN:.ST%Y&7 {'ݒT8~'2I ۮbFLb#&s#2,k M~zT`p&v/=V4ĻIF "|YS2rBݖaѣ /f$71:ścz4.pе/j陒È|/Hu}Ynl`u!D[ց%.]=oKt z$n.:TZV~Fj~fɜ}! ('"}Īt~Sb`%9ѧ(RD0n h1y_\ r*NQSLPjΩU^ #zTG<~jS$E4rѦ!Swf Ȟ<-Oï J~(\= :É7bȸz۠l{YU=ku A'<(\auhy9cEqF7Dټ{4W˽M |qPqYHtR'itd9Y#>H)v\y`oe"H;S|n-W:$!HD&:p[5q;_2"Zj}b8+ث!aSTʦlFWAFǏ%)^ E.'-zfVpF{KcŏCI6R2m&uۤf~\¾h7iv"мˌ(w<i@u)IP5-![۸kRA8ޢe]e *Z?9D4$ٛۂt9zdtw;+ &avW>T@(M6ٞޙO|t8w˵SܜeӔn߬"n0Q@GSc7xh? <*>:HGͨD)RQkZ|zVw!xC?8h4V`_?حV% m |x^%g.ẫֱKkyl׮Y¿,p1AQ྅u[w{zR)2~MmAL>{'<. B7)y J6tá$*fs8 4s/~Ly ArGD=R}{Wc4"iu"cыJiRIM_y77m:GIޱ0Z(ykY&'vPUJE&/5ut_`gݰ}\G@("STtrV4u}g}~vdg}%eHrYA*Zd؜rйoy??~2ٱʃrqԃ=Q3g;>ySJ) Je+3zU镋i!,'3Z֬bQajD{hHxeno۬aBzNbtDyvެ7{e%oޕSvS }|v,'ыXT:TK}L8D\-I!E.ckiTަ_t蕗[ $"Xu ib",| ' .Ԏ̛|cqB;`4FHQ{ܺ7-kXZugrx妚0\k#aT;՝^uibk}gݡ?Zs_-Ky(5Z#ΨO.E~>63ز֘awWpNa);B=!Q (p( .un[(VU.!ʱDH$ f*[>]9y!7i֎~'*]Y{Vg,~Ϸ#6 7elR. ^R?]zw:mL}pPRO:7g엌9wSDJgT endstream endobj 579 0 obj << /Length1 1565 /Length2 8432 /Length3 0 /Length 9466 /Filter /FlateDecode >> stream xڍtT/tt 0CttHC 1CwtHwJ*HwH{sZY?oo?/9-P8' (QSS\@ #[vA"0q[eG;5g(@D@"@ @b P(;C0 Fgo71Ϳ+VHXX;@ ,v`njVmg+!XpnnOOO. '8+ha`75wu '_qa0t 6pO 70QCaPk19@[Ie@\ @g ++g' 7j 8\p/8joaq|4S@^J` .p Ea,qvrC0BVcfΞP߿ jm kwn]($ɣ2[0]`/+;u]}]]6M!6? _wsSXCK-b_ ^G߿=<o?-fWvr8y>3 eq<)qN*o H[0,7?oqQw ywG?j?Cmq Ps~Z55鿵JpM>KC/ p+8\9B0 /Y9<> Gb=n5}:Vֿ_`fx zPkjGcg7,, -@@^? ?(p;>r7|$7v|L(v7p1 +w7Ya(x-E-ᒆ:uJ_&> b> fB6:kB'ycaf{2?醃ϯ,fI/$UZQ„d턄**pVz-h2pjIO yo _1J֋>rq8E"n,%/I-یoe=+d[.ŁEmo0̛lz=[GWwT~}kfT/׶N|ds֏}~X.ndg9b xmJXess}."-Zx~3O]GV_v/wg :ڇco#lS&O.!;ST4TLf"lwHql\D*L *%n%.TGF Kj 1W[MŖq>~Os=q!:*8̸"-#ԟŢZGR9V&^uI_\gSo@͐I,ck&o#y1zqA2L%qjTd\Ud+^y1N f$WE#y D\*:޷ZTǦ"'PD.pjnqR5=d ,4 Ig\I_~aoo(SJKxήG >ɮy^F,`GcHvT[raC:QZ 0 \ıNH7/yc5plX,ɩSt(@~BSnEX/ur,{prd),=9Gu0Hm ].(VkN' |ŧ¸gym/hA@_.>~I^R bҼH-B&/Q&zfj~!_CLxɻ8 6(53(!չ]89=>Ϫ1'&MoSoV/Hx}75Wkb^#|E۵|a'ؑSh~acU%ۍ,X涾1rXNwON_;/YvĜD~tO1X6¯ 7b􊞅# @hqm '%nѤ:.d>;yDvpM럡?#Û0nG. amQvVoF*grF| ̝e-5j"Nmgέr35w+ZO#{XA`##rUHq#׾3/Y'}^~W*"z7"ч+LKs…x YКˇR,Ղ`F 'P2觱7< Log~$>b&/3Tid1kxkvy^I&Ilb`]Wɾ8o2\7PPS=qc=EvTG ّmM +yfEo/H߻T(Ho6(_\K3YBZ[ z]O߇%t>{Zykv\ۜ$4-P+ܟrӖ{;ŎPDL~S./@)0& Y~9.t J~H̫!md4uCh4xsMClecN^f|i?vtPn- 1:L{ުPT͵4-Q~9{G3 W㰧ܾ=BSR`L(y׎bSe0%css)@iRZY 0~o=3Imn YLpAkgC,bX(cL&O E&iej ؗv-Nb$x:qC{`g뫃ŧY},#v2d3;Ng%Mڝ̦SޠQ֕T)ԇ8Ę>Jvjvms9F V֗P;ؗ]'bsy:>WdZ{]_|Э(x [qzRO ߏD-sK^u %ĥI@cpIVWvKRh޵t͹qmZ#Pǟ.ӽ ~=v+ - 7x%Ww,ɉH~]!#7rha«z.KvM[~{2A6)d 3,De.M2SCJCCxnJ幁[Шw+xp9*4 }''43`CN{TJρV^ס6?HxXlAxۚL$DY.QqgHd3I7Q //&Uҟ}^E°)E8?NM6*c1<`j_c' e.SWTU+=$Kjj^vޥWʈ("|KG]BV4)urs[i4,{ˮPWč|G'88md`YJH_;~(wv*sB"6$'u83Hф̓uZ&mf*>;1-E .@KxY>}:^7I Xi3AFoWO*|og|[>ŗxIJңqdV*WgOF (37r%`yx~95{Ufw.LZsϛ3-n? :b^b$-b#O.`e`3>N,LNS3%Km<㵬ǂ^\kuTYr"e)/'}3~i*c:Ug ?0 ,vz#&ۜo&|Õ $}_߯5׳]}Bd7w6kc9D9W!+uk"t͂uo\pe `;O8=Ô&}MTC֐u~!fMzq\ݷRֹ?]TVpwvXq J$1'*>MʏK8hKؿWH_aƒm1aW,'ykCd bXsollڻncs?moG&Ғl"Z7a*F T9(3KopyfNTL5O+ _<7)H!+I$3xT kD u*WJ\K3#ns?t8s'.d$gYCq^<%^]Y<"mAk3Y4OWU'e_өY NwzބtV`n-,t꣼YlA7m8_SkВ8K՘s=7 G8|3H4֗;6!=M2B}EV]o]E:,L#aRH :SPS=3E`ֹB|)3nU~WIG>.O\zfsl gOj*-M]=FQ[ hݵh]֪Ԭ,Xxeos`l02$YT3fy jZ*vU]t ^. \dU_ %"yuIiO)9/z ~΅ʓé 1 i/)0#(JQhf[U{g?(οqJ/?ؖ 1?ԊDZG=lQ}fm!ĖZj[1쩹Ҋj ." ^嚱D@p5w.eL,:P%^iu Oz[PCty ʫJ񼌣SD]^ 9W$R:dH4BprFP QyM%o%aB?͜R^ѹS:I'RٍD/R'j\ \sJM&zY~]/2R _^*4> vD~=@waiP%4_QDHPqH_7t= W` dvy\4EO Bc/q %^Vrbo*{Y?K->RƠ^0^Wvy%{F4D+~LdyDe\kOz|oE@դANK/ʛqd rx)B:ݓn2),~o44nUi'8iN&ۄs }]/nv zs|şf(1ϵ6 F.90&zJň6}4d7MveBJfMFrY-M-EU] !ՖF>=$C6umKp1|0劶~ \6EqvVMH .\`pLgµ6&f\GYt6x #(Sw.8kW3{2=}ú稱jn3RzaJA]yN$FXT|nI΃zxч1ڃ`\-jJ,yp{%)kƓ1^%u=<|FEd7b7QLV*Оm(857goz9?k0l~X줟MK83m%'xNs`S|b?\sQ C})M`z-WF՝]a,Q&=a~p,:97|5N^R HhRap@VkER\ )4 IVOXv endstream endobj 581 0 obj << /Length1 1537 /Length2 8291 /Length3 0 /Length 9327 /Filter /FlateDecode >> stream xڍ4Z6hAbtwa(35^D.J A^>I{{_֬5s: hPc[hy2Vuƹ2+6WPtj0;%e\B,zZ7ؿHMuDΉ@VB\wMGB3{=+ Uj'V'{3H1TcߦdGJ Ty5]]&riq+'|7(ţռy]AB6WvKbP}_Ҧob*Rܬ'C;Z̬Ya~㢘Z|KeST03(¢5$wJ,& "l&>/\4wb>@J;w\ ?uONXϞ[ O`O]e)NZZ;"3.Z Mw<5 .ᄷ$?5fCD^g:Cp64˻)XDyZ @%Aı; [ކp*K'( " /z<*C;:<ez"}dLe[f\~{ar9ҳ%OIt1^~R{$.AjؐNtyȘ|B rI Af[mU2Oge4# 0~z?I?)`4dCG Me矖ę-f9q\TG~gڬc"-1|l q p1)=On]8- Gi_Y}aYG ~L []b:\k$5'QdvrÅTU(2wG WK:ƐzE^Uβ݈AkQVK\  ,I5R':nM!%OisO^E'P(!Ptbyn֔Z![&sM$ ar߽݂neT13g)IE@ QyDIsdޞ]4EnjysP4 fPq.yhW69GX/;lC7.vZ:P"ˁ9" z$ɀȍ< ۧt'2sbX)rpTN2þo=o# .&?҄ ]9;0$cH٧Boݪ>u,G]kOXqǝ Cmd)_׹je Lnsà5owR" ԘnaZ:ʠReh !7}JR .#( qZî, 0\OF}9:'x8}kr Ut+oJK-K^gKC6b1J6ڕ{j#B9FqPf"KGKLxw'ΫI = 9ш}sc &^ѯ8b1" owS5ɣ+y\eŻ$Qh~WT | W4ju(>;Di$!oUm[oC+].M'~*Z,m[_cն4f--)Of'Lmׅ%)YaS9MGW:Bjs?`Zl9V:@=#·s[F .]1=D#C7}K^y;}5 ؟ 2`;db։b!}L5Z'j>_LH5!c>!c@q`IZ)؜ TVTu_Yۿ {FP(Q#WM47f?aɜYE?&'kAap-1pvEοǰu܁"뤝|g`j#~2GOS}\ ,\hla#v1ݺiQy XW#*>0!f#q)E\Wly]s>|,MR̘eؤl5DYJj' fb}6[Zf*aR9Ԧ&Sc$Ȉ˗ .#@d5')d8ֆq6%Ѽj&&ÜsBWǧJ#QB, q? [ՇXiV0!}n9l#vJg!L\NYFO("4w2$xd!B$L~rCsO]*0*5TvcwjqJqC5;#< c8h8Z#0Ex;Ė-cšiG? Tk `3hnmm&q7[݊vH]GeKE˩wy՘(։*#;)rcza+118e<=bɖHjB/+xF0TrhlfӬffܦ1ï|\|+Mp7l&n/gKѵ-TxdWLiqL Ҝ+xn hMٝCeM]NR= 3mȶq=4ӫ}5ΎKv턆r0/D'}ZxqaFt #AGcW]F}Y0A[\qj>C@D0Sr}"M" $M⎣f*_oK}kuXjQZvmAc(sp7EB ]Xż]F>;j@󯾩<,I&ߪ3e?VLu]-'vĽ:S櫆bnRWf0ëZ~M!~ƑUK(B:BAT 5爥5l`|sB?n 30\Ş VLcD#Zwkn L;0eoH챼D2/n(* _=46S'ь MF"PPvYG eG,ynpvqؿ[R2;aj}Sq/YBa)8<>_8Uy4zvz?B->Y1S-Yġ3" ;-< QK +cIEl.ܷ#؉f$ۯGǣ (9lfƒ[uJ4 ;R"*ͽ+ʞ(í 6tCm("< pW"?LM ⎃ضR'NS/)7 X0O!;/bU}ﱴD[ 6C㼧)&ILB1_=CW6 #ݤ9è82=\> $L!)L-<7ϯ)WKw9 (ԙ2HM3̡mq19;b(ira_Mtǡp}۫\eH{Xy$yoTF8ZFj'*:Z捦+ێډ.4cWj5d~4,η3(Nהa1`^ubݩ[z.60P%!iOnVЪ/NXev{54t0s[4Q 1?i>If9bj*v&G? " 'aܼXw9r/9 RL:EoSr v$dҾ^[50`e|B6ܺ#1Dq4dGg/(xrQ`jС`q!JG%|@r'iPa/yTV-,/OyECd`!8/+z )>NTxj7EѬHjؖ6w),[[>㝬Ls;e.>6SdLZw*$Uk&Tl,IƬ+b^v 4S^3mQkN+);]Zd-:\aQ읐DkhF INdo FzmHU1ZZ]Yςf*[y9") H~$xID[&9DP j j>0e/MӍUtZB UFR`26vxJXGCSBnU梵#SLl.cx]%$+!+FAm`UrXr9F1 =nh6kmddk ľ#r9s5Z%cץ^Jh9P~?2.dX"7TiW7'% E+qlSazKKwk"B=bp=:Ln.왕Z,ny,֭SӆǢnI .&&R:;1LJΖ0fa M(["hmԅezbչDfkV9mG|^iG(߸p`ayیo0߷\"~A ete(g en|mFqBIs$Ca+el,rzx6Yn_8WXPnPbq y|o1{Sr&|upf i. Y.']9oNu0 /ףkxnR7 Z~>oH4-)@1hAkҽ>ocZ{4|UW^ q}O|[;hE5 ѓ3k7qFCz*SjIv&wĜ}>lu'ٌL5H2QC vLd'fo"-FF"0ѓ}۶73/K6O"J2w QזK}Jz߽:`/}¾gθBu T7-8?DS 8ʱeoݿY.~x6LVE_h(v}pn0BGK'ur01 rV;k4^w3vJmDG AWᒻEte?)'_y&Q8FK,ZTu'35Ob",YKye*S_Ca?WSsq*m?-gX|?fMXrbŸKu".~R9)O>ۀOv"%,!KkKo:|i=M~z,9oH'M{y45 c}>B:7,IZge 2_l C/*Sv2(z^S]@{y<:?IA"jF~Z>_vg ̷"kU0]e >RІgR0}7_k{\b'|oA"CVU\樬79g*<@ 9^QICE|z'lLʒ endstream endobj 583 0 obj << /Length1 2714 /Length2 23163 /Length3 0 /Length 24692 /Filter /FlateDecode >> stream xڌP Ӓ"]t7Jwww4K-%Jtww7H#)H# z=yayvJ2%UFa3{=Wae3!SRYm)5NV ? D`L d\lV.ַ<,,6;Č]L{R G)--_a;1 o AMmV@BY7?i+ 2p-M8h`Z pB~^\m(oKpKMGmlgedi]j>ZyJ! VV@3%+\וZJV+FhrZ6G3d%R!_Jqٯc;9{ C A/V-Zb3 q@;!('Yo`Ewf+mƿf[oR;Y70Fd#Hrr$9oE_oaW 쪿]7Fv®AE>bKܐتlC78-X*v NRFuy5π)4m}.Zǥ> 7 C]>-X-uxR#0@iW qCOEYrYXtwC>>SVwо21c놩ĥlґprK`.n&+Ec(jej`TP1J.X\i?EdL`^-wӑFzgepƑ+]{ۓ2"Vg}lWtVLɿ^эdB~&Jf>ҙP,-FI7'+=?+MP/M 5'ԭXrö'B"Ulr#d&)l 8zITd34aOa?݄k_WLD_` HrSc?OǦ[y ݑF5;Uľ )ԆX4]2K_BFaUA9%lfY J7=b=Ϗ,HAͣr%558ɺ'B[%J˪'&}`_(gV)=_e"b ,cc]pO?Gz"^? qJ-+NxVf`锰oGbVD8Z*F (Sfj0 \I1}Ŋݻi!z+Bo$Vd%nԲL5>Zw͛|/\"k)12+^/{Q#`8l`sl)3 EYv.ktOO'N(ayA bo)嬞bg-VA\С2HQug|HJ#\nM]w9SK=7 9?Dՙ x"IfBdNU]Tޏ vhd3L%0KYq.G,zS(HHoZlz MF /[\7wL5Id%NŝXMu׫'4$¨ XGF\]ܝ 0yNP"۷T,g$:bL`jJM$,,#5<.1&{'8uN-drHj-e _Q Μܛ A@P8ˇ]Y3{*zSa5/?+n+ֹ3N2 MT(Dc7rmG9vT"^gm#ȏsۛ vk%HgPhj2y[/yΓ_H̃PS 5B80l=Q(4ݖBMs6(g` hvI`/1yG(W!}HxJ 4r@pef#o^RFYmT"JS^Àe/֡#Чj5j^vxSɤlPt:heQt0es|jn!LQPj6ԂzSj-'$f!(VF. &^z;x2rYD‰Mϯ=_C#}\,^krˋ[~XNvGq_@:˰tI-ECΗ')&B^(d^xL~:$[,x  gD3 ѩ*9>8Ft[,T&ߔw;wL=A"C/]Z`[/gBsȵC_ŷp#{xvSI[CU4$&^dz44>͕v!LK Q@%wL $دް\pΝ?lݬJ齙,EaM:4T.v`{+"x^ {VoAsQ䎣,[n$Vҹ1T[ ÝG9UA+pbcێ}4jN 季XZ sCVz|~}9|?P1D \> -kE4ThS]a,(O7k``S盎iDR9~X(+ SߵHZ݈,eǶC!=aI$mۺ3HԨM<`8*k=l q!feGOE_lԨN_}v$nmDYcz# Ȏ3=7=YEU;_(vaTFPKd燂liN'(Iʛv o5a޴ ?äVt&+8\"}:z{/ dnɦ7 '3d)wL+HSE憥UX/uYk3n:=ys䕴%~pEև+ӆ YZ!DI@Ij~U`~|"k&|޶*o{> |bC3ŨA0{]JHU*5 z&Zo]ܸLãut;ݔ,>>dLi*r|7Ee/H4}{" Pf(GɤڏG>ևVE4f_$G{Q@-j)HrT( ? )ٸ֟;I4&t]dK?n:^3A3ix2Czh O.;+=<VO{CۃB9a>~[ǚ/6AΟY@t/^V y a 4n;$u`ȹ=5R~5>Zt.lvg.gQyhP<~gpȹuVωs=O]j%2'<KaZa,9~(JN9K6wW&^Č8=O}Ni.,~fK 3Qy3ކ[Z"<(uvyk._K *Yx:շ/;I*_[/S}ޑA/Ԃ9IZJ|\.ch[0jOLCRn~T)wŀȱn 2V3X,~ LNؑӴ4ڐo <= \9ܬ3Q 6ק6 d$hZfK;mkXXbBX$N=^O ׳rx"u2 ;y'RsRabkFL f,Tb'_ +Zh׎3mna9_ngKbP*Ʋ* ӫRP>'T98VxFyյRWJb9a$!`4[Ck ?Hryd@(3. }Qq:uu]~|i'kNS,)>KE4)x{JgPfPG>74dYcvyϾA TsܐK!Zޡ>޹іX`}qY1&kX`±%/I(YVm2oPMΙwHON܏ZU<v_ُOTQz ukfcdRkpI^?ܢ{#|[No;=wN? ˸~e%F: s*rCrpO>.-p W+UH -"oj#tOX.mi"",TQ"Jovhq"bC Ȝʺ=S9% I1Af@sy}=C~ K  e$YST ).Yë>,~6;. P{CsZbS\>zF?y@Z&)%r֚*A_N?|YD01՝="S숺9!n:5@rnAص}"W1YjLŽa9޶,Jh/%xqx:~KQ M+ j3*%Bn2ɂL+y"d N!D+Nņͭeجh2hmya.(R}oU9p1*IŇiHãTR'Gu?''օsl#iv#F4$ %Tamj&tZ.(40h"[^4\z f8:2=hWE#K""'ΑM:p\g0'WzTya}݂' ^%GEyq^_qP-HT!}YZb=ʒ-=~~<bkޔX~s>GjZ$y^fHyƙֆ _w6}|f{jV'SM5:Q)v9aB \#xk-Ib"Fp=6!J!V*>rVE|`]7ФroQAKDU}Ӎ7c+$6 טk:+QG)U 8ڵ)NW&Ӧ AjRIhҌGLB@|mRYykkHٽ|sxa/6 Gs"YWc5ˌxR1{?]NGJ FDz5@72qk,߫Y1ΰ6. l],eSpvk8V6F_Ij+b]*HB p͇BS" ‡lďF> rc""/,_H)OsF8n㝦ZTt\aC^ڼh,3@ɛTbqx$$2{d[_'|;i5Fgfvz=~]}[tSU$nhUƈ,O#'I t2فe>c6P*\ml֦>p2 ln=r69QRcٹZ$]/l蓰U˴@pO9️P$`pkQ꘩0jJP6T# 9q_$SqK.m9u|1ApQI#L:-FN9]6(z=o1!Yp *;Fm쬥t][Nɹr3q5UO$뛳QhV\dM0tuMBlo| oMnNS\uO7_FBd㢇+ūvxbϪOqXM63|Hw#xcP ObiZQ/ TQPC#"9PgjC9 .nP3~(;$3oJ00}Ex_h8_=:֍h}M`D a -Ϗ[$->ɯr6Z^RL@Kpytn m*o~+6J2yH^4Z3D"^9JkH~Qx(Faix;xM):.vW½} {Zea,r@ư]Ko8G.rXStjzmW>YPaմOxe`,jd-n@?reKi߳+*ˡ\7agc$pOGxch ZYVYO]@R'58&YM#Λ|S,5yb,辥Pg#n6/$s;JB.y달: q謡>*8AqD%(Qse-Uo?hyrAzcɛH}Uz2>X덛 6h24O`: *x8!|$&r~RA |@084dnu;Vki,'sY#n(uΗ=ƽRbg (PNկ1AN=1T_Bԑ] N<W=͗"{j8ya 3b&і G(fs Jcr/6VdFstsHnz1\S@ "CzE/2;#VDnΝwPZԻ>ϟy9xҩ#TcOن 5J1r̽S3}itp >]2FO=m{ I,V:Kψ<1 ^qbN_Bcf:S:HqO>ί:ΦX2Y6b0ʭ(]J>56V󠣣n ɮ*#2횒GLZKY}W-F o3]w۲WX"OҵţhOAS'c z+!3KF韫L1b G:^ĺm rئdY\TlJ׾4$wPTLYuj}7uG{Dq Xq*ɡ2Bζ^jmlx|ɥ*wlspiA̿GҺ,Ϗ|ŲBhZB*! +NQQ3qCi>[h]_( WSrO 6beJܶ?>Hd*@C;l<=2.H >ٜ=0QuQ8ޠ8F I)- K{I<5*~vͮJ`7#ATv eې X+aa_sawL9'~#[1R&;ƆY G_s(.ړHNp k~ ^G:sϳdr #Kќlu-xlMy3ijrϙ eL^ sMWzXxiyb*Dʀ7KxAA)ypH8rn<7n"54@7 "!;_a?x+dY-#;Jh犭]gMv25i.Fw]y"0p>@ r:ѾvOXqw~S?CWTzW5* dpE aVRf[,r.3 0RIo8 fC%bq4+Gځ%~B~u5D$|xܧJ''e|AD*R'(}'! i|1LYHe 8'F*hu.n #^/gYGeGg8EH׳c-zE(@TmR rXժCᏍ2 P#?.TaR ax9OXHy6mg |R)T;O`7rPh@Q2{>? XDULhA*9~r]a5Ӻ|\#V_LK8FyoM cLjgKN-$c<} 6kj q HCŽVj=~( %Z\6?R;/EK@?.$|a(|αɴ4SS= r3n"gJ' i/(1CL]:d++w]#DFrp:B-tbsG`бK*.rW2OtM6[moI䃹r;F]3Z QLMj9QT߰5Ssu 2qn\pϻO2ckZ=pm|& ZO8ƞN*JQ˜ˮq*φYh%eS /?U+ G1ɵC@9E pCوg!A&#'H1. rZ r|ZV Bu |!r^,c[ǵ;~ r⊘1C KPT9g/J6&u[91 V]qx(^Q~ NW(V-R85zˍf.Bac[8Sޛ9t w3C`#`@M8vrT,-B'8fsr7G9,<e2g64SD;''+J^[:OY ^DF27:7ԗp_Ϊdٿ0!_6Zֳ(EHb˟%̦Kq>q9Laj/I*Q1c bLӭ&>k)\cr-ms>woY|vץmY4SqOg<Ҧ"Ӧaw@ÅrrʐF Sr|$V`9^٩U|Ҋ,6,黊;'m?C+ ~[_ KIn݋DE\l>N]*5)D^{.i%Sq!13~1ާ_s#Af\btz U~;CPJ^pO2Fe)ŖÜ^)c qG{%霱oyw5x\t $Wړ /JlalKJq.#"N?Oa80Ӭ|2&KiȜBZ۪duZu,V|= 4m J:w4bbXZDcɃ)Q8v \ܑƥlSE38 (YמwD 90X˸;X h Xx圱_&|p qtV/$}F1ANݫk1oU"b5Vf fu2@wBBvD•/*HԆTO/v//i%Nvp;)ZRcvӰ@k>ԙۨ6(#_CV,uy) rx5dlbn~U#ju|,F(Wm-8Q˼ <~Ai8[}x_챓i1V﮲acdd2a%GKc&fla-ճ1@'W8ߓp,"Fؠ'ќ7zD 64OpAgxr]t%J%V$oP܇s].Aaղ}ي:Esa ÕPѴJO`Z7=ݦ?c曬r{/58ks)nOdF0@E-g` K>a`Wu%ʬ˰V:Nb %9AaJI.8@Pqt\烇 {5JNaO9(xhZ{Mx-}/65*(W̞e666Ay5d>!fc ~  q| ^O 5*i Tǘ,i&n'k&{;Xܭ%L 7=>+$R/HgL-5lVTl|"o|ٽϹy1S.s⼙'XN7'q[?wC.eq뚄^e^TGunA6M. W*9t;Ci ŠRH #|虓z:G(D]W-nz̭`gU>W Ea)˟Ö#z];wUKZӟ0`%Iԧrb"W>IFY[I)0A l7PuORY9ݘ?>}֙yPVo56NOH8,"\fG-NUyAƨ@һ{_ƞG*rWaN)|0%ۉLq|TFOwzһ'z)^6G[.>UFIsSIAAJyfG?a|2$">LvȕvqHp?]^ nޤM"M ֵ^4Waw܏S52n>FXuP%>PV7B}oVL|OJmtQ+8 Q IVs@ 㳏CcE#dH*I/A*.UxQm7co| Y+Msw=%*LHDG:(rKkGt>={1CP} U=73hsoˤk]Y޻]u@qh&x+rGxxiąmt&xLmP𬀔3b,&_QGV$/*EGCN B6dMx{^ة>؝}-!AAQ C!@W|_음 !wiK-\S-}تTbw. L-]Gt2(U|eu:,7\K'hl/spg$H MP5eӻ":ۦKowC/l_iBu=9 `%7\𑧭cz0荔 ɠeB͑:xAJ.{,.ש|j=V-}>>8V6t8ESѕȳL}P+n\髄NV)}H? ~jaJqv/9S.*ծ)—RޕE~Ì8kV"+gj8w)u{O-F+ͱI)Cj{ik [N:}ZHԎ[ߠ\qht \/;Dh|vʛq &Xrt1`QFƸuLe|H!|xp: E &Qh\BvU1dsZ,q܄ "MoDE^SDH9ZbPԇ%jΟH#hAP"#h,9Cף-օVc n+T6mhͲ[-]޹CƉ۷d4K)" rkqhH%t[0f,<(k?xՑɾq6s@0w|2ri(DO2[NU)Ϗ,7ayn9#ǂOJ?Y#B!I#M̨c&icx4nhe1Vaj ;:e3>ٛ۷pXa.)='j"ij*%Z}ZA|o?:Ńdb^~8&WLHyv9Ǯ`Wx"MHĖti@1s?a;8|y_ F2u3!=#&}p| p5.b y͜mO ԆNl RfIQ'E^U"-3)=TqeuatnmDȞ`-/큘A,syw 9C R3ኊ ,u3"'$9'&DE8ꄉ"r+Bjn*dgᄶͩe&azgIP4/tAਖ਼joyR)dB%[xT[eqnX/]\%]EPC|$njo-5Ob]oзC2*P*\?KڜM;Q[w)^4oZwqVRmWsiKSl!x7?Vvö8 i '?'m^9BgvmЊsz,xk畏h$ ~_s})nJJfn5iE4c8|bi2`ge5Hͦux1H@ɋD.cnxě, ͜qN5qZ.[; r£6BB_n}:箷_~W~Ra՚1TIN9UC>ez;㸼z`LIVƅb[Ϗ퀽Tk;?ƾ$2I&@z6xg ފU2>ΝYE<wQ`&Suקd5w;F)\uYIQWnA,('yэxȫ@l:N_zJ[%_?+{2QjhX=PY~Z>Q%]L~:R?e.: *| av-8=z7܃[%aMa62}CM=4FBJT,/ uo.]?VĚd=h U*`N#o}DfI’x?^=!8IHΎTHM5S_hC_b0_:vF7퍏%)8t`ن%8Yb..c@A>xcRu#(qؠ0vᢗLw.~Ot?OΒEdɹ&eϟgXR`zOJ|4dhj[ b{y<`˂aLN"LUCk?GPqP0̦86iƁ)B4`*S׋]w DA)Oy3yuoqPf#JϷ/ idNfi.S^ h\W4pR:w WkU!+K|@pk z ;\B&CچXtH/2)kp)h#>BAѺ[1JrI/ u)u.Esõ[WL߂B!SGdR)y2t@(kMҽrGZg CNxϖ<Ԣt3N֛Ha3跥 jG=TWd(wIWnc>R0MEΘxlq@@]wM:kRhΘ]|1Uu(N~J.~n+G…`CkrA>eb ϷB &^Q]m_%{_b'h!*<"5y[#1݋+~J]#x퀝Ψ-uԼb󦮙92Z##i*,ۥ0y\ô8 9e߰Dy!AƬ[P i-οX9xLUKT (6*<^e|m8aı߳J@S$6?{gi.Է-gb "Y1sp19}I!+AkTmHLw0nT؀7-p oR(<0_^u Ch3 Bf˲$[]zr/A($ m !/ Rdx0V[&)${Ϊ.: %)$NbJ0XhP},8=&6PD1FJ1j}殩0ٕ7ܸǺ# d }T8 1$X;Wll$ h΅#mS-TU0:jKQm#;(ϺOBԏ%Ϳup$8NGu3h-,͂TC8 کX3S:=<>t'RLSꢲN¸cU- {c2Yu RDC_+W/_yXuu"k4 cSPD[}BqSM}^c"z .4Vؖh9 T4&,߬nM'P`*30ޫ4*e)"]ܸ״ {!S,kթEF_5oI`G[|.a7ؕrel@)FR8bQKjpp%nmqzvn_,7/iZ?vz2H́ǥԮv-d[jɂ~=w+[4^YƀEO*i r6>E_ $jWu?Ȑ%L0EX^5O<=x8ULRoAc‰4ΰϤxPx4VOMuMDo"꘢uZ7L:0>nPnPߪ|)7nea1gqC-?zy:r >=p{c͏Hv}pQ~3!wdBѷV՗F!"&-A5BK}T_+}1ˌ߽ FlZ>FhvxFs1Amy>(8aZIiK!ښ"QxXB \8 DlZ7n"־P8}ܨtmT5vBLR ? %@ԴgQ)B sXH=-/Z,۵}({;:_spuIK]VX-Ne?M Tg+OAd\iwt,}i8,|ublǼCK/=BE LgJ>H?p}Ж+1&}[񬞄<?Ν.F1%L. w}az+5ص M0m8]O.);>E6id8ROzB}[uݕ!KmPt. 倸g+َ EɅ-hEs:tXZ.sh| 9uȍ!,VPBtǠљfA uW}IRrL%.nϲ;Ef{iGY?,[GL[K6m]v{匙//K qiU'ck2%QSϗ93$COYwkc4LLK}J]o= a1Q1rt@ttw!~͋Ny(] 8N4Tm7G :Pܾ\GEتX/,mK)(_Ig ޘD(cJ Ej㴒پv9_=^E{ǹoa bMWqigL^&oђ)o/* +;w?:`07kDصsңYi[y^-ьe YD `#Y4,Nܛ`"7r/dJ&İw+&ZY9U$q HSXnXнnNt&5(Icet6H`?fbx;\F)7$IK[s|/w< bom sQ4Sl*N ">H͍[5Oo7Q_Ca漼H{) &=C(0#"tԔ6M'{f*Jg7u]xV2 |u/7X.FJR$`C#k(T&?#1_rP{MH"cC͖^eutz=5[ѬWI]^?Z]׎yv}q=JdM8,CWBȍkjjr [Iђw>uRfuͯa_ ^,+R\$QeC qsu.μJ#$.Q?@]o+c$dƌe)ȫݗU.[~VA$0UAzAHѠ13?p]%Ρ(_O~h5&϶[S?̃b/=X.Mp|Lq2lk.W3I^c󏱞-eVw&NI1`NL@~M @E5RpRJ"ϩ?;TK|Ω?Z>ylAC$ۮsLOsf]` SCxq؞Jeq1e T,ň׻aRr*'2|.Y%ԗ)cpeЈlQ7){D!M~)LF\gՌ@y0*#z#P9T~ӲL玳mr&I_קqt|_օe=٥q'fr* *!j@$<-s,`klF;Ֆ88+/jvH[}dM4TG]mO'{”xe O?/7075i=ߩ 4#nX>dnI %m!?1Qy) ϻOӤ2*{dE0r}r;4 C}{r9-,F ^$AGB -Nc/d"rCOB4lrz4:?rWNIP$UWiЧdKԕla@)|PP%9(zHqQ.}p3Q&bD YWx²ox(T;_vBmj$93j4l/-MuSIZ$.j- Q%)crĆ"5`Q]:nR=9?~xRa@( 'X)A^S6K4fr2ܥ/Q)2DREpVW_27Sw-twd5y7R6&Ā{TZ>LeT>:Y)akʰq]! Zg k(Mys\fՄnSGxF]q'yk4u9qi endstream endobj 585 0 obj << /Length1 2010 /Length2 13472 /Length3 0 /Length 14709 /Filter /FlateDecode >> stream xڍP۶-,h[pwi]'[pxd}O_^uUwik\_72-ȉ " `ddgdd'#Spc'S:8Z؂ 4tz:ڂR&;77##m.&Yz-O&bk`af|PS8hJ, AYC'sۊƆe[c 5wrf`puu7qu0㧢Z8@ 7a ofds ǿʶN@r|po%ev@2=dCcc[;C `ja wrsL~Z;ھZXչ!"?,-Sd]m@&"66@#D-oZl]AS o&v {g?!o&?63݌~Wqdm~cigk0}#0}{:N@o;31L,F@3 of,ڌoc0~LlA:_e eUa',lca1189l`hOR%A}ۥig6]KM@011?+?n蓳_nʿ?ouvzӿw:X8o̬,܀& No!l-~*:&F{,cMoKmM~O3;MHllOQ4a=-F`jD BM#v``0HAo>? q8 ˛LUj4{?1oV?m% 7VO{`/` 2LO_olߖ3|cg/F_[7*6 [6mz}{֙)훅x2ƙZsC7,vIx֎O odprW[7.ط~sz/y;;8]]@ot/Y?T M͐Ry.9t8?M pJAY\&yRҚY?Nij ~;~t*^ [I;sWGpw/[ SܯbFx.R/%3ʚDG yn-gH*GK&sZ c.)-agIXVM"!Ǟ҃ѕ9$7%.$dDFDM1q< kŪԆG#|ū5G^SN!,%fu9fR-<}hsΠFC3{1mZW5U!K)Pjk ہo&6zId |խI94XuYw\-xQ$I-, {'TUm;eeBU_s93QID?6Al;c]G ْ ~ οVs=y}[@K_f,(g-+s>͆Uߋ],J u > ճ7 W6/FӾÒQ/$VBsX.0ְ­S3N>k!Z5w wQz y߂/ XNS0g3Ȁs0\~>׳T,S8HMCHcSG~#J''RI/W jw:?1>K9"A*xw)Œ /$ڗOfս;XF+4N0 y?rlʩ(vbș= L͑ð'Q`,~]ȖOV\$PK/vYH#v!p(ceBiR| Q@bZ7ܣ̈́HXp9ҜHsxSFAWم SFML=^?ܽ JǤUֻ#՚& u2}ġֳ1~6aZJf1#\d٣ uĨCeZ9#|jd'Hvk._z/ 찱1`P9dD?$ݘK2|tfYi` IE ɫ-ugXC7\L~̽q0jh F+\L "_J`G-)TWY cc,}}f$ W eRt-}wx Bk> "u#CJ~ӃMj"r58k״`%O j / 5>TOܐlveese!j%N齯 F%SxgP4APߩ%}r/au'6\ͼdHPb|jطBo8~u?a|[SAgQ+q`1b<'&4ݎ&: [")v8D?y%g`13x$BSh"r3G=ҏKkt \.( #>NZ6R:cGUմgf!w#ǒZ;aUm] Р}T$#-Qwm”bWO_ qY߭&}m˩ЭSz^g^uN~2pX.L~`T4fh Iq $VbN'j>}+nrOc>$K!Q/uCVI7DFع5u0'.E|>۩q(6`B.OZPN05#޴ow1yKżCt0ه|tqBSѦ |6+9,QW(WXR셞2b܂l`}fYJg>P8?hzLWXN)FA{&AoJ۸ k%,bLu2SZ~En~\ܬ"X ] zVsf>t ǟ;1(dva'R[ SV(%x{zX`Ea ]ygO T,F7eoڴ] v;x>Vw`dS+t:A 4Ă_uzOy\k˴k(mۗ^afҬŐ&45wEݘ,iXcĈj8ag#1B"Q6,V48[S@hI:Jy0)b3[=i=*\L8 UK7*^}SΌi|ձ |5injw(è"OYV F:;.kMyhhY5? >F*TSX)T7 #7['O @e6\<Aŕw;߂w DD͒=Es( ~ؿ]!xpW7F4 g9)4v1Զ%oqės%·5ۏTjǧˇcz#aʻEjs ܀0J3"5!4*$pVqVB{jqn}b>GΛђ '9 2,"B>ggzœᧁ ams,\Ί.mEpdw+E$i%/qK [gsV,T oD5wpa+e][}ǣNҒJ݇%Ӆ{5,ZUTIO_RSsOFDIXrg) fqG-kwU &اȺt~S c^`57Дjal^p^!R6 (ovLD&Jƅ,"Ms,~?7G+P䅺l9%a"\vXm+f// fw6}IMaslWy÷'Fghl )zWaLzH2E/J\%i(sO`zWp16=?iا؉^m]z!h{l`Йmb9B4nrd`!UVNn M .-T'k&f룅svu{>R<&6BN:\y&X+N\hzޮ{ nJZԜBǍ"^hk8c|#oh6sCGK7@SzxR%qF=>G/A5lc4 =!)v.]Ajly'pΣP:ψΧg/rk/rߚ4m 0JF| QXt3/?5k^&얥 ~֠N]-}H[p]#iGIG'wyt&GN΅i:n G|<nMZև$m֊A"8\J"|XL9."ܧ?x-#<00wF~bw+?O&BXE)AҞzXP' A1 9K?Jc9,~$A%O8eqOp ZoDz7"[8ˢ058.lS{Mkug)g֭|IK:RLUf :}ɜ-&`iڄ6EC_jhjn i.__eܣ4A^z{"=E4xtdeK2I/B|8tUGCܷaNxt--hH?~O=Fl7tP1s51˒'q9@#D]#t^1QanJ M EW3l'g(lVEpJn=R +nl*Y#%;0i.t0rݡmoވITکЫgU,˞OGX WiWcM/hx'< ^^q<<-Gv2q5Q}}?3Zj׵+2fR(qpа֗ ?[Z,EU+˔B+MkG5{#:36?v_:KWx?]䡄%HC#ۊ #0޶g˄Iԇ|${n?X/<[>owB'0iCmK$V2~S]H^  R5.YW\1^aǏY9V]_Nq0+ 9xe-$|>)oP.T54#ˢURe,* Xcϲd "%k\R60;[E!z};u*&'ԡM3ҤNFړnB'tE qn)MX6" R7wdOb\dPI/d?N ::ϖeDiNFHtf4T]~mz_W:Úf~-)ucDvg sњͩ*xjpE%_k\ 8r%oϞtQr2; /dZa< F( '_^py 'T*"aFfq3LVWTR:+2ŖnMKEw|+&s턮sr( M`N"ԕ}dy₌Ee_>:[ۄ}s@ß,Jˡ`,pN#1Cρ$"^%\kX477OP55 n5vUnhr j$曗=Jμ }ߜUyeSǍBZ!6 !jgzPjdOnkV&m2U$FGB=FW {\5d?$FșjSfشZu6l6OO[y6Qړ]Fڦ2~+l˶{m5cxhiic ]ئSۀ*qؼ"Q86=.%SUrzhtrz+lǔCG@Nxq?b@0Bmw 95wATh’W?цi/xtJw/HL0OW?6s@ñĢKL=H B*,>v'e@ /8M -3yfn܌t7۲&}W J[yvIY}ٝ\3;/rKGZVZWd+)ߤ)vZ6$א Ȇ9p koڕ8iNodB-}qoU\2 bb}kY+]FBT-㵧mU0 IST%ݏ#02ˆNO#{CmUs^ev'29q0xeސ`>%x+aX]˫VM+'8T x+R˪ ;fv,wtѬCЧN݅Cd완-U(bNvm zQ"3nO5Uf`Fkqȗސ;ͼܡT~if$j~ԮX-ՎwJx, |߮`CilwQĀvܦQ=܇w?""w)~8w_+vfdm I\6Zܐm EJ, ,ک, /I71 -T8ۑ J)~H4J݃]A\jzwT qMu-W+y[O֔M0}: t^aQ;!G^bq=e61O#q%8i"؍Ԕd7א)L s2ӳR(nc2u%!1N1#E`(|v Ħt%/ȼ:ptn{mΜBjI,DKeCgـNǤOT=6!ֶFdSld'">L 3wԅgŚzڵR]mX0$tf@ŻBZtބ,X50󦹉XZg7Ld>XAL|±Bf}H>|2>[^ iQ-a'ZZ}D,}0^,M8o?tnjӡφTGcܬh!iD5O%OU ʵsׁGl<G##"DM'J+My@]E椒5-ds2QlQ2:Mh(r;D!c6k~ !dI%䳊Y*S%m6M.|`EG$K{eDvP쟶{D{(qw`4Xػ5ݿn;3 MN1*"( ggs*r*+ɺY6u;zih\ I͌8k!U^8j,{Kҷ xu|ߐZ,=TɎZ9E0V f *]Ξq,e?f5졠O8=~ѥAܫm"4fB oLIjpxRA'gW0EqO >rRk8' 2E~cϛ`QJgꠢ2o޶p{kAe|X>%H$EZ ѹ6p0Z$˭U\c|dzdƫvX~.  򙍸<fe/=i<{_L-6p%)~0RF f]磑 62$\18aL>fCv_'ܲrGϿ3"| R2&;mK9 i~')}kϴmK#ָ q Zjx úɲ6jthg,Gyz>ڨ:rl~;815G/]Z1B`oѨzS%W i J1BeymMvg#')6E&kR@2rFxc=p!h|c#kZO=M4,{d%SP d. :1`v,/n[R+"knoߒ5 A /,Isii4GCOy{0GUZƅr7:8=.b$ $֧ yYT?"efvRV>栻ER<J훷ZO]ؘ -l"W}>hBpG|]XG%i|^WNONf 9DbѶNrMc_UmZyL3(nCQ14뜣؏q/Y~h3XRKQV]rAt ynUpYss/Ea'k g&o5s.~MÜ`IlR־E%$Z)ꈽ?><{$ M>+0T H&^|F}ώV_l&mc9%S2Jf$NB6帕Ȟq ۙHG*cRړ}r%>L"<>O^T!.[TWa$T2,—^e+@{l߅o8b39hR8ɑbB#y=jZrUrE1'UAH `8wI {RLW]~P$ V&WcD5ZG( ?gM qq).D5G@ s @nXX[ؤj(ǬQQ/(cIsɫW,ffEDQȢt\f#mMyM]n~?b8eH3z T <ؾg}4bއ_P5(e Kʲ7F+^.} ]* 7c.Yi=mgaɉ/meS taJC ʼn/(t[nX~H*$r!nڮ׵פ[6V*t9.5AM9 ZR7>w+b*_㎚Ek; Q[Zj9ӄ'$)N6L.w}ti`p}%$ Hf)H?A>V:eZ$<,Е!ScPGEl9GUr{|\;o<XqK\Hc>^2L0PwNBR†;.>9DZ%[@D(gcq%:h.`ȑ/Cؾl$T; g#AVO(]%xh/N yOKECg>9w'-g<;ߑq㦜fg)yEq~w&R:xp%xt Tt)G=%OeiUPkxsɻOeP%W@7DZ7TqQ ,q `̜ ]ɱR>-xev/%UdBҭOe;U1ovrÞASpK<;]%rz^×AO ACН<'ZJ]; +Pd-3i٠0ԃcd\nt\`w]Pm,\?X;HFR}|*NkT3kxBxɷ e+TA') s*Eq3v *3%fͱq݌tn[p endstream endobj 587 0 obj << /Length1 1413 /Length2 6301 /Length3 0 /Length 7269 /Filter /FlateDecode >> stream xڍwTl7!1A1L`1`tHH#HKHR"ݒ (((;]}ٌLP %("H@ 1!H4ܡ$@ (/\ 0250 t|"bIY)Y G}aN}!&"<0W&/@DFFJ9@Ap> D yWSVXO-@( `(W :~ 0{@&D¼M(?0 a(cw"Sm='GYDDv/G0oc0ap3 0BQ0"a`G ecS_yC0O7W¿`wRExx@(o_P¿Gap'_%8x a^>Pm40"d.P@II^(*˹'7(K?8 pƔ 9C1?$`_(o7 8B]`pcP?w04!-'kaa!(( J""2b)!^c wFd$k<-/߾ B<$`Di_^|4|<{1|AalU-UoT2&¼5`h qC?r_ Cް_ @P/ U7̣oYTCNKTBF"$cn@:Aѿ #P`3Ik2a pvhbbq0 /CK?%A"10lsP( !YC@7Du)SnZ> \Dv 'L͉XC~SN\P92pA{˟A&/I&Ƌwo wmxHќD7W,4ު%L0 /:23ߦǯYuIJEgVD{9qONrlgܜ|^|9K9#M}'` =.,#0.v\ZVG[ xѲZTa ]jmˑݵɦ1uEr2&a+Ctʢ|Jd: ߯gQųNz mkUO#Ҫ+< $ZYzԖFTCK\Aef'MP~MfΩ^eZvL{_SnP.(ozsf8dգQD=jcD|,Y3zn Z74̜XsnUOe-oE1|3Jq&2q o_|Z:XEI}؊4`]Gc R\G9 i# +yZ5S`U 8:ē C1߶'i |K9f$l[Ӹ[w_R7U<燆Gx?!m.B|kE`H:,1/$W,E-I?ִM[S+Nr*:H "fϣ( z.ݏZS<*.mTP]fUjl"o@߀m ]ϲG[&r1T~;+K_E궱y8oNt\{A_E@{`C8STGRU7t;v9V-@t">J7gc2v?{R4zCCjN]KZ0ݐWb[D(cZPs72b ^R|c#Jmwi1ArN| =u 6u k.ILa6nqaj'8Χ;N2_NN,rv.\7RsjY(l__UPqs Cfr<_L_TV80| bVMZ:vmh'pn#N!8)}\[bnό3V-'Z複ݛ|BPtz7`vރ zZ}5ևuÍq~>}6) $v*[E$;uMB KQ 7폢D=[7f4afPp>%(ɏ$bq8z^*}kY]q/,vtA7$_rΕm%U)~(N#meh$KAUpt3bo=~KaeceXGX k["AaY/wnڙgeeq!@z٦;U[ 2iع 30'O礜> _卥÷W" GI9s+対D <^UuV ah"?tMB aO=Fu%*2/Ta2$;ď bSM1$u#|3,ؚk'l{xYy]K]! baC U@t_t- vcĿT=?zK+lD1 G\pozWiӍG80Õ @:> =W{_It5 3{Vx<J0Ԧ:)3_hۗ]PSک(XeGJȫ)j†5SX[DkNޱ-T.3LPXEM%|Wk S3sT6C!FvCߑ8!C[6`Jw^9Y3 ZjͰ~䢌Ή5ġIUSI 0+\ͳW2gmr\H?#IĄ$ЦIΉØ[AmYAYIC5jg8vvjŷNSH$V5㈧]r܇C}!Ū@v`k2mzߧ_~t? )Zڞ,&Ģҧ6*tC w>O,i^Ϡ[|9<%d{?ďwco?mALm3AjT\W/[ٻf&~) "ֆew gMu\8Q%S MP#n2hπ 5 ȠnJGP8:1󵊖 VGSUQjɨwߧK.a6z][\쬹Hx]Odjd;g<}=/Cob$S砂4h7 _(%/=P 1jYp@UQ$ 5EaGH<~svN0A\言&)NF|CT QR)vt<~JZQ!Xj hԍRlX Q-5M-YooœZ'Ijk!-nu~ ٽp& v۱ȾZU#) _ į:5SK?h5HHj9jK}tg"X'RI$:ppJ7ŕRsѕmu,_fH?"<4Lw;G9ϚiI\' C2#dYjgC 9л0#ե% E&udf:l|Lg7Mo)ߒ,-;/x-t%V ᎇ]SgJ4Ӱ ˲c3SJyNRя+aED\SZJTg ֽ7#jhf@?4g٬GI%˼h[A1mC@e5w\ɴ,rhMU~wf@װM^1o%Zy[}܄)%BrQaeQx5MȮohC<9ny(9s,,}e?@.?Ȑ7SM8zG>0\ԏdR ¶pbY/wz7ej,R [ڞ?MSKslt_zDQhn\*'Yu}imtw"l&{_G#r#h JO-ƷǕTp sO>ik'̪j}uc_~ٚ+!({Ab3I̤x28*%1Z~S!n^9vED#DO wL3 V6̽ba`%2$=ħW%njKƻQ;$Pv9&UaEN_cTj4!6!Ij74=VifsR&$ܭ@6 7;]+?mgp?`Nzo[r˺R8DjUW"~֋R?MLffiWu 틵zh'@S=(8?.#ͫNɖzV SD QNoU3r ysZ@G-ՈF>/< m3MY9dzgMUutNH)"Za䂤w Dw&¹m܎-,MoZw:E0>ݼG`Rb8yΧOXĽj(j4=0>ARKIDza![0G n^5ڪ#9 ܲrsvG7}АOz{l'zX )>yO? (NEtD/k03\0cK_)Q]Ž`-R!+YhEX抃/Ř9l:pSΰk0׾9!Q~w,jZm{Օn)AMMΑlgOxeBeA4.*׍3wO.`b4aAE@Tcg6xypQZi0WiS!&>xs+%{HGI@=]u 0yt7(S+7F9A*ͅ!B/BdJaqE6|]C"\@>Aݨu~k+uEKZ:oo"!LjHڮac;R]ȳ @Qxw:ދXiH-mYbw(տ~HyJr'F&]ϟ/*\mKOp'_Ttp5T2҂#GVa^%Oc3$Vx6tTzX؝gJq,㻷j IT%|GX: }}Z"ЂXVIy,AmOӓkW)Gkeٲ`uUrȷsZ=z?qpW6Sm'կyޏgU;𕓞A@(q#m^rOpoxeJjY1'eiiS ^0 ]*ٮQA ֨"}+rH1eЩ0LQ+>mm+x7m4~gIw,qf{WZSZP* 8kS{*-vגKz%K2]u!#odniuLs۱.2tPdϜx/Ơo~r|N]sY&^= Nr7W4%)[E![@x,XJlBvPn&ըvWO&EGO@D>} #^w?Sr֡:G&1Zr.2^%A4֢wblJ+_v30TSEMB6f7̰ԺbNFnbW-h]8TM]J8Ԕb[Ԟ*3߱066 um ^:emE8E{%@6ө,Jp;^b+K<2{c8]$nG(w6fbxa>@ endstream endobj 589 0 obj << /Length1 1435 /Length2 6507 /Length3 0 /Length 7478 /Filter /FlateDecode >> stream xڍtTk/- 9tJtI#11tKwK# -"tuߎggff㖵[07O + ef# ?(.! /+ H3 8 @aq8OoC8@l a 7\fy+#͆\6V0Ehcm BI: ⼼>>1 y8 #u;%v puoſ%\ ` AA`?ё0+ `ʇ$9[pS40T]Trrp//0_ m+ |Uavp؟dwu`;&X ?ovW;%w䷖ZAH#׀#'ߦOAUd vVaY=?vS{l?T0҆-7tȩqB. 7$@ȡ0XZy"[@ڂ~3#.dy;+~ xkG:# CBo/(W6Hoo!k[@ / ,F"Ա&ZƓ{sTjyi;k%4ˮi+|Tw/9E2Iwb8eot82[~7.~NMj.d=^e ᳛:[UO& b͂K_YP1b!9HONH_ѫ%q _,VuR?6C?!`~vηhu8}md lljꞻ`agE'W]nVI0$c ~Q[R)dƥ ӂZOf Kl}NMkGzquzE },7{%e?>kʚ+DBG|+IW{*N=gH޹*MK\@`: vsEJّwrՆ}݌Ic$D^h/t׽Ӹ:9Uc$֡(8K}1̬"!j}[,Τ;3źv8tгxW%aI@q^ʬy>{k7xc&qD0 \UFtPOI _txQQ.ג:R[ .x`Hi5S؟kH{4sIL$w;e}REjw< ZEScOtD$FegXl$6t#Tb$dJ-[(ׇPfv lm{>nxMdt'R3A!JXIS Z!q!tRhRvڠG{K@"+MTMPh|N/&zm5F{ʊwA^شVJfH<Ʃ;O|pVe9F ٺ}qAENҎ=j BzcYZUFlp_NsB$AL '@hkgi46}DZ:tc( }6hs|3"AGXea`ů-3F_JXXM/ш=~Mp1ҞԼ[%C:# o.҂Եgz!b&o?M3do~ [9'd{f?#wR1N.nk&"hs Bo>3ME#Sox;_v"~X^ ~t+MJɀ5 `>Z5[=rv})ZjF4 ̏4_;ۚ C0 {?bc-H[->zeh +E&IՕɫ@w˚,% ft m܁pp fZǭk:hDɦy׺k­ 6Sծ8bPX=%Qm:S>ưj}-Tsu,v\r 0x9K/!- L5<̢煟>1-b̥MZޫ1<>7owx wBS(*F+jy_:*ACة_ΌGĈև|y~ &̦cSt$zsbXqw6J"gݚvkW8hW 5T ;hi.ad84 ^Xw :jS!WlCfF}~Ww)N7rהeD+&g܂#\C?r”N^Ƶsvk4bvN b= y՛yu5^U0#'bQdS G!Vf&FS'߳yV%l}gVcs Vl'qԔo_BS$$ݞc-Z5tfx+9ՖHW5PO1͡+ťM@pe p(3Lxi =n?u f_۝B%2΍#ȅ|^I &~u+}춋yEw;flPFlTT9<6kWcjwTr:")4ud)lQ[gf~qb`yW;0t&jbx1 hPWD #p}+:͞Eգr!G=s =%a]A,p$⧞f*Y -N+L-9 B{G7 gVo@t_,_I%15y[$k1NFLNBsʷ^n5IFzU׼^{++:"zRyA%TK`-Cny,$kt&/[B򣉕ᱠ3\9.G{}"dk{׈>tg`}ϯRjx JY^ #[Ysk<,n%^ͼڳDSgvS;{> ]YVnz< u3*3GfSkjsv89G;ؽ!g`MDeĨYSQ].Țt5"~ӧo}zEЉuҰ-坍o^1ǀ0L14M@ۭ@s%;}ڰg(Y9ilJ1OXmy> O֐1;y{0 [P-B*`ly%TǏeysYFeu^-?_:Jpd4eoԜ.LhcyWL~ ._%K]ߝVLzɛ&eU . w AlCfIv7l^x9OZѲ;K*oJw^&T_i9KJ@r.9tC v{V3iʁwAGՊ΄_qU@kKvM]?MjMW͏6,r>OYijϓPm[J.`\RWx+hS<巃?0sSk5y+g"ot@LjvB%Ku04%,U [4NBl,e|v"9D.9GBPԜp$nL^K 踇9KF-:'A/0G3(c [t#bi˛ T/?{DL~ۼ(0P'BNlm:e#p+ z3pqe"\hﳐCs͛4V,c1)wJڢȓ9}484(I<=Z[.Ú- y TP֖gMpىD̴C\b~5@?au{bp/qz{ZB;ŝ}=CIP>/# n(Q8 /28 [-a$+/c8BZSSK ZaG7}F HtwtO!~ lJ *fV;!G7ݯօ ހ{ʵ><ʽ֢_/bM'}6v yJ/fz4ʰpvB36d;MR`<_~u@"3RͿ=B;L|aYo!;8!ZxaÕRg_Nw}Xa*΃h<%|=C2ݤٜ7uZKNuu:wJ\^Q\_wvͽXGH^f4 )^_+A/3+@}Ǟ;d{L2Vx :<4^@E->Ҿ ./~"sXx;xV{*`wؠ~\(\8G"2ʹk\iyn8ө*m}F0__ S pIۓu#ZwzU!boXXb Ve cۺ\1.@KFe#y(t֫q'[Zܩz?UyV-1#2Ge 7k1$p7B םA &eQnpds.{=ő%!BcUM墥\JEwUOҥ k@Xl X8llbk;X`4~0 jlǜ*{퓊fmJpj-h\K(!cJO!!RjnL|1*UsmCz ]uqqvaJgS_;0W*ޮj|_=k]FBOu?oiCC('ǩgT$E  '3Wp]oigvw8a+K=Y月$^2-1gc fMEN0H]؃ߛ}|jHK|VX46~0v\ȍ4Z[x $MKIS,cg;{Ħ iѫpHƀ>43b[ Hk+'63e.tNFqz> ($XCNtDjh}w3EFRذR:`Q1ǬWc627?T;ul'׆Ͼ"3%]>u/& ^qe(VXnx0-Eo>Q$au.`^V:M\5ɒUH7\[T)zQc\~.^ Sw^P\mhڲh?#Jm0} m]8-'sze KNa6qg/i&9goQq3""%͘<}Mw<F C&E g# :j#c`s2T\ endstream endobj 591 0 obj << /Length1 2149 /Length2 16100 /Length3 0 /Length 17398 /Filter /FlateDecode >> stream xڌt.vбm6cVl;۶ӱtl|{GQ>Sk>-2"E:!c[C=#7@DN B KFjdLhnkC&ja&gkv0ع8̌\ch 5p17mmd"vfN#҈ A;@`nd`3p2Zhd`P52:WJ^3'';nWWWzkGz[S~*Z@tp 7M jf/!278~88gTd v@ˀ2`bn(;9 l24r7p10200;q߿9999;[Ő0E189 _&6&Q0vcP1wJCGf t122rp1_U+igk067~z:N@o*21͍@Ss??@;? ?O:elkc2+*M?*aa[7' x(΂񏯔-_~Tvw)T%o1@fdc4b](;[YKX[[1N/g6 _*46wZ)'1O݀ƊNFfZ0+s_ >pǿU#ll.f6v;G?c nO0A`bW? @+' 8>$3Ab0HA NFT/A?C'.N%6q#g_Gh `FV +_k?#L՟:;t?} w;3?,>d`(?= ?>\m>`EGebkζN@cC 7C0}uG@knG&B|% Nf`QGQ?¹~p9;8|n?6 h8gkhQP-J;7C%sѡ **N(iie[Vp*WR˳׋^n $FDP]> ׫%x3h4Y3'b>k[]_hܮ^i(HmY<ìXğQ.gofPr& h`OX<57{~Wev&E">HƜ,-Z_pk-"́MYC?`Ψ2Wiq]lgMR$Ԕ59+WE:հXMW[ԻL,R𖸦9j\Vrw±JƥJ`Xl>`y|9tVUbE6˝‹ϊ `BؔlQt}?xᥰn /s{aN<ʏOY ͖{m[C?-.W6PHSv>C^ j@. 5?;N":C0r Ei<ܰIOW-ENXDՒP><^&0$M/wNTa~qiY; sw1&5!̚?j(:Un~ړS -Wq_\y05bK9KFݚ|=ٵ>!= >p~2UAP@@;c%,ZVYt:Yoyފi/?{sq#39[ZW}6}sZΤV` NCj?8NΛ{#_N_S[[18Ґf"~{X EUU@Y}#|ArJ J9go{l;n3s]5ŰwL {/m}`iߦ$J*CE(Ww|0Arnё?xp^^ar;/^´y~`5sUhYa8Xgbd,ѣhE$VG^KU(Mմe@Ă >~<D)k'"gM</nCl7Ь YT=ӳhizP(nw%N"=7{;6y7jewǔDcnC:AFаIO*G =#&&UW(RLX.;~D#IfUXOɂC׺^E`HPr$ے%rAwВ{/K+:YMdxgl lA;AX@歸g#Jgg |# l_yC1ӫ2b7ֽB<'kcZ{Vw!COǻ{ݦV ˜z͐n"{ 2e$c z s&~))5 emj~mqfU?泷Pw[^. Q)c3 Z[)o_h1ba͕fFeK33^NaÆK!(S7pp)p08f᯾8v0A |]䦩y-KNɭ=rEulv5[괴Vd]I❖T@ LA}IK8ٲK^LRHHD3;S|CyJ&ļ* DcZOԽE_S8 |Rm~7*o9eQJ z[u)oropͨ,T l jv^Cuyҵ)%,rN4Baq>;z/l/3`!;qI'TC@0p<~A}CUJ G)Ѳ~$wL֋fdƨoV6Yx+\/-7/q^.f%N: ed0ybTE7F\̨y-D0Gk%MwGEFmIV 3ZVN& EX\߿VL*zj2M.~=1~r葏`5GF+pX[H:6avslVi>19^/2f>h|k OG˒#k+ԅ\q&(4ٚ e8\h_ɳj|2@Z_ ?vf63Kt|'1pTyE-d nZsˤ#+7VFgmYL ;Öfײ/L^L zB_\O~5Q=yuD"CY#P4,*qiԜ`KUJ@J`_`13npw҅-bɯ004:E?<+Uvuc2 Kz#Ÿ]W֚jI59fDGYO; |YT=\O vN!oK6@񤄀|_E 9K#m#u~Gw]S(z$Ϻ 9 @S+=&3)ꋠloh@}ZT$|b+LUNp4[-I\;ն,H`QB3{P;0Eq2$gj j0 ='yl;lץ _1ܮZseG2@Rm*!@%jG3]ˁeN-vBY2ٱrޗ{46.~$[yOމ&nG>PJ-йtztϛZ!(3#C:cPzFtJ6c chiI2q@n~?ʷ|%iIX49U'd#BDy;؎@ABF be, )I/`+6wL͠RK nTOk/)1ݖ~wI኷_M# ;Ss* Hb]63}k'jj G&bn?Zzڃf҂!KD mƩ=mU'3Ɵ l;"[׿z8[ES<R.ܚ 约D}JŇDTinZkl۝o$%/(lfP+8 ,U!擪ƺx@3gLP(Ք{"+v; ʇXeirְQ{N$ O͔\G(R 7QCr1ġvu(1ݲn\L-=togPJ~M7!C]i)+dI~.eAg_dR6< 2"T[rxlI:?`)=$a+R)gʤg)@}Yݜd󝕼JXSWI.IJW8|Cd)NN.qw*۔G!ʺ3p4k_1F/R;*PJkOLC~]KҍɔL5v#^κOJևTf0-6VAm2}Ð;:ۏ]=Z ^6jCXx&XM7oik&vðҺOZ-COTh#@㫋.=p/EdXG)|SdƘ1"W'ۘ3>~ 2EXJo&@dިx+@IGoqNP c_r}hNgke'pYґMI-e\#D$ՆRY}Ybμ;V )78pdJ瘝8_L9 )RB8n@[d';E )w?P?2ewv\OpJ@VWۃȓJC>:x k X`'5i/9G^c\کD~͵r}Q%Ke~fCDEޟRal3]mWV(>q^6bڀ* ,HQMfThԳ`hjwVCn\1c9[PΔ` hF /!%P,YpDx. GaE\%P.9^n ra2Ճj[1ovt4 bO]Dq5Լ5 *``|r\_񵖕Y6i\@ang4Eq Ͱ# Q.d٦#(e6gihX[ AfEO > ٚx N92),1r,ΫVY]΁Ƙ"µG)%>Sg>oh]} ӮcjzmMm1˵UZ~(<+]`d=g5P2eռz?O4mqڽS:Y_׊ zMbZbVmZf`DD/wgO v@жF4cpzY-44)9ngiUk [{i+k'0mwvD8a$)w+St_R>q.S:d[IT2 -M%řdFֆB}~11Їf9Kb P2ڏf)]2ZFZ6ǀyEs|ziX♇H KώG8/h'{ѡK<&Ød`=nSJ0i Z+y=|aB^~x/%̲ŅAqk%-^%։5$&Hh;UYie?#=nqKМ] QʸG$o,.qtƐ0DLTԧN=)DGڬդ`&+K4;IeOm$z^44d[G x(dlOW<{#kYcDX?YZ ߸b8^dVNcKyKC׿iƅϳsu9%7̆Mb'՝"ðF`?rȑ.׎cYݠ. -`#)eJ6 |'o_F!ouoh4h[Sa'aQ? dvס:pVֿߋu*юLYW35h/hlTrP !ʥ_w҈fsA;6,dM7/~Z5ZM!pUk̯ fS#2w_;mca#8P xqcgI^xPi$o`ޙޖ,Pa"2& ^۰` r^E6e8]I1_HRSMpݫ{F]l q#7vLx&'RAVHjL0AxU|@CҺ$I +(O+m/&$b?+A!UXVsGT-Uv43FZ^1®, -}z\$dԙɅ #瀒t"\딻ַ#T2iDFm- Q VDFT  ApvhkեP=4+,ZZqLE,[]Fי4+;GNW8are/kd%Xo E!&8{J3c2Sc+;^2A5)7a^+^Zg۞a+/wl*sV<8ޤI4oADRn Χ< C2?a+VxkYcMd5!<ăPJ·a٣־4F0Ǭ \b0g)uؤn" HUD&O_ ){JU$P FNz%~ 2 BF%̖PF{6^a?=} :?K?Fxw3+P߅[1`jˠ}'s:r<[fnfGJP?/v{0-\Yt1M֜!9ҫnQO}5Vcx뽐Q^ 5FSzPU^|ƒ.{|e@pI.oߐ6^<EhV<aًB{n{Z($:QYgaM- J9P30VG~K9}RK}w%`߰'6HU~*_<ќU6Ѵ'`2$P XR#6kײQ=CNpI&m; 6kv=+ͪi'v%~B`.ufOzYW(/xCA5pU(Z}Z#0+GTٿϮ 2۶wV)2d"(WWvLb3a!@B b*}۾%ͣGZnp֮9ҊhA@jk %~`CR(ݶf~m/3c NĽo[ԗ[E@Z}n@+X-ZO:S}FW[F.9ZIXbKV>[=J蜫G\#B$ۣ(@#\!mMJlFL8;HtR:ZHjfحlDor[``vaL> EC9 [ QRHx7;v>O!M,Ҵ8͈b=G>Nʼn/[ⵄ^Fsh R&؏M7qJUVZ+#ctci<220 ^r_dq}{P8eA=E ._n<ȞYt$Mޔt;X=d!ރidsXvpWs̶^.BuK6/Y[OxW%4pKmJ70Zh"F0fJ+8 0tZ6>)JJ.8WQ۠-뿊ģYlAWkReZjT_t붗$2:rY3x :H9^ 6&A!mC#)ph.H`7%؜l(4tU|sz˜ɤh􆁹_!(y2o]ӼTӳ(5dQN&]YcYd!ÄňA3΃ҫ։*AQKXc)yCHA$ʩ“P}2Yd-դ,o]Mu婾Y@ؗ{%sWKKhڠ-aOgؚZBIDHw\QsGM 2 sAzh .AKnXJ&Er gmhr/Av^!(O`)'XEbl2\OFޢYB$iY'Zږ29/ %fg[6 x^r-'K\AUm j-h|הo-"/z oq/榐Eqqzk;SZ4<Ɩ{ Cߊt['& p"=_,ؿsӯ"ץ_[ {joq)/oH@Qjly [#?:8^-k4CNk>s`ݚ< h?Y5d1rݵ-T]mb&Qz;1=afF?u,&h֦*vu yFN Щ ?945榡,h=YU啮̑HKѺOAA]y/E Gc9JM+] wGGxɠɦ-i&fN^;QWЏk~3,><[YL'{^Y*Ml~6XO>TaȬ5؄8~ГQU+_ZuzR{+WIN]`DS|,悛(1pG88wީ5[UqЄj"ZtxT&➬DM(M~U'{LNyɏmڷ XŨEfLUfW0]Ҧb9^=~Koo#1IZg[>ֿC&S51i/<݌hg|5zPLdS*C{^^1@_2T ё x1'j[Ubn+G< ^/8CH xߏ|d yE1Ye6ꎱTFGZ:M ;^B.l#PnP8غvÔedގF!ɷ ,6~V"PySg#G- < k 1.t*SQ>{>8vTly zY'ɛۣ]O"'5M5D- E[8LG vDvYⲩ\ - 94Դ3]sEy80:^%!Y_IB-=u1-cwfX!P0"ģJJbezl*o}e{F;_iCrikߏohњbC9V0K!ǾM|_ncc=~KrYYrECwPZ n-ONuV3R%\碃qw~`$FAf%I;q%0$k".k~n35,Do)]P=;zkdiBw@$6qx7'ޒPG=/4v [g1 ɑZl> q\)ow2A)uMh5ٛ< ̕Nts2w#)̃?r(HǝQN<Ώ8L^!JnшBQ97g#6b:EHܔMl.-'6uwOwoY=eS.䆝o"8U12힎œ@R<y}5}KƆnE9gbiYC+W.|Unh=fEzk tZߊaߠ*|i/=Hʼn>C>< 86]<J֐f/ |Qv%3^+c=QRl:49{cHPZNJa<}q23%k[뾽BYK(Qp(7pQЩCav/C{ GEk=pYPÈԇeҹm9L:!z E@Pkx^}=i5s[QӜ8@MnlbZ=3Squ4@K9&d,/LٵoʙMw@r[Z[zsLxOCOXA#(U`rҋ30ؕ۸Է]UG-˵5BJ 26%\4=!Â&:n>8Gt &whE{>6RdqRPas7 WkfM쳕K@cAѴLz R[!ٗKM@Auꒁ~I2<:dFBnz z*}`1К~t-\2 1R@ b6@}5(cG;>'H uN,"⩨ m -'^!lRwt|8gMd.Nx*:ʳ1<̢bqWRH` $B.GhdlT'`~[YN~'=|b'vX߼ g18mpS,LyCS*:ڮ.$cQ2:c1WGp';Z*3_=]Ũ3~IPh{APOhW.`l.. ~e#zwd[Xk]h}km|Xtj2K_S/Q90\S|5~Zv:pAu}_mb1jmQ% ^S6od@h;٭Y$Fa r+tc/D2M@Mc Er"~M񍨭/R1\hPyU}\N1*'j%D_ ՟M?\G1 m@n%#wQGn761|w;"ꑝ42\_R ΒO8Q$ȼ X7u* <zڡRgF.f,B)/RPcG)9P4~j&8> Ÿ.%zQ2ؾ5dL|n<-kNRYwH^Hym)1o&[Ns_'Pó`ё{woMF@(J!2|8j?"8_8>gCfO8Y1QW5Z99E᳁tAhDZ?LG6_@Vc?NΌߔ]h ;);UکD&;fg^rL7.!Ht+뭈"^k{&M_<(.2"f -ӌ԰Z*O+LɡЦWцMi}'g9t7PU"P4?x㫆ǂd*}g^^\HR-a0 +%n~& endstream endobj 593 0 obj << /Length1 1582 /Length2 7161 /Length3 0 /Length 8215 /Filter /FlateDecode >> stream xڍxTl?")@;$$0 ҍ4 "%J(H" ~}sݿw N6CA%GT@ =K "D047NiDPL(!m/8$ K$@("S 9HEĩ91q~ @RRJPO.PwLD0AB`P?\Ⱥ>>>B`wYWC(7d>4!"N {B@( Dh {E~RfKmpMPx g(#yB"+vK355wڽw[W-+=;-TػȒc=jyoOa5iWݣчHӡ={/wSڵNR󩉣t#x f q jX)JM'R7ֿi)2CNJ~Vc FIMk&;x ZWsk&/-C%-)_QV>_#I" +xlztݓ=VCL'z3|5[/Nq)F5#5mIb]*cͬ'NdznQ@Yp{.RJtN/K*8?۲Q5L?rqTEe CC+5;[uUH͌"4=.w_}3$=}Vf\Τ\kpV4u)]@,_&$*6~&oYd8]ks\ ·6ظvӦ=j-"B`d:MVә?S\ۡg=sroߌpcI_ZFit=UfkQpsds֢wW~Bs:Lz~y52riU2pT]Ig izn$88 ms|s)F4x g?YFBMF tT"?[6t{H.1ҡiPv[vɐ;QbwʬG YIJ߻ or TКYb~hFFSWϨ<:Ӏ7(19Iy3B" N@-ˇU匱wAχ Q"N*~Kv36ɴ&p:1w hkߙR+?>"-na# |cvfn{>Y{v# IxFz;+"p-o.01JbK/[,X"%qe9oba]NRD7{Y0`pP@ЈbL&#\鍫*bdqel@5~UNBVRZ7}\mYb#t1<-ۅ\gBVPmtFNٯqp0'{TKEvr?4EYy2 hnU2tW P-Xix%0 \zz4U5i/^ sa,_c(*ܩm!\+AXcOdm0Wݾ%94W&47!t}x3kAkgQ/sϻroH=0QY ~~ؕ2Wd;ȒzTtm0;9u-)?~j|+V\UhY y}-;iٳ IrZL QQ6م5VPGxxH2iPcG>Ȗ4L]\L&b]؇'~^PoHl8퓟UØ=&R,“pyn2`:tJjj^ǹ~ )!dDi5WXĶ'큫pGi?휳(e(Ek_>;hv9\۰TuoMK_< f $J)q-nwJ/2;a'PHrS]eoN.(:4Zc/q[Vb^ཉ|:qyִ;b 'yQ2ޗ[UXu4JCH?W%<;#v]N|34FJ}`I ZH#bwP hx!Z#"F2&m8KfCkyЎz%#H$m-%va#5 y ]qY;٢شpWi:XbՈzO!ǡZIM#@vA^Yg百9yJ5Wz<8#c]~4u %4y3Љcw&E'kxL=K+S>D#/LgcDPPq[+i?LCrS^8`k,ţ8?(ןѣ8ϥU+ Q7p{?٧U4 $ߺΦ{ v*{ʇ`[^Ew)iDꝓl̜G2%$rU&2p_BV.Ge fL14;_͟! i-~1 `Ů0^]e/[{rMmıv¼Ay sBZKyyIG#n~ոsX͵~$Usd=jԣe|BWr(8W\nnn6wq!N Tpe*-8`5GkOUTuX _D;8+8[?܋a%S9j=&rÛbôcb 8i <Y\(vmV,Xiߞg0R1 Y|a̺EJÖN ) h C2e$l\I]xUod :.xd><H&(ؒ@;v>w6G0 ݅qe =BAeɔ+gyy2MZ~ۍt#nWWr=, Emd=0>_^N'EM;9߈:f ji!)a v) |)d!}}⸈˵3]54-J0T2lTzl^dC~U;YѽWߦRtBk,.?MP&INi9=u+$ZVW|BbF _>&E~ҌAL蹾7<{?hWh`S9ۡjsnii{Ȅ)efۇEħٌq R2i5ܭOK5)EF0V,#g "[.,Fބ pǩ8_?n%P s}o[s9Vwh'blMw? ~rb'G#O`ًV>|hz/1lL^Wͻ1OSF^f39tl "%FVC ͇8˳l3x =ik[oy$ktzr|u 3i)^ *C6`:7,ub` 7ה`dbKL0Z9OHBkR-b ^,}xN@R˹ê"pTi2 Az hrh$?caYs æMk+(A03o*<9bрc.+6M TdkR!-wJ@1mweIUn ؍gϟ;-jNV|;$Ʌ++;oY wMVg w^hOzgqWZW U} EqzC*`Y?84{ x"g3T+1SiJJbW j8zVݪPes"OܜdE̔p{ֆx/XB=']xB)$qDqL]ֽ{786e~D:OvxKvib޲1UBlڶgD;\J|A^MYso?T7#2nQ,;,}`kb<'E_.Σ?'ӕv8qW =*մs|X5n=&A+Y .vgnwpX>HOZ5-[%eMEޏO{HùM;TqsCIܣN Ej-=i[Ow|9eдA_os۵jv5BMbkMj5 2et1Yo5N,SFqTYѠpl551.iSW8}fӹEbaY4]Y`Ni]ހc"0ֶd+|n,p|Yk^'XcO*m0~2F_fJ"Y?/BXR#T^ã{쮾s_}PxPJ;/>4,5=u|:V&6b&c.q̻MQf^{fWڷpZ}uOF&$֩VBJ8}8v dLv'igQG)&>@HJ>~bh}C/RdUyYxyt'W\fh;Z[E׆.L@b3\np4Z_ZY$ɞ i;>ڤW;sB5m)'ڎ_|k+gObq endstream endobj 595 0 obj << /Length1 1440 /Length2 6648 /Length3 0 /Length 7633 /Filter /FlateDecode >> stream xڍuTS-] TBz@t!JI轃 %R H"HA1g*{f74VQHHob) $D@ q7) h _jh8!X> pIŤdA 8$/GZD"@p|G,~}@199@UW8 ##4AAp?R):bn^^^"W /B`p  5 qL 4uD`&X/.(Gx ap49D[hGq {6@1+;\ Hzc$#Cpo6*Ofa1I X~I0_w > /^_Pg ?@BQ_:Bh8~~bxA޿ A kb i= 4 w?/X/gA@Q|pw(FeE}'p(`zUwoZ_ȑ VG6mY!sZϰ]K9ǻm0ÐLZV $ּ-&"d%VWϛ1Vr@WjTV# XKv{KxZSmsXD!1g:>컬4\ݎ H:fz_>\3CRN,u2%5g1m-Wߺ0g]zw6; uԨ0,GWeZ(dvKg Y:޿WR??qw^$5*r mNMhaΠb޲O1}U;=ɨ*"cM#+rixX>@&J[ɮ([-I5Stsw[p,tJl̰ēH!9MmtQwc ;(,mu5<2]hs+s) nc{u*Kwf$±L,MCKkȂdey$Q:L4u+ݭ8 hCG-+?uOj<;WF+cSYW07Фfy2L6lkB4BPض#.KVElѱkToa 5KB2́PyXh?9)S=2&njeZ{JT@(c7>ޕ N>$%W~SJ#1GáTsh%hHP0`xn ;Xj.2;}:Y<f|VQnۍHk=м)ƫ?''NA/F,ruOΔg3*yM[EAf\j3q<א|^x0#}a-t5m "͏]\Aꥲ,hi]t3e/"^ofa"C* Yo\{(W1y\'/Ki jUVJWg&3m_/K{@r2A7K|N@ъ*$v2 X;b.! ar",>|!6<55zoDI&K;nڌ7ts3^a,Q)+{ ֧ߋw>}!"gvmU7)beV͸֣ (5F04iTp-ճ^vӜXWjz+UCLrϔ! ab:|Q3}T9m0V#c6(iܶ Lqeᛨ"ɇyAPi? 2 kPB=P7T,iKlΞInZ־a6il>1^|G7ՆpV' zrcTh-ݕ1{wNYM3$UQ|C)cd/pA0/5}&L0W߆UDӲGvrn|ZhbD C[#-Q؈Ern~jZӯjH**+Ԁ&Q~N6٘>`,ϑeIhC״9x0zi:ʿ +i<9^p8'1[歧_jpkDm*Tc)MI{ OWh HϞ90=ɿ<ӏs-%*.5hJ7B Fi[: Pyn"M.6 DRV$xN$܏^V= uNp˱~Zj],j=hE}ɥĪlxJOJg}õZpP zHf1j"*f'Ut;~:pz`DFP놴\[i"Q4k^d)QIilk;CQj&KXLs$<ӆв#Bw͕l~4_([U}8RJqRz"h3s!4:׋KL/=b=8|V]ӫ.7O k{r5,w2[N-f5) ե>O4fWYDU#UZ ;4(3A #T +/D#MCO%cD{ZoUv)۳˙B>ti/OƇF6g(?IT!)#us4{j!Ds#Z ݕ/W H/(uz m~ ty^̭EJcakk^)XUiОЖVN|D .t.5'QSA/Eli?Kfh U1H"B?#TWm[yN1=vUթOI'x%m gƭS:s&%7x4@f?t QrPP7,hmnm "k& Y'<ݩV&"!!6U`qoِ[g98TpێG1Tlǧuč/#f v#>@p4ˋ܂6 I0WU#;*S7UYtIpwHMP*OJj<2[݇xR)Y~mKknB(FttR$% v4nͮh{.3#Dj*''L%=Mp95}wy5ĄuޣޕrSNJi ?{RvZ=K,yo{LV7XTŰ;ʝg)GJ14oU^d|se}/ .aUB: "#[&7uE(glb`ѡjp4Yj~, أҤY\lƏ\o>Zmł,㓻bWbx&ZΛ|^gnd,N!Sqpv1?Mv93x頲=s%6殽,7ǠLOӚ}9yaLl_u>tM }9x5@RdQqX+E\^܄;4%{d -$½"Td'vweqZ񡻾cyZOS.W I]7ޏ LeAG<+Z9=poBQ#\Q&p/?,wLcvRuOlpx9+ukW_L%q细Q~(#oV\Ϭڍ[Ҧ_Bs#*wtʜdRYWRx\g_zر4ֳD][y#X[ݧ7([?I(H 5 J6h&0a0c rm`+3P۾ѱ\T-Ш\~6|"szmkǴVyG]m`;BWn~ksLc IӇoΘ5_>Df (0KNy4mUk1ʒdiuf&-e"!XQBjpe#Z;KŰۙ9bIf7QmτnkƍF7uQfj}dp+ͺf{PEz%Cx64?1h1yw 7&tQ<] Q[VE*80fhZxr`Î8ח?aLfQ/k^ӝz `ٯ [xnUF(1&x*I3uKQV,Fj͏< _Ț\6|Jg$kn J0k5pTM\]zPCrR7+i $8~O1oTYQkFSnS^۴ aN2!6i^VdrFdw& c'}5燥|ݴ86O[KȨ endstream endobj 597 0 obj << /Length1 1898 /Length2 14073 /Length3 0 /Length 15255 /Filter /FlateDecode >> stream xڍP\ #!7&8!84X#kp ݝ8r9>snj,b`c4.PR`ss"Ш ȑh4 ,$FWP l wpp8 p 8cvH9LJy-Fl2#ބ;@21(A,6Mj`?![@ vll...F6`saf bP:?Z(nnrK69k xPS|e38X9o?lt621ٺlf k "+ 05ol62~5t# ÿs4qAYAG1KٚJmlG?9M^Zق]l=@fadǦa wIm*BGfx8@{Ănv?_{^z̀?HF@ o"$)0l*_ J?>2lkG&,)wU],\<Nv'7|4]ǿ|l}Jv/c)_ Ct]vv/tJ[z F6 k-^y%._S-_49_ul_( r~AL,b_r?d vqüz뒙X"S|ݡ+ek6c8yܐ^<8^'l`ȫ G/鏃}`Cz`$xl W^A~J >k N? _jziziL֯䏹 r؀E@i_2|⿐uznv'{Zm/ /Z?^l8ZÿknWȿ _+sW߯C0'ϛ}^@+ial"`Yr[-F²3ɍwv-E輧'+/|^cz7n눳JJ3%\oxsKQщsW]ǐ˕O|f?*WXEqV9&Gx!:+T.wgoB|xjp~(HpfK!% ㈚`ąvu$XhʳuD,WcM}Av⦰w.Ү2l!iDyD,LOo ?S Ӱ?]zqL ;D[I|T2#- V!4[ei(Ȏ4I<ߍrpFZbَwgg9.z dBzfB38+R'{A.7D=iJ&>0 C\uĜ|j"{ }BhqHm,& k<>B߄9P<#v]HZ{MiO5u|WT,#}NrwNc^X5Ny5-Pd[y;ߨFX.~m4ʐDi8*93M@GxU0KUel?S^##M]z`FۙQc7 DFS<0J){} ז "=of-**  x^I-ڶ=fgnJ[{fa*&-y+[TѰ.KV3Gڟ/ڢưh.NWjBq1qviR2Q̠yƫ>4\:>OH[K`O(4WE'%-Fs$m9E~9e Si~ŏsC(Z?ԪibVu L/N퐋$N Oڎ2b[4{1}I'_GjbUZPe'P@P(J@gL7>q.y)xv]$?}I)euЛu姂[zLRem ߘLhnU֗}*>c,=3la(`NbgQ^Ol*dF`;ΗgOQr~KvAWZ˪a0eZ\ZS0@y>|Ғ5.[b PxaS{W$>%9J[lHiҽcTd^vޤ H kҰݳrS?I/-I,]~p 5Zb;B͢؇q2@U>U[é\DIÁѶOF+?҂ٯ fy,cOd1 j6g>ANs!~OSMqF?d٣2q}M5,}23g*=Э@ J6mm_gܽr L8L-LJ[W/u\ˢj~]OWn>}vWq̓RBK|7ࠒ9[E_!٥Vb۹fʬH2eFu#ׅ'DwҪpܩ<7o+y+I-$s0i E6uM%bh.D_i€W#%LsH#It/C𽚐G= 8ͺTi勳8$!KYޞXBČA)e+]NKqoӷHֺ=y _"l E6Ӏ"ˮLp?$CQ?e,Ǵ=YY~AͳٶP V2%ce2vq⑟Ytߧ,!fO݇Nϓ/w$>DG. Q0","<i(dl: 7Y3Эj@q6U\+LKN"~]u٪v8cZK= r-s2SD0bXcgK46,9bma*296Hgs:?r3uݫ.~,XYRdUt)C~]2MuR]>ho8v*DȽhNpƐ?i<|KvAF?497Dh O9QG;]@4{$y]@3wzX E,j`N]齨ڤ_@DeG>3²Faˊ:vv]T5_ՔQyVB(q(WΪ^ )(K[{l3}/j?TRy :yQ9M{nwV.ʹ0)Tj̶9T}3x8tŖ,{F#;`cB=/51ũ?c`W,CʟSPwBDk9afla#q;ʒ7o ߻5<7л>9:-nDҭ AΜkI=~KlZHER}.^?iy(b/4_얠r& cbgne|hpCr`vhKmT;SfEC"0@wu]k5?CyKŪQ봗|Sl8%/av&V6Oq ֊kN8S er'پ\SžqEzk, n:pi2d:뀻BxqSw/ƄKR_Uv!HbN-'vt+ :\N tӓ-#a;Y7wMKvn>]$ܳxECi38"a .^욺M4 [fUK7=3Y'}Ae47YX8*Jȏ%þ%i PxBRC7 c6 do[ Vq/ GjFW:M%euM2b-|\ilPm> lTqtWx@y'E?-l'0Mv?mkc}c'Z5xS͌f(6 #yx,^pѱAp׳+o(,Ldf[^lBC"NwVI哞3rMe2WeBe83ƕ=B:L4+BOշLZAL'2{jbfj*6te:N㑱넙bt|Q ew&&9ھKIHV#̧IťUH:>BrBQo@@Vf-O (^iU9=Q\HZ}ƃEׯ?Ejc?rQV6?ο}ދpH) *Gf)L^\A@|C1"P>io{i~2$¦ٔ6S|cvU^U~0L)tᖇZDɜ>.w6v3W&ҖM˨X473EIA0|$U577YiT:eZ|j[.RT#>vMIjx:j5~7$*>97d 5[g*,ӄqGTNg[4O>=*lfhAJFe$UF:ǥhAa͙ 3R]SDjjcP`"PRTxu!_ǁzHDaG3iaeV_kВƝ$#ioJ\,i~TA)"-b5q/D-߇} D 9ϋI jĤ^R\TF6;dsy.qM 8ܴG7/Pۙ>h?Lz%q%Vga@qg[ 5!0U:X|bt,m~igNgle6m;A hۑ[j*u3_J]= _IRGd~K.NgxlOd㵼!8}m%_krmhiG2KkC̓ճT6qڠ.awu3\/o23C!'"Ss pRȖ;DS6!_~$qM xoUESpG(w$^y7rcqU%jIK7^x(FK >~ (V# 6N3Qh촹fSc|/.ܷJS),>NnReK1֥BcHPdm)KRCtςQ0FjsCrhj)?]f1GýnHld ]Ѣy7Y꓁-D^)XKFE@A K5`wck֑+8@hF,%XL}%{T0wVdj']a>\}; \O9e#{j80*ᝎ4׏Ds䊟Oue8/,Yڳ֪B}4ܰG||(vdlFC# LkLs`92W f"hu E ɵt6WD900k(#*:JP>[b|ңOpWʓrr7 8(|GB^4Ϸ}#{J_o QuJT?3N^X')3D˘E:x?hr{/Pي7fa't[˾㥀09YWo3.ڗBV1C[;ۏ ~I y.}!vۥ#Q݈ j)!( Yץ*wU])Y<^8^ EsT ?2VpCpNA;p|<Ma9ztbKiT2qrЬ_/(C#gsc1 =7!MHEb hpx@OޤWߴj*8!ق[󰰑rg0d \e+hV؜;EJCCN#;$K1v9G)UNpRfjgE+V 'uml 7TEb.$?Lf L ߢ{yi$e`sᇬ7Qޝ^u7<8KOo/jy!NOޠGRhb<l扎W/>WFF\d-keo#0^eѰf4b'?Ȟ 6sYv=TP n+F!ql á ƚVLo5E*n%Vӊ3p1~>E*;~[k1ڬZ1oxl<Իɫg| $K ^;YxԛԆ>CsjBjoLȕ@̾%PͲ( M男S=uQFpu3W;xt y~2N$zl.Z~ŚmPnA2@ ︮B=oGc!:WTnW!֞xsLbIUd ~GKx=Z܍"QzJ$~+ꎤq?k1YYPbr I'(5_6T6RRoA2BU. et;@O8sI, ID&T=7;z](a,0i-N83Z>kQ4mΩ)* ?knG0t fZw8Hc7<vuVk4h|rGcmsUVXIq0YeϏ^ >R59 +'ϼᭅ뷫iiijq>}ZXo ?̃5L͐B?FwTB&4'cw#4ML1@Zdd,D)xt4O@JJk]>mF}|Vuwtpe^NBMߗM߹b^Rك+ϧЭ6HjfaAp<8*5˖mov=D!%]j6& iY5f5_}X+ [f zA oZcv=LIR1,u>E;"ӽ}s?c˼0:%⯺,䙻w+sVŏaO"Ipռt|e-2d ȄRzS Y|kĢ8M][s\t"W#R,/H,_ax{ypMBO:s9Y x%/dZZ v"k]Wö ?;M|MsTO3GN2*;<ÏDc(W3fSN6pt`Td>Ə {ݎ{\]ƒ05#f -扒I7ޞ{_ƊlKȮ׵`fG%0w=T<nR_"ƩC,?f5HpOQ~kb(XX\Sѳ7=+Mp8,t=SRBAbJܝ(F| kaLY~(:E{kciWڧ`HMSG"ٽvRV~ oi?C̓[lZg9z⽸+4S~':T&>E|֐ӏ2[C5N(1aBl[̝~f=CmMhhHa|WS8.ncӇ  }-"Smh$Pr)e*i-|Õy=oX+m:JS{/XK݈]>v~-ʐhV@g$#[AhkUTBYKK|z 5=tPUȘqW/bޒh6u%v[f M NyH;ΰdqژgN\KA0Lg_/D&NcQPb򜃰 r5~r?lS9 A[𴷜;%lQۈᢺCPM1HlvYNaMrk5uIكMA'#ђWt%hoDS0h[CFبQY/~9gݟ*.ꌟ$Ba"%&g?rxs̃&J_N[cja9]'37`ޟq@T.}j/WIdPB"߃plpwGd.` 3V JSg&$Ȕ5Xk>vL&IU'^##POw]HkD6`"$"HyIQ,C%DIc8kҍ6 F\~ |܌@Ζl5@X`oa)N;?E2.{#=Qoy3Lv~FV6*.0U.|VJ DȅJouam潱wVP B\U,#I@3:_X9Y '5=/,F̌Hx/np,(I3Ekg M/Afmp*{ P 0I7e + t%:9ᣃy4H,t8 ׷q Fv} c2^.ڋD})Cx,K3~qbݵjA~pCt=-K078J &۫:do t1zүc+yOj̾iHHKqG9iz!9TuvaSE,aQZ;e&ijM."}:87Aw,iQ I,GoێnXLIXb?Ak/Qs+-GNB(2<{%f" Y} N ڌq^/rQo4d OsI:åiUj}ei^ADdߧ+ gHm!wLP{b\!B1(j dW!%w~f'v7插VnlBOZ=7tkKj( -|bVpԆ%`E'6Bȋc9m&#)d72zkcߢcu^0Q$̧X0LfW5z\,-0I?Hv" )9G-c+8&N̟ ;|4ekWsHJM:US{mP*b*-aO~c'I*|a*:B!+j>MW ~G./>)+̷}\%}tb]uKuOteK*9Vljvc kNBMeAVAuDɱ.";lF]eOSTuD$Ju>2n>jф!&7*`; 7_;- u2^A}J%`N[0eưq}hկho)&: x4 N孰o52#4 Э$nT\sn^|K2vseq(;]c)) 8 <ͅ3X~遮y&oqK"3kr?`lzFaT/vބ64nҾZg (Ա# nu(٤6+b iq9ɍσ|"$ 3apvjh>%elcKu2 ˪3Y݄vZV]܄zR!Y.FŌ1z 2Y^c}!ԏ×}I_^t=Z(fX0qAgV[,-0;o2vmGY7 U@y%Y!FM|L4e/oa~j{=]ie|\u;bŻPTsmPXC[lǩ)&F[ZMYkzcd6Ym589<0!ZsL׮:+SB n-{yjREvNU0L! Mp-IFkOJ bac<'I$Ҝ --Ik2Y|*è^Pad>ba^ ~pPn'>.zڛȢ (S̽r uI} Wo?MAΓjOV(vH*eU> dW4%[mjmM3k<e6CY^/\D Z, ".áfň YFyoUi> stream xڭxeT]ے58@pwwwwspw.Kpw܃wqׯWwcUUk֬cS*1;%@ ,̼Ek{S7<9ȁ@A! 4qvyZ@s8 `A98z9[[Z5The+`ONkKhh~@7W+ SR֑QPK)j @ omi,f sJsaq\fۀf@ǿ\G;`lr聫dff߄>"?|`..f֎jeWn7#}|x]MA.W_LskG;`psY=hilntq;_7qt{Qhg#5AY8Xa7wsw& ;/9I#%2"NywhI7;;Ea/뿉@-?w 2&mY~H'\ `abѣ s5m003OW9<fRVTSP(]ս?G  CT``prXlðk`l (`$@fM cCϿG\=@' ae/&kk- q^ȡ0jm 㗚0)޷6c=Y^;4y>9M_e~0a)rVO-(]Nf UÒOSlp4XQ;0j O(~ \ASz;6A?svG:bZL! $c3e+, wA^ 4Qʗ߬_2Ma1끖UC^׺d=}o]#y*6ݍɅ}6EP_I+ ` h|Av2v0џO=M*9I +|gfs2KV߰,T 8Nԛ jX.y7P kGCWp1Kqh/hWC?fD=SDFG|C_ls x:՜pB KPgRmU,$1pVV8xy,ߎ/[$*vIޱ7ގZZ_f+>"풖j^8#7o04{9Iٿ5!&tG1쭳* 3׮ͥyIHSc6AvЎ*}=.ZFE`'Csa*q=u Bx3֎~)H 4J`l6Z/,8}a(9Z$ ^S0Fdo0kV*>^"fU^y3҇f-\_W/ Ѭ'3$~OU3]eƫh GzOprYw11y t{ޙ<ÅU+@N =Մ!Rq.x/(,C6NS)V|AqXh09w't1Dܤޫ1;B_kGrMZh<.h7ɛ}n˽@w|8gWz 3Rr\9.cE{XEhׄ%2DoG"Kw:iTlh]A)~!kV``def0W6VJJ?N*8Ѩ bp4P JQnQo_DhV' u,HZ;^Hڊ@u컚xVzط5,ixR죎ԉTgeZ .P4ZQK#']J6_"X]6=Ml:Q) yŏXa;6hh+/NRy\% vqwF1=uhd86,!C l#LG!?5R&KS9O|~n|ogSؽj%lgXÏJnE/9 Q;{qs=3bј "D`_Q3neA97ؗ ߯%ϑ^M*J# Ɂ`r8owrvQ Ե7IQ4SqʼnPh_ę,FSX##&qpeTNeogfN ?jN}r@JV}1pXEGw*mw._s93 %q"*\ +Tպ|HMF!9f`GMyii/=$,F$U_};F pp T #z[,4_UB/ 8o$$s .ЫOUoL/ȵ=+~Jb>NO;px'?Ha{f ]d8f#)%4sY ѭg߇vy`>!daNc :hs^t}U"Jnv͟Pi=k;Q~ F+AH S4Se>7:HWl` | Y[2S*ǁUQwhɃ8.+O0H6oIL_ٔŌ^h=( ְ0k ^W׌!:ϒIx~$1.ɜ"վ.m&?øZ)ؖhW{O,цh&Q`lt|f'ϸ sm+ljx`BpEJs*dxf [druLHT'.\C,){M$9?7A:eo/|NB"槚|2r* ?2H1\zgveS>rgs՞n7 NmFlvEh.)?P(~F)m&(T՘QŹY>Z]u2+hDD Z?ܥU)⩿eL^X(822 &bS5Mh #Ldm :NPB8wjJGs ֚W 3=Ia g2AU~Րu~f6KtۂFJ#:G] #rZ:Ϝ_V=]a 0H(e`Ym!N,)K6 f=ٌE YtW O5IF{gv+l : WqZih+J A,qTxj.\5.?SD@?[3_hx)jnMYC :neE0J\̇,GI ^/_  `&T~GsIcJረwg̜W*۠жM"OAh$Ff}SfB:}p>szu2uBO;dХ 5r`4cSz)oo^}izbRג^aEe4(-iyP 8u@Y k31kSt,/MZگ}Qe_=){T R4~yg4?-HŖA)4e%<X~j!u(/%qS͵L-'Zu@;̪浹^ T"zt uiYgi-I4j@b.ؾ(9GqIh˲ g?_/e9daht2MGjgV\8}Iw<'RКzc7\c(NcӦ#Q2hwLGUpR puO?៝*R^6~nDH=Ooٽe6%J\\m(kIGr튼.+Yso$D]`A(5.G!`ĈT"3s&]Iה& kέYW%TNk2 rNh8[Λ)NIhn&-u>Aʳ53P +e$y $φf }eIIo<=`jc^9,-&SxF"kJnIFa"@%0pͨuwU6s~|.aӈ$)aR[GNYP͉yk9 S4a ~GqX[.f,GM e.Xly(>!hd^4ӭPlC9l8 L9Cz?XYh lj8({s#epMN3nPӆ͡ؾ^3b \at&dQR (fH~:»'f|WoRzM}Ekl#@4'SnDا}!;nv yZER Nnr ˦ $Q[nQA㽆.^DeFg˩%YX9P*$CᏙDkԷn1ӯj`i fU`y8Q&Ŏ轍($]M[cJC>l7h_ aul1Xchx%w& ep5pI m#~iM5GeSp_8PV/o9W8z :zOv>'m$s1Fg9@h3439h䶁\&p"ϛ!v:i 1Ҥ\vw^s.PKmbo HŧQ?)(PbTF+n:,\39 :GJDhdULwAT |s%:%莿a*H"gWJ޾},^1~5[$P-ve}hĭp7.o\DNm| j@']Eل?8}Ex|l$R ~(if.mÄꌊ~r⊡3JXkCJ^'ͻ18=XaWY˓b%Q 7IXzc&ߡ߄LE'f8tg!Gg㏙I |oI!+1c*9"a҃0IJRW?ڿ|YZ H|{$8i8ƻ:%\p}].(^ +\DGSFR34$/ 4Ɲiڀ(K0ZV,89i.TpպOD|+ i g"M|J*!j]ܐ~ 3; ,e lVD'Q}#f|&FY-vVpb[BoQR7F" ~7-{;wZuK7up7GKkP=RKnDB)653 4=G͸n4wf3*p[4 ?7lb!S;mnK2^x͈g7tF?HK)SQ]QjUwx DG>|>vi]!_/M;%( $d N`N$92Ur6  hNIy z6kKN e>bYxsBMYaZ5B\ Lx^`|sV Ť/nMeVqAB?Y疡.Իֳw<{}924ub:1XIЮNK<O[KwD (B`(![mjb7RbOy5o0wԒ |cRIB|XyQm"YZ7I$6l\eōJ# onJ OXߘ,D@a^|)(t?B].[&еFB~EU6ؙIKWsz/La.Ɔ‚ik?Ū䤚k>m?a3GUU,ρwE;NtL4YIЌy2 yHNew=N7hd!+(GvMWv3oۨXZnQJx:fs!YgNog(P˫{/P<;YP2ΰ0tUR>A0_ ~RIbD .e!UML=fǣv=vp,CK%Z"WT>j|pSKlz.BC@nEBK 4@5-g & Ү44+`(1$8ӕɷxbҎLciü,eAP &&ͯ.A<+ O ʙ.vɴ{,>Ϟ5) &D1U KĖG^z.c!c83֪$)䐨e!Y/K\H'*2'u'], Q53Fi[<?ۚ !bn"|>CNIeg!  cJDC3^; ^W6uK@˨}q/GH}w.XL:XTr$&̎$ʽEV_oIf,QHZf1:klsQ'k>yN>c,okM% *cz3motq3Jpn3ɓr3;ƘQ <=x>,zU韝BQsVE'ϑ}b$L,w#=Gd8P8 ГO>}ѓM԰MZg@ϤC4& ęЁgakCO2۪vMW3,w,Ċ/P*oAK^,b1p̐lT$aOx'GapBU+J-bMjz~io.ӧ?˹ /J(F&-yZjO`#UO0?id\Lx,6[:JDdmWʌHRn},GEa/df+Fw $hX"S"$3L@DsΰI Yj=st?',x VGIVbS#nOғ`iѱ5]믮O96B~a[}.נ(PEXL*\+)W{ .wN\w@wzQ7+kll99@h#0>|ŋBU+~T^,'"-w7*ҷrJqc _;(|Za|!v4uuVAcx`d.#IKGq=5 V؆,bxOeA9gm%#ٟ[>Iƿ6;4ÊŁkDTNk(qg|q3bby^xYx9F,BH]ǡ4y[sYm5’ \^ S;yo>t7jkWs9)c# EL[27&O>2x/{6/Sea\'̛Sɤv(qiLS7y(1aW:kY=0?vN=#+WjU~V1 {PGwQŧ,hj;(=.bߜM:oƟ+p~ t.%.BF%زf^4f1=Y6գl;pDdC~ĴZeEuFNZ Zpx"Uo{z.t8h^\IytD!!ھ^ij`Cß^FYU{?ѱKe&qMѰ'ZzZ:fez̢=a0&;ę*!a(Ew=w~eE"i3-K,n3IÂkm35KXbIC$6ͪz_SN3Uq[cq?y;Rn$,(ꯌ9'bjMC`w뵼Ӷ̡ lS~eg>.ML}"A_̅Q<,!gF(paY0B+G{ [œ4zc-K5~|鍁5&:P]-#ժEr{!W||E"K^qkE=;t3TŘbf=^JDM7}5/tZ_2]pҷ:N|HNV~J[-xnNKq[ܙ9/_/?1r֞T0?r^RpEzD,XKB!9^蜜$+`0cdrIT 3 e9K$N:K'IgLӫAru橴}u)`YR!ܺc殁9+F]$J8MMzPk -Z}PZt$K?4ߵenѥ}%K|24>GiQŏxm4:AH^ qopa!|?(d %@[g*0vTfKZ՜ff(Ykƥh9IyIb;|3=/5(Evs@R-+1YWXNcz߃;K[VaBh*'rwLs 7& G%j^^+y nƣN]O>!נ Rͳ? +h&xcڟP(d7}68Ԓ,8?ŷK? vpbهIa`l9-,V -CyjUY3/kO ><g{Z&4_ɷ3Hf[yc>ȳ' &gvm} }LtKfaM:1ΓW}y$w+һݬ)k6[ݙ~>"su~xeA0K ?;t(f*/{xaO: ZwX+LFllRmރn_J1E&hPeh4(X'neI6j4Z\}ք ;H\rnuXɟ}*FI˺4S7#EHl*E+9"ŤVĠt <4Nݗ4d 5װ_l 1{bho-?>I!n;7L5mn:(M?e6G8 endstream endobj 601 0 obj << /Length1 1612 /Length2 18152 /Length3 0 /Length 18995 /Filter /FlateDecode >> stream xڬcxf]-vضm۶;:N:mc;}g?|?uYUsԨ5Z$j "NNn ,̼ESwW'GyU +w_#Q͂ea0Xxxx(bN@+k7 Y zOߝ6Vʿ/Nn!7YXܬ-61%eE)@hbPv71ۘY8Z,/fN6K`pu0=`` 8큛N" tL hUY\<ݬMj pidOIu3qtYx`nlo7_0gͿh8Zzhno/?:[&ޒoN3lGK' aW$L̝pLNnSTfA['j?%M/ 玱7Ml3P$?pdL6C ̌6ڸJxY+۸Y,Mv_v Gs _EL 3ԭmi=ǿ]IH$-.-$Kw꿢j(E-u2= l\ο YX_k7@o,*<2 G3'fEx/?n3w :  ڲ7یLIq~0f:]j0ƖiNsCYڣ~,{4B2"-..&r XE]NfͣIUòw(.6 MGQ3RYzSPpƋXq7kV_6[9aJ|,֟A˒4Ӄ-F-4@ SHv+ͣ^^1bќDdCG~JvgؿZi*[rW*r{'`39.cyjlKYdKx&ؤ Wp ҇7X`GW G08Af23R2ҾڬDC0h8T&spDclw W2# *7{y”QeTzs] K0EMcQ U{Òe,CojO1%խDk|[Zsvā !~*w&=ݗ4Irx|jkT"!\@]3 )4ZA磀U*9)K;]RHA! ,Ayr={s'=WIteI{$um)=,kiUm0}]Dz2dE$]?[ʟ-;w(**-c2ԓZ.4[Ps`|q3m*W&A6PYY FeU ˔.X=GiM~\3-yR7[B%rz+DiM8-Q>|T#-'8G$L(MJ;XuCD=)|+g"i:= MɎ@i*1a{"%Ͷ7K {s/pu HߦA|nPbK90:J$NrT)\`9a,h݃?І;W<%Qǭ/@ed9<(sT c*ĺs fqSdهp{;e[pa1[I&6C4R(L4F :dMB E]؞h4~):vUA^f~{aٷ T'fp,C،^'n%zLn-XRdp")Ik[d+|^)yL*`J$ Oy7%QA‘RLTxZ[ dyI CJ[_-U9gKe]$h_':ϓW/OkAK8InҒ&sl ]Md(I^Vt(iߢak۠)=J*6[AX94Y?޿QXu+{$&~S W_^ވ,|-1ߒzG>xKdƈ~/m:tj pR!$Ӧkd,/M0Eq?#CA(G dl`eA!6C2oe ҁ'G3O,b'e?aiqHrxBTxb*\ݼ8P{,bgQԊ1xQC8wƸI6p7G6qE~&aGSxS A2Ӟ8R$ 1t`(qvlX(0.j[ WVG¨kcpM6?v'v [QŦhH:if,5cG\W$ zc 9p4d w2)4<<1IQTϷ%ĞRI,$ °NEw.(5-6M]qn} uKFg yꠖStfu -+ ʤAǑ0 #ϋ4;,Pm}uSql-l6gۯ/4QI/?Hv/v*g2Jag\Vie'5ZsQNwdbzj( CMy|]CƫN:<'߅(:*sj}s\Z[=Tx϶3]Yu݄x CuxBI$>iE2OCv}j)v%*t|GZ3+#&ӂ#ǿsu0;vQɗ.'m4a)q,$O,[ryGߵqt7^`\$nX샡ڌ!~}}-ڛH%LLƏ KFoX'O?_ߑ]Z(ڜ!H@kSzDF,NrF׈ 2y4lnpf,y^K4@%sQT̵4\kJ^ZZTDue?fCt<(o `(p/^u FuHGC1q@M.YO秶`5]< y%j9%dq~g![uK<7@Bk&Ud16T};.:Gz_<05Gqrdl˘uL>NV0"VD|<]v?a+}@ĀLLyW%@R %jOzx kD ͯ:\fW9p-0 }04Y{ WńTRC ՟HQ4Ƣ Vh0w$U,P _"g?FgdX2ґVխ@x޺ZתU`=0q!h!Rmm&`2;\Cvb D r]p8fEu\ O[_"E.n9 CYMb.52!y.J ~^\N 05TU`33ֱlT3kD?_U3kFl~8A`q!K#5+nx)pm ; o5&T;3>h>P>E9I-eq U} [ -df#D|}6.|8x <}tc@k",D?-np/"}=DY"#03,W-7fI^׊Ndž} 1VVRf@r2 lJχ$zpoҫ}<> }m*+',TPo$`C ~B}Qİv|V4,1l {,j ;l`7|׏fGެ 0vrzIe$ ݃=ƾ}}J~}8ծz5-i1قCZ!Q9HGZڢf4(XuDI$5CYLKDEy@/Yj5bYm//gRNZ~Y̝4L{9̓8 ^ Wjb?-mHmU.FG#cY?ϵZN]+ŗ/\,STd9?A$}rRT{{11Jz!HVcʊub^Kzҫa8'\ c^5ݵ[ZFܜm blAuU&4*&nf׆ 0AS B)}Lh䵲*{SSp%.P$l?3~'!,".:wmXk(۟MGOw[.pWZ ɚ~'SY<,mssX(({*IJv%z=6_rzĒft\S U;(i̻C9w s]:WW=n2WkGQ_alWpM- A>TQt(c [HL!Fidoh"c˅Yc>ńʃFx"}S`vx=睬:)Ʊթ&i`!>;H,3&ZMdd?Q_|fk- C8'|BMVB0Dzc6  s;ɢ(['=\g-_lD4%}̓ȉ[' u/L3Ɍ;ya4nL,VK1DX7%!GD\7m^u跭4]ZGG1"x؄G [xL"£vߋYO H6?>}Bxc !''+7g43 &BmlƜit%ӁCߘ_/d2nc=\V7Sy'@C?*UZ8` ۽uH wJ 6T> ll `4ǁ w^媙вfk?c/j4btU}/ZwE=v99x$qW^l}!- ܚ\zR}w[6{&709ƕzFmA='`P=7F]K8?I`'sEIV I OJ;uYXdNǂu:3 pt ﷵ8Dbud\ǬОC5pĬٗ _P4d+tz=|]|nf7} T4y옑?rWѴeHDVb sLl; JkEpZ_7#sYeXO3{rV_=ntƾq]@ S^M?Sĉ?' XGmJ[|pW/V[mb@ ^۾~CA/(loۺ8ȗ4ǡևX2`NA|27e9ۤL)H*|?s"< NNuZR-dhԲV) ;q=طy/!2nQB܀ƥϋYۗO{S<U50ElE[ԗR&gAU}ֆ!$cV1yfTQq6kGy+MI;GĭguH l=7SD!{!)W.?YEHE`.`Fa:Sb /ݽ×*=|%!YI ~k& >Mh[A0l療[\ws3'⅟a"^g~jC.,&-0 ~ß+֠W|#j/~cJm(cק ?a N2}wx~9J^Fϋ@GK?>u`L4{A^o\pZ}'SubцnxZV.r27 ԥ% !+AkrUG<"6Iu0?R4Ò } 2̭~ F=Jxj"] [{5^pExw3{Bkֆ>EXDOiqFFȉ9 ݁3Y*a7nl$I79ɬ*)-э{!@X>X|}A lOu1!(Y EAh:v# mn jPF %HEI/Kh.K5_o&u8c+(0 S]a+>ƱA+J~0=L-2g*eo87B/#V%| hck]*Z_2`'+;.&  L*Mlm F3.hBxëȒzȈT8!dF&R=Wd醺br~&%DręY@\ ؎iLN_*"7#H p Mvjk7ƈ\ќ]POy mtG7)LW/tE+bx1a&*E:NS>3z.v2]*It<͵B[!0--jsT?kn况|%\$E{%@%BNc:u/ TM{12ou5\P45X`_vg$0V֍)I ;grg o mX GWy{L $\#:iM>+mb I &NJfL!ZݑK[C;qR,,C1k>XzJS)nwR:g_ K&1I|O6TBA1LH>Od)J<:@s@5~5䏿c9b25(Ҁ䣏5 ћE~8AďmUj!W٨ʴ9V"%% .EgvWrC/Bu_v"'R?X`}+먩sh*m?o4~ffPR 6}jJ zS<Ҝ~bvK+|M"E8z-RzFM61cl¹ޒx\CX57W0Md"N+>מy5J#.BdLWVՌlrR2F V$R'zwh@]$si^k7FwbKZcbKPE&Vxt: MŸ ^lʪ-k? }{<li ڶCM>E\GNXXk0Ӥ8;[I!^1-W.=]3MfRa T>/ Z[],xQAB3Cwލj<|TS5n{R Q9 "_?cKP1w/2nH~SlSemjJe}HlkGe*Ⱥ];[ F;cV BCr+<4_]:H_|V:PX",xBueUĎRGa:±06m ,0>#&6nXIӨ^ÆK3 jMڻG*)b@P#c Zo ;xxe:r[? `(KAWύ)%yq&OdpXE ^=YPe%' T'ka8k3I#$0hLV,'It`-"klz9kA㏴iv %M7Ob8ߣ$'f`QetG>OR8zqHづ.y Mszu>€xZg2DӉKl~i; B#fEId"ou I}{r᝚eb NzwFI=Ogb+[d7FY_cP0c]z ؜l b@l`:vO50ύ_x?G,A<=$Qݶʇo_~} -BS 2)kO %=3‘8*+@ٸ?'Smy7 mk҉j7%Dߛ@E:45=_|{@UsX?Rxs]5ļ9/Zg 9(_Y~y|Ăܾ5q#1V(R lYiM[@`>mw|h?MQ_ⱄy+ s/2I|%R|DQ|w \GN3 n}b /vEq3%,?G<+p|7˔h4Gm2\>a݁[ۥ6/+ =NT'oCmb!w9dnj?¸^Y}=9\×@-uy1 >e$sji1λ#-ZWo=u'Lv9gvo7YB*xŷ~ ,@{}ef uسᵠtPM"4̀^\=8?cR2Ri{WL$܁NNeRH_8[¹HvE1wt1'6L9m1KH ܓ mʘq"ezw ʕQq}qvV3vT$,淳CHǧϞ5B-[Po-Gd5㱟:WwO6Dɪ9H}1N IAPaAZ۹tt(7jKi΢ܾ-1͸Ǧ+P@_07yK3/cL$W~ s:Q),K7 *5Cv ./% lSX2tLT&8*8Od1\JG{,:tJr~@\^A 8ICv :M7q^CG'ΪBY,Jͱ_ژ,*Vn/h,׃k"Z)$Vf9sm L%4 t}QŹG[nb1\61hZ26 eVN[%g5;1ZNs&k.wRi> ^29,St65^9_wY9M[l+ $Ybnb!7e1 Fl R&:(ċ\£gt $֛ZcaT7HN"ME*gk09v3ye%xNfs}&W^_^;@`T`#:Df]ͺ>nD1vi WoBTw89)3H5ƞ7N*:b}౯8o<KE'kN:r?U6ҸszF ֶwB7B#~*Ri/*^{ aѺ Nq0+"_ <\M'5$r{zNkͱY 7 +,H LbGX:zۂorӿ7 B~QVx.mxzE#²#ݵ-u@(SQ}k䅄F mwNsEgˆoԛtyd L-gBǽ%;H9Lzq1upHuQ#ņˈ MBwɢo!:cg˘=]a)w|#į>֡۫ TDQV#'1X"T\GABQwlbֿ'| 3[awDgFpfW`*ch'Κ@IFCz}U9JPRhfjG;>Eʠxen{UӉP8z7idzW8'ʇ?~ғ$6.:^8}_d˫d5Y7+:lY]zfT6gch`-&c ?FT M52-CEG ?EGhtuE~[zD׾(i4\hxr07؀h?8+.(/QvKI[!CŮ 0ԜķZUqd9i?G ^n,ZHElUSA'6Xdo5)]i6BRG; NQ/kIjN1$6 R/aeώiYGrҽ Ѳb}ZC)(owG\<Ϸs˙::&cj4w؜Y_;'m}W!ol0 5uwZ0Rx;/²t X;?XfO0x|O,v l*o3g{x ͦm`Y ~We$ʑn=0bVT|'"ؘg^mvjpl7!ټ! 񾊣Ftnfl0p ǐMV.BpE'PLl$J%bɔ~`xCG%Mt<҃Ý* bs .c$j٦ \(8;o`ap>(IVzM3'߆Jknsc6ovd~c*W!;3i_f`&d'qF{efA=ptNldӏ0j;yЯ}+0,0 WUh]aa@U3<'-XL۩*^ʹ:)9ӳiso+6;:ѵ0u .Vk]Ob>If1RE^‡K~̹P[15kx('{/3?wfgCմ"D6^݇_yʒ-fƇ_+uM8k=WG)_W29`&`YDw@rK6j $-iV^.*`o.# tIWħ{rۡan>a.K~.F`2݉ I΄=$LT Fo͋,,~F8&lhϿđphL*68r;s="vdڛKaZ>.ɜǭsTSZ?0wb|ue(+&r8*V庆KC㞷S)/;@7! %;HeZq%b)nh'FrLEvJ@v@e|W]g.`hJഡw^mPR^ӻXfրNyzB\N"h{/!7*c xaő[c A߄c 9 )HMM2@IC~2DK"7@[0)Dڱ#6w*$eՁX6΂Lqf5}W# @e|ETg$_a&yb&HEUfXBPmh14Gޟ!q CЎqlY0EHacK850Y(pbb5HQ`֡TDd죥wҨ>)(̠\ 2jNaik0Z3qzj'bx mƮl)]cs}}{<ޯWM'pRP=˦Fer;M8xt"v\ܠАFՄ% _MW7{rm<_<͎6Р1P:X͉Di SF93Tb"+'a>fތ4nrz]o~)Md'ljk4o0yEpw7&B'q2ya„ztt|M62m&`%$ 4h. ]#1)_8in4c>J=^w\x4uUb 6Q03Nڙ5I)R>{P U[wҢhO{k#0RJ;n9OQM;H/ǼI$C'H= c3,Ζ]!F]wbi"@u$.B2vI^7ok NIpL~rۊjS0&AWL6d"xÿJ8}RU%&1&~obSI}҃B@<g!қ"{h@Nߝ0傟8c$t=rU,":r 83bE /Vbx$_EcEA=+n69?Bӑ{0K7$ cl$m(15t9s番t+>>|+4VJA5]2 3yJ.l: +#NYy!Tˋ_"樧h?-^w 6BdVzك/QՍ ů"vwD_q9zŇyєuSXS-7މs u\R [?{(Ɯȼprޢu.wAPVmTn*+7 :pu՗im%1ަ#AZDvNRobYrA1="gXi@؊W`E1h1N5yZFA;"4bx`%4kCEeY{ke [#[2Wڍ2p=Bjn i6&YS8yFcV\ʐC c1>8ی5 \c9en& Wh`ff³F7%[ Tˎ3;P -$ Qf+Sh=F>XQ";ªhCt]eѝ9LkN\·-OI_G )zօ.zSP)y/xoF>7, V|jJ\ZS[/Oft]&Mg^-ݧ쑔~2_U }k@`1T$kY:=j*ۖ[r_oJMrVRjR%! {FpAdBE њ8g_<9I/bJ;5ycpd{P5P.7+w~V<Lȧ֧9NňV$s >7^&/Hi(/~HI/7T- mGsFşY J7J)֚װm7b(DjJOP7k4B3<쯿0*D7RZ:K߷; #,('3|vrUX}G˷Ns3ZdԄZn:']Ȯ,bk?42 ߈UՊ&v֨$a)[,T$-(Y i`*r N 8^)G諃OTrrmrdǮQKy.o8ax@lfy, "# ZM\֕F2DR#tՇ5V^VoĠiB7krPQw,x?3Pʍ( BuȖv/'й -EL^%?ӡSYx`^Gf4;9p,xx&:dU<%2<oʦNsn&JLb  أ=v1|kG*8WOCNRv̗>b1+$ȱs7sw5/]J endstream endobj 603 0 obj << /Length1 1630 /Length2 13782 /Length3 0 /Length 14623 /Filter /FlateDecode >> stream xڭwctul;V۶m۶mv*mU슝|u۷Ww{ϚϚ skMJ(Hodk`,bkDH 16pvU06u52XaHImm9F!cC hk`njPVP+"<Mmd\lmPNfs+c(BTF jlcosS!@ј`b`hkcdWitG;cC?nnvA4;cksG?sGӟ8m Jlܰ!utr4t0s*'$$G{1{Rq) :٩uJU<v4T&tJ!;(] H| SbѻP OFznpsbI1} ?_]]@ΓڢGՇ= Z,H}ss1ƊE)nM[ ~gG`ĔH:ήv LŁJ1AMSp\in9UhА\I Fѣ!lof,qtL:o(mgЇOOi=p~A0sZ,t5mPl|D8{Vzg9h㐪߄i@׵B7y<%'fWCX*6K:lsr a7%KTҔ ިze ) %бA:a͖5{Xg{?ʸ@,B= -ko2z?vg vbm7 aH:M{W"´keTÞ؟z-O82!#q|%7Ց`m)/Dx!rp\,C95V] Vwv> x]}[_mySW?\R'It)1.QEy4:c7^ݻjt.[&L~b'CO`1ĉdwA^"g; ]i*ړ!vB}"BP+BT'RCO MIQAX;͈͉ ?ev7,=)ȣ#\,/%@LPbTj?98P7C{lyhp#,IcdUdI=jz^ 1p,CV%ue=$@G`=f7VwZXIH}6+7u&2bM޵KT=Y% aDqp~ubRUWɠ _:+i^MCL=ih:m?FZ(s\0Mhp{/tw_!k&o413!gJlQ[ap>c(?: m="GI!2ϘOMx yڌ_Jm`f5/8UE_!R| by12Oh)j={EJk!aIcy_DDκet4lT PT`xJkIL*[k 9>e⠗LL:n{(; Vw鐾?>~b27t "܏eMbE_1)F1Q*% m=Kx+6pX]݁F-o:"t upӈ: )h?Ɨ# υH$f=]\L46m?AiYó*L#R H]wdӗ4[էxGSEWV:ž4s¸/ũ<R {,I,6WO$EY  ։ٻ{we;(b>r\阨,Eqhou|(YѰ~Jk,Jj 73@ƸTDOK Mc&[)@DzIoQJ<܍d^`-ЮnXS ^8I@$~_qG'q"PIJ^ Qu_uk_}`?JQm%׆TD7ġLbFٶy'SCEYTp{nAd0EЅfqBQ !3*~$lO-DD6un]YmY* BE#k[NcEI%{Ui ge hJ’l%pK 6XO6vSM0ﶤ(ݡ~( &΋?=>reM O^ )Y eM#Z3[E]S1jv%]~nӇ\.?w(YuznJG .5Akg"e ]8fݣHݡD'i-W(JokV3 A#fqJ|E]cIOLpZkgrK%<.Ew6Z]Hz-AEEٿ$v%Wi^e/n?zEMs!8op DɮpU1JjoD( £dVd RE /`ǨH?z%k%wNj,|t>Hh0[[n|ix;`OyBFDc^nN}$8H1'5GC|lB~x}:X\o|a^(oeU_u$t5SEQj~6j>0-^>ެ0,DUdC+%o([x}#_mq-s侙[qk%xyIlsҿ:;rTjLc [''o˕SB0çQ 4=2zf4ϣ/g R*5SaHC…coY$ |f>an4TKS6ŒUyЉWj(BNi a =2E0 gDՋ)zIDZ}TopΕ\`[&c.m@`es _-΂bHkn0{Dzjk)w\elcrT >Bԗ,(ͪ]퍨F"&pUr0 8g Ey.Q!>ePt^!h0~\3/Ld_a%{^6-b6n;[5£98&^yyl_/µ⛅g(Zq=3MAV:aAyqf{k"DJ(UēN VG?H/v^ U6_@g,bcFSpFNb,PXQ[ }Th?LWm~ 8qkIwhduw `/3%r:^uƴ M /iw}V?tcx~oQUthlH4%_,iZK[mSCnLn~6F]]jMۡdyJ(Lf-!%M19yi+wbԶQc6NW?ܚiMI&ڞVY?!䆕Il0à~@oD ~R ](oLg {xvÎ!ؚTZwi7 }Q_5-!CYg9`EȰ{oqعA%q?%wBޙ4kZ[F=ֳǃbֱ, ܆`ÙRD4xbeDАO<NhYnVoX:sDeS0ci#8wicNE69/{5S}5<+rE4s@7VI fO+= 4g>6~#.7ɶe=_{w?>̡8ie@ ?O |$?}im`X*@}zx{զB:X2;>?%3F7GP߯E'-d1^%؞Z\M{)7Y\Mn dy?c&('CF]q4[JH鵿˕5׷p~?^kJ>E}htcFMj-$H^+=p{&Hx Es{-Ъ2$yqM5!*[^UOׂĨO'ʈL,!r~רN763p*;Ar'+QS'E M~յKֈ,f8uu(1EnkBNh\QH8.qXcb5e$g2گU`0+Q}ݎ~dm4+ Ca_{lP.30E4s#a+g2N(U.bMМIH:ܹ@8=Oᤝ)Dc 7T5z~USt=ʭe4)&DŠ pYS ̒7NCe7@p54~qђ+겷 ;*scmwOUW~E$YI <+(L7OViIT"l&uµC;7z'Q+ QyLKMrDPrÝβ<6<'RQts(.D9hxJ*g_l:KfA?6נYxͨo˵5 s ^T{uAM(l p-'D"}Tg~" M f)5S v9sH_hPcdݬS4OY{W/'зW1s,mCA(7YF3FL3iNqӹ_gt;3$<9lI $%@.5\!QPǗC3"7&p) \JUMB<^o}7>v#1풂o' dT]]!dĶ3&Bև0r­{7Ch|,5ύjgqBAWܽ$R@}x4گZ})'IqP&,+,I15kf,mUx L<yyݎqzmk;RyT%" R~ 7OKߪدzs0ӤnG›'.vX1i[/IԻvsXV`EGsoJI&O߰ͅG7;<؝^>{%b7{9,u7?BL,OԶ8Kec †d)!Q^] -ϰ3@ X"VT rlL!XƼ@>j;uta&W`/1 nZ BzP\^ʔ;\YHW)}[溞oN͌Q73oͿDٽ#')b4 !u3v? :ԞXO\Vk _P<zY@m&sɻ礠tH.#Vc_ҴԻ&Jnn|w*–fW{"¡dƗHl&s43-Pi&7uDxʇ,7&o+8ATw\49TJ &@+1ҥR){Cz{o@Oub.ThwG O~rua.` ٍO0A@<8N b+o̗K&\ 8m3n&,'Ed5ˮ#ў:vz/82 ̵6,]`Cs-:mdR< `{5(v>b }~P[pzgrzZli7+$ר ޼ݣK3N!ÁƆe05ba`+ M TYNK4.ƭbU1T<4Xk^T.]9 ?w&$/`L}cߴ̩o'm7~GPQ秊W6F_u c<|@B<Kt`CY@j!26}] LU*G 3DCc MwЕ 9%PDGXH]`?YRH~s1~pdO.ǽh-l ~PBlK[9Vץ`M}*ﲥKW 4?QMcU\Fզ[l7IUrx=0=l?h]l-[ !p{R]zc2u?}%wM!GIビ8݀YOj:wK皵-:TGTXq~W48y)m˼ϫ3kzv72z4$KXUDHLƖe{d.Cu_]Bey]s#@٘U$BVH `4a풲Zc>f dؘ50vb@VMHB& š,3t SiYkB f?Gƅq7w̧ M#fK|oΤB\qWAl.=,%nպ@Fʫ9S'C#8iv SQVjeQ!Kf-UNٔmH/FAH)zIiJ Fݠ=ܽ۾ {!Xx姘DYF "֘:^k!4y σrJg~\.&c m|;zx+ͅϿ'AtK" ٶwvs*KP5KsA"XJNGAx%,P,#4O- 'Fgb [pa~ul0$~ّuU"#AnF]hg񚦢|9 MTuɹS9Mi?L^%Xo܆#y >l^M;3DbI"ZtKU~苡Cf4#ԶS}xB7E"WL'a_/R\RpPf(sKXŠvj,h|in(ih^Dkh/mPr~4bSa"~[G8XKV Z*8 ]0$*K{GۓkB, vTc{?0y-AxҞȻ,P&uCJnD+~4=sRٴ!;4֮r:8z~RL`i+\0@0Bwz*ut獲k7^DuvUV2)һ5b'4#mfVY dg '6ދQ6s$8%|Nv\PKtJ6DG9TN, bs8 K˝'LHٲF89{O7]qXn&9'u11|="㙬rně26S_@fqU!vm5U}eأ< UjfKZ`Ai.ar4̅ PufwOVȁEBE.6omVv (p8R[WA&Ng2(ju&q_[05o\65#Ա%Y˱qѠiP%כY; g6⸶S AJ1QI??,:Օ_hWb;F/zsܓhۘ]YDֶn0&I8) p }~c]RI?f<%jGL*+m*\$oQ /Epja _vXVnΜ/-yums]{7Gqwn I=لS,8:=Ƣ_5I?DOI>w[Cj&FUB4IWǩ cSyҎ|?Mؗ o+;rvA?@ߏqZY?ϜhZp:Fx:섵Ӳ̒|?7A834s" 9ʎT 8Y5An;2W$:}f&?đ`fFGb+m}56*2wqR'c|b)*:.4B@B'=SgQ`Y*PQ9 ( >?O'=.s–p,K@2%_gLڼ0igev̳šWb4~DN UmDbb0m^mc#~V|Z_# hD:$["tq^:t|Rj'?Sspf={ĭ GVauP{v?E D2+ojTq/-At& a/[ϡv{T$$ɚݐ~|fn)Qo0n[ʨt4;( B xHXk0t\4k*2mȼVgtf=Z':v3{$*T5d:red};.z6oAE՛6 c]Wf}0xivwvO'[@ ?Gl767ʋb&Ι1 ˞{+7<-I8( m u7+Ny1_AUB0>3IyfNb-%uk b>d%E'6ؠB2d]lG"EEo_qo"\bmзCN~Bܸ/0qL3JX#Cl!҈Ufp'XUw6y8Z>~v^i,uϾ̱ tJcor>LtS_[ zR?i.G\_C6ђ45?yŬk|ny lbp"&r8ڿ\j[F^հ_iIh #l29pMbI oULzhkiQ@#CAY͏R}龳KrFz;2jiqhUGnIʏmA7= !Qւ GvDlCHϊ瞭F<8/q]sm.D;p#JS?ٕZ0 +Erxӳ~3$b^N~T ʹ#jJ M49W[jvt\T>礶ladGbSi+ZntuiVe @0|ergY[V$xaiV@]~뺪ʻG!uj??oh Y@k;v;#6ps9pdd630/XX_ ~ҰӦ%{)S.obh@ҫLqvҾ^Q4K3Oݗ]ne_5_^>" j򒽕DVptvɵeM+p# ݊9±'0ue>, xds?7d6jKpB4oȡk0 3shWd_> PuTmWo0=4yr=pGzzrf g7/e_YhmeN$! 6A m; NHBs&<@+, 4Qw !-sR :,s燈jYkr0f=3}Xyrow*SO&S ytc }tvmax?2|},m&ÕޫpcȕĄ k%Ħ[nVё/rV JJM|6F &KS@ MU@A 黇lW=As}eDI>HI A XzC)D0`"C$].m1Ր&2@58GIwT8 xN5FT0]W,ԢbT/r9@@0^˞J&7Xqi÷X& ~7ެW!󺊍"F=Lov\u})[YHFIBJw,o騨+[XQW]d<آ 4:4gm o)fEDB>d(f3EW/tyj̞-:a-t @#< ܽ9smi^V4Mz+ ]9a;Y؎[G7i;\.:# W2B ayJ*>"(Scv 1J>V`h@J[P'cYe(|òstQkPſu)h5}> stream x\Ys8~5R5UqlNqTdq4-[$$Y@Hf^ A pwV(T16ZRw50C tNY )#L4J=kt:NCG&[ D`Zc зX+}N,t6&lܳNF x̍@S8)`yܝ+

Ş5 yZ!2lR ,k$aOK= Es0Oؙ .% v@f54{wQ:VScFF#8;؅1܅4'H| +hqQzO%Q@@Wx|Z0Z/P,FF`6)hBjQ'p |u8* : CYo핏/]p7E‹I@{z-.{.Hn5W2+īj܃<@S@iՁdB/ $$OQ(xPJD񐼈U 'Q3ZiBN FV`N ⅺyGE ga'M5Y D2\㑖&}(Bބݑ5do]U^y|}8W |f%t, WE,uaozyZȟ^bz^_Ʌf`|9;|(ӃO.OgsJ4S:LrQf߾UEr]ʾ!kl6ZX@nُÔe'Pd\x$&3* o:,3܄s7LO } uj 0lrf o$yAVTQc2&.QOF#Slȇaw@Ioۭml fPbfU5OQ?E_`NZDF)qǖGBh 71 Cl  5iȤGWHJ=fR"M$R?h 6lcj%T!o4hLt1'8iKPoB5A=}?Z>,9JinY:HC^H)[p@$!<>w@LG_8 d F¾Mi,ɳm5 /e9v`CX- .+|\6 _Lme*Z2OZQ} yw yAKv[v ڑlr=w4aQmË%V U!Ω6|D?w0u,a,%7/)D,1U88SbX0qMUFrSnA6G*bEAƑ(9fa}g}Mqӱ ØO`C@ok@ Y<n ަv#^dXFm.@ U4t^R+K2 U VSUgM$cROeNc0AP-!9PnXaY\]юjrX?"PtiaM41yzY|"v^lc(lLR@ GL$b+ʋ)(8UH x+&^ԃgx@g]KFXŻG:`c-*+ߎ,"azL5LΞ#^lIh|k"鴋UKD`D^8.@Q>>SkMO9 gqKm8{ 8C1+ Mij'4Lj@g d=Զ6m+#\yAAA=TV zӁP-ӹ'|EJx&1:#2skJ.Hoͷw3Qk(YN ѣuG׫H1<9s*t8F1/E4W2鷵GNGKW mXji{<ج4g {簗 KA"NX]xotW eiF;:U- ۝3ttuCX!dI|wM,:Focj#Ւ0UnQ|HS tf J!gT%9rn'nvvKI[a&BrA*Tg\ |ꍘ قheTpd^|dXJ.yz‹w~_*|DY7| <1Gb:f60t?eϭM/;?+r *OʃYyX*˷C'iy/.˳*iyYo7Y^~u,g弼(/Eʫj.շ5DZguZπ˲\O ,?ugUg]I3#F׈<^x?ȋ_ˣ iaL ǿz;]0Ë7QV0O,V-F ap2uۯ~Uf'qֳ L[]_\LFɺ'_=9|6V 7ؠf#F1zN?%#!ľ_\5t5mhvS~lW&>yFAHLxDE+I~$q.}i8s !?@}kPYw O}d#2ڊ/ͨNF6^0U6ҮiٻGo?}zrV#j9Ewl♋[|jbrx |1<>R9YNO֔Ss08lyz}m G,_MWSޯ~Χ)S ښ:ri6zW?dΓw9]xmJ[qMb6[jN1}22B.#bcxh4?-jzy^x5P. `)||at#!v-Ƃd )Ni`ɧOP,]!Žݨx!t\ : t AF R)zȭbU~`Ej_NIݻWXsATrVxo[>VQ `qaS膁 .KzH=~8V+N5K .nZVg.f鲋NZc q'Z>Xn Xa$cz|=va(=j.ܐ aq)xuꤧ5.B;W/_zu|`1?v-z!t*GJj2?L;S޾W({;r7!cDݹm݆#̄w`߽"s܅ًI{c6 /Q͋;^&ˠ7nw+> \˚Eww{Cg:S^x hs筶k<3v{O7-\\r;|TȬ!O}asɍյ>76~CGYmئwfcg[+u\fwGj5{}Id{1;bVS_Pk׻Pa?9L'l4iC}krhn> endobj 607 0 obj << /Type /ObjStm /N 33 /First 271 /Length 1201 /Filter /FlateDecode >> stream xڍWɎ6WEq Abr @+cLA")MQ~cl)+P 8v NcpТQqZaYt2ﭰJb4Ph8a0' *䡣M@2&\ YH~7hL%R4eEeY:G8H^N>c{NiKsrP~dxw_\X<)z\uԜ#eT!Gv=Q*\P1^"YL2ɮjey&AպJ(eRWUՍ"褧sFbs򂍝L檞)F/dŻ˟2QPvwj #9 ¤uɈ&.! 09}xsp N#IuI;NF JqK{9\',_OH(E0px];+C>y\uH}θ</XMDBV1A~9AOxq\ Mj4U|?"uh/gN!_6:%SWh%fwS'߶C{8? 26SD'Q,;>zsw˵;ic endstream endobj 632 0 obj << /Type /XRef /Index [0 633] /Size 633 /W [1 3 1] /Root 630 0 R /Info 631 0 R /ID [ ] /Length 1574 /Filter /FlateDecode >> stream x%KlUU}h)qKZ-ryU@9Š8q"1щ1&7nhACD c ZsާÔs)g?\*f և6EEm#QJ\4E7]J@m+nhh%SR9r-6KZ-@;AT͐VhiԠeЎւ:%hӤ9PVvt%h@k@;Jю6Uh-hS-`5jäk@+ZI6 i;@F;H ֣ =h[n?i/X mhh{I7DnChvny=hH7-hh[6h;Ia)#`(Q]z4=^FoW]T0UR%V(Z--W /G*%aǠ.& E\VZU;8ڪeVPoQAE=LIB `:EtE(3s]oXfnbg@SP 螰T[s#dڞKtBP4N7V2XShhdn; 4}hSZM^UujMKFh$A/MCbu /P }R  ]z]3q"pbzaj x2Sd&}MShᐹoE S=*> 33]i51-mJYs796~#_ }BiYAC҅`({S7=jΚ{ТtXmP)jPndT+5fL*~l#yfoj`%lv? h/nf# h0Nz>s7B?+?hv6̀/Гn7Yao΢}+O+_~ ;6Ѽ]`7} gԫ-;3cTS8bT.; ip=Y^|,ۛ{ ٭;PZx_l mg<P 1/Xϗ1H#y <^xcByN{pF|3Cp{9=Fyi<qO'H~ȢOj&s-]ubG?lUӢFX'V*'V_,sM)GVˈE}QcF{ޯY0g*4+<5}鋬d>E@{>ʀ7ws`X*A~mjKUTcSTk,}ۡ;L[˜J+j̹?5Y -{UVZ|^Q6QJg)Zc(jR} rm`ZU}S T(B1PLqbS'881ʼn)NLq*TYsYc?ʒz endstream endobj startxref 997297 %%EOF metagenomeSeq/inst/extdata/0000755000175400017540000000000013175714310017003 5ustar00biocbuildbiocbuildmetagenomeSeq/inst/extdata/CHK_NAME.otus.count.csv0000644000175400017540000047473113175714310023065 0ustar00biocbuildbiocbuildOTU CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 CHK_6467_E3B11_OW_V1V2 CHK_6467_E3B08_OW_V1V2 CHK_6467_E3B07_BAL_A_V1V2 CHK_6467_E3B11_BAL_A_V1V2 CHK_6467_E3B09_OP_V1V2 CHK_6467_E3B08_BRONCH1_PREWASH_V1V2 CHK_6467_E3B11_BRONCH1_POSTWASH_V1V2 CHK_6467_E3B11_OP_V1V2 CHK_6467_E3B10_BRONCH1_TIPSWAB_V1V2 CHK_6467_E3B07_BAL_B_V1V2 CHK_6467_E3B08_BAL_A_V1V2 CHK_6467_E3B11_PSB_V1V2 CHK_6467_SAL1_11_5_209_11_18_V1V2 CHK_6467_E3B10_OW_V1V2 CHK_6467_SAL1_11_4_201_11_18_V1V2 CHK_6467_E3B09_BRONCH1_POSTWASH_V1V2 CHK_6467_E3B10_PSB_V1V2 CHK_6467_E3B08_BRONCH1_TIPSWAB_V1V2 CHK_6467_E3B06_BRONCH1_PREWASH_V1V2 CHK_6467_E3B10_BAL_1STRETURN_V1V2 CHK_6467_SS1_11_4_272_11_30_V1V2 CHK_6467_E3B08_BRONCH2_PREWASH_V1V2 CHK_6467_E3B10_NP_V1V2 CHK_6467_H2O1_11_5_208_11_18_V1V2 CHK_6467_E3B11_BAL_B_V1V2 CHK_6467_E3B11_BRONCH1_TIPSWAB_V1V2 CHK_6467_E3B08_BAL_1STRETURN_V1V2 CHK_6467_E3B08_NP_V1V2 CHK_6467_E3B10_BRONCH2_PREWASH_V1V2 CHK_6467_E3B09_NP_V1V2 CHK_6467_H2O1_11_2_280_11_30_V1V2 CHK_6467_E3B07_PSB_V1V2 CHK_6467_E3B07_NP_V1V2 CHK_6467_E3B09_BRONCH1_TIPSWAB_V1V2 CHK_6467_E3B06_BRONCH1_POSTWASH_V1V2 CHK_6467_E3B07_BAL_1STRETURN_V1V2 CHK_6467_E3B10_BRONCH1_PREWASH_V1V2 CHK_6467_E3B10_BRONCH1_POSTWASH_V1V2 CHK_6467_E3B11_BRONCH1_PREWASH_V1V2 CHK_6467_E3B09_PSB_V1V2 CHK_6467_E3B09_BRONCH1_PREWASH_V1V2 CHK_6467_E3B07_BRONCH2_PREWASH_V1V2 CHK_6467_PSBPLASTIC_12_6_285_12_6_V1V2 CHK_6467_E3B08_BRONCH1_POSTWASH_V1V2 CHK_6467_E3B06_BRONCH1_TIPSWAB_V1V2 CHK_6467_PSBMETAL_12_6_286_12_6_V1V2 CHK_6467_E3B11_NP_V1V2 CHK_6467_E3B10_OP_V1V2 CHK_6467_E3B09_BAL_1STRETURN_V1V2 CHK_6467_E3B06_NP_V1V2 CHK_6467_E3B09_BRONCH2_PREWASH_V1V2 CHK_6467_E3B06_BAL_A_V1V2 CHK_6467_E3B06_BAL_1STRETURN_V1V2 CHK_6467_E3B07_OP_V1V2 CHK_6467_E3B06_BAL_B_V1V2 CHK_6467_E3B11_BAL_1STRETURN_V1V2 CHK_6467_E3B07_BRONCH1_TIPSWAB_V1V2 CHK_6467_H2O1_11_4_222_11_18_V1V2 CHK_6467_E3B10_BAL_A_V1V2 CHK_6467_SS1_11_2_253_11_30_V1V2 CHK_6467_E3B06_BRONCH2_PREWASH_V1V2 CHK_6467_E3B06_OW_V1V2 CHK_6467_E3B07_BRONCH1_POSTWASH_V1V2 CHK_6467_E3B07_BRONCH1_PREWASH_V1V2 CHK_6467_E3B08_OP_V1V2 CHK_6467_E3B10_BAL_B_V1V2 CHK_6467_E3B06_OP_V1V2 CHK_6467_E3B07_OW_V1V2 CHK_6467_H2O1_11_2_223_11_29_V1V2 CHK_6467_E3B09_BAL_B_V1V2 CHK_6467_H201_12_6_281_12_6_V1V2 CHK_6467_E3B08_PSB_V1V2 CHK_6467_E3B08_BAL_B_V1V2 CHK_6467_E3B06_PSB_V1V2 CHK_6467_E3B09_OW_V1V2 CHK_6467_SAL1_11_2_224_11_29_V1V2 CHK_6467_E3B09_BAL_A_V1V2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 77 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 3 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 10 2 0 4 0 0 0 3 0 0 0 0 0 0 1 0 0 0 1 0 1 1 4 0 0 13 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1 5 0 7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 4 2 0 5 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 4 0 0 0 2 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 2 2 0 4 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 102 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 2 0 6 1 0 0 1 0 0 0 0 0 0 1 0 0 0 2 0 1 2 3 0 0 4 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 110 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 3 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 123 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 139 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 143 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 146 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 148 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 149 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 158 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 183 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 186 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 187 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 189 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 193 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 196 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 197 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 223 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 248 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 254 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 259 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 264 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 265 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 269 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 273 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 279 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 281 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 285 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 286 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 289 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 291 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 293 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 294 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 297 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 298 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 317 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 323 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 326 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 327 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 329 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 331 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 332 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 333 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 335 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 337 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 338 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 339 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 344 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 347 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 348 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 352 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 354 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 361 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 362 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 363 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 366 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 367 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 368 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 372 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 375 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 376 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 377 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 378 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 381 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 383 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 385 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 387 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 389 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 391 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 393 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 394 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 396 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 397 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 399 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 401 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 402 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 405 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 409 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 410 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 411 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 413 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 414 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 415 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 416 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 418 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 419 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 422 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 423 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 426 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 427 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 428 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 430 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 431 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 432 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 433 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 434 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 435 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 438 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 439 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 441 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 442 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 443 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 445 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 446 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 449 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 450 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 451 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 452 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 453 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 456 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 457 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 458 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 459 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 461 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 462 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 463 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 464 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 465 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 466 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 467 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 469 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 471 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 473 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 475 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 476 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 477 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 478 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 479 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 481 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 482 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 483 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 484 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 485 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 486 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 488 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 492 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 494 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 496 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 497 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 502 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 503 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 505 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 506 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 507 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 509 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 513 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 514 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 516 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 518 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 519 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 521 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 522 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 523 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 524 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 526 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 527 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 528 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 529 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 530 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 532 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 533 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 534 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 535 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 537 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 538 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 539 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 541 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 542 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 543 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 544 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 545 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 546 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 547 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 548 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 549 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 551 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 552 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 553 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 554 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 557 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 559 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 560 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 561 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 563 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 564 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 565 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 567 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 568 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 569 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 570 0 1 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 1 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 23 6 0 14 10 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 1 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 573 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 577 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 1 578 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 579 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 580 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 582 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 584 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 586 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 587 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 589 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 591 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 6 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 592 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 595 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 596 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 597 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 599 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 15 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 602 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 606 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 609 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 610 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 612 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 614 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 615 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 619 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 620 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 621 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 622 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 623 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 624 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 626 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 629 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 631 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 632 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 633 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 634 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 635 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 637 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 638 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 640 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 641 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 643 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 644 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 645 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 646 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 647 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 649 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 650 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 651 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 652 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 653 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 654 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 657 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 658 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 659 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 660 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 661 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 663 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 664 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 668 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 669 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 670 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 671 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 672 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 673 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 674 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 677 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 678 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 679 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 680 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 681 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 683 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 685 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 687 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 690 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 691 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 692 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 694 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 695 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 696 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 697 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 701 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 702 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 703 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 704 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 705 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 706 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 707 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 708 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 709 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 711 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 712 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 713 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 714 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 715 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 716 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 717 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 718 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 719 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 721 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 722 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 723 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 725 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 726 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 728 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 729 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 730 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 732 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 733 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 734 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 735 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 737 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 740 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 741 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 742 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 743 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 744 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 745 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 746 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 747 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 748 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 749 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 751 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 753 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 754 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 755 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 756 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 757 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 758 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 759 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 761 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 762 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 763 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 764 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 765 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 766 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 769 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 771 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 772 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 773 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 774 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 775 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 776 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 777 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 780 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 781 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 782 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 783 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 784 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 785 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 786 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 787 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 789 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 790 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 791 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 793 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 794 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 795 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 796 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 797 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 801 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 802 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 804 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 806 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 808 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 809 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 810 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 811 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 812 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 813 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 814 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 817 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 818 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 820 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 821 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 823 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 824 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 825 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 826 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 827 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 828 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 829 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 830 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 831 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 834 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 835 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 836 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 838 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 839 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 841 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 842 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 844 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 846 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 847 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 848 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 849 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 850 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 851 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 852 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 853 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 855 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 856 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 857 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 858 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 859 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 860 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 861 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 862 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 863 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 865 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 866 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 867 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 868 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 869 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 870 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 871 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 872 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 873 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 874 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 876 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 877 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 878 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 879 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 880 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 881 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 882 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 883 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 885 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 886 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 887 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 888 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 889 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 890 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 891 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 892 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 896 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 899 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 901 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 902 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 903 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 904 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 905 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 906 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 907 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 908 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 910 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 912 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 913 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 914 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 915 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 917 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 918 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 919 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 920 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 921 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 922 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 923 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 924 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 925 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 926 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 928 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 929 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 930 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 931 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 932 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 933 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 934 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 935 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 936 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 937 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 938 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 939 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 940 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 942 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 943 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 944 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 946 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 947 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 948 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 951 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 952 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 953 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 954 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 955 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 956 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 957 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 958 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 959 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 961 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 962 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 963 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 964 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 965 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 966 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 968 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 971 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 972 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 973 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 975 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 976 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 978 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 8 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 4 979 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 980 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 981 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 982 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 983 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 984 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 985 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 986 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 987 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 988 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 989 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 990 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 991 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 994 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 995 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 996 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 997 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 metagenomeSeq/inst/extdata/CHK_clinical.csv0000644000175400017540000001142413175714310021765 0ustar00biocbuildbiocbuildSample ID SampleType SiteSampled SmokingStatus CHK_6467_H201_12_6_281_12_6_V1V2 Extraction.Control Water NA CHK_6467_H2O1_11_2_223_11_29_V1V2 Extraction.Control Water NA CHK_6467_H2O1_11_2_280_11_30_V1V2 Extraction.Control Water NA CHK_6467_H2O1_11_4_222_11_18_V1V2 Extraction.Control Water NA CHK_6467_H2O1_11_5_208_11_18_V1V2 Extraction.Control Water NA CHK_6467_SAL1_11_2_224_11_29_V1V2 Extraction.Control Sterile.Saline NA CHK_6467_SAL1_11_4_201_11_18_V1V2 Extraction.Control Sterile.Saline NA CHK_6467_SAL1_11_5_209_11_18_V1V2 Extraction.Control Sterile.Saline NA CHK_6467_SS1_11_2_253_11_30_V1V2 Extraction.Control Sterile.Swab NA CHK_6467_SS1_11_4_272_11_30_V1V2 Extraction.Control Sterile.Swab NA CHK_6467_PSBMETAL_12_6_286_12_6_V1V2 Extraction.Control Sterile.PSB NA CHK_6467_PSBPLASTIC_12_6_285_12_6_V1V2 Extraction.Control Sterile.PSB NA CHK_6467_E3B06_BRONCH1_PREWASH_V1V2 Bronch1.PreWash Bronchoscope.Channel Smoker CHK_6467_E3B07_BRONCH1_PREWASH_V1V2 Bronch1.PreWash Bronchoscope.Channel NonSmoker CHK_6467_E3B08_BRONCH1_PREWASH_V1V2 Bronch1.PreWash Bronchoscope.Channel NonSmoker CHK_6467_E3B09_BRONCH1_PREWASH_V1V2 Bronch1.PreWash Bronchoscope.Channel Smoker CHK_6467_E3B10_BRONCH1_PREWASH_V1V2 Bronch1.PreWash Bronchoscope.Channel NonSmoker CHK_6467_E3B11_BRONCH1_PREWASH_V1V2 Bronch1.PreWash Bronchoscope.Channel Smoker CHK_6467_E3B06_BRONCH2_PREWASH_V1V2 Bronch2.PreWash Bronchoscope.Channel Smoker CHK_6467_E3B07_BRONCH2_PREWASH_V1V2 Bronch2.PreWash Bronchoscope.Channel NonSmoker CHK_6467_E3B08_BRONCH2_PREWASH_V1V2 Bronch2.PreWash Bronchoscope.Channel NonSmoker CHK_6467_E3B09_BRONCH2_PREWASH_V1V2 Bronch2.PreWash Bronchoscope.Channel Smoker CHK_6467_E3B10_BRONCH2_PREWASH_V1V2 Bronch2.PreWash Bronchoscope.Channel NonSmoker CHK_6467_E3B11_BRONCH2_PREWASH_V1V2 Bronch2.PreWash Bronchoscope.Channel Smoker CHK_6467_E3B06_NP_V1V2 NP.Swab Nasopharynx Smoker CHK_6467_E3B07_NP_V1V2 NP.Swab Nasopharynx NonSmoker CHK_6467_E3B08_NP_V1V2 NP.Swab Nasopharynx NonSmoker CHK_6467_E3B09_NP_V1V2 NP.Swab Nasopharynx Smoker CHK_6467_E3B10_NP_V1V2 NP.Swab Nasopharynx NonSmoker CHK_6467_E3B11_NP_V1V2 NP.Swab Nasopharynx Smoker CHK_6467_E3B06_OP_V1V2 OP.Swab Oropharynx Smoker CHK_6467_E3B07_OP_V1V2 OP.Swab Oropharynx NonSmoker CHK_6467_E3B08_OP_V1V2 OP.Swab Oropharynx NonSmoker CHK_6467_E3B09_OP_V1V2 OP.Swab Oropharynx Smoker CHK_6467_E3B10_OP_V1V2 OP.Swab Oropharynx NonSmoker CHK_6467_E3B11_OP_V1V2 OP.Swab Oropharynx Smoker CHK_6467_E3B06_OW_V1V2 OW OralCavity Smoker CHK_6467_E3B07_OW_V1V2 OW OralCavity NonSmoker CHK_6467_E3B08_OW_V1V2 OW OralCavity NonSmoker CHK_6467_E3B09_OW_V1V2 OW OralCavity Smoker CHK_6467_E3B10_OW_V1V2 OW OralCavity NonSmoker CHK_6467_E3B11_OW_V1V2 OW OralCavity Smoker CHK_6467_E3B06_BRONCH1_TIPSWAB_V1V2 Bronch1.TipSwab Bronchoscope.Tip Smoker CHK_6467_E3B07_BRONCH1_TIPSWAB_V1V2 Bronch1.TipSwab Bronchoscope.Tip NonSmoker CHK_6467_E3B08_BRONCH1_TIPSWAB_V1V2 Bronch1.TipSwab Bronchoscope.Tip NonSmoker CHK_6467_E3B09_BRONCH1_TIPSWAB_V1V2 Bronch1.TipSwab Bronchoscope.Tip Smoker CHK_6467_E3B10_BRONCH1_TIPSWAB_V1V2 Bronch1.TipSwab Bronchoscope.Tip NonSmoker CHK_6467_E3B11_BRONCH1_TIPSWAB_V1V2 Bronch1.TipSwab Bronchoscope.Tip Smoker CHK_6467_E3B06_BRONCH1_POSTWASH_V1V2 Bronch1.PostWash Bronchoscope.Channel Smoker CHK_6467_E3B07_BRONCH1_POSTWASH_V1V2 Bronch1.PostWash Bronchoscope.Channel NonSmoker CHK_6467_E3B08_BRONCH1_POSTWASH_V1V2 Bronch1.PostWash Bronchoscope.Channel NonSmoker CHK_6467_E3B09_BRONCH1_POSTWASH_V1V2 Bronch1.PostWash Bronchoscope.Channel Smoker CHK_6467_E3B10_BRONCH1_POSTWASH_V1V2 Bronch1.PostWash Bronchoscope.Channel NonSmoker CHK_6467_E3B11_BRONCH1_POSTWASH_V1V2 Bronch1.PostWash Bronchoscope.Channel Smoker CHK_6467_E3B06_BAL_1STRETURN_V1V2 BAL.1stReturn Lung Smoker CHK_6467_E3B07_BAL_1STRETURN_V1V2 BAL.1stReturn Lung NonSmoker CHK_6467_E3B08_BAL_1STRETURN_V1V2 BAL.1stReturn Lung NonSmoker CHK_6467_E3B09_BAL_1STRETURN_V1V2 BAL.1stReturn Lung Smoker CHK_6467_E3B10_BAL_1STRETURN_V1V2 BAL.1stReturn Lung NonSmoker CHK_6467_E3B11_BAL_1STRETURN_V1V2 BAL.1stReturn Lung Smoker CHK_6467_E3B06_BAL_A_V1V2 BAL.A Lung Smoker CHK_6467_E3B07_BAL_A_V1V2 BAL.A Lung NonSmoker CHK_6467_E3B08_BAL_A_V1V2 BAL.A Lung NonSmoker CHK_6467_E3B09_BAL_A_V1V2 BAL.A Lung Smoker CHK_6467_E3B10_BAL_A_V1V2 BAL.A Lung NonSmoker CHK_6467_E3B11_BAL_A_V1V2 BAL.A Lung Smoker CHK_6467_E3B06_BAL_B_V1V2 BAL.B Lung Smoker CHK_6467_E3B07_BAL_B_V1V2 BAL.B Lung NonSmoker CHK_6467_E3B08_BAL_B_V1V2 BAL.B Lung NonSmoker CHK_6467_E3B09_BAL_B_V1V2 BAL.B Lung Smoker CHK_6467_E3B10_BAL_B_V1V2 BAL.B Lung NonSmoker CHK_6467_E3B11_BAL_B_V1V2 BAL.B Lung Smoker CHK_6467_E3B06_PSB_V1V2 PSB Lung.Mucosa Smoker CHK_6467_E3B07_PSB_V1V2 PSB Lung.Mucosa NonSmoker CHK_6467_E3B08_PSB_V1V2 PSB Lung.Mucosa NonSmoker CHK_6467_E3B09_PSB_V1V2 PSB Lung.Mucosa Smoker CHK_6467_E3B10_PSB_V1V2 PSB Lung.Mucosa NonSmoker CHK_6467_E3B11_PSB_V1V2 PSB Lung.Mucosa Smoker metagenomeSeq/inst/extdata/CHK_otus.taxonomy.csv0000644000175400017540000015234513175714310023066 0ustar00biocbuildbiocbuildOTU Taxonomy superkingdom phylum class order family genus species strain 1 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 2 OTU_2 NA NA NA NA NA NA NA NA 3 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Actinobacteridae;Actinomycetales;Actinomycineae;Actinomycetaceae;Actinomyces;Actinomyces radicidentis Bacteria Actinobacteria Actinobacteria (class) Actinomycetales Actinomycetaceae Actinomyces Actinomyces radicidentis NA 4 OTU_4 NA NA NA NA NA NA NA NA 5 OTU_5 NA NA NA NA NA NA NA NA 6 OTU_6 NA NA NA NA NA NA NA NA 7 OTU_7 NA NA NA NA NA NA NA NA 8 OTU_8 NA NA NA NA NA NA NA NA 9 OTU_9 NA NA NA NA NA NA NA NA 10 OTU_10 NA NA NA NA NA NA NA NA 11 OTU_11 NA NA NA NA NA NA NA NA 12 OTU_12 NA NA NA NA NA NA NA NA 13 OTU_13 NA NA NA NA NA NA NA NA 14 OTU_14 NA NA NA NA NA NA NA NA 15 OTU_15 NA NA NA NA NA NA NA NA 16 OTU_16 NA NA NA NA NA NA NA NA 17 OTU_17 NA NA NA NA NA NA NA NA 18 OTU_18 NA NA NA NA NA NA NA NA 19 OTU_19 NA NA NA NA NA NA NA NA 20 OTU_20 NA NA NA NA NA NA NA NA 21 OTU_21 NA NA NA NA NA NA NA NA 22 OTU_22 NA NA NA NA NA NA NA NA 23 OTU_23 NA NA NA NA NA NA NA NA 24 OTU_24 NA NA NA NA NA NA NA NA 25 OTU_25 NA NA NA NA NA NA NA NA 26 OTU_26 NA NA NA NA NA NA NA NA 27 OTU_27 NA NA NA NA NA NA NA NA 28 OTU_28 NA NA NA NA NA NA NA NA 29 OTU_29 NA NA NA NA NA NA NA NA 30 OTU_30 NA NA NA NA NA NA NA NA 31 OTU_31 NA NA NA NA NA NA NA NA 32 OTU_32 NA NA NA NA NA NA NA NA 33 OTU_33 NA NA NA NA NA NA NA NA 34 OTU_34 NA NA NA NA NA NA NA NA 35 OTU_35 NA NA NA NA NA NA NA NA 36 OTU_36 NA NA NA NA NA NA NA NA 37 OTU_37 NA NA NA NA NA NA NA NA 38 OTU_38 NA NA NA NA NA NA NA NA 39 OTU_39 NA NA NA NA NA NA NA NA 40 OTU_40 NA NA NA NA NA NA NA NA 41 OTU_41 NA NA NA NA NA NA NA NA 42 OTU_42 NA NA NA NA NA NA NA NA 43 OTU_43 NA NA NA NA NA NA NA NA 44 OTU_44 NA NA NA NA NA NA NA NA 45 OTU_45 NA NA NA NA NA NA NA NA 46 OTU_46 NA NA NA NA NA NA NA NA 47 OTU_47 NA NA NA NA NA NA NA NA 48 OTU_48 NA NA NA NA NA NA NA NA 49 OTU_49 NA NA NA NA NA NA NA NA 50 OTU_50 NA NA NA NA NA NA NA NA 51 OTU_51 NA NA NA NA NA NA NA NA 52 OTU_52 NA NA NA NA NA NA NA NA 53 OTU_53 NA NA NA NA NA NA NA NA 54 OTU_54 NA NA NA NA NA NA NA NA 55 OTU_55 NA NA NA NA NA NA NA NA 56 OTU_56 NA NA NA NA NA NA NA NA 57 OTU_57 NA NA NA NA NA NA NA NA 58 OTU_58 NA NA NA NA NA NA NA NA 59 OTU_59 NA NA NA NA NA NA NA NA 60 OTU_60 NA NA NA NA NA NA NA NA 61 OTU_61 NA NA NA NA NA NA NA NA 62 OTU_62 NA NA NA NA NA NA NA NA 63 OTU_63 NA NA NA NA NA NA NA NA 64 OTU_64 NA NA NA NA NA NA NA NA 65 OTU_65 NA NA NA NA NA NA NA NA 66 OTU_66 NA NA NA NA NA NA NA NA 67 OTU_67 NA NA NA NA NA NA NA NA 68 OTU_68 NA NA NA NA NA NA NA NA 69 OTU_69 NA NA NA NA NA NA NA NA 70 OTU_70 NA NA NA NA NA NA NA NA 71 OTU_71 NA NA NA NA NA NA NA NA 72 OTU_72 NA NA NA NA NA NA NA NA 73 OTU_73 NA NA NA NA NA NA NA NA 74 OTU_74 NA NA NA NA NA NA NA NA 75 OTU_75 NA NA NA NA NA NA NA NA 76 OTU_76 NA NA NA NA NA NA NA NA 77 OTU_77 NA NA NA NA NA NA NA NA 78 OTU_78 NA NA NA NA NA NA NA NA 79 OTU_79 NA NA NA NA NA NA NA NA 80 OTU_80 NA NA NA NA NA NA NA NA 81 OTU_81 NA NA NA NA NA NA NA NA 82 OTU_82 NA NA NA NA NA NA NA NA 83 OTU_83 NA NA NA NA NA NA NA NA 84 OTU_84 NA NA NA NA NA NA NA NA 85 OTU_85 NA NA NA NA NA NA NA NA 86 OTU_86 NA NA NA NA NA NA NA NA 87 OTU_87 NA NA NA NA NA NA NA NA 88 OTU_88 NA NA NA NA NA NA NA NA 89 OTU_89 NA NA NA NA NA NA NA NA 90 OTU_90 NA NA NA NA NA NA NA NA 91 OTU_91 NA NA NA NA NA NA NA NA 92 OTU_92 NA NA NA NA NA NA NA NA 93 OTU_93 NA NA NA NA NA NA NA NA 94 OTU_94 NA NA NA NA NA NA NA NA 95 OTU_95 NA NA NA NA NA NA NA NA 96 OTU_96 NA NA NA NA NA NA NA NA 97 OTU_97 NA NA NA NA NA NA NA NA 98 OTU_98 NA NA NA NA NA NA NA NA 99 OTU_99 NA NA NA NA NA NA NA NA 100 OTU_100 NA NA NA NA NA NA NA NA 101 OTU_101 NA NA NA NA NA NA NA NA 102 OTU_102 NA NA NA NA NA NA NA NA 103 OTU_103 NA NA NA NA NA NA NA NA 104 OTU_104 NA NA NA NA NA NA NA NA 105 OTU_105 NA NA NA NA NA NA NA NA 106 OTU_106 NA NA NA NA NA NA NA NA 107 OTU_107 NA NA NA NA NA NA NA NA 108 OTU_108 NA NA NA NA NA NA NA NA 109 OTU_109 NA NA NA NA NA NA NA NA 110 OTU_110 NA NA NA NA NA NA NA NA 111 OTU_111 NA NA NA NA NA NA NA NA 112 OTU_112 NA NA NA NA NA NA NA NA 113 OTU_113 NA NA NA NA NA NA NA NA 114 OTU_114 NA NA NA NA NA NA NA NA 115 OTU_115 NA NA NA NA NA NA NA NA 116 OTU_116 NA NA NA NA NA NA NA NA 117 OTU_117 NA NA NA NA NA NA NA NA 118 OTU_118 NA NA NA NA NA NA NA NA 119 OTU_119 NA NA NA NA NA NA NA NA 120 OTU_120 NA NA NA NA NA NA NA NA 121 OTU_121 NA NA NA NA NA NA NA NA 122 OTU_122 NA NA NA NA NA NA NA NA 123 OTU_123 NA NA NA NA NA NA NA NA 124 OTU_124 NA NA NA NA NA NA NA NA 125 OTU_125 NA NA NA NA NA NA NA NA 126 OTU_126 NA NA NA NA NA NA NA NA 127 OTU_127 NA NA NA NA NA NA NA NA 128 OTU_128 NA NA NA NA NA NA NA NA 129 OTU_129 NA NA NA NA NA NA NA NA 130 OTU_130 NA NA NA NA NA NA NA NA 131 OTU_131 NA NA NA NA NA NA NA NA 132 OTU_132 NA NA NA NA NA NA NA NA 133 OTU_133 NA NA NA NA NA NA NA NA 134 OTU_134 NA NA NA NA NA NA NA NA 135 OTU_135 NA NA NA NA NA NA NA NA 136 OTU_136 NA NA NA NA NA NA NA NA 137 OTU_137 NA NA NA NA NA NA NA NA 138 OTU_138 NA NA NA NA NA NA NA NA 139 OTU_139 NA NA NA NA NA NA NA NA 140 OTU_140 NA NA NA NA NA NA NA NA 141 OTU_141 NA NA NA NA NA NA NA NA 142 OTU_142 NA NA NA NA NA NA NA NA 143 OTU_143 NA NA NA NA NA NA NA NA 144 OTU_144 NA NA NA NA NA NA NA NA 145 OTU_145 NA NA NA NA NA NA NA NA 146 OTU_146 NA NA NA NA NA NA NA NA 147 OTU_147 NA NA NA NA NA NA NA NA 148 OTU_148 NA NA NA NA NA NA NA NA 149 OTU_149 NA NA NA NA NA NA NA NA 150 OTU_150 NA NA NA NA NA NA NA NA 151 OTU_151 NA NA NA NA NA NA NA NA 152 OTU_152 NA NA NA NA NA NA NA NA 153 OTU_153 NA NA NA NA NA NA NA NA 154 OTU_154 NA NA NA NA NA NA NA NA 155 OTU_155 NA NA NA NA NA NA NA NA 156 OTU_156 NA NA NA NA NA NA NA NA 157 OTU_157 NA NA NA NA NA NA NA NA 158 OTU_158 NA NA NA NA NA NA NA NA 159 OTU_159 NA NA NA NA NA NA NA NA 160 OTU_160 NA NA NA NA NA NA NA NA 161 OTU_161 NA NA NA NA NA NA NA NA 162 OTU_162 NA NA NA NA NA NA NA NA 163 OTU_163 NA NA NA NA NA NA NA NA 164 OTU_164 NA NA NA NA NA NA NA NA 165 OTU_165 NA NA NA NA NA NA NA NA 166 OTU_166 NA NA NA NA NA NA NA NA 167 OTU_167 NA NA NA NA NA NA NA NA 168 ;cellular organisms;Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales incertae sedis;Clostridiales Family XI. Incertae Sedis;Anaerococcus;Anaerococcus octavius Bacteria Firmicutes Clostridia Clostridiales Clostridiales Family XI. Incertae Sedis Anaerococcus Anaerococcus octavius NA 169 OTU_169 NA NA NA NA NA NA NA NA 170 OTU_170 NA NA NA NA NA NA NA NA 171 OTU_171 NA NA NA NA NA NA NA NA 172 OTU_172 NA NA NA NA NA NA NA NA 173 OTU_173 NA NA NA NA NA NA NA NA 174 OTU_174 NA NA NA NA NA NA NA NA 175 OTU_175 NA NA NA NA NA NA NA NA 176 OTU_176 NA NA NA NA NA NA NA NA 177 OTU_177 NA NA NA NA NA NA NA NA 178 OTU_178 NA NA NA NA NA NA NA NA 179 OTU_179 NA NA NA NA NA NA NA NA 180 OTU_180 NA NA NA NA NA NA NA NA 181 OTU_181 NA NA NA NA NA NA NA NA 182 OTU_182 NA NA NA NA NA NA NA NA 183 OTU_183 NA NA NA NA NA NA NA NA 184 OTU_184 NA NA NA NA NA NA NA NA 185 OTU_185 NA NA NA NA NA NA NA NA 186 OTU_186 NA NA NA NA NA NA NA NA 187 OTU_187 NA NA NA NA NA NA NA NA 188 OTU_188 NA NA NA NA NA NA NA NA 189 OTU_189 NA NA NA NA NA NA NA NA 190 OTU_190 NA NA NA NA NA NA NA NA 191 OTU_191 NA NA NA NA NA NA NA NA 192 OTU_192 NA NA NA NA NA NA NA NA 193 OTU_193 NA NA NA NA NA NA NA NA 194 OTU_194 NA NA NA NA NA NA NA NA 195 OTU_195 NA NA NA NA NA NA NA NA 196 OTU_196 NA NA NA NA NA NA NA NA 197 OTU_197 NA NA NA NA NA NA NA NA 198 OTU_198 NA NA NA NA NA NA NA NA 199 OTU_199 NA NA NA NA NA NA NA NA 200 OTU_200 NA NA NA NA NA NA NA NA 201 OTU_201 NA NA NA NA NA NA NA NA 202 OTU_202 NA NA NA NA NA NA NA NA 203 OTU_203 NA NA NA NA NA NA NA NA 204 ;cellular organisms;Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Granulicatella;Granulicatella elegans Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella Granulicatella elegans NA 205 OTU_205 NA NA NA NA NA NA NA NA 206 ;cellular organisms;Bacteria;Fusobacteria;Fusobacteria (class);Fusobacteriales;Fusobacteriaceae;Leptotrichia;Leptotrichia sp. oral isolate A39FD Bacteria Fusobacteria Fusobacteria (class) Fusobacteriales Fusobacteriaceae Leptotrichia Leptotrichia sp. oral isolate A39FD NA 207 OTU_207 NA NA NA NA NA NA NA NA 208 OTU_208 NA NA NA NA NA NA NA NA 209 OTU_209 NA NA NA NA NA NA NA NA 210 OTU_210 NA NA NA NA NA NA NA NA 211 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella montpellierensis Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella montpellierensis NA 212 OTU_212 NA NA NA NA NA NA NA NA 213 OTU_213 NA NA NA NA NA NA NA NA 214 OTU_214 NA NA NA NA NA NA NA NA 215 OTU_215 NA NA NA NA NA NA NA NA 216 OTU_216 NA NA NA NA NA NA NA NA 217 OTU_217 NA NA NA NA NA NA NA NA 218 OTU_218 NA NA NA NA NA NA NA NA 219 OTU_219 NA NA NA NA NA NA NA NA 220 OTU_220 NA NA NA NA NA NA NA NA 221 OTU_221 NA NA NA NA NA NA NA NA 222 OTU_222 NA NA NA NA NA NA NA NA 223 OTU_223 NA NA NA NA NA NA NA NA 224 OTU_224 NA NA NA NA NA NA NA NA 225 OTU_225 NA NA NA NA NA NA NA NA 226 OTU_226 NA NA NA NA NA NA NA NA 227 OTU_227 NA NA NA NA NA NA NA NA 228 OTU_228 NA NA NA NA NA NA NA NA 229 OTU_229 NA NA NA NA NA NA NA NA 230 OTU_230 NA NA NA NA NA NA NA NA 231 OTU_231 NA NA NA NA NA NA NA NA 232 OTU_232 NA NA NA NA NA NA NA NA 233 OTU_233 NA NA NA NA NA NA NA NA 234 OTU_234 NA NA NA NA NA NA NA NA 235 OTU_235 NA NA NA NA NA NA NA NA 236 OTU_236 NA NA NA NA NA NA NA NA 237 OTU_237 NA NA NA NA NA NA NA NA 238 OTU_238 NA NA NA NA NA NA NA NA 239 OTU_239 NA NA NA NA NA NA NA NA 240 OTU_240 NA NA NA NA NA NA NA NA 241 OTU_241 NA NA NA NA NA NA NA NA 242 OTU_242 NA NA NA NA NA NA NA NA 243 OTU_243 NA NA NA NA NA NA NA NA 244 OTU_244 NA NA NA NA NA NA NA NA 245 OTU_245 NA NA NA NA NA NA NA NA 246 OTU_246 NA NA NA NA NA NA NA NA 247 OTU_247 NA NA NA NA NA NA NA NA 248 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella magna Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella magna NA 249 OTU_249 NA NA NA NA NA NA NA NA 250 OTU_250 NA NA NA NA NA NA NA NA 251 OTU_251 NA NA NA NA NA NA NA NA 252 OTU_252 NA NA NA NA NA NA NA NA 253 OTU_253 NA NA NA NA NA NA NA NA 254 OTU_254 NA NA NA NA NA NA NA NA 255 ;cellular organisms;Bacteria;Firmicutes;Clostridia;Clostridiales;Eubacteriaceae;Eubacterium;environmental samples;Eubacterium sp. oral clone JN088 Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Eubacterium Eubacterium sp. oral clone JN088 NA 256 OTU_256 NA NA NA NA NA NA NA NA 257 OTU_257 NA NA NA NA NA NA NA NA 258 OTU_258 NA NA NA NA NA NA NA NA 259 OTU_259 NA NA NA NA NA NA NA NA 260 OTU_260 NA NA NA NA NA NA NA NA 261 OTU_261 NA NA NA NA NA NA NA NA 262 OTU_262 NA NA NA NA NA NA NA NA 263 OTU_263 NA NA NA NA NA NA NA NA 264 OTU_264 NA NA NA NA NA NA NA NA 265 OTU_265 NA NA NA NA NA NA NA NA 266 OTU_266 NA NA NA NA NA NA NA NA 267 OTU_267 NA NA NA NA NA NA NA NA 268 ;cellular organisms;Bacteria;Firmicutes;Bacilli;Lactobacillales;Enterococcaceae;Enterococcus;Enterococcus sp. DLS 0702 Bacteria Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus Enterococcus sp. DLS 0702 NA 269 OTU_269 NA NA NA NA NA NA NA NA 270 OTU_270 NA NA NA NA NA NA NA NA 271 OTU_271 NA NA NA NA NA NA NA NA 272 OTU_272 NA NA NA NA NA NA NA NA 273 OTU_273 NA NA NA NA NA NA NA NA 274 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella genomosp. P6 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella genomosp. P6 NA 275 OTU_275 NA NA NA NA NA NA NA NA 276 OTU_276 NA NA NA NA NA NA NA NA 277 OTU_277 NA NA NA NA NA NA NA NA 278 OTU_278 NA NA NA NA NA NA NA NA 279 OTU_279 NA NA NA NA NA NA NA NA 280 OTU_280 NA NA NA NA NA NA NA NA 281 OTU_281 NA NA NA NA NA NA NA NA 282 OTU_282 NA NA NA NA NA NA NA NA 283 OTU_283 NA NA NA NA NA NA NA NA 284 OTU_284 NA NA NA NA NA NA NA NA 285 OTU_285 NA NA NA NA NA NA NA NA 286 OTU_286 NA NA NA NA NA NA NA NA 287 OTU_287 NA NA NA NA NA NA NA NA 288 OTU_288 NA NA NA NA NA NA NA NA 289 OTU_289 NA NA NA NA NA NA NA NA 290 OTU_290 NA NA NA NA NA NA NA NA 291 OTU_291 NA NA NA NA NA NA NA NA 292 OTU_292 NA NA NA NA NA NA NA NA 293 OTU_293 NA NA NA NA NA NA NA NA 294 OTU_294 NA NA NA NA NA NA NA NA 295 OTU_295 NA NA NA NA NA NA NA NA 296 OTU_296 NA NA NA NA NA NA NA NA 297 OTU_297 NA NA NA NA NA NA NA NA 298 OTU_298 NA NA NA NA NA NA NA NA 299 OTU_299 NA NA NA NA NA NA NA NA 300 OTU_300 NA NA NA NA NA NA NA NA 301 OTU_301 NA NA NA NA NA NA NA NA 302 OTU_302 NA NA NA NA NA NA NA NA 303 ;cellular organisms;Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales incertae sedis;Clostridiales Family XI. Incertae Sedis;Peptoniphilus;Peptoniphilus sp. gpac121 Bacteria Firmicutes Clostridia Clostridiales Clostridiales Family XI. Incertae Sedis Peptoniphilus Peptoniphilus sp. gpac121 NA 304 OTU_304 NA NA NA NA NA NA NA NA 305 OTU_305 NA NA NA NA NA NA NA NA 306 OTU_306 NA NA NA NA NA NA NA NA 307 OTU_307 NA NA NA NA NA NA NA NA 308 OTU_308 NA NA NA NA NA NA NA NA 309 OTU_309 NA NA NA NA NA NA NA NA 310 OTU_310 NA NA NA NA NA NA NA NA 311 OTU_311 NA NA NA NA NA NA NA NA 312 OTU_312 NA NA NA NA NA NA NA NA 313 OTU_313 NA NA NA NA NA NA NA NA 314 OTU_314 NA NA NA NA NA NA NA NA 315 OTU_315 NA NA NA NA NA NA NA NA 316 OTU_316 NA NA NA NA NA NA NA NA 317 OTU_317 NA NA NA NA NA NA NA NA 318 OTU_318 NA NA NA NA NA NA NA NA 319 OTU_319 NA NA NA NA NA NA NA NA 320 OTU_320 NA NA NA NA NA NA NA NA 321 OTU_321 NA NA NA NA NA NA NA NA 322 OTU_322 NA NA NA NA NA NA NA NA 323 OTU_323 NA NA NA NA NA NA NA NA 324 OTU_324 NA NA NA NA NA NA NA NA 325 OTU_325 NA NA NA NA NA NA NA NA 326 OTU_326 NA NA NA NA NA NA NA NA 327 OTU_327 NA NA NA NA NA NA NA NA 328 OTU_328 NA NA NA NA NA NA NA NA 329 OTU_329 NA NA NA NA NA NA NA NA 330 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Coriobacteridae;Coriobacteriales;Coriobacterineae;Coriobacteriaceae;Atopobium;Atopobium parvulum Bacteria Actinobacteria Actinobacteria (class) Coriobacteriales Coriobacteriaceae Atopobium Atopobium parvulum NA 331 OTU_331 NA NA NA NA NA NA NA NA 332 OTU_332 NA NA NA NA NA NA NA NA 333 OTU_333 NA NA NA NA NA NA NA NA 334 OTU_334 NA NA NA NA NA NA NA NA 335 OTU_335 NA NA NA NA NA NA NA NA 336 OTU_336 NA NA NA NA NA NA NA NA 337 OTU_337 NA NA NA NA NA NA NA NA 338 OTU_338 NA NA NA NA NA NA NA NA 339 OTU_339 NA NA NA NA NA NA NA NA 340 OTU_340 NA NA NA NA NA NA NA NA 341 OTU_341 NA NA NA NA NA NA NA NA 342 OTU_342 NA NA NA NA NA NA NA NA 343 OTU_343 NA NA NA NA NA NA NA NA 344 OTU_344 NA NA NA NA NA NA NA NA 345 OTU_345 NA NA NA NA NA NA NA NA 346 OTU_346 NA NA NA NA NA NA NA NA 347 OTU_347 NA NA NA NA NA NA NA NA 348 OTU_348 NA NA NA NA NA NA NA NA 349 OTU_349 NA NA NA NA NA NA NA NA 350 OTU_350 NA NA NA NA NA NA NA NA 351 OTU_351 NA NA NA NA NA NA NA NA 352 OTU_352 NA NA NA NA NA NA NA NA 353 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella pallens Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella pallens NA 354 OTU_354 NA NA NA NA NA NA NA NA 355 OTU_355 NA NA NA NA NA NA NA NA 356 OTU_356 NA NA NA NA NA NA NA NA 357 OTU_357 NA NA NA NA NA NA NA NA 358 OTU_358 NA NA NA NA NA NA NA NA 359 OTU_359 NA NA NA NA NA NA NA NA 360 OTU_360 NA NA NA NA NA NA NA NA 361 OTU_361 NA NA NA NA NA NA NA NA 362 OTU_362 NA NA NA NA NA NA NA NA 363 OTU_363 NA NA NA NA NA NA NA NA 364 OTU_364 NA NA NA NA NA NA NA NA 365 OTU_365 NA NA NA NA NA NA NA NA 366 OTU_366 NA NA NA NA NA NA NA NA 367 OTU_367 NA NA NA NA NA NA NA NA 368 OTU_368 NA NA NA NA NA NA NA NA 369 OTU_369 NA NA NA NA NA NA NA NA 370 OTU_370 NA NA NA NA NA NA NA NA 371 OTU_371 NA NA NA NA NA NA NA NA 372 OTU_372 NA NA NA NA NA NA NA NA 373 OTU_373 NA NA NA NA NA NA NA NA 374 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Actinobacteridae;Actinomycetales;Micrococcineae;Microbacteriaceae;Frigoribacterium;Frigoribacterium sp. pfB31 Bacteria Actinobacteria Actinobacteria (class) Actinomycetales Microbacteriaceae Frigoribacterium Frigoribacterium sp. pfB31 NA 375 OTU_375 NA NA NA NA NA NA NA NA 376 OTU_376 NA NA NA NA NA NA NA NA 377 OTU_377 NA NA NA NA NA NA NA NA 378 OTU_378 NA NA NA NA NA NA NA NA 379 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;environmental samples;Selenomonas sp. oral clone EW051a Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas Selenomonas sp. oral clone EW051a NA 380 OTU_380 NA NA NA NA NA NA NA NA 381 OTU_381 NA NA NA NA NA NA NA NA 382 OTU_382 NA NA NA NA NA NA NA NA 383 OTU_383 NA NA NA NA NA NA NA NA 384 OTU_384 NA NA NA NA NA NA NA NA 385 OTU_385 NA NA NA NA NA NA NA NA 386 OTU_386 NA NA NA NA NA NA NA NA 387 OTU_387 NA NA NA NA NA NA NA NA 388 OTU_388 NA NA NA NA NA NA NA NA 389 OTU_389 NA NA NA NA NA NA NA NA 390 OTU_390 NA NA NA NA NA NA NA NA 391 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella pallens Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella pallens NA 392 OTU_392 NA NA NA NA NA NA NA NA 393 OTU_393 NA NA NA NA NA NA NA NA 394 OTU_394 NA NA NA NA NA NA NA NA 395 OTU_395 NA NA NA NA NA NA NA NA 396 OTU_396 NA NA NA NA NA NA NA NA 397 OTU_397 NA NA NA NA NA NA NA NA 398 OTU_398 NA NA NA NA NA NA NA NA 399 OTU_399 NA NA NA NA NA NA NA NA 400 OTU_400 NA NA NA NA NA NA NA NA 401 OTU_401 NA NA NA NA NA NA NA NA 402 OTU_402 NA NA NA NA NA NA NA NA 403 OTU_403 NA NA NA NA NA NA NA NA 404 OTU_404 NA NA NA NA NA NA NA NA 405 OTU_405 NA NA NA NA NA NA NA NA 406 OTU_406 NA NA NA NA NA NA NA NA 407 OTU_407 NA NA NA NA NA NA NA NA 408 OTU_408 NA NA NA NA NA NA NA NA 409 OTU_409 NA NA NA NA NA NA NA NA 410 OTU_410 NA NA NA NA NA NA NA NA 411 OTU_411 NA NA NA NA NA NA NA NA 412 OTU_412 NA NA NA NA NA NA NA NA 413 OTU_413 NA NA NA NA NA NA NA NA 414 OTU_414 NA NA NA NA NA NA NA NA 415 OTU_415 NA NA NA NA NA NA NA NA 416 OTU_416 NA NA NA NA NA NA NA NA 417 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella genomosp. P6 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella genomosp. P6 NA 418 OTU_418 NA NA NA NA NA NA NA NA 419 OTU_419 NA NA NA NA NA NA NA NA 420 OTU_420 NA NA NA NA NA NA NA NA 421 OTU_421 NA NA NA NA NA NA NA NA 422 OTU_422 NA NA NA NA NA NA NA NA 423 OTU_423 NA NA NA NA NA NA NA NA 424 OTU_424 NA NA NA NA NA NA NA NA 425 OTU_425 NA NA NA NA NA NA NA NA 426 OTU_426 NA NA NA NA NA NA NA NA 427 OTU_427 NA NA NA NA NA NA NA NA 428 OTU_428 NA NA NA NA NA NA NA NA 429 OTU_429 NA NA NA NA NA NA NA NA 430 OTU_430 NA NA NA NA NA NA NA NA 431 OTU_431 NA NA NA NA NA NA NA NA 432 OTU_432 NA NA NA NA NA NA NA NA 433 OTU_433 NA NA NA NA NA NA NA NA 434 OTU_434 NA NA NA NA NA NA NA NA 435 OTU_435 NA NA NA NA NA NA NA NA 436 OTU_436 NA NA NA NA NA NA NA NA 437 OTU_437 NA NA NA NA NA NA NA NA 438 OTU_438 NA NA NA NA NA NA NA NA 439 OTU_439 NA NA NA NA NA NA NA NA 440 OTU_440 NA NA NA NA NA NA NA NA 441 OTU_441 NA NA NA NA NA NA NA NA 442 OTU_442 NA NA NA NA NA NA NA NA 443 OTU_443 NA NA NA NA NA NA NA NA 444 OTU_444 NA NA NA NA NA NA NA NA 445 OTU_445 NA NA NA NA NA NA NA NA 446 OTU_446 NA NA NA NA NA NA NA NA 447 OTU_447 NA NA NA NA NA NA NA NA 448 OTU_448 NA NA NA NA NA NA NA NA 449 OTU_449 NA NA NA NA NA NA NA NA 450 OTU_450 NA NA NA NA NA NA NA NA 451 OTU_451 NA NA NA NA NA NA NA NA 452 OTU_452 NA NA NA NA NA NA NA NA 453 OTU_453 NA NA NA NA NA NA NA NA 454 OTU_454 NA NA NA NA NA NA NA NA 455 OTU_455 NA NA NA NA NA NA NA NA 456 OTU_456 NA NA NA NA NA NA NA NA 457 OTU_457 NA NA NA NA NA NA NA NA 458 OTU_458 NA NA NA NA NA NA NA NA 459 OTU_459 NA NA NA NA NA NA NA NA 460 OTU_460 NA NA NA NA NA NA NA NA 461 ;cellular organisms;Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales incertae sedis;Clostridiales Family XI. Incertae Sedis;Peptoniphilus;Peptoniphilus sp. gpac121 Bacteria Firmicutes Clostridia Clostridiales Clostridiales Family XI. Incertae Sedis Peptoniphilus Peptoniphilus sp. gpac121 NA 462 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;Porphyromonas gingivalis Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas Porphyromonas gingivalis NA 463 ;cellular organisms;Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;Haemophilus parainfluenzae Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus Haemophilus parainfluenzae NA 464 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Actinobacteridae;Actinomycetales;Actinomycineae;Actinomycetaceae;Actinomyces;Actinomyces radicidentis Bacteria Actinobacteria Actinobacteria (class) Actinomycetales Actinomycetaceae Actinomyces Actinomyces radicidentis NA 465 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 466 OTU_466 NA NA NA NA NA NA NA NA 467 OTU_467 NA NA NA NA NA NA NA NA 468 OTU_468 NA NA NA NA NA NA NA NA 469 OTU_469 NA NA NA NA NA NA NA NA 470 OTU_470 NA NA NA NA NA NA NA NA 471 OTU_471 NA NA NA NA NA NA NA NA 472 OTU_472 NA NA NA NA NA NA NA NA 473 OTU_473 NA NA NA NA NA NA NA NA 474 OTU_474 NA NA NA NA NA NA NA NA 475 OTU_475 NA NA NA NA NA NA NA NA 476 OTU_476 NA NA NA NA NA NA NA NA 477 OTU_477 NA NA NA NA NA NA NA NA 478 OTU_478 NA NA NA NA NA NA NA NA 479 OTU_479 NA NA NA NA NA NA NA NA 480 OTU_480 NA NA NA NA NA NA NA NA 481 OTU_481 NA NA NA NA NA NA NA NA 482 OTU_482 NA NA NA NA NA NA NA NA 483 OTU_483 NA NA NA NA NA NA NA NA 484 OTU_484 NA NA NA NA NA NA NA NA 485 OTU_485 NA NA NA NA NA NA NA NA 486 OTU_486 NA NA NA NA NA NA NA NA 487 OTU_487 NA NA NA NA NA NA NA NA 488 OTU_488 NA NA NA NA NA NA NA NA 489 OTU_489 NA NA NA NA NA NA NA NA 490 OTU_490 NA NA NA NA NA NA NA NA 491 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;Bacteroides sp. CO55 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides sp. CO55 NA 492 OTU_492 NA NA NA NA NA NA NA NA 493 OTU_493 NA NA NA NA NA NA NA NA 494 OTU_494 NA NA NA NA NA NA NA NA 495 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter showae Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter showae NA 496 OTU_496 NA NA NA NA NA NA NA NA 497 OTU_497 NA NA NA NA NA NA NA NA 498 OTU_498 NA NA NA NA NA NA NA NA 499 OTU_499 NA NA NA NA NA NA NA NA 500 OTU_500 NA NA NA NA NA NA NA NA 501 OTU_501 NA NA NA NA NA NA NA NA 502 OTU_502 NA NA NA NA NA NA NA NA 503 OTU_503 NA NA NA NA NA NA NA NA 504 OTU_504 NA NA NA NA NA NA NA NA 505 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella parvula Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella parvula NA 506 OTU_506 NA NA NA NA NA NA NA NA 507 OTU_507 NA NA NA NA NA NA NA NA 508 OTU_508 NA NA NA NA NA NA NA NA 509 OTU_509 NA NA NA NA NA NA NA NA 510 OTU_510 NA NA NA NA NA NA NA NA 511 OTU_511 NA NA NA NA NA NA NA NA 512 OTU_512 NA NA NA NA NA NA NA NA 513 OTU_513 NA NA NA NA NA NA NA NA 514 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella tannerae Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella tannerae NA 515 OTU_515 NA NA NA NA NA NA NA NA 516 OTU_516 NA NA NA NA NA NA NA NA 517 OTU_517 NA NA NA NA NA NA NA NA 518 OTU_518 NA NA NA NA NA NA NA NA 519 OTU_519 NA NA NA NA NA NA NA NA 520 OTU_520 NA NA NA NA NA NA NA NA 521 OTU_521 NA NA NA NA NA NA NA NA 522 OTU_522 NA NA NA NA NA NA NA NA 523 OTU_523 NA NA NA NA NA NA NA NA 524 OTU_524 NA NA NA NA NA NA NA NA 525 OTU_525 NA NA NA NA NA NA NA NA 526 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella ratti Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella ratti NA 527 OTU_527 NA NA NA NA NA NA NA NA 528 OTU_528 NA NA NA NA NA NA NA NA 529 OTU_529 NA NA NA NA NA NA NA NA 530 OTU_530 NA NA NA NA NA NA NA NA 531 OTU_531 NA NA NA NA NA NA NA NA 532 OTU_532 NA NA NA NA NA NA NA NA 533 OTU_533 NA NA NA NA NA NA NA NA 534 ;cellular organisms;Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;Streptococcus oligofermentans Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus oligofermentans NA 535 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter showae Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter showae NA 536 OTU_536 NA NA NA NA NA NA NA NA 537 OTU_537 NA NA NA NA NA NA NA NA 538 OTU_538 NA NA NA NA NA NA NA NA 539 OTU_539 NA NA NA NA NA NA NA NA 540 OTU_540 NA NA NA NA NA NA NA NA 541 OTU_541 NA NA NA NA NA NA NA NA 542 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;environmental samples;Veillonella genomosp. P1 oral clone MB5_P17 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella genomosp. P1 oral clone MB5_P17 NA 543 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 544 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 545 OTU_545 NA NA NA NA NA NA NA NA 546 OTU_546 NA NA NA NA NA NA NA NA 547 OTU_547 NA NA NA NA NA NA NA NA 548 OTU_548 NA NA NA NA NA NA NA NA 549 OTU_549 NA NA NA NA NA NA NA NA 550 OTU_550 NA NA NA NA NA NA NA NA 551 OTU_551 NA NA NA NA NA NA NA NA 552 OTU_552 NA NA NA NA NA NA NA NA 553 OTU_553 NA NA NA NA NA NA NA NA 554 OTU_554 NA NA NA NA NA NA NA NA 555 OTU_555 NA NA NA NA NA NA NA NA 556 OTU_556 NA NA NA NA NA NA NA NA 557 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 558 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter showae Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter showae NA 559 OTU_559 NA NA NA NA NA NA NA NA 560 OTU_560 NA NA NA NA NA NA NA NA 561 OTU_561 NA NA NA NA NA NA NA NA 562 OTU_562 NA NA NA NA NA NA NA NA 563 OTU_563 NA NA NA NA NA NA NA NA 564 OTU_564 NA NA NA NA NA NA NA NA 565 OTU_565 NA NA NA NA NA NA NA NA 566 OTU_566 NA NA NA NA NA NA NA NA 567 OTU_567 NA NA NA NA NA NA NA NA 568 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter curvus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter curvus NA 569 OTU_569 NA NA NA NA NA NA NA NA 570 OTU_570 NA NA NA NA NA NA NA NA 571 OTU_571 NA NA NA NA NA NA NA NA 572 OTU_572 NA NA NA NA NA NA NA NA 573 OTU_573 NA NA NA NA NA NA NA NA 574 OTU_574 NA NA NA NA NA NA NA NA 575 OTU_575 NA NA NA NA NA NA NA NA 576 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter mucosalis-like bacterium Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter mucosalis-like bacterium NA 577 OTU_577 NA NA NA NA NA NA NA NA 578 OTU_578 NA NA NA NA NA NA NA NA 579 OTU_579 NA NA NA NA NA NA NA NA 580 OTU_580 NA NA NA NA NA NA NA NA 581 OTU_581 NA NA NA NA NA NA NA NA 582 OTU_582 NA NA NA NA NA NA NA NA 583 OTU_583 NA NA NA NA NA NA NA NA 584 OTU_584 NA NA NA NA NA NA NA NA 585 OTU_585 NA NA NA NA NA NA NA NA 586 OTU_586 NA NA NA NA NA NA NA NA 587 OTU_587 NA NA NA NA NA NA NA NA 588 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Porphyromonas;environmental samples;Porphyromonas sp. oral clone P4GB_100 P2 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas Porphyromonas sp. oral clone P4GB_100 P2 NA 589 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 590 OTU_590 NA NA NA NA NA NA NA NA 591 OTU_591 NA NA NA NA NA NA NA NA 592 OTU_592 NA NA NA NA NA NA NA NA 593 OTU_593 NA NA NA NA NA NA NA NA 594 OTU_594 NA NA NA NA NA NA NA NA 595 OTU_595 NA NA NA NA NA NA NA NA 596 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 597 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 598 OTU_598 NA NA NA NA NA NA NA NA 599 OTU_599 NA NA NA NA NA NA NA NA 600 OTU_600 NA NA NA NA NA NA NA NA 601 OTU_601 NA NA NA NA NA NA NA NA 602 OTU_602 NA NA NA NA NA NA NA NA 603 OTU_603 NA NA NA NA NA NA NA NA 604 OTU_604 NA NA NA NA NA NA NA NA 605 OTU_605 NA NA NA NA NA NA NA NA 606 OTU_606 NA NA NA NA NA NA NA NA 607 OTU_607 NA NA NA NA NA NA NA NA 608 OTU_608 NA NA NA NA NA NA NA NA 609 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 610 OTU_610 NA NA NA NA NA NA NA NA 611 OTU_611 NA NA NA NA NA NA NA NA 612 OTU_612 NA NA NA NA NA NA NA NA 613 OTU_613 NA NA NA NA NA NA NA NA 614 OTU_614 NA NA NA NA NA NA NA NA 615 OTU_615 NA NA NA NA NA NA NA NA 616 OTU_616 NA NA NA NA NA NA NA NA 617 OTU_617 NA NA NA NA NA NA NA NA 618 OTU_618 NA NA NA NA NA NA NA NA 619 OTU_619 NA NA NA NA NA NA NA NA 620 ;cellular organisms;Bacteria;Firmicutes;Erysipelotrichi;Erysipelotrichales;Erysipelotrichaceae;Bulleidia;Bulleidia extructa Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Bulleidia Bulleidia extructa NA 621 OTU_621 NA NA NA NA NA NA NA NA 622 OTU_622 NA NA NA NA NA NA NA NA 623 OTU_623 NA NA NA NA NA NA NA NA 624 OTU_624 NA NA NA NA NA NA NA NA 625 OTU_625 NA NA NA NA NA NA NA NA 626 OTU_626 NA NA NA NA NA NA NA NA 627 OTU_627 NA NA NA NA NA NA NA NA 628 OTU_628 NA NA NA NA NA NA NA NA 629 OTU_629 NA NA NA NA NA NA NA NA 630 OTU_630 NA NA NA NA NA NA NA NA 631 OTU_631 NA NA NA NA NA NA NA NA 632 OTU_632 NA NA NA NA NA NA NA NA 633 OTU_633 NA NA NA NA NA NA NA NA 634 OTU_634 NA NA NA NA NA NA NA NA 635 OTU_635 NA NA NA NA NA NA NA NA 636 OTU_636 NA NA NA NA NA NA NA NA 637 OTU_637 NA NA NA NA NA NA NA NA 638 OTU_638 NA NA NA NA NA NA NA NA 639 OTU_639 NA NA NA NA NA NA NA NA 640 OTU_640 NA NA NA NA NA NA NA NA 641 OTU_641 NA NA NA NA NA NA NA NA 642 OTU_642 NA NA NA NA NA NA NA NA 643 OTU_643 NA NA NA NA NA NA NA NA 644 OTU_644 NA NA NA NA NA NA NA NA 645 OTU_645 NA NA NA NA NA NA NA NA 646 OTU_646 NA NA NA NA NA NA NA NA 647 OTU_647 NA NA NA NA NA NA NA NA 648 OTU_648 NA NA NA NA NA NA NA NA 649 OTU_649 NA NA NA NA NA NA NA NA 650 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella melaninogenica Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella melaninogenica NA 651 OTU_651 NA NA NA NA NA NA NA NA 652 OTU_652 NA NA NA NA NA NA NA NA 653 OTU_653 NA NA NA NA NA NA NA NA 654 OTU_654 NA NA NA NA NA NA NA NA 655 OTU_655 NA NA NA NA NA NA NA NA 656 OTU_656 NA NA NA NA NA NA NA NA 657 OTU_657 NA NA NA NA NA NA NA NA 658 OTU_658 NA NA NA NA NA NA NA NA 659 OTU_659 NA NA NA NA NA NA NA NA 660 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter mucosalis-like bacterium Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter mucosalis-like bacterium NA 661 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 662 OTU_662 NA NA NA NA NA NA NA NA 663 OTU_663 NA NA NA NA NA NA NA NA 664 OTU_664 NA NA NA NA NA NA NA NA 665 OTU_665 NA NA NA NA NA NA NA NA 666 OTU_666 NA NA NA NA NA NA NA NA 667 OTU_667 NA NA NA NA NA NA NA NA 668 OTU_668 NA NA NA NA NA NA NA NA 669 OTU_669 NA NA NA NA NA NA NA NA 670 OTU_670 NA NA NA NA NA NA NA NA 671 OTU_671 NA NA NA NA NA NA NA NA 672 OTU_672 NA NA NA NA NA NA NA NA 673 OTU_673 NA NA NA NA NA NA NA NA 674 OTU_674 NA NA NA NA NA NA NA NA 675 OTU_675 NA NA NA NA NA NA NA NA 676 OTU_676 NA NA NA NA NA NA NA NA 677 ;cellular organisms;Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae Nosocomiicoccus Nosocomiicoccus ampullae NA 678 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 679 OTU_679 NA NA NA NA NA NA NA NA 680 OTU_680 NA NA NA NA NA NA NA NA 681 OTU_681 NA NA NA NA NA NA NA NA 682 OTU_682 NA NA NA NA NA NA NA NA 683 OTU_683 NA NA NA NA NA NA NA NA 684 OTU_684 NA NA NA NA NA NA NA NA 685 OTU_685 NA NA NA NA NA NA NA NA 686 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Actinobacteridae;Actinomycetales;Propionibacterineae;Propionibacteriaceae;Propionibacterium;Propionibacterium acnes Bacteria Actinobacteria Actinobacteria (class) Actinomycetales Propionibacteriaceae Propionibacterium Propionibacterium acnes NA 687 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter mucosalis-like bacterium Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter mucosalis-like bacterium NA 688 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter mucosalis-like bacterium Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter mucosalis-like bacterium NA 689 OTU_689 NA NA NA NA NA NA NA NA 690 OTU_690 NA NA NA NA NA NA NA NA 691 OTU_691 NA NA NA NA NA NA NA NA 692 OTU_692 NA NA NA NA NA NA NA NA 693 OTU_693 NA NA NA NA NA NA NA NA 694 OTU_694 NA NA NA NA NA NA NA NA 695 OTU_695 NA NA NA NA NA NA NA NA 696 OTU_696 NA NA NA NA NA NA NA NA 697 OTU_697 NA NA NA NA NA NA NA NA 698 OTU_698 NA NA NA NA NA NA NA NA 699 OTU_699 NA NA NA NA NA NA NA NA 700 OTU_700 NA NA NA NA NA NA NA NA 701 OTU_701 NA NA NA NA NA NA NA NA 702 OTU_702 NA NA NA NA NA NA NA NA 703 OTU_703 NA NA NA NA NA NA NA NA 704 OTU_704 NA NA NA NA NA NA NA NA 705 OTU_705 NA NA NA NA NA NA NA NA 706 OTU_706 NA NA NA NA NA NA NA NA 707 OTU_707 NA NA NA NA NA NA NA NA 708 OTU_708 NA NA NA NA NA NA NA NA 709 OTU_709 NA NA NA NA NA NA NA NA 710 OTU_710 NA NA NA NA NA NA NA NA 711 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella rodentium Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella rodentium NA 712 OTU_712 NA NA NA NA NA NA NA NA 713 OTU_713 NA NA NA NA NA NA NA NA 714 OTU_714 NA NA NA NA NA NA NA NA 715 OTU_715 NA NA NA NA NA NA NA NA 716 OTU_716 NA NA NA NA NA NA NA NA 717 OTU_717 NA NA NA NA NA NA NA NA 718 OTU_718 NA NA NA NA NA NA NA NA 719 OTU_719 NA NA NA NA NA NA NA NA 720 OTU_720 NA NA NA NA NA NA NA NA 721 OTU_721 NA NA NA NA NA NA NA NA 722 OTU_722 NA NA NA NA NA NA NA NA 723 OTU_723 NA NA NA NA NA NA NA NA 724 OTU_724 NA NA NA NA NA NA NA NA 725 OTU_725 NA NA NA NA NA NA NA NA 726 OTU_726 NA NA NA NA NA NA NA NA 727 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter mucosalis-like bacterium Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter mucosalis-like bacterium NA 728 OTU_728 NA NA NA NA NA NA NA NA 729 OTU_729 NA NA NA NA NA NA NA NA 730 OTU_730 NA NA NA NA NA NA NA NA 731 OTU_731 NA NA NA NA NA NA NA NA 732 OTU_732 NA NA NA NA NA NA NA NA 733 OTU_733 NA NA NA NA NA NA NA NA 734 OTU_734 NA NA NA NA NA NA NA NA 735 OTU_735 NA NA NA NA NA NA NA NA 736 OTU_736 NA NA NA NA NA NA NA NA 737 OTU_737 NA NA NA NA NA NA NA NA 738 OTU_738 NA NA NA NA NA NA NA NA 739 OTU_739 NA NA NA NA NA NA NA NA 740 OTU_740 NA NA NA NA NA NA NA NA 741 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Actinobacteridae;Actinomycetales;Actinomycineae;Actinomycetaceae;Actinomyces;Actinomyces sp. HA3 Bacteria Actinobacteria Actinobacteria (class) Actinomycetales Actinomycetaceae Actinomyces Actinomyces sp. HA3 NA 742 OTU_742 NA NA NA NA NA NA NA NA 743 OTU_743 NA NA NA NA NA NA NA NA 744 OTU_744 NA NA NA NA NA NA NA NA 745 OTU_745 NA NA NA NA NA NA NA NA 746 OTU_746 NA NA NA NA NA NA NA NA 747 OTU_747 NA NA NA NA NA NA NA NA 748 OTU_748 NA NA NA NA NA NA NA NA 749 OTU_749 NA NA NA NA NA NA NA NA 750 OTU_750 NA NA NA NA NA NA NA NA 751 OTU_751 NA NA NA NA NA NA NA NA 752 OTU_752 NA NA NA NA NA NA NA NA 753 OTU_753 NA NA NA NA NA NA NA NA 754 OTU_754 NA NA NA NA NA NA NA NA 755 OTU_755 NA NA NA NA NA NA NA NA 756 OTU_756 NA NA NA NA NA NA NA NA 757 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;environmental samples;Selenomonas sp. oral clone EW051a Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas Selenomonas sp. oral clone EW051a NA 758 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter mucosalis-like bacterium Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter mucosalis-like bacterium NA 759 OTU_759 NA NA NA NA NA NA NA NA 760 OTU_760 NA NA NA NA NA NA NA NA 761 OTU_761 NA NA NA NA NA NA NA NA 762 OTU_762 NA NA NA NA NA NA NA NA 763 OTU_763 NA NA NA NA NA NA NA NA 764 OTU_764 NA NA NA NA NA NA NA NA 765 OTU_765 NA NA NA NA NA NA NA NA 766 OTU_766 NA NA NA NA NA NA NA NA 767 OTU_767 NA NA NA NA NA NA NA NA 768 OTU_768 NA NA NA NA NA NA NA NA 769 OTU_769 NA NA NA NA NA NA NA NA 770 OTU_770 NA NA NA NA NA NA NA NA 771 OTU_771 NA NA NA NA NA NA NA NA 772 OTU_772 NA NA NA NA NA NA NA NA 773 OTU_773 NA NA NA NA NA NA NA NA 774 OTU_774 NA NA NA NA NA NA NA NA 775 OTU_775 NA NA NA NA NA NA NA NA 776 OTU_776 NA NA NA NA NA NA NA NA 777 OTU_777 NA NA NA NA NA NA NA NA 778 OTU_778 NA NA NA NA NA NA NA NA 779 OTU_779 NA NA NA NA NA NA NA NA 780 OTU_780 NA NA NA NA NA NA NA NA 781 OTU_781 NA NA NA NA NA NA NA NA 782 OTU_782 NA NA NA NA NA NA NA NA 783 OTU_783 NA NA NA NA NA NA NA NA 784 ;cellular organisms;Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;Haemophilus parainfluenzae Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus Haemophilus parainfluenzae NA 785 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella montpellierensis Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella montpellierensis NA 786 OTU_786 NA NA NA NA NA NA NA NA 787 OTU_787 NA NA NA NA NA NA NA NA 788 OTU_788 NA NA NA NA NA NA NA NA 789 OTU_789 NA NA NA NA NA NA NA NA 790 OTU_790 NA NA NA NA NA NA NA NA 791 OTU_791 NA NA NA NA NA NA NA NA 792 OTU_792 NA NA NA NA NA NA NA NA 793 OTU_793 NA NA NA NA NA NA NA NA 794 OTU_794 NA NA NA NA NA NA NA NA 795 OTU_795 NA NA NA NA NA NA NA NA 796 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella montpellierensis Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella montpellierensis NA 797 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Coriobacteridae;Coriobacteriales;Coriobacterineae;Coriobacteriaceae;Atopobium;Atopobium parvulum Bacteria Actinobacteria Actinobacteria (class) Coriobacteriales Coriobacteriaceae Atopobium Atopobium parvulum NA 798 OTU_798 NA NA NA NA NA NA NA NA 799 OTU_799 NA NA NA NA NA NA NA NA 800 OTU_800 NA NA NA NA NA NA NA NA 801 OTU_801 NA NA NA NA NA NA NA NA 802 OTU_802 NA NA NA NA NA NA NA NA 803 OTU_803 NA NA NA NA NA NA NA NA 804 OTU_804 NA NA NA NA NA NA NA NA 805 OTU_805 NA NA NA NA NA NA NA NA 806 OTU_806 NA NA NA NA NA NA NA NA 807 OTU_807 NA NA NA NA NA NA NA NA 808 OTU_808 NA NA NA NA NA NA NA NA 809 OTU_809 NA NA NA NA NA NA NA NA 810 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;environmental samples;Prevotella sp. oral clone AA020 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella sp. oral clone AA020 NA 811 OTU_811 NA NA NA NA NA NA NA NA 812 OTU_812 NA NA NA NA NA NA NA NA 813 OTU_813 NA NA NA NA NA NA NA NA 814 OTU_814 NA NA NA NA NA NA NA NA 815 OTU_815 NA NA NA NA NA NA NA NA 816 OTU_816 NA NA NA NA NA NA NA NA 817 OTU_817 NA NA NA NA NA NA NA NA 818 OTU_818 NA NA NA NA NA NA NA NA 819 OTU_819 NA NA NA NA NA NA NA NA 820 OTU_820 NA NA NA NA NA NA NA NA 821 OTU_821 NA NA NA NA NA NA NA NA 822 OTU_822 NA NA NA NA NA NA NA NA 823 OTU_823 NA NA NA NA NA NA NA NA 824 OTU_824 NA NA NA NA NA NA NA NA 825 OTU_825 NA NA NA NA NA NA NA NA 826 OTU_826 NA NA NA NA NA NA NA NA 827 OTU_827 NA NA NA NA NA NA NA NA 828 OTU_828 NA NA NA NA NA NA NA NA 829 OTU_829 NA NA NA NA NA NA NA NA 830 ;cellular organisms;Bacteria;Actinobacteria;Actinobacteria (class);Actinobacteridae;Actinomycetales;Micrococcineae;Microbacteriaceae;Frigoribacterium;Frigoribacterium sp. pfB31 Bacteria Actinobacteria Actinobacteria (class) Actinomycetales Microbacteriaceae Frigoribacterium Frigoribacterium sp. pfB31 NA 831 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella montpellierensis Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella montpellierensis NA 832 OTU_832 NA NA NA NA NA NA NA NA 833 OTU_833 NA NA NA NA NA NA NA NA 834 OTU_834 NA NA NA NA NA NA NA NA 835 OTU_835 NA NA NA NA NA NA NA NA 836 OTU_836 NA NA NA NA NA NA NA NA 837 OTU_837 NA NA NA NA NA NA NA NA 838 OTU_838 NA NA NA NA NA NA NA NA 839 OTU_839 NA NA NA NA NA NA NA NA 840 OTU_840 NA NA NA NA NA NA NA NA 841 OTU_841 NA NA NA NA NA NA NA NA 842 OTU_842 NA NA NA NA NA NA NA NA 843 OTU_843 NA NA NA NA NA NA NA NA 844 OTU_844 NA NA NA NA NA NA NA NA 845 OTU_845 NA NA NA NA NA NA NA NA 846 OTU_846 NA NA NA NA NA NA NA NA 847 OTU_847 NA NA NA NA NA NA NA NA 848 OTU_848 NA NA NA NA NA NA NA NA 849 OTU_849 NA NA NA NA NA NA NA NA 850 OTU_850 NA NA NA NA NA NA NA NA 851 OTU_851 NA NA NA NA NA NA NA NA 852 OTU_852 NA NA NA NA NA NA NA NA 853 OTU_853 NA NA NA NA NA NA NA NA 854 OTU_854 NA NA NA NA NA NA NA NA 855 OTU_855 NA NA NA NA NA NA NA NA 856 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella intermedia Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella intermedia NA 857 ;cellular organisms;Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Comamonadaceae;Acidovorax;Acidovorax sp. LR17 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax Acidovorax sp. LR17 NA 858 OTU_858 NA NA NA NA NA NA NA NA 859 OTU_859 NA NA NA NA NA NA NA NA 860 OTU_860 NA NA NA NA NA NA NA NA 861 OTU_861 NA NA NA NA NA NA NA NA 862 OTU_862 NA NA NA NA NA NA NA NA 863 OTU_863 NA NA NA NA NA NA NA NA 864 OTU_864 NA NA NA NA NA NA NA NA 865 OTU_865 NA NA NA NA NA NA NA NA 866 OTU_866 NA NA NA NA NA NA NA NA 867 OTU_867 NA NA NA NA NA NA NA NA 868 OTU_868 NA NA NA NA NA NA NA NA 869 OTU_869 NA NA NA NA NA NA NA NA 870 OTU_870 NA NA NA NA NA NA NA NA 871 OTU_871 NA NA NA NA NA NA NA NA 872 OTU_872 NA NA NA NA NA NA NA NA 873 OTU_873 NA NA NA NA NA NA NA NA 874 OTU_874 NA NA NA NA NA NA NA NA 875 OTU_875 NA NA NA NA NA NA NA NA 876 OTU_876 NA NA NA NA NA NA NA NA 877 OTU_877 NA NA NA NA NA NA NA NA 878 OTU_878 NA NA NA NA NA NA NA NA 879 OTU_879 NA NA NA NA NA NA NA NA 880 OTU_880 NA NA NA NA NA NA NA NA 881 OTU_881 NA NA NA NA NA NA NA NA 882 OTU_882 NA NA NA NA NA NA NA NA 883 OTU_883 NA NA NA NA NA NA NA NA 884 OTU_884 NA NA NA NA NA NA NA NA 885 OTU_885 NA NA NA NA NA NA NA NA 886 OTU_886 NA NA NA NA NA NA NA NA 887 OTU_887 NA NA NA NA NA NA NA NA 888 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;environmental samples;Campylobacter sp. oral clone BB120 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter sp. oral clone BB120 NA 889 OTU_889 NA NA NA NA NA NA NA NA 890 OTU_890 NA NA NA NA NA NA NA NA 891 OTU_891 NA NA NA NA NA NA NA NA 892 OTU_892 NA NA NA NA NA NA NA NA 893 OTU_893 NA NA NA NA NA NA NA NA 894 OTU_894 NA NA NA NA NA NA NA NA 895 OTU_895 NA NA NA NA NA NA NA NA 896 OTU_896 NA NA NA NA NA NA NA NA 897 OTU_897 NA NA NA NA NA NA NA NA 898 OTU_898 NA NA NA NA NA NA NA NA 899 OTU_899 NA NA NA NA NA NA NA NA 900 OTU_900 NA NA NA NA NA NA NA NA 901 OTU_901 NA NA NA NA NA NA NA NA 902 OTU_902 NA NA NA NA NA NA NA NA 903 OTU_903 NA NA NA NA NA NA NA NA 904 OTU_904 NA NA NA NA NA NA NA NA 905 OTU_905 NA NA NA NA NA NA NA NA 906 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter rectus Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter rectus NA 907 OTU_907 NA NA NA NA NA NA NA NA 908 OTU_908 NA NA NA NA NA NA NA NA 909 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Veillonella;Veillonella montpellierensis Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella Veillonella montpellierensis NA 910 OTU_910 NA NA NA NA NA NA NA NA 911 OTU_911 NA NA NA NA NA NA NA NA 912 OTU_912 NA NA NA NA NA NA NA NA 913 OTU_913 NA NA NA NA NA NA NA NA 914 OTU_914 NA NA NA NA NA NA NA NA 915 OTU_915 NA NA NA NA NA NA NA NA 916 OTU_916 NA NA NA NA NA NA NA NA 917 OTU_917 NA NA NA NA NA NA NA NA 918 OTU_918 NA NA NA NA NA NA NA NA 919 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella intermedia Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella intermedia NA 920 ;cellular organisms;Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Streptococcus;Streptococcus dysgalactiae group;Streptococcus dysgalactiae Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus dysgalactiae NA 921 OTU_921 NA NA NA NA NA NA NA NA 922 OTU_922 NA NA NA NA NA NA NA NA 923 OTU_923 NA NA NA NA NA NA NA NA 924 OTU_924 NA NA NA NA NA NA NA NA 925 OTU_925 NA NA NA NA NA NA NA NA 926 OTU_926 NA NA NA NA NA NA NA NA 927 OTU_927 NA NA NA NA NA NA NA NA 928 OTU_928 NA NA NA NA NA NA NA NA 929 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella salivae Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella salivae NA 930 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;environmental samples;Selenomonas sp. oral clone EW051a Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas Selenomonas sp. oral clone EW051a NA 931 OTU_931 NA NA NA NA NA NA NA NA 932 OTU_932 NA NA NA NA NA NA NA NA 933 OTU_933 NA NA NA NA NA NA NA NA 934 OTU_934 NA NA NA NA NA NA NA NA 935 OTU_935 NA NA NA NA NA NA NA NA 936 OTU_936 NA NA NA NA NA NA NA NA 937 ;cellular organisms;Bacteria;Proteobacteria;Gammaproteobacteria;Pasteurellales;Pasteurellaceae;Haemophilus;Haemophilus parainfluenzae Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus Haemophilus parainfluenzae NA 938 OTU_938 NA NA NA NA NA NA NA NA 939 OTU_939 NA NA NA NA NA NA NA NA 940 OTU_940 NA NA NA NA NA NA NA NA 941 OTU_941 NA NA NA NA NA NA NA NA 942 OTU_942 NA NA NA NA NA NA NA NA 943 OTU_943 NA NA NA NA NA NA NA NA 944 OTU_944 NA NA NA NA NA NA NA NA 945 OTU_945 NA NA NA NA NA NA NA NA 946 ;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;environmental samples;Campylobacter sp. oral clone BB120 Bacteria Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter Campylobacter sp. oral clone BB120 NA 947 OTU_947 NA NA NA NA NA NA NA NA 948 OTU_948 NA NA NA NA NA NA NA NA 949 OTU_949 NA NA NA NA NA NA NA NA 950 OTU_950 NA NA NA NA NA NA NA NA 951 OTU_951 NA NA NA NA NA NA NA NA 952 OTU_952 NA NA NA NA NA NA NA NA 953 OTU_953 NA NA NA NA NA NA NA NA 954 OTU_954 NA NA NA NA NA NA NA NA 955 OTU_955 NA NA NA NA NA NA NA NA 956 OTU_956 NA NA NA NA NA NA NA NA 957 OTU_957 NA NA NA NA NA NA NA NA 958 OTU_958 NA NA NA NA NA NA NA NA 959 OTU_959 NA NA NA NA NA NA NA NA 960 OTU_960 NA NA NA NA NA NA NA NA 961 OTU_961 NA NA NA NA NA NA NA NA 962 OTU_962 NA NA NA NA NA NA NA NA 963 OTU_963 NA NA NA NA NA NA NA NA 964 OTU_964 NA NA NA NA NA NA NA NA 965 OTU_965 NA NA NA NA NA NA NA NA 966 OTU_966 NA NA NA NA NA NA NA NA 967 OTU_967 NA NA NA NA NA NA NA NA 968 OTU_968 NA NA NA NA NA NA NA NA 969 OTU_969 NA NA NA NA NA NA NA NA 970 OTU_970 NA NA NA NA NA NA NA NA 971 OTU_971 NA NA NA NA NA NA NA NA 972 OTU_972 NA NA NA NA NA NA NA NA 973 OTU_973 NA NA NA NA NA NA NA NA 974 OTU_974 NA NA NA NA NA NA NA NA 975 OTU_975 NA NA NA NA NA NA NA NA 976 OTU_976 NA NA NA NA NA NA NA NA 977 OTU_977 NA NA NA NA NA NA NA NA 978 OTU_978 NA NA NA NA NA NA NA NA 979 OTU_979 NA NA NA NA NA NA NA NA 980 OTU_980 NA NA NA NA NA NA NA NA 981 ;cellular organisms;Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales incertae sedis;Clostridiales Family XI. Incertae Sedis;Peptoniphilus;Peptoniphilus sp. gpac121 Bacteria Firmicutes Clostridia Clostridiales Clostridiales Family XI. Incertae Sedis Peptoniphilus Peptoniphilus sp. gpac121 NA 982 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella intermedia Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella intermedia NA 983 ;cellular organisms;Bacteria;Bacteroidetes/Chlorobi group;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella;Prevotella intermedia Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella intermedia NA 984 OTU_984 NA NA NA NA NA NA NA NA 985 OTU_985 NA NA NA NA NA NA NA NA 986 OTU_986 NA NA NA NA NA NA NA NA 987 OTU_987 NA NA NA NA NA NA NA NA 988 OTU_988 NA NA NA NA NA NA NA NA 989 OTU_989 NA NA NA NA NA NA NA NA 990 ;cellular organisms;Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas;environmental samples;Selenomonas sp. oral clone BP2-20 Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Selenomonas Selenomonas sp. oral clone BP2-20 NA 991 OTU_991 NA NA NA NA NA NA NA NA 992 OTU_992 NA NA NA NA NA NA NA NA 993 OTU_993 NA NA NA NA NA NA NA NA 994 OTU_994 NA NA NA NA NA NA NA NA 995 OTU_995 NA NA NA NA NA NA NA NA 996 OTU_996 NA NA NA NA NA NA NA NA 997 OTU_997 NA NA NA NA NA NA NA NA 998 ;cellular organisms;Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales incertae sedis;Clostridiales Family XI. Incertae Sedis;Finegoldia;Finegoldia magna Bacteria Firmicutes Clostridia Clostridiales Clostridiales Family XI. Incertae Sedis Finegoldia Finegoldia magna NA 999 OTU_999 NA NA NA NA NA NA NA NA 1000 OTU_1000 NA NA NA NA NA NA NA NA metagenomeSeq/inst/extdata/lungfit.rds0000644000175400017540000026574013175714310021203 0ustar00biocbuildbiocbuildwTT7dD3 9*bD `FP%)(QA%HP-9C7QrΡrgoyuf\fլU5W`AGG@ȸ_7//z:&:7ϛ11,kƲr635O1ۦS+1jr_*LG/S8WM^'`e91E"TH?7ƕ0WN_ ;gRYXxnneD]> &!6KX_0.[zˆ3V. PPWmM7|4ءcVHEb'06tc Om_D_(D2_5,H}Q$ ZV}~:>lIò _ vncKXVSBlY٤ ?^w.&5qa;c ШwNvͺN=oe|r&Z0;Yt&$;@5cیո1N8s˪7MiD@2OIe*r!5P}yЗ=tvO= S!!mOПu8ċ&{צBŮQ+{p^ EkϘbqgy (#/45uc3O f$,1 M6Z%KM&%<%w4ZDG|Pzh`/׽)J!K\^ ]LZ'&Nj /Ɨb+r_%X\6aKnAGEl[9q).ٺ'|zL'җ;߼bEa7=q}EP"k̙7N wؿ=B7u}5/Ty^fûXAkw >I!ǠkGV`Cߋ_=qBqzpV9owPΉ*96޶D!tn۱ shH!"B('ηݩf|p>H*N|ڴ  U0}Rt;Kfɋm2azO}7 Lnbe o_A03&L=x9{~3Hvp ݛ@/'fcmFnsPb%agM׀Vgtt y.h׵;gBw7[yatV&cg tky9&3?\F&_]/jTQmXZsФGjL`*sCrs0”#lpFȱǒoTBO?Ŋ M`F@% {9t77P4VH)&eOrrLӰ۵U*=, }`,ZF^_cQw 0BU_n*Nk?DVE %u&e5???ZUh5?ܫ$VWPVVSVV#(/o t)**o?J *?(+*Cѫ,/ JȬng_J+)GYUSC(VZM UTQQ7Z~U,(8fy%?3Jq*jrZe<7f9?(ǵ JyH1+(*#.ǂ@PGQYIߘ[MQYCUdȿQQQWXJr *yE5gTaY@IA_+c?obr0j“YYNu{ƿ&9%tۚ\c/הmՎഽU_ؙZt1)6>҄zruPr m} u$yPQ׀yj=8Cm^mP:ԤnZ}q.D(@ݗq~аR}gNYA]`_Er:~u,Nق*tQP"Yg>gw/B]W'ՊU_)tY"m^W\P8j\oz=wٗ5^aDGƁql:GE^/Sjd?Al=wyMԳC}"WԧӸD>yhn67q6qp&xu^?m*MkP B2_ؤ;BSG4OK 7&T.Lt/kyԭqh1W_̀^ ..zu[E>nTd{{Auδ5ܝ76[5?Y\kC>%bU/#_zuzsI)PMpmw\OJra_lj|usv-rlA=P/{Z1Ⱦ;cQI%O*{tȇ  =Sd^mWs0\.+db#N;|oal% q.I)͊_|vjq{* yO%a9 Ǥ]Y%{UޡE 'J^g:u :&. {L%pq9_p?]gi;ן&y DL2 ˏȶ@6v9~tioWNVrZqN)Ej W€vҷY^Q' )KY5t5~e շ7=N2VP]j(s^ H 95@潔' 7d ZD[My-@>2f2@~?qk_>[=WK=@f^d޴OJV~8HӞcLW̕ڪϔ̹@c1)_͓C%y_~(`)T¾gB|r/e5oP#8/ $E/S}*.2u'槗b^ +rt,Iռz9h\{GNr/wVEEyQP]Sr<vU(i*&9ئNB']R~oǶ!s` k=гg Jq){ OGwiSQ@JAԼ֕u{?O;W;p6h.EbS6Ie^ќfEMHS2v,gTWzV¢}~vy@'Gȉ󞇽MO|m@ѕ}KfԆ`C®끖*6gC0= ygRBu=3;߱Ì\0o"Zslja`[hZX3@^jJ91ZJk3S0=%d8LS Fo5md7$4vE辸?$ Cb#0!VV#6~ԍ,0MpHUQ݉i`r:qv ];:QP@{ ƶ_;TS*@- ?`P+sKb` nkaZ| D/tUY`)H2}aH؊/;P85unj-3CL?8p*"ٸky~Fo433A) h{yBG$`L:4#lEǷX5aJ1K+ aap_s(.:S"\0S;/8L }W{oӁa%*4vK u-Bi=#c}:xy_.:_ǿ9xu}9u޿o?o!wo]oi}aǟ?~;oOǿ^a{f|u4l3$h~քbL?wt{x?_jxƿ)ݎ Z{&bw/b%Gy%18LYY~5Ce;j¤Z䳁K0],.;Gseے O<܀6HE,аIe/ܕwa> U`Z Oֈ\D,@T),TwI`;'gz.PCqB-:Z:AC03&{}-PtOici@?k^({^#1W_9|4`)E'zCK!8 6wgboك?Ime3۠/4SCZN,HRfNiUq4eEwդH]{ 9H1+P(?JG05 t(x3) PP0 (`ɠG`$ F1w ``+t t(ѡGϠGt1ѡG o^#k[?mvm_'0/ݿ>7M̯[5mgoz킝azC񭿦xMnߕ_|mH[ck˿/쳺nlbuum5䖱ݿd;I1646N߻[VTp`@$Dpæֻ޾%Hs@=R/ۖ֕㨩!#OlJ\D#NO}Ӌ /Y}A'Ӱ}%yiEbguXc%FȇNlTYy4q0>voo uQNؑu㟰n3B1/P=܇ͳ'/cYyGvW$/ zjΈcr̥2%)I[<)m5Z:{Iyi9{o9Z*6$Q?ු/˄x ;ڥ`foe$?^Ib= x_-Xwka&v~hݫjx/#Ȑ|#;+zJb%V]kU$ [纇=ơb?JzT$~?=.s}7݄K{ \*wc~ikI¸|œ"8pZK療g!r b~ jlT'b[ r*FX"Kۋ8A7./g{C}N8(j9兓^oϲ`/TW{Rxob-& UT%3J!usV+[10]DjPɀODN?ݗpdv8-[ǥ|̋Ŗ}%qjmЇjH-^xsr6Htn]bWe`mGS`Pv ֓O] D/8){:^^+vPmbbWl 'GgI}n$ܡ H][a8TN Ԁ7ϘT4Amؑt7Ya'qfʳA7+}=5SߦoF9 U&DfFqy0Vuǽ[Hy5t$˗2m> bSAf =2FGY1/1rwmɒFd\~gr{\w @RלV8+9'GhtKo$t{=G3] RDtɜRB{[͏F_uVg+ICYK^^]s?"y3_9_+`3q^30zUNyl, ;*/oh%O͖(yx2~ܠ(jmS8RЖr"}˞mXk-+2b^U`"N-J6_gMj<4,{0+ ' =D1fq}[EspG{ax5Œ1-T[n}+f9{7Px-+!20ium{/a{mCx ?4قFҖmpةFѯC?gٟ 헱OPuM(nɽ s8ZVc!_''Kba0or"C!|PdڠT6'V۰OA?LlEU 5)_yo}*,dQWN]tti…waV|LUbGqvA1M[oK6$\1w(II~3VqY8eKAi쒷TXH I1ז|]4EἎ;vshv?ޱAT6Г9W;*3WLF滙u{ I"6\4c,8/|7 y5F_,;j !A5/_CkV<["81 R5zvtX5+0dǼ+; u,K2_crz\]Opu'78QxJt~^=7q$Nj-ۺSytB8u;m9>`ǮKT'0t> C%NN@C%y}97t8cM IaXwqmNx(8* Ɖ>ڱ0m2Pb!=b&m໺1 ! L\͹ܵZ-/_]!Eo@A$GJQ /}W8#+Ej$^u)PTb(4>g`s_wp9yh Ot{m['~Xi}b0nJ&߅Nfm 7J# `fhKC_b'Bb3PDGEޡl'S0azG3ImSW^abV=/5γNJ /N0pE :oOOݡ]Gk"ox3vܒ=>\?urh-AC w3KMmkOeN3ρK8}um>6?+ Yk(5#&`}>|P$vØ5*&8XDʅMXg2Բ3gC泏~N$PٟGnx|gwA^R+}).hOdŒȻgEOJD]_Iq~=[my R+alۏ)gTj=r? ͪV!n$Ω9cI0{'Ai[ 7f߯M_&yct⊘( N8n<Ůt[{>$7{@oi.f?ms=CZ';]+qVXFI7Bݙ)qJՂ9=zF5°e?sIn枖\W Ԯ٩8}%QlYIs=Ϝ2i}[$L$ptXgfl۷R$f}7IohFiY5 ፮׶ $_X{WxJqÉCgfcq ;/^}8[{J<.G5,WN&J]j֘P!ŜY:ϓ袎n\̱`ؠ5 n8}/[Y{[`e뱾1ØvH¥ul-+4)¡yvIHQ;v+ <̲#vUgΦrd*[}d9qbҞs"5,w6M|&X'jvN%q#춿"Ѥ /UaNk:X7?Qj>iÚ}AԹx%~'ToΣO2ź'q梯*ꢄ^Z%ƮOgu失@{n #Q{̫s}Cj]8i\)LxTlE2(LM̬ 愃/MҫZ!(jw /X &liU4X;ͷ}) /ǶH KXw2T;&(}y\1T X|C@#|n 5›s&,^D =TX@/p}5U~Edql)VУ^^V#I~~HO%C/+3aǎC}&#_uJXGjDkLG*TGaj7 N? O*`w A#K^Zb,g5#vÞemcgXփH y" &*sKgkxWE&px;|.k,*>Cd~fR '8mDZ{J7ZZ||O2o_=^'maVoMNÄ0qh׽kLǙd"!xCW;.kv^ؒ$Z(E>G7%g>Nc2kӰ h? wZc'V-y#bSjUOГ*%.--+[oņOM6CM|YKR{e+ԆTΔxXl hX 龊bAڗBs*j6Ji>scEҳ:GME擝8x!+bs|=!0+& ^u z} sZ~U[ Sm}8 3[Ƈwћ&9ѝZpx˜`iWbɖ Qzq"` }G (sqlIТVBY B: |9vaU |*E&r?%sP4 rnK{8)~*󮝠7FuЕ+&sz}=ޮ>?K~8wFZ8U".p$)M2zF ̝u*a C"@ﭭd 12 s4N_HNV RVXE?eںr=OXT)x ~m$o܅# 6K?JRwH%/~;Lq20(ӻ8p/LDЦko7:S$$ѩ%AvM 8ثqL8}ELN_Coo;,uDӎݝص#~K=/ռt5z2s7q1o~e.`>>oHаpv>Bk?5a}Bdc,7jb.Lih~Ox:óqz1'3&އт¢rس0/8c gMzpo )=MΩ0XGh?o;mbV4lV?37 r5<6#tΤkX_DZؚ|V3t*ߧhmГdn䴱nij^oRu^Ɗ-Bi6&c= >-_O2W8qv>}N1j{ +̒HQ]B*mk 9FL5~T)l.fc0n@W|S2[ +ۜQf ţ>yzڗ8"=p-ٟSSw><:?yzⅱKJK~0N!-,8>mn{"Y3Iȷ!`'kL{ ՂGga*\+597*Oasbcb&[7=%UJ7JBkSf' `kJZ,tå%(/~aɈRrW{P5]6ܽqOo܈[LwcN(!FTƯ'oREn( LP0kƱCj[vb TSbI=>w{t~{9 #GW]\xC O諍k3-])e8ڙrr;3 Ei7Bǧ!goF|<cY&7ƫuvzk%P{i../=Õrf9:ؑBݪ&5S`앍uЙ^z5&FYLݕ&tQ Gn`zjQ &~7zXelH`׫{cٻm՞܄f`] LSW~B㳻 0l( SDQ*֕3r'-웊cvkzV\Ӑ2XWu+O(6]Z/Y&mݑeQЯ4z /;x .e^8{#覵[s KOd-6~rsQ 綰+NbWѭNC\Ⅰ89F%К"NAzL ڹMJ)M'| یoTUc0pxZkι:w+徧BaE.x^)l6:9Z`Tt:~-]# #b# `Ha w!1}2?kQqJYW'LduRMan=sH̨mOBJ2[@[ȏ8,Ⱥ ɟv䏓3K5SxzbX/; 5 ŰcҠZw1Sg K!Ybt<ߞ]b#sڠ)u$[lŇg>UOqP$|GCfK>b973>.{6x m'2R_8)\0O8 4C7jrcѰ`|fS N[،_|3NobWLRc_wHr?;{bҌvؽ&־vRWOIYx QgkZ>4(|4 诼; 2K7*iN2EvP0&3q=Fl>cKm.K/2gjq lgB_Й"qR:>DN?E`.SEn<4"ÅċcP+O~3_~ڰ}r:â _|y\+ ƗBNb^G5|e9 zT;JLlVG,I2*8c N-Vure}w zMY3Vf7oHi ׂ"N$@U 9}cvr06>y:_܁UfOwR tMhiG`Eu%9~RgY-~"- @x7)R[0bç7-+<$ {53ǻ` ?#Zl{kыS=f]Onگ7ޫ84Y'1[=Zz>\{nws*$g %/sB^_g[_[ϟQ<]o|k|יվqyf aM[-dm5ˁ1q#h1uG1aTS%d\iH5߭ o5*xHE.CO YX|?I>— #ZzCF8_cz|[&>tKIAr=V?%fhͬ/g~6kUU͸cӗ [㌿*bF\X%&/"ssL[i5ϟt1ŢvB7\s8}ёmsٳq>mh}9N(>® >EnXW^ɨGH/6ƻJ8MHWi]~ Aڊje{-,\۫  y7Qfnl YE"H^ 0jξ=/ ޚg HI")Nk`&7)8PGghcMq4v]l5ľ^k]PWd6?xm=[?qh^ﺒ lmm&pS}7Od2ϖMOȒwH2s2;Ckd]9Bgay վ 5>k>8.QRv*ŏ]jy8b?bBNl&W$!5ja*[=ȥ8tɄ{ P%"{ ;G~C94{r1yZN{ ^}<8 HTRބm>i+kuRtyW1Kdlִzɮ[g\v+Ħ[I<栳.ة=F1JwpDXw *un46ζ$֞]> 8|NvN̓!{N$q/ fbM^:6~~?E};mϞƂ i5$aFLK(۟M `'&XVy+,l4Y_ueo@+s֡W):`iQ93݆i:;q-ӹgKCqwCR =Nj^ڷ"/:|f8Tff Ӗlfh?(]DsVp҅:ڞHWEfGwOӽeGi<жq i OY9M "`aҕ̽"~㰍OO.Rˁ3R0Ph/Γdk18t8AI}WVU`QN2H %C!UDV-ޜ_{_<\R` }/r:q2"4K'دљĤ8|hʩVV'dFO"-Nџgq DV# C-k1ą(\jѤ.9 'g &fT}ِ8H?DZv4ؚ 'fq)NZ ;t|Rgw+[^f{> q>̶uRZ}'"CJ/+'_!ֱKH3Wjkv(pvMѱWQ/wV^.tGZU>QW {0hGcE޵#u΢87z-5s8'wS+>[|˫4gEljt> 2棗FYYdh/{fml:N' P>YuB1Լu6wç^oG~sz|JO]I?jNc9 2XRYgF;؟b@1ޯ f`7ئ0*^o,@xi/f='2 _gcwo9-`Щ#^خ;b "dp>%&sï;Y"p\⭉{XQ1/հ4J?;%C>5]y) 29+^2k+q'=v-*\ /@V b)=3U.7uI\!ئQQ2x$~;4TQJS5^Q-џCSpىAGGc㆗S0FJ°LB^<rL߼}[uGP_z~š-7Jwas[S&m+:6 R>fsv'͇oB$ Lf zXbΪwq ͳ.)N;쨞UPR ϓXnbnJJc{gsVq˼4\q'pu^2.,B٬qèby(65#*~_.O`*\ZK`Rzݾz^,ɴ&]SHZ΁{[moOs|$Jo+ < EL9~F m6G 1u x/mV c(ǰV. _*u V;&r=u94 5w-a[AuPNzY! ŶVٞFnOf*r)_;eGpZzy3*Edr}vh1=3y[u-tk2"aObXNU\/•abHFz(4W_¹ʝކ$~O`\scY',3xu@b9xD,KS+z;we=} ?$aW5Uاr.}'I|_skदjOROι="9$oqv]%n|O)B I59auS'+LhքeNg<ނ4AØsLߒq?']Q2V)k$LS?Uڮ@Uzg֯cMX>fZKFi=3݂7Be||zR[ܺzFJե=;87?K33s$e(K[^qv=`^. oH<]Z>s&:8݅O^m] rֹNu^d?[t7wCy˾2HdX̨vd(ӘigCdO6NWj@p9K =dřIkUv]ӿ}G܌UZ䇢q}S'Lm#z=pb gs4E]NU޹ӛKdE7>w(!xL~Q{T 9pΐJբƉKk@9Zf5_?Tiz'pƖ/EHYWfv )fٻpODFsO ۦ'|qZlj^}:DVĹKVېv|% 'qA.pRfRFe"%]i ZxpѨ2QR( 8+63;޼ep~R>u't>%j5%㵸4@.qȭn:P} /~bVңSTy-v6_G6+CrH#x_ .덋/IIυnk#Vk׭@첊7[>q*Z[lGݫOMsj^tqUѕs{GTLc6.X?^k{z]AJK 9͎ãO aǗ\c'. JW0#V-TtѦGL_ ΖmmHqVE.>=9Jhn v>>?[F+`~mVn蔈u9򠜬F_R Ɵ2wh{`;~^פpѲNdEb>]4GZ4*V`]9jTⰴj@m7U=Y't\X@$}gMC9iHt,Rχ*ϓOք[5{!f7_ dH >]d7r{*8la߫njZ3Sg2ևڰ2!RZu+u,,AJS_j?Stp*{7ΖQSz a> Bĺ'$P!eBT%.ŞH%WRd+#FkcLS Ĭ}+b¹:m0ׄ8w5mS O}L7qǙƦ38)nsnZ? 'vO8:q2cCDz.j,ߦj;%s3ߕE_8{] {ʼi#r ys, U$V,$gڽgj檱{oĖN LizN8ozbMq\L.fwӆC~)qP}E0:#t7v٥v c 8v)Ҍ TuTK1<" 7܂$Ӭj(ڽǣ.%4G&zh7SBw ́ (~^zvjxk)CR{s.˸ͬעYIsN ݽ9V>=xk>_-G<}Ipfv({ z {pQ9\XlrD/~ąG4qAcj-xkgOU|!X5W'isYmǡޞL#8Fmpe/Vf.*`Ү*&!l_X)0'wI-{ l9xT H4BG~w TT)0ۡSR?|l(Q1G>QɒsItQ`p,ɝZE_ N=-м{r (?Qp8@4vxT+[]uXd5qLY'wu+nzD4M%6TBk<}w ӁW5 qDdu8# dk#cQH7 + с6 _Я 'ʫpF;g.)]pjQ#gDg8m& Nyz: 4es hJ} w!0) {Ae}՟wJ8LwIXyb@<,d,g܈Tބ%>\7 Ov0M@WJE+a4ejO.d$G;qa҉8>+~h/>4ۇc q=d<01G WݭwWV$-DDe+أJpI";o/`^ĵXX_/4m :]sŪ)K^Xn0(;NWֹe!rUhR$B8bWO߿qhKa}g{w[v_\U~}76so֑h>bI"00*(U\Hy0!/9ۀ[F)NtA^7熡:“Ԧ8Ux~%1F)`|Xy>(}w?< &SJ9S;b@}s3@KN8=Ap# Xf OerXv-U~u/L?imZ0g`%A g]]`u@iJY1{yj]z^*r}_0LGPC*ErUZhx$A)@\lf=.J]3 $ 3Q:+OÔ \pmv69l4|=aH6PxNP{Wm0QJߕ Ng%Mgȕo?KPRO>5܃]!/9G5a– iN3Q4 j$nSUH;e[iZ4iOȺ<$%6ʌMR}%SUYFq/`|8x ]zpŏ{{-qF:n >·(j?͗Bx޺ȗĮ < m E]moװOEqk$czj;=1ϵ)Z{Fk3E՛~w4ŃFXa9Wm N4nဓmj _py^Z(C-q!u8͚HyAVay3I6(ƯҶ@wwɗCh(7P]7ݫNa[m-KL_-ۓF7nKljM-Ǣۖpssu5;Tވ\#Q",5SX/!K2Tm=&Xvv~jg+4Ƙ53E~:8qy p]6F1ygB#qJud.|[]V'׏1ۺ-sf0LV޷S=4t6Sqvnn;Juo9|,֦x/*bW}$aoVmTq1﹘~ MnxԚ `9(92uĚWi0Ʈo>gԪ3W]cphYƙ1.⬟t~,?:|jjV)L?^~ZG s~I+xʷwBٵcؕ8j 6q0J)Ll}/.\Hٙ^=(JN/NG1.ZWKHu_w)J%k7k>u3ژ" έ/C?9Ī;0s]R;l|kG(cp"k_A˭b/2pKKVԯZIΗ`wۉH6qf{H Ew֨}q~F>5\)%$,hy};y]Ŀi7'RGBqpۇuXװe)#'z(W uj1~A8`lPm3kC~=E{ݬف5d?ѐ嚉H$sMv%5K f?YCϬC`]NKxhZN8qiJ G@λaJ"qm5zQ'SK@azu 0P$f'Ezum|$D[ZKSڄum4Qp@z9#xڀ[.Ut SӜ2R] Ǡa"(N]N`q[gp@",l/c1p.dRA:l֛ˁg]'`EK@ze=Iv֯\ J˹60ˇ~cw(̴s;n?+'nC+D:!jCF"9/8A:F.ǜ AdZ3g+y.*8O&5CRHA+ݥ]? _{p9f"s6J=83 1mNpNFlwɭG tHU>{!(z&v?O8uGj6 BH-_ظU]oqi ŎbDsM~?4S?Y%* q]s=7aJ:P?L/bW?{Z7;سvbg{bۺt7eE$dX )j+$9ߊEfRL'N~xu{qRz=8F>|Ζg7+>Gq5Q_7a43=sZq`vXzǙ sEq@Ff}ۧZl${=c5cՇolj;0`:q c5T (dnzz-^t j`Ws8UR#>bR?˵'W h<tf:bBf R[(Ve,tt͂Gom~Va17+0o:&s{[ )kŮ |xpnH5[OIt D57g-;Tuc}H7[lpZ_+nkƅy k#J ߙX®у7 piָU׈ݮ{g=yViGb maعQM.҇%Il|D(8tgׁ~rT( \1W'$x<凔`t],ԕ,;>+c~p*:)vgW'!`rZ?=l7P5ۡâL,Uu ||,f~* _V{UT<&+] u10Jj֛C>q>ly>qA8|[S$?vۙ>@G \:0%mNtwɎj.0ͺz7RBFgsXnO71kJ~+;Uv7F;0=(F+%&:tg-L*pk$i|O0yGîu|πdA V~=iĩC_p'qll;Rh.{pZGOHu1 gFIcg) I:_p)lcxeSFf͖˽*%nzwv\j5sdU|S=b`d=+fo6>;O2k%R$_q2I9h $u}֜1I!]ky02%kVRݏrقHxb:_jaA] ;T.o/{`Sγ1(J(jY łxRIoS^ـ*MNvZcV7:GZGjm|7~v{>9R,ة|8BQkDdˋ(SM|VSr*FZ{m6c{O םT9We\d6cw`C['S8:6;jy^Nf*7ExiX8\/܇]ǫBz-~(-O|: %P _z{/N?Հvo/ eǮeYVS/a͏w&oxƋ{aH!.b녏̍WV,v.6ɻ(UUK%!OZ~Շ#u 7#5Ps {e FnSU,vf ua&CݵtJf:/ͼqMܐ8wxǥO8R\f{kٿu^h[YaCgukYy~' _޳O 'bǝ،ǡu8nJ Րpx|]lЮu'.T\Bjk˛ 8^Nߜ߅4K8wc}QԠUc?M^1oNl* {bC8e_9G8q/vt' 5pc{`CK.`;HK= ,TC ^Gl^YGE=þ&IXƵ8p9wkZlkӦzGEqPxy~eiY_u867/G.ⴉW֛2*7y+&5lvqDZ+.e#\aOtO.t-/V͏\= ,xPWۏp O\֊Wvfv:ZOHV2_N-?,ǬQjwIDZ9+!2y\R> q[;- ɮ~NYSv)|G~kĦ##Oj9O`U*5qZ< nlqfŹ#K_I) Ĉ%Ih_?˼!^5oܹ0QՃӭ%8pQF;GnWuL yEhR+nsZe`!p֧а_Ri;E|\/C|^wNA5y͘r_E N3$:-X܃YEnfٶ1PJ ·!×p2x"EQ2p\gT,%:3m6plĎ~wV헛$ʍw_\KU3~ 8K+7~Ҿ'[TCsR<q3>jU!)H[-k`:Qe єj y; =1ǁ/o^ʙMCX'EnfDpv$.$Ǫlj>Bɞoa_5wH_piYV(s=t;c6Al.F h{b,k 4A<ٽz>bwJB@һu&ytBLKeQߺgx?iYYWT7b]^'ɸ@sL=&uR蘩D\Q3\&S iYwv '.toyydI_V8~r^ NlA8>t'/my0%1܆R(j6*8!f q/ zl\y^X22j&ޤr1>~-آ3i_Af_BxnÅ i. HUUOeH?unjۚYKJ7ɵGsMe@-sӫn>Mf4eG=af-A8pzzm"E\^džI.@؇L,!8h 3nUWW MDF0"D|,m~V<)9Kdq^ܑ(qlF&;%FÑ_;M6`wﳩ q! lM `Q8I ʹSQ5i"4weՒ8߫ΰܘ<}SDwyT-v r RƒH)E^"_`C[S1"}{i"hAۇ#=G>FX˗=# -7}%${!N9y|<L\&u&M:׳#$c$MD[ ."?4TLY+Mϼy"B NK]#=sBpޯVWX #; z33'[%0X<Ҥqfj͵^j.q0UĆ[XC_UTZDoXa 3tj/R? 0u{@I֩}.@~tMVT0~GA?5eP[Rf}? ?#[a`w%xޮ$̐)2.r% *ЊX&}*J3?o Y,9If\&9)[e8wg80fzMv'Ô{qNmwe}@2LЍjA}?F[hCX?_n8ճY=~R?:.ͭ/;..d([|=TկcmǶkۤm[fykQ][:}'P:3Qu9# 7,]`+AK'&$$'9QG?G#ΊlBC{' ~ѝQD0d5DefO@&jdF7= bms]JjSɨݒJԕT)\od ۇgry"]|' h^GoG? <; <-~&p1-jrkar [za㏞~= u;p~u2EԫwyG tQ}G[]QGxrFv\ J8ҞgeN); \F9o~jw+}JUsC7șAE(q[)=(j@aLءzP뽕DP\MH$cge(7qgm!"czފ(Kn@Cvu҆PyF˶cp9,zZX9Z0N Ӝ6膡ԍk_ED}hY9ݨ>#G-TVg4  &v+5tyjvvhJ/JZjw=Mg@ 3s+e&V[>JbWCܡ>۝Mg^J.!A]C5?`/76h(PF&/5˖cPWlَeW vgݒ曋nI}eF1|=Qѵ8Ui5ϨCUBY]PxeԍYΜ}ZݾbGPg0D(-l38f-=;F,\`w,j %ԸL|b" P+lnKKUl 7&pǝӨ!nA;TĻ=?<Uy G">>~Myek4zxLhV(qОK5xY0ޒM]G\֕jXU:% 14< " "uv1pC8|zK+Q;љx|;? {d̆6HUT:/2@UѹEQ;on|.~ wp7EkF㧆 G(BSYԥs@ 2^L=IQٯqϰ+XEĒ,G#W%=PthF=_N#jBib[Y j?3v >e~ H-tMQ7><[m/Vig9|sq!UH5@;GtTXmBdw"#2T=M~?T%JDǓ5*" ޷ \UPIˋU٨]qWƕzѳ}jhѵC7QD;m}UEh>G1sRyuM&&Fm?.@cdo QlW@ [FV{I?Mt ]y_NfI#ǨW{XߪVm:(ڌȃp~C~:EUymAG͠9k Qm*cXjX t!rm9"YE C!A"(zgL_X+vg?e0GQAݩC8Q!dTsN䂁b.4ril45GٞG=o:n̈́1!Bk#yf< u])وdA,#Fۼߠ4~eh:]ԿETkuUW_@5csQ(P*[_Pt0fP8u-g/A;tOǧ AƐ6ha{3{fGkrP9wį ! 2cQմgp_t=}Ǔhݓ|g}+M==_nsTzKLZ;-LoG,;rٺ|#E6 U>fKzjU>, aG#dS|!JjY!>8$?UQU9*v%TvgPAߟ1QkVDm} h nh!fy-SP=|\I(j(wlfysq';k\B):/pd3IC%3o]J;#LADtYv? ]o {-uFG|gOQeV@2x:PĠ}d9¼huƙipX , !C5OY5@ű-T:yo][̎'Bo){TxtH>}*tM̂VXȡH&~^s<6{aMK$ٲeh$74*<#`R:2f6Գu4 f塀whaj\jo[@K&Xp}Eq7 ,7vP*⅙m2XE!f=uKij|{Thgsԣr'9:cAǹlݏy^6N8e-F6P[\W+PL mA ק l'<[rY3o99oo+b֗mNG3lJ&>+gPtAMw]f6DžhZ-M\r .>M_o1GC*S#AyPL6)Jh9Tq6qԷGB6VnFK<*:u=AU7 Kꎠ*"!0O LlڻA&E-Zs ayH.eyPk3r"(7,j?Q]l)-z_aV{#"ə^|/T@S[?"BE7kgl{Q_ldfaQYPm/5\.S6!sQ"s 3q{⏨O!rO.K~ThD}6.~{Ͽ# O*]4hW/]@nQ G Pế jY?/2HEUkWзr#Lw%2vif΢*k9&wzrO8;-.wtC>]7f:))ps? /"J{$^-B.BQdω@YIx ?+4O43r\F5hr{[>uQnT7:}Zi61) 5 ~joNr|픍$[AHR6w-+4HQJگ͠ 3ٟg`_1Mrhl m6+l2 MJC)~oz#[ !:e(FCH6z.hTFi T~{uF+J<)׸ jZ{r#zxL7107/4[A,w?nS_Z(jtdM6zBN Ԟxb4e\mxx~Rs^9z6{snW1ՆZX]x`J?@冤)ROKٮRkw郳S̪rE}>fZZ&Xg9{;) 2k@/G@ڐ08ꃲMm7 i3m_ vKT ơṇ2ԧ+1~;ǟqVka0QxEFb(ݸi6M!x qZ\2)NOx(4DY=MbG=0nY #B%lu7RƘľIߕZє~nUELmiq6u:c4q).JDLSw_~zEmQ=eԎ0[:C8j#ĵ̌Ѹq:;9luNjl`*+nTlPh4m#G3 &wEoE O" ߋ w$J`W1aT1J zG_f}׻V$V!mƗͷua8S.g<^ͷfC{:jɵ {d73aH=`NnBJӢm^#Z YsFZf>A#;CѠ@v*YZ#zsd,`Rۜe#@z;InCc;#"4M2Dx@E_FNEC|],2?xFT^wܢhDJvݶizY[i -y^k!YRe2S%ռ\ ؇'FB~a*x: wFjUk6åM=_JN5ZOrcDh+}ebbO @LҨu`(CQr]~k-jV Xnj"^&MB} ='j3+-M&WGUFtƄQW!PZ)< R9,RZ@64^~9lj:ZTن}Xg^3k Mˏ3Qo\봭c;s>C4Ш^%T£QLc4iIRw 2t~=$?AGZ˰McG(V]#(|Cg"|վt%}`)c}}'QeIs6 ڣ Qǝxl ;'6-w'x7ffo뾟y3d1F}K CBY6\Mk^# D8¹ӥ$;yj 㝼)`= V,ꑋFF_{BOUfEǿka^0b!? 3e6z`({msE^c۵ 51jcil 5fݘg9lPrWe\&F~Lp*vQ* Щ&sH މ/:/( ʲf^+:@Sy 7}h9؄6g^C5 nw4f!W4{۶04TZ ѹ?:ZdD}++BW6,&~ |W/|/`/Sqx ԣ'h%,OaG:}?mⰃh˖S,Coɏm{PO5ӁԒt:l7"2JNIy H|RGTDOc\ Qvǻ-/2nxLhf2J<ĕ&C j7BeL=+Vg3I/f|_<](f‹yDNwDY%t"BhΗx h⊠(8# Nӂ6jK0gAQ]N rT !XkGPmfGDF N\xmҀOڞް<^Ã^qk] KhÙ!N뢺r{7^D]>e M\* BCe*DQ{Ϫë٣)P1y"k?V@]VKdf3H=}3F\h0uNv[ Sco\CDz0nS秽4+Jy]",J)ʏQ<+]z8aIo@I~z^x7z0Ama? ضV75}څbYg$&]v,l`2ઘ"*gq\K@-bt)#ҷ\m–0@@_0;ꊡ>!j =J͡…@TrgȭKarbBCVC}u+`|Qb$(tEKm>da@Jhd{s?46 E3'VԼ}2"fHyJ.z;`r_u"Nqxytir4d媤|J 5Jח9Ǔh4~..^OPo֬@#y'ͮFFRPNA6Kt-2\[9^>\! b8*ҙφ㔻~ 4BȌy*i4@삮+O, {Q%|E4T|*+) ҥ.1CX+S֨߯7#RQ-^^ +QQc@8}JF{" i{HA{ `sI`A { =X:YBr}>Oa$'T=%%J U +c CQWO(sc&S3~;N6*\|Uܿ Qg>woG}BZB4D\D="$,\Mw[/J{!Ō >־:nqE |y;ٸ钬DxGICJQBմd8B uJ[SZJw@Ens!YY]v|J uȋڴ G_mC=9gɧzhp򢥨PCB+=C}c/oF=7|oP5P~å:$**Le[>Ts ]29Qzrw&?Beí qi#yz&-wȠrԩԐSQ܀?wS5z zx[1|Rz&s6 7 9v1.ؿ^U:TUe"|*u{m^5*J$~CWM]\"w>‚̴U墮wY͇u3.mbD T3˺Ч[]`lj NdtY\# 8ЌA#<٬۹nh]*t dJa3RLkb+dF7( g3&!RaONDt+zs1; uҎWױzo./U&Jms#<ڟx=͇V']ZuXBY%gCԢ|h0g|}zq4,/Xʹ&*j|m?.ĭ̱%zOEdCW]a[:zCx{p3:xEZ77 Gum|MdCQLm^?`C.}vڃP{c3@L|=ZNYF9Q׬d>Ȓn(;Vhg3=%ȭgٛQH="4²+f[Y!qul^K䥣p>z猈"C iuBDr~ *0ȝ3Z zM:3Am}Ee[z~ t\v|-  -%B2Kl"4)4ABj Z%WEW ҏ0mWW Td6f-ˮٷ:jtNF%7աj]|(0tmLaЋ@ }lĩИ'>#8E'ZMkWf pwłͲR0rt:-(3ǘpv&e3< }o7D9rğf3||^l ,Te` i.6ٓi$ d^78Fɞi&}lqL}$8MxfvB㛇Սg3HZGqsSߛ>h3 mI+g d1=m)+6Ӥ͗IxԶ_ovgè@[' )e>@B?@OQMQ-p4 3 h\m< >! KuMAPc'aHK%dRw_ m֤O69O,`s#]Ѧ#lٌF{]9 7P '\.ԟE/GҞ{z{QA%%=nZI(*_n7a@DcPj^2,uusKV &|rqdGK =k T$punle(wX!ˑ ?V(5i%O:4ܻضNrw)]aO$^xEl6*7B<]}'X #kʪܚ?L3tvg|O9RX0<%R#KR<[L@U"P9kOچ?W]} @Q} %z՝,{$*'ЛsJӟ'}'HȖ\K(UcOՖ _gr=`x`#d\[2p^L`v- 訞iMO;%w 0 _#`{!hMKBg2t>$mV3Tc֢=?V>}B8PEh:WI5Ơ6U#g}hTs;v4_h[&b1Px* (^G fƈ^ ƯBmOyC*[ո?^A-=VQ櫂=2wfRiԂwH;6ǿCU\|=QEt9NbY[z((&]GCGg/%Zw-о>#/0.<x]DӸQ05~u@kG^e CKt}T u|ڕۗ7Buϡo"ʞ0[Od%z!pMFM,iqatw3gh0Ti!.>ĥn 7,Ѐ&sEKC]߶ 2ӫT=D]0VP-т)מD=ޑ{)zݗ"8;Rh'͛c`AW1Zn&̜jg_ @_}.訚sԍ;Bp{ B勓 *dL8tZo-F=E61 "rK&D8/)[ OW|'vT ZCű#RdkT6}!|:lG{9h)#roj-PՑ hRoC>} IkoJ@a;_Ĕ&h@,ꍏ;q:,ZcZC}sw'" 0w%+ajx jݐXOgun5D]\"rEd ?{ʋǦByP!@b` uYr~zXm Ya|D/ȹj8 7wD|c2ȑ#UaۧES*P5>݉j=ZuwgeUXUv{Lfe醠!۴lLidNsԕ)߾^؀ܽ_˹KV3LP7 {C{qod19ָ^VO@V{P/@^EdDp8J? 5w8A}YNëUv \u}e@D,UJ9bhZNU]hGՍNE/[ڢKevx!D.؆HGAg؆تN+Kxf3!dmPp)w{_#>@ ߖv}]a2h>&Z'- vm5G5ï 1Rx3@ݙrS(s5{.yԴDǞ=u P;)_XBh9c9֜(kj=C9ES:=iVVtT8Odv׿i6v7=A$~M e?RޮB 4D9ç*hRw֮rI QjKVCd{lq>hȹ }+rJ@KHjȽ٨(ϯPGAFIB94s?~AC|0"53٢$tA7r4aڙÁ=y6+pDEimV+:dS@>{FlH_&\c A39X=`?P||?݉ GW1K:,B4 fѸ~XuYv|TEO$]-5jw!~_~ʨt(lv^EC/|.m.2t;L>-.Zw:qkU޾>h@gHAϷ<:wk k _PQVWޤiZY񿯕T`~wk9ZJ xUTdQV4I}T**_WURVVKUEq^EeUPVS#[T5ՕeWWRW4MsnRToZ s̱*()eUQQ]f< 9\*)()QR]FmiYU~$<:'<|f"l)j307B~(QSQlҘS,VE%3y*Jm6ώ1 8kW6=GTԏPUTZ6C'ж+t-j%F{wCYYw+tlg$({TgWAтϾ^`5~eZ) Gh`I#:?e=Rs8_wjܫ]Rgڼ`'Uaa.[aB+?^I}n27 gf`k1ÊN ~ϐI}e"]g|cߵȚM_qN,uy&% 467OiT`@ށXt.E >xP'.Z̄鳀Yլsa}JlD?F:d޵n'`wx[1aF ~x0cwȇ+NS>ij}},@jgbQW\0#`nxwYr2 :i  ˧K?0r`i pyL 㵋c]BV*U?66svt] 06i&̳L 4)Mn9` _ֈ/ӳ=VN ܁+Xug2 d=Q.^l1K{@41n޾:][vX`yså5@_t ^Ϻ!%3V֑/MVh]D*ۆe@^XQ>3w >{1aHT,f~#t0qaQxf,cPOuzƌ2N@{E;9;[QoXߦIw){6?gl0k. >.T ^++2?/ո%ekΞ>-)vbbwЯՆd*UJ,@ɿρ)^! /T[18^Dz춠~zǚmcsyZ]>lⅤDoL8oOvZ=Z||zqoάXPN6ZOӡ5+6ޞl* y[f(PG2{9+ú<0vȬ#4Ŀ"?RKn;?]7_|i,xZo'ʴO3{\tpoT.8.-ϯE^=Cq)y (\|/Ny1 PIp5yWFVT2ƁN 2);),O2?䢡Oj?Ff7?xp([`7K/8*x+g_YBYQ3'nI*~N@SʐK8a3qݟK_m@]'m6_Oysod⧾SsnzeT( ]SeYJqS@3G5P.._9\u17nu 8@装wf|N[j~]a.c=dz&OXxx) } %@<>PהD!w"yjFj_B+=l0LKa@ JuRDv\eM5nV8+x|aLbEQo}iF$`߭=~@WL_{@%nb݁Wb' : JE6x\JM\'e@tzoow}RkZ1Ld"6|sǑx|3:p)`ig6fYzͱai@qkjHȪ}.ϔt?Nmiz;Ӷ} ڳ7w8 V{Wx!`8<Z_vhF@<~'xԵ^'^nDnۥ.֝րeQ|֣wwŦtɖkw;^U'(ćNxXHZ5Y@.+ߥ 2%~ ec<2+_ӻ+_pA33OylmOSotٿ}TI/_*FOm|Z dF?9/:IǟŌ}Caɂrjf m (,5O꓿,fzA{ݧ$.2W/|Y7[xCe Gњ}qihQ](%KZcU< sHH$Jl@J]3eS8rZ IwD3)%V&p8??ΞKh} 9lo⊗w./:I,҅qǼ:lҲ9Ў\x$ 5[0IFE}OOr,=- @l >soKA|AXϮr>ƣt>Szxs'YB823b ki̒ yt@NUZ(w?S-s[$؈oa r,w*׀Eۺ,`W. v^FkPz$ sʀ7`hr?wѾ%g=f!/ľ;G c_ox?}(< 3^=߁x!{; 6mZxQny MۀbQn>L+)_Ri|C"_,_ΖvO 5rdHd?x>:d +,28gt\}(מJ"+cIU :K8QOzqiw?H p7?'|<ĿP[ܧ>gK|`%ߎTu.O*: (0!O'߳-6H<&,׿Qf;۹|)ԗ<ׯ]o~/z}U[D->O69wg-;[߅w?;eIV!E=1L~8`F;y|C~۞[-mq:7K~i_lIi65V \\9d֍r%>ju؟~~s;MEWEpTǫ[;Dزxb-z/O>%KBEQ<|hݾ)@n_6yx.Db7OY<Y<Hi:oYUWK9H3E'.('W-w7}S^X~b1e5.OjVa?wٮ{uwg@ Rꏞt6|AUۀ±5~ccfc#rݿHkdmWobe7giz(Wg~%(Ȭc.͕*d{N>qV ".JK^[_z辧`%sz/ :gßЈ 2vuS$1{}9F_KJ9LvRţx{i@ ǎ%yx P/Vde\x3RYP=_ da_K۟>/__@dh#D2րk-cD#lA$W/&zMZ$?PI@?`%2h 0ǻ[ >@f ɽ>v}9簭_=^eOhw, U>B~7J x;,X os `&@ں! 0O{5sj ` 7f`k jh`2Ɋӳ~0L{os`yM9h/Fԁx,0Cofy}qzRl:B Ug*ċK @h᣹o[Ӳ[q_(݂ӭy;OOG. qf.ճqa %Kvm?Ϛ+t{5yNA\ҩqʚ)*/㥕q9Oǖ9忼ܺq^Yq -콙n,d֊yؓj~%b㮒@hsKHyS@ػ-mgp}76s n8+q;FwGy@wQFiG 8ܲs.؉COFlGL9-9<[r卸tDHD3[TyL0KʏKfV P!^n d?dB"M\F*zܻ^KMם8ws0wh.략:x=n|\=Ov/}{Z wu4 [ܩdE&~rYªv~_wniA@ܘ:?핝_B1t&wgyʷ.#ZrO"Δ ,ԏ;J2^ &raIIKAP$J0WlӒ@y~dNǣ1@-M銆fyI6:Un\lTsSKU G;ʊL~{;:iܭ%vU@;qiYWgMGf+ (G]˒Cw<$jϼ:*=@:дU_ .2@xf׾^wĀ"$ܺ %&͵ntU\5/PXX[,oZ0/_mXHaƧE؀\ya'70+$fc/P-5z͖ @;S|?\K}drԷ}g:uډ&b0+Vdض#W&QCHrm`fH]dJJeW.{qB@ ;鳧N|+:yMۜ6PY4@?\{n4Fm,px:=ϭL읮5@s;pp?suj@ VLMa,9u߆;|'>`s_q).xJ@xH/#ûzRMO?St^i݈.^^;5zl߼ulqF2]n~\R" O?-;FbkYE|Q֦#Ao7ZvO?PwlIVIg~^zm/Q6t*A >֣@Z{ F@,bǀv!no5xɶ3'+-qTz@y EKŸkq>P7Q{Fk 7>g},9⪹@Nilx-3軷i~#xf5ߩ>w|#jۙj ]|(>[bP9(\@?ĠMw?:O-ܿb]« OPХTܟ=]՟j@DJ =@ohWXky?IFmڋxR->bm arfɯF~c M ܜxϋF -wq@~3Ȃʌ VX< eAq?TEg vDc_|Wð1s(/~P'݁-yCPY@5[ٌWl|H4Pvۮݧ nl^8t?fV,~ 4[cρV^2{F}@ \ꭻ|v b!@v.0iqȞY*xI] 0ޗ4<ڙ;VOLSojLo>S!<*JǏStU@J`BW e)6F "8}gۏ0 QI~H&V@ْ^l'Q}Zxs^ t9æޑ16mTvA2,TR@=>uͼ=9>owWlx dg0Te>$ .;Q sR_/hYA+i5tnGw 8`fԲS| r*I`h7HkdУTfUٗ@{qqQ@sxHWO7Ȃ4|wXPNT= #>ր}@ߚ O_41Qv0"H(uXCk>@ o?Tmt-˓Lʽ{z<22j|:ͿJ:mtܘ3@2U\B|aT/SS @"_ۑ=_-nwR}"a.O |pH_C+visX+(JVv chy#( t{ߘfuXX ΥU7 o<\wGBݍo i䑙I+:.͢n2 v>#xl  Diy~uø_Tl|_]Mk˗Dt(@f`)W?^~d1@*DX3*Ώ+]|q>kq"wr8eʯIC{K9 3?R$X}iJgbL>\tpvx/^G=/ V emu}Kr7)tf?#gʬ(}۴Z(>+@"\KΜߞftwN߲ed%fz2lWpX_~/1R#7A_kz){X$Yj/ye_֣/}qGg>mh7mݗVzKxi eb, ;L>c?_]>6n(%n|{U+"s}Iݿ/Gx1 4sX =il)1̏㖿;n,NY$z@]~W W,+%ԑ0̿N=T4V5؂>2ݧ0F$,I-MPo{adwdqz-^ (̇k*5֒1 5Bw-xFROS<-MK?Di_^T;o|N;y/]z}s彇?Q] ?K (_e; 8X.Ɲ>z[=n{@ kf?vՅPT\-`O5c@ H|Gm`lOj/^)^c jA@ 2C'ݗ+"E+*3.yws Xwkx _ń8_0nu}򅳻r7բQ GNgL ZHJ1عۇ9z7+MkSR7SfFb=Mt'o& unxK|o$̫qmC}ڀIv_Ēpߋ6>sxBr PaY`%f9L YQhEN`vy*xiO3;{`Kolt+·⦫;(OW냄v@?O # #Sa`%M؀x2Usmr-|=K8 Ժ=0|q?{܏VnaX޾t(|X7K<3ۺGU@N}(9f1~H\ɜw|+w'T׫R/%'~Z o'SOVҶAԚ!rqO {Gvz4M旹#@qMޛ;z]Sќt9Φ} <2!o9]@]Y?pQn[^(~io}vTFrC<K$.]esjN@ j%78R({sÀ@xnj=Q1ƣś=ocvCZ@a8䡾G/Zwx4\@hqm#{t U<bO&'%NIҘۀLފ:/]hnh߭nRŸ/xԕ_ kKu?y>ٶ74K6_\znCy$=)H_ɢ[&`k\ P` X762Gn;U@޷xM[wl6 iTlXz:?xǯw>q[qsAԅ {Dz~w^Dg 8 jҳދwRgVѼ&wb]۱[|=ȷ9۝/I>)L0fOJm=?6$kjh4 l镴jN[ч;c/I~X1?1 LVbiޅpXtXj0tHS`k:8Ky٘+E|QNv v.Ҵġv `u^l%ύMe!jɱ4}ߌ+ } 3aA {r Yksrd*`$yEE?/7l.8Zd -9fW)O#@ H^b+`A{ikqi`/`\ί.( = W nWלe|Tz0Laq Ss{&MN!1@ TWVsam]ߧtjp|^Vۻq-[^&υa'z8u'>ty:]^ʓ^]wYFXu-&E#' @lX۷JƆqC^#TFNYH-zg(+Yo] ɻ~ m&4t>kOq</?t5֧@)=ޙ%Ҡ⧾y'[7Uo &|̺)"[D}Bӿp?Gm @KӍo)@O_ ԜBS ^ub@IuZvtfrr^Ǎ,T q>< +Wp?O[/yu>O#',~ $^D#^h]@?w6ЎV+Ν e2cJ\ܳYō_[ru*xn_:u>&Rp>=Ыr>O Wϖo`roU~9B$ui&NoG4&E?>;O͛2"]1 i0i =z^7ڥTR7_($r\?<2 8gtOv4/\};/SJrR7<51+~?9;F!WVӞ6dY˴U=Nd/x}/=3`;]'#ieBY@>O=Nz@O!=.O4.so?]x Omi[ЉFNyvi53iAm}r>i z݃?/ LRn7iz{2~}Oo09]tw {I_D~\~ z5][ ŏəs?{oP1twcv9h┱}(/>Jw|~<%&z^m{א?O;{tO1/]An4Pum5r+LDVO8" S8hPwKz--[:6%G,6Wn>|,k#v\׭B {.Ob{jV{^~9%LZxE^BVjY u6XV( EXI]E@rI)(.x8fBv201e;tDrУB,ێӭ} w]8ֱS:wh3-T Eb,~;'"Nv):2m\v})5 #8\aӼ?E:_4m"b D@0><2L-!@"G g&*Dqh'Z So)\NxdB@t(\%Mv3~`u71tD `r0A' *(?' v]t/Μ$[W X踒o5\Rۻۗ{a~W 3]̃'iO]GX::^uI^ >|ݼc ^ČJ-&l"?=q)9yIF&~+`/jG,z&K.)Rң]L\eҦi;yam}M$ dUҳw?3$s|~O: S`@oT;HIo̟CMԭP}sUpA$ʸJ1H ͗ǣ1ul\O03 kzT'dK QՈ& an5Nj'zɸ& [ ь}dw4w[0>xw-gN\Z 6<̉C.G8s1 O3ǀ1Ӛy:ۏQ^Ws}~.o8`[N9oʞ_K{,-[(r'"p&lS3,CH\nE;%Pw^d.yãrZe.y `= ]@;VWt>;D-n'$68egK)SpF ޼+qHKe5ƛ_߅+nMk0޺nO&zPL-@[k|şO-TTmBcHO w6G,8? P[lXԊz91f-w%<~Drč+[~>}/Og" ^ YG=.r*]{.OBp|Z7'坆/ /%䦸1ϿN/[pdsi7gu7J4<~dx w8?铈s~~iwtjsؓs~BI7+F]z?Oհ3Е}a9emg|-~cY[ɟD3$d>N@:QHQ_O)7c䯻pgu!>Je?<4u|utct?!;zJ{Owԑ^&׀/NhYi7[ ~yxw}Vp.o $kYo`5ҍfӼ1߭b; ӄW.>Ozޞ7R!: ǶDiw@tIoCL/. K/JiB{8@Xi 'YM\DFtqs\7>'1JmH+x#q+k/,r uK$zIcU-hE LY1潜 Jٖr)a {X,c\ާnkb XYN`yWt7`bU/_{sN)8|TgdzE})|0o>1}*<դeIfjr;nql`cVZl0C~V L(~/w&B@{0K+@՞_L5^R7|@|ni'hkm}f[ϹX=AeĝGV@3w}-`KN&]7q"*޿BF`%l7ա}*`Rz @pn&Tw%d(|(o{El\"=L@:m}.{syV0#[,˙+8=*b3{W`1+k[sJ{ mЗ,_]] >m(5G L2~,(҇Fs įofzD;@ٝ(LsjT7(*r`{n"﮴=9sq!ޞGq?8Ɂ bq;@޺DM,()so,j O3L=`^{axH""&rT HRT%( 3&̊ל &sY*" 0}qz}Μ]]U,7x0P}xiv9d۫ Ǹ*7 "Z(F Fl{J@쮩7Y7Nɼxt|Q`/o:@IȞS(a"uwܙ%a7nX{ H{©lS](uj%(  z[V*PqÂl|IOPс٭B#f-¯RC?]FS)"f/@e飚չaWEP0!>{~~e7i(|4;~/W g/i|+g oet;3e@?wλE}.l1͙{r(>PUFfj(?`}ҧEo}(mf߀,B>9Z(ɸ*LA.e^,8 eM֖ /=p+>k>Asr|]W.L~Yk^iٙ,D@yƸ'(iJOy,?ջMAPj}mг_c(ڹt}|xeo{}='5<~(_{P:Rcw=/*6~8_k| %n}Oj??PW[#7f4JO6hCXsz?}r"i([g/2d_dᾼ c5;Bc;~ů 1]iR~D+6U{ C-+rJ_D7G//ɓ <w^K|c %"M+/s^51}J!ڬH}cV=$.<τvhk!W(i։nPyqUPbJ(.ݶf`p^ xvUYOƱPTg6mb9@Q/zπB7YPt&*(6XR(\U(O۩sa_@ḳY #ܮsm z/m\}ifWisP)MdL_<*yݚCP^7g;Lr i<>1%t+ -,M] M/ CgϿSZ^@ҟM'H3PQe{×y/]QnܙAѝFY~oЙ+l,~'.gOdΗC2]ͬ6Ww7:(x*(֚Y>Xv*ˋo _vi(06]1_ ֻBVNPQ?u+8~ _m=< RVHSj>YCCJgAoAs@鄫]\Vq'60:#4+/Ϋo 3^+C_x[Jjw^߽n=?VyL1 *0%Sa|hT~;E9 yaúB;oP4amO_{+9O>Du.<ذ`:_3o  0tO`j B-m'#9NokqP&N픘Js&MXcr /;:U({4 S<=9fz9 {LQNovBAyռѴs̮s7J? ܽ%#gNœ8-Sǟe 2QOI ?eKe?MPip똨?8Q+_.i=8| wal:$|S :5j[ mվ*;ߌiNbnM{/PkQ,(`O?~"?xXN;_aSӊ/|P<|aȭPG750%{:k މO(/jdjaLX~~?|[?~01h67-,[ 񷱁Yclh÷F4/c#V:\߭&Fft^,[q,r0146n6~752if66ejb؊obBcjCZ c̤bB[FF߭y7727ll13ےί9%fhl@ 'fhbddJ{M 0j%`a@&fd`@7]bF&?zJzL霉z, i cljbjƦ=ǰ5A҂nXb&FfGyǢikYXcbaޚ- Z=t3507{;^`w#L̽z۹9;5vqdZteXB"W\JEO~uN}Y%񌋕Dhx *gm$xk%H|]_v%)MΥ˦YДˠĿ⠼!88rBMKBSV@b ~jpamNUP:S"oqaTb]${k >hx]Aֆů8*W˫^d5B^tp8%uƲ3s[vLn 5Ƣ=q2 [$Ƚ! T«>vpq__ΕC?/u^^;r^J(w L4ydOٜIfɟJqN&BۺqkyIIajZ;tZgCH <#zT% nݲqgmS\LӹWoWoxܻσSaJ[Xcw;3 gA㾆=a{VZ\"]ULjԼS@B'rš(-=ѻ)9C5:}X w9 J;&@׻JpFrWGC:JzCU I:oOWPl{S.Y9g[}o@jcC!uCt ^2a"H3ݾ' evB&nN\;PcIPזzE!!\Roi۲[s%W8wE').yC uݳ_s[D63(aA:|쁀NNg87F;D{_^sS^S)'}xƭ焦qN[T kZGstyQ*( ,W3YUw>GA*MquWLR>8zrNTBb'A.q}]8qսrʯ1wiOSxU_THZ1kKdyvdŚu# '9s㽒Wt|2\Tos#Isn:(TW? =nym|./T#oNN1Rtfg͍p_P=\ލњߚzN\ׁׄ}{ Εb?^˶T0N;[˩-* V4Sw' |R ~^SqIrP=,qHZhu'RDsܑAP=ʹ!Y:clDsgGlޥ'"V٦Z[䛑=rouPtZfD6QF,şJ;<'Ȝ5HC-[]-N+Fm ķ]V?RX^,rtim G(E] ʉ{<0+D,#OlXSjZ8y<S80@_[zޟsmx~8e#|~\'xPZPgpq7*]$;$QzǠ~ke h7>5RVKZ(eQG)vۅ;n7;U}֖jKl͔f~M  95lJȴQQQё^lo(7jTXx9zBռeMd|Y=:Bf+XhxquTd\B2Nb . 26Vノ=xEu~2չM݇^m7 +ç?e/B}]!}\ʠL XU c;!kDͲcux jLeU&ʻp d;'2OuZң+d9Y: J9_4HA;|IAS&A ;aܼ-݂.qC/:7 ո5!}[}eftv|[j26u]tBl~YƩyZ@kqwe!m {B-:"Pۿ&xJt4wO#v3a^Z!n~^NW+K͵R?nOi;K=/F+yWPT'H_ذ^AҌWJ8WAWh@+O;@Ԇn6[./XSr} Tr Ot </F~;qǛ<8 rWρ3:K #z?6ʗ̸fzAj͂3/{@R8cmHiC1ᶣI˽pCo@Z.5 rrrr࿶`}_W5MP;3vР=wWtYtM iYGՠ)%Ɋ%Oqli:hؽ 5 T:)cu1%}nH!KT4M./9*Wp7@)wCrnt&hO QNʱ#;AufǸColOAr 23 <*ܗW m;qn;JwxQJ#IջW.RVbIst& 9PJㅖ8A>12̓k\+*$[~"9p9o ]#ȭ siϑ"zr#RUmN7Ⅶ㼧SM* skCmxPe =zh}Nmv WBRt7:(Tsӗ^eAg^ gCmGA7BMKkzoߊTRGl(8zYl5#:*oՂσ*;UQ>Aae.atבY.= _;OѽGGA}E8hr0G4<ݡay/*a/c  4!qzMyZLgiy ~/Cʋcz?|.̗Cq>0$ )?OGA#ˍ.oܞrK:@r妙92]!O=C~8!cӳWs9Kޫzr5eoBH^~ɻBҽa Ķ*#}ħKCǑGJg#!H:uq!Wc@ŹŅӼWwז΀)wU5E%¹ n@ ϗ/ꊕe3P{|M'1e.7q>PZ[V ,̝w ×|}_RltP8a9Py~:Pn\U*?Kڲ n'C}B]ʺ{\bU$#k>|+&m%O.MO +wj>KhDMjCY ,LP(F^Ty ^B/#BŽ@_B󯌇ZE%uPT-zQ{|4o~]Nn'CC]BS*%cxc(T:P/AhIYEXsHxuZ- UC _'NI;_Xͬ &^EFf;P2a[tL#OWGarO>]T)3%3KT6EaCT*o?'ʊ*CI[!,{[X4=2 VvY /JN˅%ν[ܠlyPg|2?JЩ \?Sxtҳ r]uP4- t8 t>nڝ ;.AiNχkOTgBy/|tj@fיmC?*i6CՓFOo.'SDgKTim契ÍpeNa*fP|R |pi$w0fAr P®Rex\)۔׌>?ePk}|w|#3T:U>=gO9UB'΄?\K84W]y<)VQ?&5jQ5P?>PofoZVISs.77ÇwWmcfb^NBx^̄(-!;t9z]=2R;bZj$%kTn^݉E2wNiOUl/t8o8*\< 7h)핔<.;ΰ._ ^3hA)+4zڗPYUnO=e6nP8i9{OAI.^EAx?7oXPg.u3vSGM6Ot[;$Cuݝ݇3 ~ur& :C]CmK0fYKmh$h֌SrƞYե#;GwjʖRw\ T*b5t·BngͲP~Ȓ2\Mh\N lv\x }:^aF(+s\YvuڋWl*꾅 ^3O.:/UvXzn΁o<9)4e*ԭkݿc,V3w}pnNLoۡN6e2// yz$'X/K]HE5vSGprw;\0Yon+y2G·hU 71x2|BavHdnCKUH6پ H03;xDY0ݸ7 /.,M T=N''&q.Xz3cl"G 3#͜u _ kUPsgNxҙa:8j&9~k7oƉ8ϥl'rM< -yc:_SAKC~Y) #{nߖvl" uwso] )pjO%iĝe]xZĤop}\khcQx͹Vgzp =q$$#[!5hMNhլџf'}"ad3-8~š&`y9M9醻s2˺O}?-XyWKx>91lPNuʊ5H(?z&z~5W/Y6 TObZ9UU %3dS]%ieܝH7ISwTԬp iyw/[+_Чw R9b.HYzKKOf!Ʃ=e!f8,F7|ˀOGovx&bWlp}ԩzgH$m5s&b9.IhG"GJXפ;^Bon9umB;D>Gn>о u7W mηaw9 +`=Ӎ"g>YiHgglQgesw=QgOO#ԏ"giw4? i\?Q@k]$zgpWH>qIHqTYeR&d F-k3RU Hue+C ٳC7x %HDnߡ^#62]si&R4>d W,'HO?EHVoTlZ|bJ~7mܓ2᭣1bO_b)EM~D2Y峐Q'rs/ v'k9׼wHa'܇Aц!ʈPPYi#.FW.GX &P'^ꔽrj͗dđZ|]ޡToIOԺ]u<>J:ݎH~!R[ C2{ {~CӁy_A#Z3`{47r䅏c| ]x#tZpC<8<wqA@Z^3?R/C;!_#i '9xNyr`D>0$ )?OG1ˍ.oܞr75^^9I1 n[pQm`uxhx6ػj}0z{ 1CAA-Ri9 5p9{&I(|9Xc>f깟 Y*ގG@ƐKeb)I zcU:- .];gITzi˴YLmYBVp8#' fxk!iYFf9BsvfH$.wQ dly@_6"*s!E 8.n^x +n~rG?h9tY 7甜Ը/yBk)wŐ^y(rg6ÛP芍f8nz[ᦛ#{{mcU(~s(>J)<R#(Ao4)E_ ʫ]A@/T@a̓S.CYPP\;3䉹$>I 3Bm*z;AĮ!ᅺhV[BXX~hR.0]"N ;7u _*y'51KCj!}IqhѾDty+FXet`lUt %.| LlU>BڳGҏaٱ /oًsCw{g͇l!}yj{"tZ-(9Րw`z„- zɨSm\tto__+?n R] P:C^~]tݥۇNwMO+C Q8G:@Rݞ[!ߐnO=O ǝ xV 7 ilg}zy5@#)ӞU@79s*mogl:}8U,P議a]Þ.vt[6WkN_ncsIZ+[-+vYhl7b>;莍w:j.Cخ2l񄐭;WPIPyrd韽_N}iU>.(,w?.r8ksL:񇎊hN<RK > ~&ߜg18꧶95r56,žE;ۮb:I^]}VmOQJEx#̠eͫAʺaoWV)$h{Nˣ>ڼK6AA1^N)Hj6YfF=\=jg/TVZM\1!-޼eReA3OSo `Ӱ0Fн,yg7?=(.|}tӁ۶MYݾUޭmh뮻n9wff]a ^_YR(oi<[l] m+R?=M~RJF+ al9ʢ[' CRm'7Ė~\I['G}Mcu8:wc`2žovf^~f i_Y Ol\kΡC1|S2I(zNϏ )/l)#NՀ6RJA )^u?*R;سjgnRsOOKJTzY]^֫#T9t)0o}RJItT0Dµ1=.PFygu 6OrWϻN+RRy%[auR8`"J}b§Q_!*QeGJm~w)s SJVΕT'$*GAx(aTMT KjI]Tn.0pm eFkRv)uSZ )5w '=+<:Hʨ+R̚D9oG)ׇR[GP|C)U8Vć[CcZrԍJOLO?++jNqPj cݷRqB14RCkO)Q*:2RzS8+R:6^>7̕k)( q3Qe]✣X K;fnY%!UPvB`!.moaqJ6/NPR|iJiˮJkRٝ#GMkɭ7ɓNyDiHoMz^ ՈiSrϲLe(ͱ7].dc|)9qN4ӯ=L;E)vtj'JCwfhw>[RxLԮ+m֮4\{RQG)h3wo)1oF'ö҉ގB&& 'Y-O)s:9h^h.7"zϢ:{%RA@ItV9iGixą>_-‹>URrnZM_aQ/;N>s9!)aWPcѵfT[(빇n%QJCl4LMJHQlS|i$}GEp>;8+{^Yt.4:p[ގhFRz44LitwM VKZȎR)#8u]NgZs # S7o+|Mɉ?|J};#%7J}[7*Ζ,Y$BݸW7Z˞-ZK(Ucd5U>VpM&Rp1}{(}M|(#InwL`Dit-x=,c!M:Sso-˩5qԡwl1TiGͻ\Qtu$냐oDФV_ +>? @n_q&n8} EL?NE68Uy?d/B9PJx=$M_%O<7LJ5n_b/5H)ιsQ;T K uIadIYn]}G;djC+Q^lT${/CvT䩒=ݔ8AՄջjW =s1eHA%/=V߿sRB} 9>YCQHfɇ_BVe4eC2z4jqY$=⾸>: ۽o?bf3m|8>OˡZ$;N,=}|aYNMD5FXv6pVMq|x]F\&2wEC!Z#\SʷDFt鷩,0! *ܲU%ᡨ[ވ_8/Ox9 ~eJ={d&h!5^7 %XwLa?&!g}~8ZlBq;\F[r#r=sVѪGê7! zdŲZhHﮢ!>:b:yz!|\#?;=> YKO~1'^]_<\IȊjS>+vuB]}FiS[?]ÛOcm|ʬ@#lD,:6z~/6X Dڰ7my=ۜίsaK;zɾdgpLGSש795adhd:7iiWl{6 Kxa+`|fM-g 67,M˦kQΏm*zُt:_#׷OșźՎZ^^]uu Y?cŶQ(R5VgO0]e_Mc]md_;dr_'wTn2v5% ݦ80 {Tҗ67,/C؜=Xju3Ulu-y~cy@^wzTF*'WXK7&n.tU&_wŗ;cOe_RW 2aAA!!Ӣ"ya#g} vdHT_ -Ӗ ! քk4l\_uhPK>owȜn<8j^NA^ha<ݤ~D'2`%y~:!GHGЧp~7~|:/'͏4?RN̏Hty$_::=QLLۦCukn?sZsltPYV[A\8#39o/W0A߆y)M#hyPW"~ʟl/]Ýb[ .9YDTߏAqMזMyp ~j!+iA|t<- g,<9bH9p<Ȏqr`Ẅ߸#b[ /~w7"l$#?[?N9~{ȟy{_\<8N@C^xAF;L-wx _ƳA<ݟ}aɑtq_7I<:='˟!ҏ$;9 Гdcx~7G@7(<=/xx~,!Ο},?`~<\.Xl~#-M3nqdx*$ɏp>?N ^FGAoėΟ!O3n|m{j~WG[WY&GAx@ C-pK z)n:} y1'0޸ ~-[c[(^|$/ dyq>t1?{_o:ɤޅIZXov="q{ 7no8Τa9ݷ` =;$zԫL"Y$eXd<= S~KA::O~*cT %4Ǖ™d#t D:b)?@q{!0^4HʭKcoCE:su )'c<{qy8E#Mql$ȕwg@<}/xVļGAc{ya4Z7nl߈?.7x \O ?{@],_Rnߊ'CA ^N<n(7E@^h8<c}s*Ba1gX!v3 ; ć̓cN^q[; No:G]qD\u b\z>yŇ {OME"߅k_c7ѥg k<>[ݎ>f?M/c_c5?Btc11ϰ^]/c& )8KizGccqe\,zNN'LA"cs޵1#],/?,ۦ+p^M@&.!  x/p:Ai^ѷGvC L)0uEu/"-޾c9_q_ /`7'o6a~yxgv!=vFC|N b[ 㰽2sE@אxn#~z v  X~ i'!ܰ'r/yD?%y#^݋4vJv=k/Y~-oxrXOZ .~tsOkskqv쨌f6]&'0?h Ngjyu>Tv,1>2WlppO-v텣?vq3o̓}{>Z-{x^mL*1BLra <*~:='L' 쯑q8q/W \S-dЋhoI=O'p|ÇgMuȋ=,NMQ|_ߓ)<|@'/~gx; >ud_.rF{wE1x[}~9%_ >.|iZ>yos{}qy==l/:Z~T/1`yv.G/A^&o[0d8OEj~9-Ѝg h~lM0"`C|8ɇ3e=xr8| 狴Ŷ@_3u O=@)tZBޱۖtLJv@ˉ>ڏ A|hx 򵷯O'o13δ*PXn~Sc'p'"~ ,~ _$`\5Y7<&:$]<޹5f' X>nvww~>|E~ǹ(./a0/^2O q#1KɁDƣ+Hڱq?d|q9vEvWν3#9l?#gu녴GEr~>@ɣ*~M.Os(_~!no9K|-%cQ)ys":>SO ݯ'8]oht*-|SO#>D#Gh͇@c3U?x{˝~>#r0`Hyr܇!!= s.-!;x<%p:;۸yqQ>My_@/pM!1=GC0'I' '}.sO8O~lf]cOgϟ09|oq:޹crʰNrۻC~O߷Z v ^@XosW4wiA\^&#Ƴ9 `_ruǐ{"o|_ LGہZ<߅qvΗ2/1'x5yO zȶ듎sdz~$V{lW-'qIoW 6gifv}GE|j$ضÉgW8G5||qNѾA<`}7;)pΆ=%R$n_v&6ALKI=֋׭Ezu˛Pa zc[r}ߞc=;_מkW{ش@xzmt3$_گÏT#t]6h4~?sZ yY-9]._%}Zm!p f ywz@ZI;er%yb=7:xdso~B7po'ڒZ@Ldfn+' qeB6϶5$χL_W,VwՑ 7ҤYrHrבQ7}h#m?vAZηqBܾhjaO5!H{g_w -:Wڶ\j*uRH+%Hٚeخg: kl/"lzCk>H-MWd:sDسUR=} Wzb}vONʥQ>`#$Odž zlF̗͢gVij/!+n$MY^f20~88i[t޹ iH3< inj`R\stHsQԤڕH[=#rHwwQp]Aw<{ 5O_J %3}ir 섺*k%5ֵiS+ŹÑ֜qJ"-)H ߝH++1H9H'5uQz Yf!NO:i1-kdW^DZO zrH=cH6E+$jk۰ص6-7x'׸Bx8 C!k@! N!«Nazm,L'i1eB_f9eA<,뇏2@G^\A^g"+V]r!+*9q-խ߂쇁p2x )'<ʄWזMWbVmTsz{͟48w϶;ΞzeFMvgV=$ wFsPKU]]9ppt1Gov3/,ݜ:s֑ \tW]p&t8I3 MclLQ@ gt $dXf$8&w!!a3}<㷭A򫈵c6}Co\8d'\wQgL)^{-:y#r~ʤ (#\@J_լudeo*^qxKp͡>Z71:r/z˜#Yѥg'BreϠw7ÙV_,c$XT}pTM΂#) pXw5eGz/> WM|DH>i;qmYnHؙ͉   e~li^ CU}{/Pm=]r⇆pTńlg?JPƧaiGĦGF`OxȌ(G$*,);mJ ))LJR!"J0eBCEE:DFD .J?¹[6($**0 @Mdaڬ KX^ c7`odzFok3Q|gF9$칽GnӞ+UZ]ASPsE}?,zZ߄fG`IDw $2*$4tTȌ@ 'GG|DgW_metagenomeSeq/man/0000755000175400017540000000000013175714310015147 5ustar00biocbuildbiocbuildmetagenomeSeq/man/MRcoefs.Rd0000644000175400017540000000464113175714310017001 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MRcoefs.R \name{MRcoefs} \alias{MRcoefs} \title{Table of top-ranked features from fitZig or fitFeatureModel} \usage{ MRcoefs(obj, by = 2, coef = NULL, number = 10, taxa = obj$taxa, uniqueNames = FALSE, adjustMethod = "fdr", group = 0, eff = 0, numberEff = FALSE, counts = 0, file = NULL) } \arguments{ \item{obj}{Output of fitFeatureModel or fitZig.} \item{by}{Column number or column name specifying which coefficient or contrast of the linear model is of interest.} \item{coef}{Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.} \item{number}{The number of bacterial features to pick out.} \item{taxa}{Taxa list.} \item{uniqueNames}{Number the various taxa.} \item{adjustMethod}{Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See \code{\link{p.adjust}} for more details.} \item{group}{One of five choices, 0,1,2,3,4. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the sort is ordered by the p-value of the coefficient fit in increasing order. 4: no sorting.} \item{eff}{Filter features to have at least a "eff" quantile or number of effective samples.} \item{numberEff}{Boolean, whether eff should represent quantile (default/FALSE) or number.} \item{counts}{Filter features to have at least 'counts' counts.} \item{file}{Name of output file, including location, to save the table.} } \value{ Table of the top-ranked features determined by the linear fit's coefficient. } \description{ Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma's topTable. } \examples{ data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] lungTrim=filterData(lungTrim,present=30) lungTrim=cumNorm(lungTrim,p=0.5) smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) fit = fitZig(obj = lungTrim,mod=mod) head(MRcoefs(fit)) #### fit = fitFeatureModel(obj = lungTrim,mod=mod) head(MRcoefs(fit)) } \seealso{ \code{\link{fitZig}} \code{\link{fitFeatureModel}} \code{\link{MRtable}} \code{\link{MRfulltable}} } metagenomeSeq/man/MRcounts.Rd0000644000175400017540000000155013175714310017211 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{MRcounts} \alias{MRcounts} \alias{MRcounts,MRexperiment-method} \title{Accessor for the counts slot of a MRexperiment object} \usage{ MRcounts(obj, norm = FALSE, log = FALSE, sl = 1000) } \arguments{ \item{obj}{a \code{MRexperiment} object.} \item{norm}{logical indicating whether or not to return normalized counts.} \item{log}{TRUE/FALSE whether or not to log2 transform scale.} \item{sl}{The value to scale by (default=1000).} } \value{ Normalized or raw counts } \description{ The counts slot holds the raw count data representing (along the rows) the number of reads annotated for a particular feature and (along the columns) the sample. } \examples{ data(lungData) head(MRcounts(lungData)) } \author{ Joseph N. Paulson, jpaulson@umiacs.umd.edu } metagenomeSeq/man/MRexperiment-class.Rd0000644000175400017540000000640613175714310021166 0ustar00biocbuildbiocbuild\name{MRexperiment} \Rdversion{1.0} \docType{class} \alias{MRexperiment-class} \alias{[,MRexperiment,ANY,ANY,ANY-method} \alias{[,MRexperiment-method} \alias{colSums,MRexperiment-method} \alias{rowSums,MRexperiment-method} \alias{colMeans,MRexperiment-method} \alias{rowMeans,MRexperiment-method} \alias{libSize,MRexperiment-method} \alias{normFactors,MRexperiment-method} \title{Class "MRexperiment" -- a modified eSet object for the data from high-throughput sequencing experiments} \description{This is the main class for metagenomeSeq.} \section{Objects from the Class}{ Objects should be created with calls to \code{\link{newMRexperiment}}. } \section{Extends}{ Class \code{eSet} (package 'Biobase'), directly. Class \code{VersionedBiobase} (package 'Biobase'), by class "eSet", distance 2. Class \code{Versioned} (package 'Biobase'), by class "eSet", distance 3. } \note{ Note: This is a summary for reference. For an explanation of the actual usage, see the vignette. MRexperiments are the main class in use by metagenomeSeq. The class extends eSet and provides additional slots which are populated during the analysis pipeline. MRexperiment dataset are created with calls to \code{\link{newMRexperiment}}. MRexperiment datasets contain raw count matrices (integers) accessible through \code{\link{MRcounts}}. Similarly, normalized count matrices can be accessed (following normalization) through \code{\link{MRcounts}} by calling norm=TRUE. Following an analysis, a matrix of posterior probabilities for counts is accessible through \code{\link{posteriorProbs}}. The normalization factors used in analysis can be recovered by \code{\link{normFactors}}, as can the library sizes of samples (depths of coverage), \code{\link{libSize}}. Similarly to other RNASeq bioconductor packages available, the rows of the matrix correspond to a feature (be it OTU, species, gene, etc.) and each column an experimental sample. Pertinent clinical information and potential confounding factors are stored in the phenoData slot (accessed via \code{pData}). To populate the various slots in an MRexperiment several functions are run. 1) \code{\link{cumNormStat}} calculates the proper percentile to calculate normalization factors. The cumNormStat slot is populated. 2) \code{\link{cumNorm}} calculates the actual normalization factors using p = cumNormStat. Other functions will place subsequent matrices (normalized counts (\code{\link{cumNormMat}}), posterior probabilities (\code{\link{posteriorProbs}})) As mentioned above, \code{MRexperiment} is derived from the virtual class,\code{eSet} and thereby has a \code{phenoData} slot which allows for sample annotation. In the phenoData data frame factors are stored. The normalization factors and library size information is stored in a slot called expSummary that is an annotated data frame and is repopulated for subsetted data. } \section{Methods}{ Class-specific methods. \describe{ \item{\code{[}}{Subset operation, taking two arguments and indexing the sample and variable. Returns an \code{MRexperiment object}, including relevant metadata. Setting \code{drop=TRUE} generates an error. Subsetting the data, the experiment summary slot is repopulated and pData is repopulated after calling factor (removing levels not present).} } } \examples{ # See vignette } metagenomeSeq/man/MRexperiment2biom.Rd0000644000175400017540000000153613175714310021013 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MRexperiment2biom.R \name{MRexperiment2biom} \alias{MRexperiment2biom} \title{MRexperiment to biom objects} \usage{ MRexperiment2biom(obj, id = NULL, norm = FALSE, log = FALSE, sl = 1000, qiimeVersion = TRUE) } \arguments{ \item{obj}{The MRexperiment object.} \item{id}{Optional id for the biom matrix.} \item{norm}{normalize count table} \item{log}{log2 transform count table} \item{sl}{scaling factor for normalized counts.} \item{qiimeVersion}{Format fData according to QIIME specifications (assumes only taxonomy in fData).} } \value{ A biom object. } \description{ Wrapper to convert MRexperiment objects to biom objects. } \seealso{ \code{\link{loadMeta}} \code{\link{loadPhenoData}} \code{\link{newMRexperiment}} \code{\link{loadBiom}} \code{\link{biom2MRexperiment}} } metagenomeSeq/man/MRfulltable.Rd0000644000175400017540000000533013175714310017650 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MRfulltable.R \name{MRfulltable} \alias{MRfulltable} \title{Table of top microbial marker gene from linear model fit including sequence information} \usage{ MRfulltable(obj, by = 2, coef = NULL, number = 10, taxa = obj$taxa, uniqueNames = FALSE, adjustMethod = "fdr", group = 0, eff = 0, numberEff = FALSE, ncounts = 0, file = NULL) } \arguments{ \item{obj}{A list containing the linear model fit produced by lmFit through fitZig.} \item{by}{Column number or column name specifying which coefficient or contrast of the linear model is of interest.} \item{coef}{Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.} \item{number}{The number of bacterial features to pick out.} \item{taxa}{Taxa list.} \item{uniqueNames}{Number the various taxa.} \item{adjustMethod}{Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See \code{\link{p.adjust}} for more details.} \item{group}{One of five choices: 0,1,2,3,4. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the sort is ordered by the p-value of the coefficient fit in increasing order. 4: no sorting.} \item{eff}{Filter features to have at least a "eff" quantile or number of effective samples.} \item{numberEff}{Boolean, whether eff should represent quantile (default/FALSE) or number.} \item{ncounts}{Filter features to those with at least 'counts' counts.} \item{file}{Name of output file, including location, to save the table.} } \value{ Table of the top-ranked features determined by the linear fit's coefficient. } \description{ Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma's topTable. This function differs from \code{link{MRcoefs}} in that it provides other information about the presence or absence of features to help ensure significant features called are moderately present. } \examples{ data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] lungTrim=filterData(lungTrim,present=30) lungTrim=cumNorm(lungTrim,p=0.5) smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) fit = fitZig(obj = lungTrim,mod=mod) # head(MRfulltable(fit)) #### fit = fitFeatureModel(obj = lungTrim,mod=mod) # head(MRfulltable(fit)) } \seealso{ \code{\link{fitZig}} \code{\link{fitFeatureModel}} \code{\link{MRcoefs}} \code{\link{MRtable}} \code{\link{fitPA}} } metagenomeSeq/man/MRtable.Rd0000644000175400017540000000517613175714310016775 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MRtable.R \name{MRtable} \alias{MRtable} \title{Table of top microbial marker gene from linear model fit including sequence information} \usage{ MRtable(obj, by = 2, coef = NULL, number = 10, taxa = obj$taxa, uniqueNames = FALSE, adjustMethod = "fdr", group = 0, eff = 0, numberEff = FALSE, ncounts = 0, file = NULL) } \arguments{ \item{obj}{Output of fitFeatureModel or fitZig.} \item{by}{Column number or column name specifying which coefficient or contrast of the linear model is of interest.} \item{coef}{Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.} \item{number}{The number of bacterial features to pick out.} \item{taxa}{Taxa list.} \item{uniqueNames}{Number the various taxa.} \item{adjustMethod}{Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See \code{\link{p.adjust}} for more details.} \item{group}{One of five choices, 0,1,2,3,4. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the sort is ordered by the p-value of the coefficient fit in increasing order. 4: no sorting.} \item{eff}{Filter features to have at least a "eff" quantile or number of effective samples.} \item{numberEff}{Boolean, whether eff should represent quantile (default/FALSE) or number.} \item{ncounts}{Filter features to have at least 'counts' of counts.} \item{file}{Name of file, including location, to save the table.} } \value{ Table of the top-ranked features determined by the linear fit's coefficient. } \description{ Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma's topTable. This function differs from \code{link{MRcoefs}} in that it provides other information about the presence or absence of features to help ensure significant features called are moderately present. } \examples{ data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] lungTrim=filterData(lungTrim,present=30) lungTrim=cumNorm(lungTrim,p=0.5) smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) fit = fitZig(obj = lungTrim,mod=mod) head(MRtable(fit)) #### fit = fitFeatureModel(obj = lungTrim,mod=mod) head(MRtable(fit)) } \seealso{ \code{\link{fitZig}} \code{\link{fitFeatureModel}} \code{\link{MRcoefs}} \code{\link{MRfulltable}} } metagenomeSeq/man/aggregateBySample.Rd0000644000175400017540000000237613175714310021031 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/aggregateBySample.R \name{aggregateBySample} \alias{aggregateBySample} \alias{aggSamp} \alias{aggSamp} \title{Aggregates a MRexperiment object or counts matrix to by a factor.} \usage{ aggregateBySample(obj, fct, aggfun = rowMeans, out = "MRexperiment") aggSamp(obj, fct, aggfun = rowMeans, out = "MRexperiment") } \arguments{ \item{obj}{A MRexperiment object or count matrix.} \item{fct}{phenoData column name from the MRexperiment object or if count matrix object a vector of labels.} \item{aggfun}{Aggregation function.} \item{out}{Either 'MRexperiment' or 'matrix'} } \value{ An aggregated count matrix or MRexperiment object where the new pData is a vector of `fct` levels. } \description{ Using the phenoData information in the MRexperiment, calling aggregateBySample on a MRexperiment and a particular phenoData column (i.e. 'diet') will aggregate counts using the aggfun function (default rowMeans). Possible aggfun alternatives include rowMeans and rowMedians. } \examples{ data(mouseData) aggregateBySample(mouseData[1:100,],fct="diet",aggfun=rowSums) # not run # aggregateBySample(mouseData,fct="diet",aggfun=matrixStats::rowMedians) # aggSamp(mouseData,fct='diet',aggfun=rowMaxs) } metagenomeSeq/man/aggregateByTaxonomy.Rd0000644000175400017540000000364413175714310021425 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/aggregateByTaxonomy.R \name{aggregateByTaxonomy} \alias{aggregateByTaxonomy} \alias{aggTax} \alias{aggTax} \title{Aggregates a MRexperiment object or counts matrix to a particular level.} \usage{ aggregateByTaxonomy(obj, lvl, alternate = FALSE, norm = FALSE, log = FALSE, aggfun = colSums, sl = 1000, featureOrder = NULL, returnFullHierarchy = TRUE, out = "MRexperiment") aggTax(obj, lvl, alternate = FALSE, norm = FALSE, log = FALSE, aggfun = colSums, sl = 1000, featureOrder = NULL, returnFullHierarchy = TRUE, out = "MRexperiment") } \arguments{ \item{obj}{A MRexperiment object or count matrix.} \item{lvl}{featureData column name from the MRexperiment object or if count matrix object a vector of labels.} \item{alternate}{Use the rowname for undefined OTUs instead of aggregating to "no_match".} \item{norm}{Whether to aggregate normalized counts or not.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{aggfun}{Aggregation function.} \item{sl}{scaling value, default is 1000.} \item{featureOrder}{Hierarchy of levels in taxonomy as fData colnames} \item{returnFullHierarchy}{Boolean value to indicate return single column of fData or all columns of hierarchy} \item{out}{Either 'MRexperiment' or 'matrix'} } \value{ An aggregated count matrix. } \description{ Using the featureData information in the MRexperiment, calling aggregateByTaxonomy on a MRexperiment and a particular featureData column (i.e. 'genus') will aggregate counts to the desired level using the aggfun function (default colSums). Possible aggfun alternatives include colMeans and colMedians. } \examples{ data(mouseData) aggregateByTaxonomy(mouseData[1:100,],lvl="class",norm=TRUE,aggfun=colSums) # not run # aggregateByTaxonomy(mouseData,lvl="class",norm=TRUE,aggfun=colMedians) # aggTax(mouseData,lvl='phylum',norm=FALSE,aggfun=colSums) } metagenomeSeq/man/biom2MRexperiment.Rd0000644000175400017540000000125013175714310021004 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/biom2MRexperiment.R \name{biom2MRexperiment} \alias{biom2MRexperiment} \title{Biom to MRexperiment objects} \usage{ biom2MRexperiment(obj) } \arguments{ \item{obj}{The biom object file.} } \value{ A MRexperiment object. } \description{ Wrapper to convert biom files to MRexperiment objects. } \examples{ library(biomformat) rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat") x = biomformat::read_biom(rich_dense_file) biom2MRexperiment(x) } \seealso{ \code{\link{loadMeta}} \code{\link{loadPhenoData}} \code{\link{newMRexperiment}} \code{\link{loadBiom}} } metagenomeSeq/man/calcNormFactors.Rd0000644000175400017540000000120113175714310020510 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cumNorm.R \name{calcNormFactors} \alias{calcNormFactors} \title{Cumulative sum scaling (css) normalization factors} \usage{ calcNormFactors(obj, p = cumNormStatFast(obj)) } \arguments{ \item{obj}{An MRexperiment object or matrix.} \item{p}{The pth quantile.} } \value{ Vector of the sum up to and including a sample's pth quantile. } \description{ Return a vector of the the sum up to and including a quantile. } \examples{ data(mouseData) head(calcNormFactors(mouseData)) } \seealso{ \code{\link{fitZig}} \code{\link{cumNormStatFast}} \code{\link{cumNorm}} } metagenomeSeq/man/calcPosComponent.Rd0000644000175400017540000000074613175714310020714 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZeroLogNormal.R \name{calcPosComponent} \alias{calcPosComponent} \title{Positive component} \usage{ calcPosComponent(mat, mod, weights) } \arguments{ \item{mat}{A matrix of normalized counts} \item{mod}{A model matrix} \item{weights}{Weight matrix for samples and counts} } \description{ Fit the positive (log-normal) component } \seealso{ \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} } metagenomeSeq/man/calcShrinkParameters.Rd0000644000175400017540000000124213175714310021542 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZeroLogNormal.R \name{calcShrinkParameters} \alias{calcShrinkParameters} \title{Calculate shrinkage parameters} \usage{ calcShrinkParameters(fit, coef, mins2, exclude = NULL) } \arguments{ \item{fit}{A matrix of fits as outputted by calcZeroComponent or calcPosComponent} \item{coef}{Coefficient of interest} \item{mins2}{minimum variance estimate} \item{exclude}{Vector of features to exclude when shrinking} } \description{ Calculate the shrunken variances and variance of parameters of interest across features. } \seealso{ \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} } metagenomeSeq/man/calcStandardError.Rd0000644000175400017540000000147213175714310021037 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZeroLogNormal.R \name{calcStandardError} \alias{calcStandardError} \title{Calculate the zero-inflated log-normal statistic's standard error} \usage{ calcStandardError(mod, fitln, fitzero, coef = 2, exclude = NULL) } \arguments{ \item{mod}{The zero component model matrix} \item{fitln}{A matrix with parameters from the log-normal fit} \item{fitzero}{A matrix with parameters from the logistic fit} \item{coef}{Coefficient of interest} \item{exclude}{List of features to exclude} } \description{ Calculat the se for the model. Code modified from "Adjusting for covariates in zero-inflated gamma and zero-inflated log-normal models for semicontinuous data", ED Mills } \seealso{ \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} } metagenomeSeq/man/calcZeroAdjustment.Rd0000644000175400017540000000144613175714310021244 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZeroLogNormal.R \name{calcZeroAdjustment} \alias{calcZeroAdjustment} \title{Calculate the zero-inflated component's adjustment factor} \usage{ calcZeroAdjustment(fitln, fitzero, mod, coef, exclude = NULL) } \arguments{ \item{fitln}{A matrix with parameters from the log-normal fit} \item{fitzero}{A matrix with parameters from the logistic fit} \item{mod}{The zero component model matrix} \item{coef}{Coefficient of interest} \item{exclude}{List of features to exclude} } \description{ Calculate the log ratio of average marginal probabilities for each sample having a positive count. This becomes the adjustment factor for the log fold change. } \seealso{ \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} } metagenomeSeq/man/calcZeroComponent.Rd0000644000175400017540000000074013175714310021064 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZeroLogNormal.R \name{calcZeroComponent} \alias{calcZeroComponent} \title{Zero component} \usage{ calcZeroComponent(mat, mod, weights) } \arguments{ \item{mat}{A matrix of normalized counts} \item{mod}{A model matrix} \item{weights}{Weight matrix for samples and counts} } \description{ Fit the zero (logisitic) component } \seealso{ \code{\link{fitZeroLogNormal}} \code{\link{fitFeatureModel}} } metagenomeSeq/man/calculateEffectiveSamples.Rd0000644000175400017540000000142613175714310022544 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/calculateEffectiveSamples.R \name{calculateEffectiveSamples} \alias{calculateEffectiveSamples} \title{Estimated effective samples per feature} \usage{ calculateEffectiveSamples(obj) } \arguments{ \item{obj}{The output of fitZig run on a MRexperiment object.} } \value{ A list of the estimated effective samples per feature. } \description{ Calculates the number of estimated effective samples per feature from the output of a fitZig run. The estimated effective samples per feature is calculated as the sum_1^n (n = number of samples) 1-z_i where z_i is the posterior probability a feature belongs to the technical distribution. } \seealso{ \code{\link{fitZig}} \code{\link{MRcoefs}} \code{\link{MRfulltable}} } metagenomeSeq/man/correctIndices.Rd0000644000175400017540000000203013175714310020371 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/correlationTest.R \name{correctIndices} \alias{correctIndices} \title{Calculate the correct indices for the output of correlationTest} \usage{ correctIndices(n) } \arguments{ \item{n}{The number of features compared by correlationTest (nrow(mat)).} } \value{ A vector of the indices for an upper triangular matrix. } \description{ Consider the upper triangular portion of a matrix of size nxn. Results from the \code{correlationTest} are output as the combination of two vectors, correlation statistic and p-values. The order of the output is 1vs2, 1vs3, 1vs4, etc. The correctIndices returns the correct indices to fill a correlation matrix or correlation-pvalue matrix. } \examples{ data(mouseData) mat = MRcounts(mouseData)[55:60,] cors = correlationTest(mat) ind = correctIndices(nrow(mat)) cormat = as.matrix(dist(mat)) cormat[cormat>0] = 0 cormat[upper.tri(cormat)][ind] = cors[,1] table(cormat[1,-1] - cors[1:5,1]) } \seealso{ \code{\link{correlationTest}} } metagenomeSeq/man/correlationTest.Rd0000644000175400017540000000371013175714310020620 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/correlationTest.R \name{correlationTest} \alias{correlationTest} \alias{corTest} \title{Correlation of each row of a matrix or MRexperiment object} \usage{ correlationTest(obj, y = NULL, method = "pearson", alternative = "two.sided", norm = TRUE, log = TRUE, cores = 1, override = FALSE, ...) } \arguments{ \item{obj}{A MRexperiment object or count matrix.} \item{y}{Vector of length ncol(obj) to compare to.} \item{method}{One of 'pearson','spearman', or 'kendall'.} \item{alternative}{Indicates the alternative hypothesis and must be one of 'two.sided', 'greater' (positive) or 'less'(negative). You can specify just the initial letter.} \item{norm}{Whether to aggregate normalized counts or not - if MRexperiment object.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{cores}{Number of cores to use.} \item{override}{If the number of rows to test is over a thousand the test will not commence (unless override==TRUE).} \item{...}{Extra parameters for mclapply.} } \value{ A matrix of size choose(number of rows, 2) by 2. The first column corresponds to the correlation value. The second column the p-value. } \description{ Calculates the (pairwise) correlation statistics and associated p-values of a matrix or the correlation of each row with a vector. } \examples{ # Pairwise correlation of raw counts data(mouseData) cors = correlationTest(mouseData[1:10,],norm=FALSE,log=FALSE) head(cors) mat = MRcounts(mouseData)[1:10,] cormat = as.matrix(dist(mat)) # Creating a matrix cormat[cormat>0] = 0 # Creating an empty matrix ind = correctIndices(nrow(mat)) cormat[upper.tri(cormat)][ind] = cors[,1] table(cormat[1,-1] - cors[1:9,1]) # Correlation of raw counts with a vector (library size in this case) data(mouseData) cors = correlationTest(mouseData[1:10,],libSize(mouseData),norm=FALSE,log=FALSE) head(cors) } \seealso{ \code{\link{correctIndices}} } metagenomeSeq/man/cumNorm.Rd0000644000175400017540000000122613175714310017057 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cumNorm.R \name{cumNorm} \alias{cumNorm} \title{Cumulative sum scaling normalization} \usage{ cumNorm(obj, p = cumNormStatFast(obj)) } \arguments{ \item{obj}{An MRexperiment object.} \item{p}{The pth quantile.} } \value{ Object with the normalization factors stored as a vector of the sum up to and including a sample's pth quantile. } \description{ Calculates each column's quantile and calculates the sum up to and including that quantile. } \examples{ data(mouseData) cumNorm(mouseData) head(normFactors(mouseData)) } \seealso{ \code{\link{fitZig}} \code{\link{cumNormStat}} } metagenomeSeq/man/cumNormMat.Rd0000644000175400017540000000125513175714310017523 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cumNormMat.R \name{cumNormMat} \alias{cumNormMat} \title{Cumulative sum scaling factors.} \usage{ cumNormMat(obj, p = cumNormStatFast(obj), sl = 1000) } \arguments{ \item{obj}{A matrix or MRexperiment object.} \item{p}{The pth quantile.} \item{sl}{The value to scale by (default=1000).} } \value{ Returns a matrix normalized by scaling counts up to and including the pth quantile. } \description{ Calculates each column's quantile and calculates the sum up to and including that quantile. } \examples{ data(mouseData) head(cumNormMat(mouseData)) } \seealso{ \code{\link{fitZig}} \code{\link{cumNorm}} } metagenomeSeq/man/cumNormStat.Rd0000644000175400017540000000217113175714310017713 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cumNormStat.R \name{cumNormStat} \alias{cumNormStat} \title{Cumulative sum scaling percentile selection} \usage{ cumNormStat(obj, qFlag = TRUE, pFlag = FALSE, rel = 0.1, ...) } \arguments{ \item{obj}{A matrix or MRexperiment object.} \item{qFlag}{Flag to either calculate the proper percentile using R's step-wise quantile function or approximate function.} \item{pFlag}{Plot the relative difference of the median deviance from the reference.} \item{rel}{Cutoff for the relative difference from one median difference from the reference to the next} \item{...}{Applicable if pFlag == TRUE. Additional plotting parameters.} } \value{ Percentile for which to scale data } \description{ Calculates the percentile for which to sum counts up to and scale by. cumNormStat might be deprecated one day. Deviates from methods in Nature Methods paper by making use row means for generating reference. } \examples{ data(mouseData) p = round(cumNormStat(mouseData,pFlag=FALSE),digits=2) } \seealso{ \code{\link{fitZig}} \code{\link{cumNorm}} \code{\link{cumNormStatFast}} } metagenomeSeq/man/cumNormStatFast.Rd0000644000175400017540000000173513175714310020536 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cumNormStatFast.R \name{cumNormStatFast} \alias{cumNormStatFast} \title{Cumulative sum scaling percentile selection} \usage{ cumNormStatFast(obj, pFlag = FALSE, rel = 0.1, ...) } \arguments{ \item{obj}{A matrix or MRexperiment object.} \item{pFlag}{Plot the median difference quantiles.} \item{rel}{Cutoff for the relative difference from one median difference from the reference to the next.} \item{...}{Applicable if pFlag == TRUE. Additional plotting parameters.} } \value{ Percentile for which to scale data } \description{ Calculates the percentile for which to sum counts up to and scale by. Faster version than available in cumNormStat. Deviates from methods described in Nature Methods by making use of ro means for reference. } \examples{ data(mouseData) p = round(cumNormStatFast(mouseData,pFlag=FALSE),digits=2) } \seealso{ \code{\link{fitZig}} \code{\link{cumNorm}} \code{\link{cumNormStat}} } metagenomeSeq/man/doCountMStep.Rd0000644000175400017540000000303213175714310020020 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/doCountMStep.R \name{doCountMStep} \alias{doCountMStep} \title{Compute the Maximization step calculation for features still active.} \usage{ doCountMStep(z, y, mmCount, stillActive, fit2 = NULL, dfMethod = "modified") } \arguments{ \item{z}{Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).} \item{y}{Matrix (m x n) of count observations.} \item{mmCount}{Model matrix for the count distribution.} \item{stillActive}{Boolean vector of size M, indicating whether a feature converged or not.} \item{fit2}{Previous fit of the count model.} \item{dfMethod}{Either 'default' or 'modified' (by responsibilities)} } \value{ Update matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0). } \description{ Maximization step is solved by weighted least squares. The function also computes counts residuals. } \details{ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j)*f_0(y_ij) +(1-pi_j (S_j)) * f_count(y_ij;mu_i,sigma_i^2)$. The log-likelihood in this extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j (s_j))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/doEStep.Rd0000644000175400017540000000233313175714310017002 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/doEStep.R \name{doEStep} \alias{doEStep} \title{Compute the Expectation step.} \usage{ doEStep(countResiduals, zeroResiduals, zeroIndices) } \arguments{ \item{countResiduals}{Residuals from the count model.} \item{zeroResiduals}{Residuals from the zero model.} \item{zeroIndices}{Index (matrix m x n) of counts that are zero/non-zero.} } \value{ Updated matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0). } \description{ Estimates the responsibilities $z_ij = fracpi_j cdot I_0(y_ijpi_j cdot I_0(y_ij + (1-pi_j) cdot f_count(y_ij } \details{ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j) cdot f_0(y_ij) +(1-pi_j (S_j))cdot f_count(y_ij;mu_i,sigma_i^2)$. The log-likelihood in this extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/doZeroMStep.Rd0000644000175400017540000000272513175714310017657 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/doZeroMStep.R \name{doZeroMStep} \alias{doZeroMStep} \title{Compute the zero Maximization step.} \usage{ doZeroMStep(z, zeroIndices, mmZero) } \arguments{ \item{z}{Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).} \item{zeroIndices}{Index (matrix m x n) of counts that are zero/non-zero.} \item{mmZero}{The zero model, the model matrix to account for the change in the number of OTUs observed as a linear effect of the depth of coverage.} } \value{ List of the zero fit (zero mean model) coefficients, variance - scale parameter (scalar), and normalized residuals of length sum(zeroIndices). } \description{ Performs Maximization step calculation for the mixture components. Uses least squares to fit the parameters of the mean of the logistic distribution. $$ pi_j = sum_i^M frac1Mz_ij $$ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j) cdot f_0(y_ij) +(1-pi_j (S_j))cdot f_count(y_ij;mu_i,sigma_i^2)$. The log-likelihood in this extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/expSummary.Rd0000644000175400017540000000122113175714310017604 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{expSummary} \alias{expSummary} \alias{expSummary,MRexperiment-method} \title{Access MRexperiment object experiment data} \usage{ expSummary(obj) } \arguments{ \item{obj}{a \code{MRexperiment} object.} } \value{ Experiment summary table } \description{ The expSummary vectors represent the column (sample specific) sums of features, i.e. the total number of reads for a sample, libSize and also the normalization factors, normFactor. } \examples{ data(mouseData) expSummary(mouseData) } \author{ Joseph N. Paulson, jpaulson@umiacs.umd.edu } metagenomeSeq/man/exportMat.Rd0000644000175400017540000000202613175714310017421 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/exportMat.R \name{exportMat} \alias{exportMat} \alias{exportMatrix} \title{Export the normalized MRexperiment dataset as a matrix.} \usage{ exportMat(obj, log = TRUE, norm = TRUE, sep = "\\t", file = "~/Desktop/matrix.tsv") } \arguments{ \item{obj}{A MRexperiment object or count matrix.} \item{log}{Whether or not to log transform the counts - if MRexperiment object.} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{sep}{Separator for writing out the count matrix.} \item{file}{Output file name.} } \value{ NA } \description{ This function allows the user to take a dataset of counts and output the dataset to the user's workspace as a tab-delimited file, etc. } \examples{ data(lungData) dataDirectory <- system.file("extdata", package="metagenomeSeq") exportMat(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\\t")) } \seealso{ \code{\link{cumNorm}} } metagenomeSeq/man/exportStats.Rd0000644000175400017540000000167413175714310020006 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/exportStats.R \name{exportStats} \alias{exportStats} \title{Various statistics of the count data.} \usage{ exportStats(obj, p = cumNormStat(obj), file = "~/Desktop/res.stats.tsv") } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{p}{Quantile value to calculate the scaling factor and quantiles for the various samples.} \item{file}{Output file name.} } \value{ None. } \description{ A matrix of values for each sample. The matrix consists of sample ids, the sample scaling factor, quantile value, the number identified features, and library size (depth of coverage). } \examples{ data(lungData) dataDirectory <- system.file("extdata", package="metagenomeSeq") exportStats(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\\t")) } \seealso{ \code{\link{cumNorm}} \code{\link{quantile}} } metagenomeSeq/man/extractMR.Rd0000644000175400017540000000126213175714310017350 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mergeMRexperiments.R \name{extractMR} \alias{extractMR} \title{Extract the essentials of an MRexperiment.} \usage{ extractMR(obj) } \arguments{ \item{obj}{MRexperiment-class object.} } \value{ \itemize{A list containing: \item counts : Count data \item librarySize : The column sums / library size / sequencing depth \item normFactors : The normalization scaling factors \item pheno : phenotype table \item feat : feature table } } \description{ Extract the essentials of an MRexperiment. } \examples{ data(mouseData) head(metagenomeSeq:::extractMR(mouseData)) } metagenomeSeq/man/filterData.Rd0000644000175400017540000000135213175714310017516 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/filterData.R \name{filterData} \alias{filterData} \title{Filter datasets according to no. features present in features with at least a certain depth.} \usage{ filterData(obj, present = 1, depth = 1000) } \arguments{ \item{obj}{A MRexperiment object or count matrix.} \item{present}{Features with at least 'present' postive samples.} \item{depth}{Sampls with at least this much depth of coverage} } \value{ A MRexperiment object. } \description{ Filter the data based on the number of present features after filtering samples by depth of coverage. There are many ways to filter the object, this is just one way. } \examples{ data(mouseData) filterData(mouseData) } metagenomeSeq/man/fitDO.Rd0000644000175400017540000000333613175714310016450 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitDO.R \name{fitDO} \alias{fitDO} \title{Wrapper to calculate Discovery Odds Ratios on feature values.} \usage{ fitDO(obj, cl, norm = TRUE, log = TRUE, adjust.method = "fdr", cores = 1, ...) } \arguments{ \item{obj}{A MRexperiment object with a count matrix, or a simple count matrix.} \item{cl}{Group comparison} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{adjust.method}{Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See \code{\link{p.adjust}} for more details.} \item{cores}{Number of cores to use.} \item{...}{Extra options for makeCluster} } \value{ Matrix of odds ratios, p-values, lower and upper confidence intervals } \description{ This function returns a data frame of p-values, odds ratios, lower and upper confidence limits for every row of a matrix. The discovery odds ratio is calculated as using Fisher's exact test on actual counts. The test's hypothesis is whether or not the discovery of counts for a feature (of all counts) is found in greater proportion in a particular group. } \examples{ data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),] res = fitDO(lungTrim,pData(lungTrim)$SmokingStatus); head(res) } \seealso{ \code{\link{cumNorm}} \code{\link{fitZig}} \code{\link{fitPA}} \code{\link{fitMeta}} } metagenomeSeq/man/fitFeatureModel.Rd0000644000175400017540000000310213175714310020511 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitFeatureModel.R \name{fitFeatureModel} \alias{fitFeatureModel} \title{Computes differential abundance analysis using a zero-inflated log-normal model} \usage{ fitFeatureModel(obj, mod, coef = 2, B = 1, szero = FALSE, spos = TRUE) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{mod}{The model for the count distribution.} \item{coef}{Coefficient of interest to grab log fold-changes.} \item{B}{Number of bootstraps to perform if >1. If >1 performs permutation test.} \item{szero}{TRUE/FALSE, shrink zero component parameters.} \item{spos}{TRUE/FALSE, shrink positive component parameters.} } \value{ A list of objects including: \itemize{ \item{call - the call made to fitFeatureModel} \item{fitZeroLogNormal - list of parameter estimates for the zero-inflated log normal model} \item{design - model matrix} \item{taxa - taxa names} \item{counts - count matrix} \item{pvalues - calculated p-values} \item{permuttedfits - permutted z-score estimates under the null} } } \description{ Wrapper to actually run zero-inflated log-normal model given a MRexperiment object and model matrix. User can decide to shrink parameter estimates. } \examples{ data(lungData) lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))] lungData=filterData(lungData,present=30,depth=1) lungData <- cumNorm(lungData, p=.5) s <- normFactors(lungData) pd <- pData(lungData) mod <- model.matrix(~1+SmokingStatus, data=pd) lungres1 = fitFeatureModel(lungData,mod) } \seealso{ \code{\link{cumNorm}} } metagenomeSeq/man/fitLogNormal.Rd0000644000175400017540000000257413175714310020043 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitLogNormal.R \name{fitLogNormal} \alias{fitLogNormal} \title{Computes a log-normal linear model and permutation based p-values.} \usage{ fitLogNormal(obj, mod, useCSSoffset = TRUE, B = 1000, coef = 2, sl = 1000) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{mod}{The model for the count distribution.} \item{useCSSoffset}{Boolean, whether to include the default scaling parameters in the model or not.} \item{B}{Number of permutations.} \item{coef}{The coefficient of interest.} \item{sl}{The value to scale by (default=1000).} } \value{ Call made, fit object from lmFit, t-statistics and p-values for each feature. } \description{ Wrapper to perform the permutation test on the t-statistic. This is the original method employed by metastats (for non-sparse large samples). We include CSS normalization though (optional) and log2 transform the data. In this method the null distribution is not assumed to be a t-dist. } \examples{ # This is a simple demonstration data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] k = which(rowSums(MRcounts(lungTrim)>0)<30) lungTrim = cumNorm(lungTrim) lungTrim = lungTrim[-k,] smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) fit = fitLogNormal(obj = lungTrim,mod=mod,B=1) } metagenomeSeq/man/fitMultipleTimeSeries.Rd0000644000175400017540000000335413175714310021733 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{fitMultipleTimeSeries} \alias{fitMultipleTimeSeries} \title{Discover differentially abundant time intervals for all bacteria} \usage{ fitMultipleTimeSeries(obj, lvl = NULL, B = 1, featureOrder = NULL, ...) } \arguments{ \item{obj}{metagenomeSeq MRexperiment-class object.} \item{lvl}{Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level).} \item{B}{Number of permutations to perform.} \item{featureOrder}{Hierarchy of levels in taxonomy as fData colnames} \item{...}{Options for \code{\link{fitTimeSeries}}, except feature.} } \value{ List of lists of matrices of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations. A list of lists for which each includes: \itemize{ \item{timeIntervals - Matrix of time point intervals of interest, area of differential abundance, and pvalue.} \item{data - Data frame of abundance, class indicator, time, and id input.} \item{fit - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.} \item{perm - Differential abundance area estimates for each permutation.} \item{call - Function call.} } } \description{ Calculate time intervals of significant differential abundance over all bacteria of a particularly specified level (lvl). If not lvl is specified, all OTUs are analyzed. Warning, function can take a while } \examples{ data(mouseData) res = fitMultipleTimeSeries(obj=mouseData,lvl='phylum',class="status", id="mouseID",time="relativeTime",B=1) } \seealso{ \code{\link{cumNorm}} \code{\link{fitSSTimeSeries}} \code{\link{fitTimeSeries}} } metagenomeSeq/man/fitPA.Rd0000644000175400017540000000240113175714310016436 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitPA.R \name{fitPA} \alias{fitPA} \title{Wrapper to run fisher's test on presence/absence of a feature.} \usage{ fitPA(obj, cl, thres = 0, adjust.method = "fdr", cores = 1, ...) } \arguments{ \item{obj}{A MRexperiment object with a count matrix, or a simple count matrix.} \item{cl}{Group comparison} \item{thres}{Threshold for defining presence/absence.} \item{adjust.method}{Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See \code{\link{p.adjust}} for more details.} \item{cores}{Number of cores to use.} \item{...}{Extra parameters for makeCluster} } \value{ Matrix of odds ratios, p-values, lower and upper confidence intervals } \description{ This function returns a data frame of p-values, odds ratios, lower and upper confidence limits for every row of a matrix. } \examples{ data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),] res = fitPA(lungTrim,pData(lungTrim)$SmokingStatus); head(res) } \seealso{ \code{\link{cumNorm}} \code{\link{fitZig}} \code{\link{fitDO}} \code{\link{fitMeta}} } metagenomeSeq/man/fitSSTimeSeries.Rd0000644000175400017540000000576313175714310020473 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{fitSSTimeSeries} \alias{fitSSTimeSeries} \title{Discover differentially abundant time intervals using SS-Anova} \usage{ fitSSTimeSeries(obj, formula, feature, class, time, id, lvl = NULL, include = c("class", "time:class"), C = 0, B = 1000, norm = TRUE, log = TRUE, sl = 1000, featureOrder = NULL, ...) } \arguments{ \item{obj}{metagenomeSeq MRexperiment-class object.} \item{formula}{Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.} \item{feature}{Name or row of feature of interest.} \item{class}{Name of column in phenoData of MRexperiment-class object for class memberhip.} \item{time}{Name of column in phenoData of MRexperiment-class object for relative time.} \item{id}{Name of column in phenoData of MRexperiment-class object for sample id.} \item{lvl}{Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level).} \item{include}{Parameters to include in prediction.} \item{C}{Value for which difference function has to be larger or smaller than (default 0).} \item{B}{Number of permutations to perform} \item{norm}{When aggregating counts to normalize or not.} \item{log}{Log2 transform.} \item{sl}{Scaling value.} \item{featureOrder}{Hierarchy of levels in taxonomy as fData colnames} \item{...}{Options for ssanova} } \value{ List of matrix of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations, and call. A list of objects including: \itemize{ \item{timeIntervals - Matrix of time point intervals of interest, area of differential abundance, and pvalue.} \item{data - Data frame of abundance, class indicator, time, and id input.} \item{fit - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.} \item{perm - Differential abundance area estimates for each permutation.} \item{call - Function call.} } } \description{ Calculate time intervals of interest using SS-Anova fitted models. Fitting is performed uses Smoothing Spline ANOVA (SS-Anova) to find interesting intervals of time. Given observations at different time points for two groups, fitSSTimeSeries calculates a function that models the difference in abundance between two groups across all time. Using permutations we estimate a null distribution of areas for the time intervals of interest and report significant intervals of time. Use of the function for analyses should cite: "Finding regions of interest in high throughput genomics data using smoothing splines" Talukder H, Paulson JN, Bravo HC. (In preparation) } \examples{ data(mouseData) res = fitSSTimeSeries(obj=mouseData,feature="Actinobacteria", class="status",id="mouseID",time="relativeTime",lvl='class',B=2) } \seealso{ \code{\link{cumNorm}} \code{\link{ssFit}} \code{\link{ssIntervalCandidate}} \code{\link{ssPerm}} \code{\link{ssPermAnalysis}} \code{\link{plotTimeSeries}} } metagenomeSeq/man/fitTimeSeries.Rd0000644000175400017540000000507013175714310020214 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{fitTimeSeries} \alias{fitTimeSeries} \title{Discover differentially abundant time intervals} \usage{ fitTimeSeries(obj, formula, feature, class, time, id, method = c("ssanova"), lvl = NULL, include = c("class", "time:class"), C = 0, B = 1000, norm = TRUE, log = TRUE, sl = 1000, featureOrder = NULL, ...) } \arguments{ \item{obj}{metagenomeSeq MRexperiment-class object.} \item{formula}{Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.} \item{feature}{Name or row of feature of interest.} \item{class}{Name of column in phenoData of MRexperiment-class object for class memberhip.} \item{time}{Name of column in phenoData of MRexperiment-class object for relative time.} \item{id}{Name of column in phenoData of MRexperiment-class object for sample id.} \item{method}{Method to estimate time intervals of differentially abundant bacteria (only ssanova method implemented currently).} \item{lvl}{Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level).} \item{include}{Parameters to include in prediction.} \item{C}{Value for which difference function has to be larger or smaller than (default 0).} \item{B}{Number of permutations to perform.} \item{norm}{When aggregating counts to normalize or not.} \item{log}{Log2 transform.} \item{sl}{Scaling value.} \item{featureOrder}{Hierarchy of levels in taxonomy as fData colnames} \item{...}{Options for ssanova} } \value{ List of matrix of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations, and call. A list of objects including: \itemize{ \item{timeIntervals - Matrix of time point intervals of interest, area of differential abundance, and pvalue.} \item{data - Data frame of abundance, class indicator, time, and id input.} \item{fit - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.} \item{perm - Differential abundance area estimates for each permutation.} \item{call - Function call.} } } \description{ Calculate time intervals of significant differential abundance. Currently only one method is implemented (ssanova). fitSSTimeSeries is called with method="ssanova". } \examples{ data(mouseData) res = fitTimeSeries(obj=mouseData,feature="Actinobacteria", class="status",id="mouseID",time="relativeTime",lvl='class',B=2) } \seealso{ \code{\link{cumNorm}} \code{\link{fitSSTimeSeries}} \code{\link{plotTimeSeries}} } metagenomeSeq/man/fitZeroLogNormal.Rd0000644000175400017540000000275213175714310020701 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZeroLogNormal.R \name{fitZeroLogNormal} \alias{fitZeroLogNormal} \title{Compute the log fold-change estimates for the zero-inflated log-normal model} \usage{ fitZeroLogNormal(obj, mod, coef = 2, szero = TRUE, spos = TRUE) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{mod}{The model for the count distribution.} \item{coef}{Coefficient of interest to grab log fold-changes.} \item{szero}{TRUE/FALSE, shrink zero component parameters.} \item{spos}{TRUE/FALSE, shrink positive component parameters.} } \value{ A list of objects including: \itemize{ \item{logFC - the log fold-change estimates} \item{adjFactor - the adjustment factor based on the zero component} \item{se - standard error estimates} \item{fitln - parameters from the log-normal fit} \item{fitzero - parameters from the logistic fit} \item{zeroRidge - output from the ridge regression} \item{posRidge - output from the ridge regression} \item{tauPos - estimated tau^2 for positive component} \item{tauZero - estimated tau^2 for zero component} \item{exclude - features to exclude for various reasons, e.g. all zeros} \item{zeroExclude - features to exclude for various reasons, e.g. all zeros} } } \description{ Run the zero-inflated log-normal model given a MRexperiment object and model matrix. Not for the average user, assumes structure of the model matrix. } \seealso{ \code{\link{cumNorm}} \code{\link{fitFeatureModel}} } metagenomeSeq/man/fitZig.Rd0000644000175400017540000000523113175714310016673 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitZig.R \name{fitZig} \alias{fitZig} \title{Computes the weighted fold-change estimates and t-statistics.} \usage{ fitZig(obj, mod, zeroMod = NULL, useCSSoffset = TRUE, control = zigControl(), useMixedModel = FALSE, ...) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{mod}{The model for the count distribution.} \item{zeroMod}{The zero model, the model to account for the change in the number of OTUs observed as a linear effect of the depth of coverage.} \item{useCSSoffset}{Boolean, whether to include the default scaling parameters in the model or not.} \item{control}{The settings for fitZig.} \item{useMixedModel}{Estimate the correlation between duplicate features or replicates using duplicateCorrelation.} \item{...}{Additional parameters for duplicateCorrelation.} } \value{ A list of objects including: \itemize{ \item{call - the call made to fitZig} \item{fit - 'MLArrayLM' Limma object of the weighted fit} \item{countResiduals - standardized residuals of the fit} \item{z - matrix of the posterior probabilities} \item{eb - output of eBayes, moderated t-statistics, moderated F-statistics, etc} \item{taxa - vector of the taxa names} \item{counts - the original count matrix input} \item{zeroMod - the zero model matrix} \item{zeroCoef - the zero model fitted results} \item{stillActive - convergence} \item{stillActiveNLL - nll at convergence} \item{dupcor - correlation of duplicates} } } \description{ Wrapper to actually run the Expectation-maximization algorithm and estimate $f_count$ fits. Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_ij = 1$ if $y_ij$ is generated from the zero point mass as latent indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j)*f_0(y_ij) +(1-pi_j (S_j)) * f_count(y_ij; mu_i, sigma_i^2)$. The log-likelihood in this extended model is: $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij) log (1-pi_j (s_j))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. } \examples{ # This is a simple demonstration data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] k = which(rowSums(MRcounts(lungTrim)>0)<30) lungTrim = cumNorm(lungTrim) lungTrim = lungTrim[-k,] smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) # The maxit is not meant to be 1 - this is for demonstration/speed settings = zigControl(maxit=1,verbose=FALSE) fit = fitZig(obj = lungTrim,mod=mod,control=settings) } \seealso{ \code{\link{cumNorm}} \code{\link{zigControl}} } metagenomeSeq/man/getCountDensity.Rd0000644000175400017540000000220713175714310020567 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getCountDensity.R \name{getCountDensity} \alias{getCountDensity} \title{Compute the value of the count density function from the count model residuals.} \usage{ getCountDensity(residuals, log = FALSE) } \arguments{ \item{residuals}{Residuals from the count model.} \item{log}{Whether or not we are calculating from a log-normal distribution.} } \value{ Density values from the count model residuals. } \description{ Calculate density values from a normal: $f(x) = 1/(sqrt (2 pi ) sigma ) e^-((x - mu )^2/(2 sigma^2))$. Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $deta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent indicator variables. The density is defined as $f_zig(y_ij = pi_j(S_j) cdot f_0(y_ij) +(1-pi_j (S_j))cdot f_count(y_ij;mu_i,sigma_i^2)$. The log-likelihood in this extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/getEpsilon.Rd0000644000175400017540000000174013175714310017551 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getEpsilon.R \name{getEpsilon} \alias{getEpsilon} \title{Calculate the relative difference between iterations of the negative log-likelihoods.} \usage{ getEpsilon(nll, nllOld) } \arguments{ \item{nll}{Vector of size M with the current negative log-likelihoods.} \item{nllOld}{Vector of size M with the previous iterations negative log-likelihoods.} } \value{ Vector of size M of the relative differences between the previous and current iteration nll. } \description{ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent indicator variables. The log-likelihood in this extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data)$. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/getNegativeLogLikelihoods.Rd0000644000175400017540000000217013175714310022531 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getNegativeLogLikelihoods.R \name{getNegativeLogLikelihoods} \alias{getNegativeLogLikelihoods} \title{Calculate the negative log-likelihoods for the various features given the residuals.} \usage{ getNegativeLogLikelihoods(z, countResiduals, zeroResiduals) } \arguments{ \item{z}{Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).} \item{countResiduals}{Residuals from the count model.} \item{zeroResiduals}{Residuals from the zero model.} } \value{ Vector of size M of the negative log-likelihoods for the various features. } \description{ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_ij$ = 1 if $y_ij$ is generated from the zero point mass as latent indicator variables. The log-likelihood in this extended model is $(1-delta_ij) log f_count(y;mu_i,sigma_i^2 )+delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j (sj))$. The responsibilities are defined as $z_ij = pr(delta_ij=1 | data and current values)$. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/getPi.Rd0000644000175400017540000000130413175714310016504 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getPi.R \name{getPi} \alias{getPi} \title{Calculate the mixture proportions from the zero model / spike mass model residuals.} \usage{ getPi(residuals) } \arguments{ \item{residuals}{Residuals from the zero model.} } \value{ Mixture proportions for each sample. } \description{ F(x) = 1 / (1 + exp(-(x-m)/s)) (the CDF of the logistic distribution). Provides the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x. The output are the mixture proportions for the samples given the residuals from the zero model. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/getZ.Rd0000644000175400017540000000171313175714310016351 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getZ.R \name{getZ} \alias{getZ} \title{Calculate the current Z estimate responsibilities (posterior probabilities)} \usage{ getZ(z, zUsed, stillActive, nll, nllUSED) } \arguments{ \item{z}{Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).} \item{zUsed}{Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0) that are actually used (following convergence).} \item{stillActive}{A vector of size M booleans saying if a feature is still active or not.} \item{nll}{Vector of size M with the current negative log-likelihoods.} \item{nllUSED}{Vector of size M with the converged negative log-likelihoods.} } \value{ A list of updated zUsed and nllUSED. } \description{ Calculate the current Z estimate responsibilities (posterior probabilities) } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/isItStillActive.Rd0000644000175400017540000000204613175714310020514 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/isItStillActive.R \name{isItStillActive} \alias{isItStillActive} \title{Function to determine if a feature is still active.} \usage{ isItStillActive(eps, tol, stillActive, stillActiveNLL, nll) } \arguments{ \item{eps}{Vector of size M (features) representing the relative difference between the new nll and old nll.} \item{tol}{The threshold tolerance for the difference} \item{stillActive}{A vector of size M booleans saying if a feature is still active or not.} \item{stillActiveNLL}{A vector of size M recording the negative log-likelihoods of the various features, updated for those still active.} \item{nll}{Vector of size M with the current negative log-likelihoods.} } \value{ None. } \description{ In the Expectation Maximization routine features posterior probabilities routinely converge based on a tolerance threshold. This function checks whether or not the feature's negative log-likelihood (measure of the fit) has changed or not. } \seealso{ \code{\link{fitZig}} } metagenomeSeq/man/libSize-set.Rd0000644000175400017540000000122013175714310017623 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{libSize<-} \alias{libSize<-} \alias{libSize<-,MRexperiment,numeric-method} \title{Replace the library sizes in a MRexperiment object} \usage{ \S4method{libSize}{MRexperiment,numeric}(object) <- value } \arguments{ \item{object}{a \code{MRexperiment} object} \item{value}{vector of library sizes} } \value{ vector library sizes } \description{ Function to replace the scaling factors, aka the library sizes, of samples in a MRexperiment object. } \examples{ data(lungData) head(libSize(lungData)<- rnorm(1)) } \author{ Joseph N. Paulson } metagenomeSeq/man/libSize.Rd0000644000175400017540000000112613175714310017037 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{libSize} \alias{libSize} \title{Access sample depth of coverage from MRexperiment object} \usage{ libSize(object) } \arguments{ \item{object}{a \code{MRexperiment} object} } \value{ Library sizes } \description{ Access the libSize vector represents the column (sample specific) sums of features, i.e. the total number of reads for a sample or depth of coverage. It is used by \code{\link{fitZig}}. } \examples{ data(lungData) head(libSize(lungData)) } \author{ Joseph N. Paulson } metagenomeSeq/man/loadBiom.Rd0000644000175400017540000000116113175714310017163 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/loadBiom.R \name{loadBiom} \alias{loadBiom} \title{Load objects organized in the Biom format.} \usage{ loadBiom(file) } \arguments{ \item{file}{The biom object filepath.} } \value{ A MRexperiment object. } \description{ Wrapper to load Biom formatted object. } \examples{ #library(biomformat) rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat") x = loadBiom(rich_dense_file) x } \seealso{ \code{\link{loadMeta}} \code{\link{loadPhenoData}} \code{\link{newMRexperiment}} \code{\link{biom2MRexperiment}} } metagenomeSeq/man/loadMeta.Rd0000644000175400017540000000120213175714310017157 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/loadMeta.R \name{loadMeta} \alias{loadMeta} \alias{metagenomicLoader} \title{Load a count dataset associated with a study.} \usage{ loadMeta(file, sep = "\\t") } \arguments{ \item{file}{Path and filename of the actual data file.} \item{sep}{File delimiter.} } \value{ A list with objects 'counts' and 'taxa'. } \description{ Load a matrix of OTUs in a tab delimited format } \examples{ dataDirectory <- system.file("extdata", package="metagenomeSeq") lung = loadMeta(file.path(dataDirectory,"CHK_NAME.otus.count.csv")) } \seealso{ \code{\link{loadPhenoData}} } metagenomeSeq/man/loadMetaQ.Rd0000644000175400017540000000110213175714310017277 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/loadMetaQ.R \name{loadMetaQ} \alias{loadMetaQ} \alias{qiimeLoader} \title{Load a count dataset associated with a study set up in a Qiime format.} \usage{ loadMetaQ(file) } \arguments{ \item{file}{Path and filename of the actual data file.} } \value{ An list with 'counts' containing the count data, 'taxa' containing the otu annotation, and 'otus'. } \description{ Load a matrix of OTUs in Qiime's format } \examples{ # see vignette } \seealso{ \code{\link{loadMeta}} \code{\link{loadPhenoData}} } metagenomeSeq/man/loadPhenoData.Rd0000644000175400017540000000145313175714310020144 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/loadPhenoData.R \name{loadPhenoData} \alias{loadPhenoData} \alias{phenoData} \title{Load a clinical/phenotypic dataset associated with a study.} \usage{ loadPhenoData(file, tran = TRUE, sep = "\\t") } \arguments{ \item{file}{Path and filename of the actual clinical file.} \item{tran}{Boolean. If the covariates are along the columns and samples along the rows, then tran should equal TRUE.} \item{sep}{The separator for the file.} } \value{ The metadata as a dataframe. } \description{ Load a matrix of metadata associated with a study. } \examples{ dataDirectory <- system.file("extdata", package="metagenomeSeq") clin = loadPhenoData(file.path(dataDirectory,"CHK_clinical.csv"),tran=TRUE) } \seealso{ \code{\link{loadMeta}} } metagenomeSeq/man/lungData.Rd0000644000175400017540000000073713175714310017204 0ustar00biocbuildbiocbuild\name{lungData} \docType{data} \alias{lungData} \title{OTU abundance matrix of samples from a smoker/non-smoker study} \description{This is a list with a matrix of OTU counts,otu names, taxa annotations for each OTU, and phenotypic data. Samples along the columns and OTUs along the rows.} \value{ MRexperiment-class object of 16S lung samples. } \usage{lungData} \format{A list of OTU matrix, taxa, otus, and phenotypes} \references{http://www.ncbi.nlm.nih.gov/pubmed/21680950}metagenomeSeq/man/makeLabels.Rd0000644000175400017540000000102413175714310017473 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{makeLabels} \alias{makeLabels} \title{Function to make labels simpler} \usage{ makeLabels(x = "samples", y = "abundance", norm, log) } \arguments{ \item{x}{string for the x-axis} \item{y}{string for the y-axis} \item{norm}{is the data normalized?} \item{log}{is the data logged?} } \value{ vector of x,y labels } \description{ Beginning to transition to better axes for plots } \examples{ metagenomeSeq::makeLabels(norm=TRUE,log=TRUE) } metagenomeSeq/man/mergeMRexperiments.Rd0000644000175400017540000000156013175714310021262 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mergeMRexperiments.R \name{mergeMRexperiments} \alias{mergeMRexperiments} \title{Merge two MRexperiment objects together} \usage{ mergeMRexperiments(x, y) } \arguments{ \item{x}{MRexperiment-class object 1.} \item{y}{MRexperiment-class object 2.} } \value{ Merged MRexperiment-class object. } \description{ This function will take two MRexperiment objects and merge them together finding common OTUs. If there are OTUs not found in one of the two MRexperiments then a message will announce this and values will be coerced to zero for the second table. } \examples{ data(mouseData) newobj = mergeMRexperiments(mouseData,mouseData) newobj # let me know if people are interested in an option to merge by keys instead of row names. data(lungData) newobj = mergeMRexperiments(mouseData,lungData) newobj } metagenomeSeq/man/mergeTable.Rd0000644000175400017540000000045113175714310017505 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mergeMRexperiments.R \name{mergeTable} \alias{mergeTable} \title{Merge two tables} \usage{ mergeTable(x, y) } \arguments{ \item{x}{Table 1.} \item{y}{Table 2.} } \value{ Merged table } \description{ Merge two tables } metagenomeSeq/man/metagenomeSeq-deprecated.Rd0000644000175400017540000000164613175714310022335 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/deprecated_metagenomeSeq_function.R \docType{package} \name{metagenomeSeq-deprecated} \alias{metagenomeSeq-deprecated} \alias{deprecated_metagenomeSeq_function} \alias{fitMeta} \alias{load_phenoData} \alias{load_meta} \alias{load_biom} \alias{load_metaQ} \alias{metagenomeSeq-deprecated-package} \title{Depcrecated functions in the metagenomeSeq package.} \usage{ deprecated_metagenomeSeq_function(x, value, ...) } \arguments{ \item{x}{For assignment operators, the object that will undergo a replacement (object inside parenthesis).} \item{value}{For assignment operators, the value to replace with (the right side of the assignment).} \item{...}{For functions other than assignment operators, parameters to be passed to the modern version of the function (see table).} } \description{ These functions may be removed completely in the next release. } metagenomeSeq/man/metagenomeSeq-package.Rd0000644000175400017540000000201413175714310021616 0ustar00biocbuildbiocbuild\name{metagenomeSeq-package} \docType{package} \alias{metagenomeSeq} \alias{metagenomeSeq-package} \title{Statistical analysis for sparse high-throughput sequencing} \description{ metagenomeSeq is designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations. A user's guide is available, and can be opened by typing \code{vignette("metagenomeSeq")} The metagenomeSeq package implements novel normalization and statistical methodology in the following papers. } \author{ Paulson, JN ; Pop, M; Corrada Bravo, H } \references{ Paulson, Joseph N., O. Colin Stine, Hector Corrada Bravo, and Mihai Pop. "Differential abundance analysis for microbial marker-gene surveys." Nature methods (2013). } \keyword{package} metagenomeSeq/man/mouseData.Rd0000644000175400017540000000077413175714310017370 0ustar00biocbuildbiocbuild\name{mouseData} \docType{data} \alias{mouseData} \title{OTU abundance matrix of mice samples from a diet longitudinal study} \description{This is a list with a matrix of OTU counts, taxa annotations for each OTU, otu names, and vector of phenotypic data. Samples along the columns and OTUs along the rows.} \value{ MRexperiment-class object of 16S mouse samples. } \usage{mouseData} \format{A list of OTU matrix, taxa, otus, and phenotypes} \references{http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894525/}metagenomeSeq/man/newMRexperiment.Rd0000644000175400017540000000243613175714310020574 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \name{newMRexperiment} \alias{newMRexperiment} \title{Create a MRexperiment object} \usage{ newMRexperiment(counts, phenoData = NULL, featureData = NULL, libSize = NULL, normFactors = NULL) } \arguments{ \item{counts}{A matrix or data frame of count data. The count data is representative of the number of reads annotated for a feature (be it gene, OTU, species, etc). Rows should correspond to features and columns to samples.} \item{phenoData}{An AnnotatedDataFrame with pertinent sample information.} \item{featureData}{An AnnotatedDataFrame with pertinent feature information.} \item{libSize}{libSize, library size, is the total number of reads for a particular sample.} \item{normFactors}{normFactors, the normalization factors used in either the model or as scaling factors of sample counts for each particular sample.} } \value{ an object of class MRexperiment } \description{ This function creates a MRexperiment object from a matrix or data frame of count data. } \details{ See \code{\link{MRexperiment-class}} and \code{eSet} (from the Biobase package) for the meaning of the various slots. } \examples{ cnts = matrix(abs(rnorm(1000)),nc=10) obj <- newMRexperiment(cnts) } \author{ Joseph N Paulson } metagenomeSeq/man/normFactors-set.Rd0000644000175400017540000000131513175714310020524 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{normFactors<-} \alias{normFactors<-} \alias{normFactors<-,MRexperiment,numeric-method} \title{Replace the normalization factors in a MRexperiment object} \usage{ \S4method{normFactors}{MRexperiment,numeric}(object) <- value } \arguments{ \item{object}{a \code{MRexperiment} object} \item{value}{vector of normalization scaling factors} } \value{ Normalization scaling factors } \description{ Function to replace the scaling factors, aka the normalization factors, of samples in a MRexperiment object. } \examples{ data(lungData) head(normFactors(lungData)<- rnorm(1)) } \author{ Joseph N. Paulson } metagenomeSeq/man/normFactors.Rd0000644000175400017540000000105113175714310017730 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{normFactors} \alias{normFactors} \title{Access the normalization factors in a MRexperiment object} \usage{ normFactors(object) } \arguments{ \item{object}{a \code{MRexperiment} object} } \value{ Normalization scaling factors } \description{ Function to access the scaling factors, aka the normalization factors, of samples in a MRexperiment object. } \examples{ data(lungData) head(normFactors(lungData)) } \author{ Joseph N. Paulson } metagenomeSeq/man/plotBubble.Rd0000644000175400017540000000320513175714310017530 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotBubble.R \name{plotBubble} \alias{plotBubble} \title{Basic plot of binned vectors.} \usage{ plotBubble(yvector, xvector, sigvector = NULL, nbreaks = 10, ybreak = quantile(yvector, p = seq(0, 1, length.out = nbreaks)), xbreak = quantile(xvector, p = seq(0, 1, length.out = nbreaks)), scale = 1, local = FALSE, ...) } \arguments{ \item{yvector}{A vector of values represented along y-axis.} \item{xvector}{A vector of values represented along x-axis.} \item{sigvector}{A vector of the names of significant features (names should match x/yvector).} \item{nbreaks}{Number of bins to break yvector and xvector into.} \item{ybreak}{The values to break the yvector at.} \item{xbreak}{The values to break the xvector at.} \item{scale}{Scaling of circle bin sizes.} \item{local}{Boolean to shade by signficant bin numbers (TRUE) or overall proportion (FALSE).} \item{...}{Additional plot arguments.} } \value{ A matrix of features along rows, and the group membership along columns. } \description{ This function plots takes two vectors, calculates the contingency table and plots circles sized by the contingency table value. Optional significance vectors of the values significant will shade the circles by proportion of significance. } \examples{ data(mouseData) mouseData = mouseData[which(rowSums(mouseData)>139),] sparsity = rowMeans(MRcounts(mouseData)==0) lor = log(fitPA(mouseData,cl=pData(mouseData)[,3])$oddsRatio) plotBubble(lor,sparsity,main="lor ~ sparsity") # Example 2 x = runif(100000) y = runif(100000) plotBubble(y,x) } \seealso{ \code{\link{plotMRheatmap}} } metagenomeSeq/man/plotClassTimeSeries.Rd0000644000175400017540000000230713175714310021376 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{plotClassTimeSeries} \alias{plotClassTimeSeries} \title{Plot abundances by class} \usage{ plotClassTimeSeries(res, formula, xlab = "Time", ylab = "Abundance", color0 = "black", color1 = "red", include = c("1", "class", "time:class"), ...) } \arguments{ \item{res}{Output of fitTimeSeries function} \item{formula}{Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.} \item{xlab}{X-label.} \item{ylab}{Y-label.} \item{color0}{Color of samples from first group.} \item{color1}{Color of samples from second group.} \item{include}{Parameters to include in prediction.} \item{...}{Extra plotting arguments.} } \value{ Plot for abundances of each class using a spline approach on estimated null model. } \description{ Plot the abundance of values for each class using a spline approach on the estimated full model. } \examples{ data(mouseData) res = fitTimeSeries(obj=mouseData,feature="Actinobacteria", class="status",id="mouseID",time="relativeTime",lvl='class',B=10) plotClassTimeSeries(res,pch=21,bg=res$data$class,ylim=c(0,8)) } \seealso{ \code{\link{fitTimeSeries}} } metagenomeSeq/man/plotCorr.Rd0000644000175400017540000000206613175714310017246 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotCorr.R \name{plotCorr} \alias{plotCorr} \title{Basic correlation plot function for normalized or unnormalized counts.} \usage{ plotCorr(obj, n, norm = TRUE, log = TRUE, fun = cor, ...) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{n}{The number of features to plot. This chooses the "n" features with greatest variance.} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{fun}{Function to calculate pair-wise relationships. Default is pearson correlation} \item{...}{Additional plot arguments.} } \value{ plotted correlation matrix } \description{ This function plots a heatmap of the "n" features with greatest variance across rows. } \examples{ data(mouseData) plotCorr(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none",dendrogram="none", col = colorRampPalette(brewer.pal(9, "RdBu"))(50)) } \seealso{ \code{\link{cumNormMat}} } metagenomeSeq/man/plotFeature.Rd0000644000175400017540000000263613175714310017737 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotFeature.R \name{plotFeature} \alias{plotFeature} \title{Basic plot function of the raw or normalized data.} \usage{ plotFeature(obj, otuIndex, classIndex, col = "black", sort = TRUE, sortby = NULL, norm = TRUE, log = TRUE, sl = 1000, ...) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{otuIndex}{The row to plot} \item{classIndex}{A list of the samples in their respective groups.} \item{col}{A vector to color samples by.} \item{sort}{Boolean, sort or not.} \item{sortby}{Default is sort by library size, alternative vector for sorting} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{sl}{Scaling factor - if MRexperiment and norm=TRUE.} \item{...}{Additional plot arguments.} } \value{ counts and classindex } \description{ This function plots the abundance of a particular OTU by class. The function is the typical manhattan plot of the abundances. } \examples{ data(mouseData) classIndex=list(Western=which(pData(mouseData)$diet=="Western")) classIndex$BK=which(pData(mouseData)$diet=="BK") otuIndex = 8770 par(mfrow=c(2,1)) dates = pData(mouseData)$date plotFeature(mouseData,norm=FALSE,log=FALSE,otuIndex,classIndex, col=dates,sortby=dates,ylab="Raw reads") } \seealso{ \code{\link{cumNorm}} } metagenomeSeq/man/plotGenus.Rd0000644000175400017540000000331513175714310017420 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotGenus.R \name{plotGenus} \alias{plotGenus} \alias{genusPlot} \title{Basic plot function of the raw or normalized data.} \usage{ plotGenus(obj, otuIndex, classIndex, norm = TRUE, log = TRUE, no = 1:length(otuIndex), labs = TRUE, xlab = NULL, ylab = NULL, jitter = TRUE, jitter.factor = 1, pch = 21, ...) } \arguments{ \item{obj}{An MRexperiment object with count data.} \item{otuIndex}{A list of the otus with the same annotation.} \item{classIndex}{A list of the samples in their respective groups.} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{no}{Which of the otuIndex to plot.} \item{labs}{Whether to include group labels or not. (TRUE/FALSE)} \item{xlab}{xlabel for the plot.} \item{ylab}{ylabel for the plot.} \item{jitter}{Boolean to jitter the count data or not.} \item{jitter.factor}{Factor value for jitter} \item{pch}{Standard pch value for the plot command.} \item{...}{Additional plot arguments.} } \value{ plotted data } \description{ This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent. } \examples{ data(mouseData) classIndex=list(controls=which(pData(mouseData)$diet=="BK")) classIndex$cases=which(pData(mouseData)$diet=="Western") otuIndex = grep("Strep",fData(mouseData)$family) otuIndex=otuIndex[order(rowSums(MRcounts(mouseData)[otuIndex,]),decreasing=TRUE)] plotGenus(mouseData,otuIndex,classIndex,no=1:2,xaxt="n",norm=FALSE,ylab="Strep normalized log(cpt)") } \seealso{ \code{\link{cumNorm}} } metagenomeSeq/man/plotMRheatmap.Rd0000644000175400017540000000256213175714310020220 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotMRheatmap.R \name{plotMRheatmap} \alias{plotMRheatmap} \title{Basic heatmap plot function for normalized counts.} \usage{ plotMRheatmap(obj, n, norm = TRUE, log = TRUE, fun = sd, ...) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{n}{The number of features to plot. This chooses the 'n' features of greatest positive statistic.} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{fun}{Function to select top 'n' features.} \item{...}{Additional plot arguments.} } \value{ plotted matrix } \description{ This function plots a heatmap of the 'n' features with greatest variance across rows (or other statistic). } \examples{ data(mouseData) trials = pData(mouseData)$diet heatmapColColors=brewer.pal(12,"Set3")[as.integer(factor(trials))]; heatmapCols = colorRampPalette(brewer.pal(9, "RdBu"))(50) #### version using sd plotMRheatmap(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none", col = heatmapCols,ColSideColors = heatmapColColors) #### version using MAD plotMRheatmap(obj=mouseData,n=50,fun=mad,cexRow = 0.4,cexCol = 0.4,trace="none", col = heatmapCols,ColSideColors = heatmapColColors) } \seealso{ \code{\link{cumNormMat}} } metagenomeSeq/man/plotOTU.Rd0000644000175400017540000000277613175714310017020 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotOTU.R \name{plotOTU} \alias{plotOTU} \title{Basic plot function of the raw or normalized data.} \usage{ plotOTU(obj, otu, classIndex, log = TRUE, norm = TRUE, jitter.factor = 1, pch = 21, labs = TRUE, xlab = NULL, ylab = NULL, jitter = TRUE, ...) } \arguments{ \item{obj}{A MRexperiment object with count data.} \item{otu}{The row number/OTU to plot.} \item{classIndex}{A list of the samples in their respective groups.} \item{log}{Whether or not to log2 transform the counts - if MRexperiment object.} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{jitter.factor}{Factor value for jitter.} \item{pch}{Standard pch value for the plot command.} \item{labs}{Whether to include group labels or not. (TRUE/FALSE)} \item{xlab}{xlabel for the plot.} \item{ylab}{ylabel for the plot.} \item{jitter}{Boolean to jitter the count data or not.} \item{...}{Additional plot arguments.} } \value{ Plotted values } \description{ This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent. } \examples{ data(mouseData) classIndex=list(controls=which(pData(mouseData)$diet=="BK")) classIndex$cases=which(pData(mouseData)$diet=="Western") # you can specify whether or not to normalize, and to what level plotOTU(mouseData,otu=9083,classIndex,norm=FALSE,main="9083 feature abundances") } \seealso{ \code{\link{cumNorm}} } metagenomeSeq/man/plotOrd.Rd0000644000175400017540000000263013175714310017062 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotOrd.R \name{plotOrd} \alias{plotOrd} \title{Plot of either PCA or MDS coordinates for the distances of normalized or unnormalized counts.} \usage{ plotOrd(obj, tran = TRUE, comp = 1:2, norm = TRUE, log = TRUE, usePCA = TRUE, useDist = FALSE, distfun = stats::dist, dist.method = "euclidian", n = NULL, ...) } \arguments{ \item{obj}{A MRexperiment object or count matrix.} \item{tran}{Transpose the matrix.} \item{comp}{Which components to display} \item{norm}{Whether or not to normalize the counts - if MRexperiment object.} \item{log}{Whether or not to log2 the counts - if MRexperiment object.} \item{usePCA}{TRUE/FALSE whether to use PCA or MDS coordinates (TRUE is PCA).} \item{useDist}{TRUE/FALSE whether to calculate distances.} \item{distfun}{Distance function, default is stats::dist} \item{dist.method}{If useDist==TRUE, what method to calculate distances.} \item{n}{Number of features to make use of in calculating your distances.} \item{...}{Additional plot arguments.} } \value{ coordinates } \description{ This function plots the PCA / MDS coordinates for the "n" features of interest. Potentially uncovering batch effects or feature relationships. } \examples{ data(mouseData) cl = pData(mouseData)[,3] plotOrd(mouseData,tran=TRUE,useDist=TRUE,pch=21,bg=factor(cl),usePCA=FALSE) } \seealso{ \code{\link{cumNormMat}} } metagenomeSeq/man/plotRare.Rd0000644000175400017540000000171713175714310017234 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plotRare.R \name{plotRare} \alias{plotRare} \title{Plot of rarefaction effect} \usage{ plotRare(obj, cl = NULL, ...) } \arguments{ \item{obj}{A MRexperiment object with count data or matrix.} \item{cl}{Vector of classes for various samples.} \item{...}{Additional plot arguments.} } \value{ Library size and number of detected features } \description{ This function plots the number of observed features vs. the depth of coverage. } \examples{ data(mouseData) cl = factor(pData(mouseData)[,3]) res = plotRare(mouseData,cl=cl,pch=21,bg=cl) tmp=lapply(levels(cl), function(lv) lm(res[,"ident"]~res[,"libSize"]-1, subset=cl==lv)) for(i in 1:length(levels(cl))){ abline(tmp[[i]], col=i) } legend("topleft", c("Diet 1","Diet 2"), text.col=c(1,2),box.col=NA) } \seealso{ \code{\link{plotOrd}}, \code{\link{plotMRheatmap}}, \code{\link{plotCorr}}, \code{\link{plotOTU}}, \code{\link{plotGenus}} } metagenomeSeq/man/plotTimeSeries.Rd0000644000175400017540000000170113175714310020405 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{plotTimeSeries} \alias{plotTimeSeries} \title{Plot difference function for particular bacteria} \usage{ plotTimeSeries(res, C = 0, xlab = "Time", ylab = "Difference in abundance", main = "SS difference function prediction", ...) } \arguments{ \item{res}{Output of fitTimeSeries function} \item{C}{Value for which difference function has to be larger or smaller than (default 0).} \item{xlab}{X-label.} \item{ylab}{Y-label.} \item{main}{Main label.} \item{...}{Extra plotting arguments.} } \value{ Plot of difference in abundance for significant features. } \description{ Plot the difference in abundance for significant features. } \examples{ data(mouseData) res = fitTimeSeries(obj=mouseData,feature="Actinobacteria", class="status",id="mouseID",time="relativeTime",lvl='class',B=10) plotTimeSeries(res) } \seealso{ \code{\link{fitTimeSeries}} } metagenomeSeq/man/posteriorProbs.Rd0000644000175400017540000000203013175714310020465 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \docType{methods} \name{posteriorProbs} \alias{posteriorProbs} \alias{posteriorProbs,MRexperiment-method} \title{Access the posterior probabilities that results from analysis} \usage{ posteriorProbs(obj) } \arguments{ \item{obj}{a \code{MRexperiment} object.} } \value{ Matrix of posterior probabilities } \description{ Accessing the posterior probabilities following a run through \code{\link{fitZig}} } \examples{ # This is a simple demonstration data(lungData) k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] k = which(rowSums(MRcounts(lungTrim)>0)<30) lungTrim = cumNorm(lungTrim) lungTrim = lungTrim[-k,] smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) # The maxit is not meant to be 1 - this is for demonstration/speed settings = zigControl(maxit=1,verbose=FALSE) fit = fitZig(obj = lungTrim,mod=mod,control=settings) head(posteriorProbs(lungTrim)) } \author{ Joseph N. Paulson } metagenomeSeq/man/returnAppropriateObj.Rd0000644000175400017540000000123713175714310021622 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allClasses.R \name{returnAppropriateObj} \alias{returnAppropriateObj} \title{Check if MRexperiment or matrix and return matrix} \usage{ returnAppropriateObj(obj, norm, log, sl = 1000) } \arguments{ \item{obj}{a \code{MRexperiment} or \code{matrix} object} \item{norm}{return a normalized \code{MRexperiment} matrix} \item{log}{return a log transformed \code{MRexperiment} matrix} \item{sl}{scaling value} } \value{ Matrix } \description{ Function to check if object is a MRexperiment class or matrix } \examples{ data(lungData) head(returnAppropriateObj(lungData,norm=FALSE,log=FALSE)) } metagenomeSeq/man/ssFit.Rd0000644000175400017540000000250413175714310016527 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{ssFit} \alias{ssFit} \title{smoothing-splines anova fit} \usage{ ssFit(formula, abundance, class, time, id, include = c("class", "time:class"), pd, ...) } \arguments{ \item{formula}{Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.} \item{abundance}{Numeric vector of abundances.} \item{class}{Class membership (factor of group membership).} \item{time}{Time point vector of relative times (same length as abundance).} \item{id}{Sample / patient id.} \item{include}{Parameters to include in prediction.} \item{pd}{Extra variable.} \item{...}{Extra parameters for ssanova function (see ?ssanova).} } \value{ \itemize{A list containing: \item data : Inputed data \item fit : The interpolated / fitted values for timePoints \item se : The standard error for CI intervals \item timePoints : The time points interpolated over } } \description{ Sets up a data-frame with the feature abundance, class information, time points, sample ids and returns the fitted values for the fitted model. } \examples{ # Not run } \seealso{ \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssPermAnalysis}} \code{\link{ssPerm}} \code{\link{ssIntervalCandidate}} } metagenomeSeq/man/ssIntervalCandidate.Rd0000644000175400017540000000163013175714310021365 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{ssIntervalCandidate} \alias{ssIntervalCandidate} \title{calculate interesting time intervals} \usage{ ssIntervalCandidate(fit, standardError, timePoints, positive = TRUE, C = 0) } \arguments{ \item{fit}{SS-Anova fits.} \item{standardError}{SS-Anova se estimates.} \item{timePoints}{Time points interpolated over.} \item{positive}{Positive region or negative region (difference in abundance is positive/negative).} \item{C}{Value for which difference function has to be larger or smaller than (default 0).} } \value{ Matrix of time point intervals of interest } \description{ Calculates time intervals of interest using SS-Anova fitted confidence intervals. } \examples{ # Not run } \seealso{ \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssFit}} \code{\link{ssPerm}} \code{\link{ssPermAnalysis}} } metagenomeSeq/man/ssPerm.Rd0000644000175400017540000000122513175714310016707 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{ssPerm} \alias{ssPerm} \title{class permutations for smoothing-spline time series analysis} \usage{ ssPerm(df, B) } \arguments{ \item{df}{Data frame containing class membership and sample/patient id label.} \item{B}{Number of permutations.} } \value{ A list of permutted class memberships } \description{ Creates a list of permuted class memberships for the time series permuation tests. } \examples{ # Not run } \seealso{ \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssFit}} \code{\link{ssPermAnalysis}} \code{\link{ssIntervalCandidate}} } metagenomeSeq/man/ssPermAnalysis.Rd0000644000175400017540000000214713175714310020417 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{ssPermAnalysis} \alias{ssPermAnalysis} \title{smoothing-splines anova fits for each permutation} \usage{ ssPermAnalysis(data, formula, permList, intTimes, timePoints, include = c("class", "time:class"), ...) } \arguments{ \item{data}{Data used in estimation.} \item{formula}{Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.} \item{permList}{A list of permutted class memberships} \item{intTimes}{Interesting time intervals.} \item{timePoints}{Time points to interpolate over.} \item{include}{Parameters to include in prediction.} \item{...}{Options for ssanova} } \value{ A matrix of permutted area estimates for time intervals of interest. } \description{ Calculates the fit for each permutation and estimates the area under the null (permutted) model for interesting time intervals of differential abundance. } \examples{ # Not run } \seealso{ \code{\link{cumNorm}} \code{\link{fitTimeSeries}} \code{\link{ssFit}} \code{\link{ssPerm}} \code{\link{ssIntervalCandidate}} } metagenomeSeq/man/trapz.Rd0000644000175400017540000000153113175714310016576 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{trapz} \alias{trapz} \title{Trapezoidal Integration} \usage{ trapz(x, y) } \arguments{ \item{x}{x-coordinates of points on the x-axis} \item{y}{y-coordinates of function values} } \value{ Approximated integral of the function from 'min(x)' to 'max(x)'. Or a matrix of the same size as 'y'. } \description{ Compute the area of a function with values 'y' at the points 'x'. Function comes from the pracma package. } \examples{ # Calculate the area under the sine curve from 0 to pi: n <- 101 x <- seq(0, pi, len = n) y <- sin(x) trapz(x, y) #=> 1.999835504 # Use a correction term at the boundary: -h^2/12*(f'(b)-f'(a)) h <- x[2] - x[1] ca <- (y[2]-y[1]) / h cb <- (y[n]-y[n-1]) / h trapz(x, y) - h^2/12 * (cb - ca) #=> 1.999999969 } metagenomeSeq/man/ts2MRexperiment.Rd0000644000175400017540000000267513175714310020520 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitTimeSeries.R \name{ts2MRexperiment} \alias{ts2MRexperiment} \title{With a list of fitTimeSeries results, generate an MRexperiment that can be plotted with metavizr} \usage{ ts2MRexperiment(obj, sampleNames = NULL, sampleDescription = "timepoints", taxonomyLevels = NULL, taxonomyHierarchyRoot = "bacteria", taxonomyDescription = "taxonomy", featuresOfInterest = NULL, featureDataOfInterest = NULL) } \arguments{ \item{obj}{Output of fitMultipleTimeSeries} \item{sampleNames}{Sample names for plot} \item{sampleDescription}{Description of samples for plot axis label} \item{taxonomyLevels}{Feature names for plot} \item{taxonomyHierarchyRoot}{Root of feature hierarchy for MRexperiment} \item{taxonomyDescription}{Description of features for plot axis label} \item{featuresOfInterest}{The features to select from the fitMultipleTimeSeries output} \item{featureDataOfInterest}{featureData for the resulting MRexperiment} } \value{ MRexperiment that contains fitTimeSeries data, featureData, and phenoData } \description{ With a list of fitTimeSeries results, generate an MRexperiment that can be plotted with metavizr } \examples{ data(mouseData) res = fitMultipleTimeSeries(obj=mouseData,lvl='phylum',class="status", id="mouseID",time="relativeTime",B=1) obj = ts2MRexperiment(res) obj } \seealso{ \code{\link{fitTimeSeries}} \code{\link{fitMultipleTimeSeries}} } metagenomeSeq/man/uniqueFeatures.Rd0000644000175400017540000000145413175714310020447 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{uniqueFeatures} \alias{uniqueFeatures} \title{Table of features unique to a group} \usage{ uniqueFeatures(obj, cl, nsamples = 0, nreads = 0) } \arguments{ \item{obj}{Either a MRexperiment object or matrix.} \item{cl}{A vector representing assigning samples to a group.} \item{nsamples}{The minimum number of positive samples.} \item{nreads}{The minimum number of raw reads.} } \value{ Table of features unique to a group } \description{ Creates a table of features, their index, number of positive samples in a group, and the number of reads in a group. Can threshold features by a minimum no. of reads or no. of samples. } \examples{ data(mouseData) head(uniqueFeatures(mouseData[1:100,],cl=pData(mouseData)[,3])) } metagenomeSeq/man/zigControl.Rd0000644000175400017540000000204713175714310017573 0ustar00biocbuildbiocbuild% Generated by roxygen2: do not edit by hand % Please edit documentation in R/zigControl.R \name{zigControl} \alias{zigControl} \alias{settings2} \title{Settings for the fitZig function} \usage{ zigControl(tol = 1e-04, maxit = 10, verbose = TRUE, dfMethod = "modified", pvalMethod = "default") } \arguments{ \item{tol}{The tolerance for the difference in negative log likelihood estimates for a feature to remain active.} \item{maxit}{The maximum number of iterations for the expectation-maximization algorithm.} \item{verbose}{Whether to display iterative step summary statistics or not.} \item{dfMethod}{Either 'default' or 'modified' (by responsibilities).} \item{pvalMethod}{Either 'default' or 'bootstrap'.} } \value{ The value for the tolerance, maximum no. of iterations, and the verbose warning. } \description{ Settings for the fitZig function } \note{ \code{\link{fitZig}} makes use of zigControl. } \examples{ control = zigControl(tol=1e-10,maxit=10,verbose=FALSE) } \seealso{ \code{\link{fitZig}} \code{\link{cumNorm}} \code{\link{plotOTU}} } metagenomeSeq/tests/0000755000175400017540000000000013175714310015536 5ustar00biocbuildbiocbuildmetagenomeSeq/tests/testthat/0000755000175400017540000000000013175714310017376 5ustar00biocbuildbiocbuildmetagenomeSeq/tests/testthat.R0000644000175400017540000000176113175714310017526 0ustar00biocbuildbiocbuildlibrary("testthat") packageVersion("metagenomeSeq") # As suggested for opt-out option on testing by users, # recommended by CRAN: http://adv-r.had.co.nz/Testing.html # Previously, best practice was to put all test files in inst/tests # and ensure that R CMD check ran them by putting the following code in tests/test-all.R: # >library(testthat) # >library(yourpackage) # >test_package("yourpackage") # Now, recommended practice is to put your tests in tests/testthat, # and ensure R CMD check runs them by putting the following code in tests/test-all.R: # >library(testthat) # >test_check("yourpackage") # The advantage of this new structure is that the user has control over whether or not tests are installed using the –install-tests parameter to # R CMD install, or INSTALL_opts = c(“–install-tests”) argument to install.packages(). I’m not sure why you wouldn’t want to install the tests, # but now you have the flexibility as requested by CRAN maintainers. test_check("metagenomeSeq") metagenomeSeq/tests/testthat/test-fitZig.R0000644000175400017540000000411213175714310021730 0ustar00biocbuildbiocbuild################################################################################ # metagenomeSeq plot functions unit tests ################################################################################ library("metagenomeSeq"); library("testthat"); test_that("`fitZig` function provides expected values prior to split", { # uses the lung data and pre-calculated fitZig result from # prior to this separation data(lungData) path = system.file("extdata", package = "metagenomeSeq") fit = readRDS(file.path(path,"lungfit.rds")) # run the same fit k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] k = which(rowSums(MRcounts(lungTrim)>0)<30) lungTrim = cumNorm(lungTrim) lungTrim = lungTrim[-k,] smokingStatus = pData(lungTrim)$SmokingStatus mod = model.matrix(~smokingStatus) settings = zigControl(maxit=1,verbose=FALSE) fit2 = fitZig(obj = lungTrim,mod=mod,control=settings) # because the ordering is wrong expect_failure(expect_equal(fit,fit2)) # check that they're equal now fit2 = fit2[names(fit)] expect_equal(fit,fit2) }) test_that("`fitZig` function treats a matrix the same", { # uses the lung data and pre-calculated fitZig result from # prior to this separation data(lungData) path = system.file("extdata", package = "metagenomeSeq") fit = readRDS(file.path(path,"lungfit.rds")) # run the same fit k = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-k] k = which(rowSums(MRcounts(lungTrim)>0)<30) lungTrim = cumNorm(lungTrim) lungTrim = lungTrim[-k,] smokingStatus = pData(lungTrim)$SmokingStatus scalingFactor = log2(normFactors(lungTrim)/1000 +1) mod = model.matrix(~smokingStatus) mod = cbind(mod,scalingFactor) settings = zigControl(maxit=1,verbose=FALSE) cnts = MRcounts(lungTrim) fit2 = fitZig(obj = lungTrim,mod=mod,control=settings,useCSSoffset=FALSE) fit2 = fit2[names(fit)] # expecting failure because of call expect_failure(expect_equal(fit,fit2)) fit2$call = "123" fit$call = "123" # check that they're equal expect_equal(fit,fit2) }) metagenomeSeq/tests/testthat/test-norm.R0000644000175400017540000000270313175714310021453 0ustar00biocbuildbiocbuild################################################################################ # metagenomeSeq plot functions unit tests ################################################################################ library("metagenomeSeq"); library("testthat"); test_that("`calcNormFactors` function provides expected values", { # uses the lung data and pre-calculated normalization factors # for various values of p data(lungData) point25 = c(29,2475,2198,836,722,1820,79,1171,1985,710,145,742,848,89,1981) point = c(43,2475,2198,836,722,1820,119,1171,1985,710,145,742,848,89,1981) point100=as.numeric(unlist(libSize(lungData[,1:15]))) expect_equal(as.numeric(unlist(calcNormFactors(lungData[,1:15]))),point) expect_equal(as.numeric(unlist(calcNormFactors(lungData[,1:15],p=.25))),point25) expect_equal(as.numeric(unlist(calcNormFactors(lungData[,1:15],p=1))),point100) }) test_that("`cumNorm` returns the same object as defined in the package", { data(lungData); data(mouseData) expect_equal(cumNorm(mouseData,p=.5), mouseData) expect_equal(cumNorm(lungData), lungData) }) test_that("`cumNormStat` returns the correct value", { data(lungData); data(mouseData); expect_equal(cumNormStat(lungData),0.7014946) expect_equal(cumNormStat(mouseData),0.5) }) test_that("`cumNormStatFast` returns the correct value", { data(lungData); data(mouseData); expect_equal(cumNormStatFast(lungData),0.7014946) expect_equal(cumNormStatFast(mouseData),0.5) }) metagenomeSeq/vignettes/0000755000175400017540000000000013175734155016415 5ustar00biocbuildbiocbuildmetagenomeSeq/vignettes/fitTimeSeries.Rnw0000644000175400017540000003404113175714310021652 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{fitTimeSeries: differential abundance analysis through time or location} %\VignetteEngine{knitr::knitr} \documentclass[a4paper,11pt]{article} \usepackage{url} \usepackage{afterpage} \usepackage{hyperref} \usepackage{geometry} \usepackage{cite} \geometry{hmargin=2.5cm, vmargin=2.5cm} \usepackage{graphicx} \usepackage{courier} \bibliographystyle{unsrt} \begin{document} <>= require(knitr) opts_chunk$set(concordance=TRUE,tidy=TRUE) @ \title{{\textbf{\texttt{fitTimeSeries}: Longitudinal differential abundance analysis for marker-gene surveys}}} \author{Hisham Talukder, Joseph N. Paulson, Hector Corrada Bravo\\[1em]\\ Applied Mathematics $\&$ Statistics, and Scientific Computation\\ Center for Bioinformatics and Computational Biology\\ University of Maryland, College Park\\[1em]\\ \texttt{jpaulson@umiacs.umd.edu}} \date{Modified: February 18, 2015. Compiled: \today} \maketitle \tableofcontents \newpage <>= options(width = 65) options(continue=" ") options(warn=-1) set.seed(42) @ \section{Introduction} \textbf{This is a vignette specifically for the fitTimeSeries function. For a full list of functions available in the package: help(package=metagenomeSeq). For more information about a particular function call: ?function.} Smoothing spline regression models~\cite{Wahba:1990} are commonly used to model longitudinal data and form the basis for methods used in a large number of applications ~\cite{networkped1,LongCrisp}. Specifically, an extension of the methodology called Smoothing-Spline ANOVA~\cite{Gu} is capable of directly estimating a smooth function of interest while incorporating other covariates in the model. A common approach to detect regions/times of interest in a genome or for differential abundance is to model differences between two groups with respect to the quantitative measurements as smooth functions and perform statistical inference on these models. In particular, widely used methods for region finding using DNA methylation data use local regression methods to estimate these smooth functions. An important aspect of these tools is their ability to incorporate sample characteristics as covariates in these models, e.g., sex and age in population studies, or technical factors like processing batches. Incorporating these sources of variability, both biological and technical is essential in high-throughput studies. Therefore, these methods require that the models used are capable of estimating both smooth functions and sample-specfic characteristics. We present fitTimeSeries - a method for estimating and detecting regions/times of interest due to differential abundance of a quantitative measurement (for example, normalized abundance). \subsection{Problem Formulation} We model data in the following form: $$ Y_{itk}= f_i(t,x_{k})+e_{tk} $$ where i represents group factor (diet, health status, etc.), $t$ represents series factor (for example, time or location), $k$ represents replicate observations, $x_{k}$ are covariates for sample $k$ (including an indicator for group membership $I\{k \in i\}$) and $e_{tk}$ are independent $N(0,\sigma^2)$ errors. We assume $f_i$ to be a smooth function, defined in an interval $[a,b]$, that can be parametric, non-parametric or a mixture of both. Our goal is to identify intervals where the absolute difference between two groups $\eta_d(t)=f_1(t, \cdot)-f_2(t, \cdot)$ is large, that is, regions, $R_{t_1,t_2}$, where: $R_{t_1,t_2}= \{t_1,t_2 \in x \textit{ such that } | \eta_{d}(x) | \ge C \}$ and $C$ is a predefined constant threshold. To identify these areas we use hypothesis testing using the area $A_{t_1,t_2}=\int_{R_{t_1,t_2}}\eta_d(t) dt$ under the estimated function of $\eta_d(t)$ as a statistic with null and alternative hypotheses $$ H_0: A_{t_1,t_2} \le K $$ $$ H_1: A_{t_1,t_2} > K $$ with $K$ some fixed threshold. We employ a permutation-based method to calculate a null distribution of the area statistics $A_(t1,t2)$'s. To do this, the group-membership indicator variables (0-1 binary variable) are randomly permuted $B$ times, e.g., $B=1000$ and the method above is used to estimate the difference function $\eta_d^b$ (in this case simulating the null hypothesis) and an area statistics $A_(t1,t2)^b$ for each random permutation. Estimates $A_(t1,t2)^b$ are then used to construct an empirical estimate of $A_(t1,t2)$ under the null hypothesis. The observed area, $A_(t1,t2)^*$, is compared to the empirical null distribution to calculate a p-value. Figure 1 illustrates the relationship between $R_(t1,t2)$ and $A_(t1,t2)$. The key is to estimate regions $R_(t1,t2)$ where point-wise confidence intervals would be appropriate. \section{Data preparation} Data should be preprocessed and prepared in tab-delimited files. Measurements are stored in a matrix with samples along the columns and features along the rows. For example, given $m$ features and $n$ samples, the entries in a marker-gene or metagenomic count matrix \textbf{C} ($m, n$), $c_{ij}$, are the number of reads annotated for a particular feature $i$ (whether it be OTU, species, genus, etc.) in sample $j$. Alternatively, the measurements could be some quantitative measurement such as methylation percentages or CD4 levels.\\ \begin{center} $\bordermatrix{ &sample_1&sample_2&\ldots &sample_n\cr feature_1&c_{11} & c_{12} & \ldots & c_{1n}\cr feature_2& c_{21} & c_{22} & \ldots & c_{2n}\cr \vdots & \vdots & \vdots & \ddots & \vdots\cr feature_m & c_{m1} & c_{m2} &\ldots & c_{mn}}$ \end{center} Data should be stored in a file (tab-delimited by default) with sample names along the first row, feature names in the first column and should be loaded into R and formatted into a MRexperiment object. To prepare the data please read the section on data preparation in the full metagenomeSeq vignette - \texttt{vignette("metagenomeSeq")}. \subsection{Example datasets} There is a time-series dataset included as an examples in the \texttt{metagenomeSeq} package. Data needs to be in a \texttt{MRexperiment} object format to normalize, run the statistical tests, and visualize. As an example, throughout the vignette we'll use the following datasets. To understand a \texttt{fitTimeSeries}'s usage or included data simply enter ?\texttt{fitTimeSeries}. <>= library(metagenomeSeq) library(gss) @ \begin{enumerate} \setcounter{enumi}{1} \item Humanized gnotobiotic mouse gut \cite{ts_mouse}: Twelve germ-free adult male C57BL/6J mice were fed a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult human fecal material. Following the fecal transplant, mice remained on the low-fat, plant polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of experimental protocols and further details of the data can be found in Turnbaugh et. al. Sequences and further information can be found at: \url{http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html} \end{enumerate} <>= data(mouseData) mouseData @ \subsection{Creating a \texttt{MRexperiment} object with other measurements} For a fitTimeSeries analysis a minimal MRexperiment-object is required and can be created using the function \texttt{newMRexperiment} which takes a count matrix described above and phenoData (annotated data frame). \texttt{Biobase} provides functions to create annotated data frames. <>= # Creating mock sample replicates sampleID = rep(paste("sample",1:10,sep=":"),times=20) # Creating mock class membership class = rep(c(rep(0,5),rep(1,5)),times=20) # Creating mock time time = rep(1:20,each=10) phenotypeData = AnnotatedDataFrame(data.frame(sampleID,class,time)) # Creating mock abundances set.seed(1) # No difference measurement1 = rnorm(200,mean=100,sd=1) # Some difference measurement2 = rnorm(200,mean=100,sd=1) measurement2[1:5]=measurement2[1:5] + 100 measurement2[11:15]=measurement2[11:15] + 100 measurement2[21:25]=measurement2[21:25] + 50 mat = rbind(measurement1,measurement2) colnames(mat) = 1:200 mat[1:2,1:10] @ If phylogenetic information exists for the features and there is a desire to aggregate measurements based on similar annotations choosing the featureData column name in lvl will aggregate measurements using the default parameters in the \texttt{aggregateByTaxonomy} function. <>= # This is an example of potential lvl's to aggregate by. data(mouseData) colnames(fData(mouseData)) @ Here we create the actual MRexperiment to run through fitTimeSeries. <>= obj = newMRexperiment(counts=mat,phenoData=phenotypeData) obj res1 = fitTimeSeries(obj,feature=1, class='class',time='time',id='sampleID', B=10,norm=FALSE,log=FALSE) res2 = fitTimeSeries(obj,feature=2, class='class',time='time',id='sampleID', B=10,norm=FALSE,log=FALSE) classInfo = factor(res1$data$class) par(mfrow=c(3,1)) plotClassTimeSeries(res1,pch=21,bg=classInfo) plotTimeSeries(res2) plotClassTimeSeries(res2,pch=21,bg=classInfo) @ \section{Time series analysis} Implemented in the \texttt{fitTimeSeries} function is a method for calculating time intervals for which bacteria are differentially abundant. Fitting is performed using Smoothing Splines ANOVA (SS-ANOVA), as implemented in the \texttt{gss} package. Given observations at multiple time points for two groups the method calculates a function modeling the difference in abundance across all time. Using group membership permutations we estimate a null distribution of areas under the difference curve for the time intervals of interest and report significant intervals of time. Here we provide a real example from the microbiome of two groups of mice on different diets. The gnotobiotic mice come from a longitudinal study ideal for this type of analysis. We choose to perform our analysis at the class level and look for differentially abundant time intervals for "Actinobacteria". For demonstrations sake we perform only 10 permutations. If you find the method useful, please cite: "Longitudinal differential abundance analysis for marker-gene surveys" Talukder H*, Paulson JN*, Bravo HC. (Submitted) <>= res = fitTimeSeries(obj=mouseData,lvl="class",feature="Actinobacteria",class="status",id="mouseID",time="relativeTime",B=10) # We observe a time period of differential abundance for "Actinobacteria" res$timeIntervals str(res) @ For example, to test every class in the mouse dataset: <>= classes = unique(fData(mouseData)[,"class"]) timeSeriesFits = lapply(classes,function(i){ fitTimeSeries(obj=mouseData, feature=i, class="status", id="mouseID", time="relativeTime", lvl='class', C=.3,# a cutoff for 'interesting' B=1) # B is the number of permutations and should clearly not be 1 }) names(timeSeriesFits) = classes # Removing classes of bacteria without a potentially # interesting time interval difference. timeSeriesFits = sapply(timeSeriesFits,function(i){i[[1]]})[-grep("No",timeSeriesFits)] # Naming the various interesting time intervals. for(i in 1:length(timeSeriesFits)){ rownames(timeSeriesFits[[i]]) = paste( paste(names(timeSeriesFits)[i]," interval",sep=""), 1:nrow(timeSeriesFits[[i]]),sep=":" ) } # Merging into a table. timeSeriesFits = do.call(rbind,timeSeriesFits) # Correcting for multiple testing. pvalues = timeSeriesFits[,"p.value"] adjPvalues = p.adjust(pvalues,"bonferroni") timeSeriesFits = cbind(timeSeriesFits,adjPvalues) head(timeSeriesFits) @ Please see the help page for \texttt{fitTimeSeries} for parameters. Note, only two groups can be compared to each other and the time parameter must be an actual value (currently no support for posix, etc.). \subsection{Paramaters} There are a number of parameters for the \texttt{fitTimeSeries} function. We list and provide a brief discussion below. For parameters influencing \texttt{ssanova}, \texttt{aggregateByTaxonomy}, \texttt{MRcounts} type ?function for more details. \begin{itemize} \item obj - the metagenomeSeq MRexperiment-class object. \item feature - Name or row of feature of interest. \item class - Name of column in phenoData of MRexperiment-class object for class memberhip. \item time - Name of column in phenoData of MRexperiment-class object for relative time. \item id - Name of column in phenoData of MRexperiment-class object for sample id. \item method - Method to estimate time intervals of differentially abundant bacteria (only ssanova method implemented currently). \item lvl - Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level). \item C - Value for which difference function has to be larger or smaller than (default 0). \item B - Number of permutations to perform (default 1000) \item norm - When aggregating counts to normalize or not. (see MRcounts) \item log - Log2 transform. (see MRcounts) \item sl - Scaling value. (see MRcounts) \item ... - Options for ssanova \end{itemize} \section{Visualization of features} To help with visualization and analysis of datasets \texttt{metagenomeSeq} has several plotting functions to gain insight of the model fits and the differentially abundant time intervals using \texttt{plotClassTimeSeries} and \texttt{plotTimeSeries} on the result. More plots will be updated. <>= par(mfrow=c(2,1)) plotClassTimeSeries(res,pch=21, bg=res$data$class,ylim=c(0,8)) plotTimeSeries(res) @ \section{Summary} \texttt{metagenomeSeq}'s \texttt{fitTimeSeries} is a novel methodology for differential abundance testing of longitudinal data. If you make use of the statistical method please cite our paper. If you made use of the manual/software, please cite the manual/software! \subsection{Citing fitTimeSeries} <>= citation("metagenomeSeq") @ \subsection{Session Info} <>= sessionInfo() @ \bibliography{fitTimeSeries} \end{document} metagenomeSeq/vignettes/fitTimeSeries.bib0000644000175400017540000000337613175714310021647 0ustar00biocbuildbiocbuild@BOOK{Wahba:1990, AUTHOR = {G. Wahba}, TITLE = {Spline Models in Statistics}, SERIES = {CBMS-NSF Regional Conference Series}, PUBLISHER = {SIAM}, ADDRESS = {Philadelphia, PA}, YEAR = {1990} } @ARTICLE{longcrisp, author = {H. Jaroslaw and N. Elena and M.L. Nan}, title = {LongCriSP: A test for Bumphunting in Longitudinal data}, journal = {Statistics in Medicine}, year = {2006}, volume = {26}, pages = {1383--1397} } @article{bumphunter, title={Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies}, author={Jaffe, Andrew E and Murakami, Peter and Lee, Hwajin and Leek, Jeffrey T and Fallin, M Daniele and Feinberg, Andrew P and Irizarry, Rafael A}, journal={International journal of epidemiology}, volume={41}, number={1}, pages={200--209}, year={2012}, publisher={IEA} } @book{networkped1, title={Graph-based data analysis: tree-structured covariance estimation, prediction by regularized kernel estimation and aggregate database query processing for probabilistic inference}, author={Bravo, H{\'e}ctor Corrada}, year={2008}, publisher={ProQuest} } @BOOK{Gu, author = {C. Gu}, title = {Smoothing Spline Anova Model}, series = {Springer Series in Statistics}, publisher = {Springer}, year = {2002} } @article{ts_mouse, title={The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.}, volume={1}, number={6}, journal={Science translational medicine}, publisher={NIH Public Access}, author={Turnbaugh, Peter J and Ridaura, Vanessa K and Faith, Jeremiah J and Rey, Federico E and Knight, Rob and Gordon, Jeffrey I}, year={2009}, pages={6ra14}}metagenomeSeq/vignettes/metagenomeSeq.Rnw0000644000175400017540000012074613175714310021700 0ustar00biocbuildbiocbuild%\VignetteIndexEntry{metagenomeSeq: statistical analysis for sparse high-throughput sequencing} %\VignetteEngine{knitr::knitr} \documentclass[a4paper,11pt]{article} \usepackage{url} \usepackage{afterpage} \usepackage{hyperref} \usepackage{geometry} \usepackage{cite} \geometry{hmargin=2.5cm, vmargin=2.5cm} \usepackage{graphicx} \usepackage{courier} \bibliographystyle{unsrt} \begin{document} <>= require(knitr) opts_chunk$set(concordance=TRUE,tidy=TRUE) @ \title{{\textbf{\texttt{metagenomeSeq}: Statistical analysis for sparse high-throughput sequencing}}} \author{Joseph Nathaniel Paulson\\[1em]\\ Applied Mathematics $\&$ Statistics, and Scientific Computation\\ Center for Bioinformatics and Computational Biology\\ University of Maryland, College Park\\[1em]\\ \texttt{jpaulson@umiacs.umd.edu}} \date{Modified: October 4, 2016. Compiled: \today} \maketitle \tableofcontents \newpage <>= options(width = 60) options(continue=" ") options(warn=-1) set.seed(42) @ \section{Introduction} \textbf{This is a vignette for pieces of an association study pipeline. For a full list of functions available in the package: help(package=metagenomeSeq). For more information about a particular function call: ?function.} See \textit{fitFeatureModel} for our latest development. To load the metagenomeSeq library: <>= library(metagenomeSeq) @ Metagenomics is the study of genetic material targeted directly from an environmental community. Originally focused on exploratory and validation projects, these studies now focus on understanding the differences in microbial communities caused by phenotypic differences. Analyzing high-throughput sequencing data has been a challenge to researchers due to the unique biological and technological biases that are present in marker-gene survey data. We present a R package, \texttt{metagenomeSeq}, that implements methods developed to account for previously unaddressed biases specific to high-throughput sequencing microbial marker-gene survey data. Our method implements a novel normalization technique and method to account for sparsity due to undersampling. Other methods include White \textit{et al.}'s Metastats and Segata \textit{et al.}'s LEfSe. The first is a non-parametric permutation test on $t$-statistics and the second is a non-parametric Kruskal-Wallis test followed by subsequent wilcox rank-sum tests on subgroups to guard against positive discoveries of differential abundance driven by potential confounders - neither address normalization nor sparsity. This vignette describes the basic protocol when using \texttt{metagenomeSeq}. A normalization method able to control for biases in measurements across taxanomic features and a mixture model that implements a zero-inflated Gaussian distribution to account for varying depths of coverage are implemented. Using a linear model methodology, it is easy to include confounding sources of variability and interpret results. Additionally, visualization functions are provided to examine discoveries. The software was designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. The software was also designed to address the effects of both normalization and undersampling of microbial communities on disease association detection and testing of feature correlations. \begin{figure} \centerline{\includegraphics[width=.55\textwidth]{overview.pdf}} \caption{General overview. metagenomeSeq requires the user to convert their data into MRexperiment objects. Using those MRexperiment objects, one can normalize their data, run statistical tests (abundance or presence-absence), and visualize or save results.} \end{figure} \newpage \section{Data preparation} Microbial marker-gene sequence data is preprocessed and counts are algorithmically defined from project-specific sequence data by clustering reads according to read similarity. Given $m$ features and $n$ samples, the elements in a count matrix \textbf{C} ($m, n$), $c_{ij}$, are the number of reads annotated for a particular feature $i$ (whether it be OTU, species, genus, etc.) in sample $j$. \\ \begin{center} $\bordermatrix{ &sample_1&sample_2&\ldots &sample_n\cr feature_1&c_{11} & c_{12} & \ldots & c_{1n}\cr feature_2& c_{21} & c_{22} & \ldots & c_{2n}\cr \vdots & \vdots & \vdots & \ddots & \vdots\cr feature_m & c_{m1} & c_{m2} &\ldots & c_{mn}}$ \end{center} Count data should be stored in a delimited (tab by default) file with sample names along the first row and feature names along the first column. Data is prepared and formatted as a \texttt{MRexperiment} object. For an overview of the internal structure please see Appendix A. \subsection{Biom-Format} You can load in BIOM file format data, the output of many commonly used, using the \texttt{loadBiom} function. The \texttt{biom2MRexperiment} and \texttt{MRexperiment2biom} functions serve as a gateway between the \texttt{biom-class} object defined in the \textbf{biom} package and a \texttt{MRexperiment-class} object. BIOM format files IO is available thanks to the \texttt{biomformat} package. As an example, we show how one can read in a BIOM file and convert it to a \texttt{MRexperiment} object. <>= # reading in a biom file library(biomformat) biom_file <- system.file("extdata", "min_sparse_otu_table.biom", package = "biomformat") b <- read_biom(biom_file) biom2MRexperiment(b) @ As an example, we show how one can write a \texttt{MRexperiment} object out as a BIOM file. Here is an example writing out the mouseData \texttt{MRexperiment} object to a BIOM file. <>= data(mouseData) # options include to normalize or not b <- MRexperiment2biom(mouseData) write_biom(b,biom_file="~/Desktop/otu_table.biom") @ \subsection{Loading count data} Following preprocessing and annotation of sequencing data \texttt{metagenomeSeq} requires a count matrix with features along rows and samples along the columns. \texttt{metagenomeSeq} includes functions for loading delimited files of counts \texttt{loadMeta} and phenodata \texttt{loadPhenoData}. As an example, a portion of the lung microbiome \cite{charlson} OTU matrix is provided in \texttt{metagenomeSeq}'s library "extdata" folder. The OTU matrix is stored as a tab delimited file. \texttt{loadMeta} loads the taxa and counts into a list. <>= dataDirectory <- system.file("extdata", package="metagenomeSeq") lung = loadMeta(file.path(dataDirectory,"CHK_NAME.otus.count.csv")) dim(lung$counts) @ \subsection{Loading taxonomy} Next we want to load the annotated taxonomy. Check to make sure that your taxa annotations and OTUs are in the same order as your matrix rows. <>= taxa = read.delim(file.path(dataDirectory,"CHK_otus.taxonomy.csv"),stringsAsFactors=FALSE) @ As our OTUs appear to be in order with the count matrix we loaded earlier, the next step is to load phenodata. \textbf{Warning}: features need to have the same names as the rows of the count matrix when we create the MRexperiment object for provenance purposes. \subsection{Loading metadata} Phenotype data can be optionally loaded into \texttt{R} with \texttt{loadPhenoData}. This function loads the data as a list. <>= clin = loadPhenoData(file.path(dataDirectory,"CHK_clinical.csv"),tran=TRUE) ord = match(colnames(lung$counts),rownames(clin)) clin = clin[ord,] head(clin[1:2,]) @ \textbf{Warning}: phenotypes must have the same names as the columns on the count matrix when we create the MRexperiment object for provenance purposes. \subsection{Creating a \texttt{MRexperiment} object} Function \texttt{newMRexperiment} takes a count matrix, phenoData (annotated data frame), and featureData (annotated data frame) as input. \texttt{Biobase} provides functions to create annotated data frames. Library sizes (depths of coverage) and normalization factors are also optional inputs. <>= phenotypeData = AnnotatedDataFrame(clin) phenotypeData @ A feature annotated data frame. In this example it is simply the OTU numbers, but it can as easily be the annotated taxonomy at multiple levels. <>= OTUdata = AnnotatedDataFrame(taxa) OTUdata @ <>= obj = newMRexperiment(lung$counts,phenoData=phenotypeData,featureData=OTUdata) # Links to a paper providing further details can be included optionally. # experimentData(obj) = annotate::pmid2MIAME("21680950") obj @ \subsection{Example datasets} There are two datasets included as examples in the \texttt{metagenomeSeq} package. Data needs to be in a \texttt{MRexperiment} object format to normalize, run statistical tests, and visualize. As an example, throughout the vignette we'll use the following datasets. To understand a function's usage or included data simply enter ?functionName. \begin{enumerate} \item Human lung microbiome \cite{charlson}: The lung microbiome consists of respiratory flora sampled from six healthy individuals. Three healthy nonsmokers and three healthy smokers. The upper lung tracts were sampled by oral wash and oro-/nasopharyngeal swabs. Samples were taken using two bronchoscopes, serial bronchoalveolar lavage and lower airway protected brushes. \end{enumerate} <>= data(lungData) lungData @ \begin{enumerate} \setcounter{enumi}{1} \item Humanized gnotobiotic mouse gut \cite{ts_mouse}: Twelve germ-free adult male C57BL/6J mice were fed a low-fat, plant polysaccharide-rich diet. Each mouse was gavaged with healthy adult human fecal material. Following the fecal transplant, mice remained on the low-fat, plant polysacchaaride-rich diet for four weeks, following which a subset of 6 were switched to a high-fat and high-sugar diet for eight weeks. Fecal samples for each mouse went through PCR amplification of the bacterial 16S rRNA gene V2 region weekly. Details of experimental protocols and further details of the data can be found in Turnbaugh et. al. Sequences and further information can be found at: \url{http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html} \end{enumerate} <>= data(mouseData) mouseData @ \newpage \subsection{Useful commands} Phenotype information can be accessed with the \verb+phenoData+ and \verb+pData+ methods: <>= phenoData(obj) head(pData(obj),3) @ Feature information can be accessed with the \verb+featureData+ and \verb+fData+ methods: <>= featureData(obj) head(fData(obj)[,-c(2,10)],3) @ \newpage The raw or normalized counts matrix can be accessed with the \verb+MRcounts+ function: <>= head(MRcounts(obj[,1:2])) @ A \texttt{MRexperiment-class} object can be easily subsetted, for example: <<>>= featuresToKeep = which(rowSums(obj)>=100) samplesToKeep = which(pData(obj)$SmokingStatus=="Smoker") obj_smokers = obj[featuresToKeep,samplesToKeep] obj_smokers head(pData(obj_smokers),3) @ Alternative normalization scaling factors can be accessed or replaced with the \verb+normFactors+ method: <>= head(normFactors(obj)) normFactors(obj) <- rnorm(ncol(obj)) head(normFactors(obj)) @ Library sizes (sequencing depths) can be accessed or replaced with the \verb+libSize+ method: <>= head(libSize(obj)) libSize(obj) <- rnorm(ncol(obj)) head(libSize(obj)) @ \newpage Additionally, data can be filtered to maintain a threshold of minimum depth or OTU presence: <>= data(mouseData) filterData(mouseData,present=10,depth=1000) @ Two \texttt{MRexperiment-class} objects can be merged with the \texttt{mergeMRexperiments} function, e.g.: <>= data(mouseData) newobj = mergeMRexperiments(mouseData,mouseData) newobj @ \newpage \section{Normalization} Normalization is required due to varying depths of coverage across samples. \texttt{cumNorm} is a normalization method that calculates scaling factors equal to the sum of counts up to a particular quantile. Denote the $l$th quantile of sample $j$ as $q_j^l$, that is, in sample $j$ there are $l$ taxonomic features with counts smaller than $q_j^l$. For $l= \lfloor .95m \rfloor$ then $q_j^l$ corresponds to the 95th percentile of the count distribution for sample $j$. Denote $s_j^l= \sum_{(i|c_{ij}\leq q_j^l)}c_{ij}$ as the sum of counts for sample $j$ up to the $l$th quantile. Our normalization chooses a value $\hat{l}\leq m$ to define a normalization scaling factor for each sample to produce normalized counts $\tilde{c_{ij}}$ = $\frac{c_{ij}}{s_j^{\hat{l}}}N$ where $N$ is an appropriately chosen normalization constant. See Appendix C for more information on how our method calculates the proper percentile. These normalization factors are stored in the experiment summary slot. Functions to determine the proper percentile \texttt{cumNormStat}, save normalized counts \texttt{exportMat}, or save various sample statistics \texttt{exportStats} are also provided. Normalized counts can be called easily by \texttt{cumNormMat(MRexperimentObject)} or \texttt{MRcounts(MRexperimentObject,norm=TRUE,log=FALSE)}. \subsection{Calculating normalization factors} After defining a \texttt{MRexperiment} object, the first step is to calculate the proper percentile by which to normalize counts. There are several options in calculating and visualizing the relative differences in the reference. Figure 3 is an example from the lung dataset. <>= data(lungData) p=cumNormStatFast(lungData) @ \noindent To calculate the scaling factors we simply run \texttt{cumNorm} <>= lungData = cumNorm(lungData,p=p) @ The user can alternatively choose different percentiles for the normalization scheme by specifying $p$. There are other functions, including \texttt{normFactors}, \texttt{cumNormMat}, that return the normalization factors or a normalized matrix for a specified percentile. To see a full list of functions please refer to the manual and help pages. \subsection{Exporting data} To export normalized count matrices: <>= mat = MRcounts(lungData,norm=TRUE,log=TRUE)[1:5,1:5] exportMat(mat,file=file.path(dataDirectory,"tmp.tsv")) @ \noindent To save sample statistics (sample scaling factor, quantile value, number of identified features and library size): <>= exportStats(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv")) head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t")) @ <>= system(paste("rm",file.path(dataDirectory,"tmp.tsv"))) @ \newpage \section{Statistical testing} Now that we have taken care of normalization we can address the effects of under sampling on detecting differentially abundant features (OTUs, genes, etc). This is our latest development and we recommend \textit{fitFeatureModel} over \textit{fitZig}. \textit{MRcoefs}, \textit{MRtable} and \textit{MRfulltable} are useful summary tables of the model outputs. \subsection{Zero-inflated Log-Normal mixture model for each feature} By reparametrizing our zero-inflation model, we're able to fit a zero-inflated model for each specific OTU separately. We currently recommend using the zero-inflated log-normal model as implemented in \textit{fitFeatureModel}. \subsubsection{Example using fitFeatureModel for differential abundance testing} Here is an example comparing smoker's and non-smokers lung microbiome. <>= data(lungData) lungData = lungData[,-which(is.na(pData(lungData)$SmokingStatus))] lungData=filterData(lungData,present=30,depth=1) lungData <- cumNorm(lungData, p=.5) pd <- pData(lungData) mod <- model.matrix(~1+SmokingStatus, data=pd) lungres1 = fitFeatureModel(lungData,mod) head(MRcoefs(lungres1)) @ \subsection{Zero-inflated Gaussian mixture model} The depth of coverage in a sample is directly related to how many features are detected in a sample motivating our zero-inflated Gaussian (ZIG) mixture model. Figure 2 is representative of the linear relationship between depth of coverage and OTU identification ubiquitous in marker-gene survey datasets currently available. For a quick overview of the mathematical model see Appendix B. \begin{figure} \centerline{\includegraphics[width=.55\textwidth]{metagenomeSeq_figure1.png}} \caption{\footnotesize{The number of unique features is plotted against depth of coverage for samples from the Human Microbiome Project \cite{hmp}. Including the depth of coverage and the interaction of body site and sequencing site we are able to acheive an adjusted $\mathrm{R}^2$ of .94. The zero-inflated Gaussian mixture was developed to account for missing features.}}\label{fig1} \end{figure} Function \texttt{fitZig} performs a complex mathematical optimization routine to estimate probabilities that a zero for a particular feature in a sample is a technical zero or not. The function relies heavily on the \texttt{limma} package \cite{limma}. Design matrices can be created in R by using the \texttt{model.matrix} function and are inputs for \texttt{fitZig}. For large survey studies it is often pertinent to include phenotype information or confounders into a design matrix when testing the association between the abundance of taxonomic features and a phenotype phenotype of interest (disease, for instance). Our linear model methodology can easily incorporate these confounding covariates in a straightforward manner. \texttt{fitZig} output includes weighted fits for each of the $m$ features. Results can be filtered and saved using \texttt{MRcoefs} or \texttt{MRtable}. \subsubsection{Example using fitZig for differential abundance testing} \textbf{Warning}: The user should restrict significant features to those with a minimum number of positive samples. What this means is that one should not claim features are significant unless the effective number of samples is above a particular percentage. For example, fold-change estimates might be unreliable if an entire group does not have a positive count for the feature in question. We recommend the user remove features based on the number of estimated effective samples, please see \texttt{calculateEffectiveSamples}. We recommend removing features with less than the average number of effective samples in all features. In essence, setting eff = .5 when using \texttt{MRcoefs}, \texttt{MRfulltable}, or \texttt{MRtable}. To find features absent from a group the function \texttt{uniqueFeatures} provides a table of the feature ids, the number of positive features and reads for each group. In our analysis of the lung microbiome data, we can remove features that are not present in many samples, controls, and calculate the normalization factors. The user needs to decide which metadata should be included in the linear model. <>= data(lungData) controls = grep("Extraction.Control",pData(lungData)$SampleType) lungTrim = lungData[,-controls] rareFeatures = which(rowSums(MRcounts(lungTrim)>0)<10) lungTrim = lungTrim[-rareFeatures,] lungp = cumNormStat(lungTrim,pFlag=TRUE,main="Trimmed lung data") lungTrim = cumNorm(lungTrim,p=lungp) @ After the user defines an appropriate model matrix for hypothesis testing there are optional inputs to \texttt{fitZig}, including settings determined by \texttt{zigControl}. We ask the user to review the help files for both \texttt{fitZig} and \texttt{zigControl}. For this example we include body site as covariates and want to test for the bacteria differentially abundant between smokers and non-smokers. <>= smokingStatus = pData(lungTrim)$SmokingStatus bodySite = pData(lungTrim)$SampleType normFactor = normFactors(lungTrim) normFactor = log2(normFactor/median(normFactor) + 1) mod = model.matrix(~smokingStatus+bodySite + normFactor) settings = zigControl(maxit=10,verbose=TRUE) fit = fitZig(obj = lungTrim,mod=mod,useCSSoffset = FALSE, control=settings) # The default, useCSSoffset = TRUE, automatically includes the CSS scaling normalization factor. @ The result, \texttt{fit}, is a list providing detailed estimates of the fits including a \texttt{limma} fit in \texttt{fit\$fit} and an \texttt{ebayes} statistical fit in \texttt{fit\$eb}. This data can be analyzed like any \texttt{limma} fit and in this example, the column of the fitted coefficientsrepresents the fold-change for our "smoker" vs. "nonsmoker" analysis. Looking at the particular analysis just performed, there appears to be OTUs representing two \textit{Prevotella}, two \textit{Neisseria}, a \textit{Porphyromonas} and a \textit{Leptotrichia} that are differentially abundant. One should check that similarly annotated OTUs are not equally differentially abundant in controls. Alternatively, the user can input a model with their own normalization factors including them directly in the model matrix and specifying the option \texttt{useCSSoffset = FALSE} in fitZig. \subsubsection{Multiple groups} Assuming there are multiple groups it is possible to make use of Limma's topTable functions for F-tests and contrast functions to compare multiple groups and covariates of interest. The output of fitZig includes a 'MLArrayLM' Limma object that can be called on by other functions. When running fitZig by default there is an additional covariate added to the design matrix. The fit and the ultimate design matrix are crucial for contrasts. <>= # maxit=1 is for demonstration purposes settings = zigControl(maxit=1,verbose=FALSE) mod = model.matrix(~bodySite) colnames(mod) = levels(bodySite) # fitting the ZIG model res = fitZig(obj = lungTrim,mod=mod,control=settings) # The output of fitZig contains a list of various useful items. hint: names(res). # # Probably the most useful is the limma 'MLArrayLM' object called fit. zigFit = res$fit finalMod = res$fit$design contrast.matrix = makeContrasts(BAL.A-BAL.B,OW-PSB,levels=finalMod) fit2 = contrasts.fit(zigFit, contrast.matrix) fit2 = eBayes(fit2) topTable(fit2) # See help pages on decideTests, topTable, topTableF, vennDiagram, etc. @ Further specific details can be found in section 9.3 and beyond of the Limma user guide. The take home message is that to make use of any Limma functions one needs to extract the final model matrix used: \textit{res\$fit\$design} and the MLArrayLM Limma fit object: \textit{res\$fit}. \subsubsection{Exporting fits} Currently functions are being developed to wrap and output results more neatly, but \texttt{MRcoefs}, \texttt{MRtable}, \texttt{MRfulltable} can be used to view coefficient fits and related statistics and export the data with optional output values - see help files to learn how they differ. An important note is that the \texttt{by} variable controls which coefficients are of interest whereas \texttt{coef} determines the display.\\ To only consider features that are found in a large percentage of effectively positive (positive samples + the weight of zero counts included in the Gaussian mixture) use the \textbf{eff} option in the \texttt{MRtables}. <>= taxa = sapply(strsplit(as.character(fData(lungTrim)$taxa),split=";"), function(i){i[length(i)]}) head(MRcoefs(fit,taxa=taxa,coef=2)) @ \subsection{Time series analysis} Implemented in the \texttt{fitTimeSeries} function is a method for calculating time intervals for which bacteria are differentially abundant. Fitting is performed using Smoothing Splines ANOVA (SS-ANOVA), as implemented in the \texttt{gss} package. Given observations at multiple time points for two groups the method calculates a function modeling the difference in abundance across all time. Using group membership permutations weestimate a null distribution of areas under the difference curve for the time intervals of interest and report significant intervals of time. Use of the function for analyses should cite: "Finding regions of interest in high throughput genomics data using smoothing splines" Talukder H, Paulson JN, Bravo HC. (Submitted) For a description of how to perform a time-series / genome based analysis call the \texttt{fitTimeSeries} vignette. <>= # vignette("fitTimeSeries") @ \subsection{Log Normal permutation test} Included is a standard log normal linear model with permutation based p-values permutation. We show the fit for the same model as above using 10 permutations providing p-value resolution to the tenth. The \texttt{coef} parameter refers to the coefficient of interest to test. We first generate the list of significant features. <>= coeffOfInterest = 2 res = fitLogNormal(obj = lungTrim, mod = mod, useCSSoffset = FALSE, B = 10, coef = coeffOfInterest) # extract p.values and adjust for multiple testing # res$p are the p-values calculated through permutation adjustedPvalues = p.adjust(res$p,method="fdr") # extract the absolute fold-change estimates foldChange = abs(res$fit$coef[,coeffOfInterest]) # determine features still significant and order by the sigList = which(adjustedPvalues <= .05) sigList = sigList[order(foldChange[sigList])] # view the top taxa associated with the coefficient of interest. head(taxa[sigList]) @ \subsection{Presence-absence testing} The hypothesis for the implemented presence-absence test is that the proportion/odds of a given feature present is higher/lower among one group of individuals compared to another, and we want to test whether any difference in the proportions observed is significant. We use Fisher's exact test to create a 2x2 contingency table and calculate p-values, odd's ratios, and confidence intervals. \texttt{fitPA} calculates the presence-absence for each organism and returns a table of p-values, odd's ratios, and confidence intervals. The function will accept either a \texttt{MRexperiment} object or matrix. \texttt{MRfulltable} when sent a result of fitZig will also include the results of \texttt{fitPA}. <>= classes = pData(mouseData)$diet res = fitPA(mouseData[1:5,],cl=classes) # Warning - the p-value is calculating 1 despite a high odd's ratio. head(res) @ \subsection{Discovery odds ratio testing} The hypothesis for the implemented discovery test is that the proportion of observed counts for a feature of all counts are comparable between groups. We use Fisher's exact test to create a 2x2 contingency table and calculate p-values, odd's ratios, and confidence intervals. \texttt{fitDO} calculates the proportion of counts for each organism and returns a table of p-values, odd's ratios, and confidence intervals. The function will accept either a \texttt{MRexperiment} object or matrix. <>= classes = pData(mouseData)$diet res = fitDO(mouseData[1:100,],cl=classes,norm=FALSE,log=FALSE) head(res) @ \subsection{Feature correlations} To test the correlations of abundance features, or samples, in a pairwise fashion we have implemented \texttt{correlationTest} and \texttt{correctIndices}. The \texttt{correlationTest} function will calculate basic pearson, spearman, kendall correlation statistics for the rows of the input and report the associated p-values. If a vector of length ncol(obj) it will also calculate the correlation of each row with the associated vector. <>= cors = correlationTest(mouseData[55:60,],norm=FALSE,log=FALSE) head(cors) @ \textbf{Caution:} http://www.ncbi.nlm.nih.gov/pubmed/23028285 \subsection{Unique OTUs or features} To find features absent from any number of classes the function \texttt{uniqueFeatures} provides a table of the feature ids, the number of positive features and reads for each group. Thresholding for the number of positive samples or reads required are options. <>= cl = pData(mouseData)[["diet"]] uniqueFeatures(mouseData,cl,nsamples = 10,nreads = 100) @ \newpage \section{Aggregating counts} Normalization is recommended at the OTU level. However, functions are in place to aggregate the count matrix (normalized or not), based on a particular user defined level. Using the featureData information in the MRexperiment object, calling \texttt{aggregateByTaxonomy} or \texttt{aggTax} on a MRexperiment object and declaring particular featureData column name (i.e. 'genus') will aggregate counts to the desired level with the aggfun function (default colSums). Possible aggfun alternatives include colMeans and colMedians. <>= obj = aggTax(mouseData,lvl='phylum',out='matrix') head(obj[1:5,1:5]) @ Additionally, aggregating samples can be done using the phenoData information in the MRexperiment object. Calling \texttt{aggregateBySample} or \texttt{aggsamp} on a MRexperiment object and declaring a particular phenoData column name (i.e. 'diet') will aggregate counts with the aggfun function (default rowMeans). Possible aggfun alternatives include rowSums and rowMedians. <>= obj = aggSamp(mouseData,fct='mouseID',out='matrix') head(obj[1:5,1:5]) @ The \texttt{aggregateByTaxonomy},\texttt{aggregateBySample}, \texttt{aggTax} \texttt{aggSamp} functions are flexible enough to put in either 1) a matrix with a vector of labels or 2) a MRexperiment object with a vector of labels or featureData column name. The function can also output either a matrix or MRexperiment object. \newpage \section{Visualization of features} To help with visualization and analysis of datasets \texttt{metagenomeSeq} has several plotting functions to gain insight of the dataset's overall structure and particular individual features. An initial interactive exploration of the data can be displayed with the \texttt{display} function. For an overall look at the dataset we provide a number of plots including heatmaps of feature counts: \texttt{plotMRheatmap}, basic feature correlation structures: \texttt{plotCorr}, PCA/MDS coordinates of samples or features: \texttt{plotOrd}, rarefaction effects: \texttt{plotRare} and contingency table style plots: \texttt{plotBubble}. Other plotting functions look at particular features such as the abundance for a single feature: \texttt{plotOTU} and \texttt{plotFeature}, or of multiple features at once: \texttt{plotGenus}. Plotting multiple OTUs with similar annotations allows for additional control of false discoveries. \subsection{Interactive Display} Due to recent advances in the \texttt{interactiveDisplay} package, calling the \texttt{display} function on \texttt{MRexperiment} objects will bring up a browser to explore your data through several interactive visualizations. For more detailed interactive visualizations one might be interested in the shiny-phyloseq package. <>= # Calling display on the MRexperiment object will start a browser session with interactive plots. # require(interactiveDisplay) # display(mouseData) @ \subsection{Structural overview} Many studies begin by comparing the abundance composition across sample or feature phenotypes. Often a first step of data analysis is a heatmap, correlation or co-occurence plot or some other data exploratory method. The following functions have been implemented to provide a first step overview of the data: \begin{enumerate} \item \texttt{plotMRheatmap} - heatmap of abundance estimates (Fig. 4 left) \item \texttt{plotCorr} - heatmap of pairwise correlations (Fig. 4 right) \item \texttt{plotOrd} - PCA/CMDS components (Fig. 5 left) \item \texttt{plotRare} - rarefaction effect (Fig. 5 right) \item \texttt{plotBubble} - contingency table style plot (see help) \end{enumerate} \noindent Each of the above can include phenotypic information in helping to explore the data. Below we show an example of how to create a heatmap and hierarchical clustering of $\log_2$ transformed counts for the 200 OTUs with the largest overall variance. Red values indicate counts close to zero. Row color labels indicate OTU taxonomic class; column color labels indicate diet (green = high fat, yellow = low fat). Notice the samples cluster by diet in these cases and there are obvious clusters. We then plot a correlation matrix for the same features. <>= trials = pData(mouseData)$diet heatmapColColors=brewer.pal(12,"Set3")[as.integer(factor(trials))]; heatmapCols = colorRampPalette(brewer.pal(9, "RdBu"))(50) # plotMRheatmap plotMRheatmap(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none", col = heatmapCols,ColSideColors = heatmapColColors) # plotCorr plotCorr(obj=mouseData,n=200,cexRow = 0.25,cexCol = 0.25, trace="none",dendrogram="none",col=heatmapCols) @ Below is an example of plotting CMDS plots of the data and the rarefaction effect at the OTU level. None of the data is removed (we recommend removing outliers typically). <>= cl = factor(pData(mouseData)$diet) # plotOrd - can load vegan and set distfun = vegdist and use dist.method="bray" plotOrd(mouseData,tran=TRUE,usePCA=FALSE,useDist=TRUE,bg=cl,pch=21) # plotRare res = plotRare(mouseData,cl=cl,pch=21,bg=cl) # Linear fits for plotRare / legend tmp=lapply(levels(cl), function(lv) lm(res[,"ident"]~res[,"libSize"]-1, subset=cl==lv)) for(i in 1:length(levels(cl))){ abline(tmp[[i]], col=i) } legend("topleft", c("Diet 1","Diet 2"), text.col=c(1,2),box.col=NA) @ \subsection{Feature specific} Reads clustered with high similarity represent functional or taxonomic units. However, it is possible that reads from the same organism get clustered into multiple OTUs. Following differential abundance analysis. It is important to confirm differential abundance. One way to limit false positives is ensure that the feature is actually abundant (enough positive samples). Another way is to plot the abundances of features similarly annotated. \begin{enumerate} \item \texttt{plotOTU} - abundances of a particular feature by group (Fig. 6 left) \item \texttt{plotGenus} - abundances for several features similarly annotated by group (Fig. 6 right) \item \texttt{plotFeature} - abundances of a particular feature by group (similar to plotOTU, Fig. 7) \end{enumerate} Below we use \texttt{plotOTU} to plot the normalized log(cpt) of a specific OTU annotated as \textit{Neisseria meningitidis}, in particular the 779th row of lungTrim's count matrix. Using \texttt{plotGenus} we plot the normalized log(cpt) of all OTUs annotated as \textit{Neisseria meningitidis}. It would appear that \textit{Neisseria meningitidis} is differentially more abundant in nonsmokers. <>= head(MRtable(fit,coef=2,taxa=1:length(fData(lungTrim)$taxa))) patients=sapply(strsplit(rownames(pData(lungTrim)),split="_"), function(i){ i[3] }) pData(lungTrim)$patients=patients classIndex=list(smoker=which(pData(lungTrim)$SmokingStatus=="Smoker")) classIndex$nonsmoker=which(pData(lungTrim)$SmokingStatus=="NonSmoker") otu = 779 # plotOTU plotOTU(lungTrim,otu=otu,classIndex,main="Neisseria meningitidis") # Now multiple OTUs annotated similarly x = fData(lungTrim)$taxa[otu] otulist = grep(x,fData(lungTrim)$taxa) # plotGenus plotGenus(lungTrim,otulist,classIndex,labs=FALSE, main="Neisseria meningitidis") lablist<- c("S","NS") axis(1, at=seq(1,6,by=1), labels = rep(lablist,times=3)) @ <>= classIndex=list(Western=which(pData(mouseData)$diet=="Western")) classIndex$BK=which(pData(mouseData)$diet=="BK") otuIndex = 8770 # par(mfrow=c(1,2)) dates = pData(mouseData)$date plotFeature(mouseData,norm=FALSE,log=FALSE,otuIndex,classIndex, col=dates,sortby=dates,ylab="Raw reads") @ \newpage \section{Summary} \texttt{metagenomeSeq} is specifically designed for sparse high-throughput sequencing experiments that addresses the analysis of differential abundance for marker-gene survey data. The package, while designed for marker-gene survey datasets, may be appropriate for other sparse data sets for which the zero-inflated Gaussian mixture model may apply. If you make use of the statistical method please cite our paper. If you made use of the manual/software, please cite the manual/software! \subsection{Citing metagenomeSeq} <>= citation("metagenomeSeq") @ \subsection{Session Info} <>= sessionInfo() @ \newpage \section{Appendix} \subsection{Appendix A: MRexperiment internals} The S4 class system in R allows for object oriented definitions. \texttt{metagenomeSeq} makes use of the \texttt{Biobase} package in Bioconductor and their virtual-class, \texttt{eSet}. Building off of \texttt{eSet}, the main S4 class in \texttt{metagenomeSeq} is termed \texttt{MRexperiment}. \texttt{MRexperiment} is a simple extension of \texttt{eSet}, adding a single slot, \texttt{expSummary}. The experiment summary slot is a data frame that includes the depth of coverage and the normalization factors for each sample. Future datasets can be formated as MRexperiment objects and analyzed with relative ease. A \texttt{MRexperiment} object is created by calling \texttt{newMRexperiment}, passing the counts, phenotype and feature data as parameters. We do not include normalization factors or library size in the currently available slot specified for the sample specific phenotype data. All matrices are organized in the \texttt{assayData} slot. All phenotype data (disease status, age, etc.) is stored in \texttt{phenoData} and feature data (OTUs, taxanomic assignment to varying levels, etc.) in \texttt{featureData}. Additional slots are available for reproducibility and annotation. \subsection{Appendix B: Mathematical model} Defining the class comparison of interest as $k(j)=I\{j \in \mathrm{ group } A\}$. The zero-inflated model is defined for the continuity-corrected $\log_2$ of the count data $y_{ij} = \log_2(c_{ij}+1)$ as a mixture of a point mass at zero $I_{\{0\}}(y_{ij})$ and a count distribution $f_{count}(y_{ij};\mu_i, \sigma_i^2) \sim N(\mu_i, \sigma_i^2)$. Given mixture parameters $\pi_{j}$, we have that the density of the zero-inflated Gaussian distribution for feature $i$, in sample $j$ with $S_{j}$ total counts is: \begin{equation} f_{zig}(y_{ij}; \theta ) = \pi_{j}(S_{j}) \cdot I_{\{0\}}(y_{ij}) + (1-\pi_{j}(S_{j})) \cdot f_{count}(y_{ij};\theta) \end{equation} Maximum-likelihood estimates are approximated using an EM algorithm, where we treat mixture membership $\Delta_{ij}=1$ if $y_{ij}$ is generated from the zero point mass as latent indicator variables\cite{EM}. We make use of an EM algorithm to account for the linear relationship between sparsity and depth of coverage. The user can specify within the \texttt{fitZig} function a non-default zero model that accounts for more than simply the depth of coverage (e.g. country, age, any metadata associated with sparsity, etc.). See Figure 8 for the graphical model. \begin{figure} \centerline{\includegraphics[width=.7\textwidth]{metagenomeSeq_figure2.png}} \caption{\footnotesize{Graphical model. Green nodes represent observed variables: $S_j$ is the total number of reads in sample $j$; $k_j$ the case-control status of sample $j$; and $y_{ij}$ the logged normalized counts for feature $i$ in sample $j$. Yellow nodes represent counts obtained from each mixture component: counts come from either a spike-mass at zero, $y_{ij}^0$, or the ``count'' distribution, $y_{ij}^1$. Grey nodes $b_{0i}$, $b_{1i}$ and $\sigma_{i}^2$ represent the estimated overall mean, fold-change and variance of the count distribution component for feature $i$. $\pi_j$, is the mixture proportion for sample $j$ which depends on sequencing depth via a linear model defined by parameters $\beta_0$ and $\beta_1$. The expected value of latent indicator variables $\Delta_{ij}$ give the posterior probability of a count being generated from a spike-mass at zero, i.e. $y_{ij}^0$. We assume $M$ features and $N$ samples.}} \end{figure} More information will be included later. For now, please see the online methods in: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2658.html \subsection{Appendix C: Calculating the proper percentile} To be included: an overview of the two methods implemented for the data driven percentile calculation and more description below. The choice of the appropriate quantile given is crucial for ensuring that the normalization approach does not introduce normalization-related artifacts in the data. At a high level, the count distribution of samples should all be roughly equivalent and independent of each other up to this quantile under the assumption that, at this range, counts are derived from a common distribution. More information will be included later. For now, please see the online methods in: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2658.html \newpage \bibliography{metagenomeSeq} \end{document} metagenomeSeq/vignettes/metagenomeSeq.bib0000644000175400017540000000775613175714310021673 0ustar00biocbuildbiocbuild@article{metastats, title={Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples}, volume={11}, journal={PLOS Comp Bio}, publisher={PLOS}, author={White, James and Nagaranjan, Niranjan and Pop, Mihai}, year={2009}} @article{lefse, abstract = {ABSTRACT: This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided.}, author = {Segata, Nicola and Izard, Jacques and Waldron, Levi and Gevers, Dirk and Miropolsky, Larisa and Garrett, Wendy S and Huttenhower, Curtis}, doi = {10.1186/gb-2011-12-6-r60}, file = {:Users/jnpaulson/Downloads/gb-2011-12-6-r60.pdf:pdf}, issn = {1465-6914}, journal = {Genome biology}, month = jun, number = {6}, pages = {R60}, pmid = {21702898}, publisher = {BioMed Central Ltd}, title = {{Metagenomic biomarker discovery and explanation.}}, volume = {12}, year = {2011} } @article{ts_mouse, title={The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.}, volume={1}, number={6}, journal={Science translational medicine}, publisher={NIH Public Access}, author={Turnbaugh, Peter J and Ridaura, Vanessa K and Faith, Jeremiah J and Rey, Federico E and Knight, Rob and Gordon, Jeffrey I}, year={2009}, pages={6ra14}} @article{edgeR, title={edgeR: a Bioconductor package for differential expression analysis of digital gene expression data}, volume={26}, number={1}, journal={Bioinformatics}, publisher={Oxford University Press}, author={Robinson, Mark D and McCarthy, Davis J and Smyth, Gordon K}, year={2010}, pages={139--140}} @article{deseq, title={Differential expression analysis for sequence count data.}, volume={11}, number={10}, journal={Genome Biology}, publisher={BioMed Central Ltd}, author={Anders, Simon and Huber, Wolfgang}, year={2010}, pages={R106}} @article{charlson, title={Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract.}, volume={184}, journal={American Journal of Respiratory and Critical Care Medicine}, publisher={Am Thoracic Soc}, author={Charlson, Emily S and Bittinger, Kyle and Haas, Andrew R and Fitzgerald, Ayannah S and Frank, Ian and Yadav, Anjana and Bushman, Frederic D and Collman, Ronald G}, year={2011}} @article{ghodsi, title={DNACLUST: accurate and efficient clustering of phylogenetic marker genes.}, volume={12}, number={1}, journal={BMC Bioinformatics}, publisher={BioMed Central Ltd}, author={Ghodsi, Mohammadreza and Liu, Bo and Pop, Mihai}, year={2011}, pages={271}} @article{hmp, title={A framework for human microbiome research}, volume={486}, url={http://www.nature.com/doifinder/10.1038/nature11209}, number={7402}, journal={Nature}, publisher={Nature Publishing Group}, author={HMP, Consortium}, year={2012}} @article{recount, title={ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets.}, volume={12}, url={http://www.ncbi.nlm.nih.gov/pubmed/22087737}, number={1}, journal={BMC Bioinformatics}, publisher={BioMed Central Ltd}, author={Frazee, Alyssa C and Langmead, Ben and Leek, Jeffrey T}, year={2011}, pages={449}} @book{limma, title={Limma: linear models for microarray data}, number={October}, booktitle={Bioinformatics and Computational Biology Solutions using R and Bioconductor}, publisher={Springer}, author={Smyth, Gordon K}, year={2005}, pages={397--420}} @article{EM, title={Maximum likelihood from incomplete data via the EM algorithm}, volume={39}, url={http://www.jstor.org/stable/2984875}, number={1}, journal={Journal of the Royal Statistical Society Series B Methodological}, publisher={JSTOR}, author={Dempster, A P and Laird, N M and Rubin, D B}, year={1977}, pages={1--38}}metagenomeSeq/vignettes/metagenomeSeq_figure1.png0000644000175400017540000006350113175714310023333 0ustar00biocbuildbiocbuildJFIF@ICC_PROFILE0ADBEmntrRGB XYZ  3;acspAPPLnone-ADBE cprt2desc0kwtptbkptrTRCgTRCbTRCrXYZgXYZbXYZtextCopyright 2000 Adobe Systems IncorporateddescAdobe RGB (1998)XYZ QXYZ curv3curv3curv3XYZ OXYZ 4,XYZ &1/ExifMM*JR(iZ:d:d C  $" &0P40,,0bFJ:Ptfzxrfpnnpڢ|C"$$0*0^44^Ƅp" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?((((^j6L;0,203@y Ŕdq@袊(((((((% [((8p3> 2J0Ƞ (M* ڀǥEg{ lUNF(Q@Q@Q@Q@Q@Q@Q@Quh:fEPE9&Ev襀&%(((((s?59C/&b#N?+e4mqXf] SiRUAKΚز H#>RFU,8F&:lwp(wP.-5"8EI>X뗶/-@ ڝvLY_L'[h@ŗ[-FHֆ;h% zW?m?ʢ醴Z K ӚY5}N$6#~gZ۪0g{f63dT%XԄBm <A?linY' zx#_L[)B_'{k)f2tA2ۙ"M Hu*Tp?%|U= [m2#Jj~^9D2 "[\W^B]lOB}e'_?2)˭]\]CFI_Dcl~t sN]۞37Թj]\kKT̏C>pA޴-gԌpۃ6O/瞵CêrǨΎYew0`@_«ZDo+Q/vaQ"HAL瞴y:]hypj}y. '4ٕ0n6GӚo-ER(~wA *5#C<*nyD`=OZŨ8yY?opObWlin5g?]5cz e㡨;qYGN"4򛝲=0h`Nuּx`SL^YmեC{]C?R?_-YKWq #= X5wֱ&8y{c֩?F+@`%$.&ykr*w{syn`2l~FHؑs( _V##d*=MUZa+,9C)ZgJ8ʄ7[UdG2=}G_j ݰS6qp}> uwuB[pڨ\)_[gďֶrܑGq"on4E8=Oku[Hx sEAD6eY d^w[Fma~ah`.poZ/m,"3P#[OTX1rm=(;=b^[30{R:ı]0H>U9m#|k>N@Yn YAIL.]'OJmGz d +?SdibUH!;HdM1 [MgG=0 GKdk );sSR9QEQEQEQEU+2Ai l JE P;cAc+IHY?¯TOqmIVf vtX#薐\7dҮ}~!l@I%\`1E$ (0S~!l@_j 3:9ңm7, Cj<ެ~!l@1RҖ'; ҧH{XmIvNFZeC}>m?b[H+ yc"KnilG-P6  ^Vֆg(eC}NOW A=. )hB0Cm?b[?ؠ,,yi 8F:ҫh642ܐj-Qooa,vJ,lHBd븏m?b[?ؠ ,~/U9h I+$eC}>m?b#`}@L `b-^U/[?أ(8"kXTpCsޒO2ήrwJ(eC}͗ö@@|D nܓR~!l@[i]r!y3cJ? n<zcҧeC}>m?b ົKi0psEo(*`:qS~!l@-tD^R:+VeC}>m?b0|@kuaUA#W?7ons#Wd}>W#;I/-PWtvnHB`cUbXaHFzLeC}>m?b(\dR*k-2N"ng,ܐ=-RR7̷^$iay+VGm'vNZϒң5/-PK_4nBEcI1Vm?b[?ؠ :5h-#S{IK*겺F  6kn!%Sn5PEPQϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ?~m>ϼ? am(9M}Z-ΩyqY[/dZ\)GKcxGTV}cxSQ@C3Wj _QEQEVnu!K;ktR70eTVeGuo|/cMG tkXTfY8!0\"-FĴҺ(G :(  .#S@}%5é_ƙfۏ\q@/uLKY琾梶Ԯ#H݂ +21$.*֭B*f$v/Kȭ,t4QEQ!E2I$/#(XS >L +L9>ƢYرLժ((( _KHl?/((+iut(f xuPq{R]D ,x&sʀ ?w~Lq-Ŝ^l@pYFvҜ9#j3CQ[uoUl ֢k:%7NHؠY_Q _@袊(+2)u!mZtPv ͦw  2ztRQ RQ@_<)iFN~lsiO9(I'ں(I#BkeĶЇݧbڹz4Pm7TaO2TuEei5Ρ-4KdhÜzZn/.td8U~EsLg1C2]6sWΏo$)bЮS{Ѣ0j% gN=p =)h(( CRn m ̎R02nMwQ;&69HATLrvIPR F>Da??[CL@u1=Aj&繁N].i ܝ@?P*qH5 p)R('P榑${OBsA8 J$P?*պTIYyWS2^I&u pn|)=,]fzgf Ͻe *&2=jܒ[ߢOs2RjzĈ«<6JioS^Aȥ ( _KHl?/((*ܗirVC}qW%R:+fkD0Ɂ#1zPpf ~55PrW;rd[2 jGL f+i{rrYFPjn *7w) #J-/O6[?6cfNWrgSZՇ$6fvIF#VBBjPlEPEPEPEPEPEPEPEPEPEPERIZ+S 3T($|ի}eDEnTlc;ǨbZWfsMfgV<kZPmxoˁR"t#T$\"ז'[ʉFA`ջۙ[x]BH{}*c4>VEsP9$t ]-8I] QqvaEUQESZ#\'ҲE[gF<|m].)R[CkjbEXJaG~0Os]EwJ"O.$Lj}UQER? B5vi @Q@Q@c\knx@x9ԯ#hi?2.>{P9KE7pH@鸜wDŢF#50OX;HBGzҎWkct7$ w=>c<۠}a{[ܩm"uf2p3U") CGw. t&t rGsmҴ}XcO멢#n&F??PA_Yw:g!}G4~(((((((((f6BҨ?{p֧դhz1mMN\Ems>ldA5%fA -GKFE9ܭ&ў@mnm<>G涄2rA9P*Ze'L?WtAaMU]Se\Xyj@:qw0]J楉#+6Ԯv4M,9c㚖]x˕AK"Bp:p*77 i2)r";kqglhskZ[[,#H@gD p)s;4@{梜9wQʣqDZYbI\C\c奴ǍθQ߷Ao "Ϯ+i[$QEHQ@Q@Q@Q@Ѝ]ZGaFEPEPY7%/|c+jY[9IN qֲm`j81!o/n;1zhnΚl-v$ fHˉ9ڠf|g׭A @;ֳ<%"Eu(cp$O>gVxh_zލjvEwn`bp9籠y~ͩ[Eq-6N_RIub ߠY_Q _@袊((((((((}4jKjJ]~KGsGvI#KRzQD#c Nz־mJRImb#giG)sG,,R%X'EjfVBY坺E^Zi4b IGUk\v֫JE;qKsKc168'ֳ/5y&&Unq+5w!Ͻ9ggHꧨpir;RI])gp˵\R-oc*;}98:9Ά-P y a4v3@14_`E (9qޣ0]:e"COpj2ܘI]W dW!\NG SvזK)m3v um&!RWaۻ3Xyrv\*.ZuN˒65J%P÷֔#VdM"K6fƥNF٤vҀ>{1#5 2)\@fj sK- (%\H#]ќR*auMrqҚWm!\x\`:0:+XL8Tգl ˜V1i][/3iEEvZsè((((( ZGaF-#A#Wh((NԉVFp= i=q\ kcBpTwyq[؏/* $,)!st04(hvʂc( "J=gOtȜ/boEj k4#XX=4qZdn8>YVWpwv>vZ*gg!}G4~(((g[I/駊7"G{m,m$s* OsqHgIDp\ԗϦH$04~e!)VMޢmH.D1%rOlS%xry5%@ gb{8kX$ظVrr})β\68 &R W V>%Ȕ8=id)0<,Ð=zH)>L:'p鿞٦^7E݅S vg{ Z=J5m֝YFtBM {WhfHdrYqs֧Ӂ b1:{qY)KЦj($(BUSŶ}hVeyEe8enjVvfN_SY#U9({m^d=ZdgU64Zt\IJDz}jZTXmpax ]5Le̮LQEQ!EP-#A#Wj _QEQEuTdAXe+0$}:VU AXFeg QFzր*u"llx'Nf墳m0WRCAGUxt/AP Z2UNy!6[:{ګߛI,aeyƗoxa*9n ,O 3YΛAyT^(9xՈE? a"KjT߳A(Eő[6Yi$ ϥtQ5A@Z^[L ǵmF A K{+Hmqw-zHe+֬/u#2jmq]@F-L4`X..nf DHYھz}[_ŷ9 *gg!}G4~(*m^]QO,W1^Cm;xZ$Fٻ!T(5N!mLT' Z%n{ %A$dr \7{2I"`ڣB&8;>41b[NT ]Gw <<Ali/GφK}̾R6-U-/6o>YTU$D6N3Ib95ZII}Q*nKw+ؑfOH[^/:W8\ъa.7sUʧ+ qg3L\~(©GVyOҺ^"c'zeZcv=UQEsK`vd @9 *գq+)y)P=T3K0@?*֐+?պ+G5 K{;.cnj3ǍsؓVj9K^)U Y&/5N)ˣc֪gޏ\DSwҴ-<{58_4%JHh- &7Vaw$6x;;N0sZJK̳a, P FNZu[5s"$,qmPaESR@ A3ΑmG<Ýyc@UFQ`)i TЍ]((%n&vчYK;v@W דPh>H>ߦsր*Ic^;ˈ[uP 0*Z?T0zlQ$1P:ڟEQEBBjPlEPTuXJYفXr8W1@JpOznYa1Frsғi\"e! ;$ T(L;[Ijɉf'QHϛXG~{b kdZeO,;Vx+嫙Yd?OoOIqL7C#=k~~wd 4wKp'Նa$gwq'$vV#B+*OPRq(Es6U ʥ6T$䷿ҩ(@T'vx,b<}q4ť $.1kqF R؝HhG ҕ+J#lջ̮Y%%E6J_%A*+C=}-ľIU1PpΧb,)l*hgem}E:8HUwom1S)Y\G;\gHNzӓb$z ^1QZ ͔snWxq%)D۽Tq[HFHQy$M5LrGDsbA#ČLی4/E A!js7|$>n|͋>朕(>JI2+B5vafy;u>­QJqQE1Q@Q@Q@Q@Q@Q@Ѝ]ZGaFEPEP%&"F bZv7 F]p'99[u2YkHگ?h /n[?tcMN&LUkBƭ~EQEAqm>|c ꅟgӿ:l~V~rO4袊ה-]G$;֖u i'Yq#,hm0 (消59"FIhʏ73RZ\E* T`qK LjMԒYBc!WkY[jB# ]I8HBpY$֢BP)+j0Hlɸ?\qv5F+_<)]2y?(*˟OH05%%fMsQw-rȁ8e!G8iZ:<{SYˉXP=sM&vUD@pNZ7ܞiJɖ'dXH(-a&*Z0r:zS7Aq`KJKF5[IAڤ~#U teO }60Ld32;F R<p;OV-IcN`RFps1b2[OAsU%-,wB<0YAπ =)%gFvrejuڲ<8Ѻ}(U-bՋzk ƸX¯5<ɤHQLnzp1V1rG3ȋ1?Ҧq絙:=C{ FlSQ4TE 0NI +'YKnP2rY:F,Ha4QEQEQEQEeE,*Oj5BOG(Btc`qԿ泙%َOlR% ijt3?LUeQ@Q@Ѝ]ZGaFEPEPMxD)"dSiut(f xuPq{V蠍TSV_ Z`f((Y_Q _@袪7?eP60{P;tP\92 aᱟ- Y >-Ǘf+.kJƎ77HbL:񓻹=9^v4|gI4z0ɴg"5C!,嚖peTiRd|0?ƪ25`K_5! Xw2ǥCo#GmMp2vXw\ށ-k]"6]ZCj`Y^nKssqQ,=Vn-;]MXINicDgҪE U7goֶ:QJ  BʤdS~^QPXzL#|͞Wr#k{J(ZORȀ2@8ſguD.@'i3T!OMJ]QV^lw(T uj3*)f`I'UhI ~)I`GRlOP0bXt$sNEBf '-Ayڭ$8.0U7ugvux #snT{I>UʟǥkikkLy= $(aEPEPEP-#A#Wj _QEQEV=?niaHkNqF%ẋV=֝m jStd.aln@%235iSz$$%ZheP297ʆ\Fbv bCNyd9Sm)\xXK$I-0eAu=iW1Z0`qҦ{,lFFX` gi"ym$'̌1֭iVs}3!UHEn=IU2&,b<89☺mhh`?ܖד%kBb6:E6Ɋ7ȑq-InnBŽO9T_9ʆs; qrz:'=Ȯԕ[Pmnc>b#RO@3Z"W9KyqUb*ͥ չs$d'}yJi2C'%j=+?Ww_o"3TSΉWp>5VE %>88TT淺\m}EU[iv#:|<ߍNM; #3Bi,hQ!ݵ;=*\\rZ]lb7(5^pKn} kkm9h;&HְD)+MU(qZM;Z}[jZݛvL6Fp{V@U`1ӤJ ԇ@ݕَKjQ4NI8:qV%;n7JN:V]_!^$rΆ9TSЃiՕ=үZ;(`QEQEQER? B5vi @Q@Q@a moŀݴXZpEh3I ߃0TcjG+TT #+3Oz,&X-IȍZSI9Pqp+3~YܽhG<,>Vsw[Ց4Y(lZ29jנY_Q _@PZ¹@+,3 9kx63CsVyw*˹~)ۯ@d󢐮[<իQn0]ZİD ϱYpAuRN'm=[=M͘аaק:Ew"&_fКnGάS6]'59P5*WnÖ$@n9=p IW%+"F=c>ƦspPsqIۀ9П9&;x|'X+D+uȢ+,ːsg (ĊkЯrrI)'Drj#)-$_-CIag2P;V7S'9lاn# 9Una.dެ1ɭDYl'g7ǻ#_נ bQ1^K2Q]2rqYtH5uQk@ EPծf8!e=#27,ުEcZuKpn }?qtE3gqOT,/?u~ZӤu+pzs$oOp@̣_psN uX@㧸5RFHbǮz Q#;+ ,rb$zf &TO.amK9y w}z^O56<Hty&YGr;[f(1m>m̍!(~|Vs9 r,Ydj*\SwcQYM |1$yq!KE(((((((((((6jR? B5v ( ( ( (*K}BNq&}j<@ذVknΑʪ0ZtQ@f mu;=oٷ'ʡgtq4dJ"tSdR*/T_Wh?kOq—kOq¯@?(oP֟?/֟?;V}?!Wh֟?Z~8G֟?_3(o'TZw*kOq?~? EPokOq¯@?)?+Bi.7kOq?~? EPokOq¯@?)?+BE!y3@ okOq¯@?(oP?~? O?~? ЪW_@ okOq¯@?(oP?~? ?*RտOPe= ?l8Wh _ڶ_oV{v2EQEQEQEQEQEQEQE!8=(nnJ}+V$LIm8i3Ҵm#I9V(( o-XԳoCtQ@Uu8VhhZ;<98UIjݣۙ~hB`Z%HGb8*cRӥPE84X"gH dsǵ^%՘$vp"zՋmB 6&w긠 tVG~yǙ/j,k" (R7\oRvzEQYzu[{v BRS<N%> k 'l8@R8jsHT1(o% D`sU10U[)Rَ@U+F;D_hL̗_f{yʂr +:T1kkvFX?/UFH uR7k7U%P镫tPEZ;<l*+)uwH唖!¹lǎ*IMd b=M[(((#wk,{Vg[M.e,i#u:wq?xĽ\p u6g-5<rګI4+qn- c@o}0)/>O[2Z&߃NԾgHd8?_R\Ϩ5b<.p(ꁦnI5pJE^>W`Lian߭Ioi0#OQ@4h|Ki0dMS?ڭe8f1Z֐ kXSj(PeȒn9'UY{|f}E1"xV F9,OiM!#jjZtom 2Lo gP uk}E&tڱ&HFy-uG nE,y¼Qd:w5+-oYӜpn3E݄ImqbPn_#PPr$:h1 %D Ro4饵O q]*jm2u{i9(@hET3Epc2n^H?Vq y6Sѿ(-4kuh]GBD$!`O] GR[][K/bA!T񓌏5Z}I0\H~Lsږ Eo.KO֣Htۙn. (@nI}\'3kF0SϾG5ZNk;}*ՆKl@سo2r=:5Jʲ'Ҝip>OQpOn-p;@`F*} QEQEQEQEQEQEQEQEQEQEQEQX:ŴWf>P{񥸓P,8pT(j"3ȫ'2zt?Y˨XIp9oγ)zր,QXsIV(cSj֋ork ߜw#@TRЊXKEV$A25/~ѭSnmERmZen;@h/2i=|##@h+ \"P0S9UXu+9Fst>k{w4ȍc(z*jn#Nrkk+t? Uim 4RCsa &޻Nq@UTI|@ǥZ9QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEc{j}zEM*PǗ (9MLAzдϧIo.(rFG@(ެfnb = }WS\[,qWڴ Cќzd\5ٟ9E gր!ӭVYsEQůCdv=j+{iԯ0:ɏkFO#I,9[f<7p@b'"%ɇy$sg5,Sk=ڋE !AOyF:w7//v=PfIU.#[rGSМʴm 5pݰc8j#)L3\ h ia4`$(SZEȿ*tTi}no.L BYwoϚێa=.vLn88mm0duhKMG ʸql̓8B&m:`y ]V4Q0V)8JY-m!X`3ǡ :OɞD@hZK|CvqYenAt)l3z?ΦrW*Mds=ܡLmMqps/byNq9EiC1mgE.l{6c "=Jѧ4b*(LN5@ ;TswI%ີ%۵]=*dҏYzJ2-"y6J-\n"Mɵk/#~oFs2+X:jĺRȎ.eP[޴d-9#0QUƓtx[s% zfm㵷HbjM%((((((((((((((((((8DyU'RQEQEQEQEQEQEQEQEQEPVxcf=IPI(UEQEQEQEQEQEQEQEmetagenomeSeq/vignettes/metagenomeSeq_figure2.png0000644000175400017540000114437213175714310023343 0ustar00biocbuildbiocbuildPNG  IHDRa^q iCCPICC ProfileH wTLz% { 7)E%5б# ("",R\]" .DExsכs~ws a1|WzHh3@@cSx^ZI]DzNa9 ӑl?U BVHp)|ᢄ,Xa[U54D!Mܨ83lÎeE S:II[Ww!kDM7f"iXo~HNq)DVI[yY8Nl*^u\ڜoVKR8-ԕ2+! I:i5=Jx (@Fx.TF X; <`3`X l{@(QP@-hg9.x ` =X  2$)Bj6d1!P(@\(  b U4=&Y FD>̄aO8sd8΅ep |nwXA@PJ]A!b|ND>QhAt!#$#H] d#;rdً@#H(JerG8 TUjC]GPh4@Сx6t!ݍBO0 Fc0IMg$0Q$& ّ&%"_'OQŝO) P%%$M$$3%+$/I :՝H-R?IKKEKjZΗn$CqI9,!D)%'!{REJ-/wN iih~ڂ{uyG׫>>G|2|}CU=7߷aˆ j5-; BCv ÄՅ-ltxtTix^&ƦM6nN|i֖,V k!=2r>~eU5m]=cS3ñƖ9ƕǽw_LIOXN NlM&E$]Jp[fnixd|O~] )3"YiKHIHq>S<ٟu k:%mmm=ە>~GNhgΞ]*rwMvݰ'aϯ999ʕݝ;u_sH?ol}7p_o|.d(2+:y}{hb#GK%%n9zԤX1AWYq㇎.-phU\<ubɖ*O?ڵF]^TЩ?6} zhMEpsZӃgtTR[ ΂ig_9s=[~Vܖgwv:C;.x\jEJ+.I^*{yJn^Uɞ-=\;p.7]i}-[n3ow1omfwvZ v d~5·2oߙY]x>b >^\EKWϯI<M=PȃB$V+5/(O |jBos0Z{u)1F[u0GrhyyfyK]v?TB; pHYs%%IR$iTXtXML:com.adobe.xmp 1968 1728 @IDATxyeu} 30#BT\0џQDTJ1)LLb,r) I,cf@AYfY}}y&]̙nzzn}Χ?s>q>&5yP@P@P@P@P@vVz} ( ( ( ( ( P@P@P@P@P@k6{ ( ( ( ( (s@P@P@P@P@P&^ ( ( ( ( ( P@P@P@P@P@ A&n ( ( ( ( (?;P@P@P@P@P@jBE* ( ( ( ( P@P@P@P@P@k6{ ( ( ( ( (s@P@P@P@P@P&^ ( ( ( ( ( P@P@P@P@P@ A&n ( ( ( ( (?;P@P@P@P@P@jBE* ( ( ( ( P@P@P@P@P@k6{ ( ( ( ( (s@P@P@P@P@P&^ ( ( ( ( ( P@P@P@P@P@ A&n ( ( ( ( (?;P@P@P@P@P@jBE* ( ( ( ( P@P@P@P@P@k6{ ( ( ( ( (s@P@P@P@P@P&^ ( ( ( ( ( P@P@P@P@P@ A&n ( ( ( ( (?;P@P@P@P@P@jBE* ( ( ( ( P@P@P@P@P@k6{ ( ( ( ( (s@P@P@P@P@P&^ ( ( ( ( ( P@P@P@P@P@ A&n ( ( ( ( (?;P@P@P@P@P@jBE* ( ( ( ( P@P@P@P@P@k6{ ( ( ( ( (s@P@P@P@P@P&^ ( ( ( ( (( TV׼5z|@h'˧mkG ( ( `Bר ( ( ( ( (^']P@ZC뿚8,_bOȮkn4}?Uj~RrsFQ@P@P@hZx>~ ( ( ( ( (P%!^%7P@.Pw瞜m:tֵJ9JX^kc{V<bO󯢱L||c[P@P@Pe&[P@P@P@P@P@ڙ vv Tb4g S._tv3Dcj>c?a'= J8s]'?=,45?{g C8 ( ( (@{* ( ( ( (5-`BoȉTΘM4gH9J+rrQF^))TTR;wɴ?W8N:9׽9>|oن'ιof{~ y!~x*?'6EN)Q~r'%?<#iOMnF  ( ( Ը ^ ( ( ( ( (P+&kN{ (P6Qo2d+=yc2uuu1իW7˗G—-[m2UYW^$ɟ*%;HrƼJ2&ܹ3rqEĉr /0ڽ{r^$^ch}ZyMOS~ְ=<_KA{ѢEۖ-[.X *s_6e67w&Xپ}.#)+G5jT?zSN:xਲ਼f͊ʓW|rq,g3uS@P@P@j\xO/_P@P@P@P@rNhUR9oTݤJ7o_~1UV=D{ϫZ-ڙ"0GE+~eFs^=o߾q~E߿Tݺu6XՔkpŧ)?w|]~}|\vnS<ax`}3^wFCQ͞cc7 &%IyK_xᅨ=FNk^Ms)9P$@[#ZZd\׵k׭[58g̘CzEEef*+#GglC-ԦS+37mDuuuQ<_cѻw d>ikڭ 4l\yv&ڼ;k֬o=Qw5b\}3zر#z}EUYϏ3gF뢒'i 9ټq^96$x- ;uFo,Z(v۹sgJn@_h3lvcb<5[nk!3~ûoQGE:uj(>ACl6VP@P@PLW=P@P@P@P@P@N"'AK CNzΕCbǏG]fMԵkFe-CF{Q'MuԨQQY+GgldIvS{p]wٷo_júϬ0N}w!+5s mT'gYMw,V\Wwިǎڽ{dãN7fr^%رc\ٳ|ݦ+ ?zD>>A妀 ( (U)`B*o ( ( ( ( (pk( (P9J 2mҔIúƫW72_M.lg?0aBTRϦ/Y[|Æ a#DOu˖-Q_6b v^ Cz$^s5U\狧g6Om޺Xpa'zFe&|ӟ\uڴiQksc]>.sĊ79{yRQ~yU+ ( (P&īz] ( ( ( ( (GeNIpLH~2^hqJu֬Yў1cFT 6kaU7r⬀cǎИ;wn]vE?~Գ:+)S^tEQɏu%ǚd+*"P̆w,3[[n>Qy`Ѿ曣/ǟ5!vUVE%!AcοN"4o ( (U#`Bjn ( ( ( ( (ДM}g (@ \1IU>mr1w;^Sz8̎;F5ɮn8Ǵȥ>8un]tMu|k[>çJ 仐8tP|{˖-wިy9ûQo<TVWٳg [3lذdٓ?iwЕHm( ( (@0!ޮoW@P@P@P@P@hk7WPr^v^ŸsرشiS{'*o۶-_ZG9sf#FD#*|I8Vzh{G [cb u7P@P@P]oA* ( ( ( ( kW@v$SI&5f=kwJ7ooh_wuQռd |;rHlh\2#G:{y ;xnJ" yp=g$SvmEϳ>+J[o6o pO׿튏|#ѓWkϤIpTF64+G֭J$?aucfΝ;Ǒ;vo{ԵkF/Gݷo_qEei#%R9L5vU≣u×.]ݶm[Ծ}F.?>hTpۻwoT;+n Ƽ֭[ ={Frڴi~mGͧ&L6WzgF[} ( (CxORP@P@P@P@P4L&_W@.9J#ry-\0ڵ1cD}{3Bs8tk%RW^yeܿoݺukڨ}! K6ɬ>sJg 8dɒ8˿ۿE^L2%\sMTƈF7~Xٜƍc |sb 4(޽{T~+Zma=:6lذo_D3gN C6pnj WGe[P@P@hLxc2+ ( ( ( ( T 񪺝^ r*Cǎr˖-RUv=˹9j5pZ/bsW|9;߿?*l8ɓ'G? ߑ={ꢾ QyۀyE=y^=9{j„ fUhT|csV<2dH;w,Oו?E9P@P@PUL*;( ( ( ( ( Tk pA^ (yL~0RI1mV>|pOF}Ǣ}QMU֦wQ'?z]wE?uРAQ/첨$sIw!zȌoMk"nn'`/rHI&E]lYT4jfR2o$O$1裏F:ujT`y!3^쉯) ( (mPx)IP@P@P@P@P&KoP"dTsvZ%aMZ1/*_tgΝ]mɒ%1>c=.ڵkM1??px≨=?яF|.AAZnkܱcGTo|M<1Ch\>U|cǂkʕQ}٨'NڧOcǎJ*9exy.\STTz_ڵk㰞Ν;,s/>j#3~yi7o^uIO:3nS$92znx|ҍ*h8'z;9O ۷olٲ%*9~u`Vpy ( ( (FL0P@P@P@P@P@ZWxzt(9ĜKi_ tիcT/R={Dew]fhTpcM~18^hQ?ODeeVѣGg'LÇŋ7n-_җ1"/˨s5:F:mo{[Oh/[,*V^xa#V̌)#_;5|yQyJU/_PϏz]wE1iV'\[vZ 2_iXB|޽]7Dϥ^QmϞ=q?*\sݻP|LfO>=>b5Ols׮z?ͻ&s<W q4 ( ( (P)╒ ( ( ( ( (e0!^VnO!@2|x|7'D'.I'Em/ q /0;޳gh\BL) ( (e0!^6jO ( ( ( ( (PI (N DRz8 ׿%\o}k.]D6wwǎ:y]w]Roòedfhr$鯾:7|s\ڜ9snܸ1*evɮ8m[ΌWkʕg|r`~VG5g?'c;|p -oyKTVgRմ?7lpa;t=\Z˃Izֺw#߿T,^}FY` \+͹O|MP@P@( Q{"P@P@P@P@P@J V@Sȩܟ3$XIFԷsƌQ?jwm^zi|ɒ%Qopռ]r*O g'ϫJ= ( ( Px 1= ( ( ( ( (@0!v#S@ jnxήN}hCY׸EbT˨=<鵷I@#3jrO}'!Nݹsg\&+dtnLk])W=?qdw[ݻwb<y e p=Q6w9nLҋ/^xa@{xÆ;{-vk$) J b' ( ( (6LP@P@P@P@P@J,`BĠNZC\aC&'5g9 OP~^hO.n,[P@P@ڝ vw ( ( ( ( (@KLD(@Erj!a1JnS]v萡QgΜ+t* ??r%D%-~llsOyORϚFZ;97\O?mg/QIzlC=|E\i~d; <+#Fj70;9N*M84X5 *_aμ?y+%ą#f8wر#s 2yUlŘ~QP@P@*(`BZP@P@P@P@P|&gP9W*D}&a} Jr3#!R:j$dI~_o8c4bcEaÆE{ĉQsr~jƎz(++9VzH[hUG5?S59 䅩]5nڴ)n m`pO5|OwRt yhsg:~7!q BP@P@ڗ u ( ( ( ( (@ Lί)@yHj'hL*|֭1MuP\a,ǏyE]pa>}F8Lw 6$aN:cƌH=m͚5*Tf`9J~m_WU/X^zu\,;/ړ&Mž}b |~W^:߿4v;JZUه;{ݺu#FD]n]EE{nP&wkKGMm_B"ug͚dn qt~Ν;Ged={4 5+mbC#g-ǧWdH_/YSfMCT73aH@F%ϱ>k<%U XGrY:]&"y< 2$:.W>MP<;\޽{cV7THLV cQ1Aw_$WW ( (Wxw\P@P@P@P@PL*@9ÜΫ6yUVݴ~ ӧG;vl9sbܹsUVEeeֳ&J|۶m{ިk׮JZ<'lV |lܸ1zX]w=:j1ΞSN2%.yQY ddwۣ^~֘ET8:ЦL=O>qz K/g嗣8ufq`g|FqO2'uά3<=rKo~Q'L6TYfkg '?GdjRZP@P@Pm oQ) ( ( ( ( XxA= JyU>''!/aÆŐH2jl-;cc]A.l8 d|ެA;ؙ<maEK`t0<#܅|x|ԧOd|h_lYɡoݺ͞gnH !JNqOl|k~yb7dVm~g8jԨb~i]tyw7 ̓>]-]4βbŊ?ϣرc=qĨ]L`\Itv9GP@P@P@,`Bכ|ɉO2%v{'\2*>ڟmTh6|(V*o˫i%A۷oK` q\ jNӖr;|$I1;;&Hhg#G_?Lz46.hѢwy23/_~bmy+sȿ >Pt+ۅx"P@P@A5xӽdP@P@P@P@PL]hŤjOi9Hf.7l ɨbĈ8K/sҼq ͛7>/z8_Ї> ҳghs. .96lX4.2`3j,Zg**C!)Wg|kر#ZdռzeVpvR32FR|Y[n%޽{OѣunpF^OQ|vmSzvP@P@&t7P@P@P@P@P@FL7J (vbNW;&K5m5޾}{t̙Q:VJ$u%ٯ_I1It)3yFٟEguСQX?9uܹQY|ŊѾjk'yDMlyVAqdz8HoM}4dgv qf m۶Ő~EeMGv8c?cc ªԑ#GV<9!^Q\`c'|;P@P@P@ /!R@P@P@P@P@h&qd Ը@Ϋ]҅9Zlz&YL@6/ k2Ǐӱ"YtF.c3ѹ6%CE\~jN7oy[΋O:<U9~={vT(9 ( ( (@QxP@P@P@P@P@*0!^7KRHZ)msLe=edY/Q_s=7jءa#'я~4zꪨ|+C/nV9$I2OH=kNG~Og&*ݻwe43rӧGcƌQUk kɒ%qpV0g6lX/j>}GU>|p\ ޱCp˳{ث ( ( Wxy= ( ( ( ( (@LW*@KO©kL-gB|֭qϏX}+Lm۶Iaӓ}.~yٲeQY#eWR326r[v|udѸ'4YMmĨէڷ5^@g$xXg?YuÛ,g^>oUiz|P@P@PLGP@P@P@P@P@h&Mr (@N=Y"W^ȓ}ZMjgQ-OBuuuq o߾"d]u|[zsNwO՟ _SL~·g=b72.0?ϨQv)jko Ŭ= !\\{9gfq1f{:Z#gך5kbCP7l ڤy;tƳgϞ:zǢ3]v1cD1cFTFoMk׮F>9\jU) ( (@ELWݓ* ( ( ( ( [x= yCR͛68o߾h8çMHl_lYT:xhp QzO;v,:IOs~m% ^ztرN^f@/o}msclOfXpa|{q^|h gmzAZp"O}SŋG7 n?쳣{Qka5mR7U» yL|–?#T@P@P@J.`BPP@P@P@P@P- ow1)i ee={{i9_'7J:uV^OLnk$"m#3[\ǹO>)kocaմ6/tŻXON6{ֵ[4XGyN xxc=~1# cǎSOE%hѢh>m[17@X"Gm >nܸiɊfrE[/[Upy! ( ( (LP@P@P@P@P@J/`BQJ"@4BN3wa\jU˳/ gy&θzjuʕQQ6,ڤv(Ic޼yq|3'=ژ1c$O*|W֬Yuѓ/q82TngqQ!k8p`[3$Í7=7tS~Q4s9uҤIQɒGa8;v숞_WQE]dI>Yn߿Zxl8Xuǁ@;ϜlyWa[P@P@ڋ r ( ( ( ( (i ?->ybdb=b`$׭[m=Z5&UZWWp:2//UBΝd䆓F?E{QbyZkf4ݻw/]t+G=tc=ʷ$ӳ| kƑ7m'EB[n+29s24hP+=_ti|9};ݑ#GF{Qlx\ll};~gFs)̩?nyvoSP@P@( қzDP@P@P@P@P@6(`B .@0GTxjÇ;Rs=gejNhѢ32*olA㐖ַGXxqq`5*zwGw'H|{ soɓcQǍNz$!Νݻwo\#wug.9 ɳ(SU91(P@P@ڝ vw ( ( ( ( (@KLD(@+ $)rD'iĜTehf={aɓj<Ǐǟ ,JFOɌ;SN?EyСF։fnСCx1 E?-ziGH &@O2xAjgϞ'__E?m=z4w2X6OS^+1Ѫ_0,=Y|gTUY}V^ ( ( em86P@P@P@P@P@ /R@YƲy@* Drc&}ȑ8,lP޸qcOߺuk;w%i8&v'iNe.]1nj!CcH x%ʜ^ЮeL5S )#wO6әlsVY`;$̳}/~%'ę}jO} ޶)s$xmZP@P@)`BmG ( ( ( ( (Pb%p (P*(Mf' ĜL$!>vx گ룞s9j$~So1*} _B'NuԨQQq.]-zw/D%n?ᨬNNJl3<_ Ԥc<0o{1gy稱+L=3mg|0^V?>ET+Oڵk۷o},I^P\#v~Bu.\m~cq>zsyvq(7P@P@P &ˀ)P@P@P@P@P@*/`B( +;.,ӓSzZe-o8~Փ{JV%w|EE?+B},YmYgldé+Ve˖EݼisT'٭[a:+ڬLf,J\]IXܹ3zv=z,I_S+mN^>3 ׯ_dy''je5g#EV=z8P'ȑʚ%Mk!I錟3"+23 $Ǐ_j=JŜ8G{_G8T?"_Zd]aÆ1beџg]n3ӿ-19_wmf ly;cƌSm]]]%'zs٪;Ɩ-[_a-`w8wW6=̇*PiTfK)= ( ( (д }TP@P@P@P@PJLWɍ2&WrONΙCbkq2M”Sҋ-3$K꜄8ISdFjUG ]O+j ҾųEݵkW$GFe|2Qʟ3ɓſK.q j1cTXV8*>eX0ȉߺuk\{2I@滜[YҞ9m~0I?s|GNglO9/sg9@* ( (0!|+T@P@P@P@P@h&s TB2Js0gTٟt*m>бC|;h/_PRi&#\MIޜ7gVO~ҰԩSM68s?26*{N.<;TL2JT2d6Ok:4B~aCWlˣO4^uc={'d{V.HDս{ȟy晨O>dTrH??IN0!z O֩?gΜ8O?Zm#*w; qoO bU@P@P@"`B)ǩ ( ( ( ( (pZ&O/+@k taN\!=smٳ'*iJV&#|:F4%i0 K~…&j#F8F{ʕ]z8J!N̝;vְa9޽{GLoyv=4~ 8ғ3$O}/>uaȐ!Yf_G۷G1cFT!#)^zPe~Z*iӦ< R-Z(zȀ]n]ʞܜCb<5y^r7 8w'EP@P@ O ( ( ( ( (Pq, (pZ9cHbnNe5^$I,D8qbcQ]EL+@sr<4hЩH㎨6+sżjpJǿ/G6 ֫*zFhpcnIr߹G" 36w r*vNv{,s-\OMM>8=z4vˆd9Sw_7F={vԦ7`O~3.#Oy:v<@TPy!U;}}s8BtQ7_MKǏ=XT~>X;75?S@P@P@ZGxzTP@P@P@P@P@6&`BW Usj5 @iVV+&kٯ_8e7xcj攌'&#IWcY}/W:sOCm۶-:ٟIرc/ɓ,yez(f͚cƌyy27-J.ʴb7s:+Bx~3W^QYy1ʕc2BfСCc<{iW\qcX^މɵ'i/͛Q]7-?/)rq>0N*w-?'Gn ( ( (&[Cc* ( ( ( ( 9m8 @ Pz<~xtbN[$Ht)ET9sgQ_ɚ0fr-6ϊqU,[,ի~[ߊ:~F[{ 'ڵQɘIk=F 7ξ}☬XZHv9>fy.6WX-+~|g6 bֿ3[W,*"t- pkN̲<.tvԉ-|gEFNf +wzuE%!ίbNZ|vÌ{) ( (e0!^6jO ( ( ( ( (PI (Є@Nt!_!Hj6״ 3;_8p`TRmuyǣN2%*+G3gElFB:/:v?]zWԯQl矏zG%]vEۣ >}zE4hPTĢQYSO1ݻӬdM&;U̺b&:k /]A{GO"m<#{ׅ^ 6D;T<ٳlj?Z,PWWݱcGԻ;*K/4Gʬ`<7lac ( ( (Pq, ( ( ( ( (0!^P9,aN)=ļ?+3NݩSdZY#\$)yhISRYi6|f}PNwQIc YQnjgΜm2 ;JmӦMqdKcenZQ O׹]˩ȡ5rO6'"? \ܹ3\tiGeV)yJtX۝͛Pf +6V`nP* ( (#`Bt ( ( ( ( (@0!nnU6r"Id!JT)aȥcǢ+ . zXfYO>>|xV+挱ClozӛsJ K_fF'kO%Oڔ_)w8ƍ25#_q3tШ;w>f0*}d]E9ߚq*򓕟5.-? 2+@yx#F4XqGoDO~r_̽mѣGW>Elym =jIa@fB~jr4/į+ ( (-0!b: ( ( ( ( (ОLXq]M%g*?sk׮u_m=/rT˦r\9i!CGpƼgus6o}Ή`=z8&I|88t-zȷǝ3!߻]jUQI6 [/<g$?Gpq񩩅7NP@P@h&MqH ( ( ( ( (0!^zSe + DRT2IFLL1e˖G95ɷر#OG%=npf5̊<7rONF9ەʞ(DüOF=yHSyؿq۷o:o޼#FJ|ĉ&[{G-[Dep$ǎ=3owʝʿ=` ( ( (@0!v#Q@P@P@P@P@hEאj3xhPD^QY!,$ Scǎ9?tPYL1OɀSYC1=\|9'UJ`۶mq??f͚dQ:h7.j^GѓJ ݻwOƒ.iYzH?휃WS'g'6OVn$3ŧ}+ϱwh\2޽1cD{[ђ,ɖ%ϳc;NNؙJ&B|+/[hSh)B(R) $@&;c;yY-K:{%KQM[<[=㺂aת-O~_… Mu'XM֬Yc{|衇LECo.z/-)a# XC\=yOً @ 0 W5@ @ @y'C## 7bs*Ǣc5&Ps RyiGh"PUVYܧ\U핋o&SӦM32e>S=r@kڀA(۷ou;WUwiezӺ:\IOi|.k62bxh @ B @ @ @8?!k*Bmiig*qԦ^Ūҫk|˹g;vݦǏ7U=O>TM h$Z/}ɎÇ[|EVUyv{-//L*#\!+zu芕XN~ .>}ӧĉJHcǺOϬL?\>5rٲe߿eOY,:e4y^^^&+W644^tƍG5=䠗7\UuWk/OK艈oetk1P^ψt(b-@ @`P!>. @ @ E,B@ Cycceg4z,y\27Y>VyUx̘167,Cb+oj"wO^{Xn_z`miՕW?rn19ĕ #g=S_ORFW-fEirEwf|#qKvΥ۪9gY5hV8N+M9k1Z<֭iꩧ,޼y>2{l\S)ڋVQZs|.DI1cq QwioLdA @p‹’ @ @ @gʌ2z0Ĕ7Sի82c q/[[[mR9RUXS|-.fs̙6ό3LTUnü2#㦺sεXuu吕6r˪&|劍.ZQ+ko艶%Ѻ>]Y4ӧc=fg|LU \w-95^ĺmΝ6R Z1klILuObqզfi~}gPp(w]vx}Xj򰋒> Qg8q}?qj:uo7yhQzFbc5ƖgMc @'*@ @ @8!~2 0ޕKTD>c_9qdJ۸Uzܝ7]vSN8:O0i b"7*F@o=zgSŹzKu]b&^M啉njbA1hG"{@BOT͠(Ƿ7n oZwE|5ΥٴKYu9߱c^ݍrvӓ{RxFkN3[ך5gSϨ}iRezSU9+8^Yc( @ 0Z׋B @ @!~8 l^>]M1GȴwUK]K,UqXNUUtӦM6u]&c^{M\9d?+~_4Ug9,Yb9aU9zP9suy:ttkxݣC{Uzz&s(+z_|^ٳTq!*G嶖ZOTm9gsʇ_b52uF9j퐮KP]Ju_P|YyxUWFG;_ϑm4RkӜc+O@ @`!>/˃ @ @ sC ?]L,.9MNOePD4j,fwUjTW 4qy*Uy|֬Y{E._T &X<ϫ/m^0UdVIqs\)TV_UWU^V>~q_|ҡ®VO\sTLk9r6ӟŗ\r L̙c.v'>zXk:Jڋ;[5K7*fP{GFnˇ4R(s9㳣QM3j6iQ@ @CrX' @ @ j>?͔SRNr;jʤU呔KTEEv:ܗS.K K.]vY|UWʅ*_߶m-L5{1_9WUdy>ܵ]TKu4R4fϮ ޓCu-nUH^螹+mɓ'y Ƴhm'-4RyAt^e4FwfvgSSF΢@1=޽iw2?OZFDV5R{A!@  ]8ćc @ @ PC5b( 0TDgSXGXX8#UqX2#O&űWcljUꍫҘ\(] @CzZ@ @ @8C?Cp fݝTƕ |q<ꍞMrj^U\M+ќщ,ƫWs5Dg-.'ݩ5K5T+Qgk/VupӦM6ƍM WgulEEʻ]YYiEGUǏoc䔏J[Wr~Ŷ9! #ֵPFm];w5~?ź7t/ifֽc^#51]3(V^cOkYk5ޓ{~j[-q)8Ι~RԫRe ]cC @Zpj!@ @ @ ?Cp 8:C嗌>P+"5Fy1яgR>VyQѱM|rRԻo>;;v6UؚYj];ִTr5Rm{iMX].u?pK]c,y4P[Uµ;yTkDXcMfj{b]4glzrtk=DϬ2iS!qꮋߺuuYtɦo~MZYͯ'Bg\G)g4FCOBhLL!n i_ZaoՑfldFƻW٢C\xǻ=3HY(#ʤϨhL\y  @"C|], @ @ @gNMC4@9L@Git))z8^yIc4RGi8\rꍮUѹH[GrmQy4uzvOnOHhd|jt'kNu~zu(U'x;L[SF{,]JWK5x7f<5TcbF3}C @ 8s: @ @ @x8_@.1HJMU&#^ѴRJT,߫ܦSݙ l1m'LQpG#5g\X.ZKy=" M;C`dD@c" cLqv]w-O_xwi}v9sʽt8V%վ:Nm*!yf;իMz/_nZWWgEw4޷GHӔ5O|ұ2IǶV]G4Ot*ʏ?ޖWVVf*'xKKŻw69sV"՜!SSvA.ݿ}ڵ%%%cƌ17niMMFˮ^*n38>w-+W\(xx?+Ng4O|42qxyvm @@N!MA @ @pJ0! G|kB!O(Rwֱˋ**XUH5RZثXMH_yiQ:^e/Fj=ѵiHuy睶9oX|饗E'^jOWC#G+W4wӏ72sSUG)=;ѳi'X3ČΫ9NmE1U&V>yߘq|" 1ώ@ @`!>ԯ  @ @ ~!/L r@oFD\iFJSܔױsXثe[w'%>qZ|^#co\s\[]118׮GUy1ӫ%@ @`!>|5; @ @ 0 ֗C@;hX~8gybͯ8]X#5si|t*Ǖ(֘t>T*/MY;5k4zc8qƌ7ׯ7U=[o⒒SաZ܋3<]vIouV+t妕kLetOEĻNOƧ8s|4^'>5qLMqTͣcǨWR(3 B @@$C<  @ @ %Cj(uAE@ƍmU޽bU k-...cͺ'uƧRqTjOP|v4&>)q-2#42ޓU>TGXc}g @ C{ @ @lʍGVn]@@o 34zHqt*N΢cmmm8R82|txgMӨ'TԴ\Yx5Qw/~^kγᄏkX*"`UG1M*Ӆ ƫf/OtK5 fq11O|GiG}'Hco'+(NyN M@?Ut&C`&C|0_@ @ @!.Tx1 0=A("};4+f:Oή3SqZjWX*k9:^cok|ckkkm6U5}Y| SC{i-SHv:#Yt⸆t3qӽ:{ zb>qC @3韧1 BPR @ @Ίs믲o1ZiB[>=@`8HOPF*o4yjL*Vo5Ryy?3^iv4&?Nj* 8s|7 ~C2[_Xc]p?3u޽18C'>:JQ&>;, @YǧL|G8F @s-X  @ @ GC!]T"3QǤJFb@`8HOHߝҽ)I9c,ǨG1㵋j3k=(qθ*Zf;Ro&=z%KL[ZZL~˗VWW.,nnZ7n4}gMjӺq^=\wFƟxݽ1U^(nkkuWk|Ψ7}Lyb@&"kd;UJyb.< @ @ %0d"VtoK{#׾{Hb@iU8&ƚ3Q&=[ő??gۍk1]0+8}T(NM#5gܗ26lѢE}qƙ.\Дv?~N`*SO=e{^zS]k9xthd3Gg(->k^2 6DfV&~2R?q3['GA C|PeN@ @ @tki.Be8pO~t׮]]mG욊k"njwtvti{廦#̽ #򻆍?_X{1uפ{9kG566ٳt̙SL1](ij ؾ}{.^blgكm_9#!@G?{{ze??25jitk"qdG buB @ @I`OFg?m[l17;g "Emm͛Mׯ_8q)++{Ց +ْ9Mɓ'T?9by @/ҿX_Js!Y @ ' ʦ @ @ @TfS{j*_Veț7h׿> p! \?m)_WLA+.R^c.\5ώXMMM}G1O~5X3o?~'4?lݴ@&E7tB3; >3zL|D%!}x@ ρ @ @ @ :F>űziiiXWW;f 9UQO˛555s9'MnxAAC #UZZZĉ*핕=z)   uzDM5i]P; pud @ @ *C<4MUyU3}&W`h}QӣGN6tɒ%6n   Qz_wxDC|^z  i8ćc @ @ _!˪4V#WP;qOv@C@iim ox̙3MgmY[n1UUU:*v<<)nw6 rO:sZ} >kԨQ1cرcM?e/!@&ϲw7xHoCp!@ @ @C\G믬Em4M322[^j?lz꧆4ys֮]ky9R|`^m۶ڵ˴4]Ғ]yznqW\qiII)5    a{!ѻM{*l !Jp, @ @^ Eb;ixo8'1 *9njkkmW_}iyyi}}׾5Ç?KtAK?fDf޽ٳTp=zu͞=TEY'NhryZݻtʕ7Um9[5 2r.t_U Yr2m'lfSԱsεLMM_n*-3fj 6כ\z7xmf*va/i8K/ /`?k5k,n9;Nvʯ--Uf"ޅESw>vŸc^y"{΂ɜs,L}fɒ%g/i 0LgJ{}i06! 8ćeb @ @ p.C\) 3ȿv8r*767{lӥK<;rL!."ѯ-ojoڴu\U Vmbr*k5fQntUIC\q\Ot!rرæVcT;JV.r1A kkk-|rSyc:ױ{cQM@}ҽU۷oc]9xԴM9 }"DkSfh 3 i߿ș-@9@x\D@ @ @N;;eU69rI  4-[f]뮻b/bԱ-ꗿeK޽tŊ˯- ,W W\aqfK&G_43"d [~~ExImWK24@C@t]`AMi3I}o  @ @ @ R*5H5ub p>l3%7\Tnͫ7 ^zrn[?N6RTgGUw]ZyxӟZ~T/^l~oۿۦͦM?hu]g*zvcƌ1 76sN6{\7?+L tHK==r_K kkMrw{dGF+-ۧWOT.wivw?>ի^4}zW]?Ӣ"{.]j`S  NVNV@H @ @r rsZ1@'}㏛8vgQG*NPţL~2>IXjM3/iZ4]^sWT֭[-Ocʀ  BN#Twi2d  n~`Y @ @ @sǿƿ)!@`ww;L׬Yc;08qiaaR"ZOkuѢEanX0ɿ/۳֭3)Sq砤b  fZ 5{^X #C<); @ @ `Ӭ @58y!c=f>h*T?l:ydӺ:S559['Lzwy 7`*,3o<. Qz6ollz+VyO~Չ|tʊI-n{tuY8CҘV cpG"9yؑc4+Աq L^s}ekOk7}gM?ϙg|tرo  @'0@ @ @p! sh|i&{+01MMU^'m={>Y%?tUUUzlm'0l;w4] )3fΙGW6-L'!2FkwJq-;Ԍ^w&3tvғgjvtϚ_w}_L%Ŧ#4kfn˨u3Iy.W&,J#Nu~'nW_WA}U8   @ׄ @ @ 0T WuCTxjwM6kMoieW79! w}yaӟ'u]o[@AVu?5u-VӅ/2]?{1jtًqp[6ۢ+\NlO__ino5lX;w>{vgk6"=%JLnjܗ/n0;ִ{;GHSoijgӦ۷l7 =[ok#3F ]mzM~[7n6鼋^ٟQ,A @}!7z!@ @ @ Gϑ 6  ljj2]v/l*I,袋Lkk*DfYfue 4w;vWZe먮*?ׯ_oeӶeWuy~&כV'0հu@g&])suzL'N6}oRXo0+_CM>0m]>C~^R~jw&{ _#غ]CpۉmθG;u_=7yp|ٯzΟc+W46mMy   @}! @ @ @ wϝkN <[7ol&xҥK,16tT]}2~GGMt .4 6%m7m4tּ٦t鈂_cL;szNGd>3y 'z }wt;NN5tZ⏮q?僦ʏWôt%^u~/wW˦ra׎w/VU?*kND,=,?{{I^|Wl6g/|0};i7t"^\# h @)p @ @ pueWr*n?lڲeeL뽖_o*1pCqAx-ŋʣ*sTU{W5R^WK. Cٟ=Կx=y׭꺫S5U\l_@G޶mO=iGν؟,*Ns9~IDt-s1{Aɋ-޿]__M7d:߲֌Lg̙ixe#W7ٳٽ;0m*O#MͦI)~o]kh4/svZz ˔YSLǍk:$;-ml ٳt"3>Γz{䕊9kr\=?ǏJh͙f^]=_zTߺh @pC @ @.p+>! !G~31mii1]tFә3]wkĴHH&RmdCC/UVLMfJ;T=D{1>o鲛^}զ#Gz}Ŝ~ :kvorbd2kRպ3)~ްecO~w]v"S'՛f^;ۺדS'%hPE|1]?z?y_qUϽ=y\f,>^$veBó!)߲aM?O;MoVS @ B @ @ 3p̥d#r@SSmC>b՛0aefj ־.FL;>ytFϪ'f7l`z񵵵ksN@p=_{gEzs(ϷFFL2 %׋̫0O⌖A?79 QUz=fӬ<{fKfNryGWwd#/RUSmZ34WrglY';Wk<&g9yǏHɦ pLUObUW}v{I @0$C|^t @ @ @`8!>:{ 0 ~ /`k۵kʕ+Moӻ۴+ӆ.R[;Nӯ~M}YV+ҴнsK`Ν6/gĝ;ش2bP}^%-qIwxlNįݞvٯyo7/y7[4Tu>2G&z2k J$Cf7n^0˴3!nKlڗ28̜1sJ_ny ?޴pw<  @Óy5 @ @ aGl$l {LЇL-[f7 LռmGԧLx _pٳMUOJdž✴w7?;ͯכVy w%>莼vGKG+M7mryk-sݴkʷwd#>a[_nz}%];}lGnYkb@3&"tEE^emVӿo>7]ti=G @@n![ד@ @ @@/p4  vw!qƮXukjjj!g@ ;'c=j;⢢"S8~Mrו^~鯽Fz 0?ItFóȉ}tgIO;e`V>9x aݦGB+L͵^]Se] 9u]a Jf֑ZN^~fA6L.wU'nB1(y Ae:8{DQ=&ydi2eΛF$5ЋM52[o6Ux=e'NU7@ 0 -C @ @pǫΞ! *6l<3^xܸqW]uiEE)-L46U__o:sLuܹΘ1n0 ;7]zӺ|yc݅W^v}JOYɔ9VsEIHoL>oZYswiGrP["o8i0g\[]Ag{_~f~pg_iYIeTIbw:%J2k yDGowGH}eR#Z\t ߺiI~[MofbS @L @ @ <9  Nė_~tʔ)cƌ1[{A33qnCsw@ϖ #OpWon:sp^gU-sݑ^U/)|Λ^Ox (pxwRzx؜f_{6hWQYi˹qDs3O3ݳoiAWH'0p  @"C|X]n6 @ @ @`!>|=; 0HO}Tu 4x^ggQO-Vwp>šCžLG]N;Old'~CY&g<??q76b;GNkye-,3I6͛M/_bzLK*JL;yl/̜Zy6$}aV;mo{iyy)  @Çs) @ @ aMl"f޶mj>u;.8!0~x;%x7;ִ C@$|m߱L|ĕcF[\?-\'3L p3rFgkDŽĹܞ ;aD^sWZ0tʼi#Fx(1B[&p.&fTQ;]W^b:w|QC9<<6?ASgґLgDRGFSUFaSV:ʟƣGMlbڞ'Nh1  @Áp# @ @ & @κfS8 X.]S#y$^^{7~kakE#e|t};-^q ?8Nݢltt?YcL:v퀎^Xt%sWw8{f$S^C/7-7_߸,Q>ÈI̚ e{lZzoi;^O%~M7ݴشS~v[j.dL"矤zCWU)czL;9q@ @&Nam @ @ @Ív/ AAȑ#|t(o{ 7v6qYtTU]a*ڳϜ?zѵ^@F? Ji2\OaHrpv%!3#}T=יq3.nZZxIӣG,_i @p!@ @ @ p!?~N+.Ztڴi#G.uj{wo=o5u u /KC}ǷB3Ya㺚fN*Iꍍ}?}tt'qʽ-dDW>B FT<ʟzF׸ɋR?nJi%y93MY3/Gf|CR':2LRkeVXԑ?!X~阪1] @p!@ @ @8  ,6w}c^[n1[MUEڂm"_e¢ęaBqTOhց#ҽkQ+|Z0=idtUMM7),t?/7^رc^|Ѵd~-qR9#hm!x_uq~\g͞@IDATgǚyݦ?޻;ԇ>7?y;s(gqxZ7^a:a{ɯZd%e?7_O{fں 3f;$u̩{'bySLˊJM|3:bkI @r񜼬l  @ @N%pJ:-!@'r[TTdCKJǞ[Go&w= חNtݞۿKH}v}5JזFWZB@wCZ[ޱ8Az|%ս ͞*eH⧙0eO{Pa="=Wqg_֓YFW*3)ޑq]{ 'rzIDILoIbchβe8$_z; adrottzGu9g9%r @30C @ @ C|p\V@`8ykzm۶Θ1ôT>q Mp|ϸ7\]_w׾ۤe_QW\Ӧ.Q];M wUwҥK-J=EB`uײѣL5Tf_t E+n?{ٓLG/$Ӱ{]cXggH:b^#37t8Kg 4gg  /e^L_NǐbRq~̙Omڰ]c&3A1M8{mSZgRuz~b.(rYzEXU`<ٿ1=s!CP @rl  @ @ fA@@g=pikkر]---5Цbw$_or7Gͻ͵uG?<#zo>Vټ9oq}G]^[[kTZh2NzuUUR^n6uw;w_W׹}vӶVo^2v̝ݝmWp7_zl0/cZVqga}3,t='جEbU6 AQwww;U={T|ZZZLi @m8s;@ @ @!έ@D@>߭[LJJwh'w6ltcqkLUv}62KjfZ>kijOM?) iOnq_9 =?rM>z{U|͹k.{m5|pWrQtAwt [H>aIk/+iڙ-84~~MΟjz떘,cg.2½mI}|/[m1׏}Tmt_?ΧLswf$P3k ۓԘ56p_1=r @rܾ @ @2ps+@pjˁ[UUeyh:K:}+t}Go?dZVWtkXwȈFSEe;v͠Z ]^Iy\>PQQaPi-^Xs鄊ţM3 /^lٯ|G8*Xsjd8>6`Erp֙hiR͐GL[tԴyx~{[}dQΗv&y N޺n9#Nٳ~$B/'n8dڰͮjGG}brf$dDqc]\((g_N@ &-;@ @ @[ah ! o];lӦM3[܂k2R7\tw}G.ou?k֟~}?<NjXzq,W /xMm۶{ヲy}syLjSݱ p}}/K-57/pWlGu&5>2TW#8qΜ3ϫcn>_(.Q7tZӼB~>ywFEd/l@so|L +eX7|I$Yguw5ɶ6l5^GsE2NiMY}&i @mzמ{dw @ @  0Pm:~Zj4{ !&_Kv?w+ZySG5wWN^豿%~u4ו_rmY}ޛjQw'q\ׁw A%%ђlȑlKV{XN{:$ѪIWYVRX?ٱ,<2'eccz.z.[v工Ѷ>%-ZG\WiC ]~ !`@@ ˩!    YBXRl\k-'wI8;/pI[ۏc[L\?UY;;Ƕ_]K/$*[ q ~1E./r "Jٳ|'te6q%uC%.G_OisS#Z_Ubi~싟n-dn?$FzíUjF>~'^;!om@B K^xԧ02!:;m?!o?O]lֺXZQ&\ky꘸+es;sޘYfek1 wHX!ɬCȄY@@2/M@@@@@2O ̻fh?r-7N,jZ%qDH/C㏟|N3HloohY{zeppPƜ?^ߪ+>`ddD`y v5Mֵq+_̿6qt^ބ>6ǖ=/F%6K^Ȯݘ&k>ӌi^`zMDiں| Z[/s]va FȥLGtM$,  d}}9;@@@@@@ q  $C,ӱ0}".mw뙿U1q}i jv3\I!n葉. /Ŀj]/˲"җ$1-]iɼ7H,(҄WCܥ8|Q/տ lgI'%ا''4[|jrJ-2>hsVfhnAusu^7v K%-(ؚPUͱX!c E<  @ !y׌#    \Sf.`l @ikٸn4h~Nؔ^ҪiNUՍS1O~1^׸9T\D,w1pwekZ̍Zn'qhhHÇ%{ \e ommU3_+8\fg b9]gXqtλGyUҝM?>as3yȅ[k~AfecnxUH֌ёQተDWq~&DXV].15$]otLkwZ;EimuXm},IAh#  EdgT@@@@@ C|n ,ek^GF4{Tk^.n:Lb-T{͛>iZ_L_}w5Z,+!slRMMMx$x K̙3{zz$>-+vZyߐ۷o|@bYY_>$]?05:)1Hhv ngAMmۅ{;6f>Vn=mI㓟?hU[z?/^_s] 2X'5ro-wE|e#6n(q˖-%vttH<~D?x𠴭ڸ4dI޳gVw ]rիS mA2KiwѬd].+uDwO#ZAt.,*hY-r ;mq3mW'650!z^*p]V;{N',7>֞b99;5֖Ұ=I_O8-Je[]9YX j[5V#=/؊۶Zc(r\ԡ%m;suRmA; 98_lsF&5Hk˕[i{벹hAFr#a=LxRWm;+ث%ӟ<$1T#:y6|3vJCɇ$n\3}]&79љORx\v!@@ 99@@@@@74@XJ$plǴKyr<͎$g!49niJ_QѸ1KѰC__197\{%:)eccZѣαw§cy;v@kk__Ȉ_xn׾&뮻N囧u{evtY)U5R ok8K3FȽ\.=@fCgfO~츮u/da끽!n]6r|@?}Пjvw{W輂b׾K\ӴFbQ S4>W |_1#C^s{y7T*vcO-#3%֮uȍ;,e=K[k꼏"6l(L"   -@xv__@@@@@  C 2 X-f@<_4#j߉= y=ԣk{4w_Oh>q5cI9#u8ιV>`FqmZَ}viZBfUU.rU-ݪOY X_Kw;a H8Lk'bw'ͤd\ ,,n JKJzܒ<KwW6،/  d@y     @ x99o XV(?6k׮]^o îN_:qWݿ=K!~guϝkji}GW{9k[M7${<Ҷ F_FYհAz74l8ءu47U jt[B,f]|Wlf@CϴI;'K;EgXVO<.]V,y3lOxR举Fz*]vUTbA@@ !    dV@X&lnnuuidAVxݰaĠVdo>g>Ǫnĭ>س,- Ck@9sFC֬Y#m{{cY. ybWUJ{j\3ϝ;z~2Fc^\.sr%P z,fmOG3uPЯR5/C7%Z>~{_ض׎K?T.ILa>95)Ȕ*jtD{BzO)qӮVMMa;TQwg!]뉶_NK7p->*Vr򸾟\ qہkԼYuv#o3ЭW~͛}XVxKKgcA@@ U      `dN@XV@,++ZNÅ|),`̓m/#XbN9}n`z\^9."X춪ЃaXɨ \fAK5 j9׶B(z}~cˮZSVK,+1~ŭ{$NM; j1튏hP,\+tUJV3\uF=nyV$RKS!q竛F -OScRVJM4Zq8b᭐[+u%,  9"@x\hN@@@@u2s#+"PUUCCCq_~D[+ rk=a/5qռ৞ 潽b$Xgݮ-C뮓3;q]KO\wMbzMDs]_$nBW{-Ҿ[$tߍF3)?*q_wI|7$tjmSG˭tRP>m\)k5ǹZ />Kic{}G]o5|䔭uuҾ⦫$^[+1pufh|Dg}/_:$]^uv^?W  dY~9=@@@@@ Cw TThm߽{Jܿ7P&, h}GQ~س9rDis4evK,*)~"qUHҔP~,+",8žzk-X~GfIM{P\sҭ7趭;5jp'J]Vkk5úDW[^˒49@?cm$G=4 {tXR讈uqV? rcljd7Oiq:ӚV/]m&@@[(wΙ3E@@@@A2ss TVV$#r8 a)\]4{eIj6nk[w~Ğey=5u:5׭:W^*D , {K/MԁvivHt\ne8~r,/Tc'UONu..U]JģK(ъޱcE$} ֲדoK>zld|o9ЫΧ8ѣb;mTe#b`pPW^N\|ĒrΖb-W:gm|q%C #6C[8O>[Yna6~SiNA/>$֌l[ 5}>@fb;Jt;۷<}XsՏWuI 3"v[yɂ  @!#D@@@@r] \p X,NO8h$Krܚ'œr_wuu!v-~1WV9͍;#)ˊґ/mͳ]>|i h>~d"vSTiVxIiĸ`j?CKqu{uZu)   &@x]q@@@@Q2ss @ٳG&S^^.Ri?(qժU\Z~tӸKb%NMMɡz)OZbkkDXװNv?I|JIbq(X\2]:S3o/lK~m&1:k\\I; z/|Q.hΑ   9%@xN]nN@@@@]2ss @Xƍe>ׯ866&q߾}w%Jbj7sĞ%~ޮYGhU۵nhhX6m6z?Quw)0B͛NέV[|yֱMb-*+m?UN[qIrm N/ݍOq!/r˥[%6ozqiz'm;gkkL57_)q{X捛$nܸAk:+@@rM \/     ɩ@9 i#@YYY&-vuuIghUnY'q?#s%~} 9CV=ٮ~Sf,seP__/ٮo{+VWHܶ{DK:V]:ekVq;<趱1m}OO[[Ecc~fߛ+z.vv=ʖrdwtv:856)1<9%_ˋe˖k~4C%K.h ˢ \}^gͪUã*kJoI.y:eF0Y51:XB."YlFuݞ}ڮ~®/؏wqe12" q?#m|`[RJF5.W,zߖn{v=^bw^0`۩7;_+nߑ<]mifRX'*B؄twu8;cžkI_q~ 9Yfl_%^zKJJ$rGb;_zֻJ/NKX&s?7l yfvD.~ Ї>$tćAb흵KJ5rCAlh/su,VNZ7"ϊ핮k70oڍvc#β?:ȡ/labGy ې`nwM8:`h?rLbEfo٩yE#tMf8Ч|GjhKqJX(V?܎h#/Fr冏 j'~#kF*W;^,  9@@@@@\ C__,CܲVvmKu`;U~;!5+| $i;".׷H+ejKMfyܖωN^koV+W>-m`Ku˸>o2:zz;xׯSb;NJ[ g?:ѬtI\;xm_afэV[rxp9uDW$ĸ~*oqjbJZLGA}W{fē.OrW7jM$6XZ{C.ť_ЀfAE*˴_I\Nk  3dP@@@@@f2ijrn @XxK2~$Z={LڻwxWH\hޥtd/zhNh^Z=ƎiӸ GyDvk׮7,RYYVVKr-2>W/Bo g$6hEQQ ۾I2rfk_xmú|ZtƵuOjxA~A{.kU /.ќǿ}cZǿPWw'[UJq{i#49Yg^>/pZooxM7I{-9   02(@@@@@  C55z45kH$7\j뮻^'>g_~eoIܰyĻ+ʞW??/.w;k:-E?XJG6~Opt&G]?ƶ>AH~1mIVTmw]yw^|EO$Y]ƨ_Z%yS V%J{^D2Cؤ̋.{$\[Bf|Mn   0ⳲЉ     mK2mR ZuxeANMMIɓ'%:uJ7°Kiٳg%=zTv_n-7ܢdIC UIV v?ۣ״Gb9+4Zəϲ*˪wGuUkU ;RYE5֯Ud^Qє,|vGezuwUț}oР9v.,  #ypX     =!=Y rP)К~344$љ8rd,n~W"  @. ^{59ُ$ꇟ}QVN,K!py3G3m;G>i-/022"<}yw$ӡ=oH^]J+epA5IOq?M-3;䯑iV{eKͼOOYˑw O~H3N3IVOS#_{D%VUh\#3L  `ߟpSS/ǭh?we=>WTVV&c"E [we|2y     5s2s @ X͛@e[ YnwjJ*@IDAT^O~Vr.r%ڵK"႐qY%O|2 OH{W?xHzk֮hH\,AzAŴmr;uGWWo?ioCyHX?/ln%3 OE\m%lkXWRͷ,ucR,   p1     @F ̟񒑧Ĥ@rA644>yVK_J mU\,7ȑ#o|$Zp" `ð!S_B?[bR]f g/MگM[l+A~Ⲵ<YUr7^BdR3Ϝ cOKЇ>$>u{# @@HI      dgc  ~zK%HݻwK;hUť###2xK~$^{kjj$d}cץG819.;4y%$nڴI}#-3ly3+FbΣs7lKq?.c}jrR6?~.|y/>ĽW^%$^s5׬|r@@  C@@@@@ Ϥ\@}Ohĭ޽{JbQQ| Eihi:11!~V7ܲ?.=w!ѯ./YLSty1npv֮Xߠ*‚9~e^#^ڹ&jYᑰOixľ>.O|ϾsNimmhߤ  ,@ӱ!     @& ̑I\@HzVI|֭hU_xiWWWK{$n޼Y7(1z,[,+瞓S?uGyDe[[riHd&9͵._$~YwUů^+˯kj$I/p!=ҳ]ҵ['wI6[5no^^B.E$ ;f(?Y0O360Ϛs0^?|Ϟ=+ WZ%mblVKRs9^N?VRqʫ$!cm%'V3ϝ='Ѿcw-=s`A@@e C|9     !2@ ,zǎ2+ ~mI%=zTٳg%Z.wi[[qwUUZ*[Z+Xep[!J<>>.rm5:$ϜU~ 6M6IM7$fb&f'7\XQ*ۧ1¸묺ӧXm$i7^uUϏK{M3KKJ%6hҪJi(.L+鏸evKKu[Ki&)7F\1~[;9Q``P祝QDN=:UϾc~ 5.ae   +A@@@@@[ x i+`׭['\NӼщ !٩m=myV[ܯ0n9Vlc9CY$ZfE-+[xW}Mlcb-[pq=* K)`r(˘e'uvϹE%EK53ZYۖܭeZmHGVT3 ]xfbw[]<> !>LJ"}V62ǵ͚^Jhㆍ3"V7/tbA@@ C|/@@@@@X2ėCc d=}%YXNhar-*ҶҶzߖcnܓyj[vXfk4U+ [d,o?uuu2=yD˷ݽ{m+˜ \?ZsƂXE*nwзhw_v۷OfkQi;ίoXi;27*Z "7?avhc%,,  i~     !8@ ,ԢUCjmNaj-Sղ-ղqi|;mGk[,=Xr[kYɂ@ R.CCVgU4O2..-%/-*nTTKlllm沊@@\ 4@L@@@@@`q_G jy^z 70^H{aO?į|+!cz˶n:s{i@@@R C    )q1@@@@@ Sx Wy#    $     <+Ǽ@@@@@RxJ\ F@@@@Tgc     ) @<%.#    d31o@@@@@x @@@@@2Uz7     @J<O     *Lr@@@@@ %`@@@@@Lx^9     Sb0     @ @ׂ     ,@fg-n͛Ӫ,    $ U?k 䂀ܓ1Dxz^f     i!뱬 7|Zs";@@@@ &Y;9?kJ{?y-=d\6Ң=5 oU9Ü     .v9o oE@@@@ Es9Lf?k1ar6!0WAGZ_[PP0?raK %e     %ɿa+7|ԥ-A@@@XgD?S_ks1# +(}[wr6Xnm:2WJ"    ,es3.jjJ6 PO?-{^@ XVVAg $ TUUI__KM@ pOIGߜ9vS76>[rse|766%K\rvrB{cxC     +!lo'֎JU@Mȑ#(,LAg!DHGdN_gb2ZRdm?_k|q-S5<i+``[[pӦM'''%w_U\VB sh@@@@@X4o~~V~`T~4/GB@`n~3ٟ:lhhX}@[/9d=)SL~Rdkّɲ¿Ȇ{j!NO|B&a{'n/g8+^     &󟧟'n#Ǐoȧߓ )`߇?Zz^)f BF2HUV~ 3ڵke~NU,\23oX\q/l$V     &Vɢ6m^rt@@@@ 0S#)3YNLL~%m-+ڋ<9vG0t#    deoX;~~߶el@@@@HtȞ YkXz?a9බxf"cyvG/u%q2gi     d dۓ~CMIH ͗sC@@@rOdg?5YVzrό3F ]-bAAL1? t@@@@@ V Cܼ~799)_&}Rkg>G@@@HYL=Lp?+m|ny `whVCbk[xa>ژE     +!>?XrƓa-    @& OlcѲPހgY3gCPݛwBzB Pe     i'oP`=ȴseB    !gώt[cZ"Φ p]oCZpnvwVKW7?2}      Y+o lqWC@@@rR!9Rrux4i!`u>쎶;^:Q@@@@@VX`2Yۗ X$oK@@@@ ;ٳ#H,,Zv=vKQU zG1[@@@@@ X qo~6݂F@@@{DȞψ,+jY Yv&Ih{&C<>E@@@@H#׷9V!D     " ϋl~y-[Ha7 ݕ~Mpkϕm\kSC!>      %IX$G?uQ8@@@@ O,S#z wo&W _9!@@@@@`V C?K͞m3@@@@Cv^~ $>HmcL_\O     +!n*w=Wv2-@@@@E'E,o'?)+/ ,|oZȓ|7 C7d   !>CA@@@@@ ˹!@KK̤P[]]-!n[555[JܼyD@@@HU T     dgec (`ïZ|CCg=P($;wxWKzPt"  '_GGGe1韘899)D}TPP =.--K C|q=     @ !i!de7ݻWNmժU{9sU-[6    <HDdj Ҷk[ƷI1}}}_###%U<իWK[TSS#=EEE$ڿhk0(@     dgc $`nfAU=N^r%[oX[[k    X5'O;;;%KA/#Olo͵h_RQ-@@@@@rB ̜$ @d֭['+~ Y,.vssDJױ   '`5-';vL$ZtgUϞ=׬Y#qǎ-2b-&rlhk_I&VOS+ZΝ;%}m7 C     @N!DH7ge泪6UVIUbMMu@@@ NwWW?.%b5STgUee[UUXm+/g?Cڶ <ӘLK;2Dmt LV܎nUȻe?hga㵵cK C<.7'  vUם@ ޅ$T@0 L5w{c3IqM<=L8Cǎc X4ӻ@IޅPuW=W'Yw{/p#" " " " " י4#T ^{}-%;W\qYTeE@D@D@D@D@D|(yn:vYnS+/7Lb]e,z S4;3nmm8'%XT^{zNqt̘1Μ9ɓhmom߸WD@D@D@D@D@D@D@D@D@Z))[h^h=\[ƿEw9G<у/\^}U Gm}gСfNMۛm8OUޱxkI`,86Ε扳ܹQ-95-Zdm۶3gه~l̲ {N:_ljJ@ yT# x5 " " MCJxzmA4," " " " " #wyǖMe+VX:>}5kyFevfc]TUTxo7gH7 ʮB6Yt1/9ݩ~!߿,g/[{˖-fԟr)>t#1S F@  鈀' xq.@@0rHYgUΈGJ j o>l޼mfvժUfW^mvf?:uYCŢ}F1!5B$a<؎+IN7hiG]98a7nY*_֭3MÏxmq|֦z\u8N H!~~qZ@H!^;^']vǎkwRCD@D@D@D@D,Yb֮][iьS|ذa:tYjdNJة;@;?N{4O^dg^޴`ڐXvX:t0'x`<*ǩ6>dc ԱQs=֦J{^M5tw?2-XD@D@D@D@D@D@D@D@D@D. 5h mA}vjq*ӡnؿoZrt(z߿w,mޖXl," " " " " -ϒ۶{3=}ֶm,xŊf.7wCx60;zaY4C 6{I&Y{䈑f{t%SO=e60ayأYCqD@ RE@D@D@D@D@D@D@D@D@D@N@ H@T|v7n4ay*Q.սS'=+t1n-C0UQ (h3Rg|0`YÇ657:D@D@D@D@DE:g?jڵf̙cU[{ܸqfg"Z'[:2V΋h3We_|EK/7oY8qoݺەz,{4vma7{5U:,k6E]dSgQgGOW64?я̲5jLbvfu/?^)SD@D@D@D@D@D@D@D@D@D^> 81Plڨ}\Nuu(5诩Ow)?AP.V'`=DS&Xj{v2^*!CTY!ӟ[nA`oxޮ]C\aMmS;FGGt {%h,Y-Z믿nvڴify&ݺBo߾fa|˭Zލ=׬Y=Qvקgg÷гgOkwshQoQ_#" " " " " " " " " "Xo,+" "p\@ayf[>kvf_}U(2P%PK%38b8@. j(F l16V֣ K.>Y% u駛 g}U!" " " " "qW;,WݧO=2 iG Gۃ?B &z è6m=31Xbbڥd;&|]l͢ }M7w^vpz%}K_6obSOӭ<;h r-fmf?gy,׿ukSy<9u(RCh,R7YhQM=>t{޾}W^m7}23fQ4iy9wYT}cxF'~p[Y0ŢG1уf,5 2wwfE~eYuÍ7h:D@D@D@D@D@IqS$+q~߰<ڮ];k}Aq]CB7zVg3ɛ=$(̛_7x,ltOOe>(fzU\N=/| /~aְп˿XYβ6İ(~ӟއzo~{Yt'^:Z)[סň4)4#˗¹Wflڴ,#FXn3rh1MmT( P%ؐZG8zTGCYЎG33F<1?ј=_~ֆ^xp@o.Z,&gyytRB+hDR7"\hJ( on޼,JgTTC3o&LȞ={Enw_{ȣ:qTsQD#Eg>1K,1'qa5=zhXjD\cOYzu[AU:<3ex/brYbBM|js0*= ފcǎ 5@IDATT:+>(YV;#3f e˖UZ7*)RoBxg-?lJ|'|/~fNjvܸqf~mwqHngμӰmPzrbV_:w,JI&Y{foh{hu-[-GzQ+k_r-5ש:ڐ?6'UmQbO AML*.=(yzwi3e'!3#6]ORK4z]NfAoo|Tp?#*yϋ\@7Y'd{=ZoΎz(ımA=BǠ" " " " )j^Si6zpSxkX=Kzn:I=?VkZ|Lqi<dz =|ƌca5 JhK?J,;>[ ,4Qcʩ'w`ׯ7kBN36oFZD@D@D@D@D@D@D@D@D@DH!t5@سg뮻.\wavڴifLb_Y܇>?{.cȑEr[wCnsfQ[CZ?_~e&L0;bĈJg ܺ*(co6mۘs:1vccHk̜駟nvً/C3Pg,Bemsε65PGU)b}LM>~y7ұ1g=IG1#klq昙Qy卍< c$BeSZBޢ>~xk?f_Eяj`" " " " "p@`;כYI&Y'\ | GΏmu{ڋ'v3]K?/2*;#U'cҕ~ybdɉNﶰz4۷yx5jӜ#UgS{x><온T^ 5MZ4')ě(Jt{,G1;p@^zٳg&u>}M%kjǢw]aΨ5ʀc6+jK牽]gqq댞۬3D…ojƌ6߶׿uYSO=G" " " " '$_?jL:tikxMǦ~29tzQS::6QLWP؉P!J|G6~%p4݃vϞ=B8oFcX Uzs.^o~Rm<4& x@" " " " " " " " " " O@ JT޳gy-[fno'L`vȑfֱcGk#j?t1&mmyD@?vƳXy"G ^z٩\,Q:< 0}Fa " " " " "pؿŖ-[̢!C+g̱'I{Xm"/?s@6oԟ6PІ\t- m;Tcҥp.1gTc 1b}dhΝaݻ,do2ԚHD@D@D@D@D@D@D@D@D@D9 H!ޜ5@%twy֮]kΜ9韚2eYǨzjG\gӬ yg޽{v}0W'N4;i$҉" " " " 5O>śoiZƍرcͦJTelaN4r`ˉX(=H]Iޙ_ ?⓯boذ2}ŕW^iaÆܹxĹ,ĐCpFmgQ>< 4've y:5k֘ɓE!ާOP;e# O_Wy-+'UH!H`VD@D@D@D@D@D@D@D@D@DeBe}ZBK,~g?0V{^>ځ΂E}Ę1clΣ85⩫KE.:AVD@D@D@D@* {ӿ\pٞ={`vA#3q۪F=K!#URh΅']! 1|Y\AGF< ٻxcL1ǘN߱GRQ%F΋E<XkVeOqw[{ӦMf|#F0;qDaGTyOnWy+!Cjc<֭.%fwn: AΝT48)DU7:Z&o޸q}gѼ{yІz?&![!WuǚqJ<8[ga%Y@" U%yڵ` Wq-_U/b 8l0hu@ $m6[͛+-Q#G}k.}ݎ^;ЎrUEs+DZM8aݻg?Yϙ3ڗ]v}sfQsu@X@Szv$JtN//._w][n5[oG>bHkE]?nڰa٩SBtIͲ#.4$ 8{菑c/FOL$&<1>1zYFͽh;|[߲-[4ꭷjm*2z{"yJ ~4˨8֜vF%yOn!裏ZggGJ@ Fū" " " " " " " " " " --h)شWϳ[z~bO3 ݻw[ի.]X nTgC{%PqMoG^\on_Ȯ]/_ZootuL4dN:xW/Ϯh{["pBt|w?&OY-6;Wmچxz-oemm3ΙG#+t2lU/Kca|ܖs|iG3cؿPCpMw=wE[[֭[g(GNp \2E+, E]9,٘'_! x9#" " " " " " " " " "p7*s 4C=.hkJR pW^RGe+_ٞzoӎ9LhRX@jŔur %׉v_WUsiY{РAfg͚e6OEb]8Ju}:[h:!Ru@tialp4L/0OB![~V[ֲJd}-wp\a/\& itQqWUșűҞ'ˎb ԓ,;uykfɿ}W͞{f'MdYT9py8-^z% >5 )pR/H^t?#^p/~fQv\Ŷc/=1wW3y+?& ۥǖ17]yYb/k+gz⣽|۬ wkSqk6JRGj45( 8ҽGw:]`MѓM=ijs)}D261b;Fcco\'~vXiܼꩧ_CȀRB;irQSC:piKeD´r [~M~ְk.߿, kh$R7XhYoY߇VS@.9^ >X[:D@Z?Ӷ_fу_~7nYx{XyıNk"2>.}˹yW]u򲥳f8Ȑ?/g7&yEeb;c4[Ϟ=-`رf_[n1{uיKͦcͩCD@D@D@D@ר#Pvܥ튿+Xlz#Y6Gʍiڎcc~t[n,ORKUldλA'#)STEo~xn6X!3>dZm8E:ۭ[7 4iYtυ =Θ߿uQC|ʕ9rY=k( ERyD@D@D@D@D@D@D@D@D@D@Z4)[Ӫ7&?Yu{r{${v;UA:D@WUnÆ 3O.T z9t8jQ7'*z'Ol3fF81mJ--_~y⌥#c;]Oތ0h~ 5k;vѣԂu@ISth۵kg(&ʻ>ƕ-̶Gvƍ?|oŋ뱏t2_r%f_~żfQ[Î߹s':[րNk׮ElD[=Y?oH|i1)09kE@ ZRJ@ ;=~veJp3O,\q?5d+~rCD lڴ/3}iӦY{Ĉf洃VHs!JHQH?w\kyf?_xOQz9&{rPYjqUidZ.+h'0y M-dVG<']F2t|/=ϛ翴#j:su3nv;?m?kKŁ]n7-s-'_޷ǭjk̼JʜAyw&O2UQ-3I({ 9o|j*x2>Nͭf#y[oƕ cw6σk%~׶MMs;vN6F}t=U!f桶˭PG N@ G" " " " " " " " " " --[ikUvm7TyhsU5.s54:X7SmԨQ67wWS4dkE 2 GΉx1zcZ$I3fK. h(G}CYZB$ꌰ"畳"ZCY-Dl䬰Hd YXC?v͘3C'u_fE>"0 ޾n;f: 5ӃNs;*뭊}kn9VGF/ZfZ,st,X믻ƟoFe;*~9rwc֭3xo+A<~x%*:U=l5շoߢوMBT?pE+)12G(6Km-6َ:3XK@ xむ T}`UɟpO w+ǟ" MLo$/i}esTaKrcgEz暘hN#QS Bs͚5~_$YP'J(m2qs{< B|>RG?ь2dy" " " "3~g}ߗS_}g|0ӉCon7w]o۶HpE4X:v{(dflf=\>@v:q=»ufk͢>{Ͳcx\uف^*Q}Rۓ,{f's,ۡl:,^ 6ǝ ^B;߱SGRԼ.k<[DmYe &-k0c9䏑u|LTH!P$GD@D@D@D@D@D@D@D@D@DEBE=hqT]h};98x" _щ2hSI3þ =xoR{?s͞wyfQS!d>#K/ds皍Zfcǎ5ilxF%S%EGr~de [\aιùnrKB4 ?A4N Wu_cfcu5}x9ۉWݾ_us[" MB`ڵ6j]v5UW]e}5YwsFwcL˨rbb}=޷B|ӦMꫯ6K-<5W[hMOB?F!+V]xaÆ4hY" " " "sl>)? ӯw1(GӲj ۭ@xP J9նm'q@&?O[Ob}׾f#F6汆yW5\c1gyٟ'f9_kُ}(hp;⓯#:6c˱yd ɐ)&?OJ9ŔM@ Q)PD@D@D@D@D@D@D@D@D@Dx& kuG䧸fA}ŖS@#x-; q~JwS?wSOz>植`۶mqǎ=Yu2l߾|Ez.ݻw[$oQF-Cl37xFq4>򤞘'퍳Oɋ1 7KD)oAS4۶s߸]݊+exOV;~?b8׮l5J}ʞ=p%qnݺ>}0`Yٹȼ6EJ\G8{Cr̵Al'~ iomj򦜷u%xu" " " " " " " " " "$VG@'[|k_.WDm-Yk_zf9Ǎ7Z TDF<=8u?ɔ[ s#[yՏn3DOven:?)S=SVD`pVmx<큧q׹]k=6.F$ cjر{8;l"lKhϙ3ǜz6p 2dӧucOYzYowY >n=Xoo:kz̲ T-bBUs1oj9滛+t@ߩsOcĕ?zv7*]:2M=)4N}};yy-)kKL" " " " " " " " " " %)ď˯Z~YzJkI}4;]SnzW,[СCrwW8 &X@׮]͢8q7olQlcɒ%FWjWXrdY#>ӘS~f"vg0`_fu?Xy@~:ƊoqCDؖ_񔫫|x-gSxtnOT]}Fx@eޞG%WCDLFy罆lEn#o[" +8x%//߻yt{wޔ,oo7ѩS'"L`R[uV `o{bT> #O-o ٿk!"  A`xkZ{n_Ǎ8~^f[5Àlԭ~Mmk_|\ .\]CAu~|rBw]r%[M<|vxZ OdWvx.>SkN;xz_Py< )ic+zqm}'?}|EOo{}B_ղ6-Ls1R:s"]29z9! H!ސ4KD@D@D@D@D@D@D@D@D@DB~5`a?u/+"ЬM qqך,-!oFe9˻^5?;kڵfѹ7b{jqШh(7nh^zE-r4柬3kFsClr~:vݻwT{v[f*B`'Tu-}۷[lu; 7f]m" u#po|܀Sݮr\_pCD@KZ+*_'>7?ET暟'DQmeϓ^v%5[l^:ڽ{^2o:ݛ6mzX n8sƱtvn=B\Ơe˖Yv9 }[[>R1UȃɬWcg_oC5 HR7dM!" " " " " " " " " "o\dվ:(~.⽇u_\r/F'K]={ڬ1|c2h}n)X`}^?b {袋YƁƁș3gZ>k6@ꌣPBWRo޺ϽH+H^j3OW"S>}~<ِ[IW%O.*No,Wy+*ޕU Y{.(}52:D@jAӲ֬WtCD@E/gkW~a1v{wvgBm8zj4l=;.\Έ +WW_}l WUuo\'{\t/w='N43dqFKyQg9-l(ËPMFG\On^yom8 d*BFRGj?af>Lv)u;{&h܁"5kM3].z,d sםZhPsTFPY:f^tիW]z  z =ڐCl@2|^is& 8kJL&h,>쨂{Sm83?j(M`W*Z" "P.bL|=OMM~޲ݕ۽}gݾ un6<ىD2m, o:tl?O'`+!eS޽zGjҕ[p[e86/[q]m66t1Y!$M7O=a%_~;wzmE6lY)#ZjQskzNpIB\V!tcVH}'pE|[jqr U?>y2Ӽuqŕ4-*8Uyr KNMQ 7cND'%^f޼y6'1'n2d2/c Yӎ<&<ˌs$k y3cy16VZe,c|O; be|rsڵ,+$M@ &" " " " " " " " " " --khuOO{mO4+` r\|u];'GOg FT1dYdٍ7`}vZێ<ʩ$;x 4(*1oBG9Y-t=xؘ3g4wJ'rg̖{YrD:|uUˡ 2ilÜ_,^~%_sٕg:[-0`@:lxZk{ .шWь6@jgÎIU4OK[oe]'ƣ 45hҹ$zb۬'ڵkpvg|-Xf#[搢a͛wfOnV5ċj$gտ4Ҋ@K xKZ zܖȢ]IS}m]]ۃyFl3|y{ݹVWVx,"PwG=3\Ktm k|&{ȅbWY{Z>϶pް+q=2{U\bK r?{v<)߶^cLgm\9jv|l3-<`7,=jԿG?ZҫC|\O`:tIJ(y12*]91xb<W^Io[o3ήv(^ͧ" " " " " " " " " " ",2k̬I[3:%tj2N3;zuqqpO}?_o}ݲ{q벪o=澧nuz޳gmݱ&]6Fo]wBnAGx'F:*FDLM̉JUŘ[!1#q%y!,R#*ֆ bKLKUo.5s9!m1[rthn*Z" "P7yNJ g=|mK{Y{xR_Ỳ?mnژYno߾ւ P*GwЮ};J{xY;ޠóݻwU1?mQ6jٲefcf袋.2?ltu@IDATrF:Ke5b/a޽{ocΝ:Yn^O<ڇ8;fİv\w _}URհz!2,3ʜqtQ k'ɷL=;Ga8#s8StĿ> ncXYNAO p)V] ^ܿ~yE@O`{xO+4CDNC?nO>[v-ٮ[sPş{3?Mo?Wn@S,1(kߺõ+; <*ΕW^i]oϵw}f~JϟٟY7 oP.;+sС͎7,Wqbf ʷ-˰f3SI_xٳo;\wҳ.;:-ēc$cY 'xºn<=>x٦!9-"" " " " " " " " " "  H!^>56a+{+lpg?7S76m/5趏e8ݮz{6spߩUneY_t߹jPgw7ɝŻzxbF!2ƱM>?j90]'9u3Tt;C#ߢxYg^Ho޲Pӣ ٺuyЏSqrMC"y=O(T*ˠX+ +;*]tr4f\@ =s$M$+" #pʩDzQ^JZc:X};vᶏ?YX1˳瞽U#ԉFۋ:7{ I4tR\aΚ5>b-^dx׺*+*}y.=z8MXs. ,3zǭ;=*#F7'x^N +0;>7W'믛Ya kJJ/q^ifhSCQy۰6lbeD@ m R,z&=_ӵ ZT/;:f0nYò]!f;%vїݳëeUD.*=t䐯J."ӟ~mbh*wNGd̙vf*βzjs>hЏn41<M=oZiqF47u(Pq=Gr %ь(_Y|fqtI+"pL3?_3de_9\>Lu۽;"<jN+_eO]3Vʞ|-r,#mQb gqY-yW:u2?ux kS{^D6Z騘/ba'riYm]weۿ5Kjl^ Vg>EaÆY6c<ׁmfX\aoPoԅo~,E\qc=f*'cMĶ #='Oy_ B閄gaxo<," " " " " " " " " "Ђyl ZrUNoՓq=]̿kf5egڹO*W65V@~?yוq;r?{3ضfF* Nz /xӠ9r%4Y-zm,z[9=*q)QgSu~4 6#GUzF}(hl+ <{g9a3 yިCDQLfRD"  w|nbzmG/N#:t{[/m5՟˟B|+7yvmW--STGexhs]M6բ'Ol>'GxU=:tnL;XbV䉪Oҧ* kf:;pekZ4 ٳg[n}硁'r˛80O^fcS-=8J! xp," " " " " " " " " " L kby+X?[ulWƞպ+f{핏Wk_ۈ#]2)s[x„ ׾5k\B q3rM˵kYj4zƍǠnypmV|i7xv&US~8t#n6?7ZX{mI1BoC!~Ç?b zn_~QO[WŹ8߯5K/dm2@ S%54ȱ2{frEnI|aUdN󳶸<+۱6 qvFx؛`Qs ފ{UzsgwMo'22ao5W_fY;v0V H!5@3B)Q'|Sު|QoojWyk=[nOriŅ_r;6=ZE;T;6o'Quџ7e~< G߶SO=ehxs75Hب+d$ݺwT3G4E̹uVLr =Y/G$ 80Dzn8QB"3vX%~WwYZyW_>iLl/ޱ"?{tf9mo4q䈧ٵ2sw {oH% \U1r7-|C6j;bCPacNj!~ikoذga0\}A!1idN^sdC˜68K6r]zm8O3BD=tSr駟ncQ Y6cb;Ƥmvʼ罪>ymq搧)H!5@H?;"-D%09zxWjڪkz|DngZi! J׍fv9S@ ,H|1y8Qe۱cEY,:Qr ylYO*w]5_^\U}ΙgTĞ2/v4k{%'eW&b5_>>ks5{;|i}qL}ۗW[skC#r۔Oi 8|$7t/_-vxWB|،zV>}ꙡ; ?Ng6ay׷\3',dga =aڠmL#$Lb8*46IT1':ċz<<@3f7>héoZo<ݻWCnʃ.k1Cfm/^lybSnj7%)ěh6R7V7IOy<mwm-oyNdx)84d@^*ࡃ6CG7ys#+mw'KDoT妆8T$F-1O,gdE%; >o^-zs;udCy3F58d=pyq%O\OL9? Ggҳ48{tOT_>8l\"^{c#ˣf}9\ӭ" Cj~>OF܏{w@˳w\S*>cOđ3mԆ^~l u6-mC{OrZ(.\m.j ?ٛwmͻ}ͼsK F2>ܱcQu߿`^t;Si} -8%&^!WųYizi9扑co%}8\r^ͱb,y[o߇mTdT=jL¸rbzb;x89Έ|j?J!ތ5@H?M7fj5ڷS5 ~=bu4^}ך7{z u=ۈ6ݪD͝m}`K=4kHc=s̱T֭L8qDkϞ=,5: TT&,˓aPo YdIl@@*tT0MμV.޽{"ꄱ{!zDAUD~E˖-LHuqƙ-Lnݬ5e6X բRg ]fv>64u{D?Ӏԍ@iǭ˪`k8oL[w-qcvDgݮvwU徧y9xjC =113}g{6{k{v?O?kmnH&vݱ{voq)<ږ=~&?{gUya I ".(nŽV۷m.}ֶVm]p_j} d BBI9ϗd̽wLfL'ls/32v> Y_ۼȢ{rK!mׅ6?*6l{{p<|qzRk?g;O~O4ѧ]zՎ=gk_]E펙8E=4nMȺV瓠T...{ܰ+} _k&g{9,p$@$@$@$@$@$@$@$@$@$@Q'ʨ9ǙgґR4puVVgB"//O?NO6(8P#:FЭs&hk+A@5<$j.e_U]fb@s_<Ē4V2nBLPz|LnVf㉰nfU!^}urM=۽ݮ!:z~9nwԚTbAF~pVdfu#:&KGCj=X$)9izhj7`U%Vs>}ߋ!|(:v;wAĮi{`ݓSyrZFSv]pUB_= 4Ն:̻$χqFIB{{c&y<|ڽzT#iW>t>m|~{&~Um4vl o >T&%s{"(0=.F,b >b;V0چ"@xC$@$@$@$@$@$@$@$@$@$@JHuD$Хs6mNChrհ*vKrof +hfu)͏f2 C͌ e;4r9u_BC@+qJoC~l=Og+1 ZnZ/TІ8{vFp^}1ɓ'KdU!SÇŇm4YĆGǵ|rph4 7:$B둳7G?U:fn~; 8PlRg ء%AA9@)ZO͸VGVٲ"Rᡓ@HvXP]MG=6xw-У)FʥdKK mjgVm>h>VܣYj[w85Ę!tٺ+yk11䚿OZqT#=/OHk]MV],ضjYOksko`S_<0Yw+K,X + l3HHHHHHHHHHH  LvArr){U`F&}WoOu+'*urnk~A(s >~JH1/7đ߼gϞ24fb翳:==*g͚'3}0 &B} ] Eu6~@o-⡏XJ;CtyӧDMм~A}ĵpY]2'8^'`! Y22{#1fL6/R}WDm{hH9{Z)ƾoLj8l;k~xؽ{vExBphDj=I-U؋BuqFwU;hCIbl"6mPVoMFK F{j81          HB<4W G%Y%gE`n8^fX3kt!EIm4Xʑ]ŧhШTVvlF9 PC_׽U.MJ]/2nct0yAفCŰcIڵke/hsQEM$Fjh7oT{ArΝٳgT1'OBM$p0]}̘?th!9@-i`ï^SOs^\x+]'qr7%;68~$0Κ{OS5iq:?eu^<߽]~sJU׌J<ଏ#縷n6po^4F#^ }(SCv0똛uu E3 C+;kdKÆJic--[H泃=Tbw'N:"TO m'"8꣎=V>::#9G1XaUmW]*/[/. ڴs ڡy| ]oa~?P ,͆giB ?ؿ{OZ#7i_Mqql}G㐁z޽R~ ujSC5ZA!NYq㬁*4пOlb/DoUx׮b+JpG! fkg ۢE󪃊W}%ֆ`Hp߿du( "架ݻ*Gڡ/o(ϫ]yem-:6u{Qf>jE!]0}GS={QKXp0[FKjBctW寯]8"VG3 ܵ"K8։BwfnwB+?=x}uུorJؽپi7q؋ h h#89G^4-8ߏ`9 o8Ԇ$Ox?G! @P!“@5Mc,EjwOFv6b% ߪ^ٖWL7ڟRUз6@@5[[:~cZzmvjxq^coOʫ>Ȧ χ3q=qf'=D}hUſoO>X(q|UWI[nb۶k λeZI wv+۷σ#.v`X( /F+<}=F>{iLGjXW/,p_%<gjCuZ2_ևƞ?#ԑF*ʜFLdKm$;\v6l/+K 8-MUzmwʡۿЉ{﹩gaРA2m#ܷgٳgKMd̓v$@NmTQݳ]Cu9٘2V0+Q=A+9Vo5:[Ў>ÇU1*W2#vM.ˡ8i/\0D1I`o & rU>\ڦF9nZm7ڡfT~{jDi]fFdv|ksSѡNP#kvx qsh ),п!1g 5kt=tR\K @: yyyr|nۿm-""FyT]fv߱۹i>ؿ @=d)m9rm;G hW=ʲQ3DMU+s\쓑ج\!'_Ui3CWJET mHoC/?#:Y=drjLt?̈^{xJr3fC49y{ -ڶK`Sqo{櫮's+w/=CU 8tָFfmvi)H ha|NQcn|a 5|U8V9#nQd]Ȑv!v۶mb5f񓓓BԆ )T̩䁐 #!5 քH MvQPw[PjWFmJvӂ: x۝^Y?_E~(;w3y",1M=zQ"TP¢ <|{@kc٦u]ᡛ$mCnA)GhkYDc"pLPsDű㊅W2('UH(r׻%#rУ6+wNUc-Ԟ_5]4ں3[\hQ;%#|32g+ s>= +h#32pٱ803{ڻ=hen5 sss(pw>wr(q (qmC6[2Sf>V]1CX<ux"ȷgH;);;[|( 2DEc-Tѐ xB u$EuN͡/ܩ\VҰy{ez]]\ZUϫ#z᫟_1rc&C{)3F9d^qUy9r46L:Rخ53lebw|ݳݧ{oD~;]Y{{ؑqX ;ӡG?EEm1"ά36;Gˮ>910v[&|[?n8t8\Jq%/!TJt!#23 }m  ;׿'푦:'7{|X:Aq7Ա✢>A[8͞s]ǾfO^Psߋ$F"OZO^ar8$Kp<%> Dc^[%S+3=Auw&=i;C{c5 m#uԃiVK?3rWh>zE?q[FbzJj9u>|pwȨy~W;v(~Bgܫ;Ӹ܁;k[gS"y ͨ5'OinyRc~~ &Ys"S/|XR>Wp+ُ=݃Ms/}"w0ѷ Яڣ+ W5fAWdypFeF|Ԟ[ʗJ-R?QVQHºxajlk{nmhS_jBh+̿:elo{{VIQce=:쀶ٚު9m>jOZZq>U6FHl nXL,a-0i͠=0{5:-=P;Ȭݻwo=ZlnݪCvIV-|)|~=8a?9rD"u~:mۦY SLȂ ϰҬP!ެN7HHHHHHHHH/њ/hֆUF^[BuU_ #<8v]#u^7Vy$O W (V~^-{eoE_|SetUv8 4 !rrrdȚ@ 'LxǺ}9C?([6"vP"sո~$&ꪚK.DlBB:r̷^g#7tQvY*J5mڷR{pں~gh/Ӛی;?vTmm} vٲD^YmxiKԷںGoTTз6z?ԽnWkU0SUjC/ݼ\[t믶_Rw@{9y"0^YWW֥fn[eCmx ַ[T5y_رpdor9GxFM#sK A hiq{{VOMđ_6e*#4>'AR1z믗Jq話B,7m$u}WW0,n8%%Eb)֒b)V {1:%}; GK#޾D|<{8a$G4{ߓH׮] 3U6Y*ě @%@x=y9jr:oJ#'ÍnCR)LcV}}/.جۦ|dTQNJC#Nߖ-czCY;#], n m{񊣭k݃מ-8#v5a:N5rC={xO=sqqm8g>Q0hkA W}x= $vߕ=hT¿iT|2zYǨK4ޥa o_/ҷ-ݒԎ6W5yQ8՞{)F8ƨ5JvƗ.2jn(sN## .oxiC}?Uj]͗ UֶXOtkٍ@IDATFy\kB0?]כ#kgkQR{v4w̹/+mhSؽv"xZhW`mmj^K$^}E+Ns-S,J(#\NeXXU&0no¿7E/`fq} #{^kV s:{|F̬mO1_h=3t 8 ~@Mӆσ38?2oH9 %GUծXwY.+ OxJ2\zphå9 Ƿ @,B<jdəK#'F2\ϸ?~'?<&ѣo?}\h%kPJwM!"9FyISNb5@q'-2!7AkŊbά嵭vfs@Fo?j-50[!<'(IKKWP?2(@nb|ݠ6C#aa1\/ڢ鯪*I3tϪj߸S]qqMHQJjІR?uWyR,s~Wtîȩj{J-?o hZ{w!%z~c$T< ?}L#ohG7IU^#:=Zg- {>oʜ &=~|ZgF{oI>^޾ft5w# 1# YkV<@|WV.k2Gd݁Ȓoƹ$6o3H5 t>H,1O ?<@          %S?@5L8Ysn2j:5)ՊW˲{2xjoxNs^cH|WSl㷼:T;Se!z"н{w jbdp;D;?t#ŀRg>4Pg 7h@8މOyvy^111Q|\$^{Wس=_h2$q/kàNT?b_h6Wo}ÍwJW-׸}7U岿S6\Smꇮv-<kok7w5K՞ {?YAkFhTtktn5+؛bBQ;{#Δxފ_V+?V?]_^ǿ ԭShVZ86׃3^on ZH_Ϳ}l>ߜcb}3^ζ{7:cH_)F-HcǮs$Wb#xdVoS4PzSyo= 8pϏ(m=8wEFڵX<{":,FliI TBuHHHHHHHHHH<*ě)?:Pic~-4ZF=63;I(=q}p S;bC5ooKj󷨅"i_ J~Bw*_5.LL~b\P _;T.iױA]APݭ8^;~u8"v?h sD~ЃD4Ѓsol ɪٱcج,֭Cj E2930s9M߷O?zPql2>`\+j"8j҆D i{2U۽F}Ǔ&i$mxZֆ붬2c 0rm5}#ڷIhX5gyj2ZJ "Jqqo|MmɌKM9?{g9D"#oR#U[]- 4׆LP8 CT l"Κv{wٶ^qb,[ i8gle;bw/j"8<#PX@ѹj-cپ={v=`&[n!'IhLJJJ Tzjw\6$&W [ֽM F/q߃Gru9 myuߕO7y]4N+©hCL(Dm/!h=fV]eǂ;^eB9w/lձF8F_y"Un=5zLsYUs),!t[ bK!٥CwW?.X%xR;%8g;p="~;Z]'7ݮ*Wyn'ߤѣzږPp`u,xY}; =|FmOI34C-#WXeXeYn{{URIk۫9=X;ڶm+[ֆ[U@=B@s          %@xo:Mo~Gg kPZH][ֶ-@# н{wᖕI:qh{f5ʸ.DXZZ*C8ǂuGgGvݻwKgbG-qeK$xh$?u ݨSh5dq]K5Ԇ#֚&t+v[G6s;ҹnAf+.wB[ 7JvL/ NΪTl۬Pm(^d+^x(۩sV+CZs~ӴøN5w#]7_w+gzxf&U x~6>]zٿV{Mjכם{j25WUWUy[L-mU͇WO?Qi>Z-dl}^WzUkڇ=Z= (C̿~Z :_ˌyRWVmxZo[}о(ӡYwMs[o8󛺷WΚEycGղD@^]10m x X5 @ B<N"H੩2 9?~:NW٨#5nmqk9ѽ"2G eB}5dRŜbv_Y[S ;4Bbw ʌoך5 g_޺ȌG#ܭK_=JJ}~7^UynZВ>+#Y-?Z)ܮ& W[v0:U߲e~s^CV{{jq ߦ>1Ή ][kZ}x_=h{;BHZ:" @ P 4Gл5#혃 jV PEr:ϟ?_͛Uo%6))Ilǎ6b=ouϼ7CYͼ<a 5gyluСz.Zr(OP fZ]vI+N*ȑ##Y ˗?˽.q{mEhC ϮSZ[ΜvHpN`ÞG[ cQvۑ>?7zj zomm]+kL=$#o3J^~V~9k5Ry20^۫Me[!>̳]ط/ֿC.V$=3}kgPcaM4}Z yc k>f݂B>ӿаtߢvjA[;ԗioȎWԖR,35j _Wd?5zH#u,g9Z [?u7B0G_6>MmǞj뽍oݿI-Ϩ=K\]z"xjsH0O Mu7 JuYbтi]&p2=qv*3=z؃U_mfZุ84ls@k~agYaa61yÑgH0;v,&T䶖>ToZbc%$$ 4+@jëqI^?}{r&h_n=} [GKF|Z  @IHHHHHHHHHbC[ǣ!O; (ć-6mL7GT{铀!лwo{JޥKU[ 8TècgǶvi;n1V-}zDRm[Eu+=+_V!?VB!@UqyUW]r؂^uQO-WBSխԢH F扈ΰLj<))I6UVqq1vv;;;[|mJ?Uڷ|ݻwYу( n>G!W8,H0ٙvm~{PwܹjZyNFkM`$d]WQdZczku1RjC/)"Fٵf6ƚ|v&Sv_mj2/ͭ-m3?s~^,HmqȖ͋?C97"#[h~(Zw^!&{xd.st닇XJ_-crR73͵]sG,o7qNQv|{G$@A P!w *cL8#m'g}K}h4Rj 6&Zoyрw?病B'0`<{}֯_/633S,2M#32GC/,X9>} qL;77P R:nq;?8zpZhϑرcRGUG.X@ljjX^E!`OҽN7iN>CNoV\WX)?Zc3"Wk})laEp-*%|P;uhw`$6εSi{qj|d%jC/'e*C{+T?܍t3ugyOZc/Wˆɦ֮*9fmD*b/0Cuq] ES۲?WFӞSm7]t@/^]Y?p{8R\K*wo}@쟩vک7 3fif7/?uҚAdIݛZ@I_LWbnj#vذab_|EP8P|dZ\6Y9~ >USXh+*giff/8|U\9rD췾y|ܸqkN,K P^g qoݭCR _j{P}䋑S"9;70yԷ3JC߼3~R.=jv l\C6"jT,ɫ=ZΘF|E^]+962RS׾L`盡9F`z[oj¬3Xs_dw}jo8ˣ.ԽoRm^G|>ĻpH#kmm^Ujw ?{(0^?uZћIpbY36"y/1(EYw&Z3`$@1B 9<           ·{&O+[ j&mm2*BXNINmn2ܬ*B@FBiŢ"ܷo_E^i.//8JC3.aM]ګUd#|odgPH|A7{o(k7ٜˏm۶O\3X1'Lùav.Vwɹ{EvZlP[iK]`*|ihE=I~^{Kjɞ9Wfk^vgv:0sFG]lW:'6nסަ\Jd \/SsE'3Wܭ~ n^3gkh?jWz_W2|x5om4Xsaۦ[O]O5:ڶjrgI>}XNC ?e%+2|O,z]AK$2*CFŊ$@$@$@$@$@$@$@$@$@$@MMq&p8KGXGs4=*Gmg_͛Ο?_/JzGʾ}+ի=zVLKcwU,Z">2?w\]uielUr(9xv`w~tm&0=4]7ͨGkuͿOsnyS ztQM3d-TQ|]X:'Rd l|ZukH;{yPݴXnֽZU>rpkdmXS %U;:ZbmXq?UJٷIkvvogXuv'󸹮NWJ4(7XYvjJ֥t2Wo_8\bV]Kh͕f-'.qX{x2#֭\Z[l>tjZB{v,׿_Y[$@$*CJ$@$@$@$@$@$@$@$@$@$@MM r$@$P?.A zj=rPΚaÆ#T;d}h*Oj$ FFUz?v/ԭxWt5 =X %{- afUIs%j_PbQ~Uۡ QujRpt} wB[/+ w'+㗩:T,Ч;Gk;?5c#r8:ģy{k?x5%hZ6c! qd G[V mFYIFM X#/ mqՖWA5,[׆K{nݢQFݹj@WqVv,s]`ju[nv[j>zP*ȶ9W<\ke. ^ M?|? o+q ёZI׆$uK+ѿf@H ,THHHHHHHHHHMmœo 5F}3%}kX&}*yF3"wz o_M0A,rwl]dw-:W^yEk׊T|-NUjKu*e5|d+ ݪ6ଂ_:k0R\|g?zh_v S;Ǖ|rFTP7;'}6Q&Gu8.ZP6?~\,ʦ*q lkvU Q!nqu$,JUA5GaeOk >yk|HB] v?1ت >[^*O+7_/SO_jk_"5{ g98G<9=ȖMld{Ƶ(#3z>5݂(MQY0:~%nћ#kdjKsױZ,Qg_mcl6_afYa'ǗaY}:N)c/p]b`$pŋPٟm:6 @LB%ݺu]vV@UEjڭ`3Dz 7v*?>^:b&G Z&m ЉC!ƍ'GBqI+hɱzy:_~Oщbt".+yc/PwMc'G$)?&Lt??ᕃ;ݻ^k $ױc&~[uM͓Xѣ5:",$@$!TG$!         ho燳# (˓ ~_yAu]C>h WսeǏ7ѢEb_RK,Q%p:"\wubΝ+v޼yb{!`iO=[l|E,F袋GzeHb@ysq]{ja {-ߪvsu>W=6{fXHH bJvD$@$@$@$@$@$@$@$@$@$И P!ޘF$@Q!}v鷰PssZÇMII;k,b*ũG)ӧCJGLOi$q(oF)S,w13SJ{bR߿ٺxVq9B fBc稝6 hlՉ-ڏU{J DѠ>IHHHHHHHHH*)HH N<)ݖرC쫯* ?sL&LP*!C)FshÏ;&q:D+hjJJAakqA}W^HݻwġA=~xWNbboŋŵ4`*.]HHbsU@8WC Ca 4T7s DQˮIHa @%Ӏ}衇ćnm۶ 6))I,/HJ^d&}'ܹS%KBup$+8^D+)^mk!OyHG(c׷k=bGֆO8QB}w?)zL'~ep?XӿŇD}3 @BsD           @x@$@$mȲ o>.77W,n#k3І#ҩShO,Nbd1&''K%%%b=*eX٬.fDsj̫ oҶ6O`n^:n >Աg3eZayquU*zCG߷O_ ?tX{QI M ѱ! @S"@xS:[+ !0Ӌ/6mꫯׯkV/ۧOqqqbJ]z.**/\PeľKbsrrB E0M6G z|'?>щW[xVM;K8رcΝw)pm>'[n2-"Xo-6##Cm&ꫯL]wPB$@$@$@$@$@$Ф P!ޤO'O$@$@$@$@$@$@$@$@$@$**C%z$@$ @/s۹sح[Mߑ.joY^z4iRߴ2퀂LPtGo3C3F8ٳGnK\"633SlFFXJJ+X[Im$Hm.G//,pAմV߾}e]w%aꫯ-((H,ӧOĈbA@  {;pww? ;C|_cu ܹsfnIHH1B1΍HHHHHHHHHH bJvD$@ /@kL5jaÆU[ fXlح[7k*`[d'DFB+ttk:}:={F}~v?QX=}7"ڧI2bƍo>Ʉ "Ch̠ 4'ic}nxzz؝;wۣGj'|S7N j>YHD, mO(\V-+`O(f-t`IHHHHHHHHHB{9 @ xvv|m۶RϳXQ'99Ye @x؄HHHHHHHHHHB3ΘH @ ޽{HrǎC̑+|GHf|j^¢&S:tMI(Ƃᢢ"  g<\-nkmm=ؽ9=qAg]LjFk/@y|heϪ71й +jB܈xIHwjpw5N7aC1b  y;s^  77g] *o|v z]Lx:c/p[PUn\]͌7`P3 cyº<~5iVlPb          &O & y$@DX^l"6cg_Wb*vԩbu,"!P"ZJvA%>C+h+&ߍno>F}Dl  `Ȗ 7rB[^ȵ]rAWJԄ>rjq(xPM8woflYȰUq!K@9#~8/3f 4h+A  &u~ؿÝC%7O\ X%B$@u$(gF(dƳӦMSF$V[gD,g۴n#u<[ }5܄R9 5Zޭ[Jq|b,iDL P!LO<HHHHHHHHH*ě 4"5#S#<"^x޼y#tP6hS4iAATYȑgVC7"mU;о}{A ,j'օVo@ ;.lC8k IAͺ́mIH= U8-[&SŻF֯_/>PϞ=[" ;sL7`! |RI}ݵkXr q 8GZlONIv=Hm}8"͛7o~t7t-(圭Tfak7F$@$@$@$@$@$@$@$@$@$@T  z%߱srrd_|Q,Cvmb._% @Յć\xP7pm4 -ng v;s7N1b7xC,t78tP\|bu&gM @#~2իW %&Ç7)-"VH ܅.YDzU|Rg_p.]ŚTS璽b-~ ԃ"fU`7-?^Swʔ) Zxhqx&L q }B X9<  {Y\š$f2 G^ux6߽/밬b{qX^ۋ{װ6lc1DHB9FSoݧG#i$x8}ԩSzN ! B@! B@£J! @g +V 9s &Kt8cguC}*~j>f ߁_|a@6 +"B@d;1JȾh HqÏs]%$$SfӦMxbHx=)0!  @ JfeNpf m۶mCSS$\ˑM~%WtCOKPB@Ŝ3{:=9Ѳc4!&|޽ݻw)ADoUN? >D]B@! B@! B@1<Dϴׯ_ܷw$%0[! Nc4馛pd ^z}QȻ ѣGC; @UB 7|ܹ9gȧz {_~\~吓'O<Ӻ8BE+͛}[n:זܧH4%pH_6Q<ޭ n ֊kkssSg+Ϸr_c޽!?B^veE4@@ C%! B@! B@! CC!83g͐kd^`n+++EE3 f!8q".FC' .\/|',! ! Q fZr%/ \Sʍɵyxi=(>5BiU* 3f̀dйnok(٬Q;uX9l㡞oTζPk>rH:W֭."~>U9C4`! B@! B@! 8?DOyiO_-އ62dAݻwcH]o y@|Vg8>|pгgOH2WZ^$gӦMy==c TY59$o7y%~.Ya)1,pE[n$Ovo̙3! ] 'R^"IG`׮]ի!}k`8p $_CAi}{oR6q[Z:W=2>G6؇8dCC`&Ӏ8.x~'2'm%B@! B@! ' 1O+ @.XC"wÆ Й:meoٻ:(|XRRi0۷o{l#f#F! @__Ao,S?LdEN/ܹ.] OF[!lݲr߾g$W\|9m9x VwY^jGVeй(+1{uu/H~}÷sJu ,ƣFLx"p/__ӡsA]t,}뮻 i@/*B@W O+O{r{gCsr%_Chzmi\*|-n4玢W^y:1g{R[שZ!~j}^B@! B@! B@%b%pj֕On>G <\6,Q{ye"{TRjfc{WsK+tK ^Xh Ls` n|w7f,nv81vc5U+aa^]L@ߨ7jܹЙOǎ Fi]p@"a 3s͈/+70'<<|y=@ 9Lpy>ׯLlV{O?gjUAs!-BhijpG"OJl"XJ~2%]GMM+l5ҽ;$q~!wJZ`y4Q۶mq dΌw\Ț$oȑh)M1[4M )ʼ1W8W5_1c8-Y1=3c8{\KZum9# @C? ~ *5-bwEB@! B@! B@NF@ NT NVן' L_=E7g _2D~dJkdӳgUOe/-\Q|rXTlʊ<k_䣭_F͖t5O=4$׬޻7d>|B!xWBg@QT#< .|G!Jo=y$ ! =*,vvw/B2!@wy',d*9 Ϛs/Y9ص6Tal PQi{jC0Vš$J])+3r:tX rEۼy- |6c ϛ}ol1ЙI|h!O+` .ε YQx"NQ/'xW1{$. >/䚙gAI]!  \g0B_|Ő&L"x7wZ4IZb;ZZ<:%|c}%_[:Ə[r֭rg? y-@/ @Q!e? L! B@! B@! :1;M:al/FdX-ܫ,65>zl#$y[U][5k^=,Gg#_C~ϒ*.2XQ+ËCEj>lz4@oȽ{ F&9dd(ۻC=3=zصpdRol%sUi$毾*<׮5.g+Ķ3{f.EJ"W\Q18q!Sw?p  SY;]#0hՂ٘1cI!9vN=Q[! @'"@n _="s/yC ~>uTH?l;qH]0WdFEa<}۶m -3f dM K!9jHHfӻs4̩gx~OھENkAe۵õ)Yj ׄL+W,gIyƁAp%͜i1͹i,/=-co{?O`)0#!go'mg 5!Gaz^,rvJKm/WeIUk7[|픎{ GG()5Ða =V]b{ҶmRZvu!gxrڴ z!Hh'޲C=h@Q?.[ y#{d;>@kkW {O)n8qBTDd/_}ݐܳu5@]qs]Ww^睖1SIh߳E!;6/>ZѢ_ľ-.!]PpޓX񖖶-x;#6Rjcv>y'Ɨ !>A! B@! B@! ;bw![o!piҥ O|Bˉg^30Gj>neUe"yNH^vk7Нx$\hb;}O6CXJJ,l=zqn߹p۷8bYmHf*-Æ[-o^8҅Otɞ##V'D{8l3renABE|I=d]ΒN4u*++C\c-q?|⯾dOgϲS ~򓟂嬳΂<] 3W2+7M\&tM7rW@r\}QvLJ *B@SWRI0\p,]v$}s~A(Bvs6*yBe?wu%߯`J>qxl_o[5q}dhוM:r7l؀j׾;eC|B@! B@! B@O?*vM6<5>#޴"{6~(Ƒ &GB`.kzAVftaCxV'ϑXjHڏ=|Y8ȠC͇ ef+6>ȵ,Uq1Ȗ.[tkEFpqɝ sʓƌ]w3\rZ>9g^]f";~P9KϡB "@vy+ds.X`FK5ֿ,rxod޽{s1Ht"/{Ř#\byvD7. UU!+CfmfxP8?gObw5CK[w/=m\(J*l/)1K~}![mٸdC|myHKqfH%]~r"nf m•TrExC9Ļ3 ! :-9 w'9=z@@Z=ߙWBxj}/mGZ/>6ڸO'l~gF۷!sXE `rTB@! B@! B@!~]J/~ bro|;Y@[>ٻqֺWV@L-!+(sByn8-vz-ޟq"G[dmLbIO?@eϊ/Բ^tdC3 ׯ${/ꬎd3h'N?y W?OC1ry9lwl$+O5KB@t2z(o64G>g}o<\ ~@r1̞=뮻1yw%ZȦa  ad?o>)C9"jmOOqa[OAq*98WײEG|r>2[^J+#,?8兗}&۟j1ĿV/M<妟8q"@239xr"@>-[p=$swNTdczB#0! @^{5\E!橭5`1,z_}hB9̝;W^ywlsҤIx{EA5k=9u Ğ1G;'zk}}mV##g>f~'+p|衇K/=>@'~Q! B@! B@!  @@  @Xg?CESSȦ޸H!Y7¸`=zX&>}k K [9_P拜~ؒoG!_b9g?a8Z&Iw|psDf&Sr|nˊ} qΛ7߷|:Y|r~Gng=Y.Z>"8 'mo{bdDӡ^Z1Gys#/B2%N,<~ W^^Sw~BVWe@ˁ{ŠKA8ROWAiߞxZ$xl_k#qk3wo'[{imku**k!cٳr`ƭη 0r@[}7CY7iSǎy_9.ddO@o7k_$9r t _CS! IG+ oA,tϛnllK/saD}ђO=;ͷh:uFo{|+myo5\8kC}|T+B@! B@!  b&d׿Cbldxrf1iY}C68ȞdV8tٱF)G@ ;Fv9/A] rѐEEIuYd[G ,@-K^ܒ}ףlq\b%,ֳ y! NK:)daϘ1W:|ȘA W-s\l߾ y=+W.b$v>Ĩ1 z@UAqiggzfG˼+8$KOJ'd kR[}KǴ'kgp>rup %rZ}@ݳbZ-@ gK;)Z⊋{:Z>w=xعs',d2]c~U"K0o8*B@32* k׮}e>ZGZyxV?qj{8^|ҏ7~|R|! B@! B@! ' 1OgNNj-ž?!|W^kYM +!{VYRn+ŲW'K?JAħ:%T҃F'cRkfg,Uk%-8!Dђt`-C{ݏ#-Vo!)8Ycy$ BX;>s|&{ _o~yM7A^wu_g7oN/Bg}B{oyH%/_2,XSf%+?GBDwxW7s^#wt}}`|n̛O>$~aȡCmgA}!?AVUAƝ)-%kKs\Fod :Y?$ÓlgLfN~FN)\?^INCTS 6w-Rh-Z= R#d0άIRj9’Reٍ# r_={VA~3x' kk  t=vu1f'뿾voᆴsǓ UVM"7xozM!kse5ޞOlzj8?۲ǁW{8[y{6-힣ޓӇOcϸ[ki8Bpkwc'%H%O$GÉW} ! B@! B@! 8!~B>s:c㒗,L .cY)K,h:Cid"l%`R0)Y(WRRڸUlj-qyq #48WCW iVȍ3|2Hdq>a,5snj=fpTY7n=d Lvk"8سg.[wQTڿzWw$.\s#xf>q|#]}֬Ypش =l9Z8(,+-di k_9rϐپGϮoӏ8G6ě;}χB@! B@! B@!pZ! iqvY~pq×0]^;+̔hhq&.5yc>x!cU=az֠#HV ^5\|?dC_~u#5䗾C skOP||?y}ِƍy! N'Wf޼y( 5C{$oG/S0J^y].o)6[ YD„NŊ͔g0f!<9}1I !oઝʍpn|9ld֢܇Hu~В)Fq 8Su ǎ5K!yUo)#\r HH<YWXKdB!U:u#)2*B@!<{qC?wZsMGvS~4qM2z8=+k'=}-[|^%.[{9ψ0%O bՋB@! B@! B@d?=s>gpQ+V,\h>ZC}5m ٳgwȲ0J[IC"'.(dʦG n('2cO9Dtà,'&$pF7 u6CіZ gsef,+-L=N!k(MQbs_5+~H/>ᬨk.x|f/>Odڏ}cЙ Hy|ʧ>(,]j3os~";wD! Ix&2 ! NKx%Ǔ+Wʳ=VZy 20կ`!/b:#ygO=$&{G7ҟ2!=}̔%2umI8qNNoY&6>}CڏI2Vtf'+"c~>o#!wÇBV8ے?ZvP!p#.1Qp}Ixb^!-pX~$\ٹ qd+>So'#}du/&۲okH/'gہ=kA}4T1B@! B@! B@t5j)9>ܴiF}CY.ρ]&iB>1bRV(" S# a҅泳y\K@ھx^N koB6xYYbO {USsww@ d~ƿ.+윅q2#GS63rz$2FG6K^ wH2aeWw;n)PL~#':߹Sg>ę3-3x rHcCOBoܨ~l`aDOɬvY֖k#/ӣmOQjix-aCVK|,;v|!ϳOq˯y3j'Qje"ERQ$U|xqz٫Ny@>!/2H2߫AW9vxb yg 駟dfR+ {FdӺ:5R^ ! @"?K-^:^NQyiڀg\U]rF4i-T~T^g/qfLn>~Zv'*Y'%gaVu1y'yp]wA]nrB@! B@! B@!pj#Жzj_F೯g_i&4@~_=J!8nT[B ϖf'+xj9hna^I7beƭw䗐=k9>9bT-dư..2XˉDrpe>^5r>r7v!96g!F-K䉓IN#sś'~B@fG>ÙS7ߴM3ܹv6v6Y0p7oϝkw]zAۛlۿm0d{sN_[8aoӥ5JfF{%qȴhVǘPOFbz` зm3f+!7m= _,)}9ĸ)%Ug*Ο?3f@Y:k9jπٻ%#H9;Q!p!P\lwC9q291J7;k,ȍ]jTnc_u`cwLd9\۞b.M8i,Ԧ:;%Oٿ w*Zw }&ߜrzӷlt ȭ[k>H_ 0lxZG\y4xa)xThX2$`yׯ1֯5OU'O\'|fN r}]dq&L@LN_#TF! Dhf[0(<0+*!1p!qHbKGƙU&uq{NGvO=•6lB;W׬<_; 1; IB@! B@! B@.]隃#G{ -tX˅o?!5tQaONVs1<+ o:SPͼ=Px!4ؙrD+wY7fcw_<rxcS!YTdQ=?kYu6=_sXͿݐ'6@> oWil^8dqqdKAȤp>-VXk=*#ϼWck[5RY7n @r@ۥ dq]?Bؾc Ӽad2N+T*9K_q7Lmҋ;cH!k5O [#]|ev;AS^Lp[ @s7ހN>83SL`ofd&WM@<GE!pkXܣn`k}ga~O;R=y0sƑxxڡS3 u?~?*ևuĞǸ Yeq5OX51zGݏ%kNǘ1c?r¿fҹvn8EB@! B@! B@!5Ck~.]tT|ҵl2o˩qz ٫dyŒ

!3ey׮=1`9n8dewv2t),gEL@IDATeۯ WeС[5ܺ {'Kq&4HeI5[߶$18[+7w6^賌-njHƎ O`b+W,Z|jM!'lUUe0( fuS*B@!Lލy}Foݺ[{l~\~yo@ dUsGQ1󃟅h .Y|kI462!6ɩfx @u0i +貳!++Rxu F wd@4tjɕQg%xޓzFZ8cNkϷd=l];08b\rzo_w&Y)\q}v\>%wf_%c kroLP(pgn˔mǞvzcǁ e[#~ lŹ:[q9gTP2yħ+1[U&o˵S4V0KL:͙P{anܴDQ" QfB@! B@! B@!pj! yܹ#~r_NA, ?y=z˄'õ'<'TB#@30 _BMp&nr<3:nUSc.6;𔸍:ʴ]J={.7#:y]klK_D[[la|ۢwmicFR=^|e~+lsz1ď7Š/B@! B@! ]C.1 !X< a _p<΃;5𛠤KkH-t(pc=զ6JPޜesBnWp]̋ZhtdliWQC> c ]xDȋ.y$,؂wttJJ>d }-W@_ǎ> ?\F 93E>36իB@h sժUwq[p筐c'^eEfҬUAI.SϹWֹS>YVEC1{ v՗kžXF'%Zٞ!^:D=&k\p,HzP]ȬSo\Gr S#-?'!+cϽ `;}@9eN8{lȺ:ȡCBK!ۋ@OPW3k,n2_z饐ԧ 9v;B@tAWo$w :9ad^==cf_br^=o/lFOX"7vܷl<ⓟk}/[{9N32w2x[RR2_%g&]Fό*gdV=tQ85Czž35L̷ η5!HΏ!gRB@Sk.m OEL'j9{;rv|DwZ?>O@r9ld(vZH2o6~UXd K)jVy"JZo'yR$ssmƓ]f2á0ŋD!*oJKe=YRL}2-~z^ǽvr,Hc=ۭ0\\㘡ЋK7ANq֮j-7! 8)ߴ4[[@S",)}ana?+ml[ՈٲefUm=}Ǟڸ_]Ro-m~Od&f2O뷭=_[O n%ve>Vtzm˗/$jРAЏE3z^͛|rm۬_3f ,dm9f~p o:Yr\TVZtafZXz ,AE!p!⭷U}Nq_xaAXZKԘ,c `4Ȁˠ#̶~%$0n5S PǽwA{.?O _yHoG5M7ݔK^U1Wͳv~?}(YG[}[ډ6lk֬A:_()@U1B@! B@! B! xHNvډ߲WS1g ӿda=$gڲ}P 7?78y8xXv+mɼ8#ńb Pl6SK Y]FF[[-23[%K538\13=K+lt}|φܺ޾uM{rܸq|gBE!p ,%KlU0\ h|*{&bB(Yk{檹. 2޴FK VI#h^=J>&u_~tۤj2[m^t^NyWoB2f'4ɕۼy3ڒMV;y \-}OFn eҤIPZHf ؘ%j @PB@Q455z9kTU'fT-ӨT(Hąm?Ϣ"3]q >!C*e{ bj%I.8Gj݄wkڦ-/TT{I*(ɓL!|Ao`"o ?CeJڤFh/m$H&Y³hc1?LШ.K= 7M#/B2ϧBAE! NYkri-Z}2x9Qll[j:/IHGٿ}}N?2SgkrGg>(WlIfZʪp[~ٶ'f4]m%|l_6f2BZzSF=v_?o9I.[ \dNu!,kjgdtٶmt̸/?rĉ0']0! v]ZZzXL ΘmZkM[oE+=>#y#'q}cRM^.OyEy:2f>f bD3eGpcǸ/>g~t!~tB@! B@! B@b!~}`o֭C @>䓐׿2$^92$V,LMe^{Iy2]4_G(O}x(Q!DnҖ%k$G0C}^GfOIO E Va2<IFוcY76zILn>CkB=r]O=cs@~3d5(*B@!p lٟ~ȿ{!']YZfs RGSGY8$Lp4J?$>VoW' c_kS\b:q%}yu@w['؊hs*S$ 8.xS;ܟzqٓkKFi$VRjm?r ۭ8fXȘcLn;+衇ϙc|U Eۧ>)XȤ:u*tH|dB@!p& I{lY|ʲ„~z^r߾}mڝu}7g1ϳn(rqe3-[~r.o# %g\iq<ַޝw K޽!=V~$dJE8! qVaB@! B@! Bk! xXA޾>3T8t*h*4=oS.&ѦKHc"f6ck1qZBϱR]ėK2#>|>jz )ߢ"{[ݾc}^oϫW.g;(9*! 8ݻs+kCgzvAsD)}3,IG!pmн m3rb[.Xh@Wؽ{7*H_fvR<>w\v|8m߾\ux/}Ε>>9w/Q_:d}ݰUu*8}La4nH>w Ut*_E[re ! B@! B@! 8CT;aOXɐ##Qy[ P$PGw6xfE0KO`->My<3{a8~L w] knf9Ļ }#/V"8O8ga^H$a4dC%SO<ah ZUc'S@.[dObWXI~3x⭊B@^~et j=tev;q(daqX+kS0 QbFi$37F^z oZ|qzߋ !+R" rͭ63zK%<)s>z aSI^x^y\hϛ7ݍ5 o/ȎbƝ#;9#{n_18M k{( QeU[Qy蝨a`Gog[ߟ|cA@ cAOmB@! B@! BA@ S:eի@mSN6VNMRM`2C`*W>Ǐ=}}/q|. @ŏw-nTB"sT5?$^|g2}{fdkCmev#eOΫ{ܽrX]*B@5ײƷ2WՐ%Dɽ^9$tvKOuT5UĽ{D7|1ٓטl=}m bT5v=@[Wk:Kc&~FKZVeM֢u#@nd+[30kg/_9s@rّrѰMY~=,W~;έkJoB A\osƦ@퓱wDda_ߊ9mMC^:Lʕ+\{Ι0~{qfd_e9|C8HJ"9pn///,.xU)Gx0#B@ #KB@! B@! B@!p"`$ 3b 0!']׽%hm.a0)Ox5]&s@4&BW2~ji#ό&.Z8$J8*)1VB8K/s3gJNa#&-S(l f]\]A6ᚒv^e/\Yw+O1䤉B{I! 83͹/B~KS!K7^mK)LY6L~>DT;Ǔj#ԏk{ɺTE8 $Y=oM0 ])'0gZ.+|1S"9rl4/*^gϞdr1c=iU\;kх "qyZVf伹\Q"B Ak*1JlW;qDxZt)g̘Esa>- Bؤz!*3֭`xj,TD>)/=W^y%d}}=$wBoo2d$~9"/񟂏j:1;MB@! B@! B@.@GI]4cAg.YAkpqmJII8X8\v,PA{Jo ;F4lCkg-yG3_mVQ᥅9}uɁ}޽{.7Vޓ0=W5< ,7wZW B=N_~h;U=z[d}-]r*B@!plڴ 7vGl٧݁9AgB3tk;}0H8xlpz^pm;^cG}گm;#io*~%Pϟ[344W[o< KJ3hWst,r\zyyQE! N,c8`k2zΝLd:I]YY ,ZJZZ{о`u)=?Ao_ΆH#x+uE~>1I_~P8N"z1C3]#V=~>u{F7x#$Wzڸ؋ݧ#KkqB@! B@! B@S1OO>k1gL6NM5Դ!ޖic|Lq1'qoǓy'ť4OĘU$BR^֋(EZL<79TD ߶+qmvd.s>N.~/lQXdxօlݫ-G-Ln48K3Kg~JE! :6 Ό^,,6!Ƃ0ظ}-"Dg|np߽̚'#8W}x[C Y2-A}Q8=s-v31\ZZ5]w.DûL2O}$yHq_4֨؎7 :doy[ :*˯|U=W,B:#B Gs]aR;[}l6,35۷oG-]o۶ :ڼÓ}̶:y崐W3nf_eƧgn|dYgR?KzOlG=O|sۚ}!AxN`9}}{d|-ćɌ׋^N[[ ,otx12įt z|ޞnS??<>el1GUB@! B@! B@!p r\ |'ߜ9,S Y^Aê!ړYg<3N5m-Kmztĭb {v/=Z/Ɔri=dUe\ܞ<3Mo~ `AHq~iHX_ܰڢU5|"qgc/&童= YUl'25p+ge&\hzŇ> 9h H! \.[z!ȳ/6VavOnfkI{8 P i2ݳc}©(H n-aOvmgԴBrl[+[D GHsGFGcpoI͡%e]5i5V8Osna%6@WoC䓏BN`oPmb;rB@BK49s д{4Yii?%#:yd-cXޥM}pf_|:3{wEEœ!D;}_ N}ѢEF /(34xgl)g-dO:fk9ߣ\Ym޼ @._<%FϮi=~A 9^my>{ݏvo/y"iݻwG}=J,,$G! B@! B@! 4bwx @+{¾)SEV2-W5bgӚZcK?3DcK`(w7vyub-Jqvo m1onΌ,+/*-5!gLtWt۽>ti%0<Ϟ6ﵶBfC_G.NJ+o}N7maë{[}f޷]ɓԘhu#k};#[~#\c{dC<H6Vy|g#{uŞG>r][VA=l%VUc+[@ڵ^ϱZu0܄8݉Q2i!:ͬ%}N({K>3=_fpϻMq<0>=q#mda{ਲ਼\JZ|{x>Or9Z~IѝssK9*N o'xџ>l/2?)~o~gn=;;rA 3׵ ! B@! B@!  ?>l^*sf͜9o c~9{/ݴYcK\~L4DIXN'DvPg\g8A 0{Phyp8&950nwcUީ4Ƹ/)VͽƳoxlX 2PS}g׽X`.dJjK"\O$ #YXlqN}z;4dUay3¨"8)pV%۔ٮɛZ%PQ,i:=9e|ܾ-YMMM? 8q `q+KTRI}\֩[*%y1>k\y֙3XB{FuIiiiIS:bT12ΌP3{k6I}b 84wj {wSn]" '%fJ0x>9A 찟m" >aP|Or^@?`GZXat~R |0mX+FEΦ<]]x5sIŋ#89#@`ܰ<ܒ2bxHI2^!Y6,rXh ݪcG\/-ji^pz_n9#g@X06T)-L>=98%G9N P̤P:=7$qHڰIΑ;dHkփV\曻EE)^G*C\N2ɦ$uꩱ\(iVkimlu8>PW wDCF'9A{k%[f%yr1^顢Bx2,%=p)d_J ks-u։u8ɥ幰瑖eO Ϧ)>/sk)XL9 g] xFg})h33Jw7(sE:!~M7 6y5$:;jMvڄ}E cN|bcn"D4fl G7,r"J֭X'ZF%#&_ 䭦RuGpGpGpGpGx ! T{#iD*MmU/$GJr<5dL>49Y2-NA*Ͱ6 0T TOJ ypSz\oZW#AɦǍÀ'R{ͦzE8b "! lx1H: p6ll9Jk$lȟ/􉹢|†ȧ:gF:VpVc0!7{-4Q<{p>k{Y8#dTk|YDm*VT n,{k 늵s%ddzgj٫)]iɜx<}q2W.o㤆L{-)}$L\cxi`LCra%gqVaT8:%l/h22LKőocBkւ!^.v)mr #fl9i:(K?@msmۜŵuj3K_7e[KK.x PP_f+k[ -j669dӒuSL/Ϧe|K.:W"Fј9-FK4RX7|;jC 97oC~1:evܴ>iGvv7 O~ ?ȗ^zIw!I>KwwE^wu",~=#>x l?v `d0DN*Q2~6:{[B?᧴i54z\)h.*FҚFpIA8JSN"PrPMU/D?! Gr52c(m'WG䱃ȱ妕"We**w/gj,^]^irmRYQdYuȂi"~*")GRyxX- gH2 "|HQ1&G"8v~z˓ yqG@vSV7$rˍ/+Y-:N0J}TZ\;6FC`OǕ O\)@ V=9%m {\&:NQ7߃'Nyp)vblZyԕ\V瘯3P҆%Ec\YuL*QKE#Rlho- 8ڸV@7/{Dzq @(3,J+WiC6.Yrj=kB ?39vFJ&5b[ ڐ^5*ɭq%W~We`zNdgstOm~g[=c㸔J %d=zB! v<2PM >͖}˃f >9 vD(~WU[lɱhC?Q36ۋ +yb{η-_w"oF.3ECZ[|֭R\7.of={lh;"}[N6mi9ǎk=pFy۾n:s;vLٿ뮻_^It^:;ɎaMFy 7P]j׺8vGpGpGpGpGp.7 x0fJveVTUQ9Jie"g.IC獒vvnet9:/<77kȮJ+yȟ[R^@ #3Op?l{8!|FkG?QkG{֋\{-}"I`,6L.e3oԴ2NvM"oU]ֆș^T1ӥ*yf /U<mlC#c xqG8+ȦW^ﵷ!mm"%X f,V>eP> $- {7Eo'rj"Ǖ! 3H5n{|YU<ڀ#Ov vܿwCm s~&I; F>r'Eb}]v;J/_x]$ߘ,\ qsOhjE3bde^4#ڼV7oضmH杷^x=;#8#8#8#8#8TQ=0f8EE%Hp.y+ggcaJ{̶ݧ;{1 `?rUXӀ3h _ Ὀ>_m^vY%G@SJ="\3Ѹ 0#f`Yj]yK[TYӈ&dWz[>woYr3부]SMCX$@ǶZ=-m+5VZ m`GemAF'뎀#8KA<ıqS)\XTKWJsZ|h s%Bͩ8d2iiЛ*k&LORc-Ynff+ N?luО7 {YxEŶX<8\بuE5^[dQ˥hg3p?'61ff!y sѨ{TpmhD"yGpGpGpGpGpe3ėiA?tO 5 gZr% *HH}-#ĝ0(-}iw/Ev~3zP䚭%"?+5d;&˓_+}}u[[adgrç&0vpvL[v|Bj" IwL+jv33OGid찮`1E,IsڪK*oc򦾷~9Y{?9h ?#gRw}X" }Ϯ>>5HI-VJ+Nm 9%? %>P58/)[Y FUʅ$DcacV-$Y2<ͰO7h%JvC!okǎi|>ɹ{ꩧD RrA OaI5%56+7m$zٟ~(K5_X8ٗL!91OwI1Y'n~leUs,J`-Yz <_. rOn'i&\e#@ekl[7*Ν;E\zHM*(NLWq}^sϡ5R>~D21˚C9N{\>9meO@g2?OUV>+7xC$R+c\rNCssh YE6!5i4wi׫xBk x꫾MX+2{uI)L3n;}o%7vuW`8!C;Ix ˪6ش C+WYz'EC2?4M0T3`s8/FfX90c{駊֌Ϡ5 3;u?PU[(##1)@$_E /0ÇŒC?.u-=tHrG eU'1涶sa+%a+OVɡf/ZCzW*[VYVki /5J=JSVadݲ/ɧzjh/%mX縬V֗Jn8=XV[L8^Z[[e5٢ZUUaV{b^joݺUhY}$'YyF믿.6\"W GDs뭷j vNy;\Mt Z=ԧ;qѣGu׮]"-s#vݱgG:+bI&~aƍҗ9Ë3/pGpGpGpGpG`y! u>.R4ut'#_ izse bٛYryhAa;>7 0h];D6ۺ4d,.Ed1?cw u YfS`hm.y졁>lW6fz.L؋qrvD`*+:r\ Dg<;>+Y՚ IүZB8W"LJ,\ѺpG"@ (vISe vd%,]˵ MpeVC~Q1^S~,u"7]Lk6 nA!UƓLbU-ɼ_dl|vfD%J.@Γ":7HC]wVԆHbkd怗m2A\X$ÈORo-!5xe&F$ M(dpD#KA@m(nE"ےʂ,?^~WdHFBfJ!jl봱\\ެrh3?)5s.G[ea6m%Ӎ#RO![<`%}/%f6m( SL$61þgFrq?5iuϷ[8gsP3D5GU]ַ|8{x3m ^GX"d}wL֭UzHK+䀇 xk/~㸐z oyprPJ$x,/{rF85'~'?}03]k'l<$bnj!ÀAY>Eèic):2` hn'6${N7d}P d|{ Y`d1>9]]xflh\0rZG3%皬j鍭M3BNeR\6Զ6l%٥ɏ$׏g1rɞ&ߐMKjo xooI,E˰(--WgճNdrYھGG^wG =bOm-ޞk&HFEᎎF߾}҅O_E$u+# s=R'?vD^c=Rc:cc^۾|o:)ーhڵkXdMMH֛[?3ˢܾ}z~Ā{xw%/#8#8#8#8#8U3įST-sM,R"b}a.ߧ.Ts`"H0= hZӚcT*s%?E% Pg< E=c"Fܖ\Qeq9gKEG:W$C[+ό+W^wG-Ϗ rh;.JH\}?{[C]S61>tG`518AP%ϝp\a74&ZĘk{/`pf{d-oFU|JСC|E@V?#E.tDrGpGpGpGpGl8CA)&?hbB) yK}tg .107 XC3X|Sfݯvț6>18k t/⥕"$fğj3C`@ ު,)C@΃e@u5g :0M5dXVvf\S]c0st˶E3$N$̛)/#8gєBi]y1MzK;TT & HQkl r*ZC`?vO[y -6~}xhaelahyy3)>< 9=@; IL(XPAѮ7"$#4 F5"b0BɮjvZ؛}.GsqJ[c:|fRIpcq' )-k8kLd6a?'5O-$kpzLdm3!<7+3?N`tT˘Ys~BGTLEG4a0Ea*a(&cƚUv;b!eIB?W3''#_P᧔!ҧ8c9WZ%jeF8?t|h"{pG୍W%MkYoIN7&ea}qɾ|`Gha??1/;P]Ojv:[C hH]$*1D=0*w_YqCo/xsN_WE2'?Irt>cW^~E$;\vfrC/g_b}8GpGpGpGpGp˃3/|T1GvX>f3b^>85AH{ ? +dY;, fVD.Wh63V? vC-US߄/-s_ Nf2V aNm(˳9EA't60BU+Лh}. Rt?Ytj|FG}`82 𽝘wtyߕ\:#,WI}$X+0amf4:%eȹ̧f5Ċ<9zq% ehEעX뼯N6aqm`j2փ袕2S0/6F i:Xe>hh=ɬVOD/'2ꇖVFjhaw%8OM`'oxu5vw>;C?qIݻEsI?d#ܵk/ܴiHfh3W3Ç}HneeԼ\GpGpGpGpGpGGW)ɔ*fʎitX6wJZXƥ$cR"(Zcs]8#NZSq]r$B>> n$54cizL(qظFpR 94&7'#W:垞 o^H9։G|9-#!O+mM$!3{xgg~{#fBsXq.8:D3./euGpGpGpGpGp. $0/AxD|[Mm$Zei--jeX%ir/jb:Z"ëurzC-!™ؾ4~NT*R'z;8A#$y<18rO4Y%:zI0اH9upHZg3:Tp.qEbeͩc+#ܐ s;)bGpC ఐ ^u-RjG:bOL`y"Aﬢ{C(7n<5u݃"'2;YV ~Ouhe>9/Ut-j\,*N$9 8߭P>/H=vQd/T~I뛣s+$(2Z';S f~X䩑/c|EܹS$R'498#, Q,z_WD2'5YRyǖV+- Z҃^PU`[Y,lAv]gÛ?V?ωLjE\׮]+{YZgέ/,$@τZMSþNâilliYv\'O|R[Dr4eB?^}XGpGpGpGpGpGR!K5sݹN&ɺ4 gpl ]) >k1p4dVSN+d!vc d 娒1]H+ u2 ֧z|@+ϮdJCs, фSwf xUZQ_O+E,USX{'Du)A]$ YH&Q?KOD5 aVSQ'BXDdQ2') #khPv5׈ukpGFdRa!|wő#GU,flj,u䲤/YVx]}:xxVX5W^;:G{>UxÆ JuYc=RiIigD;\YX{g l_9¼O:=~˖-ᙅˍ3/GpGpGpGpGp. $0_AI껌g6> P`Wl;ctʹzyj[VvdlllF }H̸F>!0^~ I_O5a$COWS*G0L@ 38Ge)"8X[{:% )]\*'к7?ov 6ӊgR֗Gpr! 3Xz- Ly:,p6i9gW̓^P%"TUZ_hsZ)]U+CH&}Mpnq6A4 hgf'/,|y4Ѓ!drvgG _iqIŖ8ف]Rk^IcOFvfƒعXr3HOm1|!b}jr8#,_8 INΝ;i&ɤt9keFaV\E mav}CrȌcc؟g6NڐML@Zn1R r?s?عoݺUl|{zzD-ĉ"''|/ txYVؿaU`#8#8#8#8#8#p!x)ҥZ(E<[BiEIP[f OX;h ȴ 9Ca,_Г'ԌE*z6G8= ֒ސlVJ /P5v(R46.[\o66Dˊc-vjH>G^ƔI}!gC:d1';!ҙ;a#.\(B%8="d }rpG`0x9&~-#i GyMͷqz/j_k׏4W`v+`R4ؼB'`ULQSlMNcr&Ʊ*)G$Yh=G!}>l&IҨ- ,̜o*x = ln Z+q/ÃxiGnHkKָd!V<'q|kX5X~ƕ"gg^Et(V󮭜 iŒ:apV̢ {jtE>$šL&5" <%=.c+W#ZP'!79+V0S{fih~l+g$]JMtRJ "|LOj^Gp+>Y\؏>o|C䗿ed|pN][8[b1P 8˾ Ta+Vݰ1(QLn56f֭RQw^ȳ#qm`lt3ߖ:᯿H$s75w-󙀰 3ėIGpGpGpGpGp.<.Cd+*-AJ˼۬RFT#}r@Zj>2ސ̚Ti_Uu`pǕ?%wO, :4@_P;O>89c(׭+_gנZ=LzF_Հgsz \0!\ϒ8GUှYd6X/j [c.c*%ݳ` cW059,]Rf Wr}v,ͨrrY\KtWPS=@K+ZC}{>ߡDqncyN5;ܛ]apGpGЀ(Tt?'zhhHeee"E9XSo5:.xh9k5 v>l\ :e>Y/dc<;یͥ#8oMqժ2$;T&.Xt uXs]ȵpq̃%D[ZV+9/wz)qj=uJzt&&xA-]GvP"β n3_/r GuW^9A稸~/V['_G~:b-:$uf_jKJll11bڰXNmvy}hmdSYp=lzfo'C)Rh (oQF9-1i/;= #'Z%`4,YZT`9T[CL/U* (;n$άܚ"?pMuhOҞҶ.Z_ N3.[g3<}|Ldm ---"=pGF,㦦&şٟ1 /|;"_r{1 ". \AWPGpGpGpGpGpg;vWPD 6<{T`LO_,A@K-4Kq"2\m\TER} >fS.eM3d@jG/=};M{/@ts\WG9f`4؏{_9: > HS+SFu3:#_@*55&w2XdLK*nu"K+z$-6euɸ_g qƔH+"#|E X0G> /#8իWa+@V!0'p-H3k{%*6,5(a7,9X2>gZ$ҪsQ屿!h6Og,[b<}`k)TTXY9m4+WaX$IX|IS -kͨl(DH[tlCY{[H2zNiBc'ObV[[HˀC/#8!?奟$/X׿u9s?sRǯ-xj*x]jd߷adI۾[),AԒ-+D9өl71WxGG="nmmdFx BWPGpGpGpGpGpaν"*6Gid`RdZYE!W)J㹸#7mbS3:)k8$ej2;6`hswz4FѪ&BbҎC" +Ӛs9 ɋ缂/;YDJn 9u \!Ǿ.̽zW*KsLfp2,9N fM&㫬*#mNCrGJ@ UI1!ojI\:"b^uŠ&zg_烝ǚOt)W]q<)N[Zy|n!]tz.+yuvdgbKF>6{a̴4v!.\Ūϐ!"}2/}(Qrh+{EiO,]F?g9+@@IDAT""̱ ,){8|F#8@.A`d+"8 yO!\\׷!2YK.5kQ' U= Фu{jo#QN,oȅ*x毳So)r"׬Y#r"EZqNvGpGpGpGpGpG|髋{eYm۶My/<*STf e(ORb&&[Cp/N=ci1V׀˼v+ѽ"S*y}xWE6y]Z좳`_TFʼR^}?{z+WՉLhRFّC55PFGpOIJMcU"qܷ$;WK}VDUdXɱ1ە¿cS2Um3''Ejcb}6 /,r,Ȑeш=};^g;i[(O-%'aPȪCCLI$#Gw-R/#8Gmo{ J=##|L7w"7n*nݺ9T :%enWKVvZOXY;\KOOjl뫯*E~, gӮzs!/W4{qGpGpGpGpGpz@AH+UVV`#C^ւżRbY9n\ԓ3߆wɰVq<5Wę̡9KdO-UEO!Ad8poT9JI9hQiS :}@Fhy܋h 3,CoI}b^UQCnC7NؼE o9kSC2Y'7|pߢӧ'޵^+[uG~sDpGD9?9UFzccm6cb\:[7Wv,VϺ8YXvϽMtfKYVrzpNy1ԄMDZ_!. \5%jqGpGpGpGpGp28Cz!uKŋ#89#1lnx8vܮ]+YKX%YP!cEBۂu^;KzoI䱃߉+3C{X\ؼ\^Ks~N46^TKkX {`Q &1? }Ǒ'ϵܷ)u n _+2dgKEv)Y,&rf${O}>ȉ1zkE'N~aHa'+ӁuuG k$c+,'4?=`dip4+BN>s`EsO"}0DTY]ʒ#0 9ʆS=_e>F2'j}2U[7ҳlG!VlkkR8#p06e>'~SfU%DiVsu^mCpU\܃6LkXlLy&~ƽ!z'&@T)dR" ma!dYcw%|3T Ǯ/ sLV&Jy2 sO9Jk#swÊr]5qBu%:КeXYI*ˌNa^Q(wyR};yjn3ߔV%/2Eg| 3Q^GpˌwtXcԻE:'ڙU]o&䌓]54+]O6:oڮK\>'Çb==%<#R'˾Om؀\s/W4Wdk+V9>oYuǭf%iI7*Ĭ&A?X),WJJ'! L*:עcFlRPw*pgwWO܋#8#@>ѦMի,ЛwK>}ɼarN#Χt |i+wzOsv-+{2碦-Օ"4bLX_1 .3R JA `jH^3AO kHWyI9Z -"*RqrXOwʭ9(^q{CaSӀnDI͝(Q, tJze+LsU˳!8#"g.0T[9I~#-[Dϱb>~VpQJ/cʑ)ƽ,>^wGXyf:::D~I~sŤd>qÕ+ \gm],R+/=P.q&Ʈ ޽[8qB>+3"#6dڷU@W,}b#8#8#8#8#8oy! _̻^O}I8JTTVQRURѢܜ̣ IE 8D 5>E TT Ӎw Z,('~Qi*^l v%-k "qSo2´Jv0Ȼ_9%r e޽Lv׃~ +E2=22?gϋ.y7  _91ped I;>smm?rUu+WD^{65R3muF ?>X']t)IlebJ" " "pp.8n@ wj֭a 7xƍo>Cg=K9 A|ZgC&u9[_1yKjϞ=l[x1r繝d#TB\ ` K`4S-56:/%ͤ8NK}PB'aeFSluŹo zqM@dvYÍf]k)) MMiqӨ*Vg/ \\$ ZAOi챸ZM_Uf)1(?kn]vv {y9{-8d"9mkdZ9OHpTcH' 2F~gUύ:vJ6bki@yO2^jY38Ax---E{/j3Zsr8 JL 7FU9 7# (ؽn>찹+N0*E&m/Zs#M9:(+攌 [*`~<r:M˴ASjVCwwMρ-vDG90{8(6Hq2qMӧZA `g4Ԧع''8̊q]C!UP}R:bZsn!F>8dTP{nJ4Ԩeة0q#؏ԣQqڊhJa)@0*+cS7GuCŜWF?bxz+" " I!-w2qnښzj9N2=267g:mYo2, y} "=SVVQQN;״Hå??\@лKpӧYl/ j,[ń$$1x5ii{Mc"S([ŵ3?i ^}S#ޝXb8H^vZY.lnd4K ǜכ:^i(o ,BhJ)C!Ahғ{LqE Sqv rOMJ4\܀S7FS_}<[0KoVID@D$_?wlݷ4}(a9Qf~PJycMf;#(z:!Xج綊5zټvNG::" D~Q m*ƌ3xՃtS=i~;m{l?6[U΃]6yt{#-GƒZ > xn:[Lesm-łOO3x܀ K,GUcGzQșl?/V[;k3t#۞{հ9Moz+NW^۶K;Ncj뮻TS}CJF曰{ݶm~+Xj38/[fqţEJ" " "p PMK.9w'VD RdMʂ֛n_N%Nj8?{ފQ8ue7&" " " " " " " " " " ⧗i#HM3-9sa;ka_^ lŇYnWʤ@Q6EI1$ě+q3BNI̲K`Lcc[65~=oĐdh_>S(˃MM6' DT\KVrN la6qYy+P:kQ1lz){:Mp4Md#bI.({&~(yTZN_1:KP:gQ,c|^pRs]7LWmH +ݸ#:eZg*lTRKݔ_ia>t'7FU91=.#rJ^5yNʝd(5 6-GӜEYڹƥ9N:~~H6=wm3eBIN)'eYUNl +9{32ĸ2sŖI?UupFKxFNND@D@D@D@D@D@D@D@D@D`B|B_|n$^暞zk7N)pz@7k~QˉɎ`Ph__R3- Ӡ;9Қt-zMbC6MU|JS3iNyT7~(SЏꪹZ^y&8To4e_2{\za ;,3EN5I_eLz82': |Uq xzccۏ%oX;B}Niz 3lLIIHj,)$i&߀MJtfDY ȍLnIY;>/94͏EnU?ŴI6#eBaO@>Ӊцm EE6/:g*W5"G׀74vb⮵,RlmCS{JU[m{&eپsdC@<˭  U]2v%gcI#(R帼~#=MoUs9îцD][fʲu#oa={Y:Rԯq]MM76Q!ocTZe|%Y9N="{ٱ `_Yva׽ IgQfqB/LSB܌537T'y9Qjrz\\&ZٵbQۦͰާLM Y;`=o|e+g^| ` xڑ{fI]c`y2.!j?r]?_@2h8Ŏ_iMO E.ŋ-'J" " ŗ\g>G`z߮\ٳxp7;LCN"kzOy`*ÀM}q=.f3ow̓<m5w ^?? f{/q8_5⺷Mi[:dL:ڝHE.=Slާv{{Wn^/--73[6һd=plݾfҎ6oRV}^E6R (vu{])z!J3pHd[V8U>KmwbUTRS-~75k/*ĩf)23٧@=ݢE೯~0--ƣf[m=\YY SOv0: .D͛g߈i,~aQ K_NX:q3gggHHa(dÌtOUg%4/(l $ưNM5rYSLKm膭rQkkxQh[2mZwf/ʅ͛jQ7Kts<5qHFC#ȵ00U6rPU9X%$w65XzӋ ZC'* iT:x{a[c, ݯ (U|:5 O@  5 `gZW5uӏl'/20*JbU Jf3ΩԿ߹@\k'>9z_l&>iEKʧ9VbrxŌD_[֮akXFE˧99L gb[,6螭tcQfqҗ]FE˨$YoErAwޡ$R'%:xdlV_ *ߌ`c &M⡯{.X  D@D@N-*FoF[m?揞;=?#!d3ox> s}ιQctSGa79?I9t(-qOF5.t9Mߚja/FK8݀ nud KӧW,+v5oO<4sηU#c-?zQN$Yr*}ݑcI!5VPȬʾSE#yB+;x$,.~g]K[7z >c3xCKhm뤤vS/]j,XK}ND@D@D@DpS֛:Dd#J"0D /TZؗ_yמvsr-Zh~~6l]Nl $O0xWw))i(}ݽS%&ZK4eܓ-Nhiy1ldS≂4 xB ʲ|匟5Z5]ͤiB5UxaTnˢg?tТ:_j٧ZT;@>͆;`$.QcC xULYwAriT1":q{ͱoٍG?$]lHnؾS]BؒR؂; %KQ!MI]G?Uo_dݔ)%jft\d^Kϰ|؋/ٳV|fㆇ-j92b[rleR6V/ynY痄(J8װc9t(KNUAZY74Zb$pJqnؽ`kWX{+`K|HC# 5gum-eՃv XD[rfvq ~01Wln8':^cH~R}1]IIFiyg}6Iv31wl\o~C%7XQ-^XXݞg>[OvwF?tȮ?l977>ӟ<ٞm PAcC%&" " " " " " " " " "p" H!~"imQqW\j=Pij6Ӓ*$ŻD QFduXn\z)G*)cTd꿜*%TiT{%88%I~Wa*"y& (xY6 SMlgݐjLKL}ɔYmOm (]cQV L_J ֺv= IWip~Ǫo*C/SQiv.kqALp;سG04ϠQ{1)[L%ooν3Bhf)D@D@N/>̙aP]VRɔoBB6 O^ҜlMl:˯^ #uUU]],=!#1gتl #Ngl7jѴ#sÒ#>ɣr:Zm[{`a⦗޲U,Mt8Bs0&7 *8!8$[[m=pV&3>\S[ZY0?u4$ZpJ71;C~~F[eΝcs*w#}On ~Boׯo6}vu5sLX>KmsZ+7_<*#19}Y "+0AD@D@D@D@D@D@D@D@D@D@N)Olz-[{43=fR0}ti<뉼lߥ+5C)&U$TSgA`6csWQ&ؘ )nȅV¾ơPȴ]N>|99bƹXDA/F${{LktNY4c|R1*k ؓ=~;-dUiVؕvS*$8J" " c@aA!g=; L?2R8"s,)g #sIK38kڀsTa#kǒWXMǠFc+Ns,)FNww5laӳ? ^[9%Wo^jC.8\ D5ܰc`Yp]wia+e+gj\|Ið vG9?HUF'y蠭`k{O++ӟ؅ *?Q}۝0k]'NU8#3޽{QUUv%o޼W^er^ÌZNxYYJwDezO]N.ѫRUD@D@D@D@D@D@D@D@D@DBOMj1..\omkMufMyePrr 'BޑZR'&X;~ r5/UeT,vĎ#H}zi).cڮNئFi*9,RYTlZ9@i~ר;?cNs &hS-8cR!7u{š#<784^ mQAjm-*45}q=/*2bQSlӜ9͙l?١X rǹAB%irI/ޭ P m 3'<}i!-oڱsUČ[07fݕSL^T;gwٰ .z!99U嚤TnW!.9US *({#~gmǺ*Xix_c5E+w]}ف[Geg+F׾18;Aisr;'F5[j}" vUSMU8ԌSK(YY5[Zjjj38UT3y( p,J" " " "pR H!~RqB~Wa "17m߰^5y0򭈨(,Bٱ'_V'Ŵɍ|QL#4 <@ ?}E.f[D^z%R,>~mz`/CuZlݴSv$-,6Z(ɾALRWoe)!YNz Ά|v Ӊ$" "0FPk$b3W ~ȴi&xZEl3 TY$n?qXQT0-{ɩ![ y{coalo}vN 9RS G7vߔ.lNm85[lA)u6mO77l lE]VV6dӜܙX$" " " 'SD@D@D@D@D@D@D@D@D@D@D'  2J&:N?Í]aZdX28|ٰ(\NS˵@wXLF0H{3YJ<鯓,ENp֕&z( :cT=Φ[P~*5]q--Ƽ"9xg5ȋ'ԋ"IV7C5f6}rMl 0)4EŰa;m=oO=l|b馞Np~xgYa~=ޱ$Ox^ؾbs86f'O5}Ώ.'!q8q&5N]aOHqd,JKO鬫تbpIN3ez+h0ÿ3{!.4=$ 2a 5Upד5Kn gp¹ Q˹Rkk->5->OI bq?9D@D@D@DH!~LTYD@D@D@D@D@D@D@D@D@D`B|~rlԃr##> +U /-n QI#*W*rύVy^ͨƼ*QoX<{hX~Xd㆞۵) $v;"4v`ͬ6e`sr,fbR (醵gA+LÖNnB%EϷjtM-~`yl~ĵD0/x䦩87X.Z.+J݋ ??|P04h;BœƓy+=7M4٪v9cQj6)Κ;ZSc;r`[mSv6 2z\UEɕ 9:U{>0n3/)=a4 {jcswݻa2qt@IDAT2ڵ vƍԉ\1Κe+d*srlg*^CQ8&u1" " " " " " " " " " "0H!>>azL>giܸπj5_ J" " cpÍmCsڳo7wߵ 7~b[!ZA5gɘ2jj‘nv/442z7RxShPzC_1;:]L#hƢV,m_XŰ3`kz`ϮZ O_|2 NU"Znl' =p]AP:*I¡6lOl-TKgd⽂ qj_tE8_F볘vTUUr8/"ry%|jy唔 qI̞=?Έx$" " "0 H!>/LROO'cΙcz $YZ);:;"']`{(S #x( ɉszk'܂ zwFh\+|ld^@+Η6 6%/[E?xS$ t:uQmٓ`c⣓(zl$ 8ޝ#y77Ƽwi.0{nn,U?mmm;;;aN(D@D`((9(-vۜB/7gNN&lZ ]pQ `RGpzo~;lo8{Kp|=9~~ubJܬgCy{C5e4IY-j+FClS)1cM-A`mYČ0υu1$Y5OgEEoq{vn3JKYKi"Jg$h}7u♙vؿsȈ--ܼy3l(d|J}/2e $Hw˳'TSL$9" " " S9y^#@Mc^t8w Mo>оvfy7^K/$ +0VĚ%8$? ⊺fGE p-vvLMO9詢|wvGWnv髺X N!Sl|sl}}!6t"S͝S fxh)OEqc& ;رڝ1Ok*|痰Ӌ`_u2Xwo5k׮ꪫ`/୒ aZV'|yةq6')i)m\LJ<ޜEJMNq6[阚l'\ZscDY55d;.'vu}ݦh J6Wn6% U Яc[qe6Xi-iM«gtnexH8Ux#[x.^lV]J"`ŋ#sIpe2z8w7R]WgOݾ}+?|؞jC]yjb|"P-^QQvڴiSNՊD@D@D &Y'S)u GTP[h)ZkM֢Lm\ 7oJ\ NPfMY VEJ&i 'qAuW{Cܸb˟b'غbF55մ![-D/b#HZecgHr'\VWg1|'vdޞu]\Cܹ>#DOl*yd$hw nMN(68"*Uģߏ|u9*ٷo7ҜQy-C???>DBưIs1@?΁`?O>및<ӟMJ1 [KaQEr"uXv;<ž|?ߊsyPZEYMJ6vuXͮhQQE-Xq1\\16%ݢ۱MH0W٠_=ME̍!X߆=;Mнv,0X뮻CE؏c<>/~v|Ә8J" " coeO {-6O?? kw.lVNl~w8Ә̜٨kY^Vy,jpp\Mrb:8z֛kϵC ޠ%~WA;%̞3|Ocjv}Ŧ9&&!? J +;~b6HLrL9:0gs,'^DF誅Ê!ɑn/=6Z{Λk3>v;Le׿uomofXWZٰJ"KzpRT}}jéA 6R?~z+sǜQ闔>-5 WID@D@D`B||Vqp8^03_w߽kX\&/MK3=cb@o!cMLMjVrX#Ռ>4r^XQڏuِ_3XP;99Go:WPd:aUF0 %>iX5jC^K hHvuvfu!؝Vn?{Ί ` NeO_L$uYYð[l5vZT]y58x$" "p Pe'@{8SOO2/(g3N %j¹ZҀbE]j'licE?-9gk`a]>;vm۶ 矇z>/..Z|֬Y}%/*MpH~=}p+/XJUWՠ|Vy㵗;99Iɶ2gqr'M7Gjؑ$" " "0FzZID@D@D@D@D@D@D@D@D@D@xR8A*2?TlڴAWtϙ[g.SM'w)=l`_4u4/5v܋ 4 <(G#Pj°w~dx;tܑNTw'эvl~)evl_kzW,6m8u[pMZӹQ鰎q)" "p o> {>g%i;::_WWi&؟g7| l^JKXء$*yGs։Yqo#6ӎ46BG9%{;Rk^Uٛ[WհWr幰EEEL\ P͜>SĿҖ/v⚓vdE`$Tjr9Rͪ*[65W>#{bm|޽px <\gϞ [VVl2XrkQ$" " "p H!~kSG@ SzBDew]uo~`험՗;97 lv)lB,=dKGe?f|uw' DSˈriUuN59}O_6lM72T6@$" #>|ݻw2O%ҥK*vsף:y߰ў/owḰ-,h2ee()6;yͦ`Ŭ2w\UA8^ vcNdoc~QGق_\HVoh"ܣx{,~PpC.ۙ(9GpSm]= $or엾UX^ ym DwqW^ j~{ U7ƈ\<(e$h*^q6rOOj@c[Noo/,cz={r w<~(dt:^b ӧOGM%MK틀i# iCfw5赶RCZ,vu3󜢇1L@T aSDVlHYS7|VR*ˢR.w ^]%)PbY}*,v9nA(_kגHÆ$o206jjj4Z^fj%K`=D2 L}qţ?UhWÕD@D@ޕ I=8P˸ .D)ՔT,T>lˡCX7akk,bo_MňLD6R!bb7'rfʠNL3.]E-Os4mTôg0 k:_uDt5rB?`z>m9`W]V)0;IJ[dQʕ1<5<n{Ӥ湖ɑ IEW))v).)49y4]-* %F+F^pV&?>.7A5^]/Ul/[8J"p ++R^}}}ylnю;`8=}+r$wZ,X'Ow{)xNXD@D@D=B=@!" " " " " " " " " " ㏀3w#f ,|I+[<:ؽMyr",%ʹ2-~hJdjœ'd B{:DPu.d̑,_Ś~@Ajy@^e:/Wq KXɬ_;]Ug;6|\ng}55"VWɜYjv%ԪPE҆q$\N%KwhWtadFxP#p۶mN;35u:zm'#\Tp)4͛6'ܱ=q$-J'O΁ uڎ`~DvtTޜfިY3vcK*7,! \QG F2jiL_̈ڠMfvk77ffا6˟67SRlvc+/ZRo(\MkLu-urbW)G3ՙ8xurH;+j^ü?šÞ|̨G>⪘CbE" " ׹" ©Ν;whg}6={?}'a+~Iţ<i2F˨裂R{ +0qQR) Ko3>m)h\%<WZ^K|\3({vq{qᡣF|\ol< ַaϟtiޛDˬYpWU{ vC9XF1d*%&,|w^Yg{mD]$;yWWayw axN'e{;=ͪ.~qx,ލ~Ի>ۥd5nxve-X`w1^ {AM?q[o]֏\gK_jΘ1-끪 'LڒQ]_>55Kߎ2VTTK#wRj(xCrD@D@D@D@D@D@D@D@D@D@DL##A=NP3v 0E_=.=>`~yةS-B4-iCcg/QeYz0l3ߪQ 3?4SPF%rt;*vluE^#ɳsS|> hݳ{/,c/;4ӧQ©dS M][PPnXjd^}! ?tئ)" "׼{no6,5: SdX}e躣f6Yb~<5%61'!8 ]&G{NIގkLrE 檛`kŊ.pN`bddƦ_jZްa,O^#u} rm#WMf$fg.R >99NO?|7b䷌;:i E;Ak^fTuNИ_0jA : Pwo_{6666ێum=prnXS?)Ux{5܋rJO}nLluJ !%*"'+28---䷃_7Q|2C8ԉ~9lލiy E}E@D@DxvϙXQѩ&@M#DDsN:쫯 sV,Y;]| Ar &s/kZ$*(ͭ~+h>h#mE}2HgSNYp to! VT,xÍH c 5m8yD3grgYlkwkXF?뮻S/U KM|îY,xs^8QȻފ{{m?`~׽M9>}z1l^![yr؜,3&f\ DQDE˴9]LN-KFyuAԎpu3Uu}),׽ [[kOQڗew V,7q=ypttDjy q9s&اz GJ >0Q3o>s.r~ w˞[ ؾv47݀Z[wǏH^ZZ|j>w^R]#&;RLx//tI%@55%1iQa/mj: nz.Ӌ3`Cdؔ4'$XP]g<*,bX#Ҭf].-Ƕsd Epuw> oxɔ ؂Ɛ ¢B2'/jpg]SRHpab}``f.6hn}/;=fd-Ε@ru['$y$oTp* O&9=hlQ[tvZN7)ôyda 'TNbcx\~mG լ;wnFX^ՌHN+(1H.s)krw'G u8s E;vfX&8x-$=R׹" R0o< 1?` ~aX? Lb>l~~y͟:vr^6l(59"{X x5> ﭵ :FG[[wF~Mk,Xq4ݢpΜY{9h*89)W_}5K.}'`!;?k,??e D୒~gp=;KOSԆ.]0p#{Z[m_ԋ/[Yi䣏>˧h44g\[,Z6wry<5-69v1s7 F^cjF^K-^Z/.9f u"rkmi1u-]=#^{lU6'^ve @ 5W#P%MW\;an۶ q _ro}[a W]uPg _I&~ySy饗vuu! q~,~m={9=BN;{m{HEE|L>…vs FRLO]EYƏ g?_r_cԤS#" " " " " " " " " "pER}jI8PvZ,~я~9TS"@ -W˗/)Θ1Clmuujg`7o ?-5 ~f-xF$C+Mq9I![Hsne7 lo0~.aw vڠӭgc[M0o۹_t@;+tTRs(S_u>F>fδjj2P_vmjqj]yve͑%30h0"p_1>Q?il)^xȡ;rޝ\o>[=wK>;Ni! {\[RMun*wmXJ߹{k\ŵ -p6P\~z ?w'5-" " " " " " " " " " ccS U89gOE7mhhꁱf*EN|MΝ ?oEOM1paa>lrOJ60yB~[lЋ98`}8woo?r`[mu V8oKxŋΝ;86Q(|-_"޽{S'>qCԉ'*w?!ZsM7݄*9gwp|jB5?[UuV߶))nt|GR1jrQbJj$PVnm\(ĝ*73xsM^bs @=x}]=j/*4آ>DԩW)sW2Q:G_[nA͛7~k_ݿ?֭!ɞW>NJIN~#8GA-oe?ߵ˞pW qrcOdZ_1@$cuu,;vrGU{7aM3hrm~ӹʢ> ֧*Jp zcφak,o`Q:J:%8 H!~g0U#I1V^2~huڻwNuwlۉ^^]frR,8_.Jib}BN5Tc&,=ݢɓMqStEɲ3fRF⯬SQ&ߏ^uW^y+_ ,~SO%)@$"00n299q_TѧRo"Dk9W^iijnjizyζ;f>󣧷 ~?`R #?=">f.ħ$I$PIN]h\Fu:ᬳ,6:sƙ9$&UMMزeя~/r='?IT'*B(8֛wK('c. GmrVԄ;h|V9,fĿwcR%~g|u"鹣 n-'|@_\u +l߭ܿTܳUkN[_c9gn˖-/K;dq[PYI@@ q]" " " " " " " " " " ch'I%mΗngQ8'%*LMwgg'v3TC7LJ_dÿϠYY%obIT9M*#bՔF!@ -uWeSbWWn~^4"88p>s2۷clQ-٤v-QYN ρpF+j:>]J 1'bEIua \p_g̴-uXƕgI갅 gyFgc~֌O+b("p4xdMީ N sb}1&O#;}-OGoG}֡e~W+~cٚ_~9d4x>wy'5k^|Ű@$"0f P[hOq273ݥ^ 1{"}`%(Tٟ;}ՑW|`CV>|r袋P'o|gⳟ,|ggdvUxxshw;>bNwOq^E}*U-SZ\\RYd |}[{Q$ׇ6'hP =+W{8K{${fI{J{R•o~j_Ԃ ;wµ$\SK}`w}7sD5\)*M(RO['+" " " " " " " " " יGws*=k3g7o@= 7sFe1v^W˩zXT0&MPsFݜ5xuI~\PtV:էs:\QGFUƍ*3#f}8~6N;$Lu9'ν_[[KK AYQ*ę;sxgڎSV clS+ͿpwލAi΀GѷS7͈_C9a2mn1F?Ï-{.AyOXc޻J;)')ď *"@ W\PEh"=î[*KF|_Q[ID@N>FBdǗ_~>쳰?a;1@NcҪ4?k~.B!Tswş#믇C|*($\WSU7HQTرyX=Q;;>쨢"g|sb W- 3< /r6ꪫZpG-2'>."D LAi|4\rUx=<H|Hee%*|s)?!kK@8gSBVDe%SJg̼k!N4A\=rFFiqj}¯lWS9%K`%%%$y9$08Xd^RTD@D@D@D@D@D@D@D@D@DTBTW" c5 !߁`__3&oYY|4j1{8%---> KJmm-n 뮃)V׃"%!0_QRϟjƵ3l8-wva:tE+7n9|rZm۶ 'P';w\pl2ԌS;ոTRuׇ}u*2DAvZOsex2nxFFי+ؿdcspcKcsXx, .:~r'%{O#>|' 9s 3kJ!>>GD@D@D@D@D@D@D@D@D@DB`U" =f|/| 8>ߊ?kas ._AIDzs=7oڅjoȡZmҤID@nFe|+|{߃jW\YY:ԏK[[[aW@jZ*|&"g_EʘL>B"pb0&>#_G?BPWWW k߶~p>eu㫶T {#WJ8(? .!gφKa?䓰>,~XGߛjJ)" " " " " " " " " " J@ c%" #b9"H-Iuu5 M50TE@N(*b7©}IU?'tjL&ƨލ2~9305O&2+ӏ{rr2rX}}=ILcN9a<Ç-pSS,ۧ:t^k)I ^oҸ2d|9+Mȫο^5c5l!ؾ(~Ccw~IrWW, n@˿yWק:|)ъGRGp:LD`39K.SO}ݰ֭6mg>X>GID@b۷oG}>+_ /+;`&(D^lh_:,Ux?O]-~cUp%1Bz9s`TԖr^?§2z-9G^ŋÞuYaxǨ$CGu>ȿ`/_>d\%Q_[_cN2lⱱ۲MdٱԷG?~gPa K_e$իWg_p)чwRwv:RD`BɌ.:k,5k`-[ر{]d y`D@F!PUUR*}Q!Nm8h_XX|4dQTq`,Q7JV\dOa^{ m`Yh3f@%kHc5|u߼Kp9;38Uك|&HSx\OHN ;*M(;wrC=?|g}6,C^3m+y$u֯i<̧?#lѲ>[-_r%7yR>݇> ::NR'@." " " " " " " " " "0>H!>>>'RD`N¨?>8*#ooXNQ8c8ݻ >wٟ|ĥ ;ފ) @U)]?,50)O.D4R*]ԌىqVVV§;Ky466¶NRQQqisTgB%\}ܹJks2^:h_/[e~lGϳ9xX:#ς~~ܯp4ƿrcD@D@D@D@D@D@D@D@D@D@N)OJ5$"0P5F̀#nڴ nVK.J" >S | s9~vv6%PZZp緒;qsg+V 28J" 5TsS=sL𕧌3N%,|vHuufp@IDAT5j644n޼^텥ޖTG)++C>HT=ŁJcM~z?),_Ͽ+ў8.^!cOvR֏bsqR5ĖjY'Kߟp~s>?ٳgç~}ccxD@D@D@D@D@D@D@D@D@D@N )O V5*"0qlƺpTgR|8apҙP hI`@h"XJ-T׌2bxff&G87nDUӧO;EJ" g~߹4%%g{jTriKK j25q֡"55-5O9GG_g){d{YVUi]s9'N$ J%ǀFGG1|#0 d(A@s9Nݢj߽^{߽}P+jwVgϞ-K_gYwҥ{tj=; SF'Wdw30`E!?^Xqr1̿6m뮻d/cOC %B|ʕGS?d &c;bG$td(KשSjQq',;VG$ "j5 e."4>0Zr6܏"^$P7rj8Yf),9ygH7hۧ^\gF%xۧS~9ӧOW_Ǣ*-Fzm׆œN։o)mV7os1000000000h0V7Z68 CE)o|C=w!XK.E70#m۴7oҗ$N$TÛ o&L $'ۿi/{뭷|ʢTf]O}f&`$qK.3fŋՊj-\P5oe>Y|#GEzǫOTul;*h^fΜꫯV,wZ1ӟWX![8DՅWҚ3U33}jQ֛{,xK5: zLp w3gY&}oL@s7tPFwJǪAw f^T|zg&`GM`Qƽ(}vUbl/jn*KdֽmذA5dG̻Љl(ӹ5OsWxnV-{a ½a&繡5Fٳ:Kvܹf6G?W\q__ɞs96\(O\=eM?d/rYESJo&`&РҥF!c5gֽ̘qCq2ϛ7Oϟ dz!m۷ܑV1B1qȨǏV(VW_}U#;x`?N7Qn̫!^0`jdMxUj7f9'|9*c9In̔3-*+KV㈱o5+Z8ZU)Fb8osȐ!r֭;NY[|;Q7{*{k\Uwã @BA: E'=O+7'<Ï8j)tdf$$3b-ɶ]ydhEр97nԴV^-n:Y Bh{T0[2 c#4\lٲEM(d9g޽jݱ},+c[]9QL|㬚o u6ȫ5 {-c$J O,(1-f F)Wo(q} W%>%K{D'`xYLLLLLLLLLLBy A7[Cao~S5_Yr_U~Wٛ @c@q=hf͒[eɉX'ʒ3*hTL"nʔ)kjnfٙ3gN[[% [T%ù15*Q肂+-?1yAGq([z{E'С.BY+_Q,+G8 ~TeBQ{P0000000000M M㙀 @x~SzK#j /J yo3֊ԕ&@GߥKjj7;j(Ր=LyuLMaM YG\de GV'k}OL m)f!w. ĜNtv1GոQY޼yrG\Q\̞V8߿VxBo3]y+[]_B-7Vc'O帷1>bWJݻwEeO qAh FAMLLLLLLLLL7+7qg&`u@,O=*Iw;QѣeO8rOLط/8xM7b ^z?޽{ɪLj@kԊ[dڽT?.{ˢT 4Y܏p|;cK|;Q*S@Z516ٳgm޼y ,ݾ},[&L#GʲʖQ&˚ 7 {I'4H[npS3¦>Z [Z) \flԌ3  #ߵVިӝWjuYeԩST|; M`֭r kr_jF!Ƨ)4Io&`M1rܖ-[&Y_TbԧTFe"R @3%ђ;V2m4YcmV?ʨ9Z+Aii&[V$'jkue.9Ǎ';sE ~W;ws6d LM9 "FsrСQ+MLjGqʍ}N9_Q#GϨ'JD7q"rbyo!w3ϨKeO<|(4(+ 4V7o00Z Ĭcƌ9~_ohLÇ}*LM@?eB́Z__%7oj; p&7.:^EGrJ9.qiӦj @s'wzAKkt;vP= 6yfYt\-ZH5hŦUVɇ2pEWQ"X ڬ;d>=>ߵEU28=W Ν;ǦR|87@iz'[)xs]DD7_|>k>+>CG0000000000ho_h&`=z d+ɋ__*Ss-O|B70zXt<ׯ_/o[vϞ=SL=3eߥKo&`D9ϝ;W1gΜ){ˢDuae LL$7oTBMnd G3N… E'}e}QYV-^Xe"Kˢ&2*B5r{SΝ;mɢKTF qP}+ZTm洺%wy2XV#'(ghc4Z&;z2ܰ|1&P!OeJ>FOʴ9PEwy^_矯2yUvX!~ {0000000000'`x ԓO(K9y3%KTF M+(W6 ;BBj 0h <7@CZQ P/`A.iС$Qͻo&@8_s',PrBl*@_Ú 4:r˔Jz|o.\Wsׯ9rrG"l۶MяsMHsVbxnprCkr޽[1u d̍9mgS`cZ:)\MC9?[%u\#s#+)ȱ5[D|IOk.]U4hC=$K4~EM MLLLLLLLLL +ě7y "vlܸq}Ng}e*N~/}K8p,FU֠ Zƍ7ˣ?>(ͪUV*A2)QR B= lݺUO?OSE^kdG%{ꩧʾ L \gř5k, '?aT|; D5.?YG?Qq'k?Ϟ=[6l%8e59 &ȧO>SN̪\hQsG@.o0m4B̿)Ka^EeR"ڽK{T[}kצ*+ q88V'jݭ?㌨|+0ϼg>ؖI|+'EMa Dݙ9*0}VL_Kvm_VXfuvo@m&`&`&`&`&`&`&`&`&`&tX!t L"t=TɼQgC'~В`7mڤ <էfޔ}+\d=<DAA}lZhP|POM1׾C{.l&~яwޭTӭk*jᗓ8(f_x/<1#{ 'Ȟx҉ 6\( fYDO| dy}ݧ29g̘2^9$LxY8~BM.L'M$VvF*O)ϙ3GGiӶ,y˕d]6Q[5M1Uel{;spFҭXLژQn|G|搟 $_==ƌcUK}qVW+yRAu[U9rZY+8>=ϼ!joi&`&`&`&`&`&`&`&`&`&X!OL2a g& om#hц;wvw/_\ ˒ap*Z _FcdQkjTdZ`OV4ߕiѡ/_V]rNh7Fr^dGJaCv{*j4ԥmB‚T?<eяGhFXz30{3–Uzlk֬Q^e(u@UU(oofС̵z}ANjlydj>bx-ͽ z,Z>5T{%R!?JtK=tVeL5msƳA#>|nru͡%`h&`&`&`&`&`&`&`&`&`&`MMLLi3J [oUni>1ǣj#7JW^yE+8OV|ڶOoԩS=vr0عKgȢ@=Ѫuz V-S}/#V&VfZY}Iف|m{]dme׮[',ǓzߞϬF2r&{챪A?E솪ewy}*'.;G4hjnFى'B CQ70hD935ط~ʬ wL*zs>z30xSo.#*/AO͵(qqwS+\Uc<f%+Ck~oo6?~Z2¸\gg漩9䳊I[~_/g|ЈyRecTUӃ5b-oJ N7dW ^AxQ>k A1MLLLLLLLLL+ěW 'zɓ]pd蠗.]֘'^qV# 9uǾ[ ek[.TJM5 h«ģN=-w޲Stٶ5G򧧞Qޭ~Yr#q*O/E Z}9E?W ~_?>z؈_?OUp>.[L'z]ށH[.P Z (ݣsLj}:EObRӲUŨӝW}8sƥ={%;|ۮOd5U[^&`&`&`&`&`&`&`&`&`&`&,X!,&OL 3:TxF͓_=eС,YS^zO*p:'FP1CL^6⛲\ۨOLJvɢs:,4tl=daҩc[:rz|7Yw.G+OcN/}2 ;w;v᝻vm{'w߾}UӧOYԝQQn|[FI;r+2>j(gĈ(%948j ph-X3qD1A3;ļ&`& m۶p[eg͵ű9sUL&Dx;ߩJVj瞎sI'cIMfx}ۯZQr>uuSw+Ol͏kXm̽6 IYb7+H1000000000hoߏgg&` @O/E0aYַ2̎?x?ꕲݑ!n*__F>ujʋLF.\9T^dʕ+e/R1cSkY={dy~*5㥿o'kb7?bݽ:tHzpYgU {)K-dwn)ߤܫVg?+ьhL͢E4W^yEݿlІk_SI'${)/<ɞ]60K]G9{v,|U3>gO~i:/yL [(9vUڧ5lqg+Psu5s=K.-R!Co媞UAx~_U~3YăƍUwrpWTelT.B/c}*Əq'7ۚuպۤ0ۻwoYp1ݵykV7U4000000000hror_'d&`OzU'ӟ4 dWO_SرceѦDhKzhى#s3i2[JWGgG)Rhѳ*NX0Ϣg~ErV[e8h`Μ"/<ǧUrY̾@R%'=ѕKosCU:$zn޼YVGJ. I8>3o}<)e>V+00000000008*X!~T|I0х]pr2eW_|Q6%–-[ʛ>lQOzVv[z))I.]ڵUe$"3 ʃ*}ESjjjT]Yu*${ZckePOMf ͐4ΙK˖)k؉eG!{ˢ~U^t,j&첔 oaC1SO+dz' :%K+{뭷ʢ/70hXN_2_ ,e/Ɏ=Z LLIR\[r;w(|bn胲xժU\l,+8e\%2Wu뗹n2('r9gH}( nMr2=9_}!iޟzRfUgCke‡f#}l޴[B: @"`x2<0h PlڴI!Y^'Ykr _W,_~h[~ʃCG=vlAd!޶M҆U".~*Vo!՜!~kݞUf `mܦm;:Ȏ;*d {Ͼ=yeglnd MTcC*(QvѱԄq޽{R_rsLH(X qU2W>쳲h9"azLLVIh'jZ;U/s~\[= 1b*EP&r4PhY?FEI3ǥ2DH ޕUЭgǧyx\2sw} ,{FVG. ?bZ 5=:/,[+(O|BvȐ!ogCN>pB1L}d٧~Z_:NCpC?rM7sΜ9Ku~ 5l0ug>#;qDϡX70B!uxPЎ7׿eђLLh{jEfQ\m캝=gV:1Lʜ)\QcS{ž_V{踏9ꪫdO9ɓ'ƾkPڨ2tޒ1ooMLLLLLLLLL%+ěI %@N4ϛ7OцI'u֭[NaܹА38m_Ty>=1>fj rO]+x*d⧆{883oyVdmRVӳbSO)g%-"{qN4Ix9JMO[V ciC|hanL0A{ԩSe!^ U8vgƌwhi{1TFMLLj9цVCMe2qv|mAk:9[\2]sZ{9㬢gT[Ϝ9SM?,e|5רk.] Ir~L#Lt{g!)"@kתw>}˶kWuUq-p_EtPBPt0000000000&M &xr&`&px.*+WFM߬]jQgŪ'yPG6 %k8?-&M?~ٱɞ{Ṳ:wɭVV=ϚJ*IvUI?mGZz3 w*EubȬԙO-꫷UͧEeYUS]S@}ַʳTjYF$.ݺ۔I=~RRgi.9VH__nܴQ %H=.YD?Ȯ_^v޽Сʨ*NSQi=GZ;wNϽ @%# }k|~j8GH|[08zp7btyZ2 eGU}\Gx>tǎ54qװ/軹;PCdg|Xsʙ'xBe#dSyl.>1'8rE[[Kʟk/,WjbdhX!c?<= @#Bo&`Mx>'6Ƴq˓pl|BsG}Tq6l ;zhYzƓvk֮Q+?}dOxGIݻOo6ʢؕ6Vi [PY^)V1j)p&| `:)FOu5FKUܓZ(x.Kq -OqO>ɋEYܗ̳0*CoTo.6N=T۷암s^#/{1ce4AJ@~c7.8=AuVUX*e^f1'#;ؔzAh82j@]\mE]sCR7GsmU>0TkgoS]q->Kgq+ؚk0E>"5/5E[E"h~)'`)cˮXWˢhӺʼ#e G͚t%ǧCǛ @pN8QqUfMZŹ yGHTo4{ F h{?3уOr{|+Ѹ#G9wyOjkꝳfϞ-bWqD W#GT;v~ d'7oq ĖeV-[;#d.9s'KfvF,͆c| Cr ıO X!^V4000000000ho_n&` A{cQ<''k۳> (x]yH'M$hܹ͘sU ڏ~#[O{CLEﰿ~^F5VOSSz.꣩U^E4,kgU[mUR1jއ^=RbKѧ\k1b,ʣ6յjqS>g]t7M٥~_E +TYg% ~܈rf&`& pEW[oU__e}[R[nQ @&Q߬^8X_̑ΓC\R@zϚ5keoFY-o|A={J~5k,9Yy'QNn$"1Lw 7|~3ٛnI*`B-(į *e} ^:b׹2b/ڵKak?!+LLLLLLLLLL> 4 ~ccQcwoݚ2mر*VqVM}VWz>%[޷H8zIf;ͷٱs!;fٶmS+˶k.GrVrGMo&`&`Gl` C8aBzg0=a&`M`щsM5mUw9bw޽(qݺueC1b>q{Ayڤ1g0}!Z".1O_Դҋ {2Z1\VG'bPe+yTolP7ԃ@ԣ]LLLLLLLLLLLB}c 4*Z=SKs袋JeQM^Qedd[<)U=5yl}e{Iy+Z&Á*E*EvD?r1nbX_nD#Ƙ1N~ĺ[(1f/5F3O:tI ] |3W&c.\Psϕ=d ~O?t })r-3gΔ;iӦ˿-[d FƄZB5!$`!P&`&`&`&`&`&`&`&`&`&`MMLL (y{85w[e <*|vRVv!mۧ-Z&}1QWR*TWɪ)NuTf!+@+ ?nSCV_h U=؂+Td͵<g.3cx  |8`2 Y8(Lytnr[_]p/)ZJ\700CNڻnE>e.K뮻N^zI֛ mȦwʃ\$OGhJpgL/֨be|ootRYRV%e"߾}Y7{ 8PǏOo"S63aTO /wqO(oܸQ6ll-[ '赧OןDqƩ3|VMn&`&`&`&`&`&`&`&`&`&<X!<'Ld1yϟ}Yj]I;г_1v2Jlע(h*SnYbCES, Vfǂ0p:Z'ZPsh11w3QSݿ?]Q*7KcۛʐUm۴8MJ_DInw2w[N,\ fr.=z7߯8}[m4c=V?/Dvʔ)^zl\=LL!bhY݈֘zlTHEΥUzeⳎ'*q?12kF'Ow1g7qВOQ@WYUզRv/S٬--6?uyygQg(٣'e Y|ʑ,QA^S܆'jzhGJAs\qX!~P: @S&`xSv<70hx&l[v}1iy~PfmenN.g#rh.Tg.ſr*Z#R{6[j[8MDC>UbPhFl$%kF3; G I_sUd+!QLLZnݺiÇ˒?+e˖sβ 2:J C+vRkԾڶmT@󋪺.sz80lT1|=3ܰa/_^1>WÇ W%6&>.8X oȱoL/tܶl"SrT;0腂ݻ7`A{1|SFMm mohŽo&`&`&`&`&`&`&`&`&`&$X!$OL<s;{LGޣGg R+0000000000h o ߂`&`G sk{Wy;Ȏ7BsהKTRm?:4xf7l:* Z䇹F̪ }:k {TK|U W q,j0th$ît7\vIW{n~3fȞx‰LL4W_}/,jwܿzH׮]e @s'Uȑ##DusΏ4br>d 莱џ8覱5̙3eY= .8(#<>qV\-T5Ok9㰏?Kﴘ0a>={0f.3q$e*6o,QF6#`xñud0000000000&D &ex*&`&pd ګm=g;LvۦPzT٪!t zK>D]yA^R[UQg_.H --ƧG ]6he]&HVpU"٩KZOж};ޕr[NUO~e۷Ok 4ڥ_,o>uћrasQ!Έ'[  c&`&`&`&`&`&`&`&`&`&`MMTLLc?5gl]dGON8w7|Xv2e>6;}~c:u,#ٳgOJٽ!jCnp6dg?Yu2dHiD MMLLLLLLLLL+ěI @s'Sq2͞oޖޗgPܫ/}{"-uEN(FNlMb7gѿfb*~o=WT2ڲcʯJzÓߑ,IUz30hB}۵kfBZqׯW͂ȢÓ,1[n50@OtD;wm.i-khWf9BҋVraٳGA8r.^Xe^jj:wJoaKVOqpv͏ɔԴ҅u#vCݬ%?~'͛{9:t(yRY{ >:t_Ei MLLLLLLLLL +ě7y @&@v<ӾrŲv1;>S=mW낚C8l1 [j z30hRF>|~LZT'tj70hFǗ9mޜVо ӧⰮ1jΎsDE{Ν?#߲w}l?޽{1SWjtӧ~ݻwEB&C}gcD|7zR(9o^3*ً_|Q,y9y晪A}O_TތCk5={v[IwXo]x,}N>vXPVa `a!LLLLLLLLLLx&`&pXdb岭;KISЫo޲mzz3ܻ吶༸?Vf>ޔuȚ }ӟuתOR{B8CBƪ  +C3 dRlJկl^]euM+/Kהhaћ @!svРAԌ7N;vȲ( VT 4q&ȲrSl2|ҤIΎ#GT(~g̘}JVmR&c8߿<ɗgH,LUұ5_:ǥ5_Usw㠔6oRwA#Ϲrȱq۶*\Rνz嘝BBA: @S!`xS&<0hoW߰5D;eL#ۭO7Y-R ,<-]W?=W}[S99Ы|SVG'E*nǬG,C$F/ck{ZsV>ž͑dEL̐}Gdg4Sݻ LL&b6꫚^+;sf:7)ۻwz+ F @'.<{1Yirhe16_O (Ya.`/r߲e֭IL_l׮i%+u:v2[Wlş|(sNU1~h [*[?׬Yμb5 3 8O!$YY۠]#W!";M>e&]d=?ՠGخ];pC۪UZ`j~TCn\+› rX8g_.Qv8PfQk83u8Y{>eS[nĸ6 Qцqq7nT,u+zd=ǴѣQ",3Avmw`gx`V,_!& z;|4S2YӶX!plLLLLLLLLLL B } 4/֭ӄɼ&>;ul)3yUڂTzY={*I3mKR]mߺCv綔uj&+۶}v퓢&uVu<H {+&u<y-SvF|T[F:&RO9z7Dk.f}G9xS.fqﳿh5 k{Wwʮ[(>X& LL@)9tPC=$('L2xk.]tҮm-uI5MWk{|sadTV(EV/ 7x 3f娅zҥhdB<*r@ U,5 ʬ!f,&G6)h3&6*L'&*l{'O(#F[;k8/DVxƘ~ˁ.Xg :qFG>ЬKMG{M @4(K.6V6LLLLLLLLLL1 X!ޘ= 4kw}?k,٩gM4fl.e[NQBBnbLlPB$e4=4ȭ?|i=.l 됴Tǝz?ʶtm;$]UqX-x1k+\ZodJځKWN{t١c^+e۶t⥹},o.FpׄšKصH7Plϐ!Yue/jWdzN]1417N?I~V֛ @s!ք;.o9WNٿ袋d'flmӦMnqܹsU^jUaiĉG_9iJ:Rl:]t]m N;gA3ߺ9iQ nۺU[l볬 -R̓z۷jN>dYt8kJL@}5hw,Y9>_kGew;9*Oſ7(wNY翾@_i+LL{ldY6jA_sk4ae۶tMn}z 磭ے^{Ǯ^}˲bS c*2}mۤ-SgغtR25Yޡҡ]؛eoä^o7;evfٱ3jtmZnʨጦ8sR9{3oxG Vkoz|Xu^ǚFsE@+m#\͑*΄65d,̄vdu'8?$fǢŷo9?<LLLLLLLLLLB~1 4M<'^$_zE}}}&t̹%+t!yF18VKI5l}gd՝m2Ug*%{R3稼``@RL| ;Ri ;\H ^jR8|!gGaO!d'^&ǁq)1v+!{ұHeW$UyѲP700fA_٢?~ُ}c>U& q]xb?I'_"ҩ:UZ.HW#F:l, Ɩe:UT$*SZ_f>smv|4d,k +8Mf\l;p0]ܙXvlK 椫;/ʯIHenj# 端Z^z>\֛ @2thϱ}ߟZ &{Fq, 5rѨ?F 8cş9җ/ʾ??tD& nr(mdU3{vc;U ;G$[MkϚ5Ke*ḡ?餓TVnGZ#H4O>(ӧ7K]z饲jvX!~ {0000000000'`x 4#A9sfs޶0|lǮe $]ҖdHE]R|"[S3RBcML!%/U/=Lǟ=zl'Y}dwNy9;uO%?Iu`_Rm/Pv=TumBGڰfzmI-cSe,Nġ5$_E M2MR]HwWy Ū+N1(֧J+'~ K8R~#GTŐ!CR700fE^ǎ)S6 etdGon]֍n*;T;Ul_}5;TޑxE^rNctҹlIOMn=UJ6Iٝ][1v ֊|U-Ч󞕱-Ҋ|t>N=nj*oIYѷeZKecǦ^[ɍۯ_Q@ {?T߷o_GyD|X/*}J ^xƾUŕ(&Eښ||jPs A455gq9^p娻dyCI&!/Ԑ˻m۶%L=y3<#^xAg}8x2[,s#c8lOƍ+R[#Ս8 m&`&`&`&`&`&`&`&`&`&` K &`&p ?1[vL.L VmRMQ[T.lmQ}(zd胫׮\/>r>%ohR' ;TM$hGEաc';L:mkȲ޲So)ݲUܟi7ݠM7ʒ3x?⧚C B8~q̩Ϸ濑ST;v ]?վoU--z&j~m;$]S/L)tvdn֭]wxݺuӦM+Yzx#ł ׿5kdQzz{Ng әK-Co}֍ը'||G1*/cѣeyEK5+G60000000008?= 4(~wl'5j-ixOÃe}7( Rߢ!jSfWNڳ{ʨԏ?3i.`es˦ضJ*zaljam8+I5F?4SS͖mʂ2U^ |dՕӼ'[)ڴK QѳzfjowʖzmJ=U&]/kgqƧ5P96k%}';l0Y8*x30hD!rJmmR.YV Qk>2{d_Kv & {%?-&w ;WO}ҹ%$>;j}-+:''-&u++skaa(,\d'u^n!{ ˱'+eϻ<ٝ;v>͟+cɒwĈ*w^k]UZF|5׈… e˾ű?,^){(e7+ >\7pO>)^˗/W#[٘C\qWx95k][΢4hxĀThk}Nv߾tĞ5k쥗^*{9&;oϊ+dʒ7y[>OLLLLLLLLLL EqML${wRC/^X^t#i:XMRp e( kI4ZI*b^ҙj;SiVMOS:}ݓZAREe[.![T Vmn|͊G+Zg='}ScBV5X5l!#lm)L /ۋ6-șѧl+ĬP$sfHJ=闰{NY!]L|mڥ<08H_ 17N)Qnߒk/%lLL@yWl2K/$;|pY|?NrH4dgK-ݼulOt=v,gpƔǜrps_9s:6ݻ+/:gr pIRlJBT)VhqUV\ߥ{پQPY]KWAk6$;7SٛVMtd#70?;5%(!WUTqFYVWp=m\_ŘEqg̟=|r@>R{hQvOVL4I6j!kВ3+?^]PVp'YGx1|vLD[lE&."Ռ5J^*xk"MdB 4+c H'Tw86_H`eN*ócڟܵ;=Q\Gڙ갮'Wd}ٛ-(~?| P!IHHHHHHHHH^%TJ9 \\.)(6]UliFmӟVsE"bZ(k~IrhprbF.61Y~9)|ie;i(YKعf B ёQlE,5Л'UMW?+:o:->1QYVӓCC<:)XtpEtSY6i0^RF)2xHJ^l LM>PoڳY}M?(%L$@$@ˏlG>"f G}TgŚ^5J)M5"wݱkػ߃tu~c ׏^'6ŸA5=9-Wb3߳bz+Rj\[lIe66Ox5Vy꽎4[h-0VN8{y/@fk{q7$a|׻~N/c7a"˜Yo-F=:/>ϋgO}S7ݱY|mc*ov. lMJlfy.coGz! U{{Ї>$vfa?ΕH%@E{k81          ~f"  EX?: vƕbz6jZ@3$O9¥h~-h'Tcܲ3POy: !)- E_ Z70,sbgg<=:ԯ]ĖAMS4n\ۮOpJb[ڛvl*X&_/F}jg6 ˫qضbA* By.,RtEZ;Ėk4팾cr{v~>QieQ +-صe5GNHHHHHHHHHH^2*_2Bv@$@˝FI;Q8m[I:-2Œ2:.}'/4|.' ,dRUgU7Bd)|]AixSbg+[׀҆]bM;>YSW uyM'ŶFc/# m b}G)YL%]-ƶnoZTе]uǵbk1s J5~J6d7f{~UksџHHR$P_=[fI l_P|V#X~O+k.SP'ƭt*0+>ՎIlYg2.48lt[_ mV6(V<<A<=FVWuZ濈_ؖ#vbM-.&l nBvk.?#b?ω};){[V'nLpoZ+*Q$롘ʻX X{F{#ѶV-S/G}TC=$[obvkoA %D2 '@ż@ xrRԢt94>% 聊ECL7d$bG_+f{ZlC#ޏԄ_,L$pYz,V5أy(yNcА^ՒgJz~} />%ke#L0kjq6|`o7l/Z*/Y ; X~,SR&u==2DDEVUI!keUO3~MkOL wb\ln۲Yl&7+6H6lkDpbY7ݠyIE=+rJI6qH#,q4yG ٌBm_V$] zYm0OR|iR*ψOrfֿRD$@$l ʵuuu?-vlrL?!;~zqk6QX_eJΐ|[Bcr9]cfv.[pز:<-4i dp5ћNʃGi]suUY+yޅ3ic7#ZoDIֵ!JNݟeS)Їž]n:  \L7IٳG//?'_%6mk\._65_^_H N^G[->_~&b҄Ot}DZ'N}ž=kï[v2]BnJ$@$@$@$@$@$@$@$@$@$ P!ٱ% ,{mW6%4v 1>q)S'V]r;1q_V/V+g2C|@J24E+ʆ`6\=* ]nbR*f'kM* ӆ:+7<- H߈'F@wX?.KI~E;"U#x27i}R)J|[ !ČgURxlo[ׄeе%R6b}Z|盡t,)g>^'6ϭnrgfprZ  D8 ~$vh'KIfPj7b/W,%6Mʹd+B^%o#Ļqcb*[7-78dpW=X.2CWպc={7ӟ?_㗫VړL RԠܯ BYwb]zXeNj wݒ?y\lwwo}[b-uk+s,ESI7c\%b>.hk~?~KR΢[}0apRs'm޼YK&@%}8y          B|G$@!SNLNȵoI+NsKA% q$@$<تjW"W>oŶ;Q7}NOH` rG;PgQo&}UTrYJm īDŽZ1JN κZkwyק?+T8WŽhlγ^؟|Gb߈馛64Xm-|HLn abz!]w}$Ӊ'M z:WRLtEl/,>m-}rjދN:uJlUuثJ?a˿²IT/[ !         XRL$@$@$ )('5Rv\UqUq LcR>+-yz tL'(TP!wTmR޾]l gM%0;ˍCg]nbqkk۰ j|3ĽD4>J3b{O~*vET/-*Lc\ LX%8s}CloL!6Я߁{&;>zؕV]}d)fP*̮+#:C Bm0+s=:é)h->~}}} $@$@˄@?v\7)n޳Ekvo7^aVV'h댧[,ᅐ @Tb  +er6"2{?;L$|DBcyBhL!kLb5;9gfgb06ؘswOC>̴nYFY-"=zYhN9-ijb n]E bNͬ)'Fߏi*ĭL(p_!-Lh;ȃD~/O\YlN;ÈC'p,Fq.}RXH޴|V\pB+vǙk%st=JaYl$h# r `z1i*{e;T }UY}N7-r/~Mrk\= i\ډqWd) Oy{l?Yѣ}Dc%6gѶ~ߏmh_ivqSZbw=E*č- /v)x'ݺWiJ**ׇSF)6#_-Us7hG[>~ۗYmei5;3,>)M;owttH]~7! ,{T/[ $ O*UMakϾ<@f\ e׍C׳`O Nms^86Vi^;:Oӛݜ=?/(/Ըݯ%&.Tm}K|ľĶƼ}7 XKc;;pTlJኍV% І, 1'bwknz +>'ޓbĞ9붉MUsN~[^eCWaհ4KcSP'\2L$@$@ˆ*M!]wՈ@B+Ze0:zp=C:4c Z{5%aqua%Nln[6[HEѵ׉ڮ/s0kЮga>^P֩Bܴg7lg3<طuXۿ܌,& (y׽Nn&x1ׇgb~3Y{7]O[l[]]-_}T-ھj/XRh1:$~X vRo;vݰaؐF^Rȴ ./䥑 \?~ Xn6. &S >HH&Cr_w"_.P ChĨk> /;=85@y> PÈIڣQ(LC}\P#61@]𝜀BbGg1ZkĖk$dYJd=;H]όC 2 Rz|kAYN%u#Иd6}CʐB$Ы^e/|Ԭ]bcQowT[y3IH.]naOu j±n’-`K )E+ ]k&u(K"uM2 Dr8B+񬭼9kZH&hzLgyi8ktv žA)^ RS\/]4N  qLKXknoo:|ٳGϝ;'y{BOO홹R(֛h㞱F_ |^Zvܩ 1;{ص"oHJTK 1k qS['s/ [ ,{T/[ $ O~o79Ys!]|mQ̩2Ѣ9 0 <+)P阙,9C*\B.Ffl'b?u/"hGSi(5Z_!V=ZBn4ՍUbg4V~J{vM tn>4eniu84 '1}~X`Vmћ؂=vϨuq!Z;`nsg(x%#Kn%YPe $@$_\̹qz;oqF X1sNE 靋zIA}WmY xV֞EBI0}{tWôՒY$-~]jZ׎9WQ].ϋǽ~z\oU> IHBؿ k7I2##2UE6MK4ڦ7k?&'m˻+ +w!7E7m-bNk͚52ۭ[5zc#X&|[tnqϥ \,n3/H^=(; Vo"!'ѸPHr;P{~ɐNu"#bK6*R|f&@Q62A@-Z۷mBt7k5);#~J N x$:W@L`yu|JڷxVj,cjdžƤOi#,mydl[' Ǵ]K!.3ӂ1=(bN y># adƵʠg|~9̥X&'5̐ \?vŪR?JJT-5˘ `E:{z'bPʱhT5-Oqc/_WռO_;1;_أ{XKcSyi8KwݖZ]38jO2s}}b-rdH^!vXȈ4+x|||#]+1 ] l P!~z^8 \^7H._QՌB3m2GQBNG$D&02j/wI~?O='vj)tӱ$EXՈ4($@*A-7 ek{d*0_Om։ߥg. zĞz$:H2M|R$_ YSǥn(s71L瞊\5  ,: rHsE)4-jIW-+)\S  O qbm،˹2+u[4B+_T<5E FSeQUCh>HeU~w=!~7Ջ}Azئ-bg~ AOqx*S^,ojJ o=?_n^^gзexq./^, @6|wYr{M`m_I @Ac P!s \,[Ubq lR#tbp2Ց=*~mPvޣ(}KˡޠQ8i䯺*PZMT)TnQ(ٿHAI" R]/qg"Y=QKFR::DϬQP*wdzЋ5Dt9<éȐayg/.)_]=lj3ܘ/Y֌gg5T-}& %D`b;,z$Vj{GC+ՍXsO$mv҇[FaY`?V[lke*]g$_C Wm\E>?GĞ2:vǏ 'B[pޙIV8_M;3A9؀7UW934WUBE^^Y.C}~^URy5Z]fhz~4?1t=Xۊ )(D hI(O[-XZR-yׅ%4m)8W|? ăD\? nD6%}Bσ5] I6>F>Z55E(OK$@$pi0mxWv2YT9x6+rɡ W),\n5s2fs',L{N8%v^g>5I3bľQ]O,_[-9LX&!VߘBi vU`[uP/ۮ=Tyx­֌ct%K!i}T~2Wn سXӀ=y40Tx jnU'DrL$@$@$PٰHHHHHHHHHH`B|L^ 2qzrM)%eЉǝHN(#jՏ_|pnGX^?C,">bg*Ɯn_+vf(19u6NCDlsgb|Kf.lDεŖ'Nh6.2(4e3zB_63[q b^ڽb1۬>zH==bw~O~]l*b(&q$ 3W~;Km[}zŲ FDO/fh~?)+ ljgOl~ I6]? \JLH&]l&6ʒ)Ir;Vu!Xw b% ٶr<g?!cG ,b+jr;o{{n[Y t֍.ْhw_NP/O6=6az׽\koWjWa&j-o6X5 XJ#ѶB άۙ*u遟Bem  ,B EఊHHHHHHHHHH`B|K^ BL1]^-p*SbUN<8b#fCL@U=2xg;9yVֈokq%ji茢)il`\-b}bkfYPؗK&QՌgO- Bcb,z{y3M?OR%]Z1N79V@w֤dJ$tk#S\r}JkbA$joБHH#0>5Y=L֔B!jA2tʯG9_lUFzOaCb;3$qݗ68g:=GpbaU2"{_:x.4xR{Hb^[I)U[G2}O)̱LcjKf.o(]ĖWAAo^|r cq_ܙ[8~Tu5:7fg۞aR}";fHH"'01 e^vbVu"t_RuLpT-pE-? E/?gBKH_%й~ghx?=|gzf>_?'  r'         X_7G$@/EniA\YhG3kI -'+1]*ԻdvFvB"LsX|#K2,-Рշ@VP+6ߘ)JzoRhׅXCL6]ȡe?JPģԻlļrVWLb2K[7_fNZk[Clk$2 \f32y$P$y$n{`Rqk {K j}9ô>cnA`^;Zk\ "& =TZ< 4-/ oO`r{ω|ة~- CSm~ e~?aήyVK,RhlTZM."}HHɅHHHHHHHHHH%*ėmE I vİ:%އ';73&EdQ,%g&9hJ_գ@FAr>Ń\j#"7Z\$7)R)"GcLO"cO{IgǡA*v\-ŖWBwy1G)<4TBoUYR e:Ib{؜\RoW !.SyW uLDVYHMm%a1RIi{LBѿ#^+s,ԏc[ ٘Q-'尿b\QaZټnj"HDQ$䉊 ct\-*<Щ+7uoQly%oIG׳ 0J\ukӫ(>=#vPR큫Jfc74YQ!"  E n\ԍ$@$@$@$@$@$@$@$@$@$@$piBҾ= I,7CdBGOIvf |17 )Ё\ߑW^I(dr޼jhq\SRk 4}}da1#i~ud&vͻV@my ) ysѬR2߳Fn j?5%~vz'_H=ӧ%?:w}n+7@!^O@HRj$ujg;J/.&Tn"T=Ğ>vZ ?IB`A&| y88(Oam*Ry]0rM%$y˕{.*!}65*sB߷F.ǎT9f598Y`OMO듒{jWm\%Nl]TةJgXrPWqVO}8p q81hj7J]] x&ܴ{gi7^%ze#V*;'zsnq0*TS_[Ftj< #X%IHHHHHHHHHH`B|I^ eѮW+Y Z @ǐ!E#J-vv\S~(o}/ԭ[Q0횙@|JмއĞ=ږ~ilŵ"ր*BZxB.U4`ĻLbnSj^dҤ*ҥP5)G×@R:Kg@#(1I7@մY#W.ES3ҏ !"Y%_)OlC}) %C`ֽ t VreKmg5ҷCTlMr[X>޺o9m <33.+7LImoǥd?=!vfN8!orZ򋷈 -vyNZAfjUL/ɴ[~y ck Whϳy(bnmq'v-AKk27 QZž7u64CH6ЫSq$PѲUDQҼk_5%h" W'hxd7uɫ|jdRz8\\?r\ŖWiLR%9;gw{j q?֕7_!֢Txkfm3r+0K'U?Dtq}>֮C  `;~RXצ|WU{"y{u[[mc#CyTلT5-b*5۱5{M^~#?AoE_[+;ֶ+dyz׵C׈ D dNipfL`),uj۶jj7[-Z)m%v u\ \is+~:JJf&? #c(0P?Oly+ǡ=j::c|lV]^;{A]Z 8☳=T蓆S7Ŭ{vjmQ&ĎÛ3,ٺN2uԺ"4\`KCxe'dzR2O *.Κ|\BO݅bl)q'F%?; t4bMZdj D hdFSV)"4D榢B>rU?yBҨe>JSi\OCwFsNaO|FlmeOkKlfZ0?Y֦&),gF=uYy@22s @ :MxIcݽaXZ|9e" XRiDnli;Z~;c.=R+ErƩÂ")E3YSZ43(al"gIFmZu֕XOk{&%[T-KW|nǓ;bOVio#jeV&coQtYF)iѽto#yyfAR,0ryN@y 0֧Yxyx# ,F 谎HHHHHHHHHH`B|J^ LC 5Cb>qXloܵIlB#{JED6f_Jp)Wk39(TTnqw!E\|O7U'2:Cy.0CQqjBcY$uyUKu풉zڱfUe6QAOC-}zX6(ҥК@!<;*, s1 j+׊O}bRD$@$pI(wB|f ;-浮.Qwglr|ٕf,zn7u{If[VTy$mmnT7mrLJjhѾ$=$lg:7bJk]<3XmfmLP _sj뾮}bO>-vzJ [d?~S0~Wlj<}3[Z;8Iu O$ H# ųJSv5>  Xa% r!@r x Ҷ[ VeP^58TS8+7}2Zk.vqATd =Sdn~3 V TG{;˫ZwoRj}̓ `xH~@f-ҶFbm=if:詳xo*aɔjܸ:Y}oyE]9~F[vmhh.Zsp|4^xΧ:֭Dov]uox>CK~Y϶ !kWMI fyFBwĦTw{SlZ̒ @!vVhb @y)L$LRxic :Ne6Ε͵S;s s%ils2`Yy<~?(+NMkw=gcߟd ЅկYoVlc 4nUЉ;mӚ J1Ŵ(ء.>ۡ%D$@$TIcU*>XE\Z‚&rit#'"kz9~Vq1Uvk[Hfk[Y]>-[l37@ҢF\]*:1YT{v)33bwݲGוJb֖? 37ݯ~GlbožW.Df~^.RFCg&ui%fZ#$Z{ҧV`OSr:2XG5{:MzuSXC y P!~^Dt          X3 M"xf&9 P*kxr=.Hv4(X3r=xNm^9zK~? X?NTuLjTsţjbʾL]NO i[}:-+[VCtn0)1ߵHj?~(q#'4O+ڧT2L$@$@ˌ@z74mФXCܭDx˒QbOl%έHSW5áJZɄJş.XFn[U,Ԩ6Oaf>{ `^`knC%ڛ;vJyQÎ+ĶooІq$TX2.A .zN&8ot7sqC%rHt&CX\jCNjY  ǝ$@$@$@$@$@$@$@$@$@$@$piBҼo5 \VBNSfmڸIcb})m(.=2]W( UhKt  LoUy:;h`Ih[m$A6~5ɢL*k۴ whsq󐉣& 5򱨆+LOl>|Kq^ I7zs=#uFjh>Cb ̿jfz6[ R7t_NCY_V/_#cgT z𜾥cz 2SЧJij3–ט {%Kh& pnCWZU#X&vC .4$@$@$pqV %I Kq$@$p(+C[oUΣbzU*Yn X:űΗL |>!%Scϋg\<*GqD-/G -e [d^eo332ޮ^>]:ۡc" XZZƋ+\!G; DFl˘ŕv+j[<'Zc2khT%"}i q1E/蘾Z=PB~1u.;}Ïc_Te EV0GVp~M_)3cx ^mnUӆ{;f& ?s~kqS|(jݪB_USU>|Jnr;M7/ P!3          eJ LE$@$*0- CT]_vc؉ 7@HۯGk}g,|WH n*yy- %ё%~3}`FcZ+VdzB3(BԣcwooݵkزR]`" XlZ~输Xm˿= ycջmxֈu?Zd>&2i %N~ŋL\~Z;ZȻuȐIg'V]VѴkugA^Hbxbڧd3ou4b֭JHH`90mEnmmKl쇊QDٞHk7cE ph s+UrPjNOTFI&m7zxX pW?e_ MbyN[Dr{sEB+~L=7(.Om[ wӭv|k{[6 \K\'aQKg[ai8yؾ7miEag"  B|I$@$@$@$@$@$@$@$@$@$p By: \<J5F)t6o,{ꙧy1.Go[Ӏ薦 DRN!ePj|iM|˛/|o߿?z/qV|_o X?|Jt "N!>lݴ-O}唉HH`@uu87C)<܋I"_Hl_P>8cE%+$!t} {X%E6nb58ްҲ2}ZmnxzS}sVonkfZ-ѶW.K G'\ˆY/̊CGj񮎪ծ7"IyFK˂Y>9gV5&(HH.$@$@$@$@$@$@$@$@$@$@**/;y EH`E:_}UC=(';Z2*ʩ H%Q,`ibq.چ|%h6)2UxQ֊fZ0<ւ+A`9L]4x\1ms^@dv~Vg1b- ŒaCzW^|VUUe" r\rFSK~|h\vPث6eʽ{[JY g1u륷f*%Vv"?cZN  tZM #6sYZVMwiiZle6zLcv=KLFA]ʂO0C8A8ه9$OWvnkjx.z֏3 (s3fi>b'g7)vubHHHB V mI          P!~ ,NH. ee)Bc;eЄ؞γo(6.*M-" I~m +}uBge~>?t'Ѐ9  ˌ@SS\b'[:<&vVctP>xsW[IaЈމzxs|TkH@ӍڽbJ;y6mk:0 \vŽz}?ɏL p/4ŕX5*Ԇ%ʶn:* J||Ju\iI*r+4K~?VqJ@ojQ 'm[Bkk{k-q^fMOL;O_45M?,xRrQS0 %8/b"7,(IHH.@tmt%          KʝG+ m &  \ko}n*e؝Zu~ }O?o+ 2D4j~%=- e5f1UdzTBsmxc3l<rh|JE>o;cx=qa"  ~E           D t7y-$@$p0͎v\flRվ_I>2hr řJbIQR T 1]Iq'Q5tq{c{n:~kkClZQ9҃q0axux7(4I7-e2rjs?{o_/vJ0OaH.sbڵbgaLVl2-%[70Tx-|[7D*C*q6ʟg,_b~<#}>68WISNJYI9G,eNmfӴڮ)9mߵyFjμk̻xykZxxcK|^NfJ;sؿ{6"o7b5b)# &  @EEdw}s֑NoiFҥi~ro Řɞ2XyQ#[I^Rel=-#z^|ۊ 8?;5#͟؞^JXX-R{Z{$?s ;t"|j6%zUVe"  B;tö$@$@$@$@$@$@$@$@$@$@$pqB? , _ʬ{:%dI!qZ柏W[Rrk^Mp?N5+vRu3Km_att @ @ D\:[& z豠''=A=A fdfnjYΣ2Vk.A#WQU4fl76v, y}h$"6xqw*08 O:47ѷZ)%=,G?ͷt-qƠo-oo) a ,YE4{  gT_GZƬ>&Z+[cP;Oc?~7x8їؘq.Cgq[gJgl:}_sAwd/`Ug>whL7v#I{V|A7oC3j  @`p @ @ @`.!>s 0 wҥ>}>SA|P_t-;fWG nҫ[[&3QVk":ğn,wbs`53~!}UqetV!樊9c{ˀ؞{b#0[}8e,V5M$'Yo`/>Sg*|eA]v]PH 777ܶm[%/]OTkѮiű[iĜڃۂ:vﳚѷ;&rÌn[<||oX7Sw$h/Mk(3{;#w5mºٓLWGghiƚƠK*nڴ)$ P @`J @ @ @~ yI0w4-M7S5AyYAWmX4hn<))rAŜP!WqH][DcJ&H{L}z}",q%gFFcj-eiDžPq==X]лSq!.}B( p7quuunڠW둗~s%tF5xی\ca&^ 67 [ߨ A#9"DC9c|Þ ]ё)ĚW,Qz/9;<f/=c{t⠛6nvQUUUP  @`*@ @ @Y}z @`ǎ0++)X+ zWbǕAKJfff|IZ!-}KozO%jVp^"AmOTENJHR:8C{vNmLMcm&C8" QetkWd(ɾ^e&mjhA_zFNec5A?]HYJ) f/K*O6(Kwn aƠEolxp57t@'n6#o{.1Es:&-[}DmZ{t~ݵ%7_2KMLm}7<\ckД^%ۃuAWgB@ L!k e(@ @ @l#C|@`|yyy7n?+?Oßy;%RvVfP/'1B i}x˘c&p񣣍e51.suwuugZZn۴J`A=kNi))~ڪ7hncx38orv􆶾 -3]Ǟl2`Qu_VO_Ifz!ٙA}nkٮ[A C|AW\te~I/l@&E @ @ sL1O@@jXG?/j|衠#>U+nٶ5hFģClIC7G= i- .{kXQ%:ؐ8+y23nze0kAꛂ~ zǛo ~7u]A/^? !@=~1yПKA=mx[EKw,"H8WCBPiA=n<$GZg3 ;=\˗+: v{;.(d麠E4@~⒒))+Ixs:5La# `[g Ϳ'W6Z-]fm+Vy P @`Z 񋊊n߮5rO9߷9^btd;6vύtݻ=fksyV3GF =C_ӘhъĚ=h<Яpys~0hA{/[,{QqAВҠ=Aۭ;צ{ ذuC¢ ɾرxF9hjWӮήMgVinmj z ZYUz|@!>}l @ @fd0@p ۵C|}ᧃ AW]Pn̠*>Φi7l*6^?^:dĘ*a趗{*P@,C{6&VM#&߶=nrHs"V>~7w֯ z[oANh^w{wP/kCseʃO=T fQj}mt[Cͱǂ!/^ХKu?~( i%C|Z28 @ @ 8g˙` 0,&>ছo 򮗃v}XXZ$heeeд4srw7JuQB2NdɘiRjXMtCtg86ж!V8q}/Ìi{Z ֜ "Gv_P+W~(hirF󆇷@ȴe_}?9|XO ͍A~詠e˂njsЬlE:nqn;V[fMc >F6ai=] ׫Cm/*Kw=p4_jq3[C͚uZUV&oxN=jHr~GkMKs%~oЍ6|H@A FeC͎ @ @ @`& I.I ۼH|;C{ ww~|nn4=]YylVi fp (#ڦ sa^:2f|6e?ZbGh ӷUK)[4iŘ?!4g "X$˥yw]w  @!~P#@ @ @I8g> qpwiY4+O=-'׃?}0ʡtAU(H^X.Nd;,Lg ĭ#,2G!.l̑yG9[w6uk>8;4#MkWtr1Z^4/7/( 0 |3 h?y'!h_/C|W|蜎޶ ɑg:d2y":6yheڀ~= '?hŢ7~c|.hwgwg{&hJq険wi]+je˗XeI{[+=Ŏ1=;|,c>]{|{nݺ߮= ( 0#pvv @ @ @MA 㤦 t[V,P5Orh4EW T922B~,!eDѐ 5%GGVĚKwQar3xp@~[67J{,{J-.~"277<@ w./]sCIwV{_+5iz&IKlIDr/Y"5+67;Rˍ^Q稲E5Em[)=r)SyW5=E{*XXOEEEA) %C|fw@ @ @Lp_&@VVVv֭A7nTˏ}cAx≠uuuA+# Lm۾-h=Ki0|z=rGY8cENC¾bqM}===a?=r{KA OK8/|_>^4/O  P @`;#_o~s_~S.n9uV/g d:T^$zh3_5~x`oR-nQ#h{K &{eOJBul^='yqwP_O qo}M6q- 0p)` @ @ p9 \iiC9ёttZ__!c+V˲r/T|,[T4򁦌gvܿ@8:W>_.inh ׃. }+уvh2Lyc[⽆xf[kd{O>|ݩS~ʟ`x}/xk| a6+//B@ 8gɉ` @ @ 0pO/_F !N.ߵŏ?>|8跿G ʞWf!ur{+B\PT43~<ȃn9VWo|kb`kMoآ1c0lwwwӧon=JwKZۂn߾=hEEEn-\bE) MW>ü暝AJwƧz*ZWmln z]D^EZ4=՞b /wGmC3.78hefff\99jO ,L~ꪫ+Ǟx,A/-[XSRRl%As\Bɖ<aF.b)՚D%;uwiXSVWU6 T%='iǛ{n޼9 顒@p @ @ @`j@@9\&P;'glnj 6L՘-UwGgsN% q՞4%UcNO+5]W:bBS3n-y6Nbs6x}@6kz{TLf~yg-nS&xKcKо>wwQj+WݺuN @ J ,ϊmk:wwʅ}nnݩ{.OM3CGe=9O<`~{D8%Y`1!nwT[v4sˌ^I165-ϡe//-qaaa[6n ZUUtÆ A=K;=C |@ *^:usss[ZZ߿?cGG?XPw螞a>f焼l=Wi͙?iddQazV; aO2\ڦ$3k6 5w]ԏe۶m!gؕ@s9z6 @ @ 5 KrrV+a+ϾmQ^PP{q]tM7xt'5A˳zprksIE4#C7 R˂z>ŋ{Wj>åK%KsW^^} @ _q0a#Ƿgg W8ӂ=Ч ԯfٙZ՗Yښc>rEoE}՚ϪB5f͚sβeBa>t@pσ!@ @ @ 4#Z@%)re몫K?65)wCr9s&"wgw﹫ׄf/#s 0UpOIƁ @ @ YM>=LwvG3ϭ3[@f;}_@&C|~_ @ @bq>  @ @  4s @ @ ? @ @ A_ @ @ A @ @ ,8$ @ @ `8z93a& @ %[t޲C @'C|#f@ @ @S@@LCy\;o]ݱ@   @O3f @ @ 0 $0@ @ @~3f @ @ 0 $0@ @ @~3f @ @ 0 $0@ @ @~3f @ @ 0 $0@ @ @~3f @ @ 0 ͂90@$lN.c`X.QB @p_ @ @ @`>!>"@@fҒ[JfBnuy  @ p_8# @ @ _Ч qU-7}n)R졷tfift?J Q@ @`A! N3 @ @ @8 @ @j<ԴBY(m?#m=,#0Pb )} %{(P 0[ 4fETr  @9sx @ @ pI;IW*)fZ&Lũѧ?_gvI)+,ow(>t)@i/MZJ#Ҷ:_R @ yM> @ @  !>HW@`ȯ֑-Viv4%]XNQ]Wkj"tQyOH[OKci[L@&kxtJ Tc+<+?J%J) @<%C|X  @ @!> GO-Mϓn}黤9ҁ>iqi1)e!HE/4%U6*@!߲/H7%moz@:qkWCS\Bz7q頔@ ;8) @ @ @`88ćB 0th^{7fRwUŔLZGK+{EzR> @ zN7KO<=Wq_4(qA[;?#ץ|E@ yE:  @ @ DHd/w rJqˑx $֪u[zI#2"  04˶<+{vҢȴxjrOV|KkpuwJZ6Ö\) @l#:"'&G.rR {Lx_wÊO>"@`|;iSN~2BY6OJJݩNziAbA//hGmVknR|/IOT+@ @@_p @ @ a  &PnߢA)n>.m=,,LY:5o6j[?D#P^o}i"}_%륫EGϲr7jUg(F:uޢxNK_k) @pϋA@ @ @!C@jSUq'Fx1eJJ"U]!̕گxoeE{NqD%-p~f{eMjt] b?.E@ @`!>OS @ @ !>vV>dCJibSzm&{xB|F6MJ;ڤLs$cX]R2lY2֚Wk-Cz) @p!@ @ @`lp A%:15(n!Zhtk,M-)SK]S;&M@g8["-Dޥ(P @ 0  @ @ !>J M: +n>.m%0,Rhܢ6ڧib  pXIvH_+{G({  @ 0' IC @ @x /1Cs@j;xYΟQ|L7 ,4:ۥ%˥mz }RwT(^qtפ@ @`!>gO @ @ !>Zsmc,_dSE 5Y#TKKky?MOS VfL뽖o}FMNh%WNdtW|u=;>Y9Q&9H S)T\y(P @ 0 'C @ @ ;23C\wKWHszf =tbqݙXnnE5Nk҃I^N_+!]{̈e+뒞#}ҚGq>Lڢg .+Q1@IDAT31t+U=ҪkKY~w(ҹu.4c f@wfp@.Ͱ+⍊UN@ @18(@ @ @ C|lsqg͛u>*sC/U-kzo&'O|(MJ7h6EU9y^ci=Xm߾>+K}F_i{4Lk~QƷK_~MqMo >ߠbREmnx\/OōvR4Knhm|nOKk|JviyT9t&UjSRz#K)EuԺԯٸ_1 @pƔ!@ @ @`߅g% M?FaeW*^amޫMVܬnfJYo9mqe(Y9-Y-'}nT8eRC]ut%O?.=1i_4=KzS{}U_BN/Q}|).X$=dy׾ 7x⃊WIҭҢӖ|;Rm*Tқ+j ޯO΢u̳W}jl{,k}ܥxy?)@c'٪Gۭ0P @ 0 g9C @ @ fzטs_im*0l9"ר2!_m{~0qg*tBOT965fSov}ᤴS:W6Wksi9pfz˵흊3'}ϥuOIh^Pa٫7G=_i1)}}^}w|XU,{NuwSYէKoMfo$s';Q9E3t +\%Ww/K zzHzHߩd[ TxZQ7ܭ9;]݊)X16#Kq)A @s9v˜. @ @ Lq< j6]{Q}RRNi14GgVqf,Qevi}y'/mTͶ<1f@p3>c~gRZ{-bYuj\{n~C#o}Կk{W/=mpƽxIibн彊^VE*y_4LzQ75Hss7iM}3(dnWBgrl|sϳpyg?G,z~[ڧ=~!\5E3M (;lSW[|x- @ 0c'B @ @kGIs*,,1lA`m\ܮ\f,QS,}GU'a";_)i&{'!2MςOEF(3q{qմO&*45%ǟW_Kkֶ:wF HW쐮E:_+ܳ7Fx{ғH27)7Xsgի>Bmq횞F3{'t!3Kco{vsѽjˤSxh`gC4.ltA @s9v˜. @ @ Lq^潭)>e.DwgbsFzQ;?TۨӼjH'V5ծxyo  @8ħ*CB @ @#C|̨dZZFsg~|~KQ}9Ľ.XߖJ-V{KS"w7ysWTwI[o_*>tO|Dԝמof6f͢00WXY_[湹'\عXN?VMxro.ż<*4N?z[5uœg̅6(3O}s.c=C|iWتS6CbKwg^iԬҞv[tTkE&}/دcj=9=3^ߧ{xϱE2fj>L?k|'^? <[4[|a,cfsQwֿKco~K|jLE϶o[1R1,9UpOE(]qbom w'ur٘gx @ 0g3B @ @d fֽ zb\WlVwyzrzXdZYvZoѬW=HmNm4?1>?Rvow^j6jEjZG2GVߩMKc}EkcE-ً3)i{$b/I[xك93Z9N|zmaH^65T3|SqaX%%eK_[%~uAӲ?'҉6{C-^3Q35-;>_Q?.*Ʒ-vٱU{@ͤkowG{#T\dyBTٷU͍NUH?U|a)e, ^RykoLʒ4nue$@ @@ʬ  @ @ Lv5#%\Kkŧnd̿y~̹Y&ū4NAE|ӊk}N==iG=rˤ}qh9R0'RfFreH\p^GbqwN(싱j^d'[u ;t];_]Va=׷7Ѿe=mFbG}cuʏ~ Qm{֮BO_տZ.4}Lze/Z+R?G˻3zwۻlZUX[ss䡋/ F=|@zήOG֨ar^7xJ= ֚) \m7)MJ)~a 3gda (!@ 0 ?TI2=@ @ @d ,?2.ڬGҧZzN)[oQTHɴcxKWǃ# @< C|D @ @.MͽvhΞc7)ij0x8g-^~1f*d/{4Bs%{Nhh6YhX̯|\u.!uq&p{ЛenWuF|^'#ߎׯi1[j04r.Ksʥ?ttom=',3;SUSFoG:RFrӳrXC`֓˱.r(ݖ >]ufߏ~^fvnӽw_tOe7q+`ȸ%jOP뷕%G= @ pY  @ @ 3E~:xF/[G9μ K4RQ9K#q=p[jzZ2Ϩ|TK57aB/eStqVvb{x/t?k㻟4чdzK=ԑI-'yBEvm)YOqQH ]6Iy.RXy43G.tk{C¹˱^Y:û#{wxveFEs{6w( 0[ v^\{@ @`N62Y@ @ @%pϒ1Epgq bYZ왞34;Ѽ{WӲ=Vӗ3 C'2KJ˧_J*3OS?ֿ*tVvF5{L fW6!.i_l9Kv<nvu6[] &+u'E-#6QE>⮈;[G. >վVw{;Wx-f$d ߸õN^nۜ?ou?#h~ɴ5])J\0 Hキ@ 3B @ @%C. Yl}js=W4~5Uϝ泮0wmZjΛkwUͦY kNyivKNڧ\4C<>i>g[Cj*KG_k[RR9{,lWv٧qר˲+Q>ϝ&_t]tqX޻ĨFW4V&s4ٗG.}+ҁ^iͣKT2լv^~,{.չMco.cWsǢu#54?}]R9jWz<&ZS~yꛤLQ"m+@`f fjѫA_j|%"  @ 0' DsNΟIC @ @D0͙FYͲI׻s8=.ۨעʋx11=J5~gTsçxkcw;5/JԳ_iŷZ﫦#ڙ+R>#iv2z?w;aua9b'meCԽKk)}5[8vt`I|GnS*sz[CA[W1Rs7 ϤiVՏmV'GVz}MIsde׏s\a2ЧOouCG57}[]v-NE[S}TG_} !\tg5sUiv}Kҫ~QzE|H>O}[4­-9F?B[QϿmh\ F ־*;Z"@ @`!>NӅ @ @ 0ĺkHҤRNkyՏ׵j*!hӖ{GwkϪn[ŇZ^kW^--7g/톷Jt_Kluwf5U7J"=Sthhͤt&g[K\+Uw>MFY >"9-[mhCI}F.>5}}߲nկq擪isqHGl)ɿK*bgY>Ƿ-6>_/s6X[CňE>Vښ։~ }ǤO+%uoKx_HS+ژfqF,Sұdkʮ̷ڝG,hRMZVwKZ@`&dIqu|o>! @ s1e@ @ @?+,"p ÁM Gc%WhC4?rlL& \>±ݽ̷\j>At8H5~V[6]zE{ãܘ+6bL)Q˜R#k GvQ9&_=kծNՌ^,ӏTcY33ʟ3פcRmM♹92Y~^7C_!i#z7޼!RMMw~\W w[vjtbWJ{;.^8LΉmP>'! VT&wӯRe|XqZ&sge{B&Uyw~Z{*`pE])j!þEն*}O^^w( @ 0G 'iC @ @Y\=7 sf{?l1;.n]\}jz68견0Onx?| ^3zshUW!z>)p TOϏ=} g?"y ͡>ϞhYNmE*>+K{y{3էξk}ߔFGz?r9fs;hMjyK{Hc,^[n-ꛤE<3{~j|nFN.ÿ# RůGnfi;C-1gHWϑO<,ƻgH,{Y:ezӊmiyٺ*URVʆj;^W/jfZ{C_TծaBܾ/'P{^o) Oڝ"ms8oOY Ԍ/ @ 0%Ed( @ @ ^8g﹙,kRJNhj-7'lSI,ǑӖk?)-2bc6[_Q垯Sg6y/3#v'`nջOSѥJeuaˍ[}J{X9w7!#R; Z3}SR*,KoP<vo`~F.-_%]fK񉇤hV4\|^d*'̓*>iɫ*{wծf6ūn|ʊ!fnz,^?.)FqWu{-rV[reϥ^uveLmUT95V f׺xyY_+'tQpr;?g?Rv[Cn{ωw1ö.۩EvuT|f۴_Kv暻*ߐP4xˊ-N[q%լU_ QVQlWtڔ3vJm3ve3fzw̎i3 @r& @ @ ,pf [ |_V_#ikR *JJr5U-Ҭ|i4%]>cGwiynG-cl+oR͒г$2nRŽϨ]KI#eC.1W2Л^|"PgO訪0dIRn_teGϰCK}G^jS|_~i9鳖3}N.^v~JvglS駴?o-&6Y5Y}W~\q!UFK!eߒvI0&L'W:ԿnL݅V3נ?2웿Z黾&jZ)N,6U W}T+lG-c>Ǥ]/0xk?=iӞog/9ptWfI}uQ%yT})s@] ? fI}g ,9za`עIe?cꧪdjȚVԾ,]`9~= Y`82^b @r{d_ @ @  C|O.=gR=NtC)v'xj-5^:'jIh^ǗJc^A}ŧ̋hl=mvO0?ZGڻrGflSVt}w)Vg++ŧQhž?wyo2M?WZR--].1'oOؗ,##UiFv+~Θ|HVky>GG^T~ѻw5AW#~*_3k͏ޤcuS1pcwg~oݦH-^o~XVZ[+<~S'vUϻ-Y-vkn!ggn_ˌy?:$kq WjvW5dz5?X >qҭƆNMϳ?/\[s.n 9>:ڵk|h @. G˲+v@ @ @9M=O s}K|K͝]fLԜ>iN{n~4Z|QGx~iR_+а_'#8ֶKտS?X2ˏ̋]o{Y[!vT=dfQ+n>m/W+OS*7n9JqfnC|n +VJVIO>"N_i=OV.sF\SwF=kk vf@U(4wj3yqm2>9]yɴq>- _-?5Ds_=W۳ǀ}}em?>·TMZOqR{v5/iw6+-- ݾݞę O ]B 1!>H4 @ @ O?#<ï;́) =qimK^.܈F?w9}WzQ7Zb^ȞZK3_3b翷K92U f,\&mF~ej@ L ӂA!@ @ @`fԘϸZn>'wl!Bnݭڠ{Zߓt;{:BSzlsB[F^Jר -+̴'Mhe@vtﱠ} ٺ._"L~NG9]!Olk=׭Ut ( @9jX,TB @ @|#C|Qwq:wK/~CH=K-VC˳lē/iĊdKw>Ş7]iN̍o=$X8#Oc[cWW@(YW!ZR97_UgXqA:zɔK.|Z4lg(+ukloSGs{'_TlTs5Fo8x,w+] MY$=JJ)\b٪knwwKun {ߣ{.:]ol\t8N ~ZѠ-_XWeK޽./p#KEK ڶAO>}cUr'Cφ}/˪YEr>8s ) @#s݈ @ @ 0+ e Wi\z-RZt6`UV'^P|GҨ[PSJשuIU;l|uh͹ǜ5𤻟8 ŜwM@σ@]+oQ)wjRcv9Qx+v+8ꍫ?WUs_f+B2UhhI{?.|鴣;_x3YFZ/_abo^9s̕  -z=@mxߖxK>]>B2&ڧkbc^v%=OꞓRf@Z5jɖ͹啿K,} \g5,TvGЌb9@} A_s:SA ݯzMrRK"}ÚaSfM㚲G90jٸKc)!y8^) @`bO\^ @ @ 9@s`Lq8r$oFz]I;uvZzWU󌹢N>x2%P c MR/?Ww 5ofˑئ 2޵Fqx ehnt-{(~KRRe]l)ۺO^pK֪vJoy䳪yӿ^L ujrgјEZutq^\I2rt, Z:7|19BUlzhȚ؆y =sy}̳RQ[{W=jG7onU%œw1i%Ur7Kk.2y TuAF^>9ߖR"agj鳺Gd_e~ѽ9.v)Izw}pָ]3xkЕˊf%idcAWd鹺Pw_{IP5XVk|UVjo~1貲ܠ2R @@Ɉ @ @ G;'c9s)aR0I(>t@2LQtÝR繿S_J{hr=V%+5u^{t;ipojSzmk׌w}]?J^Tݬ+$z~r[oLn{7ښ˯n|҃ G, 5'L?UzcR?Sa\'Zoū?\'fjR_ .+LVߥ^aWg^0gJrMUיiVfrmAjo~8w.hj!u-ʵPP0߭6-H4iUMy9%i6v☞9˗Q_ @Rv"iNm=U]5î= @` 5D @ @f%qRr$yTD 4IjX\E%՜.k,KV+,?#ߗvuKj'$=`rk/I',٢q)2VZ!td=_:u^GlmǾ?6kU>+Vڻhˮ>^ͪI BBdLcさ4!ji{5qdtCbn6  `c$JCIBBsoϯTS(Uwy>GKڵϹ9z`nP>uW'7[4iMboIg\\&h8"&zPKjZG'jpng<]oǥF+oZdz*ͧUWY[dok^k}urїs?zǛ댎vnu?PWZm)ig=[|ccoԞ;S6 5嬣SJ}wL뿏>R+}:PS_V&wѯxsG.uϑVO~UoϾR)[ז^y` {RU/1Sxx`-' ڭuVsIg'iz]M-u|bԑ4m @$PDz @ @ @^@B|_H^$)Ժ~S0%Wue-W;j=ܬ[[˿Ej.B}=]YC|:6Iǚc_Oh0-u2Z~ԷjГs}g#~k][Wzkta/֕o/jtA}c5ڲX~gs\i| gz&5c5gKJSG>^ꁧ_[?Ϙ W[#a̚K n\jHɪsW~9+J_P_9/kR_rYD uw}}tNM׺vG/y_|~ӯ/trI @P4 @ @t^@B'>7ǾTx]z:¡3{֕Z_3tֻ>U__Wklgy^9=U]Q2D6^}NR}#I4Bܹ#E71NK౯OJWkAmGW6$/{jhG>5_c-u;R=sd]3Ly%*l>Yó5E?R_9S?uDw|;d#@8 @r @ @|  =tg?E?Rgu j]?:dx{mZoX랿F`:,Yzz|ε 4 r~[5ruo[v{k}Z/xm_ZǛw_O|ֿ,Qz>۵kl>+S[,X᣽]蚺&ڍ^xRwՄ==\W{Ņ3Kݼ&ݳ}|/T :dmO_4DI߸fL/u kb轉uRL<%/5:/kSƭgn(>U,m @ {ѭ @ @ @@$;xQL) lpwt}GJ}%gz J8H]|͆:7J=5{ץ ?l#Wׯm*7ҤkF $ğ[ @ @ @ hZݛȉwGv^ T=hk=ZZ_RZZoIE<RUֱu[M267y|wmTӎZ^M[kgzѹͲܳŹmaf?RoԟOJ}o|Է\tAWNY>6?4uc HuֶRU {k {͹u37|pshWSMdhbpi[|Sy]&\u1?/udzͥ>y・) _Wk?6<~Te۾r}>4<_m @'-PDz @ @ @^s vs_c~_cޫ @ 0~#o$.t-&G%=Z#5!~}M [.mN7 ٺL[^ۓ5=2W_J}jˮ}m/߹/ul&__]}Oe͌u:2R߸3=UV^t=ܗԗ|וrSƵ*- @ H @ @ @\Bꩍ @VDxo.7Kugܮ_R_*ዣG25J}ՏLk6Qj]GJH]|ɞoPG~GF9R75ԬXMsoЬo:o5뽦&^[3蹥f&Wᝥ}h`tΘ|yi @&s @ @X:9 M @ ,͵.64+7cXsBSk:茺VҷmIu[jZX[to|X7ȣ?:  @7s  @ @XHussf<M @ @B.Ɲ\\\%0 @ @@'. lxm_<6 @'-O @ @Nww.=9)ݿۿo/n*unf#-IxG9+_\?+Uջ.(ujrޚ?Q.[|ԗ: 6ׄ@ё&YڱZӶphoϔ#<7 >2X%|WNGO^*,G[B|9TI @ @ZB=U_ԗ,KY#?X֖z9K}h-8ԌxΖ /GȆؐ# @ @ @CK/E΃XI~U;+f&>11ތȌL&|"ǟ1^S>% @ @ @X 0 @ @qz-(׎"Q~!$0lTX_3zvɌ5>~K^~e]QjR77ڞ\SyE=5o~^*T1x.^wM' @ @X^_^ @ @LȐʼfFj|JR?,:5]Ϧ[Ϋw#Y[|~_3YGƅ/}A泯+ulj&~t1-b#R7'o{gmO}$# @ @ @ Hw @ @ H&Pc:}vtbM925[~nsw3 @ @ @ @ @X]=yaџ{M 2QYS6XB8 @ @NW ʺ_ @ @)ќ=?^NFO aV@~>v<+'G2Hh @ @ Q ^"@ @6}w/C8p M8>^_輪r%W'@ @ @_]۽%@ @hq$IFm۶k׮Rc]ҎiܳPFsOU艶R1ffsO<֬YS>tPw.5K[{o7Hg;ϾHwpD~`($, @ @ 0d !_'@ @h ө9IHF4Rז/R_5GfåFZ<ڑ-9;ZYrVw{'uO D;73 U`佹Xϸl,[vmtSSSnذHGNvΏxyb&yn߯*!/I @ @ @@$;}yL @ rV49'ȫF6W]~}cfk5ڑj)vw5_.,v|}{c !7j\BNǹ7|^$Yqs;z333SȀƘn?~U ~I @ @:- !cr @ @)Sюhq#[5s4nȫGnd#{$ɻP9q"]D;׸1F(cQG17F#1yqdcow$s'f&QS4w^1<#5#g|Jgkd @ @萀x. @ @@NF;I#3 ||$|#yȴ5]oV=sJuG _HdvhG;j\xlD{vvܩhF5F{xDO<_s-VȃGO׭[WTD;eRI/r  @ @:! !މ` @ @!T^5ҵyo#a{#ꍑ#1Bd{sj8k6y5FsX P5& @ @tN@BsĄ @ @r%7>U=R3^ΉQ<"zG;g׭[Wl<#!5ϷF>{j9$ėC՘ @ @ 9 ]"@ @XJ ţܑ0|nȷF7'Fcr;qhKM*ǵkלyo~ c,z>ɒ//̗՞CdCq|ٯ~ ~I @ @:- !cr @ @,3ÍjΙF 52YhިѓSq菚{+о:G M{w<~~䳴59s:;?⹓_Ǵ2x333SNG9iGl>g{{%O @ @ $WE2E @ @rYfi$vhǑQyvO>K-kwG _Hr;1yo?jdc|d?ƌoZ?3v<;935'ģgq'eﻄr  @ @:! !މ` @ @'"ylidx#g9ySqH.kwS ]1h828yvӾU5Y1{#xhG  @ @& !>4z'&@ @89v;ѿT>77jܪ=Hm"@ @ @ Hމ  @ @N] ryvOƑo3jwS ZN%~xvH{>9ϩFX=rH/  @ @ @❸ &A @ Q=>"7|w~{䓛sou".1iw> @ @V HH @ p]=۞̍@@$%i @ @贀;}yL @ @%~I @ @:-N_#@ @ @~ xA_!@ @ @N xAӗ @ @ @_^q @ @ @^19 @ @藀%i @ @贀;}yL @ @%~I @ @:-N_#@ @ @~ xA_!@ @ @N xAӗ @ @ @_^q @ @ @^19 @ @藀%i @ @贀;}yL @ @%~I @ @:-N_#@ @ @~ xA_!@ @ @N xAӗ @ @ @_^q @ @ @^19 @ @藀%i @ @贀;}yL @ @%~I @ @:-N_#@ @ @~ xA_!@ @ @N xAӗ @ @ @_^q @ @ @^19 @ @藀%i @ @贀;}yL @ @%~I @ @:-0ٙ @ @GgG;5 @S❺&C @ @% !\%@ @N{HwYZ +T@B|^8&@ @ @' !M @( mxQyDtEW\ @ @ @e_V^ @ @@N=}:+oX9+Z) @ @)) @ Zr;V+nxvj5s  0| _3 @ @ @H) @ @˴əS'_ujj# vţϷcT` @ @, !>  @ 0,??(~{; 8شiS yzxds*92C.5/ :9>rܓ.ֽ st]=~jbu%8P>P%c\J/nRep]`uw> @ @ @J_)W<  @ @ .K/KݻU\uC~U^xRcl}_+ԉJån+ue"=;;[{^I|nK.6qLi @`_!R;5 @ @ S@B|M @'x}>t睥>>w^[KK=Pӭܡ3z5ج-^ZuxN瞼>xs]f7)'nqn @ @ \%k\ @ A^tZ\m(eWR)M+5gOzRG&J-.?VYXC< v37D;6>6V6Xnr @ @ @`hCwb @ 0xX;S;}ӗJC5}^S,?-<³{g#5Qsh#ãWtE@B+W< @ @ @`Y$ė @ @[wԗWSc_,++=?{}u/w΃ x$Iv5 @`@v  @ @ @ @ ,˹*7]QK}O}sԷRmml9 '{#ѓc!@_na @ @ @@'$;qL @ F`qdhntC,.+E)uJ*utPMB|~4{##r{lxlx&@ H  @ @ @`C@wJ @ 0,Ņrꑅl*uKK};X#ߺԷJ}ז敥\Lm^oDr|lŖvgW@B|y}N @ @ȅ0  @ 0H_59Ѻzsw:2{:̷K=gJ%ċų[ ޮ9{sϳ' Z@B|G @ @C  @ @ 9/7_|}]X?xzR_R=^0WzTlusn9! m -l| @ @脀x'.I @ @! L LNo,?R7DgQ}G6,uL)ZWI, @ݼ.fE @ @}3 @ @ ^7:y?W-7.ƷMYWʪTxcoxdP  lFk` @ @蒀x @ @! LOli^<]~Rs,oT[/ ؛{rNA9K @,RTW<:{K% !/I @ @ @@o=wV;-mr @ @i$Yu ,юW0{O#w+L@B|]0%@ @ @rB<)]*UԸۏ=Xir-'V @ v}^k_; ˮ9~bW<گi,u. ˡjL @ @٣njw\c5911q1gKկ~uU%@ @SGy׻UN طo_߹sgzE9'* R@B|E @ @CDB< xn̔mo+*СCnў^XX(-J @|'\co|8}ю8&|d'Ҟ̵)Ndw)zNvG{jjL8.۷:99y?=uvNܰlqLUXn 6> @ @tB D;wPǮ_n(5[8p'Vw>\hΖqLe#@ @N DF{9_${H{ q~8'gɃ%DK3x=!+NvG>Wpx=7qdU&W! xcHǺqLΆGf8]$O+~ @ @ @w t"!gx5jvVWoyxW6WWccL  @ @`Dv?O]c'ҍqdǑ#MZ|Ya|%ć8x HyNsG;ڐC>>:\yծ'2 @ H @ @ @` -!PS\^kvrx6ڱ\6Onkh @X[n"Ovю绨`5{V4#vΡsE;.EnbNdW "5NJjCnݺr?Xa> stream xXKo7W({wCHb==\;Dv"ߐjpQo9k6tޭ~zm<:o5(?7togջnvw‚;I2\绐ԍcRqkY#'mtRɕ^ϚZO scC1Vc9ya}~xY_?nwaEjZf>YޭvnC67|T t_ſ{7i5Y7p) E=|7#?!F\>B%} (FM䰽-zԅں*|F/˥zyӋw4Ӌ|QL_aYB0cOAr)1=mC:K% >h;_>p!yj+Iz;@vhuHdfZ-Znp*(THP`,(҂鶚R J;F cQԏiԡ$ Vbg6~1~(AMq,<\rA Ac?O`VLfA!N# U9N_0iV0Q7L|s`$TУA4 {4aoGl^n+tH-W5ȠFI)<ѣw&d/5Y|>uB5s3/w Rq/z mS =’3'c|S5B4j~`0!B e^sB%L!&NyO='Wh"k[c5+b ʼnl>%,YM̒#+lfrb@{Aw;<  TݰHTVLbdw`.QP+H/> endobj 6 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /ColorSpace << /Cs2 18 0 R /Cs1 7 0 R >> /Font << /TT1.0 19 0 R /TT2.0 20 0 R >> /XObject << /Im4 14 0 R /Im1 8 0 R /Im5 16 0 R /Im2 10 0 R /Im3 12 0 R >> >> endobj 14 0 obj << /Length 15 0 R /Type /XObject /Subtype /Image /Width 147 /Height 103 /Interpolate true /ColorSpace 21 0 R /SMask 22 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` o endstream endobj 15 0 obj 222 endobj 8 0 obj << /Length 9 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /Interpolate true /ColorSpace 21 0 R /SMask 24 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om ?@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` |~ endstream endobj 9 0 obj 185 endobj 16 0 obj << /Length 17 0 R /Type /XObject /Subtype /Image /Width 129 /Height 103 /Interpolate true /ColorSpace 21 0 R /SMask 26 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om @a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0`<0 endstream endobj 17 0 obj 197 endobj 10 0 obj << /Length 11 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /Interpolate true /ColorSpace 21 0 R /SMask 28 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om ?@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` |~ endstream endobj 11 0 obj 185 endobj 12 0 obj << /Length 13 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /Interpolate true /ColorSpace 21 0 R /SMask 30 0 R /BitsPerComponent 8 /Filter /FlateDecode >> stream x1 Om ?@a 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` 0` |~ endstream endobj 13 0 obj 185 endobj 28 0 obj << /Length 29 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream x횱k`5W_bk54mthV, -H)CաPpP,A ]N}w~M}/Ys8 ߆FOdp0N矕rAAûgvٮ°޽ IP y1& }HT>RbtH'wXB 'TNRɓ{BxQ)5]gs42j*D"mV +IUnKe:)T>6qPRg\̪ Y]V~7Oi{Vo4jk}QKû<^+Eռn6;^FzNqE84Sx51oC!szV8<1h2t2ta ,)WFw8/hd1vO EtVzsI#תٴ !Kv<[,r1r. hE"@Zlb yFIa#@$@ް B o! 7l6DH "$yFIa#@$@ްoF6M~ɳ[0`m-QYHeSaT+ڣ NKvX q/+!n-8Q&&M&F*F#^&b- N E'7O9 endstream endobj 29 0 obj 684 endobj 30 0 obj << /Length 31 0 R /Type /XObject /Subtype /Image /Width 137 /Height 90 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream x횱k`5W_bk54mthV, -H)CաPpP,A ]N}w~M}/Ys8 ߆FOdp0N矕rAAûgvٮ°޽ IP y1& }HT>RbtH'wXB 'TNRɓ{BxQ)5]gs42j*D"mV +IUnKe:)T>6qPRg\̪ Y]V~7Oi{Vo4jk}QKû<^+Eռn6;^FzNqE84Sx51oC!szV8<1h2t2ta ,)WFw8/hd1vO EtVzsI#תٴ !Kv<[,r1r. hE"@Zlb yFIa#@$@ް B o! 7l6DH "$yFIa#@$@ްoF6M~ɳ[0`m-QYHeSaT+ڣ NKvX q/+!n-8Q&&M&F*F#^&b- N E'7O9 endstream endobj 31 0 obj 684 endobj 22 0 obj << /Length 23 0 R /Type /XObject /Subtype /Image /Width 147 /Height 103 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream x[RY9xTPL#CIMBM&̴(GʼS91yEh)Zf*6KGig ćۋϽh? DEaEGPht***p%0H"H$bl"C48\,H&'$&Q4-%NQ2O& 8 `HD Fg132ٜl.jYYvfF:3AQ)d V8q 3;"QaO"P ?;3dJBŠX'@NHJ/TTRV^qF\U}F"Ԝ(/+)IXH6;=@"ʭ9BccrqDZW47_xN* r,TA* C Oj/oܼw ׯ6~ =+>URX;H*|@NLfsrEeڋ[࣡OFT*zllLVF<z4Pjom] s9Dꛡ1BcfEUeΞ{GG'_ϿB ^fg^NOM>~&՟*/r24J<۠,N.DYѧ^h^iuvޚLNJ3ke'<@տ]Yܲ9@DcF\öV}z{w켸B}E#QS9ŠsM̖-ӭ0~rڶ,%n~J PM* yT*83EKr NV7;kʆǏ cieX19,ZsFsl4HUHe7n+GЪjsspR6eA*oߐI+DyD3< "ScEU {Ó:ڲ27 onvr^8à C}b4@ƦeK%Mm P2C;OOp}[Nnk>"brW:C7fToB>((yfrHqEzJeR?64b+50Bk\ }B =PSU@W abQGсDKSjwBfƔ=D!?xxDq=|:_̿w킛GLJ * NV7m֮P`sa~*$".m!$9S}kP4w[3u|#p(eJ[z'^VG%rP1HK3iq섌+\RQ0QqeIQB P((+lּDɭk Jo;,Lc/oSWU "+/Ӫ~fDV_~M#;<*+ohJi?07uSC}-?1eRNğێGAʹc,9l R"QXGOֶ5m﹜I]L{ّ̆'(d@$aknj"7?`.YdMM'Զ*Tm r; n;ۆQR֖~ONQ8 4r*.7bstLt8qg䜐G0 }>vƹ~D#XBWV~e3<"LMo/㱒~CS )] uM6HA/SQvmfPL\N&xVs kn.drXL\M!g&,>!5m`\du|sp}uI;>V[366 VxBp@]lL Kdhc@o9j8AKf\1ۑBr@ɾntI!E' @o9@rlg] D HAU9!|nKa1΍ipH458ÎtUB*E"q)G'L=/a" _)P0;v#pNy3'_> ~td\\spEڌ.f2=yo Z`ph"lS|(ʵHYCJk`ׄxiV447Ah=n,qY%5V- Vf>3'4@]eNCH1@Ûc&݂AL/7]XcЕ5u//q)/4e zp% *@bpқ\wb%+yJ*;(Wr3AUAELн'2/!ft5ѝ~;&$s/ ɬr%U*wa(PvC]I*wpc{`;p6|{\P./aP8}(CqSXPwf[ a{> stream x횱k`5W_bk54mthV, -H)CաPpP,A ]N}w~M}/Ys8 ߆FOdp0N矕rAAûgvٮ°޽ IP y1& }HT>RbtH'wXB 'TNRɓ{BxQ)5]gs42j*D"mV +IUnKe:)T>6qPRg\̪ Y]V~7Oi{Vo4jk}QKû<^+Eռn6;^FzNqE84Sx51oC!szV8<1h2t2ta ,)WFw8/hd1vO EtVzsI#תٴ !Kv<[,r1r. hE"@Zlb yFIa#@$@ް B o! 7l6DH "$yFIa#@$@ްoF6M~ɳ[0`m-QYHeSaT+ڣ NKvX q/+!n-8Q&&M&F*F#^&b- N E'7O9 endstream endobj 25 0 obj 684 endobj 26 0 obj << /Length 27 0 R /Type /XObject /Subtype /Image /Width 129 /Height 103 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xZSGC%(h}bO)1IM(GHXQ%5okEEA1_P$KN,|swB} ``0ؓ@'>c/,A$8 " ŅCQd J4*B""8lpH1H83Jfs8))));J`2H`B pZ;5-#y9ܬT6+Z, D vJ/,pLT~Ee7rSѩdR:@xI/Eʪꚟ x ,ܬ4eCch# *V劶.ewJVvuv) eB>7ȠE_ 0|$]6FyeA_{zPk4/ _<aiue"~wItJPpO3 M;Cꗯ&f:n~~LMzUvz9>37mlvl{;+ˡJEc-bP#˧3SB{@zJ_^3-6tkcpaZ̦enz ,2dB8};?De$e 5 Gƴ UΞ >Da2c#w+j~FBjD0SrnUʁwf @?r{c:2c`1/PeUeܔ'xqVo4mN@{}Y@J8-Q}{, xi tȱ|a[i{怅wcxz8c8l&ۙ={ V,py<|bt\rVļa{ y曇Lak0?1X-*J&^gŷ%-Q~l?w 6yUj.їh`甈rՋ1{e~YyhP8Y6 7C*T\s)Nqj]\NWhn&OZ\xr,[r^ѫ֯my-" ϻ)Ӛ^E.;^ EO.)4 ˾D^?ط/hu,=*ss:YX!L O -f1-iҊR7G|D߱/@X(p8@ %4&|7 OXݢ%xOiqzXR-qdyF{]/&d?}fOj'hg"! 0 IJ5 C2X[lU3)x?DGƲy7k}:>?2`ϽLQ7'cF K&dT6*ӆ]ϝ/0cw0V6-L%@GťEҶV;>~tڭoۤ"~J\YU*͜qv?/+ >ٶsUsUi иXل޴p cǮI?]zω%̌M*nr .784hw$aBbKp$|$^OXrX <\z]8h S>6@GD33K~{K9t{_J3^6bX9BI۳ɥhsiYDÊ!`Nc+u !dY,qvKVǡpa(FZMfu@{ϕH}uߚ~,LcD<t8YR%δ, mgz_^U$nh<%1A.m1Ԛl`\TܿH9 x*i9劉kRbsˤjl~đ c; ԝҲ'1Dwà^cӈ8l~L92b%eenD)+ ɯ.KB+ BB^!y`;D݋|BLqϋ0Bf y!|7y; 1 pP!ϐ sDȽ "sD@8KV,'OTJ\'DdJ]R _M\%R6W zl90N zAv*,\3nnf' *OW\<+UNQ=Y ڱ*15կzx깋A$rRW\A.頰ԫwPezH`Ci lE8I5zII5L'4V{ܽdsA%)f>nM@OXY][ ].訬騬 NG  OЧTRD(ja 0b6'%555z_ PvV8!B[>qPW?%FG 3 endstream endobj 27 0 obj 2720 endobj 32 0 obj << /Length 33 0 R /N 1 /Alternate /DeviceGray /Filter /FlateDecode >> stream xUMlUgŠU+'ZEi *:i"Rm֛ew6QOT! zZ~^TTH 8YCz̛fK}D|XU$~uB}NRI/<Ƈ7ޅצר܎{%U:,vsks$Gȭ!|];DbUxfϵt$Y:卵HNIVz-#Cz [Eydʈx0q+G#؅бGU ZT扞ȗsgWs;<ć̫|xHK}/wѴ%Q)o))_)ϕ$+ʊrY||ݧ(u[=vfq1ܱAk3o,mEp gK~nߥvjjyaqmBim ր6vq5y=klfUg=.SfE#fsH޵]:QV݇I!H&ɒf3Ì}sDf7N=ΈY1:yɄsd{}^_{4md(EsߚbPןY"s>aض@ Y'~Gjju72J&"j endstream endobj 33 0 obj 1088 endobj 18 0 obj [ /ICCBased 32 0 R ] endobj 34 0 obj << /Length 35 0 R /N 3 /Alternate /DeviceRGB /Filter /FlateDecode >> stream xwTSϽ7" %z ;HQIP&vDF)VdTG"cE b PQDE݌k 5ޚYg}׺PtX4X\XffGD=HƳ.d,P&s"7C$ E6<~&S2)212 "įl+ɘ&Y4Pޚ%ᣌ\%g|eTI(L0_&l2E9r9hxgIbטifSb1+MxL 0oE%YmhYh~S=zU&ϞAYl/$ZUm@O ޜl^ ' lsk.+7oʿ9V;?#I3eE妧KD d9i,UQ h A1vjpԁzN6p\W p G@ K0ށiABZyCAP8C@&*CP=#t] 4}a ٰ;GDxJ>,_“@FXDBX$!k"EHqaYbVabJ0՘cVL6f3bձX'?v 6-V``[a;p~\2n5׌ &x*sb|! ߏƿ' Zk! $l$T4QOt"y\b)AI&NI$R$)TIj"]&=&!:dGrY@^O$ _%?P(&OJEBN9J@y@yCR nXZOD}J}/G3ɭk{%Oחw_.'_!JQ@SVF=IEbbbb5Q%O@%!BӥyҸM:e0G7ӓ e%e[(R0`3R46i^)*n*|"fLUo՝mO0j&jajj.ϧwϝ_4갺zj=U45nɚ4ǴhZ ZZ^0Tf%9->ݫ=cXgN].[7A\SwBOK/X/_Q>QG[ `Aaac#*Z;8cq>[&IIMST`ϴ kh&45ǢYYF֠9<|y+ =X_,,S-,Y)YXmĚk]c}džjcΦ浭-v};]N"&1=xtv(}'{'IߝY) Σ -rqr.d._xpUەZM׍vm=+KGǔ ^WWbj>:>>>v}/avO8 FV> 2 u/_$\BCv< 5 ]s.,4&yUx~xw-bEDCĻHGKwFGEGME{EEKX,YFZ ={$vrK .3\rϮ_Yq*©L_wד+]eD]cIIIOAu_䩔)3ѩiB%a+]3='/40CiU@ёL(sYfLH$%Y jgGeQn~5f5wugv5k֮\۹Nw]m mHFˍenQQ`hBBQ-[lllfjۗ"^bO%ܒY}WwvwXbY^Ю]WVa[q`id2JjGէ{׿m>PkAma꺿g_DHGGu;776ƱqoC{P38!9 ҝˁ^r۽Ug9];}}_~imp㭎}]/}.{^=}^?z8hc' O*?f`ϳgC/Oϩ+FFGGόzˌㅿ)ѫ~wgbk?Jި9mdwi獵ޫ?cǑOO?w| x&mf endstream endobj 35 0 obj 2612 endobj 21 0 obj [ /ICCBased 34 0 R ] endobj 36 0 obj << /Length 37 0 R /N 3 /Alternate /DeviceRGB /Filter /FlateDecode >> stream xUoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqx endstream endobj 37 0 obj 1047 endobj 7 0 obj [ /ICCBased 36 0 R ] endobj 3 0 obj << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 2 0 R ] >> endobj 38 0 obj << /Type /Catalog /Pages 3 0 R /Version /1.4 >> endobj 20 0 obj << /Type /Font /Subtype /TrueType /BaseFont /AJKJGM+Helvetica-Bold /FontDescriptor 39 0 R /Encoding /MacRomanEncoding /FirstChar 32 /LastChar 119 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 556 556 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 0 0 0 0 0 0 0 0 0 0 0 0 556 0 0 0 556 0 611 0 278 0 0 0 889 611 611 611 611 389 0 333 0 556 778 ] >> endobj 39 0 obj << /Type /FontDescriptor /FontName /AJKJGM+Helvetica-Bold /Flags 32 /FontBBox [-1018 -481 1436 1159] /ItalicAngle 0 /Ascent 770 /Descent -230 /CapHeight 720 /StemV 0 /XHeight 644 /MaxWidth 1500 /FontFile2 40 0 R >> endobj 40 0 obj << /Length 41 0 R /Length1 9680 /Filter /FlateDecode >> stream xZ tSUyѤi4ͣ4IGҦ-(Rhk+ LNP:"3`tU zeq]Q| >V&?Ieq='{{{}n: oO'.Ko1{Q޻vz[gMa)ٞVnȯh. ]\Ԗu1sQ]}"^AJ։ M#g-B^0gmDz҄jRX @7"* (~IT7`~Ag3WlۥNJ/D`Qj @N0]1BpКzj((iCY bx)12 3>8zH/ic-թeRR #KH-OdŌjFXQ ^Z`1,5^)Kg~%R7,_0ݩ*26Pb32dtAb ÆCea|lk(Ѵz' {K(paճ5TꑐZ5⧞+Sr-g$f@)aAYpSPp$B& 948: Ѳops,?>&*b !xpL 1\[P6؋.`L$tO;mxwPL/FMIci)pJ~2%QJa7UMnOZ4 kC]!w$93*t]nxLޮ a'Gy\ "v8 L(}h\ag0+|z31Vx4U8aY>0' Z뛰n}2~zG{}GCӚ>Əu{*&GY+>޳I}5 &,GDpp+˄ճ䓚]+<95 xCnA}Ӱׇ<QrQ(t1=?uuM$/D<aLX rX GG! "}x5lr3GP>:orO[ u{E؁^i6 ~س/x'BDV7 D ?9|{+V\t.zC]~ 7?H뚆';N8 FNr7V8t!JRAeJS)1؜54!-qΎ",'C(`f,aD CA(^JkZwxw3x]8fLD&0g!fggKmM?<8(d|Yyz?!a^Tf..D9gVi?p$n̙hB D ^îbhspɿS NF<- 1\1\~= Ϻ.ݓH0\Õ:0\ Ϟč !k~"^õIS ^0ga7\hB 7D /_MH0܌[&|pfv'77L)ol᷅(_QʽEIS(oGKʗ?Rq Q.؉£䳋u1J&w(GGC)`3u4 r9[xe&[̋ݾo]KMKE39̵~xR1y~k-+uƽFo^mY>{xn wX{21~$ OD2}&w;"'}쐥*S5)d[pTuyo~RJ3ZkB2NNǗeLY4S;S/ٝb2C~ޙ'#E R;:65bdtT) vO,'iCblə$ٖ 8::? jhb3A!5Gw &̖ޖyJ'^ |8B- ȾA7;ŖhΝ?ѥwZ= )^|% cR g %hQ\P󋩼 d;aN$s."SKtɤC*-J% ZY86'$:_))#nPFze/W=/LYm*L8O3N58MT1ƊY 9խ ω7ݰ*^-cE↦D-1Zr*1~CmŚ\`yjvӻ B<ʙHNhᕃř)Y#-~RʛMv]2F6]mȎYض)CI;#id騫[ M5K" cg\46.SI,!-sS@=?enWhlFO4U%ɗetMJl߿=~{jV-3Hէ߸XM++evH -3V WCkn14Vh!F"qT5Fĸsu݊9\KkFSqDC/~bijkO>E,] ,ߘE4y [jg V2- #3S.͝=ϟha p`poű-,+) M.D+ER NeQARآ:]X;~BXknFK]UF8M/?>p 3C'Ǔ=2n*F <b)ZH۔6RI]XfQt: 5$*'#&"r+} 4֮>!k -EN@Cw70Ge|$ y8v?I!|6\9sDxBPCiʱNl0WP .fhT*BlN͜ꎕ떷{W.R]Ã҃ҏ aqS(|DM(NŃI7?՟5͟=͟30uM}7M_>/5WM_=3Ϳf4Nה;-~_Y2 endstream endobj 41 0 obj 5987 endobj 19 0 obj << /Type /Font /Subtype /TrueType /BaseFont /RAWELD+Helvetica /FontDescriptor 42 0 R /Encoding /MacRomanEncoding /FirstChar 32 /LastChar 122 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 278 278 0 556 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 0 0 0 0 0 0 0 0 0 0 0 833 722 0 667 0 722 667 0 0 667 0 0 0 0 0 0 0 0 0 0 556 556 500 556 556 0 556 0 222 222 0 222 833 556 556 556 0 333 500 278 556 500 0 500 0 500 ] >> endobj 42 0 obj << /Type /FontDescriptor /FontName /RAWELD+Helvetica /Flags 32 /FontBBox [-951 -481 1445 1122] /ItalicAngle 0 /Ascent 770 /Descent -230 /CapHeight 717 /StemV 0 /XHeight 540 /MaxWidth 1500 /FontFile2 43 0 R >> endobj 43 0 obj << /Length 44 0 R /Length1 12880 /Filter /FlateDecode >> stream x{y\T9箳0 3¬ 3ð ;22A6Q0bEqKA6ѨDmmLZצHtԚצڷKLlڅ3=Rku.ys^VjG 1hEH"} VvI%vAw#^b/\"^FHn]|i/u.w@C !OXѵ:^B~} Fu"+Wy>z{[WPZ}ts!_ع}d[noCR /,f1A6!/i^0 lP &Z˺xa8n?d]nn m0{gpq N<092`@^\Y/saC=:͞{0;[f8=(pO",d_0ֱke?yVl%}Vtߘg56ff`,%3+tT- M11hm X qg;ҹdfsػi+w+b)M=IDYڃB9G}x)yhmEa4 bE0 vH @z݊ݱPB =P z Au+t:.rM$v h̹z^M#-Bh:G/a7s1ցڇ~c؅FdA3ZL?X{?Ţ@tOmA0?\gAVe o;H| 8C4tj}hP$BŸ#fWbEh*uõӘǹx;A"A|35n +_NDdEwaXa`7.x>\=x9d:>/# _'Q=$]d;9B^&e0;g/؉qnh[tsDZ/AĊy@ztjvBmX pî W/lAKZlz|'^\/I\%DF4@,d&i#+Hy0)L3uy\g96ճ5d]k?{`_Dp-5-a~+? 4>a /g|t/Z+q ^அxЫǚ pnmf}wm0e:V + v;(h 2|^;͕tȷMFC^ը LxeFYUGb=lZwBC- -pDŽVmdF.32Վ2Tr9Bt9xF(?QjrrT~R*'@UƎJG8BU-Yd!΢#tԺ,DGT̮ʪecU Cg4VU8MM %!=\Zx8Zhu^cim :&3dpU k?5zTqWV-qiZ@mLLK645$(KSn\'[:B2Wwi 54fIS$UN.uOfߑ}KƇ~Ƈ~ԆQ`Jd3X =ȖФ.(: 2>Bxq8P̛htTƑkYZ9 3%%T[za`uk/nvҍnY 0:vK{ uSPC:P!G4555db)c¨zlTНEYmI%<*YАᄒ?Q OuN^vt3n)ަFO 6ۛ<9t6 KGf\jʉ,PgzPOeJ(X{vzc,pnS0^8s>Yv)z{3]ޔ^z0Fc# aDPqt23E h5QK(5G;KM| F.6 Υsx5xwA& O&F6 WU59 FSF$S$ O7QPQQLotNJ9 7F³F$lgIooBoDQLo\RQ SBV93F`w R⴨q~! 7hb߃r?䃐B@78ᥐLz|.vpzh@th32@ʊ(4nƏ՜| pG+d#h5x4"GұIRDsiC tQ2xAFd/gE6( xB^ Gʬf+4CVX\(d}r;󊃊/ +9^?x[y<&B0Q !x̼֡F,>:w 4;AWqj\fC<Ip# 3^L,йbW"U핟qzWk]?T33haa46Øro2n?sz7¯E}:& uTa\TdCơ7#T^~7yIEK3ݞgIM\p lQ*/f92뽶x#3ĹeLY^4q(')XL쉉I$a_LU:-$ߗ&>b/IMqQ<2b,)RV>r\h Ay-IxZU:tlbt,!(Zi\-㊋ =T\Pvk:O<48)~v†NxL*~5/nn+YhfT7|'E3۾eWښiys0O WD鵸w`fea9{&<&L ނ֡Zhq[  Y amMALpP;&$?q{^IϹe>p.1I\U]iD`S(S2Gb`gSBPF60 5eݨ.+rqs3j 8f~4c#r&OdsAfI8j` JIWJ<eL261oc. ["E972o7)嬜M"vEOP"/I!sH7 1P( /, =Q%&Z'!ӘYdR^?t6_:< à 0:nh#rQ2#RX\MKk\c6Jt.w溇xm ƒ}>=A\Eԍ%;Q$%26?+1K(AJ(h(jZ]CV MV˱*BI.^de:]kNNIƊcGdE.S"ej8a8I|./z sC{h9gu.ܙ8Ξo2+B[-Ջjɸknn5'& `KtxZkWͮ-YzinRx,)í%)fq{t[nvݕ7UV/'.za'2°Bi]3Ƌx8ِlл8{NSE+^]6{'0 \*ss˛YYj3lODz&-7٫ܧ(W|_56ZՃieQep&Up*#WOMK3.''2^ǰ3eD5i\m,vf2ru.`t!\2z6AHA0KkH$vnB(/e\IL7fbgHUdb, i-Й H*33L*J)G@P:SuH.*L+g.JT^3$K{ױ.3cPZ缁Ӟ;[Ӊyw_ [z;fl~ѿÐ:|q]6gW仳E/xmy#7'tЕ׷d1mbS:qg ÃFXQ0{9&a+:U(2PXg< IPʘF)P#A(rw?X\$w m"\,W,x jKdKB@*eLJ&L(%nZD7` ޠ` ^_AE2̢|S|)ӄ?Ż X}Dq2b"CQq*E?LAҋS6qqm)N93#NdXY9Mb X%A=1c x R/,9גEfU`8Uj{(s:hU#jjPp$ڧњ dotuK`[߾fE&G6 $Dc>`g8Itz6Q *:gSǙs̹wweoq]6\v)iiϜ0:dsLPV={fm#Mߺ?9"W#~u3pLNx:ޫN$:4 Y0'3[3!S Jm+UT>};-K+G4=5oJIv >o"3me +_y.:A+ܓ>qCa6:xU0 &x)2dN chIwFϾ$R |Q$@*j (q PgHdP In҄*4PQ=@ MWߐ;ԏv|>bX '9G.1# μ^](WW0x@EEz!WY-TirD+ZQq+ię=¸dHIAAZ,jKQ)g!)# У E~q]}tҨ8xGOt^Ӑ[:w;zzgn^#&G>9dA 32qL ˪D5Q42Wl$L d&qãb–uC!Rn4Qw@<#.Vuz68*'%sQ{9N}gt} >=-vV;kjx-QIXvuu =7+O؞9%tIއ>77HUI2}|百[֝Y3%tۂ "N%G|eF0rRa6cE* /N](C.# F5I6us?t&?ٜHNȘLf򎙞O0bsA~uf1@_*v ;Ǟӈ u` B N> x9eHTWӨONaj?yS<ߏDRekx9uƚꇐ,X LxnI/56Jt*6Fq5PVCI5@VoSffI)%` xϢWKx ݈pM Bc7 .VkԈKx1 '>Jag2\& f%3nF䁀Fc)"ⶸyv9^[B 31neоn`E(g;|~`4^7uK`EDUZq |Xl*B"QC/ԁZ]jcNմ]KJ#nH/Lz20`H(hX  @<; %6F~<4Z1SSSScLnL~L}zØ1cʷmL}1u?n1Kԗo$o}w;W?05jL{L6_ endstream endobj 44 0 obj 8540 endobj 45 0 obj (overview.graffle) endobj 46 0 obj (Mac OS X 10.8.4 Quartz PDFContext) endobj 47 0 obj (Joseph N Paulson) endobj 48 0 obj (OmniGraffle Professional 5.4.4) endobj 49 0 obj (D:20130923154959Z00'00') endobj 1 0 obj << /Title 45 0 R /Author 47 0 R /Producer 46 0 R /Creator 48 0 R /CreationDate 49 0 R /ModDate 49 0 R >> endobj xref 0 50 0000000000 65535 f 0000034866 00000 n 0000002101 00000 n 0000018493 00000 n 0000000022 00000 n 0000002081 00000 n 0000002205 00000 n 0000018457 00000 n 0000002872 00000 n 0000003255 00000 n 0000003692 00000 n 0000004077 00000 n 0000004097 00000 n 0000004482 00000 n 0000002429 00000 n 0000002852 00000 n 0000003274 00000 n 0000003672 00000 n 0000014476 00000 n 0000025358 00000 n 0000018640 00000 n 0000017249 00000 n 0000006292 00000 n 0000009414 00000 n 0000009435 00000 n 0000010310 00000 n 0000010330 00000 n 0000013242 00000 n 0000004502 00000 n 0000005377 00000 n 0000005397 00000 n 0000006272 00000 n 0000013263 00000 n 0000014455 00000 n 0000014513 00000 n 0000017228 00000 n 0000017286 00000 n 0000018436 00000 n 0000018576 00000 n 0000019029 00000 n 0000019260 00000 n 0000025337 00000 n 0000025776 00000 n 0000026001 00000 n 0000034632 00000 n 0000034653 00000 n 0000034688 00000 n 0000034740 00000 n 0000034775 00000 n 0000034824 00000 n trailer << /Size 50 /Root 38 0 R /Info 1 0 R /ID [ ] >> startxref 34986 %%EOF